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RESUMO

Primeiro, apresentamos o conceito básico de superfícies mínimas e desenvolvemos

alguns resultados na teoria geral de superfícies mínimas.

Na segunda parte, estamos interessados na abordagem Min-Max Simon–Smith para

provar a existência de superfícies mínimas em 3-variedades riemannianas compactas

(COLDING; DE LELLIS, 2003). Isso é feito usando o conceito de varifolds, que é estu-

dado em Teoria Geométrica da Medida.

Na terceiraparte, consideramos superfíciesmínimasmin-maxem3-variedadeseprova-

mos alguns resultados de rigidez sob a hipótese de curvaturas escalar e de Ricci posi-

tivas (MARQUES; NEVES, 2012). Uma ferramenta importante aqui é o chamado fluxo

de Ricci.
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PRELIMINARIES
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1 MINIMAL SURFACES

1.1 FIRST VARIATION FORMULA

Let (M, g) be a riemannian 3-manifold and Σ ⊂ M a compact surface possibly with

boundary (all we do in this section can be easily adapted to a submanifold Σk of a

manifold Mn). Consider (x1, x2) local coordinates on Σ given by a parametrization

x : U → Σ and let

gij(x) = g

(

∂

∂xi
,
∂

∂xj

)

, for 1 ≤ i, j ≤ 2

be the components of g|Σ. Since the matrix gij(x) is symmetric, positive definite and

non-degenerated, we have det gij(x) > 0 for all x ∈ U . We define the area ofR = x(U)

as

|R| =

∫

R

dΣ :=

∫∫

U

√

det gij(x) dx1dx2,

where
∫∫

dx1dx2 is just the Riemann integral onR2. Using the change of variables the-

orem, one can show that the area of R is well-defined, i.e. it does not depend on the

parametrization x : U → R. Then, covering Σ by parametrizations and using a parti-

tion of unity in the usual way, we can define the area ofΣ:

|Σ| =

∫

Σ

dΣ.

This defines the area ofΣ even if it is not orientable. IfΣ is orientable, we can also look

to dΣ =
√

det gij(x) as a differentiable 2-form onΣ.

A (smooth) variation of Σ is a smooth map F : Σ× (−ǫ, ǫ) → M such that each Ft :=

F (t, ·) : Σ →M is an embedding and F0(x) = IdΣ : Σ → Σ.

Figure 1

We denote Σt = Ft(Σ) and we are interested in the derivative of the function f(t) =

|Σt|. Of course, we are considering the case in which |Σ| < +∞ (and hence |Σt| <

+∞).
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DEFINITION 1.1 (DIVERGENCE). LetX be an arbitrary vector field on Σ ⊂ M (not nec-

essarily tangent). We define the divergence as

divΣX(p) =
2
∑

i=1

g(∇eiX, ei) (1.1)

where {e1, e2} is an orthonormal basis for TpΣ and∇ is the Levi-Civita connection with

respect to the riemannian metric g.

THEOREM 1.2 (FIRST VARIATION FORMULA I).

d

dt
|Σt| =

∫

Σt

divΣt

(

∂F

∂t

)

dΣt (1.2)

Proof. Let x : U → Σ be a parametrization ofR = x(U). Then xt := Ft ◦ x : U → Σt

is a parametrization ofRt = Ft(R). We have

|Rt| =

∫∫

U

√

det gtij(x) dx1dx2,

where gtij(x) = g( ∂
∂xt

i
, ∂
∂xt

j
) and ∂

∂xt
i
are the coordinate vectors ofxt. Thus

∂
∂xt

i
= (Ft)∗

∂
∂xi

and we use the notation ∂iFt for it. Note that

∂

∂t
det gt = tr(g−1

t ∂tgt) det gt,

where g−1
t = (gijt ) = (gtij)

−1. Then

∂

∂t
det gt =

∑

i,j

(gijt ∂tg
t
ij) det gt.

We can compute ∂tgtij using the compatibility of∇with the metric g

∂tg
t
ij = ∂tg(∂iFt, ∂jFt) = g(∇∂tF∂iFt, ∂jFt) + g(∂iFt,∇∂tF∂jFt).

Now, since [∂tF, ∂iFt] = 0, by symmetry we have ∇∂tF∂iFt = ∇∂iFt∂tF . Putting this
together, we have

∂

∂t
det gt = 2

∑

i,j

gijt g(∇∂iFt∂tF, ∂jFt) det gt

We can change the coordinates on U such that, at the point x ∈ U , {∂1Ft, ∂2F} is an
orthonormal basis of TFt(x)Σt. In this coordinate system, at the point x, (gtij) = (gijt ) =
I. Thus

∂

∂t
det gt = 2

2
∑

i=1

g(∇∂iFt∂tF, ∂iFt)

= 2 divΣt

(

∂F

∂t

)

det gt.
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Therefore, we have

d

dt
|Rt| =

∂

∂t

∫∫

U

√

det gtij dx1dx2 =

∫∫

U

divΣt

(

∂F

∂t

)

√

det gtij dx1dx2

=

∫

Rt

divΣt

(

∂F

∂t

)

dΣt.

We cover Σ by parametrizations and take a partition of unity subordinated to the col-
lection of their open domains. Using Ft : Σ → Σt, this yields a partition of unity of Σt

which is essentially “the same”, i.e. it does not depend on t: if ϕ is a function from the
partition, then ϕ(F (x, t)) = ϕ(x). Then, summing up everything gives

d

dt
|Σt| =

∫

Σt

divΣt

(

∂F

∂t

)

dΣt.

We want to study surfaces that are critical points for area. We need to to introduce a

important geometric concept.

DEFINITION 1.3. For each p ∈ Σ, define the second fundamental form ofΣ ⊂M as

B(X, Y ) = ∇XY − (∇XY )T = (∇XY )N ,

where X , Y are vector fields tangent to Σ. B is a symmetric tensor. If {e1, e2} is an or-
thonormal basis for TpΣ, define themean curvature vector as

~H = trB =
2
∑

i=1

(∇eiei)
N .

LEMMA 1.4. divΣX = divΣX
T − g(XN , ~H).

Proof. WriteX in its tangent and normal componentsX = XT +XN . We have

divΣX = divΣX
T +

2
∑

i=1

g(∇eiX
N , ei).

SinceXN is normal and ei is tangent toΣ,

0 = eig(X
N , ei) = g(∇eiX

N , ei) + g(XN ,∇eiei).

Thus,

divΣX = divΣX
T −

2
∑

i=1

g(XN ,∇eiei) = divΣX
T − g(XN ,

2
∑

i=1

∇eiei)

= divΣX
T − g(XN ,

2
∑

i=1

(∇eiei)
N) = divΣX

T − g(XN , ~H).
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For the first variation formula II, we will use the divergence theorem onΣ.

THEOREM1.5 (DIVERGENCETHEOREM). SupposeΣ ⊂M is compactpossiblywithbound-

ary. IfX is a vector field tangent to Σ, ν ∈ TpΣ is the outward unit vector field normal

to ∂Σ and dσ is the length element of ∂Σ, then
∫

Σ

divΣX dΣ =

∫

∂Σ

g(X, ν) dσ.

If ∂Σ = ∅, then the integral is zero.

THEOREM 1.6 (FIRST VARIATION FORMULA II).

d

dt
|Σt| = −

∫

Σt

g(
∂F

∂t
, ~Ht) dΣt +

∫

∂Σt

g(
∂F

∂t
, νt) dσt.

In particular, ifX = ∂F
∂t
vanishes on ∂Σ at t = 0, then

d

dt

∣

∣

∣

∣

t=0

|Σt| = −

∫

Σ

g(X, ~H) dΣ.

Proof. We just need to apply Lemma 1.4 and the Divergence Theorem to the first vari-
ation formula I:

d

dt
|Σt| =

∫

Σt

divΣt

∂F

∂t
dΣt =

∫

Σt

divΣt

∂F

∂t

T

dΣt −

∫

Σt

g(
∂F

∂t

N

, ~Ht) dΣt

= −

∫

Σt

g(
∂F

∂t
, ~Ht) dΣt +

∫

∂Σt

g(
∂F

∂t
, νt) dσt.

This formula leads to an important corollary and definition of the main object of our

study.

COROLLARY 1.7. d
dt

∣

∣

t=0
|Σt| = 0 for anyX = 0withX = 0 on ∂Σ if and only if ~H = 0.

DEFINITION 1.8. Σ ⊂M is said to be aminimal surface if ~H = 0.

REMARK 1.9. 1. Definition 1.8 makes sense even ifΣ has infinite area.

2. Suppose ~H 6= 0 somewhere in the interior ofΣ. Take a positive function f : Σ → R

with f = 0on∂Σand f > 0 in the samepoint ofΣ inwhich ~H 6= 0. ThenX = f ~H
is zero on ∂Σ and d

dt

∣

∣

0
|Σt| = −

∫

Σ
g(f ~H, ~H) dΣ = −

∫

Σ
fg( ~H, ~H) dΣ < 0. This

shows that |Σt| decreases when we varyΣ by the mean curvature vector field.

3. Consider that X = ∂F
∂t

= 0 on ∂M at t = 0. Decompose X = XN + XT in its

normal and tangent components. By the first variation formula II,

d

dt

∣

∣

∣

∣

0

|Σt| = −

∫

Σ

g(X, ~H) dΣ = −

∫

Σ

g(XN , ~H) + g(XT , ~H) dΣ = −

∫

Σ

g(XN , ~H) dΣ.

Thus d
dt

∣

∣

0
|Σt| depends only on the normal component of the vector field along Σ

given by X = ∂F
∂t
. So instead of working with variations given in the form F :

(−ǫ, ǫ) × Σ → M with ∂F
∂t
(0, ·) ≡ 0 on ∂Σ we can work simply with the normal

vectors fields onΣwithX = 0 on the boundary.
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1.2 EXAMPLES

EXAMPLE 1.10 (GEODESICS). Let us look to smooth regular curves γ : I → M instead
of surfaces. We have g(∇ γ′

|γ′|

γ′

|γ′|
, γ′

|γ′|
) = γ′

|γ′|
g( γ′

|γ′|
, γ′

|γ′|
) = γ′

|γ′|
1 = 0. Therefore ~H =

(∇ γ′

|γ′|

γ′

|γ′|
)N = ∇ γ′

|γ′|

γ′

|γ′|
. Thus γ is a geodesic if and only if ~H = 0, i.e. geodesics can be

seen as minimal “surfaces” of dimension 1.

EXAMPLE 1.11 (MINIMAL SURFACES IN R3). We consider the case of minimal surfaces
given by the graph of a smooth function u : Ω → R, whereΩ ⊂ R2. Since every surface
in R3 is locally the graph of a smooth function on one of its three coordinated planes,
there is no loss of generality in doing so. Let ϕ : Ω → graph(u) be the parametrization
given by ϕ(x) = (x, u(x)). Use the notation

∂ϕ

∂xi
=

(

∂

∂xi
,
∂u

∂xi

)

, i = 1, 2.

The Euclidean metric ofR3 restricted to graph(u) is given by

gij = g

(

∂ϕ

∂xi
,
∂ϕ

∂xj

)

= δij +
∂u

∂xi

∂u

∂xj
, 1 ≤ i, j ≤ 2,

where δij = 1 if i = j and δij = 0 if i 6= j. We have

det(gij) =

(

1 +
∂u

∂x1

2)(

1 +
∂u

∂x2

2)

−

(

∂u

∂x1

∂u

∂x2

)2

= 1 +
∂u

∂x1

2

+
∂u

∂x2

2

= 1 + |∇u|2.

Thus,

|graph(u)| =

∫

Ω

√

1 + |∇u|2 dx.

Consider variations of graph(u) given by functions ut = u + tv, for any fixed function
v : Ω → Rwith v = 0 on ∂Ω. By integration by parts we have

d

dt

∣

∣

∣

∣

t=0

|graph(ut)| =
d

dt

∣

∣

∣

∣

t=0

∫

Ω

√

1 + |∇(u+ tv)|2 dx =

∫

Ω

〈

∇v,
∇u

√

1 + |∇u|2

〉

dx

= −

∫

Ω

v divR2

(

∇u
√

1 + |∇u|2

)

dx+

∫

∂Ω

v

〈

∇u
√

1 + |∇u|2
, ν

〉

dσ

= −

∫

Ω

v divR2

(

∇u
√

1 + |∇u|2

)

dx,

since v = 0 on ∂Ω. Therefore graph(u) is a minimal surface if and only if u satisfies

divR2

(

∇u
√

1 + |∇u|2

)

= 0. (1.3)

This is theminimal surface equation. It is equivalent to the second order elliptic quasi-
linear p.d.e given by

2
∑

i,j=1

(

δij −
∂iu∂ju

1 + |∇u|2

)

∂i∂ju = 0. (1.4)
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We now present some basic examples of minimal surfaces inR3:

• The plane: {(x, y, z) ∈ R3 : z = 0}.

• The catenoid: {(x, y, z) ∈ R3 : x2 + y2 = cosh z}. It is a bograph obtained by
the revolution of the curve y = cosh z over the z-axis.

Figure 2 – The catenoid and the helicoid

• The helicoid: (u, v) 7→ (u cos v, u sin v, v). This is a multigraph over R2\{0} for
the function arctan(y/x).

• The Scherk’s surface: graph(u), where u(x, y) = log
(

cosx
cos y

)

for x, y ∈ (−π
2
, π
2
).

Scherk’s surface is a doubly periodic minimal surface.

Figure 3 – Scherk’s surface

These are important examples when we try to classify the minimal surfaces inR3. For

example, we have
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THEOREM 1.12 (MEEKS AND ROSENBERG, 2005). The only complete embedded simply

connected minimal surfaces inR3 are the plane and the helicoid.

1.3 THE MAXIMUM PRINCIPLE

Let Ω ⊂ Rn be a domain and L : C∞(Ω) → C∞(Ω) be a second order differential

operator

Lv(x) =
n
∑

i,j=1

aij(x)∂i∂jv(x) +
n
∑

i=1

bi(x)∂iv(x) + c(x)v(x), x ∈ Ω,

where aij = aji, bi and c are smooth functions on Ω. We say L is elliptic if (aij(x))ij is

positive definite, for all x ∈ Ω. This is equivalent to say that

0 < λ(x)|ξ|2 ≤
n
∑

i,j=1

aij(x)ξiξj ≤ Λ(x)|ξ|2, ∀ξ ∈ Rn, x ∈ Ω

where λ(x) and Λ(x) are the minimum and maximum eigenvalues of (aij(x))ij re-

spectively. Note that if λ > 0 on Ω, then L is elliptic. If there is λ0 > 0 such that

0 < λ0 ≤ λ(x) for all x ∈ Ω, we say L is strictly elliptic. In addition, if Λ(x)/λ(x)

is bounded on Ω, then L is called uniformly elliptic. Now we introduce the strong

maximum principle for uniformly elliptic operators.

THEOREM 1.13 (STRONG MAXIMUM PRINCIPLE). Let L be uniformly elliptic, c = 0 and
Lv ≥ 0 (≤ 0) in a domainΩ (not necessarily bounded). Then if v achieves itsmaximum

(minimum) in the interior ofΩ, v is a constant.

Proof. This is Theorem 3.5 from (GILBARG; TRUDINGER, 2001)

The next proposition shows that if u1, u2 : Ω → R are solutions for the minimal sur-

face equation, then their difference v = u2 − u1 is a solution for an uniformly elliptic

equation, in a divergent form.

PROPOSITION 1.14. 0.2Let u1, u2 : Ω → R be solutions for the minimal surface equa-

tion on the compact domain Ω ⊂ R2. Then there is a mapA : Ω → M2×2(R) and there
is a number µ > 0 such that

1. the eigenvalues ofA(x) satisfies 0 < µ ≤ λ1(x) ≤ λ2(x) ≤
1
µ
, for all x ∈ Ω;

2. v = u2 − u1 is a solution to div(A(x)∇v(x)) = 0.

Proof. Define F : R2 → R2 as F (x) = x
(1+|x|2)1/2

. Then div(F (∇u)) = 0 is just the
minimal surface equation. By the fundamental theoremof calculus and the chain rule,
we get

F (∇u2)− F (∇u1) =

∫ 1

0

d

dt
F (∇u1 + t∇(u2 − u1)) dt
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=

∫ 1

0

dF∇u1+t∇(u2−u1) · ∇(u2 − u1) dt

=

(
∫ 1

0

dF∇u1+t∇(u2−u1) dt

)

· ∇(u2 − u1).

Thus if we define

A(x) =

∫ 1

0

dF∇u1(x)+t∇v(x) dt

we have div(A∇v) = div(F (∇u2)− F (∇u2)) = div(F (∇u2))− div(F (∇u1)) = 0.

Now, we show that A = A(x) is positive definite for all x ∈ Ω, i.e. 〈w,Aw〉 > 0, for all
w ∈ R2\{0}. Before we prove this, let w ∈ R2 with |w| = 1 and y ∈ R2. We have

dFy · w =
d

dt

∣

∣

∣

∣

t=0

F (y + tw) =
d

dt

∣

∣

∣

∣

t=0

(y + tw)

(1 + |y + tw|2)1/2

=
w(1 + |y + tw|2)1/2 − (y + tw)1

2
(1 + |y + tw|2)−1/22〈y + tw, w〉

1 + |y + tw|2

∣

∣

∣

∣

∣

t=0

=
w

(1 + |y|2)1/2
−

〈y, w〉y

(1 + |y|2)3/2
.

By Cauchy-Schwarz we have 〈y, w〉2 ≤ |y|2|w|2 = |y|2. Then

〈w, dFyw〉 =
1

(1 + |y|2)1/2
−

〈y, w〉2

(1 + |y|2)3/2
≥

1

(1 + |y|2)1/2
−

|y|2

(1 + |y|2)3/2

=
1 + |y|2 − |y|2

(1 + |y|2)3/2
=

1

(1 + |y|2)3/2
> 0.

This shows the matrix dFy is positive definite, for all y ∈ R2. Thus, A is a weighted
average of positive definite matrices and hence it is also positive definite. ThereforeA
has positive eigenvalues.

Now, if {e1, e2} is the canonical basis forR2, we also have

aij := 〈ei, dFyej〉 =
δij

(1 + |y|2)1/2
−

〈y, ei〉〈y, ej〉

(1 + |y|2)3/2
.

Since (aij)ij is the matrix of dFy in the canonical basis and aij = aji, this shows that
dFy is symetric, for all y ∈ R2. Again,A(x) inherits this property. Thus we can use the
Rayleigh quotient method for eigenvalues. We know in particular that

λ1(x) = inf
w∈R2\{0}

〈A(x)w,w〉

〈w,w〉
= inf

|w|=1
〈A(x)w,w〉,

λ2(x) = sup
w∈R2\{0}

〈A(x)w,w〉

〈w,w〉
= sup

|w|=1

〈A(x)w,w〉.

LetM = supx∈Ω |∇u1(x)| andN = supx∈Ω |∇v(x)|. If |w| = 1, we have

〈A(x)w,w〉 =

〈(
∫ 1

0

dF∇u1(x)+t∇v(x) dt

)

w, w

〉

=

∫ 1

0

〈dF∇u1(x)+t∇v(x) · w,w〉 dt

≥

∫ 1

0

1

(1 + |∇u1(x) + t∇v(x)|2)3/2
dt
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≥

∫ 1

0

1

(1 + (|∇u1(x)|+ t|∇v(x)|)2)3/2
dt

≥

∫ 1

0

1

(1 + (M + tN)2)3/2
dt := µ1 > 0

Thus 0 < µ1 ≤ λ1(x), for all x ∈ Ω. On the other hand,

〈A(x)w,w〉 =

∫ 1

0

〈dF∇u1(x)+t∇v(x) · w,w〉 dt ≤

∫ 1

0

1 dt = 1.

Thus λ2(x) ≤ 1. Putting µ = min{1, µ1}, we have 0 < µ ≤ λ1(x) ≤ λ2(x) ≤
1
µ
.

REMARK 1.15. IfA(x) = (aij(x))ij and v : Ω ⊂ Rn → R, observe that

Lv(x) := div(A(x)∇v(x)) =
n
∑

i,j=1

aij(x) ∂i∂jv(x) +
n
∑

j=1

(

n
∑

i=1

∂iaij(x)

)

∂jv(x).

So Proposition 1.14 is precisely saying that v = u2 − u1 is a solution for Lv = 0, for
an uniformly elliptic operator, namely L = div(A∇). As a consequence, we have the
maximum principle for minimal surfaces.

THEOREM 1.16 (STRONG MAXIMUM PRINCIPLE FOR MINIMAL SURFACES). LetΣ1 andΣ2

be complete connectedminimal surfaces inR3. IfΣ1 lies in one side ofΣ2 andΣ1∩Σ2 6=
∅, thenΣ1 = Σ2.

Proof. Let u1, u2 : Ω ⊂ R2 → R be solutions for the minimal surface equation with
u1 ≤ u2 and suppose there is some p ∈ Ω such that u1(p) = u2(p). By the previous
proposition, we can apply the maximum principle to v = u2 − u1. Since v ≥ 0 and
v(p) = 0, p is a minimum of v. Therefore, vmust be constant and u1 = u2. Since every
surface is locally a graph of a function, this proves the theorem.

1.4 SECOND VARIATION FORMULA

In this section, M will denote a compact orientable riemannian 3-manifold without

boundary. Let Σ ⊂ M be a connected embedded compact surface. If Σ is minimal

( d
dt

∣

∣

0
|Σt| = 0 for any variationΣt) and wewant to know if it is a local minimumof area

for a given variation Σt, we need to study
d2

dt2

∣

∣

∣

0
|Σt|. Then the Jacobi operator comes

into play.

By Remark 1.9 (iii), in order to compute d
dt

∣

∣

0
|Σt| for variations of Σ with fixed bound-

ary we just need to consider the normal vector fields X along Σ with X = 0 on the

boundary ∂Σ. We call these vector fields admissible. IfX is one such vector field and

Σt is the associated smooth variation, we denote

[δΣ](X) =
d

dt

∣

∣

∣

∣

0

|Σt|, [δ2Σ](X,X) =
d2

dt2

∣

∣

∣

∣

0

|Σt|.

Now we look more closely at these vector fields.
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We divide the situation in two cases: Σ is orientable or non-orientable. Since the am-

bient manifoldM is orientable, the orientability of Σ is equivalent to two-sidedness.

A surface Σ ⊂ M is said to be two-sided onM if there is a section ν : Σ → NΣ with

ν 6= 0 everywhere on Σ (here NΣ is the Σ normal bundle). Otherwise Σ is said to be

one-sided. Note that two-sidedness is an extrinsic concept, while orientability is in-

trinsic to the surfaceΣ. But in the case thatM is orientable, these concepts coincide.

Suppose first thatΣ is orientable. Thenwe can consider a normal unitary vector field ν

onΣ. SinceΣ is a surface andM is 3-dimensional, each fiber onNΣ is 1-dimensional.

Thus any admissible vector fieldX on Σ can be written in the formX = φν for some

smooth function φ : Σ → R with φ = 0 on ∂Σ. These will be the admissible functions

onΣ in the caseΣ is orientable.

If Σ is non-orientable we introduce a new surface Σ̃ which is orientable and can be

used to study variations of Σ. This is the so called orientable double cover of Σ (see

Appendix A for more details). In this case, if Σt is given by a smooth variation of Σ,

then we can associate a smooth variation Σ̃t of the orientable double cover Σ̃ such

that

|Σt| =
1

2
|Σ̃t|.

Thus, in order to compute the derivatives of |Σt|, we can always suppose that Σ is ori-

entable. However, we still need to say which will be the admissible functions on Σ̃,

because not every function on it comes from a smooth variation of Σ (see Appendix

A). The admissible functions in this case are those smooth functions φ : Σ̃ → R such

that φ = 0 on ∂Σ̃ and φ = −φ ◦ τ , where τ : Σ̃ → Σ̃ is a certain isometry involution of

Σ̃ such that Σ̃/{1, τ} = Σ.

THEOREM 1.17 (SECOND VARIATION FORMULA). Let F : (−ǫ, ǫ) × Σ → M be a smooth

variationofΣand{e1, e2}aorthonormalbases inTΣ. If |∇⊥X|2 denotes
∑2

i=1 |(∇eiX)⊥|2,
then

d2

dt2

∣

∣

∣

∣

0

|Σt| =

∫

Σ

(

2
∑

i=1

RM(X, ei, X, ei) + divΣ(∇XX) + |∇⊥X|2

−
2
∑

i,j=1

g(∇eiX, ej)g(∇ejX, ei) + (divΣX)2

)

dΣ.

Proof. Using the same notation as in Theorem 1.2, recall that

d

dt
dΣt = divΣt

(

∂F

∂t

)

dΣt =

(

2
∑

i,j=1

gijg(∇∂iF∂tF, ∂jF )

)

dΣt.

We want to compute d2

dt2
dΣt. Before doing that, we do some remarks.
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Observe first that ∂tg−1 = −g−1(∂tg)g
−1, hence ∂tgij = −

∑2
k,l=1 g

ik(∂tgkl)g
lj and we

have

∂tgkl = ∂tg(∂kF, ∂lF ) = g(∇∂kF∂tF, ∂lF ) + g(∂kF,∇∂lF∂tF ).

On the other hand, ifRM denotes the riemannian curvature tensor ofM , then

RM(∂tF, ∂iF )X := ∇∂tF∇∂iFX −∇∂iF∇∂tFX −∇[∂tF,∂iF ]X

= ∇∂tF∇∂iFX −∇∂iF∇∂tFX,

since [∂iF, ∂tF ] = 0. Then we have

∂tg(∇∂iF∂tF, ∂jF ) = g(∇∂tF∇∂iF∂tF, ∂jF ) + g(∇∂iF∂tF,∇∂tF∂jF )

= g(∇∂tF∇∂iF∂tF −∇∂iF∇∂tF∂tF, ∂jF ) + g(∇∂iF∇∂tF∂tF, ∂jF )

+ g(∇∂iF∂tF,∇∂tF∂jF )

= g(RM(∂tF, ∂iF )∂tF, ∂jF ) + g(∇∂iF∇∂tF∂tF, ∂jF ) + g(∇∂iF∂tF,∇∂jF∂tF ).

Thus

∂t divΣt(∂tF ) =

=
2
∑

i,j=1

(

−
2
∑

k,l=1

gik(g(∇∂kF∂tF, ∂lF ) + g(∂kF,∇∂lF∂tF ))g
lj

)

g(∇∂iF∂tF, ∂jF )

+
2
∑

i,j=1

gij(g(RM(∂tF, ∂iF )∂tF, ∂jF ) + g(∇∂iF∇∂tF∂tF, ∂jF ) + g(∇∂iF∂tF,∇∂jF∂tF )).

Take the basis {e1, e2} in TΣ to be orthonormal and denoteX = ∂tF at t = 0. Noticing
that ∂iF = ei, the expression above at t = 0 simplifies to

d

dt

∣

∣

∣

∣

0

divΣt

(

∂F

∂t

)

= −
2
∑

i,j=1

(g(∇eiX, ej) + g(∇ejX, ei))g(∇eiX, ej)

+
2
∑

i=1

g(RM(X, ei)X, ei) + divΣ(∇XX) +
2
∑

i=1

g(∇eiX,∇eiX).

If (∇⊥
ei
X) = (∇eiX)⊥ denotes the component of∇eiX normal toΣ, then we have

2
∑

i=1

g(∇eiX,∇eiX) =
2
∑

i=1

g(∇⊥
ei
X,∇⊥

ei
X) +

2
∑

i,j,k=1

g(g(∇eiX, ej)ej, g(∇eiX, ek)ek)

= |∇⊥X|2 +
2
∑

i,j=1

g(∇eiX, ej)
2,

with |∇⊥X|2 :=
∑2

i=1 g(∇
⊥
ei
X,∇⊥

ei
X). Therefore

d

dt

∣

∣

∣

∣

0

divΣt

(

∂F

∂t

)

=
2
∑

i=1

RM(X, ei, X, ei) + divΣ(∇XX) + |∇⊥X|2

−
2
∑

i,j=1

g(∇eiX, ej)g(∇ejX, ei).
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Then

d

dt

∣

∣

∣

∣

0

divΣt

(

∂F

∂t

)

dΣt =

(

d

dt

∣

∣

∣

∣

0

divΣt

(

∂F

∂t

))

dΣ + divΣ(X)
d

dt

∣

∣

∣

∣

0

dΣt

gives the theorem.

We are interested in computing d2

dt2

∣

∣

∣

0
|Σt| when

d
dt

∣

∣

0
|Σt| = 0 for any variation F , i.e.

whenΣ is aminimal surface. For this purpose, we have seen that we only need to con-

sider variationswithX = ∂F
∂t

∣

∣

0
normal toΣ. We alsowill always suppose the boundary

is fixed, i.e. X = 0 on ∂M .

THEOREM1.18 (SECONDVARIATION FORMULA FORMINIMAL SURFACES). LetΣ be an ori-

entableminimal surface embedded inM andν beaglobalunitnormal vectorfieldalong

Σ. Consider a smooth variation F of Σ such that X := ∂F
∂t

∣

∣

0
= φν, with φ ∈ C∞(Σ),

andX = 0 on ∂Σ. Then

d2

dt2

∣

∣

∣

∣

0

|Σt| =

∫

Σ

| gradΣ φ|
2 − Ric(ν, ν)φ2 − |A|2φ2 dΣ

= −

∫

Σ

φ(∆Σφ+ Ric(ν, ν)φ+ |A|2φ) dΣ,

where∆Σ = divΣ gradΣ,Ric is the Ricci tensor ofM andA is second fundamental form

ofΣ.

Proof. We analyze the terms in the formula given by the previous theorem:

(∗)
2
∑

i=1

RM(φν, ei, φν, ei) = φ2

2
∑

i=1

−RM(ei, ν, ν, ei) =: −φ2 Ric(ν, ν),

(∗)−
2
∑

i,j=1

g(∇eiφν, ej)g(∇ejφν, ei) = −
2
∑

i,j=1

g(φν,∇eiej)g(φν,∇ejei)

= −
2
∑

i,j=1

g(φν,∇eiej)g(φν,∇eiej) = −φ2

2
∑

i,j=1

g(∇eiej, ν)
2 = −φ2|A|2,

(∗)

∫

Σ

divΣ(∇XX)dΣ =

∫

Σ

divΣ(∇XX)T − g(X, ~H)dΣ =

∫

Σ

divΣ(∇XX)T

=

∫

∂Σ

g((∇XX)T , η)dσ = 0,

(∗)

∫

Σ

(divΣ(X))2dΣ =

∫

Σ

(divΣX
T − g(X, ~H))2dΣ = 0,

In the third (∗)we used Lemma 1.4, ~H = 0, the divergence theorem andX = 0 on ∂Σ.
In the fourth (∗)we used Lemma 1.4 andXT = 0, ~H = 0. It only remains to show that

∫

Σ

|∇⊥X|2 dΣ =

∫

Σ

| gradΣ φ|
2 dΣ = −

∫

Σ

φ∆Σφ dΣ.

First notice that g(∇eiν, ν) =
1
2
ei(g(ν, ν)) =

1
2
ei(1) = 0, for i = 1, 2. Then

|∇⊥X|2 =
2
∑

i=1

g(∇⊥
ei
X,∇⊥

ei
X) =

2
∑

i=1

g(g(∇eiX, ν)ν, g(∇eiX, ν)ν) =
2
∑

i=1

g(∇eiX, ν)
2
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=
2
∑

i=1

(φg(∇eiν, ν) + g(ei(φ)ν, ν))
2 =

2
∑

i=1

ei(φ)
2 = | gradΣ φ|

2.

Finally, we have

∫

Σ

divΣ(φ gradΣ φ) dΣ =

∫

∂Σ

g(φ gradΣ φ, η) dσ = 0,

since φ = 0 on ∂Σ. On the other hand,

divΣ(φ gradΣ φ) =
2
∑

i=1

g(∇eiφ gradΣ φ, ei)

= φ

2
∑

i=1

g(∇ei gradΣ φ, ei) +
2
∑

i=1

g(ei(φ) gradΣ φ, ei)

= φ divΣ gradΣ φ+
2
∑

i=1

ei(φ)g(gradΣ φ, ei)

= φ∆Σφ+
2
∑

i=1

ei(φ)
2 = φ∆Σφ+ | gradΣ φ|

2.

Thefore
∫

Σ

| gradΣ φ|
2 dΣ = −

∫

Σ

φ∆Σφ dΣ.

1.5 STABILITY, JACOBI OPERATOR

DEFINITION 1.19. We say that a minimal surface Σ is stable (resp. strictly stable) if
d2

dt2

∣

∣

∣

0
|Σt| ≥ 0 (resp. > 0), for any smooth variationΣt ofΣ.

REMARK 1.20. Notice that if Σ is a stable minimal surface, then there is no smooth

variationΣt ofΣ0 = Σ such that t = 0 is a localmaximumof the area function t 7→ |Σt|.
If Σ is strictly stable, then it is a local minimum of the area functional, for any given

variation ofΣ.

The following result follows immediately from the second variation formula.

PROPOSITION 1.21 (STABILITY INEQUALITY). Let Σ be a minimal surface. If Σ is ori-

entable, thenΣ is stable if and only if

∫

Σ

(Ric(ν, ν) + |A|2)φ2 dΣ ≤

∫

Σ

| gradΣ φ|
2 dΣ, for every φ ∈ C∞(Σ).

IfΣ is non-orientable, thenΣ is stable if and only if

∫

Σ̃

(Ric(ν, ν) + |A|2)φ2 dΣ̃ ≤

∫

Σ̃

| gradΣ̃ φ|
2 dΣ̃, for every φ ∈ C∞(Σ̃)with φ ◦ τ = −φ.
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COROLLARY 1.22. Suppose Ric > 0 onM , i.e. Ric(v, v) > 0, for all v ∈ TM . Then no

embedded closed orientable minimal surface inM can be stable.

Proof. Let Σ be an embedded closed orientable minimal surface in M . Then, since
Σ has empty boundary, φ ≡ 1 is admissible. If Σ were stable, the stability inequality
would give

0 <

∫

Σ

(Ric(ν, ν) + |A|2)φ2 dΣ ≤

∫

Σ

| gradΣ φ|
2 dΣ = 0,

a contradiction.

REMARK 1.23. Note that the same argument cannot be applied to the non-orientable

case, since φ ≡ 1 on Σ̃ is not admissible (φ ◦ τ 6= −φ).

DEFINITION 1.24 (JACOBI OPERATOR). Let Σ ⊂ M be an embedded minimal surface.

We define the Jacobi operator as the following linear differential operator, according to

the respective case:

1. Σ orientable: L : C∞(Σ) → C∞(Σ) given by Lφ = ∆Σφ+ (Ric(ν, ν) + |A|2)φ;

2. Σ non-orientable: L : C̃∞(Σ̃) → C̃∞(Σ̃) given byLφ = ∆Σ̃φ+(Ric(ν, ν)+ |A|2)φ
and with C̃∞(Σ̃) := {φ ∈ C∞(Σ̃) : φ ◦ τ = −φ}.

We say that λ ∈ R is an eigenvalue with associated eigenfunction φ ∈ C∞(Σ) (resp.
C̃∞(Σ̃)) if φ is not identically zero and Lφ+ λφ = 0. The set

Spec(L) := {λ ∈ R : λ is an eigenvalue of L}

is called the spectrum of L. For each eigenvalue λ, we have the associated eigenspace

Vλ := {φ ∈ D : Lφ+ λφ = 0},

withD = C∞(Σ) (resp. D = C̃∞(Σ̃)).

REMARK 1.25. 1. If Σ is an orientable minimal surface and Σt is a variation with

variational vector fieldX = φν, then

d2

dt2

∣

∣

∣

∣

0

|Σt| = −

∫

Σ

φLφ dΣ.

2. If Σ is a non-orientable minimal surface and Σt is a smooth variation of Σ with

associated variational vector field X̃ = φν on the orientable double cover Σ̃, then

d2

dt2

∣

∣

∣

∣

0

|Σt| =
1

2

d2

dt2

∣

∣

∣

∣

0

|Σ̃t| = −
1

2

∫

Σ̃

φLφ dΣ̃.

PROPOSITION 1.26 (JACOBI OPERATOR SPECTRUM). LetΣ be an embedded compact ori-

entable minimal surface inM . Then

1. L : C∞(Σ) → C∞(Σ) is self-adjoint, i.e. 〈φ1, Lφ2〉 = 〈Lφ1, φ2〉, where 〈φ1, φ2〉 =
∫

Σ
φ1φ2 dΣ is the inner product in C∞(Σ). Hence, eigenfunctions associated to

distinct eigenvalues are always orthonormal;
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2. Spec(L) = {λ1 < λ2 < · · · < λn < . . . ↑ +∞};

3. dimVλ <∞, for every λ ∈ Spec(L). The number dimVλ is called themultiplicity
of λ;

4. dimVλ1 = 1 and if φ ∈ Vλ1 , then φ(p) 6= 0, for every p ∈ Σ. Since Σ is con-

nected, this means that φ > 0 or φ < 0. Moreover, every eigenfunction associated
to another eigenvalue necessarily changes sign onΣ;

5. there is an orthonormal basis of eigenfunctions of L for L2(Σ), the Hilbert space
of the functions φ : Σ → R such that ∃

∫

Σ
φ2dΣ < +∞. More precisely, write

Spec(L) = {λ1 < λ2 ≤ λ3 ≤ · · · ≤ λn ≤ . . . ↑ +∞}, repeating the eigenval-
ues according to its multiplicity. Then let {φi ∈ C∞(Σ)}i∈N be such that φi is an

eigenfunction with eigenvalue λi and 〈φi, φj〉 = 0 if i 6= j. Then, any φ ∈ L2(Σ)
can be written as φ =

∑∞
i=1〈φ, φi〉φi.

PROPOSITION 1.27. Let Σ ⊂ M be an embedded compact non-orientable minimal

surface inM . Then

1. L : C̃∞(Σ̃) → C̃∞(Σ̃) is self-adjoint;

2. Spec(L) = {λ1 ≤ λ2 ≤ · · · ≤ λn ≤↑ +∞};

3. dimVλ <∞, for every λ ∈ Spec(L);

4. there is an orthonormal basis of eigenfunctions of L for L̃2(Σ̃), the Hilbert space
of functions φ : Σ̃ → R such that ∃

∫

Σ̃
φ2 dΣ̃ < +∞ and φ ◦ τ = −φ.

The previous theorems lead to the definition of index of a minimal surface. This con-

cept measures how far a minimal surface is from being stable.

DEFINITION 1.28. TheMorse index ofΣ, denoted by ind(Σ) is the number of negative

eigenvalues of the Jacobi operator associated toΣ counted with multiplicities.

PROPOSITION 1.29. Σ is stable if and only if ind(Σ) = 0.

Proof. Suppose Σ is orientable (the proof for the non-orientable case is the same). If
Σ is stable and λ is an eigenvalue of L with eigenfunction φ, then puttingX = φν we
have

0 ≤ [δ2Σ](X,X) = −

∫

Σ

φLφ dΣ = λ

∫

Σ

φ2 dΣ =⇒ 0 ≤ λ.

Therefore ind(Σ) = 0. Conversely, suppose ind(Σ) = 0 and letX = φν an admissible
vector field on Σ. Then if {φi}i∈N is the L2-orthonormal basis of eigenfunctions of L,
we have

φ =
∞
∑

i=1

biφi, with bi =

∫

Σ

φφi dΣ,

and then

[δ2Σ](X,X) = −

∫

Σ

φLφ dΣ =
∞
∑

i=1

λib
2
i ≥ 0,

since λi ≥ 0 for all i ∈ N.
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2 VARIFOLDS

In this chapter we introduce the concept of varifolds, fromGeometricMeasure Theory

(for details, see e.g. (SIMON, 2014)), aswell as someof their properties. These concepts

are some of the main ingredients in the proof of Simon–Smith’s Theorem (which we

discuss in the next chapter).

2.1 RADON MEASURES

DEFINITION 2.1. 1. LetX be any set. A functionµ : ℘(X) → R is said to be an outer

measure onX if µ(∅) = 0 and µ(A) ≤
∑∞

j=1 µ(Aj), wheneverA ⊂ ∪∞
j=1An.

2. IfX is a topological space and x ∈ X , we say that µ(x) = 0 if there is some open

neighborhood U ⊂ X of x such that µ(U) = 0. Then the support of µ inX will

be supp(µ) = X\A, whereA = {x ∈ X : µ(x) = 0}.

3. Given ameasure µ onX and a subsetA ⊂ X , we define a newmeasure µxA onX
by µxA(B) = µ(B ∩ A).

Note that if µ is an outer measure on X , then µ(A) ≤ µ(B), whenever A ⊂ B ⊂ X .

Also, since∅ ⊂ A, for any setA, we have that µ(A) ≥ 0.

We consider the Caratheodory’s notion of measurability:

DEFINITION 2.2. A subset A ⊂ X is µ-measurable if µ(S) = µ(S\A) + µ(S ∩ A), for
any S ⊂ X .

REMARK 2.3. Notice thatA is µ-measurable if and only if µ(S) ≥ µ(S\A) + µ(S ∩A),
for any S ⊂ X .

A collection S of subsets ofX is said to be a σ-algebra if:

1. ∅, X ∈ S ;

2. A ∈ S =⇒ X\A ∈ S

3. An ∈ S =⇒ ∪∞
n=1An ∈ S .

Observe that, by (2) and (3), we also have ∩∞
n=1An = X\(∪∞

n=1X\An) ∈ S , whenever

An ∈ S .

If {Sα}α∈A is any family of σ-algebras onX , then S = ∩α∈ASα is again a σ-algebra on

X . Since℘(X) is a σ-algebra, the family of σ-algebras which contain a given collection

C of subsets ofX is never empty. This allows us to talk about the σ-algebra generated

by C. It is defined as the intersection of all σ-algebras which contain C and therefore it
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is the least σ-algebra which contains C. IfX is a topological space, then the σ-algebra

generated by the collection of open sets in X is called the Borel σ-algebra on X and

its elements are usually referred to as Borel sets ofX .

PROPOSITION 2.4. The collectionM of all µ-measurable sets is a σ-algebra onX .

DEFINITION 2.5. LetX be a set and µ : ℘(X) → R be an outer measure.

1. µ is said to be regular if for every A ∈ ℘(X) there is a µ-measurable B ∈ ℘(X)
such thatA ⊂ B and µ(A) = µ(B);

2. ifX is a topological space, then µ is said to be Borel-regular if every Borel set of
X is µ-measurable and, for any A ∈ ℘(X), there is some B ∈ ℘(X) with A ⊂ B
and µ(A) = µ(B);

3. ifX is a Hausdorff space, then µ is said to be Radon if

µ is Borel-regular and µ(K) <∞, for every compactK ⊂ X , (R1)

µ(A) = inf
U open,A⊂U

µ(U), for everyA ∈ ℘(X), (R2)

µ(U) = sup
K compact,K⊂U

µ(K), for every U ∈ ℘(X) open. (R3)

LetX be a metric space and s > 0 a real number. For δ > 0, set

Fδ = {{Ci}i∈N : Ci ∈ ℘(X), diamCi < δ}.

Then, forA ∈ ℘(X), put

Hs
δ(A) := inf

{

ωs

∞
∑

i=1

(

diamCi

2

)s

: {Ci}i∈N ∈ Fδ, A ⊂
∞
⋃

i=1

Ci

}

.

Here, if s ∈ N, then ωs denotes the volume of the unit sphere Ss−1 in Rs. Otherwise,

ωs is any fixed positive number. Notice that, if δ1 ≤ δ2, then Fδ1 ⊂ Fδ2 . Therefore,

Hs
δ2
(A) ≤ Hs

δ1
(A) and the limit limδ↓0 H

s
δ(A) exists, although it can be+∞.

DEFINITION2.6 (HAUSDORFFMEASURE). LetX be ametric space and s ≥ 0 a real num-

ber. The s-dimensional Hausdorffmeasure onX is the outer measureHs : ℘(X) → R

given by

Hs(A) =

{

card(A), if s = 0;
limδ↓0 H

s(A), if s > 0.
forA ∈ ℘(X).

IfA ⊂ X , then dimH(A) := inf{s ≥ 0 : Hs(A) = 0} is theHausdorff dimension ofA.

REMARK 2.7. Fractal sets are examples of sets with non-integer Hausdorff dimension.

PROPOSITION 2.8. LetX be a metric space.

1. IfX is a locally compact and any open set inX is a countable union of compact

sets (in particular, if X is a riemannian manifold), then Hs is a Radon measure

onX , for every s > 0;
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2. If s ∈ N, thenHs = Ls, the Lebesgue measure onRs;

3. IfX =M is a riemannianmanifold, andΣ ⊂M is an embedded k-submanifold,

thenHk(Σ) = |Σ|, the k-dimensional volume ofΣ.

2.2 VARIFOLDS, WEAK TOPOLOGY

Now we introduce a generalization of the concept of submanifolds which has good

compactness properties. This is the concept of varifolds. Before we define what a var-

ifold is, we briefly talk about grassmannians.

Let E be a vector space with dimension n < ∞. For each integer 1 ≤ k ≤ n, we

define the k-grassmannian of E as the setGk(E) of all k-dimensional subspaces of E.

EachGk(E) has a natural differentiable structure that turns it into a compact smooth

manifold of dimension k(n − k). Notice that the grassmannian G1(E) is simply the

projective space P(E).

Then, ifM is a n-dimensional smoothmanifold, we denote byGk(M) the bundle with

baseM and fibers Gk(TxM), x ∈ M . We call it the k-grassmannian bundle overM .

We denote an element ofGk(M) by (x, π), with x ∈ M and π ∈ Gk(TxM). Of course,

the dimension ofGk(M) is nk(n− k). Since each fiber is compact,Gk(M) is compact

provided that the baseM is compact.

Now we define varifolds.

DEFINITION 2.9 (VARIFOLDS). Let M be a smooth n-manifold and 1 ≤ k ≤ n. Any
Radonmeasure on the k-grassmannian bundleGk(M) is called a (k-dimensional) var-

ifold on M . We denote by Vk(M) the set of all k-dimensional varifolds on M . Given

a varifold V ∈ Vk(M), one defines the mass of V as the unique measure ‖V ‖ on M
satisfying

∫

M

ϕ(x) d‖V ‖ =

∫

Gk(M)

ϕ(x) dV, ∀ϕ ∈ Cc(M),

where Cc(M) denotes the set of continuous functions of compact support inM .

SupposeM is a riemannian manifold and let Σ ⊂ M be a k-submanifold. One can

define a varifold VΣ ∈ Vk(M) by

∫

Gk(M)

ϕ(x, π) dVΣ =

∫

Σ

ϕ(x, TxΣ) dΣ,

for all continuous functions ϕ ∈ Cc(Gk(M)). This is how we look at Σ as a varifold.

More generally, we can use rectifiable sets with multiplicity instead of submanifolds

in order to induce varifolds. A subset R ⊂ M is said to be a k-dimensional rectifiable

set if R =
⋃∞

i=0Ni, with Hk(N0) = 0 and each Ni, i > 0, a closed subset of some C1

k-submanifoldΣi ofM . Rectifiable sets have a notion of tangent spaces and, ifR ⊂M

is k-rectifiable, then the tangent space at x ∈ R, denoted by TxR, exists for Hk-a.e.
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point x ∈ R. Then, ifR is a k-rectifiable,Hk-measurable subset ofM , and θ : R → R+

is a measurable function, then one can define a k-varifold V onM by
∫

Gk(M)

ϕ(x, π) dV =

∫

R

θ(x)ϕ(x, TxR) dH
k, ∀ϕ ∈ Cc(Gk(M)).

We denote V = v(R, θ) and v(R, θ) is a k-rectifiable varifold with multiplicity θ. If θ is

integer valued forHk-a.e. x ∈ R, we say also that v(R, θ) is an integral varifold.

Since we will be working mostly with 2-dimensional varifolds, we drop the k from our

notations.

WeendowV(M)with the topology givenby the following convergencenotion (seeB.1),

called theweak convergence: we say that a net (Vλ)λ∈D in V(M) converges weakly to

V ∈ V(M) if
∫

G(M)

ϕ(x, π) dVλ →

∫

G(M)

ϕ(x, π) dV, ∀ϕ ∈ Cc(G(M)).

In this case, we write Vλ ⇀ V . For c ≥ 0, denote Vc(M) := {V ∈ V(M) : ‖V ‖(M) ≤

c}. We have the following important result about the weak topology on V(M).

THEOREM2.10. IfM is compact, thenVc(M) ismetrizable and compact, for any c ≥ 0.

Proof. For a detailed proof, see B.2 in the Appendix.

2.3 STATIONARY VARIFOLDS

Let ψ : M → M ′ a diffeomorphism between riemannian manifolds. For any varifold

V inM induced by a submanifold Σ ⊂ M , we can define a varifold ψ♯V inM ′ as the

varifold induced by ψ(Σ). This notion can be generalized for any varifold V ∈ V(M)

by
∫

G(M ′)

ϕ(y, σ) dψ♯V =

∫

G(M)

ϕ(ψ(x), dψx(π))|Jψ(x, π)| dV, ∀ϕ ∈ Cc(G(M
′)).

where Jψ(x, π) denotes det((dψx)|π). The map ψ♯ : V(M) → V(M ′) is called the

pushforward with respect to ψ.

Let V be a varifold onM and X a vector field onM with compact support. Let F :

(−ǫ, ǫ) ×M → M be the isotopy induced by X , i.e. ∂F
∂t

= X(F ). We define the first

variation of V with respect toX as

[δV ](X) =
d

dt

∣

∣

∣

∣

0

‖Ft♯V ‖(M).

The next proposition shows that the definition of first variation coincides with the

usual definition when V is a submanifold.
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PROPOSITION 2.11. If we look to a submanifold Σ as a varifold, then

[δΣ](X) =

∫

Σ

divΣX dΣ =
d

dt

∣

∣

∣

∣

0

|Ft(Σ)|.

We also have [δV ](λX) = λ[δV ](X), for any λ ∈ R.

Proof. The mass ofΣ viewed as a varifold is simply its volume:

‖Σ‖(M) =

∫

M

d‖Σ‖ =

∫

G(M)

dΣ =

∫

Σ

dHk =

∫

Σ

dΣ = |Σ|.

Therefore

[δΣ](X) =
d

dt

∣

∣

∣

∣

0

‖Ft♯Σ‖(M) =
d

dt

∣

∣

∣

∣

0

|Ft(Σ)|,

and then we use the classic first variation formula for submanifolds.

If ∂F
∂t

= X(F ), then F̃ (t, p) := F (λt, p) is such that ∂F̃
∂t

= λX(F̃ ). Thus, writing s(t) =
λt,

[δV ](λX) =
d

dt

∣

∣

∣

∣

0

‖F̃ (t, ·)♯V ‖(M) =
d

dt

∣

∣

∣

∣

0

‖F (s(t), ·)♯V ‖(M)

=

(

d

ds

∣

∣

∣

∣

s(0)

‖F (s, ·)♯V ‖(M)

)

d

dt

∣

∣

∣

∣

0

s(t) = λ[δV ](X).

With the definition of first variation, we can generalize the notion ofminimal subman-

ifolds.

DEFINITION2.12 (STATIONARITY). AvarifoldV inM is said tobe stationary if [δV ](X) =
0, for every vector fieldX onM with compact support.

A central questionwhenwedealwith varifolds, is to knowwhen a varifold is rectifiable.

The concept of density is a useful tool in this direction. Before, we need to introduce

the monotonicity formula for varifolds.

THEOREM 2.13 (MONOTONICITY). LetMn be a riemannian manifold, V ∈ Vk(M) and
p ∈M . Then there exists r0 > 0 andA = A(p) > 0 such that

r 7→ eAr2 ‖V ‖(Br(p))

rk
is non-decreasing on r, for r < r0.

Here,Br(p) denotes the open ball of radius r centered at p.

This theorem implies that

∃ lim
r↓0

eAr2 ‖V ‖(Br(p))

rk
, ∀p ∈M.

But then,

lim
r↓0

‖V ‖(Br(p))

rk
= lim

r↓0
e−Ar2eAr2 ‖V ‖(Br(p))

rk
= (lim

r↓0
e−Ar2)(lim

r↓0
eAr2 ‖V ‖(Br(p))

rk
)
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= lim
r↓0

eAr2 ‖V ‖(Br(p))

rk

shows that lim
r↓0

r−k‖V ‖(Br(p)) also exists, for every p ∈M . Now, we can define density.

DEFINITION 2.14 (DENSITY). LetM be a riemannian manifold, V ∈ Vk(M) and p ∈
M . The limit

Θ(V, x) = lim
r↓0

‖V ‖(Br(p))

ωkrk

is called the density of V at p. Here ωk is the volume of the k-dimensional unit ball in

Rk.

THEOREM 2.15 (5.5 OF (SIMON, 2014), P. 215). If V is a k-dimensional varifold inM
withΘ(V, p) > 0, for ‖V ‖-a.e. p ∈M , then V is rectifiable.

We also have

THEOREM 2.16 (CONSTANCY THEOREM, 4.1 OF (SIMON, 2014), P. 213). LetM be a rie-

mannian manifold and V a k-varifold onM . If V is a stationary integral varifold and

supp(‖V ‖) ⊂
⋃n

i=1 Σi, where each Σi is a connected C2 k-submanifold ofM , then V =
⋃n

i=1 niΣi, i.e. V = v(R, θ)withR =
⋃n

i=1 Σi and θ ≡ ni onΣi.

2.4 TANGENT VARIFOLDS

Tangent varifolds are the natural generalization of tangent planes for smooth surfaces.

Before we define tangent varifolds, we need to recall the concept of dilation in a man-

ifold. Let M be a smooth manifold, x ∈ M and 0 < ρ < inj(x). Here, inj(x) is

the injectivity radius of M at x, i.e. for any 0 < ρ < inj(x), the exponential map

expx : Bx
ρ ⊂ TxM → Bρ(x) ⊂ M is a diffeomorphism. If M is compact, then

Inj(M) = inf{inj(x) : x ∈ M} > 0. The dilation around x with factor ρ is the

mapD
x
ρ : Bρ(x) → Bx

1 given byD
x
ρ(z) = exp−1

x (z)/ρ. IfM = Rn, thenD
x
ρ is the usual

dilation y 7−→ (y − x)/ρ.

DEFINITION 2.17 (TANGENT VARIFOLD). If V ∈ V(M), thenwe denote by V x
ρ the dilated

varifold in V(Bx
1 ) given by (D

x
ρ)♯V . Any limit V ′ ∈ V(Bx

1 ) of a sequence V
x
sn of dilated

varifolds with sn ↓ 0, is said to be a varifold tangent to V at x. The set of all tangent
varifolds to V at x is denoted by T (x, V ).

If V = Σ is a smooth submanifold inM and x ∈ V , then TxΣ ∩ Bx
1 is the only varifold

tangent to V at x. Of course, we identify T (x, V ) and TxΣ in this case.

It is well known that if the varifold V is stationary, then any tangent varifold to V is a

stationary Euclidean cone (see section 42 of (SIMON, 2014)), i.e. a stationary varifold

in TxM which is invariant under the dilations y ∈ TxM 7−→ y/ρ ∈ TxM .

Now, we state two technical lemmas which are going to be used in the next chapter.
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LEMMA 2.18. Let U be an open subset of a three-manifoldM andW a 2-dimensional

stationary varifold inV(U). IfK ⊂⊂ U is a smooth strictly convex set andx ∈ (supp‖W‖)∩
∂K, then

(Br(x)\K) ∩ supp‖W‖ 6= ∅, for every r > 0.

LEMMA 2.19. LetM be a compact three-manifold, x ∈ M and V a 2-dimensional sta-

tionary integer rectifiable varifold inM . Denote by T ⊂M the set given by

T = {y ∈ supp‖V ‖ : T (y, V ) consists of a plane transversal to ∂Bd(x,y)(x)}.

If ρ < Inj(M), then T is dense in (supp‖V ‖) ∩Bρ(x).





Part II

THEMIN-MAX CONSTRUCTION OF

MINIMAL SURFACES
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3 MIN-MAX MINIMAL SURFACES

The goal of this chapter is to give some ideas on the proof of the following important

existence theorem for minimal surfaces:

THEOREM. (SIMON–SMITH) Let M be a closed riemannian three-manifold. For any

saturated set of sweepouts Λ, there is a min-max sequence obtained from Λwhich con-

verges in the varifold sense to smooth embedded minimal surface with areaW (M,Λ)

(counted with multiplicity).

Webeginwith somebasic definitions fromMin–MaxTheorywhichwillmake the state-

ment aboveclearer. Themethodusedhere isusually calledSimon–Smithmethod. This

is a version of the Almgren–Pitts method for min-max minimal surfaces.

3.1 BASIC DEFINITIONS

We begin this section giving a rather general definition. We introduce the Hausdorff

distance. This measures how “similar” two subsets of a metric space are, taking into

account their geometry and position inside the metric space.

DEFINITION 3.1 (HAUSDORFF DISTANCE). Let (X, d) be a metric space. If ǫ > 0 and
A ⊂ X , denote

Aǫ = {x ∈ X : ∃a ∈ A, d(x, a) < ǫ} =
⋃

a∈A

Bǫ(a).

The Hausdorff distance betweenA andB, subsets ofX , is then defined by

dH(A,B) = inf{ǫ ∈ R+ : B ⊂ Aǫ andA ⊂ Bǫ}.

Here, we consider inf ∅ = +∞.

PROPOSITION 3.2. LetX denote a metric space andA,B,C any subsets ofX . Then

1. dH(∅, A) = +∞, ifA 6= ∅;

2. dH(A,B) ≥ 0;

3. dH(A,B) = 0 if, and only if,A = B;

4. dH(A,B) = dH(B,A);

5. dH(A,B) ≤ dH(A,C) + dH(C,B);

REMARK 3.3. This proposition shows that dH behaves like a distance function on the

collection Cℓ(X) of closed subsets ofX . The only reason why it is not an usual distance

function is the fact that dH(A,B) can be +∞. However, this is sufficient to define a

topology on Cℓ(X) in the usual way, by taking open balls Bǫ(A) = {B ∈ Cℓ(X) :
dH(A,B) < ǫ}. Of course, this will be called the Hausdorff topology.



40 3.MIN-MAX MINIMAL SURFACES

Proof. 1. Immediate from the definition of dH ;

2. It is trivial since, ifA 6= ∅, there is no ǫ > 0 so thatA ⊂ ∅ǫ = ∅.

3. Suppose dH(A,B) = 0. This implies A ⊂ Bǫ and B ⊂ Aǫ for all ǫ > 0. Let
a ∈ A and ǫ > 0. Since a ∈ Bǫ, there is some b ∈ B such that d(a, b) < ǫ.
Therefore, Bǫ(a) ∩ B 6= ∅, for every ǫ > 0. This shows A ⊂ B and thus A ⊂ B.
The same arguments shows that B ⊂ A. Suppose now A = B. Observe that
the conclusion will follow if we show Aǫ = A

ǫ
, for all ǫ > 0. Of course Aǫ ⊂ A

ǫ
,

because A ⊂ A. Let a ∈ A
ǫ
. Then there is some a′ ∈ A such that d(a, a′) < ǫ.

Since a′ ∈ A, we have Bǫ−d(a,a′)(a
′) ∩ A 6= ∅, thus there is some a′′ ∈ A so that

d(a′, a′′) < ǫ − d(a, a′). By the triangle inequality, we have d(a, a′′) < ǫ. This
shows that a ∈ Aǫ and thusA

ǫ
⊂ Aǫ.

4. DenoteD(A,B) = {ǫ > 0 : A ⊂ Bǫ, B ⊂ Aǫ} so that dH(A,B) = infD(A,B).
Then the result follows if we showD(A,C) +D(C,B) ⊂ D(A,B). Let ǫ1 + ǫ2 ∈
D(A,C) + D(C,B). We need to show that ǫ1 + ǫ2 ∈ D(A,B), i.e. A ⊂ Bǫ1+ǫ2

and B ⊂ Aǫ1+ǫ2 . Let a ∈ A. Since ǫ1 ∈ D(A,C), there is some c ∈ C so that
d(a, c) < ǫ1. In the same way, there is some b ∈ B such that d(c, b) < ǫ2. Thus,
we have found a b ∈ B such that d(a, b) ≤ d(a, c) + d(c, b) < ǫ1 + ǫ2. This shows
A ⊂ Bǫ1+ǫ2 . By the same reason, we haveB ⊂ Aǫ1+ǫ2 and the result follows.

REMARK 3.4. One can generalize dH in order to measure only how “geometrically sim-

ilar” two subsets of a metric space are, i.e. regardless of their position in the space. This

is done in the following way. Denote by I(X) the collection of all isometriesΦ : X → X ,

i.e. Φ is bijective and d(Φ(x),Φ(y)) = d(x, y) for every x, y ∈ X . Then, for subsetsA and

B ofX , set

dHG(A,B) = inf{dH(A,Φ(B)) : Φ ∈ I(X)}.

Going even further, one can try to define the distance between any two metric spaces. If

(X, d) and (Y, ρ) are metric spaces, denote by I(X, Y ) the collection of preserving dis-
tance functions, i.e. Φ : X → Y such that ρ(Φ(x),Φ(x′)) = d(x, x′), for any x, x′ ∈ X .

Then, ifX1,X2 and Y are metric spaces, one puts

dYHG(X1, X2) = inf{dHG(Φ1(X1),Φ2(X2)) : Φi ∈ I(Xi, Y )}.

Finally, one puts

d̃HG(X1, X2) = inf
Y
dYHG(X1, X2),

whereY go through the class of allmetric spaces. Theseare called theHausdorff-Gromov

distances. The last one is delicate to define formally. Wewill only dealwith theHausdorff

distance dH .

LetM be a compact riemannian three-manifold, possibly with connected boundary.

If Σ ⊂ M , we will denote its two-dimensional Hausdorff measure byH2(Σ) (see Defi-

nition 2.6). IfΣ is a surface, thenH2(Σ) = |Σ|. We will denote I = [0, 1] ⊂ R.

Next, we give the main definitions of Min-Max Theory.
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DEFINITION 3.5 (SWEEPOUTS). A family {Σt}t∈I of closed subsets ofM with finiteH2-

measure is said to be a sweepout if there are finite sets T ⊂ I and P ⊂M such that

1. t ∈ I 7→ H2(Σt) is continuous;

2. Σt converges toΣt0 in the Hausdorff topology, as t→ t0, i.e. lim
t→t0

dH(Σt,Σt0) = 0;

3. if t ∈ I\T , thenΣt is a closed surface;

4. if t ∈ T , then eitherΣt\P is a surface inM or elseH2(Σt) = 0;

5. Σt varies smoothly in I\T , i.e. for each (a, b) ⊂ I\T , Σt is given by the smooth

variation F : (a, b)× Σ →M of some closed surfaceΣ ⊂M ;

6. if τ ∈ T andH2(Στ ) > 0, thenΣt converges smoothly toΣτ inM\P as t→ τ , i.e.
if ǫ > 0 is sufficiently small such thatH2(Σt) > 0 for t ∈ (τ − ǫ, τ + ǫ), thenΣt\P
is given by a smooth variation ofΣτ\P inM\P ;

7. if∂M 6= ∅, thenwe requireΣ0 = ∂M ,Σt ⊂ int(M) for t > 0and{Σt}t∈I foliates a
neighborhood of ∂M , i.e. if ν denotes the unit outward vector field normal to ∂M ,

then there exists a smooth function ω : [0, ǫ] × ∂M → R, satisfying ω(0, x) = 0
and ∂ω

∂t
(0, x) > 0, such that

Σt = {expx(−ω(t, x)ν(x)) ; x ∈ ∂M},

for any t ∈ [0, ǫ].

EachΣt is called a slice in the sweepout {Σt}t∈I .

EXAMPLE 3.6. Let M be the three-dimensional sphere S3 ⊂ R4. Then the family
{Σt}t∈I defined by

Σt = {x ∈ S3 : x4 = 2t− 1}

is a sweepout of S3 with T = {0, 1} and P = {−e4, e4}. The slices are points if t ∈ T
and two-dimensional spheres for t ∈ I\T .

EXAMPLE3.7. In onedimension less, the level sets of theheight function is a sweepout
of the torus T 2, with T and P consisting of four points. Notice that these are critical
points of the height function.

Figure 4 – A sweepout of the torus
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Now, we introduce a natural way of generating sweepouts from a given one. Maybe

the first idea that one can think of is to consider the image of a sweepout under diffeo-

morphisms ofM . Actually, one can consider isotopies. Before we do that, we ask some

technical restrictions.

We denote byDiff0 the set of diffeomorphisms ofM which are isotopic to the identity

map, i.e. Diff0 is the set of all diffeomorphismsψ :M →M forwhich there is a smooth

mapΨ : I×M →M so thatΨ0 = 1M ,Ψ1 = ψ andΨt :M →M is a diffeomorphism,

for all t ∈ I . If ∂M 6= ∅, we also require the isotopies to leave some neighborhood

of ∂M fixed, i.e. there is an open set U ⊂ M , ∂M ⊂ U , such that Ψ(t, x) = x, for all

(t, x) ∈ I × U . In both cases (∂M = ∅, ∂M 6= ∅), we denote the set of such isotopies

by I0(M).

Let {Σt}t∈I be a sweepout of M and Ψ : I × M → M a smooth map such that

Ψt ∈ Diff0, for all t ∈ I . We denote such a map Ψ by saying “{Ψt}t∈I is a smooth

one parameter family of diffeomorphisms”. The family {Ψt(Σt)}t∈I is a sweepout of

M . This is a natural fact to imagine but somewhat cumbersome to prove, so we skip

the proof of it.

DEFINITION 3.8 (SATURATED SET OF SWEEPOUTS). A collection Λ of sweepouts ofM is

said to be saturated if

{Σt}t∈I ∈ Λ =⇒ {Ψt(Σt)}t∈I ∈ Λ,

for every smooth one parameter family {Ψt}t∈I of diffeomorphisms ofM .

REMARK 3.9. We will only work with saturated sets Λ for which there is some N0 =
N0(Λ) such that the set P (in the definition of sweepouts) has at mostN0 points for any

{Σt}t∈I ∈ Λ.

DEFINITION 3.10 (WIDTH). LetΛ be a set of sweepouts ofM (not necessarily saturated).

We define the width ofM with respect to Λ by

W (M,Λ) = inf
{Σt}∈Λ

sup
t∈I

H2(Σt).

REMARK 3.11. Notice that, since t ∈ I 7→ H2(Σt) is continuous and I compact, in fact

sup
t∈I

H2(Σt) = max
t∈I

H2(Σt),

i.e. there is a τ ∈ I such that H2(Στ ) = supt∈I H
2(Σt). In this case, Στ is called the

maximal slice of the sweepout {Σt}t∈I . So one can think of the Λ-width ofM as the

infimum over the areas of all maximal slices of sweepouts in Λ

EXAMPLE 3.12. Again, an example in one dimension less, since it is easier to make
figures. Let Λ be the set containing two sweepouts {Σ1

t}t∈I and {Σ2
t}t∈I . Of course,

such Λ is not saturated.
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Figure 5 –W (M,Λ) is given by the red slice

The red and blue slices in the figure indicates the respective maximal slices. In this
case, since Λ is finite,

W (M,Λ) = min{max
t∈I

H1(Σ1
t ), max

t∈I
H1(Σ2

t )},

and this is given by the red slice, in the specific case of the figure.

DEFINITION3.13 (MINIMIZINGANDMIN-MAXSEQUENCES). Asequence{Σn
t }t∈I of sweep-

outs inΛ is said to be aminimizing sequence if lim
n→∞

supt∈I H
2(Σn

t ) = W (M,Λ). Given

aminimizing sequence {Σn
t }t∈I , a sequence of slices {Σ

n
tn}n∈N such that limn→∞

H2(Σn
tn) =

W (M,Λ) is said to be amin-max sequence in Λ.

3.2 SIMON–SMITH THEOREM

In this first part, we work with a “pull-tight” procedure, giving a high level of technical

details for the proof of Simon–Smith’s Theorem (namely Theorem 3.14 below). But

after the pull-tight procedure the proof gets too technical and we will continue only

with the ideas behind the proof.

THEOREM3.14 (SIMON–SMITH). LetM bea closed riemannian three-manifold. For any

saturated set of sweepouts Λ, there is a min-max sequence obtained from Λwhich con-

verges in the varifold sense to smooth embedded minimal surface with areaW (M,Λ)
(counted with multiplicity).

Throughout this section,M will denote a closed (compact without boundary) rieman-

nian three-manifold and Λ a saturated set of sweepouts inM . We also denote

m0 = inf
{Σt}∈Λ

sup
t∈I

H2(Σt)

and V = {V ∈ V(M) : ‖V ‖(M) ≤ 4m0}. By Theorem 2.10, we know that V with the

weak topology is metrizable and compact. Let us denote by d a metric on this space.

Also, we denote byV∞ the set of all stationary varifolds inV , i.e. V ∈ V∞ iff ‖V ‖(M) ≤

4m0 and [δV ](X) = 0 for every vector field X onM . Notice that V∞ 6= ∅, since the

null varifold 0 ∈ V∞.
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PROPOSITION 3.15. V∞ is closed in V (and hence compact).

Proof. Let {Vn}n∈N be a sequence in V∞ with Vn ⇀ V . First, of course V ∈ V , since

‖Vn‖(M) =

∫

M

d‖Vn‖ =

∫

G(M)

dVn −→

∫

G(M)

dV =

∫

M

d‖V ‖ = ‖V ‖(M),

and ‖Vn‖(M) ≤ 4m0 implies ‖V ‖(M) ≤ 4m0. LetX be a vector field onM and F the
flow generated byX . Then

0 = [δVn](X) =
d

dt

∣

∣

∣

∣

0

‖Ft♯Vn‖(M) =
d

dt

∣

∣

∣

∣

0

∫

G(M)

|JFt(x, π)|dVn

−→
d

dt

∣

∣

∣

∣

0

∫

G(M)

|JFt(x, π)|dV =
d

dt

∣

∣

∣

∣

0

‖Ft♯V ‖(M) = [δV ](X).

This shows that [δV ](X) = 0 for every vector fieldX , thus V ∈ V∞. Therefore, V∞ is
closed.

The goal of this section is to prove the following theorem.

THEOREM 3.16. There exists a minimizing sequence {Σn
t }t∈I ∈ Λ such that, if {Σn

tn} is
a min-max sequence obtained from it, then d(Σn

tn ,V∞) → 0.

REMARK 3.17. Note that if {Σn
tn} is a min-max sequence, then Σn

tn ∈ X , for all n suffi-
ciently big. Thus the limit d(Σn

tn ,V∞) → 0makes sense.

We do this by proving several claims. Denote V ′ = {V ∈ V(M) : ‖V ‖(M) ≤ 3m0}.

Of course V ′ ⊂ V and V ′ is compact. The idea is to build a continuousmapΨ : V ′ →

I0(M) such that

• if V is stationary, thenΨV is the trivial isotopy;

• if V is not stationary, thenΨV decreases the mass of V .

Such a map is called a shortening process or a pull-tight of varifolds that are not sta-

tionary.

Step 1: A map from V to the space of vector fields

For each k ∈ Z, define the annular neighborhood of V∞

Vk := {V ∈ V : 2−k ≤ d(V,V∞) ≤ 2−k+1}.

Since V is compact and f : V → R, f(V ) = d(V,V∞) is continuous, there is some

A > 0 such that d(V,V∞) ≤ A, for all V ∈ V . Therefore, there is some k0 ∈ Z such

that Vk0 6= ∅ and Vk = ∅, for all k < k0.
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Figure 6

CLAIM3.18. There exist c(k) > 0andφ : Vk → X (M), whichwedenote byφ(V ) = XV ,

such that ‖XV ‖∞ ≤ 1 and [δV ](XV ) ≤ −c(k) for all V ∈ Vk.

Suppose the claim to be false. Then, for every c > 0, there is a Vc ∈ Vk such that, for

every X ∈ X (M) with ‖X‖∞ ≤ 1, we have −c < [δV ](X) < c (note that, in this

context, this is the negative of [δV ](X) ≤ −c, since [δV ](−X) = −[δV ](X) by 2.11).

Thus, taking c = 1
n
, n ∈ N, we get a sequence Vn ∈ Vk such that for everyX ∈ X (M),

‖X‖∞ ≤ 1, we have− 1
n
< [δVn](X) < 1

n
. Since Vk is compact, we can suppose that Vn

converges to some V0 ∈ Vk. But then, for everyX ∈ X (M), we have

[δV0](X) = ‖X‖∞[δV0]

(

1

‖X‖∞
X

)

= ‖X‖∞ lim
n→∞

[δVn]

(

1

‖X‖∞
X

)

= 0.

Therefore, V0 is stationary and V0 ∈ Vk, a contradiction. Thus, there is some c(k) > 0

and φ : Vk → X (M), φ(V ) =: XV , such that c(k) ≤ |[δV ](XV )| and ‖XV ‖∞ ≤ 1. Since

[δV ](−XV ) = −[δV ](X), we can changeφ if necessary so that [δV ](XV ) ≤ −c(k). This

proves the Claim 3.18.

CLAIM 3.19. We can choose the c(k)s in the previous claim so that j < k =⇒ c(k) ≤
c(j).

Indeed, if j < k0, then Vj = ∅, then by vacuity we can choose c(j) = c(k0), for all

j < k0. Now, if [δV ](XV ) ≤ −c(k0 + 1) for all V ∈ Vk0+1, then

[δV ](XV ) ≤ −c(k0 + 1) ≤ −min{c(k0), c(k0 + 1)}, ∀V ∈ Vk0+1.

Thus, if we can change c(k0 + 1) by c′(k0 + 1) = min{c(k0), c(k0 + 1)} > 0 and the

property is still true, but now c′(k0+1) ≤ c(k0). We can continue indutively in this way

so that

0 < · · · ≤ c(k0 + 2) ≤ c(k0 + 1) ≤ c(k0) = c(k0 − 1) = c(k0 − 2) = . . .

and this proves the claim.

Now, we build a continuous map χ : V → X (M).

Since for each fixed V ∈ Vk, the mapW ∈ V 7→ [δW ](XV ) ∈ R is continuous, there

is some radius rV > 0 such that [δW ](XV ) ≤ −c(k)/2 for everyW in the ball UrV (V ).

Then, since UrV /2(V ), V ∈ Vk is an open cover for the compact set Vk, we are able to

find balls {Uk
i }i=1,...,N(k) and vector fieldsXk

i with ‖Xk
i ‖∞ ≤ 1 such that
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1. The balls Ũk
i concentric to U

k
i with half the radii cover Vk;

2. IfW ∈ Uk
i , then [δW ](Xk

i ) ≤ −c(k)/2;

3. The balls Uk
i are disjoint from from Vj if |j − k| ≥ 2;

For the last item, just take every rV smaller than min{d(Vk,Vk−2), d(Vk,Vk+2)} > 0

from the very beginning. Hence, {Uk
i : k ∈ Z, i = 1, . . . , N(k)} is a locally finite open

cover of V \V∞, which is ametric space. So we can subordinate a continuous partition

of unit ϕk
i to this family {Uk

i }k,i. Then define

χ : V → X (M)

V 7→ χV =
∑

k,i ϕ
k
i (V )Xk

i

.

Notice thatχ iswell definedover allX insteadofonlyV \V∞, becauseeachϕk
i : V \V∞ →

[0, 1] is zero outsideUk
i ⊂ X\V∞ and then can be extended as zero over allV \Uk

i with-

out losing continuity. Such χ is continuous and ‖χV ‖∞ ≤ 1, for every V ∈ V .

Step 2: A map from V ′ to the space of isotopies

CLAIM 3.20. There exist continuous functions ρ, γ : R+ → R+ such that

d(W,V ) < ρ(d(V,V∞)) =⇒ [δW ](χV ) < −γ(d(V,V∞)), for every V ∈ V \V∞,

with lim
t↓0

ρ(t) = 0 = lim
t↓0

γ(t) and ρ, γ are strictly increasing.

For V ∈ Vk, let r(V ) be the radius of the smallest ball Ũ j
i which contains it. Since there

are finitelymany suchballs that touchVk (namely, atmostN(k−1)+N(k)+N(k+1)),

we have that r(V ) > r(k) > 0, for every V ∈ Vk and some r(k) depending only on k.

We have that Ur(V )(V ) is contained in every other ball U j
i which contains V .

Figure 7

IfW ∈ Ur(V )(V ), then by (2) and (3), [δW ](χV ) ≤ −1
2
c(k − 1). Indeed

[δW ](χV ) =
∑

j∈{k−1,k,k+1}
i∈{1,...,N(j)}

ϕj
i (V )[δW ](χj

i )
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≤
∑

j∈{k−1,k,k+1}
i∈{1,...,N(j)}

ϕj
i (V )

1

2
min{−c(k − 1),−c(k),−c(k + 1)} = −

1

2
c(k − 1).

Thus, if V ∈ Vk and d(W,V ) ≤ r(k), then [δW ](χV ) ≤ −g(k), where g(k) = 1
2
c(k− 1).

With the same idea we used in the choice of the c(k)s, we can choose the r(k)s so that

r(k+1) ≤ r(k), for all k ∈ Z. Then, just take γ, ρ : R+ → R+ any continuous functions

such that

ρ(t) < r(k) and γ(t) < g(k), ∀t ∈ Ik := [2−k, 2−k+1].

Of course, we can choose ρ and γ so that lim
t↓0

ρ(t) = 0 = lim
t↓0

γ(t) and ρ, γ are strictly

increasing (since r(k + 1) ≤ r(k) and g(k + 1) ≤ g(k), for all k).

Figure 8

These functions fit our purposes. Indeed, if V /∈ V∞, then V ∈ Vk for some k ∈ Z

and d(V,V∞) ∈ Ik. It follows that d(W,V ) < ρ(d(V,V∞)) < r(k) =⇒ [δW ](χV ) ≤

−g(k) < −γ(d(V,V∞)). This proves the claim.

LetΦV : [0,+∞)×M →M be the flow generated by χV , i.e.

∂ΦV

∂t
(t, x) = χV (ΦV (t, x)).

For each t and V we denote by Φt
V : M → M the diffeomorphism given by Φt

V (x) =

ΦV (t, x).

For each V ∈ V , define the curve αV : [0,+∞) → V(M) by

αV (t) = Φt
V ♯V.

For simplicity, in the following we will denote ‖V ‖(M) just by ‖V ‖.

CLAIM 3.21. For every V ∈ V ′\V∞, there is some 0 < TV ≤ 1 such that

‖αV (TV )‖ − ‖V ‖ < −TV γ(d(V,V∞)).

Let V ∈ V ′\V∞. Then in particular ‖V ‖ ≤ 3m0. Since ‖ · ‖ : V(M) → R is continuous,

there is a 0 < tV ≤ 1 such that ‖αV (t)‖ < 4m0, for all t ∈ [0, tV ]. Therefore, the
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restriction αV : [0, tV ] → V is well defined. Since we also have d(V,V∞) > 0, there is

some 0 < TV ≤ tV such that αV ([0, TV ]) ⊂ Ur(V ), with r := ρ(d(V,V∞)) > 0. Then, it

follows from Claim 3.20 that, for every t ∈ [0, TV ],

d

dt
‖αV (t)‖ =

d

dt
‖Φt

V ♯V ‖ = [δαV (t)](χV ) < −γ(d(V,V∞)).

It follows from the fundamental theorem of calculus that

‖αV (TV )‖ − ‖αV (0)‖ = ‖αV (TV )‖ − ‖V ‖ =

∫ TV

0

[δαV (t)](χV )dt < −TV γ(d(V,V∞)).

This proves the claim.

Using a procedure similar to step 1, we can choose TV depending continuously on V

i.e. there is a continuous function T : V ′\V∞ → [0, 1] such that

‖αV (T (V ))‖ − ‖V ‖ < −T (V )γ(d(V,V∞)).

Thenwecanalso chooseT : R+ → [0, 1]dependingonlyond(V,V∞)and limδ↓0 T (δ) =

0. If we defineG : R+ → R+ byG(δ) = T (δ)γ(δ), we have the following claim:

CLAIM 3.22. There are continuous functions T : R+ → [0, 1] and G : R+ → R+ such

that

1. if δ = d(V,V∞) > 0, ‖V ‖ ≤ 3m0 and V
′ = Φ

T (δ)
V ♯V , then ‖V ′‖ ≤ ‖V ‖ −G(δ);

2. lim
δ↓0

T (δ) = 0 = lim
δ↓0

G(δ).

SinceVk = ∅ fork < k0, by vacuitywecan suppose theT is constant on [2−(k0−1),+∞).

Since lim
δ↓0

G(δ) = 0 = lim
δ↓0

T (δ), we can extend T and G to continuous functions T :

[0,+∞) → [0,+∞) andG : [0,+∞) → [0,+∞) by defining T (0) = 0 = G(0).

CLAIM 3.23. There is a strictly increasing continuous functionL : [0,+∞) → [0,+∞),
with L(0) = 0 and L(t) ≤ G(t), for all t ∈ [0,+∞).

Let ℓk0 := min{G(t) : t ∈ Ik0} > 0. Then, if ℓk is defined, define

0 < ℓk+1 :=
1

2
min{ℓk,min{G(t) : t ∈ Ik}} < ℓk.

Then we have a step function ℓ : (0, 2−(k0−1)) → R+ given by ℓ(t) = ℓk if t ∈ Ik and

such that ℓ(t) < G(t) for all t ∈ (0, 2−(k0−1)). Then define L : [0, 2−k0+1] → [0,+∞) by

L(t) =

{

0, if t = 0,

ℓk+1 +
(ℓk−ℓk+1)

2−(k+1) (t− 2−(k+1)), if t ∈ Ik, k ≥ k0

This is strictly increasing, continuous, L(0) = 0 and L(t) ≤ G(t), for t ∈ [0, 2−k0+1].

Then, since G(t) = G(t) = T (t)γ(t) is itself strictly increasing for t > 2−k0+1, we do
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not face any difficulty to extendL to [0,+∞)with the required properties. This proves

the claim.

Finally, we define the pull-tightΨ : V ′ → I0(M). ForV ∈ V ′, letΨ(V ) = ΨV ∈ I0(M)

be given by

ΨV (t, x) = ΦV (tT (d(V,V∞), x), t ∈ I = [0, 1].

Of course,Ψ is continuous and

• If V ∈ V ′ ∩ V∞, thenΨ1
V ♯V = V . Indeed

Ψ1
V ♯V = Φ

1T (d(V,V∞))
V ♯V = Φ

T (0)
V ♯V = Φ0

V ♯V = 1M♯V = V.

• If V ∈ V ′\V∞, then ‖Ψ1
V ♯V ‖ ≤ ‖V ‖ − L(d(V,V∞)). Indeed,

‖Ψ1
V ♯V ‖ = ‖ΦT (d(V,V∞)

V ♯V ‖ ≤ ‖V ‖ −G(d(V,V∞)) ≤ ‖V ‖ − L(d(V,V∞)).

Observe that, since L is strictly increasing, the more V is far from V∞ the more ‖V ‖ is

decreased byΨ1
V .

We would like to apply the pull-tight Ψ on minimizing sequences obtained from Λ to

get “better” minimizing sequences in Λ. Let {Σn
t }t∈I ∈ Λ be a minimizing sequence.

Since lim
n→+∞

sup
t∈I

H2(Σn
t ) = m0, we can suppose thatH2(Σn

t ) ≤ 3m0 (thus Σn
t ∈ V ′) for

all t ∈ I , n ∈ N. Then

Γn
t = ΨΣn

t
(1,Σn

t ), t ∈ I, n ∈ N

defines a sequence of sweepouts {Γn
t }t∈I ofM such that

H2(Γn
t ) ≤ H2(Σn

t )− L(d(Σn
t ,V∞)).

However, {Γn
t }t∈I does not necessarily belong to Λ. Indeed, the pull-tight Ψ is only

continuous. This implies that, for each fixed n, the one parameter family {Ψn
t }t∈I of

diffeomorphisms ofM defined by

Ψn
t := ΨΣn

t
(1, ·), t ∈ I,

may not be smooth on t. Thus, since the definition of saturated sets of sweepouts re-

quires the family to be smooth, we cannot guarantee {Γn
t }t∈I ∈ Λ. We overcome this

technical issue by approximating {Ψn
t }t∈I by a smooth one parameter family {Ψ̃n

t }t∈I .

First, observe that

∂

∂s
ΨΣn

t
(s, x) =

∂

∂s
ΦΣn

t
(sT (Σn

t ), x) = T (Σn
t )χΣn

t
(ΦΣn

t
(sT (Σn

t ), x))

= T (Σn
t )χΣn

t
(ΨΣn

t
(s, x))
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where T (Σn
t ) denotes T (d(Σ

n
t ,V∞)). Therefore, the one parameter family of isotopies

{ΨΣn
t
}, t ∈ I is generated by the one parameter family of vector fields hnt = T (Σn

t )χΣn
t
,

t ∈ I . We think of hn as a continuous map

hn : I → X (M), with the topology of Ck seminorms.

Then hn can be approximated by a smoothmap h̃n : I → X (M). Consider the smooth

one parameter family of isotopies Ψ̃n
t generated by the vector fields h̃

n
t . Then, let Γ̃

n
t :=

Ψ̃n
t (1,Σ

n
t ). Now, since {Ψ̃n

t (1, ·)}t∈I is a smooth one parameter family of diffeomor-

phisms, we have {Γ̃n
t }t∈I ∈ Λ, for all n ∈ N.

If we take our approximation so that sup
t∈I

‖hnt − h̃nt ‖C1 is sufficiently small, then

H2(Γ̃n
t ) < H2(Γn

t ) + e−n, for all t ∈ I.

Hence,

H2(Γ̃n
t ) < H2(Σn

t )− L(d(Σn
t ,V∞)) + e−n, ∀t ∈ I.

Doing this for each n ∈ N, we define a sequence {Γ̃n
t }t∈I ∈ Λ such that

m0 ≤ sup
t∈I

H2(Γ̃n
t ) ≤ sup

t∈I
H2(Σn

t ) + e−n.

Letting n→ ∞, we have

lim
n→∞

sup
t∈I

H2(Γ̃n
t ) = m0.

Therefore {Γ̃n
t }t∈I is a minimizing sequence in Λ as well. Note that the construction

yields a continuous and increasing function λ : [0 +∞) → [0,+∞) such that

λ(0) = 0 and d(Σn
t ,V∞) ≥ λ(Γ̃n

t ,V∞).

Finally, we prove Theorem 3.16, which says that there exists a minimizing sequence

{Σn
t }t∈I ∈ Λ such that, if {Σn

tn} is a min-max sequence, then d(Σn
tn ,V∞) → 0.

Proof of Theorem 3.16. Let{Σn
t }t∈I beaminimizing sequence inΛ so that sup

t∈I
H2(Σn

t ) ≤

m0+e
−n. Then let {Γ̃n

t }t∈I ∈ Λ be theminimizing sequence constructed from {Σn
t }t∈I

as above, by the pull-tight procedure.

CLAIM 3.24. Let {Γ̃n
tn}n∈N be a min-max sequence obtained from {Γ̃n

t }t∈I . For every
ǫ > 0, there exist δ > 0 andN ∈ N such that

if

(

n > N

and H2(Γ̃n
tn) > m0 − δ

)

, then d(Γ̃n
tn ,V∞) < ǫ.

Let ǫ > 0 be given. Then L(λ(ǫ)) > 0. Take δ > 0 and N ∈ N such that δ + 2e−N <
L(λ(ǫ)). We claim that this choice works. Suppose it does not. Then there are n >
N and tn such that H2(Γ̃n

tn) > m0 − δ but ǫ < d(Γ̃n
tn ,V∞). Then we have λ(ǫ) ≤
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λ(d(Γ̃n
tn ,V∞)) ≤ d(Σn

tn ,V∞). Since L is strictly increasing, this implies L(λ(ǫ)) ≤
L(d(Σn

tn ,V∞)). Then

m0 + 2e−n < m0 + 2e−N < m0 − δ + L(λ(ǫ)) < H2(Γ̃n
tn) + L(d(Σn

tn ,V∞))

< H2(Σn
tn) + e−n =⇒ m0 + e−n < H2(Σn

tn).

This is a contradiction, since sup
t∈I

H2(Σn
t ) ≤ m0 + e−n. This proves the claim.

Now, we prove that {Γ̃n
t }t∈I is a minimizing sequence as asserted by the theorem. Let

{Γ̃n
tn} be a min-max sequence obtained from {Γ̃n

t }t∈I . We need to find n0 ∈ N such
that, n ≥ n0 ⇒ d(Γ̃n

tn ,V∞) < ǫ. Let δ > 0 andN ∈ N be as in Claim 3.24. Since {Γ̃n
tn}

is a min-max sequence, there is some n′
0 ∈ N such that n ≥ n′

0 ⇒ |H2(Γ̃n
tn) −m0| <

δ ⇒ m0 − δ < H2(Γ̃n
tn). Thus, if

n0 > max{n′
0, N},

then

n ≥ n0 =⇒

(

n > N

and H2(Γ̃n
tn) > m0 − δ

)

=⇒ d(Γ̃n
tn ,V∞) < ǫ.

This proves that lim
n→∞

d(Γ̃n
tn ,V∞) = 0.

We have the important corollary:

COROLLARY 3.25. There is a min-max sequence {Σn
tn}n∈N ∈ Λ which converges in the

varifold sense to a stationary varifold V with ‖V ‖ = m0.

Proof. Let{Σn
t }t∈I ∈ Λbe theminimizing sequencegivenbyTheorem3.16and{Σn

tn}n∈N
a min-max sequence obtained from it. Then d(Σn

tn ,V∞) → 0. Since V∞ is compact,

d(Σn
tn ,V∞) = min{d(Σn

tn , V ) ; V ∈ V∞} = d(Σn
tn , Vn),

for some Vn ∈ V∞ and up to a subsequence we can suppose Vn ⇀ V . Then, letting
n→ ∞ in

0 ≤ d(Σn
tn , V ) ≤ d(Σn

tn , Vn) + d(Vn, V )

shows that d(Σn
tn , V ) → 0. Of course,m0 = lim

n→∞
H2(Σn

tn) = lim
n→∞

‖Σn
tn‖ = ‖V ‖.

REMARK 3.26. If we want the varifold V obtained in this way to be nontrivial, we need

to guarantee that the saturated set is such thatm0 > 0. We can do so ifΛ is generated by

the family of level sets of a Morse function onM .

THEOREM 3.27. Let M be a closed riemannian three-manifold, {Σt}t∈I a sweepout

given by level sets of a Morse function onM and Λ the smallest saturated set that con-

tains {Σt}t∈I . Thenm0 = W (M,Λ) > 0.

Proof. For the proof of this theorem, wewill use the following isoperimetric inequality
for compact manifolds (see (DRUET, 2002)).
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THEOREM3.28 (ISOPERIMETRIC INEQUALITY). Let (M, g) be a smooth compact rieman-

nianmanifoldwithout boundary of dimension n ≥ 2. LetΘ be the collection of all open

subsetsΩ ⊂M with finite perimeter. There exists C = C(M) > 0 such that

|∂Bn|

|Bn|
n−1
n

|Ω|
n−1
n ≤ |∂Ω|+ C|Ω|, ∀Ω ∈ Θ.

Here, Bn denotes the unit ball in Rn, |Ω| = Hn(Ω) and |∂Ω| = lim
ǫ↓0

Hn(Ωǫ)−Hn(Ω)
ǫ

is the

perimeter ofΩ. IfΩ has smooth boundary ∂Ω, then |∂Ω| = Hn−1(∂Ω).

Now, we prove Theorem 3.27. Let f be a Morse function onM . We can suppose that
0 and 1 are the minimum and maximum of f , i.e. f : M → I with f surjective. Let
{Σt}t∈I be sweepout given by the level sets of f , i.e. Σt = f−1({t}), and let Λ be the
smallest saturated set that contains it. Then

Λ = {{Γt}t∈I : Γt = ψ(t,Σt) for some ψ ∈ C∞(I ×M,M)with ψt ∈ Diff0 for all t}.

Denote U0 = f−1({0}), Ut = f−1([0, t)) for 0 < t < 1 and U1 = f−1(I). Then for an
isotopy ψ as above, denote Ωt = ψ(t, Ut). Of course Γt = ∂Ωt. Thus, since {Γt}t∈I is a
sweepout, ∂Ωt is a surface, a surface inM\P for a finite set P orH2(∂Ωt) = 0. In all
cases |∂Ωt| = H2(Γt). In particular,Ωt ∈ Θ for all t ∈ I . The function

g : I → R

t 7→ |Ωt|

is continuous. Since 0 is a critical value of f (global minimum) and f is a Morse func-
tion, we have that Ω0 is a finite set, hence g(0) = 0. On the other hand, Ω1 = M , thus
g(1) = |M |. DenoteA = 4π

( 4
3
π)2/3

and letC > 0 be as in the isoperimetric inequality. Let

α = 1
2
min{A3

C3 , |M |}. Since 0 < α < |M | and g(0) = 0, g(1) = |M | there is s ∈ (0, 1)
such that g(s) = α. Notice that

α <
A3

C3
⇒ C3α < A3 ⇒ C3α3 < A3α2 ⇒ Cα < Aα

2
3 ⇒ 0 < Aα

2
3 − Cα.

Then it follows from the isoperimetric inequality that

A|Ωs|
2
3 ≤ H2(Γs) + C|Ωs| ⇒ 0 < Aα

2
3 − Cα ≤ H2(Γs).

Hence,

0 < Aα
2
3 − Cα ≤ sup

t∈I
H2(Γt), ∀{Γt}t∈I ∈ Λ ⇒ 0 < Aα

2
3 − Cα ≤ m0.

Now, we do some comments and overview on the concepts and ideas behind the next

steps of the proof for Simon–Smith Theorem, not giving much details. A full-length

proof can be found in (COLDING; DE LELLIS, 2003).

At this point, the proof of the Simon–Smith’s Theorem consists in proving that the sta-

tionary varifold obtained fromTheorem3.16 andCorollary 3.25 is in fact an embedded

smooth minimal surface.
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A stationary varifold can be quite far from an embeddedminimal surface. To get regu-

larity for varifolds produced bymin-max sequences the concept of almostminimizing

surfaces is needed. A surface Σ is said to be almost minimizing if any path of surfaces

{Σt}t∈I starting at Σ with Σ1 much smaller than Σ (in terms of area) must necessarily

pass through a surface with large area, compared toΣ. More precisely,

DEFINITION 3.29 (ALMOST MINIMIZING). Given ǫ > 0, an open setU ⊂M and a closed

set Σ ⊂ M , we say that Σ is ǫ-almost minimizing in U (or simply ǫ-a.m. in U ) if there
is no isotopy ψ supported in U such that

H2(ψ(t,Σ)) ≤ H2(Σ) +
ǫ

8
for all t ∈ I;

H2(ψ(1,Σ)) ≤ H2(Σ)− ǫ.

A sequence of closed sets {Σn} is said to be a.m. in U if eachΣn is ǫn-a.m. in U for some

ǫn ↓ 0.

REMARK 3.30. In the definition above, we use closed sets instead of surfaces in order to

include slices of sweepouts.

Using a version of the arguments of Pitts (PITTS, 1981), Colding andDe Lellis prove the

following (cf. (COLDING; DE LELLIS, 2003))

PROPOSITION 3.31. There exists a continuous function r : M → R+ and a min-max

sequence {Σj} such that:

1. {Σj} is a.m. in every annulusAn centered at x andwith outer radius atmost r(x);

2. In any such annulus, Σj is smooth when j is sufficiently large;

3. Σj converges to a stationary varifold V inM , as j ↑ ∞.

In the proof of this proposition, the varifold V is taken as in Corollary 3.25.

Let {Σj} and V be as in Proposition 3.31 above. One proves that if {Σj} is a.m. on a

certain annulusAn, then there is a stationary varifold V ′ such that

1. V and V ′ have the samemass and V = V ′ onM\An;

2. V ′ is a stable minimal surface insideAn.

Such V ′ is said to be a replacement for V . This replacement property and a com-

pactness property for stable minimal surfaces are used to prove that V is an integer

rectifiable varifold (cf. (COLDING; DE LELLIS, 2003, Lemma 6.4)).

For V as in Proposition 3.31, one can construct a further replacement V ′′ also for V ′.

Oneproves that ifwecan replace sufficientlymany times, thenV mustbe regular. Then

the last part of the proof of Simon–Smith is dedicated to construct such replacements.
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3.3 SIMON–SMITH WITH BOUNDARY

In this section,weproveaversionof Simon–Smith’sTheoremformanifoldswithbound-

ary. If ∂M 6= ∅ and ν is the outward unit normal vector field along ∂M , thenwe define

the scalarmean curvatureH(∂M) of the boundary by ~H = −H(∂M)ν. In this fashion,

ifH(∂M) > 0, then ~H points intoM . The theorem is

THEOREM3.32. Let (M, g)bea compact three-manifoldwith connectedboundary such

thatH(∂M) > 0. If Λ is a saturated set of sweepouts ofM with |∂M | < W (M,Λ), then
there is a min-max sequence obtained from Λ that converges in the varifold sense to an

embedded minimal surface Σ (possibly disconnected) contained in the interior of M .

The area ofΣ is equal toW (M,Λ), if counted with multiplicities.

We prove some lemmas before Theorem 3.32.

LEMMA3.33. LetM be a compact riemannianmanifoldwith boundary. In a neighbor-

hood of ∂M , the metric can be written as g = dr2 + gr on [0, 2a] × ∂M for some a > 0,
where ∂M is identified with {0} × ∂M .

REMARK 3.34. Here, g = dr2 + gr means that if

ui = (ti, vi) ∈ R× (Tx∂M) ∼= T(r,x)([0, 2a]× ∂M), i = 1, 2

are two tangent vectors at the level r ∈ [0, 2a], then

g(u1, u2) = t1t2 + gr(v1, v2),

for some riemannian metric gr on ∂M .

Proof. Let η be the normal unitary, inward vector field on ∂M . SinceM is compact,
L = infx∈M inj(x) > 0. Define

F : [0, L]× ∂M −→ M
(r, x) 7−→ expx(rη(x)).

We show that dF(0,x) is an isomorphism, for all (0, x) ∈ [0, L]× ∂M . Let v ∈ Tx∂M be
given by a curve α : I → ∂M , α(0) = x, α′(0) = v. Then ᾱ(t) = (0, α(t)) is a curve in
[0, L]× ∂M with ᾱ(0) = (0, x) and w := ᾱ′(0) = (0, v). We have

dF(0,x)w =
d

dt

∣

∣

∣

∣

0

F (ᾱ(t)) =
d

dt

∣

∣

∣

∣

0

expα(t)(0η(α(t))) =
d

dt

∣

∣

∣

∣

0

α(t) = v.

Now, if we take β(t) = (at, x), s 6= 0, we have β(0) = (0, x), u := β′(0) = (s, 0) and

dF(0,x)u =
d

dt

∣

∣

∣

∣

0

F (β(t)) =
d

dt

∣

∣

∣

∣

0

expx(stη(x)) = sη(x).

This shows thatdF(0,x) sendsabasis ofT(0,x)[0, L]×∂M with form{(0, v1), (0, v2), (a, 0)}
onto a basis of TxM , since η is normal. Therefore dF(0,x) is an isomorphism.

Then the inverse function theorem gives us an open cover of {0} × ∂M such that F
restricted to each of these open sets is a diffeomorphism onto its image. Since ∂M is
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compact, we can find a > 0 such that F restricted to [0, 2a]× ∂M is a diffeomorphism
onto its image, say U .

Now,we turnF into an isometry. If g is themetric onM , define ametric g̃ on [0, a]×∂M
by

g̃(u, w) = g(dF u, dF w).

We only have to show that g̃ has the form stated in the theorem. First, observe that at
the point (0, x),

g̃((s, 0), (0, v)) = g(dF(0,x)(s, 0), dF(0,x)(0, v)) = g(sη(x), v) = 0,

for any s ∈ R and v ∈ Tx∂M .

Consider the differentiable function f : [0, 2a] → R given by

f(r) = g(dF(r,x)(s, 0), dF(r,x)(0, v)).

Wehave just showedabove that f(0) = 0. Considerβ(t) = (t+r, x)and ᾱ(t) = (r, α(t))
with ᾱ(0) = (r, x), ᾱ′(0) = (0, v). We have that

f ′(r) =
∂

∂r
g(dF(r,x)(1, 0), dF(r,x)(0, v))

= g

(

D

dr
dF(r,x)(1, 0), dF(r,x)(0, v)

)

+ g

(

dF(r,x)(1, 0),
D

dr
dF(r,x)(0, v)

)

= g

(

dF(r,x)(1, 0),
D

dr
dF(r,x)(0, v)

)

= (∗),

since D
dr
dF(r,x)(1, 0) =

D
dr

d
dt

∣

∣

0
F (β(t)) = D

dr
d
dt

∣

∣

0
expx((t+r)η(x)) =

D
dr
d(expx)rη(x)η(x) =

D
dr

d
dr
expx(rη(x)) = 0, because r 7→ expx(rη(x)) is a geodesic. Now,

D

dr
dF(r,x)(0, v) =

D

dr

d

dt

∣

∣

∣

∣

0

F (ᾱ(t)) =
D

dt

∣

∣

∣

∣

0

d

dr
F (ᾱ(t)) =

D

dt

∣

∣

∣

∣

0

d

dr
expα(t)(rη(α(t)))

=
D

dt

∣

∣

∣

∣

0

d(expα(t))rη(α(t))η(α(t)).

Then, it follows from the Gauß lemma that

(∗) = g

(

d(expx)rη(x)η(x),
D

dt

∣

∣

∣

∣

0

d(expα(t))rη(α(t))η(α(t))

)

=
1

2

d

dt

∣

∣

∣

∣

0

g
(

d(expα(t))rη(α(t))η(α(t)), d(expα(t))rη(α(t))η(α(t))
)

=
1

2

d

dt

∣

∣

∣

∣

0

g(η(α(t)), η(α(t))) =
1

2

d

dt

∣

∣

∣

∣

0

1 = 0.

This proves that f(r) = 0 for all r ∈ [0, 2a], no matter which vector v we choose in
the definition of f . This proves that the mixed terms in the following computation are
zero, for any level r ∈ [0, 2a]. If (s, u), (t, v) ∈ T(r,x)[0, 2a]× ∂M , then

g̃((s, u), (t, v)) = g̃((s, 0), (t, 0)) + g̃((s, 0), (0, v)) + g̃((0, u), (t, 0)) + g̃((0, u), (0, v))

= stg̃((1, 0), (1, 0)) + g̃((0, u), (0, v))

= stg(dF(r,x)(1, 0), dF(r,x)(1, 0)) + g̃((0, u), (0, v))
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= stg(d(expx)rη(x)η(x), d(expx)rη(x)η(x)) + g̃((0, u), (0, v))

= stg(η(x), η(x)) + g̃((0, u), (0, v)) = st+ gr(u, v),

with the metric gr on ∂M is defined by gr(u, v) = g(dF(r,x)(0, u), dF(r,x)(0, v)).

Thus, if ∂M 6= ∅, we identify the neighborhood given by Lemma3.33with [0, 2a]×∂M

for some a > 0 and introduce some notations. We denote Cr = {r} × ∂M andMr =

M\([0, r)× ∂M). Observe thatC0 = {0} × ∂M = ∂M , under the identification. Also,

since− ∂
∂r
is an extension of ν to [0, 2a]× ∂M , we can extend the functionH(∂M) to a

functionH on [0, 2a]×∂M definedby the equation ~Hr(x) = H(r, x) ∂
∂r
(x), where ~Hr(x)

is the mean curvature vector of Cr at (r, x). We also denote by A = A(r,x) the second

fundamental form of Cr at (r, x), i.e. A(r,x)(u, v) = g(∇uv,
∂
∂r
), where u, v ∈ T(r,x)Cr.

Using this notation, we have the following lemma.

LEMMA3.35. IfH(∂M) > 0 then for any {Σt} ∈ Λand t0 ∈ (0, 1), there exists a smooth

one-parameter family of diffeomorphisms (Ft)0≤t≤1 ofM so that

1. F0 = 1M ;

2. Ft = 1M in a neighborhood U of ∂M ;

3. |Ft(Σt)| ≤ |Σt|;

4. for any t ≥ t0, we have Ft(Σt) ⊂Ma/2.

Proof. Let {Σt} ∈ Λ and t0 ∈ (0, 1). Since {Σt} is a sweepout, the function t 7→
d(Σt, ∂M) is continuous. Also, since Σt and ∂M are compact and disjoint for t > 0,
we have that d(Σt, ∂M) > 0 for t > 0. Thus, since [t0/2, 1] is compact, there is some
η > 0 such that d(Σt, ∂M) ≥ 2η for all t ∈ [t0/2, 1]. We can also suppose that η is
sufficiently small so that η ≤ a/8.

We denote A = A(r,x) the second fundamental form of Cr at (r, x), i.e. A(u, v) =
g(∇uv,

∂
∂r
), with u, v ∈ T(r,x)[0, 2a] × ∂M . The function on [0, 2a] × ∂M defined by

(r, x) 7→ |A| = |A(r,x)| = sup{|A(r,x)(u, v)| : |u| ≤ 1, |v| ≤ 1} is continuous and then,
since [0, 2a]× ∂M is compact, we have c := sup{|A| : (r, x) ∈ [0, 2a]× ∂M} <∞.

Choose a nonnegative real function φ so that φ′ ≤ −cφ, φ(r) > 0 for r < a, and φ(r) =
0 for r ≥ a. We can do this, for example, by taking a bump function α nonnegative and
nonincreasing such that α(r) > 0 for r < a and α(r) = 0 for r ≥ a and then putting
φ(r) = α(r) exp(−cr). Then, choose also another nonnegative bump function κ such
that κ(r) = 0 for r ≤ η and κ(r) = 1 for r ≥ 2η. We consider φ and κ to be defined on
[0, 2a]× ∂M without changing the notation, i.e. φ(r, x) = φ(r) and κ(r, x) = κ(r).

Denote by (F̃t)0≤t<∞ the one-parameter family of diffeomorphisms generated by the
vector field X = κ(r)φ(r) ∂

∂r
. Notice that X is a vector field on the entire M , since

X = 0 for a ≤ r ≤ 2a (i.e. we can automatically extendX outside [0, 2a]× ∂M ).

CLAIM 3.36. For every surface L ⊂ M2η, the function t 7→ |F̃t(L)| is nonincreasing. In
particular, |F̃t(L)| ≤ |L| if t ≥ 0.
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By the first variation formula, we have

d

dt
|F̃t(L)| =

∫

F̃t(L)

divF̃t(L)
X dµ.

Thus, it suffices to showthat for anyorthonormalbasis{e1, e2}wehave
∑2

i=1 g(∇eiX, ei) ≤
0 (since divF̃t(L)

X =
∑2

i=1 g(∇eiX, ei) for a particular choice of {e1, e2}, namely, a ba-

sis for the plane tangent to F̃t(L)). Notice that κ ≡ 1 inM2η and F̃t(L) ⊂M2η. Without
loss of generality, we can assume that e1 is orthogonal to

∂
∂r
(and thus e1 is tangent to

Cr). We denote e∗1 a unit vector tangent to Cr and orthogonal to e1. We also denote by
π the projection of an arbitrary vector inM into the tangent space at Cr. Under these
conditions and notations, we have

2
∑

i=1

g (∇eiX, ei) =
2
∑

i=1

g

(

∇eiφ
∂

∂r
, ei

)

=
2
∑

i=1

g

(

ei(φ)
∂

∂r
+ φ∇ei

∂

∂r
, ei

)

= g

(

e2(φ)
∂

∂r
, e2

)

+ φ

2
∑

i=1

g

(

∇ei

∂

∂r
, ei

)

= g

(

(dφ · e2)
∂

∂r
, e2

)

+ φ

2
∑

i=1

g

(

∇ei

∂

∂r
, ei

)

Writing e2 = eT2 +e
N
2 with eT2 tangent toCr, eN2 = g(e2,

∂
∂r
) ∂
∂r
normal toCr, andnoticing

that φ does not vary along Cr, we have

dφ · e2 = dφ(eT2 ) + dφ(eN2 ) = dφ(eN2 ) = g

(

e2,
∂

∂r

)

dφ
∂

∂r
= g

(

e2,
∂

∂r

)

φ′

Thus
2
∑

i=1

g(∇eiX, ei) = φ′g

(

e2,
∂

∂r

)2

+ φ

2
∑

i=1

g

(

∇ei

∂

∂r
, ei

)

.

Now, since π(e1) = e1, π(e2) = e2 − g(e2,
∂
∂r
) ∂
∂r
, g(∇e2

∂
∂r
, ∂
∂r
) = 0 and∇ ∂

∂r

∂
∂r

= 0, we
have

2
∑

i=1

A(π(ei), π(ei)) =
2
∑

i=1

g

(

∇π(ei)π(ei),
∂

∂r

)

= g

(

∇e1e1,
∂

∂r

)

+ g

(

∇e2−g(e2,
∂
∂r

) ∂
∂r

(

e2 − g

(

e2,
∂

∂r

)

∂

∂r

)

,
∂

∂r

)

= g

(

∇e1e1,
∂

∂r

)

− g

(

e2 − g

(

e2,
∂

∂r

)

∂

∂r
,∇e2−g(e2,

∂
∂r

) ∂
∂r

∂

∂r

)

= g

(

∇e1e1,
∂

∂r

)

− g

(

e2 − g

(

e2,
∂

∂r

)

∂

∂r
,∇e2

∂

∂r

)

= g

(

∇e1e1,
∂

∂r

)

− g

(

e2,∇e2

∂

∂r

)

+ g

(

e2,
∂

∂r

)

✘✘✘✘✘✘✘✘✘✿0
g

(

∂

∂r
,∇e2

∂

∂r

)

= −g

(

e1,∇e1

∂

∂r

)

+∇e1
✟

✟
✟
✟
✟

✟✟✯
0

g

(

e1,
∂

∂r

)

− g

(

e2,∇e2

∂

∂r

)

= −g

(

e1,∇e1

∂

∂r

)

− g

(

e2,∇e2

∂

∂r

)

,
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and thus we have

2
∑

i=1

g(∇eiX, ei) = φ′g

(

e2,
∂

∂r

)2

− φ
2
∑

i=1

A(π(ei), π(ei)).

Notice that π(e2) = g(e2, e
∗
1)e

∗
1, and g(e2, e

∗
1)

2 + g(e2,
∂
∂r
)2 = 1, since |e2| = 1 and

{e1, e
∗
1,

∂
∂r
} is an orthonormal basis. Then

2
∑

i=1

A(π(ei), π(ei)) = g

(

∇e1e1,
∂

∂r

)

+ g

(

∇g(e2,e∗1)e
∗
1
g(e2, e

∗
1)e

∗
1,
∂

∂r

)

= g

(

∇e1e1,
∂

∂r

)

+ g(e2, e
∗
1)g

(

g(e2, e
∗
1)∇e∗1

e∗1 + e∗1(g(e2, e
∗
1))e

∗
1,

∂

∂r

)

= g

(

∇e1e1,
∂

∂r

)

+ g(e2, e
∗
1)

2g

(

∇e∗1
e∗1,

∂

∂r

)

= g

(

∇e1e1,
∂

∂r

)

+

(

1− g

(

e2,
∂

∂r

)2
)

g

(

∇e∗1
e∗1,

∂

∂r

)

= −g

(

e2,
∂

∂r

)2

A(e∗1, e
∗
1) +H

Then, we finally get

2
∑

i=1

g(∇eiX, ei) = (φ′ + A(e∗1, e
∗
1)φ)g

(

e2,
∂

∂r

)2

− φH

≤ (φ′ + cφ)g

(

e2,
∂

∂r

)2

− φH ≤ 0.

This proves the claim.

Notice that F̃t is the identity inMa andX = φ(r) ∂
∂r
with φ(r) > 0 for 2η ≤ r < a. Thus

limt→∞ F̃t(r, x) = (a, x) for allx ∈ ∂M and r ∈ [2η, a). Notice also that eachCr is taken
onto someotherCr′ since thefieldX is orthogonal to eachCr and |X| is constant along
Cr. Therefore, since limt→∞ F̃t(r, x) = (a, x) for 2η ≤ r < a, theremust be some T > 0
such that F̃T (C2η) = Ca/2. Choose a smooth nonnegative function h : [0, 1] → R such
that h(t) = 0 for t ≤ t0/2 and h(t) = T for t ≥ t0.

We claim that Ft := F̃h(t) fulfill the conditions in the statement of the lemma. We have
F0 = F̃0 = 1M . Since X = 0 outsideMη, we have that Ft = F̃h(t) = 1M outsideMη

and this proves (ii). To prove (iii), recall that at the beginning of the proof, we have set
that d(Σt, ∂M) ≥ 2η for t ∈ [t0/2, 1]. Thus, if t ≥ t0/2, then Σt ⊂ M2η. In this case, it
follows from the claim that |Ft(Σt)| = |F̃h(t)(Σt)| ≤ |Σt|. If t ≤ t0/2 then the inequality
is trivial because Ft = F̃0 = 1M . Finally, we prove (iv). If t ≥ t0, we have Ft = F̃T . In
this case, since Σt ⊂ M2η, we conclude that Ft(Σt) ⊂ F̃T (M2η) = Ma/2. This finishes
the proof of the lemma.

LEMMA 3.37. If H(∂M) > 0 and |∂M | < W (M,Λ), then there exist a > 0, δ > 0
with |∂M | < W (M,Λ) − 2δ and a minimizing sequence {Σn

t } ∈ Λ such that |Σn
t | ≥

W (M,Λ)− δ =⇒ d(Σn
t , ∂M) ≥ a/2.

Proof. Notice that we are in a particular case of Lemma 3.35. Letm0 = W (M,Λ) and
choose 0 < δ < 1

2
(m0 − |∂M |). This is possible since |∂M | < m0. Choose a > 0 as in

the proof of Lemma 3.35.
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Let {Σt} ∈ Λ. By the definition of sweepouts for manifolds with boundary, there is a
smooth function ω : [0, ǫ0] × ∂M → R, satisfying ω(0, x) = 0 and ∂ω

∂t
(0, x) > 0, such

that Σt = {expx(−ω(t, x)ν(x)) : x ∈ ∂M}. Thus there exists ǫ > 0 such that the map
Ψ : [0, 2ǫ]×∂M →M given byΨ(t, x) = expx(−ω(t, x)ν(x)) is a diffeomorphismonto
a neighborhood of ∂M . Since the area varies continuously andΣ0 = ∂M , we can take
ǫ sufficiently small so that |Σt| ≤ |∂M |+ δ for t ∈ [0, 2ǫ]. Now, choose t0 = ǫ in Lemma
3.35 and then consider the sweepout {Γt} ∈ Λ given by Γt = Ft(Σt). We claim that

• supt∈I H
2(Γt) ≤ supt∈I H

2(Σt) (immediate from Lemma 3.35)

• if |Γt| ≥ m0 − δ, then Γt ⊂Ma/2.

To prove the second item, we show that the condition m0 − δ ≤ |Γt| implies t ≥ t0
and the conclusion follows from item (iv) of the lemma. Suppose by contradiction that
t < t0 = ǫ. In this case,m0 − δ ≤ |Γt| ≤ |Σt| ≤ |∂M | + δ =⇒ m0 ≤ |∂M | + 2δ <
|∂M |+m0 − |∂M | =⇒ m0 < m0, a contradiction. This proves the second item.

These two items together show that, if {Σn
t } is a minimizing sequence, then the corre-

sponding {Γn
t } is also minimizing and has the property

|Γn
t | ≥ m0 − δ =⇒ d(Γn

t , ∂M) ≥ a/2.

THEOREM3.38. Let (M, g)bea compact three-manifoldwith connectedboundary such

thatH(∂M) > 0. If Λ is a saturated set of sweepouts ofM with |∂M | < W (M,Λ), then
there is a min-max sequence obtained from Λ that converges in the varifold sense to an

embedded minimal surface Σ (possibly disconnected) contained in the interior of M .

The area ofΣ is equal toW (M,Λ), if counted with multiplicities.

Proof. Thefirst step is tomodify thepull-tightprocedure fromthecaseof emptybound-
ary to find a min-max sequence {Γn

tn}n∈N ∈ Λ uniformly distant from ∂M which con-
verges to a stationary varifold V with d(suppV, ∂M) > 0.

Let a > 0, δ > 0 and {Σn
t } be as in Lemma 3.37. Consider (M̂, ĝ) a closed (compact

without boundary) extension of (M, g). LetV = {V ∈ V(M̂) : ‖V ‖ ≤ 4m0} andV ′ =
{V ∈ V(M̂) : ‖V ‖ ≤ 3m0}, wherem0 = W (M,Λ). Then repeat the construction of
Section 3.2 but with

V∗
∞ = {V ∈ V : V is stationary} ∪ {V ∈ V : ‖V ‖ ≤ m0 − δ}

instead of V∞. Then, not only the stationary varifolds are going to be fixed under the
pull-tight but also those varifolds with mass bounded above by m0 − δ. We can also
require that the map χ : V → X (M̂) in the construction is such that ‖χV ‖∞ ≤ a/4,
for all V ∈ V . We obtain a continuousmapΨ : V ′ → I0(M̂) such that

• If V ∈ V ′ ∩ V∗
∞, thenΨ1

V ♯V = V ;

• If V /∈ V∗
∞, then ‖Ψ1

V ♯V ‖ ≤ ‖V ‖ − L(d(V,V∗
∞)) for some increasing continuous

function L : [0,+∞) → [0,+∞)with L(0) = 0;

• for every V ∈ V ′, ∂ΨV

∂s
= T (V )χV for some continuous function T : V ′ → [0, 1]

with T (V ) = 0 if V ∈ V∗
∞.
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Fix n ∈ N. Since {Σn
t }t∈I is minimizing, we can suppose Σn

t ∈ V ′ for all t ∈ I , n ∈ N.
For each n ∈ N, we can choose a smooth one-parameter family of isotopies {Ψ̃n

t }t∈I
which approximates {ΨΣn

t
}t∈I so that

∥

∥

∥

∥

∥

∂Ψ̃n
t

∂s
−
∂ΨΣn

t

∂s

∥

∥

∥

∥

∥

∞

<
a

8
and H2(Γn

t ) ≤ H2(Σn
t )− L(d(Σn

t ,V
∗
∞)) + e−n,

whereΓn
t := Ψ̃n

t (1,Σ
n
t ). Wedoonemore requirement for our approximation. Consider

the continuous function fn : I → [0,+∞), fn(t) = H2(Σn
t ). Then, f

−1
n (A) is an open

subset of I , with A = [0,m0 − δ). We know from real analysis that any open subset of
R is a countable union of open disjoint intervals. Since I is compact, f−1

n (A) is a finite
such union. SinceΣt

0 = ∂M and |∂M | < m0 − 2δ < m0 − δ, we have that 0 ∈ f−1
n (A).

So, there are 0 = t1 < t2 < t3 < · · · < t2k(n) ≤ 1 such that

f−1
n (A) = [0, t2) ∪ (t3, t4) ∪ · · · ∪ (t2k(n)−1, t2k(n)),

where the last interval may be closed or not in t2k(n), if t2k(n) = 1. For t ∈ f−1
n (A), we

have
∂ΨΣn

t

∂s
= 0 and thereforeΨΣn

t
depends smoothly on t, for t ∈ f−1

n (A). Thus, we can

require our approximation Ψ̃n
t to be such that

Ψ̃n
t = ΨΣn

t
, for t ∈ f−1

n (A).

CLAIM 3.39. For every n ∈ N, t ∈ I , we have Γn
t ⊂M .

Fix n ∈ N. IfH2(Σn
t ) < m0 − δ, then Γn

t = Σn
t ⊂ M . So supposeH2(Σn

t ) ≥ m0 − δ.
Suppose also, by contradiction, that there exists p ∈ Γn

t ∩ M̂\M . Recall {Σn
t }t∈I is as

in Lemma 3.37, thus d̂(Σn
t , ∂M) = d(Σn

t , ∂M) ≥ a/2. Since p /∈ M , for any smooth
path γ : I → M̂ joining some point of Σn

t to p we must have ℓ(γ) > a/2 (every such
path must intersect ∂M ). But since Γn

t = Ψn
t (1,Σ

n
t ), there is some x ∈ Σn

t such that
p = Ψn

t (1, x). Then consider the smooth path γ : I → M̂ given by γ(s) = Ψ̃n
t (s, x)

joining x to p. We have

ℓ(γ) =

1
∫

0

‖γ′(s)‖ ds ≤

1
∫

0

∥

∥

∥

∥

∥

∂Ψ̃n
t

∂s

∥

∥

∥

∥

∥

∞

ds ≤

1
∫

0

(∥

∥

∥

∥

∥

∂Ψ̃n
t

∂s
− T (Σn

t )χΣn
t

∥

∥

∥

∥

∥

∞

+
∥

∥T (Σn
t )χΣn

t

∥

∥

∞

)

ds

<

1
∫

0

a

8
+
a

4
ds =

3a

8
<
a

2
,

a contradiction. Thus, Γn
t ⊂M for all t ∈ I .

Now, let ϕ : M → [0, 1] be a smooth function so that ϕ(p) = 0 for p ∈ [0, a/16) × ∂M
and ϕ(p) = 1, for p ∈Ma/8. Also, denote

χ̂n
t =

∂Ψ̃n
t

∂s
∈ X (M̂).

Then define χn
t ∈ X (M) by χn

t = ϕχ̂n
t and let {Φ

n
t }t∈I be the smooth one-parameter

familyof isotopiesofM generatedby{χn
t }t∈I . All of these isotopies leaveU = [0, a/16)×

∂M fixed andΦn
t (1, ·) ∈ Diff0 for all t ∈ I . Then, {Φn

t (1,Σ
n
t )}t∈I ∈ Λ. We have

H2(Σn
t ) < m0 − δ =⇒ χ̂n

t = 0 =⇒ Φn
t (1,Σ

n
t ) = Σn

t = Γn
t ;
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H2(Σn
t ) ≥ m0 − δ =⇒ Σn

t ⊂Ma/2 =⇒ Φn
t (1,Σ

n
t ) = Ψ̃n

t (1,Σ
n
t ) = Γn

t .

Therefore, {Γn
t }t∈I ∈ Λ, for all n ∈ N.

Now, the propertyH2(Γn
t ) ≤ H2(Σn

t )−L(d(Σn
t ,V

∗
∞))+ e−n implies that {Γn

t }t∈I is also
minimizing and d(Γn

tn ,V
∗
∞) → 0 for anymin-max sequence {Γn

tn}n∈N. SinceH
2(Γn

tn) →
m0 > m0 − δ, we necessarily have d(Γn

tn ,V∞) → 0. Thus, up to a subsequence, there
is some stationary varifold V ∈ V(M) such that Γn

tn ⇀ V . For some n0 ∈ N, we have
n > n0 =⇒ H2(Σn

tn) > m0 − δ =⇒ Σn
tn ⊂ Ma/2. Then, arguing with paths like

above, we have the triangle inequality below

n > n0 =⇒
a

2
≤ d(Σn

tn , ∂M) ≤ d(Σn
tn ,Γ

n
tn) + d(Γn

tn , ∂M) <
3a

8
+ d(Γn

tn , ∂M)

=⇒
a

8
< d(Γn

tn , ∂M).

This implies suppV ⊂ {x ∈M : d(x, ∂M) > a/8}.

The second step is to proceed as in before to find some subsequence Γn
tn which is al-

most minimizing in every annulus centered at a point x ∈ M and with outer radius
smaller than r(x). We can require that r(x) < a/16 for all x ∈ ∂M . Since d(Γn

tn , ∂M) >
a/8 for n > n0, this implies that wheneverBr(x)(x)∩∂M 6= ∅wehaveBr(x)(x)∩Γn

tn =
∅ for n > n0. Therefore all arguments apply.

The third and final step is to prove the regularity of V . This can be done exactly as in
because all arguments from (COLDING; DE LELLIS, 2003) are local andonly take place
in annular regions of small radius which do not intersect ∂M .
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4 GENUS AND INDEX

In this chapter, (M, g)will denote a connected compact orientable riemannian three-

manifoldwithoutboundaryandΛwill denotea saturated set of sweepouts such thatno

sweepout {Σt}t∈I inΛ contains a nonorientable surface. All surfaces are considered to

be closed (compact without boundary). We denote by g(Σ) the genus ofΣ and ind(Σ)

the Morse index of Σ (see Definition 1.28). Also, there is no special reason why we

should use the interval I = [0, 1] in our definitions, we can consider any closed interval

[a, b] instead.

4.1 THE (⋆)h-CONDITION

The next result is useful to prove that certain min-max minimal surfaces have Morse

index one.

PROPOSITION 4.1. If {Σt}t∈[−1,1] ∈ Λ is a sweepout such that

1. Σ0 is an embedded surface and there is a smooth variation F : [−ǫ, ǫ]× Σ0 →M
such thatΣt = Ft(Σ0), for all t ∈ [−ǫ, ǫ];

2. H2(Σt) < H2(Σ0), for all t 6= 0;

3. |Σ0| = W (M,Λ);

thenΣ0 is a minimal surface of index one.

Proof. First, we prove that Σ0 is a minimal surface. If not, then ~H 6= 0 at some point
of Σ0. Let X be any ambient vector field which is zero outside a tubular neighbor-
hood of Σ0 and is equal to ~H on Σ0. Denote by {Gs}s∈R the one-parameter family of
diffeomorphisms generated by X and define the function f : [−1, 1] × R → R by
f(t, s) = H2(Gs(Σt)). From (i) we have that f is smooth on [−ǫ, ǫ]×R. It follows from
(ii) that

∂f

∂t
(0, 0) =

d

dt

∣

∣

∣

∣

0

|G0(Σt)| =
d

dt

∣

∣

∣

∣

0

|Σt| = 0.

On the other hand, it follows from Remark 1.9 (ii) that

∂f

∂s
(0, 0) =

d

ds

∣

∣

∣

∣

0

|Gs(Σ0)| < 0.

Thus, the Taylor expansion of f around (0, 0) has the form

f(t, s) = |Σ0|+ As+ r(t, s), withA < 0, lim
(t,s)→(0,0)

r(t, s)

|(t, s)|
= 0.

CLAIM 4.2. There exists δ > 0 such that f(t, δ) < |Σ0| for all t ∈ [−1, 1].
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If the claim is false, then for all δ > 0 there exists tδ ∈ [−1, 1] such that f(tδ, δ) ≥
|Σ0| = f(0, 0). Take δ = 1

n
, n ∈ N. Since [−1, 1] is compact, we can suppose that

tn → t0 ∈ [−1, 1]. Then

f(tn,
1

n
) ≥ |Σ0|

n→∞
=⇒ f(t0, 0) ≥ |Σ0| =⇒ H2(Σt0) ≥ |Σ0|

and then (ii) implies t0 = 0. From f(tn,
1
n
)− |Σ0| ≥ 0 follows that

0 ≤ A
1

n
+ r(tn,

1

n
), ∀n ∈ N.

Thus,

0 < −A ≤
−A 1

n

|(tn,
1
n
)|

≤
r(tn,

1
n
)

|(tn,
1
n
)|

is a contradictionwith lim
n→∞

r(tn,
1
n
)

|(tn,
1
n
)|
= 0. ThisprovesClaim4.2. The sweepout{Gδ(Σt)}t∈[−1,1]

is in Λ, but Claim 4.2 says that

sup
t∈[−1,1]

H2(Σt) = max
t∈[−1,1]

H2(Σt) < |Σ0| = W (M,Λ) = inf
{Γt}∈Λ

sup
t∈[−1,1]

H2(Γt),

a contradiction. This proves thatΣ0 is a minimal surface.

It remains to prove that ind(Σ0) = 1. Notice that (i) and (ii) imply that ind(Σ0) ≥ 1. Let
ν be a unit normal vector field alongΣ0 and φ0 ∈ C∞(Σ0) such that

∂F

∂t

∣

∣

∣

∣

0

= φ0ν := Z.

If ind(Σ0) > 1, we can choose orthonormal eigenfunctions φ1, φ2 ∈ C∞(Σ0) for the
Jacobi operator with negative eigenvalues (see Proposition 1.26). There exists a non-
trivial linear combination of φ1 and φ2, say φ3 = aφ1 + bφ2, which is orthogonal to
Lφ0 ∈ C∞(Σ0), i.e.

∫

Σ0

φ3Lφ0 dΣ0 = 0, φ3 6= 0.

This can be done for any vector space with inner product, a pair of linear independent
vectors and a third one. Consider the normal vector field X̃ = φ3ν along Σ0 and ex-
tend it smoothly to be zero outside a tubular neighborhood of Σ0. Let {F̃s}s∈R be the
smooth one-parameter family of diffeomorphisms generated by X̃ . Then, consider
f̃ : [−1, 1] × R → R given by f̃(t, s) = H2(F̃s(Σt)). Again, f̃ is smooth on [−ǫ, ǫ] × R.
SinceΣ0 is a minimal surface, we have

∂f̃

∂t
(0, 0) = 0 =

∂f̃

∂s
(0, 0).

From (ii), we have
∂2f̃

∂t2
(0, 0) < 0.

Doing basically the same computation in the second variation formula, we have

∂2f̃

∂s∂t
(0, 0) = −

∫

Σ0

φ3Lφ0 dΣ0 = 0.
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By the choice of φ3,

∂2f̃

∂s2
(0, 0) = −

∫

Σ0

φ3Lφ3 dΣ0 = −

∫

Σ0

(aφ1 + bφ2)(a(−λ1)φ1 + b(−λ2)φ2) dΣ0

= λ1a
2 + λ2b

2 < 0,

since the eigenvalues λ1 and λ2 are negative. Then the Taylor expansion of f̃ around
(0, 0) has the form

f̃(t, s) = |Σ0|+ At2 + Bs2 + r(t, s), withA,B < 0, lim
(t,s)→(0,0)

r(s, t)

|(t, s)|2
= 0

CLAIM 4.3. There exists δ > 0 such that f̃(t, δ) < |Σ0| for all t ∈ [−1, 1].

As before, if this is not true, we find a sequence tn → 0 in [−1, 1] such that f̃(tn,
1
n
) ≥

|Σ0| = f̃(0, 0). Thus

At2n + B
1

n2
+ r(tn,

1

n
) ≥ 0, ∀n ∈ N.

Then, denotingC = min{−A,−B} > 0, we have

0 < C =
C(t2n +

1
n2 )

t2n +
1
n2

≤
−At2n −B 1

n2

t2n +
1
n2

≤
r(tn,

1
n
)

t2n +
1
n2

.

This is a contradiction with lim
n→∞

r(tn,
1
n
)

t2n+
1
n2

= 0, thus Claim 4.3 is true. But such a claim is

a contradiction with |Σ0| = W (M,Λ), as before (because {F̃δ(Σt)}t∈[−1,1] ∈ Λ). There-
fore, ind(Σ0) = 1.

DEFINITION4.4 (HEEGAARDSPLITTING). Aclosedorientable surfaceΣ ⊂M is said to be

aHeegaard splitting ifM\Σ = A∪B withA∩B = ∅ andA andB are handlebodies,

i.e. diffeomorphic to a solid ball with handles attached. The Heegaard genus ofM is

the lowest possible genus of a Heegaard splitting ofM .

REMARK 4.5. Every closed orientable three-manifoldM has a Heegaard splitting. In-

deed, ifM is compact, thenM has a finite triangulation (by tetrahedra) T . Let σ be the
1-skeleton structure of T and A be an open ǫ-tubular neighborhood of σ. Notice that A
is homeomorphic to a solid sphere with finite handles and B as well, with B = M\A.
Then, ∂A can be deformed into a smooth embedded closed surface Σ. SinceM is ori-

entable, T can be oriented and henceΣ is orientable and a Heegaard splitting ofM .

DEFINITION 4.6 ((⋆)h-CONDITION). If h ≥ 0 is an integer, we denote by Eh the collection

of all connected embeddedminimal surfacesΣ ⊂M with g(Σ) ≤ h. We say that (M, g)
satisfies the (⋆)h-condition if

1. M does not contain embedded nonorientable surfaces;

2. no surface in Eh is stable.

REMARK 4.7. IfM has positive Ricci curvature and does not contain embedded nonori-

entable surfaces, then it follows from Corollary 1.22 thatM satisfies the (⋆)h-condition
for all h. Lens spaces L(p, q) with odd p and the Poincaré homology sphere are some

examples.
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LEMMA 4.8. IfM is a smooth connected orientable three-manifold and Σ ⊂ M is an

embedded connected orientable closed (as a set) surface, then M\Σ consists of one or

two components.

Proof. SinceΣ andM areorientable, we canconsider aunit normal vector field ν along
Σ. SinceM is connected, any point p ∈ M\Σ can be joined to any other point q ∈ Σ
by a smooth path. Let γ : [a, b] → M be a smooth path with γ(a) = p ∈ M\Σ and
γ(b) = q ∈ Σ. Since Σ is closed, γ−1(Σ) is closed in [a, b] and there is some t0 ∈ (a, b]
such that γ([a, t0)) ⊂ M\Σ and γ(t0) ∈ Σ. Thus, every point p ∈ M\Σ can be joined
by a smooth path to some point q′ ∈ Σ, with q′ being the only contact point of Σ and
the trace of the path. Moreover, we can suppose that the path touches Σ transversely,
i.e. if u is the vector tangent to the path at the contact point, then g(u, ν) 6= 0 (if the
path is tangent at the contact point, since Σ is embedded, we can “fix” the path in a
small neighborhood of the point in order to turn it transversal).

Figure 9

CLAIM 4.9. Suppose that p ∈ M\Σ can be joined to some point q ∈ Σ by a path γ :
[a, b] → M with γ([a, b)) ⊂ M\Σ, γ(a) = p, γ(b) = q and g(γ′(b), ν) < 0. Then p can
be joined to every point ofΣ in this fashion.

Let Σ+ be the set of points of Σ that are attained by paths beginning at p as in the
claim. By assumption, Σ+ 6= ∅. If q ∈ Σ+, then taking a small adapted coordinated
neighborhoodU of q, we see that every q′ ∈ U ∩Σ is inΣ+. Therefore,Σ+ is open inΣ.
If q /∈ Σ+, then, by the same argument, no point in a neighborhood of q as before can
be in Σ+. Thus, Σ\Σ+ is open in Σ. Hence, Σ+ is open and closed in Σ and since Σ is
connected, we must haveΣ+ = Σ. This proves the claim.

Figure 10

Let A+ be the set of points p ∈ M\Σ that can be joined to some (and, therefore, to
every) point of Σ by a path γ : [a, b] → M with γ([a, b)) ⊂ M\Σ, γ(a) = p, γ(b) ∈ Σ e
g(γ′(b), ν) < 0. Changing the last condition by g(γ′(b), ν) > 0 we define A−. What we
did in the beginning of the proof shows thatM\Σ = A+ ∪ A−.
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CLAIM 4.10. A+ andA− are connected components ofM\Σ.

Let p ∈ A+ be fixed. If p′ ∈ M\Σ can be joined to p by a path contained inM\Σ, then
concatenating this path with that one which joins p to the surface Σ and then turning
it smooth, we obtain a smooth path γ joining p′ to Σ with g(γ′, ν) < 0. Therefore,
p′ ∈ A+. Hence, if Cp is the connected component ofM\Σwhich contains p, we have
Cp ⊂ A+. Now, let p, p′ ∈ A+. Then p and p′ can be joined toΣ by smooth paths γ1 and
γ2with g(γ′i, ν) < 0, i = 1, 2. By claim 4.9, we can suppose that γ1 and γ2 have the same
point of contact q ∈ Σ. Again taking a coordinated neighborhood U of q as before, we
see that the ends of γ1 ∩ U and γ2 ∩ U are in the same “hemisphere” of U (otherwise,
it they would not be able to hit the point q with the same sign). Therefore, working
inside this hemisphere, it is possible to concatenate γ1 and−γ2, “unstick” from Σ this
part of the path and finally, to turn it smooth, obtaining a smooth path joining p to
p′ completely contained inM\Σ. This shows that A+ = Cp. The proof that A− is a
connected component ofM\Σ is the same. This proves the claim.

Figure 11

SinceM\Σ = A+ ∪ A− and A+, A− are connected components, we have thatM\Σ
has at most two components.

LEMMA 4.11. If (M, g) satisfies the (⋆)h-condition, then any surface Σ ∈ Eh is a Hee-

gaard splitting.

Proof. Let Σ ∈ Eh. We first prove that Σmust separateM in two components. By the
previous lemma,M\Σ has at most two components. Suppose, by contradiction, that
M\Σ is connected. Let φ ∈ C∞(Σ) be an eigenfunction for the lowest eigenvalue λ of
the Jacobi operator. SinceΣ is unstable, wehaveλ < 0. By Proposition 1.26 (iv), we can
take φ strictly positive. LetX be a vector field inM such thatX = φν onΣ, where ν is
a unit normal vector field alongΣ. Let {Ft}t∈R be the smooth one-parameter family of
diffeomorphisms generated byX . Since Σ does not separateM , for t > 0 sufficiently
small we have that

M\(Ft(Σ) ∪ F−t(Σ)) = At ∪ Bt,

whereAt,Bt are disjoint open regions withΣ ⊂ Bt.
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Figure 12

From (HUISKEN; POLDEN, 1999, Theorem 3.2), we have

∂

∂t

∣

∣

∣

∣

0

g( ~H(Ft(Σ)), νt) = Lφ = −λφ > 0,

where νt is the unit normal vector field along Ft(Σ) which varies smoothly on t and
such that ν0 = ν. Since ~H(F0(Σ)) = ~H(Σ) = 0, this formula tells us that, for small
t > 0,

g( ~H(F−t(Σ)), ν−t) < 0 and g( ~H(Ft(Σ)), νt) > 0,

i.e. the mean curvature vector of ∂At points into At (∂At is said to bemean convex).
It follows from (MEEKS; SIMON; S. T. YAU, 1982, Lemma 4, p. 657) that we can mini-
mize area in the isotopy class of one of the boundary components of ∂At, sayFt(Σ), to
obtain an embedded stable minimal surface Σ′ in At. Since Σ ∈ Eh, we have g(Σ′) =
g(Ft(Σ)) = g(Σ) ≤ h. Thus, Σ′ ∈ Eh is stable. But this is impossible sinceM satisfies
the (⋆)h-condition. Therefore,M\Σmust have two components.

To prove that Σ is a Heegaard splitting, we will use the following characterization for
handlebodies:

PROPOSITION 4.12. (MEEKS; SIMON; S. T. YAU, 1982, Proposition 1, p. 650) Let N be

a compact three-dimensional Riemannianmanifold with non-empty boundary. N is a

handlebody if and only if for every compact surface Σ in the interior ofN and for every

positive number ǫ there exists a surface Σ′ isotopic to Σ such that |Σ′| < ǫ. Actually N
will be a handlebody if and only if the isotopy class of a surface parallel to a boundary

component contains surfaces of arbitrarily small area.

Suppose Σ is not a Heegaard splitting. Then, some of the two components ofM\Σ,
say N , is not a handlebody. Since Σ = ∂N is unstable, and N is not a handlebody,
we canminimize area in its isotopy class and obtain a stable minimal surfaceΣ′ in the
interior ofN . SinceΣ andΣ′ are isotopic, g(Σ′) = g(Σ) ≤ h andΣ′ ∈ Eh. Again, this is
impossible, sinceM satisfies the (⋆)h-condition. This proves the lemma.

LEMMA4.13. If (M, g) satisfies the (⋆)h-condition, thenanyΣ ∈ Ehmust intersect every

other embedded minimal surface.

Proof. Let Σ1 and Σ2 be embedded minimal surfaces with Σ1 ∈ Eh. Suppose by con-
tradiction that Σ1 ∩ σ2 = ∅. By the previous lemma, Σ1 is a Heegaard splitting. Then,
there is some region A ⊂ M , homeomorphic to a handlebody with Σ1 = ∂A and
Σ2 ⊂ A. Then there is a region B ofM such that ∂C = Σ1 ∪ Σ2. But then C is not a
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handlebody. SinceΣ1 is unstable, it follows again from the characterization of handle-
bodies above that we can minimize area in the isotopy class of Σ1, to obtain a stable
embedded minimal surface Σ′ ⊂ C with g(Σ′) ≤ h. Again, this contradicts the fact
thatM satisfies the (⋆)h-condition. The lemma is proved.

Let Σ be a Heegaard splitting ofM . There is a natural class of sweepouts {Σt}t∈[−1,1]

associated toΣ. Each {Σt}t∈[−1,1] in this class satisfies

1. Σ0 = Σ andΣt is isotopic toΣ for all−1 < t < 1;

2. ifN1 andN2 are the connected components ofM\Σ then, up to a change ofN1

andN2, {Σt}t∈[−1,0] foliatesN1 and {Σt}t∈[0,1] foliatesN2, withΣ−1 and Σ1 being

graphs.

The smallest saturated set that contains this class of sweepouts is denoted by ΛΣ and

we call it the saturated set associated to Σ. If g(Σ) = h, we define the large saturated

set associated to Σ, denoted by Λh, as the union of all saturated sets associated with

Heegaard splittings of genus h.

The goal of this section is to prove the following theorem:

THEOREM 4.14. Suppose (M, g) satisfies the (⋆)h-condition, where h is the Heegaard
genus of M . Then there is an orientable embedded minimal surface Σ0 ⊂ M with

g(Σ0) = h and ind(Σ0) = 1 such that

|Σ0| = inf
S∈Eh

|S| = W (M,ΛΣ0) = W (M,Λh).

To prove this theorem, we will use some results without proof. The first one concerns

on compactness properties for minimal surfaces and is proved in (WHITE, 1987). Be-

fore we state it, we give some definitions and notations.

Denote byB1(M) the unit sphere bundle onM , i.e. the fiber at x ∈M isB1(p) = {ν ∈

TxM : ‖v‖ = 1}. We denote a point of B1(M) by (x, ν), with x ∈ M and ν ∈ B1(x).

Consider a function Φ : B1(M) → R. This defines a functional on orientable surfaces

inM by

Φ(Σ) =

∫

Σ

Φ(x, ν(x)) dΣ,
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where Σ is the surface and ν is the unit normal vector field along Σ. If Φ is even, i.e.

Φ(x, ν) ≡ Φ(x,−ν), then Φ(Σ) is defined even if Σ is nonorientable. We say that Σ is

Φ-stationary if
d

dt

∣

∣

∣

∣

0

Φ(Σt) = 0,

for any variation {Σt}t∈[−ǫ,ǫ], withΣ0 = Σ. Of course,Φ ≡ 1 is the area functional, and

in this caseΣ isΦ-stationary if and only if it is a minimal surface.

If Γ is an embedded curve inM , then ‖Γ‖2,α denotes the C2,α-norm of Γ parametrized

by arc length and

‖Γ‖∗2,α = ‖Γ‖2,α +max

{

dΓ(x, y)

dM(x, y)
: x, y ∈ Γ, x 6= y

}

,

where dΓ and dM are the intrinsic geodesic distance on Γ andM , respectively. Nowwe

state the compactness result in its generality. We will need just a particular case of it.

THEOREM 4.15. (WHITE, 1987, Theorem 3, p. 251) Let M be a compact 3-manifold

with (possibly empty) boundary. Let Σi be a sequence of connected immersed Φi sta-

tionary surfaces (with or without boundary), where

‖Φi − Φ‖1,α + ‖D2Φi −D2Φ‖1,α → 0 as i→ ∞.

Suppose that the area and the genus of Σi and the total curvature of ∂Σi are uniformly

bounded, and that the ∂Σi converges as sets (i.e. in the Hausdorff metric) to some set Γ.
Then

1. There is a finite set S ⊂M and a subsequenceΣi′ that converges uniformly in C2,β

(β < α) on compact subsets ofΩ =M\(S ∪ Γ) to aΦ-stationary surfaceΣ.

2. If ‖∂Σi‖
∗
2,α is bounded, then we can letΩ =M\S.

Now, suppose that eachΣi is embedded,Φi is even and

‖Φi − Φ‖2,α + ‖D2Φi −D2Φ‖2,α → 0 as i→ ∞.

Then

3. (Σ ∪ S)\Γ is a regular embedded surface.

4. If∂M is strictly convex, ∂Σi ⊂ ∂M is not empty, and‖∂Σi‖
∗
2,α is uniformlybounded,

then S is empty.

Our surfaces are going to be embedded, all boundaries empty and the sequence of

functionals is going to be constant equal to the area functional. Thus, all hypotheses

in this theorem are going to be trivially satisfied.

Now we introduce the second compactness result. Let Mn be the set of embedded

closed minimal surfaces Σ inM with Euler characteristc χ(Σ) ≥ n and consider the

weak topology onMn induced as a subspace ofV2(M) (space of 2-varifolds onM ). We

have
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THEOREM4.16. (ANDERSON, 1985, Theorem4.2, p. 103)Theboundary∂Mn = M n\Mn

ofMn is contained inMn/2, counted with multiplicity≥ 2.

The next and last result we state before we prove Theorem 4.14 gives a genus bound

for minimal surfaces obtained by the min-max method.

THEOREM 4.17. (LELLIS; PELLANDINI, 2009, Theorem 0.6) Let Λ be a saturated set of

sweepouts inM and {Σn
tn},Σ be themin-max sequence andminimal surface produced

in the proof of the Simon–Smith Theorem. Let Σ =
∑N

i=1 niΓi where the Γi’s are con-

nected components of Σ without multiplicity and ni ∈ N\{0}. Denoting O = {i :
Γi is orientable} andN = {i : Γi is nonorientable}, we have

∑

i∈O

g(Γi) +
1

2

∑

i∈N

(g(Γi)− 1) ≤ g0 := lim inf
n↑∞

lim inf
τ→tn

g(Σn
τ ).

Now, we prove Theorem 4.14. We recall its statement:

THEOREM 4.14. Suppose (M, g) satisfies the (⋆)h-condition, where h is the Heegaard

genus of M . Then there is an orientable embedded minimal surface Σ0 ⊂ M with

g(Σ0) = h and ind(Σ0) = 1 such that

|Σ0| = inf
S∈Eh

|S| = W (M,ΛΣ0) = W (M,Λh).

Proof of Theorem 4.14. By the Simon–Smith Theorem, we know that (M, g) has at least
one embedded minimal surface (we just need to consider a saturated set Λ of sweep-
outs such thatW (M,Λ) > 0 and we can do this by consider a sweepout given by level
sets of a Morse function onM ). Therefore, the set E∞ of all embedded minimal sur-
faces inM is nonempty. Let

h′ = min{g(S) : S ∈ E∞}.

CLAIM 4.18. There is an embeddedminimal surfaceΣ0 inM such that g(Σ0) = h′ and
|Σ0| = inf

S∈Eh′

|S|.

Let Sn ∈ Eh′ be a sequence such that lim
n→∞

|Sn| = inf
S∈Eh′

|S|. Notice that by the definition

of h′ and Eh′ , we have g(Sn) = h′, for all n ∈ N. Then by Theorem 4.15, there is an
embeddedminimal surfaceΣ0 inM and a subsequenceSnk

such thatSnk
→ Σ0. Then

|Σ0| = lim
n→∞

|Sn| = inf
S∈Eh′

|S|.

Now we prove that g(Σ0) = h′. First, not that all surfaces involved are orientable, be-
causeM satisfies the (⋆)h-condition. Thusχ(Sn) = 2(1−g(Sn)) = 2(1−h′) and hence
Sn ∈ M2(1−h′), for all n ∈ N. This implies Σ0 ∈ M 2(1−h′). We have two possibilities:
eitherΣ0 ∈ M2(1−h′) orΣ0 ∈ ∂M2(1−h′). IfΣ0 ∈ M2(1−h′), then

2(1− g(Σ0)) = χ(Σ0) ≥ 2(1− h′) ⇒ g(Σ0) ≤ h′ ⇒ g(Σ) = h′,

by the definition of h′. Now if Σ0 ∈ ∂M2(1−h′), then by Theorem 4.16, we have Σ0 ∈
M1−h′ . Then

2(1− g(Σ0)) = χ(Σ0) ≥ 1− h′ ⇒ g(Σ0) ≤
h′ + 1

2
.
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If h′ = 0, then g(Σ0) ≤
1
2
⇒ g(Σ0) = 0 = h′. If h′ ≥ 1, then

g(Σ0) ≤
h′ + 1

2
≤ h′,

and again by the definition of h′ we have g(Σ0) = h′. This proves Claim 4.18.

CLAIM 4.19. h′ = h.

Let Σ be a Heegaard splitting ofM with least possible genus g(Σ) = h and consider
the saturated set ΛΣ associated to Σ. Then applying Theorem 4.17 and noticing that
M does not contain embedded nonorientable surfaces, we have a minimal surface
Σ′ =

∑n
i=1 niΓi attained as a limit of a min-max sequence {Σn

tn} ∈ ΛΣ and we have

N
∑

i=1

g(Γi) ≤ lim inf
n→∞

lim inf
τ→tn

g(Σn
τ ) = g(Σ) = h.

This implies that each connected component Γi is in Eh. It follows from Lemma 4.13
thatN = 1, i.e. Σ′ has only one connected component. Thus

h′ ≤ g(Σ′) ≤ h.

Now, since g(Σ0) = h′ ≤ h, Lemma 4.11 tell us that Σ0 is a Heegaard splitting ofM .
But then

h ≤ g(Σ0) = h′.

This proves that h = h′.

CLAIM4.20. |Σ0| = W (M,ΛΣ0) = W (M,Λh). Moreover,Σ0 is contained in a sweepout

{Σt}t∈[−1,1] ∈ ΛΣ0 such that

1. there is a smooth variation F : [−ǫ, ǫ] × Σ0 → M such that Σt = Ft(Σ0), for all
t ∈ [−ǫ, ǫ];

2. H2(Σt) < H2(Σ0), for all t 6= 0;

Notice that once we prove Claim 4.20, it follows from Proposition 4.1 that ind(Σ0) = 1
and the theorem is proved.

Since Σ0 is a Heegaard splitting, M\Σ0 = N1 ∪ N2, with N1 ∩ N2 = ∅, N1 and N2

handlebodies. Let ν be the unit normal vector field alongΣ0 which points intoN1. Let
φ ∈ C∞(Σ) be an eigenfunction associated to the lowest eigenvalue λ of the Jacobi
operatorL. By Proposition 1.26, we can take φ strictly positive onΣ0. SinceM satisfies
the (⋆)h-condition,Σ0 is unstable andλ < 0. LetX be a vector field onM withX = φν
onM and let {Ft}t∈R be the one-parameter family of diffeomorphisms generated by
X . Denote Σt = Ft(Σ0). Since φ is strictly positive, there is some ǫ1 > 0 such that
Σt ⊂ N1 (resp. N2) for all 0 < t < ǫ1 (resp. −ǫ1 < t < 0). We have

∂

∂t

∣

∣

∣

∣

0

g( ~H(Σt), νt) = Lφ = −λφ > 0.

Thus there is ǫ2 > 0 such that the mean curvature vector ~H(Σt) points into N1 (resp.
intoN2) for all 0 < t < ǫ2 (resp. −ǫ2 < t < 0). Also, d

dt

∣

∣

0
|Σt| = 0 (Σ0 is minimal) and

d2

dt2

∣

∣

∣

∣

0

|Σt| = −

∫

Σ0

φLφ dΣ0 = λ

∫

Σ0

φ2 dΣ0 < 0.
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Thus, there exists ǫ3 > 0 such that

|Σt| < |Σ0|, for all 0 < t < ǫ3.

Let ǫ = min{ǫ1, ǫ2, ǫ3} > 0. The surface Σǫ bounds a handlebodyN ⊂ N1. Consider a
sweepout {Σ̃t}t∈[0,1] ofN such that Σ̃t = Σt+ǫ for all t ∈ [0, δ] and some small δ > 0. Let
Λ̃ be the saturated set of sweepouts inN generated by {Σ̃t}t∈[0,1]. IfW (N, Λ̃) > |∂N |,
sinceH(∂N) > 0, it follows fromTheorem3.32 that there exists an embeddedminimal
surfaceΣ′ ⊂ int(N)and thereforedisjoint fromΣ0. This is a contradictionwithLemma
4.13. ThereforeW (N, Λ̃) ≤ |∂N | < |Σ0|. SinceW (N, Λ̃) = inf

{Γt}t∈[0,1]∈Λ̃
sup
t∈[0,1]

|Γt|, we

can find {Γt}t∈[0,1] ∈ Λ̃ such that

sup
t∈[0,1]

|Γt| < |Σ0|.

Because N has nonempty boundary, recall that in the definition of saturated sets we
ask theone-parameter families of diffeormophisms to leave someneighborhoodof the
boundary fixed. Because of this, we still have

Γt = Σt+ǫ, for all t ∈ [0, δ′],

andsomesmall δ′ > 0. Arguing in the sameway forΣ−ǫ, weareable tobuild a sweepout
{Σt}t∈[−1,1] ofM which is in ΛΣ0 and satisfies (i) and (ii) of the Claim 4.20.

Now we prove that |Σ0| = W (M,ΛΣ0). We have

W (M,ΛΣ0) ≤ sup
t∈[0,1]

|Σt| = |Σ0|.

By the Simon–Smith Theorem, there is an embeddedminimal surface S0 =
∑N

i=1 niΓi

embedded inM , such that |S0| = W (M,ΛΣ0). Each connected component Γi has to
be orientable (there are no nonorientable embedded surfaces) and by Theorem 4.17,

g(Γi) ≤
N
∑

i=1

g(Γi) ≤ g(Σ0) = h.

Therefore, any connected component Γi is in Eh and |Γi| ≤ |S0| = W (M,Λ) ≤ |Σ0|.
But recall that

|Σ0| = inf
S∈Eh

|S| ≤ |Γi|.

Therefore |Σ0| = W (M,ΛΣ0). Now, sinceΛΣ0 ⊂ Λh, wehaveW (M,Λh) ≤ W (M,ΛΣ0) =
|Σ0|. Now, by the same argument used above, we can find a surface S0 ∈ Eh such that

|Σ0| = inf
S∈Eh

|S| ≤ |S0| ≤ W (M,Λh) ≤ |Σ0|,

and we have |Σ0| = W (M,Λh). This proves Claim 4.20 and the theorem follows.

4.2 NONORIENTABLE SURFACES CASE

The nonorientable closed surface Nh̃ of genus h̃ is defined as a sphere with h̃ disks

removed and h̃ Möbius strips (with boundary) attached. We say that Nh̃ is a sphere
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with h̃ cross-caps. The surfaceNh̃ is also obtained as the connected sumof h̃ projective

planes RP2. The Euler characteristic of Nh̃ is given by χ(Nh̃) = 2 − h̃. Every closed

nonorientable surface is homeomorphic toNh̃, for some h̃ ≥ 1.

Figure 13 –N1 is obtained by cutting a disk from S2 and gluing aMöbius strip along its
boundary.

In this section, (M, g) still is a compact orientable riemannian three-manifold but now

we suppose thatM contains an embedded nonorientable closed surface. Let h̃ be the

lowest genus of an embedded nonorientable closed surface inM , i.e. there is an em-

bedding of Nh̃ into M and every embedded nonorientable closed surface in M has

genus greater than or equal to h̃. LetF denote the set of all embedded surfaces inM

diffeomorphic toNh̃ and

A (M, g) = inf{|S| : S ∈ F}.

LEMMA 4.21. A (M, g) > 0.

Proof. This follows from the following result:

LEMMA 4.22. (MEEKS; SIMON; S. T. YAU, 1982, Lemma 1, p. 625, adapted) Let ρ0 > 0
be such that expx0

: Bρ0 ⊂ Tx0M → Bρ0(x0) is a diffeomorphism for all x0 ∈ M (such

ρ0 exists, sinceM is compact). There is a number δ ∈ (0, 1) such that: if Σ ⊂ M is a

closed embedded surface and

|Σ ∩ Bρ0(x0)| ≤ δ2ρ20 for all x0 ∈M,

then there is a unique compactKΣ ⊂M with ∂KΣ = Σ and

vol(KΣ ∩ Bρ0(x0)) ≤ δ2ρ30, x0 ∈M.

Suppose A (M, g) = 0. Then, we can find surfaces Σ ∈ F with arbitrarily small area.
Therefore, we can find a surface Σ ∈ F such that |Σ ∩ Bρ0(x0)| ≤ δ2ρ20 for all x0 ∈ M .
In particular, the lemma above guarantees the existence of a compact regionKΣ with
∂KΣ = Σ. But then the outward (toKΣ) unit normal vector field is well defined on Σ
and yields a non-vanishing normal vector field in Σ ⊂ M . Thus Σ is two-sided. Since
M is orientable andΣ non-orientable, this is a contradiction.

PROPOSITION 4.23. There exists an embedded stable minimal surface Σ ∈ F with

|Σ| = A (M, g).
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Proof. SinceA (M, g) = inf{|S| : S ∈ F}, wecanfinda sequenceof surfacesΣk ∈ F
such that

|Σk| ≤ A (M, g) +
1

k
.

LetI (Σk)denote thecollectionof all embeddedsurfaces isotopic toΣk. SinceI (Σk) ⊂
F , we have

|Σk| ≤ A (M, g) +
1

k
≤ inf

S∈I (Σk)
|S|+

1

k
.

By (MEEKS; SIMON; S. T. YAU, 1982, Theorem 1, p. 624), a subsequence of Σk con-
vergesweakly to a disjoint union of smooth embeddedminimal surfacesΣ(1), . . . ,Σ(R)

with positive integer multiplicities n1, . . . , nR and

R
∑

j=1

nj|Σ
(j)| ≤ A (M, g). (4.1)

We define surfaces S(1)
k , . . . , S

(R)
k as follows:















S
(j)
k =

mj
⋃

r=1

{x ∈M : d(x,Σ(j)) = r
k
}, if nj = 2mj is even,

S
(j)
k = Σ(j) ∪

mj
⋃

r=1

{x ∈M : d(x,Σ(j)) = r
k
}, if nj = 2mj + 1 is odd.

By (MEEKS; SIMON; S. T. YAU, 1982, Remark3.27, p. 635),wecanfindembeddedclosed
surfaces S(0)

k and Σ̃k with the following properties:

1. the surface Sk =
R
⋃

j=0

S
(j)
k is isotopic to Σ̃k for k sufficiently large;

2. the surface Σ̃k is obtained fromΣqk byγ0-reduction (cf. (MEEKS; SIMON; S. T. YAU, 1982,
Section 3) for precise definition);

3. S(0)
k ∩

(

R
⋃

j=1

S
(j)
k

)

= ∅ and lim
k→∞

|S(0)
k | = 0;

4. g(Σ̃k) ≤ g(Σqk) = h̃ (this is apropertyofγ0-reduction, (MEEKS; SIMON; S. T. YAU, 1982,
Inequality (3.2), p. 629)).

In particular, we have thatΣqk\Σ̃k has closureA diffeomorphic to the standard closed
annulus {x ∈ R2 : 1

2
≤ |x| ≤ 1} (this is one of the conditions in the definition of

Σ̃k to be obtained from Σqk by γ0-reduction). Then, since Σqk is homeomorphic toNh̃

(by assumption), this implies that Σ̃k must contain all the cross-caps in Σqk , i.e. one
of the connected components of Σ̃k is a nonorientable embedded surface. Let k be
sufficiently large such that (i) holds. Thus, for this k, one of the components of Sk, say
Ek, is a nonorientable surface. From (iv), we have g(Ek) ≤ h̃ and since h̃ is minimal,
Ek must be homeomorphic toNh̃. SinceEk ∈ F , we have |Ek| ≥ A (M, g) > 0. Then,

by (iii), we can choose k even larger so that |S(0)
k | < A (M, g), and hence |S(0)

k | < |Ek|.

Therefore, Ek is not contained in S
(0)
k . Since Ek is connected component of Sk and

S
(0)
k ∩

(

R
⋃

j=1

S
(j)
k

)

= ∅, this implies thatEk is a connected component of S(i)
k , for some
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integer i ∈ {1, . . . , R}. Then, by the definition of S(i)
k , we have two possibilities forEk:

either Ek is homeomorphic to Σ(i) or Ek is an orientable double cover of Σ(i). But Ek

is nonorientable. Hence,Ek is homeomorphic toΣ(i) andΣ(i) ∈ F . Thus,A (M, g) ≤
|Σ(i)|. But from (4.1), we have

|Σ(i)| ≤ A (M, g).

Hence,Σ(i) is the desired minimizer.

In the next result, we adopt the following notation. IfM does not admit nonorientable

surfaces then h̃ denotes the Heegaard genus ofM . Otherwise, h̃ is the lowest possible

genus of all nonorientable embedded closed surfaces inM , as above.

COROLLARY 4.24. Let (M, g) be a compact orientable three-manifold. There exists an

embedded minimal surfaceΣ ⊂M with ind(Σ) ≤ 1 and g(Σ) ≤ h̃.

Proof. IfM admits nonorientable embedded closed surfaces, then the result follows
from Proposition 4.23. Thus we can suppose thatM does not admit such surfaces. If
M has a stable minimal surface of genus less than or equal to h then the result follows
immediately. The remaining case is whenM satisfies the (⋆)h-condition and the result
follows from Theorem 4.14.

COROLLARY 4.25. For any riemannianmetric on S3, there exists an embeddedminimal

sphereΣ in S3 of index at most one.

Proof. Alexander’s Duality implies thatRn does not contain embedded closed nonori-
entable surfaces (cf. (HATCHER, 2002, p. 256)). Since S3 ⊂ R4 is embedded, this im-
plies that S3 does not contain embedded closed nonorientable surfaces. Also, one eas-
ily verifies that the sphere

S = {(x1, x2, x3, x4) ∈ S3 : x4 = 0}

is a Heegaard splitting of S3. Therefore, the Heegaard genus of S3 must be zero and the
result follows from the previous corollary.
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5 RICCI FLOW AND RIGIDITY RESULTS

5.1 RICCI FLOW

Let (M, g) be a compact riemannian three-manifold and denote by Ric(g) the Ricci

tensor ofM with respect to the metric g, i.e. Ric(g) is the 2-tensor defined by

Ric(g)(u, v) = tr(z 7→ Rg(z, v)u),

whereRg is the curvature tensor of (M, g)

Rg(X, Y )Z = ∇g
X∇

g
YZ −∇g

Y∇
g
XZ −∇g

[X,Y ]Z,

and∇g is the Levi-Civita connection with respect to g. If g(t), t ∈ [0, T ), is a smooth

curve in the space of riemannian metrics onM , then ∂
∂t
g(t) and Ric(g) are 2-tensors

onM and we can ask g(t) to satisfy

∂

∂t
g(t) = −2Ric(g), g(0) = g

This is the Ricci flow equation. The Ricci flow was first introduced by Hamilton in his

paper (HAMILTON, 1982) and it has been useful in solving many important problems

in geometry, as for example the Poincaré conjecture solution by Grigori Perelman.

If g(t) is a solution to the Ricci flow equation, then the manifold (M, g(t)) becomes

“rounder” and “rounder” as t increases.

Figure 14 – Ricci flow on a 2D-sphere.

Now, we introduce some basic results on the Ricci flow (see e.g. (SHERIDAN, 2006)).

THEOREM 5.1. (SHERIDAN, 2006, Theorem 5.4, p. 45) Given a smooth Riemannian

metric g on a closed manifoldM , there exists a maximal time interval [0, T ) such that
a solution g(t) of the Ricci flow, with g(0) = g, exists and is smooth on [0, T ), and this
solution is unique.

PROPOSITION 5.2. Positive Ricci curvature is preserved under the Ricci flow. More pre-

cisely, if (M, g) has positive Ricci curvature and g(t) is a solution to the Ricci flow equa-

tion with g(0) = g, then (M, g(t)) has positive Ricci curvature, for all t ∈ [0, T ).
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Recall the definition of scalar curvature at a point p ∈M :

R(p) = trRic =
3
∑

i=1

Ric(ei, ei),

if {e1, e2, e3} is an orthonormal basis for TpM .

LEMMA 5.3. (SHERIDAN, 2006, Lemma 6.2, p. 48) Suppose that g(t) is a solution of the
Ricci flow. Then, ifR(t) denotes the scalar curvature of (M, g(t)), we have the following
evolution equation:

∂

∂t
R = ∆R + 2|Ric |2,

where |Ric |2 =
∑3

i=1 Ric(ei, ei)
2 if {e1, e2, e3} is an orthonormal basis in TM .

REMARK 5.4. From Lemma 5.3, a direct but rather long computation shows that

∂

∂t
R = ∆R +

2

3
R2 + 2|

◦

Ric|2,

where |
◦

Ric|2 =
∑3

i=1(Ric(ei, ei)−
1
3
R)2, for an orthonormal basis {e1, e2, e3}.

THEOREM 5.5 (SCALAR MAXIMUM PRINCIPLE). (SHERIDAN, 2006, Theorem 3.2, p. 32)

Let (M, g(t)) be a closedmanifoldwith a time-dependent Riemannianmetric g(t). Sup-
pose that u :M × [0, T ) → R satisfies

∂u

∂t
≤ ∆g(t)u+ g(t)

(

X(t), gradg(t) u
)

+ F (u)

u(x, 0) ≤ C, for all x ∈M,

for some constant C, whereX(t) is a time-dependent vector field onM and F : R → R

is locally Lipschitz function. Suppose that φ : R → R is the solution of the associated

ode, which is formed by neglecting the Laplacian and gradient terms:

dφ

dt
= F (φ), φ(0) = C.

Then u(x, t) ≤ φ(t) for all x ∈M and t ∈ [0, T ) such that φ(t) exists.

5.2 RIGIDITY

The goal of this section (and of this work) is to prove the following rigidity result:

THEOREM 5.18. Suppose thatM has positive Ricci curvature and R ≥ 6. Then there
exists an embedded minimal surfaceΣ, with ind(Σ) ≤ 1, such that

|Σ| ≤ 4π.

Moreover,

inf
Σ∈J

|Σ| = 4π

if and only if g has constant sectional curvature one andM = S3.
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Here J is the collection of all embedded minimal surfaces Σ ⊂ M with ind(Σ) ≤

1. From this theorem we also prove some other interesting rigidity results, which we

introduce later on.

We begin by showing that the function t 7→ W (M,Λ, g(t)) is continuous, where g(t) is

the Ricci flow solution for (M, g).

LEMMA5.6. Let (M, g) be a compact riemannian three-manifold andΛ bet a saturated

set of sweepouts ofM . If g(t), t ∈ [0, T ), is the solution of the Ricci flow with g(0) = g,
then the function f : [0, t0] → R defined by f(t) = W (M,Λ, g(t)) is Lipschitz continu-
ous for any t0 ∈ [0, T ).

Proof. LetU (M) denote the g-unit bundle onM , i.e. the bundle of baseM and fiber
at p ∈ M given by Bp = {v ∈ TpM : g(v, v) = 1}. U(M) is compact and has the
property that any v ∈ TM is written as v = λu, for some u ∈ U (M) and λ ∈ R. Let
t0 ∈ [0, T ) and consider the function

ξ : U (M)× [0, t0] −→ R

(u, t) 7−→ −2Ric(g(t))(u,u)
g(t)(u,u)

.

Since ξ is continuous andU(M)× [0, t0] is compact, there is some C > 0 such that

|ξ(u, t)| ≤ C, ∀(u, t) ∈ U (M)× [0, t0].

For any fixed u ∈ U (M), the function t ∈ [0, t0] 7→ ln g(t)(u, u) is smooth, and
∣

∣

∣

∣

d

dt
ln g(t)(u, u)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

g(t)(u, u)

∂

∂t
g(t)(u, u)

∣

∣

∣

∣

= |ξ(u, t)| ≤ C.

Then it follows from the Mean Value Theorem that, for any t1, t2 ∈ [0, t0],

− C|t2 − t1| ≤ ln g(t2)(u, u)− ln g(t1)(u, u) ≤ C|t2 − t1|

⇒e−C|t2−t1|g(t1)(u, u) ≤ g(t2)(u, u) ≤ eC|t2−t1|g(t2)(u, u).

Notice that this implies

e−C|t2−t1|g(t1)(v, v) ≤ g(t2)(v, v) ≤ eC|t2−t1|g(t2)(v, v),

for any t1, t2 ∈ [0, t0] and v ∈ TM . In this case, we write simply

e−C|t2−t1|g(t1) ≤ g(t2) ≤ eC|t2−t1|g(t2), for all t1, t2 ∈ [0, t0].

Given δ > 0, let {Σs}s∈[−1,1] ∈ Λ be a sweepout such that

sup
s∈[−1,1]

H2
g(t1)

(Σs) ≤ W (M,Λ, g(t1)) + δ.

It is simple to prove that, if g1 and g2 are riemannianmetrics onM such that g1 ≤ kg2,
for some k > 0, thenH2

g1
≤ kH2

g2
. Then, g(t2) ≤ eC|t2−t1|g(t1) implies

W (M,Λ, g(t2)) ≤ sup
s∈[−1,1]

H2
g(t2)

(Σs) ≤ eC|t2−t1| sup
s∈[−1,1]

H2
g(t1)

(Σs)
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≤ eC|t2−t1|(W (M,Λ, g(t1)) + δ).

In the same way, we prove that

e−C|t2−t1|W (M,Λ, g(t1)) ≤ W (M,Λ, g(t2)) + δ.

Letting δ → 0, we obtain

e−C|t2−t1|W (M,Λ, g(t1)) ≤ W (M,Λ, g(t2)) ≤ eC|t2−t1|W (M,Λ, g(t1)).

Thus,
|lnW (M,Λ, g(t2))− lnW (M,Λ, g(t1))| ≤ C|t2 − t1|.

This shows that t 7−→ lnW (M,Λ, g(t)) is Lipschitz on [0, t0]. Since the exponential
function is Lipschitz on bounded intervals and composition of Lipschitz functions is
Lipschitz, we have that

t 7−→ W (M,Λ, g(t)) = e ◦ lnW (M,Λ, g(t0))

is Lipschitz on [0, t0].

PROPOSITION 5.7. Let h be the Heegaard genus of M and (M, g(t)) be the Ricci flow
with g(0) = g. Assume that (M, g(t)) satisfies the (⋆)h-condition for all 0 ≤ t < T ′, for

some T ′ ≤ T . Then

W (M,Λh, g(t)) ≥ W (M,Λh, g)−

(

16π − 8π

[

h

2

])

t

for all 0 ≤ t < T ′.

Proof. Suppose the assertion is false. Then there exists τ ∈ (0, T ′) such that

W (M,Λh, g(τ)) < W (M,Λh, g)−

(

16π − 8π

[

h

2

])

τ.

Let ǫ > 0 be such that

W (M,Λh, g(τ)) < W (M,Λh, g)−

(

16π − 8π

[

h

2

])

τ − 2ǫτ

and define

A =

{

t ∈ [0, T ′) : W (M,Λh, g(t)) < W (M,Λh, g)−

(

16π − 8π

[

h

2

]

+ ǫ

)

t− ǫτ

}

.

Of course, τ ∈ A and henceA 6= ∅ (notice that 0 /∈ A). Denote

t0 = inf A.

We claim that t0 ∈ (0, τ). Indeed, if t0 = 0, then there is a sequence tn → 0with tn ∈ A
and hence

W (M,Λh, g(tn)) < W (M,Λh, g)−

(

16π − 8π

[

h

2

]

+ ǫ

)

tn − ǫτ
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for all n ∈ N. Since t 7−→ W (M,Λh, g(t)) is continuous (previous lemma), letting
n→ ∞we get

W (M,Λh, g) ≤ W (M,Λh, g)− ǫτ =⇒ 0 ≤ −ǫτ,

a contradiction. Thus t0 > 0. Since τ ∈ A, of course t0 ≤ τ . Since

f(t) := W (M,Λh, g(t)) +

(

16π − 8π

[

h

2

]

+ ǫ

)

t

is continuous and f(τ) < W (M,Λh, g)− ǫτ , we have that f(t) < W (M,Λh, g)− ǫτ for
every t in some open interval (τ − δ, τ + δ), δ > 0. Then τ − δ

2
∈ A and hence t0 < τ .

Therefore t0 ∈ (0, τ).

Arguing with sequences and continuity as we did above, we get

W (M,Λh, g(t0)) ≤ W (M,Λh, g)−

(

16π − 8π

[

h

2

]

+ ǫ

)

t0 − ǫτ.

For all t ∈ [0, t0)we have t /∈ A, then

W (M,Λh, g(t)) ≥ W (M,Λh, g)−

(

16π − 8π

[

h

2

]

+ ǫ

)

t− ǫτ, ∀t ∈ [0, t0)

=⇒ −W (M,Λh, g(t)) ≤ −W (M,Λh, g)−

(

16π − 8π

[

h

2

]

+ ǫ

)

(−t) + ǫτ, ∀t ∈ [0, t0).

Summing up these two inequalities, we have

W (M,Λh, g(t0))−W (M,Λh, g(t)) ≤ −

(

16π − 8π

[

h

2

]

+ ǫ

)

(t0 − t), (5.1)

for all t ∈ [0, t0). Since (M, g(t0)) satisfies the (⋆)h-condition, let {Σs}s∈[−1,1] be the
sweepout inM given by Theorem 4.14 (in particular, Σ0 = W (M,Λh, g(t0)) and Σ0 is
minimal). Set f(s, t) = |Σs|g(t). A standard computation shows that

∂f

∂t
(0, t0) =

d

dt

∣

∣

∣

∣

t0

|Σ0|g(t) = −

∫

Σ0

R− Ric(ν, ν) dΣ0,

where the geometric quantities are computed with respect to g(t0). Then by Lemma
C.1 and the Gauß–Bonnet Theorem,

∂f

∂t
(0, t0) = −

∫

Σ0

Ric(ν, ν) + |A|2 + 2K dΣ0 = −4πχ(Σ0)−

∫

Σ0

Ric(ν, ν) + |A|2 dΣ0

= −8π(1− h)−

∫

Σ0

Ric(ν, ν) + |A|2 dΣ0.

Furthermore, Σ0 is orientable and has index one, so we can apply Proposition C.2 to
get

∂f

∂t
(0, t0) ≥ 8π(h− 1)− 8π

([

h+ 1

2

]

+ 1

)

= −16π + 8π

[

h

2

]

.
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Since f is smooth in a neighborhood of (0, t0), we have

f(s, t) ≤ f(s, t0)−

(

16π − 8π

[

h

2

]

+
ǫ

2

)

(t− t0)

≤ W (M,Λh, g(t0))−

(

16π − 8π

[

h

2

]

+
ǫ

2

)

(t− t0),

for all (s, t) close to (0, t0) with t ≤ t0. Since s 7−→ f(s, t0) has a unique maximum at
s = 0, by continuity we have that, for all t sufficiently close to t0,

sup
s∈[−1,1]

f(s, t) ≤ W (M,Λh, g(t0))−

(

16π − 8π

[

h

2

]

+
ǫ

2

)

(t− t0).

Since {Σs}s∈[−1,1] ∈ Λh, by the definition of width and of f , we have

W (M,Λh, g(t)) ≤ W (M,Λh, g(t0))−

(

16π − 8π

[

h

2

]

+
ǫ

2

)

(t− t0) (5.2)

for such t’s. Summing up inequalities (5.1) and (5.2), we get

0 ≤ −
ǫ

2
(t0 − t),

for all t ≤ t0 with t sufficiently close to t0, a contradiction.

COROLLARY 5.8. Suppose that (M, g) has positive Ricci curvature and that it contains
no nonorientable embedded surface. Let h be the Heegaard genus ofM . Then

W (M,Λh, g(t)) ≥ W (M,Λh, g)−

(

16π − 8π

[

h

2

])

t

for all 0 ≤ t < T .

Proof. Recall that if (M, g)haspositiveRicci curvature then it containsno stable closed
embeddedminimal surface (Corollary 1.22). Also, positive Ricci curvature is preserved
by the Ricci flow. Therefore, (M, g(t)) satisfies the (⋆)h-condition for all 0 ≤ t < T . The
result follows from Proposition 5.7.

THEOREM5.9. Suppose that (M, g) has positive Ricci curvature and that it contains no
nonorientable embedded surface. Let h be the Heegaard genus ofM . IfR ≥ 6, then

W (M,Λh, g) ≤ 4π − 2π

[

h

2

]

≤ 4π.

Moreover,W (M,Λh, g) = 4π if and only if g has constant sectional curvature one and
M = S3.

REMARK5.10. If (M, g)has positive Ricci curvature, it follows from (HAMILTON, 1982)

thatM is diffeomorphic to a spherical space form,whichare Seifert-fibered over a base of

genus of zero with at most three exceptional fibers. It follows from (SCHULTENS, 1996)

that these spaces have Heegaard genus at most 2. Therefore, 0 ≤
[

h
2

]

≤ 1 in the theorem
above.



5.2. RIGIDITY 85

Proof. Let (g(t))0≤t<T denote the maximal solution of the Ricci flow with g(0) = g. It
follows from Corollary 5.8 that

W (M,Λh, g(t)) ≥ W (M,Λh, g)−

(

16π − 8π

[

h

2

])

t. (5.3)

CLAIM 5.11. lim
t→T

W (M,Λh, g(t)) = 0.

Since (M, g(t)) satisfies the (⋆)h-condition for every 0 ≤ t < T . Then, for each 0 ≤ t <
T , let {Σt

s}s∈[−1,1] be the sweepout ofM given by Theorem 4.14. By Proposition C.2, we
have

0 ≤ min
M

R(g(t))W (M,Λh, g(t)) = min
M

R(g(t))|Σt
0| ≤ 24π + 16π

(

h

2
−

[

h

2

])

.

Now, from (HAMILTON, 1982, Theorem 15.1) we have

lim
t→T

min
M

R(g(t)) = +∞,

and thus since 0 ≤ min
M

R(g(t))W (M,Λh, g(t)) is bounded above, we need to have

lim
t→T

W (M,Λh, g(t)) = 0.

Combining Claim 5.11 and inequality 5.3, we get

W (M,Λh, g) ≤

(

16π − 8π

[

h

2

])

T. (5.4)

From Lemma 5.3, we have the evolution equation for the scalar curvature:

∂R

∂t
= ∆R +

2

3
R2 + 2|

◦

Ric|2.

Therefore,
∂R

∂t
≥ ∆R +

2

3
R2.

Now we apply the Scalar Maximum Principle (Theorem 5.5) with u = −R,X(t) ≡ 0,
F (u) = −2

3
u2 and C = k1 := −min

M
R(g(t1)). The associated ode is

dφ

dt
= −

2

3
φ2, φ(t1) = −k1,

which has solution

φ(t) =
−3k1

3− 2k1(t− t1)
, for all t1 ≤ t < T.

The principle then gives

min
M

R(g(t)) ≥
3k1

3− 2k1(t− t1)
, for all t1 ≤ t < T. (5.5)
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Choosing t1 = 0 and k1 = 6, we obtain

min
M

R(g(t)) ≥
6

1− 4t
(5.6)

and hence T ≤ 1
4
and it follows from (5.4) that

W (M,Λh, g) ≤ 4π − 2π

[

h

2

]

.

IfW (M,Λh, g) = 4π, then we must have T = 1
4
and h ∈ {0, 1}. First, we show that

g must be Einstein, i.e. Ric(X, Y ) = λg(X, Y ), for some constant λ ∈ R. SinceM is
three-dimensional, this implies thatM has constant sectional curvature (see (CARMO, 1988,
Ex. 10, p. 120)). Since, in (5.5), we must have 3− 2k1(t− t1) 6= 0 for all t1 ≤ t < 1

4
and

for t = t1 this quantity is positive (equal to 3), we have that 3− 2k1(t− t1) > 0, for all
t1 ≤ t < 1

4
. Letting t→ 1

4
, we get

3− 2k1

(

1

4
− t1

)

≥ 0 =⇒ min
M

R(g(t1)) ≤
6

1− 4t1
,

for all 0 ≤ t1 <
1
4
(recall k1 = min

M
R(g(t1)) by definition). Together with (5.6), this

implies

min
M

R(g(t)) =
6

1− 4t
,

and the maximum principle implies that gmust be Einstein.

CLAIM 5.12. h = 0.

Suppose h = 1. Then it follows from Theorem 4.14 thatM contains a minimal em-
bedded torus T which realizes thewidth and any other embeddedminimal torusmust
have area bigger than |T | = 4π. It is a classical fact thatmanifoldswithHeegaard genus
one are either Lens spaces L(p, q) or S2 × S1 (see (STILLWELL, 2012, Section 8.3.4) or
(SAVELIEV, 1999, Theorem 1.6)). ThusM contains a flat torus of area 2π2/p < π (pro-
jection of Clifford torus), which is a contradiction. This proves that h = 0.

CLAIM 5.13. M = S3.

By Theorem 4.14,M contains an embedded minimal sphere S. Now, we use the fol-
lowing theorem

THEOREM 5.14. (FRANKEL, 1966, p. 69) LetMn+1 be complete, connected, and have

positive Ricci curvature. Let Σn be a compact immersed minimal hypersurface. Then

the natural homomorphism of fundamental groups: π1(Σn) → π1(Mn+1) is surjective.

Since π1(S) = 0, by the theorem above we conclude that π1(M) = 0, i.eM is simply
connected. Then it follows from Poincaré conjecture thatM = S3.

IfM contains nonorientable embedded surfaces, we consider the invariant A (M, g)

as defined in Section 4.2.

LEMMA 5.15. If g(t), t ∈ [0, T ), is the solution of the Ricci flow with g(0) = g, then the
function f : [0, t0] → R defined by f(t) = A (M, g(t)) is Lipschitz continuous for any
t0 ∈ [0, T ).
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Proof. Analogous to Lemma 5.6.

PROPOSITION 5.16. For all 0 ≤ t < T we have

A (M, g(t)) ≥ A (M, g)− 8πt.

Proof. By Proposition 4.23, there exists an embedded stable minimal surface Σ ∈ F
such that |Σ|g(t0) = A (M, g(t0)). A straightforward computation shows that

d

dt

∣

∣

∣

∣

t0

|Σ|g(t) = −

∫

Σ

R− Ric(ν, ν) dΣ.

Then using Lemma C.1 and Proposition C.2 (ii), we have

d

dt

∣

∣

∣

∣

t0

|Σ|g(t) = −2

∫

Σ

K dΣ−

∫

Σ

Ric(ν, ν) + |A|2 dΣ = −

∫

Σ̃

K dΣ̃−

∫

Σ

Ric(ν, ν) + |A|2 dΣ

≥ −2πg(Σ̃)− 4π(g(Σ̃) + 1) = 4π(g(Σ̃) + 1)− 4π(g(Σ̃)− 1) = −8π.

Using this estimate, we can argue exactly as we did in Proposition 5.7.

THEOREM 5.17. Let (M, g) be of positive Ricci curvature and supposeM contains em-

bedded nonorientable surfaces. IfR ≥ 6, thenA (M, g) ≤ 2π.

Proof. Let (g(t))0≤t<T denote amaximal solutionof theRicci flowequationwith g(0) =
g. From Proposition 5.16, we have

A (M, g(t)) ≥ A (M, g)− 8πt.

Reasoning like in Theorem 5.9, we have

lim
t→T

A (M, g(t)) = 0.

Therefore A (M, g) ≤ 8πT . But we know from the proof of Theorem 5.9 that T ≤ 1
4
.

HenceA (M, g) ≤ 2π.

Let J be the collection of all embedded minimal surfaces Σ ⊂ M with ind(Σ) ≤ 1.

Now we prove the main theorems of this work.

THEOREM 5.18. Suppose thatM has positive Ricci curvature and R ≥ 6. Then there
exists an embedded minimal surfaceΣ, with ind(Σ) ≤ 1, such that

|Σ| ≤ 4π.

Moreover,

inf
Σ∈J

|Σ| = 4π

if and only if g has constant sectional curvature one andM = S3.
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Proof. SupposeM has embedded nonorientable surfaces. It follows from Proposition
4.23 that there exists an embedded minimal surface Σ ∈ F with ind(Σ) = 0 and
|Σ| = A (M, g). Then, it follows from Theorem 5.17 that |Σ| ≤ 2π < 4π.

Suppose now that M does not contain nonorientable embedded surfaces. Let h be
the Heegaard genus ofM . Then (M, g) satisfies the (⋆)h-condition. By Theorem 4.14,
there is an embedded minimal surface Σ′ ⊂ M with ind(Σ′) = 1 and such that |Σ′| =
W (M,Λh, g). Theorem 5.9 implies |Σ′| ≤ 4π.

If inf
Σ∈J

|Σ| = 4π, then it follows from the previous arguments thatM does not contain

nonorientable embedded surfaces andW (M,Λh, g) = 4π. Hence, by Theorem 5.9, g
has constant sectional curvature one andM = S3.

Now, we consider the case in whichM is diffeomorphic to the three-sphere S3, whose

Heegaard genus is zero. We take Λ0 to be the smallest saturated set that contains the

family {Σt} of level sets given by the height function x4 : S3 ⊂ R4 → R. We define the

width of (S3, g) to be

W (S3, g) = W (S3,Λ0, g).

THEOREM 5.19. Assume that (S3, g) has no stable embedded minimal spheres. If R ≥
6, there exists an embedded minimal sphereΣ, of index one, such that

W (S3, g) = |Σ| = inf
S∈E0

|S| ≤ 4π.

Moreover,W (S3, g) = 4π if and only if g has constant sectional curvature one.

Proof. (S3, g) satisfies the (⋆)0-conditionbecause the three-sphere containsnononori-
entable embedded surface. By Theorem 4.14, there is an embeddedminimal sphereΣ
with ind(Σ) = 1 and |Σ| = inf

S∈E0

|S| = W (S3, g). From Proposition C.2 (i), we have

6|Σ| ≤ 24π + 16π

(

g(Σ)

2
−

[

g(Σ)

2

])

= 24π =⇒ |Σ| ≤ 4π.

Suppose |Σ| = 4π. As in Theorem 5.9, we show that g is Einstein. Let g(t), t ∈ [0, ǫ) be a
solution of Ricci flow with g(0) = g. The maximum principle applied to the evolution
equation of the scalar curvature gives us

min
M

R(g(t)) ≥
6

1− 4t
> 0, for 0 ≤ t <

1

4
.

It follows fromPropositionC.2 (iii) that anyembeddedstableminimal surface in (S3, g(t))
would have to be a sphere. We are assuming that (S3, g(0)) has no stable embedded
minimal spheres. Hence, (S3, g(0)) does not contain stable embedded minimal sur-
faces.

CLAIM 5.20. (S3, g(t)) has no stable embeddedminimal surfaces, for all t ∈ [0, ǫ), pro-
vided ǫ > 0 is small enough.
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Suppose the claim is false. Then, for all n ∈ N, with n > 4, there is a stable embedded
minimal sphereΣn ⊂ (S3, g(1/n))with area

|Σn| ≤
8π

min
M

R(g(1/n))
=

4π

3

(

1−
4

n

)

<
4π

3
.

Now we use (without proof) the following result:

PROPOSITION5.21. Suppose that (M, g) is a compact riemannian3-manifold that con-

tains no stable embedded minimal surfaces. Given a constant C > 0, there exists a C3,α

neighborhoodU of g so that everymetric g′ inU contains no stable minimal surface of

area smaller than C.

Take C = 4π
3
and let U be the neighborhood given above. For n sufficiently large,

g(1/n) is inU , since g(t) is continuous. But thenΣn is a stableminimal surface of area
smaller than C, which is a contradiction. This proves the claim.

Therefore (S3, g(t)) satisfies the (⋆)0-condition for all t ∈ [0, ǫ) and we are in the hy-
pothesis of Proposition 5.7. Thus

W (S3, g(t)) ≥ W (S3, g)−

(

16π − 8π

[

0

2

])

t = 4π − 16πt = 4π(1− 4t).

We know from Theorem 4.14 that W (S3, g(t)) is the area of an index one embedded
minimal sphere in (S3, g(t)), sayΣt. Again, by Proposition C.2 (i), we have

min
M

R(g(t))4π(1− 4t) ≤ min
M

R(g(t))W (S3, g(t)) = min
M

R(g(t))|Σt| ≤ 24π

=⇒ min
M

R(g(t)) ≤
6

1− 4t
.

Therefore

min
M

R(g(t)) =
6

1− 4t

and the maximum principle tell us that g is Einstein. Since the dimension is three, g
has constant sectional curvature.

We finalize thismonographwith onemore rigidity result, which is just a corollary from

the previous ones.

THEOREM 5.22. Let g be a metric on S3 with scalar curvatureR ≥ 6. If g does not have
constant sectional curvature one, then there exists an embedded minimal sphere Σ, of
index zero or one, with |Σ| < 4π.

Proof. If (S3, g) contains a stable embeddedminimal sphereΣ, then |Σ| ≤ 4π
3
byPropo-

sition C.2 (iii). If not,W (S3, g) < 4π and the result follows from Theorem 4.14.
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Let Σ ⊂ M be a compact embedded, connected non-orientable surface. Let NΣ de-

note the normal bundle of Σ and π : NΣ → Σ the projection onto Σ. Since Σ is

compact and embedded, Σ admits a uniform tubular neighborhood, i.e. there is an

open neighborhood U of Σ and ǫ > 0 such that the map Φ : Ũ → U given by Φ(v) =

expπ(v)(v) is well defined and it is a diffeomorphism from Ũ = {v ∈ NΣ : |v| < ǫ}

onto U . We have that Σ̃ := {v ∈ NΣ : |v| = ǫ/2} is a submanifold of Ũ ⊂ NΣ

(pre-image of a regular value). Consider

V =

{

v ∈ NΣ :
ǫ

4
< |v| <

3ǫ

4

}

⊂ U.

V is an open neighborhood of Σ̃ in NΣ. Then define Ψ : V → Ũ by Ψ(v) = (4|v| −

2ǫ) v
|v|
. One verifies that Ψ is well defined, surjective and a local diffeomorphism. Fi-

nally, we define Π : V → U by Π = Φ ◦ Ψ. Note that Π(Σ̃) = Σ. Since Π is a local

diffeomorphism, we can transformΠ into a local isometry, by defining themetric g̃ on

V to be

g̃(u, v) = g(Π∗u,Π∗v), u, v ∈ TV.

PROPOSITION A.1. Σ̃ is connected.

Proof. We claim that if v1, v2 ∈ Σ̃, then v1 is either in the component of v2 or in the
component of−v2. Denote pi = π(vi). sinceΣ is connected, there is a path γ : [0, 1] →
Σ contained in Σ joining p1 to p2. By taking a coordinated neighborhood U1 of p1, we
are able to construct a normal section ν1 : U1 → NΣ with ν1(p1) = v1 and |ν1| = ǫ,
i.e. ν1(U1) ⊂ Σ̃. Now we cover γ([0, 1]) we a finite number of connected coordinated
neighborhoods Uj such that Uj ∩ Uk = ∅ if |j − k| ≥ 2 and Uj ∩ Uj+1 is connected.
Consider normal sections νj : Uj → Σ̃. Since Uj ∩ Uj+1 is connected and NpΣ is 1-
dimensional, we have νj = νj+1 or νj = −νj+1 all overUj ∩Uj+1. Then, changing νj for
−νj if necessary, we obtain a normal section ν :

⋃

j Uj → Σ̃ such that ν(p1) = v1. Now

ν ◦ γ : [0, 1] → Σ̃ is a path joining v1 to ν(γ(1)) = ν(p2). But ν(p2) ∈ (Np2Σ) ∩ Σ̃ =
{v2,−v2}. Thus, ν ◦γ is a path joining v1 to v2 or−v2. This proves the claim. Therefore,
in particular, Σ̃ has at most two components. Suppose by contradiction that Σ̃ has
two components, Σ̃1 and Σ̃2. Take v ∈ Σ̃1 ∩ NpΣ. We claim that we can extend v to a
global normal section ν : Σ → Σ̃1 ⊂ NΣ contradicting the fact that Σ is one-sided.
Indeed, if q ∈ Σ, by taking a path γ joining p and q we can uniquely extend v along
γ just as we did before. Then v and ν(γ(1)) are in the same component Σ̃1. Choose
another path γ̃ joining p and q. Then necessarily ν̃(γ̃(1)) = ν(γ(1)), otherwise ν(γ(1))
and −ν(γ(1)) are in the same component Σ̃1. This cannot happen, because we just
proved that any w ∈ Σ̃ is in the same component of ν(γ(1)) or −ν(γ(1)) and if these
components are the same, Σ̃must be connected. This shows that ν(q) can be defined
without dependence of the underlying path γ. Since Σ is connected, this defines the
global normal section ν : Σ → NΣ desired.
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COROLLARY A.2. V is connected.

Proof. This follows since any v ∈ V ⊂ NΣ can be connected to Σ̃ by a path along the
fiber of v and, by the previous proposition, Σ̃ is connected.

PROPOSITION A.3. Σ̃ is orientable.

Proof. We show that the image Φ(Σ̃) in M is orientable and since Φ is a diffeomor-
phism the result follows. To show this, we construct a nowhere vanishing normal vec-
tor fieldonΦ(Σ̃) and since the ambientM is orientablewearedone. For each p ∈ Φ(Σ̃)
we haveΦ−1(p) ∈ Σ̃ ⊂ NΣ. Define

X(p) =
d

dt

∣

∣

∣

∣

0

expΠ(p)((1 + t)Φ−1(p)) = dΦΦ−1(p) · Φ
−1(p) ∈ TpM.

Now, consider anyvector tangent toΦ(Σ̃)givenbya smoothpathα : I → Φ(Σ̃),α(0) =
p. Thenα(s) = expΠ(α(s))(Φ

−1(α(s))). Ifwedenoteαt(s) = expΠ(α(s))((1+t)Φ
−1(α(s)))

then α0(s) = α(s) and α−1(s) = Π(α(s)) is a path onΣ. Define the following function
of t:

f(t) = g

(

d

dt
expΠ(p)((1 + t)Φ−1(p)),

d

ds

∣

∣

∣

∣

0

αt(s)

)

.

Note that f is well defined since both vectors are based on expΠ(p)((1+t)Φ
−1(p)). Now,

we look at the derivative of f (using Gauß’s lemma in the last equations):

f ′(t) = g

(

D

dt

d

dt
expΠ(p)((1 + t)Φ−1(p)),

d

ds

∣

∣

∣

∣

0

αt(s)

)

+ g

(

d

dt
expΠ(p)((1 + t)Φ−1(p)),

D

dt

d

ds

∣

∣

∣

∣

0

αt(s)

)

= g

(

d

dt
expΠ(p)((1 + t)Φ−1(p)),

D

ds

∣

∣

∣

∣

0

d

dt
αt(s)

)

= g

(

d

dt
expΠ(p)((1 + t)Φ−1(p)),

D

ds

∣

∣

∣

∣

0

(d expΠ(α(s)))(1+t)Φ−1(α(s)) · Φ
−1(α(s))

)

=
1

2

d

ds

∣

∣

∣

∣

0

g
(

(d expΠ(α(s)))(1+t)Φ−1(α(s)) · Φ
−1(α(s)),

(d expΠ(α(s)))(1+t)Φ−1(α(s)) · Φ
−1(α(s))

)

=
1

2

d

ds

∣

∣

∣

∣

0

g(Φ−1(α(s)),Φ−1(α(s))) =
1

2

d

ds

∣

∣

∣

∣

0

ǫ = 0.

Thus f must be constant. On one hand we have

f(−1) = g

(

d

dt

∣

∣

∣

∣

−1

expΠ(p)((1 + t)Φ−1(p)),
d

ds

∣

∣

∣

∣

0

α−1(s)

)

= g

(

(d expΠ(p))0 · Φ
−1(p),

d

ds

∣

∣

∣

∣

0

α−1(s)

)

= g

(

Φ−1(p),
d

ds

∣

∣

∣

∣

0

α−1(s)

)

= 0,
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sinceΦ−1(p) ∈ NΠ(p)Σ and α′
−1(0) ∈ TΠ(p)Σ. On the other hand,

f(0) = g(X(p), α′(0)).

This proves thatX(p) ∈ Np(ΦΣ̃). Using Gauß’s lemma again, we have

g(X(p), X(p)) = g(Φ−1(p),Φ−1(p)) =
ǫ

2
> 0.

Therefore,X : Φ(Σ̃) → N(ΦΣ̃) is a nowhere vanishing section andΦ(Σ̃) is two-sided,
hence orientable.

PROPOSITION A.4. Π : V → U is an isometric double covering map.

Proof. Sincewe already noticed thatΠ is a local isometry, we just need to show that for
any point p ∈ U , the pre-image Π−1({p}) consists of exact two points. Thus, suppose
v ∈ V is such thatΠ(v) = p. Then

Ψ(v) = Φ−1(p) =⇒ (4|v| − 2ǫ)
v

|v|
= Φ−1(p) =⇒ |4|v| − 2ǫ| = |Φ−1(p)|

=⇒ (4|v| − 2ǫ)2 − |Φ−1(p)|2 = 0

=⇒ (4|v| − 2ǫ+ |Φ−1(p)|)(4|v| − 2ǫ− |Φ−1(p)|) = 0

=⇒ |v| =
2ǫ− |Φ−1(p)|

4
or |v| =

2ǫ+ |Φ−1(p)|

4
.

Note that these equations are specifically at the fiberNπ(Φ−1p)Σwhich is 1-dimensional
and we are searching for solutions in V = {v ∈ NΣ : ǫ

4
< v < 3ǫ

4
}.

If |Φ−1(p)| = 0 (which means p ∈ Σ), then we have the equation |v| = ǫ
2
, which has

exactly two solutions, say v0 and−v0, both of them lying at Σ̃. If |Φ−1(p)| 6= 0, then the

first equationhas twosolutions, v = ± (2ǫ−|Φ−1(p)|)
4

Φ−1(p)
|Φ−1(p)|

, butonlyv = − (2ǫ−|Φ−1(p)|)
4

Φ−1(p)
|Φ−1(p)|

is such thatΨ(v) = Φ−1(p). Similarly, the second equation has two solutions, but only

one of them is admissible, namely v = 2ǫ+|Φ−1(p)|
4

Φ−1(p)
|Φ−1(p)|

.

Note that τ : Σ̃ → Σ̃, τ(v) = −v an isometry of Σ̃ and thus {IdΣ̃, τ} is a discrete

subgroup of Isomt(Σ̃).

The next result shows why it is interesting to consider the orientable double cover Σ̃ in

the case thatΣ is non-orientable.

PROPOSITION A.5. Let Σ ⊂ M be a non-orientable embedded compact surface and

F : (−ǫ, ǫ) × Σ → M be a smooth variation of Σ. Then, if ǫ is small enough, there is a

smooth variation Σ̃t of Σ̃ in V such that |Σ̃t| = 2|Σt| for all t ∈ (−ǫ, ǫ).

Proof. Let Π : V → U be as before and let ǫ be small enough such that Σt ⊂ U for all
t ∈ Iǫ := (−ǫ, ǫ). We are not going to trouble ourselves constructing F̃ : Iǫ × Σ̃ → V .
Instead of doing this, we only introduce the surfaces Σ̃t := Π−1(Σt). Since each Σt

is embedded, we have that Σ̃t is also an embedded surface in V , because Π is a local
diffeomorphism.

SinceΣt is compact, we can takeU = {Ωi}
n
i=1 a finite open cover ofΣt such that each

Ωi is a coordinated neighborhood and there are Ω̃1
i and Ω̃2

i disjoint open subsets of Σ̃t
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such that Π : Ω̃j
i → Ωi is an isometry. Of course Ũ = {Ω̃1

i , Ω̃
2
i }

n
i=1 is a finite open

cover of Σ̃t. Let {ϕi : Σt → [0, 1]}ni=1 be a partition of unity subordinated toU . Define
ϕ̃j
i : Ω̃

j
i → [0, 1] by ϕ̃j

i (p) = ϕi(Π(p)). Since Ω̃1
i and Ω̃

2
i are disjoint for all i, we have that

{ϕ̃j
i} is a partition of unity subordinated to Ũ . Then we have

|Σ̃t| =
n
∑

i=1

∫

Ω̃1
i

ϕ̃1
i dΣ̃t +

n
∑

i=1

∫

Ω̃1
i

ϕ̃2
i dΣ̃t =

n
∑

i=1

∫

Ωi

ϕi dΣt +
n
∑

i=1

∫

Ωi

ϕi dΣt = 2|Σt|.

We summarize the construction of the orientable double cover in the following theo-

rem.

THEOREMA.6. LetM be an orientable 3-riemannianmanifold. IfΣ ⊂M is an embed-

ded compact, connected non-orientable surface, then there is an open neighborhood U
ofΣ, a 3-riemannian manifold V , a surface Σ̃ in V and a mapΠ : V → U such that:

1. Σ̃ is embedded, compact, connected and orientable;

2. Π : V → U is a local isometry and a double covering map withΠ(Σ̃) = Σ;

3. there is an isometry τ : Σ̃ → Σ̃ such thatΣ ≃ Σ̃/{IdΣ̃, τ};

4. if Σt is a smooth variation of Σ inM , then there is smooth variation Σ̃t of Σ̃ in V
such that |Σ̃t| = 2|Σt|.

Figure 15 – The orientable double cover of the Möbius strip

So we can understand the variation of area of Σ by looking to certain variations of Σ̃.

We said before that we only have to study the normal vector fields alongΣwithX = 0

on ∂Σ.

Let Σt be a variation given by F : Iǫ × Σ → M such that X = ∂F
∂t

is normal to Σ

and vanishes on its boundary at t = 0. Denote by F̃ the associated variation of Σ̃ in

V and X̃ = ∂F̃
∂t

the corresponding vector field (which is normal along Σ̃ at t = 0 and

vanishes on its boundary). Since Σ̃ is orientable, we can consider a global unit normal

vector field ν̃ along Σ̃. Then, X̃ = φν̃, for some φ ∈ C∞(Σ̃). Recall we constructed
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Σ̃ in an open subset of NΣ. Let p ∈ Σ and v ∈ Σ̃ such that Π(v) = p. A direct com-

putation shows that X̃(v) = X̃(τ(v)) and ν̃(v) = −ν̃(τ(v)). Hence it follows that

φ(v) = −φ(τ(v)), for all v ∈ Σ̃.

Conversely, if φ ∈ C∞(Σ̃) is such that φ ◦ τ = −φ (and zero on the boundary of Σ̃) and

we define X̃ = φν̃, then dΠvX̃(v) = dΠτ(v)X̃(τ(v)) doesn’t depend on the choice of v

or τ(v). Thus we can define an admissible vector field onΣ given byX(p) = dΠvX̃(v).

Figure 16
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B METRIZABILITY OF THE SPACE OF VARI-

FOLDS

The goal of this appendix is to show that, ifM is compact, then the space Vc
k(M) of k-

dimensional varifolds with mass bounded above by c > 0 is metrizable and compact,

namely, Theorem 2.10. In the first section, we discuss in more details the concept of

convergence notion and the relations between convergence notions and topologies.

This is important because we defined a topology on the space of varifolds using a con-

vergence notion, namely, the weak convergence. In the second section, we prove The-

orem 2.10.

B.1 CONVERGENCE NOTIONS

Now, we briefly present the concept of nets, a generalization of sequences.

DEFINITION B.1. A nonempty setD with a relation≺ is said to be directed if

1. a ≺ a, for all a ∈ D;

2. if a ≺ b and b ≺ c, then a ≺ c;

3. if a, b ∈ D, then there is c = c(a, b) ∈ D such that a ≺ c e b ≺ c.

DEFINITION B.2. A map h : D → D′ between directed sets is said to be cofinal mono-

tone if

1. if a, b ∈ D with a ≺ b, then h(a) ≺′ h(b);

2. for any a′ ∈ D′, there is a ∈ D such that a′ ≺′ h(a).

DEFINITION B.3. LetX be a set. Any map φ : D → X from a directed setD intoX is

called a net in X . We say that a net φ′ : D′ → X is a subnet of φ : D → X if there is

a cofinal monotone map h : D′ → D such that φ′ = φ ◦ h. Given a net φ we denote
φ(λ) = xλ and φ = (xλ)λ∈D.

If (X, τ) is a topological space, then there is a natural convergence notion onX . IfD

is a directed set, then we say a net (xλ)λ∈D converges to x ∈ X and write xλ → x if

∀U ∈ τ, x ∈ U, ∃λ0 ∈ D : λ0 ≺ λ =⇒ xλ ∈ U. (B.1)

We can ask ourselves: does a “convergence notion” on X induce a topology on X? If

so, does thenewconvergencenotion inducedby this topology (as above) coincidewith

the notion originally given? Before answering these questions, we need first to think

about what we would like to be a “convergence notion”. For example, consider the

following convergence notion onR:
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“xλ → x if and only if xλ is irrational for all λ ∈ D”.

With this notion, the constant sequence xn = 0 ∀n ∈ N does not converge to 0, não

converge a 0, and this is not the case with any convergence notion induced by a topol-

ogy. The next proposition will motivate a good definition of convergence notion that

will avoid such pathologies.

PROPOSITION B.4. Let (X, τ) be a topological space. IfD is a directed set, (xλ)λ∈D is a

net inX and x ∈ X is fixed, then the convergence notion of nets defined at (B.1) satisfies:

1. if xλ = x, for each λ ∈ D, then (xλ)λ∈D converges to x;

2. if (xλ)λ∈D converges to x, then every sub-net (xλ)λ∈D converges to x;

3. if every sub-net of (xλ)λ∈D has a sub-net which converges to x, then (xλ)λ∈D con-

verges to x;

4. (diagonal principle) if (xλ)λ∈D converges to x and, for each λ ∈ D, a net (xλγ)γ∈Dλ

converges to xλ, then the net (x
λ
γ)(λ,γ)∈D , withD = {(λ, γ) ∈ D×

⋃

λ∈DDλ : λ ∈
D, γ ∈ Dλ} ordered lexicographically first in λ ∈ D and then in γ ∈ Dλ, admits

a sub-net that converges to x.

x11 x12 . . . x1j → x1
x12 x22 . . . x2j → x2
...

...
. . .

...
...

x1n xn2 . . . xnj → xn
...

...
...



y

x

Figure 17 – The diagonal principle for sequences

Proof. The proofs of (1), (2) and (3) follow essentially the same steps of the analogous
proofs in the case of sequences in metric spaces. Let’s prove the diagonal principle.
Consider the net (xλγ)(λ,γ)∈D as described in (4). Denote by U (x) the collection of all
open sets inX containing x and consider E = {(U, λ, γ) : U ∈ U (x), xλ, x

λ
γ ∈ U}.

Since xλ → x and xλγ → xλ, for everyU ∈ U (x), there are λ and γ such that (U, λ, γ) ∈
E . Thus, E 6= ∅. The relation

(U, λ, γ) ≺ (U ′, λ′, γ′) ⇐⇒

{

U ′ ⊂ U and λ ≺ λ′;
or: U ′ ⊂ U , λ = λ′ and γ ≺ γ′.

turns E into a directed set. In fact, it is clear that ≺ is reflexive and transitive in E . If
(U, λ, γ), (U ′, λ′, γ′) ∈ E , then let λ1 ∈ D be such that λ1 ≺ λ̃ =⇒ xλ̃ ∈ U ∩ U ′.
Since D is directed, there exists a λ̃ ∈ D such that λ, λ′, λ1 ≺ λ̃. There exists also
γ̃ ∈ Dλ̃ with x

λ̃
γ̃ ∈ U ∩ U ′. Thus, (U ∩ U ′, λ̃, γ̃) ∈ E and (U, λ, γ) ≺ (U ∩ U ′, λ̃, γ̃),

(U ′, λ′, γ′) ≺ (U ∩ U ′, λ̃, γ̃) because U ∩ U ′ ⊂ U, U ′ and λ, λ′ ≺ λ̃.

Consider the map

h : E → D
(U, λ, γ) 7→ (λ, γ)

.
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We claim h is cofinal monotone and the sub-net (xh(δ))δ∈E converges to x. The fact of
h to be monotone follows immediately from the definition of ≺ in E . Let (λ, γ) ∈ D .
We have that (X, λ, γ) is trivially in E , hence there is a δ = (X, λ, γ) ∈ E such that
(λ, γ) ≺ h(δ) (indeed, (λ, γ) = h(δ), thus h is more than cofinal, it is surjective). This
proves that (xh(δ))δ∈E is indeed a sub-net of (xλγ)(λ,γ)∈D . Let us show that xh(δ) → x.
ConsiderU ∈ U (x). Since xλ → x, there exists λ0 ∈ D such that λ0 ≺ λ =⇒ xλ ∈ U .
Since xλ0

γ → xλ0 , there exists γ0 ∈ Dλ0 such that γ0 ≺ γ =⇒ xλ0
γ ∈ U . Take

δ0 = (U, λ0, γ0) ∈ E . If δ = (U ′, λ, γ) ∈ E with δ0 ≺ δ then
{

U ′ ⊂ U and λ0 ≺ λ =⇒ xh(δ) = xλγ ∈ U ′ ⊂ U ;
or: U ′ ⊂ U , λ = λ0 and γ0 ≺ γ =⇒ xh(δ) = xλ0

γ with γ0 ≺ γ =⇒ xh(δ) ∈ U .

So we proved:

for all U ∈ U (x), there is a δ0 ∈ E such that δ0 ≺ δ =⇒ xh(δ) ∈ U .

Thus, xh(δ) → x.

Now, we give the definition of convergence notion.

DEFINITION B.5. LetX be a set. A ruleC saying which nets inX converge, is said to be

a convergence notion if it satisfies (1), (2), (3) e (4) from Proposition B.4.

REMARK B.6. If (xλ) converges to x with respect to the convergence notion C , we say

(xλ)λ∈D is C -convergent to x and write C : xλ → x or simply xλ → x, if there is no risk
of confusion. If (X, τ) is a topological space, we denote by C(τ) the convergence notion
induced by τ .

Wewill see now how a convergence notion induces a topology. LetX be a set and C a

convergence notion inX .

Consider the map uC : ℘(X) → ℘(X) defined by

uC (E) = {x ∈ X : ∃(xλ)λ∈D ⊂ E, C : xλ → x}. (B.2)

PROPOSITIONB.7. Givena convergencenotionC inX , the collectionT (C ) = {X\uC (E) :
E ∈ ℘(X)} is a topology inX , called the topology induced by C . Moreover, if E is the

closure ofE with respect to T (C ), thenE = uC (E), for everyE ∈ ℘(X).

Proof. It suffices to show that u = uC : ℘(X) → ℘(X) satisfies conditions (1), (2), (3)
and (4) from the following theorem:

THEOREMB.8 (DUGUNDJI (DUGUNDJI, 1966), PAGE 73). LetX be a set andu : ℘(X) →
℘(X) a map with the following properties:

1. u(∅) = ∅;

2. A ⊂ u(A), for eachA ∈ ℘(X);

3. u ◦ u(A) = u(A), for eachA ∈ ℘(X);

4. u(A ∪ B) = u(A) ∪ u(B), for eachA,B ∈ ℘(X).
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Then he family T = {X\u(A) : A ∈ ℘(X)} is a topology inX and given the closure

notion inT , i.e. A := {x ∈ X : U ∈ T , x ∈ U =⇒ U ∩ A 6= ∅}, we haveA = u(A)
for eachA ∈ ℘(X).

So, let us prove that u = uC has such properties.

1. If there were x ∈ u(∅), then by definition it would exist a net (xλ)λ∈D ⊂ ∅ with
C : xλ → x, but the first condition is impossible, sinceD, being a directed set, is
nonempty. Thus, u(∅) = ∅.

2. If x ∈ A, then (xn)n∈N with xn := x for all n ∈ N is a net in A C -convergent to
x, by axiom (1) of convergence notion. Thus, by the definition of u, x ∈ u(A).
Therefore,A ⊂ u(A).

3. By (2), u(A) ⊂ u ◦ u(A). We need to show u ◦ u(A) ⊂ u(A). Let x ∈ u ◦ u(A). By
definition, there is a net (xλ)λ∈D ⊂ u(A)withC : xλ → x. Since each xλ ∈ u(A),
there are nets (xλγ)γ∈Dλ

⊂ A with C : xλγ → xλ. From the diagonal principle, we
obtain a net (yj)j∈J ⊂ Awith yj → x. Therefore, x ∈ u(A).

4. SinceA,B ⊂ A∪B, it follows from (2) that u(A)∪u(B) ⊂ u(A∪B). It remais to
show u(A∪B) ⊂ u(A)∪u(B). If x ∈ u(A∪B), then there exists (xλ)λ∈D ⊂ A∪B
with C : xλ → x. We claim that, switching A and B if we need, for all λ ∈ D,
there is λ ≺ γ(λ) ∈ D such that xγ ∈ A. In fact, if it were otherwise, there would
be λ1, λ2 ∈ D such that, for all λ ∈ D with λ1 ≺ λ, λ2 ≺ λ, xλ /∈ A and xλ /∈ B.
SinceD is directed, there is such λ, but xλ ∈ A ∪ B, a contradiction. This yields
a sub-net (xγ)γ∈γ(D) of (xλ)λ∈D ⊂ A that, by axiom (2), also is C -convergent to
x. Therefore, x ∈ u(A) ⊂ u(A) ∪ u(B).

The following theorem shows that a convergence notion completely determines its

topology and vice-versa. In other words, to work with topologies is equivalent to work

with convergence notions.

THEOREM B.9. 1. The convergence notion induced by a topology (as in B.1) induces

this same topology, i.e.if τ is a topology, then T (C(τ)) = τ ;

2. The topology induced by a convergence notion induces this same convergence no-

tion, i.e. if C is a convergence notion, then C(T (C )) = C .

Proof. 1. Let (X, τ) be a topological space. By the previous theorem, it suffices to
show that the closure notion u = uC(τ) coincideswith the original closure notion
given by τ . LetA ∈ ℘(X) and let’s show that u(A) = A. If x ∈ u(A), then there is
a net (xλ)λ∈D ⊂ AwithC(τ) : xλ → x. LetU ∈ τ be any open set with x ∈ U . By
the definition ofC(τ), there is λ0 ∈ D such that λ0 ≺ λ =⇒ xλ ∈ U . Therefore,
xλ0 ∈ U ∩ A =⇒ U ∩ A 6= ∅. Then x ∈ A and u(A) ⊂ A. Suppose now
x ∈ A and denote V (x) = {U ∈ τ : x ∈ U}. By definition of A, we have that
for all U ∈ V (x), there is a xU ∈ U ∩ A. The relation U ≺ V if V ⊂ U in V (x)
turns it into a directed set. We have thus a net (xU)U∈V (x) ⊂ A. We claim that
C(τ) : xU → x. In fact, let U ∈ V (x). We have that, if U ≺ V , then V ⊂ U and
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xV ∈ V ⊂ U =⇒ xV ∈ U . Therefore, C(τ) : xU → x and this shows that
x ∈ u(A) andA ⊂ u(A).

2. LetX be a set and C a convergence notion onX . Consider (xλ)λ∈D a net inX .
Suppose, by contradiction, that C : xλ → x but C(T (C )) : xλ 6→ x. This means
that there is a U ∈ T (C )with x ∈ U such that, for all λ ∈ D, there is λ ≺ γ(λ) ∈
Dwith xγ /∈ U . By definition,U = X\uC (E), for someE ∈ ℘(X). This gives us a
sub-net (xγ)γ∈γ(D) ⊂ u(E) that also isC -convergent to x, by axiom (2). Applying
the diagonal principle, we then obtain a net (yj)j∈J ⊂ E which is C -convergent
to x. Thus, x ∈ u(E), a contradiction, since x ∈ U = X\u(E). Suppose now
that C(T (C )) : xλ → x but C : xλ 6→ x. This will lead us to a contradiction. If
C : xλ 6→ x, then by axiom (3), (xλ)λ∈D has a sub-net (yγ)γ∈D′ that has no C -
convergent to x sub-net. Note that C(T (C )) : yγ → x, and thus for all j ∈ D′,
x ∈ A(j), where A(j) = {yγ : j ≺ λ} (the upper bar is for closure with respect
to T (C )). But, by proposition B.7,A(j) = uC (A(j)). Thus, x ∈ A(j) = uC (A(j))
implies that, for each j ∈ D′, there is a net (xjδ)δ∈Dj

⊂ A(j) with C : xjδ → x.

From diagonal principle again, we yield a sub-net (xα)α∈A of (x
j
δ)(j,δ)∈D which is

C -convergent to x. To simplify notation, suppose this sub-net is (xjδ)(j,δ)∈D itself.
If for eachDj we choose any δj ∈ Dj , we obtain a sub-net (x

j
δj
)j∈D′ of (xjδ)(j,δ)∈D

that, by axiom (2), is also C -convergent to x. However, xjδj ∈ A(j) and because

of this (xjδj)j∈D′ is a sub-net of (yγ)γ∈D′ , a contradiction, since (yγ)γ∈D′ has no
sub-nets that are C -convergent to x. This proves that C(T (C )) = C .

Given a net convergence notion C in X , we can restrict this notion to sequences. If

A ⊂ X , we define the sequential closure ofA as the set of all limit points of sequences

inA. More precisely, we define uNC : ℘(X) → ℘(X) by

uNC (A) = {x ∈ X : ∃(xn)n∈N ⊂ A, C : xn → x}.

REMARK B.10. Of courseA ⊂ uNC (A) ⊂ uC (A), for everyA ∈ ℘(X).

The following proposition shows that the convergence notion for sequences is enough

to study metric spaces, i.e. for metric spaces, there is no need to work with general

nets, only sequences.

PROPOSITIONB.11. The topology of ametric space is completely determined by its con-

vergence notion of sequences. More precisely, if (X, d) is a metric space and τd is its
topology, then τd = T (C(τd)) = TN(C(τd)), where

TN(C(τd)) = {X\uNC(τd)
(A) : A ∈ ℘(X)}.

Proof. By simplicity, denote u = uC(τd) and u
N = uNC(τd)

. By theorem B.9 and remark

above, it suffices to show that u(A) ⊂ uN(A), for every A ∈ ℘(X). Let A ∈ ℘(X) and
x ∈ u(A). By definition, there is a net (xλ)λ∈D ⊂ A such that C(τd) : xλ → x. Thus,
for every n ∈ N, there is λn ∈ D such that λn ≺ λ =⇒ xλ ∈ B1/n(x), where B1/n(x)
is the open ball centered at x with radius 1/n. We claim that the sequence defined by
yn = xλn is in A (immediate) and is C(τd)-convergent to x, hence x ∈ uN(A). Let
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U ∈ τd with x ∈ U . There is some ǫ > 0 such that Bǫ(x) ⊂ U . Take n0 ∈ N such that
1
n0
< ǫ. If n0 ≤ n, then 1

n
≤ 1

n0
< ǫ and hence yn = xλn ∈ B1/n(x) ⊂ B1/n0(x) ⊂ U .

Therefore, n0 ≤ n =⇒ yn ∈ U , i.e. C(τd) : yn → x.

B.2 WEAK TOPOLOGY FOR VARIFOLDS

We defined the following convergence notion in the set of k-dimensional varifolds

Vk(M): a net (Vλ)λ∈D in Vk(M) weakly converges to V ∈ Vk(M), written Vλ ⇀ V ,

if
∫

Gk(M)

f dVλ −→

∫

Gk(M)

f dV inR, (B.3)

for all f ∈ Cc(Gk(M)) (continuous functions with compact support). For simplicity,

we drop the k from Vk(M) andGk(M). Since weak convergence of varifolds is given in

terms of usual convergence of nets in the real line, it is immediate that weak conver-

gence is a convergence notion in the sense of definition B.5. Therefore, if we denote

by Cw the weak convergence notion on V(M), we have the topologyTw := T (Cw) in-

duced by this convergence notion. We call this topology theweak topology on V(M).

For each f ∈ Cc(G(M)), we can define a function

ϕf : V(M) → R

V 7→

∫

G(M)

f dV. (B.4)

Each of these functions is continuous, since Vλ ⇀ V implies ϕf (Vλ) → ϕf (V ), by

definition of weak convergence.

Our goal is to show that the subset of V(M) of varifolds with uniformly boundedmass

is metrizable, ifM is compact. We begin with the following proposition:

PROPOSITIONB.12. IfM is a compactmanifold, then theBanach space (C(G(M)), ‖ ‖∞)
is separable, i.e. it has a countable dense subset.

Proof. SinceM is compact and each fiberG(TxM) ofG(M) is compact, we have that
the grassmannian bundle G(M) is compact. Thus, every continuous function f :
G(M) → R has compact support and is bounded. Therefore, C(G(M)) = Cb(G(M))
(every continuous function from G(M) is bounded) and (C(G(M)), ‖ ‖∞) is in fact a
Banach space. To prove that C(G(M)) is separable, we are going to use the following
theorem:

THEOREM B.13 (STONE-WEIERSTRASS, COROLLARY 35, (ROYDEN, 1988), P. 213). Every

continuous function on a compact setX ⊂ Rn can be uniformly approximated onX by

a polynomial (on the coordinates ofRn).

ByWhitney’s Theorem,G(M) can be embedded into someRN . Thus, we can consider
G(M) as a compact submanifold of RN . By Theorem B.13, the set P of polynomials
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(on thecoordinatesofRN )withdomain restricted toG(M) is dense in (C(G(M)), ‖ ‖∞).
We claim that the countable set P ⊂ P of polynomials with rational cofficients is
dense in C(G(M)). In fact, let f ∈ C(G(M)) and ǫ > 0. Since P = C(G(M)), there is
p ∈ P such that ‖f − p‖∞ < ǫ/2. Write p(x1, . . . , xN) =

∑k
j=1 ajmj(x1, . . . , xN ), with

aj ∈ R and eachmj amonomial, withmj 6= mi, if j 6= i. TakeM > max{‖mj‖∞ : j =
1, . . . , k}. SinceQ is dense inR, there are b1, . . . , bk ∈ Q such that |aj − bj| < ǫ/(2kM),
for all j = 1, . . . , k. Denote q =

∑k
j=1 bjmj ∈ P . For every (x1, . . . , xN) ∈ G(M) we

have

|(p− q)(x1, . . . , xN)| ≤
k
∑

j=1

|aj − bj|‖mj‖∞ <

k
∑

j=1

ǫ

2kM
M =

ǫ

2
.

Thus, ‖p − q‖∞ ≤ ǫ/2. It follows from the triangular inequality that ‖f − q‖∞ < ǫ.
Therefore, P is dense in C(G(M)). This finishes the proof.

From now on supposeM is always a compact manifold.

Let {hn}n∈N be a dense subset of B1 = {f ∈ C(G(M)) : ‖f‖∞ ≤ 1} (such subset

exists, by Proposition B.12). By simplicity, denote ϕn := ϕhn , with ϕhn defined at (B.4).

Define

d : V(M)× V(M) → [0,+∞)

(V,W ) 7→
∞
∑

n=1

2−n|ϕn(V )− ϕn(W )|.
(B.5)

Note that d depends on the choice of {hn}n∈N.

PROPOSITION B.14. The function d is well defined and is distance function on V(M).

Proof. Of course 0 ≤ d, thus in order to show that d is well defined, we need to show
that d < +∞. Let V,W ∈ V(M). Since G(M) is compact and V ,W are Radon mea-
sures, we have ‖V ‖, ‖W‖ < +∞. Thus,

d(V,W ) =
∞
∑

n=1

2−n|ϕn(V )− ϕn(W )| ≤
∞
∑

n=1

2−n(|ϕn(V )|+ |ϕn(W )|)

≤
∞
∑

n=1

2−n

(
∫

G(M)

|hn| dV +

∫

G(M)

|hn| dW

)

≤
∞
∑

n+1

2−n

(
∫

G(M)

dV +

∫

G(M)

dW

)

=
∞
∑

n=1

2−n(‖V ‖+ ‖W‖) = ‖V ‖+ ‖W‖ < +∞.

Let us show now that d is a distance function. It is immediate from the definition that
d(V, V ) = 0 and that d is symmetric. Triangle inequality follows from:

d(V,W ) =
∞
∑

n=1

2−n|ϕn(V )− ϕn(W )| ≤
∞
∑

n=1

2−n(|ϕn(V )− ϕn(Z)|+ |ϕn(Z)− ϕn(W )|)
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= d(V, Z) + d(Z,W ).

It only remains to show that d(V,W ) = 0 ⇒ V = W . If d(V,W ) = 0, then
∫

G(M)

hn dV =

∫

G(M)

hn dW,

for all n ∈ N. Consider any f ∈ B1 ⊂ C(G(M)). Since {hn}n∈N is dense B1, there is a
sequence (nk)k∈N ⊂ N such that lim

k→∞
‖hnk

− f‖∞ = 0. This implies

∫

G(M)

f dV = lim
k→∞

∫

G(M)

hnk
dV = lim

k→∞

∫

G(M)

hnk
dW =

∫

G(M)

f dW,

for any f ∈ B1.

Let A ⊂ G(M) be a Borel set and χA : G(M) → R the characteristic function of A.
Taking a sequence {fk}k∈N ⊂ B1 converging to χA, we get

V (A) =

∫

G(M)

χA dV = lim
k→∞

∫

G(M)

fk dV = lim
k→∞

∫

G(M)

fk dW =

∫

G(M)

χA dW = W (A).

Thus, V (A) = W (A), for all Borel setA ⊂ G(M).

Finally, if S ⊂ G(M) is any set, since V and W are Radon measures, it follows that
V (S) = inf{V (U) : S ⊂ U, U aberto} = inf{W (U) : S ⊂ U, U aberto} = W (S).
This proves that V = W .

Now, we finally show that the space of varifolds of uniformly boundedmass is metriz-

able. Next, we use a compactness theorem for Radonmeasures to prove that this space

is also compact. This will prove Theorem 2.10.

THEOREMB.15. Theweak topology coincidewith the topology inducedbydonVc(M) :=
{V ∈ V(M) : ‖V ‖ ≤ c}, for each c ≥ 0.

Proof. To prove the theorem, it suffices to show that the notions of weak and metric
convergences coincide. Let (Vλ)λ∈D be a net in V(M) and V ∈ V(M). Suppose first
that Vλ ⇀ V . Let us show that d(Vλ, V ) → 0. Consider ǫ > 0. Fixm ∈ N. Then

d(Vλ, V ) =
m
∑

n=1

2−n|ϕn(Vλ)− ϕn(V )|+
∞
∑

n=m+1

2−n|ϕn(Vλ)− ϕn(V )|

≤
m
∑

n=1

2−n|ϕn(Vλ)− ϕn(V )|+
∞
∑

n=m+1

2−n2c

=
m
∑

n=1

2−n|ϕn(Vλ)− ϕn(V )|+
∞
∑

n=m

2−nc =
m
∑

n=1

2−n|ϕn(Vλ)− ϕn(V )|+ 2−m+1c.

Thus, if we choosem such that 2−m+1c < ǫ/2, we have

d(Vλ, V ) <
m
∑

n=1

2−n|ϕn(Vλ)− ϕn(V )|+ ǫ/2.
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Now, since Vλ ⇀ V , for each n = 1, . . . ,m there is a λn ∈ D such that λn ≺ λ =⇒
|ϕn(Vλ) − ϕn(V )| < ǫ/(2m). SinceD is directed, we can find a λ0 ∈ D with λn ≺ λ0,
for every n = 1, . . . ,m. Then,

λ0 ≺ λ =⇒ d(Vλ, V ) <
m
∑

n=1

2−n|ϕn(Vλ)− ϕn(V )|+
ǫ

2

<
m
∑

n=1

2−n ǫ

2m
+
ǫ

2
< m

ǫ

2m
+
ǫ

2
= ǫ.

Therefore d(Vλ, V ) → 0.

Now, suppose d(Vλ, V ) → 0. We must show that Vλ ⇀ V . Let f ∈ C(G(M)) and let’s
show thatϕf (Vλ) → ϕf (V ). We can suppose that f 6= 0. Then, sinceG(M) is compact,
supx∈G(M) f(x) = ‖f‖∞ = a < +∞. Thus f

a
∈ B1. Since {hn}n∈N is dense inB1, there

exists a sequence {fk}k∈N ⊂ {hn}n∈N such that ‖fk − f
a
‖∞ → 0. Let ǫ > 0. Since

d(Vλ, V ) → 0, there exists a λ0 ∈ D such that λ0 ≺ λ implies d(Vλ, V ) < ǫ/a. Then

λ0 ≺ λ =⇒ |ϕfk(Vλ)− ϕfk(V )| ≤ d(Vλ, V ) <
ǫ

a
.

Now, note that

lim
k→∞

ϕfk(W ) = lim
k→∞

∫

G(M)

fk dW =

∫

G(M)

f

a
dW =

1

a
ϕf (W ), ∀W ∈ V(M).

Thus, making k → ∞ in the inequality above, we get

λ0 ≺ λ =⇒ |ϕf (Vλ)− ϕf (V )| < ǫ.

This shows that Vλ ⇀ V and finishes the proof.

THEOREM B.16. For each c > 0, the space Vc(M) is compact.

Proof. This result will follow straightforward from the following theorem, which we
won’t prove.

THEOREM B.17 (COMPACTNES THEOREM FOR RADONMEASURES, (SIMON, 2014), P. 37).

Suppose {µk} is a sequence of Radonmeasures on the locally compact, σ-compactHaus-

dorff spaceX with the property supk µk(K) < ∞ for each compactK ⊂ X . Then there

is a subsequence {µk′}which converges to a Radon measure µ onX in the sense that

limµk′(f) = µ(f) for each f ∈ K(X),

whereK(X) denotes the set of continuous functions f : X → R with compact support

onX and where we use the notation

µ(f) =

∫

X

f dµ, f ∈ K(X).

If we take X = G(M), this becomes a result about varifolds. Since G(M) is a com-
pact smooth manifold (since we are consideringM to be compact), G(M) is trivially
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locally compact and σ-compact (this last conditionmeans that the space is a union of
countably many compact subspaces).

Take any sequence {Vk} ⊂ Vc(M). Then for any compact K ⊂ G(M), we have
supk Vk(K) ≤ supk Vk(G(M)) = supk ‖Vk‖(M) ≤ c < +∞ and we can apply The-
orem B.17. Thus, there is a subsequence {Vk′} of {Vk} and a varifold V ∈ G(M) such
that Vk′ ⇀ V . In particular,

‖V ‖(M) = lim ‖Vk′‖(M) ≤ c,

and therefore V ∈ Vc(M). This shows that Vc(M) is sequentially compact. Since we
already proved that Vc(M) is metrizable and sequentially compactness and compact-
ness are equivalent for metric spaces, this shows that Vc(M) is compact.

Theorems B.15 and B.16 together prove Theorem 2.10.



107

C GEOMETRIC LEMMAS

LEMMAC.1. Let (M, g) be a riemannian three-manifold andΣ an embedded two-sided

surface inM . Then

R− 2Ric(ν, ν)− |A|2 = 2K −H2.

Proof. The lemma will follow from the Gauß equation

〈R(X, Y )Z,W 〉 = 〈r(X, Y )Z,W 〉 − 〈A(Y,W ), A(X,Z)〉+ 〈A(X,W ), A(Y, Z)〉,

where r denotes the curvature tensor of Σ. Let {e1, e2, ν} be an orthonormal basis for
TpM , p ∈ Σ. Doing Y = W = e1, Y = W = e2 and summing the equations, we obtain

〈R(X, e1)Z, e1〉+ 〈R(X, e2)Z, e2〉 = 〈r(X, e1)Z, e1〉 − 〈A(e1, e1), A(X,Z)〉

+ 〈A(X, e1), A(e1, Z)〉+ 〈r(X, e2)Z, e2〉 − 〈A(e2, e2), A(X,Z)〉+ 〈A(X, e2), A(e2, Z)〉.

Denote A(X, Y ) = h(X, Y )ν, and then H := traço(A) = h(e1, e1) + h(e2, e2). Sum-
ming to both sides of the equation the term 〈R(X, ν)Z, ν〉, in the left-hand side we get
traço(Y 7→ R(X, Y )Z) = Ric(X,Z). Noticing that 〈r(X, e1)Z, e1〉+ 〈r(X, e2)Z, e2〉 =
traço(Y 7→ r(X, Y )Z) = ric(X,Z), we get:

Ric(X,Z) = ric(X,Z)− (h(e1, e1) + h(e2, e2))h(X,Z) + h(X, e1)h(e1, Z)

+ h(X, e2)h(e2, Z) + 〈R(X, ν)Z, ν〉

= ric(X,Z)−Hh(X,Z) +
2
∑

i=1

h(X, ei)h(ei, Z) + 〈R(X, ν)Z, ν〉.

Now, doingX = Z = e1,X = Z = e2 and then summing up the equations, we get

2
∑

j=1

Ric(ej, ej) =
2
∑

j=1

ric(ej, ej)−H
2
∑

j=1

h(ej, ej) +
2
∑

i,j=1

h(ei, ej)
2 +

2
∑

j=1

〈R(ej, ν)ej, ν〉

= r −H2 + |A|2 +
2
∑

j=1

〈R(ν, ej)ν, ej〉

= r −H2 + |A|2 + Ric(ν, ν).

Finally, summing the term Ric(ν, ν) to both sides of the equation and using that r =
2K, we get

R = 2K −H2 + |A|2 + 2Ric(ν, ν).

PROPOSITION C.2. LetM be a compact riemannian 3-manifold with scalar curvature

R ≥ k0.
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1. IfΣ is an embedded orientable minimal surface of index one, then
∫

Σ

Ric(ν, ν) + |A|2 dΣ ≤ 8π

([

g(Σ) + 1

2

]

+ 1

)

and

k0|Σ| ≤ 24π + 16

(

g(Σ)

2
−

[

g(Σ)

2

])

.

2. IfΣ is stable and nonorientable, then
∫

Σ

Ric(ν, ν) + |A|2dΣ ≤ 4π(g(Σ̃) + 1)

and

k0|Σ| ≤ 12π + 4πg(Σ̃).

3. Suppose k0 >. If Σ is stable and orientable, then it is a sphere with k0|Σ| ≤ 8π.
Equality implies thatR = k0 onΣ.

Here [x] denotes the integer part of x and Σ̃ is the orientable double cover ofΣ.

Proof. 1. If Σ is orientable of index one, then there is a conformal map φ : Σ → S2

such that
∫

Σ

Ric(ν, ν) + |A|2 dΣ ≤ 8πdeg(φ).

See (S. YAU, 1986, p. 127). Furthermore, we can choose φ such that

deg(φ) ≤

[

g(Σ) + 1

2

]

+ 1,

as in (RITORÉ; ROS, 1992, p. 299). The first inequality follows.

Now, it follows from Lemma C.1 and the Gauß–Bonnet Theorem that

k0
2
|Σ| ≤

∫

Σ

R

2
dΣ =

∫

Σ

Ric(ν, ν) +
|A|2

2
+K dΣ ≤ 8π

([

g(Σ) + 1

2

]

+ 1

)

+ 2πχ(Σ)

≤ 8π

([

g(Σ) + 1

2

]

+ 1

)

+ 4π(1− g(Σ)) = 12π + 8π

([

g(Σ) + 1

2

]

−
g(Σ)

2

)

.

Now, to finish the proof we just need to show that
[

n+ 1

2

]

−
n

2
=
n

2
−
[n

2

]

, ∀n = 0, 1, 2, . . . (⋆)

which is equivalent to
[

n+ 1

2

]

= n−
[n

2

]

, ∀n = 0, 1, 2, . . .

Of course, this is true for n = 0, 1. Suppose the equation holds for n = k. Then
[

(k + 1) + 1

2

]

=

[

k

2
+ 1

]

= 1 +

[

k

2

]

= 1 + k −

[

k + 1

2

]

,

and thus the equation holds for n = k+1 and (⋆) follows by induction. Then we
have

k0|Σ| ≤ 24π + 16π

(

g(Σ)

2
−

[

g(Σ)

2

])

.
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2. The first inequality follows from (ROSS, 1997, Lemma 2 and identity (2’)). The
second is a consequence from Lemma C.1 and the Gauß–Bonnet Theorem:

k0
2
|Σ| = k0|Σ̃| ≤

∫

Σ̃

RdΣ̃ =

∫

Σ̃

2Ric(ν, ν) + |A|2 + 2K dΣ̃

≤

∫

Σ̃

Ric(ν, ν) + |A|2 dΣ̃ + 2π(1− g(Σ̃)) ≤ 4π(g(Σ̃) + 1) + 2π(1− g(Σ̃))

≤ 6π + 2πg(Σ̃)

⇒ k0|Σ| ≤ 12π + 4πg(Σ̃).

3. This is proven in (BRAY; BRENDLE; NEVES, 2010) (see identity (4)).
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