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RESUMO

Uma alta porcentagem (50% a 70%) dos individuos pos-Acidente Vascular Cerebral (AVC)
apresentam perda de funcdo do membro superior (MS). A hemiparesia que ocorre apés o AVC
gera inimeras alteragdes tais como, atrofia e fraqueza muscular prejudicando a funcdo e as
atividades de vida diaria destes individuos. Estas alteracdes podem estar relacionadas ao sistema
nervoso central (SNC) e também ao musculoesquelético. Fatores como o ndo uso aprendido
podem também auxiliar nas mudangas tanto neurais como musculoesqueléticas, gerando um
ciclo mal adaptativo e exacerbando a disfuncdo do membro. Embora se conheca sobre as
adaptacGes neurais, pouco € conhecido sobre as musculoesqueléticas principalmente em
membros superiores. Grande parte dos estudos avaliam membro inferior e a heterogeneidade de
comorbidades  encontradas  nestes  pacientes  dificultam as  conclusbes  dos
resultados. Objetivos: Os dois estudos tiveram por objetivo avaliar as alteracbes
neuromusculares e funcionais no membro superior apés o AVC. Métodos: No estudo 1 foi
realizada uma revisdo sistematica com busca em Dezembro de 2017 utilizando as bases Medline,
PubMed, Scopus, Cinahl e Web of Science. Foram investigados estudos que realizaram analise
de exame de imagem no intuito de avaliar adaptacbes musculoesqueléticas no MS apds o
AVC. No estudo 2 foi realizado um modelo de leséo isquémica induzida por endotelina-1, bem
como treino de alcance da pata anterior menos afetada de ratos. Foram realizados testes de
desempenho funcional e andlises morfométricas dos muasculos da pata dianteira
parética. Resultados: Para a revisdo sistematica foram incluidos 7 estudos com uma ampla
variedade de musculos distais avaliados, que obtiveram reducdo na area de seccdo transversa,
densidade, comprimento de fasciculo e aumento de angulo de penacdo do mdsculo e variaveis
responsaveis pela quantidade de tecido conjuntivo do lado parético comparado ao néo
parético. No estudo 2 a isquemia induzida por endotelina-1 prejudicou o desempenho do
membro anterior parético durante a tarefa de alcance sem alteracdo musculoesquelética. Treino
do membro anterior ndo parético acentuou o ndo uso aprendido e induziu atrofia dos extensores
dos dedos no membro parético. Conclusdo: estudo 1 mostrou evidéncia de qualidades moderada
com alteracbes musculoesqueléticas em membro parético apds o AVC, porém as comparacoes
do lado parético e ndo parético podem ser inapropriadas e induzir a erros, assim estudos bem
desenhados abordando esta questdo sdo necessarios. O estudo 2, concluiu que lesdo isquémica
induzida por endotelina-1 causa disfuncdo das “pata anterior de rato sem alteracdo muscular
e recuperacdo tardia da funcdo € associado a movimentos compensatorios, porém, sem atrofia.
Treino do membro ndo parético prejudica a recuperacdo e causa atrofia seletiva do membro
parético.

Palavras-chaves: Acidente vascular cerebral, isquemia cerebral, reabilitacdo, extremidade
superior, paresia, ndo uso aprendido, alteracdo musculoesquelética, atrofia.



ABSTRACT

A high percentage (50% to 70%) of post-stroke patients have loss of upper limb function (MS).
The hemiparesis that occurs after stroke generates a range of alterations such as atrophy and
muscle weakness impairing the function and daily life activities of these individuals. These
changes may be related to the central nervous system (CNS) and also to skeletal muscle. Factors
such as learned non-use may also aid in both neural and musculoskeletal changes leading to a
maladaptive cycle and exacerbating limb function. Although it is known about the neural
adaptations, little is known about the musculoskeletal mainly in upper limbs. A large part of the
studies evaluate lower limb and the heterogeneity of comorbidities found in these patients hinder
the conclusions of the results. Thus, the thesis studies were performed in order to respond if there
is a musculoskeletal alteration after the stroke and if through learned non-use we can generate a
model of atrophy or worsen functional deficits and musculoskeletal atrophy. Objectives: Both
studies aimed to evaluate the neuromuscular and functional alterations after stroke. Methods: In
study 1 a systematic review was conducted with search in December 2017 using the Medline,
PubMed, Scopus, Cinahl and Web of Science databases. We investigated studies that performed
image analysis in order to evaluate musculoskeletal adaptations after stroke. In study 2, a model
of ischemic injury induced by endothelin-1 was performed, as well as training of the reach of the
less affected forelimb of rats. Functional performance tests and morphometric analysis of the
muscles were performed. Results: For the systematic review we included 7 studies with a wide
variety of distal muscles evaluated, which obtained a reduction in the cross-sectional area,
density, fascicle length and increase of pennation angle and variables responsible by the amount
of connective tissue on the paretic side compared to non-paretic. In study 2, endothelin-1 induced
ischemia impaired the paretic upper limb performance during the reach task without
musculoskeletal alteration. Training of the non-paretic upper limb accentuated the learning non-
use and induced atrophy of the finger extensors in the paretic upper limb. Conclusion: study 1
showed studies with poor to fair quality of evidence showing musculoskeletal changes in a
paretic limb after stroke, however, the paretic and non-paretic side comparisons may be
inappropriate and error-inducing, so well-designed studies addressing this issue are necessary. In
study 2, it was concluded that ischemic injury induced by endothelin-1 causes dysfunction of the
forelimbs without muscular alteration and late recovery of function is associated with
compensatory movements and without atrophy. Non-paretic upper limb training impairs the
recovery of the paretic limb and causes selective atrophy of the paretic side.

Key words: Stroke, cerebral ischemia, rehabilitation, upper extremity, paresis, learning non-use,
skeletal muscle alteration, atrophy.
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Figure 1S. Schematic representation of animals’ procedures in a timeline. ET-1:
endothelin-1. *the dominant/paretic forelimb was used in the single pellet retrieval test.
Note all groups were submitted to single pellet retrieval training with dominant forelimb
to teach animals how to perform the task.

Figure 2S. Reaching chamber. Plexiglas reaching chamber (30 cm long by 35 cm high
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15 cm wide wall was used in this study. A small Plexiglas rod approximately 2 mm in
diameter adhered to the base of the reaching window creating a barrier that prevented
animals from scraping the pellets into the chamber, and also reduced attempts to use the
tongue to retrieve pellets.

Figure 3S. Representative photographs showing the upper limb asymmetry. One day
before the surgery, the rats were exposed to a cylinder for 2 min (day -1, pre-ET-1), and
again 3 days after the surgery (3rd day). Note the animals presented exploratory behavior
using both forelimbs pre-ischemia (white arrows). After brain ischemia (day 3), the
animals avoided using the paretic forelimb (white arrow: non-paretic forelimb; black
arrow: paretic forelimb).

Figure 4S. Representative photomicrography of rat brain injury after endothelin-1.
Arrows showed the damaged place on the brain. Primary (M1) and secondary (M2)
motor cortices, and primary somatosensory cortex were affected.

Figure 1. (A) Graphic representing the percentage of successful reaches on the acute and
chronic phase for control group and the group submitted to an ischemic lesion with
endothelin-1 for 15 days (ET-1 15 d). *p<0.05 compared to day -1 (pre). T p<0.05
compared to day 3. I p<0.05 compared to control group. (B to E) Sequential photographs
of reaching, grasping and taking the food to mouth movements before surgery (day-1)
are presented. (F to 1) Compensatory strategies of the same approach 14 days post-ET-1.
Note animals used trunk strategies to eat to compensate forelimb paresis (1).

Figure 2. Minor muscle fiber diameter of control, endothelin-1 4 days (ET-1 4d) and
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endothelin-1 15 days (ET-1 15d) groups. No differences were observed between groups
for any muscle (p>0.05).

Figure 3. Percentage of successful on single-pellet retrieved task. *p<0.05 when ET-1
15d and ET-1 15d + T are compared to their own values on day -1 (pre) and also to
control group; Tp<0.05 compare to ET-1 15d + T; #p<0.05 when ET-1 15d compared to
its values on day 3; $p<0.05 when ET-1 15d + T is compared to control.

Figure 4. Minor muscle fiber diameter of control, endothelin-1 15 days (ET-1 15d) and
endothelin-1 15 days and non-paretic forelimb training (ET-1 15d + T) groups. *p<0.05
compared to ET-1 15d. No differences were observed between groups for biceps, triceps
and fingers flexors muscles (p>0.05). However, nonparetic limb training reduced muscle
fiber diameter on fingers extensors muscles.

Figure 5S. Muscle fiber cross-sectional area distribution. An increase in the percentage
of muscle fibers of ET-1 15d + T around 50 and 100 extracts compared to ET-1 15d can

be observed.
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APRESENTACAO

Esta tese foi estruturada de acordo com as normas do Programa de Pos-Graduacdo em
Fisioterapia da UFSCar e faz parte de uma linha de pesquisa do Laboratério de Pesquisa em
Fisioterapia Neuroldgica (LaFiN), que investiga as alteracdes neuromusculares pos-Acidente
Vascular Cerebral (AVC) e suas implicagdes para a Fisioterapia..

Serd apresentada uma breve contextualizacdo sobre a problemaética investigada na tese,
seguida por um objetivo geral, os manuscritos e uma conclusdo geral. O primeiro estudo foi
submetido a revista Topics in Stroke Rehabilitation e 0 segundo a Muscle & Nerve. Além disso,

as atividades desenvolvidas durante o doutorado sdo apresentadas ao final do documento.
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CONTEXTUALIZACAO

O AVC é atualmente a principal causa de incapacidades na populacdo adulta (MURRAY
et al.,, 2012; FEIGIN et al., 2014). Apés o AVC, mais de 50% dos sujeitos apresentam uma
hemiparesia que afeta principalmente 0 membro superior contralateral a lesdo (PELICIONI et al.,
2016), gerando deficits na funcdo e prejudicando as atividades de vida diaria (AVDs) destes
individuos, como alimentacéo e higiene pessoal (VAN VLIET e SHERIDAN, 2007; FREITAS
et al., 2011). Espasticidade, alteracdes da sensibilidade, contraturas e fraqueza muscular sao
comuns nos quadros de hemiparesia (CHO et al., 2014; LEE et al., 2015).

A fragueza muscular apdés o AVC pode ocorrer tanto por fatores neurais, como por
alteracdes musculares (MCNULTY et al., 2014; SILVA-COUTO et al., 2014). As modificacdes
intrinsecas dos masculos sdo, por exemplo, mudancas no fenotipo da fibra muscular, sarcoémeros
hiperalongados, proliferacdo do tecido conjuntivo, mudancas no angulo de penacdo, no
comprimento do musculo e atrofia muscular ( LIEBER et al., 2004; LIEBER, 2010; RAMSAY
etal., 2011; SMITH et al., 2011; GRAY et al., 2012; MCNULTY et al., 2014).

Além disso, no pés-AVC, o aumento da imobilidade em decorréncia das alteracdes
sensorio motoras podem contribuir para acentuar a perda de massa muscular (GRAY et al., 2012)
e da forca, (CLARK, 2009). Além das adaptacbes ja& mencionadas, individuos pds AVC também
passam a apresentar comportamentos compensatorios principalmente em relacdo ao membro
superior, diminuindo o uso do membro afetado e aumentando o do membro menos afetado, um
comportamento chamado, ndo uso aprendido (JONES e SCHARLLERT, 1992; TAUB et al.,
2003, 2006).

O ndo uso aprendido é uma consequéncia que se inicia com o desequilibrio

interhemisférico que ocorre ap6s uma lesdo unilateral focal, como o AVC. Na inibicéo
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interhemisférica, o hemisfério intacto aumenta a sua atividade em relagdo ao hemisfério que
sofreu o dano cerebral, alterando areas representativas corticais do movimento e isto restringe a
funcdo motora (TAKEUCHI et al.,2012; MURASE et al., 2004). Ao longo do tempo, outras
alteracbes como, por exemplo, o fato do individuo ndo conseguir utilizar o lado afetado, auxiliam
no processo de fixagdo deste comportamento (TAUB et al., 2002).

Jé4 estd bem documentado na literatura que as lesfes do cdrtex motor responsavel pela
area dos membros anterior de ratos, associados ao treino de alcance do membro menos afetado,
conduz a alteracdes plasticas no cortex de peri-lesdo, e altera o comportamento destes animais,
isto é, eles passam a utilizar mais a pata ndo afetada, piorando seu desempenho de alcance
(JONES e SCHALLERT, 1989, 1994; ALLRED e JONES, 2004, 2008). Estes estudos também
demonstraram que o treino de alcance com a pata ndo afetada atrasa a reabilitagdo do membro
afetado (ADKINS et al., 2004; ALLRED e JONES, 2004; ALLRED et al., 2005; ALLRED e
JONES, 2008). Em resumo, estes estudos mostram que ndo s6 a lesdo, mas também que o
reforco do comportamento do ndo uso aprendido, auxilia no processo de uma plasticidade mal
adapatativa.

Em humanos, os estudo sobre as adaptac¢fes na arquitetura muscular ou sobre os efeitos
do ndo uso aprendido no p6s-AVC, em grande parte, sdo realizados em membros inferiores ou
sintetizam conjuntamente os resultados de membro superior e inferior (ENGLISH et al., 2010 ,
2012; SCHERBAKOQOV e DOEHNER, 2011). Outro problema encontrado s&o os resultados
controversos em relacdo as adaptacfes musculares, variando desde auséncia de atrofia muscular
no membro parético (CARIN-LEVY et al., 2006), até diferencas significativas entre lado
parético e ndo parético (RYAN et al., 2002; METOKI et al., 2003) e entre individuos

hemiparéticos e controles saudaveis (SILVA-COUTO et al., 2014).
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Apesar destes achados ser clinicamente relevantes, fatores como diferentes graus de
espasticidade e fraqueza, aliados a variabilidade de idades dos sujeitos, intervalos pos-AVC e
comorbidades existentes, atrapalham a homogeneidade dos grupos (SNOW et al.,, 2012),
dificultam a generalizacdo das conclusdes sobre a adaptagdo muscular. Assim, observamos a
importancia de estudos que realizem sistematizacdo das informacGes relacionadas as alteracdes
musculares em membro superior, bem como a realizagdo de estudos controlados com modelos
animais.

Estudos ja& compararam o movimento de alcance entre roedores e em seres humanos
saudaveis, e constataram diversas semelhancas no movimento de alcance entre as duas espécies
(WHISHAW et al., 1992), e que ap0s a lesdo cerebral, ha comprometimento das funcdes e das
habilidades na pata anterior em animais de forma semelhante ao que ocorre em membros

superiores de humanos (MURPHY e COBBERTT, 2009), possibilitando comparagoes.
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OBJETIVOS

Esta tese teve dois objetivos principais. O primeiro foi revisar a literatura e sistematizar
as informacOes encontradas sobre as adaptagdes musculares do membro superior frente ao AVC
em seres humanos (manuscrito 1). JA& o segundo, a partir de um modelo animal de lesdo
isquémica cortical com endotelina-1, verificar seus efeitos sobre a adaptacdo muscular da pata
dianteira. Além disso, também visa investigar se o treinamento do membro ndo parético,
simulando o ndo uso aprendido, geraria qualquer alteracdo na musculatura da pata parética

(manuscrito 11).
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Abstract

Background: Stroke is the leading cause of disability in the adult population, impairing upper
limb movements affecting activities of daily living. Muscle weakness has been associated to
disabilities in this population, but much attention is given to central nervous system alterations
and less to skeletal muscles.

Objective: To carry out a systematic literature review to identify structural muscle alterations in
the upper limb of post-stroke individuals.

Method: The search was performed in December, 2017. Medline, PubMed, Scopus, Cinahl and
Science Direct were used as electronic databases. There was no restriction regarding language
and publication dates. Studies conducted on post-stroke subjects and results on upper limb
skeletal muscle alterations identified by imaging tests were included.

Results: Seven studies were included. The sample size and the variables varied among the
studies. All the studies compared the paretic upper limb with the non-paretic upper limb and one
of the studies also compared healthy subjects. Ultrasonography was the most used measurement
tool to assess muscle adaptation. Most of the studies showed poor quality.

Conclusions: This review demonstrated little evidence with poor to fair quality on the structural
muscle adaptations in the post-stroke subjects, showing muscle atrophy, a higher stiffness and
amount of fibrous and fat tissue without alterations in lean tissue of distal muscles of the paretic
upper limb compared to the nonparetic limb. However, the nonparetic side also presented
alterations, which makes it an inappropriate comparison. Thus, well-designed studies addressing
this issue are required.

Keywords: stroke; upper extremity; skeletal muscle; muscular atrophy; muscle spasticity.
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Introduction

Stroke is the main cause of neurologic disability in adult populations worldwide’. Most
stroke survivors experience some loss of motor function and disuse of the upper limb (UL)*
which can contribute to a reduction in functional independence and social participation®. These
alterations in the UL may be related to motor and sensory impairments®, such as spasticity,
sensibility alterations and muscle weakness”®, which may, over time, alter the muscle
architecture gradually, generating contractures and impairing the range of motion and force
generation during activities of daily living®*°.

According to the literature, muscle structural alterations can be related to those of muscle
fiber size, volume, fiber type distribution, amount of intramuscular fat, sarcomeres and
connective tissue proliferation™™®. Recently, imaging techniques have been used to evaluate
these muscle properties within research practice. These non-invasive techniques present a high
reliability of measurement’® and the most common resources are magnetic resonance imaging
(MR1)®, computerized tomography (CT)**, Dual Energy X-Ray Absorptiometry (DEXA)? and
ultrasonography (US)%.

Based on these imaging technologies, studies have observed important alterations in the
elderly population, such as lower muscle thickness and mass, as well as higher muscle echo

intensity and the amount of intramuscular fat**?°

, which can be related to impairments in
functional performance?’. However, in post-stroke subjects, most of the studies carried out an
analysis on the lower limb® and none of them controlled comorbidities” or the effects of
aging'’, making generalizations about the effects of stroke on UL skeletal muscles difficult to

understand. Thus, the aim of this review is to identify the muscle alterations in the UL in
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survivors after stroke in order to provide a better understanding of structural muscle adaptations
in the post-stroke population.
Methods

This review was written using the Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) statement®®. The State of Art through Systematic Review software (StArt -
http://lapes.dc.ufscar.br/tools/start_tool) was used to systematize and organize search and data

extraction®,

Data Sources and Search Strategy

A systematic search was conducted on December 15, 2017 using five different databases
(beginning of the search): PubMed (1972), MEDLINE (1946), CINAHL (1937), SCOPUS
(1823), and Science Direct (1823). The final search was performed using the following MeSH
headings or predefined keywords: (“stroke”) AND (“upper extremity” OR “upper limb” OR arm
OR hand) AND (“skeletal muscle” OR “muscle mass” OR “muscle architecture” OR “muscle
atrophy”). All the databases were limited to humans and were not limited to the date and

language of publications.

Eligibility Criteria

Full-text articles were included if studies were conducted in post-stroke individuals and
outcomes included upper limb skeletal muscle alterations identified by imaging tests, such as
computerized tomography and ultrasound, which are considered as gold standard for muscle
morphology analysis®. Ultrasonography provided information related to tissue muscle tissue

composition and stiffness measured by echo intensity and shear wave, respectively®. Articles
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were excluded if other neurological diseases or health conditions were evaluated, if they focused
on muscle adaptations of lower limbs or if they used only biopsies because they did not reflect
the whole muscle. Studies using botulin toxin were not included. Systematic reviews,
dissertations, theses, letters, meta-analyses, guidelines, scientific congress abstracts, case-reports

and qualitative studies were also excluded.

Study Selection

Two independent researchers (GLS and GNO) screened the titles and abstracts according
to the selection criteria of this review to identify potentially eligible studies. Afterwards, the full
texts were read independently by the same two reviewers. In case of ambiguities or
disagreement, a third researcher (FMF) was required to reach a consensus during the deliberation

session. Additional articles were verified by screening the reference list of selected studies.

Data Extraction

Relevant data were extracted as follows: first author, publication year, study design,
groups (sample size), baseline sample characteristics (time post-stroke, age, gender, UL deficits),
measurement tool, muscle evaluated, comparisons and main outcomes involving structural

muscle adaptations.

Methodological Quality Assessment

The methodological quality was evaluated using the Downs and Black assessment tool

recommended by Cochrane®. This checklist has 27 items and assesses the following components
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that evaluate: the reporting quality; methodological design; external validity and internal validity
(bias and confounding) and power. All items were scored as yes (=1) or no/unable to determine
(=0), except item 5, which can be scored as 0, 1 or 2 (no, partially, or yes, respectively). The total
score was grouped into four categories of quality: excellent (26-28), good (20-25), fair (15-19)
and poor (<14)*. Two researchers (GLS and GNO) classified the articles independently and the
inter-rater reliability (kappa statistic) was 0.70, a substantial agreement between the
investigators®*. When there was any disagreement, the researchers discussed to reach a consensus

for the final score.

Results

A total of 2,278 studies were found in the databases (PubMed = 806, MEDLINE = 87,
CINAHL = 125, SCOPUS = 907, and Science Direct = 353). After removing the duplicates, the
titles and abstracts of 1,489 articles were screened (Figure 1). Thereafter, 12 articles were read in
full; however, only seven articles fulfilled all the inclusion criteria. The date of publication
included studies ranging from 2002 to 2017 (Table 1). Out of these, six studies presented a

8,9,12,35-37

cross-sectional design and one longitudinal® (Table 1).
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Figure 1. flowchart of the review steps
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Table 1 - Main characteristics of included studies (n=7).

Baseline sample characteristics

Author (year) Study Groups  Time post-  Age (years) Gender UL deficits Measurement Muscle Comparisons Main results
design (n) stroke Mean £SD (M/W) tool evaluated
Ryan et al. Cross- Stroke Chronic 65 +9.00 47/13 NR DEXA Arm* Par x Npar No differences in fat
(2002)* sectional (n=60) (> 6 months) mass
< lean tissue mass of Par.
Carin-Levy et Longitudinal Stroke Acute 66 +11.5 11/7 FIM=107** DEXA Arm* Par x Npar No differences in lean
al. (2006)% (n=18) (<72 hours) (32-125) (n=11) mass at 3 weeks and
RMI=4** week 24 post-stroke.
(0-14)
Ploutz-Snyder et Cross- Stroke Chronic 55.93 +3.96 5/1 MAS MRI BB and TB Par x Npar Lower muscle CSA in
al. (2006)* sectional (n=6) 65 (10 - 125) BB=0to3 BB (5%) e TB (25%) for
moths** TB=1to 1+ Par
Li et al. (2007)° Cross- Stroke Chronic 48.57 4/3 MAS us B Par vs NPar > pennation angles and <
sectional (n=7) 4(2-7) (36-63)** B=1+t04 muscle fascicule lengths
years** for Par
Triandafilou & Cross- Stroke Chronic 45-65 years 16/9 Chedoke- us FDS, FDP, ParvsNPar < CSA and muscle
Kamper sectional (n=25) (2-4 years) McMaster EDC, El, thickness for all muscles
(2012)% (Stage 2 and FDI, FPI of Par
Healthy 3 of hand) and LUM
(n=10)
Par-Domvs < CSA and muscle
Par-NDom thickness for all muscles
of Par-NDom
Lee et al. Cross- Stroke Chronic 60.7 £8.00 6/10 FMA: us BB Parvs NPar > shear wave speed and
(2015)8 sectional (n=16) 11.6 19 (4-48)** echo intensity in BB of
(1.9-42.2) MAS: 0-3 Par
years** mTardieu:
1-3
(62°-145°)
Berenpas et al. Cross- Stroke Chronic 58.7 £10.00 20/8 Brunnstrom DEXA BB, FFA, > echogenicity of BB,
(2017)% sectional (n=28) 5.2 +4.4 stage CT EDB Parvs NPar  FFA and EDB for Par
years 4(3-5) < muscle thickness for
Ml BB and FFA for Par
67 (33-91)
> echogenicity of BB
Par vs Ref and FFA and < for EDB

for Par
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< muscle thickness of

EDB for Par

> echogenicity of BB
NPar vs Ref  and FFA and < for EDB

for NPar

< muscle thickness of

BB, FFA and EDB for

NPar

n: sample size. SD: standard deviation. M: man. W: woman. UL: upper limb. NR: not reported. FIM: Functional Independence
Measure. RMI: Rivermead Motor Assessment. MAS: Modified Ashworth Scale. FMA: Fugl-Meyer Assessment. mTardieu: modified
Tardieu. MI: Motricity index. DEXA: Dual Energy x-ray absorptiometry. MRI: magnetic resonance imaging. CT: Computer
tomography. US: ultrasonography. BB: biceps brachii. B: brachialis. EDC: Extensor digitorum communis. EDB: Extensor digitorum
brevis. El: Extensor indicis. FDS: Flexor digitorum superficialis. FDP: Flexor digitorum profundus. FDI: First dorsal interosseous.
FPI: First palmar interosseous. FFA: Forearm flexors. LUM: Lumbrical. TB: triceps brachii. Par: paretic limb. NPar: nonparetic limb.
Par-Dom: paretic side was the dominant side before the injury. Par-NDom: paretic side was the non-dominant side before the injury.
CSA: cross-sectional area. *Not reported which specific muscle or group of muscles assessed.**Data presented as mean and range.
Ref: reference values based on studies with healthy subjects (Arts et al, 2010 and Verhulst et al, 2011). <: reduced; >: increased.
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The sample size ranged from 6 to 60 (average = 23.29, standard deviation = 19.42), the
majority of the subjects were male, and the age ranged from 45 to 65 years old. Only one study
assessed the acute and subacute phases after stroke?, the others 6 studies were performed in the
chronic phase®®*?3*" Sensorimotor impairments and/or independence were used for sample
characterization in chronic post-stroke populations®®?>®%" and the Modified Ashworth Scale
was the most common used among the studies®®**

Only one study had two groups (post-stroke patients and healthy subjects)® for
comparisons. The others presented only one group and compared the paretic to the non-paretic
limbs®912223537 “Moreover, one study performed a comparison between reference values from
the literature and the paretic or non-paretic limbs®’. The most used method of analysis was
US®¥%37 followed by DEXA™?,

The muscles evaluated varied among the studies, however the most common muscle
evaluated was the biceps brachii®**>* . Furthermore, elbow flexors (EF), extensor digitorum
brevis (EDB), flexor digitorum superficialis (FDS), flexor digitorum profundus (FDP), extensor
digitorum communis (EDC), extensor indicis (El), first dorsal interosseous (FDI), first palmar
interosseous (FP1) and lumbrical (LUM) muscles were also assessed among studies®®>*’,

Regarding the main results, one study compared the paretic and nonparetic UL to
reference values of subjects after stroke, and showed that the paretic limb increased the
echogenicity in BB and FFA muscles, whereas a decrease in echogenicity and muscle thickness
in EDB muscles was observed®’. Another study compared the paretic side, which before the
stroke was the dominant upper limb, with the paretic side which before the stroke was non-

dominant and also with healthy subjects, and found a decrease in the maximum thickness and the

cross sectional area (CSA) of FDS, FDP, EDC, El, FDI, FPI and LUM muscles®.
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The comparison between paretic and non-paretic UL showed differences in many
variables. Three studies showed an increase in echogenicity/echo-intensity, variables related with
connective tissue, intramuscular fat and contractures in the BB muscle®*” and the EDF*’ of the
paretic side. They also showed a decrease in the thickness for the BB and EDB muscles®” and in
the maximum thickness of FDS, EDC, El, FDI, FPl and LUM?® and also an increase in shear
wave speed in the BB muscle®. The CSA was evaluated in three studies. Two of these studies
showed a decrease on the paretic side in CSA of EE, EF, FDS, EDC, EI, FDI, FPI and LUM®*®
and in the other study no difference was found between the sides, even over time?.

The other variables such as lean tissue mass and fat mass were evaluated in two
studies'®?. One of them found a decrease in lean tissue mass on the paretic side®?, whereas the
other showed a reduction in fat mass over time, but with no difference between the limbs (paretic
vs non-paretic)®. An increase in the pennation angle with a decrease in muscle fascicule lengths
in the paretic limb was also reported by one study®. No difference was found in appendicular

skeletal muscle and total skeletal muscle, analyzed in one study®.

Quality assessment

The total score and scores by each component (reporting, external and internal validity
and power) were presented in Table 2. One study was classified as fair* and six as
poor®¥12223%37 " The main items not reported were those related to the external and internal
validity (confounding — selection bias), since all the articles did not involve any type of

intervention.
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Table 2 - Downs and Black total score and score by each component (reporting, external
validity, and internal validity and power) for all selected articles.

Authors Reporting External Internal validity Power Quality of

validity Bias Confounding evidence (Total
score)

Ryan et al * 9 0 4 0 0 Poor (13)

Carin-Levy et 7 1 3 2 0 Poor (13)

a|22

Ploutz-Snyder et 9 1 4 1 0 Fair (15)

a|35

Li et al® 9 0 5 0 0 Poor (14)

Triandafilou et 9 0 4 1 0 Poor (14)

al36

Lee et al® 8 0 4 0 0 Poor (12)

Berenpas et al*’ 8 0 4 1 0 Poor (13)

Discussion

This review investigated the evidence related to structural muscle alterations in the UL
after stroke and identified only seven studies that evaluated different distal muscles of UL, which
demonstrated little evidence of this issue. Overall, the studies observed a reduction in muscle
CSA®* thickness®**" and fascicule length®, and an increase in pennation angles®, shear wave®,
echo intensity? and echogenicity®’ in the paretic limb compared to the nonparetic side. These

35-37

variables clinically represent atrophy”™", a lower muscle tension with respect to the tendon and

7

functional range® and a higher stiffness® and amount of fibrous and fat tissue®*’ without

alterations in the lean tissue of the paretic limb'*%,
According to the literature, these muscle changes after stroke can be attributed to
abnormal central neural innervation and disuse'*?’. However, disuse is considered the primary

factor of the structural changes, especially to muscle atrophy*****°. Moreover, muscles post-

stroke show many similarities with age-related muscle changes, such as lower muscle CSA and
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fiber size?"***!. Besides age, other factors such as gender, level activity, other comorbidities (i.e.
diabetes mellitus) and dominance side can influence these muscle structural adaptations®*2°4%4°
which was not considered in most of the selected studies, except by Triandafilou and Kamper’s
study that considered the UL dominance before stroke. In this study, subjects with hemiparesis of
the non-dominant side showed more atrophy (lower muscle CSA and thickness) compared to
subjects with hemiparesis of the dominant side, which confirms the influence of the dominant
side.

In addition to these comorbidities, aspects related to the UL deficits such as muscle tone
and motor function need to be considered. Only one study showed that there was a correlation
between the Fulg-Meyer scale with the shear wave speed for the biceps brachii muscle and no
correlation with the MAS®, however the authors did not discuss what the significance is
regarding the muscle alterations inferred in the study for the motor disabilities. Studies that also
used a clinical scale did not make comparisons between the muscle adaptation and these scales.
It can be observed that the studies selected subjects with moderate to severe muscle tonus
alterations and motor functional disabilities”. Thus, the sample selection with spasticity and
hypertonia can influence the change on muscle fascicule length. Nevertheless, there is a lack of
correlation with the clinical scales responsible for motor disabilities of the upper limb in the
selected studies.

One important aspect not considered among studies is that sensorimotor changes may
occur bilaterally in post-stroke subjects?*’. Changes in the non-paretic muscle can be related to
the fact that 10% of the corticospinal connections to the motoneurons in the spinal cord do not
undergo decussation*®*’. However, other factors can also contributed to muscle alterations in

38,48

nonparetic UL, such as sedentary lifestyle®®*®, metabolic disorder or nutrition*’. Thus, besides
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the comparison between paretic and nonparetic UL, it is important to compare both limbs with
limbs of healthy subjects matched by age and gender.

Moreover, it is important to highlight that the selected studies focused on the evaluation
of distal musculature, such as finger muscles, wrist and elbow flexors and extensors. However,

proximal muscles are fundamental to providing stability to UL motions>!

and any alteration in
these muscles can impact distal motions, and consequently activities of daily living. According
to the literature, post-stroke subjects showed postural proximal alterations that can impair UL
performance during drinking tasks, such as inadequate scapula and shoulder angles at static
positions®”. Thus, investigating possible structural alterations in the proximal musculature could
help in the rehabilitation process of post-stroke patients as these alterations can lead to
limitations of range of motion and UL performance.

Thus, faced with these difficulties to control the aspects that could influence structural
muscular adaptations (i.e. activity level, age, gender, UL impairment), determining the
appropriate evaluated comparison group and muscles, as well as the small sample size, the
studies presented a poor to fair quality, which requires caution when extrapolating the results
found. However, even considering these limitations and the small number of selected articles, the
results point to an important clinical implication, which involves including techniques that aim to
minimize these alterations, especially those that reduce disuse. Therefore, future studies with a
larger sample size and sample more adequately matched in terms of age, gender and activity
level are needed. In addition, studies that correlate the UL impairment, motor function and use

with these structural muscle changes are necessary.
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Conclusion

This review has shown little evidence of poor to moderate quality in structural muscle
adaptations in post-stroke subjects, which shows muscle atrophy, increased stiffness and an
amount of fibrosis and fatty tissue (fat) without changes in the lean body mass of the distal
muscles of the paretic UL compared to the non-paretic UL. However, as the non-paretic side
also presented changes, it makes the comparisons inappropriate. Thus, well-designed studies

addressing this issue are required.
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Abstract

Introduction: This study verified the effect of the endothelin-1 (ET-1) brain ischemia on early
and late functional recovery and muscular adaptation of paretic forelimb in rats, as well as the
effects of skill learning of non-paretic forelimb association to ET-1. Methods: Thirty 4-month-
old Wistar rats were used. Groups: ET-1 4- or 15-days, ET-1 brain ischemia and euthanized 4 or
15 days after injury; Control; and ET-1 15-days and non-paretic forelimb training. Minor muscle
fiber diameters from paretic forelimb were measured. Results: ET-1 impaired forelimb
performance, but not altered muscle fiber diameter. The association between non-paretic training
and ET-1 accentuated the functional impairment and induced selective atrophy of fingers
extensors in paretic forelimb. Discussion: The ET-1 ischemia leads to early dysfunction, and late
recovery associated to compensatory movements, but does not cause muscle atrophy.
Nevertheless, increased non-paretic forelimb activity impaired function recovery and induced

selective muscle atrophy on paretic side.

Key-words: rehabilitation, cerebrovascular disease, skeletal muscle, stroke, disability.
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Introduction

Stroke is considered the second cause of death and the main cause of disability in adults in the
world"*. More than 50% of post-stroke individuals present some degree of disability and weakness on the
upper limb contralateral to the injured brain hemisphere*, affecting individual’s daily life activities and
participation®®. Muscle weakness has been associated with compensatory strategies of movement due to
the lesion of the motor cortex and its descending projections pathways’, reduced muscle activation and
incoordination®°, and anatomic modifications on skeletal muscle, such as muscle fiber phenotype shift,

fibrosis and atrophy ®***,

Furthermore, compensatory behavior strategies of decreasing the use of the paretic limb (learning
non-use) generate maladaptive plasticity on the central nervous system (CNS), and impair the functional
recovery of the paretic limb™™. Preclinical studies showed that the skill learning of reaching pellets with
non-paretic limb (mimicking “learning non-use”) in rodents after brain ischemia impaired the functional
recovery of paretic limb™'#?#, The neural mechanisms involved in the maladaptative plasticity due to
training of the non paretic limb has been associated with the increase of somatossensorial area related to
nonparetic limb and also with addition of multisynaptic boutons in peri-infarct primary motor cortex (M1)
cortex area, affecting synapse addition and maturation. Moreover, they showed that alterations are

persistent, making the rehabilitative process more difficult’.

Although certain studies have shown neural adaptations and motor performance alterations in the
paretic limb due the ischemic injury and skill learning with non paretic limb in animals, little information
is available about its effects on muscular adaptation. A recent study described muscle atrophy in hindlimb
3 days after cerebral ischemia (60 minutes of the middle cerebral artery occlusion, MCAOQ) in paretic
limb, whereas muscle mass remained unchanged in nonparetic limb in mice. Animals also presented
severe sensorimotor deficits during walking®. Paretic hindlimb muscle atrophy was also observed using
the same model of brain ischemia at 7 days post-injury®. Nevertheless, muscle adaptation in different
models of brain ischemia must be characterized to verify clinical translation to post-stroke patients.
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Recently, the translational working group of the Stroke Recovery and Rehabilitation Roundtable provided
important directions to develop a set of guidelines and recommendations for preclinical stroke recovery
research and to maximize clinical translation”. Despite of no “gold standard” stroke model in rodents,
endothelin-1 (ET-1), a potent vasoconstrictor, is highly targetable and generates cortical strokes with

excellent behavioral readouts®.

Thus, this study was divided in two experiments and had two aims: (1) to verify the effect of the
cerebral ischemia model of endetholin-1 on the functional deficits and muscular adaptation in the early
and late phase in the rats paretic forelimb and (2) to verify whether skill learning of non-paretic forelimb
can accentuate functional deficits and induce muscle atrophy in paretic forelimb in ET-1 model of brain
ischemia. We hypothesized for experiment 1 that the cerebral ischemic induced by ET-1 would generate
early- and long-term deficits in reach and muscle atrophy in the rat paretic forelimb. Furthermore, for
experiment 2, we hypothesized that the non-paretic forelimb training would accentuate the functional

deficits and induce atrophy in the paretic forelimb.

Methods

The study was conducted according to the international standard of animal experimentation after
the approval by the Ethics Committee on the use of animals (ECUA) of the Federal University of Sao

Carlos (UFSCar).

Animals and experimental design

Thirty-three 4-month-old male Wistar rats were pair housed in cages in the Department of
Physical Therapy at the Federal University of S&o Carlos (UFSCar). A 12/12 h light/dark cycle was

performed with water access ad libitum. Animals were daily handled 2 to 3 weeks prior to the experiment,
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and all behavioral procedures were performed in the same room. Prior to the start of behavioral methods,
animals were placed on scheduled feeding of 15g of rat chow given once per day (to ensure rats will not

sat at the time of training). Weights were monitored throughout the study.

Animals were submitted to the training chamber during 3 consecutive days (habituation period),
then more 2-10 days of procedures of shaping on the single-pellet retrieval task to determine forelimb
preference (dominance). After that, animals were trained in the retrieval pellet task for 10 days. After
training, at -1 day (pre-surgery), animals underwent measurement of forelimb asymmetry and functional
tests (single-pellet retrieval test) and submitted to the ET-1 lesion. Four days after surgery, animals were
randomly assigned into four different groups according to the experiments. The cylinder test was repeated
3 days after surgery, whilst the single-pellet retrieval test was repeated 3 and 14 days (day 14) after

surgery according to experiments.

Groups were defined as follow:

For Experiment 1: 1) Endothelin-1 4 days (ET-1 4d; n = 7): animals submitted to all procedures,
including brain ischemia with ET-1 and euthanized 4 days after injury (early/acute phase post-injury); 2)
Endothelin-1 15 days (ET-1 15d; n=6): animals submitted to all procedures, including brain ischemia with
ET-1 and euthanized 15 days after injury (late phase post-injury); and 3) Control (n=5): animals
submitted to all procedures except brain surgery. Animals were euthanized on day 15, similar to ET-1

15d.

For Experiment 2: 1) Endothelin-1 for 15 days (ET-1 15d; n = 6): the same group used on experiment 1;
and 2) Endothelin-1 for 15 days and non-paretic forelimb training (ET-1 15d + T; n =9): The ET-1 15d +

T group performed reach training for 10 consecutive days after surgery.

Schematic illustration of experimental groups and procedures is presented as supplementary data (Fig.

13).

49



Cylinder test
Single pellet retrieval test*

Early/Acute

&

S@ng]c pcl.lclt Single pellet
retrieval training retrieval training
I labituqtionx‘ ( flOln?nant (non-paretic
Shaping forelimb) forelimb) Euthanasia
2-10 days =10 days 5
¥ days L 10 days \ ¥ Day 0 ay 5 v Day IS5
.Y A N
I 1 Day 13 1
I 1 : 1
| day before surgery Day 3 Day 14
1 1 i

Single pellet retrieval test®

Late/Chronic

<

> &
C g

v

Figure 1S. Schematic representation of animals’ procedures in a timeline. ET-1: endothelin-1.

*the dominante/paretic forelimb was used in the single pellet retrieval test. Note all groups were

submitted to single pellet retrieval training with dominant forelimb to teach animals how to

perform the task

Habituation and shaping

All animals were submitted to a habituation period (10 minutes/day) for 3 consecutive days in a

Plexiglas reaching chamber (30 cm long by 35 cm high by 15 cm wide) with a tall narrow window (1 cm

wide and 3 cm high) in the center of the 15 cm wide wall (Fig. 2S).
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Figure 2S. Reaching chamber. Plexiglas reaching chamber (30 cm long by 35 cm high by 15 cm
wide) with a tall narrow window (1 cm wide and 3 cm high) in the center of the 15 cm wide wall
was used in this study. A small Plexiglas rod approximately 2 mm in diameter adhered to the
base of the reaching window creating a barrier that prevented animals from scraping the pellets

into the chamber, and also reduced attempts to use the tongue to retrieve pellets

For shaping, animals were placed in the same reaching chamber for 10 min. Animals
reached with a forelimb through a small window for Froot loops (Kellogg’s), which were placed
in front of a block, approximately 3 cm in height. The wells were centered with the left and right
edges of the window at a distance of 1 c¢cm from the window. A small Plexiglas rod
approximately 2 mm in diameter adhered to the base of the reaching window created a barrier
that were prevent animals from scraping the pellets into the chamber and also reduced attempts
to use the tongue to retrieve pellets (Fig. 2S). When 20 consecutive reach attempts were
performed with one limb during a 20-minute session, this limb was identified as the preferred
limb. Once animals reach these criteria, pre-operative shaping was ceased and the reach training

before surgery started.
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Training on the single-pellet retrieval task

Training on the single pellet-retrieval task was carried out in the reaching chamber
During training, a Plexiglas wall were inserted into the reaching chamber ipsilateral or
contralateral to the animal's trained limb and pellets were placed in the wells opposite the
reaching limb. This wall effectively forces the animals to use the forelimb chosen by the
experimenter for the reaching task, e.g., paretic or non-paretic limbs. In the initial design of the
apparatus, the inner chamber wall was placed at a distance of 1.5 cm from the reaching window

(Fig. 2S).

The training with the preferred limb was performed in all groups 10 days before the
assessment of forelimb asymmetry and reach performance by single-pellet retrieval tests.
Animals were trained for 60 trials or a cutoff time (20 min), which ever come first. A reaching
trial were consisted of the animal either successfully grabbing the pellet and bringing it directly
to its mouth (success), dropping the pellet before bringing it to its mouth, failing to grasp the
pellet after five reaches or knocking the pellet out of its well. At the end of each reaching trial, a
pellet was dropped into either the front or the back of the reaching chamber to “re-set” the

animals and so that a new pellet was placed into its appropriate well.

After surgery, the ET-15d + T underwent to a new set of training, now using the non-
paretic forelimb during 9 days. No-training controls (control and ET-15 d groups) were yoked to
the trained animals on each day of training and were placed in a reaching chamber with a
Plexiglas wall ipsilateral to what would be their trained limb. The no-training control animals

had pellets dropped into the reaching chamber at approximately the same rate as the trained
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animals received pellets (Fig. 1S). All trainings took place during the animals' light cycle. The

reach training before surgery was performed with preference limb.
Testing on the single-pellet retrieval task

Testing on the single-pellet retrieval task was performed on day -1 (before surgery), day 3
and 14 after surgery. Reaching performance were calculated by dividing the total number of
successful reaches by the total number of reach attempts with paretic limb [(total success/ total
reach attempts) x 100], which corresponds to percent successful reaches. Test was performed

during 20 minutes?®.

Measurement of forelimb asymmetry

The Schallert cylinder test™® was used as an inclusion criterion to confirm lesion-induced
asymmetries in forelimb postural-motor behavior. Animals were placed in a cylinder (19 cm
diameter), which encourages upright exploratory movements and allow to identify an
asymmetrical forelimb behavior. Animals were filmed in the Plexiglas cylinder for 2 min and
after one measurer watched the movie and observed the exploratory standard of these rats in the
cylinder wall. Analyses were performed one day before (day -1) and three days after surgery

(Fig. 1S). Figure 3S shows a typical exploratory behavior pre- and post-ET-1 brain ischemia.

Surgery

A focal unilateral lesion of the forelimb representation area of the sensorimotor cortex

(SMC) contralateral to the preferred limb was created. Animals were anesthetized using
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intraperitoneal (i.p.) injections of xylazin (12 mg/Kg) and ketamine (95 mg/Kg), and placed in a
stereotaxic apparatus. A midsagittal incision and a craniotomy were made between 2.5 mm
anterior, 0.5 mm posterior, and 3.0 to 4.5 mm lateral to Bregma. Pia mater was exposed by
removal of dura in the area underlying the craniotomy. Endothelin-1 (ET-1, 80 uM, 0.2 pg/ul; 8
ul total volume administered — American Peptide Company), a vasospasm-inducing peptide, was
topically administered with a 10ul volume pipette for 10 minutes before the skin was sutured.
During all surgery animal’s temperature was controlled using a heat pad. Rats were allowed 4

days of recovery before postoperative behavioral manipulation starts (training)®.

Muscle and brain analyses and euthanasia

At the 4 or 15-day post-injury, paretic triceps and biceps brachii, fingers extensors and
fingers flexors muscles were dissected and removed. The muscles were frozen in isopentane in
liquid nitrogen, stored at -86°C and used to measure muscle fiber diameter. After muscle

removal, the animals were euthanized with an overdose of anesthesia (ketamine and xylazine).

The brain was removed and placed to paraphormaldeyde fixative solution for 24 hours
and them placed in a sucrose solution and kept refrigerated. Histological cross-sections (30 pm)
from the motor cortex area injured were made and stained with a Nissl stain (cresyl violet) and
were used to confirm the injury. Only animals that presented brain damage in morphology were

included to analyses (Fig 4S).

Analysis muscle fiber diameter
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Histological cross-sections (10 um) from the middle belly of each muscle were obtained
using a cryostat (Micron HE 505, Jena, Germany). Sections were stained with Toluidine
Blue/1% Borax (TB), and analyzed by light microscopy (Axiolab, Carl Zeiss, Jena, Germany)
equipped with a digital camera (AxioCam HRc, Carl Zeiss). One histological cross-section of
each muscle located in the central region, with contiguous muscle fibers, was chosen for
measurement. One image from this area was taken at 20x low magnification. The minor diameter
of 70 randomly chosen muscle fibers was measured using Axiovision 3.0.6 SP4 software (Carl
Zeiss, Jena, Germany). This variable seems to present less variability and to reflect force better

than muscle fiber cross-sectional area®’. A blinded evaluator made all the measurements.

Statistical Analyses

All variables (reaching performance and minor muscle fiber diameter) showed a normal
and homogeneity distribution according to Shapiro-Wilk e Levene tests, respectively. For
reaching performance assessment (percent successful reaches), two-way analysis of variance
(group and evaluation time) with repeated measurements (evaluation time: day -1, day 3, and day
14) and Bonferroni’s correction was used to examine the effect of group-by-evaluation time
interaction, group (control, ET-1 4d, and ET-1 15d — experiment 1; ET-1 15d, ET-1 15d + T—
experiment 2), and evaluation time. One-way analysis of variance followed of post-hoc Tukey
was used to compare muscle fiber diameter between control, ET-1 4d and ET-1 15d (experiment
1). On the other hand, for the experiment 2 independent T-test to compare ET-1 15dto ET-1+ T
was used. All statistical tests were carried out using SPSS software version 17.0 (SPSS Inc,

Chicago, IL, USA), and a significance level was set at 0.05.
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Results

All animals submitted to ET-1 brain ischemia presented forelimb asymmetry (Fig. 3S) and neural

death in brain morphology (Fig. 4S). Detailed information is supplied as supplementary data.

Schallert Cylinder test

All the rats included in the analysis showed contralesional forelimb asymmetry as shown
by the arrows in Figure 3S. In Figure 1, it can be observed that before the lesion (- 1 day), the
animals used both paws to explore the environment. After the ischemic lesion in the contralateral
dominant paw (3 day), an asymmetry (nonuse) of the dominant paw to explore the environment

can be observed.

Figure 3S. Representative photographs showing the forelimb asymmetry. One day before the
surgery, the rats were exposed to a cylinder for 2 min (day -1, pre-ET-1), and again 3 days after

the surgery (3rd day). Note the animals presented exploratory behavior using both forelimbs pre-
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ischemia (white arrows). After brain ischemia (day 3), the animals avoided using the paretic

forelimb (white arrow: non-paretic forelimb; black arrow: paretic forelimb).
Brain morphology

Endothelin-1 produced reliable focal infarcts with neuronal death on primary (M1) and

secondary (M2) motor cortices, and primary somatosensory cortex (Fig. 4S).

1.28 mm from bregma

Figure 4S. Representative photomicrography of rat brain injury after endothelin-1. Arrows
showed the damaged place on the brain. Primary (M1) and secondary (M2) motor cortices, and

primary somatosensory (S1) cortex were affected.

Experiment 1: ET-1 brain ischemia effects on functional performance and muscle adaptation.

Single-pellet retrieval task

Regarding the percentage of success, control and ET-1 15d groups were compared, and
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interaction between the evaluation time and groups was observed (F;15=3.812, p=0.004; Fig.
1A). For the control group, it was not observed differences on the different time points
investigated (p=1.000 for all comparations). On the other hand, for the ET-1 15d success
percentage reduced on the day 3 compared to day -1 (pre) (p<0.001), but it increased on the day
14 compared to day 3 (p=0.026) (Figure 1A). There was a difference between the control and

ET-1 15d groups (F;,15= 13.609, p=0.001) only on day 3 (Fig. 1A).

Qualitative analysis of videos provided information about compensatory movements due to
ET-1 model. Control images from pre-surgery moment (-1 day) were represented in the figure 1
B, C, D and E. Different phases of the movement were observed as reaching (1B), when rat took
the paw to the food, grasping the food (C), supination (D) and taking the food to the mouth (E).
Movements are smoothly performed. Although an improvement in the reach performance on day
14 was observed in ET-1 15 d group, the quality of reaching, grasping, supination and taking the
food to the mouth is impaired. Compensatory strategies are observed on 15 days post-ET-1 (Fig.
1F-1). The animal failed to properly grasp the food (Fig. 1F-G). Because, supination was
impaired, animals crew the hand attempting to pull the food into the box (1 G). In addition, the
difficult of taking the food to mouth provoked compensatory movements such as using the non-
paretic hand to help paretic one or taking the head into the hand with food using trunk inclination

and rotation (H and I).
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Figure 1. (A) Graphic representing the percentage of successful reaches on the acute and chronic
phase for control group and the group submitted to an ischemic lesion with endothelin-1 for 15
days (ET-1 15 d). *p<0.05 compared to day -1 (pre). T p<0.05 compared to day 3. 1 p<0.05
compared to control group. (B to E) Sequential photographs of reaching, grasping and taking the
food to mouth movements before surgery (day-1) are presented. (F to I) Compensatory strategies
of the same approach 14 days post-ET-1. Note animals used trunk strategies to eat to compensate

forelimb paresis (1).

Minor muscle fiber diameter

No difference in the minor muscle fiber diameter among control, ET-1 4d and ET-1 15d
groups was observed for the biceps (F213=0.435, p=0.657), triceps (F;1, =1.364, p=0.295),
fingers flexors (F21:=2.307 p=0.146), and fingers extensors (F10 =2.233, p=0.158) muscles

(Figure 2).

60



Biceps Triceps

5.0 5.0
E E
= = 100
¥ 0.0 = 20,
g 3
2 150 g 15.0
! :
& §
x &0y =
w104 & 100
] g
= b=
¥ 50 B s0
= =

0.0 i

Contral ET-14d ET-1 154 Control ET-1 dd ET-115d
Finger flexors Finger extensors
250 150
2 a
= 200 ]- = 2040
5 3
E g
B I % i
™ A = L
§ X
- -
& 100 § 100
1 &
= 2
- -
i:’ 5.0 c 50
= =
0.0 0.0
Carntral ET-14d ET-1 154 Central ET-1 44 ET-1 154

Figure 2. Minor muscle fiber diameter of control, endothelin-1 4 days (ET-1 4d) and endothelin-1
15 days (ET-1 15d) groups. No differences were observed between groups for any muscle (p>0.05).

Experiment 2: Effects of non-paretic forelimb training on paretic functional performance and

muscle adaptation
Single-pellet retrieval task

Time-group interaction effect was observed (F;15=4.704, p=0.004; Fig. 3). All groups
(control, ET-1 15d and ET-1 15d + T) presented similar performance on single-pellet retrieval
task before surgery (p>0.05). The ET-1 15d and ET-1 15d +T decreased success rate on task at

day 3 after injury compared to their values on day -1 and control (p=0.001 for both; Fig. 3).
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However, ET-1 groups were different from each other on day 3 (p=0.05; Fig. 3). After 14 days,
ET-1 15d recovery success rates similar to control (p=0.09; Fig. 3), whilst ET-1 15d +T

remained impaired (p=0.01 vs control; Fig. 3).

= ontrol * =8+ ET-115d ET-115d+T
a0

B0
70 -

B0

w| |

a0

30

HA+ - .

souctessful retrievals trial

20

=t :u—-_\'-—| —

10

day -1 {pre] day 3 day 14

Figure 3. Percentage of successful on single-pellet retrieved task. *p<0.05 when ET-1 15d and
ET-1 15d + T are compared to their own values on day -1 (pre) and also to control group;
1p<0.05 compare to ET-1 15d + T; #p<0.05 when ET-1 15d compared to its values on day 3;
Fp<0.05 when ET-1 15d + T is compared to control.

Minor muscle fiber diameter

No difference beetwen ET-1 15d and ET-1 15d + T groups in muscle fiber diameter was
observed in biceps (t= 1.217=, p= 0.251), triceps (t= 0.213, p= 0.836), and fingers flexors (t=1.870, p=
0.086) muscles (Fig. 4). Nevertheless, fingers extensors muscles presented reduced muscle diameter in
ET-1 15d +T group compared to ET-1 15 days one (t= 3.791, p= 0.004; Fig. 4). Muscle fiber cross-
sectional area confirmed this findings (Fig. 5S).
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Figure 4. Minor muscle fiber diameter of control, endothelin-1 15 days (ET-1 15d) and
endothelin-1 15 days and non-paretic forelimb training (ET-1 15d + T) groups. *p<0.05
compared to ET-1 15d. No differences were observed between groups for biceps, triceps and
fingers flexors muscles (p>0.05). However, nonparetic limb training reduced muscle fiber

diameter on fingers extensors muscles.

Muscle fiber cross-sectional area distribution
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Figure 5S. Muscle fiber cross-sectional area distribution. An increase in the percentage of
muscle fibers of ET-1 15d + T around 50 and 100 extracts compared to ET-1 15d can be

observed.

Discussion

The present study showed that the model of brain ischemia in rats using ET-1 was able to
impair forelimb performance during skilled tasks, although did not cause alterations in muscle
fiber diameter of the paretic forelimb. On the other hand, the association of non-paretic forelimb
training and brain ischemia, mimicking the “learn nonuse” behavior, accentuated the functional
impairment and induced selective atrophy in fingers extensors muscles of the paretic forelimb.

Regarding results from experiment 1, impaired reach performance on acute phase post-
brain ischemia followed by functional recovery corroborate with previous studies?®?°. According
to these studies the decrease of performance can be justified by injury of the motor cortex?,
depression behavioral state and diaschisis®®. The functional recovery may be due to the presence
of non-affected neurons in the peri-infarct region and by function restoration of the lost neural

tissue®>3. However, in the present study late functional recovery was not followed by complete
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restitution of the movements, but by compensatory movements including trunk rotation and
inclination, evidencing the weakness of paretic forelimb’.

Alterations of reach performance were neither associated to acute nor to late muscular
atrophy. These results lead us to suppose that neural factors related to muscle weakness, such as,

3233 changes in the neural central drive* and damages to the

deficits in motor units activation
structural integrity of the corticospinal tract®® are affecting functional activities rather then
intrinsic muscular factors. Considering muscle adaptations during acute phase post-stroke, one
study in animals showed atrophy in quadriceps, soleus and tibialis anterior muscles of paretic
paw, 3 days after ischemic lesion in mice®. The discrepancies between studies findings can be
explained by the difference of limbs (forelimb vs hindlimb), models of brain ischemia (ET-1 vs
60 min of MCAOQ), and species (rat vs mouse) investigated. In addition, it has already been
demonstrated in the literature that the degree of muscle atrophy depends on muscular groups
analyzed, being more susceptible the antigravity muscles®. In humans, little is known about
acute muscle adaptations post-stroke®’. Previous studies showed that post-stroke hemiparetics in
acute phase exhibited a decrease in the lean mass of upper and lower paretic limb compared to
non-paretic side®*.

Regarding late responses of paretic muscle atrophy in humans, little information is
available about upper extremity in chronic hemiparetics. Some studies showed a smaller regional
muscular mass in the paretic limb compared to non-paretic limb®’, for example, atrophy on index
fingers muscle®® and triceps*. In animals, mice showed atrophy in paretic and non-paretic
hindlimb 7 days after MCAO®. Another study with animals showed atrophy of type Il muscle

fibers of tibialis anterior of paretic hindlimb, 2 weeks after motor cortex hemorrhagic lesion®.

Thus, the present study brings important information about acute and late forelimb muscle
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adaptation in post-ET-1 brain ischemia model, whilst the literature focused mainly on hindlimb
muscle changes in different models.

An important result about the present study involves the detrimental effect of non-paretic
limb training on the paretic limb functional recovery in experiment 2. This effect had already
been described in previous studies®*?*4*’. MacLellan and colls®* (2013) showed that intense
non-paretic reach training (2h/day) might contribute to deficits in long term of rats’ paretic limb
submitted to motor cortex ischemic lesion by ET-1. Another study that assessed the non-paretic
limb training effect, starting 6 and 20 days after ischemic lesion induced by ET-1 in rats, showed
smaller representation area of paretic limb on peri-lesion cortex, with a positive correlation with
the performance of these limbs. This study indicates that the non-paretic limb training altered
cortical map reorganization decreasing the paretic limb function.

An interesting result about the present study is that despite the small amount of non-
paretic forelimb training, it was enough to impair functional recovery of paretic one and to
provoke selective atrophy of distal muscles (fingers extensors). Clinical studies showed that the
rates of change of force development in wrist extensor and handgrip strength are good predictors
of upper limb function®. It can be supposed that the non-paretic upper limb training can harm
spontaneous recovery of contralateral corticofugal projections and worsen the weakness in the
fingers extensors, which can be associated with muscle atrophy.

This study presents some limitations. For example, the activity of the animals was not
controlled in the cage, which. This measure could be important since the animals can explore the
environment and bearing weight with all limbs®. Moreover, the current study quantified only the

minor muscle fiber diameter without distinctions in fiber typing. Certain studies in humans and
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in animals after stroke showed a preference for atrophy in type Il fibers, and a shift from I to 1l
muscle fibers*? >+,

On the other hand, the study brings important information to rehabilitation, in our best
knowledge, it is the first study which established relations among the lesion model, functional
deficits and the muscle alterations that occur on the rat’s paretic forelimb submitted to a ischemic
lesion with ET-1 and learned nonuse. Future studies should try to increase the amount of non-
paretic training in attempt to improve translation to post-stroke people.

In conclusion, the ET-1 brain ischemia model provokes early dysfunction of forelimb in
rats, and late recovery of function is associated to compensatory movements, but not to muscle

atrophy. Nevertheless, the increase of non-paretic forelimb activity impaired function recovery

and induced selective muscle atrophy on paretic side.
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CONSIDERACOES FINAIS

Esta tese demonstrou que existe pobre evidéncia e de qualidade razoavel para as
adaptacdes das estruturas musculares em individuos pdés AVC, os trabalhos apontam para uma
atrofia muscular, maior rigidez, quantidade de fibrose e tecido adiposo sem altera¢fes no tecido
magro dos musculos distais do membro superior parético em relacdo ao membro ndo parético.
No entanto, uma vez que o lado ndo parético também apresentou alteragdes, o que torna a
comparacdo inadequada, mostrando a necessidade de realizar estudos melhor desenhados
abordando esta questao.

Além disso, foi demonstrado que 0 modelo de isquemia cerebral induzido por endotelina-
1 provoca disfuncdo motora precoce da pata anterior parética de ratos e a recuperacao tardia da
funcéo estd associada a movimentos de compensacdo motora mas ndo a atrofia muscular. Além
disso, o treino do membro anterior ndo afetado (simulando o ndo uso aprendido) prejudica a
funcéo da atividade de alcance e induz uma atrofia seletiva do membro parético. Este resultado
mostra que o modelo, tanto de lesdo isquémica quanto a simulacdo do ndo uso aprendido através
do treino de alcance do membro ndo afetado, parece ser um bom modelo de investigacédo para o

entendimento da alteracdo muscular apos o AVC.
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ATIVIDADES NO PERIODO

No ano de 2017, durante os meses de Abril a Outubro realizei o doutorado sanduiche no
Laboratorio da Profa. Dra. Theresa A. Jones, na Universidade do Texas em Austin, Estados
Unidos, onde desenvolvi um novo projeto. A Profa. Theresa é referéncia mundial nos
mecanismos de recuperacdo e compensacdo em modelos de isquemia cerebral de animais. Seus
estudos embasaram nossos trabalhos e foi possivel estabelecer uma parceria.

Também participei do projeto de extensdo “Grupo Terapéutico para individuos
hemiparéticos cronicos” sob a coordenacdo do Professor Dr. Thiago Luiz de Russo na Unidade
de Saude Escola (USE) da Universidade Federal de Sdo Carlos em 2015/2016.

Além dos artigos produzidos nessa tese, um artigo foi produzido e aceito na Muscle &
Nerve (ANEXO 1), o qual abordou os efeitos do alongamento como tratamento para atrofia apos
lesdo nervosa periférica. Pude ainda co-orientar alunos de graduacéo e participar de projetos do

laboratério na mesma tematica.
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ANEXOS

INTERMITTENT STRETCHING INDUCES FIBROSIS IN DENERVATED

RAT MUSCLE

FERMAMDA M. FATURIL, M5," RUBIA C. FRANCD, PT.' DAVILENE GIGO-BEMATO, PhD," AMDFIETTE C. TURIL, WS,
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this sense, the twmor growth Boomsbeia (TGRS
mynstatin pathway has an important role in medias
ting mase regulation, as well as ECM modificas
tions."* During denenation, TGRF]  stimulates
myostatin. Myostatin, alse known as growth differs
entiation faciors8, is a negative factor in moscle
mass comntrel. Increased nivostatin gene expression
restrics muscle growth and hyperirophy and alse
stimubates rigidity collagen {1 and 1) prodwction
in the ECM, generaiing Abrosiz,™

Among the main agenis of ECM remodeling, a
family of Ancdependent ennmes, matrs metallo
'Fn.'rle:ilu.'l::: (MAMPs) stmnds out; these  inchede
MMPZ and MAPS (collyenase A and B, respecs
tively), which are miher common and i111'|:|m1.:u1.1
for the ECM of skeletal muscle and for collagen
turnawer, such as type IV MAP2 and MMPS are
regulated by an encyme known as tisue inhibiior
of metallvproteinase] (TIMP-1]. Such regulation
is essential for maintenance of strsciiral rissoe
iniegrity.'*

Early sindies showed that there is a lack of data
on efficacy and safety of therapeutic resources
usedd in the clinic for denermted muscle reatmeni.
Further study is nesded of the resources that stime
ulate nerve growth and redwce or prevent muscle
atrophy. Gigo-Benato ef al'* showed that electrical
stimubation seems b impair neuwromuscular recovs
ery after nerve crush injury. Furthermore, electrical
stimubation asseciated with or withowt soretching
does ot prevent maiscle atrophy, althowgh it regus
lates muscle pathwanys such as uhiquitinegrobe -
some, transcription Gowes (such as the nyvogenic
regulasory Eactors), myostatin, and the MMPs.' On
thie other hand, stdies focused on the use of
intermittent stretching showed that it attenuated
muscle atrsphy and phenotype changes.® Theres
fore, preclinical studies are necessary o investigase
parameters for the success or failure of rehahilitaes
tion inferventions.

Among the main beols used for ireatment of
denerated muscle, srewching stands out, or is at
least noteworthy. The most common  form  of
stretching used in the cinic and sports is intemmis
tent stretching. Most of the findings about the
effects of siretching were made in immobilizton
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