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ABSTRACT

COSCRATO, V. Neural networks as an optimization tool for regression. 2019. 62 p.
Master dissertation (Master student joint Graduate Program in Statistics DEs-UFSCar/ICMC-
USP) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo,
São Carlos – SP, 2019.

Neural networks are a tool to solve prediction problems that have gained much prominence
recently. In general, neural networks are used as a predictive method, that is, their are used
to estimate a regression function. Instead, this work presents the use of neural networks
as an optimization tool to combine existing regression estimators in order to obtain more
accurate predictions and to fit local linear models more efficiently. Several tests were
conducted to show the greater efficiency of these methods when compared to the usual
ones.

Keywords: Regression, Neural networks, Ensembles, Local regression, Optimization.





RESUMO

COSCRATO, V. Redes neurais como método de otimização para regressão. 2019.
62 p. Master dissertation (Master student joint Graduate Program in Statistics DEs-
UFSCar/ICMC-USP) – Instituto de Ciências Matemáticas e de Computação, Universidade
de São Paulo, São Carlos – SP, 2019.

Redes neurais são uma ferramenta para resolver problemas de predição que ganharam
muito destaque recentemente. Em geral, redes neurais são utilizados como um método
preditivo, ou seja, estimando uma função de regressão. Este trabalho, no entanto, apresenta
o uso de redes neurais como uma ferramenta de otimização para combinar estimadores
de regressão já existentes de modo a obter predições mais precisas e ajustar modelos
lineares locais de forma mais eficiente. Vários testes foram conduzidos para mostrar a
maior eficiência desses métodos quando comparados aos usuais.

Palavras-chave: Regressão, Redes neurais, Combinação de regressões, Regressão local,
Otimização.
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CHAPTER

1
INTRODUCTION

Neural networks are a tool to solve prediction problems that have gained much
prominence recently. Generally, in a statistical framework, neural networks are used as
a predictive method, that is, to directly estimate regression functions. However, neural
networks can also be used as optimization tools for complex loss functions. This work
shows the usage of neural networks as an optimization tool to combine existing regression
estimators in order to (i) obtain more accurate predictions and (ii) fit local linear models
more efficiently. Section 1.1 presents a brief review over neural networks, meanwhile
Section 1.2 introduces the neural networks as an optimization method and presents some
usage examples.

1.1 Neural networks
Artificial neural networks are a widespread tool in the machine learning community.

Their ability to generate good predictive models (supervised learning) for various problems
is demonstrated by several authors (DAYHOFF; DELEO, 2001; ZHANG; PATUWO; HU,
1998; KHAN et al., 2001).

An artificial neural network is so named because its structural construction is
a computational reproduction of the human nervous system, that is, an artificial neural
network is a tangle of neurons connected to each other. These neurons are divided into
different layers, being an input layer, an output layer, and intermediate or hidden layers.

The operation of an artificial neural network occurs by successive linear combi-
nations of the features inserted in the input layer, which is formed by a neuron for each
feature. Given input values xi (input layer), each neuron within each layer (intermediate or
output) calculates a weighting of the previous layer value and adds a scalar to it, that is, if
ni, j is the j-th neuron in the i-th layer (i > 1), then ni, j calculates the expression

ni, j =<hi, j,ni−1>+bi, j, (1.1.1)
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where ni−1 is the vector of neurons of the preceding layer and hi, j a vector of constants, or
weights, associated with the neuron ni, j, <a,a′>= ∑d

i=1 aia′i the euclidean inner product
and bi, j a bias parameter (intercept).

Hence, a complete layer ni (i > 1) calculate the operation

ni = Hini−1 +bi (1.1.2)

where Hi is a matrix with columns hi, j and bi = [bi, j] a column vector of bias.

There may also be, on each layer, an activation function, which is useful to deter-
mine a scale for the output value of the same. That is, say σi(.) is the activation function of
the i-th layer, then, this layer calculates,

ni = σi(Hini−1 +bi) (1.1.3)

The figure 1 schematically represents a neural network with 4 input variables, 2
output variables, 1 hidden layer with 5 neurons, and g activation function on the output
layer neurons.

x1

x2

x3

x4

gH ;1(x)

gH ;2(x)

Hidden
layer

Imput
layer

Output
layer

Figure 1 – Neural network example

The parameters related to a neural network are the set formed by the matrices Hi

and the vectors bi defined in the equation 1.1.2, denoted by H .

1.1.1 Loss function
One core element of a neural network is the loss function. fixed an neural net

architecture fH with set of parameters H , the loss (or cost) function for a given sample
(x,y) evaluate what is the cost of using fH to predict y using x. For instance, in predictive
scenarios, the quadratic loss function is widely used, its defined by,

L(x,y; fH ) = (y− fH (x))2
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The methods presented in both Chapters 2 and 3 are examples where choosing
a suitable loss function and tweaking it enable a neural network to solve miscellaneous
problems.

To fit a neural network, we assume that the loss function follows the assumption
that the loss value for a given data set D = (X ,Y ) must be written as a combination of the
separated loss for each sample (xi,yi). In the most simple case,

L(X ,Y ; fH ) =
1
n

n

∑
i=1

L(xi,yi; fH ) (1.1.4)

1.1.2 Back-propagation
To obtain optimal parameters H *, neural networks use the gradient descent method.

In this method, given a loss function L, we obtain its derivatives with respect to each of the
parameters and then slowly update the parameters to the opposite direction of the gradient.
For instance, given a loss function L(xi,yi, fh), a single parameter h from a neural network
f is updated as,

h → h−λ
∂L(xi,yi, fh)

∂h

where λ is the learning rate hyper-parameter, that controls how slowly h is updated. Hence,
estimating the gradient for given a data set D = (X ,Y ) is the first step to optimize a neural
network.

The back-propagation method, is an algorithm that uses the differentiation chain
rule to obtain the gradient layer by layer trough the network. Rojas (1996) and Nielsen
(2015) give expansive overviews and further discussions about the method, this section
presents a brief review of the latter.

Algorithm 1 shows how the back-propagation calculate the derivatives for every
parameter given an initial value H 0 for a single sample (xi,yi).

Algorithm 1 – Back-propagation
Input: A training sample (xi, yi), an architecture f (hidden layers, its sizes and activation functions),
initial parameters H 0 and a loss function L. The symbol ⊙ denotes the Hadamard product.
Output: The estimated loss gradient on H 0.

1: Feed-forward: For each layer i = 2, 3, ..., I, compute ni,
2: Output error: Compute the loss L(xi,yi, fH 0) and the vector δ I = ∇nI L⊙σ ′

I(nI),
3: Back-propagation: For each i = I-1, I-2, ..., 2, compute δ i = (Ht

i δ i+1)⊙σ ′
i (ni)

4: Output: The gradient of L is ∂L
∂Hi( j,k) = ni−1(k)δ i( j) and ∂L

∂bi( j) = δ i(k)

As long as the loss function respects equation 1.1.4, then, given a data set D =

(X ,Y ) with n samples, for a parameter h, it follows the relationship,
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∂L(x,y, fh)

∂h
=

1
n

n

∑
i=1

∂L(xi,yi, fh)

∂h
(1.1.5)

Equation 1.1.5 provides a way to update parameters using a batch of data rather
then a single sample. In practice, a data set is split into several mini-batches and this
method is used to update the parameters using each of these mini-batches. For instance, a
parameter h is update using a batch (x1,y1),(x2,y2), ...,(xb,yb) as,

h → h− λ
b

b

∑
i=1

∂L(xi,yi, fh)

∂h

After using every mini-batch, these are resampled and another training epoch
occurs until a stop criteria (for instance, a desired loss on a test set) is achieved.

1.1.3 Further improvements
As a neural network is a highly parameterized model, over-fitting is a common

feature (TETKO; LIVINGSTONE; LUIK, 1995). Hence, some additional optimization
tools might me used to prevent it.

Hinton et al. (2012) suggests the dropout method, which consists of substituting
neuron values by 0 on the feed-forward phase of the back-propagation algorithm with some
probability p. This method encourages the network to find new paths along its architecture,
not relying too much on a specific group of neurons.

Batch normalization, suggested by Ioffe and Szegedy (2015) is another way of
dealing with over-fitting, it suggests normalizing layers to have mean zero and unitary
variance. This should at the same time reduce training speed and prevent over-fitting, as it
works as a type of regularization method. This might also be used together with dropout.

Choosing a suitable initial value for the network parameters is also an improvement
that increase training speed meanwhile guarantee that the gradient decent do not get stuck
in a local minimum nor saddle points. Glorot and Bengio (2010) propose an initialization
method.

Using other optimization algorithms rather then the gradient decent is also possible
and reasonable in some cases. Some of these algorithms, such as the Adam optimizer
(KINGMA; BA, 2014) differ from gradient decent by applying a variable learning rate.

1.2 Neural networks as an optimization tool
Neural networks have their more frequent usage in predictive scenarios, that is,

when the goal is estimating the regression function E[Y |x]. There exists, although, various
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cases where neural networks are used to solve miscellaneous optimization problems. The
difference between both usages consists mostly replacing the usual output layer Y with
another set of desired values.

On reinforcement learning (KAELBLING; LITTMAN; MOORE, 1996), for exam-
ple, there is a limited set of possible actions that can be taken at a certain time t and some
information about this time. A neural network is then used to estimate the probabilities of
taking each action, in other words, a transition matrix. This neural network is designed to
maximize efficiency of the taken actions, the concept of how good an taken action was is
controlled by a suitable loss function.

Another example is the word2vec (GOLDBERG; LEVY, 2014) framework, which
is a neural network interface to natural language representation. In this case we estimate
the probability of each context to be associated to an input word using a neural network.
The neural network is used to maximize the likelihood function for the pairs word-context
in the training data. The most useful part of such technique is the hidden layer of the neural
network, such layer values for a given word is a latent vector representation of the word.

Chapters 2 and 3 will propose two other methods that uses neural networks as
an optimization tool, the NN-Stacking and the NLS. In both cases, the final objective is
estimating a regression function with a predetermined shape; the neural networks are then
used to optimize the parameters of models with these given shape.
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CHAPTER

2
NN-STACKING

2.1 Stacking regression estimators
The standard procedures for model selection in prediction problems is cross-

validation and data splitting. However, such an approach is known to be sub-optimal
(DŽEROSKI; ŽENKO, 2004; DIETTERICH, 2000; SILL et al., 2009). The reason is that
one might achieve more accurate predictions by combining different regression estimators
rather then by selecting the best one. Stacking methods (ZHOU, 2012) are a way of
overcoming such a drawback from standard model selection.

A well known stacking method was introduced by Breiman (1996). This approach
consists in taking a linear combination of base regression estimators. That is, the stacked
regression has the shape ∑k

i=1 θigi(x), where gi’s are the individual regression estimators
(such as random forests, linear regression or support vector regression), θi are weights that
are estimated from data and x represents the features.

Even though this linear stacking method leads to combined estimators that are easy
to interpret, it may be sub-optimal in cases where models have different local accuracy, i.e.,
situations where the performance of these estimators vary over the feature space. Example
2.1.1 illustrates this situation.

Example 2.1.1. Consider predicting Y based on a single feature, x, using the data in Figure
2. We fit two least squares estimators: g1(x) = θ01 +θ11x and g2(x) = θ02 +θ12x2. None
of the models is uniformly better; for example, the linear fit has better performance when
x ≤−5, but the quadratic fit yields better performance for x ∈ (−2.5,2.5). One may take
this into account when creating the stacked estimator by assigning different weights for
each regression according to x: while one can assign a larger weight to the linear fit on the
regime x ≤−5, a lower weight should be assigned to it if x ∈ (−2.5,2.5).

It is well known that different regression methods may perform better on different
regions of the feature space. For instance, because local estimators do not suffer from
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Figure 2 – Regressions comparison. While for some regions of x the linear fit outperforms the
quadratic fit, in other regions the opposite happens.

boundary effects, they achieve good performance closer to the edges of the feature space
(FAN; GIJBELS, 1992). Random forests, on the other hand, implicitly perform feature
selection, and thus may have better performance in regions where some features are not
relevant (BREIMAN, 2001).

In this work we improve Breiman’s approach so that it can take local accuracy into
account. That is, we develop a meta-learner that is able to learn which models have higher
importance on each region of the feature space. We achieve this goal by allowing each
parameter θi to vary as a function of the features x. In this way, the meta-learner can adapt
to each region of the feature space, which yields higher predictive power. Our approach
keeps the local interpretability of the linear stacking model.

The remaining of the Chapter is organized as follows. Section 2.2 introduces
the notation used in the paper, as well as our method. Section 2.3 shows details on its
implementation. Section 2.4 shows applications of our method to a variety of datasets to
evaluate its performance. Section 4.2.1 summarizes the main results and proposes further
researches.

2.2 Notation and Motivation
The stacking method proposed by Breiman (1996) is a linear combination of k

regression functions for a label Y ∈ R. More precisely, let gx = (g1(x),g2(x), . . . ,gk(x))′

be a vector of regression estimators, that is, gi(x) is an estimate of E[Y |x],∀ i = 1,2, . . . ,k.
The linear stacked regression is defined as

Gθ (x) :=
k

∑
i=1

θigi(x) = θ ′gx (2.2.1)
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where θ = (θ1,θ2, . . . ,θk)
′ are meta-parameters. One way to estimate the meta-parameters

using data (x1,y1), . . . ,(xn,yn) is through the least squares method, computed using a
leave-one-out setup:

argmin
θ

n

∑
i=1

(yi −G(−i)
θ (xi))

2 = argmin
θ

n

∑
i=1

(yi −θ ′g(−i)
xi )2, (2.2.2)

where g(−i)
j (xi) is the prediction for xi made by the j-th regression fitted without the i-th

instance. Note that it is important to use this hold-out approach because if the base re-
gression functions g1(x),g2(x), . . . ,gk(x) are constructed using the same data as θ1, . . . ,θk,
this can cause Gθ (x) to over-fit the training data.

In order for the stacked estimator to be easier to interpret, Breiman (1996) also
requires θi’s to be weights, that is θi ≥ 0∀ i = 1,2, . . . ,k and that ∑k

i=1 θi = 1.

Even though Breiman’s solution works on a variety of settings, it does not take into
account that each regression method may perform better in distinct regions of the feature
space. In order to overcome this limitation, we propose the Neural Network Stacking (NNS)
which generalizes Breiman’s approach by allowing θ on Equation 2.2.1 to vary with x.
That is, our meta-learner has the shape

Gθ (x) :=
k

∑
i=1

θi(x)gi(x) = θ ′
xgx, (2.2.3)

where θx := (θ1(x),θ2(x), . . . ,θk(x))′. In other words, the NNS is a local linear meta-
learner. Example 2.2.1 shows that NNS can substantially decrease the prediction error of
Breiman’s approach.

Example 2.2.1. We fit both Breiman’s linear meta-learner and our NNS local linear
meta-learner to the models fitted in Example 2.1.1. Figure 3 shows that Breiman’s meta-
learner is not able to fit the true regression satisfactorily because both estimators have poor
performance on specific regions of the data. On the other hand, feature-varying weights
yield a better fit.

2.3 Methodology
Our goal is to find θx = (θ1(x), . . . ,θk(x))′, θi : X −→R, that minimizes the mean

squared risk,

R(Gθ ) = E
�
(Y −Gθ (X))2

�
,

where Gθ (x) is defined as in Equation in 2.2.3.

We estimate θx via an artificial neural network. This network takes x as input and
produces an output θx, which is then used to obtain Gθ (x). To estimate the weights of
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Figure 3 – Meta-learners fits for Example 2.1.1. While Breiman’s meta-learner is not able to fit the
true regression satisfactorily, feature varying weights yield better fit.

the networks, we introduce an appropriate loss function that captures the goal of having a
small R(Gθ ). This is done by using the loss function

1
n

n

∑
k=1

(Gθ (xk)− yk)
2.

Notice that the base regression estimators are used only when evaluating the loss function;
they are not the inputs of the network. With this approach, we allow each θi(x) to be a
complex function of the data. We call this method Unconstrained Neural Network Stacking

(UNNS). Figure 4 illustrates a UNNS that stacks 2 base estimators in a regression problem
with four features.

x1

x2

x3

x4

θ1(x)

θ2(x)

Hidden
layer

Input
layer

Output
layer

Figure 4 – Example of a UNNS neural network.

In addition to the linear stacking, this approach allows the user to easily take
advantage of the neural network architecture by directly adding a network output node,
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φ(x), to the stacking. That is, we also consider a variation of UNNS which takes the shape

G′
θ (x) = θ ′

xgx +φ(x).

This has some similarity to adding a single neural network estimator to the stacking.
However, we use the same architecture to create the additional term, mitigating computation
time. Algorithm 2 shows how this method is implemented. In order to avoid over-fitting,
θi’s and gi’s are estimated using different folds of the training set.

Algorithm 2 – UNNS
Input: Estimation algorithms g = (g1,g2, . . . ,gk)

′, a dataset D = (X ,Y ) with n instances (rows), a
neural network N, features to predict X (p), the amount of folds F .
Output: Predicted values y(p).

1: Let I = {Io : o ∈ {1,2, ...,F}} be a random F-fold partition of the dataset instances, let
I(X) refer to a partition of features and I(Y ) refer to a partition of the response variable,
both being partitioned on the same indices (i.e.: Io(i) = (I(X)

o (i), I(Y )o (i)) for every
o ∈ {1,2, ...,F}} and every i ∈ {1,2, ...,n}}), with the partition of indices {1,2, ...,n}
represented by I(l).

2: Let P be a (n,k) matrix.
3: For o ∈ {1,2, ...,F} and j ∈ {1,2, ...,k}, fit g j to D∖Io, then use the fitted model to

predict I(X)
o and store these predicted values on P (in column j and lines corresponding

to I(l)o )).
4: Let {g( f )

1 ,g( f )
2 , ...,g( f )

k } be the models g fitted using the whole dataset D.
5: Train the neural network N with each input instance i given by a row of X ; with θ(Xi) =

(θ1(Xi),θ2(Xi), ...,θk(Xi)) and a scalar φ(Xi) as outputs; and with loss function given
by (∑k

j=1 θ j(Xi)Pi j +φ(Xi)− yi)
2 (note: the additional scalar φ is optional, i.e.: it can

be set to zero).
6: For each instance i of X (p), the corresponding predicted value Y (p)

i is then given
by ∑k

j=1 θ j(X
(p)
i )g( f )

j (X (p)
i )+φ(X (p)

i ) where θ(X (p)
i ) and φ(X (p)

i ) are outputs of the

neural network (i.e.: N(X (p)
i )).

In order to achieve an interpretable stacked solution, we follow Breiman’s sugges-
tion and consider a second approach to estimate θi’s which consists in minimizing R(Gθ )

under the constrain that θi’s are weights, that is, θi(x) ≥ 0 and ∑k
i=1 θi(x) = 1. Unfortu-

nately, it is challenging to directly impose this restriction to the solution of the neural
network. Instead, we use a different parametrization of the problem, which is motivated by
Theorem 2.3.1.

Theorem 2.3.1. The solution of

argmin
θx

R(Gθ )

under the constrain that θi(x)≥ 0 and ∑k
i=1 θi(x) = 1 is given by

θx =
M−1

x e
e′M−1

x e
, (2.3.1)
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where e is a k-dimensional vector of ones and

Mx = [E
�
(Y −gi(x))(Y −g j(x))

��X = x]i j]

= E[Y 2|x]−E[Y |x](gi(x)−g j(x)))+gi(x)g j(x).

with (i, j) ∈ {1, ...,k}2.

Proof. Notice that
R(Gθ ) = E

�
E
�
(Y −Gθ (X))2

���X]
�
.

Hence, in order to minimize R(Gθ ), it suffices to minimize E
�
(Y −Gθ (x))2

���X = x] for

each x ∈ X . Now, once ∑k
i=1 θi(x) = 1, it follows that,

E
�
(Y −Gθ (x))2 |X = x

�
= E



�

k

∑
i=1

θi(x)(Y −gi(x))

�2

|X = x




= ∑
i, j

θi(x)θ j(x)E
�
(Y −gi(x))(Y −g j(x))|X = x

�

= θ t
xMxθx,

where θx = (θ1(x), . . . ,θk(x))′. Using Lagrange multipliers, the optimal weights can by
found by minimizing

f (θx,λ ) := θ t
xMxθx −λ (etθx −1). (2.3.2)

Now,
∂ f (θx,x)

∂θx
= 2Mxθx −λe,

and therefore the optimal solution satisfies θ *
x = λ

2M
−1
x e. Substituting this on Equation

2.3.2 , obtain that

f (θ *
x ,λ ) =−λ 2

4
etM−1

x e+λ ,

and hence
∂ f (θ *

x ,λ )
∂λ

= 0 ⇐⇒ λ =
2

etM−1
x e

,

which yields the optimal solution

θ *
x =

λ
2
M−1

x e =
2

etM−1
x e

1
2
M−1

x e =
M−1

x e
etM−1

x e
.

Theorem 2.3.1 shows that, under the given constrains, θ(x) is uniquely defined
by M−1

x . Now, because Mx is a covariance matrix, then M−1
x is positive definite, and thus

Cholesky decomposition can be applied to it. It follows that M−1
x = LxL′

x, where Lx is a
lower triangular matrix. This suggests that we estimate θx by first estimating Lx and then
plugging the estimate back into Equation 2.3.1. That is, in order to obtain a good estimator
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under the above mentioned restrictions, the output of the network is set to be Lx rather
than the weights themselves1. We name this method Constrained Neural Network Stacking

(CNNS). Figure 5 illustrates a CNNS that stacks 2 base regressors (that is, Lx = [li j] is a
2x2 triangular matrix) in a 4 feature regression problem.

x1

x2

x3

x4

l1,1

l1,2

l2,2

Hidden
layer

Input
layer

Output
layer

Figure 5 – Example of the CNNS neural network.

Algorithm 3 shows the implementation of this method. As with UNNS, we also
explore a variation which adds an extra network output φ(x) to Gθ .

Algorithm 3 – CNNS
Input: Estimation algorithms g = (g1,g2, . . . ,gk)

′, a dataset D = (X ,Y ) with n instances (rows), a
neural network N, features to predict X (p), the amount of folds F .
Output: Predicted values y(p).

1: Follow steps 1 to 4 from algorithm 2.
2: Train the neural network N with each input instance i given by a row of X ; with a

lower triangular matrix LXi and a scalar φ(Xi) as outputs; and with loss function given

by (∑k
j=1 θ j(Xi)Pi j + φ(Xi)− yi)

2, where M−1 = LXiL
′
Xi

; θ(Xi) =
M−1

x e
e′M−1

x e
and e is a

k-dimensional vector of ones (note: the additional scalar φ is optional, i.e.: it can be
set to zero).

3: The predicted value Y (p) is calculated analogously to Algorithm 2.

Figure 6 illustrates the full training process. For simplicity, the neural network
early stopping patience criterion is set to a single epoch and the additional parameter φx is
not used.

2.3.1 Comparison with standard stacking methods

Most stacking methods create a meta-regression model by applying a regression
method directly on the outputs of individual predictions. In particular, a meta-regression
method can be a neural network. Such procedure differs from NN-Stacking by the shape
1 Since the gradients for all matrix operations are implemented for Pytorch tensor classes, the

additional operations of the CNNS method will be automatically backpropagated once Pytorch’s
backward method is called on the loss evaluation.
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Figure 6 – Full NN-Stacking training process.

of both the input and of the output of the network. While standard stacking uses base
regression estimates (gx) as input and Y as output, NN-Stacking uses the features as input
and either the weights θx (for UNSS) or Lx (for CNSS) as outputs. The base regression
estimates are used only on the loss function. Thus, the NN-Stacking method leads to more
interpretable models. Section 2.4 compares these methods in terms of their predictive
power. We also point out that our approach has some similarity to Sill et al. (2009), which
allows each θi to depend on meta-features computed from x using a specific parametric
form. Neural networks, on the other hand, provide a richer family of functions to model
such dependencies (in fact, they are universal approximators; Csáji (2001)).
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2.3.2 Selecting base regressors

Consider the extreme case where gi(x) = g j(x)∀x ∈ X for some i ̸= j, that
is, the case in which two base regressors generate the same prediction over all feature
space. Now, suppose that one fits a NNS (either CNNS or UNNS) for this case. Then
θigi(x)+θ jg j(x) = (θi +θ j)gi(x). Thus, one of the regressions can be dropped from the
stacking with no loss in predictive power.

In practice, our experiments (Section 2.4) show that regression estimators that have
strongly correlated results do not contribute to the meta-learner. This suggests that one
should choose base regressors with considerably distinct nature.

2.3.3 Implementation details

A Python package that implements the methods proposed in this paper is avail-
able at <github.com/randommm/nnstacking>. The scripts for the experiments in Section
2.4 are availiable at <github.com/vcoscrato/NNStacking>. We work with the following
specifications for the artificial neural networks:

∙ Optimizer: we use the Adam algorithm (KINGMA; BA, 2014) and decrease its
learning rate after the validation loss stops improving for a user-defined number of
epochs.

∙ Initialization: we use the Xavier Gaussian method proposed by Glorot and Bengio
(2010) to sample the initial parameters of the neural network.

∙ Layer activation and regularization: we use ELU (CLEVERT; UNTERTHINER;
HOCHREITER, 2015) as the activation function, and do not use regularization.

∙ Normalization: we use batch normalization (IOFFE; SZEGEDY, 2015) to speed-up
the training process.

∙ Stopping criterion: in order to address the risk of having strong over-fit on the
neural networks, we worked with a 90%/10% split early stopping for small datasets
and a higher split factor for larger datasets (increasing the proportion of training
instances) and a patience of 10 epochs without improvement on the validation set.

∙ Dropout: We use dropout (with a rate of 50%) to address the problem of over-fitting
(HINTON et al., 2012).

∙ Software: we use PyTorch (PASZKE et al., 2017).

∙ Architecture: as default values we use a 3 layer depth network with hidden layer
size set to 100; these values have been experimentally found to be suitable in our
experiments (Section 2.4).
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2.4 Experiments
We compare stacking methods for the following UCI datasets:

∙ The GPU kernel performance dataset (241600 instances, 13 features) (NUGTEREN;
CODREANU, 2015),

∙ The music year prediction dataset (DHEERU; TANISKIDOU, 2017) (515345 in-
stances and 90 features),

∙ The blog feedback dataset (BUZA, 2014) (60021 instances, 280 features),

∙ The superconductivity dataset (HAMIDIEH, 2018) (21263 instances, 80 features).

First, we fit the following regression estimators (that will be stacked):

∙ Three linear models: with L1, L2, and no penalization (FRIEDMAN; HASTIE;
TIBSHIRANI, 2001),

∙ Two tree based models: bagging and random forests (FRIEDMAN; HASTIE; TIB-
SHIRANI, 2001),

∙ A gradient boosting method (GBR) (MEIR; RÄTSCH, 2003).

The tuning parameters of these estimators are chosen by cross-validation using scikit-learn
(PEDREGOSA et al., 2011).

Using these base estimators, we then fit four variations of NNS (both CNNS and
UNNS with and without the additional φx) using the following specifications:

∙ Tuning: Four different architectures were tested for each neural network approach.
The layer size was fixed at 100 and the number of hidden layers were set to 1, 3, 5
and 10. We choose the architecture with the lowest validation mean-squared error in
the test data.

∙ Train/validation/test split: for all datasets, we use 75% of the instances to fit the
models, among which 10% are used for performing early stop. The remaining 25%
of the instances are used as a test set to compare the performance of the various
models. The train/test split is performed at random. The cross-validated predictions
(the matrix P denoted on Algorithm 2) are obtained using a 10-fold cross-validation
on the training data (i.e., F = 10).

∙ Total fitting time: we compute the total fitting time (in seconds; including the time
for cross-validating the network architecture) of each method on two cores of an
AMD Ryzen 7 1800X processor running at 3.6Gz with 32GB ram.
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We compare our methods with Breiman’s linear stacking and the usual neural
net stacking model described in Section 2.3.1. In addition to these, we also include a
comparison with a direct neural network that has x as its input and Y as its output.

The comparisons are made by evaluating the mean squared error (MSE, n−1 ∑n
i=1(yi−

g(xi))
2) and the mean absolute error (MAE, n−1 ∑n

i=1 |yi −g(xi)|) of each model g on a
test set. We also compute the standard error for each of these metrics, which enables one
to compute confidence intervals for the errors of each method.

2.4.1 GPU kernel performance dataset

Table 1 shows the results that were obtained for the GPU kernel performance
dataset. Our UNNS methods outperforms both Breiman’s stacking and the usual meta-
regression stacking approaches in terms of MSE. Moreover, the UNNS model is also the
best one in terms of MAE, even though the gap between the models is lower in this case.
Our stacking methods also perform better than all base estimators. This suggests that each
base model performs better on a distinct region of the feature space.

Figure 7 shows a boxplot with the distribution of the fitted θi’s for UNNS. Many
fitted values fall out of the range [0,1], which explains why UNNS gives better results than
Breiman’s and CNNS (which have the restriction that θi’s must be proper weights).

Table 2 shows the correlation between the prediction errors for base estimators.
The linear estimators had an almost perfect pairwise correlation, which indicates that
removing up to 2 of them from the stacking would not affect predictions. Indeed, after
refitting UNNS without using ridge regression and lasso, we obtain exactly the same
results. We also refit the best UNNS removing all of the linear estimators to check if poor
performing estimators are making stacking results worse. In this setting, we obtain an
MSE of 11074.13(±227.57), and a MAE of 45.76(±0.39). Note that although the point
estimates of the errors are lower than those obtained in Table 1, the confidence intervals
have an intersection, which leads to the conclusion that the poor performance of linear
estimators is not damaging the stacked estimator.

2.4.2 Music year dataset

Table 3 shows the accuracy metrics results for the music year dataset. In this
case, the CNNS gave the best results, both in terms of MSE and MAE. For this dataset,
Breiman’s stacking was worse than using gradient boosting, one of the base regressors.
The same happens with the usual meta-regression neural network approach. On the other
hand, NNS could find a representation that combines the already powerful GBR estimator
with less powerful ones in a way that leverages their individual performance.

All base estimators had high prediction error correlations (Table 4). In particular,
two of the linear estimators could be removed from the stacking without affecting its



40 Chapter 2. NN-Stacking

Type Model (Best architecture) MSE MAE Total fit time

Stacked
estimators

UNNS + φx (3 layers) 11400.43 (± 250.03) 45.91 (± 0.39) 3604
CNNS + φx (3 layers) 19371.98 (± 429.96) 53.09 (± 0.52) 3531
UNNS (3 layers) 11335.85 (± 241.94) 45.85 (± 0.39) 3540
CNNS (3 layers) 18748.66 (± 424.5) 51.65 (± 0.52) 3387
Breiman’s stacking 30829.11 (± 717.13) 62.41 (± 0.67) 63
Meta-regression neural net (10 layers) 24186.4 (± 545.52) 58.79 (± 0.59) 85

Direct
estimator Direct neural net (10 layers) 14595.98 (± 307.11) 52.3 (± 0.44) 380

Base
estimators

Least squares 79999.09 (± 1504.75) 176.41 (± 0.9) -
Lasso 80091.85 (± 1526.05) 175.5 (± 0.9) -
Ridge 79999.05 (± 1504.76) 176.41 (± 0.9) -
Bagging 31136.93 (± 737.47) 62.35 (± 0.67) -
Random forest 30923.64 (± 727.99) 62.2 (± 0.67) -
Gradient boosting 32043.23 (± 676.1) 90.51 (± 0.63) -

Table 1 – Evaluation of model accuracy metrics for the GPU kernel performance dataset.

Models Least squares Lasso Ridge Bagging Random forest Gradient boosting
Least squares 1.00 1.00 1.00 0.39 0.39 0.80

Lasso 1.00 1.00 1.00 0.39 0.39 0.80
Ridge 1.00 1.00 1.00 0.39 0.39 0.80

Bagging 0.39 0.39 0.39 1.00 0.98 0.62
Random forest 0.39 0.39 0.39 0.98 1.00 0.62

Gradient boosting 0.80 0.80 0.80 0.62 0.62 1.00
Table 2 – Pearson correlation between base estimators prediction errors for the GPU kernel perfor-

mance dataset.
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Figure 7 – Weight distribution for the GPU kernel performance dataset.

performance. However, when removing all three linear estimators the MSE for the best
NNS increased to 83.92(±0.57) and its MAE increased to 6.44(±0.02).

Figure 8 shows that the fitted NNS weights have a large dispersion. This illustrates
the flexibility added by our method. Models with very distinctive nature (e.g., ridge regres-
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sion - which imposes a linear shape on the regression function, and random forests - which
is fully non-parametric) can add to each other, getting weights of different magnitudes
depending on the region of the feature space that the new instance lies on.

Type Model (Best architecture) MSE MAE Total fit time

Stacked
estimators

UNNS + φx (10 layers) 92.37 (± 7.18) 6.53 (± 0.02) 9432
CNNS + φx (3 layers) 83.05 (± 0.57) 6.38 (± 0.02) 8851
UNNS (10 layers) 95.35 (± 1.81) 7.45 (± 0.02) 12087
CNNS (3 layers) 82.99 (± 0.57) 6.38 (± 0.02) 11466
Breiman’s stacking 87.66 (± 0.57) 6.61 (± 0.02) 3090
Meta-regression neural net (1 layer) 87.64 (± 0.59) 6.61 (± 0.02) 571

Direct
estimator Direct neural net (1 layer) 1596.2 (± 10.88) 29.83 (± 0.07) 2341

Base
estimators

Least squares 92.03 (± 0.62) 6.82 (± 0.02) -
Lasso 92.61 (± 0.62) 6.87 (± 0.02) -
Ridge 92.03 (± 0.62) 6.82 (± 0.02) -
Bagging 92.83 (± 0.59) 6.84 (± 0.02) -
Random forest 92.6 (± 0.59) 6.83 (± 0.02) -
Gradient boosting 87.49 (± 0.6) 6.58 (± 0.02) -

Table 3 – Evaluation of the model accuracy metrics for the music year dataset.

Models Least squares Lasso Ridge Bagging Random forest Gradient boosting
Least squares 1.00 1.00 1.00 0.87 0.87 0.95

Lasso 1.00 1.00 1.00 0.88 0.88 0.96
Ridge 1.00 1.00 1.00 0.87 0.87 0.95

Bagging 0.87 0.88 0.87 1.00 0.89 0.91
Random forest 0.87 0.88 0.87 0.89 1.00 0.91

Gradient boosting 0.95 0.96 0.95 0.91 0.91 1.00
Table 4 – Pearson correlation between base estimators prediction errors for the music year dataset.
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Figure 8 – Weight distribution for the music year dataset.
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2.4.3 Blog feedback dataset

Table 5 shows the results for the blog feedback dataset. All stacked estimators had
similar performance in terms of MSE. However, UNNS had slightly worse performance
with respect to MAE. This may happen because the NNS is designed to minimize the MSE
and not the MAE. Overall, for this small dataset, the NNS shows no improvement over
Breiman’s stacking or the usual meta-regression neural network.

GBR had the lowest MSE for the base estimators, while bagging and random
forests had the lowest MAE. This explains why these models have larger fitted weights
(Figure 9). Moreover, the linear models prediction errors had an almost perfect error
correlation (Table 6). This suggests that removing up to 2 of them from the NNS would not
impact its performance. Also, the linear estimators has a poor performance when compared
to the other base regressors. We thus refit the best NNS for this data after removing these
estimators, and achieve an MSE of 531.88 (±62.67) and a MAE of 5.31 (±0.20). We
conclude that the linear estimators did not damage nor improved the NNS.

Type Model (Best architecture) MSE MAE Total fit time

Stacked
estimators

UNNS + φx (10 layers) 542.02 (± 62.65) 5.89 (± 0.2) 420
CNNS + φx (1 layer) 548.99 (± 63.9) 5.44 (± 0.2) 404
UNNS (10 layers) 557.95 (± 61.51) 6.38 (± 0.2) 447
CNNS (3 layers) 540.68 (± 63.87) 5.44 (± 0.2) 433
Breiman’s stacking 593.74 (± 73.19) 5.41 (± 0.21) 202
Meta-regression neural net (3 layers) 537.66 (± 63.31) 5.53 (± 0.2) 44

Direct
estimator Direct neural net (3 layers) 676.79 (± 81.0) 7.52 (± 0.22) 63

Base
estimators

Least squares 878.88 (± 109.42) 9.56 (± 0.25) -
Lasso 877.11 (± 108.11) 9.04 (± 0.25) -
Ridge 877.92 (± 109.47) 9.53 (± 0.25) -
Bagging 619.04 (± 88.49) 5.27 (± 0.21) -
Random forest 585.22 (± 64.88) 5.37 (± 0.21) -
Gradient boosting 557.28 (± 63.88) 5.75 (± 0.2) -

Table 5 – Evaluation of model accuracy metrics for the blog feedback dataset.

Models Least squares Lasso Ridge Bagging Random forest Gradient boosting
Least squares 1.00 0.99 1.00 0.68 0.70 0.81

Lasso 0.99 1.00 0.99 0.68 0.69 0.81
Ridge 1.00 0.99 1.00 0.68 0.70 0.81

Bagging 0.68 0.68 0.68 1.00 0.92 0.89
Random forest 0.70 0.69 0.70 0.92 1.00 0.90

Gradient boosting 0.81 0.81 0.81 0.89 0.90 1.00
Table 6 – Pearson correlation between base estimators prediction errors for the blog feedback

dataset.

2.4.4 Superconductivity dataset

The results for the superconductivity dataset (Table 7) were similar to those ob-
tained for the blog feedback data: the NNS methods perform slightly better than Breiman’s
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Figure 9 – Weight distribution for the blog feedback dataset.

in terms of MSE, and worse in terms of MAE. Moreover, both tree-based models had the
best MSE among base estimators, competing with the GBR in terms of MAE. Hence, they
got larger fitted weights (Figure 10).

Table 8 shows that GBR did not have a high correlation error to the tree-based
estimators (0.72 in both cases). This is another reason why although having higher MSE,
the GBR has high fitted weight for some instances. One can also note that bagging and
random forest had an almost perfect error correlation. This implies that removing one of
them would lead to no changes in the NNS. Finally, removing the linear models did not
change the MSE and the MAE for the stacking methods.

Type Model (Best architecture) MSE MAE Total fit time

Stacked
estimators

UNNS + φx (10 layers) 98.97 (± 4.67) 5.71 (± 0.11) 334
CNNS + φx (1 layer) 98.79 (± 4.67) 5.65 (± 0.11) 325
UNNS (10 layers) 98.62 (± 4.77) 5.64 (± 0.11) 344
CNNS (3 layers) 98.60 (± 4.75) 5.60 (± 0.11) 335
Breiman’s stacking 99.79 (± 4.95) 5.48 (± 0.11) 48
Meta-regression neural net (1 layer) 99.05 (± 4.78) 5.60 (± 0.11) 24

Direct
estimator Direct neural net (3 layers) 274.93 (± 7.20) 7.20 (± 0.16) 62

Base
estimators

Least squares 308.65 (± 13.41) 7.12 (± 0.16) -
Lasso 475.6 (± 17.08) 9.41 (± 0.19) -
Ridge 309.17 (± 13.42) 7.17 (± 0.16) -
Bagging 105.14 (± 5.68) 5.02 (± 0.12) -
Random forest 103.02 (± 5.59) 5.08 (± 0.12) -
Gradient boosting 161.48 (± 8.74) 5.05 (± 0.13) -

Table 7 – Evaluation of model accuracy metrics for the superconductivity dataset.
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Models Least squares Lasso Ridge Bagging Random forest Gradient boosting
Least squares 1.00 0.80 1.00 0.52 0.51 0.78

Lasso 0.80 1.00 0.80 0.45 0.44 0.67
Ridge 1.00 0.80 1.00 0.52 0.51 0.78

Bagging 0.52 0.45 0.52 1.00 0.91 0.72
Random forest 0.51 0.44 0.51 0.91 1.00 0.72

Gradient boosting 0.78 0.67 0.78 0.72 0.72 1.00
Table 8 – Pearson correlation between base estimators prediction errors for the superconductivity

dataset.
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Figure 10 – Weight distribution for the superconductivity dataset.
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3
NLS

Machine learning applications are often focused on maximizing prediction ac-
curacy, leading practitioners to choose highly complex regression estimators (VACH;
ROßNER; SCHUMACHER, 1996). In this scenario, neural networks have recently gained
much prominence in regression applications due to its high predictive accuracy and its
scalability to large datasets.

However, in many applications, accuracy is only one of the features that must be
considered when choosing which prediction method to use. Another relevant aspect is the
easiness in interpreting the outputs of a method at hand. The ability to explain predictions
made by a method is important to give insights about the decision making learned by
the model; that can increase the trust practitioners have over the ML model (DOSHI-
VELEZ; KIM, 2017). For this aim, many different approaches have been proposed (e.g.
Hechtlinger (2016) and references therein), these model interpretation techniques are far
from consensual.

One solution to such issue is using model agnostic interpreters, such as LIME
(RIBEIRO; SINGH; GUESTRIN, 2016). LIME uses a kernel smoother to fit a local
linear approximation to a (possibly complex) regression function around the instance to
be explained. By looking at the coefficients of this approximation, it is then possible to
explain why such prediction was made.

LIME and related methods work on demand. That is, every time a new instance,
x*, needs to be explained, a local linear estimator is fit on a neighborhood around x*. This
can be too slow to be applied in practice. Moreover, several nontrivial choices on how to
define the neighborhood around x* and how sample from it need to be made (BOTARI;
IZBICKI; CARVALHO, 2019). Thus, this two-step approach of first learning the network
and then explaining it is not practical.

In this work we introduce the Neuro Local Smoother (NLS), a one-step approach
to fit a neural network that yields predictions that are easy to be explained. The key idea of
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the method is to combine the architecture of the network with a local linear output. We
show that NLS maintains the high predictive accuracy of the neural networks while being,
by default, highly interpretable, with no need for using external model interpreters.

3.1 The NLS
Consider a set of data instances (X1,Y1), . . . ,(Xn,Yn), where Xi ∈ Rd are features

and Yi ∈R is the label to be predicted. The Neural Local Smoother learns a neural network
that ensures a local linear shape to the prediction function. In order to do so, this neural
network has input x(dx1) and output Θ(x) = (θ0,θ1(x), . . . ,θd(x)). An example of a NLS
network containing 4 features and a single hidden layer with 4 neurons is shown in Figure
11. In order to obtain the predictions, these outputs are then combined according to

GΘ(x) := θ0 +
d

∑
i=1

θi(x)xi. (3.1.1)

The prediction function of Equation 3.1.1 is easy to interpret because it is locally linear.
Thus, given a new instance x*, one can interpret the prediction made to x* by looking at
the coefficients θi(x*) in a similar way as done in LIME.

Consider a fixed architecture of a neural network that maps x ∈ Rd into Θ(x) ∈
Rd+1. Let Γ be the set of all possible values for the parameters (weights) associated to that
network. Each γ ∈ Γ is then associate to a different choice of Θ(x). In order to learn the
weights of the network, the NLS uses a squares loss function over a given training dataset
(x1,y1), . . . ,(xn,yn), that is,

γ* = argmin
γ∈Γ

n

∑
i=1

�
(yi −GΘ(xi))

2� (3.1.2)

As long as the architecture of the network is sufficiently complex, any regression
function can be represented by Equation 3.1.1. This is shown in the following theorem:

Theorem 3.1.1. Let r(x) := E[Y |x] be the true regression function and let ε > 0. Assume
that the domain of the feature space is [0,1]d . If r(x) is continuous, then there exists an
architecture and weights for NLS such that |r(x)−GΘ(x)|< ε for every x ∈ (0,1)d .

Proof. Because h(x) := r(x)
x1

is also continuous, it follows from the universal representation
theorem (CYBENKO, 1989) that there exists a neural network with output N(x) such that

|h(x)−N(x)|< ε

for every x ∈ (0,1)d .
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Now, let θ1(x) = N(x), θ0 = 0, and θi(x)≡ 0 for every i > 1, and thus GΘ(x) =
θ1(x)x1. Because 0 < x1 < 1, it follows that

|r(x)−GΘ(x)|= |r(x)−N(x)x1|≤ |r(x)
x1

−N(x)|= |h(x)−N(x)|< ε,

which concludes the proof.

1
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x2

x3

x4

1
θ0(x)

θ1(x)

θ2(x)

θ3(x)

θ4(x)

Hidden
layer

Input
layer

Output
layer

Figure 11 – Example of a NLS neural network.

Theorem 3.1.1 implies that, for a complex enough architecture, an NLS can fully
represent any neural network regression. Furthermore, fox a fixed index i ∈ 1, ...,d, a NLS
with θ j(x)≡ 0∀ j ̸= i can still fully represent any neural network regression. Hence, there
are infinite choices of Θ(x), and thus infinite possible NLS adjusts, that leads to the same
predictions. In other words, the solution of Equation 3.1.2 is not unique. There might be,
therefore, a variety of γ settings leading to similar predictive errors.

As NLS is a local linear method, θi(x*) can be locally interpreted as a linear
coefficient. Ribeiro, Singh and Guestrin (2018) argue that practitioners tend to extend
local interpretation to new samples, which can lead to poor inference as θi(x) varies. Thus,
ideally, θi(x) should vary smoothly with x. Therefore, we define an alternative loss function
that penalizes non-smooth solutions. We choose γ as follows:

γ* = argmin
γ∈Γ

n

∑
i=1

�
(yi −Gγ(xi))

2 +λ ∑
k,l≥0

�
∂θk(x)
∂x(l)

���
x=xi

�2
�

(3.1.3)

where λ is the penalization strength. These penalization guarantees that the optimization
algorithm pursuits γ settings in which Θ variation is smoother, leading to more accurate
inferences to new samples when interpretations are extended.

Equation 3.1.3 defines a global interpretability-accuracy trade-off. If λ = 0, Θ(x)
can vary freely, which is typically lead to predictive models with better accuracy. As
λ −→ ∞, we recover a plain least squares linear regression (i.e., constant θi’s), which is
highly interpretable, but has low prediction power in most cases. Notice that high values of
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λ encourage simpler NLS, which tend to increase model bias while decreasing its variance.
Thus, accuracy may also increase with λ .

The approach of introducing a penalty that encourages explainability in prediction
methods has also been proposed by Plumb et al. (2019) in a general framework. In our
case, we choose a regularizer that is particularly suitable to a neural network because it is
easy to compute. This is because the derivatives in Equation 3.1.3 come straight up from
the back-propagation algorithm on the network fit.

Example 3.1.2 presents a toy experiment to show the interpretability-accuracy
trade-off in practice.

Example 3.1.2. In this example, we use a NLS to fit the function y = sin(x) in the interval
[0,2π]. For this, we sampled 2.000 points in this interval and adjusted the NLS for λ
varying in [0,2] using 80% of the points (randomly selected). For the remaining 20%, we
obtained the MSE and the average squared gradient (in this case, as x in uni-dimensional,
this is the cumulative squared derivative) as function of λ . Figure 12 illustrates the obtained
results.

Remark 1. This penalized approach has some similarity to ridge regression (HOERL;

KENNARD, 1970) and lasso (TIBSHIRANI, 1996). On ridge regresison, penalization

encourages search for shrinked solutions, while on lasso, penalization leads to shrinked

and sparse solutions. Here, the penalty addition leads to Θ(x) estimates that are are better

extensible for new samples.

Remark 2. This penalty design leads to a globally smoother choice of θ . There is no

guarantee, however, of higher smoothness on any specific regions of the feature space.

3.1.1 Implementation details

The Python package that implements the methods proposed in this paper is available
at <github.com/randommm/nnlocallinear>. We work with the following specifications for
the artificial neural networks:

∙ Optimizer: we choose to work with the Adam optimizer (KINGMA; BA, 2014) and
decrease its learning rate once no improvement can is seem on the validation loss for
a considerable number of epochs.

∙ Initialization: to initialize the network weights, we used a method of initialization
proposed by Glorot and Bengio (2010).

∙ Layer activation and regularization: we chose ELU (CLEVERT; UNTERTHINER;
HOCHREITER, 2015) as the activation function and no regularization.
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Figure 12 – Top-left: MSE as function of the penalization strength λ . Notice that adding penal-
ization decreases the NLS accuracy, as proposed by the trade-off. Top-right: Average
squared gradient as function of λ . It can be seen that higher penalization values lead to
smoother estimates for θ . Center and Bottom: True regression, NLS adjusts and fitted
θ1(x) for λ = 0,1. While the non-penalized NLS yields better fit, the penalized version
provides a smoother adjust.

∙ Stop criterion: a 90%/10% split early stopping for small datasets and a higher split
factor for larger datasets (increasing the proportion of training instances) and a
patience of 50 epochs without improvement on the validation set.

∙ Normalization: batch normalization, as proposed by Ioffe and Szegedy (2015), is
used in this work in order to speed-up the training process.

∙ Dropout: in this work we also took advantage of dropout which is a technique
proposed by Hinton et al. (2012).

∙ Software: we have PyTorch as the deep learning framework of choice.
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3.1.2 Connection to local linear estimators
Local linear smoothing (LLS) methods (FAN; GIJBELS, 1992; FAN, 1992; FAN,

2018) have shown to be a powerful tool for performing non-parametric regression in several
applications (RUAN; FESSLER; BALTER, 2007; MCMILLEN, 2004). Their prediction
function has the shape

GΘ(x) := θ0(x)+
d

∑
i=1

θi(x)xi, (3.1.4)

that is, LLS also consist in a local linear expression for the regression function. However,
rather then estimating the parameters θi using neural networks, for each new instance x*,
Θ(x*) = (θ0(x*), . . . ,θd(x*)) is estimated using weighted least squares:

Θ̂(x) = argmin
θ∈Rd+1

n

∑
i=1

K(x,xi)(Yi −θ0 −
d

∑
i=1

θixi)
2, (3.1.5)

where K is a smoothing kernel function. The solution to such minimization problem is
given by

Θ̂(x*) = (XTWX)−1XTWy, (3.1.6)

where W = diag(K(x*,x1),K(x*,x2), ...,K(x*,xn)).

Local linear smoothers hold good interpretability properties by default. On the
other hand, the LLS calculates pairwise kernels for each new sample, leading to higher
calculation effort and memory requirement as training data grows. Also, a new least squares
optimization is required for each new sample. Therefore, local smoothers might be slow to
generate predictions on high dimensional applications. This is not the case for NLS: once
the network is learned, evaluating the prediction on new instances only requires a single
feed-forward run though the network.

Moreover, local smoothers have an interpretability concern on θ0. On linear models,
this parameters stands for E[Y |x = 0], but when θ0(x) is a function of x, there is not a
practical meaning for such parameter. This is why we fix θ0 on the NLS. The same idea is
not directly applicable to local linear estimators due to the multiple optimizations. In this
case, some preliminary method to select the fixed value would be needed.

As the kernel controls each training instance weight to generate predictions to a new
one, choosing a suitable kernel is important. Ali and Smith-Miles (2006), Khemchandani,
Chandra et al. (2009), Argyriou et al. (2006), Hastie, Loader et al. (1993) discuss about
kernel usage and algorithms to choose a suitable kernel. These methods rely on some
algorithm usage to obtain such kernel. In practice, a family of kernel functions is defined,
such as a Gaussian kernel, that is,

K(xi,x j) = exp
�
−d2(xi,x j)

σ2

�
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where d(·, ·) is the euclidean distance and σ a variance parameter that defines how much
euclidean proximity impact the kernel weights. With such family, a cross-validation
procedure is conduced to choose σ . Unfortunately, choosing a suitable kernel can be slow,
once obtaining cross validation predictions is an exhausting process.

Remark 3. When using a Gaussian kernel on a local linear smoother, the σ kernel hyper-

parameter has some relation to our proposed λ on NLS: when σ −→ ∞, the weighting is

constant among all sample space, and hence, a plain least squares linear regression is

recovered. As σ gets smaller, the local linear parameters can vary more.

Notice that the Gaussian kernel (and so as the most used kernels) does not perform
a weighting over data features, that is, every feature is equally relevant to the kernel value.
In practice, features do not have the same predictive relevance, hence, an optimal sample
weighting procedure should consider feature predictive relevance. The NLS approach
defines a local linear estimator that is not dependent on a kernel. Moreover, the universal
approximation theorem (HORNIK, 1991) guarantees that any continuous function can
be approximated by a complex enough feed forward neural network. In particular, a LLS
is a set of continuous functions θ0(x),θ1(x), . . . ,θd(x). Hence, the NLS can represent a
local smoother determined by any kernel function. Also, as the neural net has x as input,
the network architecture automatically allows feature selection. Example 3.1.3 shows a
simulated example to illustrate this.

Example 3.1.3. Consider the regression model E(Y |x) = g(x) = x2. From this model we
sample 2000 instances with x ∈ [−5,5]. Within this data, we fit NLS (with an architecture
of 3 layers of size 500) and a LLS (with a Gaussian kernel, using cross-validation to choose
σ ). We also add irrelevant features (that is, features that are independent of the label) to
the data and refit the models. Figure 13 illustrates the features relationship with Y . Table 9
shows each model mean squared error on a 20% holdout sample. One can notice that NLS
suffers small impact from the irrelevant feature addition, contrary to LLS.

Model
Irrelevant features

0 5 50

NLS 8.64 8.83 13.89
LLS 8.61 473.27 632.83

Table 9 – Models mean scored errors across different irrelevant features number addition. While
LLS is heavily affected by irrelevant features due to the issues they cause on sample
weighting, NLS does suffer as much.

3.2 Experiments
The NLS is a prediction method that fits a local smoother through neural networks.

Therefore, we want to ensure that it gives good predictive accuracy when compared to
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Figure 13 – Relevant and irrelevant features relationship with Y . Notice that the difference in the
irrelevant features on different instances does not provide any information about Y .
However, a typical kernel is affected in the same way by all features, relevant or
irrelevant.

both standard neural network regression and LLS. In this section, we perform comparisons
among these models along with random forests (BREIMAN, 2001). We use the following
datasets:

∙ The Boston housing dataset (JR; RUBINFELD, 1978) (506 instances, 13 features),

∙ The superconductivity dataset (HAMIDIEH, 2018) (21.263 instances, 80 features),

∙ The blog feedback dataset (BUZA, 2014) (60.021 instances, 280 features),

∙ The Amazon fine foods dataset (MCAULEY; LESKOVEC, 2013) (100.000 instances,
textual data).

For each dataset, we used 80% of the instances to train the models, and the
remaining 20% to validate and calculate final model accuracy metrics (for the neural
network methods, the early stopping validation set is a 10% part of the training set). We
defined validation grid search through the MSE to each technique as follows:

∙ For the NLS and the neural network regression (NN), we tested using 1, 3, and 5
layers, with sizes 100, 300 and 500 (9 combinations). We used no penalization for
the NLS (λ = 0),

∙ For the LLS we used a Gaussian kernel and variate the kernel variation parameter in
{0.1,1,10,100,1000},

∙ For the random forests (RF), we used the Scikit-learn (PEDREGOSA et al., 2011)
implementation and varied the number of estimators in {10,50,100}.
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For the final models obtained, we calculated the MSE, the MAE and both metrics
standard deviations. Also, we evaluated the fitting time (in seconds) from every technique
(including the cross-validation). These experiments were run on a AMD Ryzen 7 1800X
CPU running at 3.6Gz. Table 10 shows the obtained results.

Data Model MSE MAE Fitting time

Boston housing

NLS 6.03 (± 1.00) 1.83 (± 0.16) 514
LLS 8.14 (± 1.48) 2.05 (± 0.20) 0.20
NN 8.01 (± 1.86) 1.98 (± 0.20) 386
RF 8.44 (± 1.76) 1.99 (± 0.21) 0.31

Superconductivity

NLS 98.25 (± 5.76) 6.00 (± 0.12) 10794
LLS 173.54 (± 7.40) 8.36 (± 0.16) 1082
NN 279.03 (± 178.09) 12.81 (± 0.28) 2198
RF 84.45 (± 5.15) 5.11 (± 0.12) 109

Blog feedback

NLS 271.23 (± 40.72) 4.98 (± 0.16) 14025
LLS 840.80 (± 118.83) 7.10 (± 0.27) 38784
NN 273.81 (± 47.67) 4.87 (± 0.17) 3622
RF 256.35 (± 36.42) 3.34 (± 0.15) 215

Amazon fine foods

NLS 1.07 (± 0.02) 0.69 (± 0.01) 38754
LLS 1.14 (± 0.02) 0.78 (± 0.01) 121371
NN 1.06 (± 0.01) 0.72 (± 0.01) 6185
RF 1.10 (± 0.02) 0.70 (± 0.01) 601

Table 10 – MSE, MAE and their standard errors for the test set and the fitting times for each
dataset. Notice that NLS and the neural network regression have similar predictive
accuracy in 2 out of 4 datasets. NLS was more accurate in the Boston housing and the
superconductivity data. Also, for every dataset, the results obtained by NLS are similar
to the random forests and superior to LLS. The fitting time of NLS is high (especially
on high dimensional data), being only overtaken by LLS in the bigger datasets.

It can be noticed that NLS either outperforms or draws against the LLS and NN
in all of the datasets. When compared to random forests, NLS was the best in 2 out of
4 datasets. As the NLS is estimated through neural networks, one can expect that its
performance is poor on small training sets, the Boston housing data, although, did not
confirm such expectation and showed that NLS can perform good fit for small data. NLS
and NN fit are similar due to the neural network usage, although, the NLS imposes a more
complex output structure to the network, which led to bigger fitting time.

3.2.1 Sample size effect

The Amazon fine foods dataset is a large dataset (> 500.000 instances). In our
example, we randomly sampled 100000 instances due to memory lack to fit LLS. We
now use the Amazon fine foods dataset to check how the sample size affects both the
quality and the fitting time of the models used in our experiments. For this, we selected
different size samples from 1.000 to 100.000 from the data. For each data sample, we
performed the same experiment described earlier in this section. Figure 14 shows the best
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test mean squared error for each method and each sample size and total fit (including
cross-validation) time and prediction time for each sample size.

1 2.5 5 10 25 50 100

Sample size (×103)

1.00

1.25

1.50

1.75

2.00

2.25
M
S
E

NLS

NN

LLS

RF

1 2.5 5 10 25 50 100

Sample size (×103)

0

25000

50000

75000

100000

125000

F
it
ti
n
g
ti
m
e

Figure 14 – Top: Models predictive accuracy over different sample sizes for the Amazon fine foods
dataset. Notice that NLS performance increases in comparison to the others as the
sample size grows. Bottom: Models fitting time for different sample sizes. Notice that
while bigger samples massively increase the fitting time for the LLS, the NLS suffers
lower impact. Both methods are slow when compared to neural network regression and
random forests.

3.2.2 NLS interpretation
In machine learning, there are controversial ideas about what is a good prediction

explanation (DOSHI-VELEZ; KIM, 2017). Among these, Ribeiro, Singh and Guestrin
(2018) suggests that good explanations are the ones who allows human users to reproduce
the regression function predictions for new samples with high accuracy, after analyzing
a set of given predictions and their explanations. In this section we show how higher
penalization λ allows users to reproduce NLS predictions. We use the Boston housing
dataset as example.

In practice, to have a high interpretable NLS that still holds good predictive perfor-
mance, we successively increase λ and check how validation MSE varies. To reduce fitting
time, for each λ step, we initialize the network with the fitted weights for the immediate
last value. We start with the NLS fitted in Section 3.2 and refit it for λ value in [1,∞].
Figure 15 illustrates obtained MSE and average squared gradient for both training and
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testing sets (as defined in Section 3.2). The figure illustrates the accuracy-interpretability
trade-off occurs for the training data. On the other hand, in the test set, there is no big loss
on increasing penalization factor λ in the interval [0,50]. Moreover, the fit with λ = 5 lead
to the best test MSE values (3.61). An explanation for this fact is that the penalization
controls Θ(x) variation and thus control over-fitting over the training data.

0 1 5 10 25 50 100 250 500 1000 ∞
λ

5

10

15

20

25

M
S
E

Test data

Train data

0 1 5 10 25 50 100 250 500 1000 ∞
λ

0.0

0.1

0.2

0.3

0.4

A
ve
ra
ge

sq
u
ar
ed

gr
ad
ie
n
t Test data

Train data

Figure 15 – MSE and average squared gradients for both training and test datasets. Higher penal-
ization values leads to smoother Θ(x) estimates but higher train MSE.

As λ increases, we want to guarantee that NLS interpretations get more accurate
in the sense proposed by Ribeiro, Singh and Guestrin (2018). To ensure that, we guarantee
that, given seeing a set of predicted instances and theirs explanations, a naive algorithm
could reproduce NLS predictions with increasingly accuracy as a function of λ . To test this
statement, we propose using a set of given predictions and their explanations - for different
values of λ - to obtain predictions for unseen instances though a 1 nearest neighbor
approach. Algorithm 4 describe the procedure for fixed λ .
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To ensure that extended predictions though interpretations are accurate, such
predictions need to be compared with the ones given by the NLS. That is, we want to
have low |extended_pred(xe

i )− true_pred(xe
i )| in average. We split the test set (3/4 as

prediction instances and the remaining as extension instances) and replicate Algorithm 4
for λ value in [2,∞] and obtained such averages. Figure 16 illustrates the obtained results.
We conclude that the penalization strength λ indeed defines an accuracy-interpretability
trade-off.
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Figure 16 – Average extension error as function of the penalization strength. Notice that higher
penalization values leads to more accurate prediction extensions.
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CHAPTER

4
FINAL

4.1 Relationship between the NN-Stacking and the
NLS

Chapter 2 described an stacking based regression estimator that linearly combine
base regression estimators using non-static coefficients. Furthermore, in a UNNS, when
the base estimators are the original features, that is gi(x) = xi and the additional parameter
φ(x) is used, we have,

Gθ (x) = θ ′
xgx +φ(x) = θ ′

xx+φ(x). (4.1.1)

Hence, if we consider φ(x) = θ0, this setup leads to a NLS adjustment. Although this result
has no practical application, it demonstrates that these methods are straightly related.

4.2 Final Remarks and future work

4.2.1 NN-Stacking
NN-Stacking is a stacking tool with good predictive power that keeps the simplicity

in interpretation of Breiman’s method. The key idea of the method is to take advantage of
the fact that distinct base models often perform better at different regions of the feature
space, and thus it allows the weight associated to each model to vary with x.

Our experiments show that both CNNS and UNNS can be suitable in different
settings: in cases where the base estimators do not capture the complexity from the whole
data, the freedom adopted by UNNS can lead to a larger improvement in performance. On
the other hand, when base estimators already have high performance, UNNS the CNNS
have similar predictive power, but the restrictions imposed by CNNS guarantee a more
interpretable solution. Both CNNS and UNNS have comparable computational cost.
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In our experiments, we observe that NNS improves over standard stacking ap-
proaches especially on large datasets. This can be explained by the fact that NNS methods
have a higher complexity (i.e., larger number of parameters) than the other approaches.
Thus, a larger sample size is needed to satisfactorily estimate them. The experiments also
show that including weak regression methods (such as linear methods) might decrease the
errors of NNS. In a few cases, however, adding such weak regressors slightly increases the
prediction errors of the stacked estimators This suggests that adding a penalization to the
loss function that encourages θi’s to be zero may lead to improved results.

Future work includes extending these ideas to classification problems, as well as
developing a leave-one-out version based on super learners (LAAN; POLLEY; HUBBARD,
2007). Also, we desire to develop a method of regularization on population moments
estimation to avoid over-fitting, as well as to study asymptotic properties for the estimator
of Lx.

4.2.2 NLS
The NLS is a regression technique that applies a local linear shape to a neural net-

work. While the NLS keeps the representation properties of the usual predictive networks,
it allows users to make accurate interpretations with no need of a dedicated interpreter.
NLS presents some advantages when compared to local linear smoothers as they are more
consistent to irrelevant features and generate predictions faster.

We plan to further extend NLS to classification problems. Also, we plan to create
experiments that directly compare interpretations given by NLS with those made by LIME.
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