
UNIVERSIDADE FEDERAL DE SÃO CARLOS  
CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA 

PROGRAMA INTERINSTITUCIONAL DE PÓS-GRADUAÇÃO EM ESTATÍSTICA UFSCar-USP 
 

 

 

 

Marco Henrique de Almeida Inácio

 

 

  

 

 
 
 
Tese apresentada ao Departamento de Estatística – Des/UFSCar e ao 
Instituto  de  Ciências  Matemáticas  e  de  Computação  –  ICMC-USP, 
como  parte  dos  requisitos  para  obtenção  do  título  de  Mestre  ou 
Doutor em Estatística - Programa Interinstitucional de Pós-Graduação 
em Estatística UFSCar-USP.  
 

Orientador: Prof. Dr. Rafael Izbicki

 

 

 

 

São Carlos 
Agosto de 2020

Conditional independence testing, two sample 
comparison and density estimation using neural 
networks



UNIVERSIDADE FEDERAL DE SÃO CARLOS

Centro de Ciências Exatas e de Tecnologia
Programa Interinstitucional de Pós-Graduação em Estatística

Folha de Aprovação

Defesa de Tese de Doutorado do candidato Marco Henrique de Almeida Inácio, realizada em 03/08/2020.

Comissão Julgadora:

Prof. Dr. Rafael Izbicki (UFSCar)

Prof. Dr. Francisco Aparecido Rodrigues (USP)

Prof. Dr. Diego Furtado Silva (UFSCar)

Prof. Dr. Bálint Gyires-Tóth (BME)

Prof. Dr. Anderson Luiz Ara Souza (UFBA)

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil
(CAPES) - Código de Financiamento 001.
O Relatório de Defesa assinado pelos membros da Comissão Julgadora encontra-se arquivado junto ao Programa
Interinstitucional de Pós-Graduação em Estatística.



This work is dedicated to the most Holy Trinity and the Θεοτόκος.





ACKNOWLEDGEMENTS

First of all, I would like to say thanks to my parents Nivaldo and Cláudia and to
my brother João Pedro. Then to my advisor Rafael Izbicki, and professors Bálint Gyires-
Tóth, Rafael Stern and Luis Ernesto Bueno Salasar for their amazing help and dedication
to this work.

And then professors of the evaluation board (Anderson Luiz Ara Souza, Diego
Furtado Silva and Francisco Aparecido Rodrigues) and the DE/UFSCar graduation sec-
retaries Isabel Araujo and Celius Martinez.

I would also like to thank the financial support of CAPES (this study was fi-
nanced in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior -
Brasil (CAPES) - Finance Code 001), of the Erasmus+ program and of the BME-Artificial
Intelligence FIKP grant of Ministry of Human Resources (BME FIKP-MI/SC). Finally,
I would also like to thank the professors and employees of University of São Paulo, Uni-
versity of São Carlos and of the Budapest University of Technology and Economics.





“ Ἅγιος ὁ Θεός, Ἅγιος ἰσχυρός, Ἅγιος ἀθάνατος, ἐλέησον ἡμᾶς. ”
“ Sanctus Deus, Sanctus Fortis, Sanctus Immortalis, miserere nobis. ”

“ Szent Isten, szent Erős, szent Halhatatlan, irgalmazz nekünk. ”
“ Santo Deus, Santo Poderoso, Santo Imortal, tende piedade de nós. ”

“ Holy God, Holy Mighty, Holy Immortal, have mercy on us. ”
(Trisagion)





RESUMO

INACIO, M. H. A. Estimação de densidades, comparação de amostras e medidas
de importância usando redes neurais. 2020. 113 p. Tese (Doutorado em Estatística
– Programa Interinstitucional de Pós-Graduação em Estatística) – Instituto de Ciências
Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2020.

Dada a grande quantidade de dados disponíveis nos dias de hoje e o rápido aumento
da capacidade de processamento computacional, o campo de aprendizado de máquina e
a assim chamada modelagem algorítmica tem visto um grande surto de popularidade e
aplicabilidade. Uma das ferramentas que atraíram grande popularidade são as redes neu-
rais artificiais dada, entre outras coisas, sua versatilidade, habilidade de capturar relações
complexas e sua escalabilidade computacional. Assim sendo, neste trabalho aplicamos es-
tas ferramentas de aprendizado de máquina em três problemas importantes da Estatística:
comparação de populações, teste de independência condicional e estimação de densidades
condicionais.

Palavras-chave: redes neurais artificiais, estimação de densidade condicional, teste de
independência condicional, comparação de populações, aprendizado de máquina.





ABSTRACT

INACIO, M. H. A. Conditional independence testing, two sample comparison
and density estimation using neural networks. 2020. 113 p. Tese (Doutorado em
Estatística – Programa Interinstitucional de Pós-Graduação em Estatística) – Instituto
de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP,
2020.

Given the vast amount of data available nowadays and the rapid increase of computational
processing power, the field of machine learning and the so called algorithmic modeling
have seen a recent surge in its popularity and applicability. One of the tools which
has attracted great popularity is artificial neural networks due, to among other things,
their versatility, ability to capture complex relations and computational scalability. In
this work, we therefore apply such machine learning tools into three important problems
of Statistics: two-sample comparison, conditional independence testing and conditional
density estimation.

Keywords: artificial neural networks, conditional density estimation, conditional inde-
pendence testing, two-sample comparison, machine learning.
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CHAPTER

1
INTRODUCTION

Given, among other things, the vast amount of data available nowadays and the
rapid increase of computational processing power, the field of machine learning and the
so called algorithmic modeling have seen a recent surge in its popularity and applicability.
One of the tools which has attracted great popularity is artificial neural networks due,
to among other things, their versatility, ability to capture complex relations and com-
putational scalability. In this thesis, we therefore apply such machine learning tools into
three traditional problems of Statistics: two-sample comparison, conditional independence
testing and conditional density estimation.

In chapter 2, we present an introduction to dense neural networks, its properties,
as well as the state-of-the-art methods of optimization and regularization; we also present
a description of the deep learning framework used.

In chapter 3, we present an introduction to Monte Carlo simulation studies and
to the sstudy package, with a short statistical description of the simulation study proce-
dure, as well as some examples of application using the package. Monte Carlo simulation
studies (which can be defined as the procedure of estimating and comparing properties of
estimators by averaging over many replications given a true distribution) are a possible
way to access the performance of new machine learning/statistical estimators. The sstudy
package, on the other hand, is designed to simplify their preparation and execution using
SQL database engines. Both simulations studies and this package will be vital to carry
out the work in the succeeding chapters. An article with content related to this chapter
has been published by Inácio (2020).

In chapter 4, we present a novel nonparametric approach to assess the dissimilarity
between two high-dimensional datasets using variational autoencoders (VAE) (KINGMA;
WELLING, 2014). We show how our approach can be used to visually assess how far apart
datasets are from each other via a boxplot of their distances and additionally, provide a
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way of interpreting the scale of these distances by using the distance between known
distributions as a baseline. We also show how a formal permutation-based hypothesis
testing can be derived within our framework. This chapter solves two gaps in literature,
first a general one which is lack of methods for population comparison on high dimensional
data using state of the art techniques. The second, which is more general in scope, is the
urging necessity to bring the novel methods of machine learning to revisit and solve
decades old classical problems of Statistics. The proposed methods could be used for
various tasks in the machine learning pipeline, including: distribution shift detection and
measurement, self-supervised clustering and anomaly detection. An article with content
related to this chapter has been published by Inácio, Izbicki and Gyires-Tóth (2020).

In chapter 5, we present the problem of importance measure and testing and
our proposed method of addressing such problem. We also propose a simulation study
to investigate the properties of such method and present the results of such study on
simulated datasets. Conditional independence testing is required by many methods in
machine learning and statistics, including Bayesian networks, time series, causal inference
and feature selection. However, it is not possible to design conditional independence tests
that are powerful against all points in the alternative hypothesis (SHAH; PETERS, 2018).
This issue is partially addressed by making assumptions about the data distribution. This
chapter develops conditional independence testing to evaluate the usefulness of features on
a prediction problem. Our goal in this chapter then is to test whether XA is independent
of the label, Y , given XO, that is, whether H0 : XA⊥Y |XO holds. We show that the p-values
obtained by our approach are proper, and that our hypothesis test has larger power than
competing approaches under a variety of settings. An article with content related to this
chapter has been published by Inácio, Izbicki and Stern (2019).

In chapter 6, we present an introduction to the conditional density estimation
problem and to Fourier Series. We also present our proposed method of conditional density
estimation as well an study of the performance of such method using real world datasets
with social, IT and astronomy related data. An article with content related to this chapter
has been published by Inácio and Izbicki (2018).

Finally, in chapter 7, we conclude the thesis with final remarks.
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Figure 1 – Example of a neural network with 2 inputs, 3 outputs and 2 hidden layers. The
weights and activation functions were omitted for simplicity.

2.2 Loss, SGD, learning rate, batch size and optimizers
Given a neural network, a loss function L and some input data, the outputs can

be used as predicted values and then one can use them to calculate a loss. L can be, for
example: the mean squared error between predicted values and target values (analogous
to the one calculated in a least squares regression procedure).

A simple way to update the weights of the neural network to minimize the loss in
a training dataset is by using the gradient descendant (GD) method. Basically, it consists
of using the whole dataset to calculate to gradient the loss with respect to the neural
network weights and then update the weight in the direction of the gradients with such
update weighted by a learning rate ε :

β ← β +
dL
dβ

ε (2.1)

Another possibility, the stochastic gradient descendant (SGD). In its simplest form,
called online SGD, the gradient is calculated (and the weights are updated) using a single
observation at a time. Moreover, in between the GD and the online SGD we have what
is called batch SGD which instead uses a part of the dataset (i.e.: a batch) to calculate
the gradients and update the weights, this however introduces another tuning parameter
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Figure 2 – Detailed representation of part of the neural network in Figure 1, including the
weights (in green) and operations and activation function (in yellow).

that affect the trajectory and convergence of the algorithm: the batch size. Note that the
general procedure for both SGD forms is to permute the dataset before each epoch (here
an epoch means a pass through the dataset).

One of the greatest advantages of using SGD is its ability avoid convergence to a
bad local minimum given the randomness introduced by using only part of the dataset on
each optimization step (weights update). However this ability is greatly affected by the
chosen learning rate (see Bottou (1991), for instance). In this work, in particular, we use
the Adam optimizer (KINGMA; BA, 2014) to handle the learning rate of the optimization
procedure.

Careful initialization is also of great help in avoiding those problems. Regarding
this, we used a method of initialization proposed by Glorot and Bengio (2010a).

2.3 Activation functions

As we have seen, after combining the weighted values of the previous neurons and a
bias, we apply an activation function before storing the value in the next neuron. Among
other things, these activation function aims to allow the network to model non-linear
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2.4 Regularization and early stopping

An intuitive and common way to avoid overfitting on neural networks, analogous
to the usage of LASSO and ridge regression techniques (for linear regression problems),
is by using a L2 or L1 regularization (also called penalization) over the weights of the
neural network . In case of L2 regularization, it consists of increment the calculated loss
by:

ϖ ∑
i, j,l

(β (l)
i, j )

2 (2.2)

where ϖ > 0 is a tuning parameter. An L1 regularization works in similar fashion, but
with absolute value instead of square in Equation 2.2.

Another important technique to avoid overfitting is by early stopping: it consist of
separating the dataset in train and validation sets (e.g.: 90%/10% split), using the train set
in the optimization (training) procedure of the network and after each epoch, evaluating
the error in the validation set and stopping the procedure after a ρ number of epochs
without improvement in the validation error. Where ρ is generally called “patience”.

2.5 Batch normalization

In this work, we also take extensively advantage of batch normalization, as pro-
posed by Ioffe and Szegedy (2015), which is a post-activation normalization procedure that
aims to stabilize the internal covariate shift of neural networks, that is, the (potentially
disturbing) influence that updating a layer of the network causes over the subsequent
layers during the training procedure.

2.6 Dropout

Dropout is technique proposed by Srivastava et al. (2014) that consist at randomly
setting some of the neurons to zero (drooping) during the training procedure. This is aimed
at reducing co-adaptation of neurons, a problem that arises specially in small datasets in
which a neuron is only helpful in the context of various other neurons and that causes
bad performance outside the training dataset (and thus can be considered an overfitting
problem). The intuition here is that due to the fact the some of the neurons are dropped
randomly, a neuron cannot rely on any other specific neuron or part of the network and
therefore co-adaptation is greatly reduced.

As an illustration of the procedure, in Figure 4, we present a neural network with
the same structure as in Figure 1, but with two neurons dropped out.
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On the other hand, the framework of choice for this work, called PyTorch works
with reverse-mode automatic differentiation which consists of creating the chain of differ-
entiation (on a “tape”) on-the-fly. That is, after the last operation is done (in our case,
that’s the calculation of the loss), the chain of operations is back-propagated (RUMEL-
HART; HINTON; WILLIAMS, 1986) (i.e.: running the “tape” backwards) and the gradi-
ents of the parameters of interest are calculated using chain rule.

Frameworks which works using symbolic differentiation are often called static while
the ones that use automatic differentiation are called dynamic. Regardless of this, most (if
not all) of those deep learning framework have two common characteristic that are worth
emphasizing: they allow one to use its differentiation facilities to work with problems other
than deep learning, neural networks or optimization (e.g.: Markov Chain Monte Carlo and
Bayesian inference) and they natively support GPU acceleration (generally, using Nvidia
CUDA).

The reason GPU acceleration is a common denominator over the deep learning
frameworks is due to the fact that neural networks are strongly parallelizable problems
and this make them well suited for GPU acceleration. This thus explain, at least in part,
their recent surge in popularity given the scalability properties of such methods to big
datasets, which on the other hand, are getting increasingly common and important.

2.8 Conclusion
In this chapter, we have presented an introduction to dense neural networks, its

properties, as well as a description of the deep learning framework to be used in this work.

As a final remarks for this chapter, we notice that neural networks are not limited
to dense/linear connection types that we described here. Among those, we could men-
tion in particular first convolutional neural networks (FUKUSHIMA, 2007) which have
given incredible breakthrough in the area of image recognition but also recurrent neural
networks (RUMELHART; HINTON; WILLIAMS, 1986) which extend dense neura net-
work to sequential data (possibly of variable size) and have successfully been applied to
problems of natural language processing, among others.
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CHAPTER

3
MONTE CARLO SIMULATION STUDIES ON

PYTHON USING THE SSTUDY PACKAGE
WITH SQL DATABASES AS STORAGE

In this chapter, we present an introduction to simulation studies and to the sstudy
package, both simulations studies and this package will be vital to carry out the working
in the succeeding chapters.

3.1 Introduction
One important aspect of proposing new machine learning/statistical estimators

and methods is the performance test phrase. A possible way to access such performance
is by Monte Carlo simulation studies, which can be defined as the procedure of estimating
and comparing properties (such as predictive power) of estimators (and other statistics) by
averaging over many replications given a true distribution; i.e.: generating a dataset, then
fitting the estimator, calculating and storing the predictive power, and then repeating the
procedure many times and finally averaging over the predictive powers across repetitions.

In this chapter, we present a Python (ROSSUM, 1995) package called sstudy which
is designed to simplify their preparation and execution using SQL database engines. We
also present a short statistical description of the simulation study procedure, as well as
some examples of application using the package.

3.1.1 Related work

While applications of simulation studies are abundant in literature (with a simple
search of “Monte Carlo simulation study” on Google Scholar yielding up to a thousand
results), there is also a considerable literature regarding the discussion and meta analysis
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of Monte Carlo simulation studies themselves. In particular, Morris, White and Crowther
(2019) presents a Biostatistics tutorial on the rationale behind using simulation studies,
while providing guidance for their design, execution, analysis, reporting and presentation,
with special focus on method evaluation.

Burton et al. (2006) discuss, in the context of medical Statistics, issues to consider
when designing a simulation study; in particular, by exposing how the study will be
performed, analysed and reported in details. Moreover, design decisions are discussed such
as the procedures for generating datasets and the number of simulations to be performed.
The authors also suggest a checklist of important design considerations.

Metcalfe and Thompson (2005) discuss the effect of varying the event generation
process (data generating distribution) on simulation studies in the context of evaluation
of Statistical methods for the analysis of recurrent events. Four distinct generating distri-
butions (Poisson, mixed Poisson, autoregressive, and Weibull) are used to evaluate a set
of distinct statistical estimators and their impact in the results is analysed. The authors
conclude that the event generation process impact the quality of the estimator and that,
therefore, multiple generation processes should be considered on a study.

Mundform et al. (2011) discuss the choice of the number of replications (simula-
tions) to be done for simulation studies with regards to the quality of the simulation, in
terms of, for example, type I error rates, power and run time. 22 works in literature were
analysed by them and replicated in order to find the minimum number of simulations
to be done in order to achieve stable results. The authors concluded that in many cases
fewer simulations than the original ones used in the works were needed to produce stable
estimates of the results, and that, for all works, less than 10000 simulations were sufficient
to achieve stable results.

Schaffer and Kim (2007) also discuss the choice of the number of replications to
be done on simulation studies, but specifically in the context of control chart analysis.
They also conclude than less than 10000 simulations are sufficient to achieve the desired
performance in their desired criteria, and moreover, that in many cases less than 5000
were also enough.

Finally, Mooney (1997) provides an extensive book on the subject and presents,
among other things, the logic behind Monte Carlo simulation studies, a set of five steps
to implement them and discusses their use in social sciences.

3.1.2 Terminology

Given the mixed audience nature of this work, we use the following terms inter-
changeably in this chapter:
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Source code 1 – Part of the database structure file
1: c l a s s Resu l t ( Model ) :
2: # Data s e t t i n g s
3: d a t a _ d i s t r i b u t i o n = TextFie ld ( )
4: method = TextFie ld ( )
5: no_instances = DoubleFie ld ( )
6:
7: # Resu l t s
8: s c o r e = DoubleFie ld ( )
9: e lapsed_time = DoubleFie ld ( )

For simple project running on a single machine, SQLite is the recommend storage
system as it is a self contained SQL engine which is stores the dataset in a single user-
defined file and does not require the installation of a SQL server system. Moreover, SQLite
files can be opened and explored using GUI tools such as the DB browser SQLite.

For projects running on a multiple machines, PostgreSQL (or MySQL) is the rec-
ommend storage system as it is a well supported open source SQL engine, although it
requires the a server installation (or renting a pre-installed server provided by a cloud
services platform). CockroachDB on the other hand is a distributed SQL system which
can be stored on a cluster on machines.

3.3.3 Basic usage

The recommended design of a experiment using the sstudy package is by having
it separated in 3 files:

• A file for database structure where we declare the variables to be stored in the SQL
database and their respective types (see Listing 1).

• A file for running the simulations where we declare the list of parameters to be
simulated, as well as the simulation script itself (see Listing 2).

• A file to explore/plot the results which can be exported directly into a pandas.DataFrame
(see Listing 3).

To see the complete source code of listings 1, 2 and 3, see the examples/basic
folder distributed together with the package, which is also available at: <https://gitlab.
com/marcoinacio/sstudy/-/tree/master/examples/basic>.

https://gitlab.com/marcoinacio/sstudy/-/tree/master/examples/basic
https://gitlab.com/marcoinacio/sstudy/-/tree/master/examples/basic
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Source code 2 – Part of the simulation execution file
1: to_sample = d i c t (
2: d a t a _ d i s t r i b u t i o n = [ ” complete ” , ” spa r s e ” ] ,
3: no_instances = [ 1 0 0 , 1000 ] ,
4: method = [ ’ o l s ’ , ’ l a s s o ’ ] ,
5: )
6:
7: de f func (
8: da ta_d i s t r i bu t i on ,
9: no_instances ,

10: method ,
11: ) :
12:
13: x = ( no_instances + 10000 , 10)
14: x = s t a t s . norm . rv s (0 , 2 , s i z e=x )
15: beta = s t a t s . norm . rv s (0 , 2 , s i z e =(10 , 1) )
16: eps = ( no_instances + 10000 , 1)
17: eps = s t a t s . norm . rv s (0 , 5 , s i z e=eps )
18: i f d a t a _ d i s t r i b u t i o n == ” complete ” :
19: y = np . matmul (x , beta ) + eps
20: e l i f d a t a _ d i s t r i b u t i o n == ” spa r s e ” :
21: y = np . matmul ( x [ : , : 5 ] , beta [ : 5 ] ) + eps
22: e l s e :
23: r a i s e ValueError
24:
25: y_train = y [ : no_instances ]
26: y_test = y [ no_instances : ]
27: x_tra in = x [ : no_instances ]
28: x_test = x [ no_instances : ]
29:
30: s ta r t_t ime = time . time ( )
31: i f method == ’ o l s ’ :
32: r eg = L inea rReg r e s s i on ( )
33: e l i f method == ’ l a s s o ’ :
34: r eg = Lasso ( a lpha =0.1)
35: r eg . f i t ( x_train , y_tra in )
36: s c o r e = reg . s c o r e ( x_test , y_test )
37: e lapsed_time = time . time ( ) − s tar t_t ime
38:
39: r e tu rn d i c t (
40: s c o r e = score ,
41: e lapsed_time = elapsed_time ,
42: )
43:
44: do_simulation_study ( to_sample , func , db , Result ,
45: max_count=no_s imulat ions )
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Source code 3 – Part of the simulation study results exploration file
1: import pandas as pd
2: . . .
3: d f = pd . DataFrame ( l i s t ( Resu l t . s e l e c t ( ) . d i c t s ( ) ) )
4: d f . groupby ( [ ’ da ta_d i s t r i bu t i on ’ , ’ no_instances ’ ,
5: ’ method ’ ] ) . mean ( )

3.3.4 Main features and documented examples
In the package documentation available at <https://sstudy.marcoinacio.com/>,

we present the following features and examples:

• Support to SQLite, PostgreSQL, MySQL and CockroachDB (and, at least in prin-
ciple, any additional dataset supported by peewee).

• Automatic randomization of executions.

• Optional filter of undesired simulation options.

• Prevention of SQL server disconnect failures: waits for availability of the server
again so that long simulation calculations are not lost.

• Automatic handling of binary data: whenever a dataset field is a BlobField, invokes
the “binarizer” pickle.dumps automatically. This allows the user to store whole ar-
rays or large class instances as results into the SQL database.

• Hints on exploring the results using pandas package.

3.4 Examples of applications
In the following subsections, we present a series of the example of usage of simula-

tion studies using the sstudy package, the source code of all example is available to down-
load in the package examples folder at <https://gitlab.com/marcoinacio/sstudy/-/tree/
master/examples>. A Dockerfile is also available at <https://gitlab.com/marcoinacio/
sstudy/-/blob/master/Dockerfile> in order to install the dependencies and run all exam-
ples on Docker.

3.4.1 Simple regression
Suppose that we want to compare the performance of ordinary least squares with

the performance of a LASSO with data being generated from a Gaussian linear regres-
sion: e.g.: each dataset contains 100 instances (X1,X2, ...,X100), with each instance arising
independently from a Y |X ∼Gaussian(Xβ ,σ). X ∼Multivariate Gaussian(0,2I).

https://sstudy.marcoinacio.com/
https://gitlab.com/marcoinacio/sstudy/-/tree/master/examples
https://gitlab.com/marcoinacio/sstudy/-/tree/master/examples
https://gitlab.com/marcoinacio/sstudy/-/blob/master/Dockerfile
https://gitlab.com/marcoinacio/sstudy/-/blob/master/Dockerfile


https://gitlab.com/marcoinacio/sstudy/-/tree/master/examples/basic
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Table 1 – Results for a simulation experiment using a Gaussian linear regression as dataset
generator using MSE on holdout set as score.

data n. of method scoredistribution instances

complete

100 LASSO 0.803 (0.035)
ols 0.838 (0.008)

1000 LASSO 0.856 (0.011)
ols 0.834 (0.010)

10000 LASSO 0.842 (0.016)
ols 0.825 (0.012)

sparse

100 LASSO 0.608 (0.073)
ols 0.660 (0.022)

1000 LASSO 0.747 (0.049)
ols 0.702 (0.022)

10000 LASSO 0.688 (0.040)
ols 0.695 (0.021)

1 error rate of method A and B under the null hypothesis µ = 2 and compare the test
power of such methods under the alternative hypothesis µ = 3.5.

Additionally, we could change the true distribution to something other than a
Gaussian to verify how that affects the type I error and the test power.

In order to illustrate this, we present an simulation study comparing the perfor-
mance of two sample comparison methods, i.e.: hypothesis tests that take two datasets
as input and attempt to test the hypothesis of whether the two datasets arise from the
same data generating function. We work with methods Mann-Whitney rank test(MANN;
WHITNEY, 1947), Kolmogorov-Smirnov(SMIRNOV, 1948) and Welch’s t-test(WELCH,
1947) for datasets with 1000 and 2000 instances, with each instance being generated by
a standard log-normal distribution. Moreover, under the alternative hypothesis, one the
datasets has 0.1 added to all of instances after sampling from the log-normal distribution.
Beyond that, 1000 simulations were performed for each configuration.

In Figure 5, we present the empirical cumulative distribution of the p-values under
the null hypothesis while in Figure 6, we present empirical cumulative distribution of the
p-values under the alternative hypothesis, which can also be interpreted as the test power.
We also present the confidence bandwidth of two times the standard error (approximately
95% asymptotically). We also present the results in Tables 2 and 3.

As can be seemed from the results, all tests are well behaved in terms of being
uniform under the null hypothesis as well as having test power that increases with number
of instances, with the Kolmogorov-Smirnov test outperforming both tests and the Mann-
Whitney test outperforming the Welch’s t-test.
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Figure 5 – Null hypothesis p-value distribution.

Table 2 – Test type I error rates.

method n instances avg p-value Error (α=1%) Error (α=5%)

K-Smirnov 1000 0.511 (0.009) 0.016 (0.004) 0.056 (0.007)
K-Smirnov 2000 0.505 (0.009) 0.015 (0.004) 0.044 (0.006)
M-Whitney 1000 0.494 (0.009) 0.012 (0.003) 0.049 (0.007)
M-Whitney 2000 0.506 (0.009) 0.010 (0.003) 0.050 (0.007)
Welch 1000 0.502 (0.009) 0.008 (0.003) 0.047 (0.007)
Welch 2000 0.490 (0.009) 0.006 (0.002) 0.055 (0.007)

Table 3 – Test power.

method n instances avg p-value Power (α=1%) Power (α=5%)

K-Smirnov 1000 0.019 (0.001) 0.651 (0.015) 0.887 (0.010)
K-Smirnov 2000 0.001 (0.000) 0.991 (0.003) 1.000 (0.000)
M-Whitney 1000 0.052 (0.004) 0.580 (0.016) 0.791 (0.013)
M-Whitney 2000 0.004 (0.001) 0.910 (0.009) 0.980 (0.004)
Welch 1000 0.348 (0.009) 0.062 (0.008) 0.190 (0.012)
Welch 2000 0.256 (0.009) 0.127 (0.011) 0.333 (0.015)



https://gitlab.com/marcoinacio/sstudy/-/tree/master/examples/hypothesis_testing
https://gitlab.com/marcoinacio/sstudy/-/tree/master/examples/hypothesis_testing
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In order to illustrate this, we present an simulation study comparing the perfor-
mance of neural networks given distinct number of hidden layers, with or without dropout
(SRIVASTAVA et al., 2014) and on training and test datasets.

We work with the following true distribution:

Xi,1 ∼Gaussian(0,1)
Xi,2 ∼Gaussian(0,1)
Yi ∼ cos(Xi,1)+ sin(Xi,2)+ ei

ei ∼Gaussian(0,1)

With each train dataset composed of ((X1,Y1),(X2,Y2), ...,(X1000,Y1000)) and each test
dataset composed of ((X1001,Y1001,(X1002,Y1002), ...,(X2000,Y2000)), both with instances sam-
pled i.i.d. We work with standard dense neural networks with 2 hidden layers of the same
size, ELU activations (DJORK-ARNÉ; UNTERTHINER; HOCHREITER, 2016) and
batch normalization (IOFFE; SZEGEDY, 2015), moreover we use Pytorch (PASZKE et
al., 2019) as neural networks framework with nnlocallinear Python package (COSCRATO
et al., 2019b) on top it.

In Figures 7, 8, 9 and 10 we present the results of the experiment when with and
without dropout and/or batch normalization. When using dropout, we set a 0.5 dropout
rate.
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Figure 7 – MSE for distinct hidden sizes, with dropout and with batch normalization

The source code for this experiment is available to download in the package exam-
ples/neural_networks folder at <https://gitlab.com/marcoinacio/sstudy/-/tree/master/
examples/neural_networks>.

https://gitlab.com/marcoinacio/sstudy/-/tree/master/examples/neural_networks
https://gitlab.com/marcoinacio/sstudy/-/tree/master/examples/neural_networks
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Figure 8 – MSE for distinct hidden sizes, without dropout and with batch normalization
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Figure 9 – MSE for distinct hidden sizes, with dropout and without batch normalization
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Figure 10 – MSE for distinct hidden sizes, without dropout and without batch normalization

3.4.4 Density estimation and Bayesian inference
Another interesting instance for using simulation studies is on density estimation.

Moreover, Bayesian estimators in general can also have their frequentist properties evalu-
ated using simulation studies (RUBIN, 1984).

To illustrate both points, we compare the performance of a npcompare(INÁCIO;
IZBICKI; SALASAR, 2018): a Bayesian density estimator against the kernel density es-
timator (ROSENBLATT, 1956; PARZEN, 1962; SILVERMAN, 1986) with bandwidth
hyper parameter chosen by data splitting.

We work with a mixture of gammas as true distribution for generating the dataset
(Y1,Y2, ...,Yn):

Xi,1 ∼ Beta(1.3,1.3)
Xi,2 ∼ Beta(1.1,3.0)
Xi,3 ∼ Beta(5.0,1.0)
Xi,4 ∼ Beta(1.5,4.0)
P(Yi = Xi,1) = 0.2

P(Yi = Xi,2) = 0.25

P(Yi = Xi,3) = 0.35

P(Yi = Xi,4) = 0.2

Moreover, we use the integrated squared loss as loss function:∫ 1

0
( f (x)− f̂ (x))2dx
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Note that in this case, there is no test dataset and the loss is evaluated directly against
the true distribution.

In Table 4, we present the results of the experiment

Table 4 – Results for a density estimation experiment.

number method loss number
no instances simul

100 kde 0.107 (0.003) 500
npcompare 0.038 (0.005) 30

200 kde 0.068 (0.002) 500
npcompare 0.021 (0.002) 30

As can be seemed, the npcompare method outperfomed the kde for with both 100
and 200 instances. Note that we used a lower number of simulations for the npcompare
method to its higher computational time, however, this was enough to notice the superi-
ority of the method (for this true distribution) given the calculated standard error.

The source code for this experiment is available to download in the package
examples/density_estimation folder at <https://gitlab.com/marcoinacio/sstudy/-/tree/
master/examples/density_estimation>.

3.5 Conclusion
In this chapter, we have presented a Python package called sstudy, designed to sim-

plify the preparation of simulation studies; we presented its basic features, usage examples
and references to the its documentation. Moreover, we also presented a short statistical
description of the simulation study procedure as well as usage examples.

https://gitlab.com/marcoinacio/sstudy/-/tree/master/examples/density_estimation
https://gitlab.com/marcoinacio/sstudy/-/tree/master/examples/density_estimation
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CHAPTER

4
DISTANCE ASSESSMENT AND ANALYSIS

OF HIGH-DIMENSIONAL SAMPLES USING
VARIATIONAL AUTOENCODERS

An important question in many applications of machine learning and Statistics
is whether two samples (or datasets) arise from the same data generating probability
distribution (GRETTON A.AND BORGWARDT et al., 2012; HOLMES et al., 2015; SO-
RIANO, 2015). Although an old topic in statistics (MANN; WHITNEY, 1947; SMIRNOV,
1948), simple accept/reject decisions given by most hypothesis tests are often not enough:
it is well known that the rejection of the null hypothesis does not mean that the differ-
ence between the two groups is meaningful from a practical perspective (COSCRATO
et al., 2019a; WASSERSTEIN; SCHIRM; LAZAR, 2019). Thus, tests that go beyond ac-
cept/reject decisions are preferred in practice. In particular, tests that provide not only
single and interpretable numerical values, but also a visual way of exploring how far apart
the datasets are from each other especially useful. This raises the question of how to
assess the distance between two groups meaningfully, which is especially challenging in
high-dimensional spaces.

In this chapter, we present a novel nonparametric approach to assess the dis-
similarity between two high-dimensional datasets using variational autoencoders (VAE)
(KINGMA; WELLING, 2014). We show how our approach can be used to visually assess
how far apart datasets are from each other via a boxplot of their distances and addi-
tionally, provide a way of interpreting the scale of these distances by using the distance
between known distributions as a baseline. We also show how a formal permutation-based
hypothesis testing can be derived within our framework.

The remaining of this chapter is organized as follows. In sections 4.0.1 and 4.0.2,
we present a brief description of articles related to our proposed method. In Section 4.1,
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we present a review of variational inference and VAE, and show that the latter can be
interpreted as a density estimation procedure, which is the basis of the proposed method.
In Section 4.2, we show how variational autoencoders can be used as a method of exploring
the differences between two samples. In Section 4.3, we use our method to derive a formal
hypothesis testing procedure. Both sections also show applications of the methods to
simulated and real-world datasets. Finally, Section 4.4 concludes the paper with final
remarks. Appendix 4.4 contains details on the configurations of the software and neural
networks used, as well as a link to our implementation, which is published open source.

4.0.1 Related work on two-sample hypothesis testing

Several nonparametric two-sample testing methods have been proposed in the liter-
ature; they date back to Mann and Whitney (1947), Smirnov (1948), Welch (1947): three
classical two-sample tests (Mann-Whitney rank test, Kolmogorov-Smirnov and Welch’s
t-test, respectively) which were designed to work for univariate random variables only.
On the other hand, Holmes et al. (2015), Soriano (2015), Ceregatti, Izbicki and Salasar
(2018) investigate Bayesian univariate methods for this task.

More recently, Gretton A.and Borgwardt et al. (2012) introduce a two-sample test
comparison using reproducing kernel Hilbert space theory that works for high-dimensional
data. The test, however, does not provide a way to visually assess the dissimilarity between
the datasets. Kirchler et al. (2020) proposes a method for two-sample hypothesis testing
utilizing deep learning, which contrary to a permutation based test, only controls the type-
1 error rate asymptotically; Lopez-Paz and Oquab (2017) proposes a test statistic built
using binary classifier in the context of causal inference and causal discovery, also relaying
on asymptotic distribution for the test statistic (the distance between the performance of
binary classifiers) under the null hypothesis.

Other two-sample tests for high-dimensional data can be found in (MONDAL;
BISWAS; GHOSH, 2015; ZHOU et al., 2016) and references therein. Although these tests
are robust and effective in many settings, they do not provide a visual analysis to assess the
distance between the groups. Thus, they do not provide ways of checking if the difference
between the datasets is meaningful from a practical perspective, a gap in literature which
is filled by this chapter.

4.0.2 Related work on two-sample comparison and distance measure-
ment

There has also been some work devoted to two-sample comparison and related
tasks: In particular Inácio, Izbicki and Salasar (2018), provides a framework for assess-
ing the distance between populations using density estimation methods. However, the
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method provided in that work is based on MCMC (Markov Chain Monte Carlo) Bayesian
simulations, and therefore it is unable to scale to large datasets (see Betancourt (2015),
for instance) and high-dimensional spaces. In this chapter, we overcome these issues by
using variational autoencoders to estimate densities, and by introducing a specific metric
which has an analytic solution even in high-dimensional spaces.

Kornblith et al. (2019) (and references therein) proposes a new method of compari-
son of neural networks representation. Larsen et al. (2016) propose a variant of variational
autoencoders (VAE) that better measure similarities in data space than a vanilla VAE.
An and Cho (2015) uses VAEs for anomaly detection: that is, with the goal of identifying
whether a single instance is different from an observed sample. Dengsheng Zhang and
Guojun Lu (2003) evaluates existing similarity measurement methods in the context of
image retrieval.

These papers however do not use their methods for performing formal hypothesis
tests.

Finally, for closely-related problems and applications, see also Pfister et al. (2016),
Ramdas, Trillos and Cuturi (2017), Inácio, Izbicki and Stern (2019) for methods on how
to solve the problem of independence testing and Bińkowski et al. (2018) which uses
two-sample tests as a tool to evaluate generative adversarial networks.

4.1 Variational Autoencoders
In this section, we review key aspects of the variational autoencoders framework

(KINGMA; WELLING, 2014) which are important to our proposed method.

Variational autoencoders are among the most famous deep neural network ar-
chitectures. The generative behaviour of VAEs makes these model attractive for many
application scenarios. VAEs are often used in computer vision related tasks. Introduc-
ing labeled data to the VAE training, attribute vectors, such as smile vector (YAN et
al., 2016), can be computed; i.e. in Yan et al. (2016) the smile vector is computed by
subtracting the mean latent vector for images of smiling and non-smiling people. In the
generation phase, this vector can be altered in the latent space to generate faces with dif-
ferent smiling attributes. Another work utilizes VAEs to predict the possible movement
of objects on images, pixelwise (WALKER et al., 2016). Videos were also generated from
text by combining VAEs with Generative Adversarial Network (GANS) (LI et al., 2018).
VAEs are also successfully applied in speech technologies. Hsu, Zhang and Glass (2017)
learns latent representations from unlabelled data with VAEs for speech transformation
(including phonetic content and speaker identity). In text-to-speech synthesis systems
VAEs can be successfully applied for learning attributes and thus, controllable, expres-
sive speech can be generated (AKUZAWA; IWASAWA; MATSUO, 2018). Other types
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of sequences, like text, can also be modeled with VAEs. Semeniuta, Severyn and Barth
(2017) uses convolutional encoder and deconvolutional decoder components, augmented
with a recurrent language model in a variational autoencoder architecture to model text.
Furthermore, there have been numerous theoretical research that focuses on or utilizes
VAEs, like for second-order gradient estimation (FAN et al., 2015), for importance weight-
ing (BURDA; GROSSE; SALAKHUTDINOV, 2015), for anomaly detection (SUH et al.,
2016) and for novel architectures, like ladder VAE (SØNDERBY et al., 2016).

4.1.1 Statistical definition
Consider an i.i.d. random sample D = (X1,X2, ...,Xn). Variational autoencoders

estimate the density of this sample by encoding the information of each Xi using latent
random variables Z = (Z1,Z2, ...,Zn), which are linked to (X1,X2, ...,Xn) by a parameter θ .
More precisely, the model assumes the structure

Pθ (D = d|Z) =
n

∏
i=1

N (Xi = xi;(µi,σi) = gθ (Zi)),

where Zi ∼N (0,1), gθ is a complex function (a neural network) with parameter θ (i.e.:
the parameters/weights of a neural network), and µi and σi are the mean and standard de-
viation of the Gaussian distribution. Inference on such model is performed by maximizing
the evidence P(D = d;θ) := Pθ (D = d).

Note that, if gθ is complex enough, we can actually model any distribution of Xi

(DEVROYE, 1986). This is why gθ is parametrized using an artificial neural network; it
leads to flexibility (because of the richness of the space of functions they can represent,
Hornik, Stinchcombe and White (1989)) as well as scalability.

Unfortunately, maximization of the evidence cannot be directly solved due to the
curse of dimensionality (DOERSCH, 2016). The next section shows how variational infer-
ence can be used to overcome this.

4.1.2 Variational inference
The curse of dimensionality can be solved using variational inference, which con-

sists of optimizing

logPθ (D = d)−DKL(Q
(Z|D=d)
ϕ |P(Z|D=d)

θ )

= EQϕ [logPθ (D|Z)|D = d]

−DKL(Q
(Z|D=d)
ϕ |P(Z))

where DKL refers to the Kullback-Leibler divergence and Q given by:

Qϕ (Zi|Xi = xi) = N (Zi;(µi,σi) = hϕ (xi))
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over samples of pairs (µ,σ). Nonetheless, the induced final density (i.e., the Gaussian mix-
ture) should be same analytically (i.e.: ignoring the stochastic variation that estimation
methods induce).

4.2 Two sample comparison: definition of the distance
We name our approach for assessing the similarity between two datasets, D1 and

D2 as vaecompare and describe it as follows. First, we train two variational autoencoders:
one for D1 and one for D2. Let gθ1 and gθ2 be the learned functions for each of the
autoencoders. gθ1 and gθ2 , together with Z ∼ N(0,1), induce two distributions over the
parameter space (µ,σ). Let S1 = (µ1,σ1) and S2 = (µ2,σ2) be two samples generated from
the enconders gθ1 and gθ2 , respectively. We then measure the distance between S1 and S2.
Now, recall that each (µ,σ) is used to generate a new sample X ∼N(µ,σ) (Section 4.1.3).
Thus, a meaningful distance between S1 and S2 should be in the space of the random
variables they generate. The key idea to make the method computationally feasible is to
use a symmetric Kullback-Leibler divergence between the distributions induced by S1 and
S2:

D(S1,S2) :=
DKL(PS1,PS2)+DKL(PS2,PS1)

2d
,

where d is the dimension of the feature space, PSi is a (multivariate) Gaussian distribution
with parameters (µi,σi), and DKL is the Kullback-Leibler divergence. DKL has an analytical
solution in the Gaussian case:

DKL(N (µ1,σT
1 I),N (µ2,σT

2 I)) =

1
2

[
2

(
d

∑
i=1

logσ2,i− logσ1,i

)
−d +

(
d

∑
i=1

σ2
1,i/σ2

2,i

)
+

(
d

∑
i=1

σ2
2,i(µ2,i−µ1,i)

2

)]

In case X represents an image, we use the standard approach of using multi-
dimensional Bernoulli distributions with dimensions independent from each other (see
Kingma and Welling (2014), Doersch (2016), for instance). In this case, the Kullback-
Leibler can also be obtained analytically:

1
2d

(DKL(Bernoulli(p),Bernoulli(q))+DKL(Bernoulli(q),Bernoulli(p)))

=
1

2d

d

∑
i=1

(qi− pi)(log(qi)− log(pi)+ log(1− pi)− log(1−qi))

Using this approach, we can therefore assess the distance between a sample gen-
erated from the first autoencoder and a sample generated from the second autoencoder.
In order to assess the divergence between the datasets D1 and D2, we can repeat this
procedure several times; this will give a sample of the distribution of distances.
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Now, in order to overcome the identifiability issue discussed in Section 4.1.4, we
train the variational autoencoders multiple times (we call these “refits”) for each dataset
(using distinct initialization seeds for the network parameters) and use the new instances
pairs (µ,σ) from each of them in equal proportion. The full procedure is summarized in
Algorithm 2 and Figure 12.

Figure 12 – Schematic representation of the procedure to generate divergence samples for data
comparison.

Note that from the perspective of applying this method to images, it can also be in-
terpreted as a data exploration tool, as it helps exploring the separability and uncertainty
of classes of images and the relation between their data generating processes.

4.2.1 Assessing the magnitude of the distance
In Section 4.2, we defined a method to measure the distance between two datasets.

A yardstick is still required in order to say what is a “low” and “high” distance. In order
to create a baseline to interpret such distances, we proceed in similar fashion as Inácio,
Izbicki and Salasar (2018): we compute the distance between two known distributions.
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Algorithm 2 – Generating divergence samples using vaecompare
Input: dataset D1, dataset D2, number of desired samples per refit n, number of desired refits
R
Output: divergence samples S.

1: for i ∈ {1, . . . ,R} do
2: Train VAE V1 from D1
3: Train VAE V2 from D2
4: for j ∈ {1, . . . ,n} do
5: Generate a sample s1 from V1 (e.g.: a pair (µ,σ) for Gaussian VAE).
6: Generate a sample s2 from V2.
7: Calculate D(s1,s2) and store it on S.
8: end for
9: end for

In the case of Gaussian VAEs we can work for instance with D(N0,N1), where N0

is a multivariate Gaussian with covariance given by an identity matrix and mean given by
a vector of zeros and N1 is a multivariate Gaussian with covariance given by an identity
matrix and mean given by a vector of ones. We have that D(N0,N1) = 1/2. For binomial
VAEs, we use known binomial distributions as the baseline.

4.2.2 Evaluation (images)

Next, we apply the method to CIFAR10 data (KRIZHEVSKY, 2009) using the
VAE as a generator of binomial distributions. The dataset consists of images from 10
distinct categories (ranging from 0 to 9), with each category containing 5000 images. To
make the comparison fair when comparing a category to itself and when comparing a
category to another, we chose to work with half of each category dataset (2500 images) to
train each VAE; i.e.: when comparing category 0 to category 1, one VAE is trained with
2500 images from category 0 and the other is trained with 2500 images from category 1;
on the other hand, when comparing category 0 to itself, each VAE is trained with half
(2500 images) of the category 0 dataset. We worked with 90 VAE refits for each dataset.

In Figure 13, we present the results of such experiment with boxplots of the ob-
tained divergences for all possible category combinations (note that the lower image of
each plot is a zoomed-in version of the upper image). The figure also shows the median
and mean for each category, as well as the divergence of known Bernoulli distributions
(plotted as horizontal lines).

Except for categories 0, 2 and 4, the divergence samples were all concentrated near
zero when comparing a category to itself (a desirable behaviour). On the other hand, for
these 3 categories, we can observe a considerable amount of divergence samples spread
far from zero indicating some uncertainty, but even in this case, there was a considerable
amount of them near zero. Note also that the median for these three categories is much
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Figure 13 – Box plots of samples from our divergences comparing categories 0 to 8 to all cate-
gories. Note that the lower image of each plot is a zoomed-in version of the upper
image.
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Algorithm 3 – Obtaining the p-value for hypothesis testing using vaecompare
Input: dataset D1, dataset D2, number of desired samples per refit n, number of desired refits
R, number of permutations t, averaging function M (e.g. mean or median)
Output: p-value ρ.

1: for i ∈ {1, . . . , t} do
2: Run Algorithm 2, and store the results in Si.
3: Calculate M(Si) and store the result in Ki.
4: Permute the instances of datasets D1 and D2.
5: end for
6: Obtain the number of points q1 in {K2,K3, ...,Kt} which are greater than K1.
7: Obtain the number of points q2 in {K2,K3, ...,Kt} which are greater than or equal to

K1.
8: Set q = (q1 +q2)/2
9: Store (q+1)/(t +1) in ρ .

For simplicity, we do not use refits here. The value of the vector k is fixed in zero
for one of the datasets, and varied for the other. This is done in order to change the
dissimilarity between the samples (i.e.: the larger k is, the more dissimilar the sample
distributions are) and from that, observe the behaviour of the distribution of the p-value.

In Figure 14a, we present the results of such experiment using the permutation test
(with 100 permutations): the empirical cumulative distribution of the p-values; while in
Figure 14b, we do the same simulation study using an Gaussian asymptotic approximate
to the permutation test.

The permutation test fulfilled the required properties of a frequentist hypothe-
sis test, as it has approximately (sub)uniform distribution under the null hypothesis (as
expected) and the test power increases as the divergence increases. Notice that, for sim-
plicity, we do not use refits here; if we do, we expect the power to increase as is the case
in the next section. The asymptotic test, on the other hand, performed poorly.

4.3.2 Evaluation (images)

Here, we also applied the hypothesis testing method to the CIFAR10 dataset, using
the same 2500 images for each category as described in 4.2.2. In Tables 5, 6, 7 and 8 we
present the p-values obtained in the test while in Tables 9, 10, 11 and 12 we present the
combinations that gave the correct results and type 2 error for a significance level of 5%.
We applied the tests both without VAE refits and with 5 refits; we also tried the median
as an alternative to the mean with the intuition that this might help remove the weight
of outlier distance points.

In Table 13, we present a summary of the results. The method performed well
under the null for both the mean and median metrics. Moreover, the method has shown
to have a significant increase in test power when used with VAE refits.
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Figure 14 – Empirical cumulative distribution function of the p-values for distinct dissimilarity
values (when the dissimilarity is zero, the null hypothesis is true) using a permuta-
tion test and asymptotic (approximate to permutation test).

In case of metrics performance comparison, it can be seem that the mean had
incurred in less type I errors while the median incurred in larger but an admissible number
given the critical rate of 5%. On the other hand the performance of median metric was
considerably better regarding type II errors, this might be related to its robustness to
outliers which have shown to be a frequent problem in the Figure 13.

Table 5 – P-values for hypothesis testing for each category without refits and averaging using
the median.

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9
c0 0.99 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.40 0.01
c1 - 0.42 0.56 0.01 0.01 0.01 0.05 0.24 0.03 0.37
c2 - - 0.74 0.50 0.40 0.04 0.58 0.04 0.01 0.01
c3 - - - 0.78 0.31 0.26 0.49 0.22 0.01 0.01
c4 - - - - 0.39 0.21 0.29 0.23 0.01 0.01
c5 - - - - - 0.02 0.01 0.01 0.01 0.01
c6 - - - - - - 0.96 0.32 0.01 0.01
c7 - - - - - - - 0.78 0.01 0.01
c8 - - - - - - - - 0.06 0.01
c9 - - - - - - - - - 0.54

4.3.3 Evaluation (comparison with other methods)

Next, we apply our proposed hypothesis testing method (using the median as the
averaging function and 10 refits) to simulated datasets from a known data generating
function and compare it with other well established two-sample comparison methods:
Mann-Whitney rank test (MANN; WHITNEY, 1947), Kolmogorov-Smirnov (SMIRNOV,
1948) and Welch’s t-test (WELCH, 1947).
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Table 6 – P-values for hypothesis testing for each category with refits and averaging using the
median.

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9
c0 0.20 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01
c1 - 0.26 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.02
c2 - - 0.36 0.20 0.05 0.04 0.07 0.01 0.01 0.01
c3 - - - 0.41 0.06 0.14 0.25 0.03 0.01 0.01
c4 - - - - 0.90 0.02 0.01 0.02 0.01 0.01
c5 - - - - - 0.94 0.02 0.01 0.01 0.01
c6 - - - - - - 0.02 0.01 0.01 0.01
c7 - - - - - - - 1.00 0.01 0.01
c8 - - - - - - - - 0.36 0.01
c9 - - - - - - - - - 0.03

Table 7 – P-values for hypothesis testing for each category without refits and averaging using
the mean.

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9
c0 0.25 0.12 0.01 0.01 0.01 0.01 0.01 0.01 0.48 0.05
c1 - 0.82 0.50 0.23 0.03 0.05 0.07 0.15 0.01 0.05
c2 - - 0.19 0.49 0.48 0.44 0.09 0.02 0.10 0.01
c3 - - - 0.22 0.11 0.36 0.15 0.27 0.01 0.01
c4 - - - - 0.87 0.20 0.40 0.01 0.01 0.01
c5 - - - - - 0.19 0.05 0.23 0.01 0.01
c6 - - - - - - 0.73 0.01 0.01 0.01
c7 - - - - - - - 0.48 0.01 0.02
c8 - - - - - - - - 0.45 0.06
c9 - - - - - - - - - 0.48

Table 8 – P-values for hypothesis testing for each category with refits and averaging using the
mean.

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9
c0 0.16 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.01
c1 - 0.30 0.07 0.01 0.01 0.01 0.01 0.01 0.01 0.02
c2 - - 0.10 0.06 0.12 0.37 0.04 0.01 0.01 0.01
c3 - - - 0.83 0.08 0.45 0.15 0.02 0.01 0.01
c4 - - - - 0.53 0.05 0.10 0.20 0.01 0.01
c5 - - - - - 0.50 0.01 0.01 0.01 0.01
c6 - - - - - - 0.12 0.05 0.01 0.01
c7 - - - - - - - 0.48 0.01 0.01
c8 - - - - - - - - 0.18 0.01
c9 - - - - - - - - - 0.71
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Table 9 – Results of the hypothesis testing when applying a critical rate of 5% without refits
and averaging using the median. Here G stands for “good”, E1 for type 1 error and
E2 for type 2 error.

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9
c0 G G G G G G G G E2 G
c1 - G E2 G G G G E2 G E2
c2 - - G E2 E2 G E2 G G G
c3 - - - G E2 E2 E2 E2 G G
c4 - - - - G E2 E2 E2 G G
c5 - - - - - E1 G G G G
c6 - - - - - - G E2 G G
c7 - - - - - - - G G G
c8 - - - - - - - - G G
c9 - - - - - - - - - G

Table 10 – Results of the hypothesis testing when applying a critical rate of 5% with refits and
averaging using the median. Here G stands for “good”, E1 for type 1 error and E2
for type 2 error.

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9
c0 G G G G G G G G G G
c1 - G G G G G G G G G
c2 - - G E2 G G E2 G G G
c3 - - - G E2 E2 E2 G G G
c4 - - - - G G G G G G
c5 - - - - - G G G G G
c6 - - - - - - E1 G G G
c7 - - - - - - - G G G
c8 - - - - - - - - G G
c9 - - - - - - - - - E1

Table 11 – Results of the hypothesis testing when applying a critical rate of 5% without refits
and averaging using the mean. Here G stands for “good”, E1 for type 1 error and
E2 for type 2 error.

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9
c0 G E2 G G G G G G E2 G
c1 - G E2 E2 G G E2 E2 G G
c2 - - G E2 E2 E2 E2 G E2 G
c3 - - - G E2 E2 E2 E2 G G
c4 - - - - G E2 E2 G G G
c5 - - - - - G G E2 G G
c6 - - - - - - G G G G
c7 - - - - - - - G G G
c8 - - - - - - - - G E2
c9 - - - - - - - - - G
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Figure 15 – Comparison of vaecompare with other hypothesis testing methods. Our procedure
shows good power.
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Figure 16 – Comparison of vaecompare with other hypothesis testing methods. Points outside
of the grid are smoothed by interpolation. Our procedure shows good power.
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data analysis (on two-sample comparison) instead of just hypothesis testing and moreover,
as shown in Section 4.3.2, the test power could potentially increase if an additional number
of refits, which were set to be a small number because of the computational restrictions
of the simulation study.

4.4 Discussion and Conclusions

In this chapter, we proposed and applied a novel method of two sample distance
measurement and hypothesis testing to simulated and real-world datasets. We conclude
that both two sample distance measurement and hypothesis testing were able to satisfac-
torily perform the intended tasks on the tested simulated and real world datasets.

The proposed methods could be used for various tasks in the machine learning
pipeline, including:

• Distribution shift detection and measurement: a dataset from a experiment done
in one month (e.g.: opinions of customers on a product on a specific month) might
diverge in distribution from a dataset collected in another month. With our method
it is possible to measure and test this diverge.

• Dataset split: to address overfitting, the data is usually split into train, validation
and/or test parts. To be able to develop robust models, these parts should be similar,
but should also differ enough to ensure generalization. With the proposed methods
the dataset split can be done in a controlled manner, an important speed on state-
of-the-art predictive methods (e.g.: see Breiman (1996), Coscrato, Inácio and Izbicki
(2020) and references therein).

• Self-supervised clustering: based on the distance, by fine-tuning the threshold (cut-
point), binary or multi-class clustering could be performed.

• Anomaly detection: applying the proposed method to processes where anomaly may
occur (e.g. malicious attack, malfunction, etc.). In this case, the distance measure-
ment can give a direct feedback of how much the actual behaviour differs from the
normal one.

• To test the quality of data generated from GANs and similar approaches (e.g.: see
Lopez-Paz and Oquab (2017)).

applying it the whole dataset (at least not without causing further problems such as bias
multiple comparisons).



70
Chapter 4. Distance assessment and analysis of high-dimensional samples using variational

autoencoders

Appendix: Neural networks configuration, software and
package

We work with a dense neural network of 10 layers with 100 neurons on each layer
(totaling 195060 parameters), for both encoder and decoder networks, and the following
additional specification:

• Optimizer: we work with the Adamax optimizer (KINGMA; BA, 2014) with initial
learning rate of 0.01 and decrease its learning rate by half if no improvement is seen
on the validation loss for a considerable number of epochs.

• Initialization: we used the initialization method proposed by (GLOROT; BEN-
GIO, 2010a).

• Layer activation: we chose ELU (DJORK-ARNÉ; UNTERTHINER; HOCHRE-
ITER, 2016) as activation functions.

• Stop criterion: a 90%/10% split early stopping for small datasets and a higher
split factor for larger datasets (increasing the proportion of training instances) and
a patience of 50 epochs without improvement on the validation set.

• Normalization: batch normalization, as proposed by (IOFFE; SZEGEDY, 2015),
is used in this chapter in order to speed-up the training process.

• Dropout: here we also make use of dropout which as proposed by (SRIVASTAVA
et al., 2014) (with dropout rate of 0.5).

• Software: we have PyTorch(PASZKE et al., 2019) as framework of choice which
works with automatic differentiation and the sstudy Python package(INÁCIO, 2020)
for organizing the simulation studies and comparisons. Moreover, the software imple-
mentation of this chapter is available at <https://github.com/randommm/vaecompare>.

Additionally, we present in algorithms 4 and 5 the algorithm to evaluate the en-
coder and decoder neural networks, respectively.

https://github.com/randommm/vaecompare
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Algorithm 4 – Algorithm to evaluate encoder network g(.) presented in Figure 11
Input: x,
Output: µ, σ .

1: val = x
2: for i ∈ {1,10} do
3: val = linear(val) (with output size 100).
4: val = ELU(val).
5: val = batch_norm(val)
6: val = dropout(val)
7: end for
8: µ = linear(val)
9: σ = exp{linear(val)}.

Algorithm 5 – Algorithm to evaluate decoder network h(.) presented in Figure 11
Input: z, distribution
Output: (µ, σ) or p.

1: val = z
2: for i ∈ {1,10} do
3: val = linear(val) (with output size 100).
4: val = ELU(val).
5: val = batch_norm(val)
6: val = dropout(val)
7: end for
8: if distribution is ”gaussian” (i.e. continuous data) then
9: µ = linear(val)

10: σ = exp{linear(val)}.
11: else if distribution is ”bernoulli” then
12: p = sigmoid{linear(val)}.
13: end if
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CHAPTER

5
CONDITIONAL INDEPENDENCE TESTS: A

PREDICTIVE PERSPECTIVE

Conditional independence testing is required by many methods in machine learn-
ing and statistics, including Bayesian networks (JENSEN, 1996; CAMPOS, 2006), time
series (DIKS; PANCHENKO, 2006), causal inference (SPIRTES et al., 2000; PEARL,
2009) and feature selection (KOLLER; SAHAMI, 1996). However, it is not possible to
design conditional independence tests that are powerful against all points in the alter-
native hypothesis (SHAH; PETERS, 2018). This issue is partially addressed by making
assumptions about the data distribution. Indeed, various conditional independence meth-
ods have a high power for alternative hypotheses of interest (DORAN et al., 2014; SEN
et al., 2017; BERRETT et al., 2018; CHALUPKA; PERONA; EBERHARDT, 2018).

This chapters develops conditional independence testing to evaluate the usefulness
of features on a prediction problem. More precisely, let X= (X1, . . . ,Xp) be a set of features,
XA be a subset of X, and XO be the remaining features. Our goal is to test whether XA

is independent of the label, Y , given XO, that is, whether H0 : XA⊥Y |XO holds. Although
testing H0 is related to measures of feature importance (BREIMAN, 2001; STROBL et
al., 2008; FISHER; RUDIN; DOMINICI, 2018), they are not the same. While the latter
quantifies how informative is a given feature, the former answers whether or not the
feature is relevant.

In order to test H0, this chapter investigates permutation tests (GOOD, 2013).
Specifically, we propose tests that compare the performance of a predictive method using
the actual data and new sets in which the values of XA are permuted. Note that the
permuted values of XA are not informative for predicting Y . The better the predictive
method performs on the actual data over the permuted data, the more evidence there is
against H0. Although the test in Watson and Wright (2019a) also compares the risk of two
prediction methods, it is not based on permutations of the data. We show that, specially
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for small sample sizes, such permutation tests can approximately control the significance
level while achieving higher power against relevant alternative hypotheses.

The remaining of this chapter is organized as follows. Section 5.1 introduces
COINP, our approach to test conditional independence. Section 5.2 contains experiments
for comparing COINP with other approaches while Section 5.3 presents an illustrative
example of applying the method to a real world dataset together the classical importance
measure obtained from random forests.

5.1 Predictive conditional independence tests

5.1.1 Notation and problem setting
Let X = Rp, Y , and Z = (X ×Y )n denote, respectively, the feature space, the

label space and the space of all possible datasets. The observed data is Z= (X,Y), where
X ∈X n is a n× p feature matrix and Y ∈ Y n is the label vetor. We assume that the
observations Zi = (Xi,Yi), i = 1, . . . ,n, are independent and identically distributed. Let
A ⊂ {1, . . . , p}, B = Ac, and XA = (Xi)i∈A be a subset of the features. Our goal is to test
whether XA is independent of Y given XO, the remaining variables, that is, we have
H0 : XA⊥Y |XO.

In order to test H0, we use the estimated risk of predictive functions. A predictive
function is a mapping from features to labels, that is, an element of F := { f : X −→Y }.
Predictive functions are compared according their risks. Given a loss functions, L : Y ×
Y −→ R, the risk of a prediction function f ∈ F is R( f ) := E[L( f (X),Y )]. The Bayes
predictive function, f ∗ is the one with the smallest risk, that is, f ∗ = argmin f∈F R( f ).
The risk is estimated using a holdout dataset, Z̃ ∈ (X ×Y )m, which was not used for
finding f . Formally, the estimated risk of f , R̂( f , Z̃), is

R̂( f , Z̃) :=
1
m

m

∑
i=1

L( f (x̃i), ỹi).

The Conditional Independence Predictive Test (COINP) uses the intuition that,
if XA⊥Y |XO, then the Bayes predictive function based solely on XO should have the same
risk as the Bayes predictive function based on X. In order to test whether this is the case,
a permutation test is used. In this procedure, a prediction function is trained in a dataset
that is obtained by randomly permuting the rows of X associated to the features in A.
This procedure is illustrated in Figure 17 when A = {3}. Formally, for every j = 1, . . . ,B,
π j denotes the j-th permutation function, Zπ j denotes the j-th permuted dataset, xπ j

i

denotes the i-th feature row of the permuted dataset, and Z̃π j denotes the j-th permuted
holdout set.

Table 14 summarizes the above notation.
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Z :=

X1 X2 X3 Y
▲ ♦ ■ ⋆
■ ▲ ▲ ⋆
▲ ⋆ ⋆ ■
■ ♦ ▲ ♦
⋆ ♦ ▼ ■
⋆ ▼ ⋆ ▼

⇒

X1 X2 X3 Y
▲ ♦ ▲ ⋆
■ ▲ ■ ⋆
▲ ⋆ ⋆ ■
■ ♦ ⋆ ♦
⋆ ♦ ▲ ■
⋆ ▼ ▼ ▼

=: Zπ

Figure 17 – Illustration of the procedure that is used for testing X3⊥Y |(X1,X2). For each permu-
tation function, π, the permuted database, Zπ is obtained by permuting the feature
X3 in Z by π.

Table 14 – Notation used in the chapter.

Symbol Meaning
X n× p feature matrix
Y label vector
Z training data
Z̃ holdout data
F space of prediction functions
R̂( f ,Z) risk estimate of f ∈F based on Z

Zπ j
dataset in which the A columns
of Z are permuted by π j

xπ j
i features of the i-th row of Zπ j

5.1.2 Conditional independence predictive test (COINP)
The COINP test is based on comparing the estimated risk of a prediction method

on the actual data and on permuted data. A prediction method is a function that assigns
a mapping in F to each possible dataset, that is, a function in A := { f̂ : Z −→ F}.
Formally, the p-value associated COINP is obtained by calculating the estimated risks
of a prediction method on the actual data and on permuted data and computing the
proportion of permuted data that have a risk lower than that on the actual data. That is,
the p-value given by f̂ ∈A is

pCOINP :=
1
B

B

∑
j=1

I
(

R̂( f̂ (Z), Z̃)≥ R̂( f̂ (Zπ j), Z̃π j)
)
. (5.1)

Intuitively, if H0 does not hold, then even after XO is observed, XA still provides more
information about Y . Therefore, since permuting the rows of the features in A transforms
them into noise, the estimated risks of a prediction method based on the permuted data
will probably be larger than that in the actual data. Similarly, if H0 holds, then the features
in XO have all the relevant information for predicting Y . Therefore, the estimated risk for
the prediction method based on the actual data and on the permuted data should be
similar. The COINP is also described in Algorithm 6.
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Algorithm 6 – COINP
Input: training data Z, testing data Z̃, prediction method f̂ ∈ A , loss L, feature indices A,
number of simulations B
Output: p-value for testing H0 : XA⊥Y |XO

1: f ← f̂ (Z)
2: R← R̂( f , Z̃)
3: for j ∈ {1, . . . ,B} do
4: Compute Zπ j by randomly permuting the columns of Z associated to features in

A
5: f j← f̂ (Zπ j)
6: Compute Z̃π j by randomly permuting the columns of Z̃ associated to features in

A
7: R j← R̂( f j,Zπ j)
8: end for
9: return (|{ j : R≥ R j}|+1)/(B+1)

5.1.3 Other approaches to predictive conditional independence test-
ing

5.1.3.1 Approximate COINP (ACOINP)

A drawback of COINP occurs when f̂ is a computationally intensive predictive
method, since f̂ is applied to every permuted dataset. One might try to overcome this
hindrance by defining

pACOINP :=
1
B

B

∑
j=1

I
(

R̂( f̂ (Z), Z̃)≥ R̂( f̂ (Z), Z̃π j)
)
. (5.2)

In order to obtain pACOINP, the predictive method, a, is solely applied to the actual data.
That is, CPI is calculated by applying Algorithm 6, with the exception line 4 and 5 are
replaced by f j← f .

5.1.3.2 Simple Conditional Predictive Impact (SCPI)

The Simple Conditional Predictive Impact (SCPI) (WATSON; WRIGHT, 2019b)
is obtained by training a predictive method once on the actual data and once on permuted
data: f0 = f̂ (Z) and f1 = f̂ (Zπ1). SCPI tests whether H0 : R( f , Z̃)≥ R( f1, Z̃π1) holds. One
possible approach to this goal is to define Di = L( f0(x̃i)−L( f1(x̃π1

i )) and apply a t-test
to the hypothesis that the populational mean of Di is greater or equal than 0. That is,
by letting D̄ and SD be the sample mean and standard deviation of D and Φ be the
cumulative distribution function of a T distribution with m−1 degrees of freedom,

pSCPI = Φ
(
D̄ ·S−1

D
)

(5.3)
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5.1.3.3 Approximate SCPI (ASCPI)

Similarly to ACOINP, one could make SCPI less computationally intensive by
training the prediction method once only. The approximate SCPI (ASCPI) is obtained
by defining f0 = f̂ (Z) and Di = L( f0(x̃i)−L( f0(x̃π1

i )). A p-value is obtained by applying a
t-test to the hypothesis that the populational mean of Di is greater or equal than 0. This
procedure is essentially the same as described by Breiman and Cutler (2008) to obtain
p-values for the importance measures produced by random forests, with the exception
that Breiman and Cutler (2008) uses a z-test instead of a t-test.

5.1.3.4 Conditional Predictive Impact (CPI)

Conditional Predictive Impact (CPI) (WATSON; WRIGHT, 2019a) is an improve-
ment over SCPI. CPI uses knockoffs instead of the permutations in SCPI.

5.2 Comparison between methods

In order to compare the methods in Section 5.1, they were applied to several simu-
lated and real data. Three prediction methods were used for the prediction methods used
in the conditional independence tests: linear regression (LINEAR), random forests (RF),
and feedforward neural networks (ANN). The Python implementations are available at
<https://github.com/randommm/nnperm>. Both LINEAR and RF were implemented
using the scikit-learn Python package (PEDREGOSA et al., 2011). RF ran with default
turning parameters, except for the number of trees, which was increased to 300 for better
prediction performance. ANN was implemented in PyTorch (PASZKE et al., 2019) with
the Adamax optimizar (KINGMA; BA, 2014), the initialization method in Glorot and
Bengio (2010a), 5 hidden layers with 100 nodes in each and ELU (DJORK-ARNÉ; UN-
TERTHINER; HOCHREITER, 2016) as the layer activation. The training process used
batch normalization (IOFFE; SZEGEDY, 2015), dropout (SRIVASTAVA et al., 2014), a
patience of 50 epochs without improvement in the validation set and a 90%/10% split
early stopping for small datasets and a higher split factor for larger datasets. Each ANN
was retrained 3 times and the best one was chosen based on performance on the early
stopping holdout dataset. The experiments themselves were organized and run using the
sstudy Python package (INÁCIO, 2020).

Subsection 5.2.1 compares the type I and II errors of the conditional independence
tests in simulated data. Subsection 5.3 applies these tests to real data.

https://github.com/randommm/nnperm
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5.2.1 Comparison through simulation

For each setting we run at least 150 independent tests to estimate the power of
each test. Additionally, we set B = 100 in Algorithm 6.

This sections presents the simulations that were employed to test conditional in-
dependence tests. In all of the simulations, the squared error loss, L(y, ŷ) = (y− ŷ)2, is
used. Also, in all simulations, the hypothesis that was tested was H0 : X1⊥Y |(X2, . . . ,Xd),
that is, XA = X1 and XO = {X2, . . . ,Xd}. The simulations to test can be broken into two
scenarios. While in the first scenario the stronger hypothesis that H0 : XA⊥(Y,XO) holds,
in the second scenario only H0 : XA⊥Y |XO holds.

In the first scenario, the target variable is such that Y = Zβ + ε , where β =

(0.7,0.16,0.39,βA,0.75), ε ∼ SKN(−0.3,1.1,2), the skew-normal distribution (AZZALINI;
VALLE, 1996), and Z is a vector of latent variables. These latent variables were generated
according two settings of transformations that guarantee that XA⊥(Y,XB) when βA = 0
and that the features and target are heavy-tailed and skewed random variables. Specifi-
cally, let g : R4→R5, g(a1,a2,a3,a4) = (|a1|1.3,cos(a2), log(|a1,a3|), log(|a3|), |a4|0.5) be an
example of a non-linear function. In the first setting of transformation (Distribution 1),
W is a n×4 matrix such that Wi, j ∼ SKN(0,0.1,2) are i.i.d., Zi, = g(Wi,), and X is a n×2
matrix such that Xi, j = Z, j. In the second setting (Distribution 2), X is a n× 4 matrix
such that Xi, j ∼ SKN(0,0.1,2) are i.i.d., and Z = g(X).

In the second scenario, the target variable follows a linear model such that Y =

Xβ + ε , where β = (3,βA). However, when βA = 0, contrary to the first scenario in which
XA⊥(Y,XB) holds, in the second scenario only the weaker condition XA⊥Y |XB holds. This
weaker condition is obtained by generating correlated features according to two settings of
distribution. In the first setting (Distribution 3), X is a n×2 matrix such that X∼N(0,Σ),
Σi,i = 1, Σ0,1 = 0.9 and ε ∼N(0,0.5). In the second setting (Distribution 4), Wi, j∼Beta(1,1)
are i.i.d., Zi ∼ N(−0.5,1), Xi, j = Zi +Wi, j and ε ∼ Beta(2,2).

Figure 18 describes the empirical cumulative distribution function of the p-value
obtained from each method when n = 1,000 and H0 : XA⊥Y|XB holds, that is, βA = 0.
Under these circumstances a p-value has the nominal significance when the cumulative
distribution function is close to the 45o degree straight line. From a visual inspection,
one can observe that most p-values have are close to the nominal significance under
Distributions 1 and 2. However, under Distribution 3 and 4 only CPI and COINP are
close to the nominal significance in all scenarios except for LINEAR in Distribution 4.
These observations might be explained by two facts. First, ACOINP, SCPI and ASCPI
are tests for the stronger hypothesis test H∗0 : XA⊥(Y,XB) and, therefore, have incorrect
significance whenever H0 : XA⊥Y |XB holds but H∗0 does not. This exception can occur when
XA and XB are not independent. Second, under Distribution 4, no test obtains nominal
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Figure 18 – Cumulative distribution function of the p-values when n = 1,000 under H0.
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Figure 19 – Power function for all setting with n = 1,000 for α = 5% comparing COINP and
CPI.

conservative (i.e., p-values were subuniform under the null), which affected its power un-
der the alternative. On the other hand, linear regression had again good performance for
distribution 5, but had no power under distribution 6; its cumulative distribution was
uniform under the alternative hypothesis. Neural networks has better power for Distribu-
tion 6, especially for low signal (i.e.: when the falsifiability of the null hypothesis is less
evident).

5.3 A dataset analysis example

In order to create a meaningful comparison of the methods, the ground truth
needs to be known. We therefore add artificial covariates to a real dataset to make such
comparisons. We use the diamonds dataset available from ggplot2 library (WICKHAM,
2016), and take price to be the response variable.

Table 15 presents the p-values for each method using when adding c+ n, an ad-
ditional feature generated using the clarity feature plus a standard Gaussian random

of separate power plots as done in the last subsection. We done so in order to facilitate the
visualization of the conclusions, especially regarding the lack of power of the linear regression
for Distribution 6.
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Figure 20 – Power function for all setting with n = 1,000 for α = 5% comparing COINP and
SCPI.
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Figure 21 – Cumulative distribution of the p-values comparing COINP, CPI and SCPI for a
nonlinear distribution (distribution 5) for βs = 0 (null hypothesis) and for βs = 0.1
(alternative hypothesis).
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Figure 22 – Cumulative distribution of the p-values comparing COINP, CPI and SCPI for a
nonlinear distribution (distribution 5) for βs = 0 (null hypothesis) and for βs = 0.6
(alternative hypothesis).
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nonlinear distribution (distribution 6) for βs = 0 (null hypothesis) and for βs = 0.1
(alternative hypothesis).
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Table 15 – P-values for hypothesis testing for each comparison method compared to Random
forest traditional importance measures using the original database with an extra
feature generated from feature clarity plus a Gaussian noise.

carat depth table x y z cut color clarity c+n

ann

Approx COINP 0.01 0.01 0.39 0.01 0.01 0.01 0.01 0.01 0.01 0.27
Approx SCPI 0.00 0.12 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01
COINP 0.01 0.49 0.36 1.00 0.38 0.40 0.01 0.01 0.01 0.41
CPI 0.00 0.15 0.04 0.61 0.00 0.24 0.06 0.00 0.00 0.83
SCPI 0.17 0.24 0.02 0.00 0.93 0.94 0.12 0.00 0.00 0.16

linear

Approx COINP 0.01 0.01 0.01 0.01 0.91 0.01 0.01 0.01 0.01 0.91
Approx SCPI 0.00 0.00 0.07 0.00 0.02 0.14 0.00 0.00 0.00 0.86
COINP 0.01 0.01 0.98 0.01 0.32 0.10 0.01 0.01 0.01 0.58
CPI 0.00 0.51 0.14 0.60 0.12 0.44 0.00 0.00 0.00 0.50
SCPI 0.00 0.00 0.18 0.77 0.94 0.44 0.00 0.00 0.00 0.14

rf

Approx COINP 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Approx SCPI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
COINP 0.01 0.09 0.14 0.13 0.69 0.01 0.01 0.01 0.01 1.00
CPI 0.00 0.01 0.00 0.89 0.17 0.17 0.06 0.00 0.00 0.13
SCPI 0.02 0.09 0.44 0.07 0.01 0.01 0.67 0.00 0.00 0.46

Table 16 – P-values for hypothesis testing for each comparison method compared to Random
forest traditional importance measures using the original database with an extra
feature generated from feature clarity plus feature color plus a Gaussian noise.

carat depth table x y z cut color clarity c+c+n

ann

Approx COINP 0.01 0.01 0.07 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Approx SCPI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
COINP 0.01 0.20 0.61 0.55 0.23 0.04 0.02 0.01 0.78 0.09
CPI 0.00 0.01 0.16 0.09 0.38 0.76 0.00 0.00 0.00 0.66
SCPI 0.03 0.87 0.98 0.00 0.69 0.98 0.00 0.00 0.00 0.84

linear

Approx COINP 0.01 0.01 0.01 0.01 0.12 0.01 0.01 0.01 0.01 0.10
Approx SCPI 0.00 0.00 0.00 0.00 0.63 0.17 0.00 0.00 0.00 0.47
COINP 0.01 0.01 0.01 0.01 0.30 0.19 0.01 0.01 0.01 0.68
CPI 0.00 0.99 0.00 0.06 0.49 0.07 0.01 0.00 0.00 0.04
SCPI 0.00 0.75 0.22 0.78 0.45 0.90 0.00 0.00 0.00 0.41

rf

Approx COINP 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Approx SCPI 0.00 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
COINP 0.01 0.01 0.01 0.33 1.00 0.25 0.04 0.01 0.01 1.00
CPI 0.00 0.01 0.01 0.74 0.00 0.65 0.14 0.00 0.00 0.38
SCPI 0.00 0.47 0.11 0.20 0.10 0.07 0.20 0.00 0.00 1.00
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required by the t-test, and (ii) its computational burden is not high in those cases.



5.4. Final remarks 87

Appendix

0.0 0.2 0.4 0.6 0.8 1.0
p-value

0.0

0.2

0.4

0.6

0.8

1.0
Cu

m
ul

at
iv

e 
pr

ob
ab

ilit
y

Distribution 1 (ANN)

0.0 0.2 0.4 0.6 0.8 1.0
p-value

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

pr
ob

ab
ilit

y

Distribution 1 (RF)

0.0 0.2 0.4 0.6 0.8 1.0
p-value

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

pr
ob

ab
ilit

y

Distribution 1 (LINEAR)

0.0 0.2 0.4 0.6 0.8 1.0
p-value

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

pr
ob

ab
ilit

y

Distribution 2 (ANN)

0.0 0.2 0.4 0.6 0.8 1.0
p-value

0.0

0.2

0.4

0.6

0.8

1.0
Cu

m
ul

at
iv

e 
pr

ob
ab

ilit
y

Distribution 2 (RF)

0.0 0.2 0.4 0.6 0.8 1.0
p-value

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

pr
ob

ab
ilit

y

Distribution 2 (LINEAR)

0.0 0.2 0.4 0.6 0.8 1.0
p-value

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

pr
ob

ab
ilit

y

Distribution 3 (ANN)

0.0 0.2 0.4 0.6 0.8 1.0
p-value

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

pr
ob

ab
ilit

y

Distribution 3 (RF)

0.0 0.2 0.4 0.6 0.8 1.0
p-value

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

pr
ob

ab
ilit

y

Distribution 3 (LINEAR)

0.0 0.2 0.4 0.6 0.8 1.0
p-value

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

pr
ob

ab
ilit

y

Distribution 4 (ANN)

0.0 0.2 0.4 0.6 0.8 1.0
p-value

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

pr
ob

ab
ilit

y

Distribution 4 (RF)

0.0 0.2 0.4 0.6 0.8 1.0
p-value

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

pr
ob

ab
ilit

y

Distribution 4 (LINEAR)

CPI COINP Approximate COINP SCPI Approximate SCPI

Figure 25 – Cumulative distribution function of the p-values when n = 10,000 under H0.
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Figure 26 – Power function for all setting with n = 10,000 for α = 5% comparing COINP and
CPI.
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Figure 27 – Power function for all setting with n = 10,000 for α = 5% comparing COINP and
SCPI.
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Figure 28 – Cumulative distribution of the p-values comparing COINP, CPI and SCPI with
n = 10,000 for a nonlinear distribution (distribution 5) for βs = 0 (null hypothesis)
and for βs = 0.1 (alternative hypothesis).
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Figure 29 – Cumulative distribution of the p-values comparing COINP, CPI and SCPI with
n = 10,000 for a nonlinear distribution (distribution 5) for βs = 0 (null hypothesis)
and for βs = 0.6 (alternative hypothesis).
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Figure 30 – Cumulative distribution of the p-values comparing COINP, CPI and SCPI with
n = 10,000 for a nonlinear distribution (distribution 6) for βs = 0 (null hypothesis)
and for βs = 0.1 (alternative hypothesis).
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Figure 31 – Cumulative distribution of the p-values comparing COINP, CPI and SCPI with
n = 10,000 for a nonlinear distribution (distribution 6) for βs = 0 (null hypothesis)
and for βs = 0.6 (alternative hypothesis).
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CHAPTER

6
CONDITIONAL DENSITY ESTIMATION

In this chapter, we present an introduction to the conditional density estimation
problem and to Fourier Series. We also present our proposed method of conditional density
estimation as well an study of the performance of such method using real world datasets
with social, IT and astronomy related data.

6.1 Fourier series and density estimation
In this chapter we first give a brief introduction to Fourier series, and then show

how to use it to estimate densities.

Let L2([0,1]) be the linear space of continuous functions f : [0,1]→ R such that∫ 1

0
f (x)dx≤ ∞

The usual inner product is defined by

⟨ f ,g⟩=
∫ 1

0
f (x)g(x)dx

This inner product induces the following norm and distance in L2([0,1]):

∥ f∥=
(∫ 1

0
f 2(x)dx

)1/2

√
M( f ,g) =

(∫ 1

0
( f (x)−g(x))2dy

)1/2

where f ,g ∈ L2([0,1]).

The sequence of functions {ϕ0,ϕ1,ϕ2, ...} is called orthogonal system when

⟨ϕi,ϕ j⟩= 0
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for i ̸= j and

∥ϕi∥ ̸= 0

for all i. Furthermore, such a system is called orthonormal basis if for any f ∈ L2([0,1])
there exists a unique sequence of scalars {αn}n∈N+ such that∥∥∥∥∥ f −

I

∑
k=1

αkϕk

∥∥∥∥∥→ 0

as I→ ∞.

Also as of theorem 3.5.2 from Kreyszig (1989),

αk = ⟨ f ,ϕi⟩

Thus, f has the following series representation:
∞

∑
i=0
⟨ f ,ϕi⟩ϕi

In this chapter we shall consider the Fourier basis where ϕi : [0,1]→ [−
√

2,
√

2]
and

ϕi(x) =


1 if i = 0
√

2sin(π(i+1)x) if i ∈ {1,3,5, ...}
√

2cos(πix) if i ∈ {2,4,6, ...}

Note that there are also many possible smoothness and/or boundary conditions
(like twice differentiability) to ensure a somewhat fast convergence rate (see Efromovich
(1999) for details). Intuitively, the less smooth the function f is, the larger will be the
number of components needed in order to get a reasonable approximation. To give the
reader some intuition on this, Figure 32 shows the curves for some of the components of
the Fourier series. It can be seen that higher order components are needed in order to
better “explain” less smooth functions.

In source code 4, we present a simple Python script that allows one to calculate
the components of the Fourier series for arbitrary known functions.

Source code 4 – Obtaining Fourier series components of a function

1: from scipy import integrate
2: from scipy.stats import beta
3: from numpy import sin, cos, pi, sqrt
4:
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Figure 32 – Plot of some of the components of Fourier series: if a linear combination of such
functions is used to approximate a function f , then it can be easily seen that the
less smooth f is, the larger will be number of Fourier series components needed in
order to better “explain” f .

5: #Function of interest
6: def func(t):
7: return beta.pdf(t, 50.5, 10)
8:
9: print("intercept", integrate.quad(func, 0, 1)[0])

10:
11: for n in range(1, 10):
12: component = lambda t: sqrt(2) * sin(n * 2 * pi * t)
13: to_integrate = lambda t: func(t) * component(t)
14: print("sin", n, integrate.quad(to_integrate , 0, 1)[0])
15:
16: for n in range(1, 10):
17: component = lambda t: sqrt(2) * cos(n * 2 * pi * t)
18: to_integrate = lambda t: func(t) * component(t)
19: print("cos", n, integrate.quad(to_integrate , 0, 1)[0])

The next two sections proceed with an exposition of the procedures for (uncondi-
tional) density estimation using frequentist and Bayesian approaches, respectively. While
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we don’t directly use such estimator in this chapter, both of them will be useful in ex-
plaining our methodology of conditional density estimation as presented in chapter 6.2.

6.1.1 Frequentist Inference
Given i.i.d. random variables Y1,Y2, ...,Yn with density function f : [0,1]→ R ∈

L2[0,1], a simple approach to infer f from a frequentist perspective using Fourier series is
to use:

f̂I(y) = 1+
I

∑
i=1

α̂iϕi(y)

where

α̂i =
1
n

n

∑
j=1

ϕi(Y j)≈
∫

ϕi(y) f (y)dy = ⟨ϕi, f ⟩

This estimator is a special case of the modulator estimator which can found in
Wasserman (2006), where we can also find the expected value and variance of each α̂i:

E(α̂i) =
∫ 1

0
ϕi(x) f (x)dx = θi

Var(α̂i) =

∫ 1
0 ϕ 2

i (x) f (x)dx−θ 2
i

n

as well as risk of the estimator f̂I:

R( f̂I; f ) = E
[∫ 1

0
( f̂I(x)− f (x))2dx

]
=

I

∑
i=1

Var(α̂i)+
∞

∑
i=I+1

θ 2
i

Therefore the choice of the estimator cutoff parameter I can be seen as bias-
variance trade-off problem (in practice, a possible solution is to use cross-validation or
data splitting to choose I).

Finally, we note that the estimate from f̂I might not respect the constraint ∀y ∈
[0,1], f (y)≥ 0, in which case a “surgery” method is necessary (see Wasserman (2006) and
Glad, Hjort and Ushakov (2003)).

6.1.2 Bayesian Inference
Just as in the previous section, given i.i.d. random variables Y1,Y2, ...,Yn with den-

sity function f : [0,1]→R∈ L2[0,1], directly proceeding with the Bayesian inference (which
is the focus of this chapter) of f using Fourier series is a somewhat difficult problem since
we have to define and work with priors in the constrained space where f (y) ≥ 0 for all
y ∈ [0,1].
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One way to overcome this issue is to use the approach of sieve priors suggested by
Scricciolo (2006), which places a prior directly on the coefficient vector β of the Fourier
series expansion of log( f ) (instead of f ) so that conditionally on the threshold parameter
(cutoff parameter) I we have:

f (y|I,β ) = 1
g(β , I)

exp

{
I

∑
i=1

βiϕi(y)

}
where g is a normalizing factor such that

g(β , I) =
∫ 1

0
exp

{
I

∑
i=1

βiϕi(y)

}
dy

which is necessary in order to have
∫ 1

0 f (y|I,β )dy = 1. Note that each βi lives in R, which
solves the constrained space problem.

As a drawback, we introduced the difficulty of calculating a normalizing factor
(using numerical integration) when evaluating the likelihood function. This could be han-
dle with an MCMC sampler such as Stan Development Team (2014) which has built-in
numerical integration capabilities and uses state-of-the-art sampling algorithms such as
NUTS (HOFFMAN; GELMAN, 2014).

For more details on Bayesian density estimation using such prior, see Inácio, Izbicki
and Salasar (2018), where one can find an extensive study in real and simulated datasets
and also an application of such model to measure the distance between population densi-
ties.

6.2 Fourier series and conditional density estimation
We now consider the problem of conditional density estimation. Let (X1,Y1), . . . ,(Xn,Yn)

be i.i.d. random vectors, where Yi ∈ R is the response (label) and Xi ∈ Rd are covariates
(features). Given that, problem of conditional density estimation can be stated simply
as finding a good estimator f̂ for the conditional density of Yk|Xk, which we denote by
f (.|Xk) : [0,1]→R ∈ L2[0,1], where Xk = (Xk1,Xk2, ...,Xkd). A simple solution for this prob-
lem is, for example, an ordinary least squares estimator:

f̂ (y|Xk) = Gaussian(XT
k β̂OLS, σ̂2

OLS)

Of course, such a simple estimator lacks flexibility for problems with complex struc-
tures both in terms of marginal density and in the structure of the covariates. Therefore,
the goal of a good estimator is to be able to have considerable flexibility to model com-
plex structure without incurring in excessive overfitting (bias-variance trade-off). In the
next sections we review an already established method to deal with conditional density
estimation using Fourier series, and introduce our proposed method which makes use of
neural networks.
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6.2.1 Flexcode
The Flexcode estimator (IZBICKI; LEE, 2017) is a natural extension of the fre-

quentist density estimator method of section 6.1.1 to the conditional case.

It consists of two steps:

1. Estimate a regression function r : Rd→ [−
√

2,
√

2]I where r(.) = (r(.)1,r(.)2, ...,r(.)I)

and with ϕ1(Y ),ϕ2(Y ), ...,ϕI(Y ) as targets and X as covariates. Such regression func-
tion can be obtained using a well known method such as OLS, Lasso and KNN.

2. Use the estimated regression to obtain following density estimate:

f̂ (yk|xk) = 1+
I

∑
i=1

r(X)iϕ(Yk)

To understand why this procedure works, first notice that

E( f (yk|xk)) = 1+
∞

∑
i=1

(∫ 1

0
ϕi(y) f (y|xk)dy

)
ϕ(yk) = 1+

∞

∑
i=1

E(ϕi(Y )|xk)ϕ(yk)

and that the fitted value r(Xk)i of a regression of ϕi(Y ) against X is itself an estimate
of E(ϕi(Y )|Xk). It follows that the choice of a cut-point I is a problem of bias-variance
trade-off (in similar fashion to the unconditional density estimator in 6.1.1) and, that in
practice, this can be solved by cross-validation or data splitting.

6.2.2 Our proposed method: CDFSNet
Our approach for conditional density estimation builds on Flexcode in order to

achieve better performance and scalability. In our initial tests, we directly applied the
Flexcode strategy to neural networks. That is, we trained a Neural network M with:

• Input: a row vector input xk = (xk1,xk2, ...,xkd) of length d.

• Output: a row vector (M(xk)1,M(xk)2, ...,M(xk)I) of length I.

where the estimated density given by

f̂ (yk|xk) = 1+ϕ1(yk)M(xk)1 + ...ϕI(yk)M(xk)I

and the loss on the training set is given by
n

∑
i=1

I

∑
j=1

(ϕ j(yi)−M(xi) j)
2

However, this bare bones Flexcode procedure has shown to perform poorly on
neural networks, even after applying the various neural networks techniques to avoid
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Figure 33 – Comparison of softplus, exponential and identity functions. Note that softplus func-
tion is always closer to the identity function that the exponential.

in fact calculating the Fourier basis components of softplus−1( f ) and have the estimated
density given by

f̂ (yk|xk) =
softplus{∑I

i=1 ϕi(yk)N(xk)i}
g′(N(xk), I)

where g′(N(xk), I) is another normalizing factor.

The intuition behind softplus giving some improvement over exponential is the
fact that such transformation attempts to not significantly alter the value of its input
(specially for large values), therefore potentially preserving the smoothness of the original
(untransformed) density function. Figure 33 illustrates such property: softplus function is
always to closer to the identity function that the exponential.

It is also worth noticing that this transformation and target loss function take
advantage of the natural flexibility that neural networks have to minimize “arbitrary”
loss functions and the speed GPUs can achieve when working with matrix multiplication
which required for numerical integration inside the loss function. A Python package that
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implements the method that we therefore propose (and call CDFSNet) is available at
<https://github.com/randommm/nncde>.

6.3 CDFSNet results and analysis
We now present a comparison of CDFSNet and three implementations of Flex-

code using five real world datasets that we describe in the subsections. The Python
source code of these analysis is available at <https://github.com/randommm/nncde_
implementation>.

6.3.1 Datasets and preprocessing

We compare FlexCode with CDFSNet on the following datasets:

• Spectroscopic dataset: We take spectroscopic data from Izbicki and Lee (2016)
and Izbicki, Lee and Freeman (2017). We take two subsets of the provided dataset.
The first one with 10000 instances (in similar fashion to the one used by Izbicki and
Lee (2016)) and the second one with 100000. We work with the redshift income as
the response variable.

• Pnad dataset: We take a dataset from the Brazilian National Sample Survey of
Households (PNAD), which is a research taken from Brazilian families and intends to
extract information such as income, marriage, health, habitation and fecundity. For
each attribute, we create an additional category to capture not available variables.
We work with the family income as the response variable.

• SGEMM dataset: We take a dataset from Nugteren and Codreanu (2015) where
the running time of a matrix-matrix product is measured, using a parameterizable
SGEMM GPU kernel. For each combination of attributes, 4 runs were performed.
For simplicity, we take the average of the 4 runs as the response variable.

• Diamonds dataset: We take the classical diamonds dataset which is readily avail-
able from ggplot2 library and Kaggle. We work with carat as the response variable.

We use the following preprocessing in our experiments:

• Response variable preprocessing: before training every model, we preproccess
the response variable by taking its log and then transforming it to lie in the (0,1)
interval. This is done for every dataset, with the exception of the spectroscopic
dataset for which the response variable (the redshift of a galaxy) was already in the
range of 0 to 1 in our received version.

https://github.com/randommm/nncde
https://github.com/randommm/nncde_implementation
https://github.com/randommm/nncde_implementation
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procedure was necessary in order to choose the “cut point” of the Fourier series in our
proposed method: a reasonably large neural network with 100 Fourier components works
well “out-of-the-box” probably due to early stopping and dropout are already taking
care of overfitting problems. On the other hand, for Flexcode estimators, a data splitting
procedure generally dictates a much smaller number of Fourier series components due to
the bias/variance tradeoff mentioned earlier.

Third, one of the limitations of the Flexcode method is that a Fourier series ex-
pansion might be negative in some regions, requiring some surgery procedures, and from
Figure 34, we can see visually is that a large proportion of the density function is zeroed.

0.0 0.2 0.4 0.6 0.8 1.0
y

0

100

101

102

f(y
)

ANN Fourier
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Figure 34 – Estimated probability conditional density function of the Fourier ANN and Flexcode
Random Forest methods for the SGEMM dataset (conditional on a point chosen at
random).

This also leads to a secondary effect of “stretching” the curve in points which
already have positive density (in order force the density to integrate to 1). Intuitively,
these effects may be causing an additional bias on the FlexCode density estimation for a
given number of Fourier series components (a large number of Fourier series components
might be able to overcome this issue, but at the price of larger variance). A theoretical
study confirming this possibility is suggested as an extension of this chapter.
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A fourth reason might be given by Zhang et al. (2016) which discusses the capabil-
ities that neural networks have in achieving generalization without falling into overfitting
possibly due to properties of stochastic gradient descendant.
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CHAPTER

7
CONCLUSION

In this thesis, we have presented an introduction to dense neural networks, its
properties, as well as the state-of-the-art methods of optimization and regularization.

We present an introduction to simulation studies and to the sstudy package, we
have proposed a novel approach concerning the problem of conditional independence test-
ing and have conclude that the proposed method yield consistent results. In future works,
we plan to derive theoretical properties of such method and to extend it to sequential
data.

Moreover, we have developed a novel framework for two sample comparison using
variational autoencoders with the aim to bring the novel methods of machine learning to
revisit and solve decades old classical problems of Statistics.

Finally, we have reviewed the concepts of Fourier series and conditional density
estimation as well as an already established method of conditional density estimation
using Fourier series and have proposed a novel method of conditional density estimation
that combines both Fourier series and artificial neural networks and compared it to the
well established one using five datasets.
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