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RESUMO

Explosões solares são enormes liberações de energia do Sol. Elas são classificadas em

cinco nı́veis (A, B, C, M e X) de acordo com seus possı́veis danos à Terra e podem produzir

grandes impactos nos sistemas de comunicação, ameaçando atividades humanas que depen-

dem de satélites e GPS. Portanto, prevê-las antecipadamente pode reduzir tais impactos. No

entanto, a previsão de explosões solares apresentam desafios significativos: (a) a sequência

de dados deve ser rastreada devido à sua influência no fenômeno; (b) as caracterı́sticas so-

lares e os intervalos de dados que influenciam neste fenômeno não estão estabelecidos; (c) a

previsão deve ser realizada em tempo razoável; (d) os dados são altamente desbalanceados,

(e) as classes adjacentes às vezes são difı́ceis de distinguir, (f) a maioria das abordagens

realizam previsão binária (agregando classes de explosões solar), ao invés de prover uma

previsão multi-classe. Este trabalho de doutorado propôs um método que aborda esses de-

safios simultaneamente, diferentemente de trabalhos anteriores, que tendem a lidar com um

desafio por vez.

Para tanto, inicialmente, nós objetivamos prever explosões solares para um horizonte de

poucos dias. Foi proposto o método SeMiner, o qual permite a previsão de explosões, dados

valores observados passados. O método SeMiner processa séries temporais de Raios-X em

sequencias empregando o algoritmo “Series-to-Sequence” (SS) através de uma abordagem

de janela deslizante configurada pelo especialista do domı́nio. Este método considera uma

sequencia de instâncias no processo de mineração, lidando com o desafio (a). Após isso,

a seleção de caracterı́sticas é aplicada a fim de determinar o intervalo de dados na série

temporal, que mais influencia o processo de previsão. Isto tratou o desafio (b). Então, as

sequencias processadas são submetidas a classificadores tradicionais para gerar um mod-

elo que prevê nı́veis de Raios-X futuros. O SeMiner alcançou 73% de acurácia para uma

previsão de 1 dia, 71% e 79%, respectivamente para TPR e TNR.

Um segundo passo foi desenvolvido através da paralelização do algoritmo SS, o qual mel-

horou o seu desempenho. Este desenvolvimento lidou com a questão (c), implementando

esta otimização através da plataforma CUDA. Esta implementação permitiu um “speedup”

de 4.36 no seu tempo de processamento devido à distribuição do processamento entre as

GPUs (“Unidades Gráficas de Processamento”).

O terceiro passo foi composto pela melhoria do método SeMiner. Este passo lidou com os

desafios restantes através do desenvolvimento de um novo método chamado ECID (“En-

semble of classifiers for imbalanced datasets”). Para cada classe de explosão solar, o ECID



aplica uma amostragem aleatória estratificada para treinar classificadores base binários, for-

talecendo suas sensitividades para uma dada classe em um cenário desbalanceado. Esta

etapa tratou a questão (d).

Através de uma abordagem de “Bootstrap” modificada, o ECID usa um método de agregação

que combina os resultados dos classificadores base, possibilitando uma previsão multi-

classe e multi-label. Desta forma, o desafio (e) foi trabalhado. Os resultados mostraram que

o ECID é bem adequado para previsão de explosões solares, alcançando um TPR médio de

91% e uma precisão média de 97% em um horizonte de previsão de um dia.

Palavras-chave: Explosão solar, previsão, séries temporais, mineração de dados, classificação em séries

temporais, seleção de caracterı́sticas, conjunto de dados desbalanceados



ABSTRACT

Solar flares are huge releases of energy from the Sun. They are categorized in five levels

according to their potential damage to Earth (A, B, C, M, and X) and may produce strong

impacts to communication systems, threatening human activities dependent on satellites

and GPS. Therefore, predicting it in advance may reduce their negative impacts. However,

solar flare forecasting has significant challenges: (a) the sequence of data influences the

phenomena and should be tracked; (b) the features and intervals that cause and influence the

phenomena are not defined; (c) the forecasting should be performed in an affordable time;

(d) the data is highly imbalanced, (e) adjacent classes are sometimes difficult to distinguish,

(f) the majority approaches perform binary forecasting (aggregating solar flare classes),

instead of multi-class, as actually required. This work proposed a method that tackles these

challenges simultaneously, being different from previous works, which tend to handle a

challenge per time.

First, we aimed to forecast the X-ray levels expected for the next few days. We proposed

the SeMiner method that allows the labels prediction given past observations. SeMiner

processes X-ray time series into sequences employing the new Series-to-Sequence (SS) al-

gorithm through a sliding window approach configured by a domain specialist. This method

allows to consider the sequence of instances in the mining process, handling challenge (a).

Next, feature selection is employed in order to determine which interval of data in the time

series, most influences the forecasting process, handling challenge (b). Then, the processed

sequences are submitted to a traditional classifier to generate a model that predicts future

X-ray levels. SeMiner reached 73% of accuracy for a 2-day forecast, 71% and 79%, respec-

tively for True Positive and True Negative Rates.

Second, we parallelized SS to increase its performance, in order to tackle issue (c), by

implementing it in CUDA platform. This implementation allowed a speedup of 4.36 in

its time processing due to the distribution of the processing among the GPUs (Graphics

Processing Unit).

Third, we improved SeMiner to tackle the remaining challenges by developing a new method

called Ensemble of classifiers for imbalanced datasets (ECID). For each solar flare class,

ECID employs a stratified random sampling for training binary-class base inducers, strength-

ening their sensitivity to a given class in a very imbalanced scenario, which tackled issue

(d).

Using a modified bootstrap approach, an aggregation method combines the inducers results,



enabling a multi-class and multi-label forecasting and thus, handling the issue of adjacent

classes (challenge (e)). The results showed that ECID is well-suited for forecasting solar

flares, achieving a maximum mean of True Positive Rate (TPR) of 91% and a Precision of

97%, in a time horizon of one day.

Keywords: Solar flare, forecasting, time series, data mining, classifiers, time series classification, feature

selection, imbalanced dataset
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List of Terms

• Feature: A feature is a data field representing a physical phenomenon.

• Instance: Instances are the values of a set of predetermined features.

• Observations: Observations are the values of one and only one predetermined feature in

a given instant of time t.

• Attributes: An attribute is a data field, representing a characteristic of a data object. In

this thesis it does not represent a physical phenomenon.

• Dataset: A dataset is a set of instances.

• Solar dataset: a solar dataset is a dataset composed of features that describe the solar

flare phenomenon.

• Solar features: a solar feature describes any feature used in solar flare phenomenon.

• Event: an event is a synonym of solar flare in this thesis.

• Photosphere: the Photosphere is the visible surface layer of the Sun.

• Chromosphere: the Chromosphere is a Sun’s layer approximately 400km above the Pho-

tosphere.

• Corona: Corona is the outer layer of the Sun.

• Sunspot: Sunspots are magnetic regions of the Sun with much stronger magnetic strengths

than Earth’s magnetic field. Solar flares occurs near Sunspots.

• Expert systems: an expert system implements computational decision-making to simu-

late rules used by humans.

• Gaussian distribution: a Gaussian distribution is a continuous probability distribution
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Chapter 1
INTRODUCTION

According to Wackler (2015), “Space weather refers to the dynamic conditions of the

space environment that arise from interactions with emissions from the sun, including so-

lar flares, solar energetic particles, and coronal mass ejections. These emissions can af-

fect Earth and its surrounding space, potentially causing disruption to electric power trans-

mission; satellite, aircraft, and spacecraft operations; telecommunications; position, navi-

gation, timing services; and other technology and infrastructure.”. In Brazil, INPE heads

the EMBRACE program, which aims to “develop and operate a program of space weather”

(http://www2.inpe.br/climaespacial/por tal/the-embrace-program/). Among the phenomena de-

scribed in the Space Weather definition, solar flares are important events that must be predicted

in order to prevent their impacts on Earth’s devices.

Solar flares are sudden releases of large amounts of energy (1025 - 1032 erg) from the ac-

tive regions of the solar atmosphere (HOLMAN, 2006). These phenomena can last from tens of

seconds to few hours, depending on the intensity, and may emit a broad spectrum of electromag-

netic waves from radio up to X-rays or even gamma-rays. Considering the X-ray flux measured

at the wavelength range of 1-8 Angstrom, solar flares are categorized into 5 classes, named, A,

B, C, M and X, respectively in order of their strength. Depending on the intensity, a solar flare

causes impacts on High Frequency (HF) and Very High Frequency (VHF) radio communication

(TSURUTANI et al., 2009). Changes in the ionosphere caused by X-ray flux variation emitted

by the Sun can also interfere in satellite communication, since it uses high-frequency signals

(BASU et al., 2010). In addition, solar flares can impact on the Global Positioning System

(GPS), and when an associated Coronal Mass Ejection (CME) is produced electricity power

grids are also affected, causing blackouts in extreme cases. Depending on the severity of the

predicted solar flare, different institutions or companies must be warned in order to trigger their

mitigation procedures.
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Several computational methods have been proposed in the literature for Solar Flare Fore-

casting (SFF), but there are still important open challenges: the imbalanced characteristic of

the problem; the physical phenomenon which is yet not fully understood by the astrophysicists

(PRIEST; FORBES, 2002; RABOONIK et al., 2016); and, the handling of solar flare classi-

fication into levels and sub-levels. It is imperative to develop an operational and optimized

solar flare forecasting method that deals with these challenges to allow solar flare forecasting as

accurate as possible.

1.1 Context

The application domain of this thesis work is within the solar flare forecasting task. This

task is important to avoid its related damages. The forecasting is classified according to the

X-ray emitted by the Sun and its related impacts. The forecasting methods found in the lit-

erature may use several different possible features because it was not detected the ones that

definitely lead to the most accurate results. Also, these methods are implemented using differ-

ent approaches, mainly using statistical methods or machine learning techniques. Finally, there

are a diverse set of significant open issues that must be tackled to improve the existing solar

flare forecasting methods. Next, we describe the context that this thesis work is inserted.

1.1.1 Solar flare classification

Solar flare forecasting methods perform their predictions based on a classification that de-

pends on the peak flux emitted by Sun during the event. Each class is related to its possible

damages to Earth’s electronic devices and technological systems and services (LEE et al., 2012).

Table 1.1 shows the traditional classification of solar flares with their respective X-ray ranges

and possible effects on Earth.
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Table 1.1: Description of solar flare classes (TANDBERG-HANSSEN; EMSLIE, 2009)

Solar flare

classification

Associated X-ray flux - I

(W/m2)
Possible effects on Earth

B I < 1E-06 none

C 1E-06≤ I < 1E-05 Possible effects on space missions.

M 1E-05≤ I < 1E-04

Blackout in radio transmissions

and possible damages in astronauts

outside spacecraft.

X I ≥ 1E-04

Damage to satellites, communication

systems, power distribution stations

and electronic equipment

Solar flares that emit up to 1E-6 W/m2 are classified as B and do not cause damage to

Earth. If the intensity is in the range of 1E-6 to 1E-5 W/m2, they are classified as C and may

have a low effect on Earth and space missions. Explosions classified as M occur when the X-

ray released is between 1E-5 and 1E-4 W/m2 and can cause blackouts in radio transmissions

and damages in space missions. Finally, solar flares of class X are the highest and can damage

satellites, GPS systems, power stations, and electronic equipment. Each class is divided into

sub-levels, according to the highest amount of energy released during the event. Thus, a more

specific classification of flares is given by B1.0 to B9.9, C1.0 to C9.9, M1.0 to M9.9, and X1.0

to higher levels. Where the indexes 1.0 to 9.9 correspond to the intensity of X-rays within the

solar flare class range. For example, if an event emitted 3E-07 W/m2, it is fully classified as

B3.0 (TANDBERG-HANSSEN; EMSLIE, 2009).

1.1.2 Data about Solar Activities

In order to better understand the context of solar flare forecasting, it is needed to understand

which solar data are available in the literature to use in the methods. There are several data

sources used to forecast solar flares, like: (1) X-ray emitted by Sun; (2) magnetic features from

the Sun’s Photosphere; (3) topology of the active regions, among others.

There is no consensus, and there is no definitive study regarding the causes and physical

explanations of this phenomenon. So, it has not yet been defined which data features are most

relevant to use in solar flare forecasting. However, there are indications in the literature that

the time series of magnetic features of the active regions, extracted from images called mag-

netogram vectors, can be used satisfactorily to perform the prediction task. Another important
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feature is the X-ray intensity emitted by the Sun. This information is available on the NOAA

website (a North American organization for studies about space climate) as a time series with

sampling periods of one or five minutes. There are several other sets of features that can be used,

such as the international sunspot number, the area of solar active regions, MacIntosh magnetic

classification and the 10.7 cm Radio flux - measured in solar flux unity (sfu) - emitted by the

Sun. However, in this work, we intended to use time series X-rays flux and magnetic features

in the forecasting method.

Regarding solar flares occurrence, the ones classified as C are events with low frequencies

and flares of classes M and X are rare. According to (LEE et al., 2012) there were only 7400

C-class flares, 1200 flares classified as M and 120 as X between 1996 and 2000. These values

represent a percentage of 0.47%, 0.08% and 0.006% of the total number of observations of

X-ray intensities at a sampling period of 5 minutes.

The pattern of distribution of solar flares considering frequency and strength, among other

solar parameters is well correlated and approximately follows the average 11-year Solar Ac-

tivity Cycle. Roughly, this cycle presents an initial period with quite few sunspot groups and

occurrences of low intensity (B, C) flares, as well as lower total irradiance and 10.7 cm radio

flux values. This phase is designated by solar minimum epoch. It is followed by a phase when

a gradual increase is observed in those parameters, mainly the frequency of occurrences and

intensity of flares. It reaches its peak after around 4-5 year, a period called solar maximum.

Regarding the volume of data, there are at least 30 features obtained from the magnetogram

vector and also a time series of X-rays. The time series obtained from the magnetogram vec-

tor has a sampling period of 12 minutes, while the X-ray time series, a sampling period of 5

minutes. Considering a full Solar Activity Cycle (11 years) and that each instant in the solar

Photosphere can exist multiple Active Regions with their respective magnetogram time series,

it is expected to have a large amount of data to be processed by the forecasting method. This

doctorate work used 7 years of solar data.

Therefore, the data employed in this work have the following characteristics:

1. Highly imbalanced, because the severe and extreme solar flares are rarer;

2. Periodicity due to the Solar Cycle characteristic;

3. Large amount of solar data to consider in the forecasting task.
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1.1.3 Approaches to solar flares forecasting

There are two main approaches used by methods that forecast solar flares: (1) forecasting

with statistical methods based on data probability distribution; (2) forecasting with data mining

techniques.

The first approach often studies the distribution of solar events within an interval, trying

to build statistical models. One of the first statistical methods used to forecast solar flares

is presented in McIntosh (1990). This work describes an expert system called Theo, which

consists of a set of rules based on knowledge of domain specialists (astrophysicists) about solar

characteristics (MCINTOSH, 1990). In Gallagher, Moon e Wang (2002), it was proposed a

statistical model by estimating the probability of each solar event through a Poison distribution

analysis. Another related work that uses statistical tools is found in Barnes et al. (2007). This

work assumes a Gaussian distribution of solar flare events applied to a statistical approach

named Discriminant Analysis. It aims to give probabilities for the occurrence of a phenomenon

for different groups. For instance, in solar flare forecasting, it would estimate the individual

probability of occurrence of flares of classes C, M and X.

Recently, many solar flare forecasting methods have been developed using data mining

techniques, taking advantage of machine learning algorithms. These works usually differ in

aspects such as: what is foreseen, the solar features used, the techniques for the preprocessing

step, and the adopted classification methods.

Most forecasting methods present their results in different ways: some works group solar

flare classes to give a positive answer and some works forecast solar flares in individual classes.

Considering classes C, M, and X, some methods return positive for classes greater than or equal

to C (AHMED et al., 2013), others consider positive for forecasts greater than or equal to M

(NISHIZUKA et al., 2017; BOBRA; COUVIDAT, 2015; LI; ZHU, 2013; YU et al., 2010), and

others produce individual probabilities for each class (C, M, X).

In several works found in the literature regarding solar flare forecasting, it can be observed

that a very challenging task is to define the most significant features used in the solar flare

forecasting process. We can find papers that use magnetogram vector (BOBRA; COUVIDAT,

2015; YU et al., 2009, 2010), sunspot number, sunspot area (GALLAGHER; MOON; WANG,

2002), radio flux, X-ray flux (LI; ZHU, 2013), among others, as input to the process of solar

flare forecasting. A significant feature used in solar flare forecasting is the intensity of the X-

ray flux emitted by the Sun because it establishes a relation between a solar flare event and its

impact on Earth using an event classification range.
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The most important difference between forecasting methods is the preprocessing method

used to prepare raw data to be submitted to the classifier. In general, the forecasting methods

enable classifiers to predict future events through the mapping of values of solar data observed

in a particular instant of time with events occurred in a particular time window. This approach

does not consider the evolution of a time series in a particular period to perform the mapping.

This is the reason why those methods do not consider the evolution of a solar data time series in

the mapping, which causes the loss of valuable information for the forecasting process. Some

forecasting methods set solar data snapshots to the class of a solar flare occurred after those

observed data (NISHIZUKA et al., 2017; BOBRA; COUVIDAT, 2015; AHMED et al., 2013;

YUAN et al., 2010; COLAK; QAHWAJI, 2009). However, there are also works that map

subseries of the solar data into events observed in the future, so that they adequately consider

the historical evolution of solar data (LI; ZHU, 2013; YU et al., 2010).

Classification methods used in the data mining process also differ among works in the

literature. We find forecasting methods using Support Vector Machines (BOBRA; COUVI-

DAT, 2015; ZAVVARI et al., 2015; QAHWAJI; COLAK, 2007), Artificial Neural Networks

(ZAVVARI et al., 2015; LI; ZHU, 2013; AHMED et al., 2013; WANG et al., 2008), C4.5

decision trees (ZHANG; LIU; WANG, 2011; HUANG et al., 2010; YU et al., 2010, 2009;

GALLAGHER; MOON; WANG, 2002), Naive Bayes (ZAVVARI et al., 2015) and Bayesian

Networks (ZHANG; LIU; WANG, 2011).

Current forecasting methods usually are not flexible enough to be set up with the specialist

knowledge: their configuration is set up once, and no parameter can be modified afterward.

Parameters that need specialist knowledge such as solar features, the size and period of both,

training and testing data sets, the period that is considered to map values and future events, are

all defined a single time, at the beginning of the process. Few methods allow the configuration

of some of those parameters, as presented in Li e Zhu (2013).

1.1.4 Open issues

Considering the data characteristics and the approaches used, we found important open

issues in this application domain that could improve current solar flare forecasting methods:

• The data are highly imbalanced and previous works have not deeply dealt with this issue.

• The occurrence of the studied phenomenon has a cyclic behavior, so the evolution of the

time series is a significant aspect that should be employed by the forecasting model.
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• Solar flares are classified in levels (A, B, C, M and X) and sub-levels (from 1.0 to 9.9).

Hence, solar flares classified in the boundary of their subsequent class have similar im-

pacts on Earth’s devices. For example, a solar flare classified as C9.9 has similar impacts

to an M1.0 flare. Thus, if a forecasting method predicts a C event, the actual event may

be a C1.0 to C9.9, i.e., it may have different impacts. Thus, it is important to differentiate

possible solar flares that are in the boundary of stronger ones;

• The knowledge of domain specialists is essential in the forecasting process. He/she knows

information as the solar data characteristics, and the most significant features that should

be used in the forecasting method. These parameters usually differ according to the period

of the Solar Cycle and/or the last occurrences of the event series. Thus, a method that can

be configured with the astrophysicist’s knowledge may improve the forecasting results.

• Most of the solar flare forecasting methods use data from one to two days of advance to

predict solar flares. However, it is important to employ computational processing to select

the best intervals that have the data that best distinguishes solar flares;

• Current methods perform binary forecasting. But, as the phenomenon is actually multi-

class, solar flare methods must provide this type of forecasting.

1.2 Problem definition

The problem we deal with in this thesis is how to design a solar flare forecasting method

that handles the identified open issues using Data Mining.

Solar flare forecasting is the task of predicting which solar flare classes may occur, given

the data collected before a certain forecasting horizon. Figure 1.1 shows an illustration of the

forecasting definition. The data collected in a period of size c is used as input of the forecasting

model. The time unit size is given in days in this thesis. In the figure, the cell named Jump

(of size j) is the interval between the last data collected and the period of the forecasting result.

The Forecasting Horizon is the interval (of size f ) ahead the Jump period that the forecasting

method is able to perform the predictions. For example, consider c and f set as one day and

j set as zero. In this way, we hypothetically collect solar data on a certain Wednesday to be

used by the forecasting method that performs the forecasting of the following Thursday (as the

forecasting horizon is actually the next day).
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Figure 1.1: Illustration of Forecasting definition

Solar flare forecasting methods may use Data Mining (DM) techniques in order to produce

the prediction model. This process is divided in the following steps (MAIMON; ROKACH,

2010):

• Establishment of the DM goals;

• Data gathering;

• Data preprocessing: data transformation and cleaning, selection of the DM task (classifi-

cation, regression or clustering) and algorithms;

• Evaluation of the results;

• Deployment of the learning model in operational environment.

According to the open issues and the DM steps, we mapped the computational challenges

that we faced in this thesis.

The first main challenge was to handle the time series historical evolution in the solar flare

forecasting process. The domain specialist from INPE (National Institute for Space Research)

who supported our project stated that the analysis of solar time series of two days before the

forecasting horizon is reasonable to be considered as a training instance. Original solar time

series comes in the form of a continuous record of values sampled in regular intervals. As we

may need about two days of data to distinguish the solar flare forecasting, we have to transform

the original continuous time series in a set of sub-series. Each of them should contain data

collected in two days and be labeled with the events occurred in the forecasting horizon. Hence,

our dataset is composed of instances of labeled sub-series used in the forecasting method. Thus,

this first challenge leads us to a time series classification context, so that we incorporated the

historical evolution of solar data into the designed method.

The second challenge is that the datasets used in the solar flare forecasting process are

highly imbalanced (LEE et al., 2012). In this situation, there are much more instances belonging

to a given class than the others. The classification method tends to classify the testing instance

with the label of the majority class. Two problems, related to this challenge are cited in Galar

et al. (2012):
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• Imbalanced data problem: insufficient instances belonging to the minority class may incur

in performance problems;

• Non-separable data problem: the difficulties to distinguish different classes due to in-

stances of similar feature values in this context.

In the literature, several approaches were developed to deal with those problems. For this

purpose, these approaches may modify the dataset distribution, the classification algorithm or

also implement a mixture of both strategies (KRAWCZYK, 2016). Although these approaches

are interesting, they do not handle all the problems listed above. Thus, we had to design alter-

natives to overcome this challenge.

The third challenge is the need to distinguish events classified in the boundary of two solar

flare classes. For this purpose, no work in the literature was found. To handle this, we proposed

a multi-label approach that employes Ensemble of Classifiers (EC). As EC methods aggregate

results from several base classifiers, it is possible to extend the approaches to perform a multi-

label approach.

Finally, as mentioned above, the physics regarding solar flares are not fully understood.

Consequently, another problem to be faced is the selection of the features that best distinguish

solar flares.

In summary, we faced the problem of solar flare forecasting by performing a multi-class

and multi-label classification of imbalanced time series of solar features taking into account the

astrophysicist’s (domain specialist) knowledge.

1.3 Research questions

Based on the identified open issues, some research questions arised:

1. Can time series classification methods be used to forecast solar flares taking into account

the historical evolution?

2. How to forecast solar flares in a multi-class and multi-label manner within a highly im-

balanced dataset?

3. How to deal with possible ambiguity of adjacent classes in the solar flare forecasting

process?
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4. Which information of the astrophysicist, should the forecasting method use? When (in

the method) should we use such information?

1.4 Hypothesis

From the open issues of current solar flare forecasting methods, we formulated our hypoth-

esis:

A new method to classify time series that considers the data evolution, and employs balanc-

ing techniques and Ensemble of Classifiers will improve the solar flare forecasting state-of-the-

art.

1.4.1 Validation criteria of the project hypothesis

The thesis was carried out with the support of a specialist from INPE. During the project,

he disseminated the knowledge and practices of his research group so that the fundamentals of

this thesis could be established. It was also discussed the metrics that should be used to validate

the method as well as the aimed results with him.

In the forecasting process of this domain, a false alarm is less costly than a fault, because

an unidentified high solar flare may have a severe and costly impact. As our problem is multi-

class and multi-label and we use time series classification methods, we based the validation in

metrics related to this scenario. Though classification metrics were developed for binary clas-

sification, we used customized variations based on Branco, Torgo e Ribeiro (2016). Among the

main metrics, we find recall or True Positive Rate (TPR), True Negative Rate (TNR), accuracy,

precision, F-measure and error. All these metrics have their relevance, but when considering

the specificities of our domain, recall and error for each class were considered the most repre-

sentative. Thus, the thresholds established to validate the hypothesis considered the specialist

needs and is presented next:

• Minimum recall for each class: 70%;

• Maximum error for each class: 30%;

• Forecast horizon: one day;

• The maximum length of historical data: eleven years (one Solar Activity Cycle);
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1.5 Project goals

The following general and specific goals were established.

1.5.1 General goal

The general goal of this project was to develop a solar flare forecasting method that deals

with the open issues identified in the literature. The developed forecasting method handles

the evolution of the time series of X-ray flux, and the magnetogram vector using time series

classifiers, dataset balancing techniques and Ensemble of Classifiers.

1.5.2 Specific Goals

In order to achieve the proposed general goal, the following specific goals were defined:

1. Design of the pre-processing step that prepares the raw data to be used as input of the

forecasting method;

2. Design of the pre-processing step that splits the full dataset into subsets balanced accord-

ing to each class of solar flare;

3. Design of the pre-processing step that allows data mining classifiers to forecast future

events through the historical evolution of time series;

4. Design of the forecasting task that is fed with the generated balanced datasets to produce

forecasting results for each subset;

5. Design of how to produce the multi-label forecasting results;

6. Selection of the solar features to be used in the forecasting method.

Each specific goal builds a module, so each goal was achieved when those modules were

implemented and tested against its requirements. The validation of the full method was made

using the metrics defined for the hypothesis validation presented in Section 1.4.1.

1.6 Scientific methods and materials

This section describes the scientific methods used in this research project. Then, the mate-

rials used to develop, validate and deploy this project are described.



1.6 Scientific methods and materials 35

1.6.1 Scientific methods

The scientific method of this research project was based on Wazlawick (2009) and consisted

of:

• Review of related works;

• Identification of the open issues in the literature;

• Survey of the needs of INPE’s space weather program;

• Formulation of the project goal and hypothesis;

• Identification of the hypothesis validation criteria;

• Development of a model that integrates existing techniques and new methods to perform

solar flare forecasting;

• Execution of the experiments to validate the hypothesis.

The requirements and validation of the project were carried out with the domain specialist

(INPE astrophysicist) through:

• Meetings

• Emails

• Questionnaires

1.6.2 Materials

As shown in Table 1.2 We collected data from three primary sources which are freely avail-

able for research purposes.

Table 1.2: Data source

X-ray time series Source Website

X-ray time series
Website of National Oceanic and Atmospheric Administration - Space Weather

Prediction Center - Operating Unit of the U.S. Dept of Commerce
https://satdat.ngdc.noaa.gov/sem/goes/data/new avg

Magnetogram vector Joint Science Operations Center (JSOC) - Stanford Solar Center http://jsoc.stanford.edu/

Solar Event List
Website of National Oceanic and Atmospheric Administration - Space Weather

Prediction Center - Operating Unit of the U.S. Dept of Commerce
ftp://ftp.swpc.noaa.gov/pub/warehouse/

Additionally, we used the softwares and programming languages presented in Table 1.3

during the development of the thesis work.
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Table 1.3: Software and programming languages used in this thesis work

Type of software and programming languages Name Version

Operating System Linux 16.04

Database Management System Postgres 10.4

Programming Language Java 8

Programming Language C -

Programming Language CUDA C Toolkit 8.0

The development was performed at the GAPIS (Grupo de Arquitetura e Processamento

de Imagens e Sinais”) laboratory of the Department of Computing at Federal University of São

Carlos (UFSCar), using its infrastructure of hardware and software. The hardware configuration

available for the project is listed in Table 1.4

Table 1.4: Infrastructure available for the project

Environment Configuration

GAPIS lab - machine-1

CPU: Intel i5

RAM: 8 GB

Graphics Processing Unit: Geforce 960X,

with 1024 CUDA cores (GPUs) and 2GB of memory.

Operating System: Windows 10

GAPIS lab - machine-2

CPU: Intel Core i5

RAM: 8 GB

Disk: 1 TB

Operating System: Linux Ubuntu 16.04

1.7 Main contributions

The main contributions of this work were the development of two solar flare forecasting

methods: SeMiner and ECID.

SeMiner was developed and tested using a number of strategies aiming to improve param-

eters such as accuracy, true positive and true negative rates. This method uses one solar feature

in order to perform the forecasting. More specifically, this method deals with a crucial step in

the process of solar flare forecasting: the data preprocessing, using the knowledge of the do-

main specialist. Other distinguishing characteristics (compared to other forecasting methods)
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are: the historical evolution of the solar time series was considered to produce the forecasting

model; and, we identified the most significant time intervals to be considered in the forecasting.

In the scope of our experiments, the best time interval was within two days for current window

and comprised both, the initial and end periods of the first day, and the last 16 hours of the sec-

ond day. Finally, performance optimization was implemented in SeMiner. The core module of

SeMiner, the SS algorithm, was parallelized using CUDA, targeting parallel execution in GPUs.

The strategy showed to be 4.36 times faster than its pure C sequential version.

We also developed a method called ECID (Ensemble of classifiers for imbalanced datasets).

This method provides a tool to support the specialist decision in the solar flare forecasting task.

It gives multi-class and multi-label forecasting. This strategy differentiates from other fore-

casting methods because its result indicates the classes most probably to occur in a forecasting

horizon. This result also supports the domain specialist when it is needed to differentiate pos-

sible events that occur in the boundary of higher events. This was possible, because, for each

solar flare class, ECID employs a stratified random sampling for the training of base inducers,

strengthen its sensitivity. Using a modified bootstrap approach, its aggregation method com-

bines the inducers results enabling multi-class forecasting, which can also be multi-label in

case of adjacent classes. Finally, it is able to handle more than one solar feature to provide its

results.

1.8 Text structure

This text is structured in the following manner:

Chapter 2 presents the theoretical concepts needed for the development of the project. So, it

describes the solar flare background needed for the comprehension of the problem. This chap-

ter also presents classification methods used as base inducers in our Ensemble of Classifiers.

Next, it presents some time series classification approaches and techniques used to minimize

the problems related to imbalanced datasets in classification methods. Finally, metrics applied

in the validation of forecasting methods are described.

In Chapter 3, related works regarding computational techniques used in time series classi-

fication of imbalanced datasets are listed and discussed. Additionally, the characteristics and

results of solar flare forecasting methods found in literature are described and analyzed.

Chapter 4 describes the first method developed in this work, called SeMiner (Sequence

Miner). It shows the conceptual basis, justifications, and explanation of the characteristics of

SeMiner.
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Chapter 5 describes the second method developed in this doctorate work, called ECID (En-

semble of Classifiers for Imbalanced Dataset). It shows the conceptual basis, justifications, and

explanation of the characteristics of ECID.

Chapter 6 describes the experiments and results performed with SeMiner and its parallelized

version. It also presents the experiments and results obtained with ECID. Finally, it discusses

the validation of the thesis-hypothesis based on the result of the experiments.

Finally, Chapter 7 details the most relevant contributions, the scientific publications and the

future works.



II BACKGROUND AND RELATED

WORK



Chapter 2
BACKGROUND

In this chapter, we present the concepts that formed the basis for the development of this

thesis: solar flares, data mining classification, time series classification techniques to handle

imbalanced datasets, and validation metrics for forecasting methods.

The solar flare context requires several concepts that may be understood in order to design

a forecasting method, thus in this chapter we begin describing the problem of solar flares and an

important concept, which is the X-ray background level. Next, the concept of active regions is

presented. Also, solar data is provided from several sources, formats and types. As mentioned,

the physics of this event is not fully understood, so that current research may select the features

which best distinguishes the event. Hence, we provide a description of the main solar features

characteristics used in current forecasting methods.

Our solar flare forecasting method was designed using a time series classification approach

that used techniques for handling imbalanced data sets. These time series classification methods

usually use traditional classifiers, also shown in this chapter. Afterwards, we present the main

approaches for time series classification methods and how to handle imbalanced datasets. These

methods inspired us in the formulation of our method.

Finally, we present the main metrics used in the validation of a data mining classification

task and how they may fit in the multi-class and multi-label approach.

2.1 The problem of solar flares

Solar flares are sudden releases of large amounts of energy (1025-1032 erg) from active re-

gions of the solar atmosphere (HOLMAN, 2006), and it was first observed on September of

1859 in the Carrington Event (CARRINGTON, 1859). These phenomena last from tens of sec-
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onds to a few hours and release energy in the form of radio waves, X-rays or even gamma rays.

It can interfere on High Frequency (HF) and Very High Frequency (VHF) radio communica-

tion, since the terrestrial Ionosphere is disturbed by the strong presence of X-rays, causing the

reflection of HF and VHF waves at certain frequencies and absorbing others (TSURUTANI et

al., 2009). The flares can also interfere in satellite communication since it uses high-frequency

signals (BASU et al., 2010).

We can observe the Active Region (NOAA AR 2297) in Figure 2.1 located in the yellow-

ish/bluish parts close to the center of the solar disk. The abrupt release of energy in these regions

is known as solar flares (HOLMAN, 2006). In Figures 2.2 and 2.3, it is possible to observe the

instants before and after of the solar flare classified as X that occurred in March of 2015. Flares

of this class are considered the most intense ones and may have the highest impacts on Earth’s

devices.

Figure 2.1: Image recorded on March 11th, 2015 at 15:37 UT (Universal Time), showing the active
region AR 2297 that produced the X-class solar flare observed on that day.

The X2.1 solar flare, produced on March 11, 2015, by the AR 2297 shown in Figure 2.1,

started at 16:11 UT, reached its peak at 16:22 UT and finished at 16:29 UT. Figure 2.2 was

extracted at 16:07, shortly before the event. Figure 2.3 was obtained at 16:37, shortly after the

event. Thus, one can observe the evolution of the Active Region (in blue and yellow highlighted

aspects) from where the flare originated.
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Figure 2.2: Image recorded of the solar
disk on March 11th, 2015 shortly before
(16:07 UT) the observed X-class solar flare.

Figure 2.3: Image recorded of the solar
disk on March 11th, 2015 shortly after
(16:37 UT) the observed X-class solar flare.

Though we can find several computational methods in the literature for the forecasting of

solar flares, this area of research still needs improvement, because astrophysicists do not have

the full understanding of the physical phenomenon behind solar flares yet (PRIEST; FORBES,

2002; RABOONIK et al., 2016). Consequently, it is of utmost importance to develop accurate,

operational and optimized forecasting models for solar flares.

Thus, this thesis developed a method of solar flare forecasting based on the concepts and

methods of the area of Data Mining. These tools were selected and improved taking into ac-

count the characteristics of this application domain, the events, and the solar data. For this,

the direction and feedback of the domain specialist were fundamental to understand the various

concepts involved in this phenomenon. An essential idea in this scenario is to differentiate the

X-ray background level from the solar flare, as explained in the following.

2.1.1 The Difference between solar flares and X-ray background levels

Solar flares, as already mentioned, are a sudden release of energy from Sun that may impact

on Earth’s environment and/or electronic devices. According to the SWPC website a flare is

identified by a sequence of 4 minutes presenting a steep monotonic increase in the 1-8 Angstrom

solar X-ray flux that is recorded, independent of its previous flux intensity level. The maximum

of the flare corresponds to the peak level observed in the X-ray flux, which determines its

intensity. The background level can be obtained by the average X-ray flux calculated from 20%

of the lowest flux values in an interval of 8-10 hour.
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Thus, it is essential to emphasize the concept of X-ray background level, since the release

of a high-intensity X-ray flux is not enough to conclude that the Sun produced a solar flare

(WEBSITENOAA, 2017; DRIEL-GESZTELYI LIDIA; GREEN, 2015).

To check if an active region emitted a solar flare, we have to look for an abrupt variation

of X-ray emission. For example, if the Sun releases 1E-06 W/m2 of X-ray flux and this inten-

sity is increasing smoothly, then we can say that the X-ray background level is of level C. It

can reach gradually to 1E-05 W/m2 even though the active region didn’t produce a solar flare

(WEBSITENOAA, 2017). In this case, instead of the occurrence of a solar flare, there may

have been occurred an increase in the X-ray background level.

The abrupt variation of energy characterizes solar flares. Thus, if the X-ray suddenly rises

from 1E-07 to 1E-05 W/m2, than we can say that an Active Region produced a solar flare

(WEBSITENOAA, 2017).

Figure 2.4 presents an example of the referred difference. Next to date Jun-11 we can

observe a sudden increase of the X-ray background level (red curve) from level A to B, reported

as a solar flare of class B1.5. Observing day Jun-12, there was a smooth increase from level A

to level B, but, in this case, it was not reported a solar flare because the increase was not abrupt.

Figure 2.4: Solar flare x Background level example
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2.1.2 Active Region

At the photosphere, an active region is in the form of bipolar/multipolar magnetic fields

showed as dark sunspot groups. These field lines is in the form of arcades. In a simplified de-

scription, active regions is the location in the solar atmosphere - mainly high chromosphere and

low corona - where a solar flare occurs or can occur. This region is dynamic and occasionally

the field lines can reconnect and abruptly release the large amount of stored magnetic energy

generating a solar flare (DRIEL-GESZTELYI LIDIA; GREEN, 2015).

Driel-Gesztelyi Lidia; Green (2015) gives the following formal definition for Active Re-

gions:

Active regions are the totality of observable phenomena in a 3D volume represented by the

extension of the magnetic field from the Photosphere to the Corona, revealed by emissions over

a wide range of wavelengths from radio to X-rays and γ-rays (only during flares) accompany-

ing and following the emergence of strong twisted magnetic flux (kg, ≥ 1020 Mx) through the

Photosphere into the Chromosphere and Corona.

Each Active Region (AR) has a unique identification, called AR number. As the AR has an

intense magnetic activity, because it is composed of magnetic fields and lines, a set of magnetic

properties, like its size and strength may be sampled using specific instruments on board of

satellites. Thus, there is a time series of values of each magnetic feature for each AR number.

Also, NOAA/SWPC (NOAAEVENTREPORT, 2019) provides reports that maps AR with its

solar flares. An issue regarding this report is that sometimes it does not link the solar flares

with its Active Region. Thus, the development of a forecasting model must take this gap into

account. Figure 2.5 shows an example of the NOAA/SWPC (NOAAEVENTREPORT, 2019)

reports.
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Figure 2.5: Example of NOAA/SWPC Solar Event report

Note, in Figure 2.5, that event #6380 shows the X2.1 solar flare occurred at AR #2297. This

information is of great importance to our work because it allows to map a solar flare with its

magnetic features.

2.1.3 Solar features

A question that arises is: Which solar features indicate that a possible solar flare is in course

to occur?

There is no agreement about which features influence on solar flares (PRIEST; FORBES,

2002). But, many studies suggest several features that tightly indicate the occurrence of this
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phenomenon. One of the most used is the X-ray intensity emitted by Sun and recorded through

sensors located at GOES satellite. Another set of features are the magnetic properties of Active

Regions. Mainly two instruments collect these features: SOHO/MDI and SDO/HMI. Magnetic

features are extracted from images called magnetograms. These images establish an integer

value for each pixel. This value is proportional to the magnetic activity of that location. With

this image, it is possible to extract the size of magnetic lines, their strength, and many other

properties. Also, some works use the topology aspects of sunspots in the forecasting process.

Finally, few works use the Chromosphere physical properties to forecast solar flares.

We present, in following, examples of solar feature types and their sources:

• Soft X-ray flux emitted by Sun: this data is relevant to solar flare forecasting because it

establishes a direct relation between X-ray and the impacts it may produce. It consists

of a time series with a sample period of 1 or 5 minutes and the intensity of the X-ray

flux within 1-8 Angstroms passband is recorded by a sensor located at GOES satellite

records. Table 1.1 shows the relation between X-ray intensity, solar flare classification,

and its possible impacts. Figure 2.6 shows an example of this time series.

Figure 2.6: Example of X-ray time series

Figure 2.6 shows the file obtained from NOAA/SWPC FTP site, which stores a daily set

of X-ray time series (htt ps : //satdat.ngdc.noaa.gov/sem/goes/data/new avg/). This

X-ray time series example has a sample period of 5 minutes. There are two columns that

inform the data quality of each sample (A QUAL FLAG and B QUAL FLAG). Also,

there are two auxiliary fields (A NUM PTS and B NUM PTS) and, finally and most

important, two attributes containing X-ray measured within 0.05-0.4 nm passband, and
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the ones measured within 0.1-0.8 nm passband (A AVG and B AVG). B AVG is the time

series that has a direct relation to the solar flare classification.

• Magnetic features obtained from SOHO/MDI: these images are called Line-of-sight mag-

netogram, and it may provide the magnetic field strengths, size, area, etc, found in the ac-

tive regions. The instrument that records the magnetogram is called Michelson Doppler

Imager (MDI), and it is on-board of the Solar and Heliospheric Observatory (SOHO)

spacecraft (SOHO/MDI). A list of the possible extracted features from this instrument

is shown in (AHMED et al., 2013). This work applies the magnetic features shown in

Figure 2.7 in the forecasting process (the physic’s meaning of each property is out of the

scope of this work).

Figure 2.7: Line-of-sight magnetic features presented in (AHMED et al., 2013)

• Magnetic properties obtained from SDO/HMI: these images are also called Line-of-sight

and vector magnetogram. A newer instrument, the Helioseismic and Magnetic Imager

(HMI) on board of the Solar Dynamics Observatory, records these set of images. This

space observatory substituted SOHO/MDI and can produce different types of images

named line-of-sight and vector magnetogram. In Bobra e Couvidat (2015), it is extracted

the magnetic features from this source to use in their solar flare forecasting method. Fig-

ure 2.8 shows the list of magnetic properties used in that work.
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Figure 2.8: Features extracted from vector magnetogram used in (BOBRA; COUVIDAT, 2015)

As SDO/HMI generates images, numerical values must be calculated to extract the time

series of each magnetic property. The Joint Science Operations Center (JSOC) - Stan-

ford Solar Center website provides a tool that calculates these numerical values for the

magnetic field properties in almost real time. Figure 2.9 shows an example of those time

series.
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Figure 2.9: Magnetogram features’ time series example

Figure 2.9 shows the resulting time series of a query performed in JSOC website starting

on 2010-05-01 00:00 and ending on 2010-05-01 01:00. The time series sampling period

is 12 minutes/observation, and we can see the magnetic fields in the columns USFLUX

and R VALUE for AR regions 11067, 11064 and 11065 varying from 12 to 12 minutes

(instants 0, 12, 36 and 48). This example shows only two magnetic properties time series:

USFLUX and R VALUE; though, we can extract any feature presented in Figure 2.8.

• Sunspot features: some works of solar flare forecasting use sunspot magnetic topology.

McIntosh (1990) shows a classification of sunspots according to their topology. Fig-

ure 2.10 shows a graphical description of the McIntosh classification.

• Chromosphera data: according to Nishizuka et al. (2017), data from the Chromosphere

also indicates the occurrence of solar flares. Atmospheric Imaging Assembly (AIA) on-

board of SDO is the instrument that records these data. In Nishizuka et al. (2017), the

images provided by AIA/SDO are sources used for calculating the features derived from

the Chromosphere, named Chromospheric (UV) brightening area, Total chromospheric

(UV) brightening and Maximum intensity of chromospheric (UV) brightening.



2.1 The problem of solar flares 50

Figure 2.10: McInstosh Sunspot Classification (MCINTOSH, 1990)

2.1.4 The Problem of solar flares - important considerations

There is no agreement on which features fully determine the solar flares. Thus, we per-

formed several practical experiments using the X-ray intensity emitted by the Sun and the mag-

netic features shown in Figure 2.8 to identify the most significant features for the forecasting

process, because:

1. X-ray establishes a direct relation with solar flare classes and their disturbances, impacts

and risks to the Earth environment;

2. Magnetic features extracted from SDO/HMI are the most recent features analyzed in

current works of solar flare forecasting.

We also used the sunspots topology, but this feature did not result in any improvement.

The data employed in this project have some important characteristics:

1. Periodicity: due to the Solar Cycle characteristic;

2. Highly imbalanced: because intense and extreme solar flares are rarer;

3. Has a large volume;

4. Adjacent classes are difficult to distinguish.
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The data characteristics lead us to deal with the forecasting problem using imbalanced time

series classification methods. These methods usually use data mining classification methods to

deal with the imbalanced data. The most relevant classifiers are shown next.

2.2 Classifiers

In a general overview, the Data Mining (DM) process applies the following steps (MAI-

MON; ROKACH, 2010):

1. Determination of DM goals;

2. Data collection;

3. Preprocessing: data transformation and cleaning, selection of the DM task, and choice of

a specific DM algorithm;

4. Execution of the mining algorithm in the processed data;

5. Evaluation of the results;

6. Deployment of the model in an operational environment.

Our solar flare forecasting method follows these steps as it is designed through a DM pro-

cess. The DM task chosen in this thesis was classification.

Some of the main data mining classifiers used in time series forecasting and classification

are K-Nearest Neighbor, Support Vector Machine, Decision Trees and Artificial Neural Net-

works. These classifiers may be used as initially designed or may be modified to meet a specific

domain requirement. We show in this section the original versions, and in the following sec-

tions, we show their possible usages in imbalanced and/or time series datasets.

2.2.1 K-Nearest Neighbor (K-NN)

K-NN is a method of Instance-based learning. It is a supervised method, where each train-

ing instance must be previously labeled. The idea behind the method is to use a distance func-

tion, like Euclidean or Manhattan, to compare each testing instance with the ones in the training

dataset. The resulting classification is chosen depending on the label of the k closest training

instances. For example, if k is set to 5, the method will label the testing instance with the most
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frequent class of the five-nearest training instances. The most simple algorithm of this method

(SILVA; PERES; BOSCHARIOLI, 2016) is shown in Algorithm 1.

Algorithm 1: K-NN basic algorithm
input : testing data, training data

output: label

1 begin

2 For each training data, calculate the distance between training data and

testing data;

3 Order training data according to the distance obtained in the last step;

4 Select k first examples;

5 Classify testing data with the label that occur most frequently in the k first

examples of the ordered list;

6 end

The best choice of k depends on the data that it is working. If we assume higher values

of k, it may lead to a reduction of the noise effect on the classification, but in the counterpart,

it makes the boundaries between classes more difficult to be distinguished (SILVA; PERES;

BOSCHARIOLI, 2016). In the other hand, assuming a small value of k can turn the method

more noise sensitive.

2.2.2 Support Vector Machine (SVM)

SVM is a statistical learning machine algorithm introduced by Cortes e Vapnik (1995) in

1995 based on Vapnik’s Statistical Learning Theory. The main idea of SVM is to estimate a

function that minimizes the risk of misclassification. It separates two classes through a hyper-

plane so that when the data is linearly separable, a function can determine to which class a

certain tuple belongs. Figure 2.11 illustrates this situation.
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Figure 2.11: SVM example - Linear separable data (SHARMA et al., 2013)

Note that each class, represented by a circle or a diamond, can be separated by a Hyper-

plane (line), as shown in Figure 2.11. The best Hyperplane to separate the tuples of each class is

defined as the one containing the largest margin between the set of instances of each class. The

distance between the hyperplane and the nearest instances of each class should be the same and

these are called Support Vectors. SVM uses a statistical concept called Constrained Quadratic

Optimization Problem to find the Hyperplane that best separates each class (CORTES; VAP-

NIK, 1995).

If the data can not be linearly separated, like Figure 2.12 shows, an additional strategy

should be used by SVM (CORTES; VAPNIK, 1995).
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Figure 2.12: SVM example - Non-linear separable data (SHARMA et al., 2013)

The non-linear data must feed a function called Kernel. This function increases the data

dimension so that the new data can be separable by a hyperplane, instead of by a simple line.

Usually, SVM avoids the overfitting problem because the model produced (a function that

implements the hyperplane) needs information of a reduced set of instances, the Support Vectors

(BALL; BRUNNER, 2010). These instances don’t change so often as the dataset varies so

that we can say that the model doesn’t overfit. Some implementations of SVM allow to set

up weights for different classes. This is a useful characteristic to employ when working with

imbalanced datasets.

2.2.3 Decision Trees

Decision Trees is a class of algorithm that constructs a tree with a set of internal nodes and

leaves, designing a classification model. The internal nodes are features of a certain dataset.

Each sub-trees derived from these internal nodes are obtained through the possible results that

these features should assume. This structure is repeated until a definitive result (the prediction)

is obtained at the leaf node. This tree is built using a training set.
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Figure 2.13: A Decision Tree example from Weka

Figure 2.13 shows an example generated by Weka tool (HALL et al., 2009) of a Decision

Tree algorithm result. The implementation used is called J48, which consists of a Java imple-

mentation of the C4.5 Decision Tree Algorithm (QUINLAN; ROSS, 1993). We can see that the

nodes are composed of the training features: outlook, humidity, and windy. We can observe that

the tree does not contain the feature named temperature, even though it is in the training dataset

of this example. This is due to the fact that the Decision Tree also analyzes how important

each feature is in order to predict the testing instance. This is done using some metrics like the

degree of purity of a certain feature, a statistical metric called Entropy and the information gain

criteria.

2.2.4 Artificial Neural Networks

Artificial Neural Networks (ANN) simulates the cells of the human brain called neurons

and their interconnections. For this purpose, the artificial neuron implemented in ANN is a

function that maps input into outputs.

Frank Rosemblatt proposed the Artificial Neuron called Perceptron in 1955, which formed



2.2 Classifiers 56

the basis for the neural networks (YADAV; YADAV; KUMAR, 2015). This model is composed

of the processing units defined by McCullock - Pitts. Each processing unit produces an output

that is the sum of weighted inputs. So, a general unit performs the following steps: (1) receives

signals (input data); (2) each signal is multiplied by the weight assigned for that input; (3) the

weighted sum of all the signals is calculated, producing the called activity level; (4) finally, the

final answer of the processing unit depends on the level of activity achieved in the previous step.

This is decided by an activation function. The weighted sum is calculated using Equation 2.1

and the activation function is given by Equation 2.2.

v0 =
d

∑
j=1

(x j ∗w0 j)+b0 (2.1)

y0 = f (v0) (2.2)

Figure 2.14 shows the processing unit general model.

Figure 2.14: Neural network processing unit

The weight of each input is obtained through iterative analysis of the error between the pre-

dicted and the expected values. The weight estimation is updated to minimize this error. The

method that contains just one Neuron (Perceptron) is the simplest one. The training phase con-

sists on iteratively updating the weights of the Neuron. This model can be extended so that a set

of neurons are connected and consequently, composing an Artificial Neural Network (ANN).

There are several implementations of ANN, named: Cascade Correlation Neural Network, Mul-

tilayer Perceptron Neural (MLP) Network, Learning Vector Quantization, etc. Next, we present

an overview of MLP.

Multilayer Perceptron Neural Network (MLP)
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Figure 2.15 shows an example of MLP. This sort of ANN is composed by an Input Layer (IL),

a Hidden Layer (HL) and an Output Layer (OL).

Figure 2.15: MLP Illustration

The IL is responsible for getting input information, applying the respective weights and

feeding HL. Then, HL calculates its output using their weights. The output is obtained by

calculating the sum of the received values from HL, applying their weights and producing the

final output in OL. The second step of the algorithm must update the weights of all the layers.

For this purpose, an algorithm of error backpropagation is performed. In this algorithm, the

error is calculated using the MLP output compared with the actual value of the training dataset.

Then, this error is propagated for the hidden layer and finally for the input layer. Thus, the

weights are updated and the next iteration starts again until a certain error threshold is achieved.

Note that MLP may have more than one hidden layer (BALL; BRUNNER, 2010). Figure 2.15

shows the general schema of a MLP.

2.2.5 Classifiers - Important Considerations

Figure 2.16 shows a comparison found in Ball e Brunner (2010) among data mining clas-

sification methods. According to this comparison, ANN and SVM have great potential to deal

with non-linear input data and have good predictive power. Decision Trees although have good

computational scalability achieves not such good results. Whereas KNN is easily parallelized,

having good predictive power in the cost of being computationally intensive (BALL; BRUN-

NER, 2010). As we discuss later, SVM and KNN are very often used in solar flare forecasting

methods found in the literature.
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Figure 2.16: Comparison of data mining classification methods (BALL; BRUNNER, 2010)

In order to apply classifiers to forecast future events, observed tuples should be labeled with

time-posterior classes. The majority of the solar flare forecasting methods labels an observed

instance as Yes or No depending on if there were a flare in the next few hours. Usually, the

dataset does not contain the evolution of the solar features. However, it is essential to consider

the historical evolution while labeling observed instances. This was one of our goals in this

work.

In the solar flare domain, classifiers are employed in time series classification to analyze the

original time series and its evolution. Techniques used in time series classification are discussed

next.

2.3 Time Series Classification

A dataset used for solar flare forecasting contains several solar features. Each solar feature

is measured in a determined sample rate, producing a time series. Hence, the solar flare dataset

is composed of a set of time series, one for each feature. In this way, the solar flare forecasting

problem can be treated as a problem of time series forecasting. Next, we present some time

series definitions according to Esling e Agon (2012).

Definition 2.1. An univariate time series T is an ordered set of observations of a variable T =

(t1, t2, ..., tn), where tn ∈ R is a real value of the variable T measured at time n.
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A multivariate time series is a set of time series T related with a specific domain and ob-

served in equal sample rates.

Definition 2.2. Given a time series T of length n, a time series subset S of T is a series of

length m ≤ n consisting of contiguous time instants from T: S = (tk, tk+1, ..., tk+m−1), where

1≤ k ≤ n−m+1. The set of all subsets of T of length m is denoted as ST
m.

Definition 2.3. A time-series dataset DS is an unordered set of time series.

Definition 2.4. Time series classification: given an unlabeled time series T, there is a function

f that assigns T to one class ci from a set C =Ci.

Definition 2.5. Time series forecasting is the predictive task of forecasting values of T for time

instant ts > t, where ts is the instant of time in which it is intended to predict, and t is the instant

of time of the current observation.

In literature, it is found forecasting methods that use Regression Statistical Models (RSM)

applied to Machine Learning Methods (MLM). We found several RSMs for time series fore-

casting like Auto-Regressive Moving Average model (ARMA) (MAKRIDAKIS, 1994), Sea-

sonal Auto-regressive Integrated Moving Average (SARIMA) (BROCKWELL; DAVIS, 2002)

and Hidden Markov Models (JOSHI; SRIVASTAVA, 2014). There are works that use Support

Vector Machine (SVM), K-Nearest Neighbor, Decision Trees and Neural Networks aiming to

forecast time series (DONGXIAO; TIANNAN; BINGYI, 2016; PEDRO; COIMBRA, 2015;

CHEN; GOO; SHEN, 2014; MEKANIK et al., 2013). These works have in common the capa-

bility to predict future numerical values of the time series analyzed.

However, the concept of time series forecasting used in this thesis is that there is a model

that given an observed instance (or time series subsets), it returns a class of a future event. In this

case, the predicted event is the future event, which is formally defined as Yt+h = f(<description

Of The Past>), where the < descriptionO f T hePast > is the time series subset or observed data

used to describe the set of values sampled in the past, and the function f is the model that returns

the class of the forecasting event (OLIVEIRA; TORGO, 2015).

The forecasting process can be seen as a type of time series classification problem because

the goal is to map observed data to one or more class(es) (as stated in Definition 2.4). As

the main data structure of solar flare domain is composed of time series and the concept of

forecasting is implicitly a type of classification, we focused our solution on the development of

a suitable time series classification method that forecasts a solar flare class. In following, we

described the BAGNALL et al. taxonomy for time series classification.
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Bagnall et al. (2017) categorizes time series classification methods in the following cate-

gories: Whole intervals, Phase Dependent Intervals, Phase Independent Shapelets, Dictionary

based and Combinations:

2.3.1 Whole-based

Methods that fall in this category consider the whole time series in order to perform the

classification task. These methods usually perform the following steps to complete the classifi-

cation task: (1) calculate the distance between the testing instance and the training dataset, and

(2) labels the testing instance with the same class of the closest training instance found in the

first step. These methods have the challenge of how to choose the best distance measure accord-

ing to the training time series pattern. Some domains present training time series aligned with

the majority of the testing instances, but other domains face the problem of scaling misalign-

ments. This issue determines how the distance measure is calculated. One-nearest neighbor

(1-NN) is an example of a Whole-based method. When this classifier is used with time series

as input, it computes the distance between the training set instances and the testing instance.

Afterward, it labels the testing instance with the closest training instance found.

Time series classifiers may use different types of measures, like Euclidean Distance or Dy-

namic Time Warping (DTW) (XI et al., 2006). The first calculates the distance between two time

series using the equation Ed = ∑
n
1(ttest− ttrainingi)

2, where n is the length of the time series, ttest

is the testing instance, andttrainingi is the ith training instance. This measure is simple, fast and

applicable in many domains. However, it fails to compare misaligned time series(AGRAWAL;

FALOUTSOS; SWAMI, 1993).

Another distance measure is Dynamic Time Warping (DTW). DTW is called an elastic mea-

sure, because it is not sensitive to scale misalignments between the training and testing instances

(SAKOE; CHIBA, 1978; RAKTHANMANON et al., 2013). DTW calculates the distance of

all the points of the testing instance to each point of the training set. The sum of these distances

produces a path, called Warping Path (WP). The resulting distance is the path that minimizes the

WP. So, as it considers the distance between all points of the time series, it avoids the misalign-

ment issue. Though DTW is time-consuming, it is highly parallelizable, like implemented in

Rakthanmanon et al. (2013). Many derivations of the original method were developed (JEONG;

JEONG; OMITAOMU, 2011; MARTEAU, 2009; BATISTA et al., 2014) to optimize its pro-

cessing. However, those works fail to compare not aligned time series.

Figure 2.17 shows examples of time series in which the usage of DTW as distance measure

is interesting. The two time series on top belong to the same class, and the two on the bottom
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belong to another class. The time series of the same class are visually similar, but presents some

differences in scaling, peaks and troughs.

Figure 2.17: Example of time series that may be classified using Whole-based methods. Adapted
from (BAGNALL et al., 2017)

Methods that compare the whole time series may get confused with noises. Additionally, a

specific interval can best describe a given class than the whole time series. Thus, another set of

algorithms tries to overcome this issue by seeking patterns in one or more time series range(s).

2.3.2 Intervals-based

Intervals-based methods select a subset of the time series in certain intervals to compare

them. The general steps of the algorithms that follow this category are: (1) Select the intervals;

(2) Obtain new features through the processing of the selected intervals, and; (3) Submit the

data to a classifier.

These methods have two challenges: how to determine the most significant intervals of data,

and which data transformation techniques should be performed in the selected data to improve

the classification accuracy. Some methods decrease the intervals size until they reach a good

accuracy. As examples, we can find Support Vector Machines of interval-based features, Time

Series - bag of features and Learned pattern similarity (RODRÍGUEZ; ALONSO; MAESTRO,

2005; BAYDOGAN; RUNGER; TUV, 2013; BAYDOGAN; RUNGER, 2016).

Figure 2.18 shows examples of time series suitable to be treated with Intervals-based meth-

ods. These time series present a well defined noisy and discriminatory regions in specific inter-

vals. In this example, data patterns located at specific intervals determine the correct class.
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Figure 2.18: Example of time series suitable to be handled with Intervals-based methods. Adapted
from (BAGNALL et al., 2017)

Methods that implement the concept of time series intervals have the advantage of consid-

ering the patterns in one or more intervals through the time series, but it also constrains the

classification within time series of the same length, and the ranges of comparison are also fixed.

2.3.3 Shapelets-based

The methods of this type try to find shapelets. A Shapelet is the most discriminant, phase-

independent subsequence in a given time series that define the classes of the problem indepen-

dently of the time interval (BOSTROM; BAGNALL, 2015). Thus, the same pattern may be seen

several times in a specific time series. In general, they run the following steps: (1) find a set

of shapelets using a distance measure; (2) build a new training dataset containing the distances

between the time series and the shapelets; (3) build a model using a classifier; (4) transform the

testing instances by calculating their distances to the shapelets; (5) classify using the created

model.

Shapelets-based methods have the advantage of being more flexible in the classification task

since it analyzes several parts of the time series independently. Otherwise, they need to look

for the shapelets (patterns) in the time series, so that they usually run slowly. Some Shapelets-

based methods are Time series shapelets, Fast Shapelet Transform, Fast shapelets and Shapelet

transform described in Ye e Keogh (2011), Ji et al. (2018), Rakthanmanon e Keogh (2013),

Bostrom e Bagnall (2015). These methods differ from the type of selection criteria of the

shapelet.

These methods may classify binary (YE; KEOGH, 2011) and multi-class datasets (BOSTROM;

BAGNALL, 2015), which is an attractive characteristic for the solar flare domain. On the other

hand, another important issue that our problem may face is that solar flares datasets are multi-

label, and this sort of methods are not prepared to deal with this issue. Additionally, the slow
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execution time to run them is a limitation to our problem.

Figure 2.19 shows three time series that are analyzed against one shapelet. We observe

that time series classified as 27 and 28 have reasonable matches with the shapelet, leading to

a correct classification, and class 32 had no good match. In fact, the shapelets-based approach

is recommended in problems having patterns that should be compared with any time series

interval.

Figure 2.19: Example of time series suitable to be handled with Shapelets-based methods. Adapted
from (BAGNALL et al., 2017)

2.3.4 Dictionary-based

Sometimes classes are determined by the frequency of patterns occurrences in the time

series, instead of the match of a single occurrence of the pattern. This singularity may cause a

misclassification if Shapelets are being used. Thus, the repetition of a certain pattern in a certain

frequency is looked for methods that implement Dictionary-based concept.

Dictionary-based methods implement the following steps: (1) Given a training instance,

find a set of patterns that lead to its class; (2) For each pattern, count the frequency in the

training instance; (3) Build a new training dataset with the frequency of each pattern found; (4)

Run a classifier to obtain a classification model; (5) Transform a testing instance by counting

the frequency of the patterns found; (6) Submit the transformed testing instance to the built

model.

These methods usually differ in how the patterns are selected. In Lin, Khade e Li (2012),

Senin e Malinchik (2013), Schäfer (2015), the methods that implement this concept are: Bag of

patterns, Symbolic aggregate approximation-vector space model and Bag of SFA symbols.

As the Shapelet-based methods, the Dictionary-based algorithms are also computationally
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expensive due to the high requirements needed to find the dictionary of patterns used. In fact,

the high-computation cost of the Dictionary-based methods avoid us to employ them in our

proposed method.

Figure 2.20 shows two classes of time series of movements regarding two species of worms

(BAGNALL et al., 2017). A normal worm has a continuous with some few abnormal move-

ments. An abnormal worm has frequent abnormal movements. This fact is shown in the two top

time series that represents a normal worm and, consequently, few abnormal movements. The

two series on the bottom have frequent abnormal patterns. So, Dictionary-based methods may

be used in this kind of domain, because it classifies a time series according to the frequency in

which a given pattern occurs.

Figure 2.20: Example of time series suitable to be handled with Dictionary-based methods.
Adapted from (BAGNALL et al., 2017)

2.3.5 Combination-based

Methods of this category usually implement a data pre-processing (also called transforma-

tion) and a classification. It uses two or more time series classification approaches. Ensemble of

Classifiers is an example of a Combination-based method. The main advantage of these meth-

ods is that they minimize the drawbacks of the base algorithms, but they are still specific for

certain domains. Two example methods of this category are: DTW features and Collection of

Transformation Ensembles (KATE, 2016; BAGNALL; JANACEK, 2014).

2.3.6 Time Series Classification - Important considerations

In this work, we preprocessed the dataset to map the observed time series with future solar

flares. Then, a time series classification is performed with this dataset to provide the intended

forecast. In this task, we faced the problem in which there are few differences among time

series that lead to solar flares of classes C, M and X, and their sub-levels. Hence, in this thesis,
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we employed Combination-based approach to minimize the effects of this problem.

Another issue faced was the highly imbalanced dataset, because the highest solar flares are

infrequent. Thus, we faced the problem of highly imbalanced dataset classification. The orig-

inal versions of time series classification methods were not designed to deal with imbalanced

datasets, being unsuitable for treating imbalanced data. In this way, we applied to the time

series classification methods some strategies to handle imbalanced datasets.

2.4 Classifying imbalanced datasets

Many domains produce datasets which contain very few instances of a class. The imbal-

anced dataset causes the imbalanced classification problem, where the classifier misclassifies

instances of the minority class.

This issue leads to the learning models that labels the majority of instances (BRANCO;

TORGO; RIBEIRO, 2016). As the classification method processes too many observations of

the frequent class and very few occurrences of the rare class, it produces a biased result. So,

the learning model tends to classify the majority of the testing data as the most frequent class,

generating many errors (LONGADGE; DONGRE, 2013).

As the most energetic solar flares (M and X) are very rare, and they have the highest mis-

classification costs, existing or new strategies to handle the imbalanced data of solar flares are

very relevant in the context of forecasting these events.

Many methods have been proposed in the literature to tackle the problem of data imbal-

ance. Different taxonomies ((BRANCO; TORGO; RIBEIRO, 2016), (LONGADGE; DON-

GRE, 2013) and (KRAWCZYK, 2016)) categorize the approaches used by the methods that

handle the imbalance issue. Krawczyk (2016) presents a general taxonomy used to categorize

methods that handle imbalanced classification. These categories are described next.

1. Data Level: the solutions that use this approach make modifications in the input data

to minimize the effects of the imbalanced dataset. Galar et al. (2012) states that Class

Distribution is the proportion of instances belonging to each class in a dataset. Usually,

methods that implement the Data Level approach change the class distribution to give

more weight to the minority classes in which the user is generally more interested.

2. Algorithm Level: in this type of approach, the classification algorithm is changed to take

into account the misclassification costs of either the majority or the minority classes. The

algorithm is also set to be sensitive to the user preference.
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3. Hybrid Methods: in this approach, a combination of the solutions given in the first two

approaches are used to obtain the best benefits of each one and minimize their drawbacks.

Each of these approaches have advantages and disadvantages as show in Table 2.1.

Table 2.1: Advantages and disadvantages of the approaches used to tackle the problem of classifi-
cation in imbalanced datasets (KRAWCZYK, 2016).

Strategy Advantages Disadvantages

Data

Level

- It is possible to use

any learning method;

- The distribution is

chosen directly related with

the user target.

- The modification of the data distribution

usually does not reflect in a correct prediction;

- The learning model may incur in the

problem of over-fitting.

Algorithm

Level

- The user target preferences

are incorporated directly to the

learning method.

- The developer may know the whole

algorithm of the method, which may be difficult;

- If any change occurs in the data distribution,

the developer may change and recompile the method.

Hybrid

- The combination of the previous

approaches determines the advantages

of this approach.

- The combination of the previous

approaches determines the disadvantages

of this approach.

2.4.1 Data Level

Data Level approaches preprocess the dataset before its submission to the classifier. For

this purpose, the original distribution is modified to handle the imbalance issue. The dataset is

modified by undersampling or oversampling its instances. Although the correct determination

of the data distribution is a challenging task, the user preference is considered at the beginning

of the learning process. Distribution changes can be performed using random sampling, data

cleaning, one-class learning, synthetic instances creation, among other methods.

Random sampling is used to perform undersampling of the instances that belong to the

majority class or to perform oversampling to the instances that belong to the minority class.

If oversampling is used, instances of the minority class are replicated, which may result in

unfair weights. On the other hand, undersampling may cause loss of information and overfitting

(Abd Elrahman; ABRAHAM, 2015). The sample distribution can be chosen empirically. Most

employed distributions are generated by setting the classes frequencies to 2:1 or 3:1 (majority:

minority classes).

Data cleaning is a technique used to remove noisy instances or overlapping regions in order
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to undersample the instances that belong to the majority class. Methods found in the literature

may look for overlapping regions using the closest neighbors and decide whether remove or

not the instance, as the Tomek Link Method (BATISTA; PRATI; MONARD, 2004); or, find the

minimal subset of the training set that performs like the original dataset (Condensed Nearest

Neighbor (HART; P., 1968)).

One-class learning techniques may be used to perform undersampling because they re-

move instances of the minority class, leaving just the ones that belong to the majority class.

One-class classification methods look for patterns in the testing data to identify instances that

belong to the majority class, consequently the ones not identified belong to a different class.

Usually, a threshold is used by these methods to identify the class patterns. It is hard to set the

threshold to classify the instances correctly. Despite this drawback, this technique is still useful

in many domains (BRANCO; TORGO; RIBEIRO, 2016).

Synthetic instances creation is a set of techniques used to perform oversampling with arti-

ficially created instances. Among them, it is found the Synthetic Minority Over-sampling Tech-

nique (SMOTE). In SMOTE, instances of the minority class are oversampled by introducing

new synthetic examples along the line that connects one or more of the k- nearest neighbors.

This strategy leads to a more general learning model produced by the classifier as shown in

Chawla et al. (2002). The original SMOTE method first undersamples instances of the majority

class. Second, it creates synthetic examples to balance the bias towards the majority and mi-

nority classes. SMOTE has a potential limitation of creating over generalized models, which

motivated the creation of new methods based on that. However, the original one is still a feasible

method.

2.4.2 Algorithm Level

Another approach to handle imbalanced dataset problems is to modify the classifier algo-

rithm. This approach has the advantage of setting the user preference directly to the classifica-

tion method. This is usually done by implementing strategies to deal with different weights for

each class and/or including misclassification costs information in the algorithm, turning them

cost-sensitive. These strategies set the classifiers to deal with the imbalanced issue because the

modified methods are prepared to receive and take into account the classes (minority or ma-

jority) that are most significant to the user preferences (BRANCO; TORGO; RIBEIRO, 2016).

Among the modified methods, it is found the k-nearest neighbor, Support Vector Machines,

Neural Network, Decision Trees and Ensemble of Classifiers. The modification of existing

methods requires knowledge of their implementation, and how to quantify the costs involved in
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misclassification as well as the benefits obtained from correct classifications. However, some-

times this cost is difficult to obtain.

On this thesis problem, the cost of forecasting errors in the solar flare domain is not entirely

quantifiable. The cost depends on the effect on each Earth’s device (HUANG; WANG; DAI,

2012). In fact, in our work, we did not modify traditional classifiers, but we modified the

datasets and employed an Ensemble of Classifiers, employing a Hybrid method in this thesis.

2.4.3 Hybrid Methods

Hybrid Methods combine Data and Algorithm Levels techniques to maximize the advan-

tages and minimize the drawbacks of each one (KRAWCZYK, 2016). Methods that follow this

approach are implemented by combining sampling schema with a set of classifiers and, option-

ally, post-processing the classifier output (WOŹNIAK; GRAÑA; CORCHADO, 2014). Some

of the hybrid methods also use learning algorithms that implement a weighting schema given by

the user preferences through cost-sensitive analysis (Senzhang Wang et al., 2012). Additionally,

Ensemble of Classifiers (EC) methods like Boosting and Bagging can be used to classify im-

balanced data (FERNÁNDEZ et al., 2017; GALAR et al., 2012) employing data preprocessing.

This mixture of techniques aims to give significant importance to the instances labeled as the

minority class. EC are methods that work with a set of classifiers to increase the performance of

a single base classifier. They were not originally designed to deal with imbalanced datasets, but

certain modifications allow these methods to achieve good results in domains with imbalanced

datasets (GALAR et al., 2012). ECs are often used with sampling methods (which implements

the Data Level approach).

In the following, we describe two sampling schemas (Random Sampling and SMOTE), and,

two EC methods (AdaBoosting and Bagging) employed with EC in this work.

2.4.4 Sampling Algorithms

Sampling algorithms may be implemented randomly or using some heuristic (PRATI; BATISTA;

MONARD, 2009). Two of the main algorithms of sampling were Random under sampling and

SMOTE. We had employed random undersampling on our work due to its simplicity, good re-

sults and the feasibility of applying them in our domain. Next, we describe both algorithms.
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Random Undersampling With Replacement

Random undersampling is the random sampling schema used in the majority class. It can

perform sampling with or without replacement. If no replacement is used, then the algorithm

will randomly select an instance from the original dataset, which can not be used in any other

selection. On the other hand, in algorithms that use sampling with replacement, one instance

that is randomly selected, can be sampled again.

Sampling methods are used as a starting point to tackle the imbalanced issue since it aims to

obtain a balanced distribution of instances of different classes (PRATI; BATISTA; MONARD,

2008). It may cause loss of information because it removes instances and, thus, information

on the training dataset (BRANCO; TORGO; RIBEIRO, 2016). The use of sampling with re-

placement may specialize the model causing the overfitting problem. Though, if the sampling

is done by the insertion of new synthetic instances, like SMOTE, it may introduce noise to the

training dataset. So, empirical tests may be performed to find the most feasible method. The

main advantages of random undersampling are that it is simple to implement and it runs fast.

Next, Algorithm 2 presents the pseudo-code of the random-sampling method implemented in

this thesis.

Algorithm 2: RandomUnderSampling(Do,P%)
input : Original Dataset Do, Percentage of under sampling P%

output: Sampled Dataset Ds

1 begin

2 ma jorityclass = class with most instances in Do;

3 minorityclass = class with less instances in Do;

4 Dma jority = dataset composed with the instances of ma jorityclass from Do;

5 Dminority = dataset composed with the instances of minorityclass from Do;

6 Ds = Dminority∪ randomWithReplacement(Dma jority,P);

7 return Ds

8 end

In our thesis work, the sampled dataset is a union of all the instances classified with the

minority class with a random undersampling with replacement of the majority class. The main

challenge of this approach is to find the most proper distribution between the majority and mi-

nority classes. Some authors recommend a distribution of 2:1 or 3:1 for extremely imbalanced

datasets, but we obtained the best results with a 1:1 distribution (as shown in our experiments).
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SMOTE

The idea behind SMOTE is to oversample the instances of minority class to change the

balance of the original dataset. This method aims to obtain a balanced result between True

Positives and False Positive of the minority class prediction (FERNANDEZ et al., 2018). The

algorithm creates synthetic instances by randomly selecting a subset of the minority class in-

stances in the first moment. Then, it finds the K-nearest neighbors of the instances of the subset

and randomly selects N instances among them. Finally, it calculates the difference between

each sample and its N-neighbors, multiplies this difference by a random number between 0 and

1, and adds this result to the first sample, producing a new synthetic instance. The detailed

process is shown in Algorithm 3 (FERNANDEZ et al., 2018). SMOTE was also combined with

random undersampling with replacement of the majority class to balance instances of the mi-

nority and majority classes (CHAWLA et al., 2002). The application of both methods increased

the area under ROC curve of many datasets tested. The best distribution of classes was obtained

empirically.
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Algorithm 3: SMOTE(T,N, k): adapted from (CHAWLA et al., 2002)
input : Number of minority class samples T; Amount of SMOTE N%; Number

of nearest neighbors k

output: (N/100)*T synthetic minority class samples

1 begin

2 (* If N is less than 100%, randomize the minority class samples as only a

random percent of them will be SMOTED. *)

3 if N < 100 then

4 Randomize the T minority class samples;

5 T = (N/100)∗T ;

6 N = 100;

7 end

8 N = (int)(N/100) (* The amount of SMOTE is assumed to be in integral

multiples of 100.*) ;

9 k = Number of nearest neighbors ;

10 numattrs = Number of attributes ;

11 Sample[][]: array of original minority class samples ;

12 newindex: keeps a count of number of synthetic samples generated,

initialized to 0 ;

13 Synthetic[][]: array for synthetic samples ;

14 ( * Compute k nearest neighbors for each minority class sample only. * )

15 for i = 1 to T do

16 Compute k nearest neighbors for i, and save the indices in the nnarray ;

17 (* This part of the code starts generating the synthetic samples*);

18 while N ≤ 0 do

19 Choose a random number between 1 and k, call it n. This step

chooses one of the k nearest neighbors of i ;

20 for attr = 1 to numattrs do

21 Compute: dif = Sample[nnarray[nn]][attr] - Sample[i][attr] ;

22 Compute: gap = randomnumberbetween0and1 ;

23 Synthetic[newindex][attr] = Sample[i][attr]+gap∗di f

24 end

25 newindex++ ;

26 N = N−1 ;

27 end

28 (* End of the code that generates the synthetic samples*);

29 end

30 end
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2.4.5 Ensemble of classifiers

An ensemble is a set of base classifiers, called inducers, whose results are combined to

produce the final prediction. This composition let the overall prediction system be benefited

with the strengths of each classifier. There are two types of ECs: the stage independent and the

stage dependent.

In the first type, the training dataset feeds several inducers in parallel, then different models

are built, and the testing instance is submitted to these models. Finally, the results of each model

are combined to calculate the final prediction.

In the second type, a training dataset feeds an inducer so that a model is produced. Then,

this model is tested against the original dataset, and an error schema is calculated. With this

error, weights are given to the inducers, and a new model is produced. The algorithm ends when

it reaches a certain minimum error rate (KRAWCZYK et al., 2017).

Usually, an ensemble of classifiers is more effective than each of its components working

alone. The classification obtained is given by a strategy of the composition of votes of the

individual classifiers. This strategy of votes may be done by selecting the class with the highest

number of votes.

An issue of the ensembles is the need to generate diversity for diversifying the learning

models, increasing the ensemble accuracy and reducing overfitting. An example of a strategy

to increase the diversity among classifiers is the Bootstrap Aggregating (Bagging) where the

base classifiers (usually induced by the same algorithm) are submitted to potentially different

sub-samples of the training set (MENDES-MOREIRA et al., 2012).

The algorithms of the two main EC, Bagging and Boosting, are presented in following.

Bagging

Bagging is called an independent Ensemble of Classifiers because each base inducer does

not depend on the results of any other inducer of the ensemble. The first step of the algorithm

is to create I subsample datasets with the same size, according to the Bootstrap technique. The

datasets created must be subsets of random samples with replacement of the original dataset.

Then, each dataset trains the base inducers producing I models. Finally, a test instance is

submitted to each model, and the final prediction is the most voted class (BREIMAN, 1996).

Algorithm 4 presents the pseudo-code of Bagging.

Bagging is a simple algorithm that may be easily parallelized due to have independent
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inducers. Another compelling advantage of this method is the diversity of classifiers that may be

used in the ensemble. This characteristic increases the power of generalization of the method in

imbalanced datasets. Another advantage is that it joins the data preprocessing with the diversity

of classifiers. This strategy reduces the need to apply weights to features and instances in the

prediction process. Because of it, this method inspired our thesis work. In our proposed method,

we used the diversity of classifiers and voting schema to deal with the solar flare prediction, a

highly imbalanced class problem.

Algorithm 4: Bagging(S,L,I) (DU et al., 2012)
input : training sample S, Classifier L, iterations I

output: Result LE

1 begin

2 for i=1 to I do

3 Si = boostrap sample from S ;

4 Li = train a classifier on Si via L ;

5 end

6 LE = argmax
y∈Y

∑
i:Li(x)=y

1 ;

7 end

AdaBoosting

AdaBoosting is a type of Ensemble of classifiers that iteratively calculates weights for each

training instance and the called voting power for its inducers in T iterations (GALAR et al.,

2012). The number of T depends on: (1) achieving the desired accuracy ; (2) defining a number;

(3)no longer increasing the accuracy (after new iterations). The tasks involved in each iteration

is described in the following and detailed in Algorithm 5.

1. Initialize each training point with equal weights: line 3 of Algorithm 5;

2. Submit the training points with their respective weights to the weak classifier, so that it

returns a classification model that minimizes the error rate: line 5 of Algorithm 5;

3. Calculate the error rate of the model obtained through the previous weights: line 6 of

Algorithm 5;

4. Calculate the called voting power αt of the weak classifier through its error rate: line 11

of Algorithm 5;
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5. For each instance of the training dataset, re-calculate the new weights according to the

previous ones and the weak classifier error rate. In this step, the weight increases if the

instance was misclassified, and decreases, otherwise: lines 12 to 19 of Algorithm 5.

The final classification is given by the sign function of a weighted sum of each trained

weak classifier (line 21 of Algorithm 5). The main advantage of AdaBoosting is that it turns

weak classifiers, which return a result a few better than random, to strong ones using a simple

algorithm. On the other hand, as the algorithm is sequential, it is difficult to parallelize. In

the context of multi-class classification in an imbalanced dataset, the original algorithm was

not prepared because: (1) it was initially developed for binary classification, and (2) minority

class was not tackled in this work. However, changes in the instance weighting mechanism

combined with data pre-processing produced interesting methods derived from AdaBoosting,

like AdaBoost.M1 and AdaBoost.M2 (FREUND; SCHAPIRE, 1997; SCHAPIRE; SINGER,

1999).
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Algorithm 5: AdaBoosting(S,T,I) adapted from (GALAR et al., 2012)
input : Training set S = xi,yi,i = 1,...,N; and yi ∈ −1,+1; T: Number of

iterations; I: Weak learner

output: Boosted classifier: H(x) = sign(
T
∑

t=1
αtht(x))

1 begin

2 (* ht are the induced classifiers (with h(x) ∈ −1,+1) and their assigned

weights, respectively)

3 W1(i) = 1/N for i = 1, ...,N;

4 for t=1 to T do

5 ht = I(S,Wt);

6 εt = ∑
i,yi 6=ht(x)

Wt(i);

7 if εt > 0.5 then

8 T = t−1;

9 return;

10 end

11 αt =
1
2 ln(1−εt

εt
);

12 foreach instance i classified in ht do

13 if i is misclassified then

14 Wt+1(i) = 1
2 ×

1
εt
×Wt(i);

15 end

16 else

17 Wt+1(i) = 1
2 ×

1
1−εt
×Wt(i);

18 end

19 end

20 end

21 return H(x) = sign(
T
∑

t=1
αtht(x));

22 end

2.4.6 Classifying imbalanced datasets - Important considerations

In our work, we combine time series classification approaches with techniques that handles

imbalanced datasets to perform the forecasting task. To handle the imbalanced dataset issue,

we employed random sampling and Bagging. These methods are fast and allow establishing

weights to different classes through the change of the distribution of the dataset. As our do-
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main is multi-class, random sampling was performed to built balanced datasets for each solar

flare class. These datasets feed binary inducers that composed our Ensembled-based solution,

generating a fair result. Next, the metrics used to validate forecasting methods are presented.

2.5 Validation metrics for forecasting methods

Several metrics can be used to validate forecasting methods and many of them were defined

for time series classification method (BRANCO; TORGO; RIBEIRO, 2016). In this way, an

important concept is the Confusion Matrix, presented in Table 2.2. This matrix maps observed

and predicted values by the forecasting method.

Table 2.2: Confusion Matrix

Predicted

classification

Class-A Class-B

Observed

classification

Class-A TP FN

Class-B FP TN

The rows are related to the observed (actual) classification, and the columns represent the

predicted classification (forecasting). In this example, Class-A corresponds to the Positive class

and Class-B to the Negative class. So, if an actual Class-A observation is foreseen as Class-

A, we obtain a True Positive (TP), because the forecast matches the actual observation for

the Positive class. If an actual Class-A observation is foreseen as Class-B, we obtain a False

Negative (FN), because the forecast misses a Positive class. Looking at the second row, the

Confusion Matrix results False Positive (FP) if a Class-B observation is foreseen as Class-A,

because the method predicted a Positive class instead of the actual observation (Class-B, or

Negative Class). Finally, it produces a True Negative (TN) if the forecasting method predicts

a Class-B (or Negative Class) for an actual Class-B(Negative Class) observation. So, in the

Confusion Matrix, TP, FN, FP and TN are the numbers of True Positive, False Negative, False

Positive and True Negative resulted for a specific testing dataset and they are used in the formula

of several metrics for the validation of forecasting methods.
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2.5.1 Accuracy

Accuracy is the ratio of correctly classified instances by the total number of instances of the

testing dataset. Equation 2.3 shows the formula of this metric.

Accuracy =
T P+T N

T P+FN +T N +FP
(2.3)

2.5.2 Precision

Precision is the ratio of instances that are correctly classified as a particular class C by the

total number of instances classified as C. This rate can be interpreted as What percentage of

instances was correctly classified as C from all class-C forecasting results? Equation 2.4 shows

the formula of this metric.

Precision =
T P

T P+FP
(2.4)

2.5.3 Recall or True Positive Rate

Recall or True Positive Rate (TPR) is the ratio of instances that are correctly classified as a

particular class C by the total number of instances that belong to C. This rate can be interpreted

as What is the percentage of relevant forecasts obtained from the model over the total amount

of actual relevant events (solar flares) that have already occurred? Equation 2.5 shows the

formula of this metric.

Recall =
T P

T P+FN
(2.5)

2.5.4 Specificity

Specificity or True Negative Rate is the ratio of instances that are correctly classified as the

Negative class by the total amount of instances that belongs to the Negative class. Equation 2.6

shows the formula of this metric.
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Speci f icity =
T N

T N +FP
(2.6)

2.5.5 Receiver Operating Characteristic (ROC) Area

The ROC curve is obtained by plotting the cumulative distributive function of True Positive

Rate against the False Positive Rate at different thresholds. So, it relates the probability of

detection (TPR) to the false-alarm (FPR). If the area under this curve approaches 1.0 and the

Accuracy is high, it can be said that TPR and TNR are balanced so that the forecasting method

is performing well for both classes (BRANCO; TORGO; RIBEIRO, 2016).

Figure 2.21: An example of ROC Curve

2.5.6 Skill Scores

The validation of a forecasting method should take into account the balance between True

Positive Rate and True Negative Rate. If we have an imbalanced dataset with many more

Negative instances than Positive ones, and we analyze these metrics individually, it can lead us

to a wrong interpretation. For instance, a method reaching high accuracy could have classified

correctly almost all the Negative instances and missed almost all the Positive ones. Considering

the imbalanced nature of the solar dataset, if we analyze only Accuracy, or only Precision, or

only Recall, or only Specificity, we may not have a definitive analysis of the forecasting method

results.
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An interesting way to validate a forecasting method is using Skill scores, a metric that

compares the evaluated method with a benchmark.

SkillScore =
Aforecast−Areference

Aperfect−Areference
(2.7)

Equation 2.7 shows a general formula for general Skill scores where:

• Aforecast is the accuracy of the evaluated forecasting method;

• Areference is the accuracy of the forecasting method used as benchmarking;

• Aperfect is the accuracy of a perfect forecasting.

A well-known Skill score is called Heidke Skill Score (HSS) which measures the improve-

ment of the evaluated method over a random forecast (see Equation 2.8).

HSS =
T P+T N−E

P+N−E
(2.8)

where:

• P = T P+FN

• N = T N +FP

• E = (T P+FP)x(T P+FN)+(FP+T N)x(FN+T N)
P+N

This metric is strongly dependent on how severe is the imbalance of the testing dataset.

However, its characteristic of comparing forecasting methods with different training and testing

dataset makes it frequently used as a validation metric in the solar flare forecasting domain. The

forecasting methods that result in HSS closer to 1.0 are considered satisfactory.

Another Skill score metric used is the Hanssen-Kuiper Skill Score, also known as True Skill

Statistics (TSS), which calculates the difference between the recall and the false alarm rate. TSS

is presented in Equation 2.9.
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T SS =
T P

T P+FN
− FP

FP−T N
(2.9)

TSS achieves results from -1 to 1, where -1 represents bad performance and +1, perfect

one. According to Bobra e Couvidat (2015), this metric deals well with imbalanced testing

datasets and it does not depend on the attributes and the datasets employed. For this reason, we

considered this metric when evaluating our proposed method.

2.6 Final considerations

This chapter presented the background concepts needed to develop the proposed method.

Our work concentrated on the forecasting of solar flares, even though our first results forecast

the background levels. We employed magnetic features of Active Regions found in the magne-

togram vector as well as the time series of X-ray intensity emitted by the Sun as the input of our

method.

We employed classifiers by mapping observed values with future events. Moreover, our

work used sampling and the general schema of Ensemble of Classifiers to combine the results

and produce final forecasting as shown in Chapter 5. To validate the proposed forecasting

method, we used the metrics presented in this chapter. Next chapter, the related works are

presented.



Chapter 3
RELATED WORKS

In our domain, we are interested in the forecasting of five classes of solar flares (A, B, C,

M, and X) leading to a multi-class problem. Also, in a specific forecasting day, several classes

of solar flares may occur. As a consequence, we also face a multi-label problem. So, solar flare

forecasting is a multi-class and multi-label problem. Another essential issue to handle is that

the main computational methods used to forecast time series obtain the future value of this time

series. As commented before, we are interested in, given an unlabeled time series of solar data,

predict the label of a future solar flare. Thus, it is necessary to adapt the classification problem

to predict the label of a future instance. Finally, the solar data is highly imbalanced. Thus, we

start this chapter describing some computational methods used in other application domains that

are closely related to our needs. They handle imbalanced time series, like ours. Some are used

to perform classifications of current labels of imbalanced time series, which partially meets our

problem. And others may be used to forecast future events, like our needs.

Besides, several solar flare forecasting methods that use classification methods are closely

related to ours, though not handling the issues identified. These closely related solar flare fore-

casting methods are also presented in this chapter.

3.1 Classification methods for imbalanced time series

In this section, we present some of the main classification methods for imbalanced time

series found in the literature. These methods usually change the training data distribution to

deal with the imbalanced dataset and next, submit this modified data to a time series classifier.

In Cao et al. (2011), a method called SPO: Structure Preserving Oversampling for Im-

balanced Time Series Classification is proposed. It uses the oversampling of minority class
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instances to tackle the imbalanced learning issue. For this purpose, it produces new synthetic

instances by estimating the covariance structure of the minority class. Also, it performs pro-

cessing that minimizes the loss function of the model. The preprocessed training dataset is

submitted to SVM to build the classification model and finally, predict the test instances. These

characteristics lead the model to minimize noisy intervals and the over-fitting problem. This

method was designed and tested for binary classification, which is a limitation of it.

In Liang e Zhang (2012), it is presented a comparison between the oversampling method

SPO and the usage of several under-sampling ratios with KNN as the classification method.

It was used multi-class datasets and the conclusion of the paper was that under-sampling with

KNN worked as well as SPO. The main conclusion is that using a faster method (undersampling

with KNN - due to the smaller dataset generated by the under-sampling) is as good as the usage

of a method that requires more computational processing (SPO - due to the higher number of

instances processed generated by the oversampling).

In Liang (2013), it is presented a method called Hybrid sampling composed of over and un-

dersampling, as well as the addition of an ensemble method: Bagging. It tried to overcome the

drawbacks found in random over/undersampling techniques and the original Bagging methods

in time series classification. For this purpose, the author applies a random over-sampling in the

positive instances and a random under-sampling in the negative ones. Then, it generates a set

of balanced bootstrap samples with a distribution of 50% for each class. Finally, it submits the

bootstrap to the base inducers of a Bagging method. The limitation is that they only tested in

binary datasets and the authors used just J48 as base inducer.

In Dhurjad e Banait (2015), the authors took into account the fact that ...due to sequential

nature of time series data, variables which are close time are extremely correlated... to develop

the proposed method. They also considered the imbalanced time series issue. They proposed a

technique called Majority Weighted Minority Oversampling used to pre-process the input data

and build the classification model. This sampling schema tried to improve original SMOTE

algorithm by identifying the minority class instances that are harder to learn and assigning

to these samples the Euclidean distance from the nearest negative class instance as a way to

weight each instance. Through this, the method generates synthetic instances using a clustering

technique. It uses statistical techniques of eigenvalue regularization to turn the final model

more generalized. The modified dataset is submitted to an SVM classifier. The authors tested in

imbalanced binary datasets, achieving good precision and recall results. The limitation of this

method is that it only works with the binary classes problem.

In Alonso González, González e Diez (2002), it is presented a method that defines literals
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that best discriminate the classes of a domain. These literals are categorized according to the

frequency of a range of values and if the values are increasing or decreasing. Next, the method

implements a Boosting adaptation in which, to classify a new example, it calculates a weight

for each class, and then the example is assigned to the class with higher weight. For each base

inducer, the label of the test instance is analyzed. If it matches, then, for each class, its weight

is updated adding the weight of the class for the literal and subtracting, otherwise. The final

classification corresponds to the one with the highest weight. This method deals with the called

early classification issue. This issue is related to the capability of the classification method to

predict the time series label given a sub-series of it. The main advantage of this method is that

it serves to classify multi-class time series. However, it does not handle the imbalanced data

problem.

In Xing, Pei e Yu (2012), it is presented a method that defines the term early classifica-

tion as the possibility of finding a sub-series of length l in the training time series to perform

classification as accurate as the one obtained using the full-time series. For this purpose, they

developed a method that splits the training time series into clusters using an agglomerative hi-

erarchical clustering method, named MLHC (DING; HE, 2005) to find the minimum length of

the training time series and, then they run 1NN to perform the early classification. Even though

this method can forecast future events, it only works with univariate time series and binary class

problems.

In He et al. (2015), it is presented a method that performs early classification in multivariate

time series. First, the algorithm scans for each feature of the training dataset to extract the

shapelet candidates. Then, a subset of the shapelet candidates with length lower than the original

is selected, they are called core shapelets. In this step, the shapelets candidates are selected by

looking for the highest F-measure generated by the evaluated shapelet. The shapelets for each

feature are used to build a classifier for early classification. Next, the method finds the core

shapelets for each feature by clustering these shapelets and finding the most significant ones

using a measure that depends on recall, precision, and earliness. Earliness is a measure, defined

as the minimum length of the time series that may distinguish a specific class. Using the core

shapelets, the method builds a classification model, based on query by committee (QBC) for

each set of shapelets selected from each feature. Then, a testing instance is submitted to the

model, and the method counts the majority result. Finally, the test instance is labeled as the

predominant class. Though the method was effective in the early classification task, this method

does not perform well with imbalanced data, according to the authors.

In He et al. (2018), it is presented a method that handles the problem of early classification
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in imbalanced multivariate time series. For this purpose, the authors developed an Ensemble of

classifier that: (1) splits the majority class instances into subsets of the same length as the minor-

ity class instances; (2) creates n datasets grouping each majority subset with the minority ones,

so that each subset contains the same length; (3) builds a base inducer, for each balanced subset,

by obtaining the called associate pattern, which is an association of the best shapelets that best

distinguish each feature; (4) uses test instances to be classified in an ensemble model. The final

result is a weighted sum of the results given by the base inducers that compose the ensemble.

This method is one of the first to handle the imbalanced issue in time series classification. As a

drawback, it does not perform multiclass classification, only binary one.

Table 3.1 shows a comparison among the methods in terms of the most relevant character-

istics to the domain of this thesis. It also categorizes the methods according to the Time Series

Classification and Classification in imbalanced datasets taxonomies described in Chapter 2.

Table 3.1: Comparison of time series classification methods

Paper Method Time series classification approach
Approach for the

classification in

imbalanced datasets

Classifier
Type of

classification

Dataset

Characteristic

Cao et al. (2011)
SPO: Structure Preserving Oversampling for

Imbalanced Time Series Classification
Whole-based

Data level (random

sampling / SMOTE)
SVM Binary Imbalanced

Liang e Zhang (2012) Undersampling with KNN Whole-based
Data level (random

sampling / SMOTE)
level

(random

sampling
Imbalanced

Liang (2013) Hybrid sampling Whole-based
Combination (Sampling +

Ensemble of Classifiers)
Decision Tree Binary Imbalanced

Dhurjad e Banait (2015)
Majority Weighted Minority

Oversampling
Whole-based

Data level (random

sampling / SMOTE)
SVM Binary Imbalanced

Alonso González, González e Diez (2002) Boosting interval-based literals Shapelets-based Not applied Boosting based Multiclass Balanced

Xing, Pei e Yu (2012) Early classification on time series Intervals-based Not applied 1NN Binary Balanced

He et al. (2015) Early classification on multivariate time series Shapelets-based Not applied
Specific Ensemble

of classifiers
Multi-class Balanced

He et al. (2018)

An ensemble of shapelet-based classifiers

on inter-class and intra-class imbalanced

multivariate time series at the early stage

Shapelets-based
Combination (Sampling +

Ensemble of Classifiers)

Specific Ensemble

of classifiers
Binary Imbalanced

We note that the close related methods are distributed in Whole-intervals, Intervals-based

and Shapelets-based. As we will see in the next chapter, we take as the hypothesis that solar

flares may be distinguished by analyzing the whole time series or a sub-series of it. Thus, we

used in our work two approaches: Whole based and Intervals based.

The methods listed above have their major improvements in the area of time series classi-

fication and presented important solutions that are applied to our problem. Mainly, they imple-

ment a sampling schema, find a sub-series pattern and use a classification method (traditional

or an Ensemble of classifiers) to solve the problems related to imbalanced time series in multi-

class domains. Another interesting approach is to find sub-series of the training time series to

perform early classification. However, we can notice that two important characteristics of so-

lar flare forecasting were not tackled: the issue of multi-label prediction and the adjacent class

problem. Consequently, even those methods inspired us to perform sampling with an ensemble
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of classifiers; these two issues still had to be faced in our work.

3.2 Solar flare forecasting methods

There are two main approaches used to forecast solar flares: (1) forecasting with statistical

methods based on data probability distribution; (2) forecasting with data mining techniques.

The first approach often studies the distribution of solar events within an interval, trying to

find the best match and to build statistical models. One of the very first statistical methods used

to forecast solar flares is presented in McIntosh (1990). This work describes an expert system

called Theo, which consists of a set of rules based on the knowledge of the domain specialists

(astrophysicists) about solar characteristics (MCINTOSH, 1990).

In Gallagher, Moon e Wang (2002) it was proposed a statistical model by estimating the

probability of each solar event through a Poison distribution analysis. This method was adopted

by the website of Trinity College Dublin and Dublin Institute for Advanced Studies that provides

solar data from several international observatories called Solar Monitor. Another related work

that uses statistical tools is Barnes et al. (2007). This work assumes a Gaussian distribution of

the solar flare events applied to a statistical approach named Discriminant Analysis, which aims

to give probabilities for the occurrence of a phenomenon for different groups. For instance, in

solar flare forecasting, it would estimate the individual probability of occurrence of flares of

classes C, M and X.

Recently, many solar flare forecasting methods have been developed using data mining

techniques, taking advantage of machine learning algorithms. Those works usually differ in

aspects such as what is foreseen, the preprocessing step, and the adopted classification methods.

The manner that the forecasting methods present their results also differs. Most methods

performs binary classification and considers classes C, M, and X as Positive (AHMED et al.,

2013); others consider Positive for forecasts greater than or equal to M-class (NISHIZUKA et

al., 2017; BOBRA; COUVIDAT, 2015; LI; ZHU, 2013; YU et al., 2010), and very few works

forecast individual probabilities for each class (C, M, X).

There are various classification methods employed in forecasting. We found forecasting

methods using Support Vector Machines (BOBRA; COUVIDAT, 2015; ZAVVARI et al., 2015;

QAHWAJI; COLAK, 2007), Artificial Neural Networks (ZAVVARI et al., 2015; LI; ZHU,

2013; AHMED et al., 2013; WANG et al., 2008), C4.5 decision trees (ZHANG; LIU; WANG,

2011; HUANG et al., 2010; YU et al., 2010, 2009; GALLAGHER; MOON; WANG, 2002),
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Naive Bayes (ZAVVARI et al., 2015) and Bayesian Networks (ZHANG; LIU; WANG, 2011).

Most works try different classifiers, looking for the one that achieves the best results in the

application.

The general difference between traditional classification and forecasting methods is the

preprocessing method used to prepare the raw data to be submitted to the classifier. In general,

the forecasting methods maps observed data with events that occurred in a specific time window

(NISHIZUKA et al., 2017; BOBRA; COUVIDAT, 2015; AHMED et al., 2013; YUAN et al.,

2010; COLAK; QAHWAJI, 2009). That approach does not consider the evolution of a time

series in a particular period to perform the mapping, causing information loss. However, there

are also works that map subseries of the solar data into events observed after them, so that they

adequately consider the historical evolution of solar data (LI; ZHU, 2013; YU et al., 2010).

Current forecasting methods usually are not flexible enough to be set up with the specialist

knowledge: their configuration is set up once, and no parameter can be modified afterward.

Parameters that need expert knowledge such as solar features, the size and period of both,

training and testing data sets, the period that is considered for mapping values and future events,

are all defined a single time, at the beginning of the process. Few methods allow a dynamic

configuration of those parameters, as presented in Li e Zhu (2013).

The following section presents a summary of the main characteristics of the works mostly

related to ours.

3.3 Closely related solar flare forecasting methods

In Nishizuka et al. (2017), it is presented a solar flare forecasting method which uses line-

of-sight magnetogram, vector magnetogram, 1600A broadband filtergram images, and the light

curves of the soft X-ray emission as input of three different classifications methods (K-NN,

SVM and Extremely Randomized Trees) in order to perform the forecasting of: (1) only class

X flares; (2) flares of classes M and X. The main goals of the work are: (1) to include X-ray

flux and a chromospheric new set of features (extracted from the filtergram) in the forecasting

process besides the usual magnetic features; (2) compare three different classifiers; (3) rank the

data features according to their importance in the forecasting system. The method presented

in this paper consists of four steps: (1) Construction of the input database. The following

set of images and sources were used: line-of-sight and vector magnetograms obtained from

SDO and GOES; 1600A broadband filtergram images; and, the light emissions of soft X-rays;

(2) Discovery of the Active Regions (AR) of each vector magnetogram and tracking of them
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(because each AR moves across the visible part of the Sun); (3) Feature extraction: for each

AR, the features are extracted and each tuple are labeled as Positive if it produced an M or X

flare in the following 24 hours of observation; (4) Machine learning training and testing: KNN,

SVM and Extremely Randomized Tree (ERT) were tested using the dataset obtained from the

previous step. When comparing the results of the three classifiers, KNN achieved the best

results: TSS = 0.91, TPR = 0.93 and a TNR = 0.99. It also obtained an important rank of the

features through the application of ERT. It was found that the evolution of the X-ray released is

the most important feature employed in the forecasting process.

In Bobra e Couvidat (2015), it is presented a framework for predicting solar flare using the

magnetogram vector of active regions. It used Univariate Feature Selection for feature selection

across 25 features from the vector magnetogram of active areas. It also used Support Vector Ma-

chine in the prediction process and True Skill Statistics metrics to analyze the obtained results.

The main advantages of the method are the usage of a considerable amount of magnetogram

data, but the disadvantages are: it had not considered flares of class C in the training dataset;

False Negatives were relatively high (28,6%) and the precision obtained was 50%.

In Ahmed et al. (2013), it is proposed a method that used magnetic field properties extracted

from SOHO/MDI line-of-sight magnetograms as input to the forecasting system. Then, it em-

ploys two feature selection methods, and the obtained database feeds a Cascade Correlation

Neural Network, which produces the forecasting model. The work has two major goals: (1) use

a machine learning algorithm (Neural Network) with feature selection methods (Correlation-

based and Minimum Redundancy Maximum Relevance) to predict flares higher than class-C1.0,

and (2) determine which attributes have better capability to predict solar flares. The feature se-

lection task selected 6 of the original 21 attributes of Magnetic Fields (MF). The MF properties

that are related to the polarity-separation line were seen to be the most significant according

to the feature selection. It was also shown that the accuracy of the model using the selected

features and the full data are almost the same. The best result achieved by this method was HSS

= 0.72, TPR = 0.659 and TNR = 0.992. The method missed 0.341 of the solar flares, indicating

a need for improvement.

In Li e Zhu (2013), a method for solar flare forecasting is presented. It uses sunspot area,

McIntosh classification, magnetic classification, and radio flux as the input of the preprocess-

ing method that turns each observation of the Active Regions in a sequence through a Sliding

Window approach. This approach enables the method to consider the historical evolution of

an Active Region in the forecasting process. In order to label each sequence, it calculates the

importance of each Active Region, named Itot, using the sum of occurrences of individual so-
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lar flare classification events: (Itot = 1.0×qtyC+10.0×qtyM+100.0×qtyX). This formula

gives weights to the number of flare occurrences for each class in steps of 10, starting from the

lowest solar flare class (C) up to the strongest class (X). Each Active Region is observed for

three days, and the size of the window is equal to two days. This parameter settings, according

to solar astrophysics, are enough to foreseen future events. The sequence feeds a classification

method, which builds the forecasting model. In this work, the author used MultiLayer Percep-

tron Network (MLP) and Learning Vector Quantization (LVQ) in a set of experiments. They

achieved 84.3% of accuracy, 67.9% of TPR and 84.9% of TNR using MLP, and 82.8% of ac-

curacy, 67.8% of TPR and 83.7% of TNR using LVQ. They conclude that using the historical

evolution of Solar data, the results increased using either MLP and LVQ classifiers. Hence the

data evolution should be considered to improve the forecasting method.

In Yu et al. (2010), it presented a work that extracts three predictors, named the maximum

horizontal gradient, the length of the neutral line, and the number of singular points from Solar

and Heliospheric Observatory/Michelson Doppler Imager longitudinal magnetograms. These

predictors feed a sliding window algorithm similar to the one used in Li e Zhu (2013) to build

sequences that take into account the historical evolution of the predictors. Then, each sequence

serves as the input of a Maximum overlap discrete wavelet transform and a feature selection

method to decompose the sequences of predictors into four frequency bands. In each band, the

maximum, the mean, the standard deviation, and the root mean square are extracted. These

features are submitted to a feature selection method. Next, the selected predictors feed a C4.5

decision classifier that builds the forecasting model. It was found that the performance of the

short-term solar flare prediction model based on the multiresolution predictors is greatly im-

proved.

In Colak e Qahwaji (2009), a solar flare forecasting method integrated with an automatic

feature extraction from SOHO/MDI images was presented. The McIntosh classification and

the total area of sunspots are automatically extracted from MDI vector magnetogram. These

features feed two Neural Networks. The first predicts if a sunspot will produce flares. If so, the

second one forecasts the probabilities of class C, M and X . The NN is trained with a dataset

produced using an algorithm (QAHWAJI; COLAK, 2007) that associates sunspots with a solar

flare catalog provided by NOAA. This algorithm maps whether sunspots produced solar flares

(24 hours after its observation) and its intensity through its time occurrence and localization.

The results obtained were measured using five metrics: Quadratic Rate (QR), Probability of

Detection (POD), False Alarm Rate (FAR), Percent Correct (PC) and Heidke Skill Score (HSS).

For forecasts of 24 hours of antecedence, the method resulted for QR, POD, FAR, PC and HSS:

0.141, 0.772, 0.319, 0.811 and 0.493 for class C; 0.05, 0.865, 0.688, 0.944 and 0.470 for class
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M; and, 0.022, 0.917, 0.967, 0.981 and 0.169 for class X. These results were good in terms of

accuracy, but for class X flares, the method should be improved due to its low HSS.

3.4 Solar flare forecasting methods discussion

This section presents a summary of the main characteristics of each forecasting method

shown above, comparing them according to their:

• Classifier: the data mining classification method used in the related work;

• Validation metric: the metric used to validate the forecasting method;

• Input features: the Solar features that feed the forecasting method;

• Output: it is the result of the solar flare forecasting and contains the criteria to consider

the result as a solar flare forecasting (Positive result), or no event (Negative result);

• Dataset size: it corresponds to the period covered by the dataset used in the training phase

of the mining process;

• Mapping of observed values and future events: it describes how the method maps the

observed values with solar flares;

• Characteristics: it lists the issues handled by each solar flare forecasting method.

Table 3.2 shows a comparison among the classifiers employed in the forecasting process.

Most methods used traditional classifiers. But, Nishizuka et al. (2017) used an Ensemble of

Classifiers. However, it did not consider the time series evolution, missing essential data for the

forecasting process.

Table 3.2: Classifiers used in each solar flare forecasting method

Paper KNN SVM
NEURAL

NETWORK
C4.5

Ensemble

of Classifiers

Nishizuka et al. (2017) X X - - X

Bobra e Couvidat (2015) - X - - -

Ahmed et al. (2013) - - X - -

Li e Zhu (2013) - - X - -

Yu et al. (2010) - - - X -

Yuan et al. (2010) - X - - -

Colak e Qahwaji (2009) - - X - -
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Table 3.3 shows the features used in the selected methods. As we can see, the features used

varies among the methods. The solar flare phenomenon is a physical phenomenon not fully

understood and consequently, the features that distinguish its flare classes are still not deter-

mined. However, we can notice that magnetic properties are promising because several works

use them satisfactorily. Though X-ray flux is not used frequently, we showed that considering

the evolution of X-ray time series, we could improve the forecasting results.

Table 3.3: Input features used in each solar flare forecasting method

Paper
X-ray flux

(1-8 Angs)

Magnetic Properties

(SOHO/MDI)

Magnetic Properties

(SDO/HMI)

Chromosphere

properties

Sunspot

topology

Radio

Flux

Nishizuka et al. (2017) X - X X - -

Bobra e Couvidat (2015) - - X - - -

Ahmed et al. (2013) - X - - - -

Li e Zhu (2013) - - - X X

Yu et al. (2010) - X - - - -

Yuan et al. (2010) - X - - - X

Colak e Qahwaji (2009) - - - - X -

Table 3.4 lists the metrics used to validate the forecasting methods. We observe that most

methods employ different metrics.

Table 3.4: Metrics used to validate each solar flare forecasting method

Paper TPR FPR TNR FNR FAR MSE ACC HSS TSS

Nishizuka et al. (2017) x x x x - - - - -

Bobra e Couvidat (2015) - - - - - - - - x

Ahmed et al. (2013) x x x x x x x x -

Li e Zhu (2013) x - x - - - x - -

Yu et al. (2010) x - x - - - - x -

Yuan et al. (2010) x - x - - - x - -

Colak e Qahwaji (2009) - - - - x - x x -

Table 3.5 shows the forecasting output of the methods. The majority aggregates classes C,

M, and X in the positive label to predict a solar flare. Since the datasets are highly imbalanced,

there is an inherent challenge to distinguish the rarest classes like M and X. Thus, the forecasting

of individual classes is still an open issue in this domain.
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Table 3.5: Output of each solar flare forecasting method

Paper
Individual (A, B,

C, M and X)
Positive (≥C) Positive(≥M) Positive (≥ X)

Nishizuka et al. (2017) - - X X

Bobra e Couvidat (2015) - - X -

Ahmed et al. (2013) - X - -

Li e Zhu (2013) - - X -

Yu et al. (2010) - - X -

Yuan et al. (2010) - - - X

Colak e Qahwaji (2009) X - - -

Table 3.6 lists how the training dataset is prepared to enable traditional classifiers to perform

the forecasting task. There are two possibilities found in the literature. The first is to label

snapshots of solar flare features according to the event that occurred in the next 24 hours. The

second type found was to calculate a weighted sum of all the events that occurred after the

observation to label the feature instance. On the one hand, in the first approach, the forecasting

method does not consider any information about the evolution of solar features over time. On

the other hand, the second approach still doesn’t consider the full information of the evolution

because the classifier is deprived of the sub-series considered. It just provides this information

when calculating the label of the observed instance. However, more information about evolution

should be taken in the process to improve the forecasting process.

Table 3.6: Mapping of observed values and future events of each solar flare forecasting method

Paper

Positive (Solar flare

within 24 hours

from the observation)

Positive (weighted sum

of the solar flares

occurred within the

next 24 hours)

Nishizuka et al. (2017) X -

Bobra e Couvidat (2015) X -

Ahmed et al. (2013) X -

Li e Zhu (2013) - X

Yu et al. (2010) - X

Yuan et al. (2010) X -

Colak e Qahwaji (2009) X -

Table 3.7 refers to the size of the datasets that each method used as training and testing
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inputs. The size is proportional to the number of years that each dataset is about, as shown in

the table. COLAK; QAHWAJI uses three data of three solar cycle (34 years), while BOBRA;

COUVIDAT uses just 4 years of data. This difference is related to the different solar features

used. The first author uses magnetic features, which have been collected for a small period

(since 2010), while the second uses the topology of sunspots, which have been collected for a

long time.

Table 3.7: Size of the dataset used in each solar flare forecasting method

Paper Size

Nishizuka et al. (2017) 5 years

Bobra e Couvidat (2015) 4 years

Ahmed et al. (2013) 14 years

Li e Zhu (2013) 12 years

Yu et al. (2010) 12 years

Yuan et al. (2010) 10 years

Colak e Qahwaji (2009) 34 years

Finally, Table 3.8 presents the characteristics addressed by each forecasting method. This

table shows that few works tackle the imbalanced issue as well as the undifferentiated class

problem. None of them uses multi-label approach, and just two performs multi-class forecast-

ing.

Table 3.8: Characteristics of each solar flare forecasting method

Paper
Individual

forecasting

Adjacent

class

Imbalanced

dataset handling

Historical Evolution

of time series

Multi-label

issue

Nishizuka et al. (2017) NO NO NO NO NO

Bobra e Couvidat (2015) NO NO YES NO NO

Ahmed et al. (2013) NO NO NO NO NO

Li e Zhu (2013) NO NO NO YES NO

Yu et al. (2010) NO NO NO YES NO

Yuan et al. (2010) YES YES NO NO NO

Colak e Qahwaji (2009) YES YES NO NO NO

An important aspect to analyze is the numeric results obtained in the closely related meth-

ods. Table 3.9 shows the experimental results collected in each experiment described in the

papers. In most of the literature works, many experiments were performed, differing in the

classifier used and the training dataset pre-processing method.



3.5 Final considerations 93

Table 3.9: Experimental results of the solar flare forecasting methods

TPR TNR ACC FPR Precision TSS F-Measure

Nishikawa (=X) 0,90 0,99 0,99 0,0003 0,89 0,91 0,89

Nishikawa (>=M) 0,91 0,99 0,99 0,002 0,92 0,91 0,92

Bobra (>=M) 0,71 0,98 0,97 - 0,80 0,70 0,75

Li (>=M) 0,73 0,78 0,77 - - - -

Ahmed (>=C) 0,67 0,99 0,97 0,006 - - -

Yu (>=M) 0,85 0,87 - - - - -

Yuan (= X) 0,83 0,73 0,74 - - - -

Colak (C,M,X) 0,81 - - 0.30 - - -

Colak (=X) 0,98 - - 0.97 - - -

The values shown in the table represents the best results obtained by each method in their

experiments. These works were validated using a cross-validation technique or splitting the

dataset in 70% for training and 30% for testing. One important drawback of using cross-

validation in these works is that the way that the training dataset is composed turns the training

phase biased because the sampling period of the instances is in terms of minutes. For example,

let two consecutive instances i1 and i2 sampled at times t and t+1. The probability that i1 be-

longs to the same class of i2 is high because the sampling period usually is of minutes. Also, the

values of the features that compose both instances do not have a significant change in minutes.

Thus, if a cross-validation approach is used, there is a high probability that the training and the

testing datasets contain consecutive instances, like i1 and i2. Consequently, if i2 is being tested,

there is a high chance to receive the same class of i1 (that could be in the training dataset). Thus,

this validation method is not fair, and can label previous events using posterior data.

3.5 Final considerations

In this chapter, we presented the related works regarding time series mining methods used

in the forecasting process, and some of the leading solar flare forecasting methods. It was

presented their strengths, weakness, and gaps, according to our assumptions, that this thesis

aimed to handle. In summary, previous works did not deal with the issues that our work intended

to deal:

• imbalanced solar flare dataset;

• evolution of solar flare time series;
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• multi-class and multi-label forecasting;

• adjacent class forecasting.

We present our proposed methods to achieve these requirements in the following chapters.



III DEVELOPED WORK



Chapter 4
SEMINER FORECASTING METHOD

According to Section 3.2 of Chapter 3, several methods that use data mining in the forecast-

ing process were proposed in the literature. The majority of these methods predict groups of

solar flare classes as positive and the remaining classes as negative. Usually, grouping classes

≥C or ≥M as positive. Another significant characteristic of these methods is that they do not

take into account the time series evolution. Instead, they use snapshots of the magnetic features

to compose the training dataset of the classifiers. Also, current methods do not analyze the

periods of sub-series in which data may better distinguish solar flares. Additionally, the domain

specialist could not adequately tune current forecasting methods up. Finally, several works use

cross-validation for their validation. As discussed in Chapter 3, in this domain, this type of

validation may cause a biased result.

In this context, and taking into account our goals, we developed the SeMiner method. The

main purpose of this method was to tackle:

1. the lack of methods that use the evolution of the solar time series in the forecasting pro-

cess;

2. the lack of methods that incorporate the domain specialist knowledge in the forecasting

process;

3. the lack of methods that analyze the time periods that best distinguish solar flares.

4.1 First considerations

We first developed a forecasting method called Sequence Miner (SeMiner), which is com-

posed of the typical data mining steps. The core of SeMiner is the Series to Sequence (SS)
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algorithm, which considers the evolution of the solar data and the domain specialist knowledge.

The SeMiner method initially processes solar time series into sequences, using the SS algo-

rithm. Observed sub-series are mapped according to events occurred after them. The specialist

can adjust SS by setting up the forecasting horizon, the sequence size, and the size of the time

window used to analyze future events. In the second step, the processed sequences are submit-

ted to a feature selection method that determines the most significant sub-series that distinguish

solar flares. Then, the produced dataset is submitted to a classifier, resulting in a learning model

that predicts solar events in advance. Finally, in the third step, the testing time series are submit-

ted to the learning model. The SS algorithm was also optimized using parallelization techniques

for Graphics Processing Units (GPU) through the CUDA-NVIDIA framework.

In order to design SS, the time series of X-ray flux was analyzed during and before the

event. Our central assumption was that a sub-series of a certain length taken before an event

could distinguish a solar flare. This assumption was based on the information given by the

domain specialist:

1. Every solar flare occurs above the X-ray background level;

2. The analysis of the time series from one to two days before the forecasting event may

distinguish solar flares.

To illustrate these information, Figure 4.1 shows the evolution during three days of X-ray

flux near to four different X-class solar flares.
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Figure 4.1: Example of a 3-day plot of X-ray flux evolution near X-class solar flares: a) Solar flare
of X28.0 class occurred on 04-Nov-2003. b) Solar flare of X1.1 class occurred on 05-Mar-2012.
c) Solar flare of X2.2 class occurred on 11-Mar-2015. d) Solar flare of X8.2 class occurred on
10-Sep-2017.

Figure 4.1a, b, c and d shows X-class solar flares of different levels occurred in 2003,

2012, 2015 and 2017, respectively. The first is the strongest X-class event reaching an X-

ray intensity of 28.0E-4 W/m2, the second reached 1.1E-04 W/m2, and the last two, emitted

2.2E-04 and 8.2E-04 W/m2, respectively. Another characteristic observed in the figure is the

background level that precedes the events. According to the Daily Solar Data report provided

at (ftp://ftp.swpc.noaa.gov/pub/indices/old indices/), the background level occurred in each day

of Figure 4.1a, b, c and d were respectively, C2.3, C1.0, B6.8 and B4.9.

Thus, we can observe that all X-class solar flares illustrated in the figure had occurred above

the X-ray background level of each day. Besides, we can notice that the background level during

two days before remains approximately similar, as shown in the figure.

Based on these two characteristics of the phenomenon, SS lists all possible sub-series (with

configured length) that may compose specific windows in order to prepare the dataset. Then,

it labels each of these sub-series with the maximum solar flare occurred in a period after that.
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Figure 4.2-a,b,c shows a brief example that selects three sub-series belonging to three different

windows from the time series of Figure 4.1-d. Notice that each window is slid a certain d

interval (as shown in Figures 4.2b and c). Then, each sub-series is labeled with the maximum

solar flare occurred in the next day. In this example, all the sub-series shown is labeled as X.

Figure 4.2: Example of the sliding window evolution: a) first window selected. b) the second
selected window c) the third selected window.
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SS was designed to select sub-series according to the needs of the domain specialist. We

also used a variation of the Early classification concept described in Section 3.1, where the

domain specialist set the desirable time window size.

In this manner, we tackled the issues of time series evolution and added specialist knowl-

edge within the forecasting process. The last goal of SeMiner was to find the intervals of the

training sub-series that best distinguishes the solar flare classes. For this purpose, after the

sub-series are obtained, they serve as input for a feature selection method. As each feature

corresponds to a value in a specific time instant, the feature selection algorithm selects the best

time intervals to be used in the forecasting. Another advantage of this approach is that it also

speeds up the training step, because the feature selection decreases the data size processed by

the classification method.

4.2 SeMiner description

As mentioned, SeMiner is a forecasting method where the preprocessing step allows the

classification method to produce a forecasting model. SeMiner aims to forecast solar events

within a given forecasting horizon or antecedence.

The method input is a time series of X-ray intensity emitted by the Sun, which can produce

two possible forecasting results: Yes for C-class or higher; and, No for events bellow C. The

modules of SeMiner are illustrated in Figure 4.3.

Figure 4.3: SeMiner: Method Overview.
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In order to forecast solar flares, the proposed method (SeMiner) encompasses 3 steps: (1)

map solar time series onto sequences, done by the Series to Sequence algorithm (SS); (2) per-

form feature selection; (3) mine the preprocessed solar data through a traditional classification

method.

Sections 4.2.1, 4.2.2 and 4.2.3 present the steps executed in SeMiner.

4.2.1 The Series to Sequence (SS) Algorithm

Traditional classifiers use sub-series initially sampled in a timestamp t to predict the class of

the same timestamp. However, we aim to build a model in which a sub-series initially sampled

in timestamp t, return the class of timestamp t +h, where h is the forecasting horizon.

Therefore, how is it possible to forecast future labels using traditional classifiers? SeMiner

allows it by preprocessing the time series using the Series to Sequence (SS) algorithm.

Next, an example that illustrates the concepts and tasks performed during the execution of

the SS algorithm is presented. Then, its implementations are described.

Table 4.1 presents an example of an X-ray time series mapped with the solar flares occurred

in each time instant. It is possible to see that, at instant 0, the Sun emitted 3.65 ×10−7 W/m2 of

X-ray intensity, and at this instant, it also produced a B-class solar flare. The SS algorithm uses

this time series to map observed values with solar events that occurred after these observations.
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Table 4.1: Example of a labeled-unidimensional time series XRT S(t)

X-ray Time Series

t x(t) Solar flare class

0 3.65E-7 B

5 3.92E-7 B

10 4.09E-7 B

15 4.04E-7 B

20 3.92E-7 B

25 3.94E-7 B

30 3.84E-7 B

35 3.80E-7 B

40 3.80E-7 B

45 3.83E-6 C

50 3.84E-7 B

55 3.90E-7 B

60 6.47E-7 B

65 6.75E-7 B

70 5.24E-7 B

The main idea of the SS algorithm is to map the evolution of X-ray time series for each

window to the maximum solar flare occurred after a specified period. The mapping is called

Solar Sequence, and the dataset composed of all the solar sequences is named Solar Sequence

Dataset (SSD). A window is a set of observations extracted from the original time series within

a period. In SS, it is composed of the current window, jump and future window. Current window

is the data collected in a period of size c used as input to the learning model. Jump is the interval

between the last data collected and the period of the forecasting result. The future window is

the interval (of size f ) ahead the Jump period that the forecasting method is able to perform the

predictions.

As previously said, the sliding window approach builds a set of windows with the same

size, but each window begins in a time-shifted from the previous window by a certain number

of instances. Table 4.2 shows an example of an execution of this approach. In this example, a

window is composed of 12 instances from the X-ray time series. To build the next windows,

they are shifted by a certain number of instances, called step. In this example, the step is

one instance. We can see that window-0 is composed by the instances in the time interval of

0≤ t ≤ 55 (note that the sampling period of this time series is 5 min, resulting in a time interval
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containing 12 instances). The next iteration of the sliding window approach builds window-1.

This window is composed of 12 instances of the X-ray time series, but now this subset begins at

the second instance (time instant 5) because, in this example, the step of window shifts is set to

one instance. Therefore, window-1 includes the instances from the time interval of 5 ≤ t ≤ 60

(12 instances). The same idea builds windows 2 and 3, as shown in Table 4.2.

Table 4.3 shows the values of X-ray intensity and their related solar flares (shown inside the

parenthesis) of windows 0 to 3, as presented in Table 4.2.

In this example, the size of current window, jump and future window is set to 4 instances

in 20 min. Note that the value of attribute f1 for the first window (window = 0) in Table 4.3

(3.65 ×10−7 (B)) corresponds to the X-ray intensity and its solar flare, occurred in time instant

0 of Table 4.2. Similarly, the second feature f2 equals (3.92 ×10−7 (B)) in time instant 5, and

so on until the 12th value of the window is reached. Window-1 is shown in the next line so that

the first value of this window (3.92 ×10−7 (B)) is the second instance of the X-ray time series

(time instant 5). This window is composed of the values of the next 12 instances of the original

time series as seen in the table. The construction of windows 2 and 3 follows the same idea and

are shown in Table 4.3.

Table 4.2: Sliding window evolution performed in the execution of SS.

X-ray Time Series

t x(t) Solar flare class window-0 window-1

0 3.65E-7 B

current

window

step window-2

5 3.92E-7 B

current

window

step window-3

10 4.09E-7 B

current

window

step

15 4.04E-7 B

current

window

20 3.92E-7 B

jump
25 3.94E-7 B

jump
30 3.84E-7 B

jump
35 3.80E-7 B

jump
40 3.80E-7 B

future

window

45 3.83E-6 C

future

window

50 3.84E-7 B

future

window

55 3.90E-7 B

future

window

60 6.47E-7 B

65 6.75E-7 B

70 5.24E-7 B
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Table 4.3: Example of the values of the windows built by SS

current window jump future window

window f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12

0 3.65E-7 (B) 3.92E-7 (B) 4.09E-7 (B) 4.04E-7 (B) 3.92E-7 (B) 3.94E-7 (B) 3.84E-7 (B) 3.80E-7 (B) 3.80E-7 (B) 3.83E-6 (C) 3.84E-7 (B) 3.90E-7 (B)

1 3.92E-7 (B) 4.09E-7 (B) 4.04E-7 (B) 3.92E-7 (B) 3.94E-7 (B) 3.84E-7 (B) 3.80E-7 (B) 3.80E-7 (B) 3.83E-6 (C) 3.84E-7 (B) 3.90E-7 (B) 6.47E-7 (B)

2 4.09E-7 (B) 4.04E-7 (B) 3.92E-7 (B) 3.94E-7 (B) 3.84E-7 (B) 3.80E-7 (B) 3.80E-7 (B) 3.83E-6 (C) 3.84E-7 (B) 3.90E-7 (B) 6.47E-7 (B) 6.75E-7 (B)

3 4.04E-7 (B) 3.92E-7 (B) 3.94E-7 (B) 3.84E-7 (B) 3.80E-7 (B) 3.80E-7 (B) 3.83E-6 (C) 3.84E-7 (B) 3.90E-7 (B) 6.47E-7 (B) 6.75E-7 (B) 5.24E-7 (B)

SS uses the X-ray values of current window and the maximum solar flare classification of

the future window shown in Table 4.3. The resulting SSD is shown in Table 4.4. Considering

Table 4.3, the X-ray values of the current window of window-0 are the values 3.65 ×10−7 to

4.04 ×10−7 of features f1 to f4, and the maximum solar flare among features f9 to f12 of its

future window is C, and they compose the solar sequence-0 found in Table 4.4. The same

principle guides the construction of solar sequences 1, 2 and 3.

Table 4.4: Example of a Solar Sequence Dataset (SSD)

solar sequence f1 f2 f3 f4 Class

0 3.65E-7 3.92E-7 4.09E-7 4.04E-7 C

1 3.92E-7 4.09E-7 4.04E-7 3.92E-7 C

2 4.09E-7 4.04E-7 3.92E-7 3.94E-7 B

3 4.04E-7 3.92E-7 3.94E-7 3.84E-7 B

The SS algorithm is presented in Algorithm 6. It is fed with the X-ray time series (using

the same format as Table 4.1), the current window size, the step of the consecutive windows,

the jump and the size of the future window.

In line 5, SS builds a window starting in time instant t. The size of the window (windowSize)

is the sum of the sizes of the current window, the jump and the future window. Then, in line

6, the first c values of the window is extracted and stored in an array called currentWindow.

In line 7, the future window is generated using the f values obtained from the starting position

of c + j within the window array and stored in futureWindow. In line 8, maxSolarFlareClass

receives the maximum solar flare found in the future window (futureWindow). In line 9, the

solar sequence composed by the X-ray values of currentWindow and the maximum solar flare

(maxSolarFlareClass) is built and stored in the array solarSequence. Line 10 adds the solar

sequence of time instant t in the final set of sequences SolarSequenceDataset. Then, the next

sequence is computed by returning the processing to line 5. Finally, line 12 returns the dataset

with all the computed sequences called SolarSequenceDataset. The number of windows and

sequences built is set in the qty of windows.
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Algorithm 6: The Series to Sequence (SS) algorithm
input : Labeled X-ray time series XRT S of size timeSeriesSize

Current window: c

Step: s

Jump: j

Future window: f

output: Set of Solar Sequences generated: SolarSequenceDataset

1 begin

2 qty o f windows← (timeSeriesSize− (c+ j+ f )+1)/s;

3 windowSize← c+ j+ f ;

4 for t=0 ; t < qty of windows; t+=s do

5 window← windowGenerator(XRT S, t,windowSize);

6 currentWindow← currentWindowGenerator(window,c);

7 f utureWindow← f utureWindowGenerator(window,c, j, f );

8 maxSolarFlareClass← searchMaxClassInFutureWindow( f utureWindow);

9 solarSequence←
mapCurWinAndFutSolFl(currentWindow,maxSolarFlareClass);

10 add(SolarSequenceDataset,solarSequence);

11 end

12 return SolarSequenceDataset

13 end

An illustration of a hypothetical run of Algorithm 6, based on the data of Table 4.4 is shown

in Figure 4.4.

Figure 4.4: Illustration of the sequential execution approach used in SS.
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In the sequential execution of SS, the window-1 construction must wait for window-0 to be

fully built. Similarly, windows 2 and 3 are generated waiting for their respective order in the

sequential queue.

Although the algorithm has complexity of order n, we optimized it because it can handle as

many time series of solar characteristics as the expert wants. In this way, it will become more

scalable yet through the parallel implementation.

For this purpose, it was developed a parallelized algorithm using GPU (Graphics Processing

Unit) capabilities to optimize SS execution, making it more adequate for large datasets. We

present the parallelization strategy used in SS in following.

Parallel Implementation of Series to Sequence (SS) Algorithm

The capabilities of GPUs architectures were used to distribute the parallelized part of SS

into threads executed in the CUDA cores of an NVIDIA enabled graphical card. The strategy

used to parallelize SS was to execute the same instructions in different datasets within parallel

threads.

CUDA is a programming model that explores the computing capability of NVIDIA GPUs to

develop solutions of computationally complex problems. This model runs only under NVIDIA

GPUs and is consisted of programming directives that extend several sequential programming

languages as C, Fortran, etc. CUDA provides a certain degree of scalability because it enables

queueing of threads among the cores located at the GPU. (CORPORATION NVIDIA, 2017).

A certain parallelizable code is submitted to the GPU using CUDA when an usual C function

calls a special CUDA function called kernel. This CUDA function triggers threads according

to the developer configuration and the GPU card will be responsible to allocate the threads

in the GPU cores. The execution is divided in groups of threads called blocks. And a set

of blocks is called a grid so that the GPU organizes and queues each thread execution in the

cores (CORPORATION NVIDIA, 2017). A CUDA program is structured as follows (shown in

Figure 4.5):

1. In a C function, data from the host computer is copied to the GPU memory, called device

memory;

2. The kernel is triggered by the C function;

3. The kernel executes their threads in parallel inside its cores;
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4. After all threads are finished, the resulting data are copied back to the host (computer)

memory and the original C function takes control of the remaining sequential execution

again.

Figure 4.5: Execution Flow in GPU with CUDA - extracted from (CORPORATION NVIDIA,
2017)

Following the schema mentioned above, the instructions of SS executed in parallel are the

ones responsible for the construction of each solar sequence. Moreover, the dataset used is the
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subsets of the X-ray times series that composed the full window (current window + jump +

future window) of each step. An hypothetical parallel execution of SS is shown in Figure 4.6.

Figure 4.6: Illustration of the parallel execution approach used in SS.

Each thread executed in the CUDA cores of the GPU builds one solar sequence individually

and in parallel so that the construction of all solar sequences finishes approximately at the same

time. As Figure 4.6 shows, threads 0 to 3 are executed in parallel, and the full dataset (Solar

Sequence Dataset) is also fulfilled in parallel.

Algorithm 7 presents the CUDA kernel algorithm of SS.

It has as input the labeled X-ray time series, the current window, the step, the jump and

the future window. The output is an array containing all the solar sequences called SolarSe-

quenceDataset. This is the algorithm that the kernel function executes in GPU. Therefore, this

algorithm is triggered in parallel as many times as the number of windows, depending on the

size of the X-ray time series and the window size. The resulting dataset (SolarSequenceDataset)

will be fulfilled in the global memory of the GPU in parallel with all the sequences (SolarSe-

quence) built by each triggered thread. This is possible because each thread produces a unique

index according to the order in which it was triggered. This index can be used to obtain the ar-

ray index of SolarSequenceDataset to place the solar sequence built by the thread in its correct

place in the array.

The threads running in the GPU are executed within a structure of blocks. A block, in

CUDA, is a set of threads. The function in C that calls the kernel function must configure the

number of threads per block, and the number of blocks to the parallel execution of SS. Thus,

line 2 contains the calculation of the index of the triggered thread. This index is composed

by the sum of the identifications of the triggered thread (threadIdx.x), its block (blockIdx.x)

and the number of threads per block (blockDim.x). Line 3 shows that the array index used to

fulfill the SolarSequenceDataset (windowIndex) is calculated by multiplying the thread index

obtained in line 2 by the step value (s) (the shift from two consecutive windows). Then, in line

6, it is decided if the thread generates another solar sequence, depending on if the windowIndex
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has reached the predefined number of windows or not. If so, lines 7 to 11 create the solar

sequence according to the appropriate thread index, and line 12 adds the solar sequence to the

SolarSequenceDataset in the correct place of the array through the calculated windowIndex.

Algorithm 7: SS kernel function algorithm
input : Labeled X-ray time series XRT S of size timeSeriesSize

Current window: c
Step: s
Jump: j
Future window: f

output: Set of Solar Sequences generated: SolarSequenceDataset

1 begin
2 index← threadIdx.x+blockIdx.x∗blockDim.x;
3 windowIndex← index∗ s;
4 qty o f windows← timeSeriesSize− (c+ j+ f )+1;
5 windowSize← c+ j+ f ;
6 if windowIndex≤ qty o f windows then
7 window← windowGenerator(XRT S,windowIndex,windowSize);
8 currentWindow← currentWindowGenerator(window,c);
9 f utureWindow← f utureWindowGenerator(window,c, j, f );

10 maxSolarFlareClass← searchMaxClassInFutureWindow( f utureWindow);
11 solarSequence←

mapCurWinAndFutSolFl(currentWindow,maxSolarFlareClass);
12 add(SolarSequenceDataset,solarSequence,windowIndex);
13 end
14 end

Each NVIDIA GPU card has a maximum number of threads that can be executed within a

block. In our case, we used the graphical card Geforce 960X, that can run up to 1024 threads

per block. Therefore, the method was configured with 1024 threads per block, and the number

of blocks was defined by Equation (4.1).

NumberO f Blocks =
qty o f windows+NUMBEROFT HREADSPERBLOCK−1

NUMBEROFT HREADSPERBLOCK
(4.1)

where:

• qty o f windows = (timeSeriesSize−totalWindowSize+1)
step

• NUMBEROFT HREADSPERBLOCK = 1024

Equation (4.1) calculates the number of blocks because the number of windows may not
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be divisible by the NUMBEROFTHREADSPERBLOCK so that we have to guarantee that the

threads will handle all windows.

The total number of windows that SS considers is given by subtracting the total size of the

time series by the window size and dividing this result by the step of instances between two

adjacent windows.

Therefore, by using Algorithm 7 to implement the CUDA kernel function, it was possible to

parallelize the creation of the Solar Sequence Dataset, as shown in the example of Figure 4.6.

4.2.2 Feature Selection

In a real scenario, the preprocessed sequences usually have a large number of features.

However, for large data sequences, the classification algorithms face the problem where the

performance and accuracy of the algorithms degrade with the increase of the sequence size. In

order to reduce the number of features and consequently to reduce the data to be submitted to

the mining process, the preprocessed sequences are submitted to a feature selection process.

Feature selection is used for selecting the features that mainly induces to an accurate classifi-

cation. As usually, not all the features are significant for the classification, in this way, feature

selection is used to generate the final dataset with the most representative features. But, what

does selecting features mean in the context of SeMiner?

Figure 4.7: Illustration of feature selection within SS algorithm.

According to Figure 4.7, the value of f1 of the sequence 0 in SSD is x(0) of XRTS, f2 equals

x(5) - the second observation occurred in instant five of XRTS, f3 is x(10), and f4 is x(15). In

the second sequence (ss = 5), f1 is x(5), f2 = x(10), etc. If we consider f1, we have the values
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starting from time instant 0 as shown in the Generic SSD table. If we consider f2, we have the

values of the time instants starting from instant 5, etc.

Thus, if the selection method chooses f1, for example, it means that the value of the time

instant 0 is the most significant in the forecasting process. Selecting f2, the value of time instant

5 is another significant one, and so on. Thus, selecting features in this example means choosing

the most significant time instants that distinguishes solar flares.

Our proposed method may employ any supervised feature selection algorithms to perform

dimensionality reduction in the sequence data, like: Starminer (RIBEIRO et al., 2009) or Relief

(KIRA; RENDELL, 1992).

Starminer (RIBEIRO et al., 2009) is a statistical association-rule based algorithm, which

mines rules associating a feature fi and a class ck. If fi has a uniform and a particular behavior

among the instances of the ck class in the training dataset, it produces rules of the form fi→ ck.

A rule is generated if the hypothesis that the feature fi has the same mean over class ck and

the remaining classes, are rejected. The Starminer algorithm returns the features that are pre-

sented in the mined rules as the selected ones. We chose Starminer because: 1) it produces rules

relating features and the classes that they most describe, which can be validated by domain spe-

cialist; 2) it has a low computational cost when compared with most feature selection methods;

3) it selects the most relevant features and discards the irrelevant ones, not returning a ranking.

Relief (KIRA; RENDELL, 1992) is a distance-based feature selection method. A weight

wi is associated to each feature fi. This weight indicates the relevance of the feature, and it

is updated at each iteration. After a given number of iterations, the weight of each feature

composes a relevance vector. An interaction consists of randomly selecting an instance x of a

class ck. The dataset instances are ranked according to the distance that they present to instance

x, using the Euclidean distance. The closest same-class instance is called “near-hit”, and the

closest different-class instance is called “near-miss”. The feature weight increases if its feature

values differ less in the nearby instances of the same class than in the nearby instances of the

other class. Even though it has a substantial computational cost, we chose Relief because it is

one of the most used feature selection algorithm in the literature.

4.2.3 Mining the solar data sequences

In this step, the data sequences, considering only the relevant features mined by a feature

selection approach are submitted to a classifier. A question that may arise is how traditional

classification methods will be capable to predict future labels using the new dataset? As shown
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in Table 4.4, the X-ray values of the current window (f1 to f4) is being related with the maximum

solar flare occurred at the future window. So that, when a traditional classification method is

trained with that preprocessed dataset, it will make a model relating a set of X-ray values with

its related future ones. Then, if we apply X-ray values collected in a snapshot not yet analyzed

during the classification training phase to the learning model, the output is a future label, named

class of the solar flare. In this way, the traditional classification method will be able to predict

future labels using current values. It is important to emphasize that the future window is shifted

from the current window by a jump window. In the example, the forecasting method will predict

labels in advance of 4 instances. If each instance corresponds to 5 minutes, this means that the

method will foresee solar flares in a forecasting horizon of 20 minutes.

Summarizing, the Solar Sequence Dataset is submitted to a feature selection method which

produces the final dataset that is employed as an input of a traditional classifier. This generates a

learning model which is applied to perform the forecasting using unlabeled testing time series.

4.3 Final considerations

In this chapter, we presented the SeMiner method. This first method developed is a typical

time series classification method in which a set of sub-series are extracted from the original

dataset and labeled. Next, a feature selection method is applied, and finally, a classifier is em-

ployed in order to generate the forecasting model. In this method, we aimed to validate the

assumption of the existence of patterns in the X-ray time series. For this reason, the individ-

ual forecasting of solar flares was not yet performed. SeMiner forecasts groups of solar flares

greater than and equal to class C as positive and slower events as negative. The core of the

method is the Series to Sequence (SS) algorithm, which transforms windows of the original

time series into labeled sequences. The assigned labels are the classes of solar flares that oc-

curred after the observations. Thus, SS maps past observations with future events. The main

characteristics of SeMiner are:

1. it uses the evolution of the solar time series in the forecasting process;

2. it incorporates the specialist knowledge in the forecasting process by its parametrization;

3. it finds the intervals of sub-series in which data may better distinguish solar flares through

the use of feature selection methods.

The experiments regarding SeMiner are described in Chapter 6.
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Next chapter, we present the evolution of SeMiner: the ECID method. As we show, it

tackles more specifically the imbalanced data problem and performs a multi-class / multi-label

forecasting.



Chapter 5
ECID FORECASTING METHOD

SeMiner was developed to provide mechanisms to take into account the evolution of the

time series in the forecasting process. It has parameters that could be tuned up by a domain

specialist. And, it also identifies the time periods most related to the flare occurrences. It was

the first step towards our goals. However, it still does not handle the problems of: imbalanced

dataset and high similarity between data from adjacent classes.

The domain specialist do not fully understand the physical phenomena that influence the

forecasting process (BOBRA; COUVIDAT, 2015). We found works that used features derived

from magnetogram vector (NISHIZUKA et al., 2017; BOBRA; COUVIDAT, 2015; YU et al.,

2010), sunspot area (GALLAGHER; MOON; WANG, 2002), radio flux or X-ray flux (LI; ZHU,

2013). Thus, we added more solar features in the forecasting process, intending to improve the

forecasting results.

Another important issue is that solar flare datasets are extremely imbalanced. Most of the

previous works of solar flare forecasting perform binary forecasting, classifying solar flare only

as positive or negative. In fact, when mapping the multi-class problem to a binary-class prob-

lem, the imbalanced issue is masked. Few works predict individual classes. In the later case,

they usually use purely statistical methods in the forecasting process. Some methods consider

positive results for classes greater than or equal to C (AHMED et al., 2013), others consider

positive for forecasts greater than or equal to M (NISHIZUKA et al., 2017; BOBRA; COU-

VIDAT, 2015; LI; ZHU, 2013; YU et al., 2010). Additionally, as Table 3.1 shows, there is a

lack of time series classification methods that deal with multi-class classification in imbalanced

datasets.

Also, solar flare forecasting may become a multi-label problem because during a given day

it may occur solar flares of classes C, M and X. This is another gap found in literature because
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current works that use data mining classification methods usually do not provide multi-label

forecasting.

An alternative to handle the poor results of the learning in imbalanced data and also produce

a multi-label forecasting method is using an Ensemble of Classifiers (EC) (SAGI; ROKACH,

2018; GALAR et al., 2012; RÄTSCH; ONODA; MÜLLER, 2001). The EC main goal is to

improve weak classification methods by applying several weak classifiers (also called base in-

ducers) and combining their results. This goal enables EC to produce accurate methods resulting

in multi-label classification in imbalanced domains. In this sense, we propose an EC tuned-up

for the domain of the solar flare forecasting.

In this context, we developed a method called ECID (Ensemble of Classifiers for Imbal-

anced Datasets) that uses an extended version of SS algorithm to tackle the open issues identi-

fied in this thesis. So, the main purpose of ECID was to tackle the following gaps:

1. The lack of methods that handle the evolution of the solar time series in the forecasting

process through the extended version of SS algorithm;

2. The lack of methods that incorporate the specialist knowledge in the forecasting process

by configuring SS;

3. The lack of methods that perform individual class forecasting producing a multi-class

result for a given day, so that the method provides to the astrophysicist a tool that shows

possible solar flare categories that may happen in a given day;

4. The lack of methods that treat the imbalanced dataset issue. For this purpose, ECID

uses an Ensemble of Classifiers with a stratified random sampling for the training of the

inducers;

5. The lack of methods that perform a multi-label solution, giving alternatives to the astro-

physicist to decide the final forecasting when possible adjacent classes are predicted.

5.1 First considerations

ECID uses the historical evolution of solar time series and the specialist knowledge to

its setup in order to provide a multi-class and multi-label forecasting. This way, it handles

the issues of imbalanced dataset and the high similarity between data from adjacent classes.

Figure 5.1 presents an overview of the method.
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Figure 5.1: Overview of ECID and its pre-processing.

Steps 1, 2 and 3 are performed to prepare the data sources to be submitted to ECID. They

are responsible for obtaining, cleaning and transforming the data for the learning task. Tradi-

tional classification methods produce models that classify instances with current events. For

the forecasting purpose, it is necessary to map current values with future events to turn such

classifiers in forecasting methods. In this stage, the method prepares the original dataset by

using an extended version of the SS algorithm. This extension was needed in order to use more

than one solar feature as the forecasting method input, differently from the original version of

SS.

Solar data is highly imbalanced because the highest solar flares are extremely infrequent.

Table 5.1 shows the class distribution of a solar dataset processed by SS (data collected from

2010 to 2017).

Table 5.1: Class distribution in a solar dataset slid by SS

Class Number of Instances % of Instances

AB 33839 50

C 23633 35

M 8968 13

X 1238 2
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Thus, we faced the problem of highly imbalanced dataset classification. The original ver-

sions of time series classification methods were not designed to deal with imbalanced datasets,

being unsuitable for treating imbalanced data. In this way, we applied to the time series classifi-

cation methods some balancing strategies and an Ensemble of Classifiers to handle imbalanced

datasets as explained in Sections 2.3 and 2.4.

In this way, the prepared data are submitted to the proposed ensemble method ECID. The is-

sue of imbalanced data is tackled by employing a strategy based on Bagging (see Section 2.4.5).

The difference is that, in our approach, we use stratified random sampling to produce four

datasets of different sizes, which are used to train the base inducers. The original version of

Bagging, however, generates all the input datasets with the same size.

Thus, the original dataset is divided into four balanced subsamples, one for each forecasting

class, using the new MultiClass2Binary Balancing strategy (see Figure 5.1-Step 4(a)). This

strategy produces a dataset specifically for the forecasting of class AB, another for C, another

for M, and the last for class X. As the original dataset is imbalanced, the dataset for class X has

fewer instances compared with the dataset used for class AB, C or M. This schema aims to give

more weight to the instances that belong to rarest classes.

The base inducers are weak binary classifiers (see Figure 5.1 - Step 4(b)): the Binary Clas-

sifier#1 generates a positive result if a class A or B is predicted by the model and negative,

otherwise. Binary Classifier#2 generates a positive result if a class C is predicted and negative,

otherwise. Finally, the same logic is applied for classes M and X. The outputs of the base induc-

ers are submitted to the Aggregation Method (see Figure 5.1 - Step 4(c) ), which combines the

individual votes of each inducer, producing the final multi-class forecasting. The forecasting

produced in this step is multi-class.

If more than one class has enough votes, the result is also multi-label, because the Aggre-

gation Method returns more than one class. One characteristic of solar events is that the impact

over electronic devices on Earth of a C9.0 solar flare is quantitatively 1,0% greater of a M1.0,

while a C9.9 solar flare is quantitatively 10 times greater than a C1.0 flare. In this way, we

considered that solar flare C9.9 has similar impacts compared with M1.0 ones. Hence, as the

method provides a multi-label result, the astrophysicist may use the method output in order to

decide the best classification of the predicted solar flare. For example, if the method returns

CM as the forecasting result, it means that probably the solar flare is about C9.0 to M1.0. Dif-

ferently, if the method returns just C, it will probably indicate to the astrophysicist that an event

smaller than a class M may occur. So, the method provides a mechanism to support the astro-

physicist in deciding which intensity the solar flare will be. A detailed description of the steps
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of ECID is given as follows.

5.2 ECID method description

As Figure 5.1 shows, there is initially a data preparation phase that precedes the ECID

method. In this phase, the input features from different sources are handled, cleaned, selected

and submitted to the extended SS to map past observations to their following events. This step

handles:

1. the evolution of the solar feature time series in the forecasting process;

2. the incorporation of the specialist knowledge in the forecasting process;

In the next phase, ECID splits the slid dataset provided by Step-3 into four datasets, one

for each class: AB, C, M and X in order to implicitly assign different weights for each class

according to their distribution in the original slid dataset. ECID applies an Ensemble of Classi-

fiers which may use any base inducers. The choice of which inducer to use is made empirically.

Finally, an aggregation method is used to decide which classes may be assigned to the final

forecasting according to a decision rule based on the voting given for each inducer. The output

is multi-class and multi-label, since it may contain more than one (of four) class in the final

forecasting. Consequently, ECID also handles the following requirements of this thesis:

1. it performs individual class forecasting producing a multi-class result for a given day

so that the method provides to the astrophysicist a tool that shows possible solar flare

categories that may happen in a given day;

2. it treats the imbalanced dataset issue. For this purpose, ECID uses an EC with a stratified

random sampling for training the inducers;

3. it is multi-label, giving to the astrophysicist the possibility of deciding between adjacent

classes.

In the next sections, a detailed description of ECID method is presented.

5.2.1 Data preparation

ECID uses two time series of solar features: the time series of X-ray intensity emitted by

the Sun, and the time series of magnetic features provided from the instrument SDO/HMI. It
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also uses a list of solar events in order to compose the dataset used to train and test the model.

Next, we present the main information provided by these time series and the list of events. We

also describe the preparation steps of the input data required by ECID.

The sampling periods of X-ray time series (XRTS) are of 1 or 5 minutes. The 5-minute

series is the average of the series of sampling periods of 1 minute. The unit of measure of X-ray

intensity is W/m2 and X-ray values are collected according to the sampling period. Its values

correspond to the integration of the X-rays emitted by the whole solar circle. Table 5.2 contains

an example of the format of this time series.

Table 5.2: X-ray time series (XRTS): Instant format: YYYY-MM-DD HH:Min, and X-ray obser-
vations ∈ R

Instant(YYYY-MM-DD HH:Min) X-ray observations (W/m2)
2017-09-07 05:00 1.5E-06
2017-09-07 05:01 1.1E-05
2017-09-07 05:02 2.4E-05
2017-09-07 05:03 2.2E-05
2017-09-07 05:04 1.8E-05
2017-09-07 05:05 1.6E-05
2017-09-07 05:06 1.4E-05
2017-09-07 05:07 1.3E-05
2017-09-07 05:08 1.1E-05
2017-09-07 05:09 1.0E-05
2017-09-07 05:10 9.4E-06
2017-09-07 05:11 8.4E-06
2017-09-07 05:12 7.6E-06
2017-09-07 05:13 6.8E-06
2017-09-07 05:14 6.2E-06
2017-09-07 05:15 5.8E-06
2017-09-07 05:16 5.6E-06
2017-09-07 05:17 5.2E-06
2017-09-07 05:18 4.7E-06
2017-09-07 05:19 4.2E-06
2017-09-07 05:20 3.7E-06
2017-09-07 05:21 3.4E-06
2017-09-07 05:22 3.1E-06
2017-09-07 05:23 2.8E-06

For example, at instant 2017-09-07 05:02, the integration of the X-rays emitted by the

whole solar circle was 2.4E-05 W/m2.

The second time series used was about the magnetic features collected from the Photosphere

of Sun. On the JSOC website, there are time series of magnetic features of different sampling

periods from 45 or 720 seconds (12 minutes). For the selection of the Magnetic Feature Time
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Series (MFTS), we based on the experiments carried out in (BOBRA; COUVIDAT, 2015), so

that we used the time series of sampling period of 12 minutes. This work guided us in this

choice due to the results obtained and also by the fact that this series comes from new magnetic

reading equipment, the SDO/HMI.

MFTS provides observations of the magnetic features of each active region of the solar

circle every 12 minutes. Unlike XRTS, which provides the integration of X-rays emitted by the

whole solar circle. Figure 2.8 shows the list of magnetic features provided by MFTS. Table 5.3

contains an example of this time series.

Table 5.3: Magnetic Feature Time Series (MFTS) - NOAA AR: Active Region ID; T REC: Sam-
pling time instant; USFLUX and R VALUE: magnetic features

NOAA AR T REC(YYYY.MM.DD HH:Min) USFLUX R VALUE

12673 2017.09.07 05:00 5.4e+22 5160

12673 2017.09.07 05:12 5.4e+22 5137

12673 2017.09.07 05:24 5.5e+22 5136

12673 2017.09.07 05:36 5.4e+22 5163

12673 2017.09.07 05:48 5.5e+22 5177

12674 2017.09.07 05:00 3.8e+22 4292

12674 2017.09.07 05:12 3.8e+22 4365

12674 2017.09.07 05:24 3.8e+22 4295

12674 2017.09.07 05:36 3.8e+22 4263

12674 2017.09.07 05:48 3.8e+22 4226

Observe that the MFTS exemplified in Table 5.3 contains information of two active regions

(AR) identified as 12673 and 12674. AR-12673 contains five instances sampled at 12-minute

intervals and information about two magnetic features identified as USFLUX and R VALUE.

By the arrangement of this time series, it is noted that it is composed of a set of sub-series,

one for each AR. Therefore, at a given instant, it is possible to have more than one instance in

MFTS. As an example, the instant 2017.09.07 05:00 contains instances from two active regions.

Thus, this instant has more than one instance in the MFTS.

Another data used in ECID is the List of Solar Events (LSE). NOAA provides a daily LSE

that contains the period, class, and region of the recorded event. Table 5.4 contains an example

of this list.
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Table 5.4: Solar event list example: Edited Events for 2017 Sep 07.

event begin max end obs q type loc frq class intensity reg

7580 459 502 508 G15 5 XRA 1-8A M2.4 7.3E-03 2673

7600 619 628 642 G15 5 XRA 1-8A C8.2 8.4E-03 2673

7640 916 920 924 G13 5 XRA 1-8A C2.3 7.0E-04 2673

7660 949 954 958 G15 5 XRA 1-8A M1.4 4.0E-03 2673

7680 1011 1015 1018 G15 5 XRA 1-8A M7.3 1.4E-02 2673

7780 1420 1436 1455 G15 5 XRA 1-8A X1.3 1.2E-01 2673

7830 1804 1828 1836 G15 5 XRA 1-8A C5.2 7.8E-03 2673

7840 1840 1844 1849 G15 5 XRA 1-8A C4.5 1.8E-03 2673

7860 2054 2057 2059 G13 5 XRA 1-8A C2.5 4.3E-04 2673

7870 2124 2137 2147 G15 5 XRA 1-8A C5.4 5.6E-03 2673

7910 2257 2300 2302 G15 5 XRA 1-8A C2.7 4.4E-04 2677

7940 2350 2359 14 G15 5 XRA 1-8A M3.9 3.6E-02 2673

The above example is from a list of events that occurred on 07-Sep-2017 provided by

NOAA. Each line of the table is a recorded solar event, which is identified by the event at-

tribute. The begin, max, end attributes contain the instants of start, maximum, and end of the

events. The obs attribute refers to the name of the satellite that recorded the event. The q

attribute corresponds to the quality of the information, where 1 means low and 5, excellent

quality. The type attribute (in which all lines are set as XRA) shows the type of event recorded.

It its value is “XRA”, the event is a solar flare. The loc/frq attribute refers to the passband of the

sensor that has read the X-ray. The particulars and intensity attributes list the class of the solar

flare and its level. Finally, the reg attribute consists of the identifier of the AR where the event

occurred.

In order to use these three sources of solar information: XRTS, MFTS, and LSE, it is

necessary to clean their anomalies. This cleaning is performed during the pre-processing phase

in different steps as we detail later. The following anomalies were found in these data sources:

• Erroneous values sampled in the observations of MFTS, usually set to NaN (Not a Num-

ber);

• No ARs assigned to some solar flares in LSE;

• Instances not sampled in MFTS: as the sampling period of MFTS is 12 minutes, the

sampling of one hour corresponds to five observations of each feature. The data contains
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several missing sampled instances. This fact generates less than five observations per

hour;

• Erroneous values in XRTS, usually set to a negative number;

XRTS, MFTS, and LSE are used as input data in the solar flare forecasting method ECID.

For this purpose, we applied the following steps to the time series aiming to obtain a unique

time series:

• (a) As XRTS and MFTS have different sampling periods, initially it may create a unique

time series through the equalization of these sampling periods. This new time series is

called Initial Equalized Time Series (IETS);

• (b) The next step is responsible for labeling each instance of IETS with the solar flare

class listed in LSE. For this purpose, the algorithm searches, in the LSE list, the event

occurred and labels IETS instances with the event found. The resulting time series is

called Labeled Equalized Time Series (LETS);

• (c) Each instant may contain more than one instance in LETS, but the developed method

in this thesis requires a time series with one entry per time. Thus, it is necessary to

obtain a unique instance for each instant of observation. This new time series is called

Preliminary Database (PD);

• (d) PD still have anomalous data, which is handled in this step.

Step-1a: Equalization of the sampling periods of the XRTS and MFTS time series

The method uses time series of one or more solar features as input data. Time series of

X-ray intensity and time series of magnetic features are used as input to the ECID method.

However, the time series have different sample periods. For example, the sampling period

of time series of X-rays (XRTS) is 1 or 5 minutes. The time series of magnetic features (MFTS)

used in this work has a sampling period of 12 minutes. On the other hand, the ECID method can

work only with time series of the same sampling period. Therefore, to work with the series of

X-rays in conjunction with the MFTS, it is necessary to equalize the sampling periods of both

series, generating a new equalized time series.

We mapped the observations of the original series into a single equalized series. The equal-

ization of sampling periods was done through the insertion of samples related to the series of
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lower sampling period in the ones with the highest sampling period. As an example, we in-

serted observations of the series of X-rays (of lower sampling period) in instances of the series

of magnetic features (of higher sampling period).

Table 5.5: Initial Equalized Time Series (IETS): XRTS and MFTS equalization.

NOAA AR T REC(YYYY.MM.DD HH:Min) USFLUX R VALUE RX0 RX1 RX2 RX3 RX4 RX5 RX6 RX7 RX8 RX9 RX10 RX11

12673 2017.09.07 05:00 5.4e+22 5160 1.5E-06 1.1E-05 2.4E-05 2.2E-05 1.8E-05 1.6E-05 1.4E-05 1.3E-05 1.1E-05 1.0E-05 9.4E-06 8.4E-06

12673 2017.09.07 05:12 5.4e+22 5137 7.6E-06 6.8E-06 6.2E-06 5.8E-06 5.6E-06 5.2E-06 4.7E-06 4.2E-06 3.7E-06 3.4E-06 3.1E-06 2.8E-06

12674 2017.09.07 05:00 3.8e+22 4292 1.5E-06 1.1E-05 2.4E-05 2.2E-05 1.8E-05 1.6E-05 1.4E-05 1.3E-05 1.1E-05 1.0E-05 9.4E-06 8.4E-06

12674 2017.09.07 05:12 3.8e+22 4365 7.6E-06 6.8E-06 6.2E-06 5.8E-06 5.6E-06 5.2E-06 4.7E-06 4.2E-06 3.7E-06 3.4E-06 3.1E-06 2.8E-06

Table 5.2 shows the XRTS with its sampled observations every one minute. Table 5.3 shows

the MFTS with the respective sampled observations every 12 minutes. Note that the equalized

series, shown in Table 5.5, is the union of the MFTS with the twelve observations relating to

its sampling period. For example, at time 2017.09.07 05:00, the method linked the magnetic

features USFLUX and R VALUE sampled at this time, with the X-ray observations registered

from 2017.09.07 05:00 to 2017.09.07 05:12 denoted by RX0 to RX11, since the number of

attributes added to MFTS is equal to its sampling period, i.e., 12. At time 2017.09.07 05:12, the

magnetic characteristics of this instant were joined to the following 12 observations of XRTS.

Note in the example that the X-ray values sampled from 2017.09.07 05:00 to 2017.09.07 05:12

were filled with the same values at each time regardless of the AR considered.

Formally, we have:

• The X-ray time series is defined as XRTS = {instant of X-ray obs, X-ray intensity},
where:

– instant of X-ray obs: instant of the X-ray observation;

– X-ray intensity: X-ray value observed at instant of X-ray obs.

• The Magnetic Features time series is defined as MFTS = {instant of MF obs, MF0, MF1,

.., MFn}, where:

– instant of MF obs: instant of the magnetic features observations;

– MF0 to MFn: the nth magnetic features.

• The list of solar event list is defined as LSE = {period of the event, class of the event},
where:

– period of the event: period of the recorded solar event ;

– class of the event: class of the solar flare occurred at period of the event.
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• The resulting Initial Equalized Time Series is defined as IETS = {t, MF0, MF1, .., MFn,XRt,

XRt+1,.., XRt+i}, where

– i = SamplePeriod MFT S/SamplePeriod XRT S−1;

– t = highest SR TS instant = instant of the time series with the highest sampling

period (in the previous example, t = 12.

This strategy allows us to calculate for each instant of the equalized series statistical mea-

sures of X-ray values, that can aid in the process of solar flare forecasting. Among others, it

is possible to calculate average, median, minimum, maximum or amplitude of variation. Such

metrics can identify trends that are important for the forecasting process. For this reason, this

strategy of sampling period equalization was chosen. Thus, we obtained the new time series

called Initial Equalized Time Series (IETS) by equalizing the sampling periods of the XRTS

and MFTS.

The next step of the method labels IETS with the related solar flare.

Step-1b: IETS labeling

The algorithm looks in LSE the event occurred for each AR of IETS and labels each corre-

sponding instant with the solar flare class encountered. For example, the first instance of IETS

corresponds to the sampled observations of AR-12673 at time 2017.09.07 05:00. We can see,

in the listing given by Table 5.4, that a class M2.4 solar flare, numbered 7580, was registered

in AR-2673 from 04:59 and 05:08. There is a difference in the numbering of ARs between

the reports: the same AR is identified by 12673 in IETS and 2673 in LSE, but it is the same

AR. Thus, the algorithm labels the first instance of IETS with class M2.4. This strategy is im-

plemented for all IETS instances. If the algorithm does not find an associated event, the given

label is AB, denoting that there was no solar flare in that AR/instant. The resulting time series is

named Labeled Equalized Time Series (LETS). An example of LETS is presented in Table 5.6.

Table 5.6: Labeled Equalized Time Series (LETS)

NOAA AR T REC(YYYY.MM.DD HH:Min) USFLUX R VALUE RX0 RX1 RX2 RX3 RX4 RX5 RX6 RX7 RX8 RX9 RX10 RX11 class

12673 2017.09.07 05:00 5.4e+22 5160 1.5E-06 1.1E-05 2.4E-05 2.2E-05 1.8E-05 1.6E-05 1.4E-05 1.3E-05 1.1E-05 1.0E-05 9.4E-06 8.4E-06 M2.4

12673 2017.09.07 05:12 5.4e+22 5137 7.6E-06 6.8E-06 6.2E-06 5.8E-06 5.6E-06 5.2E-06 4.7E-06 4.2E-06 3.7E-06 3.4E-06 3.1E-06 2.8E-06 AB

12674 2017.09.07 05:00 3.8e+22 4292 1.5E-06 1.1E-05 2.4E-05 2.2E-05 1.8E-05 1.6E-05 1.4E-05 1.3E-05 1.1E-05 1.0E-05 9.4E-06 8.4E-06 AB

12674 2017.09.07 05:12 3.8e+22 4365 7.6E-06 6.8E-06 6.2E-06 5.8E-06 5.6E-06 5.2E-06 4.7E-06 4.2E-06 3.7E-06 3.4E-06 3.1E-06 2.8E-06 AB

Formally, we have:

• The Labeled Equalized Time Series is defined as LETS = U{IETS(t),

class of the event given by LSE}, where:
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– IETS(t) is the IETS instance in a certain instant t;

– class of the event given by LSE is the class of the event found in LSE for the in-

stant t;

– LETS is the union of all instances of IETS in a certain period of time.

Besides the IETS labeling, this step of the method also performs a data cleaning task: all the

anomalous values of the X-ray observations are set to NaN (Not a Number), which is a numeric

data type value representing an undefined value.

Additionally, we observe that the LETS series may contain multiple instances for the same

instant, but ECID can only have as input a series with unique instances for each instant. There-

fore, it is necessary to unify different instances of the same instant, which is performed in the

next step.

Step-2: Unification of different instances of LETS of a unique instant

The strategy used to unify different instances of LETS is to provide a series with the min-

imum, maximum and average of each feature. Let us consider only the USFLUX feature for

exemplification purposes. At time 2017.09.07 05:00, the algorithm extracts the minimum, max-

imum and average of this feature. For the class attribute, it is generated only the minimum and

the maximum, since it is typified as categorical. Table 5.7 shows the resulting series with unified

instants for USFLUX and Class. The same strategy is applied to all attributes of LETS.

Table 5.7: Unified LETS: Preliminary Database (PD)

T REC(YYYY.MM.DD HH:Min) USFLUXMIN USFLUXMAX USFLUXAVG CLASSmin CLASSMAX

2017.09.07 05:00 3.809E+25 5.42E+22 1.907E+25 AB M2.4

2017.09.07 05:12 3.806E+25 5.43E+22 1.906E+25 AB AB

Summarizing, in a given instant, for each LETS feature, it is created the minimum, maxi-

mum and average, as well as the minimum and maximum of the class. Table 5.7 shows only

those attributes for the USFLUX and the Class. The attribute NOAA AR of LETS was excluded

because the new unified series is bringing compiled information by time.

Formally, we have:

• The Preliminary Database is defined as PD = U{t, MF0min , MF0max , MF0avg , MF1min ,

MF1max , MF1avg , .., MFnmin , MFnmax , MFnavg , XRtmin , XRtmax , XRtavg ,.., XRt+imin , XRt+imax ,

XRt+iavg , class of the event given by SELmin, class of the event given by SELmax},
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where:

– t = highest SR TS instant = instant of the time series with the highest sampling

period;

– MFjmin , MFjmax , MFjavg = minimum, maximum and average of the magnetic feature

in the instant t of LETS; j is the jth magnetic feature. The total quantity of magnetic

features is n;

– XRtmin , XRtmax , XRtavg = minimum, maximum and average of the X-ray in the instant

t of LETS; t is the tth x-Ray from LETS and its highest value is the sample period

of MFTS divided by the sample period of XRTS, given by i;

– class of the event given by SELmin, class of the event given by SELmax = mini-

mum and maximum class in the instant t of LETS;

The resulting values for the minimum, maximum, and average involving operations with

feature values NaN were also set to NaN. The series produced in this step was named Prelimi-

nary Database (PD).

Step-3a: Data cleaning

Among the anomalies mentioned, the only untreated ones, until this step, were some miss-

ing instances of XRTS or MFTS. Thus, in this step, instances with value NaN were inserted

in all the gaps of PD. This is because the SS algorithm requires a series of input with a fixed

sampling period.

Step-3b: Feature Selection

Bobra e Couvidat (2015) lists a set of 25 magnetic features possibly able to distinguish solar

flares. Thus, we applied a feature selection task over PD in order to filter the most important

features to use in ECID. We used a ranking feature selection method and performed experiments

using the top three ranked. As we will show in Chapter 6, the top three features were: XRmax,

R VALUEmax and USFLUXmax.

Step-3c: Application of SS into PD

In Step-3c, an extended version of Series to Sequence (SS) algorithm was developed to

handle multidimensional time series. This version is presented in Algorithm 8. The strategy
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used to extend the algorithm was to compose the extended current window to a set of windows,

one for each feature and label the resulting instance with the maximum class found in the future

window.

Algorithm 8: The Series to Sequence (SS) algorithm: Extended Version
input : Preliminary Database PD of size timeSeriesSize

Current window: c
Step: s
Jump: j
Future window: f

output: SlidDataset(SD)

1 begin
2 qty o f windows← (timeSeriesSize− (c+ j+ f )+1)/s;
3 windowSize← c×|solarFeatures|+ j+ f ;
4 for t=0; t < qty of windows; t+=s do
5 for i = 0; i < |solar features of PD|; i++ do
6 extendedcurrentWindowo f Featurei←

extendedcurrentWindowGenerator(SD.solarFeaturei, t,c);
add(extendedcurrentWindow,extendedcurrentWindowo f Featurei);

7 end
8 window← windowGenerator(SD,extendedcurrentWindow, t,windowSize);
9 f utureWindow← f utureWindowGenerator(window,c, j, f );

10 maxSolarFlareClass← searchMaxClassInFutureWindow( f utureWindow);
11 solarSequence← mapCurWinAndFutSolFl(currentWindow,maxSolarFlareClass);
12 add(SD,solarSequence);
13 end
14 return SD
15 end

As presented in Algorithm 8, SS is fed with Preliminary Database, the current window size,

the step of the consecutive windows, the jump and the size of the future window.

In line 5 to 7, the extended current window is created. The subseries of size c of each solar

feature, starting in instant t, is added to the extendedcurrentWindow array. Then, in line 8, a

window array, composed of the extended current window, the jump and the future window is

created. In line 9, the future window is extracted from the window array using the f values

obtained from the starting position of c + j of this array, and stored in the futureWindow array.

In line 10, maxSolarFlareClass receives the maximum solar flare found in futureWindow. In

line 11, the Solar Sequence composed of the sub-series of currentWindow and the maximum

solar flare (maxSolarFlareClass) is built and stored in the array solarSequence. Line 12 adds

the Solar Sequence of time instant t in the final set of sequences Slid Dataset (SD). Then, the

next sequence is computed by returning the processing to line 5. Finally, line 14 returns the
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dataset with all the computed sequences called Slid Database. The number of windows and

sequences built is set in the qty of windows.

To better understand the extended version of SS algorithm, consider Table 5.8 as the Slid

Database (SD) obtained. The values are not shown in the table due to space limitations.

As presented in Table 5.8, the attributes named USFLUXMIN-0 to USFLUXMIN-CWS (where

CWS means the current window size) are the attributes of the current window of the feature

USFLUXMIN of Table 5.7. The attributes named USFLUXMAX-0 to USFLUXMAX-CWS are the

attributes of the current window of the feature USFLUXMAX. Additionally, the attributes named

USFLUXAVG-0 to USFLUXAVG-CWS are the attributes of the current window of USFLUXAVG.

Finally, the attribute Class of future Window is the class of the future window as described in

Section 4.2. Here, we used just the attribute CLASSMAX of PD. Note that, for exemplification

purposes, we only show the attributes regarding USFLUX, but in the real situation, this strategy

is applied considering all the magnetic features selected in the feature selection step.

Table 5.8: Slid Database (SD)

Extended Current Window

T REC USFLUXMIN-0 ... USFLUXMIN-CWS USFLUXMAX-0 ... USFLUXMAX-CWS USFLUXAVG-0 ... USFLUXAVG-CWS Class of future window

... ... ... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ... ... ...

Formally, we have:

• |PD| is the number of instances of the Preliminary Database, PD;

• SD = {MFjmin-(t)(i),MFjmin-(t+1)(i), ...,MFjmin-(t+CWS)(i),

MFjmax-(t)(i),MFjmax-(t+1)(i), ...,MFjmax-(t+CWS)(i),

MFjavg-(t)(i),MFjavg-(t+1)(i), ...,MFjavg-(t+CWS)(i),

XRkmin-(t)
(i),XRkmin-(t+1)

(i), ...,XRkmin-(t+CWS)
(i),

XRkmax-(t)
(i),XRkmax-(t+1)

(i), ...,XRkmax-(t+CWS)
(i),

XRkavg-(t)
(i),XRkavg-(t+1)

(i), ...,XRkavg-(t+CWS)
(i),

maximumClassO f FutureWindow,1≤ i≤ |PD|−windowsize,

0≤ t ≤ i×highestsamplePeriod}, where

– SD is the Slid Database;

– MFjmin-(t)(i) is the lowest value of a jth magnetic feature in instant t;

– MFjmax-(t)(i) is the highest value of a jth magnetic feature in instant t;

– MFjavg-(t)(i) is the average value of a jth magnetic feature in instant t;
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– XRkmin-(t)
(i) is the lowest value of a kth X-ray intensity in instant t;

– XRkmax-(t)
(i) is the highest value of a kth X-ray intensity in instant t;

– XRkavg-(t)
(i) is the average value of a kth X-ray intensity in instant t;

– CWS is the defined size of the current window;

– windowsize is the defined size of the window;

– maximumClassO f FutureWindow is the maximum solar flare class occurred in the

future window (for a detailed explanation of current and future window, see Sec-

tion 4.2).

At this point, the database is already prepared to be handled by ECID as presented in fol-

lowing.

5.2.2 The proposed method ECID (Ensemble of Classifiers for Imbal-
anced Datasets)

The preprocessed data is submitted to ECID that employs a modified bootstrap strategy:

ECID builds multiple learning models from different subsamples of the training dataset. Specif-

ically, it splits the training dataset into subsamples using a strategy that we named Multi-

Class2Binary.

MultiClass2Binary strategy is the key to provide multi-class forecasting for four classes

of solar flares (AB, C, M and X). Here, we grouped instances classified as A and B, because

these type of solar flares does not impact Earth’s equipment, so that distinguishing them is not

interesting for the astrophysicists. As presented in Step-4a of Figure 5.2, this strategy builds

four distinct balanced datasets using stratified sampling. The sampling strata are the solar flares

classes, and the sampling schema is detailed next. The first dataset is composed of 50% of the

tuples classified as classes A or B and 50% of remaining; the second one is composed of 50% of

tuples class C and 50%, the remaining; the third is balanced in the same way for class M, and

the last one for class X.

Figure 5.2 shows an illustration of an execution of MultiClass2Binary. The Slid Database

is highly imbalanced. In this illustration, four datasets are created by random undersampling

the original SD. The called AB-Dataset is composed of |AB| tuples classified as AB and |AB| of

instances classified as C or M or X. The called C-Dataset is composed of |C| tuples classified as

C and |C| of instances classified as AB or M or X. M and X-Datasets follows the same approach.
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Figure 5.2: Example of the application of the MultiClass2Binary strategy into SD

Each dataset has just two classes, and this splitting mechanism aims to give more weight

to the rarest classes. Thus, a binary classification method (or inducer) is employed to perform

the forecasting for each of the datasets generated by MultiClass2Binary, as shown in Step-4b of

Figure 5.3.

Each dataset is applied to a binary inducer. Accordingly, the Binary Classifier#1 provides

the forecasting for class AB or not, Binary Classifier#2, for class C or not, Binary Classi-

fier#3, for class M or not, and, Binary Classifier#4, for class X or not. We propose to employ

all inducers of the same type because our experiments did not demonstrate improvements by

combining different types of inducer. However, the combination of different inducers may also

be performed.
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Figure 5.3: Step-4b: Base inducers

The goal of ECID is to return the possible solar flare classes that may occur in a given

day. However, SD has 120 instances per day, because the sampling period is 12 minutes. The

base inducers are trained with 120 instances per day; consequently, the forecasting result is also

given in a 12 minutes sampling period. As there are four training datasets, for a given testing

sample, there will be at least four possible results: AB, C, M and X. Table 5.9 shows an example

of the base inducer individual forecasting.

Table 5.9: Example of a base inducer individual forecasting

instant AB y C y M y X y

Day 1 Instant 00:00 1 1 0 0

Day 1 Instant 00:12 ... ... ... ...

Day 1 Instant 00:24 ... ... ... ...

The instant column corresponds to the time of the forecasting result. Columns Z y (where

Z = {AB,C,M,X}) is set to 1 if the corresponding inducer produced positive forecasting for

the given class. Consider the tuple with Day 1 Instant 00:00, if Binary Classifier#1 produced

a positive forecasting, the AB y column is set to 1; if Binary Classifier#2 produced a positive

forecasting, the C y column is set to 1; and so on.
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Note that, the forecasting is originally given in 12 minutes, but the goal of this work is to

produce daily forecasting. So, the aggregation method combines the votes of the base inducers

producing a daily result as represented in Figure 5.4.

Figure 5.4: Step-4c: The Aggregation Method

The Aggregation method sums all the vote given by each inducers into a daily manner, so

that Table 5.10 is produced.

Table 5.10: Example of an aggregated daily forecasting

instant AB y C y M y X y

Day 1 80 40 0 0

Day 2 0 0 20 100

Day 3 0 2 90 28

Note that Table 5.9 shows the forecasting for sampling period of 12 minute of the fictitious

Day 1. Table 5.10 gives the sum of the votes given by each inducer in a daily manner, so that

the sum of votes are given for the fictitious Day 1, Day 2 and Day 3.

After calculating the daily sum of Z y, the aggregation method decides the final forecasting

result for a given day. So, this method uses a decision rule to obtain the final result. For this

purpose, it was proposed a parameterized schema, with three parameters (p1, p2 and p3). The
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parameters p1, p2 and p3 denote the minimum number of daily votes required for the selection

of the first, second and third most voted classes. For example, if AB is the most voted and the

number of votes is given by |AB|, this class will be selected if p1 ≤ |AB|. If C is the second

most voted and the number of votes is given by |C|, this class will be selected if p2 ≤ |C|. If

M is the third most voted and the number of votes is given by |M|, this class will be selected if

p3≤ |M|.

We found empirically that the best results are obtained using p1 = 24, p2 = 6, and p3 = 3.

The importance of minority classes is increased because their class frequencies are low.

For example, in Table 5.10, Day 1 has the first and second most voted given by classes AB

and C. Day 2 has the first and second most voted given by classes X and M. Day 3, however,

has M, X and C as the top three most voted.

Table 5.11: Example of the Forecasting Result Calculation (p1 = 24; p2 = 6; p3 = 3)

Instant 1th Voted 2nd Voted 3rd Voted Forecasting Result

Day 1 24 <= 80 (AB) 6 < 40 ( C) - ABC

Day 2 24 <= 100 (X) 6 <= 20 (M) - X

Day 3 24 <= 90 (M) 6 <= 28 (X) 3 <= 2 ( C ) MX

Table 5.11 orders the classes and the respective votes for each day. In the first day, class

AB is selected in the forecasting since p1 = 24≤ |AB|. Another example, in the line of Day 3,

the 3rd most voted was class C, with 2 votes. However, as p3 = 3≤ |C| is not satisfied, class C

is not selected in the forecasting result.

Note that if more than one condition is satisfied in this decision rule, a multi-label forecast-

ing is obtained.

Another characteristic of the aggregation method is that it is possible to improve its decision

rules by using a classification method. In Chapter 6, it is described some experiments that insert

SVM in the aggregation method.

5.3 Final considerations

In this chapter, we presented ECID. In this method, the data is prepared using an extended

version of SS. Four datasets are extracted to build models for each solar flare class through

the ensemble of base inducers. An aggregation method provide multi-class and multi-label

forecasting. Finally, the results can be submitted to a classifier, like SVM, to maximize the
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separability among the returned classes. The main characteristics of ECID were:

1. it uses the evolution of the solar feature time series in the forecasting process;

2. the specialist knowledge is employed in the configuration of the ECIDs parameters;

3. it handles imbalanced datasets using a balancing schema based in stratified sampling and

ensemble of classifiers;

4. it performs a multi-class forecasting;

5. it handles the issue of high similarity between adjacent classes by enabling multi-label

forecasting;

6. it enabled binary classifiers to be used as the EC’s inducer by giving more weight to

the least voted class. This strategy was applied because when the MultiClass2Binary

algorithm stratified the original dataset, it gave a higher weight to the main class of each

balanced stratified dataset.

In the next chapter, the experiments performed using SeMiner and ECID are presented. We

also discuss the validation of these methods according to the goals specified in this thesis.



Chapter 6
EXPERIMENTAL RESULTS

This chapter describes the experiments performed in order to test and validate SeMiner and

ECID. It also describes the gains obtained by handling the imbalanced dataset in ECID against

the original SeMiner method. Finally, it discusses the obtained results against our hypothesis,

and also compares our results to the most closely related works of solar flare forecasting.

6.1 SeMiner Experiments

Three experiments were performed to test SeMiner and its core algorithm, SS. The first

experiment applied SeMiner to forecast the X-ray background level emitted by the Sun. The

second, predicted solar flares using SeMiner. And the last experiment, analyzed the speedup

obtained by the parallelized version of SS. All three experiments used the X-ray time series as

input. The first two experiments performed a binary forecasting. It was used the Yes and the No

classes. The Yes means that SeMiner predicted a solar flare or background level greater than or

equal to class C, otherwise the method predicted No.

The metrics used to analyze the results were: True Positive Rate, True Negative Rate and

ROC Area.

An overview of these three experiments are described as follows:

1. The first experiment considered the intensity of X-rays in the 1–8 Angstrom passband as

input of the SeMiner method. It aimed to forecast the background level of X-ray flux

instead of solar flares (the difference between these concepts are in Section 2.1). The

method was tested using different classification methods and datasets with the forecast-

ing horizon set to one day. The best results achieved True Positive Rate = 94.3%, True

Negative Rate = 86.5% and ROC Area = 90.5%, using the IBK classifier (a variation of
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the k-nearest neighbor method-KNN). These results show a strong balance between True

Positive (TP) and True Negative (TN) rates, which is a desirable feature considering that

the solar dataset is very imbalanced.

2. The second experiment employed SeMiner to forecast solar flares. It was used differ-

ent feature selection methods and classifiers to check the configuration that provided the

best results. For this purpose, the feature selection methods Relief Attribute Evaluation

(KIRA; RENDELL, 1992) and StarMiner (RIBEIRO et al., 2009) were employed in SeM-

iner to select the periods of the dataset that best distinguished the solar flares. Also, this

experiment used the following classification methods in SeMiner: J48 (a decision tree

implementation), IBK (a K-nearest neighbor implementation), NaiveBayes, OneR and

SVM. In this experiment, it was found that the time interval that best distinguish solar

flares are within two days before the event. More specifically, it was found that the initial

and final periods of the first day, and the remaining 16 hours of the second day are the

intervals that contains the data that once used in SeMiner, provides the best results. This

finding corroborates the empirical heuristic given by the domain specialist: the previous

two days of data are the most important to predict possible future solar flares. Another

benefits of using feature selection method in SeMiner is that it reduced SeMiner execu-

tion time as well as produced higher accuracy with balanced TPR and TNR. SeMiner

achieved: Accuracy = 72.7%, TPR = 70.9% and TNR = 79.7%.

3. The last experiment was concerned with the performance of the parallelized version of

SS. It was found that the parallelized version of SS runs about four times faster than the

sequential algorithm.

Details about each of those experiments are presented along with a discussion about the

results obtained and the main findings.

6.1.1 SeMiner - first experiment: X-ray background level forecasting

The goal of this first experiment was to start validating the SeMiner method by forecasting

the X-ray background level of a future day. For this purpose, we used a time series of X-

ray flux comprising data sampled from 2014 and 2015. The data was provided by SWPC

Primary GOES X-ray satellite in its website (https://www.swpc.noaa.gov/products/goes-x-ray-

flux). As mentioned before, this data source provides two types of X-ray: one recorded in the

1-8 Angstrom passband, and another in the 0.5-4.0 Angstrom passband. In order to compose
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the training and testing dataset, we used the time series of X-ray recorded in the 1-8 Angstrom

passband.

The X-ray time series provided at NOAA website (https://satdat.ngdc.noaa.gov/sem/goes/

data/new avg/) is composed of the X-ray observations recorded in intervals of 1 minute, but its

classification, as presented in Table 1.1, is not assigned in this report. Thus, it was necessary to

assign the correspondent class for each record. For this purpose, we compared each observation

of the X-ray time series against the ranges of each class given in Table 1.1 in order to perform

this assignment.

For example, consider an X-ray time series composed of the X-ray values given in Table 6.1.

Instant-0, 1, 2 and 3 provided X-rays values of 1E-07, 5E-07, 7E-05, 8E-04 W/m2, respectively.

These observations are not originally assigned with any class. Thus, we looked at, for each

observation, the ranges of each X-ray background level given in Table 1.1 and performed the

assignments.

Table 6.1: Example of the class assignment in an X-ray time series.

Instant X-ray Class

0 1E-07 B

1 5E-06 C

2 7E-05 M

3 8E-04 X

In this way, the first instance contains an observation I = 1E-07. If we look at Table 1.1, it

falls in the range of class B. Thus, this observation is assigned to B. The following observations

were assigned using the same approach.

Furthermore, two types of dataset splitting were used to validate this experiment:

• 10 fold cross-validation: the dataset was divided into ten folds. Then, the first part was

used as the test set, and the other nine as the training set. Afterward, the second part was

used as the test set, and the remaining, as the training set, and so on.

• Fixed dataset splitting: 67% for training, and 33% for testing.

Finally, the tests were performed using data taken from the following periods: 10 days, one

month, one year and two years. Table 6.2 shows the setup for this experiment.
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Table 6.2: Setup of the SeMiner experiments. Test Number is the number of the test performed; n
(current window size), Step (window step), j (jump) and f (size of the future window) are measured
in numbers of observations; ∆t (sampling period) is measured in minutes; |R| is the number of the
generated sequences by SS.

Test Number
Test and training set

division method

Class Definition

of Solar Event
∆t n j f Step #observations

Data

Period

(days)

|R|

1
Cross-validation:

10 folds
C, M and X 5 288 288 288 1 2880 10 2016

2
Cross-validation:

10 folds
C, M and X 5 288 288 288 1 8640 30 7776

3
Cross-validation:

10 folds
C, M and X 5 288 288 288 1 17280 60 16416

4

Dataset split:

67%: training

33%: testing

C, M and X 5 288 288 288 1 105120 365 104256

5

Dataset split:

67%: training

33%: testing

C, M and X 5 288 288 288 1 210240 730 209376

SeMiner allows the usage of any classifier. Therefore, in this experiment, we applied, for

tests 1 to 5, the following classifiers to verify which one best forecasts X-ray flux intensity:

J48 (C4.5 implementation developed in Java), IBK (a k-nearest neighbor algorithm), Naive

Bayes, OneR, and Support Vector Machine (SVM) using the Polykernel function as SVM kernel

function. The implementations of these algorithms were taken from The Waikato Environment

for Knowledge Analysis (WEKA) tool (HALL et al., 2009).

Test1,2,3 were validated with Cross-validation using 10 folds. On the other hand, Test4

and Test5 used 67% of the data for training and the remaining 33% for testing. The classes

were categorized as Yes, for occurrences of the intensity of X-rays classified as C, M and X,

and No otherwise. Test1 used data collected from 10 days period, while Test2 used 30 days of

data, Test3 used 60 days, Test4 used one year of data, and Test5 used 2 years of data containing

X-ray flux intensity.

The graphics presented in Figure 6.1 shows the three metrics: True Positive Rate, True

Negative Rate and ROC Area versus each test performed for 10, 30, 60, 365 and 730 days of

data.
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Figure 6.1: SeMiner - Results of the first experiment.

The classifier OneR, which constructs one single rule for each data attribute, was employed

as the baseline classifier. Despite its simplicity, it performed relatively well (see Figure 6.1),

because the input tuple was a preprocessed data sequence, with 288 attributes. In this case, the

OneR model produced 288 rules that, using the majority vote strategy, could fairly describe the
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data.

The J48, an implementation of the C4.5 classifier, presented a significant decrease in the

TNR as the dataset size increased. It employs a Decision Tree approach that is very sensitive to

data imbalance, losing the learning model specificity.

The use of Naive Bayes resulted in one of the poorest results. The method employs a prob-

ability model that assumes independence among attributes. However, the processed sequences

have features with high levels of dependency. This is because each feature produced by SS have

a shifted sub-series compared to their subsequent features. So that, each feature are strongly

correlated.

Even though SVM usually produces accurate models to categorize tuples, it achieved poor

results (ROC Area: 0.63, TPR: 0.6 and TNR: 0.658) in the experiment performed. The SVM

classifier presupposes a multidimensional data and finds the best hyperplanes that separate the

data into classes. However, the datasets used are originally unidimensional, as previously dis-

cussed. Additionally, the computational performance of SVM is too low, so that Test5 was not

completed using SVM as it took too long to complete (more than 3 days).

The ROC Area, TPR and TNR obtained using the IBK classification method were the high-

est. The test using 30 days of data achieved the best results when combining the three metrics:

ROC Area (0.905), TPR (0.943) and TNR (0.865).

This first experiment showed that SeMiner had great potential to predict future events. How-

ever, this experiment tested just the background level of X-ray in terms of the classification

provided in Table 1.1. In the next experiment, SeMiner was used to predict solar flares.

6.1.2 SeMiner - second experiment: solar flare forecasting

This experiment used SeMiner to perform solar flare forecasting. It was used X-ray time

series, provided by NOAA website (〈http://www.swpc.noaa.gov/products/goes-X-ray-flux〉), as

input for the method.

This second experiment consisted of six tests. It was used StarMiner and Relief Attribute

Evaluation as the feature selection methods within SeMiner. Each test used an X-ray time series

collected in 2014 as the training dataset to produce forecasting with one day of advance. The

data collected during six months of 2015 formed the testing dataset. This data division ensured

that the results obtained were not biased due to close instances in both testing and training

datasets. Table 6.3 shows the setup of the tests performed.
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Table 6.3: SeMiner - Planning of the second experiment

Data Interval

Test number
Feature Selection

Method

Current

Window
Jump

Future

Window
Training Testing Classification Method

1 Not used

1 1 1

1 year

2014

6 months

2015

J48, IBK, NaiveBayes, OneR,

SVM (SMO - Weka - Polykernel)

2 Starminer

3
Relief Attribute

Evaluation

4 Not used

2 1 15 Starminer

6
Relief Attribute

Evaluation

Two main configurations were considered during this experiment: (1) one day for the cur-

rent window, and; (2) two days for the current window. jump and future window were configured

as one day for both phases. The classification methods employed were: J48, IBK, Naive Bayes,

OneR, Support Vector Machine (QUINLAN; ROSS, 1993; AHA; KIBLER; ALBERT, 1991;

BESNARD; HANKS, 1995; HOLTE, 1993; SCHOLKOPF; BURGES; SMOLA, 1999).

As we can see in Figure 6.2, the NaiveBayes classifier resulted in the largest ROC areas.

Test 6 achieved the largest one, reaching 0.799 of the ROC area. On the other hand, we ob-

serve that this experiment got an accuracy of 72.7%. This accuracy can be considered high,

considering the imbalanced dataset, and is accompanied by balanced TP and TN rates, 70.9%

and 79.7%, respectively.

The forecasting method results are presented in Figures 6.2–6.3.
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Figure 6.2: SeMiner - Results of the second experiment.

Figure 6.3: SeMiner Total time = Training Time + Testing Time (Time in seconds).

The last aspect analyzed in this experiment was the results produced by the feature selection
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method in SeMiner.

Selecting features in this domain means choosing the most significant time intervals that

distinguish solar flares, like explained in Section 4.2.2. In addition, as feature selection is

employed, less data is used by SeMiner and consequently, it increases the speed-up of the

overall execution.

In tests 1 to 6, SS algorithm generated 288 features, because the current window was set to

one day (or 288 instances). As each feature corresponds to an interval of 5 minutes, we have a

relation between the selected features and the periods in which it relates. For example, the first

twelve features corresponds to 5 x 12 minutes, i.e., the first one hour of the observations within

the current window.

In this way, when a feature selection method applied to SeMiner choose certain features,

actually it is selecting the most significant periods that best distinguishes a solar flare. For this

analysis, we have mapped the selected features of each test to the intervals that they are related

with.

Figure 6.4 shows the result of this transformation. As shown above, Test 6 achieved the

best results. In this test, it was combined the classification method NaiveBayes and the feature

selection method Relief Attribute Evaluation using two days as current window within SS.

Hence, we can observe from the yellow line of Figure 6.4 that the features selected by test 6

actually chose the data comprising the begin and end of the first day and the end of the second

day. It means that data collected within these intervals, two days before the solar flare, may

distinguish the events according to the Relief Attribute Evaluation method.

Figure 6.4: SeMiner - Most significant time interval analysis.

In summary, the results of Test 6 were significant due to the following reasons:
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1. as shown in Table 6.3, Test 6 is configured with a current window of 2 days and, according

to the domain specialist, this period has the most significant pattern that can be observed

to distinguish a solar flare;

2. when Relief Attribute Selection feature selection method was used in SeMiner, along

with two days for the current window, the selected intervals (given in hours) were: 1 ≤
instant ≤ 9 (start of the first day), 18 ≤ instant ≤ 24 (end of the first day), and 33 ≤
instant ≤ 48 (last 16 h of the second day);

3. feature selection along with the Naive Bayes classifier resulted in the best TPR, TNR

and ROC area among all the tests performed. Furthermore, it produced a speedup of

3.2, i.e., an execution time 3.2 faster than if no feature selection had been performed

(speedup = timenoRelie f /timewithRelie f = 61.9/19.18);

4. the ROC Area, considering the tests performed with 2 days of current window, increased

from 0.77 (without feature selection) to 0.80 (using feature selection);

5. it showed that the usage of SeMiner was efficient in the task of solar flare forecasting.

SeMiner is a binary forecasting method and proved to be successful in the prediction of

grouped solar flares classes. It also showed us that considering the evolution of solar data in the

forecasting process, we could achieve good results. Next, we present the experiment performed

to analyze the parallel version of SS, which was developed to optimize the original sequential

version.

6.1.3 SeMiner - third experiment: SS parallel optimizations

The third experiment with SeMiner were performed in two phases. It aimed to compare the

parallel version of the SS algorithm against its sequential implementation.

The first phase of this experiment was performed using the implementation based on pure

C language, and a three years time series of X-ray intensity data (2013 to 2015). The current

window, jump and future window were set to 288 instances, while step was set to one instance.

As the sample rate is 5 min, it is equivalent to say that Current Window, Jump and Future

Window are set to one day. Thus, we intended to forecast one day in advance. The running

times of interest were measured using the time command of C and CUDA, and the start/end of

the time command involved just the function that executed the pure C algorithm. The pure C

algorithm was run three times, and its mean execution time was calculated.
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The second phase of experiments was performed with the same configuration of the previ-

ous one, except that the CUDA kernel implementation was used. In this experiment phase, the

time command of C and CUDA was also used, but the start/end was concerned with the paral-

lelized function. Therefore, it measured the execution time of the parallelized SS. The kernel

function was run three times and its mean execution time was calculated.

A summary of this experiment, the mean execution time and the processed data size are

shown in Table 6.4.

Table 6.4: SS CUDA implementation: Executions and Results

Setup Results

SeMiner

Implementation

Data

volume

Current

Window
Jump

Future

Window
Step

Mean execution time

(sec)

Size of

output file

pure C
3 years

(2013-2015)
288 288 288 1 208,5 1,09GB

With CUDA
3 years

(2013-2015)
288 288 288 1 47,8 1,09GB

This experiment was performed on a computer with the following hardware configuration:

• Processor: Intel i5;

• RAM: 8 GB;

• Graphic’s card: Geforce 960X

– Number of CUDA cores (GPUs): 1024

– Memory: 2 GB

• Operating System: Windows 10;

• Application running during the test: Eclipse IDE

The execution speedup obtained by using CUDA for the implementation of SS is presented

in Equation (6.1):

timepureC

timeCUDA
=

208.4562
47.8299

= 4.36 (6.1)
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The absolute execution time, in both sequential and parallel versions of SS was relatively

small for the project objectives. This reflects the efficiency of the algorithm. Even so, the par-

allelized version implemented using CUDA showed to be 4.36 times faster than the sequential

version, what indicates that the parallel version should be adopted. Next section, we present the

experiments performed to validate the proposed multi-class and multi-label method: ECID.

6.2 Experiments using ECID

In this section, the experiments performed to test and validate ECID are described. In order

to evaluate the proposed method, the experiments implemented the following methodology:

• Selection of the solar features used in the forecasting process. For this purpose, a feature

selection method was run to rank the features and choose the ones to take part in the

experiments;

• Selection of the classification methods used as base inducers of ECID;

• Selection of the SS parameters in order to include the aims of the domain specialist;

• Preparation of the training and testing dataset used in the experiments;

• Evaluation of ECID through the quality metrics used to validate the hypothesis;

• Comparison of ECID results with SeMiner;

• Comparison of ECID with solar flare forecasting methods of the literature.

All the experiments were performed in a notebook with the following configuration: 8 GB

of memory RAM, 1 TB of hard disk and Intel Core i5 processor of 2.2 GHz. The operating

system was Linux Ubuntu 16.04. The data was stored and managed in the Postgres DataBase

Management System, and ECID was developed using the programming languages C and Java

8.

Due to the multi-class and multi-label characteristic of our problem, the original binary

metrics may not fit to our domain. Next section, we describe the issues we faced when con-

sidering traditional metrics to our domain. Also, we show multi-class and multi-label metrics,

which are more suitable for this domain.
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6.2.1 Metrics in solar flare forecasting

As mentioned in Section 1.4.1, special attention must be taken about metrics original de-

signed to analyze binary classification. Problems that require multi-class and multi-label clas-

sification should not use these metrics directly, because it may incur in misinterpretation of the

real capabilities or limitations of the method. Here, we will call binary metrics the ones that

were originally designed to validate binary classification problems.

In literature, we found some customizations applied in binary metrics in order to use them

in multi-class domains. Usually, it is found metrics of multi-class precision(c), multi-class re-

call(c) and multi-class F-Measure(c) calculated for each class. However, this approach turns

difficult to compare multi-class methods, so that it is also found aggregated metrics like multi-

class precision, multi-class recall and multi-class F-Measure that assess the overall perfor-

mance of the method (BRANCO; TORGO; RIBEIRO, 2016). For example, multi-class recall

(true positive rate), multi-class precision and multi-class F-Measure calculated for an individual

class c are defined as follows (BRANCO; TORGO; RIBEIRO, 2016):

multi-class recall(c) =
T Pc

T Pc +FNc
(6.2)

multi-class precision(c) =
T Pc

T Pc +FPc
(6.3)

multi-class F-Measure(c) =
2×multi-class precision(c)×multi-class recall(c)

multi-class precision(c) + multi-class recall(c)
(6.4)

The aggregated metrics are:

• overall multi-class recall is the mean of the multi-class recall for all classes;

• overall multi-class precision is the mean of the multi-class precision for all classes;

• overall multi-class F-Measure is the mean of the multi-class F-Measure for all classes.

For multi-class domain, this approach would produce interesting metrics for performance

comparison purposes. However, they are not enough when dealing with a multi-label method.

Since ECID is multi-class and also multi-label, both metrics, individual and aggregated,

should be adapted to work when the forecasting contains more than one class (multi-label). The

multi-label recall(c) for individual classes in multi-label domain may use a equation similar to

Equation 6.2, because the calculation of TP remains the same.
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multi-label recall(c) = multi-class recall(c) (6.5)

But, the multi-label precision(c) may be modified, as we define next. In this case, for each

class c, the multi-label precision(c) is the fraction of corrected predictions in all predictions in

which c belongs to the result.

multi-label precision(c) =
T Pc +T Nc

T Pc +FPc +T Nc
(6.6)

The precision adaptation for multi-label classification is specially important when the fore-

casting falls in the boundary of two classes. For example, suppose the forecasting obtained was

M X, but the actual event is given by M. If we consider class c as X in the calculation of the

precision, it would have a False Positive. However, a part of the forecasting matched the actual

event. Then, actually, the label X took part in the correct forecasting. This is what we want to

measure. In a multi-label approach, it is important to calculate the full or partial hit. This is

more meaningful that just analyzing each class isolated in a multi-label domain.

Another important metric is the multi-label error of a class c, which is the relation of false

negatives and the total number of observations in a certain test set.

multi-label error(c) =
FNc

T Pc +T Nc +FPc +FNc
(6.7)

It assess the number of prediction errors for a given class c among all possible observations

found in the testing dataset. This metric is related with the cost of a false negative for a given

class.

The overall multi-label metrics are:

• overall multi-label recall is the mean of the multi-label recall for all classes;

• overall multi-label precision is the mean of the multi-label precision for all classes;

• overall multi-label F-Measure is the mean of the multi-label F-Measure for all classes.
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Additionally to the metrics obtained from the mean of the individual classes, we found in

the literature aggregated metrics for the multi-label domain (GODBOLE; SARAWAGI, 2004)

calculated using the results of each instance. These ones differ from the metrics derived from

individual metrics, because they consider the intersection from the forecasting and actual events

for each instance. This leads to the exact count of matches considering the multi-label charac-

teristic of the method. The overall aggregated multi-label precision, overall aggregated multi-

label recall and overall aggregated multi-label F-Measure are calculated as follows.

overall aggregated multi-label precision =
|Actual

⋂
Forecast|

|Forecast|
(6.8)

overall aggregated multi-label recall =
|Actual

⋂
Forecast|

|Actual|
(6.9)

overall agg ml F-Measure =
2×overall agg ml precision×overall agg ml recall

overall agg ml precision+overall agg ml recall
(6.10)

Where:

• |Actual| is the number of the actual classes;

• |Forecast| is the number of the classes predicted;

• overall agg ml F-Measure is the overall aggregated multi-label F-Measure;

• overall agg ml recall is the overall aggregated multi-label recall;

• overall agg ml precision is the overall aggregated multi-label precision.

These aggregated metrics assesses the overall performance of a multi-label forecasting

method.

6.2.2 Solar Data used in the experiments and feature selection

These experiments used solar data recorded in the period from 01-May-2010 to 26-Dec-

2017. The first step of them followed the procedure described in 5.2.1. The Preliminary
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Database (PD) was produced as presented in Section 5.2.1. The database obtained has the for-

mat of the example shown in Table 5.7. The magnetic features used to compose PD were based

on Bobra e Couvidat (2015) work: R VALUE, USFLUX, TOTUSJZ, TOTUSJH, ABSNJZH,

SAVNCPP, MEANPOT, TOTPOT, SHRGT45. PD was built with these magnetic features to-

gether with the X-ray time series and the list of events obtained in the mentioned period. The

resulting PD had the following features:

PD = (T REC, RVALUEMIN, RVALUEMAX, RVALUEAVG, USFLUXMIN, USFLUXMAX,

USFLUXAVG, TOTUSJZMIN, TOTUSJZMAX, TOTUSJZAVG, TOTUSJHMIN, TOTUSJHMAX,

TOTUSJHAVG, ABSNJZHMIN, ABSNJZHMAX, ABSNJZHAVG, SAVNCPPMIN, SAVNCPPMAX,

SAVNCPPAVG, MEANPOTMIN, MEANPOTMAX, MEANPOTAVG, TOTPOTMIN, TOTPOTMAX,

TOTPOTAVG, SHRGT45MIN, SHRGT45MAX, SHRGT45AVG, XR1MIN
, XR1MAX

, XR1AVG
, XR2MIN

,

XR2MAX
, XR2AVG

,...., XR12MIN
, XR12MAX

, XR12AVG
, CLASSMAX , CLASSMIN)

PD has a total of 335521 instances composed of 319926 instances classified as AB, 13498

as C, 1933 as M, and 164 as X. This database serves as input to feature selection methods

to rank the magnetic features used in the experiments. As we aim to forecast the maximum

solar flare occurred in a given day, it was used the attributes with the maximum values named

{MagneticFeature}MAX.

The employed feature selection methods and a brief description of them are listed in the

following (HALL et al., 2009):

• CfsSubsetEval: Evaluates the worth of a subset of attributes by considering the individual

predictive ability of each feature along with the degree of redundancy between them..

• ClassifierAttributeEval: ‘‘Evaluates attribute subsets on training data.

• CorrelationAttributeEval: Evaluates the worth of an attribute by measuring the correla-

tion (Pearson’s) between it and the class.

• GainRatioAttributeEval: Evaluates the worth of an attribute by measuring the gain ratio

concerning the class.

• InfoGainAttributeEval: Evaluates the worth of an attribute by measuring the information

gain concerning the class.

• PrincipalComponents: Performs a principal components analysis and transformation of

the data.



6.2 Experiments using ECID 151

• SymmetricalUncertAttributeEval: Evaluates the worth of an attribute by measuring the

symmetrical uncertainty for the class.

Table 6.5: Top-4 attributes ranked by the feature selection methods

Feature Selection Method Rank of attributes

CfsSubsetEval XRMAX

ClassifierAttributeEval XRMAX, TOTUSJZMAX, USFLUXMAX, SHRGT45MAX

CorrelationAttributeEval USFLUXMAX, TOTPOTMAX, XRMAX, RVALUEMAX

GainRatioAttributeEval XRMAX, USFLUXMAX, RVALUEMAX, TOTPOTMAX

InfoGainAttributeEval XRMAX, RVALUEMAX, USFLUXMAX, TOTPOTMAX

PrincipalComponents RVALUEMAX, USFLUXMAX, TOTUSJZMAX, TOTUSJHMAX

SymmetricalUncertAttributeEval XRMAX, USFLUXMAX, RVALUEMAX, TOTPOTMAX

Table 6.5 shows the rank obtained in the execution of each feature selection method. The

feature XRMAX, RVALUEMAX, and USFLUXMAX appear in the majority of the ranks. Thus,

we selected these three features to apply in ECID.

6.2.3 Description of ECID’s experiments

It was performed 12 experiments aiming to test and validate ECID. The experiments were

grouped into three phases. The first phase intended to search for the most significant(s) fea-

ture(s) for the solar flare forecasting method. The second phase aimed to perform more tests

in ECID with the selected feature in the previous phase. Finally, the third phase aimed to tune

ECID up. In this section, we call the multi-label precision(c) simply as precision.

Phase-1: Most significant features for ECID

The three features selected were combined in this phase to verify the effects of employing

them in ECID. For this purpose, five experiments were performed in this phase. All the exper-

iments used IBK as base inducers, the balancing method was random undersampling, and the

training and testing datasets were composed as 70% and 30% of the original SD, respectively.

SS was configured by setting the current window, jump and future window as one day, meaning

that it was used data values of two days before the event, and the forecasting horizon was set to

one day.

• Experiment-1.1 used SD with just the XRMAX feature as ECID input;
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• Experiment-1.2 used SD with just XRMAX and USFLUXMAX features as ECID input;

• Experiment-1.3 used SD with just XRMAX and RVALUEMAX features as ECID input;

• Experiment-1.4 used SD with just RVALUEMAX feature as ECID input;

• Experiment-1.5 used SD with just USFLUXMAX feature as ECID input;

This experiment was analyzed using the multi-label metrics presented in Section 6.2.1. As

the results obtained are multi-class and multi-label, we took some cautions to calculate the

metrics:

1. First, it was calculated individual metrics for each class (AB, C, M, and X) by considering

Positive for a specific class, and Negative as all the remaining classes;

2. The overall metrics were obtained to compare the experiments performed with related

works.

Tables 6.6 and 6.7 shows the results obtained for each class. The mean of the results of

Experiment-1.1 produced the best results and its individual results are presented in bold.

Table 6.6: Experiments 1.1-1.3 - Metric Details

Experiment-1.1:

XRMAX

Experiment-1.2:

XRMAX + USFLUXMAX

Experiment-1.3:

XRMAX + RVALUEMAX

AB C M X AB C M X AB C M X

multi-label recall 71,1 90,9 83,6 92,3 77,9 79,4 82,1 61,5 83,0 82,5 73,7 86,7

multi-label precision 92,7 85,4 84,0 82,2 86,3 86,5 80,7 79,5 87,3 88,4 84,7 81,9

multi-label F-Measure 80,4 88,1 83,8 87,0 81,9 82,8 81,4 69,4 85,1 85,3 78,8 84,2

multi-label error 11,5 4,0 2,3 0,2 8,8 9,0 2,5 1,0 6,6 7,7 3,8 0,4

Table 6.7: Experiments 1.4-1.5 - Metric Details

Experiment-1.4:

RVALUEMAX

Experiment-1.5:

USFLUXMAX

AB C M X AB C M X

multi-label recall 83,0 79,1 75,0 73,3 75,3 78,9 76,1 76,9

multi-label precision 85,5 88,0 82,8 80,5 85,4 84,8 79,7 77,5

multi-label F-Measure 84,2 83,3 78,7 76,7 80,0 81,8 77,9 77,2

multi-label error 6,6 9,2 3,6 0,8 9,8 9,2 3,3 0,6
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The individual results of Experiment 1.1 shows interesting results specially for the rarest

classes. The individual results achieved for class-X reached a multi-label recall equal 92.3%,

a multi-label precision equal 82.2%, a multi-label F-Measure equal 81.9% and a multi-label

error of 0.2%, what indicates very few occurrences of false negatives.

Figure 6.5 shows the results obtained in the experiments of Phase-1.

Figure 6.5: ECID: Results obtained by the experiments performed in Phase-1

Experiment 1.1 achieved the highest results: overall multi-label recall = 84.5%; overall

multi-label precision = 86.1%; overall multi-label error = 4.5%. We can observe that the results

of all experiments were in the range from 70% to 80%, so that the inclusion of magnetic features

with X-ray did not improve the final results.

Additionally, Table 6.8 shows that the overall aggregated multi-label recall obtained in

Experiment 1.1 was 92%, the overall aggregated multi-label precision, 58%, and the overall

aggregated multi-label F-Measure achieved 82%.

Table 6.8: Overall aggregated metrics - Experiment 1.1

Experiment 1.1

overall aggregated multi-label recall 92%

overall aggregated multi-label precision 58%

overall aggregated multi-label F-measure 82%
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The medium precision is compensated by the low overall multi-label error, since in solar

flare domain a false negative is more costly than a false positive.

Thus, we decided to concentrate our efforts in using only the X-ray time series in the next

phase of the experiments.

6.2.3.1 Phase-2: Baseline ECID Setup

This phase aimed to validate the method by building another training and testing dataset

from the original SD using XRMAX. Additionally, we also compared ECID and SeMiner results.

We applied the same training and testing datasets and performed multi-class forecasting for

SeMiner, and multi-class/multi-label forecasting in ECID. This comparison was done to analyze

the gain obtained by ECID over SeMiner, once the first handles the imbalanced dataset, while

the second is not able to deal with this issue.

For this purpose, the experiments in this phase were configured as follows:

• It was used the same solar dataset composed of the time series of X-ray intensity emitted

by Sun and the solar flare report from the period 2010 to 2017, due to the results obtained

in Phase-1;

• It was used 70% of the dataset for training and 30% for testing to validate the method.

More specifically, the training dataset was composed of 67678 instances (50% of class

AB, 35% of class C, 13% of class M, and 2% of class X).

In this phase, it was performed six experiments identified as Experiment 2.1 to Experiment

2.6.

For experiments 2.1 to 2.3, we employed SeMiner varying the classification method: Ex-

periment 2.1 used IBK; Experiment 2.2 employed SVM; and Experiment 3 used J48. The

implementation of these methods was obtained from Weka (HALL et al., 2009).

For experiments 2.4 to 2.6, we employed the proposed ensemble method ECID. The strati-

fied under-sampling performed in the Step 4(a) of ECID (see Figure 5.1) is shown in Figure 6.6.
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Figure 6.6: Example of the application of the MultiClass2Binary strategy into SD

The training dataset contained 33839 tuples labeled as class A or B (called AB), 23633

labeled as C, 8969 as M and 1238 as class X. The method randomly under-samples the original

dataset according to each class. For example, the balanced dataset-AB is composed of 33839

tuples labeled A or B of the original dataset, these tuples are re-labeled as Positive(AB), the

other 33839 tuples are composed by a subsample of the original tuples labeled as classes C, M

and X, which is also re-labeled as Negative(CMX). The experiments 2.4-2.6 used this strategy

for under-sampling, but they vary the base inducers in each experiment: in Experiment 2.4 used

IBK; in Experiment 2.5 employed SVM; and, in Experiment 2.6 employed J48.

All the experiments used the same training and testing dataset.

The analysis of the experiments of this phase was performed using the individual and the

overall metrics described in Section 6.2.1. SeMiner was originally validated as a binary fore-

casting. But, as it is prepared to use any traditional classifier, including multi-class classification

methods, we used these methods to provide a multi-class forecasting. Thus, the metrics used

to validate SeMiner in this phase was the individual and overall multi-class ones. In the other

hand, ECID is a multi-class and multi-label forecasting, thus we used individual and overall

multi-label metrics in this phase.

Table 6.9 shows the results obtained by SeMiner using different classifications methods.

And, Table 6.10 shows the results obtained by ECID varying the base inducers.
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As observed in Table 6.9, the classifiers alone produced relatively good results for predic-

tions of classes AB and C (which are the majority classes), and inferior results for classes M

and X (the minority and most important classes). The highest results for classes AB and C

were 72.8% of multi-class recall and 64.1% of precision in Experiment-2.2 (SVM), and 76% of

multi-class recall and 56.6% of multi-class precision for class C in Experiment-2.1 (IBK). In the

other hand, it reached 34.2% of multi-class recall and 12.4% of multi-class precision for class

M, and 73.3% of multi-class recall and 10.8% of multi-class precision for class X. Although

a good multi-class recall was obtained for class X, an inferior multi-class precision drastically

decreased the level of reliability of the forecasting model using pure SeMiner (which did not

handle imbalanced datasets). The multi-class F-Measure measure corroborate these results,

which were reasonable for classes AB and C, and very poor for classes M and X.

Table 6.9: Experiments 2.1-2.3 - Metric Details obtained from SeMiner usage

Experiment-2.1: IBK Experiment-2.2: SVM Experiment-2.3: J48

AB C M X AB C M X AB C M X

multi-class recall 0,635 0,760 0,197 0 0,728 0,649 0,131 0,266 0,309 0,286 0,342 0,733

multi-class precision 0,708 0,566 0,468 0 0,641 0,565 0,434 0,8 0,914 0,482 0,124 0,108

multi-class F-Measure 0,670 0,649 0,277 0 0,681 0,604 0,202 0,4 0,462 0,359 0,182 0,189

multi-class error 0,102 0,256 0,032 0,000 0,158 0,220 0,024 0,002 0,012 0,136 0,345 0,169

Table 6.10 shows the results of Experiments 2.1-2.6, which used our proposed method

ECID. The results obtained for the minority, but most important classes were higher than the

previous experiment using SeMiner. The best results were achieved in Experiment 2.6 us-

ing J48 as the base inducers of ECID: 86.6% of multi-label recall and 98.5% of multi-label

precision, and an multi-label F-Measure of 92.2% for class X. Also, the predictions of class M

resulted in 100% of multi-label recall and 97.7% of multi-label precision. Predictions of classes

AB and C achieved results of more than 95% from both multi-label recall and precision. We

can observe that the multi-label error achieved low values to classes M and X: 0% and 0,8%,

respectively.

Table 6.10: Experiments 2.4-2.6 - Metric Details obtained from ECID usage

Experiment-2.4: IBK Experiment-2.5: SVM Experiment-2.6: J48

AB C M X AB C M X AB C M X

multi-label recall 0,900 1 0,916 0,933 0,892 0,910 0,875 0,933 0,966 0,98 1 0,866

multi-label precision 0,988 0,943 0,950 0,946 0,948 0,933 0,911 0,904 0,992 0,977 0,977 0,985

multi-label F-Measure 0,942 0,970 0,933 0,940 0,919 0,922 0,893 0,918 0,979 0,988 0,988 0,922

multi-label error 0,046 0,0 0,008 0,004 0,05 0,034 0,011 0,004 0,015 0,004 0,0 0,008

Figure 6.7 shows the improvement of the overall metrics from the first three experiments
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(using SeMiner) and the last three ones (using ECID). In average, the overall multi-class/multi-

label recall had an increase of more than 120%. The overall multi-class/multi-label precision

had an increase of 56.0% and the resulting overall multi-class/multi-label error is eight times

lower than the one obtained through SeMiner. The improvement of the overall metrics is mainly

due to the capability of ECID to handle imbalanced datasets and produce multi-class and multi-

label forecasting.

Additionally, Table 6.11 shows that the overall aggregated multi-label recall obtained in

Experiment 2.6 was similar to Experiment 1.1 reaching 92%, the overall aggregated multi-label

precision, 57%, and the overall aggregated multi-label F-Measure achieved 82%.

Table 6.11: Overall aggregated metrics - Experiment 2.6

Experiment 2.6

overall aggregated multi-label recall 92%

overall aggregated multi-label precision 57%

overall aggregated multi-label F-measure 82%

The medium precision was again compensated by the low overall multi-label error. These

results show that even testing with a different training and testing dataset compared with Phase-

1 (though the dataset still was collected from 2010 to 2017), ECID proved to reach consistent

results.

Figure 6.7: ECID: Results obtained by the experiments performed in Phase-2
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The forecasting results produced by ECID is multi-label. Thus, an analysis of the combi-

nation of labels in the multi-label result was made. The method produced the distribution of

classes shown in Table 6.12 for the best result obtained (using J48).

Table 6.12: Percentage of multi-label result of Experiment-2.6

Forecasting Result %

AB 11,1

ABC 8,8

ABCM 52,5

CMX 27,6

The forecasting result of Experiment 2.6 is well concentrated in two sets of labels: ABCM

and CMX. Though the results obtained are good, there is a chance to improve it by spreading the

forecasting results in more diverse multi-labels. For this purpose, an adaptation was performed

in the aggregation method of ECID. Thus, Phase 3 of the experiments aimed to test ECID by

including in the aggregation method one more decision step. It was included a classification

method, SVM, to analyze the voting count of the original aggregation method and perform the

final forecasting.

6.2.3.2 Phase 3: Optimizing ECID Forecasting Results

In the aggregation method shown in Figure 5.4, it was initially used parameters p1, p2 and

p3 as described in Subsection 5.2.2. However, as discussed in Phase-2, the forecasting results

achieved highly concentrated forecasting classes. For this purpose, we added to the original

aggregation method, a new step to analyze the voting list through SVM. The result of this

improvement had distributed the forecasting labels, and increased some important metrics as we

show next. The configuration of Experiment 3.1 was set with the same values of Experiment-

2.6, using the same training and testing datasets as well as the J48 classification method as base

inducer. The only difference was the inclusion of SVM in the aggregation method, as previously

mentioned. Table 6.13 shows the results obtained in this experiment.



6.2 Experiments using ECID 159

Table 6.13: Experiments 3.1 of ECID - Results of the inclusion of SVM in the Aggregation Method

AB C M X overall multi-label metrics

multi-label recall 92,6 99,8 91,7 93,3 94,4

multi-label precision 97,4 89,4 70,9 77,8 83,9

multi-label F-Measure 94,9 94,3 80 84,8 88,5

multi-label error 11,5 28,7 30,7 22,2 23,3

Considering class-X results, the multi-label recall increased from 86.6% to 93.3% in com-

parison of Experiment-2.6 (Table 6.10). While the multi-label precision had decreased from

98.5% to 77.8%, and the multi-label error had increased from 1% to 22.2%. The decrease of

the multi-label precision was due to the increase of the spreading of the forecasting results. The

overall multi-label recall achieved 94.4%, the overall multi-label precision 83.9%, the overall

multi-label F-Measure 88.5% and the overall multi-label error was 23.3%. Thus, all metrics

remained below the expected thresholds indicated by the domain specialist.

Table 6.14 shows the label’s distribution resulted to the new forecasting model.

Table 6.14: Percentage of multi-label result of Experiment-3.1 (Aggregation method added with
SVM)

Forecasting Result %

AB 13,0

ABC 41,4

CM 33,7

CMX 4,6

MX 7,3

The forecasting produced was distributed among the following results: AB, ABC, CM, CMX

and MX, where the majority of the results was ABC and CM (75,1%) and a few quantity of

forecasting results were AB, CMX and MX (24.9%). This result means that the use of SVM

in the aggregation method allowed to split the forecasting result, because in Phase-2 the best

results contained the majority of the predictions composed of at least three classes.

As conclusion of Experiment-3.1, the inclusion of the SVM in the aggregation method

increased the distribution of the forecasting results while kept the values of the metrics at inter-

esting levels and according to the needs of the domain specialist.

Finally, it was performed the Experiment 3.2, which analyzed the forecasting in adjacent
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classes. For this purpose, it was used the same configuration of Experiment 3.1. In Experiment

3.1, ECID produced the forecasting results for each instance of the testing dataset and the

metrics were calculated by comparing the forecasting results with the actual solar flares. The

actual solar flare of this experiment was given according to the event occurred in each instant

of the original X-ray time series used.

However, in Experiment 3.2, we aimed to analyze the behavior of ECID in adjacent classes.

Thus, it was considered the sub-levels of each main class in order to assign the adjacent classes

as the new actual solar flares in the testing dataset. For this purpose, the adjacent classes were

determined as presented in Table 6.15.

Table 6.15: Mapping Actual Class to Adjacent Classes (“New” actual class)

Actual solar flare
Adjacent Classes

(“New” actual class)

B1.0 to B6.9 B

B7.0 to B9.9 B,C

C1.0 to C6.9 C

C7.0 to C9.9 C,M

M1.0 to M6.9 M

M7.0 to M9.9 M,X

X1.0 and higher X

In summary, if a certain solar flare occurred in a sub-level of more than 7.0, it was consid-

ered that the adjacent classes belongs to that class and the immediate highest one. For example,

if a solar flare of class C7.0 occurred, the adjacent classes considered in the training dataset

was CM. Thus, we reassigned the actual classes of the testing dataset according to Table 6.15.

Now, the metrics were calculated comparing the forecasting results against the adjacent classes

(the new Actual classification. Table 6.16 shows the results obtained in Experiment-3.2.

Table 6.16: Experiments 3.2 of ECID - Results of the analysis of adjacent classes together with the
inclusion of SVM in the Aggregation Method

AB C M X overall multi-label metrics

multi-label recall 91,6 97,2 100,0 76,5 91,3

multi-label precision 100,0 96,5 95,0 98,0 97,3

multi-label F-Measure 98,2 95,5 89,1 74,0 89,2

multi-label error 4,9 1,5 0,0 3,1 2,4

We observe in Table 6.16 that the use of adjacent classes, decreased the overall multi-label

recall in comparison with Experiment 3.1 (Table 6.13), but the overall multi-label F-Measure
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remained almost similar. However, the most interesting result were a significant increase in

the overall multi-label precision, and a significant decrease in the overall multi-label error

compared to Experiment 3.1. Thus, by handling the adjacent class issue using Ensemble of

Classifiers, ECID was able to decrease the overall multi-label error.

Additionally, Table 6.17 shows that the overall aggregated multi-label recall obtained in

Experiment 3.2 was 76%, the overall aggregated multi-label precision, 72%, and the overall

aggregated multi-label F-Measure achieved 75%.

Table 6.17: Overall aggregated metrics - Experiment 3.2

Experiment 3.2

overall aggregated multi-label recall 76%

overall aggregated multi-label precision 72%

overall aggregated multi-label F-measure 75%

Hence, considering the adjacent classes, the overall aggregated recall decreased, but it still

remained in the domain specialist needs. And, the more important, the overall aggregated

precision and F-Measure increased substantially compared with Phases 1 and 2.

The results obtained in Phase-3 shows that ECID handles the forecasting in adjacent classes

in a satisfactory manner.

6.3 Overall Analysis of Experimental Results

According to Section 1.4.1, the following metrics and correspondent thresholds were set to

validate the hypothesis:

1. Minimum True Positive Rate for each class: 70%;

2. Maximum Classification Error for each class: 30%;

3. Forecast horizon: one day;

These goals were achieved by this thesis work, because:

1. The minimum multi-label recall obtained in Experiment 3.2 reached 76.5% for class X.

This result is greater than the threshold established, 70%;
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2. The maximum multi-label error were lower than 30%, reaching a maximum of 5.0% for

class AB in Experiment 3.2;

3. The forecast horizon used in all the experiments was one day as initially defined;

Comparing ECID with the main solar flare forecasting methods found in literature, it is

possible to comment that:

In literature, Solar flare forecasting methods usually aggregate more than one class as the

Positive and Negative turning it a binary classification model. Instead of this, our approach

provides the contribution to give multi-class and multi-label forecasting. Additionally, as the

astrophysicists do not fully understand the physic model that guides these phenomena, each

work considers a different set of solar features as input. Though works use datasets with differ-

ent sizes and features, we present the results for each method in Table 6.18 in order to give an

overview of the results obtained in each condition. Additionally, the comparison of our work to

the ones found in literature is difficult, because ours is the only one which provides multi-label

forecasting. Taking those facts into account, we can cite some significant works:

• In Nishizuka et al. (2017), it was developed a solar flare forecasting method that labels:

(1) classes = X as Positive, in a first experiment, and (2) classes ≥M as Positive, in the

last set of experiment;

• In Bobra e Couvidat (2015), Li e Zhu (2013), Yu et al. (2010), it was developed a solar

flare forecasting method that labels classes≥M as Positive;

• In Yuan et al. (2010), it was developed a solar flare forecasting method that labels classes≥
X as Positive according to an equation of flare importance;

• In Ahmed et al. (2013), it was developed a solar flare forecasting method that labels

classes≥C as Positive according to a machine learning method;

• In Colak e Qahwaji (2009), it was developed a solar flare forecasting method that labels

classes≥C as Positive according to a machine learning method;

Table 6.18 presents the results obtained by the Nishizuka, Bobra, Li, Ahmed, Yu, Yuan, and

Colak forecasting methods and our proposed method ECID:
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Table 6.18: Experimental results of the solar flare forecasting methods

TPR TNR ACC FPR Precision TSS F-Measure

SeMiner (>=C) 0,71 0,79 0,73 0,20 0,83 - 0,75

ECID (overall metrics) 0,91 0,96 0,95 0,04 0,97* 0,84 0,87

ECID (=X) 0,77 0,98 0,95 0,02 0,98* 0,60 0,73

Nishikawa (=X) 0,90 0,99 0,99 0,0003 0,89 0,91 0,89

Nishikawa (>=M) 0,91 0,99 0,99 0,002 0,92 0,91 0,92

Bobra (>=M) 0,71 0,98 0,97 - 0,80 0,70 0,75

Li (>=M) 0,73 0,78 0,77 - - - -

Ahmed (>=C) 0,67 0,99 0,97 0,006 - - -

Yu (>=M) 0,85 0,87 - - - - -

Yuan (= X) 0,83 0,73 0,74 - - - -

Colak (C,M,X) 0,81 - - 0.30 - - -

Colak (=X) 0,98 - - 0.97 - - -

A direct comparison was possible for SeMiner with Ahmed et al. (2013) work, because

he established, like us, the Positive class as any event greater than or equal to C. The values

informed in the table for SeMiner’s experiment is related to Test 6 of the second experiment.

The comparison of ECID was performed in a general way, because, as far as our knowledge,

it was not found any multi-label solar flare forecasting method in the literature. Then, for this

purpose, it was used the overall metrics calculated from the individual multi-label metrics.

Additionally, it was also calculated the following metrics described in Section 2.5 to comparison

purposes: accuracy, false positive rate, and TSS. The values informed in the table for ECID were

obtained in Experiment 3.2. In the other hand, it was not possible to obtain all the calculated

metrics for all the works. For example, the error like calculated in our work was not found

in any other, though we believe it is of utmost relevance. In this context, ECID was directly

compared to Colak’s work, because it predicts individual classes, while it was possible to make

a partial comparison with some of the other works, once these may individually forecast a

specific class.

As shown in Table 6.18, the first method developed in this thesis, SeMiner, achieved results

similar to AHMED et al., which also performed the forecasting of solar flares from class C and

above. The main difference is that we used only the X-ray time series in the forecasting process

unlike the compared work, which had used a set of magnetic features. Also, we used training

and testing data from different years. Differently, AHMED et al. used a random selection to

split the training and testing datasets. These randomized approaches may influence the results,

because close instances may be divided in both datasets. We achieved a TPR of 71%, while
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AHMED et al. achieved a TPR of 67%. SeMiner achieved a lower TNR.

Comparing ECID (=X) with Nishikawa (=X): ECID achieved multi-label precision and

multi-label F-Measure of 60%, 98% and 87%, respectively, close to Nishikawa’s related met-

rics. The multi-label recall (TPR) was 19% lower than Nishikawa’s.

Comparing ECID(overall metrics) with Nishikawa (≥ X): ECID results are slightly lower

than Nishikawa, but our method also predicted flares of classes AB, C and M in a multi-label

fashion, instead of Nishikawa, which performed a binary classification. Another comment re-

garding Nishikawa work is that it used cross-validation for validation. This approach, in this

domain, tends to perform a biased validation, because it usually classifies correctly due to the

separation approach of the instances in training and testing datasets.

Comparing ECID(overall metrics) with Colaq (C,M,X) : ECID achieved results of the

overall metrics very close to COLAK; QAHWAJI, but the available metrics of this work was

limited to the TNR and FPR. The main difference between ECID and his work is that our

approach implements a multi-label forecasting method, unlike theirs.

Comparing ECID(=X) with Colaq (=X) : ECID achieved results of the overall recall

(TPR) 27% lower than COLAK; QAHWAJI. However, our method achieved a multi-label

FPR for class X 77% lower than Colak’s work. It means that ECID committed much less false

alarms than compared work. Also, the main difference between ECID and his work is that our

approach implements a multi-label forecasting method, unlike theirs.

Comparing overall metrics with the other works: considering the overall recall, our work

overcomes all the others, while the overall precision is very close to the other works. The work

of BOBRA; COUVIDAT was entirely reproduced, and we found out that the authors removed

the instances classified as C in either the training and testing datasets. It was done probably

because the instances of class C confound the classifier in distinguishing the classes M and

X. Thus, removing it may result in a model that best predicts instances of classes M and X.

However, in a real forecasting method, it is not possible to remove the C instances. Thus,

we can conclude that the results of this work are particular to the training and testing dataset

employed in that method. As we divided the original dataset in 70% for training and 30% for

testing ensuring that each dataset had different days and considering all classes, our results are

more generalizable that these related works. The works of AHMED et al., YU et al. and YUAN

et al. does not implement a multi-class approach, differently from ours. Finally, the multi-label

approach implemented in ECID has the advantage to support the domain specialist in his task,

using his/her knowledge.
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Concluding, we handled the following open issues (described in Section 1.1.4) in the solar

flare forecasting problem:

1. Imbalanced dataset;

2. Differentiation of solar flares that are in adjacent classes, and multi-class/multi-label fore-

casting;

3. Data evolution;

4. Most significant time intervals to consider the data for the forecasting process;

5. Knowledge of domain specialists within the method;

Issues 1 and 2 were validated considering the results achieved in Experiment 3.2. The

experiments were tested in an actual imbalanced dataset, and the results increased as we added

adjacent classes in the analysis of the final forecasting. Another indication of our successful

handling of the imbalanced dataset is that as we can see in Figure 6.7, there was a significant

increase in the overall metrics comparing SeMiner (which does not handle the imbalanced

issue) and ECID (which deals with this issue). Additionally, the threshold established by the

domain specialist for each class was achieved according to Table 6.16.

Issues 3, 4 and 5 were validated in SeMiner experiments in Figure 6.2 and corroborated by

the insertion of SS algorithm inside ECID method. As SS foundation is based on the analysis of

the time series historical evolution, the results showed that our assumption to consider that was

correct. Also SS allowed to be configured with simple, efficient and necessary domain specialist

knowledge. This approach was also shown correct, because the most significant interval to

be considered for data gathering for the forecasting process was two days, according to the

experiments of SeMiner presented in Figure 6.4.

Thus, we believe that the proposed approach is a valid and useful contribution to the area of

solar flare forecasting, aiding the domain specialist in his/her daily task of constructing space

weather bulletins containing the solar flare predictions.
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Chapter 7
CONCLUSIONS

Nowadays, solar flare forecasting is an application domain very relevant due to the high

intensity impacts on Earth’s electronic devices. This thesis dealt with the open issues related to

the solar flare forecasting domain. For this purpose, it was also necessary to improve the state

of the art of computational approaches. As presented in Chapter 3, according to the review of

the literature, it was not found a computational method that handled all the open issues related

to solar flare forecasting.

We showed in this thesis how our method solved a series of open issues considering the

main related works. So, in order to tackle these issues, we developed two methods: SeMiner

and ECID. These issues and how they were tackled are summarized next:

1. Imbalanced dataset: this issue was tackled by ECID, which performs a random stratified

undersampling of the original dataset to produce four balanced datasets. These are sub-

mitted to an EC that builds four forecasting models, one for each solar flare class, and

returns a voting count list. This list guides a decision rule to produce the final multi-label

forecasting. It was shown in the Chapter 6 that the method produced interesting results

for each solar flare class;

2. Data evolution: this issue was handled by employing the SeMiner method through the

SS algorithm. This algorithm takes into account the historical evolution of a time series

by transforming a sub-series in sequences using a sliding-window approach. The results

obtained in SeMiner experiments were accurate in the forecasting of solar flares higher

than or equal to C. ECID also used an extension of the original SS algorithm, so that its

good results also corroborate the successful usage of the historical evolution of solar data

within the forecasting method;

3. Difficulty to distinguish adjacent classes: this issue was tackled in ECID through the
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usage of a multi-label approach. The multi-label forecasting given by ECID proved to

be a valid way to support the domain specialist to distinguish adjacent classes. Experi-

ment 3.2 of ECID shows the increase of the overall aggregated multi-label metrics when

considering the adjacent classes in the method’s analysis;

4. Incorporation of domain specialists knowledge within the method: SeMiner is a param-

eterized method. It is configured with information regarding the length of a sequence

(current window parameter of SS), the advance of the forecasting (jump parameter), and

the forecasting horizon (future window). Tests performed in SeMiner showed that the

appropriate setting of these parameters had improved the forecasting results as shown in

the second SeMiner’s experiment (Section 6.1.2).

5. Selection of the most significant period: this issue was handled in SeMiner by using a

feature selection method together with SS. This combination resulted in the selection of

the intervals that contained the most significant data used to distinguish solar flares. Fig-

ure 6.4 shows that the usage of data recorded two days before a solar flare had accurately

distinguished the events.

The first method developed (SeMiner) aimed to deal with data evolution, the inclusion of

specialist knowledge in the forecasting process and the analysis of the most significant periods

of data to be considered in the process. ECID provided a multi-class and multi-label forecasting.

It handled more than one solar feature, dealt with imbalanced datasets and handled the adjacent

classes issue.

Additionally, ECID consisted a new computational technique that provides a multi-class

and multi-label forecasting using n time series through balancing techniques and a modified

ensemble of classifier providing a computational solution for all requirements of the solar flare

forecasting domain.

Next, the most relevant contributions of our work are described.

7.1 Most relevant contributions

SeMiner deals with a crucial step in the process of forecasting solar flares by using knowl-

edge from domain specialists: the preprocessing step. Another distinguishing characteristic

compared to other forecasting methods is that the historical evolution of solar time series was

considered to produce the forecasting model. In addition, SeMiner also identifies the most sig-

nificant time intervals to be considered in the forecasting method. It was concluded that, in the
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scope of our experiments, the best time interval was within two days for current window and

comprised both, the initial and end periods of the first day, and the last 16 hours of the second

day. Finally, performance optimization was proposed and implemented for SeMiner. The core

module of SeMiner, the SS algorithm, was parallelized using CUDA, targeting parallel execu-

tion in GPUs. The strategy showed to be 4.36 times faster than its pure C sequential version. As

the experiments showed, the pre-processing spent a low time to be concluded due to the clean-

ing task performed in the original dataset. Also, the SS algorithm has complexity of order n, so

that it turns its execution scalable. Thus, the parallel implementation prepares SS to be used for

large amount of data, even though the experiments and its characteristics did not showed this

need at this moment.

ECID method provides a tool to support the specialist decision in the solar flare forecasting

task. It provides multi-class and multi-labeled forecasting. This strategy differentiates from

other forecasting methods because its results indicate the solar flare classes most probably to

occur in a forecasting horizon. This result can support the domain specialist in situations when

it is difficult to distinguish between two adjacent classes. ECID employs a stratified random

sampling for the training of base inducers, strengthen their sensitivity to one individual class.

Using a modified bootstrap approach, its aggregation method combines the inducers results

enabling multi-class and multi-label forecasting.

The SeMiner and ECID foundations provided relevant contributions for the enhancement

of the state of the art of the solar flare forecasting domain as well as it improved the state of

the art of computational approaches. Mainly, to the techniques that deals with multi-class and

multi-label forecasting through the use of time series classification with imbalanced time series.

The most relevant contributions of our work were:

• Contributions in the state of the art of solar flare forecasting methods:

– SeMiner method showed that the inclusion of data evolution and the specialist knowl-

edge and aims, instead of using snapshots of solar features in an inflexible method

proved to be a better approach in the forecasting process;

– ECID method showed that the use of ensemble of classifiers and the inclusion of

techniques to handle imbalanced datasets is a good strategy due to the high imbal-

anced dataset and the multi-label requirements of this application domain;

– Dataset construction: we assembled a flexible dataset of two solar time series of

different sample rates used in our method and, which may be used in extensions of

our work. The main advantage of this approach is that it is easily configurable due to
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the equalization strategy used. As time series are joined by equalizing their sample

rates, new time series may be easily added in the forecasting method;

– An incremental experimental evaluation of several solar features and configurations,

which gives a clue regarding the most significant features to be used and the most

significant periods of data to be considered in the forecasting process;

– Development of an optimized version of SS. The sequential version of SS algorithm

has computational complexity of O(n). Thus, parallelization techniques are not crit-

ical to its execution. However, we developed a parallel version of SS that reduces in

four times the execution time. Consequently, as solar data increases along the time,

the algorithm is prepared to run in an optimized manner.

• ECID was developed to provide a multi-class and multi-label forecasting using n time

series through balancing techniques and a modified ensemble of classifier. Consequently,

its contributions in the state of the art of computational are:

– ECID improved the current Bootstrap Aggregating method (Bagging) providing

means to the binary inducers to handle datasets with different sizes. This was possi-

ble due to the strategy used in the aggregation method of giving more voting power

to the least most voted;

– It was also designed a new efficient strategy of spreading the multi-label results by

analyzing the voting table through the SVM classifier.

7.2 Scientific Publications resulting from this thesis

During the doctoral period, three articles were published:

• Dı́scola Junior, S. L., Cecatto, J. R., Xavier Ribeiro, M., Merino Fernandes, M. (2019).

Handling imbalanced time series through Ensemble of Classifiers: a Multiclass approach

for solar flare forecasting. In 16th International Conference on Information Technology

: New Generations - Advances in Intelligent Systems & Computing Series. Las Vegas,

Nevada, USA: Springer US.

• Dı́scola Junior, S. L., Cecatto, J. R., Merino Fernandes, M., Xavier Ribeiro, M. (2018).

SeMiner: A Flexible Sequence Miner Method to Forecast Solar Time Series. Information,

9(1), 8.
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• Discola.Jr., S. L., Cecatto, J. R., Fernandes, M. M., & Ribeiro, M. X. (2017). An Opti-

mized Data Mining Method to Support Solar Flare Forecast. In 14th International Con-

ference on Information Technology : New Generations - Advances in Intelligent Systems

& Computing Series. Las Vegas,Nevada, USA: Springer US.

7.3 Future Works

The main proposal for future works are:

• Improve ECID aiming to use different solar features as input for different base inducers

in the proposed Ensemble of Classifiers;

• Improve the aggregation method of ECID to consider the information of the forecasting

day. This was a suggestion of the specialist, because according to his/her experience, solar

flare forecasting methods should also verify recent data to increase its predictability;

• Develop a functional software using ECID method to actually support the domain spe-

cialist in his/her daily work.
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