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RESUMO

Técnicas de reconhecimento de padrões (RP) têm sido de grande importância para a solução

de muitos problemas de diversos nı́veis de complexidade e áreas de estudo. A ideia por trás

das técnicas de RP está em criar modelos capazes de classificar elementos nunca vistos.

Basicamente, os problemas de reconhecimento de padrões podem ser divididos em duas

categorias: problemas de aprendizado (i) supervisionado e (ii) não-supervisionado. Essas

categorias estão relacionadas com a existência ou não de elementos rotulados para auxil-

iar no “aprendizado” dos algoritmos de RP. Um conjunto de elementos de treinamento é

fundamental para que as técnicas de RP sejam capazes de identificar padrões existentes, e

a presença de dados rotulados pode auxiliar na criação de modelos mais robutos. Muitas

técnicas foram desenvolvidas para lidar com tais problemas e estão bem-estabelecidas na

literatura. Uma técnica desenvolvida recentemente diz respeito ao classificador baseado em

grafos denominado Floresta de Caminhos Ótimos (OPF - Optimum-Path Forest), o qual pos-

sui as versões de aprendizado supervisionado, semi-supervisionado e não-supervisionado.

OPF modela as amostras de um conjunto de dados como sendo os nós de um grafo e as

conexões (arestas) são definidas a partir de uma relação de adjacência pré-definida. Apesar

de ser uma abordagem recente, OPF já foi empregado em inúmeras aplicações distintas e

tem apresentado resultados promissores e superando até mesmo técnicas bem estabelecidas

na literatura. Contudo, ainda há muito a ser estudado, avaliado e proposto com relação ao

uso e desempenho do classificador em questão. Este trabalho de qualificação investiga e

propõe variações e alterações no algoritmo tradicional do OPF das versões de aprendizado

supervisionado e não-supervisionado com os objetivos de avaliar seu desempenho em pon-

tos ainda não explorados e superar algumas de suas deficiências.

Palavras-chave: Floresta de Caminhos Ótimos, Reconhecimento de padrões, Aprendizado de máquina



ABSTRACT

Pattern recognition (PR) techniques have been paramount to solve different and complex

problems in many fields of study. The basic idea behind PR techniques is to compute a

model capable of classifying unknown samples. Pattern recognition can be categorized as

problems of (i) supervised, and (ii) unsupervised learning. This categorization is related

to the existence or absence of labeled data to support the learning process. The learning

process is mandatory for PR techniques to learn the data distribution, and the existence of

labeled data is an additional information that helps to build more robust models. Many

techniques were proposed and are well-established in the literature. The Optimum-Path

Forest (OPF) is a graph-based classifier proposed recently, which comprises the models for

supervised, semi-supervised and unsupervised learning. The OPF models dataset samples

as nodes of a graph and their connections (edges) are defined by some pre-defined adja-

cency relation. Although very recent, OPF has already been employed in numerous appli-

cations and showed promising results, and even outperformed other well-known classifiers.

Nonetheless, there is still a lot to be investigated, evaluated and proposed concerning the use

and performance of the OPF classifier. This dissertation investigates e proposes variations

and modifications to the traditional OPF algorithms concerning supervised and unsuper-

vised learning aiming the assessment of its performance in not yet explored scenarios and

to overcome its drawbacks.

Keywords: Optimum-Path Forest, Pattern Recognition, Machine Learning
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Chapter 1
INTRODUCTION

Pattern recognition (PR) techniques have been paramount to solve different and complex

problems in many fields of study. The motivation in the development of such techniques is

to perform recognition tasks more accurately, or faster, or just to aid in the mechanical and

repetitively ones (PAL; PAL, 2011). The basic idea behind PR techniques is to compute a model

capable of classifying unknown samples by learning data distribution over the feature space.

The learning process requires a training set that might carry information (i.e., label) that helps

to minimize the classification error in the training set. Therefore, the existence of such labeled

training data creates two fundamental problems in pattern recognition: (i) supervised and (ii)

unsupervised learning (KPALMA; RONSIN, 2007).

Artificial Neural Networks using Multi-Layer Perceptrons (ANN-MLP) , Support Vector

Machines (SVM) and Naı̈ve Bayes classifier (BC) figure among the most popular super-

vised learning-based algorithms, which take advantage of a full labeled dataset. Although well-

established in the literature, the mentioned classifiers have their drawbacks, such as to find an

optimum set of parameters for better accuracy rates, computational cost, and especially the dif-

ficult to handle non-separable classes in the feature space. For instance, ANN-MLP could have

its performance improved if more layers are added, but that comes with the increase of com-

putational cost. Non-linear problems require SVM to map data into higher-dimensional spaces,

which also makes the method costly, and BC makes a decision based on the probability density

of each class. If such information is not available, one must be estimated.

In the opposite way, unsupervised problems do not have any labeled information regarding

the training samples at their disposal, which makes the learning task more difficult. Hence, the

fundamental problem in unsupervised learning is to identify clusters in an unlabeled dataset,

such that samples from the same cluster should share some level of similarity. Many methods

were proposed where the learning problem is addressed with different perspectives, such as
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data clustering and density estimation, just to mention a few (SCHWENKER; TRENTIN, 2014).

Self-Organizing Maps, k-means, and Hidden Markov Models figure among the most common

unsupervised algorithms. The Self-Organizing Maps (KOHONEN, 2001) is a popular unsuper-

vised neural-network model for the analysis of high-dimensional input data. Difficulties on

using SOM comprise to define the map size, which is related to the number of input data, and

hierarchical representations are hard to be identified (RAUBER; MERKL; DITTENBACH, 2002).

The k-means (JAIN, 2010) is one of the simplest clustering algorithms that partitions data in an

iterative fashion using k-centroids. The parameter k is defined a priori, which is not a straight-

forward task. Also, its random initialization has a considerable impact on the final result.

Graph-based machine learning techniques have their appeal as well. The Optimum-Path

Forest (OPF) is a framework for the design of graph-based classifiers that comprises three

models: (i) supervised (PAPA; FALCÃO; SUZUKI, 2009; PAPA et al., 2012; PAPA; FERNANDES;

FALCÃO, 2017), (ii) semi-supervised (AMORIM; FALCÃO; CARVALHO, 2014; AMORIM et al., 2016)

and (iii) unsupervised (ROCHA; CAPPABIANCO; FALCÃO, 2009). The traditional OPF algorithm

models samples as the nodes of a graph, which are connected to each other based on some pre-

defined adjacency relation. Learning and classification phases are carried out by a competition-

based process ruled by a few “key” samples called prototypes. The prototypes are responsible

for conquering the remaining samples of a dataset by offering them optimum-path costs. The

outcome of such a process is a set of optimum-path trees (forest) being each rooted by a different

prototype. As to be further discussed, the set of prototypes are defined based on the model

employed.

Proposed in 2009 (PAPA; FALCÃO, 2009a), OPF has been applied in a wide variety of ap-

plications, such as network security, image and video analysis, disease identification, just to

mention a few. Moreover, it has shown competitive accuracy rates outperforming some well-

known and state-of-art classifiers (e.g., SVM, k-NN, and BC), it is quite fast in both training

and classification process since it does not interpret pattern recognition problems as a sepa-

rating hyperplanes task, and is parameterless (PAPA; FALCÃO, 2009a). Despite the numerous

successful applications, there is still room for investigations and improvements to be proposed

concerning different performance aspects of the OPF. A few works proposed to improve the

supervised learning algorithm. Papa and Falcão (PAPA; FALCÃO, 2009b) proposed a pruning

algorithm to eliminate samples considered irrelevant without compromising the accuracy in dy-

namic applications. Castelo et al. (CASTELO-FERNÁNDEZ et al., 2010) proposed the detection

and elimination of outliers in the training set using a penalty computed based on the frequency

a sample is classified as either false positive or false negative (FERNANDES; PAPA, 2017).
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This thesis is driven by studying OPF behavior under some problems and proposing tech-

niques that can be incorporated into it or modifying its own to improve accuracy. Hence, many

different problems were studied along with the work. The main questions to be answered in

the thesis are: Although OPF obtained interesting results in many applications, is it possible

to improve its accuracy? If so, which of its steps can be modified to do so? Hence, the main

contribution of the thesis is to foster the research on the Optimum-Path Forest classifier by: (i)

proposing and investigating its behavior over changes performed on its working mechanisms,

and (ii) applying in problems that it has not been explored.

This thesis is organized as a collection of papers that investigate and evaluate the supervised

and unsupervised OPF classifiers. Chapter 2 introduces the supervised and unsupervised OPF

learning models. Chapters 3, 4, 5, 6, and 7 present works concerning the supervised approach.

Chapters 8, 9, 10, and 11 present the studies related to the unsupervised model. Finally, conclu-

sions and future works are stated in Chapter 12. The remainder of this chapter is divided into

two sections (supervised and unsupervised applications) that provide an overview of each pub-

lished work and the questions we are willing to answer. Figure 1.1 depicts how the chapters are

related to each other, and the following sections provide a summary of the problems considered

in this work.

Chapter 2 - The
Optimum-Path Forest

Framework

Chapter 2.1 - 
Supervised 
classifier

Chapter 2.2 - 
Unsupervised 

classifier

Chapter 6 - 
Evolving OPF Hierarchical 

Learning

Chapter 3 - Text
Classification
[SOUSA et al., 2018]

Chapter 4 - Kernel 
Mapping

[AFONSO; PEREIRA; 
PAPA, 2018]

Chapter 11 - 
Improved

Parkinson's Disease
Identification

[AFONSO et al., 2020]

Chapter 5 - Manifold
Learning

[AFONSO; PEDRONETTE; 
PAPA, 2018]

Chapter 7 - 
Multiple-Instance

Learning
[AFONSO et al., 2019b]

Chapter 8 - Clustering
for Optimzation

[AFONSO; JUNIOR; PAPA, 2018]

Chapter 9 - Seismic
Image Classification

[AFONSO et al., 2016]

Chapter 10 - Parkinson's
Disease Identification

[AFONSO et al., 2017]

Figure 1.1: Chapter organization.

1.1 Supervised learning-based applications

Well drilling monitoring is an essential task to prevent faults, save resources, and take care

of environmental and eco-planning businesses. During drilling, it is required that staff fill out a

log to keep track of the activities that are currently occurring. With such data analyzed and pro-
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cessed, it is possible to learn how to prevent faults and take corrective actions in real-time. How-

ever, the most important information is usually stored in a free-text format, thus complicating

the task of automated text mining. Despite the complex architecture and being computational

costly, many works employed the well-known deep-learning algorithms for text mining. In the

work presented in Chapter 3, we aim at answering the question how would a more straightfor-

ward and faster learner pattern recognition algorithm such as Optimum-Path Forest classifier

behave in such context? Experiments showed that OPF combined with text-based features are

a compelling source to learn patterns in drilling reports.

Despite the interesting accuracy in many applications, OPF’s learning process can still be

improved. Chapters 4 and 5 investigate two modifications in the learning algorithm. The former

work deals with kernel functions. The modeling of real-world problems as graphs along with

the problem of non-linear distributions comes up with the idea of applying kernel functions in

feature spaces. Roughly speaking, the idea is to seek for well-behaved samples in higher di-

mensional spaces, where the assumption of linearly separable samples is stronger. The current

OPF algorithm implementation works naturally with non-linear situations, but it does not map

samples from one space to another. The question to be answered in the work presented in Chap-

ter 4 is how much the application of kernel functions could benefit OPF’s learning process and

consequently improve its accuracy? The proposed technique was evaluated over a benchmark

comprised of 11 datasets, whose results outperformed the well-known Support Vector Machines

and the standard OPF classifier for some situations.

Appropriate metrics are paramount for machine learning and pattern recognition. In

Content-based Image Retrieval-oriented applications, low-level features and pairwise-distance

metrics are usually not capable of representing similarity among the objects as observed by

humans. Therefore, metric learning from available data has become crucial in such applica-

tions, but just a few related approaches take into account the contextual information inherent

from the samples for a better accuracy performance. The work presented in Chapter 5 answers

the question would the combination of an unsupervised manifold learning algorithm with the

Optimum-Path Forest provide more accurate recognition rates? The proposed approach was

evaluated in some public datasets and evidenced the validity of metric learning in the context of

OPF classifiers. Also, it was showed the proposed approach could outperform standard OPF-

based classifiers that are trained over the original manifold.

As to be further described, the prototypes are computed through a minimum spanning tree

over the training set and promotes the samples nearby the decision boundary as prototypes.

Although such methodology has obtained promising results in the past year, it can be prone to
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overfitting. The work presented in Chapter 6 aims to answer the question: can an evolutionary-

based approach estimate better prototypes than using the minimum spanning tree? To do so, it is

proposed a metaheuristic-based approach (OPFmh) for the selection of prototypes, being such a

task modeled as an optimization problem whose goal is to improve accuracy. The experimental

results showed the OPFmh can reduce overfitting, as well as the number of prototypes in many

situations. Moreover, OPFmh achieved competitive accuracies and outperformed OPF in the

experimental scenarios.

Multiple-instance (MI) learning aims at modeling problems that are better described by

several instances of a given sample instead of individual descriptions often employed by stan-

dard machine learning approaches. In binary-driven MI problems, the entire bag is considered

positive if one (at least) sample is labeled as positive. On the other hand, a bag is considered

negative if it contains all samples labeled as negative as well. In the work presented in Chap-

ter 7, we are willing to introduce the Optimum-Path Forest (OPF) classifier to the context of

multiple-instance learning paradigm, and to evaluate it in different scenarios that range from

molecule description, text categorization, and anomaly detection in well-drilling report classi-

fication. The experimental results showed that two different OPF classifiers can be suitable to

handle problems in the multiple-instance learning paradigm.

1.2 Unsupervised learning-based applications

As aforementioned, the fundamental problem in unsupervised learning is the identification

of clusters. Due to the lack of labeled information, clustering techniques have been paramount

in the last years. Selecting the clustering algorithm and the number of clusters can be paramount

for obtaining better results in any problem, as shown in Afonso et al. (AFONSO et al., 2012).

Therefore, the works presented in Chapters 8, 9, 10, and 11 were dedicated to the investigation

of the unsupervised OPF performance under a few problems and to raise points to be improved

and explored.

The work presented in Chapter 8 proposes a modification in the Brain Storm Optimiza-

tion (BSO) working mechanism using the unsupervised Optimum-Path Forest. Among the

many interesting meta-heuristic optimization algorithms, one can find those inspired by both

the swarm and social behavior of human beings. The BSO is motivated by the brainstorming

process performed by human beings to find solutions and solve problems. Such a process in-

volves clustering the possible solutions, which can be sensitive to the number of groupings and

the clustering technique itself. In this work, we are willing to answer if the performance of
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BSO using OPF is as good as to its traditional algorithm and how much the usage of OPF can

benefit the optimization process. The proposed approach is evaluated in a set of six benchmark-

ing functions and showed promising results, outperforming the traditional BSO and a second

variant makes use of the well-known Self-Organizing Maps clustering technique.

The works presented in Chapters 9, 10, and 11 were inspired by the deep learning phe-

nomenon. In its traditional approach, the unsupervised OPF could be compared to a shallow

neural network (i.e., which learns simpler features), and yet has shown promising results. So,

what if we develop a deep-driven OPF-based architecture to learn features? Will such repre-

sentations provide better recognition rates than those from a “shallow” OPF? These questions

were answered in three distinct applications where each of them is a modification of its previous.

The work presented in Chapter 9 proposed to fill a gap in OPF-based works by introducing

a multi-scale approach to obtain more refined cluster representations through the OPF classifier.

The proposed approach was validated in the context of high-resolution seismic images aiming

at petroleum exploration, as well as in general-purpose applications. Chapter 10 deals with

the automatic Parkinson’s disease (PD) identification. Approximately 50,000 to 60,000 new

cases of PD are diagnosed yearly. Despite being non-lethal, PD shortens the life expectancy

of the ones affected with such disease. As such, researchers from different fields of study

have put great effort in order to develop methods aiming the identification of PD in its early

stages. The proposed work uses handwriting dynamics data acquired by a series of tasks and

proposed the application of the deep-driven OPF clustering algorithm to learn a dictionary-

like representation of each individual to automatic identify Parkinson’s disease. Experimental

results showed promising results that are comparable to some state-of-the-art approaches in the

literature. Finally, Chapter 11 extended the work of the previous by learning representations

from all layers instead of just from the last layer as in the work in Chapter 10. The proposed

approach was also applied in the context automatic identification of Parkinson’s disease



Chapter 2
THE OPTIMUM-PATH FOREST FRAMEWORK

This chapter presents the theoretical background behind the Optimum-Path Forest frame-

work concerning supervised and unsupervised learning. The content was extracted from the

paper “A Survey on Optimum-Path Forest Classification”, which was submitted to ACM Com-

puting Surveys and is currently under review. The survey provides an overview of the fun-

damentals and algorithms behind the Optimum-Path Forest framework concerning supervised,

semi-supervised, and unsupervised learning, as well as their many applications.

2.1 Theoretical Background

A weighted graph G = (C ,E ,w) is formally defined as a triplet, in which C denotes the set

of vertices (nodes) and E stands for the set of edges or arcs. Besides, w : C ×C →ℜ+ stands

for a function that weights each arc of the graph. An edge defines a connection between any

two adjacent nodes and the connections are established according to an adjacency relation A

(i.e., an irreflexive binary relation between nodes). The edges allow to perform the so-called

“walks on the graph” and to find paths among nodes. A path πsss is defined as a sequence of

adjacent nodes starting from any node and with terminus at node sss ∈C, and it is called trivial

when composed of a single node sss being represented as 〈sss〉. An optimum-path is the one with

a value f (πsss) that satisfies f (πsss)≤ f (τsss), being τsss any other path in the graph with terminus at

sample sss, and f a real-valued path-cost function. Figure 2.1 depicts a few possible paths in a

graph.1

The main idea behind OPF is to partition a graph into a forest (i.e., set of trees), such that

all trees are comprised of optimum paths, and the nodes within a tree share similar properties.

1In the pattern recognition context, the nodes encode the feature vectors.
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a
π1

c

b

d

e

s
π2

π4

π3

Figure 2.1: The dashed lines represent four possible paths to node sss: π1 = {aaa,bbb,ccc,sss}, π2 = {bbb,ccc,sss},
π3 = {eee,sss}, and π4 = {ddd,eee,sss}.

In such a way, OPF can be understood as a generalization of Dijkstra’s algorithm that works

with any smooth path-cost function and is capable of finding optimum-paths from multiple

sources (FALCÃO; STOLFI; LOTUFO, 2004). Why does the OPF working mechanism is restricted

to smooth path-cost functions? The answer comes from the work by Falcão et al. (FALCÃO;

STOLFI; LOTUFO, 2004) that describes the generalization of Dijkstra’s algorithm works essen-

tially with monotonic-incremental cost functions (i.e., a function whose values always increase

within a certain interval). However, a few non-monotonic-incremental functions are also eli-

gible as a path-cost function (e.g., the 4-connected adjacency and feuc(π), which defines the

Euclidean distance between the endpoints of π). Hence, the authors defined more general con-

ditions to cover such cases, which are:

• f (τ)≤ f (π),

• τ is optimum, and

• for any optimum path τ ′ ending at sss, f (τ ′ · 〈sss, ttt〉) = f (π).

The conditions capture the essential features of such functions and the ones that satisfy them

are called smooth. Moreover, the path-cost functions are comprised of two terms: (i) the ini-

tialization term f (〈sss〉) that assigns an initial value to the trivial paths, usually according to the

type of node (i.e., prototype or non-prototype); and (ii) the propagation term f (πsss · 〈sss, ttt〉), which

defines the path cost to be offered to a node during the bidding process.

Let Z = {zzz111,zzz222, . . . ,zzzmmm} be a dataset of samples such that zzziii ∈ Rn. The Optimum-Path

Forest encodes each sample as a node in the graph G = (Z ,A ), and the graph-partitioning

task is performed in a bidding-like process where the bid is the cost defined by a smooth-path

cost function. As aforementioned, the OPF is capable of computing optimum-path trees from

multiple sources, called prototypes, which are a subset of samples P ∈ Z . The heuristic

implemented to select the set of prototypes varies according to the application. For instance,
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they can be selected at random, by computing minimum spanning trees, or by some probability

density function. For the sake of explanation, let us consider the set P is already defined. After

defining the path-cost function and the set of prototypes, the next step concerns computing the

optimum-path trees (OPTs).

The optimum-path trees are computed in a bidding-like process where the prototypes play

as bidders and the remaining samples (i.e., the non-prototype samples) are the prize. In the

first step, all paths are trivial and initialized with a cost according to the type of node they are

associated (i.e., prototype or non-prototype).

In the OPF context, the bidding order is defined by a priority queue whose ordering is

defined by the trivial-path cost. The targets (i.e., prize-nodes) of each node are its adjacent ones

and the value to be offered is a path cost. The winner is the one that offers the optimum-path

cost and the prize-node is added to its “collection” (i.e., optimum-path tree). What if multiple

prototypes offer the same optimum-path cost? In this case, OPF applies the first-takes-the-prize

policy (i.e., first-in-first-out - FIFO), but any policy can be implemented as well. Figure 2.2

provides an overview of the process for a given adjacency relation A .

A

B
C

F

D E

H
G

JI

(a)

B C

D E

H

G

J

I

A

F

(b)

Competition

(c)

B C

D E

H

G

J

I

A

F

(d)

A

Figure 2.2: Overview of the OPF working mechanism: (a) initial dataset, (b) derived graph G
according to A , (c) computing the optimum-path trees, and (d) the resulting optimum-path forest
with the prototypes highlighted (dashed circles).

Following, we present a toy example that computes optimum-paths from multiple sources

considering the fsum path-cost function:

fsum(〈sss〉) =

{
0 if sss ∈P

+∞ otherwise,

fsum(πsss · (sss, ttt)) = fsum(πsss)+d(sss, ttt). (2.1)

Figure 2.3 illustrates the entire process from the (a) initialization of the graph to (l) its optimum-

path forest. The values in red stand for the trivial-path cost of the nodes, in which each node

sss ∈Z is initialized with a value according to its type and stored in a priority queue Q.
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The values in green stand for the weight of the edges defined by d(sss, ttt), which can be any

distance or similarity metric computed over the arc (sss, ttt) ∈A . The prototypes are represented

as dashed-circled nodes (i.e., nodes aaa and jjj), and on the right side of each graph is shown the

current priority queue Q. The node in yellow is the one that has been removed from Q, and the

pink ones are its adjacent that are still in Q. The priority queue stores the nodes in increasing

order of costs and the ones with minimum values are the first to be popped out. Notice that Q

is implemented using a binary heap. For the sake of explanation, we have a min-heap since we

are trying to minimize the cost of each sample.
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Figure 2.3: General working mechanism of OPF from: (a) initialization, (b)-(k) bidding process to
(l) optimum-path forest.

In the toy example, node aaa is the first to be removed and tries to conquer its adjacent node

bbb (Figure 2.3b) by offering a cost Ca(bbb) = 0.0+ 0.8. Since Ca(bbb) < C(bbb), where C(bbb) stands

for the current cost of node bbb, node bbb is conquered by node aaa. Now, O(bbb) = {aaa} and bbb points

to aaa where O is the predecessor map. The process is repeated for the next adjacent node of aaa

(i.e., node ccc). Similarly to node bbb, the node ccc is also conquered by aaa with a cost of 0.7. Notice
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the priority queue is updated every time a node is conquered.

The next node in the queue is jjj, and its adjacency is analyzed in the same way as it was

done for aaa. The bidding is performed until Q is empty. Notice the case of a tie in (j) where ddd

tries to conquer ggg but it does not due to the FIFO policy. Also, notice in (k) where the conqueror

of ggg changes to eee. The entire process is implemented in Algorithm 1, in which f sums up all

arc-weights along a path.

Algorithm 1: Optimum-Path Forest Algorithm for Shortest-Path Computation
Input: A set of samples Z , set of prototypes P ⊂Z , a path-cost function f , and an

adjacency relation A .
Output: Predecessor map O and path-cost map C .
Auxiliary: Priority queue Q, and variable cst.

1 Q(sss)← 0
2 for all sss ∈Z do
3 O(sss)← nil, C (sss)←+∞, Q←{sss};
4 if sss ∈P then
5 C (sss)← 0

6 while Q 6= {} do
7 Remove from Q a sample sss such that C (sss) is minimum;
8 for each sample ttt ∈A (sss) and ttt ∈Q do
9 cst = f (O(sss),d(sss, ttt));

10 if cst < C (ttt) then
11 O(ttt)← sss, C (ttt)← cst;
12 Update Q;

13 return O,C

One of the main applications of the Optimum-Path Forest concerns general pattern recogni-

tion problems, but it is not restricted to them. By performing a few modifications in its general

formulation, OPF becomes a powerful classification algorithm capable of learning under dif-

ferent assumptions (i.e., supervised, semi-supervised, and unsupervised). OPF-based classifiers

explore the connectivity strength among samples to group the similar ones and their main ad-

vantages are two-fold: (i) the native treatment for multi-class problems, and (ii) the fact the

attribute space geometry is not considered, which provides better results for datasets comprised

of outliers or overlapping classes.
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2.2 Supervised learning

This section introduces two strategies for supervised learning using OPF. They differ from

each other on the adjacency relation, path-cost function, and the heuristic to select the proto-

types.

2.2.1 OPF using Complete graph

The strategy introduced by Papa et al. (PAPA; FALCÃO; SUZUKI, 2009) implements the com-

plete graph as an adjacency relation, i.e., there is an arc connecting any pair of nodes. Let Z

be a λ -labeled dataset, and Z1, Z2, and Z3 stand for the training, validation, and testing sets,

respectively, such that Z = Z1 ∪Z2 ∪Z3, and Z1 ∩Z3 = /0. The OPF with complete graph

(OPFcg) builds P ⊆ Z1 by computing a minimum spanning tree (MST) over the complete

graph G = (Z1,A ). The outcome is an undirected acyclic graph where the edges are weighted

by the distance between the adjacent feature vectors. Such spanning tree is optimum in the

sense the sum of the weights of its edges is minimum if compared to any other spanning tree

of the complete graph. The MST holds some theoretical properties, and it guarantees no error

during training under certain circumstances (ALLèNE et al., 2010).

Since training aims at minimizing the classification error, the prototypes will be the samples

in the resulting MST that are connected and belong to distinct classes, i.e., samples located

at the decision boundaries. The option for such samples is based on the fact they are more

likely to be misclassified due to the proximity to the influence region of other classes. By

disconnecting such samples, we obtain the set of prototypes P and the bidding is performed

through Algorithm 2, which uses the fmax as path-cost function:

fmax(〈sss〉) =

{
0 if sss ∈P

+∞ otherwise,

fmax(πsss · (sss, ttt)) = max{ fmax(πsss),d(sss, ttt)}. (2.2)

Lines 1–4 initialize the cost map by assigning cost 0 to the prototypes and +∞ to the re-

maining samples. All samples have their predecessors set as nil, and the prototypes are inserted

into the priority queue Q. The loop at Line 5 iterates over all samples sss ∈P first to start the

competition process: if the cost offered cst is lower than the current cost of the prize-node ttt, the

sample ttt is labeled with the same label as sample sss and added to its tree (Line 12). Notice the

classes can be represented by multiple optimum-path trees, and there must be at least one per

class.
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Algorithm 2: Supervised training using complete graph
Input: A λ -labeled training set Z1, set of prototypes P ⊂Z1 and a function d for

distance computation.
Output: Predecessor map O , path-cost map C and label map L .
Auxiliary: Priority queue Q, and variable cst.

1 for all sss ∈Z1 do
2 O(sss)← nil, C (sss)←+∞;

3 for all sss ∈P do
4 C (sss)← 0, L (sss) = λ (sss), Q← sss

5 while Q 6= {} do
6 Remove from Q a sample sss such that C (sss) is minimum;
7 for each sample ttt ∈Z1 such that sss 6= ttt and C (ttt)> C (sss) do
8 cst←max{C (sss),d(sss, ttt)};
9 if cst < C (ttt) then

10 if C (ttt) 6=+∞ then
11 Remove ttt from Q;

12 L (ttt)←L (sss), O(ttt)← sss, C (ttt)← cst;
13 Q← ttt;

14 return O,C ,L ;

The classification of a sample ttt ∈Z3 is performed by connecting it to all samples sss ∈Z1

and making ttt part of the graph. By considering all possible paths between P and ttt, we aim

at finding the optimum-path to ttt with the same class of its most strongly connected prototype.

Such path can be found by evaluating the optimum-path cost C (ttt) as follows:

C (ttt) = min{max{C (sss),d(sss, ttt)}},∀sss ∈Z1. (2.3)

Let sss∗ ∈ Z1 be the node that satisfies Equation 2.3. The classification assigns L (sss∗) as

the label of ttt. A misclassification happens when L (sss∗) 6= λ (ttt). Figure 2.4 depicts the training

(a)–(c) and classification (d)–(f) phases.

The OPF with complete graph works similarly to the nearest-neighbor (NN) classifier only

when all training samples are prototypes, which is very rare and indicates that the set of at-

tributes may not be the most appropriate to represent the samples. Moreover, OPF-based classi-

fiers differentiate from NN-based ones on how decisions are made. The latter makes local-based

decisions whereas the former is capable of global solutions based on the connectivity strength

among samples.
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Figure 2.4: OPFcg: training and classification phases.

2.2.2 OPF using k-nn graph

The second approach for supervised classification (OPFknn) was proposed by Papa et

al. (PAPA; FALCÃO, 2008; PAPA; FALCÃO, 2009a; PAPA; FERNANDES; FALCÃO, 2017), whose pri-

mary motivation was to explore different path-cost functions, adjacency relations, and heuristics

to select prototypes. Their approach also encodes samples as nodes in a graph, but it employs

a k-NN adjacency relation (Ak). Since a k-NN graph does not guarantee a connected graph,

computing the prototypes via MST is no longer an option. Hence, OPFknn implements a strat-

egy similar to selecting elements nearby the centroids of clusters (ROSA et al., 2014), where the

nodes located in areas of higher concentration of samples are chosen to build P .

The density of each node sss ∈ Z1 is computed by a probability density function (pdf) as

follows:

ρ(sss) =
1√

2πσ2|Ak(sss)|
∑

∀ttt∈Ak(sss)
exp
(
−d2(sss, ttt)

2σ2

)
, (2.4)

where σ = dmax/3, and dmax = max{d(sss, ttt) ∈ (Z1,Ak)}. A coverage of 99.7% of the nodes

within d(sss, ttt) ∈ [0,3σ ] can be guaranteed in the computation of ρ(sss) by applying a Gaussian

function. Moreover, the pdf is a Parzen-window estimation based on isotropic Gaussian kernel

when the arcs are defined by (sss, ttt) ∈A if d(sss, ttt)≤ d f , being dmax.

Imagine that the plotting of the density values gives us a surface where the variations of

density create valleys and peaks, and the regions with the same values define plateaus. In cases

where the plateau is a maximum of the pdf, it is urged to guarantee the connectivity between any
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pair of nodes at that maximum, so that any node can reach the remaining ones of the plateau and

their influence zone via an optimum path. This condition is essential to avoid the segmentation

of the plateau in too many OPTs (i.e., too many prototypes), where there should be only a few

or even a single one. One can overcome this issue by modifying the adjacency relation Ak to a

symmetric one of type A2:

if ttt ∈ (Ak(sss)), and sss /∈Ak(ttt),and ρ(sss) = ρ(ttt), then A2(ttt)←Ak(ttt)∪{sss}. (2.5)

In a theoretical situation where each maximum is comprised of a single sample, the follow-

ing path-cost function can be applied:

f1(〈sss〉) =

{
ρ(sss) if sss ∈P

−∞ otherwise,

f1(πsss · 〈sss, ttt〉) = min{ f1(πsss),ρ(ttt)}. (2.6)

Every sample sss ∈P defines a trivial path 〈sss〉 since it is not possible to reach sss from any other

maximum of the pdf without going through nodes of values lower than ρ(sss). Hence, any path

originated in P will have a greater value since the remaining trivial paths are initialized with

a value −∞. Considering all possible paths from P to all samples ttt /∈P , the optimum path

O∗(ttt) will be the one whose lowest density value is the maximum.

However, in a practical situation, a maximum may be represented by a set of nodes leading

us to change the connectivity function in such way that an initial value h defines the relevant pdf

maxima (i.e., a single node is selected per maximum). By applying f1(〈sss〉) = h(sss)< ρ(sss),∀sss ∈
Z1, a few pdf maxima are preserved and others are reached by paths from other maxima, whose

values are greater than their initial ones. Given that h(sss) can be computed as follows:

h(ttt) = ρ(ttt)−δ (2.7)

δ = min
(sss,ttt)∈A |ρ(ttt)6=ρ(sss)

|ρ(ttt)−ρ(sss)|,

all maxima of ρ are preserved and the regions with a value lower than δ will not define influence

zones. According to Rocha et al. (ROCHA; FALCÃO; MELONI, 2008), the number of maxima can

be reduced by:

• increasing the value of δ or by computing an anti-extensive morphological operation: the

plateaus of height below δ are removed;

• applying connected filters, such as area and volume openings as anti-extensive operators:

the plateaus of area or volume below δ are removed.
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As aforementioned, it is desired to avoid any division of the influence zone of a maximum

into multiple influence zones each rooted by one sample from that maximum. In this sense, P

is built by adding to it a single node per maximum, which is the first one detected by OPFknn

in each maximum. The nodes in P will have their cost exchanged from h(sss) to ρ(sss) and they

will be able to conquer the remaining ones in their maximum zone as well. Thus, the final

connectivity function f2 is given by

f2(〈sss〉) =

{
ρ(sss) if sss ∈P

h(sss) otherwise

f2(πsss · 〈sss, ttt〉) = min{ f (πsss),ρ(ttt)}, (2.8)

and training can be performed.

The OPFknn accuracy is influenced by the value kkk for Ak. Papa et al. (PAPA et al., ) proposed

an additional step prior the final training that computes the best value k∗ ∈ [1,kmax] that maxi-

mizes the accuracy Acc over an evaluating set Z2. The idea is to obtain more relevant samples

to the training by swapping samples from Z2 that were incorrectly classified for any randomly

selected samples from Z1, except the prototypes, and minimize the misclassification rate. The

accuracy Acc takes into account unbalanced datasets (i.e., a dataset whose classes are comprised

of a different amount of samples) and defined as follows:

Acc =
2c−∑

c
i=1 E(i)

2c
= 1− ∑

c
i=1 E(i)

2c
, (2.9)

where i stands for the class, c is the number of classes, and the term E(i) is given by:

E(i) =
FP(i)

|Z2|− |Z2(i)|
+

FN(i)
|Z2(i)|

, i = 1, 2, . . . , c, (2.10)

where FP(i) and FN(i) are the values of false positive and false negative for class i, respectively,

and Z2(i) stands for the number of samples in class i. In summary, it is computed a classification

model for each k ∈ [1,kmax] with accuracy evaluated over Z2. Then, the model that achieves the

highest accuracy is used to classify Z3.

The resulting optimum-path forest from Z1 must have each class represented by at least one

maximum of the pdf. However, such condition may not be satisfied if Equation 2.8 is applied.

To ensure such property, k∗ is computed using Equation 2.8 and then, the final training using

the best model is performed through the training Algorithm 3 applying fmin:

fmin(〈sss〉) =

{
ρ(sss) if sss ∈P

h(sss) otherwise,
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fmin(πsss · 〈sss, ttt〉) =

{
−∞ if λ (ttt) 6= λ (sss)

min{ f2(πsss),ρ(sss)} otherwise,
(2.11)

By assigning −∞ to all edges (sss, ttt) ∈ Ak where λ (ttt) 6= λ (sss), we avoid such arcs to be part of

an optimum path.

Concerning the training algorithm, the loop defined in Line 1 initializes the trivial paths

and predecessor map, and add all nodes to the priority queue Q. At first, the trivial paths have

assigned a cost f (〈sss〉) = ρ(sss)−δ , and none of them have a predecessor node. Differently from

OPFcg, the priority queue in OPFknn is in decreasing order, being the nodes of higher cost the

ones with higher priority. The main loop that begins in Line 4 iterates over all nodes that will

try to conquer its adjacent ones (i.e., loop in Line 8). If the node ttt is conquered by a node sss, sss

becomes the predecessor of ttt, and sss assigns its label to node ttt. The cost and position of node ttt

in Q are also updated. Notice the maxima are defined in Line 6. The outcomes of the algorithm

are the optimum-path forest (i.e., predecessor map), path cost map, and label map.

Algorithm 3: Supervised training using k-nn graph
Input: A k-nn graph (Z1,Ak), λ (sss) for all sss ∈Z1 and a path-cost function f1.
Output: Predecessor map O , path cost map C and label map L .
Auxiliary: Priority queue Q and variable cst.

1 for all sss ∈Z1 do
2 O(sss)← nil, C (sss)← ρ(sss)−δ , L (sss)← λ (sss);
3 Insert sss in Q;

4 while Q 6= {} do
5 Remove from Q a sample sss such that C (sss) is maximum;
6 if O(sss) = nil then
7 C (sss)← ρ(sss);

8 for each sample ttt ∈Ak(sss) and C (ttt)< C (sss) do
9 cst←min{C (sss),ρ(ttt)};

10 if cst > C (ttt) then
11 L (ttt)←L (sss), O(ttt)← sss, C (ttt)← cst;
12 Update the position of ttt in Q;

13 return O,C ,L ;

The classification of samples in Z3 is performed similarly to the conquering process (Fig-

ure 2.5). The first step computes the k-nearest neighbors of t and then, it is verified which node

sss∗ ∈Z1 satisfies the equation below:

C(ttt) = argmax
sss∈Z1

min{C(sss),ρ(ttt)}. (2.12)
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Therefore, OPFknn can be understood as a dual version of OPFcg (minimization problem) since

it aims at maximizing the cost of each sample, as follows:

max f (πsss), ∀sss ∈Z1. (2.13)
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Figure 2.5: OPF k-nn: (a) optimum-path forest after training, (b) sample to be classified, and (c)
sample after classification
.

2.3 Unsupervised learning

The unsupervised version of the Optimum-Path Forest classifier was proposed by Rocha

et al. (ROCHA; FALCÃO; MELONI, 2008) based on the well-known mean-shift algorithm that

computes clusters as influence zones of the maxima of a probability density function. The

unsupervised OPF (OPFuns) also exploits the identification of natural groups in a dataset using

the pdf of the samples, but with the advantages of being less sensitive to the pdf’s gradient

estimation and finding clusters more closely to the desired amount.

OPFuns works similarly to OPFknn by performing two major steps: (i) defining the set of

prototypes P , and (ii) computing the influence zones (i.e., clusters), which are rooted in P .

The maxima of a pdf can be implicitly found by computing the density of each node through

Equation 2.4 for a neighborhood defined by a k-NN adjacency relation. As mentioned in Sec-

tion 2.2.2, a maxima of the pdf may be comprised of multiple nodes and many of them are ir-

relevant for clustering (i.e., over-clustering issue rises if all nodes are taken as maxima). Hence,



2.3 Unsupervised learning 37

the filter defined in Equation 2.8 is applied to obtain the relevant maxima that will compose P ,

and a distinct label is assigned to each maximum.

The next step is to define the influence zones through Algorithm 4. The relevant maxima

are computed on-the-fly through Lines 6 and 7, where a new label is assigned to the sample sss

that does not have a predecessor, and its cost changed to ρ(sss). By updating the cost, we allow

that the first sample popped out from the maximum propagates its influence zone throughout its

maximum. The label propagation is performed in the loop in Lines 8 – 12 where a samples sss

tries to conquer its neighbors. The outputs are an optimum-path cost map V and a predecessor

map P .

Algorithm 4: Clustering by OPF
Input: Graph (Z ,Ak) and functions h and ρ , such that h(sss)< ρ(sss), ∀sss ∈Z .
Output: Predecessor map O , path-value map C and label map L .
Auxiliary: Priority queue Q, variables tmp and l← 1.

1 for all sss ∈Z do
2 O(sss)← nil, C (sss)← ρ(sss)−δ ;
3 Insert sss in Q;

4 while Q 6= {} do
5 Remove from Q a sample sss such that C (sss) is maximum;
6 if O(sss) = nil then
7 L (sss)← l, l← l +1, C (sss)← ρ(sss);

8 for each sample ttt ∈Ak(sss) and C (ttt)< C (sss) do
9 tmp←min{C (sss),ρ(ttt)};

10 if tmp > C (ttt) then
11 L (ttt)←L (sss), O(ttt)← sss, C (ttt)← tmp;
12 Update the position of ttt in Q;

13 return O,C ,L ;

Similarly as in OPFknn, the value of k also has some influence over the final model in the

OPFuns version. Therefore, Rocha et al. (ROCHA; FALCÃO; MELONI, 2008) proposed finding the

best value k∗ ∈ [1,kmax] by computing the minimum graph cut provided by clustering results for

k ∈ [1, kmax] according to a measurement suggested by Shi and Malik based on graph cuts (SHI;

MALIK, 2000).



Chapter 3
PATTERN ANALYSIS IN DRILLING REPORTS

USING OPTIMUM-PATH FOREST

This chapter introduces the Optimum-Path Forest for text mining and event classification

in drilling reports. The work proposed by Sousa et al. (SOUSA et al., 2018) was accepted for

presentation at the International Joint Conference on Neural Networks (IJCNN), 2018 (Qualis-

CC B2).

3.1 Introduction

Automatically classifying text documents has been actively pursued in the last decades

mainly due to the massive amount of text that is generated and consumed daily. Applications

vary from World Wide Web, social media message, electronic mail, medical patient records, and

digital libraries recommendation. Despite all these seemingly distinct purposes, text learning

algorithms rely on learning text patterns that may be used to automatically classifying text tasks,

such as the reading interests of users, catalog news articles, and social media sentiment analysis.

Drilling activities in the oil and gas industry are of great concern from energy companies,

government agencies, and the general public since they affect the economy and have a strong

environmental appealing. To fulfill certain regulations and also to monitor drilling activities,

the energy companies standardized some operations that are conducted on both off-shore and

in-land platforms. The so-called “drilling reports” are required to be filled out to maintain a log

from the whole drilling process, thus generating tons of data from every new well that is going

to be drilled. Another problem concerns the subjectivity when filling the reports out since some

parts of the form are free-text, i.e., the users can type in using an informal vocabulary. Such a

thing turns out to be a critical issue for the application of text mining approaches, which makes
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the problem of learning text patterns in drilling reports worth researching.

Rassenfoss (RASSENFOSS, 2015) highlighted the importance of learning patterns from

drilling logs and also reported the benefits obtained by two well-known private energy com-

panies to discover and predict faults during the drilling process. Dawson and Verkuil (DAWSON;

VERKUIL, 2014) proposed a concept of a data management system oriented to the problem of

drilling monitoring. The authors spotted the need for a pattern that must be followed when

filling the forms out. Antoniak et al. (ANTONIAK et al., 2016) presented a system that makes use

of natural language processing (NLP) techniques to mine textual data from drilling reports,

thus generating a repository to retrieve the data further. The main idea is to use data from the

repository to evaluate risks during the drilling operation and to query for old reports. With such

information beforehand, the drilling engineer can predict similar events that may occur.

Sidahmed et al. (SIDAHMED; COLEY; SHIRZADI, 2015) proposed an approach for concept

extraction together with their frequency from drilling reports. Further, the identified concepts

are then used to point out the cause and main factors that lead to some specific events occur.

The authors used data from well logs provided by a private oil-and-gas company. Later on,

Priyadarshy et al. (PRIYADARSHY et al., 2017) presented a methodology to extract concepts from

text data that are strongly related to some abnormalities, as well as their respective symptoms,

events, and further actions. The data extracted from the reports are used to train Support Vector

Machines and Naı̈ve Bayes classifiers.

Esmael et al. (ESMAEL et al., 2012) proposed an approach to organize and extract concepts

from daily reports. An experiment was conducted using Support Vector Machines and Neural

Networks to identify automatically usual and non-usual events in the context of drilling activ-

ities. Guilherme et al. (GUILHERME et al., 2016) proposed an ontology-based system for text

mining in drilling reports. Given the knowledge of some typical problems that may occur dur-

ing drilling, the authors created a series of ontologies that can describe them and further used

together with some automated text analysis tool. Hoffimann et al. (HOFFIMANN et al., 2017)

presented an approach based on NLP and deep learning for text mining in drilling reports. The

proposed work used Convolutional Neural Networks and Long-Short Term Memory-based ar-

chitectures to fulfill its central purposes, as well as standard neural nets were also used for

comparison purposes. The authors claimed that Long-Short Term Memory nets were able to

achieve the best results for the classification of sentences with nearly 83% of recognition rates.

Apart from text-based mining techniques, some works have also considered using computer

vision to monitor the drilling process. Guilherme et al. (GUILHERME et al., 2011), for instance,

proposed to track possible problems during the drilling process by taking into account the vol-
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ume of cuttings coming up at the vibrating shale shaker. With such information at hands, the

system could warn the staff whenever some considerable abnormality related to the volume of

cuttings has occurred (e.g., if the driller machine is working at full power, but the volume of cut-

ting is far below the expected, some problem may be happening). Guilherme et al. (GUILHERME

et al., 2010) also introduced a relatively new pattern recognition technique called Optimum-Path

Forest (PAPA; FALCÃO; SUZUKI, 2009; PAPA et al., 2012) to the aforementioned context, with

results pretty much competitive to some state-of-the-art techniques.

The OPF classifier has obtained competitive results and outperformed some state-of-the-art

techniques in some applications, but it has never been applied to the context of text mining and

event classification in drilling reports so far, which turns out to be the main contribution of this

paper. In this work, an “event” stands for the different actions that may occur during drilling,

such as cementing, choke drill, and the drilling operation itself, among others.

We showed results that are competitive to some of the most used pattern recognition tech-

niques up to date, and we provided future directions towards the area of text mining in drilling

reports. The remainder of this paper is organized as follows. Section 3.2 presents the proposed

approach and the methodology employed in this work. Section 3.3 discusses the experiments,

and Section 3.4 states conclusions and future works.

3.2 Proposed Approach and Methodology

In this section, we present the proposed approach for automatic text classification in drilling

reports using the Optimum-Path Forest classifier. In this approach, the input is a set of drilling

reports containing a sequence of events that are described in free-text fields. The first step in

the workflow aims at looking for “sentences”, which are defined as a sequence of letters/digits

bounded by a period character. However, such characters may correspond to other meanings

than ending a phrase, e.g., abbreviations or representing decimal numbers. In this situation,

we analyze the neighborhood of such characters to decide whether they stand for the end of a

sentence or not.

Further, the sentences must be pre-processed as follows: firstly, numbers are identified and

replaced by a special token (e.g., “speed 0.5m/s” is replaced by “speed [[number 0.5]]m/s”).

Later on, each word belonging to a sentence (i.e., a term) is segmented using a regular expres-

sion that identifies terms that are composed of alphanumeric characters, followed by special

tokens (e.g., ‘[’ or ‘]’), and then a non-blank space. Next, stopwords are removed according

to a pre-defined list that includes punctuation, articles, and prepositions of the Portuguese lan-
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guage (we are dealing with drilling reports from a Brazilian oil and gas company). Finally, it

is applied the RSLP (Removedor de Sufixos da Lı́ngua Portuguesa) technique (ORENGO; BU-

RIOL; COELHO, 2007), which is a rule-based suffix-stripping algorithm that is used to stem the

remaining terms.

Last but not least, the pre-processed free-text data are described by different feature ex-

tractors. This work evaluated four distinct representation models: Term Frequency - Inverse

Document Frequency (TF-IDF) (SALTON; MCGILL, 1986) , Textual Language Model Jelinek-

Mercer (JELINEK; MERCER, 1980), Best Matching (BM)-25 (JONES; WALKER; ROBERTSON,

2000) , and fusion of TF-IDF and BM-25. Figure 3.1 depicts the workflow of the proposed

approach.

Additionally, we evaluated the robustness of the OPF classifier under higher-dimensional

spaces. To fulfill that purpose, we also employed TF-IDF to extract features from either terms

and bigrams, as well as a combination of both. Since these new scenarios pose a more significant

challenge considering higher dimensional spaces, we examined the influence of dimension-

ality reduction techniques concerning sentence identification using Latent Semantic Analysis

(LSA) (WIEMER-HASTINGS; WIEMER-HASTINGS; GRAESSER, 2004) and Non-negative Matrix

Factorization (NMF) (PAATERO; TAPPER, 1994) .

The experiments used a dataset containing 12 drilling reports covering a total of 6,667

operations (sentences) labeled by specialists in the field of petroleum engineering, involving

43 classes (i.e., actions). For comparison purposes, OPF is compared against the well-known

Naı̈ve Bayes (BC) and k-NN classifiers using a k-fold-like cross-validation with 12 folds (i.e.,

each fold representing the collection of sentences extracted from a drilling report).

Regarding the source-codes, we used LibOPF (PAPA; SUZUKI; FALCÃO, 2014) concerning

OPF classifier, and our implementation for both k-NN and Naı̈ve Bayes classifiers. Concerning

k-NN, we chose the value of k ∈ {1,100} that maximized the accuracy over the training set.

Notice that range was set up empirically.

3.3 Experimental Section

In this section, we present the experimental results concerning the proposed approach for

automatic event classification in drilling reports1. As aforementioned, we divided the experi-

ment into two rounds: (i) the first one aims at evaluating different representation models (i.e.,

1All experiments were performed in a computer equipped with a Xeon R© Bronze 3106 processor of 1.70GHz
and 64GB of RAM.



3.3 Experimental Section 42

Sentence 
identification

Word 1 Word 2 Word n

Regular 
expression

Stopwords 
removal

Drilling report

RSLP

Post-processed
free-text

Free-text 1 …

…

Feature 
extraction

Sentence 
identification

Free-text m

Regular 
expression

Word 1 Word 2 Word k

Stopwords 
removal

…

RSLP

Post-processed
free-text

Feature 
extraction

Figure 3.1: Workflow of the proposed approach for automatic event classification in drilling re-
ports.

feature extractors), and (ii) the second assessed the robustness of the classifiers under reduced

feature spaces. To provide a statistical evaluation, we employed the Wilcoxon signed-rank

test (WILCOXON, 1945) with significance as of 5%.

3.3.1 Evaluating the representation models

Tables 3.1- 3.3 present the recognition rates concerning TF-IDF, Jelinek-Mercer, and BM-

25, respectively. The best techniques according to the Wilcoxon test are highlighted in bold.

As mentioned earlier, we performed a 12-fold cross-validation approach, where each drilling

report extracted from a certain well is used for testing purposes, and the remaining 11 reports
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are employed for training the model.

Table 3.1: Experimental results using TF-IDF.

Well BC k-NN OPF

W1 79.46% 80.32% 80.33%

W2 80.11% 80.07% 79.43%

W3 80.89% 81.11% 80.79%

W4 80.69% 80.89% 80.93%

W5 79.31% 80.92% 79.10%

W6 83.08% 83.06% 82.65%

W7 79.89% 79.95% 79.74%

W8 75.90% 77.06% 75.49%

W9 80.88% 81.62% 80.57%

W10 85.25% 87.66% 87.22%

W11 86.49% 88.40% 88.38%

W12 76.89% 77.03% 77.01%

Average 81.57%±2.97 81.51%±3.50 80.97%±3.70

In a nutshell, one can draw three main conclusions: (i) all techniques obtained similar

recognition rates across all representation models, (ii) TF-IDF played the major role in the

results, with the highest recognition rates, and (iii) the proposed approach generalize reasonably

among the wells since one has small standard deviation values.

Table 3.2: Experimental results using Textual Language Model Jelinek-Mercer.

Well BC k-NN OPF

W1 61.39% 63.51% 63.13%

W2 64.92% 66.36% 63.74%

W3 66.47% 67.52% 67.52%

W4 60.13% 62.95% 62.95%

W5 59.71% 59.83% 59.24%

W6 59.25% 59.58% 59.58%

W7 70.04% 69.85% 68.54%

W8 66.55% 66.55% 67.08%

W9 68.27% 69.33% 67.20%

W10 75.98% 78.35% 76.77%

W11 75.08% 77.00% 74.76%

W12 58.85% 58.25% 55.47%

Average 65.55%±5.99 65.59%±6.42 65.50%±6.19

TF-IDF technique has provided the best results among all representation models. Although

k-NN obtained the best results concerning BM-25 and Jelinek-Mercer, these approaches did
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not achieve reasonable results. Additionally, the statistical test pointed out that BM-25 outper-

formed Jelinek-Mercer by a small margin. In short, TF-IDF works by measuring how much

information a word provides but considering those who appear less as the most informative

ones. In the context of data mining in drilling reports, one may face two challenging situa-

tions: (i) free-texts with more than one event (usually separated in sentences), and, very much

often, (ii) free-text fields with a few sentences only. On the other hand, some events are readily

characterized by some specific verbs, thus helping TF-IDF obtaining good results.

Table 3.3: Experimental results using BM-25.

Well BC k-NN OPF

W1 61.97% 63.90% 63.32%

W2 67.02% 68.06% 65.58%

W3 66.02% 67.22% 67.22%

W4 61.48% 64.43% 62.82%

W5 60.67% 60.79% 58.76%

W6 61.04% 61.36% 60.88%

W7 71.54% 71.16% 68.73%

W8 66.55% 66.73% 63.75%

W9 71.20% 72.27% 69.60%

W10 75.59% 77.95% 76.38%

W11 75.08% 77.00% 74.44%

W12 60.64% 60.24% 59.24%

Average 66.57%±5.63 67.59%±5.99 65.89%±5.62

Figures 3.2 and 3.3 depict the training and classification times (logarithmic scale) concern-

ing TF-IDF representation model, respectively2. A significant advantage concerning OPF is

related to its training phase, which is parameterless. Although k-NN does not figure a training

step either, we considered the fine-tuning parameter phase in the training time computation.

2We considered only TF-IDF since it has obtained the best results, and a similar behavior can be observed for
Jelinek-Mercer and BM-25 models.
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Figure 3.2: Computational load concerning the training step.

Figure 3.3: Computational load concerning the classification time.

Concerning the classification step, one can realize that OPF is also faster than k-NN for

classification since the latter needs to compute the distance from the testing sample to the entire

training set to find out the k-nearest neighbors. An optimization approach proposed by Papa et

al. (PAPA et al., 2012) makes use of a list of training samples ordered by their costs, which turned



3.3 Experimental Section 46

out to be helpful when computing the distances from the testing sample to the training ones.

In this approach, there is no need to run over all training samples to perform the competition

process.

We performed an additional experiment to compare the usage of bigrams against the terms,

as well as a combination of both using concatenations. This further investigation was accom-

plished over the TF-IDF representation model only since it has obtained the best results. Ta-

ble 3.4 presents the average results concerning the bigrams, which were slightly below the ones

stated in Table 3.1. Since we have a few small sentences per free-text, bigrams contribute to

diminishing even more such amount of information.

Table 3.4: Experimental results using TF-IDF over bigrams.

Well BC kNN OPF

W1 64.73% 78.90% 64.84%

W2 58.12% 77.90% 59.75%

W3 60.88% 75.44% 60.83%

W4 60.21% 81.74% 59.90%

W5 75.76% 77.41% 75.73%

W6 57.31% 76.26% 57.31%

W7 61.03% 80.36% 60.75%

W8 56.93% 73.18% 56.95%

W9 60.21% 78.28% 60.85%

W10 61.51% 90.69% 63.91%

W11 64.39% 88.47% 66.07%

W12 56.67% 77.24% 56.73%

Average 61.48%±5.22 80.04%±5.22 61.97%±5.27

Table 3.5 presents the average results concerning the combination of both bigrams and

terms, with results slightly better than the ones obtained over bigrams only (Table 3.4). The

benefits of the concatenation are clearer noticed concerning the OPF and BC classifiers. Since

k-NN is purely based on distance computations, increasing the feature space may neglect sub-

tle information encoded in the feature vectors, thus not contributing (or sometimes making it

worse) to better results.
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Table 3.5: Experimental results using TF-IDF and a combination of terms and bigrams.

Well BC kNN OPF

W1 79.18% 80.75% 80.46%

W2 78.77% 79.67% 79.06%

W3 78.27% 78.48% 77.95%

W4 80.96% 81.57% 81.26%

W5 78.53% 80.18% 78.37%

W6 78.25% 78.20% 77.74%

W7 82.21% 82.31% 81.97%

W8 78.76% 79.96% 78.35%

W9 77.93% 78.78% 78.62%

W10 85.62% 88.20% 86.41%

W11 84.23% 86.23% 83.81%

W12 73.82% 74.45% 74.33%

Average 79.71%±3.14 80.73%±3.64 79.86%±3.17

3.3.2 Dimensionality reduction

The second round of experiments aimed at assessing the impact of lower-dimensional fea-

ture spaces on the accuracy rate of the classification techniques. Usually, text-oriented data

mining makes use of large vocabularies, increasing the dimensionality of the feature vectors

used to represent each sentence.

In this round of experiments, we compared two approaches for dimensionality reduction in

the context of event classification in drilling reports. The effect of reduced dimensionality was

evaluated in the distinct scenarios: (i) terms (i.e., the same used in the previous experiment),

(ii) bigrams, and (iii) a combination (i.e., concatenation) of both. Since TF-IDF obtained the

best results in the previous experiments, we focused on this approach only. Notice that the

dimensionality was empirically reduced to 100 for all cases.

Table 3.6 presents the dimensionality reduction results using LSA over the terms. The re-

sults were somehow similar among the techniques, being BC and k-NN the most accurate tech-

niques, closely followed by OPF. One can observe that the classifiers did not benefit from the

dimensionality reduction, which indicates the good choice for the vocabulary’s size employed

in the previous experiment.
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Table 3.6: Dimensionality reduction using Latent Semantic Analysis with terms.

Well BC kNN OPF

W1 65.25% 66.22% 64.48%

W2 62.17% 61.91% 61.65%

W3 67.52% 67.67% 66.92%

W4 67.11% 66.98% 65.64%

W5 62.34% 62.34% 61.86%

W6 62.98% 62.99% 62.01%

W7 67.60% 67.42% 66.67%

W8 70.40% 70.23% 69.88%

W9 68.00% 68.80% 67.73%

W10 71.26% 73.62% 72.44%

W11 67.73% 68.05% 67.09%

W12 60.34% 60.64% 60.44%

Average 66.06%±3.44 66.41%±3.81 65.57%±3.63

Figures 3.4 and 3.5 depict the computational load concerning dimensionality reduction us-

ing LSA and TF-IDF considering the training and testing phases, respectively. Once again,

OPF has been the fastest technique for training, and with similar efficiency when compared to

k-NN since now we have reduced dimensional feature spaces, which means k-NN takes lower

for distance computation.

Figure 3.4: Computational load concerning the training step.
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Figure 3.5: Computational load concerning the testing step.

Table 3.7 presents the dimensionality reduction experiment using LSA over bigrams. Once

again, reducing the size of the dictionary did not play an interesting role since the recognition

rates were considerably reduced. Also, as mentioned earlier, the free-text samples do not com-

prise too many words, and clustering them as bigrams help to have even less information from

the sentences.

Table 3.7: Dimensionality reduction using Latent Semantic Analysis with bigrams.

Well BC kNN OPF

W1 57.53% 58.69% 56.95%

W2 54.97% 54.84% 53.80%

W3 58.05% 58.20% 57.14%

W4 59.19% 58.79% 58.52%

W5 52.21% 52.21% 52.21%

W6 52.11% 52.44% 51.62%

W7 62.36% 61.99% 61.24%

W8 56.39% 56.39% 56.04%

W9 48.80% 49.07% 48.00%

W10 65.75% 67.72% 65.75%

W11 60.70% 61.02% 60.38%

W12 54.87% 54.67% 54.87%

Average 56.91%±4.75 57.17%±5.05 56.38%±4.79



3.3 Experimental Section 50

Table 3.8 presents the results with dimensionality reduction using LSA over the combi-

nation of terms and bigrams. The results outperformed the ones with either terms or bigrams

solely but did not achieve better results than the ones presented in the previous section. All clas-

sifiers obtained similar results for all situations, thus showing that different wells share similar

properties, even with descriptors that do not get good recognition rates.

Table 3.8: Dimensionality reduction using Latent Semantic Analysis with terms and bigrams.

Well BC kNN OPF

W1 66.02% 67.18% 66.60%

W2 62.70% 62.43% 62.04%

W3 69.47% 69.92% 68.87%

W4 67.11% 66.98% 66.58%

W5 62.57% 62.57% 61.03%

W6 60.71% 60.71% 59.58%

W7 67.42% 67.04% 66.85%

W8 68.13% 67.95% 66.90%

W9 67.47% 68.00% 67.73%

W10 75.20% 76.77% 76.38%

W11 74.76% 75.40% 73.48%

W12 61.43% 61.43% 60.44%

Average 66.92%±4.72 67.20%±5.11 66.37%±5.12

Table 3.9 presents the results concerning dimensionality reduction using non-negative ma-

trix factorization applied over the terms only. Once again, all classifiers achieved pretty much

close results but with results inferior to the ones obtained with LSA and without dimensionality

reduction, as stated in the previous section. Also, the results were less stable since the standard

deviation values are higher than the ones obtained with LSA (Table 3.6).
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Table 3.9: Dimensionality reduction using Non-negative Matrix Factorization with terms.

Well BC kNN OPF

W1 61.78% 62.74% 61.78%

W2 58.12% 57.72% 57.85%

W3 64.21% 64.51% 64.51%

W4 59.72% 59.73% 58.26%

W5 57.45% 57.45% 56.85%

W6 54.22% 54.06% 51.95%

W7 63.86% 63.67% 62.55%

W8 69.00% 69.00% 68.65%

W9 58.93% 59.73% 58.13%

W10 66.14% 67.72% 66.14%

W11 67.73% 68.37% 67.09%

W12 58.65% 58.65% 57.26%

Average 61.65%±4.55 61.95%±4.82 60.92%±5.01

The bigrams did not allow satisfying recognition rates once more, as one can observe in

Table 3.10, which presents the recognition rates using non-negative matrix factorization over the

bigrams. In this case, the results were even lower than the ones obtained with LSA. Although a

combination of both bigrams and terms allowed better recognition rates than the sole approaches

(Table 3.11), they are far below the results obtained without dimensionality reduction.

Table 3.10: Dimensionality reduction using Non-negative Matrix Factorization with bigrams.

Well BC kNN OPF

W1 51.74% 48.26% 47.68%

W2 48.30% 44.50% 47.38%

W3 47.22% 44.66% 47.37%

W4 48.59% 46.44% 48.05%

W5 46.60% 43.86% 46.25%

W6 45.13% 43.83% 44.81%

W7 55.62% 51.50% 55.06%

W8 47.29% 43.96% 47.11%

W9 40.27% 37.60% 40.53%

W10 57.87% 56.69% 57.09%

W11 60.38% 57.51% 60.70%

W12 50.70% 48.51% 51.09%

Average 49.98%±5.68 47.28%±5.70 49.43%±5.64
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Table 3.11: Dimensionality reduction using Non-negative Matrix Factorization with terms and
bigrams.

Well BC kNN OPF

W1 60.62% 61.78% 59.85%

W2 56.41% 56.15% 55.76%

W3 63.31% 63.61% 62.71%

W4 59.19% 59.19% 58.39%

W5 56.62% 56.62% 55.66%

W6 53.90% 53.90% 53.57%

W7 60.30% 60.11% 59.74%

W8 56.39% 56.39% 56.04%

W9 56.80% 57.07% 55.73%

W10 67.72% 69.29% 67.32%

W11 70.29% 70.61% 70.29%

W12 55.27% 55.86% 55.86%

Average 59.74%±5.08 60.02%±5.40 59.24%±5.15

3.4 Conclusions and Future Works

In this paper, we dealt with the problem of event classification in drilling report using super-

vised classifiers. Our primary focus was in the evaluation of the Optimum-Path Forest classifier

in the context of text mining in the oil and gas industry, since it has never been applied to this

application up to date.

The proposed approach was evaluated in drilling reports obtained from a Brazilian oil and

gas company (Petrobras), which were previously pre-processed for the further extraction of

features using three distinct representation models. Additionally, we conducted an additional

experiment to evaluate whether the techniques would benefit from dimensionality or not.

We have observed that TF-IDF provided the best results so far, with BC, k-NN, and OPF

being similar according to statistical evaluation. Also, the proposed approach seemed to gen-

eralize reasonably for different wells, with results nearly to 81% of recognition rates. Such

effectiveness is quite promising given the fact we have 43 various events to be recognized, and

some drilling reports may have more than one event described in it.

The OPF classifier figured as the best choice among all since it obtained results similar

(or close to it) to the best ones, but with much less computational effort and with no parame-

ters either. Concerning future works, we intend to research a different manner to estimate the

weights in the standard TF-IDF approach, which does not consider the classifier’s accuracy on
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it, but rather the frequency of terms only. We believe that designing an integrated approach that

considers TF-IDF and classifiers would estimate better weights, thus favoring the effectiveness

at the end.



Chapter 4
A KERNEL-BASED OPTIMUM-PATH FOREST

CLASSIFIER

This chapter presents a variation of the supervised OPF classifier by incorporating ker-

nel functions in both training and classification steps. This work was proposed by Afonso et

al. (AFONSO; PEREIRA; PAPA, 2018) and was presented at the 22nd Iberoamerican Congress on

Pattern Recognition 2017 (Qualis-CC A4).

4.1 Introduction

The nature of real-world problems has driven their modeling to structured objects where

samples are usually represented by nodes and their relationship are represented by connections

(edges), similarly to a graph (KONDOR; LAFFERTY, 2002; VISHWANATHAN et al., 2010). Among

these problems, one can mention studies in bioinformatics, social networks, and data mining in

documents, just to name a few, in which it is necessary to identify structures or elements that

share similar properties.

Another very common characteristic present in real-world problems is the non-linear distri-

bution, which requires complex models to identify the different existing patterns in the dataset

(HOFMANN; SCHöLKOPF; SMOLA, 2008). In this matter, kernels have been proposed as a tool to

overcome this issue by providing a way to map the data into a space of higher dimension, where

the input data may be linearly separable.

Support Vector Machines is perhaps the most well-known technique that makes use of ker-

nels for data embedding into higher dimensional feature spaces (BURGES, 1998). There are

also the kernel-PCA (Principal Component Analysis) (SCHöLKOPF; SMOLA; MüLLER, 1998) ,
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and the kernel-Fisher discriminant analysis (MIKA et al., 1999), just to mention a few. Although

the mapping can take a feature space to a very high dimension that increases the computing

cost, both training and classification steps can be performed by means of a dot product, the

so-called kernel trick. Such procedure consists in computing the dot product without the need

for mapping the samples to a higher dimensional space. The combination of these two worlds,

i.e., representations based on graphs and non-linear distributions, has motivated studies in the

application of kernels in structured data (KONDOR; LAFFERTY, 2002; GäRTNER, 2003). In this

research area, it is typical to find two different approaches, i.e., applications that make use of

kernels to identify similarity among graphs, while others focus on the similarity among the

graph nodes.

One of the first works on kernels among graphs was proposed by Gärtner et al. (GÄRTNER;

FLACH; WROBEL, 2003) and Borgwardt et al. (BORGWARDT et al., 2005) using the random walk,

and marginalized kernels by Tsuda et al. (TSUDA; KIN; ASAI, 2002), Kashima et al. (KASHIMA;

TSUDA; INOKUCHI, 2003, 2004) and Mahé et al. (MAHÉ et al., 2004). The basic idea of random-

walk graph kernels is to perform a random walk in a pair of graphs and sum up the number of

matching walks (VISHWANATHAN et al., 2010) on both graphs. The marginalized kernel is de-

fined as the inner product of the count vectors averaged over all possible label paths (KASHIMA;

TSUDA; INOKUCHI, 2003). Regarding kernels in graphs, interesting works were proposed by

Kondor and Lafferty (KONDOR; LAFFERTY, 2002) and Smola and Kondor (SMOLA; KONDOR,

2003). In (KONDOR; LAFFERTY, 2002), the authors proposed the diffusion kernels, which is a

special class of exponential kernels based on the heat equation.

Graph-based machine learning techniques can be noticed as well. The current OPF algo-

rithm implementation works naturally with non-linear situations, but it does not map samples

from one space to another. In this paper, we take one step further by modifying the OPF al-

gorithm to work with kernels on graphs to improve its training and classification results, since

such approach has not been applied so far. The performance of the proposed approach is as-

sessed under three different kernels, and it is compared against the original OPF algorithm and

the well-known SVM in 11 different datasets. The remainder of this paper is organized as fol-

lows. Section 4.2 presents the theoretical background concerning the OPF kernel-based variant.

Section 4.3 discusses the methodology and experiments, and Section 4.4 states the conclusions.
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4.2 Proposed Approach

The proposed kernel-based OPF, hereinafter called kOPF , works similarly to SVM algo-

rithm, in which samples are mapped into a feature space of higher dimension. In the SVM

context, such mapping is performed as an attempt to make the data linearly separable. The

OPF, on the other hand, naturally works with non-linear data. Therefore, the main idea of this

work is to evaluate OPF’s behavior under such assumption of samples’ separability in higher

dimensional spaces.

Let Φ(·, ·) be a kernel function that generates a new dataset M = Φ(Z ). Given a sample

z ∈Z , such that z ∈ℜn, its new representation ẑ ∈M is defined as follows.

ẑ = (Φ1,Φ2, . . . ,Φ|Z1|), (4.1)

where Φi = (z,si), si ∈Z1. Notice that ẑ ∈ ℜ|Z1|, which means the new sample z contains as

many dimensions as the number of training samples.

In short, Φ(z,si) makes use of a distance function (i.e., Euclidean, Mahalanobis, among

others) to compute a term that replaces the norm in kernel functions, such as Radial Basis

Function (RBF) and Sigmoid, for instance. The aforementioned term corresponds to the

distance between a sample to be mapped z and a training sample s. Basically, the mapping

performed by kOPF is carried out by computing a feature vector, where each component has

the distance value from the sample to be mapped (either training or testing sample) to a different

training sample applied to a kernel function. It is important to highlight that large training sets

may cause a significant increase on the size of the new feature vector, since the size is dependent

on the number of training samples |Z1|.

4.3 Methodology and Experiments

The kOPF classifier has both its performance and accuracy assessed by means of 11 public

benchmarking datasets1 that provide different classification scenarios. The implementation of

our proposed approach is developed over the LibOPF (PAPA; SUZUKI; FALCÃO, 2014), being

standard OPF and SVM used as baselines for the experiments. With respect to SVM, we used

the well-known LibSVM2. Table 4.1 presents detailed information from the datasets.

Since the kernel function can influence the final accuracy, we evaluated its impact by ap-

1https://github.com/jppbsi/LibOPF
2https://www.csie.ntu.edu.tw/~cjlin/libsvm
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Table 4.1: Information about the datasets used in the experiments.

dataset No. samples No. features No. classes
boat (bt) 100 2 3
cone-torus (ct) 400 2 3
data1 (d1) 1,423 2 2
data2 (d2) 283 2 2
data3 (d3) 340 2 5
data4 (d4) 698 2 3
data5 (d5) 1,850 2 2
mpeg7-BAS (m-B) 1,400 180 70
mpeg7-Fourier (m-F) 1,400 126 70
petals (ps) 100 2 4
saturn (sn) 200 2 2

plying three different kernel functions for kOPF as follows:

• Identity: Φ(z,s) = ‖z,s‖

• RBF: Φ(z,s) = e−(γ‖z,s‖
2)

• Sigmoid: Φ(z,s) = tanh(γ‖z,s‖+C)

where ‖z,s‖ denotes the Euclidean distance. Notice the Identity kernel is parameterless. The

SVM was also evaluated using three different kernel functions: linear, RBF and Sigmoid. The

situations in which parameters C and γ are required, it is performed their optimization using the

intervals C = [−32,32] and γ = [0,32] with steps equals to 2 for both of them.

The classification experiments were conducted by means of a hold-out process using 15

runs, in which both training and testing sets were randomly generated in each run and always

having a number of samples equals to 50% of the dataset size. The experiments also evalu-

ated the impact on the accuracy rate when features are normalized. Tables 4.2 and 4.3 present

the mean accuracy results considering non-normalized and normalized datasets, respectively.

The accuracy rates were computed using the accuracy measure proposed by Papa et al. (PAPA;

FALCÃO; SUZUKI, 2009), which considers unbalanced data. The best results according to the

Wilcoxon signed-rank test with significance 0.05 are shown in bold.

In the non-normalized feature scenario, SVM-RBF achieved the best results (or similar)

in 9 out of 11 datasets, followed by the kOPF (kOPF-Identity and kOPF-RBF) with 7 out of

11 (being kOPF-Identity the best in 6 out of 11). The standard OPF obtained the best results

in 5 out of 11 datasets. Considering normalized features, the kOPF (kOPF-Identity, kOPF-

RBF and kOPF-Sigmoid) obtained the best results (or similar) in 8 out of 11 datasets (being
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Table 4.2: Mean classification rates for non-normalized features.

dataset OPF kOPF SVM

Identity RBF Sigmoid Linear RBF Sigmoid
bt 98.5±0.0 96.8±3.0 100.0±0.0 99.1±1.2 76.9±1.8 100.0±0.0 76.9±1.8
ct 86.2±0.0 84.3±2.6 84.5±2.7 84.2±2.4 74.9±0.2 86.5±1.1 74.4±0.4
d1 99.5±0.0 99.4±0.2 67.2±8.6 68.5±14.5 94.8±0.8 99.4±0.3 94.0±0.8
d2 99.3±0.0 98.1±1.1 57.0±2.6 62.0±6.1 97.1±0.5 98.2±0.2 81.3±3.6
d3 99.6±0.0 99.7±0.4 64.0±3.6 71.1±5.4 98.4±0.8 99.7±0.4 97.9±0.7
d4 100.0±0.0 100.0±0.0 60.8±2.6 67.8±6.4 100.0±0.0 100.0±0.0 50.9±1.3
d5 100.0±0.0 100.0±0.0 62.5±3.2 67.5±9.3 50.0±0.0 100.0±0.0 50.0±0.0

m-B 89.4±0.0 89.0±0.30 50.1±0.1 50.1±0.1 87.9±0.2 90.5±0.2 50.0±0.0
m-F 73.0±0.0 73.0±0.5 64.4±0.6 66.2±0.5 69.0±0.8 73.0±0.5 68.1±0.5
ps 98.7±0.0 100.0±0.0 99.2±0.6 98.9±1.0 99.6±0.6 100.0±0.0 100.0±0.0
sn 93.0±0.0 90.2±2.0 80.8±2.6 81.8±4.0 42.7±3.7 91.3±1.9 49.0±3.3

Table 4.3: Mean classification rates for normalized features.

dataset OPF kOPF SVM

Identity RBF Sigmoid Linear RBF Sigmoid
bt 97.1±0.0 99.7±0.6 99.4±1.2 100.0±0.0 76.9±1.8 99.5±0.7 76.5±1.2
ct 89.3±0.0 86.7±1.7 88.0±1.2 89.9±0.5 75.9±1.6 89.4±0.5 76.1±1.6
d1 99.3±0.0 99.0±0.3 99.0±0.3 99.0±0.3 94.7±0.4 99.3±0.2 94.7±0.4
d2 97.3±0.0 96.9±1.5 97.1±1.2 97.0±1.3 98.8±0.9 98.6±0.6 98.6±0.6
d3 100.0±0.0 98.4±1.4 100.0±0.0 98.7±0.8 99.5±0.4 99.3±0.7 99.5±0.4
d4 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
d5 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 50.0±0.0 100.0±0.0 50.7±0.9

m-B 88.8±0.0 90.8±0.3 53.2±0.5 56.3±0.4 87.7±0.9 89.9±0.6 87.6±0.9
m-F 62.9±0.0 62.5±0.4 59.2±0.7 61.1±0.8 64.7±0.7 65.4±0.5 64.3±0.9
ps 98.7±0.0 100.0±0.0 99.5±0.6 99.5±1.0 100.0±0.0 99.6±0.6 100.0±0.0
sn 91.0±0.0 91.8±0.2 79.2±4.8 84.6±0.8 52.3±1.7 90.7±4.5 50.7±3.4

kOPF-Identity the best in 5 out of 11), followed by SVM (SVM-Linear, SVM-RBF and SVM-

Sigmoid) with 7 out of 11 (being SVM-RBF the best in 6 out of 11). The OPF obtained the best

results in only 4 out of 11 datasets.

In both (non-normalized and normalized) scenarios, the proposed kOPF outperformed the

traditional OPF in most datasets, and for normalized features, kOPF outperformed the SVM in

some datasets as well. The results are quite interesting since kOPF was able to improve OPF

and outperforming SVM in some datasets. Considering some other datasets, although kOPF did

not outperform both OPF and SVM, their results were considerably close.

The experiments also comprised the analysis of computational load required by each tech-

nique in each dataset. The results showed OPF and kOPF require a considerably small com-

putational load in the training phases when compared against SVM. The high training time

consumption turns the SVM prohibitive in real-time learning systems, especially if the training

set is very dynamic over time. In this situation, both OPF and kOPF seems to be the most suit-

able approach. Tables 4.4 and 4.5 present the mean training and testing computational loads,
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Table 4.4: Mean training time using 50% of the samples for training.

dataset OPF kOPF SVM

Identity RBF Sigmoid Linear RBF Sigmoid
bt 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 15.8±0.9 0.4±0.0 0.4±0.0
ct 0.0±0.0 0.02±0.0 0.0±0.0 0.0±0.0 628.6±295.9 2.24±0.2 1.3±0.0
d1 0.0±0.0 0.7±0.0 1.4±0.0 1.1±0.0 45.2±21.7 5.96±0.2 6.1±0.2
d2 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.6±0.2 0.67±0.0 0.6±0.0
d3 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.6±0.0 0.97±0.0 0.9±0.0
d4 0.0±0.0 0.1±0.0 0.2±0.0 0.1±0.0 0.6±0.0 1.74±0.0 1.7±0.0
d5 0.1±0.0 1.4±0.0 2.8±0.1 2.4±0.0 2906.1±490.7 3.7±0.1 11.6±1.2

m-B 0.2±0.0 0.3±0.0 0.6±0.0 0.6±0.0 224.7±2.8 295.2±1.0 226.8±1.1
m-F 0.1±0.0 0.7±0.0 1.0±0.0 0.9±0.0 221.9±0.7 232.9±0.5 203.5±0.5
ps 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.3±0.0 0.4±0.0 0.4±0.0
sn 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 34.8±10.3 0.9±0.1 0.7±0.01

Table 4.5: Mean testing time.

dataset OPF kOPF SVM

Identity RBF Sigmoid Linear RBF Sigmoid
bt 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
ct 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
d1 0.0±0.0 0.5±0.0 0.6±0.0 0.5±0.0 0.0±0.0 0.0±0.0 0.0±0.0
d2 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
d3 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
d4 0.0±0.0 0.1±0.0 0.1±0.0 0.1±0.0 0.0±0.0 0.0±0.0 0.0±0.0
d5 0.0±0.0 1.2±0.0 1.4±0.1 1.2±0.0 0.0±0.0 0.0±0.0 0.0±0.0

m-B 0.2±0.0 0.8±0.0 1.0±0.0 0.9±0.0 1.0±0.0 1.2±0.0 1.0±0.0
m-F 0.2±0.0 0.9±0.0 1.5±0.0 0.9±0.0 0.8±0.0 0.9±0.0 0.8±0.0
ps 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
sn 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

respectively. Notice that the training time takes into account the fine-tuning when performed.

4.4 Conclusions

This paper introduced a kernel-based OPF, which is a modification made over the standard

OPF classifier that allows the usage of different kernel functions for both learning and classifi-

cation. In our proposed approach, the mapping makes use of distance metric whose results are

applied to kernel functions, such as RBF and Sigmoid. The main goal of such modification is

to improve the accuracy rate.

The evaluation using 11 benchmark datasets and three different kernels showed the pro-

posed approach achieved very interesting results, in which the application of kernel functions
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improved the accuracy rate of the traditional OPF, and even outperformed the well-known SVM

when features were normalized. In summary, kOPF achieved satisfactory results and is an in-

teresting option for classification, especially when training sets are very dynamic due to its low

computational load for training purposes.



Chapter 5
IMPROVING OPTIMUM-PATH FOREST

CLASSIFICATION USING UNSUPERVISED

MANIFOLD LEARNING

This chapter presents the work accepted for presentation in the 24th International Con-

ference on Pattern Recognition (ICPR) 2018 (AFONSO; PEDRONETTE; PAPA, 2018) (Qualis-CC

A2), which proposes the combination of unsupervised manifold learning with two supervised

OPF classifiers aiming the accuracy rate improvement.

5.1 Introduction

General classification performed by automated methods (e.g., machine learning algorithms)

may not meet the users’ expectation. For example, in Content-Based Image Retrieval (CBIR)

applications, the unsatisfactory performance can be linked to the fact that low-level features

(e.g., color, texture, and shape) are usually not able to capture the similarity observed by hu-

mans (LEE; JIN; JAIN, 2008). Besides the low-level feature issue, the fact that different data

distribution may require a distinct distance metric for obtaining better results is also an issue

that must be considered.

To overcome those problems, a few works were proposed attempting to reduce the semantic

gap by developing new visual features (PENATTI; VALLE; TORRES, 2012) and similarity functions

using low-level features (MÜLLER; PUN; SQUIRE, 2004). Visual features are not completely

capable of capturing relevant semantic information, and traditional pairwise metrics often fail

to provide reasonable results primarily because of the heterogeneity of the input space in image

retrieval tasks (LEE; JIN; JAIN, 2008).
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Finding the appropriate distance metric became paramount for a better classification/re-

trieval performance, also posing a challenging task (BELLET; HABRARD; SEBBAN, 2013). Stud-

ies shifted to the design of approaches that are capable of learning appropriate metrics for a

given input data. In a nutshell, metric learning can be defined as the transformation of data

samples from their original space to another feature space in such way the intra-class variation

is reduced, meanwhile the inter-class variation is increased (LIONG; LU; GE, 2015; PEDRONETTE;

GONÇALVES; GUILHERME, 2018).

Works available in the literature explore the three different learning methods: supervised,

semi-supervised, and unsupervised. The majority of works follow the supervised (BIE; MOMMA;

CRISTIANINI, 2003) and semi-supervised (HOI; LIU; CHANG, 2010) fashion by usually using

samples with side-information (i.e., relevance judgments). Those works add constraints on

pairwise distance metrics, which can be information provided by users.

On the other hand, unsupervised methods explore the dataset manifold by using more

global affinity measures that consider the context of the database objects (ZHOU et al., 2003;

PEDRONETTE; TORRES, 2013; PEDRONETTE; GONÇALVES; GUILHERME, 2018). In this scenario,

contextual information is essential for finding an appropriate metric since it gives more de-

tails of the relation among the objects of a dataset. Hence, manifold learning showed to be

a promising tool and has been applied in many different learning scenarios (LU; TAN; WANG,

2013; THEODORAKOPOULOS et al., 2016).

Pedronette et al. (PEDRONETTE; GONÇALVES; GUILHERME, 2018) proposed an unsupervised

manifold learning algorithm for image retrieval that exploits the Reciprocal k-NN Graph and

Connected Components (CCs) . Their work analyzes ranking information to learn the dataset

structure, in which the reciprocal references encoded in the ranking information are modeled as

a graph. Then, CCs are used to identify the geometry of the dataset manifold.

Although metric learning approaches have been used in a number of different applications,

they have been poorly studied in the context of OPF-based classifiers. Therefore, the main con-

tribution of this work is to propose a metric learning approach based on the work by Pedronette

et al. (PEDRONETTE; GONÇALVES; GUILHERME, 2018) to be validated in the context of two su-

pervised OPF classifiers: (i) one that makes use of a complete graph (PAPA; FALCÃO; SUZUKI,

2009; PAPA et al., 2012), and (ii) the other that employs a k-nearest neighbors graph as an adja-

cency relation (PAPA; FERNANDES; FALCÃO, 2017). We have shown that OPF can benefit from

manifold learning approaches in several public datasets.

The remainder of this paper is organized as follows. The proposed approach is presented

in Section 5.2, while Section 5.3 details the experimental setup and results. Finally, the conclu-
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sions are stated in Section 5.5.

5.2 Proposed Approach

Effectively measuring the similarity among data samples remains a challenging problem

in classification and retrieval tasks. The classical pairwise distance measures, as the Euclidean

distance, often fail in taking into account the dataset structure. In this scenario, we propose

to compute a more effective distance function d(z,v) required by the OPF classification using

an Unsupervised Manifold Learning Algorithm based on the Reciprocal kNN Graph and its

Connected Components (PEDRONETTE; GONÇALVES; GUILHERME, 2018).

5.2.1 Reciprocal kNN Graph

The Reciprocal kNN Graph can be defined as an undirected graph Gr = (V ,E ), where the

set of vertices V is given by the data collection, such that V = Z . Each data sample in the

dataset is represented by a node in the graph. Notice that, since the algorithm is unsupervised,

the graph represents the whole collection including training and test sets, although no labeled

information is used.

The edge set E is computed based on the k-reciprocal neighborhood considering different

thresholds of k. Let N (z,k) denotes a neighborhood set which contains the k most similar

samples to a data sample z. Once the nearest neighbor relationships are not symmetric (QIN et

al., 2011), the set of k-reciprocal nearest neighbors of sample z can be defined (QIN et al., 2011)

as:

Nr(z,k) = {u ∈N (z,k)∧ z ∈N (u,k)}. (5.1)

The Reciprocal kNN Graph is constructed at different neighborhood depths, allowing a

multi-level analysis. Let tk denotes a threshold which defines the value of k at a given moment

of algorithm execution, the edge set E can be formally defined as:

E = {(z,v) | v ∈Nr(z, tk)}. (5.2)

Therefore, an edge between data samples z and v is constructed if they are reciprocal neigh-

bors at a tk depth.
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5.2.2 Connected Components

The reciprocal neighborhood provides a strong indication of similarity (QIN et al., 2011).

However, only a small number of edges is created, deriving a sparse and disconnected graph. In

this way, the Connected Components of the Reciprocal kNN Graph are used for expanding the

similarity neighborhood and analyzing the geometry of the dataset manifold. Data samples in

the same connected component have their similarity increased.

Formally, a connected component Ci is defined as a set of data samples (PEDRONETTE;

GONÇALVES; GUILHERME, 2018). Therefore, the CCs computed for the entire dataset is given

by a set S = {C1,C2, . . . ,Cm}, such that {C1∩C2∩·· ·∩Cm}= /0.

5.2.3 Reciprocal kNN Graph CCs Distance

The edges of the Reciprocal kNN Graph Gr and the set of Connected Components S are

exploited for computing a novel and more effective distance among data samples, capable of

considering the dataset manifold (PEDRONETTE; GONÇALVES; GUILHERME, 2018). Different

depths of reciprocal neighborhood (represented by tk) are considered. First, a similarity score

we(u,v) between data samples u, v is defined based on the graph connectivity:

we(u,v) =
k

∑
tk=1

∑
q∈Z ∧u,v∈E (q)

(k− tk +1), (5.3)

where E (q) denotes the set of nodes to which sample q has edges at a given depth tk. Anal-

ogously, a similarity score wc(u,v) is defined aiming at exploiting infomration encoded in the

connected components:

wc(u,v) =
k

∑
tk=1

∑
u,v∈Cl

(k− tk +1). (5.4)

Finally, a Reciprocal kNN Graph CCs Distance dr is defined considering information from

both similarity scores as:

dr(u,v) =
1

1+we(u,v)+wc(u,v)
. (5.5)

The distance dr impacts the neighborhood sets which are used to update the graph Gr.

Therefore, the algorithm can be iteratively repeated. Let the superscript (t) denotes the iteration,
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an iterative distance can be defined n terms of the current similarity score:

d(t+1)
r (u,v) =

1
1+we(t)(u,v)+wc(t)(u,v)

. (5.6)

After T iterations, a final distance d(z,v) = d(T )
r (z,v) is computed and used by the OPF

classification.

5.3 Methodology

The robustness of the proposed approach is assessed using four different image datasets, as

described in Table 5.1.

Table 5.1: Description of the datasets.

dataset Type # samples # classes

Brodatz Texture 1,776 111

Corel 5k Objects/Scenes 5,000 50

MPEG-7 Shape 1,400 70

Each dataset has a different number of descriptors that are computed according to their

main applications (e.g., a dataset may be texture- or color-oriented), as listed below:

• Brodatz1: Color Co-Occurrence Matrix (CCOM) , Local Activity Spectrum (LAS) , and

Local Binary Patterns (LBP) ;

• Corel 5k2: Convolutional Neural Network by Caffe using the full-connected layer 7

(CNN-Caffe) , Auto Color Correlograms Spatial Pyramid (ACC-SPy) , Color and

Edge Directivity Descriptor Spatial Pyramid (CEDD-SPy) , Fuzzy Color and Texture

Histogram Spatial Pyramid (FCTH-SPy) , Joint Composite Descriptor Spatial Pyramid

(JCD-SPy) , and Local Binary Patterns Spatial Pyramid (LBP-SPy) ;

• MPEG73: Articulation-Invariant Representation (AIR) , Aspect Shape Context (ASC)

, Beam Angle Statistics (BAS) , Contour Features Descriptor (CFD) , Inner Distance

Shape Context (IDSC) , and Segment Saliences (SS) ;

1http://www.ci.gxnu.edu.cn/cbir/Dataset.aspx
2http://www.ci.gxnu.edu.cn/cbir/Dataset.aspx
3http://www.dabi.temple.edu/~shape/MPEG7/dataset.html
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Therefore, the proposed approach has an initial set of 15 different scenarios (i.e., number of

pairs [dataset, descriptor]) to be assessed. In each scenario, a comparison is conducted con-

sidering the OPF-based classification based on the original distance function and the distance

computed by the unsupervised manifold learning algorithm.

The experiments aimed at comparing the distances that were recommended by the authors

of the datasets from now on called “original”, against the distances computed by the proposed

approach, from now on called “manifold”. The parameter settings for the unsupervised man-

ifold learning algorithm used only one iteration (T = 1) and the neighborhood size suggested

by (PEDRONETTE; GONÇALVES; GUILHERME, 2018) with k = 20.

The proposed approach was evaluated considering both CG-OPF or kNN-OPF classifiers.

There were used three different configurations of training/testing set sizes: 25%/75%, 50%/50%

and 75%/25%. The main idea behind this variation is to evaluate the behavior of the manifold

learning approach with different training set sizes, especially the small ones. In such scenar-

ios, obtaining high-accuracy classification rates is more challenger and the use of the manifold

learning presents a greater potential due to its capacity of considering the underlying dataset

structure.

Moreover, the experiments were carried out by means of a hold-out process with 20 runs,

being the best results of each tuple [dataset, descriptor, training set size] defined according to

the Wilcoxon signed-rank test with variance as of 0.05. Notice that the accuracy rates were

computed using the accuracy measure proposed by Papa et al. (PAPA; FALCÃO; SUZUKI, 2009).

It is important to highlight that the kNN-OPF has an additional step that is a pre-training

required to search for the best value of k, say that k∗. That process is performed by means of

a pre-training (Z3) and an evaluating set (Z4), such that Z1 = Z3∪Z4. Once k∗ is found, Z3

and Z4 are merged, and the proper training is performed once more using k∗ over Z1. The k

search range was set empirically as [1,50] for all situations.

5.4 Experimental Results

In this section, we present the experimental results concerning the unsupervised manifold

learning approach applied to OPF classifiers. Figures 5.1 – 5.6 depict the average accuracies

organized by dataset and OPF variant. Although we did not display the standard deviation bars,

the proposed approach outperformed the original manifolds in all situations, except for 1 out of a

total of 90 situations (i.e., 1.11%) as follows: Brodatz dataset using the 75%/25% configuration

and LBP descriptor with classification performed by CG-OPF. In the remaining scenarios, the
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proposed approach based on manifold learning either outperformed (85% - 94.45%) or it was

statistically similar (4% - 4.44%) to the original distance functions.

Figure 5.1: Average accuracy rates for Brodatz dataset and CG-OPF concerning the configurations
25%/75%, 50%/50%, and 75%/25%.

One of the main advantages of using manifold learning is to benefit in situations that pic-

ture small training sets. One can observe, for instance, that we can still improve the results over

the smaller datasets (i.e., Brodatz and MPEG-7), which usually lack informative samples. Ad-

ditionally, a comparison regarding the accuracies of both CG-OPF e kNN-OPF evidenced the

former has been slightly more accurate in all situations. Actually, some previous works showed

that both variants are somehow complementary to each other, which means we can benefit from

ensembles of OPF-based classifiers (FERNANDES; PAPA, 2017).

The complementarity concerning both CG-OPF and kNN-OPF is related to the prototype

estimation methodology mainly. The former estimates prototypes at the boundary among

classes, which are known to be more susceptible to classification errors, and kNN-OPF esti-

mates prototypes at the regions of highest concentration of samples, which are likely to be the

center of the classes. Therefore, different sets of prototypes generate distinct optimum-path

trees, thus partitioning the training set into varying configurations, which affect the final classi-

fication as a whole.
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Figure 5.2: Average accuracy rates for Corel 5k dataset and CG-OPF concerning the configura-
tions 25%/75%, 50%/50%, and 75%/25%.

Figure 5.3: Average accuracy rates for MPEG7 dataset and CG-OPF concerning the configurations
25%/75%, 50%/50%, and 75%/25%.
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Figure 5.4: Average accuracy rates for Brodatz dataset and kNN-OPF concerning the configura-
tions 25%/75%, 50%/50%, and %75/25%.

Figure 5.5: Average accuracy rates for Corel 5k dataset and kNN-OPF in the configurations
25%/75%, 50%/50%, and 75%/25%.
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Figure 5.6: Average accuracy rates for MPEG7 dataset and kNN-OPF concerning the configura-
tions 25%/75%, 50%/50%, and 75%/25%.

Regarding the training/testing set size configurations, larger proportions of training sam-

ples achieved better results, as expected. The improvement varies according to the dataset and

descriptor used. One can notice small gains concerning the MPEG-7 dataset with AIR and

IDSC descriptors, as well as more significant ones in the Corel 5k dataset with CEDD-Spy and

JCD-Spy descriptors.

5.5 Conclusions

This paper proposed a novel approach that combines an unsupervised manifold learning

algorithm with two versions of the OPF classifier. Experiments showed we can learn better

manifolds that capture the contextual information encoded in the feature space. The main ad-

vantage was observed in situations where small training sets are available (e.g., Brodatz and

MPEG-7 datasets), and with accuracy rates even higher than those achieved in a larger dataset

such as Corel 5k. Therefore, unsupervised manifold learning showed to be a promising tool for

improving accuracy, and especially when few training samples are available.



Chapter 6
EVOLVING OPTIMUM-PATH FOREST

This chapter studied and evaluated an evolutionary-based approach to estimate the proto-

types for the supervised version of the OPF. The main question to be answered by this work is,

can an evolutionary-based approach estimate better prototypes than using the minimum span-

ning tree? The work was submitted to the Natural Computing journal (Qualis-CC B1) and is

currently under review.

6.1 Introduction

Nowadays, machine learning plays an essential role in our society. Recommendation

and video surveillance systems, handwriting recognition, natural language processing, and au-

tonomous vehicles are some examples of machine learning technologies that are already part of

the everyday life of big companies. In fact, the growing amount of data increased the need for

building efficient and effective models capable of analyzing such complex patterns.

A common problem found in machine learning concerns the pattern classification, where

the fundamental idea is to discriminate samples and classify them correctly within categories or

classes. The classification algorithms are divided according to the learning process, which can

be supervised or unsupervised mainly. The former approaches assume the training set has been

fully labeled with the correct outputs. Besides, unsupervised learning concerns clustering unla-

beled samples that share similar properties. Last but not least, we shall mention semi-supervised

learning (CHAPELLE; SCHLKOPF; ZIEN, 2010), where both labeled and unlabeled samples are

used to guide the classification process.

Among the well-known classifiers in the literature, one shall mention Support Vector

Machines (SVM) (CRISTIANINI; SHAWE-TAYLOR, 2000; CORTES; VAPNIK, 1995), Decision
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Trees (ROKACH; MAIMON, 2005; QUINLAN, 1986), Artificial Neural Networks (HAYKIN, 2007;

BISHOP, 1995), and Optimum-Path Forest (OPF) (PAPA; FALCÃO; SUZUKI, 2009; PAPA et al.,

2012; PAPA; FERNANDES; FALCÃO, 2017), among others. The OPF is a fast and straightforward

graph-based framework that can handle some degree of overlap among classes. It is possible

to build different classifiers by changing the adjacency relation, the path-cost function, and the

prototype estimation methodology. (PAPA; FALCÃO; SUZUKI, 2009; PAPA et al., 2012) proposed

to place prototypes nearby decision boundaries since such regions are more prone to misclassi-

fication. The idea is to compute a minimum-spanning tree (MST) over the training graph and

select connected samples from different classes as the prototypes. Later on, (IWASHITA et al.,

2014) proposed a faster OPF that exploits the MST for further propagating labels and optimum-

path costs, and (PONTI; RIVA, 2017) proposed an incremental OPF that allows faster training

procedures.

Therefore, prototypes play an important role in the learning process since they are in

charge of propagating the labels to the remaining (i.e., non-prototype) samples. As a mat-

ter of fact, (SOUZA; RITTNER; LOTUFO, 2014) showed that OPF and the well-known k-nearest

neighbors classifier are similar when all training samples become prototypes. Although the OPF

classifier proposed by. (PAPA; FALCÃO; SUZUKI, 2009; PAPA et al., 2012) guarantees the lowest

error boundary in the training set, such a property may not be interesting when the test set does

not share similar behavior, thus leading to the so-called data overfitting.

In this paper, we propose a new approach for estimating prototypes using meta-heuristic

optimization algorithms. The main idea is to minimize the classification error by choosing

the most representative prototypes, which may or may not be located at the boundaries of the

classes. In this case, we aim at avoiding overfitting by providing a data-driven approach for

selecting prototypes, thus not relying solely on the MST methodology. We showed the proposed

approach can outperform naı̈ve OPF in several public datasets. Although one can use any meta-

heuristic optimization technique, we observed that evolutionary ones are able to obtain the best

results, thus leading us to coin the term “Evolutionary Optimum-Path Forest”.

The remainder of this paper is organized as follows: Section 6.2 introduces the proposed

approach. Sections 6.3 and 6.4 discuss the methodology and experiments, respectively. Finally,

Section 6.5 states conclusions and future works.
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6.2 Proposed Approach

As aforementioned, traditional OPF defines the set of prototypes by computing an MST

over the training set and selecting the samples located at the decision boundaries. Samples at

such locations are closer to others from different classes. Since the goal in the training phase

is to minimize the classification error, border samples are more likely to become prototypes

because they are more prone to be misclassified.

The proposed approach, hereinafter named as OPFmh, aims at exploring a different proto-

type selection method other than via MST. The approach models such task as an optimization

problem, which can be addressed by meta-heuristic algorithms. Such techniques are inspired

by many different natural events and are mostly categorized as swarm-based ones. The swarm

is comprised of agents that perform walks on the solution space (i.e, search space) to find the

optimum/near-optimum solution. The approach used to perform walks varies from one tech-

nique to another, and the final solution is obtained by either a certain number of iterations or

until some predefined error is reached. Each position in the search space defines a possible

solution, which is evaluated by the so-called fitness function.

Let X = {xxx1,xxx2, . . . ,xxxm} be the set of possible solutions (i.e., the set of candidate sam-

ples to become prototypes), such that xxxi ∈ ℜn. The number m of prototypes to be computed

by OPFmh is a user-defined parameter that concerns the percentage of samples that must be

promoted as prototypes. Notice that the traditional OPF does not have any concern about keep-

ing a certain proportion of prototypes for all classes, which is now considered in the proposed

approach. The rationale behind that idea is to keep a balanced proportion of prototypes con-

sidering all classes. Figure 6.1 illustrates the composition of a solution xxxi ∈X , in which each

decision variable stands for a coordinate of a prototype.

Figure 6.1: Modeling prototype selection as an optimization task.

For each possible solution, the working mechanism can be divided into two steps: (i) to
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Table 6.1: Parameter configuration.

Technique Parameters
Artificial Bee Colony (ABC) (KARABOGA; AKAY; OZTURK, 2007) limit = 10
Adaptive Inertia Weight Particle Swarm Optimization (AIWPSO) (NICKABADI; EBADZADEH; SAFABAKHSH, 2011) w = 0.7, wmin = 0.5, wmax = 1.5, c1 = 1.7, c2 = 1.7
Bat Algorithm (BA) (RODRIGUES et al., 2014) fmin = 0, fmax = 0, r = 0.5, A = 1.5
Black Hole algorithm (BHA) (HATAMLOU, 2013) parameterless
Backtracking Search Optimization Algorithm (BSA) (CIVICIOGLU, 2013) mix rate = 1.0, F = 3
Brainstorm Optimization (BSO) (SHI, 2011b) pone cluster = 0.8, pone center = 0.4, ptwo centers = 0.5
Cuckoo Search (CS) (YANG; DEB, 2010) β = 1.5, p = 0.25, α = 0.8
Firefly Algorithm (FA) (YANG; XINGSHI, 2013) α = 0.2, β = 1, gamma = 1
Flower Polinization Algorithm (FPA) (YANG; KARAMANOGLU; HE, 2014) β = 1.5, p = 0.8
Genetic Algorithm (GA) (HOLLAND, 1992) pMutation = 0.2
Harmony Search (HS) (GEEM, 2009) HMCR = 0.7, PAR = 0.7, PARmin = 0, PARmax = 1, bw = 10;,

bwmin = 0, bwmax = 20

train a classifier over the training set and (ii) further evaluate it over the validating set. In

a nutshell, the former step uses the prototypes’ position encoded in each solution xxxi ∈X to

start the competition process that ends up in the optimum-path forest. Further, the classifier is

evaluated over the validating set, and its accuracy is used as the fitness function. The two-step

process is performed for each solution and at all iterations. The best solution is the one with the

best accuracy in the evaluation step, and it is always updated when a better solution is found.

Finally, the prototypes encoded by the best solution are used to design the learner that is going

to be used to classify the testing set. Figure 6.2 depicts the dynamics of the prototype estimation

methodology over the iterations in a meta-heuristic technique. A different set is selected at each

iteration and further evaluated.

Figure 6.2: Prototype selection dynamics over the iterations.

6.3 Methodology

The OPFmh was evaluated using 11 meta-heuristic techniques with source-codes provided

by the open-source library LibOPT (PAPA et al., 2017)1 and additional tools from the library Lib-

DEV2. Regarding the OPF classifier, we used the open-source library LibOPF (PAPA; SUZUKI;

FALCÃO, 2014)3. The optimization techniques were selected based on their promising results

in many other applications, despite being from different nature-inspired heuristics. Table 6.1

presents the parameter setting up applied for each technique.

1https://github.com/jppbsi/LibOPT
2https://github.com/jppbsi/LibDEV
3https://github.com/jppbsi/LibOPF
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The experiments were carried out using 20 agents and 5 iterations. Such values were em-

pirically chosen since the experiments showed the convergence for any pair [technique, dataset]

occurs in a very few iterations. The number of decision variables n (i.e., the dimensionality

of the search space) varies according to the dataset and number of prototypes, is defined as

follows:

n = A×

(
c

∑
i=1
|Di|× p

)
, (6.1)

where |Di| stands for the number of samples that belong to class i, A denotes the number of

features, c stands for the number of classes in the dataset, and p is the percentage of training

samples to be used as prototypes.

As aforementioned, OPFmh keeps a proportional amount of prototypes for all classes, which

is encoded by the parameter p, which was empirically set as 0.15 (15%). Each possible solution

is evaluated according to the accuracy it provides over the validating set, and the best overall so-

lution is used to classify the testing set. The accuracy is computed using the approach proposed

by (PAPA; FALCÃO; SUZUKI, 2009), which takes into account unbalanced datasets.

The robustness of OPFmh is assessed on 15 public datasets4 with a varying number of sam-

ples, dimensions, and number of classes. By building such an experimental environment, it is

possible to explore the approach under different scenarios, especially for a low/high number of

samples per class. Table 6.2 provides an overview of each dataset. The experiments were car-

ried out in a hold-out fashion using 15 runs for each pair [technique, dataset], in which datasets

were randomly partitioned into three subsets: training, validating, and testing sets with 50%,

25%, and 25% of the samples, respectively. Additionally, all techniques were compared using

statistical validation.

6.4 Experimental Results

This section reports the experiments as well as a discussion concerning the results obtained

by each technique. Firstly, it is presented a comparison of the number of prototypes computed

by traditional OPF and the proposed approach (OPFmh) in Table 7.1. One can observe that

OPFmh computed a significantly lower number of prototypes than OPF to most datasets. The

most significant difference occurred in the Breast Tissue dataset (i.e., 7 times lesser). The

situations in which OPFmh selected more prototypes than OPF are mostly characterized by

4https://archive.ics.uci.edu/ml/datasets.html
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Table 6.2: General information about the datasets.

Datasets # samples # features # classes
Abalone 4,177 8 3
Australian 690 14 2
Banknote 1,372 4 2
Breast Cancer 683 10 2
Breast Tissue 106 9 6
Diabetes 768 8 2
Fourclass 862 8 2
German Numer 1,000 24 2
Glass 214 9 6
Ionosphere 351 34 2
Iris 150 4 3
Liver Disorders 345 6 2
MPEG 1,400 180 70
Seeds 210 7 3
Wine 178 13 3

datasets with a higher ratio of samples per class, such as the Fourclass dataset.

Table 6.3: Number of prototypes selected.

Datasets # training
samples

# prototypes

OPFmh OPF
Abalone 2,087 311 2,061
Australian 344 50 153
Banknote 684 102 12
Breast Cancer 341 51 40
Breast Tissue 49 6 42
Diabetes 384 57 263
Fourclass 430 63 13
German Numer 500 74 362
Glass 104 15 77
Ionosphere 174 25 68
Iris 72 9 14
Liver Disorders 172 25 154
MPEG 700 105 697
Seeds 102 15 14
Wine 88 12 17

Figure 6.3 depicts the distribution of the training samples concerning the Abalone, Four-

class, Ionosphere, and Seeds datasets, as well as an overview of the distribution of the selected

prototypes in a 2D representation obtained using the well-known Principal Component Analy-

sis technique (S., 1901). These datasets were chosen to illustrate a few situations, such as one

of the highest differences (i.e., Abalone) and almost the same number of computed prototypes
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(i.e., Seeds). One can notice that many of the prototypes selected by OPF are located in the

overlap area among classes.

Figure 6.3: Distribution of the training samples in the feature space concerning the Abalone, Four-
class, Ionosphere, and Seeds datasets. The first column stands for the training set previous to
any training. The second and third columns represent the training set labeled after the training
procedure by OPF and OPFmh, respectively. The prototypes are represented by the red dots.

Concerning the results, the experiments aimed at evaluating the accuracy over both valida-

tion and testing sets. Tables 6.4 and 6.5 present the average accuracy over 15 runs for each pair

[technique, dataset] over the validating and testing sets, respectively. The Wilcoxon signed-

rank test (WILCOXON, 1945) with a significance of 5% assesses the best accuracies, which are

reported in bold.
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Table 6.4 presents the accuracy rate concerning the validation set. One can observe a pre-

dominance of OPF in the best results. The Breast Cancer, German Numer, and Liver Disorders

were the most challenging datasets to OPFmh, whose average accuracy reached values below

60%. One of the reasons for such low results might be a considerable overlapping among

classes. Hence, the OPF might have taken advantage of its method of selection of border sam-

ples to achieve 100% of accuracy in the validation set. Except for the Breast Cancer dataset, the

number of prototypes computed by OPF were considerably higher than those of OPFmh (i.e.,

4.9 times for German Numer and around 6 times for Liver Disorders dataset).

Table 6.4: Accuracy rate over the validation set.

Datasets OPFmh OPF
ABC AIWPSO BA BHA BSA BSO CS FA FPA GA HS

Abalone 52.828 61.042 63.214 61.166 61.525 62.637 57.521 60.799 60.991 53.777 61.080 99.850
Australian 55.621 75.956 86.153 81.323 81.960 85.651 71.051 76.476 74.290 55.211 79.538 100.000
Banknote 93.455 99.075 99.459 99.180 99.511 99.616 97.958 99.197 99.162 93.455 99.058 100.000
Breast Cancer 49.902 51.135 59.198 53.623 55.348 56.730 51.135 52.317 50.219 49.811 52.071 100.000
Breast Tissue 65.957 61.547 68.357 62.821 61.286 68.357 65.957 67.152 64.768 65.957 60.597 100.000
Diabetes 50.346 60.445 69.772 63.209 63.906 67.643 59.347 64.134 61.113 51.128 59.914 100.000
Fourclass 62.230 97.274 99.111 93.413 97.633 98.894 84.278 97.647 97.523 66.070 97.331 100.000
German Numer 49.429 50.610 56.965 52.171 52.730 56.032 51.530 51.860 51.600 49.143 51.257 100.000
Glass 61.466 60.315 65.919 65.821 61.288 66.606 63.078 59.739 58.428 62.962 58.104 100.000
Ionosphere 50.000 60.699 83.363 74.568 73.125 81.607 62.247 69.673 65.789 52.068 70.015 100.000
Iris 78.846 88.974 94.487 92.179 89.744 94.615 85.000 88.077 92.692 80.385 90.897 100.000
Liver Disorders 45.674 50.000 60.874 54.570 53.163 61.356 47.330 47.426 48.667 45.193 48.789 100.000
MPEG 72.754 74.696 75.507 74.783 74.773 75.556 73.101 74.116 73.749 72.754 73.884 89.790
Seeds 81.944 85.185 92.963 88.148 87.130 92.500 82.500 87.963 86.852 81.944 84.815 100.000
Wine 91.313 89.914 93.653 91.095 88.633 88.037 91.609 89.815 86.895 91.313 85.677 100.000

OPFmh highest accuracies were achieved in the Banknote, Fourclass, Iris, Seeds, and Wine

datasets (i.e., accuracies over 90%). The amount of samples per class appears to have a lower

impact on the learning process than the distribution of the training samples in the feature space.

One example is the MPEG dataset, which has 700 training samples distributed in 70 classes

(i.e., 10 samples per class), and with accuracies between 72% and 76%. Concerning the meta-

heuristic techniques, they provided similar accuracies over the validation set.

Table 6.5 presents the average accuracy over the testing set. As in the validation set,

OPFmh achieved the lowest accuracies in the Breast Cancer, German Numer, and Liver Dis-

orders datasets. Although the significant difference in accuracy between the baseline and the

proposed approach in many scenarios concerning the validation set, OPFmh achieved competi-

tive results and now outperformed standard OPF in many datasets.

It is worth noting that OPF showed a significant decrease in accuracy in many datasets, such

as Abalone, Diabetes, German Numer, and Liver Disorders. This phenomenon can be related

to the overfitting during the training process, as argued earlier. By taking into account the

information from Table 7.1, one shall notice that OPF selected almost all training samples of the
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Table 6.5: Accuracy rate over the testing set.

Datasets OPFmh OPF
ABC AIWPSO BA BHA BSA BSO CS FA FPA GA HS

Abalone 52.159 61.053 62.685 61.666 62.047 61.834 59.228 61.800 60.692 52.856 61.866 59.980
Australian 58.732 73.688 80.926 77.315 76.984 80.377 70.387 73.830 71.582 58.081 76.414 75.040
Banknote 92.147 98.674 99.162 98.883 99.546 99.651 97.051 99.005 99.075 92.147 98.691 99.740
Breast Cancer 54.617 50.620 49.637 49.282 51.559 50.336 53.932 51.411 50.887 55.197 49.934 93.270
Breast Tissue 59.248 59.509 59.205 59.261 58.445 59.205 59.248 60.078 60.247 59.248 56.234 74.960
Diabetes 50.293 55.726 60.009 57.120 60.399 59.789 54.267 59.566 58.802 50.393 56.617 63.770
Fourclass 62.950 96.168 99.520 93.582 97.271 99.520 81.943 97.122 96.748 67.045 96.220 100.000
German Numer 49.810 50.914 54.806 52.571 53.403 54.476 52.495 53.670 53.270 49.562 52.997 64.100
Glass 66.945 65.010 68.173 67.379 62.627 67.749 66.983 61.703 61.288 66.760 59.090 84.030
Ionosphere 50.000 61.663 82.012 73.222 73.560 79.974 61.436 69.444 67.204 52.058 69.764 81.060
Iris 76.923 90.128 94.615 91.923 89.231 94.487 85.128 87.051 92.692 78.974 92.051 94.230
Liver Disorders 50.575 52.323 50.085 50.148 52.119 49.625 50.159 53.310 53.541 49.905 50.885 65.380
MPEG 73.478 73.807 73.246 73.604 74.908 73.082 74.097 74.512 74.444 73.478 74.097 74.350
Seeds 84.722 86.204 90.370 87.500 88.148 89.722 84.352 89.167 86.574 84.722 85.278 90.280
Wine 94.074 92.922 94.957 92.883 90.802 90.350 95.062 92.099 91.835 94.074 90.831 95.610

Abalone dataset as prototypes (i.e., approximately 98.8%). The datasets mentioned above figure

among the ones with the highest proportion of prototypes per training samples considering the

OPF classifier.

Concerning the meta-heuristic techniques, all but ABC obtained similar performance in the

Abalone dataset. Both BA and BSO techniques provided the best results in 6 out of 15 datasets,

followed by BHA and FA with the best results in 3 situations. Figure 6.4 illustrates the relation

between the number of training samples selected as prototypes and the accuracy in the testing

set concerning standard OPF.

Figure 6.4: Relation between the accuracy over the testing set and the percentage of training sam-
ples selected as prototypes.

Situations with a few dozens of samples per class are not favorable for the use of optimiza-
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tion to select prototypes (e.g., MPEG). Due to the low number of samples, most of them may be

located at the border among classes and should be used as prototypes by standard OPF to avoid

classification errors. Since the optimization shall be limited to a low percentage of samples

to avoid small-sized OPTs (i.e., overclustering), many samples will be prone to be misclassi-

fied. Taking MPEG dataset as an example, one can notice that nearly all samples were elected

prototypes (i.e., only 3 are not prototypes).

Table 6.6 presents the average optimization time for each pair [technique/dataset], with the

lowest times shown bolded. The Harmony Search showed to be the fastest technique to all

datasets since it is not swarm-based, which means only one solution is evaluated per iteration.

Table 6.6: Optimization time [seconds].

Datasets ABC AIWPSO BA BHA BSA BSO CS FA FPA GA HS
Abalone 49.798 26.975 26.818 49.226 26.676 27.120 11.104 22.553 27.083 26.170 5.703
Australian 1.531 0.834 0.827 1.508 0.825 0.831 0.347 0.702 0.841 0.815 0.174
Banknote 4.695 2.568 2.567 4.700 2.576 2.576 1.058 2.165 2.557 2.415 0.531
Breast Cancer 1.343 0.741 0.733 1.337 0.733 0.745 0.306 0.621 0.735 0.709 0.157
Breast Tissue 0.034 0.017 0.016 0.031 0.017 0.018 0.007 0.014 0.017 0.016 0.004
Diabetes 1.605 0.869 0.878 1.605 0.879 0.865 0.360 0.728 0.866 0.848 0.182
Fourclass 1.784 0.975 0.974 1.788 0.988 0.988 0.409 0.818 0.989 0.946 0.208
German Numer 3.437 1.866 1.857 3.406 1.881 1.873 0.778 1.588 1.875 1.843 0.395
Glass 0.126 0.069 0.068 0.125 0.069 0.069 0.029 0.058 0.068 0.068 0.015
Ionosphere 0.533 0.293 0.290 0.536 0.292 0.294 0.121 0.245 0.292 0.282 0.061
Iris 0.056 0.030 0.030 0.056 0.031 0.031 0.013 0.026 0.031 0.030 0.007
Liver Disorders 0.330 0.179 0.179 0.325 0.179 0.182 0.075 0.150 0.182 0.151 0.038
MPEG 24.619 13.376 13.243 24.398 13.289 13.296 5.564 11.095 13.280 13.381 2.788
Seeds 0.129 0.069 0.070 0.127 0.071 0.072 0.029 0.060 0.071 0.069 0.015
Wine 0.103 0.056 0.055 0.102 0.056 0.057 0.024 0.047 0.056 0.055 0.012

6.5 Conclusions

This paper introduced a meta-heuristic-based approach for selecting prototypes concerning

the Optimum-Path Forest classifier. The prototypes are key samples and crucial to the effec-

tiveness of the classifier and shall be learned from the training set. The outcome of the training

procedure is a collection of optimum-path trees, each rooted at a prototype node. The traditional

approach selects those samples located at the border among classes since these samples are more

likely to be misclassified because they are closely located to samples from other classes.

The proposed approach, i.e., OPFmh, was evaluated using 11 meta-heuristic techniques over

15 datasets with experimental results compared against the standard OPF. The preliminary re-

sults showed that OPF could achieve better generalization than OPFmh during training, with an

accuracy of 100% in the validation set in most datasets.

However, this might come at a high cost. It has been observed that OPF employed a sig-
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nificantly higher number of prototypes, which might have overfitted the model, thus leading to

decreased accuracies in the testing set. Almost all training samples were used as prototypes

in the Abalone and MPEG datasets, for instance. On the other hand, OPFmh selected a lower

amount of prototypes and achieved competitive accuracy rates in the testing set and even out-

performing standard OPF in some situations. We also conclude that a meta-heuristic-based

approach can provide a better trade-off between data generalization and accuracy in the testing

set, despite being a promising option to improve OPF classifier.

Concerning the meta-heuristic techniques, all approaches obtained similar results, with BA

and BSO the most accurate ones. Also, HS showed to be the fastest one to all datasets. Concern-

ing future works, we intend to evaluate the robustness of OPFmh with respect to different con-

centrations of prototypes, as well as to consider other supervised (PAPA; FERNANDES; FALCÃO,

2017) and unsupervised (ROCHA; CAPPABIANCO; FALCÃO, 2009) variants of the OPF classifier.



Chapter 7
MULTIPLE-INSTANCE LEARNING THROUGH

OPTIMUM-PATH FOREST

This chapter presents the work proposed by Afonso et al. (AFONSO et al., 2019b), which

introduces the supervised OPF in the context of multiple-instance learning. The work was

presented in the International Joint Conference in Neural Networks, 2019 (Qualis-CC A2).

7.1 Introduction

Machine learning techniques have been widely employed to address several problems,

which are usually categorized into three distinct types: (i) supervised, (ii) semi-supervised, and

(iii) unsupervised learning. The main difference among them relies on the amount of knowledge

one possesses of the training set.

In their standard formulation, machine learning techniques consider that each dataset sam-

ple (e.g., a feature vector describing an image, signal, or a video) has been individually labeled.

On the other hand, some problems require multiple instances of a given sample to define to

what class it belongs to. Such situations are addressed using the so-called multiple-instance

(MI) learning paradigm, where the learner receives a bag of samples instead of a single one.

The most straightforward way to cope with MI problems is the binary case, which assumes a

bag is considered positive if it contains (at least) a single sample labeled as positive. Also, a

bag is considered negative when all samples are also labeled as negative ones (FOULDS; FRANK,

2010).

Keeler et al. (KEELER; RUMELHART; LEOW, 1981) and Dietterich et al. (DIETTERICH; LATH-

ROP; LOZANO-PÉREZ, 1997) are acknowledged to be the first ones to explore the concept of
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multiple-instance learning. The latter work considered the problem of predicting drug activity,

i.e., whether a collection of molecules could be used for making new drugs or not. Dietterich

et al. (DIETTERICH; LATHROP; LOZANO-PÉREZ, 1997) proposed the three Axis-Parallel Rectan-

gle algorithm to address such a problem, which constructs axis-parallel rectangles based on the

conjunction of the features. Their work was validated in the Musk dataset (DHEERU; KARRA,

2017), which was one of the most popular benchmark datasets used in the multiple-instance

learning research community for years.

Quellec et al. (QUELLEC et al., 2017) evaluated the MI paradigm in the context of the med-

ical image and video analysis. The authors argued that MI-based techniques could be more

suitable than standard approaches for some applications. Yu et al. (YU et al., 2018) employed

Bi-directional Long-short Term and Convolutional Neural Networks for feature extraction in

the context of topic categorization in documents. The authors also designed a framework based

on the multiple-instance learning paradigm for the further classification step.

The main contribution of this paper is to introduce the OPF classifier in the context of

multiple-instance learning. We considered two distinct versions of the Optimum-Path Forest

classifier, and we showed it can outperform or obtain very much competitive results when com-

pared to some well-known approaches for MI learning. As far as we are concerned, OPF- based

classifiers have never been used in the MI paradigm.

Another contribution of this work is to model the problem of action recognition in well

drilling reports as a multiple-instance learning task. During the drilling process in the petroleum

off-shore platforms, workers keep a log of the whole procedure for further analysis and to im-

prove safety. Sousa et al. (SOUSA et al., 2018) evaluated the OPF classifier for action recognition

in well drilling reports with very much promising results, but the authors did not consider the

problem as an MI classification process. In this paper, we mapped the above question to the

context of multiple-instance learning, where a bag is composed of several instances of a given

action for further recognition as an anomaly, i.e., an event that shall not be considered as a

normal situation during operation times.

The remainder of this paper is organized as follows. Section 7.2 briefly revisits the theoret-

ical background concerning the MI learning paradigm and OPF classifiers. Section 7.3 presents

the proposed approach and the methodology, while Section 11.4 discusses the experiments.

Finally, Section 7.5 states conclusions and future works.
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7.2 Multiple-Instance Learning

Let I = {(zzz1,y1),(zzz2,y2), . . . ,(zzzm,ym)} be a set of labeled instances (i.e., samples) such

that zzzi ∈ ℜn and yi ∈ {−1,1} denote a sample and its label, respectively. Standard machine

learning techniques, hereinafter called “single-instance” approaches, usually partition I into

training and testing sets for learning purposes. Such an approach is widely employed by the

research community, but it considers the label of each sample individually when designing the

model.

As mentioned above, multiple-instance approaches take into account a collection of samples

for label assignment. Let B = {B1,B2, . . . ,Bp} a set of bags derived from I such that Bi

contains a set of samples. Additionally, assume that Bi∩B j = /0, i 6= j, and B = B1∪B2∪
. . .∪Bp. In a nutshell, MI-based techniques aim at learning a function f : B→{−1,1}.

In binary-driven MI problems, the label of Bi is considered positive if there exists, at least,

a single positive sample that belongs to it. On the other hand, the label of Bi is considered

negative when all its samples are assigned to the negative class. Such an approach is also re-

garded as presence-based (WEIDMANN; FRANK; PFAHRINGER, 2003). Other approaches assume

that a certain number of positive samples must be reached to label a bag as positive, also known

as threshold-based. Finally, the count-based approaches establish lower and upper boundaries

concerning the number of positive samples to classify an entire bag as positive.

7.3 Proposed Approach and Methodology

In this section, we introduce the proposed approach for multiple-instance learning using

OPF-based classifiers, i.e., MI-CG-OPF and MI-kNN-OPF, which aim at classifying each bag

as either positive or negative. The difference between MI-CG-OPF and MI-kNN-OPF relies on

the adjacency relation, how prototypes are defined, and the path-cost function as described in

the previous section.

The bags are represented by a single element, which is defined as the average of the feature

vectors that fall in that bag, and modeled as the nodes of a graph. Figure 7.1 depicts an example

of a complete graph approach used by CG-OPF, where each node (i.e., bag) is composed of

positive (green) and negative (red) samples. Additionally, the dashed line surrounding each bag

is colored with its corresponding label.

As described in Section 2.2.1, the next step concerning CG-OPF stands for the prototype

estimation. To fulfill that purpose, we compute an MST on the complete graph and select the
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Figure 7.1: Complete graph where each node encodes a bag of instances.

connected bags with different classes as the prototypes. Figure 7.2 displays such a procedure,

where the prototypes are highlighted. Notice that edges are weighted by the distance between

bags, that are represented by a single instance that is computed as the average feature vector con-

cerning all instances that fall in the bag. In this paper, we considered two different approaches

for weighting edges: (i) the Euclidean distance and the (ii) cosine similarity.
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Figure 7.2: Minimum Spanning Tree and the prototypes indicated by the gray arrows.

After computing the prototypes, the competition process described in Section 2.2.1 takes

place. As aforementioned, the main idea of CG-OPF is to minimize the cost of each node

based on the fmax path-cost function (Equation 2.11). The prototypes are assigned a zero cost,

meanwhile a large cost (i.e., ∞) is assigned to all remaining nodes, as depicted in Figure 7.3.

The final step of the training phase consists of the competition process itself, where the

prototypes compete among themselves in order to conquer the remaining samples. This process

ends up partitioning the training set into optimum-path trees, which are rooted in each proto-

type bag, as displayed in Figure 7.4. Notice that the optimum-path forest generated during the

training phase (Figure 7.4) has a close similarity to the shape of the minimum spanning tree

(Figure 7.2) over that same training set. As a matter of fact, such characteristic was considered

in the work of Iwashita et al. (IWASHITA et al., 2014), which proposed a modification of the OPF
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Figure 7.3: Complete graph with costs in blue assigned to all bags.

training algorithm that runs faster than its naı̈ve version.
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Figure 7.4: Optimum-path forest generated during the training phase.

7.3.1 Datasets

The robustness of the proposed approach was evaluated over 13 datasets that can be broadly

categorized as image categorization (3), molecule description (2), text categorization (7), and

anomaly detection (1). Below, we provide more details regarding each category as well as how

the datasets were generated1.

Image Categorization The automatic image categorization is comprised of three MI datasets

derived from the Corel dataset. Andrews et al. (ANDREWS; TSOCHANTARIDIS; HOFMANN, 2002)

preprocessed and segmented the images through the Blobworld system (CARSON et al., 1999).

The outcome of the segmentation is a set of blobs characterized by color, texture, and shape

descriptors that represent each image. The experiments used three classes of images (i.e., ele-

phant, fox, and tiger), being each comprised of 100 positive and 100 negative bags. The negative
1The datasets, except the one related to anomaly detection, are available at http://www.cs.columbia.edu/

~andrews/mil/datasets.html
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samples represent blobs randomly generated from pictures of other animals. Andrews and col-

leagues argue that the limited accuracy of the image segmentation, the relatively small number

of region descriptors and the small training set size makes this category quite a hard classifica-

tion problem.

Molecule Description This category is represented by MUSK1 and MUSK2 datasets, which

comprise a set of 92 and 102 molecule data, respectively. Humans experts manually labeled the

molecules as either “musk” or “non-musk”. A single molecule can assume many different

shapes (conformation) due to the rotation. Hence, there were generated multiple low-energy

conformations of the molecules. Each conformation is described by a 166-dimensional feature

vector computed from surface properties with the highly similar ones being discarded. The

molecules have an average of 6 conformations in MUSK1, and more than 60 conformations in

each bag in the MUSK2 dataset.

Text Categorization The text categorization datasets were derived from the TREC9 dataset,

also known as OHSUMED. This dataset is a collection of articles from MEDLINE of five

years (1987-1991). The articles were labeled according to the MeSH terms (Medical Subject

Headings). The total number of MeSH terms in TREC9 is 4,903. Andrews and colleagues used

approximately 54,000 documents from the year of 1987, which were split through overlapping

windows of a maximal of 50 words each. The experiments used the first seven categories (i.e.,

datasets TST1 – TST4, TST7, TST9, and TST10) of the pre-test portion with 200 positive and

200 negative bags in each category.

Anomally Detection This category is represented by a dataset comprised of textual de-

scriptions of events during petroleum well drilling. The descriptions report actions and the

parameters of the equipment used at that moment. A few descriptions may report problems dur-

ing the operation, which are considered as anomalies. The dataset in question was built from

daily well drilling reports (DWDR) provided by the Brazilian oil and gas company, Petrobras.

The descriptions are represented by a 50-dimensional feature vector computed using the Fast-

Text (JOULIN et al., 2016). The bags are comprised of 10 instances labeled as either “normal”

or “abnormal” activity, being the latter one the positive label. Hence, those bags containing at

least one abnormal sample are labeled as an anomaly. The positive bags have an average of 3.2

positive instances.

Table 7.1 provides an overview of each dataset concerning the characteristics of the sam-

ples. One can notice that most of the datasets have a high level of sparsity. The number of



7.3 Proposed Approach and Methodology 88

non-zero samples takes into account the maximum amount among all bags.

Table 7.1: Dataset information.

Category Datasets # features Bags Instances

(non-zero) positive negative positive negative
Anomally DWDR 50(50) 300 300 997 5,003
Image Elephant 230(143) 100 100 762 629

Fox 230(143) 100 100 647 673
Tiger 230(143) 100 100 544 676

Molecule MUSK1 166(166) 47 45 207 269
MUSK2 166(166) 39 63 1,017 5,581

Text TST1 66,552(31) 200 200 1,580 1,644
TST2 66,153(31) 200 200 1,715 1,629
TST3 66,144(31) 200 200 1,626 1,620
TST4 67,085(32) 200 200 1,754 1,637
TST7 66,823(31) 200 200 1,746 1,621
TST9 66,627(33) 200 200 1,684 1,616

TST10 66,082(32) 200 200 1,818 1,635

7.3.2 Experimental Setup

The experimental setup of this work follows the same protocol performed by Andrews

et al. (ANDREWS; TSOCHANTARIDIS; HOFMANN, 2002). The option for such a protocol is to

perform a fair comparison of accuracy performance with their proposed technique (i.e., mi-

SVM), whose results are the baseline of this work. The validation is accomplished through a

10-fold cross-validation to all datasets. In the first round of experiments, the CG-OPF and kNN-

OPF techniques were evaluated using the original feature space (i.e., indicated as original in

tables) with Euclidean distance and the cosine similarity (i.e., shown as cosine in result tables).

Notice that the mi-SVM technique using the linear, polynomial and radial basis function (RBF)

kernels were applied to the original feature space.

Due to the high level of data sparsity, we performed a second round of experiments con-

sidering only the CG-OPF and kNN-OPF techniques. The original feature vectors had their

dimensionality reduced through the well-known Principal Component Analysis (PCA). There

were computed representations of three distinct dimensions for each dataset: 15 (PCA-15), 25

(PCA-25), and 50 (PCA-50).

Concerning the parameters used in the experiments, we set the parameter kmax of kNN-OPF

as 20. The kNN-OPF has an additional step that is a pre-training required to search for the

best value of k, say that k∗. That process is performed by means of a pre-training (I pre) and
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an evaluating sets (I eval), such that I tr = I pre ∪I eval . Once k∗ is found, I pre and I eval

are merged and a final proper training is performed once more using k∗ over I tr. The CG-

OPF is parameterless. Regarding the source-codes, we used the OPF implementations from the

LibOPF (PAPA; SUZUKI; FALCÃO, 2014).

7.4 Experimental Results

As aforementioned, the proposed approach was evaluated over 13 datasets divided into

four categories: image categorization, molecule description, text categorization, and anomaly

detection in well drilling activities. Each category figures different levels of sparsity, which

allows an investigation of the OPF’s behavior in such situations in the context of MI-based

problems. The average accuracies of both rounds of experiments are synthesized in Tables 7.2–

7.5 with the best results shown underlined. The results of a few other MI-based techniques

found in the literature are also reported for comparison purposes.

The average results achieved in the image categorization datasets are presented in Table 7.2.

The analysis of accuracy in the original feature space shows that both MI-CG-OPF and MI-

kNN-OPF achieved competitive results when compared to the baseline technique, and outper-

forming in the Fox dataset. Concerning the compressed representations, they provided better

results in the Elephant dataset using Euclidean distance, where the most significative gains in

accuracy can be observed. The best overall results were obtained by MI-CG-OPF (i.e., Fox)

and MI-kNN-OPF (i.e., Elephant and Tiger).

The densest feature vectors characterize the MUSK1 and MUSK2 among all datasets. Once

again, OPF-based classifiers achieved competitive results, especially when applying the cosine

similarity. The results in Table 7.3 also show that compressed representations can be helpful

in the classification task. The highest gains are reported by MI-CG-OPF using the Euclidean

distance (i.e., 9% in MUSK1, and 8.5% in MUSK2).

The text categorization datasets have the highest sparsity level. The results reported in

Table 7.4 show that highly sparse representations posed as a very challenging classification

task to OPF-based classifiers. The TST1 dataset was the most difficult one where there were

observed the lowest accuracy rates among all results using the original feature space. However,

changing the similarity metric from Euclidean distance to the cosine similarity showed to be a

better approach for such a situation, except for TST1 dataset. By generating denser and more

compressed representations, it is possible to achieve higher accuracies, especially when the

Euclidean distance is applied.
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Table 7.2: Accuracy results on the Image Categorization datasets.

Elephant Fox Tiger
EMDD (ZHANG; GOLDMAN, 2002) - 78.3 56.1 72.1
mi-SVM (ANDREWS; TSOCHANTARIDIS; HOFMANN, 2002) Linear 82.2 58.2 78.4

Polynomial 78.1 55.2 78.1
RBF 80.0 57.9 78.9

MI-CG-OPF Original 74.5 58.0 78.5
PCA-50 79.0 58.0 73.5
PCA-25 79.0 64.5 74.0
PCA-15 82.5 59.5 66.5

MI-kNN-OPF Original 72.0 61.0 76.0
PCA-50 81.5 57.5 78.0
PCA-25 80.0 60.5 81.5
PCA-15 84.0 58.0 68.5

MI-CG-OPF cosine Original 79.5 53.5 75.0
PCA-50 80.0 55.5 74.5
PCA-25 81.5 60.0 73.5
PCA-15 81.5 57.0 68.0

MI-kNN-OPF cosine Original 80.0 56.0 76.5
PCA-50 81.0 58.5 76.5
PCA-25 84.0 59.0 76.5
PCA-15 82.5 56.0 67.5

Table 7.4: Accuracy results on the TST datasets.

TST1 TST2 TST3 TST4 TST7 TST9 TST10

EMDD (ZHANG; GOLDMAN, 2002) - 85.8 84.0 69.0 80.5 75.4 65.5 78.5

mi-SVM (ANDREWS; TSOCHANTARIDIS; HOFMANN, 2002) Linear 93.6 78.2 87.0 82.8 81.3 67.5 79.6

Polynomial 92.5 75.9 83.3 80.0 78.7 65.6 78.3

RBF 90.4 74.3 69.0 69.6 81.3 55.2 52.6

MI-CG-OPF Original 49.8 47.5 49.8 55.0 51.0 45.8 51.3

PCA-50 87.5 66.0 72.0 73.8 67.7 59.3 68.8

PCA-25 90.8 70.5 75.3 78.5 72.0 56.8 69.5

PCA-15 90.8 70.8 74.8 75.8 74.0 53.8 68.8

MI-kNN-OPF Original 50.3 50.3 50.3 54.0 50.8 48.8 51.5

PCA-50 85.3 65.3 71.3 74.8 68.3 59.8 69.3

PCA-25 90.0 68.8 73.3 76.5 73.0 57.5 69.5

PCA-15 91.3 71.0 72.3 79.3 74.3 56.5 71.3

MI-CG-OPF cosine Original 49.8 60.8 65.5 71.8 63.5 57.0 69.0

PCA-50 88.8 64.0 73.8 74.0 70.0 60.5 73.5

PCA-25 91.8 70.0 80.3 79.0 74.8 62.5 72.0

PCA-15 92.0 69.0 76.0 76.3 74.3 58.8 72.8

MI-kNN-OPF cosine Original 49.8 60.3 65.5 72.0 64.3 56.5 66.8

PCA-50 88.5 66.3 75.0 75.8 70.0 61.8 73.0

PCA-25 92.3 70.0 80.3 79.0 71.3 60.5 71.8

PCA-15 91.8 68.5 76.3 78.0 73.0 56.8 71.0

The DWDR dataset also has a compact representation but with a lower dimension if com-

pared to the other datasets. This dataset can be considered a challenging one because the de-
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Table 7.3: Accuracy results on the MUSK datasets.

MUSK1 MUSK2
EMDD (ZHANG; GOLDMAN, 2002) - 84.8 84.9
DD (MARON; RATAN, 1998) - 88.0 84.0
MI-NN (RAMON; RAEDT, 2000) - 88.9 82.5
IAPR (DIETTERICH; LATHROP; LOZANO-PÉREZ, 1997) - 92.4 89.2
mi-SVM (ANDREWS; TSOCHANTARIDIS; HOFMANN, 2002) RBF 87.4 83.6
MI-CG-OPF Original 76.3 70.5

PCA-50 85.3 76.4
PCA-25 85.3 76.5
PCA-15 81.5 79.0

MI-kNN-OPF Original 79.8 68.3
PCA-50 82.3 78.6
PCA-25 83.0 68.1
PCA-15 82.5 71.4

MI-CG-OPF cosine Original 84.8 77.8
PCA-50 89.0 79.7
PCA-25 88.3 79.2
PCA-15 84.8 80.3

MI-kNN-OPF cosine Original 84.0 78.3
PCA-50 86.5 79.7
PCA-25 82.3 77.9
PCA-15 83.8 72.1

scriptions are stored in a free-text format, i.e., the users can type in using an informal vocabulary.

However, both techniques achieved interesting results with very high accuracy. Nonetheless,

MI-CG-OPF and MI-kNN-OPF were nearly perfect in their classification results by reaching

over 98% of accuracy in all situations. In this case, representations generated by PCA did not

provide significant gain.

Table 7.6 presents the average training time of both CG-OPF and kNN-OPF in each sce-

nario. It is worth noting the kNN-OPF training times include the time required for the opti-

mization process responsible for finding k∗. One can observe that OPF-based classifiers are

reasonably fast for training, even in the case of MI-kNN-OPF that features a fine-tuning param-

eter step.

7.5 Conclusions

This paper introduced a graph-based classifier for the multiple-instance learning problem.

The proposed approach evaluated the Optimum-Path Forest classifier using the complete graph

(CG-OPF) and k-nn (kNN-OPF) adjacency relations under different scenarios. The experiments
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Table 7.5: Accuracy results on the Anomaly Detection dataset.

DWDR
MI-CG-OPF Original 99.0

PCA-25 99.0
PCA-15 99.0

MI-kNN-OPF Original 98.3
PCA-25 98.2
PCA-15 98.0

MI-CG-OPF cosine Original 99.2
PCA-25 99.0
PCA-15 99.2

MI-kNN-OPF cosine Original 99.3
PCA-25 99.5
PCA-15 98.0

Table 7.6: Average training time [seconds]. The symbol ‘-’ denotes that PCA-50 has not been
employed to that dataset since it contains 50 dimensions already.

Techniques DWDR Elephant Fox Tiger MUSK1 MUSK2 TST1 TST2 TST3 TST4 TST7 TST9 TST10
MI-CG-OPF Original 0.068 0.036 0.043 0.036 0.006 0.006 20.077 20.308 20.371 21.016 20.500 20.090 20.321

PCA-50 − 0.009 0.009 0.007 0.002 0.003 0.030 0.024 0.024 0.026 0.040 0.039 0.026
PCA-25 0.40 0.004 0.004 0.005 0.003 0.007 0.020 0.019 0.017 0.019 0.018 0.018 0.021
PCA-15 0.029 0.007 0.010 0.004 0.001 0.003 0.012 0.014 0.011 0.030 0.018 0.022 0.032

MI-kNN-OPF Original 1.025 0.354 0.358 0.357 0.089 0.097 356.960 347.154 409.456 414.679 376.571 378.938 394.303
PCA-50 − 0.106 0.106 0.105 0.047 0.036 0.372 0.397 0.385 0.377 0.374 0.388 0.384
PCA-25 0.497 0.068 0.069 0.066 0.051 0.032 0.230 0.248 0.259 0241 0.251 0.253 0.240
PCA-15 0.486 0.056 0.057 0.058 0.018 0.026 0.185 0.180 0.183 0.183 0.182 0.191 0.181

MI-CG-OPF cosine Original 0.069 0.054 0.037 0.047 0.008 0.009 19.450 19.130 19.790 20.605 19.672 19.148 28.915
PCA-50 − 0.016 0.013 0.022 0.005 0.002 0.031 0.052 0.057 0.025 0.040 0.020 0.032
PCA-25 0.046 0.005 0.010 0.011 0.001 0.001 0.023 0.044 0.041 0.024 0.037 0.038 0.014
PCA-15 0.030 0.003 0.008 0.003 0.001 0.001 0.015 0.023 0.034 0.011 0.027 0.015 0.037

MI-kNN-OPF cosine Original 0.808 0.340 0.342 0.342 0.071 0.087 351.577 349.390 345.774 350.532 349.146 348.089 345.300
PCA-50 − 0.106 0.107 0.112 0.041 0.045 0.391 0.360 0.351 0.355 0.355 0.357 0.355
PCA-25 0.549 0.072 0.074 0.075 0.032 0.044 0.241 0.228 0.220 0.222 0.222 0.222 0.222
PCA-15 0.428 0.059 0.059 0.059 0.026 0.036 0.192 0.186 0.167 0.168 0.168 0.178 0.173

were performed using a variety of datasets that included text, image, and molecule data.

The experimental results were compared against a baseline work, where there was pro-

posed an MI-based version of the well-known Support Vector Machine classifier. Moreover,

the proposed approach was evaluated in the second round of experiments using a compressed

representation of the original feature space through the Principal Component Analysis, as well

as distinct similarity metrics to extend the study.

The MI-CG-OPF and MI-kNN-OPF achieved competitive results in the image categoriza-

tion and MUSK datasets. The sparsity showed to be an issue for the proposed approach as

observed in the text categorization datasets. However, a change in the similarity metric allowed

a significative gain in accuracy in almost all cases. Moreover, denser representations of the

original feature space also come as an approach to the sparsity issue.

The anomaly detection in well drilling reports was also considered since it is of great im-

portance for oil and gas companies. The monitoring of drilling operations allows to prevent
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faults, save resources, and take care of environmental and eco-planning businesses. The accura-

cies of MI-CG-OPF and MI-kNN-OPF were relatively similar to each other and with a minimal

difference to compressed representations.

This work showed the viability of OPF-based classifier for MI-based problems with com-

petitive accuracies and low average training times. Concerning feature works, we intend to

evaluate other approaches to compute the instance that is going to represent the bag other than

the mean feature vector of its instances.



Chapter 8
ENHANCING BRAIN STORM OPTIMIZATION

THROUGH OPTIMUM-PATH FOREST

This chapter presents the work of Afonso et al. (AFONSO; JUNIOR; PAPA, 2018), which pro-

poses a modification in the traditional BSO algorithm through the replacement of k-means by

the OPF algorithm regarding the clustering of solutions. The work was accepted for presen-

tation at the IEEE 12th International Symposium on Applied Computational Intelligence and

Informatics, 2018 (Qualis-CC B2).

8.1 Introduction

Several interesting meta-heuristic optimization algorithms have been proposed inspired by

many different natural events, being the population- or swarm-based ones the most widely used.

They model the interaction and exchange of information within a group of objects or living

beings to achieve a common goal (i.e., optimum solution). Among the proposed ones, there

are the biologically-inspired ones, such as Particle Swarm Optimization (EBERHART; KENNEDY,

1995), Ant Colony Optimization (DORIGO; CARO, 1999), Artificial Bee Colony (KARABOGA;

BASTURK, 2007), physics-based ones such as the Big Bang-Big Crunch (EROL; EKSIN, 2006)

and Charged System Search (KAVEH; TALATAHARI, 2010). Also, we must refer to those inspired

by the human behavior, such as the Human Behavior-based optimization (AHMADI, 2016) and

the Brain Storm Optimization (SHI, 2011a), among others.

The human-inspired ones are considered to outperform those motivated by animals’ behav-

ior due to the superior intelligence of humans. The BSO is also a swarm-based algorithm that

simulates the creative human brainstorming process to solve problems (SHI, 2011a; CHENG et

al., 2016). The primary motivation behind the BSO algorithm is the social behavior of human
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beings when gathering a group of persons for brainstorming to face problems. Brainstorming

eases the search for a good solution, and a problem is more likely to be solved if the group is

comprised of people with different expertizes (ZHAN et al., 2012). The model of Shi and col-

leagues has shown its effectiveness in many optimization applications, such as (JADHAV et al.,

2012; JORDEHI, 2015), just to mention a few.

Nonetheless, a few works available in the literature aimed at improving the BSO search

process by proposing variations in its search strategies, which can be divided into three main

steps: (i) solution clustering, (ii) new solution generation, and (iii) selection of the best so-

lution. Zhan et al. (ZHAN et al., 2012) proposed replacing the k-means algorithm by a simple

grouping method to reduce the computational burden related to the clustering solution step.

Chen et al. (CHEN; XIE; NI, 2014) proposed an approach based on uncertainty information that

applies the affinity propagation clustering to analyze the clusters’ variations over the iterations.

Duan and Li (DUAN; LI, 2015) improved the population diversity by applying a quantum-driven

mechanism to prevent individuals getting trapped in local optima, and Cheng et al. (CHENG et

al., 2014) studied two kinds of partial re-initialization solutions strategies to enhance population

diversity as well.

Our work focuses primarily on the solution clustering strategy. This step aims to converge

the solutions into small regions and refine the search area. Depending on the number of clus-

ters, the ability of either exploitation or exploration can be enhanced. However, selecting the

number of clusters and the clustering algorithm can be paramount for obtaining better results

in any problem, as shown in Afonso et al. (AFONSO et al., 2012). Furthermore, choosing the

best number of clusters may require prior knowledge of the problem, which may represent a

disadvantage when applying algorithms such as k-means.

This work proposes a modification in the traditional BSO algorithm through the replace-

ment of k-means by the OPFuns algorithm regarding the clustering of solutions. The technique

has a single parameter that requires much less knowledge about the problem than k-means.

Additionally, OPFuns computes the number of clusters on-the-fly, which is an interesting skill

when working with applications where one does not know such information and wants to find

it out. Although OPF has been employed in many applications, to best of our knowledge, it

has never been applied to this context up to date. The proposed approach is evaluated using six

different benchmarking functions whose results are compared against the traditional BSO and

a variant that clusters solutions using the Self-Organizing Maps (SOM) (KOHONEN, 2001) .

Additionally, we provide a comparison of computational load concerning the three approaches.

The remainder of this paper is organized as follows. Section 8.2 introduces the BSO algo-
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rithm. The methodology and experimental setup are described in Section 8.3. The experimental

results are presented in Section 8.4, and conclusions and future works are stated in Section 8.5.

8.2 Brainstorm Optimization

The Brainstorm Optimization is a swarm-oriented meta-heuristic technique based on the

human brainstorming process (SHI, 2011a), since it is a well-known fact that people are good at

solving problems when they get together and share different ideas.

Generally, the original approach comprises three main strategies: (i) clustering, (ii) new

individual generation (i.e., new solution), and (iii) selection. The clustering process aims at

grouping similar solutions into small/compact regions, thus reducing redundancy and similar

individuals. The original BSO employs the well-known k-means in such process, although

Cheng et al. (CHENG et al., 2016) mentioned one could use any other clustering technique for

such purpose.

Further, one should create a new individual based on some rules. First, a new solution can

be created based on one or several individuals, as suggested by the original BSO, which defines

a probability pgen that is used to determine whether a new solution will be generated by one or

two other individuals. The interesting point is related to the following: if one produces a new

individual from one cluster, it can enhance local solutions (exploitation); on the other hand,

generating a new solution based on two clusters can place it too far from these clusters, but

favoring the exploration ability. The original approach also defines two more variables, i.e.,

poneCluster and ptwoCluster, which stand for the probability of creating a new solution based on

only one or two clusters, respectively.

Let x ∈ ℜn be a possible solution in a problem with n features, and X = {x1,x2, . . . ,xm}
be the search space with m possible solutions. After the clustering step, BSO generates a new

individual for each possible solution depending on some rules, which may consider just copying

the best solution or any other solution from a cluster, or even combining solutions from two

different clusters. Such process is ruled out by the probabilities pgen, poneCluster, and ptwoCluster.

The naı̈ve Brainstorm Optimization technique based on the approach described by El-

Abd (EL-ABD, 2016) begins initializing all possible solutions within the range [L j,U j], where

L j and U j stand for the lower and upper bounds concerning decision variable j, respectively.

The main iteration is comprised of the following steps:

• Clustering of all possible solutions (ideas) using k-means: the clustering of solutions
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simulates the process of grouping similar ideas. The best idea of a given cluster is defined

as its cluster center. Although the usage of k-means is mentioned, one can use any other

clustering technique for such purpose.

• Generating new individuals: the strategy to generate new individuals is defined according

to the values of probability pgen, poneCluster and ptwoCluster. Firstly, it is generated a ran-

dom number using a uniform distribution, r∼U(0,1). If pgen≥ r, the new individual x̂i is

generated from a solution xz, which is either the best solution (i.e., if poneCluster≥ r) or any

other solution (i.e., the otherwise) of a single randomly selected cluster c, z = 1,2, . . . ,m

and c 6= i. Otherwise, x̂i will be the convex combination of two solutions xc1 and xc2 from

the randomly selected clusters c1 and c2, respectively. If ptwoCluster ≥ r, xc1 and xc2 will

be the best solutions of the clusters; otherwise, they will be any other solution. Notice

that r is always assigned to a new randomly generated number prior to the mentioned

verifications. The convex combination is defined as follows:

x̂i← rxc1 +(1− r)xc2. (8.1)

• Creating the new solution: the solution of x̂i is defined as follows:

x̂ j
i = x̂ j

i + r1φ(t), (8.2)

where x j
i denotes the jth decision variable of solution xi, r1 ∼U(0,1), and t stands for the

time step (iteration number). Additionally, φ(t) can be computed as follows.

φ(t) = r2σ

(
0.5T − t

s

)
, (8.3)

where r2 ∼U(0,1) stands for a randomly generated number within a uniform distribution

[0,1], σ is the logistic sigmoid function, and T is the total number of iterations.

• Evaluating the new solution: after computing the solution for the new temporary individ-

ual x̂i, its new fitness value f (x̂i) is compared against its current solution f (xi). If the

new individual’s fitness value is better than the current one (i.e., lower), x̂i is assigned as

the new best solution xi. At the end of all iterations, the outcome of BSO algorihtm will

be the best solution among all.
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8.3 Methodology

As mentioned, this work introduces the OPF algorithm for clustering ideas in the BSO

algorithm. The ideas are modeled as samples of a graph that is partitioned using a competitive

process that ends up in a set of trees (forest), in which each tree stands for a different cluster.

8.3.1 Benchmarking Functions

To evaluate both the efficiency and effectiveness of the OPF, we employed a wide vari-

ety of functions that include multimodal, separable, non-separable, differentiable, non-convex,

or even continuous functions. We selected six different benchmarking functions whose main

characteristics are listed below:

• Alpine 1st ( f1) - differentiable, non-separable, non-convex and multimodal;

• Lévy ( f2) - continuous, differentiable and multimodal;

• Pathological ( f3) - multimodal;

• Quintic ( f4) - multimodal;

• Salomon ( f5) - continuous, differentiable, non-separable, multimodal and non-convex;

and

• Xin-She Yang #1 ( f6) - separable.

Table 8.1 provides more details of the selected functions. The first column stands for the

names of each function, the formulation and bounds columns stand for their mathematical for-

mulations and the lower and upper bounds of their variables, respectively, and the f (x∗) column

for their optimum values.

8.3.2 Experimental Setup

For comparison purposes, the results achieved by the application of OPF were compared

against the traditional BSO algorithm and its modification that applies the SOM algorithm.

Tables 8.2 and 8.3 depict the parameter configuration of SOM and BSO, respectively. Notice

that such values were empirically set up.
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Table 8.1: Benchmarking functions.

Identifier Formulation Bounds f (x∗)
Alpine 1st f1(x) = ∑

n
i=1 |xisin(xi)+0.1xi| −100≤ xi ≤ 100 0

Lévy f2(x) = sin2(πw1)+
D−1
∑

i=1
(wi−1)2[1+10sin2(πwi +1)]+ −10≤ xi ≤ 10 0

+(wd−1)2[1+ sin2(2πwd)], where wi = 1+ xi−1
4

Pathological f3(x) = ∑
n−1
i=1

sin2(
√

100x2
i+1+x2

i )−0.5

0.001(xi−xi+1)4+0.5 −100≤ xi ≤ 100 0

Quintic f4(x) = ∑
n
i=1 |x5

i −3x4
i +4x3

i +2x2
i −10xi−4| −10≤ xi ≤ 10 0

Salomon f5(x) = 1− cos(2π

√
∑

D
i=1 x2

i +0.1
√

∑
D
i=1 x2

i ) −100≤ xi ≤ 100 0

Xin-She Yang #1 f6(x) =
D
∑

i=1
εi|xi|i −5≤ xi ≤ 5 0

Table 8.2: Parameters used to set up the SOM algorithm.

Parameter Value

Neuron map size 15×15

Neuron map type planar

Neighborhood function Gaussian

Epochs 100

Initial radius 10

Final radius 1

Learning rate cooling strategy linear

Radius cooling strategy linear

Table 8.3: Parameters used to set up the BSO algorithm.

Parameter Value

poneCluster 0.8

ptwoCluster 0.5

pgen 0.4

k dynamic

# iterations 500

BSO has the characteristic of computing the same number of clusters to all iterations. How-

ever, the number of clusters computed by OPF varies even for a fixed value for kmax, which was

set as 75 in our experiments. Hence, a fair comparison among the approaches is performed by
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setting k-means and SOM to use the same number of clusters found by OPF at each iteration.

We also evaluated three different numbers of ideas (agents) for each function ([1,000, 1,500,

and 2,000]) with 15 decision variables.

Regarding the source-codes, we used the implementation of the BSO from LibOPT (PAPA

et al., 2017), our own implementation of k-means and SOM algorithms, and the OPF implemen-

tation from the LibOPF (PAPA; SUZUKI; FALCÃO, 2014).

8.4 Experimental Results

As mentioned earlier, the experiments were carried out over a set of six benchmarking

functions. The evaluation was performed over 20 runs to analyze the best fitness value (BF) ,

the mean of best fitness value (MBF) , and the standard deviation of BF (SDBF) where the

lowest value is the best one since we are willing to minimize the loss. The best MBF values

for each configuration (i.e., [benchmarking function, number of ideas]) are chosen according to

the Wilcoxon signed rank test (WILCOXON, 1945) with a significance of 5% and highlighted in

bold. The BF values are underlined as well, but we did not perform any statistical evaluation on

them.

Tables 8.4– 8.9 present the results concerning the six benchmarking functions. Regarding

the MBF values, OPF was able to provide the best ones in all configurations. The three clus-

tering methods achieved statistically similar results in two out of the three configurations of the

Alpine 1st function. The OPF-based approach presented similar results against k-means on all

configurations of the Pathological function, and on Salomon function against SOM.

Although outperforming k-means and SOM in terms of MBF values in all configurations,

OPF obtained the best BF in the majority of the configurations (12 out of 18). Figure 8.1 depicts

the clustering time of each technique on the optimization of the Alpine 1st function. OPF figured

as the slowest approach since we consider the fine-tuning process to find k ∈ [1,kmax]. Also, k-

means was the fastest one due to its simplicity.

Table 8.4: Alpine 1st Benchmarking function

# ideas
k-means SOM OPF

BF MBF/SDBF BF MBF/SDBF BF MBF/SDBF

1,000 19.065 40.362±20.931 17.494 37.772±15.014 10.465 33.277±16.618

1,500 11.219 30.219±13.792 15.544 31.226±17.436 19.580 29.479±9.779

2,000 10.643 22.797±7.966 14.513 22.875±7.171 10.133 19.383±5.199
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Figure 8.1: Computational load concerning the clustering step.

Table 8.5: Lévy Benchmarking function

# ideas
k-means SOM OPF

BF MBF/SDBF BF MBF/SDBF BF MBF/SDBF

1,000 5.102 16.265±8.679 6.880 14.889±4.606 3.692 10.250±6.041

1,500 5.559 13.234±6.018 5.097 13.602±6.718 2.530 9.603±7.278

2,000 3.700 11.031±5.524 4.961 10.320±4.220 2.560 6.168±4.400

Table 8.6: Pathological Benchmarking function

# ideas
k-means SOM OPF

BF MBF/SDBF BF MBF/SDBF BF MBF/SDBF

1,000 7.000 7.000±9.735e-06 7.000 7.000±9.832e-06 7.000 7.000±5.967e-06

1,500 7.000 7.000±3.872e-06 7.000 7.000±6.219e-06 7.000 7.000±5.921e-06

2,000 7.000 7.000±3.313e-06 7.000 7.000±6.463e-06 7.000 7.000±3.658e-06
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Table 8.7: Quintic Benchmarking function

# ideas k-means SOM OPF

BF MBF/SDBF BF MBF/SDBF BF MBF/SDBF
1,000 227.563 6,164.135±8,157.007 98.156 6,158.760±7,709.022 68.212 2,622.902±3,396.080
1,500 119.835 3,522.185±4,520.314 590.721 3,222.114±2,978.550 107.271 2,850.884±2,884.257
2,000 56.101 3,380.685±4,296.732 49.324 2,294.584±3,820.453 72.570 832.068±975.838

Table 8.8: Salomon Benchmarking function

# ideas k-means SOM OPF

BF MBF/SDBF BF MBF/SDBF BF MBF/SDBF
1,000 5.299 9.399±2.255 3.599 8.195±3.222 4.399 7.080±1.632
1,500 4.099 7.789±2.167 2.599 6.930±2.806 3.099 5.955±2.262
2,000 3.199 6.555±1.667 2.499 4.955±1.960 2.699 4.675±1.523

Table 8.9: Xin-She Yang #1 Benchmarking function

# ideas
k-means SOM OPF

BF MBF/SDBF BF MBF/SDBF BF MBF/SDBF

1,000 0.403 26.499±71.960 0.789 5.017±5.135 0.049 3.743±5.345

1,500 0.194 16.436±39.004 0.176 9.965±26.194 0.026 1.407±3.004

2,000 0.027 3.793±4.797 0.073 2.965±7.744 0.044 1.112±1.806

Figures 8.2, 8.3 and 8.4 depict the convergence plot concerning the Lévy function. It can

be observed the BSO convergence is faster at the very first iterations (i.e., between the first and

fifth iterations) for any of the clustering algorithms. Notice the application of OPF enabled to

reach the lowest fitness values in all three configurations.

Figure 8.2: Convergence plot concerning the Lévy function for a set of 1,000 ideas.
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Figure 8.3: Convergence plot concerning the Lévy function for a set of 1,500 ideas.

Figure 8.4: Convergence plot concerning the Lévy function for a set of 2,000 ideas.

The OPF behavior along the 500 iterations in each of the six benchmarking functions is

depicted in Figure 8.5. One can observe how the number of clusters varies along time and may

present significant changes, such as of the Pathological function between iterations 300 and

350, and of Salomon function between iterations 450 and 500. Such behavior refers when we

use 2,000 ideas, that is when OPF achieved the lowest MBF values.

8.5 Conclusions and Future Works

This paper introduced the Optimum-Path Forest classifier applied to the clustering step of

the Brain Storm Optimization algorithm. The main contributions of our work are twofold:

(i) to enhance BSO using OPF, and (ii) to vary the number of ideas per iteration concerning

BSO. These improvements were observed through experiments over six different benchmarking
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Figure 8.5: Variation of the number of clusters along the iterations considering the benchmarking
functions adopted in this work.

functions with results compared against traditional BSO algorithm (i.e., clustering performed

by k-means) and a variation of BSO that makes use of the well-known Self-Organizing Maps.

Despite its computational cost, OPF showed the best average minimum fitness values over

the traditional and SOM-based approaches on all experimental configurations and obtained the

best fitness value in the majority of the configurations.

As a future work, we aim at hybridizing BSO with other meta-heuristic techniques and to

evaluate other unsupervised techniques to clustering ideas.



Chapter 9
LEARNING TO CLASSIFY SEISMIC IMAGES WITH

DEEP OPTIMUM-PATH FOREST

This chapter presents the work proposed by Afonso et al. (AFONSO et al., 2016) and pre-

sented at the 29th Conference on Graphics, Patterns and Images (SIBGRAPI), 2016 (Qualis-CC

A3). The proposed work introduces a deep architecture based on the Optimum-Path Forest for

unsupervised classification.

9.1 Introduction

Image classification plays an important role in several application domains, which range

from medical image analysis to remote sensing-driven tools. However, the lack of labeled

data has oriented researchers towards active learning-based techniques, which consider the user

feedback to improve the classification process by labeling samples. Although promising results

have been obtained in the last years, labeling images is time-consuming and it strongly depends

on the human skills, which can be prone to errors as well.

The Big Data era has made available tons of digital content daily, making even more tedious

the task of analyzing data by hand. In this context, a foreseeable future can be drawn: we

shall not be in lockstep with the amount of data generated, thus paying the price of having

important information discarded and/or meaningless. One of the first waves towards the lack of

labeled data refers to the so-called deep learning, which basically ends up learning features in

an unsupervised fashion (LECUN; BENGIO; HINTON, 2015).

Therefore, unsupervised learning has gained attention in the last years once more, but still

posing a tougher challenge than supervised learning, since the notion of a cluster can some-



9.1 Introduction 106

how be doubted and personally-driven. In this scenario, a number of techniques can be high-

lighted, such as k-means (MACQUEEN, 1967), Mean-Shift (COMANICIU, 2003), Self-Organizing

Maps (KOHONEN, 1982) and others (JAIN; MURTY; FLYNN, 1999), just to name a few. The so-

called k-means works surprisingly well in many situations, despite its simplicity.

However, k-means has also some well-known shortcomings: (i) first, the user is required to

feed the technique with the number of clusters, and (ii) the problem itself is essentially an opti-

mization task, in which the distance of each sample to its nearest center is minimized. For the

first statement, although some scientists argue the parameter k can be seen as a meta-parameter,

in fact, it requires us to have some knowledge about the “unsupervised” problem, in which

by definition we should not have any information so far. The second statement concerns with

any non-convex optimization problem, which may get trapped from local optima. Although a

number of works have focused on such drawbacks, there is still room for improvements, since

there is no “exact solution” to the problem, which means approximations that may cost some

computational burden can be derived and thus employed by researchers worldwide.

Graph-based clustering techniques have their appeal as well. Roughly speaking, the idea

is to encode each feature vector as a graph node, and then to learn some connectivity function

that can group “similar” samples and turn others far apart. Notice the notion of “similarity”

also poses an interesting problem, which can be of extreme importance to the success of the

technique. Some years ago, Rocha et al. (ROCHA; CAPPABIANCO; FALCÃO, 2009) presented the

unsupervised version of the Optimum-Path Forest classifier, which models the problem of clus-

tering data as a competition process, in which some key samples compete among themselves in

order to gather others. OPF has gained considerable attention in the last years, since its super-

vised version has been similarly accurate as Support Vector Machines for some applications,

but faster for training (PAPA; FALCÃO; SUZUKI, 2009; PAPA et al., 2012).

Unsupervised OPF, hereinafter called OPF, has one parameter only (i.e., kmax), which re-

quires much less knowledge than k-means with respect to the problem itself. Additionally, OPF

computes the number of clusters on-the-fly, which is an interesting skill considering applica-

tions where one does not know that information and wants to find it out. Some examples are

related to data representation using bag-of-visual-words, in which the size of the dictionary (i.e.,

the number of visual words) is of extreme importance to the success of the technique. Usually,

the user does not have such information but is eager to discover it. Afonso et al. (AFONSO et al.,

2012) have successfully employed OPF for such task. Last but not least, OPF can obtain similar

clusters’ centers when compared to k-means, which is an interesting property since the latter is

undoubtedly recognized to work well in several problems (ROSA et al., 2014).
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However, a weakness of OPF is directly related to its strength: “what if one does know

in advance the number of clusters?” In fact, we have no information about any OPF-related

paper that deals with that problem. Actually, if one needs to somehow control the number of

clusters, we can play with kmax until that desired number is reached. Moreover, there is no

guarantee of that. Roughly speaking, one can deal with that by experimentally trying different

values for kmax within the range [1,kmax] that can reach or, at least, to be close as to the desired

number of clusters. Nonetheless, to try out all possible values within that range, as proposed by

Rocha et al. (ROCHA; CAPPABIANCO; FALCÃO, 2009), might be prohibitive. Costa et al. (COSTA

et al., 2015) modeled this problem as a meta-heuristic-based optimization task, being the results

quite close to the ones obtained by the optimal approach proposed by Rocha et al. (ROCHA;

CAPPABIANCO; FALCÃO, 2009), but being faster. However, it is noteworthy to mention the

aforementioned works were proposed to find suitable values for k∗ ∈ [1,kmax] to create the k∗-

neighborhood, and not to establish a proper number of classes1, although the design of the

neighborhood size directly influences the number of clusters.

In this work, we propose to perform OPF clustering at different levels of abstractions (i.e.,

scales) in a deep-driven approach to be as closest as possible to the number of clusters required

by that specific application. By deep we mean we are going to perform unsupervised learning

using different “views” of the data until we may reach some desirable result. As aforemen-

tioned, OPF makes use of key samples, hereinafter called prototypes, which compete among

themselves trying to offer the “best” reward (path-cost function) to the remaining samples. By

taking into account the prototypes chosen at the very first (initial) step, we can thus use them as

the new (and only) samples to the next clustering step. Since the number of prototypes is often

much smaller than the number of dataset samples, we have a more compressed representation

of the dataset at each level, and thus fewer clusters (in fact, each cluster is represented by one

prototype). In this paper, we show it is possible to obtain the desired number of clusters (or at

least to be close to that) using few scales of representation. Such methodology is much faster

than playing around with the values of kmax, as proposed in the works by Rocha et al. (ROCHA;

CAPPABIANCO; FALCÃO, 2009) and by Costa et al. (COSTA et al., 2015).

A detailed look at the papers published in the last years has revealed only one work similar

to ours (CASTELO-FERNÁNDEZ; CALDERÓN-RUIZ, 2015), but still with a different purpose. This

work employed the OPF clustering for automatic video summarization, using the prototypes

obtained in the first step as the shots and key frames to represent a reduced version of the video.

Soon after, these key frames are clustered again to obtain more refined representations of the

1In this context, k∗ stands for the neighborhood size that minimizes some fitness function (i.e., the minimum
graph cut in that case).
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video summary. But clearly, we are interested in working on the problem of restricting OPF

to a predefined (desired) number of clusters. Another contribution of this work is to evaluate

OPF in the context of seismic-based images concerning the task of hydrocarbon accumulation

detection, which is used to detect possible locations for petroleum exploration. As far as we

know, OPF has never been used in this context so far. This work also explores the proposed

OPF clustering in a wider context by applying it in three large labeled datasets. The remainder

of this paper is organized as follows. Section 9.2 presents the proposed deep-based approach

to obtain different levels of representations, and thus fewer clusters. The methodology and

experiments are discussed in Section 9.3, and Section 9.4 states conclusions and future works.

9.2 Learning Deep Representations

As aforementioned, OPF can find the number of clusters on-the-fly, which means there is

no need for such information beforehand. However, to the best of our knowledge, there is no

proposed approach that can somehow “force” the number of clusters to a predefined number

when one knows that information when dealing with OPF. Although we can play around with

kmax, it can be prohibitive for large datasets, such as the one addressed in this work (high-

resolution seismic images).

To cope with this challenge, we propose to employ different representations (layers) of the

dataset samples, being the first layer the original feature space to be clustered. After that, the

prototypes at the first layer are then used as the new samples to compose the feature space at

the second layer, which is clustered once again. The very same process is repeated until the

predefined number of clusters (or at least close to) is reached. Since the OPF clustering proto-

types are located in the highest density regions, they are very suitable to represent nearby sam-

ples, as argued in the works conducted by Castelo and Calderón-Ruiz (CASTELO-FERNÁNDEZ;

CALDERÓN-RUIZ, 2015) and Afonso et al. (AFONSO et al., 2012).

Let Pi be the set of prototypes at layer Bi, i = 1,2, . . . , l, where l stands for the number of

layers. Since each root will be the maximum of a pdf (Equation 2.4), we have a set of samples

that fall in the same optimum-path tree and are encoded by the very same prototype (the root

of that tree) in the next layer. In short, the higher the number of layers, the less prototypes

(clusters) one shall find, i.e., |P1| < |P2| < .. . < |PL| < .. . ≤ 1. Therefore, at a very coarse

layer, one shall find only one cluster. Figure 9.1 displays the proposed OPF-based architecture

for deep-driven feature space representation.

At layer B1, we can observe four clusters (optimum-path trees), where the black nodes
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Figure 9.1: Proposed approach based on coarser representations of the feature space.

stand for the set of prototypes at that layer, i.e., P1. Some of these prototypes will become new

prototypes at B2, and others not (we can observe both black and white nodes at layer 2). This

process is carried out up to the last layer specified by the user. Notice at the very coarser scale,

i.e., Bl , we shall find only one cluster.

9.3 Methodology and Experimental Results

To provide both qualitative and quantitative insights into the OPF-driven approach, we di-

vided the experiment section in two. In the first part, OPF is applied in a set of seismic images

enabling to visualize the clustering result. The second part makes use of large labeled datasets

so we can obtain some metrics that indicate the OPF clustering quality.

9.3.1 Seismic Images

To validate the proposed OPF-driven approach to obtain finer representations of the clus-

tered space, we used seismic images from the North Sea at a specific location in the Dutch sec-

tor, the so-called “Netherlands Offshore F3 Block Complete” dataset2. The dataset has around

466 images (i.e., slices) that are combined together to form a volume that somehow models the

geological information of the aforementioned location. In this paper, we used 5 images chosen

at random for clustering purposes, say that: 924, 928, 932, 936 e 940. Note these numbers stand

2https://opendtect.org/osr/pmwiki.php/Main
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for the acquisition time in milliseconds of each image. Figure 9.2 depicts image 924, where the

colors stand for different layers of rocks or their compactness in the sea floor, the green arrow

points North and X1 stands for In-line.

Figure 9.2: Figure 924 of the F3 Block at the Dutch sector.

Each dataset sample is composed of a pixel from the aforementioned images, thus resulting

in 5 different datasets, where each pixel is represented by the seismic amplitude. Note the

color intensities depicted in Figure 9.2 were used for the sake of visualization purposes only.

After that, we then employed OPF with 4 layers against the well-known k-means and SOM for

evaluation reasons. Aiming a fair comparison among the techniques, we used the very same

number of clusters found by OPF at the last layer as the input to both k-means and SOM3.

Notice the kmax value is strongly related to the number of desired clusters, i.e., the larger

kmax value, the fewer clusters one shall have. The rationale behind that idea is related to the

working mechanism used by OPF to find proper neighborhood sizes (k values), as explained

in Section 2.3. Since OPF performs a linear search within the range k ∈ [1,kmax], if one uses

larger kmax values we also increase the probability of finding larger values of k that minimize

the graph cut criterion. Therefore, larger neighborhoods mean fewer clusters. As such, we em-

ployed different and decreasing values for kmax considering the different layers for all images.

Considering the first and last layers, we used k = 100 and k = 2, respectively. Regarding the

inner layers, we used 1% of the new dataset for layer 2, and 10% concerning layer 3. Notice

the dataset size decreases in the proposed approach as we move towards the upper layers. Ta-

ble 9.1 presents the number of clusters found by OPF considering different layers for all images

employed.
3Recall that we employed k-means to label the SOM map after their learning.
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Table 9.1: Number of clusters found by OPF at different layers.

Image Layer

1 2 3 4
924 4,102 41 8 3
928 4,135 41 6 2
932 4,074 38 6 2
936 4,144 41 10 2
940 4,193 44 8 2

As aforementioned, one can observe the number of clusters decreases as we move to the

upper layers. Clearly, one can obtain much fewer clusters by just using 2 layers. Additionally,

it seems, at least for the images employed in this work, that 4 layers are enough to cope with

the problem of seismic-driven image classification since we achieved the minimum number of

clusters we can work with. Figures 9.3, 9.4 and 9.5 illustrate the classified images at layer

4 with respect to OPF, k-means and SOM techniques, respectively, where the different colors

represent the different labels. Note these figures refer to the image 924 (Figure 9.2).

Figure 9.3: Classified image 924 using OPF at layer 4.

In order to provide a qualitative comparison among the techniques, we asked for a geologist

to provide insightful comments about the results. In regard to OPF and SOM results, one can

observe the border of the reservoir body (the leftmost arrow) is not visible in the SOM results,

which means a negative impact for exploration purposes. Also, SOM was also unable to provide

lateral continuity of reflections, i.e., some structures appear as a dashed-like line instead of a

continuous-like line. On the other hand, OPF classification overcame such issues by providing

some details of the interest region and other main structures, besides lateral continuity. Lateral

continuity is important because it allows identifying the limits of a seismic body and any faults
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Figure 9.4: Classified image 924 using k-means with 3 clusters.

Figure 9.5: Classified image 924 using SOM with 3 clusters.

that may seal or conduct fluids off a reservoir. Finally, k-means was able to provide suitable

levels of details, thus obtaining very good results as well.

9.3.2 General-purpose Images

This section aims to provide some quantitative insight concerning the proposed deep-driven

OPF4 by evaluating it against k-means5, Mean-Shift6 and SOM7 over three large well-known

labeled datasets:
4In regard to OPF implementation, we used LibOPF (PAPA; SUZUKI; FALCÃO, 2014).
5We used our own implementation.
6We employed an implementation provided by scikit-learn (PEDREGOSA et al., 2011).
7http://somoclu.readthedocs.io/en/stable
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• CIFAR-108: it consists of 60,000 32× 32 images distributed in 10 classes, being 6,000

images per class. The training set has 50,000 images and the remaining 10,000 images

are used to compose the testing set. The experiments used all 60,000 images as a single

set.

• CIFAR-1008: This dataset is similar to CIFAR-10, and it contains 60,000 images dis-

tributed in 100 classes, being 600 images per each. The 100 classes represent a “finer”

label, and are grouped into 20 superclasses as a “coarser” label. The experiments used

the 60,000 images and the coarse label for evaluating the clustering techniques.

• MNIST9: this dataset has a total of 70,000 images of handwritten digits divided in 10

classes (one class for each digit), in which 60,000 belong to the training set and the

remaining images belong to the testing set. The digits are size-normalized and centered

in a fixed-size image. All 70,000 were used for the experiments as single set.

Figures 9.6, 9.7 and 9.8 depict some examples from CIFAR-10, CIFAR-100 and MNIST

datasets, respectively.

To describe the images from all aforementioned datasets, we employed the Border/Inte-

rior Pixel Classification (BIC) (STEHLING; NASCIMENTO; FALCÃO, 2002) technique, which is

a 64-dimensional descriptor. The reason for using such descriptor relies on its compactness

and low dimensionality since we are dealing with thousands of images to be clustered. As in

Section 9.3.1, OPF is evaluated using a four-layer design, as well as following the same rules

for setting the value of parameter k for each layer. Notice k-means and SOM used parameter

k equals to the number of clusters found by the OPF on its last layer. The reason for using the

very same value is to allow a fair comparison among the techniques10.

Since Mean-Shift has no parameter k, its number of clusters is different from the other

techniques in all datasets, but its clustering metrics are computed though. Mean-Shift found

4, 4 and 3 clusters in CIFAR-10, CIFAR-100, and MNIST datasets, respectively. Table 9.2

presents the number of clusters found by each layer of OPF considering each dataset. The very

same number of clusters were computed by k-means and SOM. We considered that Mean-Shift

did not obtain interesting results since it has found fewer clusters than desired. Since CIFAR-

100 contains 100 classes, it is expected to find out 100 clusters at least. If one considers the

results in Table 9.2, OPF has the flexibility to play around with a different number of layers

8https://www.cs.toronto.edu/~kriz/cifar.html
9http://yann.lecun.com/exdb/mnist/

10Notice parameter k has distinct meaning for OPF, k-means and SOM. We decided to keep the same notation
for the sake of simplicity.
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Figure 9.6: A few samples from CIFAR-10 dataset.

until a desired number of clusters has been found.

Table 9.2: Number of clusters found by OPF at different layers considering each dataset.

Dataset Layer

1 2 3 4
CIFAR-10 137 121 17 8
CIFAR-100 216 163 24 15
MNIST 221 145 5 2

Since we have the true labels for each dataset, the overall performance is assessed by five
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Figure 9.7: A few samples from CIFAR-100 dataset.

Figure 9.8: A few samples from MNIST dataset.
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metrics11 which use the true and predicted labels for computation purposes, as follows:

• Homogeneity (H) : this metric regards to how pure clusters are, in other words, clusters

have a maximum value of homogeneity if they contain only samples that belong to the

same class. Notice H ∈ [0,1], where H = 1 denotes the best result.

• Completeness (C) : a clustering result satisfies completeness if all samples that are mem-

bers of a given class are elements of the same cluster. Notice C ∈ [0,1], where C = 1

denotes the best result.

• V-measure (V) : this metric is the harmonic mean between homogeneity and complete-

ness, as follows:

V = 2∗ (H ∗C)

(H +C)
. (9.1)

Notice V ∈ [0,1], where V = 1 denotes the best result.

The results achieved by each algorithm are shown in Tables 9.3, 9.4 and 9.5. The best

results are in bold. Notice these results consider the number of clusters found by OPF at the

layer.

Table 9.3: Results for CIFAR-10 dataset.

Metric Technique

OPF k-means Mean-Shift SOM
H 0.000 0.054 0.001 0.049
C 0.153 0.060 0.039 0.056
V 0.000 0.057 0.001 0.052

Table 9.4: Results for CIFAR-100 dataset.

Metric Technique

OPF k-means Mean-Shift SOM
H 0.010 0.033 0.001 0.030
C 0.069 0.038 0.077 0.034
V 0.017 0.035 0.003 0.032

Since the number of clusters found in all datasets does not match the real number of

classes, it is expected the clustering homogeneity of all techniques never reaches the maximum

value. The k-means was able to find the most homogeneous clusters considering CIFAR-10 and

CIFAR-100 datasets, and SOM obtained the best result concerning MNIST dataset. However,

11http://scikit-learn.org/stable/modules/clustering.html#clustering-performance-evaluation
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Table 9.5: Results for MNIST dataset.

Metric Technique

OPF k-means Mean-Shift SOM
H 0.000 0.007 0.000 0.073
C 1.000 0.024 0.005 0.376
V 0.000 0.011 0.001 0.122

keep in mind all homogeneity values are pretty close to the minimum in all cases. Regarding

the clustering completeness, OPF outperformed the other techniques in CIFAR-10 and MNIST

datasets, achieving the maximum value in the latter one, thus meaning all samples for every

class were grouped in the very same cluster. Since V-measure tries to balance both homogene-

ity and completeness, k-means obtained the best V values concerning CIFAR-10 and CIFAR-

100, and SOM outperformed all techniques in MNIST dataset. With respect to the efficiency,

k-means was the fastest one, followed by OPF, SOM, and Mean-Shift.

9.4 Conclusions

This paper presented a deep-driven approach that allows OPF to obtain coarser clustered

images, being the problem of unsupervised learning decomposed in different layers. The pro-

posed approach was evaluated in the context of seismic image classification, being its results

comparable to the ones obtained by k-means and SOM techniques. In this specific case, OPF

was able to provide visual details that are important to identify certain structures, where k-means

and SOM were unable to highlight.

Considering general-purpose datasets, we can highlight OPF was able to found a number

of clusters close to the real number of classes in CIFAR-10 (8 clusters found out of 10 classes)

and CIFAR-100 (15 clusters found out of 20 classes) datasets. Although the numbers of clus-

ters found in MNIST dataset is not close to the number of classes, OPF was able to cluster

the whole dataset on either cluster 1 or cluster 2, thus achieving a completeness equals to 1.

Regarding other techniques, k-means and SOM were able to find more homogeneous clusters

in all situations.

The experimental section showed us the proposed deep-driven OPF allows the user a more

flexible tool when working with unsupervised clustering-oriented applications where we know

the desired number of clusters. Also, experiments over general-purpose datasets shed light over

all techniques might be complementary to each other, since they obtained different results over

distinct datasets and measures.



Chapter 10
PARKINSON’S DISEASE IDENTIFICATION

THROUGH DEEP OPTIMUM-PATH FOREST

CLUSTERING

This chapter introduces the Deep-hierarchical OPF clustering algorithm in the context of

dictionary learning in a hierarchical way and evaluated in the automatic Parkison’s disease

application. The work was proposed by Afonso et al. (AFONSO et al., 2017) and published in the

30th Conference on Graphics, Patterns and Images (SIBGRAPI), 2017 (Qualis-CC A3). This

work was selected and invited among others to submit an extention to the Special Issue of the

Journal of Visual Communication and Image Representation as guest paper (Chapter 11).

10.1 Introduction

The cure for neurodegenerative diseases has been constantly researched by Medicine,

mainly concerning Parkinson’s disease (PD), which affects nearly 1 million people only in the

United States, and around 7 to 10 million people might be living with PD worldwide. Also,

the number of new cases diagnosed each year ranges between 50,000 to 60,000 individuals

according to the National Parkinson’s Foundation (FUNDATION, 2017). Parkinson’s disease is

characterized by motor dysfunctions; it is a chronic, progressive and multi-lesion disease caused

by the loss of a neurotransmitter called Dopamine (LEES; HARDY; REVESZ, 2009). Such illness

is usually diagnosed through a clinical exam by a neurologist with expertise in movement anal-

ysis. The PD is considered non-lethal, but people with PD have a shorter life expectancy than

the general population.

∗Both authors contributed equally.
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More often in the elderly population, PD produces alterations in gait and posture that may

increase the risk of falls and lead to mobility disabilities. As such, it impacts daily activities

and reduces the quality of life concerning patients and their families (MAKI; MCILROY, 2005;

MARCHETTI; WHITNEY, 2005; ZHAO et al., 2008), especially because it does not have a cure

to date. Drugs known as dopaminergic medications and therapy are currently used to treat

PD symptoms, being the Levodopa (L-dopa) the most widely used for such purpose. Another

treatment that has been widely employed is the Deep Brain Stimulation, which is a surgical

procedure that delivers electrical pulses to brain cells in order to reduce the effects of the symp-

toms.

The science does not measure efforts in order to make the quality of life of PD patients bet-

ter. In computer science, for instance, techniques such as image processing, neural networks,

and others have been widely applied in the pursuit of better results in both treatment and di-

agnosis. Spadotto et al. (SPADOTTO et al., 2010), for instance, introduced the Optimum-Path

Forest (PAPA; FALCÃO; SUZUKI, 2009; PAPA et al., 2012) classifier to aid the automatic iden-

tification of Parkinson’s disease. Later on, the same group proposed an evolutionary-based

approach to select the most discriminative set of features that helped to improve PD recognition

rates (SPADOTTO et al., 2011).

Most works that address automatic PD recognition deal with voice-based data. Procedures

to identify voiced and unvoiced (silent) periods have been actively pursued to analyze contin-

uous speech samples since most techniques that quantify periodicity and regularity in voice

signals are applied in the voiced regions only (SHAHBAKHI; FAR; TAHAMI, 2014). Das (DAS,

2010) presented a comparison of multiple classification methods for the diagnosis of PD, such

as neural networks, regression and decision trees. Several evaluation methods were employed

to calculate the performance of the classifiers, being the experiments conducted in a dataset

composed of biomedical voice measurements from 31 people, in which 23 were diagnosed with

Parkinson’s disease. The best results were achieved by neural networks (around 92.9% of PD

recognition rate).

Pereira et al. (PEREIRA et al., 2015, 2016) proposed to extract features from handwritten

exams using visual features, which are learned from some drawings the patients were asked to

perform, being the data used in the work made available in a dataset called “HandPD”1. Later

on, Pereira et al. (PEREIRA et al., 2016) drove its approach to a deep learning application using the

signals (time series) captured by the biometric pen BiSP R© (BASHIR, 2012), which were further

converted to the image domain with different resolutions and used as input to a Convolutional

1http://wwwp.fc.unesp.br/~papa/pub/datasets/Handpd/
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Neural Network.

Another interesting methodology to learn discriminative features from data is related to the

well-known Bag-of-words (BoW), though being quite difficult to establish the size of the bag

(dictionary), as well as another open problem is how to choose the words that will compose

that bag. Some years ago, Afonso et al. (AFONSO et al., 2012) proposed to use the unsupervised

OPF (ROCHA; CAPPABIANCO; FALCÃO, 2009) to learn proper dictionaries since it does not re-

quire the number of words beforehand, thus becoming a useful tool for BoW purposes. Later

on, Afonso et al. (AFONSO et al., 2016) presented a deep-hierarchical OPF (dOPF) clustering

algorithm to make it way more efficient and validated it in the context of seismic-geological

data classification.

Although BoW usage is not new in the context of time series for biomedical pur-

poses (WANG et al., 2013), to best of our knowledge, it has not been applied for the identification

of Parkinson’s disease along with graph-based clustering algorithms so far, which turns out to

be the main contribution of this work. Another main contribution is to use dOPF to learn dic-

tionaries in a hierarchical way, where different layers of knowledge are used to compose the

final dictionary. In short, the main idea of this work is to employ dOPF in the context of BoW

applied for Parkinson’s disease detection using the time series data from the HandPD dataset.

The remainder of this work is organized as follows: Our proposed approach is detailed in

Section 10.2. The experimental setup, dataset and results are presented in Section 10.3. Finally,

Section 10.4 states conclusions and future works.

10.2 Proposed Approach

This section describes all steps performed in the work to evaluate dOPF and BoW in the

context of Parkinson’s disease identification, as depicted in Figure 10.1.

Data acquisition Individuals were submitted to a series of tasks, in which they were asked

to perform some hand movements and drawings using a biometric pen that contains six sensors

in charge of recording hand movements (Figure 10.2) (BASHIR, 2012). The movements are

represented by six different channels: microphone, finger grip, axial pressure of ink refill, and

tilt and acceleration in the x, y and z directions.

Figure 10.3 depicts an example of an exam containing six tasks that evaluate the hand move-

ments and help to detect any anomalies. In the first task (exam (a) in Figure 10.3), the individual
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is asked to draw a circle 12 times in the same place without stopping the movement between

each circle. In the second task (exam (b) in Figure 10.3), the individual performs the same

movement as in exam (a), but with its hand in the air. The third (exam (c) in Figure 10.3) and

fourth (exam (d) in Figure 10.3) tasks concern drawing the spirals and meanders, respectively,

over a guideline only once from the inner to the outer part. The last two tasks, i.e., exam (e)

and exam (f) in Figure 10.3, stand for the diadochokinesis test, which is basically composed of

hand-wrist movements performed with both hands. Each exam results in six different datasets,

one for each task, and each sample from the dataset corresponds to an array of responses cap-

tured by each sensor in the interval of 1 ms.

Local descriptor extraction Given the recorded signals, the local descriptors are computed

through a sliding window that goes along each of the six signals and computes a single-level

Discrete Wavelet Transform (DWT) in each segment.

In fact, since there are six different signals, we work with six sliding windows, in which the

segments of time within each of them have always the same initial and final times as they shift

along the signals. The size of the sliding window and shifting are both user-defined. The DWT

is applied to each segment of time separately, and the results in each segment are concatenated

in order to form the final local descriptor2.

Dictionary formulation The dictionary formulation aims to find the most representative

“words” (descriptors) among a set of descriptors from the “bag” that are used in a later step

for computing of a new sample representation. This step is usually performed by a clustering

algorithm, in which the number of clusters defines the size of the dictionary, and each centroid

becomes a “word” of the dictionary. It is usual to play with the size of the dictionary in order to

find some trade-off between the computational cost and accuracy rate.

The new representation A signal can be represented by a set of descriptors, which can range

from dozens to thousands. Some of these descriptors may be similar or only represent noisy

information. Thus, in order to obtain a compressed and meaningful representation of the signal,

the descriptors were quantized based on the dictionary computed previously. The quantization

step will provide a histogram for each sample with length equals to the size of the dictionary,

in which each bin will have the frequency of its closest word in the input signal. Then, the final

histogram is further used as an input for machine learning algorithms.

2We used sliding windows of size 100 ms with a stride of 50 ms, being such values empirically chosen.
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Figure 10.1: Proposed approach based on BoW and dOPF for computer-aided PD diagnosis. The
main workflow is indicated by the light blue arrows: local descriptors are extracted and clustered
in order to build the dictionary. The dictionary is used for the quantization of both training and
testing signals that is the process of computing the feature vectors (flow indicated by purple ar-
rows). Similarly to the training phase, testing signals have their descriptors computed and the
signals are quantized (flow indicated by yellow arrows). Finally, a classifier is fed by the resulting
training and testing feature vectors. Notice the two depicted dictionaries are the same.

tilt & acceleration sensor

refill pressure sensor

writing’s pressure sensor

grip pressure sensor

Figure 10.2: Biometric pen. Extracted from (PEREIRA et al., 2016).

10.3 Experiments and Results

The experimental setup used all data recorded from a total of 66 exams, being 35 control

individuals and 31 patients. The output of the protocol discussed in the previous section results
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Figure 10.3: Form used to assess the handwritten skills. Extracted from (PEREIRA et al., 2016).

in six different datasets, one for each task. The dictionary learning step was performed by means

of three different techniques: dOPF, k-means3 and OPF4. The main idea is to evaluate the quality

of clustering of each technique through the accuracy rate obtained in the classification phase.

The architecture used by dOPF is composed of four layers, in which the values of kmax are:

100 for the first layer, 1% of the number of clusters computed in the previous layer are used as

an input for the second layer, and 10% of the number of clusters computed in their respective

predecessor layers for the third and fourth layers. The value of k for k-means is always set

as the number of clusters found by the fourth (last) layer of dOPF approach. Regarding the

OPF algorithm, the values for kmax were empirically set as 2,500 for the Spiral and Meander

datasets, and as 1,500 for the remaining datasets. The idea in using the same number of clusters

for dOPF and k-means is to allow a fair comparison between them.

Table 10.1 presents the number of descriptors extracted from the training set of each dataset,

as well as the number of words computed in each case. In the column regarding dOPF, it is

3Our own implementation.
4https://github.com/LibOPF/LibOPF
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Table 10.1: Number of descriptors extracted from the training set and number of words computed
by each technique.

dataset (task) # descriptors Deep-OPF k-means OPF
Circ-A exam (a) 18,000 5,682 - 2,584 - 228 - 68 68 693
Circ-B exam (b) 11,898 538 - 376 - 43 - 17 17 33
Spiral exam (c) 46,637 12,118 - 3,951 - 370 - 92 92 1,424
Meander exam (d) 41,094 10,865 - 3,937 - 429 - 99 99 1,591
Dia-A exam (e) 14,608 666 - 480 - 95 - 47 47 80
Dia-B exam (f) 13,947 657 - 394 - 78 - 27 27 70

shown the number of words found for each of the four layers, but only the ones computed in the

last layer (bolded) are used for the quantization of both training and testing sets.

The experiments were performed using the hold-out procedure with 15 runs. Both training

and testing sets were partitioned using 50% of the entire dataset each, being randomly generated

in each new run. In this step, there were employed three different classifiers for comparison

purposes: Naı̈ve Bayes Classifier5, supervised OPF (sOPF)6 and SVM using a Radial Basis

Function kernel with parameter optimization (SVM-RBF) (PEDREGOSA et al., 2011) .

Tables 10.2a— 10.2f present the mean recognition rates concerning all six exams, being the

accuracy computed according to Papa et al. (PAPA; FALCÃO; SUZUKI, 2009). The best results are

defined according to the Wilcoxon signed-rank (WILCOXON, 1945) with a significance of 0.05,

which pointed out the best ones in bold for each exam. Further, we also considered the best

among all the exams as the underlined ones.

Let us first analyze the best results among all. The statistical evaluation pointed out [OPF,

SVM-RBF] and [k-means, BC] as the best pairs of [dictionary learner, classifier] with accura-

cies near to 81% and 83%, respectively. Comparing that recognition rates against some pre-

vious works, the proposed approach showed significant gains (from 10% to 30%) against the

one presented by Pereira et al. (PEREIRA et al., 2016). Despite that our results were slightly

below those achieved by a further work of the same authors that makes use of deep learning

techniques (PEREIRA et al., 2016), our approach is way more efficient than using deep learning

techniques taking into account a few architectures.

With respect to the best accuracies concerning each exam, dOPF obtained very much suit-

able results, being more accurate than naı̈ve OPF in most cases. Supervised OPF obtained good

results as well, but SVM-RBF achieved the best recognition rates in a few more situations.

Additionally, we also evaluated the accuracy per class for all situations, as presented in Tables

5Our own implementation.
6https://github.com/LibOPF/LibOPF
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Table 10.2: Overall accuracies.

(a) Circ-A dataset.

BC sOPF SVM-RBF
dOPF 82.96±2.88 81.71±5.12 73.87±4.58
k-means 83.38±4.22 82.01±5.11 65.80±12.39
OPF 81.06±4.36 81.90±4.89 76.17±6.92

(b) Circ-B dataset.

BC sOPF SVM-RBF
dOPF 68.75±7.96 69.14±6.95 77.31±4.45
k-means 67.80±7.44 65.58±6.79 74.54±6.39
OPF 70.81±4.62 73.08±8.96 76.69±5.38

(c) Spiral dataset.

BC sOPF SVM-RBF
dOPF 78.30±5.80 76.73±6.83 77.25±3.46
k-means 73.37±5.37 73.11±5.31 78.83±2.20
OPF 75.40±3.09 75.57±3.13 81.03±2.40

(d) Meander dataset.

BC sOPF SVM-RBF
dOPF 73.33±4.97 74.07±2.90 80.45±2.42
k-means 76.07±3.31 76.09±2.77 78.26±3.91
OPF 78.53±3.15 77.21±3.52 81.07±2.60

(e) Dia-A dataset.

BC sOPF SVM-RBF
dOPF 69.86±7.21 70.93±7.29 68.69±7.26
k-means 72.18±7.46 72.43±5.81 73.93±8.66
OPF 70.72±6.60 67.01±7.45 68.69±7.26

(f) Dia-B dataset.

BC sOPF SVM-RBF
dOPF 67.96±8.10 64.86±7.93 61.89±8.49
k-means 72.92±8.51 69.84±9.03 67.24±9.31
OPF 63.77±8.85 67.25±6.80 66.30±7.38
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Table 10.3: Average accuracy rate for each class.

(a) Circ-A dataset.
BC sOPF SVM-RBF

dOPF k-means OPF dOPF k-means OPF dOPF k-means OPF
Patient 83.33±5.62 84.17±7.79 79.17±12.19 77.5±10.24 79.58±10.15 80.83±8.34 61.67±15.10 70.42±12.60 75.42±6.87
Control 82.59±8.09 82.59±8.09 82.96±8.52 85.93±6.59 84.44±12.09 82.96±6.79 67.41±11.67 67.04±7.99 71.48±9.82

(b) Circ-B dataset.
BC sOPF SVM-RBF

dOPF k-means OPF dOPF k-means OPF dOPF k-means OPF
Patient 60.83±18.32 61.25±11.68 74.58±13.39 63.75±13.35 63.75±13.35 54.17±13.04 64.58±13.24 68.75±14.43 57.92±10.07
Control 76.67±49.12 77.04±12.48 59.99±9.56 71.85±13.98 67.41±12.32 57.04±17.15 77.04±10.51 77.41±6.24 45.93±7.98

(c) Spiral dataset.
BC sOPF SVM-RBF

dOPF k-means OPF dOPF k-means OPF dOPF k-means OPF
Patient 74.51±10.59 65.49±10.63 72.90±6.90 78.04±12.07 67.06±10.14 71.61±6.27 67.81±2.17 73.59±3.67 74.58±0.82
Control 82.08±8.14 81.25±11.33 77.90±6.95 75.42±11.92 79.17±10.48 79.52±6.20 89.43±1.83 84.85±2.25 86.43±1.09

(d) Meander dataset.
BC sOPF SVM-RBF

dOPF k-means OPF dOPF k-means OPF dOPF k-means OPF
Patient 76.61±4.04 69.46±5.96 76.77±8.44 75.38±4.62 73.23±4.51 77.85±3.93 74.81±2.18 71.06±2.62 74.54±1.37
Control 73.33±4.97 82.67±4.88 80.29±4.68 72.76±5.47 78.95±4.99 76.57±5.47 85.80±0.89 84.43±3.76 87.99±0.72

(e) Dia-A dataset.
BC sOPF SVM-RBF

dOPF k-means OPF dOPF k-means OPF dOPF k-means OPF
Patient 67.50±16.01 66.67±14.01 51.67±17.15 65.83±13.28 70.42±12.59 52.08±11.10 66.25±13.46 66.25±15.61 47.50±12.87
Control 72.22±9.51 75.19±5.69 50.74±9.70 78.52±8.33 74.44±6.97 55.56±12.67 75.19±7.55 67.78±12.37 50.00±13.46

(f) Dia-B dataset.
BC sOPF SVM-RBF

dOPF k-means OPF dOPF k-means OPF dOPF k-means OPF
Patient 63.33±12.88 60.83±11.29 60.00±32.18 72.50±10.89 67.08±13.39 47.92±10.62 71.25±11.81 73.75±11.23 52.08±15.92
Control 72.59±9.62 68.89±9.89 50.37±28.07 73.33±9.56 72.59±10.63 48.52±12.42 56.29±15.56 60.74±11.38 53.70±9.44

10.3a— 10.3f, whose best results are also highlighted considering the Wilcoxon signed-rank.

The best results for each class are in bold, and the best among all datasets is underlined. Actu-

ally, the main improvement concerns the accuracy for the identification of healthy individuals,

since Pereira et al. (PEREIRA et al., 2016) obtained recognition rates nearly 50% over the Me-

ander and Spirals datasets for the control class. The proposed approach increased not only the

global accuracy with respect to the work by Pereira et al. (PEREIRA et al., 2016), but also the

specificity and sensitivity for most of the cases. Also, Circ-A dataset provided two out of the

five best results, thus showing as a good alternative for Parkinson’s Disease identification.

Table 10.4 presents the mean computational load required by each technique to learn the

dictionary. Notice the computational burden for dOPF considers the four layers. In this context,
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k-means figured as the fastest one due to its simplicity. If one considers dOPF and OPF only,

we can observe the former is about 78 times faster in Circ-B dataset, which is quite effective.

The lowest gains can be observed in both Meander and Spiral datasets. The small differences

come from the fact the value used for kmax in both situations is small, thus justifying the fact the

dictionaries computed in these datasets have very high dimension when compared to others.

Table 10.4: Dictionary learning computational load [s] required by each technique.

dataset (task) dOPF k-means OPF
Circ-A (a) 968.167 37.008 49,087.137
Circ-B (b) 419.498 13.113 32,777.539
Spiral (c) 6,063.205 239.859 6,643.906
Meander (d) 5,003.233 208.443 5,168.819
Dia-A (e) 613.109 19.878 41,189.133
Dia-B (f) 569.053 11.025 39,367.844

10.4 Conclusions

This work introduced a deep-hierarchical version of the unsupervised OPF algorithm for

dictionary learning in the context of computer-aided Parkinson’s disease identification. The

experiments were performed using data from handwriting dynamics, similarly to the work by

Pereira et al. (PEREIRA et al., 2016), but now handled as signals and not images.

The application of the BoW paradigm can extract more information by computing local

descriptors that can enhance the overall accuracy. Also, dOPF showed satisfactory results in

its first application for BoW-based Parkinson’s Disease identification. Experiments over six

datasets considered dOPF against the well-known k-means and naı̈ve OPF clustering for dictio-

nary learning. Further, supervised techniques were used for classification purposes.

Future works will consider learning hierarchical BoWs, i.e., one bag for each layer in the

dOPF formulation. We believe each layer can carry different information about the problem.



Chapter 11
HIERARCHICAL LEARNING USING DEEP

OPTIMUM-PATH FOREST

This chapter presents the extension of the work introduced in Chapter 10 by proposing a

hierarchical-based learning approach to design visual dictionaries through the Deep Optimum-

Path Forest classifier, in which the dictionary is comprised of data from all layers instead of

the last one only. This work was published in the Special Issue on Feature representations for

Medical Images and Activity Understanding of the Journal of Visual Communication and Image

Representation (AFONSO et al., 2020) (Qualis-CC A1) as a guest paper.

11.1 Introduction

Image and signal classification have been widely researched in the past decades, with a

considerable effort towards deep learning (DL) techniques. Despite the fact that DL-driven

approaches are known to be quite useful in generalizing over a number of problems, they still

can not deal with some simple problems as well (NYE; SAXE, 2018). Also, specific neural

architectures need to be designed to cope with signal classification problems since most of the

models available in the literature are developed to handle image-based applications only.

Apart from being proposed many years ago (CSURKA et al., 2004), the well-known Bag-of-

Visual-Words (BoVW) paradigm has been consistently employed and enhanced over the years

to address both image- and signal-based classification problems. In a nutshell, the idea consists

in extracting information (e.g., visual words/key points) from the data for further using them

to compose a dictionary (i.e., bag) that can be employed as a final descriptor. Applications in

medical data vary from X-ray categorization to histopathology image classification (AVNI et al.,

2011; CAICEDO; CRUZ; GONZALEZ, 2009; SOUZA et al., 2017), among others.
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Computer-assisted Parkinson’s disease (PD) identification is another research area that can

benefit from automated diagnosis and the BoVW paradigm. Such illness is known to be neu-

rodegenerative, it has no cure, and its main symptoms include the freezing of gate, tremors, and

speech alterations, to name a few. In this context, a considerable number of works that deal with

automated PD diagnosis can be referred in the literature. Spadotto et al. (SPADOTTO et al., 2010),

for instance, introduced the Optimum-Path Forest (OPF) (PAPA; FALCÃO; SUZUKI, 2009; PAPA

et al., 2012; PAPA; FERNANDES; FALCÃO, 2017) for PD identification from speech signals, and

later on the same group of authors employed evolutionary optimization techniques to select the

most relevant features to deal with the same problem (SPADOTTO et al., 2011). Sama et al. (SAMà

et al., 2017) and Bächlin et al. (BäCHLIN et al., 2010) explored wearable accelerometers to detect

the freezing of gate and to provide assistance as soon as the condition is detected. Rigas et

al. (RIGAS et al., 2012) investigated an automated method that estimates the type and severity of

tremors based on data acquired from accelerometers attached to specific positions at a patient’s

body. The estimations are used to assess both resting and action tremors.

Other works used images to cope with PD recognition automatically. Pereira et al. (PEREIRA

et al., 2016) proposed to extract features from handwriting exams that were further digitized to

fulfill the aims of the work. They used the HfromandPD dataset1, which comprises exams

performed by healthy individuals and PD patients to detect subtle tremors when drawing spirals

and meanders on a piece of paper. Since the exams were conducted using a pen equipped with

sensors 2, the same group of authors further proposed to use the signals obtained from the pen as

a means to perform automatic PD recognition (PEREIRA et al., 2016). Afonso et al. (AFONSO et al.,

2019a) introduced the concept of “deep recurrence plots” for the identification of Parkinson’s

disease, where the idea is to employ recurrence plots (ECKMANN; KAMPHORST; RUELLE, 1997)

to model the time dependency of the signals acquired during the exam.

Afonso et al. (AFONSO et al., 2017) also proposed a BoVW model to learn information from

the signals used in the works mentioned earlier to be further used to cope with the problem

of Parkinson’s disease identification. The proposed approach first extracts key points from the

signal, which are then used to compose the final dictionary. Further, the key points are clustered

using the unsupervised OPF technique (ROCHA; CAPPABIANCO; FALCÃO, 2009) to select only

the most informative ones that will compose the dictionary. The results showed that OPF could

build more informative dictionaries than other clustering algorithms.

In this paper, we extend the work of Afonso et al. (AFONSO et al., 2017) by proposing a

hierarchical-based learning methodology to design visual dictionaries. The proposed approach

1http://wwwp.fc.unesp.br/~papa/pub/datasets/Handpd
2https://www.oth-regensburg.de/index.php?id=5312/biometrics.html
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makes use of the Deep OPF classifier (AFONSO et al., 2016), which aims at performing differ-

ent levels of clustering to learn and encode distinct information at each phase. We showed

results that outperformed the ones obtained by Afonso et al. (AFONSO et al., 2017) in the context

of computer-assisted Parkinson’s disease identification using signals derived from handwriting

exams.

The remainder of this paper is organized as follows. Sections 11.2 and 11.3 describe how

deep representations are learned through Deep OPF and the proposed approach, respectively.

Section 11.4 presents the experiments, and Section 11.5 states conclusions and future works.

11.2 Deep-based Representations through Optimum-Path
Forest

Deep-based representations are commonly employed in image classification applications,

but they are not restricted to such ones. Such representations are obtained through deep learning

architectures that are characterized by a model comprised of many layers. The introduction of

such model allows learning numerous features from data as it flows through the layers. One of

the most common models is the Convolutional Neural Network, which applies a series of con-

volutional kernels to the data, being each of them responsible for learning different information.

The dOPF follows the same idea by learning multiple representations, being each of them the

outcome of a clustering process from a different layer.

In the context of Bag-of-Visual Words using dOPF, the final bag could be a coarser model

if only the outcome of the last layer was used to compose it (i.e., only the prototypes of the

last layer comprise the bag), as proposed by Afonso et al. (AFONSO et al., 2016). However,

an enriched model could be accomplished by adding information computed by the intermediate

layers as well. As a comparison, the idea of using intermediate representations would be similar

to using the features learned by the many hidden layers of a deep-learning model. Each layer

can learn more complex features and, therefore, more robust representations.

As mentioned earlier, we propose to extend the work of Afonso et al. (AFONSO et al., 2017)

by employing hierarchical learning in the context of BoVW, hereinafter called hOPF (hierar-

chical OPF) . The proposed approach will provide a more complex and more robust dictionary,

being such representation the collection of selected visual words computed by all layers. Fig-

ure 11.1 illustrates both dictionary learning methods, i.e., dOPF and hOPF.

Although dOPF provides a simpler and coarser representation by using only the features

learned in the last layer, hOPF outputs a more complex and robust representation that stands
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Figure 11.1: The main difference between (a) dOPF and (b) hOPF concerns the usage (or not) of
features learned in the intermediate layers.

for the concatenation of features learned by all layers. In the context of BoVW, the resulting

dictionary generated by hOPF will be of size |P1|+ |P2|+ . . .+ |Pl|.

11.3 Proposed Approach

This section describes the steps employed in the assessment of dOPF and hOPF as visual

dictionary learning methods for BoVW in the context of automatic Parkinson’s disease identi-

fication, as illustrated in Figure 11.2. The workflow indicated by the light blue arrow concerns

the training phase. The first step computes the local descriptors from the training signals to

further clustering. The most representative samples from each cluster compose the dictionary,

which is used for quantization (i.e., flow indicated by the purple arrow) of both training and test-

ing signals. The outcome of such process is the new representation of each sample. Similarly,

testing signals have their local descriptors extracted and quantized (i.e., flow indicated by the

yellow arrows). The final step is to perform training and classification using the new computed

representations. Adapted from Afonso et al. (AFONSO et al., 2017)

11.3.1 Data acquisition

The experimental data were collected from a series of tasks performed by individuals using

a smart pen. The tasks exercise different hand movements that enable to capture the handwriting

dynamics for further analysis. Furthermore, the exercises were elaborated in such way that are

supposed not to be trivial to PD patients. All hand motion is captured by the smart pen that
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Figure 11.2: Proposed approach based on BoW and dOPF for computer-aided PD diagnosis.

contains sensors that provide information on finger grip, the axial pressure of ink refill, tilt and

acceleration in the x, y, and z directions.

Figure 11.3 illustrates the set of six tasks employed to evaluate the hand movements and

to support the detection of anomalies. In the first task (exam (a) in Figure 11.3), the individual

is asked to draw a circle 12 times continuously. In the second task, the individual performs

the circle-drawing movement (i.e., on the air) 12 times continuously (exam (b) in Figure 11.3).

The third and fourth tasks also concern drawing activities. In the exam (c) in Figure 11.3, four

spirals are drawn over a guideline from the inner to the outer part. The exam (d) in Figure 11.3

comprises the drawing of meander also four times and from the inner to the outer part. Last but

not least, the fifth and sixth tasks are known as the diadochokinesis test and are used to evaluate

the wrist movement of the right and left hands, as displayed in the exam (e) and exam (f)3 in

Figure 11.3, respectively.

11.3.2 Local descriptor extraction

The local descriptors are extracted from the recorded signals in a sliding-window fashion

that goes through each of the six signals. The descriptors are computed using a single-level

Discrete Wavelet Transform (DWT) applied to each segment delimited by the sliding window.

Each time segment of the signal is in fact represented by the concatenation of the resulting

DWT from six sliding windows (i.e., one sliding window applied to each signal), as depicted in

3Adapted from http://physiologie.cc/XV.5.htm
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Figure 11.3: Tasks perfomed to the assessment of hand movements

Figure 11.4. Notice that all sliding windows comprise the same portion of time (i.e., the same

initial and final times) as they go through the signals and the DWT is computed independently

to each window. Moreover, the window length and shifting are user-defined. The experiments

used windows of 100 ms of length and a stride of 50 ms, which were empirically chosen.

11.3.3 Dictionary formulation

The dictionary is formulated by selecting the most representative “words” (descriptors)

among the set computed in the previous step, and it is further used to compute a new sample

representation. The most representative words are usually selected by a clustering algorithm

where each centroid becomes a “word” of the dictionary. Therefore, the dictionary size is de-

fined by the number of clusters. Since it has some impact on the accuracy rate, it is common the

use of different sizes for the dictionary to balance the computational cost and accuracy rate. The

prototypes are very suitable to represent the samples of their trees (i.e., prototypes are equivalent

to centroids of a cluster), thus being good representations to compose the dictionaries.
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Figure 11.4: Local feature extraction.

11.3.4 The new representation

A signal can be represented by its set of descriptors, which can range from dozens to thou-

sands. However, a few of these descriptors might be variations of another one or only represent

noisy information. Moreover, machine learning techniques cannot be directly applied to the

sets of descriptors since their dimension is not the same to all signals. Therefore, quantization

is performed so that signals can be mapped into the same feature space. The outcome of the

process is a histogram of length equals to the size of the dictionary, where each bin stores the

frequency of its closest word in the input signal. Finally, machine learning techniques can be

applied using the histograms as input.

11.4 Experiments and results

In this section, we provide details concerning the experiments carried out on the assess-

ment of deep-based dictionaries in the context of automatic Parkinson’s disease identification.

The experiments were divided into two parts: (i) the former one evaluates and compares dOPF-

based dictionaries against the traditional OPF-based bags and the traditional BoVW method

that computes the bags using the well-known k-means; and (ii) the second part provides a com-
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parison of the proposed approach (i.e., hOPF) with the method presented in the work of Afonso

et al. (AFONSO et al., 2016). Additionally, the second section of experiments includes the hOPF

performance evaluation using compressed versions of the representations learned. For that pur-

pose, we applied the Restricted Boltzmann Machine (RBM) (HINTON, 2002) to provide differ-

ent compression levels. Notice that both experiments used data collected from 66 exams (35

healthy individuals and 31 PD patients), and the output of the protocol discussed in the previous

section results in six different datasets, one for each task. The following sections describe the

particularities of each experiment and the results using the proposed methodology.

11.4.1 Single-scale deep-based representations

This experiment aims at evaluating the clustering quality of dOPF, k-means4 and OPF5

through the accuracy rate obtained in the classification phase. The dOPF used in the work

comprises an architecture with four layers, being the values of kmax set as follows: 100 for

the first layer, 1% of the number of clusters computed in the previous layer are used as an

input for the second layer, and 10% of the number of clusters computed in their respective

antecessor layers for the third and fourth layers6. The parameter k for k-means is always set

as the number of clusters found by the fourth (last) layer of dOPF approach to allow a fair

comparison. Regarding the OPF algorithm, the values for kmax were empirically set as 2,500

for the Spiral and Meander datasets, and as 1,500 for the remaining datasets.

Table 11.1 presents the number of local descriptors obtained from each dataset, as well as

the number of visual words selected by each clustering technique. Notice the values concerning

the dOPF column stand for the number of visual words selected by each layer. As aforemen-

tioned, dOPF dictionaries are comprised of the visual words computed by the last layer only

(i.e., bolded values).
4Our implementation.
5https://github.com/jppbsi/LibOPF
6Those values were empirically set.
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Table 11.1: Number of descriptors extracted from the training set and number of words computed
by each technique.

dataset (task) # descriptors dOPF k-means OPF

Circ-A exam (a) 18,000 5,682 - 2,584 - 228 - 68 68 693

Circ-B exam (b) 11,898 538 - 376 - 43 - 17 17 33

Spiral exam (c) 46,637 12,118 - 3,951 - 370 - 92 92 1,424

Meander exam (d) 41,094 10,865 - 3,937 - 429 - 99 99 1,591

Dia-A exam (e) 14,608 666 - 480 - 95 - 47 47 80

Dia-B exam (f) 13,947 657 - 394 - 78 - 27 27 70

The clustering quality was assessed under a hold-out procedure with 15 runs, being the

training and testing sets randomly partitioned in each new run and always with 50% of the

dataset each. For the sake of classification purposes, we also performed a comparison between

Naı̈ve Bayes Classifier (BC)7, supervised OPF (sOPF)8 and SVM using a Radial Basis Function

(RBF) kernel with fine-tunned parameters (SVM-RBF) (PEDREGOSA et al., 2011).

Tables 11.3— 11.8 present the mean recognition rates concerning all six exams, being

the accuracy computed according to Papa et al. (PAPA; FALCÃO; SUZUKI, 2009), which con-

siders unbalanced datasets. The best results are defined according to the Wilcoxon signed-rank

(WILCOXON, 1945) with a significance of 0.05, which pointed out the best ones in bold for each

exam. Further, we also considered the best among all exams as the underlined ones.

The statistical evaluation pointed out [OPF, SVM-RBF] and [k-means, BC] as the best pairs

of [dictionary learner, classifier] with accuracies near to 81% and 83%, respectively. Comparing

that recognition rates against some previous works (PEREIRA et al., 2016), the proposed approach

showed significant gains, ranging from 10% to 30%.

Concerning the best accuracies regarding each exam, dOPF obtained very much suitable

results, being more accurate than naı̈ve OPF in most cases. Supervised OPF obtained good

results as well, but SVM-RBF achieved the best recognition rates in a few more situations.

Additionally, we also evaluated the accuracy per class for all situations, as presented in Tables

11.9— 11.14, whose best results are also highlighted considering the Wilcoxon signed-rank.

The best results for each class are in bold, and the best among all datasets is underlined. Actu-

ally, the main improvement concerns the accuracy for the identification of healthy individuals,

since Pereira et al. (PEREIRA et al., 2016) obtained recognition rates nearly to 50% over the Me-

7Our implementation.
8https://github.com/LibOPF/LibOPF



11.4 Experiments and results 137

ander and Spirals datasets for the control class. The proposed approach increased not only the

global accuracy with respect to the work by Pereira et al. (PEREIRA et al., 2016), but also the

specificity and sensitivity for most of the cases. Also, Circ-A dataset provided two out of the

five best results, thus showing as a good alternative for the Parkinson’s Disease identification.

Table 11.2 presents the mean computational load required by each technique for dictionary

learning. Notice the computational burden for dOPF considers the four layers. In this context,

k-means figured as the fastest one due to its simplicity. If one considers dOPF and OPF only,

we can observe the former is about 78 times faster in Circ-B dataset, which is quite effective.

The lowest gains can be observed in both Meander and Spiral datasets. The small differences

come from the fact the value used for kmax in both situations is small, thus justifying the fact the

dictionaries computed in these datasets have very high dimension when compared to others.

Table 11.2: Dictionary learning computational load [s] required by each technique.

dataset (task) dOPF k-means OPF

Circ-A (a) 968.167 37.008 49,087.137

Circ-B (b) 419.498 13.113 32,777.539

Spiral (c) 6,063.205 239.859 6,643.906

Meander (d) 5,003.233 208.443 5,168.819

Dia-A (e) 613.109 19.878 41,189.133

Dia-B (f) 569.053 11.025 39,367.844

11.4.2 Multi-scale deep-based representations

As aforementioned, this round of experiments aims at providing a performance comparison

between dOPF and hOPF. To fulfill that purpose, the quality of the dictionaries provided by

both techniques was compared using the protocol described in Section 11.4.1. As more visual

words were added, hOPF dictionaries provide higher-dimensional representations. Hence, an

additional experiment evaluates the quality of compressed representations computed by RBM.

There were used representation sizes of 25% (hOPF-25), 50% (hOPF-50), and 75% (hOPF-75)

of the original one (hOPF). Figure 11.5 illustrates the workflow of representation compression.
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Figure 11.5: The Deep OPF block represents the workflow depicted in Figure 11.2. The outcome of
such process is used as input of RBM that outputs a compressed representation used by classifiers.

Tables 11.3– 11.8 provide the overall accuracy rates concerning each dataset. The accuracy

rate was computed using the same formulation as in Section 11.4.1, and the best results (i.e.,

bolded ones) were determined by the Wilcoxon signed-rank with significance as 0.05.

In general, hOPF-based dictionaries achieved competitive results in all six datasets and

always figured among the best ones. Also, slight improvements compared to dOPF can be

observed in most scenarios, being the most significant ones achieved in the Dia-B dataset (Ta-

ble 11.8). The average gain in that dataset varies from 5.79% (BC) to 8.83% (SVM-RBF).

An interesting aspect to be highlighted, it is the fact that compressed representations com-

puted by RBM also figured among the best results, even the most compressed ones (hOPF-25).

The representations hOPF-50 and hOPF-75 achieved the best performance among the com-

pressed versions with best results in 11 out of 18 scenarios against 6 out 18 of hOPF-25.

Concerning the classifiers employed in the work, it can be observed a similar situation

as the one illustrated in Section 11.4.1. The classifiers obtained good results, but SVM-RBF

outperformed them all in more situations. The highest accuracy among all datasets was achieved

by the pair [hOPF, SVM-RBF] with 85.29%.

Table 11.3: Circ-A dataset - Overall accuracies.

dOPF hOPF hOPF-25 hOPF-50 hOPF-75

BC 82.94±6.00 82.94±5.69 79.80±6.75 81.96±7.53 80.20±6.14
sOPF 82.16±6.43 82.94±5.69 79.22±6.71 80.39±7.18 79.80±6.14
SVM-RBF 84.51±5.82 85.29±3.69 83.14±4.19 84.12±8.23 81.76±4.87
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Table 11.4: Circ-B dataset - Overall accuracies.

dOPF hOPF hOPF-25 hOPF-50 hOPF-75

BC 80.98±3.49 79.22±4.65 69.80±5.50 68.63±8.73 68.04±8.67

sOPF 80.00±3.88 79.02±5.87 69.61±5.63 68.63±8.73 68.04±8.81

SVM-RBF 79.61±6.33 79.02±4.57 78.24±6.07 78.04±5.76 79.41±7.94

Table 11.5: Spiral dataset - Overall accuracies.

dOPF hOPF hOPF-25 hOPF-50 hOPF-75

BC 77.22±3.57 78.94±2.58 74.04±3.64 72.88±2.35 72.32±3.36

sOPF 76.97±3.64 77.88±2.59 73.33±3.64 72.83±2.35 71.77±3.36

SVM-RBF 79.49±2.33 81.21±2.13 80.35±1.44 80.15±2.73 80.91±2.61

Table 11.6: Meander dataset - Overall accuracies.

dOPF hOPF hOPF-25 hOPF-50 hOPF-75

BC 77.02±3.39 78.64±3.05 68.89±4.59 68.79±3.92 68.38±4.26

sOPF 75.15± 3.09 77.42±3.29 68.89±4.37 68.28±4.13 67.68±3.66

SVM-RBF 82.17±3.82 83.79±2.51 79.04±2.21 79.55±2.18 78.74±3.63

Table 11.7: Dia-A dataset - Overall accuracies.

dOPF hOPF hOPF-25 hOPF-50 hOPF-75

BC 73.33±7.90 73.33±4.95 66.47±6.53 69.22±7.28 69.99±8.63
sOPF 73.53±7.86 73.33±5.83 66.47±6.92 68.24±7.31 68.82±7.36
SVM-RBF 79.22±5.38 77.25±4.51 76.86±4.56 75.69±4.37 79.61±7.49

Table 11.8: Dia-B dataset - Overall accuracies.

dOPF hOPF hOPF-25 hOPF-50 hOPF-75

BC 68.43±5.71 68.43±5.72 69.80±6.53 75.29±5.54 73.14±7.45
sOPF 67.45±6.43 67.45±6.43 69.41±6.65 74.71±6.27 73.14±7.02
SVM-RBF 70.39±6.43 74.51±5.52 74.31±9.06 77.84±8.60 80.59±5.07

We also investigated the accuracy rates in each class, as shown in Tables 11.9– 11.14. The

representations learned by the hierarchical approach also figured among the best results in many

situations. Once again, the more significant improvements (i.e., compared to dOPF) can be ob-

served in the HC class in almost all scenarios, such as the ones in Circ-B and Dia-B datasets

(i.e., the greatest ones). Compressed representations also presented competitive results, espe-

cially the most compressed one (hOPF-25) as one can observe in Circ-A and Circ-B datasets

for HC class, and Dia-A dataset for PD class.
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Table 11.9: Circ-A - Average accuracy rate for each class.

BC sOPF SVM-RBF

HC PD HC PD HC PD

dOPF 81.85±10.17 84.17±13.34 81.85±10.17 82.50±12.32 80.74±11.85 88.75±11.62

hOPF 77.78±8.91 85.83±11.68 78.52±8.62 86.25±12.54 77.41±8.26 88.75±13.81

hOPF-25 85.56±8.08 73.33±14.07 85.93±8.36 71.67±13.75 80.74±12.04 85.83±10.94

hOPF-50 85.19±7.76 78.33±13.12 84.81±7.41 75.42±11.68 85.56±7.21 82.50±14.98

hOPF-75 84.44±7.33 75.42±8.34 84.44±7.33 74.58±8.67 84.44±7.62 78.75±11.76

Table 11.10: Circ-B - Average accuracy rate for each class.

BC sOPF SVM-RBF

HC PD HC PD HC PD

dOPF 78.52±9.12 83.75±9.97 78.15±9.02 82.08±9.99 79.63±11.04 79.58±12.38

hOPF 78.52±6.92 80.00±7.17 77.41±8.26 80.83±9.59 80.74±9.12 77.08±8.41

hOPF-25 86.67±5.86 50.83±12.47 86.67±5.86 50.42±12.60 86.30±10.47 69.17±8.34

hOPF-50 85.56±6.90 49.58±16.61 85.93±7.23 49.17±16.68 81.85±9.26 73.75±14.02

hOPF-75 78.15±13.36 56.67±14.84 78.15±14.77 56.67±14.26 86.67±8.08 71.25s±16.33

Table 11.11: Spiral - Average accuracy rate for each class.

BC sOPF SVM-RBF

HC PD HC PD HC PD

dOPF 78.76±6.91 75.48±5.89 78.19±6.71 75.59±6.09 84.95±5.91 73.33±5.91

hOPF 83.24±3.48 74.09±4.42 82.38±4.17 72.80±4.35 86.38±5.79 75.38±6.72

hOPF-25 84.95±4.07 61.72±6.75 84.38±3.98 60.86±6.66 87.14±6.01 72.69±6.17

hOPF-50 81.90±4.06 62.69±5.13 82.10±3.58 62.37±4.79 84.10±4.61 75.70±4.46

hOPF-75 82.67±4.48 60.65±6.86 82.19±4.58 60.00±6.93 87.52±6.33 73.44±6.06

Table 11.12: Meander - Average accuracy rate for each class.

BC sOPF SVM-RBF

HC PD HC PD HC PD

dOPF 80.76±5.50 72.80±7.00 77.43±7.56 72.58±7.44 89.43±4.41 73.98±7.41

hOPF 82.19±5.29 74.62±3.19 80.10±5.83 74.41±3.49 92.48±3.98 73.98±3.33

hOPF-25 71.14±7.41 66.34±6.87 71.14±7.21 66.34±7.00 90.38±4.09 66.24±3.93

hOPF-50 72.86±6.39 64.19±6.63 72.10±6.48 63.98±6.81 90.76±4.58 66.88±4.35

hOPF-75 72.48±5.49 63.76±4.60 71.14±4.52 63.76±4.60 90.29±5.92 65.70±5.08
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Table 11.13: Dia-A - Average accuracy rate for each class.

BC sOPF SVM-RBF

HC PD HC PD HC PD

dOPF 79.26±7.99 66.67±13.08 78.52±6.60 67.92±12.47 72.96±9.59 86.25±10.88

hOPF 72.96±8.19 73.75±13.04 72.96±8.62 73.75±14.98 72.22±7.86 82.92±13.04

hOPF-25 64.81±6.79 68.33±15.13 64.81±7.76 68.33±14.46 73.70±9.02 80.42±10.79

hOPF-50 72.59±10.59 65.42±14.15 70.74±10.60 65.42±14.54 80.37±9.82 70.42±11.68

hOPF-75 67.41±12.58 72.92±19.00 65.19±12.68 72.92±18.85 76.67±10.33 82.92±14.07

Table 11.14: Dia-B - Average accuracy rate for each class.

BC sOPF SVM-RBF

HC PD HC PD HC PD

dOPF 67.41±8.36 69.58±11.78 66.67±9.62 68.33±12.60 73.70±13.36 66.67±12.20

hOPF 67.41±8.36 69.58±11.78 66.67±9.62 68.33±12.60 83.70±11.40 64.17±11.92

hOPF-25 82.96±7.99 55.00±13.81 83.70±7.99 53.33±13.95 81.85±7.11 65.83±16.68

hOPF-50 89.99±6.01 58.75±11.52 89.63±5.50 57.92±13.25 79.63±13.72 75.833±20.44

hOPF-75 81.48±8.31 63.75±14.01 81.11±9.10 64.17±14.07 78.52±11.67 82.92±13.04

Since the difference between dOPF and hOPF relies on whether the visual words selected

in the intermediate layers are used or not in the final dictionary, it must be concluded that the

computational load for dictionary learning is the same.

11.5 Conclusion and Future Works

This work introduced a hierarchical learning approach using the Deep Optimum-Path For-

est to design visual dictionaries. The proposed approach was assessed and compared against a

previous approach proposed by Afonso et al. (AFONSO et al., 2017) in the context of Parkinson’s

disease identification. The experiments used six datasets derived from signal data collected

when individuals were submitted to a handwriting exam. The exam is comprised of tasks sup-

posed not to be trivial to Parkinson’s disease patients, and the usage of signals allows to detect

subtle variations.

The main contributions of this work rely on the introduction of the proposed approach itself,

its application in the context of automatic PD detection, and the usage of Restricted Boltzmann

Machine for data compression. Experimental results showed the potential of hierarchical learn-
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ing approaches where interesting results were achieved. A general analysis pointed improve-

ments in a few scenarios and the proposed approach always figured the best results. An in-depth

investigation showed a more considerable improvement in accuracy in the healthy individuals

class in most scenarios.

With respect to the compressed representations, RBM provided good models and achieved

very interesting results (it either outperformed or was statistically similar to the original-sized

representation and dOPF) in 12 out of 18 configurations (i.e., pair [dictionary learner, classifier])

for the HC class, and 10 out of 18 configurations for the PD class. Regarding future works, we

aim to study different ways to create hierarchical representations instead of the concatenation.



Chapter 12
CONCLUSIONS

This dissertation focused on the study of advances in pattern recognition using the

Optimum-Path Forest framework. To fulfill that purpose, it was proposed a survey on OPF

(Chapter 2) covering its original algorithms and their applications, as well as studies that inves-

tigated and evaluated the supervised (Chapters 3–7) and unsupervised (Chapters 8–11) models

under different scenarios. The findings allowed a better understanding of the framework and

raised a few questions answered by a few of the works presented in this thesis.

How would a more straightforward and faster learner pattern recognition algorithm such

as Optimum-Path Forest classifier behave in text classification? This question was answered

by applying the original algorithm of the supervised OPF (OPFcg) for event classification in

drilling reports (Chapter 3). This task is challenging since the information is stored in a free-

text format. The main idea of the work was to apply more straightforward techniques for both

feature extraction and classification before going to more complex ones, although the latter

one is not covered. Given that the problem is characterized by highly unbalanced classes, the

techniques achieved satisfactory results being an interesting option, especially as a baseline for

other techniques, for instance. OPF’s performance was compared against k-NN and Bayesian

classifier showing promising results with similar results to the other classifiers but with a lesser

computational load.

How much the application of kernel functions could benefit OPF’s learning process and

consequently improve its accuracy? The work presented in Chapter 4 proposed the kernel-OPF

(kOPF), which was evaluated under three kernel functions but not restricted to them: (i) identity,

(ii) RBF, and (iii) Sigmoid. By employing kernels, OPF accuracy improved in some cases

compared to the traditional OPF and with competitive results compared to SVM. Differently

from SVM, OPF computes the kernel explicitly, which is a point that can be improved in later

versions. It was also observed that OPF requires data normalization, which is another point to
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be further studied and improved.

Would the combination of an unsupervised manifold learning algorithm with the Optimum-

Path Forest provide more accurate recognition rates? The experimental results showed the

answer is yes (Chapter 5). The unsupervised manifold learning algorithm provided better dis-

tance, which can be observed in the improvement in accuracy over the traditional OPF. The

improvement is even bigger for small training sets.

Can an evolutionary-based approach estimate better prototypes than using the minimum

spanning tree? Experimental results showed a better performance of the evolutionary-based

OPF (OPFmh) over OPF in some situations (Chapter 6). The evolutionary-based approach com-

puted a lower number of prototypes, which in most cases lead to better accuracy rates for testing

samples. Considering the accuracy rates over the training set, a higher number of prototypes

may cause overfitting, which is observed a drop in the accuracy over the testing set. Although

the additional cost of incorporating a meta-heuristic technique, such an approach may be in-

teresting for obtaining better data generalization. The study also suggests that changing the

prototype selection mechanism can improve the learning process.

How does OPF behave in the context of Multiple Instance-learning? The study in Chapter 7

introduced OPFcg and OPFknn in the context of MI-learning. The label of a sample (bag) is

based o the label of its instances. The proposed approach maps each bag as a node of the graph.

The OPF classifiers were evaluated under three datasets with competitive results in two out

of the three datasets. The sparsity in one of the datasets was an issue. By computing denser

representations, the proposed MI-OPF had its accuracy improved.

Is the performance of BSO using OPF as good as to its traditional algorithm and how much

the usage of OPF can benefit the optimization process? The work present in Chapter 8 showed

that in terms of achieving the best average minimum fitness values, OPF was the best option

by outperforming the original BSO algorithm and its version using Self-Organizing Maps for

clustering. The results may be justified by the facts that OPF computes clusters on-the-fly (i.e.,

it does not require the number of clusters a priori), and the number of ideas is different at each

iteration, as in a natural brainstorming process. However, OPF requires a higher computational

load, which can be decreased by applying deep-driven OPF-based architecture, as presented in

Chapter 9.

What if we develop a deep-driven OPF-based architecture to learn features? Will such

representations provide better recognition rates than those from a “shallower” OPF? As afore-

mentioned, OPFuns is mainly characterized for not requiring the number of clusters a priori.

The first work (Chapter 9) on a deep-driven OPF-based architecture was developed to over-
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come cases where the number of clusters is known. Such an approach also copes with the time

consumed by OPFuns for computing clusters. Situations with a considerable number of samples

(e.g., hundreds of thousands) can be prohibitive. Therefore, a deep-based approach comes at

hand. Although the term “deep”, the approach resembles a hierarchical approach.

From the work in Chapter 9, it was observed the potential for learning features as in deep

neural networks. The first work (Chapter 10) in this sense used features extracted from the last

layer only. A latter work (Chapter 11) made use of a combination of features learned from all

layers, which improved the accuracy rates in the context of Parkinson’s disease recognition.

Moreover, deep-OPF requires a considerably lower computational load than OPFuns.

What about the future? As future works, there will be studied the application of polynomial

kernels and simulation of different scenarios to better understand the OPF behavior. There will

also be studies on how to cope with sparse representations since OPF accuracy is lower in such

situations.
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information. In: GAVALDÁ, R.; JANTKE, K. P.; TAKIMOTO, E. (Ed.). Algorithmic Learning
Theory: 14th International Conference. [S.l.]: Springer Berlin Heidelberg, 2003. p. 175–189.

BISHOP, C. Neural networks for pattern recognition. [S.l.]: Oxford University Press, 1995.

BORGWARDT, K. M. et al. Protein function prediction via graph kernels. Bioinformatics,
v. 21, p. i47, 2005.

BURGES, C. J. A tutorial on support vector machines for pattern recognition. Data Mining
and Knowledge Discovery, v. 2, n. 2, p. 121–167, 1998.

CAICEDO, J. C.; CRUZ, A.; GONZALEZ, F. A. Histopathology image classification using
bag of features and kernel functions. In: COMBI, C.; SHAHAR, Y.; ABU-HANNA, A. (Ed.).
Artificial Intelligence in Medicine. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. p.
126–135.

CARSON, C. et al. Blobworld: A System for Region-based Image Indexing and Retrieval.
Berkeley, CA, USA, 1999.



References 148
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GLOSSARY

ABC – Artificial Bee Colony

ACC-SPy – Auto Color Correlograms Spatial Pyramid

AIR – Articulation-Invariant Representation

AIWPSO – Adaptive Inertia Weight Particle Swarm Optimization

ANN-MLP – Artificial Neural Networks using Multi-Layer Perceptrons

ASC – Aspect Shape Context

BAS – Beam Angle Statistics

BA – Bat Algorithm

BC – Naı̈ve Bayes classifer

BF – best fitness value

BHA – Black Hole algorithm

BIC – Border/Interior Pixel Classification

BM – Best Matching

BSA – Backtracking Search Optimization Algorithm

BSO – Brain Storm Optimization

BSO – Brainstorm Optimization

CBIR – Content-Based Image Retrieval

CCOM – Color Co-Occurrence Matrix

CC – Connected Component

CEDD-SPy – Color and Edge Directivity Descriptor Spatial Pyramid
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CFD – Contour Features Descriptor

CNN-Caffe – Convolutional Neural Network by Caffe

CS – Cuckoo Search

C – Completeness

DWDR – Daily well drilling reports

DWT – Discrete Wavelet Transform

FA – Firefly Algorithm

FCTH-SPy – Fuzzy Color and Texture Histogram Spatial Pyramid

FPA – Flower Polinization Algorithm

GA – Genetic Algorithm

HS – Harmony Search

H – Homogeneity

IDSC – Inner Distance Shape Context

JCD-SPy – Joint Composite Descriptor Spatial Pyramid

LAS – Local Activity Spectrum

LBP-SPy – Local Binary Patterns Spatial Pyramid

LBP – Local Binary Patterns

LSA – Latent Semantic Analysis

MBF – mean of best fitness value

MI – Multiple-instance

NLP – natural language processing

NMF – Non-negative Matrix Factorization

OPFmh – Metaheuristic-based OPF

OPF – Optimum-Path Forest

PCA – Principal Component Analysis

PD – Parkinson’s disease
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PR – Pattern recognition

RBF – Radial Basis Function

RBM – Restricted Boltzmann Machine

RSLP – Removedor de Sufixos da Lı́ngua Portuguesa

SDBF – standard deviation of BF

SOM – Self-Organizing Maps

SS – Segment Saliences

SVM-RBF – SVM using a Radial Basis Function kernel with parameter optimization

SVM – Support Vector Mechines

TF-IDF – Term Frequency - Inverse Document Frequency

V – V-measure

dOPF – deep-hierarchical OPF

hOPF – Hierarchical OPF

kOPF – kernel-based OPF

sOPF – supervised OPF
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OTHER PUBLICATIONS

This Appendix lists other works published or under review during the Ph.D. program in

chronological order from the most recent to the oldest ones.

A.1 Related works

This section presents the studies related to the OPF framework.

A.1.1 Journal papers

• Learning Visual Representations with Optimum-Path Forest and its Applications to Bar-

rett’s Esophagus and Adenocarcinoma Diagnosis: This work was accepted in the Neural

Computing and Applications (Qualis-CC A1).

A.1.2 Conference papers

• Information Ranking Using Optimum-Path Forest: This work was accepted and presented

in the 2020 International Joint Conference on Neural Networks (IJCNN) (Qualis-CC -

A2).

• Discovering Patterns within the Drilling Reports using Artificial Intelligence for Oper-

ation Monitoring: This work was accepted and presented in the Offshore Technology

Conference Brasil (OCT) (Qualis-CC not available).

• Qualidade no fornecimento de energia: contribuições de uma ferramenta inteligente para

gestão de falhas incipientes em transformadores: This works was accepted and presented
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in the XIII Conferência Brasileira sobre Qualidade da Energia Elétrica (CBQEE) - 2019

(Qualis-CC not available).

• Barrett’s Esophagus Identification Using Optimum-Path Forest: This work was accepted

and presented in the 30th Conference on Graphics, Pattern and Images (SIBGRAPI) -

2017 (Qualis-CC - A3).

A.2 Other works

This section presents the studies that are not related to the OPF framework.

A.2.1 Journal papers

• Evolving Neural Conditional Random Fields for drilling report classification: This work

was accepted in the Journal of Petroleum Science and Engineering (Qualis-CC A1).

• Bag of Samplings for Computer-assisted Parkinson’s Disease Diagnosis based on Recur-

rent Neural Networks: This work was accepted in the Computers in Biology and Medicine

(Qualis-CC A2).

• A recurrence plot-based approach for Parkinson’s disease identification: This work was

accepted in the Future Generation Computer Systems (Qualis-CC A1) - first author.

• A Fast Approach for Unsupervised Karst Feature Identification using GPU: This work

was accepted in the Computer & Geosciences journal (Qualis-CC A2).

• Feature selection through binary brain storm optimization: This work was accepted in

the Computers and Electrical Engineering (Qualis-CC A2).

A.2.2 Conference papers

• A Hybrid Approach For Breast Mass Categorization: This work was accepted and pre-

sented in VII ECCOMAS Thematic Conference on Computational Vision and Medical

Image Processing (VipIMAGE) - 2019 (Qualis-CC not available).

• Campos Aleatórios Condicionais Evolutivos para Classificação de Boletins de

Perfuração: This works was accepted and presented in the Encontro Nacional de

Construção de Poços de Petróleo e Gás (ENAHPE) - 2019 (Qualis-CC not available).
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• Quaternionic Flower Pollination Algorithm: This work was accepted and presented in

the International Conference on Computer Analysis of Images and Patterns (CAIP) -

2017 (Qualis-CC - A4).


