
UNIVERSIDADE FEDERAL DE SÃO CARLOS
CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

COMMITTEE OF NAS-BASED MODELS

BRUNO SILVA SETTE

ORIENTADOR: PROF. DR. DIEGO FURTADO SILVA

São Carlos – SP

Maio/2021

UNIVERSIDADE FEDERAL DE SÃO CARLOS
CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

COMMITTEE OF NAS-BASED MODELS

BRUNO SILVA SETTE

Dissertação apresentada ao Programa de Pós-
Graduação em Ciência da Computação da Univer-
sidade Federal de São Carlos, como parte dos requi-
sitos para a obtenção do título de Mestre em Ciência
da Computação, área de concentração: Aprendizado
de máquina
Orientador: Prof. Dr. Diego Furtado Silva

São Carlos – SP

Maio/2021

UNIVERSIDADE FEDERAL DE SÃO CARLOS

Centro de Ciências Exatas e de Tecnologia
Programa de Pós-Graduação em Ciência da Computação

Folha de Aprovação

Defesa de Dissertação de Mestrado do candidato Bruno Silva Sette, realizada em 28/05/2021.

Comissão Julgadora:

Prof. Dr. Diego Furtado Silva (UFSCar)

Prof. Dr. Ricardo Cerri (UFSCar)

Prof. Dr. Moacir Antonelli Ponti (ICMC/USP)

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil
(CAPES) - Código de Financiamento 001.
O Relatório de Defesa assinado pelos membros da Comissão Julgadora encontra-se arquivado junto ao Programa de
Pós-Graduação em Ciência da Computação.

Aos deuses.

AGRADECIMENTOS

Agradeço, primeiramente, a minha família, que em todos os momentos me ajudaram a

superar as dificuldades durante meu percurso, me proporcionando abrigo, conselhos e sabedoria

para que eu pudesse dar o meu melhor. Agradeço também pela criação que me foi dada, a qual

permitiu que eu chegasse a ser quem sou hoje.

Ao orientador deste presente projeto, Prof. Dr. Diego Furtado Silva, que através das suas

vastas experiências e competências, me auxiliou em todas as dúvidas e questionamentos que

apresentei. Sem sua assistência e dedicação a fim de transmitir seus conhecimentos para real-

ização das pesquisas, não seria possível o correto desenvolvimento deste trabalho.

Aos membros da banca examinadora, Profª. Dr. Ricardo Cerri e Prof. Dr. Moacir Antonelli

Ponti, e aos membros suplentes, Profª. Dra. Helena de Medeiros Caseli, Prof. Dr. Ricardo

Augusto Souza Fernandes e Prof. Dr. Vinícius Mourão Alves de Souza, que tão gentilmente

aceitaram participar e colaborar com este projeto de pesquisa. Suas contribuições serão uti-

lizadas prontamente a fim de aprimorar as ideias e atingir os resultados esperados.

À empresa B2W Digital, parceira desta pesquisa, que me proporcionou a possibilidade de

trabalhar dentro de um projeto real da empresa em paralelo com a realização do meu projeto

de mestrado. Seu suporte que tornou possível a saída de minha cidade natal para realizar meus

estudos e alcançar meus sonhos e objetivos.

Aos professores escolhidos para auxiliar no projeto Apache Marvin-AI em conjunto com

meu orientador, Profª. Dra. Helena de Medeiros Caseli e Prof. Dr. Daniel Lucrédio, que

além de prestar assistências e apoios durante o projeto da empresa, também realizaram diversas

contribuições para o projeto de pesquisa do mestrado. Os três professores citados foram muito

coerentes e não ajudaram apenas nas relações acadêmicas, mas também foram extremamente

compreensíveis nas relações humanas. Os três são ótimas pessoas e quero levar para a vida toda

como mestres e amigos.

Aos companheiros que entraram no mestrado e no projeto da B2W Digital na mesma época

que eu, Fernando Rezende Zagatti, Lucas Cardoso Silva e Lucas Nildaimon dos Santos Silva,

que além de acrescentarem muito conhecimento durante nossas discussões e trocas de exper-

iências, são amigos muito próximos que tive o prazer de conhecer. Sem eles, nada disso seria

possível.

Ao corpo docente do Departamento de Computação da Universidade Federal de São Carlos

pelo conteúdo que me apresentaram e da forma que me foi apresentado, tenho certeza que cada

dia foi uma experiência de aprendizado única, tanto para mim quanto para os professores e

demais alunos.

Por fim, a todos os amigos e amigas que conheci no Departamento de Computação, pelo

convívio, amizade e apoio. Também, a todos os profissionais e acadêmicos que contribuem

compartilhando seus conhecimentos e experiências, direta ou indiretamente, permitindo a real-

ização desta pesquisa, o meu sincero agradecimento. Tenho certeza que todas as novas ideias e

descobertas serão levadas para toda a vida.

Don’t worry about it if you don’t understand

Andrew Ng

RESUMO

A Busca por Arquitetura de Redes Neurais (Network Architecture Search – NAS) tem

obtido ótimos resultados e gerou modelos comparáveis às classificações humanas. Autom-

atizar a definição de uma arquitetura neural reduz a necessidade de esforços de trabalho

especializado e mitiga o preconceito humano do projeto de arquitetura. As técnicas de NAS

geralmente consistem em um algoritmo para buscar a melhor arquitetura em um espaço

pré-determinado de parâmetros ou funções. Devido ao número de parâmetros de arquite-

turas neurais profundas, esse espaço de busca inclui milhões de combinações, o que torna

o NAS um procedimento custoso e pode levar a busca a super ajustar o conjunto de treina-

mento. Para reduzir a complexidade dos espaços de busca NAS e ainda obter resultados

competitivos, propomos o CoNAS, um comitê de modelos baseados em NAS, restringindo

os espaços de busca para realizar a Busca Diferenciável de Arquitetura (Differentiable AR-

chiTecture Search – DARTS). Nossos resultados apontam para uma maior precisão em re-

lação ao DARTS tanto em cenários em que a rede é treinada do zero quanto usando uma

abordagem de aprendizagem por transferência.

Keywords: CoNAS, ensemble,DARTS

ABSTRACT

Network Architecture Search (NAS) has achieved great results and generated models com-

parable with humans’ classifications. Automating the definition of a neural architecture

reduces the need for expert work efforts and mitigates human bias from architecture de-

sign. NAS techniques usually consist of an algorithm to search for the best architecture in

a predetermined space of parameters or functions. Due to the number of deep neural archi-

tectures’ parameters, this search space includes millions of combinations, making NAS a

cost procedure and may lead the search to overfit the training set. To reduce NAS search

spaces’ complexity and still obtain competitive results, we propose CoNAS, a committee of

NAS-based models, by restricting the search spaces to perform Differentiable ARchiTecture

Search (DARTS). Our results point to improved accuracy over DARTS on two experimental

scenarios: raining from scratch and using a transfer learning approach.

Keywords: CoNAS, ensemble,DARTS

LIST OF FIGURES

1.1 Abstract illustration of Neural Architecture Search methods. 16

1.2 Abstract illustration of our proposal. 18

2.1 An illustrative example of a Convolutional Neural Network. 21

2.2 Learning curves showing how the loss changes over time (indicated as the num-

ber of training iterations in the data set). In this example, Goodfellow, Bengio

and Courville (2016) trained a maxout network at MNIST. Observe that the

training error decreases consistently over time, but the average loss of the vali-

dation set eventually begins to increase, forming an asymmetric curve. 23

2.3 The red path indicates the path followed by the learning rule with textit mo-

mentum. At each step along the way, Goodfellow, Bengio and Courville (2016)

draws an arrow indicating the step that the gradient descent would take at that

point. We can see that a quadratic objective looks like a long, narrow valley or

canyon with steep sides. The momentum correctly crosses the canyon longitu-

dinally, while the gradient steps waste time moving back and forth through the

narrow canyon axis. 24

2.4 An illustration of how the gradient descent algorithm uses the derivatives of a

function to search for the minimum. 27

2.5 Illustration of a gradient drop in a cost function L (w). 28

2.6 An illustration of different architecture spaces 30

2.7 An overview of DARTS . 34

2.8 An overview of DARTS . 35

4.1 Accuracy for each search spaces on CIFAR-10. 43

4.2 Confusion matrix obtained by CoNAS (left) and DARTS (right) on CIFAR-10. 44

4.3 Confusion matrix obtained by CoNAS space A 44

4.4 Confusion matrix obtained by CoNAS space B 45

4.5 Confusion matrix obtained by CoNAS space C. 45

4.6 Cifar 10 examples. 46

4.7 Snapshots of the most likely normal conv from search space 1. 46

4.8 Snapshots of the most likely normal conv from search space 2. 47

4.9 Snapshots of the most likely normal conv from search space 3. 47

4.10 Example taken from cifar-10 for class bird. 48

4.11 A image of the dataset imagenette. 48

4.12 A image of the dataset intel from class buildings. 49

4.13 A random image of the dataset cellulas. 50

4.14 Results of the validation and training set in the training of neural networks in

Imagenette. 51

4.15 Confusion matrix obtained by CoNAS (left) and DARTS (right) on Intel. 52

4.16 Accuracy for each epoch in Cellulas dataset with DARTS. 53

LIST OF TABLES

2.1 Overview of different methods to search network architectures in a NAS search

space. 31

4.1 Experimental results on CIFAR-10. Accuracy, number of parameters and GPU

cost. 43

4.2 Experimental results on Imagenette. Accuracy, number of parameters and GPU

cost. 50

4.3 Experimental results on Intel Dataset. Accuracy, number of parameters and

GPU cost. 50

GLOSSARY

BO – Bayesian Optimization

CONAS – Cmmitte Of Nas-based Models

DARTS – Differentiable Architecture Search

GD – Gradient Descent

GS – Grid Search

HPO – Hyperparameter optimization

RL – Reinforcement learning

RS – Random Search

SGD – Stochastic Gradient Descent

SMBO – Sequential Model-Based Optimization

TL – Transfer learning

CONTENTS

GLOSSARY

CHAPTER 1 – INTRODUCTION 15

1.1 Motivation and hypothesis . 16

1.2 Hypothesis . 17

1.3 Our proposal . 17

1.4 Main Contributions . 18

1.5 Dissertation organization . 19

CHAPTER 2 – BACKGROUND AND RELATED WORK 20

2.1 Convolutional Neural Network . 20

2.2 Regularization of parameters . 21

2.3 Dataset Augmentation . 21

2.4 Early Stopping . 22

2.5 Momentum . 22

2.6 Reinforcement learning . 24

2.7 Adaptation of the learning rate . 25

2.8 Gradient descent optimization . 26

2.9 Optimization techniques . 27

2.10 Mini Batch GD . 27

2.11 Transfer learning . 28

2.12 SMBO . 29

2.13 Neural Architecture Search . 29

2.13.1 Search Space . 30

2.13.2 Search Strategy . 31

2.13.3 Performance Estimation Strategy . 33

2.13.4 DARTS . 33

2.14 Classifiers ensemble . 35

CHAPTER 3 – METHODOLOGY 38

3.1 Our Proposal . 38

3.2 Training step . 39

3.3 Test step . 40

3.4 Work Development Methodology . 40

CHAPTER 4 – EXPERIMENTAL EVALUATION 42

CHAPTER 5 – FINAL CONSIDERATIONS 54

5.1 Acknowledgment . 55

REFERENCES 56

Chapter 1
INTRODUCTION

Machine Learning (ML) (WU; XIE, 2021) has become a part of people’s everyday life. Due

to its relevance to society, many research efforts on ML have been made in the last few decades.

ML applications are seen in a wide range of domains, such as automatic speech recognition,

personal assistants, autonomous cars, computer vision, and natural language processing tasks.

Motivated by industry needs and ML issues in general, Automated Machine Learning (Au-

toML) (HE; ZHAO; CHU, 2019) has appeared in recent years as a subarea of ML. AutoML’s goal

is to decrease human interference in the learning process and make it increasingly accessible

to non-expert users and less costly for the industry. For this, some techniques have emerged to

automate or optimize some stages of the machine learning pipeline, for another side. Transfer

learning (TL) works well in relatively similar domains. This becomes clear when we look at one

of our experiments that will be presented in this dissertation. Hutter, Kotthoff and Vanschoren

(2018) define two classes of AutoML approaches:

• The first is a general case. The learning process considered in this case is a combina-

tion of feature engineering ,model selection, algorithm selection , and hyperparameter

optimization. This process is usually applied to structured data.

• The second is the Network Architecture Search (NAS), which aims to look for suitable

architectures of deep networks that solve a particular learning problem. Where NAS is

considered a sub-area of AutoML.

There are three main reasons why we discuss these cases in parallel. First, the NAS itself

is currently a hot research topic, in which many articles are being published (REN et al., 2021).

The second reason is that the application domain for deep networks is relatively clear, such as

low semantic level data, such as image pixels.

1.1 Motivation and hypothesis 16

This work presents a novel research effort on improving the accuracy of NAS-based models.

For this reason, this chapter continues with a brief introduction to this knowledge domain,

motivating the need and presenting the main contributions of our proposal.

1.1 Motivation and hypothesis

Deep Learning (DL) has achieved great success in many applications (LECUN; BENGIO; HIN-

TON, 2015; HUTTER; KOTTHOFF; VANSCHOREN, 2019) such as image analysis (SHEN; WU; SUK,

2017), speech recognition (HINTON et al., 2012), and text understanding (COLLOBERT; WESTON,

2008). DL can be performed in a supervised or unsupervised way and it is able to learn multi-

level representations and features in hierarchical architectures for the tasks of classification and

pattern recognition (ZHANG et al., 2018).There are several networks trained for different domains

and that can be used as transfer learning, they are: VGG, ResNet, Inception, and others.

In this context, Neural Architecture Search (NAS) aims to automatically find the best neural

network architecture for a network architecture for one or more specific learning tasks and

datasets and promises to advance the field by removing human bias from architecture design.

NAS can automatically suggest neural architectures that are comparable or outperform those

manually designed (ZHONG et al., 2018a, 2018b; REAL et al., 2018).

Figure 1.1 illustrates the search process performed by NAS in which a search strategy se-

lects an architecture a from a predefined search space A. The architecture is passed to a perfor-

mance estimation strategy, which returns the estimated performance of A to the search strategy

(ELSKEN; METZEN; HUTTER, 2019).

Figure 1.1: Abstract illustration of Neural Architecture Search methods. A search strategy selects
an architecture A from a predefined search space A. The architecture is passed to a performance
estimation strategy, which returns the estimated performance of A to the search strategy.

Search Space
A Search Strategy

Performance
Estimation
Strategy

architecture
a E A

performance
estimate of a

Source: (ELSKEN; METZEN; HUTTER, 2019)

Elsken, Metzen and Hutter (2019) categorize the methods applied for NAS according to

three dimensions:

1.2 Hypothesis 17

• Search Space: Defines the set of potential candidate network architectures to explore.

To reduce the size of the search space, NAS takes advantage of prior knowledge about

common properties of architectures that are suitable for specific tasks.

• Search Strategy: Guides the investigation through the search space, trying to find the best

architecture by trading-off exploitation and exploration.

• Performance Estimation Strategy: Defines the process to estimate the quality of each

candidate architecture.

Due to the extensive search space, NAS techniques suffer from high computational costs.

1.2 Hypothesis

We hypothesize that using combinations of architectures generated by NAS brings the pos-

sibility of using smaller search spaces and parallel searching, resulting in specific and different

architectures. The advantages of this strategy are twofold. First, the reduced search space im-

plicates in a reduced search runtime. Besides, combined (or ensemble) methods can improve

classification results compared to individual models in a wide variety of applications (DIET-

TERICH, 1997).

1.3 Our proposal

Combined neural networks have shown an improvement of accuracy in classification prob-

lems (TAO, 2019), showing that the possibility of a NAS looking for smaller networks in dif-

ferent search spaces can be a good search strategy. However, to ensure this improvement, the

combined models need to make independent decisions (PONTI, 2011). In other words, the en-

semble requires the individual classifiers to be diverse, which requires a few additional steps to

ensure such variety.

In this scenario, we propose using an ensemble of neural networks obtained with NAS,

referred to as Committee of NAS-based models (CoNAS). To ensure the diversity of neural

architectures in CoNAS, we impose different search space limitations to the Differentiable AR-

chiTecture Search (DARTS) (LIU; SIMONYAN; YANG, 2018) by fixing different sets of search

spaces.

Figure 1.2 illustrates how CoNAS works. From left to right, the search subspaces are

triggered by the training set, and, from there, DARTS works in the conventional way to search

1.4 Main Contributions 18

for the best network architectures restricted to each search space. In the end, the combination

of the predictions of each neural network defines the final decision to a given input data.

Figure 1.2: Abstract illustration of CoNAS. A search strategy selects an architecture a from a
predefined search space A. The architecture is passed to a performance estimation strategy, which
returns the estimated performance of a to the search strategy. The same procedure is repeated for
the search spaces B and C. Finally, when CoNAS need to predict the class of a new example, it
combines the output of these three models in a single decision.

Search Space
B Gradient descent Loss

Search Space
A

Search Space
C

Gradient descent Loss

architecture
a E A

performance
estimate of a

Gradient descent Loss

Ensemble

Source: Elaborated by the author

1.4 Main Contributions

We evaluated the committee of three architectures obtained by varying search sub-spaces

with DARTS in two distinct scenarios. First, we trained for neural architectures from scratch

using the dataset CIFAR-10. Later, we used the found architectures to classify images from

the Imagenette dataset in a transfer-learning fashion. In both cases, we achieved slightly better

accuracy rates. Besides, the combined search takes the same time as searching in the entire

search space when done in parallel.

Thus, the main contributions of this work are:

• We propose and evaluate for the first time the combination between neural models found

by DARTS, favoring the diversity between these models by limiting their search spaces

with different restrictions.

• The proposed method achieved better classification performance than DARTS on CIFAR-

10 data when trained from scratch. Moreover, we demonstrate the capacity of reusing

discovered network architectures to perform transfer learning, obtaining an increase of

accuracy on the Imagenette dataset.

1.5 Dissertation organization 19

• Through our experimental evaluation, we discuss possible paths for future developments

that may bring meaningful advances in NAS research.

1.5 Dissertation organization

We started with the background and related work, explaining related works and subjects

relevant to the proper understanding of this work, in Chapter 2. Chapter 3 presents the method-

ology, providing details of our proposal, showing how we divided the search space and how

we performed the tests. Chapter 4 shows the results obtained with the proposed methodology.

Finally, in Chapter 5, we present the final considerations, including a discussion on the main

difficulties and future work.

Chapter 2
BACKGROUND AND RELATED WORK

This chapter is essential for the precise understanding of elements used in this work. This

section presents basic concepts of artificial neural networks, focused on convolutional networks,

which is the scope of this work. Since our proposal comprehends the ensemble of classifiers

based on Neural Architecture Search, this chapter also presents the main concepts and related

work on these topics. Some techniques are used in this work and others are used in other works.

2.1 Convolutional Neural Network

Convolutional Neural Network (CNN) has achieved groundbreaking results over the past

decade in various fields related to pattern recognition; from image processing to voice recogni-

tion. The most beneficial aspect of CNNs is reducing the number of parameters in ANN. This

achievement has prompted researchers and developers to build larger models to solve complex

tasks, which was impossible with classic ANNs due to the vanishing gradient problem (ALBAWI;

MOHAMMED; AL-ZAWI, 2017).In a face detection application, we do not need to pay attention

to where the faces are located in the images. The only concern is to detect them regardless of

their position in the given images (ALBAWI; MOHAMMED; AL-ZAWI, 2017). Another important

aspect of CNN is that it obtains abstract features when propagating the deeper layers’ input.

For example, in image classification, the edge might be detected in the first layers, and then the

simpler shapes in the second layers, and then the higher level features (ALBAWI; MOHAMMED;

AL-ZAWI, 2017). Figure 2.1 illustrates a CNN.

2.2 Regularization of parameters 21

Figure 2.1: An illustrative example of a Convolutional Neural Network. In this case, the network
comprises two blocks of a convolutional layer with a dimensionality reduction operation (max-
pooling), followed by flattening the representation to serve as input to two fully-connected layers
(FC) and a decision/output layer, which uses a softmax function.

Convolution Max-pooling Max-pooling FlattenConvolution FC Softmax

Source: Elaborated by the author

2.2 Regularization of parameters

Regularization has been used for decades before the advent of deep learning. Linear mod-

els, such as linear regression and logistics, allow simple, direct, and effective regularization

strategies. This section will discuss some of the more popular approaches to regularization in

deep learning models.

Many regularization approaches are based on limiting the capacity of the models, such as

neural networks, linear regression or logistic regression, adding a Ω(θ) penalty to the objective

function J. We denote the objective function regularized as J R:

Jr(θ ;X ,y) = J(θ ;X ,y)+αΩ(θ) (2.1)

Where α ∈ [0,∞), is a hyper-parameter that directly contributes to the effect of the Ω func-

tion on J. Small values result in little regularization, larger values, in greater regularization.

Different choices for the Ω parameter function can result in different solutions. There are

several options in the literature, for example, regularization L 1 and regularization L 2 (GOOD-

FELLOW; BENGIO; COURVILLE, 2016).

2.3 Dataset Augmentation

The best way to better generalize a machine learning model is to train it on more data

(GOODFELLOW; BENGIO; COURVILLE, 2016). Obviously, in practice, the amount of data we have

is limited. One way to get around this problem is to create fake data and add it to the training

set. For some machine learning tasks, it is reasonably simple to create new false data. This

approach is easier for classification. A classifier needs to take a complicated, high-dimension

2.4 Early Stopping 22

entry x and summarize it with a single category y identity. This means that the main task that

a classifier faces is to be invariable to a wide variety of transformations. We can generate new

pairs (x, y) easily, just by transforming the x entries in our training set. This approach is not

so easily applicable to many other tasks. For example, it is difficult to generate new false data

for a density estimation task, unless we have already solved the density estimation problem.

Increasing the data set has been a particularly effective technique for a specific classification

problem: object recognition. The images are large in size and include a huge variety of factors

of variation, many of which can be easily simulated. Operations such as translating some pixels

of the training images in some direction can generally greatly improve generalization. Many

other operations, such as rotating or scaling the image, have also proved to be quite effective.

Care must be taken not to apply transformations that would alter the class. For example,

character recognition tasks require the recognition of the difference between ’b’ and ’d’ and

the difference between ’6’ and ’9’; therefore, horizontal inversions and 180º rotations are not

suitable ways to increase the data sets for these tasks.

2.4 Early Stopping

When training large models with sufficient representational capacity to over-adjust the task,

we generally observe that the training error decreases constantly over time, but the validation

set error starts to increase. See Figure 2.2 for an example of this behavior. This behavior occurs

very often. This means that we can get a model with a better error from the validation set (and

therefore we expect it to have a better error from the test set) by returning to the parameter

setting at the moment with the smallest error in the validation set. Whenever the error in the

validation set improves, we store a copy of the model’s parameters. When the training algorithm

ends, we return these parameters, instead of the most recent parameters. The algorithm ends

when no parameters have been improved on the best validation error recorded for some pre-

specified number of iterations. This strategy is known as Early Stopping. It is probably the

most used form of regularization in deep learning. Its popularity is due to both its effectiveness

and its simplicity.

2.5 Momentum

Although the descent of the stochastic gradient remains a very popular optimization strat-

egy, learning from it can sometimes be slow. The method momentum (POLYAK, 1964) it is

2.5 Momentum 23

Figure 2.2: Learning curves showing how the loss changes over time (indicated as the number
of training iterations in the data set). In this example, Goodfellow, Bengio and Courville (2016)
trained a maxout network at MNIST. Observe that the training error decreases consistently over
time, but the average loss of the validation set eventually begins to increase, forming an asymmetric
curve.

designed to accelerate learning, especially in the face of a high curve, small but consistent gra-

dients or noisy gradients. The algorithm of momentum accumulates an exponentially decaying

moving average from past gradients and continues to move towards it. The effect of momentum

is illustrated in Figure 2.3.

Formally, the momentum technique introduces a variable v that plays the role of speed - it

is the direction and speed at which parameters move through the parameter space. The speed

is adjusted to an exponential decaying average of the negative gradient. The name momentum

derives from a physical analogy, in which the negative gradient is a force that moves a particle

through parametric space, according to Newton’s laws of motion. The momentum of physics

is mass times speed. In the learning algorithm with momentum, we assume the unit mass;

therefore, the velocity vector v can also be considered the moment of the particle. A α in [0,

1) hyperparameter determines how quickly the contributions of the previous gradients decline

exponentially. The update rule is provided by:

v← αv− ε5θ

(
1
m

m

∑
i=1

L(f (x(i);θ),yi))

)
, (2.2)

θ ← θ + v (2.3)

2.6 Reinforcement learning 24

Figure 2.3: The red path indicates the path followed by the learning rule with textit momentum.
At each step along the way, Goodfellow, Bengio and Courville (2016) draws an arrow indicating the
step that the gradient descent would take at that point. We can see that a quadratic objective looks
like a long, narrow valley or canyon with steep sides. The momentum correctly crosses the canyon
longitudinally, while the gradient steps waste time moving back and forth through the narrow
canyon axis.

The higher the ratio of α to ε , the more previous gradients affect the current direction.

2.6 Reinforcement learning

Reinforcement learning it is learning what to do how to map actions in order to maximize a

numerical reward signal. The model is not informed about which actions to perform, but it must

find out which actions generate the most reward by trying them. In the most interesting and

challenging cases, actions can affect not only the immediate reward, but also the next situation

and, with that, all subsequent rewards (SUTTON; BARTO, 2018).

The basic idea is to capture the most important aspects of the real problem that a learning

agent faces, interacting over time with their environment to achieve a goal. A learning agent

must be able to sense the state of his environment to some extent and must be able to perform

actions that affect the state. The agent must also have one or more goals related to the state of

the environment. Any method that is well suited to solving these problems can be considered a

reinforcement learning method.

2.7 Adaptation of the learning rate 25

One of the challenges that arise in reinforcement learning is the treatment of exploration and

exploitation. In order to get a lot of reward, a reinforcement learning agent must prefer actions

that they have tried in the past and that are effective in producing reward. But, to discover

these actions, he must try actions that he had not selected before. The agent needs to explore

(exploration) what he has already experienced (exploitation) to get a reward, but he also needs

to explore to make better action selections in the future. The dilemma is that neither exploration

nor experimentation can be pursued exclusively without failing in the task. The agent must try

a variety of actions and progressively favor those that appear to be the best. In a stochastic task,

each action must be tried several times to obtain a reliable estimate of its expected reward. The

exploration-experimentation dilemma has been intensively studied by mathematicians for many

decades, but remains unsolved.

2.7 Adaptation of the learning rate

Researchers of neural networks have long realized that the learning rate is one of the most

difficult hyper-parameters to define, as it has a significant impact on the performance of the

model. The cost is generally highly sensitive to some directions in the parameter space and

insensitive to others. The momentum algorithm can mitigate these problems a little, but it does

so at the expense of introducing another hyper-parameter.

The delta-bar-delta (JACOBS, 1988) algorithm is a heuristic approach for adapting individ-

ual learning rates to model parameters during training. The approach is based on a simple idea:

if the partial derivative of the loss, with respect to a given model parameter, remains the same

sign, the learning rate should increase. If the partial derivative in relation to this parameter

changes sign, the learning rate should decrease (GOODFELLOW; BENGIO; COURVILLE, 2016).

More recently, several incremental methods (or based on mini-batchs) have been intro-

duced that adapt the learning rates of the model parameters. Methods like AdaGrad (DUCHI;

BARTLETT; WAINWRIGHT, 2012), RMSProp (Unpublished adaptive learning rate method pro-

posed by Geoff Hinton in Class 6e of his course in Coursera1), Adam (KINGMA; BA, 2014)

Adadelta (ZEILER, 2012), AdaMax (KINGMA; BA, 2015) and Nadam (DOZAT, 2016) are widely

used and compared in the literature (RUDER, 2016).

1htt p : //www.cs.toronto.edu/ ti jmen/csc321/slides/lectureslideslec6.pd f

2.8 Gradient descent optimization 26

2.8 Gradient descent optimization

The most popular deep learning techniques involve some optimization algorithm. The opti-

mization itself can be seen as a minimization or maximization of a function f (x), changing the

form of x.

Commonly, the function to be maximized or minimized is called an objective function. In

the figure 2.4, we have a function y = f (x), where x and y are real numbers. The derivative of

this function is denoted as f ′(x) or as dy
dx . The derivative f ′(x) gives the slope of f (x) at point x.

In other words, it specifies how to scale a small change in the input to obtain the corresponding

change in the output. Therefore, the derivative is useful for minimizing a function because it

tells us how to change x to make a small improvement on y. Thus, we can reduce f (x) by moving

x in small steps as a derivative function. This technique is called gradient descent (CAUCHY,

1847).

When we use a feed-forward neural network for an input x and produce an output ŷ, infor-

mation flows forward through the network. The x entries provide the initial information that is

then propagated to the hidden units in each layer and finally produces ŷ. This is called forward

propagation. During training, forward propagation can continue forward until it produces an

L error (θ). The (RUMELHART; HINTON; WILLIAMS, 1986) back-propagation algorithm allows

cost information to flow backward through the network to calculate the gradient and stimulate

the network to obtain a lower error value, causing the graph of the error function to behave

similarly to Figure 2.4, on the left.

The term back-propagation is often misinterpreted as meaning the entire learning algorithm

for multilayered neural networks. Back-propagation refers only to calculating the gradient,

while another algorithm, such as stochastic gradient descent, is used to perform the learning

(GOODFELLOW; BENGIO; COURVILLE, 2016), as illustrated in Algorithm 1 and Figure 2.5.

Algorithm 1: Stochastic gradient descent
Entry: A training set with m examples, regularization parameters, η learning rate.
while evaluation criteria not met do

for (x,y) ∈ m do
calculates Z, A, J na propagation
calculates dA, dZ, db na backpropagation with J(W,b,x,y)
updates the weights W, b in the backpropagation with dA,dZ,db

end
end

2.9 Optimization techniques 27

Figure 2.4: An illustration of how the gradient descent algorithm uses the derivatives of a function
to search for the minimum.

Source: Elaborated by the author

2.9 Optimization techniques

Of all the many optimization problems associated with deep learning, the most difficult is

training the neural networks (GOODFELLOW; BENGIO; COURVILLE, 2016). It is pretty common

to invest days or months in hundreds of machines to solve a single machine learning problem

with a neural network. As this problem is so significant and expensive, a specialized set of

optimization techniques has been developed to solve it. This section presents some of the main

optimization techniques for training neural networks.

2.10 Mini Batch GD

Compare two hypothetical gradient estimates, one based on 100 examples and the other

based on 10,000 examples. The latter has a computation cost 100 times greater than the former,

reducing the standard error of the mean by only a factor of 10. Most optimization algorithms

converge much more quickly (in terms of computation cost) if they can quickly calculate ap-

proximate estimates of the gradient instead of slowly calculating the exact gradient.

2.11 Transfer learning 28

Figure 2.5: Illustration of a gradient drop in a cost function L (w).

J(w)

W

Initial weight

Global cost
minimum

Jmin(w)

Source: Elaborated by the author

Another consideration that motivates the estimation of the gradient from a small number of

samples is the redundancy in the training set. At worst, all samples in the training set can be

identical copies of each other. A sampling-based gradient estimate could calculate the correct

gradient with a single sample, using m times less computation than an all-sample approach. In

practice, it is unlikely that we will encounter this worst-case situation, but we can find many

examples that make very similar contributions to the gradient.

Typically, the term batch gradient descent implies using the entire training set while using

the term batch to describe a group of examples. For example, it is very common to use the term

size of bath to describe the size of a minibatch, that tries to capture the advantages of both, which

is the minibatch (uses batches that do not imply the entire dataset, but a subset. Optimization

algorithms that use only a single example at a time are called stochastic methods (stochastic).

The classic example of a stochastic method is stochastic gradient descent, presented in the

section 2.8.

2.11 Transfer learning

Transfer learning (TL) refers to the situation where what has been learned in one configu-

ration (ie, P1 distribution) is exploited to improve generalization in another configuration (for

example, a P2 distribution) (GOODFELLOW; BENGIO; COURVILLE, 2016).

In transfer learning, the model must perform two or more different tasks (GOODFELLOW;

BENGIO; COURVILLE, 2016), but we assume that many of the factors that explain the variations

in P1 are relevant to the variations that need to be captured for learning in P2. This is generally

understood in a supervised learning context, where the input is the same, but the target may

be of a different nature. For example, we can learn about a set of visual categories, such as

2.12 SMBO 29

dogs and cats, in the first configuration, and learn about a different set of visual categories,

such as ants and wasps, in the second configuration. If there is significantly more data in the

first configuration (sampled in P1), this can help to learn useful representations to generalize

quickly with just a few examples taken from P2.

2.12 SMBO

Sequential Model-Based Optimization (SMBO) (HUTTER; HOOS; LEYTON-BROWN, 2011a)

is an optimization framework that can work explicitly with categorical and continuous hyper-

parameters. You can explore conditional spaces, such as when a hyper-parameter is relevant

only if another hyper-parameter (or some combination hyperparameters) assumes a certain

value (KOTTHOFF et al., 2019). SMBO uses a substitute (supplementary) model to assess fit-

ness, which is very useful when assessing fitness function is costly. It uses objective functions,

such as the Gaussian Process, to select good values for hyper-parameters and then update the

values sequentially based on the results (NAGARAJAH; PORAVI, 2019).

A common approach to apply SMBO is by Bayesian Optimization (BO) (BROCHU; CORA;

FREITAS, 2009). Bayesian optimization iteratively adjusts a model to the observations of the

target function. It then uses an acquisition function to determine the next candidate points

based on the predictive distribution of the model. With the increase in observation numbers,

the predictive distribution of the model improves. Consequently, the algorithm better assumes

which regions of the parameter space are worth exploring and which are not.

2.13 Neural Architecture Search

Currently, NAS methods can successfully handle some of the deep learning tasks such as

image classification, object detection (ZOPH et al., 2018; LIU; SIMONYAN; YANG, 2018), and

semantic segmentation (CHEN et al., 2018). NAS has significant overlap with transfer learning

(ZOPH; LE, 2016), for example, DARTS uses transfer learning on the network generated in

CIFAR-10 for the imagenet.

Next, we present fundamental concepts to define NAS techniques.

2.13 Neural Architecture Search 30

2.13.1 Search Space

In the context of a convolutional neural network (CNN), the search space is parameterized

by (i) the maximum number of layers n; (ii) the type of operation every layer executes, e.g., con-

volution, pooling, or more advanced operations like depthwise separable convolutions (Chollet,

2017); and (iii) hyperparameters regarding operations, e.g., number of filters, kernel size and

strides for a convolutional layer (BAKER et al., 2017), or only the number of units for fully-

connected networks, activation functions and regularization methods (MENDOZA et al., 2016).

Figure 2.6 illustrates a simple search space of chain-structured neural networks.

Figure 2.6: An illustration of different architecture spaces .

Source: (ELSKEN; METZEN; HUTTER, 2019)

In this figure, each node in the graphs corresponds to a layer in a neural network, e.g., a

convolutional or pooling layer. Different layer types are visualized by different colors. An edge

from layer Li to layer L j denotes that L j receives the output of Li as input. In the left it is

illustrated an element of a chain-structured space; and in the right we can see a more complex

search space with additional layer types and multiple branches and skip connections (ELSKEN;

METZEN; HUTTER, 2019).

Many NAS approaches require a large number of layers to achieve good performance. Fur-

thermore, in many approaches, each of the neural networks has to be trained from scratch taking

a very long time to output the result (JIN; SONG; HU, 2018).

2.13 Neural Architecture Search 31

2.13.2 Search Strategy

Many different search strategies can be used to explore the search space of neural archi-

tectures including Random Search (RS), Bayesian Optimization (BO), Evolutionary Methods

(EM), Reinforcement learning (RL) and methods based on Gradient Descent (GD). The main

search strategies are summarized in Table 2.1.

Table 2.1: Overview of different methods to search network architectures in a NAS search space.

Search Method Results

Random Search Randomly selects network architecture
settings (LI; TALWALKAR, 2019).

Reinforcement Learning Highly competitive results with humans
in CIFAR-10 and Treebank. (ZOPH et al., 2018)

Evolutionary Algorithms
Performance similar to reinforcement
learning, however, generating smaller
models. (REAL et al., 2019)

Bayesian Optimization
Some results of this approach may
also overcome the evolutionary
algorithms (KLEIN et al., 2017)

Gradient Descent

Four hours of GPU on CIFAR-10
with competitive results
compared to reinforcement learning
and evolutionary algorithms. (DONG; YANG, 2019)

NAS became one of the top research topics in the machine learning community after Zoph

Zoph et al. (2018) achieved competitive performance on the CIFAR-10 and Penn Treebank

(MARCUS; SANTORINI; MARCINKIEWICZ, 1993) benchmarks with a search strategy based on

Zoph et al. (2018) used huge computational power to achieve this result (800 GPUs for four

weeks). After their work, a wide variety of methods were published to reduce computational

costs and obtain additional performance improvements.

Bayesian Optimization (BO) achieved several early successes on NAS by suggesting high-

level architectures (BERGSTRA; YAMINS; COX, 2013). NAS algorithms using some search strate-

gies obtained competitive architectures for the CIFAR-10 and generated the first automatically

adjusted neural networks to win some competitions against human experts.

BO (Shahriari et al., 2016) is one of the most popular methods for optimizing hyperparame-

ters, but it has been applied to NAS only in a few works, since typical BO toolboxes are based

on Gaussian processes and focus on low-dimensional continuous optimization problems. On

the other hand, several works use tree-based models (in particular, Parzen (BERGSTRA; YAMINS;

2.13 Neural Architecture Search 32

COX, 2013) tree estimators or random forests (HUTTER; HOOS; LEYTON-BROWN, 2011b)) to ef-

fectively research high-dimensional conditional spaces and obtain cutting-edge performance

over a wide range of problems, optimizing neural architectures and their hyperparameters together

(BERGSTRA; YAMINS; COX, 2013).

To use NAS as a reinforcement learning (RL) problem (ZOPH et al., 2018; ZHONG et al.,

2018a), the generation of a neural architecture can be considered the action of the agent of

RL. The agent’s reward is based on an estimate of the performance of the architecture trained

on unseen data. RL approaches differ in how they represent the agent’s policy and how they

optimize it.

An alternative to RL is the neuro-evolutionary approaches, which use evolutionary algo-

rithms to optimize the neural architecture. For the best of our knowledge, the first neuro-

evolutionary approach was proposed at least three decades ago (1989) by (MILLER; TODD;

HEGDE, 1989) and their genetic algorithms applied to propose architectures with backpropa-

gation and to optimize their weights. Many neuro-evolutionary approaches have used genetic

algorithms to optimize neural architecture and its weights since then; however, when scaling

to contemporary neural architectures with millions of weights for supervised learning tasks,

weight optimization methods based on Stochastic Gradient Descent (SGD) currently surpass

evolutionary ones (ELSKEN; METZEN; HUTTER, 2019).

The newest neuro-evolutionary approaches (REAL et al., 2017, 2019; ELSKEN; METZEN; HUT-

TER, 2019; LIU et al., 2018) use gradient-based methods to optimize weights and evolutionary

algorithms only to optimize the neural architecture. Evolutionary algorithms give rise to a pop-

ulation of models, that is, a set of networks; and at each stage of evolution at least one model is

picked up from the population to generate children by applying mutations on it. In the context of

NAS, mutations are local operations, such as adding or removing a layer, changing the hyper-

parameters of a layer, adding skip-connections and changing the training hyper-parameters.

After training the children, their performance (for example, in a validation set) is assessed and

they only the bests ones are added to the population.

Neuro-evolutionary methods differ in the way they select architectures, update populations

and generate children. For example, (REAL et al., 2018, 2017; LIU et al., 2018) use tournament

selection to select parents, while (ELSKEN; METZEN; HUTTER, 2019) selects parents with multi-

objective Pareto. (REAL et al., 2018) removes the worst individual from a population, while

(REAL et al., 2019) considered removing the oldest individual and (LIU et al., 2018) does not

remove individuals. To generate children, most approaches initialize a population at random,

while (ELSKEN; METZEN; HUTTER, 2019) employs Lamarckian inheritance where the knowl-

2.13 Neural Architecture Search 33

edge (in the form of learned weights) is passed from a parent network to its children using

morphisms in the network. (REAL et al., 2018) also allows a child to inherit (from their parents)

all parameters that are not affected by the applied mutation; even if this inheritance does not

strictly preserve the architecture, it can speed up learning compared to random startup.

Another possible approach to research network architectures is by using gradient descent

in neural network architectures (LIU; SIMONYAN; YANG, 2018; DONG; YANG, 2019). (LIU; SI-

MONYAN; YANG, 2018) shows that the search for network architecture through gradient descent

achieves highly competitive results in CIFAR-10, in addition to surpassing the state of the art

in Penn Treebank (PTB). This is a very interesting result, considering that until now the best

architectural research methods used non-differentiable research techniques, for example, based

on RL (ZOPH et al., 2018) or neuro-evolution (REAL et al., 2018; LIU et al., 2018).

Another proposal is a NAS with gradient descent (DONG; YANG, 2019). Such an approach

represents the search space as a directed acyclic graph (DAG). This DAG can contains billions

of subgraphs, each one representing a type of neural architecture. The results are surprising: the

NAS completed a search procedure in four hours of GPU on the CIFAR-10, obtaining an error

in the test set of only 2.82% with around 2.5 million parameters.

2.13.3 Performance Estimation Strategy

The search strategies presented in section 2.13.2 generate network architectures that need to

be evaluated somehow to conduct the exploration through the search space. The simplest way

to accomplish that is to integrally perform the training stage and then evaluate the generated

architecture with the test data. However, considering the order of magnitude O(nt)(JIN; SONG;

HU, 2018), where n is the number of networks to be evaluated during the search and t is the

average time spent to evaluate each of these n architectures, performing the training stage leads

to a high computational and time cost, spending several days in a GPU (ZOPH; LE, 2016; REAL

et al., 2018; ZOPH et al., 2018; REAL et al., 2017).

2.13.4 DARTS

DARTS (Differentiable ARchiTecture Search) is one of most popular NAS techniques. The

new paradigm proposed by (LIU; SIMONYAN; YANG, 2018) uses gradient descent to search for

a computation cell as the building block of the final architecture. To use gradient descent, Liu,

Simonyan and Yang (2018) creates a continuous search space by relaxing the original search

space for possible operations with softmax:

2.13 Neural Architecture Search 34

Figure 2.7: An overview of DARTS

Source: (LIU; SIMONYAN; YANG, 2018)

o−(i, j)(x) = ∑
oεO

exp(α(i, j)
o)

∑o′εO exp(α(i, j)
o′)

o(x) (2.4)

.

Darts starts the search with a complete network loaded with operations, as illustrated in

Figure 2.7. The set of possible operations on each neural network node is individually parame-

terized by the weights represented by α . The gradient descent allows us to select the operations

contributing to a lower loss. This way, after a fixed number of epochs (50 by default), we will

have the chosen architecture.

DARTS can learn high-performance architecture building blocks with complex graph topolo-

gies in a rich search space with 1018 architectures.

The following definitions are assumed to define the architectures explored by DARTS. Each

directed edge (i, j) is associated with some operation o(i, j) that transforms x(i). Each cell has

two input nodes and a single output node. For convolutional cells, the input nodes are defined as

the cell outputs in the previous two layers(ZOPH et al., 2018), where x(i) is a latent representation

(e.g. a feature map in convolutional networks).

Figure 2.4 shows an overview of DARTS: : (a) Operations on the edges are initially un-

known. (b) Continuous relaxation of the search space by placing a mixture of candidate opera-

tions on each edge. (c) Joint optimization of the mixing probabilities and the network weights

by solving a bi-level optimization problem. (d) Inducing the final architecture from the learned

mixing probabilities (LIU; SIMONYAN; YANG, 2018).

Illustration of one-shot architecture search in Figure 2.8. Simple network with an input

node (denoted as 0), three hidden nodes (denoted as 1,2,3) and one output node (denoted as

4). Instead of applying a single operation (such as a 3x3 convolution) to a node, the one-shot

model (left) contains several candidate operations for every node, namely 3x3 convolution (red

2.14 Classifiers ensemble 35

Figure 2.8: An overview of DARTS

Source: (LIU; SIMONYAN; YANG, 2018)

edges), 5x5 convolution (blue edges) and MaxPooling (green edges) in the above illustration.

Once the one-shot model is trained, its weights are shared across different architectures, which

are simply subgraphs of the one-shot model (right). Figure inspired by (LIU; SIMONYAN; YANG,

2018).

Liu, Simonyan and Yang (2018) conducts NAS experiments on CIFAR-10 and PTB and

transferable architectures to ImageNet and WikiText-2, respectively.

In CIFAR-10, Liu, Simonyan and Yang (2018) include the following operations: 3 × 3, 5

× 5 and 7 x 7 separable convolutions, 3 × 3 and 5 × 5 dilated separable convolutions, 3 × 3

max pooling, 3 × 3 average pooling, identity, and zero. All operations are of stride one. Liu,

Simonyan and Yang (2018) hold out half of the CIFAR-10 training data as the validation set.

A small network of 8 cells is trained using DARTS for 50 epochs, with batch size 64 and the

initial number of channels 16. The momentum SGD are used to optimize the weights w, with

initial learning rate ηw = 0.025.

Unfortunately, researchers have pointed out that DARTS suffers from overfitting if executed

for too many epochs. For this reason, we can find proposals to improve the chances of DARTS

finding architectures that generalize better, such as applying early stopping (LIANG et al., 2019).

2.14 Classifiers ensemble

The term ensemble is used to identify a set of predictors whose individual decisions are

combined or aggregated in some way to predict new examples (DIETTERICH, 1997). This article

focuses only on classification problems. However, the combination of techniques can be used

for regression problems with only minor cost function changes.

2.14 Classifiers ensemble 36

According to the no-free lunch theorem (Wolpert; Macready, 1997), there is no optimal algo-

rithm for all decision problems. For this reason, ensemble techniques betake the decisions of

distinct classifiers and aggregate them in a single decision, like a decision made by a committee.

Thereby, even if a small number of models make a mistake, the combined answer can still be

correct..

The most straightforward technique to aggregate individual classifiers decisions is by ma-

jority voting. In this case, the final decision is for the class label with the individual highest

number of votes. A model “votes” for a class label k if its output is k. Formally, the majority

voting is defined by Equation 2.5.

argmaxk∈C(
m

∑
i=1

φ(i,k)) (2.5)

where C is the set of class labels to assign to an example, m is the number of individual models,

and φ(i,k) is defined by Equation 2.6.

φ(i,k) =

1, if k = argmax j∈CPi j

0, otherwise
(2.6)

where Pi j is the output score of the i-th model to the j-th label in C.

Although simple, the majority voting disregards the confidence of each classifier in its de-

cision. For instance, consider a scenario with three individual binary classification models.

Besides, consider the following obtained scores for a given instance: P10 = 0.51, P11 = 0.49,

P20 = 0.51, P21 = 0.49, P30 = 0.01, P31 = 0.99. The committee would decide for the class 0,

despite the models who voted for this class have low confidence in their decisions.

An alternative to avoid this limitation of majority voting is considering the models output

scores when aggregating their votes in a weighted voting manner. The ensemble technique uses

a simple function of each class’s scores, Sk, and decides for that with the highest obtained value.

Two examples of aggregation rules are the sum (Equation 2.7) and product (Equation 2.8).

Sk =
m

∑
i=1

Pik (2.7)

Sk =
m

∏
i=1

Pik (2.8)

2.14 Classifiers ensemble 37

Kittler (2005) concludes that the sum rule is the most conservative and most used. The

product may have superior results but they are risky.

A good observation regarding the ensemble is that combining similar models is useless. The

variability of characteristics and domain spaces are crucial for good ensemble results. Thus, the

models to be combined must have a certain level of disagreement.

Chapter 3
METHODOLOGY

In this chapter, we present the methodology, including details of our proposal and experi-

mental decisions. We recall that the main idea behind our proposal was presented in Figure 1.2.

Then, we describe how we define the search sub-spaces to compose the ensemble. We also

present the training and test strategies. Due to cost constraints, we train from scratch only in

one dataset. Then, we use transfer learning to evaluate the architectures when applied to other

data.

3.1 Our Proposal

Our proposal consists of creating a Comitee of NAS-based models (CoNAS). CoNAS is

based on the diversity of search spaces, due to the need for diversity between the models to be

combined. For this, we defined 3 search darts sub-spaces. The 3 sub-spaces have the following

operations:

• Space A: 3 × 3, 5 × 5 separable convolutions, 3 × 3 and 5 × 5 dilated separable convolu-

tions, 3 × 3 max pooling, 3 × 3 average pooling, identity, and zero.

• Space B: 5 × 5 and 7 x 7 separable convolutions, 5 × 5 dilated separable convolutions, 3

× 3 max pooling, 3 × 3 average pooling, identity, and zero.

• Space C: 3 × 3 and 7 x 7 separable convolutions, 3 × 3 dilated separable convolutions, 3

× 3 max pooling, 3 × 3 average pooling, identity, and zero.

Although we set specific parameters, our proposal is a framework. Therefore, changing

fundamental elements of the algorithm is straightforward. We implemented our proposal so

3.2 Training step 39

that these changes are made by execution parameters like learning rate, epochs, dir of logs, and

others.

This work will use the sum of scores to combine the models. The first reason for that

choice is because DARTS convolutional networks return probabilistic values. Besides, the sum

rule technique is the most conservative and widely applied.

Several previous works use an ensemble strategy based on neural networks of the most

diverse types (Krishnakumar; Williamson, 2019; Nagahamulla; Ratnayake; Ratnaweera, 2016; Marino;

Virupakshappa; Oruklu, 2020; Abouelnaga et al., 2016; Yang et al., 2013; Rijal et al., 2018). The most

common approach found in these works is the use of different subsets of data for training each

network architecture and, then, making up the combination. In this work, we use an alternative

technique, changing architectures instead of data, using DARTS.

3.2 Training step

The model is trained in cifar-10 and then the resulting network architecture is transferred to

the other datasets to be trained from scratch, with weight sharing.

For a better comparison and reproducibility, data sets applied to evaluate state-of-the-art

network architecture algorithms will be used, they are:

CIFAR-10 (KRIZHEVSKY, 2009), which consists of 50,000 training images and 10,000 test

images. A total of 60,000 RGB images, 32x32 pixels, with 10 classes (for example, airplanes,

cars, animals) and perfectly balanced, that is, with 6,000 images belonging to each class.

ImageNette (HOWARD, 2019), a state of the art reference for Imagenet subsets. It contains

10 easily classifiable classes from Imagnet. As this dataset does not have a test set, we use the

evaluation set for the final evaluation.

Intel Dataset 1 Created by Intel for an image classification contest, this expansive image

dataset contains approximately 25,000 images. Furthermore, the images are divided into the

following categories: buildings, forest, glacier, mountain, sea, and street. The dataset has been

divided into folders for training, testing, and prediction. The training folder includes around

14,000 images and the testing folder has around 3,000 images.

Cellulas dataset 2 This data comes from the Recursion 2019 challenge. This goal of the

competition was to use biological microscopy data to develop a model that identifies replicates.

1https://www.kaggle.com/puneet6060/intel-image-classification
2https://www.kaggle.com/xhlulu/recursion-cellular-image-classification-224-jpg

3.3 Test step 40

3.3 Test step

Samples not used in training will be pre-processed in the same way as in the previous phase.

Then, for each architectural search experiment, the samples will serve as input for the models

generated by the architectural search. Thus, having an estimate of evaluation of the generated

architectures. Soon after, the test data are presented to the combination of the generated models

(through the sum of the liabilities), having at the end, the final evaluation of the combination of

the generated networks.

This work will use the sum of the scores to combine the models. The first reason for this

choice is because conventional DARTS networks return probabilistic values. In addition, the

sum rule technique is the most conservative and widely applied.

3.4 Work Development Methodology

All the necessary resources for the execution of this project are available at the Federal

University of São Carlos - campus São Carlos.The institution has a network of workstations

and personal computers available for the project, in addition to the necessary programs for the

good development of the project, which are installed and are, in the majority, in the public

domain. The institution also has a server with a dedicated graphics card and several CPU cores

(Intel Core i9-7900X with 20 cores, which operated at 3.3 GHz with 15 MB of cache, 128 GB

ram and a Nvidia RTX GPU. 2080 with 12 GB of DDR5 memory). The entire bibliographic

reference is available in the library and on the Internet through the institution’s contracts with

the repositories of articles and academic works.

The proposed methodology to achieve the objective of this project is described below, in

the following phases:

• The developed algorithm is based on the implementation of DARTS (LIU; SIMONYAN;

YANG, 2018).

• In the pre-processing stage, the state-of-the-art training methodology will be used for a

better comparison of the results obtained.

• In the evaluation step, the test methodology present in the DARTS algorithm was used,

obtaining the error present in the architecture, the number of parameters present in the

architecture and the time spent in GPU processing.

3.4 Work Development Methodology 41

• Finally, the models are combined in the test stage by adding the probabilities of each

model evaluated in the test set.

Chapter 4
EXPERIMENTAL EVALUATION

Here we present the results obtained with the training of the models. The Intel model was

the one that had the greatest accuracy. We present graphs and figures for a better understanding

of this work.

Liu, Simonyan and Yang (2018) determines the architecture for final evaluation by running

DARTS four times with different random seeds and pick the best cell based on its validation

performance obtained by training from scratch for a short period (100 epochs on CIFAR-10).

Our experiments1 run DARTS a single time for each specific subspace, with the same seeds,

and pick the best cell based on its validation performance to determine the final evaluation

architecture. We run the DARTS algorithm in each search space and generate the models to

combine them.

Figure 4.1 shows how the accuracy obtained by DARTS, with complete and the three pro-

posed reduced search spaces, and CoNAS evolves through the training epochs on CIFAR-10.

All experiments used the default cutout from DARTS.

The results show a difference between the models generated in different search spaces.

Specifically, we can note that the accuracy decreases for a model in some epochs while it in-

creases to another one. It seems a piece of evidence that these models are making independent

decisions. This difference may have contributed to a superior result in the combination. The

combination results were superior to the individual search spaces and the full DARTS search

space during the entire process.

1The experiments were performed on a computer with Intel (R) Core (TM) i9-7900X CPU @ 3.30GHz, 128
GB of RAM, and a single NVIDIA 2080 TI 12GB RAM GPU.

4 Experimental Evaluation 43

Figure 4.1: Accuracy for each search spaces on CIFAR-10.

Source: Elaborated by the author
Table 4.1 shows the test set’s accuracy after 50 training epochs on CIFAR-10. We note that

the ensemble of DART sub-spaces outperforms the complete DARTS by approximately 1.72%.

The accuracy rates of the subspace models shows a small difference between them.

Table 4.1: Experimental results on CIFAR-10. Accuracy, number of parameters and GPU cost.

Architecture ACC
Params

(M)
GPU

(Hours)
DARTS 90.36% 1.93 6
DARTS space A 90.58% 1.93 6
DARTS space B 89.80% 0.92 4
DARTS space C 89.56% 1.14 4
DARTS ensemble 92.08% 3.99 14*
* This time considers we run each search space sequentially.

It is worth mentioning that we executed the DARTS ensemble sequentially (one at a time in

the GPU). However, CoNAS is embarrassingly parallel. If we execute the base models simul-

taneously, we will obtain a runtime similar to the maximum runtime for a single model. In this

case, approximately six hours.

Figure 4.2 presents the confusion matrix obtained by our method and DARTS using the

complete search space.

The ensemble proves to be more efficient than DARTS with the complete search space.

The results show a substantial increase in the number of correctly classified examples in almost

all classes of CIFAR-10. The only exception is the class “cat”, where CoNAS mislabeled two

examples more than DARTS.

4 Experimental Evaluation 44

Figure 4.2: Confusion matrix obtained by CoNAS (left) and DARTS (right) on CIFAR-10.

Source: Elaborated by the author

Figure 4.3: Confusion matrix obtained by CoNAS space A

Source: Elaborated by the author

4 Experimental Evaluation 45

Figure 4.4: Confusion matrix obtained by CoNAS space B

Source: Elaborated by the author

Figure 4.5: Confusion matrix obtained by CoNAS space C.

Source: Elaborated by the author

4 Experimental Evaluation 46

Figure 4.6: Cifar 10 examples.

Source: Elaborated by the author

Figures 4.7, 4.8, and 4.9 illustrate the differences obtained in the final architectures caused

by the segmentation of the search spaces, showing that it is possible to obtain diversity of

representations by segmenting the DARTS search space.

Figure 4.7: Snapshots of the most likely normal conv from search space 1.

c_{k-2}

0

dil_conv_5x5 1
skip_connect

2
sep_conv_3x3 3

dil_conv_5x5

c_{k-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

c_{k}

dil_conv_5x5

Source: Elaborated by the author

The model generated by the darts classified the image as being a cat, CoNAS got it right by

classifying the image as a bird. Figure 4.10.

The model generated by the darts classified the image erroneously, whereas CoNAS got the

image classification right Figure 4.11.

A image of the intel dataset class named buildings can be seen in Figure 4.12.

4 Experimental Evaluation 47

Figure 4.8: Snapshots of the most likely normal conv from search space 2.

c_{k-2}

0

dil_conv_3x3

1
dil_conv_3x3

2

sep_conv_3x3 3

sep_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

dil_conv_3x3
c_{k}

Source: Elaborated by the author

Figure 4.9: Snapshots of the most likely normal conv from search space 3.

c_{k-2}

0

dil_conv_5x5

1

dil_conv_5x5

2

skip_connect

3

sep_conv_5x5

c_{k-1}
dil_conv_5x5

sep_conv_5x5

dil_conv_5x5

dil_conv_5x5 c_{k}

Source: Elaborated by the author

4 Experimental Evaluation 48

Figure 4.10: Example taken from cifar-10 for class bird.

Source: Elaborated by the author

Figure 4.11: A image of the dataset imagenette.

Source: Elaborated by the author

4 Experimental Evaluation 49

Figure 4.12: A image of the dataset intel from class buildings.

Source: Elaborated by the author

The model generated by the darts classified the image as being forest, whereas CoNAS

agreed on the image classification; The train test split is 0,36 for test size; Figure 4.12.

A random image of the cellulas dataset class named HUVEC-03 can be seen in Figure 4.13.

For all of the following datasets, we use the same DARTS transform for imagenet, making

them all have the same resolution.

The Imagenette dataset (HOWARD, 2019) consists of a subset of 10 “easy” classes from

the Imagenet dataset (DENG et al., 2009). The goal behind assembling a small version of the

Imagenet dataset was mainly because running new experiments using Imagenet takes a long

time.

We experimented with the Imagenette training with transfer learning from the networks

trained in CIFAR-10. Since Imagenette does not have a test set, the results shown in Table 4.2

refer to the validation set. Overall, the results show that CoNAS presents an increase of about

0.76% in accuracy when compared to the regular DARTS.

Figure 4.14 illustrates the results of the evaluations in the training step. The results show

the possibility of using early stopping to avoid a possible overfit and reduce the time to evaluate

the architecture.

We experimented with the Intel test set with transfer learning from the networks trained in

CIFAR-10. The results shown in Table 4.3 refer to the test set. Overall, the results show that

CoNAS presents an increase of about 7% in accuracy when compared to the regular DARTS.

4 Experimental Evaluation 50

Figure 4.13: A random image of the dataset cellulas.

Source: Elaborated by the author

Table 4.2: Experimental results on Imagenette. Accuracy, number of parameters and GPU cost.

Architecture ACC
Params

(M)
GPU

(Hours)
DARTS 88.05% 4.71 2
DARTS space A 87.23% 4.83 2
DARTS space B 85.63% 5.47 2
DARTS space C 86.67% 4.65 2
DARTS ensemble 88.81% 14.95 6*
* This time considers we run each search space sequentially.

Table 4.3: Experimental results on Intel Dataset. Accuracy, number of parameters and GPU cost.

Architecture ACC
Params

(M)
GPU

(Hours)
DARTS 74.06% 3.95 0.43
DARTS space A 71.83% 3.89 0.43
DARTS space B 75.33% 3.95 0.43
DARTS space C 71.43% 3.89 0.43
DARTS ensemble 81.26% 11.73 1.29*
* This time considers we run each search space sequentially.

4 Experimental Evaluation 51

Figure 4.14: Results of the validation and training set in the training of neural networks in Ima-
genette.

Source: Elaborated by the author

4 Experimental Evaluation 52

Figure 4.15 ilustrates confusion matrix of the Intel dataset. On the left, we have the ensem-

ble and while on the right we have the intel in the full DARTS.

Figure 4.15: Confusion matrix obtained by CoNAS (left) and DARTS (right) on Intel.

Source: Elaborated by the author

We experimented with the Cellulas train/val with transfer learning from the networks trained

in CIFAR-10. The results shown in Figure 4.16 Darts manages to overfit the model in training

time.

In the test set, the model reach even 1.364% accuracy. The models for CONAS were exe-

cuted and obtained the same result.

4 Experimental Evaluation 53

Figure 4.16: Accuracy for each epoch in Cellulas dataset with DARTS.

Train
Valid

Source: Elaborated by the author

Chapter 5
FINAL CONSIDERATIONS

{Esse também espaço para melhorar. Eu acredito que aqui deva entrar um apanhado da

importância de NAS de novo, levando a falar o que está começando agora1). Além disso, vale

a pena melhorar a discussão sobre as limitações para falar sobre como podemos melhorar. em

vez de um parágrafo de future work, vale falar a limitação a imagens (aí falar que seria legal

ter em outros domínios, mas que isso demandaria adicionar operações, etc). Depois, falar que

os sub-espaços foram definidos manualmente, o que pode enviesar um pouco o CoNAS. Daí

terminar falando que isso pode ser abordado com aleatoriedade, de forma que a gente possa

escolher aleatoriamente subconjuntos de operações. Além disso, com isso, o usuário poderá

escolher número de redes para fazer o ensemble e tal.}

NAS is a hot research topic and has been obtaining competitive results with humans in

several domains such as image classification, object detection, and even natural language pro-

cessing. This dissertation presents an investigation that aimed to take a step further on NAS

research.

We introduced CoNAS, a committee of NAS-based models, to classify images. To the best

of our knowledge, this is the first proposal of an ensemble algorithm based on automated neural

architecture search to explore different search spaces to provide diversity to the induced models.

CoNAS resulted in superior results in CIFAR-10 over sub-spaces of DARTS and full DARTS.

These results may indicate that investigation on ensemble-based network architecture is a promis-

ing path for NAS researchers’ future efforts.

Also, we evaluated the architectures found for CIFAR-10 on predicting images from the

Imagenette, Intel, and Cellulas datasets using transfer learning. Once again, CoNAS have shown

superior accuracy over the other evaluated neural models.

1We presented CoNAS, a committee of NAS-based models, to classify images.

5.1 Acknowledgment 55

The CoNAS subspaces were divided manually, which can bias the final result. It can be

solved by using a random choice of operations that compose each subspace. Besides, it allows

the user to choose the number of spaces as a hyper-parameter. It has been left to future work.

If executed in parallel, the gain in accuracy is evident in almost all tested datasets, however,

sequentially it takes a lot of time, which makes the cost-benefit ratio low.

Moreover, we also intend to extend CoNAS to a broader set of data, including different

modalities, such as text and time series. It may be done by considering other operations in the

search spaces. Finally, we plan to evaluate how the limitation of different functions impacts

creating more (or less) diverse models, improving the committee’s effectiveness.

5.1 Acknowledgment

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de

Nível Superior - Brasil (CAPES) - Finance Code 001. We also thank B2W Digital, a partner

company of this project, which financed and provided computational resources and data to make

possible the study, through the extension activity #23112.000186/2020-97, Federal University

of São Carlos.

REFERENCES

Abouelnaga, Y. et al. Cifar-10: Knn-based ensemble of classifiers. In: 2016 International
Conference on Computational Science and Computational Intelligence (CSCI). [S.l.: s.n.],
2016. p. 1192–1195.

ALBAWI, S.; MOHAMMED, T. A.; AL-ZAWI, S. Understanding of a convolutional neural
network. In: 2017 International Conference on Engineering and Technology (ICET). [S.l.:
s.n.], 2017. p. 1–6.

BAKER, B. et al. Designing neural network architectures using reinforcement learning. CoRR,
abs/1611.02167, 2017.

BERGSTRA, J.; YAMINS, D.; COX, D. D. Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures. In: International Conference
on International Conference on Machine Learning - Volume 28. [S.l.]: JMLR.org, 2013. p.
I–115–I–123.

BROCHU, E.; CORA, V. M.; FREITAS, N. D. A tutorial on Bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement
learning. Oxford, UK, 2009.

CAUCHY, M. A. Méthode générale pour la résolution des systèmes d’équations simultanées.
Übersetzt von Richard Pulskamp, 2010. Compte rendu des séances de l’académie des sciences,
n. 2, p. 536–538, 1847. Available at: <https://cs.uwaterloo.ca/ y328yu/classics/cauchy-
en.pdf>.

Searching for efficient multi-scale architectures for dense image prediction. 8699–8710 p.

Xception: Deep Learning with Depthwise Separable Convolutions. 1800-1807 p. ISSN
1063-6919.

ACM. A unified architecture for natural language processing: Deep neural networks with
multitask learning. 160–167 p.

DENG, J. et al. ImageNet: A Large-Scale Hierarchical Image Database. In: CVPR09. [S.l.:
s.n.], 2009.

DIETTERICH, T. G. Machine-Learning Research. AI Magazine, v. 18, n. 4, p. 97, 1997.

DONG, X.; YANG, Y. Searching for A robust neural architecture in four GPU hours. CoRR,
abs/1910.04465, 2019.

References 57

DOZAT, T. Incorporating Nesterov Momentum into Adam. ICLR Workshop, n. 1, p.
2013–2016, 2016.

DUCHI, J. C.; BARTLETT, P. L.; WAINWRIGHT, M. J. Randomized smoothing for (parallel)
stochastic optimization. Proceedings of the IEEE Conference on Decision and Control, v. 12,
p. 5442–5444, 2012. ISSN 01912216.

ELSKEN, T.; METZEN, J. H.; HUTTER, F. Neural Architecture Search: A Survey. 2019.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. [S.l.]: MIT Press, 2016.
Http://www.deeplearningbook.org.

HE, X.; ZHAO, K.; CHU, X. Automl: A survey of the state-of-the-art. CoRR, abs/1908.00709,
2019. Available at: <http://arxiv.org/abs/1908.00709>.

HINTON, G. et al. Deep neural networks for acoustic modeling in speech recognition. IEEE
Signal processing magazine, v. 29, 2012.

HOWARD, J. imagenette. 2019. Available at: <https://github.com/fastai/imagenette/>.

HUTTER, F.; HOOS, H. H.; LEYTON-BROWN, K. Sequential model-based optimization for
general algorithm configuration. In: SPRINGER. International Conference on Learning and
Intelligent Optimization. [S.l.], 2011. p. 507–523.

HUTTER, F.; HOOS, H. H.; LEYTON-BROWN, K. Sequential model-based optimization for
general algorithm configuration. In: SPRINGER. International Conference on Learning and
Intelligent Optimization. [S.l.], 2011. p. 507–523.

HUTTER, F.; KOTTHOFF, L.; VANSCHOREN, J. (Ed.). Automated Machine Learning:
Methods, Systems, Challenges. 1. ed. [S.l.]: Springer, 2018. ISBN 978-3-030-05318-5.

HUTTER, F.; KOTTHOFF, L.; VANSCHOREN, J. Automatic machine learning: methods,
systems, challenges. [S.l.]: Springer, 2019.

JACOBS, R. A. Increased rates of convergence through learning rate adaptation. Neural
Networks, v. 1, n. 4, p. 295–307, 1988. ISSN 08936080.

JIN, H.; SONG, Q.; HU, X. Auto-keras: An efficient neural architecture search system. arXiv
preprint arXiv:1806.10282, 2018.

KINGMA, D. P.; BA, J. Adam: A Method for Stochastic Optimization. 2014.

KINGMA, D. P.; BA, J. L. Adam: A method for stochastic optimization. 3rd International
Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, p. 1–15,
2015.

KITTLER, J. Combining classifiers: A theoretical framework. Pattern Analysis and
Applications, v. 1, p. 18–27, 2005.

KLEIN, A. et al. Fast Bayesian Optimization of Machine Learning Hyperparameters on Large
Datasets. In: SINGH, A.; ZHU, J. (Ed.). International Conference on Artificial Intelligence
and Statistics. Fort Lauderdale, FL, USA: PMLR, 2017. (Proceedings of Machine Learning
Research, v. 54), p. 528–536.

References 58

KOTTHOFF, L. et al. Auto-weka: Automatic model selection and hyperparameter optimization
in weka. In: HUTTER, F.; KOTTHOFF, L.; VANSCHOREN, J. (Ed.). Automated Machine
Learning: Methods, Systems, Challenges. Cham, Switzerland: Springer International
Publishing, 2019. p. 81–95.

Krishnakumar, H.; Williamson, D. S. A comparison of boosted deep neural networks for voice
activity detection. In: 2019 IEEE Global Conference on Signal and Information Processing
(GlobalSIP). [S.l.: s.n.], 2019. p. 1–5.

KRIZHEVSKY, A. Learning multiple layers of features from tiny images. In: . [S.l.]: Technical
Report TR-2009, University of Toronto, Toronto, 2009.

LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. nature, Nature Publishing Group,
v. 521, n. 7553, p. 436, 2015.

LI, L.; TALWALKAR, A. Random Search and Reproducibility for Neural Architecture Search.
2019.

LIANG, H. et al. Darts+: Improved differentiable architecture search with early stopping.
arXiv preprint arXiv:1909.06035, 2019.

LIU, H. et al. Hierarchical representations for efficient architecture search. 6th International
Conference on Learning Representations, ICLR 2018 - Conference Track Proceedings, p. 1–13,
2018.

LIU, H.; SIMONYAN, K.; YANG, Y. DARTS: differentiable architecture search. CoRR,
abs/1806.09055, 2018. Available at: <http://arxiv.org/abs/1806.09055>.

MARCUS, M. P.; SANTORINI, B.; MARCINKIEWICZ, M. A. Building a large annotated
corpus of english: The penn treebank. Computational Linguistics, v. 19, n. 2, p. 313–330, 1993.

Marino, M.; Virupakshappa, K.; Oruklu, E. A stacked ensemble neural network classifier for
ultrasonic non-destructive evaluation applications. In: 2020 IEEE International Ultrasonics
Symposium (IUS). [S.l.: s.n.], 2020. p. 1–4.

HUTTER, F.; KOTTHOFF, L.; VANSCHOREN, J. (Ed.). Towards Automatically-Tuned
Neural Networks, v. 64 of Proceedings of Machine Learning Research, (Proceedings of
Machine Learning Research, v. 64). New York, New York, USA: PMLR, 2016. 58–65 p.

MILLER, G. F.; TODD, P. M.; HEGDE, S. U. Designing neural networks using genetic
algorithms. In: International Conference on Genetic Algorithms. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1989. p. 379–384. ISBN 1-55860-066-3.

Nagahamulla, H.; Ratnayake, U.; Ratnaweera, A. Optimizing member selection for neural
network ensembles using genetic algorithms. In: 2016 IEEE International Conference on
Information and Automation for Sustainability (ICIAfS). [S.l.: s.n.], 2016. p. 1–5.

NAGARAJAH, T.; PORAVI, G. An extensive checklist for building automl systems. In:
AMIR@ ECIR. [S.l.: s.n.], 2019. p. 56–70.

POLYAK, B. T. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, v. 4, n. 5, p. 1–17, 1964. ISSN
00415553.

References 59

PONTI, M. Combining classifiers: from the creation of ensembles to the decision fusion. In:
IEEE. 2011 24th SIBGRAPI Conference on Graphics, Patterns, and Images Tutorials. [S.l.],
2011. p. 1–10.

REAL, E. et al. Regularized evolution for image classifier architecture search. arXiv preprint
arXiv:1802.01548, 2018.

REAL, E. et al. Aging evolution for image classifier architecture search. In: AAAI 2019. [S.l.:
s.n.], 2019.

Large-scale Evolution of Image Classifiers, (ICML’17). [S.l.]: JMLR.org, 2017. 2902–2911 p.

REN, P. et al. A Comprehensive Survey of Neural Architecture Search: Challenges and
Solutions. 2021.

Rijal, N. et al. Ensemble of deep neural networks for estimating particulate matter from images.
In: 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC). [S.l.:
s.n.], 2018. p. 733–738.

RUDER, S. An overview of gradient descent optimization algorithms. p. 1–14, 2016. Available
at: <http://arxiv.org/abs/1609.04747>.

RUMELHART, D. E.; HINTON, G. E.; WILLIAMS, R. J. Learning Representations
by Back-propagating Errors. Nature, v. 323, n. 6088, p. 533–536, 1986. Available at:
<http://www.nature.com/articles/323533a0>.

Shahriari, B. et al. Taking the human out of the loop: A review of bayesian optimization.
Proceedings of the IEEE, v. 104, n. 1, p. 148–175, Jan 2016.

SHEN, D.; WU, G.; SUK, H.-I. Deep learning in medical image analysis. Annual review of
biomedical engineering, Annual Reviews, v. 19, p. 221–248, 2017.

SUTTON, R. S.; BARTO, A. G. Reinforcement Leaning. [S.l.: s.n.], 2018. 481 p. ISBN
9780262039246.

TAO, S. Deep neural network ensembles. CoRR, abs/1904.05488, 2019.

Wolpert, D. H.; Macready, W. G. No free lunch theorems for optimization. IEEE Transactions
on Evolutionary Computation, v. 1, n. 1, p. 67–82, 1997.

WU, N.; XIE, Y. A Survey of Machine Learning for Computer Architecture and Systems. 2021.

Yang, J. et al. Effective neural network ensemble approach for improving generalization
performance. IEEE Transactions on Neural Networks and Learning Systems, v. 24, n. 6, p.
878–887, 2013.

ZEILER, M. D. ADADELTA: An Adaptive Learning Rate Method. 2012.

ZHANG, Q. et al. A survey on deep learning for big data. Information Fusion, Elsevier, v. 42,
p. 146–157, 2018.

Practical block-wise neural network architecture generation. 2423–2432 p.

References 60

ZHONG, Z. et al. Blockqnn: Efficient block-wise neural network architecture generation.
arXiv preprint arXiv:1808.05584, 2018.

ZOPH, B.; LE, Q. V. Neural architecture search with reinforcement learning. CoRR,
abs/1611.01578, 2016.

ZOPH, B. et al. Learning transferable architectures for scalable image recognition. CoRR,
abs/1707.07012, 2018.

