
Optimization models and solution methods for
inventory routing problems

Aldair Alberto Álvarez Díaz

São Carlos
March, 2020





Optimization models and solution methods for
inventory routing problems 1

Aldair Alberto Álvarez Díaz

Supervisors: Prof. Dr. Pedro Munari
Prof. Dr. Reinaldo Morabito

Doctoral dissertation submitted in fulfillment of the
requirements for the degree of Doctor in Production
Engineering at the Federal University of São Carlos.

São Carlos
March, 2020

1This research was supported by the São Paulo Research Foundation (FAPESP), grants 2017/06664-9 and
2017/13739-5; the National Council for Scientific and Technological Development (CNPq), grant 153046/2016-3;
and the Coordination for the Improvement of Higher Education Personnel (CAPES)





5





Acknowledgments

The past four years have been an exciting journey that I have not made by myself. I have
always had the support of an all-star team to which I am grateful for helping me reach this
stage. These pages are devoted to acknowledge their contributions and to express my sincere
gratitude to them.

First of all, I thank my supervisors, Pedro Munari and Reinaldo Morabito, for being the leaders
of this team, for mentoring me throughout these years and always making space for me in their
busy schedules. The time and effort they committed to me and my research certainly made
a huge difference in the outcomes of my PhD. Professor Pedro, I will always be grateful for
being more than a supervisor to me since the beginning of this academic partnership. Your
guidance and advice, as well as your concern about my well-being, made my life easier all this
time in Brazil. Your encouragement made me grow as a researcher and as a person, expanding
my limits. Professor Reinaldo, your experience and insights have enriched the way I see the
research. I feel honored for having such a bright, professional and, above all, kind person as one
of my supervisors. I thank you both for allowing me to do (more than) research together.

I am also thankful to Jean-François Cordeau and Raf Jans for their supervision during my
stay in Montreal. My time there was a unique experience, full of learning and enrichment in
both scientific and personal terms. I could not have had such an amazing experience without
your professionalism and competence to guide my research, as a complement to the incredible
atmosphere that the city provides.

My scientific achievements would not have been possible without a proper working environment
in every single stage of my PhD. I therefore thank my friends and colleagues at the GPO-
UFSCar and CIRRELT for supporting me and for the many good times we shared. I also thank
the secretaries of the PPGEP-UFSCar and the university staff for their behind-the-scenes work
that allowed me to successfully complete this journey.

No acknowledgment of mine would be complete without thanking my friends, for always having
my back, sticking to me all the time, encouraging me to keep going, and for being my cheerleaders
even from a distance. In particular, I thank Yeyo and Luchy, my dearest lifelong friends. I am
also grateful to Karen Montes, whose company, support and patience for so many years were an
invaluable contribution to this thesis and a permanent gift for my personal development.



Por último, pero no menos importante, agradezco a mi familia por el amor y apoyo incodicionales
que siempre me han brindado. A mis padres, Delcy y Julio, a quienes debo todo lo que soy y
tengo hoy en día, les agradezco por incentivarme a seguir adelante y perseguir mis metas. A mis
amados hermanos, Karen e Julio Jr., por quienes me esfuerzo para ser el mejor ejemplo posible,
les agradezco su apoyo y les dedico especialmente este trabajo. A ustedes, mi familia, siempre
los llevo presentes a pesar de la distancia, pues son mi mayor regalo y motivo para perseverar.

Finally, I am grateful for the financial support of the São Paulo Research Foundation (FAPESP),
grants 2017/06664-9 and 2017/13739-5; the National Council for Scientific and Technological De-
velopment (CNPq), grant 153046/2016-3; and the Coordination for the Improvement of Higher
Education Personnel (CAPES).

This thesis shows not only the scientific results of my research but also how teamwork helped
me to achieve my goals successfully. Throughout these years I have gained a lot, completely
changing the course of my life. This has been, without a doubt, the most rewarding journey of
my life :)

Aldair



Abstract

Inventory management and distribution planning are essential activities for an efficient perfor-
mance in the supply chain, especially for companies operating under the vendor-managed in-
ventory business model. In this model, suppliers are allowed to manage the inventory levels and
purchasing orders of their customers with the aim of reducing logistics and improving the supply
chain performance. When inventory management and distribution planning are addressed in an
integrated way in the vendor-managed inventory context, a challenging optimization problem
arises, the inventory routing problem (IRP). In the IRP, a supplier is responsible for simulta-
neously determining the replenishment plan for its customers throughout a planning horizon as
well as the vehicle routing and scheduling plan in each period such that a given performance
measure is optimized.

The integrated optimization of inventory management and distribution planning activities
can provide significant competitive advantages for companies. However, despite its practical ap-
peal and benefits, the IRP has received increasing attention only in the last years. Consequently,
there is still a considerable lack of research regarding optimization models and specific solution
methods for relevant practical variants of this problem. Thus, the objective of this thesis is to
develop comprehensive mathematical models and effective solution methods for several IRPs.
Relevant variants are considered to make the addressed problems as realistic as possible.

Firstly, we describe the basic variant of the IRP and present a mathematical formulation for
this problem. We then present two metaheuristic algorithms based on iterated local search and
simulated annealing to solve this variant. Two different objective functions are considered. The
results of extensive computational experiments using problem instances from the literature show
that the presented metaheuristic algorithms effectively handle both objective functions, provid-
ing high-quality solutions within relatively short running times. In addition, the metaheuristics
were able to find new best solutions for some of the benchmark instances.

Then we shift to a practical variant of the IRP considering product perishability. This fea-
ture has a substantial relevance in the supply chain context given that in several industries,
the raw materials, as well as intermediate and final products, are often perishable. Moreover,
perishability may appear in more than one activity throughout the supply chain. We study
a variant in which the product is assumed to have a fixed shelf-life with age-dependent rev-
enues and inventory holding costs. We first introduce four different mathematical formulations
and branch-and-cut algorithms to solve them. We also propose a hybrid heuristic based on
the combination of an iterated local search metaheuristic and two mathematical programming



components. The results of computational experiments show the different advantages of the in-
troduced formulations and the effectiveness of our hybrid method when dealing with this variant
as well as the basic variant of the problem.

Finally, we focus on a stochastic variant of the IRP. Uncertainty plays a crucial role in supply
chain management given that critical input data that are required for effective planning often
are not known in advance. We address the basic variant of the IRP under the consideration that
both the product supply and the customer demands are uncertain. We introduce a two-stage
stochastic programming formulation and a heuristic solution method for this problem. From
the results of extensive computational experiments, we show the response mechanisms of the
optimal solutions under different uncertainty levels and cost configurations. We also show that
the heuristic method effectively solves instances with a large number of scenarios.

By investigating different practical constraints for the IRP and providing tailored effective
solution methods for the studied variants, this thesis addresses problems arising in several logis-
tics contexts and shows the adaptability of the basic variant of the IRP and how it can be used as
a basis to study richer practical IRPs. It brings contributions for the supply chain optimization
literature and for the development of tools for supporting decision-making in practice.

Keywords: inventory routing; branch-and-cut; metaheuristics; hybrid methods; product per-
ishability; stochastic programming.



Resumo

A gestão de estoques e o planejamento da distribuição são atividades essenciais para um de-
sempenho eficiente na cadeia de suprimentos, especialmente para empresas que operam sob o
modelo de estoque gerenciado pelo fornecedor. Nesse modelo, os fornecedores podem gerenciar
os níveis de estoque e as ordens de compra de seus próprios clientes, com o objetivo de reduzir
custos logísticos e melhorar o desempenho da cadeia de suprimentos. Quando a gestão de esto-
ques e o planejamento da distribuição são tratados de forma integrada aparece um problema de
otimização desafiador, conhecido como o problema de roteamento de estoques (PRE). No PRE,
um fornecedor deve determinar simultaneamente o plano de reabastecimento para seus clientes
em um horizonte de planejamento e a programação das rotas de entrega em cada período de
forma que uma determinada medida de desempenho seja otimizada.

A otimização integrada das atividades da gestão de estoques e do planejamento da dis-
tribuição pode fornecer vantagens competitivas para as empresas. No entanto, apesar de seu
apelo prático e dos benefícios substanciais que essa otimização pode fornecer, o PRE recebeu
uma atenção crescente apenas nos últimos anos. Portanto, ainda existe uma considerável falta
de pesquisa no que tange a métodos de solução específicos para variantes práticas relevantes
desse problema. Assim, o objetivo dessa tese é desenvolver modelos matemáticos abrangentes
e métodos de solução eficazes para diversos PREs. Variantes práticas são consideradas para
tornar os problemas abordados o mais realista possível.

Em primeiro lugar, descreve-se a variante básica do PRE e apresenta-se uma formulação
matemática para esse problema. Dois algoritmos metaheurísticos, baseados em busca local iter-
ada e simulated annealing, são apresentados para resolver a variante básica do PRE, considerando
duas funções objetivo diferentes. Os resultados de experimentos computacionais usando instân-
cias da literatura mostram que os dois algoritmos metaheurísticos podem fornecer soluções de
alta qualidade em tempos relativamente curtos para ambas as funções objetivo. Além disso, as
metaheurísticas conseguiram encontrar novas melhores soluções para algumas dessas instâncias.

Em seguida, estuda-se uma variante prática do PRE considerando a perecibilidade do pro-
duto. A perecibilidade tem uma relevância significativa no contexto da cadeia de suprimentos
dado que, em muitas indústrias, as matérias-primas bem como os produtos intermediários e
finais são perecíveis. Além disso, a perecibilidade pode aparecer em mais de uma atividade em
toda a cadeia de suprimentos. Na variante estudada, supõe-se que o produto tem uma vida
útil pré-definida além de receitas e custos de estocagem dependentes da idade do produto. Para
essa variante, apresenta-se quatro formulações matemáticas e algoritmos do tipo branch-and-cut



para resolvê-las. Além disso, apresenta-se uma heurística híbrida baseada na combinação de
uma metaheurística de busca local iterada e dois componentes de programação matemática. Os
resultados de experimentos computacionais mostram as diferentes vantagens das formulações
apresentadas e a capacidade do método híbrido para lidar com essa variante, assim como com a
variante básica do problema.

Finalmente, uma variante estocástica do PRE é abordada. As incertezas desempenham um
papel crucial na gestão da cadeia de suprimentos, dado que informações críticas necessárias para
um planejamento eficaz geralmente não são conhecidas com antecedência. Assim, aborda-se a
variante básica do PRE sob a consideração de que o suprimento de produto do fornecedor e as
demandas dos clientes são incertas. Uma formulação de programação estocástica de dois estágios
bem como um método de solução heurístico para esse problema são apresentados. Baseados nos
resultados dos experimentos computacionais desenvolvidos, mostra-se os mecanismos de resposta
das soluções ótimas sob diferentes níveis de incerteza e configurações de custo. Os resultados
também mostram que o método heurístico é capaz de resolver instâncias com um grande número
de cenários.

Dadas as diferentes variantes práticas estudadas e os métodos de solução especificamente
desenvolvidos para essas variantes, essa tese aborda problemas que surgem em vários contextos
logísticos práticos e mostra a adaptabilidade da variante básica do PRE e como ela pode ser
usada como base para estudar PREs mais ricos. Ela traz contribuições para a literatura científica
de otimização da cadeia de suprimentos, assim como para o desenvolvimento de ferramentas para
apoiar a tomada de decisões na prática.

Palavras-chave: roteamento de estoques; branch-and-cut; metaheurísticas; métodos híbridos;
perecibilidade do produto; programação estocástica.



Resumen

La gestión de inventarios y la planeación de la distribución son actividades esenciales para un
desempeño eficiente en la cadena de suministro, especialmente para empresas que operan bajo el
modelo de inventario administrado por el proveedor. Bajo este modelo de negocios, los provee-
dores pueden adminisitrar los niveles de inventario y la emisión de órdenes de compra de sus
propios clientes, con el objetivo de reducir costos logísticos y mejorar el desempeño de la cadena
de suministro. En este contexto, cuando la gestión de inventarios y la planeación de la distribu-
ción son tratadas de forma integrada aparece un problema de optimización desafiante, conocido
como el problema de ruteo de inventarios (PRI). En el PRI, un proveedor debe determinar de
forma simultánea el plan de reabastecimiento para sus clientes en un horizonte de planeación
definido y la programación de las rutas de entrega en cada periodo, de modo que una medida
de desempeño determinada sea optimizada.

La optimización integrada de las atividades de la gestión de inventarios y planeación de
la distribución puede brindar ventajas competitivas para las empresas. Sin embargo, a pesar
de su atractivo práctico y de los beneficios sustanciales que esa optimización puede proveer, el
PRI recibió una atención creciente sólo en los últimos años. Así, aún existen algunas brechas en
relación a la investigación de métodos de solución específicos para variantes prácticas y relevantes
de ese problema. Por lo tanto, el objetivo de esta tesis es desarrollar modelos matemáticos
exhaustivos y métodos de solución eficaces para diversos PRIs, considerando variantes prácticas
para hacer los problemas abordados lo más realista posible.

En primer lugar, la variante básica del PRI es descrita y es presentada una formulación
matemática para esa variante. Dos algoritmos metaheurísticos, basados en búsqueda local iter-
ada y recocido simulado, son presentados para resolver la variante básica del PRI considerando
dos funciones objetivo diferentes. Los resultados de experimentos computacionales usando in-
stancias de la literatura muestran que los dos algoritmos metaheurísticos pueden encontrar
soluciones de alta calidad en tiempos relativamente cortos para ambas funciones objetivo. Adi-
cionalmente, las metaheurísticas propuestas encontraron nuevas mejores soluciones para algunas
de las instancias utilizadas.

Luego, una variante práctica del PRI considerando un producto perecedero es estudiada. El
estudio del perecimiento de los productos tiene una relevancia significativa en el contexto de la
cadena de suministro dado que, en muchas industrias, las materias primas así como los produ-
tos intermedios y finales, pueden ser perecederos. Además, el perecimiento de productos puede
aparecer en más de un eslabón de la cadena de suministro. En la variante estudiada, se asume



que el producto tiene una vida útil predefinida así como un precio de venta y costo de inventario
que dependen de su edad. Para esta variante, son presentadas cuatro formulaciones matemáticas
y algoritmos del tipo branch-and-cut para resolverlas. Además, una heurística híbrida basada en
la combinación de una metaheurística de búsqueda local iterada y dos componentes de progra-
mación matemática es presentada. Los resultados de los experimentos computacionales muestran
las diferentes ventajas de las formulaciones y la capacidad del método híbrido para lidiar con
esta variante, así como con la variante básica del problema.

Finalmente, una variante estocástica del PRI es abordada. Las incertidumbres desempeñan
un papel crucial en la gestión de la cadena de suministro dado que informaciones críticas, nece-
sarias para una planeación eficaz de sus actividades, pueden no ser conocidas con antecedencia.
Así, se estudia la variante básica del PRI bajo la consideración de que el suministro del producto
del proveedor y las demandas de los clientes son inciertas. Para este problema, una formulación
de programación estocástica de dos etapas y un método de solución heurístico para ese problema
son presentados. Con base en los resultados de experimentos computacionales, se muestran los
mecanismos de respuesta de las soluciones óptimas bajo diferentes niveles de incertidumbre y
configuraciones de costo. También, los resultados muestran que el método heurístico es capaz
de resolver instancias considerando un gran número de escenarios.

Dadas las diferentes variantes prácticas estudiadas y los métodos de solución específicamente
desarrollados para cada variante, esta tesis aborda problemas que surgen en varios contextos
logísticos prácticos y muestra la adaptabilidad de la variante básica del PRI y como ella puede
ser usada como base para estudiar PRIs más ricos. Esta tesis contribuye para el enriquecimiento
de la literatura en el área de optimización de la cadena de suministro así como para el desarrollo
de herramientas para apoyar en la toma de decisiones en la práctica.

Palabras clave: ruteo de inventarios; branch-and-cut; metaheurísticas; métodos híbridos; pro-
ducto perecedero; programación estocástica.
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Introduction



22 Introduction

1.1 Context

Inventory management and distribution planning are two activities that are strongly related
in the supply chain management (see Figure 1.1). In this context, an effective distribution
plan should take into account product availability at the different facilities of the distribution
network. On the other hand, inventory management decisions have to adequately synchronize
with the distribution plan in order to ensure feasibility and efficiency in the latter operation. The
relation between these activities is particularly important in the context of the vendor-managed
inventory business model, in which suppliers are allowed to manage the inventory levels and
purchasing orders of their customers with the aim of reducing logistics costs and improving the
supply chain performance. In addition, suppliers must ensure a minimum service level (e.g., no
stockouts) to their customers. The inventory routing problem (IRP) models this situation in an
integrated manner by combining inventory management and distribution planning decisions into
a single problem (see Figure 1.2). In the IRP, a supplier hast to simultaneously determine the
replenishment plan for its customers as well as the periodic routing schedule, such that a given
objective (e.g., the sum of routing and inventory holding costs) is optimized while satisfying the
demand of its customers during a given planning horizon. This problem can be used as a basis
for modeling several practical applications, ranging from offshore transportation in the crude oil
and gas industries (Christiansen et al., 2007) to road-based distribution in the bulk gas industry
(Singh et al., 2015).

Supply chain
activities

Inventory
management

Production
planning

Supplier
selection

Facility
location

Distribution
planning

Figure 1.1: Main supply chain planning operations

Managing several supply chain activities through a coordinated approach can help compa-
nies to compete more efficiently, streamline their operations, and identify key links in the chain.
In addition, the integrated operation of these activities can provide long-term insights for the
management of the supply chain (Slack et al., 2010). Furthermore, given the increasing compet-
itiveness of today’s business environment, companies have to use their resources as efficiently as
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Inventory
routing problem

Inventory
management

Distribution
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Figure 1.2: Inventory routing problem activities

possible and improve their service levels, while reducing order fulfillment times and inventory
levels (Díaz-Madroñero et al., 2015). However, the integrated planning of these operations often
poses a major challenge for decision makers given that complex optimization problems arise,
such as the IRP. Solving these problems requires state-of-the-art tools and comprehensive anal-
yses, therefore it is essential that decision-making in this context be supported by quantitative
approaches, particularly those provided by operations research.

Given the practical appeal of the IRP and the significant benefits that it can bring in real-life
applications, as well as its challenging nature, the IRP has attracted the attention of practition-
ers and researchers over the past decades. Since the pioneering paper of Bell et al. (1983), who
solved an integrated inventory management and vehicle routing problem for the distribution of
industrial gases, several IRP variants and solution methods for these problems have appeared
in the literature. However, since the attention to this type of problems has increased mostly
in recent years, there is still room for the development of specific solution methods to address
IRP variants with practical relevance. Schmid et al. (2013) and Díaz-Madroñero et al. (2015)
pointed out that there exists a considerable lack of research regarding mathematical models and
solution approaches for problems integrating activities such as inventory management, produc-
tion planning, vehicle routing, among others. Therefore, in this thesis we investigate the IRP
focusing on the development of mathematical models and solution methods for the basic variant
of the IRP as well as relevant practical variants of the problem.

The research developed in this thesis is structured within the context of operations research,
with active use of mathematical modeling and computer programming techniques. According to
Morabito and Pureza (2012) and Bertrand and Fransoo (2002), the development of this thesis
can be characterized in the framework of normative axiomatic quantitative research, since it
aims at developing methods and strategies to improve upon the results for a problem previously
stated in the literature.

1.2 Organization and contributions

In this section we present the organization of this thesis, briefly describing the contents of each
chapter and highlighting their main contributions.

In Chapter 2, we describe the basic variant of the IRP and present a mathematical formu-
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lation for this problem. The formulation is based on decision variables that describe the flow of
the vehicles on each arc of the distribution network used to represent the problem. We present
this formulation using an exponentially large number of subtour elimination constraints, as well
as in a compact form. We also discuss the different advantages and disadvantages of these forms
for the formulation. We describe this variant of the IRP in a separate chapter since it is used
as a basis for the variants explored in the subsequent chapters.

Chapter 3 presents two metaheuristic algorithms based on iterated local search and simulated
annealing to solve the basic variant of the IRP. We address this variant under two different
objective functions. The first is the standard minimization of the total transportation and
inventory holding costs, while the second is the ratio between total transportation costs and
total quantity delivered to the customers, called logistic ratio. This latter objective function can
be more realistic in some logistics settings, even though it represents an additional challenge to
exact methods given its nonlinear nature. The results of extensive computational experiments
using instances from the literature show that the two presented metaheuristic algorithms can
effectively handle both objective functions, providing high-quality solutions within relatively
short running times. In addition, the metaheuristics were able to find new best solutions for
some of the benchmark instances.

In Chapter 4 we study an IRP in which goods are perishable. In this problem, the product is
assumed to have a fixed shelf-life during which it is usable and after which it must be discarded.
Age-dependent revenues and inventory holding costs are also considered. We introduce four
mathematical formulations for the problem, two with a vehicle index and two without it, and
present branch-and-cut algorithms to solve them. In addition, we propose a hybrid heuristic
based on the combination of an iterated local search metaheuristic and two mathematical pro-
gramming components. We analyze the results of extensive computational experiments using
problem instances from the literature as well as new larger instances. The results indicate the
different advantages of the introduced formulations and show that the hybrid method is able
to provide high-quality solutions in relatively short running times for small- and medium-sized
instances, while good quality solutions are found within reasonable running times for larger
instances. We also adapt the proposed hybrid heuristic to solve the basic variant of the IRP.
The results using standard instances show that our heuristic is also able to find good quality
solutions for this problem when compared to the state-of-the-art methods from the literature.

Chapter 5 focuses on a stochastic variant of the IRP under the consideration that both the
product supply and the customer demands are uncertain. We propose a two-stage stochastic
programming formulation where routing decisions are made in the first stage, while delivery
quantities, inventory levels and specific recourse actions are made in the second stage. This
formulation can be adapted to consider different recourse mechanisms, such as lost sales, back-
logging and an additional supply source in a capacity reservation contract setting. The objective
is to minimize the first-stage cost plus the total expected inventory and recourse cost incurred in
the second stage. We also present a heuristic solution method based on the progressive hedging
algorithm. We provide managerial insights resulting from extensive computational experiments
using instances generated from a benchmark test set of the literature. In particular, we study the
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response mechanisms of the optimal solutions under different uncertainty levels of the random
variables and different cost configurations. The results with the heuristic method show that
it provides high-quality solutions within reasonable running times for instances with a large
number of scenarios.

Finally, in Chapter 6 we present an overall final discussion and concluding remarks together
with perspectives for future research arising from the developments presented in this thesis.





Chapter 2

The inventory routing problem

In this chapter, we describe the basic variant of the IRP and present a mathematical formulation
for the problem. The formulation uses variables describing the flow of the vehicles on the arcs
of the graph used to represent the problem. We present this formulation in two different forms,
namely: (i) using an exponentially large number of subtour elimination constraints, and (ii)
in a compact form using MTZ-like subtour elimination constraints. This variant of the IRP is
described in a separate chapter given that it is used as a basis for all the variants addressed in
this thesis.
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2.1 The basic variant of the inventory routing problem

In the basic variant of the IRP, a single supplier is responsible for delivering a single product to
a set of customers over a finite planning horizon. Under the assumption that the travel costs are
symmetric, the problem can be defined on a complete undirected graph G = (N , E) where N =
{0, 1, . . . , N} is the vertex set and E = {(i, j): i, j ∈ N , i < j} is the edge set. Vertex 0 represents
the supplier depot which has a homogeneous fleet of K vehicles of capacity Q each, denoted by
set K = {1, . . . ,K}. The remaining vertices of set N , denoted by C = {1, . . . , N}, represent the
customers. Therefore, the vertex set N represents all the facilities of the distribution network.

The planning horizon is denoted by a set of time periods T = {1, . . . , T}. A travel cost cij
is associated with every edge (i, j) ∈ E and inventory holding costs hti are charged at both the
supplier 0 and the customers i ∈ C for each unit of product at the end of every time period. Each
customer i ∈ C has a limited storage capacity Ci and each facility i ∈ N has an initial inventory
I0
i . Each customer i ∈ C has a known demand dti for the product in every time period t ∈ T ,
which is the minimum amount of product that the supplier must guarantee to be available at
the customer at that time period. In addition, the supplier produces or receives a quantity rt

of the product in each time period t ∈ T . Table 2.1 summarizes all the notation previously
introduced.

Sets:
C Set of customers
N Set of vertices/facilities
E Set of edges
T Set of time periods
K Set of vehicles

Parameters:
hti Inventory holding cost at facility i at the end of time period t
cij Transportation cost between facilities i and j
dti Demand of customer i in time period t
rt Amount made available at the supplier in time period t
Ci Storage capacity of customer i
I0
i Initial inventory at facility i
Q Capacity of each vehicle

Table 2.1: Sets and parameters of the problem

The basic variant of the IRP consists of determining the time periods in which the customers
will be visited; the quantity of product that will be delivered in every visit; and the delivery
routes to perform those visits. The objective is to minimize the total cost, given by the sum
of inventory holding and routing costs. The holding costs are charged on the inventories at the
end of every time period at both the supplier and customers. It is assumed that the supplier
holding capacity is unbounded. In addition, according to the usual practice in the literature, it
is also assumed that the customers who receive a delivery in a given time period can use this
to fulfill the demand in the same time period. Also, the amount made available in each time
period at the supplier can be used for deliveries in the same time period. Figure 2.2 shows a
graphical representation of the order of these events.
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Amount made Deliveries to
available (rt) the customers

N
Inventory level at the end Inventory level at the end
of time period t− 1 (It−1

0 ) of time period t (It0)

Supplier: H

Period t− 1 Period t Period t+ 1

Delivery Customer
quantity demand (dti)

N
Inventory level at the end Inventory level at the end
of time period t− 1 (It−1

i ) of time period t (Iti )

Customer i: H

Period t− 1 Period t Period t+ 1

Table 2.2: Timing of the operations in the IRP

The IRP can be used to model many different applications in practice, such as bulk gas
distribution (Singh et al., 2015); oil and gas distribution in maritime applications (Song and
Furman, 2013); fuel delivery to filling stations (Popović et al., 2012); vending machines replen-
ishment (Huang and Lin, 2010); and ATM cash replenishment (Larrain et al., 2017). Given
these multiple applications, no standard variant of the problem has be defined. Then, since
the variant just described corresponds to a simplified case that does not include any specific
practical constraint neither any restricting assumption, we call it the ‘basic variant’ of the IRP
(Coelho et al., 2014b).

2.2 An arc-based formulation for the inventory routing problem

To model this variant of the IRP using arc variables, as the ones presented by Archetti et al.
(2007) and Coelho and Laporte (2013b), consider the following notation. Let U ti = min{Q,Ci}
be an upper bound on the amount that can be delivered to customer i in time period t. Finally,
consider the following decision variables:

xktij ∈ {0, 1, 2} : number of times vehicle k ∈ K traverses edge (i, j) ∈ E in time period t ∈ T ;

ykti ∈ {0, 1} : 1 if facility i ∈ N is visited by vehicle k ∈ K in period t ∈ T , 0 otherwise;

Iti ≥ 0 : inventory level at facility i ∈ N at the end of time period t ∈ T ;

qkti ≥ 0 : quantity delivered to customer i ∈ C by vehicle k ∈ K in time period t ∈ T .

Notice that the routes start from the supplier facility and thus the variable ykt0 represents
whether or not the vehicle k ∈ K is used in time period t ∈ T . Given these variables, we first
present the arc-based formulation using an exponentially large number of subtour elimination
constraints (SECs), as follows:
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(OF1) min
∑

(i,j)∈E

∑
k∈K

∑
t∈T

cijx
kt
ij +

∑
i∈N

∑
t∈T

htiI
t
i (2.1)

s.t. It0 = It−1
0 + rt −

∑
i∈C

∑
k∈K

qkti t ∈ T , (2.2)

Iti = It−1
i +

∑
k∈K

qkti − dti i ∈ C, t ∈ T , (2.3)

It−1
i +

∑
k∈K

qkti ≤ Ci i ∈ C, t ∈ T , (2.4)

qkti ≤ U ti ykti i ∈ C, k ∈ K, t ∈ T , (2.5)∑
i∈C

qkti ≤ Qykt0 k ∈ K, t ∈ T , (2.6)

∑
j∈N :j<i

xktji +
∑

j∈N :i<j
xktij = 2ykti i ∈ N , k ∈ K, t ∈ T , (2.7)

∑
i∈S

∑
j∈S:j>i

xktij ≤
∑
i∈S

ykti − ykt` ∀S ⊆ C, |S|> 2, k ∈ K, t ∈ T , ` ∈ S, (2.8)

∑
k∈K

ykti ≤ 1 i ∈ C, t ∈ T , (2.9)

Iti ≥ 0 i ∈ N , t ∈ T , (2.10)

qkti ≥ 0 i ∈ C, k ∈ K, t ∈ T , (2.11)

ykti ∈ {0, 1} i ∈ N , k ∈ K, t ∈ T , (2.12)

xktij ∈ {0, 1} (i, j) ∈ E : i 6= 0, k ∈ K, t ∈ T , (2.13)

xktij ∈ {0, 1, 2} (i, j) ∈ E : i = 0, k ∈ K, t ∈ T . (2.14)

The objective function (2.1), which we will refer to as OF1, consists of minimizing the total
cost, given by the sum of transportation and inventory holding costs. Constraints (2.2) and
(2.3) define the inventory balance at the supplier and at the customers, respectively. Constraints
(2.4) impose that the inventory level after delivery at the customer facilities cannot exceed their
respective storage capacity. Constraints (2.5) permit a vehicle to perform a delivery to a specific
customer only if this customer is visited by the vehicle. Constraints (2.6) guarantee that the
capacity of each vehicle is respected. Constraints (2.7) ensure the vehicle flow conservation.
Constraints (2.8) are SECs, defined for each possible subset of customers. Constraints (2.9)
define that each customer can be visited at most once in each time period. Finally, the domain
of the decision variables is defined in constraints (2.10)-(2.14). Notice that when i 6= 0 and
j > i, xktij can only take the values 0 or 1; if i = 0, then xktij can also be equal to 2, indicating
that vehicle k makes a round trip between the depot and customer j in time period t.

This type of formulation, containing an exponentially large number of SECs, typically pro-
vides stronger bounds than their respective compact counterparts (Öncan et al., 2009). How-
ever, they usually require specialized separation procedures implemented within branch-and-cut
schemes, as we will show in Chapters 4 and 5. On the other hand, compact formulations have the
advantage of being easily implementable using general-purpose optimization softwares such as
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CPLEX (IBM ILOG CPLEX, 2009) or Gurobi (Gurobi Optimization, Inc., 2015). Therefore, we
also present a compact version of the arc-based formulation using MTZ-like SECs (Miller et al.,
1960). To formulate the problem using a compact formulation, consider the following additional
notation. Let A = {(i, j): i, j ∈ N , i 6= j} be the arc set. Consider also the continuous variable
ukti that accumulates the number of customers visited by the route of vehicle k ∈ K in period
t ∈ T after the visit to facility i ∈ N . This variable is used in the SECs of the formulation.
Also, now xktij is a binary variable indicating whether or not arc (i, j) ∈ A is traversed by vehicle
k ∈ K in time period t ∈ T . It is worth mentioning that in this formulation we use the arc set
A instead of the edge set E given the cumulative nature of variables u. Given this notation, the
compact version of the arc-based formulation is presented below:

min
∑

(i,j)∈A

∑
k∈K

∑
t∈T

cijx
kt
ij +

∑
i∈N

∑
t∈T

htiI
t
i (2.15)

s.t. (2.2)-(2.6), (2.9)-(2.12)∑
j∈N :j 6=i

xktij = ykti i ∈ N , k ∈ K, t ∈ T , (2.16)

∑
j∈N :j 6=i

xktji = ykti i ∈ N , k ∈ K, t ∈ T , (2.17)

uktj ≥ ukti + 1−N(1− xktij ) (i, j) ∈ A: j 6= 0, k ∈ K, t ∈ T , (2.18)

ukti ≥ 0 i ∈ N , k ∈ K, t ∈ T , (2.19)

xktij ∈ {0, 1} (i, j) ∈ A, k ∈ K, t ∈ T . (2.20)

The objective function (2.15) (equivalent to OF1) consists of minimizing the sum of trans-
portation and inventory holding costs. Constraints (2.16) and (2.17) ensure the vehicle flow
conservation. Constraints (2.18) define that variables u accumulate at least the number of fa-
cilities visited for each vehicle in each time period. These constraints eliminate subtours not
containing the supplier. Finally, the domain of the decision variables is defined in constraints
(2.19)-(2.20).

Notice that under the assumption of identical vehicles in terms of capacity as well as travel
times and costs, the IRP can also be modeled using a formulation without a vehicle index. For
formulation (2.1)-(2.14), capacity cuts in the form shown in (2.21) would need to be included as
SECs and capacity constraints.

Q
∑
i∈S

∑
j∈S:i<j

xtij ≤ Q
∑
i∈S

yti −
∑
i∈S

qti ∀S ⊆ C, |S|≥ 2, t ∈ T . (2.21)

This formulation has the advantage of having fewer integer variables when compared to the
formulation with a vehicle index. However, it cannot be used for cases with heterogeneous fleet,
which makes it less extensible. Also notice that all the mathematical formulations presented
in this section can be reformulated without using visit decision variables (y). Nevertheless,
this could negatively affect the performance of the algorithms used to solve them because these
variables are useful in the branching process. Branching on the visit variables y (instead of on



32 The inventory routing problem

the vehicle flow variables x) implies a focus on determining in which periods each customer must
be visited (instead of which arcs must be used). Such a branching strategy can be very effective
as this can significantly improve the lower bounds in many nodes of the branch-and-cut tree
(Desaulniers et al., 2016).

In addition, it is worth mentioning that the IRP can also be represented using column
generation-based formulations. Although this type of formulation requires more sophisticated
solution techniques than their network flow-based counterparts, they usually provide consider-
ably tighter bounds, which yields promising results when used for IRPs (Engineer et al., 2012;
Desaulniers et al., 2016), similar to those observed for vehicle routing problems (Desaulniers
et al., 2008; Munari and Gondzio, 2013; Pecin et al., 2014; Alvarez and Munari, 2017). Thus,
this type of formulation can be used to devise efficient branch-and-price or column generation-
based solution methods.

Notice also that alternatively to the objective function defined in (2.1) (also in (2.15)),
different objective functions can be used in the IRP context. For example, omitting the inventory
holding costs, as in some cases in the maritime industry (only transportation cost and the
loading/unloading costs, which include port operations, duties, etc., are considered) (Al-Khayyal
and Hwang, 2007; Engineer et al., 2012; Stanzani et al., 2018) or in the bulk gas industry
(only transportation cost) (Campbell and Savelsbergh, 2004; Savelsbergh and Song, 2008). In
addition, an alternative objective function has been addressed recently in the literature, based
on the logistic ratio (Benoist et al., 2011; Singh et al., 2015; Archetti et al., 2017b, 2019). This
criterion consists of minimizing the average cost to distribute one unit of product (OF2), as
follows:

(OF2) min

∑
(i,j)∈E

∑
k∈K

∑
t∈T

cijx
kt
ij∑

i∈C

∑
k∈K

∑
t∈T

qkti
. (2.22)

While more realistic in some logistics settings, this objective function represents an additional
challenge to exact methods given that it is a nonlinear function.

Finally, it is worth highlighting that in the formulations previously presented, the quantities
delivered follow the maximum-level replenishment policy. In this policy, the delivery quantities
are flexible and bounded only by the actual capacity of the customer and the capacity of the
vehicle. However, different replenishment policies can be used, e.g., the order-up-to level which
defines that whenever a customer is visited, the quantity delivered is such that the customer
inventory level reaches its maximum level. In addition, the models can reformulated using
delivery variables (q) indicating the detailed use of the deliveries, as in the facility location
formulation of the single item uncapacitated lot sizing problem (Krarup and Bilde, 1977), as
will be shown in Chapter 4.



Chapter 3

Metaheuristic algorithms for the
basic variant of the IRP

This chapter presents two metaheuristic algorithms based on iterated local search and simulated
annealing to solve the basic variant of the IRP. We address this variant under two different
objective functions. The first one is the standard minimization of the total transportation and
inventory holding costs while the second is the ratio between total transportation costs and the
total quantity delivered to the customers, called logistic ratio. Computational experiments show
that these algorithms provide reasonably high quality solutions in relatively short running times
for both objective functions when compared to other methods for well-known instances from the
literature. Moreover, the algorithms produce new best solutions for some of these instances. It
is worth mentioning that the mathematical notation used in this chapter is the same defined in
Chapter 2.

? An article based on the contents of this chapter is published as:

Alvarez, A., Munari, P., and Morabito, R. (2018). Iterated local search and simulated anneal-
ing algorithms for the inventory routing problem. International Transactions in Operational
Research, 25:1785-1809.
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3.1 Introduction

Since the paper of Bell et al. (1983) solving an integrated inventory management and vehicle
routing problem for the distribution of industrial gases, different IRPs have been studied in the
literature. For instance, Dror et al. (1985) addressed a long-term IRP using a rolling horizon
strategy; later, Dror and Ball (1987) solved the same problem by reducing the planning horizon
to a single-period problem, defining costs reflecting long-term decisions, safety inventory levels
and subsets of customers to be considered. Campbell and Savelsbergh (2004) developed a two-
phase hybrid approach for an IRP minimizing transportation costs only. In their approach, the
visit schedule and delivery sizes are determined solving an integer linear model while the delivery
routes are constructed with heuristic algorithms. Savelsbergh and Song (2007, 2008) focused on
the IRP with continuous moves, motivated by a real-life application that includes pickup and
delivery routes spanning multiple time periods. The authors developed heuristic and hybrid
algorithms to solve the problem. Archetti and Speranza (2016) showed the importance of the
IRP by comparing the heuristic solution of the IRP with the solution obtained by sequentially
solving to optimality an inventory management problem and then a vehicle routing problem.

Other extensions of the IRP have been addressed by Le et al. (2013), who used a column-
generation based heuristic to solve an IRP with perishability constraints. Cordeau et al. (2015)
solved the multi-product IRP with a three-phase decomposition-based heuristic algorithm. Ab-
delmaguid et al. (2009) proposed heuristic algorithms for an IRP with backlogging. Shiguemoto
and Armentano (2010) developed a Tabu Search metaheuristic for an integrated production-
distribution problem, which was also applied to the IRP. Benoist et al. (2011) and Singh et al.
(2015) solved different IRPs by applying heuristic algorithms to real-life distribution problems
in the bulk gas industry. For other studies on applications and variants of the IRP, see the
comprehensive reviews by Andersson et al. (2010) and Coelho et al. (2014b).

Regarding solution approaches for the basic variant of the IRP (2.1)-(2.14), hybrid methods
combining metaheuristic algorithms with mathematical programming have been proposed by
Archetti et al. (2012), Coelho et al. (2012), Adulyasak et al. (2014b) and Santos et al. (2016).
Exact methods have also been presented in recent years, based on branch-and-cut (B&C) and
branch-price-and-cut (BPC) algorithms (Archetti et al., 2007; Solyalıand Süral, 2011; Coelho
and Laporte, 2013a, 2014a; Archetti et al., 2014; Desaulniers et al., 2016). As observed in the
computational results presented in these papers, exact approaches are able to solve only small-
to medium-sized instances within running times acceptable in practice.

Recently, Archetti et al. (2017b) presented a BPC-based method to address the IRP with the
logistic ratio as objective function, as Equation (2.22). The logistic ratio can be of great value
in practical contexts, as it can better reflect the efficiency of the distribution process. Despite
its practical motivation, only a few studies have addressed this kind of objective function in the
context of IRPs (Benoist et al., 2011; Singh et al., 2015; Archetti et al., 2017b).

In this chapter, we develop two metaheuristic algorithms based on iterated local search (ILS)
and simulated annealing (SA) to solve the basic variant of the IRP. ILS combines a local search
heuristic with a perturbation algorithm to escape from local optimal solutions, whereas SA can
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probabilistically accept solutions that temporarily produce degradations in the current search
point to avoid getting trapped in local optimal solutions. The metaheuristics are also adapted
to solve the IRP with the logistic ratio as alternative objective function.

The main contributions of this chapter are twofold. First, we present two metaheuristic
algorithms capable of generating high-quality solutions in relatively short running times for the
IRP if compared to other solution methods of the literature. In particular, new best solutions
were found for some of the benchmark instances. Second, we address an alternative objective
function that minimizes the logistic ratio, which is more realistic in some logistics settings. We
are not aware of any other heuristic method that addresses this objective in this IRP variant.
The goal is to verify if the proposed methods are also effective with this alternative objective
function in comparison with the best available results. The overall results show that ILS and
SA can also have a good performance when solving the given IRP variant.

This chapter is organized as follows. In Section 3.2, we describe a construction heuristic for
the basic variant of the IRP. Sections 3.3 and 3.4 present in detail the components of the ILS and
SA metaheuristics algorithms developed to solve the problem, respectively. Finally, in Section
3.6 we describe the results of the computational experiments performed with the metaheuristic
algorithms.

3.2 A construction heuristic for the basic variant of the IRP

We devise a construction heuristic that separates the decisions of the problem into two phases
in a iterative scheme. In the first phase of each iteration, the heuristic defines a set of customers
for which a visit is mandatory or potentially profitable. For these customers, the amount of
product that will be delivered is also defined in this stage. Then, the second phase consists of
the definition of feasible delivery routes for visiting the customers selected in the first phase.

The heuristic is strongly based on the inventory levels Iti of each customer i ∈ C at each time
period t ∈ T . At the beginning of any iteration of the heuristic, the inventory levels can be
computed using the initial inventory level (I0

i ), the demands (dti), and all the deliveries received
by the customer in previous periods (qti), as follows:

Iti = I0
i −

t∑
h=1

dhi +
t−1∑
h=1

qhi , ∀i ∈ C, t ∈ T . (3.1)

Inventory levels are first computed at the beginning of the heuristic, which starts from the first
time period of the planning horizon. Since there are no product deliveries up to this point, they
are initialized as

Iti = I0
i −

t∑
h=1

dhi , ∀i ∈ C, t ∈ T . (3.2)

Then, these levels are updated at the end of each iteration based on the deliveries of the routes
obtained in the iteration.

There is one iteration of the heuristic for each time period t ∈ T , starting from t = 1. In the
first phase of iteration t, the heuristic selects some customers and separates them into two sets,
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C1 and C2. The first set (C1) is composed of those customers for which a stockout will occur
if they are not visited in the current time period, i.e., those with Iti < 0. Since no stockout is
allowed in a solution, these customers are included in the first set and then the heuristic decides
the delivery quantity as follows. If it is the last time period (i.e., t = T ), then the delivery
quantity is defined according to Equation (3.3), which states that the delivery quantity is fixed
to the minimum possible amount that can be delivered to the customer to avoid stockout in the
current time period, respecting the capacity of the vehicle.

qti = min{−Iti , Q}, (3.3)

On the other hand, if the current iteration does not correspond to the last time period, i.e.,
t < T , the delivery quantity is set to the effective capacity at that time point, given by difference
between the customer capacity and the inventory level on the previous time period. In this case,
the vehicle capacity is also considered, as stated in Equation (3.4).

qti = min{Ci − It−1
i , Q}. (3.4)

The remaining customers (i.e., those with Iti ≥ 0) are selected to enter in the second set (C2)
according to the following rules. First, their respective delivery quantities are defined similarly
to (3.4), but the first term (Ci − It−1

i ) is multiplied by the parameter ratio_demand ∈ (0, 1],
which defines the proportion of the maximum possible quantity that will be actually delivered.
Then, customer i is inserted into the second set based on the following criteria:

1. If t < T , then we analyze the urgency degree of the customer. In this stage we insert the
customer into the second set if a stockout may occur in the next look_ahead time periods,
that is, It′i < 0 for any t′ = t+1, . . . , t+look_ahead. The value of look_ahead determines
how far to look forward in the planning horizon to anticipate forthcoming stockouts and
perform an early delivery;

2. On the other hand, if t = T , then we analyze the potential profitability of the visit. The
customer will be included in the second set if the cost of keeping the product at the supplier
in period t is greater than the cost of keeping it at the customer plus an estimate of the
delivery cost given by the cost of a round trip to the customer from the depot, that is, the
customer is inserted if qtiht0 > qtih

t
i + 2c0i.

After this first phase, the second phase of the iteration starts. It consists of determining one
or more vehicle routes, based on the delivery quantities defined in the previous phase. We used
a standard nearest-neighbor insertion heuristic (Bräysy and Gendreau, 2005), that first routes
customers from set C1 (mandatory customers) and then tries to insert the customers from set C2

into the route as long as the insertion satisfies the vehicle capacity. Then, the inventory levels of
the customers routed in this phase are updated given the performed deliveries qti in the current
time period. If the updated level Iti of at least one customer in the first set remains negative,
then the heuristic terminates with no solution. Otherwise, a new iteration is started for the next
time period (t+ 1), until the end of the planning horizon.
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A pseudo-code of this heuristic is shown in Algorithm 3.1. As observed in preliminary
experiments, this heuristic can run in very short running times for even large-sized problem
instances. Thus, it was embedded within two loops to explore different values for the parameters
ratio_demand and look_ahead, aiming to find the best possible solution. For ratio_demand
we tried all values in the range (0, 1], starting from 1.0 and reducing 0.1 at each iteration. For
look_ahead, values between one and half of the size of the planning horizon (dT/2e) are tested.
This heuristic was used as source of initial solutions in both metaheuristic algorithms. As will be
shown in Section 3.6, this heuristic was capable of finding feasible solutions for all the instances
used in this chapter (almost 1100 problem instances).

Algorithm 3.1: Construction heuristic
1 begin
2 S∗ ← ∅;
3 ratio_demand← 1.0;
4 while ratio_demand > 0 do
5 look_ahead← 1;
6 while look_ahead ≤ dT/2e do
7 Compute the inventory levels Iti as in (3.2), for all i ∈ C and t ∈ T ;
8 for each time period t in T do
9 C1 ← ∅;

10 C2 ← ∅;
11 for each customer i in C do
12 if Iti < 0 (there will be stockout on the period) then
13 if t = T then qti ← min{−Iti , Q};
14 else qti ← min{Ci − It−1

i , Q};
15 Add i to C1;
16 else
17 qti ← min{(Ci − It−1

i )∗ratio_demand, Q};
18 if criterion 1 or 2 are satisfied then Add i to C2;
19 end
20 end
21 Route customers in C1 ∪ C2 using the nearest-neighbor insertion heuristic,

such that all customers in C1 are visited;
22 Update Iti using the values qti of the deliveries made to each customer i in

the obtained route(s), as in (3.1);
23 end
24 Update best feasible solution S∗;
25 look_ahead← look_ahead + 1;
26 end
27 ratio_demand← ratio_demand− 0.1;
28 end
29 end
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3.3 Iterated local search metaheuristic

In this section we describe the main features and components of the ILS-based approach proposed
in this thesis. ILS is a metaheuristic algorithm that applies two main steps in a iterative scheme.
The first step corresponds to a local search phase which aims to reach a local optimal solution
and then, in the second step, the solution reached is perturbed by applying random changes to
its elements. The latter step is applied with the aim of reaching a new search point from which
the algorithm will continue the exploration. These steps are iteratively repeated, leading to a
randomized walk in the space of local optimal solutions (Lourenço et al., 2003).

The basic components of an ILS-based algorithm are a construction heuristic to provide the
starting point of the exploration, a local search procedure to reach the local optimal solutions, a
perturbation mechanism to escape from the local optimal solutions and an acceptance criterion
to define whether or not a reached solution should be accepted as the new search point.

A pseudo-code of the proposed approach is shown in Algorithm 3.2. The initial solution is
generated using the construction heuristic described in Section 3.2 (line 2). If the construction
heuristic cannot find a feasible solution, the algorithm stops; otherwise, the searching process
of the metaheuristic starts. A multi-start randomized variable neighborhood descent (RVND)
heuristic performs the local search (lines 4 and 7) and a multi-operator algorithm is used as
a perturbation mechanism (line 6). These components are described in detail below. Finally,
the acceptance criterion keeps the reached solution only if its objective value is better than the
current best solution (lines 8-10).

Algorithm 3.2: Iterated local search
1 begin
2 S0 ← Construct initial solution;
3 if S0 6= ∅ then
4 S∗ ← localSeach(S0);
5 while stop criterion is not met do
6 S

′ ← perturb(S∗);
7 S

′ ← localSeach(S′);
8 if f(S′) < f(S∗) then
9 S∗ ← S

′ ;
10 end
11 end
12 end
13 end

The proposed metaheuristic is similar to the ILS-based hybrid method developed by Santos
et al. (2016) also for the basic variant of the IRP. Similar local search and perturbation algorithms
are used in both of them. However, different to their approach (as will be seen in the following
subsections), the ILS proposed in this chapter applies the local search heuristic in a multi-start
approach to explore more intensively and effectively the search space. Also, our method does
not rely on any mathematical programming component.
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3.3.1 Local search heuristic

For the local search procedure, we use a variable neighborhood descent heuristic (Mladenović
and Hansen, 1997) with random neighborhood ordering. In a randomized variable neighborhood
descent heuristic, local search operators are selected at random and applied to the incumbent
solution until none of them can improve it (Subramanian et al., 2010). This non-deterministic
behavior of the algorithm helps in the diversification of the metaheuristic, since local optimal
solutions can be different for distinct local search operators. Therefore, each time the RVND is
applied a different solution can be obtained. In addition, the randomized order leads to a more
balanced exploration of the neighborhoods, given that when a fixed sequential order is adopted
most of the effort is spent on the first operators (Deng and Bard, 2011). A pseudo-code of the
RVND heuristic is shown in Algorithm 3.3. The heuristic starts with an initial solution (line 2)
and a set containing the predefined local search operators (line 3). Then, while the set is not
empty, an operator is chosen at random (line 5) and applied to the incumbent solution (line 6).
If the operator improves the solution, the set is re-established to its initial configuration (line
8). Otherwise, the operator is removed from the set (line 10) and the process continues with
the remaining operators. In our implementation, all operators exhaustively explore the search
space using the best improvement strategy and only feasible solutions are allowed through the
search process.

Algorithm 3.3: Randomized variable neighborhood descent heuristic
1 begin
2 S∗ ← S0 (save initial solution);
3 V ← initialize set of local search operators;
4 while | V |> 0 do
5 v ← select at random a local search operator from V;
6 Apply v to S∗;
7 if v improved S∗ then
8 V ← reinitialize set of local search operators;
9 else

10 remove v from V;
11 end
12 end
13 end

In the heuristic, we use seven local search operators. The first three are routing operators
as they only change the routes of the solution. The rest are inventory-routing operators since
they can change the routes as well as the quantities delivered. They are defined as follows:

• Or-opt(k), k ∈ {1, 2, 3}: transfers k adjacent customers from their current position to
another in the same route;

• Shift(k), k ∈ {1, 2, 3}: relocates k adjacent customers to another route in the same time
period;
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• Swap(k1, k2), k1, k2 ∈ {1, 2}, k1 ≥ k2: exchanges k1 adjacent customers in a route with k2

adjacent customers in another route in the same time period;

• Increase/reduce deliveries: for each customer i ∈ C, this operator increases/reduces as
much as possible the quantities delivered in the visits (qti), based on the profitability of
the increase/reduction, given by the difference on the inventory holding costs between
the customer and the supplier on the current time period t (ht0 − hti). Thus, for a given
customer i ∈ C and time period t ∈ T , if ht0 > hti, the operator tries to increase the delivery
performed to the customer in the time period (using Ui = {Q,Ci} as upper bound on the
delivery quantity); otherwise, the operator attempts to reduce as much as possible the
amount delivered;

• Merge visits: for each customer i ∈ C, the operator tries to merge each pair of visits
(receiving qt1i and qt2i ) that occurs in different time periods (t1 6= t2) to a single period
(either t1 or t2);

• Transfer visits: for each customer i ∈ C, this operator tries to move each visit (receiving
qti) to all different time periods t′ ∈ T in which the customer is not visited (∀t′ ∈ T , t′ 6= t

and qt′i = 0);

• Insert visits: for each customer i ∈ C, this operator tries to add new visits (delivering the
maximum possible quantity) in all the time periods t ∈ T in which the customer is not
visited (∀t ∈ T , qti = 0) if the inventory holding cost of the customer is lower than the
inventory holding cost of the supplier (ht0 > hti).

The operators, as described above, are used when minimizing OF1 (sum of the costs). For
OF2 (logistic ratio) some few changes must be applied, as follows. The Reduce deliveries operator
is only applied if the delivery can be completely removed, since reducing a delivery maintaining
the visit to the customer worsens the value of the logistic ratio. The Increase deliveries operator
tries to increase all the amounts delivered, not only for those customers with ht0 > hti. Finally,
the Insert deliveries operator tries to set new visits for all customers, not only for those with
ht0 > hti. The last two changes were applied given that the holding costs are not considered in
the logistic ratio formula (2.22). Every time an insertion operation is performed in one of the
operators, the customer is inserted into the cheapest position of the selected route.

Since RVND is a non-deterministic algorithm (local optimal solutions can be different for
distinct local search operators and random ordering of the operators), we used a multi-start
RVND heuristic to boost the intensification phase of the metaheuristics and reduce the variability
of the results. The starting solution is always the input solution of the operator. The number
of times the algorithm repeats the process is controlled by the parameter maxIterRVND. The
scale of maxIterRVND defines the balance between quality of the solutions and computational
effort. In addition, we performed preliminary experiments which showed that the randomized
version of RVND led, on average, to better results when compared to different versions with
deterministic neighborhood ordering. Thus, we decided to maintain the randomized order.
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3.3.2 Perturbation mechanism

As previously mentioned, a perturbation mechanism is needed in order to escape from local
optimal solutions. The performance of the ILS is strongly related to this mechanism because
its strength defines much of the behavior of the metaheuristic. The mechanism must be able to
effectively diversify the search process without rendering ILS a random restart search. In our
implementation, given the multiple decisions made simultaneously, we propose a perturbation
algorithm composed of four different operators, as follows.

• Random shift: chooses a route and one of its customers and transfers it to another route
in the same period;

• Random delivery reduction: selects a route and one of its customers whose delivery can be
feasibly reduced, then decreases the amount delivered as much as possible;

• Random insertion: selects a route and one of the customers not served in the period of
the route and then inserts the largest feasible delivery to visit the customer;

• Random split: chooses a route and one of its visits, then transfers half of the delivery to
another time period.

Each call to the perturbation algorithm activates a single operator, which can perturb up
to max_perturb elements of the solution. The operators are called at random until one of
them alters at least one element of the solution. Similar to the local search phase, only feasible
solutions are allowed. Because these operators perturb different parts of the incumbent solution
in a random manner, it permits the algorithm to avoid local optimal solutions. Finally, note
that max_perturb is the only parameter that has to be set by the user in the proposed ILS.

3.4 Simulated annealing metaheuristic

SA is a metaheuristic that avoids getting trapped in local optima of the search space by proba-
bilistically accepting solutions that temporarily produce degradations in the current search point
(Kirkpatrick et al., 1983). In a SA algorithm, given an initial solution, at each iteration a ran-
dom neighbor of the current solution is selected. If the new solution is better than the current
one, the process continues from this new solution. On the other hand, if the new solution is
worse than the current one, it is accepted under a given probability that depends on the change
of the objective function and the current temperature of the process. As noted by Galvão et al.
(2005), SA is a metaheuristic that can be easily implemented and is often less time-consuming
than more sophisticated metaheuristics.

We have develop a SA that combines the search strategy of a basic simulated annealing algo-
rithm with additional features such as multi-start search, an intensification phase and multiple
iterations per temperature. The pseudo-code of the proposed method is shown in Algorithm
3.4. It starts with an initial solution generated by the construction heuristic described in Section
3.2 (line 2). Similar to the ILS algorithm, if the construction heuristic cannot find a feasible
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solution, the SA algorithm terminates; otherwise, the search process begins. This initial solution
is used to define the n_sol multi-start points (line 5) that will be perturbed in the main loop of
the algorithm. At each inner iteration from 1 to maxI, the algorithm picks a random neighbor
of each of the current solutions Si (line 10), for i = 1, . . . , n_sol. If the resulting neighbor
S
′
i is better than the current solution Si, then it becomes the new current solution (line 12).

Otherwise, a real number r ∈ [0, 1] is chosen at random (line 14), and the neighbor replaces the
current solution only if the random number is less than the computed probability (line 15).

After running maxI inner iterations with the same temperature, an intensification phase
is performed applying the RVND heuristic (see Section 3.3.1) for each of the n_sol resulting
solutions (line 19-22). If a new best solution is found, it is stored. Next, the best solution is
defined as the starting point for all the n_sol multi-start solutions (line 23), and the temperature
is decreased (line 24). The method terminates after reaching at least one of the two stopping
criteria: minimum temperature and running time. The proposed SA uses similar features to
the algorithm of Yu and Lin (2014), who developed a SA metaheuristic for the location-routing
problem with simultaneous pickup and delivery.

Algorithm 3.4: Simulated annealing
1 begin
2 S0 ← Construct initial solution;
3 if S0 6= ∅ then
4 S∗ ← S0;
5 for i = 1, . . . , n_sol do Si ← S0 ;
6 Temp← Temp0;
7 while stop criterion is not met do
8 for I = 1, . . . , maxI do
9 for i = 1, . . . , n_sol do

10 S
′
i ← randomNeighbor(Si);

11 ∆← f(S′i)− f(Si);
12 if ∆ < 0 then Si ← S

′
i ;

13 else
14 r ∼ U [0, 1];
15 if r < exp(−∆/Temp) then Si ← S

′
i ;

16 end
17 end
18 end
19 for i = 1, . . . , n_sol do
20 Si ← multi-RV ND(Si);
21 if f(Si) < f(S∗) then S∗ ← Si ;
22 end
23 for i = 1, . . . , n_sol do Si ← S∗ ;
24 Temp← αTemp;
25 end
26 end
27 end
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3.4.1 Neighborhood setting and parameters of the algorithm

In a SA metaheuristic, the neighborhood must be defined allowing the algorithm to reach the
optimal solution. This involves designing of operators which must include as many solution
attributes values as possible. Thus, in our implementation we use all local search operators of
the RVND heuristic, described in Section 3.3.1. Each time SA tries a movement to a neighboring
solution (line 10 of Algorithm 3.4), the algorithm chooses one of these operators at random and
applies a single random movement. In this phase, all operators have the same probability of
being selected. As they alter distinct characteristics of the solutions, they help to explore a large
scope of the search space.

On the other hand, different to ILS, our SA has many parameters and all of them influence
the behavior of the algorithm. In total, the proposed SA algorithm uses five parameters: Temp0,
Tempmin, α, n_sol and maxI, where Temp0 represents the initial temperature, Tempmin is the
minimum temperature (potential stop criterion), α is the cooling rate of the algorithm, n_sol
defines the number of multi-start points of the metaheuristic and maxI is the number of iterations
performed at a particular temperature.

3.5 Remarks on the computational implementation

In this section, we briefly describe some additional implementation challenges that we addressed
during the development of the metaheuristic algorithms and how we overcame them. Please
notice that some other implementation details were already described during the description
of the components of the metaheuristic. First of all, in the construction heuristic the sim-
ple decomposition of the decisions was not enough to find reasonably good feasible solutions.
Thus, we tried to include some degree of integration in the time dimension by incorporating
an anticipation strategy with the dynamic parameter look_ahead. In addition, the parameter
ratio_demand also helped to better determine the delivery decisions in these solutions. Second
of all, the straightforward implementation of the metaheuristics did not provide good solutions
at first, so we had to add additional features to them. For the SA algorithm, the multi-start
strategy helped to define different search trajectories simultaneously. Even though we use the
same solution for each one of the multiple starting points, the randomized nature of the al-
gorithm (probably) defines different search patterns and helps the algorithm to have a better
performance (compared to a SA with only a single initial solution). Additionally, the intensifi-
cation phase included in this metaheuristic was a key point to achieve the desired performance.
For the ILS, using the multi-start RVND as local search significantly improved the performance
of the algorithm (compared to an ILS with VND as local search) as this component provides a
strong and balanced intensification phase for the metaheuristic.

Finally, given that we do not use any mathematical programming component within the
metaheuristics, we had to design specific local search operators to handle the visit and delivery
decisions on the solutions (see Section 3.2.1). Nevertheless, the results presented in Section
4 indicate that the developed operators were able to effectively handle these decisions, as we
outperform heuristic methods that use operators based on mathematical programming.
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3.6 Computational experiments

In this section, we present the computational experiments using the proposed ILS and SA to
solve the IRP. All the algorithms were implemented in C++ and the experiments performed
on a Linux PC with an Intel Core i7-2600 3.4 GHz processor and 16 GB of RAM. It is worth
mentioning that it is not possible to solve formulation (2.1)-(2.14) directly in a general-purpose
optimization software given the presence of the SECs (2.8), whose size grows exponentially
with an increasing number of customers. Thus, it is necessary to add them dynamically when
violated in a branch-and-cut algorithm. However, even with this type of algorithm only small-
sized instances can be solved to optimality within reasonably running times, requiring the use
of more specialized branch-and-cut methods (Archetti et al., 2007; Coelho and Laporte, 2014a;
Avella et al., 2018).

3.6.1 Problem instances

Both metaheuristics were tested on two sets of benchmark instances of Archetti et al. (2007)
and Archetti et al. (2012), respectively. Both sets were proposed for the single-vehicle basic
variant of the IRP. The first set is composed of 160 instances with up to 50 customers and
six time periods. The instances are further divided into four sets: H3-I, L3-I, H6-I and L6-I.
The second set has 60 problem instances with six time periods and up to 200 customers. They
are divided into two sets: H6-II and L6-II. In all sets, H (L) stands for high (low) inventory
holding costs when compared to the travel costs, while the digit (3 or 6) indicates the number
of time periods in all instances of the set. The product consumption of each customer and the
quantity available at the supplier in each time period are constant through the planning horizon.
Unitary holding costs are provided and travel costs correspond to Euclidean distances rounded
to the nearest integer. Following the common practice in the literature (Coelho and Laporte,
2013b; Desaulniers et al., 2016; Archetti et al., 2017a; Avella et al., 2018), for the multi-vehicle
we consider a homogeneous fleet of vehicles with size ranging from two to five. The original
vehicle capacity is divided by the number of available vehicles and then rounded to the nearest
integer when the objective function is the total cost (OF1) and, following Archetti et al. (2017b),
rounded to the nearest lower integer when the objective function is the logistic ratio (OF2). In
the case with five vehicles, two instances (one of set H6-I and one of set L6-I) are infeasible
because the capacity of a single vehicle is not enough to serve the daily consumption of one of
the customers (and no splitting is allowed). These two instances were discarded. Therefore, in
total we have 1098 problem instances to test our algorithms.

3.6.2 Tuning the parameters of the algorithms

To determine an appropriate combination for the parameters of the metaheuristics, we used
the ParamILS algorithm of Hutter et al. (2009). ParamILS is an automated local search ap-
proach that explores the parameter configuration space and can be used for either minimizing
running time in decision problems or for maximizing solution quality in optimization problems.
ParamILS requires a discrete range for each parameter and starts with one parameter configura-
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tion defined by the user. Thereafter, the algorithm assesses a sequence of combinations applying
local searches until reaching a quality threshold or a time limit. In our implementation, we
provided the tool with the 798 benchmark instances of Archetti et al. (2007) and it randomly
chooses a subset out of these instances to perform the calibration. We defined a cut-off time
of two hours for the parameter tuning of each metaheuristic, limiting the running time of each
single problem instance to five seconds.

Table 3.1 shows the parameters of the metaheuristics, the values returned in the best con-
figuration of ParamILS and the tested ranges. These ranges were defined through preliminary
experiments. For ILS, the value for the perturbation parameter defines a suitable strength of
the disturbance in each iteration of the algorithm. For SA, note that the performance of the
algorithm depends on the effort before each temperature decrease – which is defined by n_sol
and maxI – and on the overall number of iterations, which depends on α, Temp0 and Tempmin.
Thus, as expected, ParamILS returned values that extend the search process of SA. It is worth
mentioning, however, that similar configurations were also derived through preliminary empir-
ical tests. In addition, we set the number of iterations of the multi-start RVND to five, which
provides an adequate balance between solution quality and computational effort, according to
prior tests. These configurations were adopted in all the subsequent experiments.

Metaheuristic Parameter Value Tested range
ILS max_perturb 7 {1, 3, ..., 15}

n_sol 10 {1, 2, ..., 10}
maxI 25 {1, 5, 10, ..., 30}

SA Temp0 3000 {500, 1000, ..., 3500}
Tempmin 10−6 {1, 0.1, ..., 10−6}

α 0.99 {0.95, 0.96, ..., 0.99}

Table 3.1: Parameters of the metaheuristics

3.6.3 Performance comparison using small instances

In the first computational experiment, we compare the performance of the proposed metaheuris-
tics according to different running time limits when minimizing OF1. As both metaheuristics
have random components, each instance was run five times with a time limit of 5 and 30 sec-
onds. It is worth mentioning that when longer running times were tested, no significant gains
were achieved compared to the additional computational effort. We also carried out tests using
improved and/or different solutions as starting points for both metaheuristics, but no significant
improvement was attained. Therefore, the construction heuristic of Section 3.2 was used as the
source of the initial solutions for the metaheuristics in all the computational experiments.

Tables 3.2 and 3.3 summarize the best out of five results within 5 and 30 seconds, respectively.
The first three columns in the tables give the name of the instance set, the number of available
vehicles and the total number of instances in the group, respectively. We grouped the instances
of each set according to the number of vehicles, so that each row in the tables represents the
average over all instances in the corresponding group (same set and same number of vehicles).
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For each method, the tables show the value of the objective function of the solutions (total
cost z̄); the time required to find the final solution (time to z̄); the optimality gap (opt gap),
computed using the formula (z̄ − z)/z, where z̄ is the value of the objective function of the
solution found by the metaheuristics and z is the best lower bound (LB) reported by the BPC
algorithm of Desaulniers et al. (2016) and the B&C of Coelho and Laporte (2014a) (available
online at http://www.leandro-coelho.com); and the relative difference between the results
obtained by the method and the best upper bounds (UB) reported in the literature (best UB
gap), computed using the formula (z̄ − zbest)/zbest, where zbest is the best known solution from
the literature. The best UBs correspond to the solutions provided by the Adaptive Large
Neighborhood Search (ALNS)-based hybrid method of Adulyasak et al. (2014b), the B&C of
Adulyasak et al. (2014a) and the previously mentioned exact methods. The best average total
cost in each row is emphasized in boldface and the average of each column is shown in the last
row of the tables (avg). Additionally, the values of the average optimality gaps of the solutions
for five-seconds time limit are shown in Figures 3.1 and 3.2.

Set nV # of
instances

Iterated Local Search Simulated Annealing
total time opt best UB total time opt best UB
cost z̄ to z̄ gap* gap** cost z̄ to z̄ gap* gap**

H3-I

1 50 9279.03 0.40 0.43% 0.43% 9243.77 0.83 0.09% 0.09%
2 50 9625.80 0.84 0.54% 0.54% 9628.56 1.85 0.41% 0.41%
3 50 10081.15 1.01 0.66% 0.59% 10081.01 2.71 0.55% 0.47%
4 50 10569.55 1.44 0.90% 0.54% 10558.53 2.45 0.69% 0.33%
5 50 11012.82 1.76 1.10% 0.03% 10999.55 2.72 0.93% -0.14%

L3-I

1 50 3026.58 0.67 1.62% 1.62% 2973.88 0.89 0.13% 0.13%
2 50 3420.15 1.06 3.20% 3.18% 3359.39 2.03 1.20% 1.18%
3 50 3865.27 1.25 3.14% 2.80% 3813.72 2.39 1.56% 1.21%
4 50 4315.54 1.54 2.51% 1.35% 4287.42 2.68 1.78% 0.61%
5 50 4767.22 1.51 3.33% 0.63% 4737.48 2.43 2.44% -0.29%

H6-I

1 30 13001.29 2.15 0.71% 0.71% 13027.87 2.85 0.82% 0.82%
2 30 14071.98 2.90 1.72% 1.65% 14092.38 3.20 1.77% 1.71%
3 30 15299.94 3.07 2.34% 1.67% 15322.64 3.90 2.38% 1.70%
4 30 16617.15 3.35 2.99% -0.07% 16618.39 3.59 2.79% -0.28%
5 29 18326.07 3.17 3.71% -0.53% 18347.29 4.01 3.95% -0.29%

L6-I

1 30 5902.19 2.33 1.91% 1.91% 5922.08 2.38 2.11% 2.11%
2 30 6915.65 3.01 3.12% 2.88% 6937.58 2.79 3.31% 3.06%
3 30 8189.08 2.84 4.65% 3.14% 8225.44 3.12 5.00% 3.48%
4 30 9476.69 2.98 5.09% 0.53% 9492.78 3.54 5.25% 0.66%
5 29 11003.49 2.89 6.23% -3.18% 11026.92 3.50 6.46% -3.03%

avg 9438.33 2.01 2.50% 1.02% 9434.83 2.69 2.18% 0.70%
* Best LB from Desaulniers et al. (2016) and Coelho and Laporte (2014a);
** Best UB from Desaulniers et al. (2016) (BPC ), Coelho and Laporte (2014a) (B&C ) and Adulyasak et al.
(2014a,b) (B&C & ALNS).

Table 3.2: Best results with the metaheuristics for the 5 seconds time limit

The results of the experiment with a time limit equal to 5 seconds (Table 3.2) show that both
metaheuristics have a similar overall performance in terms of the average total cost of the best
obtained solutions. Notice that when considering the best out of five solutions, SA found better
results for all but one instance group (nV = 2) with three time periods (H3 and L3), whereas
ILS found, on average, slightly better total costs for all instance sets with a longer planning
horizons (H6 and L6). This fact can be explained by the strength of the diversification, which is
stronger in ILS than in SA due to the larger number of elements modified in each iteration. It

http://www.leandro-coelho.com
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can be noted that the time to find the final solution (time to z̄) is very short and, as expected,
tends to increase with the number of vehicles and time periods. The average optimality gaps of
the solutions also tend to increase with the number of vehicles and periods. Nevertheless, this
conclusion must be taken cautiously, as these LBs were provided by two different exact solution
methods and many of these bounds may not correspond to optimal solutions. Finally, negative
average gaps to the best UBs indicate that, on average, the solutions found are better than the
best solutions reported in the literature.
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Figure 3.1: Optimality gaps of the solutions found by the metaheuristics for the instances with
three time periods
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Figure 3.2: Optimality gaps of the solutions found by the metaheuristics for the instances with
six time periods

A similar behavior is observed in the experiment with a longer running time (Table 3.3),
where SA was slightly superior to ILS in terms of the overall average results. This is mainly
because of the better performance of SA on the instances with shorter planning horizon. Notice
that the time instant in which ILS and SA find the final solutions (time to z̄) is on average one
third of the maximum running time. This highlights the ability of the proposed metaheuristic
algorithms to find good feasible solutions in relatively short running times. Finally, it can be
observed that the optimality gaps are quite low considering the relatively short running times.
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Additionally, we obtain negative average gaps to the best UBs indicating the finding of better
solutions compared to the best solutions from the literature. Specifically, ILS and SA found 65
and 64 new best known solutions for these sets, respectively. Detailed results on all instances
are available online at http://www.dep.ufscar.br/docentes/munari/irp.

Set nV # of
instances

Iterated Local Search Simulated Annealing
total time opt best UB total time opt best UB
cost z̄ to z̄ gap* gap** cost z̄ to z̄ gap* gap**

H3-I

1 50 9280.45 2.07 0.37% 0.37% 9236.51 1.43 0.04% 0.04%
2 50 9612.83 5.35 0.33% 0.33% 9601.19 4.34 0.19% 0.19%
3 50 10060.74 5.17 0.47% 0.40% 10046.70 5.61 0.30% 0.22%
4 50 10538.93 7.15 0.67% 0.32% 10515.64 7.94 0.39% 0.03%
5 50 10993.96 7.27 0.97% -0.10% 10961.50 8.03 0.67% -0.40%

L3-I

1 50 3019.71 3.11 1.41% 1.41% 2972.25 1.50 0.09% 0.09%
2 50 3393.57 6.57 2.32% 2.31% 3339.63 3.82 0.75% 0.74%
3 50 3850.93 5.62 2.82% 2.48% 3793.52 5.00 1.11% 0.76%
4 50 4302.44 6.43 2.24% 1.10% 4253.22 6.73 1.10% -0.04%
5 50 4734.09 8.52 2.69% 0.03% 4690.57 6.58 1.65% -1.00%

H6-I

1 30 12999.55 11.21 0.72% 0.72% 13000.34 9.67 0.66% 0.66%
2 30 14005.35 15.23 1.24% 1.17% 14013.43 15.18 1.27% 1.21%
3 30 15256.78 17.02 2.18% 1.51% 15273.90 16.16 2.09% 1.41%
4 30 16539.82 14.06 2.50% -0.55% 16519.03 16.69 2.24% -0.80%
5 29 18219.63 18.22 3.19% -1.02% 18205.78 18.37 3.17% -1.04%

L6-I

1 30 5898.11 6.71 1.72% 1.72% 5902.30 9.67 1.70% 1.70%
2 30 6856.92 15.24 2.32% 2.07% 6926.01 13.74 3.20% 2.96%
3 30 8112.11 15.14 3.79% 2.30% 8163.76 14.60 4.33% 2.83%
4 30 9400.22 17.99 4.32% -0.19% 9375.24 17.16 4.07% -0.46%
5 29 10936.91 13.68 5.66% -3.70% 10901.84 18.11 5.33% -4.00%

avg 9400.65 10.09 2.10% 0.63% 9384.62 10.02 1.72% 0.26%
* Best LB from Desaulniers et al. (2016) and Coelho and Laporte (2014a);
** Best UB from Desaulniers et al. (2016) (BPC ), Coelho and Laporte (2014a) (B&C ) and Adulyasak et al.
(2014a,b) (B&C & ALNS).

Table 3.3: Best results with the metaheuristics for the 30 seconds time limit

Furthermore, we applied a Wilcoxon sum rank test (Wilcoxon, 1945) to verify the significance
of the difference in the results for instances with different number of time periods. To compare
the methods, we used the gap to the best LB of each instance for the results with 30 seconds
of time limit (considering all instance sets and vehicles). The results with a confidence level of
95% show that for instances with three time periods (sets H3 and L3) there exists a statistically
significant difference of the results, confirming the advantages of SA on these sets. For the
instances with six time periods (H6 and L6), no statistically significant difference was identified.

Regarding the characteristics of the instances, notice that when the number of vehicles
increases for the same instance set, the average total cost also increases as a result of larger total
travel costs. The average time to find the final solution of the algorithms also increases with the
number of vehicles as a consequence of the enlargement of the search space.

Tables 3.4 and 3.5 present the average, best and worst results of the five executions of ILS
and SA for 5 and 30 seconds, respectively. As expected, for both metaheuristics the average
variability (stated as the range of the results) decreased when the maximum running time
increased, as the metaheuristics found better results in each run. However, notice that for both
time limits, the average variability of ILS was greater than the variability of SA as a result of
the larger diversification of ILS when compared to SA.

http://www.dep.ufscar.br/docentes/munari/irp
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Set nV # of
instances

ILS: total cost z̄ SA: total cost z̄
best average worst best average worst

H3-I

1 50 9279.03 9309.74 9356.75 9243.77 9249.57 9260.28
2 50 9625.80 9701.39 9808.67 9628.56 9658.36 9700.25
3 50 10081.15 10175.20 10291.94 10081.01 10131.18 10211.43
4 50 10569.55 10635.82 10718.98 10558.53 10616.81 10679.63
5 50 11012.82 11097.49 11203.15 10999.55 11057.32 11121.41

L3-I

1 50 3026.58 3050.97 3080.86 2973.88 2983.12 2990.23
2 50 3420.15 3475.33 3553.43 3359.39 3384.62 3421.43
3 50 3865.27 3958.06 4073.30 3813.72 3857.83 3918.40
4 50 4315.54 4405.08 4503.67 4287.42 4345.56 4418.41
5 50 4767.22 4838.59 4936.19 4737.48 4795.66 4863.58

H6-I

1 30 13001.29 13063.83 13130.96 13027.87 13110.28 13214.61
2 30 14071.98 14193.66 14328.40 14092.38 14224.19 14354.38
3 30 15299.94 15438.99 15580.10 15322.64 15470.71 15624.82
4 30 16617.15 16791.20 16988.53 16618.39 16772.60 16938.33
5 29 18326.07 18517.54 18701.04 18347.29 18508.58 18672.77

L6-I

1 30 5902.19 5959.66 6047.75 5922.08 6013.46 6099.26
2 30 6915.65 7042.84 7193.96 6937.58 7075.18 7236.74
3 30 8189.08 8307.91 8471.88 8225.44 8345.42 8491.93
4 30 9476.69 9661.32 9849.79 9492.78 9648.85 9810.18
5 29 11003.49 11217.33 11440.19 11026.92 11207.47 11398.36

avg 9438.33 9542.10 9662.98 9434.83 9522.84 9621.32

Table 3.4: Best, average and worst results with the metaheuristics for the 5 seconds time limit

Set nV
# of

instances
ILS: total cost z̄ SA: total cost z̄

best average worst best average worst

H3-I

1 50 9280.45 9303.69 9321.97 9236.51 9242.46 9252.88
2 50 9612.83 9674.20 9766.45 9601.19 9622.87 9655.45
3 50 10060.74 10150.98 10281.27 10046.70 10086.24 10132.12
4 50 10538.93 10614.92 10708.50 10515.64 10560.23 10622.26
5 50 10993.96 11065.18 11159.62 10961.50 11008.50 11061.95

L3-I

1 50 3019.71 3034.47 3061.41 2972.25 2976.80 2979.49
2 50 3393.57 3447.69 3519.30 3339.63 3353.72 3374.29
3 50 3850.93 3927.49 4032.13 3793.52 3824.89 3867.02
4 50 4302.44 4374.89 4454.13 4253.22 4299.63 4364.31
5 50 4734.09 4807.41 4904.22 4690.57 4741.18 4789.72

H6-I

1 30 12999.55 13045.71 13103.85 13000.34 13101.77 13213.67
2 30 14005.35 14110.07 14230.86 14013.43 14157.04 14315.04
3 30 15256.78 15352.82 15471.61 15273.90 15389.39 15498.65
4 30 16539.82 16682.64 16803.69 16519.03 16656.39 16795.07
5 29 18219.63 18395.72 18582.95 18205.78 18355.10 18498.01

L6-I

1 30 5898.11 5941.87 5997.64 5902.30 5997.49 6107.17
2 30 6856.92 6976.22 7139.05 6926.01 7030.61 7144.63
3 30 8112.11 8222.69 8355.93 8163.76 8277.60 8399.82
4 30 9400.22 9551.14 9738.30 9375.24 9515.40 9656.19
5 29 10936.91 11105.22 11279.32 10901.84 11065.31 11205.51

avg 9400.65 9489.25 9595.61 9384.62 9463.13 9546.66

Table 3.5: Best, average and worst results with the metaheuristics for the 30 seconds time limit

To further analyze the performance of ILS and SA regarding different characteristics of the
instances, Table 3.6 shows the detailed results (considering the average of the five executions
of each method for the 30 seconds time limit) for the instance sets H3 and L6 with one and
five vehicles, respectively. These instances represent extreme features of all tested instances. It



50 Metaheuristic algorithms for the basic variant of the IRP

is worth highlighting that all solutions for the instances with one single vehicle were solved to
optimality by exact methods (Desaulniers et al., 2016; Coelho and Laporte, 2014a). The results
are separated according to the number of customers (nC) and the columns maintain the same
meaning used in Tables 3.2 and 3.3. Notice that the average time required to find the obtained
solutions (time to z̄) increases with the number of customers in the instances. Additionally,
the optimality gaps of SA are slightly lower than the gaps of ILS for the single-vehicle case.
For the five-vehicle instances the average optimality gaps and relative differences to the best
reported solutions are similar for both metaheuristics. In particular, for the instances with 25 to
30 customers in set L6, which are the largest ones, the average cost of SA and ILS were better
than the best UBs from the literature (differences of more than 14%).

Set nV nC # of
instances

Iterated Local Search Simulated Annealing
total time opt best UB total time opt best UB
cost z̄ to z̄ gap gap cost z̄ to z̄ gap gap

H3-I 1

5-10 10 3268.94 0.01 0.00% 0.00% 3268.94 0.02 0.00% 0.00%
15-20 10 6336.65 1.12 0.08% 0.08% 6330.75 0.18 0.00% 0.00%
25-30 10 9973.39 3.07 0.23% 0.23% 9952.32 0.27 0.02% 0.02%
35-40 10 12050.18 2.99 0.63% 0.63% 11992.48 1.60 0.14% 0.14%
45-50 10 14773.09 3.17 0.94% 0.94% 14638.08 5.07 0.01% 0.01%

L6-I 5
5-10 9 8823.59 5.30 3.80% 2.79% 8765.18 10.56 3.05% 2.05%
15-20 10 11026.73 16.02 5.78% 1.10% 11052.16 16.94 6.05% 1.35%
25-30 10 12749.08 18.89 7.21% -14.34% 12674.51 26.07 6.66% -14.78%

Table 3.6: Results for the H3-I instances with one vehicle and L6-I instances with five vehicles

3.6.4 Performance comparison using larger instances

In this section we analyze the performance of the metaheuristics when applied to larger problem
instances (H6-II and L6-II). In the literature, these instances were addressed in the single-vehicle
case by Archetti et al. (2012) (with a hybrid heuristic) and in the multi-vehicle case by Coelho
et al. (2012) (with a hybrid heuristic) and Coelho and Laporte (2013b) (with a B&C algorithm).
As these instances are considerably larger, we run each metaheuristic five times with 60 seconds
as stop criterion. Table 3.7 summarizes the best out of five results obtained for OF1. The table
columns maintain the same meaning of the previous tables. The results show that both ILS
and SA have similar average performance (the results of SA are only 0.68% greater than the
results of ILS) and that the time to reach the final solution is near to the time limit. The latter
fact exposes the difficulty of solving these larger problem instances, as the algorithms required
almost all the available time to reach the final solution. The gap to the best UBs from the
literature is about -15% for both metaheuristics, considering all instances. This shows that the
metaheuristics are also effective to solve these large problem instances. Specifically, ILS and SA
found 224 and 219 new best known solutions for these sets, respectively.

3.6.5 Comparison with prior results

This section compares the performance of ILS and SA to the state-of-the-art heuristic methods
from the literature when minimizing OF1. In this sense, for the small instances (H3-I, L3-I,
H6-I and L6-I) a comparison is only possible with the ALNS-based hybrid method of Adulyasak
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Set nV # of
instances

Iterated Local Search Simulated Annealing
total time total time
cost z̄ to z̄ cost z̄ to z̄

H6-II

1 30 65500.43 51.84 65643.04 57.45
2 30 66483.60 52.86 66922.70 56.16
3 30 67763.71 53.05 68182.02 57.71
4 30 69488.33 55.51 69789.13 57.12
5 30 71360.96 55.08 71602.43 57.54

L6-II

1 30 17386.48 52.45 17390.49 55.21
2 30 18284.16 54.43 18735.70 56.08
3 30 19552.16 54.71 19921.95 56.67
4 30 21315.93 55.81 21711.74 56.94
5 30 23206.84 54.47 23439.87 58.33

avg 44034.26 54.02 44333.91 56.92

Table 3.7: Best results with the larger instances for the 60 seconds time limit

et al. (2014b), as it is the only heuristic with publicly available results (partly, though). Table
3.8 reports the average relative differences between the results found by ILS and SA (best
out of five runs within 30 seconds) and the results of Adulyasak et al. (2014b). Column nC
displays the range of customers considered in the instances tested. The results are grouped
according to the number of vehicles. It can be observed that both metaheuristics proposed in
this chapter outperform the ALNS-based hybrid method of Adulyasak et al. (2014b) on average,
as only negative relative differences are presented for the instance sets. Unfilled cells are due
to incomplete report of the results of the ALNS-based hybrid method. In total, ILS and SA
found, respectively, 65 and 64 new best known solutions when compared to all publicly available
feasible solutions (Desaulniers et al., 2016; Coelho and Laporte, 2014a; Adulyasak et al., 2014b),
most of them for instances with four and five vehicles.

Set nC ILS SA
2 veh 3 veh 4 veh 2 veh 3 veh 4 veh

H3-I 5-50 -1.88% -3.29% -3.00% -2.07% -3.46% -3.22%
L3-I 5-50 -1.75% -3.99% -6.83% -3.31% -5.51% -7.76%
H6-I 5-25 -1.57% -0.66% – -1.60% -0.90% –
L6-I 5-25 -3.03% -1.79% – -2.35% -1.41% –
avg -2.06% -2.43% -4.91% -2.33% -2.82% -5.49%

Table 3.8: Relative differences to the ALNS of Adulyasak et al. (2014b)

On the other hand, for the larger problem instances, when comparing to the hybrid heuristic
algorithm of Archetti et al. (2012) considering instances with only one vehicle (the only case
addressed in their paper), ILS and SA found solutions with average objective value 2.86% and
2.88% greater than their results, respectively. Comparing to the approach of Coelho et al. (2012)
for the multi-vehicle case (2 to 5 vehicles), solutions with average cost 20% smaller were found
by both algorithms, on average.

3.6.6 Solving the IRP with the logistic ratio

In this section, we show the results of the proposed metaheuristics when used to solve the IRP
with the logistic ratio as the objective function (OF2). Studying the logistic ratio in the context
of the IRP may be valuable in practice because, as pointed out by Archetti et al. (2017b), the
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logistic ratio absorbs the long-term impact of a short-term planning, as it focuses on the cost
efficiency of the distribution process. Minor changes were necessary to adapt the metaheuristics
to address this alternative criterion. This easy adaptation is a desirable feature in practice,
especially if in addition it maintains a similar computational performance of the method.

Tables 3.9 and 3.10 show a comparison between the results of ILS and SA when minimizing
OF1 and OF2, respectively. They present the best results out of five runs for each objective
function within a time limit of 30 seconds. We grouped the instances according to their respective
instance set and number of vehicles, as in Tables 3.2 and 3.3. The first three columns have the
same meaning as in those tables. Columns 4-7 show the results of the metaheuristics when
minimizing the logistic ratio. Column 4 displays the cost of the solution calculated as OF1
(in these experiments we are minimizing OF2); column 5 shows the total routing cost of the
solution, which corresponds to the numerator of OF2; column 6 displays the quantity delivered
by all routes in the solution, which corresponds to the denominator of OF2; and column 6
represents the value of the logistic ratio (OF2). Columns 8-11 display the relative difference
between the values of columns 4-7 and the results when minimizing the total cost. Each row
shows the average of the results over all instances in the group. In addition, Figure 3.3 presents
the relative differences of the results when minimizing the logistic ratio compared to the results
when minimizing the total cost, for the ILS metaheuristic.

Set nV # of
instances

minimizing logistic ratio difference to minimizing total cost z̄
total routing quantity logistic total routing quantity logistic
cost z̄ cost delivered ratio cost z̄ cost delivered ratio

H3-I

1 50 9949.26 2866.22 3738.54 1.03 7.21% 23.37% 62.90% -23.70%
2 50 10543.53 3363.62 3758.78 1.26 9.68% 26.46% 59.71% -21.40%
3 50 11180.78 3945.84 3718.33 1.54 11.13% 26.93% 54.17% -21.04%
4 50 11773.42 4580.52 3669.32 1.82 11.71% 27.36% 54.53% -20.13%
5 50 12432.80 5254.58 3645.04 2.12 13.09% 29.72% 55.79% -17.25%

L3-I

1 50 3672.20 2848.10 3736.94 1.03 21.61% 22.59% 63.98% -24.46%
2 50 4290.49 3337.26 3790.18 1.26 26.43% 23.70% 59.11% -20.95%
3 50 4928.19 3969.82 3741.62 1.54 27.97% 25.82% 55.66% -20.61%
4 50 5517.74 4665.82 3679.99 1.83 28.25% 29.36% 56.95% -20.09%
5 50 6111.39 5231.68 3605.62 2.12 29.09% 29.55% 55.85% -18.93%

H6-I

1 29 13691.95 5571.93 5363.17 1.24 5.33% 9.18% 22.14% -11.02%
2 30 14973.04 6844.40 5289.17 1.57 6.91% 12.34% 21.04% -9.96%
3 30 16363.90 8322.27 5226.50 1.94 7.26% 13.21% 19.88% -9.96%
4 30 17893.91 9646.53 5235.86 2.34 8.19% 11.93% 20.31% -8.77%
5 30 19622.60 11303.45 5305.48 2.64 7.70% 11.76% 19.02% -8.19%

L6-I

1 29 6492.88 5591.63 5342.03 1.23 10.08% 9.50% 22.43% -12.19%
2 30 7711.30 6770.97 5287.93 1.56 12.46% 11.67% 20.72% -9.90%
3 30 9148.44 8152.33 5249.50 1.94 12.78% 11.41% 21.17% -9.44%
4 30 10671.31 9673.17 5206.60 2.34 13.52% 12.40% 20.15% -8.58%
5 30 12346.33 11260.07 5315.31 2.65 12.89% 11.22% 19.09% -8.10%

avg 10465.77 6160.01 4495.30 1.75 14.16% 18.97% 39.23% -15.23%

Table 3.9: Results of the ILS minimizing logistic ratio vs total cost

It can be observed that the average total cost and routing cost increased when minimizing
the logistic ratio because of the substantial increase of the average quantities delivered (approx-
imately 39% for both metaheuristics). As a result, an average reduction of 15.23% and 15.75%
in the logistic ratio was obtained for the ILS and SA when compared to the traditional objec-
tive function, respectively. Observe that lower logistic ratios are obtained for instances in the
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Set nV # of
instances

minimizing logistic ratio difference to minimizing total cost z̄
total routing quantity logistic total routing quantity logistic
cost z̄ cost delivered ratio cost z̄ cost delivered ratio

H3-I

1 50 9822.32 2791.94 3658.04 1.02 6.34% 22.52% 59.99% -23.74%
2 50 10350.74 3323.30 3654.20 1.25 7.81% 25.37% 54.18% -21.36%
3 50 10995.37 3907.88 3635.48 1.53 9.44% 26.16% 52.15% -21.86%
4 50 11729.78 4618.90 3682.04 1.81 11.55% 29.48% 55.99% -20.15%
5 50 12362.85 5228.20 3656.70 2.10 12.78% 30.36% 56.74% -18.65%

L3-I

1 50 3533.94 2786.72 3669.32 1.02 18.90% 22.44% 60.67% -23.90%
2 50 4094.53 3273.84 3696.60 1.24 22.60% 23.84% 61.03% -22.06%
3 50 4673.16 3928.16 3631.79 1.53 23.19% 26.81% 53.91% -21.78%
4 50 5423.38 4609.62 3684.03 1.81 27.51% 29.60% 59.06% -20.87%
5 50 5993.73 5236.08 3586.34 2.10 27.78% 31.09% 56.46% -19.24%

H6-I

1 29 13643.48 5577.43 5320.43 1.24 4.95% 9.44% 21.18% -12.40%
2 30 14856.60 6804.73 5233.80 1.56 6.02% 11.58% 19.04% -10.32%
3 30 16296.64 8234.43 5232.57 1.94 6.70% 11.90% 20.47% -9.98%
4 30 17637.00 9550.80 5203.53 2.31 6.77% 11.09% 19.81% -9.11%
5 30 19522.17 11229.07 5301.31 2.63 7.23% 11.15% 18.79% -8.95%

L6-I

1 29 6455.79 5575.83 5313.47 1.24 9.38% 9.13% 21.95% -12.82%
2 30 7711.38 6804.03 5279.27 1.56 11.34% 10.96% 20.80% -10.00%
3 30 9110.73 8155.47 5213.43 1.94 11.60% 10.67% 20.20% -9.38%
4 30 10418.95 9563.87 5170.07 2.31 11.13% 11.46% 19.06% -8.84%
5 30 12053.75 11093.03 5293.31 2.62 10.57% 9.96% 19.14% -9.68%

avg 10334.31 6114.67 4455.79 1.74 12.68% 18.75% 38.53% -15.75%

Table 3.10: Results of the SA minimizing logistic ratio vs total cost

same set with fewer vehicles because the routing cost grows with the fleet size, while the total
quantities delivered remain relatively stable.
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Figure 3.3: Differences of the results minimizing total cost vs logistic ratio

Finally, Table 3.11 shows the relative gaps of the best (out of five) results found by ILS
and SA within 30 seconds with respect to the optimal logistic ratios reported by Archetti et al.
(2017b) using a branch-price-and-cut-based method (run in a single core 3.4 GHz Intel i7-4770
processor). In that paper, the authors solved the instance set H3-I (three time periods and high
inventory holding cost) and extended the instances of this set to four and five time periods,
resulting in sets H4-I and H5-I, respectively. Following their developments, we also included
these sets of instances in the experiment reported in Table 3.11. We grouped the instances
based on the number of vehicles (nV) and the number of customers (nC), given in the first
two columns. For each instance set (H3-I, H4-I and H5-I), column lr* gives the average of the
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optimal logistic ratios over all instances in the group. Column ILS (SA) gives the average relative
difference of the logistic ratios obtained by ILS (SA) in relation to lr*. The results show that
both metaheuristics are able to find optimal or near optimal solutions for most of the analyzed
instances, demonstrating the ability of the developed algorithms to also address the logistic ratio
as the objective function in the IRP. For the instances solved in the sets H3-I, H4-I and H5-I, ILS
found solutions with average logistic ratio of 2.77, 3.39 and 3.41, respectively, while SA found
solutions with average logistic ratio of 2.75, 3.35 and 3.34, for the same sets. Unfilled cells (–)
are due to that Archetti et al. (2017b) did not report results for those instances. Notice that
SA outperforms ILS in all instance sets. This fact can be explained to some extent by the flat
structure of the objective function around the optimal solution (Archetti et al., 2017b), which
suggests that the weaker changes applied in each iteration of SA helped it to adapt in a better
way to the new objective function. The strength of the diversification is stronger in ILS than in
SA due to the larger number of elements altered in each iteration. It is worth mentioning that
the average times of the method of Archetti et al. (2017b) for sets H3-I, H4-I and H5-I are 475,
460 and 1152 seconds, respectively.

nV nC H3-I H4-I H5-I
lr* ILS SA lr* ILS SA lr* ILS SA

1
5 2.54 0.79% 0.00% 2.66 1.13% 0.00% 2.59 10.42% 2.32%
10 1.42 0.00% 0.00% 1.43 0.70% 1.40% 1.42 0.70% 2.82%
15 1.15 0.87% 0.00% – – – – – –

2
5 3.18 1.57% 0.00% 3.28 0.91% 0.00% 3.19 2.19% 0.31%
10 1.86 2.15% 0.00% 1.87 0.53% 0.00% 1.86 1.61% 1.08%
15 1.41 2.13% 0.00% – – – – – –

3
5 4.19 0.00% 0.00% 4.15 2.41% 0.00% 4.26 2.11% 0.23%
10 2.35 0.85% 0.00% 2.27 2.20% 0.00% 2.34 3.85% 1.71%
15 1.68 0.60% 0.00% – – – – – –

4
5 5.06 1.38% 0.00% 5.34 1.69% 0.00% 5.31 3.01% 0.00%
10 2.80 0.00% 0.00% 2.78 2.16% 0.36% 2.81 2.49% 1.07%
15 1.97 2.54% 0.51% – – – – – –

5
5 6.02 1.00% 0.00% 6.38 1.41% 0.00% 6.10 2.13% 0.00%
10 3.26 1.23% 0.00% 3.27 1.22% 0.00% 3.29 1.52% 0.91%
15 2.29 1.31% 0.00% – – – – – –

avg 2.75 1.09% 0.03% 3.34 1.44% 0.18% 3.32 3.01% 1.04%

Table 3.11: Comparison to the optimal logistic ratios

3.7 Final remarks

In this chapter, we presented two metaheuristic algorithms to solve the basic variant of the
IRP. The algorithms are based on iterated local search and simulated annealing, respectively.
A construction heuristic and a randomized variable neighborhood descent heuristic are used in
both algorithms. Two different objective functions were addressed. The first is the classical
minimization of the total cost while the second is the ratio between travel costs and the total
quantity delivered, called logistic ratio. The results of extensive computational experiments
showed that the proposed algorithms can effectively handle both objective functions and provide
good feasible solutions in short running times. The results with the standard cost minimization
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indicate that the methods can offer different advantages according to the instance characteristic,
as none of them dominated the other in the whole set of benchmark instances tested. The results
minimizing the logistic ratio show that SA outperformed ILS in all sets of instances used to test
the algorithms, considering the average results. All the experiments were based on 1098 problem
instances from the literature, and the ILS and SA algorithms found, respectively, 289 and 283
solutions with objective values better than the best known solutions in the literature (for the
first objective function). For the logistic ratio, the results show that both metaheuristics are
able to find optimal or near optimal solutions for most of the analyzed instances, demonstrating
the ability of the developed algorithms to also address this objective function.





Chapter 4

Formulations, branch-and-cut and a
hybrid heuristic algorithm for an
IRP with perishable products

In this chapter, we study an inventory routing problem in which goods are perishable. In this
problem, a single supplier is responsible for delivering a perishable product to a set of customers
during a given finite planning horizon. The product is assumed to have a fixed shelf-life dur-
ing which it is usable and after which it must be discarded. We introduce four mathematical
formulations for the problem, two with a vehicle index and two without a vehicle index, and
propose branch-and-cut algorithms to solve them. In addition, we propose a hybrid heuristic
based on the combination of an iterated local search metaheuristic and two mathematical pro-
gramming components. We present the results of extensive computational experiments using
instances from the literature as well as new larger instances. The results show the different
advantages of the introduced formulations and show that the hybrid method is able to provide
high-quality solutions in relatively short running times for small- and medium-sized instances
while good quality solutions are found within reasonable running times for larger instances.
We also adapted the proposed hybrid heuristic to solve the basic variant of the inventory rout-
ing problem. The results using standard instances show that our heuristic is also able to find
good quality solutions for this problem when compared to the state-of-the-art methods from the
literature.

? An article based on the contents of this chapter is published as:

Alvarez, A., Cordeau, J.-F., Jans, R., Munari, P., and Morabito, R. (2020). Formulations,
branch-and-cut and a hybrid heuristic algorithm for an inventory routing problem with perish-
able products. European Journal of Operational Research, 283(2):511-529.
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4.1 Introduction

Research on the integration of multiple activities throughout the supply chain has increased
considerably in the last decades. Today, it is well known that such integration can lead to
significant advantages in both economic and performance terms. In particular, the integration
of transportation and inventory management activities has been shown to provide substantial
economic benefits and to improve the usage of the available resources. However, challenging
problems can arise from this integration, one of which is the inventory routing problem (IRP).
The IRP consists of defining the optimal replenishment plan of the customers of a supplier
throughout a planning horizon as well as the routing schedule in each time period such that a
given objective is optimized.

In many different industries, raw materials, as well as intermediate and final products, are
often perishable. Moreover, perishability may appear in more than one activity throughout the
supply chain and can influence service levels (Amorim et al., 2013). Thus, managing perishability
becomes a relevant issue in the supply chain, particularly in inventory management activities.
Perishability was first studied in the context of IRPs by Federgruen et al. (1986), who addressed
an inventory management and distribution problem for a product that must be discarded if it
is not used during a given fixed lifetime. The authors studied different patterns and policies for
the distribution part of the problem. The objective was to minimize the sum of transportation
and expected shortage and discarding costs.

Hemmelmayr et al. (2009) studied the problem faced by a blood bank in the distribution
to hospitals. In their problem, no vehicle capacity constraints were considered (given the small
size of the blood bags) but the maximum length of the routes was limited. Also, no inventory
holding costs were considered since it is preferable to maintain high inventory levels rather
than to experience stockouts, given the nature of the service being provided. The objective is
to minimize travel costs over a finite horizon. To solve the problem, the authors proposed a
basic heuristic algorithm based on a reactive visit policy, a mixed-integer programming (MIP)
formulation and a variable neighborhood search approach. Le et al. (2013) studied an IRP
with perishability features also motivated by a healthcare application. In their problem, it was
assumed that the perishable goods have a fixed shelf-life, and they are not usable when this
lifetime is exceeded. Upper bounds on the inventory levels of the customers were determined
only by the perishability constraints since the discarding of products is not allowed. Thus,
deliveries to customers at any given time period were limited only by the shelf-life of the goods.
The objective was to minimize the sum of travel and inventory holding costs. Diabat et al.
(2016) addressed the same problem as Le et al. (2013) but only minimizing travel costs.

Coelho and Laporte (2014b) considered an IRP with a fixed shelf-life perishable product with
age-dependent revenues and holding costs. They presented a MIP mathematical formulation
and explored different strategies to model the product consumption at the customer facilities.
Mirzaei and Seifi (2015) addressed an IRP for perishable goods in which the objective function
included a penalty that depends on the age of the product that is used to satisfy the demands.
This penalty was included in an attempt to avoid overstocking to reduce transportation costs.
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The objective was to minimize the sum of routing, inventory and penalty costs. Soysal et al.
(2015) addressed an IRP with a fixed shelf-life perishable product. The authors proposed models
that also considered fuel consumption and demand uncertainty. Split deliveries and backlogging
of the demand were allowed as well. The objective was to minimize the sum of routing (driver
wages and fuel consumption), inventory and spoilage costs. Azadeh et al. (2017) studied an IRP
of a single perishable product with an exponentially decaying inventory. The authors included
the possibility of transshipments between customers (performed by an outsourced third-party
operator) since a single vehicle with limited capacity was considered. Backlogging was not
allowed and the objective was to minimize the sum of inventory and travel costs (including
transshipments costs) as well as spoilage costs. Crama et al. (2018) addressed an IRP for a
single perishable product with stochastic demands (with a known probability distribution). A
maximum time on the duration of the routes was imposed and no salvage value was included in
their problem. Rohmer et al. (2019) addressed a two-echelon inventory routing problem for a
perishable product whose age increases one unit each time period. The authors presented a MIP
formulation and proposed a hybrid solution method based on the combination of an adaptive
large neighborhood search metaheuristic and a mathematical model.

Shaabani and Kamalabadi (2016), Qiu et al. (2019) and Neves-Moreira et al. (2019) studied
production routing problems (PRP) for perishable products. PRPs add production decisions to
the IRP in an attempt to jointly optimize production, inventory and routing decisions (Adulyasak
et al., 2015b; Miranda et al., 2018). Shaabani and Kamalabadi (2016) addressed the case with
multiple products. In their problem, perishability was modeled as in Le et al. (2013), i.e.,
upper bounds on the inventory levels are determined only by the perishability constraints and
discarding of products is forbidden. Qiu et al. (2019) addressed a PRP including deterioration
rates and inventory holding costs that are both age-dependent. The authors tested different
delivery and selling priority policies. Neves-Moreira et al. (2019) modeled the perishability
feature in a PRP with multiple perishable products by setting a maximum difference between
the consumption (at the customers) and production (at the plant) periods.

In this chapter, we address the IRP for a single perishable product proposed by Coelho and
Laporte (2014b), which we will refer to as the PIRP (perishable IRP). In this problem, the
authors model the perishability feature by considering an aging product with a fixed shelf-life as
well as setting inventory holding costs and sales revenues depending on the age of the product.
This type of perishability modeling is in line with the classification framework proposed by
Amorim et al. (2013) for production and distribution planning. In general, perishability can
be classified into three types. The first type is associated to the physical deterioration of the
products as time goes by. The second type is related to the perceived value of the product for the
customers, which may change or not with the product age. Finally, the third type is associated
to regulations that directly influence the occurrence of the spoilage event. Thus, the PIRP can
be used as a basis to model several applications involving these three types of perishability, as
it only assumes that the product has a fixed lifetime and no restricting assumption is made
on the age-dependent revenue and holding cost values. Examples of perishable products that
deteriorate or experience a reduction in the perceived value as the expiration date approaches
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include milk, fresh food as well as fruits and vegetables (Abdel-Malek and Ziegler, 1988; Yu
and Nagurney, 2013). Other products, such as blood products as well as some chemical and
pharmaceutical products, have a relatively slow deterioration process and stable perceived value
during their whole lifetime and must be discarded as soon as the expiration date is reached
(Dillon et al., 2017; Chen, 2018).

The contributions of this chapter are threefold. First, we present and compare four mathe-
matical formulations of the problem, which are solved using branch-and-cut (B&C) algorithms.
We also report an inconsistency in the mathematical formulation presented by Coelho and La-
porte (2014b) and show how we addressed it. Second, we develop a hybrid heuristic method
based on the combination of an iterated local search (ILS) metaheuristic and two mathematical
programming components. To the best of our knowledge, this is the first heuristic algorithm
developed to solve the PIRP proposed by Coelho and Laporte (2014b). Also, we are not aware
of any other specific solution method developed for this problem. Moreover, the models and
methods presented in this chapter can be used as a basis for addressing PIRPs considering other
relevant features, such as stochastic demands as in Crama et al. (2018). Third, we report the
results of extensive computational experiments and introduce new large-sized problem instances.
The results show the different advantages of the proposed formulations and also reveal the ef-
fectiveness of our method when solving the PIRP as well as the basic variant of the IRP. We
also present a further analysis of the robustness of the algorithm’s behavior.

The remaining sections of this chapter are organized as follows. In Section 4.2, we describe
the problem that we address in this chapter. Section 4.3 presents the mathematical formulations
introduced for the problem and the B&C algorithms used to solve them. Then, the hybrid
solution method that we developed is described in detail in Section 4.4. Section 4.5 shows the
computational experiments that we performed with the formulations and the hybrid method.
Finally, in Section 4.6 we conclude the chapter.

4.2 Problem description

In the PIRP (Coelho and Laporte, 2014b), a supplier is responsible for delivering a single
perishable product to a set of customers during a given finite multi-period planning horizon.
The product is assumed to have a fixed shelf-life during which it is usable and after which it
must be discarded due to its perishable nature.

The problem can be defined on a complete undirected graph G = (N , E) where N =
{0, 1, . . . , N} is the vertex set and E = {(i, j): i, j ∈ N , i < j} is the edge set. Vertex 0 represents
the supplier depot which has a homogeneous fleet of K vehicles of capacity Q, denoted by set
K = {1, . . . ,K}. The remaining vertices of set N , denoted by C = {1, . . . , N}, represent the
customers. Therefore, the vertex set N represents all the facilities of the distribution network.

The planning horizon is denoted by a set of time periods T = {1, . . . , T}. The perishable
product under consideration spoils S time periods after becoming available at the supplier and
its age increases by one unit in every time period. Thus, the age of the product belongs to a
discrete set S = {0, 1, . . . , S}. The age of the product defines its value, according to the sales
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revenue uis specified for each unit of age s ∈ S consumed by customer i ∈ C. A travel cost cij is
associated with every edge (i, j) ∈ E and an age-dependent inventory holding cost his is charged
at both the supplier 0 and the customers i ∈ C for each unit of product of age s ∈ S at the end
of every time period. Each customer i ∈ C has a limited storage capacity Ci and each facility
i ∈ N has an initial inventory I0

i0 of fresh product (of age 0) available at the beginning of the
planning horizon (t = 0). Thus, the initial inventory will be of age 1 in the first time period
of the planning horizon (t = 1). Each customer i ∈ C has a known demand dti for the product
in every time period t ∈ T , which is the minimum amount of product that the supplier must
guarantee to be available at the customer at that time period. In addition, the supplier produces
or receives a quantity rt of fresh products (of age 0) in each time period t ∈ T . However, this
quantity is available for delivery only one time period after becoming available at the supplier’s
facility. Table 4.1 summarizes the introduced notation.

Sets
C Set of customers, indexed by i, j
N Set of facilities, indexed by i, j {0 : depot}
E Set of edges, indexed by (i, j)
T Set of time periods, indexed by t,m, p
S Set of ages of the product, indexed by s
K Set of vehicles, indexed by k

Parameters
uis Revenue for product of age s at customer i
his Inventory holding cost for product of age s at facility i
cij Transportation cost between facilities i and j
dti Demand of customer i in time period t
rt Amount made available at the supplier in period t
Ci Storage capacity of customer i
I0
i0 Initial inventory at facility i
S Maximum age of the product
Q Capacity of the vehicles

Table 4.1: Sets and parameters of the problem

To illustrate the aging process of the inventory during the planning horizon, Figure 4.1
shows an example of the evolution of the end-of-period inventory for a given customer. Assume
a maximum age of two time periods (S = 2), no consumptions during the planning horizon and
two deliveries from the supplier of 70 and 50 units of age 1 (s = 1) in time periods two and
three, respectively. The initial inventory of the customer consists of 100 units (s = 0 at t = 0),
which become of age 1 in the first time period (s = 1 at t = 1) and then of age 2 in the second
time period (s = 2 at t = 2) of the planning horizon. Notice that these 100 units of the product
reached the maximum age (s = S = 2) in time period 2, in which they are still usable to satisfy
potential demand in period 2. These units of maximum age will still be held in inventory at the
end of period 2, but they will be discarded in period 3 and hence do not appear in the inventory
in time period 3. Similarly, the amount received in t = 2, which was of age 1 (s = 1), becomes
of age 2 (s = 2) in time period 3, reaching the maximum age but still being usable to satisfy
potential demand in period 3. This amount will be discarded in period 4 and will not be in the
usable inventory from time period 4 onwards.
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Figure 4.1: Aging process of the inventory at a customer in the PIRP

The PIRP consists of determining the time periods in which the customers will be visited;
the quantity of product of each available age that will be delivered in every visit; the quantity
of product of each available age that will be used to satisfy the demand; and the delivery routes
to perform those visits. The objective is to maximize the total profit, given by the sales revenue
minus the sum of inventory holding and routing costs. The holding costs are charged on the
inventories at the end of each time period at both the supplier and customers. We consider that
products of different ages share the same joint holding space at all facilities. It is also assumed
that the supplier holding capacity is unbounded. In addition, according to the usual practice
in the literature, we assume that the customers who receive a delivery in a given time period
can use this to fulfill the demand in the same time period. As in Coelho and Laporte (2014b),
we assume that the product that has reached its maximum age (s = S) at the end of a time
period, will not go into the regular storage area, but will be kept separately in inventory to be
discarded in the next period. Thus, these amounts incur the inventory holding costs but do not
limit the quantity that the customer can receive in the next time period.

4.3 Mathematical formulations

This section presents the mathematical formulations we introduce for the PIRP. First, we present
a corrected version of the arc-based formulation introduced by Coelho and Laporte (2014b) and
show why there is an inconsistency in their formulation. Then, in the subsequent sections we
present several reformulations of the problem.

4.3.1 Arc-based formulation

To formulate the PIRP using arc variables as in Coelho and Laporte (2014b), consider the
following notation. First, we introduce the set St = {s ∈ S: 1 ≤ s ≤ t}, which is the subset of
product ages that can be available at all facilities in time period t. This set indicates the ages
that can be delivered by the supplier in each time period and also specifies the ages that can be
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used to satisfy the demand of the customer in the given time period. Notice that this set does
not contain age 0, which is also part of the ages set S and is available at the supplier in each
time period, given that the supplier never delivers products of age 0 to the customers because
the amount made available at the supplier facility in a certain period can only be delivered in
the following period. Also, let Ui = min{Q,Ci} be an upper bound on the amount that can be
delivered to customer i in time period t. Finally, consider the following decision variables:

xktij ∈ {0, 1, 2} : number of times vehicle k ∈ K traverses edge (i, j) ∈ E in time period t ∈ T ;

ykti ∈ {0, 1} : 1 if facility i ∈ N is visited by vehicle k ∈ K in period t ∈ T , 0 otherwise;

Itis ≥ 0 : inventory of age s ∈ S at facility i ∈ N at the end of time period t ∈ T ;

qktis ≥ 0 : quantity of product of age s ∈ S delivered to customer i ∈ C by vehicle k ∈ K

in period t ∈ T ;

wtis ≥ 0 : quantity of product of age s ∈ S used to fulfill the demand of customer i ∈ C

in period t ∈ T .

Given these variables, the arc-based (AB) formulation of the problem can be stated as:

max
∑
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∑
t∈T

∑
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t
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s.t. It0s = rt t ∈ T , s = 0, (4.2)
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∑
i∈C

∑
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qktis ≤ Qykt0 k ∈ K, t ∈ T , (4.8)

∑
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∑

j∈N :j>i
xktij = 2ykti i ∈ N , k ∈ K, t ∈ T , (4.9)
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∑
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ykti ≤ 1 i ∈ C, t ∈ T , (4.11)

Itis ≥ 0 i ∈ N , t ∈ T , s ∈ St, (4.12)

qktis ≥ 0 i ∈ C, k ∈ K, t ∈ T , s ∈ St, (4.13)

wtis ≥ 0 i ∈ C, t ∈ T , s ∈ St, (4.14)



64 Formulations and solution methods for an IRP with perishable products

ykti ∈ {0, 1} i ∈ N , k ∈ K, t ∈ T , (4.15)

xktij ∈ {0, 1} (i, j) ∈ E : i 6= 0, k ∈ K, t ∈ T , (4.16)

xktij ∈ {0, 1, 2} (i, j) ∈ E : i = 0, k ∈ K, t ∈ T . (4.17)

The objective function (4.1) consists of maximizing the total profit, given by the total rev-
enue minus the sum of transportation and inventory holding costs. The last term of the objective
function accounts for the inventory holding cost incurred by the amount of fresh product made
available at the supplier in each time period of the planning horizon. This term can be ignored as
it is a constant, but for the sake of completeness, we decided to keep it in the objective function.
Constraints (4.2)-(4.3) define the inventory conservation at the supplier, where the first con-
straint set explicitly defines the inventory of age 0 in each time period and the second constraint
set defines the inventory for ages in set St. Constraints (4.4) define the inventory conservation
at the customers. Constraints (4.5) guarantee the fulfillment of the customer demands, which
can be done with products of different ages (but only with the ages that are available in the
time period of the demand). Constraints (4.6) impose that the inventory level after delivery at
the customer facilities cannot exceed their storage capacity. Notice that products of different
ages share the same storage space. Also, note that products of age S still available at the end of
time period t− 1 will not enter into the storage space and hence do not limit the amount that
can be delivered in period t.

Constraints (4.7) permit a vehicle to perform a delivery to a specific customer only if this
customer is visited by the vehicle. Constraints (4.8) guarantee that the capacity of each vehicle
is respected. Constraints (4.9) ensure the flow conservation. Constraints (4.10) are subtour
elimination constraints (SECs). Constraints (4.11) impose that each customer can be visited
at most once in each time period. Finally, the domain of the decision variables is defined in
constraints (4.12)-(4.17). Notice that when i 6= 0 and j > i, xktij can only take the values 0 or 1;
if i = 0, then xktij can also be equal to 2, indicating that vehicle k makes a round trip between the
depot and customer j in time period t. It is worth mentioning that other works in the literature
have also considered delivery and inventory variables that are discretized by the different ages
of the product (e.g., Rohmer et al., 2019).

This formulation has two main differences with respect to the one proposed by Coelho and
Laporte (2014b). First of all, in their formulation, sums over variables of different ages (as in
constraints (4.5)-(4.8) and in the objective function) consider the whole set of ages S, instead
of the subset St, which we introduce here. Second, the authors define inventory conservation
constraints for products of age 0 for the customers (in the form Iti0 =

∑
k∈K q

kt
i0 − dti0, ∀i ∈

C, t ∈ T ), although the supplier cannot deliver these products and the customers never receive
products of age 0, according to the assumptions of the problem as defined by Coelho and
Laporte (2014b) via their supplier inventory constraints. These two differences can lead to an
internal inconsistency in their formulation. More specifically, in the Coelho and Laporte (2014b)
formulation, the variable qkti0 is defined, but only appears in the inventory conservation constraint
for products of age 0 at the customers. Furthermore, their demand fulfillment constraints
enable the satisfaction of the demand using products of age 0. As a result, the solutions of
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their formulation can have consumptions (wtis) and deliveries (qtis) of products of age 0 without
subtracting these amounts from the supplier’s inventory. This can be beneficial in a solution
because the products of age 0 have a high revenue in the instances proposed by those authors.
Notice that if deliveries of products of age 0 were to be allowed, the term

∑
i∈C
∑
k∈K q

kt
i0 should

be subtracted from the right-hand side of constraints (4.2) and the set St should include 0.

4.3.2 Transportation formulation I

The first reformulation we propose uses decision variables that explicitly indicate the detailed
use of the deliveries of each age, i.e., the time periods in which the delivery will cover all or
part of the demand, as in the facility location formulation of the single item uncapacitated lot
sizing problem, introduced by Krarup and Bilde (1977). For this, we introduce some additional
notation. Let T ts = min{T, t− s+ S} be the last time period in which a product that is of age
s in time period t can be used to satisfy any demand. We also consider an additional fictitious
time period T + 1 in order to handle inventories at the end of the planning horizon. Consider
the following decision variables:

qktmis ≥ 0 : quantity of product of age s ∈ S delivered to customer i ∈ C by vehicle k ∈ K

in period t ∈ T to cover the demand of period m ∈ {t, . . . , T ts + 1};

bti ≥ 0 : amount of the initial inventory of customer i ∈ C used to fulfill its own demand

in time period t ∈ T .

Note that in the definition of the variable qktmis , the index age (s) refers to the age of the
product at the time of the delivery. Notice that when m = T + 1 in the delivery variables (q),
it indicates that the quantity delivered will remain in the customer inventory at the end of the
planning horizon. Also, when m = (t− s+ S) + 1 it means that the product will spoil and will
be discarded at the customer facility in period m. Using the introduced notation and variables,
the transportation formulation (TP-I) can be stated as follows:

max (4.1)

s.t. It0s = rt−s −
∑
i∈C

∑
k∈K

s−1∑
t′=0

T t
s +1∑

m=t−t′
qk,t−t

′,m
i,s−t′ t ∈ T , s ∈ St, (4.18)

Itis =
∑
k∈K

s−1∑
t′=0

T t
s +1∑

m=t+1
qk,t−t

′,m
i,s−t′ i ∈ C, t ∈ T , s ∈ St : s < t, (4.19)

Itis =
∑
k∈K

s−1∑
t′=0

T t
s +1∑

m=t+1
qk,t−t

′,m
i,s−t′ + I0

i0 −
t∑

t′=1
bt
′
i i ∈ C, t ∈ T : t ≤ S, s = t, (4.20)

wtis =
∑
k∈K

s−1∑
t′=0

qk,t−t
′,t

i,s−t′ i ∈ C, t ∈ T , s ∈ St : s < t, (4.21)

wtis =
∑
k∈K

s−1∑
t′=0

qk,t−t
′,t

i,s−t′ + bti i ∈ C, t ∈ T : t ≤ S, s = t, (4.22)
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∑
s∈St−1\{S}

It−1
is +

∑
k∈K

∑
s∈St

T t
s +1∑
m=t

qktmis ≤ Ci i ∈ C, t ∈ T , (4.23)

∑
s∈St

T t
s +1∑
m=t

qktmis ≤ Uiykti i ∈ C, k ∈ K, t ∈ T , (4.24)

∑
i∈C

∑
s∈St

T t
s +1∑
m=t

qktmis ≤ Qykt0 k ∈ K, t ∈ T , (4.25)

qktmis ≥ 0 i ∈ C, k ∈ K, t ∈ T , s ∈ St,m ∈ {t, . . . , T ts + 1}, (4.26)

bti ≥ 0 i ∈ C, t ∈ T : t ≤ S, (4.27)

(4.5), (4.9)-(4.12) and (4.14)-(4.17).

Constraints (4.18) define the inventory at the supplier for all time periods and available ages
(where r0 = I0

00). Constraints (4.19)-(4.20) define the inventory at the customers for all the
different ages of the product, with (4.20) including the amount from the initial inventory that is
not used to satisfy any demand. These constraints can be easily generalized for the case when
the initial inventory is composed of products of different ages. Constraints (4.21)-(4.22) define
the amount of product of each different age used to fulfill the demand of the customers. Notice
that constraints (4.22) include the demand that can be fulfilled using the initial inventory as well.
Constraints (4.23) impose that the inventory level after delivery at the customers cannot exceed
their storage capacity. Constraints (4.24) allow a vehicle to perform a delivery to a specific
customer only if this customer is visited by the vehicle. Constraints (4.25) guarantee that the
capacity of each vehicle is respected. Finally, constraints (4.26)-(4.27) define the domain of the
new decision variables. It is worth mentioning that this formulation does not correspond to the
application of Krarup and Bilde’s classical reformulation. Such case corresponds to formulation
shown in Section 4.3.4.

4.3.3 Formulation TP-I without a vehicle index

The previous formulation can be reformulated by dropping the vehicle index of the variables,
as we consider a homogeneous vehicle fleet (in both capacity and travel cost terms) and assume
at most one visit to each customer in each time period. Thus, for this formulation let xtij be
an integer variable indicating the number of times a vehicle traverses edge (i, j) ∈ E in time
period t ∈ T , yti a binary variable indicating whether or not customer i ∈ C is visited in period
t ∈ T , yt0 an integer variable indicating the number of vehicles used in period t ∈ T , and qtmis
a non-negative continuous variable indicating the amount of product of age s ∈ S delivered to
customer i ∈ C in time period t ∈ T to cover the demand of period m ∈ {t, . . . , T ts + 1}. The
formulation, which we will refer to as TP-I-nk, can be stated as:

max
∑
i∈C

∑
t∈T

∑
s∈St

uisw
t
is −

∑
(i,j)∈E

∑
t∈T

cijx
t
ij −

∑
i∈N

∑
t∈T

∑
s∈St

hisI
t
is −

∑
t∈T

h00r
t (4.28)
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s.t. It0s = rt−s −
∑
i∈C

s−1∑
t′=0

T t
s +1∑

m=t−t′
qt−t

′,m
i,s−t′ t ∈ T , s ∈ St, (4.29)

Itis =
s−1∑
t′=0

T t
s +1∑

m=t+1
qt−t

′,m
i,s−t′ i ∈ C, t ∈ T , s ∈ St : s < t, (4.30)

Itis =
s−1∑
t′=0

T t
s +1∑

m=t+1
qt−t

′,m
i,s−t′ + I0

i0 −
t∑

t′=1
bt
′
i i ∈ C, t ∈ T : t ≤ S, s = t, (4.31)

wtis =
s−1∑
t′=0

qt−t
′,t

i,s−t′ i ∈ C, t ∈ T , s ∈ St : s < t, (4.32)

wtis =
s−1∑
t′=0

qt−t
′,t

i,s−t′ + bti i ∈ C, t ∈ T : t ≤ S, s = t, (4.33)

∑
s∈St−1\{S}

It−1
is +

∑
s∈St

T t
s +1∑
m=t

qtmis ≤ Ci i ∈ C, t ∈ T , (4.34)

∑
s∈St

T t
s +1∑
m=t

qtmis ≤ Uiyti i ∈ C, t ∈ T , (4.35)

∑
j∈N :j<i

xtji +
∑

j∈N :j>i
xtij = 2yti i ∈ N , t ∈ T , (4.36)

Q
∑
i∈B

∑
j∈B:j>i

xtij ≤
∑
i∈B

(Qyti −
∑
s∈St

T t
s +1∑
m=t

qtmis ) ∀B ⊆ C, |B|≥ 2, t ∈ T , (4.37)

yt0 ≤ K t ∈ T , (4.38)

qtmis ≥ 0 i ∈ C, t ∈ T , s ∈ St,m ∈ {t, . . . , T ts + 1}, (4.39)

yt0 ∈ Z t ∈ T , (4.40)

yti ∈ {0, 1} i ∈ C, t ∈ T , (4.41)

xtij ∈ {0, 1} (i, j) ∈ E : i 6= 0, t ∈ T , (4.42)

xtij ∈ {0, 1, 2} (i, j) ∈ E : i = 0, t ∈ T , (4.43)

(4.5), (4.12), (4.14) and (4.27).

The objective function (4.28) consists of maximizing the total profit. Constraints (4.29) and
(4.30)-(4.31) define the inventory level for the different ages of the product at the supplier and
customers, respectively, where r0 = I0

00 in constraints (4.29). Constraints (4.32)-(4.33) define
the amount of each different age used to fulfill the demand of the customers. Constraints (4.34)
impose the maximum storage capacity at the customers. Constraints (4.35) allow to perform
deliveries to a specific customer only if it is visited by a vehicle. Constraints (4.36) ensure the
conservation of the flow. Constraints (4.37) are SECs and ensure that the vehicle capacities are
respected as well. Constraints (4.38) limit the number of vehicles that can be used in each time
period. Constraints (4.39)-(4.43) define the domain of the decision variables.

Notice that, as pointed out by Adulyasak et al. (2014a), if one divides the inequalities (4.37)
by Q, they have a form similar to the generalized fractional SECs (GFSECs) for the vehicle
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routing problem (VRP) (Toth and Vigo, 2002). However, GFSECs in the form (4.37) are
numerically more stable than the original GFSECs, which contain a fractional right-hand side.

4.3.4 Transportation formulation II

This reformulation, similar to TP-I, uses decision variables that explicitly indicate the detailed
use of the deliveries of each age. However, in this case we consider implicitly the age of the
product being delivered. Thus, the delivery variable is defined as follows:

qktpmi ≥ 0 : amount of product that was made available at the supplier in period t ∈ {0} ∪ T

and was delivered to customer i ∈ C by vehicle k ∈ K in period p ∈ T to cover

the demand of period m ∈ {p, . . . , T t0 + 1}.

Note that in the definition of the variable qktpmi , the age of the product at delivery (con-
sumption) is given by the difference between indices p (m) and t. Notice that when t = 0, the
amount delivered comes from the initial inventory of the supplier. Notice also that, analogously
to formulation TP-I, when m = T + 1 in the delivery variables (q) the quantity delivered will
remain in the customer inventory at the end of the planning horizon and when m = t + S + 1
the product delivered will spoil and be discarded at the customer facility in period m. For-
mulations using similar facility location-based variables were presented by Neves-Moreira et al.
(2019) for a PRP with perishable products and by Solyalıand Süral (2012) for the one-warehouse
multi-retailer problem. The formulation, which we will refer to as TP-II, can be stated as:

max (4.1)

s.t. It0s = rt−s −
∑
i∈C

∑
k∈K

t∑
p=t−s+1

T t
s +1∑
m=p

qk,t−s,p,mi t ∈ T , s ∈ St, (4.44)

Itis =
∑
k∈K

t∑
p=t−s+1

T t
s +1∑

m=t+1
qk,t−s,p,mi i ∈ C, t ∈ T , s ∈ St : s < t, (4.45)

Itis =
∑
k∈K

t∑
p=1

T t
s +1∑

m=t+1
qk0pm
i + I0

i0 −
t∑

t′=1
bt
′
i i ∈ C, t ∈ T : t ≤ S, s = t, (4.46)

wtis =
∑
k∈K

t∑
p=t−s+1

qk,t−s,p,ti i ∈ C, t ∈ T , s ∈ St : s < t, (4.47)

wtis =
∑
k∈K

t∑
p=1

qk0pt
i + bti i ∈ C, t ∈ T : t ≤ S, s = t, (4.48)

∑
s∈St−1\{S}

It−1
is +

∑
k∈K

∑
s∈St

T t
s +1∑
m=t

qk,t−s,tmi ≤ Ci i ∈ C, t ∈ T , (4.49)

∑
s∈St

T t
s +1∑
m=t

qk,t−s,tmi ≤ Uiykti i ∈ C, k ∈ K, t ∈ T , (4.50)
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∑
i∈C

∑
s∈St

T t
s +1∑
m=t

qk,t−s,tmi ≤ Qykt0 k ∈ K, t ∈ T , (4.51)

qktpmi ≥ 0 i ∈ C, k ∈ K, t ∈ {0} ∪ T \{T},

p ∈ {t+ 1, . . . , T t0},m ∈ {p, . . . , T t0 + 1}, (4.52)

(4.5), (4.9)-(4.12), (4.14)-(4.17) and (4.27).

Constraints (4.44) calculate the inventory at the supplier for the available ages, where r0 =
I0

00. Constraints (4.45)-(4.46) define the inventory at the customers for all the different ages of
the product. Constraints (4.47)-(4.48) state that the demand of the customers can be satisfied
using products of all the available ages. Notice that constraints (4.48) include the demand that
can be fulfilled using the initial inventory as well. Constraints (4.49) impose the maximum
storage capacity after delivery at the customer facilities. Constraints (4.50) allow deliveries to
a customer by a specific vehicle only if it is visited by the same vehicle. Constraints (4.51)
guarantee that the capacity of each vehicle is respected. Finally, constraints (4.52) define the
domain of the new decision variable.

4.3.5 Formulation TP-II without a vehicle index

As in Section 4.3.3, an additional formulation can be obtained by dropping the vehicle index of
the variables for cases in which the vehicle fleet is considered to be homogeneous and at most a
single visit is allowed to each customer in each time period. For this formulation, let qtpmi be a
non-negative continuous variable indicating the amount of product that was made available at
the supplier in time period t ∈ {0}∪T and that was delivered to customer i ∈ C in period p ∈ T
to cover the demand of period m ∈ {p, . . . , T t0 + 1}. Then, using this variable the formulation
(TP-II-nk) can be stated as:

max (4.28)

s.t. It0s = rt−s −
∑
i∈C

t∑
p=t−s+1

T t
s +1∑
m=p

qt−s,p,mi t ∈ T , s ∈ St, (4.53)

Itis =
t∑

p=t−s+1

T t
s +1∑

m=t+1
qt−s,p,mi i ∈ C, t ∈ T , s ∈ St : s < t, (4.54)

Itis =
t∑

p=1

T t
s +1∑

m=t+1
q0pm
i + I0

i0 −
t∑

t′=1
bt
′
i i ∈ C, t ∈ T : t ≤ S, s = t, (4.55)

wtis =
t∑

p=t−s+1
qt−s,p,ti i ∈ C, t ∈ T , s ∈ St : s < t, (4.56)

wtis =
t∑

p=1
q0pt
i + bti i ∈ C, t ∈ T : t ≤ S, s = t, (4.57)

∑
s∈St−1\{S}

It−1
is +

∑
s∈St

T t
s +1∑
m=t

qt−s,tmi ≤ Ci i ∈ C, t ∈ T , (4.58)
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∑
s∈St

T t
s +1∑
m=t

qt−s,tmi ≤ Uiyti i ∈ C, t ∈ T , (4.59)

Q
∑
i∈B

∑
j∈B:j>i

xtij ≤
∑
i∈B

(Qyti −
∑
s∈St

T t
s +1∑
m=t

qt−s,tmi ) ∀B ⊆ C, |B|≥ 2, t ∈ T , (4.60)

qtpmi ≥ 0 i ∈ C, t ∈ {0} ∪ T \{T}, p ∈ {t+ 1, . . . , T t0},m ∈ {p, . . . , T t0 + 1}, (4.61)

(4.5), (4.12), (4.14), (4.27), (4.36), (4.38) and (4.40)-(4.43).

Constraints (4.53) and (4.54)-(4.55) define the inventory levels of the available ages of the
product at the supplier and customers, respectively, where r0 = I0

00 in constraints (4.53). Con-
straints (4.56)-(4.57) specify that the demand of the customers can be satisfied using products of
all the available ages. Constraints (4.58) enforce the maximum storage capacity at the customer
facilities. Constraints (4.59) allow deliveries to customers in a given time period if they are
visited by a vehicle in the same time period. Constraints (4.60) are the GFSECs and guaran-
tee that the capacity of each vehicle is respected as well. Finally, constraints (4.61) define the
domain of the new decision variable.

4.3.6 Branch-and-cut algorithms

Given that all the presented formulations contain an exponentially large number of SECs, we
must apply a B&C algorithm to solve them. These constraints are dropped from the formulations
and added in an iterative fashion every time they are violated at the nodes of the branch-and-
bound (B&B) tree. In this section we provide the details of our B&C approaches for both the
formulations with and without a vehicle index as well as further improvements.

4.3.6.1 Branch-and-cut for the vehicle index formulations

To solve the formulations with a vehicle index, we use an exact separation algorithm that solves
a series of minimum s − t cut problems to detect violated SECs for each vehicle in each time
period of the planning horizon. At a given node of the B&B tree, let ȳkti and x̄ktij denote the
values of the visit (y) and flow variables (x) of the solution, respectively. A graph for vehicle
k in time period t is constructed from the set of nodes where ȳkti > 0, setting the weights of
the graph edges to x̄ktij , ∀(i, j) ∈ E . Then, for each customer node of the constructed graph, we
solve a minimum s − t cut problem, setting the supplier node as the source node (s) and the
customer node as the sink node (t). A violated SEC is identified if the capacity of the minimum
cut is less than 2ȳkti (Adulyasak et al., 2014a). If a subtour on a set of nodes B ⊆ C is found for
vehicle k in period t, we add constraints (4.10) with ` = arg maxi∈B{ȳkti } to the formulation, for
all vehicles and time periods of the planning horizon. To solve the minimum s− t cut problem,
we used the Concorde solver (Applegate et al., 2018).

These SECs are separated only at the root node and then every time an integer solution is
found at a node of the B&B tree, to avoid generating too many cuts in the tree. Notice that
constraints (4.10) can be added to the formulation in many different ways, among which we
tested: adding the cut only for the specific vehicle and time period for which it was violated;
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adding the cut for all vehicles in the same time period in which the violated cut was identified;
and, finally, adding the cut for all vehicles and time periods. The latter strategy resulted in a
slightly better performance. Regarding the selection of the customer ` ∈ B for which the cut
would be set, we tried including the cut only for the customer ` such that ` = arg maxi∈B{ȳkti }
and, for every customer in the identified subset of customers B. In this case, the former strategy
resulted in a better performance of the B&C algorithms.

4.3.6.2 Branch-and-cut for the formulations without a vehicle index

To separate GFSECs (4.37) and (4.60) of formulations TP-I-nk and TP-II-nk, respectively, we
use the separation package developed by Lysgaard et al. (2004) for the VRP, as in Adulyasak
et al. (2014a). This algorithm consists of four heuristic algorithms, which are applied sequen-
tially. One of these heuristics is an exact separation algorithm when all the flow variables (x)
take integer values.

For a given solution, we call the algorithm for each time period t ∈ T . At a given node of
the B&B tree, let ȳkti , x̄ktij and q̄tmis (q̄tpmi ) denote the values of variables ykti , xktij and qtmis (qtpmi )
for the formulation TP-I-nk (TP-II-nk). The input required by the separation package (a VRP
solution) in period t is constructed considering customer nodes with ȳkti > 0, setting the weight
of each edge (i, j) to x̄ktij and setting the delivery quantity for customer i to

∑
s∈St

∑T t
s +1
m=t q

tm
is

and to
∑
s∈St

∑T t
s +1
m=t q

t−s,tm
i for the formulations TP-I-nk and TP-II-nk, respectively.

Similar to the formulations with a vehicle index, we separate GFSECs only at the root
node and then whenever an integer solution is found at a given node of the B&B tree to avoid
generating too many cuts. Every time we identify a violated cut, we add the corresponding
constraint for all time periods. In addition, to further strengthen formulations TP-I-nk and
TP-II-nk, we included the following SECs, as used in the formulations with a vehicle index (AB,
TP-I, TP-II):

∑
i∈B

∑
j∈B:j>i

xtij ≤
∑
i∈B

yki − yk` ∀B ⊆ C, |B|≥ 2, k ∈ K, ` ∈ B. (4.62)

Using these together with GFSECs resulted in an improved performance of the formulations
without a vehicle index. These last SECs are separated as described in Section 4.3.6.1.

4.3.7 Valid inequalities

We can further strengthen the formulations (AB, TP-I, TP-II, TP-I-nk and TP-II-nk) by includ-
ing some valid inequalities. All these inequalities have been used in previous works (Archetti
et al., 2007; Engineer et al., 2012; Coelho and Laporte, 2014a; Desaulniers et al., 2016), and can
also be used in our formulations. Constraints (4.63) and (4.64) enforce the relation between the
routing variables (x) and the visit variables (y):

xkt0i ≤ 2ykti i ∈ C, k ∈ K, t ∈ T , (4.63)

xktij ≤ ykti i, j ∈ E : i 6= 0, k ∈ K, t ∈ T . (4.64)
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The respective counterparts of these inequalities for the formulations without a vehicle index
are obtained by dropping the vehicle index from the variables.

Symmetry breaking constraints can be included in the vehicle index formulations in the
presence of identical vehicles, as follows:

ykti ≤
∑

j∈C:j<i
yk−1,t
j i ∈ C\{1}, k ∈ K\{1}, t ∈ T , (4.65)

ykt0 ≤ y
k−1,t
0 k ∈ K\{1}, t ∈ T . (4.66)

We can use three additional sets of valid inequalities. The first set corresponds to inequalities
on the minimum number of visits to a single customer up to a given time period. Let Īti =
max

{
0, I0

i0 −
∑t
p=1 d

p
i

}
be the minimum amount from the initial inventory that must remain at

customer i at the end of time period t, with Īti = 0,∀i ∈ C, t ∈ T , t > S and Ī0
i = I0

i0. Let d̄ti be
the minimum residual demand of customer i in time period t, where d̄ti = max

{
0, dti − Īt−1

i

}
,

∀i ∈ C, t ∈ T , t ≤ S and d̄ti = dti, ∀i ∈ C, t ∈ T , t > S. Then, considering all the residual demands
of a customer i up to a given time period t and the maximum size of a single delivery to the
customer, it is possible to compute a lower bound on the number of visits to the customer up
to that time period. This lower bound is given by LB1ti = d

∑t
p=1 d̄

p
i /Uie. Now, it follows that

the following inequalities are valid:

t∑
p=1

∑
k∈K

ykpi ≥ LB1ti, i ∈ C, t ∈ T . (4.67)

For the formulations without a vehicle index, the left-hand side of the inequalities is replaced
by the term

∑t
p=1 y

p
i .

The second set corresponds to inequalities on the minimum number of routes up to a given
time period. These can be obtained by summing over the residual demands of all the customers
up to a time period. Thus, a lower bound on the minimum number of routes to serve the residual
demands of all customers up to time period t is given by LB2t = d

∑
i∈C
∑t
p=1 d̄

p
i /Qe. Then, the

following inequalities are valid:

t∑
p=1

∑
k∈K

ykp0 ≥ LB2t, t ∈ T . (4.68)

Analogously, for the formulations without a vehicle index, the left-hand side of the inequal-
ities becomes

∑t
p=1 y

p
0 .

The final set generalizes inequalities (4.67) by considering any time interval [t1, t2], ∀t1, t2 ∈
T , 1 < t1 < t2 ≤ T . Let d̄t1t2i =

∑t2
t=t1 d

t
i denote the sum of demands over time periods t1 to

t2 and Iti =
∑
s∈St Itis denote the sum of inventory variables for customer i ∈ C in time period

t ∈ T . Then ⌈
d̄t1t2i − It1−1

i

Ui

⌉
is a lower bound on the number of visits to customer i ∈ C from t1 to t2. Notice that for t1 = 1
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the resulting inequalities correspond to (4.67). For t1 > 1 it results in a nonlinear bound given
the presence of the inventory variables. However, as shown by Engineer et al. (2012), linear
inequalities can be derived by appropriately bounding It1−1

i . Assume that It1−1
i = Ci − dt1−1

i ,
i.e., the inventory at the end of period t1 − 1 is at its maximum level. Then, given that It1−1

i ≤
Ci − dt1−1

i ,
t2∑
t=t1

∑
k∈K

ykti ≥
⌈
d̄t1t2i − (Ci − dt1−1

i )
Ui

⌉
i ∈ C, 1 < t1 < t2 ≤ T (4.69)

is a valid inequality. Similarly, for the formulations without a vehicle index, the left-hand side
of (4.69) is changed to

∑t2
t=t1 y

t
i .

4.4 Optimization-based iterated local search

In this section, we present the hybrid algorithm that we propose to solve the PIRP. This algo-
rithm is based on the ILS metaheuristic for the basic variant of the IRP presented in Chapter 3.
The basic idea of ILS is to iteratively apply a local search algorithm to solutions resulting from
the perturbation of the previously visited local optima, which leads to a randomized search in
the space of local optimal solutions (Lourenço et al., 2003). The ILS metaheuristic presented
in Chapter 3 uses a multi-start randomized variable neighborhood descent (RVND) as the local
search component and a multi-operator algorithm as perturbation mechanism. However, since
the PIRP and the basic variant of the IRP have some fundamental differences (e.g., age-specific
delivery, consumption and inventory decisions in the PIRP), several non-trivial adjustments had
to be performed. First of all, in the proposed method the various decisions of the problem
are handled by different components. On the one hand, routing decisions (x) are managed by
the local search phase of the method while the visit variables (y) are mostly handled in the
perturbation phase. On the other hand, a multi-commodity flow (MCF) problem formulation is
used to determine the optimal values of the continuous variables (q, w and I) for a given set of
visit variables (y). Additionally, a MIP formulation that can remove and insert customers from
a solution given as input is used as a solution improvement (SI) step in the final phase of the
method. An overview of the proposed method is shown in Algorithm 4.1.

The algorithm starts with an initial feasible solution (line 2), which is generated using the
construction heuristic that will be described in Section 4.4.1. If the construction heuristic cannot
find a feasible solution, the algorithm stops; otherwise, the search process continues. A RVND
heuristic is used as local search algorithm (lines 4 and 7), and a multi-operator algorithm is
used as a perturbation mechanism (line 6). The continuous variables (deliveries, consumptions
and inventories) of the solution are then optimized by solving a MCF formulation (line 8). The
acceptance criterion admits the resulting solution only if it is better than the current best solution
(line 9). Finally, after reaching a stopping criterion, the method applies the SI formulation (line
11). All components of the hybrid method are described in detail in the following sections.

In the description of the hybrid method, we use the subsequent notation. Given a solution
O, we denote by Ītis, q̄ktis , w̄tis and ȳkti the values of its inventory, delivery, consumption and visit
variables, respectively. In addition,
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Algorithm 4.1: Optimization-based iterated local search
1 begin
2 O0 ← construction_heuristic();
3 if O0 6= ∅ then
4 O∗ ← rvnd_heuristic(O0);
5 while stop criterion is not met do
6 O

′ ← perturbation(O∗);
7 O

′ ← rvnd_heuristic(O′);
8 O

′ ← optimize_amounts(O′);
9 if f(O′) > f(O∗) then O∗ ← O

′ ;
10 end
11 O∗ ← SI_formulation(O∗);
12 end
13 end

• R(O) is the set of all vehicle routes of the solution;

• Ct(O) = {i ∈ C:
∑
k∈K ȳ

kt
i = 1} is the set of customers visited by routes of the solution in

time period t;

• Ti(O) = {t ∈ T :
∑
k∈K ȳ

kt
i = 1} is the set of time periods in which customer i is visited by

routes of the solution.

Also, given a route r ∈ R(O) of the solution,

• t(r) is the time period of the route; and

• C(r) is the set of customers visited by the route.

4.4.1 A construction heuristic for the PIRP

To obtain feasible solutions, we devised a decomposition construction heuristic which iteratively
separates the decisions of the problem into two phases. In the first phase, the heuristic defines
the size of the potential delivery to each customer and assigns a priority to each one of them.
Then, in the second phase, feasible delivery routes are designed to deliver the amounts set in
the first phase.

The heuristic starts by using the initial inventory of each customer to satisfy the maximum
number of demands. First, let Ht

i be the usable amount remaining from the initial inventory at
customer i ∈ C at the end of period t ∈ T :

Ht
i = max

0, I0
i0 −

t∑
p=1

dpi

 ,
with H0

i = I0
i0 and Ht

i = 0 for t ≥ S.
The values for the consumption variables (wtis) are set as follows:

w̄tis =

min{Ht−1
i , dti} if t ≤ S, s = t,

0 otherwise,
∀i ∈ C, t ∈ T , s ≤ St. (4.70)
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Then, the heuristic computes the aggregated inventory levels Iti for each customer i ∈ C at
the end of each time period t ∈ T given the initial consumptions, as follows:

Iti =

I
0
i0 −

∑t
p=1 w̄

p
ip if t < S,

0 otherwise,
∀i ∈ C, t ∈ T . (4.71)

These inventory levels will be updated at the end of each iteration based on the deliveries
and consumptions. The aggregated inventory levels are used to determine the delivery sizes
in each time period given that the amount a customer can receive is bounded by the holding
capacity and the aggregated inventory level at the end of the previous time period. Notice that,
initially, Iti = 0 for t = S since the initial inventory will spoil at the end of this time period and,
as stated in Section 4.2, the spoiled inventory does not limit the amount that the customer can
receive in the next period.

Using these values, the heuristic performs one iteration for each time period t ∈ T , starting
from t = 1. In the first phase of iteration t, the heuristic sets a potential delivery quantity to
each customer by computing the difference between its capacity and the aggregated inventory
level in the previous time period, also respecting the vehicle capacity. To simplify the heuristic,
we apply a greedy approach in which all the deliveries are of the freshest possible product, which
in our case is product of age s = 1. Therefore, the potential delivery (q̃) to each customer i is
set as:

q̃ti1 = min{ratio_demand× (Ci − It−1
i ), Q}, (4.72)

where ratio_demand ∈ (0, 1] is a parameter that defines the proportion of the maximum possible
quantity that will be actually delivered. Next, the priority πi of customer i is set as the number of
upcoming look_ahead periods (including t) in which its demand is not fully covered yet, i.e., πi
is the number of times in which

∑
s∈Sp w̄

p
is < dpi , for p = t, . . . ,min{T, t+ look_ahead}, ∀i ∈ C.

The value of look_ahead determines how much to look forward in the planning horizon, trying
to anticipate forthcoming stockouts.

After defining these deliveries and priorities, the second phase of iteration t starts. It consists
of determining one or more vehicle routes using a nearest-neighbor insertion heuristic that first
routes customers with higher priority as long as the insertion satisfies the vehicle capacity. At
most K routes can be defined in this phase. Then, given the deliveries actually performed, we
set the values of q̄kti1 and update the values of the consumption (using the first-in first-consumed
(FIFC) rule) and inventory variables. Finally, a new iteration is started for the next period
(t+ 1), until reaching time period T .

A pseudo-code of the heuristic is given in Algorithm 4.2. Since the heuristic runs in a
short time, it was defined inside two outer loops, exploring different values for ratio_demand
and look_ahead, with the aim of finding a reasonably good feasible solution, as in Chapter
3. Furthermore, at the end of the execution of the heuristic, the continuous variables of the
best feasible solution found (if any) are optimized using the MCF formulation of Section 4.4.4.
Finally, as will be shown in Section 4.5, this heuristic was able to find feasible solutions for all
the benchmark instances used in this chapter.
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Algorithm 4.2: Construction heuristic for the PIRP
1 begin
2 O∗ ← ∅;
3 Use initial inventory to set as many consumptions (w̄) as possible, using (4.70);
4 Compute aggregated inventory levels It

i as in (4.71), for all i ∈ C and t ∈ T ;
5 ratio_demand← 1.0;
6 while ratio_demand > 0 do
7 look_ahead← 0;
8 while look_ahead ≤ S do
9 for t ∈ T do

10 for i ∈ C do
11 q̃t

i1 ← min{ratio_demand× (Ci − It−1
i ), Q};

12 πi ← 0;
13 for p = t, . . . ,min{T, t+ look_ahead} do
14 if

∑
s∈Sp w̄

p
is < dp

i then πi ← πi + 1 ;
15 end
16 end
17 Apply a nearest-neighbor insertion heuristic, routing customers with higher πi

first;
18 For all routed customers, set the corresponding q̄kt

i1 values (equal to q̃kt
i1 ) and

compute the corresponding w̄t
is values using the FIFC rule and update Īt

is and It
i ;

19 end
20 Update best feasible solution O∗;
21 look_ahead← look_ahead + 1;
22 end
23 ratio_demand← ratio_demand− 0.1;
24 end
25 if O∗ 6= ∅ then O∗ ← optimize_amounts(O∗) ;
26 end

4.4.2 Randomized variable neighborhood descent heuristic

For the local search procedure of the proposed method, we use a variable neighborhood descent
heuristic (Mladenović and Hansen, 1997) with random neighborhood ordering as in Chapter 3.
In this algorithm, local search operators are selected randomly from a predefined set and applied
to the incumbent solution until none of them can improve it.

In our method, we use the local search phase to handle the routing decisions of the solution.
For this, the RVND heuristic uses the following classical VRP operators: Or-opt-k, k ∈ {1, 2, 3};
Shift(k), k ∈ {1, 2, 3}; Swap(k1, k2), k1, k2 ∈ {1, 2}, k1 ≥ k2; and k-opt, k ∈ {2, 3}. All operators
explore the search space using the first improvement strategy, allowing only feasible solutions in
the search process.

4.4.3 Perturbation mechanism

Since in the PIRP there are different decisions that must be made simultaneously, we designed
a perturbation algorithm that can change multiple attributes of a solution in a single call. The
algorithm uses the following operators to modify the visit and delivery decisions of an input
solution O.
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1. Insert visits: choose randomly a route r ∈ R(O) and customer i such that i /∈ Ct(r)(O).
The customer is inserted into the cheapest insertion position in the route. Then the values
of q̄, w̄ and Ī are re-optimized using the MCF formulation;

2. Remove visits: choose a random route r ∈ R(O) and a customer i ∈ C(r) and then remove
i from r. After that, the values of q̄, w̄ and Ī are re-optimized using the MCF formulation;

3. Move visit: choose a random route r ∈ R(O) and a customer i ∈ C(r) such that |Ti(O)|< T ,
i.e., a customer that is not visited in every time period of the planning horizon. Then, the
visit to i is removed from r and inserted into the cheapest position of a route of a period
p ∈ T \Ti(O), choosing both, p and the route, at random. Finally, the values of q̄, w̄ and
Ī are re-optimized using the MCF formulation;

4. Reduce deliveries: choose a random route r ∈ R(O) and a delivery (of a certain age s) to
a customer i ∈ C(r) such that the amount delivered is not completely consumed by the
customer. This can happen, for instance, when it is profitable to accumulate inventory at
the customer to save holding costs at the supplier. Then, the delivery is reduced by the
amount not consumed by the customer. Both the customer and the delivery to be reduced
are chosen at random.

After applying each operator, the objective function value of the solution is recomputed.
The aim of these operators is twofold. First, helping to determine the periods in which each
customer must be visited and, second, creating slack in the routes for the local search heuris-
tic. In the Remove and Move operators, infeasible solutions are rejected. In such a case, the
operator chooses another customer of the same route. If all customers of the chosen route are
unsuccessfully explored (resulting in infeasible solutions), the operator chooses another route
and the process is applied in the same fashion.

Note that the performance of an ILS-based algorithm is strongly related to the strength of
its perturbation mechanism given that it defines much of the behavior of the method. This
mechanism must be able to diversify the search process without turning it into a randomized
restart search. For this purpose, we use the parameter max_perturb, which defines the maximum
number of elements of the solution that can be changed each time the perturbation mechanism
is called. Thus, similar to the RVND heuristic, our perturbation algorithm can use multiple
operators in a single call, applying one operator at a time (changing at most one element of the
solution) until either the number of changes performed to the solution reaches max_perturb or
none of the operators can change the solution.

4.4.4 Multi-commodity flow (MCF) formulation

Given the values of ȳ from a solution O, one can determine the optimal values for the delivery,
consumption and inventory variables that maximize the total profit by solving the following
MCF problem formulation:

max
∑
i∈C

∑
t∈T

∑
s∈St

uisw
t
is −

∑
i∈N

∑
t∈T

∑
s∈St

hisI
t
is (4.73)
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s.t.
∑
s∈St

qktis ≤ Uiȳkti i ∈ C, k ∈ K, t ∈ T , (4.74)

∑
i∈C

∑
s∈St

qktis ≤ Qȳkt0 k ∈ K, t ∈ T , (4.75)

(4.2)-(4.6) and (4.12)-(4.14),

where ȳkt0 = 1 indicates that vehicle k is used in time period t and ȳkti = 1 indicates that vehicle
k visits customer i in time period t. The objective function (4.73) consists of maximizing the
total profit, given by the total revenue minus the total inventory cost. Constraints (4.74) allow
a vehicle to perform a delivery to a specific customer in a given time period only if the customer
is visited by the vehicle in that time period in the solution O. Finally, constraints (4.75) impose
the vehicle capacity. This linear program (LP) that can be solved using a general-purpose solver.

Notice that empty visits can result from this phase, i.e., cases with
∑
s∈St qktis = 0 and ȳkti = 1

for a given i ∈ C, k ∈ K, t ∈ T . In such a case, the customer is removed from the route and the
objective function value of the solution is updated.

4.4.5 Solution improvement (SI) formulation

As an improvement step, we use a MIP formulation for a customer assignment problem, as in
Archetti et al. (2012). This model can be used to remove and insert customers into a given
solution O. Let ∆kt

i be the savings in the travel cost when customer i is removed from the route
of vehicle k in time period t. This value is computed as chi + cij − chj , where h and j are,
respectively, the predecessor and successor of the customer in the route. We set ∆kt

i as 0 when
the customer is not visited by vehicle k in time period t (i.e., ∆kt

i = 0 if ȳkti = 0). Similarly, let
Γkti be the cost of inserting customer i into its cheapest position in the route of vehicle k in time
period t. Γkti equals 0 for those customers that are already visited by vehicle k in time period
t. The formulation uses two binary decision variables. Let δkti be a binary variable equal to 1 if
and only if customer i is removed from the route of vehicle k in period t, and let γkti be a binary
variable equal to 1 if and only if customer i is inserted into the route of vehicle k in time period
t. Then, the solution improvement formulation can be stated as follows:

max
∑
i∈C

∑
t∈T

∑
s∈St

uisw
t
is −

∑
i∈N

∑
t∈T

∑
s∈St

hisI
t
is

+
∑
i∈C

∑
t∈T

∑
k∈K

∆kt
i δ

kt
i −

∑
i∈C

∑
t∈T

∑
k∈K

Γkti γkti (4.76)

s.t.
∑
s∈St

T t
s +1∑
m=t

qktmis ≤ Ui(ȳkti − δkti + γkti ) i ∈ C, k ∈ K, t ∈ T , (4.77)

∑
i∈C

∑
s∈St

T t
s +1∑
m=t

qktmis ≤ Qȳkt0 k ∈ K, t ∈ T , (4.78)

γkti ≤ 1− ȳkti i ∈ C, k ∈ K, t ∈ T , (4.79)

δkti ≤ ȳkti i ∈ C, k ∈ K, t ∈ T , (4.80)

γkti ≤ ȳkt0 i ∈ C, k ∈ K, t ∈ T , (4.81)
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∑
i∈C

(δkti + γkti ) ≤ β k ∈ K, t ∈ T , (4.82)

∑
k∈K

(ȳkti − δkti + γkti ) ≤ 1 i ∈ C, t ∈ T , (4.83)

δkti ∈ {0, 1} i ∈ C, k ∈ K, t ∈ T , (4.84)

γkti ∈ {0, 1} i ∈ C, k ∈ K, t ∈ T , (4.85)

(4.5), (4.12), (4.14), (4.18)-(4.23) and (4.26)-(4.27).

The objective function (4.76) consists of maximizing the total profit, given by the total
revenue minus the total inventory cost plus the difference between the savings and additional
travel cost given by the removal and insertion operations, respectively. Constraints (4.77) allow
vehicle k to perform deliveries to customer i in period t only if either this customer is already
visited by the vehicle in the solution and it was not removed from the route or if the customer
was inserted into the route of the vehicle in the given time period. Constraints (4.78) impose
the vehicle capacity. Constraints (4.79) ensure that if a customer is already visited by a route, it
cannot be reinserted into the same route. Analogously, constraints (4.80) allow the removal of a
customer from a route only if it is visited by the route. Constraints (4.81) forbid the insertion of
customers into routes of vehicles that are not used in the given time period. Notice that if more
than one visit is removed or inserted from a vehicle route, then the values of ∆ and Γ provide
only an approximation of the actual routing costs. For this reason, we impose constraints (4.82)
which limit the number of changes that can be performed to every single route to a value β.
Constraints (4.83) impose that each customer can be visited at most once in each time period.
Finally, constraints (4.84) and (4.85) define the domain of the removal and insertion decision
variables.

Note that to model the inventory part of this model, we use delivery variables as in the
formulation TP-I (Section 4.3.2) given that we need delivery variables with a vehicle index
and, as will be shown in the computational experiments, formulation TP-I had a slightly better
performance than TP-II. It is worth mentioning that several different solution improvement
phases using mathematical programming components have been used within hybrid heuristic
methods in the literature, see e.g., Archetti et al. (2012), Larrain et al. (2017), Archetti et al.
(2017a) and Neves-Moreira et al. (2019).

4.4.6 Details on the computational implementation

In this section we provide some details on the computational implementation of the optimization-
based ILS. Although the presented hybrid method is based on the ILS metaheuristic presented
in Chapter 3 for the basic variant of the IRP, it does not correspond to a straightforward
extension of the metaheuristic. Adapting it and then reaching a good performance required a
considerable effort since the PIRP and the basic IRP have some fundamental differences. First,
in addition to delivery and inventory decisions (also present in the basic IRP), in the PIRP
the supplier has also to decide the amount of product of each available age that will be used
to satisfy the customer demands (consumption decisions). Additionally, in the PIRP we deal
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with a perishable product that can be available in different ages every time period, therefore
the delivery, consumption and inventory decisions are also specific for each available age. Thus,
in addition to the components mentioned in the previous sections, we tested many different
additional strategies and components to further improve the performance of the method, among
which it is worth mentioning the following. First, we tried including the MCF formulation to
optimize the continuous amounts of every feasible solution found by the construction heuristic.
This resulted in considerably better initial solutions but the gain in solution quality did not pay
off the additional computational effort required for solving many LPs, particularly for the largest
problem instances. Additionally, using these better initial solutions did not result in better final
solutions. Also, in the construction heuristic, when we do not allow look_ahead to take positive
values, then it fails to find a feasible solution for one of the tested instances. Therefore, we use
the construction heuristic as stated in Section 4.4.1.

For the perturbation phase, we developed biased operators and rules for the selection of
the components of the solutions that would be perturbed. However, using more sophisticated
operators resulted in only marginal gains and, therefore, we opted for setting simple random
selection rules.

Finally, for each instance we only construct the MCF formulation once and then we update
the right-hand side of constraints (4.74) and (4.75) every time the formulation is solved. It is
worth highlighting that this allowed us to obtain a speed-up of five times when compared to a
method that constructs the entire MCF formulation every time it is called.

4.5 Computational experiments

In this section we describe the computational experiments performed with the proposed formu-
lations and the hybrid method. All the algorithms were coded in C++ and run on a 2.67 GHz
Intel Xeon X5650 Westmere processor with one thread and 36 GB of RAM. We used CPLEX
12.8 as MIP and LP solver. We turned off CPLEX’s parallel mode and set the CPLEX MIP
tolerance parameter to 10−6. All other CPLEX parameters were set to their default values. The
test instances and computational experiments are discussed in the subsequent sections.

4.5.1 Test instances

In our computational experiments we used two sets of problem instances. The first one, proposed
by Coelho and Laporte (2014b) (which we will refer to as set CL), is composed of 60 instances
divided into 12 subsets with 5 instances each. In addition, we propose a second set of instances,
containing 55 (larger) problem instances divided into 11 subsets of 5 instances each. We will
refer to this new set as set A. The sizes of the instances of both sets vary in terms of the number
of customers (N), the maximum age of the product (S), the number of vehicles (K) and the size
of the planning horizon (T ). The ranges of these dimensions for both sets are summarized in
Table 4.2. Notice that the instances that we propose are larger than those of set CL in terms of
the length of the planning horizon, number of vehicles and maximum age of the product, rather
than in terms of the number of customers.
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Parameter Set CL Set A
N From 10 to 50 From 10 to 40
S From 2 to 5 From 5 to 10
K From 1 to 3 From 2 to 8
T From 3 to 10 From 10 to 20

Table 4.2: Dimensions of the problem instances

In our new instances, the parameters were generated according to the procedure described in
Coelho and Laporte (2014b), except for rt and I0

00 (amount made available and initial inventory
at the supplier, respectively) given that the authors do not describe how the values of these
parameters are generated. Therefore, following the common practice in the IRP literature
(Archetti et al., 2007, 2012) we assume that, in each period, the supplier has a supply of products
large enough to always be able to serve all its customers. Thus, we set rt = 1.5

∑
i∈C d

1
i , ∀t ∈ T

and I0
00 = r1. It is worth mentioning that the instances have revenues that are nonincreasing

with the age, i.e., uis ≥ ui,s+1, ∀s ∈ S\{S}, and the inventory holding costs are random for
both the supplier and the customers (using a formula that includes an increase with the age
of the product). Notice that random inventory holding costs represent the most general case
for these values. Travel costs correspond to Euclidean distances rounded to the nearest integer.
Additionally, in Section 4.5.4, we analyze the results of some further experiments performed
with different configurations for the values of revenue, holding and travel costs.

4.5.2 Comparison of the formulations

In this section, we compare the results obtained with the proposed formulations. Recall that we
have stated five formulations: arc-based (AB), transportation-based I and II with and without a
vehicle index (TP-I, TP-II, TP-I-nk and TP-II-nk, respectively). It is worth remembering that,
for these experiments, we did not include any additional valid inequality to the formulations.
Experiments including additional valid inequalities are presented in Section 4.5.2.1.

First, in Table 4.3, we report the values of the LP relaxations provided by the formulations
and the running times required to solve them. When solving the LP relaxations, in addition
to removing the integrality conditions on the variables, we drop the SECs (and GFSECs) of all
the formulations. We do this because the separation algorithm that we use for the formulations
without a vehicle index is a heuristic procedure for fractional solutions, i.e., it may fail to
find a violated inequality. However, as we will show in the upcoming experiments, despite
the fact that we use this heuristic procedure, the formulations without a vehicle index had a
better performance than the formulations with a vehicle index (which use an exact separation
algorithm). In the table, columns 1 and 2 display the instance set and the number of instances
in the respective set, respectively. Columns labeled with “Difference to AB” show the relative
difference between the values of the LP relaxation of the respective formulations and formulation
AB, computed using the formula 100× (z∗ − zAB)/zAB, where z∗ is the LP relaxation value of
the formulation and zAB is the value of the LP relaxation of formulation AB. Columns labeled
with “Running time” report the time in seconds that the solver required to solve the LP. The
results are reported separately in the same table for the two sets of instances (sets CL and A).
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Each row represents the average value for all the (five) instances of the respective set (column
1), except for row “All” which shows the average values over all the instances of the respective
set (CL and A).

It is possible to observe that the LP relaxations of the formulations without a vehicle index
can be considerably worse than the other formulations since, on average, the LP relaxation
bounds provided by them are 3.85% and 13.30% greater than the ones of formulation AB, for
set CL and A, respectively (with a maximum difference of 24.56%). The LP relaxation of the
reformulations with a vehicle index is only slightly worse than the ones of formulation AB (less
than 0.5%, for all sets). Notice also that the bounds of formulations TP-I and TP-II (and their
respective counterparts without a vehicle index) are identical. In addition, as a result of the
considerably larger number of variables in the reformulations with a vehicle index, the times to
solve their LP relaxation are large when compared to formulation AB and to the reformulations
without a vehicle index. These differences are remarkably larger for those instance sets with
the largest values of S and T in set A, given that the number of delivery variables (q) in those
formulations grows quickly with increasing values for these parameters.

Instance set Difference to AB (%) Running time
(N -S-K-T ) # TP-I TP-I-nk TP-II TP-II-nk AB TP-I TP-I-nk TP-II TP-II-nk
10-2-1-3 5 0.11 1.72 0.11 1.72 0.00 0.00 0.00 0.00 0.00
10-3-1-6 5 0.26 5.10 0.26 5.10 0.01 0.01 0.01 0.01 0.01
10-5-1-10 5 0.28 4.10 0.28 4.10 0.02 0.03 0.03 0.03 0.03
20-2-2-3 5 0.39 4.55 0.39 4.55 0.01 0.01 0.00 0.02 0.01
20-3-2-6 5 0.25 4.47 0.25 4.47 0.03 0.05 0.01 0.04 0.02
20-5-2-10 5 0.13 4.78 0.13 4.78 0.18 0.33 0.08 0.34 0.07
30-2-2-3 5 0.16 2.06 0.16 2.06 0.01 0.02 0.01 0.02 0.01
30-3-2-6 5 0.26 3.85 0.26 3.85 0.07 0.07 0.04 0.08 0.03
30-5-2-10 5 0.14 4.35 0.14 4.35 0.32 0.48 0.10 0.47 0.10
40-2-3-3 5 0.45 3.42 0.45 3.42 0.06 0.07 0.01 0.06 0.01
40-3-3-6 5 0.26 4.21 0.26 4.21 0.19 0.25 0.04 0.26 0.04
50-2-3-3 5 0.27 3.59 0.27 3.59 0.06 0.09 0.02 0.08 0.02
All 0.25 3.85 0.25 3.85 0.08 0.12 0.03 0.12 0.03
10-7-2-15 5 0.41 11.20 0.41 11.20 0.14 0.33 0.09 0.32 0.09
10-10-2-15 5 0.30 13.72 0.30 13.72 0.19 0.64 0.18 0.75 0.16
10-10-2-20 5 0.36 11.89 0.36 11.89 0.41 1.33 0.34 1.49 0.32
20-7-4-15 5 0.19 11.89 0.19 11.89 1.15 4.18 0.26 3.63 0.22
20-10-4-15 5 0.18 10.78 0.18 10.78 1.52 7.35 0.43 6.52 0.38
20-10-6-15 5 0.17 24.56 0.17 24.56 1.98 11.40 0.37 11.33 0.38
30-7-4-15 5 0.14 8.84 0.14 8.84 2.24 9.75 0.35 8.45 0.36
30-7-8-15 5 0.12 16.71 0.12 16.71 6.29 25.11 0.37 27.07 0.33
30-10-8-15 5 0.15 18.38 0.15 18.38 8.40 52.17 0.67 57.97 0.60
40-5-4-10 5 0.08 7.37 0.08 7.37 1.14 2.85 0.15 2.52 0.13
40-5-8-10 5 0.13 10.93 0.13 10.93 2.87 9.08 0.15 6.97 0.13
All 0.20 13.30 0.20 13.30 2.39 11.29 0.31 11.55 0.28

Table 4.3: Comparison of the LP relaxation of the formulations

Table 4.4 reports the results when we impose a time limit of two hours to solve the MIP
formulations. In the table, column “#” indicates the number of instances in each set. Then, for
each formulation, column “#O” shows the number of instances of the set solved to optimality,
column “#F” shows the number of instances of the set for which a feasible solution was found.
In addition, we report the average relative optimality gap (“Opt gap”) of the solutions of the set
(as a percentage) and the average total CPU time (“Total time”) in seconds for all the instances
of the set. Each row shows the average value for optimality gap and CPU time over all the
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instances of the set (column 1) for which the respective formulation could find at least a feasible
solution (column “#F”). Row “All” displays the sum of the values in the respective columns
(for “#”, “#O” and “#F”). We do not report summary values for the remaining columns (“Opt
gap” and “Total time”) to avoid misleading comparisons as not all the formulations could solve
to optimality or find feasible solutions for the sames instances. Unfilled cells (“–”) indicate that
no feasible solution was found for all the instances of the set. The results are reported separately
in the same table for the two sets of instances.

It is possible to observe that all the reformulations were able to find a number of feasible
solutions that is larger than or equal to the number of feasible solutions found by formulation
AB. The differences are especially remarkable for the formulations without a vehicle index (TP-
I-nk and TP-II-nk), which were able to find feasible solutions for 67% and 71% more instances
than formulation AB, respectively. Additionally, the reformulations with a vehicle index (TP-I
and TP-II) found three and two optimal solutions more than formulation AB, respectively, while
both reformulations without a vehicle index found eight optimal solutions more than formulation
AB (which represent 30% more optimal solutions). These results are also shown in Figure 4.2.
It is worth mentioning that when for a given set no optimal solution was found but at least a
feasible solution was obtained and the average time is less than 7,200 seconds, it means that
the optimizer ran out of memory before reaching the time limit. Specifically, that happened
once (one instance of subset 20-5-2-10) and three times (one instance of subset 20-5-2-10, 30-
5-2-10 and 10-7-2-15) for the formulation TP-I-nk and TP-II-nk, respectively. Finally, notice
that when the instance size grows, the solver starts failing to find feasible solutions within the
time limit, especially for the formulations with a vehicle index. As expected, this degradation
in the performance is more noticeable when we increase T , S and K than when we increase N .
This is because the number of variables and constraints of the formulations increases faster with
increasing values of those former parameters.

Table 4.5 summarizes the relative optimality gaps of the solutions but only considering
instances for which all the formulations found at least a feasible solution. Column 2 (“#”)
displays the number of instances of the set (column 1) for which at least a feasible solution
was found by all the formulations. The first set of columns (“B&C optimality gap”) shows,
for each formulation, the relative optimality gaps of the computed feasible solutions using the
upper (dual) bound of the corresponding B&C algorithm. “Best dual bound gap” shows the
relative difference of the solutions of the respective formulations compared to the best upper
(dual) bound among all the formulations, computed as 100× (z̄− z)/z, where z̄ is the best dual
upper bound computed at the end of the B&C algorithm over all five formulations and z is the
objective value of the solution of the model. Each row displays the average gap value over all the
instances of the set (column 1) for which all the formulations found at least a feasible solution
(column “#”), except for row “All” which shows the average values over all the 57 instances
for which all the formulations found at least a feasible solution. Notice that the results in the
first 11 rows (sets 10-2-1-3 to 50-2-3-3) correspond to those of set CL and the last two rows
(sets 10-7-2-15 and 10-10-2-15) are from set A. The results show that, despite the fact that
the formulations without a vehicle index can have a considerably worse LP relaxation, better
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Figure 4.2: Results with the different formulations for sets CL (top) and A (bottom)

optimality gaps can be obtained at the end of their B&C algorithms. These formulations can
provide solutions of better quality for the largest instances of the table, as shown by the values
of the gaps to the best dual bounds. Notice that for sets 10-7-2-15 and 10-10-2-15 (which are
part of set A), the formulations without a vehicle index (TP-I-nk and TP-II-nk) found solutions
with gaps to the best dual bounds significantly better than the ones provided by the other three
formulations. Also, the results highlight the sensitivity of the formulations to increases in the
values of S, K and T .

Instance set B&C optimality gap (%) Best dual bound gap (%)
(N -S-K-T ) # AB TP-I TP-I-nk TP-II TP-II-nk AB TP-I TP-I-nk TP-II TP-II-nk
10-2-1-3 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10-3-1-6 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10-5-1-10 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20-2-2-3 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20-3-2-6 5 1.14 0.47 0.43 0.67 0.39 0.46 0.33 0.41 0.41 0.39
20-5-2-10 4 5.75 5.58 2.88 5.56 2.29 4.36 4.37 2.52 4.31 2.27
30-2-2-3 5 0.23 0.00 0.05 0.00 0.02 0.01 0.00 0.01 0.00 0.00
30-3-2-6 5 1.43 1.22 0.90 1.28 0.73 0.86 0.74 0.89 0.71 0.73
30-5-2-10 2 3.71 5.35 0.75 1.30 0.51 3.14 4.86 0.75 0.82 0.50
40-2-3-3 5 3.47 2.73 0.18 2.33 0.33 1.91 1.31 0.18 0.92 0.33
50-2-3-3 5 2.78 2.25 1.07 2.63 0.91 1.97 1.43 1.05 1.89 0.90
10-7-2-15 4 14.34 12.49 4.59 17.20 4.76 9.06 7.53 4.56 11.96 4.66
10-10-2-15 2 9.99 10.51 3.40 18.95 3.44 6.43 7.00 3.31 14.94 3.40
All 57 2.68 2.41 0.90 2.91 0.84 1.74 1.58 0.86 2.04 0.83

Table 4.5: Results for instances with feasible solutions found by all the formulations
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Finally, Table 4.6 shows the results for only those instances that were solved to optimality
within the time limit by all the formulations. Column 2 (“#”) displays the number of instances
of the set (column 1) for which all formulations found the optimal solution. Each row shows
the average time over all the instances of the set (column 1), except for row “All” which shows
the average values over all the 25 instances solved to optimality within the time limit by all
the formulations. All the results are from set CL. The results reveal the speed-up obtained
with the reformulations, especially the ones without a vehicle index. In particular, formulations
TP-I-nk and TP-II-nk use, in total, only 6.85% and 4.93% of the time required by formulation
AB, respectively. The results also reveal that a significant portion of the total CPU time (“Total
time”) is spent proving the optimality of the solutions since in most of the cases the optimal
solutions are found early (“Time to best”) in the B&C tree.

AB TP-I TP-I-nk TP-II TP-II-nk
Instance set Total Time Total Time Total Time Total Time Total Time
(N -S-K-T ) # time to best time to best time to best time to best time to best
10-2-1-3 5 0.05 0.05 0.04 0.04 0.32 0.31 0.04 0.04 0.35 0.33
10-3-1-6 5 0.29 0.24 0.40 0.35 1.01 0.98 0.37 0.32 0.51 0.45
10-5-1-10 5 3.00 2.62 3.19 2.55 4.33 4.05 3.32 2.66 4.71 4.48
20-2-2-3 5 43.96 23.34 21.85 12.82 36.08 28.02 25.11 13.57 21.83 17.32
20-3-2-6 1 1,888.53 213.08 753.52 51.25 12.09 11.41 1,984.50 77.44 10.66 10.34
30-2-2-3 3 368.49 151.97 61.23 28.75 5.80 4.40 85.25 45.30 6.24 5.49
30-3-2-6 1 427.71 182.28 585.22 304.36 12.19 11.73 487.02 58.48 13.84 13.75
All 25 146.33 39.30 65.99 20.83 10.02 8.13 114.86 14.19 7.21 6.14

Table 4.6: Results for instances with optimal solutions found by all the formulations

4.5.2.1 Impact of the valid inequalities

The purpose of this section is to analyze the results obtained when we strengthen the formula-
tions by including the valid inequalities of Section 4.3.7. Table 4.7 shows the number of optimal
and feasible solutions found when the different valid inequalities are included in the formulations.
We considered the instance set CL only since we can find a considerably large number of feasible
solutions for these instances. Again, we set a time limit of two hours to solve each instance
by each formulation. In the cells of columns 2-6, we show the number of optimal and feasible
solutions, respectively (separated by a comma), found by the formulation specified in the re-
spective header when including the inequalities given in column 1. “Base case” shows the results
when no valid inequality is considered in the formulation and “All” shows the results when we
include all the inequalities simultaneously. Unfilled cells (“–”) indicate that the inequalities were
not applied to the formulations (symmetry breaking constraints to the formulations without a
vehicle index).

The results show that none of the valid inequalities was able to improve alone the performance
of all the formulations in terms of both the number of optimal and feasible solutions found within
the time limit. Only inequality (4.63) was able to provide a number of optimal and feasible
solutions that is greater than or equal to the base case for all the formulations. This could be
explained by the fact that CPLEX already includes some general valid inequalities (in addition
to the preprocessing operations that the solver applies to the formulation), which does not allow
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to reveal potential gains obtained by including the given valid inequalities. Note that some of
the inequalities are able to improve the performance of some of the formulations in either the
number of optimal or feasible solutions, e.g., (4.69) for the number of feasible solutions, but not
in both at the same time. It is worth mentioning that we tried including combinations of these
inequalities simultaneously, but no performance improvement was obtained.

Formulation
AB TP-I TP-I-nk TP-II TP-II-nk

Base case 26, 53 29, 54 34, 60 28, 52 34, 60
(4.63) 26, 54 29, 54 34, 60 29, 54 34, 60
(4.64) 24, 54 27, 54 33, 60 27, 53 32, 60
(4.65) 26, 55 29, 53 – 29, 52 –
(4.66) 26, 54 29, 53 – 28, 53 –
(4.67) 26, 53 29, 53 32, 60 28, 56 32, 60
(4.68) 25, 53 28, 52 33, 60 29, 53 33, 60
(4.69) 25, 56 27, 56 32, 60 29, 54 32, 60
(4.63)-(4.66) 26, 55 29, 52 33, 60 29, 53 32, 60
(4.67)-(4.69) 26, 54 28, 54 34, 60 29, 52 33, 60
All 24, 56 29, 57 32, 60 28, 57 33, 60

Table 4.7: Number of optimal and feasible solutions found by the formulations when including
the valid inequalities

The impact of the valid inequalities on the CPU times are presented in Table 4.8. In the
table, for each formulation, column “#O” shows the number of instances of the set solved to
optimality, column “#F” shows the number of instances of the set for which a feasible solution
was found, “Opt gap” shows the average relative optimality gap of the solutions of the set (as
a percentage) and “Total time” displays the average total execution time in seconds for all the
instances in the set. Recall that each set contains five instances.

The results show that there is no consistency in the impact of the valid inequalities over all
five formulations and all the sets of instances when compared to the results without any valid
inequality. For some sets, the valid inequalities improved the performance of some formulations
(e.g., formulation AB on set 20-5-2-10) but in other cases, they worsened it (e.g., formulation
TP-I-nk on set 30-2-2-3). The number of feasible solutions found by all the formulations without
a vehicle index increased, while the number of optimal solutions was reduced for some of the
formulations. We believe this may be in part due to the fact that CPLEX already generates
some general valid inequalities that do not allow to reveal potential gains obtained by including
the given valid inequalities.

4.5.3 Results with the optimization-based ILS

Next, we analyze the performance of the optimization-based ILS hybrid method. In all tables of
this section, column “Best sol gap” shows the relative difference of the solutions obtained with
our heuristic method (zh) to the best feasible solution found by all the MIP formulations (zf ),
computed as 100 × (zf − zh)/zf ; “Opt gap” shows the relative optimality gap of the obtained
solutions, computed using the formula 100× (z̄ − zh)/z̄, where z̄ is the best dual upper bound
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computed at the end of the B&C algorithm over all five formulations (Section 4.5.2); “Total time”
displays the total time (in seconds) required by the algorithm; and “Imp” shows the relative
improvement in the objective function value (profit) obtained by including the SI formulation
in the method, computed as 100 × (zh2 − zh1)/zh1 , where zh1 and zh2 are the solutions found
by the heuristic before and after applying the SI formulation in the method, respectively. Note
that negative values of “Best sol gap” indicate that our method found a feasible solution that is
better than the best solution provided by the five formulations since we are maximizing profit.

Tables 4.9 and 4.10 show the results obtained with the optimization-based ILS. The stopping
criterion was the number of iterations, which we set to 500. The value of max_perturb was set
to d0.07 × Ne. This value was determined through empirical preliminary experiments using
a random subset of the problem instances. Recall that this parameter defines the number of
elements of a solution that will be changed in each call of the perturbation mechanism. For the
SI formulation, we defined a time limit of 60 seconds and set β to 1, i.e., we allow at most one
removal or insertion per route. We present both results, with and without the SI formulation.
We run the algorithm only once for each instance given that, as will be shown in Section 4.5.3.1,
the results are relatively consistent between different runs. We separated the results into two
tables. In the tables, each row displays the average result of the five instances of the given set
(column 1), except for “Best sol gap”, whose values were calculated over the instances for which
we could find a feasible solution with at least one of the formulations (column “#”). The last
row (“All”) shows the average results over all the instances considered. It is worth mentioning
that for all the instances of set CL at least one formulation was able to find a feasible solution,
while for only 47 instances of set A a formulation could find a feasible solution.

The results on the instance set CL (Table 4.9) show that the proposed method is able to find
high-quality solutions in relatively short running times. Specifically, solutions with an average
optimality gap of 2.08% (1.87%) were obtained within 5.96 (6.53) seconds, on average, for all
the instances of this set without (with) the SI formulation. Note that the average CPU time on
this data set using the B&C algorithm with the TP-I-nk (TP-II-nk) formulation is 3,275 (3,306)
seconds. The results also reveal the sensitivity of the method to an increase in the number of
periods (T ), mainly given that the effort required in the local search phase of the method, as
well as the MCF formulation size, depend primarily on T . The inclusion of the SI formulation
as a post-optimization phase provided an average relative improvement of the objective value
(profit) of 0.20% with an increase of 9,56% in the running time. The SI formulation improved
43 (out of 60) solutions in this set. It is also worth mentioning that in 45 of the instances of
this set, the MCF problem formulation led to the best feasible solution (before applying the
SI formulation) in either an outer iteration after the local search phase or an inner iteration
after a perturbation operator. These results highlight the importance of the two mathematical
programming components for the hybrid method for these instances.

The results on the new problem instance set A (Table 4.10) show the impact of solving
larger instances since, as expected, significantly larger running times are required to perform
500 iterations. Also, larger optimality gaps are obtained for the solutions on these instances.
This fact does not necessarily reflect a degradation in the quality of the solutions that our method



90 Formulations and solution methods for an IRP with perishable products

Without SI With SI
Instance set Best sol Opt Total Best sol Opt Total Imp
(N -S-K-T ) # gap (%) gap (%) time gap (%) gap (%) time (%)
10-2-1-3 5 0.02 0.02 0.19 0.02 0.02 0.20 0.00
10-3-1-6 5 0.12 0.12 0.35 0.11 0.11 0.39 0.01
10-5-1-10 5 0.59 0.59 0.74 0.47 0.47 0.93 0.12
20-2-2-3 5 1.20 1.20 0.60 1.14 1.14 0.65 0.06
20-3-2-6 5 1.74 2.04 1.36 1.43 1.73 1.61 0.31
20-5-2-10 5 1.01 3.14 14.02 0.59 2.73 16.05 0.42
30-2-2-3 5 0.42 0.42 1.14 0.37 0.37 1.21 0.06
30-3-2-6 5 1.68 2.16 2.71 1.53 2.01 3.09 0.16
30-5-2-10 5 1.30 2.16 25.95 0.96 1.82 28.20 0.35
40-2-3-3 5 4.72 4.90 2.08 4.46 4.64 2.29 0.28
40-3-3-6 5 1.94 3.76 19.28 1.50 3.39 20.38 0.39
50-2-3-3 5 4.54 5.13 3.12 4.28 4.87 3.34 0.27
All 1.60 2.14 5.96 1.40 1.94 6.53 0.20

Table 4.9: Results with the optimization-based ILS on instance set CL

can provide for these instances, but can reflect the low quality of the dual upper bounds provided
by the formulations on these instances. Recall that, using the B&C algorithms, even finding
feasible solutions was difficult for these instances. On average, the hybrid method finds solutions
with objective values 0.45% (1.73%) better than the best solutions found by all the formulations
without (with) the SI formulation, for the instances for which the formulations could provide a
feasible solution (47 instances). An average relative improvement in the objective value (profit)
of 1.07% was obtained when the SI formulation was included in the method at a cost of an
increase of around one minute in the total running time (from 107 seconds to 166 seconds,
which represents a 56% time increase). Note that the average CPU time of the B&C algorithm
with the TP-I-nk (TP-II-nk) formulation (for those instances of set A for which a feasible solution
was found) was 7,200 (7,167) seconds. For the instances of this set, the SI formulation improved
32 (out of 55) of the solutions. Also, the MCF problem formulation led to 45 of the best feasible
solutions for the instances of this set (before applying the SI formulation). Notice also that, on
average, for most of the instances of this set the solver reached the time limit (60 seconds) for
solving the SI formulation. The latter fact shows the difficulty to solve this formulation and
can explain why for some sets the SI formulation could not find a better solution. It is worth
mentioning that Archetti et al. (2012) proved that the customer assignment problem described
by the SI formulation is NP-hard for the single-vehicle case.

4.5.3.1 Evaluation of the hybrid method with different configurations

The purpose of this section is to assess the performance of the method under different configura-
tions. First, Table 4.11 shows the results of the method when we change the number of iterations
used as stopping criterion (column 1). The results show that, for set CL, even for a small number
of iterations (e.g., 100), the method is able to find relatively good quality solutions in very short
running times. For set A, from 250 iterations onwards the method is able to find solutions with
an average objective function value that is better than the objective function value of the best
solutions provided by all the formulations within two hours, which further shows the ability of
the method to find good feasible solutions in relatively short CPU times.
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Without SI With SI
Instance set Best sol Opt Total Best sol Opt Total Imp
(N -S-K-T ) # gap (%) gap (%) time gap (%) gap (%) time (%)
10-7-2-15 5 4.09 8.12 13.69 1.88 5.99 71.50 2.40
10-10-2-15 5 3.63 8.99 16.60 1.61 7.10 76.62 2.09
10-10-2-20 5 2.95 10.96 22.54 0.67 8.85 82.56 2.41
20-7-4-15 5 -1.03 10.83 53.69 -2.51 9.51 113.73 1.47
20-10-4-15 2 -0.69 8.81 81.20 -1.00 8.71 141.27 0.12
20-10-6-15 3 2.66 15.28 124.06 2.66 15.28 184.20 0.00
30-7-4-15 4 -4.50 7.90 113.95 -5.79 6.80 174.02 1.19
30-7-8-15 4 -0.78 14.17 236.38 -0.78 14.17 296.52 0.00
30-10-8-15 1 -0.41 14.24 334.36 -0.41 14.24 394.67 0.00
40-5-4-10 5 -8.11 6.32 66.67 -9.13 5.44 126.70 0.94
40-5-8-10 5 -2.48 10.04 109.10 -3.64 9.01 169.15 1.14
All -0.45 10.51 106.57 -1.73 9.56 166.45 1.07

Table 4.10: Results with the optimization-based ILS on instance set A

Set CL Set A
# of Best sol Opt Total Best sol Opt Total
iter gap (%) gap (%) time gap (%) gap (%) time
100 2.32 2.87 1.83 0.87 12.15 79.95
250 1.69 2.24 3.83 -0.57 10.71 110.61
500 1.32 1.90 6.39 -1.86 9.53 159.31
1000 1.14 1.70 12.37 -2.72 8.72 262.79
2000 1.02 1.57 27.46 -3.62 7.79 497.17

Table 4.11: Results of increasing number of iterations for the hybrid method

To evaluate the impact of the randomness in our method, we executed it five times and
computed the percent coefficient of variation (%CV) of the results. The experiment resulted in
a %CV of 0.57% for the total profit considering both sets of instances. This result highlights
the consistency of the results obtained in different runs of the method. It is worth mentioning
that the %CV for set CL is 0.37% while for set A it was 0.78%. Although these values are both
very small, the difference between them reveals the impact of the size of the instances of set A
as, on average, the results obtained for these instances are (slightly) more dispersed than the
results for instances of set CL.

4.5.3.2 Solving the basic variant of the IRP using the optimization-based ILS

In this section we present the results obtained with the optimization-based ILS hybrid method
when applied to the basic variant of the IRP. The method was tested on the set of instances
proposed in Archetti et al. (2007) for the basic IRP. This set is composed of 160 instances
with up to 50 customers and up to 6 time periods. These instances were originally created
for the single-vehicle IRP, but they have also been adapted for the case with multiple vehicles
by dividing the vehicle capacity by the number of vehicles. For the multiple vehicle case, we
compared the optimization-based ILS hybrid heuristic with the hybrid heuristic of Archetti
et al. (2017a) (that combines a tabu search and mathematical programming formulations) and
the decomposition matheuristic of Chitsaz et al. (2019) (proposed to solve the assembly routing
problem and adapted to the IRP). For the single-vehicle case we compared with the hybrid
heuristic of Archetti et al. (2012) and also the decomposition matheuristic of Chitsaz et al.
(2019).
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To solve the basic variant of the IRP (which can be seen as a particular case of the PIRP), we
used the method as described in Section 4.4 as a general solution framework and adapted it as
follows. First of all, there is the fact that without loss of generality in the solutions of the basic
IRP the customers consume the delivered quantities following a first-in, first-out (FIFO) rule
(Desaulniers et al., 2016; Archetti and Speranza, 2016). Thus, the relations between delivery,
consumption and inventory in the basic IRP are simpler than those of the PIRP, in which the
optimal consumption policy does not necessarily follow a FIFO rule. Therefore, when applying
the optimization-based ILS hybrid method for the basic variant of the IRP, we can use additional
operators in the local search phase (increase/reduce deliveries, merge, transfer and insert visits)
without having to optimally define the delivery, consumption and inventory variables every time.
Moreover, given that for the basic IRP we do not solve an LP at each inner iteration of the
local search phase, it resulted in a significant time speed-up of the method. Taking advantage
of this, we applied the local search heuristic in a multi-start fashion, as in Chapter 3. We set to
2,000 outer iterations the stopping criterion of the optimization-based ILS hybrid method when
applying it to the basic variant of the IRP.

In Figure 4.3 we show the results when comparing to the methods of Archetti et al. (2017a)
and Chitsaz et al. (2019) for the multi-vehicle case. In the figure, we show the average relative
difference of the solutions obtained with our heuristic method (zh) with respect to their solutions
(zm), computed as 100× (zh− zm)/zm (negative values show better solutions), and the number
of instances for which our method found a solution with an objective function value better than
those found by their methods. The results are separated according to the number of vehicles.
No results are displayed for the case of a single vehicle when comparing to Archetti et al. (2017a)
because the authors did not apply their method to these instances. The values of the relative
difference were computed over the 160 instances for each number of vehicles, except for the
case with five vehicles which has 158 instances because two of the original instances become
infeasible in this case. In the figure, it is possible to observe that the optimization-based ILS
hybrid method provides reasonably good feasible solutions when compared to state-of-the-art
methods, developed either specifically for the multi-vehicle IRP such as the method of Archetti
et al. (2017a) or for more general problems such as the method of Chitsaz et al. (2019). Notice
that the relative differences tend to improve as the number of vehicles increases.

When compared to the hybrid heuristic of Archetti et al. (2012) for the single-vehicle case,
we found solutions with objective function values that are 1.60% higher (average over all the
160 instances) than their solutions. On average, the CPU time of our method was 8.78 seconds
for each instance (with a maximum of 41.34 seconds) considering all the instances (multi- and
single-vehicle cases). The method of Archetti et al. (2017a) required an average time of more
than 1,000 seconds, the method of Chitsaz et al. (2019) used more than 60 seconds on average,
while the method of Archetti et al. (2012) can take more than 3,000 seconds. Although these
CPU times are not directly comparable due to differences in computational environments, these
results highlight the effectiveness of our optimization-based ILS hybrid method. All the results
can be found online at http://chairelogistique.hec.ca/en/scientific-data/.

When compared to the ILS and SA metaheuristics presented in Chapter 3, the hybrid method

http://chairelogistique.hec.ca/en/scientific-data/
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Figure 4.3: Results with the optimization-based ILS hybrid method applied to the basic IRP

found solutions with an average relative difference of 0.90% and 1.37%, respectively, considering
all the instances of Archetti et al. (2007). In total, the hybrid method found 279 and 173
solutions that were better than those found by ILS and SA, respectively.

4.5.4 Experiments changing the parameters of the instances

To verify the impact of different scenarios on the solution structure, we perform additional
experiments changing the values of several parameters of the problem instances. In these exper-
iments, we used the first four subsets from set CL (10-2-1-3, 10-3-1-6, 10-5-1-10 and 20-2-2-3)
given that these are the only sets in which all instances can be solved to optimality within the
time limit of two hours by all the formulations. The results of the experiments are shown in
Table 4.12 and in Figure 4.4. “Base case” shows the results with the original values of the
parameters; “TC” shows the results when we increase the travel cost of each edge of the graph
by 10 (cij = 10cij , ∀(i, j) ∈ E); “SR” shows the results when we set the same revenue for all the
ages, using the formula uis = ui0, ∀i ∈ C, s ∈ S. Notice that the revenues may still be different
between customers. “SH” shows the results when we set the same value for the holding costs
of all facilities and ages (his = 0.5, ∀i ∈ N , s ∈ S); “ZH” presents the results when we set the
holding costs to zero for all facilities and ages (his = 0, ∀i ∈ N , s ∈ S); “DA” shows the results
when we double the maximum age of the product (S = 2S), setting the corresponding revenue
values as uis = 0.9uis−1, ∀i ∈ C, s = S0 + 1, . . . , S, where S0 is the previous maximum age,
and the inventory holding cost randomly (as the original values); “RSC” displays the results
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when we reduce by 20% the storage capacity of the customers (Ci = 0.8Ci, ∀i ∈ C). Finally,
“RVC” shows the results when we reduce the vehicle capacities using a predefined filling coeffi-
cient (Salavati-Khoshghalb et al., 2019). The filling coefficient f̄ =

∑
i∈C
∑
t∈T d

t
i/(T ×K ×Q)

controls the problem tightness in terms of vehicle capacity. A filling coefficient of 90% was
considered. Then, the capacity Q of each vehicle was directly computed from the specified f̄ . It
is worth mentioning that in the scenario “RSC”, the initial inventory of some customers may be
greater than their new storage capacity (thus making the instances infeasible). In those cases,
we set (I0

i0 = Ci).
For all the changes performed to the problem instances, we report in Table 4.12 the total

profit (“Profit”), which corresponds to the objective function value, the revenue (“Revenue”)
and the total routing (“Routing”) and inventory holding cost (“Inventory”) of the optimal
solutions. Each cell shows the average for all the instances considered (20 instances). It is
worth remembering that the original revenue values are nonincreasing with an increasing age
(uis ≥ ui,s+1, ∀s ∈ S\{S}) and the holding costs are random. The impact of the changes
on the CPU times of the solver is shown in Section 4.5.4.1. Moreover, in Figures 4.4 and 4.5
we show the average total number of routes (# of routes) and visits (# of visits), the average
inventory level at the customers (Avg. I), the average delivery size (Avg. q), the average vehicle
fleet usage (Avg. fleet usage), the average vehicle capacity usage (Avg. veh. usage), and the
average customers storage capacity usage (Avg. cap. usage) of the solutions, considering the 20
instances used for this experiment.

Profit Revenue Routing Inventory
Base case 42,410.43 87,966.35 12,368.95 33,186.97
TC -29,803.19 75,466.60 69,776.00 35,493.79
SR 63,869.51 105,350.40 7,541.15 33,939.74
SH 48,678.03 87,897.85 12,156.15 27,063.68
ZH 75,792.15 87,664.50 11,872.35 0.00
DA 28,533.02 86,964.30 11,677.95 46,753.33
RSC 41,429.38 86,855.90 12,251.40 33,175.12
RVC 41,588.82 88,052.90 12,654.85 33,809.23

Table 4.12: Results when the parameters of the problem instances are changed

The results show that when we increase the travel costs (TC) (compared to the base case),
the total revenue is reduced given that the sales revenue values do not pay off the cost of de-
livering fresh products and consequently the demands tend to be satisfied using older products,
which provide less revenue per consumed unit. Analogously, a slight increase in the total inven-
tory cost was observed since extra deliveries, which provide savings in the inventory cost, are
not performed anymore given that they are no longer profitable. As expected, the number of
routes, visits (with larger deliveries), as well as the vehicle fleet usage of the solutions decrease
significantly. In this scenario, the total routing cost increases substantially, compared to the
base case, resulting in negative profits. On the other hand, when we set the same revenue for
all the ages (SR), the total revenue increases (compared to the base case) given that the income
of the sales revenue when satisfying the demand is always maximum. In this scenario, the total
revenue becomes constant because the total demand must be satisfied. Additionally, a reduction
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in the number of routes and visits (with larger delivery quantities) is observed, when compared
to the base case, given that in this scenario it is not necessary to perform deliveries in each
period to obtain the maximum revenue and only when it is necessary to satisfy a demand or
when it can provide savings in the total inventory holding cost. The latter fact results in reduced
fleet and vehicle capacity usage, on average. When the holding costs are set to a constant value
(SH) it is possible to observe a slight reduction in the average routing cost (as well as in the
number of routes, visits and vehicle capacity usage) when compared to the base case. This can
be explained by the fact that deliveries that provided savings in the inventory cost are no longer
performed. Again, analogously to the total revenue in scenario SR, the total inventory cost
becomes a constant term in scenario SH.

Figure 4.4: Behavior of the solutions for the changes applied (a)

When we compare the scenario without any holding costs (ZH) with the base case, it is
possible to observe a slight reduction in the total routing cost (also in the number of routes
and visits) given that no savings can be achieved at the level of the holding costs, and we only
have a trade-off between transportation costs and revenue values. This results in a reduction of
the average delivery quantity (of fresh product, in general), used to maximize the total revenue.
Also, reductions in the inventory levels and the different capacity usage measures are observed.
For scenario DA, in which we double the maximum age of the product, it is possible to observe
a considerable increase in the average inventory level (consequently in the total holding costs
and storage capacity usage) as a result of a longer shelf-life. Also, the total revenue decreases
as now older products are used to fulfill the demands with the aim of reducing the inventory
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Figure 4.5: Behavior of the solutions for the changes applied (b)

holding costs. This generates a reduction in the delivery quantities, which at the same time
results in a reduced number of routes, visits and total transportation costs, as well as vehicle
capacity usage. For the scenario with reduced storage capacity (RSC), as expected, we observe a
reduction in the average delivery quantity and inventory level (compared to the base case) given
that the storage capacity limits the amount that can be delivered in each visit. This results
in a reduction of the total revenue and profit. Finally, for the scenario with reduced vehicle
capacity (RVC) compared with the base case, we observe a slight increase in the number of
routes and visits (with smaller deliveries), resulting in larger routing cost and vehicle capacity
usage. Moreover, the total inventory cost increases since deliveries that provide savings in the
inventory cost are not performed anymore, given that the vehicle capacity does not allow it and
using an additional vehicle does not pay off the savings. This results in a reduction of the total
profit of the solutions.

4.5.4.1 CPU times of the solver when changing the parameters of the instances

We report the CPU times required by the solver to solve to optimality all the instances consid-
ering the different changes to the instance parameters. It is worth remembering that we used
all the instances of subsets 10-2-1-3, 10-3-1-6, 10-5-1-10 and 20-2-2-3. The results are displayed
in Table 4.13. In the table, columns 2-6 show the average CPU time (in seconds) required by
CPLEX to solve all the instances using the formulation stated in the respective header and
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when applying the change given in column 1. Recall that “Base case” shows the result with the
original values of the parameters, “TC” indicates that we increased the travel cost of each edge
of the graph by 10, “SR” shows the results when we set the same revenue for all the ages, “SH”
shows the results when we set the same value for the holding costs of all facilities and ages, “ZH”
presents the results when we set the holding costs as zero for all facilities and ages, “DA” shows
the results when we double the maximum age of the product, “RSC” displays the results when
we reduce by 20% the storage capacity of the customers, and “RVC” shows the results when we
reduce the vehicle capacities using a predefined filling coefficient.

All but one instance could be solved to optimality in less than two hours using all the
formulations (namely, one instance of set 10-5-1-10 when solved by formulation TP-I-nk and
applying change SR). In this case, we computed the average time by setting a CPU time of
7200 seconds for this instance (which is indicated by the “*” mark in the table). It is worth
mentioning that we could not solve this instance with the applied change and formulation TP-
I-nk even within a considerably larger running time limit (14 hours).

In the table, we observe that when we increase the routing cost (TC) and when we set
the same revenue for all the ages (SR), the total time required to solve the instances increased
for all the formulations (compared to the base case). The increase is especially noticeable for
the change SR. This may be due to the observation that now changes on the integer decision
variables (x and y) have a reduced effect on the objective function (total profit), which directly
affects the performance of the B&C algorithm. On the other hand, it is possible to observe that
the time required by the solver decreases for scenarios SH, ZH, and RSC, compared to the base
case. For scenarios SH and ZH, the time reduction can be explained because the inventory part
of the problem does not have any impact on the objective function value anymore, remaining
only routing and consumption decisions as key to maximizing it. Thus, the problem reduces to
maximizing the amount of fresh product that is sent to the customers, as long as it is profitable
by the revenue values. For scenario RSC the time reduction may be due to the tighter bounds
on the delivery and inventory variables, which depend on the storage capacity parameter.

For scenario DA, the running time remains relatively stable for formulations AB, TP-I and
TP-II, while for the formulations without a vehicle index (TP-I-nk and TP-II-nk), which have
SECs that include the delivery variables (q), the total running time increased significantly. The
latter observation may be explained by fact that it is now harder to find feasible solutions due
to the considerable larger number of delivery variables (which depend on the maximum age)
together with the SECs that include the delivery variables. Finally, for scenario RVC, the total
time increases considerably for the formulations without a vehicle index, possibly given that
more SECs have to be separated for these formulations as the capacity is tighter now and they
depend on the vehicle capacity parameter. For formulation AB the increase in the CPU times
can be explained given that now it is harder to find a feasible solution for the solver, given the
capacity tightness. For formulations TP-I and TP-II the total remains relatively stable. It is
worth mentioning that these conclusions must be taken cautiously given that some variability
on the results may appear as a result of (slight) differences on the cores of the computer grid
used to run these experiments.
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Formulation
AB TP-I TP-I-nk TP-II TP-II-nk

Base case 11.82 6.37 10.44 7.21 6.85
TC 43.17 28.71 55.57 29.02 284.88
SR 111.46 127.90 645.77* 85.84 496.27
SH 7.91 2.95 1.01 3.46 1.07
ZH 5.43 2.66 1.47 2.46 1.32
DA 9.43 7.08 34.41 6.41 39.97
RSC 3.59 2.96 3.08 3.56 4.02
RVC 23.98 6.82 45.95 6.93 38.30

Table 4.13: CPU times when the parameters of the problem instances are changed

4.6 Final remarks

In this chapter, we addressed an inventory routing problem in which goods are perishable. We
present four new mathematical formulations for the problem, two with a vehicle index and two
without a vehicle index, and present branch-and-cut algorithms to solve them. We also developed
a hybrid solution method for the problem by combining an iterated local search metaheuristic
with two mathematical programming components. Additionally, we introduced new instances for
the problem. The results of the computational experiments show that the formulations without
a vehicle index provide a considerably larger number of feasible solutions within two hours when
compared to the other formulations, in addition to a significant speed-up for instances solved
to optimality within the time limit by all the formulations. Furthermore, our hybrid heuristic
solution method was able to provide high-quality solutions within relatively short running times
on small- and medium-sized problem instances. When applied to larger instances, the method
provides good feasible solutions within reasonable running times.



Chapter 5

The stochastic IRP under supply
and demand uncertainty

In this chapter, we address the stochastic inventory routing problem under the consideration
that both the product supply and the customer demands are uncertain. We propose a two-stage
stochastic programming formulation, where routing decisions are made in the first stage, while
delivery quantities, inventory levels and specific recourse actions are determined in the second
stage. We consider different recourse mechanisms such as lost sales and backlogging as well as
an additional source for the product in a capacity reservation contract setting. The objective is
to minimize the first-stage cost plus the total expected inventory and recourse cost incurred in
the second stage. We also propose a heuristic solution method which is based on the progressive
hedging algorithm. We provide managerial insights resulting from extensive computational
experiments using instances based on a benchmark test set from the literature. In particular,
we study the response mechanisms of the optimal solutions under different uncertainty levels
of the random variables and different cost configurations. The results of the heuristic method
show that it provides high-quality solutions within reasonable running times for instances with
a large number of scenarios.

? An article based on the contents of this chapter is published as:

Alvarez, A., Cordeau, J.-F., Jans, R., Munari, P., and Morabito, R. (2020). Inventory routing
under stochastic supply and demand, Technical Report, Les Cahiers du GERAD, G-2020-14,
HEC Montréal, Canada.
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5.1 Introduction

In this chapter, we address the stochastic inventory routing problem (SIRP) in the context
where both the product supply and the customer demands are uncertain. We consider the
basic variant of the inventory routing problem (IRP) in a one-to-many setting, in which a single
central supplier has to serve the demand of multiple customers in every period of a specified
time horizon. In each period, the supplier can use a fleet of vehicles to deliver the product to the
customers, while minimizing the total cost of the system. Whereas demand uncertainty has been
studied before in the context of the IRP, to the best of our knowledge supply uncertainty has
not yet been addressed. We use a two-stage decision framework in which the routing decisions
are made in the first stage while the delivery quantities, inventory levels, and specific recourse
actions are determined in the second stage.

Uncertainty plays a crucial role in supply chain management given that critical input data
which are required for effective planning often are not known with certainty when the plan is
made, which directly impacts the quality of the decisions. Since using inaccurate information can
lead to poor performance in practice, it becomes relevant to take uncertainty into account in the
decision process. In the IRP context, demand (or downstream) uncertainty appears naturally
because of seasonality, changes in customer preferences, and inaccurate forecasts, among others.
On the other hand, supply (or upstream) uncertainty can arise from delays or shortages from
the supply source or from disruptions at the supplier’s production plant. In particular, supply
uncertainty may play a critical role in this context given that we consider the problem variant
with a single supplier. This centralization of the service implies that even relatively small supply
disruptions at the supplier will affect the service to the customers. This is often disregarded in
stochastic IRP studies.

Several variants of the SIRP have been studied over the past decades. Most of them (in-
cluding ours) differ by the specific features that they consider, such as the random variables
that are modeled, and the type of planning horizon considered, among others. We review them
to put our contribution into perspective. However, given the multiple extensions of the IRP
that can be explored in practice, we only review SIRPs considering demand uncertainty in a
finite planning horizon for road-based transportation applications. We are not aware of any
work addressing the basic variant of the IRP with supply uncertainty. For extensive reviews on
the IRP, including stochastic components, we refer the reader to Andersson et al. (2010) and
Coelho et al. (2014b). For studies exploring infinite horizon problems we refer the reader to the
works of Jaillet et al. (2002), Kleywegt et al. (2004) and Hvattum et al. (2009). Also, it is worth
mentioning that supply uncertainty has been explored in other contexts such as humanitarian
logistics (Moreno et al., 2018), supply chain design and planning (Zeballos et al., 2014) and
supplier selection (Burke et al., 2009).

Federgruen and Zipkin (1984) were the first to consider demand uncertainty in the IRP
context. They addressed a single-period SIRP, including inventory holding, shortage and trans-
portation costs. Federgruen et al. (1986) extended this work by considering a perishable product
and incorporating spoilage costs. The authors studied two different transportation alternatives:
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direct deliveries performed individually to each customer, and multi-customer routes carried out
by a fleet of vehicles. Huang and Lin (2010) studied a single-period multi-product SIRP with
uncertain demands and stockouts. The authors assumed that the demands only become known
upon the arrival of the vehicle at the customer locations and included a recourse mechanism
consisting of a return trip to the depot when stockouts occur. The objective function consists
of minimizing the total cost given by the sum of planned routes, the recourse costs and ex-
pected stockout costs. The authors presented a modified ant colony optimization metaheuristic.
Yu et al. (2012) addressed an IRP with split deliveries and stochastic demands. The authors
included service level constraints imposing (with a given probability) both demand fulfillment
and maximum storage capacity usage at the customer facilities. The authors proposed a hybrid
solution approach that combines the simplification of an approximate model of the problem as
well as repair and local search operators.

Bertazzi et al. (2013) addressed an IRP with stochastic demands and stockouts under an
order-up-to-level replenishment policy, i.e., whenever a customer is visited, the quantity de-
livered is such that its inventory level reaches the maximum storage capacity. The objective
function minimizes the expected total cost given by the sum of the expected inventory, out-of-
stock penalties and routing costs. The authors developed a dynamic programming formulation
of the problem and a rollout algorithm. Bertazzi et al. (2015) addressed a similar problem
but considering that the deliveries are performed using transportation procurement. Coelho
et al. (2014a) addressed the IRP under the assumption of dynamic and stochastic demands.
The authors proposed different heuristic policies for the problem. A single vehicle is used and
transshipments between customers are allowed. The objective function consists of minimizing
the sum of inventory, shortage, routing and transshipment costs. Nolz et al. (2014) addressed
an IRP appearing in a medical waste collection application where demands are stochastic. In
the problem, a single vehicle is used to pick up medical waste boxes from pharmacies. The
authors proposed a two-stage stochastic programming formulation for the problem and a heuris-
tic method based on an adaptive large neighborhood search algorithm. The objective function
minimizes the sum of fixed and variable routing costs plus the expected second-stage cost given
by the sum of excess inventory costs and penalty costs imposed for picking up less than a given
threshold when visiting a pharmacy.

Gruler et al. (2018) addressed a single-period IRP with stochastic demands and stockouts.
The objective function consists of minimizing the sum of expected inventory and routing costs.
The authors presented a simheuristic, based on the combination of a variable neighborhood
search metaheuristic with simulation. Nikzad et al. (2019) addressed a stochastic IRP appearing
in medical drug distribution with uncertain demands. The objective function minimizes the sum
of inventory, transportation and stockout costs. The authors presented a two-stage stochastic
programming formulation and two chance-constrained stochastic formulations. A matheuristic
solution algorithm is proposed. Markov et al. (2018) presented a unified framework for various
classes of rich routing problems with stochastic demands, including, among others, different
classes of IRPs (health care, waste collection and maritime IRP). The framework includes real-
world demand forecasting techniques to provide the model with the expected demands. The
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authors also explicitly modeled undesirable events as well as recourse actions. Markov et al.
(2020) addressed an IRP with stochastic demands appearing in a recyclable waste collection
application. The authors developed an adaptive large neighborhood search algorithm and used
a realistic demand forecasting model to estimate the expected demands and the uncertainty
levels, as in Markov et al. (2018).

IRPs for perishable products with stochastic demands and fixed deterministic shelf-lives were
studied by Soysal et al. (2015), Soysal et al. (2018) and Crama et al. (2018). In the problem
addressed by Soysal et al. (2015) the objective function consists of minimizing the total cost,
given by the sum of routing, inventory and waste costs. The problem allows unmet demands to
be backlogged and multiple visits to the customers in each time period. The authors proposed
several chance-constrained models for the problem. Soysal et al. (2018) extended this study
by considering multiple perishable products and collaboration among different suppliers. They
presented a chance-constrained formulation and a deterministic approximate formulation of the
chance-constrained program. Crama et al. (2018) studied a problem including a maximum
duration for the vehicle routes and target service levels. In their problem, the objective function
consists of maximizing the expected profit given by the total sales revenue minus the acquisition,
distribution, and other miscellaneous costs. The authors proposed several solution methods for
the problem, namely an expected value method, a deliver-up-to-level method, a decomposition
method relying on a stochastic dynamic programming model, and a decomposition-integration
method.

The contributions of this chapter are threefold. First, we introduce a two-stage stochastic
programming formulation for the SIRP under uncertain supply of the product and uncertain
customer demands. This formulation can be adapted to consider different recourse mechanisms,
such as lost sales, backlogging and an additional supply source in a capacity reservation contract
setting. We study for the first time supply uncertainty in the context of the basic variant of
the IRP as well as a capacity reservation contract setting in the IRP context. As a second
contribution, we present a heuristic solution method based on the progressive hedging algorithm.
This method provides high-quality solutions within reasonable running times for instances with a
large number of scenarios. Our final contribution consists of providing managerial insights from
experiments using instances based on a benchmark test set from the literature. In particular,
we study the response mechanisms of the optimal solutions for different levels of uncertainty
and cost configurations. Furthermore, we observe that supply and demand uncertainty have
different effects on the value of taking the uncertainty into account. We also study the effect of
incorporating a service level.

The remaining sections of this chapter are organized as follows. In Section 5.2, we describe
the problem and introduce the mathematical notation. In Section 5.3 we present the formulations
for the different cases of the problem, and in Section 5.4 we present our heuristic method for
the same cases. In Section 5.5 we describe the computational experiments that we performed
and discuss the results. Finally, Section 5.6 highlights the final remarks of the chapter.
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5.2 Problem description

The two-stage SIRP consists of a supplier, whose depot is denoted by node 0, who has to serve
the demand of N customers in each one of the T periods of a specified time horizon. In this
problem, the customers are represented by the set C = {1, . . . , N} and the time horizon by
T = {1, . . . , T}. To serve the customer demands, the supplier can use up to K vehicles, each
one having a capacity Q. All the vehicles are based at the depot and are represented by the
set K = {1, . . . ,K}. The vehicle routes take place in a distribution network represented by the
set of arcs A = {(i, j): i, j ∈ N , i 6= j}, where N = {0} ∪ C is the set of all the facilities of
the system (supplier’s depot and its customers). Every route starts from and must return to
the depot. Also, a routing cost cij is incurred every time a vehicle traverses arc (i, j) ∈ A. An
inventory holding cost hti has to be paid for every unit of product in stock at the end of each
period t ∈ T in each facility i ∈ N . In addition, there is an initial amount I0

i available in every
facility i ∈ N at the beginning of the time horizon. Finally, the stock at hand at each customer
i ∈ C is restricted by the maximum storage limit Ci.

The supply and demands are random variables with known discrete probability distributions
(assuming independence for all facilities and periods). Let S denote the finite set of all the
possible scenarios (supply and demand realizations), and let ρs be the probability of occurrence
of scenario s ∈ S, with ρs > 0, ∀s ∈ S and

∑
s∈S ρs = 1. Let dtis be the demand of customer

i ∈ C in time period t ∈ T under scenario s ∈ S and let rts be the amount of product the supplier
receives in time period t ∈ T under scenario s ∈ S.

In the SIRP, any quantity can be delivered to the customers as long as the maximum holding
capacity is not exceeded. In addition, we work under the following assumptions: the storage
capacity of the supplier is large enough to store all the received amounts at the depot; the
demand of a given time period can be satisfied with a delivery performed in the same period;
and the amount the supplier receives in each period can be used to perform deliveries in that
same period. We also assume that the supply and demand realizations are known before all the
vehicles depart from the supplier depot. Therefore, the SIRP consists of determining, in the first
stage, the vehicle routes that will be performed in each time period and, after the realization of
the supply and demand scenario (second stage), the delivery quantities and the required recourse
decisions (if any) such that the total cost is minimized. This total cost is given by the first-stage
cost (vehicle routing cost) plus the expected cost of the second-stage decisions. Figure 5.1 shows
the timing of the events that we assume in this chapter.

  

Second-stage: delivery, inventory and recourse decisionsSupply and demand realizationFirst-stage:visit and route planning
Figure 5.1: Timing of the events in the SIRP

Adulyasak et al. (2015a) pointed out that this type of setting follows real-world practice,
in which some decisions are planned beforehand using information about possible values of the
input data (e.g., product availability and customer demands) and these plans remain fixed in
the execution phase. This is done with the aim of designing plans that are less sensitive to
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data uncertainty (Vladimirou and Zenios, 1997) and also to maintain consistency in the planned
activities and to avoid large disruptions in the initial plan. Particularly, consistency represents
an important issue in distribution planning activities since typically the planned visits have to
be informed in advance to the customers and the required resources need to be prepared (Kovacs
et al., 2014; Coelho et al., 2012). It is worth mentioning that a similar timing of events has been
used in other studies (Nikzad et al., 2019; Adulyasak et al., 2015a; Nolz et al., 2014).

5.3 Two-stage stochastic programming formulations

In this section, we describe the mathematical formulations that we introduce for the SIRP. First,
in Sections 5.3.1 and 5.3.2 we present formulations for the SIRP with lost sales and backlogging as
recourse decisions, respectively. Then, in Section 5.3.3, we describe a mathematical formulation
for the SIRP with a capacity reservation contract (CRC), which can be used as an additional
recourse mechanism in the second stage, but also requires an additional first-stage decision.

5.3.1 Lost sales formulation

To model the SIRP with lost sales, we introduce the parameter ai, which is the penalty incurred
by the supplier for every unit of unmet demand at customer i ∈ C in each time period. This
penalty can be interpreted as the opportunity cost for the stockouts or as the outsourcing cost
paid to a third-party responsible for delivering the product to the customers. Also, we introduce
the following decision variables:

xktij ∈ {0, 1} : 1 if vehicle k traverses arc (i, j) in time period t, 0 otherwise;

ykti ∈ {0, 1} : 1 if facility i is visited by vehicle k in period t, 0 otherwise;

Itis ≥ 0 : inventory at facility i at the end of time period t under scenario s;

qktis ≥ 0 : quantity delivered to customer i by vehicle k in period t under scenario s;

utis ≥ 0 : unmet demand at customer i in time period t under scenario s.

Given these decision variables, the formulation can be stated as follows:

min
∑

(i,j)∈A

∑
k∈K

∑
t∈T

cijx
kt
ij +

∑
s∈S

ρs

(∑
i∈N

∑
t∈T

htiI
t
is +

∑
i∈C

∑
t∈T

aiu
t
is

)
(5.1)

s.t. It0s = It−1
0s + rts −

∑
i∈C

∑
k∈K

qktis t ∈ T , s ∈ S, (5.2)

Itis = It−1
is +

∑
k∈K

qktis + utis − dtis i ∈ C, t ∈ T , s ∈ S, (5.3)

It−1
is +

∑
k∈K

qktis ≤ Ci i ∈ C, t ∈ T , s ∈ S, (5.4)

qktis ≤ min{Q,Ci}ykti i ∈ C, k ∈ K, t ∈ T , s ∈ S, (5.5)∑
i∈C

qktis ≤ Qykt0 k ∈ K, t ∈ T , s ∈ S, (5.6)
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∑
j∈N :j 6=i

xktji = ykti i ∈ N , k ∈ K, t ∈ T , (5.7)

∑
j∈N :j 6=i

xktij = ykti i ∈ N , k ∈ K, t ∈ T , (5.8)

∑
i∈B

∑
j∈B:j 6=i

xktij ≤
∑
i∈B

ykti − yktl ∀B ⊆ C, |B|≥ 2, k ∈ K, t ∈ T , l ∈ B, (5.9)

∑
k∈K

ykti ≤ 1 i ∈ C, t ∈ T , (5.10)

Itis ≥ 0 i ∈ N , t ∈ T , s ∈ S, (5.11)

qktis ≥ 0 i ∈ C, k ∈ K, t ∈ T , s ∈ S, (5.12)

utis ≥ 0 i ∈ C, t ∈ T , s ∈ S, (5.13)

ykti ∈ {0, 1} i ∈ N , k ∈ K, t ∈ T , (5.14)

xktij ∈ {0, 1} (i, j) ∈ A, k ∈ K, t ∈ T . (5.15)

The objective function (5.1) consists of minimizing the total cost, given by the sum of
transportation costs (first-stage) and inventory holding and lost sales costs (second-stage). Con-
straints (5.2) and (5.3) balance the inventory at the supplier and the customers, respectively,
for every scenario. Constraints (5.4) impose the customers’ storage capacity. Constraints (5.5)
link delivery and visit variables. Constraints (5.6) enforce the capacity of the vehicles in every
scenario. Constraints (5.7) and (5.8) are the vehicle flow conservation while constraints (5.9)
are the subtour elimination constraints (SECs). Constraints (5.10) limit the number of visits
to each customer every time period. Finally, the domain of the decision variables is defined in
constraints (5.11)-(5.15).

5.3.2 Backlogging formulation

Instead of assuming that all the unmet demand is immediately lost, we can model a situation in
which the unmet demand can be delivered in later periods with an associated penalty cost, i.e.,
we can use backlogging as the recourse action in the second stage. We introduce the variable Bt

is

which is the amount backlogged at customer i ∈ C in time period t ∈ T under scenario s ∈ S.
Additionally, let ai be now the backlogging cost at customer i ∈ C in each time period. Then,
the two-stage stochastic programming formulation for the SIRP with backlogging can be stated
as follows:

min
∑

(i,j)∈A

∑
k∈K

∑
t∈T

cijx
kt
ij +

∑
s∈S

ρs

(∑
i∈N

∑
t∈T

htiI
t
is +

∑
i∈C

∑
t∈T

aiB
t
is

)
(5.16)

s.t. Itis −Bt
is = It−1

is −B
t−1
is +

∑
k∈K

qktis − dtis i ∈ C, t ∈ T , s ∈ S, (5.17)

Bt
is ≥ 0 i ∈ C, t ∈ T , s ∈ S, (5.18)

(5.2), (5.4)-(5.12) and (5.14)-(5.15).

The objective function (5.16) consists of minimizing the total cost, given by the sum of
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routing costs and expected inventory holding and backlogging costs. Constraints (5.17) define
the inventory conservation at the customers, now considering the backlogging variable, and
constraints (5.18) define the domain of the new decision variable. Notice that we do not force
the backlogging to be null in the last period, which can be viewed as a lost sales allowance at
the end of the planning horizon, or a backlogged amount that will be carried over to the next
planning horizon.

5.3.3 Capacity reservation contract formulation

In this section, we model the SIRP with a CRC as an additional recourse mechanism. In this
setting, the supplier can make a contract with an external provider to reserve a certain amount of
manufacturing capacity upfront, such that the external provider is able to produce any amount
within the limits of the reserved capacity in each period (Serel et al., 2001). The external
provider delivers the extra amount directly to the supplier, who subsequently transports this to
the customers. When a CRC is established, the purchasing cost for the supplier is typically lower
than the expected cost on the spot market (in our case, lost sales or backlogging costs). However,
the supplier has to pay a certain amount upfront for this capacity reservation, irrespective of
whether this capacity will be later used or not. CRCs allow the supplier to reduce purchasing
costs and shortage risks, while the resource utilization of the external provider is increased. This
type of business-to-business arrangement is especially useful in uncertain environments and can
be found in many industries such as commodity chemicals or semiconductor manufacturing
(Kleindorfer and Wu, 2003; Serel, 2007).

In our problem, if the supplier contracts this additional capacity, it incurs a fixed reservation
cost in the first stage and a variable cost for each unit of the reserved capacity that is actually
used in the second stage. The contracted supplementary capacity is a multiple of a base capacity
∆ offered by the external source. The extra amount that can be made available at the supplier
facility at the beginning of any time period of the planning horizon is a supplementary recourse
in the second stage, together with lost sales or backlogging, as in Sections 5.3.1 and 5.3.2,
respectively.

To model this problem, we consider the following additional notation. Let f be a fixed
reservation cost incurred for each ∆ units of external capacity contracted and p be the procure-
ment cost for each extra unit actually acquired by the supplier. We also introduce the following
decision variables:

z ∈ Z+ : number of times the base capacity ∆ is contracted by the supplier in the first stage;

wts ≥ 0 : extra amount made available at the supplier at the beginning of period t

under scenario s.

To illustrate the relation between the capacity reservation variable (z) and the product
availability and reservation cost in the CRC setting, Figure 5.2 shows a numerical example.
Assume a base capacity of 10 units and a fixed reservation cost equal to 5 (i.e., ∆ = 10 and
f = 5). The chart shows, for different values of the reservation variable (z) in the horizontal
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axis, the first-stage cost incurred by the contract made, given by fz; and the maximum extra
amount that the supplier can use every time period, computed as z∆.

Figure 5.2: Product availability and reservation cost for different number of contracts

Given this notation, the two-stage stochastic programming formulation for the SIRP with
CRC and lost sales can be stated as follows:

min
∑

(i,j)∈A

∑
k∈K

∑
t∈T

cijx
kt
ij + fz +

∑
s∈S

ρs

(∑
i∈N

∑
t∈T

htiI
t
is +

∑
i∈C

∑
t∈T

aiu
t
is +

∑
t∈T

pwts

)
(5.19)

s.t. It0s = It−1
0s + rts + wts −

∑
i∈C

∑
k∈K

qktis t ∈ T , s ∈ S, (5.20)

wts ≤ z∆ t ∈ T , s ∈ S, (5.21)

wts ≥ 0 t ∈ T , s ∈ S, (5.22)

z ∈ Z, (5.23)

(5.3)-(5.15).

The objective function (5.19) consists of minimizing the total cost, given by the sum of
routing and capacity reservation costs (first stage) and expected second-stage cost, given by the
inventory holding and lost sales costs plus the total procurement of the extra amounts actually
acquired by the supplier. Constraints (5.20) define the inventory conservation at the supplier,
in which there are now two sources of the product: the regular source (parameter r) and the
extra source (variable w). Constraints (5.21) allow the usage of the additional capacity in each
time period up to the level actually reserved in advance (first stage) by the supplier. Constraints
(5.22) and (5.23) define the domain of the usage and reservation decision variables, respectively.

Note that this model also uses the lost sales variables (u), as used in Section 5.3.1. The
variant for this formulation considering backlogging instead of lost sales can be obtained by
modifying the inventory conservation constraints of the customers to include the backlogging
variable (B), as in Section 5.3.2. Also, it is worth mentioning that the model can be extended
to a more general approach with several (different) modular capacities, e.g., L alternatives
offered in base capacities ∆1,∆2, . . . ,∆L, of which there are U1, U2, . . . , UL units available for
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reservation, respectively. Integer variables z1, z2, . . . , zL, bounded by their respective availability
(z` ≤ U`, ` = 1, . . . , L), can be defined to indicate the usage of the different modular alternatives.
Finally, the extra amount made available in each time period (wts) would be bounded by the
sum of the reserved capacities, i.e., wts ≤

∑L
`=1 z`∆`.

5.3.4 Remarks on the computational implementation

We provide a few remarks regarding the computational implementation of the proposed formu-
lations. First of all, note that we used a complete directed graph to represent the problem,
with an arc set A = {(i, j): i, j ∈ N , i 6= j}. However, when the travel costs are assumed to be
symmetric, i.e., cij = cji, ∀(i, j) ∈ A, the arc set can be replaced with the following edge set
E = {(i, j): i, j ∈ N , i < j}. This allows us to model the problem using a considerably smaller
number of vehicle flow variables x, which positively impacts the performance of the solver. The
constraints involving these variables must be modified accordingly.

Regarding the separation of the SECs (5.9), which are used in the three formulations, we
use an exact procedure that relies on several minimum cut problems, which are solved using
the Concorde solver (Applegate et al., 2018). For this, consider the following notation. Let ȳkti
and x̄ktij represent, for a given solution (fractional or integer) found during the branch-and-cut
(B&C) process, the values for the variables ykti and xktij , respectively. The algorithm then builds
a graph for every pair (k,t) with ȳkt0 > 0. The vertex set of each graph consists of all the nodes
i ∈ C of the solution for which ȳkti takes a positive value. The weight of the edges of each graph
is set to x̄ktij , for every pair of vertices of the corresponding graph. Then, for each customer
vertex of the constructed graph, the separation procedure solves a minimum s− t cut problem,
where the source vertex is set as the supplier node (s = 0) and the sink vertex is set as the
customer node (t = i). If the minimum cut capacity is less than 2ȳkti then a violated SEC has
been found (Adulyasak et al., 2014a; Alvarez et al., 2020). The set B of the respective equation
contains the nodes of the minimum cut and we add constraints (5.9) with ` = arg maxi∈B{ȳkti },
for every vehicle and time period. This separation procedure is applied only at the root node
and to integer solutions, in order to work with a reduced number of cuts.

We also explored symmetry breaking constraints (SBCs) in our implementation. This is an
important issue given that there can be a large number of symmetric solutions in each time period
due to the homogeneous nature of the vehicle fleet, which negatively impacts the performance
of the B&C algorithm. We explored the SBCs used by Adulyasak et al. (2014a) and Coelho and
Laporte (2013b). In particular, in our implementation we used the following SBCs:

ykt0 ≤ y
k−1,t
0 k ∈ K\{1}, t ∈ T , (5.24)

j∑
i=1

2(j−i)ykti ≤
j∑
i=1

2(j−i)yk−1,t
i j ∈ C, k ∈ K\{1}, t ∈ T . (5.25)

Constraints (5.24) allow the use of vehicle k only if vehicle k − 1 is used in the same time
period. Constraints (5.25) belong to the lexicographic ordering constraints family (Jans, 2009).
These constraints assign a unique number to each possible subset of customers on a route and
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order the vehicles according to this number. This combination of SBCs was chosen after several
preliminary experiments using a subset of the instances with two vehicles. A similar combination
of SBCs was also used by Adulyasak et al. (2014a).

Notice also that we can model the problem using a formulation without a vehicle index,
since the fleet is considered to be homogeneous in terms of capacity and travel times and costs.
However, in that case we would need either MTZ-like SECs or capacity cuts as both SECs and
vehicle capacity constraints. These capacity cuts would have the form shown in (5.26).

Q
∑
i∈B

∑
j∈B:j 6=i

xtij ≤ Q
∑
i∈B

yti −
∑
i∈B

qtis ∀B ⊆ C, |B|≥ 2, t ∈ T , s ∈ S. (5.26)

The former option would yield a considerably weaker formulation. On the other hand, the
latter option results in capacity cuts including the delivery quantity variables, which are second-
stage variables. Thus, it would be necessary to separate the capacity cuts also for each scenario,
which becomes prohibitive when the number of scenarios is large.

5.4 A progressive hedging-based heuristic for the SIRP

This section presents the heuristic algorithm that we propose to solve the SIRP, which is based on
the progressive hedging (PH) algorithm (Rockafellar and Wets, 1991). In their work, Rockafellar
and Wets proposed a scenario-based decomposition method for stochastic programs based on an
augmented Lagrangean strategy. The method solves a series of subproblems resulting from the
scenario decomposition and guides the search to find a solution in which the aggregation of the
subproblem solutions is non-anticipative (i.e., the first-stage solution is not scenario-dependent)
and optimal. The authors proved that their method converges to a global optimum in the convex
case and showed that if it converges in the nonconvex case when the subproblems are solved to
local optimality then the resulting solution is a local optimum. Several PH-based heuristics have
been proposed in the literature for stochastic problems with integer variables, e.g., Løkketangen
and Woodruff (1996) for mixed integer (0, 1) multi-stage stochastic programs, Haugen et al.
(2001) for stochastic lot-sizing problems, Crainic et al. (2011) for a stochastic network design
problem and Lamghari and Dimitrakopoulos (2016) for open-pit mine production scheduling
under uncertainty.

In our approach, when we apply the scenario decomposition to the original stochastic problem
(Section 5.4.1) it results in a series of subproblems that take the form of a deterministic IRP with
visiting costs for each scenario s (which we will refer to as IRP(s)). These problems are solved
using an iterated local search (ILS)-based hybrid method (Section 5.4.4). In each outer iteration
of the algorithm, the cost parameters of each scenario are adjusted to reflect the differences
between the scenario solution and a reference solution (Section 5.4.3). These adjustments are
made with the aim of reaching a consensus on the first-stage solutions over all the scenarios
and thus to a feasible solution for the complete stochastic problem. The reference solution is
constructed from the solution of all the scenarios in the previous iteration (Section 5.4.2). All
the components of the overall approach are described in the upcoming sections. It is worth
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mentioning that in this section we describe the application of this method for the SIRP with
lost sales, but the procedure can be applied analogously for both the backlogging case and the
CRC case.

5.4.1 Scenario decomposition for the SIRP

One can see that the formulation presented in Section 5.3.1 has a block-angular structure
(each block representing a deterministic IRP with lost sales for each scenario s ∈ S) with con-
straints (5.5) and (5.6) linking the first- and second-stage variables. These linking constraints
forbid the delivery quantities of every scenario to take positive values when the respective first-
stage variables are zero. Thus, we can reformulate the problem after creating a copy of the
first-stage variables for each scenario s ∈ S (xktijs and yktis ), as follows:

min
∑
s∈S

ρs

 ∑
(i,j)∈A

∑
k∈K

∑
t∈T

cijx
kt
ijs +

∑
i∈N

∑
t∈T

htiI
t
is +

∑
i∈C

∑
t∈T

aiu
t
is

 (5.27)

s.t. qktis ≤ min{Q,Ci}yktis i ∈ C, k ∈ K, t ∈ T , s ∈ S, (5.28)∑
i∈C

qktis ≤ Qykt0s k ∈ K, t ∈ T , s ∈ S, (5.29)

∑
j∈N :j 6=i

xktjis = yktis i ∈ N , k ∈ K, t ∈ T , s ∈ S, (5.30)

∑
j∈N :j 6=i

xktijs = yktis i ∈ N , k ∈ K, t ∈ T , s ∈ S, (5.31)

∑
i∈B

∑
j∈B:j 6=i

xktijs ≤
∑
i∈B

yktis − ykt`s ∀B ⊆ C, |B|≥ 2, k ∈ K, t ∈ T , ` ∈ B, s ∈ S, (5.32)

∑
k∈K

yktis ≤ 1 i ∈ C, t ∈ T , s ∈ S, (5.33)

yktis = ŷkti i ∈ N , k ∈ K, t ∈ T , s ∈ S, (5.34)

xktijs = x̂ktij (i, j) ∈ A, k ∈ K, t ∈ T , s ∈ S, (5.35)

yktis ∈ {0, 1} i ∈ N , k ∈ K, t ∈ T , s ∈ S, (5.36)

xktijs ∈ {0, 1} (i, j) ∈ A, k ∈ K, t ∈ T , s ∈ S, (5.37)

ŷkti ∈ {0, 1} i ∈ N , k ∈ K, t ∈ T , (5.38)

x̂ktij ∈ {0, 1} (i, j) ∈ A, k ∈ K, t ∈ T , (5.39)

(5.2)-(5.4) and (5.11)-(5.13).

Constraints (5.34) and (5.35) ensure that the first-stage solutions will be the same for all the
scenarios. These constraints are imposed to guarantee that a single “implementable” solution
will be obtained (Rockafellar and Wets, 1991), i.e., a single set of vehicle routes (and their
respective visit decisions) for each time period over all the scenarios, instead of scenario-tailored
first-stage solutions. The variables ŷkti and x̂ktij are referred to as the “overall” first-stage variables
(Crainic et al., 2011).

Following the separation procedure of the PH algorithm, constraints (5.34) and (5.35) are
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relaxed using an augmented Lagrangean method, alternatively referred to as multiplier method
(Luenberger and Ye, 2016), which results in the following objective function for the formulation:

min
∑
s ∈S

ρs

 ∑
(i,j)∈A

∑
k∈K

∑
t∈T

cijx
kt
ijs +

∑
i∈N

∑
t∈T

htiI
t
is +

∑
i∈C

∑
t∈T

aiu
t
is +

∑
i∈N

∑
k∈K

∑
t∈T

λktis (yktis − ŷkti )

+ 1
2
∑
i∈N

∑
k∈K

∑
t∈T

δ(yktis − ŷkti )2 +
∑

(i,j)∈A

∑
k∈K

∑
t∈T

µktijs(xktijs− x̂ktij )+ 1
2
∑

(i,j)∈A

∑
k∈K

∑
t∈T

δ(xktijs− x̂ktij )2

 ,
(5.40)

with unrestricted multipliers λktis and µktijs for the relaxed constraints (5.34) and (5.35), respec-
tively, and a penalty term δ. They penalize the difference of the values of the visit and routing
decisions between the scenario solution (yktis and xktijs) and the “overall” first-stage variables (ŷkti
and x̂ktij ). Then, given that the variables xktijs and yktis are binary, the function can be reduced as
follows:

(5.41)
min

∑
s ∈S

ρs

 ∑
(i,j)∈A

∑
k∈K

∑
t∈T

(cij + µktijs + 1
2δ − δx̂

kt
ij )xktijs +

∑
i∈N

∑
t∈T

htiI
t
is +

∑
i∈C

∑
t∈T

aiu
t
is

+
∑
i∈N

∑
k∈K

∑
t∈T

(λktis + 1
2δ − δŷ

kt
i )yktis

+ θ,

where

(5.42)
θ =

∑
s∈S

ρs

1
2
∑
i∈N

∑
k∈K

∑
t∈T

δ(ŷkti )2 −
∑
i∈N

∑
k∈K

∑
t∈T

λktis ŷ
kt
i + 1

2
∑

(i,j)∈A

∑
k∈K

∑
t∈T

δ(x̂ktij )2

−
∑

(i,j)∈A

∑
k∈K

∑
t∈T

µktijsx̂
kt
ij

 .
Notice that for a given solution for the variables ŷkti and x̂ktij , the relaxed formulation de-

composes by scenario. Thus, for each scenario s ∈ S, the subproblem takes the form of a
deterministic IRP with lost sales and visiting costs, as follows:

min
∑

(i,j)∈A

∑
k∈K

∑
t∈T

c̄ktijsx
kt
ijs +

∑
i∈N

∑
t∈T

htiI
t
is +

∑
i∈C

∑
t∈T

aiu
t
is +

∑
i∈N

∑
k∈K

∑
t∈T

b̄ktisy
kt
is (5.43)

s.t. (5.2)-(5.4), (5.11)-(5.13), (5.28)-(5.33) and (5.36)-(5.37),

where c̄ktijs = cij + µktijs + 1
2δ − δx̂

kt
ij and b̄ktis = λktis + 1

2δ − δŷ
kt
i are the routing and visiting costs

of the scenario subproblem, respectively.
To devise a PH-based solution method from the previously applied decomposition, we must

define a procedure to set the reference solution (ŷkti and x̂ktij ) as well as a procedure to guide the
scenario solutions to a consensus among the first-stage solutions. These procedures are described
in the upcoming sections.
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5.4.2 Setting the reference solution

In this phase of the method, we use the first-stage solution of each scenario to identify a global
trend among them. In our heuristic, we use an aggregation operator that combines the first-stage
solutions over all the scenarios into a single solution by taking the weighted sum of each first-
stage variable, where the weights are defined by the probability of occurrence of each scenario.
This type of aggregation operator was originally proposed by Rockafellar and Wets (1991) and
later used by Crainic et al. (2011) and Lamghari and Dimitrakopoulos (2016). Let v define
the index of the outer iterations of the PH-based heuristic method. Then, the value of the
reference solution variables ŷkt(v)

i and x̂
kt(v)
ij in the iteration v of the algorithm, are obtained

using equations (5.44) and (5.45), respectively, as follows:

ŷ
kt(v)
i =

∑
s∈S

ρsȳ
kt(v)
is ∀i ∈ N , k ∈ K, t ∈ T , (5.44)

x̂
kt(v)
ij =

∑
s∈S

ρsx̄
kt(v)
ijs ∀(i, j) ∈ A, k ∈ K, t ∈ T , (5.45)

where ȳkt(v)
is and x̄kt(v)

ijs are the values of the first-stage variables of the solution of scenario s ∈ S
in the v-th iteration of the algorithm.

Notice that when we obtain ŷkt(v)
i (x̂kt(v)

ij ) ∈ {0, 1} for a given node i ∈ N (arc (i, j) ∈ A),
vehicle k ∈ K and time period t ∈ T , it means that we have reached a consensus on the values of
the variables ykt(v)

is (xkt(v)
ijs ) over all the scenarios in iteration v. Then, if a consensus is obtained

for all the first-stage variables, the current set of solutions (one for each scenario) composes a
feasible solution for the complete stochastic program. However, most of the time this is not the
case and we have 0 < ŷ

kt(v)
i < 1 or 0 < x̂

kt(v)
ij < 1, implying that the current reference solution

is infeasible given the integrality requirements of the first-stage variables. Still, the values of
the reference solution can be used to indicate the tendency to visit a customer or the usage of
an arc by a given vehicle in a defined time period. For a given node (arc), vehicle and period,
values of ŷkt(v)

i (x̂kt(v)
ij ) close to one indicate that the node (arc) is being visited (traversed) in

the period by that vehicle in most of the scenario solutions. Analogously, a value close to zero
indicates a tendency toward not visiting the node (traversing the arc).

5.4.3 Adjustment strategy

In each iteration of the PH-based heuristic, it is necessary to adjust the scenario subproblem
costs with the aim of leading to a gradual consensus of the first-stage solutions over all the
scenario subproblems and, as a consequence, of the reference solution variables. For this, different
strategies can be used such as updating the multipliers λktis and µktijs that appear in the routing and
visiting costs of the objective function (5.43) of the scenario subproblems, using the augmented
Lagrangean method (Bertsekas, 1982; Luenberger and Ye, 2016). Another strategy that can be
applied is to use a heuristic rule in each iteration to directly modify the routing and visiting
costs (c̄ktijs and b̄ktis , respectively) of the scenarios, instead of the multipliers (Crainic et al., 2011).
In our implementation we used a heuristic strategy since it resulted in slightly better results in
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most of the cases we tested. Two types of heuristic adjustments are applied, namely, a global
adjustment to guide the overall search and a local adjustment to influence the search at each
scenario subproblem.

Given a reference solution ŷ
kt(v)
i and x̂

kt(v)
ij in iteration v, the global adjustment tries to

identify trends among the scenario solutions and then sets the costs accordingly. When a low
value of ŷkt(v)

i (x̂kt(v)
ij ) is reached, it means that in most of the scenario solutions in iteration v,

the node i is not visited (the arc (i, j) is not traversed) by vehicle k in time period t, while a
large value of ŷkt(v)

i (x̂kt(v)
ij ) indicates the opposite. Thus, when the value of ŷkt(v)

i (x̂kt(v)
ij ) is less

than a given parameter εy (εx) ∈ (0, 0.5) we increase the value of the visit (travel) cost with the
aim of discouraging the visit to the customer (the use of the arc) in the next iteration by all the
scenarios. Similarly, when the value of ŷkt(v)

i (x̂kt(v)
ij ) is greater than 1 − εy (1 − εx) we reduce

the corresponding parameter so that the visit (usage of the arc) is encouraged in the scenario
solutions. This strategy, for the visit and travel costs, is defined in equations (5.46) and (5.47),
respectively:

b̄
kt(v)
i =


βb̄

kt(v−1)
i if ŷkt(v−1)

i < εy,

1
β b̄
kt(v−1)
i if ŷkt(v−1)

i > 1− εy,

b̄
kt(v−1)
i otherwise;

(5.46)

c̄
kt(v)
ij =


βc̄

kt(v−1)
ij if x̂kt(v−1)

ij < εx,

1
β c̄

kt(v−1)
ij if x̂kt(v−1)

ij > 1− εx,

c̄
kt(v−1)
ij otherwise,

(5.47)

with β > 1, where β is the adjustment rate of the costs.
The local adjustment strategy is applied at the level of each scenario s ∈ S. We try to

identify variables of the scenario solution for which there are large differences w.r.t. the current
reference solution and adjust their costs, using equations (5.48) and (5.49) for the visit and
routing costs, respectively:

b̄
kt(v)
is =


βb̄

kt(v)
i if |ȳkt(v−1)

is − ŷkt(v−1)
i |> My and ȳkt(v−1)

is = 1,
1
β b̄
kt(v)
i if |ȳkt(v−1)

is − ŷkt(v−1)
i |> My and ȳkt(v−1)

is = 0,

b̄
kt(v)
i otherwise;

(5.48)

c̄
kt(v)
ijs =


βc̄

kt(v)
ij if |x̄kt(v−1)

ijs − x̂kt(v−1)
ij |> Mx and x̄kt(v−1)

ijs = 1,
1
β c̄

kt(v)
ij if |x̄kt(v−1)

ijs − x̂kt(v−1)
ij |> Mx and x̄kt(v−1)

ijs = 0,

c̄
kt(v)
ij otherwise,

(5.49)

where the parameters My ∈ (0, 1) and Mx ∈ (0, 1) represent the threshold defining when a local
adjustment has to be applied for the visit and routing variables, respectively.
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5.4.4 Solving the IRP(s)

In our solution approach, for each scenario and iteration we have to solve a subproblem corre-
sponding to a deterministic IRP with visiting costs. As pointed out by Crainic et al. (2011),
it is not necessary to solve the scenario subproblems to optimality since we are using the PH
algorithm as a heuristic procedure. Thus, to solve these problems we use an ILS-based hybrid
heuristic, which has been successfully applied to solve other variants of the IRP (Alvarez et al.,
2018, 2020). In this method, several components manage the different decisions of the problem.
First, the local search heuristic of the method is responsible for the improvement of the routing
decisions. This is done using a randomized variable neighborhood descent heuristic. Secondly,
a multi-operator procedure, which is used in the perturbation mechanism, handles the visit de-
cisions. This procedure modifies several parts of the input solution every time it is applied. In
addition, the method uses a linear programming (LP) model to compute the optimal values of
the delivery, inventory and recourse decisions. The input required by this model is a solution
given by a set of visit decisions.

5.4.5 Obtaining a feasible solution for the SIRP

Once every scenario subproblem has been solved, we can use their solutions to obtain a feasible
solution for the complete problem. For this, notice that we can have three cases for the solutions
of the scenario subproblems in iteration v, as follows:

(i) We have a consensus on the first-stage solutions over all the scenarios, i.e., ŷkt(v)
i ∈ {0, 1},

∀i ∈ N , k ∈ K, t ∈ T and x̂kt(v)
ij ∈ {0, 1}, ∀(i, j) ∈ A, k ∈ K, t ∈ T ;

(ii) We have a consensus on the visit variables over all the scenarios but we have not reached
a consensus on the vehicle flow variables, i.e., ŷkt(v)

i ∈ {0, 1}, ∀i ∈ N , k ∈ K, t ∈ T and
0 < x̂

kt(v)
ij < 1, for some (i, j) ∈ A, k ∈ K, t ∈ T ;

(iii) We have not reached a consensus neither on the visit variables nor on the vehicle flow
variables, i.e., 0 < ŷ

kt(v)
i < 1, for some i ∈ N , k ∈ K, t ∈ T .

In the first case, we have obtained a feasible solution for the complete multi-scenario problem
where the first-stage solution corresponds to the reference solution, i.e., ykti = ŷ

kt(v)
i and xktij =

x̂
kt(v)
ij , ∀k ∈ K, t ∈ T , i ∈ N and (i, j) ∈ A, respectively. In the second case, the scenario

solutions visit the same customers using the same vehicles in the same time periods but in
different orders (using different vehicle routes). In this case, we can take the scenario solution
with the lowest first-stage cost and use the values of its first-stage solution (ȳ and x̄) to obtain
a feasible solution for the complete problem by solving the following LP model:

min
∑
s∈S

ρs

(∑
i∈N

∑
t∈T

htiI
t
is +

∑
i∈C

∑
t∈T

aiu
t
is

)
(5.50)

s.t. qktis ≤ min{Q,Ci}ȳkti i ∈ C, k ∈ K, t ∈ T , s ∈ S, (5.51)∑
i∈C

qktis ≤ Qȳkt0 k ∈ K, t ∈ T , s ∈ S, (5.52)
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(5.2)-(5.4) and (5.11)-(5.13),

where ȳkt0 = 1 indicates that vehicle k is used in time period t and ȳkti = 1 indicates that vehicle
k visits customer i in time period t. The objective function (5.50) consists of minimizing the
total cost, given by the sum of inventory holding and penalty costs. Constraints (5.51) link
delivery and visit variables. Finally, constraints (5.52) impose the capacity of each vehicle.

In the last case, when there is no consensus on the visit variables, and consequently on the
vehicle flow variables, we can still use a scenario first-stage solution to obtain a feasible solution
for the whole problem. In our implementation we use the solution of scenario s̄, such that,
s̄ = arg maxs∈S{

∑
i∈C āi

∑
t∈T

∑
k∈K ȳ

kt
is }, where āi = ai/maxj∈C{aj}, i.e., we take the solution

with the largest value of the weighted number of visits. Using the first-stage solution of s̄ (ȳ
and x̄) we can obtain a feasible solution for the complete problem by solving the same LP
model described for the second case. It is worth mentioning that for this case we tried different
strategies for the selection of the first-stage scenario solution used as basis to generate a solution
for the multi-scenario problem and the above mentioned criterion led to slightly better results.

In addition, we try to improve the solution found by applying an ILS-based hybrid method
similar to the one described in Section 5.4.4 but in this case for the multi-scenario problem.
Thus, the local search and perturbation components are the same as before, and the LP model
is replaced by a multi-scenario LP model.

5.4.6 Description of the complete heuristic

Given the components described in the previous sections, we can now describe the general
structure of the solution method, whose pseudo-code is shown in Algorithm 5.1. Each outer
iteration corresponds to an iteration of the main loop (lines 3 to 16). In the first outer iteration
of the method (line 4), we set the initial values of the scenario subproblem costs (lines 5 to 6).
For subsequent iterations, the required global and local adjustment strategies are applied (lines 8
and 9, respectively) at the beginning of the outer iterations. After that, we solve every scenario
subproblem (line 11) and compute the updated reference solution of the iteration (line 12 and 13).
At the end of every outer iteration, we construct a feasible solution for the problem (line 14) and
update the best feasible solution if a new one was found. In the second outer iteration of the
heuristic (v = 1), the visiting costs are set to an initial value b0 in the local adjustment strategy
(line 9), i.e., bkt(v)

is = b0, ∀i ∈ N , k ∈ K, t ∈ T , s ∈ S when v = 1. This is done because in the
original version of the problem (before the scenario decomposition) there are no visiting costs.
The algorithm stops when either a consensus is reached over all the first-stage variables, when
it reaches the maximum number of outer iterations, or when the running time limit is exceeded
(line 3).

5.5 Computational experiments

In this section, we report the results obtained with the formulations and the heuristic algorithm
previously presented. This algorithm was coded in C++ and run on a 2.1 GHz AMD Opteron
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Algorithm 5.1: PH-based heuristic
1 begin
2 v = 0;
3 while stopping criterion is not met do
4 if v = 0 then
5 b̄kt0is = 0 ∀i ∈ N , k ∈ K, t ∈ T , s ∈ S;
6 c̄kt0ijs = cij ∀(i, j) ∈ A, k ∈ K, t ∈ T , s ∈ S;
7 else
8 Apply global adjustment strategy;
9 Apply local adjustment strategy ∀s ∈ S;

10 end
11 for s ∈ S do Solve IRP(s) ;
12 ŷ

kt(v)
i =

∑
s∈S ρsȳ

kt(v)
is ∀i ∈ N , k ∈ K, t ∈ T ;

13 x̂
kt(v)
ij =

∑
s∈S ρsx̄

kt(v)
ijs ∀(i, j) ∈ A, k ∈ K, t ∈ T ;

14 Apply feasible solution generation procedure;
15 v = v + 1;
16 end
17 end

6172 processor with one thread and a limit of 18 GB of RAM. We used CPLEX v12.8 as solver.
We turned off CPLEX’s parallel mode and set the CPLEX optimality tolerance to 10−6. All
other CPLEX parameters were set to their default values.

5.5.1 Test instances

To test our algorithms, we generated problem instances based on the benchmark set proposed
by Archetti et al. (2007) for the deterministic basic variant of the IRP with a single vehicle.
The original set is divided into four sets: H3, L3, H6, and L6, where L (H) stands for low
(high) inventory holding costs while the digit (3 or 6) indicates the number of time periods for
the instances of the set. For our experiments, we used sets H3 and H6 only as these instances
provide a more significant trade-off between routing and inventory holding costs. Also, we
created a new set (H9) from the instances of set H6 by extending the planning horizon of these
instances to nine time periods (instead of six). It is worth mentioning that in the instances of
Archetti et al. (2007), the value of the customer demands (d̄ti) and the amounts made available
at the supplier (r̄t) are constant over the planning horizon, i.e., d̄ti = d̄i, ∀i ∈ C, t ∈ T and
r̄t = r̄, ∀t ∈ T , respectively.

We changed some parameter values of the instances with the aim of increasing the sensitivity
to the random variables. Specifically, we reduced the amounts received by the supplier in each
period by 25%, set the initial inventory at each customer to Ī0

i = 0.1T d̄i, ∀i ∈ C, and set the
initial inventory at the supplier to Ī0

0 = 0.1T
∑
i∈C d̄i. These changes were performed given that,

for some customers, the original value of the initial inventory was large enough to serve the
demand for up to two time periods, whereas the supplier initial inventory was large enough to
cover all the customer demands, concealing the impact of the uncertain parameters. On the
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other hand, to increase the relative importance of the inventory management on the total cost
we multiplied the inventory holding costs by 5.

The supply and demand were assumed to be independent random variables and the scenarios
were generated using a discrete uniform distribution applying a Monte Carlo simulation. For
the supply, we used the range [r̄t(1 − εr), r̄t(1 + εr)], ∀t ∈ T , where εr ∈ [0, 1] is the supply
uncertainty level. For the demand, we used the range [d̄ti(1 − εd), d̄ti(1 + εd)], ∀i ∈ C, t ∈ T ,
where εd ∈ [0, 1] is the demand uncertainty level. We set the probability of occurrence of each
scenario as ρs = 1/S, ∀s ∈ S, i.e., all the scenarios have the same probability of occurrence.

It is worth highlighting that, with the changes applied to the instance parameters and the
assumed distributions for the uncertain parameters, the expected demand coverage is 95%, i.e.,
the expected value of the sum of the amounts made available at the supplier plus the initial
inventories (E[

∑
t∈T r

t] + I0
0 +

∑
i∈C I

0
i ) equals 0.95D, where D is the expected value of the sum

of the demands of all the customers over the planning horizon (D = E[
∑
i∈C
∑
t∈T d

t
i]). This

applies for all the instances, independent of the length of the planning horizon.
The values of the penalty terms were set as ai = dâ(F + 2c0i/m

c)e, with mc = maxi∈C{c0i}
and where â is a predefined penalty level and F is a fixed penalty value, as in Adulyasak et al.
(2015a). Unless stated otherwise, we use â = 4 and F = 50 for the lost sales and backlogging
penalties and ∆ = 0.1r̄, f = 5,000 and p = âF/2 for the CRC parameters.

In our experiments, we considered the instances with up to 30 customers. Travel costs are
computed as Euclidean distances and then rounded to the nearest integer. We use one and two
vehicles, dividing the vehicle capacity of the original instance by the number of vehicles and
then rounding to the nearest integer.

5.5.2 Results with the lost sales formulation

This section shows the results of the formulation with lost sales as recourse, presented in Sec-
tion 5.3.1. We imposed a maximum running time of two hours to solve each instance with the
formulation. We solved all the instances with 100, 200 and 500 scenarios and for increasing
values of the uncertainty levels εr and εd, from 0.2 to 0.8 (increasing both supply and demand
uncertainty by 0.2), but only show the results for those instances solved to optimality within
the time limit. Figure 5.3a shows the average objective function value, penalty cost and per-
centage of lost demand of all the optimal solutions, and Figure 5.3b indicates the average total
number of visits (No. of visits) and delivery size (Avg. q). In addition, Table 5.1 shows the
average time (Time) in seconds required to solve all the instances with the given uncertainty
levels (εr = εd), the value of the stochastic solution (VSS/OF) and the expected value of perfect
information (EVPI/OF) (Birge and Louveaux, 2011) w.r.t. the objective function value. In the
table, columns 1 to 3 display the number of time periods (T ), vehicles (K) and scenarios (S) of
the instances, respectively. Column 4 (#) shows the number of instances solved to optimality
(out of 30) for the instances with the sizes given in columns 1 to 3. Each cell shows the average
value of the respective column header over all the instances solved to optimality (#). The results
include only the instances solved to optimality in all the four cases of the uncertainty levels (i.e.,
εr = εd = 0.2, 0.4, 0.6, 0.8), in order to be able to compare the results.
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VSS is used to compare the stochastic solution with an expected value approach. It measures
the potential gains when solving the stochastic problem instead of a simple expected value
problem (EV), in which the random variables are replaced by their expected values in a single
scenario approach. To compute the VSS, one has to solve a problem calculating the expected
result of using the EV solution (EEV), which is the same stochastic programming model in
which its first-stage variables are fixed to the values of the solution of the EV problem. VSS is
computed as the difference between the optimal values of the EEV problem and the stochastic
programming model (RP), i.e., VSS = EEV − RP. EVPI is used to compare the stochastic
solution with the wait-and-see approach, in order to provide a measure of how good a solution
would be under perfect information. EVPI is computed as the difference between the optimal
values of the stochastic programming model and the expected wait-and-see solution (WS), i.e.,
EVPI = RP −WS, where WS =

∑
s∈S ρsW

∗(s) and W ∗(s) is the optimal value of the single-
scenario deterministic problem associated with scenario s ∈ S. We set a time limit of two hours
to compute the VSS and EVPI values.

(a) Objective function, penalty cost and lost demand

(b) Number of visits and average delivery size

Figure 5.3: Behavior of the solutions for the lost sales case for increasing uncertainty levels

As expected, these results show that increasing uncertainty levels results in larger values
of the objective function, as a consequence of the larger values of the lost demand. Also,
when we increase the uncertainty levels, the solutions tend to perform more visits and the
delivery sizes tend to decrease. This can be viewed as a protection mechanism against the
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Instance set Time (secs) VSS/OF (%) EVPI/OF (%)
T K S # 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
3 1 100 30 79.46 14.28 7.77 5.94 21.22 30.28 29.00 29.19 1.89 2.02 2.11 1.80
6 1 100 20 1,388.16 100.66 37.12 16.65 16.31 27.92 36.88 36.99 2.39 2.87 2.81 2.56
9 1 100 7 919.72 115.09 48.39 17.43 13.03 28.93 33.89 41.76 2.70 4.63 4.05 3.96
3 2 100 19 1,145.68 210.43 183.52 160.94 24.10 31.35 30.39 29.08 2.78 3.70 3.74 3.64
6 2 100 5 1,950.46 550.97 465.71 321.28 14.89 30.00 33.08 34.35 2.90 4.71 4.95 5.13
3 1 200 30 258.48 31.20 19.21 12.51 21.52 29.90 29.09 29.19 1.92 2.16 2.12 1.86
6 1 200 16 2,093.92 222.19 81.76 39.53 16.47 27.41 35.30 37.54 2.49 2.95 3.20 3.09
9 1 200 6 3,160.64 468.82 132.81 52.77 10.65 28.23 32.50 38.69 2.61 4.12 4.21 4.10
3 2 200 15 1,368.06 594.36 322.03 185.53 21.77 26.21 30.20 29.06 3.18 4.09 4.18 3.90
6 2 200 2 5,566.76 1,397.09 593.60 205.71 17.44 26.53 35.95 38.46 3.71 4.99 5.53 5.67
3 1 500 30 1,383.54 196.65 87.28 51.42 21.41 29.78 30.38 29.06 1.70 1.91 1.85 1.64
6 1 500 6 1,531.68 362.76 127.61 68.47 12.02 22.10 27.54 28.13 2.78 3.89 3.61 3.62
3 2 500 8 1,753.16 1,273.75 1,026.23 756.35 25.44 27.03 27.03 28.83 2.96 4.50 4.35 4.22
Avg. 194 1,158.26 243.71 141.35 91.86 19.79 28.91 31.12 31.57 2.29 2.87 2.88 2.68

Table 5.1: Results for the lost sales formulation for increasing values for εr and εd

uncertainties of the problem, which also results in larger values of the total transportation cost.
Increasing uncertainty levels also resulted in larger relative VSS. For uncertainty levels of 20%
(εr = εd = 0.2), the average VSS represents approximately 20% of the objective function value
while for 80% of uncertainty levels (εr = εd = 0.8) it represents more than 30% of this value.
These results justify the use of the stochastic programming model. Regarding the EVPI, notice
that they are relatively small when compared to the objective function value. This implies that,
even if the supplier had a perfect forecast for the supply and demand, this would not result
in significantly better solutions, which shows the robustness of the solutions obtained with the
stochastic model.

From these results, it is also possible to observe the difficulty of solving the formulation using
a general-purpose optimization software, given that only 194 of the considered instances (540
in total) were solved to optimality for the four cases of the uncertainty levels. This difficulty
increases especially with growing values of the number of time periods (T ) and vehicles (K).
Notice also that the time the solver takes to solve the instances decreases with increasing values
of the uncertainty levels. This can be partially explained by the fact that dominant scenarios
(i.e., scenarios with low supply and large customer demands) are more likely to appear with
larger uncertainty levels. These scenarios condition the first-stage decisions since the lost sales
costs are generally high. Thus, the optimal solutions will tend to avoid out-of-stock situations
by planning more visits even though the product might not be available at the supplier. This
is related to the protection mechanism previously mentioned. It is worth remembering that the
number displayed in column ‘#’ corresponds to the number of instances solved to optimality in
all the four cases of the uncertainty levels. Notice also that the table displays fewer cases (13
rows) than the total explored (18 = 3× 2× 3) for the combinations of the values for T , K and
S, since for some combinations the solver could not solve to optimality any of the instances for
the four explored uncertainty level values.

In a different analysis, for the solutions of the instances that were solved optimally within
the time limit when considering uncertainty in both supply and demand (εr = εd = 0.6), only
in supply (εr = 0.6, εd = 0.0), and only in demand (εr = 0.0, εd = 0.6), Figure 5.4 shows the
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average objective function value and total penalty cost, Figure 5.5 displays the average total
number of routes (No. of routes) and visits (No. of visits), and Figure 5.6 indicates the average
VSS and EVPI w.r.t. the objective function value. It can be observed that smaller values of the
objective function and penalty cost are obtained when we consider either only uncertain supply
or only uncertain demand, when compared to the case when both are uncertain (Figure 5.4).
This is a result of the reduced number of uncertain parameters in the former cases. The results
also show that supply uncertainty has a larger impact on the lost sales values, compared to
the case with only demand uncertainty. This may be due to the pooling effect of the demand
uncertainty for each customer within each time period, i.e., the variability of the demand in
each time period is partially canceled among the demands themselves. This results in a larger
number of routes and visits for the case when only the product supply is uncertain compared to
the case when only the demands are uncertain (Figure 5.5). Again, large relative VSS justify the
use of the stochastic programming model even for the cases in which only one of the parameters
is uncertain. Notice that, analogously to the previous experiment (with increasing uncertainty
levels), the relative EVPI is relatively small, showing the robustness of the solutions of the
stochastic model (Figure 5.6).

Figure 5.4: Objective function and penalty cost

Figure 5.5: Number of routes and visits

Figure 5.7 displays the average value of the objective function for the cases with just uncer-
tain supply or just uncertain demand, as a percentage of the value when both parameters are
uncertain. We used the results of the instances with three time periods, one vehicle and 200
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Figure 5.6: Relative VSS and EVPI

scenarios and show the average value over the five instances with the indicated size, separated
by the different number of customers, from 5 to 25 customers (we omitted the results with 30
customers since one of the instances was not solved to optimality within the time limit). The
aim of this experiment was to analyze the pooling effect of the customer demands in relation to
the number of customers considered. In the figure, it can be observed that the values for the case
with just demand uncertainty tend to decrease as we increase the number of customers, getting
closer to the case in which all the parameters are deterministic. This may be explained by the
pooling effect as it is more likely that the uncertain demands compensate each other when we
consider a larger number of customers. On the other hand, the values for the case with just
uncertain supply tend to increase when the number of customers grows. This may be explained
by the fact that when more customers are considered then more lost demand is to be expected
given the uncertain nature of the supply.

Figure 5.7: Results with either stochastic supply or stochastic demands for different numbers of
customers

5.5.3 Results with the backlogging formulation

This section shows the results with the formulation using backlogging as the recourse in case of
out-of-stock situations, as presented in Section 5.3.2. The objective is to show the differences
between the solutions with this recourse and the ones with lost sales as the recourse. For this,
we set an uncertainty level of 60% for both supply and demand (i.e., εr = εd = 0.6) and imposed
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a time limit of two hours to solve each instance with both formulations. We used the same
supply and demand realizations for both formulations and we used 100, 200 and 500 scenarios.
We also used the same values for the backlogging and lost sales costs (ai). For comparison
purposes, we only analyze the results for those instances solved to optimality within the time
limit with both formulations for the given uncertainty level (329 instances). For all the solutions
in both cases, Figure 5.8 shows the average objective function and penalty cost (recourse) values,
while Figure 5.9 displays the VSS and EVPI w.r.t. the objective function value. As expected,
since in the backlogging case the unserved demands accumulate from one period to the other,
the average backlogged amounts are considerably higher than the average lost sales (in the
lost sales case). This results in larger penalty values and, consequently, in larger values of the
objective function (Figure 5.8). Also, notice that the relative VSS and EVPI are smaller for the
backlogging case than for the lost sales case (Figure 5.9), which may be explained by the fact
that in the backlogging case there are larger values of the objective function. However, for the
backlogging case, the average VSS still represents more than 20% of the objective function value,
which also justifies the use of the stochastic programming model. Similarly to the lost sales case,
the EVPI is relatively small when compared to the objective function value (Figure 5.9). This
may imply that even if the supplier had the perfect supply and demand forecast, this would not
result in significantly better solutions, showing the robustness of the solutions obtained with the
stochastic model.

Figure 5.8: Objective function and penalty cost

Figure 5.9: Relative VSS and EVPI
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Similarly to the lost sales case, when backlogging is used as recourse in the second stage, we
could also observe the protection mechanism consisting of performing more visits with smaller
delivery quantities for increasing values of the uncertainty levels (for both εr and εd). For the
sake of brevity we do not display these results. It is also worth mentioning that the average
CPU time to solve the considered instances was 467 seconds with the backlogging formulation,
compared to 811 seconds with the lost sales case recourse. It is also worth mentioning that the
average VSS obtained for the lost sales case in this experiment is larger than that observed in
the previous experiment and shown in Table 5.1. This is a result of the subset of instances that
are used for comparison purposes, since in each experiment we consider the results for those
instances solved to optimality within the time limit for the analyzed cases.

5.5.4 Results with the CRC and lost sales formulation

This section shows the results for the CRC formulation with lost sales, presented in Section 5.3.3.
We analyze the results for increasing values of the fixed contracting cost, namely f ∈ {1,000;
3,000; 5,000; 7,000}. For this, we set an uncertainty level of 60% for both supply and demand
(i.e., εr = εd = 0.6) and imposed a time limit of two hours to solve each instance. We used the
same supply and demand realizations for each value of the fixed cost and, as in the previous
experiments, we used 100, 200 and 500 scenarios. For comparison purposes, we only analyze the
results for those instances solved to optimality within the time limit for all the four values used
for the fixed cost (317 instances). Figure 5.10a shows the average values of the penalty (lost
sales penalty) and procurement cost as well as the average lost demand of the solutions; while
Figure 5.10b displays the average extra amount acquired in each period and number of contracts;
and Figure 5.10c indicates the VSS and EVPI w.r.t. the objective function value. Additionally,
we show in Figure 5.10b the average number of contracts in the EV solutions, computed as part
of the VSS.

The results show that as we increase the values of the fixed contracting cost, fewer contracts
are reserved by the supplier (thus, less extra amount is acquired) (Figure 5.10b), which results in
considerably larger values of the lost demand (and then in larger penalties) (Figure 5.10a). This
observation highlights the trade-off between the cost of the lost demand, and the procurement
and delivery cost of the extra amounts. Figure 5.10c shows that increasing values of the fixed
contracting cost result also in larger relative EVPI, as a consequence of the increasing total cost
of the solution of the stochastic model. On the other hand, the relative VSS decreases when
we increase f . This latter observation implies that a large value for the fixed contracting cost
does not compensate the penalties incurred by lost sales, thus making the model less reactive
against uncertainties, which reduces the gains of the stochastic programming formulation. Also,
in Figure 5.10b shows that the solutions using an expected value for the stochastic parameters
(EV solution) tend to underestimate the number of contracts required, which leads to large lost
demand values. The last observation highlights the advantages of the stochastic programming
model and the potential consequences of ignoring the stochastic nature of the parameters in the
problem.
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(a) Penalty cost, procurement cost and lost demand

(b) Extra amount acquired and number of contracts

(c) Relative VSS and EVPI

Figure 5.10: Results with the CRC and lost sales formulation for different contracting costs

We also analyzed the results with this formulation for increasing values of the uncertainty
levels εr and εd, from 0.2 to 0.8 (increasing both supply and demand uncertainty by 0.2), for a
value of the fixed contracting cost (f) of 5,000. We imposed a maximum running time of two
hours to solve each instance with the formulation. We solved all the formulations with 100, 200
and 500 scenarios, but only show the results for those instances solved to optimality within the
time limit for the four cases of the uncertainty levels. Figure 5.11a displays the average values of
the penalty (lost sales penalty), procurement and contracting cost; while Figure 5.11b shows the
average total number of visits (No. of visits), delivery size (Avg. q) and extra amount acquired in
each period (Avg. w); Figure 5.12a shows the average number of contracts in the stochastic and
EV solutions (computed as part of the VSS); and Figure 5.12b indicates the average VSS and
EVPI w.r.t. the objective function value. In the charts we can observe that increasing uncertainty
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levels resulted in larger values of the penalty costs as a consequence of the larger values of the
lost demand. This also results in increasing values for the procurement and contracting costs
(Figure 5.11a). In this case it is also possible to observe the protection mechanism consisting of
planning more visits (and now more contracts) in the first stage and performing smaller deliveries
in the second stage (Figure 5.11b). Increasing uncertainty levels resulted also in larger relative
VSS and EVPI (Figure 5.12b). It also possible to observe in Figure 5.12a that the number of
contracts in the EV solutions remains relatively stable for increasing uncertainty levels while the
stochastic solutions adapt to this increase. This observation may partially explain the increasing
VSS (Figure 5.12b).

(a) Penalty, procurement and contracting costs

(b) Number of visits, delivery size and extra amount acquired

Figure 5.11: Results with the CRC and lost sales formulation for different uncertainty levels (a)

Figure 5.13 shows the average penalty, procurement and contracting cost for all the instances
that were optimally solved within the time limit when considering uncertainty in both supply
and demand, only in supply, or only in demand. Analogously to the experiments with the lost
sales formulation (Section 5.5.2), it can be observed that smaller values of the penalty cost are
obtained when we consider only uncertain demand compared to the case with only uncertain
supply. This may again be due to the pooling effect of the customer demands within each time
period. As a result, less procurement and contracting costs are incurred in the case with only
demand uncertainty when compared to the other two cases.
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(a) Number of contracts in the stochastic and EV solutions

(b) Relative VSS and EVPI

Figure 5.12: Results with the CRC and lost sales formulation for different uncertainty levels (b)

Figure 5.13: Results with the CRC and lost sales formulation with either stochastic supply or
demand or both

5.5.4.1 Setting a service level in the CRC formulation

In this section we show the results with the CRC and lost sales formulation when we impose a
minimum service level. For this, we included constraints of the form

∑
i∈C

∑
t∈T

uti ≤ (1− κ)
∑
i∈C

∑
t∈T

dtis ∀s ∈ S (5.53)

to the formulation. These constraints limit the total lost demand in each scenario to a fraction
of the scenario total demand, set by the required service level κ. This parameter defines the
minimum percentage of the total demand that must be served in each scenario. We considered
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five cases, four with different service levels (90%, 94%, 97% and 100%) and the base case (κ = 0).
Again, we set an uncertainty level of 60% for both supply and demand (i.e., εr = εd = 0.6) and
imposed a time limit of two hours to solve each instance. We compare and analyze the results
for those instances solved to optimality within the time limit for all the five values of κ (314
instances). Figure 5.14a shows the average lost sales, procurement and contracting costs of
all the considered instances for the respective service level (given in the horizontal axis); and
Figure 5.14b shows the average percentage of the demand that is lost and the number of contracts
in each case.

As expected, increasing values of the minimum service level (κ) resulted in reduced values for
the lost sales cost (and lost demands). This reduction in lost demand is achieved by increasing
the number of contracts and the extra amount acquired from the external source, which increases
significantly the contracting and procurement costs, respectively. It is worth pointing out that
from a value of 90% and higher for the service level, the values of the lost demand decreased
considerably (0.1% of lost demand, on average) compared to the case without service level. It is
also worth mentioning that there are several different ways of modeling service level requirements
for production and distribution systems. For more details we refer to Tempelmeier (2013) and
Gruson et al. (2018).

(a) Lost sales, procurement and contracting costs

(b) Lost demand and number of contracts

Figure 5.14: Results with the CRC and lost sales formulation with service level constraints
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5.5.5 Results with the progressive hedging-based heuristic

In this section we analyze the performance of the PH-based heuristic approach. We compare
its performance with the results obtained with CPLEX with a time limit of two hours. We
used three stopping criteria for the heuristic: i) a time limit of 600 seconds; ii) a maximum of
S (number of scenarios) iterations; and iii) a maximum of 20 iterations without improvement.
We set the values of the parameters of the heuristic to εy = εx = 0.2, My = Mx = 0.8 and
b0 = 1.0. For the CRC case we set εz = 0.5,M z = 1.0. All these values were determined through
preliminary experiments. In addition, the ILS-based hybrid method, used to solve the scenario
subproblems and in the feasible solution generation procedure, was configured as in Alvarez
et al. (2020, 2018), using as stopping criteria the running time limit of 0.5 and five seconds in
the former and latter case, respectively, and the maximum number of iterations, which was set
to 1,000.

For the tables in this section, columns labeled with ‘CPLEX’ show the results of the solver,
where ‘#F’ and ‘#O’ show the number of feasible and optimal solutions found by the solver
within the time limit, ‘Opt gap’ shows the optimality gap of the solutions found by the solver
and ‘Time’ shows the running time of the solver (in seconds). Columns labeled with ‘PH’ show
the results with the PH-based heuristic. ‘Dif UB’ shows the relative difference between the value
of the best solutions found by the heuristic (zh) and the value of the best feasible solutions found
by the solver (zf ), computed using the formula 100× (zh − zf )/zf . Column ‘Dif LB’ shows the
optimality gap of the obtained solutions, computed as 100× (zh − z)/z, where z is the best LB
computed by the solver. Finally, ‘Time’ shows the CPU required by the heuristic (in seconds).
The values of ‘Dif UB’ and ‘Dif LB’ are computed only over those instances for which the solver
could find a feasible solution within the two-hour time limit.

First, in Table 5.2, we report the results for the lost sales case, setting a value of 60% for
the uncertainty levels for both supply and demand (εr = εd = 0.6). Each line shows the average
for all the instances with the dimensions shown in columns 1 to 3. The last row (Avg.) displays
shows the mean values of the corresponding column. The results show that on average the
heuristic is able to find reasonably good feasible solutions within relatively short CPU times
when compared to CPLEX. Specifically, the heuristic can find solutions with an average relative
difference of less than 1% compared to those provided by the solver. These solutions have an
average optimality gap of 2.34% and were obtained in an average CPU time of 619 seconds,
which represents 27% of the time spent by the solver. It is worth highlighting that the heuristic
was able to find feasible solutions for all the 540 instances considered in this experiment while
the solver could find feasible solutions for only 80% of the instances (430 instances) within the
time limit and with an average CPU time of more than 2,200 seconds.

Regarding the specific algorithmic components leading to the final solutions found by the
PH-based heuristic, it is worth mentioning that 119 of the final solutions were found in the
third case of the feasible solution generation procedure of the heuristic (Section 5.4.5), while the
remaining (421 solutions) were found by the ILS-based hybrid heuristic component also included
in the same procedure. This result highlights the importance of the feasible solution generation
procedure included in our heuristic. The results also reveal the advantages of the heuristic to
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CPLEX PH
Instance set Opt Time Dif Dif Time
T K S #F #O gap (%) (secs) UB (%) LB (%) (secs)
3 1 100 30 30 0.00 7.77 0.31 0.31 528.92
6 1 100 30 30 0.00 172.83 0.92 0.92 556.27
9 1 100 30 29 0.00 647.21 1.57 1.57 570.75
3 2 100 30 26 0.02 1,822.79 2.01 2.03 550.08
6 2 100 28 10 10.19 5,376.14 -5.75 4.93 565.80
9 2 100 17 5 0.93 6,177.60 5.31 6.30 577.50
3 1 200 30 30 0.00 19.21 0.28 0.28 564.98
6 1 200 30 30 0.00 443.71 1.00 1.00 596.95
9 1 200 30 28 0.00 1,712.54 1.93 1.93 605.43
3 2 200 30 23 0.12 2,853.08 1.74 1.86 597.91
6 2 200 20 6 1.27 5,680.21 4.08 5.43 604.72
9 2 200 11 1 11.50 7,069.93 -4.44 8.60 627.66
3 1 500 30 30 0.00 87.28 0.28 0.28 685.88
6 1 500 29 27 0.01 1,841.89 2.02 2.03 724.73
9 1 500 16 13 0.15 3,286.60 2.69 2.84 698.05
3 2 500 25 14 2.58 4,219.84 -0.16 2.45 740.32
6 2 500 9 2 6.74 6,616.20 -1.23 6.19 698.36
9 2 500 5 0 17.47 7,200.23 -12.29 6.13 647.76
Avg. 430 334 1.56 2,295.26 0.67 2.34 619.00

Table 5.2: Results with the PH-based heuristic for the lost sales case with εr = εd = 0.6

solve larger instances when compared to the solver. For instance, for sets with nine time periods,
two vehicles and 200 and 500 scenarios, the heuristic finds solutions that are on average up to
12% better than those found by the solver, which could only find 16 feasible solutions (out of 60
instances) and prove the optimality of one of them. Notice also that for some sets the total time
of the heuristic might be larger than 600 seconds. This is due to the fact that we do not stop
the execution of the heuristic during inner iterations (i.e., solving the scenario subproblems) but
only after outer iterations. It is worth mentioning that the values of ‘#F’ and ‘#O’ in this table
do not match those shown in Table 5.1 since in the latter table we display the results only for
those instances solved to optimality for all the four cases of the uncertainty levels (Section 5.5.2).

We also analyzed the performance of the heuristic under different uncertainty level values.
The results are displayed in Table 5.3. The results show that the heuristic is able to find reason-
ably good feasible solutions when compared to the solver for different values of the uncertainty
levels. In particular, when we consider relatively low uncertainty levels (e.g., εr = εd = 0.2) then
the heuristic finds solutions that are on average better than those found by the solver within the
time limit. It is also possible to observe the relatively stable behavior of the heuristic in terms of
running times for the different uncertainty levels that were tested. It is worth highlighting that
for all the considered cases, the heuristic could find feasible solutions for all the 540 problem
instances while the solver could do it for a maximum of 85% of the instances (457 out of 540
for εr = εd = 0.8). These results show the advantages of the heuristic when compared to a
general-purpose optimization solver.

Additionally, Table 5.4 shows the results of the heuristic for the CRC case. We tested it
under different uncertainty levels and for a value of the fixed contracting cost (f) of 5,000. In
this case, the heuristic is also able to find feasible solutions for all the 540 instances of each
combination of the uncertainty levels. The results show that the heuristic finds reasonably good
feasible solutions for the CRC case using a small fraction of the CPU time spent by the solver.
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Uncertainty CPLEX PH
level Opt Time Dif Dif Time
εr εd #F #O gap (%) (secs) UB (%) LB (%) (secs)
0.2 0.2 348 194 5.54 3,832.04 -2.74 3.22 615.41
0.4 0.4 397 296 3.24 2,653.74 -1.27 2.18 621.48
0.6 0.6 430 334 1.56 2,295.26 0.67 2.34 619.00
0.8 0.8 457 356 0.65 2,078.50 1.92 2.62 620.79
0.6 0.0 404 288 1.67 2,771.02 -0.35 1.38 618.05
0.0 0.6 368 261 3.64 3,009.63 -1.82 2.09 619.75

Table 5.3: Results with the PH-based heuristic for the lost sales case under different uncertainty
levels

Uncertainty CPLEX PH
level Opt Time Dif Dif Time
εr εd #F #O gap (%) (secs) UB (%) LB (%) (secs)
0.2 0.2 375 257 4.85 3,146.52 -2.02 3.34 641.12
0.4 0.4 399 313 2.00 2,338.07 1.07 3.24 641.21
0.6 0.6 417 324 2.05 2,282.46 1.20 3.57 638.25
0.8 0.8 452 358 0.86 2,075.85 3.80 4.74 638.73
0.6 0.0 406 290 2.69 2,800.41 -0.64 2.22 640.63
0.0 0.6 393 289 4.31 2,714.34 2.20 7.28 632.92

Table 5.4: Results with the PH-based heuristic for the CRC case under different uncertainty
levels

From all these experiments it was possible to observe that the solutions provided by the
heuristic also present the protection mechanisms against the uncertainties of the optimal solu-
tions, as described in the previous sections. In particular, for the lost sales case, the solutions
tend to perform more visits and the delivery sizes tend to decrease when we increase the uncer-
tainty levels. For the CRC case, the protection mechanism also includes increasing the number
if contracts in the first stage when the uncertainty levels increase. These results highlight the
advantages of the heuristic since, in addition to providing high-quality solutions in a small frac-
tion of the CPU time used by the solver, its solutions are robust in terms of behavior against
the problem uncertainties. It is worth mentioning that for the sake of brevity we do not display
the results of the heuristic algorithm in their full extent.

5.6 Final remarks

In this chapter, we addressed an inventory routing problem under both stochastic product
supply and customer demands. We introduced a two-stage stochastic programming formulation
considering recourse mechanisms such as lost sales, backlogging and an additional source for
the product in a capacity reservation contract setting. We also proposed a progressive hedging-
based heuristic algorithm. We have provided several managerial insights regarding the behavior
of the optimal solutions under different configurations for the uncertainty levels and costs of
the system. Furthermore, the results with the heuristic algorithm showed that it provides high-
quality solutions within reasonable running times for instances with a large number of scenarios.
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6.1 Concluding remarks

In the previous chapters, we have studied several variants of the IRP and presented different
formulations and methods to solve them. By investigating different practical constraints for the
IRP and providing tailored solution methods for the addressed variants, this thesis addresses
problems arising in several contexts and shows the adaptability of the basic IRP and how it
can be used as a basis to study richer practical IRPs. Furthermore, the competitive results
obtained in this study demonstrate the ability of operations research to contribute for decision
making in the supply chain context. Thus, in this section we provide a short summary of the
main findings and contributions reported in each chapter of this thesis. The final section of this
chapter concludes it by identifying possible directions for future research.

In Chapter 2, we presented a detailed description of the basic variant of the IRP. A math-
ematical formulation with two different objective functions was presented. The formulation
was presented using an exponentially large number of subtour elimination constraints, as well
as in a compact form. The former type of formulation provides stronger bounds than their
respective compact counterparts but typically requires specialized separation procedures imple-
mented within branch-and-cut schemes. The compact version has the advantage of being easily
implementable using general-purpose optimization softwares although their bounds may be con-
siderable weaker. Though relatively simple, this variant can be used as a basis to model richer
practical variants of the problem given that no restricting assumption regarding the problem
structure is included when defining it. Therefore, designing effective solutions methods for this
variant becomes a relevant issue, particularly for the development of tools for decision-making
in practice.

Building on this, in Chapter 3 we presented two metaheuristic algorithms based on iterated
local search (ILS) and simulated annealing (SA) to solve the basic variant of the IRP, respectively.
ILS is a metaheuristic that iterates between a local search heuristic and a perturbation algorithm,
which guides the search over the space of local optimal solutions, whereas SA can probabilistically
accept solutions that temporarily produce degradations in the current incumbent solution to
avoid getting trapped in local optimal solutions. The metaheuristics were developed to solve
the problem considering the classical total cost minimization objective function as well as the
logistic ratio as alternative objective function. The results with the standard cost minimization
showed that the presented metaheuristics can offer different advantages according to the instance
characteristic, as none of them dominated the other in the whole set of benchmark instances
tested. In particular, SA found better results, on average, for the instances with shorter planning
horizons while ILS found slightly better results for the instances with a longer planning horizons.

The results minimizing the logistic ratio showed that SA outperformed ILS in all sets of in-
stances used to test the algorithms, considering the average results, although both metaheuristics
were able to find optimal or near optimal solutions for most of the analyzed instances. These re-
sults demonstrate the ability of the developed algorithms to also address this objective function.
In addition, it was observed that the solutions with the logistic ratio as an objective function
have an average cost that is more than 12% higher with respect to the solutions minimizing
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the total cost. However, an average reduction of 15% in the logistic ratio was reached when
compared to the classical objective function. Lower logistic ratios are obtained for instances
with fewer vehicles, as the travel costs tend to increase with the number of vehicles. All the
experiments were based on 1098 problem instances from the literature, and the ILS and SA
algorithms found, respectively, 289 and 283 solutions with objective values better than the best
known solutions in the literature (for the first objective function).

In Chapter 4 we addressed a practical variant of the IRP considering product perishability.
This feature gains significance in the supply chain context given that in many industries, raw
materials, as well as intermediate and final products, are often perishable. Moreover, perishabil-
ity may appear in more than one activity throughout the supply chain, which gives perishability
a substantial significance in many practical settings, particularly in agri-food supply chains. In
the variant studied in this thesis, the product was assumed to have a fixed shelf-life during which
it is usable and after which it must be discarded. Age-dependent revenues and inventory holding
costs were also considered. This type of perishability modeling is in line with the classification
framework proposed by Amorim et al. (2013) for production and distribution planning. The
authors state that perishability can be classified into three types: (i) associated to the physical
deterioration of the products with time; (ii) related to the perceived value of the product for
the customers; and (iii) associated to regulations that directly influence the occurrence of the
spoilage event. Thus, the studied variant can be used as a basis to model several applications
involving these three types of perishability, as it only assumes that the product has a fixed
lifetime and no restricting assumption is made on the age-dependent revenue and holding cost
values.

For this variant, we first introduced and compared four mathematical formulations, two with
a vehicle index and two without a vehicle index. These formulations were solved using tailored
branch-and-cut algorithms. The results show that the formulations without a vehicle index
provide a considerably larger number of feasible and optimal solutions within the two-hours
time limit, when compared to the other formulations, in addition to a significant speed-up for
instances solved to optimality within the time limit by all the formulations. However, since the
formulations without a vehicle index can only be used for the cases in which the vehicle fleet
is homogeneous, it is worth mentioning that the proposed formulations with a vehicle index
also provided a slightly superior performance when compared to a standard vehicle flow-based
formulation.

Additionally, we developed a hybrid heuristic method based on the combination of an ILS
metaheuristic and two mathematical programming components. This method was able to pro-
vide high-quality solutions within relatively short running times on small- and medium-sized
problem instances. Specifically, solutions with an average optimality gap of 1.87% were obtained
within seven seconds, on average. When applied to larger instances, the method provided good
feasible solutions within reasonable running times. On average, the hybrid method found (within
three minutes) solutions with objective values 1.73% better than the best solutions found by all
the formulations for these instances. We also adapted the proposed hybrid heuristic to solve
the basic variant of the IRP. The results using standard instances show that our heuristic is
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also able to find good quality solutions for this problem when compared to the state-of-the-art
methods from the literature.

Finally, in Chapter 5 we shifted to a stochastic variant of the IRP. We considered the basic
variant of the IRP under the consideration that both the product supply and the customer de-
mands are uncertain. In the supply chain management context, taking uncertainty into account
becomes relevant given that critical input data that are required for effective operations planning
often are not known with certainty when the plan is made. This directly impacts the quality of
the decisions as using inaccurate information can lead to poor performance in practice. Thus,
we proposed a two-stage stochastic programming formulation for this problem, where routing
decisions are made in the first stage, while delivery quantities, inventory levels and specific re-
course actions are determined in the second stage. We considered different recourse mechanisms
such as lost sales and backlogging as well as an additional source for the product in a capacity
reservation contract setting. The objective was to minimize the first-stage cost plus the total
expected inventory and recourse cost incurred in the second stage.

Experiments with the proposed model allowed us to provide managerial insights regarding the
response mechanisms of the optimal solutions under different uncertainty levels of the random
variables and different cost configurations. In particular, we showed that under the presence of
high uncertainty levels the optimal protection mechanism consists of planning more visits with
reduced delivery sizes, when compared to a scenario with low uncertainty. This applies for all
the considered recourse actions. In the capacity reservation contract setting, this protection
mechanism also includes increasing the number of contracts reserved in advance. In addition, it
was possible to observe the trade-off between the reservation cost paid upfront and the purchasing
cost resulting from the supplementary recourse of this setting.

We also proposed a heuristic solution method for the stochastic IRP. The method is based
on the progressive hedging algorithm. The results showed that on average the heuristic was able
to find reasonably high-quality feasible solutions within reasonable running times for instances
with a large number of scenarios when compared to a general-purpose optimization software.
Specifically, for an uncertainty level of 60% for both product supply and customer demands, the
heuristic could find solutions with an average relative difference of less than 1% to those provided
by the solver. These solutions have an average optimality gap of 2.34% and were obtained in
an average CPU time of 619 seconds, which represents 27% of the time spent by the solver. It
is worth highlighting that the heuristic was able to find feasible solutions for all the instances
considered while the solver could find feasible solutions for only 80% of the instances.

6.2 Research opportunities

Building on the results of this thesis, in this section we discuss several ideas for potential future
research. We include suggestions to extend the current research as well as ways to overcome
some of the limitations of the studies presented in this thesis.

First, hybrid solution methods could be developed from the metaheuristic algorithms pre-
sented in Chapter 3. In particular, combining these metaheuristics (or part of them) with
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methods based on column generation has the potential to lead to effective hybrid methods, as
successfully applied in the vehicle routing problem context (Alvarez and Munari, 2017; Alvarenga
et al., 2007; Danna and Le Pape, 2005). The metaheuristic(s) could be used as column genera-
tor(s) while an optimization software would combine the generated routes using a column-based
formulation. Alternatively, the metaheuristics could be included into a column generation-based
method as a solution generation and improvement component. These principles apply for all
the studied variants of the problem. Notice that an effective hybrid method based on the ILS
metaheuristic of Chapter 3 and two mathematical programming components was proposed in
Chapter 4 for the variant with perishable products.

Another interesting perspective for future research is the development of exact methods
based on branch-and-price or column generation. The method could be developed on top of the
interior point branch-price-and-cut framework proposed by Munari and Gondzio (2013), which
uses the primal-dual interior point method available on the high order primal dual method solver
(Gondzio, 1995). This framework relies on an interior point algorithm to solve the restricted
master problems, which generally reduces the computational times related to solve large re-
stricted master problems, in addition to simultaneously cope with column and cut stabilization
(Munari and Gondzio, 2013; Gondzio et al., 2016). This might lead to advantages with re-
spect to current exact methods based on branch-and-price algorithms available in the literature,
which rely on simplex algorithms to solve the linear programs. It is worth pointing out that the
performance of the exact methods proposed so far in the literature for the basic variant of the
IRP (based on branch-and-cut and branch-and-price) worsens considerably when increasing the
length of the planning horizon of the problem (Desaulniers et al., 2016; Archetti et al., 2017b;
Coelho and Laporte, 2013b; Avella et al., 2018). Additionally, effective cutting plane algorithms
recently developed by Desaulniers et al. (2016) and Avella et al. (2018) for the basic variant of
the IRP could also be incorporated to boost the performance of the developed algorithm.

Regarding the research on perishability issues in the IRP context, we suggest three different
lines for future research emerging from the study developed in this thesis. First, addressing
extensions of the problem richer than those addressed in Chapter 4. For instance, cases with
multiple perishable products as well as with multiple sources of the product could be considered
with the aim of making the addressed problem as realistic as possible. Moreover, priority rules
(e.g., freshest first or oldest first) for delivery and consumption variables could be useful to
solve particular cases of the problem. As a second line of research, we suggest considering
production as a decision within the problem, which would lead to a production routing problem
with perishability considerations. Finally, future research could consider data uncertainty in the
problem together with perishability-related parameters, particularly in the maximum age of the
product.

Finally, future research on the stochastic IRP context could focus on considering other re-
course as well as working on a multi-stage decision framework. In this sense, considering un-
certainties in a multi-stage setting could be more accurate than a two-stage approach given the
multi-period nature of the IRP. Additionally, developing effective exact methods for the stochas-
tic programs presented in Chapter 5 arises as a natural line of research. In particular, methods
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based on Benders decomposition, exploiting the complete recourse nature of these programs,
could be a promising approach for dealing with this problem.
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