FEDERAL UNIVERSITY OF SAO CARLOS
TECHNOLOGY AND EXACT SCIENCES CENTER
COMPUTER SCIENCE GRADUATE PROGRAM

AUTOMATIC COMPUTATIONAL SCHEME FOR
SEGMENTATION, VOLUMETRIC
ASSESSMENT AND ANALYSIS OF MULTIPLE
SCLEROSIS LESIONS IN MAGNETIC
RESONANCE IMAGES OF THE HUMAN BRAIN

PAULO GUILHERME DE LIMA FREIRE

SUPERVISOR: RICARDO JOSE FERRARI, PHD

Sao Carlos — SP
September/2019



FEDERAL UNIVERSITY OF SAO CARLOS
TECHNOLOGY AND EXACT SCIENCES CENTER
COMPUTER SCIENCE GRADUATE PROGRAM

AUTOMATIC COMPUTATIONAL SCHEME FOR
SEGMENTATION, VOLUMETRIC
ASSESSMENT AND ANALYSIS OF MULTIPLE
SCLEROSIS LESIONS IN MAGNETIC
RESONANCE IMAGES OF THE HUMAN BRAIN

PAULO GUILHERME DE LIMA FREIRE

Thesis document presented to the Computer Science
Graduate Program of the Federal University of Sdo
Carlos as part of the requisites to obtain the title
of Doctor in Computer Science, concentration area:
Computer Techniques and Methodologies
Supervisor: Ricardo José Ferrari, PhD

Sao Carlos — SP
September/2019



> UNIVERSIDADE FEDERAL DE SAO CARLOS
-—.m_w_.,.‘h = A~ T | H
“l'b- =11 Centro de Ciéncias Exatas e de Tecnologia
- Programa de Pés-Graduagao em Ciéncia da Computagéo

Folha de Aprovacao

Assinaturas dos membros da comissao examinadora que avaliou e aprovou a Defesa de Tese de Dou
Paulo Guilherme de Lima Freire, realizada em 27/09/2019:

——
Prof. Dr. Ricardgf José Ferrari
UFSCar
/ (&< e

/ rof. Dr. Wu rtado Silva

P
<

/?/) / /) t

/’P%mdlqy, Lo M . LoNad-on
“Prof. Dr. Alexandre Luis\Magalhdes Levada
UFSCar

ﬂ,\\/\,

M O TN O A
Pro)./f)r. Paulo Mazzoncw]/de Azevedo Marques

UsP

/ Prof. Dr. Adns{bp Go\zaga

. 0 00




ACKNOWLEDGMENTS

First and foremost, I thank God for my life.

I thank my supervisor, Dr. Ricardo José Ferrari, for all the knowledge shared with me

during these years and the always fruitful discussions of ideas.

I thank the thorough and competent Doctors from UNIFESP, namely Enedina, Marcos,
Nitamar and Carrete, for their valuable contributions. Without their efforts and help we would

not have achieved the full potential of this work.

I thank my parents, Paulo and Liicia, for all their support, dedication and unconditional love
throughout my whole life, for pushing me to go further and for showing me by example what

righteousness means.

I thank my girlfriend and partner in crime (and life), Isabela, for walking beside me and
inspiring me to be a better person every day by being a role model of intelligence and determi-

nation.

I also thank my lab friends who have been with me along for the ride — and along for the

coffee as well.

This study was financed in part by the Coordenacdo de Aperfeicoamento de Pessoal de
Nivel Superior — Brasil (CAPES) — Finance Code 001. I also thank the Sdo Paulo Research
Foundation (FAPESP) for the financial support given to this research (grant number 2016/15661-
0).

5% MONTHS LATER:
OUR FIELD HAS BEEN STRUGGLE NO MORE!
STRUGGLING WITH THIS T'M HERE. TO SO0LVE. LIOW, THIS PROBLEM
PROBLEM FOR YEARS. IT JITH ALGORITHIMS! 15 REALLY HARD:

; [ o

7 A7

xkcd.com/1831




RESUMO

Esclerose Multipla (EM) € uma doenca inflamatéria e desmielinizante do sistema nervoso
central (SNC). E considerada uma doenca autoimune na qual o sistema imunolégico re-
conhece erroneamente a bainha de mielina do SNC como um elemento estranho e entdo a
ataca, resultando em inflamacgdo e formacdo de cicatrizes gliais (escleroses) em multiplas
dreas da substancia branca do SNC. O imageamento multi-contraste por ressonincia mag-
nética (RM) tem sido usado clinicamente com muito sucesso para o diagndstico e monitora-
mento da EM devido as suas excelentes propriedades de alta resolucio e boa diferencia¢io
entre tecidos moles. Duas dreas de interesse do ponto de vista computacional podem ser
destacadas neste contexto: a segmentacio das lesdes e identificacdo de quais estdo em es-
tdgio inflamatdrio, também chamadas de lesdes realcadas ou ativas. Atualmente, o método
utilizado para a segmentagdo de lesdes de EM é o delineamento manual em imagens 3D
de RM. Tal procedimento € realizado por especialistas com ajuda limitada do computador.
Entretanto, tal procedimento € custoso e propenso a variabilidade inter e intraobservadores.
Neste ponto, este projeto propde o estudo e o desenvolvimento de um esquema computa-
cional automadtico para a segmentacio, medi¢do volumétrica e anélise de lesdes de EM em
imagens de RM utilizando uma abordagem baseada em modelos de mistura finita de dis-
tribuigdes t-Student e atlas probabilisticos para a segmentacdo e medi¢do do volume de
lesdes de EM em imagens de RM. Quanto a identificagdo de lesdes realgadas, contrastes
a base de gadolinio sdo usados para destacd-las visualmente das demais. Porém, estudos
recentes indicam a perda fisioldgica gradual da capacidade dos pacientes em eliminar esta
substancia, sendo proporcional ao nimero de inje¢des intravenosas ja administradas no pa-
ciente. Isto leva ao acimulo do contraste no organismo. Assim sendo, este projeto faz tam-
bém o uso de caracteristicas de texturas para fazer a distincao de lesdes realcadas (ativas) e
ndo-realcadas sem a necessidade da aplicagcdo de contraste a base de gadolinio, eliminado
o risco de acimulo intravenoso dessa substancia no organismo do paciente e barateando o

custo do procedimento de RM.

Palavras-chave: esclerose miiltipla, segmentagdo, classificacdo, textura, t-Student.



ABSTRACT

Multiple Sclerosis (MS) is an inflammatory demyelinating (that is, with myelin loss) disease
of the Central Nervous System (CNS). It is considered an autoimmune disease in which the
immune system wrongly recognizes the myelin sheath of the CNS as an external element
and attacks it, resulting in inflammation and scarring (sclerosis) of multiple areas of CNS’s
white matter. Multi-contrast magnetic resonance imaging (MRI) has been successfully used
in diagnosing and monitoring MS due to its excellent properties such as high resolution and
good differentiation between soft tissues. In this context, from a computational standpoint,
two important goals stand out: lesion segmentation and lesion classification, the latter be-
ing related to the identification of which lesions are under an inflammatory state, also called
active or enhancing lesions. Nowadays, the preferred method to segment MS lesions is
manual delineation, made by specialists with limited aid of a computer. However, this ap-
proach is tiresome, expensive and prone to error due to inter- and intra-variability between
observers caused by low contrast on lesion edges. Here, we propose the development of
an automatic computational technique based on Student’s t-distribution finite mixture mod-
els and probabilistic atlases to segment and measure MS lesions volumes in MR images.
Regarding the identification of enhacing lesions, Gadolinium-based contrasts are used to
visually highlight them during an MRI procedure. However, recent studies indicate that
patients gradually lose their ability to eliminate the contrast substances from their bodies
when they undergo many contrast injections throughout their lives, which is the case for
MS subjects. In this sense, in this work we used textural features to distinguish enhancing
(active) and nonenhancing lesions without the aid of intravenous injection of Gadolinium-
based contrast, thus eliminating the risk of accumulation of this substance in one’s body and

making the MRI procedure faster and cheaper.

Keywords: multiple sclerosis, segmentation, classification, texture, Student’s t-distribution.
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Chapter 1

INTRODUCTION

This chapter presents the context of this work, the motivation to provide a solution for the

multiple sclerosis automatic segmentation problem and the goals of this research.

1.1 Context and motivation

Multiple sclerosis (MS) is a demyelinating disease that attacks the central nervous system
(CNS) and affects more than 2 million people worldwide (BROWNE et al., 2013). It destroys
neurons’ myelin sheaths, causing many effects on one’s body and mind, including dizziness,
confusion, memory problems and numbness of arms and legs (World Health Organization, 2008).
The cause of MS is still unknown, and the disease itself has a devastating effect on individuals
and society because its onset is typically around the age 30, thus affecting subjects at the peak

of their productivity in life (WARREN; WARREN, 2001).

According to a study conducted by the World Health Organization (2008), the average
prevalence (i.e., number of subjects with a condition in a population in a given time period) of
MS around the world is of thirty people for every one hundred thousand. Europe is the continent
with the highest prevalence, with eighty people for every one hundred thousand. Comparatively,
this same number in the Americas is of only 8.3 people. Besides presenting prevalence numbers,
this study also confirmed that MS is not a disease restricted to the most developed countries and

can occur in every part of the globe.

Since there is still no cure for MS and patients must undergo regular exams and follow-ups,
it is typically an expensive disease to treat. For instance, direct and indirect care costs range
from eight thousand dollars to fifty-four thousand dollars per patient per year in the United

States. MS ranks second regarding costliness compared to other chronic conditions, topped
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only by congestive heart failure(National Multiple Sclerosis Society, 2013).

There are four different types of MS. The most frequent one is called relapsing-remitting
MS (RRMS) and is characterized by clearly defined relapses of increased disease activity and
worsening symptoms, which are then followed by remissions in which the disease does not
progress. Approximately 85% of people with MS are diagnosed with RRMS at onset. The
second type is called secondary-progressive MS (SPMS) and often occurs in patients who do not
treat RRMS within a decade of the initial diagnosis. The third type is primary-progressive MS
(PPMS), which is diagnosed in approximately 10% of MS patients at onset. This type is more
severe than the previous ones, and people with PPMS experience a steady progression of the
disease with no apparent relapses or remissions. Finally, the fourth type is called progressive-
relapsing MS (PRMS) and is the rarest form of MS with only 5% of patients being diagnosed
with it. It causes clear relapses combined with a steady progression of the disease (National

Multiple Sclerosis Society, 2013).

The most used medical imaging technique to help diagnose MS is the magnetic resonance
imaging (MRI). Since it provides excellent differentiation between soft tissues (BUSHBERG et
al., 2012; COMPSTON; COLES, 2008), MRI allows physicians to identify lesions and follow the
disease progression over time. By tuning pulse sequence parameters appropriately, different
types of image weights, namely T1-w, T2-w, Fluid Attenuated Inversion Recovery (FLAIR)
and Proton Density (PD), can be generated. Each image weight provides different responses for
brain tissues and pathologies. Regarding MS imaging diagnosis, FLAIR images are often used
because lesions appear hyperintense in this particular image weight, thus making it easier for

physicians to identify them (HASHEMI et al., 1995).

Up to this day, the gold standard for MS lesion segmentation is an expert’s manually an-
notated ground truth. However, this is an expensive and time-consuming procedure, and is
inherently biased due to subjective perceptions that vary from expert to expert (ZIDJDENBOS;
FORGHANI; EVAN, 2002). Moreover, the very nature of MS lesions poses challenges to their
segmentation since they do not have a defined shape, size or location (BROSCH et al., 2016). In
this sense, many automatic segmentation techniques have been proposed over the years (BAKSHI
et al., 2008; GARCIA-LORENZO et al., 2013; X. et al., 2012; VOVK; PERNUS; LIKAR, 2007) in order
to provide a more consistent output and decrease the cost and time spent on the segmentation
task itself. However, due to the challenging characteristics of lesion segmentation, no automatic
technique has been adopted as a reference standard so far, indicating that this is still an open

field of research to be further explored.

From a tissue clustering point of view, this work is focused only on images that have MS
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lesions in them, since they represent the cluster we want to accurately segment. Our approach
makes use of finite mixture models (MCLACHLAN; KRISHNAN, 1997; DUDA; HART; STORK, 2000)
and information from image gray level intensities to provide a reliable segmentation. By achiev-
ing that, quantitative data on lesions can be extracted and used to give a better grasp on how
the disease is progressing and help physicians understand if a given treatment prescribed to a

patient is being effective, especially in clinical trials scenarios.

Another important aspect of this work is the distinction between enhancing (or active) and
non-enhancing (or nonactive) lesions (LEWIS; SPILLANE, 2019). To identify which lesions are
active, a Gadolinium-based contrast is injected in the patient prior to the procedure itself. The
properties of the contrast allow it to enhance active lesions (LEWIS; SPILLANE, 2019), making
them distinguishable from other kinds of lesions. However, a number of studies from various
research groups in the last few years (BURKE et al., 2016; HU et al., 2016; ZOBEL et al., 2016)
indicate that Gadolinium-based contrasts tend to accumulate in one’s brain, bones, skin and

other parts of the body after a number of injections.

A comprehensive understanding of this accumulation is not yet available, which has made
several agencies, such as the U.S. Food and Drug Administration and the European Medicines
Agency, issue statements (European Medicines Agency, 2016; AGENCY, 2017; U.S. Food and Drug
Administration, 2015; FOOD; ADMINISTRATION, 2017, 2018) restricting the usage of Gadolinium-
based contrasts only to cases where it is absolutely necessary. Though there are indications that
infrequent contrast administrations pose no threat (KROMREY et al., 2016), this is not the case for
MS patients, who must undergo an MRI procedure with contrast injections from time to time

for the rest of their lives in order to assess how the disease is progressing.

Given this scenario, in this work we also proposed a supervised algorithm to distinguish
active from nonactive lesions in Gadolinium-free FLAIR images, thus eliminating the need
for contrast injections altogether. The benefits of a correct classification span from improving
patients’ health - by avoiding their exposure to a heavy metal-based contrast and its effects on

well-being - to reducing the time and costs of the MRI procedure itself.

1.2 Goals

The primary goal of this work was to study and develop an automatic computational pipeline
to segment and classify MS lesions in MR images. For this purpose, a finite mixture model
based on the Student’s t-distribution (ZHANG; WU; NGUYEN, 2013; NGUYEN; WU, 2012; SFIKAS;
NIKOU; GALATSANOS, 2007) will be used as a clustering technique. We chose this model due to
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its unsupervised nature. Also, the Student’s t-distribution has a heavy tail, making it less sensi-
tive to outliers when compared to other widely used distributions, i.e., the Gaussian distributions

(CHATZIS; KOSMOPOULOS; VARVARIGOU, 2009).

There is, however, a portion of lesions that will inherently have either a significant intensity
overlap with other tissues, such as white matter (WM) and gray matter (GM) or be too small
(< 10 voxels) to be correctly segmented. This is a drawback that affects automatic and manual

segmentation approaches alike (BENTO et al., 2017) and must be taken into consideration.

Moreover, we classified lesions according to their inflammatory state (active and nonactive)
using the XGBoost classifier (CHEN; GUESTRIN, 2016), since the active ones serve as a proxy
for the progression of the disease. As mentioned in Section 1.1, most active lesions are usu-
ally identified using a Gadolinium-based contrast agent injected into the subject a few minutes
prior to the MRI exam, but recent studies have shown that the more often a subject is injected
with the contrast, the harder it becomes to be eliminated. In this sense, identifying active le-
sions from the segmentation output without using any contrast agent can help with the patients’
health and decrease the cost of the MRI procedure. As important as the technique used in clas-
sification is the quality of the data to be used as input. Regarding this matter, information from
gray level intensities, hyperintensity enhancement and textures extracted from run length matri-
ces(CASTELLANO et al., 2004)and gray level co-occurrence matrices (HARALICK; SHANMUGAM,;
DINSTEIN, 1973) were combined to form a discriminative feature space efficient to distinguish

active and nonactive MS lesions.

Byproducts of this work involved developing a technique to improve the distinction between
hyperintensities in FLAIR images and other brain tissues and to compare different techniques
to detect the midsaggital plane (MSP), which is used to halve the brain into its two hemispheres

in order to analyze symmetry information.

1.3 Publications

The goals described in Section 1.2 resulted in the following publications:

* (Qualis CAPES A2) Freire, P.G.L. and Ferrari, R.J. “Automatic iterative segmentation
of multiple sclerosis lesion using Student’s t mixture models and probabilistic anatomi-
cal atlases in FLAIR images”. Computers in Biology and Medicine (73): 10-23, 2016
(FREIRE; FERRARI, 2016)

¢ (Qualis CAPES B1) Freire, P.G.L., Silva, B.C.G., Pinto, C.H.V., Moreira, C. and Ferrari,
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R.J. “Midsaggital plane detection in magnetic resonance images using phase congruency,
Hessian matrix and symmetry information: a comparative study”. 18th International

Conference on Computational Science and its Applications (FREIRE et al., 2018).

* (Qualis CAPES Al) Freire, P.G.L. and Ferrari, R.J. “Multiple sclerosis lesion enhance-
ment and white matter region estimation using hyperintensities in FLAIR images”. Biomed-

ical Signal Processing and Control (49): 338-348, 2019 (FREIRE; FERRARI, 2019)
And the following paper is currently under review (Qualis CAPES Al):

* (Qualis CAPES Al) Freire, P.G.L., Idagawa, M., Oliveira, E.M.L., Abdala, N. Carrete,
H. and Ferrari, R.J. “Classification of active multiple sclerosis lesions without the aid of
Gadolinium-based contrast using textural and enhanced features from FLAIR images”.

(Medical Image Analysis - under review) .

All of the accepted paper are attached to Appendix B.

1.4 Thesis organization

This thesis is divided into five more chapters and an appendix. The content in each of them

is the following.

» Chapter 2: details the image formation process regarding the physics of MRI and how
images are generated. It also showcases different image weights and how tissues and

lesions appear on each one of them.

* Chapter 3: background knowledge on the Student’s t-mixture model and Expectation-
Maximization algorithm and how they are combined in the context of image segmenta-
tion. We also present theoretical information about textures and the XGBoost classifier.
This chapter also presents the metrics used to assess the segmentation and classification

accuracies.

» Chapter 4: literature review with works related to MS lesion segmentation, textures and

symmetry.
» Chapter 5: details of our methodology, databases and pipeline.

* Chapter 6: results from MSP detection, hyperintensity enhancement and MS lesion seg-

mentation and classification.
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» Chapter 7: conclusions drawn from the results and next steps of this work.

* Appendix A: details of the Expectation-Maximization used to estimate parameters in a

Student’s t-distribution.

* Appendix B: full papers mentioned in Section 1.3.



Chapter 2

IMAGE FORMATION IN MRI

This chapter aims to explain how magnetic resonance images are generated and the re-

sponse of different brain tissues and lesions have on different image weights.

2.1 Physics of MRI

The interaction of different kinds of materials with magnetic fields is a typical situation in
daily life. Taking a compass as an example, its needle always points to the direction of lines that
come out of the north pole to the south pole of a magnetic field (HALLIDAY; RESNICK; WALKER,
2010). In this scenario, if a second magnetic field is positioned perpendicular to the first one
and starts oscillating in a specific resonance frequency, it can disturb the needle, which in turn
will align instead to this second field. If we cease the oscillation and remove the second field
from the system, the needle will return to its initial alignment state. The vibration of the needle
when returning to its original state emits magnetic waves according to the intensity of the field it
is currently under the influence of. These waves can be captured, measured and used to provide

information about the surroundings of the needle.

Similarly, the same process happens to the hydrogen atoms of one’s body undergoing a MRI
scan. Hydrogen is the element of choice for MRI for three main reasons. First, it is the most
abundant element in the human body. Second, hydrogen characteristics in magnetic resonance
differ between normal tissues and pathologies. And third, the proton of hydrogen atoms have
a significant magnetic moment, making them more sensitive to the magnetic field of an MRI

scanner (MAZZOLA, 2009).

An important aspect related to MRI is the precession phenomenon, which is intrinsic to

atoms with nuclei that have an odd number of protons and/or neutrons. It is characterized by a
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spinning movement around the atom’s axis, as shown in Figure 2.1. This kind of movement has
two relevant peculiarities. The first one is the atoms will precess around that field’s direction
when under a magnetic field. This behavior is known as the Larmor precession. Its frequency

is proportional to the intensity of the magnetic field and is given by

@ = YBo, 2.1)

where 7y is the gyromagnetic ratio (which is a constant and unique value for each chemical

element) and By is the intensity of the field (also constant).

Figure 2.1: Precession movement.

The second peculiarity is that atoms emit magnetic waves in the precession frequency. Sup-
pose a 3D coordinate system (x,y,z), where z is related to the longitudinal axis and the (x,y)
plane is associated with the transversal plane. In this sense, to disturb the alignment of atoms to
an initial field By, parallel to the z-axis, a perpendicular magnetic field B; must oscillate in the
precession movement; in other words, it must oscillate in the Larmor frequency. By doing so,
atoms will start to precess around By, on the transversal plane (x,y). If B; is removed from the
system, atoms return to precess around By, in a movement called relaxation. During relaxation,

atoms lose energy and emit radio frequency signals through magnetic waves.

Initially, the hydrogen atoms in one’s body are not aligned to any particular direction. When
undergoing a MRI scan, a first and constant magnetic field By is applied to the subject’s body,
making his/her hydrogen atoms align parallel or anti-parallel to it, as shown in Figure 2.2. Then
a second magnetic field B, perpendicular to By, is applied with the same oscillation frequency
as the atoms’ Larmor frequency, thus creating a resonance effect (and hence the name of the
technique itself). At this moment, the hydrogen atoms start to leave their state of alignment to
By. After a brief period of time, the second magnetic field By is turned off, making the atoms
return to their previous alignment state to By. As mentioned before, they release energy in this
process, which is then captured and analyzed by a scanner. This procedure can be used to get
information about the neighborhood of each atom. And since the response of each atom is

directly associated with the tissue they are in, an image with tissue nuances can be generated
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and provide a way to visualize the scanned body part in a 3D image (BUSHBERG et al., 2012).
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Figure 2.2: Atoms aligned parallel or antiparallel to B.

2.1.1 Image weights

Image weights in MRI can be defined as a combination of radio frequency pulses and gradi-
ents that generate images with different tissue responses. The gray level intensity value of each
voxel in MRI varies according to the proton density (PD) of each tissue. The higher the proton
density is, the more intense the response of the radio frequency signal in that area (HANSON,
2009). The contrast between tissues in MRI also depends on two other parameters: 77, the lon-
gitudinal relaxation time, and 7>, the transversal relaxation time. More precisely, 77 is the time
it takes for atoms under the influence of B; to return to balance after this field is removed from
the system. In other words, it is the time required to get them aligned back to By. On the other
hand, 7 is related to the magnetization reduction time in the transversal plane. In practice, this
is a situation where the magnetization vector, initially aligned to Bj in the transversal plane,

gets back to being aligned with By in the z-axis, as shown in Figure 2.3.
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Figure 2.3: Return of magnetization when B, is removed from the system.
The return of magnetization to the longitudinal axis is given by

M, = My(1 —eTT), (2.2)



2.1 Physics of MRI 28

where M; is the magnetization vector in the z axis, My is the initial magnetization vector, ? is

the time and 7'1 is the longitudinal relaxation constant.

Similarly, the magnetization decay in the transversal plane is given by
M,, = Mge™, (2.3)

where M,y is the magnetization vector in the xy plane and 72 is the transversal time.

The radio frequency (RF) pulse emitted by B, is repeated at a predefined rate. The period
of an RF pulse is called repetition time (TR). The time between a RF pulse is emitted and the
atom’s response is called echo time (TE). By tuning these two parameters, one can generate

different image weights. Overall,

* Long TR and short TE generate PD images.
e Short TR and short TE generate T1-w images.

* Long TR and long TE generate T2-w images.

There are also Fluid Attenuated Inversion-Recovery (FLAIR) images. The main feature of this
particular weight is the suppression of the effects of fluids (OKUDA et al., 1999). The T'1 time in
this image weight is adjusted in a way to be equal to the relaxation time of the component to
be suppressed. By doing so, some structures, like MS lesions, become more evident in regions
where they would otherwise be barely visible. These four different kinds of image weights are

shown in Figure 2.4.

Figure 2.4: Different MR image weights. (a) T1-w, (b) T2-w, (¢) PD and (d) FLAIR.

2.1.2 Image composition

An MR image can be seen as a stack of bi-dimensional images, as shown in Figure 2.5.

Each slice must be identified and, within it, a spatial mapping must be done between a point
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in the image and its gray level intensity value. The way to achieve this is by using gradients

(MAZZOLA, 2009).

Longitudinal
slices

X

Figure 2.5: Representation of longitudinal image slices in MRI.

Gradients are used to identify each slice by linearly varying the intensity of a magnetic field

in a specific direction. In this case, the new field can be calculated as
B.=Bo+G., 2.4)

where B, is the new intensity of a magnetic field in a given z position, By is the value of a static
magnetic field and G; is the intensity of the gradient applied to the z-direction. This way, the
new field is created locally by using a slice gradient that changes the precession frequency of
the atoms in that specific region. In other words, each spatial position in that particular region

can be identified thanks to its new specific precession frequency.

The localization of each element (voxel) in a given slice is achieved by using two other
gradients that incorporate the phase and frequency components of the signal, respectively. Ap-
plying a phase gradient alters the spin phase of the atoms proportionally to their location. This
way, one of the axes (x or y) gets phase mapped. Then the frequency gradient is applied to the
remaining axis, and the mapping is made in the same manner as with the phase. These elements

are then organized into a matrix to be processed (EDELMAN; HESSELINK; ZLATKIN, 2006).

2.1.3 K-space

The K-space is a representation of the frequency domain related to the image acquisition
process (MAZZOLA, 2009). The K-space can be seen as a gray level matrix in which each
entry corresponds to signal intensity and a point in time, thus representing the amplitude of the
signal measured in a given moment. The coordinates (x,y) represent the frequency and phase
gradients, respectively. It is important to highlight that there is no correspondence between an
entry in the K-space and a voxel in the actual MRI output. In each entry, there is information

about the whole slice.
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Knowing that the signal of each slice is mapped in terms of phase and frequency (meaning
it is a signal that varies over time and has information about all the tissues), the bi-dimensional
Fourier transform (BRACEWELL, 2000) is used to calculate the spatial position of the magnetic
resonance signal. So the Fourier transform is applied to each matrix in the K-space and the final
slice image is finally generated, as shown in Figure 2.6. The coordinates k, and ky in the K-
space matrix correspond to the frequency and phase gradients, respectively. It is also important
to note that the K space can be three-dimensional depending on the acquisition protocol. In

these scenarios, a 3D Fourier transform is applied to get a volumetric image instead.

([ k-space ) ( Xx-space ) Magnitude

(complex) (x-space)

Figure 2.6: K-space and its correspondence to an MRI slice in the image domain (x-space). The
signal obtained by the inverse 2D Fourier transform is a complex signal defined over the image do-
main. In order to generate real data, phase information is discarded, thus yielding the magnitude
image. Extracted from (AJA-FERNANDEZ; VEGAS-SANCHEZ-FERRERO, 2016), Chapter 2.

2.2 Image noise and bias field in MRI

In general terms, noise can be seen as an unwanted fluctuation in the pixel (or voxel) values
of an image, degrading image quality. It is a random and stochastic process, making it very dif-
ficultto precisely predict its values. However, it is possible to determine its statistical properties
by quantifying the noise in terms of an average criteria such as mean value, mean squared value

and probability density functions (SUETENS, 2009).

In imaging systems, noise can be either dependent or independent of the signal, being the
former labeled as multiplicative noise and the latter, additive noise. Let g(x,y,z) be the voxel

value of an image. It can be described as (DOUGHERTY, 2009)

g(x,y,2) = f(x,5,2) *h(x,y,2) +n(x,y,2), (2.5)

where f(x,y,z) is the “pure” voxel value, h(x,y,z) is the multiplicative noise and n(x,y,z) is the
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additive noise.

The most common noise in MR images is called thermal noise, which is additive (DOUGHERTY,
2009). The main sources of this noise come from both the patient and the receiver part of the
MR scanner. Though Rician noise can be observed in MR images, in a high signal-to-noise ratio
(SNR) scenario, which is common in most scanners nowadays, the noise tends to a Gaussian

distribution (NOWAK, 1999), with a probability density function given by

p(a) = \/(1/2z0?) exp (~(a-1)/20?) (2.6)

where a is the gray level intensity, u is the average gray level intensity and o is its standard de-
viation. This particular type of noise is convenient for a few reasons, since it can be analytically
integrated and has the same spectral shape in the frequency domain. For this reason, there are
many noise reduction filters (VAISHALL RAO; RAO, 2015; MACOVSKI, 1996) that can be applied

to mitigate this problem.

Regarding the multiplicative part h(x,y,z), its most common occurrence in MRI is known
as bias field, which is a low frequency and very smooth signal that corrupts MR images (JUNTU
etal., 2005). This issue is mainly caused by inhomogeneities in the RF field and causes intensity
discrepancies within the same tissue; i.e., similar regions from the same tissue end up presenting
different gray level intensities. More precisely, bias field is characterized as a gradual change
in intensity within segmentation classes across the entire image that cannot be attributed to ran-
dom noise (RAJAPAKSE; KRUGGEL, 1998). These inhomogeneities can have a significant impact
on segmentation and quantitative analysis of MR images, since intensity-based segmentation
techniques assume spatial invariance between tissues of the same class across the entire image

(DOUGHERTY, 2011).

There are mainly two categories of approaches that can be used to deal with the inhomo-
geneity problem: prospective and retrospective modeling. The first one uses prior knowledge
of the bias field obtained by imaging a homogeneous phantom. However, this phantom only
provides a good estimate for objects of the same size as the phantom itself. Since there are
many parts of one’s body that can be scanned with different sizes, this approach becomes un-
feasible. The second approach, on the other hand, is more practical, since it does not depend
on phantoms or prior knowledge. Rather, in retrospective approaches, the bias field is modeled
based on the low frequency components of the original image (BEHRENBRUCH et al., 2004), thus

being able to mitigate the inhomogeneity problem.

It is important to note that adequately treating noise and bias field in MR images may im-

prove segmentation and classification accuracy, since these preprocessing steps are paramount
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to reduce intensity variability across tissues and images.

2.3 Tissues appearance in MRI

One of the main difficulties in the context of MS is the intensity profile overlap of tissues
and lesions. Though the three main brain tissues (cerebrospinal fluid - CSF, GM and WM)
are quite distinguishable intensity-wise, they suffer from partial volume effect (PVE). In other
words, transition regions between one tissue and the other often present a mixture of intensities,

as shown in Figure 2.7. This effect is amplified if the image resolution is low.
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Figure 2.7: Histogram of a MR image depicting distributions of CSF, GM, WM and transition
regions. Extracted from (BATTAGLINI; JENKINSON; STEFANO, 2012).

In this sense, multiple sclerosis lesions also have a significant intensity overlap with other

brain tissues, mainly WM and GM, as shown in Figure 2.8.

Moreover, they do not have precise shape, size or location in the brain (BORSCH et al., 2015),

as it can be seen in Figure 2.9.

However, lesions fall under the category of pathologies that have a rather common appear-
ance, but different intensities in different image weights. In general, they appear hyperintense
in T2-w images and hypointense in T1-w (ALI; BUCKLE, 2009). In this regard, it is important
to note that not all hyperintense points in T2-w have counterparts in T1-w, as shown in Figure

2.10.

The tissue intensities for each image weight are summarized in Table 2.1 and follow the

definition presented in (EDELMAN; HESSELINK; ZLATKIN, 2006).

As mentioned before, MS lesions belong to the pathology category, making them appear
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Figure 2.8: Multiple sclerosis intensity profile overlap with other brain tissues. Red denotes WM,
green denotes cortical GM, magenta denotes deep GM, cyan denotes lesions and blue denotes CSF.
Note the significant intensity overlap of lesions with GM, regardless of scanner brand. Extracted

from (SHAH et al., 2011).

(b)

(d) ®

Figure 2.9: Different lesion sizes, shapes and locations. (a)-(c) FLAIR images from three different
subjects, (d)-(f) lesion masks for each subject, in order of appearance from left to right.
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Figure 2.10: MS lesions in T2-w (left) and T1-w (right). Green arrows indicate lesion correspon-
dence between the two image weights, whereas red arrows indicate a lesion that appears only in
T2-w.

| | Tl-w [ T22w | PD |
Solid mass Dark | Bright | Bright
Cyst/pathology Dark | Bright | Bright
Sub-acute blood Bright | Bright | Bright
Chronic and acute blood | Mild | Dark | Dark
Fat Bright | Dark | Bright

Table 2.1: Tissue intensities for different image weights in MRI.

dark (or hypointense) in T1-w and bright (or hyperintense) in T2-w and PD. Regarding FLAIR,
hyperintense points (mainly lesions) in this particular image weight are characterized by an
intensity profile that partially overlaps with other brain regions, but it is different enough to

make it adequate for proper pathology segmentation (HERSKOVITS; ITOH; E.R., 2001).

2.4 Final considerations

This chapter presented information about the magnetic resonance image formation process,
image weights and MS lesion appearance in MRI. We can state that image formation and acqui-
sition are complex procedures and it is essential to understand how they work to comprehend the
intrinsic characteristics of MR images. It was also mentioned that MS lesions have a plethora
of shapes, sizes and locations in the brain. They also have a gray level intensity profile that
overlaps with healthy tissues. All these points make the estimation of the model parameters
and lesion segmentation and classification even more challenging and indicate why this field of

research is still open to new contributions.



Chapter 3

BACKGROUND KNOWLEDGE

This chapter presents an overview of the Student’s t mixture model, the Expectation-Maximization
algorithm used to estimate parameters of the model, the XGBoost classifier used to dis-
tinguish active and nonactive lesions and the texture features used in classification. The

metrics used to assess the segmentation and classification accuracies are also detailed.

3.1 Student’s t mixture model

A statistical mixture model is a stochastic model commonly used to represent subpopula-
tions included in a general population (TITTERINGTON; SMITH, 1985). In an MRI scan of the
human brain, the subpopulations are represented by different kinds of tissues that are part of
the brain, i.e., gray matter, white matter and cerebral spinal fluid, while the whole image itself
is considered to be the general population. A commonly used feature to distinguish one tissue
from another is the gray level intensity from different image weights such as T1-w, T2-w, PD
or FLAIR (detailed in Chapter 2). These different gray level intensities are usually put together

to create a feature vector for each spatial image location.

In this work, we chose the Student’s t distribution because of its “heavy tail,” which makes
it less susceptible to outliers! (GEROGIANNIS; NIKOU; LIKAS, 2009). Also, the finite mixture
of Student’s t-distributions is a model that falls under the unsupervised clustering category for
image segmentation. This characteristic is important because it relinquishes the need for a
great number of annotations of healthy tissues and pathologies, which is an expensive and time
consuming task. A corollary of this fact is that it makes atraining stage unnecessary, thus avoid-
ing any bias that could be artificially introduced by image normalization. Also, a training set

may not take into account anatomical and physiological variabilities between different subjects

! An outlier means a sample that is quite distant from every cluster in the mixture model.
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Figure 3.1: Student’s t-distribution behavior for different degrees of freedom.

(DESPOTOVIC; GOOSSENS; PHILIPS, 2015).

Formally, a random variable X that follows a multivariate Student’s t-distribution has a
mean vector [, a positive, definite and real covariance matrix X with dimensions d x d and
degrees of freedom v € [0, 0) that can be expressed by (MURPHY, 2012):

d _1
L5901z

d v+d ?
2

(av)2 () [1+v7 16 (xu, X)) 7

3.1)

pX =x;,5,v) =

where §(x;u,%) = (x— )" ! (x— ) is the quadratic Mahalanobis distance and I is the

Gamma function.

For v — oo, the Student’s t-distribution tends to a Gaussian distribution with covariance X,
as shown in Figure 3.1. Moreover, if v > 1, then u is the mean vector of x and if v > 2, the

covariance matrix of x is given by v(v —2)~ %,

It can be shown that a Student’s t-distribution is equivalent to a Normal distribution with a
stochastic covariance matrix (GEROGIANNIS; NIKOU; LIKAS, 2009). Formally, given a weight u

that follows a Gamma distribution parameterized by v, we have

u~T(v/2,v/)2). (3.2)

Given Equation 3.2, a random variable x can then follow a multivariate Normal distribution
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with a mean vector u and covariance Z/u as

X[, X, vou~N(u,u). (3.3)

The mixture of K Student’s t components can be written as

O (x, %) = T mp (x; 1, i, Vi) (34)
where 7y, .., m are the weights of each component, x = (x1, .. .xN)T is the vector of observed
data and

VY= (77:1,...,71'](;”1,...,HK;Zl,...,ZK;VI,...,VK>T (35)

represents the complete parameters set of the mixture model components.

3.2 Expectation—-Maximization for parameters estimation

A common approach for estimating unknown parameters of a Student’s t-mixture model
is the Expectation-Maximization (EM) algorithm (PEEL; MCLACHLAN, 2000). Before formally
defining it, consider the following example to intuitively understand how it works. Two biased
coins, A and B are flipped with bias 64 and 6p. The goal is to estimate 64 and Op by repeating
five times the rationale of randomly choosing (with equal probability) one of the coins, flipping
it, independently, ten times and writing down the number of “heads” observed. In the end, there
will be five sets of ten flips each. In this sense, the probability of getting k£ “heads” in ten flips
of coin i (i € {A,B}) is given by a binomial

pi(k) = (1k0) 0 (1—6;)'07*. (3.6)

An iterative way to solve this problem is to guess initial values for 64 and 6 and then
estimate - for each one of the five sets - which coin is most likely to have been picked for that
particular set. From this point on, we can use maximum likelihood estimation to get new values

for 4 and 6p until convergence (DO; BATZOGLOU, 2008).

To visualize this process, consider Figure 3.2. In it, we have ten observations made for each

one of the five sets (box on the left), where H stands for “heads” and T for “tails”.

In the first stage, indicated by number 1, we guess two initial values for 64 and 6 (64 =
0.60, 6p = 0.50). In stage number 2, the expectation step (or E step) is used to calculate the

probability of each coin having generated the observations for each set. To make it clearer,
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Expectation maximization

E-step
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Figure 3.2: Example of using the EM algorithm to estimate the probabilities of each coin generat-
ing the observations of heads and tails. Extracted from (DO; BATZOGLOU, 2008).

consider the second row of the table on the right, where 9 “heads” and 1 “tails” were observed.

Using Equation 3.6, we get the following probability values for coins A and B:

10 _
pa(9) = < 9)9A( —6,)17%%0.04, (3.7)
10 10-9
P9 = 4 05(1—65)'972 ~ 0.01. (3.8)
Normalizing it,
% g0 (3.9)
PA= 0041001~ '
0.01
5= 5041001 2 ©.10)

These two values (0.80 and 0.20) are the ones that appear on the left side of the second
row in stage 2. Using the observations made in this particular set (9 “heads” and 1 “tails”),
we can calculate the values of the pair (“heads,” “tails”) for coins A and B as (9 x 0.8 = 7.2,
1x0.8=0.8)and (9 x0.2=1.8, 1 x0.2=0.2). This same rationale is repeated for the other

sets.

In stage 3, the maximization step (or M step) consists of calculating the maximum likeli-
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hood estimation of parameters 684 and 6p in order to update their values. This is done based on
the proportion of “heads” observed when flipping the coins. So for coin A, the new value of 6,4

(say éA) is

. 21.3
=———=0.71. 3.11
47213486 G-11)
Similarly, the new value for 6p (say §B) is
~ 11.7
=——=0.58. 3.12
5T 117184 (3-12)

These updated values are then used as input for another iteration of the EM algorithm. This
process continues until convergence, i.e., when the difference between 64 and éA and Og and éB
in two consecutive iterations is smaller than €. In Figure 3.2, the final values were estimated as
04 ~ 0.80 and Op ~ 0.52, as shown in stage 4. It is important to note that in this example the

values of 64 and Op were initially unknown, whereas the observations of each flip were not.

Formally, consider a full set of samples X = {x1,...,x,} extracted from a single distribution.
Suppose, however, that part of the data is missing. This way, each individual sample can be
described as x;, = {xkp,ka}, where x;, are the present data and x,, are the missing data. For
ease of notation, we can separate these two kinds of data (present and missing) into two sets as
X), for the present and X,,, for the missing in a way that the complete data is X = X, UX,,. From

this point, we can write the following function (DUDA; HART; STORK, 2000)

0(6;0") = Ex,, [In p(X,, Xm; 0)|X,; 0'], (3.13)

73]

where ¢ is the number of the current iteration and the semi-colon (*;”’) is used on the left side of
Equation 3.13 to indicate that Q(6;6") is a function of 6 with 6’ fixed. On the right-hand side
of Equation 3.13, the semi-colon indicates that the expected value is calculated regarding the

missing data, assuming parameters 6 fully describe the distribution.

A simple way to interpret Equation 3.13 is the following. The parameter vector 6’ is taken
as the best estimation for the full distribution as far as iteration ¢, and 0 is a candidate vector
that may offer an even better estimation. Given that, the data likelihood is calculated on the
right-hand side of Equation 3.13, including the missing data X,,, marginalized to the best de-
scription of the distribution at the moment (given by 6). Different candidate vectors 6 will
output different likelihood values. The EM algorithm selects the best one, which then becomes
0'*!. This new vector is related to the maximum value of function Q(8;8"). Letting C be a
convergence criterion, this process will be repeated until Q(6'*1;0") — Q(6";0'"!) < C or a

given number of iterations is reached. More information about the EM algorithm is described
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in Appendix A.

In this work, the notation of the complete data vector is given by
C= T 3.14
J (Xla"'vaazla"wZNaul?"'qu) ) ( )

where z1,...,zy are the labels of each sample vector x; and z;; can assume a value between 0
and 1, depending on whether or not sample x; was generated by the i-th mixture component.
Given the definition of the Student’s t-distribution in Equations 3.1, 3.2 and 3.3, it is important
to note that the augmented data z;, with i = 1,...N, are still incomplete, since the covariance
matrix of each component depends on the degrees of freedom (GEROGIANNIS; NIKOU; LIKAS,

2009). For this reason, the complete data vector also includes uy,...,uy.

For the ¢ + 1-th iteration of the algorithm, the E step is used to calculate the posterior

probability of sample x; belonging to the i-th component of the mixture model

Sij T yK ! gt Y oyt (3.15)
m:lwmp (X.I’nunw m» vm)
and the expectation of the weights for each observation as
t+1 _ vlt_'_d (316)

{22t

We incorporated neighborhood information in our model as proposed by (NGUYEN; WU,
2012; ZHANG; WU; NGUYEN, 2013; GREBOL, 2013). Let v be a voxel and let N, be the neigh-
borhood of v with radius  and size s = (2 x r+ 1)%™, where dim is the number of dimensions

of the image (in the context of 3D images, dim = 3). Then, in Equation 3.15, wﬁ is calculated as

W= (3.17)
where . Dt
”i _ Eip(Xj;[.Li,Zi,V-) (3.18)
2K wp(xjul, X, V)

and X, € N,. This is the mean field approximation of a Markov Random Field (ZHANG, 1992).
In other words, for each sample X, w: was calculated as the average between the ith component
weight and the posterior probability of the neighborhood of x; belonging to the ith component

as well.

In the M step, the maximization of the log-likelihood of the complete data provides the



3.2 Expectation—-Maximization for parameters estimation 41

update equations of the mixture model parameters as

1
it = szjzlzﬁj, (3.19)

Nt ot <.
1 2 G 320
l’l'l - ZNZt ut ) ( . )
j %t

T
Sl (xp— pit) (x— i)

N _t
xj-1%ij

1
Tt = (3.21)

The degrees of freedom vl.’ *+1 for the i-th component in iteration # + 1 are calculated in an

iterative manner as the solution for the following equation

v?‘l‘l v?-i-l t d
log( s )—w( S Jrl—log(v’;r )+ (3.22)

=13k <1°g“§j_”§'j> vi+d
+VI A = 07

g 2

Jj=1

where v (x) = 8(lnal;(x)) is the Digamma function.

At the end of the estimation we have the parameters for the mixture model, thus allowing

us to move to the clustering step.

3.2.1 Tissue clustering

After estimating the parameters of the Student’s t-mixture model, the clustering stage is
used to determine the probabilistic mapping between samples and a set of labels in a way that

similar samples can be grouped together (DUDA; HART; STORK, 2000).

The process of clustering each sample to its label z (tissue cluster) is done by associating the
samples to the cluster that maximizes the posterior probability P (z;|x). In other words, given a
sample vector X = (xp,...,xy), a cluster z; with the highest posterior probability for x will be
attributed to the sample. This clustering procedure follows the Bayesian Maximum a Posterior
(MAP) decision rule, given by

<i
P(zi]x) = P(zjx), (3.23)
Zj

wherei=1,...,K, j=1,...,Kand i # j.
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Both sides of the decision rule in Equation 3.23 come from the Bayes theorem (DUDA;

HART; STORK, 2000)
p(X|z; 10,2, V) p(2k)

K p(X|zjs1,2,v)p(z))]
where p(zx) is the prior probability and p(x|z; ,X,V) is the the Student’s t-probability density

P(z]x) = (3.24)

function (PDF) for cluster k. Parameter K indicates the number of components in the mixture

model.

By the end of this process, each voxel in the image has a cluster associated with it, thus

generating a segmented image.

3.3 Supervised learning

The goal of identifying which lesions are active or not can be seen as a classification task.
There are many approaches that can be used in this scenario, such as probabilistic classifiers,
logistic regression, support vector machines and decision trees (FATIMA; PASHA, 2017). There
are also deep learning techniques that have been readily adopted in the medical imaging field
with promising results (LITJENS et al., 2017), but their caveat is that they require a large dataset

to be trained on.

When working on classification tasks, two important aspects have to be taken into account:
bias and variance. We did not have access to a large number of patients, which made deep learn-
ing techniques, which often have thousands of parameters to estimate, unfeasible. The model
would overfit the problem, leading to low bias and high variance. On the other hand, given
the nature of our problem, non-deep learning techniques could potentially miss intrinsic rela-
tionships among features, leading to high bias and low variance - underfitting. To circumvent
this tradeoff, we decided to use an ensemble tree-based classifier (DUDA; HART; STORK, 2000).
Ensemble classifiers are known for using a combination of learners to improve the classification
outcome. There are two main ensemble approaches regarding model construction: bagging and

boosting.

A well-known ensemble tree-based classifier is random forest (DUDA; HART; STORK, 2000).
It uses random sampling - also known as bootstrapping - with replacement, meaning some ob-
servations may be repeated in each new training dataset, to independently build N learners with
various depths. Each tree then outputs a class for new samples, and the class with the majority
of votes is assigned to the sample itself. Bootstrapping the data plus using the aggregate to

make a decision is an example of bagging. An example of a random forest classifier is shown
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in Figure 3.3.

New
sample/

o

Figure 3.3: Random forest example. Each leaf is colored in green. Assuming the training dataset
was comprised of classes A and B and we wanted to classify a new sample, the majority class for
this example would be A. Note that each tree is independently built and all trees have different
depths.

On the other hand, gradient tree-based boosting algorithms start with a very simple learner
- just a leaf - and iterates using the residual errors of previous steps as targets for training. They
also make use of bootstrapping, except that each new training dataset is not randomly built:
weights are assigned to every sample and updated on every iteration as a way of choosing the
observations that were not correctly classified in the previous steps. An example of a gradient

tree-based boosting classifier is shown in Figure 3.4.

Both approaches reduce variance and provide more stable models. However, boosting in-
herently reduces bias as well (DUDA; HART; STORK, 2000). That is why we decided to use
XGBoost (CHEN; GUESTRIN, 2016), a boosting-based algorithm which works by reducing both
variance and bias to classify active and nonactive lesions. Details of this classifier are given in

the next section.

3.3.1 XGBoost classifier

The classifier used in this work was XGBoost (CHEN; GUESTRIN, 2016), a gradient tree
boosting algorithm. The main goal of boosting is to improve the accuracy of a given learning

algorithm by using an ensemble of weak learners whose joint decision rule has an arbitrarily
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Figure 3.4: Gradient boosting example. Each leaf is colored in green. Assuming the training
dataset was comprised of classes A and B and we wanted to classify a new sample, the class for this
example would be the combination of the trees. Apart from the first one, note that every other tree
has the same depth and they are combined to get the actual class output.

high accuracy on the training set (DUDA; HART; STORK, 2000). We chose XGBoost due to its
remarkable performance in classification contests (BENNETT; LANNING, 2007) and optimized

structure that makes it scalable.

Mathematically, given a dataset with n samples, indexed by i = 1...n, and m features D =
{(xi,yi))}, where |D|=n, x; € R™ and y; € R, a tree ensemble model is comprised of the sum

of K functions to predict the output
K
fi=9 (i)=Y felxi), (3.25)
k=1

where fi € F = {f(X) = wyx) } With ¢ : R” — T and w € R” is the space of trees. In this
context, ¢ is related to the arrangement of each tree that maps a sample to its corresponding leaf
index and T is the number of leaves in a tree. Therefore, each f} is related to one particular tree

q and leaf weights w.

In order to learn the functions that will describe the model itself, the following loss function
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is used as the objective

Z0)=Y 1y + Y. Q). (3.26)
i k
where
1
Q(fi) = 7T + 54wl (327)

[ is a differentiable loss function and € is a penalty term to avoid selecting complex models.
The goal is to keep it simple and highly predictive at the same time. We can think of gradient

boosting in the following way:

1. Fit a model to the data, %] (x) = y.
2. Fit a model to the residuals (i.e., the loss), i (x) =y — %] (X).
3. Create a new model, .%; (x) = %] (x) + h; (x).

4. Repeat steps (1)-(3) until a number M of trees or a sufficiently small difference between

loss functions of subsequent steps is reached.

In other words, the algorithm trains successive component classifiers and the output for a test
sample x is based on the outputs of these very same components. The scalability of XGBoost
is achieved by analyzing and optimizing cache access patterns, data compression and sharding,
which are described in more detail in (CHEN; GUESTRIN, 2016). Regarding parameters, we set
the maximum depth of each tree to 1 and the number of estimators to 5000 in order to avoid

specialization of learners and provide enough of them to get an accurate joint decision rule.

3.4 Textures as features for classification

Texture is an intuitive concept that can be defined as a series of homogeneous visual patterns
that are observed in a wide range of materials and surfaces (HALL-BEYER, 2017). Textures are
usually described as fine, coarse, granulated or smooth. The quantification of textures has been
studied for decades, and there are several different techniques available to extract and describe
them in a mathematical manner. In this work, we used two well known texture algorithms to
extract relevant features and aid in the distinction of active and nonactive multiple sclerosis
lesions. We opted for these techniques due to their wide applicability in medical images and
their simple, yet powerful ability to distinguish pathologies (CASTELLANO et al., 2004; ZHANG
et al.,, 2008; ROY; BHUIYAN; RAMAMOHANARAO, 2013). A description of both these techniques

are presented in the following sections.
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3.4.1 Gray Level Co-Occurrence Matrix

Gray Level Co-Occurrence Matrix (GLCM) was first introduced by (HARALICK; SHAN-
MUGAM; DINSTEIN, 1973) and has been widely used in MR image segmentation and classifi-
cation problems ever since (LOIZOU et al., 2014; MICHOUX et al., 2015; ARDAKANI et al., 2017;
DOYLE et al., 2018). GLCM computes the joint probability of observing two voxels with co-
occurring gray level intensities within a given distance d and direction 6. To better understand
how GLCM works, a schematic for a 2D example is shown in Figure 3.5, where the outer orange

rows and columns represent the i and j indexes of the matrices.

o] 1 2 3

oo | 1|1
BEEE olo|1]1
0| 21]2]|2
2| 21]3|3
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2 2 1 0 2 0 0 0
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0 0 0 1 0 0 1 1
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Figure 3.5: Example of how a GLCM matrix is created. (a) Reference image, (b) Gray level in-
tensities from reference image, (c) Eastern GLCM, (d) Western GLCM, (e) Horizontal GLCM, (f)
Normalized GLCM.

Figures 3.5 (a)-(b) represent an image and its gray level intensities, respectively. To get
textural information, we need to define an ordering (i.e., left to right, right to left, up to down and
down to up), a direction (usually 0, 45, 90 and 135 degrees) and look at the spatial relationship
between neighboring pixels. In this example we will focus on the horizontal spatial relationship
(left to right and right to left - also called eastern and western) within a pixel distance of d =

1, meaning we will simply look at the co-occurrence of gray levels that are 1 pixel apart in
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the horizontal direction. In this sense, Figures 3.5 (c)-(d) represent the number of times a
pair of gray level intensities were observed 1 pixel apart - from left to right and right to left,
respectively. For instance, cell (0, 1) in Figure 3.5 (c) holds the number of times a gray level of
1 occurred to the right of a gray level of 0 in our reference image, whereas cell (0,1) in Figure
3.5 (d) holds the number of times a gray level of 1 occurred to the left of a gray level of O in the

same reference image.

To get the full horizontal spatial relationship we sum the eastern and western matrices
(which are the transpose of one another), resulting in the matrix shown in Figure 3.5 (e). To get
the actual joint probability, we simply normalize this matrix by the sum of all of its elements,
finally getting to the normalized GLCM in Figure 3.5 (f). Each cell in the normalized GLCM
represents the probability of observing a particular pair of gray level values occurring in a

specific combination of direction and distance.

With the normalized GLCM in hand, we can derive a number of features to quantitatively
explore the textural characteristics of a given image. In this work, we extracted the following

eight features from each GLCM. In the following computations:

* g(i,j) is the element in cell (i, j) of the normalized GLCM,;
s u=Y,;;i-g(i,j)=X;;Jj-g(iJ) is the weighted pixel/voxel average;

co=Y;;(i— w)*.g(i,j) = Yij(ji— 1)%.g (i, ) is the weighted pixel/voxel variance.

1. Energy: measures the local uniformity of texture. The higher the energy value, the bigger

the uniformity and organization of the texture.

Energy = Zg (i,j)* (3.28)

ij
2. Entropy: expresses the level of organization of a texture. A completely random distribu-
tion of gray level intensities in the image volume would have very high entropy, while
an image with the same gray level across all pixels/voxels would have very low value of

entropy.

g(i, )log,g(i,j) ifg(i,j)#0
Fintropy Yijg(i,j)logyg(i,j) ifg(i,j)# (3.29)

0 if g(i,/) =0

3. Correlation: measures the linear dependency of gray level values in the co-occurrence

matrix.
(i—w)(—m)g(,J)

Correlation = Z s

i,j

(3.30)
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4. Inverse difference moment (IDM): measures the homogeneity of the image. IDM will be

low for inhomogeneous images and high for homogeneous images.

1
IDM =) ———¢(i.}) (3.31)
T 2 )
iy 1+ (i—J)
5. Inertia (or contrast): measures local gray level variation in the GLCM matrix. If the
neighboring pixels/voxels in the texture are very similar in their gray level values, then

the contrast in the image is very low. Contrast is zero for a constant image.

Contrast = Z(i—j)zg(i,j) (3.32)
]
6. Cluster shade: feature of skewness of the matrix and is linked to the perception of unifor-

mity in an image. When this feature is high, the image is asymmetric.

Cluster shade:Z((i—u)+(j—u))3g(i,j) (3.33)
ij
7. Cluster prominence: this feature is also related to the perceptual symmetry of an image.

When the cluster prominence value is high, the image is less symmetric.

Cluster Prominence = Z (=) +(G— ) g, )) (3.34)
iJ
8. Haralick correlation: original correlation measure designed by Haralick in 1973. Mea-

sures the linear dependence between pixels/voxels relative to each other.

Yo, (i) g, j)—u?

Haralick = 3
(o)

(3.35)

The calculation of the contrast feature is shown in Figure 3.6. The matrix depicted in Figure 3.6
(a) is simply a representation of the (i — j)2 part of Equation 3.32, and the normalized GLCM
is shown in Figure 3.6 (b). We perform a cell-wise multiplication of both matrices, getting to
the contrast matrix shown in Figure 3.6 (c). Finally, to get the actual image contrast we sum all

the contrast matrix cells, thus yielding a value of 0.586.

Of course, the example used in Figure 3.5 (a) is small for the sake of simplification. In
real world problems we extract textural features from windows that traverse the whole image,
as shown in Figure 3.7. Each center pixel/voxel of a window is then assigned a different value
according to each texture, thus creating different texture maps (i.e., contrast map, energy map,
entropy map and so on). The way each of these values are calculated, however, follow the exact

same rationale shown in Figures 3.5 and 3.6.
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Figure 3.6: Example of how the GLCM contrast feature is calculated. (a) Part of contrast equation,
(b) Normalized GLCM, (c¢) Contrast matrix and sum.

3.4.2 Run Length Matrix

The Run Length Matrix (RLM) (CASTELLANO et al., 2004) counts the number of times two
(or more) voxels with the same gray level intensity occur in a given direction and orientation.
Features from RLLM are mostly related to the fineness and coarseness of a given image rep-
resented by long runs and short runs, respectively. To better understand how RLM works, a
schematic for a 2D example is shown in Figure 3.8, where the outer orange rows and columns

represent the indexes of the matrices and the purple rows represent the length of each run.

Figures 3.8 (a)-(b) represent an image and its gray level intensities, respectively. The same
ordering and direction mentioned in the previous section regarding GLCM apply to RLM as
well. In this example we will also focus on the horizontal spatial relationship within a pixel
distance of d = 1. In this sense, Figure 3.8 (c) represents the number of times each run length
occurred for a given gray level intensity. For instance, cell (0,1) holds the number of times
a gray level of 0 was observed in a run length of 1 (i.e., the number of times the gray level
intensity itself occurred in the image), whereas cell (0,2) holds the number of times a gray
level of 0 was observed in a run length of 2 (i.e., the number of times a pair of zeros occurred
in the image). Note that we no longer refer to right to left or left to right; once we define a
direction - in our example, horizontal (or O degree) - we solely count the number of times each

run length occurs for each gray level intensity in that particular direction. Finally, we normalize
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Figure 3.7: Example of a 3 x3 moving window in a 2D case.

the RLM matrix by the sun of all of its entries, yielding the matrix shown in Figure 3.8 (d).

We extracted ten features from each RLM. In the following computations, g (i, j) is the
element in cell (7, j) of the normalized RLM, i is related to the pixel/voxel intensity and j to the

length of the run:

1. Short run emphasis (SRE): measures the distribution of short runs. SRE is expected large

for fine textures.

SRE=Y & (]{,21 ) (3.36)
"

2. Long run emphasis (LRE): is a feature that measures distribution of long runs. LRE is

usually large for coarse structural textures.

LRE =Y ¢(i,j) j* (3.37)
i,j

3. Gray level non uniformity (GLN): measures the similarity of gray level values throughout
the texture. GLN is usually small if the gray level values are alike across the whole

texture. 5
GLN =) (Zg (i,j)) (3.38)
P\

4. Run length non uniformity (RLN): measures the similarity of length of runs throughout
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Figure 3.8: Example of how a RLM matrix is created. (a) Reference image, (b) Gray level intensi-
ties from reference image, (c) RLM with run lengths 1, 2 and 3 and (d) Normalized RLM.

the image. RLN tends to be small if the run lengths are alike across the image.
2
RLN=Y)" (Z g (i, j)) (3.39)
i \i

5. Low gray level run emphasis (LGRE): this feature is orthogonal to SRE and its value

increases when the texture is dominated by many runs of low gray value.

g(i, )
i2

LGRE =)
hJ

(3.40)

6. High gray level run emphasis (HGRE): this feature is orthogonal to LRE and increases

when the texture is dominated by many runs of high gray value.

HGRE =Y ¢ (i, ) (3.41)

i.J
7. Short run lowgray level emphasis (SRLGE): this is a diagonal measurement that combines
SRE and LGRE. It increases when the texture is dominated by many short runs of low

gray value.
8

i, j)
S (3.42)

SRLGE = Z i(2]

i,j

8. Short run high gray level emphasis (SRHGE): this feature is orthogonal to SRLGE and
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Figure 3.9: Example of how the RLM SRE feature is calculated. (a) Part of SRE equation, (b)
Normalized RLM, (¢) SRE matrix and sum.

LRHGE and increases when the texture is dominated by short runs with high intensity

levels. o
sRHGE = Y §1:)7
2y

(3.43)

9. Long run low gray level emphasis (LRLGE): complementary to SRHGE and increases

when the texture is dominated by long runs that have low gray levels.

)
LRLGE = Y 8207 (3.44)

L
10. Long run high gray level emphasis (LRHGE): complementary to SRLGE and increases

with a combination of long and high gray level runs.

LRHGE = Y ¢ (i, j) i (3.45)
irj

The calculation of the SRE feature is shown in Figure 3.9. The matrix depicted in Figure 3.9 (a)

is simply a representation of the — part of Equation 3.36, and the normalized RLM is shown

()’
in Figure 3.9 (b). We perform a cell-wise multiplication of both matrices, getting to the SRE
matrix shown in Figure 3.9 (c). Finally, to get the actual image SRE we sum all the SRE matrix

cells, thus yielding a value of 0.724.

As mentioned in Section 3.4.1, there are two main parameters regarding textures: distance
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and orientation. In 2D, four orientations (or offsets) are commonly used when working with
textures (0, 45, 90 and 135 degrees). In 3D, the number of offsets scales analogously to 13.
The distance parameter defines the window size that will traverse the image. Smaller windows
capture finer details at the expense of global information, and vice versa. Examples of 2D and

3D directions with distance d = 1 are shown in Figure 3.10.

(0, +1, +1) '(+1. +1, +1)

D12
(-1 +1,-1) (0, +1,-1)

D6
(+1, +1,-1)

>
&

(b)

Figure 3.10: Number of directions for (a) 2D and (b) 3D with distance d = 1. Extracted from
(ORLHAC; NIOCHE; BUVAT, 2019).

3.5 Metrics used for assessment

In this section we present the metrics we used to assess the segmentation, feature enhance-

ment and classification steps.
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3.5.1 Segmentation metrics

Five different metrics were used to assess the spatial and volumetric agreement between the
segmentation performed by our proposal and the manual delineations done by experts. The
metrics were the Dice Similarity Coefficient (DSC) (DICE, 1945), true positive rate (TPR),
false positive rate (FPR), volume difference (VD) and Pearson’s correlation coefficient (GAYEN,
1951).

The DSC metric is defined as the ratio between the number of voxels assigned as MS lesion
by the automatic segmentation and the expert and the average number of voxels assigned as
a lesion in both methods. According to Bartko (1991), a DSC > 0.7 indicates a good spatial

agreement between images.

More formally, the DSC, TPR, FPR and VD are mathematically described in Table 3.1.

Metric Acronym Equation Interval
Dice Similarity Coefficient ~ DSC sz [0,1]
True Positive Rate TPR TPZ% [0,1]
False Positive Rate FPR % [0,1]
Volume Difference VD 11— %] [0,1]

Table 3.1: Metrics used to quantitatively assess the automatic segmentation. TP stands for true
positives, FP stands for false positives, FN stands for false negatives, V., is the volume of the
segmentation resulting mask and V7 is the volume of the expert’s manually delineated mask.

Finally, the Pearson’s correlation coefficient (BLAND, 2000) was used to analyze the volu-
metric agreement between the automatic segmentation and the manual delineation. The value of
this particular metric lies in the interval [—1,+1] and it is defined as a linear correlation metric
between two variables. Values of —1 and +1 indicate complete negative correlation and com-
plete positive correlation, respectively, while a value of 0 indicates that there is no correlation
between the two variables being analyzed. The coefficient formula, commonly called r, is given
by

e i (o — %) (vi — )
VEL (=02 T (- 5)?

where n represents the number of samples, x; and y; represent the variables and X and y are their

: (3.46)

means, respectively.

A metric that is commonly associated with the correlation coefficient if the p-value, that

helps decide if the observed data have statistical significance. The p-value is associated with
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the following question: if there is no correlation between variables x and y, what is the chance
that a random sampling would result in a correlation coefficient as far from zero as observed in
the experiment? If the p-value is small, we can reject the idea that the correlation was caused
by random events (HUBBARD, 2004). As a comparison parameter, a significance level threshold
was defined as oo = 0.01. This way, if p-value < a, then it is possible to state that a random
sampling does not cause the observed values and, consequently, the correlation stands true

(NUZZO, 2014).

3.5.2 Feature enhancement metrics

Regarding the image enhancement process and white matter mask estimation mentioned in
Chapter 1, we used other four metrics to quantitatively assess how well our approach was in

enhancing MS lesions. The first one was the intensity profile distinction (IPD), calculated as

1PD — (average(lesions)

- — 1) x 100, (3.47)
average(tissue)

in which we simply divide the average intensity of lesions by the average intensity of a tissue
of interest (white matter or gray matter) in a particular image and then scale it in terms of
percentage. Thus, we can determine how brighter, percent-wise, the lesion cluster is compared

with other tissues.

We also used the well-known sensitivity and specificity metrics to measure the accuracy of

our white matter mask estimation. Sensitivity (SS) is defined as

g __ TP (3.48)
(TP+FN)

and in the context of this work measures the proportion of WM and lesion voxels that were
correctly identified as such during the estimation.

Specificity (SP) is defined as
TN

SP= ———F——, 3.49
(FP+TN) (349
where TN represents the number of true negatives. In this work, SP measures the proportion of
non-WM and non-lesion voxels that were correctly identified as such. Both SP and SS fall in

the interval [0, 1] and similar to DSC, the closer they are to 1, the better.

Another metric we used to assess the white matter mask estimation was the lesion intersec-

tion (LI), defined as

1] — |Lesiongr NMaskegim|

- x 100. (3.50)
|Lesiongr|
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Similar to IPD, LI is also calculated in terms of percentage and provides a quantitative tool

to analyze the lesion load that was kept during the white matter mask estimation.

3.5.3 Classification metrics

Finally, to assess the classification of active and nonactive voxel lesions we used the speci-

ficity, sensitivity and F1-score metrics defined in Table 3.2.

Metric Evaluation
Specificity %}
Sensitivity %\[

Fl-score 2FPrecisionxRecall
Precision+Recall

Table 3.2: Metrics used to assess classification of active and nonactive voxel lesion. TP, FP and FN
are true positives, false positives and false negatives, respectively.

The ratio of active to nonactive lesions in our databases (which will be described in more
detail in Chapter 5) was roughly 1:3, i.e., the active voxel class had a representativity of approx-
imately 25%. Given this imbalance and the paramount importance of correctly detecting active
lesions, the sensitivity and F1-score metrics bear more meaning to the assessment of classifi-
cation performance. This is due to the fact that the former is related to the actual ground truth
and the latter provides a better grasp on the overall performance - which can be distorted by the

uneven distribution among both classes of interest.

We also conducted a lesion-level analysis. To do so, the active and nonactive voxels were
grouped into connected components, thus indicating how many actual lesions were present
in each patient. Given the classification probability of each lesion voxel, we calculated the
average probability of any given lesion component being active or nonactive. Let C be a lesion
component and p the probability of a given lesion voxel inside C. If the average probability
of component C was equal to or greater than 50%, we ranked it as being active; otherwise, we

ranked it as nonactive, as

Nonactive, ﬁ Y ppec <0.5

Class = 3.51)

Active, otherwise.
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3.6 Final considerations

This chapter presented detailed information about the Student’s t-mixture model, the Expectation-
Maximization (EM) algorithm and how the latter was used to estimate the parameters of the
former, along with how the maximum a posteriori (MAP) rationale is used for the actual clus-
tering process. Also, a description of the XGBoost classifier, Gray Level Co-Occurrence Matrix
and Run Length Matrix texture algorithms was provided. Moreover, the metrics used for the
assessment of segmentation, feature enhancement and classification were also presented and

detailed.

As mentioned in previous chapters, we decided to use the Student’s t-mixture model due to
the distribution’s intrinsic heavy tail, which makes it less susceptible to the effect of samples
that are too far off from the cluster centroids in the feature space. And since a Student’s t-
distribution tends to a Gaussian distribution when v — oo, it becomes easy to generalize it and

compare the results from both distributions if necessary.

Textures are commonly used features for image classification and segmentation, and we
opted for using GLCM and RLM because of their simplicity and extensibility to a three-
dimensional space. We leveraged their spatial and neighborhood information to distinguish
active and nonactive multiple sclerosis lesions, which will be further explored in the next chap-

ters.



Chapter 4

LITERATURE REVIEW

This chapter presents a comprehensive review of works in the literature focused on the

automatic segmentation and classification of multiple sclerosis lesions.

4.1 Image segmentation using supervised and unsupervised
techniques

Many works based on probability theory for MR image segmentation have been proposed
in the literature in the past decades (BISHOP, 1995, 2006; LI, 2009; MCLACHLAN; PEEL, 2000;
STANFORD, 1999). There is a wide range of approaches regarding automatic MS lesion segmen-
tation and classification (GARCIA-LORENZO et al., 2013; X. et al., 2012), mainly because lesions
do not have any specific shape, size or location. Moreover, there are many different protocols
for image acquisition, which poses an extra challenge and indicates that MS lesion segmenta-
tion and classification in MRI are challenging problems and are open to new approaches in the

medical image processing field.

One of the most commonly used unsupervised techniques for segmentation purposes is the
Gaussian mixture model (GMM) (JAIN; DUIN; MAO, 2000; TITTERINGTON; SMITH, 1985), which
has a strong mathematical foundation and is very similar to the model explained in Chapter 3,
Section 3.1. To estimate the parameters of a GMM, the EM algorithm (Chapter 3, Section 3.2)
is widely used, but since it is an iterative technique used to estimate the parameters of a model
via maximum log-likelihood estimation, it is likely to fall in local minima, making it sensitive to
initialization. This caveat must be taken into consideration when using this approach (MOORE;
MCCABE, 1999). Some strategies have been proposed in the literature to mitigate the initial-
ization sensitivity of the EM algorithm and therefore minimize errors in image segmentation.

Some alternatives include a) initializing the model multiple times and selecting the set of pa-
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rameters that minimize a cost function (DUDA; HART; STORK, 2000), b) using the output of the
K-Means algorithm (HARTIGAN; WONG, 1979) as input for the parameter estimation (ZHANG;
WU; NGUYEN, 2013) or c¢) probabilistic anatomical atlases to calculate statistical distributions
of brain tissues (FREIRE; FERRARI, 2016), for the specific problem of MR brain image segmen-

tation.

As mentioned in Chapter 3, one of the main advantages of the Student’s t-distribution com-
pared to GMM is the fact that the former has a heavy tail, making it less susceptible to noise
(CHATZIS; KOSMOPOULOS; VARVARIGOU, 2009), which tends to dislocate the center of a Gaus-

sian distribution and overestimate its dispersion.

In Nguyen and Wu (2012), the authors proposed a Student’s t-mixture model to segment
brain tissues in MRI and incorporated spatial information using the Dirichlet distribution (BLEI;
NG; JORDAN, 2003). They called their approach Student’s t-mixture model spatially constrained
algorithm (SMM-SC). The authors used the gradient descent technique (BISHOP, 2006) to es-
timate the parameters of their model. According to them, their approach was quantitatively
better than seven other segmentation techniques: GMM (MCLACHLAN; PEEL, 2000), Student’s
t-mixture model (SMM) (PEEL; MCLACHLAN, 2000), Mean Field Algorithm (MEANF) (FORBES;
PEYRAR, 2003), Spatially Variant Finite Mixture Model (SVFMM) (BLEKAS et al., 2005), Modi-
fied Fuzzy C-Means (MFCM) (AHMED et al., 2002), Fuzzy and Noise Tolerant Adaptive Segmen-
tation Method (FANTASM) (PHAM, 2001) and Fuzz C-Means based Hidden Markov Random
Field (HMRF-FCM) (CHATZIS; VARVARIGOU, 2008).

The spatial information, modeled by the Dirichlet distribution, incorporated the relationship
between neighboring pixels into the parameters of the distribution itself and was represented as
a linear smoothing filter. The classification of each pixel in the authors’ proposal followed three
steps: first, they analyzed its neighborhood (in a n x n window), then averaged the probabil-
ity of each neighboring pixel belonging to a given class and, finally, used the neighborhood

information along with the gray level intensity of the central pixel of the window to classify it.

The estimation of the model parameters (both for the Student’s t and Dirichlet distributions)
was made using the iterative gradient descent algorithm. The initial values were provided by
the user and used as a starting point. Then, each iteration maximized a log-likelihood function

and the whole process halted when a specific convergence value was met.

The authors used synthetic, simulated and real images to test the accuracy of their ap-
proach. The metrics used to quantitatively assess the results were the misclassification ratio
(MCR) (ZHANG; SMITH; BRADY, 2001) and the Dice similarity coefficient (DSC) (DICE, 1945).
The simulated images came from the BrainWeb database (AUBERT-BROCHE et al., 2006), and the
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real ones came from the Center for Morphometric Analysis at Massachusetts General Hospital
(Massachusetss General Hospital, 2012). An important point to highlight is that even though simu-
lated and real images represented a volume (the human brain), the segmentation proposal was
to perform the segmentation in a slice-by-slice manner, i.e., 2D. For every set of images, the

author’s approach had the lowest MCR average compared to other techniques.

One main advantage of their work was that they made use of a probability distribution
that had few parameters to be estimated. Using a relatively simple method, they were able
to get good MCR results and outperform the other segmentation approaches. However, the
author’s technique needed to know the number of clusters in the images beforehand. Also,
the neighboring window size used to bring context information to the algorithm can have a
significant influence on the segmentation outcome. Another limitation of this technique lied
in the fact that the segmentation itself was performed in a slice-by-slice manner, which can

interfere with the estimation of pathology volumes such as MS lesions.

In Zhang, Wu and Nguyen (2013), the authors used a weighted Student’s t-mixture model
with spatial and clustering information to perform image segmentation and mitigate classifica-
tion errors caused by noise. The authors compared their results with five other techniques: SMM
(PEEL; MCLACHLAN, 2000), Fuzzy Local Information C-Means (FLICM) (KRINIDIS; CHATZIS,
2010), SVFMM (BLEKAS et al., 2005), HMRF-FCM (CHATZIS; VARVARIGOU, 2008) and SMM-
SC (NGUYEN; WU, 2012). Comparatively, the authors’ approach, called Weighted Student’s
t-mixture model (WSMM), yielded the best quantitative results for the MCR metric and the
probabilistic rand (PR) index (UNNIKRISHNAN; PANTOFARU; HEBERT, 2005).

According to the authors, their proposal differed from other approaches, including from
their previous work (NGUYEN; WU, 2012), in two aspects. The first one was that every pixel now
had its own prior probability, which was dependent on its neighborhood. Their approach con-
sidered the spatial relationship between neighboring pixels and the link between spatial infor-
mation and clustering information, which was incorporated into the technique using a Markov
Random Field (MRF) (ZHANG; SMITH; BRADY, 2001). The second aspect regarded the weight
each neighboring pixel had on the central one; the farther they were from the center, the smaller

was their influence.

The estimation of the model parameters was achieved using the EM algorithm. The K-
Means algorithm was used for initialization. As mentioned before, this is a commonly used
strategy to mitigate local minimum problems. EM was then used to refine the parameters to

accurately describe the clusters in the images.

The authors applied their technique to both synthetic and real images (MARTIN et al., 2008).
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As mentioned before, they used the MCR metric and the PR index to assess the segmentation

quality. For every image, the WSMM algorithm outperformed the other techniques.

However, a significant point to highlight is that the authors used only 2D images. For
this reason, it was not possible to state if their technique would perform well in 3D medical
images. Moreover, even though the authors’ proposal achieved the best results compared to
other techniques, one can argue that the gains in accuracy were not significant enough to justify

the increase in the model’s complexity.

In Simdes et al. (2013), the authors used a GMM with context information to segment WM
hyperintensities in FLAIR images. They used 40 images from a trial conducted at the University
Hospital of Essen, in Germany. The images were divided into three groups according to their
lesion load: small load (< 1Ocm3), moderate load (> 10cm? and < 3Ocm3) and severe load
(> 30cm?). The authors compared their results with manual annotations provided by an expert
and with other automatic segmentation techniques (KHADEMI; VENETSANOPOULOS; MOODY,
2012; CHEN; ZHANG, 2004).

First, the images were preprocessed for skull stripping and correction of inhomogeneities
caused by bias field, which is a phenomenon that causes similar regions to appear with different
intensities in MRI. Then the segmentation was performed using GMM with gray level intensity
and context information. The parameters were estimated by the EM algorithm. In this case, the
authors defined three clusters: cerebral spinal fluid (CSF), white matter/gray matter (WM/GM)
and hyperintensities in white matter (WMH). At the end of the whole pipeline, each voxel was

clustered into one of these three clusters.

Using DSC, overlap fraction (OF) and extra fraction (EF) (ANBEEK et al., 2004), the au-
thors observed that their approach presented a high correlation with manual annotations (DSC
values above 0.70 for moderate and severe load cases) and outperformed the other automatic
techniques. Comparing to manual annotations, the average DSC values for the small load (18
images), moderate load (13 images) and severe load (9 images) were, respectively, 0.51, 0.70
and 0.84. DSC values above 0.70 indicate a good spatial correlation between the manual anno-
tation and automatic segmentation (BARTKO, 1991). A DSC value below 0.70 for the set of the
small load was expected, since in this case segmentation errors have a greater impact in the sim-
ilarity metric, as already pointed by other studies (ADMIRAAL-BEHLOUL et al., 2005; ANBEEK et
al., 2004; DYRBY et al., 2008).

To further assess their approach, the authors also applied their technique to 23 images from
the MICCAI MS Lesion Segmentation Challenge 2008 (MICCAI MS Lesion Segmentation Team,

2008). In this database, the accuracy of the segmentation is assessed by points, in a scale from
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0 to 100, and a score greater than or equal to 90 is considered to be comparable with a human
expert. Four different aspects weight the score: absolute volume difference between the ground
truth and the automatic segmentation, the average distance between the volumes, false positive
rate and true positive rate. The author’s technique scored 82.005 points, less than 2 points below

the method ranked first at the time the paper was published.

One advantage of the method by Simdes et al. (2013) is that it did not require any align-
ment (registration) procedure since it used only FLAIR images. However, regarding the pre-
processing stage, the authors stated that further investigations would be necessary to suppress
any undesired effects caused by bias field correction and skull stripping in the final segmenta-
tion. Still, the technique proved to be interesting because of a) its simplicity, b) it required only
FLAIR images, c) it was able to outperform other automatic techniques in the literature and d)

it provided a good agreement with manual annotations.

Tomas-Fernandez and Warfield (2015) proposed a segmentation technique based on GMM
and graph-cuts called MOPS. The authors used a population of 15 T1-w, T2-w and FLAIR
MRI scans from healthy subjects as a reference model to detect MS lesions as outliers. The
reference population was segmented into three clusters (i.e., CSF, GM and WM) using GMM.
The EM algorithm was used to estimate the parameters of the model. The authors observed
that the global gray level intensities of these three tissues in healthy subjects had a significant
overlap with MS lesions. To overcome this problem, they decided to couple global intensity
with local intensity by analyzing a window of radius r = 2 around each voxel. By doing so,

lesions differed much more significantly from other brain tissues.

To perform the actual segmentation of MS lesions, the approach by Tomas-Fernandez and
Warfield (2015) aligned the healthy reference population to scans from patients with MS and
selected a set of voxels with a low probability of belonging to CSF, GM and WM (considering
both global and local intensity information). From this initial set, they partitioned it into two
using the Otsu’s thresholding method (OTSU, 1975): a collection of candidate MS lesion voxels
and a set of hyperintense voxels. Then, for the set of candidate MS lesions, the authors applied a
max-flow algorithm (BOYKOV; VEKSLER; ZABIH, 2001) to compute the optimal cut of the desired

graph and thus achieve the final segmentation.

The authors used DSC, lesion true positive rate (LTPR) and lesion false positive rate (LFPR)
to assess their proposal. They applied their algorithm to synthetic and real image datasets. The
synthetic dataset of choice was BrainWeb, using images with mild, moderate and severe lesion
loads. They compared their combined local/global intensity approach with a global intensity

approach only and were able to verify a significant improvement in sensitivity and specificity
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when using the former instead of the latter. The real image dataset of choice was the MS Grand
Challenge Clinical Dataset held at MICCAI 2008 (MICCAI MS Lesion Segmentation Team, 2008).
Their proposal outperformed the other 17 entries at the time, ranking it at the top with a score of

84.5 (as mentioned before, a score of 90 is considered to be similar to an average human rater).

The MOPS technique performed well on the two datasets the authors applied it to and indi-
cated that global intensity approaches suffer from intensity overlaps between MS lesion profiles
and healthy brain profiles, thus making it necessary to incorporate local information to achieve
a better distinction between clusters. The drawbacks of MOPS lie in the fact that it requires a
reference population of healthy subjects, which entails a thorough and robust intensity normal-
ization and image registration procedure, and the voxel lesion probability (i.e., low probability
of belonging to CSF, GM and WM) is defined by the user instead of being automatically esti-

mated.

In Roura et al. (2015), the authors performed MS lesion segmentation using T1-w and
FLAIR images. Their approach was based on two stages. First, they segmented the image into
three clusters (CSF, GM and WM) on T1-w using the SPM8/12 algorithm, which is based on
GMM (ASHBURNER; FRISTON, 2005). Then, they used the GM cluster (the most intense one
among the three) to compute its distribution in FLAIR and selected voxels considered to be

outliers as candidate MS lesions.

The outlier threshold itself was not sufficient to select only MS lesion voxels, so the authors
proposed three post-processing steps to remove false positives and improve the accuracy of their
method. The first step analyzed the percentage of voxels of a candidate lesion lying in WM and
GM over CSF. If more voxels were lying in CSF than in WM and GM, then that lesion was
considered to be a false positive. The second post-processing step analyzed the proportion of
WM in the immediate neighborhood of a candidate lesion voxel; the neighborhood should have
a more significant percentage of WM compared to GM in order to the central voxel be kept in

the lesion cluster. Finally, components with a volume smaller than 3mm?> were discarded.

To evaluate their approach, the authors used DSC, true positive rate (TPR) and positive pre-
dictive value (PPV) and computed them between the ground truth and automatic segmentation.
Like other proposals mentioned before, the authors used the MICCAI 2008 dataset to assess
their approach and compare it with other techniques. They were able to score 82.34 points and,

at the time of submission, were the only ones to use an unsupervised approach.

An important point to highlight is that the authors made their segmentation approach avail-
able through the SPM8/12 toolbox, allowing it to be used by other researchers and physicians.

It was a rather simple approach, and even though it was not able to perform better than other
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techniques (for instance, the procedure mentioned earlier by Tomas-Fernandez and Warfield

(2015)), it can still be used as an initial segmentation that can be improved by another approach.

In Griffanti et al. (2016), the authors created a supervised tool called BIANCA based on the
k-nearest neighbors algorithm for white matter hyperintensity segmentation. Their approach
used the weighting of spatial information, local spatial intensity averaging and multiple image

weights to gather enough features to provide a consistent segmentation.

The k-nearest neighbors (k-NN) algorithm is a method for classifying objects based on the
closest training examples in its feature space. In BIANCA, this feature space was comprised of
intensity and spatial features. Regarding MR image acquisitions, the authors used mainly T1-
w, T2-w and FLAIR images during segmentation. They also used patches to introduce average
local intensity information for each sample. The spatial features were incorporated into the
model using spatial weighting, which was defined by the user. If the weighting was high, then
the model would be trained with samples coming from very similar regions. On the other hand,

a low weighting would make the model to use training samples that could be spatially far apart.

The authors applied their algorithm to two datasets with 85 and 474 participants. Both
datasets were acquired at the University of Oxford. They assessed BIANCA with different
metrics, being the most relevant ones DSC and intra-class correlation (ICC). The authors were
able to observe that using T1-w and FLAIR images provided the best results in terms of high
DSC and lowest cluster-level false positive ratio. Also, they observed that using subjects with a
high load of WM hyperintensities (WMH) and a different number of training points for WMH
(2000) and non-WMH (10,000) yielded the best results.

Direct and indirect comparisons with other works and techniques in the literature were
made, and BIANCA achieved comparable results with all of them. The indirect comparison
comprised works using supervised and unsupervised approaches to segment different patholo-
gies (MS, neurodegenerative diseases, strokes and vascular problems). Direct comparison was
made with three publicly available algorithms (SCHMIDT et al., 2012; DAMANGIR et al., 2012) ap-
plied to the two datasets the authors had access to. In this last scenario, BIANCA outperformed

all the other three techniques.

Overall, BIANCA was able to achieve good results and is currently available as part of the
FSL toolbox!. The drawback of this technique is that it requires labeled data to be trained,
whereas other unsupervised approaches in the indirect comparison presented by the authors

were able to achieve better DSC and ICC scores than supervised ones.

"https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
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In Egger et al. (2017), the authors applied two variations of a segmentation algorithm by
(SCHMIDT et al., 2012) and compared their results with three independent, experienced raters to

verify if the automated segmentation was comparable to manual annotations.

They applied the segmentation algorithm to a dataset of 50 T2-w images of patients with
Relapsing-Remitting Multiple Sclerosis (RRMS) and compared the results with the other three
raters. To do so, they used the DSC and ICC metrics to provide a quantitative way to compare
the outcomes. They were able to verify a strong correlation between manual and automated
lesion segmentation (ICC = 0.958 and DSC = 0.60), which was not statistically different from
inter-rater correlations (ICC = 0.949 and DSC =0.66). They also observed a significant vari-

ability regarding the number of lesions found by the automated algorithm and human raters.

The study by Egger et al. (2017) had significant importance due to its comparison with
three experienced raters. Most studies usually rely on one or two experts at most to provide
a correlation between automatic and manual outcomes. Their approach was also essential to
show that an agreement among experts regarding MS is usually only partial, indicated by a
DSC smaller than 0.70 (BARTKO, 1991) and by the variability in the number of lesions found by
each rater. These findings provide more evidence on the difficulty to segment MS lesions, since
not only the problem itself is challenging, but even human raters have biases that interfere with

the assessment of the segmentation accuracy.

Using an energy minimization approach, Zhao et al. (2017) proposed a technique to segment
MS lesions using T1-w and FLAIR images. The foundation of the idea was based on the widely
accepted MR image formation model /(x) = Iy(x)b(x) + n(x), where I(x) is the observed MR
image, Iy(x) is the ideal image, b(x) is the bias field and n(x) is additive noise. Building on the
work of (LI; GORE; DAVATZIKOS, 2014), which aimed to segment healthy brain tissues (CSF, GM
and WM) in MRI using energy minimization, the authors expanded this idea by incorporating
more than one image weight in the segmentation and including MS lesions as a fourth tissue

type to be segmented by the model.

The authors defined an energy function F (u,c,w), where u was a membership function (i.e.,
if a voxel belonged to a given tissue), ¢ was a constant vector related to physical properties of
the tissues being imaged and w was a coefficient vector that could be tuned to achieve energy
minimization. By and large, the authors’ technique iteratively explored the relationship between
the image signal and bias field to estimate the probability of a given voxel belonging to a par-
ticular tissue. They started with an initial estimation and refined it in terms of u, ¢ and w until a

convergence criterion was met.

After convergence, an initial mask of segmented lesions was generated, which was then
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used as input for a post-processing step to remove false positives by thresholding areas of all
connected components in the lesion mask. In other words, the authors analyzed each connected

component and excluded those that did not have a minimum number of voxels within it.

The results presented in (ZHAO et al., 2017) were only qualitative. They applied their tech-
nique to a set of five images with apparent severe lesion load. They stated that their approach,
at the current stage, was to be considered as an initial segmentation that should be refined. They
also mentioned that some GM regions near the cortex were wrongly clustered as MS lesions
since the former has an intensity overlap with the latter. According to the authors, this problem
can be circumvented by using spatial information from probabilistic anatomical atlases. Over-
all, their technique presented visually promising results; however, due to the lack of quantitative

data, it was not possible to assess how well this approach performed compared to other works.

As it can be noted, there are many different approaches used throughout the years to tackle
the MS lesion segmentation problem in MRI. Though there have been improvements on tech-
niques, both supervised and unsupervised, the results are not yet as good as the ones achieved

by human experts. For this reason, there is room for new ideas to be explored in this scenario.

The segmentation techniques described in this section are summarized in Table 4.1.

Author Year Technique Dataset Results
Nguyen and Wu (2012) 2012 SMM 18 subjects DSC ~ 0.85
(WM)
Zhang, Wu and Nguyen (2013) 2013 SMM 12 images PR index ~
0.790
Simdes et al. (2013) 2013 GMM 40 subjects DSC > 0.70
Tomas-Fernandez and Warfield (2015) 2015 GMM 51 subjects LTPR
~0.72
Roura et al. (2015) 2015 SPMS 70 subjects  DSC =~ 0.30,
(clinical), Score: 82.34
23 subjects
(challenge)
Griffanti et al. (2016) 2016 k-NN 2 datasets DSC ~ 0.75
Egger et al. (2017) 2017 SPMS8 50 subjects DSC = 0.60
Zhao et al. (2017) 2017 Energy 5 subjects —
min.

Table 4.1: Overview of segmentation papers mentioned in Section 4.1.
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4.2 Texture as a feature for segmentation and classification

The concept of texture in images follows the same idea of texture in daily life. Familiar
terms as rough, silky or bumpy can be used to describe a surface we are interested in. More
importantly, textures are intrinsically related to neighborhood analysis around pixels or voxels.
In other words, a single point is not sufficient to provide enough information to extract textural

features from it.

Textures can be used to identify a number of characteristics in images such as gray level
differences (contrast), size of areas where changes occur and directionality (or the lack of it)
in a region of interest. The notion of textures in medical images is related to tissue manifes-
tations defined by form, structure, composition and arrangement of its smallest components.
They can be seen as mathematical derivations that characterize the distribution of gray level
intensities that reflect the structural consistency of any given tissue. In this sense, textures are
directly affected by disease progression. Since texture analysis is commonly used to detect sub-
tle structural changes, it stands out as a suitable candidate to evaluate the activity and evolution
of pathologies. For this reason, they can be incorporated into classification and segmentation

models in order to provide more information and improve distinction among clusters or classes.

There are a myriad of techniques used to extract texture measurements from images. The
most commonly used in the context of MS are Gray Level Co-occurrence Matrix (GLCM)
(HARALICK; SHANMUGAM; DINSTEIN, 1973), Run-length Matrix (RLM) (GALLOWAY, 1975)
and Local Binary Patterns (LBP) (OJALA; PIETIKAINEN; MAENPAA, 2002). GLCM tries to iden-
tify the spatial dependency between gray levels in an image, i.e., given a voxel located at p with
intensity i, we count the occurrences of another intensity, j, in the neighborhood of p. RLM is
used to identify the granularity of a texture by taking into consideration the repetition of certain
intensity levels in a given direction. And finally, LBP computes a local representation of tex-
ture by comparing each voxel with its surrounding neighborhood. It is important to note that
all these three techniques depend on direction; so in order to achieve rotation invariance, the

outcome is commonly averaged over all directions.

In Zhang et al. (2008), the authors analyzed textural features extracted from GLCM, RLM,
autoregressive model (AR) (SUKISSIAN; KOLLIAS; BOUTALIS, 1994) and wavelet analysis (RA-
JPOOT, 2002) with the goal to differentiate MS lesions from normal appearing white matter
(NAWM) and normal white matter (NWM). Distinguishing them is of vital importance, both
from clinical and computational standpoints, because it helps physicians grasp the disease pro-

gression more easily with quantitative data and it can also help improve segmentation accuracy
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on automatic techniques.

A total of 16 MS subjects and 16 healthy subjects were selected for the authors’ study.
They used T2-w scans and chose 16 regions of interest (ROIs) of MS patients for MS lesions and
NAWM, respectively, and 16 ROIs of healthy subjects for NWM. A radiologist and a neurologist

manually performed the selection of ROIs.

After selecting the ROIs, the authors extracted more than 200 textural features using the

Mazda software?

. Feature selection was performed based on the highest difference among
different texture groups to determine which of them were the most useful for classification. By
doing so, the authors were able to reduce the number of significant features down to 27. It is
important to note that these features came from GLCM, RLM, AR and wavelet analysis and

were combined to provide more powerful discriminating characteristics.

The authors were able to observe that the combined set of features was able to perfectly
distinguish MS from NWM and MS from NAWM. Regarding the distinction between NWM
from NAWM, the classification accuracy was less successful (58.33% accuracy). They also
compared the results of combining GLCM, RLM, AR and wavelets with GLCM features only
and verified that the first outperformed the latter in every scenario, indicating that using textures

extracted from more than one technique can improve the distinction power of the model.

The authors also mentioned a few drawbacks regarding their approach. The first one was
that the ROI selection step was performed manually. Choosing ROIs in a semi-automated or
automated fashion could reduce inherent biases from human experts. Another issue mentioned
by the authors was the requirement of large sample sizes in the Mazda software, which could
become an obstacle in studies with small cohorts. But overall, the authors’ approach was a
good indication of the discriminative power of textures and that physicians can use them and

computer techniques alike to improve diagnostic and follow-up procedures in the MS context.

In Roy, Bhuiyan and Ramamohanarao (2013), a new textural feature set for MS lesion
segmentation was proposed by combining local and global neighborhood information. The
set was comprised of GLCM, RLM, gradient and histogram features, along with gray level
intensity and tissue probabilities. These features were used to train a Support Vector Machine

(SVM) (MURPHY, 2012) classifier to perform MS lesion segmentation.

The global neighborhood information was obtained by creating a lesion probability map
with patches across the whole image. The authors defined a patch of size N and for each voxel

v, analyzed the neighborhood of 10 random patches spread across the brain region. The more

’http://www.eletel.p.lodz.pl/cost/progr_mazda_eng.html
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times v had a gray level intensity greater than the patches, the more likely it was to be a lesion.
On the other hand, local neighborhood information was achieved by defining a 5 x 5 window
around each candidate pixel and calculating gradient, histogram, GLCM and RLM information
from it. Then, as mentioned before, the authors combined these features with gray level intensity

and tissue probabilities to use as input for the SVM classifier.

The authors applied their technique to 8 subjects from the MS Lesion Segmentation Chal-
lenge 2008° and compared their results with three other state-of-the-art methods (ABDULLAH:;
YOUNIS; JOHN, 2012; GEREMIA et al., 2011; SOUPLET et al., 2008). To assess their performance,
the authors used the F1-score (GONZALEZ; WOODS, 2008) metric. Their technique outperformed
the other works in five out of eight cases. For the three remaining subjects, the difference in

score between their proposed method and the best one was small according to the authors.

Overall, they presented a discriminative set of texture features, and the lesion probability
map created from global neighborhood information was a significant contribution, though the
definition of the number of patches and the use of absolute gray level differences seemed some-
what arbitrary. A larger dataset would provide more insight into the proposed method and allow

more conclusions to be drawn from the results.

In Michoux et al. (2015), the authors used texture analysis to distinguish normal appearing
white matter (NAWM) from active/nonactive MS lesions in T2-w images. They selected 21
patients and extracted features from both GLCM and RLM to help differentiate between these
two classes. Each patient was imaged for T1-w, T2-w and FLAIR modalities, but the features

themselves were extracted only from T2-w.

Two experts annotated a total of 44 active lesions, 37 nonactive lesions and 44 NAWM
ROIs. MS lesions were categorized as active or nonactive from the analysis of T1-w images.
Since the authors wanted to check if the perfusion of contrast would affect the outcome of T2-w
images, they also selected 9 extra patients to be scanned twice (pre- and post-contrast). Of this

second group, 14 active lesions were annotated.

Using linear discriminant analysis (LDA), partial least squares (PLS) and logistic regression
(LR), they were able to get different sets of textural features and results with each technique.
The authors achieved the highest accuracy when applying PLS to a 6-texture parameter model,
which yielded a sensitivity of 0.88 and specificity of 0.81. These results were achieved by
two different six-feature sets. The first one was a combination of four GLCM and two RLM
features, whereas the second one was an equal combination of three GLCM and RLM features.

Moreover, they did not see any statistically significant difference between pre- and post-contrast

Shttp://wuw.ia.unc.edu/MSseg/
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textures in T2-w images, demonstrating that the contrast perfusion had no effect on them.

According to the authors, a limitation of their study concerned the limited number of pa-
tients (a total of 21) and active lesions (a total of 58), indicating that further investigations should
be conducted in order to confirm their findings in a larger set of data. Another important point
to be made is that the goal of the authors was to distinguish active MS lesions from NAWM, not
active from nonactive lesions. Though the correct distinction between NAWM and other MS
pathologies is crucial, it is not a sufficient condition to withdraw the usage of Gadolinium-based

contrast.

In Leite et al. (2016), the authors proposed a 3D texture-based classification algorithm for
brain white matter lesions (WML) in MRI. Texture analysis was based on 55 texture attributes
extracted from gray level histogram, GLCM, RLM and gradient. The goal was to compare 3D
texture-based with 2D texture-based approaches to check for accuracy improvements by using

the former instead of the latter.

The authors extracted textural features from FLAIR images of 61 subjects diagnosed with
carotid artery atherosclerosis. The ROIs containing WML were selected using Cerebra-WML
(LU etal., 2014) and regions of NAWM were chosen using an automated approach developed by
the authors that either selected the contralateral part of a WML ROI or the closest region to the
WML using the same WML size and shape. A total of 2658 WML samples and 2637 NAWM
samples were selected for the 2D analysis, while for 3D they chose 69 samples for WML and
NAWM each.

After selecting samples, the authors used SVM with a radial basis function (RBF) kernel
(C =1000;y = 0.1) for the classification task. They were expecting the 3D case to perform
worse than 2D since the former had a much smaller number of samples. However, they ob-
served the opposite. Using 3D samples yielded the best classification and sensitivity results.
The authors stated that this result might have happened because the 3D implementation was
more robust and comprised relevant volumetric structural information. Still, both 2D and 3D
approaches presented high accuracy rates (97.41% and 99.28%, respectively) and, according to
the authors, could easily be used in a real computer-aided diagnostics (CAD) system to distin-
guish NAWM and WML. The authors also analyzed the 30 most discriminant texture attributes
for the 2D and 3D approaches using a method known as Gini importance (BREIMAN et al., 1984).

They observed that the histogram and GLCM features were the most relevant ones.

In conclusion, their proposal was able to distinguish WML from NAWM correctly and also
provided a comparison between 2D and 3D approaches. Though images used in this particular

work had lesions caused by carotid artery atherosclerosis, one can speculate that the same set
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of textural features could also be used to distinguish MS lesions. However, a different level of

accuracy would undoubtedly be expected in this case.

In Tiwari et al. (2016), the authors used co-occurrence matrix homogeneity, neighboring
gray level dependence matrix and multi-scale Gaussian derivatives textural features to distin-
guish radiation necrosis (RN) from brain tumor recurrence. RN is, unfortunately, a common
side effect of the treatment of cancerous pathologies and is caused by radiation that is dispersed
across the brain during radiotherapy. Its onset is typically a few weeks after the end of radio-
therapy treatment and has a very similar appearance to brain tumor recurrence in MRI, making
it hard to distinguish to the naked eye. For this reason, the authors wanted to explore computer-

extracted textures to aid in the differentiation between RN and brain tumor recurrence.

The study population was comprised of datasets imaged at the University Hospital Case
Medical Center and the University Texas Southwestern Medical Center. The data were divided
into training cohort and metastatic subgroups. In total, 43 subjects were made available for
the study, scanned in T1-w, T2-w and FLAIR weights. The ROIs containing tumors were
manually selected on all three image weights by an experienced radiologist. Then 119 2D
texture features were extracted from each tumor. To identify the most discriminative features,
the authors did a minimum redundancy and maximum relevance (PENG; LONG; DING, 2005)
feature selection analysis and used the top 5 most discriminative features as input for a SVM
classifier. They observed that adding more than 5 features did not significantly improve the

distinction capabilities of the classifier.

The performance metric used by the authors was the area under the receiver operating char-
acteristic curve (AUC). They observed that FLAIR images provided the best results for both
training and metastatic cohorts, with an AUC = 0.79. Moreover, using 15 studies from a hold-
out cohort, the SVM classifier identified 12 of 15 studies correctly, whereas two experienced

human raters diagnosed 7 out of 15 and 8 out of 15 studies correctly, respectively.

Despite being a feasibility study, the findings of Tiwari et al. (2016) indicate that textures
can be used in the context of various brain pathologies and have the potential to not only help
physicians distinguish them from side effects of treatments, but it can also be more reliable than

human experts.

In Ardakani et al. (2017), the authors decided to use texture analysis (TA) to differentiate
enhancing/active lesions (ELs) from non-enhancing lesions (NELs) and persistent black holes
(PBHs). ELs are of particular interest for physicians because it is a sensitive indicator of active
inflammation and serves as a proxy to monitor disease activity and impairment of subjects with

MS. Most new lesions become enhanced and persist for 2-6 weeks (FILIPPI et al., 2001) and



4.2 Texture as a feature for segmentation and classification 72

are usually visible to the naked eye in Gadolinium-enhanced T1-w images, i.e., it requires the
injection of Gadolinium-based contrast. In this sense, the authors wanted to check if they could

distinguish ELs, NELs and PBHs in pre-contrast images using TA.

The dataset comprised 90 subjects scanned on T1-w and T2-w weights. Regarding T1-w,
the subjects were scanned before and after being injected with a Gadolinium-based contrast
agent. Overall, 116 ROIs consisting of 54 NELs, 27 ELs and 35 PBHs were manually selected
by an expert for discrimination and classification. More than 300 texture features were extracted
based on the histogram, absolute gradient, RLM, GLCM, AR and wavelet information. One-
way analysis of variance (ANOVA) was used to assess differences between the three groups of

interest (EL, NEL, PBH) and identified a total of 14 features as the most discriminative ones.

The authors used linear discriminant analysis (LDA) to transform the most discriminative
features to lower-dimensional spaces to further increase their distinctive power. They were then
used as input for a k-NN classifier. Using AUC as a metric for classification accuracy, the
authors achieved perfect classification for NEL vs. EL and EL vs. PBH. For NEL vs. PBH, the
classification yielded a result of AUC = 0.975. The authors also observed that GLCM textures
presented the most discriminative power among the group of the top 14 features. Moreover,
they verified that using all significant features yielded a higher level of performance than using

each texture alone.

Overall, the work of Ardakani et al. (2017) indicated that TA is a viable alternative to dis-
criminate between different groups of MS lesions. More importantly, it showed that textures
have the potential to identify EL without injecting any contrast, which can have positive out-
comes both for patient’s health and imaging costs. Unfortunately, the selection of ROIs was
made manually, and an automated approach to leverage the benefits of this approach is yet to

be proposed.

In Verma et al. (2017), the authors applied dynamic texture parameters analysis (DTPA) to
differentiate enhancing MS lesions from glioblastoma and lymphoma. All these three patholo-
gies are mostly visible using Gadolinium contrast, and the initial diagnosis may be difficult to
achieve based solely on conventional Gadolinium-enhanced MRI. In this sense, textural features
provided by DTPA were examined in order to verify if they could provide enough information

to help physicians better distinguish one pathology from another.

A total of 32 subjects, 12 with MS, 15 with glioblastoma and 5 with lymphoma, were
selected and comprised only T1-w images after intravenous gadolinium application. ROIs were
then selected by an experienced radiologist containing only areas enhanced by the gadolinium

contrast agent.
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The authors applied GLCM to the images in different time intervals (inflow of contrast, out-
flow of contrast and reperfusion). They used GLCM solely because this technique is regarded
as the most common and easy-to-understand class of textural features and usually provides a
good distinctive power to classifiers. Incorporating time intervals added a time dependency to
the model, making it dynamic. It was observed that the most significant differences among
textures appeared during the inflow phase, followed by outflow and reperfusion phases. These
results indicate that there must be differences in micro-vascularization depending on the disease
type, which affects the inflow phase of the contrast agent passage and, to a lesser extent, the
outflow phase. This particular finding, according to the authors, could only be uncovered thanks

to texture analysis.

Unfortunately, no classification stage was implemented to quantitatively verify how well
the texture features would distinguish one pathology from another. Moreover, the authors stated
that, as with any feasibility study, the number of patients was small. More subjects would be
necessary to encompass a broader spectrum of variabilities in image scans and pathologies.
Also, the manual delineation of the ROIs could introduce the expert’s bias into the model; in
this sense, an automatic approach would be more adequate. Overall, the work by Verma et al.
(2017) was important to show that there are significant, yet simple, textural features that can be
used to distinguish MS from other pathologies and also to show that the most distinguishable

phase occurs during the inflow phase of the contrast agent.

In Bento et al. (2017), a probabilistic segmentation of brain white matter lesions using
textures was proposed by the authors. They used a supervised approach and combined gray
level intensities with LBP morphological gradient to perform the segmentation of white matter

hyperintensities.

The experiments were conducted on a public dataset from the 18th International Conference
on Medical Image Computing and Computer-Assisted Intervention in 2015 (MICCAI-15). This
particular data were put together for the Medical Image Segmentation Challenge on Ischemic
Stroke Lesion Segmentation*. MRI exams, comprised of T1-w, T2-w and FLAIR images, of
28 subjects diagnosed with stroke were made available. However, in their study the authors
used only FLAIR images. Every patient had his/her scan analyzed by an expert, who provided

a manual segmentation of the stroke lesions.

The methodology comprised preprocessing, feature extraction, classification and post-processing
steps. The preprocessing stage included intensity normalization and segmentation of the WM

region using a semi-automated approach (LU et al., 2014). Regarding features, seven attributes

4www.isles—challenge.org
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were extracted for each voxel, including the gray level intensity of the voxel, intensity value
in the LBP image, structural gradient, morphological gradient and WM average intensity value
across the whole WM region. In the classification stage, the authors applied three different
supervised classifiers: k-NN, SVM and random forest (MURPHY, 2012), being the latter the
classifier that achieved the best results. To train these algorithms, the authors used 12 of the
28 subjects, and the testing phase was conducted on the remaining 16 images. Instead of out-
putting a class label, they used a probabilistic implementation (PEDREGOSA et al., 2011). The
post-processing step used a series of morphological operators (GONZALEZ; WOODS, 2008) to
prune the probabilistic outcome and generate a binary mask with the actual lesion segmenta-

tion.

The authors achieved a high DSC coefficient (0.84) and outperformed five other automatic
segmentation techniques (HAVEI et al., 2015; KAMNITSAS et al., 2015; CHEN; BENTLEY; RUECK-
ERT, 2015; FENG; ZHAO; HUANG, 2015; HALME; KORVENOIJA; SALLI, 2015) that used the same
database. They noted the DSC results were highly variable and independent of the total num-
ber of white matter lesions, and stated their approach was limited to properly segment lesions
greater than 10 pixels, since texture features are based on changes across a local neighborhood,
thus making it difficult to achieve an accurate segmentation on lesions that were too small.
Though this is a limitation, it is fundamentally related to the minimum size lesions may have
to be correctly segmented by the current state-of-the-art. Moreover, despite being a supervised
approach, it is important to note that this technique was able to achieve good results using a rel-
atively small number of images with fairly simple classification algorithms; this is an indication

that the right set of features can outweigh the need for complex classifiers.

Using some concepts of deep learning, the work of Fernandes and Cardoso (2017) proposed
using LBP in a cascade fashion in order to explore higher dimensional features from textures.
Since LBP is, by design, an approach that explores local relationships and patterns between
neighboring pixels/voxels, cascading it in multiple layers would allow one to leverage higher

order information and improve the accuracy of classifiers by providing a broader feature space.

As mentioned by the authors, while it is trivial to apply convolutions in a cascade fashion
recursively, traditional LBP are not able to “process” their output. Such issue arises from the
fact that they rely on receiving as input an image with the domain in an ordered set (e.g.,
gray level intensities). However, LBP codes are not an ordered set, thus dismissing the direct
recursive application of standard LBP. To circumvent this issue, the authors suggested using, for
instance, a dissimilarity function defined by the user to ensure ordering. In other words, given a

dissimilarity function, a mapping of the LBP codes can then be made to an ordered set, making
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it possible to use them in cascade.

To assess their approach, the authors used accuracy and class rank (position (%) of the
ground truth label in the ranking of classes ordered by confidence) as metrics. The final decision
model was a random forest with 1000 trees. They applied their proposal to seven publicly
available datasets and compared results with a varying number of layers. The authors observed
that despite the capability of the proposed deep architectures to achieve large gain margins, the
deep LBP operator saturated rapidly, since most of the best results were found on architectures

with up to three deep layers.

Overall, the technique proposed by the authors was able to aggregate information from local
neighborhoods into higher abstraction levels, being able to surpass the performance obtained
by simple non-cascade LBP. However, further research must be conducted in several areas to
verify how this approach would behave in real-world problems and if the increase in complexity

justifies the gain in accuracy.

The texture-based techniques described in this section are summarized in Table 4.2.

4.3 Symmetry and asymmetry analysis in MS

There are not many works in the literature that make use of symmetry and asymmetry in-
formation in the context of MS. Most authors have been using this particular feature to analyze
structural and volumetric differences between healthy and pathological brains. While this ap-
plication is relevant and helps physicians better understand the effects pathologies have on brain
tissues, we believe it has the potential to be further explored from a segmentation pipeline point
of view. In this sense, it is important to note that symmetry/asymmetry analysis remains an
open field of research, especially when it comes to incorporating it into automatic segmentation

and classification models.

In Prinster et al. (2006), the authors experimented to measure gray matter loss in relapsing-
remitting MS subjects, which can alter the physiological asymmetry pattern of a healthy brain

and add even more differences between healthy and MS patients.

The dataset used by the authors was comprised of 51 MS patients and 34 healthy subjects
scanned on T1-w, T2-w and PD weights. First, the authors applied a non-parametric segmen-
tation technique (B et al., 2000) to all images. Then, using a voxel-based morphometry process
(ASHBURNER; FRISTON, 2000), they compared the GM clusters from both groups and looked

for differences between them across the whole brain on a voxel-by-voxel basis. To get a better
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Author Year Textures Dataset Results
Zhang et al. (2008) 2008 GLCM, 32 subjects 100%
RLM, AR, (MS) accuracy for
wavelets MS vs.
NWM and
NAWM
Roy, Bhuiyan and 2013 GLCM, 8 subjects F1 score =
Ramamohanarao (2013) RLM, (MS) 0.463
gradient,
histogram
Michoux et al. (2015) 2015 GLCM, 30 subjects Se =0.88
RLM Sp=0.81
Leite et al. (2016) 2016 GLCM, 61 subjects 99.28%
RLM, (carotid artery  accuracy in
gradient, atherosclero- distinction
histogram sis)
Tiwari et al. (2016) 2016  Laplacian 43 subjects AUC=0.79
textures (cancer)
Ardakani et al. (2017) 2017 GLCM, 90 subjects AUC=1.0
RLM, MS) for lesion
gradient, distinction
AR and
wavelets
Verma et al. (2017) 2017 GLCM 32 subjects —
(MS)
Bento et al. (2017) 2017 LBP 28 subjects DSC=0.84
(ischemic
stroke)
Fernandes and Cardoso 2017 LBP 7 different Average
(2017) datasets accuracy =
67.49%

Table 4.2: Overview of texture papers mentioned in Section 4.2.

grasp of these differences, the authors also searched for significant asymmetries between the

MS and control groups using a technique based on the work of Luders et al. (2004). By doing

so, they were able to globally and locally analyze the effect MS had on the GM tissue.

The results regarding global GM volumes confirmed previous findings of GM loss in MS

patients when compared to healthy subjects (CHARD et al., 2002; QUARANTELLI et al., 2003),

with an average tissue volume of 607.7 ml for the former and 660.1 ml for the latter. A critical
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finding from the asymmetry analysis was that significant GM loss in MS patients was mainly
located on the left dorsolateral frontal lobe, but was also bilaterally present in other areas such
as the anterior cingulate gyrus and caudate heads. However, as the authors noted, there was
no correlation between the observed GM loss with the spatial location of lesions, since they
appeared to be symmetric across MS subjects. Given that, the authors stated that there must
be other mechanisms involved in determining cortical GM loss, which is associated with the
progressive phases of MS (BO et al., 2006) and tends to be overlooked because MS lesions
usually appear in WM.

In Geremia et al. (2011), the authors used spatial decision forests for MS lesion segmenta-
tion using T1-w, T2-w and FLAIR images. They incorporated not only local information into
their model (i.e., gray level intensities) but also spatial information using MNI probabilistic
anatomical atlases (MAZZIOTTA; TOGA; EVANS, 2001) and context-rich features. They applied
their technique to the MICCAI MS Lesion Segmentation Challenge 2008 (MICCAI MS Lesion

Segmentation Team, 2008) dataset and compared their results with state-of-the-art algorithms.

The authors defined two context-rich features. The first one came from regions of user-
defined size around the voxel of interest. The second one consisted of using the counterpart of
the voxel of interest, thus making use of symmetry. Since getting the counterpart was tricky due
to interpolation problems, the authors decided to extract information from a counterpart region

(instead of a counterpart voxel).

An interesting byproduct of using spatial decision forests, according to the authors, is that
it allowed them to identify the most discriminative visual features for MS segmentation. In
this regard, they were able to observe that region information was the most selected feature in
the trees, followed by local information and symmetry. The authors mentioned that symmetry
features were under-represented in trees because a large number of peri-ventricular MS lesions
tend to develop symmetrically; however, they also observed that this feature was most relevant

to classify ambiguous asymmetrical regions.

Regarding the results, the authors stated their technique compared favorably to other works
ranked in the dataset. As mentioned in Section 4.1, the 2008 MICCALI dataset ranked the works
from O to 100, with a score of 90 indicating an expert-like segmentation. The authors’ proposal
scored 82.07, and although they did not rank at the top at the time of submission, they mentioned
that the reliability of automatic methods is generally higher than that of human experts and thus
their result was promising from an output consistency standpoint. Moreover, they also observed
a drawback in their technique: the location of some lesions in the test dataset did not appear in

the training dataset, highlighting a challenge to overcome when using supervised approaches.



4.3 Symmetry and asymmetry analysis in MS 78

In Govindarajan et al. (2015), the authors analyzed the effect of using an in-painting strategy
on cortical thickness measurements in MS. Since this is an important metric to be used as a
proxy for brain health, the smaller the effect lesions have on cortical thickness measurement,

the better.

The authors used a dataset comprised of 918 subjects who participated in a clinical trial.
Each subject was scanned in a protocol that included T1-w and FLAIR images. The pipeline
adopted by the authors was the following. First, they segmented the images into WM, GM, CSF
and lesions using an in-house developed pipeline (DATTA et al., 2006; SAJJA et al., 2006). Then,
using the WM cluster mask, the authors randomly selected intensity values from this mask and
used them to replace the intensity values in the lesion mask. They applied a Gaussian filter
to the lesion area following the replacement of voxel intensity to minimize the effect of noise
due to random assignment of intensity values. Finally, the authors used the FreeSurfer software
(DALE; FISCHL; SERENO, 1999; FISCHL; SERENO; DALE, 1999) to calculate the cortical thickness

in T1-w images, both original and in-painted.

An interesting result that arose from this study was that lesion in-painting presented a dif-
ferent behavior for each brain hemisphere. The authors created a lesion probability map using
lesion masks from the segmentation step and verified there was no significant spatial asymmetry
in the lesion distribution between the two hemispheres. Still, the left hemispheres showed more
significant differences in the cortical thickness between in-painted and non-in-painted images.

The reason for this asymmetry, according to the authors, remains unclear.

Overall, the authors proposed an in-painting algorithm to mitigate effects of cortical thick-
ness measurement in MS images and used symmetry analysis to verify if the effects of their
technique were the same for both hemispheres. Not only they found a significant difference in
the measurement of cortical thickness for in-painted images, but also noted that their technique
had a more prominent effect on the left hemisphere. Since they also observed that the MS le-
sion distribution across the images was symmetric - to a certain extent - the impact on the left
hemisphere, as mentioned before, is still to be uncovered and, to the authors’ best knowledge,

has nothing to do with lesion asymmetry.

Finally, in Shen, Zhang and Zheng (2017), the authors proposed a technique for brain tu-
mor segmentation in multi-modal MR images using a fully convolutional network (FCN). The
novelty of their approach was based on using symmetry features to gather more information to

their model and thus increase the accuracy of their method.

Their approach made use of one downsampling path with convolutional and max-pooling

layers and three upsampling paths with upsampling and convolutional layers. It is important
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to note that the downsampling module was responsible for encoding high level abstract and
contextual information, while the upsampling part was responsible for reconstructing finer de-
tails, such as tumor boundaries. The authors stated they opted for a simplified version of FCN,
with fewer layers, because they observed that adding more convolutional blocks did not present
any improvement in brain tumor segmentation accuracy. The reason for this, according to the
authors, is that unlike natural images, medical images are mostly based on low-level texture

features, thus limiting the amount of high-level information that can be learned from them.

Regarding symmetry, the authors stated that it is an important cue for brain tumor segmen-
tation since tumors usually break the symmetric appearance of healthy brains. To leverage this
feature, they calculated the midsaggital plane, found corresponding matching pixel pairs and
calculated their intensity differences on a 11 x 11 window neighborhood. They applied this
rationale to each MR image weight and combined them with the original modalities to create
the input for the FCN.

The authors applied their algorithm to the publicly available dataset BRATS 2013, com-
prised of 30 subjects scanned on T1-w, T1-wc (T1-w with contrast), T2-w and FLAIR. From
these 30 subjects, 20 of them were used for training and 10 for testing. The authors observed
that using an FCN without symmetry did not have the same accuracy as when using it, espe-
cially regarding the removal of false positives. On the results, their technique ranked second
in the dataset scoreboard (with an average DSC of 0.87) and outperformed most supervised
and unsupervised proposals alike. The only exception was for a convolutional neural network
(CNN) by Pereira et al. (2016), which scored better in the dataset but had to use a healthy

population as a reference for their approach.

An important point the authors made was that their algorithm took, on average, 2 minutes
to process each 3D volume. Compared to other works applied to the same dataset, their running
time was the shortest. This advantage in processing time is a significant achievement because it
indicates the feasibility of use in real-world situations, such as clinical trials. Moreover, another
relevant observation made by the authors was that increasing the number of layers did not
improve segmentation accuracy, but incorporating symmetry information into the model did.
This remark is an indication that a complex model is not always the best option for challenging
scenarios, and that improving the feature space with relevant data can positively impact the final

results.

An overview of the symmetry papers described in this section are shown in Table 4.3.

Shttp://martinos.org/qtim/miccai2013/
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Author Year Dataset Results
Prinster et al. (2006) 2006 51 subjects Reduction in
MS) GM volume
caused by
MS
Geremia et al. (2011) 2011 MICCAI 2008 Score =
(MS) 82.07

Govindarajan et al. (2015) 2015

918 subjects

Small effect

(MS) of lesion
in-painting
for cortical

thickness
Shen, Zhang and Zheng (2017) 2017 30 subjects DSC =0.87

(brain tumor)

Table 4.3: Overview of texture papers mentioned in Section 4.2.

4.4 Final considerations

This chapter presented a literature review of relevant and up-to-date works on segmentation,

classification, texture and symmetry applied to MRI. It can be observed that the segmentation

task itself is challenging and many different approaches, both supervised and unsupervised, can

be used to tackle the problem. In this sense, textural features can be incorporated into the models

to provide more information regarding the distinction between healthy tissues and pathologies.

However, the same rationale cannot be extended to symmetry analysis, which has been shown

to have a rather weak distinctive power in the MS lesions domain, which is why we opted not

to use it in our pipeline.

To the best of our knowledge, we do not know of any work that combines local informa-

tion, in terms of gray level intensities, spatial information and textures to perform MS lesion

segmentation and active lesion classification. In this sense, we believe this combination was

worth exploring and can ultimately expand the state-of-the-art on this matter.



Chapter 5

METHODOLOGY

The methodology used in this work is explained in this chapter, encompassing techniques,
their characteristics and how they were applied to the MS lesions segmentation and classi-

fication problem. We also present a description of the databases used in our pipeline.

5.1 Databases

The clinical and probabilistic anatomical image databases used in this work are described

as follows.

5.1.1 Clinical images

The clinical image database was comprised of 21 time-points (exams) from 5 patients in
“The 2015 Longitudinal MS Lesion Segmentation Challenge”, conducted at the 2015 Interna-
tional Symposium on Biomedical Imaging. This database contains images of five patients, one
male and four females, with a total of 21 time-points. The average age of the patients was 43.5
years and the average time between follow-up scans was one year. Eligibility criteria and more

details on the patients and how they were chosen are described in (CARASS et al., 2017).

Each scan was imaged and preprocessed in the same manner, with data acquired on a 3
Tesla MRI scanner (Philips Medical Systems, Best, The Netherlands). The imaging sequences
were adjusted to produce T1-w, T2-w, PD and FLAIR images.

Each subject underwent the following preprocessing: the baseline (first time-point) mag-
netization prepared rapid gradient echo (MPRAGE) was inhomogeneity-corrected using N4
(TUSTISON; GEE, 2009), skull-stripped (CARASS et al., 2007, 2011) and dura stripped (SHIEE et
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al.,, 2014), followed by a second N4 inhomogeneity correction and rigid registration to a 1 mm
isotropic MNI template. Since the baseline MPRAGE was in MNI space, it was used as a tar-
get for the remaining images, which included the baseline T2-w, PD, and FLAIR, as well as
the scans from each of the follow-up time-points. These images were then N4 corrected and
rigidly registered to the 1 mm isotropic baseline MPRAGE in MNI space. In the end, image

dimensions were 181 x 217 x 181.

It is important to note that the training dataset also included manual MS lesion delineations
by two experts for each time-point. Details about time-points and average MS lesion volume

for each subject are summarized in Table 5.1.

# of time Mean lesion Mean lesion
points volume (in ml) volume (in ml)
Expert 1 Expert 2
Patient 1 4 16.67 19.07
Patient 2 4 30.52 31.80
Patient 3 5 5.40 7.81
Patient 4 4 2.17 3.23
Patient 5 4 4.55 3.96

Table 5.1: Number of time-points and average lesion volume for each patient.

5.1.2 Active lesions

Our active lesions database came from the Demyelinating Diseases Outpatient Clinics -
Neurology & Neurosurgery Department - Universidade Federal de Sdo Paulo - (UNIFESP),
Brazil. It comprised scans of 33 patients with FLAIR and post-contrast T1-w images. An
expert rater annotated active MS lesions in FLAIR using post-contrast T1-w as a reference
for lesion location. Since this database existed prior to this work and the annotations were
made on images as they were, 7 patients out of 33 had slightly different acquisition protocols
regarding the number of slices per scan. While 26 patients were scanned with image dimensions
384 x 512 x 20, the other 7 were scanned with image dimensions 384 x 512 x 25. However,
qualitatively speaking, the extra number of slices in this second group did not interfere with our
region of interest (i.e., the brain itself). Voxel resolution was 0.44 x 0.44 x 6.5 mm?> across all

images. An example of a patient from this database is shown in Figure 5.1.
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Figure 5.1: Patient with active lesions from the UNIFESP database. (a) T1-w, (b) FLAIR, (¢) Active
lesion mask annotated by an expert rater.

5.1.3 Probabilistic anatomical atlases

Probabilistic anatomical atlases are created from images of a normal population and are
used as anatomical models to provide statistical information about tissues and cerebral struc-

tures (MAZZIOTTA et al., 1995).

In this work, three probabilistic anatomical atlases of CSF, GM and WM were used to
provide spatial information to our segmentation technique. The images came from the ICBM
project (FONOV et al., 2009) with dimensions 256 x 256 x 256 and spatial resolution of 1 mm?.
Each voxel intensity in each atlas was in the [0, 1] interval, which indicated the probability of

that particular voxel belonging to the corresponding tissue. The atlases are shown in Figure 5.2.

(a) (b)
Figure 5.2: Probabilistic anatomical atlases. (a) WM, (b) GM, (c) CSF.

5.2 Preprocessing

A set of commonly used preprocessing techniques presented in the MR medical image

processing literature were implemented and used in this work. The preprocessing pipeline
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Figure 5.3: Preprocessing pipeline used in this work.

T1 template,
CSF, GM and WM atlas
Brain mask

is shown in Figure 5.3. The description of each one of the stages is given in the following

subsections.

5.2.1 Noise reduction

It is common for MR images to suffer from thermal noise, which interferes with the other
stages of processing. To mitigate this issue, we applied the Non-Local Means (NLM) (BUADES;
COLL; MOREL, 2005) filter to every time-point. This patch-based technique can smooth small
variations of gray level intensities adaptively by decreasing the smoothness on edges (to pre-
serve contrast) and increasing it otherwise. The algorithm is based on the fact that images
have features that repeat not only locally, but globally. This way, it performs a weighted aver-
age of all voxels in an image region surrounding the analyzed voxel i in order to determine a
noise-free estimation for it. In other words, it takes into account both the neighborhood infor-
mation of a voxel and all regions similar to that neighborhood (patches) — hence the non-local
characteristic. In Buades, Coll and Morel (2005) the authors conducted a qualitative and quan-
titative analysis of NLM compared to other well-known smoothing filters in the literature, such
as Gaussian (LINDENBAUM; FISCHER; BRUCKSTEIN, 1994) and anisotropic diffusion (PERONA;
MALIK, 1990; FERRARI, 2013), and were able to verify NLM’s superiority. An example of the
application of NLM is shown in Figure 5.4.
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(a) (b)

Figure 5.4: Axial view of a T1-w image before (a) and after (b) applying the Non-Local Means
noise reduction filter.

5.2.2 Intensity inhomogeneity correction

The presence of intensity inhomogeneity (or bias field) in MR images is a phenomenon
caused by a myriad of factors, including poor radio frequency (RF) energy distribution, varia-
tions in the static magnetic field and sensitivity of RF coils. According to Arnold et al. (2001),
these variations, if not corrected, can substantially degrade the result of automatic segmentation

of brain tissues in MRI.

In this work, the N4 technique (Nick’s Nonparametric Nonuniform intensity Normalization)
proposed by Tustison and Gee (2009) was used to correct inhomogeneities. One advantage of
this approach is that it does not depend on image pre-segmentation nor pulse sequence and it
is robust to pathologies, which is the case of MR images with MS lesions. An example of the

application of N4 is shown in Figure 5.5.

Figure 5.5: Bias field effect on MR images before (a) and after (b) applying the N4 algorithm.
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5.2.3 Image registration

An essential preprocessing stage is the spatial alignment between clinical images and prob-
abilistic anatomical atlases. These atlases were used to constrain the segmentation area and
reduce the number of ambiguities caused by voxels that have similar intensities but belong to
different clusters. A study conducted by Freire and Ferrari (2014) analyzed the effect registra-
tion techniques had on MR images with MS and the authors verified that the lesions did not

interfere with the registration procedure in a significant way, regardless of their load.

To preserve metadata of clinical images — such as origin, spacing and orientation — the
clinical images were taken as fixed (or reference) images. This way, the transformations of the
registration algorithm were applied to the atlases. In this work, we used the Nifty (Translational
Imaging Group, 2014) method with B-Spline transformations and multi-resolution approach for

non-rigid registration (MODAT et al., 2010).

5.3 Iterative segmentation

Clustering MS lesions using gray level intensities suffers from a false positive problem
(SHIEE et al., 2010). Since lesions can present intensity levels that are close to those of other brain
tissues, it becomes hard for the algorithm to distinguish and cluster them apart. For this reason,
we applied an iterative segmentation approach (FREIRE; FERRARI, 2016). Doing so allowed a
fine-tuning of the segmentation process to keep only the most hyperintense voxels clustered as
MS lesions. The decision to preserve the most hyperintense voxels was made because of lesions
commonly present e high-intensity profile in T2-w and FLAIR images, being the latter used in
our segmentation pipeline. The iterative process, shown in Figure 5.6, was comprised of the

following steps:

1. Let Iy, be a preprocessed image and BM a brain mask to constrain the segmentation

region spatially.

2. Define a number of iterations (Nj,,) and number of clusters (Ngj,s.rs) for each one of the

iterations.

3. Segment Iy, in the region constrained by BM using the mixture model explained in Sec-

tion 3.1 with the number of clusters defined for that iteration.

4. For each cluster, calculates its average gray level intensity.
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5. Use regions from the (N.j,sers — 1) clusters with the highest intensity as the new binary

mask BM to be used in the next iteration.
6. Decrease Njze;-

7. Repeat steps 3, 4, 5 and 6 until Ny, reaches zero.

[ v fa]

Parameters:
5 8 61
Segmentation using EM
Student's t mixture model

seg

/ Clusters /
v

Average intensity
of each cluster

clusters

Figure 5.6: Flowchart of the iterative approach used in the MS lesion segmentation problem.

In this work, we set Njzor = 5, Nojyusters = 3 for the first four iterations and N jygers = 2 for
the last one. These parameters were empirically defined using the images from the database
described in Section 5.1.1 and provided the best compromise between execution time and seg-

mentation accuracy.

The initial binary mask BM was created using the probabilistic anatomical atlases. The
idea was to constrain the segmentation region to WM, which is where most MS lesions are
located. However, the alignment between the atlases and clinical images is not perfect and the
WM atlas may not encompass the whole WM region of the clinical image. In this sense, some
lesion voxels located in the WM region of the clinical image may not present a high probability

of belonging to the WM atlas due to alignment offsets. A threshold t = 0.20 was defined to



5.4 Segmentation post-processing 88

circumvent this problem and the locations of every voxel in the GM atlas with a probability
smaller than ¢ were used as input for the creation of the initial BM. The rationale was that
voxels with a low probability of belonging to GM have, consequently, higher probabilities of
belonging either to WM or CSF. Since voxels in the CSF region appear hypointense in FLAIR
images, they are easily discarded from the lesion cluster during the iterative process. Moreover,
hyperintense voxels that were located in the CSF atlas due to small misalignments, but in reality

belonged to WM, were also part of the binary mask using this rationale.

At the end of the iterative process, a binary mask with lesions BM;,;,,s Was saved as the
output. It is important to note that this iterative approach followed the hypothesis that MS le-
sions were representatives of the most hyperintense cluster in FLAIR images. The successive
refinement of eliminating clusters with the lowest average intensity aimed at reducing the num-
ber of false positives. However, a limitation of this technique lies in the fact that it may also
reduce the number of true positives in images where the variation of the MS lesions gray level

intensities is significant enough to split them into two or more clusters.

5.4 Segmentation post-processing

Post-processing techniques were used to remove false positives from the binary mask with
MS lesions. Doing so involved detecting the midsaggital plane to eliminate voxels located in

the third ventricle region and removing remaining voxels.

5.4.1 Midsaggital plane detection

Since the region between ventricles, known as the third ventricle (TV), in FLAIR images
usually presents an intensity overlap with lesions (SHIEE et al., 2010), voxels in this particular
area are mistakenly clustered as lesions and increase the number of false positives. Since actual
lesions in this region are rare, we used a technique proposed by Ruppert et al. (2011) to detect
the midsaggital plane (MSP). After that, a distance d,, was defined and every voxel with a
distance to the plane smaller or equal to d,, were eliminated. In other words, given a voxel v
and its distance to the midsaggital plane as d(v) = dysp, v Was removed from the binary mask

if dysp < d,. In this work, we set d, = 8.

This post-processing step proved to be effective for removing voxels in the TV region and
keeping lesion voxels intact. A comparison between binary masks, before and after applying

this approach, is shown in Figure 5.7.
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Figure 5.7: Use of MSP to reduce false positives. (a) Original FLAIR image. (b) Binary mask
before removing voxels located in the TV region. (c) Binary mask after removing voxels in the TV
region using MSP detection.

5.4.2 Residue removal

The last step of the post-processing pipeline was removing residual voxels. In this work, a
voxel was deemed as residue in the following way: let v be a voxel and N, the neighborhood of
v with radius r and size s = (2 x r+ l)dim, where dim is the dimension of the image. Since we
focus on 3D images, dim = 3. We set r = 1 and consequently s = 27. We chose a neighborhood
of radius 1 in order to analyze only the immediate surroundings of a voxel and thus try to
remove only those that were likely isolated from the rest. In short, v was considered as a residual
voxel if its neighborhood had less than s/3 active voxels; that is, voxels already present in the
binary mask. A caveat of this approach is that it may also remove small lesions. However, as
mentioned by Bento et al. (2017), very small lesions are commonly dismissed in automatic and
manual approaches alike. And as shown in Table 5.2, the DSC metric increased with residue

removal. In this sense, the net worth of applying residue removal is still positive.

5.5 Image enhancement

As mentioned before, FLAIR images are commonly used in the context of MS because

lesions appear hyperintense in this particular image weight, making it easier for physicians to



5.5 Image enhancement 90

Image source DSC w/ residue DSC w/o residue

Patient 1 0.675 0.698
Patient 2 0.850 0.861
Patient 3 0.674 0.681
Patient 4 0.685 0.722
Patient 5 0.657 0.680

Table 5.2: DSC results with and without residue removal. All comparisons were made between the
automatic segmentation output from one time-point of each patient with the manual annotations
from expert 1, which was randomly chosen.

identify them. Though lesions appear bright, their intensity profile overlaps with other brain
tissues, mainly WM and GM (FREIRE; FERRARI, 2016), posing difficulties for accurate segmen-
tation. In this sense, we proposed a lesion enhancement technique to dim down WM and GM
regions and highlight hyperintensities. This was achieved by comparing each voxel’s neigh-
borhood average gray level intensity to some patches across a preprocessed image, creating a
hyperintensity probability map. A byproduct of this proposal was that the enhancement could

also be used to estimate a mask encompassing WM and MS lesions automatically.

Before generating the actual hyperintensity probability map, an intermediate image was
created by applying the Sobel filter (DUDA; HART; STORK, 2000) to the input FLAIR image.
Following the proposal in Roy, Bhuiyan and Ramamohanarao (2013), this intermediate image
was generated as follows. Let s = {x,y,z} be a particular spatial location, /; the FLAIR intensity
at s and g the gradient in the Sobel image at s. The edge and intensity information are combined
as

h(i)=—= Y, Prob(g<g), (5.1
se{s|ly=i}

where N is the total number of voxels with intensity i. In other words, Equation 5.1 goes over
every FLAIR image intensity i and, given the probability density function (PDF) of the Sobel

image, sums up the histogram bins that have a smaller frequency than g; and then normalizes it.

After calculating A(i), we compute the cumulative distribution function (CDF) of 4 as pro-

posed in Roy, Bhuiyan and Ramamohanarao (2013):

a(i) = Y h(k). (52)
k=1

In the end, each ¢(i) is used to replace each intensity i. An example of such intermediate image

is shown in Figure 5.8.
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(a)

Figure 5.8: Intermediate image generation. (a) FLAIR image, (b) Sobel image, (c) intermediate
image.

5.5.1 Hyperintensity probability map

The hyperintensity probability map was created based on the intermediate image generated
during the preprocessing stage detailed in Section 5.5. We devised an algorithm that automat-
ically creates such map and does not depend on parameters that must be set by experimental

observations, as opposed to (ROY; BHUIYAN; RAMAMOHANARAO, 2013; ROY et al., 2014).

The core principle behind this map is to compare each voxel neighborhood intensity with
patches across different points in the image. The more times the voxel’s neighborhood mean
intensity is higher than the patches, then the more likely it is for that particular voxel to stand

out and more likely for it to have a high hyperintense probability.

The first step to create the map was to define where each patch would be centered around.
To do that, we defined a point net for each slice following the algorithm proposed in (ROY et
al., 2014), which uses the combination of sines and cosines to distribute points across a slice
evenly. Let p = {x,y,z} be the coordinates of a candidate point. We then create new points
p'={x,y,z} with

X = x+rcos0

(5.3)

/

Yy = y-+rsin6 ’
where 0 is the angle and » = 10 is the radius. We set 0 to zero and increase it by 60 degrees
six times to complete a whole circumference. The six newly defined points become candidate

points, and the process is repeated until no new point is found.

After defining such points, we cropped the net using a brain mask in order only to keep
points that are inside our ROI. This procedure was done by simply purging points outside the

brain mask. An example of a final point net set P for a particular slice is shown in Figure 5.9.

Now, let 4 and o be the mean and standard deviation of the whole intermediate image



5.5 Image enhancement 92

(a) (b)

Figure 5.9: Point net generation. (a) Brain mask, (b) cropped point net. Each patch is centered
around one point in (b).

within the brain mask. Then, for each voxel, we calculated its neighborhood mean intensity as

1 &
= — i, 5.4
Hy NV]; k )

where U, is the mean neighborhood intensity of voxel v, N, is the number of neighbors of v and
i, 1s the intensity of neighbor k. The neighborhood size was defined as 3 x 3 X 3 to maintain a
good trade-off between sharpness and smoothness. The same rationale was used for the patches:

the mean intensity was calculated as in Equation 5.4, thus creating u,, for each patch.

Finally, we created a score S, as

1

Sy =—
C|P]

Y 8w, 1), (5.5)

peP

where |P| is the cardinality of the patch set and

L ifu—p, >0

& (My, p) = (5.6)

0, otherwise

In other words, if the difference of intensity between a candidate voxel neighborhood and
a patch was greater than or equal to the standard deviation of the whole image, then it was
considered a hit. Otherwise, it was a miss. By doing so, voxels with bright neighborhoods were
enhanced while other regions and tissues were dimmed out. Moreover, since we normalized
the score S,, each voxel remained in the range [0, 1], which also served as a hyperintensity

probability indicator. An example of the map is shown in Figure 5.10.

It is important to note that our approach did not require a hard threshold for Equation 5.6
or a fixed number of patches, as in (ROY; BHUIYAN; RAMAMOHANARAO, 2013). Instead, the

threshold was automatically calculated with respect to the standard deviation. Though simple,
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(a) (b) (c)

Figure 5.10: Hyperintensity map generation. (a) FLAIR, (b) intermediate image, (c) hyperintensity
map.

this was a significant improvement, since the main problem of using a hard threshold is that
even normalized, intensities inherently vary from image to image. In this sense, a soft thresh-
old such as the one we proposed in this work offers a better option for the enhancement of

hyperintensities for it can adapt to each image intensity profile.

5.5.2 White matter mask estimation

The white matter region usually comprises most MS lesions (COMPSTON; COLES, 2008). An
automatic brain segmentation into three clusters (WM, GM, and CSF) based on gray level inten-
sities is most certainly going to mix lesions and cluster them as GM, WM or both (BATTAGLINT;
JENKINSON; STEFANO, 2012; VALVERDE et al., 2015). In this context, being able to estimate a
mask that encompasses both white matter tissue and MS lesions can help narrow down the ROI
and increase the accuracy of lesion segmentation. To do so, we leveraged the fact that the map
described in Section 5.5.1 could also be interpreted as a probability map and used it to get an

estimate of such mask.

In this work, we made use of the Student’s t-mixture model proposed in Freire and Ferrari
(2016) and used T1-w and FLAIR images from each time-point to segment the brain into three
different clusters and get an initial WM mask, herein referred to as WM;,,;;;,;. To automatically
identify the WM cluster from others, we used the WM probability map described in Section
5.1.3, averaged it over each cluster and selected the one with the highest WM probability.

Since the clinical database described in Section 5.1.1 did not provide WM ground truths,
we created our own using a straightforward approach. Given any WM, ;;;.;, we simply merged
it with the lesions ground truth to get the whole WM region in one single mask, herein referred
to as WM,,01.. Considering that each time-point had two different lesions ground truth, we

created two WM masks for each time-point as well.
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The actual WM estimation took place as follows. First, we calculated the mean (ug;) and
standard deviation (ogy) of the region defined by WM,,;;;,; on the hyperintensity map and the
mean (,,p) of the region defined by WM,;;;1jy on the WM probability atlas. The idea was to
expand WM,,,;;;1 by considering voxels that were not part of the mask yet by analyzing 3 x 3 x 3
neighborhoods centered around these voxels to verify their potential for being included. The
expansion itself occurred by incorporating voxels that seemed as outliers; more precisely, voxels
with mean neighborhood values greater than ty;+ 1 X o7 in the hyperintensity map and greater
than (1, in the probability atlas. An example of the output of this estimation is shown in Figure

5.11.

(b)

(©) (@

Figure 5.11: White matter mask generation. (a) Hyperintensity map, (b) W M;,;s;a1, (¢€) W My, ound truths
(d) WMestim-

5.5.3 Pure WM and GM clusters

To estimate the intensity profiles of white matter and gray matter clusters without lesions,
we did the following. For each time-point, we segmented them into three clusters using the tech-
nique described in Section 3.1 and automatically identified the white and gray matter clusters
by analyzing their mean intensities on white and gray matter probabilistic atlases. The cluster
with highest white matter atlas mean intensity was taken as the white matter cluster (W M;;siq1);
the same rationale was used for the gray matter cluster (GM;,;;;,;). Then, for each expert anno-

tation, we simply excluded every voxel that had any intersection with the lesion ground truth
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and these two clusters. Formally, WM e = W Mipitiat — (W Minitiar N GTge{Expert 1, Expert 2}) and
GMpure = GMinitial — (GMinitiat N GTEe {Expert 1, Expert 2})- By doing so, we were able to obtain
so-called “pure” WM and GM clusters, which were then used to calculate their intensity profiles

and compare them to lesion profiles in Section 6.2.1.

5.6 Active lesions classification

As mentioned in Chapter 1, the distinction of active and nonactive lesions is currently
achieved by the injection of a Gadolinium-based contrast in the patient’s body a few minutes
before the MRI procedure. However, the more injections a patient takes throughout their life,
the more difficult it becomes to eliminate the contrast from their body. In this sense, we decided
to extract a number of features and use the XGBoost classifier to tell these two classes apart

with no aid whatsoever of Gadolinium injections.

To do so, we applied the same preprocessing pipeline shown in Figure 5.3 to FLAIR images
from both datasets, except we also applied a histogram matching algorithm proposed by Nyul,
Udupa and Zhang (2000) after the intensity inhomogeneity step to bring all images to a standard
intensity domain. As a reference for this histogram matching, we chose the FLAIR scan in the
clinical/nonactive dataset with the heaviest lesion load (32,3 ml). The rationale behind this
choice was to make lesions as representative as possible when matching histograms in both

active and nonactive datasets. Finally, all images were rescaled to the [0,255] interval.

After completing the preprocessing pipeline, we extracted features to aid in the distinction
between active and nonactive lesions. Such features were be divided into two groups, as shown

in Figure 5.12.

Features
£ | Enhanced | o
= er ma k3
S _Typermap E RLM
T | sobel |

Figure 5.12: Classes of extracted features.

The highlight branch was comprised of Sobel and two other feature images, enhanced and
hyperintensity map, generated by the algorithm proposed in Section 5.5. In short, these en-
hanced and hyperintensity map feature images were created by first scattering the histogram in
order to attenuate mean intensities and enhance “tail” ones, using it to further highlight hyper-

intensities through patch comparisons. An example of the images generated from this branch
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are shown in Figure 5.13.

(b)

Figure 5.13: Highlight features extracted from an active (a) FLAIR image yielding (b) Sobel image,
(c) Enhanced image and (d) Hyperintensity map.

The other branch of feature extraction concerned textures and was divided into two tech-
niques: GLCM and RLM (both explained in Sections 3.4.1 and 3.4.2, respectively). In this
work, we set the distance to a radius of 2 and 13 directions, scaled analogously from the default
4 directions - 0, 45, 90 and 135 degrees - used in 2D images, as shown in Figure 3.10. Each
texture map was calculated as the average of all 13 directions. We decided to set the radius to 2
in order to compensate for the varying range of shapes and sizes each MS lesion can take. An

example of features extracted from GLCM and RLM are shown in Figure 5.14.

After completing feature extraction, a total of 22 attributes were selected to be used in the
classification step: 8 GLCM features, 10 RLM features, histogram matched FLAIR image,

Sobel image, enhanced image and hyperintensity map.

One can argue that the differences in image resolution between the active and nonactive
datasets could lead to differences in the texture outputs. While this is a well-grounded obser-
vation, we opted to preserve image resolutions as they were for several reasons. First, any up
or downsampling procedure would involve alterations in the experts’ annotations, which could
lead to invalid lesion masks in the new resolution space. Second, we wanted our classification
algorithm to work as close as possible to a real world situation regarding the identification of
active lesions. And third, the main distinguishing and qualitative features used by the expert in

the active dataset were present in the XY plane, which is already encompassed by the offsets
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Figure 5.14: Textures extracted from the patient with active lesions depicted in Figure 5.13. (a)
GLCM Energy, (b) GLCM Entropy, (¢) RLM GLN, (d) RLM LRE.

shown in Figure 3.10.

5.7 Final considerations

This chapter presented the database, preprocessing, clustering rationale and post-processing
steps used for MS lesion segmentation in MR images. The iterative approach was chosen as
a way to partially overcome the intensity overlap between lesions and other brain tissues and
thus improve segmentation accuracy. To further improve the distinction among clusters, we also
presented a methodology for enhancing hyperintensities in FLAIR, which also had a byproduct
of providing ways to estimate a WM mask that can be used to constrain the region of interest
in an image. Additionally, we also discussed our classification approach to tell the active and
nonactive lesion classes apart without the injection of Gadolinium-based contrasts in one’s body

prior to a MRI procedure.

The results of the segmentation, distinction provided by the enhancement and lesion classi-

fication are discussed in Chapter 6.



Chapter 6

RESULTS AND DISCUSSION

This chapter presents quantitative results on the iterative approach applied to the context of
MS lesions in MRI, the distinction given by image enhancement on FLAIR images and the
classification of active and nonactive lesions. We compare our results with other works and

provide a discussion on strengths and weaknesses of our pipeline.

6.1 Segmentation results

The preprocessing, segmentation and post-processing steps explained in Chapter 5 were
used to automatically segment MS lesions in the 2015 Longitudinal MS Lesion Segmentation
Challenge (CARASS etal., 2017). As mentioned in Section 5.1.1, each time-point had two manual
delineations performed by two experts. The results of our segmentation were compared with

both of them. An example of the iterative process is shown in Figure 6.1.

Two segmentation outputs are shown in Figures 6.2 and 6.3. 3D rendered images were
generated from the automatic segmentation and manual delineations and are also shown in

Figures 6.4 and 6.5.

We extracted the mean and standard deviation of DSC, TPR, FPR and VD for each patient.
The results are shown in Tables 6.1 and 6.2. It is important to note in Figure 6.1 that the initial
binary mask was created using the probabilistic anatomical atlases to constrain the segmentation

region as close to WM as possible.

The most significant differences in the values of the metrics between the ground truths from
experts 1 and 2 in Tables 6.1 and 6.2 were observed for patient 4. As shown in Table 6.3, the
agreement between the manual delineations of the experts in this case (DSC = 0.6124+0.019)

presented the lowest DSC among all patients, which indicates a high inter-experts variability.



6.1 Segmentation results 99

II

II1

(h)

Figure 6.1: Iterative segmentation approach. In the first step (I), the image to be segmented (a)
and the initial binary mask (b) are provided as input for the algorithm. In the second step (II), the
iterative segmentation process is shown in binary masks (c)-(g). In the third step, the final lesion
binary mask (h) is obtain after post-processing.

In this scenario, it is reasonable to expect the automatic segmentation to yield low agreement
metrics when compared with manual annotations. An example of disagreement between experts

in a time-point from patient 4 is shown in Figure 6.6.

The patients’ lesion volume in the 2015 Longitudinal MS Lesion Segmentation Challenge
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(I11)

(Iv)

Figure 6.2: Final segmentation of a time-point from patient 1 with axial (left), saggital (middle)
and coronal (right) views. In (I), FLAIR images. In (II), manual annotation from expert 1. In (III),
manual annotation from expert 2. In (IV), automatic lesion segmentation.

ranged from 1.950 ml to 34.719 ml. Given the DSC, TPR and FPR metrics, the iterative ap-
proach presented consistent segmentation results in this range. However, as explained in Sec-
tion 5.3, the iterative approach took the most hyperintense cluster as MS lesions. This may have
excluded lesion voxels that did not fit in the hyperintense hypothesis, thus lowering the TPR and
increasing the VD. A comparison made between the mean and standard deviation values of le-

sions annotated by experts 1 and 2 and segmented by our proposal in images from patient 1 are
shown in Table 6.4.

In Table 6.4, it is possible to observe that the automatic segmentation had the lowest stan-
dard deviation, indicating our approach segmented a narrower portion of MS lesions. Moreover,
except for time-point 2, our algorithm presented the highest mean values. Both high mean and

low standard deviation indicate our technique indeed segmented MS lesions, but it was not able
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Figure 6.3: Final segmentation of a time-point from patient 5 with axial (left), saggital (middle)
and coronal (right) views. In (I), FLAIR images. In (II), manual annotation from expert 1. In (III),
manual annotation from expert 2. In (IV), automatic lesion segmentation.
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Figure 6.4: 3D rendered lesion images of a time-point from patient 1. In (a), manual annotations
from expert 1. In (b), manual annotations from expert 2. In (c), automatic lesion segmentation.

to include lesion voxels that were located in a lower intensity range. The same behavior was

observed for every other time-point from every other patient. An example of this problem is
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(@) B - ©

Figure 6.5: 3D rendered lesion images of a time-point from patient 5. In (a), manual annotations
from expert 1. In (b), manual annotations from expert 2. In (c), automatic lesion segmentation.

Source  #images DSC TPR FPR VD
Patient 1 4 0.644+0.056 0.607+0.164 0.259+0.200 0.328+0.09
Patient 2 4 0.716 £0.114 0.604+0.181 0.05£0.06 0.336+£0.230
Patient 3 5 0.642+0.056 0.581+£0.074 0.245+0.285 0.338+£0.115
Patient 4 4 0.622+0.080 0.557+0.159 0.220+£0.250 0.390+0.120
Patient 5 4 0.634+£0.060 0.595+0.097 0.2724+0.065 0.136+0.146

Table 6.1: Segmentation results (mean + std dev) using expert 1’s delineations as ground truth.

shown in Figure 6.7.

We also calculated the Person’s correlation coefficient (GAYEN, 1951), commonly called r,
to assess the volumetric agreement between the automatic segmentation and the manual anno-

tations performed by experts 1 and 2. For both of them, the p-value was smaller than 0.00001.

Considering the automatic segmentation output and the annotation from expert 1, r =
0.8813; similarly, for expert 2, r = 0.8871. The Pearson’s correlation coefficient was also
calculated for experts 1 and 2 with r = 0.9841 to expand the comparison. The scatter plots of
this data are shown in Figures 6.8, 6.9 and 6.10.

The r and p-values related to the automatic segmentation indicated a strong positive cor-
relation between the computed volumes from our approach and the manual annotations. By
considering these results along with those shown in Tables 6.1 and 6.2, it is possible to observe
that the automatic MS lesion segmentation proposed in this work indeed had a good spatial and
volumetric agreement with the ground truths. Comparatively, the correlation between experts
was higher compared to the automatic segmentation versus each annotation. This difference
can be explained by the fact that our proposal segmented lesions with the highest gray level

intensities, discarding those with a lower intensity.



6.1 Segmentation results

103

Source  # images DSC TPR FPR VD
Patient 1 4 0.641+0.083 0.573+0.176 0.182+0.121 0.345+0.09
Patient 2 4 0.701 £0.095 0.579+0.144 0.054+£0.061 0.364+0.195
Patient 3 5 0.577+£0.086 0.464+0.127 0.1234+0.153 0.410£0.262
Patient 4 4 0.478£0.043 0.367+0.095 0.155+0.186 0.474+0.277
Patient 5 4 0.586£0.055 0.592+0.110 0.411+0.098 0.153+0.107

Table 6.2: Segmentation results (mean + std dev) using expert 2’s delineations as ground truth.

(b)

(c)

Figure 6.6: Example of disagreement between experts in a time-point from patient 4. In (a), axial
view of FLAIR. In (b), manual annotation from expert 1 and in (c), manual annotation from expert
2. The red arrow indicates a region delineated only by expert 2 as being a lesion.

An advantage of our approach compared to some of the works described in Section 4.1 lies

in the fact that it did not require a training step; each segmentation was performed in a stand-

alone manner. Supervised techniques usually need a thorough training stage and additional data

(such as a healthy population) to perform the segmentation. This restriction can be a problem

when dealing with images from different hospitals or medical centers since they would have to
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Source  # images DSC (agreement
between experts)

Patient 1 4 0.779£0.017
Patient 2 4 0.846 £0.036
Patient 3 5 0.768 £0.076
Patient 4 4 0.612+0.019
Patient 5 4 0.6524+0.048

Table 6.3: DSC metrics (mean =+ std dev) for experts 1 and 2.

Time-point  Ugr1£06r1 M2 £ 0612 Mseg T Oseg

1 139.88£12.49 137.58+12.44 145.32+9.27

2 112.20£8.71  110.80£9.05 110.52£7.45
3 103.23£8.31 102.978£8.65 109.02+6.26
4 118.20£9.72 116.84+10.23 123.374+7.56

Table 6.4: Intensity comparison (mean + std dev) of MS lesions among ground truth 1 (GT1),
ground truth 2 (GT2) and the automatic segmentation output for images of patient 1.

go through a normalization stage. Such stage may introduce bias to the results since the training
set is usually not large enough to encompass anatomical and physiological variabilities between

different patients (DESPOTOVIC; GOOSSENS; PHILIPS, 2015).

The winner of the 2015 Longitudinal MS Lesion Segmentation Challenge was the work of
Vaidya et al. (2015). The authors used neural networks and patches to perform the segmenta-
tion. Neural networks had to be trained before the actual segmentation could take place. Since
the authors presented results for a few time-points of only one patient, it was not possible to
thoroughly compare their work with ours. However, even with their DSC values being higher
than those obtained by our technique, the TPR and FPR of our approach were better than the

authors’. Such result is an indication that our proposal had smaller classification errors.

An overview of the results from the teams who participated in the challenge and our results

are shown in Table 6.5.

It is important to note that our approach used only FLAIR images. Other image weights
may bring more information to the model; however, preliminary tests using T1-w, T2-w and
FLAIR and T1-w and FLAIR were conducted, and no significant accuracy gains were observed.

Moreover, using only one image weight reduced the computational cost of the technique and
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(b) (c) (d)

Figure 6.7: In (a), axial view of FLAIR. In (b)-(d), manual annotation from expert 1, 2 and au-
tomatic lesion segmentation, respectively. Green arrows indicate a hyperintense lesion identified
in all three masks. Red arrows in the sub-figures indicate a less hyperintense lesion that was not
identified by our proposed algorithm.
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Figure 6.8: Scatter plot of volumes calculated for the automatic segmentation (horizontal axis) and
annotation from expert 1 (vertical axis). For this data, r = 0.8813 (p-value < 0.00001).

decreased the execution time of the algorithm.

Overall, the results from our automatic segmentation presented a good agreement with man-
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Figure 6.9: Scatter plot of volumes calculated for the automatic segmentation (horizontal axis) and
annotation from expert 2 (vertical axis). For this data, » = 0.8871 (p-value < 0.00001).
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Figure 6.10: Scatter plot of volumes calculated for the annotations of expert 1 (horizontal axis) and
expert 2 (vertical axis). For this data, r = 0.9841 (p-value < 0.00001).

ual annotations (especially from expert 1) and were able to keep consistency between images
with different lesion loads. Besides, it did not require any training stage, so the segmentation of

images from different acquisition protocols was not affected by any bias introduced by training

images.

A difficulty faced during the development of the algorithm was the agreement variability
between experts. This fact created problems because it failed to provide a solid foundation that
could be used as a guide for adjusting the parameters of our technique. Ideally, a greater number
of annotations made by different experts in the same database could help mitigate the variability
problem. In this scenario, we could have a better grasp on the lesion annotations and improve

the results of our algorithm based on the agreement of the majority of experts.

One limitation of our proposal lied in the image alignment stage. Since registration between
images is hardly perfect, lesions located in regions that are not well aligned are likely to be left

out during the region constraint step. The GM atlas was used as a way to include WM and
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Authors Technique Results Image weights Ground
truth
Jesson e Arbel Random forest DSC =0.70/0.68 T1-w, T2-w, GT1/GT2
TPR = 0.61/0.50 FLAIR
Maier e Handels Random forest DSC =0.70/0.65 T1-w, T2-w, PD, GT1/GT2
TPR = 0.53/0.38 FLAIR
GT1
Vaidya et al. Neural network DSC =0.80 T1-w, T2-w, PD, (only from
TPR = 0.40 FLAIR patient 2)
Tomas-Fernandez e Warfield GMM DSC =0.62 T1-w, T2-w, TOt
TPR = 0.53 FLAIR cleat
GT1
Prados et al. Fast patch matching DSC =0.55+0.14 T1-w, T2-w, PD, N
TPR =0.72£0.10 FLAIR GT2
Freire e Ferrari SMM-iter DSC = 0.65/0.59 FLAIR GT1/GT2

TPR =0.58/0.51

Table 6.5: DSC and TPR results of works submitted to the 2015 Longitudinal MS Lesion Segmen-
tation Challenged and ours. GT1 and GT2 are the ground truths from experts 1 and 2, respectively.

CSF voxels in the initial binary mask to overcome this issue, being CSF voxels easily excluded
because of their hypointense characteristic in FLAIR images. Moreover, this constraint also
reduces the number of false positives by eliminating voxels that have intensities close to MS

lesions but are located outside the WM region.

Another limitation was the fact that MS voxels in a lower intensity range are likely to be
left out of the MS cluster. This problem happens because our approach hypothesized that MS
lesions represent the most hyperintense cluster in FLAIR images. If a significant variability in
lesion intensity is observed, the less intense ones may not follow our hypothesis and, conse-
quently, not be segmented appropriately. However, even with this caveat, our technique was
comparable to algorithms applied to the same database, yielding similar or better results than

most other works.

Finally, the number of iterations and clusters on each iteration were parameters that had a
significant weight on the segmentation result. In this sense, an approach to automatically choose
these parameters would improve the robustness of the whole technique and serve as an aid for

the problem of excluding lesion voxels that are not as hyperintense as the lesion cluster.
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6.2 Image enhancement results

In this section, we present results regarding the brightness intensity profile of MS lesions
compared to gray matter and white matter tissues in FLAIR, intermediate and hyperintensity

map images for each patient.

6.2.1 Brightness profile

Since the 2015 Longitudinal MS Lesion Segmentation Challenge provided two ground
truths for each time-point, we extracted the intensity profiles for both annotations. We rescaled
all images to the [0, 1] interval, averaged the white matter, gray matter and lesion profiles and
also calculated the standard deviation for each patient. The results are shown in Figures 6.11

and 6.12 for experts 1 and 2, respectively.

Each bar in Figures 6.11 and 6.12 represents the mean lesion intensity over the mean in-
tensity of a given tissue (gray matter or white matter) in a particular image type (FLAIR, inter-
mediate and hyperintensity map). For instance, the FLAIR WM bar in Figure 6.11(a) must be
interpreted as “the average MS lesion profile in FLAIR images from Patient 1 is approximately
25% brighter than the average WM tissue intensity for the same image type and patient”. This

allows a direct comparison between tissues and images.

The results in Figures 6.11 and 6.12 indicated a significant difference in the MS lesion inten-
sity profile in the hyperintensity map compared to FLAIR and the intermediate image described
in Section 5.5. These outcomes are significant since they provide quantitative background to

show the discriminative features of the HI map.

It is possible to note that the lesion intensity profile was more similar to the gray matter than
to white matter. The difference in intensity between MS lesions and GM and WM in FLAIR
and intermediate images was minimal compared with the HI map, which showed, in the worst
case (Patient 1, Expert 2, GM), a 141% brightness gap. In contrast, this same case presented
18% and 32% IPD for FLAIR and intermediate images.

At the same time, the standard deviation in the HI map was far higher than in FLAIR and
intermediate images, which is an indication that the map had a rather spread out MS lesion
intensity profile. While this is a concern that must be addressed when using the map to seg-
ment lesions, whether manually or automatically, the overall difference in intensity between
lesions and other brain tissues was still significant and potentially provides enough leverage to

overcome, at least partially, the wide standard deviation variation.
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Figure 6.11: Lesion intensity profile compared with white matter and gray matter tissues using
ground truths from expert 1. Here, “Inter” is the intermediate image and ‘“HI” is the hyperinten-
sity map. Each bar represents the mean lesion intensity over the mean intensity of a given tissue
(white matter or gray matter) in a particular image type.

A drawback of the HI map is that it is highly dependent on the gray level intensity in FLAIR.
This fact posed two problems that can be observed in Figure 6.13. The first one is presented
in Figure 6.13(a)-(c) and concerns the natural intensity variation within the lesion profile. In
this case, the lesion enclosed by the rectangle was not as enhanced as the one enclosed by the
ellipse. As observed in Figure6.13(a), the lesion enclosed by the rectangle did not present a
profile as hyperintense as the ellipse one in FLAIR, so this difference was propagated to the HI
map. The other problem is shown in Figure 6.13(d)-(f). Areas enclosed by rectangles indicate

regions that have no MS lesions and yet are enhanced in the map. Again, this occurred because
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Figure 6.12: Lesion intensity profile compared with white matter and gray matter tissues using
ground truths from expert 2. Here, “Inter” is the intermediate image and ‘“HI” is the hyperinten-
sity map. Each bar represents the mean lesion intensity over the mean intensity of a given tissue
(white matter or gray matter) in a particular image type.

these regions presented rather high-intensity profiles in FLAIR and thus were enhanced in the
map. Both these problems can interfere with lesion segmentation accuracy and indicate that
the HI map should not be used as a stand-alone feature in manual and automatic segmentation

techniques.

While there are some works in the literature (SHAH etal., 2011; TOMAS-FERNANDEZ; WARFIELD,
2015; BATTAGLINIL; JENKINSON; STEFANO, 2012) that mention MS lesion intensity profiles and
how they relate to other tissues, none of them provide a quantitative analysis regarding percent-

age, making it difficult to compare our results with theirs directly. The databases are also differ-
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(b)

(d)

Figure 6.13: Intensity problems caused by wide lesion intensity range (first row) and hyperintensi-
ties in regions other than lesions (second row).

ent. However, by analyzing scatter plots in (SHAH et al., 201 1; TOMAS-FERNANDEZ; WARFIELD,
2015), it is possible to observe that lesion intensity profiles present a significant overlap with

other brain tissues. Hence, the HI map can undoubtedly help distinguish lesions more easily.

6.2.2 White matter mask comparison

We compared the white matter mask estimated in Section 5.5.2 with our WM ground truths
using the DSC. We also extracted the percentage of lesions (intersection) present in each esti-
mated mask to analyze the lesion load that was kept during the estimation. Again, since there
were two lesion ground truths for each time-point, we extracted metrics for both experts. The

results are shown in Table 6.6 and in Figures 6.14 and 6.15.

We also calculated the sensitivity and specificity of the estimated masks. The results for

both experts are shown in Table 6.7.

The results shown in Tables 6.6 and 6.7 and in Figures 6.14 and 6.15 indicated high DSCs
and significant intersection with lesions. It also pointed to very high sensitivity and specificity

metrics. A relevant observation to be made is that the LI metric presented a consistent level
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Figure 6.14: Lesion intersection with the estimated white matter mask using ground truths from

both experts.
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Figure 6.15: Dice coefficients of the estimated white matter mask compared to ground truths cre-

ated using experts lesion annotations and automatic brain segmentation.
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LI (%) LI (%) Dice Dice
Expert 1 Expert 2 Expert 1 Expert 2
(u=*o) (u+o) (u*o) (u*o)

Patient 1 78.56 + 77.65 + 0.9763 £ 0.9764 £
6.70 8.30 0.0003 0.0007

Patient2  89.60 + 88.20 £ 0.9786 £ 0.9775 +
1.59 1.71 0.0021 0.0020

Patient 3 83.88 £ 79.08 = 0.9834 + 0.9829 +
0.94 2.51 0.0007 0.0005

Patient4  76.83 + 56.95 + 0.9860 £+ 0.9853 +
1.20 4.03 0.0012 0.0013

Patient5  73.73 £ 71.00 £ 0.9828 + 0.9826 £
3.55 2.16 0.0017 0.0017

Table 6.6: Lesion intersection (LI) and Dice coefficients for the white matter mask estimation for
both expert ground truths.

of intersection regardless of lesion volumes, which is an indication of the robustness of our

technique.

In Figure 6.14, it is possible to observe that patient 4 presented very different results on
lesion intersection. The reason for this is that the expert annotations for this patient had the
lowest DSC (0.612 4 0.0019) among all patients, as mentioned in (FREIRE; FERRARI, 2016).
In other words, experts did not have a high agreement coefficient on lesion segmentation for
this particular case, which consequently made our technique present very different intersection

values for each annotation.

Another point to be made about Figure 6.14 is that patient 1 presented the highest standard
deviation of all, which comes from the fact that this patient’s lesion intensities faded across time-
points, making the enhancement less useful. This fading phenomenon can also be observed in
Figures 6.11 and 6.12, since patient 1 had the highest standard deviation on the lesion intensity

profile in the HI map compared with other patients.

6.3 Classification results

In this section we present the voxel-level classification results based on specificity, sen-
sitivity and F1-score, as well as the accuracy of our method on a lesion-level basis. Before

discussing the results per se, two observations regarding the number of folds (6 in total, as
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SS SS Sp SP
Expert 1 Expert 2 Expert 1 Expert 2

(L+o0) (L+o0) (L+o0) (L+o0)
Patient 1 09931+ 09920+ 09786+  0.9793 +

0.0024 0.0028 0.0012 0.0008
Patient2  0.9928 &+ 0.9915 £ 0.9823 + 0.9818 +
0.0012 0.0014 0.0023 0.0016
Patient 3 0.9983 + 0.9968 + 0.9816 £ 0.9818 +
0.0001 0.0009 0.0010 0.0011
Patient4  0.9990 + 0.9975 + 0.9818 + 0.9818 +
0.0008 0.0002 0.0015 0.0016
Patient5 0.9974 £ 0.9974 + 0.9822 + 0.9820 +
0.0002 0.0002 0.0020 0.0020
Overall 0.9962+ 0.9813 + 0.9951 + 0.9814 £
0.0028 0.0021 0.0030 0.0017

Table 6.7: Sensitivity (SS) and specificity (SP) values for the white matter mask estimation for both
expert ground truths.

shown in Table 6.8) are deemed necessary.

First, we set the number of patients per fold to five as a trade-off between the size of the
training and test sets in order to make the classifier general enough to avoid overfitting problems.
However, since the number of patients with active lesions was 33, the last fold would comprise
either 3 or 8 patients. We chose the latter for the sake of generalization. The results using only
3 patients in the training set indicated a strong overfitting, especially for the active lesion class.
Hence, we decided to include these 3 patients in the last 5-patient fold. Since this experiment
design choice implied in less samples for the training set, thus making the classification task
“harder”, we decided it was a valid approach. This is the reason why the sixth fold included

eight instead of five patients from each class.

Second, as mentioned in Section 5.1, the nonactive database was comprised of 5 patients,
four of them with four time points and one with five. The rationale to choose which patients
with nonactive lesions would go into each fold was to randomly choose one time point per
patient when the fold size was five. For the last fold, with eight patients, we simply chose three
additional random time points from the first three patients in the nonactive dataset (i.e., the last

fold had two time points from the first three patients and one time point from the rest).

The voxel-level classification results are shown in Table 6.8. The nonactive classification
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yielded higher results when compared to the active class, especially regarding the specificity
metric. However, as mentioned in Section 3.5.3, sensitivity and F1-score are more significant
when it comes to analyze imbalanced datasets as the one we used in this work. In this sense,
we can observe that these two metrics were similar between the active and nonactive classes.
Moreover, we verified that most misclassifications occurred when a nonactive voxel was mis-
taken for an active one. Even though this is not ideal, this result is still better for a physician
- who can discard these misclassifications when reviewing the outcome of our approach - than

the other way around.

Patients Class Results

Specificity Sensitivity Fl-score

1.5 Active 0.945 1 0.972

Nonactive 1 0.993 0.997

6-10 Active 0.7 0.996 0.823
Nonactive 1 0.966 0.983

11-15 Active 0.765 1 0.867

Nonactive 1 0.977 0.988

1620 Active 0.99 1 0.995

Nonactive 1 0.998 0.999

2125 Active 0.887 0.863 0.875
Nonactive 0.978 0.982 0.98

26-33 Active 0.999 0.958 0.978

Nonactive 0.991 1 0.995

Weighted avg. Active 0.892 0.968 0.924
Nonactive 0.994 0.987 0.991

Table 6.8: Specificity, sensitivity and F1-score metrics for the 6-fold cross-validation.

A lesion-level overview is shown in Table 6.9. The results show that 154 out of 157 lesions
were correctly classified as active and the classification was perfect for the nonactive class.
As mentioned in Section 3.5.3, we averaged the probability of each lesion as a whole and
labeled them according to the majority class. We can see that even though the active class
did not have specificity, sensitivity and F1-score as high as the nonactive class in a voxel-level
analysis, the mistakes were compensated by the surrounding voxels comprising the lesion itself.

In other words, the voxel-level classification provided a margin of safety for errors, making
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them less significant when viewed from a coarser granularity. Since the outcome of interest
for neurologists and physicians is on the lesion-level, this margin indicates there is room for

mistakes on a voxel-level that, to a certain extent, do not interfere on the lesion-level results.

Table 6.9: Mean (std) for lesion-level classification.

Active Nonactive
Active Active Nonactive Nonactive
Fold prob. prob.
D hits 1D hits
(mean=std) (mean=std)
1 0.982
1 1/1 1 26/26
(1.04e-13) (0.009)
1 1 0.998
2 5/5 6 31/31
(1.07e-11) (0.001)
1 0.983
3 12/12 9 26/26
(3.36e-08) (0.009)
1 0.993
4 3/3 14 20/20
(2.07e-09) (0.002)
1 0.987
5 1/1 18 19/19
(2.04e-12) (0.007)
0.930
6 1 1/1 2 33/33
(0.049)
) 1 0.989
7 4/4 5 41/41
(1.21e-10) (0.005)
0.989 0912
8 6/6 11 28/28
(0.00681) (0.061)
1 0.966
9 3/3 16 21/21
(2.48e-15) (0.019)
1 0.961
10 2/2 20 22/22
(2.7e-14) (0.024)
1 0.944
11 2/2 3 20/20
(3.29e-12) (0.034)
3 1 0.992
12 1/1 8 33/33

(5.03e-12) (0.001)
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Table 6.9: Mean (std) for lesion-level classification.

Active Nonactive
Active Active Nonactive Nonactive
Fold prob. prob.
D hits 1)) hits
(mean=std) (mean=std)
1 0.947
13 6/6 12 26/26
(2.66¢-15) (0.034)
1 0.985
14 3/3 17 17/17
(5.81e-12) (0.006)
1 0.963
15 1/1 21 20/20
(1.3e-12) (0.022)
1 0.994
16 6/6 1 26/26
(3.08e-08) (0.002)
4 1 1
17 2/2 6 31/31
(7.63e-07) (6.89e-05)
1 0.994
18 13/13 11 28/28
(8.26¢e-06) (0.003)
1 0.997
19 2/2 16 21/21
(1.06e-06) (0.001)
0.986 0.995
20 4/4 18 19/19
(0.00418) (0.002)
0.956 0.95
21 4/4 1 26/26
(0.039) (0.027)
5 0.687 0.994
22 3/3 5 41/41
(0.213) (0.001)
0.974 0.965
23 4/4 9 26/26
(0.0245) (0.018)
0.585 0.988
24 1/1 15 25/25
(0.241) (0.004)
0.883 0.958
25 10/10 19 23/23

(0.0451) (0.022)
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Table 6.9: Mean (std) for lesion-level classification.

Active Nonactive
Active Active Nonactive Nonactive
Fold prob. prob.
1)) hits 1)) hits
(mean=std) (mean=std)
0.996 0.999
26 9/9 1 26/26
(0.001) (0.004)
1 1
27 26/26 7 33/33
(2.08e-05) (1.84e-05)
6
0.988 0.997
28 13/13 10 28/28
(0.003) (0.001)
1 0.999
29 1/1 14 20/20
(2.15e-09) (0.005)
0.995 0.998
30 2/2 18 19/19
(0.001) (0.001)
1
31 2/2 2 1 (7e-05) 33/33
(2.92e-07)
0.259 0.999
32 0/3 6 31/31
(0.076) (0.001)
1 0.995
33 1/1 11 28/28
(3.59¢-09) (0.001)

Only one patient, ID 32, did not have their lesions identified as active. Some features from
this particular patient are shown in Figure 6.16. Visual analysis indicate that not only were the
lesions small, they also had an intensity profile too similar to that of nonactive lesions. More-
over, the quality of the FLAIR image itself was rather poor. Even though textural and enhanced
features aid in the distinction between both classes, there are cases where the classification
step fails to yield the expected output due to conditions that are out of our reach but yet have

influence on the final outcome.

We can also observe that the standard deviation across all lesions was quite small and the

average lesion probability for most patients, both active and nonactive, was close or equal to
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(d) (e)

Figure 6.16: Example of slices from patient ID 32 who had zero lesion hits. (a) FLAIR, (b) active
lesion annotation, (¢) T1-w with Gadolinium enhancement, (d) RLM LRE, (¢) RLM GLN.

one. It indicates our classifier was able to accurately distinguish both classes with a high degree

of certainty, which is important when dealing with a sensitive health care scenario as this one.

To analyze the effect of the features in the classification step, we plotted histograms for
all 22 attributes extracted from all images of both active and nonactive datasets. Doing so we
observed the RLM features RLE, RLN, GLN showed a significant distinction between both
classes, whereas GLCM features, in general, had an overlap between one class and the other.
This is an indication that active and nonactive lesions are better separated when accounting for
their smoothness profile. Histograms from RLM and GLCM features are shown in Figures 6.17
and 6.18.
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Figure 6.17: RLM feature histograms: (a) RLE, (b) RLN and (¢) GLN. Class ''Lesion'' represents
the nonactive lesions.

The enhancement effect mentioned in Section 5.5 can be seen in histograms shown in Figure

6.19. We can see that the enhanced and hyperintensity map features offset and spread the class
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Figure 6.18: GLCM feature histograms: (a) Entropy, (b) Inverse Difference Moment and (c) Iner-
tia. Class ""Lesion'' represents the nonactive lesions.

histograms apart, making them more distinguishable. Extracting good features is of paramount
importance for the supervised learning pipeline, since they have a direct effect on the classifica-
tion step. Therefore, combining dissimilar and relevant textural and enhanced features creates a
domain space that is adequate for a proper class separation. However, it is also relevant to note
that features with significant overlays cannot be promptly discarded because their combination
with other more key/distinct features can be useful for the classification step as a whole, espe-
cially when the overlay areas between these features are complementary (i.e., the overlay area

between classes in one histogram is the most distinctive area in another).
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Figure 6.19: Enhanced feature histograms: (a) Histogram matched (no enhancement), (b) En-
hanced and (c) Hyperintensity Map. Class ''Lesion'' represents the nonactive lesions.

Overall, the classification accuracy on a lesion-level for the active class was over 98%),
indicating that it is possible to identify this particular kind of MS lesion using only FLAIR
images and without any kind of contrast agent. In addition, RLM features proved to be the most
distinctive ones in this scenario. Performing the classification step on a voxel-level provided us
with enough samples to properly train our classifier and also allowed for a margin of safety to

take place, "smoothing out" the effects of misclassifications on a lesion-level .

6.4 Final considerations

This chapter presented the MS lesion segmentation results using an iterative approach com-

bined with the Student’s t-mixture model applied to FLAIR images. The algorithm made use of
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probabilistic anatomical atlases to constrain the segmentation region to WM to reduce the num-
ber of false positives introduced by voxels of intensities similar to MS lesions but that belong
to different clusters. The iterations proved to be a successful idea because the refinement in the

segmentation was able to gather most lesions as the most hyperintense cluster.

We compared the segmentation results with manual annotations and with other techniques
applied to the same database. To quantitatively analyze the results, we extracted the DSC,
TPR, FPR, VD and Pearson’s correlation coefficient. These metrics provided an overview of
the spatial and volumetric agreement between our algorithm and the expert annotations and
indicated our approach presented results that compared favorably to the state-of-the-art and

yielded consistent outputs regardless of lesion load.

We also presented in this chapter an intensity enhancement technique that highlights hy-
perintensities in FLAIR images while dimming down non-hyperintense regions. The quality of
the data provided to the model is just as important as the model itself, so we believe the hyper-
intensity map can provide valuable information about the location of lesions and thus improve
the quality of the segmentation. Our results show the hyperintensity enhancement significantly
improved the distinction of the lesion intensity profile compared with other brain tissues (WM
and GM). However, there were some caveats in the technique that need to be addressed before
actually incorporating it into the model. The main drawback currently lies in the fact that some
hyperintense regions that do not correspond to MS lesions are highlighted in a way they end up
being similar to lesions themselves. To circumvent this problem, spatial information provided
by the atlases combined with both global and local intensity information of these regions can

be investigated to eliminate the issue.

Moreover, we showed the hyperintensity map can provide a white matter mask estimation
as its byproduct. As mentioned before, constraining the segmentation region to WM can help
reduce the number of false positives, since voxels located mainly in the GM tissue have a
significant intensity overlap with MS lesions. In this sense, our WM estimation had an excellent
spatial agreement with the actual WM region and can undoubtedly be used as an alternative to

the constraint step we used in the segmentation pipeline.

Finally, we presented a supervised classification pipeline to distinguish active and nonactive
MS lesions in FLAIR images without using any contrast agent. We relied on textural and
enhanced features to create a feature space where both classes could be easily distinguished
using the XGBoost classifier. Our dataset comprised 54 patients, 33 with active lesions and 21

with nonactive ones, with varying lesion loads, shapes, sizes and locations.

Though active lesions represented a small portion of samples when compared to nonactive
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ones, the results indicate that is possible to tell these two classes apart using information from
FLAIR images and without the aid of contrasts of any kind. Out of the 157 active lesions,
154 were correctly identified as so. This is relevant because it unburdens patients from the
accumulation of heavy metal-based contrasts in their systems, makes it possible for patients
with kidney problems to get an assessment of their active lesion progress (because they could
not take the contrast in the first place) and also lowers the cost of the MRI procedure, since the

contrast itself is no longer be necessary.



Chapter 7

CONCLUSIONS

In this chapter we present the conclusions of this work and further investigations that can

be derived from our results.

7.1 Overview and future investigations

The main goal of this research was to develop an automatic computational scheme for
segmentation, volumetric assessment and analysis of multiple sclerosis lesions in magnetic res-
onance images of the human brain. We divided this goal into two main steps: tissue clustering
and active lesion classification. Besides being challenging, these tasks pose difficulties that
range from the image acquisition process to the intrinsic characteristics of MS lesions — which
have no well-defined shape, size or location. A myriad of works in the literature regarding
segmentation and classification are divided into two main groups: supervised and unsupervised
approaches. To this day there is no consensus as to which technique or approach works best for

all scenarios.

We opted for using an unsupervised approach in the segmentation of brain tissues and le-
sions because of the intrinsic complexity of the human brain. The available public datasets are
usually not large enough to encompass all the physiological and pathological variations that
subjects may present. Given the unsupervised approach, the decision to use a parametric tech-
nique based on the Student’s t-mixture model was made based on promising results presented
by some previous works, mentioned in Chapter 4, that used this technique in the segmentation
context. Our approach, combined with iterative refinement of the segmentation, yielded very
good results in the 2015 Longitudinal MS Lesion Segmentation Challenge and compared favor-

ably both to manual annotations and other automatic techniques applied to the same database.



7.1 Overview and future investigations 124

Moreover, we developed a technique to increase the distinction of MS lesions in MRI. This
process had some caveats, the most glaring being the highlighting of partial volume areas that
did not encompass any MS lesions (i.e., false positives). That was the reason why we did not
use this input in the segmentation step. However, taking only lesions themselves into account,
the hyperintensity map we created provided distinguishable information that was used for our

classification purposes.

Regarding the distinction between active and nonactive lesions, our results were auspicious
and indicated that textures were a powerful tool for telling these two classes apart. We chose an
ensemble approach for this particular step because the fine and subtle differences between the
two types of lesions would be better leveraged in a supervised domain. Moreover, the XGBoost
classifier proved to be effective in reducing variance and bias, and even though the voxel-level
results for the active lesion class were not as good as the nonactive one, a lesion-level analysis
showed that misclassifications in the former were not severe, thus indicating a margin of safety

regarding errors in a voxel-based classification in this scenario.

The benefits of this finding are many. First, patients will no longer have to go through
contrast injections, which is commonly described as a rather uncomfortable procedure, and
would not have to worry about its accumulation in their system. Second, MS patients with
kidney problems will be able to have a more accurate follow-up regarding the progression of
the inflammatory state of their lesions, since they could not undergo contrast injections in the
first place. And third, the cost of MRI procedures for MS patients can get potentially lower due

to the elimination of contrast injections altogether.

There were limitations in the classification step. A larger number of patients would be
required to assess the classification performance on a broader set of lesions. Also, lesions were
not rated by an independent neuroradiologist, and that could have introduced bias in our study.
And finally, we lacked an external validation set, which would make our data more robust.
Nonetheless, we were able to show that is very possible to correctly identify active MS lesions

without using Gadolinium-based contrasts.

As future investigations that can be derived from this work, feature selection and analysis
could be conducted in order to verify which inputs are the most relevant for the classification
step and which can be discarded without affecting accuracy. Furthermore, a longitudinal study
exploring MS lesions and their surroundings could provide important information about dis-
ease progression and indicate potential markers for new lesions and, consequentially, earlier

diagnosis and treatment.



Appendix A

EXPECTATION MAXIMIZATION

A.1 The Expectation Maximization algorithm

The Expectation Maximization (EM) algorithm is an iterative approach widely used to com-
pute maximum likelihood estimates (MLE), being particularly useful in problems with incom-
plete data (MCLACHLAN; KRISHNAN, 1997). The basis of EM is to associate an incomplete data
problem to a complete one, where the maximum likelihood estimate is computationally feasi-
ble. In this scenario, the MLE of the complete data problem can have a closed solution or at

least be calculated by well-established numeric methods in the literature.

Each iteration of EM is comprised of two stages. In the first one, commonly called E-step,
we calculate the conditional expectation of the complete data (observable data along with the
current parameters of the statistical model). In the second stage, known as M-step, we maximize
the likelihood of the complete data to get an updated estimate of the model parameters. This

process is repeated until the algorithm converges or a number of iterations is reached.

More formally, let x; be the observed data (in this work, they are represented by gray level
intensities in different image weights) for case i and let z; be the missing data (corresponding
to the labels of each brain tissue). Let X, = {xy,---,xy} and X,,— {z1,---,2zn} be the sets of
observed and missing data, respectively. The goal is to maximize the log-likelihood function of

the observed data (MURPHY, 2012) given by

N N
0(6) =Y logp(x;|6) =Y log [Zp(xi,zl- | 9)] : (A.1)
i=1 N

i=1

where 0 represents the model parameters.
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However, Equation A.1 is hard to maximize since we do not know the missing variables
zi. The EM algorithm solves this problem iteratively by maximizing the expectation of the
complete data as if we knew the missing data. To do so, we take an initial guess of the unknown

values.

Let the likelihood of the complete problem be defined by

0.(0) 2 Y logp(x;,zi | 9). (A.2)

™=

1

—_

However, since Equation A.2 cannot be computed because z; is unknown, we define the

expectation of the log-likelihood function as
0(6:;6") =E [£:(0) | X,,0'], (A.3)

where ¢ is the current iteration and Q is an auxiliary function. The computation of the expecta-
tion is done related to the old parameters, 8" and the observed data X »- The goal of the E-step
is to compute Q(0;0"); more specifically, to compute the terms the MLE depends on.

In the M-step, function Q is optimized with respect to 6:
o' = argmgle(G; 0"). (A.4)
To perform the maximum a posteriori (MAP) estimation, the M-step is modified to

o' ! :argmgth(O;Ol)—f—logp(B). (A.5)

A.2 Expectation Maximization and the Student’s t distribu-
tion

As explained in Section 3.1, the Student’s t-distribution is a more robust alternative regard-
ing outliers when compared to the Gaussian distribution. However, different from the Gaussian,
the Student’s t distribution does not have a closed form for the MLE. In this case, it is necessary
to use iterative optimization methods, being the EM algorithm one of the most used approaches

for that matter (MURPHY, 2012).

As shown in (PEEL; MCLACHLAN, 2000), a multivariate Student’s t-distribution #(x; | X, V)

can be written as a weighted mixture of Gaussian distributions

X vV Vv
((xi | 1,E, V) :/N <x,~],u,;) Ga (u | 5,5) du, (A.6)
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where N is the Gaussian distribution given by

1 1
N ,) = ————exp{ (52 - ) (A7)
2n) |

and u is a weighting factor that follows a Gamma distribution parameterized by

V2%
~Ga(3,5) A8
u a 25 (A.8)

Equation A.6 can be seen as an infinite mixture of Gaussians, each with slightly different
covariance matrices (MURPHY, 2012). Being z; the missing data, the likelihood of the complete

problem can be written as

N by Vv
l.(0) = logN (x; | u,— | +logGal(zi| =, = } (A9
(6) i_zl{g (Juzl_) 2Ga(z]3.3) )
NT D 1 % V. v v
= ,:Z{ [—Elog(2n’) - 510g|2|—§5,~+§10g5 —logl“(E)

_|_
N <

\%
(logzi —zi) + (5 - 1) logzi] ,

where the Mahalanobis distance is defined by

Si=x—w = (xi—p). (A.10)

It is possible to partition £.(6) into two terms, one with y and X and the other with v. This

way, we get (MURPHY, 2012)

le(0) = Ly(u,X)+Ls(v), (A.11)
1 1 ¥
Ly(u,X) = —§N10g12|—52z,~5i, (A.12)
i=1
Lo(v) NlogF(v)—i—1Nv10g<v)—|—1v§(10gz %) (A.13)
G = - Py 5 Py 5 i—7Zi)- .
2/ 2 2) 2 &

A.2.1 EM with known v

For simplicity, first we will derive the EM algorithm assuming the value of the degrees
of freedom, Vv, is known. In this case, we can ignore L from Equation A.13. According to

(ZHANG; WU; NGUYEN, 2013) and (MURPHY, 2012), we have that

v+D v+5i)

(A.14)

p(zi]x,-,e):Ga<z,~| B
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that is, the missing data z; follow a Gamma distribution. If z; ~ Ga(a,b), then E[z;] = 4/p.

Therefore, the E-step at iteration ¢ is

()
;0L E [z,- | th(t)] _votb (A.15)
y(©) +5i(t)

This way, the M-step is obtained by maximizing E [Ly(i,X)]:

7 (0x.
ﬂ(t+1) _ Y2 Xl, (A.16)

g+ _ NZ -(0) (Xi_ﬁ(ﬂrl)) (xi—ﬂ(’“)>T (A17)

It is possible to note that z; works as a precision metric of i; that is, if the value is small,
the point corresponding to i will have a small weight in the computation of the mean u and
covariance X. This is one of the reasons why the Student’s t distribution can be robust to outliers

(MURPHY, 2012).

A.2.2 EM with unknown v

To compute the MLE of the degrees of freedom, it is necessary to calculate Lg(V), which
concerns z; and logz;. As mentioned before, z; ~ Ga(a,b); so it is possible to show that (MUR-
PHY, 2012)

AN [mgz,- | e(ﬂ — y(a) —logh, (A.18)
where y(x) = L logI'(x) is the digamma function. From Equation A.14 we have
_ (0 QNI
AR (V ;D) _log (% (A.19)

Substituting in Equation A.13, we have

E[Lo(v)] = —NlogT’ (%) + W og (5)+ 53 (6 -20), (A.20)
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and the gradient is given by

d —-N \%

aFle =3 v () + 3l (3) +3 43R (67 -a"). @

Equation A.21 has a unique solution in the interval [0, c0) that can be found iteratively using

optimization techniques.
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ABSTRACT

Multiple sclerosis (MS) is a demyelinating autoimmune disease that attacks the central nervous system
(CNS) and affects more than 2 million people worldwide. The segmentation of MS lesions in magnetic
resonance imaging (MRI) is a very important task to assess how a patient is responding to treatment and
how the disease is progressing. Computational approaches have been proposed over the years to seg-
ment MS lesions and reduce the amount of time spent on manual delineation and inter- and intra-rater
variability and bias. However, fully-automatic segmentation of MS lesions still remains an open problem.
In this work, we propose an iterative approach using Student's t mixture models and probabilistic
anatomical atlases to automatically segment MS lesions in Fluid Attenuated Inversion Recovery (FLAIR)
images. Our technique resembles a refinement approach by iteratively segmenting brain tissues into
smaller classes until MS lesions are grouped as the most hyperintense one. To validate our technique we
used 21 clinical images from the 2015 Longitudinal Multiple Sclerosis Lesion Segmentation Challenge
dataset. Evaluation using Dice Similarity Coefficient (DSC), True Positive Ratio (TPR), False Positive Ratio
(FPR), Volume Difference (VD) and Pearson's r coefficient shows that our technique has a good spatial
and volumetric agreement with raters’ manual delineations. Also, a comparison between our proposal
and the state-of-the-art shows that our technique is comparable and, in some cases, better than some

approaches, thus being a viable alternative for automatic MS lesion segmentation in MRIL

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Multiple sclerosis (MS) is a demyelinating autoimmune disease
that attacks the central nervous system (CNS) and affects more
than 2 million people worldwide [1]. It is mainly characterized by
the presence of white matter (WM) lesions [2], which are visible
on magnetic resonance imaging (MRI) scans and appear hyper-
intense on T2-weighted and Fluid Attenuated Inversion Recovery
(FLAIR) images. Segmentation of MS lesions is usually done by a
radiologist, who has to visually assess and manually delineate
them when measuring total lesion volume. Since MRI brain scans
are usually volumetric, the manual delineation procedure is done
in a slice-by-slice manner, which is time consuming and suffers
from large intra- and inter-rater variability and bias [3].

Clinical trials have shown that lesion volumes are mean-
ingful outcomes for assessing disease burden in multiple
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sclerosis (MS) [4], and thus accurately measuring such volumes
is of considerable interest in clinical practice [5]. In this sce-
nario, an automated technique to segment MS lesions and
measure their volumes would reduce the time needed from the
rater and decrease the observer dependency as well. However,
automatic segmentation of MS lesions is challenging, since a
number of variables such as partial volume effect (PVE), bias
field, acquisition parameters and different scanner magnetic
field strengths may directly influence the segmentation out-
come. There have been many proposals over the years regarding
automatic MS lesion segmentation, but no single one appears to
be widely used at the present time. The proposed techniques
range from a myriad of approaches such as dictionary learning
[6], logistic regression [7,8], patch-based [9], random decision
forest [10] and mixture models [11,12].

In this paper, we propose a new fully-automatic technique for
MS lesions' segmentation in MR FLAIR images using an iterative
approach based on Student's ¢t mixture models and probabilistic
anatomical atlases. Our technique resembles a refinement ap-
proach by iteratively segmenting brain tissue classes into
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subclasses until MS lesions are grouped as the most hyperintense
one. Since our segmentation technique is intensity-based, we use
probabilistic anatomical atlases to constrain the iterative process
to the WM region, thus avoiding misclassification of voxels that
have similar intensities to lesion voxels but are outside the WM
tissue class.

To validate our technique we used 21 images from the 2015
Longitudinal Multiple Sclerosis Lesion Segmentation Challenge
(also known as 2015 ISBI Longitudinal Challenge) and assessed its
performance using the Dice Similarity Coefficient (DSC), True Po-
sitive Ratio (TPR), False Positive Ratio (FPR), Volume Difference
(VD) and Pearson's r coefficient on our results and rater manual
delineations. It is important to note that each case in the dataset
had 2 lesion delineations, each one done by a different rater, and
we compared our results to both of them. Also, in some cases the
manual delineations did not have a good agreement rate between
themselves, which confirms the inter-variability and bias between
observers.

We also compared our findings with proposals that took part in
the 2015 ISBI Longitudinal Challenge. Since they used the same
database as we did, a direct comparison was possible. We briefly
describe the works that presented quantitative results in the
following.

In [13], an automatic hierarchical framework for the segmen-
tation of healthy tissues and lesions in brain MRI was proposed.
The authors used a Markov Random Field segmentation frame-
work that leveraged spatial prior probabilities for 9 healthy tissues
through multi-atlas fusion and then used a random forest classifier
to provide region level lesion refinement.

In [14], lesions were segmented using a fast patch matching
approach, which was extended to multimodal data. To do so, the
authors registered all available modalities to a common space and
stacked them to form a 4D volume of multimodal intensities.
Patches were defined and used to segment MS lesions.

An approach using random forest and local context intensity
features was proposed in [15] to segment MS lesions. The authors
extracted features from the images such as voxel intensity values
(before and after image smoothing) and local histogram features
and trained a random forest with supervised learning to segment
MS lesions.

In [16], the authors proposed a 3D convolutional neural net-
work (CNN) using a voxel-wise classifier with multi-channel 3D
patches of MRI volumes as input. For each ground truth, a CNN
was trained and the final segmentation was obtained by combin-
ing the probability outputs of these CNNs.

Finally, in [17] the authors used an estimation of spatially global
within-the-subject intensity distribution and a spatially local in-
tensity distribution derived from a healthy reference population to
segment MS lesions. Using this approach, the authors aimed to
distinguish locations in the brain with abnormal intensity levels
when compared to the expected value at the same location in a
healthy population.

All the works previously described are intensity-based methods
and tried to use spatial information or patches to improve the
segmentation results. The DSC, TPR and FPR values for these works
are summarized in Table 10. These three metrics were the ones
used by all authors, allowing a direct comparison of our approach
to theirs. Along with DSC, TPR and FPR, we also used VD and
Pearson's r coefficient metrics when comparing our proposal re-
sults to the raters' ground truths.

This paper is divided in the following manner. In Section 2 we
explain the methodology of our work, including details about the
dataset, metrics used to evaluate our model, preprocessing, our
segmentation technique and post-processing stages. Results and
discussions are presented in Section 3, where we compare results
from our technique to each rater delineation and other proposals

and also analyze how well the manual delineations for each image
agree with each other. Finally, Section 4 concludes our paper.

2. Methodology

This section provides information about the dataset used in this
work, along with the description of the metrics used to evaluate
our results. It also presents information regarding our segmenta-
tion technique and pre- and post-processing steps.

2.1. Dataset

2.1.1. Clinical images

The dataset used to validate our technique consisted of long-
itudinal images from 5 patients obtained from the 2015 Longitudinal
MS Lesion Segmentation Challenge' conducted at the 2015 Interna-
tional Symposium on Biomedical Imaging in New York, NY, April 16—
19. Each longitudinal dataset included T1-, T2-, PD-weighted and
FLAIR MR images with 4-5 time points acquired on a 3T MR scanner.
Every longitudinal dataset had two manual lesion delineations pro-
vided by rater 1 and rater 2. Considering all longitudinal dataset
cases, 21 time points were provided in total. T1-weighted images had
approximately 1 mm?> voxel resolution, while the other weighted
images had a resolution of 1 mm? in plane with 3 mm thickness. To
minimize the dependency of the results on registration performance
and brain extraction, all images were already rigidly registered to the
baseline T1-weighted image with automatically computed skull
stripping masks. After registration, image dimensions were
181 x 217 x 181 for every image.

2.1.2. Probabilistic anatomical atlases

Three probabilistic anatomical atlases, corresponding to gray
matter (GM), white matter (WM) and cerebrospinal fluid (CSF),
were used to provide spatial information to our algorithm. They
were obtained from the ICBM? project [ 18]. Their spatial resolution
was 1 x 1 x 1 mm and their dimensions were 256 x 256 x 256.

2.2. Metrics

To evaluate our technique, we used the Dice Similarity Coeffi-
cient (DSC) [19], True Positive Rate (TPR), False Positive Rate (FPR)
Volume Difference (VD) and Pearson's r coefficient.

The DSC is defined as the ratio between the number of voxels
where both the automatic and rater reference segmentation
(ground truth) agree (true positives) and the sum of the total
number of voxels labeled as lesion by both methods (manual and
automatic). Also, according to Bartko [20], DSC values of 0.7 or
higher suggest good agreement between two delineations. The
TPR, FPR and VD metrics were calculated taking into account only
the lesion voxels.

The Pearson's r coefficient [21] was used to assess the volu-
metric correlation between our segmentation and the ground
truths from the raters. It is given by

_ TL(x-®-y)
JZ0 (=P S, (5 - 9) M

where n is the number of time points, x; and y; are the absolute
volumes of the ground truth and the automatic segmentation for a
particular time point and X and j are their respective means.
Pearson's r coefficient values lie inside the interval [ + 1, — 1].

r

1 http://iacl.ece.jhu.edu/MSChallenge
2 http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009
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Table 1

Metrics used to evaluate the automatic segmentation. TP stands for True Positives,
FP stands for False Positives, FN stands for False Negative, Vi is the lesion auto-
matic segmentation volume and Vgr is the lesion ground truth volume.

Metric Abbreviation Equation Interval

Dice Similarity Coefficient DSC 2x TP [0, 1]
FP+FN+2xTP

True Positive Rate TPR P [0, 1]
TP+FN

False Positive Rate FPR FP [0, 1]
FP+TP

Volume Difference VD ‘] Vseg [0, 1]

Ver

The DSC, TPR, FPR and VD metrics are summarized in Table 1. For
DSC and TPR, the closer their values are to 1, the better. On the other
hand, for FPR and VD, the closer their values are to 0, the better.

2.3. Preprocessing

A number of well known preprocessing techniques were ap-
plied to the dataset images before segmentation. These techniques
included noise reduction, bias field correction and registration of
probabilistic anatomical atlases to the clinical data (MRI scans), as
shown in Fig. 1.

2.3.1. Noise reduction

Although the term noise in MRI can have different meanings
depending on the context, the main source of noise in MR images
is the thermal noise from the patients' body. Thermal noise may
negatively affect the segmentation by increasing the number of
misclassified voxels. To minimize noise effect, the Non-Local
Means (NLM) [22] technique was applied to all images in the da-
taset. This filtering technique works by smoothing small grayscale
variations in an adaptive manner, reducing the amount of blur on
edge regions and increasing it otherwise. The NLM also takes into
account the fact that some features in an image may occur not
only locally, but globally, and therefore takes the weighted mean
from all image voxels to estimate the value of a voxel v. In other
words, the filter does not take into account just the neighborhood
of a voxel, but rather all regions that are similar to that neigh-
borhood (hence the non-local name). In [22], the authors com-
pared their proposal, both quantitatively and qualitatively, to other
well-known noise reduction algorithms such as the Gaussian filter
[23] and the anisotropic diffusion filter [24,25] and showed the
superiority of the NLM approach.

2.3.2. Bias field correction
The bias field effect is a phenomenon that causes similar re-
gions to appear with different intensities in MR images. MRI bias

Clinical
image

Registered
Noise atlases
reduction ¢
* Segmentation
Biasfield region constraint
correction

WM region
binary mask

T1-w template,
GM, WM, CSF
anatomical atlases

Image registration

Preprocessed
image

Fig. 1. Flow chart of preprocessing stages.

field is caused by a range of factors such as poor radio frequency
(RF) energy distribution, static magnetic field variations and RF
coil sensitivity. According to Arnold et al. [26], if these issues are
not corrected, they may substantially degrade results of automatic
brain tissue segmentation techniques in MR images. In this work,
the N4 (Nick's Nonparametric Nonuniform Intensity Normal-
ization) proposed by Tustison and Gee [27] is used to correct the
MRI bias field effect. Advantages of this technique are the non-
requirement for pre-segmentation image, independence of pulse
frequency and robustness to pathologies (which are desired in the
case of images with MS lesions).

2.3.3. Image registration

An important step in the preprocessing pipeline is the spatial
alignment between the clinical data and the probabilistic anatomical
atlases, which are used to spatially constrain the segmentation area
and eliminate classification ambiguities. In order to preserve meta-
data information (such as origin, spacing and orientation) of the
clinical images and to avoid sub-pixel image registration artifacts, the
atlases were registered to the clinical image instead of the other way
around. A T1-weighted image originally registered to the atlases was
used as the moving image (T1,,.,), and for each patient time point its
corresponding T1-weighted image was used as the reference image
(T1rep). T1mov was registered to T1,.r and the registration information
was then applied to the atlases, aligning them to each patient scan. In
this work, the NiftyReg® tool was used with free-form B-Spline de-
formation model and multi-resolution approach for non-rigid regis-
tration [28].

2.3.4. Segmentation region constraint

Our technique focuses on segmenting MS lesions in WM. Since
they can occur anywhere in the WM region [29], we decided to use
the registered probabilistic anatomical atlases to constrain our
segmentation region to WM. Given a voxel v, its corresponding
probabilities in WM, vwy, GM, vey and CSF, vese and a set
S ={v:vwm > Vgu and Vcsg > Vg ), @ binary mask was created
using the voxels in S. By doing so, we constrained the segmenta-
tion region to WM and also reduced the number of voxels to be
clustered by our algorithm.

2.4. Image segmentation

In this work, an iterative Student's t mixture model intensity-
based segmentation algorithm is proposed to continuously refine
the resulting segmented tissue sub-classes in FLAIR MR images
until all MS lesions are grouped as one simple class. We call this
approach Iterative Student's t Mixture Model (SMM-iter).

A mixture model is a stochastic model commonly used to re-
present subpopulations [30]. Different brain tissues — such as MS
lesions, white matter (WM), gray matter (GM) and cerebrospinal
fluid (CSF) — can be thought of as subpopulations (or classes) in a
brain MR image. One way to distinguish one class from the other is to
look at their voxels' intensities. The use of Student's t distribution to
cluster brain tissues using intensity information has been proposed in
some works [31,32]. The main advantage of the Student's t dis-
tribution over other distributions, such as Gaussian Mixture Models
(GMM), is that it has a “heavy” tail, which makes it more robust to
outliers® [33] and, therefore, less susceptible to noise.

Formally, let X be a random variable, with Student's t dis-
tribution probability density function (pdf) p(X). Let x be a mean
vector, ¥ be a covariance matrix (positive, definite and real) with

3 http://sourceforge.net/projects/niftyreg/
4 We define an outlier as a data sample that is far too distant from all image
clusters.
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dimension d x d, where d is the data dimension, and v is the de-
grees of freedom, v € [0, ). Then, p(X) can be written as [34]

r(%)mr%
vid’

(lw)%l"(%][l + u’]é(X; n, E)] 2

p(X;”v Ev l/)=

@

where §(X; u, £) = X — p)'=1(X — p) represents the Mahalanobis
distance and /" is the Gamma function.

The Student's t distribution is equivalent to a Gaussian dis-
tribution with a stochastic covariance matrix [35]. Consider a
weight u following a Gamma distribution parameterized by v:

v v
u~I|—, =|
( 2 2) 3
Given that, a variable X follows a multivariate normal distribution
with mean g and covariance % as:

X
X ,E,y,u~N( ,—).
# B “
We can write a mixture of K Student's t distribution components
as

K
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)

where r;...7x represent the weights for each component and

T
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are the mixture model components' parameters.

The estimation of our model parameters was performed using
the Expectation Maximization (EM) algorithm [31]. In this sense,
consider the complete data vector

Xe= (X ooy Xno 24 ooy 28, U, oy Un) %)

where z, ..., zy are the component-label vectors and z; = (z)); is
either one or zero, depending on whether the observation X; is
generated by the ith component or not. In this case, X; is an in-
tensity sample from the region to be segmented. Note that, fol-
lowing the definition of the Student's t distribution in Egs. (2)-(4),
the observed data augmented by z, j=1,..., N are still in-
complete since the component covariance matrix depends on the
degrees of freedom v. Due to that, the complete data vector also
includes the additional missing data uj, ..., uy.

The EM algorithm is divided into two main stages: the E-step
(expectation) and M-step (maximization). The E-step on the
(t + Dth iteration requires the calculation of the posterior prob-
ability of X; belonging to the ith component of the mixture [35],
calculated as

+1 = Wi[p(xf; B EL ’/it)
[ t ottt
Zm=1me(XJ- B Ziny ’/m) 8)

as well as the expectation of the weights for each observation [36]

t+1 _ L/it+ d )
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We also incorporated neighborhood information in our model
as proposed by [11,37,12] in the following way. Let v be a voxel and
let Ny be the neighborhood of v with radius r and size
s =2 xr+ 1¥m where dim is the number of dimensions in the
image (in this context, using 3D images, dim=3). Then, in Eq. (8),
w; is calculated as

2 10)
where
(__ mp(Xg pf, 2 u)
Y S mh(Xe s o) an

and X, € N,. This is the mean field approximation of a Markov
Random Field [38]. In other words, for each sample X;, w; was
calculated as the average between the ith component weight and
the posterior probability of the neighborhood of X; belonging to
the ith component as well.

Maximizing the log-likelihood of the complete data provides
the update equations of the mixture model parameters:

1 N
t+1— L
n= N ZZU'
j=1

12)
N
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PIRET 13)
N T
yH_ZFﬁWK&—ﬁ”X&-M”)
i - N .
Y12 (14)

The degrees of freedom uf*! for the ith component are com-
puted as the solution to the equation (adapted from [12])

U‘t+l ,_,‘t+l l/'[ + d
1 1 _ 1 <1 _ 1 1
0g[ —5 vl |t e
Tz loguf—uf) (44
+ T + > |= 0,
L (15)

where y (x) = is the digamma function. In this work, the
degrees of freedom were calculated using the NLopt non-linear
optimization library.’

After the parameters' estimation, we use the maximum a pos-
teriori (MAP) classification rule. The classification of each voxel in
its respective z label is done by associating it with the class that
maximizes the posterior probability P (z;IX). Formally, the classi-
fication stage follows the Bayesian MAP decision given by

P(ziX) > P(zX), (16)

o(Inr(x))
0;

where i=1,2, ..,k j=1,2, ..., kand i #j.
Both sides of the decision rule in Eq. (16) follow the Bayes
theorem as [39]:

p(Xfzi; . Z, v)p(z)

Pz |X) = I ,
ZJ=1p(X’Z]v "X, I/)p(zj) a7

where p(z;) represents the a priori probability of class i,
pXizi; p, Z, v) is the pdf of class i and the parameter K represents the
number of mixture components.

In the context of this work, the random variable X represents
the gray level intensities in FLAIR images. Since we did not use
other image weights (such as T2, for instance), d=1 and the mean
vector u becomes simply the univariate mean and the covariance
matrix £ becomes the standard deviation.

5 http://ab-initio.mit.edu/wiki/index.php/NLopt
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2.4.1. Iterative approach

Classifying MS lesions using an intensity-based clustering
technique often suffers from a large amount of false positives [29].
This is due to the fact that MS lesions may have pdf of the intensity
levels close to those of other normal brain tissues. Given that, we
decided to use an iterative approach to successively approximate
the lesion segmentation (hence the iter in SMM-iter). This ap-
proach allows a segmentation refinement in a way that on each
iteration the differences between lesions and other tissues in-
crease, hence reducing the number of false positives.

The iterative approach, shown in Fig. 2, is composed of the
following steps:

1. Define a preprocessed image I, to be segmented and a binary
mask BM to spatially constrain the image segmentation.

2. Define the number of iterations (Ni.;) and the number of clus-
ters (Nyusters) for each iteration.

3. Segment Iy using Student's t mixture model explained in
Section 2.4 with BM and Ngysters defined for that iteration.

4. For each cluster, calculate its mean intensity.

5. Use the regions of the (Ngusers — 1) highest mean intensity
clusters of that iteration as the new BM for the next iteration.

6. Loop to step 3 until the number of iterations reaches zero.

In this work, we used Nier =5, Nuusters = 3 for the first four
iterations and Nsers = 2 for the last iteration. These parameters
were empirically determined using a training image dataset where
they have shown to provide the best trade-off between processing
time and lesion segmentation accuracy.

The initial binary mask (BM®ier)) was created using the anato-
mical probabilistic atlases. The idea was to constrain the segmenta-
tion region to the WM area. It is a fact that the alignment between
the atlases and the clinical images is not perfect. The registered WM
atlas may not adequately represent the real WM area in the clinical
image. In this scenario, due to misalignments, some lesion voxels
located in the clinical WM area may have low probabilities in the
WM atlas. To circumvent this problem, a threshold T=0.20 was de-
fined and all voxels in the GM atlas with a probability smaller than T
were given as input to create BM®Mier), Voxels with low GM prob-
ability have higher probabilities of belonging either to CSF of WM.
Therefore, the initial binary mask covered voxels from both these
classes. CSF voxels appear hypointense in FLAIR images, being dis-
carded from the lesion cluster during the iterative segmentation. On
the other hand, hyperintense voxels that would be left out in the

initial binary mask if we used only the WM atlas are taken into ac-
count using this approach.

Note that on each iteration we discard the lowest mean in-
tensity cluster and update the binary mask with the remaining
clusters of that iteration. The binary mask update is done in this
manner because MS lesions appear hyperintense in FLAIR images.
Therefore we wanted to preserve the high mean intensity clusters
while refining our segmentation.

This iterative approach makes the assumption that MS lesions
are the most hyperintense class in FLAIR images. The successive
refinement eliminates classes that do not follow such assumption,
thus reducing the number of false positives. However, a limitation
of this approach lies in the fact that it may also reduce the number
of true positives in images where there is a significant intensity
variability among MS lesions.

The output of this iterative approach is a binary mask BMesions
representing all MS lesions segmented by our technique in image Iseg.

2.5. Post-processing

Post-processing techniques, including mid-sagittal plane de-
tection to help eliminate in-between ventricles (third ventricle —
TV) voxels and a residue removal method, were used to remove
false positives from the resulting lesion binary mask.

2.5.1. Mid-sagittal plane detection

Since the TV region in FLAIR images commonly has an intensity
overlap with MS lesions [29], voxels located in this region are mis-
takenly clustered together with lesions and increase the number of
false positives. Since MS lesions located close to the TV region are
quite rare, we used the technique proposed in [40] to detect the mid-
sagittal plane (MSP), defined a distance threshold dgpesnoiq and re-
moved all voxels in which distance to the plane was smaller or equal
to diresnoid- In other words, given a voxel v and its distance to the
mid-sagittal plane d(v) = dpmsp, we removed v from the image if
dmsp < dpiane. This approach was effective in removing misclassified
voxels in the TV region while keeping the lesion voxels intact. A
comparison between images before and after using this technique is
shown in Fig. 3.

2.5.2. Residue removal

The final post-processing step was to remove residual voxels.
We defined residual voxels as follows: given a voxel v and a
neighborhood N, with radius r around v and size s = (2 x r + 1)dim,

/ BM (Niter)/

Parameters:

Lseq

BM" Segmentation using :
Neiusters Student's t-mixture model Clusters

BM i=i-1

Calculate clusters

mean intensities

Fig. 2. Flow chart of the proposed iterative approach.
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(b)

(d)

(e)

Fig. 3. Comparison between lesion segmentation masks. In (a), we have the original FLAIR image. The ground truths from raters 1 and 2 are shown in (b) and (c), respectively. In
(d), we have the automatic segmentation without MSP detection and, finally, in (e) the output after applying the MSP detection and third ventricle removal is shown.

v is a residual voxel if its neighborhood has less than % active
voxels (by active voxels we mean voxels with values equal to 1 in
the binary mask). In other words, we aimed to remove isolated
voxels that were unlikely to belong to the MS lesion cluster.
Granted, this approach is prone to remove small lesions from the
segmentation, and that is a limitation of our technique. However, as
shown in Table 2, the DSC improved with the use of residue removal.

3. Results and discussion

In this section, the results of our segmentation algorithm are
presented and discussed. An analysis of inter-specialist agreement
is also provided.

Table 2

Results of our automatic image segmentation performed with and without the
post-processing stage of residue removal. All comparisons were made between our
proposed automatic segmentation method and the ground truth provided by rater
1

Image source DSC with residue DSC without residue

Patient 1 0.675 0.698
Patient 2 0.850 0.861
Patient 3 0.674 0.681
Patient 4 0.685 0.722
Patient 5 0.657 0.680

3.1. Segmentation results

We used the preprocessing, segmentation and post-processing
stages explained in Sections 2.3-2.5, respectively, to automatically
segment MS lesions in our image dataset. As previously men-
tioned, each time point had two manual delineations performed
by two different raters. We compared our segmentation to both of
them. An example of the iterative segmentation followed by the
post processing stage is shown in Fig. 4.

For qualitative analysis purposes, two automatic segmentation
results along with the ground truths from both raters are shown in
Figs. 5 and 6.

For each patient, we took the mean and standard deviation of
DSC, TPR, FPR and VD metrics for all patient's scans. Results are
shown in Table 3 and 4. We also took one time point from each
patient and extracted their corresponding DSC value on each
iteration (using rater 1 as ground truth) to offer an overview re-
garding the iterative approach progress; the results are shown in
Table 5.

The greatest differences on the metrics values between rater
1 and rater 2 ground truths were observed in patient 4 time
points. As shown in Table 6, the agreement between the raters’
delineations for this case (DSC =0.612 + 0.019) presented the
smallest DSC value among all patients, indicating a high rater in-
ter-variability. Also for comparison, all lesion absolute volumes of
all time points from patient 4 are presented in Table 7. Patient
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I1

III

(h)

Fig. 4. Iterative segmentation. In (I), (a) is the image to be segmented and (b) is the binary mask used to constrain the initial segmentation region. In (II), the segmentation is
performed in an iterative manner. Note that the binary mask shrinks from (c) to (g). Finally, in (III) we have the output of the post processing stage.
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(III)

(IV)

Fig. 5. Axial (left column), sagittal (center column) and coronal (right column) views of a time point from patient 1 (row I) and its respective binary masks from raters 1 (row
II), 2 (row III) and our proposed technique (row IV).
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Flg 6. Axial (left column), sagittal (center column) and coronal (right column) views of a time point from patient 5 (row I) and its respective binary masks from raters 1 (row
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(IV)

II), 2 (row III) and our proposed technique (row IV).



P.G.L Freire, RJ. Ferrari / Computers in Biology and Medicine 73 (2016) 10-23 19

Table 3
Segmentation results (mean + standard deviation) using manual delineations from
rater 1 as ground truth.

Table 7
Absolute lesion volumes for all time points of patient 4 from raters 1, 2 and the
automatic segmentation.

Image Scans DSC TPR FPR VD Patient 4 Rater 1 (volume in Rater 2 (volume in SMM-iter (volume in
source ml) ml) ml)
Patient 4 0.644 + 0.056 0.607 + 0.164 0.259 + 0.200 0.328 + 0.09 Time point 1 2.29 3.50 1.30
1 Time point 2 2.19 3.12 293
Patient 4 0.716 + 0.114 0.604 + 0.181 0.05 + 0.06 0.336 + 0.230 Time point 3 1.95 3.52 1.45
2 Time point 4 2.28 2.81 1.06
Patient 5 0.642 + 0.056 0.581 + 0.074 0.245 + 0285 0338 + 0.115
3
Patient 4 0.622 + 0.080 0.557 +0.159 0.220 + 0.250 0.390 + 0.120 However, as mentioned in Section 2.4.1, our technique chooses
4 the most hyperintense class in the end of the iterative approach as
Patient 4 0.634 + 0.060 0.595 + 0.097 0.272 + 0.065 0.136 + 0.146 . . .
5 the MS lesion class. This may exclude lesion voxels that do not
comply with the hyperintense assumption, thus decreasing the
TPR and increasing the VD. A comparison among ground truths 1,
Table 4 2 and the automatic segmentation regarding the mean and stan-

Segmentation results (mean + standard deviation) using manual delineations from
rater 2 as ground truth.

Image Scans DSC TPR FPR VD
source
Patient 4 0.641 + 0.083 0.573 + 0.176 0.182 + 0.121 0.345 + 0.09
Paiient 4 0.701 + 0.095 0.579 + 0.144 0.054 + 0.061 0.364 + 0.195
Pa%ient 5 0.577 + 0.086 0.464 + 0.127 0.123 + 0.153 0.410 + 0.262
Pa?ient 4 0.478 + 0.043 0.367 + 0.095 0.155 + 0.186 0.474 + 0.277
Pa‘t;ient 4 0.586 + 0.055 0.592 + 0.110 0.411 + 0.098 0.153 + 0.107
5
Table 5

DSC values on each iteration for one time point from each patient using rater 1 as
ground truth.

Iteration number Patient 1 Patient 2 Patient 3 Patient4 Patient 5
Iteration 1 0.065 0.111 0.026 0.025 0.021
Iteration 2 0.074 0.117 0.064 0.040 0.035
Iteration 3 0.181 0.151 0.162 0.091 0.087
Iteration 4 0.398 0.454 0.383 0.226 0.244
Iteration 5 0.622 0.822 0.601 0.398 0.553
After post-processing 0.644 0.861 0.628 0.531 0.634

4 had the smallest lesion load among all other patients. In this
case, it is reasonable to expect the automatic segmentation to
perform rather poorly, hence the variability in volume and low
spatial agreement with raters.

The results in Table 5 show that the iterative approach is able to
refine the segmentation in a successive manner, improving the
DSC on each step. The post-processing stage is then used to re-
move false positives, improving the spatial agreement between
the rater and the automatic segmentation.

Lesion volumes in this study ranged from 1.95 ml to 34.71 ml.
Given the DSC, TPR and FPR values, our technique was able to
maintain a good segmentation consistency in this range.

Table 6
DSC values (mean + standard deviation) for raters 1 and 2 manual delineations.

Image source Scans DSC (agreement between raters)
Patient 1 4 0.779 + 0.017
Patient 2 4 0.846 + 0.036
Patient 3 5 0.768 + 0.076
Patient 4 4 0.612 + 0.019
Patient 5 4 0.652 + 0.048

dard deviation of MS lesions for all time points from patient 1 are
shown in Table 8.

It can be seen that our technique has the smallest standard
deviation in all time points, which indicates that our algorithm
segmented a narrower portion of MS lesions. Also, except for time
point 2, our technique had the biggest mean among all cases. The
combination of a big mean and a small standard deviation is an
indication that our proposed technique indeed segmented MS le-
sions, but it was not able to include some lesion voxels located in
the “low end” of the lesion intensity profile. The same behavior
was observed in all other time points from all other patients.

In Section 2.4, we mentioned that the Student's t distribution
has a heavy tail, which makes it more robust to outliers and offers
an advantage over GMM. Many works in the literature propose the
use of GMM to perform image segmentation [41-43]. For the sake
of comparison, we used the same methodology explained in
Sections 2.3-2.5 to perform the segmentation of all time points
from patient 1 using GMM and then compared the results with
SMM-iter. The DSC values of the results are shown in Table 9. It can
be seen that the SMM-iter had slightly better results than the
GMM.

We also used Pearson's r coefficient to assess the volumetric
correlation between our segmentation and the ground truths. For
rater 1, r=0.8813, and for rater 2, r=0.8871. For the sake of
comparison, we also calculated the volumetric correlation be-
tween raters. In this scenario, r=0.9841. For all cases, p value
<0.00001. The scatter plots for this data are shown in Figs. 7-9.

The results for the Pearson's r coefficient indicated a strong
positive correlation between the volumes of our automatic seg-
mentation and the ground truths from both raters. Considering
these results along with the ones presented in Tables 3 and 4 we
can observe that our segmentation proposal had good spatial and
volumetric agreement with the ground truths. Comparatively, the
correlation between raters was higher than both correlations from
the automatic segmentation and raters 1 and 2. This difference can
be explained by the fact that our technique segmented a narrower
portion of MS lesions, leaving out the ones in the low end of the
intensity profile.

Table 8
Comparison of mean + standard deviation of MS lesions among ground truth 1
(GT1), ground truth 2 (GT2) and the automatic segmentation for images from pa-
tient 1.

Time points HGT1 £ OGT1 HGT2 * OGT2 Hautomatic £ Gautomatic
Time point 1 139.88 + 12.49 137.58 + 12.44 145.32 + 9.27
Time point 2 112.20 + 8.71 110.80 + 9.05 110.52 + 745
Time point 3 103.23 + 8.31 102.978 + 8.65 109.02 + 6.26
Time point 4 118.20 + 9.72 116.84 + 10.23 123.37 + 7.56
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An advantage of our technique compared to the works de-
scribed in Section 1 is that we do not use any training stage. Each
segmentation is done in a stand-alone manner, and while the
number of iterations and clusters is empirically defined, this pro-
cess does not require the same level of training as other techni-
ques such as a random forest or a neural network. In [13, 15-17],
the authors' proposals either needed training or healthy subjects
scans (or both) to perform the segmentation. This can be a setback
when dealing with images from different centers, since they
would have to go through a normalization stage which may lead to
biased results because the training dataset does not take into
account anatomical and physiological variability between different
subjects [44].

Table 9

In [14], the authors used patches and multimodal information
to segment MS lesions. This approach did not require a training
stage and was able to obtain a high TPR and low FPR. However, the
DSC was relatively low (0.55 + 0.14) and the authors did not use
spatial information to distinguish similar intensity voxels.

The winner of the 2015 Longitudinal Multiple Sclerosis Lesion
Segmentation Challenge was Vaidya et al. [16]. The authors used
neural networks and patches to segment MS lesions. The neural
networks had to be trained before the segmentation could take
place. Since in [16] the authors presented their results on just a
few time points from one patient, it is not possible to fully com-
pare their approach to our proposal. But even though their DSC
values for the presented time points were higher than ours, our

DSC values for all time points from patient 1 using ground truths from raters 1 and 2. The same methodology explained in Sections 2.3-2.5 was used to perform the

segmentation using GMM. SMM-iter values are shown for comparison.

Time points Rater 1 (SMM-iter)

Rater 2 (SMM-iter)

Rater 1 (GMM) Rater 2 (GMM)

Time point 1 0.675 0.633 0.675 0.660
Time point 2 0.698 0.760 0.698 0.760
Time point 3 0.570 0.566 0.552 0.527
Time point 4 0.633 0.605 0.586 0.605
Mean + std dev 0.644 + 0.05 0.641 + 0.08 0.627 + 0.06 0.638 + 0.09
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Fig. 7. Scatter plot for volumes from the automatic segmentation (horizontal axis) and rater 1 (vertical axis). For this data, r=0.8813 (p value <0.00001).

Volume scatter plot - Automatic segmentation X Rater 2
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Fig. 8. Scatter plot for volumes from the automatic segmentation (horizontal axis) and rater 2 (vertical axis). For this data, r=0.8871 (p value <0.00001).
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Volume scatter plot - Rater 1 X Rater 2
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Fig. 9. Scatter plot for volumes from rater 1 (horizontal axis) and rater 2 (vertical axis). For this data, r=0.9841 (p value <0.00001).

Table 10

Segmentation proposals that used the 2015 ISBI Longitudinal Challenge. For comparison, our proposal's results are shown in the last row. GT 1 and GT

2 are the ground truths of raters 1 and 2, respectively.

Authors Technique

Results

Image weights Ground truth

DSC=0.70/0.68

Jesson and Arbel Random forest TPR=0.61/0.50 T1, T2, FLAIR GT 1/GT 2
FPR=0.13/0.12
DSC=0.70/0.65
Maier and Handels Random forest TPR=0.53/0.38 T1, T2, PD, FLAIR GT 1/GT 2
FPR=0.48/0.43
DSC=0.80 GT 1
Vaidya et al. Neural network TPR=0.40 T1, T2, PD, FLAIR (only patient 2 time points)
FPR=0.59
DSC=0.62
Tomas-Fernandez and Warfield GMM TPR=0.53 T1, T2, FLAIR Not clear
FPR=0.48
DSC = 0.55 + 0.14 GT1
Prados et al. Fast patch matching TPR = 0.72 + 0.10 T1, T2, PD, FLAIR n
FPR = 0.08 + 0.02 GT 2
DSC=0.65/0.59
Freire and Ferrari Iterative SMM TPR=0.58/0.51 FLAIR GT 1/GT 2

FPR=0.21/0.18

approach had a higher TPR in some time points and lower FPR for
some others. This indicates that our technique had a smaller
misclassification ratio. It also shows that analysis using different
metrics is important to obtain a good overview of automatic seg-
mentation proposals.

The mean DSC, TPR and FPR values for the works described in
Section 1 and our proposal are presented in Table 10. GT 1 and GT
2 are the ground truths from raters 1 and 2, respectively. The
metric values were calculated taking into account every time
point, except when stated otherwise.

Overall, our technique showed a good agreement with the
manual delineations (especially the ones from rater 1) and was
able to keep segmentation consistency among images with dif-
ferent lesion volumes. Regarding processing time, the average time
to go through the preprocessing, segmentation and post-proces-
sing stages for each time point in the 2015 ISBI Longitudinal
Challenge was around 20 min (Core i7 with 16GB RAM). Also, the

fact that our technique does not require any training stage is an
advantage when images from different centers (or with different
parameters acquisition) have to be segmented because there is no
bias introduced from training images.

4. Conclusions and future work

This paper presented an automatic iterative approach to seg-
ment MS lesions in FLAIR images. Our technique uses probabilistic
anatomical atlases to constrain the segmentation process to the
WM region (thus reducing the number of false positives and
voxels to cluster) and segment the image using Student's t mixture
models. Our method is performed in a refinement manner by
iteratively segmenting brain tissues into smaller classes until MS
lesions are grouped as the most hyperintense one.

We compared the results from our automatic technique to
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2 raters' manual delineations and to other works that used the
same dataset using the DSC, TPR, FPR and VD metrics. Results in-
dicated that our technique successfully segments MS lesions in
FLAIR images and provides consistent results on images with a
different lesion volume.

A difficulty faced during the development of our proposed
technique regarded the high inter-variability between the raters.
This fact created difficulties in providing a solid foundation that
could help us work on the adjustment of the parameters of our
algorithm.

One limitation of our technique lies in the image registration
stage. Since the alignment between fixed and moving images is
not perfect, lesions located in areas that are not well aligned are
likely to be pruned in the image segmentation constraint stage. On
the other hand, this constraint also reduces the number of false
positives by eliminating voxels that have intensity profiles close to
those of MS lesions but are outside the WM region.

Another drawback of our technique is that lesion voxels that
are on the “low end” of the MS lesion intensity profile are likely to
be left out of the MS cluster. This happens because our proposal
follows the assumption that MS lesions are the most hyperintense
class in FLAIR images. If the lesions have a significant intensity
variability, the less intense ones are prone not to be included in the
cluster.

In future works, we aim to extend the approach presented in
this paper to other MRI weights such as T2 and also to develop a
model to automatically select the best number of clusters and
iterations for our algorithm and circumvent the “low end” intensity
problem. We also intend to apply our segmentation proposal to
different field strengths and data acquired on different scanners to
assess its performance in different scenarios.
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Abstract. The human brain has two hemispheres that are separated
by a midsaggital plane (MSP) in the medial longitudinal fissure. By
using the MSP, it is possible to assess clinically relevant information
such as brain atrophy and asymmetry. In this paper, we evaluate the
performance of three techniques (phase congruency, Hessian-based and
symmetry-based approaches) for MSP detection using the normal angle
difference and average Z-distance metrics to assess accuracy. The datasets
were comprised of simulated and clinical magnetic resonance (MR) im-
ages with different weights, levels of noise and intensity inhomogeneities.
Our results indicate the phase congruency approach is the most accurate
of the three techniques, with an average normal angle difference of 0.446°
and 0.395 average Z-distance for the simulated database and 0.705° and
0.753 for the clinical database. The Hessian-based approach has the best
trade-off between accuracy and execution time; on average, the Hessian-
based algorithm takes roughly 9 seconds to detect the MSP, 10-fold faster
than the other two techniques. The symmetry-based approach presented
the worst results regarding accuracy and execution time. Given these
findings, it is possible to conclude that the phase congruency MSP de-
tection approach is the appropriate choice in scenarios where precision
is of paramount importance. However, in situations where accuracy is
essential, but not crucial, and there are hundreds of images to be pro-
cessed, the Hessian-based technique is indicated to promptly detect the
plane.

Keywords: midsaggital plane, phase congruency, hessian matrix, sym-
metry information, magnetic resonance imaging

1 Introduction

The human brain has two hemispheres that can be separated by a midsaggital
plane (MSP). Both hemispheres usually present a fair match of similar regions
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and counterparts, and, therefore, analysis of these parts provides clinically rele-
vant information in studies of neurodegenerative diseases, such as level of brain
atrophy and asymmetry. The brain’s longitudinal fissure (LF) is commonly used
as a reference to guide manual delineation of the MSP, and although the sepa-
ration surface is not exactly a plane surface, a planar approximation is enough
for many applications [19].

Many techniques to automatically detect the MSP in magnetic resonance
images (MRI) have been proposed in the literature over the years [8,13,18].
There are mainly two different classes of algorithms used to detect MSPs. The
first one searches for the plane that maximizes a specific symmetry measure
derived from information of the left and right brain hemispheres; the second one
focus on estimating a plane from points that lie on the LF region.

To this day, there is no consensus regarding which algorithm works best for
all scenarios. In this work, we used three different approaches for MSP detection.
The first method [6] makes use of phase congruency (PC) information [10] to find
a suiting plane, whereas the second approach is based on Hessian matrix and
gradient features [3]. These two techniques fall under the category of algorithms
that use the LF to estimate the MSP. For the sake of comparison, we used a
publicly available symmetry-based MSP detection algorithm from Rupert et al.
[19] to serve as a reference.

We applied all three algorithms to two databases, one with simulated [1] and
the other with clinical images [2]. The purpose of using a simulated database was
to generate different levels of noise and intensity inhomogeneity to assess how
well the techniques would perform in adverse scenarios. Similarly, the clinical
database was comprised of images from subjects with multiple sclerosis (MS).
Since MS lesions have no well-defined shape, size or location, these images pre-
sented a certain degree of asymmetry, thus allowing us to verify if that would
pose a challenge to MSP detection.

To quantitatively assess the algorithms, we used two well-known metrics for
MSP detection: angle difference and average Z-distance. The first is used to
calculate the difference in angle between a ground truth and an automatically
detected MSP. Though widely used, this metric has the disadvantage of not
taking into account specific situations such as when both planes are parallel but
translated apart from each other. To circumvent this issue, we used the average Z-
distance proposed in[19], which calculates the MSP estimation error as a function
of the distances between corresponding voxels of each plane. These two metrics
combined provide an excellent way to analyze any given MSP detection and
compare one algorithm to another.

Our results show the PC and Hessian-based approaches outperformed the ref-
erence algorithm on angle difference and average Z-distance on both databases.
The PC technique was the most accurate of all three algorithms, while the Hes-
sian algorithm was the fastest. We also observed the symmetry-based approach
fail on some images of the simulated database.

This paper is divided as follows: in Section 2 we describe our methodol-
ogy, including the PC-, Hessian- and symmetry-based approaches as well as the
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databases and metrics used in this work. We present and discuss our results in
Section 3 and also provide images used to visually assess the algorithms’ outputs.
Our final considerations are made in Section 4.

2 Material and methods

In this section we elaborate on the PC, Hessian matrix and symmetry techniques
and how they were used for the purpose of MSP detection. We also describe the
databases and metrics used in this paper.

2.1 Phase congruency

The PC technique is an intensity and contrast invariant approach used to high-
light relevant visual features in an image [17,10]. The main idea of the PC
technique is to search for image patterns having a similar order in the phase
components of the Fourier transform. However, instead of working directly on
the Fourier components, the PC technique, which can be proved to be propor-
tional to the local energy of a signal, is implemented via convolution of the
original image with a bank of complex band-pass filters in quadrature. For its
implementation, Kovesi [10,9,11] proposed the use of log-Gabor filters, since
they have zero mean components for arbitrarily large bandwidth that can be
tuned to generate filters with minimal spatial extent. For efficiency, in this work
the convolution of an input image with each complex filter in the bank was
implemented in the frequency domain.

In this paper, we used the MSP-PC algorithm proposed by Ferrari et al.[6],
where the MSP was estimated using the PC-technique proposed in [5] and a
weighted least-squares algorithm [16] (Chapter 5) on voxels enhanced by a sheet-
ness measure. The PC of an image is calculated, and then a sheetness measure
is used on the PC output to enhance voxels that are likely to be located in the
LF region. This measure is calculated based on the eigenvalues of a second-order
moments local matrix of the 3D PC responses centered around a given spatial
location @, given by

Moo () Myro(x) Mo ()
Mpe(x) = | Myio(x) Mozo(z) Mori(x) |, (1)
Mio1(x) Mor1(x) Moo2(x)

where Mpq-(x) is the local moment of order p + ¢ + r calculated from the PC
map.

Ratios can be devised to relate to certain geometric structures, assuming
the eigenvalues of Mpc(x) are sorted as |[A1] < |A2| < |Az|. These relations are
shown in Table 1. Since a MSP is represented by a sheet-like structure, Rspeet
is the ratio of interest in this case.

Two parameters related to the sheetness measure were set to different values
from those proposed in [6]. Using the same notation as the authors, « = § = 0.10
instead of « = § = 0.15. This subtle change proved to yield better results for the
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Table 1. Eigenvalue ratios and their relations with local geometric structures.

‘ Eigenvalue ratios ‘Sheet‘ Tube ‘ Blob ‘Noise‘
Rsneet(x) = A2/A3 0 1 1 -
Rprop(x) = (2A3 — A2 — A1) /A3| 2 1 0 -
Ruoise(®) = /M + 3+ 2 | A [A\av2|AavB| 0
Riybe(®) = (A3 — A2+ A1) /A3 | 1 0 1 -

databases analyzed in this paper. Every other parameter related to the sheetness
measure, PC and bank of filters remained the same. We recommend referring to
[6] for an in-depth explanation of this technique.

2.2 Hessian matrix

A local Hessian matrix can be seen as a local shape descriptor which its eigenval-
ues carry important information about a structured object. Given a particular
point @ of an image I with dimension k, the local Hessian matrix is defined as

Igl-% Io‘.rl.rg o I(T$1-Tk
H, (I z) 101.211 Ia.zg ’.”Iaac'zmk ’ 2)
Ia'mkml Ida:kzz Iam,zc

where o in H, indicates a multiscale framework that is calculated by convolving
the original image with Gaussian kernels G(x, o). In this case, the second order
derivatives in Equation 2 correspond to

2
loay = o) » (7% 5 Glaio) ) (3)

62

Losio, = low;e, = Io(x) * <02"’ G(x; a)) . (4)

These equations are also called y-parameterized normalized derivatives since
the term ~ is introduced to overcome the problem of increasingly smoothed
responses [12]. A value of v = 1.25 was used in this work, as suggested by Majer
[15]. The factor 2 in 2 follows the order of the derivative.

By examining the second-order variations in image intensities, a Hessian
eigenvalue decomposition can be done to better understand local shape infor-
mation. In this work, we followed the idea presented by Descoteaux et al.. [3],
inspired by the works of [7, 14, 20]. By doing so, we were able to differentiate 3D
tube-like, sheet-like and blob-like structures. In this sense, assuming our eigen-
values follow the ordering |A1] < |A2] < |Az], the same three ratios presented in
Table 1 can be devised.

For sheet-like structures, the eigenvalues must be Ay & Ag &~ 0 and |As]| > 0,
S0 measure Rgpeer can easily differentiate sheet-like structures from others, while

8$i1'j
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Rpop reinforces sheetness features. Finally, the Frobenius norm, R, .;se, helps to
suppress random noise effects in the background.

In order to enhance the desired shaped structures, Descoteaux et al.. de-
fined a sheetness measure, S, in which its maximum response over all scales o
corresponds to the acceptance level that a sheet-like structure is present in a
particular image position and is given by

S(A) = max 55 (X), (5)
where
07 if)\g < 07
exp (ngggci X
Sy (A) = 2 6
9 1—exp —%))x (6)

Ry s .
1 —exp —%)) , otherwise.

In Equation 6, ¥ = {2.0, 4.0} is a finite set of scales and «, 8 and ¢ can
be adjusted to control the sensitivity of the filter components. We performed a
grid search over all possible combinations in range [0, 1] with steps of 0.05 to set
a = 0.75 and 8 = 0.10. Parameter ¢ was calculated following the suggestion of
Dzyubak and Ritman [4] as one-tenth of the maximum Laplacian image value.

An important observation must be made about the sign of A3 in Equation
6, since it dictates the intensity feature of the structure we are interested. In
T1-weighted images, the LF is dark, so we use the equation as is. For T2- and
PD-weighted images, however, the LF is bright, so in these cases, S,(A) = 0 if
Az > 0.

As a result of the Hessian-based approach, voxel values closer to 1 indicate a
higher probability of having sheet-like structures in a real-valued image. Similar
to [6], plane estimation was performed by a weighted least-squares algorithm [16]
in a coarse-to-fine manner applied to voxels enhance by the sheetness measure.

2.3 Symmetry analysis

In Ruppert et al. [19], a bilateral symmetry algorithm based on the maximization
of symmetry measure was used to find the best plane that divides the brain
into its hemispheres. The authors applied a 3D Sobel operator and thresholding
to generate a binary-edge feature image, which was then used as input to the
symmetry measure algorithm. Since evaluating all possible planes was unfeasible,
the authors proposed a 3-stage coarse-to-fine multi-scale approach to reduce the
search space. The plane with the highest symmetry score on a coarser scale was
used as input to a finer scale, and then the region around the plane was analyzed
to refine the MSP estimation.

Formally, let I° be the binary image resulting from applying a threshold to
the Sobel output and I7 its flipped copy with respect to a candidate plane. Then
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the symmetry measure S is defined as
w h dgro 71f
v s e Il
S = - Zd:z ZJ Zk Jk gkh - 7 (7)
JErSi st (Srsl i)

where w, h, d are width, height and depth of the 3D image and I Z’; &> similar to
I2;., is the value in {0, 1} of a voxel at a given coordinate (i, j, k).

They assessed their algorithm on MRI and computation tomography (CT)
images using angle difference and average Z-distance and compared their results
to other three approaches. Considering accuracy and execution time, the authors

concluded their technique outperformed the other three algorithms.

2.4 Databases

The MSP algorithms investigated in this work were assessed using two different
sets of MR images, described in details in this section.

BrainWeb We used 45 synthetic MR, (T1-, T2- and PD-weighted) images from
the publicly available McGill University BrainWeb MRI simulator [1]. We used
images with five different noise levels (0%, 1%, 3%, 5% and 7%) and three
intensity inhomogeneity percentages (0%, 20% and 40%), thus generating fifteen
images for each MR weight. Every image had a voxel resolution of 1 mm? and
dimensions 181 x 217 x 181.

MS The MS database used in this paper came from the training data of the
2015 Longitudinal MS Lesion Segmentation Challenge [2]. This database was
comprised of five MS subjects with a total number of 21 time-points and lesion
volumes ranging from 2ml to 32ml. Each time-point had T1-, T2-, PD-weighted
and FLAIR images acquired on a 3T MR scanner. For this research, we used only
T1-weighted images because of the high contrast and anatomical information
such weight provides. Every T1-weighted image had a voxel resolution of 1 mm3
and dimensions 181 x 217 x 181.

2.5 Metrics

We used the angle difference (in degrees) and average Z-distance (in voxels)
to assess how accurately the algorithms detected the MSP. These metrics are
described in the following sections.

Angle difference The angle difference measures the angle between normal
vectors of two given planes as

<u,v> 180
o = arccos | ————— | X —, (8)
[[ll-[]vl @
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where « is the angular difference in degrees, u and v are two given normal
vectors, <, > is the canonical inner product and |||| is the vector norm function.
The closer « is to zero, the smaller is the angle between planes.

Average Z-distance The average Z-distance was proposed in [19] to measure
the distance in voxels between two planes. This metric improves the quantitative
analysis of the MSP detection, since the angle difference alone may be misleading
in situations where both planes are parallel but translated from one another, for
example.

To find this distance, the z coordinate of each plane is calculated using the
plane equations and their x and y coordinates. The absolute differences between
the z coordinates from the ground truth, and the estimated plane are summed
up and divided by dim(x) x dim(y), where dim is the image dimension of a
given axis, thus providing the average Z-distance in voxels between both planes.

Formally,
Z(z,y) (|zeoord(GT) = Zeoora(Aut)|)

dim(z) x dim(y) ’ ©)

where GT and Aut are the ground truth and automatically estimated MSPs,
respectively.

Z-distance =

3 Results and discussion

In this section we present the MSP detection results for both BrainWeb and MS
databases and discuss the advantages and drawbacks of each technique.

3.1 BrainWeb database

The results for the PC, Hessian and symmetry approaches on the BrainWeb
database are shown in Tables 2, 3 and 4.

Of the three techniques assessed in this paper, the symmetry approach was
not able to correctly detect the MSP for some images in the BrainWeb database
(indicated by *). These cases were not taken into account when calculating the
average angle difference and Z-distance of the three techniques since they would
artificially increase the average and standard deviation results of the symmetry
approach.

The symmetry results shown in Tables 2, 3 and 4 indicate that this technique
had a rather poor behaviour in situations where images were noisy and presented
a high-intensity inhomogeneity level. Examples of MSPs detected on T2 image
weights with 7% noise and 40% intensity inhomogeneity levels are shown in
Figure 1. These results can be explained by the fact that this technique uses a
bilateral symmetry measure and searches for a plane that maximizes it. Part of
the algorithm consists of smoothing and applying a Sobel operator to the input
image to detect edges. The output of the Sobel operator is then used to calculate
the symmetry measure and find the best plane. Since we had some images with
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Table 2. MSP detection results for PC-, Hessian- and symmetry-based algorithms on
the BrainWeb database with intensity inhomogeneity = 0%. Rows in bold were not
taken into account to calulate mean and standard deviation values.

Phase Congruency Hessian Symmetry
Tmage Angle diff.| Z-dist. |Angle diff.| Z-dist. Angle Z-dist.
) (voxels) (°) (voxels) diff.(°) (voxels)
PD 0% 0.196 0.156 0.719 1.013 0.318 1
PD 1% 0.185 0.147 0.719 1.012 0.318 1
PD 3% 0.290 0.238 0.016 0.013 0.318 1
PD 5% 0.703 0.558 0.016 0.013 0.318 1
PD 7%* 1.194 1.134 0.017 0.014 90 0
T1 0% 0.144 0.114 1.639 1.347 0.318 1
T1 1% 0.142 0.113 1.674 1.380 0.318 1
T1 3% 0.147 0.117 1.819 1.506 0.318 1
T1 5% 0.146 0.116 1.700 1.396 0.265 1
T1 7% 0.132 0.105 1.608 1.320 0.265 1
T2 0% 0.759 0.666 0.388 0.422 0.318 1
T2 1% 0.750 0.657 0.386 0.418 1.591 2.052
T2 3% 0.802 0.711 0.384 0.415 0.318 1
T2 5%* 0.835 0.747 0.385 0.416 0 51.5
T2 ™% 0.867 0.784 0.383 0.413 0 0.5
Mean 0.404 0.344 0.881 0.821 0.383 1.042
(std) (0.310) (0.278) (0.696) (0.553) (0.373) (0.333)

a high level of intensity inhomogeneity, we believe the level of smoothing used
by this technique was not enough, leading the Sobel algorithm to detect noise
as edges, which in turn caused the MSP detection to become rather erratic.

The PC approach had the smallest average Z-distance in both scenarios of
intensity inhomogeneity and a very low angle difference on average. We can state
that, on average, the PC-based algorithm was less than 0.5 degree and 0.5 voxels
off compared to the ground truth. It is also possible to note that this technique
was somewhat invariant to noise and intensity inhomogeneity given any image
weight, which is strongly related to the frequency-domain aspect of PC [10]. But
high accuracy and invariance come with a cost, since it took roughly 91 seconds
to detect the MSP of each image in this database using phase congruency.

The Hessian-based algorithm was the least accurate approach on this database
considering angle difference. However, it outperformed the symmetry technique
on average Z-distance in all three intensity inhomogeneity scenarios. Since the
Hessian algorithm is heavily based on image gradients, it is not as robust as
phase congruency and is susceptible to highlight high-gradient areas that are
not related to the LF. These areas interfere with the MSP detection and can
cause the plane to be slightly dislocated compared to the ground truth. This
drawback can be seen in T1-w results since this weight presents a high-contrast
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Table 3. MSP detection results for PC-, Hessian- and symmetry-based algorithms on
the BrainWeb database with intensity inhomogeneity = 20%. Rows in bold were not
taken into account to calulate mean and standard deviation values.

Phase Congruency Hessian Symmetry
Image Angle diff.| Z-dist. |Angle diff.| Z-dist. Angle Z-dist.
(°) (voxels) (®) (voxels) diff.(°) (voxels)
PD 0% 0.183 0.145 0.016 0.013 0.636 1.5
PD 1% 0.158 0.125 0.016 0.013 0 1.5
PD 3% 0.181 0.144 0.017 0.013 0 1.5
PD 5% 0.275 0.223 0.017 0.014 0 1.5
PD 7%* 1.266 1.197 1.142 1.016 90 0
T1 0% 0.144 0.114 2.542 2.254 0.318 1
T1 1% 0.145 0.115 2.871 2.544 0.318 1
T1 3% 0.149 0.118 2.559 2.261 0.636 1.5
T1 5% 0.156 0.124 2.463 2.162 0.265 1
T1 7% 0157 0.125 0.981 0.782 0 0.5
T2 0% 0.711 0.615 0.456 0.475 0.318 1
T2 1%* 0.685 0.586 0.456 0.474 0 51.5
T2 3%* 0.749 0.658 0.454 0.471 0 52.5
T2 5%* 0.813 0.727 0.452 0.469 89.681 |10536.776
T2 ™% 0.849 0.759 0.473 0.484 1.273 1.067
Mean 0.282 0.237 1.128 1.001 0.342 1.187
(std) (0.250) (0.226) (1.212) (1.066) (0.389) (0.334)

Fig. 1. BrainWeb MSP comparison (axial view) of the three approaches assessed in
this paper on T2-weighted images with 7% noise and 40% intensity inhomogeneity. (a)
PC-based MSP detection, (b) Hessian-based MSP detection and (¢) Symmetry-based
MSP detection.
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Table 4. MSP detection results for PC-, Hessian- and symmetry-based algorithms on
the BrainWeb database with intensity inhomogeneity = 40%. Rows in bold were not
taken into account to calulate mean and standard deviation values.

Phase Congruency Hessian Symmetry
Tmage Angle diff.| Z-dist. |Angle diff.| Z-dist. Angle Z-dist.
) (voxels) (°) (voxels) diff.(°) (voxels)
PD 0% 0.168 0.133 0.017 0.014 0.636 1.5
PD 1% 0.188 0.149 0.017 0.014 0 1.5
PD 3% 0.168 0.134 1.064 0.907 0 1.5
PD 5% 0.391 0.313 1.070 0.913 0 1.5
PD 7%*| 1.074 1.017 0.017 0.014 90 0
T1 0% 0.144 0.114 0.952 0.756 0.318 1
T1 1% 0.145 0.115 0.949 0.753 0.318 1
T1 3% 0.148 0.118 0.932 0.740 0.265 1
T1 5% 0.16 0.127 0.952 0.756 0.265 1
T1 7% 0.134 0.107 0.292 0.307 0 0.5
T2 0% 0.593 0.499 0.646 0.609 0.318 1
T2 1%* 0.619 0.523 0.646 0.610 0 44.5
T2 3%* 0.673 0.576 0.654 0.615 89.364 |7504.408
T2 5%* 0.779 0.685 0.676 0.627 90 0
T2 7%* 0.797 1.067 0.668 0.599 89.363 |5255.808
Mean 0.223 0.180 0.689 0.577 0.212 1.150
(std) (0.149) (0.127) (0.423) (0.341) (0.210) (0.337)

between tissues. On the other hand, the Hessian technique was faster than the
other two algorithms by a 10-fold, since the MSP detection took approximately
9 seconds using this approach. Qualitative analysis indicates the automatically
detected MSPs correctly divided the brain hemispheres into two, though the
planes did not precisely halve the LF. Examples of MSP detections on T1-w
images using the Hessian algorithm are shown in Figure 2.

It is worth pointing out that both PC and Hessian approaches detected the
MSPs regardless of noise and intensity inhomogeneity. However, we cannot state
this for the symmetry approach, since the number of failures increased as the in-
tensity inhomogeneity level increased. We understand that certain levels of noise
and inhomogeneity - for instance, 7% and 40%, respectively - are no longer en-
countered in research or clinical work, but we used them to check the algorithms’
robustness in extreme situations.

3.2 MS database

The results for the PC, Hessian and symmetry approaches on the MS database
are shown in Tables 5, 6 and 7.

We can see that the PC approach had the best results (both for angle differ-
ences and Z-distance), followed by Hessian matrix and symmetry information.



Midsaggital plane detection 11

(b)

Fig. 2. BrainWeb MSP comparison (axial view) of MSPs detected by the Hessian
approach on T1 images with 0% noise and (a) 0% and (b) 20% intensity inhomogeneity
levels. Note that the hemispheres are correctly split, but the planes do not precisely
halve the LF.

It is worth remembering that though this database had T1-, T2-, PD-weighted
and FLAIR images, we used only T1 images to detect the MSP. Compared to
PC, the Hessian matrix and symmetry techniques had approximately 36% and
42% difference in the angle measurement and 28% and 36% difference on the
Z-distance metric, respectively. But all three techniques, on average, were less
than 1.3 degrees and 1.2 voxels off compared to the ground truth. Based on the
results shown in Tables 5, 6 and 7 indicate, all three techniques had a significant
average performance regardless of lesion volume. Qualitatively, it was not possi-
ble to distinguish one method from another for any given detected MSP in this
database. The average execution time for the PC, Hessian-based and symmetry-
based algorithms on this database were 92 seconds, 9 seconds and 293 seconds,
respectively, on an Intel Core i7 3.2 GHz with 16GB of RAM. Note that these
times were very similar to those mentioned in Section 3.1. Examples of planes
detected by the three techniques compared to the manually delineated planes in
an MS image with high lesion load is shown in Figure 3.

Table 5. PC-based MSP detection results for the MS database.

Subject Time Avg. lesion | Avg. angle Avg.
number points load (ml) diff. (°) Z-distance
(voxels)
1 4 17.877 0.734 0.648
2 4 31.167 0.512 0.712
3 5 6.616 1.041 0.831
4 4 2.711 0.233 0.809
) 4 4.257 0.923 0.794
Mean (std) | Mean (std)
0.705 (0.339) | 0.753 (0.125)
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Table 6. Hessian-based MSP detection results for the MS database.

Subject Time Avg. lesion Avg. angle Ang
number points load (ml) diff. (°) Z-distance
(voxels)
1 4 17.877 1.341 1.190
2 4 31.167 1.192 1.076
3 5 6.616 1.105 0.897
4 4 2.711 0.187 1.025
5 4 4.257 1.643 1.328
Mean (std) | Mean (std)
1.094 (0.579) | 1.044 (0.321)

It is important to note that visual assessment of the planes detected by
all three approaches in the MS database indicated the brain hemispheres were
correctly separated. However, some points need to be highlighted. For instance,
compared to the Hessian-based algorithm, PC requires a bank of filters to work,
and while it is true that this bank is created only once and then used on every
image, the convolution of the image with all filters in the bank, performed in
the frequency domain, is time-consuming. Besides, there is also an overhead for
generating the bank of filters. In this work, we designed it to work best with
image dimensions 181 x 217 x 181, which were the image dimensions for both
BrainWeb and MS databases. Another significant highlight is that we observed
the Hessian-based approach runs 10-fold faster than PC. The same goes for
the symmetry approach; similar to the Hessian matrix, the symmetry technique
does not require a bank of filters, but it is approximately 32 times slower than
the Hessian-based MSP detection. This result is an enormous advantage when
working with hundreds of images in real-life scenarios such as clinical trials.

Finally, to visually assess the robustness of the three techniques even fur-
ther, we applied them to MR FLAIR images either with glioma or post-brain
tumor resection to analyze how well they would perform in a strong asymmetric
scenario. The results are shown in Figures 4 and 5.

Table 7. Symmetry-based MSP detection results for the MS database.

Subject Time Avg. lesion Avg. angle Avg.
number points load (ml) diff. (°) Z-distance
(voxels)
1 4 17.877 2.339 2.078
2 4 31.167 0.662 0.626
3 5 6.616 0.791 0.792
4 4 2.711 0.270 1.035
5 4 4.257 2.115 1.679
Mean (std) | Mean (std)
1.214 (0.903) | 1.172 (0.644)
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(a) (b)
() (d) (e)

Fig. 3. Comparison between MSP detection techniques on an image with an average
lesion load of 31.167ml. (a) Ground truth, (b) FLAIR image where lesions are more
easily identified, (¢) PC-based MSP detection, (d) Hessian-based MSP detection, (e)
Symmetry-based MSP detection.

In Figure 4, the MR image came from a subject with glioma. In Figure 5,
the subject had undergone a medical removal procedure which left asymmetric
holes in the brain.

As it can be seen in Figures 4 and 5, the PC technique outperformed the other
two approaches; however, the same observation made earlier regarding execution
time also holds true for these strong asymmetric cases. So in a scenario where
accuracy is of paramount importance, the PC algorithm would be the best choice.
On the other hand, if time is of the essence and accuracy is essential, but not
crucial, then the Hessian-based MSP detection would be a good alternative.

4 Conclusions

This paper presented and compared three automatic MSP detection techniques
applied to simulated and clinical databases. One of the techniques was a publicly
available MSP detection algorithm based on symmetry analysis, while the other
two were based on phase congruency and Hessian matrix, respectively, to find the
brain’s LF and estimate a plane from it. We assessed the algorithms’ performance
using the angle difference and average Z-distance metrics.

Our results show the PC approach was the most accurate technique on both
databases, followed by the Hessian- and symmetry-based algorithms. The accu-
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(d)

Fig. 4. Comparison between MSP detection techniques on an image with glioma. (a)
Pathology indication, (b) PC-based MSP detection, (c) Hessian-based MSP detection,
(d) Symmetry-based MSP detection.

Fig. 5. Comparison between MSP detection techniques on a post-operation image with
asymmetric holes. (a) Asymmetry indication, (b) PC-based MSP detection, (c) Hessian-
based MSP detection, (d) Symmetry-based MSP detection.
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racy of PC was strongly related to its frequency-domain aspect, which makes it
contrast-invariant and more robust to noise and intensity variations.

The Hessian approach, though not as accurate as PC, proved to be the fastest
of all techniques by a 10-fold. This fast execution time feature brings enormous
advantage in scenarios where hundreds of images need to be processed such as
in clinical trials. Visual assessment of MSPs detected by the Hessian algorithm
indicated the brain hemispheres were correctly split into two, but the LF's were
not necessarily halved.

We observed the symmetry-based algorithm was affected by high levels of
noise and intensity inhomogeneity, which led to incorrect plane estimations. On
the other hand, this approach was able to correctly estimate MSPs for the clinical
database and images with glioma and tumor resection. However, it had the worst
execution time compared to the other two approaches.

As mentioned in Section 1, there is no consensus regarding which MSP de-
tection approach in MRI works best for all scenarios. Given the three techniques
analyzed in this paper, we can conclude that if accuracy is of paramount im-
portance, then the PC approach provides an excellent MSP estimation. But a
trade-off between accuracy and execution time points to the Hessian-based al-
gorithm as a better alternative to divide the brain hemispheres into two.
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FLAIR images are usually acquired in the context of multiple sclerosis (MS) because lesions appear hyper-
intense in this particular image weight. However, their intensity profile overlaps with white matter
(WM) and gray matter (GM) tissues, posing difficulties for accurate segmentation. We propose a lesion
enhancement technique to dim down WM and GM regions and highlight hyperintensities by creating a
hyperintensity probability map. A byproduct of our proposal is the estimation of a mask encompassing
WM and MS lesions. We observed that the lesion intensity profile in FLAIR was 25% and 19% brighter than
WM and GM, respectively; comparatively, the same profile in our enhanced images was 444% and 264%
brighter. On the mask estimation, we achieved a sensitivity of 99% and specificity of 98%. The results
indicate significant improvement in the intensity distinction between lesions and tissues and can aid
both experts and automated techniques in segmentation tasks.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Multiple sclerosis (MS) is a demyelinating disease that attacks
the central nervous system (CNS) and affects more than 2 million
people worldwide [2]. It destroys neurons’ myelin sheaths, causing
many effects on one’s body such as dizziness, confusion, memory
problems and numbness of arms and legs [25]. The cause of MS is
stillunknown, and the disease itself has a devastating effect both for
individuals and society. Since the onset of MS is typically around age
30, it affects subjects at the peak of their productivity in life [24]. In
this context, it is essential to provide neurologists and radiologists
with tools to quickly identify the disease and prescribe treatments
to help patients lead a normal life.

Magnetic resonance imaging (MRI) is commonly used in diagno-
sis and follow-up of MS due to its high contrast between soft tissues
[7].One widely used imaging protocol of MRl is the Fluid Attenuated
Inversion Recovery (FLAIR), which, as the name suggests, attenu-
ates the effect of fluids, mainly from the cerebral spinal fluid (CSF)
region. FLAIR images are important in the MS context because MS
lesions appear hyperintense in this particular image weight, thus
making it easier for physicians to identify them [12].

Though MS lesions present a hyperintense profile in FLAIR
images, their intensity range varies significantly between differ-

* Corresponding author.
URL: http://www.bipgroup.dc.ufscar.br (R]. Ferrari).

https://doi.org/10.1016/j.bspc.2018.12.021
1746-8094/© 2018 Elsevier Ltd. All rights reserved.

ent patients and between various time points of the same subject
[11]. As a result, both manual and automatic segmentation can
be affected and undermine the accuracy of MS lesion detection,
since they can be mistaken for other brain tissues — namely, white
matter (WM) and gray matter (GM). And while it is true that gray
level intensity is not the only characteristic that helps experts and
algorithms differ MS lesions from other tissue classes, a sharper
distinction between hyperintensities and normal tissues would
provide extra leverage to separate each class more accurately.

Proper distinction between brain tissues and abnormalities,
such as lesions, would be of great help for experts and automatic
segmentation techniques alike. In [17], the authors conducted a
comprehensive analysis of the importance of intensity normaliza-
tion and its effect on MS lesion segmentation. They showed that
applying the intensity normalization technique proposed by [14] to
21 images from subjects with MS increased the Dice Similarity Coef-
ficient (DSC) [8] of lesion segmentation on automatic supervised
approaches. However, a scatter plot analysis showed that despite
normalization, lesions still had a significant intensity overlap with
WM and GM tissues.

In[19], the authors proposed an algorithm to increase automatic
lesion and brain tissue segmentation robustness by estimating a
spatially global within-the-subject intensity distribution and a spa-
tially local intensity distribution derived from a healthy reference
population. This approach tried to circumvent the overlap between
the whole brain signal intensity distribution of lesions and healthy
tissue. A scatter plot analysis showed that local intensities from
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a reference population offered a better lesion intensity separation
than by either global or local intensity distributions derived from
a patient with MS. Though the authors’ proposal performed better
than six other segmentation techniques on a 31-subject database,
it was still dependent on a healthy reference population and, con-
sequently, on careful registration and intensity normalization steps
across the healthy and lesion image sets.

Accordingly, we propose a technique to enhance hyperintensi-
ties in FLAIR images to better distinguish MS lesions from WM and
GM. We built on the works of [16,15] to automatically generate an
image that shows the probability of each voxel being a hyperintense
one, herein called the hyperintensity map. The main advantage of
this technique is that it requires only FLAIR images and enhances
MS lesions so their intensity profile is much brighter than WM and
GM compared with their profiles in FLAIR itself.

Regarding the effects that brain abnormalities, such as lesions,
have on brain tissue segmentation, some works in the litera-
ture have explored the issue. In [1], the authors showed that
segmentation-based methods for brain volume measurement suf-
fer in the presence of lesions since they interfere with GM and WM
depending on lesion size and intensity. To overcome this problem,
they proposed filling lesions with intensities matching surrounding
normal-appearing WM. Their approach helped reduce the impact
lesions had on tissue segmentation, especially regarding GM, and
improved the accuracy of tissue classification and brain volume
measurement. However, the filling algorithm depends on having
the lesion ground truths at hand and, as noted by the authors them-
selves, their approach can overestimate lesion holes depending on
where they are located and the intensity variation in the surround-
ing area.

Similarly, in [21], the authors stated that the accuracy of auto-
matic tissue segmentation methods is affected by the presence of
MS lesions during the tissue segmentation process. They applied six
well-known segmentation techniques to 30 T1-weighted images
from subjects with MS and verified that GM volume was over-
estimated by all methods when lesion volume increased. This
overestimation persisted even when masking out or relabeling
lesions during segmentation. This particular finding was significant
because it provided evidence to show that tissue atrophy mea-
surements are likely to be altered when the subject’s lesion load
is high.

In [22], the authors conducted a study to determine the effect
ground truth annotations had on the assessment of automatic
brain tissue segmentation accuracy. More specifically, they applied
ten different brain tissue segmentation methods to the Internet
Brain Segmentation Repository (IBSR),! since this dataset con-
sidered Sulcal Cerebrospinal Fluid (SCSF) voxels as gray matter.
Though this dataset comprised only images from healthy subjects,
the authors were able to observe that the performance and accu-
racy of the methods on IBSR images varied significantly when not
considering SCSF voxels. This finding indicates that not only brain
abnormalities, such as lesions, have the potential to interfere with
segmentation techniques, but labeling is also a concern and can
lead to a misguided analysis of accuracy.

Finally, in [23] the authors proposed an automated T1-
weighted/FLAIR tissue segmentation approach designed to deal
with images from subjects with WM lesions. They suggested a par-
tial volume tissue segmentation with WM outlier rejection and
filling, along with intensity, probabilistic and morphological prior
maps, to segment brain tissues. This approach required no manual
annotations of lesions, which is an advantage compared with other
works that use lesion filling or masking based on expert ground

1 https://www.nitrc.org/projects/ibsr.

truths. The authors applied their algorithm to two databases. One
of them comprised only images from subjects with MS, and the
authors’ proposal achieved competitive results compared with five
other segmentation techniques. However, the MS database was not
publicly available, thus making it difficult to directly compare their
results with those of other works in the literature.

To this end, a byproduct of our technique is the estimation
of a white matter mask based on the hyperintensity map. This
approach is relevant because, as previously noted, MS lesions inter-
fere with brain tissue segmentation due to similarities in their
intensity profiles. Our white matter mask estimation relies on the
hyperintensity map to fill lesion holes that were left out during an
automatic segmentation process. Our technique requires no man-
ual annotations, only making use of FLAIR images and probabilistic
anatomical atlases to obtain such estimation. To verify its accu-
racy, we extracted DSC and the percentage of MS lesions that were
included in the WM mask during the process to confirm how well
our approach performed in obtaining a reasonable WM region esti-
mate.

This paper is divided as follows. In Section 2, we describe our
methodology and the database we used to apply our technique on;
we present our results in Section 3 and discuss them in Section 4.
Finally, we present our final considerations in Section 5 and indicate
our future works.

2. Materials and methods

In this section, we describe the databases we used, the pipeline
for enhancing multiple sclerosis lesions in FLAIR images and the
algorithm for estimating the white matter region mask.

2.1. Databases

2.1.1. Clinical images

We used the training dataset of the Longitudinal MS Lesion
Segmentation Challenge? made available during the 2015 Inter-
national Symposium on Biomedical Imaging [5]. This dataset
comprised images of five patients, one male and four females, with
a total of 21 time-points. The mean age of the patients was 43.5
years and the mean time between follow-up scans was one year.
Eligibility criteria and more details on the patients and how they
were chosen are described in [5].

Each scan was imaged and pre-processed in the same manner,
with data acquired on a 3 Tesla MRI scanner (Philips Medical Sys-
tems, Best, The Netherlands). The imaging sequences were adjusted
to produce T1-weighted, T2-weighted, proton density (PD) and
FLAIR images.

Each subject underwent the following pre-processing: the base-
line (first time-point) magnetization prepared rapid gradient echo
(MPRAGE) was inhomogeneity-corrected using N4 [20], skull-
stripped [6,4] and dura stripped [18], followed by a second N4
inhomogeneity correction and rigid registration to a 1 mm isotropic
MNI template. Since the baseline MPRAGE was in MNI space, it was
used as a target for the remaining images, which included the base-
line T2-w, PD-w, and FLAIR, as well as the scans from each of the
follow-up time-points. These images were then N4 corrected and
rigidly registered to the 1 mm isotropic baseline MPRAGE in MNI
space. In the end, image dimensions were 181 x 217 x 181.

It is important to note that the training dataset also included
manual MS lesion delineations by two experts for each time-point.
More details about time-points and average MS lesion volume for
each subject are summarized in Table 1.

2 http://iacl.ece.jhu.edu/index.php/MSChallenge/data.
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Table 1
Number of time-points and average lesion volume for each patient.
Number of Mean lesion Mean lesion
time-points volume (in ml) volume (in ml)
Expert 1 Expert 2
Patient 1 4 16.67 19.07
Patient 2 4 30.52 31.80
Patient 3 5 5.40 7.81
Patient 4 4 2.17 3.23
Patient 5 4 4.55 3.96

2.1.2. Probabilistic anatomical atlases

To estimate white matter regions and identify gray matter clus-
ters, we used the probabilistic atlases from the ICBM project [10].
The atlases spatial resolution was 1 x1 x1mm and their initial
dimensions were 256 x 256 x 256. However, they were registered
to each clinical time-point to provide accurate spatial informa-
tion. A T1-weighted image initially registered to both white matter
and gray matter atlases was used as a moving image, while T1-
weighted images from each time-point were used as reference
images. The registration took place using the NiftyReg tool [13]
with free-form B-Spline deformation model and multi-resolution
approach for non-rigid registration. The transformation was then
applied to the atlases, thus making them aligned to each time-point
and with dimensions 181 x 217 x 181.

2.2. Metrics

A total of five metrics were used to assess the intensity profile
distinction between lesions and other brain tissues and to compare
the estimated white matter mask with the ground truth.

The intensity profile distinction (IPD) is calculated as

IPD — (average(lesions)
~ \ average(tissue)

1) « 100, (1)

in which we simply divide the average intensity of lesions by the
average intensity of a tissue of interest (white matter or gray mat-
ter) in a particular image and then scale it in terms of percentage.
Thus, we can determine how much brighter, percent-wise, the
lesion cluster is compared with other tissues.

In the assessment of the estimated white matter mask, we used
four different metrics. The Dice Similarity Coefficient (DSC) [8] was
used to determine the overall overlap between our estimation and
the ground truth. The DSC is defined as

2 x TP
DSC_FP+FN+2><TP’ 2)
where TP, FP, and FN are the true positives, false positives and false
negatives. DSC values fall in the interval [0, 1], and the closer they
are to 1, the better.

We also used the well-known sensitivity and specificity met-
rics to measure the accuracy of our estimation. Sensitivity (SS) is
defined as

P
S = (TP + FN) 3
and in the context of this paper measures the proportion of WM
and lesion voxels that were correctly identified as such during esti-
mation.
Specificity (SP) is defined as

N

SP =y

(4)
where TN represents the number of true negatives. In the context of
this paper, SP measures the proportion of non-WM and non-lesion
voxels that were correctly identified as such. Both SP and SS fall in

the interval [0, 1] and similar to DSC, the closer they are to 1, the
better.

Another metric we used to assess the white matter mask esti-
mation was the lesion intersection (LI), defined as

_ |Lesiongr N MasKeggim|

L= Lesionc x 100. (5)

Similar to IPD, LI is also calculated in terms of percentage and
provides a quantitative tool to analyze the lesion load that was kept
during the white matter mask estimation.

2.3. Pre-processing

The pre-processing stage used in this work was comprised of
three steps: noise reduction, intensity normalization and interme-
diate enhancement.

The noise reduction step was performed using the non-local
means approach [3] with o =15. Reducing image noise is impor-
tant because it helps eliminate part of intensity variations within
the image, creating a smoother profile for each brain tissue. Given
the nature of our lesion enhancement technique, which is heavily
based on gray level intensities, noise reduction is relevant to mit-
igate effects inherent in the image acquisition procedure and thus
improve the enhancement of MS lesions while dimming out other
brain tissues.

Intensity normalization was done in order to assure that every
image had the same intensity range. We applied the normalization
proposed in [16], which rescales intensities as v' = -x=, where v/
is the new value of a given voxel, v is the voxel value in FLAIR and
w and o represent the mean and standard deviation of the whole
brain, respectively.

An edge detection step using Sobel [9] is required as input to
generate the intermediate enhanced image with increased contrast
between MS lesions and their surroundings, namely white matter
tissue. Following the proposal in [ 16], this intermediate image was
created as follows. Let s={x, y, z} be a particular spatial location, I
the FLAIR intensity at s and gs the gradient in the Sobel image at s.
The edge and intensity information are combined as

hi)=g Y Prob(g=g), (6)

se{s|ls=i}

where N is the total number of voxels with intensity i. In other
words, Eq. (6) goes over every FLAIR image intensity i and, given
the probability density function (PDF) of the Sobel image, sums up
the histogram bins that have a smaller frequency than gs and then
normalizes them.

After calculating h(i), we compute the cumulative distribution
function (CDF) of h as proposed in [16]:

q(i)="> h(k). (7)
k=1

In the end, each q(i) is used to replace each intensity i. An example
of such intermediate image is shown in Fig. 1.

2.4. Hyperintensity probability map

The hyperintensity probability map is calculated based on the
intermediate image generated during the pre-processing stage
detailed in Section 2.3. We devised an algorithm that automati-
cally generates such map and does not depend on parameters that
must be set by experimental observations, as opposed to [16,15].

The central principle behind this map is to compare each voxel
neighborhood intensity with patches across different points in the
image. The more times the voxel’s neighborhood mean intensity is
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(a)
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Fig. 1. Intermediate image generation. (a) FLAIR image, (b) Sobel image, and (c) intermediate image.

(a)

Fig. 2. Brain mask (a) and cropped point net (b). Each patch of this particular slice is centered around one point in (b).

higher than the patches’, then the more likely it is for that particular
voxel to stand out and more likely for it to have a high hyperintense
probability.

The first step to create the map is to define where each patch will
be centered. To do that, we define a point net for each slice following
the algorithm proposed in [15], which uses the combination of sines
and cosines to evenly distribute points across a slice. Let p={x, y, z}
be the coordinates of a candidate point. We then create new points
p'={x,y, z} with

X =x+r1 cos 6

Yy =y+rsing’

where 6 is the angle and r=10 is the radius. We set 6 to zero and
increase it by 60 degrees six times to complete a whole circumfer-
ence. The six newly defined points become candidate points, and
the process is repeated until no new point is found.

After defining such points, we crop the net using a brain mask
to only keep points that are inside our ROI. This procedure is done
by simply purging points outside the brain mask. An example of a
final point net set P for a particular slice is shown in Fig. 2.

(b)

Now, let i and o be the mean and standard deviation of the
whole intermediate image within the brain mask. Then, for each
voxel, we calculate its neighborhood mean intensity as

Ny
1 .
My = N, E Lies
k=1

where i, is the mean neighborhood intensity of voxel v, N, is the
number of neighbors of v and iy, is the intensity of neighbor k. The
neighborhood size was defined as 3 x 3 x3 in order to maintain a
good trade-off between sharpness and smoothness. The same ratio-
nale is used for the patches: the mean intensity is calculated as in
Eq. (9), thus creating up for each patch.

Finally, we create a score S, as

(9)

1
S =1y 2Ok, 1) (10)
peP
where |P| is the cardinality of the patch set and
1, ifuy—pp>o
8(po, pp) = , . (1
0, otherwise

In other words, if the difference of intensity between a candidate
voxel neighborhood and a patch is greater than or equal to the stan-
dard deviation of the whole image, then it is a hit. Otherwise, it is a
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(a)

Fig. 3. Hyperintensity map (a) compared to the original FLAIR image (b) and the intermediate image (c).

miss. By doing so, voxels with bright neighborhoods are enhanced
while otherregions and tissues are dimmed out. Moreover, since we
normalize the score S,, each voxel remains in the range [0, 1], which
also serves as a hyperintensity probability indicator. An example of
the map is shown in Fig. 3.

It is important to note that our approach requires no hard
threshold for Eq. (11) or a fixed number of patches as it hap-
pens in [16]. Instead, the threshold is calculated automatically
with respect to the standard deviation. Though simple, this is a
significant improvement, since the main problem of using a hard
threshold is that even normalized, intensities inherently vary from
image to image. Accordingly, a soft threshold such as the one we
propose in this work offers a better option because the enhance-
ment of hyperintensities for it can adapt to each image intensity
profile.

2.5. White matter mask estimation

The white matter region usually comprises most MS lesions [7].
An automatic brain segmentation into three clusters (WM, GM, and
CSF) based on gray level intensities is most certainly going to mix
lesions and cluster them as GM, WM or both [1,21]. In this context,
being able to estimate a mask that encompasses both white matter
tissue and MS lesions can help narrow down the ROI and increase
the accuracy of lesion segmentation. To do so, we leveraged the fact
that the map described in Section 2.4 can also be interpreted as a
probability map and used it to obtain an estimate of such mask.

In this work, we made use of the Student t mixture model pro-
posed in [11] and used T1-weighted and FLAIR images from each
time-point to segment the brain into three different clusters and
obtain an initial WM mask, herein referred to as WM;jtiq- To auto-
matically identify the WM cluster from others, we used the WM
probability map described in Section 2.1.2, averaged it over each
cluster and selected the one with the highest WM probability.

Since the 2015 Longitudinal MS Lesion Segmentation Chal-
lenge provided no WM ground truths, we created our own using a
straightforward approach. Given any WM;pitiqa1» We simply merged
it with the lesions ground truth to get the whole WM region in one
single mask, herein referred to as WM, 0. Considering that each
time-point had two different lesions ground truth, we created two
WM masks for each time-point as well.

The actual WM estimation was conducted as follows. First, we
calculated the mean (upy) and standard deviation (o) of the region
defined by WM;y,;i; On the hyperintensity map image and the mean
(Mprop) of the region defined by WM;y;iq; on the WM probability
atlas. The idea was to expand WMj,;siq; by considering voxels that
are not part of the mask yet and analyzing 3 x 3 x3 neighborhoods

(b)
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centered around these voxels to determine their potential for being
included. The expansion itself occurred by incorporating voxels
that seemed as outliers; more precisely, voxels with mean neigh-
borhood values greater than gy, + 1 x oy in the hyperintensity map
and greater than jip,p, in the probability atlas. A pseudo-algorithm
for estimating the white matter mask is presented in Algorithm 1
and an example of the output of this estimation is shown in Fig. 4.

Algorithm 1. White matter mask estimation algorithm

Input: WMinitial, Hlmapv WMpmh
Output: WMegtim
i<—3
WMestim <— WMinitial
u1, Onr <— MeanAndSigma(WMestim, Hlnap)
Mprob <— Mean(WMestim, WMprob)
Etprob <— Mprob
th <— WHI +ix Ohy
for each voxel not in WMy, do
WMestim «<— ExpandWM(WMestim, Hlmap, WMprob, Et, Eprob)
end for

2.6. Pure white matter and gray matter clusters

To estimate the intensity profiles of white matter and gray
matter clusters without lesions, we did the following. For each
time-point segmentation, we automatically identified the white
and gray matter clusters by analyzing their mean intensities
on white and gray matter probabilistic atlases. The cluster with
highest white matter atlas mean intensity was taken as the
white matter cluster (WMj,isiq); the same rationale was used
for the gray matter cluster (GMi,jsiq)- Then, for each expert
annotation, we simply excluded every voxel that had any inter-
section with the lesion ground truth and these two clusters.
Formally, WMpure = WMinitial — (WMinitia N GTE ¢ {Expert1 Expert2)) and
GMpure = GMinitial — (GMinitial N GTE < {Expert1 Expert2} )- By doing so, we
were able to obtain so-called “pure” WM and GM clusters, which
were then used to calculate their intensity profiles and compare
them to lesion profiles in Section 3.1.

3. Results

In this section, we present the results regarding the brightness
intensity profile of MS lesions compared to gray matter and white
matter on FLAIR, intermediate and hyperintensity map images for
each patient.

For the sake of comparison, allimages were rescaled to the range
[0, 1] and the results in Section 3.1 are shown in percentage; that is,
how much brighter, percent-wise, the lesion profile was compared
to other brain tissues.
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(b)

Fig. 4. White matter estimation output. (a) Hyperintensity map, (b) WMinitiar, (€) WMground truen and (d) WMesim.

We also present the Dice, sensitivity, specificity and lesion inter-
section metrics regarding the white matter mask in Section 3.2 to
provide a quantitative analysis of the mask estimation.

It is important to note that each patient had a number of time-
points made available. For the sake of understandability and inter-
patient comparison, every result presented in Sections 3.1 and 3.2
represents the average of all time-points of a particular patient.

3.1. Brightness profile

Since the 2015 Longitudinal MS Lesion Segmentation Challenge
provided two ground truths for each time-point, we extracted the
intensity profiles for both annotations. We rescaled all images to
the [0, 1] interval, averaged the white matter, gray matter and
lesion profiles and also calculated the standard deviation for each
patient. The results are shown in Figs. 5 and 6 for experts 1 and 2,
respectively.

Each bar in Figs. 5 and 6 represents the mean lesion intensity
over the mean intensity of a given tissue (gray matter or white
matter) in a particular image type (FLAIR, intermediate and hyper-
intensity map). For instance, the FLAIR WM bar in Fig. 5(a) must
be interpreted as “the average MS lesion profile in FLAIR images
from Patient 1 is approximately 25% brighter than the average WM
tissue intensity for the same image type and patient”. This result
allows a direct comparison between tissues and images.

3.2. White matter mask comparison

We compared the white matter mask estimated in Section 2.5
with our WM ground truths using the Dice coefficient. We also
extracted the percentage of lesions (intersection) present in each
estimated mask to analyze the lesion load that was kept during the
estimation. Again, since there were two lesion ground truths for
each time-point, we extracted metrics for both experts. The results
are presented in Table 2 and shown in Figs. 8 and 9.

We also calculated the sensitivity and specificity of the esti-
mated masks. The results for both experts are shown in Table 3.

4. Discussion

The results in Figs. 5 and 6 indicate a significant difference in the
MS lesion intensity profile in the hyperintensity map compared to
FLAIR and the intermediate image described in Section 2.3. This
result is a significant outcome, because it provides quantitative
background to show the discriminative features of the HI map.

It is possible to note that the lesion intensity profile was more
similar to gray matter than to white matter. The difference in
intensity between MS lesions and these two tissues in FLAIR and
intermediate images was minimal compared with the HI map,

(c) (d)

which showed, in the worst case (Patient 1, Expert 2, GM), a 141%
brightness gap. In contrast, this same case presented an 18% and
32% IPD for FLAIR and intermediate images.

At the same time, the standard deviation in the HI map was far
higher than in FLAIR and intermediate images, which is an indica-
tion that the map has a rather spread out MS lesion intensity profile.
While this is a concern that must be addressed when using the map
to segment lesions, whether manually or automatically, the overall
difference in intensity between lesions and other brain tissues is
still significant and provides enough leverage to overcome, at least
partially, the wide standard deviation variation.

Moreover, a distinct drawback of the HI map is that it is highly
dependent on the gray level intensity in FLAIR. This fact poses two
problems that can be observed in Fig. 7. The first one is presented
in Fig. 7(a)-(c) and concerns the natural intensity variation within
the lesion profile. In this case, the lesion enclosed by the rectan-
gle was not as enhanced as the one enclosed by the elipse. As
observed in Fig. 7(a), the rectangle lesion did not present a pro-
file as hyperintense as the elipse one in FLAIR, so this difference
was propagated to the HI map. The other problem is shown in
Fig. 7(d)-(f). Areas enclosed by rectangles indicate regions that have
no MS lesions and yet are enhanced in the map. Again, this occurs
because these regions presented rather high-intensity profiles in
FLAIR and thus were enhanced in the map. Both these problems
interfere with lesion segmentation accuracy and indicate that the
HI map should not be used as a stand-alone feature in manual and
automatic segmentation techniques.

While there are some works in the literature [17,19,1] that
mention MS lesion intensity profiles and how they relate to other
tissues, none of them provide a quantitative analysis regarding
percentage, making it difficult to compare our results with theirs
objectively. The databases are also different. However, by analyzing
scatter plots in [17,19], it is possible to observe that lesion inten-
sity profiles present a significant overlap with other brain tissues.
Hence, the HI map can undoubtedly help distinguish lesions more
easily.

Regarding the white matter mask estimation, the results shown
in Tables 2 and 3 and in Figs. 8 and 9 indicate high DSCs and signifi-
cant intersection with lesions. It also points to very high sensitivity
and specificity metrics. A relevant observation to be made is that
the LI metric presented a consistent level of intersection regard-
less of lesion volumes, which is an indication of robustness of our
technique.

In Fig. 8, it is possible to observe that patient 4 presented
very different results on lesion intersection. The reason for this is
that the expert annotations for this patient had the lowest DSC
(0.612+0.0019) among all patients, as mentioned in [11]. In other
words, experts did not have a high agreement coefficient on lesion
segmentation for this particular case, which consequently made
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Fig. 5. Lesion intensity profile compared with white matter and gray matter tissues using ground truths from expert 1. Here, “Inter” is the intermediate image and “HI” is
the hyperintensity map. Each bar represents the mean lesion intensity over the mean intensity of a given tissue (white matter or gray matter) in a particular image type.

Table 2
Lesion intersection (LI) and Dice coefficients for the white matter mask estimation for both expert ground truths.
LI (%) LI (%) Dice Dice
Expert 1 Expert 2 Expert 1 Expert 2
(n+0) (n+o0) (n+0) (n+0)
Patient 1 78.56+6.70 77.65+8.30 0.9763 +0.0003 0.9764 +0.0007
Patient 2 89.60+1.59 88.20+1.71 0.9786 +0.0021 0.9775+0.0020
Patient 3 83.88+0.94 79.08 +2.51 0.9834 +0.0007 0.9829 +0.0005
Patient 4 76.83+1.20 56.95+4.03 0.9860+0.0012 0.9853+0.0013

Patient 5 73.73+£3.55 71.00+2.16 0.9828 +£0.0017 0.9826 +0.0017
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Fig. 6. Lesion intensity profile compared with white matter and gray matter tissues using ground truths from expert 2. Here, “Inter” is the intermediate image and “HI” is
the hyperintensity map. Each bar represents the mean lesion intensity over the mean intensity of a given tissue (white matter or gray matter) in a particular image type.

Table 3
Sensitivity (SS) and specificity (SP) values for the white matter mask estimation for both expert ground truths.
SS SS SP SP
Expert 1 Expert 2 Expert 1 Expert 2
(n+0) (n+o0) (n+o) (n+o0)
Patient 1 0.9931+0.0024 0.9920+0.0028 0.9786+0.0012 0.9793 +0.0008
Patient 2 0.9928 +0.0012 0.9915+0.0014 0.9823 +0.0023 0.9818 +0.0016
Patient 3 0.9983 + 0.0001 0.9968 + 0.0009 0.9816+0.0010 0.9818 +£0.0011
Patient 4 0.9990 + 0.0008 0.9975 £+ 0.0002 0.9818 +£0.0015 0.9818 +£0.0016
Patient 5 0.9974 +0.0002 0.9974 +0.0002 0.9822 +0.0020 0.9820+0.0020
Overall 0.9962 + 0.0028 0.9813 +0.0021 0.9951 +0.0030 0.9814+0.0017
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Fig. 7. Intensity problems caused by wide lesion intensity range (first row) and hyperintensities in regions other than lesions (second row).
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Fig. 8. Lesion intersection with the estimated white matter mask using ground truths from both experts.

our technique present very different intersection values for each
annotation.

Another point to be made about Fig. 8 is that patient 1 presented
the highest standard deviation of all. This results from the fact that
this patient’s lesion intensities faded across time-points, making
the enhancement less effective. This fading phenomenon can also
be observed in Figs. 5 and 6, since patient 1 had the highest standard
deviation on the lesion intensity profile in the HI map compared
with other patients.

As mentioned in Section 1, there are several works in the liter-
ature focused on automatic brain tissue segmentation [1,21-23].
Though a direct comparison is not possible due to different met-
rics being used and database access restrictions, the closest work
to ours regarding white matter estimation was [23]. Contrary to the
authors’ approach, our proposal only requires FLAIR images (from
which the HI maps are created) and WM probability atlases to fill
lesion holes left out during an automatic segmentation process. It
is important to note that our technique focuses only on the white
matter region at this point, while all three major brain tissues are
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Fig. 9. Dice coefficients of the estimated white matter mask compared to ground truths created using experts lesion annotations and automatic brain segmentation.

segmented in [23]. However, we believe that it is possible to extend
our work to also handle gray matter and cerebrospinal fluid tissues,
thus allowing a thorough comparison between techniques in the
future.

5. Conclusions

This work presented an automatic technique based on the works
of [16,15] to enhance hyperintensities in FLAIR images, making it
easier to distinguish multiple sclerosis lesions from other brain tis-
sues, namely gray matter and white matter. By defining a metric
called Intensity Profile Difference (IPD), we were able to analyze,
percent-wise, how much brighter the lesion profile was compared
with other tissues and image types on five patients from the 2015
Longitudinal Multiple Sclerosis Lesion Segmentation Challenge.

The hyperintensity map, created by the enhancement process,
provided a much more distinct lesion profile compared with FLAIR.
On average, lesions presented a mean intensity profile 444.57%
and 264.88% brighter than white matter and gray matter in the
HI map, respectively. In FLAIR, the same profile was only 25% and
19% brighter considering the same tissues. This result serves as an
essential aid for segmentation tasks on both manual and automatic
segmentation techniques.

The HI map has two significant drawbacks. The first one regards
the intensity variation within lesions, since the difference in inten-
sity from one lesion to another in FLAIR is propagated to the map.
The second drawback regards regions that have no lesions but also
appear hyperintense in FLAIR. These regions are also enhanced in
the map and lead to false positives. Therefore, the HI map should
not be used as a stand-alone feature in applications such as tissue
or lesion segmentation.

A byproduct of the HI map is an initial estimate of the white
matter mask for a given time-point. Automatically segmenting a
brain image with multiple sclerosis into three clusters (white mat-
ter, gray matter, and cerebral spinal fluid) will undoubtedly mix
lesions with other tissues. In this sense, we can simply obtain the
white matter cluster mask and fill regions that are not yet in the
mask but are above a certain threshold in the map to obtain a “full”
WM mask. The estimation of the white matter area is relevant to
narrow down the ROI when segmenting lesions and also help with
brain tissue segmentation and volume assessment.

We showed that lesions have an intensity profile that is brighter
than WM than it is to GM, so we believe that restricting the segmen-
tation area to a mask that excludes most gray matter region might
increase lesion segmentation accuracy. However, the two problems

mentioned before about the HI map also affected the white matter
mask estimation. Part of the lesions was left out, as evidenced by
the LI metric, and some regions not related to white matter were
included in the estimation.

In conclusion, the results of this study showed that the hyper-
intensity map provides a much more distinct profile for multiple
sclerosis lesions compared with white matter and gray matter
tissues in FLAIR and such map can also be used to estimate an
initial white matter mask. In future works, we aim to address the
problems with the enhancement algorithm mentioned earlier and
efficiently use it to increase both tissue and lesion segmentation
accuracies in automatic techniques. We also plan on extending the
WM estimation technique to the other two primary brain tissues
(WM and cerebrospinal fluid).
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