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RESUMO

Primeiro, apresentamos o conceito bésico de superficies minimas e desenvolvemos

alguns resultados na teoria geral de superficies minimas.

Na segunda parte, estamos interessados na abordagem Min-Max Simon-Smith para
provar a existéncia de superficies minimas em 3-variedades riemannianas compactas
(COLDING; DE LELLIS, 2003). Isso é feito usando o conceito de varifolds, que € estu-
dado em Teoria Geométrica da Medida.

Na terceira parte, consideramos superficies minimas min-max em 3-variedades e prova-
mos alguns resultados de rigidez sob a hipotese de curvaturas escalar e de Ricci posi-
tivas (MARQUES; NEVES, 2012). Uma ferramenta importante aqui € o chamado fluxo
de Ricci.
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1 MINIMAL SURFACES

1.1 FIRST VARIATION FORMULA

Let (M, g) be a riemannian 3-manifold and > C M a compact surface possibly with
boundary (all we do in this section can be easily adapted to a submanifold ¥* of a
manifold M™). Consider (z1,x2) local coordinates on ¥ given by a parametrization

x : U — Y and let

g 0 o
gij(x):g(%,%>,f0r1§z,j§2
i j

be the components of g|y. Since the matrix ¢;;(x) is symmetric, positive definite and
non-degenerated, we have det g;;(x) > Oforallz € U. We define the areaof R = x(U)

R:/dE::// det g;;(x) dxydzs,
R ; LV j() drydr

where [ [ dxydz, is just the Riemann integral on R?. Using the change of variables the-
orem, one can show that the area of R is well-defined, i.e. it does not depend on the

as

parametrization « : U — R. Then, covering X by parametrizations and using a parti-

tion of unity in the usual way, we can define the area of X:

5| :/dz.
b

This defines the area of > even if it is not orientable. If 3 is orientable, we can also look
to d¥ = y/det g;;(z) as a differentiable 2-form on ..

A (smooth) variation of ¥ is a smooth map F' : ¥ X (—¢,¢) — M such that each F; :=
F(t,-) : ¥ — M is an embedding and Fy(z) = Idy : ¥ — X.

A

Figure 1

We denote ¥; = F;(X) and we are interested in the derivative of the function f(t) =
|2;|. Of course, we are considering the case in which |¥X| < 400 (and hence |%;| <

+00).
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DEFINITION 1.1 (DIVERGENCE). Let X be an arbitrary vector field on¥ C M (not nec-
essarily tangent). We define the divergence as

2

divy X(p) = Y _9(Ve X, e;) (1.1)

i=1

where{ey, e2} is an orthonormal basis for T,¥. and V is the Levi-Civita connection with
respect to the riemannian metric g.

THEOREM 1.2 (FIRST VARIATION FORMULA ]).

d (oF
kb _/Zt divs, (E) ix, (1.2)

Proof. Letx : U — ¥ be a parametrization of R = (U). Thenx, :== F,ox : U — %,
is a parametrization of R; = F;(R). We have

Rl = [[ \factgi (o) dordoe
o) o)

() — o2 ) - o _
where g;;(7) = g(a—%, 5.r) and 5.7 are the coordinate vectors of ;. Thus 57 = (£« 55

and we use the notation 0, F; for it. Note that

0
g det g; = tr(gt_latgt) det gy,

where g; ' = (g;') = (g};)". Then

0 ii
N det gr = izj(gt] athj) det g.

We can compute 0,g;; using the compatibility of V with the metric g
atgfj = 09(0iFy, 0;Fy) = g(Vo,r0iFy, 0;Fy) + g(0iFy, Vo, r0; Fy).

Now, since [0, F, 0;F;] = 0, by symmetry we have V,r0;F; = Vg, 50, F. Putting this
together, we have

0 y
5 det g, =2 Z 97 9(Vo,r,0.F, 0, F;) det g,

/L"j
We can change the coordinates on U such that, at the point x € U, {0, F;, 0 F'} is an

orthonormal basis of Tk, (,)%;. In this coordinate system, at the point z, (g;;) = (97) =
I. Thus

8 2
5 detgr =2 21 9(Vo,r,0,F, 0, F))

F
= QdiVEt (aa—t) det gt.
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Therefore, we have

d 0 ) oF
7 Ry = 5 //U det gfj dxidze = //U divy, (E) det gfj dxydzs
oF
= di — | dX.
/Rt ( ot ) t

We cover X by parametrizations and take a partition of unity subordinated to the col-
lection of their open domains. Using F; : > — 3}, this yields a partition of unity of >,
which is essentially “the same”, i.e. it does not depend on ¢: if ¢ is a function from the
partition, then p(F'(z,t)) = ¢(x). Then, summing up everything gives

d _ oF
%|Zt| = /Zt leZt <§) dZt

]

We want to study surfaces that are critical points for area. We need to to introduce a

important geometric concept.

DEFINITION 1.3. Foreachp € %, define the second fundamental form of > C M as
B(X,Y) =VxY — (VxY)" = (VxY)",

where X, Y are vector fields tangent to >.. B is a symmetric tensor. If {e1, ey} is an or-
thonormal basis for T,%, define the mean curvature vector as

2
H=trB=Y (Vee)".

=1
LEMMA 1.4. divy X = divy X7 — g(XV, H).

Proof. Write X in its tangent and normal components X = X7 + X, We have
2
divy X = divyg X7 + Zg(VGiXN, €i).
i=1
Since X* is normal and e; is tangent to %,
0= eig(XNv ei) = g(veiXNv ei) + g(XNa veiei)-
Thus,
2
divy X = divg X7 =) " g(XN, V) = divg X7 = g(XV,) " Ve
i=1 i=1
2

= divy X7 — g(XN,) "(Ve,e)Y) = dive X7 — g(XN, H).

=1
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For the first variation formula II, we will use the divergence theorem on 3.

THEOREM 1.5 (DIVERGENCE THEOREM). Supposed: C M is compact possibly with bound-
ary. If X is a vector field tangent to 3, v € T, is the outward unit vector field normal
to 0% and do is the length element of 0%, then

/dngXdZ:/ g9(X,v)do.
o

ox.
If0¥ = @, then the integral is zero.

THEOREM 1.6 (FIRST VARIATION FORMULA II).

—

d oF oF
— 2 = - —, H,;)dX —— :
== oG Byass [ oG mdo

In particular, if X = %—f vanishes on 0% att = 0, then

d

dt

=0 =- [ gtx.faz.
¥

t=0
Proof. We just need to apply Lemma 1.4 and the Divergence Theorem to the first vari-
ation formula I:

d OF oF” oFN

—|2] = divy, — d¥; = divy, — d¥; — — L Hy)d¥

dt| ¢ /Et Vs, It t /Et Vs, It t /Ztg( ot t) d¥y

—

OF oF
— —/Et g(E,Ht) dzt + /aZt g(g,l/t) dUt.

]

This formula leads to an important corollary and definition of the main object of our
study.

COROLLARY 1.7. 15| = 0 forany X = 0 with X = 0 on 8% ifand only if H = 0.

i
dt lt=0
DEFINITION 1.8. X C M is said to be a minimal surface if]—.7 =0.

REMARK 1.9. 1. Definition 1.8 makes sense even if Y. has infinite area.

2. Supposef[ # 0 somewhere in the interior of X-. Take a positive function f : > — R
withf = 0ondX and f > 0 inthe same point of Y. in which H # 0. Then X = fﬁ
is zero on O and &| S| = — [ o(fH, H)dS = — [, fg(H, H)dS < 0. This
shows that |Y;| decreases when we vary 3. by the mean curvature vector field.

3. Consider that X = %—F 0 onOM art = 0. Decompose X = XV + X7 in its

t =
normal and tangent components. By the first variation formula II,

d MA:—/axﬁmz:—/mxﬁﬁngaﬁﬁmxz—/mx%ﬁmz
0 b)) by >

dt

Thus % ‘ 0 || depends only on the normal component of the vector field along ¥
given by X = %—f. So instead of working with variations given in the form F' :
(—€,6) x ¥ — M with %—f(o, -) = 0 on 0¥ we can work simply with the normal
vectors fields on > with X = 0 on the boundary.
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1.2 EXAMPLES

ExaMPLE 1.10 (GEODESICS). Let us look to smooth regular curves 7 : I — M instead

of surfaces. We have ¢(V ./ L:,L:) = 7—:9(7—:,7—:) — 21 = 0. Therefore H =
w1l [v'] [v']

17l
! / . . . . . .
(V ﬁ)N =V o . Thus v is a geodesic if and only if H = 0, i.e. geodesics can be
Il 1
seen as minimal “surfaces” of dimension 1.

ExAMPLE 1.11 (MINIMAL SURFACES IN R?). We consider the case of minimal surfaces
given by the graph of a smooth function v : Q — R, where Q2 C R?. Since every surface
in R? is locally the graph of a smooth function on one of its three coordinated planes,
there is no loss of generality in doing so. Let ¢ : {2 — graph(u) be the parametrization
given by p(z) = (x,u(x)). Use the notation

dp (0 Ou .
o (a—a—) =he

The Euclidean metric of R? restricted to graph(u) is given by

Odp Oy ou Ou
i — ., 1< <2,
i3 = (8% axj) % + Ox; Ox; 6

where §;; = 1ifi = jand 9,; = 0ifi # j. We have

det( ) 1+% 14_@2 _ %% 2—14_%24_%2
Jij 8x1 8[)32 0m1 81‘2 N 8[)31 8952

=1+ |Vul”.

Thus,
|graph(u)| = / V1+|Vul?dz.
Q

Consider variations of graph(u) given by functions v; = u + tv, for any fixed function
v : 2 — Rwith v = 0 on 0f). By integration by parts we have

Vu
14+ |V(u+tv 2d:v:/ Vv, ———— ) dx
i
Vu
Ule2 d;v—l—/ V( ———,v ) do
R( 1—|—|Vu|2> B <\/1—|—|Vu|2 >

UleRz dz,
V14 [Vul? |Vu\2

since v = 0 on 0. Therefore graph(u) is a minimal surface if and only if u satisfies

d d
il h —
i, |graph (uy)| |,

Vu
divpe | ———=1] =0. (1.3)
. <\/1 + |Vu]2>

This is the minimal surface equation. It is equivalent to the second order elliptic quasi-
linear p.d.e given by

2
@uaju .

1,j=1
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We now present some basic examples of minimal surfaces in R3:

e The plane: {(x,y,2) € R® : 2 = 0}.

* The catenoid: {(z,y,2) € R® : 2% + y? = cosh z}. It is a bograph obtained by
the revolution of the curve y = cosh z over the z-axis.

Figure 2 — The catenoid and the helicoid

e The helicoid: (u,v) + (ucoswv,usinv,v). This is a multigraph over R*\{0} for
the function arctan(y/x).

* The Scherk’s surface: graph(u), where u(z,y) = log (2‘;:;) forz,y € (=3, 5).
Scherk’s surface is a doubly periodic minimal surface.

Figure 3 — Scherk’s surface

These are important examples when we try to classify the minimal surfaces in R®. For
example, we have
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THEOREM 1.12 (MEEKS AND ROSENBERG, 2005). The only complete embedded simply
connected minimal surfaces in R? are the plane and the helicoid.

1.3 THE MAXIMUM PRINCIPLE

Let @ C R" be a domain and L : C*(Q2) — C>(2) be a second order differential

operator

Lo(x) = Z a;;(x)0;0;0(x) + Zb + c(x)v(z), x €L,
ij=1
where a;; = aj;, b; and ¢ are smooth functions on 2. We say L is elliptic if (a;;(x));; is

positive definite, for all z € Q). This is equivalent to say that

0 < Ax)[¢f* < Zam )6i&; < A(@)[E]?, VEER", z€Q

7,0=1

where A\(z) and A(z) are the minimum and maximum eigenvalues of (a;;(x));; re-
spectively. Note that if A > 0 on (2, then L is elliptic. If there is \; > 0 such that
0 < XN < M) forallz € ), we say L is strictly elliptic. In addition, if A(x)/A(z)
is bounded on (2, then L is called uniformly elliptic. Now we introduce the strong

maximum principle for uniformly elliptic operators.

THEOREM 1.13 (STRONG MAXIMUM PRINCIPLE). Let L be uniformly elliptic, c = 0 and
Lv > 0(<0) inadomain() (not necessarily bounded). Then ifv achieves its maximum
(minimum) in the interior of (2, v is a constant.

Proof. This is Theorem 3.5 from (GILBARG; TRUDINGER, 2001) O]

The next proposition shows that if u;, us : 2 — R are solutions for the minimal sur-
face equation, then their difference v = uy — u; is a solution for an uniformly elliptic

equation, in a divergent form.

PROPOSITION 1.14. 0.2Letuy,us : {2 — R be solutions for the minimal surface equa-
tion on the compact domain Q) C R?. Then thereisamap A : Q — Myyo(R) and there
is a number 1 > 0 such that

1. the eigenvalues of A(x) satisfies0 < p < A\i(z) < Ag(z) < i

2. v = uy — wy isasolution to div(A(x)Vv(x)) = 0.

,forallx € );

Proof. Define F' : R?* — R? as F(z) = e Then div(F(Vu)) = 0is just the
minimal surface equation. By the fundamental theorem of calculus and the chain rule,
we get

F(Vug) — F(Vuy) = /0 c;i (Vuy +tV(ug — uy)) dt
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1
/ AFu, 149 (ug—ur) - V(U2 — uy) dt
0

1
= (/ dFVul-l—tV(uQ—ul) dt) : V(UQ - u1>.
0

Thus if we define )
A([E) - / dFVu1(x)+th(:c) dt
0

we have div(AVv) = div(F(Vuy) — F(Vug)) = div(F(Vug)) — div(F(Vuy)) = 0.

Now, we show that A = A(z) is positive definite for all z € €, i.e. (w, Aw) > 0, for all
w € R?\{0}. Before we prove this, let w € R? with |[w| = 1 and y € R?. We have

d d (y + tw)
dF,-w = — F tw) = —
y "W dt - (y+ w) dt —o (1 + |y+tw|2)1/2

Cw(l Jy + tw)? = (y + tw) (14 [y + tw])T22{y + tw, w)

2
1+ [y + tw] o
_ w _ (yw)y
I+ w2 A+ [yl
By Cauchy-Schwarz we have (y, w)? < |y|*|w|* = |y|*>. Then
1 {y, w)* 1 lyl?
w, dF,w) = — > —
o, dF) A+ @+ [yl = A+ P2 1+ [y?)Y?
1 2 |yl? 1
I el S0

T+l A+ )2

This shows the matrix dF), is positive definite, for all y € R2. Thus, Ais a weighted
average of positive definite matrices and hence it is also positive definite. Therefore A
has positive eigenvalues.

Now, if {e}, e5} is the canonical basis for R?, we also have

o . 0ij (y, €i)(y, €;)
aij = (e;; dFye;) = (1+ [y[2)1/2 - (1+ [y]2)3/2

Since (a;;);; is the matrix of dF), in the canonical basis and a;; = a;;, this shows that
dF, is symetric, for all y € R?. Again, A(x) inherits this property. Thus we can use the
Rayleigh quotient method for eigenvalues. We know in particular that

_ e AW e, w
)\1(1') - weRQ{{O} w’w> |w|:fl<A< ) ’ >a
Xo(z) =  sup M = sup (A(z)w, w).

weR2\{0} w,w Jlw|=1

Let M = sup,.q |Vui(z)|and N = sup,.q, |Vv(z)|. If |w| = 1, we have

1 1
<A(x)w, w> - < </ dFVu1(a:)+th(:c) dt) w, U)> - / <dFVu1(:c)+th(x) T w, w> dt
0 0

1

- /o (1+[Vui(z) + tVo(z)[?)*2

dt
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1

- /o T+ (V@) + ave@naee @

1

1

> dt = 0

—/0 I+ (M + Nz =

Thus 0 < p; < Ai(x), forall z € Q. On the other hand,
1 1
(A(z)w,w) = / (dFgu, () +1vo(z) - W, w) dt < / ldt = 1.
0 0

Thus A\o(z) < 1. Putting p = min{1, 1 }, wehave 0 < u < A\j(z) < Ao(x) < . O

T I=

REMARK 1.15. IfA(z) = (a;j(x));; andv : Q@ C R™ — R, observe that

n

Lo(x) == div(A(2)Vo(z)) = Y ai;(x) d:dj0(x) + Z (Z aiaij(x)> d;v(x).

,j=1

So Proposition 1.14 is precisely saying thatv = us — wy is a solution for Lv = 0, for
an uniformly elliptic operator, namely L. = div(AV). As a consequence, we have the
maximum principle for minimal surfaces.

THEOREM 1.16 (STRONG MAXIMUM PRINCIPLE FOR MINIMAL SURFACES). LetY; and Y
be complete connected minimal surfaces inR3. If3; lies in one side of ¥y and ¥y NY, #
g, then 21 = 22.

Proof. Let uj,us : Q C R? — R be solutions for the minimal surface equation with
u; < wuy and suppose there is some p € € such that u;(p) = us(p). By the previous
proposition, we can apply the maximum principle to v = us — uy. Since v > 0 and
v(p) = 0, pis a minimum of v. Therefore, v must be constant and u; = us. Since every
surface is locally a graph of a function, this proves the theorem. [l

1.4 SECOND VARIATION FORMULA

In this section, M will denote a compact orientable riemannian 3-manifold without
boundary. Let > C M be a connected embedded compact surface. If ¥ is minimal

(% ‘0 |33;| = 0 for any variation >J,) and we want to know if it is a local minimum of area

for a given variation ¥;, we need to study % |;|. Then the Jacobi operator comes
0

into play.

By Remark 1.9 (iii), in order to compute < | , |2¢| for variations of X with fixed bound-
ary we just need to consider the normal vector fields X along X with X = 0 on the
boundary 9%. We call these vector fields admissible. If X is one such vector field and

> is the associated smooth variation, we denote

[0X](X) = a Olzt\, [0°2)(X, X) = j—; )

.
dt ]

Now we look more closely at these vector fields.
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We divide the situation in two cases: X is orientable or non-orientable. Since the am-
bient manifold M is orientable, the orientability of X is equivalent to two-sidedness.
A surface > C M is said to be two-sided on M if there is a section v : ¥ — NX with
v # 0 everywhere on X (here N is the > normal bundle). Otherwise X is said to be
one-sided. Note that two-sidedness is an extrinsic concept, while orientability is in-

trinsic to the surface >.. But in the case that M is orientable, these concepts coincide.

Suppose first that X is orientable. Then we can consider a normal unitary vector field v
on Y. Since X is a surface and M is 3-dimensional, each fiber on NX is 1-dimensional.
Thus any admissible vector field X on ¥ can be written in the form X = ¢v for some
smooth function ¢ : ¥ — R with ¢ = 0 on 0X. These will be the admissible functions
on Y in the case X is orientable.

If ¥ is non-orientable we introduce a new surface ¥ which is orientable and can be
used to study variations of .. This is the so called orientable double cover of > (see
Appendix A for more details). In this case, if 2, is given by a smooth variation of .,
then we can associate a smooth variation f]t of the orientable double cover 3. such
that

1 -
% = 5181

Thus, in order to compute the derivatives of ||, we can always suppose that ¥ is ori-
entable. However, we still need to say which will be the admissible functions on f),
because not every function on it comes from a smooth variation of ¥ (see Appendix
A). The admissible functions in this case are those smooth functions ¢ : ¥ — R such
that» = 0ondX and ¢ = —¢ o 7, where 7 : & — ¥ is a certain isometry involution of
> such that /{1, 7} = X.

THEOREM 1.17 (SECOND VARIATION FORMULA). Let F' : (—¢,¢€) x X — M be a smooth
variation ofY. and {e,, e, } aorthonormal basesinTY.. If|V* X |? denotesy >, |(V, X)*|?,
then

d2
dt?

2
13| = / (Z RM(X,e;, X, e;) + divs(Vx X) + |[VEX?
0 b

=1

2
— Z g(Ve,L.X, ej)g(Ver, 6,’) + (diVE X)Q) dZ

1,j=1

Proof. Using the same notation as in Theorem 1.2, recall that

d OF -
% dEt == diVZt (E) dEt = (Z gljg<V8iFatF, @F)) dEt

i,j=1

d2

We want to compute -~

dX;. Before doing that, we do some remarks.
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Observe first that 9,g~' = —g~1(0:9)g~", hence d,g7 = — 32 _, g™ (9;g1)g" and we
have

Orgrt = g (ORF, O F) = g(Vo,rOi ', O1F) + g(O F, Vo, rOi F).
On the other hand, if RM denotes the riemannian curvature tensor of M, then
RM(0,F,0,F)X = Vo,rVaorX — VorVaorX — VigromnX
= VathaiFX - VaiFVatFX>
since [0;F, 0, F] = 0. Then we have
atg(vaithFa 8JF) = g(vaszaiFatF7 a]F) + g<v81:FatF7 vatFa]F>
= g(VatFVaiFatF — VaiFVatFatF, ajF) -+ g(VaiFVatFatF, (%-F)

+ 9(Vo,pOF, YV 5,r0; F)
= g(RM(0,F, 0,F)O.F, 0;F) + g(Vo,p Vo, 00 F, 0;F) + g(V o, F, Vo, O, F).

Thus
8t dngt(ﬁt ) =

2
= ( Z 9" (9(VorOiF, OF) + g(Ok F, VazFatF))glj> 9(Vo,rO,F,0;F)

ij*l k=1

+ Z 97 (g(RM(0,F, 0;F)0,F,0;F) + g(N9,rV o,r 0 F, 0;F) + g(Vo,r 0, F, Vo, pO, F)).
i,7=1

Take the basis {¢1, 2} in 'Y to be orthonormal and denote X = 0, F att = 0. Noticing
that 0, F' = e;, the expression above at ¢ = 0 simplifies to

. (OF :
leZt <_) = Z(g(VEiX7 ej) + g(very €i>>g(veiXa ej)

3,j=1

2
+ ) g(RM(X,e) X, e;) + dive(Vx X) + > g(Ve, X, V., X).
=1

i=1

If (V. X) = (V.,X)* denotes the component of V., X normal to %, then we have

2 2 2
Y g(Ve X, Ve X) =Y g(VEX, VEX)+ Y 9(9(Ve, X €5)e;, g(Ve, X, er)er)
i=1 i=1 i,j,k=1

2
= |VJ_‘XY|2 + Z g(veiX7 ej)27

i,j=1
with V2 X2 = 32 | g(VLX, VEX). Therefore

d

2
F
divy, <a_) =Y RM(X,e;, X, ¢;) + dive(Vx X) + [VE X[
dt|, pa

ot

2

) 9(Ve X, e))9(Ve, X €).

1,j=1
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Then
d oF d oF d
—| di — | d¥y = | —| di — | | dE¥ + dive(X) —| dX
dt |, lVE‘(m) ! (dto Wzt(at» +divs( >dt0 !
gives the theorem. O

4 ’0 |3;| = 0 for any variation F), i.e.

when ¥ is a minimal surface. For this purpose, we have seen that we only need to con-

We are interested in computing 5722‘ || when
0

sider variations with X = %—f ‘0 normal to Y. We also will always suppose the boundary
is fixed, i.e. X = 0on oM.

THEOREM 1.18 (SECOND VARIATION FORMULA FOR MINIMAL SURFACES). LetY be an ori-
entable minimal surface embeddedin M andv be a global unit normal vector field along
Y. Consider a smooth variation F' of ¥ such that X := %—ﬂo = ¢v, with ¢ € C>(%),
and X = 0on0X. Then

d? )
T AES / | grads, ¢|2 — Ric(v, y)¢2 — |A|2q§2 d>
0 b

__ / $(As + Ric(v, )6 + |AP¢) dX,
b

where Ay, = divy, grady,, Ric is the Ricci tensor of M and A is second fundamental form
of X.

Proof. We analyze the terms in the formula given by the previous theorem:

2 2

(%) Z RM(pv, e, v, e;) = ¢* Z —RM(e;,v,v,e;) =1 —¢* Ric(v, v),
i=1 i=1
2

2
(*) - Z g(ve¢¢y7 ej)g(vej¢y7 €i> - - Z g(¢V7 veiej)g((b% vejei)

i,j=1 i,j=1
2 2

= - Z g(qﬁ% VEiej)g(¢V7 veiej) = _¢2 Z g(veiej’ V)2 = _¢2’A|2’

3,j=1 3,j=1

(%) /Z divy(Vx X)dE = /Z divs(VxX)T — g(X, H)dY = / divy,(Vx X)T

%

= | al(VX)" e =o
(%) /E(divE(X))%lE = /E(divE XT — g(X, H))%ds =0,

In the third () we used Lemma 1.4, H = 0, the divergence theorem and X = 0 on 9%.
In the fourth (x) we used Lemma 1.4 and X7 = 0, H = 0. It only remains to show that

/|VLX|2dE:/ |grad2gb|2dZ:—/¢Ag¢dZ.
P ¥ P

First notice that g(V.,v,v) = Le;(g(v,v)) = 3¢;(1) = 0, fori = 1,2. Then

2 2 2
VEXP =D g(VEX, VEX) =) g(g(Ve X, ), g(Ve X, v)v) = Y g(Ve, X, v)?
i=1

i=1 i=1
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2 2

= (¢9(Ver,v) + glei(@)r,v)* = ei(¢)” = | grady, |

=1 =1
Finally, we have

/Edivz(gb grady, @) d¥ = / g(¢pgrady, ¢,n) do = 0,

o%
since ¢ = 0 on 0X. On the other hand,

2

divg (¢ grady, ¢) = Z 9(Ve, ¢ grady, ¢, e;)

=1
2 2
= 6> 9(Ve grads 6, e:) + Y glei() grads; ¢, ;)

=1 i=1

2
= ¢divs grady ¢ + Y _ ei(¢)g(grady, ¢, ¢;)

=1

2
= 0And+ Y _ei(¢)’ = pAse + | grady |
=1
Thefore

/|grad2 o2 ds = —/qﬁquﬁdE.
> >

1.5 STABILITY, JACOBI OPERATOR

DEFINITION 1.19. We say that a minimal surface . is stable (resp. strictly stable) if

% |2:| > 0 (resp. > 0), for any smooth variation >, of ¥..
0

REMARK 1.20. Notice that if ¥ is a stable minimal surface, then there is no smooth
variationy, of 2o = ¥ such thatt = 0 is a local maximum of the area functiont — |%|.
If X is strictly stable, then it is a local minimum of the area functional, for any given
variation of 3.

The following result follows immediately from the second variation formula.

PROPOSITION 1.21 (STABILITY INEQUALITY). Let X be a minimal surface. If ¥ is ori-
entable, then 3. is stable if and only if

/ (Ric(v, ) + |A2)2 d5. < / | grady, 6[2dS, for everyé € C(5).
b )
If Y. is non-orientable, then X is stable if and only if

[(Ric(u, v) +|AP)¢*de < [ | grads, ¢|> d, forevery ¢ € C®(X) withé o T = —¢.
b)) b
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COROLLARY 1.22. Suppose Ric > 0 on M, i.e. Ric(v,v) > 0, forallv € TM. Then no
embedded closed orientable minimal surface in M can be stable.

Proof. Let X be an embedded closed orientable minimal surface in M. Then, since
> has empty boundary, ¢ = 1 is admissible. If > were stable, the stability inequality
would give

0< /(Ric(y, V) + |AP)p* d < / | grady, ¢|* d¥ = 0,
x ®
a contradiction. OJ

REMARK 1.23. Note that the same argument cannot be applied to the non-orientable
case, since = 1 on X is not admissible (p o T # —).

DEFINITION 1.24 JACOBI OPERATOR). Let 3 C M be an embedded minimal surface.
We define the Jacobi operator as the following linear differential operator, according to
the respective case:

1. X orientable: L : C*(X) — C*°(X) given by Ly = Ax¢ + (Ric(v,v) + |A]*);

2. Y. non-orientable: L : C=(%) — C>= (%) givenby Lo = Asé+ (Ric(v, v) +|A]?) ¢
and withC*(X) :={¢p € C®(X) : poT = —¢}.

We say that A € R is an eigenvalue with associated eigenfunction ¢ € C(X) (resp.
C> (X)) if ¢ is not identically zero and L + A\¢ = 0. The set

Spec(L) :={\ € R : \isan eigenvalue of L}
is called the spectrum of L. For each eigenvalue )\, we have the associated eigenspace
Vii={o €D : Lo+ \p=0},
with D = C®(X) (resp. D = C®(X)).
REMARK 1.25. 1. If ¥ is an orientable minimal surface and %, is a variation with

variational vector field X = ¢v, then

d2
dt?

Yl = — Lo dY.
12 /EM

2. If X is a non-orientable minimal surface and Y., is a smooth variation of ¥ with
associated variational vector field X = ¢v on the orientable double cover 3., then

d2

dt?

1 d?
2 dt?

%] =
0

5 1 3
S =5 [ oLods.
0 by

PROPOSITION 1.26 (JACOBI OPERATOR SPECTRUM). Let Y. be an embedded compact ori-
entable minimal surface in M. Then

1. L:C®(X) — C™(X) is self-adjoint, i.e. (¢1, Lpo) = (L1, p2), where (p1, po) =
|5 @102 A% is the inner product in C*(X). Hence, eigenfunctions associated to
distinct eigenvalues are always orthonormal;
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2. Spec(L) ={ M <A< - <A\, <...T+o0};

3. dim V), < oo, forevery A € Spec(L). The numberdim V), is called the multiplicity
of \;

4. dimV,, = landif¢ € V), then ¢(p) # 0, for everyp € 3. Since ¥ is con-
nected, this means that ¢ > 0 or ¢ < 0. Moreover, every eigenfunction associated
to another eigenvalue necessarily changes sign on .;

5. there is an orthonormal basis of eigenfunctions of L for L*(X), the Hilbert space
of the functions ¢ : ¥ — R such that 3 [, ¢*d¥X < +oo. More precisely, write
Spec(L) = {\ < A2 < A3 < -+ < A\, < ... T +o0}, repeating the eigenval-
ues according to its multiplicity. Then let {¢; € C(X)}ien be such that ¢; is an
eigenfunction with eigenvalue \; and (¢;, ¢;) = 0 ifi # j. Then, any ¢ € L*(%)
can be writtenas ¢ =Y. (9, ¢:)¢;.

ProPOSITION 1.27. Let > C M be an embedded compact non-orientable minimal
surface in M. Then

1. L: C®(%) — C>(%) is self-adjoint;
2. Spec(L) = {A € Ao < -+ < Ay <T 00}
3. dim V), < oo, forevery A € Spec(L);

4. there is an orthonormal basis of eigenfunctions of L for EQ(i), the Hilbert space
of functions ¢ : > — R such that 3 fi »*dX < +ooandgpor = —¢.

The previous theorems lead to the definition of index of a minimal surface. This con-

cept measures how far a minimal surface is from being stable.

DEFINITION 1.28. The Morse index of 3, denoted byind () is the number of negative
eigenvalues of the Jacobi operator associated to Y. counted with multiplicities.

PROPOSITION 1.29. Y is stable if and only ifind(¥) = 0.

Proof. Suppose Y is orientable (the proof for the non-orientable case is the same). If
) is stable and A is an eigenvalue of L with eigenfunction ¢, then putting X = ¢v we
have

Og[522](X,X):—/¢L¢d2=A/¢2dE — 0< A
b b

Therefore ind(X) = 0. Conversely, suppose ind(¥) = 0 and let X = ¢ an admissible
vector field on X. Then if {¢; };cy is the L?-orthonormal basis of eigenfunctions of L,
we have

6= Y b, witht, = [ o0uds,
i=1 x
and then
PREX) = - [ oLods =3 at 20,
x i=1

since \; > O forall7 € N. O
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2 VARIFOLDS

In this chapter we introduce the concept of varifolds, from Geometric Measure Theory
(for details, see e.g. (SIMON, 2014)), as well as some of their properties. These concepts
are some of the main ingredients in the proof of Simon-Smith’s Theorem (which we

discuss in the next chapter).

2.1 RADON MEASURES
DEFINITION 2.1. 1. Let X beanyset. A functionp : p(X) — R issaid to be an outer
measureon X if u(@) = 0 and p(A) < 3777, u(A;), whenever A C U2, A,

2. If X is a topological space and x € X, we say that u(x) = 0 if there is some open
neighborhood U C X of x such that u(U) = 0. Then the support of 1 in X will
besupp(u) = X\ A, where A= {x € X : u(x) =0}.

3. Given a measure ;1 on X and a subset A C X, we define a new measure jui_A on X
by uLA(B) = u(BNA).

Note that if /1 is an outer measure on X, then ;(A) < u(B), whenever A C B C X.
Also, since @ C A, for any set A, we have that u(A) > 0.

We consider the Caratheodory’s notion of measurability:

DEFINITION 2.2. A subset A C X is u-measurable if u(S) = p(S\A) + n(S N A), for
any S C X.

REMARK 2.3. Notice that A is ji-measurable if and only if u(S) > p(S\A) + p(SN A),
forany S C X.

A collection S of subsets of X is said to be a o-algebra if:

1. 9, X €S;
2.AeS§ = X\AeS

3. A, €8 = UX A, €S,

Observe that, by (2) and (3), we also have N2, A, = X\ (U2, X\A4,) € S, whenever
A, €S.

If {S, }aca is any family of o-algebras on X, then S = N,c4S, is again a o-algebra on
X. Since p(X) is a o-algebra, the family of o-algebras which contain a given collection
C of subsets of X is never empty. This allows us to talk about the o-algebra generated

by C. It is defined as the intersection of all o-algebras which contain C and therefore it
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is the least o-algebra which contains C. If X is a topological space, then the o-algebra
generated by the collection of open sets in X is called the Borel o-algebra on X and
its elements are usually referred to as Borel sets of X .

PROPOSITION 2.4. The collection M of all ;i.-measurable sets is a o -algebra on X .
DEFINITION 2.5. Let X beasetand i : p(X) — R be an outer measure.

1. p is said to be regular if for every A € o(X) there is a ji-measurable B € p(X)
such that A C B and u(A) = u(B);

2. if X is a topological space, then 1 is said to be Borel-regular if every Borel set of
X is u-measurable and, for any A € o(X), there is some B € o(X) with A C B
and j(A) = (B);

3. if X is a Hausdorff space, then 1. is said to be Radon if

w is Borel-regular and (K') < oo, for every compact K C X, (R1)
pu(A) = Uop}gngcUu(U),foreveryA € p(X), (R2)
w(U) = sup w(K), foreveryU € p(X) open. (R3)

K compact, KCU

Let X be a metric space and s > 0 a real number. For § > 0, set
Fs = {{Ci}ien : C; € p(X), diamC; < d}.

Then, for A € p(X), put

oo d. ) S oo
H3(A) := inf {ws Z < 1a12nC,> : {Ci}ien € F5, AC U C’Z} :

i=1 =1

Here, if s € N, then w, denotes the volume of the unit sphere S*~! in R*. Otherwise,
w; is any fixed positive number. Notice that, if §; < d5, then %5, C %;,. Therefore,
H;,(A) < H; (A) and the limit limsyo H3(A) exists, although it can be +oc.

DEFINITION 2.6 (HAUSDORFF MEASURE). Let X be a metric space and s > 0 areal num-
ber. The s-dimensional Hausdorff measure on X is the outer measure H* : p(X) — R
given by

W) = (it ), o= 0, FrA € 6(X).
IfA C X, thendimy(A) :=inf{s > 0 : H*(A) = 0} is the Hausdorff dimension of A.
REMARK 2.7. Fractal sets are examples of sets with non-integer Hausdorff dimension.
PROPOSITION 2.8. Let X be a metric space.
1. If X is a locally compact and any open set in X is a countable union of compact

sets (in particular, if X is a riemannian manifold), then H*® is a Radon measure
on X, foreverys > 0;
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2. If s € N, then'H® = L7, the Lebesgue measure on R?;

3. If X = M isariemannian manifold, and . C M is an embedded k-submanifold,
then H* (%) = |X|, the k-dimensional volume of 3.

2.2 VARIFOLDS, WEAK TOPOLOGY

Now we introduce a generalization of the concept of submanifolds which has good
compactness properties. This is the concept of varifolds. Before we define what a var-

ifold is, we briefly talk about grassmannians.

Let E be a vector space with dimension n < oo. For each integer 1 < k£ < n, we
define the k-grassmannian of E as the set G(E) of all k-dimensional subspaces of E.
Each G (E) has a natural differentiable structure that turns it into a compact smooth
manifold of dimension k(n — k). Notice that the grassmannian G, (E) is simply the

projective space P(E).

Then, if M is a n-dimensional smooth manifold, we denote by G (/) the bundle with
base M and fibers Gy (T, M), x € M. We call it the k-grassmannian bundle over M.
We denote an element of G (M) by (z, ), with x € M and m € Gi(T,M). Of course,
the dimension of G (M) is nk(n — k). Since each fiber is compact, G(M ) is compact

provided that the base M is compact.

Now we define varifolds.

DEFINITION 2.9 (VARIFOLDS). Let M be a smooth n-manifold and 1 < k < n. Any
Radon measure on the k-grassmannian bundle Gy, (M) is called a (k-dimensional) var-
ifold on M. We denote by V(M) the set of all k-dimensional varifolds on M. Given
a varifold V€ Vi (M), one defines the mass of V' as the unique measure ||V || on M
satisfying

/N FELE / (@) dV, Vo € Cu(M),

Gr(M)
whereC.(M) denotes the set of continuous functions of compact support in M.

Suppose M is a riemannian manifold and let > C M be a k-submanifold. One can
define a varifold Vs € V(M) by

/ o(x,m) dVg:/gp(ac,TxZ) dx,
Gr(M) b))

for all continuous functions ¢ € C.(Gy(M)). This is how we look at ¥ as a varifold.
More generally, we can use rectifiable sets with multiplicity instead of submanifolds
in order to induce varifolds. A subset & C M is said to be a k-dimensional rectifiable
setif R = |J;°, N;, with H*(Ny) = 0 and each N;, i > 0, a closed subset of some C*
k-submanifold ; of M. Rectifiable sets have a notion of tangent spaces and, if R C M
is k-rectifiable, then the tangent space at + € R, denoted by 7 R, exists for HF-a.e.
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pointz € R. Then, if R is a k-rectifiable, H*-measurable subset of M, and § : R — R*

is a measurable function, then one can define a k-varifold V on M by

/ o(x,m)dV = / 0(z)p(x, T,R) dH*, Vo € Co(Gr(M)).
Gr(M) R

We denote V' = v(R, 0) and v(R, 0) is a k-rectifiable varifold with multiplicity 6. If 6 is

integer valued for #*-a.e. * € R, we say also that v(R, 0) is an integral varifold.

Since we will be working mostly with 2-dimensional varifolds, we drop the & from our

notations.

We endow V(M) with the topology given by the following convergence notion (see B.1),
called the weak convergence: we say that a net (V) cp in V(M) converges weakly to
VeV(M)if

/ o(x,m)dV\ — / o(z,m)dV, Yo € C.(G(M)).
G(M) G(M)

In this case, we write V, — V. For ¢ > 0, denote V(M) := {V € V(M) : |V |[(M) <
c}. We have the following important result about the weak topology on V(M).

THEOREM 2.10. IfM is compact, then V(M) is metrizable and compact, for anyc > 0.

Proof. For a detailed proof, see B.2 in the Appendix. [

2.3  STATIONARY VARIFOLDS

Letvy : M — M’ a diffeomorphism between riemannian manifolds. For any varifold
V in M induced by a submanifold ¥ C M, we can define a varifold ¢4V in M’ as the
varifold induced by ¢(X). This notion can be generalized for any varifold V' € V(M)
by

/ oy, 0) iV = / ((2), dips (1) T, m)| AV, Vg € CUG(M')).
G(M") G(M)

where Ji(x, ) denotes det((d;)|.). The map ¢y : V(M) — V(M’') is called the
pushforward with respect to 1.

Let V' be a varifold on M and X a vector field on M with compact support. Let F' :
(—e,€) x M — M be the isotopy induced by X, i.e. %—f = X(F'). We define the first

variation of VV with respect to X as

d

V10 = ) |

|[Fi V(| (M).

The next proposition shows that the definition of first variation coincides with the
usual definition when V' is a submanifold.
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PRrROPOSITION 2.11. Ifwe look to a submanifold 3. as a varifold, then

65)(X) = /E dive X dS = % IE(2)].

0

We also have [0V ]|(AX) = AoV ](X), forany X € R.

Proof. The mass of X viewed as a varifold is simply its volume:

HEH(M):/ dHEH:/ dZ:/ d’H"‘:/dEzm.
M G(M) by )

d
| 17 =

Therefore
d

dt

and then we use the classic first variation formula for submanifolds.

If 2 = X (F), then F(t,p) := F(\t,p) is such that 2&' = AX (F). Thus, writing s(t) =
A,

[0%)(X) =

[F (3],

d

d
| IF@vIon =

(&

With the definition of first variation, we can generalize the notion of minimal subman-
ifolds.

PVIAX) = (s(t),-)¢V[I(M)

d

o 1E(s,-)sVII (M )>E s(t) = AV](X).

0

]

DEFINITION 2.12 (STATIONARITY). AvarifoldV in M issaid to be stationary if[0V](X) =
0, for every vector field X on M with compact support.

A central question when we deal with varifolds, is to know when a varifold is rectifiable.
The concept of density is a useful tool in this direction. Before, we need to introduce
the monotonicity formula for varifolds.

THEOREM 2.13 (MONOTONICITY). Let M™ be a riemannian manifold, V' € V(M) and
p € M. Then there existsro > 0 and A = A(p) > 0 such that

V(B
— A7 —H I kr(p)) is non-decreasing onr, forr < ry.
r
Here, B,.(p) denotes the open ball of radius r centered at p.

This theorem implies that

a2 |[VI(Br(p))

= 17%16 7 , Vpe M.
But then,
B r2 2 2 Br
i D) s ae VB e o IVICB0),

) rk rw rk ) ) rk
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e IVIB )
10 rk

shows that 11?01 r=*||V||(B,(p)) also exists, for every p € M. Now, we can define density.

DEFINITION 2.14 (DENSITY). Let M be a riemannian manifold, V € V(M) andp €
M. The limit

oV, z) = i WV I(B-(p))

710 wyrk

is called the density of V' at p. Here wy, is the volume of the k-dimensional unit ball in
Rk,

THEOREM 2.15 (5.5 oF (SIMON, 2014), p. 215). IfV is a k-dimensional varifold in M
with©(V,p) > 0, for ||V||-a.e.p € M, thenV is rectifiable.

We also have

THEOREM 2.16 (CONSTANCY THEOREM, 4.1 oF (SIMON, 2014, p. 213). Let M be a rie-
mannian manifold andV a k-varifold on M. IfV is a stationary integral varifold and
supp(||[V]]) € UL, i, where each S; is a connected C* k-submanifold of M, then V =
Ui, niXs, ie. V =v(R,0) withR = |J;_, ¥; and 0 = n; on3;.

2.4 TANGENT VARIFOLDS

Tangent varifolds are the natural generalization of tangent planes for smooth surfaces.
Before we define tangent varifolds, we need to recall the concept of dilation in a man-
ifold. Let M be a smooth manifold, = € M and 0 < p < inj(z). Here, inj(x) is
the injectivity radius of M at z, i.e. forany 0 < p < inj(z), the exponential map
exp, : By C T,M — B,(z) C M is a diffeomorphism. If M is compact, then
Inj(M) = inf{inj(z) : * € M} > 0. The dilation around = with factor p is the
map D7 : B,(x) — Bf given by D7(z) = exp,'(z)/p. If M = R", then D7 is the usual
dilationy — (y — z)/p.

DEFINITION 2.17 (TANGENT VARIFOLD). IfV € V(M), then we denote by V' the dilated
varifold in V(BY) given by (9D7);V. Any limit V' € V(BY) of a sequence V! of dilated
varifolds with s,, | 0, is said to be a varifold tangent to V' at x. The set of all tangent
varifolds to'V' at x is denoted by T'(z, V).

If V = X is a smooth submanifold in M/ and = € V, then T,,> N By is the only varifold
tangent to V" at z. Of course, we identify 7'(z, V') and 7., in this case.

It is well known that if the varifold V is stationary, then any tangent varifold to V' is a
stationary Euclidean cone (see section 42 of (SIMON, 2014)), i.e. a stationary varifold
in T, M which is invariant under the dilations y € T, M — y/p € T, M.

Now, we state two technical lemmas which are going to be used in the next chapter.
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LEmMMA 2.18. Let U be an open subset of a three-manifold M and W a 2-dimensional
stationary varifoldinV(U). IfK CC U isasmooth strictly convex setandx € (supp||/W||)N
0K, then

(B.(x)\K) Nsupp||W|| # @, foreveryr > 0.

LEMMA 2.19. Let M be a compact three-manifold, x € M andV a 2-dimensional sta-
tionary integer rectifiable varifold in M. Denote by T' C M the set given by

T = {y € supp||V|| : T'(y,V) consists of a plane transversal to 0B, ,(x)}.

Ifp < Inj(M), thenT is dense in (supp||V||) N B,(x).
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3 MIN-MAX MINIMAL SURFACES

The goal of this chapter is to give some ideas on the proof of the following important

existence theorem for minimal surfaces:

THEOREM. (SIMON-SMITH) Let M be a closed riemannian three-manifold. For any
saturated set of sweepouts A\, there is a min-max sequence obtained from A which con-
verges in the varifold sense to smooth embedded minimal surface with area W (M, \)
(counted with multiplicity).

We begin with some basic definitions from Min-Max Theory which will make the state-
ment above clearer. The method used here is usually called Simon-Smith method. This

is a version of the Almgren-Pitts method for min-max minimal surfaces.

3.1 BASIC DEFINITIONS

We begin this section giving a rather general definition. We introduce the Hausdorff
distance. This measures how “similar” two subsets of a metric space are, taking into

account their geometry and position inside the metric space.

DEFINITION 3.1 (HAUSDORFF DISTANCE). Let (X, d) be a metric space. Ife > 0 and
A C X, denote

A={re X : Ja€ A dz,a) <e} = UBE(CL)

acA

The Hausdorff distance between A and B, subsets of X, is then defined by
dy(A,B) =inf{e e R, : BC Aand A C B‘}.

Here, we considerinf & = +oo.

PROPOSITION 3.2. Let X denote a metric space and A, B, C' any subsets of X. Then

1. dy(2,A) = 400, if A # &;

2. dy(A,B) > 0;

3. dy(A, B) = 0 if, and only if, A = B;
4. dy(A, B) = dy(B, A);

5. dy(A,B) <dy(A,C)+dy(C, B);

REMARK 3.3. This proposition shows that dy behaves like a distance function on the
collection C{(X) of closed subsets of X . The only reason why it is not an usual distance
function is the fact that dy (A, B) can be +o0c. However, this is sufficient to define a
topology on C{(X) in the usual way, by taking open balls B.(A) = {B € C{(X)
du(A, B) < €}. Of course, this will be called the Hausdorff topology.
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Proof. 1. Immediate from the definition of d;
2. Ttis trivial since, if A # &, thereisno e > O sothat A C @ = @.

3. Suppose dy(A,B) = 0. This implies A C Band B C A“foralle > 0. Let
a € Aande > 0. Since a € B, there is some b € B such that d(a,b) < e.
Therefore, B.(a) N B # &, for every e > 0. This shows A C B and thus A C B.
The same arguments shows that B C A. Suppose now A = B. Observe that
the conclusion will follow if we show A€ = A", forall ¢ > (. Of course A¢ C A",
because A C A. Leta € A". Then there is some ' € A such that d(a,d’) < e.
Since ¢’ € A, we have Be_a(a,a)(a’) N A # @, thus there is some a” € A so that
d(a’,a") < e —d(a,d’). By the triangle inequality, we have d(a,a”) < e. This
shows that ¢ € A¢and thus A C A°.

4. Denote D(A,B) ={e >0 : AC B¢, BC A} sothatdy(A, B) = inf D(A, B).
Then the result follows if we show D(A,C) + D(C,B) C D(A, B). Lete; + €3 €
D(A,C) + D(C, B). We need to show that ¢; + e; € D(A, B),i.e. A C B+
and B C A", Leta € A. Sincee; € D(A,C), there is some ¢ € C so that
d(a,c) < €. In the same way, there is some b € B such that d(c,b) < €. Thus,
we have found a b € B such that d(a, b) < d(a,c) + d(c,b) < €; + €3. This shows
A C B“*2, By the same reason, we have B C A“ "% and the result follows.

O

REMARK 3.4. One can generalize dy in order to measure only how “geometrically sim-
ilar” two subsets of a metric space are, i.e. regardless of their position in the space. This
is done in the following way. Denote by 1(X) the collection of all isometries® : X — X,
i.e.  is bijectiveand d(®(z), ®(y)) = d(x,y) foreveryx,y € X. Then, for subsets A and
B of X, set

dyc(A, B) = inf{dy (A, ®(B)) : ® € I(X)}.

Going even further, one can try to define the distance between any two metric spaces. If
(X, d) and (Y, p) are metric spaces, denote by 1(X,Y") the collection of preserving dis-
tance functions, i.e. ® : X — Y such that p(®(z), ®(2')) = d(z,2'), foranyz, 2’ € X.
Then, if X1, Xy andY are metric spaces, one puts

(X1, Xo) = inf{dya(®1(X1), Po(Xs)) + &; € I(X;,Y)}.
Finally, one puts

dc(X1, Xz) = inf dy(X1, Xo),

whereY go through the class of all metric spaces. These are called the Hausdorff-Gromov
distances. The last one is delicate to define formally. We will only deal with the Hausdorff
distance dg.

Let M be a compact riemannian three-manifold, possibly with connected boundary.

If > C M, we will denote its two-dimensional Hausdorff measure by H?(3) (see Defi-

nition 2.6). If ¥ is a surface, then H?(X) = |3|. We will denote I = [0, 1] C R.

Next, we give the main definitions of Min-Max Theory.
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DEFINITION 3.5 (SWEEPOUTS). A family {3;}:c1 of closed subsets of M with finite H?-
measure is said to be a sweepout if there are finite sets’l’ C I and P C M such that

1. t € I — H2(%,) is continuous;

2. ¥ converges to X, in the Hausdor{f topology, ast — t, i.e. thntn dg (X, 54,) =05
—lo

3. ift € I\T, then ', is a closed surface;
4. ift € T, then either ¥,\ P is a surface in M or else H*(%;) = 0;

5. 3, varies smoothly in I\T, i.e. for each (a,b) C I\T, X%, is given by the smooth
variation F : (a,b) x ¥ — M of some closed surface C M;

6. ift € T andH*(X,) > 0, then'¥; converges smoothlyto Y., in M\ P ast — 7, i.e.
ife > 0 is sufficiently small such that H*(X;) > 0 fort € (1 — ¢, 7 + ¢), then ;)\ P
is given by a smooth variation of ¥\ P in M\ P;

7. ifOM #+ @, thenwerequireXq = OM, %, C int(M) fort > 0 and{%, },c; foliatesa
neighborhood of M, i.e. if v denotes the unit outward vector field normal to OM,,
then there exists a smooth functionw : [0,¢] x OM — R, satisfyingw(0,z) = 0
and %2(0, ) > 0, such that

Y = {exp,(—w(t,x)v(x)); x € OM},
foranyt € [0, €.
Each X, is called a slice in the sweepout {3, },¢;.

ExAMPLE 3.6. Let M be the three-dimensional sphere S* C R%. Then the family
{X;}1er defined by
Ye={zeS®: xy=2t-1}

is a sweepout of S* with 7' = {0,1} and P = {—e4, e4}. The slices are points ift € T
and two-dimensional spheres for t € I\T.

ExaMPLE 3.7. Inone dimension less, the level sets of the height function is a sweepout
of the torus 72, with T" and P consisting of four points. Notice that these are critical
points of the height function.

0

Figure 4 — A sweepout of the torus
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Now, we introduce a natural way of generating sweepouts from a given one. Maybe
the first idea that one can think of is to consider the image of a sweepout under diffeo-
morphisms of M. Actually, one can consider isotopies. Before we do that, we ask some

technical restrictions.

We denote by Diff, the set of diffeomorphisms of M which are isotopic to the identity
map, i.e. Diff, is the set of all diffeomorphisms ¢ : M — M for which there is a smooth
mapV: [/ xM — MsothatWVy = 1,,,V; =¢Yand ¥, : M — M is a diffeomorphism,
forallt € I. IfOM # @, we also require the isotopies to leave some neighborhood
of OM fixed, i.e. there is an openset U C M, M C U, such that V(¢,z) = =z, for all
(t,z) € I x U.Inboth cases (OM = &, M # &), we denote the set of such isotopies
by Jo(M).

Let {3, }:c; be a sweepout of M and ¥ : I x M — M a smooth map such that
U, € Diffy, forallt € I. We denote such a map V by saying “{V,},c; is a smooth
one parameter family of diffeomorphisms”. The family {V;(X;)}:c; is a sweepout of
M. This is a natural fact to imagine but somewhat cumbersome to prove, so we skip
the proof of it.

DEFINITION 3.8 (SATURATED SET OF SWEEPOUTS). A collection A of sweepouts of M is
said to be saturated if

{Ziher € A = {Wu(Z0) her € A,
for every smooth one parameter family {V, },c; of diffeomorphisms of M.

REMARK 3.9. We will only work with saturated sets A for which there is some Ny =
No(A) such that the set P (in the definition of sweepouts) has at most Ny points for any
{Zitier € A

DEFINITION 3.10 WIDTH). Let A be a set of sweepouts of M (not necessarily saturated).
We define the width of M with respect to A by

W(M,A) = inf supH*(Z,).

{Zt}eA er

REMARK 3.11. Notice that, sincet € I — H?*(%,;) is continuous and I compact, in fact

sup H*(%;) = max }*(%,),

tel

ie. thereisat € I such that H*(X,) = sup,c; H*(Z:). In this case, 2, is called the
maximal slice of the sweepout {3, },c;. So one can think of the A-width of M as the
infimum over the areas of all maximal slices of sweepouts in A

ExaMPLE 3.12. Again, an example in one dimension less, since it is easier to make
figures. Let A be the set containing two sweepouts {¥!};; and {3?};c;. Of course,
such A is not saturated.
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Figure 5 - W (M, A) is given by the red slice

The red and blue slices in the figure indicates the respective maximal slices. In this
case, since A is finite,

— i 1/y1 132
W(M7 A) - ITlIIl{ITtlgIXH (Et>7 I?SXH (Zt)}7
and this is given by the red slice, in the specific case of the figure.

DEFINITION 3.13 (MINIMIZING AND MIN-MAX SEQUENCES). Asequence{%} }c; of sweep-
outs in A is said to be a minimizing sequence if lim sup,.; H*(X") = W (M, A). Given
n—oo
a minimizing sequence {3} },c 1, a sequence of slices {3}’ },en such that lim H?*(2}! ) =
n—oo

W (M, A) is said to be a min-max sequence in A.

3.2 SIMON-SMITH THEOREM

In this first part, we work with a “pull-tight” procedure, giving a high level of technical
details for the proof of Simon-Smith’s Theorem (namely Theorem 3.14 below). But
after the pull-tight procedure the proof gets too technical and we will continue only
with the ideas behind the proof.

THEOREM 3.14 (SIMON-SMITH). Let M bea closed riemannian three-manifold. For any
saturated set of sweepouts A\, there is a min-max sequence obtained from A which con-
verges in the varifold sense to smooth embedded minimal surface with area W (M, A)
(counted with multiplicity).

Throughout this section, M will denote a closed (compact without boundary) rieman-
nian three-manifold and A a saturated set of sweepouts in M. We also denote

= inf supHA(Z
mo = dnf supH(Ze)

and ¥ ={V e V(M) : |[V|[(M) < 4m¢}. By Theorem 2.10, we know that ¥ with the
weak topology is metrizable and compact. Let us denote by ? a metric on this space.
Also, we denote by V., the set of all stationary varifolds in 7/, i.e. V € V iff |V |[(M) <
4my and [0V](X) = 0 for every vector field X on M. Notice that V,, # &, since the
null varifold 0 € V..
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ProPoOSITION 3.15. V, is closed in ¥ (and hence compact).

Proof. Let{V,,},cn be a sequence in V, with V;, — V. First, of course V' € 7/, since

ann(M):/ d||vn||=/ dvn—>/ dv=/ AVl = VM),
M G(M) G(M) M

and ||V, ||(M) < 4mg implies ||V||(M) < 4my. Let X be a vector field on M and F the
flow generated by X. Then

d d
0= V1) = | IFvlon = %) [ | TR,
0 0
d d
— L[ Rl = G IEVI00 = 6VICe)
dt|, G(M) tlo

This shows that [V](X) = 0 for every vector field X, thus V' € V. Therefore, V is
closed. [

The goal of this section is to prove the following theorem.

THEOREM 3.16. There exists a minimizing sequence {¥} },c; € A such that, if {3} } is
a min-max sequence obtained from it, thend(X} , V) — 0.

REMARK 3.17. Note that if {¥} } is a min-max sequence, then ¥} € X, for alln suffi-
ciently big. Thus the limitd(X} , V) — 0 makes sense.

We do this by proving several claims. Denote ¥’ = {V € V(M) : |V|[(M) < 3mqg}.
Of course ¥’ C ¥ and ¥’ is compact. The idea is to build a continuous map ¥ : ¥’ —
Jo(M) such that

 if V is stationary, then Wy is the trivial isotopy;

e if V is not stationary, then ¥y, decreases the mass of V.

Such a map is called a shortening process or a pull-tight of varifolds that are not sta-

tionary.

Step 1: A map from ¥ to the space of vector fields

For each k € Z, define the annular neighborhood of V,,

Vi={Ve? :27"<o(V, V) <2771}

Since ¥ is compactand f : ¥ — R, f(V) = 9(V, V) is continuous, there is some
A > Osuchthatd(V,V,) < A, forall V € ¥. Therefore, there is some kg € Z such
that Vy, # 9 and V), = @, forall k < k.
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Figure 6

/V

Craim 3.18. Thereexistc(k) > 0and¢ : Vi, — X (M), which wedenotebyp(V') = Xy,
such that || Xv || < 1and[6V](Xy) < —c(k) forallV € V.

Suppose the claim to be false. Then, for every ¢ > 0, there is a V. € V) such that, for
every X € X (M) with || X||o < 1, we have —¢ < [0V](X) < c¢ (note that, in this
context, this is the negative of [0V]|(X) < —¢, since [0V]|(—X) = —[6V](X) by 2.11).
Thus, taking ¢ = %, n € N, we get a sequence V,, € V;, such that for every X € X'(M),
| X |loo <1, wehave —2 < [§V,,](X) < <. Since V}, is compact, we can suppose that V,,
converges to some V; € V. But then, for every X € X'(M), we have

1

V41 = 1X 0V (=X ) = X e fim04] (=X ) =0

Therefore, V} is stationary and V; € Vy, a contradiction. Thus, there is some ¢(k) > 0
and ¢ : Vy, — X(M), p(V) =: Xy, suchthatc(k) < |[0V](Xy)|and || Xy || < 1. Since
[0V](=Xy) = —[0V](X), we can change ¢ if necessary so that [§V]( Xy ) < —c(k). This
proves the Claim 3.18.

CraiM 3.19. We can choose the c(k)s in the previous claim so that j < k = c¢(k) <
c(4)-
Indeed, if j < ko, then V; = @, then by vacuity we can choose ¢(j) = c(k), for all
J < ko. Now, if [0V](Xy) < —c(ko + 1) forall V' € V11, then

[OV](Xy) < —c(ko+ 1) < —min{c(ko), c(ko + 1)}, YV € Viyt1.

Thus, if we can change c(ky + 1) by ¢/ (ko + 1) = min{c(ko),c(ko + 1)} > 0 and the
property is still true, but now ¢’ (ko + 1) < (ko). We can continue indutively in this way
so that

0<---<clko+2) <clho+1) <clky) =clhko—1)=clky—2)=...

and this proves the claim.
Now, we build a continuous map x : ¥ — X(M).

Since for each fixed V € Vj, themap W € ¥ — [0W](Xy) € Ris continuous, there
is some radius 7 > 0 such that [0W](Xy) < —c(k)/2 for every W in the ball U, (V).

Then, since U,,, /2(‘/), V' € Vi is an open cover for the compact set Vy, we are able to

~~~~~
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1. The balls U* concentric to UF with half the radii cover Vj;
2. IfW € UF, then [(W](XF) < —c(k)/2;

3. The balls U} are disjoint from from V; if [j — k| > 2;

For the last item, just take every ry smaller than min{o(Vy, Vi_2),0(Vi, Vis2)} > 0
from the very beginning. Hence, {Uf : k € Z,i =1,..., N(k)} is alocally finite open
cover of 7'\ V,,, which is a metric space. So we can subordinate a continuous partition
of unit ¢! to this family {UF};,;. Then define

xX: ¥V — X(M)
Vi o= xv= Zk,i @f(v)sz .
Notice that y is well defined over all X instead of only '\ V.., because each ¥ : ¥\V,, —

[0, 1] is zero outside UF C X'\ V., and then can be extended as zero over all ¥\ UF with-

out losing continuity. Such y is continuous and || xv || < 1, foreveryV € 7.

Step 2: A map from 7" to the space of isotopies

Craim 3.20. There exist continuous functions p,~ : RT™ — R* such that

oW, V) <p(d(V.Vx)) = [BW](xv) < =7(0(V, Vo)), foreveryV € ¥\Vx,
with ltigl p(t)=0= ltiﬁ)l ~(t) and p, are strictly increasing.
ForV € Vy,letr (V) be the radius of the smallest ball (717 which contains it. Since there
are finitely many such balls that touch V}, (namely, atmost N (k—1)+N(k)+N(k+1)),

we have that (V') > r(k) > 0, for every V' € V}; and some r(k) depending only on k.
We have that U,()(V') is contained in every other ball Uij which contains V.

-———

- ~
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’ N
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’ ’ v S
/ r === 1 \\
1 1L’ * S 1
{ 14 \ \
1 ’ Y]
I ,\ v, !
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1 1 ~ ’zl 1
\r(V) == 1 ]
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\ \ ’ Vi
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Figure 7

IfW € U, v)(V), thenby (2) and (3), [§W](xv) < —3¢(k — 1). Indeed

W)= > (W)
GE{h—T kk+1}
€L, NG
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. 1 1
< Y elV)gmin{—clk = 1), —e(k), ~e(k+ 1)} = —gelk — D).
Jje{k—1,kk+1}
ie{1,...N(4)}

Thus, if V € Vy and o(W, V) < r(k), then [§W](xv) < —g(k), where g(k) = c(k —1).
With the same idea we used in the choice of the ¢(k)s, we can choose the 7(k)s so that
r(k+1) <r(k),forallk € Z. Then, just take v, p : R, — R, any continuous functions
such that

p(t) < r(k)andy(t) < g(k), ¥t € I, == [27%,27%F1].
Of course, we can choose p and v so that ltli%l p(t) =0 = lgfgl v(t) and p, 7y are strictly

increasing (since r(k + 1) < r(k)and g(k + 1) < g(k), for all k).

A

r(k)

0 coo dpys Ipyo Tig I

Figure 8

These functions fit our purposes. Indeed, if V' ¢ V,, then V' € V) for some k € Z
and 0(V, V) € I. It follows that d(W, V') < p(d0(V,Vx)) < (k) = [0W](xv) <
—g(k) < —v(0(V,Vx)). This proves the claim.

Let @y : [0,4+00) x M — M be the flow generated by v, i.e.

0dy

W(Wﬁ) = xv(®v(t, x)).

For each ¢t and V' we denote by ®!, : M — M the diffeomorphism given by ®},(z) =
(I)V(t, ﬂf) .

Foreach V' € 7, define the curve ay : [0, +00) — V(M) by

ay (t) = (I)ﬁ/ﬁv

For simplicity, in the following we will denote ||V'||(M ) just by ||V ||.

Craim 3.21. ForeveryV € ¥'\Vy, thereis some( < Ty < 1 such that

[l (Ty) | = [V < =Tvy(0(V, Vo))

LetV € 7'\ V. Thenin particular ||V|| < 3m,. Since || - || : V(M) — R is continuous,
thereisa 0 < ty < 1such that ||ay ()| < 4my, forallt € [0,¢y]. Therefore, the
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restriction oy : [0, ¢y] — ¥ is well defined. Since we also have ?(V,V,,) > 0, there is
some 0 < Ty < ty such that oy ([0, Ty]) C U, (V), withr := p(d(V, Vs)) > 0. Then, it
follows from Claim 3.20 that, for every ¢ € [0, Ty/],

Dlov (0]l = T8,V = Bav (](xv) < —R(V: Vo))

It follows from the fundamental theorem of calculus that

lew (Tv) || = llav (O) [} = law (T )| = [[V] :/0 e (D] ()t < ~Tyr((V: V).

This proves the claim.
Using a procedure similar to step 1, we can choose 7y depending continuously on V'
i.e. there is a continuous function 7" : ¥’"\V,, — [0, 1] such that

lav TV = VI < =T(V)7((V, Vo))

Thenwe can also choose 7" : R, — [0, 1] dependingonlyond(V, V) and limg o 7'(6) =
0. If we define G : R, — R, by G(d) = T'(6)7(d), we have the following claim:

Craim 3.22. There are continuous functionsT : R, — [0,1] and G : Ry — R, such
that

L if6 =(V,Va) > 0, |V < 3mg and V' = &,V then |[V'|| < | V|| — G(9);

2. 1551 T0)=0= l(ggl G(9).

Since V;, = @ fork < ko, by vacuity we can suppose the T'is constant on [2~(F0—1) 4 00).

Since 161151 G() =0 = 1}3} T'(9), we can extend 7" and G to continuous functions 7" :

[0, +00) — [0, +00) and G : [0, +o0) — [0, +00) by defining 7'(0) = 0 = G(0).

Craim 3.23. There is a strictly increasing continuous function L : [0, +00) — [0, +00),
with L(0) = 0 and L(t) < G(t), forallt € [0,400).

Let {y, := min{G(t) : t € I,} > 0. Then, if ¢, is defined, define
1
0 < lyyy = imin{&g,min{G(t) cte Iy} < .

Then we have a step function ¢ : (0,2-*%0=1) — R, given by ((t) = ¢ ift € I}, and
such that £(t) < G(t) forall t € (0,2~%0=1), Then define L : [0,2 %] — [0, +00) by

0 ift =0
L(t):{ Y 1 Y

Oppr + G fee) (1 0= (40 it € [k > kg

This is strictly increasing, continuous, L(0) = 0 and L(t) < G(t), fort € [0,27 1],
Then, since G(t) = G(t) = T(t)y(t) is itself strictly increasing for ¢t > 27%*! we do
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not face any difficulty to extend L to [0, +0c0) with the required properties. This proves

the claim.

Finally, we define the pull-tight ¥ : 7’ — Jy(M).ForV € 7", 1let U (V) = Uy, € Jo(M)
be given by
Uy (t,z) = Py (tTO(V, V), x), tel=10,1].

Of course, V¥ is continuous and

e IfV € V' NV, then \Il%/ﬁV = V. Indeed

o ItV € #\Va, then | UL, V]| < V]| — LO(V, Vo). Indeed,

1wy, V| = @7 V| < [V = GOV, Vw)) < IV = LO(V, V).

Observe that, since L is strictly increasing, the more V is far from V,, the more || V|| is

decreased by U1,

We would like to apply the pull-tight ¥ on minimizing sequences obtained from A to
get “better” minimizing sequences in A. Let {¥}' };c; € A be a minimizing sequence.

Since lirf sup H2(X) = my, we can suppose that H? (X)) < 3my (thus X7 € ¥”) for

allt € I,n € N. Then
[} =Wsa(1,2)), tel,neN

defines a sequence of sweepouts {I'}' },c; of M such that
HA(IY) < HAZY) = LS, Vao))-

However, {I'} };c; does not necessarily belong to A. Indeed, the pull-tight ¥ is only
continuous. This implies that, for each fixed n, the one parameter family { ¥} },c; of

diffeomorphisms of M defined by
\If? = \I’E?(l,'), tEI,

may not be smooth on t. Thus, since the definition of saturated sets of sweepouts re-
quires the family to be smooth, we cannot guarantee {I'}};,c; € A. We overcome this
technical issue by approximating {¥7 },c; by a smooth one parameter family { U7 },¢;.

First, observe that

S (s,2) = -y (TS, 2) = TOT) (B (T (), )

0s
= T )xzy (Usp (s, 2))
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where 7'(X}) denotes T'(d(X}, V)). Therefore, the one parameter family of isotopies
{¥ss},t € I is generated by the one parameter family of vector fields A7 = T'(X})xxy,
t € I. We think of ™ as a continuous map

h™: I — X (M), with the topology of C* seminorms.

Then A" can be approximated by a smooth map ool — X (M). Consider the smooth
one parameter family of isotopies @;‘ generated by the vector fields ﬁ?. Then, let f? =
(1, %7). Now, since {U(1,-)}.c; is a smooth one parameter family of diffeomor-
phisms, we have {I'"},c; € A, foralln € N.

If we take our approximation so that sup ||h? — h?||¢1 is sufficiently small, then
tel

H2(IT) < HA(ITD) 4+ e, forallt € 1.

Hence,
HATT) < HA(EM) — LO(E", Va)) +e™, Vtel.

Doing this for each n € N, we define a sequence {I'7},; € A such that

mo < sup HA(I7) < sup HA(Z}) + e ™.
tel tel

Letting n — oo, we have
lim sup H2(I'?) = m.

Therefore {I'"},c; is a minimizing sequence in A as well. Note that the construction

yields a continuous and increasing function \ : [0 4+ co) — [0, +00) such that

A0) =0 and (T}, V) > AT, Vao).

Finally, we prove Theorem 3.16, which says that there exists a minimizing sequence
{37 }ier € A such that, if {X} } is a min-max sequence, then (X} , V) — 0.

IN

Proof of Theorem 3.16. Let{%!},c; be aminimizing sequence in A so thatsup H?(X7)
tel

mo+e~". Thenlet {I""},c; € A be the minimizing sequence constructed from {~7},¢;
as above, by the pull-tight procedure.

Craim 3.24. Let {f?ﬂ }nen be a min-max sequence obtained from {I'7}.c;. For every
e > 0, thereexistd > 0 and N € N such that

. n>N .
if (and HZ(f\?n) > mg — 5) , then a(Ftn,Voo) < €.
Let e > 0 be given. Then L(\(¢)) > 0. Take § > 0 and N € N such that § + 2¢~V

<
L(A(€)). We claim that this choice works. Suppose it does not. Then there are n >
N and t, such that H*(I'}' ) > mg — d bute < d(I'}", V). Then we have A\(¢) <
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AR, Va)) < 0(Z7,Vs). Since L is strictly increasing, this implies L(A(¢)) <
L(d(X} ,Vx)). Then

mo +2e" < mg+ 2N <my— 3+ L(\e)) < HQ(f‘fn) + L(0(X7, Vo))
<HYZ})+e ™ = mo+e " <HI(Z}).

This is a contradiction, since sup H?(X") < mg + e~ ". This proves the claim.
tel

Now, we prove that {f?}te 1 is a minimizing sequence as asserted by the theorem. Let
{I'?. } be a min-max sequence obtained from {I'}'},c;. We need to find ny € N such
that, n > ng = (7, V) < €. Letd > Oand N € N be as in Claim 3.24. Since {I'} }
is a min-max sequence, there is some nf, € N such that n > nf) = |H*(I'7) — mo| <
§ = mgy — & < H*(T'}). Thus, if

no > max{ng, N},

then
n>N ~
> 3 . |
n-=>ny — (and HQ(FZL) > Mg — 5) — O(Ftn7]}oo) <€
This proves that lim a(f‘?n7 Vo) = 0. .
n—oo

We have the important corollary:

COROLLARY 3.25. There is a min-max sequence {3} },en € A which converges in the
varifold sense to a stationary varifold V with ||V || = my.

Proof. Let{3}};c; € Abetheminimizingsequence given by Theorem3.16and {¥} },cn
a min-max sequence obtained from it. Then d(X} , V) — 0. Since V, is compact,

(XY, Vo) =min{d(X7 V) V € Vo } =0(X], V),

for some V,, € V., and up to a subsequence we can suppose V,, — V. Then, letting
n — oo in

0 <oy, V) <o, Vo) +0(Vp, V)

shows that 3(X}" , V') — 0. Of course, mo = lim H*(X} ) = lim [|Z || = ||[V]. O
n—oo n—oo

REMARK 3.26. If we want the varifoldV obtained in this way to be nontrivial, we need

to guarantee that the saturated set is such thatmy > 0. We can do so if \ is generated by

the family of level sets of a Morse function on M.

THEOREM 3.27. Let M be a closed riemannian three-manifold, {¥;},c; a sweepout
given by level sets of a Morse function on M and A the smallest saturated set that con-
tains {%; }1e;. Thenmy = W (M, A) > 0.

Proof. For the proof of this theorem, we will use the following isoperimetric inequality
for compact manifolds (see (DRUET, 2002)).
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THEOREM 3.28 (ISOPERIMETRIC INEQUALITY). Let (M, g) be a smooth compact rieman-
nian manifold without boundary of dimensionn > 2. Let © be the collection of all open
subsets Q) C M with finite perimeter. There exists C = C' (M) > 0 such that

OB" .
9B"] o=t < ol + Clal, Vo ce.
|Bn|

Here, B" denotes the unit ball in R", |Q}] = H"(Q) and |09 = liﬂz]l w is the
perimeter of Q. If Q) has smooth boundary 092, then |0Q| = H"1(09).

Now, we prove Theorem 3.27. Let f be a Morse function on M. We can suppose that
0 and 1 are the minimum and maximum of f, i.e. f : M — [ with f surjective. Let
{3 }+c1 be sweepout given by the level sets of f, i.e. 3; = f~!({t}), and let A be the
smallest saturated set that contains it. Then

A={{Ti}ier : Ty =1(t, %) forsome ¢ € C*(I x M, M) with ¢, € Diff, for all ¢}.

Denote Uy = f~1({0}), U, = f71([0,¢)) for0 < t < 1and U; = f~!(I). Then for an
isotopy ¢ as above, denote €, = (¢, U;). Of course I'; = 09,. Thus, since {I'; };c; is a
sweepout, J<, is a surface, a surface in M\ P for a finite set P or H?(9€);) = 0. In all
cases |0Q;| = H*(T;). In particular, 2, € © forall ¢ € I. The function

g: I —- R
t o= |Q
is continuous. Since 0 is a critical value of f (global minimum) and f is a Morse func-

tion, we have that () is a finite set, hence g(0) = 0. On the other hand, 2; = M, thus
g(1) = |M|. Denote A = (4—”2/3 andlet C' > 0 be as in the isoperimetric inequality. Let

im
. 3
a = Lmin{4;,|M|}. Since 0 < o < |[M|and g(0) = 0, g(1) = |M| thereis s € (0,1)
such that ¢g(s) = a. Notice that
3

A 2 2
a<@:>O3a<A3:>C3a3<A3a2:>Oa<AaE:>0<Aa5—0a.

Then it follows from the isoperimetric inequality that

A|QF < HAT,) + Ol = 0< Aad — Ca < HA(T,).

Hence,

0< Aai — Ca < sup H*(Ty), Y T her EA=0< Aas — Ca < my.

tel

]

Now, we do some comments and overview on the concepts and ideas behind the next
steps of the proof for Simon-Smith Theorem, not giving much details. A full-length
proof can be found in (COLDING; DE LELLIS, 2003).

At this point, the proof of the Simon-Smith’s Theorem consists in proving that the sta-
tionary varifold obtained from Theorem 3.16 and Corollary 3.25 is in fact an embedded

smooth minimal surface.
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A stationary varifold can be quite far from an embedded minimal surface. To get regu-
larity for varifolds produced by min-max sequences the concept of almost minimizing
surfaces is needed. A surface ¥ is said to be almost minimizing if any path of surfaces
{¥; }1es starting at 3 with 3; much smaller than ¥ (in terms of area) must necessarily

pass through a surface with large area, compared to Y. More precisely,

DEFINITION 3.29 (ALMOST MINIMIZING). Givene > 0, anopensetU C M and a closed
setY C M, we say that . is e-almost minimizing in U (or simply e-a.m. in U) if there
is no isotopy ) supported in U such that

H2(Y(t, %)) < HA(D) + gforallt el
H((1,%)) < HA(E) —e.

A sequence of closed sets {>"} is said to be a.m. in U ifeach X" ise€,-a.m. inU for some
€n 4 0.

REMARK 3.30. In the definition above, we use closed sets instead of surfaces in order to
include slices of sweepouts.

Using a version of the arguments of Pitts (PITTS, 1981), Colding and De Lellis prove the
following (cf. (COLDING; DE LELLIS, 2003))

PRrOPOSITION 3.31. There exists a continuous functionr : M — R, and a min-max
sequence {¥;} such that:

1. {3,} isa.m. in every annulus An centered at x and with outer radius at mostr(x);
2. In any such annulus, ¥; is smooth when j is sufficiently large;

3. X; converges to a stationary varifoldV in M, as j T oo.

In the proof of this proposition, the varifold V' is taken as in Corollary 3.25.

Let {¥£;} and V be as in Proposition 3.31 above. One proves that if {3J,} is a.m. on a

certain annulus An, then there is a stationary varifold ' such that

1. V and V' have the same mass and V' = V' on M\ An;

2. V' is a stable minimal surface inside An.

Such V"’ is said to be a replacement for V. This replacement property and a com-
pactness property for stable minimal surfaces are used to prove that V' is an integer
rectifiable varifold (cf. (COLDING; DE LELLIS, 2003, Lemma 6.4)).

For V' as in Proposition 3.31, one can construct a further replacement V" also for V".
One proves that if we can replace sufficiently many times, then I must be regular. Then

the last part of the proof of Simon-Smith is dedicated to construct such replacements.
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3.3 SIMON-SMITH WITH BOUNDARY

In this section, we prove a version of Simon-Smith’s Theorem for manifolds with bound-
ary. If OM # @ and v is the outward unit normal vector field along 0 M, then we define
the scalar mean curvature H (0 M ) of the boundary by H=-H (OM)v. In this fashion,
if H(®M) > 0, then H points into M. The theorem is

THEOREM 3.32. Let(M, g) beacompact three-manifold with connected boundary such
that H(OM) > 0. If A is a saturated set of sweepouts of M with |0M| < W (M, A), then
there is a min-max sequence obtained from A\ that converges in the varifold sense to an
embedded minimal surface 3. (possibly disconnected) contained in the interior of M.
The area of ¥. is equal to W (M, \), if counted with multiplicities.

We prove some lemmas before Theorem 3.32.

LEmMMA 3.33. Let M be a compact riemannian manifold with boundary. In a neighbor-
hood of OM , the metric can be written as g = dr® + g, on [0,2a] x OM for somea > 0,
where OM is identified with {0} x OM.

REMARK 3.34. Here, g = dr? + g, means that if
u; = (t;,v;) € R x (T,0M) = T, ([0, 2a] x OM), i=1,2
are two tangent vectors at the levelr € |0, 2a|, then

g(ur, ug) = tita + g, (v1, v2),

for some riemannian metric g, on OM.

Proof. Let n be the normal unitary, inward vector field on 9M. Since M is compact,
L = inf,cprinj(z) > 0. Define

F: [0,L] xOM —s M
(rz) > exp,(rn(z)).

We show that dF ;) is an isomorphism, for all (0, z) € [0, L] x OM. Letv € T,0M be
givenbyacurve o : I — 0M, a(0) = z,a/(0) = v. Then a(t) = (0, a(t)) is a curve in
[0, L] x OM with @(0) = (0,2) and w := &'(0) = (0, v). We have

d

AF o = -
0.0) W= "

Fa(0) = 5| expuOn(a) = | o) =o

0

dt

Now, if we take 5(t) = (at, z), s # 0, we have 5(0) = (0, z), u := '(0) = (s,0) and

d
dF(O,x)u = —

d
= Fp) = =

. dt

) exp, (stn(z)) = sn(z).

This shows that dF{y ) sends a basis of T{g [0, L] x M with form {(0, v1), (0, v2), (@, 0)}
onto a basis of 7', M, since 7 is normal. Therefore dF|y ) is an isomorphism.

Then the inverse function theorem gives us an open cover of {0} x OM such that F’
restricted to each of these open sets is a diffeomorphism onto its image. Since M is
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compact, we can find a > 0 such that F restricted to [0, 2a] x OM is a diffeomorphism
onto its image, say U.

Now, we turn F' into an isometry. If g is the metric on M, define a metric g on [0, a| x OM
by
g(u,w) = g(dF u,dF w).

We only have to show that g has the form stated in the theorem. First, observe that at
the point (0, z),

f]((s, 0): (07 U)) = g(dF(O,I)(‘S? 0)7 dF(O,ﬂc)(()? 'U)) = 9(577@)’ U) =0,
forany s € Randv € T,0M.
Consider the differentiable function f : [0, 2a] — R given by

f(?") = g(dF(r,x)(Sv O): dF(r,x)(O> U))

We have just showed above that f(0) = 0. Consider 5(t) = (t+r,z) and &(t) = (r, a(t))
with @(0) = (r,z), @ (0) = (0, v). We have that

f/( )—ag (dFTz(l 0), dFTx(O v)
—y (dem (1,0), dF}y.0) (0, v ) ( (1,0), 5dp(r,m)(o,v>>
=g (dF(m)(l,O) dF(m (0,v )

24| F(B(t) = 2 4|, exp, ((t+r)n(z)) = Zd(exp,)m@n(z) =

since 2dF, ,)(1,0) =
= 0, because r — exp,(rn(x)) is a geodesic. Now,

pp expx(m( )

D D d _ D| d _ _ D| d
e 0.0) = 3 | Fla®) = 3| S = | Lo (rta(o)
D
= at d(expa(t))Tn(a(t))n(a(t))'
0

Then, it follows from the Gaull lemma that

—~
*
N—
Il
Nt
VR

A(exp,) (). d(expa@))m(a(t)m(a(w>)

dt

0

9 (d(expyge) )rm(aenn((t)), d(€xpy )rn(ae)n((t)))

This proves that f(r) = 0 for all » € [0, 2a], no matter which vector v we choose in
the definition of f. This proves that the mixed terms in the following computation are
zero, for any level r € [0, 2a]. If (s, u), (t,v) € T(;4)[0, 2a] x OM, then

9((s,u), (t,v)) = g((s,0), (t,0)) + g((s,0), (0,0)) + g((0,u), (t,0)) + g((0,w), (0,v))
stg((1,0), (1,0)) + g((0,u), (0,v))
tg<dF(r,z)(17 0)7 dF(r,a:)(lv 0)) =+ g((()? u)? (07 U))
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= Stg(d(epr)m(a?)n(x)» d(expx)rn(x)n(w)) +g((0,u), (0,v))
= stg(n(z),n(z)) + g((0,v), (0,v)) = st + gr(u, v),

with the metric g, on OM is defined by g, (u,v) = g(dF{;.2)(0,u), dF{;2)(0,v)). O

Thus, if OM # @, we identify the neighborhood given by Lemma 3.33 with [0, 2a] x M
for some ¢ > 0 and introduce some notations. We denote C, = {r} x dM and M, =

M\ ([0,7) x OM). Observe that Cy = {0} x OM = OM, under the identification. Also,

since —Z is an extension of v to [0, 2a] x dM, we can extend the function H(9M) toa

function H on [0, 2a] x 9M defined by the equation H, (z) = H (r, x) 2 (z), where H,(x)
is the mean curvature vector of C, at (r, z). We also denote by A = A, ;) the second
fundamental form of C, at (r,z), i.e. Ap.q)(u,v) = g(Vyv, £), where u,v € T(,.4)C,.

Using this notation, we have the following lemma.

LEMMA 3.35. [fH(OM) > 0 then forany{%;} € Aandt, € (0, 1), thereexists a smooth
one-parameter family of diffeomorphisms (F})o<t<1 of M so that

1. FQ = ]lM,'
2. F, = 1, in a neighborhood U of OM;
3. B (Z)| < [l

4. foranyt > t,, we have Fy(¥X,) C M, .

Proof. Let {¥;} € Aandt, € (0,1). Since {X,} is a sweepout, the function ¢
d(3;,0M) is continuous. Also, since ¥J; and M are compact and disjoint for ¢ > 0,
we have that d(X;,0M) > 0 for¢ > 0. Thus, since [t/2, 1] is compact, there is some
n > 0 such that d(3;,0M) > 2nforallt € [ty/2,1]. We can also suppose that 7 is
sufficiently small so thatn < a/8.

We denote A = A, ,) the second fundamental form of C, at (r,z), i.e. A(u,v) =
9(Vyv, 2), with u,v € T(,,)[0,2a] x OM. The function on [0, 2a] x M defined by
(r,x) = |A] = [Apa)| = sup{|A@.z)(u,v)| : |u] < 1,|v] < 1}is continuous and then,
since [0, 2a] x OM is compact, we have ¢ := sup{|A| : (r,z) € [0,2a] x IM} < 0.

Choose a nonnegative real function ¢ so that ¢’ < —c¢, ¢(r) > 0forr < a,and ¢(r) =
0 for» > a. We can do this, for example, by taking a bump function o nonnegative and
nonincreasing such that a(r) > 0 forr < a and a(r) = 0 for r > a and then putting
¢(r) = a(r) exp(—cr). Then, choose also another nonnegative bump function ~ such
that k(r) = 0 forr < pand k(r) = 1 for r > 27n. We consider ¢ and « to be defined on
[0, 2a] x OM without changing the notation, i.e. ¢(r,x) = ¢(r) and k(r, z) = k(7).

Denote by (Ft)ogt<oo the one-parameter family of diffeomorphisms generated by the
vector field X = m(r)gb(r)%. Notice that X is a vector field on the entire M/, since
X = 0fora <r < 2a(i.e. we can automatically extend X outside [0, 2a] x OM).

Craim 3.36. For every surface L C My, the functiont — |F,(L)| is nonincreasing. In
particular, |Fy(L)| < |L| ift > 0.
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By the first variation formula, we have

Thus, it suffices to show that for any orthonormal basis {e;, e, } wehave 32, (V. X, ¢;) <

0 (since divg, ) X = 52 9(V., X, e;) for a particular choice of {e;, e, }, namely, a ba-
sis for the plane tangent to F}(L)). Notice that x = 1in My, and F}(L) C M,,. Without
loss of generality, we can assume that e; is orthogonal to % (and thus e, is tangent to
C}). We denote e} a unit vector tangent to ', and orthogonal to e;. We also denote by
7 the projection of an arbitrary vector in M into the tangent space at C,.. Under these
conditions and notations, we have

2 2
Zg(veiX, ei) = Zg (vel¢ ) Zg (ei — + QSVeZ 0 7 z)
=1 ; =1
2

=y (62(@%,62) +0> g (Vei%,ei) ((d¢ €2) 7~ ) + cbzg ( )

=1

Writinge; = e +¢) with el tangentto C,, e} = g(es, 2)Z

B normal to ., and noticing
that ¢ does not vary along C',, we have

do - ex = dp(es) + dop(ey) = dg(ey ) =g (62’ %) dgb% —9 (62’ %) ¢

Thus
2 2 9
;g(VeZX, ei) = ¢/9 (627 ) ; ( 5, 61’) .

Now, since m(ey) = ey, m(es) = ez — g(e2, )2, g(Ve, 2, &) = 0and V o 7 = 0, we

have
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and thus we have

2

S lVuXe) =dlg (2 ) = 03 Alw(en.m(en)

i=1

Notice that 7(es) = g(es, €})e}, and g(ea, €})? + g(e2, 2)? = 1, since |eo| = 1 and
{e1,€ef, £} is an orthonormal basis. Then

0 *\ % 0
S Atn(e)n(e)) =9 (Tuer 57 ) 40 (Vaeaspsateanciles, 1)

Then, we finally get

2

2
S a9 Xoe) = (6 + Alch.eD)olg (en g ) ot

i=1

a 2
< (¢ +co)g (ez, 5) — ¢H <0.

This proves the claim.

Notice that F} is the identity in M, and X = ¢(r) £ with ¢(r) > 0for2n < r < a. Thus
limy_oe Fy(r, ) = (a,z)forallz € M andr € [2n, a). Notice also that each C, is taken
onto some other C, since the field X is orthogonal to each C,. and | X| is constant along
C,. Therefore, since lim;_, - Ft(r, x) = (a,x) for2n < r < a, there must be some 7" > 0
such that Fi7(Cy,) = C, /5. Choose a smooth nonnegative function / : [0, 1] — R such
that h(t) = 0fort < ty/2and h(t) = T fort > t,.

We claim that F} := Fh(t) fulfill the conditions in the statement of the lemma. We have
Fy = Fg = 1. Since X = 0 outside M,,, we have that [} = Fh(t) = 1,/ outside M,
and this proves (ii). To prove (iii), recall that at the beginning of the proof, we have set
that d(X;,0M) > 2nfort € [ty/2,1]. Thus, ift > t,/2, then ¥; C My,. In this case, it
follows from the claim that |F,(3;)| = | Fy (Z:)| < |24 Ift < t5/2 then the inequality
is trivial because F; = FO = 1,,. Finally, we prove (iv). If t > t,, we have F; = FT. In
this case, since >, C M, we conclude that F;(%;) C FT(MQH) = M, 5. This finishes
the proof of the lemma. [l

LEmMA 3.37. If H(OM) > 0 and |0M| < W(M,A), then there exista > 0, > 0
with |OM| < W (M, A) — 26 and a minimizing sequence {¥}'} € A such that || >
W(M,A)—0 = d(X},0M) > a/2.

Proof. Notice that we are in a particular case of Lemma 3.35. Let mq = W (M, A) and
choose 0 < § < 1(mg — |@M|). This is possible since |9M| < mg. Choose a > 0 as in
the proof of Lemma 3.35.
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Let {3;} € A. By the definition of sweepouts for manifolds with boundary, there is a
smooth function w : [0, €] x OM — R, satisfying w(0,z) = 0 and %2(0,z) > 0, such
that ¥; = {exp,(—w(t,z)v(x)) : x € IM}. Thus there exists ¢ > 0 such that the map
U [0,2¢] x OM — M givenby ¥ (t, z) = exp,(—w(t, z)v(z)) is a diffeomorphism onto
a neighborhood of 0 M. Since the area varies continuously and ¥, = M, we can take
e sufficiently small so that || < |0M|+ 6 fort € [0, 2¢]. Now, choose ty = ¢ in Lemma
3.35 and then consider the sweepout {I';} € A given by I'; = F;(X;). We claim that

o sup,c; HA(T;) < sup,e; H*(X;) (immediate from Lemma 3.35)

° lf‘Ftl > mo — (5, then Ft C Ma/g.

To prove the second item, we show that the condition my — § < |[';| implies ¢ > ¢,
and the conclusion follows from item (iv) of the lemma. Suppose by contradiction that
t < tp = e Inthiscase,mg— 6 < |I}| < |5 < [OM|+0 = mo < |OM|+ 26 <
|OM| 4+ mo — |OM| = my < my, a contradiction. This proves the second item.

These two items together show that, if {3} } is a minimizing sequence, then the corre-
sponding {I'{"} is also minimizing and has the property

Y| >mog—0 = d(I'},0M) > a/2.
]

THEOREM 3.38. Let(M, g) beacompact three-manifold with connected boundary such
that H(OM) > 0. If A is a saturated set of sweepouts of M with |OM| < W (M, A), then
there is a min-max sequence obtained from A that converges in the varifold sense to an
embedded minimal surface 3. (possibly disconnected) contained in the interior of M.
The area of ¥. is equal to W (M, A), if counted with multiplicities.

Proof. The firststepis to modify the pull-tight procedure from the case of empty bound-
ary to find a min-max sequence {I'} },en € A uniformly distant from 0/ which con-
verges to a stationary varifold V' with d(suppV, 9M) > 0.

Leta > 0,0 > 0and {37} be as in Lemma 3.37. Consider (M, g) a closed (compact
without boundary) extension of (M, ¢). Let ¥ = {V € V(M) : |V|| < 4mo} and ¥’ =
{V e V(M) : |V|| < 3my}, where my = W (M, A). Then repeat the construction of
Section 3.2 but with

Vi ={V e : Visstationary} U{V € ¥ : |V]| < my— 0}

instead of V... Then, not only the stationary varifolds are going to be fixed under the
pull-tight but also those varifolds with mass bounded above by mo — ¢. We can also

require that the map x : ¥* — A'(M) in the construction is such that || xv [l < a/4,
forall V € . We obtain a continuous map ¥ : 7’ — J,(M) such that

« fV e V' NV, then Uy, V = V;

o fV ¢ Vi, then |0y, V| < |[V]| — L(d(V, V%)) for some increasing continuous
function L : [0, 400) — [0, +00) with L(0) = 0;

e foreveryV € ¥/, 6‘;’—; = T(V)xy for some continuous function 7" : ¥’ — [0, 1]
with T(V) = 0if V € V.
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Fixn € N. Since {3} };c; is minimizing, we can suppose Xi' € ¥ forallt € I,n € N.
For each n € N, we can choose a smooth one-parameter family of isotopies {7} }1es
which approximates { Vs } < so that

A OV
0s ds

a

<3 and HA(I") < HA(ZP) — LO(ZT, VL)) +e™,

[e.9]

whereI'? := ¥7(1, X"). We do one more requirement for our approximation. Consider
the continuous function f,, : I — [0, +00), f,,(t) = H?*(X}). Then, f,'(A) is an open
subset of /, with A = [0, my — ¢). We know from real analysis that any open subset of
R is a countable union of open disjoint intervals. Since I is compact, f, ' (A) is a finite
such union. Since ¥ = OM and |O0M| < mg — 26 < my — &, we have that 0 € [, (A).
So, there are 0 = ¢; <ty <t3 < -+ <tgm) < 1such that

FiH(A) = [0,82) U (t5,t4) U+ - U (tak(n)—1, tok(n))s

where the last interval may be closed or not in tyy,), if o) = 1. Fort € 1 (A), we

OWsyp

-—- = O and therefore ¥y;» depends smoothlyont, fort € f,'(A). Thus, we can
require our approximation \i/? to be such that

have

g = Uyp, forte f,'(A).

Cramm 3.39. Foreveryn € N,t € I, we havel'} C M.

Fixn € N. If H?(X}) < mo — 6, then " = X7 C M. So suppose H?(X}) > mg — 6.
Suppose also, by contradiction, that there exists p € I'} N M \M. Recall {X} },; is as
in Lemma 3.37, thus d(X7, 0M) = d(XP,dM) > a/2. Since p ¢ M, for any smooth
path v : I — M joining some point of X7 to p we must have /() > a/2 (every such
path must intersect dM). But since I'} = U}(1,X7), there is some = € X} such that
p = U?(1,z). Then consider the smooth path v : I — M given by v(s) = U7 (s, z)

joining x to p. We have
1 1 1 i
E(V)Z/Hv’(S)HdsS/ dsé/(H :
Js
0 0 0o 0
a a 3a
< /— -+ st = g <

1
8

— T3 ysn
B ( t)XEt

oy
0

. ||T<z¢>><zg||oo) s

o)

Y

N

0

a contradiction. Thus, I'} C M forallt € I.
Now, let ¢ : M — [0, 1] be a smooth function so that ¢(p) = 0forp € [0,a/16) x OM
and ¢(p) = 1, for p € M,s. Also, denote

_ o X(M).

~n

Xt_ as

Then define x}' € X (M) by xi" = ¢x} and let {®} },c; be the smooth one-parameter
family of isotopies of M generated by { x} }+c;. All of these isotopiesleave U = [0, a/16) x
OM fixed and ®}(1,-) € Diff, forallt € I. Then, {®} (1, X}) }er € A. We have

HAE) <mp—0 = XP'=0 = ®M1,X0) =" =T,
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HAEP) > mg— 0 = NP C My = ®/(1,5)) = (1, %7) =T

Therefore, {I'} }:c; € A, foralln € N.

Now, the property H?(I')") < H?(XF) — L(d(X, V%)) + e ™ implies that {T'7 }, is also
minimizingand d(I'? , V% ) — 0for any min-maxsequence {I'} },cn. Since H*(T'} ) —
mo > mgy — 0, we necessarily have 9(I'} , V) — 0. Thus, up to a subsequence, there
is some stationary varifold V' € V(M) such that I';} — V. For some n, € N, we have
n>ny = H(Z})>my—6 = X! C M,p. Then, arguing with paths like
above, we have the triangle inequality below

3
n>ny —> g < d(SP,OM) < d(SP T0 )+ d(I7 OM) < ga +d(T) OM)

— % < d(IOM).

This implies suppV C {x € M : d(z,0M) > a/8}.

The second step is to proceed as in before to find some subsequence I'} which is al-
most minimizing in every annulus centered at a point x € M and with outer radius
smaller than r(z). We can require that(x) < a/16 forallz € M. Since d(I'} ,OM) >
a/8forn > ny, this implies that whenever B, ;) () NOM # @ we have B, (x) NI} =
@ for n > ny. Therefore all arguments apply.

The third and final step is to prove the regularity of V. This can be done exactly as in
because all arguments from (COLDING; DE LELLIS, 2003) are local and only take place
in annular regions of small radius which do not intersect 9. ]
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4 (FENUS AND INDEX

In this chapter, (M, g) will denote a connected compact orientable riemannian three-
manifold without boundary and A will denote a saturated set of sweepouts such that no
sweepout {X; };c; in A contains a nonorientable surface. All surfaces are considered to
be closed (compact without boundary). We denote by g(3) the genus of ¥ and ind(X)
the Morse index of Y (see Definition 1.28). Also, there is no special reason why we
should use the interval / = [0, 1] in our definitions, we can consider any closed interval

[a, b] instead.

4.1 THE (%),-CONDITION

The next result is useful to prove that certain min-max minimal surfaces have Morse
index one.

PROPOSITION 4.1. If{Et}te[,m € A is a sweepout such that

1. % is an embedded surface and there is a smooth variation F' : [—¢,¢| x ¥ — M
such that 3, = Fy(X), forallt € [—e,€|;

2. HA(Xy) < H2(X), forallt # 0;
3. |20| - W(M, A))

then Xy is a minimal surface of index one.

Proof. First, we prove that X, is a minimal surface. If not, then H # () at some point
of . Let X be any ambient vector field which is zero outside a tubular neighbor-
hood of ¥ and is equal to H on %. Denote by {G;}scr the one-parameter family of
diffeomorphisms generated by X and define the function f : [-1,1] x R — R by
f(t,s) = H*(G4(%;)). From (i) we have that f is smooth on [—¢, €] x R. It follows from
(i) that

af d d
- = — Y)l=—| |2/ =0.
5 0.0 = | 1Go(%)l = | (%] =0
On the other hand, it follows from Remark 1.9 (ii) that
af d
— = — (2 )
5. (0= 4| [G=o)] <0

Thus, the Taylor expansion of f around (0, 0) has the form

f(t,s) =|20| + As+r(t,s), withA <0, lim

=0.
(t.5)—(0,0) | (L, 8)]

CraIM 4.2. Thereexists 6 > 0 such that f(t,0) < || forallt € [—1,1].
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If the claim is false, then for all § > 0 there exists t5 € [—1,1] such that f(ts,0) >
3| = f(0,0). Take § = %, n € N. Since [—1,1] is compact, we can suppose that
tn, — to € [—1,1]. Then

1 n—0o
f(tnv E) 2 ’ZO‘ % f(t()ao) 2 ‘20‘ — H2(2t0) 2 ’20|

and then (ii) implies ¢, = 0. From f(¢,, +) — [$o| > 0 follows that

1 1
0<A—+r(ty,,—), VneN.
n n

Thus,

IS [ (3]

1
is a contradiction with nh—>I£IO r((:fﬂ = 0. This proves Claim 4.2. The sweepout {G5(3;) }1e[—1.1]

isin A, but Claim 4.2 says that

sup H*(X) = max HA(Z,) < |Xo| = W(M,A) = inf sup HA(T,),

te[—1,1] te[-1,1] {Teyer e(-1,)

a contradiction. This proves that ¥ is a minimal surface.

It remains to prove that ind(X,) = 1. Notice that (i) and (ii) imply that ind(3) > 1. Let
v be a unit normal vector field along ¥y and ¢, € C*(%,) such that

OF

En = ¢V = Z.

0

If ind(3y) > 1, we can choose orthonormal eigenfunctions ¢, ¢o € C®(%,) for the
Jacobi operator with negative eigenvalues (see Proposition 1.26). There exists a non-
trivial linear combination of ¢; and ¢, say ¢3 = a¢; + bgs, which is orthogonal to
Loy € C*(%y), i.e.
P3LpodXg =0, ¢3 # 0.
o

This can be done for any vector space with inner product, a pair of linear independent
vectors and a third one. Consider the normal vector field X = ¢3v along ¥y and ex-
tend it smoothly to be zero outside a tubular neighborhood of >J;. Let {FS}SGR be the
smooth one-parameter family of diffeomorphisms generated by X. Then, consider
f:[-1,1] x R — Rgiven by f(t,s) = H*(F,(,)). Again, f is smooth on [—e¢, €] x R.
Since Y, is a minimal surface, we have

of of

—(0,0) =0 = —==(0,0).
20,00 =0 =L(0,0)
From (ii), we have ~
0*f
W(O’ 0) < 0.
Doing basically the same computation in the second variation formula, we have
*f
—f(O, 0) —- — ¢3L¢0 dZO — O

dsot o
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By the choice of ¢3,
0*f
2 0:0) =~ | PsLdsdXy = —/ (a1 + bda)(a(—=A1)¢1 + b(—A2)d2) d¥o
s o o

= \a? + \b? <0,

since the eigenvalues \; and )\, are negative. Then the Taylor expansion of f around
(0,0) has the form

=0

) t
t,s) = |So| + At* + Bs® + r(t ith A, B <0, lim
J(t5) = [Xol + AF 4 Bs™ 4 r(t, 5), with A, B <0, Him 3-S5

CraiMm 4.3. There exists§ > 0 such that f(t,0) < |So| forallt € [—1,1].

As before, if this is not true, we find a sequence t, — 0 in [—1, 1] such that f(t,, %) >

|X0| = £(0,0). Thus

1 1
At2 + B— +1r(t,,—) >0, Vn €N
" n? n

Then, denoting C' = min{—A, —B} > 0, we have

C(t2+-5) —At2— B bns
0<C= ("+1”2>§ - 1”2§r< ’“1).
2+ 5 2+ =5 2+ 5
1
This is a contradiction with lim Tgt””f) = 0, thus Claim 4.3 is true. But such a claim is
n—oo ‘n T2 5
a contradiction with |Xy| = W (M, A), as before (because { F5(3;) }+cj-1,1] € A). There-
fore, ind (%) = 1. O

DEFINITION 4.4 (HEEGAARD SPLITTING). A closed orientable surfaceX C M is said to be
a Heegaard splitting if M\Y = AU B with AN B = @ and A and B are handlebodies,
i.e. diffeomorphic to a solid ball with handles attached. The Heegaard genus of M is
the lowest possible genus of a Heegaard splitting of M.

REMARK 4.5. Every closed orientable three-manifold M has a Heegaard splitting. In-
deed, if M is compact, then M has a finite triangulation (by tetrahedra)'T'. Let o be the
1-skeleton structure of T and A be an open e-tubular neighborhood of o. Notice that A
is homeomorphic to a solid sphere with finite handles and B as well, with B = M\ A.
Then, 0A can be deformed into a smooth embedded closed surface X.. Since M is ori-
entable, T' can be oriented and hence Y. is orientable and a Heegaard splitting of M.

DEFINITION 4.6 ((x);,-CONDITION). Ifh > 0 is an integer, we denote by &), the collection
of all connected embedded minimal surfaces¥® C M with g(¥) < h. We say that (M, g)
satisfies the (x),-condition if

1. M does not contain embedded nonorientable surfaces;

2. no surface in &, is stable.

REMARK 4.7. If M has positive Ricci curvature and does not contain embedded nonori-
entable surfaces, then it follows from Corollary 1.22 that M satisfies the (%), -condition
for all h. Lens spaces L(p,q) with odd p and the Poincaré homology sphere are some
examples.
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LEmMMA 4.8. If M is a smooth connected orientable three-manifold and > C M is an
embedded connected orientable closed (as a set) surface, then M\ consists of one or
two components.

Proof. Since Y. and M are orientable, we can consider a unit normal vector field  along
.. Since M is connected, any point p € M\ can be joined to any other point ¢ €
by a smooth path. Let vy : [a,b] — M be a smooth path with v(a) = p € M\X and
v(b) = q € X. Since X is closed, v~!(X) is closed in [a, b] and there is some t, € (a, D]
such that y([a,tp)) € M\X and y(to) € X. Thus, every point p € M\ can be joined
by a smooth path to some point ¢’ € 3, with ¢’ being the only contact point of > and
the trace of the path. Moreover, we can suppose that the path touches X transversely,
i.e. if u is the vector tangent to the path at the contact point, then g(u,v) # 0 (if the
path is tangent at the contact point, since X is embedded, we can “fix” the path in a
small neighborhood of the point in order to turn it transversal).

Figure 9

CraMm 4.9. Suppose thatp € M\X can be joined to some point q € 3 by a path~ :
[a,b] — M with~([a,b)) C M\X,v(a) = p,v(b) = qand g(v'(b),v) < 0. Then p can
be joined to every point of X in this fashion.

Let X" be the set of points of ¥ that are attained by paths beginning at p as in the
claim. By assumption, X" # &. If ¢ € ¥, then taking a small adapted coordinated
neighborhood U of ¢, we see that every ¢ € U N X isin ¥ . Therefore, X1 is open in .
If ¢ ¢ X7, then, by the same argument, no point in a neighborhood of ¢ as before can
be in ©*. Thus, ¥\X" is open in X. Hence, X% is open and closed in ¥ and since ¥ is
connected, we must have ¥ = Y. This proves the claim.

Figure 10

Let AT be the set of points p € M\X that can be joined to some (and, therefore, to
every) point of ¥ by a path ~y : [a,b] — M with y([a,b)) C M\X, y(a) = p,v(b) € e
g(7'(b),v) < 0. Changing the last condition by g(7'(b), v) > 0 we define A~. What we
did in the beginning of the proof shows that M\¥ = AT U A~.
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Craim 4.10. A" and A~ are connected components of M\ X..

Letp € A" be fixed. If p’ € M\ can be joined to p by a path contained in M\, then
concatenating this path with that one which joins p to the surface > and then turning
it smooth, we obtain a smooth path ~ joining p’ to ¥ with g(+',») < 0. Therefore,
p’ € AT. Hence, if C, is the connected component of M\ X which contains p, we have
C, C AT.Now, letp,p’ € A*. Then p and p’ can be joined to ¥ by smooth paths v; and
v2 with g(v}, ) < 0,7 = 1, 2. By claim 4.9, we can suppose that 7, and  have the same
point of contact ¢ € ¥. Again taking a coordinated neighborhood U of ¢ as before, we
see that the ends of v, N U and +, N U are in the same “hemisphere” of U (otherwise,
it they would not be able to hit the point ¢ with the same sign). Therefore, working
inside this hemisphere, it is possible to concatenate v, and —,, “unstick” from ¥ this
part of the path and finally, to turn it smooth, obtaining a smooth path joining p to
p' completely contained in M\X. This shows that A* = C,. The proof that A~ is a
connected component of M\ Y. is the same. This proves the claim.

Figure 11

Since M\ = A" U A~ and A", A~ are connected components, we have that M\%
has at most two components.

O

LEMMA 4.11. If (M, g) satisfies the (x),-condition, then any surface > € &, is a Hee-
gaard splitting.

Proof. Let . € &,. We first prove that > must separate M in two components. By the
previous lemma, M\ ¥ has at most two components. Suppose, by contradiction, that
M\X is connected. Let ¢ € C*(X) be an eigenfunction for the lowest eigenvalue \ of
the Jacobi operator. Since ¥ is unstable, we have A < 0. By Proposition 1.26 (iv), we can
take ¢ strictly positive. Let X be a vector field in M such that X = ¢ on X, where v is
a unit normal vector field along ¥. Let { I} };cr be the smooth one-parameter family of
diffeomorphisms generated by X. Since X does not separate M, for ¢ > 0 sufficiently
small we have that

M\(F(S) U F_(%)) = A, UB,

where A;, B; are disjoint open regions with ¥ C B;.
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1A
Figure 12

From (HUISKEN; POLDEN, 1999, Theorem 3.2), we have

O G(H(RE), ) = Lo = 26> 0,
0

where 1, is the unit normal vector field along F;(>) which varies smoothly on ¢ and
such that vy = v. Since H(Fy(X)) = H(X) = 0, this formula tells us that, for small
t>0, . .
gH(F_(X)),v—) <0 and g(H(F,(X)),n) >0,

i.e. the mean curvature vector of 0A; points into A; (0A; is said to be mean convex).
It follows from (MEEKS; SIMON; S. T. YAU, 1982, Lemma 4, p. 657) that we can mini-
mize area in the isotopy class of one of the boundary components of 0 A;, say F;(X), to
obtain an embedded stable minimal surface >’ in A;. Since > € &}, we have g(3') =
g(Fy(X)) = g(X) < h. Thus, ¥’ € &, is stable. But this is impossible since M satisfies
the (x),-condition. Therefore, M\ ¥ must have two components.

To prove that X is a Heegaard splitting, we will use the following characterization for
handlebodies:

ProPOSITION 4.12. (MEEKS; SIMON; S. T. YAU, 1982, Proposition 1, p. 650) Let N be
a compact three-dimensional Riemannian manifold with non-empty boundary. N is a
handlebody if and only if for every compact surface . in the interior of N and for every
positive number e there exists a surface Y.’ isotopic to ¥ such that |Y'| < e. Actually N
will be a handlebody if and only if the isotopy class of a surface parallel to a boundary
component contains surfaces of arbitrarily small area.

Suppose X is not a Heegaard splitting. Then, some of the two components of M\,
say N, is not a handlebody. Since ¥ = ON is unstable, and N is not a handlebody,
we can minimize area in its isotopy class and obtain a stable minimal surface > in the
interior of N. Since ¥ and Y’ are isotopic, g(¥X') = g(X) < hand ¥’ € &},. Again, this is
impossible, since M satisfies the (x),-condition. This proves the lemma. ]

LEMMA 4.13. If(M, g) satisfies the (), -condition, then any. € &, must intersect every
other embedded minimal surface.

Proof. Let ¥; and >» be embedded minimal surfaces with ¥; € &},. Suppose by con-
tradiction that 3; N 0y = &. By the previous lemma, ), is a Heegaard splitting. Then,
there is some region A C M, homeomorphic to a handlebody with ¥; = 0A and
Y9 C A. Then there is a region B of M such that 0C' = ¥; U ¥5. But then C'is not a
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handlebody. Since ¥; is unstable, it follows again from the characterization of handle-
bodies above that we can minimize area in the isotopy class of >;, to obtain a stable
embedded minimal surface >’ C C with g(X') < h. Again, this contradicts the fact
that ) satisfies the (x),-condition. The lemma is proved. O

Let X be a Heegaard splitting of M. There is a natural class of sweepouts {3; }¢c[—11]

associated to .. Each {3}, }+c[_1 1] in this class satisfies

1. ¥y = Y and ¥; isisotopicto X forall -1 <t < 1;

2. if Ny and N, are the connected components of M\ X then, up to a change of NV,
and Ny, {3 }ie[-1,0) foliates Ny and {; },¢[o1) foliates N,, with ¥_; and ¥, being
graphs.

The smallest saturated set that contains this class of sweepouts is denoted by Ay, and
we call it the saturated set associated to 3. If g(X) = h, we define the large saturated
set associated to 3., denoted by A" as the union of all saturated sets associated with

Heegaard splittings of genus h.

The goal of this section is to prove the following theorem:

THEOREM 4.14. Suppose (M, g) satisfies the (), -condition, where h is the Heegaard
genus of M. Then there is an orientable embedded minimal surface ¥y C M with
9(X0) = h andind(Xy) = 1 such that

S0l = inf ] = W(M, As,) = W(M, A").

To prove this theorem, we will use some results without proof. The first one concerns
on compactness properties for minimal surfaces and is proved in (WHITE, 1987). Be-

fore we state it, we give some definitions and notations.

Denote by B; (M) the unit sphere bundle on M, i.e. the fiberatz € M is By(p) = {v €
T.M : ||v|| = 1}. We denote a point of By (M) by (z,v), withz € M and v € B;(x).
Consider a function ¢ : B, (M) — R. This defines a functional on orientable surfaces
in M by



72 4. GENUS AND INDEX

where . is the surface and v is the unit normal vector field along >.. If ® is even, i.e.
O(x,v) = &(x, —v), then (X)) is defined even if ¥ is nonorientable. We say that ¥ is
®-stationary if
d
—| ®(3;) =0
dt o ( t) )

for any variation {3 }c[_,, with Xy = X. Of course, & = 1 is the area functional, and

in this case X is ®-stationary if and only if it is a minimal surface.

If T is an embedded curve in M, then |||, denotes the C*>*-norm of I' parametrized

by arc length and

dF ($7 y)
L5, =T OéeraX{— cryyel,x#ye,
050 = T e o) #
where dr and d); are the intrinsic geodesic distance on I' and M, respectively. Now we

state the compactness result in its generality. We will need just a particular case of it.

THEOREM 4.15. (WHITE, 1987, Theorem 3, p. 251) Let M be a compact 3-manifold
with (possibly empty) boundary. Let Y; be a sequence of connected immersed ®; sta-
tionary surfaces (with or without boundary), where

||q>z - (I)Hl,a + ||D2(I)z — DQ(I)HLQ — 0asi — 0.

Suppose that the area and the genus of X; and the total curvature of 0%; are uniformly
bounded, and that the 0%.; converges as sets (i.e. in the Hausdor{f metric) to some set .
Then

1. Thereisa finitesetS C M and a subsequence Yy that converges uniformly inC*?
(B < «) on compact subsets of Q2 = M\ (S UT") to a -stationary surface X.

2. If|0%i|l5 , is bounded, then we can let§) = M\S.

Now, suppose that each ¥.; is embedded, ®; is even and
Hq)z - (I)HZ,a + HDQCI)Z - D2¢H27a —0asit — oo.

Then

3. (XU S)\I is a regular embedded surface.

4. IfoM isstrictly convex, 0%; C OM is notempty, and ||0%;||5 , is uniformly bounded,
then S is empty.

Our surfaces are going to be embedded, all boundaries empty and the sequence of
functionals is going to be constant equal to the area functional. Thus, all hypotheses

in this theorem are going to be trivially satisfied.

Now we introduce the second compactness result. Let ., be the set of embedded
closed minimal surfaces ¥ in M with Euler characteristc x(¥X) > n and consider the
weak topology on .#,, induced as a subspace of V(M) (space of 2-varifolds on ). We

have
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THEOREM 4.16. (ANDERSON, 1985, Theorem 4.2, p. 103) The boundary0.#,, = %n\///n
of M, is contained in .#, », counted with multiplicity > 2.

The next and last result we state before we prove Theorem 4.14 gives a genus bound

for minimal surfaces obtained by the min-max method.

THEOREM 4.17. (LELLIS; PELLANDINI, 2009, Theorem 0.6) Let A be a saturated set of

sweepouts in M and {¥} }, ¥ be the min-max sequence and minimal surface produced

in the proof of the Simon-Smith Theorem. Let . = Zf\il n;I'; where the I';’s are con-

nected components of . without multiplicity and n; € N\{0}. Denoting O = {i :
I; is orientable} and N" = {i : T'; is nonorientable}, we have

1 PP n
Zg(ri) T3 Z(Q(Fz) —1)<go:= hg%(glfhmlnfg(zf)-

T—tn
€O iEN

Now, we prove Theorem 4.14. We recall its statement:

THEOREM 4.14. Suppose (M, g) satisfies the (x),-condition, where h is the Heegaard
genus of M. Then there is an orientable embedded minimal surface ¥y C M with
9(30) = h andind(%,) = 1 such that

o] = Slg(g S| = W(M, As,) = W (M, A").

Proof of Theorem 4.14. By the Simon-Smith Theorem, we know that (), ¢g) has at least
one embedded minimal surface (we just need to consider a saturated set A of sweep-
outs such that W (M, A) > 0 and we can do this by consider a sweepout given by level
sets of a Morse function on M). Therefore, the set &, of all embedded minimal sur-
faces in M is nonempty. Let

R =min{g(S) : S € &}

CraIM 4.18. There is an embedded minimal surface ¥ in M such that g(3,) = h' and
|X0| = inf |S].
Seé&y,

Let S, € & beasequence such that lim |S,| = Sing |S]. Notice that by the definition
n—oo (e X

of 4" and &}, we have ¢(S,,) = //, for alln € N. Then by Theorem 4.15, there is an
embedded minimal surface ¥, in M/ and a subsequence 5,,, such that.S,, — ¥,. Then

[Zol = Jim |S,] = inf [S].

Now we prove that g(X,) = h'. First, not that all surfaces involved are orientable, be-
cause M satisfies the (x),-condition. Thus x(S,,) = 2(1—g¢(S,)) = 2(1—A4’) and hence
Sn € Mo—py, forall n € N. This implies ¥, € %2(1_[1/). We have two possibilities:
either >y € %2(1_;1/) or € 6%2(1—}1’)- It € %2(1—h’): then

2(1 = g(%0)) = x(Xo) 2 2(1 = 1') = g(Xo) < h' = g(X) =1,

by the definition of /. Now if ¥y € 0.#5(1_1), then by Theorem 4.16, we have X,
'/ll—h’- Then
/ h+1
2(1 = g(%%)) = x(To) 2 1 = ' = g(3%) < ——.




74 4. GENUS AND INDEX

If b’ = 0, then g(¥0) < 5 = g(39) =0 =11k’ > 1, then

and again by the definition of 4’ we have g(X,) = h'. This proves Claim 4.18.

CrAIM 4.19. i/ = h.

Let X be a Heegaard splitting of M with least possible genus g(¥) = h and consider
the saturated set Ay associated to .. Then applying Theorem 4.17 and noticing that
M does not contain embedded nonorientable surfaces, we have a minimal surface
¥ =" n;I'; attained as a limit of a min-max sequence {¥} } € Ay, and we have

N
N < T f T ny _ 0
; 9(T:) < lim inf lim inf g(%7) = g(3) = h
This implies that each connected component ['; is in &},. It follows from Lemma 4.13
that N = 1, i.e. X' has only one connected component. Thus

' <g(¥) <h.

Now, since g(3y) = h' < h, Lemma 4.11 tell us that 3}, is a Heegaard splitting of ).
But then
h<g(So) =1

This proves that h = h'.

Cramm4.20. [Xo| = W(M, As,) = W(M, Ah). Moreover, ¥ is contained in a sweepout
{Et}te[—1,1] € Ay, such that

1. there is a smooth variation F : |—¢,¢] X X9 — M such that ¥, = F,(%,), for all
t € [—e€€];

2. H2(S)) < HA(X), forallt # 0;

Notice that once we prove Claim 4.20, it follows from Proposition 4.1 that ind (%) = 1
and the theorem is proved.

Since ¥, is a Heegaard splitting, M\Xy = N; U Ny, with Ny N N, = @, N; and N,
handlebodies. Let v be the unit normal vector field along >, which points into N;. Let
¢ € C*(X) be an eigenfunction associated to the lowest eigenvalue A of the Jacobi
operator L. By Proposition 1.26, we can take ¢ strictly positive on ;. Since M satisfies
the (x),-condition, ¥, is unstable and A < 0. Let X be a vector field on M with X = ¢v
on M and let {F} },cr be the one-parameter family of diffeomorphisms generated by
X. Denote ¥; = F;(Xy). Since ¢ is strictly positive, there is some ¢; > 0 such that
Y C Ny (resp. No) forall0 < ¢t < ¢ (resp. —€; < t < 0). We have

0

ot g(ﬁ(2t>7yt> =Lop=—-X¢p>0.

0

Thus there is ¢, > 0 such that the mean curvature vector H (3;) points into N; (resp.
into N,) forall 0 < t < €, (resp. —ep < t < 0). Also, %‘0 |2;| = 0 (X is minimal) and
d2

B 1% =— [ ¢LodSg= )| ¢*dXy <O0.

0 Z0 20
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Thus, there exists 3 > 0 such that

|X4] < 3], forall0 <t < es.

Lete = mm{q, €9, €3} > 0. The surface ¥, bounds a handlebody N C N;. Consider a
sweepout {Et}te[o 1 of N such that S = Sy forallt e [0, ] and some small § > 0. Let

A be the saturated set of sweepouts in N generated by {3 },c0.1- f W(N, A) > |9N],
since H(ON) > 0, itfollows from Theorem 3.32 that there exists an embedded minimal
surface ¥’ C int(V) and therefore disjoint from Y. This is a contradiction with Lemma

4.13. Therefore W (N, A) < |ON| < |Zg|. Since W(N,A) =  inf sup |I;], we
{Tt}eero eA te(0,1]

can find {T'; }icjo.1] € A such that

sup |Iy| < [2o]-
te(0,1]

Because N has nonempty boundary, recall that in the definition of saturated sets we
ask the one-parameter families of diffeormophisms to leave some neighborhood of the
boundary fixed. Because of this, we still have

Ft Et+67 forallt € [0, 5/],

and some small §’ > 0. Arguingin the same way for >_., we are able to build a sweepout
{3 }ee[—1,1) of M which is in Ay, and satisfies (i) and (ii) of the Claim 4.20.

Now we prove that || = W (M, Ay, ). We have

W(M, As,) < sup || = [Xol.

te(0,1]

By the Simon-Smith Theorem, there is an embedded minimal surface S, = Zf\il n; Ly
embedded in M, such that |Sy| = W(M, Ay,). Each connected component I'; has to
be orientable (there are no nonorientable embedded surfaces) and by Theorem 4.17,

Zg ) < (%) = h.

Therefore, any connected component I'; is in &, and |T;| < [Sy| = W(M,A) < |Eg].
But recall that
1Xo| = inf [S] < |Ty|.
SEé&,

Therefore |Xy| = W (M, Ay, ). Now, since Ay, C A", wehave W (M, A") < W (M, Ay,) =
|Xo|. Now, by the same argument used above, we can find a surface Sy € &), such that

S0 = inf [S| < |So| < W(M,A") < |5,
SEs&

and we have |Yy| = W (M, A"). This proves Claim 4.20 and the theorem follows. [

4.2 NONORIENTABLE SURFACES CASE

The nonorientable closed surface V; of genus h is defined as a sphere with h disks

removed and h Mdbius strips (with boundary) attached. We say that /V; is a sphere
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with A cross-caps. The surface N ;, is also obtained as the connected sum of h projective
planes RP?. The Euler characteristic of Nj is given by x(N;) = 2 — h. Every closed
nonorientable surface is homeomorphic to NN;, for some h > 1.

Sz

Figure 13 — NV, is obtained by cutting a disk from S? and gluing a Mébius strip along its
boundary.

In this section, (M, g) still is a compact orientable riemannian three-manifold but now
we suppose that M/ contains an embedded nonorientable closed surface. Let / be the
lowest genus of an embedded nonorientable closed surface in )/, i.e. there is an em-
bedding of N; into M and every embedded nonorientable closed surface in M has
genus greater than or equal to . Let .# denote the set of all embedded surfaces in M

diffeomorphic to V;, and

o (M,g) =inf{|S| : S € F}.
LEmMMA 4.21. 7/ (M, g) > 0.
Proof. This follows from the following result:

LEMMA 4.22. (MEEKS; SIMON; S. T. YAU, 1982, Lemma 1, p. 625, adapted) Let p, > 0
be such that exp,, : B,, C T,yM — B, (%) is a diffeomorphism for all v, € M (such
po exists, since M is compact). There is a numberé € (0,1) such that: if. C M isa
closed embedded surface and

12N B, (20)] < 6%pf forallzg € M,
then there is a unique compact Ky, C M with0Ks = ¥ and
vol(Kx, N B,y (70)) < 8°p3, w9 € M.

Suppose <7 (M, g) = 0. Then, we can find surfaces > € .# with arbitrarily small area.
Therefore, we can find a surface ¥ € .Z such that |~ N B, (zo)| < 6%p3 forall 2y € M.
In particular, the lemma above guarantees the existence of a compact region Ky with
0Ky = Y. But then the outward (to Ky;) unit normal vector field is well defined on >
and yields a non-vanishing normal vector field in ¥ C M. Thus X is two-sided. Since
M is orientable and X non-orientable, this is a contradiction. O

PROPOSITION 4.23. There exists an embedded stable minimal surface > € ¥ with
X[ = o (M,g).
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Proof. Since o/ (M, g) = inf{|S| : S € .7}, wecanfind asequence ofsurfaces¥; € &
such that

1

Let .7 (¥;,) denote the collection of all embedded surfaces isotopic to Xy. Since .# (X)) C
#, we have

1 1
Y| < (M — < inf |S]+ -.
S < o (Mog)+ 1 < int|S]+
By (MEEKS; SIMON; S. T. YAU, 1982, Theorem 1, p. 624), a subsequence of >, con-
verges weakly to a disjoint union of smooth embedded minimal surfaces =V, . .., x(%)
with positive integer multiplicities n, ..., ng and
R
> 29| < (M, g). (4.1)
j=1
We define surfaces S,(Cl), e S,ER) as follows:
. mj .
SY = Uz eM : d(zx0)) =1}, ifn; = 2m is even,
r=1

. ) mj )
SPY =20 u Jf{zeM : da,29D) =1}, ifn; =2m; + 1is odd.
r=1

By (MEEKS; SIMON; S. T. YAU, 1982, Remark 3.27, p. 635), we can find embedded closed
surfaces S,EO) and X, with the following properties:

R .
1. the surface S, = |J S,EJ ) is isotopic to Y, for k sufficiently large;
=0

2. thesurface Y}, is obtained from ¥,, by~,-reduction (cf. (MEEKS; SIMON; S. T. YAU, 1982,
Section 3) for precise definition);

R .
3. 59 n <U S}j)) = @ and lim 159 = 0;
j:1 —00

4, g(ik) <g(X,) = h (thisis a property of vp-reduction, (MEEKS; SIMON; S. T. YAU, 1982,
Inequality (3.2), p. 629)).

In particular, we have that ¥, \f]k has closure A diffeomorphic to the standard closed
annulus {x € R*> : 1 < |z| < 1} (this is one of the conditions in the definition of
%), to be obtained from ¥, by yo-reduction). Then, since ¥,, is homeomorphic to N;
(by assumption), this implies that 3, must contain all the cross-caps in %,,, i.e. one
of the connected components of 3 is a nonorientable embedded surface. Let k be
sufficiently large such that (i) holds. Thus, for this £, one of the components of Sy, say
Ek, is a nonorientable surface. From (iv), we have g(F}) < h and since h is minimal,
E), must be homeomorphic to IV;. Since Ej, € .%#, we have |Ej;| > ./ (M, g) > 0. Then,
by (iii), we can choose k even larger so that ]S,go)] < 4/ (M, g), and hence ]S,E;O)\ < | Ex|.
Therefore, £, is not contained in S,io). Since E is connected component of S, and

R .
59N ( U sy )> — @, this implies that E, is a connected component of S.”, for some
j=1
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integeri € {1,..., R}. Then, by the definition of S,Ef), we have two possibilities for E}:
either £, is homeomorphic to ¥ or E}, is an orientable double cover of ¥(). But E},
is nonorientable. Hence, Ej is homeomorphic to Y@ and ¥ € .Z. Thus, & (M, g) <
|2@|. But from (4.1), we have

20| < o7/ (M, g).

Hence, ©(V is the desired minimizer. O

In the next result, we adopt the following notation. If M/ does not admit nonorientable
surfaces then & denotes the Heegaard genus of M. Otherwise,  is the lowest possible

genus of all nonorientable embedded closed surfaces in M, as above.

COROLLARY 4.24. Let (M, g) be a compact orientable three-manifold. There exists an
embedded minimal surface® C M withind(X) < 1andg(X) < h.

Proof. 1f M admits nonorientable embedded closed surfaces, then the result follows
from Proposition 4.23. Thus we can suppose that M does not admit such surfaces. If
M has a stable minimal surface of genus less than or equal to / then the result follows
immediately. The remaining case is when M satisfies the (x),-condition and the result
follows from Theorem 4.14. O

COROLLARY 4.25. Forany riemannian metric onS?, there exists an embedded minimal
sphere. inS® of index at most one.

Proof. Alexander’s Duality implies that R” does not contain embedded closed nonori-
entable surfaces (cf. (HATCHER, 2002, p. 256)). Since S* C R* is embedded, this im-
plies that S? does not contain embedded closed nonorientable surfaces. Also, one eas-
ily verifies that the sphere

S = {(x1, 79, 73,74) €S* : w4 =0}

is a Heegaard splitting of S°. Therefore, the Heegaard genus of S® must be zero and the
result follows from the previous corollary. O
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5 RICCI FLOW AND RIGIDITY RESULTS

5.1 Ricci FLow

Let (M, g) be a compact riemannian three-manifold and denote by Ric(g) the Ricci
tensor of M with respect to the metric g, i.e. Ric(g) is the 2-tensor defined by

Ric(g)(u, v) = tr(z = Ry(z,0)u),
where R, is the curvature tensor of (M, g)
R,(X,Y)Z =V5VZ - V{V%Z — V[gxﬁy]Z,

and VY is the Levi-Civita connection with respect to g. If g(¢), ¢t € [0,7), is a smooth
curve in the space of riemannian metrics on M, then 2 ¢(t) and Ric(g) are 2-tensors

on M and we can ask ¢(t) to satisfy

9 9(t) = ~2Ric(g), 9(0) = ¢
This is the Ricci flow equation. The Ricci flow was first introduced by Hamilton in his
paper (HAMILTON, 1982) and it has been useful in solving many important problems
in geometry, as for example the Poincaré conjecture solution by Grigori Perelman.
If ¢(t) is a solution to the Ricci flow equation, then the manifold (M, ¢(t)) becomes

“rounder” and “rounder” as ¢ increases.

Figure 14 — Ricci flow on a 2D-sphere.

Now, we introduce some basic results on the Ricci flow (see e.g. (SHERIDAN, 2006)).

THEOREM 5.1. (SHERIDAN, 2006, Theorem 5.4, p. 45) Given a smooth Riemannian
metric g on a closed manifold M, there exists a maximal time interval [0, T) such that
a solution g(t) of the Ricci flow, with g(0) = g, exists and is smooth on [0,T), and this
solution is unique.

PROPOSITION 5.2. Positive Ricci curvature is preserved under the Ricci flow. More pre-
cisely, if (M, g) has positive Ricci curvature and g(t) is a solution to the Ricci flow equa-
tion with g(0) = g, then (M, g(t)) has positive Ricci curvature, for allt € [0,T).
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Recall the definition of scalar curvature at a pointp € M:
3
R(p) = trRic = Z Ric(e;, €;),
i=1

if {e1, €2, €3} is an orthonormal basis for 7, M.

LEMMA 5.3. (SHERIDAN, 2006, Lemma 6.2, p. 48) Suppose that ¢(t) is a solution of the
Ricci flow. Then, if R(t) denotes the scalar curvature of (M, g(t)), we have the following
evolution equation:

%R — AR+ 2|Ric|%,

where | Ric |> = 3°7_, Ric(e;, ¢;)% if {e1, ea, e3} is an orthonormal basis in T M.

REMARK 5.4. From Lemma 5.3, a direct but rather long computation shows that

0 2 o
~R=AR+ =R*+ 2|Ric[?
5B = AR+ SR+ 2[Ricl’,

o
where [Ric|> = 37_ (Ric(e;, e;) — 1 R)?, for an orthonormal basis {e1, e, 3}

THEOREM 5.5 (SCALAR MAXiMUM PRINCIPLE). (SHERIDAN, 2006, Theorem 3.2, p. 32)
Let (M, g(t)) be a closed manifold with a time-dependent Riemannian metric g(t). Sup-
pose thatu : M x [0,T) — R satisfies

ou
e < Agwyu+g(t) (X(t), grad, u) + F(u)

u(z,0) < C, forallx € M,

for some constant C, where X (t) is a time-dependent vector field on M and F : R — R
is locally Lipschitz function. Suppose that ¢ : R — R is the solution of the associated
ode, which is formed by neglecting the Laplacian and gradient terms:

do _
dt

Thenu(x,t) < ¢(t) forallx € M andt € [0,T) such that ¢(t) exists.

F(¢), ¢(0)=C.

5.2 RIGIDITY

The goal of this section (and of this work) is to prove the following rigidity result:
THEOREM 5.18. Suppose that M has positive Ricci curvature and R > 6. Then there
exists an embedded minimal surface 3, withind(X) < 1, such that

|Z| < 4.

Moreover,

inf |X| =47
se 7

if and only if g has constant sectional curvature one and M = S3.
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Here ¢ is the collection of all embedded minimal surfaces ¥ C A with ind(2) <
1. From this theorem we also prove some other interesting rigidity results, which we

introduce later on.

We begin by showing that the function ¢ — W (M, A, ¢(t)) is continuous, where g(t) is
the Ricci flow solution for (M, g).

LEMMA 5.6. Let (M, g) be a compact riemannian three-manifold and A bet a saturated
set of sweepouts of M. If g(t), t € [0,T), is the solution of the Ricci flow with g(0) = g,
then the function f : [0,tg] — R defined by f(t) = W (M, A, g(t)) is Lipschitz continu-
ous foranyt, € [0,7).

Proof. Let U (M) denote the g-unit bundle on )/, i.e. the bundle of base M and fiber
atp € M givenby B, = {v € T,M : g(v,v) = 1}. U(M) is compact and has the
property that any v € T'M is written as v = Au, for some v € U(M) and A € R. Let
to € [0,T") and consider the function

£ UM) x[0,tg] — R
—2Ric(g(t)) (u,u)
(u, t) — o) () .

Since ¢ is continuous and U (M) x [0, ty] is compact, there is some C' > 0 such that

|E(u,t)| < C, Y(u,t) € UM) x [0,to].

For any fixed u € U (M), the function ¢ € [0, ty] — In g(¢)(u, u) is smooth, and

d

= Ing(t)(u,u)

1 0

| | = sl <

Then it follows from the Mean Value Theorem that, for any ¢, s € [0, to],

— Clta —t1] <lng(te)(u,u) —Ing(t)(u,u) < Clty — t4]
=e R lg(ty) (u,u) < g(ta) (u,u) < el (ty) (u, ).

Notice that this implies
e~y (t1) (v, 0) < glta) (v, v) < T2 g (k) (v, v),
foranyty,t, € [0,t] and v € T'M. In this case, we write simply

e_c‘”_tl‘g(tl) < g(ty) < ecltrmg(tg), forall¢y,ty € [0, 2]

Given 0 > 0, let {3, },c[-1,1) € A be a sweepout such that

sup H;(tl)(ZS) < W(M7A7g(tl)) + 0.

s€[—1,1]

It is simple to prove that, if g; and g, are riemannian metrics on M such that g; < kgs,
for some k > 0, then H2 < kH2,. Then, g(t2) < eCl2~1119(0) implies

W(M, A, g(tz)) < sup %3(t2)(zs)§60|t2_t1| sup H,y(Ss)

se[—1,1] se[—1,1]
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< OBl (W (M, A, g(th)) + ).
In the same way, we prove that
e~ Ol (M, A, g(ty)) < W(M, A, g(ts)) + 6.
Letting 0 — 0, we obtain
e Cllmtly (M, A, g(t1)) < W(M, A, g(tz)) < e“2W (M, A, g(t1)).

Thus,
In W (M, A, g(ts)) —InW(M, A, g(t1))| < Clta — t].

This shows that ¢ — In W (M, A, ¢(t)) is Lipschitz on [0, ¢y]. Since the exponential
function is Lipschitz on bounded intervals and composition of Lipschitz functions is
Lipschitz, we have that

t— W(M, A, g(t)) =eolnW(M,A,g(ty))
is Lipschitz on [0, #¢]. O
PROPOSITION 5.7. Let h be the Heegaard genus of M and (M, g(t)) be the Ricci flow

with g(0) = g. Assume that (M, g(t)) satisfies the (x);-condition for all0 < t < T’, for
someT’' < T. Then

W (M, A" g(t)) > W (M, A", g) — (167r — 87 [gD t
forall0 <t <T'.
Proof. Suppose the assertion is false. Then there exists 7 € (0,7”) such that
W(M,A" g(1)) < W(M, A", g) — (167r — 81 [gD T.
Let e > 0 be such that
W(M,A" g(1)) < W(M, A" g) — (167r — 81 {SD T — 2T
and define
A= {t c[0,7) : W(M,A" g(t)) < W(M,A" g) — (167r — 87 {g} + e) t— GT} :

Of course, 7 € A and hence A # & (notice that 0 ¢ A). Denote
to =inf A.

We claim that ¢, € (0, 7). Indeed, if t; = 0, then there is a sequence ¢,, — 0 with ¢, € A
and hence

W(M, A" g(t,)) < W(M,A", g) — (167‘(‘ —8rm {g} + e) t, — €T
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foralln € N. Since t — W/(M, A" ¢(t)) is continuous (previous lemma), letting
n — oo we get

W(M,A" g) < W(M,A" g) —er = 0< —er,
a contradiction. Thus ¢y > 0. Since 7 € A, of course ¢ty < 7. Since
h
ft) :=W(M,A" g(t)) + (167 — 8w [5} + e) t
is continuous and f(7) < W (M, A" g) — er, we have that f(t) < W (M, A", g) — e for

every ¢ in some open interval (1 — 8,7 +§),d > 0. ThenT — § € Aand hencet, < T.
Therefore ¢, € (0, 7).

Arguing with sequences and continuity as we did above, we get

h
W(M, A" g(to)) < W(M, A", g) — (1671’ — 87 {51 + E) to — €T.

Forallt € [0,ty) we havet ¢ A, then

W (M, A" g(t) > W(M, A", g) - <167r — 87 {g} + e) t—er, Vte[0,ty)
— —W(M,A" g(t) < —W(M,A" g) — (167? — 87 {g] + €> (—t) +er, Vte0,t).
Summing up these two inequalities, we have

W(M, A" g(ty)) — W (M, A" g(t)) < — <167r — 8w [g] + e) (to — 1), (5.1)
forallt € [0,%). Since (M, g(ty)) satisfies the (x),-condition, let {3,}c[-1,1] be the

sweepout in M given by Theorem 4.14 (in particular, ¥y = W (M, A", g(ty)) and X is
minimal). Set f(s,t) = |X,|y). A standard computation shows that

of d

E(O, to) - E

1Xolg) = —/ R — Ric(v,v) d¥,
to Yo
where the geometric quantities are computed with respect to g(to). Then by Lemma
C.1 and the GaulR-Bonnet Theorem,

%)
a—{(o,to) = —/ Ric(v,v) + |A]* + 2K d¥ = —47x(30) —/ Ric(v,v) + |A]* d%
20 E0

=—8r(1—h)— / Ric(v,v) + |A]* d%.
o

Furthermore, Xy is orientable and has index one, so we can apply Proposition C.2 to
get

%(o,to) > 8r(h—1) — 8 ({%} + 1)

h
=—1 —1.
6m + 87 [2]



84 5. RicCI FLOW AND RIGIDITY RESULTS

Since f is smooth in a neighborhood of (0, ¢), we have

F(5,8) < F(s.t0) — (167? 8 [g} + %) (t—to)

< W(M, A", g(to)) — (167r — 8 {g} + %) (t —to),

for all (s, ) close to (0, %) with ¢ < t,. Since s — f(s, t) has a unique maximum at
s = 0, by continuity we have that, for all ¢ sufficiently close to t,

sup  f(s,t) < W(M, A", g(to)) — (167r 87 {g} + g) (t — to).

se[—1,1]

Since {¥,}sc-1,1) € A", by the definition of width and of f, we have

€

W (M, A", g(1)) < W(M, A", g(t)) — (mﬂ 8n [ﬁ] ‘L

: ) (t—ty)  (5.2)

for such t’s. Summing up inequalities (5.1) and (5.2), we get
€
0< ——(tg — 1),
< —S(to—1)
for all t < ¢, with ¢ sufficiently close to ?(, a contradiction. O

COROLLARY 5.8. Suppose that (M, g) has positive Ricci curvature and that it contains
no nonorientable embedded surface. Let h be the Heegaard genus of M. Then

W (M, A" g(t)) > W(M, A", g) - (167r — 87 [gD t

forall0 <t <T.

Proof. Recall thatif (M, g) has positive Ricci curvature then it contains no stable closed
embedded minimal surface (Corollary 1.22). Also, positive Ricci curvature is preserved
by the Ricci flow. Therefore, (M, g(t)) satisfies the (x),-condition forall0 < ¢ < 7. The
result follows from Proposition 5.7. O

THEOREM 5.9. Suppose that (M, g) has positive Ricci curvature and that it contains no
nonorientable embedded surface. Let h be the Heegaard genus of M. If R > 6, then

W(M,A", g) < 4 — 27 {g} < Am.

Moreover, W (M, A", g) = 4 if and only if g has constant sectional curvature one and
M =S3.

REMARK 5.10. If(M, g) has positive Ricci curvature, it follows from (HAMILTON, 1982)
that M is diffeomorphic to a spherical space form, which are Seifert-fibered over a base of
genus of zero with at most three exceptional fibers. It follows from (SCHULTENS, 1996)
that these spaces have Heegaard genus at most 2. Therefore, 0 < [%} < 1 in the theorem
above.
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Proof. Let (g(t))o<i<r denote the maximal solution of the Ricci flow with ¢(0) = g. It
follows from Corollary 5.8 that

W(M,A" g(t)) > W(M,A" g) — <167r — 87 [gD t. (5.3)

Cramm 5.11. lim W (M, A" g(t)) = 0.
t—=T

Since (M, g(t)) satisfies the (x);-condition for every 0 < ¢ < T'. Then, foreach0 < ¢ <
T,let {X!}c|_1,1) be the sweepout of M/ given by Theorem 4.14. By Proposition C.2, we
have

h h
0< mj\i4n R(g(t)W (M, A", g(t)) = mJViIn R(g(t))|34| < 247 + 167 (5 — [5}) :
Now, from (HAMILTON, 1982, Theorem 15.1) we have

lim min R(g(t)) = +oc,

and thus since 0 < m]vifn R(g(t))W (M, A", g(t)) is bounded above, we need to have

lim W (M, A" g(t)) = 0.

t—=T

Combining Claim 5.11 and inequality 5.3, we get
b h
W(M,A", g) < | 16m — 87 3 T. (5.4)

From Lemma 5.3, we have the evolution equation for the scalar curvature:

OR 2 o
—=A ZR? + 2|Ric|?.
o R+ 3R + 2|Ric]
Therefore, 3
R 2
— > AR+ R
o = o3
Now we apply the Scalar Maximum Principle (Theorem 5.5) with u = —R, X (t) = 0,
Flu)=—3u*and C = ky := — II]lVi[Il R(g(t1)). The associated ode is
dp 2 , B
7 —3¢ o) = —Fka,

which has solution

—3ky
t) = forallt; <t <T.
o(t) 32kt CrAhsts

The principle then gives

3k,
> Y
=32k (t— 1))

mﬂ}n R(g(t)) forallt; <t <T. (5.5)



86 5. RicCI FLOW AND RIGIDITY RESULTS

Choosing t; = 0 and k; = 6, we obtain

min R(g(t)) > —

5.6
M 1—4¢ (5.6)

and hence T' <  and it follows from (5.4) that
b h
W(M,A", g) <4r — 27 5|

If W (M, A", g) = 4, then we must have T' = ; and h € {0, 1}. First, we show that

¢ must be Einstein, i.e. Ric(X,Y) = A\g(X,Y), for some constant A € R. Since M is
three-dimensional, thisimplies that M has constant sectional curvature (see (CARMO, 1988,
Ex. 10, p. 120)). Since, in (5.5), we must have 3 — 2k, (t — ¢;) # Oforallt; <t < i and

for t = t; this quantity is positive (equal to 3), we have that 3 — 2k;(t — t;) > 0, for all

t; <t < 1. Lettingt — 1, we get

1
_ B > i <
3 — 2k (4 tl) >0 = mj\}nR(g(tl)) ST 4
forall0 < ¢; < § (recall k; = mA/i[n R(g(t1)) by definition). Together with (5.6), this
implies

6
6
min R(g(t)) = ——.

and the maximum principle implies that ¢ must be Einstein.

CraiMm 5.12. h = 0.

Suppose h = 1. Then it follows from Theorem 4.14 that M contains a minimal em-
bedded torus 7" which realizes the width and any other embedded minimal torus must
have area bigger than |T'| = 4. Itis a classical fact that manifolds with Heegaard genus
one are either Lens spaces L(p, q) or S? x S! (see (STILLWELL, 2012, Section 8.3.4) or
(SAVELIEV, 1999, Theorem 1.6)). Thus M contains a flat torus of area 27> /p < 7 (pro-
jection of Clifford torus), which is a contradiction. This proves that h = 0.

Craim 5.13. M = S2.

By Theorem 4.14, M contains an embedded minimal sphere S. Now, we use the fol-
lowing theorem

THEOREM 5.14. (FRANKEL, 1966, p. 69) Let M, 1 be complete, connected, and have
positive Ricci curvature. Let Y., be a compact immersed minimal hypersurface. Then
the natural homomorphism of fundamental groups: m1(%,,) — 71 (M,1) is surjective.

Since m1(S) = 0, by the theorem above we conclude that 7 (M) = 0, i.e M is simply
connected. Then it follows from Poincaré conjecture that M/ = S3. ]

If M contains nonorientable embedded surfaces, we consider the invariant ./ (M, g)
as defined in Section 4.2.

LEMMA 5.15. Ifg(t),t € [0,T), is the solution of the Ricci flow with g(0) = g, then the
function f : [0,ty] — R defined by f(t) = </ (M, g(t)) is Lipschitz continuous for any
to € [0, 7).
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Proof. Analogous to Lemma 5.6. O
PROPOSITION 5.16. Forall0 <t < T we have

o (M,g(t)) > o (M,qg) — 8nt.

Proof. By Proposition 4.23, there exists an embedded stable minimal surface ¥ € .7
such that ||, = o/ (M, g(to)). A straightforward computation shows that

d

7 1] :—/R—Ric(l/,u)dE.
s

to

Then using Lemma C.1 and Proposition C.2 (ii), we have

d .
Ll I —2/ K ds — / Ric(v, v) + |AP d5 = — / K d5 — / Ric(v, v) + |AP dS
dt to » » 3] %
> —271g(%) — 4n(g(X) +1) = 4n(g(X) + 1) — 4n(g(¥) — 1) = —8n.
Using this estimate, we can argue exactly as we did in Proposition 5.7. ]

THEOREM 5.17. Let (M, g) be of positive Ricci curvature and suppose M contains em-
bedded nonorientable surfaces. If R > 6, then </ (M, g) < 2.

Proof. Let(g(t))o<t<r denote a maximal solution of the Ricci flow equation with g(0) =
g. From Proposition 5.16, we have

o (M, g(t)) > o/ (M,qg) — 8nt.

Reasoning like in Theorem 5.9, we have

lim o/ (M, g(t)) = 0.

t—T

Therefore <7 (M, g) < 8T But we know from the proof of Theorem 5.9 that 7" < 1.
Hence <7 (M, g) < 2. O

Let ¢ be the collection of all embedded minimal surfaces ¥ C M with ind(X) < 1.
Now we prove the main theorems of this work.

THEOREM 5.18. Suppose that M has positive Ricci curvature and R > 6. Then there
exists an embedded minimal surface ., withind(X) < 1, such that

12| < 4m.

Moreover,

inf |X| =47
se g

if and only if g has constant sectional curvature one and M = S3.
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Proof. Suppose M has embedded nonorientable surfaces. It follows from Proposition
4.23 that there exists an embedded minimal surface ¥ € .# with ind(X) = 0 and
|X| = &/(M, g). Then, it follows from Theorem 5.17 that |X| < 27 < 4.

Suppose now that M does not contain nonorientable embedded surfaces. Let h be
the Heegaard genus of M. Then (M, g) satisfies the (x),-condition. By Theorem 4.14,
there is an embedded minimal surface ¥’ C M with ind(¥’) = 1 and such that |¥'| =
W (M, A", g). Theorem 5.9 implies |>'| < 4.

If Em; |X| = 4, then it follows from the previous arguments that M does not contain

€.

nonorientable embedded surfaces and W (M, A", g) = 4m. Hence, by Theorem 5.9, g
has constant sectional curvature one and M = S3. O

Now, we consider the case in which M is diffeomorphic to the three-sphere S?, whose
Heegaard genus is zero. We take A to be the smallest saturated set that contains the
family {3, } of level sets given by the height function z, : S* C R* — R. We define the
width of (S?, g) to be

W (S, g) = W(S*,A°, g).

THEOREM 5.19. Assume that (S?, g) has no stable embedded minimal spheres. If R >
6, there exists an embedded minimal sphere X, of index one, such that

W(S?, g) = |Z| = inf |S| < 4n.

1
Seéhy

Moreover, W (S3, g) = 4x if and only if g has constant sectional curvature one.

Proof. (S3, g) satisfies the (x)y-condition because the three-sphere contains no nonori-
entable embedded surface. By Theorem 4.14, there is an embedded minimal sphere >
withind(X) = 1 and |X| = Sm; |S| = W(S?, g). From Proposition C.2 (i), we have

€60

9(>)

2

D
6|%| < 247 + 167 (% - {

}) =241 = |X| <A

Suppose |X| = 47. Asin Theorem 5.9, we show that g is Einstein. Let g(t), ¢ € [0, ¢) be a
solution of Ricci flow with ¢(0) = ¢g. The maximum principle applied to the evolution
equation of the scalar curvature gives us

1
> 0, for0§t<1.

6
i >
min Rlg(1)) > 1=

It follows from Proposition C.2 (iii) that any embedded stable minimal surface in (S, g(t))
would have to be a sphere. We are assuming that (S*, g(0)) has no stable embedded
minimal spheres. Hence, (S?, g(0)) does not contain stable embedded minimal sur-
faces.

Craim 5.20. (S3, g(t)) has no stable embedded minimal surfaces, for allt € [0, ¢), pro-
vided e > 0 is small enough.



5.2. RIGIDITY 89

Suppose the claim is false. Then, for all n € N, with n > 4, there is a stable embedded
minimal sphere 33, C (S?, g(1/n)) with area

I5,] < 8m :4_”(_§)<4_7T,

Irjlén R(g(1/n)) 3 n 3

Now we use (without proof) the following result:

PROPOSITION 5.21. Supposethat(M, g) isacompact riemannian 3-manifold that con-
tains no stable embedded minimal surfaces. Given a constant C' > 0, there exists aC*>®

neighborhood 7% of g so that every metric g’ in % contains no stable minimal surface of
area smaller than C.

Take C' = %’T and let % be the neighborhood given above. For n sufficiently large,
g(1/n)isin %, since g(t) is continuous. But then ¥,, is a stable minimal surface of area
smaller than C, which is a contradiction. This proves the claim.

Therefore (S, g(t)) satisfies the (x)o-condition for all ¢ € [0, ¢) and we are in the hy-
pothesis of Proposition 5.7. Thus

0
W(S% g(t)) > W(S* g) — (167r — 87 H) t =d4m — 167t = 4w (1 — 4t).
We know from Theorem 4.14 that W (S?, g(¢)) is the area of an index one embedded
minimal sphere in (S3, g(t)), say %;. Again, by Proposition C.2 (i), we have

min R(g(t))4m(1 — 4t) < min R(g(t))W(S”, (t)) = min R(g(t))[S:] < 247

6
= min R(g(t)) < .
min R(g(t) < —
Therefore 6
in R(g(t)) =
min R(g(t)) = ——
and the maximum principle tell us that g is Einstein. Since the dimension is three, g
has constant sectional curvature. O]

We finalize this monograph with one more rigidity result, which is just a corollary from

the previous ones.

THEOREM 5.22. Let g be a metric on S?® with scalar curvature R > 6. If g does not have
constant sectional curvature one, then there exists an embedded minimal sphere %, of
index zero or one, with |X| < 4.

Proof. 1f(S?, g) contains a stable embedded minimal sphere 3, then | Y| < %’r by Propo-
sition C.2 (iii). If not, W (S?, g) < 4w and the result follows from Theorem 4.14. O
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A ORIENTABLE DOUBLE COVER

Let > C M be a compact embedded, connected non-orientable surface. Let N de-
note the normal bundle of > and 7 : NX — X the projection onto ¥. Since X is
compact and embedded, > admits a uniform tubular neighborhood, i.e. there is an
open neighborhood U of ¥ and ¢ > 0 such that the map ® : U — U given by ®(v) =
eXp,(, (v) is well defined and it is a diffeomorphism from U={veNY:|v<e}
onto U. We have that ¥ := {v € NX : |v|] = ¢/2} is a submanifold of U C NX

(pre-image of a regular value). Consider

€ 3€
V= NY : — — U.
{ve 4<|v]<4}c

V is an open neighborhood of ¥ in NX. Then define ¥ : V — U by ¥(v) = (4|v| —
26)‘2—‘. One verifies that U is well defined, surjective and a local diffeomorphism. Fi-
nally, we define II : V' — U by Il = ® o U. Note that [I(¥) = . Since Il is a local
diffeomorphism, we can transform Il into a local isometry, by defining the metric g on
V to be

g(u,v) = g(Ilu, Iw), u,veTV.

PROPOSITION A.1. Y is connected.

Proof. We claim that if v, v, € Y, then vy is either in the component of v, or in the
component of —v,. Denote p; = 7(v;). since ¥ is connected, thereis a path~ : [0, 1] —
3] contained in X joining p; to p,. By taking a coordinated neighborhood U, of p;, we
are able to construct a normal section v; : U; — NX with v4(p;) = vy and |1] = ¢,
i.e. v1(U;) C %. Now we cover ([0, 1]) we a finite number of connected coordinated
neighborhoods U; such that U; N U, = @ if |j — k| > 2 and U; N U;44 is connected.
Consider normal sections v; : U; — Y. Since U; N Ujy, is connected and N, ¥ is 1-
dimensional, we have v; = v, orv; = —v;4; allover U; NUj4;. Then, changing v; for
—v; if necessary, we obtain a normal section v : | J; U; — > such that v(p;) = v;. Now
voxy:[0,1] — ¥ isa path joining v; to v(v(1)) = v(py). But v(py) € (N,,X)NYE =
{vq, —v2}. Thus, v o+ is a path joining v; to v or —vy. This proves the claim. Therefore,
in particular, 3 has at most two components. Suppose by contradiction that S has
two components, 21 and 22 Take v € ¥; N N,X. We claim that we can extend v to a
global normal section v : ¥ — ¥; C NX contradlctmg the fact that X is one-sided.
Indeed, if ¢ € 3, by taking a path v joining p and ¢ we can uniquely extend v along
v just as we did before. Then v and v(v(1)) are in the same component %;. Choose
another path 4 joining p and ¢. Then necessarily 7(5(1)) = v(v(1)), otherwise v(y(1))
and —v((1)) are in the same component ¥;. This cannot happen, because we just
proved that any w € ¥ is in the same component of v(y(1)) or —(y(1)) and if these
components are the same, > must be connected. This shows that v(¢) can be defined
without dependence of the underlying path . Since X is connected, this defines the
global normal section v : ¥ — N desired. ]
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COROLLARY A.2. V is connected.

Proof. This follows since any v € V' C N3 can be connected to S by a path along the
fiber of v and, by the previous proposition, X is connected. O

PROPOSITION A.3. Y. is orientable.

Proof. We show that the image ®(%) in M is orientable and since ® is a diffeomor-
phism the result follows. To show this, we construct a nowhere vanishing normal vec-
tor field on ®(X) and since the ambient M is orientable we are done. Foreachp € ®(3)
we have ®~!(p) € ¥ C NX. Define

eXpH(p)((l + t)q)fl(p)) = dPgp-1(p) - (I)fl(p) € T,M.
0

dt
Now, consider any vector tangent to ®(3.) given by asmooth patha : I — ®(%), a(0) =

p. Thena(s) = expry,s) (27" (a(s))). ifwe denote a;(s) = expry(a(s)) ((1+1) 2~ (a(s)))
then ay(s) = a(s) and a_;(s) = [I(a(s)) is a path on ¥. Define the following function

of ¢:
“)

Note that f is well defined since both vectors are based on expyy () ((1+t)®~'(p)). Now,
we look at the derivative of f (using Gau’s lemma in the last equations):

d

)= (i espu (049970 | o

£ = (g5 e (14087 @), | (o)
g (e (14097 0). 7 1] o)
— o (5 e+ 007 ), jax$)

d _ D
Y (EeXp n)((1+ 27 (), @‘ (dexPri(as)a+n@-(ats)) - D™ 1(oz(s)))
0

1 d .
T 2ds Og ((d exPri(a(s)) (11581 (a(s)) - @7 (a(s)),
(d eXpH(a(s)))(1+t)<b—1(a(s)) . qfl(a(s)))
1 d 1 d
[ — @—1 @_1 _ @ _ '
2 ds 09( (a(s)), (a(s))) AR 0

Thus f must be constant. On one hand we have

ren=o (g

d
d .o il
=g << eXpH(p))O (p)a ds

exp((1+ 027 (), -

)

Oam@)::g(é-%pxéi

sl al(S))
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since ®~'(p) € Np)X and o (0) € Tii)E. On the other hand,
£(0) = g(X(p), o/ (0)).

This proves that X (p) € N,(®X). Using GauR’s lemma again, we have

9(X(p), X(p) = 9(@7'(p). 7' (p)) = 5 > 0.

Therefore, X : ®(3) — N(®X) is a nowhere vanishing section and ®(3) is two-sided,
hence orientable. ]

PrOPOSITION A4. II: V — U is an isometric double covering map.

Proof. Since we already noticed that II is alocal isometry, we just need to show that for
any point p € U, the pre-image IT-'({p}) consists of exact two points. Thus, suppose
v € Vissuch that [I(v) = p. Then

() =07 (p) = (4fv| —2e )‘ | =07 (p) = [fv] —2¢] = |2 (p)]
— (4v] —2¢)° — |7 (p)|* =
— (4fv] — 2¢ + |<I>‘1(p)!)(4|v| —2— |27 (p))) =0

2¢ — |2 (p)] 2¢ + 7 (p)|

e =
[v] 1 1

or |v|=

Note that these equations are specifically at the fiber N (4-1,)> which s 1-dimensional
and we are searching for solutionsin V = {v € NX : { <v < 3;

If |®~'(p)| = 0 (which means p € ¥), then we have the equation |v| = §, which has
exactly two solutions, say vy and —vy, both of them lying at 3. If |®~' (p)| # 0, then the
first equation has two solutions, v = 4 (26_@4_1(")') ;:1& ,butonlyv = — (26_|¢4_1(p)|) éjg%
is such that ¥(v) = ®~!(p). Similarly, the second equation has two solutions, but only

one of them is admissible, namely v = 25+|¢471(p ) Ejg;l. O

Note that 7 : ¥ — X, 7(v) = —v an isometry of ¥ and thus {Idg, 7} is a discrete
subgroup of Isomt ().

The next result shows why it is interesting to consider the orientable double cover ¥ in

the case that Y. is non-orientable.

PROPOSITION A.5. Let > C M be a non-orientable embedded compact surface and
F : (—€,¢) x ¥ — M be a smooth variation of ¥.. Then, if e is small enough, there is a
smooth variation ¥, of ¥ in'V such that |3, = 2|%| for allt € (—e,¢).

Proof. LetIl : V' — U be as before and let ¢ be small enough such that >, C U for all
t € I. := (—¢, €). We are not going to trouble ourselves constructing F:I.x%X—V.
Instead of doing this, we only introduce the surfaces it = II71(%;). Since each ¥,
is embedded, we have that f]t is also an embedded surface in V/, because Il is a local
diffeomorphism.

Since ¥, is compact, we can take %/ = {€2;}_, a finite open cover of ¥; such that each
(2; is a coordinated neighborhood and there are Ql and 92 disjoint open subsets of %,
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such that II : Q‘Z — (; is an isometry. Of course % = {Q, 02} | is a finite open
cover of 3;. Let {¢i : ¥y — [0,1]}_, be a partition of unity subordinated to 7. Define
@l Ql — [0,1] by & (p) = ¢:(IL(p)). Since Q} and 2 are disjoint for all i, we have that
{gbf } is a partition of unity subordinated to % . Then we have

Si=Y [ gy [ aam=Y [ ameY [ pim=am
[

We summarize the construction of the orientable double cover in the following theo-

rem.

THEOREM A.6. Let M be an orientable 3-riemannian manifold. If>. C M is an embed-
ded compact, connected non-orientable surface, then there is an open neighborhood U
of ¥, a 3-riemannian manifold 'V, a surface ¥ inV and amap 11 : V' — U such that:

1. 3 is embedded, compact, connected and orientable;

2. 11:V = U isalocal isometry and a double covering map with H(f]) =2
3. thereis an isometry T : ¥ — % such that ¥ ~ ¥ /{Ids, 7};

4. if 3 is a smooth variation of . in M, then there is smooth variation S, of ¥ inV
such that | 3| = 2|%,].

Figure 15 — The orientable double cover of the M&bius strip

So we can understand the variation of area of & by looking to certain variations of 3.
We said before that we only have to study the normal vector fields along > with X = 0
on 0X..

Let >; be a variation given by F' : I, x ¥ — M such that X = %—f is normal to X
and vanishes on its boundary at ¢ = 0. Denote by F the associated variation of 3. in
Vand X = %—f the corresponding vector field (which is normal along 3 at t = 0 and
vanishes on its boundary). Since Mis orientable, we can consider a global unit normal
vector field 7 along . Then, X = ¢, for some ¢ € C*®(X). Recall we constructed
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3 in an open subset of NX. Let p € ¥ and v € ¥ such that II(v) = p. A direct com-

putation shows that X (v) = X(7(v)) and #(v) = —(7(v)). Hence it follows that
d(v) = —¢(7(v)), forallv € 3.

Conversely, if o € C*° (f]) is such that ¢ o 7 = —¢ (and zero on the boundary of fl) and
we define X = ¢, then dIT, X (v) = dI1, ()X (7(v)) doesn’t depend on the choice of v
or 7(v). Thus we can define an admissible vector field on X given by X (p) = dIT, X (v).
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B METRIZABILITY OF THE SPACE OF VARI-
FOLDS

The goal of this appendix is to show that, if M is compact, then the space V{(M) of k-
dimensional varifolds with mass bounded above by ¢ > 0 is metrizable and compact,
namely, Theorem 2.10. In the first section, we discuss in more details the concept of
convergence notion and the relations between convergence notions and topologies.
This is important because we defined a topology on the space of varifolds using a con-
vergence notion, namely, the weak convergence. In the second section, we prove The-

orem 2.10.

B.1 CONVERGENCE NOTIONS

Now, we briefly present the concept of nets, a generalization of sequences.
DEFINITION B.1. A nonempty set D with a relation < is said to be directed if

1. a < a, foralla € D;
2. ifa<bandb < ¢, thena < ¢;
3. ifa,b € D, then thereisc = c(a,b) € D suchthata < ceb < c.

DEFINITION B.2. Amaph : D — D' between directed sets is said to be cofinal mono-
tone if

1. ifa,b € D witha < b, then h(a) <" h(b);

2. foranyd' € D', thereisa € D such thata’ <’ h(a).

DEFINITION B.3. Let X bea set. Anymap ¢ : D — X from a directed set D into X is
called a net in X. We say thata net ¢’ : D' — X isa subnetof¢ : D — X if there is
a cofinal monotone map h : D' — D such that ¢’ = ¢ o h. Given a net ¢ we denote

¢(N) =) and ¢ = (x\)rep-
If (X, 7) is a topological space, then there is a natural convergence notion on X. If D

is a directed set, then we say a net () ep converges to x € X and write z, — x if

YUer, xelU, ANgeD : \g <=\ = z,€U. (B.1)

We can ask ourselves: does a “convergence notion” on X induce a topology on X? If
so, does the new convergence notion induced by this topology (as above) coincide with
the notion originally given? Before answering these questions, we need first to think
about what we would like to be a “convergence notion”. For example, consider the

following convergence notion on R:
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“z), — xif and only if x) is irrational for all A € D”.

With this notion, the constant sequence z,, = 0 Vn € N does not converge to 0, ndo
converge a 0, and this is not the case with any convergence notion induced by a topol-
ogy. The next proposition will motivate a good definition of convergence notion that

will avoid such pathologies.

PROPOSITION B.4. Let (X, 7) be a topological space. If D is a directed set, (x\)xcp isa
netin X andx € X isfixed, then the convergence notion of nets defined at (B. 1) satisfies:

L. ifzy = x, foreach \ € D, then (x))xcp converges to x;
2. if(x))rep converges to x, then every sub-net () ep converges to x;

3. ifevery sub-net of (x))ep has a sub-net which converges to x, then (x ) cp cOn-
verges to x;

4. (diagonal principle) if (x) ep converges to x and, for each X € D, a net (22),ep,
converges to ., then the net () (x yeo, With 2 = {(X\,7) € D x Uyep Da : X €
D, ~ € D,} ordered lexicographically first in A\ € D and then in~y € D), admits
a sub-net that converges to x.

1 1 1

1 2 2

1 n
T, T Ty = Ty
T

Figure 17 — The diagonal principle for sequences

Proof. The proofs of (1), (2) and (3) follow essentially the same steps of the analogous
proofs in the case of sequences in metric spaces. Let’s prove the diagonal principle.
Consider the net (2)(x)cz as described in (4). Denote by % () the collection of all
open sets in X containing = and consider & = {(U, \,y) : U € % (), x5, 2} € U}.
Since zy — x and 2} — =, forevery U € % (x), there are A and ~ such that (U, \,v) €
& . Thus, & # @. The relation

! /.
(U A7) < (U N,7) = { U'c UandA =2,

or:U'cU,A=XNandy < 7.

turns & into a directed set. In fact, it is clear that < is reflexive and transitive in &. If
(U,\,7), (U, N,+) € & thenlet\, € Dbesuchthat \, < \ = x5 € UNU"
Since D is directed, there exists a ) € D such that AN < \. There exists also
4 € Dywithz) € UNU'. Thus, (UN U, X\7) € &and (U, \,7) < (UNU,\7),
(U, N, ~) < (UNU',\,7)because U N U’ C U, U'and A\, N < .

Consider the map

h: & — 9
(U, A7) = (A7)
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We claim £ is cofinal monotone and the sub-net (z5))scs converges to x. The fact of
h to be monotone follows immediately from the definition of < in &. Let (\,y) € Z.
We have that (X, A,~) is trivially in &, hence thereisa § = (X, \,v) € & such that
(A\,y) < h(9) (indeed, (X,~y) = h(d), thus h is more than cofinal, it is surjective). This
proves that (x(s))scs is indeed a sub-net of (x,’})(,\me@. Let us show that 25 — .
Consider U € % (x). Since x) — x, there exists \y € D suchthat \¢ < A\ = =z, € U.
Since 2° — ), there exists 7o € D), such thaty < v = 2J° € U. Take
do = (U, Mo, 70) € E.1f0 = (U, \,y) € & with §y < § then

U'cUand X <A = a4 =2, € U CU;
or: U' CU, A= Xandy <7 = ) = 2° withyg <y = a5 € U.

So we proved:
forallU € % (x), thereisady € & suchthatdy < = x5 € U.

Thus, Th(s) — . OJ

Now, we give the definition of convergence notion.

DEFINITION B.5. Let X bea set. Arule saying which nets in X converge, is said to be
a convergence notion if it satisfies (1), (2), (3) e (4) from Proposition B.4.

REMARK B.6. If(x,) converges to x with respect to the convergence notion ¢, we say
(xA)rep Is € -convergent to x and write¢ : x\ — x or simply x) — x, if there is no risk
of confusion. If (X, ) is a topological space, we denote by C () the convergence notion
induced by .

We will see now how a convergence notion induces a topology. Let X be a set and % a
convergence notion in X.

Consider the map uy : p(X) — p(X) defined by
ug(E)={z € X : Ix\)rep CE, € : 2\ — x}. (B.2)

PROPOSITION B.7. Givenaconvergence notion in X, the collectionT (¢') = { X\ug (E) :
E € p(X)} is atopology in X, called the topology induced by 6. Moreover, if I is the
closure of E with respect to'T(¢), then E = uy(FE), forevery E € p(X).

Proof. Tt suffices to show that u = uy : p(X) — p(X) satisfies conditions (1), (2), (3)
and (4) from the following theorem:

THEOREM B.8 (DuGuNDJ1 (DUGUNDJI, 1966), PAGE 73). Let X beasetandu : p(X) —
©(X) a map with the following properties:

L. u(@) =9;

2. A Cu(A), foreach A € p(X);

3. uou(A) =u(A), foreach A € p(X);

4. u(AU B) = u(A) Uu(B), foreach A, B € p(X).
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Then he family 7 = {X\u(A) : A € p(X)} is a topology in X and given the closure
notionin 7,ie A:={zr e X : Ue T, 2e€U = UNA# O}, wehave A = u(A)
foreach A € p(X).

So, let us prove that u = uy has such properties.

1. If there were = € u(@), then by definition it would exist a net (z)) ep C @ with
¢ : x\ — x, but the first condition is impossible, since D, being a directed set, is
nonempty. Thus, u(@) = @.

2. If x € A, then (z,,)neny With z,, := z for alln € Nis a net in A ¢’-convergent to
x, by axiom (1) of convergence notion. Thus, by the definition of u, x € u(A).
Therefore, A C u(A).

3. By (2), u(A) C uou(A). We need to show u o u(A) C u(A). Letz € uou(A). By
definition, there is anet (x))xep C u(A)with € : z, — x. Since each x) € u(A),
there are nets () ep, C Awith % : 3 — x,. From the diagonal principle, we
obtain anet (y;),;c; C Awithy; — x. Therefore, x € u(A).

4. Since A, B C AU B, itfollows from (2) that u(A) Uu(B) C u(AU B). It remais to
showu(AUB) C u(A)Uu(B).Ifz € u(AUB), then there exists (z)) xep C AUB
with ¢ : z,, — x. We claim that, switching A and B if we need, forall A\ € D,
thereis A < y(\) € D such thatz, € A. Infact, if it were otherwise, there would
be A\, Ay € Dsuch that, forall A € Dwith \; < A\, A\ < A\, z) ¢ Aand z, ¢ B.
Since D is directed, there is such \, but )y € A U B, a contradiction. This yields
a sub-net (2, ),cy(p) of (z1)xep C A that, by axiom (2), also is ©’-convergent to
x. Therefore, © € u(A) C u(A) Uu(B).

]

The following theorem shows that a convergence notion completely determines its
topology and vice-versa. In other words, to work with topologies is equivalent to work

with convergence notions.

THEOREM B.9. 1. The convergence notion induced by a topology (as in B.1) induces
this same topology, i.e.if T is a topology, then T'(C(7)) = 7;

2. The topology induced by a convergence notion induces this same convergence no-
tion, i.e. if € is a convergence notion, then C(T(¢)) = €.

Proof. 1. Let (X, 7) be a topological space. By the previous theorem, it suffices to
show that the closure notion v = u¢(;) coincides with the original closure notion
given by 7. Let A € p(X) and let’s show that u(A) = A. If v € u(A), then there is
anet (z))ep C AwithC(7) : 2y — x. LetU € 7 be any open set with = € U. By
the definition of C'(7), thereis \¢ € D such that \y < A\ = =z, € U. Therefore,
Ty EUNA = UNA# @ Thenx € Aandu(A) C A. Suppose now
x € Aanddenote ¥ (z) = {U € 7 : x € U}. By definition of A, we have that
forall U € ¥ (x), thereisaxy € U N A. Therelation U < Vif V C U in ¥ (z)
turns it into a directed set. We have thus a net (xU)Uey(m) C A. We claim that
C(7) : 2y — «. Infact,let U € ¥ (x). We have that, if U < V, then V' C U and
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vy € V. CU = wy € U. Therefore, C(1) : zy — = and this shows that
r €u(A)and A C u(A).

2. Let X be a set and ¢ a convergence notion on X. Consider (z,),cp a netin X.
Suppose, by contradiction, that ¢ : zy — x but C(7(%)) : x) # z. This means
that thereisa U € T'(¢) with z € U such that, forall A € D, thereis A < y(\) €
Dwithz, ¢ U. Bydefinition, U = X\ug(E), for some £ € p(X). This givesus a
sub-net (z.),cy(py C u(£) thatalso is ¢’-convergent to z, by axiom (2). Applying
the diagonal principle, we then obtain a net (y;);c; C £ which is ¢’-convergent
to z. Thus, z € u(F), a contradiction, since v € U = X\u(FE). Suppose now
that C(T(%)) : xx — xbut% : x, 4 z. This will lead us to a contradiction. If
¢ : x\ / z, then by axiom (3), (z)) ep has a sub-net (y,).ep that has no ¢-
convergent to = sub-net. Note that C(7(%)) : y, — z, and thus forall j € D',

x € A(j), where A(j) = {y, : j < A} (the upper bar is for closure with respect

to T'(¢)). But, by proposition B.7, A(j) = ug(A(j)). Thus, z € A(j) = ug(A(j))
implies that, for each j € D', there is a net (z5)sep, C A(j) with @ : x5 — .
From diagonal principle again, we yield a sub-net (4 )ac4 Of (2})(; 5)co Which is
% -convergent to x. To simplify notation, suppose this sub-net is (xf;)(j,(;)e z itself.
If for each D; we choose any §; € D;, we obtain a sub-net (xfsj )jen of (2)jo)ea
that, by axiom (2), is also ¢’-convergent to x. However, xgj € A(j) and because
of this (Ifsj) jepr is a sub-net of (y,),ecp, a contradiction, since (y,),ep has no
sub-nets that are ¢’-convergent to x. This proves that C(7(%)) = ¥.

]

Given a net convergence notion % in X, we can restrict this notion to sequences. If
A C X, we define the sequential closure of A as the set of all limit points of sequences

in A. More precisely, we define v} : p(X) — p(X) by
uf(A) ={z € X : I2,)nex C A, € : 1, — 1}

REMARK B.10. Of course A C ul}(A) C ug(A), forevery A € p(X).

The following proposition shows that the convergence notion for sequences is enough
to study metric spaces, i.e. for metric spaces, there is no need to work with general

nets, only sequences.

ProrosITION B.11. The topology of a metric space is completely determined by its con-
vergence notion of sequences. More precisely, if (X,d) is a metric space and 7, is its
topology, then 7y = T(C(13)) = TN (C(14)), where

TH(C(ra)) = {X\ug s, (A) + A € p(X)}.

Proof. By simplicity, denote u = uc(r,) and u" = ug(m). By theorem B.9 and remark
above, it suffices to show that u(A) C u"(A), forevery A € p(X). Let A € p(X) and
x € u(A). By definition, there is a net (z)) ep C A such that C(7y) : 2y — . Thus,
foreveryn € N, thereis A\, € Dsuchthat\, < A\ = ) € By/,(z), where By /,()
is the open ball centered at « with radius 1/n. We claim that the sequence defined by
Yn = Ty, is in A (immediate) and is C(7,)-convergent to x, hence x € u"(A). Let
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U € 1y with z € U. There is some ¢ > 0 such that B.(z) C U. Take ny € N such that
L < e Ifng < n,theni < nl < eand hence y,, = x), € By/y(x) C Bijy,(z) C U.
Therefore ng<n — yn eU,ie. C(1y) : yp — . O

B.2 WEAK TOPOLOGY FOR VARIFOLDS

We defined the following convergence notion in the set of k-dimensional varifolds
Vi(M): anet (V))rep in V(M) weakly converges to V. € Vi (M), written V), — V/,
if

/ fdvy, — fdVinR, (B.3)
G (M) Gr(M)

forall f € C.(Gr(M)) (continuous functions with compact support). For simplicity,
we drop the % from Vi, (M) and G (M ). Since weak convergence of varifolds is given in
terms of usual convergence of nets in the real line, it is immediate that weak conver-
gence is a convergence notion in the sense of definition B.5. Therefore, if we denote
by %,, the weak convergence notion on V(M ), we have the topology 7, := T'(%,,) in-
duced by this convergence notion. We call this topology the weak topology on V(M ).

For each f € C.(G(M)), we can define a function

or: V(M) — R
TR /de. (B.4)

Each of these functions is continuous, since V), — V implies ¢((V\) — ¢f(V), by

definition of weak convergence.

Our goal is to show that the subset of V() of varifolds with uniformly bounded mass

is metrizable, if M is compact. We begin with the following proposition:

PROPOSITION B.12. IfM isacompact manifold, then the Banach space (C(G(M)), || ||o)
is separable, i.e. it has a countable dense subset.

Proof. Since M is compact and each fiber G(7,,M) of G(M) is compact, we have that
the grassmannian bundle G(M) is compact. Thus, every continuous function f :
G(M) — R has compact support and is bounded. Therefore, C(G(M)) = C,(G(M))
(every continuous function from G(M) is bounded) and (C(G(M)), || || ) is in fact a
Banach space. To prove that C(G(M)) is separable, we are going to use the following
theorem:

THEOREM B.13 (STONE-WEIERSTRASS, COROLLARY 35, (ROYDEN, 1988), p. 213). Every
continuous function on a compact set X C R" can be uniformly approximated on X by
a polynomial (on the coordinates of R").

By Whitney’s Theorem, G(M ) can be embedded into some RY. Thus, we can consider
G(M) as a compact submanifold of RY. By Theorem B.13, the set £ of polynomials
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(on the coordinates of R") with domain restricted to G(M ) is dense in (C(G(M)), || [|so)-
We claim that the countable set P C & of polynomials with rational cofficients is

dense in C(G(M)). In fact, let f € C(G(M)) and ¢ > 0. Since 22 = C(G(M)), there is

p € Zsuchthat||f — plle < €/2. Write p(z1,...,25) = Z?:l ajm;i(zy,...,zN), with

a; € Rand each m; amonomial, with m; # m, if j # i. Take M > max{||m;|« : j =

1,...,k}. Since Qis densein R, thereare by, . .., by € Qsuch that|a; —b;| < ¢/(2kM),

forallj = 1,..., k. Denote ¢ = Z§=1 bjm; € P. Forevery (zy,...,2n) € G(M) we

have

(0= ), 2w)| < ng — bylllm;le < Z aval

[\ I

Thus, ||p — qlloc < €/2. It follows from the triangular inequality that || f — ¢l < €.
Therefore, P is dense in C(G(M)). This finishes the proof. O

From now on suppose M is always a compact manifold.

Let {h, }nen be a dense subset of By = {f € C(G(M)) : | flle < 1} (such subset
exists, by Proposition B.12). By simplicity, denote ¢,, := ¢}, , with ¢;, defined at (B.4).
Define

0: V(M) xV(M) — [0,+00)

n=1

(B.5)

Note that 0 depends on the choice of {h,, },en.
PROPOSITION B.14. The functiond is well defined and is distance function on V(M ).

Proof. Of course 0 < 0, thus in order to show that 0 is well defined, we need to show
that 0 < +o0. Let VW € V(M). Since G(M ) is compact and V, W are Radon mea-
sures, we have ||V||, |[IW]| < +oc. Thus,

:ZQ*”\gon(V)— W) <22 (len (V)] + [en(W)])

<\ g / h|dV + / h, dW)
> ( palav s [
< 2" (/ dV+/ dW)

Z M) G(M)

= 22‘”(IIV|| HIWI) = [IVIF+ Wl < +oo.

Let us show now that 0 is a distance function. It is immediate from the definition that
0(V, V) = 0 and that 0 is symmetric. Triangle inequality follows from:

=32 (V) — |<Zz (leu(V) = 0ulZ)] + ga(2) — 0u(W)))
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=V, Z) +0(Z,W).

It only remains to show thatd(V, W) =0 =V = W.Ifo(V, W) = 0, then

/ hndV:/ hy, AW,
G(M) G(M)

foralln € N. Consider any f € By C C(G(M)). Since {h,, }nen is dense By, there is a
sequence (ny)reny C N such that klirn |hn,, — flloo = 0. This implies
—00

/ fdV = lim hyp, dV = lim by, AW = fdw,
G(M) k=00 Ja(n k=00 Ja() G(M)
forany f € B;.

Let A C G(M)be aBorel setand x4 : G(M) — R the characteristic function of A.
Taking a sequence { f; }ren C By converging to y 4, we get

V(4) = / xadV = lim frdV = lim frdW = / xadW = W(A).

G(M)

Thus, V(A) = W(A), for all Borel set A C G(M).

Finally, if S C G(M) is any set, since V' and W are Radon measures, it follows that
V(S) = inf{V(U) : S C U, Uaberto} = inf{W(U) : S C U, U aberto} = W(S).
This proves that V' = W. [l

Now, we finally show that the space of varifolds of uniformly bounded mass is metriz-
able. Next, we use a compactness theorem for Radon measures to prove that this space
is also compact. This will prove Theorem 2.10.

THEOREM B.15. The weak topology coincide with the topology induced byd on V(M) :=
{VeVv(M) : |V| <c}, foreachc > 0.

Proof. To prove the theorem, it suffices to show that the notions of weak and metric
convergences coincide. Let (V) ep be anetin V(M) and V' € V(M). Suppose first
that V, — V. Let us show that 9(V,, V') — 0. Consider ¢ > 0. Fixm € N. Then

oW\, V ZQ "on(Va) = on(V)] + Z 27" n(Va) — @n (V)]
n=m+1
n=1 n=m+1

=D 27"ea(Va) =Vl + D27 =3 27" pu(Va) — @u(V)| +277 e,
n=1 n=m n=1
Thus, if we choose m such that 27" !¢ < ¢/2, we have

2(V3,V Zzwm ea(V)] + /2.
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Now, since V, — V,foreachn = 1,... ,mthereisa \, € Dsuchthat\, < A\ —
lon(Va) — on(V)] < €/(2m). Since D is directed, we can find a \g € D with \,, <\,
foreveryn =1,...,m. Then,

€
Ao = A = (V3 V) <D 27"pu(Va) — en(V)| + 3

Therefore d(V,, V) — 0.

Now, suppose ?(Vy, V) — 0. We must show that V, — V. Let f € C(G(M)) and let’s
showthat p;(V)) — ¢;(V). We can suppose that f # 0. Then, since G(M) is compact,
supecon f () = || fllo = @ < +00. Thus 5 € By. Since {h, },en is dense in By, there

exists a sequence {fi}ren C {hn}nen such that ||fy — L||.c — 0. Lete > 0. Since
o(Vy, V) — 0, there exists a A\ € D such that \y < X\ implies 9(V, V) < ¢/a. Then

€
/\0 <\ = |90fk(v>\) - Qka(V)l < D(VMV> < E
Now, note that

1
lim gofk(W) = lim frdW = / idW = —gpf(W), YW e V(M).
G(M) G(M) @

k—00 k—o0 a

Thus, making £ — oo in the inequality above, we get

Ao <A = ps(Va) — s (V)] <
This shows that V), — V and finishes the proof. [
THEOREM B.16. Foreach c > 0, the space V(M) is compact.

Proof. This result will follow straightforward from the following theorem, which we
won't prove.

THEOREM B.17 (COMPACTNES THEOREM FOR RADON MEASURES, (SIMON, 2014, p. 37).
Suppose {1 } is a sequence of Radon measures on the locally compact, o -compact Haus-
dorff space X with the property sup,, ju,(K) < oo for each compact K C X. Then there
is a subsequence { ;i1 } which converges to a Radon measure ;. on X in the sense that

lim i (f) = p(f) for each f € K(X),

where IC(X) denotes the set of continuous functions f : X — R with compact support
on X and where we use the notation

u(h) = [ £, fer).

If we take X = G(M), this becomes a result about varifolds. Since G(M) is a com-
pact smooth manifold (since we are considering M to be compact), G(M) is trivially
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locally compact and o-compact (this last condition means that the space is a union of
countably many compact subspaces).

Take any sequence {V;} C V¢(M). Then for any compact K C G(M), we have
supg Ve(K) < sup, Vi(G(M)) = sup, || Vil[(M) < ¢ < +oo and we can apply The-
orem B.17. Thus, there is a subsequence {V}. } of {V}.} and a varifold V' € G(M) such
that V; — V. In particular,

V(M) = Tim [[Vie[[(M) < ¢,

and therefore V' € V¢(M). This shows that V°(M) is sequentially compact. Since we
already proved that V(M) is metrizable and sequentially compactness and compact-
ness are equivalent for metric spaces, this shows that V¢(M ) is compact. O

Theorems B.15 and B.16 together prove Theorem 2.10.
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LEMMA C.1. Let (M, g) be a riemannian three-manifold and . an embedded two-sided
surface in M. Then

R — 2Ric(v,v) — |[A]? = 2K — H*.

Proof. The lemma will follow from the Gaul? equation
(R(X,Y)Z,W) = (r(X,Y)Z,WV) — (A(Y, W), A(X, 2)) + (A(X, W), A(Y, Z),

where 7 denotes the curvature tensor of X. Let {e;, e5, v} be an orthonormal basis for
T,M,p € ¥.DoingY =W =¢;,Y = W = ey and summing the equations, we obtain

(R(X,e1)Z,e1) + (R(X,e3)Z,e9) = (r(X,e1)Z,e1) — (A(e1,e1), A(X, Z))
+ <A(X7 61)7A(617 Z>> + <T(X7 62)Z7 62> - <A(€27€2)7A( )> + <A(X7 62)7*’4(627 Z>>

Denote A(X,Y) = h(X,Y)r, and then H := traco(A) = h(ey,e;1) + h(es, €3). Sum-
ming to both sides of the equation the term (R(X, v)Z, v), in the left-hand side we get
traco(Y — R(X,Y)Z) = Ric(X, Z). Noticing that (r(X,e1)Z,e1) + (r(X,e)Z, e) =
traco(Y — 7(X,Y)Z) = ric(X, Z), we get:

Ric(X, Z) =ric(X, Z) — (h(er, e1) + h(es, e2))h(X, Z) + h(X, e1)h(e1, Z)
+ h(X,es)h(es, Z) + (R(X,v)Z,v)

=ric(X, Z) - HW(X,Z) + Y h(X,e)h(e;, Z) + (R(X,v)Z,v).

i=1
Now, doing X = Z = e;, X = Z = e, and then summing up the equations, we get
2 2 2
Z Ric(ej, €) Z ric(e;, e;) Z h(ej,e;) + Z h(e;,e;)? + Z(R(ej, v)ej, V)
j=1 j=1 j:l ij=1 j=1
—r— H*+|AP?+ Z(R(V, e v, e;)
j=1

=r — H? + |A]? + Ric(v,v).

Finally, summing the term Ric(v, v) to both sides of the equation and using that r =
2K, we get

R =2K — H? + |A]? + 2Ric(v, v).
0

ProposITION C.2. Let M be a compact riemannian 3-manifold with scalar curvature
R > k.
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1. If¥ is an embedded orientable minimal surface of index one, then

/ERic(u, V) 4 |A[2dS < 8 ({9@;—“] + 1>

i) < 210 (12— [221] ).

and

2. IfY is stable and nonorientable, then
/ Ric(v,v) + |A]2dY < 47 (g(X) + 1)
b

and

kolX| < 127 4 4mg(X).
3. Suppose ko >. If ¥ is stable and orientable, then it is a sphere with ko|%| < 8.
Equality implies that R = ky on ..

Here [z denotes the integer part of x and S is the orientable double cover of 3.

Proof. 1. If X is orientable of index one, then there is a conformal map ¢ : 3 — S?
such that

/ Ric(v,v) + |A]* d2 < 8ndeg(e).
>

See (S. YAU, 1986, p. 127). Furthermore, we can choose ¢ such that
)41
doge) < | P52 41,

as in (RITORE; ROS, 1992, p- 299). The first inequality follows.

Now, it follows from Lemma C.1 and the GaulS-Bonnet Theorem that

k Al? ¥)+1
50\2|g/gczEZ/Ric(y,u)+%+Kdzggw({g(%} +1)+27rx(2)
b b

< 871 ([M] + 1) Far(l— g(¥)) = 127 + 8 ([9(2) H] - 9(2)> .

2 2 2

Now, to finish the proof we just need to show that

n+1 n o n n
[#]-5-5- ). w-oaa

which is equivalent to

{nJrl} :n—[ﬁ}, vn=0,1,2,...

2 2

Of course, this is true for n = 0, 1. Suppose the equation holds for n = k. Then

92 [ -ren- 7]

and thus the equation holds for n = k£ + 1 and (x) follows by induction. Then we

have
i) < 2t 10r (12— [221])
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2. The first inequality follows from (ROSS, 1997, Lemma 2 and identity (2’)). The
second is a consequence from Lemma C.1 and the Gaull-Bonnet Theorem:

3°|2| = ko|Z| g/RdZJ:[2Ric(y,u)—|—|A|2—|—2KdE
% >

< éRic(u, V) + | AP dy + 27(1 — g(i)) < 47r(g(i) +1) +2m(1 — g(f)))

< 61+ 2mg(X)
= ko|X| < 127 + dmg(%).

3. This is proven in (BRAY; BRENDLE; NEVES, 2010) (see identity (4)).
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