
Abner Cleto Filho

Linking User Stories to UX elements:
Recommendations to Reduce the Virtual

Navigational Distances

Sorocaba, SP

27 de Março de 2020

Abner Cleto Filho

Linking User Stories to UX elements:
Recommendations to Reduce the Virtual Navigational

Distances

Dissertação de mestrado apresentada ao Pro-
grama de Pós-Graduação em Ciência da Com-
putação (PPGCC-So) da Universidade Fed-
eral de São Carlos como parte dos requisi-
tos exigidos para a obtenção do título de
Mestre em Ciência da Computação. Linha
de pesquisa: Engenharia de Software e User
eXperience.

Universidade Federal de São Carlos – UFSCar

Centro de Ciências em Gestão e Tecnologia – CCGT

Programa de Pós-Graduação em Ciência da Computação – PPGCC-So

Supervisor: Prof. Dr. Luciana A. M. Zaina

Sorocaba, SP
27 de Março de 2020

Cleto Filho, Abner
Linking User Stories to UX elements:

Recommendations to Reduce the Virtual Navigational Distances/ Abner Cleto
Filho. – 2020.

174 f. : 30 cm.

Dissertação (Mestrado) – Universidade Federal de São Carlos – UFSCar
Centro de Ciências em Gestão e Tecnologia – CCGT
Programa de Pós-Graduação em Ciência da Computação – PPGCC-So.
Supervisor: Prof. Dr. Luciana A. M. Zaina
Banca examinadora: Prof. Dr. Luciana A. M. Zaina, Profa. Dra. Sabrina dos Santos
Marczak, Prof. Dr. Alexandre Alvaro
Bibliografia

1. Agile practice. 2. User eXperience. 3. User Story. 4. Navigational Distance.
I. Orientador. II. Universidade Federal de São Carlos. III. Título

Acknowledgements

Special acknowledgment and gratitude expression to,

My parents Abner Cleto and Rosmara Sanches Cleto, who always supported me
in everything I decided to do and to always be with me at all times. Thank you for your
support, encouragement and affection.

My sister Amanda Cleto, to the support and patience through all my study period.

My advisor Professor Dr. Luciana A. M. Zaina for having welcomed me as a student.
Thank you for your confidence, motivation, inspiration, opportunity, and for every thing
you taught me through this period as a teacher and as an advisor.

The evaluation board composed by teachers Dr. Alexandre Alvaro and Dr. Sabrina dos
Santos Marczak, for having accepted to participate and to contribute to this project.

To all my colleagues of UXLeris Research Group for supporting me with ideas and sugges-
tions.

The company which allowed me to collect and use data for this study, as well as practices
and experience I have learned while in there.

I also thank the financial support of the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior - Brasil (CAPES) - Finance Code 001. I also thank the grant #2017/03397-0
São Paulo Research Foundation (FAPESP).

I never guess.
It is a capital mistake to theorize before one has data.

Insensibly one begins to twist facts to suit theories,
instead of theories to suit facts.

(Sherlock Holmes - By. Arthur Conan Doyle)

Abstract
Agile practices are approaches widely used in industrial context. User Stories (US) are
valuable artifacts to agile teams, being a succinct description of a requirement with its
details complemented by other artifacts. User eXperience (UX) is an important cross-
cutting quality requirement that has gained spotlight over the past years. Regarding
the software development teams structure, the usage of teams that are not co-located is
also a practice that has been utilized over the years, gaining more adepts over the years.
Remote working has challenges reported in the literature, be it the time lapse among the
team members, difficult on communication when compared to a face-to-face approach,
and others. The usage of virtual environments and artifact-based communication are
encouraged in the literature, given such are common to all team members, whether they
are co-located or not. Many approaches on merging agile and UX are presented in the
literature, but many issues are still faced in such enterprise. Problems on communication
among UX specialists and agile developers, loss of big-picture, information traceability,
and others, are recurring in the literature. Studies encourage the usage of artifacts to
mediate communication, as well as to hold and share information, but few have analysed
how UX information and USs are related in agile virtual environments. This master project
presents an investigation on the navigational distances between UX information and USs in
virtual environments. The investigation was performed through a case study in a software
company and a qualitative analysis on the data collected. The investigation had the goal
to understand how agile practitioners related UX information to USs. To do this, we
conducted a qualitative analysis in 13 requirement documents of three different industry
projects and we also explored the USs derived from such documents. Using the case study
outcomes, we compare the issues found in it with the the literature. We identify the ways
the artifacts can be related in the virtual environments, describing and providing pros and
cons for each connection type. We propose a classification for navigational distances found
among UX information and USs. Moreover, we propose a category on the navigational
effort required to perform the navigation in virtual environments. The navigation and effort
categories proposed extend the work of Bjarnason et al. (2016) on regards to navigational
distance, considering it in virtual environments. Our work also contributes to motivate
agile teams in rethinking about different forms to organize the UX information in virtual
environments. We propose an arrangement template considering virtual environments,
where the template displays a way to create USs and link it with UX elements, considering
the navigational distance and effort classifications previously mentioned along with the
goal to reduce the final navigational distance present among UX information and USs.

Keywords: Agile practice, User eXperience, User Story, Virtual Environments, Naviga-
tional Distance.

List of Figures

Figure 1 – Research proposal . 25
Figure 2 – Fundamentals and Related Work . 29
Figure 3 – Management tools used across agile vs. waterfall 33
Figure 4 – Elements of User Experience . 36
Figure 5 – Classification of used artifacts . 41
Figure 6 – Case Study . 49
Figure 7 – Steps of the analysis . 51
Figure 8 – Coded text chunk . 57
Figure 9 – Coding process codes . 58
Figure 10 – User Story coding sample . 59
Figure 11 – Task example . 60
Figure 12 – Document coding mapping . 61
Figure 13 – User Story coding mapping . 65
Figure 14 – Venn Diagram - Project 1 . 66
Figure 15 – Venn Diagram - Project 2 . 66
Figure 16 – Venn Diagram - Project 3 . 66
Figure 17 – Coding Grouping - Venn Diagrams . 67
Figure 18 – Case Study . 69
Figure 19 – UX Elements dispersion example - project 1 71
Figure 20 – UX Elements dispersion example - project 2 72
Figure 21 – UX Elements dispersion example - project 3 72
Figure 22 – Navigational Distance Analysis . 75
Figure 23 – UX Elements dispersion sample diagram 80
Figure 24 – Navigational Effort . 86
Figure 25 – Template proposal . 92
Figure 26 – User Story static template for information organizationn 94
Figure 27 – Virtual Environment Step 1 - Epic and Main Repository page creation 96
Figure 28 – Virtual Environment Step 2 - User Story and UX Task creation 97
Figure 29 – Virtual Environment Step 3 - Specific Repository page creation 97
Figure 30 – Virtual Environment Step 4 - User Story enrichment and link to UX

repository . 98
Figure 31 – Virtual Environment - User Story link to UX central repository 99
Figure 32 – Specific Repository - Epic page . 101
Figure 33 – Specific Repository - UX page . 101
Figure 34 – UX Central Repository . 103
Figure 35 – Distance diagram of proposed organization 105

Figure 36 – Results propagation . 115
Figure 37 – Document 1 - User Story 1 coding . 154
Figure 38 – Document 1 - User Story 2 coding . 155
Figure 39 – Document 2 - Epic coding . 158
Figure 40 – Document 2 - User Story 1 coding . 159
Figure 41 – Document 2 - Confluence 1 coding . 160
Figure 42 – Document 2 - Confluence 2 coding . 160
Figure 43 – Document 3 - User Story 1 coding . 162
Figure 44 – Document 3 - User Story 2 coding . 163

List of Tables

Table 1 – Main related works. 47
Table 2 – Related Work Comparison. 48
Table 3 – Summarization of Issues found out . 76
Table 4 – Types of Navigational Distances. 82
Table 5 – Types of Navigational Effort. 84
Table 6 – Good practices recommendation. 87

List of abbreviations and acronyms

ALM Application Life cycle Management

ASD Agile Software Development

AUCD Agile User-Centered Design

HCI Human-Computer Interaction

LDUF Little Design Up-Front

PO Product Owner

QA Quality Assurance

RE Requirement Engineering

SDLC Software Development Life Cycle

SDUF Some Design Up-Front

UC Use Case

UCD User-Centered Design

UI User Interface

US User Story

UX User eXperience

UXD User eXperience Design

XP eXtreme Programming

WIP Work In Progress

Contents

1 INTRODUCTION . 21
1.1 Main Goal and Objectives . 23
1.2 Methodology and Organization . 24
1.3 Contributions . 27
1.4 Dissertation organization . 27

2 FUNDAMENTALS AND RELATED WORK 29
2.1 Agile Practices . 29
2.2 User Story . 31
2.3 Virtual Environments . 32
2.4 User Experience . 34
2.5 Elements of User Experience . 36
2.6 The theory of distances . 38
2.7 Related Work . 39
2.7.1 User eXperience and Agile practices . 39
2.7.2 Virtual Environments . 43
2.7.3 Navigational Distance . 45
2.7.4 Conclusions and Related Work Comparison 45

3 CASE STUDY . 49
3.1 Context settings . 49
3.2 Analysis approach . 51
3.2.1 Artifacts Uncovering . 54
3.2.2 Documents Coding . 54
3.2.3 User Stories Coding . 59
3.2.4 Coding Results . 61
3.2.5 UX Information Dispersion . 68
3.2.5.1 UX Elements Dispersion Analysis . 70

3.2.5.2 UX Information Dispersion Findings . 72

3.3 Case Study Conclusions . 74

4 IMPROVING NAVIGATIONAL DISTANCE 75
4.1 Practice and Theory Comparison . 76
4.1.1 Loss of Big Picture . 76
4.1.2 UX elements traceability . 77
4.1.3 UX elements in agile practices . 78

4.1.4 UX elements dispersion . 78
4.1.5 Navigational distance to UX elements . 79
4.2 Navigational distance classification 80
4.3 Navigational effort classification . 84
4.4 Reducing the navigational distance and effort 87
4.4.1 Good practices recommendation . 87
4.4.2 Template proposal for information arrangement in virtual environments . . . 92
4.4.2.1 US template . 93

4.4.2.2 UX Elements arrangement in virtual environment 95

4.4.2.3 Repository template . 99

4.4.3 Template usage in different Tools . 103
4.4.4 Recommendations considerations . 104
4.5 Final Considerations . 106

5 CONCLUSION . 111
5.1 Contributions . 113
5.2 Results Propagation . 115
5.3 Study Limitations . 116
5.4 Future Work . 117

Bibliography . 119

APPENDIX A – CODING OF DOCUMENT 1 125

APPENDIX B – CODING OF DOCUMENT 2 131

APPENDIX C – CODING OF DOCUMENT 3 141

APPENDIX D – USER STORY CODING OF DOCUMENT 1 . . . 153

APPENDIX E – USER STORY CODING OF DOCUMENT 2 . . . 157

APPENDIX F – USER STORY CODING OF DOCUMENT 3 . . . 161

APPENDIX G – ARTIFACTS DISPERSION 165
G.1 Artifacts Dispersion - Document 1 . 165
G.2 Artifacts Dispersion - Document 2 . 168
G.3 Artifacts Dispersion - Document 3 . 172

21

1 Introduction

Agile software practices have brought several advantages to software development
such as having more precise requirements due to a reduced scope, better work effort estima-
tion, early feedback due to frequent deliveries, and others (PETERSEN; WOHLIN, 2009).
However, only agile practices do not cover all the needs encountered during the project
development cycle, such as the usability of the software product (JURCA; HELLMANN;
MAURER, 2014).

During the software development life cycle there is a need to convey to developers the
functional aspects (processes, business rules, user interactions, and others) that constitute
the development process. Surveys carried out through research and reviews of the literature
reveal that communication and requirement documentation in agile projects still present
challenges (HESS; DIEBOLD; SEYFF, 2017). Such challenges can be a reflection of the
agile practice’s structure, which, according to the agile manifesto, does not have a great
focus on the documentation itself (BECK et al., 2001). Agile practices also may have
communication issues between the stakeholders involved in software development, such
as clients, users, analysts, developers, and others. Methods and techniques for improving
communication on software development are scarce, and it may be caused due to divergences
from the point of view, knowledge, experience, needs, vocabulary or the time available to
each person involved (BJARNASON; SHARP; REGNELL, 2019; JURCA; HELLMANN;
MAURER, 2014; TAIBI et al., 2017).

According to Hassenzahl and Tractinsky (2006), in the technology ever-changing
environment, interactive products became not just only useful and usable, but also
fascinating and fashionable desired things. In such environment, User eXperience (UX)
has gained the spotlight, especially in the Human-Computer Interaction (HCI) field
(HASSENZAHL; TRACTINSKY, 2006). Don Norman and Jakob Nielsen (2013) defines
UX as including all aspects of end-user interaction with the company, its services, and its
products.

Brhel et al. (2015) already presented the importance of Agile Software Development
(ASD) and UX, concluding that both have become main features in their respective fields.
Moreover, given the need to deliver business value to the customer in a fast-changing
environment, taking into account the needs of end-users, the integration of ASD and UX
seemed to be a promising enterprise. Attempts on integrating agile and UX practices have
been done, but problems on such process are still to be solved (BRHEL et al., 2015).

Several strategies are proposed and employed by different development teams to
integrate agile practices and UX principles. Applying design upfront techniques, in which

22 Chapter 1. Introduction

UX practitioners work ahead of the actual software development have been proposed
(SILVA et al., 2011; GARCIA; SILVA; SILVEIRA, 2017) but already discarded, given
the merging of UX and agile seems to be a more realistic scenario (GARCIA; SILVA;
SILVEIRA, 2019). This indicates that both UX and agile areas should work as close as
possible, instead of separated (GARCIA; SILVA; SILVEIRA, 2019). Other works present
scenarios in which developers and UX practitioners work together in initial stages of a
project but later they split. In such scenario, UX practitioners work closer to the users,
getting design approvals from them but without developer’s input (PLONKA et al., 2014).

Other works also present solutions for integrating UX and agile, but issues are
reported in several studies. Among such issues, it is possible to highlight the communication
issue on the ones involved in the project, as well as information loss during the project
life cycle (BRHEL et al., 2015; BUDWIG; JEONG; KELKAR, 2009; SILVA et al., 2011).
Studies also highlight that some artifacts used during the development life cycle have as
main purpose to serve as communication and as a source of information for those involved,
facilitating the search and sharing of information (GARCIA; SILVA; SILVEIRA, 2017;
HESS; DIEBOLD; SEYFF, 2017; BRHEL et al., 2015).

Among the various artifacts adopted in agile practices, the User Story (US), is
widely used (BIK; LUCASSEN; BRINKKEMPER, 2017; BRHEL et al., 2015; SOARES
et al., 2015; LUCASSEN et al., 2015). According to Choma, Zaina and Beraldo (2016), a
US describes a functionality that aims to deliver something of value to the user or to the
customer, helping the development team make decisions based on the information it has
at its disposal, over the duration of the project.

However, the process of creating USs is not necessarily straightforward and can be
coordinated according to the situations and the teams they are used. Besides, only USs
may not contain all the information necessary for the complete development of a given
product (HESS; DIEBOLD; SEYFF, 2017).

Difficulties have also been reported regarding the communication of non-functional
aspects in agile practices. This can be related to the writing of US and the aspects of
UX present in it (LUCASSEN et al., 2015). Lopes et al. (2017) investigates how software
developers use HCI techniques and methods in US writing, concluding through a qualitative
analysis of writing, that there was no further detailing of the UX aspects present in the
US.

In addition, given the difference of artifacts used in agile practices and by UX
specialists (GARCIA; SILVA; SILVEIRA, 2017), we can have an indicator that information
not present within USs are placed in other artifacts. Such artifacts may be spread across
different platforms used by the teams involved in a project. Such scenario could lead to the
increase of the navigational distance when UX and agile practices are applied together.

1.1. Main Goal and Objectives 23

Project teams composed of remote members are becoming a common practice,
although the co-located teams configuration is still used. Virtual project teams have been
defined as groups of people who are not co-located, using virtual environments, such as
Trello, Confluence and Jira (later described in section 2.3), to work together to accomplish
a goal (REED; KNIGHT, 2010). The information for the remote worker is limited to the
virtual environment (DESHPANDE et al., 2016), reinforcing the importance of virtual
environments, that may also be used by co-located teams, given that they facilitate
information sharing, tracking and management, when compared to the physical space,
which can still be used along with the virtual environment. With virtual environments
usage, the presence of virtual artifacts is also made. Placing artifacts, which are information
holders (DESHPANDE et al., 2016), into the virtual environment relates to the work of
Bjarnason et al. (2016), which explores the distances present among tasks that constitute
the development of the system.

Among the distances presented by Bjarnason et al. (2016), the navigational distance
can be understood, in a virtual environment, as the number of clicks required to go from a
piece of information to another (BJARNASON; SHARP, 2017). The work of Bjarnason
and Sharp (2017) removed the navigational distance from a further study on the other
distances (BJARNASON et al., 2016). Therefore, the navigational distance is a topic still
to be further analyzed in the literature, especially if considering virtual environments.
Another topic to be further investigated is the distances between UX information and
agile artifacts, in particular, the US.

1.1 Main Goal and Objectives

This master project aimed to verify which UX elements are used along with agile
artifacts, focusing in the US. Such goal was achieved having the sub-topic of virtual
environments. This was due to all artifacts studied, as well as its relations, were stored in
virtual tools.

Once understanding which UX elements used with USs in virtual environments,
another goal of this project was to understand how such UX elements relate, in a virtual
environment, to USs. After analyzing how such relation is made, the analysis of navigational
distance was performed. The project also had the goal to propose templates to relate UX
information with USs in virtual environments, having the navigational distance analysis as
the basis for such templates design. The templates aim to decrease, or limit, the maximum
navigational distance required to find UX information, having the US as the starting point
of the navigation.

These goals aim to bring insights on how to better arrange and relate the UX
elements with the USs in the virtual environments. From these goals, the following Research

24 Chapter 1. Introduction

Questions (RQ) have been outlined for this project:

RQ1: How are UX information and USs connected into software virtual
environments?

RQ2: What are the navigational distance found to access UX informa-
tion from USs into software virtual environments?

Considering the RQs, as well as the main goals, the following specific objectives
were also proposed:

• To create a classification system to the types of relationship the artifacts can have
in a virtual environment. Such classification aimed to facilitate the understanding of
the artifacts relation as well as to provide insights on how to better arrange them.

• To create a classification for the navigational distances, as well as for the effort
required to perform it into virtual environments. The classification had the goal to
bring understanding on how the artifacts arrangement into virtual environments can
impact the users. Such classifications are done considering a developer’s point of
view. They also expand the work on distances of Bjarnason et al. (2016), Bjarnason
and Sharp (2017), giving new insights to the navigational distances.

1.2 Methodology and Organization
To achieve the outlined objectives, this master project was organized in order

to raise issues on Agile-UX integration currently reported in the literature. Next, an
industry case study was executed to understand how UX information could be found in
agile projects. The dispersion of UX information in virtual environments was also a topic
covered in the case study. In order to contribute on decreasing the navigational distances,
templates for US creation, its relation with UX information and its arrangement into
virtual environments were proposed. Figure 1 represents the 6 main steps to conduct this
study.

The case study started with the analysis of requirements documents belonging to
three different real projects. These projects belong to a company that develops software
for the financial market. These documents are used as input for writing USs. For the
achievement of this proposal, the principles of agile software development practices as well
as the main aspects of UX were taken into account, having as reference the UX elements
framework proposed by Garrett (2010).

Step A - State of the Art Investigation: The bibliographic research involved
the search for the state of the art in the areas of software development, with a focus on
agile practices, and on UX practices, addressing the artifacts used in each of the areas.

1.2. Methodology and Organization 25

Figure 1: Research proposal

Source: Author

The focus was given to search for the current UX-Agile integration techniques, aiming to
find the main problems as well as the available solutions. This step took place throughout
the entire project and resulted in a state of the art bibliographic review document where:
(i) there is the use of UX practices with agile practices in the same project; (ii) the main
problems; and (iii) the main artifacts in each area.

Step B - Case Study in industry projects: A qualitative analysis was carried
out in the requirements documentation used by three real projects that use agile develop-
ment practices. As company data is confidential, the data presented in this project has
been transformed without losing the essence of the information.

Step B1 - Requirement Documents coding: Given the three projects’ requirements
documents and based on the framework proposed by Garrett (2010), as well as the UX
elements previously found in Step A, the requirements documents were mapped to find
which elements and artifacts of UX were present, explicitly or implicitly, in the documents.
Such mapping was carried out using coding techniques (STRAUSS; CORBIN, 1990), which
assign labels to parts of a text aiming to classify them to provide future analysis. The
result of this step resulted in a table with the mapping of all UX elements and artifacts
used in the requirement documents.

Step B2 - User Story coding: Considering the mapping of the artifacts (Step B1),
the same mapping was performed in USs, which were written based in the requirement
documents. This step checked which UX elements were used in the requirement documents

26 Chapter 1. Introduction

and also in the USs. This step evaluated if the USs contained the aspects of UX previously
found in Step B1. Given that USs could contain internal and external relations (i.e. US be
linked to another US or Task within the same tool or point to another tool), the coding
on related places linked to the US was also performed. The same coding principles used in
step B1 were used in this step.

Step C - Information dispersion analysis: With the information coded from
Step B, an analysis of its dispersion in the virtual environments used in the projects was
done. The dispersion was based on how distant the information was from one another,
being USs the initial point for such dispersion verification. As mentioned in step B2, some
UX elements could be placed outside a given US, but still be linked to it. Therefore this
step aimed to analyze how the UX information previously coded could be found in the
virtual environments, having the US as the initial point for such arrangement analysis.

Step D - Navigational Distance analysis: Given the information dispersion
analysis done on Step C, we performed an analysis considering the navigational distances
(BJARNASON et al., 2016; BJARNASON; SHARP, 2017) to understand how the distances
found could then be classified.

Step D1 - Practice x Theory Agile-UX integration comparison: With the issues re-
ported in the literature (step A) on integrating Agile and UX, a comparison with the
problem and the scenarios studied in this master project was done, showing the main
problems that could be verified in the projects studied.

Step D2 - Navigational Distance classification proposal: Once the navigational dis-
tances were analyzed, a classification to them was proposed, based on the type of action and
the effort required to perform such navigation into virtual environments. Such classification
is a contribution to the description of the navigational distance exposed by Bjarnason et
al. (2016) and Bjarnason and Sharp (2017).

Step E - Elaboration of recommendations and templates for User Story
and UX elements relation: Elaboration of recommendations and templates for the US
writing. Analysis of the practices and patterns found in the projects and proposal for
using both software development artifacts with UX information. The proposal will aim
at reducing the navigational distance (BJARNASON et al., 2016) between US and UX
elements in virtual environments, without the loss of information contained in them.

Step F - Results propagation: Consists of the compilation and synthesis of all
the material studied and analyzed in this project for the dissemination of appropriate
knowledge, consisting of the writing of the dissertation to be defended and the production
of articles to be published.

1.3. Contributions 27

1.3 Contributions
From the execution of all the steps previously proposed and aiming to meet the

study goals, the contributions of this research embrace:

• An industry case study on three projects analysing how UX information relates to
USs in virtual environments;

• Navigational distance mapping between UX information and USs;

• Description on the types of relationships UX elements can have with USs considering
virtual environments;

• Categorization of navigational distances, expanding the work of Bjarnason et al.
(2016), Bjarnason and Sharp (2017);

• Categorization of effort to perform navigation in virtual environments, expanding
the work of Bjarnason et al. (2016), Bjarnason and Sharp (2017);

• Proposal of recommendations to better relate UX information and User Stories into
virtual environments, aiming to reduce the navigational distance between them;

• Templates for User Story and enrichment process through the creation of specific
UX tasks under the User Story;

• Templates of Specific and Central Repositories to hold UX information, which will be
used as a central location to navigate from US in order to retrieve UX information.

Also, during the development of this project, an article entitled ”Navigational
distances between UX information and User Stories in agile virtual environments” was
accepted on ICEIS 2020. This article does not contain all conclusions presented in this
final text, therefore new publications may be done considering the latest outcomes of this
project.

1.4 Dissertation organization
This dissertation is organized into five chapters containing: introduction; funda-

mentals and related work; case study and its methodology; recommendations to reduce
navigational distance containing navigational distances classification, navigational effort
classification, US templates and UX Repositories templates; and conclusions. The current
chapter covered the introduction, dissertation goals, contributions and methodology.

Chapter 2 will present some fundamentals used throughout the dissertation, such
as agile methodology, user experience and the theory of distances. The chapter will also

28 Chapter 1. Introduction

present a summary of related works found in the literature that relates to this dissertation,
showing a discussion of such works to the current dissertation main subject.

Chapter 3 covers the case study performed, explaining the steps performed in it
as well as the results observed from it. Chapter 4 presents a set of issues found in both
literature and the case study from Chapter 3. This chapter also proposes recommendations
that aim to avoid or decrease the occurrence or severity of some of those issues. The
classification of navigational distances, as well as for its effort into virtual environments is
also presented in Chapter 3. We also present the templates of US creation and enrichment
process with UX information, along with the proposal of UX repositories to be used in
virtual environments to centralize UX information.

Chapter 5 concludes the dissertation highlighting the main discoveries of this
dissertation and possible future work to be done, considering the contributions of this
work and the validations that need to be done in order to give it reliability.

29

2 Fundamentals and Related Work

This chapter will summarize the main concepts of agile practices, UX, navigational
distance, virtual environments, covering virtual management tools mainly used in agile
projects. This chapter also presents a summary of the main related work found during
project development.

Figure 2: Fundamentals and Related Work

Source: Author

2.1 Agile Practices
Agile practices are already the most common software development approaches in

the industry. In Agile practices, the focus is on lightweight working practices, constant
deliveries, and customer collaboration over long planning periods, heavy documentation,
and in flexible development phases (KUPIAINEN; MÄNTYLÄ; ITKONEN, 2015).

The agile requirement specification is not centralized in one phase before develop-
ment; instead, this activity is evenly spread throughout development (CHOMA; ZAINA;
BERALDO, 2016).

The advantage of such a process is that the system is built incrementally, with
high-quality adaptive software, being developed by small teams using the principles of

30 Chapter 2. Fundamentals and Related Work

continuous improvement and testing based on fast feedback (DYBÅ; DINGSØYR, 2008).
Such process aims to reduce errors that can be easily corrected.

Moreover, lessons learned during development can be applied in the course of the
project, as stated in the Agile Manifesto, which encourages fast responding to change over
following a plan (BECK et al., 2001). Another principle of the agile practices is that the
most efficient and effective method of conveying information to and within a development
team is face-to-face conversation (BECK et al., 2001).

Given such principles, it can be assumed that in agile practices, documentation is
not the main focus, since the contact with the user tends to be close and constant (BECK
et al., 2001). This opens the possibility of software changes being suggested, requiring the
development team to be more flexible and adaptive.

Agile practices are also known for their cross-functional teams, which include
members from different functional groups who have similar goals. As stated by Bjarnason,
Wnuk and Regnell (2011), in agile practices, developers, testers, designers, and others, work
as a single team. Such concept helps reducing challenges such as over scoping requirements
and communication gaps.

Different ways of implementing the agile practices have been tried; among them,
the most popular can be taken as Scrum, eXtreme Programming (XP) and Kanban
(MATHARU et al., 2015), which are briefly described below. It is important to notice that
for the current study, no specific agile practice will be taken into account, given that the
agile practices are not being the focus of this study.

The main characteristic of Kanban is that it provides means to visualize and limit
the work in progress during the software development process. It emphasizes on scheduling
the work to facilitate product delivery. Kanban Board allows easy visualization of current
work, productivity maximization, continuous delivery, waste minimization and limit of
work in progress (WIP) as its main characteristics (MATHARU et al., 2015).

The Scrum methodology has the cycles or iterations, called sprints, as its main
characteristic. A product deliverable may be release at the end of each cycle, providing con-
tinuous delivery in time boxes. Each sprint contains all phases of the software development,
e.g. design, development, testing, user acceptance, etc. (MATHARU et al., 2015).

The XP methodology, is based upon twelve principles: Small releases; Planning
game; Refactoring; Testing; Pair Programming; Sustainable pace; Team code ownership;
Coding standard; Simple design; Metaphor; Continuous Integration and On-site customer.
The XP methodology requires a great effort of the whole team, being each team member
encompassed of a broad range of skills (COHN, 2004). Extreme Programming is also
characterized by its intense levels of interaction with customers during the software
development process (MATHARU et al., 2015).

2.2. User Story 31

Despite all advantages of agile practices, works such as Garrett (2010) and Inayat
et al. (2015) point that agile practices still struggle on working with requirements that
focus on system quality, including its internal quality, i.e. maintainability, testability and
external quality usability. Such requirements are known as non-functional requirements
(NFRs). Neglecting such NFRs is considered a major challenge for agile practices and can
be the reason for massive lapse and rework (INAYAT et al., 2015).

2.2 User Story
Among several artifacts available in software development process, User Stories

(US) are the most popular requirements notation in agile projects (BIK; LUCASSEN;
BRINKKEMPER, 2017).

Cohn (2004) describes US as a functionality that will be valuable to either a user
or purchaser of a system or software. User stories can be summarized by its three main
aspects:

• a written description of the story used for planning and as a reminder;

• conversations about the story that serve to flesh out the details of the story;

• tests that convey and document details and that can be used to determine when a
story is complete.

The process of writing US does not need to follow an strict rule, but Cohn (2004)
proposes the following template: As a <role>, I want <function> so that <business
value>. Such template covers three elements that can be labeled as the role, the goal, and
the reason. The three elements of the standard USs template address: Who wants the
functionality, What it is they want and Why they want it (COHN, 2004).

Extensions for such template are reported in the literature. As an example, Choma,
Zaina and Beraldo (2016), aiming to incorporate UX aspects into the USs elaboration,
proposes the usage of the following template: As a <Persona>, I want/need <goal>, for
this <interaction>, through/when <task/context>. The template also covers acceptance
criteria an US evaluation, by adding in its writing the following: I evaluate that my goal
was achieved when <feedback>. (CHOMA; ZAINA; BERALDO, 2016)

Along with USs, it is also important to describe the Use Case (UC), as this will
also be mentioned in this master project. According to Cohn (2004), UC is a generalized
description of a set of interactions between the system and one or more actors, in which an
actor is a user or another system. Use cases can be written in unstructured text or to fit a
structured template. The main difference between USs and Use Cases can be considered
as their scope. The USs are kept small due to their use in the Agile process, which restrict

32 Chapter 2. Fundamentals and Related Work

development time to shorter periods given constant deliveries. The UC covers a larger
scope compared to US, which leads to the tendency to consider a US as one of several
scenarios that constitute an UC (COHN, 2004).

Given the US characteristics, it can be written to cover several functionalities at
once, such scenario leads to the need to decompose the US. This is done given a large task
might not be delivered within the short period of time available in an agile project. One
of the agile characteristics is its constant delivery, which occurs in small time frames. Such
characteristic enable only the development of small items to be done or preferred. The act
of breaking down a US into smaller items is called decomposition (TAIBI et al., 2017).

Breaking down USs is usually done in a way that its parts have a scope large
enough to provide customer value, but small enough that the effort to implement such a
story can be estimated with a low risk. Another relevant factor is that a smaller scope
is likely to make the US less complex compared to one with a larger scope, and the fact
that possible problems, such as the emergence of unknown details, inadequate minimized
(TAIBI et al., 2017).

2.3 Virtual Environments

In this master project, virtual environments, is a term which describes the virtual
platforms, tools, workspaces, etc., used by the ones involved in a project. Different from
physical locations, virtual environments provide ways for users to store, relate, find and
communicate information. The usage of virtual environments is especially present in
remove teams, which is a common practice in nowadays fast-changing project development
scenario (DESHPANDE et al., 2016), but it usage is also done in co-located teams, one
that such platforms aim to facilitate the information sharing and management for the
team members.

Among different artifacts, practices and methodologies available in the software
development lifecycle (SDLC), the concept of Application Lifecycle Management (ALM) is
an important part of the processes. According to Kassab (2014), tools are able to manage
ALM activities from initial project concept, through requirements analysis, development,
and testing. Deshpande et al. (2016) explores the importance virtual environments, specially
for non co-located team members, concluding that such environment are the key place for
information sharing in distributed teams, which is a practice that is becoming common
over the year (REED; KNIGHT, 2010; DESHPANDE et al., 2016).

To provide support of both co-located em remote teams, several tools that help
in the SDLC and ALM management are available. The study done by Kassab (2014)
compares the usage of ALM tools in agile and waterfall methodologies. Figure 3 shows the
difference of management tools used in Agile and Waterfall practices. We can see that the

2.3. Virtual Environments 33

usage of JIRA1 is presented as most common among Agile practices.

Figure 3: Management tools used across agile vs. waterfall

Source: Reproduced from Kassab (2014)

Jira can be described as a project tracking system (DESHPANDE et al., 2016)
that allows project stakeholders to create cards with task or activities descriptions, being
such cards called tickets. In the study of remote working done by Deshpande et al. (2016),
it was concluded that a key project-related artifact used for tracking purposes was the
ticket. This supports the study of Bik, Lucassen and Brinkkemper (2017), reinforcing the
importance of USs.

Another application similar to Jira is Trello2, which allows the creation of boards,
lists and cards (may it be structured like an US or not), in order to organize and prioritize
the project tasks.

Both applications are similar in its core, with few differences, which are reported
in the work of STOPA and RACHID (2019) as: Trello offers task lists that are simple, it
is a task and project management tool that is easy to use and fits into small/medium
size companies, or big companies that don’t demand many reports. Jira offers a wide
management and traceability tool for small to big projects, enabling the users the generate
elaborated reports if necessary.

Confluence3 is a tool that allows virtual pages to be created into a structured and
1 JIRA: https://www.atlassian.com/software/jira
2 Trello: https://trello.com/
3 Confluence: www.atlassian.com/software/confluence

34 Chapter 2. Fundamentals and Related Work

hierarchical environment. It is distributed by Atlassian4, which is also the owner of Jira.
The pages create in Confluence tend to create a wiki-based collaboration management
system.

Similar to Confluence, MediaWiki5 is a free, open-source wiki software that allows
the creation and editing of dynamically generated web pages (BERMAN; BARNETT;
MOONEY, 2012).

SharePoint6 is a web application, which works as a hub to information centralization
(i.e. a repository) through collaboration, web publishing, and file sharing (BERMAN;
BARNETT; MOONEY, 2012).

Many other applications are available that provide similar functionalities to the
ones here mentioned. This master project though, was focused on Jira, Confluence and
SharePoint, which are the applications used in the projects of this projects case study.
Although differences exist among applications and its concurrent, the conclusions presented
in this master project didn’t consider any specific characteristic of any tool. We also believe
that the conclusions later exposed in this master project can be applied in any tool,
although some changes need to be done to better fit into the particularities of each tool.

2.4 User Experience
According to Law et al. (2009), UX results from the wide range of potential benefits

that users can obtain from a product; and can be classified as something new, that must
be an integral part of the HCI domain, supported by the User Centered Design (UCD)
practices (LAW et al., 2009).

According to ISO/IEC 9241-210, UX can be understood as the ”perceptions and
responses of the person (user) resulting from the use and/or anticipated use of a product,
system or service” (ERGONOMICS. . . , 2010). Don Norman and Jakob Nielsen (2013)
defines UX as ”encompassing all aspects of the end-user interaction with the company, its
services, and its products”.

According to Garrett (2010), UX is the experience created from a products usage.
When a product is being generated, one has to pay close attention to what it does; however,
the user’s experience is often the neglected side of the equation of how something works,
which can be the difference between a product of success and failure.

User-Centered Design (UCD) is described by Vredenburg et al. (2002) as a mul-
tidisciplinary design approach, which is based on actively involving users for a clear
understanding of user and task requirements, and the iteration of design and its evaluation.
4 Atlassian: https://www.atlassian.com/
5 MediaWiki: https://www.mediawiki.org/wiki/MediaWiki
6 SharePoint: https://products.office.com/sharepoint

2.4. User Experience 35

UCD can also be considered a key point to a product usefulness and usability. According to
Garrett (2010), UCD ensures that the usability aspects, found and met in the development
process, do not happen by accident. This would be given that, thinking about the user
experience, dividing it into elements and looking at them from various perspectives, it is
possible to ensure that all ramifications of decisions are made intentionally.

Many techniques, according to Garcia, Silva and Silveira (2017) and (GAR-
CIA; SILVA; SILVEIRA, 2019), can be applied to develop a better experience to users,
such as Personas, Sketches, Scenarios, and Wireframes, Prototype, Mockup, and oth-
ers (ROGERS; SHARP; PREECE, 2019). When integrating UCD and agile practices,
Schön, Thomaschewski and Escalona (2017) states that some UX artifacts can be used
for communication, elaboration, validation, and documentation of requirements in agile
environments, reinforcing the importance of such artifacts. Also, in Garrett’s framework
(Figure 4), some of such UX artifacts are mentioned as a possibility of integrating such in
the project development life-cycle (GARRETT, 2010).

Many techniques are used in UX, below we present some of the most used ones
(GARCIA; SILVA; SILVEIRA, 2019).

Prototyping: An application’s interface (also know as User Interface - UI) can be
difficult to interact with, causing performance issues. Such problem can be the result of a
poorly designed UI. One of the practices that aims to make such scenario less present is
the usage of prototyping during the early stages of a software development. According
to Wilson and Rosenberg (1988), usability issues are difficult to repair, especially those
detected in project final stages or after the system has already been put into operation.
A prototype, according to Rogers, Sharp and Preece (2019), can be anything from a
paper-based storyboard through to a functional software, which aims to allow stakeholders
to interact with an envisioned product. Prototypes are a useful when discussing ideas with
stakeholders, helping in the communication that, sometimes, may be difficult given the
different points of view or knowledge are different among development team members
and final users; also being an effective way for designers to explore design ideas, given
that proposed changes can be easily applied into such prototypes (ROGERS; SHARP;
PREECE, 2019).

Scenario: The definition of Scenarios can be stated as informal stories about
user tasks and activities. Scenarios can be used to model existing work situations, but
they are commonly used to express proposed, or imagined, situations aiming to help in
conceptual design (ROGERS; SHARP; PREECE, 2019). Wilson and Rosenberg (1988)
makes a relationship among Scenarios and UC, stating that a (user) scenario is a sequence
of actions, representing a combination of UC that are done in order to achieve an specific
goal. Such scenarios can be represented in a narrative form or even into a flow diagram.
Scenarios can be used as scripts for user evaluation of prototypes, as the basis of storyboard

36 Chapter 2. Fundamentals and Related Work

creation (ROGERS; SHARP; PREECE, 2019).

Persona: Persona is a rich descriptions of typical system users, representing the
different end-user profiles. A persona does not describe a real person, but are realistic
enough to create a sense of reality in the same. A persona usually represents a number of
real users who have been involved in data gathering. Among its components, a persona
will include the goals, description of the user’s skills, attitudes, tasks, and environment in
which the persona will be in (ROGERS; SHARP; PREECE, 2019).

2.5 Elements of User Experience
In the book Elements of user experience, the: user-centered design for the web

and beyond, Garrett (2010) describes the elements of UX proposing a process of software
creation from the UX perspective. This process aims to ensure that no aspect of the user’s
experience with the product happens without it being conscious or with explicit intent
(GARRETT, 2010). The process is carried out by five elements, each one being a plane in
the process framework (Figure 4). The five elements (or planes) are: Surface, Skeleton,
Structure, Scope and Strategy. The following is a brief description of each of the planes
elaborated by Garrett (2010).

Figure 4: Elements of User Experience

Source: Adapted from Garret (2000)

Strategy plane: In this plane, it is discussed what the application to be developed
will or will not cover, either from the point of view of the customer or the user. For example,

2.5. Elements of User Experience 37

from the point of view of the company (client), the product (system), should sell products,
and make new clients to become recurring clients, displaying products according to their
interest. From the user’s point of view, the action to be performed in the system is the
purchase of the product. The strategy plane also covers other aspects, such as advertising.
This being the initial plane, it is assumed that the main aspects, functionalities and
objectives of the development are traced. Also the bases of the application are defined,
such as logo, colors and patterns. The objectives, in this plane, should be broad, but still
containing meaning, which can be described as big-picture. There is still the definition of
target audience, a task that can be performed using methods such as Card Sorting and
Persona (GARRETT, 2010).

Scope plane: In this plane, the scope itself is defined, covering the system require-
ments, processes and expected results. The mapping of the framework, connecting and
documenting individual requirements, aiming to create the skeleton of the final product
is done in the scope plane. In the Scope plane the documentation is written and the
prioritization of the requirements is performed, factors that makes the importance of the
user be included in the processes is more evident. For this plane, one of the artifacts to be
employed would be the Scenario.

Structure plane: The definition of the application structure can be understood
by its flow, which dictates how each part of the software will be distributed and accessible.
This definition is also responsible for making the connection between the features of the
application, including what information the users will have access to and how it will be
accessed. Hierarchical structures such as horizontal, vertical or organic, alluding to how
the features will be arranged in the system, are also part of this plane. In this plane are
also focus of analysis issues such as application consistency, employee vocabulary, field
nomenclature and menus, among others.

Skeleton plane: Once defined the positions of features in the design plane, which
can be seen as the pages or screens of the application, the skeleton plane is responsible for
dealing with design issues at a more closed level, caring about issues such as the positioning
of the elements in a given screen, aiming to perfect such positioning to guarantee maximum
effectiveness and efficiency, with a view to making the interface familiar to users. In this
plane are also elements such as metaphors (use of icons), navigation and availability of
information, such as whether it will be visualized in a textual form or in a graphic. An
artifact to be used in this step would be the wireframe, which performs, at a low level, a
mapping of the elements present in a given screen and how they are arranged in it.

Surface plane: For the surface plane, all the aspects related to the user’s feelings
and experience when using the application, dealing with design issues at the highest level,
considering all the visible components, their layout, aspect, actions, typography, palette of
colors, among others. This plane is the most important given that it covers all the others,

38 Chapter 2. Fundamentals and Related Work

representing the final result being presented to the used and, therefore, what will cause it
the greatest impact. In this plane having the user close during the development is very
important, once that, in this plane, the vision of what will be the final identity of the
product being developed is more evident. Although it can be realized in previous planes,
it is in this plane that the use of prototypes becomes more important.

The division made by Garrett (2010) is interesting because, from the bottom up
perspective, there is no (initial) concern with aspects related to how the application will
look at the end (UI aspects, for example), and each plane has a well- defined and isolated
meaning, although, as state previously, each plane is connected to the others.

In addition to the planes described here, Garrett (2010) also divides each plane
into two parts. One part is responsible for the final product functionalities, the other
is responsible for the information. For the functionality, one has the concern with the
processes (actions) that users perform, while for the information, aspects such as the
availability and visibility of the information are treated. With this, it is possible to divide
each of the planes into two distinct but interconnected groups.

2.6 The theory of distances
The theory of distances in software engineering, addressed by Bjarnason et al.

(2016), categorizes the difference of position or level between the stakeholders, artifacts,
or activities. Such position differences, or distances, are related to the effort required to
accomplish the tasks that constitute the development of the system. The distances are
classified into eight sub-categories:

• Geographic - physical distance of the position between stakeholders;

• Organizational - hierarchy of stakeholders;

• Psychological - attributed to personality or opinion factors of those involved;

• Cognitive - involves aspects of knowledge or level of competence;

• Adherence - analyzes the difference between the specifications in the documents and
the final product;

• Semantics - compares the level of similarity between two related artifacts;

• Temporal - difference of time in which two activities are performed;

• Navigational - difference in position between artifacts, for example, the length of the
path to navigate between a requirement and the test cases that verify.

2.7. Related Work 39

For this study, the navigational distance will be used, given that in both UX and
agile practices, different artifacts are used (LISKIN, 2015). Among several issues faced
when trying to work with both areas in one single project, the communication and loss
of big-picture can be highlighted (SILVA et al., 2011; JURCA; HELLMANN; MAURER,
2014; SCHÖN et al., 2017; HESS; DIEBOLD; SEYFF, 2017; GARCIA; SILVA; SILVEIRA,
2017). Also, managing many different artifacts is also an issue already reported in the
literature (LISKIN, 2015). But the usage of artifact for mediating communication is also a
practice encouraged (BRHEL et al., 2015; GARCIA; SILVA; SILVEIRA, 2019).

According to Bjarnason et al. (2016), coordination and communication within
software development, are affected by distances. Centralizing, or linking, the different
artifacts used in a project, could be a way to decrease one of the distances categorize
by Bjarnason et al. (2016), the navigational distance, that is caused by the difference in
position between artifacts. In the case study conducted by Bjarnason and Sharp (2017)
though, the navigational distance was excluded from the analysis. This opens a gap, that
this master project aims to cover.

2.7 Related Work
The current master project is based on four main subjects: Agile practices, User

eXperience, Virtual Environments and Navigational Distance. The bibliographic analysis
was done using an ad hoc methodology, using the aforementioned subjects as main keys
for the search, which was conducted especially over conferences and journals. The search
was done following a snowballing approach, in which the bibliography of each work was
also analyzed (WOHLIN, 2014). The analysis of each work was done considering three
main steps: i) The work abstract was read, checking whether the same contained any
of the main subjects related to this master project; ii) If passing the first step, the text
would have its introduction and conclusion read, to filter the ones that do not relate to
this master project; iii) The text that passes the second reading process, would have its
full content read and, if applicable, be part of the reference work of this master project.
If a text passed the mentioned step three, its related work would be searched and pass
through the same process described.

Below we present a summary of the main related work of each subject afore-
mentioned. Later, we give a brief discussion of all the related works, also presenting a
comparison between them with this master project.

2.7.1 User eXperience and Agile practices

The Case Study conducted by Budwig, Jeong and Kelkar (2009), addresses ASD
and UX, observing problems of integration between UX teams and ASD teams. Among

40 Chapter 2. Fundamentals and Related Work

such issues, the frequency of changes in design that were not communicated clearly caused
confusion among the team. Also requirements that were not well documented, led to
confusion about UX deliverable. In the same study, it is also concluded that having UX
work being done at the same time (or sprint) as the development team, may increase such
problems. Therefore the study proposes that they should work in different sprints, i.e. the
UX work should be done up-front of the actual development.

Garrett (2010), presented a framework called ”The Elements of User Experience”
(see Section 2.5), which relates UX information into five main elements. Each element
was then proposed to be used in a software development life-cycle phase. Through such
framework, the integration of UX aspects into the project development could be seen as
split throughout the project life-cycle.

In a Systematic Literature Review, Silva et al. (2011) presents results on UCD and
agile practices. In this review, it is pointed out that in 15 of the studies analyzed, there
was evidence that the UX teams should work ahead (in sprints) when compared to the
development team. Such discovery is also supported on the work of Budwig, Jeong and
Kelkar (2009) and the Literature review of Brhel et al. (2015). Silva et al. (2011) also
highlighted the loss of big-picture, and teams working in different time-frames, being this
called LDUF (Little Design Up-Front) or SDUF (Some Design Up-Front), in which the
UX team works ahead of the development team.

In a more recent work though, Silva et al. (2018) states that, the separation between
the UX and Agile teams seem to be decreasing, therefore the proposal of the teams working
in different time periods is to be revisited. In Silva et al. (2011) work, it is highlighted the
US usage, as well as other artifacts, such as Personas and Scenarios, is high among agile
and UX practitioners. In this study, the big picture issue is also covered, being this one of
the recurring problems mentioned in the literature, were the usage of multiple artifacts
may be one of the causes of the Big Picture view loss, once that the information could be
spread among the artifacts.

The review of Silva et al. (2011) also stated that 20 of the analyzed works show
that US should include usability problems, and it was observed that prototyping is a great
help factor in the integration of such methodologies. Such conclusions are also presented
by (MEMMEL; GUNDELSWEILER; REITERER, 2007; SCHWARTZ, 2013; JURCA;
HELLMANN; MAURER, 2014; GARCIA; SILVA; SILVEIRA, 2017). Plonka et al. (2014),
through a case study, writes on possible ways to integrate UX and agile. Among the
issues, difficult communication between UX practitioners and agile developers, as well
as challenges on having design elaborated upfront development are highlighted. Similar
problems are also presented by Silva et al. (2011) and Budwig, Jeong and Kelkar (2009).

Still regarding US, Lopes et al. (2017), conducting an experiment to find out how
elements of HCI may be appropriate within User Stories. In addition, Lee and McCrickard

2.7. Related Work 41

(2007) reflects on similar problems, pointing out that Scenarios are always revisited at the
end of each iteration of the agile practices, also pointing out that the use of Scenarios as
well as Mock-ups is important for Agile development processes improve their usability
aspects, however, it is noted that the creation and management of such artifacts can take
valuable time from methodologies aimed at having fast deliveries.

Regarding communication issues, in the work How Artifacts Support and Impede
Requirements Communication, Liskin (2015), after conducting interviews with project
development practitioners (with different roles), was able to map three main artifact types:
containers, individual elements, and solution models. Further characteristics were also
found, leading to a subdivision of the three main types earlier mentioned. Such division
can be seen in Figure 5.

Figure 5: Classification of used artifacts

Source: Liskin (2015)

Among all the types presented by Liskin (2015), the container type, as well as the
individual element, more specifically regarding US, are important to this master project.

According to Liskin (2015), container artifacts as the ones consist of other artifacts,
holding the information together in one place. Requirement (specification) documents can
be seen as containers, given that it holds different types of information, being displayed
in a variety of ways, including different requirements and mixing the same with goals,
policies, etc.

The Individual elements are divided into user-oriented or not, being such classifica-
tion based on the user contribution to the element creation and assessment. USs can be

42 Chapter 2. Fundamentals and Related Work

set in both sub-categories, given that it should be clear to the user, and contain steps and
details to the developer, although the user may need a help from the developer, once that
a US may not clearly relate to the actual business tasks in the user’s daily work (LISKIN,
2015).

Still on communication issues, Garcia, Silva and Silveira (2017) displays in its
Systematic Mapping, the most common artifacts used to facilitate the communication.
Among the artifacts, it is possible to highlight the Prototype, as being the most common
artifact that helps improving communication, leading to the conclusion that such artifact
may contain valuable information within it. Other notable artifacts presented in the same
work are User Story, Cards, Persona, Sketch, Scenario, Wireframe, Mockup, User Flow,
Story Board, Use Case, among others. It is important to also mention that such artifacts
are also present in the work of Silva et al. (2011).

Other results focused on artifacts and documentation, presented by Hess, Diebold
and Seyff (2017), show that, in agile practices, have the level of detail of the artifacts (and
documents, when present) is not high when compared to other practices. This may be
due to the fact that the artifacts used in agile practices may not always contain all the
necessary range of useful information such as links or quotes from other artifacts such as
Personas or Mock-ups. These factors are part of the work of Schön et al. (2017), which
proposes suggestions on how to work with different requirements, as well as in Soares et al.
(2015), which identified that US may not be sufficient to support development activities
such as software design and estimation, pointing out that one of the main problems with
the requirements is the lack of information contained in the artifacts, which can be due
to the fact that the agile practices do not prioritize both the documentation aiming to
gain time. Such a conclusion is also corroborated by Liskin (2015), which concludes that
managing many artifacts is really a problem, although the usage of different artifact is
shown to be necessary. The work states that project managers need to keep in mind that
developers need to have a more detailed view of the tasks (User Story, for example), but
it also needs to have a view of the whole and where each piece (task) fits with the others
(what would be provided by Container type artifacts, such as the software requirements
documents).

Although the issues that the usage of US may have, it is still a very important
and used artifact. Brhel et al. (2015), on a Literature Review, states that the employment
of USs to describe features providing business value to the customer is popular, being
mentioned in 21 (25.3%) of the publications analyzed in its review. In the same work, it is
concluded that the prioritization of non-functional usability requirements in comparison
to functional requirements remains challenging.

Although the usage of different artifacts is necessary, the use of multiple artifacts
imposes challenges such as the dispersion of information or inconsistencies between artifacts,

2.7. Related Work 43

which may not necessarily be grouped together into a single set (LISKIN, 2015).

When analysing how artifacts could facilitate communication in Agile User-Centered
Design (AUCD) approach, Garcia, Silva and Silveira (2019) concludes that one of the
main challenges faced while establishing the integration of agile and UCD is how to
facilitate communication among the invariably distinct involved practitioners. As of Brhel
et al. (2015), the study advocates the idea of artifact-mediated communication. Aiming
to identify and understand the artifacts used to facilitate the communication between
designers and developers in AUCD. Through a netnographic study in a globally-distributed
online community of agile practitioners, Garcia, Silva and Silveira (2019) concludes that
the community understanding is that the team must be cross-functional and the designer
should be part of the team. Designers and developers communicate in different agile events
using different artifacts as facilitators. The communication occurs throughout the entire
AUCD flow, starting from discovery session, passing through all agile events including
planning, iterative cycle, review, and backlog refinement engaging the whole team in design
practices and UI specifications, and sharing design artifacts. Such conclusions reinforce
the artifact as a mediator for the better agile-UX integration.

Kashfi, Nilsson and Feldt (2017) investigate the challenges software practitioners
face on dealing with UX in software development (KASHFI; NILSSON; FELDT, 2017).
Among the different challenges, the authors identified the need for mechanisms that
improve the traceability between UX-related and other requirements. Schön et al. (2017)
carried out a survey and presented the key challenges in agile Requirements Engineering
(RE). One key challenge reported was how to manage the diversity of documentation
that support agile teams in their work (SCHÖN et al., 2017). Liskin (2015) conducted
interviews with software practitioners and as a result the author classifies the artifacts
into different groups according to the artifacts role in a project. The findings showed that
projects need to make usage of a whole variety of different artifacts, which carries the
risk of inconsistencies or inefficiencies emerging from the dependencies between multiple
artifacts (LISKIN, 2015).

2.7.2 Virtual Environments

Kassab (2014) points that Jira is the most used tool to support agile practices. The
author conclusion comes from a survey that compares agile with waterfall RE (KASSAB,
2014). Hess, Diebold and Seyff (2017) reports that agile approaches have a strong focus
on face-to-face communication instead of having documentation of RE in details (HESS;
DIEBOLD; SEYFF, 2017). This emphasizes its early analysis, which showed that artifacts
used in agile activities cover key requirements information, but its level of detail is often
less than in traditional RE artifacts. The authors statement is based on the results they
got from interviews and a survey with agile team members.

44 Chapter 2. Fundamentals and Related Work

Considering that US is the most popular artifact used by agile practitioners (SCHÖN
et al., 2017), remaining as the central focus of development from the time it is created
until the code is handed over (SHARP; ROBINSON, 2006), many works have proposed
ways of how to write USs. In 2004, Cohn (2004) proposed a grammar as a pattern to the
writing of US which is currently used by agile teams (COHN, 2004). Shortly, the grammar
contains elements to picture out the users, their goals, and reasons to do something in
the system. Choma, Zaina and Beraldo (2016) extends the proposal of Cohn (2004) in
order to create the UserX story from which agile practitioners can add UX information
in the US’s body (CHOMA; ZAINA; BERALDO, 2016). The authors concluded that
agile practitioners have difficulties in understanding how a single US can hold all the UX
information they need, highlighting that Product Owners (POs) were having difficulties in
understanding such usability concepts, and also they did not know how to incorporate UX
issues in the product requirements.

Moreno and Yagüe (2012) proposed a mapping mechanism to help on incorporating
usability requirements into USs (MORENO; YAGÜE, 2012). Although such proposal,
issues are still to be answered, such as how to manage the size of USs with a relatively
high number of usability mechanisms.

In a literature mapping about agile and UX practices, Garcia, Silva and Silveira
(2017) concluded that virtual artifacts are mostly used as basis for development phases
in agile practices (GARCIA; SILVA; SILVEIRA, 2017). The authors also reported that
mock-ups and USs are often used in combination to support the agile developers work.
In 2019, Garcia, Silva and Silveira (2019) carried out an investigation in an online agile
community and the results show that mock-ups are adopted in combination with USs
(GARCIA; SILVA; SILVEIRA, 2019).

Given the virtual artifacts, Silva et al. (2018), in an analysis of the current state of
agile and UX Design integration, called Agile UXD, states that different teams, working in
different contexts uses a variety of artifacts and techniques to create a shared understanding.
Given such conclusion, where the usage of different tools is present, may also be a potential
point to difficult integrating UX and agile.

For virtual artifacts, in a work regarding remote working, Deshpande et al. (2016)
concludes that project tracking system like Jira are effective for both team members working
in the office or remotely, being virtual artifacts and their supporting tools key information
hubs for all team members. As described by Deshpande et al. (2016), information hubs can
be taken as central focuses where information flows meet and decisions are made. Specially
for the remote worker, these virtual artifacts dominate and shape their situation awareness
(i.e. how people are kept informed of what is going on, through what they can see, hear or
from what is accessible to them), being the core of their horizon of observation, which is
what an individual can see or hear, influencing its situation awareness (DESHPANDE et

2.7. Related Work 45

al., 2016).

In a study regarding requirement traceability in virtual environments, Shukla, Auriol
and Baron (2011) highlights that the management of artifacts relationship is a continuous
activity, involving people of various levels, to participate continuously and maintaining a
perfect communication channel among them for avoiding any information lapse. As the
requirements are continuously evolving through the life of a project, requirements are
added, removed or modified. The linkage between these changing requirements needs to
be maintained (SHUKLA; AURIOL; BARON, 2011). In a similar topic, Lee, Guadagno
and Jia (2003) concludes that RE attempts to communicate the ideas and needs of
the product’s stakeholders to the engineers and developers who ultimately build the
product. Communication and interaction lies at the heart of agile practices, however,
as projects become increasingly larger and distributed, maintaining effective and up to
date communication becomes error prone, work intensive and ultimately unmanageable.
Requirements traceability refers to the ability to describe and follow the life of a requirement.
In large projects, management of the links becomes burdensome, and accuracy depends on
the frequency of updates. If not maintained correctly, links from one artifact to another
may be incorrect, as requirements or other requirements documents are disposed of. The
traceability is therefore rarely end-to end, as the time and effort required is more than the
perceived worth (LEE; GUADAGNO; JIA, 2003).

2.7.3 Navigational Distance

Bjarnason et al. (2016), presented the Theory of Distances, which aims to categorize
the difference of position or level among the stakeholders, artifacts, or activities involved
into the development of software projects. The distances are related to the effort required
to accomplish the tasks that constitute the development of the system.

They are classified into eight sub-categories, being one of them the navigational
distance. Navigational distance describes how distant the artifacts are one each other
regarding their positions (BJARNASON et al., 2016). In a virtual tool, such distance can
be taken as the length of the path to navigate between the artifacts. Bjarnason and Sharp
(2017) describe such navigation as being the length calculated by the number of links that
the individuals have to access to reach the information.

2.7.4 Conclusions and Related Work Comparison

After the analysis of the presented literature review, it was concluded that the
works show the advantages and disadvantages of the usage of several artifacts as well as
the use of agile practices and UX techniques, showing how they could be incorporated in
one single methodology. However, there is a wide range of artifacts available to be used

46 Chapter 2. Fundamentals and Related Work

during the project life cycle, and such artifacts are not always correctly used together.
Although the usage of US helps developers to understand user’s needs, on the technical
perspective, the information contained in such artifacts is not always sufficient, and other
artifacts, which complement the necessary information (GARCIA; SILVA; SILVEIRA,
2017), are not always properly managed or have a clear form of communication for all
those involved. The UX aspects are stated as recurring being overlooked in agile practices
(GARRETT, 2010). But the studies do not cover how the UX information can related to
the USs.

Among issues highlighted in literature, loss of big picture (SILVA et al., 2011;
GARCIA; SILVA; SILVEIRA, 2017), information traceability (LEE; GUADAGNO; JIA,
2003; KASHFI; NILSSON; FELDT, 2017), usage of UX elements into agile practices
(ROGERS; SHARP; PREECE, 2019; INAYAT et al., 2015), and information dispersion
(DESHPANDE et al., 2016; SHARP; ROBINSON, 2006) have been focused in this master
project. Such focus is due to the fact that these issues can be related to the naviga-
tional distances (BJARNASON et al., 2016; BJARNASON; SHARP, 2017) into virtual
environments, which is the topic of this master project.

Tables 1 and 2 show a comparison of the main related works here presented. Notice
that the main subjects focused on the literature review were Agile, UX, US, Virtual
Environments and Navigational Distance. Table 1 presents the summary of the main
related works found presented in this chapter. Table 2 compares such works, considering
the ids outlined in Table 1, with the topics aforementioned. Moreover, it compares such
works with this master project.

Despite studies have presented different ways on integrating UX into agile practices,
validating how communication and artifact usage may impact in such endeavor (BRHEL et
al., 2015; SILVA et al., 2011; GARCIA; SILVA; SILVEIRA, 2017); the studies do not focus
on how the UX elements can be find with agile artifacts. Being the US one of the most
used artifacts in agile practices (GARCIA; SILVA; SILVEIRA, 2017), verifying how the
UX elements relate to it is a gap still to be covered in the literature. Moreover, given the
importance of virtual environments, specially to distributed teams, a practice commonly
applied into agile teams (SHARP; ROBINSON, 2006; DESHPANDE et al., 2016); having
in mind possible issues of navigational distance (BJARNASON; SHARP, 2017), the impact
on relating UX information with USs is still to be further analysed, specially in virtual
environments.

This study aim to focus on such gaps, focusing on how UX elements can be related
to US in agile virtual environments, and what navigational distances of such relations are
found out. Moreover, to propose templates on how to better create such relation in a way
that the navigational distance in the virtual environment remains within a manageable
limit.

2.7. Related Work 47

Id Title Reference

R.W.1 Exploring principles of user-centered
agile software development: A literature review Brhel et al. (2015)

R.W.2 Artifacts for Agile User-Centered
Design: A Systematic Mapping Garcia, Silva and Silveira (2017)

R.W.3 UserX story: incorporating UX aspects
into user stories elaboration Choma, Zaina and Beraldo (2016)

R.W.4 User-centered design and agile methods:
a systematic review Silva et al. (2011)

R.W.5 Towards Requirements Communication and
Documentation Guidelines for Agile Teams Hess, Diebold and Seyff (2017)

R.W.6 The role of distances in requirements
communication: a case study Bjarnason and Sharp (2017)

R.W.7 How artifacts support and impede
requirements communication Liskin (2015)

R.W.8
Integrating Agile and user-centered
design: a systematic mapping and review of
evaluation and validation studies of Agile-UX

Jurca, Hellmann and Maurer (2014)

R.W.9 Key challenges in agile requirements
engineering Schön et al. (2017)

R.W.10
Adding human interaction aspects in the
writing of User Stories: a perspective of software
developers

Lopes et al. (2017)

R.W.11 Agile user stories enriched with
usability Moreno and Yagüe (2012)

R.W.12 When user experience met agile: a case
study Budwig, Jeong and Kelkar (2009)

R.W.13 Elements of user experience, the:
user-centered design for the web and beyond Garrett (2010)

Table 1: Main related works.

48 Chapter 2. Fundamentals and Related Work

Ref.
ID UX Agile US

Requi-
rements
Eng.

Arti-
facts

Naviga-
tional

Distances
Contribution

R.W.1 x x x Investigation on UCD usage along
with agile software development

R.W.2 x x x x
Systematic Review on
which artifacts can be used
in Agile UCD approaches.

R.W.3 x x x How to include UX information
in the US writing process.

R.W.4 x x

Systematic Review on UCD and
agile practices.
Discusses which artifacts are
used to support collaboration among
designers and developers.

R.W.5 x x x x
Guidelines for agile team on how
to have better requirements
communication and documentation.

R.W.6 x x
Reports how distances may impact
the project development, increasing the
awareness of the same.

R.W.7 x x x

Conducted interviews in order
to understand how artifacts help on
software development on regarding
information communication.
Proposes artifacts classification.

R.W.8 x x

Systematic Mapping on integrating
Agile and UCD.
Identified possible gaps in existing
literature in order to enable
future work to be done on such.

R.W.9 x x Identified 6 key challenges on
Agile requirements engineering.

R.W.10 x x x
How to add HCI aspects
into US given the
developer’s perspective.

R.W.11 x x x How to add usability
aspects into US.

R.W.12 x x x

Case Study on UX-Agile integration.
describes challenges and recommend
practices aiming to help future
work on the subject.

R.W.13 x x

How UX information can be present in
software life-cycle phases.
Establishes the five elements of
UX framework.

This
Master
Project

x x x x x x

Analysis on how the UX information
related to USs.
How such information is dispersed in a
virtual environment. Recommendations
to decrease the navigational distance.

Table 2: Related Work Comparison.

49

3 Case Study

Considering the background presented in Chapter 2, the following RQs have been
outlined: RQ1 - How are UX information and USs connected into software virtual environ-
ments? and RQ2 - What are the navigational distances found to access UX information
from USs into software virtual environments?, a qualitative case study has been done to
answer the RQs.

Figure 6: Case Study

Source: Author

This chapter presents such case study, on the following structure: i) We present a
context on the settings that have been used in the case study. ii) The analysis of the case
study is presented, being divided into four steps that are summarized by the uncovering
artifacts process, the coding on software requirement documents, the coding on USs that
were written based in such documents, and the results. iii) We end the chapter exposing
the conclusions on the same.

3.1 Context settings
The case study was conducted in a software global organization of financial domain.

It is present in twelve countries, having more than five thousand employees. The study
concentrated on projects developed in Brazil. Despite the teams in the company adopted
agile practices, not all the agile principles could be fully applied. The nature of the company

50 Chapter 3. Case Study

(i.e. financial sector) demanded controlled processes. Therefore the projects, and the teams,
can be categorized as agile in non-agile environments (GREGORY et al., 2016). In such
category, the agile teams apply agile practices, however, they use some structures and
procedures closer to the traditional development process. In particular, they have more
rigor in RE issues than the ones following agile practices.

In this organization, the writing of USs was done based on software requirement
documents. Such documents were structure in sections, called Use Cases. The Use Cases
work as input for the US writing, given that the Use Cases provide a set of co-related
information in a big scope, later broken down into several US during the writing process.
The UX information related to the project was collected in different ways. In some cases,
artifacts (e.g. mockups) are created and embedded in the requirement documents. In other
scenarios, different platforms are used for UX information storage, being such platforms
linked to USs through hyperlinks. All the process of requirement specification until the
writing of USs often follows the same steps. Briefly, we will describe these steps below.

First, the requirements are raised by the interaction of the Project Owner (PO)
with stakeholders (end-users, managers, etc.). Considering the requirements elicited the
PO and a requirement team are the responsible for elaborating the requirement document
and for delivering to the leader of project. Taking this document in hands, the leader of the
project has a conversation with the development team to decide how the new requirements
can fit into a team work plane. The POs and the requirement team also answer the doubts
that the development team can have about the document.

Subsequently, during a planning meeting, the leader of the project and the devel-
opment team have a discussion based on the requirement document and then defined
general USs that usually are known as epics. An Epic is a large User Story that cannot be
delivered as defined within a single iteration or is large enough that it can be split into
smaller USs (COHN, 2004). The USs are created in a ”free” writing way, which means
that they do not follow a pattern for its structure. The Epics are stored in Jira virtual
tool. At the end of the planning meeting all the Epics are broken into minor USs that are
linked to the Epics. Before the developers start to work with a given US, the leader of
the project can make modifications or introduce additional information on the minor USs
with the aim of clarifying some doubts that raised during the planning meeting.

Frequently, the USs are linked to other complementary documents that give infor-
mation about UX or functional requirements. These complementary information is stored
in different virtual repositories. UX information is found in extra documents stored into
Confluence or SharePoint. Although the case study performed on requirement documents
and in USs was based in the tools here mentioned (Jira, Confluence and SharePoint),
the conclusions, recommendations and templates later presented in this master project
didn’t consider any particular characteristic of any tool. The analysis on the tools only

3.2. Analysis approach 51

considered the UX information dispersion and navigational distances found in them in
order to have insights on how UX information can be dispersed in virtual environments.
We therefore believe that both the case study conduction and the results achieved from
it can be applied in other tools and scenarios, although changes may need to be done in
order to better fit in the particularities of each tool.

3.2 Analysis approach

To answer the RQs, we conducted a case study, which aims to investigate the
contemporary phenomena in their context (RUNESON; HÖST, 2009). Figure 7 illustrates
the four steps we followed in the case study analysis.

Figure 7: Steps of the analysis

Source: Author

Step 1 - Artifacts Uncovering: Manual step in which a total of 13 requirement
documents were analyzed. Each document was structured in parts called use cases. The
13 requirement documents contained a total of 68 use cases. This analysis aimed to verify
which use cases contained UX elements in it. Given the focus of this project, requirement
documents that did not contain UX elements, would not generate USs with such elements
in its content. Such documents could, therefore, be excluded from the further analysis
described below, not being used in this case study.

Step 2 - Documents coding: Conducted in the 13 documents selected in the step
1 (for information about coding process see section 2). The coding process was performed in
three steps. First, we applied the closed coding approach supported by Garrett’s framework.
We labeled a chunk of a document when we found out evidence of UX information. The
codes assigned reflected the elements of UX of Garrett. After, we performed an open coding
approach. In this step, we explored all documents creating new labels for UX information.
These new labels represented UX information that was not explicitly related to Garrett’s
elements of UX. For instance, we assigned the label end-users when we found out details

52 Chapter 3. Case Study

about the audience. Finally, we performed a double check in all the documents to search
for inconsistencies.

Step 3 - User Stories coding: We examined the USs following the same proce-
dure performed in step 2. Taking into account that the requirement documents provided
the information to the writing of the USs, we considered that we could find the same UX
information embedded in the USs or related to them. In this company the USs (i.e. Epics
and minor USs) were stored only in virtual tool (i.e. Jira). We carried out the coding
process having the USs as our start point. During the coding of one US, we also examined
whether that US had connections to other virtual tools (e.g. Confluence pages and artifacts
stored in SharePoint).

Step 4 - UX Information dispersion: This step considered the step 3 outcomes,
from which we noticed that most of UX information was spread in different virtual tools.
To examine in-depth how the UX information was or not hold into the USs, we explored
in which way the information was connected in the virtual environment. Such connections
could be found through hyperlinks, attachment, mentions, and so on.

Although the documents and the US differ in each project, the process of creating
them can be described as: 1) Requirements are raised by PO and stakeholders (final users
team members, especially managers). 2) Requirement documents are written by a specific
team (not the development one) along with Project Owner. 3) Requirement documents are
delivered to development Project leader. 4) Once decided when the new requirements are
to be delivered, the development team, whenever possible, reads the new requirements. 5)
The development team has a planning meeting to overview the document and to elaborate
the main User Stories, which are stored in Jira virtual tool. Questions are raised and sent
to PO. At the end of meeting US are broken into minor US (i.e. a two round processes on
US writing). 7) Quality Assurance (QA) members will add QA information over the next
days, when each US is analyzed by them. 8) Project Leader (or PO itself) adds additional
information to US regarding questions raised during the meeting. 9) Developers start to
develop a US and add new information if the developer decides it is worthy to.

Despite each project has its particularities, the above described process is almost
fully done by the three studied teams.

The USs, although not following a writing pattern, have a similar structure among
projects, where they usually contain the same set of information required for the US
content understanding: A text with a brief description as a subject; some acceptance
criteria listed as bullet points and some relevant information described in a description
section. However, each team used different details and artifacts and created a diversity of
relationship among them. Besides Jira, Confluence supported the teams in the sharing of
information and SharePoint in the management of the documents.

3.2. Analysis approach 53

It is important to reinforce that, although the present study has been done over
the mentioned tools, the results here presented were not derived from specific conclusions
based in the particularities of each tool. The only factor that was considered is that the
artifacts were stored in a virtual environment, instead of a real one. Also, given data
confidentiality issues, no real data will be presented in this study. Rather than present
real information from the documents analyzed, we will take fictitious data to illustrate our
study. Documents and artifacts representing the analysis done in this study are available
in Appendixes A to F.

Given the usage of Coding technique in this master project, it is important to
explain how the same works. Below a brief explanation of the coding technique, including
what is called closed and open coding, is presented. In this project, one of the steps
consists in the document (text) analysis, in order to verify which artifacts are (explicitly
or implicitly) used in the same. Such analysis will be done through a process called coding,
which consists in creating a way to mark (code) the text making a parallel with the coded
information and another (labeled) type of information This process can be done by the
”Coding” usage, which is described by Bohm (2004) as ”the deciphering or interpretation
of data and includes the naming of concepts and also explaining and discussing them in
more detail”.

The Coding technique is part of the Ground Theory, which, according to Bohm
(2004) is a Kunstlehre (art), which means that its procedure cannot be learned in the form
of prescriptions. The result of coding, will be a list of terms, as well as its explanations.
For this study, at least two rounds of coding will be done, by using the ”closed coding”
and ”open coding” techniques.

The process of closed coding was done by using information previously obtained
in Garrett’s Framework (GARRETT, 2010) analysis. In this coding, artifacts and UX
elements mentioned in Garrett (2010) work were used as labels for the coding done in the
documents analysed.

The process of open coding was also used in this project. Such process can be
considered as an analysis through which the data (text) is broken down, each word or line
is analysed and coded, after the first round, larger pieces or blocks of text are analysed,
and coded as well. In the end of such data analysis, a succession of concepts is developed,
being ultimately used to build blocks for a model (BOHM, 2004).

The coding technique allows someone to keep distance from existing theories,
allowing the theory to grow out from the data itself. Given such characteristic, Bohm
(2004) states the limitations of such technique to be dependent on the investigator’s
creativity, which makes it learnability difficult.

54 Chapter 3. Case Study

3.2.1 Artifacts Uncovering

For this first step, a manual process of reading requirement documents was per-
formed, aiming to filter which requirement documents could be used for this case study.
First, we examined a set of project documents seeking for those that contained UX-related
information.

All the documents were structured in sections, being the main information to the
development team located into sections named Use Cases1. After exploring the documents
we concluded that apart from the use case sections, the others contained database structures
and other information that was not relevant for our purpose (i.e. these did not have relation
to UX information), therefore these sections were removed from further analysis.

After filtering the documents we proceeded in the analysis by reading carefully
each document, searching for any UX information. A document was selected whether at
least one UX element was found out. For instance, the use case made a relationship with
some part of a mockup. We also found out that the project document had links to other
documents or UX artifacts.

This case study step had its analysis based in Garrett’s framework (see section 2.5),
in which the UX elements mentioned in such framework were considered in the analysis.
The results of this first analysis, which aimed to filter the documents that would be used
for the further analysis steps, are presented next:

• For project 1, 30 use cases were analyzed, distributed in 6 different documents. A
total of 21 use cases contained aspects related to interface (UX) aspects;

• For project 2, 18 use cases were analyzed, distributed in 4 different documents. A
total of 8 use cases contained aspects related to interface (UX) aspects;

• For project 3, 20 use cases were analyzed, distributed in 3 different documents. A
total of 6 use cases contained aspects related to interface (UX) aspects.

A total of 13 requirement documents, containing a total of 68 Use Cases were
analysed. From these, 35 Use Cases contained aspects related to UX elements.

3.2.2 Documents Coding

In this case study, three projects had their software requirements documents
analyzed. The study was done with real documents but given data confidentiality, no
real data will be presented in this document. The documents here presented are versions
1 Use Case is a generalized description of a set of interactions between the system and one or more

actors, in which an actor is a user or another system (COHN, 2004)

3.2. Analysis approach 55

developed by the proponent of this work, in which the information necessary for the study
is presented in a ”generic” format, omitting any details regarding the company or its
projects. Such documents will be referred to as ”case study documents”. The case study
documents were written aiming to describe the content of the real documents analyzed,
without presenting details that compromise the company. The case study documents can
be found in Appendixes A, B and C, already containing the coding process.

The following sections were disregarded from the documents: Database Structure
and/or Diagrams; Questions and Answers; Non-Functional Requirements; Future Improve-
ments; List of Terms; Cover; Index and List (of Terms, Figures, Tables, etc.). These
sections were removed given that they did not provide new insight into the analysis being
made. Such sections did not contain relevant information for this study, and only contained
information or artifacts that are not related to the user experience.

The purpose of this case study was to explore artifacts and UX elements that
were present in the requirement documents. In a later step, this case study aims to verify
which of these artifacts and UX elements were also found in User Stories. The result of
this case study, therefore, is to verify the RQs defined in this master project. The RQ1
aims to understand ”How are UX information and USs connected into software virtual
environments?”. Therefore the need to investigate how UX elements relate to US into the
agile projects is required, considering the usage of virtual environments. The finding of
UX elements into the software requirement documents will later be used to see whether
such UX elements are also found in the US level, considering that the USs are written
based on such documents.

With the use cases that contained UX aspects, resulted from case study step 1
(subsection 3.2.1) a second analysis was started, in which it was intended to find a pattern
in the writing of the requirements. This analysis would lead to the creation of the use case
documents, appendixes A, B and C, previously mentioned. The analysis was done in an
ad-hoc manner, and resulted in the creation of the attached documents (Appendixes A,
B and C), which aim to be representations of the real documents analyzed in this study,
without presenting confidential information.

During the creation of the use case documents, the artifacts and UX elements
that were present in the original documents were also analyzed. Such artifacts and UX
elements also had ”generic” versions created, which represent the real artifacts found in the
document analysed, but without confidential data. The artifacts and UX elements created
are available in the use case documents. The use case documents present the artifacts and
elements of UX that were found in one or more documents within the same project. For
example, in project 1, although 21 use cases have been analyzed, only some of them could
contain a particular artifact, for example a Mock-Up. Although the Mock-Up artifact was
not present in all use cases, given its recurrent usage, it was chosen to include it in the

56 Chapter 3. Case Study

generic version of the requirement documentation.

The coding process was done in two parts. The first is classified as closed coding, in
which information previously obtained through the analysis of the work of Garrett (2010)
were used in the coding. The second part was open coding, in which the documents were
explored in order to obtain new codes that might not be related to those used during
closed coding.

The first step of coding was based in the UX elements and artifacts mentioned
in the work of Garrett (2010). A analysis of the Framework (see Figure 4) resulted in
the finding of some artifacts/UX elements being mentioned in a specific plane from the
framework. Such artifacts/UX elements, and its respective placement in the Framework,
resulted in one column, named Garrett Framework in the coding result, later displayed
in Figure 12. Such column has the intention to be a common reference to the analysis
explained in section 3.2.4.

In a first analysis, each of the documents was analyzed in sequence, according to
the project. From now on, the documents related to project 1, will be called Document 1,
for project 2, Document 2, and for project 3, Document 3. The first analysis was done
using closed coding. Starting from Document 1, the closed coding process, analyzing the
artifacts and UX elements, presented by Garrett (2010) was performed. For each element
found, the textual fragment, image, etc., was marked with a color that would later be
used as a label, which represents an artifact or specific UX element. Each color, or label,
was then used in new occurrences of the same artifact or UX element. The number of
occurrences of a particular label in the same document is not part the scope of this study.
As many occurrences of a given label happen within the same document, such label is only
counted as one in the final analysis.

Once the analysis was performed in document 1, another analysis was carried out
in document 2, and then in document 3.

After the end of first coding, a second coding process began. This second coding
happened in two iterations. In this second coding, besides the refinement of the coding
done at the first process (closed coding), the open coding technique was applied. This
analysis was done in order to find possible new codes, which were based on the elements
that had been found during the literature review (see chapter 2) but were not directly
mentioned in the work of Garrett (2010).

In this second coding cycle, the coding was done focusing more in the textual
elements. The textual elements could, sometimes, contain some code previously mapped
elsewhere in the document, but for completeness purposes, any mentioning of a previously
found codes should be mapped to the corresponding color. Such mapping eventually
generated results as shown in the Figure 8.

3.2. Analysis approach 57

Figure 8: Coded text chunk

Source: Author

As seen in Figure 8, a small text chunk could contain different codes, in this
example, five different codes. Although some of these codes are present in other parts of
the document, in order to have a more complete coding, each appearance of the codes has
been mapped. This step provided initial insights for the third iteration of coding, later
described.

Once the process described above was done in document 1, the same process
occurred for document 2 and document 3.

At the end of this analysis, all documents from the three projects were analyzed
again, taking into account what had previously been mapped in the first coding iteration.
The second iteration aimed to find coded elements only found in documents at the end of
the first iteration, which had not been mapped in documents coded at the beginning of
the same. For example, a code that was only discovered in document 3 would probably
not been mapped in document 1, so this second iteration covers this possible gap.

At the end of the second iteration of coding, the mapping of the codes resulted in
ones presented in Figure 9, which later became labels, used in section 3.2.4.

A third, and final, coding iteration was performed, aiming to verify if the mapped
artifacts and UX element were used directly or indirectly. For this analysis, the coding
technique was used again, but this time using a new coding methodology, based on the
direct or indirect usage of the elements. The labels annotated with D indicate the direct
presence of a given artifact or UX element in the documents. Labels annotated with I
indicates that a given artifact or UX element were not present in the documents, although
related information can be found in the same.

The Direct (D) and Indirect (I) coding intended to provide a second information
for each of the codes previously found in the documents. The artifacts and UX elements

58 Chapter 3. Case Study

Figure 9: Coding process codes

Source: Author

that were explicitly (directly) used in the document, received the D tag. For example, if
document 1 contained in its content a Mockup artifact attached; the Mockup coding (with
the color corresponding to the label) was made in the document. In addition, for the codes
of document 1, the Mockup code received the tag D, representing the direct, or explicit,
usage of such artifact.

In contrast, the coding I was used when a particular artifact was not explicitly
or directly used in a document. For example, in Document 1, information related to
Users, such as access permissions, Role grouping, etc., could be commonly used. A brief
description of the user was also provided in the text format. Such information could
have been presented through a Person artifact, but such artifact itself was not found in
the documentation. Given the presence of such information could have be presented in
a Persona artifact, the usage of I tag, meaning indirect or implicit usage, was applied.
Such tags therefore indicates that a particular artifact, or UX element, is not used in the
document. However, information that could be used for the creation of such artifacts, or
could have come from an existing artifact, is found available in the document. In most of
the cases, the presence of such information was made through text, while no artifacts were
used.

3.2. Analysis approach 59

3.2.3 User Stories Coding

After coding the documents, USs were also analyzed, following the same coding
process. This next coding was done to understand which artifacts or UX elements, found
during the coding of the requirement documents, were transferred to the US level.

Taking into account that the requirement documents provided the information to
the writing of the USs, we assumed that we could find the same UX information embedded
in the USs or related to them. This assumption would be verified through the coding of
USs. Later, an analysis of the UX information dispersion would also be done, in case some
UX information was found outside the US.

In this company the USs (i.e. Epics and minor USs) were stored only in virtual tool
(i.e. Jira). We carried out the coding process having the USs as our start point. During the
coding of one US, we also examined whether that US had connections to other virtual tools
(e.g. Confluence pages and artifacts stored in SharePoint). Figure 10 shows an example of
coding in an US.

Figure 10: User Story coding sample

Source: Author

The analyzed USs were stored in Jira tool. The hierarchy used in the Jira is: Epic

60 Chapter 3. Case Study

> User Story > Task. All three hierarchy levels have been analyzed. For the task though,
no information could be coded, since they were used only for development task division
purposes, not for documentation purposes. An example of a Task is shown in Figure 11.
For the Epics and USs analyzed, the coding process can be found in Appendix D, E and F.

Figure 11: Task example

Source: Author

Considering Step 3 outcomes, we explored the UX information dispersion (Step
4). We could notice that most of UX information was spread in different virtual tools.
To examine in-depth how the UX information was or not hold into the USs, we explored
in which way the information was connected the USs. Such connections could be found
through hyperlinks, attachment, mentions, and so on.

3.2. Analysis approach 61

3.2.4 Coding Results

The result of the coding process performed on documents is summarized in the
mapping presented in Figure 12.

Figure 12: Document coding mapping

Source: Author

Figure 12 shows, in the Garrett’s Framework column, the UX elements and artifacts
mentioned in the work of Garrett (2010). In Figure 12, the labels, for Garrett’s Framework
column, are placed in the row corresponding to the Framework’s plane (see section 2.5)
in which such labels, representing UX elements or artifacts, are mentioned in the work
of Garrett (2010). The last row of Figure 12 (row Other) highlights the labels that were
found during the coding process but are not part of the Garrett’s Framework (GARRETT,
2010).

In Figure 12, the Project 1, Project 2, and Project 3 columns represent the labels
found in the respective software requirement document, according to its project. At first,
the labels were placed in the same plane of the ones they are mentioned by Garrett (2010).
In the third iteration of the Coding process, given that some codes did not match UX
elements or artifacts mentioned by Garrett (2010), such codes were placed in the Other
row. After the end of the coding third iteration, it was noted the possibility of proposing
the inclusion of such elements within the planes proposed by Garrett (2010).

An example of such is the Use Case, which is not part of any plane of the original
framework. Once such artifact was found during the coding, and given previous knowledge
obtained by the framework analysis (section 2.5), the idea for the placement of such
artifact in the framework originated. Given such possibility, the suggestion of using the
UC in Plane 2 (scope) was proposed. This proposal is based on the fact that, there is
some relation between the purpose of the UC and any of the Planes proposed in Garrett’s

62 Chapter 3. Case Study

Framework. Since the purpose of the UC is to state what will, and will not, be within the
scope of a given development, it is possible to correlate it with the information contained
in the Framework’s Scope plane, that is the one responsible for the scope of the project
information. Such analysis resulted in the UC label being placed in the Plane 2 - Scope in
Figure 12.

This analysis was initially done in the Other row codes. The result of trying to
include new elements in Garrett’s Framework led to the idea of extending such analysis
to the other codes found during the coding process. The other codes, placed in the
corresponding Garrett’s Framework Plane row, were then performed.

This new mapping was carried out based on the descriptions of Garrett’s Framework
planes (see section 2.5) as well as on the information contained in the artifacts and UX
elements mapped in the documents. Some of the elements presented more than one
information, which, in the context of the Framework Planes, could lead to its usage in
different planes. For example, the Mockup artifact, present in the documents, can be
considered a mid-level Mockup (representing, in a static image, a solution very close to
the final result proposed). This artifact can be seen as a container artifact (LISKIN, 2015),
grouping information such as color palette, label nomenclature, component positioning,
and others. These information can be considered UX elements.

Considering such analysis, it is possible to state that there is the presence of UX
elements within an artifact, in this case the Mockup. Still in this example, it is possible
to see that these UX elements are mentioned in Garrett’s framework, but in different
planes. Therefore, although the Mockup is an artifact itself, located in a specific plane
in the framework, we can state that it is also part, even partially, of other planes of the
framework, in which the UX elements contained in the Mockup are part of.

Following the same analysis described above for the Mockup artifact, other analyses
were performed, is summarized below.

The Mockup artifact is placed in Structure, Skeleton and Surface planes. This
was done given that it contains nomenclature/labels, which are part of the Structure
plane. Metaphors (icons usage) and components positioning (covering the purpose of the
Wireframe artifact), which are part of the Skeleton plane, are also part of the Mockup.
The Mockup also contains typography, color palette and general aesthetic information,
corresponding to the Surface plane.

As for the structure/architecture artifacts are are not artifacts, but in this study
they are being considered as such, given that there were textual fragments in the documents
analyzed that contained information exclusively on its aspects. This artifact is placed in
Structure plane, according to the Garrett’s Framework. It is also placed in Surface plane,
since the information stored in them can refer to components usually placed in Mockups,

3.2. Analysis approach 63

such as descriptions of how a certain information will be displayed on the screen. For
example, a certain information should appear in a combo box component or in a Pop-up).

The Persona artifact is in Strategy plane given the original framework mentioning.
It was also placed in Structure plane, since information of the users can be found in the
descriptions of functionalities, which are part of Structure plane. Although the Persona
artifact is not used in the documents, but information that constitutes such artifact could
be found in the documents, the same was tagged as I.

Pattern and consistency is not an artifact itself, but is an important aspect to
be considered during application development. It is part of the fourth plane in Garrett’s
framework. It may also be part of Structure and Surface planes, once that Mockups can
be created already covering such aspects, specially mid-level Mockups, such as the ones
used in the documents analyzed.

Regarding the Scenarios, they are mentioned in the Scope plane in Garrett’s
framework. Although the Scenarios artifact is not used in the documents, it is tagged as I,
given an overview of the requirement scope could be found, which is similar to what a
scenario would represent. The Scenarios coded in the documents show that they could
contain navigation information. Navigation aspects are covered in the Structure plane of
the Garrett’s Framework, therefore the Scenarios are also placed in this plane in Figure 12.

In Project 3, the usage of the UC diagram can be seen. Although such artifact is
not part of Garrett’s framework, it could be used in Scope Plane, given that UC diagrams
tend to display, in a image, the high-level scope of what will be developed, displaying user
actions in a relational diagram. Therefore the UC diagram can be a visualization of the
scope, information related to the scope of the development can be found. The UC diagram
could also be used to illustrate what is stated in a scenario artifact, since that scenarios
are usually done only in a writing manner.

The security requirements are also not mentioned in Garrett’s framework, but
they could be used in Structure plane, along with error handling information, which are
mentioned in the original Framework. Depending on the software requirement, security
requirements could also relate to user access. With such information, security requirements
would relate to Skeleton and Surface planes, given that security access could relate to
information visualization and application functionalities access.

Quality Assurance, which relates to the acceptance criteria, analyzed later in the
US, is also not mentioned in Garrett’s framework. Quality assurance aspects could be
placed in Structure, Skeleton and Surface planes, given that: It can relate to the structure
of the application, stating and assuring what a users may or may not access. Depending on
the details present in the topics of quality assurance, aspects of navigation and positioning
of components can be validated, relating to Skeleton plane. Quality Assurance can also

64 Chapter 3. Case Study

encompass user sentiment and validate aspects that are only covered by human interaction
with the application, such as the response time that a given component takes to be loaded
in the screen, or the color tones being used, etc. These aspects are at the highest level of
the framework, therefore also relating quality assurance aspects to the Surface plane.

Apart from the labels placement in Figure 12, the first analysis resulted in some
results that show the difference, in amount and placement, of the artifacts used in each
project. The DOC 2 is the one showing the greater amount of artifacts, although DOC 1
and DOC 3 also present a good amount of different artifacts. It is important to notice
that, as per Figure 12, not all artifacts mapped are elements of UX. The artifacts that are
not related to UX and are not cited in the work of Garrett (2010), see section 2.5, were
placed in Other row in Figure 12.

Some common UX elements as well as overall artifacts can be found in all three
documents analysed. From these, some remarks can be highlighted: Although some artifacts
are mentioned in literature review as being commonly used, some of them could not be
explicitly seen in any of the documents analysed. Such artifacts/UX elements include
Scenarios, Personas and Wireframe (see chapter 2). Despite such artifacts are not explicitly
present in the documents, as can be seen in Figure 12, they have been mapped as implicit
(I), given that written text chunks were found, containing information that could relate to
the artifact’s information. Although some artifacts mentioned in Literature Review were
not found in the documents, others could be found. From the same studies presented in
Literature Review, it can be checked that, the Mockup artifact is mentioned as one of the
most used elements, and the same could be found in two of the three documents analysed.

From this first analysis, an insight was also noted, which relates to the Agile
practices. The planes proposed by Garrett (2010), although applicable in a agile project,
may not have a very large distinction between themselves, in an Agile scenario. Specially
considering temporal distances from the actions taken among the tasks executed in each
plane, which occur in difference project life-cycle moments. Given that Agile practices tends
to have an overview of the whole development to be done in each one of the small delivery
cycles that constitute the life cycle of the project, the planes of Garrett’s Framework, in
an agile scenario, would also need to be considered as a whole.

This first analysis already showed the difference of artifacts usage among different
projects/documents. It also didn’t correspond to some data presented in previous studies
mentioned in Literature Review (see chapter 2). Insights from the the data exposed in the
work of Garrett (2010), as well as the artifacts and UX elements presented in the same,
have also been be shown.

The second analysis was then done in the other artifacts used by each project,
taking special look in the User Stories. This coding was done using the same methods
applied for the documents, and can be seen in Appendix D, E and F.

3.2. Analysis approach 65

The code mapping result for the US was summarized as presented in Figure 13,
which was created following the same principles of Figure 12, except by the code placement
in different rows when relating them to Garrett’s Framework. Although in documents
mapping the findings have been placed in more than one plane from Garrett’s framework,
for this mapping the same have not been done, as its intent was not to confront the
artifacts or UX elements information with the work of Garrett (2010). Instead the purpose
of this mapping was to discover which elements were found outside the documentation, in
order to understand the information dispersion among the artifacts.

Figure 13: User Story coding mapping

Source: Author

The first thing noticed after the mapping was done is that not all previous mappings
could be found outside the documents itself. From the document mapping, the coding
number was 22, but on this coding the result was 17. The following artifacts could not be
found during the coding process: Strategy/Overview, Typography, UC diagram, US and
UC.

From these, US and UC coding missing don’t make negative impact to the analysis.
This is because the US and UC are artifacts by themselves, in which the coding is being
done. Given such scenario, it would not be possible to code a US within a US, or a UC from
a UC. The UX element typography missing also don’t have impacts to the analysis, once
that such information can be found in Mockups, without the need of explicitly mentioning
the typography information in the US that already contains a Mockup in it. Therefore the
artifact that could not be mapped and that may have some impact in this analysis are the
Strategy/Overview and the UC diagram.

The coding process executed in US resulted in Figure 12, but further analysis are
still to be done.

66 Chapter 3. Case Study

In an overview analysis, considering all codes for all documents, no further results,
apart from the ones stated above, could be found. A further analysis, considering the
Direct and Indirect codes of the mapping was then done. In this analysis, a matching,
between the document codes and the US codes, for each project, was targeted. Each coding
found in the documents was compared to the ones found in US level, for the respective
project. The UC and US codes were not considered in this second analysis, given that
such artifacts are now being analyzed. The differences in the matching are summarized
below. In the following analysis, the ”first mapping” refers to the analysis done exclusively
in the documents (Figure 12), while the ”second mapping” refers to the mapping done in
the US level (Figure 13). The D and I coding mentioned in the below analysis correspond
to the findings from the first mapping.

For Project 1, from the mapped elements found in the first mapping, the following
could not be found in the second mapping: Strategy/overview (D); metaphor (D) and
error handling (I).

For Project 2, the following were not found in the second mapping: Strategy/overview
(D); typography (D) and Wireframe (I) (although these can be found within Mockup);
security requirements (D); persona (I); error handling (I) and information flow (I). In the
Project 2, the datatype (D); metaphor (D) and pattern/consistence (D) could only be
found in Confluence pages, not being present at US level.

For Project 3, although not having Mockups present in the documentation, they
have been found in other places (Confluence page, and in US level there is a link to
the confluence page). Despite not using the ”as a user I want” writing method in the
document, the same was found in user stories. Apart from it, the following could not be
found in the second mapping: Strategy/overview (D); data type (D); Use case Diagram
(D) and metaphor (D).

Such results are also presented in Figures 12 and 13 in for of Venn Diagrams. Such
presentation was created in order to understand which artifacts and UX elements were, or
not, passed from the original requirement documentation to the US level.

Figure 14: Venn Diagram -
Project 1

Figure 15: Venn Diagram -
Project 2

Figure 16: Venn Diagram -
Project 3

Source: Author

3.2. Analysis approach 67

As per Venn diagram on 15, it can be seen that project 2 contains more codes
when compared if projects 1 and 3. It is also possible to highlight the artifacts that were
only found in requirement documentation or only in US, previously named.

Synthesizing the codes previously displayed in Venn diagrams on Figures 14 to 16,
the Venn diagram on Figure 17 displays a mix of all three projects codes. In such diagram,
if at least one of the three projects showed a given code, the same was mapped into the
diagram. Given this premise, if one of the projects showed a code being found in both
requirement documents and US, the same would be added in the diagram intersection,
despite in other projects such result may not be true. This was done in order to find which
codes we could not found as mapped from requirement documents to US level in all three
projects.

Figure 17: Coding Grouping - Venn Diagrams

Source: Author

As per Figure 17, it can bee seen that no code were found existing only in the
US level. On the other hand, five codes remained as being only found in the requirement
documents. Such codes are, according to coding label presented in Figure 9: Typography,
Use Case, User Story, Strategy/Overview and Use Case diagram.

For such codes, the following conclusions could be drawn:

1) The Use Cases were only used in all projects as an structure for the requirement
documents, and despite being a possible representation of an Epic in the Jira tool, the UC
code missing in the US level, do not cause loss of information.

2) The US coding was not found in the US level because it would require the USs
created in the virtual environment (i.e. Jira) to be a copy of the User Story description in
the requirement documents. Given the US creation process described in Chapter 3, the
missing of such code in the US level also do not cause loss of information.

3) Use Case diagrams may not be required in a US level, if the information the

68 Chapter 3. Case Study

diagram presents are found in other way, for instance, if there is a US that describes the
type of access a given screen will have, permission which is also expressed by the UC
diagram. This coding exists in the US level but in other (written) format, and therefore
do not cause loss of information.

4) Strategy/Overview, which comprehends a written description of the requirement
documents purpose, could not be found in the US level, but in further analysis it was
found in other locations (i.e. Epic or Confluence page). This indicates the presence of a
navigational distance, topic later covered in this study. Given the information was present
in the virtual environment, even though it was not in the US, it can be concluded that
there was not loss of information for this code. 5) Typography could not be found outside
the requirement documents, being therefore a loss of information. Given the projects
contain standards on the development level to standardize the typography throughout the
application, and that the typography present in the documents may be miss-aligned with
such standards, and given the code, even though found in the requirement documents, was
not a highlighted requirement, it can be concluded that the loss of information, for this
particular code, would not cause a disruption in the project.

The next analysis will investigate that, although some artifacts and UX information
initially found in the requirement documents were also found in the USs, not all US
contains all the elements coded in the documents. Considering the agile practices, the
need to break the work into small pieces, not requiring all the data do be stored in a single
US, makes the US a representation of a small development to be done (COHN, 2004).
Therefore, the next analysis focused on exploring how the information is spread across
multiple USs and how its related information is dispersed in different virtual environments
(i.e. Jira, as well as other platforms, such as Confluence). This analysis aimed to understand
and evaluate the navigational distance of the information present in the different artifacts
and UX elements already coded.

3.2.5 UX Information Dispersion

As seen in Figure 18, this section covers the analysis performed after the coding
performed in requirement documents and User Stories. Despite still being part of the case
study, in Figure 18, the following UX information dispersion analysis is separated from
the others given its importance to the case study. In this analysis, the insights for the later
exposed recommendations and templates that aim to decrease the navigational distances
were found.

After the coding was performed (Section 3.2.4), the conclusions showed that UX
elements could be found in all three projects (Figures 12, 13 and 17). During such
coding process though, it was noticed that some of the USs analysed, which are stored
in Management tool (Jira), contained external links to other applications, being such

3.2. Analysis approach 69

Figure 18: Case Study

Source: Author

Repository tools (Confluence and SharePoint).

The presence of UX artifacts, early found in requirements documentation, was
seen in such virtual environments, although each project uses them differently. An overall
placement and relationship among all such virtual environments can be seen in Appendix
G. The usage of the previously mentioned tools per project was done as follows:

Project 1 only uses Jira to keep track of its information. Documents were attached
to Epics, while other specific information were directly stored in US level, being it through
attachment or in the text of its body.

Project 2 uses Jira and Confluence, having a special page for UX-related information
(mockups, icons, etc.). Given both Jira and Confluence are from the same company,
Atlassian, there is an automated integration among both. An example of such integration
is that once a specific hyperlink is placed from one tool to another, a two-way relationship
is automated done (i.e. the link will appear in both applications although only one had
the hyperlink copied into).

Project 3 uses Jira, Confluence and SharePoint, saving some documentation into
SharePoint while others are place into Confluence. In project 3, the UX information
(majorly mockups) were stored into SharePoint and a link to such was added into Jira’s
User Stories. Overall documentation was placed into Confluence, although some old
documentation were on SharePoint.

These results of this early analysis help to answer the project RQ1 that stated:
”How are UX information and USs connected into software virtual environments?”. Given

70 Chapter 3. Case Study

the analysis, it could be concluded that there are usability elements used in the US
life-cycle. And, given coding results, there are both implicit and explicit UX information
used in the projects, where the implicit stands for information that could be presented in
already known UX artifacts, but were only found in textual ways or within other artifacts
that not a specific one for such UX information. The connections between UX information
and USs though could be found in different ways (i.e. link, attachment, etc.) and locations
(i.e within the US or store in other tools). Such aspects will be later explored in this
project.

After these findings, given UX elements were found in the projects, another topic
of investigation was done: If the UX elements are used, how are they related to the US?.
This investigation relates to the master project RQ2: ”What are the navigational distances
found to access UX information from USs into software virtual environments?”.

Such question is even more important when considering works such as the Theory
of Distances, presented by Bjarnason et al. (2016) and Bjarnason and Sharp (2017), which
presents several types of distances found across a project life-cycle (refer to Section 2.6),
as well as problems already highlighted by Liskin (2015), where manual links are often not
created by project developers, given lack of time or, given many changes in requirements,
the linkage management was too burdensome. Also, the work of Choma, Zaina and Beraldo
(2016), which states that product owners (POs) have difficulties in understanding usability
concepts, and also do not know how to incorporate UX issues in the product requirements.
The same work also states that POs were most familiarized with USs to deal with agile
requirements.

Due to such issues reported in the literature, and the fact that the coding analysis
didn’t answer all the questions of this study, the artifacts previously coded, had its
dispersion analyzed. Such analysis is described in this section.

3.2.5.1 UX Elements Dispersion Analysis

Once the coding had been performed in both requirement documents and USs
(refer to 3.2.2), given the results presented in section 3.2.4, a further analysis to understand
how the UX elements were dispersed in the virtual element used in the projects was carried
out. This analysis aimed to cover the RQ2: ”What are the navigational distances found to
access UX information from USs into software virtual environments?”.

The analysis had the USs as the initial point. Given that the USs were stored
only in virtual tool (i.e. Jira), it was possible to track all the connections in the virtual
environment having the USs as the starting point of such track.

We examined whether the US had connections to other virtual tools (e.g. Confluence
pages and artifacts stored in SharePoint), as well as connections to other places within Jira

3.2. Analysis approach 71

itself (e.g. connection to Epics, Tasks, or even other USs). Furthermore, we also analyzed
connection with potential artifacts and UX elements stored in the US itself, through an
attachment for example.

The connections here mentioned stand for any type of explicit relation through
two or more artifacts or virtual environment pages. Such relation would need to cause a
navigational distance. The connections among the virtual environment could be found
through hyperlinks, attachment, mentions, and so on.

The artifacts positioning, in the virtual environment, was then structured in a
graph-based structure, Figures 19 to 21. With such structure it was possible to apply the
principles of the graph theory (HARRIS; HIRST; MOSSINGHOFF, 2008) in order to
retrieve the distance among the information previously mapped.

Figure 19: UX Elements dispersion example - project 1

Source: Author

The distance used in this study adds a classification to the type of navigation
mentioned by (BJARNASON et al., 2016). According to (BJARNASON; SHARP, 2017),
the navigational distance can be calculated from the number of clicks; this study proposes
a classification for the type of navigation that is being performed, given that the navigation
considers how the artifacts are related to each other (e.g. attachment or hyperlink). The
type of navigation was based in the graph theory, from which the artifact/information
distance is calculated by the distance between two vertices in a graph, being the number
of edges in a minimum path connecting them (HARRIS; HIRST; MOSSINGHOFF, 2008).
Moreover, if two artifacts can’t be accessed through a path (i.e. they do not have a
connection), according to graph theory, they are considered different components, making
the distance between them to be infinite (HARRIS; HIRST; MOSSINGHOFF, 2008).

72 Chapter 3. Case Study

Figure 20: UX Elements dispersion example - project 2

Source: Author

Figure 21: UX Elements dispersion example - project 3

Source: Author

3.2.5.2 UX Information Dispersion Findings

As a result of this information dispersion analysis, we mapped the connections
among the UX information and other documents or artifacts into a graph-based diagram.
From this mapping we were able to identify in which ways the UX information could be

3.2. Analysis approach 73

connected to the US. Later, we found out different types of navigation distances.

Still considering the outcomes from the case study, we observed that the navigation
happening in the virtual environments could be found in different ways. Bjarnason and
Sharp (2017) describes the navigational distance as the number of clicks required to go
from one information to another. From our observation, we concluded that these ”clicks”
could happen in different ways.

In Figures 19, 20 and 21, we can see where the UX information is in relation to
other USs and other documents and artifacts, including UX artifacts, in the different
projects we explored in this study. The connections between two elements (i.e artifacts,
tools and documents) represent how information can be retrieved. We considered that
such connections comprise the distance of one element to another. The navigation distance
appears in the cases that individuals need to access multiple artifacts in a sequence to
reach the information. The connections we found out are classified in three different types
based on the fundamentals presented by (LISKIN, 2015).

Within/Body connection represents the minor distance possible to find infor-
mation from a given artifact or document. This distance is present when an artifact or
document is within another or when information is within an artifact or document but not
as an external link or attachment. This type of distance can be considered a characteristic
of a container artifact or document, which is an artifact that holds the information together
in one place (LISKIN, 2015).

Link connection consists of a hyperlink to an URL or location in which the
information is stored. Linking can be considered challenging when the parts to link are not
isolated. The link creation/management may not always be properly done by developers.
In cases that a developer is in the middle of an activity (e.g. coding), if they need to search
for information, once they are found, s/he could prefer to continue in the previous activity
instead of interrupting it to create artifact links (LISKIN, 2015). This could lead to the
artifacts not having their relationship properly established, disrupting further information
retrieval processes.

Finally, Attachment represents when an artifact is attached to another. This type
of connection is commonly found in containers artifact (LISKIN, 2015). When working with
container elements though, the attachments can be directly accessed. Such particularity
makes the attached artifact to be an easy way to obtain detailed information. However,
the attached elements can only exist within the container element and cannot be accessed
otherwise (LISKIN, 2015). Therefore when comparing the same with links, this second
option may be the best. However, the distance may increase due to the navigation to
another environment.

The connection types here stated, and the mapping performed in the virtual

74 Chapter 3. Case Study

environments (Figures 19 to 21) were the basis for a navigational distances classification,
based on the graph-theory (HARRIS; HIRST; MOSSINGHOFF, 2008). Such classification
will be presented in Chapter 4. The types of information connection here exposed are a
contribution to answering the RQ1 - ”How are UX information and USs connected into
software virtual environments?”, outlined at the beginning of this project.

3.3 Case Study Conclusions
From the results from the case study, we present a summary of the conclusions,

relating the same to the master project previously presented.

The presence of UX elements in all three analyzed projects could be verified, even
though no project had a UX specialist in the team. The usage of UX information, initially
present in the software requirement documents, could also be verified in the USs that were
written based on such documents. Although the UX elements were found in US level, they
could also be found spread through the virtual tools used by the teams. Given the task
”hierarchy”, the information could be placed at a higher level, which involves a higher
scope. This can be exemplified by a UX information that is arranged in an Epic level.
Such UX information would, therefore, be understood as being common information for
more than one US under such Epic. These conclusions summarize how the UX information
and USs were connected into the software virtual environments used by the teams of the
case study, answer the RQ1 - ”How are UX information and USs connected into software
virtual environments?”.

Given UX information arrangement into more than one virtual environments, and
even in different places within the same environment, the presence of navigational distance
could be verified. The UX elements dispersion diagrams (Figures 19 to 21) illustrate
such navigation that needs to occur, given the UX information dispersion. During such
analysis, some different types of navigation could be observed. Such types of navigational
distances will be further described in Chapter 4, but such observations from the case study
contributed to provide insights for answering RQ2 - ”What are the navigational distances
found to access UX information from USs into software virtual environments?”.

75

4 Improving Navigational Distance

This chapter covers the findings and the recommendations from the analysis of
the case study reported in Chapter 3. We present some potential issues found during the
analysis, relating them to the ones reported in the literature (Figure 22 - Step D1). Next,
focusing on the navigational distances found in the virtual environments, we present a
classification system, which aims to help in the understanding of such navigational distances
(Figure 22 - Step D2). This classification extends the work of Bjarnason et al. (2016),
Bjarnason and Sharp (2017), which does not cover the types of navigational distances that
may happen in virtual environments. Moreover, we also present a classification for the
navigational effort, considering its execution in virtual environments.

Figure 22: Navigational Distance Analysis

Source: Author

Considering the issues initially reported, as well as the classifications proposed, we
present some good practices recommendations to avoid falling into the issues highlighted.
We also present a template for the US creation and relation to UX elements, as well as
its arrangement into virtual environments. Such templates aim to help in the decrease of
navigational distances, considering the categories for the navigation and effort presented.

76 Chapter 4. Improving Navigational Distance

4.1 Practice and Theory Comparison
As a preliminary result of the analysis performed in this study, the following could

be concluded: Although no UX specialist was part of the teams, UX elements could be
found being used. Despite the US contained some UX elements within it, the arrangement
of UX information outside the US was found. Such scenario allows the presence of different
types of relationships among UX elements and US, being such already exposed under
the Within, Link and Attachment types. The arrangement of the UX information in the
virtual environments observed in the case study also indicates the possible presence of
information traceability and navigational distance issues.

Taking such observations, and considering what has been already reported in the
literature, here we present a comparison on the case study outcomes and the issues on
UX-Agile integration currently stated in the literature. Table 3 summarizes the issues,
also displaying some existing studies that already covered similar topics:

Id Issue Description Related Works

I.1 Loss of
big-picture

When information is spread in
different artifacts and locations,
checking only one does not provide
the full view of the requirement

Silva et al. (2011),
Garcia, Silva and Silveira (2017) and
Jurca, Hellmann and Maurer (2014)

I.2
UX

elements
traceability

as the number of information and
artifacts grow, the management and
traceability becomes harder

Lee, Guadagno and Jia (2003),
Kashfi, Nilsson and Feldt (2017) and
Silva et al. (2018)

I.3
UX elements

in
agile practices

Neglecting non-functional requirements
is considered as a major challenge for
agile practices and can be the reason
for lapse and rework

Rogers, Sharp and Preece (2019),
Inayat et al. (2015) and
Jurca, Hellmann and Maurer (2014)

I.4
UX

information
dispersion

When information is dispersed, the
information duplication can become
even more present

Deshpande et al. (2016),
Sharp and Robinson (2006) and
Bjarnason et al. (2016)

I.5
Navigational
distance to
UX elements

The increase of UX elements may
increase the number of relationships
with other artifacts.
This will cause the navigational distance
among UX and agile artifacts to increase

Bjarnason et al. (2016) and
Bjarnason and Sharp (2017)

Table 3: Summarization of Issues found out

Next, each of the issues found out, reported in Table 3, are further explained.
We present each of the issues by explaining it through a description, followed by a brief
discussion of the same. Next, the impact of such issues regarding the navigational distance
in virtual elements are reported, being such impacts described considering a developer’s
perspective.

4.1.1 Loss of Big Picture

It can be described as the loss of the holistic view of the project (SILVA et al.,
2011). The sharing of documents, artifacts, and knowledge between the teams is a way

4.1. Practice and Theory Comparison 77

to keep this issue under control (SILVA et al., 2011). In the case study, the dispersion
of the information, along with its arrangement into multiple locations within the virtual
environment, could cause a problem in the loss of big-picture.

Artifact mediating communication is a topic already advocated in the literature
(BRHEL et al., 2015; GARCIA; SILVA; SILVEIRA, 2019). Many requirements are used in
software development practices, being the US the most used in agile practices (GARCIA;
SILVA; SILVEIRA, 2017). USs are used for information transmission and task traceability,
as well as software development progress (GARCIA; SILVA; SILVEIRA, 2017). USs are
made to be kept small, so the pieces of work (tasks) can be done and delivered in a
small period (COHN, 2004). Given requirements need to be broken into small pieces to
fit the US structure, the information dispersion in many USs is a common scenario in
agile practices. If a developer only take a look in the piece of work that needs to be done,
without the acknowledgment of other tasks that may impact (or be impacted by) the task
it is executing, problems may arise.

This is reinforced when UX elements are present in the development context. Given
UX is considered a holistic field (HASSENZAHL; TRACTINSKY, 2006), the need to see
the whole picture is important for a better understanding.

One of the impacts of loss of big picture is that developers need to have previous
knowledge of where the task fit into the software development bigger picture (e.g. Epic).
After mapping the UX elements and its location in the virtual environment, there could be
seen a distance among the UX elements and the other task-related information, being this
a contribution to the loss of big-picture (Table 3 I.1), as it is harder to see all information
and its connections when such UX elements are dispersed.

4.1.2 UX elements traceability

As mentioned by Lee, Guadagno and Jia (2003), in complex projects, management
of the hyperlinks (or other ways of relationship) can become a difficult task, and its accuracy
depends on the updating frequency. If relationships are not maintained correctly, hyperlinks
from one artifact to another may be incorrect, as requirements or other requirements
documents are disposed of. Moreover, Kashfi, Nilsson and Feldt (2017), Jurca, Hellmann
and Maurer (2014), Silva et al. (2011), Silva et al. (2018), also reported that traceability
between UX and business requirements is often lost in projects.

The coding performed in the 3 projects showed a variety of artifacts being used.
The analysis of artifacts’ relationship, which later led to the graph diagram, shows how
such UX elements are arranged in the virtual environment. It can be seen that they are
arranged in different tools and different levels within each tool.

This indicates the presence of Requirement traceability issues (Table 3 I.2). The

78 Chapter 4. Improving Navigational Distance

number of artifacts used in software development makes it difficult to manage, specially
when the same are stored in different ways and places, without a proper pattern. Impacts
of this traceability issues can be related to the US structure itself. Placing information in
USs makes the requirement traceability difficult, given the number of USs used during
all the project development life cycle. Moveover, the duplication of information is also
common, and makes the information update harder, once that dispersed information will
have to be updated in more than one place. Requirement traceability (and history recovery,
in later steps of the development) can become difficult in large projects.

4.1.3 UX elements in agile practices

As stated in the literature, the usage of agile requirements engineering still faces
challenges such as the lack of approaches to deal with non-functional information (INAYAT
et al., 2015).

Although the projects studied didn’t have UX specialists, the usage of UX elements
could be verified. The coding results showed that UX information were used in the projects,
reinforcing Table 3 I.3 importance. Moreover, the UX information, initially found in
requirement documents coding, were later found across virtual environments used by
the teams. For example, a mockup attached in the requirement document was later
attached to a US that related to that requirement, or a specific requirement regarding
screen’s component color described in the requirement document was part of the Jira card
description or acceptance criteria.

From these findings we can highlight that, although there is no UX specialist in
the projects, UX information was used, reinforcing its importance (JURCA; HELLMANN;
MAURER, 2014), even though they are not the main focus of the requirements elicitation.
Regarding the impact of such finding, the usage of UX elements without proper known
of them may indicate that stakeholders involved in the project posses a tacit/implicit
(ROGERS; SHARP; PREECE, 2019) knowledge of UX. On the developer perspective,
development focused on UX aspects may be done without proper knowledge. The under-
standing of UX practices could help on better development and, consequently, better UX
in the final product.

4.1.4 UX elements dispersion

The description of UX elements dispersion here states for its arrangement in the
virtual environments. Where the dispersion is caused by the arrangement of UX elements
into several places, may it cause information duplication or not.

Given agile structure, fast and small deliveries are made (BECK et al., 2001;
MATHARU et al., 2015; DYBÅ; DINGSØYR, 2008). In order to be compliant with this,

4.1. Practice and Theory Comparison 79

small pieces of work are required, so they can fast analysed, developed, tested and delivered,
so a feedback from users can also be taken fast (DYBÅ; DINGSØYR, 2008; INAYAT et
al., 2015).

In order to keep tasks small (COHN, 2004), requirement decomposition is done
(TAIBI et al., 2017), which will make information to be distributed into several artifacts.
These will then be used by one or more tasks or US. Although a task is a self contained
piece of development work, it may relate to other tasks, which other requirements.

In a top down view, this make the requirements to be dispersed into several US,
being developed and delivered in different period of time. The analysis also showed that
UX elements were not centralized in only one virtual environment, being distributed (Table
3 I.4) in several virtual tools.

Given the usage of virtual environments (DESHPANDE et al., 2016) and its
importance on the information management and for the information storage and usage as
central point for search, specially on distributed teams (SHARP; ROBINSON, 2006); this
finding regarding information dispersion was used as the basis for the proposal on how to
better relate the UX information with traditional agile artifacts, such as the US.

The impacts of the dispersed information is that, from such dispersion, the naviga-
tional distances mat occur. The presence of navigational distances is already mentioned in
the literature as a possible problem in the software development/management processes
(BJARNASON et al., 2016).

4.1.5 Navigational distance to UX elements

Given the studies of Bjarnason et al. (2016), Bjarnason and Sharp (2017); it is
understood that there are several distances between the ones involved in the projects
and the information that needs to be communicated through different ways. Among such
distances, the navigational distance could be analyzed in this study.

Its description is given by Bjarnason and Sharp (2017) as the number of clicks
to navigate from a requirement to the test cases which verifies it. Here we expand such
description, by the distances between any information. Moreover, the distance is not
measured by the number of clicks performed, instead we propose it to be any navigational
step occurred in the virtual environment, being it through a click or any other navigation
mechanism.

In this study, the focus was in the navigational distance in virtual environments,
given their usage in the projects. Moreover, the virtual artifacts and their supporting tools
have already been mentioned by Deshpande et al. (2016) as being key information hubs
for all team members in remote teams, a practice that is becoming more common given
co-location is not always possible for various practical and business reasons (DESHPANDE

80 Chapter 4. Improving Navigational Distance

et al., 2016). This topic is more explored in the next section.

The impacts of the navigational distance to UX elements contributes to the
mentioned issues of loss of big picture, UX elements traceability and UX information
dispersion (Table 3 - I.1, I.2 and I.3)

4.2 Navigational distance classification

Considering the RQ2 - ”What are the navigational distances found to access UX
information from USs into software virtual environments?”, and the insights the case
study results provided on this subject, we now present a classification for the navigational
distances, being such based in the case study outcomes.

Before presenting the navigational distance classification, and to better illustrate the
distribution types later explained, we introduce Figure 23 to represent a fictional scenario
that involves a Management tool and a Repository tool. The Management tool stands for
a tool responsible for holding artifacts such as Epic, US and Tasks. The Repository Tool
is where UX information will be placed, considering a wiki-based structure.

Figure 23: UX Elements dispersion sample diagram

Source: Author

4.2. Navigational distance classification 81

As seen in Figure 23, having a unique US as sample, it is possible to verify the
Wide distance, where horizontal navigation is made in the diagram. An example of such
distance can be taken as navigation among two different virtual environments, such as
from the US to a Repository page. This navigation could happen within the same tool. In
such scenario, the navigation in the same ”hierarchy level” would happen. For example,
navigating from a US to another.

The Deep navigation can be seen when navigation is taken in a vertical format.
An example of such navigation is when it occurs within the same tool, for instance, from
an Epic to the US or from the US to a Task.

It is worth noticing that Figure 23 also covers an important aspect of the navigation
distances here presented. Between Management and Repository tools, a red line can be
seen. The same stands for the change of virtual environments. Some implications of having
two or more tools related to each other need to be considered, as they have a direct impact
on the wide distribution type. The link to another tool may require a new login to be
made, or if the link does not directly point to a specific point in that application, a new
search (even a simple one, as scrolling down the page) may be required, increasing the
navigational distance from the initial point the user was to the final information being
searched. Another issue on navigating through different applications is that, if one tool
is to be changed by another, management of all previous relations, otherwise the same
will not be valid anymore. In such scenario, even though an explicit link exists, if it is not
valid anymore, the navigation it intends to provide can now be classified as the infinite
type, once that developer is incapable of reaching information from such broken link.

Considering the concepts presented, illustrated in Figure 23, we now present the
navigation distance classification, based on the case study results, which revealed that the
distances (Table 3 I.5) among the artifacts used in the projects were not very large. This
conclusion comes from the total number of navigational steps required to go to the farthest
artifacts containing information that relate to each other. In the study, such steps amount
was not big, varying from 3 to 6 navigational steps. This low number of navigational steps
indicates that there is no need for many navigations through the virtual environments in
order to find a given piece of information.

Considering the information arrangement observed in the case study (Figures 19
to 21), despite the distances among the information not present great depth, we believed
that the graph-based distribution has the potential to become wide. This conclusion is
based on the fact that one software requirement can generate many USs and for each US
stored in a management tool, there could be connections to other virtual tools. In our
study, the USs placed in a management tool had connections to repository tools or with
other places within the same management tool. Moreover, USs may have interconnections
among themselves. Considering that each US is within the same hierarchical level to each

82 Chapter 4. Improving Navigational Distance

other, connecting two USs would create a wide connection, considering the graph-based
diagram early presented. Also, from the USs, connections to other virtual tools could
be done, making the information distribution, initially concentrated in the requirement
documentation, to be spread in a wide, but not deep, manner in the virtual tool.

From these results we could classify the information distribution in four types:
Zero, Indirect, Deep and Wide. The main characteristics of each of the navigation types
are summarized in Table 4. Next we provide a written description of each proposed
Navigational distance type, as well as its pros and cons.

Type Description Characteristics

Zero
UX information is stored
at a single artifact
level (i.e. US)

No need for navigational
distance as all UX information required
is available in one place.

Infinite No link among two
or more artifacts

UX information is spread in
different artifacts, but there is
no explicit link among them.

Deep

UX information is stored within
an artifact group but spread
across different hierarchy
levels

The more detailed information are
stored in artifact stored at lower
hierarchy levels (i.e storing information
in Epic > US > Task > Attachment)

Wide

UX information is stored within
an artifact group but
spread across several places
in same hierarchy level

Information is not stored in
very detailed level (deep) but is
spread in different artifacts of a
same hierarchy level (i.e storing
information across several USs)

Table 4: Types of Navigational Distances.

The Zero type can be taken as an extreme case, in which the zero means that
there is no need to navigate through the artifacts, once that all required UX information is
stored in the artifact level. For example, a text color that needs to be changed in a screen
given a special condition. Such information could be stored in the US description or its
acceptance criteria. Given no navigation is needed to be performed from the US to get
such information, the same receives the zero classification type.

A pro aspect of the zero type can be described as, storing all information into once
single artifact, making it self-contained. This means that a developer doesn’t need to go
anywhere to fully understand the information and where it fits into the project big-picture,
decreasing the amount of time one spends on understanding a requirement. On the other
hand, one of the cons of having this navigation type is that, if the information is to be used
elsewhere (for instance, in another US), the same will have to be duplicated. Information
duplication makes it hard to have consistency in case of updates, also impacting in the
information management.

4.2. Navigational distance classification 83

The Infinite distribution type can also be taken as an extreme case. The infinite
type, named after a graph principle that represents the distance among two unlinked
points (HARRIS; HIRST; MOSSINGHOFF, 2008). The infinite type can be described
as a navigational distance that is infinite, given that there is no relationship (path, in a
graph view) among the information. Considering this type, the navigation is dependent on
previous knowledge from the developer.

In an infinite type, a pro aspect can be taken as the lack of need to maintain artifacts
relationship as such are not available. Therefore no time is spent in artifact relationship
management. The artifact management, in complex projects, can become burdensome, and
accuracy depends on the frequency of updates (LEE; GUADAGNO; JIA, 2003). However,
with no explicit relationship available, the system (virtual environment) lacks traceability,
which is a con aspect of the infinite type. Along with traceability issues, the difficulty
on history retrieval may also be present, given there are no explicit relationship among
dispersed information.

The Deep distribution type can be described as the scenario where UX information
is stored it a very detailed level, which means that the information present in an artifact is
focused on few aspects, having specific details for a particular subject. Such type increases
the number of navigational steps to reach the final information. A characteristic of this
type is that the information arrangement, and the navigation, is performed within the
same tool.

In such type, the granularity (i.e. as deeper as the UX information is stored, the
more detailed it is) can be taken as a pro aspect. However, if upper information hierarchy
levels have a good overview, the need to go down to the deeper levels is low. Storing UX
information in depth may indicate the usage of only one tool, given that links to different
tools would create a horizontal linkage instead of a vertical one. The usage of fewer tools
tends to make information management easier. The con aspect of this type is the limited
usage of tools, as well as the increase in the navigational distance (in a horizontal way),
given that specific information is only found in lower levels of the artifacts hierarchy.

The Wide distribution type is described as the UX information being stored in
different places within the same level (in a graph-based hierarchy), making distances to be
spread in width instead of depth. A wide distribution type can indicate multiples tools
usage or many UX information being stored within the same hierarchical level in the same
tool. This arrangement may indicate a lack of information granularity.

Different from Deep type, the more detailed UX information is stored not on a
deeper level inside the same tools, instead, they are placed in a separate location, specific
to the type of information it relates to. This creates several places in which information
can be stored, but each place is a collection of information of a given type. In other words,
it can be said that the information is being grouped together, given a common aspect.

84 Chapter 4. Improving Navigational Distance

Grouping UX information together is a pro aspect of the distribution type, as it easier for
the developer to remember where to find information, once that everything related to a
common subject can be found in one place. On the other hand, the presence of information
relationships makes maintenance to be required. Moreover, different tool usage (or different
environments - pages, places within the same tool), creates extra work on management,
especially if the tools do not have integration among themselves.

4.3 Navigational effort classification
Given the navigational distance classification, presented in Section 4.2, we now

present a classification on the effort required to perform navigation in virtual environments.
Table 5 adds a second classification to the ones previously presented in Table 4. While the
navigational distance classification relates to the arrangement of information in virtual
environments, the navigational effort classification relates to the actual effort expended
by a developer while performing the navigation. Both (distance and effort) classifications
were created to be complementary, where the effort classification aims to add weight to
the navigation classification types previously exposed, by considering the effort variable
attached to the navigation action.

Type Description Characteristics

Weak No navigation through
different platforms is required

All information is stored
in one tools and therefore
possible information relationship are
all within the same tool.

Medium Navigation through
two different platforms

UX information is spread up to
two different platforms,
requiring some navigation to be
happening through the platforms.

Strong
Navigation through
three or more different
platforms

UX information is spread in
three or more different platforms,
requiring some navigation to be
happening through the platforms.

Broken

Navigation through
two different platforms
is broken or the person
do not have access to it

UX information is spread in different
platforms, but it is impossible to
navigate through them, may it
because the user does not have
enough privileges or because the
relation is no longer valid (i.e.
outdated relationship)

Table 5: Types of Navigational Effort.

The Weak navigation effort classification: A navigation that does not require a

4.3. Navigational effort classification 85

change of virtual environment. This happens when all the information is presented within
the same platform (tool, workspace, etc.). For example, navigating through the software
management tool, one can go from a US to its Epic in order to get more context or go to
its Tasks, getting more details. There is even the possibility of navigating through USs,
but in any of such cases, all navigation happens within the same platform and therefore no
great effort in the navigational distance is applied on what comes to change of environment.
The pros are that all information is within one single environment, if there is the need to
migrate it, all information can be easily found and migrated. Furthermore, all involved
in the project can have its access normalized within one single tool, and are aware that
any information needed will, probably, be found in such environment. The cons are the
dependency of the single virtual environment, which can have limitations depending on
the team’s needs. Also, the information organization is limited to the features available in
that virtual environment.

TheMedium navigation effort classification: A pattern that has navigation between
two different virtual environments. As an example, navigating from a management tool (i.e.
Jira) to a repository tool (i.e. Confluence) page makes a change in the virtual environment.
The pros are that different tools provide different features that can best serve the needs of a
team or a subset of it. Arranging information is not limited to a single virtual environment
can provide, therefore it can be made in a more flexible way. The cons of this effort
classification are among the ones previously stated, being a summary of such the need
of a new login whenever navigation between the virtual environment happen; the search
for information can become harder when compared to the Weak navigation effort, given
the search may need to be done in two places if an information location is unknown; the
relation between the environments (i.e. hyperlinks) needs to have management in order to
keep then correct, avoiding broken or invalid links for example.

The Strong navigation effort classification: It is an extension of the Medium
type. The same principles of the Medium effort are applied, but considering navigational
distances occurring over three or more different platforms. Therefore the difference between
the Medium and the Strong navigational effort types is the number of different virtual
environments through which the navigation needs to occur. As more virtual environments,
more navigation that requires crossing the boundary between tools (refer to Figure 23) is
done. As a reminder, some of the cons of having links between two tools are: Need of a
new login, broken or unavailable link in case the team moves from one of the tools, etc.
Such aspects are present in the Medium effort classification, but are reinforced in the
Strong classification, given the increase in the number of different tools being used. In
other words, The navigational effort becomes stronger (harder) according to the number
of different virtual environment being used.

The Broken navigation effort classification: Happens when a virtual environment

86 Chapter 4. Improving Navigational Distance

access is not possible to be made, being it for the lack of user privileges or other causes
such as the application not being used anymore or even accessible at that specific time.
No pros can be analyzed in this classification, while the cons can be summarized as the
incapability of reaching information.

All the navigational effort classifications showed on Table 5 are an extension, or
sub-classification, for the navigational distance types present in the Table 4. Therefore
a Wide navigational distance could also be classified as Wide-Weak or Wide-Strong,
depending on the information dispersion/relation in the virtual environment.

It is worth noticing that the Infinite navigational distance type necessarily means
that the navigational distance effort is of the Broken type, given that both stand for a
non-existing/impossible navigation occurring between two or more different platforms. On
the other hand, not all Broken effort type comes from an Infinite distance. For instance,
a valid relation that does exist among two different information place in two different
platforms could make a navigation distance to be of the Wide type, but given a specific
user does not have access to one of the two platforms, for this particular person, the
effort is Broken, while for another user with access granted in both platforms the same
Wide navigation would have a Medium effort. Figure 24 illustrates the navigational
effort aforementioned.

Figure 24: Navigational Effort

Source: Author

4.4. Reducing the navigational distance and effort 87

4.4 Reducing the navigational distance and effort
Given the findings resulted from the case study (Chapters 3 and 4), we now present

recommendations summarized in Table 6. The recommendations have considered the issues
mentioned in the literature review (Chapter 2) as well as the master project goals regarding
the elaboration of recommendations to better relate UX information with USs and the
proposal on how to place the UX information in virtual environments having the US as
the central point of information search.

The recommendations are split into two categories: The first one, Subsection
4.4.1, proposes good practices that aim to help in the understanding of a few concepts
that have been exposed throughout this master work; The recommendations also aim to
help on decreasing the occurrence of some issues found during the case study and the
literature review, summarized in Subsection 4.1. The second one presents templates for
the arrangement of UX information in the virtual environment, covering the US creation
and how to relate it to UX information.

4.4.1 Good practices recommendation

Table 6 summarizes each of the good practices recommendations, relating each to
one or more issues that we have exposed in Table 3 (Section 4.1) and also present some of
the related work used during the recommendation elaboration.

Next, an explanation to each recommendation is presented, having a descrip-
tion, a contextualization with the literature, and consideration of its impacts regarding
navigational distances.

Id Recommendation Related
Issue Id

Related
Works

Affected
Navigational
Distances

R.1 Store generic information in
higher artifact hierarchy levels I.1, I.2 and I.3 Liskin (2015) and

Lee, Guadagno and Jia (2003) Deep

R.2 Link information across
different virtual environments I.1 and I.2

Lee, Guadagno and Jia (2003),
Lucassen et al. (2015) and
Deshpande et al. (2016)

Infinite,
Wide,and Zero

R.3
Central repositories and
Specific repositories creation
according to artifact type

I.2, I.3 and I.4

Liskin (2015),
Deshpande et al. (2016),
Schön et al. (2016) and
Shukla, Auriol and Baron (2011)

Deep
and
Wide

R.4
Use tools that best serve the
specialists (i.e. don’t stick to
one tool)

I.2
Soares et al. (2015),
Liskin (2015) and
Silva et al. (2018)

Wide

R.5 Navigational distance
awareness I.5 Bjarnason et al. (2016) and

Bjarnason and Sharp (2017)
Infinite,

Deep, Wide and Zero

Table 6: Good practices recommendation.

Keeping the generic information in higher levels of artifact hierarchy
to avoid information duplication and avoid big-picture loss (R.1): This practice

88 Chapter 4. Improving Navigational Distance

aims to create the understanding that, given an artifact hierarchy (Epic > User Story
> Task, for example), storing information in the higher levels of hierarchy should be
considered, when the same can be used to more than one artifacts that are in hierarchical
levels below it.

Given the artifacts categorization described by Liskin (2015), container artifacts
should be used on the higher hierarchy level. Arranging information in medium-low
hierarchy level artifacts (e.g. US and Task respectively) is recommended if the information
is specific to such artifact. Otherwise it can cause the need for information duplication,
making information management a harder process (LEE; GUADAGNO; JIA, 2003).
Generic information should, therefore, be stored in the top of the artifact hierarchy.

Such information arrangement has a direct impact in the Deep navigational distance,
given the need to go down into lower hierarchy level artifacts is decreased in case the
upper hierarchy levels already contain enough information for the software requirement
understanding.

Linking the different information stored across the virtual environment
(R.2): Given the importance of virtual environments (DESHPANDE et al., 2016), this
recommendation aims to create a common-sense, in which the information flowing in the
virtual environments should be linked together, to facilitate its finding, as well as the
navigation itself.

This recommendation also aims to reduce the loss of big-picture (JURCA; HELL-
MANN; MAURER, 2014). Although it may be difficult to have an understanding of the
software requirement scope big-picture looking into dispersed information, having them
linked to each other will make the navigation, and information finding, an easier process.

Given USs are one of the most used artifacts by developers (LUCASSEN et al.,
2015), having one of its principles as to be small enough so it can be developed in a
small period (COHN, 2004), the information being dispersed into several USs that derive
from the same requirement may be an expected scenario. Overloading US with too much
information may cause it to hold information that could be used elsewhere. Therefore
placing information outside US is fine, but if the same related to it, a link should be made.

Linking all information will make the information to be found more easily, also
helping in the information management (LEE; GUADAGNO; JIA, 2003). This recommen-
dation can also be related to the US quality framework proposed by (LUCASSEN et al.,
2015). In this framework, one of the quality aspects is called pragmatic, which, among
other attributes, evaluates the linkage of all unavoidable, non-obvious dependencies for
that US, making it more complete in an understanding point of view (LUCASSEN et al.,
2015).

This practice has an impact on Wide navigational distance, once that information

4.4. Reducing the navigational distance and effort 89

stored in different tools, as proposed in this master project (Subsection 4.2, cause an
increase in the Wide navigational distance. The practice of linking the information though,
also has an impact on making the navigational distance to not fall into the edge cases of
Zero or Infinite navigational distance types, once that the creation of the information link
will make such scenarios to not happen.

Create central repositories (R.3): This recommendation will be further ex-
panded a template recommendation (Subsection 4.4.2). The central repositories serve as
central points where a given type of information (i.e. UX information) can be arranged.
The proposal is of a wiki-based virtual environment, creating a common place for UX
information flow and sharing.

The central repositories recommendation is based on the repository artifact type
proposed by Liskin (2015), which is the type of artifact that holds other information (i.e.
a repository). The creation of such repositories makes it easier to find information if you
know to what type it belongs. The information will not be stored in several US (COHN,
2004), instead it will be centralized in the repository, and linked to the other artifacts
(i.e. USs). This makes the navigational distance (BJARNASON; SHARP, 2017) to these
information to have a limited maximum distance (once that there is a final point to be
reached). The information management, history retrieval, etc. is also easier. (SHUKLA;
AURIOL; BARON, 2011). Central repositories can also be seen as ”landmarks” in the
virtual environment navigation, making it easier to remember and find a initial step for a
more detailed search for an specific information (VINSON, 1999). Moreover, it is possible
to make a parallel of such repositories with the ”UI toolbox” mentioned in the work
of Schön et al. (2016), in which it is stated that these toolboxes included UI elements
concerning their UX. The usage of such toolboxes relieved the UX experts and increased
consistency among interaction design (SCHÖN et al., 2016).

Central repositories may also help on what is called information hub, described by
(DESHPANDE et al., 2016) as central places where information flows meet and decisions are
made. With central repositories, it is easier to find information and the same are organized
according to some category (i.e. UX-related, database-release, etc.). The repositories can
also serve as buffers, being described by Deshpande et al. (2016) as where information
is held until it can be processed without disrupting ongoing activity. By storing UX
information outside the US, while keeping their relationship explicit, fulfills a US quality
aspect from the quality framework proposed by Lucassen et al. (2015). The syntactic
quality aspect aims to keep USs atomic, minimal and well-formed, not directly overloading
it with too much information. In order to keep the possible development dependency on
the UX information, a task could be created within the US, making it clear that the same
is only to be fully developed once such UX task is completed and properly linked to the
US.

90 Chapter 4. Improving Navigational Distance

The repositories have an impact on both Deep and Wide navigational distances,
given that some information previously stored into USs (or high/lower hierarchy levels
compared to it) can now be placed into the repositories. This helps in the decrease of
Deep navigational distance, but increases the Wide navigational distance. Moreover, the
creation of a repository in a different, wiki-based, tool, adds the Medium effort to the Wide
navigation. Despite that, we believe that the aforementioned pros of using the central
repositories are enough to supersede the cons of adding the Wide-Medium navigational
distance-effort along with its downsides (refer to Tables 4 and 5).

Using Tools/artifacts according to the team needs (R.4): Is a recommen-
dation that, given the exclusive usage of a given tool, the same may not best serve all the
needs of each team member in an agile approach, which tends to be cross-functional. This
recommendation aims to incentive the usage of more tools, which best serve the needs of
each specialist in the team. It is important to have in mind the other recommendations
here exposed. Therefore the usage of multiple tools can be done, as long as the navigational
distances do not increase. The usage of repositories for information centralization can have
an important impact into this recommendation.

If USs are not enough for the teams involved (e.g. developers, UX specialists,
QA specialists, etc.), to use other tools (specific for each specialist) and just link US to
information is a way to diminish problems already reported in the literature. Experiments
with questionnaires identified that User Stories may not be sufficient to support all
development activities, such as time estimation and software design (SOARES et al., 2015).
On the other side, interviews indicate that often a variety of artifact types is needed to
successfully conduct a project. At the same time, using multiple artifacts causes problems
like manual translation effort and inconsistencies (LISKIN, 2015). Moreover, often, there
is not one perfect kind of artifact that will serve the needs of all participants so that the
project needs a whole variety of different artifacts (LISKIN, 2015).

When trying to merge agile and UX, to allow each specialist to use its tools seems
to be a good approach. The merge should not be at a tool level but in a link level. Creating
links among artifacts helps by: 1) Improving US details (which when low may difficult the
task development) while also keeps user story small, as information will into be stored
withing it (e.g complementary info is stored outside the US) (COHN, 2004). 2) Diminishing
the difficulty in handling information management and traceability (LEE; GUADAGNO;
JIA, 2003). This recommendation is also based on what has already been concluded in the
work of Silva et al. (2018), where the problem of combining UXD and agile methods can be
taken as an example of a context-dependency issue. Different teams in different contexts
use different artifacts and techniques to create a shared understanding. Therefore tools
are needed to support developers in acquiring and sharing UXD and software engineering
best practices. The tools should also be flexible enough for developers to fit them into

4.4. Reducing the navigational distance and effort 91

their particular project context. This fits in what was stated by Silva et al. (2018), who
concludes that Agile UXD will be more seriously considered if a computer-assisted usability
engineering platform is available.

The impact of this recommendation is on the Wide navigational distance, given the
usage of multiple tools may increase the width of the navigational distance, instead of its
depth. This recommendation though should be done considering the other recommendations,
so that the Wide distance is not increased beyond a manageable level. The usage of this
recommendation along with central repositories (R.2) should be considered in order to
keep the navigational distance width within acceptable limits.

Navigational distance awareness (R.5): To have the navigational distance in
mind when working in virtual environments is the last recommendation. This is a subjective
topic but, as a recommendation, it aims to create a common-sense to the ones using such
environments, to understand what a miss of linkage among information arranged in
different locations in different virtual environments may cause. The navigational distances
categories and navigational distances effort proposed in Sections 4.2 and 4.3 will depend
on the management done by each individual using the virtual environments, therefore the
awareness of navigational distances is to have in mind the results your actions (or missing
of actions, in the case of a link not being created) can have.

Given our analysis in the case study and the US structure, we concluded that, for
the scenarios studied, the navigational distances are not a problem, provided they are
kept to a manageable level. The teams need to find a half-way on task size (not too big
or small) (COHN, 2004), keeping the ”generic information” in higher levels of artifact
hierarchy to avoid information duplication and avoid big-picture loss. Avoiding duplication
reduces technical debt, facilitates information management and retrieval (SOARES et al.,
2015). Storing information at proper levels helps in avoiding loss of big picture (SCHÖN et
al., 2017) (e.g a information that is shared among many US under the same EPIC, doesn’t
need to be stored in US itself. The other way around is also true).

This recommendation has an impact on all navigational distances categories (Zero,
Wide, Deep and Infinite), given that if not properly done, a relation, or miss of relation,
among information in virtual environment can cause Infinite distance to happen. Placing
too much information within one single place (i.e. US) causes the Zero distance to happen,
but may impact other things such as the need for information duplication or the difficulty in
breaking a US into small tasks (COHN, 2004; LUCASSEN et al., 2015). Other information
arrangements cause the Wide and Deep distances, along with the effort categorizations
they may have.

92 Chapter 4. Improving Navigational Distance

4.4.2 Template proposal for information arrangement in virtual environments

Considering the usage and arrangement of UX information in virtual environments,
having the US as the main used by agile developers (SILVA et al., 2011), we now present
some templates for US creation. The template will also cover how to include UX aspects
into the US creation, by suggesting a process for adding UX information into US, in
which UX-related tasks are created under an US, and enrich the same along with the task
conclusion. The template proposed aims to complement the good practices presented in
subsection 4.4.1.

Figure 25: Template proposal

Source: Author

Regarding the UX information arrangement in virtual environments, we also
propose the usage of a different environment from the one the US is stored. This second
environment will serve as a repository, structured in a wiki-based format. The repository will
be UX-centered, being the UX specialists responsible for such environment management.

The template for UX information arrangement in the virtual environment was
designed based on the principle that UX information is present within agile projects, but
is found dispersed across several places and in different ways in virtual environments,
as per conclusions drawn in the case study presented in this work. We also considered
the problems presented in the literature, such as by Kashfi, Nilsson and Feldt (2017),
which concludes that there may be communication and collaboration gap between UX and
non-UX practitioners, and Brhel et al. (2015), Garcia, Silva and Silveira (2017), Garcia,

4.4. Reducing the navigational distance and effort 93

Silva and Silveira (2019), Silva et al. (2018), that exposes challenges on integrating UX in
agile practices, already reported in section 2.7.

Moreover, the template creation considered the navigational distances proposed by
Bjarnason et al. (2016), Bjarnason and Sharp (2017), as well as the proposed categorization
of navigational distance types and effort presented in Sections 4.2 and 4.3. Next, we present
the templates and recommendations in the following order:

US template: We present a template for US writing, already considering how to
relate it with UX elements, being it directly added in the US when the same is not to be
used in other USs, or adding in a repository, adding links to such environment in the US.

UX Elements arrangement in virtual environments: A step-by-step guide regarding
the creation and enrichment of the US with UX elements, as well as the arrangement
of the same in the virtual environments. The virtual environments will be classified as
Management tool and Repository tool. The Management tool stands for a tool responsible
for holding artifacts such as Epic, US and Tasks. The Repository Tool is where UX
information will be placed, considering a wiki-based structure.

Repository template: Given the arrangement described in the UX elements arrange-
ment in virtual environment, the relation among Management tool and Repository tool
are made. Therefore we also present templates on how to better organize the repository,
considering the UX information that it will hold.

4.4.2.1 US template

Beginning by the US, in order to keep it small (COHN, 2004), but with the aspects
that make it a good US (LUCASSEN et al., 2015), we recommend the template shown in
Figure 26. This template, it can be seen that both Acceptance Criteria and Description
should be the focus of the textual UX information. Such textual information is kept in our
recommendation given it was found during the coding process in all three projects. The
US should contain a link to its higher-level hierarchy (i.e. Epic), and we also propose the
creation of Tasks for UX-related work that needs to be done along with the US, having
such recommendation being based in good practices by Lucassen et al. (2015).

Figure 26 is the template of a US with UX elements within it, as well as external
links to UX information that can be stored in other tools. Figure 26-A is the links to the
US Epic. This aims to give a proper placement of the current US within a bigger picture
of the project. Also, in case there are not enough contextualization into the US, going to
its Epic could provide such information.

Figure 26-B is regarding acceptance criteria. This is an important aspect already
covered in the work of Choma, Zaina and Beraldo (2016), which included UX aspects into
US and its acceptance criteria. During the case study, it was verified that in some cases

94 Chapter 4. Improving Navigational Distance

Figure 26: User Story static template for information organizationn

Source: Author

the UX information was placed as part of the acceptance criteria. We believe that, as long
as the information is necessary for the conclusion of the US, adding it in the acceptance
criteria not only make the navigational distance to be reduced to zero as well as gives
something to be later evaluated in order to accept the final result of the US.

Figure 26-C represents the break down of the US into smaller tasks, a topic already
covered in the literature (COHN, 2004; LUCASSEN et al., 2015). Here we propose the
creation of an specific UX task, which is to be done along with the US. Such task will be
responsible for all the arrangement of UX information into the virtual environment (see
Figure 29) as well as to create a relation between the UX information created and the
US from which it was originated (Figure 30). Figure 26-D and Figure 26-E represents the
relation between the UX information and the UX. The first one is a link to a high-level
page into an UX central repository, while the second is a direct link to a specific UX
artifact. Note that by creating such direct relations, the navigational distance tends to
be small, i.e. once the link is opened, the developer should access the final information,

4.4. Reducing the navigational distance and effort 95

without the need for further navigational steps.

Provided that the templates here proposed will consider the US as the main central
point for information retrieval, the adding of information into US as presented in Figure
26 requires a tool that provides a set of features more complex than the ones provided
by basic/free tools (for example Trello 1). Therefore we recommend the usage of the
US template in tools that contain features that allow the creation of a similar structure
presented in Figure 26.

When working on basic tools though, the main point of the template is still
applicable. Adding links from a virtual location to another is possible in any tool that
accepts text input. Although in basic tools this task may be harder to be performed and
to have track of. Considering the minimum aspects from the US template that we would
recommend to add in tools, the relationship between the US and the UX elements can
still be done (Figure 26-E). Provided the limitation that some tools may have, apart from
the linkage on US-UX elements, done through a hyperlink, we also recommend the usage
o the Acceptance Criteria with UX elements in it (Figure 26-B), as this will be used to
validate whether a US is completed or not. The usage of the proposed template is still
to be better evaluated, and its usage in different tools is a topic to be considered. The
template proposed will consider tools that allow the creation of a US similar to the one
presented in Figure 26.

4.4.2.2 UX Elements arrangement in virtual environment

The recommended process of enriching the US with the UX elements, as well as the
arrangement of such elements in the virtual environment, is presented in Figures 27 to 30.
The Figures represent a step-by-step on how to use UX elements along with US writing
process, by creating a specific UX task below a given US. The creation of repositories to
better distinguish the information is presented.

We recommend the usage of two distinct, but related, virtual environments. The
first one is the Management Tool, in which the artifacts such as Epic, US and Tasks are
placed. The second one is the Repository Tool, which serves as a container (LISKIN, 2015)
for holding different types of information in a wiki-based structure. The relation between
the two virtual environments may create an extra effort on the navigation, already covered
in Section 4.3. Such effort is represented in Figures 27 to 30 by the red line vertically
crossing the two environments, indicating the boundary between both virtual tools being
used. As already presented in Section 4.3, the cons of having two virtual environments
cause the effort in the navigation to be considered Medium. Given the proposal next
presented, we believe that the gains of having two virtual tools for a better information
organization overwhelm the cons of having a Medium effort classification. Notice that,
1 Trello: https://trello.com/

96 Chapter 4. Improving Navigational Distance

given description presented n Section 4.3, the limit for a Medium effort classification is
the usage of two different virtual environments, which the proposal will be based at.

Starting by Figure 27, given a requirement that is big enough to be set as an Epic,
we recommend the Epic creation along with a proper Repository specific page. This central
repository page will be Epic-related.

Figure 27: Virtual Environment Step 1 - Epic and Main Repository page creation

Source: Author

Once the initial Epic and specific repository pages have been created, the USs
are created. Figure 28 shows such process for one US. Along with the US, the same is
broken down into smaller tasks (COHN, 2004; LUCASSEN et al., 2015; TAIBI et al.,
2017). Considering the existence of UX work to be done along with the US development,
we propose the creation of a proper ”UX task”, which should be created under the US it
relates to. Given tasks should be done prior to the actual US development (COHN, 2004),
it is safe to state that a UX task should be done before the development of the US, but
not too far from it. This process brings the UX closer to the actual software development,
considering it to be done with the US.

Although showing the process for only one US, and given USs may be created
under one Epic, the template proposed applies to each US. This way, each US would have
a UX task underneath it.

Figure 29 shows the creation of a sub-section in the Epic (specific) repository
page, being this section related to the UX work. The UX artifacts, and all UX-related
information that is generated through the UX task development, should be arranged in

4.4. Reducing the navigational distance and effort 97

Figure 28: Virtual Environment Step 2 - User Story and UX Task creation

Source: Author

the repository page, under an section that provides a relation to the US it originated from.

Figure 29: Virtual Environment Step 3 - Specific Repository page creation

Source: Author

Once the UX work is done, the US is enriched with more information (i.e. acceptance
criteria or more detailed description). A link to the created repository page is also created,

98 Chapter 4. Improving Navigational Distance

making a relationship between the US and the UX information stored in the UX repository.
This process is illustrated in Figure 30.

Figure 30: Virtual Environment Step 4 - User Story enrichment and link to UX repository

Source: Author

Although having a repository for storing UX information, the need to create a
place in which information can be used in more than one US may arise. Considering such
scenario, next we provide an overview of the Repositories, classifying it into two types:
Central and Specific.

While the Specific repositories are for storing UX information that are related to
a specific Epic (therefore the name specific repositories), the Central repositories aim to
hold information that will be used throughout the whole project, being applied to more
than one Epic.

Through a UX task, the need to add such ”generic” information in the repositories
may happen, and in such scenarios, the usage of the Central repositories is recommended.
In such cases, if the usage of such information is also important to a given US, the linkage
between a US and the Central repository may be done, the same way it would have been
done in a US-Specific repository relation. This process illustrate in Figure 31.

We believe that the creation of US-UX repositories relationship makes the naviga-
tional distance between the US and the UX element to be, the maximum of, one. This
means that the number of navigational steps to be performed from the US to reach a UX
information is Zero, if the UX information is held in the US itself, or it is One, meaning
that it is in one of the repositories. Being it a Specific repository or the UX Central

4.4. Reducing the navigational distance and effort 99

Figure 31: Virtual Environment - User Story link to UX central repository

Source: Author

repository doesn’t make a difference from the navigational distance point of view, provided
that direct links between them and the US are created.

Apart from creating a limit to the navigational distance, the process here recom-
mended also makes the UX specialists to work closer to the developers, having them work
under the same US. This may help on decreasing the distance between UX specialist and
developers, reported by Silva et al. (2011), Silva et al. (2018).

Next we present a deeper view on the repositories here presented, also proposing
templates for its organization.

4.4.2.3 Repository template

Given the arrangement and dispersion of UX information in the virtual environment
observed during the case study, the creation of a UX central repository is recommended.
The same were based on the container artifact type described by Liskin (2015) as artifacts
that contain other artifacts or its information. The repositories aim to create a common
place of UX information storage, creating a common sense to the ones involved, to where
to look up in order to retrieve a given information. Also, by creating a relationship to
the repository, helps on reducing the navigational distance. This is because the repository
can be considered, as here proposed, a final place for UX information storage. Therefore,
no further navigation needs to be done once the UX repository is reached, once that all
required information should be available in there.

100 Chapter 4. Improving Navigational Distance

Here we present the templates for the creation of two repositories: The Specific
repository and the Central repository. The Specific repository is to be used within a
limited scope. For instance, information that belongs to a single Epic should be stored
in a Specific repository, which would be created specifically for such Epic. Therefore, the
presence of several Specific repositories will happen through time. Given the information
held in each Specific repository is, as the name suggests, specific to an Epic (i.e. specific to
a given development), no UX information duplication among Specific repositories should
happen. For UX information that is to be used among several Epics, the usage of a Central
repository is proposed. In such repository, it is stored UX information that is to be used
across the whole application, not being specific to a single page or component.

Figure 32 is a sample of a Specific Repository page (early presented in Figures 27
to 30). Figure 32-A is an overview of the sub pages that constitute the specific repository.
Among many, a UX specific page is recommended, once that specific UX information
related to an Epic can be stored in a proper place.

Given this specific repository page relates to an Epic, attaching the software
requirement document in the specific repository (Figure 32-B) is recommended, once it
enriches the repository with the essential information it relates to. Figure 32-C represents
the links to the Epic and all USs that relate to this repository. By doing so, the virtual
environments are related, and the infinite navigational distance will not occur (considering
that the link will be also made from the Epic and US to the specific repository).

Figure 32-D displays a UX page under the wiki-based repository. The UX page
refers to Figure 34 later presented. This menu will direct the user to the UX central
repository. Also note worth, Figure 32-E shows that for many ”Epic pages” are created
within the repository. As presented in previous templates, the relation from an Epic to a
proper Repository page should be done, considering that the USs done within the same
Epic are related to each other. Please notice that the other pages under the menu are
merely illustrative. Also, the creation of the menu structure may not be possible depending
on the tool being used. The main focus of the template of the repositories is to have a place
to centralize information, therefore the menu presented in the template can be changed.

Under the Epic page, specific pages should be created according to the needs of the
project. Figure 33 shows a page with 3 sub-pages, being a Database, an Infrastructure and
a UX page. For this study, given UX is the main focus of investigation, the recommendation
here will only cover such aspects in the repository. As displayed in Figure 33, the UX
page should contain the artifacts that are used in the UX work (Figure 33-B and 33-D).
This refers to the repository page seen in Figures 29 and 30 previously presented. These
are the pages/artifacts to which the US should be linked to. As showed in Figure 33,
the arrangement of multiple UX Artifacts can be done within this same repository page.
Considering this as an Epic UX page, all USs under such Epic would point to this same

4.4. Reducing the navigational distance and effort 101

Figure 32: Specific Repository - Epic page

Source: Author

repository.

Figure 33: Specific Repository - UX page

Source: Author

102 Chapter 4. Improving Navigational Distance

Figure 33-A and 33-C represent a link to an US to where the such artifacts are
related. Provided that such links are also placed in the US itself, it is possible to say that
the navigational distance between the US and the UX information will be one. This means
that the developer will only need to execute one navigational step to go from the US
and the UX information. Depending on the artifact that is being placed in the central
repository, more than one US may related to the same artifact. In such situations, the
arrangement of the information into the central repositories becomes more evident, as
the navigational distance from any US to the UX information will always be the same
(provided the relation is created). Moreover, this is a solution to the information duplication
problem that would occur in case the information was placed directly in the US level.

Finally, Figure 34 shows a sample of UX Central Repository, where UX information,
that would be used across all the project, is placed. The following recommendation aims
to create a place where ”generic” UX information can be stored, without the need of
duplication. Although the template presents a table with a set of information for each UX
element, the creation of more information can be done. The main goal of the template is
to have a central place for UX information used across the whole application. The amount
of information available for each UX information is not covered in this study, although we
believe that it can change to better satisfy each project needs.

For example, on Specific UX repositories, information related to an Epic and its
USs would be stored. An example of such UX information could be the Mockup of a screen
of a component that is particular to that screen. For the UX Central Repository though,
examples of UX information that could be stored are button templates, that are to be
used across the whole application. Another example, considering the usage of Personas
as part of UX activities (PLONKA et al., 2014; ROGERS; SHARP; PREECE, 2019),
therefore the storage of Personas in the UX Central repository could be done.

Moreover, such Central repository serves as a common knowledge place, helping in
the sharing, and later finding, of UX information.

4.4. Reducing the navigational distance and effort 103

Figure 34: UX Central Repository

Source: Author

4.4.3 Template usage in different Tools

The templates previously explained (subsections 4.4.2.1 to 4.4.2.3) can be applied
in a variety of tools. On the other hand, the differences among the available tools, which
encompass a variety of features may impact in the way the templates are created and
managed. We briefly discussed in each of the previous subsections that the templates may
be used in different tools, may it be a more complex tool, with a set of features that allow
users to create and manage the templates in an easy way, or in basic/free tools, which
may create some difficulties when trying to apply the templates.

Creating the templates in tools that contain more feature may help in the link
management, especially if the tools have an automated integration. An example of such is
when a link is create in one tool to another, another link is automatically created in the
other tool. This helps by creating an environment with a ”two-way” link, where you can
navigate from one tool to another starting from any of the tools. Such feature may not be

104 Chapter 4. Improving Navigational Distance

available in all tools, making it difficult to create this ”two-way” relationship, once that
the same would need to be manually done and managed.

The templates also considered a set of information that may not fit all tools
capabilities. Taking the US template as an example, when creating US in tools that don’t
allow a set of information as detailed as in the proposed US template, modifications to the
template may be required. Such modifications were covered in the template, highlighting
the minimum set of information that we believe that are essential for the template to still
be valuable.

Although we recommend the usage of such templates in tools that allow the creation
of similar structures to the ones presented in this study, the main features of each template
have been exposed and, if the same are created any tool selected by the user, we believe
that the templates, even with some modifications, can be applicable.

The main focus of the templates though, taking into consideration the US and UX
repositories templates, is the UX information arrangement into the virtual environment
(subsection 4.4.2.2). Provided that the templates used for the US and/or the UX repositories
don’t increase the navigational distance need to find given information and the final
organization template is still the proposed one, we believe that the final navigational
distance decrease (or limitation), as well as the navigational effort required to find UX
information into the virtual environment, will remain the same as this proposal aims to
reach. The final navigational classification would be a Wide navigational distance (Table
4), with limited navigational steps to find UX information from a given US, and a Medium
navigational effort (Figure 24).

The template application into different tools and the impact of different tools into
the templates is still to be further analyzed and is out of this study scope, although such
verification is needed in order to understand when and how the template may be used
into different tools.

4.4.4 Recommendations considerations

Having Figure 23 as a diagram representation of the UX information dispersion
within the virtual environments, using the proposed information placement here explained,
we believe that a result similar to the presented in Figure 35 would be achieved.

Notice that in Figure 35, at ”Repository Tool”, the ”Epic Web Page” refer to
the specific UX Repository previously mentioned, being it related to a single Epic. The
”US-related information” refers to the UX section particular to a US that is under the same
Epic the repository relates to. UX central repository, containing the UX information to be
used across the whole project (i.e. containing generic layouts/components) is represented
by the ”Central UX Web Page”.

4.4. Reducing the navigational distance and effort 105

Figure 35: Distance diagram of proposed organization

Source: Author

The recommendations here presented covered a way to arrange the information
into virtual environments, considering the navigation classification types and the naviga-
tion effort classification previously presented (Sections 4.2 and 4.3, respectively). Such
classifications expand the work of Bjarnason et al. (2016), Bjarnason and Sharp (2017)
and the recommendations aim to not only give insights to better arrange the information
into virtual environments as to also try to create a pattern to reduce the navigational
distances, having the case study (Chapter 3) navigational distances found as the basis for
such improvement. We also considered some works to create an organization recommenda-
tion that would try to merge the UX work (PLONKA et al., 2014; ROGERS; SHARP;
PREECE, 2019) with the actual software development work (SILVA et al., 2011; SILVA et
al., 2018), which in agile practices usually has the US as the central point of attention
(BIK; LUCASSEN; BRINKKEMPER, 2017).

The information organization template, although aiming to decrease the navi-
gational distance in virtual environments, requires a minimal feature from the virtual
tools being used. Its usage in basic tools may create problems on its usage, therefore we
recommend its application in tools that provide a minimal tracking management. The
application of the proposed templates is still to be evaluated and we recommend such
evaluation to be performed in both basic and more complex tools in order to have a better
understanding on when to apply such templates.

106 Chapter 4. Improving Navigational Distance

4.5 Final Considerations

In this chapter, we proposed a process to improve the navigational distances to UX
information in virtual environments. Such recommendations have considered the work of
Bjarnason et al. (2016), Bjarnason and Sharp (2017), regarding the navigational distance.
The need to make UX closer to agile development, which has been reported by Silva et al.
(2018). We also considered the US as the central focus of attention for the developers (BIK;
LUCASSEN; BRINKKEMPER, 2017; COHN, 2004). The proposed recommendations
have the US as the starting point for the navigation process in the virtual environments.

We presented a comparison between practice and theory, by pointing issues that
are reported in the literature on regards to UX and agile integration, and the outcomes of
the case study earlier presented in this master work. Such comparison also had a role in
providing insights to the development of the recommendations to reduce the navigational
distances on UX elements. The recommendations have also considered some issues such
as the UX elements traceability (LEE; GUADAGNO; JIA, 2003; KASHFI; NILSSON;
FELDT, 2017) importance and its dispersion in the virtual environments (DESHPANDE
et al., 2016; SHARP; ROBINSON, 2006).

The classification of the navigational distances expanded the work done by Bjarna-
son et al. (2016), Bjarnason and Sharp (2017). Furthermore, we also added a sub-category
to the distances, considering the effort required for the navigation to be performed into
virtual environments.

Based on the proposed navigation and effort categories, as well as the issues
previously presented, we provided some good practice recommendations to reduce the
navigational distances to UX information. Later, we presented a template proposal for
the information arrangement in the virtual environments, having navigational distance
improvement as the main goal.

By following the organization here proposed, the distances on the project would be
of type Deep/Wide (i.e. no presence of Zero or Infinite distances, which are the extreme
cases) with the effort being Medium, given the navigation through two different tools.
Another point to be considered is the depth and width achieved in Figure 35 arrangement.

The maximum depth of the information has been set to a maximum of three,
considering that the developer will have to go to the Epic, US and one of its tasks to
fully understand its context. If such is not necessary, the depth distance would be two, in
case there is the need to go from the US to a task to get information. Considering the
US information enrichment process described before, the arrangement Epic > US > Task
could be taken as formal, but navigation through such hierarchy is not necessary all the
time, provided that most of relevant information should be put in the US itself, reducing
the navigational distance.

4.5. Final Considerations 107

On the other hand, the arrangement of information into the repository, creating a
relation to the US, makes the Wide distance to increase. Provided that a repository is
created according to the Epics, and the US are linked to such repository, the maximum
distance, considering the width, is also reduced. Limiting the distance to a repository,
which should be the final destination to retrieve information, helps on decreasing the
navigational distance. Figure 35 has a width distance of one, being it the navigation from
the US to a Central Repository page, or from an Epic to the Epic Central Repository
page.

Taking virtual environments as the main goal of such recommendations, the usage
of USs as the central point for the information distribution was based on the fact that it
is one of the most used artifacts into agile projects (BIK; LUCASSEN; BRINKKEMPER,
2017) and that it is a key project-related artifact used for tracking purposes (DESHPANDE
et al., 2016). On the work of Deshpande et al. (2016), virtual artifacts and their supporting
tools are stated as key information hubs (i.e. central places where information flows and
decisions are made) for all team members, especially for remote workers, given these virtual
artifacts dominate and shape their situation awareness 2, and they are the core of their
horizon of observation 3.

Decreasing the navigational distance improves the information hub mentioned
by Deshpande et al. (2016), once that it is easier to find the information. Creating
central repositories can also be taken as buffers4 if a team (e.g. UX team) is working in
something that will not necessarily be used now (LDUF), placing such work in a specific
central repository (i.e. UX repository), will not affect other information flow. Placing such
information in the repository when these are to be used even if only in the future, will
make it easier to find the information by them, once that the repository will be specific
for such information.

The proposed information arrangement also aimed to keep the User Story as the
main source of information for the teams. Following what was already concluded by Sharp
and Robinson (2006), which states that, from the developer’s point of view, the main
transformation taking place in a cognitive system is transforming the US into executable
code. In such work, there was little information propagation outside the US, being such
the central focus of development from the time it is created until the code is handed over.
The same principles are also supported by Cohn (2004), Sharp and Robinson (2006), Bik,
Lucassen and Brinkkemper (2017), and the proposed information relation had such already
known US importance in mind during its conception.

2 Situation awareness: how people are kept informed of what is going on, e.g. through what they can
see, what they can hear and what is accessible to them (DESHPANDE et al., 2016)

3 Horizon of observation: what an individual can see or hear, influencing situation awareness (DESH-
PANDE et al., 2016).

4 Buffers: location where information is held until it can be processed without causing disruption to
ongoing activity (DESHPANDE et al., 2016).

108 Chapter 4. Improving Navigational Distance

Moreover, the proposed arrangement could be a way of decreasing one of the main
challenges faced while establishing the integration of Agile and User-Centered Design.
Garcia, Silva and Silveira (2019) describes this challenge as the question on how to
facilitate communication among the invariably distinct involved practitioners. The creation
of specific central repositories for UX information storage, letting it under UX practitioners
management, while still relating such repositories to other environments and artifacts
throughout the project (i.e. the management tools, the USs, etc.) is what the proposed
arrangement aims to help with. The proposed arrangement also supports the idea of
artifact-mediated communication, which has been previously concluded by Brhel et al.
(2015) and Garcia, Silva and Silveira (2019).

The creation of a central repository location, based on a US scope, relates to the
community understanding reported by Garcia, Silva and Silveira (2019), which states that
the team must be cross-functional and the designer should be part of the team. By giving
UX practitioners the ownership of a central repository and making its-progress through a
task under a US (Figure 29), which is mainly used by developers (SHARP; ROBINSON,
2006), is indirectly making the team work together, while still allowing each of the project
members to work on its own pace and in its virtual environments. The virtual environments
will later be integrated with a navigational distance that is within manageable limits and
effort (i.e navigational distance with Wide distance type and Medium effort classification,
Tables 4 and 5 respectively).

Although the proposed information dispersion fits the Wide navigational distance
classification, such scenario is good when applied when considering one agile artifact, such
as the US, and one type of information, for example, the UX elements. If considering all
the types of information that may be part of a software development process (Database,
Architecture, Security, Quality Assurance, etc.), and each of these are considered as a
different type of artifact to be linked to the US, the proposed template considering the
Wide navigational distance as the best solution may not be applicable anymore. Such
scenario is out of this study scope, which only considered the UX information, but the
template being applied to other information types or along with it, is still a process to be
further analysed in the future.

The templates proposed for the US writing considers a tool that enables users to
be create a structure that contain a set of information that may not easily fit some tools,
given that the US structure they allow is intended to be kept as small as possible (i.e.
a card into Trello5 tool). Therefore we encourage the usage of tools that do allow the
creation of USs similar to the one proposed into the template.

Along with the US template, the template for the UX repositories considered a
wiki-based tool. Depending on the tool used, the creation of similar structures may be more

5 Trello: https://trello.com

4.5. Final Considerations 109

difficult to do. Different from the US template, the UX repositories though intend to hold
UX information and centralize it into a single location in the virtual environment. Moreover,
given that wiki-based tools provide a freedom in the pages creation, the templates exposed
in this study can vary, as long as its main principle (to centralize UX information) is kept
and that the pages structure in such tool do not increase the navigational distance (i.e.
keep information in only one location, being such related to an Epic).

Regarding the creation of links between tools, this study does not consider the
difficulty on creating the same, once that depending on the tools used, the links may be
automatically created and the tool may provide a quoting/mentioning system if the tools
have an integration between them. Depending on the tools, such process may require
more manual intervention, which difficulties the link creation when compared to tools that
are integrated. The templates for the information organization into virtual environments
only considered the creation of the link, without considering the effort to create such
link. The main goal of the proposal is to enforce the link creation in order to reduce the
final navigational distance between information, not to consider the effort required to
create/keep such links.

111

5 Conclusion

This master project had as its main focus, the understanding of how UX elements
and USs are linked in virtual environments. Next, the master project aimed to provide
recommendations, which involved good practices and templates of information arrangement
in virtual environments. Such recommendations had the goal to help on decreasing the
navigational distance between UX information and agile artifacts, having the US as the
starting point for the navigational distance calculation.

To achieve such recommendations and template proposals, the master project was
divided into three main parts: An analysis of the literature, an industry case study and
the recommendation creation process itself, which would be based on the two initial steps.

The literature analysis (Chapter 2) covered the main fundamentals used in this
master project and the literature review. The literature review was designed based on
issues reported in the literature was based on UX and agile practices integration. It also
had a focus on the artifacts that are mainly used in agile practices and by UX specialists,
how they relate in virtual environments and we also focused on the navigational distance
(BJARNASON et al., 2016; BJARNASON; SHARP, 2017). We also focused on the main
issues being reported in the literature given the attempts of integrating UX-agile that
have been done so far.

From the literature analysis, many issues have been found in integrating UX and
Agile practices. Among many, artifact management, communication issues among team
members and loss of big picture are the ones that can be highlighted. Considering such
issues, the case study has been designed, aiming to understand, in an industry scenario,
how UX information can be related to USs.

Next, this master project study presented an industry case study (Chapter 3),
based on how UX information can be related to USs in a practical context. Furthermore,
it analyzed the navigational distances present within virtual environments used by three
projects in the industry. The analysis was designed based on issues reported in the literature
on regards to UX and agile practices integration.

The case study was be divided in four main steps: An analysis over software
requirement documents, to filter it and find the ones that had UX elements, having the
work of Garrett (2010) to find such UX elements. The second step constituted of coding
technique, based on the UX Elements framework proposed by Garrett (2010); on the
software requirement documents that had been filtered in the first step. The third step was
also a coding process but done over the USs, as well as other artifacts/virtual environments
that had links from the USs, that originated from the software requirement documents

112 Chapter 5. Conclusion

analyzed in step 2. The last step was an analysis of the dispersion of the UX elements
coded in steps 2 and 3, to understand how they were arranged in the virtual environment
used in the projects analyzed in the case study. Such UX information dispersion would
later lead to insights on the UX elements navigational distance, which was based on the
work of Bjarnason et al. (2016) and Bjarnason and Sharp (2017), which described the
distances present in project development, including the one called navigational distance.
An analysis of the distances between UX information and other artifacts used in the
projects, being the US the starting point for the distance evaluation, was performed.

The navigational distances analysis concluded that there are no big distances
in the virtual environments, i.e. the number of navigational steps to go from a US to
the final UX information related to the US are within acceptable limits. Although such
conclusion, the analysis showed that the UX information was still spread in the virtual
environments. Given this problem, and considering the issues found in the literature review,
recommendations on how to better place the UX information and relate it to USs in virtual
environments. Furthermore, we also proposed categories for both navigational distances
and the effort required to perform the navigation.

The improvement of navigational distances (Chapter 4) is the third and final main
part of this master project. In this chapter we compared the findings from the case study
with the issues reported in the literature. Having the outcomes of the literature review
and the findings of the case study, good practice recommendations had been outlined in
order to improve the awareness of agile practitioners on how UX information is important
and what is the importance of having the navigational distance under manageable limits.

We also propose a classification for the navigational distance and the navigational
effort, expanding the work of Bjarnason et al. (2016), Bjarnason and Sharp (2017), by
adding a set of possible categories in which a given arrangement of UX information into
virtual environments. Such categories contain pros and cons, which we outlined in the
categories definition.

Having the issues reported in the literature, the outcomes from the case study
and the navigational distance and effort categories, we proposed recommendations for
good practices of UX information arrangement, which serve as an overview for the later
proposed templates for the information arrangement into virtual environments.

The templates embrace a US template, the arrangement of UX information into
virtual environments, having the US as a central point of attention. We also recommend
templates for the creation of two types of UX repositories, the Specific repository, which
holds UX information related to a limited scope (i.e. an Epic), and the Central repository,
where ”generic” UX information (i.e. used throughout the whole project, and therefore
used in many Epics and USs) is stored.

5.1. Contributions 113

The recommendations and templates aim to reduce the navigational distance
between UX elements and USs into virtual environments.

Regarding the RQs outlined in the beginning of this master project: On RQ1 -
”How are UX information and USs connected into software virtual environments?”, as
exposed in Subsection 3.2.5.2, we can conclude that the UX information can be found in,
at least, three different ways, being these: (i) Within: When information is in the body of
the USs, i.e. within it; (ii) Link: When the information is arranged outside the US but still
linked to it (through a hyperlink for example); (iii) Attachment: When the information is
attached to the US.

Moreover, we can notice that information is not always present in the US itself,
being placed in other locations. In such scenarios, the presence of navigational distance
is more evident. Considering this, regarding RQ2 - ”What are the navigational distances
found to access UX information from USs into software virtual environments?”, we were
able to classify it into four types: (i) Zero: When there is no need for navigation; (ii)
Infinite: When the navigation is impossible to happen, unless by previous knowledge of
the developer; (iii) Deep: Considering one tool, the deep distance refers to the need to
go into more detailed (hierarchy) level into the same tool (as an example, going from the
Epic to the US and then to the Task); (iv) Wide: When navigation happens through two
or more tools, or within the same hierarchy level of a given tool (i.e. from a US to another
US). Such classification have been outlined in Subsection 4.2.

Moreover, we introduced a new classification, considering the effort required to
execute the navigation into virtual environments. Such classification was exposed in
subsection 4.3, being summarized as: (i) Weak: When there is no need to navigate between
different virtual environments; (ii) Medium: When there is the need to navigate between
two virtual environments; (iii) Strong: When there is the need to navigate among three
or more virtual environments; (iv) Broken: when the navigation through two or more
virtual environments need to happen but is not possible due to poor linkage (i.e. link
is not working anymore or is pointing to an invalid location, etc.). Such classifications
answered the RQ2 and also provided an extension to the work of Bjarnason et al. (2016),
Bjarnason and Sharp (2017), on regards to the navigational distance.

Below we introduce the contributions of this master project, as well as its limitations
and possible future work.

5.1 Contributions

Some of the UX information mapped (coded) could be found within different
contexts than the ones proposed by Garrett (2010). The initial insights led to the conclusion
that, given agile practices are used in the projects, the separation among the planes proposed

114 Chapter 5. Conclusion

by Garrett (2010) cannot be used in its totality. Despite the fact that each plane from
the framework (Figure 4) is dependent of the others, in an agile project, it is possible to
suggest that the planes are more tied to each other when referring to the time in which
the information each of them holds are used in the project.

Although specific and distinct phases in the project life cycle may exist in an agile
project, the fast delivery aimed by the practice pushes that all the information (represented
by the planes in the framework) should be considered during most of the project life cycle.
and not in specific time frames within the same. The information, divided into the five
UX elements by Garrett (2010), should be considered, in an agile scenario, within the
same lead time (the time a process or development takes from its initiation to its release).
For example, the surface aspects of a given development may be considered even in the
beginning of its discussion. This makes the time-lapse among each plane to be very small,
if even existent. This may be a hint for the reason that, during the coding (see Figure 12),
artifacts and UX information could be placed in different planes than the ones mentioned
in the work of Garrett (2010).

The second conclusion is regarding the usage of artifacts. Although some of the
artifacts used in the projects matched the expected, given the literature review, others
have not. As a highlight, it is possible to mention the Persona and Scenario artifacts usage,
which are mentioned as one of the most used in the literature review but could not be
directly found in the analysis. On the other hand, the Mockup artifact was used in all three
projects analyzed. It is important to notice that none of the projects had a UX specialist,
so the usage or not usage of some artifacts may be due to such team configuration.

The third conclusion is that, despite most information coded, present in documents,
could also be found in US level, not all information could be mapped in USs itself.
Information was found spread in other places, outside the US. Although a kind of relation
between the information and the US was present, the initial thought, considering the
study of Bjarnason et al. (2016) and the descriptions of navigational distance, was that
the disposition of the UX information was not optimized.

Another point is that, although some information could be found in US level, it is
valid to mention that one requirement document may generate many USs. Where each
US only includes small pieces of work. This is reinforced by the coding performed in the
virtual environment used by the teams, where complementary information could be found
outside the USs, being placed in other virtual tools.

Such information disposition caused the presence of navigational distance. The
analysis on the navigational distance didn’t show it to be very large (i.e. it was not required
many navigational steps to go from a US and the complementary UX information present
outside of it). Given some of the issues already presented in the literature when merging
agile and UX, such as artifact management, communication issues among team members

5.2. Results Propagation 115

and loss of big picture, plus the fact that artifacts may be used as a communication
mediator, the recommendations present in this study aimed to create a template of good
practices to be followed when creating and relating UX information with the project’s
USs, which are mainly used by the project developers. Such recommendations were based
in both navigational distance, graph-theory principles and US writing recommendations
already present in the literature, having the purpose to help on mitigating the issue already
mentioned, having the developers point of view as the base point for the recommendation
application.

Apart from the recommendations, the study also proposed a new way to categorize
the navigational distances found in the projects (Table 4) as well as the effort needed
to execute such navigation (Table 5). These categories are a possible contribution to
the work being done over the type of distances encountered in the projects, being such
categorizations specifically focused on the distance called navigational distance.

5.2 Results Propagation
Regarding the project results propagation, apart from the final text here exposed,

the creation of articles was also made.

Figure 36: Results propagation

Source: Author

During the development of this project, an article entitled ”Navigational distances
between UX information and User Stories in agile virtual environments” was accepted on
ICEIS 2020. We also intend to publish articles covering the UX information placement
templates here exposed. After performing a validation of the proposed templates we also
aim to publish another article covering the outcomes of the validation.

116 Chapter 5. Conclusion

5.3 Study Limitations

The present master project had an industry case study evaluating which UX
information could be found related to US and how the same was distributed into the
virtual environments.

All projects analyzed used agile practices into non-agile environment (GREGORY
et al., 2016). No project had UX specialists in its team. Studying projects that do contain
UX specialists could lead to new UX information being discovered in the coding phase,
which would impact in the later analysis of the UX information propagation into different
places.

The tools used by the projects were the same (i.e. Jira, Confluence and SharePoint).
Although such tools are widely used (KASSAB, 2014; BERMAN; BARNETT; MOONEY,
2012), there are other similar tools that could also be analyzed. The multiple platforms
cross-referencing could change from tool to tool, especially considering that some of them
have automated processes that facilitate relationship creation and maintenance. Studying
the same principles here presented in different tools could lead to new insights that were
not covered in this study.

Although presenting some conclusions and recommending ways to better relate
and arrange the UX information into virtual environments, such recommendation and
templates were not verified into a real scenario. The recommendations, therefore, lack
tests to confirm its efficiency. The confirmation of the impact of such recommendations is
still to be evaluated.

The study only focused on relating UX to agile artifacts but in a real scenario, other
information types should be considered. Relating UX with all the other information aspects
that are included in a software development may impact in the conclusions presented here
on regards to the proposed information organization templates.

The templates proposed are still to be validated. The generalization of such
templates, being used into different virtual environments and with different tools is
something not covered in this study, although we recommend the usage of tools that
provide a set of features to track information and enable users to create a similar structure
on the ones exposed in the templates. The generalization of such templates in tools that
do not allow, or difficult, the creation of such templates is not covered in this study and is
a topic to be later studied in order to better understand when such templates are feasible.

Considering other information that not only UX, the difference between the classified
wide and deep distances may decrease, but the impact of multiple types of information and
artifacts, that not only within the UX spectrum, being used in the proposed templates is
still to be studied. Despite proposing templates for information organization, the templates
would need a minimal feature being delivered by the tools used, otherwise all storage and

5.4. Future Work 117

relationships being done in the virtual environments could be hard to be done, given the
tool limitation. The application of the templates considering different tools is still to be
evaluated.

5.4 Future Work
Further analysis of information being spread outside the virtual environment (i.e.

in the real world) could be done to understand how UX information also propagates into
the real world. Similar principles presented in this study could be applied, although the
navigational distances would need to be revisited.

The current study also had navigational distance as a base for its analysis. The
studies that proposed such distance (BJARNASON et al., 2016; BJARNASON; SHARP,
2017) also present other distances that could be further analyzed into the same context of
UX information being used in agile projects.

To have a group study by using the UX information relationship, maintenance and
disposition into virtual environments recommendations, evaluating the impact of such
recommendations and how difficult the same are to be applied. Pros and Cons of such
recommendations could be analyzed and lead to more refined recommendations.

Replicate the study process (coding, navigational distance analysis, etc.) into other
agile projects, especially projects that contain UX specialists in its team, as well as projects
that make usage of a different set of virtual tools could also bring new insights to the
conclusions here presented.

Despite briefly analyzing the navigational distances into virtual environments,
and even adding new categories to the same, contributing to the original navigational
distances work (BJARNASON et al., 2016; BJARNASON; SHARP, 2017), analyzing the
impact of the distances in the real world is also a topic to be better explored. Having such
classifications to also evaluate the users (mainly project developers) emotions could also
lead to the creation of new categories, as well as adding more description and/or weight
to the same.

119

Bibliography

BECK, K. et al. Manifesto for Agile Software Development. 2001. <http:
//agilemanifesto.org/>. Online; accessed 23 September 2018. Mentioned 3 times at pages
21, 30, and 78.

BERMAN, A.; BARNETT, W.; MOONEY, S. Collaborative software for traditional and
translational research. Human genomics, v. 6, p. 21, 09 2012. Mentioned 2 times at pages
34 and 116.

BIK, N.; LUCASSEN, G.; BRINKKEMPER, S. A reference method for user story
requirements in agile systems development. In: IEEE. 2017 IEEE 25th International
Requirements Engineering Conference Workshops (REW). [S.l.], 2017. p. 292–298.
Mentioned 6 times at pages 22, 31, 33, 105, 106, and 107.

BJARNASON, E.; SHARP, H. The role of distances in requirements communication: a
case study. Requirements Engineering, Springer, v. 22, n. 1, p. 1–26, 2017. Mentioned 23
times at pages 23, 24, 26, 27, 39, 45, 46, 47, 70, 71, 73, 75, 76, 79, 87, 89, 93, 105, 106,
111, 112, 113, and 117.

BJARNASON, E.; SHARP, H.; REGNELL, B. Improving requirements-test alignment by
prescribing practices that mitigate communication gaps. Empirical Software Engineering,
Springer, v. 24, n. 4, p. 2364–2409, 2019. Mentioned in page 21.

BJARNASON, E. et al. A theory of distances in software engineering. Information and
Software Technology, Elsevier, v. 70, p. 204–219, 2016. Mentioned 23 times at pages
11, 23, 24, 26, 27, 38, 39, 45, 46, 70, 71, 75, 76, 79, 87, 93, 105, 106, 111, 112, 113, 114,
and 117.

BJARNASON, E.; WNUK, K.; REGNELL, B. A case study on benefits and side-effects of
agile practices in large-scale requirements engineering. In: Proceedings of the 1st Workshop
on Agile Requirements Engineering. [S.l.: s.n.], 2011. p. 1–5. Mentioned in page 30.

BOHM, A. 5.13 theoreticai coding: Text analysis in grounded theory. A companion to
qualitative research, SAGE Publications, London, p. 270–275, 2004. Mentioned in page 53.

BRHEL, M. et al. Exploring principles of user-centered agile software development: A
literature review. Information and Software Technology, Elsevier, v. 61, p. 163–181, 2015.
Mentioned 12 times at pages 21, 22, 39, 40, 42, 43, 46, 47, 77, 92, 93, and 108.

BUDWIG, M.; JEONG, S.; KELKAR, K. When user experience met agile: a case study.
In: ACM. CHI’09 Extended Abstracts on Human Factors in Computing Systems. [S.l.],
2009. p. 3075–3084. Mentioned 4 times at pages 22, 39, 40, and 47.

CHOMA, J.; ZAINA, L. A.; BERALDO, D. Userx story: incorporating ux aspects into
user stories elaboration. In: SPRINGER. International Conference on Human-Computer
Interaction. [S.l.], 2016. p. 131–140. Mentioned 7 times at pages 22, 29, 31, 44, 47, 70,
and 93.

http://agilemanifesto.org/
http://agilemanifesto.org/

120 Bibliography

COHN, M. User stories applied: For agile software development. [S.l.]: Addison-Wesley
Professional, 2004. Mentioned 18 times at pages 30, 31, 32, 44, 50, 54, 68, 77, 79, 88, 89,
90, 91, 93, 94, 96, 106, and 107.

DESHPANDE, A. et al. Remote working and collaboration in agile teams. 2016.
Mentioned 14 times at pages 23, 32, 33, 44, 45, 46, 76, 79, 80, 87, 88, 89, 106, and 107.

Don Norman and Jakob Nielsen. The Definition of User Experience. 2013.
<http://www.nngroup.com/articles/definition-user-experience/>. Online; accessed 22
March 2018. Mentioned 2 times at pages 21 and 34.

DYBÅ, T.; DINGSØYR, T. Empirical studies of agile software development: A systematic
review. Information and software technology, Elsevier, v. 50, n. 9-10, p. 833–859, 2008.
Mentioned 3 times at pages 30, 78, and 79.

ERGONOMICS of human-system interaction – Part 210: Human-centered design for
interactive systems. [S.l.], 2010. v. 2000. Mentioned in page 34.

GARCIA, A.; SILVA, T. S. da; SILVEIRA, M. S. Artifact-facilitated communication in
agile user-centered design. In: SPRINGER. International Conference on Agile Software
Development. [S.l.], 2019. p. 102–118. Mentioned 9 times at pages 22, 35, 39, 43, 44, 77,
92, 93, and 108.

GARCIA, A.; SILVA, T. Silva da; SILVEIRA, M. S. Artifacts for agile user-centered
design: A systematic mapping. In: Proceedings of the 50th Hawaii International Conference
on System Sciences. [S.l.: s.n.], 2017. Mentioned 12 times at pages 22, 35, 39, 40, 42, 44,
46, 47, 76, 77, 92, and 93.

GARRET, J. J. The Elements of User Experience. 2000. <http://www.jjg.net/elements/
pdf/elements.pdf>. Online; accessed 20 December 2018. Mentioned in page 36.

GARRETT, J. J. Elements of user experience, the: user-centered design for the web and
beyond. [S.l.]: Pearson Education, 2010. Mentioned 19 times at pages 24, 25, 31, 34, 35,
36, 37, 38, 40, 46, 47, 53, 56, 61, 64, 65, 111, 113, and 114.

GREGORY, P. et al. The challenges that challenge: Engaging with agile practitioners’
concerns. Information and Software Technology, Elsevier, v. 77, p. 92–104, 2016.
Mentioned 2 times at pages 50 and 116.

HARRIS, J. M.; HIRST, J. L.; MOSSINGHOFF, M. J. Combinatorics and graph theory.
[S.l.]: Springer, 2008. Mentioned 3 times at pages 71, 74, and 83.

HASSENZAHL, M.; TRACTINSKY, N. User experience-a research agenda. Behaviour &
information technology, Taylor & Francis, v. 25, n. 2, p. 91–97, 2006. Mentioned 2 times
at pages 21 and 77.

HESS, A.; DIEBOLD, P.; SEYFF, N. Towards requirements communication and
documentation guidelines for agile teams. In: IEEE. 2017 IEEE 25th International
Requirements Engineering Conference Workshops (REW). [S.l.], 2017. p. 415–418.
Mentioned 6 times at pages 21, 22, 39, 42, 43, and 47.

INAYAT, I. et al. A systematic literature review on agile requirements engineering
practices and challenges. Computers in human behavior, Elsevier, v. 51, p. 915–929, 2015.
Mentioned 5 times at pages 31, 46, 76, 78, and 79.

http://www.nngroup.com/articles/definition-user-experience/
http://www.jjg.net/elements/pdf/elements.pdf
http://www.jjg.net/elements/pdf/elements.pdf

Bibliography 121

JURCA, G.; HELLMANN, T. D.; MAURER, F. Integrating agile and user-centered
design: a systematic mapping and review of evaluation and validation studies of agile-ux.
In: IEEE. 2014 Agile Conference (AGILE). [S.l.], 2014. p. 24–32. Mentioned 8 times at
pages 21, 39, 40, 47, 76, 77, 78, and 88.

KASHFI, P.; NILSSON, A.; FELDT, R. Integrating user experience practices into
software development processes: implications of the ux characteristics. PeerJ Computer
Science, v. 3:e130, 2017. Mentioned 6 times at pages 43, 46, 76, 77, 92, and 106.

KASSAB, M. An empirical study on the requirements engineering practices for agile
software development. In: IEEE. 2014 40th EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA). [S.l.], 2014. p. 254–261. Mentioned 4
times at pages 32, 33, 43, and 116.

KUPIAINEN, E.; MÄNTYLÄ, M. V.; ITKONEN, J. Using metrics in agile and lean
software development–a systematic literature review of industrial studies. Information
and Software Technology, Elsevier, v. 62, p. 143–163, 2015. Mentioned in page 29.

LAW, E. L.-C. et al. Understanding, scoping and defining user experience: a survey
approach. In: ACM. Proceedings of the SIGCHI conference on human factors in computing
systems. [S.l.], 2009. p. 719–728. Mentioned in page 34.

LEE, C.; GUADAGNO, L.; JIA, X. An agile approach to capturing requirements and
traceability. In: Proceedings of the 2nd International Workshop on Traceability in Emerging
Forms of Software Engineering (TEFSE 2003). [S.l.: s.n.], 2003. v. 20. Mentioned 9 times
at pages 45, 46, 76, 77, 83, 87, 88, 90, and 106.

LEE, J. C.; MCCRICKARD, D. S. Towards extreme(ly) usable software: Exploring
tensions between usability and agile software development. In: IEEE. [S.l.], 2007. p. 59–71.
Mentioned in page 41.

LISKIN, O. How artifacts support and impede requirements communication. In:
SPRINGER. International Working Conference on Requirements Engineering: Foundation
for Software Quality. [S.l.], 2015. p. 132–147. Mentioned 14 times at pages 39, 41, 42, 43,
47, 62, 70, 73, 87, 88, 89, 90, 95, and 99.

LOPES, L. A. et al. Adding human interaction aspects in the writing of user stories: a
perspective of software developers. In: ACM. Proceedings of the 31st Brazilian Symposium
on Software Engineering. [S.l.], 2017. p. 194–203. Mentioned 3 times at pages 22, 40,
and 47.

LUCASSEN, G. et al. Forging high-quality user stories: towards a discipline for agile
requirements. In: IEEE. Requirements Engineering Conference (RE), 2015 IEEE 23rd
International. Ottawa, ON, Canada, 2015. p. 126–135. Mentioned 8 times at pages 22, 87,
88, 89, 91, 93, 94, and 96.

MATHARU, G. S. et al. Empirical study of agile software development methodologies: A
comparative analysis. ACM SIGSOFT Software Engineering Notes, ACM, v. 40, n. 1,
p. 1–6, 2015. Mentioned 2 times at pages 30 and 78.

MEMMEL, T.; GUNDELSWEILER, F.; REITERER, H. Agile human-centered software
engineering. In: BRITISH COMPUTER SOCIETY. Proceedings of the 21st British HCI

122 Bibliography

Group Annual Conference on People and Computers: HCI... but not as we know it-Volume
1. [S.l.], 2007. p. 167–175. Mentioned in page 40.

MORENO, A. M.; YAGÜE, A. Agile user stories enriched with usability. In: SPRINGER.
International Conference on Agile Software Development. [S.l.], 2012. p. 168–176.
Mentioned 2 times at pages 44 and 47.

PETERSEN, K.; WOHLIN, C. A comparison of issues and advantages in agile and
incremental development between state of the art and an industrial case. Journal of
systems and software, Elsevier, v. 82, n. 9, p. 1479–1490, 2009. Mentioned in page 21.

PLONKA, L. et al. Ux design in agile: a dsdm case study. In: SPRINGER. International
Conference on Agile Software Development. [S.l.], 2014. p. 1–15. Mentioned 4 times at
pages 22, 40, 102, and 105.

REED, A. H.; KNIGHT, L. V. Effect of a virtual project team environment on
communication-related project risk. International Journal of Project Management,
Elsevier, v. 28, n. 5, p. 422–427, 2010. Mentioned 2 times at pages 23 and 32.

ROGERS, Y.; SHARP, H.; PREECE, J. Interaction Design: Beyond Human-Computer
Interaction. [S.l.]: Wiley Publishing, 2019. ISBN 9781119547259. Mentioned 7 times at
pages 35, 36, 46, 76, 78, 102, and 105.

RUNESON, P.; HÖST, M. Guidelines for conducting and reporting case study research in
software engineering. Empirical software engineering, Springer, v. 14, n. 2, p. 131, 2009.
Mentioned in page 51.

SCHÖN, E.-M.; THOMASCHEWSKI, J.; ESCALONA, M. J. Agile requirements
engineering: A systematic literature review. Computer Standards & Interfaces, Elsevier,
v. 49, p. 79–91, 2017. Mentioned in page 35.

SCHÖN, E.-M. et al. Key challenges in agile requirements engineering. In: SPRINGER.
International Conference on Agile Software Development. [S.l.], 2017. p. 37–51. Mentioned
6 times at pages 39, 42, 43, 44, 47, and 91.

SCHÖN, E.-M. et al. Enterprise experience into the integration of human-centered design
and kanban. In: ICSOFT-EA. [S.l.: s.n.], 2016. p. 133–140. Mentioned 2 times at pages
87 and 89.

SCHWARTZ, L. Agile-user experience design: an agile and user-centered process? In:
Proc. the 8th International Conference on Software Engineering Advances. [S.l.: s.n.], 2013.
p. 346–351. Mentioned in page 40.

SHARP, H.; ROBINSON, H. A distributed cognition account of mature xp teams. In:
SPRINGER. International Conference on Extreme Programming and Agile Processes in
Software Engineering. [S.l.], 2006. p. 1–10. Mentioned 7 times at pages 44, 46, 76, 79, 106,
107, and 108.

SHUKLA, V.; AURIOL, G.; BARON, C. A graph-based requirement traceability
maintenance model. In: Sixth International Conference on Software Engineering Advances.
[S.l.: s.n.], 2011. p. 161–165. Mentioned 3 times at pages 45, 87, and 89.

Bibliography 123

SILVA, T. S. D. et al. User-centered design and agile methods: a systematic review. In:
IEEE. Agile Conference (AGILE), 2011. [S.l.], 2011. p. 77–86. Mentioned 11 times at
pages 22, 39, 40, 42, 46, 47, 76, 77, 92, 99, and 105.

SILVA, T. S. D. et al. The evolution of agile uxd. Information and Software Technology,
Elsevier, v. 102, p. 1–5, 2018. Mentioned 12 times at pages 40, 44, 76, 77, 87, 90, 91, 92,
93, 99, 105, and 106.

SOARES, H. F. et al. Investigating the link between user stories and documentation debt
on software projects. In: IEEE. Information Technology-New Generations (ITNG), 2015
12th International Conference on. [S.l.], 2015. p. 385–390. Mentioned 5 times at pages 22,
42, 87, 90, and 91.

STOPA, G. R.; RACHID, C. L. Scrum: Metodologia ágil como ferramenta de
gerenciamento de projetos. CES Revista, v. 33, n. 1, p. 302–323, 2019. Mentioned in page
33.

STRAUSS, A.; CORBIN, J. M. Basics of qualitative research: Grounded theory procedures
and techniques. [S.l.]: Sage Publications, Inc, 1990. Mentioned in page 25.

TAIBI, D. et al. Comparing requirements decomposition within the scrum, scrum with
kanban, xp, and banana development processes. In: SPRINGER. International Conference
on Agile Software Development. [S.l.], 2017. p. 68–83. Mentioned 4 times at pages 21, 32,
79, and 96.

VINSON, N. G. Design guidelines for landmarks to support navigation in virtual
environments. In: ACM. Proceedings of the SIGCHI conference on Human Factors in
Computing Systems. [S.l.], 1999. p. 278–285. Mentioned in page 89.

VREDENBURG, K. et al. A survey of user-centered design practice. In: Proceedings
of the SIGCHI conference on Human factors in computing systems. [S.l.: s.n.], 2002. p.
471–478. Mentioned in page 34.

WILSON, J.; ROSENBERG, D. Rapid prototyping for user interface design. In: Handbook
of human-computer interaction. [S.l.]: Elsevier, 1988. p. 859–875. Mentioned in page 35.

WOHLIN, C. Guidelines for snowballing in systematic literature studies and a replication
in software engineering. In: ACM. Proceedings of the 18th international conference on
evaluation and assessment in software engineering. London, England, United Kingdom,
2014. p. 38. Mentioned in page 39.

125

APPENDIX A – Coding of Document 1

For this document, 30 use cases were analyzed, distributed in 6 different documents.
From these, 21 use cases contained aspects related to interface aspects (UX). After the
analysis, it was identified that such use cases had a documentation standard which is
exposed below. Given data confidentiality, no real data will be presented here. Instead,
documents have been written based on the documents analyzed. The documents presented
contain similar structure to the ones analyzed, summarizing its main structures. Similar
requirements and how they were written are also presented, omitting confidential data,
being displayed a ”generic” software requirement in its place.

1. Document Information
This document refers to the new XYZ functionality (s) which was requested by the ABC
department to reduce the need to use non-computerized means to manage and share events
that occur both in the department and in the company as a whole.

2. Finance’s Diary
The Finance Diary feature will be a new feature to be implemented in the XYZ project, which
has the purpose of facilitating the events management for the finance sector. Users will be
able to navigate to the diary screen, located on the top menu, which will display a calendar
containing all available events. When you click on a calendar item, a popup with event
information will be displayed. It will also be possible, for certain positions, to create and edit
events, functionality available on the same screen.

2.2 Use Case 1: Visualize Finance’s Diary

2.2.1 Description
The Finance Diary view will be displayed through the main screen by clicking the "Finance
Diary" button (currently non-existent) located in the top menu of the screen. When you click
on the menu, a new screen, Finance Diary, should be displayed containing a calendar with the
current month and all events loaded in it.

• Feature includes a new screen (Finance’s Diary)
• The visualization can be done through the "Finance diary" button from the top menu

of the main screen.

2.2.2 Actors
• Finances
• Directors

2.2.3 Pre-Condition
• The user is within the allowed group for viewing

2.3.4 Workflow

a. User navigates to the main screen and clicks the "Finance Diary" button located on the
top menu.

PS.: If the user does not have access permission, the button should not be displayed.

b. Finance Diary screen is displayed.

Figure 1 – Calendar View Mock

1. The. The user can navigate through the calendar months by clicking on the arrows
located at the top

2. When clicking on an event, a Pop-Up should appear showing the event information.

3. Calendar events should be color-coded according to the following rules:
• Gray: Events in the past
• Green: Holiday Events
• Blue: Events of type Payment
• [...]

2.3.5 Post condition
N/A

2.2 Use Case 2: Add new Finance Diary Event

2.2.1 Description
Users will be able to add new events to the Finance Diary, which should appear in the
Calendar's calendar view (see use case 1). Events can be added directly on the Diary screen or
through a widget available on the main application screen.

• The functionality includes a new widget on the main screen
• Creating a new event can be done through the Diary screen or from the widget on the

main screen

2.2.2 Actor
• Finance

2.2.3 Pre-Condition
• The user is within the allowed group for creating events

2.3.4 Workflow

1. User navigates to the main screen and clicks in the "Add Finance event" widget
available on the page footer.

PS.: If the user does not have access permission, the button should not be displayed.

2. A modal with the fill form for creating a new event is displayed.

Figure 2 – Create Finance event pop-up form mock

a. Event Name should be a text field that allows up to 50 characters.
b. Event Type should be a combobox with the following options:

• Vacation
• Audit
• Payment

• Receiving

[...]

PS.:

• All fields are required
• If creation is done through the Finance Diary screen, the calendar

should be automatically updated with the new information

2.3.5 Post conditions
• Validate that the event was actually created and inform the user of its creation
• The event should be available for viewing on the Finance Diary screen, appearing on

the corresponding day in the calendar view.

2.3.6 UX screen sample

Figure 3 – Finance Diary Widget for main screen

131

APPENDIX B – Coding of Document 2

For this document, 18 use cases were analyzed, distributed in 4 different documents.
Of these, 8 use cases contained aspects related to interface aspects (UX). The patterns
found are exposed below. Given data confidentiality, no real data will be presented here.
Given data confidentiality, no real data will be presented here. Instead, documents have
been written based on the documents analyzed. The documents presented contain similar
structure to the ones analyzed, summarizing its main structures. Similar requirements and
how they were written are also presented, omitting confidential data, being displayed a
”generic” software requirement in its place.

1. Document Information
This document pertains to the investment screen feature (s), which includes a new feature in
the existing AAA application. This functionality includes the creation of a new screen that will
provide information regarding the user's financial applications.

2. Use Case 1 – Investment screen

2.1 User Stories

2.1.1 User Story 1 – My Investments Screen
Project Owner: John Titor

Related Jiras Release Version Release Date
PROJECT-111 2018.1 30-03-2018
PROJECT-112 2018.1 30-03-2018
PROJECT-113 2018.2 30-06-2018
...

2.1.1.1 Description
This User Story refers to the new "My Investments" screen, which is intended to enable the
user to manage their financial investments. Use Case 1 is the creation of a new screen, through
which the user can view all his current investments, grouping them by name of the investment
showing both the name and the value currently invested, as well as the amount of profit (being
highlighted in green) or loss (being highlighted in red). The screen should have options for
viewing details of the investment as well as options for filtering the investments by name or by
invested amount.

2.1.1.2 Actors
• All users

2.1.1.3 Acceptance Criteria
1. Ensure that the screen is accessible through the menu "My Investments"
2. Ensure that all investments are listed, initially in alphabetical order
3. It should be possible to filter the investments and sort them by name or value
4. Profits should be shown in green color
5. Prejudices should be shown in red color
6. Field to display application information should be available
7. Validate investment information (details)
8. Approval during UAT phase (user acceptance test)

2.1.1.4 Dependencies
1. Creating a new access menu (use case 3)
2. Navigate to the screen via the start menu (user story 2)

3. Integration with external ABC application

2.1.1.5 Story Details
Currently there is no screen to view all the investments, being necessary to access them one
by one. This user story aims to meet this need by creating a new screen, from which it will be
possible to have quick and easy access to all the investments as well as to have a summary of
the main information of the same ones directly in this screen.

This new screen will be of exclusive access of each user according to their respective
investments, having only functionality of visualization of the data.

Screen mock.

2.1.1.6 Data Elements / Data Types
Field Type Condition Description
Investment Name String Mandatory Name of the

investment
Invested Value Long Mandatory Current invested

amount
Profit Long Mandatory Profit or loss

obtained in the last
month, being shown
in green for profit
and red for loss.

More Information Button / Icon Mandatory Expands the
component by
displaying
investment
information.

2.2.1 User Story 2 – My Investments Menu

2.2.1.1 Description
This User Story refers to the new "My Investments" menu, which will be available in the top
menu of the application, allowing the user to navigate to the new "My investments" screen
(use case 1).

2.2.1.2 Actors
• All users

2.2.1.3 Acceptance Criteria
1. Ensure that the new "My Investments" menu is located in the top menu.
2. Ensure that the new menu is not a sub-item of an already existing menu.
3. Ensure that the new menu is accessible from all the application screen.
4. Ensure that the "My Investments" screen (use case 1) is accessible through the menu

"My Investments"

2.2.1.4 Dependencies
1. Creation of the new My Investments screen (use case 1)

2.2.1.5 Story Details
Currently there is no screen to view all the investments, being necessary to access them one
by one. After creating such a screen (user story 1), creating a new menu (my investments) is
necessary in order to allow navigation to the new screen (my investments). The new menu
should be located in the top menu of the application and should not be sub-item of any
already existing menu.

Screen mock.

2.2.1.6 Data Elements / Data Types
Field Type Condition Description
My Investment Menu Button Mandatory My Investment

menu. Will link to My
Investment screen.

4. Interface Documentation

4.1 Application Flow

Home> My Investments

4.2 Interface 1 – My Investments
Full Screen mockup

4.2.1 Summary
 New screen, my investments, accessed through the initial menu. This screen will display all the
user's investments, as well as the balance and main information of each investment.

4.2.2 User Story
• US1

o As an investor I want to see my investments so that I can manage my money.
• US1

o As an investor I want to see my profit and loss so that I can be aware of my
investment situation.

• US1
o As an investor I want to see my investment details so that I can have a balance

of the previous months.

4.2.3 Description of Requirements
A design screen using gray and blue colors, according to the application standard. Titles should
be described in bold. Expand / retract buttons should be placed on the left side of the screen,
while the right side should now be covered with the data, although in the future there is the
possibility of adding action buttons in this field.

4.2.4 Gherkin Scenarios
Given an user has in
investments

When the user wants to
check all investments

Then go to investments
screens

Given an user wants to see
profit and loss for all
investments

When user is in the
investments screen

Then use identify profit as
green while loss is red

Given an user is in the
investment screen

When the user want to check
investment details

Then click in the plus sign in
on the right side of the
investment

4.2.5 Mockups & Flows

 Investment Screen

4.2.6 Security
This screen will only display data for viewing and only information regarding the user in
question should be shown.

4.2.7 Q&A

4.3 Interface 2 – My Investments Menu

4.3.1 Summary
 New menu, my investments, located in the initial menu. This menu will navigate to the My
Investments screen.

4.3.2 User Story
• US2

o As an investor I want to see all my investments so that I can manage my
money.

4.3.3 Description of Requirements
 New menu titled My Investments located in the top menu. From there you will navigate to the
My Investments screen.

4.3.4 Gherkin Scenarios

Given an user has in
investments

When the user wants to
check all investments

Click on Meus Investimentos
button

4.3.5 Mockups & Flows

 My Investments Menu

4.3.6 Security
N/A

4.3.7 Q&A

5. Frontend Documentation
Icon Font Name Description

Origin
al

Btn_filter1 Button shown when
a column is filtered.
Btn_filter2's
derivation

Origin
al

Btn_filter2 Button shown when
a column can be,
but is not, filtered
Btn_filter1's
derivation

Boostr
ap 2.3

Btn_plus Button shown when
a line can be
expanded to show
more information.
Btn_minus's
derivation

Boostr
ap 2.3

Btn_minus Button shown when
a line can be
retracted to show
less information.
Btn_plus Derivative

Boostr
ap 2.3

Btn_Home Button symbolizing
the home page of
the application.

Boostr
ap 2.3

Btn_magni
fier

Magnifying glass
icon. Used in every
field related to
searches.

141

APPENDIX C – Coding of Document 3

For this document, 20 use cases were analyzed, distributed in 3 different documents.
Of these, 6 use cases contained aspects related to interface aspects (UX). The pattern are
exposed below. Given data confidentiality, no real data will be presented here. Instead,
documents have been written based on the documents analyzed. The documents presented
contain similar structure to the ones analyzed, summarizing its main structures. Similar
requirements and how they were written are also presented, omitting confidential data,
being displayed a ”generic” software requirement in its place.

 1

1.0. Introduction

1.1. Purpose

 This document refers to the "User screen" functionality that was requested by the
Human Resources department, aiming at reducing the need to use non-computerized means to
manage employee’s information.

1.2. Scope of Project

This functionality is composed by the implementation of the "User screen" functionality.
The functionality will include operations of visualization, addition, editing and removal of the
data, as detailed in this document.

1.3. Glossary

Term Definition
User Reviewer or Author.

 2

2.0. Overall Description

2.1 System Environment

Figure 1 - System Environment

 The human resources sector contains four active actors who will operate the system.
The actors will be classified into two groups: Administrator and HR User. Three actors will
belong to the HR User group, having access to all the functionalities, however any approval must
be made by the fourth actor, denoted as administrator.

HR User

User

Add / Edit / Delete
User

Approve changes
on User done by

HR users.

User Screen Functionality

HR Admin

Edit (some)
information

 3

2.2 Functional Requirements Specification

 This section explains the use cases for each of the actors involved. All involved will have
the same use cases, however the Administrator user will have one more action, this being of
approval.

2.2.1 Use Cases

2.2.1.1: View User
Diagram:

Brief Description

The User view will be displayed through the main screen by clicking on the "Users" button
(currently nonexistent) located in the top menu of the screen. When clicking on the menu, a
new screen, Users, should be displayed containing user information, as well as a photo of the
same.

• Feature includes a new screen (“User’s Information screen”)
• The visualization can be done through the "Users" button from the top menu of the

main screen.

Initial Step-By-Step Description
User is logged in the system

User

View User

HR User

 4

2.2.1.2 Add User
Diagram:

Brief Description
Human resource users will be able to add new users to the system, which should appear in

the user's view of the system (see use case 1). Users can be added directly on the Users screen
or through a widget available on the main application screen.

• Feature includes a new widget on the main screen

Initial Step-By-Step Description
Once connected to the system

1. User (from the human resources sector) navigates to the main screen and clicks the
"Add new users" widget available in the footer of the page.
Note: If the user does not have access permission, the button should not be displayed.

2. A screen with a form for creating a new user is displayed.
3. After confirming the data, the new user is temporarily created, being available after HR

administrator approval.

Xref: Section 3.2.2

HR User

Add User

HR
Administrator

Approve user
addition

 5

2.2.1.3: Delete User
Diagram:

Brief Description

A human resources worker may delete an existing user. Such operation will require the
approval of the administrator to be completed.

Initial Step-By-Step Description
With the user logged into the system

1. A user in the HR views a user
2. When you select the user, the delete option is displayed
3. After clicking delete, an email will be sent to the administrator alerting you to such

action
4. The deletion will remain "on hold"
5. The administrator can view the user and decide whether the deletion action will be

approved or not.

Xref: Section 3.2.2

HR User

Delete User

HR
Administrator

Approve User
deletion

 6

2.3 User Characteristics

 Human resource users in the "User" group are expected to access the functionality on a
daily basis. Given the number of employees in the company, the number of users will grow as
the system becomes more common.

Users of the "Administrator" group need to focus on several tasks per day, so the use of
this functionality should not be on a daily basis. E-mail notifications should be sent to these
users.

2.4 Non-Functional Requirements

 The new functionality should be implemented using XYZ technology, which is already
used in the existing application. The database used will be AAA, which is also used by the
current system.

Although the number of accesses to the application is not great, it must be carried out in
a way that provides easy understanding with the components that compose it.

 7

3.0. Requirements Specification

3.1 External Interface Requirements

N/A

3.2 Functional Requirements

The Logical Structure of the Data is contained in Section 3.3.1.

3.2.1 View User
Use Case Name View User
XRef Section 2.2.1.1, View User
Trigger User in the Users menu and search for a specific user
Precondition User is logged in

User has access to the page
User being searched exists

Basic Path 1. User logs on the system
2. User navigates to the "Users" page through the main menu
3. Search for the name of a user
4. Select the user from the list found

Alternative Paths For item 2, the user can access the page through a widget on the main
screen. Also, a given user can see its own data by clicking in its name
in the top right side of the screen.

Postcondition User details should be displayed on a page in a form.
Exception Paths The user may not click on one of the search results, not displaying any

details
Other User information includes:

• Name
• Id
• Office location
• Start date in the company
• End date in company
• Phone number
• E-mail
• Role
• Project
• Supervisor
• Photo

 8

3.2.2 Add User
Use Case Name Add User
XRef Section 2.2.1.2, Add User

Trigger The human resources user clicks "add user"
Precondition The user is in the "Users" screen and has the necessary permissions
Basic Path 1. User logs on the system

2. User navigates to the "Users" page through the main menu
3. Click on "add user"

Alternative Paths For item 2, the user can access the page through a widget on the main
screen

Postcondition A new user is created
Exception Paths The action can be abandoned at any time.

Any of the required fields are not filled in or are filled in incorrectly
(display error message in red below the required field).

Other User information includes:
• Name
• Id
• Office location
• Start date in the company
• End date in company
• Phone number
• E-mail
• Role
• Project
• Supervisor
• Photo

Use Case Name Approve user addition
XRef Section 2.2.1.2, Add User

Trigger The user clicks "add user", an email is sent to the human resources

administrator.
Precondition A user has been added by a HR user.
Basic Path 1. Log on to the system

2. Navigate to the "Users" page through the main menu
3. A previously deleted user appears on your screen with highlight.
4. Click the user to view
5. Click on approve addition

Alternative Pahs For item 2, the user can access the page through a widget on the main
screen

Postcondition The user is added
Exception Paths The action can be abandoned at any time.
Other N/A

 9

3.2.3 Delete User
Use Case Name Delete User
XRef Section 2.2.1.3 Delete User

Trigger The user clicks on "delete user"
Precondition The user is viewing a user in the "Users" screen and has the necessary

permissions.
Basic Path 1. User logs on the system

2. User navigates to the "Users" page through the main menu
3. Search for the name of a user
4. A user is selected
5. Click on "delete user"

Alternative Paths For item 2, the user can access the page through a widget on the main
screen

Postcondition An email is sent to the Human Resources administrator
Exception Paths The action can be abandoned at any time.
Other N/A

Use Case Name Approve user deletion
XRef Section 2.2.1.3, Delete User

Trigger The user clicks "delete user", An email is sent to the human resources

administrator.
Precondition A user has been deleted by a user.

User belongs to HR Administrator group
Basic Path 1. Log on to the system

2. Navigate to the "Users" page through the main menu
3. A previously deleted user appears on your screen with highlight.
4. Click the user to view
5. Click on approve deletion

Alternative Paths For item 2, the user can access the page through a widget on the main
screen

Postcondition The user is deleted
Exception Paths The action can be abandoned at any time.
Other N/A

 10

3.3 Detailed Non-Functional Requirements

3.3.1 Data Description

The data descriptions of each of these data entities is as follows:

Author Data Entity
Data Item Type Description Comment
Name Text Name of principle author Required
ID Integer ID number of Historical

Society member
Required
Auto-generated
Used as key in Database

Office location Text Location of office location Required
Start Date in the
Company

Date Date in which user has joined
the company

Required

End Date in the
Company

Date Date in which user has left
the company

Can’t be less than Start Date

Phone Number Integer Employee contact number
Email Address Text Internet address Required
Role Text Employee Role in the

company
Required

Project Text Project to which user is
related

Supervisor Text Supervisor of the employee
Photo PNG Photo of the user

3.3.2 Security

Only users within the human resources group, whether in the User or Administrator
subgroup, will be able to access the new functionality, except by the edit, which can be done by
any user, given its own information (not related to HR).

153

APPENDIX D – User Story Coding of
Document 1

Here are presented the User Story coding for Document 1.

154 APPENDIX D. User Story Coding of Document 1

Figure 37: Document 1 - User Story 1 coding

Source: Author

155

Figure 38: Document 1 - User Story 2 coding

Source: Author

157

APPENDIX E – User Story Coding of
Document 2

Here are presented the User Story coding for Document 2.

158 APPENDIX E. User Story Coding of Document 2

Figure 39: Document 2 - Epic coding

Source: Author

159

Figure 40: Document 2 - User Story 1 coding

Source: Author

160 APPENDIX E. User Story Coding of Document 2

Figure 41: Document 2 - Confluence 1 coding

Source: Author

Figure 42: Document 2 - Confluence 2 coding

Source: Author

161

APPENDIX F – User Story Coding of
Document 3

Here are presented the User Story coding for Document 3.

162 APPENDIX F. User Story Coding of Document 3

Figure 43: Document 3 - User Story 1 coding

Source: Author

163

Figure 44: Document 3 - User Story 2 coding

Source: Author

165

APPENDIX G – Artifacts Dispersion

The structures here present illustrate the way the information is stored and handled
inside the projects. The main purpose of this mapping is to know where the documents,
earlier studied, were being used. Beneath this purpose, sits the interest in discovering
which information, may it be written or an artifact, is used somewhere else, and how it
is dispersed among the different ways of communication presented in the projects (Jira1,
Confluence2, etc.).

This document presents an overview with some notes that complement the findings
presented in the code mapping (see A to F).

G.1 Artifacts Dispersion - Document 1
Artifacts Dispersion for document 1.

1 JIRA: https://www.atlassian.com/software/jira
2 Confluence: https://confluence.atlassian.com

Jira structure overview.

Document and Jira overview. Notice that Document is attached at Epic level.

168 APPENDIX G. Artifacts Dispersion

G.2 Artifacts Dispersion - Document 2
Artifacts Dispersion for document 2.

Jira structure overview.

Document and Jira overview. Notice that document is attached to Epic level.

Besides document and Jira, another platform, Confluence, is used by the team. In Confluence,
pages regarding software are presented, and information that are not contained in Jira, can be
found in there, if not in the document itself. Some information obtained after document
creation are only stored in Jira and Confluence.

Links to confluence can be found in Jira, at Epic level as well as in user Story level.

172 APPENDIX G. Artifacts Dispersion

G.3 Artifacts Dispersion - Document 3
Artifacts Dispersion for document 3.

Jira structure overview.

Document is stored at Epic level.

	Title page
	Approval
	Acknowledgements
	Epigraph
	Abstract
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Main Goal and Objectives
	Methodology and Organization
	Contributions
	Dissertation organization

	Fundamentals and Related Work
	Agile Practices
	User Story
	Virtual Environments
	User Experience
	Elements of User Experience
	The theory of distances
	Related Work
	User eXperience and Agile practices
	Virtual Environments
	Navigational Distance
	Conclusions and Related Work Comparison

	Case Study
	Context settings
	Analysis approach
	Artifacts Uncovering
	Documents Coding
	User Stories Coding
	Coding Results
	UX Information Dispersion
	UX Elements Dispersion Analysis
	UX Information Dispersion Findings

	Case Study Conclusions

	Improving Navigational Distance
	Practice and Theory Comparison
	Loss of Big Picture
	UX elements traceability
	UX elements in agile practices
	UX elements dispersion
	Navigational distance to UX elements

	Navigational distance classification
	Navigational effort classification
	Reducing the navigational distance and effort
	Good practices recommendation
	Template proposal for information arrangement in virtual environments
	US template
	UX Elements arrangement in virtual environment
	Repository template

	Template usage in different Tools
	Recommendations considerations

	Final Considerations

	Conclusion
	Contributions
	Results Propagation
	Study Limitations
	Future Work

	Bibliography
	Coding of Document 1
	Coding of Document 2
	Coding of Document 3
	User Story Coding of Document 1
	User Story Coding of Document 2
	User Story Coding of Document 3
	Artifacts Dispersion
	Artifacts Dispersion - Document 1
	Artifacts Dispersion - Document 2
	Artifacts Dispersion - Document 3

