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ABSTRACT

TOMAYA, L. Y. C. Some extensions in measurement error models. 2019. 89 p. Tese (Douto-
rado em Estatística – Programa Interinstitucional de Pós-Graduação em Estatística UFSCar–USP)
– Departamento de Estatística - DEs-UFSCar e Instituto de Ciências Matemáticas e de Computa-
ção, Universidade de São Paulo, São Carlos – SP, 2019.

In this dissertation, we approach three different contributions in measurement error model
(MEM). Initially, we carry out maximum penalized likelihood inference in MEM’s under the
normality assumption. The methodology is based on the method proposed by Firth (1993),
which can be used to improve some asymptotic properties of the maximum likelihood estimators.
In the second contribution, we develop two new estimation methods based on generalized
fiducial inference for the precision parameters and the variability product under the Grubbs
model considering the two-instrument case. One method is based on a fiducial generalized
pivotal quantity and the other one is built on the method of the generalized fiducial distribution.
Comparisons with two existing approaches are reported. Finally, we propose to study inference
in a heteroscedastic MEM with known error variances. Instead of the normal distribution for
the random components, we develop a model that assumes a skew-t distribution for the true
covariate and a centered Student’s t distribution for the error terms. The proposed model enables
to accommodate skewness and heavy-tailedness in the data, while the degrees of freedom of the
distributions can be different. We use the maximum likelihood method to estimate the model
parameters and compute them via an EM-type algorithm. All proposed methodologies are
assessed numerically through simulation studies and illustrated with real datasets extracted from
the literature.

Keywords: Errors-in-variables model, Fiducial inference, Heteroscedastic errors, Penalized like-
lihood, Skew-t distribution.





RESUMO

TOMAYA, L. Y. C. Algumas extensões em modelos com erros de medição. 2019. 89
p. Tese (Doutorado em Estatística – Programa Interinstitucional de Pós-Graduação em Es-
tatística UFSCar–USP) – Departamento de Estatística - DEs-UFSCar e Instituto de Ciên-
cias Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2019.

Neste trabalho abordamos três contribuições diferentes em modelos com erros de medição
(MEM). Inicialmente estudamos inferência pelo método de máxima verossimilhança penalizada
em MEM sob a suposição de normalidade. A metodologia baseia-se no método proposto por
Firth (1993), o qual pode ser usado para melhorar algumas propriedades assintóticas de os
estimadores de máxima verossimilhança. Em seguida, propomos construir dois novos métodos
de estimação baseados na inferência fiducial generalizada para os parâmetros de precisão e a
variabilidade produto no modelo de Grubbs para o caso de dois instrumentos. O primeiro método
é baseado em uma quantidade pivotal generalizada fiducial e o outro é baseado no método da
distribuição fiducial generalizada. Comparações com duas abordagens existentes são reportadas.
Finalmente, propomos estudar inferência em um MEM heterocedástico em que as variâncias dos
erros são consideradas conhecidas. Nós desenvolvemos um modelo que assume uma distribuição
t-assimétrica para a covariável verdadeira e uma distribuição t de Student centrada para os termos
dos erros. O modelo proposto permite acomodar assimetria e cauda pesada nos dados, enquanto
os graus de liberdade das distribuições podem ser diferentes. Usamos o método de máxima
verossimilhança para estimar os parâmetros do modelo e calculá-los através de um algoritmo tipo
EM. Todas as metodologias propostas são avaliadas numericamente em estudos de simulação e
são ilustradas com conjuntos de dados reais extraídos da literatura

Palavras-chave: Modelo com erros nas variáveis, Inferência fiducial, Erros heteroscedásti-
cos,Verossimilhança penalizada, Distribuição t-assimétrica.
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CHAPTER

1
INTRODUCTION

In several areas of knowledge, regression models are statistical devices often used to
investigate the relationship between one variable of interest (response) and a set of covariates. In
practical situations, some covariates associated with the response variable can be error-prone.
For these cases, measurement error models, also called errors-in-variables model, are considered.
There are a number of specialized books on the measurement error, such as Fuller (1987), Cheng
and Ness (1999), Carroll et al. (2006) and Buonaccorsi (2010). In the last decades, measurement
error models have been receiving considerable attention by many researchers with works being
published in several fields of study such as Medicine, Epidemiology, Analytical Chemistry and
Astrophysics, among others.

Motivated by a large number of recent works on these models and different statistical
tools, in this dissertation we focus on the development of three new contributions for the
linear measurement error models that consider one covariate measured with error. First, we
study maximum penalized likelihood inference in a normal measurement error model (MEM)
considering five identifiable conditions, which can provide some improvement on the maximum
likelihood estimators. Second, we construct two estimation methods based on generalized fiducial
inference for the variance parameters in the Grubbs model for the two-instrument case. Third,
we propose a heteroscedastic MEM based on skew and heavy-tailed distributions with known
error variances. The proposed model can accommodate different levels of heaviness in the tails
of the unobserved covariate and random error distributions.

Therefore, the purpose of this dissertation is to show three different contributions in
measurement error models. We can list the following five main goals: (i) To develop maximum
penalized likelihood inference, proposed by Firth (1993), in a normal measurement error model
taking into account five identifiability cases and to carry out an extensive simulation study making
a comparison with the maximum likelihood estimators, (ii) To construct a fiducial generalized
pivotal quantity and the generalized fiducial distribution for the parameters of interest under
the Grubbs model for the two-instruments case, (iii) To present a new heteroscedastic MEM
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by modeling the unobserved covariate by a skew-t (ST) distribution and for the random errors,
we assume the centered Student’s t (cT) distribution, where the degrees of freedom for both
distributions can be different, (iv) To implement an EM-type algorithm for the estimation of
the model parameters for the proposed model in (iii) and to present simulation studies to assess
the performance of the estimators and the robustness of the model and (v) To illustrate each
methodology mentioned above with a real dataset.

The chapters of this dissertation are written independently. Each chapter has its own
literature review and theoretical and numerical developments. The chapters are related in the
sense that they deal with measurement error models. This dissertation is structured as follows.

In Chapter 1, after a brief introduction of this dissertation we present a summary of some
notations and distributions used.

In Chapter 2, we briefly review the Firth’s method and after that, we apply it to the
normal measurement error models under five identifiability cases. The estimation process is
based on the maximum penalized likelihood method. Next, we present some theoretical results
and approximate confidence intervals for the slope parameter. Also, we show simulation studies
to gauge the performance of the estimators of the parameters of interest and we present two
applications with real datasets to illustrate the proposed methodology.

In Chapter 3, we give a short account of two existing estimation approaches for the
Grubbs model and then we construct two new estimation procedures based on generalized
fiducial inference. We compare these two new procedures with two existing approaches to
examine properties of the estimators of parameters in the model via a simulation study. We apply
the proposed methodology in the analysis of a real dataset from a methods comparison study.
Some remarks are also considered.

In Chapter 4, we formulate the proposed model based on skew and heavy-tailed distri-
butions and develop an EM-type algorithm for the parameter estimation. We investigate the
performance of the maximum likelihood estimators through simulation studies. We illustrate the
proposed model with a data set from a methods comparison study. Some concluding remarks are
also presented.

In Chapter 5, we describe briefly some problems that can be considered as future work.

1.1 Notation and some distributions

In this section, we describe some general notations used throughout the dissertation. We
use bold face letters to indicate vectors and matrices. Let Np(µµµ,ΣΣΣ), S N p(µµµ,ΣΣΣ,λλλ ), tp(µµµ,ΣΣΣ,ν),
ctp(µµµ,ΣΣΣ,ν) and S tp(µµµ,ΣΣΣ,λλλ ,ν) denote the p-dimensional normal, skew-normal, Student’s t,
centered Student’s t and skew-t distributions, respectively. Here, µµµ ∈Rp is a location vector, ΣΣΣ is
a p× p positive definite scale matrix, λλλ ∈Rp is a vector of skewness parameters and ν > 0 is the
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degrees of freedom (df). Let G (α,β ) denote the gamma distribution with shape parameter α > 0
and rate parameter β > 0. We denote the chi-square distribution with ν degrees of freedom by
χ2

ν . Also, we use T N (µ,σ2;(a,b)) to denote the N (µ,σ2) distribution truncated to lie in the
interval (a,b), a < b. The subscript in the univariate case will be omitted.

Let ΣΣΣ
1/2 denote the square root of a symmetric and positive definite matrix ΣΣΣ that

satisfies ΣΣΣ
1/2

ΣΣΣ
1/2> = ΣΣΣ, where “>” denotes transposition, ΣΣΣ

−1/2 is the inverse of ΣΣΣ
1/2 and

det(ΣΣΣ) denotes the determinant of ΣΣΣ. IIIr indicates the r× r unity matrix and 000r is the r× 1
vector of zeros. Also, “diag(a,b)” denotes a 2× 2 matrix whose elements a and b are on the
main diagonal. Let f (zzz;θθθ) denote the probability density function (pdf) of a random vector ZZZ

with parameter vector θθθ ∈ΘΘΘ⊂ Rd . We also use φp(·; µµµ,ΣΣΣ) and Φp(·; µµµ,ΣΣΣ) to indicate the pdf
and the cumulate distribution function (cdf) of the Np(µµµ,ΣΣΣ) distribution. In addition, we use
φ(·) and Φ(·) to denote the pdf and cdf of the standard normal distribution, respectively, while
ft(·; µµµ,ΣΣΣ,ν) denotes the pdf of the tp(µµµ,ΣΣΣ,ν) distribution and Ft(· ;ν) denotes the cdf of the
univariate Student’s t distribution with ν df.

We say that a random variable Z follows the gamma distribution, we write Z ∼ G (α,β ),
if its pdf is given by f (z;α,β ) = β αzα−1 exp(−β z)/Γ(α), z > 0, where Γ(x) =

∫
∞

0 tx−1e−tdt

is the gamma function evaluated at x > 0.

We say that a random vector ZZZ follows the centered Student’s t (cT) distribution, that
is, ZZZ ∼ ctp(µµµ,ΣΣΣ,ν), if its pdf is f (zzz; µµµ,ΣΣΣ,ν) = K(ν , p)[det(ΣΣΣ)]−1/2[(ν−2)+∆∗

]−(ν+p)/2, zzz ∈
Rp, where ∆∗ = (zzz−µµµ)>ΣΣΣ

−1(zzz−µµµ) and K(ν , p) is the normalizing constant given by
[
(ν−

2)ν/2Γ(ν/2+ p/2)
]
/[π p/2Γ(ν/2)], ν > 2. It is a version of centered parameterization of the

Student’s t distribution (SUTRADHAR, 1993), where µµµ and ΣΣΣ correspond to the mean vector
and covariance matrix, respectively.

A random vector ZZZ is said to follow the skew-normal (SN) distribution, that is, ZZZ ∼
S N p(µµµ,ΣΣΣ,λλλ ), if its pdf is f (zzz; µµµ,ΣΣΣ,λλλ )= 2φp(zzz; µµµ,ΣΣΣ)Φ(λλλ>zzz∗), zzz∈Rp, where zzz∗=ΣΣΣ

−1/2(zzz−
µµµ).

Finally, we say that a random vector ZZZ follows the skew-t (ST) distribution, ZZZ ∼
S tp(µµµ,ΣΣΣ,λλλ ,ν), if its pdf is f (zzz; µµµ,ΣΣΣ,λλλ ,ν) = 2 ft(zzz; µµµ,ΣΣΣ,ν)Ft(λλλ

>zzz∗{(ν+ p)/(ν+∆∗)}1/2;ν+

p), zzz ∈ Rp.

For additional properties related to the skew-normal and the skew-t distributions, the
interested reader is referred to Azzalini and Capitanio (1999) and Azzalini and Capitanio (2003),
respectively. Moreover, for developments on skewness distributions in the context of MEM, we
refer to Arellano-Valle et al. (2005) and Lachos et al. (2010).
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CHAPTER

2
MAXIMUM PENALIZED LIKELIHOOD

INFERENCE IN MEASUREMENT ERROR
MODELS

In this chapter, we study maximum penalized likelihood inference in a normal measure-
ment error model under five identifiability cases. We briefly review some recent works on Firth’s
method and our motivation for the development of this chapter is also presented. After a brief
description of the model, we present a summary of Firth’s method, and then we apply it to the
model in Section 2.2.1. Also, we propose different approximate confidence intervals for the
slope parameter. Moreover, we conduct several simulation studies to assess the performance of
some properties of the estimators for the parameter of interest and illustrate with two datasets
the proposed methodology. Lastly, concluding remarks are presented.

2.1 Introduction

Due to the great importance of the maximum likelihood (ML) estimators, many tech-
niques have been developed to attempt to improve the properties of the ML estimates in small
or moderate samples. For instance, analytical expressions for the second-order bias of the ML
estimators in several statistical models have been widely reported; see, Efron (1975), Cox and
Snell (1968), Schaefer (1983) and Cordeiro and McCullagh (1991), among others. Additionally,
these different methodologies are of bias-correction type and may only be applied if the ML
estimate is finite.

On the other hand, another alternative approach that has been suggested to remove of
the second-order bias of the ML estimate, the method proposed by Firth (1993) has received
considerable recent attention, which can be viewed as a preventive method. A noteworthy
advantage of Firth’s method is that it produces a family of estimators that are not computed
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directly from the ML estimates. Since then, the latter characteristic has motivated research in
some common situations where the ML estimate can be infinite. For instance, logistic regression
models and Cox regression, see Heinze and Schemper (2002), Heinze and Schemper (2001); for
censored data with exponential lifetimes, see Pettitt, Kelly and Gao (1998), models based on the
asymmetric distributions, see Sartori (2006), Lagos Álvarez and Jiménez Gamero (2012), Arrué,
Arellano-Valle and Gómez (2016). Also, for the skew-normal and skew-t distributions, a more
general extension of Firth’s method was studied by Azzalini and Arellano-Valle (2013).

Furthermore, the bias reduction for the parameters of interest in a class of multivariate
generalized nonlinear models was studied in Kosmidis and Firth (2009); in multinomial logistic
models by using the equivalent Poisson log-linear model was developed in Kosmidis and Firth
(2011) and in cumulative link models for ordinal data was investigated in Kosmidis (2014). Also,
Ospina, Cribari-Neto and Vasconcellos (2006), Hefley and Hooten (2015), Meyvisch (2016) and
Siino, Fasola and Muggeo (2016) are other recent applications of Firth’s method.

In exponential family models with canonical parameterization, Firth (1993) showed that
the prevention scheme consists in maximizing a penalized likelihood, so that the Firth’s estimator
can be computed by numerically maximizing that modified likelihood function. Furthermore, as
pointed out by him, the reduction in bias may sometimes be accompanied by inflation of variance,
i.e., the resulting estimator may have a mean squared error larger than that of the uncorrected one.
Despite this fact, it is clear from published empirical studies such as those mentioned earlier, that
in some models, bias prevention by Firth’s method may improve the uncorrected ML estimator,
especially when the sample size is not large.

Additionally, for interval estimation in a penalized likelihood context, Heinze and
Schemper (2002) studied approximate confidence intervals based on the profile penalized likeli-
hood ratio test. Numerical findings reported by them showed an improvement on the properties
of ML estimators in logistic regression models. For that model, Siino, Fasola and Muggeo (2016)
also studied approximate confidence intervals based on the Wald-type statistic with a sandwich
formula for the asymptotic variance of the Firth’s estimator. Moreover, Heinze and Schemper
(2002) indicated that the confidence intervals based on the profile penalized likelihood ratio
test can perform better when the intervals present an asymmetric shape, while for symmetric
shape the Wald-type intervals can be considered. Then, a better estimator here means not only in
terms of bias, but also in terms of other properties such as finiteness, mean squared error and
the coverage probability of approximate confidence intervals. The foregoing remarks stress that
such improvements can not be attained simultaneously.

Motivated by a large number of recent papers on Firth’s method, which can be used to
improve some asymptotic properties of the ML estimators, we carry out a study applying Firth’s
method to linear measurement error models. We also construct the approximate confidence
intervals for the slope parameter using the maximum penalized likelihood method and we
compare with that of the ML method.
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2.2 Model and parameter estimation
In this section, we describe the normal MEM, a review on the Firth’s method and its

application to the model.

2.2.1 Model

The linear MEM with one covariate assumes that the unobserved variables xi and yi are
related by yi = β0 +β1xi and wherein

Yi = yi + εi and Xi = xi +ui, i = 1, . . . ,n, (2.1)

where β0 and β1 are the intercept and the slope parameters, respectively; xi and yi are the true
covariate and the true response variable, respectively; Xi and Yi denote the observed variables
corresponding to xi and yi; εi and ui are the additive error terms and n is the sample size. An
important characteristic of (2.1) is that if the unobserved covariates xi’s are random variables,
then it is called a structural MEM and if the xi’s are unknown constants, then we have a functional
MEM.

Assume in (2.1) that xi, ui and εi are distributed as random variables from the N (µx,σ
2
x ),

N (0,σ2
u ) and N (0,σ2

ε ) distributions, respectively, and xi, u j and εk are independent for all
i, j,k = 1, . . . ,n. From these assumptions, it follows that ZZZi = (Xi,Yi)

>, i = 1, . . . ,n, are indepen-
dent and distributed as

ZZZi ∼N2(µµµ,ΣΣΣ), (2.2)

where the mean vector is µµµ and the covariance matrix ΣΣΣ are given by

µµµ =

(
µx

β0 +β1µx

)
and ΣΣΣ =

[
σ2

x +σ2
u β1σ2

x

β1σ2
x β 2

1 σ2
x +σ2

ε

]
.

Since the true covariate xi is treated as a random variable, we are dealing with a structural
formulation. When normality is assumed, the model in (2.2) poses identifiability problems
(CHENG; NESS, 1999, Appendix A). Thus, to deal with it is necessary to impose additional
assumptions to make the model identifiable (CHENG; NESS, 1999, Section 1.2). In this chapter,
we deal with the following additional assumptions often used:

Case 1: σ2
u is known.

Case 2: σ2
ε is known.

Case 3: The ratio of the error variances, λ = σ2
ε /σ2

u , is known.

Case 4: The reliability ratio, kx = σ2
x /(σ

2
x +σ2

u ), is known.

Case 5: The intercept is null, β0 = 0, with µx 6= 0.
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There are several studies available that addressed for parameter estimation of the model
in (2.2) for each identifiability case, where the common methods are: maximum likelihood,
weighted least square, orthogonal regression and moment methods, see, e.g., Fuller (1987,
Section 1.2–1.3), Hood, Nix and Iles (1999), Thompson and Carter (2007) and Gillard (2010).
Some classical references considering the maximum likelihood method are, for instance, for
Cases 1 and 2, see Birch (1964); for Case 3, see Madansky (1959); for Case 4, see Cheng and
Ness (1999, p. 17) and for Case 5, see Chan and Mak (1979).

2.2.2 Firth’s maximum penalized likelihood method

In this section, a brief review of the method proposed by Firth (1993) is presented.
Let L(θθθ ;zzz) be the likelihood function of a regular parametric model, where θθθ is an unknown
parameter vector and zzz is the vector of the observed data. The maximum likelihood estimate θ̂θθ

for θθθ = (θ1, . . . ,θp)
> is obtained as a solution of the equation ∂ log(L(θθθ ;zzz))/∂θθθ ≡UUU(θθθ ;zzz) = 000,

where UUU(·; ·) denotes the score functions. Under certain conditions, Firth (1993) suggested penal-
izing the likelihood function by the factor [det(IIIθθθ )]

1/2, that is, Lp(θθθ ;zzz) = L(θθθ ;zzz)
[

det(IIIθθθ )
]1/2

,

where Lp(θθθ ; ·) denotes the penalized likelihood function and IIIθθθ is the expected information
matrix, which is computed as minus the expected value of the second derivatives of the log-
likelihood function. Notice that [det(IIIθθθ )]

1/2 corresponds to the Jeffreys’ prior in a Bayesian
context. By using this modification, Firth (1993) showed that second-order bias of the maximum
likelihood estimates θ̂θθ is removed.

The penalized log-likelihood function takes the form

`p(θθθ) = log(Lp(θθθ ;zzz)) = log(L(θθθ ;zzz))+
1
2

log(det(IIIθθθ )). (2.3)

Thus, the Firth’s estimate θ̃θθ for θθθ is obtained as a solution of the modified score equations,
that is,

U∗r (θθθ ;zzz)≡Ur(θθθ ;zzz)+
1
2

tr
(

III−1
θθθ

∂ IIIθθθ

∂θr

)
= 0, r = 1, . . . , p,

where Ur(θθθ ;zzz) and θr are the r-th component of UUU(θθθ ;zzz) and θθθ , respectively, while “tr” denotes
the trace of a matrix. Hereafter, we refer to the Firth’s estimator as the maximum penalized
likelihood (MPL) estimator.

2.2.3 Applying Firth’s method to measurement error models

It follows from (2.2) that the log-likelihood function of θθθ given the observed data
zzz = (zzz>1 , . . . ,zzz

>
n )
> can be expressed as

`(θθθ) = log(L(θθθ ;zzz)) =−n log(2π)− n
2

[
A
B
+

C
B
+ log(B)

]
, (2.4)

where A = S′2X (β
2
1 σ2

x +σ2
ε )−2β1σ2

x S′2XY +S′2Y (σ
2
x +σ2

u ), B = β 2
1 σ2

x σ2
u +σ2

u σ2
ε +σ2

x σ2
ε and C =

(X − µx)
2(β 2

1 σ2
x +σ2

ε )− 2β1σ2
x (X − µx)(Y − β0− β1µx) + (Y − β0− β1µx)

2(σ2
x +σ2

u ), with
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X = n−1
∑

n
i=1 Xi, Y = n−1

∑
n
i=1Yi S′2X = n−1

∑
n
i=1(Xi−X)2, S′2Y = n−1

∑
n
i=1(Yi−Y )2 and S′XY =

n−1
∑

n
i=1(Xi−X)(Yi−Y ). Notice that B is the determinant of the covariance matrix of ZZZi given

in (2.2) and θθθ is the unknown parameter vector with components β0, β1, µx, σ2
x , σ2

u and σ2
ε .

The ML estimators for the identifiability Cases 1–5 can also be found in Hood, Nix
and Iles (1999) and Cheng and Ness (1999, p. 17), as well as the expressions of the expected
information matrix IIIθθθ . Additionally, Wang (2004) calculated the determinant of IIIθθθ for Case 1
and 3. Algebraic expressions not available in the literature will be provided in this chapter. Next,
we briefly review the expressions of the ML estimators and then we apply Firth’s method for
each case of model identifiable considered here.

Case 1: σ2
u is known. In this case, the components of the vector θθθ are β0, β1, µx, σ2

x and σ2
ε and

with ML estimators given by

µ̂x = X , β̂1 =
SXY

S′2X −σ2
u
, β̂0 = Y − β̂1µ̂x, σ̂

2
x = S′2X −σ

2
u and σ̂

2
e =

S′2X S′2Y −σ2
u S′2Y −S′2XY

S′2X −σ2
u

,

with the constraints S′2X > σ2
u and S′2Y > S′2XY/(S

′2
X −σ2

u ).

On the other hand, the penalized log-likelihood function associated to this case follows
after substituting the log-likelihood function into (2.4) and det(IIIθθθ ) = n5σ4

x /4B4 into the function
in (2.3), so that we get

`p(θθθ) = c1−
n
2

[
A
B
+

C
B
+

(
1+

4
n

)
log(B)

]
+ log(σ2

x ), (2.5)

where c1 is free of parameters, A,B and C are given as in (2.4). The MPL estimators for β0, β1,
σ2

x and σ2
u are not available in closed form and estimates need to be computed numerically from

the maximization of the function in (2.5), except for µx. It can be seen that the penalty term does
not depend on µx, so that the ML and MPL estimators for µx are the same.

Case 2: σ2
ε is known. In this case, the components of the vector θθθ are β0, β1, µx, σ2

x and σ2
u

with ML estimators given by

µ̂x = X , β̂1 =
S′2Y −σ2

ε

S′XY
, β̂0 = Y − β̂1µ̂x, σ̂

2
x =

S′2XY

S′2Y −σ2
ε

and σ̂
2
u =

S′2X S′2Y −σ2
ε S′2X −S′2XY

S′2Y −σ2
ε

,

with the constraints S′2Y > σ2
ε and S′2X > S′2XY/(S

′2
Y −σ2

ε ).

On the other side, the penalized log-likelihood function follows after substituting the
log-likelihood function into (2.4) and det(IIIθθθ ) = n5σ4

x β 4
1 /4B4 into the function in (2.3), so that

we get

`p(θθθ) = c2−
n
2

[
A
B
+

C
B
+

(
1+

4
n

)
log(B)

]
+ log(σ2

x )+ log(β 2
1 ), (2.6)

where c2 is free of parameters, A,B and C are given as in (2.4). The MPL estimators for β0, β1,
σ2

x and σ2
u are not available in closed form and estimates need to be computed numerically from
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the maximization of the function in (2.6), except for µx. In a similar way to the Case 1, the ML
and MPL estimators for µx are the same.

Case 3: Ratio of the error variances is known. Since λ is known, it follows that σ2
ε = λσ2

u

and, consequently, the components of the vector θθθ are β0, β1, µx, σ2
x and σ2

u and ML estimators
are given by

µ̂x = X , β̂1 =
S′2Y −λS′2X +[(S′2Y −λS′2X )

2 +4λS′2XY ]
1/2

2S′XY
, β̂0 = Y − β̂1µ̂x,

σ̂
2
x =

S′XY

β̂1
and σ̂

2
u =

S′2Y −2β̂1S′XY + β̂ 2
1 S′2X

λ + β̂ 2
1

. (2.7)

Here, there are no constraints, for the variance estimators in (2.7) are always non-negative.

The penalized log-likelihood function follows after substituting the log-likelihood func-
tion into (2.4) and det(IIIθθθ ) = n5σ4

x (β
2
1 +λ )2/4B4 into the function in (2.5), so that we get

`p(θθθ) =c3−
n
2

[
A
B
+

C
B
+

(
1+

4
n

)
log(B)

]
+ log(σ2

x )+ log(β 2
1 +λ ), (2.8)

where c3 is free of parameters and, for this case, A, B and C are as in (2.4), but replacing σ2
ε

by λσ2
u . The MPL estimators are found by deriving and solving the modified score equations

obtained from (2.8). Next, we can establish the following result.

Proposition 1. In the structural model (2.2), assume the ratio of the error variances is known.
Then, ML and MPL estimators for β0,β1 and µx are the same and are given in (2.7).

Proof. Notice that in (2.8), the term C is given by (X−µx)
2(β 2

1 σ2
x +λσ2

u )−2β1σ2
x (X−µx)(Y−

β0−β1µx)+(Y −β0−β1µx)
2(σ2

x +σ2
u ), which is minimized and equal to 0 when µx = X and

β0 +β1µx = Y . These are the modified score equations to determinate the MPL estimators for
µx and β0, since they do not appear in the other terms in (2.8). Hence, it can be noted that the
MPL and ML estimators for µx are the same, i.e., µ̃x = µ̂x = X . Next, we have to prove that
the expression of β̃1 is equal to that of β̂1 given in (2.7) and, consequently, the assertion for β̃0

follows. The penalized log-likelihood problem is then solved by maximizing the function in (2.8)
without the term C/B with respect to β1, σ2

x and σ2
u . Thus, the partial derivatives are taken and

set equal to 0, giving the following system of equations:{
σ

2
x (β1 +λ )

[
n(β1S′2X −S′XY )+(n+2)β1σ

2
u
]
−2λβ1σ

4
u
}

B−nβ1σ
2
x σ

2
u (β

2
1 +λ )A =0,{

nσ
2
x
(
S′2X β

2
1 −2β1S′XY +S′2Y

)
+(n+2)(β1 +λ )σ2

x σ
2
u −2λσ

4
u
}

B−nσ
2
x σ

2
u (β

2
1 +λ )A =0,{

n(S′2X λ +S′2Y )+(n+4)
[
(β 2

1 +λ )σ2
x +2λσ

2
u
]}

B−n
[
(β 2

1 +λ )σ2
x +2λσ

2
u
]

A =0.
(2.9)

Now, the strategy is to reduce the first and second equations in (2.9) to a single equation,
so that the term A is eliminated. After doing that, the resulting equation is [SXY β 2

1 +(λS2
X −
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S2
Y )β1−λSXY ]B = 0. Notice that B is assumed to be positive. Then, it follows that SXY β 2

1 +

(λS2
X −S2

Y )β1−λSXY = 0. Finally, solving this equation, the result holds.

The MPL estimators for the variance parameters, σ2
x and σ2

u , are not available in closed
form. Then, estimates are computed numerically by maximizing the penalized log-likelihood
function in (2.8) after substituting the MPL estimators for β0, β1 and µx given in (2.7).

Case 4: Reliability ratio is known. Since kx = σ2
x /(σ

2
x +σ2

u ) is known, it follows that σ2
u =

τσ2
x , where τ = (1− kx)/kx and, consequently, the components of the vector θθθ are β0, β1, µx,

σ2
x and σ2

ε with ML estimators given by

µ̂x = X , β̂1 =
S′XY

kxS′2X
, β̂0 = Y − β̂1µ̂x, σ̂

2
ε = S′2Y −

S′2XY

kxS′2X
and σ̂

2
x = kxS′2X , (2.10)

with the constraint S′2Y > S′2XY/(kxS′2X ).

The penalized log-likelihood function for this case follows after substituting the log-
likelihood function into (2.4) and det(IIIθθθ ) = n5σ4

x (1+ τ)2/4B4 into the function in (2.3), so that
we get

`p(θθθ) =c4−
n
2

[
A
B
+

C
B
+

(
1+

4
n

)
log(B)

]
+ log(σ2

x )+ log(1+ τ), (2.11)

where c4 is free of parameters and, for this case, A, B and C are as in (2.4), but replacing σ2
u by

τσ2
x . Thus, the MPL estimators are found by deriving and solving the modified score equations

obtained from (2.11). Next, the following result can be established.

Proposition 2. In the structural model (2.2), assume the reliability ratio is known. Then, the
MPL estimators for β0,β1 and µx are the same to the ML estimators given in (2.10).

Proof. Notice that in (2.11), the term C is given by (X−µx)
2(β 2

1 σ2
x +σ2

ε )−2β1σ2
x (X−µx)(Y−

β0−β1µx)+σ2
x (Y −β0−β1µx)

2(1+ τ), which is minimized and equal to 0 when µx = X and
β0 +β1µx = Y . Here, µx and β0 do not appear again in the other terms in (2.11). Also, it can
be seen that the MPL and ML estimators for µx are the same. In a similar way to Case 3, we
proceed to prove that the MPL and ML estimators for β0 and β1 are the same. The penalized
log-likelihood problem is then solved by maximizing the function in (2.11) without the term
C/B with respect to β1, σ2

x and σ2
ε . The partial derivatives are taken and set equal to 0, giving

the following system of equations:[
nβ1S′2X −nS′XY +(n+4)τβ1

]
B−nβ1σ

2
x τA = 0,[

nS′2X +(n+4)(1+ τ)σ2
x
]

B−n(1+ τ)σ2
x A = 0,

a∗B−n
[
(1+ τ)σ2

ε +2τβ
2
1 σ

2
x
]

A = 0, (2.12)

where a∗ = nβ1(S′2X β1−2S′XY )+(1+ τ)
[
nS′2Y +(n+2)σ2

ε

]
+2(n+3)τβ 2

1 σ2
x .
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Applying the same strategy as in Proposition 1, we reduce the first and second equations
in (2.12) to a single equation. After some algebraic manipulations, we get the MPL estimator for
β1, which is equal to the ML estimator β̂1 given in (2.10).

The MPL estimators for the variance parameters, σ2
x and σ2

ε , are not available in closed
form. Then, estimates are computed numerically by maximizing the penalized log-likelihood
function in (2.11) after substituting the MPL estimators for β0, β1 and µx given into (2.10).

Case 5: Intercept is null. In this case, the components of the vector θθθ are β1, µx, σ2
x , σ2

u and
σ2

ε with ML estimators given by

µ̂x = X , β̂1 =
Y
X
, σ̂

2
x =

S′XY

β̂1
, σ̂

2
u = S′2X −

S′XY

β̂1
and σ̂

2
ε = S′2Y − β̂1S′XY ,

with the constraints X 6= 0, S′2X > S′XY/β̂1 and S′2Y > β̂1S′XY .

For this case, the penalized log-likelihood function follows after substituting the log-
likelihood function into (2.4) and det(IIIθθθ ) = n5µ2

x β 2
1 /4B4 into the function in (2.5), so that we

get

`p(θθθ ;zzz) =c5−
n
2

[
A
B
+

C
B
+

(
1+

4
n

)
logB

]
+ log(σ2

x )+ log(|β1µx|), (2.13)

where c5 is free of parameters and, in this case, A, B and C are as in (2.4), but replacing β0 by 0.
Thus, the MPL estimators for all the parameters involved are not available in closed form and
estimates need to be computed numerically by maximizing the function in (2.13).

2.3 Interval estimation

In this section, we focus on different approaches for constructing confidence intervals
for the slope parameter β1. These confidence intervals are based on the Wald statistic and the
profile penalized log-likelihood ratio test.

2.3.1 Wald-type approximate confidence interval estimation

Under standard regularity conditions, the ML estimator θ̂θθ is approximately normal with
mean vector θθθ and asymptotic covariance matrix III−1

θθθ
(LEHMANN, 1998, Chapter 7). This

result is often used to obtain asymptotic confidence intervals based on the Wald statistic for
the components of the parameter vector θθθ . Moreover, a consistent estimator of the asymptotic
covariance matrix of θ̂θθ is III−1

θθθ
evaluated at θθθ = θ̂θθ , which is denoted by III−1

θ̂θθ
. Hence, with γ ∈ (0,1),

an approximate 100γ% confidence interval for the parameter of interest β1 is obtained as

CI1 =[β̂1− z(1+γ)/2σ̂1(β̂1), β̂1 + z(1+γ)/2σ̂1(β̂1)], (2.14)
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where zδ denotes the 100δ% percentile of the standard normal distribution and σ̂1(β̂1) is the
square root of the element corresponding to β1 on the main diagonal of the estimated covariance
matrix III−1

θ̂θθ
. Thus, the inverse of the expected information matrix III−1

θθθ
associated to the model in

(2.2) can also be found from Hood, Nix and Iles (1999), especially, for Cases 1–4. For Case 5,
we can establish the following result.

Lemma 1. In the structural model (2.2), assume the intercept is null, β0 = 0, with µx 6= 0. Then,

(a) The expected information matrix is

IIIθθθ =
n
B



σ4
x +µ2

x η1 +
2β 2

1 σ4
x σ4

u

B
β1µxσ2

u
β1σ2

x σ2
u η2

B
−β1σ4

x σ2
ε

B
β1σ2

x σ2
u η1

B
β1µxσ2

u η2 0 0 0
β1σ2

x σ2
u η2

B
0

η2
2

2B
σ4

ε

2B
β 2

1 σ4
u

2B

−β1σ4
x σ2

ε

B
0

σ4
ε

2B
η2

3
2B

β 2
1 σ4

x

2B
β1σ2

x σ2
u η1

B
0

β 2
1 σ4

u

2B
β 2

1 σ4
x

2B
η2

1
2B


,

(b) det(IIIθθθ ) =
n5µ2

x β 2
1

4B4 ,

(c) The inverse of the expected information matrix is

III−1
θθθ

=
1
n



η2

µ2
x

−β1σ2
u

µx
−σ2

x η2

µ2
x β1

σ2
x η2

µ2
x β1

−β1σ2
x η2

µ2
x

−β1σ2
u

µx
η1

σ2
u σ2

x

µx
−σ2

u σ2
x

µx

β 2
1 σ2

u σ2
x

µx

−σ2
x η2

µ2
x β1

σ2
u σ2

x

µx

µ2
x η4 +σ4

x η2

β 2
1 µ2

x
−µ2

x η5 +σ4
x η2

β 2
1 µ2

x

σ4
x η2 +µ2

x η6

µ2
x

σ2
x η2

µ2
x β1

−σ2
u σ2

x

µx
−µ2

x η5 +σ4
x η2

β 2
1 µ2

x

µ2
x η7 +σ4

x η2

β 2
1 µ2

x
−µ2

x η8 +σ4
x η2

µ2
x

−β1σ2
x η2

µ2
x

β 2
1 σ2

u σ2
x

µx

σ4
x η2 +µ2

x η6

µ2
x

−µ2
x η8 +σ4

x η2

µ2
x

µ2
x η9 +σ4

x β 2
1 η2

µ2
x


,

where B is given in (2.4), but replacing β0 by 0, η1 = σ2
x +σ2

u , η2 = β 2
1 σ2

u +σ2
ε , η3 = β 2

1 σ2
x +σ2

ε ,
η4 = B+2σ4

x β 2
1 , η5 = B−2σ2

x σ2
u β 2

1 , η6 = 2σ2
x σ2

ε −B, η7 = B+2σ4
u β 2

1 , η8 = B−2σ2
u σ2

ε and
η9 = β 2

1 B+2σ4
ε .

Next, Table 1 exhibits the expressions of the asymptotic variance of β̂1, which is denoted
by σ2

1 (β̂1). Thus, σ̂1(β̂1) can be computed from the square root of the expressions presented in
Table 1 evaluated at θθθ = θ̂θθ .

On the other side, based on the Wald statistic and the MPL estimator θ̃θθ , other three
approximate confidence intervals can be proposed. A key feature here is to obtain an consistent
estimator for the asymptotic covariance matrix of θ̃θθ . Thus, a first alternative of approximation of
that matrix was suggested by Firth (1993), which can be estimated through the inverse of the
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Table 1 – Asymptotic variance of the ML estimator for β1 (σ2
1 (β̂1)) under the identifiability Cases 1–5.

Case 1 Case 2 Case 3 Case 4 Case 5

B+2β 2
1 σ4

u

nσ4
x

β 2
1 B+2σ4

ε

nβ 2
1 σ4

x

B
nσ4

x

B
nσ4

x

β 2
1 σ2

u +σ2
ε

nµ2
x

expected information matrix III−1
θθθ

evaluated at θθθ = θ̃θθ (or simply III−1
θ̃θθ

). However, it holds only in
large samples when the penalty effect is negligible. A second alternative is to calculate the inverse
of the negative of second derivatives of the penalized log-likelihood function `p(θθθ) evaluated at
θθθ = θ̃θθ , which is denoted by HHH−1

θ̃θθ
, where HHH

θ̃θθ
= [∂ 2`p(θθθ)/∂θθθ∂θθθ

>]|
θθθ=θ̃θθ

is the Hessian matrix and
can be obtained through numerical differentiation. As a third alternative, we have the sandwich
formula given by SSS

θ̃θθ
= HHH−1

θ̃θθ
III

θ̃θθ
HHH−1

θ̃θθ
. This matrix could provide a more reliable and robust version

of the estimated asymptotic covariance matrix of θ̃θθ in small or moderate samples, as pointed out
in Siino, Fasola and Muggeo (2016). Then, based on the covariance matrices mentioned above,
we propose three approximate 100γ% confidence intervals for β1, which are given by

CIm =[β̃1− z(1+γ)/2σ̃m(β̃1), β̃1 + z(1+γ)/2σ̃m(β̃1)], m ∈ {2,3,4}, (2.15)

where σ̃2(β̃1), σ̃3(β̃1) and σ̃4(β̃1) are, respectively, the square root of the elements corresponding
to β1 on the main diagonal of the estimated covariance matrices III−1

θ̃θθ
, HHH−1

θ̃θθ
and SSS

θ̃θθ
.

It is worth noticing that all the approximate confidence intervals given in (2.14) and (2.15)
require the estimated asymptotic standard errors, i.e., σ̂1(β̂1) and σ̃m(β̃1), m ∈ {2,3,4}. On the
other hand, the following section presents another alternative for computing an approximate
confidence interval for β1.

2.3.2 Profile penalized likelihood confidence interval

The penalized likelihood ratio statistic is defined as the usual likelihood ratio (LR)
statistic, but instead of `(·) is used its penalized version, i.e., `p(·). Thus, to test the hypothesis
β1 = β10, the penalized likelihood ratio statistic is LR = 2[`p(β̃1, ξ̃ξξ )− `p(β10, ξ̃ξξ β10

)], where
(β̃1, ξ̃ξξ )

> is the joint MPL estimate of (β1,ξξξ )
> and ξ̃ξξ β10

is the MPL estimate for ξξξ when
β1 = β10. The components of the vector ξξξ are the same of θθθ but omitting β1. Hence, with
γ ∈ (0,1), a profile penalized likelihood (PPL) 100γ% confidence interval for β1 can be obtained
from LR≤ χ2

1 (γ), where χ2
1 (δ ) denotes the 100δ% percentile of the chi-square distribution with

one degree of freedom. Thus, we can represent an approximate PPL 100γ% confidence interval
for β1 as CI5 = {β10 ∈ R : LR≤ χ2

1 (γ)}.

To compute the PPL confidence intervals for the parameter of interest, we follow an
iterative procedure given in Heinze and Ploner (2002), which is a modification of the algorithm
initially proposed by Venzon and Moolgavkar (1988). Next, we describe the algorithm used
in Sections 2.4 and 2.5. To do that, remind that UUU∗(θθθ ;zzz) is the modified score vector (or
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simply UUU∗(θθθ)), HHHθθθ is the Hessian matrix of the penalized log-likelihood function `p(θθθ) and
`0 = `p(θ̃θθ)− χ2

1 (γ)/2, where θ̃θθ is the MPL estimator for θθθ and let eeer be the r-th unit vector.
Suppose the confidence limits for the parameter β1 are our target, so we use the unit vector eee2 in
the following iterative scheme.

Step 1. With θθθ = θ̃θθ , compute `p(θθθ), UUU∗(θθθ) and HHH−1
θθθ

.

Step 2. Set κ = 0, compute

λ
(κ) =±

{
2[`0− `p(θθθ)+0.5UUU∗(θθθ)HHH−1

θ
UUU∗(θθθ)]

eee>2 HHH−1
θθθ

eee2

}1/2

and (2.16)

δδδ
(κ) =−HHH−1

θθθ
[UUU∗(θθθ)+λ

(κ)eee2] (2.17)

Step 3. Set κ = 1 and compute θθθ
(κ) = θθθ

(κ−1)+δδδ
(κ−1)

Step 4. With θθθ = θθθ
(κ), compute `p(θθθ), UUU∗(θθθ) and HHH−1

θθθ
. Thus, for sufficiently small ε > 0,

to verify the following convergence criteria:

|`p(θθθ)− `0|< ε and (UUU∗(θθθ)+λ
(κ)eee2)

>HHH−1
θθθ
(UUU∗(θθθ)+λ

(κ)eee2)< ε.

If convergence is not yet attained, set κ to κ +1, and go to the Step 3, where λ (κ) and δδδ
(κ)

are updated alternately from the Equations (2.16) and (2.17).

Step 5. Return eee>2 (θθθ
(κ+1)) as one endpoint of the interval for β1. For the lower confidence

limit negative values of λ must be used, while for the upper confidence limit positive
values of λ are used.

Computation of PPL confidence limits can be time-consuming, for the procedure has to be
repeated for each endpoint of the interval of each of p parameters, resulting in 2p maximizations
(HEINZE; PLONER, 2002). It would be the case where the practitioner has interest to compute
PPL confidence intervals for all components of the vector θθθ .

2.4 Simulation study
In this section, we carry out two simulation studies to investigate and compare the

performance of the ML and MPL estimators. We report only the results for our parameter of
interest, β1. The first simulation study consider two true values of the parameters corresponding
to the model in (2.2) under the identifiability Cases 1–5 in Section 2.2.1. The second simulation
study mimics the real dataset in Section 2.5.1, where σ2

u is known. For each true parameter
setting, we simulated 10000 random samples for different sample sizes. The MPL estimates are
computed numerically by using the BFGS method implemented in the R programing language
(R CORE TEAM, 2017) in the optim function. In addition, to ensure the constraints for the
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different identifiability cases in Section 2.2.1, samples with estimates (in particular, of the
variance parameters) violating the constraints are discarded until we obtain 10000 samples
with admissible ML and MPL estimates. Moreover, samples leading to non-convergence of the
iterative procedure used to compute PPL confidence intervals are also discarded. For example,
for the Case 1 under the first scenario, at least 35412, 18060, 7307, 4166, 2386 samples were
discarded, respectively, for sample size 20, 30, 50, 70 and 100, while for Case 2, they were 325,
29, 0, 0 and 0 rejected samples, respectively. For interval estimation, we use γ = 0.95.

2.4.1 First simulation study

In this study, we generate data from the model in (2.1) with sample size n = 20, 30, 50,
70 and 100 under the following scenarios. In the first scenario, we chose the true parameter values
(β0,β1,µx,σ

2
x ,σ

2
u ,σ

2
ε )
>=(0,−2,4,1,1,1)>, while in the second one (β0,β1,µx,σ

2
x ,σ

2
u ,σ

2
ε )
>=

(0,−8,16,9,1,9)>. Notice that the reliability ratio kx for the first and second scenarios is 0.5
and 0.9, respectively, so that kx = 0.5 can be considered a moderate reliability and kx = 0.9 as
high reliability. The true values of the parameters in our scenarios were chosen following Wang
and Sivaganesan (2013).

In order to assess the point estimates obtained by the ML and MPL methods, Figure
1 displays the simulated bias of the estimates for β1 and Tables 2 and 3 show the sampling
standard deviation (SD), the root mean squared error (RMSE) and the average of the estimated
asymptotic standard errors (σ̂1(β̂1), σ̃2(β̃1), σ̃3(β̃1) and σ̃4(β̃1)) under the first and second
scenarios, respectively.

In Figure 1, it can be observed that the bias decreases as the sample size increases for
all cases, as expected. It can be also seen that in the first scenario (kx = 0.5) and for Case 1, the
simulated bias of the ML and MPL estimates for β1 are quite similar. For Case 2, the biases of
the ML estimates are smaller than those of the MPL estimates. For Case 5, there was a slight
bias reduction by the MPL method when n = 20. Also, in the second scenario (kx = 0.9) and for
Cases 1 and 2, there was a slight reduction of bias by the MPL method in small and moderated
samples and, for Case 5, it occurs when n ∈ {20,30}. As expected, in most cases both of the
estimation methods are quite similar when the sample size increases. The Cases 3 and 4 are not
presented since the ML and MPL estimators for β1 are the same (as proved in Propositions 1 and
2).

In Tables 2 and 3, it can be seen that the values of SD and RMSE decrease when the
sample size increases, as expected. From the Table 2 and for Case 1 (known σ2

u ), since the bias
of the estimates is not negligible for the majority of the entries (see, e.g., Figure 1–(a)), the
values of SD and RMSE differ, especially when the sample size is small or moderate, whichever
the estimation method. The presence of bias is not surprising for moderated reliability ratios
(kx = 0.5) and small samples. With respect to Case 2 (known σ2

ε ), the SD and RMSE values are
reasonably close to the average of the estimated asymptotic standard errors for both estimation
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Figure 1 – Simulated bias of the estimates for β1. First scenario: (a) Case 1, (b) Case 2 and (c) Case 5.
Second scenario: (d) Case 1, (e) Case 2 and (f) Case 5. Estimation methods: ML (♦) and MPL
(+).

methods (in particular when the sample size is larger than 30). A similar performance to the
previous case was observed under the identifiability Cases 3–5. Moreover, in the second scenario
(kx = 0.9) for Cases 1–5, Table 3 shows that the values of RMSE, SD and the average of the
asymptotic standard errors (σ̂1(β̂1), σ̃2(β̃1), σ̃3(β̃1) and σ̃4(β̃1)) do not differ so much, especially
when the sample size is larger than 30.

Next, Tables 4 and 5 display the empirical coverage probability (CP) and the average
interval length (IL) of the five approximate 95% confidence intervals for β1 (described in
Section 2.3) under the first and second scenarios, respectively. For the PPL confidence intervals,
we compute the confidence limits using the algorithm described in Section 2.3.2. Also, the
interpretation becomes easier if the focus is placed first on coverage probability and after that on
the average interval length. Thus, the best results of the coverage probability are those whose
values are quite close to the nominal value of 0.95 and, among those of the best approximate
confidence intervals, we focus on those intervals that have the shortest average lengths.

In the sequel, some valuable conclusions are drawn from the Tables 4 and 5 in what
follows:

Case 1: σ2
u is known. Overall, for the first scenario (kx = 0.5), the best results seem to be achieved

with the CI5 interval, which presents much closer coverage probabilities to the nominal level
than the other intervals, as shown in Table 4. In the second scenario (kx = 0.9), we observe in
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Table 2 – First scenario: (β0,β1,µx,σ
2
x ,σ

2
u ,σ

2
ε )
> = (0,−2,4,1,1,1)> (kx = 0.5). Sampling standard de-

viation (SD), root mean square error (RMSE) and average of the estimated asymptotic standard
errors (σ̂1(β̂1), σ̃2(β̃1), σ̃3(β̃1) and σ̃4(β̃1)).

Case n Method SD RMSE σ̂1(β̂1) σ̃2(β̃1) σ̃3(β̃1) σ̃4(β̃1)

20 ML 0.281 0.730 0.453 - - -
MPL 0.289 0.708 - 0.448 0.433 0.418

30 ML 0.277 0.586 0.435 - - -
MPL 0.282 0.573 - 0.431 0.420 0.410

1 50 ML 0.259 0.409 0.408 - - -
MPL 0.259 0.403 - 0.404 0.397 0.390

70 ML 0.261 0.325 0.388 - - -
MPL 0.259 0.322 - 0.384 0.378 0.373

100 ML 0.261 0.276 0.357 - - -
MPL 0.257 0.272 - 0.353 0.349 0.345

20 ML 0.377 0.437 0.422 - - -
MPL 0.374 0.450 - 0.400 0.385 0.371

30 ML 0.349 0.391 0.381 - - -
MPL 0.346 0.399 - 0.366 0.357 0.349

2 50 ML 0.305 0.314 0.336 - - -
MPL 0.304 0.317 - 0.327 0.322 0.317

70 ML 0.284 0.285 0.301 - - -
MPL 0.283 0.285 - 0.295 0.292 0.289

100 ML 0.258 0.258 0.261 - - -
MPL 0.258 0.258 - 0.258 0.256 0.254

20 ML 0.379 0.442 0.382 - - -
MPL 0.379 0.442 - 0.355 0.344 0.333

30 ML 0.333 0.364 0.361 - - -
MPL 0.333 0.364 - 0.342 0.335 0.328

3 50 ML 0.304 0.307 0.328 - - -
MPL 0.304 0.307 - 0.316 0.313 0.309

70 ML 0.288 0.288 0.296 - - -
MPL 0.288 0.288 - 0.288 0.286 0.284

100 ML 0.254 0.255 0.254 - - -
MPL 0.254 0.255 - 0.249 0.248 0.246

20 ML 0.524 0.566 0.591 - - -
MPL 0.524 0.566 - 0.567 0.540 0.514

30 ML 0.419 0.444 0.471 - - -
MPL 0.419 0.444 - 0.458 0.443 0.428

4 50 ML 0.321 0.332 0.356 - - -
MPL 0.321 0.332 - 0.350 0.343 0.336

70 ML 0.273 0.278 0.299 - - -
MPL 0.273 0.278 - 0.295 0.290 0.286

100 ML 0.234 0.236 0.248 - - -
MPL 0.234 0.236 - 0.246 0.243 0.241

20 ML 0.124 0.124 0.122 - - -
MPL 0.124 0.124 - 0.111 0.111 0.111

30 ML 0.101 0.101 0.100 - - -
MPL 0.101 0.101 - 0.094 0.094 0.094

5 50 ML 0.078 0.078 0.078 - - -
MPL 0.078 0.078 - 0.075 0.075 0.075

70 ML 0.068 0.068 0.066 - - -
MPL 0.068 0.068 - 0.064 0.064 0.064

100 ML 0.055 0.055 0.056 - - -
MPL 0.055 0.055 - 0.055 0.055 0.055
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Table 3 – Second scenario: (β0,β1,µx,σ
2
x ,σ

2
u ,σ

2
ε )
> = (0,−8,16,9,1,9)> (kx = 0.9). Sampling standard

deviation (SD), root mean square error (RMSE) and average of the estimated asymptotic
standard errors (σ̂1(β̂1), σ̃2(β̃1), σ̃3(β̃1) and σ̃4(β̃1)).

Case n Method SD RMSE σ̂1(β̂1) σ̃2(β̃1) σ̃3(β̃1) σ̃4(β̃1)

20 ML 0.668 0.719 0.823 - - -
MPL 0.684 0.708 - 0.811 0.777 0.745

30 ML 0.534 0.564 0.636 - - -
MPL 0.543 0.557 - 0.629 0.611 0.594

1 50 ML 0.422 0.434 0.473 - - -
MPL 0.426 0.432 - 0.470 0.462 0.454

70 ML 0.354 0.362 0.392 - - -
MPL 0.357 0.361 - 0.390 0.385 0.380

100 ML 0.297 0.302 0.323 - - -
MPL 0.299 0.301 - 0.322 0.319 0.316

20 ML 0.720 0.721 0.656 - - -
MPL 0.718 0.719 - 0.627 0.599 0.571

30 ML 0.563 0.563 0.528 - - -
MPL 0.562 0.562 - 0.512 0.496 0.481

2 50 ML 0.420 0.420 0.410 - - -
MPL 0.420 0.420 - 0.402 0.394 0.386

70 ML 0.354 0.355 0.344 - - -
MPL 0.354 0.354 - 0.339 0.335 0.330

100 ML 0.292 0.292 0.288 - - -
MPL 0.292 0.292 - 0.285 0.283 0.280

20 ML 0.711 0.714 0.658 - - -
MPL 0.711 0.714 - 0.628 0.600 0.573

30 ML 0.553 0.554 0.530 - - -
MPL 0.553 0.554 - 0.513 0.497 0.482

3 50 ML 0.419 0.419 0.409 - - -
MPL 0.419 0.419 - 0.400 0.393 0.385

70 ML 0.355 0.355 0.344 - - -
MPL 0.355 0.355 - 0.339 0.334 0.330

100 ML 0.294 0.294 0.288 - - -
MPL 0.294 0.294 - 0.285 0.282 0.279

20 ML 0.727 0.741 0.739 - - -
MPL 0.727 0.741 - 0.709 0.675 0.643

30 ML 0.553 0.564 0.581 - - -
MPL 0.553 0.564 - 0.565 0.546 0.528

4 50 ML 0.419 0.426 0.435 - - -
MPL 0.419 0.426 - 0.428 0.419 0.410

70 ML 0.350 0.355 0.362 - - -
MPL 0.350 0.355 - 0.357 0.352 0.347

100 ML 0.291 0.294 0.299 - - -
MPL 0.291 0.294 - 0.296 0.293 0.290

20 ML 0.119 0.119 0.117 - - -
MPL 0.119 0.119 - 0.106 0.106 0.106

30 ML 0.097 0.097 0.096 - - -
MPL 0.097 0.097 - 0.090 0.090 0.090

5 50 ML 0.075 0.076 0.075 - - -
MPL 0.075 0.076 - 0.072 0.072 0.072

70 ML 0.063 0.063 0.063 - - -
MPL 0.063 0.063 - 0.061 0.061 0.061

100 ML 0.053 0.053 0.053 - - -
MPL 0.053 0.053 - 0.052 0.052 0.052
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Table 4 – First scenario: (β0,β1,µx,σ
2
x ,σ

2
u ,σ

2
ε )
> = (0,−2,4,1,1,1)> (kx = 0.5). Empirical coverage

probability (CP) and average interval length (IL) of the approximate 95% confidence intervals
for β1 under the identifiability Cases 1–5.

CP IL

Case n CI1 CI2 CI3 CI4 CI5 CI1 CI2 CI3 CI4 CI5

20 0.700 0.712 0.690 0.668 0.885 1.777 1.755 1.696 1.640 2.113
30 0.807 0.813 0.802 0.790 0.922 1.707 1.688 1.646 1.606 1.989

1 50 0.894 0.896 0.892 0.887 0.954 1.600 1.583 1.554 1.528 1.811
70 0.921 0.923 0.921 0.918 0.963 1.521 1.504 1.482 1.461 1.688
100 0.943 0.944 0.943 0.942 0.971 1.400 1.385 1.369 1.354 1.522

20 0.856 0.824 0.812 0.800 0.924 1.655 1.567 1.510 1.455 1.914
30 0.864 0.846 0.838 0.831 0.925 1.495 1.437 1.401 1.367 1.687

2 50 0.910 0.899 0.895 0.891 0.943 1.315 1.282 1.263 1.244 1.436
70 0.926 0.918 0.916 0.914 0.947 1.180 1.157 1.145 1.133 1.263
100 0.937 0.932 0.931 0.929 0.946 1.025 1.011 1.003 0.996 1.078

20 0.841 0.816 0.807 0.797 0.898 1.499 1.392 1.348 1.306 1.622
30 0.889 0.875 0.869 0.864 0.932 1.415 1.339 1.313 1.287 1.529

3 50 0.921 0.912 0.911 0.907 0.940 1.285 1.239 1.226 1.213 1.372
70 0.935 0.930 0.929 0.927 0.944 1.161 1.130 1.121 1.113 1.224
100 0.942 0.938 0.937 0.936 0.941 0.994 0.975 0.970 0.965 1.033

20 0.943 0.933 0.921 0.908 0.932 2.317 2.222 2.115 2.014 2.203
30 0.951 0.947 0.940 0.931 0.946 1.847 1.794 1.735 1.679 1.785

4 50 0.960 0.957 0.954 0.950 0.957 1.396 1.371 1.343 1.317 1.368
70 0.964 0.962 0.960 0.956 0.962 1.171 1.155 1.139 1.123 1.154
100 0.963 0.961 0.959 0.957 0.961 0.972 0.963 0.953 0.944 0.962

20 0.927 0.902 0.902 0.902 0.919 0.477 0.434 0.434 0.434 0.458
30 0.939 0.927 0.927 0.927 0.932 0.393 0.369 0.369 0.369 0.383

5 50 0.948 0.938 0.938 0.938 0.943 0.307 0.295 0.295 0.295 0.303
70 0.940 0.934 0.934 0.934 0.937 0.260 0.252 0.252 0.252 0.257
100 0.951 0.947 0.947 0.947 0.949 0.218 0.214 0.214 0.214 0.216

Table 5 that the coverage probability presented by the five approximate confidence intervals
(CI1–CI5) tend to give similar results and close to the nominal level. Furthermore, the CI2–CI5

intervals’ lengths are slightly shorter than those of the CI1 interval and the CI3 interval stands
out when the sample size is 20. The CI4 interval can be recommended for having the shortest
average lengths when the sample size is larger than 20.

Case 2: σ2
ε is known. In the first scenario (kx = 0.5), it can be observed in Table 4 that the CI5

interval has the best results in terms of coverage probability being these values much closer to
the nominal level than in the other intervals. Also, the CI5 interval’s average lengths are slightly
larger than those of the other intervals. For second scenario (kx = 0.9) and when the sample
size is less than 30, it is observed in Table 5 that the CI1 interval presents much closer coverage
probabilities the nominal level, but their average lengths were larger than those of the others
intervals. Furthermore, when the sample size is greater than 30, in terms of coverage probability,
the performance of the C1, C2 and CI5 intervals is similar and close to the nominal level. Also,
the average lengths of the CI2 and CI5 intervals are slightly shorter than the ones of the CI1
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Table 5 – Second scenario: (β0,β1,µx,σ
2
x ,σ

2
u ,σ

2
ε )
> = (0,−8,16,9,1,9)> (kx = 0.9). Empirical coverage

probability (CP) and average interval length (IL) of the approximate 95% confidence intervals
for β1 under the identifiability Cases 1–5.

CP IL

Case n CI1 CI2 CI3 CI4 CI5 CI1 CI2 CI3 CI4 CI5

20 0.950 0.954 0.946 0.938 0.959 3.224 3.179 3.047 2.921 3.193
30 0.952 0.957 0.950 0.946 0.959 2.493 2.466 2.396 2.327 2.469

1 50 0.959 0.961 0.958 0.955 0.964 1.856 1.843 1.810 1.779 1.843
70 0.958 0.960 0.958 0.955 0.960 1.536 1.528 1.508 1.489 1.528

100 0.961 0.963 0.961 0.959 0.963 1.267 1.263 1.251 1.240 1.263

20 0.920 0.906 0.890 0.876 0.907 2.573 2.459 2.347 2.240 2.514
30 0.928 0.919 0.909 0.900 0.917 2.072 2.007 1.945 1.884 2.036

2 50 0.942 0.937 0.932 0.926 0.935 1.605 1.574 1.544 1.515 1.588
70 0.939 0.935 0.930 0.927 0.936 1.350 1.331 1.312 1.294 1.339
100 0.944 0.942 0.940 0.938 0.941 1.130 1.119 1.108 1.097 1.124

20 0.923 0.912 0.900 0.885 0.908 2.579 2.462 2.351 2.245 2.511
30 0.934 0.926 0.917 0.908 0.922 2.077 2.011 1.949 1.889 2.037

3 50 0.942 0.938 0.933 0.929 0.939 1.601 1.570 1.540 1.511 1.582
70 0.938 0.934 0.931 0.928 0.937 1.347 1.328 1.310 1.292 1.336
100 0.943 0.941 0.939 0.936 0.942 1.128 1.116 1.106 1.095 1.121

20 0.941 0.932 0.918 0.903 0.930 2.896 2.780 2.647 2.520 2.754
30 0.952 0.945 0.937 0.929 0.944 2.278 2.214 2.141 2.071 2.202

4 50 0.953 0.949 0.944 0.940 0.948 1.706 1.676 1.642 1.609 1.671
70 0.956 0.953 0.950 0.946 0.952 1.418 1.400 1.380 1.360 1.397

100 0.952 0.951 0.950 0.946 0.951 1.171 1.160 1.148 1.137 1.159

20 0.932 0.905 0.905 0.905 0.918 0.458 0.417 0.417 0.417 0.436
30 0.938 0.924 0.924 0.924 0.931 0.376 0.353 0.353 0.353 0.364

5 50 0.942 0.932 0.932 0.932 0.937 0.293 0.281 0.281 0.281 0.287
70 0.948 0.940 0.940 0.940 0.944 0.248 0.241 0.241 0.241 0.244

100 0.949 0.945 0.945 0.945 0.947 0.208 0.204 0.204 0.204 0.206

interval, here the CI2 interval stands out.

Case 3: Ratio of the error variances is known. In the first scenario (kx = 0.5), the known value
of λ = σ2

u/σ2
ε is 1, for this situation, similar findings to Cases 1 and 2 are found in Table 4, i.e.,

the best results were achieved by the CI5 interval with much closer coverage probabilities to the
nominal level, in particular, when the sample size is greater than 20. Also, the average lengths
of the CI5 interval are slightly larger than those of the other intervals. In the second scenario
(kx = 0.9), the known value of λ is 3, for this situation, a similar performance is observed in
Table 5 for the coverage for the coverage probability of the CI1, CI2 and CI5 intervals when the
sample size is greater than 20. Moreover, among these intervals, the CI2 interval (followed by
the CI5 interval) outperformed the CI1 interval, having the shortest average length.

Case 4: Reliability ratio is known. For the first scenario (kx = 0.5), Table 4 shows that the CI1,
CI2 and CI5 intervals have a good performance in terms of coverage probability when the sample
size is less than 30, where the CI5 interval stands out with shorter average lengths than the
other intervals. For sample sizes greater than 30, the CI4, CI3, CI2 and CI5 intervals, in this
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order, presented shorter average lengths than the CI1 interval. Hence, the CI4 interval can be
recommended, mainly because its average lengths are shorter than those of the other intervals.
In Table 5, under second scenario (kx = 0.9), the CI1 interval has a good coverage probability
performance when the sample size is 20, followed by the CI2 interval. And, if the sample size is
greater than 20, the five approximate confidence intervals (CI1–CI5) present similar results of the
coverage probability and are close to the nominal value. Furthermore, in terms of the average
interval lengths, the CI4 interval outperformed the other intervals by having the shortest average
lengths. The CI3 interval can be recommended as the second best.

Case 5: Intercept is null. In this case, it is observed a good performance of the coverage
probability presented by the CI1 and CI5 intervals, which tend to give similar and close results to
the nominal level regardless of the scenario (see the Tables 4 and 5). Also, the average lengths
presented by the CI1 and CI5 intervals are not so different.

Lastly, for large sample size (n = 100) in all scenarios presented in this section and for
most of entries in Tables 4 and 5, it can be observed a similar performance of the coverage
probability for the five approximate confidence intervals (CI1–CI5), because the penalty effect
introduced into the log-likelihood function became negligible. As expected, the increase of
sample size reduces the average length of the five approximate confidence intervals.

2.4.2 Second simulation study

In this simulation study, the true values of the parameters are based on the ML estimates of
the dataset analyzed in Section 2.5.1, i.e., (β0,β1,µx,σ

2
x ,σ

2
u ,σ

2
ε )
> = (67,0.43,70.6,220.1,57,

38.4)> where σ2
u is considered known (Case 1). Observe that the reliability ratio is kx = 0.8.

Here, n = 10, 20, 30, 50 and 100.

In Figure 2, we can observe that the simulated bias of the MPL estimates presented a bias
reduction (in module) when n ∈ {10,20}. In addition, both the MPL and ML methods deliver
quite similar estimates when the sample size is greater than 50.

Table 6 shows the results related to the performance measures for point estimates in this
study. For the bias reduction provided by the MPL method when n ∈ {20,30}, we noted that
there was a slight inflation of the values of RMSE. For the remaining samples sizes, the two
estimation methods do not differ too much with respect to SD and RMSE and in turn are quite
similar to the average of σ̂1(β̂1), σ̃2(β̃1), σ̃3(β̃1) and σ̃4(β̃1)), as desired.

Finally, Table 7 shows that the CI1 and CI5 intervals have the highest coverage probability
values, especially, when the sample size is 10 and the CI1 interval delivers slightly shorter average
length than the CI5 interval. As expected, the performance for all interval estimates is improved
when the sample size increases. Also, in terms of average interval lengths, the CI2–CI4 intervals
can be recommended when the sample size is large because their average lengths are slightly
shorter than the other intervals.
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Figure 2 – Simulated bias of the estimates for β1. Case 1 (known σ2
u ). Estimation methods: ML (♦) and

MPL (+).

Table 6 – True parameter values (β0,β1,µx,σ
2
x ,σ

2
u ,σ

2
ε )
> = (67,0.4,7.6,220.1,57,38.4)> (kx = 0.8).

Sampling standard deviation (SD), root mean square error (RMSE) and average of the es-
timated asymptotic standard errors (σ̂1(β̂1), σ̃2(β̃1), σ̃3(β̃1) and σ̃4(β̃1)).

Case n Method SD RMSE σ̂1(β̂1) σ̃2(β̃1) σ̃3(β̃1) σ̃4(β̃1)

10 ML 0.145 0.150 0.150 - - -
MPL 0.151 0.153 - 0.145 0.135 0.126

20 ML 0.120 0.120 0.121 - - -
MPL 0.123 0.123 - 0.117 0.113 0.110

30 ML 0.101 0.101 0.099 - - -
MPL 0.102 0.102 - 0.097 0.095 0.094

50 ML 0.078 0.078 0.077 - - -
MPL 0.078 0.078 - 0.075 0.075 0.074

100 ML 0.054 0.054 0.054 - - -
MPL 0.053 0.053 - 0.053 0.053 0.053

Table 7 – True parameter values (β0,β1,µx,σ
2
x ,σ

2
u ,σ

2
ε )
> = (67,0.4,7.6,220.1,57,38.4)>. Empirical cov-

erage probability (CP) and average interval length (IL) of the approximate 95% confidence
intervals for β1 under the identifiability Case 1 (known σ2

u ).

CP IL

n CI1 CI2 CI3 CI4 CI5 CI1 CI2 CI3 CI4 CI5

10 0.919 0.911 0.889 0.864 0.921 0.588 0.569 0.528 0.492 0.607
20 0.944 0.935 0.926 0.913 0.936 0.473 0.459 0.445 0.432 0.489
30 0.941 0.934 0.930 0.925 0.937 0.389 0.379 0.372 0.367 0.401
50 0.950 0.945 0.942 0.938 0.948 0.302 0.295 0.293 0.292 0.312
100 0.948 0.949 0.948 0.947 0.956 0.213 0.209 0.209 0.209 0.224

2.5 Data analysis

In this section, in order to illustrate the proposed methodology, we consider two datasets
previously analyzed in the literature. Some conclusions are presented as well.
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2.5.1 Yields of corn and determinations of soil nitrogen

The dataset was taken from Fuller (1987, p. 18). The data refer to yields of corn (Y )

and determinations of available soil nitrogen (X) collected at 11 sites on Marshal soil in Iowa
(unknown units). Note that the estimates of soil nitrogen incorporate measurement error due to
sampling error associated with the sample of soil as well as it often occurs in chemical analysis
due to that many factors may affect a measurement (for example, instrument, observer, etc).
Here, the error variance is σ2

u = 57 and is regarded as known. Also, the estimated reliability ratio
kx is 0.8.

In this case, ML and MPL estimates for β1 are 0.433 and 0.435, respectively, which
do not differ so much. The estimated asymptotic standard error of the ML estimate for β1 is
σ̂1(β̂1) = 0.163, while for the MPL estimate we have σ̃2(β̃1) = 0.142 and σ̃3(β̃1) = σ̃4(β̃1) =

0.143. Next, Table 8 displays the approximate 95% confidence intervals for β1 and their interval
lengths by using the five interval estimators described in Section 2.3. We can see that the CI2, CI3

and CI4 estimates have, in this order, shorter interval lengths than the other intervals. However,
the simulation study in Section 2.4.2 indicated that these interval estimates have a poor coverage
probability performance under a similar scenario (Section 2.4.2 with n = 10). Thus, the CI1

estimate gives a good interval estimate for β1 followed by the CI5 estimate.

2.5.2 Methods comparison study

The dataset was extracted from Strike (1991, pp. 318–323). The data are from an
assay comparison study involving two methods for 56 measurements of serum gentamicin
concentrations (in µmol/l), where X denotes the observed test results using an enzyme-mediated
immunoassay (EMIT) and Y as the observed test results using a fluoro-immunoassay (FIA).
Based on repeatability standard deviations, the ratio of the variances has been estimated to
be λ = 0.236 and is considered as known. Moreover, the estimated reliability ratio is high
(kx = 0.95).

Here, ML and MPL estimates for β1 are the same, i.e., β̂1 = β̃1 = 0.950. The estimated
asymptotic standard error of the ML estimate is σ̂1(β̂1) = 0.034, while for the MPL estimate
we have σ̃2(β̃1) = σ̃3(β̃1) = 0.033, and σ̃4(β̃1) = 0.032. In interval estimation, although the CI3

and CI4 estimates have the shortest lengths, as shown in Table 8, they could not be considered,
due to that in a scenario under similar conditions showed a bad coverage probability performance
(see, e.g., Table 5 - Case 3 for n ∈ {50,70}). Consequently, the CI2 and CI5 estimates can be
recommended.

2.6 Conclusions

In this chapter, Firth’s method was applied to measurement error models under the
assumption of normality for the identifiability Cases 1–5. The penalty function used was the
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Table 8 – Approximate 95% confidence intervals for β1 and their lengths.

Section 2.5.1 (known σ2
u ) Section 2.5.2 (known λ )

Estimator Interval Length Interval Length

CI1 [0.113, 0.753] 0.640 [0.883, 1.017] 0.134
CI2 [0.156, 0.714] 0.558 [0.885, 1.016] 0.131
CI3 [0.155, 0.715] 0.560 [0.886, 1.014] 0.128
CI4 [0.154, 0.716] 0.562 [0.887, 1.013] 0.126
CI5 [0.153, 0.807] 0.654 [0.888, 1.019] 0.131

Jeffrey’s prior in a Bayesian context. It was proved that for the model in (2.2) for the assumption
of the ratio of error variances known (Case 3), the point estimators based on the ML and
MPL methods for the parameters β0, β1 and µx are the same. This result also holds true when
the reliability ratio kx is known (Case 4). Now, within the scope of the scenarios in Section
2.4, we summarize some conclusions. For point estimation, the MPL method provided less
biased and more precise estimates for the slope parameter β1 than the ML method under the
following conditions: High reliability ratio (kx = 0.9) and, for identifiability Cases 1 and 2, small
and moderated sample sizes. On the other hand, outside these conditions, both ML and MPL
estimators for β1 yield similar results.

With respect to interval estimation for β1 and under our different scenarios, the results
are summarized as follows:

(i) When σ2
u is known, the CI5 estimator stands out in terms of coverage probability when the

reliability ratio is moderate (kx = 0.5) and the sample size is larger than 20. For kx = 0.9
and sample size larger than 20, the CI4 estimator outperforms the other intervals, having
the shortest average length.

(ii) When σ2
ε is known, the CI5 estimator outperforms the other interval estimators, especially

in terms of coverage probability, when kx = 0.5 and the sample size larger than 20. For
kx = 0.9 and the sample size larger than 30, the CI1 estimator can be indicated followed
by the CI2 and CI5 estimators.

(iii) When the ratio of error variances is known, if kx = 0.5, the CI5 estimator can be used in
moderated sample sizes, its coverage probability is the closest to the nominal value. For
kx = 0.9 and sample size larger than 20, the CI1 estimator can be recommended followed
by the CI2 and CI5 estimators, in this order.

(iv) When the reliability ratio is known, when kx = 0.5, the CI5 estimator can be used followed
by the CI2 estimator in small or moderated sample sizes, while for sample sizes greater
than 50, the CI4 estimator can be indicated for having the shortest average length. For
kx = 0.9, the CI1 estimator outperforms the other interval estimators, especially in terms



40 Chapter 2. Maximum penalized likelihood inference in measurement error models

of coverage probability when the sample size is 20 and 30. The CI4 estimator outperforms
the other intervals, having the shortest average length for sample sizes larger than 30.

(v) When the intercept is null, the CI1 and CI5 estimators can be used irrespective of the
reliability ratio, because the performance in terms of the coverage probability and average
interval length presented quite similar and close results.

Our findings led us to conclude that Firth’s method can offer an improvement over some
asymptotic properties of the ML estimators. As mentioned earlier, this improvement, in terms of
bias reduction, mean square error and coverage probability, does not occur simultaneously as
was observed in our simulation studies applied to MEM. Moreover, it is important to note that
bias reduction in a particular model is not always achieved. As commented by Firth (1993), the
merits of this method will depend on some factors, for instance, the choice of the parameter of
interest and the skewness of the ML estimates, among others.

On the other hand, estimation methods based on generalized fiducial inference have been
recently investigated and reviewed in Hannig et al. (2016) and, recent published papers of several
authors have showed an improvement in interval estimation, showing good frequentist properties.
Thus, some works related to these estimation methods involving the model in (2.2) under the
identifiability Cases 1, 3 and 4 have been studied, respectively, in Yan and Xu (2017), Yan,
Wang and Xu (2017b) and Yan, Wang and Xu (2017a). The new fiducial intervals for the slope
parameter proposed by these authors have showed a good coverage probability performance
and shorter average lengths with respect to that of the frequentist approach, especially, in small
samples. For this reason, in the next chapter, we will construct two estimation methods based
on the generalized fiducial inference to a special case of measurement error models, which is
known as the Grubbs model.



41

CHAPTER

3
GENERALIZED FIDUCIAL INFERENCE FOR

THE GRUBBS MODEL

In this chapter, we develop generalized fiducial inference for the precision of each mea-
suring instrument and the variability product without available replications on the observations
under the Grubbs model considering the two-instrument case. Thus, we briefly review two
existing estimation approaches for the Grubbs model and then we construct the two new esti-
mation methods built on generalized fiducial inference. We compare these two new methods
with existing approaches through a simulation study and illustrate with a dataset from a methods
comparison study. Finally, some remarks are also presented. A modification of this chapter
allowed us to obtain as result the following paper, see Tomaya and Castro (2018b).

3.1 Introduction

The Grubbs model is often used in methods comparison studies to assess the relative
agreement between two or more analytical instruments (or methods) designed to measure the
same quantity of interest (GRUBBS, 1983). The main aim is to see whether or not two or more
methods produce measurement errors of similar magnitude.

The Grubbs model is a particular case of the MEM given in (2.1) with the specification
of β1 = 1. Next, the model formulation is described as follows. Consider at our disposal two
instruments for measuring a quantity of interest x and a set of readings of experimental units.
Thus, let xi be the unobservable measurement, while Xi and Yi are the measured values obtained
by the instruments A′ and B′, respectively, in the i-th unit. Relating these variables, we have

Yi = β0 + xi + εi and Xi = xi +ui, i = 1, . . . ,n, (3.1)

where β0 is the bias or systematic error of the instrument B′ with respect to the instrument A′.
We assume in (3.1) that xi are independent and distributed as the N (µx,σ

2
x ) distribution and
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εi and ui are independent random errors following the N (0,σ2
ε ) and N (0,σ2

u ) distributions,
respectively. Moreover, xi, ε j and uk are independent for all i, j,k = 1, . . . ,n. Hence, under these
assumptions, the observations (Xi,Yi)

> are independent and distributed as

(Xi,Yi)
> ∼N2(µµµ,ΣΣΣ), (3.2)

with mean vector µµµ and covariance matrix ΣΣΣ given by

µµµ =

(
µx

β0 +µx

)
and ΣΣΣ =

[
σ2

X σXY

σXY σ2
Y

]
=

[
σ2

x +σ2
u σ2

x

σ2
x σ2

x +σ2
ε

]
, (3.3)

where β0,µx,σ
2
x ,σ

2
u and σ2

ε are unknown parameters.

For the two-instrument case, Bayesian inference for some parameters of interest was
studied in Draper and Guttman (1975) as well as estimation for the systematic error β0 was
investigated in Castro and Vidal (2017). Inference on the precision parameters (σ2

u and σ2
ε )

and product variability (σ2
x ) under such model was studied in Grubbs (1948), Grubbs (1983),

among others. Later on, Maloney and Rastogi (1970), Shukla (1973) and Jaech (1985) proposed
different approaches for testing hypothesis on these parameters. Recently, a new two-instrument
estimator for the precision of a measuring instrument was provided by Lombard and Potgieter
(2012). This estimator improves upon the Grubbs estimator only if the ratio σ2

x /σ2
u is previously

specified.

On the other hand, a methodology for constructing hypotheses tests based on generalized
statistical inference was introduced by Tsui and Weerahandi (1989), while Weerahandi (1993)
proposed a generalized pivotal quantity (GPQ) with its corresponding generalized confidence
interval. A direct connection between generalized confidence intervals and fiducial intervals
was established in Hannig, Iyer and Patterson (2006). They proved the asymptotic frequency
correctness of such intervals. They also recognized a subclass of the GPQ, termed as fiducial
generalized pivotal quantity (FGPQ). In a similar way, Xu and Li (2006) and Li, Xu and Li
(2007) also found a connection between the Fisher (1930)’s fiducial inference and the generalized
statistical inference and showed a general method to derive the fiducial distribution and the
generalized test variable, respectively. This last result was called by them as the generalized
fiducial distribution (GFD). In the past 10 years, a unification of the main results in parametric
problems based on the generalized fiducial inference was investigated and reviewed in Hannig
(2009b) and Hannig et al. (2016). Recent works have showed an improvement in the interval
estimation when the generalized fiducial inference is adopted. For example, in measurement
error models, Wang and Iyer (2008) provided procedures for constructing uncertainty regions
for the intercept and slope parameters using a FGPQ. Moreover, Yan, Wang and Xu (2017a),
Yan, Wang and Xu (2017b) and Yan and Xu (2017) proposed two confidence intervals based on
FGPQ and GFD for the slope parameter with good empirical frequentist properties.

Motived by the recent interest in fiducial methods, we construct two new estimation
methods for the precision parameters and product variability under the Grubbs model. The
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methods are based on generalized fiducial inference. Furthermore, we compare them with two
other existing approaches, which we call Grubbs estimation method (G) (GRUBBS, 1948;
JAECH, 1985) and Thompson’s estimation method (T) (THOMPSON, 1963).

3.2 Estimation methods

In this section, we describe two existing estimation approaches for the parameters of
interest under the Grubbs model and after that other two new estimation methods based on
generalized fiducial inference are built as well.

3.2.1 Existing approaches

Next, point and interval estimation, for the precision parameters and the product variabil-
ity, computed by the Grubbs method and the Thompson’s method are described as follows.

3.2.1.1 Grubbs estimators and interval estimation

Based on the method of moments, (GRUBBS, 1948) provided the expressions for the
point estimators of the product variability and the precision parameters, given by

σ̃
2
x = SXY , σ̃

2
u = S2

X −SXY and σ̃
2
ε = S2

Y −SXY , (3.4)

where S2
X = ∑

n
i=1(Xi − X)2/(n− 1), S2

Y = ∑
n
i=1(Yi −Y )2/(n− 1), SXY = ∑

n
i=1(Xi − X)(Yi −

Y )/(n− 1), X = ∑
n
i=1 Xi/n and Y = ∑

n
i=1Yi/n. Note that negative estimates can be obtained

from (3.4). In addition, the expressions for the variances of σ̃2
x , σ̃2

u and σ̃2
ε in (3.4) are

Var(σ̃2
x ) =

2σ4
x +D

n−1
, Var(σ̃2

u ) =
2σ4

u +D
n−1

and Var(σ̃2
ε ) =

2σ4
ε +D

n−1
, (3.5)

where D = σ2
x σ2

u +σ2
x σ2

ε +σ2
u σ2

ε .

To estimate the variances in (3.5), we can replace the unknown parameters involved
by their estimates. Although (3.5) gives the sampling variances of the estimators in (3.4), it
does not indicate their distributions. Then, under certain conditions (JAECH, 1985), σ̃2

x , σ̃2
u and

σ̃2
ε are approximately distributed as chi-square random variables with νx, νu and νε degrees of

freedom, respectively. For interval estimation of σ2
u , first we compute νu = 2σ4

u/Var(σ̃2
u ) using

the estimates of σ4
u and Var(σ̃2

u ) from (3.4) and (3.5). In a similar way, νx and νε are computed.
Then, with γ ∈ (0,1), an approximate two-sided 100γ% confidence interval for σ2

u has lower
and upper limits given by νuσ̃2

u/χ2
νu
((1+ γ)/2) and νuσ̃2

u/χ2
νu
((1− γ)/2)), respectively, where

χ2
ν(δ ) represents the 100δ% percentile of the χ2

ν distribution. Similar steps are taken to construct
the approximate two-sided 100γ% confidence intervals for σ2

x and σ2
ε .
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3.2.1.2 Thompson’s estimators and simultaneous confidence region

Using the restricted maximum likelihood method, (THOMPSON, 1963) proposed the
point estimators for the precision parameters and product variability displayed in Table 9. These
estimators take only nonnegative values.

Table 9 – Thompson’s point estimators.

Parameter

Conditions σ2
x σ2

u σ2
ε

S2
X ,S

2
Y ≥ SXY ≥ 0 SXY S2

X −SXY S2
Y −SXY

S2
Y ≥ SXY ≥ S2

X S2
X 0 S2

X +S2
Y −2SXY

S2
X ≥ SXY ≥ S2

Y S2
Y S2

X +S2
Y −2SXY 0

SXY < 0 0 S2
X S2

Y

Furthermore, Thompson (1963) also derived an exact method to construct a simultaneous
confidence region for the three parameters (σ2

x , σ2
u and σ2

ε ). The inequalities

|σ2
x −CXY K| ≤MCXCY ,

|σ2
u − (C2

X −CXY )K| ≤MCX(C2
X +C2

Y −2CXY )
1/2

and |σ2
ε − (C2

Y −CXY )K| ≤MCY (C2
X +C2

Y −2CXY )
1/2

hold true simultaneously with probability at the least γ , where C2
X = (n−1)S2

X , C2
Y = (n−1)S2

Y

and CXY = (n−1)SXY . The values of K and M are given in (THOMPSON, 1963) for γ equal to
0.99 and 0.95. For these simultaneous intervals, all negative lower limits are replaced by 0.

3.2.2 Generalized fiducial inference

The idea of generalized fiducial inference (GFI) is motived as a unification of the theory
of the generalized confidence intervals proposed by Weerahandi (1993) and on the surrogate
variable method for obtaining confidence intervals for the variance components in balanced
mixed linear models studied by Chiang (2001). From these new procedures, Hannig (2009b)
found that there is a direct connection with the fiducial inference introduced by Fisher (1930).
Thus, through a series of works, this unification has been found to have excellent theoretical and
empirical properties for several practical applications, under fairly general conditions, see, e.g.,
the papers of Hannig, Iyer and Patterson (2006), Wang and Iyer (2008), Hannig (2009a), Hannig
(2009b), Hannig (2013), Hannig et al. (2016), among others.

For a better understanding on GFI, Hannig et al. (2016) defines it as a data dependent
measure on the parameter space by carefully using an inverse of the deterministic data generating
equation without the use of Bayes theorem. The resulting generalized fiducial distribution (GFD)
is a data dependent distribution on the parameter space and can be seen, rather than to a point and
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interval estimator, as a distribution estimator of the unknown parameter of interest. Moreover,
the GFD can be treated mathematically in a similar way to the Bayesian posteriors to define
approximate confidence intervals (sets). All the aforementioned papers in the literature presented
that the GFD has showed desirable empirical properties, e.g., conservative coverages or (and)
shorter or comparable expected lengths than others competing approaches (for example, the
frequentist and Bayesian procedures). Some discussions of philosophical controversies on the
development of GFI are discussed in Hannig et al. (2016).

On the basis of generalized fiducial inference, we describe two new estimation methods.
The first method is based on the generalized fiducial pivotal quantity studied in Hannig, Iyer and
Patterson (2006) with an extension presented in Hannig (2009b). The second method is built
using the generalized fiducial distribution developed in Hannig et al. (2016).

3.2.2.1 Estimation by using a fiducial generalized pivotal quantity

We briefly review the concept of FGPQ and refer readers to Hannig, Iyer and Patterson
(2006) for more details. Let SSS ∈ Rk be an observable random vector with distribution indexed
by a parameter ηηη ∈ Rr, and SSS∗ represents an independent copy of SSS. Let sss and sss∗ represent the
observations of SSS and SSS∗, respectively. Suppose our parameter of interest is ξξξ = πππ(ηηη) ∈ Rq.
RRRξξξ (SSS,SSS

∗,ηηη) (or simply RRRξξξ ) is called a FGPQ for a parameter ξξξ , if RRRξξξ (SSS,SSS
∗,ηηη) satisfies the

following two conditions:

(i) The distribution of RRRξξξ (SSS,SSS
∗,ηηη)|SSS = sss is free of ηηη

(ii) For every allowable sss ∈ Rk, RRRξξξ (sss,sss,ηηη) = ξξξ .

In the sequel, we describe the so-called structural method (HANNIG; IYER; PATTERSON,
2006) to construct a FGPQ for ξξξ . Suppose there exits mappings f1, . . . , fr, with fi : Rk×Rr→R,
such that if Ei = fi(SSS,ηηη), for i = 1, . . . ,r, then EEE = (E1, . . . ,Er)

> has a joint distribution that is
free of ηηη , we say that fff (SSS,ηηη) is a pivotal quantity for ηηη , where fff = ( f1, . . . , fr)

>. Suppose that
the mapping fff (sss, ·) is invertible for every sss. We then say that fff (SSS,ηηη) is an invertible pivotal
quantity for ηηη . Let ggg(sss, ·) = (g1(sss, ·), . . . ,gr(sss, ·))> be the inverse mapping, so that whenever
eee = fff (sss,ηηη), we have ggg(sss,eee) = ηηη . Thus, define

RRRξξξ = RRRξξξ (SSS,SSS
∗,ηηη) = πππ(g1(SSS, fff (SSS∗,ηηη)), . . . ,gr(SSS, fff (SSS∗,ηηη))) = πππ(g1(SSS,EEE∗), . . . ,gr(SSS,EEE∗)),

where EEE∗ = fff (SSS∗,ηηη) is an independent copy of EEE, and then RRRξξξ is a FGPQ for ξξξ . When ξξξ

is a scalar parameter, a point estimate may be obtained by the mean or the median of the
distribution of RRRξξξ conditional on SSS = sss. Hence, with γ ∈ (0,1), an equal-tailed two-sided 100γ%
fiducial generalized confidence interval for ξ is given by [ξ̂(1−γ)/2, ξ̂(1+γ)/2], where ξ̂δ denotes
the 100δ% percentile of the distribution of RRRξξξ conditional on SSS = sss.
Following the method described above, we construct a FGPQ for the product variability and the



46 Chapter 3. Generalized fiducial inference for the Grubbs model

precision parameters, i.e., ξξξ = (σ2
x ,σ

2
u ,σ

2
ε )
>. Let TTT be the sample covariance matrix, that is,

TTT =

[
S2

X SXY

SXY S2
Y

]
.

Hence, from (3.2), it follows that (n− 1)TTT ∼ W (n− 1,ΣΣΣ), where W (n− 1,ΣΣΣ) denotes the
Wishart distribution with n−1 degrees of freedom and mean matrix (n−1)ΣΣΣ. With VVV denoting
the upper triangular positive definite matrix such that ΣΣΣ =VVVVVV>, let the structural equation be
(n−1)TTT =VVVWWWVVV>, where

VVV =

[
(σ2

X σ2
Y −σ2

XY )
1/2/σY σXY/σY

0 σY

]
and WWW =

[
W11 W12

W12 W22

]
∼W (n−1, III2), (3.6)

with IIIr denoting the r× r unit matrix.
Let ηηη = (σ2

X ,σXY ,σ
2
Y )
>, SSS = (S2

X ,SXY ,S2
Y )
> and EEE = (W11,W12,W22)

>. By the above structural
equation, it follows that WWW = (n−1)VVV−1TTT (VVV−1)>, so this yields the components of EEE = fff (SSS,ηηη),
which are given by

W11 =
σ2

Y (n−1)S2
X

σ2
X σ2

Y −σ2
XY
−2

σXY (n−1)SXY

σ2
X σ2

Y −σ2
XY

+
σ2

XY (n−1)S2
Y

σ2
Y (σ

2
X σ2

Y −σ2
XY )

,

W12 =
(n−1)S2

X√
σ2

X σ2
Y −σ2

XY

− σXY (n−1)S2
Y

σ2
Y

√
σ2

X σ2
Y −σ2

XY )
and

W22 =
(n−1)S2

Y

σ2
Y

.

Consequently, using the inverse mapping of EEE, the components of ηηη = ggg(SSS,EEE) are as follows

σ
2
X =

n−1
W22

 W 2
22(S

2
X S2

Y −S2
XY )

SYY (W11W22−W 2
12)

+
1

S2
Y

SXY −

√
S2

X S2
Y −S2

XY√
W11W22−W 2

12

W12

2 ,
σXY =

n−1
W22

SXY −

√
S2

X S2
Y −S2

XY√
W11W22−W 2

12

W12

 and

σ
2
Y =

(n−1)S2
Y

W22
. (3.7)

To compute the components of EEE and ηηη we follow the steps provided in Yan, Wang and Xu
(2017b). Now, due to (3.3), we have ξξξ = πππ(ηηη) = (σXY ,σ

2
X −σXY ,σ

2
Y −σXY )

> and applying the
structural method, a FGPQ for ξξξ is given by

RRRξξξ = (σ∗XY ,σ
2∗
X −σ

∗
XY ,σ

2∗
Y −σ

∗
XY )
>, (3.8)

where σ2∗
X , σ2∗

Y and σ∗XY are, respectively, σ2
X , σ2

Y and σXY given in (3.7) replacing EEE for EEE∗,
where EEE∗ = (W ∗11,W

∗
12,W

∗
22)
> is an independent copy of EEE = (W11,W12,W22)

>. The quantities
σ2∗

X , σ2∗
Y and σ∗XY are free of parameters.
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Furthermore, for each component of RRRξξξ , two other FGPQ’s may be obtained from (3.8).
These are max(0,Rξ j) and |Rξ j |, where Rξ j denotes the j-th component of RRRξξξ , j ∈ {1,2,3}, so
that these quantities take only nonnegative values, as pointed out in Hannig, Iyer and Patterson
(2006). These modified FGPQ’s are asymptotically equivalent to Rξ j .

Therefore, a point estimate for each component of ξξξ may be obtained by the mean or the
median of the distribution of RRRξξξ conditional on SSS = sss. An equal-tailed two-sided 100γ% fiducial
generalized confidence interval for ξ j is given by [ξ̂ j,(1−γ)/2, ξ̂ j,(1+γ)/2], where ξ̂ j,δ denotes the
100δ% percentile of the distribution of Rξ j (or the two other modified FGPQ’s) conditional on
SSS = sss, j ∈ {1,2,3}.

Notice the distribution of the FGPQ in (3.8) may not be obtained in closed form. Samples
can be generated by using a Monte Carlo technique and from them we can obtain point and
interval estimates. One can compute them through the following scheme:

Step 1. Given a realization sss of SSS = (S2
X ,SXY ,S2

Y )
>, which is computed using the obser-

vations in (3.2). Select a large number, say N = 10000. For m = 1, . . . ,N, carry out the
following steps:

Step 2. For m = 1, generate a realization eee∗m of EEE∗m from (3.6).

Step 3. Calculate RRRξξξ ,m using the expression in (3.8) by replacing EEE∗m and SSS by eee∗m and sss,
respectively. Repeat steps 2–3 until m = N.

Step 4. For j ∈ {1,2,3}, put Rξ j,1
, . . . ,Rξ j,N in ascending order. Choose the median as a

point estimate as well as the N(1− γ)/2-th and N(1+ γ)/2-th elements of the ordered
values as the limits of the equal-tailed two-sided confidence interval.

3.2.2.2 Estimation by using the generalized fiducial distribution

Next, we briefly review the definition and construction about the GFD and refer to readers
to Hannig (2009a), Hannig (2009b) and Hannig et al. (2016), for more details, and then we apply
it for our model in (3.2). Let ZZZ ∈ R2n denote the random vector of the observations. Let the data
generating equation be

ZZZ = GGG(θθθ ,UUU), (3.9)

where GGG(·, ·) is a deterministic function, UUU is a completely known random vector and θθθ ∈ΘΘΘ⊂Rp

is a parameter vector. The distribution of ZZZ is determined by UUU and for any fixed value of the
parameter θθθ . After observing ZZZ we can use to infer a distribution on θθθ . This allows us to define
a probability measure on the parameter space ΘΘΘ. If the generating equation in (3.9) can be
inverted then the inverse will be denoted as GGG−1(·, ·). Thus, for an observed zzz and uuu it is possible
to calculate θθθ from θθθ = GGG−1(zzz,uuu). Through this inverse relationship and a random sample of
uuu′1, . . . ,uuu

′
Q we can compute a random sample for θθθ so that θθθ

′
1 =GGG−1(zzz,uuu′1), . . . ,θθθ

′
Q =GGG−1(zzz,uuu′Q).
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This sample is termed a fiducial sample and can be used to calculate both point and confidence
interval estimators for the true parameter θθθ 0.

Furthermore, as pointed out in Hannig (2009b), the inverse generating equation GGG−1(·, ·)
may not exist due to two reasons: (i) There is no θθθ that satisfies zzz = GGG(θθθ ,uuu) or (ii) There is
more than one θθθ for some value of uuu and zzz that satisfies (3.9). To overcome these issues, Hannig
(2009b) recommended the following alternatives: To deal with (i), he suggests to eliminate the
values of uuu for which there is no solution from the sample space and then re-normalizing the
probabilities. That is reasonable because the data was generated using zzz0 and uuu0 so at least
one solution for θθθ = GGG−1(zzz,uuu) exists. Therefore, uuu’s considered are those that allow to the
function GGG−1(·, ·) to exist. For (ii), the suggestion of Hannig (2009b) is to select one of the
several solutions for θθθ using a possible random mechanics. Besides, this choice of the parameter
has only an effect of second order in statistic inference.

Recently, Hannig et al. (2016) provided an attractive and refined definition of the GFD,
which can be applied in several situations where the data follow a continuous distribution.
Thus, under some differentiability conditions (HANNIG et al., 2016), the generalized fiducial
distribution for θθθ has a density function given by

fF(θθθ) = κL(θθθ ;zzz)JJJ(zzz,θθθ), (3.10)

where κ is a normalizing constant given by
∫

ΘΘΘ
L(θθθ ′;zzz)JJJ(zzz,θθθ ′)dθθθ

′, L(zzz;θθθ) is the likelihood and
the function

JJJ(zzz,θθθ) = D

(
ddd

dddθθθ
GGG(θθθ ,uuu)

∣∣∣∣
uuu=GGG−1(θθθ ,zzz)

)
. (3.11)

If (i) n = p then D(AAA∗) = |det(AAA∗)|. Otherwise the function D(AAA∗) depends on the norm used;
(ii) The l∞ norm gives D(AAA∗) = ∑

jjj∈J
|det(AAA∗) jjj|, where J contains the

(n
p

)
p-tuples of indices

jjj = (1≤ j1 < .. . < jp ≤ n)>. For any n× p matrix AAA∗, the submatrix (AAA∗) jjj is the p× p matrix
containing the rows jjj = ( j1, . . . , jp)

> of AAA∗; (iii) Under an additional assumption, the l2 norm
gives D(AAA∗) = [det(AAA∗>AAA∗)]1/2. Among these functions defined for D(AAA∗), Hannig et al. (2016)
recommended using (ii).

A noteworthy characteristic of the GFD is that its density could change with transfor-
mations of the data generating equation, as remarked in Hannig (2009b) and Hannig et al.

(2016). Thus, assume that an observed data set ZZZ′ is obtained through an one-to-one smooth
transformation of the observed data ZZZ, which is denoted by ZZZ′ = HHH(ZZZ). Hence, using the chain
rule, the GFD baned on the new data generating equation and considering the observed data
zzz′ = HHH(zzz) has its density function given by (3.10) with the Jacobian function (3.11) reduced to

JJJHHH(zzz′,θθθ) = D

(
ddd
dddzzz

HHH(zzz)
ddd

dddθθθ
GGG(uuu,θθθ)

∣∣∣∣
uuu=GGG−1(zzz,θθθ)

)
, (3.12)

where zzz is written instead of HHH−1(zzz′).
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A special transformation is described as follows. Let ZZZ′ = (SSS,UUU) be an one-to-one
smooth transformation, where SSS is a p-dimensional statistic and UUU is an ancillary statistic. Let
sss = SSS(zzz) and uuu =UUU(zzz) represent the observations of SSS and UUU , respectively. Since dddUUU/dddθθθ = 000,
the function D in (3.12) reduces to the absolute value of the determinant of the p× p non-zero
sub-matrix

JJJ(zzz′,θθθ) =

∣∣∣∣∣det

(
ddd

dddθθθ
SSS(GGG(UUU ,θθθ))

∣∣∣∣
uuu=GGG−1(zzz,θθθ)

)∣∣∣∣∣ . (3.13)

Let Qsss(uuu) = θθθ be the solution of the equation sss = SSS(GGG(uuu,θθθ)). A direct calculation shows that
the density function (3.10) with the Jacobian function (3.13) is the conditional distribution of
Qsss(UUU∗)|AAA(UUU∗) = aaa, that is, the GFD based on SSS conditional on the observed ancillary UUU = uuu

(IYER; PATTERSON, 2002; HANNIG et al., 2016).

Next, it follows in details the construction of the GFD for the parameters of interest in the
Grubbs model. Assume ZZZi = (Xi,Yi)

> are independent random vectors following the N2(µµµ,ΣΣΣ)

distribution, where µµµ = (µX ,µY )
> and

ΣΣΣ =

[
σ2

X ρσX σY

ρσX σY σ2
Y

]
,

with ρ ∈ (−1,1) is the Pearson correlation coefficient. Following the steps of the method
described above, Wandler and Hannig (2011) obtained the GFD for θθθ

′ = (µX ,µY ,σ
2
X , σ2

Y ,ρ)
>.

The specific steps are described as follows. First, the data generating equation is given by

ZZZi = GGG(UUU i,θθθ
′) = µµµ +LLLUUU i, i = 1, . . . ,n, (3.14)

where UUU i = (U1i,U2i)
> are independent random vectors following the N2(0002, III2) distribution

and LLL is the lower triangle Cholesky decomposition of ΣΣΣ given by

LLL =

[
L11 0
L21 L22

]
=

[
σX 0

ρσY σY (1−ρ2)1/2

]
.

The inverse of the data generating equation UUU i = GGG−1(ZZZi,θθθ) is obtained from (3.14)
with components given by U1i = (Xi−µX)/L11 and U2i = (Yi−µY −L21U1i)/L22, i = 1, . . . ,n.
Since there are five parameters, it is necessary to have the same number of generating equations
to determinate each term in (ii). To find that, Wandler and Hannig (2011) used the following five
data generating equations using the first three samples, i.e., U11, U21, U12, U22 and U23. Moreover,
in this case, J contains the

( n
2,1,n−3

)
p-tuples of indices jjj = (1≤ j1 < .. . < jp ≤ n)>. Hence,

Wandler and Hannig (2011) obtained the GFD for θθθ
′ given by

fF(θθθ
′) ∝

1
[det(ΣΣΣ)]n/2 exp

(
−1

2

n

∑
i=1

(zzzi−µµµ)>ΣΣΣ
−1(zzzi−µµµ)

)

×
(

n
2,1,n−3

)−1

∑
jjj∈J

|v(zzz jjj)|
22(σ2

X)
3/2(σ2

Y )
1/2(1−ρ2)

, (3.15)
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where |v(zzz jjj)| is the absolute value of a data function v(zzz jjj) and will not be specified here due to
that this function is scorned later.
Now, the vector of parameters in our model in (3.2) is θθθ = (β0,µx,σ

2
x ,σ

2
u ,σ

2
ε )
> and to obtain

its GFD, we need a mapping that transforms θθθ
′ to θθθ . Hannig (2013) demonstrated that the

GFD is invariant under smooth re-parameterization. Thus, let hhh : R5→ R5 be an one-to-one
transformation defined by hhh(θθθ ′) = (µY − µX ,µX ,ρσX σY ,σ

2
X − ρσX σY ,σ

2
Y − ρσX σY )

> = θθθ .

Consequently, the Jacobian matrix of the transformation from θθθ
′ to θθθ is given by

JJJhhh(θθθ) =



0 1 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 1 0 1

0 0
σ2

u σ2
ε +D

2(σ4
x +D)3/2 −σ2

x (σ
2
x +σ2

ε )
−1/2

2(σ2
x +σ2

u )
3/2 −σ2

x (σ
2
x +σ2

u )
−1/2

2(σ2
x +σ2

ε )3/2


,

where D is given in (3.5). And, since the determinant of JJJhhh(θθθ) is (σ4
x +D)−1/2 and by using the

GFD for θθθ
′ given in (3.15), it follows that the GFD for θθθ is given by

fF(θθθ) ∝
1

[det(ΣΣΣ)]n/2 exp

(
−1

2

n

∑
i=1

(zzzi−µµµ)>ΣΣΣ
−1(zzzi−µµµ)

)

×
(

n
2,1,n−3

)−1

∑
jjj∈C

|v(zzz jjj)|(σ2
x +σ2

ε )
1/2

22(σ2
x +σ2

u )
1/2D

× 1
(σ4

x +D)1/2 , (3.16)

Here, µµµ = (µx,β0 + µx)
>, while ΣΣΣ and D are given in (3.3) and (3.5), respectively. Next, we

calculate the GFD for the parameter of interest, i.e, ξξξ = (σ2
x ,σ

2
u ,σ

2
ε )
>. Therefore, the marginal

GFD for ξξξ is

fF(ξξξ ) ∝

∫
∞

−∞

∫
∞

−∞

fRRRθθθ
(θθθ)dβ0dµx

∝ exp

(
−
(n−1)

[
(S2

X −2SXY +S2
Y )σ

2
x +σ2

ε S2
X +σ2

u S2
Y
]

2D

)

× (σ2
x +σ2

ε )
1/2

D(n+1)/2
[
(σ2

x +σ2
u )(σ

4
x +D)

]1/2 . (3.17)

Finally, for fF(ξξξ ) in (3.17), the Metropolis algorithm can be used to generate Markov
chain Monte Carlo (MCMC) samples and to obtain both point and interval estimates. It is
well-known that the Metropolis algorithm is often used when the domain of the GFD is the whole
Euclidean space. Thus, we apply a similar technique given in Wang (2004). Since σ2

x > 0, σ2
u > 0

and σ2
ε > 0, we use for convenience the following transformations: λ1 = log(σ2

x ), λ2 = log(σ2
u )

and λ3 = log(σ2
ε ). After this transformation, the domain of the GFD for λλλ = (λ1,λ2,λ3)

> is the
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Euclidean space R3, and so the GFD for λλλ is

f ∗F(λλλ ) ∝ exp

(
−
(n−1)

[
(S2

X −2SXY +S2
Y )σ

2
x +σ2

ε S2
X +σ2

u S2
Y
]

2D

)

× (σ2
x +σ2

ε )
1/2

D(n+1)/2
[
(σ2

x +σ2
u )(σ

4
x +D)

]1/2 exp(λ1 +λ2 +λ3), (3.18)

where σ2
x = exp(λ1), σ2

u = exp(λ2) and σ2
ε = exp(λ3) are functions of λ1, λ2 and λ3.

From (3.18), we generate a random sequence (λ (t)
1 ,λ

(t)
2 ,λ

(t)
3 )>, (t = 1, . . . ,N′, . . .) whose

distributions converge to f ∗F(λλλ ) and then to calculate both point and interval estimates. To
calculate the point and interval estimates for our parameters of interest we merely apply the
inverse transformation. The proposal distribution for λλλ is a N3(0003,a2III3) random walk, where
a is tuned to adjust the acceptance rate. Therefore, samples from the GFD for λλλ in (3.18) are
drawn through the following algorithm:

Step 1. Choose a starting point (λ (0)
1 ,λ

(0)
2 ,λ

(0)
3 )>

Step 2. For t = 1,2, . . . ,N′+N0, iteratively do:

(a) Generate independent random values w1,w2,w3 from the N (0,a2) distribution.

(b) Let (w′1,w
′
2,w
′
3)
> = (λ

(t−1)
1 ,λ

(t−1)
2 ,λ

(t−1)
3 )>+(w1,w2,w3)

>

(b) Compute the ratio of the densities r∗ = f ∗F(w
′
1,w
′
2,w
′
3)/ f ∗F(w1,w2,w3).

(c) Generate a uniform random value u on (0,1).
If u≤ r∗, then (λ

(t)
1 ,λ

(t)
2 ,λ

(t)
3 )> = (w′1,w

′
2,w
′
3)
>,

else (λ
(t)
1 ,λ

(t)
2 ,λ

(t)
3 )> = (λ

(t−1)
1 ,λ

(t−1)
2 ,λ

(t−1)
3 )>.

Step 3. For j ∈ {1,2,3}, to do the transformation ξ
(t)
j = exp(λ (t)

j ), t = 1, . . . ,N′+N0 and

put ξ
(1)
j , . . . ,ξ

(N′+N0)
j in ascending order. Discard the first N0 samples and calculate for

the sample ξ
(N0+1)
j , . . . ,ξ

(N′+N0)
j the median as a point estimate as well as the (1− γ)/2-th

and (1+ γ)/2-th elements of the ordered values as the limits of the equal-tailed two-sided
confidence interval.

In our simulation and application in Sections 3.3 and 3.4, we generate N′+N0 = 55000
samples for each Markov chain, where N0 = 5000 and we take a spacing of size 5. Consequently,
inferences are based on 10000 samples.

Lastly, the GFD for θθθ delivers an additional consequence. The second row of the product
in (3.16) provides the expression for JJJ(zzz,θθθ) and, in turn, it can be factorized as the product of
two functions, i.e., JJJ(zzz,θθθ) = v∗(zzz)l(θθθ), where

v∗(zzz) =
(

n
2,1,n−3

)−1

∑
jjj∈J

|v(zzz jjj)|
22 and l(θθθ) =

(σ2
x +σ2

ε )
1/2[

(σ2
x +σ2

u )(σ
4
x +D)

]1/2D
.
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Due to this factorization, the GFD for θθθ in (3.16) is also a Bayesian posterior with respect to the
priori l(θθθ) along with constant priors for β0 and µx, as pointed out by Hannig (2009b).

3.3 Simulation study

In this section, a simulation study is conducted to assess the performance of the point
estimators for each procedure, as well as interval estimation in terms of the empirical coverage
probability and average interval length. The confidence coefficient is set at γ = 0.95. Recall G
denotes the Grubbs estimation method, T is the Thompson’s estimation method, FGPQ denotes
the estimation method by using a fiducial generalized pivotal quantity and GFD is the estimation
method using the generalized fiducial distribution. In the case of the FGPQ method, we use the
modified FGPQ estimator given by max(0,Rξ j), j ∈ {1,2,3}. We generate 1000 random samples
of size n = 10, 15, 20, 30 and 50 from the model described in Section 3.1. The data ZZZi are
generated from (3.2) with the following parameter setting: β0 = 0.220, µx = 4.400, σ2

x = 0.035,
σ2

u = 0.010 and σ2
ε = 0.034. These values mimic the estimates obtained from the real data set

in Section 3.4. The computational implementation was developed in the R language (R CORE
TEAM, 2017).

Based on 1000 random samples, Table 10 shows the average of the point estimates, the
sampling standard deviation (SD) and the root mean squared error (RMSE) for the estimation
procedures described in Section 3.2. The medians obtained by the FGPQ and GFD procedures
are adopted as point estimates.

In Table 10, the values of SD and RMSE decrease when the sample size increases, as
expected. Since the bias of the estimates is small for the majority of the scenarios, the values of
SD and RMSE are similar. Moreover, for most of the entries, the values of SD and RMSE for
the GFD method are slightly smaller in comparison with the other procedures. With respect to
σ2

x and σ2
u , when the sample size is less than 30, most of the results indicate the point estimates

have some bias, but when n≥ 30 the bias decreases. We also see that for σ2
ε , the estimates from

the GFD method achieve better performance than the other methods in terms of bias.

The results of the empirical coverage probability and the average interval length of the
95% confidence intervals are displayed in Table 11. For G method, in some replications the
2.5%-percentile of the chi-square distribution is very small because the estimate of the degrees of
freedom from Section 3.2.1.1 is smaller than one. Consequently, the upper limit of the confidence
interval is very big and the average interval length is greater than 104. Overall, the G and T
methods behave poorly delivering the widest confidence intervals with coverage probability far
away from the nominal confidence coefficient. With respect to σ2

x , it can be seen that the GFD
method has coverage probability that is the closest to the nominal value among the four methods.
The FGPQ method is the second best. It should be noted that in the case of σ2

u and σ2
ε , the FGPQ

and GFD methods yield coverage probabilities close to the nominal value even for small and
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moderate sample sizes. It is clear that, on average, the shortest confidence intervals correspond
to the GFD method and as the second best was the FGPQ method.

Due to the negative estimates from (3.4), in order to obtain 1000 replications with
admissible variance estimates for all procedures, 474, 277, 254, 141 and 70 replications were
discarded when the sample sizes is 10, 15, 20, 30 and 50, respectively.
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Table 11 – Empirical coverage probability (CP) and average interval length (IL) of the 95% confidence
intervals from the G, T, FGPQ and GFD methods.

CP IL

Parameter n G T FGPQ GFD G T FGPQ GFD

σ2
x 10 0.983 1.000 0.979 0.940 >104 0.234 0.122 0.088

15 0.974 1.000 0.960 0.944 >104 0.150 0.088 0.071

20 0.980 0.999 0.968 0.951 >104 0.119 0.071 0.061
30 0.979 0.999 0.962 0.959 0.116 0.090 0.054 0.048
50 0.967 0.995 0.951 0.947 0.042 0.065 0.040 0.037

σ2
u 10 0.852 1.000 0.937 0.980 >104 0.170 0.125 0.069

15 0.861 1.000 0.944 0.977 >104 0.100 0.071 0.052

20 0.874 1.000 0.948 0.971 >104 0.075 0.052 0.043

30 0.890 1.000 0.957 0.975 >104 0.055 0.038 0.033

50 0.921 1.000 0.964 0.975 >104 0.040 0.026 0.025

σ2
ε 10 0.985 1.000 0.986 0.979 >104 0.229 0.120 0.121

15 0.985 0.998 0.962 0.970 >104 0.145 0.085 0.085

20 0.983 0.999 0.961 0.968 >104 0.116 0.069 0.068
30 0.975 0.998 0.950 0.951 0.089 0.088 0.053 0.052
50 0.979 0.999 0.970 0.974 0.041 0.065 0.039 0.038

3.4 Data analysis

In this section, a real data set is analyzed to illustrate the proposed methodology and to
compare it with two existing approaches, as described in Section 3.2.

This real dataset was extracted from Jaech (1985, p. 22). The results were obtained from
an assay comparison study involving two methods for measuring the density of 43 cylindrical
nuclear reactor fuel pellets of sintered uranium. The first method is called geometric method,
which consists of weighing the pellet and finding its volume and thus obtaining the density, while
the immersion method uses the change of the weight of the pellet when it is weighed in the air
and in a certain liquid.

Here, Xi and Yi represent the measurements obtained from the geometric and immersion
methods, respectively, for i = 1, . . . ,43. Each measurement was expressed as the percentage
theoretical density minus 90% for convenience. The measurements for the Geometric and
Immersion methods range from 3.950 to 4.900 and from 3.940 to 5.220, respectively. Also, the
average density of cylindrical nuclear reactor fuel pellets obtained from the Immersion method
(4.397) was slightly smaller than that of the Geometric method (4.620).

Next, Table 12 displays the point estimates, the confidence intervals and their lengths
with a confidence coefficient of 95% for the parameters of interest, i.e., the product variability
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and the precision parameters. The point estimates of σ2
x , σ2

u and σ2
ε do not differ so much

irrespective of the estimation method. For the interval estimation of these three parameters, the
GFD procedure has the shortest interval length, followed by the FGPQ method. These results are
consistent with the simulation study carried out in Section 3.3.

Table 12 – Point estimates, 95% confidence intervals and their lengths from the G, T, FGPQ and GFD
methods.

Parameter Estimate G T FGPQ GFD

Point 0.035 0.035 0.035 0.034
σ2

x Interval [0.021, 0.068] [0.007, 0.082] [0.019, 0.063] [0.019, 0.059]
Length 0.047 0.075 0.044 0.040

Point 0.010 0.010 0.011 0.011
σ2

u Interval [0.004, 0.082] [0.000, 0.042] [0.000, 0.030] [0.002, 0.028]
Length 0.078 0.042 0.030 0.026

Point 0.034 0.034 0.035 0.036
σ2

ε Interval [0.021, 0.067] [0.007,0.081] [0.018, 0.062] [0.019, 0.062]
Length 0.046 0.074 0.044 0.043

3.5 Conclusion
Two new estimation procedures based on the generalized fiducial inference were proposed

for the Grubbs model. In our work, a FGPQ and a GFD were established for the product
variability and precision parameters. Good empirical frequentist properties were obtained from
the numerical results in Section 3.3. We found that the GFD and FGPQ methods are more suitable
than the two other existing approaches and can achieve a good performance. Within the scope of
our simulation study in Section 3.3, we believe the following conclusions are reliable: (i) For
point estimation and when the sample size is 30 or larger, the four estimation procedures tend
to give similar results and (ii) The FGPQ or the GFD method is recommended for the interval
estimation because they give a good empirical coverage probability with shorter interval lengths
than the other two existing approaches, when the sample size considered is small or moderate.
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CHAPTER

4
A SKEW-t CENTERED STUDENT’S t

MEASUREMENT ERROR MODEL

In this chapter, we propose a new MEM that extends the assumption of normality,
which in this work is designated as skew-t centered Student’s t MEM. We briefly review some
recent works, the motivation for our model and possible applications. Next, we formulate the
new heteroscedastic MEM and develop an EM-type algorithm for estimation. We conduct a
simulation study to gauge the performance of the maximum likelihood (ML) estimators and
illustrate using a dataset from a methods comparison study. Lastly, concluding remarks are also
considered. On the basis of this chapter, we get to present and publish the main results in Tomaya
and Castro (2018a).

4.1 Introduction

Among the main references about measurement error models cited in Chapter 1, many
published works deal with homoscedastic measurement errors models (see, e.g., the model in
Section 2.2.1). In practice, it frequently happens that the variability of a measurement may
change across observations (BUONACCORSI, 2010, Section 6.4.5) and it is common to find
datasets that allow the reliable estimation of the error variances (CHENG; RIU, 2006). To deal
with such data, heteroscedastic measurement error models with known error variances have
been studied in several areas such as Medicine (KULATHINAL; KUULASMAA; GASBARRA,
2002; CASTRO; GALEA; BOLFARINE, 2008), Analytical Chemistry (GALEA-ROJAS et al.,
2003) and Astrophysics (KELLY, 2007), among others.

A heteroscedastic linear MEM under the normality assumption can be formulated as

Yi = β0 +β1xi + εi and Xi = xi +ui, i = 1, . . . ,n, (4.1)

where β0 and β1 are the intercept and slope parameters, respectively, and Xi, Yi, xi and yi
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are defined as in (2.1). Assume in (4.1) that xi are distributed as random variables from the
N (µx,σ

2
x ) distribution, ui and εi are independent and distributed as the N (0,σ2

ui
) and N (0,σ2

εi
)

distributions, respectively, i = 1, . . . ,n, i.e., εi and ui are the heteroscedastic additive error terms.
When normality is assumed, this model poses identifiability problems (as mentioned in Section
2.2.1) and to cope with them, a common alternative is to impose a side condition on one of the
error variances (CHENG; NESS, 1999, Section 1.2).

The normality assumption is often debatable. For instance, it is often doubtful and
suffers from a lack of robustness against influential observations on the parameter estimates.
For this reason, several works have considered relaxations of the normality assumption, such as
considering asymmetric distributions, see Arellano-Valle et al. (2005), Kheradmandi and Rasekh
(2015) and models based on distributions with tails heavier than the ones of a normal distribution,
see Cao, Lin and Zhu (2012), Melo, Ferrari and Patriota (2014).

On the other side, the skew-t distribution (AZZALINI; CAPITANIO, 2003) has been
adopted as an attractive and flexible distribution. As considered in the literature, this distribution
permits simultaneously to capture the skewness and the heavy-tailedness in the data. Some
papers based on this distribution have been applied to MEM, for example, Lachos, Cancho
and Aoki (2010), Lachos et al. (2010) and Cabral, Lachos and Zeller (2014). But, the same
degrees of freedom is specified for both the distributions of the unobserved covariate and the
error terms. Besides, Lachos, Cancho and Aoki (2010) presented under a Bayesian approach
considering the degrees of freedom like known. It is worth noticing that the applicability of these
models mentioned is limited in the sense that the degrees of freedom for the random variables
are considered as known or (and) are the same. Hence, these models could not accommodate
different levels of heaviness in the tails of the unobserved covariate and random errors. This
issue occurs, for example, when the unobserved covariate and random errors have heavy tails
and can be different. It is observed in the dataset related to a methods comparison study that we
illustrate in Section 4.4.

In contrast to the works mentioned previously and under a frequentist approach, Choud-
hary, Sengupta and Casey (2014) proposed a linear mixed model based on the skew-t distribution
allowing different degrees of freedom for the random variables. Thus, this brings us to the main
purpose of this chapter, which is to present a MEM framework based on distributions with
possible different degrees of freedom. We extend the classical normal MEM by modeling the
unobserved covariate by a skew-t (ST) distribution and for the random errors, we assume the cen-
tered Student’s t (cT) distribution (SUTRADHAR, 1993). As mentioned in Choudhary, Sengupta
and Casey (2014), it is necessary to take into account the independence of both distributions,
which allows their degrees of freedom to be different. Therefore, this approach enables us to
model the data with great flexibility, accommodating skewness, heavy tails and a parameter
representing the mean of the true covariate. The above formulation could also be proposed under
a Bayesian approach, but this is not the scope in this chapter and it is part of possible future
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work.

4.2 Model and parameter estimation
In this section, we formulate the proposed model and give more details on estimation

procedure through of the development of an EM-type algorithm to compute of the maximum
likelihood estimates for the model parameters. Moreover, new theoretical results for the proposed
model are development throughout this section.

4.2.1 Representation of the proposed model

The MEM in (4.1) can be written, in a similar form to Fuller (1987, p. 352), as

ZZZi = aaa+bbbxi + eeei, (4.2)

where ZZZi = (Xi,Yi)
>, aaa = (0,β0)

>, bbb = (1,β1)
> and eeei = (ui,εi)

>, i = 1, . . . ,n. We assume in
(4.2) that eee1, . . . ,eeen are independent together with the assumptions

xi ∼S t(ξ ,ω2,λ ,ηx) and eeei ∼ ct2 (0002,ΣΣΣi,ηe) , (4.3)

with xi independent of eee j, for i, j = 1, . . . ,n. Since we are using the centered parameterization
of the Student’s t distribution in Sutradhar (1993), ΣΣΣi = diag(σ2

ui
,σ2

εi
) is the known covariance

matrix of eeei. We emphasize that heteroscedastic MEM’s with known error variances are a
common setup in many applications, see, e.g., Cheng and Riu (2006). The centered version of
the Student’s t distribution brings more flexibility with respect to the normal distribution and the
interpretation for the mean vector and covariance matrix is direct (see Section 1.1). Further, the
parameter λ introduces skewness in the unobserved covariate xi, and consequently, in the vector
of the observations ZZZi.

Rather than using the degrees of freedom νx and νe, we use ηx = 1/νx and ηe = 1/νe,
as commented in Lange, Little and Taylor (1989), these transformations improve the inference
procedure. We call the model (4.2)-(4.3) as the skew-t centered Student’s t measurement error
model (STcT MEM). Notice that the degrees of freedom νx and νe can be different.

Now, according to Azzalini and Capitanio (2003), xi and eeei can be represented stochas-
tically. To do that, consider xi and eeei as in (4.3), Wxi ∼ G (1/2ηx,1/2ηx) and Wei ∼ G (1/2ηe

,1/2c(ηe)) with c(ηe)=ηe/(1−2ηe). Let x∗i ∼S N (0,ω2,λ ), G1i∼N (0,1), GGG2i∼N2(0002, III2)

and D∗i ∼T N (0,1;(0,+∞)). Assume that G1i,GGG2i,D∗i ,Wxi and Wei are mutually independent.
Thus, the stochastic representations of xi and eeei are as follows:

xi
d
= ξ + x∗i /W 1/2

xi and eeei
d
= ΣΣΣ

1/2
i GGG2i/W 1/2

ei , (4.4)

with x∗i
d
= ω[δD∗i +(1−δ 2)1/2G1i] and “ d

=” means equality in distribution. Next, we transform
(ω2,λ ) to (ψ,γ), where

γ = ωδ and ψ = ω
2(1−δ

2), with δ = λ/(1+λ
2)1/2. (4.5)
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Using (4.5), an alternative stochastic representation of x∗i is obtained, i.e., x∗i
d
= γD∗i +ψ1/2G1i.

The importance of the transformation (4.5) is that it helps us to derive some theoretical results
and the implementation of the EM-type algorithm (as described in Section 4.2.2).

In the sequel we present propositions needed to derive some properties and the marginal
pdf of ZZZi, and consequently, the log-likelihood function for the proposed model. The proofs are
given as follows.

Proposition 3. Consider ZZZi as defined in (4.2) along with (4.5) and the stochastic representations
given in (4.4).

(a) A hierarchical representation for ZZZi is given as follows:

ZZZi|xi,Wei ∼N2(aaa+bbbxi,ΣΣΣi/Wei), xi|Di,Wxi ∼N (ξ + γDi,ψ/Wxi),

Di|Wxi ∼T N (0,1/Wxi;(0,∞)), Wxi ∼ G

(
1

2ηx
,

1
2ηx

)
and

Wei ∼ G

(
1

2ηe
,

1
2 c(ηe)

)
with c(ηe) = ηe/(1−2ηe). (4.6)

This representation can also be written by transforming (Wxi,Wei)
> to (Ui = Wxi,Vi =

Wxi/Wei)
>.

(b) The mean vector and the covariance matrix of ZZZi are

E[ZZZi] = aaa+bbbµx, 0 < ηx, 0 < ηe < 1/2 and

Var[ZZZi] =

(
ψ + γ2

1−2ηx
− τ

2
ηx

γ
2
)

bbbbbb>+ΣΣΣi, 0 < ηx,ηe < 1/2,
(4.7)

where µx = ξ + τηxγ , with τηx =
[
Γ((1−2ηx)/2ηx)/Γ(1/2ηx)

]
/
√

ηxπ.

Proof. The result in (a) follows from (4.4) and (4.5). For (b), the result follows directly from
(a) upon applying the law of iterated expectations and using well-known results about moments
involving normal and gamma random variables.

The following lemma is crucial in our theory, which was adapted for the measurement
error model framework in (4.2) from the result for linear mixed model given in Arellano-Valle,
Bolfarine and Lachos (2005) (Corollary 2 of Theorem 1). The lemma will be used to prove the
following proposition. Moreover, other results found in the literature were also applied for the
proofs and will be cited whenever needed.

Lemma 2. Let ZZZi as defined in (4.2). Suppose ZZZi|xi ∼N2(aaa+bbbxi,ΣΣΣi) and xi ∼S N (ξ ,ω2,λ ).
Then, ZZZi∼S N 2(aaa+bbbξ ,ΠΠΠi,λλλ

∗
i ), where ΠΠΠi = ω2bbbbbb>+ΣΣΣi and λλλ

∗
i = ΠΠΠ

−1/2
i bbbωλ/[1+λ 2ω−2(

ω−2 +bbb>ΣΣΣ
−1
i bbb)−1]1/2.
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Proo f . To obtain the marginal distribution de ZZZi, we compute

f (zzzi) =
∫

∞

−∞

f (zzzi|xi) f (xi)dxi

=
∫

∞

−∞

2φ2(zzzi;aaa+bbbxi,ΣΣΣi)φ(xi;ξ ,ω2)Φ(λ (xi−ξ )/ω)dxi

=2φ2(zzzi;aaa+bbbξ ,ΠΠΠi)
∫

∞

−∞

φ(xi;ξ +Λibbb>ΣΣΣ
−1
i (zzzi−aaa−bbbξ ),Λi)Φ(λ (xi−ξ )/ω)dxi,

(4.8)

where ΠΠΠi = ω2bbbbbb>+ ΣΣΣi and Λi = (ω−2 + bbb>ΣΣΣ
−1
i bbb)−1. The third equality is obtained after

applying the Lemma 2 provided in Arellano-Valle, Bolfarine and Lachos (2005) in the second
equality in (4.8). Besides that, the last integral is the expectation of Φ(λ (xi−ξ )/ω), wherein
xi ∼N (ξ +Λibbb>ΣΣΣ

−1
i (zzzi− aaa− bbbξ ),Λi) and using the Lemma 1 in Arellano-Valle, Bolfarine

and Lachos (2005), it follows that

f (zzzi) =2φ2(zzzi;aaa+bbbξ ,ΠΠΠi)Φ(−λξ/ω;−λ (ξ +Λibbb>ΣΣΣ
−1
i (zzzi−aaa−bbbξ ))/ω,1+λ

2
ω
−2

Λi)

=2φ2(zzzi;aaa+bbbξ ,ΠΠΠi)Φ
(
[λΛibbb>ΣΣΣ

−1
i (zzzi−aaa−bbbξ )]/[ω(1+λ

2
ω
−2

Λi)
1/2]
)
. (4.9)

Now, we must verify if the argument of the cdf of the N (0,1) distribution in (4.9) is equal to
λλλ
∗>
i ΠΠΠ

−1/2
i (zzzi−aaa−bbbξ ). To do that, one can see that the matrix ΠΠΠi does not appear in the second

term of the second equality in (4.9), so using a well-known matrix property, which is given by

III2 = ΠΠΠiΠΠΠ
−1
i = ΠΠΠiΠΠΠ

−1/2
i

>
ΠΠΠ
−1/2
i , we get

λΛibbb>ΣΣΣ
−1
i ΠΠΠiΠΠΠ

−1/2
i

>

ω(1+λ 2ω−2Λi)1/2 ΠΠΠ
−1/2
i (zzzi−aaa−bbbξ ) =

[
ΠΠΠ
−1/2
i ΠΠΠiΣΣΣ

−1
i bbbΛiω

−1λ

(1+λ 2ω−2Λi)1/2

]>
ΠΠΠ
−1/2
i (zzzi−aaa−bbbξ ).

(4.10)
After some algebraic manipulations, we obtain that ΠΠΠiΣΣΣ

−1
i bbbΛiω

−1 = bbbω and replacing within
the brackets in (4.10) follows the expression of λλλ

∗
i . Consequently, the result holds. �

Turning out to our model, to derive the marginal pdf of ZZZi, we define, for vi > 0,

ΠΠΠvi = ω
2bbbbbb>+ viΣΣΣi, ∆∆∆i = ZZZi−aaa−bbbξ ,

λλλ vi =
ΠΠΠ
−1/2
vi bbbωλ

[1+λ 2ω−2(ω−2 +bbb>ΣΣΣ
−1
i bbb/vi)−1]1/2

, ξvi = λλλ
>
vi

ΠΠΠ
−1/2
vi ∆∆∆i,

ςvi = ∆∆∆
>
i ΠΠΠ
−1
vi

∆∆∆i +
1
ηx

+
1

c(ηe)vi
and η

∗ = 2+
1
ηx

+
1
ηe

. (4.11)

It is worth noticing that expressions such as ΠΠΠvi and λλλ vi defined in (4.11) were adapted
from Lemma 2.

Proposition 4. Consider ZZZi as defined in (4.2), (4.6) and the transformation (Ui = Wxi,Vi =

Wxi/Wei)
>.
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(a) A hierarchical representation for ZZZi is given as follows:

ZZZi|Ui,Vi ∼S N 2(aaa+bbbξ , ΠΠΠVi/Ui,λλλVi),

Ui ∼ G

(
1

2ηx
,

1
2ηx

)
and Ui/Vi ∼ G

(
1

2ηe
,

1
2 c(ηe)

)
.

(b) For zzzi ∈ R2, ui,vi > 0, the joint pdf of (ZZZ>i ,Ui,Vi)
> is

f (zzzi,ui,vi;θθθ) =
2π−1

η
1/2ηx
x c(ηe)1/2ηe

[det(ΠΠΠvi)]
−1/2

ς
η∗/2
vi v1/2ηe+1

i

Γ(η∗/2)
Γ(1/2ηx)Γ(1/2ηe)

×Φ(ξviu
1/2
i ) f (ui;η

∗/2,ςvi/2),

(4.12)

where f (·;η∗/2,ςvi/2) is the pdf of the G (η∗/2,ςvi/2) distribution.

(c) For zzzi ∈ R2, vi > 0, the joint pdf of (ZZZ>i ,Vi)
> is

f (zzzi,vi;θθθ) =
2π−1

η
1/2ηx
x c(ηe)1/2ηe

[det(ΠΠΠvi)]
−1/2

ς
η∗/2
vi v1/2ηe+1

i

Γ(η∗/2)
Γ(1/2ηx)Γ(1/2ηe)

×Ft(ξvi(η
∗/ςvi)

1/2;η
∗).

(4.13)

(d) For zzzi ∈ R2, the marginal pdf of ZZZi is given by

f (zzzi;θθθ) =
∫

∞

0
f (zzzi,vi;θθθ)dvi. (4.14)

Proof. First, consider the expressions in (4.11). For the result in (a), we use (4.4) to write ZZZi as

ZZZi|xi,Wei ∼N2(aaa+bbbxi,ΣΣΣ/Wei) and xi|Wxi ∼S N (ξ ,ω2/Wxi,λ ),

where Wxi ∼ G (1/2ηx,1/2ηx) and Wei ∼ G (1/2ηe ,1/2c(ηe)) with c(ηe) = ηe/(1−2ηe). The
result now holds from an application of the Lemma 2 and after transforming (Wxi,Wei)

> to (Ui =

Wxi,Vi =Wxi/Wei)
>. For (b), we use (a) to write the joint pdf of (ZZZ>i ,Ui,Vi)

> as f (zzzi,ui,vi;θθθ) =

f (zzzi|ui,vi;θθθ) f (ui,vi;θθθ) and after simplification, the result follows. For (c), the result is obtained
by integrating f (zzzi,ui,vi;θθθ) with respect to ui by using Lemma 1 in Azzalini and Capitanio
(2003). Finally, for (d), we integrate out vi from f (zzzi,vi;θθθ) given in (c).

Notice that the marginal pdf of ZZZi is not available in a closed form and requires one-
dimensional numerical integration. The results in Proposition 4 facilitate the computational
implementation of the estimation method. Further, it follows that the log-likelihood function of
θθθ given the observed data zzz = (zzz>1 , . . . ,zzz

>
n )
> is given by

`(θθθ) = log(L(θθθ ;zzz)) = log( f (zzz1, . . . ,zzzn;θθθ)) =
n

∑
i=1

log( f (zzzi;θθθ))

=
n

∑
i=1

log
(∫

∞

0
f (zzzi,vi;θθθ)dvi

)
, (4.15)

with f (zzzi,vi;θθθ) as in Proposition 4 and θθθ = (β0,β1,ξ ,ω
2,λ ,ηx,ηe)

> encapsulates the parame-
ters in the model.
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4.2.2 Maximum likelihood estimation via the ECM algorithm

We call attention to the fact that the log-likelihood function in (4.15) can be directly
maximized to get the ML estimates θ̂θθ . However, this is generally not practical due to the
dimension of θθθ or the complexity of the log-likelihood function, as in (4.15). For this reason,
we consider the ECM algorithm (MENG; RUBIN, 1993), which is a modification of the EM
algorithm (DEMPSTER; LAIRD; RUBIN, 1977). The M step of the EM algorithm is replaced
by a sequence of simpler constrained maximization (CM) steps. Each iteration of this algorithm
increases the likelihood function to achieve convergence at a local or a global maximum.
Next, we denote ZZZmis,i = (xi,Di,Ui,Vi)

> as the missing data and ZZZcomp,i = (ZZZ>i ,ZZZ
>
mis,i)

> as
the complete data for the i-th subject. The random quantities xi, Di, Ui and Vi are from (4.6)
with (Wxi,Wei)

> transformed to (Ui = Wxi,Vi = Wxi/Wei)
>. Besides that, there is an one-to-

one correspondence between (ω2,λ )> and (γ,ψ)>, so that for this algorithm, we consider
θθθ
∗ = (β0,β1,ξ ,γ, ψ,ηx,ηe)

> as the parameter vector to be estimated, and using the inverse
transformation of (4.5), θθθ can be estimated. Consequently, the complete data log-likelihood
function for zzzcomp = (zzz>comp,1, . . . ,zzz

>
comp,n)

> takes the form

`c(θθθ
∗) =

n

∑
i=1

`c,i(θθθ
∗) = log

(
L(θθθ ∗;zzzcomp)

)
=

n

∑
i=1

log
(

f (zzzcomp,i;θθθ
∗)
)
, (4.16)

where

`c,i(θθθ
∗) =c− 1

2
(zzzi−aaa)>ΣΣΣ

−1
i (zzzi−aaa)(ui/vi)+(zzzi−aaa)>ΣΣΣ

−1
i bbbxi(ui/vi)−

1
2

bbb>ΣΣΣ
−1
i bbbx2

i (ui/vi)

− 1
2

log(ψ)− 1
2ψ

[
x2

i +ξ
2 + γ

2d2
i −2(ξ xi + γxidi−ξ γdi)

]
ui

+
1

2ηx
log(1/2ηx)− log(Γ(1/2ηx))+

1
2ηx

[log(ui)−ui]+
1

2ηe
log(1/[2 c(ηe)])

− log(Γ(1/2ηe))+
1

2ηe
[log(ui/vi)− (1−2ηe)(ui/vi)].

where c is free of parameters. From (4.16) and ignoring the terms that do not involve θθθ
∗, the

expected log-likelihood function in the r-th iteration of the ECM algorithm, Q(θθθ ∗|θθθ ∗(r)) =
E
[
`c(θθθ

∗)|zzz1, . . . ,zzzn;θθθ
∗(r)
]
, can be written as

Q
(
θθθ
∗|θθθ ∗(r)

)
=

n

∑
i=1

{
Qi1
(
β0,β1|θθθ ∗(r)

)
+Qi2

(
γ,ψ,ξ |θθθ ∗(r)

)
+Qi3

(
ηx,ηe|θθθ ∗(r)

)}
, (4.17)

where

Qi1
(
β0,β1|θθθ ∗(r)

)
=− 1

2
(zzzi−aaa)>ΣΣΣ

−1
i (zzzi−aaa)Er[Ui/Vi]

+ (zzzi−aaa)>ΣΣΣ
−1
i bbbEr[xiUi/Vi]−

1
2

bbb>ΣΣΣ
−1
i bbbEr[x2

i Ui/Vi],

Qi2
(
γ,ψ,ξ |θθθ ∗(r)

)
=− 1

2
log(ψ)− 1

2ψ
{Er[x2

i Ui]+ξ
2Er[Ui]+ γ

2Er[D2
i Ui]
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−2(ξ Er[xiUi]+ γEr[xiDiUi]−ξ γEr[DiUi])},

Qi3
(
ηx,ηe|θθθ ∗(r)

)
=

1
2ηx

log(1/2ηx)− log(Γ(1/2ηx))+
1

2ηx

{
Er[log(Ui)]−Er[Ui]

}
+

1
2ηe

log(1/[2c(ηe)])− log(Γ(1/2ηe))+
1

2ηe
Er[log(Ui/Vi)]

− 1
2c(ηe)

Er[Ui/Vi]

and Er[·] denotes the expectation under the conditional distribution of ZZZmis,i| ZZZi evaluated at
θθθ
∗ = θθθ

∗(r).
The E and the CM steps of the ECM algorithm are given in detail as follows:

E step Compute all the conditional expectations involved in (4.17) (see Section 4.2.2.1 for more
details).

CM step 1 Fix β1 = β
(r)
1 and update β0 by maximizing ∑

n
i=1 Qi1(β0,β

(r)
1 | θθθ

∗(r)) with respect to
β0, yielding

β
(r+1)
0 =

(
n

∑
i=1

σ
−2
εi

Er[Ui/Vi]

)−1 n

∑
i=1

σ
−2
εi

(
YiEr[Ui/Vi]−β

(r)
1 Er[xiUi/Vi]

)
.

CM step 2 Fix β0 = β
(r+1)
0 and update β1 by maximizing ∑

n
i=1 Qi1

(
β
(r+1)
0 ,β1|θθθ ∗(r)

)
with respect

to β1, yielding

β
(r+1)
1 =

(
n

∑
i=1

σ
−2
εi

Er[x2
i Ui/Vi]

)−1 n

∑
i=1

σ
−2
εi

(
Yi−β

(r+1)
0

)
Er[xiUi/Vi].

CM step 3 Fix (ψ,ξ )>= (ψ(r),ξ (r))> and update γ by maximizing ∑
n
i=1 Qi2

(
γ,ψ(r),ξ (r)|θθθ ∗(r)

)
with respect to γ , yielding

γ
(r+1) =

(
n

∑
i=1

Er[D2
i Ui]

)−1 n

∑
i=1

(
Er[xiDiUi]−ξ

(r)Er[DiUi]
)
.

CM step 4 Fix (γ,ξ )> = (γ(r+1),ξ (r))> and update ψ by maximizing ∑
n
i=1 Qi2

(
γ(r+1),ψ,ξ (r)|

θθθ
∗(r)) with respect to ψ , yielding

ψ
(r+1) =

1
n

n

∑
i=1

[
Er[x2

i Ui]+ (ξ (r))2Er[Ui]+
(
γ
(r+1))2Er[D2

i Ui]−2(ξ (r)Er[xiUi]

+ γ
(r+1)Er[xiDiUi]−ξ

(r)
γ
(r+1)Er[DiUi]

)]
.

CM step 5 Fix (γ,ψ)>=(γ(r+1),ψ(r+1))> and update ξ by maximizing ∑
n
i=1 Qi2(γ

(r+1),ψ(r+1),

ξ |θθθ ∗(r)) with respect to ξ , yielding

ξ
(r+1) =

(
n

∑
i=1

Er[Ui]

)−1 n

∑
i=1

(
Er[xiUi]− γ

(r+1)Er[DiUi]
)
.
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CM step 6 Update (ηx,ηe) by numerically maximizing ∑
n
i=1 Qi3

(
ηx,ηe|θθθ ∗(r)

)
over (ηx,ηe) to

get (η(r+1)
x ,η

(r+1)
e ).

It is worth emphasizing that this ECM algorithm can be adapted to fit particular cases
of the STcT MEM, as described in Section 4.2.3. Additionally, the algebraic expressions for
β
(r+1)
0 , β

(r+1)
1 , γ(r+1), ψ(r+1) and ξ (r+1) are derived in Section 4.2.2.2. When a numerical

maximization is required, a good idea is to transform the parameters from a constrained space to
an unconstrained one. Moreover, it is well-known that for this type of algorithm, one needs to
run the ECM algorithm with several starting points to have some assurance that the algorithm
converges to a global maximum θ̂θθ .

Next, let III = −∂ 2`(θθθ)/∂θθθ∂θθθ
>|

θθθ=θ̂θθ
denote the observed information matrix for θθθ ,

which is evaluated by numerically differentiating `(θθθ) in (4.15) using, for instance, the numDeriv
package (GILBERT; VARADHAN, 2016). From the asymptotic properties of the ML estimators,
we have that θ̂θθ is approximately normal with mean vector θθθ and asymptotic covariance matrix
III−1 (LEHMANN, 1998, Chapter 7). Consequently, this result can be used to compute asymptotic
standard errors for the ML estimators, hypothesis testing and construct asymptotic confidence
intervals.

4.2.2.1 Computing expectations in the E step

In this section, we describe how to compute all the expectations involved in (4.17). We
omit the subscript of each random variable to simplify the notation. Next, our strategy is to obtain
the joint distribution of the missing vector (x,D,U,V )> conditional on the observed ZZZ and then,
use it to derive the desired expectations in the E step of the ECM algorithm. Define, for v > 0,

ΩΩΩv = ψbbbbbb>+ vΣΣΣ, ρv = (ψ−1 +bbb>ΣΣΣ
−1bbb/v)−1 and ζ

2
v = (1+ γ

2bbb>ΩΩΩ
−1
v bbb)−1. (4.18)

Using well-known matrix results (SEBER; LEE, 2003, p. 467), one can verify that
ΩΩΩv and ρv are related by ρv = ψ −ψ2bbb>ΩΩΩ

−1
v bbb and ρvbbb>ΣΣΣ

−1/v = ψbbb>ΩΩΩ
−1
v . In addition, ξv

given in (4.11) can be written in terms of (4.18) as ξv = ζvγbbb>ΩΩΩ
−1
v ∆∆∆. Therefore, the following

proposition can be established.

Proposition 5. Consider ZZZ as defined in (4.2), (4.18) and the quantities given in Proposition 4.

(a) The conditional pdf of V |ZZZ is f (v|zzz;θθθ) = f (zzz,v;θθθ)/ f (zzz;θθθ), v > 0.

(b) The conditional pdf of U |ZZZ,V is f (u|zzz,v;θθθ) = f (zzz,u,v;θθθ)/ f (zzz,v; θθθ), u,v > 0.

(c) D|ZZZ,U,V ∼T N (ξV ζV ,ζ
2
V/U ;(0,∞)).

(d) x|ZZZ,D,U,V ∼N (ξ +ψbbb>ΩΩΩ
−1
V (ZZZ−aaa−bbbξ )+ρV ψ−1γD, ρV/U).

Proof. For (a) and (b), we apply the definition of conditional pdf and using the density functions
(b)–(d) given in Proposition 4, so the results hold. For (c), from (4.6), we obtain ZZZ|D,U,V ∼
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N2(aaa+bbbξ +bbbγD,ΩΩΩV/U) and D|U,V ∼T N (0,1/U ;(0,+∞)). Now, by applying the defini-
tion of conditional pdf to D|ZZZ,U,V , it follows that f (d|zzz,u,v;θθθ) ∝ f (zzz|d,u,v;θθθ) f (d|u,v;θθθ) =

2φ2(zzz;aaa+ bbbξ + bbbγd,ΩΩΩv/u)φ(d;0,1/u)I(d > 0) and by applying Lemma 2 in Arellano-Valle,
Bolfarine and Lachos (2005) to the product on the right side of equality, we obtain f (d|zzz,u,v;θθθ)∝

φ2(zzz;aaa + bbbξ ,(Ωv + γ2bbbbbb>)/u)2φ(d;ξvζv,ζ
2
v /u)I(d > 0). Then, we can see that the pdf of

D|ZZZ,U,V is proportional to the pdf of the T N (ξV ζV ζ 2
V/U ;(0,∞)) distribution evaluated at d.

Therefore, this establishes the desired conditional distribution. For (d), from a similar manner
to (c), we use (4.6) to obtain ZZZ|x,D,U,V ∼N2(aaa+bbbx,V ΣΣΣ/U) and x|D,U ∼N (ξ + γD,ψ/U).
By applying the definition of conditional pdf to x|ZZZ,D,U,V , it follows that f (x|zzz,d,u,v;θθθ) ∝

f (zzz|x,d,u,v;θθθ) f (x|d,u;θθθ). Then, applying Lemma 2 in Arellano-Valle, Bolfarine and Lachos
(2005), we obtain that f (x|zzz,d,u,v;θθθ) ∝ φ2(zzz;aaa+bbbξ +bbbγd,Ωv/u) φ(x;ξ + γd+ρvbbb>ΣΣΣ

−1(zzz−
aaa−bbbξ −bbbγd)/v,ρv/u). Thus, using (4.18), we simplify the mean in the second pdf. We notice
that the pdf of x|ZZZ,D,U,V is proportional to the pdf of the N (ξ +ψbbb>ΩΩΩ

−1
v (zzz− aaa− bbbξ )+

ρV ψ−1γd,ρV/U) distribution evaluated at x. Therefore, it follows that this must also be the
conditional distribution of x|ZZZ,D,U,V and the result holds.

Proposition 6. Consider ZZZ as defined in (4.2), (4.6) and the quantities in Proposition 5. Then,
we have the following conditional expectations on ZZZ and V .

(a) For an integer k such that η∗+2k > 0,

E[Uk|ZZZ,V ] = 2k Γ((η∗+2k)/2)
Γ(η∗/2)

Ft(ξV [(η
∗+2k)/ςV ]

1/2;η∗+2k)
ς k

V Ft(ξV [η∗/ςV ]1/2;η∗)
.

(b) For an integer k such that η∗+ k > 0,

E

[
Uk/2 φ(ξVU1/2)

Φ(ξVU1/2)
|ZZZ,V

]
=

2(k−1)/2

π1/2
Γ((η∗+ k)/2)

Γ(η∗/2)

×
ς

η∗/2
V

(ςV +ξ 2
V )

(η∗+k)/2Ft(ξV [η∗/ςV ]1/2;η∗)
.

(c) For an integer k such that η∗+2k > 1,

E[DUk|ZZZ,V ] = ζV

{
ξV E[Uk|ZZZ,V ]+E

[
U (2k−1)/2 φ(ξVU1/2)

Φ(ξVU1/2)
|ZZZ,V

]}
.

(d) For an integer k such that η∗+2k > 2,

E[D2Uk|ZZZ,V ] = ζ
2
V E[Uk−1|ZZZ,V ]+ξV ζV E[DUk|ZZZ,V ].

(e) E[xDU |ZZZ,V ] =
(
ξ +ψbbb>ΩΩΩ

−1
V ∆∆∆

)
E[DU |ZZZ,V ]+ρV ψ−1γE[D2U |ZZZ,V ].

(f) E[xU |ZZZ,V ] =
(
ξ +ψbbb>ΩΩΩ

−1
V ∆∆∆

)
E[U |ZZZ,V ]+ρV ψ−1γE[DU |ZZZ,V ].
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(g) E[x2U |ZZZ,V ] = (ξ +∆∆∆
>

ΣΣΣ
−1bbbρV/V )E[xU |ZZZ,V ]+

{
1+ψ−1γE[xDU |ZZZ,V ]

}
ρV .

Proof. First, using the part (b) of Proposition 5 together with parts (b) and (c) of Proposition 4,
it follows that

f (u|zzz,v,θθθ) = Φ(ξvu1/2)

Ft(ξv[η∗/ςv]1/2,η∗)
f (u;η

∗/2,ςv/2), (4.19)

where f (u;η∗/2,ςv/2) is the pdf of the G (η∗/2,ςv/2) distribution evaluated at u. Thus, for (a),
from the definition of expectation and the pdf in (4.19), we can write

E[Uk|zzz,v] =
∫

∞

0
uk f (u|zzz,v,θθθ)du =

1
Ft(ξv[η∗/ςv]1/2,η∗)

∫
∞

0
uk

Φ(ξvu1/2) f (u;η
∗/2,ςv/2)du.

Note that the integral on the right side is proportional to the expectation of Φ(ξvU1/2),
wherein the random variable U follows the G ((η∗+2k)/2),ςv/2) distribution. Then, by applying
Lemma 1 in Azzalini and Capitanio (2003), we have after lengthy algebra that the result follows.

For (b), from the definition of conditional expectation and the pdf in (4.19), it follows
that

E

[
Uk/2 φ(ξvU1/2)

Φ(ξvU1/2)
|zzz,v

]
=
∫

∞

0
uk/2 φ(ξvu1/2)

Φ(ξvu1/2)
f (u|zzz,v,θθθ)du

=
1

Ft(ξv[η∗/ςv]1/2,η∗)

∫
∞

0
uk/2

φ(ξvu1/2) f (u;η
∗/2,ςv/2)du,

so the integral in the second equality is proportional to the pdf of the G ((η∗+k)/2),(ςv+ξv)
2/2)

distribution evaluated at u. After some algebraic manipulations, the result follows by making use
of the gamma integral.

For (c), using the law of iterated expectations, we can write

E[DUk|zzz,v] = E[UkE[D|zzz,v,U ]|zzz,v]. (4.20)

Using part (c) of Proposition 5 and properties about moments of a truncated normal random
variable (JOHNSON; KOTZ; BALAKRISHNAN, 1994, Section 10.1), we can write the inner
expectation as

E[D|zzz,v,u] = ζv

(
ξv +u−1/2 φ(ξvu1/2)

Φ(ξvu1/2)

)
.

The result now follows after substituting this expression into (4.20).

For (d), as in (c), we can write

E[D2Uk|zzz,v] = E[UkE[D2|zzz,v,U ]|zzz,v]. (4.21)

Then, applying part (c) of Proposition 6 and properties about moments of a truncated normal
random variable (JOHNSON; KOTZ; BALAKRISHNAN, 1994, Section 10.1), the inner expec-
tation can be written as the recursive relationship, E[D2|zzz,v,u] = ζ 2

v /u+ξvζvE[D|zzz,v,u]. The
result now follows after substituting this expression into (4.21).
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For (e), using the law of iterated expectations, we can write

E[xDU |zzz,v] = E[U E[D E[ x |zzz,v,D,U ]|zzz,v,U ]|zzz,v]. (4.22)

Moreover, part (d) of Proposition 5 yields

E[x|zzz,v,u,d] = ξ +ψbbb>ΩΩΩ
−1
v (zzz−aaa−bbbξ )+ρvψ

−1
γd.

In this equality, we proceed by multiplying both sides by d and taking expectation with respect
to the conditional distribution of D|zzz,v,u, it follows that

E[xD|zzz,v,u] = ξ E[D|zzz,v,u]+ρvψ
−1

γE[D2|zzz,v,u]+ψbbb>Ω
−1
v (zzz−aaa−bbbξ )E[D|zzz,v,u].

The result follows from substituting the expression above into (4.22). In a similar manner, we
can proceed to establish (f).

For (g), as in (4.22), we can write

E[x2U |zzz,v] = E[U E[ E[ x2 |zzz,v,D,U ]|zzz,v,U ]|zzz,v]. (4.23)

Next, in the inner expectation of (4.23), we apply the following property,

E[ x2 |zzz,v,D,U ] =Var[x|zzz,v,D,U ]+ (E[x|zzz,v,D,U ])2,

and applying part (d) of Proposition 5, it follows that

E[ x2 |zzz,v,D,U ] = ρv/u+
{

ξ +ρvψ
−1

γd +ψbbb>ΩΩΩ
−1
v (zzz−aaa−bbbξ )

}
E[x|zzz,d,u,v].

Lastly, after substituting this expression into (4.23), we obtain

E[x2U |zzz,v] = ρv +ξ E[xU |zzz,v]+ρvψ
−1

γE[xU |zzz,v]+ψbbb>ΩΩΩ
−1
v (zzz−aaa−bbbξ )E[xDU |zzz,v],

and using ΩΩΩ
−1
v bbbψ = ΣΣΣ

−1bbbρv/v, the result follows after simplification.

The Propositions 5 and 6 suggest that the expectations involved in the E step can be com-
puted as follows. The two expectations, E[log(V )|ZZZ] =

∫
∞

0 log(v) f (v|zzz,θθθ)dv and E[log(U)|ZZZ] =∫
∞

0 [
∫

∞

0 log(u) f (u|zzz,v,θθθ)du] f (v|zzz,θθθ)dv, need to be computed numerically with the pdfs given
in Proposition 5. Finally, to compute expectations required in the E step of the ECM algorithm
in Section 4.2.2, first we compute the expectation conditional on (ZZZ>,V )> using Proposition
6 and then average it over the conditional distribution of (V |ZZZ). The computation requires a
unidimensional numerical integration and here it was computed using the statmod package
(GINER; SMYTH, 2016) implemented in the R programing language (R CORE TEAM, 2017).
All the expectations are evaluated at θθθ

∗ = θθθ
∗(r).
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4.2.2.2 Computation of maximizers in CM steps

In this section, we describe how to derive the maximizers in CM steps presented in
Section 4.2.2. The expressions for β

(r+1)
0 and β

(r+1)
1 in the CM steps 1 and 2, respectively, are

obtained by solving the equations

0 =
∂

∂β0

n

∑
i=1

Qi1(β0,β
(r)
1 |θθθ

∗(r))

=
n

∑
i=1

(
σ
−2
εi

Yi−σ
−2
εi

β0
)

Er[Ui/Vi]−β
(r)
1

n

∑
i=1

σ
−2
εi

Er[xiUi/Vi]

=
n

∑
i=1

σ
−2
εi

(
YiEr[Ui/Vi]−β

(r)
1 Er[xiUi/Vi]

)
−β0

n

∑
i=1

σ
−2
εi

Er[Ui/Vi],

for β0, and

0 =
∂

∂β1

n

∑
i=1

Qi1(β
(r+1)
0 ,β1|θθθ ∗(r)) =

n

∑
i=1

σ
−2
εi

(Yi−β
(r+1)
0 )Er[xiUi/Vi]−β1

n

∑
i=1

σ
−2
εi

Er[x2
i Ui/Vi],

for β1. Similarly, to get the expression for γ(r+1) in CM step 3, we solve for γ the equation,

0 =
∂

∂γ

n

∑
i=1

Qi2(γ,ψ
(r),ξ (r)|θθθ ∗(r)) = (ψ(r))−1

n

∑
i=1

(
Er[xiDiUi]−ξ

(r)Er[DiUi]
)
− γ

n

∑
i=1

Er[D2
i Ui],

after some algebraic manipulations the result follows by multiplying both sides by ψ(r). To
derive the expression for ψ(r+1) in CM step 4, we solve the following equation

0 =
∂

∂ψ

n

∑
i=1

Qi2(γ
(r+1),ψ,ξ (r)|θθθ ∗(r)) =− n

ψ
+

1
ψ2

n

∑
i=1

Ai,

where Ai =
{

Er[x2
i Ui]+(γ(r+1))2Er[D2

i Ui]+(ξ (r))2Er[Ui]−2(ξ (r)Er[xiUi]+ γ(r+1)Er[xiDiUi]−
ξ (r)γ(r+1)Er[DiUi])

}
, upon simplification. The result follows by multiplying both sides with

(ψ(r))2.

Lastly, the expression for ξ (r+1) in CM step 5 is obtained by solving the equation,

0 =
∂

∂ξ

n

∑
i=1

Qi2(γ
(r+1),ψ(r+1),ξ |θθθ ∗(r)) = (ψ(r+1))−1

n

∑
i=1

(−Er[Ui]ξ +Er[xiUi]− γ
(r+1)Er[DiUi]).

4.2.3 Particular models

From the stochastic representations in (4.4), it becomes easy to obtain some particular
models of the STcT MEM. According to the distributions of the true covariate and the error
terms, we label each model by the initial letter of the assumed distribution. In this way, we
describe them in detail in what follows.

(a) Skew-t normal (STN) MEM. We take ηe→ 0. Thus, eeei∼N2(0002,ΣΣΣi) and xi∼S t(ξ ,ω2,λ ,

ηx). A hierarchical representation is given by

ZZZi|Ui ∼ S N 2(aaa+bbbξ , ΠΠΠUi/Ui,λλλUi) and Ui ∼ G

(
1

2ηx
,

1
2ηx

)
,
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where, we define, for ui > 0, ΠΠΠui = uiΣΣΣi+ω2bbbbbb> and λλλ ui =ΠΠΠ
−1/2
ui bbbωλ/[1+λ 2ω−2(ω−2+

bbb>ΣΣΣ
−1
i bbb/ui)

−1]1/2. In this case, the joint pdf of (ZZZ>i ,Ui)
> is

f (zzzi,ui;θθθ) =
π−1

(2ηx)1/2ηx

[det(ΠΠΠui)]
−1/2

Γ(1/2ηx)
u1/2ηx

i exp
(
−1

2
ςuiui

)
Φ(ξuiu

1/2
i ),

where ξui = λλλ
>
ui

ΠΠΠ
−1/2
ui ∆∆∆i, ςui = ∆∆∆

>
i ΠΠΠ
−1
ui

∆∆∆i + 1/ηx and ∆∆∆i as in (4.11). Therefore, the
marginal pdf of ZZZi is obtained by integrating f (zzzi,ui;θθθ) with respect to ui.

(b) Student’s t centered Student’s t (TcT) MEM. We take λ = 0, meaning that there is
no skewness, so that xi ∼ t(ξ ,ω2,ηx) and eeei ∼ ct2(0002,ΣΣΣi,ηe) implying that (γ,ψ)> =

(0,ω2)>. Thus, substituting λ = 0 into the last term of the right-hand side in (4.13), we
obtain 1/2. After simplification, the joint pdf of (ZZZi,Vi) follows for this case. Consequently,
the marginal pdf of ZZZi is obtained by integrating the resulting joint pdf with respect to vi.

(c) Student’s t normal (TN) MEM. We take λ = 0 and ηe→ 0. Thus, xi ∼ t(ξ ,ω2,ηx) and
eeei ∼N2(0002,ΣΣΣi). The joint pdf of (ZZZi,Ui) is given by

f (zzzi,ui;θθθ) =
π−1[det(ΠΠΠui)]

−1/2

21/2ηx+1η
1/2ηx
x

u1/2ηx
i

Γ(1/2ηx)
exp
(
−1

2
ςuiui

)
,

and consequently, by integrating f (zzzi,ui;θθθ) with respect to ui we get the marginal pdf of
ZZZi. Here, ΠΠΠui and ςui are defined as in (a).

(d) Skew-normal centered Student’s t (SNcT) MEM: We take ηx→ 0. Thus, xi∼S N (ξ ,ω2,λ )

and eeei ∼ ct2(0002,ΣΣΣi,ηe). A hierarchical representation is given by

ZZZi|Vi ∼S N 2(aaa+bbbξ , ΠΠΠvi,λλλ vi) and
1
Vi
∼ G

(
1

2ηe
,

1
2c(ηe)

)
,

and the joint pdf of (ZZZi,Vi) is as follows

f (zzzi,vi;θθθ) =
π−1[det(ΠΠΠvi)]

−1/2

[2c(ηe)]1/2ηeΓ(1/2ηe)
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where ς∗vi
= ∆∆∆

>
i ΠΠΠ
−1
vi

∆∆∆i with ΠΠΠ
−1
vi

and ∆∆∆i as in (4.11). The marginal pdf of ZZZi is obtained
integrating f (zzzi,vi;θθθ) with respect to vi.

(e) Skew-normal normal (SNN) MEM: We take ηx→ 0 and ηe→ 0. Thus, xi∼S N (ξ ,ω2,λ )

and eeei ∼N2(0002,ΣΣΣi). In this case, the marginal pdf of ZZZi is reduced to

f (zzzi;θθθ) = 2φ(zzzi;aaa+bbbξ ,ΠΠΠi,λλλ i)Φ(λλλ>i ΠΠΠ
−1/2
i (zzzi−aaa−bbbξ )),

where ΠΠΠi = ω2bbb>bbb+ΣΣΣi and λλλ i is obtained by using λλλ vi in (4.11) replacing ΠΠΠvi by ΠΠΠi.
This model was also described as a particular case of the MEM in Arellano-Valle et al.

(2005).
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(f) Normal centered Student’s t MEM (NcT MEM): We take λ = 0 and ηx → 0, so that
xi ∼N (ξ ,ω2) and eeei ∼ ct2(0002,ΣΣΣi,ηe). In this case, γ = 0 and the gamma distribution for
Wxi is not needed ( Wxi =Ui ≡ 1). A hierarchical representation is given by

ZZZi|xi,Vi ∼N2(aaa+bbbξ ,ViΣΣΣi), xi ∼N (ξ ,ω2) and
1
Vi
∼ G

(
1

2ηe
,

1
2c(ηe)

)
.

The joint pdf of (ZZZi,Vi) is as follows

f (zzzi,vi;θθθ) =
π−1

21/2ηe+1
[det(ΠΠΠvi)]

−1/2
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,

where ΠΠΠvi as in (4.11) and ς∗vi
as in (d). Hence, the marginal pdf of ZZZi is obtained by

integrating f (zzzi,vi;θθθ) with respect to vi.

(g) Normal normal (NN) MEM. We take λ = 0 and ηx,ηe→ 0. Thus, xi∼N (ξ ,ω2) and eeei∼
N2(000,ΣΣΣi). This case is the heteroscedastic MEM model under the normality assumption.
The pdf of ZZZi is given by φ2(zzzi;aaa+bbbξ ,ΠΠΠi), where ΠΠΠi =ω2bbbbbb>+ΣΣΣi. As mentioned before,
this model has attracted many attention (KULATHINAL; KUULASMAA; GASBARRA,
2002; BUONACCORSI, 2010).

It is worth emphasizing that up to the best of our knowledge, the particular models
given in (a), (b), (c), (d) and (f) have not yet been proposed in the literature, so that they can
be considered as flexible alternatives to the normality assumption. Moreover, it is important to
note that the particular models given in (a), (c), (d)–(g) are limiting cases of the proposed model,
while the model in (b) is a nested model.

Next, we briefly point out how the ECM algorithm was modified to fit each one of the
particular models used in the Sections 4.3 and 4.4. Thus, we describe for the following models: (a)
STN MEM, (b) TcT MEM, (c) TN MEM and (g) NN MEM. In case (a), the gamma distribution
for Wei =Ui/Vi is not needed, so that we can apply the algorithm after setting Ui/Vi ≡ 1 in the
expected log-likelihood given in (4.16). In case (b), the algorithm works by setting γ = 0 in the
expected log-likelihood given in (4.16) and omitting the CM step 3. In case (c), the modifications
we need are as in cases (a) and (b) and can be applied after modifying the expected log-likelihood
in (4.16). Lastly, in case (g), the gamma distribution for Wxi =Ui is not required, so that we can
apply the ECM algorithm after setting Ui ≡ 1 and by using the modifications as in cases (a) and
(b). For cases (a), (c) and (g), we assign to ηx and ηe, very small values to indicate that they
tend to be close to 0. For instance, for an ECM algorithm to fit the NN MEM, it was considered
λ = 0 and ηx,ηe = 0.01.

Finally, there exists a variety of methodologies used to compare competing models for
a given dataset. The aim is to try to select the one that best fits the data. In this chapter, we
consider the Akaike information criterion (AIC) and the Bayesian criterion selection (BIC) to
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compare the different models. These measures are computed by AIC =−2logL(θ̂ ;zzz)+2k and
BIC =−2logL(θ̂ ;zzz)+ k log(n), where θ̂θθ is the ML estimate, k is the number of parameters to
be estimated and n denotes the sample size.

4.3 Simulation study

In this section, we carry out a simulation study to gauge the performance of the proposed
methodology. We generated 1000 random samples of size n = 50, 100 and 500 from a STcT
MEM. The observed data ZZZi are generated from the representation (4.6) with the following
parameter values: β0 = 0.1, β1 = 1.1, ξ = 1, ω2 = 0.5, λ = 5. The variances of the measure-
ment errors, that is, σ2

εi
and σ2

ui
, are generated from uniform distributions on (0.15,0.25) and

(0.20,0.35), respectively, and then ΣΣΣi = diag(σ2
εi
,σ2

ui
) is assumed known, i = 1, . . . ,n. For the

inverse of the degrees of freedom, we take ηx = 1/10 and ηe = 1/5, keeping them fixed through-
out the simulations in order to save computing time. The value for β1 was motivated by ML
estimate from the real data set analyzed in Section 4.4.

For the STcT MEM, numerical summaries – including the simulated bias of the ML
estimates, the average of the asymptotic standard errors (SE), the root mean squared error of
the estimates (RMSE), the standard deviation (SD) of estimates and the coverage probabilities
(CP) of the nominal 95% asymptotic confidence intervals – are reported in Table 13. Recall
that the asymptotic standard errors are the square root of the main diagonal elements of the
inverse of the observed information matrix (III−1). For each generated sample, ML estimates of
the parameters were computed by using the ECM algorithm described in Section 4.2.2. The
numerical derivatives and the expectations needed in the E step of ECM algorithm are computed,
respectively, using the numDeriv package (GILBERT; VARADHAN, 2016) and the statmod
package (GINER; SMYTH, 2016). All computations were developed in the R language (R
CORE TEAM, 2017).

Table 13 shows that the simulated bias of the ML estimates decreases when the sample
size increases, as desirable. There is a substantial reduction in the values of RMSE and SD and
these are fairly close to the average of the asymptotic standard errors (SE), as expected. Note
also that all CP’s are fairly close to the nominal value 95%. However, for the estimation of the
skewness parameter λ , a larger sample size is needed, as can be seen for n = 500. Regarding the
estimation of this parameter, Arellano-Valle et al. (2005) and Kheradmandi and Rasekh (2015)
mentioned that in some samples, the probability of having λ̂ = ∞ can be positive. Alternative
methods of estimation of λ are part of ongoing work.

For the sake of model comparison, the 1000 simulated data sets were also fitted under
the following competing MEM’s: STN, TcT , TN and NN. The efficiencies of STcT MEM-based
estimators relative to the competing models are computed by dividing the mean squared error
under the competing model by those under the STcT MEM. These measures are displayed in
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Table 13 – Simulated bias, sample standard deviation (SD), root mean square error (RMSE), average
asymptotic standard error (SE) of ML estimates and coverage probability (CP) of the nominal
95% asymptotic confidence intervals for the STcT MEM. True values: β0 = 0.1, β1 = 1.1,
ξ = 1, ω2 = 0.5 and λ = 5.

n Parameter Bias SD RMSE SE CP

β0 -0.027 0.380 0.381 0.381 0.941
β1 0.013 0.233 0.233 0.232 0.939

50 ξ 0.088 0.237 0.253 0.227 0.964
ω2 -0.022 0.214 0.215 0.238 0.918
λ 3.637 7.980 8.769 21.526 0.871

β0 -0.008 0.240 0.240 0.255 0.955
β1 0.008 0.148 0.148 0.156 0.954

100 ξ 0.034 0.134 0.138 0.141 0.967
ω2 -0.022 0.152 0.154 0.169 0.943
λ 2.201 5.796 6.200 11.993 0.874

β0 0.002 0.105 0.105 0.108 0.952
β1 0.000 0.063 0.063 0.066 0.958

500 ξ 0.006 0.047 0.047 0.055 0.970
ω2 -0.006 0.064 0.064 0.076 0.963
λ 0.388 2.200 2.233 3.368 0.937

Table 14. We also compute the Akaike information criterion (AIC) and the Bayesian information
criterion (BIC).

Table 14 – Efficiencies of STcT MEM-based estimators relative to the competing models when the true
model is STcT MEM.

n Quantity STN MEM TcT MEM TN MEM NN MEM

β0 1.661 0.990 1.503 1.448
50 β1 1.721 1.008 1.558 1.500

E[X ] 1.138 4.174 4.340 4.810
E[Y ] 1.179 4.628 4.851 5.405

β0 1.945 1.048 1.928 1.719
100 β1 1.979 1.051 1.951 1.726

E[X ] 1.371 10.43 10.99 12.38
E[Y ] 1.471 12.54 13.06 14.71

β0 1.521 1.093 1.695 1.578
500 β1 1.526 1.083 1.678 1.556

E[X ] 1.385 67.60 70.90 80.49
E[Y ] 1.349 82.00 85.89 97.44

Table 14 shows that relative efficiency improves as n increases. It is worth to note that
the quantities β0,β1,E[X ] and E[Y ] have the same interpretation in any fitted models. Notice that
for β0 and β1, the efficiency of STcT MEM-based estimators relative to the TcT MEM is close
to 1. This tells us that models based on heavy-tails distributions also can deliver good estimates
(CAO; LIN; ZHU, 2012). For the remaining quantities, the gain in efficiency is quite substantial,
that is, the relative efficiencies values are greater than 1 in all cases, giving support to the STcT
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MEM. Moreover, we report in Table 15 the percentage of times that AIC and BIC selected each
model when the data generating model is the STcT MEM. As mentioned before, the TcT MEM
can be considered as a competing model with respect to the STcT MEM. Observe that BIC was
not favorable on the selection of the STcT MEM when n = 50. For this sample size, the penalty
term into the expression of the BIC was not able to correctly identify the true model, for the
maximum values of the likelihood function computed by the STcT MEM and TcT MEM were
very close. When n increases, for most of the samples AIC and BIC selected the proposed model
as the best one over the other competing models. Thus, it is important to note that, based on our
results, these criteria will be reliable if the sample size is larger than 50.

Table 15 – Percentage of samples for which AIC and BIC selected each model when the STcT MEM is
the true model.

Model

n Criterion STcT STN TcT TN NN

50 AIC 50.20 12.10 28.40 3.00 6.30
BIC 32.60 6.20 45.60 6.10 9.50

100 AIC 75.60 9.70 12.70 0.40 1.60
BIC 56.10 7.30 32.20 1.60 2.80

500 AIC 99.80 0.20 0.00 0.00 0.00
BIC 99.20 0.20 0.60 0.00 0.00

Finally, to compare the robustness of ML estimators of the parameters of the proposed
model against the competing models, we mimic the scenario in Choudhary, Sengupta and Casey
(2014), wherein the data are generated from mixtures of normal distributions that represent the
contaminated normal distributions. We conducted a simulation study involving different patterns
of x− and eee−outliers. Thus, the MEM used to simulate the data is given by (4.2) and with the
following distributions:

xi ∼ (1− px)N (ξ ,ω2)+ pxN (ξ ,c2
ω

2),

eeei ∼ (1− pe)N2(000,ΣΣΣi)+ peN2(000,c2
ΣΣΣi), i = 1, . . . ,100, (4.24)

where px and pe denote the respective expected proportions of the x− and eee−outliers in the data
and c denote the contamination factor. We take px, pe = 0,0.05,0.10,0.25 and c = 4 (distant
contamination pattern), so that 16 combinations were used in this simulation study. In a similar
way as Table 14, we consider only the STN MEM and the NN MEM to perform such comparisons
with the proposed model. For these models, the practitioner may be interested in inference
on (β0,β1) or E[ZZZ1]. The interpretation of these parameters is the same in the three models.
Therefore, a total of 500 Monte Carlo replications were obtained for each (px, pe,c) combination.
The values of the parameters involved in (4.2) and (4.24) are in what follows: β0 = 0.1, β1 = 1.1,
ξ = 0 and ω2 = 0.5. σ2

εi
and σ2

ui
, are generated from uniform distributions on (0.15,0.25) and

(0.20,0.35), respectively, and then ΣΣΣi = diag(σ2
εi
,σ2

ui
) is assumed known. In this simulation

study, the inverse of degrees of freedom are estimated using the CM step 6 in Section 4.2.2.



4.4. Data analysis 75

The STcT MEM, the STN MEM and the NN MEM are fitted for each data set and the
ML estimates for (β0,β1)

> and E[ZZZ1] are computed. The target value of E[ZZZ1] is (0.1,0)>. Next,
the relative efficiencies are presented in Table 16. To ease the interpretation of these results,
following Choudhary, Sengupta and Casey (2014), a gain or loss of up to 20% is too modest
to be important for a practitioner, especially if the change is not in the same direction for all
parameters. Observe that the models are equally efficient when there are no presence of outliers.
When outliers are present, most efficiencies are one or more, some of them are 0.9 and 0.8. This
suggests that although STcT MEM may lose some efficiency over STN MEM and NN MEM,
the loss is never substantial from a practical viewpoint. In contrast, the STcT MEM may offer
gains in efficiency over the STN MEM and the NN MEM, especially for β0 and β1, depending
on the proportion of the outliers.

Table 16 – Efficiencies of STcT MEM-based estimators relative to the two competing models when the
true model is based on contaminated normal distribution with distant contamination pattern.

px = 0 px = 0.05 px = 0.10 px = 0.25

pe pe pe pe

Quantity 0 0.05 0.10 0.25 0 0.05 0.10 0.25 0 0.05 0.10 0.25 0 0.05 0.10 0.25

STN MEM
β0 1.0 1.1 1.2 1.7 1.0 1.1 1.2 1.4 1.0 1.1 1.2 1.5 1.0 1.1 1.2 1.5
β1 1.0 1.5 2.0 5.6 1.0 1.4 1.7 2.4 1.0 1.2 1.4 2.0 1.0 1.1 1.2 1.5

E[Y1] 1.0 1.0 1.0 1.2 1.0 0.8 1.0 1.0 1.0 0.8 0.9 1.1 0.9 0.8 0.9 1.0
E[X1] 1.0 1.0 1.1 1.2 1.0 0.8 1.0 1.1 0.9 0.8 0.8 1.1 0.9 0.8 0.9 1.0

NN MEM
β0 1.0 1.1 1.2 1.6 1.0 1.0 1.2 1.3 1.0 1.1 1.2 1.4 1.0 1.1 1.2 1.5
β1 1.0 1.3 1.8 4.5 0.9 1.2 1.4 2.1 0.9 1.1 1.2 1.7 0.9 1.0 1.1 1.4

E[Y1] 1.0 1.0 1.0 1.2 1.0 0.8 1.0 1.1 1.0 0.8 0.9 1.2 1.0 0.8 1.0 1.0
E[X1] 1.0 0.9 1.0 1.1 0.9 0.8 1.0 1.1 0.9 0.8 0.8 1.1 1.0 0.8 1.0 1.0

The STcT MEM’s gain for (β0,β1)
> is remarkable for pe = 0.25 and px < pe, reaching

its maximum at (70%,460%)> and (60%,350%)> with respect to the STN MEM and the NN
MEM, respectively. Moreover, the results suggest that from a practical viewpoint, there may not
be much difference among the three models for estimation of E[ZZZ1]. On the other hand, the STcT
MEM may outperform the STN MEM and the NN MEM for estimating (β0,β1)

> when we have
a large proportion of x- and eee-outliers.

4.4 Data analysis
Our approach is illustrated with the analysis of a real dataset from a methods comparison

study in Galea-Rojas et al. (2003, Example 4). Small amounts of coarse gold are present in a
cooper deposit. In order to check the content of the gold particles, two measurement methods
were used to analyze the samples. These are known as Classical and Screen Fire Assay (FA)
methods. It is essential to know that the main emphasis in methods comparison studies is to check
whether the two measurement techniques are comparable. It can be noted that the measurements
were collected from a chemical laboratory and many factors may affect a measurement, such as
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observer, position of subject and laboratory. Consequently, these measurements are error-prone
and we can apply the proposed model.

We denote Xi as the measurement taken by the Classical method and Yi as the measure-
ment obtained by the Screen FA method on the ith subject, i= 1, . . . ,501. Moreover, measurement
errors have known standard deviations, as our approach requires, see Galea-Rojas et al. (2003)
for a detailed description.

Table 17 exhibits descriptive statistics for the measurements (in g/t) taken by the Classical
and Screen FA methods. We include the mean (Mean), median (MD), standard deviation (SD),
coefficient of skewness (CS), coefficient of kurtosis (CK), minimum (Min) and maximum (Max)
values. In Table 17, concentrations for the Classical and Screen FA methods range from 0.040
to 4.523 g/t and from 0.038 to 2.650 g/t, respectively. Also, we can observe that CS and CK
indicate a positively skewed nature and high kurtosis level of the distributions for Screen FA and
Classical methods. The skewed nature and high kurtosis level can be confirmed by the histograms
in Figure 3.

Table 17 – Descriptive statistics of the concentrations of the gold particles (in g/t) taken by two measure-
ment methods.

Variable (Method) Mean SD MD Min Max CS CK

X (Classical) 0.289 0.424 0.151 0.040 4.523 5.306 41.158
Y (Screen FA) 0.294 0.337 0.176 0.038 2.650 3.045 12.639

 

Classical (g/t)

D
en

si
ty

0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

 

Screen FA (g/t)

D
en

si
ty

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Figure 3 – Histogram of the concentrations of the gold particles (in g/t) taken by two measurement
methods. The Classical method (left) and Screen FA method (right).

Next, we consider the model (4.2) in an equivalent representation ZZZ∗i = aaa∗+bbbx′i + eeei,

where ZZZ∗i = (X∗i ,Yi)
>, aaa∗ = (0,β ∗0 )

>, bbb = (1,β1)
> and eeei = (ui,εi)

>, i = 1, . . . ,501. Here,
β ∗0 = β0 + β1R, X∗i = Xi − R and R = X̄ = ∑

n
i=1 Xi/n (known constant). In addition, x′i ∼
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S t(ξ ∗,ω2,λ ,ηx) where ξ ∗ = ξ −R. To compute the asymptotic standard errors for the es-
timator of θθθ , the delta method was used. The centered covariate X∗i makes the computation of
the observed information matrix more stable.

In the sequel, we fit the STcT MEM as well as the competing models in Section 4.3.
Here, the degrees of freedom are considered as unknown parameters. These (low) estimates give
strong support against the normal distribution as an alternative to (4.3). Furthermore, Table 18
shows that the STcT MEM is selected by AIC and BIC over other competing models, followed
by the STN MEM and the TcT MEM in that order. The remaining models yield a much worse
fit. Table 19 displays the ML estimates and their asymptotic standard errors for all the MEM
considered in this section.

Table 18 – Model selection criteria.

Model

Criterion STcT STN TcT TN NN

AIC -1319.8 -1081.5 -1067.0 -753.7 -480.6
BIC -1290.3 -1056.2 -1041.7 -732.6 -463.7

Table 19 – ML estimates and asymptotic standard errors (SE).

Model

STcT STN TcT TN NN

Parameter Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE

β0
a −0.001 0.006 0.002 0.006 −0.004 0.006 0.002 0.006 0.001 0.006

β1
a 1.123 0.026 1.142 0.026 1.163 0.028 1.138 0.025 1.157 0.026

ξ 0.028 0.003 0.026 0.004 0.171 0.009 0.172 0.001 0.239 0.012
ω2 0.091 0.028 0.048 0.008 0.017 0.002 0.019 0.003 0.067 0.006
λ 192.3 160.9 118.3 98.40 - - - - - -
ηx 0.209 0.053 0.250 0.037 0.250 0.034 0.250 0.028 - -
ηe 0.250 0.047 - - 0.250 0.023 - - - -

a Statistical significance of the parameters (p-value): β0 (0.868) and β1 (< 0.0001).

Furthermore, as the TcT MEM and STcT MEM are two nested models (see Section
4.2.3), we test the null hypothesis H0 : the TcT MEM is preferable (or simply λ = 0) against
the alternative hypothesis Ha : the STcT MEM is preferable (or simply λ 6= 0). Testing the
hypothesis H0 is of interest to verify whether or not the inclusion of the skewness parameter is
significant. We consider the log-likelihood ratio (LR) test statistic given by LR = 2[`(θ̂θθ)− `(θ̂θθ 0]

for testing H0, which is asymptotically distributed according to the χ2
1 distribution, where `(θ̂θθ)

and `(θ̂θθ 0) are the log-likelihood functions evaluated at the ML estimates based on the full and
constrained models, respectively. Applying the test, we obtain LR = 254.810 (p-value < 0.0001).
Therefore, the parameter λ must be considered and there is evidence that the distributions of the
true unobserved xi’s are asymmetric.
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The scatter plot of the individual observations together with their standard deviations
and regression lines are shown in Figure 4. Notice that the ML estimates for β0 and β1 given
in Table 19 and fitted by the different models, were fairly similar including their estimated
asymptotic standard errors. Consequently, due to a slight difference among the ML estimates for
β1, the regression lines were almost close. It can also be noted that the estimates for ηx and ηe

indicated different levels of heaviness in the tails of the unobserved covariate and the random
errors distributions.
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Figure 4 – Individual observations and their standard deviations together with regression lines under three
different models.

4.5 Conclusion
In this chapter, we proposed an extension of the structural MEM under the assumption of

the normality, named STcT MEM, which offers a great flexibility for accommodating skewness
and heavy tails in the data. A special attractive characteristic of the proposed model is that it can
incorporate simultaneously different levels of heaviness in the tails of the true covariate and the
error terms distributions. We developed an EM-type algorithm to perform maximum likelihood
estimation of the parameters involved in the proposed model, which with some adaptations, was
also useful to fit other models we dealt with in this chapter. The simulation results indicate that
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the STcT MEM-based ML estimates presented good properties in small to moderate sample
sizes. When the data are generated from a MEM based on contaminated normal distributions
with distant contamination factor, the STcT MEM’s gain for estimating of (β0,β1)

> is more
efficient than the other models, when we have a considerable proportion of the x- and eee-outliers.
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CHAPTER

5
FUTURE WORK

In this chapter, we briefly describe some problems that we plan to address as future
work. We have studied maximum penalized likelihood method in a normal MEM using the
Jeffreys’ prior as the penalty function. We would like to use an orthogonalized version of the
Firth’s method or other penalty functions, see, e.g., Bolfarine and Cordani (1993), Azzalini and
Arellano-Valle (2013) and Lima and Cribari-Neto (2017).

On the other side, FGPQ’s for the Grubbs model were obtained by means of the structural
method, but they are not unique, which means that different FGPQ’s can be constructed by
using the other techniques outlined in Hannig, Iyer and Patterson (2006). Moreover, another
generalized fiducial distributions can be derived (HANNIG et al., 2016).

Instead of the variance parameters in the Grubbs model, FGPQ’s and GFD’s could
be built for other quantities of interest, for instance, the reliability of an instrument (σ2

x /σ2
u

or σ2
x /σ2

ε ). Generalized fiducial estimation methods for the three-instrument case might be
investigated.

In our simulation study related to the STcT MEM, we observed that it is necessary a larger
sample size for the estimation of the skewness parameter. Alternative methods of estimation (for
instance, penalized likelihood-based estimation) is subject of future work as well as assessment
of local influence and hypotheses testing procedures. Moreover, the distributions considered in
Lachos et al. (2010) could also be adapted in an analogous way to this work. For the case of the
assumption on the known error variances, some extension for the case of replicated observations
could be thought. Thus, this would permit us to consider the unknown heteroscedastic variances
estimable from replications (LIN; CAO, 2013; CAO et al., 2017). A Bayesian approach also
could be proposed as part of possible future work.

The observed information matrix was computed using numerical differentiation. Al-
ternatives to this approach are the method of Louis (1982) and other approaches reviewed in
McLachlan and Krishnan (2007, Section 4.7). Further work is needed to develop and compare
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these methods. Lastly, we have developed an EM-type algorithm to fit the STcT MEM. We would
like to implement this algorithm in a more efficient way so that it takes less time to converge.
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