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Abstract

A system of cold bosonic atoms loaded in an optical lattice potential can undergo a macroscopic
phase transition due to quantum fluctuations. As the depth of the lattice potential is increased,
the ground state of the many-body system is found to go from a superfluid to a Mott-insulator
state. In the presence of disorder a new phase intervenes in these transition: the Bose-glass
phase. Usual analysis of this phase transition is made within the framework of mean-field
theory. Such approximation predicts non-physical results for the condensate density. Taking
into consideration the lack of precise analytical results in the literature, we propose the use of
an effective-action approach for investigating such phase transition in the presence of disorder
at arbitrary temperatures. These method, based on standard field-theoretical considerations,
is used with the aim to improve the results of former analytical methods and provide better
qualitative understanding of the quantum phase transition. We considered static diagonal
disorder by means of a local chemical potential in the Bose-Hubbard model and obtained
the phase boundary for homogeneous and Gaussian disorder distributions. We compared the
condensate density predictions of our field theoretical effective-action method with the results
of standard mean-field approximation. The application of the effective-action method showed
to be promising in analyzing the superfluid to insulating states phase transition in the presence

of disorder as well as in improving former analytical results.

Key-words: Effective-action. Phase-transition. Bose-glass. Insulator. Superflud. Disorder.

Bose-Hubbard model. Bose-Einstein condensation.



Resumo

Um sistema de atomos bosénicos frios submetidos ao potencial de uma rede éptica pode
sofrer uma transic3o de fase macroscépica devido as flutuacdes quanticas. A medida que
a profundidade do potencial da rede é aumentada, verifica-se que o estado fundamental do
sistema passa de um superfluido para um estado isolante de Mott. Na presenca de desordem,
uma nova fase intervém nessa transicdo: o vidro de Bose. A anélise usual desta transicao
de fase é feita com o uso da teoria do campo médio. Tal aproximacdo apresenta resultados
ndo fisicos para a densidade de condensado do sistema. Considerando a falta de resultados
analiticos precisos na literatura, propomos o uso de uma abordagem de acdo efetiva para
investigar essa transicdo de fase na presenca de desordem em temperaturas arbitrarias. Esse
método, baseado em consideracGes de teoria de campos, é usado com o objetivo de melhorar
os resultados de métodos analiticos anteriores e fornecer melhor compreensido qualitativa da
transicdo de fase quantica. Consideramos desordem diagonal estética através de um potencial
quimico local no modelo de Bose-Hubbard e obtivemos a linha de transicao para distribuicGes
de desordem homogénea e Gaussiana. Foram comparadas as previsdes de densidade de
condensado do nosso método de acdo efetiva com os resultados da aproximacdo de campo
médio. A aplicacdo do método da acdo efetiva mostrou-se promissora na analise da transicao
entre superfluido e estados isolantes na presenca de desordem, bem como na melhora dos

resultados analiticos anteriores.

Palavras-chave: Acdo-efetiva. Transicdo-de-fase. Vidro-de-Bose. Superfluido. Isolante.

Desordem. Modelo-de-Bose-Hubbard. Condensado-de-Bose-Einstein.
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1 Introduction

1.1 Bose-Einstein condensation

It is a well established fact that the motion and interaction of ordinary mater in atomic
and subatomic scales can be described by the laws of quantum mechanics. When considering
a system of macroscopic size, the distribution of particles in each available quantum state
allows for different statistical treatments. This requires a distinction between two types of
particles: bosons and fermions. The different nature of these particles gives rise to a great
number of interesting physical phenomena. Identical fermions cannot occupy the same energy
state, whereas identical bosons can. In fact their aggregation in the same state can even be
macroscopic. Such a phenomenon was proposed by Albert Einstein in 1924 and currently still

engages a substantial amount of academic research.

Using the statistical method developed by Satyendra N. Bose for the derivation of
Planck's formula [1], Einstein was able to formulate the quantum theory of the monoatomic
ideal gas [2,3]. According to this theory, when a gas of non-interacting bosons is cooled down
to a certain critical temperature a new state of mater emerges: the Bose-Einstein Condensate
(BEC). Such a state is defined as the macroscopic population of the single-particle state with
zero momentum. This state was first thought unachievable given the cryogenic techniques of
the time. The prediction remained of no practical use for quite a long time. In 1938, Fritz
London suggested the theoretical concept of the BEC as an analogy to explain superfluidity
in “He [4]. Even though the initial theory dealt only with ideal gases, his predictions was later
proved to be right [5]. The experimental realization of the BEC requires a sample so cold that
the thermal de Broglie wavelength becomes larger than the mean spacing between particles. It

took almost 70 years until these extremely low temperatures became experimentally accessible.

Since the beginning of the XX century the force aspect of electromagnetic radiation was
experimentally confirmed, but it was only in the late 1970's that the use of this phenomenon
for cooling neutral atoms was suggested. Based on such ideas, laser cooling techniques were
developed during the 80's [6]. Using standing waves generated by counter-propagating lasers
pointed to an atomic gas sample, one can reduce the atomic speed. If the laser frequency is red
detuned bellow the atomic resonance frequency, an atom moving towards the light source is
more likely to absorb a photon due to Doppler effect. The photon is then spontaneously emitted
in a random direction by the atom. The main result of this cycle is to reduce the temperature
of the atomic cloud. With the use of this technique S. Chu, C. Cohen-Tannoudji, and W. D.
Phillips were able to cool atomic samples to temperature of the order of micro-Kelvin [6-8].
For this achievement they were awarded with the physics Nobel prize in 1997 [9].
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The first atomic BECs were produced in 1995 using dilute ultracold gases of alkali
atoms. The choice for alkali atoms was mainly determined by the fact that their electronic
transitions lie in a convenient spectral range allowing efficient manipulation by an optical laser.
Such condensates were observed in gases of Rubidium by Wieman and Cornell [10], Sodium
by Ketterle [11], and Lithium by Bradley [12] with the use of the laser cooling combined
with an evaporative cooling technique. This method consists of successively reducing the
systems trapping potential so that only the most energetic atoms can escape from the trap,
thus leaving the sample colder and decreasing the temperature to the order of nano-Kelvin.
Condensation was then verified using the so-called time-of-flight imaging, which consists of
releasing the atomic cloud from its magnetic trap so that it can freely expand for a few
mili-seconds and then taking absorption pictures (see Fig. 1). This successful experimental

realization culminated in the 2001 physics Nobel prize received by Ketterle, Wieman, and
Cornell [13].

Figure 1 — The series of pictures shows the changing density of a cloud of Rubidium atoms as
it is cooled down to lower and lower temperatures (form left to right) approaching
absolute zero. The sharp peaks in the latter pictures indicates the formation of a
BEC in this case at the temperature of 130 nano-Kelvin. Figure from Ref. [14].

After the first realization of a condensate, intense theoretical and experimental studies
took place. The phenomenon of condensation turned out to play a significant role in many
different fields of physics such as atomic and condensed matter physics [15]. Investigation
of BECs in weakly interacting systems could lead to a better understanding of macroscopic
quantum phenomena. In particular, when loaded into periodic potentials generated by laser
light, the BEC atoms can be organized in structures similar to crystal lattices. Therefore,
it is possible to simulate solid-state systems and also to investigate the role of interparticle

interaction in the strong correlated regime, which is one of the interests of this work.



Chapter 1. Introduction 10

1.2 Bosons in optical lattices

By using counter-propagating laser beams one can create artificial crystals of light:
the so-called optical lattices [16]. These electromagnetic standing waves, generated by pairs
of lasers orthogonaly aligned to each other, are of great use in the trapping of neutral atoms.
Such waves interact with the atoms inducing an electric dipole moment. As a result, the atomic
internal energy states are modified. The variation depends both on light intensity and laser
frequency. The laser light is usually tuned far from atomic resonance, such that spontaneous
emission can be neglected. The generated potential can be negative or positive depending on
whether the laser frequency is red or blue detuned from atomic resonance, respectively. With
the use of different frequencies between each pair of lasers it is possible to construct optical
lattices in one [17,18], two [19,20], and three dimensions [20] (see Fig. 2). Lattice spacing
can be controlled by changing the interference angle between the laser pairs, allowing to the

creation of even triangular [21] and Kagome structures [22].

(a) Optical lattice in 2D. (b) Optical lattice in 3D.

Figure 2 — Optical lattices formed by superimposing two or three pairs of orthogonal standing
waves. (a) For the 2D optical lattice the atoms can move freely in one direction
thus forming an array of tightly confining 1D tubes. (b) In the 3D case a simple
cubic structure is built confining the atoms in atractive potentials at each lattice
site. Figures from Ref. [16].

Optical lattices have been widely used as a tool to trap, cool, and control atoms. As it
is free from defects and provides a fine tuning of the lattice parameters, such structures show
advantages over solid-state systems to study models originally developed in condensed matter
physics. One of the most interesting cases is the one of a dilute gas of bosons in the strong
correlated regime. The application of a BEC loaded into an optical lattice offers a unique
possibility to study fundamental questions about such regimes [23]. As the BEC is formed
in temperatures of the order of nano-kelvin, the system will most probably be in the lowest
energy states of the lattice wells without any need to further cooling, which makes it easier
to investigate low-lying excitations. Furthermore, the raise in the density of condensates
provides an increased filling factor which implies that interatomic interactions can become
important [24]. The dynamics of bosons through such periodic optical potentials present

similar characteristics to the motion of valence electrons in metals. By controlling the laser
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intensity, the potential depth can be varied thus modifying the mobility regime of the particles

and inducing in the system a quantum phase transition to a localized ground state.

Due to of the low temperatures of a BEC, for shallow lattice potentials the ground
state of the weakly-interacting regime is sustained and most atoms remain condensed. When
the potential depth is increased, however, the strongly-interacting regime emerges. The
periodic potential changes the atom energy spectrum to a band structure. For sufficient
high potential depth, transitions between Bloch bands are suppressed and the atomic cloud is
confined in the lowest band. This configuration was proposed as a nearly perfect realization
of the Bose-Hubbard model [25], which describes bosonic particles with repulsive interactions
hopping through a lattice potential. Such model predicts a phase transition from a delocalized
to a localized state. This transition was predicted by Fisher et al. [26] and experimentally

proven by Greiner et al. [27].

a b c d.
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Figure 3 — Absorption pictures of multiple matter wave interference patterns obtained after
releasing an ultracold gas from an optical lattice with different potential depths:
(a) OF,; (b) 3E,;(c) 7TE,; (d) 10E,; (e) 13E,; (f) 14E,; (g) 16FE,; and (h) 20F,.
Where FE, is the recoil energy which will be presented from the chapter 2. Figure
from Ref. [27].

The system is characterized by two energies: the hopping energy, which is related to
the probability of an atom to go from a lattice site to its neighbor by tunneling effect, and
the on-site interaction energy, which acounts for interparticle interaction at the same site. If
the hopping energy is greater when compared to the on-site interaction energy the atoms can
move without viscosity through the system’s volume and the ground state is superfluid. In the
opposite case the system undergo a phase transition and a finite number of atoms becomes
localized around the potential minima, which configures a Mott-insulator state. This transition
can be directly tested by observing the multiple matter wave interference pattern presented
in absorption images of time-of-flight measurements [23,27], as can be seen in Fig. 3. For
small potential depths, perfect phase coherence can be observed, characterized by narrow

interference maxima, which indicates the presence of a superfluid. As the lattice potential is
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raised, the interference pattern vanishes which indicates localization in position space, thus

presenting the Mott insulator regime.

Real solid-state systems generally present imperfections such as impurities or defects.
As the system of a BEC in an optical lattice can be used to simulate condensed-matter models
of solid-state systems, it makes sense to ask what happens when imperfections are considered.
Such a case is usually addressed by means of a disordered lattice potential and allows for the
emergence of a third phase other then the superfluid and Mott insulator phases, as will be

discussed in the next section.

1.3 Disorder and the dirty boson problem

The study of a system of interacting bosonic particles in a random potential is defined
in the literature as the dirty boson problem [26,28-30]. In this problem the presence of disorder
along with the two-particle interaction yields an interplay between localization and superfluidity.
Such disorder can appear either naturally in magnetic wire traps, where imperfections of the
wire induce local disorder, or artificially by randomly adding impurity atoms of another species
in the sample or even by creating a random potential using speckle laser fields [31,32]. The

experimental apparatus to the realization of the last case is sketched in Fig. 4.

imaging beam dichroic mirror
=1 o e S
—>

speckle beam BEC cell

-]

diffusive plate

(a) Experimental apparatus. (b) Random potential.

Figure 4 — Random potential experimental apparatus. (a) Optical setup for creating the
speckle laser field and imaging bean for the BEC. (b) 3D representation of the
disordered potential. Figure from Ref. [31].

The presence of disorder in the superfluid-Mott insulator transition gives rise to a
new phase: the so-called Bose-glass phase. This phase emerges as a consequence of the
competition between the hopping energy, which tries to delocalize the particles and diminish
phase fluctuations, and the combined effect of interactions and random potential, which
accounts for the localization of particles and reduction of density fluctuations. The theoretical
prediction of such phase, made by Fisher et al. [26], points out that the transition to superfluidity
should occur only from the Bose-glass phase. A possible phase diagram of the phase transition

was proposed in the above cited paper and is shown in Fig. 5.
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Figure 5 — Possible phase diagram for bosons in an optical lattice with weak disorder and in
the zero-temperature limit. SF, BG, and MI represent the superfluid, Bose glass,
and Mott insulator regions, respectively. Figure from Ref. [26].

The Bose glass is characterized as an insulating phase with continuous spectrum
of excitations, showing aspects both from superfluid and insulator phases. Although some
attributes of this phase are well understood, detailed information concerning the boundary of
the transition are still lacking from experimental as well as theoretical point of view. Since
its prediction, different studies reached contradicting conclusions about the topic [33-37]. An
usual analytical investigation of this problem was made within the framework of mean-field
theory [38]. This method typically fails for low dimensions and presents discrepancies when
compared with high-precision Monte Carlo simulations [26,39]. The effective-action approach,
developed by F.E.A dos Santos et al. [40-42], proved to be efficient in the analysis of the

superfluid-Mott insulator transition in the absence of disorder.

The effective-action approach is constructed by using field-theoretical considerations
for the inclusion of source fields in the system’s Hamiltonian. Such source dependent term
has a direct connection with the order parameter of interest. Perturbation theory is used
to develop an expansion in the sources as well as in the hopping parameter for the theory
functionals. The effective action is calculated by means of a Legendre transformation of the
free energy and contains all information about the system observables regarding the superfluid
and insulating phases. The results of this approach showed to be accurate when compared
with high-precision simulations, with less then 3% error for the phase boundary in the 3D
case, also presenting better qualitative understanding of the transition deep in the superfluid
phase. Such a new theoretical method can be applied to a wide range of atomic systems
in optical lattices by only adapting the Legendre transformation, which leads to the effective
action, with the order parameter of the considered system [43,44]. Among other possible
applications are Bose-Bose mixtures [45,46] and optical lattices with non-trivial geometries,
such as triangular [21,47] and Kagomé [48].
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Considering the large applicability of the effective-action approach and motivated
by the lack of precise analytical methods in the literature, we propose the use of such
field-theoretical method to investigate quantum phase transitions in systems consisting of BECs
loaded into disordered optical potentials. In this work, we construct the general effective-action
formalism and apply it to the Bose-Hubbard model by considering static diagonal disorder,
which corresponds to a random chemical potential in the system’s Hamiltonian. We investigate
the phase boundary between superfluid and insulating states for homogeneous and Gaussian
disorder distribution. Our intent is to improve the results of former analytical methods
concerning the superfluid-insulator phase transition, as well as to characterize the Bose glass

region on the phase diagram for both zero and finite temperatures.

1.4 Overview

In order to organize the discussion, we give an outline of the main points discussed
here. In the first three chapters, including this introduction, we discuss some of the subjects
necessary for a general comprehension of this work. The main contribution is presented in the

last two chapters.

In Chapter 2, we discuss how a gas of bosonic ultracold particles can be described by
the Bose-Hubbard model. We review some aspects of how the interaction of neutral particles
with a laser field can be used to form optical dipole traps. The periodic part of the dipole
potential is used to discus single-particle properties in an optical lattice. The Bose-Hubbard
Hamiltonian is then derived by considering a short-range s-wave scattering pseudopotential
for interparticle interaction. We then calculate the Hamiltonian parameters by means of a
harmonic approximation and show their dependency on the lattice potential depth. A discussion

on how variations in such potential can lead to quantum phase transitions is presented.

In Chapter 3, we present a general discussion of quantum phase transitions. First, the
modern classification of second-order quantum phase transition is shown. We then discuss
how to use the Landau theory of phase transitions in order to obtain the phase boundary.
At last we apply the mean-field theory to obtain the phase boundary for the superfluid-Mott
insulator phase transition. Some limitations of this method are pointed out.

In Chapter 4, we construct the theory of the effective action. We present some
arguments of the general theory and show how finite temperature quantities can be obtained.
With the use of perturbation theory, we show how the important functionals of the effective-action
approach can be constructed with an expansion in the hopping parameter. A diagrammatic
notation is introduced to simplify further calculations. We then calculate the first-hopping

order approximation for the effective action.

In Chapter 5, the effective-action approach is applied to the disordered Bose-Hubbard

model. Disorder is introduced by considering a random chemical potential in the Hamiltonian.
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A disorder ensemble average is used to define a homogeneous order parameter. We then
calculate the disorder-averaged effective-action functional and use it to obtain the phase
boundary of the superfluid to non-superfluid phase transition for homogeneous and Gaussian
disorder distributions. Finally, we compare the effective-action and mean-field predictions for
the condensate density in the disordered case and present how new order parameters could be

introduced in order to find detailed information about each phase of the system.

In order to facilitate the comprehension, we include in Appendix 1 some details of the

calculations regarding the Matsubara space expression of the correlation functions.
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2 Bosons in optical lattices

As we have stated before, standing waves generated by pairs of lasers exert a force in
each atom of the ultracold cloud thus creating the lattice structure. Neutral atoms can interact
with light by both dissipative and conservative effects. Dissipative interaction is associated
with the absorption of photons followed by spontaneous emission. Laser cooling techniques
were developed based on this dissipative process [6]. Here we focus on the discussion of the
conservative aspect the light-atom interaction. Such effect arises from the coupling between
laser light and induced electric dipole moment which causes a shift in energy, called AC-Stark
shift. If the detuning between light and atomic resonance is large, spontaneous emission effects
can be neglected and the energy shift serves as a conservative trapping potential for bosonic
neutral atoms. By considering a spatial and time dependent electric field, in the appropriate
setting, the potential is approximately periodic and the single-particle solution presents a band
structure. For sufficiently deep lattices the system can be described by the Bose-Hubbard

model, which is the model we use to investigate quantum phase transitions in this work.

2.1 Optical dipole traps

We assume that the atomic wave function extends over distances much smaller than
the electric field wavelength. In this configuration, the interaction can be described by the
dipole approximation [49]

H =-d-&, (2.1)

where € is the electric field vector and d is the electric dipole moment operator, which has

the form

d=—e) 1t (2.2)
J

The t; are the position operators for the electrons with respect to the atomic nucleus and
the sum runs over all electrons of the atom. In order to set the scale of effects, we begin
by considering static fields. In a good approximation, atomic ground states are eigenstates
of the parity operator and have even parity. Therefore, as the dipole operator is composed
by position operators, in standard perturbation theory the first-order correction vanishes. The
second-order approximation for static electric field is given by

[(elf'lg)|

S
AE——ZH——§Q|S| s (23)

e

where ‘ A ‘2
(e|d - €|g)
a_2Z—Ee—Eg : (2.4)

e
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is the atomic polarizability, which determines the systems response to external fields, with €
defined as the unity vector in the direction of the field. As usual, we label the ground state by

g and the excited states by e. If we consider a two-level system, equation (2.3) simplifies to

[ (eld - elg)|

AE =+
E.—E,

€%, (2.5)

for the ground and excited states. Such perturbative result obtained for the optical induced
energy shift corresponds to a dipole potential. With this effect, the shifted energy could serves

as a potential well which traps the atom to its minimum. This is shown in Fig. (6).

E
_——  excited
ho,+ —— ------- state
ho
0+ — Y- ground
— state

Figure 6 — Induced energy shifts for a two-level atom. In the left-hand side are the red-detuned
light shifts of the ground and excited states. In the right-hand side is the ground
state potential well which can be used to trapp the atom. Figure from Ref. [50].

To describe the case of a time dependent electric field with frequency w, we write
E(t)=E e +E e ™ (2.6)

As such electric field is supposed to be real, the amplitudes must satisfy the following condition

EL=E. (2.7)
With a generalization of the approach used in the static field case, one can use time-dependent
perturbation theory and find the second order correction for the energy

AE = —;a(w) (ewP) . (2.8)

t

where we define (), as the time average, and the frequency dependent polarizability takes
the form R

E.—E,))|(eld-€lg

=23 )| (eld - elg)

(Ee — Ey)? — (hw)?

This expression differs for the static case by the shift £Aw in the energy denominators. In

‘ 2

(2.9)

practice, only resonant transitions are considered and the term with smallest energy denominator

in the polarizability dominates, which gives

e|d - €[g

a(w) ~ w (2.10)
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In the above calculation we implicitly assumed that the life time of the excited states
was infinite, which is usually not the case. In reality an atom in an excited state will always
decay to lower states by spontaneous emission of radiation. To account for this finite life
time of excited states one has to calculate the rate at which this deccay process occurs. This
can be done by considering the relation between the Einstein coefficients of absorption and
emission [51]. The inclusion of such consideration results in a complex polarizability, with the
real part being responsible for the dispersive properties of the interaction while the imaginary
part is related to the absorption of radiation. As we are considering absorption effects to be

neglected, we focus on the real part of the polarizability, which has the form

(Ee — Ey — hw)| (e]d - €|g)
(Ee - Eg - hw)Q + (hre/2)27

‘ 2

Re{a(w)} =~

(2.11)

where I', is the rate of the decay process. The shift in energy will maintain the form of equation
(2.8), and with this complex polarizability it assumes the role of an effective potential acting
on the atom. This shift is usually called AC-Stark shift. Detailed information about this

calculation can be found in Ref. [52].

It is convenient to express the energy shift in terms of the detuning, which is the
difference between the laser frequency w and the frequency w., = (E. — E,)/h of atomic
transition

d = Weyg — W, (2.12)

and the Rabi frequency, which accounts for the cycle of absorption and spontaneous emission

1 - 2
Qp = 3y/|(eld - £lg)][" (213)

The energy shift then becomes

hQO26

AE =R
52 + (AL, /2)2

(2.14)

For negative ¢ the electric field field is tuned bellow atomic resonance. Such configuration
characterizes the red detuned trap regime in which the dipole potential is negative, the
interaction thus attracts the atoms into the laser field and potential minima are found with
maxima light intensity. Therefore, the focal point of the laser beam already works as a stable
dipole trap for the atoms. In the opposite case, above atomic resonance, J is positive thus
constituting the blue detuned trap regime. Here the potential minima corresponds to minima
light intensity and the interaction repels atoms out of the laser field. The idea of blue detuned

dipole traps is to surround a spatial region with repulsive laser light.
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v blue

Figure 7 — llustration of optical dipole traps with red (left) and blue (right) detuning. Figure
from Ref. [50].

In order to obtain the periodic potential for the formation of optical lattices we have

also to consider spatial variations in the electric field
E(r,t) = E (r)e™ + E_,(r)e ™" (2.15)

If we take this spatial variation to be negligible inside the atoms, the interaction of laser light
and induced dipole moment will generate a spatially dependent effective potential felt by each

atom, which can be found in a similar manner as before with
1
Viun(r) = =5 a(w) (IEr,OF), . (2.16)

According to Ref. [53,54], the intensity of a Gaussian laser beam is given by

I(r) = Ie “ cos’kz, (2.17)

where we have considered that the laser beams are well aligned so that the beam width assumes
its smallest value wy. The intensity amplitude I, depends on the electric field amplitudes. This
configuration leads to a 3D potential of the form

_oytz? gu?iz? g2ty

Viu(r) = —Voe “ coskr — Vpe  “0 cos? ky — Voe ~ “6 cos?kz, (2.18)

which can be reorganized by considering a trap and an optical lattice part

Vi (r) = Vipap(r) + Vor(r), (2.19)
with
_2’!/2-0-222 _212+2z2 _2172"!‘2'!/2
%rap(lr) = _VE) <€ “ +e “0 +e “0 ),
(2.20)
2y2+22 a:2+z2 72m2+y2

Vor(r) = Voe  “0 sin’kz+ Voe  “6 sin? ky+ Voe ~ <0 sin®kez.

Assuming that the atoms are positioned near the center of the trap, the limit |r| < wy

is valid and the following approximation for the full potential can be made

Via(r) = =3Vo + V(r), (2.21)
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where
V(r)=W (sin2 kx + sin® ky + sin? k:z), (2.22)

which is the periodic potential that will be important when analyzing the emergent band

structure present in optical lattices configurations.

2.2 Single-particle properties in an optical lattice

We start by considering the effects of a periodic potential in the quantum state of a
single particle [55]. If we consider a one dimensional potential, the Schrodinger equation takes
the form -

~5 g2 TV sin” kz | U (z) = EPW0 (2), (2.23)

where k is the laser wave number, b is the band index and ¢ is the quasi-momentum. The
potential has periodicity d = A/2 = w/k. The solution for this equations is found by applying

the Bloch theorem and representing the eigenstates in terms of periodic eigenfunctions

U0 (2) = e (z), (2.24)

q q

where gbf]b)(x) has the same period as the potential. With this definition, we can see that
values of ¢ differing by 27n/d, with n integer, are physically equivalent, which means that the

quasi-momentum can be considered to be restricted to the first Brillouin zone —% < ¢ < 7.

It is convenient to write equation (2.23) in terms of the dimensionless quantities

(b)
/ ™ / d / VE) () Eq
_ " _ 2 Vv =2 d EW® =9 2.25
x d'ra q 7Tq’ 0 ER an q ER I ( )
where Er = ﬁ;’f is the recoil energy, i.e., the energy acquired by an atom after absorbing a

photon. Therefore, the dimensionless Schrodinger equation is

0? _
[—(%,2 + Vj sin? x’] \If((;,))(x’) = Eé?)\lfé?)(x’). (2.26)

By using the Bloch function representation (2.24) we get
2

[qﬂ - Qiq/ai, - E)i’z + Vj sin® x’} gbgl,’)(x’) = E(b)gbél,))(:c’). (2.27)

The periodicity of the Bloch wave ¢((;7) (x') assures that a Fourier series expansion is valid

(b((;/))(x’) = > cfj,’?lemx/. (2.28)
l=—00
With this expansion, equation (2.27) becomes

V/ b V/ b b (b) (b
[<qf fo s ;] &+ B (s + D) = BV (2.29)



Chapter 2. Bosons in optical lattices 21

This eigenvalue equation can be solved numerically by direct diagonalization, the solutions are
shown in Fig. (8).

E(q)/Ex E(q)/Ex
20 20 |
15 |
10 10t
5t
mﬁ q/k N I B IR q/k— N I I IR q/k
—-1.0-0.50.0 0.5 1.0 —-1.0-0.50.0 0.5 1.0 -1.0-0.50.0 0.5 1.0

Figure 8 — Changes in the Bloch bands as the potential depth V{ is increased. Left: Vj = 1.
Middle: Vi = 10. Right: Vj = 20. Here k is the laser wave number and ¢ the
quasi-momentum.

The figure shows a band structure that becomes more flat as the potential depth is
increased. For high enough lattice potential V[ the energy gap between the Bloch bands
increases and they become momentum independent. In the case of ultracold bosons in optical
lattices, transitions between energy bands are suppressed and the atoms are considered to
be confined to the lowest Bloch band, which simplifies the problem. With this, we can now
turn our attention to the dynamics of such bosons trough the lattice potential and derive the

Bose-Hubbard Hamiltonian.

2.3 Bose-Hubbard Hamiltonian

An accurate description of a system composed by NV identical bosons with interparticle
interaction can be made with the use of the second quantization technique [56,57]. The use
of such technique simplifies the discussion of many-body systems as it already incorporates
particle statistics with no need to any extra symmetrization. By considering that each particle
has associated with it a single-particle Hilbert space which can be spanned by a complete set
of orthonormal basis vectors, the many-body Hilbert space will be the subspace of the tensor
product of these N spaces which is symmetric under the interchange of any two particles.
A particularly useful basis for the construction of the many-body Hamiltonian is the basis of
coordinates. For this we make use of the field creation W' (r) and annihilation () operators.

The Hamiltonian of a many-body system of non-relativistic interacting identical bosons with
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external potential V' (7) is given by

H = / Erdt(r) l—;nv? +V(r) — ,/] T(r) 030)

1 ~ ~ ~ ~
+§/ d3r1/ Py Wt ()W (1) Vi (71, 70) (101 B (1),

where V;,;(71,72) is the interparticle interaction potential and 1" denotes the grand canonical

chemical potential. The field operators obey the following bosonic commutation relations

A

(B (r), Ui ()] =6(r =), [B(r),¥()] =0 and [Fi(r), ()] =0. (231)

The interaction potential between the atoms is approximated by a short-range s-wave

scattering pseudopotential [25, 58, 59]

Ara h?
‘/;nt(rlvr2):g(5(rl_r2) with g = W:; ) (2-32)

where ag is the s-wave scattering length. The many-body Hamiltonian (2.30) then becomes
~ o R ~ o ~ o o
H = / dgr{\IfT(r) [—ZVQ +V(r)— | V(r)+ g\PT(T>\I/T(T)\D(T)‘IJ<’I‘)}. (2.33)
m

We assume that all particles are confined to the lowest Bloch band of the optical lattice.
The field operator can then be expanded into a complete set of functions in the single-particle
Hilbert space. In particular, we use the so-called Wannier functions w(r) corresponding to the
periodic potential V'(7), which are well localized in each lattice site. For different lattice sites
such functions are orthogonal, allowing a convenient basis for the expansion of the bosonic

states. We can write the field operators as
U(r) = aw(r —r;),
i

. (2.34)
Wi(r) =3 alw (r — ),

where a; and &ZT» are the bosonic annihilation and creation operators of a particle in a given

lattice site. The orthogonality condition of the Wannier functions can be expressed as
/ Erw*(r — r)w(r —r;) = ;. (2.35)

With the use of such condition the commutation relations for the creation and annihilation

operators can be derived

(i, a] = 6y, [as,0;) =0, and [al,al] =o0. (2.36)

[RRd]

Substituting the relations (2.34) into the equation (2.33) we obtain the so-called Bose-Hubbard
Hamiltonian (BHH)

Z&I&I@i@i _MZ&;{&Z’; (2.37)
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where the in sum (ij) runs over all the nearest neighbors. For reasonably deep lattices,
contributions due to the overlaping of Wannier functions in sites other then the nearest

neighbors are negligible [59]. The explicit form of the BHH parameters is given by
J = / dErw*(r —r;) —iVZ + V(r)|w(r —r;)
2m 7
U= g/ &rlw(r))*, (2.38)

p=p — / Prw(r) [—le? + V('r)] w(r).

The BHH describes the physics of bosonic particles hopping through a lattice. The
hopping energy J is associated with the probability of a particle to hop from a lattice site to
its neighbor by tunnel effect and the on-site interaction U is responsible for the interparticle
interaction at the same lattice site. In this sense, a particle gains energy proportional to J
by hopping from one lattice site to the next while particles occupying the same site fell the
mutual interaction U. The chemical potential ;4 controls the number of particles in the grand
canonical ensemble. Variations in the lattice potential depth can change the relation between

these parameters. Direct calculation of such parameters is presented in the next section.

2.4 Hamiltonian parameters

A qualitative insight into the dependence of the BHH parameters can be obtained

with a harmonic approximation, expanding around the minima of each potential well [60].

The Wannier functions then factorize in the product of harmonic oscillator states in each

direction, which makes it possible to look at the problem in one dimension. In this harmonic

approximation, the one dimensional Schrodinger equation for the Wannier function is given by
h? o2 9 9

[_Qm&%’? + Wk z ]w(m) = Fw(z). (2.39)

In each lattice potential well, the ground state solution for the Wannier function is

w(z) = (kji?m> ' exp l—k;;f[ﬂnw?] : (2.40)

or, in dimensionless unities (2.25)

w(x) = (WdQVO/) Z exp [—W 2V0/ (2)2} (2.41)

From this ground state solution all the parameters can be approximated by applying it to the

relations shown in (2.38).
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For reasonably deep lattice potentials, Vi 2 5ER [59], the result of the integration is

2 72
J = ERV, (4 - 1) exp [—4\/%’],

E 3

p=p —3Er\ V.

Such results show that variations on the lattice potential depth will change the interplay

between the Hamiltonian parameters, which indicates a transition in the regime of movement
of the particles. For deep lattice potentials the barriers between lattice sites is increased thus
leading to vanishing hopping energy J. However, this process makes particles occupying the
same site more compressed and the repulsive interaction energy U is increased. This situation
can be explored by means of the theory of quantum phase transitions which is presented in

the next chapter.
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3 Quantum phase transitions

One important facet of bosonic particles in optical lattices is related to the study
of quantum phase transitions. Here, we present a general introduction of the theory of
second-order quantum phase transitions according to the modern classification. Such transitions
are driven by quantum fluctuations and are possible even at the zero-temperature limit. The
concept of spontaneous symmetry breaking during phase transition and the role of an order
parameter are discussed by means of the Landau theory. The order parameter is used to
construct an expansion for the thermodynamic potential which presents different properties in
each phase. The phase diagram for the superfluid-Mott insulator transition is obtained with
the use of a mean-field theory. Properties of these two phases are addressed and limitations

of the mean-field approximation are pointed out.

3.1 Second-order quantum phase transitions

Phase transition is the term used to characterize the description of the transition of a
macroscopic system from one state of matter to another. During such physical phenomena,
certain properties of the medium change, as a result of the variation of some external condition.
A familiar example would be water boiling to steam, where the liquid water becomes a gas upon
heating, which leads to an abrupt change in volume. The main external condition responsible
for the transition in this example is the change in temperature, however, phase transitions can
occur due to pressure variation or even due to the presence of external electric or magnetic
fields. To obtain a more general definition of a phase transition it is often useful to map
some of these external conditions into control parameters of the underlying Hamiltonian of
the given system. The use of such parameters makes it possible to define a phase boundary
in the control parameter space. A precise classification of a phase transition comes from
the analysis of the behavior of thermodynamic functions in such space [61]. Precisely, phase
transitions are defined as points in the parameter space where thermodynamic functions of

the given system present singularities.

In principle, for a finite system, singularities may never arise from the partition function,
as it is composed of a finite sum of analytical functions, therefore, always analytic. Singular
behavior of the partition function is made possible when the system's size together with
its number of particles are considered to be infinite. Such consideration is known as the
thermodynamic limit [62], which is usually a good approximation as macroscopic systems
typically contain particle number of the order of 10%3. As we approach this limit, singularities
in the partition function may emerge. To understand the role of non-analicity in phase

transitions it is convenient look at the behavior of the thermodynamic potential, as such
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function represents the thermodynamic state of the system. The modern classification of
phase transitions is based on the analysis of whether the thermodynamic potential varies

continuously or not during the transition.

Transitions that present a discontinuous thermodynamic potential are associated with
latent heat and are called first-order phase transitions. Examples would be solid-liquid and
liquid-gas transitions. If the thermodynamic potential varies continuously at the transition
point, no latent heat is involved and we are in the domain of a continuous or second-order
phase transitions. An example of such transition would be a ferromagnetic-paramagnetic phase
transition. A point in the phase diagram where a second-order phase transition takes place
is called critical point. Non-analycity near second-order phase transitions characterize the
so-called critical phenomena. Here, our main interest will be in second order quantum phase

transitions.

Unlike classical phase transitions, which are induced by a change in temperature,
quantum phase transitions are driven by quantum fluctuations. Therefore, such transitions are
allowed even at the zero-temperature limit. These quantum fluctuations can be interpreted
as non-analycities in the ground-state energy of the given system [63], where a competition
between control parameters of the system’s Hamiltonian takes place. If for sake of simplicity
we consider a Hamiltonian, H(g), whose degrees of freedom reside on the sites of a lattice and
which varies as function of a dimensionless coupling g, we can observe the evolution of the
ground state energy. If g couples only to a conserved quantity, we can write H(g) = Ho+gHj,
where Hy and H; commute. Such description assures the possibility of level crossing where
an excited state becomes the ground state when g = g, creating a point of non-analycity in
the ground state energy. More generally, an avoided level crossing becomes sharper as the

lattice size increases, thus leading to non-analycity in the infinite lattice limit (see Fig. (9)).

i ) \/
/\

g g
(a) (b)
Figure 9 — Low eingenvalues, F, of the Hamiltonian H(g) as a function of g on a finite lattice.

In (a) we see the actual level-crossing and in (b) the more general case of an avoided
level-crossing. Figure from Ref. [63].
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Second-order quantum phase transitions can be interpreted as transitions where the

characteristic energy scale of fluctuations vanishes as g approaches g.. The singular behavior
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of the energy of the lowest excitation above the ground state A F is assumed to be proportional
to some power of g — g. in the zero temperature limit. In the phase boundary, i.e. g — g,

scaling theory predicts
AE ~ Jlg — g, (3.1)

where 7 is the energy scale of characteristic microscopic coupling and 3v is a critical exponent.
The value of jv is independent of microscopic details of the Hamiltonian and is said to be
universal. If AFE is nonzero, the energy spectrum has a gap. In the other hand, if there are
excitations with arbitrarily low energies in the limit of infinite lattice the spectrum is said to

be gapless.

Phase transitions usually change the nature of correlations in the ground state. Along
with a vanishing energy scale, second-order quantum phase transitions present a divergent

correlation length &. Such divergence can be described in a similar manner as before by

¢~ Mg — g, (3.2)

where v is another critical exponent and A is an inverse length scale of the order of the inverse

lattice spacing. Comparing equations (3.1) and (3.2), we see that
AE ~ €75, (3.3)

From this relation we can see that as the characteristic length scale £ diverges, the energy gap
AFE vanishes, which is in agreement with our definition of second-order phase transition. The
exponent 3 is called the dynamic critical exponent. Although this formulation was made in the
zero-temperature limit, it turns out that it also serves as a powerful way to describe dynamic

and thermodynamic properties of systems near phase transition even for finite temperatures.

3.2 Landau theory

Throughout a phase transition, the symmetry presented by one of the phases may
be reduced when the phase boundary is crossed and the other phase is reached. In 1937
Lev Landau introduced the concept of a broken symmetry to explain second-order phase
transitions [64,65]. He introduced an extra unique thermodynamic variable to describe the
system in the less symmetrical phase: the order parameter. Such parameter represents the
degree of order across the phase boundary and it normally ranges from zero in the symmetric
phase to a non-zero value in the less symmetric one. The choice for this order parameter is
made by considering its utility. Well-known examples would be the spontaneous magnetization
for paramagnetic-ferromagnetic transition or the difference of the densities for liquid-gas

transitions.

As Bose-Einstein condensation implies phase coherence [15], a convenient choice for

the order parameter of a BEC would be the macroscopic wave function of the condensate
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U(r) = <\TJ(T)> In the last chapter we argued that the low-temperature physics of spinless
bosons loaded in optical latices may be well described by the single-band BHH. In this case,
the order parameter can be similarly defined as ¢); = (a;) or just v if the system is assumed
to be homogeneous. In the ordered phase, the order parameter must assume some value
Y = Ae, with a well defined value for §, while in the disordered phase we have 1) = 0.
In principle, the condensate wave function’s phase 6 is unknown, however, the ordered phase
is only achieved by spontaneous symmetry breaking when such quantity assumes a specific
value. This direction for @ is in practice decided by infinitesimal external perturbations such

as boundary conditions.

Without any external perturbation, the set of values for the phase 6 correspond to
a global U(1) symmetry in the BHH. Each possible value of # is associated with a set of
microscopic configurations of the system that have the same energy. According to Boltzmann's
ergodic hypothesis, as time progresses the system passes from one configuration to another
and will eventually visit all microscopic configurations. For a large system, however, the time
for it to visit the whole set of configurations may become infinite. Therefore, the system may
not be able to explore the whole configuration space and becomes confined to a subspace which
corresponds to ¢ = Ae’. Thus, spontaneous symmetry breaking is achieved dynamically as

a result of ergodicity breaking.

For the Landau theory, the central actor is the free-energy functional F, which has to

be minimized with respect to variations of . This can be expressed as
oF _ OF _
o o

The minimization of F is equivalent to the maximization of the entropy of the system. As

0, 0. (3.4)

consequence of the global symmetry of the BHH the free energy must be invariant under phase
rotations of the order parameter v). This implies that F must be a function of \W. The
order parameter increases continuously from zero when the ordered phase is reached. Near
the phase boundary its value is small, thus a good approximation for the free energy would be

the first few terms of the Taylor expansion in the order parameter

~7::CL0+@2|¢|2+CL4|7/J|4+‘” . (3.5)

According to this theory, second order phase transitions may be fully explained by only
considering the coefficients a; and a4. Equation (3.4) together with (3.5) gives the absolute

value of the order parameter at the vicinity of the phase boundary

9] = \/? (3.6)

If we take a4 to be positive, the phase transitions is characterized by a change in the sign of
as (see Fig. (10)).
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Figure 10 — Landau free energy functional. Figure (a) shows a single minimum potential which
characterizes the symmetric phase. Figure (b) show a Mexican-hat potential
typical in a symmetry-broken phase.

If ay > 0 the only solution for equation (3.6) is ¢ = 0, thus leading to a symmetric
phase. In the opposite case, for ay < 0, the free energy presents infinitely many minima with
1 # 0 each one with a different phase 6, which characterizes the symmetry-broken phase.
Therefore, the condition a; = 0 defines the phase boundary between ordered and disordered

phases in the control parameter space.

3.3 Mean-field approach to the superfluid-Mott insulator transition

By considering the number operator n; = dldi we can re-write the BHH in equation

(2.37) in the following form
A U A N R
i ' (i5)

(2

Here, we consider the zero-temperature limit. The non-local hopping term makes it difficult for
a direct solution. This problem can be simplified by means of a mean-field approach. Such
method consists of an approximation of the boson creation and annihilation operators by their

expectation values

With this relations the hopping term can be expanded as
~J Y ala; = —JY ((al) (ay) + (al ) oa; + dal (a;) + dalsa,). (3.9)
(i5) (i5)

If we neglect products of fluctuations, i.e., neglect the term 5&}5&]-, and assume homogeneity
of the system, which means (d;) = ¢ and <CAL}> = 1*, the hopping term takes the simpler

form

1

—J > alay ~ —J2 Y (Yas + alv — ), (3.10)
(i)
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where z is the number of nearest neighbors. Such approximation makes it possible to obtain
the mean-field Hamiltonian
a U A (A ~ * A A *
HMF:EZni(ni—l)—uZni—JzZ<w ai—i-aj-l/z—w w) (3.11)
Due to the homogeneity assumption the order parameter is site independent, which
implies that translational symmetry is not broken. Our analysis is thus much simpler as the
problem is described as a set of identical independent Hamiltonians one for each lattice site.
The mean-field Hamiltonian H,;r does not present an explicit global U(1) symmetry as does
the BHH, which is necessary for the emergence of a symmetry-broken phase. However, if we
treat the new hopping term as a perturbation, the ground state energy must still present phase

invariance in the order parameter and can be expanded as a Landau series

Eyr(|9]?)
Ny

where N is the total number of lattice sites, ag is the ground state energy of the BHH for the

:a0+a2|w|2+a4|@/z|4+...7 (312)

case of J = 0 and the two coefficients a; and a4 can be calculated by Rayleigh-Schrodinger

perturbation theory. The unperturbed part of the Hamiltonian is

Hy = gﬁ(ﬁ —1) — pn, (3.13)
where we ignored the site index as all site are equivalent. This Hamiltonian depends only on
the number operator, thus its eigenstates contain an integer number of bosons per lattice site
and the eigenvalues are given by

fn = gn(n —1) — pn. (3.14)

Comparing different eigenvalues, we see that the n which minimizes the unperturbed energy

n(Z) — 1+ int(Z), (3.15)

where int(%) stands for the integer part of #;. Applying time-independent second-order

has the form

perturbation theory to the hopping term in the mean-field Hamiltonian, we obtain

ap = fn,
= JZ z 2 n+1 n
ag = Jz+ (J2) (fn_fn+1 +fn_fn1>7
a—ﬁhf< (n+2n+1)  aln—1) ) (3.16)
e (fn - fn+1)2(fn - fn+2) (fn - fn_1)2(fn — fn_2>

—(Jz)4< n+1 N n )( n+1 L_n )
(fn_fn-l—l)Q (fn_fn—1)2 fn_fn—H fn_fn—l .

We calculate the phase boundary by imposing the condition a; = 0, which leads to

J:  (n—p/U)(p/U —n+1)
== T . (3.17)
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The phase diagram is depicted in Fig. 11. Such diagram shows a series of lobes, each
one corresponding to an occupation number n. Inside these lobes the particle density is
constant, which implies that they are Mott-insulator phases. Out of this region the order
parameter becomes non-zero indicating the emergence of a macroscopic wave function, which
corresponds to a BEC. As a consequence of the existence of such wave function, a fraction
of the system moves without viscosity through the lattice characterizing a superfluid phase.
Using a relation analogous to the equation (3.6) for the mean-field energy minimization near
the phase boundary but still in the superfluid phase we can define |@DMF|2 = —3& as the
condensate density as it accounts for the density of particles sharing the condensate wave

function.

0.20 T T

Jz/U

Figure 11 — Mean field quantum phase diagram for the Bose-Hubbard model. The filled
blue region corresponds to successive Mott lobes each associated to an integer
occupation number n. Outside of this lobes is the superfluid region.

The critical point for the transition from a superfluid to a Mott insulator state with
an integer number of particles n is given by the ratio J/U at the up border of the graph. A
large chemical potential will reveal further lobes representing Mott-insulator states with higher
occupation numbers. The Mott-insulator state opens up an energy gap in the spectrum of
excitations [23]. As discussed in the previous section, scaling theory shows [26] that close to

the critical point this gap vanishes as

s (3).-3)"

These mean-field approach yields 3v = 1/2 [23,66].

The result obtained through the mean-field theory allows for the calculation of the

superfluid density. This quantity is defined as the effective fluid density that remains at rest
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when the entire system is moved at constant velocity [67]. We can calculate the superfluid
density introducing a Galilei boost [40, 68]
1
E(¢) = E(0) + ipSNsva, (3.19)
with E(¢) being boosted energy, F(0) the energy without the boost, p, the superfluid density,
m the effective particle mass, and v the velocity. The vector ¢ is related to the velocity in

the following way
h
= 3.20

where L is the systems extent in the velocity direction. Equivalently, we can add the Peierls

phase factor to the bosonic operator
a; — 4, (3.21)

The superfluid density is then defined as

212

= i Noer L)~ B0 (3.22)

Ps

As shown in Ref. [68], in the mean-field approximation the superfluid density has exactly the
same value as the condensate density. Fig. 12 shows such density for different values of the

chemical potential.
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Figure 12 — Mean field condensate/superfluid density as a function of the hopping parameter.
The blue, red, and green lines correspond to p/U = 0.2, u/U = 0.5 and p/U =
0.7, respectively.

As the hopping parameter goes deeper in the superfluid phase, we would expect

an increase in the condensate density. We can see that the mean-field result predicts an



Chapter 3. Quantum phase transitions 33

non-physical behavior for such quantity. These limitations of the mean-field theory were
pointed out in Ref. [41,42], where it was also shown that such theory predicts a non-physical
compressibility. In addition, the approximations are too restrictive, thus eliminating any
difference between superfluid and condensate density. In order to improve these analytical
results one can use field-theoretical considerations and apply an effective-action approach.

The construction of this method is shown in the next chapter.
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4 Effective-action approach

In this chapter we use quantum field theory arguments to derive a Landau expansion
for an effective action with a spatially and temporally independent global order parameter,
thus defining the effective potential. This function encloses all information necessary to
study quantum phase transitions at zero and arbitrary temperatures. In particular, we use
the Bose-Hubbard model in order to construct such a function as a Taylor expansion of
the hopping parameter. In order to simplify our calculations, a diagrammatic notation is
introduced, which facilitates the computation of high-order terms in the hopping expansion.
We use such representation to obtain all effective-action terms needed to our investigation of
the superfluid-insulator transition in the presence of disorder. The calculations presented in

this chapter follow the ideias from Ref. [40-42], where detailed information can be found.

4.1 General theory

So far we have discussed second-order quantum phase transitions where the global U(1)
symmetry is broken with the assumption of a homogeneous order parameter. This approach
is not valid for dealing with phase transitions which also present translational symmetry
breaking, where we would have a site-dependent order parameter. Therefore, in order to take
this non-homogeneity into consideration, we must introduce to our analysis site-dependent
sources, which lead to a more general thermodynamic potential. The site-dependent sources
Ji and j! impose the constraint (G;) = 1; and <&I> = 1. An even broader theory would
be accomplished by means of an analogy between the quantum-mechanical time evolution
operator and the quantum-statistical density matrix. |f we consider 4 = 1, the evolution
operator e~ shows the same form of the operator e=BH which can be thought of as a
quantum-evolution operator evolving in imaginary time from 0 to 3 with a Wick rotation
T — it. With this general field theoretical considerations [69, 70], the study of the system
near a second-order quantum phase transition can be made by introducing to the Hamiltonian

site-dependent as well as imaginary-time dependent sources j;(7) and j(7)
I:[BH(T):[:IBH—FZ[j:(T)CALZ—FjZ(T)&H (41)
The introduction of such sources is artificially made with the intention of explicitly breaking

any global symmetries.

In order to find a perturbative expression for the grand canonical free energy, we notice

that the imaginary-time evolution operator obeys the following equation

_aUgT,m) = Hpu(N)U (7, 70), (4.2)
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where U(TO, 70) = 1. The solution for this differential equation can be expressed as
Ulr,19) = T{exp{—/ dT/I:IBH<T,):| }, (4.3)
70

where T stands for the time-ordering operator. The generalized source-dependent grand

canonical partition function is then defined as

2155 (7). 3:(7)] = Tr[U(5,0)]. (4.4)

With this quantity, we are able to obtain the free-energy functional

Flji (r), 5i(7)] = —;'n{ZU?‘(T)Ji(T)]}- (4.5)

A more general investigation of phase transitions can be made through this free-energy
functional. In addition, physical quantities may be found by taking functional derivatives of F

with respect to the sources. In particular, the order parameters are given by

SF1ji (7). ()] SF(ji (7). ()]
55 (7) s 4o

By means of a Legendre transformation of the free energy, we find the effective action which

(1) = (a(7)) = B vi(r) = (al(r)) = B

depends on the order parameter field

Dl (), il F—fz/df (7) + wi(r)ji (7). (4.7)

Once we observe that the real physical situation of interest corresponds to the case where
the artificially introduced sources vanishes, j;(7) = j*(7) = 0, the importance of the effective

action is understood. As j and ¢* are conjugate variables, we must have

T [Y7(7), di(7)]

i) = P SO ang i) = g2, (4.9
thus the physical situation is obtained for

07 (1) 5%(7)
This means that a stationary effective action gives the physical values for the order parameters.
Therefore, the effective action becomes a fundamental component of our theory for the analysis
of phase transitions, as it incorporates fully the information of the BHH regardless of the phase

of the system.

4.2 Physical quantities at finite temperature

Since we are describing the statistical state of a quantum system, it is convenient

to establish the expected value of any arbitrary observable operator in the density matrix
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formulation of quantum mechanics. As we are interested in finite temperature properties, the

imaginary-time formalism should be of use. The expected value of an arbitrary operator A(T)

is given by
(A(7)) = Tr [poA(7)), (4.10)
where the operator p, is characterized by thermally distributed quantum states
eBH
Po = = (4.11)

with Z =Tr [e*ﬁﬁ} being the partition function. In particular, when dealing with a quantum
many-body system, the investigation of the Green's function plays an important role. All
single-particle properties of such systems may be extracted from these functions. Accordingly,
the Green's function can be defined as the thermal average of the time-ordered product of the
bosonic creation and annihilation operators in the Heisenberg representation

GO (71135 Tyl 8553 i) = & T { e 0T [ (m) g, ()l (7)ol ()]} (4.12)
The expected value of physical quantities may be calculated out of these functions, which are
also known as n-point correlation functions.

For the full BHH, an analytic form for the eingenstates and eigenenergies cannot be
direct calculated, thus obtaining the exact expression for the Green's function is not possible in
this case. With the use of the source term added to the Hamiltonian in the last section, we may
approach such calculation approximately with a perturbative treatment. A series expansion of

equation (4.3) gives
N T N ]_ T T R N
Ulr,m9) =1— / dr'H(7") + 5/ dT’/ dr"T {H(T’)H(T”)} +e (4.13)
70 70 70

The semi-group property of the imaginary-time evolution operator allows us to re-write it by

isolating a subinterval from 7 — A to 7 + A, with A > 0,
UB,0)=UB, 7+ MU+ A, 7—A)U(r — A,0). (4.14)

With this expression, a functional derivative of the evolution operator with respect to the

source j(7) gives

5U(3,0) - SU(T+ A, 7 —A) -
— 22 =U(B,T+A - Ur — A,0). 4.15
957 (7) ( ) 977 (7) ( ) (+19)
With the use of equation (4.13), we can obtain
WEABT=8) — —, 1 [T48 dr'[O(r — )a A (r') + O(r — 7)H ()i — -+, (4.16)

where O(7) is the Heaveside step function. In the limit of A — 0 the equation (4.15) can be

expressed as

sU(5,0) _ 6 Ot
St = VB nal(r0) = U5, 0)a(n), (4.17)
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with a;(7) = U_I(T, O)diU(T, 0). The Heisenberg operators are recovered by setting j;(7) =

J¥(7) = 0. Successive functional derivatives of (4.17) give us

s tm U (8,0) 7 Pla - ~f -
57 (), G (- o |~ U O i, (m) s, (m)al (7).

in

(77,)]. (4.18)

Finally, the trace of this equation leads to the Green's function in terms of the
source-dependent partition function

1 st tm) Z[5* 4]
57 057, (r1)--055, (r)djyr (7])--0jyy (770)

n,m . . ; VAN N P —
G\ )(71,11,...,Tn,zn\Tl,zl,...,Tm,zm)—Z[

(4.19)

Jr=j=0
With this relation, physical quantities can be calculated from the partition function. Such

function will also be obtained by means of a perturbative approach, on which we focus in the

next section.

4.3 Perturbation theory

Since we cannot calculate the exact form of the eigenenergiess and eigenstates of
the full BHH analytically, we use perturbation theory as a tool to approximate the partition
function of the system. With this purpose, we treat the BHH as the special case of a more
general class of Hamiltonians which are composed by the sum of a local term plus a hopping
term

H=H + H, (4.20)

with local and hopping term being defined respectively as
=Y fih) and Hy=-Y Jyala,. (4.21)

The function f;(7;) must include a dependency on the chemical potential as we are working
in the grand canonical ensemble. The local term allows for the consideration of interactions
between any finite number of bosons in the same lattice site and the hopping term accounts

for the tunneling among sites arbitrarily distant. The BHH is recovered with the conditions

U J if ij are nearest neighboors,
2 0 otherwise.

We notice that the full Hamiltonian becomes local if the hopping term is neglected.
For a deep lattice potential this parameter is small and the effect of the interaction between
particles is strong. The hopping term can thus be used as an expansion parameter. We start

by adding to the Hamiltonian the source term of equation (4.1)

A A

H(r) = Ho(7) + Hy, (4.23)
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where

A

Ho(r)=Hi+H, , H = Y 7 (T)as + js(r)al] (4.24)
We can factorize the hopping-dependent part out of the imaginary-time evolution operator

U(r,0) = Uy(r,0)U4(7,0), (4.25)
where the unperturbed part UO(T, 0) obeys the following equation

—8(]‘3(:0) = Ho(7)Uy(,0), (4.26)

with solution analogous to equation (4.3)
Uo(7,m0) = T{exp[—/ dT’ﬁo(T’)} } (4.27)
70

The interaction part of the evolution operator related to the hopping parameter can be

constructed following equations (4.2) and (4.26), which gives

_aUha(:’ O) - I:Ih(T)Uh<T> O)’ (4'28)

where we have H,(7) = Uy (7,0)H,Uy(7,0). The solution for the above equation can be

put in a form similar to equation (4.3)
Uh(T, T0) = T{exp[—/ dT'I:[h(T’)”. (4.29)
70
We can write the partition function as
N W (B s
Zl* 4] = Tr {Uo(ﬁ,O)Te I} dTHh“)} (4.30)

With the use of equations (4.18) and (4.21) the partition function Z[j*, j] can be written in

terms of functional derivatives of the hopping-free partition function Zy[j*, j|

Z[j*,j] = exp [ZJ”/ drd] (T)]Zo[j*,j], (4.31)
were we have
Zol5*, ) = Tr [Oo(7,0)]. (4.32)

The above expression shows that we can approximate the full partition function of
the system by means of a hopping expansion. The hopping-free partition function is also
calculated perturbatively in terms of the sources. Such powerful process of approximation can
be thought of as a strong-coupling expansion [71]. A simple way to find the functionals of the

theory is to use a diagrammatic notation, which we introduce in the next section.
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4.4 Diagrammatic representation

The hopping-free partition function is calculated with J;; = 0, thus it splits into a

product of independent functions at each lattice site

Zolg*, HZo 7, 7] (4.33)

With the use of the imaginary-time evolution operator [70(7, 0), such partition function can

be written as

AN A 8 .
ZOi [j*7j] =Ty {e—/@fi(ni)Te— fo dTHS(T):l

(4.34)

= Tr[ —B1il ”’ / dTTl"[ “BLOI (1 )}

To simplify our diagrammatic representation, we define the functional
Wi, j] = {Z[j*, j]} = =BF[j", jl, (4.35)

which can be expanded as a series of the sources j* and j as
. 0 A B /- (2) N /
Wil =W+ 3 [ ar [ arit oW i)
Ej/de@/%/ﬁmﬁm@WMHMWm&mmme

112172

(4.36)
This functional is analogously separated in a sum of independent terms at each lattice site for

the zero-hopping case
Wolj*, 1] ZWw 1. (4.37)

We can expand each site dependent functional as a power series of sources j* and j
. o  [? b @) N
Wl =W+ [ ar [ arli@wid (rir i)

1 B B B , B I . (4) PN (N (]
+ ﬁ/o dﬁ/o dTQ/o dTl/o drogi (11)3; (T2)Wo, " (71, 723 71, 72)Ji (1) i (72) + -+ -
(4.38)

This quantity is called the 2n-point connected correlation function.

By using a notation similar to the one found in Ref. [72] for the Hubbard model, we

can define the terms for the free functional W, expansion diagrammatically as
71
T2

, (4.39)

(2n) ot
Woi ' (T1y ooy Ty Ty - e

Tn

where each leg in the diagram corresponds to a time variable and the central point stands

for a given lattice site. In this notation, the functional Wy[j*, j] becomes the sum of 1-vertex
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diagrams

Wo[j*,]] —e + ——o—bp— | ﬁ >< 3'2 % (4.40)

Each diagram in the above expression corresponds to a term of equation (4.38). To avoid
confusion, we have shorten the notation by assuming that each unlabeled point means a sum
over all lattice sites and each unlabeled inward (outward) line means a multiplication by j*
(7) and integration from 0 to [ in imaginary time. Each diagram presents a symmetry factor
(nil)z wich corresponds to the number n; of permutation between the inward and outward

lines. These diagrams are called the connected diagrams.

With the definition of the energy functional W, the hopping-free partition function can

Wo

be written as Z; = e"°. If we represent the [-th diagram by D;, the unperturbed partition

function becomes

—eZle—HeDl—HZ—D . (4.41)

l n;= 0
From this expression we see that Zj is composed by products of diagrams multiplied by some
symmetry factor. These are called the disconnected diagrams. Thus, we can express the

unperturbed partition function diagrammatically as

1 1 1
Zlal=e® | et g e T ><+2!2—>—o—>— 4.42
o 1 (4.42)

The full partition function could be approximately obtained by applying the hopping expansion

given by equation (4.31) to the above equation. Explicitly, the n-th order hopping approximation

is given by the operator % >ij Jij foﬂ dTWEj(T) acting n times on Zy[j*, j]. The effect of
! (1)57;

the functional derivatives and

5]’;6(7) 5 ( jona local diagram is the introduction of an index ¢
to its central vertex and the addition of a imaginary time variable 7 to its inward or outward
lines, respectively. The result of the full operator acting on products of diagrams is to generate
different diagrams by joining an inward open line of one diagram with the outward open line
of another. Through this process, the first-order hopping correction to the partition function

is given by

. ]l o
Z[5*, j] = e® {—»—o—»—+-»>o—>-+2'_>_._>_ _»_._>_""'

1 1
+ §>< j 2|2><

This function is also called the generating functional of the full Green's functions. As a

(4.43)

consequence of the so-called linked cluster theorem [73,74], the logarithm of this function
contains only connected diagrams. For this reason, the energy W [j*, j] is called the generating

functional of the connected diagrams or generating functional of the connected Green's functions.



Chapter 4. Effective-action approach 41

Therefore, the energy functional W[j*, j] is given by

e 1 1 1
Wlj*, jl = e + e +-»»>—+2!2><+2!>0<+2!><+"'

(4.44)

In this work we focus on results of first-order hopping correction. We can now
summarize the rules for calculating the generating functionals Z and W within the diagrammatic

representation:

e The partition function can be obtained from the generator of connected diagrams by
the relation Z = eV

e The functional W is composed by a sum of connected diagrams each multiplied by
a symmetry factor. Each connected diagram has a number n, of vertices (points), a
number n; of external lines, divided into n;« inward and n; outward lines, and a number
n; of internal lines between all vertices. We also define n,, as the number of vertex

connected with lines;

e Our perturbation theory is based on two procedures: the expansion on the sources j(7)
and j;(7) and the hopping term expansion. The order of a diagram in the sources
expansion is given by the number of inward and outward lines, whereas in the hopping
expansion the order with respect to the hoping matrix .J;; is given by the number of
internal lines connecting the vertices. In order to calculate the n-th order in the sources
and the m-th order in the hopping matrix, we must sum all diagrams containing n

external lines and m internal lines considering their symmetry factor;

L. then we

TL,L!'

e We calculate the symmetry factor by the following steps: First we take
multiply it by ﬁ for each kind of vertex in the diagram; for each vertex we multiply
by ﬁ and last multiply by the number of ways of joining the vertices so we obtain

!

different diagrams.

The diagrammatic notation simplifies the calculation of our perturbative expansion.
High-order terms can be obtained simply by following the above stated rules. We now turn
our attention to the diagrammatic representation of the effective action, as it is the central

element of our theory.

45 Effective action

In the last section, we have seen that the diagrammatic technique simplifies the
calculation of the systems partition function by only considering the connected diagrams. This

task could become even simpler with the introduction of the so-called one-particle irreducible
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(1PI) diagrams. A connected diagram is called 1PI if it cannot be decomposed into two
disconnected pieces by cutting one of its internal lines [70, 75]. As an example, we start by
analyzing the two-point correlation function. Following the diagrammatic rules we get
Win(157') = —"@"‘
i’ ;T
—6“/—>—o—>—+—>-o->-o->- +->-o->-o—>-o—>- +->-o->-o->-o->-o—>-

i T (4.45)
+5u—>Q>— —>Q>o—>— —»»Q»— —»@—»—

If we consider only the 1PI diagrams the 1Pl two-point correlation function becomes

W.(.}P')(T; ) = O = ;i —>—o— + 0i —»Q»— +—>—©—>— +--- (4.46)
;T a7 oooa T o T

T

With the 1PI two-point function combined with the hopping matrix the full two-point function
of equation (4.45) can be obtained

> = >0 +=0Or0= + =OrO=0O + (447

i T uTood T uT o AT T AT 0T
With this process any of the n-point correlation functions can be calculated by means of the
1Pl diagrams. The 4-point correlation function is given by

-/ . / .
g ) 193 Ty 125 T2
19, To 125 T2
(4)
W (7-17 T2, 7-17 7-2) = . (448)

i112; 2 z

- .
Zl’Tl 21,7-1 . , .
15T 11,7

Along with the introduction of the 1Pl diagrams it is convenient to define the generating
functional of such diagrams. This generating functional is given by a Legendre transformation
of W

~OTE ) =W+ S [ i) RO, (449)

which is exactly the effective action, where we use the (3 to identify this formula with equation
(4.7). A series expansion of I' in terms of the order parameters 1) and ¢* gives

BTy, 9] = r<°>+2/ dT/ dr' g (P TP (77 ) ()

i’

.. / dr / d / ar / Aty (s, (r) T (70, 7o el ) (e (75) +

Z’LZIZQ

(4.50)
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Applying a Legendre transformation to equation (4.36) we get the following form for the
coefficients
ro — o
@ (r;7') = {W@)}_l

i’
(4)
F“ZQ st dly (7_17 T2 Tla 7—2)

(r:7)

(4.51)
/ d’i’{/ / d / dT,// / d /”WZ”Z” Zl ’L/ (7_]_, 7_2, 7—1,//, Té,/)
1 -1 -1
X |:W(2):| i (Tl? 7—1 ) |:W(2):| . <T2’ 7_2 ) |:W(2):| 111 / ( {//7 T]i) [W(2):| i1l ( é,/7 Té)
1117 1222 i Ty Uy
The diagrams for the coefficients are
P () =i O i
i Ty SO - 12372 (4.52)
@ 7
i (71, T2y T, T) = O
, ¥ A
Finally, the effective action in terms of the 1P| diagrams is
) © 1 N~ \\ hd
_ﬁr[w Jw] =T ->.(:)-> + 55 2|2 (:I + 553 3|2 - -,(I-\->- +oe (453)
RARN R\,

d

Explicit calculation of these diagrams allows us to investigate further details of phase transitions
with a Landau theory. In the next section, we introduce a different representation with the

aim of finding the mathematical expressions for such diagrams.

4.6 Matsubara frequencies

The imaginary time formulation of quantum statistical mechanics is also known as
Matsubara formalism. In 1955, Takeo Matsubara proposed this approach by using an expansion
of the ideal gas mean single-particle occupation number to define what today we call the
Matsubara frequencies [76]. As the imaginary-time variable is defined over the interval from
0 to 3, we can expand any single-variable function g(7) of our theory in a Fourier series such

as

1 )
= 3 Z e “Tg(w), (4.54)

where the discrete variables w; = % are the so-called Matsubara frequencies. The inverse

transformation then becomes

g(w) = /OB dre™7g(r). (4.55)
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These transformations can also be defined for multi-variable functions such as the generating
functionals W and I". With this transformation, equations (4.36) and (4.50) can be written
as

W(j*, j] = w® t 5 Z > g w w,w')ji(w')
1 1 ZZ we (4) (4.56)
+ 5 212 24 Z Z .721 (wl)]w (WQ)VVZNW il (w17w27w17w2)Jz (w1>]z ( ) o
212211 12 wlwgwlwz
—BL[", ] = ZZw (w,w")hi(w)
11 e ( (4.57)

topm 2 2 wuwowlz(wz)rzf;”<w1,w2,w1,w2>¢2 CAACARS

111211 22 wiwaw! w2

It turns out that working in the frequency space simplifies our calculations, as the
systems that we are considering turn out to present time invariance. The diagrammatic
expansion maintain the same form in Matsubara space. With this representation we can now

compute the explicit form of the generating functionals.

4.7 Zeroth-hopping order result

In order to find the expression for the effective action expansion coefficients, we start by
considering the case where J;; = 0. Similarly to the other generating functions of the theory,
for the zero hopping case, the effective action can be separated into independent functions for

each lattice site, thus giving
The series representation for the zero-hopping local action T'y; is

oy i) =10+ [ ar [* gt or@ )

2‘2/ dﬁ/ de/ dT1/ dTng 1) Y5 (12)T Oz)<7_177—27TluTQ)w1<T1)¢Z(T2>+ T
(4.59)

or in the diagrammatic representation

\ 7
Bt 6] = IO 4 - e +i s« (4.60)

7

A Legendre transform of equation (4.38) gives for the zeroth-order term

T =wi = lnz e Plitn (4.61)
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The second-order term F(()f) is given by the inverse of Wéf). As shown in Ref. [70], the full

correlation functions can be decomposed into connected correlation functions. In our theory,

this decomposition for the two-point function gives

1 ISN
G (r,7') = W (r,7') = —— Tr {0 [a,(+")al (7)] }, (4.62)
0i
where a direct computation gives
WO Z e~ Bliln [ 7./) (n + 1)6(7*7/)[fi(n)*fi(n+1)}
Oz n=0 (463)

+O(r" — T)ne(T/’T)[f"(”)’fi(”*l)]].
In the Matsubara representation, we get
Wéf) (w,w') = B gi(w), (4.64)

where ¢, is the Kronecker delta and we have defined

| Bl t1) _ —Bin) ]
(W) = —= n+1)- , 4.65
9() = o L0+ D) e T (4.69)

where Z\") = 570 ¢=8fi(") s the first term in the hopping-free partition function expansion

of equation (4.34).

The inverse of this function must obey the following conditions

1
5 2 Wil T (w7 Zro, w0, W WD (W) = —30uur,  (4.66)
thus giving

o0 —Bfi(n+1) _ —Bfin) 771
TP (w, ) = =80, Z0 | S (n 4+ 1)— . (4.67)

o iw+ fi(n)+ filn+1)

In order to study phase transitions, we must also determine the term F(4). The

corresponding diagram is

Wy Wa
\.‘\ (..,/
TS (w1, was W, wh) i N7 (4.68)
.,/2’ \.\
i AN
wj w1
Similarly to equation (4.51), we can write
D3 (i, s wf wh) =
1 (4.69)

G2 Wl et U (o )T o, T (TG (8 ).

w UJ20J UJ2
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By using the decomposition of full correlation functions into the connected functions, we get

WD (71, 7074, 1) = G (71, 73 74, 1) = Wi (11, THYWD (72, 74) = W2 (m1, ) W2 (72, 71),

(4.70)
where explicitly, we have

1 B[ A . N .
Goi (r1,72i 7, 78) =7 T {e 0T [au(m)au(r)al ()il ()|
07

1 X
Z —Bfi(n)
— (&

Z(()?) n=0

X |O(11 = 72)O(12 — 71)O(1] — 73)(n + 1)(n + 2)
w el fi(n)=filn+1)] gr2[fi(nt1)—fi(n+2)] o 71 [fi(n42) = fi(n+1)] o 73 [fi (n+1)— fi(n)]
+O(r1 — 1)0(11 — 72)O(12 — 13) (n + 1)?
w eTtlfi(n)=filnt V)] i [fi(n+1) = fi(n)] gr2lfi(n) = fi(n+1)] o3[ fi(n+1)— fi(n)]
+0O(r —71)O(11 — 12)O(r2 — )n(n+ 1)
x emlfi(m)=filn=1)] 1l fi(n=1)=fi(n)] gr2[fi(n) = fi(n+1)] o3[ fi(nt1) = fi(n)]
+0O(r] — 75)0(15 — 71)O(11 — To)n(n — 1)
w emilfi(n)=filn=1)] o3[ fi(n=1)=fi(n=2)] 1 [fi(n=2) = fi(n—=1)] j72[fs (n—1)— fi(n)]
+O(r] — 1)O(11 — 73)O(75 — To)1°
% 67'{[fi(n)—fi(n—l)]eﬁ[fi(n—l)—fi(n)]eTé[fi(n)—fi(n—l)]672[fi(n—1)—fi(n)]
+0O(1 — 7)0(1] — 1)O(75 — T)n(n — 1)
x emtlfi(m)=filnt )] 71 lfi(nt1) = fi(n)] o3l fi(n) = fi(n=1)] o 72[fi(n—=1)— fi(n)]

T <> T2
/ 1|7
T & T
(4.71)
where in the last line we indicate the extra terms with permutations of time variables 7; with

To and 7{ with 73.

We must now compute Gf{f) in the Matsubara space. This calculation is very extensive
as we must integrate each term in the above equation. To avoid such problem, we let the
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explicit calculation in Appendix 1 and follow by only giving its result

G (wr, was w), wh) =
/32

(0) (60.110.13 5w2w§ + 6w1w/2 5w2w’1)
ZU’i

S () n+1 n
X,;)e [fi<n+1)_fi(n)_iw2 " fi(n—l)—fi(n)ﬂwi
» |: n+1 n n ]
filn+1) = fi(n) —iwr ~ fi(n —1) = fi(n) +iw

p o0
+ W(Sw/l+w’2,w1+W2 Z efﬂfz‘(n)

02 n=0
" l (n+2)(n+1)
[filn +1) = fi(n) —iws][fi(n + 2) — fi(n) —iw) —iws][fi(n + 1) = fi(n) — iw1]
n(n —1)
" [fi(n — 1) = fi(n) — iwa][fi(n — 2) — fi(n) — w1 —iws][fi(n + 1) — fi(n) — iw!]

B ( n+1
[fi(n +1) = fi(n) —iwn][fi(n + 1) — fi(n) — iw}]

TR 1)~ fan) + i fan 1) — fi(n) + M])

" ( n+1 n n ) w1 < W
filn+1) = fi(n) —iwy ~ fi(n—1) — fi(n) +iws

W) e wh|
(4.72)
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With the use of equations (4.64), (4.65), and (4.70), we can write
Wi (wr,wni o, 5) =

52(5 s 40§

Z(O) wiw] Cwawl wiwh wzw’l)
0z

" o-Bli(n) ntl n
- Lz% (fi(n+1)—fi(n)—73w2 * fi(n_D_fi(n)—i-’iwz)
8 (fz(TH'l) fz( ) — iwy * fi(”—l)—fi(”)+iw1)

—BLfi(n)+fi(m) ntl n
Z ‘ (fz‘(n‘i‘l)—fi(n)—iw * fi(n_l)—fi(n)—i-iWQ)

Z()Z n,m=0

m—+1 m
- (fi(m+ 1) — fi(m) — iwy * film —1) — fi(m) —i—iwl)]

/3 o
+ ©) 5w’1+w§7W1+w2 Z e
ZOi n=0

—Bfi(n)

) (n+2)(n+1)
[filn+1) = filn) —iws][fi(n + 2) = fi(n) — iw} —iwy][fi(n + 1) — fi(n) — iwi]
n(n —1)
[filn — 1) = fi(n) + iw2][fi(n — 2) — fi(n) + iw1 + iwa][fi(n — 1) — fi(n) — iw]]
n+1
- <[fi(n +1) = fi(n) —iwi][fi(n + 1) — fi(n) — iwi]

+

n

+Imn+U—ﬂM%HmMMn+U—ﬂm%H%0

" ( n+1 N n ) w1 > w2
filn+1) = fi(n) —iwy ~ filn —1) — fi(n) + iws

W) > wh|
(4.73)

By using the above equation together with equations (4.64) and (4.69), we can find

W(§24) <w17 W2, wllv Cdé)
g(wr)g(wh)g(wa)g(wsy)

F((]jf) (w1, wo; Wy, wh) = (4.74)

In the zero temperature limit, equations (4.61), (4.65) and (4.73) become respectively

;rg? S f(n), (4.75)

(4.76)
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(4) A,
W, (Wi, wa; wi,wy) —

2m (W] + wh — w1 — wo)

y l (n+2)(n+1)
[filn +1) = fi(n) —iw][fi(n + 2) — fi(n) —iwy —iwy][fi(n + 1) — fi(n) — iw]
n(n—1)
+

[fi(n — 1) = fi(n) +iws][fi(n — 2) — fi(n) + w1 +iws][fi(n — 1) — fi(n) — iwj]

B < n+1
[filn +1) = fi(n) —iw][fi(n + 1) = fi(n) — iwi]

T D) = )+ wlfi(n+ 1) — filn) + iwi])

« ( n+1 " n ) w1 > Wo
filn+1) = filn) —iwy ~ filn —1) = filn) +iwa) W} > wh)|’
(4.77)
where we have used the following transformation for the Matsubara frequency sums and the

Kronecker delta symbol
1 1 ,
3 > = 2—/ dw and [, — 210 (w —W'). (4.78)
» 7

We now have all information needed for our Landau theory for the effective action.

We proceed by computing the first-order hopping correction for such functional.

4.8 First-hopping order result

Within our diagrammatic representation, we can observe that the only 1Pl function
which presents first-order hopping contribution is the two-point function WZ-(Z-}PI)(T; 7'). Hence,
the only term in the effective action expansion which gets first-order hopping approximations
is I'® . Diagrammatically, the full two-point function with first-order hopping correction is
given by

Wi (w; ') & 0y ——o—t— + ot (4.79)
w/ Z w w/ ?:/ Z w
As we have seen from equations (4.51), by perturbatively inverting this expression, we get

FE]Q) (w,w/) ~ 51’]' -/-»—0--»—w—|— 6@07“}/ JU (480)
w 1

The zeroth-hopping order result (4.67) allows us to rewrite the above equation as

@ 0[S e—BI(n1) _ o=Bfin) 17!
L3 (W, W) & BouwJig = Bouw iy Zo; Z(” +1) (4.81)

o iw+ fi(n)+ filn+1)
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Thus, up to first order the effective action assumes the form
T[*, 9] ~ Tolw*, ¥ — ZZ i (w)i(w) + O([el*). (4.82)

It turns out that the first-hopping order correction for the effective action is already sufficient
to improve the results obtained by mean field theory [41,42]. Therefore, in the next chapter,
we use this approximation to investigate phase transitions in the Bose-Hubbard model in the

presence of on-site disorder.
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5 Disordered Bose-Hubbard model

The interplay between disorder localization effects and superfluidity is studied in this
chapter. In particular, we apply our field theoretical effective-action approach to determine the
phase boundary for the phase transition from the superfluid to insulating phases presented by
the disordered Bose-Hubbard model. By considering the case of static diagonal disorder, we
introduce a disorder ensemble average and define a homogeneous order parameter. Uniform
and Gaussian disorder distributions are considered. A comparison between the results for the
superfluid density of mean-field theory and effective-action method is made. Furthermore,
we propose the introduction of new order parameters in order to obtain detailed information
about the Bose-glass phase.

5.1 Disorder ensemble average

Disorder in the BHH is usually addressed through the introduction of a local chemical
potential u© — u + ¢;,
. Ues. . . i
Hpy = 52m(m—1)—2(u+q)m—] aja;. (5.1)
i i (ig)
Such consideration is often refered to as diagonal disorder. The derivation of such equation
follows the same path shown in chapter 2 with the separation of the external potential into an

optical lattice part and a trapping part Vi,.qp(7) [25]. With this consideration one can obtain
‘= / &1 Virap(r)w (r — Ti)|2 ~ Virap(T3), (5.2)

where the approximation is based on the assumption that Vj,,,(r) varies slowly and its
characteristic length is much larger than the spatial extent of the Wannier function w(r — ;).
Thus, in practice, ¢; represents a local imperfection in the periodic lattice potential caused by
the trapping potential. Disorder is achieved by letting such parameter vary randomly, which
means that the chemical potential assumes values according to some probability distribution
at each site.

In order to deal with the problem of a random chemical potential, we assume its time
scale to be greater when compered to the thermodynamic time scale. In this way the chemical
potential can be considered to be frozen in time. In addition, the magnitude of ¢; at each
lattice site can be regarded as spatially uncorrelated thus varying within a range where each
value appear with a specific probability [77, 78]. In this fashion, such parameter satisfies a
probability distribution p(e;) of some kind, such as an uniform or a Gaussian distribution.

Consequently, it becomes necessary to define, along with the quantum mechanical average of
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equation (4.10), a disorder ensemble average. For an arbitrary quantity A; we can express

such average as

A = H/ de; A;p(€;). (5.3)

The disorder ensemble average can be used to define a different order parameter, which
we intend to do in the next section. The disorder-averaged effective action can be found as
an expansion in this new order parameter in a similar manner as before. We can use such

functional to study quantum phase transition in the Bose-Hubbard Model with on-site disorder.

5.2 Static properties

In its equilibrium state, the BHH preserves spatial and temporal symmetry. Hence,
when computing equilibrium properties it is sufficient to assume homogeneity. Due to the
presence of a local chemical potential in the disordered model, such assumption is not valid
for the space variable. However, we can use the disorder ensemble average to define a new

order parameter

Ui(7) = (8:(7)) = Veq, (5.4)
which is homogeneous and can be used to calculate the effective action. In the Matsubara

representation such parameter becomes
m = Béw,oweq (55)

In order to obtain the disordered effective action, we first compute the disorder-averaged
free-energy functional . In Matsubara space such quantity is given by

Wi 4] = WO + *ZZL W (w, )i ()

i ww!

= z 55 (1) m)W,ﬁ}W<w1,w2,w1,w2>;l< Do, (W) + -+ .

112211,12 wiwaw! “’2

(5.6)
Using equation (5.5), a Legendre transformation of the above expression in first-order hopping

expansion gives

_wo L S o BE) e ) de.
_ WO = BH/ [mnzzjoe o1 ]p(ez)de,, (5.7)

Fz(jz)(ov 0) = BJi; — i (5.8)

1
700y’

Ww(0,00,0)
gi(0)7:(0)7:(0)gi (0)’
where 7;(0) and W(0,0;0,0) are obtained by making w = 0 and then taking the disorder
ensemble average of equations (4.65) and (4.73).

157(0,0;0,0) = (5.9)
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Analogously to Ref. [40-42], we make use of the so-called effective potential, which
consists of the effective action per lattice site. In the disordered case such quantity becomes
= r

T = 37 (5.10)

With the use of equation (5.5), the Landau expansion of the effective potential becomes
Lo = a5 + @Y + @l + -, (5.11)

with coefficients given by

@ =10, (5.12)

T (0,0)
Ao — Z] ) 1
2 BNS ) (5 3)

_ 1§2(0,0;0,0)

= 14
4 2123N, (5.14)

These coefficients can be explicitly obtained with the use of equations (4.65), (4.73),
and (4.81). We have now all information we needed to the analysis of the superfluid-insulator
transition. With the choice for a specific probability distribution for the local chemical

potential, we can investigate further the effect of disorder in the phase boundary.

5.3 Boundary between superfluid and non-superfluid phases

Following the theory discussed in Chapter 3, we must start our analysis of the superfluid
to non-sperfluid phase transition by verifying if a4 is positive. We use equations (4.65), (4.73),
(4.74), and (5.14) to calculate it exactly. As we can see in Fig. (13), we have always ay > 0

for zero and finite temperatures.

04 T T T T T 0.4

0.3 1 0.3

0.1 1 0.1

0.0 05 1.0 15 2.0 25 3.0 0.0 0.5 1.0 1.5 2.0 25 3.0
ulJ piJ

(a) (b)

Figure 13 — Coefficient a4 at different temperatures. The blue and red lines in image (a) and
the orange and black lines in image (b) correspond respectively to the temperatures
g — o0, f=10/U, p=50/U, and 5 = 3/U.
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As the disorder average is based on the integration of such coefficient, @y is also always
positive. Such result allows us to determine the phase of the system by only evaluating the
sign of @3. Thus, the phase boundary corresponds to the condition that @; = 0. In first-order

hopping approximation, by making equation (5.13) equal to zero we get

J2=Zay 5.15
gi(0) (5.15)
these equation explicitly reads
1 p(ei) 00 e—ﬁf¢(n+1) . e—ﬂfi(")
Jz / ‘ Zé?) L;)(TL-F ) filn) + filn +1) ( )
where we have
S U
Z(()?) = Z e B Jnd fl(n) = En(n _ 1) _ (N + ei)n. (5.17)
n=0

We can now proceed by considering different probability distributions and investigate

its influence in the phase boundary.

5.3.1 Pure case

The pure case is obtained if we consider that the probability distribution is localized

in a definite value, i.e., p(¢) = d(¢). From equation (5.16) we get

1 1 [ e — e "
= 5.
72~ 70| = T e iy | (5.18)

where Z” and f(n) were found by setting ¢; = 0 in equation (5.17).

These result was already shown in Ref. [42]. In the zero temperature limit, such
result becomes equal to the expression of equation (3.17), which is the phase boundary
prediction of mean-field theory. Therefore, for the pure case, the first-hopping order for the
effective action gives the same result as second order mean-field approximation for the phase
boundary. However, this fact does not imply an equivalence between the two methods. As
we have already stated, the mean-field theory predicts non-physical results such as decreasing
condensate/superfluid density for strong hopping and negative compressibility in the region
far from the boundary, while the effective-action approach presents an consistently increasing

condensate density and always positive compressibility, as shown in Ref. [41].

5.3.2  Uniform homogeneous disorder distribution

We now move on to consider an homogeneous uniform disorder probability distribution

plei) = i[@ <e,- + 2) _ @(Q - ?)1 (5.19)

such as
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with each ¢; restricted to the interval [—%, %} where the value of A determines the length
of the interval. For such disorder distribution equation (5.16) becomes
s de, ~B1i(n+1) _ o—Bfi(n)
— / : % ( +1)° ¢ . (5.20)
N fi(n) + filn +1)

In order to analyze the above integral, we first consider the zero temperature limit
assuming also the y is restricted to the interval [U(n — 1),Un], with n being a positive

integer. In such case, the result is given by

1 p—Umn—1)+3% Un—p—%
JZ—Alnln (M—U(n_U_%) —(n+1)ln (UTL—LH‘A)}? (5.21)

if ue {U(n —-1)— %,Un — %} and Jz = 0 otherwise. This result is exactly the same as
the one encountered by K. V. Krutitsky, A. Pelster, and R. Graham in Ref. [38], where they
used the same mean-field approach following Ref. [79]. Also, if we take the limit A — 0,
the result of the mean-field phase boundary of equation (3.17) is recovered. The finite and

zero-temperature results are plotted in Fig. (14).
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Figure 14 — Phase Boundary for homogeneous disorder distribution. Figure (a) shows the
zero temperature limit, where the Bose-Glass phase exists only for .J = 0, which
corresponds to the thick black lines. The dash-doted line indicates the pure case
boundary of equation (3.17). In figure (b) we see the finite temperature solution,
where a Bose-glass exists for J # 0 as well. The dashed line represents the zero
temperature solution. In figure (c) and (d) disorder becomes too strong and the
Mott-Insulator phase disappear. M1, BG, and SF' represent the Mott-insulator,
Bose-glass, and superfluid phases respectively.



Chapter 5. Disordered Bose-Hubbard model 56

The phase boundary at the zero-temperature limit (figure (a)) shows a Mott lobe
structure, where the size of the lobes decreases for an increasing disorder parameter A. Such
parameter limits the interval of integration where the Bose glass can exist. In the case of
A < U, for zero temperature the Bose glass region is suppressed to the case of vanishing
hopping parameter. However, for finite temperature, such phase emerges between the Mott
lobes. The phase boundary goes upwards and the size of the non-superfluid region expands.
In comparison with the pure case, where a notable shift in the Mott insulator-superfluid
boundary is only achieved for temperatures of the order of /%U = % ~ 1 [80], for the case
of homogeneous disorder a small increase in temperature, i.e. [%U = ]“BTT = 0.01, changes
rather significantly the phase boundary. For A > U, the zero temperature transition line is
restricted to J = 0 for any value of p, thus the Mott lobes are suppressed and the superfluid
phase dominates for positive magnitudes of the hopping parameter. In the finite temperature
case of figures (c) and (d), the Bose-glass phase dominates the non-superfluid region as the

Mott insulator cease to exist.

5.3.3 Gaussian disorder distribution

A more realistic treatment to the randomness of the local chemical potential would be

accomplished by considering a Gaussian probability distribution,

ple) = s=ew -5z 5.22)

where, for such distribution, A assumes the role of a standard deviation, that is it quantifies

the dispersion around the set of possible values for the random variable. The integral of

equation (5.16) would be carried out through all the domain of possible values of ¢, i.e.,

1 1 o de; [ & . e—Bfilnt1) _ —=Bfi(n) 6? 03
E o A2 [m Zé?) [Z(n+ ) fz(n) +fi(n+ 1) ] exp{—2A2}. ( . )

n=0
The finite temperature solution to these integral gives us the phase boundary shown in Fig.
(15).
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Figure 15 — Finite temperature phase boundary for a Gaussian disorder distribution. The
curves red and blue indicate the temperatures JU = 100 and SU = 15,
respectively. In (a) we have A/U = 0.15 and in (b) we have A/U = 0.35.
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Since the Gaussian disorder distribution extends to the entire interval | — 0o, co| even
in the week disorder case, no Mott-insulating phase can occur and the whole region below
the phase boundaries shown in Fig. (15) corresponds to the Bose-glass phase. Above such
phase boundaries we have the superfluid phase. We can see, analogously to the result obtained
for the homogeneous disorder distribution, that an increase in temperature makes the phase
boundary to go upwards. Image (a) shows local minima around integer chemical potential
w/U for the transition line. In the case of stronger disorder in image (b) such local minima

almost disappear and the phase boundary becomes smooth.

In the present work we do not calculate the zero-temperature phase boundary. Instead,
we give an intuition of how such calculation could be carried out. By using the zero temperature
limit of g;(w) given by equation (4.76), one can calculate the disorder ensemble average by
means of principal value integration around some critical chemical potential. The specific
disorder distribution does not affect the result of such computation. In this way, the zero

temperature phase boundary could be obtained.

5.4 Superfluid density

We can use our effective-action method to calculate the superfluid density. As we have
already stated in Chapter 3, such quantity is defined as the part of the systems density that
remains at rest when the system receives a constant velocity boost. For the effective action,
the phase factor presented in equation (3.21) for the mean-field superfluid density calculation
is translated as

W;(r) = e, (5.24)

If we describe the kinetic energy of the superfluid in terms of the difference I'(¢) — I'(0), the

superfluid density can be defined as

212

Ps = (})13}) W[F(fﬁ) - I(0)], (5.25)

where I'(¢) represents the effective action transformed by the phase ¢.

We consider first-hopping order approximation and use the disorder-averaged Matsubara
order parameter of equation (5.5). Using the transformation (5.24) into equation (5.25) we

can write
2172

L= lim
Ps = 350 NI NIos

Yeq” ZJH [1— emitrimm)o/t], (5.26)
Considering hopping only over nearest nelghbors and choosing the direction of ¢ along one of
the lattice vectors, the above equation becomes

ps = |weq| [2 — 2cos(dg/L)] = [theq|” (5.27)

})—)0 d? ¢2
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Thus, in first-hopping order approximation the superfluid and condensate density coincide, just

as the result we had for mean-field theory. However, by using the expression

2 )
= ——, 5.28
o = o (5.28)
we can compare the disorder result for both approaches in the zero temperature case. Such

comparison is shown in Fig. (16) for both Gaussian and uniform disorder distributions.
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Figure 16 — Condensate/superfluid density as a function of the hopping parameter for Gaussian
disorder distribution. The blue, red, and green lines correspond to p/U = 0.2,
uw/U = 0.5, and p/U = 0.7, respectively. The dashed lines indicates the
mean-field theory solution, while the continuous lines represent the effective-action
method. Images (a) and (b) correspond respectively to Gaussian and uniform
disorder distribution with disorder parameter A/U = 0.02. Image (c) correspond
to an uniform disorder distribution with A/U = 0.3.

Although the first-hopping order approximation for the effective action still leads to an
equivalence between condensate and superfluid density, the result obtained with such method
presents a more accurate behavior deep in the superfluid phase. Analogously to what we have
shown in Chapter 3, even in the disordered case the mean-field prediction smoothly decreases
as the hopping parameter increases, thus exhibiting a non-physical behavior. In contrast, the

effective-action approach shows the density increasing linearly with the hopping parameter,
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which is in agreement with the notion of a superfluid [26]. Therefore, the ever increasing
condensate/superfluid density obtained with our field-theoretic method implies a larger range
of validity of our theory. In the week disorder regime, A/U = 0.02, shown in images (a)
and (b), respectively, both Gaussian and uniform disorder distributions present similar results.
As the disorder parameter increases, the linear coefficient of the result for the effective-action
method diminishes and the superfluid density increases more slowly, while the mean-field result
decays rapidly (image (c)). Even though the analysis is made for week disorder, the result of

the effective-action approach already qualifies an improvement for the theory.

5.5 The Bose-glass phase

After the initial studies made by Fisher et al. [26] in 1989, intense research about the
behavior of interacting bosons subject to static disorder took place. In order to investigate
such behavior, one has to account for the competition between localizing effects caused by
disorder and the delocalizing effects due to interactions which tend to excite particles out
of their normally localized single-particle states. One important question raised in the above
cited paper concerns whether a direct transition from a gaped Mott-insulating phase to a
superfluid phase is possible in the presence of disorder. There, it was argued that such
transition is unlikely to occur, sugesting the existence of a third phase between the other
two: the Bose-glass phase. Over the years, different conclusions were reached about this

issue [33,34], however, the existence of the Bose glass was consistently proved [81-83].

A final conclusion was presented by L. Pollet et al. [84] in 2009 with the use of
the so-called theorem of inclusions. Such theorem states that, in the presence of generic
disorder, any transition presents rare but arbitrarily large regions of competing phases on either
side of the phase boundary, provided the position of such boundary depends on the disorder
distribution function. Generic disorder is defined as an arbitrary non-vanishing probability
distribution of the disorder field within some bound. These large regions correspond to
superfluid domains where the chemical potential is homogeneously shifted by =A. No energy
gap exists for particle transfer between such domains [85]. Therefore, no gaped Mott insulator
can exist and the transition to the superfluid phase can only occur form the Bose-glass phase.
Such argument is valid for arbitrarily week disorder. The Bose glass is then characterized by
either as localized single-particle levels or isolated superfluid lakes depending on the parameters
of the system. Since the Bose glass does not allow phase coherence to spread through all the
system’s volume, it is identified by a finite density of states, finite compressibility, and gapless
particle-hole excitations [77].

Although some characteristics of the Bose glass are well understood, detailed information
about such phase are still lacking both from experimental and theoretical point of view. Here,

we propose a new configuration of order parameters which could be used to identify each



Chapter 5. Disordered Bose-Hubbard model 60

phase of the disordered Bose-Hubbard model. In order to determine the superfluid phase we
can define the condensate density ny with use of the quantum and disorder ensemble averages

of the bosonic creation and annihilation operators, i.e.,

@y =v , (al(r)=v",
PP = ny.

(5.29)

If we now calculate the variance ¢ of such operators we get
q =((al(r) = ¥7)(a(r) - v))
=(al(r)ai(r) = vrai(r) - al(r)o + vre) (5.30)
=(al(r)a(r)) — " Tau(r)) — (al(r))o + 470,

with the use of definitions (5.29) we can write

g+ no = (al(T)a(7)), (5.31)

where ¢ is defined as a new order parameter to identify the Bose-glass phase. With the use

of such order parameters the three phases can be characterized by the following:

e If ng # 0 and ¢ = 0 we have the superfluid phase;
e If ng =0 and ¢ # 0 we have the Bose-glass phase;

e If both nyg = ¢ = 0 we have the Mott-insulator phase.

The definition of such new order parameters is constructed similarly to Ref. [86]. In
such paper the order parameter ¢ is constructed in analogy with the Edwards-Anderson order
parameter of the spin glasses theory [87], and it is argued that the introduction of such separate
order parameter for the Bose glass is essential. Since disconnected condensate domains can
form at sufficiently low temperatures, the system cannot be completely described by the usual

BEC order parameter and is captured by Edwards-Anderson like order parameter.

With the use of the new order parameters introduced here, the theory discussed in this
work could be reconstructed. The generating functionals necessary for the effective-action
approach could be encountered by using expansions in such order parameters. By means of
such order parameters, the analysis of the phase transition between superfluid and insulating
phases in the disordered case may lead to more accurate results for the phase boundary. Also,

detailed information about the Bose-glass phase may be found.
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6 Summary and conclusion

The question of how the presence of disorder affects transport properties of quantum
systems is an old problem which still engages many research. Some of the first studies of such
question were made within the investigation of the superfluid properties of “He in random
media [88,89]. As we have seen here, this problem was latter addressed in the context
of bosonic ultracold systems subjected to random potentials [26]. As bosonic systems can
form a BEC, with a macroscopic number of particles occupying the same quantum state, the
combined effect of interactions and disorder drives the competition between superfluid and
localized ground states. Recently, the advent of ultracold atomic states in optical lattices have
provided extremely controllable environments to investigate the fundamental aspects of such

phenomena.

In this work, we have shown how the Bose-Hubbard model, which describes bosonic
particles hopping through an optical lattice, can be used to study such dirty boson problem
with the introduction of diagonal disorder by means of a local chemical potential randomly
distributed. We first presented how the bosonic system can be modeled with the BHH.
As such Hamiltonian allows for the system to present different phases depending on the
competition of its parameters, we used the theory of quantum phase transitions and presented
the mean-field phase boundary and condensate density predictions. Some of the limitations
of such theory were discussed. Considering the lack of precise analytical results in the
literature, we constructed the general theory of the effective-action approach and proposed
its application for dealing with the disordered Bose-Hubbard model. Such method makes use
of field-theoretical considerations for the introduction of a source term into the BHH. With
the use of perturbative methods, the generating functionals of the theory were calculated as
an expansion in the sources as well as in the hopping parameter. By means of a Legendre
transformation of the free-energy functional the effective action was found. Along with the
introduction of a random chemical potential, it became necessary to consider a disorder
ensemble average, which was used to define a new homogeneous order parameter for the
static case. With the use of the Landau theory we studied the phase boundary between

superfluid, Mott-insulator, and Bose-glass phases.

By using only the first-hopping order approximation for the effective-action method,
we were able to reproduce the phase boundary prediction of the mean-field theory for the pure
case as well as the results of Ref. [38] for homogeneous disorder distribution. This last result
made it possible to observe the emergence of the Bose-glass phase between the Mott-insulating
lobes as a consequence of finite temperature. For sufficient strong disorder, we could see that
the Mott-insulator phase is destroyed and only superfluid and Bose-glass phase can exist. The

finite temperature phase boundary for Gaussian disorder distribution was also obtained. As
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such distribution extends to infinity, no Mott phase is allowed to exist and the only state bellow
the critical line is the Bose glass. Furthermore, we compared the mean-field and effective-action
predictions for the condensate/superfluid density in the disordered case. While the mean field
prediction exhibits non-physical behavior, the result of our effective-action method turned out
to present a consistently linearly increasing superfluid density as a function of the hopping

parameter, which is in agreement with the theory of superfluidity.

The evidence of such results achieved within the framework of the effective-action
approach applied to dirty bosons in optical lattices, opens up some new possibilities of
investigations in the matter. In Section 5.5 we presented the definition of new order parameters,
which could be used to reconstruct our theory and improve analytical results for the different
phases of the system. By analyzing the poles of the correlation function, one can also study the
spectrum of excitations. Lastly, as we have only considered the static case, dynamic properties

may be explored further.

Finally, we conclude that our application of the effective-action approach to the studies
of bosonic systems with disorder has been successful. The method showed to be promising
by presenting an agreement with former analytical results and even an improvement of such
results for the calculation of some quantities, such as the condensate density, deep in the
superfluid phase. We expect our analysis to be the starting point for future investigations and

applications of the effective-action approach when dealing with disordered systems.
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A Appendix 1

In this appendix we calculate the expression use in Chapter 4 for the four-point Green's
function Ggf) in Matsubara space. We can start by considering a general multiple integral of

the form

g B . AT A A
G(wn, ... ,w1) = /0 dry, - - -/0 dry @it tenta) Ty {G_BHT{OR(TN) . 01(7'1)] }, (A.1)

A

where w,, = (27/f)n are the Matsubara frequencies with n integer, H is an arbitrary
time-independent Hamiltonian, and én(Tn> are arbitrary operators in the Heisenberg picture,
i.e., O;(m) = e 0;(0)e™# . The invariance of the trace under cyclic permutations makes it

possible to write

Te {e P 1T[0,(r) ... Os(n)|} = Tr {e T [On(r, — 1) ... Oa(ma — 7)01(0)| ). (A2)
If we use the transformation 7; — 7,4 71 in the imaginary-time variables {7,, ..., 72} equation
(A.1) becomes

p ,
G(w"’ T 7w1) - / d7'161(w1+"'+wn)71
0

X /ﬁ_T1 Ay, -+ /5_71 dryei @22t twnTn) Ty {G_BHT {OA”(TH) e OQ(TQ)OI (0)} }

—T1 —T1

By splitting the interval of integration the tow semi intervals [—71,0] and [0, — 7]
we can write

/E_T1 dr, - - /ﬁ_T1 drye!@2mzttenta) Ty {e‘ﬁﬁf[én(rn) . 02(7'2)(51(0)} }

—T1 -7

:< 0 dr, + /BTI dTn) (/0 dry + /BTI d7'2> glwama b Fwnn) (A.4)
-7 0 -7 0

x Te {eP1T[On(7,) ... Oa(72)01(0)] }.
Such expression is composed by a sum of multiple integrals in each semi interval. If we consider
an arbitrary term which presents [ — 1 imaginary-time variables {r;,,...,7;,} integrated over
the interval [0, 8 — 71] and n — [ imaginary-time variables {Tin, o ,Til_H} integrated over the
interval [—7,0], i.e.,

0 0 6_7—1 ﬂ—Tl
dr;, -+ dTiH_l /0 dr, - - /0 dr;,

—T1 —T1

e Wig Tig Wiy Ty ) oy {e*ﬁﬁf [Oi,L(Ti,L) . -Oiz (Tiz)ol(o)} }

0 0 6_7'1 ﬁ—T1
= dr;, -+ dTZ‘H_l /0 dr, - - ./0 dr;,
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(A.5)
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where we have observed that 7 < 0 if 7 € {Tin, e ,Tml} and7>0ifre{rn,...,7,}.
We now make use of the transformation 7 — 7 — f3, in the variables {Tin, e ,Tim}
which gives
0 0 6_7—1 ﬁ—Tl
dTin s dTiHl / dTil . / dTiQ
—T1 —T1 0 0

% e Wi Tig +Win Tin) Ty {e_ﬂﬁf {Om (13,) - -- OiQ (Tiz)él(o)} }
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(A.6)
Thus, the limits of integration [—71,0] in equation (A.4) can be substituted by [5 — 71, (]

which gives

0 B—1 0 B—m '
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With this result, equation (A.3) can be written as

B B8
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Therefore, we can write the four-point function G(()? in Matsubara space as
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Using the expression of equation (4.71) we get
p
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where we have defined
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Direct calculation of such integrals yields
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B e Blfiln+1)—=fi(n)] _ 1
 [iwr + fi(n) — fi(n + D][iwe + fi(n) — fi(n + D)][—iw} + fi(n + 1) — fi(n)]
/850.12,0./1
~ iwy + fi(n) = filn + D]fiws + fi(n — 1) — fi(n)]
B8 39 oy e~ D)= i)
T S + fi(n) — filn + Dlfiws + £i(n) — fo(n +1)]
e Blfiln+1)—fi(n)] _ 1

"~ fiwn + Fu(n) — Fuln + Dlfiwn + oz — iy + fin) — fa(n + Dlliwz + fi(n) — faln + 1)]
(A.14)

By substituting these results in equation (A.10) and applying the condition w] + w) =

w1 + wo we can obtain equation (4.72).
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