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Abstract

This project aims to study the foundations of nonlinear dimensionality reduc-

tion through manifold learning with the algorithm known as Isometric Feature

Mapping (ISOMAP) and observe the application of the algorithm in practical

experiments. The experiments were developed and executed in the following com-

putational environment: Intel Core i7-4700MQ CPU 2.40GHz × 8, 16 GB of RAM.

All the artifacts, (e.g., source-code, docs, experiments) can be found in the reposi-

tory https://github.com/lucasdavid/manifold-learning and are licensed un-

der the MIT License.
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Chapter 1

Introduction

Throughout the years, machine learning techniques have grown popular between

both academical and the corporative sectors. Their vast applications and promis-

ing results [6] indubitably contributed to our current scenario where not only com-

puter scientists or mathematicians, but engineers, psychologists and many other

groups have taken interest [7] on how to adapt and apply these studies to their

own problems.

Machine learning can help us to understand large amount of data and take

decisions based on it. To achieve this, however, we must first find ways to effectively

(and efficiently) extract the information that lies within the data.

Many different machine learning algorithms have been developed during this

century and the last one. Among those, many could successfully generalize low

dimensional data [8]. In the other hand, problems of our world are often too

complex and may be represented by high dimensional data. For example, images,

sounds or text documents can be expressed as vectors of the Rn, where each

element corresponds to a pixel, wave signal or term, respectively. When analyzing

these problems, we observed that many of the algorithms would often become

unstable. Dimensionality reduction (or DR) then quickly became a key concept

for minimizing the data size while maintaining its meaning.

Nowdays, dimensionality reduction has evolved into an extensive area. Being

approached by many different perpectives, it can not only be applied to reduce

the data size, specifically, but often employed in data preprocessing, visualization,

noise reduction and many other purposes. Nonetheless, the area still presents

1



questions and great challenges to be solved. For example, it is still difficult to

evaluate a reduction or even define generic metrics for it, as the “correctness” of a

reduction is always associated with the specific problem domain in hand. Another

issue is the difficulty attached to reduce nonlinearly distributed data sets.

In this work, we will focus on Isometric Feature Mapping (ISOMAP), a classic

algorithm for Manifold Learning and highly regarded for nonlinear dimensional-

ity reduction given its effectiveness when it has its pre-conditions met. First, the

relevant background will be presented in order to contextualize the reader and

provide concepts that are closely related to machine learning, dimensionality re-

duction and, of course, the ISOMAP algorithm. We will proceed to study linear

dimensionality reduction, its algorithms, applications and limitations. Following,

ISOMAP will be covered: its concept, computational complexity, extensions and

limitations. Finally, experiments created during the project are presented for both

observation and comparison.
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Chapter 2

Relevant Background

2.1 Data set

In the context of Computer Science, very often our goal is to develop machines

that can assist or automate the process of solving real-world problems. Firstly,

however, we must find ways to express these problems numerically. This is where

“data sets” come in.

Although the recurrent usage of the term “data set” in scientific work, there

is not a clear definition established. It is possible, however, to observe the regular

presence of four related features: grouping, content, relatedness and purpose [9].

For the scope of this work, the term data set is invariably associated with the idea

of a collection of samples. Each sample is a sequence of features, where the i-th

feature of all instances belong to a same set of symbols fi.

Succinctly, let S be a set of samples and F := {fi | fi is a set of symbols}.
Then, the dataset X is defined as:

X := [xij] | xij ∈ fj,∀i ∈ [1, |S|],∀j ∈ [1, |F |]

Example of a canonical data set

The table bellow illustrates an example of data set, where each row represents a

sample, and each column a feature.

3



Sepal length Sepal width Petal length Petal width Species

1 5.1 3.5 1.4 0.2 I. setosa

2 4.9 3.0 1.4 0.2 I. setosa

3 4.7 3.2 1.3 0.2 I. setosa

. . . . . . . . . . . . . . . . . .

Table 2.1: The first three samples of the Iris flower data set [5].

Iris flower is an example of data set broadly used in machine learning demon-

strations, being usually interpreted as a classification problem where the feature

Species will be learned from its adjacent features. In that scenario, Species is

denominated target feature.

2.1.1 Data set as a collection of vectors in the Rn

A data set can have each one of its nominal features enumerated, i.e., mapped to

an element of N. Such set could then be expressed as a collections of vectors in

the Rn. Consider the data set bellow:

Age Gen. TB DB Alk. Sgpt Sgot TP ALB A/G S

1 65 Female 0.7 0.1 187 16 18 6.8 3.3 0.9 1

2 62 Male 10.9 5.5 699 64 100 7.5 3.2 0.74 1

3 62 Male 7.3 4.1 490 60 68 7 3.3 0.89 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2.2: The first three samples of the Indian Liver Patient Dataset (ILPD) [5].

Composed by 583 samples and 11 features, the data set ILPD has a nominal

feature Gender := {Male, Female}. Gender can, of course, be mapped on {0, 1}.
ILPD can finally be expressed by the figure bellow:

4



Figure 2.1: The data set ILPD’s samples mapped onto the Rn, where each of its

features is an axis in one graph, except for S := {1, 2}, which was represented by

the vertices’ colors.

As many graphs required to display the data set, it is quite difficult to identify

a plausible distribution for ILPD. We define here our first encouragement towards

the study of dimensionality reduction: the identification of the most significant

features (i.e., that maximize variance) and plotting of those might result on simpler

and more intuitive representations. Furthermore, it would also be interesting to

combine the existing features to create new ones that are even more representative.

2.1.2 Modern Problems and Applications

Differently from Iris flower or ILPD data set, data sets associated with modern

problems are often very dense, i.e., data sets containing many samples and/or

features. Although the high number of samples is essentially benefic, a high number

of features might be irrelevant or even unconstructive to the learning process [10].

The Leukemia data set, illustrated in the table 2.3, is an example of extremelly

high dimensionality data set, as it is a sub set of the R7130.

5



F1 F2 . . . F7129 F7130

1 -1.46236 -0.645135 ... -0.959575 1

2 -0.664799 0.206146 ... -0.543433 1

3 -0.200487 0.379941 ... -0.896774 1

. . . . . . . . . . . . . . . ...

72 -0.455835 -0.071517 ... -0.068667 1

Table 2.3: The Leukemia data set, with 72 samples and 7130 features [5].

In many cases, there are indicatives that the data set lie near a lower-dimensional

manifold embedded in the Rn [11]; that is, there is a smaller set of features which

roughly express the information within. A second encouragement can then be set:

it is possible that the data set might be shrunk by combining similar (linearly

dependent) features or eliminating the ones that poorly contribute towards the

learning process. In order to do this, one must be able to qualify the “contribu-

tion” of each feature or even identify dependencies between features.

2.2 Probability Theory

2.2.1 Feature Normalization and Standardization

Many of the methods ahead will require the data set to be centered in the origin.

This is equivalent to remove the mean from each one of the data set’s features.

Let [X]n×f be a data set, X.j the j-th column of the matrix X, µj the mean of

X.j and 1n the column vector of 1’s, we build a normalized data set X′ s.t. each

column has zero mean:

X′.j = X.j − µj1n

If σj is the standard deviation of X.j, it is also possible to build the standard-

ized X ′, where each column has zero mean and it is contracted by its standard

deviation:

X ′.j =
X.j − µj1n

σj

6



2.2.2 Centering Matrix

The symmetric matrix H is named the centering matrix when the multiplication

of it by a matrix X produces the same effect of subtracting the mean of the

components from each component of X. H is defined as:

H = In −
1

n
11>, where:

1. In is the identity matrix of order n.

2. 1 is the column vector of 1’s.

2.2.3 Variance

Variance is the measure which describes how far the samples in a given set X

vary. For the scope of this project, only discrete probabilities will be considered.

That is, if X represents a random variable with known distribution P (x), where

P (x) = k ∈ R+,∀x ∈ X and
∑

x∈X P (x) = 1, µ is the population mean of X and

1n is the column vector of 1’s, then, for n samples of X [12]:

V ar(X) =
1

n
(X − µ1n) · (X − µ1n) =

1

n

∑
x∈X

(x− µ)2

Example 2.2.1. If X = {1, 2,−2, 4} and µ = 1
n

∑
x∈X x = 1+2−2+4

4
= 1.25, then

var(X) =
1

n

∑
x∈X

(x− µ)2

=
(1− 1.25)2 + (2− 1.25)2 + (−2− 1.25)2 + (4− 1.25)2

4

= 4.6875

Example 2.2.2. The variance of the Sepal length feature X.0 in the Iris flower

data set can be calculated as:

var(X) =
1

150

∑
i

(xi,0 − µ)2

=
1

150
[(5.1− 5.84)2 + (4.9− 5.84)2 + · · ·+ (5.9− 5.84)2]

=
102.17

150
= .681122
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Let [X]n×f be a data set, µj the mean of the j-th column of X and 1n the

column vector of 1’s. If var(X.j) = 0,∀j ∈ [0, f), then all samples in X are the

same.

Proof.

V ar(X.j) = 0

1

n
(X.j − µj1n) · (X.j − µj1n) = 0

X.j − µj1n = 0

⇐⇒
X.j = µj1n

All elements in µj1n are the same. Therefore Xij = µj,∀i ∈ [0, n).

2.2.4 Covariance

The covariance measures the variance of two random variables in respect to each

other. Formally, if X and Y are two given random variables with known mean

population distribution µX and µY , respectively, then

σ(X, Y ) =
1

n
(X − µX) · (Y − µY )

Simply putting, the covariance of two random variables X and Y can be inter-

preted as one of the following behaviors:

� σ(X, Y ) > 0 X tends to increase as Y increases.

� σ(X, Y ) < 0 X tends to increase as Y decreases.

� σ(X, Y ) = 0 X and Y are completely unrelated.

Remark 2.2.1. For a random variable X, V ar(X) = σ(X,X).

Covariance Matrix of Features in a Centered Data Set

Let X be a data set, X′ the data set X with its features centered (X′ = HX), and

X′.j the j-th feature column of the centered data set X′, the covariance between

8



each pair of features can be represented by the matrix:

ΣX = [σxy]n×n

=


σ(X′.0,X

′
.0) σ(X′.0,X

′
.1) · · · σ(X′.0,X

′
.n−1)

σ(X′.1,X
′
.0) σ(X′.1,X

′
.1) σ(X′.1,X

′
.n−1)

...
...

σ(X′.n−1,X
′
.0) σ(X′.n−1,X

′
.1) · · · σ(X′.n−1,D.n−1)


=

1

n
(X′)>X′

=
1

n
(HX)>HX

=
1

n
X>H>HX

=
1

n
X>HX

2.3 Numerical Analysis

2.3.1 Eigenvalues and Eigenvectors of a Matrix

Given a matrix A 6= 0 ∈ R2n, a vector v ∈ Rn is said to be an eigenvector of A

if the multiplication Av does not change the direction of v; that is:

∃λ ∈ R | Av = λv, where

λ is the eigenvalue associated to the eigenvector v.

2.3.2 Spectral Decomposition of a Matrix

If [A]n×n is a symmetric matrix of rank n and admits n pairs of eigenvalues λ =

diag(λ0, λ1, ...λn−1) and eigenvectors [V]n×n = [v0,v1,v2, ...,vn−1], such that V is

an orthogonal matrix (i.e., V>V = In), then

AV = Vλ

λ is a diagonal matrix, where λii is the eigenvalue associated to the eigenvec-

tor vi [13]. Furthermore, the columns of V are linear independent, hence V is

9



invertible.

AV = Vλ

AVV> = VλV>

A = VλV>

2.3.3 Singular Value Decomposition

Let [A]n×n be a matrix, then ∃U ∈ Rm×m,V ∈ Rn×n and Σ = diag(σ0, . . . , σn−1)

conditioned to σi ≥ σi+1 ≥ 0,∀σ ∈ [0, n) s.t. [14]

M = UΣV>

Decomposition of Symmetric Matrices

If A = UΣV>, AA> = UΣ2U and A>A = VΣ2V.

Proof.

A>A = (UΣV>)>(UΣV>)

= VΣ>U>UΣV>

= VΣΣV>

= VΣ2V>

Proving AA> = UΣ2U> is analogous to the above.

2.4 Topology

2.4.1 Manifolds

Intuitively, n-dimensional topological manifolds are sets that are “locally Eu-

clidean” [15]. In other words, they can be decomposed into sub sets that can

be mapped to the Rn.

Formally, a set M is said to be a n-dimensional topological manifold

⇐⇒ M is a paracompact Hausdorff topological space | ∀p ∈ M, p ∈ Up, where

10



Up is an open set that is homeomorphic to an open set Vp of the Euclidean space

Rn [15].

Figure 2.2: The Torus, often studied in topology, it is a manifold that can be

mapped to the R2 1.

From now on in this report, we will use the word manifold to refer to a n-

dimensional topological manifold.

Charts

The pair (Ui, φi) is called a coordinate chart or chart on M if U ∈M and φi is

a homeomorphism such that φi(Ui) = Vi ⊆ Rn [16].

Figure 2.3: Charts mapping four regions of a circle to different open sets 2.

Atlas

A set A = {(Ui, φi)}i∈A is said to be an atlas on a manifold M if ∪i∈AUi = M [16].

Example 2.4.1. The Rn is, directly, a manifold.

1From “Torus,” by E. W. Weisstein, MathWorld–A Wolfram Web Resource. Available at:

mathworld.wolfram.com/Torus.html.
2From “Manifold,” Wikipedia - The Free Encyclopedia. Available at:

wikipedia.org/wiki/Manifold.
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Example 2.4.2. A n-dimensional sphere is a manifold. Earth, in special, is a

3-dimensional sphere and its stereographic projection (figure 2.4) is its mapping to

the R2 [1].

Figure 2.4: Stereographic projection applied to Earth [1].

2.4.2 Embedding

When talking about the relationship between two topological objects, such as two

spaces, manifolds or graphs (section 2.5); it is interesting to imagine a mapping

from one object to the other that somehow preserves its original properties.

Let A and B be two topological objects of the same type, a function φ : A→ B

is an embedding of A into B if φ is an isomorphism which preserves the original

properties of A [17], where such properties are relative to the type of the objects

at hand. Shortly, A is said to be embedded in B.

Example 2.4.3 (Embedding of Spaces). Consider the vector spaces Rp and Rq, p ≤
q, p > 0 and the isomorphism t : Rq → Rt | t(x) = [x|0̄] = y, where y is the vector

x concatenated with p− q zeros. Rp is embedded on Rq, as the operations sum and

scalar multiplication are preserved.

Example 2.4.4 (Embedding of Manifolds). Let A and B be two manifolds. A is

embedded in B if the open sets in A are preserved in B.

12



2.5 Graph Theory

2.5.1 Graphs

Let G be the pair (V,E). G is defined as a graph [18], where

1. V is a set of objects called vertices.

2. E is a family of elements ei ∈ V × V called arcs.

Figure 2.5: An example of a graph 3.

Basic Concepts [18]

Multiplicity If G = (V,E) and (x, y) ∈ E ⊂ V × V , the multiplicity m+
g (x, y)

is defined to be the number of arcs with initial endpoint x and terminal

endpoint y. Furthermore:

1. m−G(x, y) = m+
G(y, x)

2. mG(x, y) = m+
G(x, y) +m−G(x, y)

Degree If G = (V,E) is a graph and v ∈ V , the degree d(v) of v is defined as

d(v) = 2ns + nn, where ns is the number of arcs self-incident at v [19] (i.e.,

arc with v as initial endpoint and terminal endpoint) and nn is the number

of arcs incident at v.

Adjacency Matrix If V = {v1, v2, . . . , vn} and G = (V,E), define the adjacency

matrix A = [aij]n×n associated with graph G, where aij = m+
G(vi, vj).

3From “OR-Notes,” by J. E. Beasley. Available at: brunel.ac.uk/ mastjjb/jeb/or/graph.html.
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Further Specifications

Undirected graph Let G = (V,E) be a graph and ek ∈ E | ek = (a, b) ∈ E.

The element ei = [a, b] can be defined as the edge that links a to b without

specifying direction. Finally, define the undirected graph G′ as (V,E ′),

where E ′ = {ei} is the set of edges created from E [18].

Figure 2.6 shows the graph Les Miserables, where each vertex is a character

and each arc links two characters that have shared stage at some point during

the play. The size of each vertex is a result of its own multiplicity.

Figure 2.6: The Les Miserables graph 4.

Complete graph A graph G = (V,E) is said to be complete if

∀(x, y) ∈ E, x 6= y,mG(x, y) ≥ 1

Remark 2.5.1. Let G = (V,E). G is called the complete graph Kn if E =

V × V . That is,

∀(x, y) ∈ V × V, ∃e ∈ E | e = (x, y)

Weighted graph Let G = (V,E) be a graph and w : E → R | w(e) = we be the

weight associated with arc e. G is said to be a weighted graph.

4From “Graph Theory,” by L. David, 2012. Available at: comp-ufscar.github.io/graph-theory.
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Euclidean graph If G = (V,E) and W = {we, ∀e ∈ E} ⊂ R, G is said to be

an Euclidean graph if we corresponds to the euclidean distance between the

vertices connected by e in a given vector space.

Tree Let G be the graph (V,E) such that G is connected and admits no cycles.

G is said to be a tree [18].

Figure 2.7: A tree extracted (a subgraph) from the Les Miserables graph 5.

5From “Graph Theory,” by L. David, 2012. Available at: comp-ufscar.github.io/graph-theory.
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2.5.2 Related Problems

Nearest-Neighbor Search

Let G = (V,E) be a weighted graph, where w : E → R is the weight or length

of the arc e, and n : E → {0, 1} is a definition of nearness in G. The nearest-

neighbor search is a optimization problem that consists of finding a subgraph

G′ = (V, F ⊆ E) | f ∈ F ⇐⇒ n(f) = 1. In other words, to find a subgraph

where each arc connects two vertices if and only if these vertices are “close”.

K-Nearest-Neighbor Search (K-NN)

Consider k ∈ N. K-NN will result in a subgraph G′ s.t. each vertex v is connected

at most to k other vertices and the sum of weights of the arcs incident on v is

minimum:

1 def nearest_neighbors(V, E, w, k):

2 neighbors = set()

3 for v in V:

4 vs = V - {v}

5 # Sort vertices by their how close they are to v.

6 vs = sort(vs, keys=[w((v, u)) for u in vs])

7 # Keep only k-first vertices.

8 vs = vs[0:k]

9 neighbors.add(vs)

10 return V, neighbors

Listing 1: K-Nearest Neighbors Algorithm.

ε-Nearest Neighbor Search (ε-NN)

Fixed ε ∈ R, ε-NN will find the subgraph G′ = (V,E ′) s.t. each arc in E ′ has

associated weight w(e) ≤ ε:
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1 def nearest_neighbors(V, E, w, epsilon):

2 neighbors = set()

3 for v in V:

4 vs = {u for u in V - {v} if w(v, u) > epsilon}

5 neighbors.add(vs)

6 return V, neighbors

Listing 2: ε-Nearest Neighbors Search Algorithm.

Example 2.5.1. If k = 1 and ε = 60, the graph G, the sub-graph G′ found

from K-Nearest neighbor algorithm and the sub-graph G′′ found from the ε-Nearest

neighbor are defined as follows:

(a) G (b) G′ (c) G′′

Figure 2.8: The original graph G and the results of K-NN and ε-NN, respectively.
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Single-pair Shortest-path Problem [20]

Let G = (V,E) be a weighted graph, w : E → R and w(e) the weight associated

with the arc e. Furthermore, consider the paths in Px→y = {(x, v1, v2, . . . , y) | vi ∈
V, ∀i ∈ (0, n)} and their weights, defined as w(p) =

∑n−1
0 w(pi, pi+1).

Under the conditions above, a path p ∈ P is said the shortest-path between x

and y ⇐⇒ w(p) ≤ w(q),∀q ∈ P . Additionally, the shortest-path weight between

two vertices x and y is defined as:

σ(x, y) =

min{w(p(x, y))}, if p(x, y) exists,

∞, otherwise.

The shortest-path between a vertex x0 ∈ X and all other vertices can be

expressed by the tree S = (V, F ), F ⊆ E named shortest-path tree.

Dijkstra’s Algorithm

Let G = (V,E) be a directed weighted graph and v0 ∈ V the initial vertex,

the shortest-path from v0 to all other vertices can be found through Dijkstra’s

algorithm:

1 def dijkstra(V, E, w):

2 predecessor = {v: None for v in V}

3 d = {v: infinity for v in V}

4 S = {}

5 Q = priority_queue(V, d)

6

7 while len(Q) > 0:

8 u = Q.pop_min()

9 for v in V:

10 if d[v] > d[u] + w(u, v):

11 d[v] = d[u] + w(u, v)

12 predecessor[v] = u

13 return (predecessor, d)

Listing 3: Dijkstra’s algorithm [20].
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Remark 2.5.2. Dijkstra’s algorithm is based on two strategies: greedy, when ex-

tracting the vertex u such that d(u) is minimum, and dynamic programming, during

edge relaxation (comparison and update of the d(v) and predecessor(v) values).

Example 2.5.2. Let G be the weighted graph as defined in figure 2.9a. The

shortest-path between A and all other vertices is described by the tree S illustrated

in figure 2.9b.

(a) The weighted graph G. (b) The shortest-path tree S.

All-pairs Shortest-path Problem

Similarly from the previous problem, all-pairs shortest-path is also a search prob-

lem that aims to find the predecessors of each vertex vi ∈ V . The difference is that

there is no constraint regarding the initial vertex, i.e., one is interested in finding

the shortest routes from every vertex to every other vertex in the graph.

Clearly, all-pairs shortest-path can be solved by executing the Dijkstra’s Algo-

rithm |V | times, using every vi ∈ V as initial vertex.

Floyd-Warshall Algorithm

Another solution for the all-pairs shortest-path problem is Floyd-Warshall algo-

rithm, which is entirely based on dynamic programming:
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1 def floyd_warshall(V, E, w):

2 d = {}

3 for v in V:

4 for u in V - {v}:

5 d[v, u] = w[v, u]

6

7 predecessor[v, u] = None

8

9 for k in V:

10 for v in V:

11 for u in V:

12 if d[u, v] > d[u, k] + d[k, v]:

13 d[u, v] = d[u, k] + d[k, v]

14 predecessor[u, v] = k

15 return predecessors, d

Listing 4: Floyd-Warshall Algorithm [21].

Now, matrix d contains the weights sum for the paths between all vertices of

the graph. These paths can be constructed by:

1 def path(i, j, predecessor):

2 if predecessor[i, j] == None:

3 return [i, j]

4 l = path(i, predecessor[i, j])

5 r = path(predecessor[i, j], j)

6 return l.append(r)

Listing 5: Algorithm for path reconstruction from list of predecessors [21].
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2.6 Machine Learning

Learning it is Improvement of an agent’s performance over a specific environment

through acquisition of experience [22]. Machine learning relates to the area in

Computer Science which aims to extend the human learning concept to machines.

That is, the implementation of machines that can imitate human learning [23].

Practically, this usually translates into creating machines that are able to recognize

patterns in an environment and interpret those using concepts related to artificial

intelligence. Such interpretation can create a model which might eventually be

used to predict new patterns, take actions and/or solve domain problems.

Based on how the learning phase of a problem is, ML algorithms are mostly

divided into one of the following categories:

Supervised A direct feedback is presented during the learning phase [22]. For the

instances where the ME problem relies on a data set, the learning task uses

the labeled training samples (i.e., samples that present the target feature)

to synthesize the model that attempts to generalize the relationship between

the feature vectors and the target variable [24].

Unsupervised Infer hidden structures from the data set without direct feedback,

such as known labels for the samples [24].

Semi-supervised Most commonly, it is given by the extension of either super-

vised or unsupervised learning to include the other paradigm, resulting in a

combination of both [25].

Reinforcement Through iterative exploration, the learner is positively or nega-

tively reinforced for its actions. The learner’s goal is, ultimately, maximize

the cumulative reward gained [24].

Regarding the nature of what is being learned, ML algorithms can be separated

between:

Classification Each sample x of the data set X is associated with a label yx ∈ Y,

regardless if this label is known or unknown. Moreover |Y| < ∞. The ML

algorithm goal is to create a model which can infer a label to a given sample.
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Regression Samples of the data set X follow a regression function f . The goal

is to learn such function. A reasonable manner to think of it is to imagine

the samples of X being associated with continuous labels [26].

ML algorithms often represent the end-point of the learning process, receiving

the result of reduction algorithms as input and learning from them instead of the

raw data. In this section, we will study a small set of supervised ML algorithms.

Later, we will use them to simulate how the reductions produced by ISOMAP are

interpreted by “real-world” ML algorithms.

2.6.1 K-Nearest Neighbors

One might consider using the concepts of locality and proximity to perform classi-

fication or regression. K-Nearest Neighbors (K-NN) can be employed here, being

possibly one of the most straight forward methods for prediction [27].

K-NN Classifier

Let X be a data set, Y the array of labels possibly assumed by samples in X, s

a unlabeled sample and k ≥ 1 a fixed integer. The K-NN classifier will determine

s’s class based on the most common class shared between s’s closest neighbors: if

Xs ⊂ X is the set of neighbors of s, consider EXs [i] the probability of a sample in

Xs being associated to the label i. Then,

y(s) = arg max
i∈Y

EXs [i]

K-NN Regressor

Let X be a data set, Y the array of instants of the regression function, s a unlabeled

sample and k ≥ 1 a fixed integer. The K-NN regressor attempts to generalize the

regression function by averaging the instants in Y associated with s’s nearest

neighbors [26], given by Nk(s):

y(s) =
1

k

∑
x∈Nk(s)

yx

In order to increase the accuracy in both classification and regression, the

importance of the label/instant associated to each neighbor can be weighted by
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the distance d between it and s, where d is defined based on the context of the

problem (although the Euclidean distance is broadly employed [27]).

2.6.2 Support Vector Machine

Contained in the supervised learning category, Support Vector Machine (SVM) is

a powerful tool, often used in classification and regression problems.

Intuitively, the SVM classifier attempts to find a hyperplane that separates

the samples in a data set into two different groups: positives and negatives (i.e.,

binary classification). Furthermore, the hyperplane is placed such that the distance

between the support vectors (the closest samples) and it are maximized.

Figure 2.10: A SVM classifier projecting a hyperplane that perfectly separates

two classes of samples [2]

.

More elaborately, given any linearly separable data set X containing samples

from two distinguished classes {−1,+1}, consider the vector w and the hyperplane

d = {x | w · x + b = 0} (represented in fig. 2.10 by the contiguous line). The class
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yi = y(xi) to which a given sample xi belongs can be defined as:

y(xi) =

+1, if w · xi + b > 0

−1, otherwise.

To prevent samples from falling into the margin or being misclassified [28],

reinforce that for any positive sample x+, w ·x+ +b ≥ 1. Similarly for x− samples,

w · x− + b ≤ 1. These both constraints can be expressed as

yi(w · xi + b)− 1 ≥ 0 (2.1)

Notice that yi(w · xi + b)− 1 = 0 ⇐⇒ xi is a support vector.

The width (the distance between the two margins) of the street is the vector

(x0
+− x0

−) projected onto the vector w, where x0
+ is a positive support vector and

x0
− is a negative one.

width = (x0
+ − x0

−) · w

‖w‖

=
x0

+ ·w − x0
− ·w

‖w‖

=
1− b− (−1− b)

‖w‖
=

2

‖w‖

(2.2)

As the goal is to maximize the width, while still respecting the constraint (2.1).

maxwidth = max
2

‖w‖
≡ min

1

2
‖w‖2 (2.3)

Which can be solved using standard quadratic programming.

SVM for non-separable data sets (soft margins)

To deal with non-separable data sets, it is possible to introduce the variables ξi to

the optimizing equation (2.3) and to the decision rule (2.1) [28]. This represents a

trade-off between maximum margin/distance of the misclassified samples from the

decision boundary. The optimizing equation and the decision rule are updated to:

min
1

2
‖w‖2 + C

m∑
1

ξi, constrained to:

yi(w · xi + b) ≥ 1− ξi, ξi ≥ 0
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Such trade-off can be adjusted through the parameter C. Notice that small

values for C might result in misclassification, whereas high values can produce

overfitting.

Dependency over the dot product

Equation 2.3 does not explicitly illustrates how the model generated depends on

the dot product between the training samples. The implications of such fact will

be discussed in the next section. For now, let us convert 2.3 to its dual form. By

the Lagrange multipliers method [29]:

L =
1

2
‖w‖2 −

∑
αi[yi(w · xi + b)− 1] (2.4)

∂L

∂w
= w −

∑
αiyixi = 0 =⇒ w =

∑
αiyixi (2.5)

∂L

∂b
= −

∑
αiyi = 0 =⇒

∑
αiyi = 0 (2.6)

Applying (2.5) and (2.6) on (2.4), our problem of minimizing (2.3) constrained

by (2.1) becomes maximizing L, subject to (2.6):

L =
1

2

∑
αiyixi ·

∑
αjyjxj −

∑
αiyixi ·

∑
αjyjxj −

∑
αiyib+

∑
αi

=
∑

αi −
1

2

∑∑
αiαjyiyj(xi · xj)

w and b can easily be found from (2.5) and αi[yi(w · xi + b)− 1] = 0 (for any

i | αi 6= 0), respectively.

Now, as we finally plug (2.5) back into our decision rule, it becomes clear that

both training and prediction phases depend only on the dot product between the

sample vectors [29]:

y(xk) =

+1, if
∑
αiyixi · xk + b ≥ 0

−1, otherwise.

Kernel functions

”The kernel function represent the dot product of both vectors projected onto the

new space”. [29]
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Some data sets are not linearly separable, as previously mentioned . They can,

however, be projected to a different vector space, where they hopefully will be.

To achieve this, a transformation φ is applied on both vectors. The dot product

between those is then calculated in the new space and the value is used during

training and prediction:

L =
∑

αi −
1

2

∑∑
αiαjyiyjφ(xi) · φ(xj)

Remark 2.6.1. Practically, Let k : (Rn,Rn)→ R | k(u,v) = φ(u) · φ(v), then:

L =
∑

αi −
1

2

∑∑
αiαjyiyjk(u,v)

y(xk) =

+1, if
∑
αiyik(xi,xk) + b ≥ 0

−1, otherwise.

Which entails, given a known function k, there is no need to explicitly know

which are the projections of u and v onto the new vector space. This is commonly

known as the kernel trick.

The first set of axis {x} in the figure bellow illustrates the non-linearly separable

distribution of positive and negative samples in the R. The second basis {x, y =

x2} represents the same samples being projected to the R2.

Figure 2.11: Projection of samples from the R to the R2, allowing SVM to find a

hyperplane that perfectly separates both classes [3].

Many different kernels exist. Two which are frequently used among all of

them [3] are:

� RBF: exp(−‖x−x
′‖2

2σ2 )

� Polynomial: (u>v + c)d.
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Multi-class Classification

SVMs are constructed over the concept of binary separation, but not all problems

are binary. In classification, this reflects data sets that have their samples separated

into more than two classes. The Iris flower data set is an example of this, when

predicting the samples’ species.

There are many different approaches for multi-class classification [30]. For the

scope of this work, consider only the following:

One-vs-All (OVA) n binary classifiers are built, where n is also the number of

classes in the data set. For the classifier cj, j ∈ [1, n], all samples of the

jth class are taken as positive samples, at the same time that all the other

samples are considered negative.

If cj(x), the j-th classification of sample x, is defined as:

cj(x) =
m∑
i=1

αjiyix · xi + b

Then positive values for cj(x) indicate that the sample x belongs to the jth

class. Additionally, greater cj(x) values imply on further distance from the

hyperplane (i.e., cj(x) can also be interpreted as a confidence value) and

the sample x should be assigned to the class which holds greatest confidence

[31]. Shortly, classification is given by

y(x) = arg max
j

cj(x)

All-vs-All (AVA) Also known as all-pairs or one-vs-one, a classifier cij is built

for each pair of classes (i, j), resulting in a total of n(n − 1) classifiers. cij

responds with positive values for samples of the i-th class and negative values

for samples of the j-th class. Classification can be done by simply counting

the class most frequently associated with x:

y(x) = arg max
i

n∑
j=1

cij(x)

Or equivalently, but only using n(n−1)
2

classifiers,

y(x) = arg max
i

n∑
j=1

j − i
|j − i|

cmin(i,j) max(i,j)(x)
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2.6.3 Evaluating Supervised Learners

Machine Learning algorithms might be susceptible to data noise, incorrect con-

figuration or even random factors, which would eventually decrease the generated

model’s accuracy. Additionally, there is also the change of overfitting, the event

where a learner performs sufficiently well over the learned data, but fails to make

correct predictions over yet-unseen data. In order to evaluate this accuracy, models

are quite often tested after trained.

Considering that testing with the same data used for training will most likely

produce unreliable results, a simple way to test a learner is to separate the labeled

data set into two chunks, where the first is used for training. The second chunk is

then be given to the learner, which attempts to predict the samples. Finally, the

predictions made by the learner would be compared with the actual labels.

Confusion Matrix and Prediction Accuracy When Classifying

To evaluate classification models, one way to visualize the incorrect predictions

made by the learner is a confusion matrix, where the item aij is the number of

times that a sample of the class i was classified as being of the class j.

a b c d

a 12 3 2 0

b 7 12 2 4

c 0 4 54 8

d 6 0 1 23

Table 2.4: Example of confusion matrix for a data-set with four different classes.

We define the prediction accuracy of a ML model as the number of correct

predictions divided by the total number of predictions made:

accuracy =

∑
i cii∑

i

∑
j cij

Where C is a confusion matrix.

Naturally, a diagonal matrix C represents that all samples were correctly clas-

sified, being the best possible outcome (no errors).
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Prediction Accuracy When Regressing

The coefficient of determination, which can be interpreted as how much data vari-

ance is explained by a prediction model, can easily be used to evaluate regression

models.

Let X be a data set, yi an observation of the regression function associated

with the sample x ∈ X, ypi the actual value predicted by the regression model and

ȳ the average of all observations, then:

R2 = 1−
∑

i(y
p
i − yi)2∑

i(y
p
i − ȳ)2

Cross Validation

When the estimator at hand accepts different settings (“hyperparameters”), such

as k in K-NN or C in the SVM, there is still a change of overfitting on the testing

set, as these parameters can always be tweaked for optimal performance. In order

to avoid this, a third chuck, called validation set, can be divided from the original

data set and used to “validate” the learner current settings.

Sometimes, partitioning the data set into three subsets might be malign to the

learning process, as the model will be constructed only considering a small, random

portion of the samples (when the data set does not have too many samples, for

instance). This event is known as underfitting. Fortunately, cross validation can

be used to deal with such cases. When k-fold cross-validating [32], the data set

can be partitioned into k folds. For each fold ki, a model is trained with all folds,

except for ki. The model is then tested over ki. Finally, the score reported by the

cross-validation method is the average accuracy when testing over all folds.

Grid Search

As a learner hyperparameters strongly affect how the generated model will per-

form, one cannot choose them arbitrarily. Furthermore, when learners have a high

number of hyperparameters, it becomes difficult to manually define a “good” set-

ting for them. For example, SVM requires C and which kernel - and the kernel’s

own parameters, of course - it should use.

Grid Search is a traditional method used to find the learner’s hyperparame-

ters that maximize accuracy optimize the generalization of learning model over
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a specific data set [33]. Given a set of possible parameters, it will exhaustively

search for the combination of those that generate the best outcome, which might

be evaluated by a validation method such as cross-validation.

2.6.4 Examples of Learning

Coffee Selling Rate

The figure bellow illustrates the distribution of coffee sales per time of the day in

a particular coffee-shop [4]. Clearly being a regression problem, a machine learn-

ing algorithm must create a model that appropriately generalizes the distribution

observed. Such model will eventually be used to predict the selling rate in the

following days.

Figure 2.12: graphic representation of a data set generalization by a linear

(orange) and a nonlinear model (green) [4].

The orange line and the green arc represent two different models. The orange

line, which represents the linear model, clearly does not generalize the data set ap-

propriately, once it induces an error much larger than necessary [4]. The nonlinear

model, i.e., the green arc, was capable of generalize the data inducing a smaller

error.

Iris Flower

Consider the Iris flower data set as defined in 2.1. In order to predict the feature

Species of a given sample, one could train a Support Vector Machine classifier.
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Through GridSearch, it was found that the SVM algorithm with C = 100,

gamma = .01 and rbf kernel is capable of finding a model yielding .99% accuracy.

The samples misclassified during the test phase were represented by the confusion

matrix bellow.

Figure 2.13: Confusion matrix of a SVM with C = 100, gamma = .01 and rbf

kernel when predicting samples from the Iris flower data set.

31



Chapter 3

Linear Dimensionality Reduction

As presented in the previous sections, data sets with many features may present

a series of issues: difficult visualization, high performance requirements, noise etc.

In this section, it will be discussed methods related with linear dimensionality

reduction, i.e., the shrinking of data sets by transformation and/or removal of

features, while minimizing information loss.

Consider the synthetic data set K. K has its samples expressed by two similarly

scaled dimensions. It is clear, however, that the samples follow a very particular

distribution:

Figure 3.1: The data set K ∈ Rn × Rn.
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Additionally, something interesting can be observed when analyzing the covari-

ance matrix of K: as it is not a diagonal matrix, the variance of x from its mean

somehow correlates with the variance of y [34].

x y

x 1.26682132 1.29158697

y 1.29158697 1.40358478

Table 3.1: Covariance between the components of K.

3.1 Principal Component Analysis

As in K, some data sets follow certain distributions that are majorly contained in

a few orthogonal components, where a component is the result of a linear combi-

nation of the original features.

Principal Component Analysis (PCA) is a statistical technique that attempts

to transform a n-dimensional data set X into a m-dimensional data set Y, where,

hopefully, m� n. Furthermore, the dimensions of Y will necessarily be orthogonal

components aligned with the direction in which the variance of samples in X is

maximum, commonly referred to as principal components [35]. In figure 3.2,

the orange and purple arrows are the principal components of the data set K.

Figure 3.2: The principal components of K (orange and purple arrows).

33



For a detailed experiment of reduction, learning and evaluation over the data

set K, see section 5.1.

3.1.1 Study of the PCA Algorithm

Let D be a dataset with n samples and f features and X = HD, where H is the

centering matrix. Our goal is to find which are the principal components of the

covariance matrix ΣX :

ΣX =
1

n
X>X (3.1)

Using the Singular Value Decomposition method described in section 2.3.3,

we known that

X = UΣV> (3.2)

Needless to say, Σ is the diagonal matrix of singular values, not to be mistaken

by the covariance matrix ΣX .

From 3.1 and 3.2:

ΣX =
1

n
X>X

=
1

n
(UΣV>)>UΣV>

=
1

n
VΣ2V>

Which entails that V is the orthonormal matrix with ΣX ’s eigenvectors as

columns, where Σ contains the correspondent eigenvalues σ2
i associated with vi ∈

V in its diagonal. Now notice that the principal components also spawn K it K

is centered on the origin. Under these conditions, σivi surely matches the i-th

principal component. As we are interested in the dimensions that give most vari-

ance, we keep only the m ∈ R most significant eigenvalues and their correspondent

eigenvectors.

Finally, it also worth remarking once again that the principal components are

linear combinations of the original features (the canonical base) and V is the

change-of-basis matrix from the generated base to the canonical. Naturally, V−1

is a change-of-basis matrix from the original space to the one that is generated by
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the principal components. Formally, if x is a sample (row vector) from the X data

set, its project y is defined as:

Vy> = x>

y> = V−1x>

In the other hand, V is orthogonal, hence V−1 exists and it is equal to V>:

y> = V>x>

y = (V>x>)>

= xV

3.1.2 Formalization of the PCA Algorithm

Let D be a data set with n samples and f features and m ∈ R the number of

dimensions desired for the reduced data set [36,37].

1. Find X = HD, where H is the centering matrix.

2. Calculate the covariance matrix ΣX .

3. Use singular value decomposition to find the eigenvalues Σ = {σi} and eigen-

vectors V = {vi} of ΣX .

4. Sort the eigenvalues by their absolute value in descending order and select

the first m ones and their respective eigenvectors.

3.2 Multidimensional Scaling

Alternatively to PCA, Multidimensional Scaling (or simply MDS) can be used to

reduce the dimensionality of a data set. The method has, however, an extensive

application domain and often appears in the literature in different contexts. An

example of this is the problem of, given a set of objects O and a dissimilarity

measurement δrs, ∀(r, s) ∈ O × O, finding a suitable representation in the Rn for

the objects in O [13].

For this project, we study the classic MDS. That is, when the dissimilarities

considered are the Euclidean distances between coordinates in the Rn, equivalating

the method to PCA.
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3.2.1 Study of the MDS

Let ∆ = [δrs]n×n be the dissimilarity matrix, where δrs represents the Euclidean

distances between two samples xr,xs ∈ Rm from the data set [X]n×m induced by

the L2-norm. In other words,

δrs =

√∑
i

(xri − xsi)2

⇐⇒

δ2
rs =

∑
i

(xri − xsi)2

= (xr − xs) · (xr − xs)

= xr · xr + xs · xs − 2xr · xs

(3.3)

Now consider the matrix B = XX>, where brs = x.r ·x.s. B can be decomposed

as UΣU> = UΣ
1
2 Σ

1
2 U> = UΣ

1
2 (UΣ

1
2 )> = XX> ⇐⇒ X = UΣ

1
2 . If B can

be derived from 3.3, the problem is reduced to simply decompose B and using its

eigenvalues and eigenvectors (similarly to what was done in PCA) to construct the

data set Y [13].

Firstly, we will assume that Y is centered in the origin (i.e., Y has its features’

means equal to zero):

σf =
∑
i

yif = 0,∀f ∈ [0,m) (3.4)
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Now, 3.3 =⇒

1

n

∑
r

δ2
rs =

1

n

∑
r

(xr · xr + xs · xs − 2xr · xs)

=
1

n

∑
r

xr · xr +
∑
r

xs · xs − 2
∑
r

xr · xs

=
1

n

∑
r

xr · xr +
∑
r

xs · xs − 2(
∑
r

xr) · xs

=
1

n

∑
r

xr · xr + nxs · xs − 2(0) · xs

=
1

n

∑
r

xr · xr + xs · xs

⇐⇒

xs · xs =
1

n
(
∑
r

δ2
rs −

∑
r

xr · xr)

(3.5)

Similarly, to 3.5:

xr · xr =
1

n
(
∑
s

δ2
rs −

∑
s

xs · xs) (3.6)

Putting 3.5 and 3.6 back in 3.3:

δ2
rs =

1

n
(
∑
s

δ2
rs −

∑
s

xs · xs +
∑
r

δ2
rs −

∑
r

xr · xr)− 2xr · xs

=⇒

xr · xs = −1

2
(δ2
rs −

1

n
[
∑
s

δ2
rs −

∑
s

xs · xs +
∑
r

δ2
rs −

∑
r

xr · xr])

= −1

2
(δ2
rs −

1

n
[
∑
s

δ2
rs +

∑
r

δ2
rs − 2

∑
r

xr · xr])

(3.7)
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To eliminate the xr · xr term from 3.7:

1

n2

∑
s

∑
r

δ2
rs =

1

n2

∑
s

∑
r

(xr · xr + xs · xs − 2xr · xs)

=
1

n2

∑
s

(
∑
r

xr · xr +
∑
r

xs · xs − 2
∑
r

xr · xs)

=
1

n2

∑
s

[
∑
r

xr · xr +
∑
r

xs · xs − 2(0 · xs)]

=
1

n2

∑
s

(
∑
r

xr · xr + nxs · xs)

=
1

n2
(n

∑
r

xr · xr + n
∑
s

xs · xs)

=
1

n2
2n

∑
r

xr · xr

=
2

n

∑
r

xr · xr

(3.8)

Finally, applying 3.8 on 3.5:

Brs = xr · xs = −1

2
(δ2
rs −

1

n
[
∑
s

δ2
rs +

∑
r

δ2
rs −

1

n

∑
s

∑
r

δ2
rs]) (3.9)

From 3.9, it becomes clear that B is, in fact, the double centering of the matrix

A = −1
2
∆2. I.e., B = HAH. Spectral decomposition can now be performed onto

B, resulting in the matrices Σ and U.

Finally, in order to reduce the dimensionality of the embedding, we can sort

the eigenvalues (and their respective eigenvectors, the columns of U) in decrease

order and keep only the ones that offer greater variance.

Remark 3.2.1. As euclidean distances were used to build the dissimilarity matrix

∆, B is indubitably positive semidefinite, hence σi ≥ 0,∀i ∈ [0, n). However,

negative eigenvalues might appear if other dissimilarity measurement were to be

used. In these cases, one might consider to simply ignore such components.

3.2.2 Formalization of the Multidimensional Scaling Method

Let X be a data set with n samples and f features and m ∈ R the number of

dimensions desired for the reduced data set [13].
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1. Calculate the dissimilarity matrix [δ]rs, where δrs =
√∑

i(xri − xsi)2

2. Calculate the matrix A = −1
2
δ2
rs and B = HAH, where H is the centering

matrix.

3. Use spectral decomposition to find the matrices Σ and U.

4. Select the m greatest eigenvalues in Σ. From these, create the matrices

Σ′ = [σ′m×m] and U′ = [u′n×m], where each column i contains the eigenvector

associated with σ′i.

5. Construct the m-dimensional embedding Y = U′Σ′
1
2

3.3 Evaluating Reductions

Although the factors that determine if a reduction is acceptable or not are often in-

fluenced by particularities of the problem in hand, the researcher’s past experience

with MDS and his judgment [38], some measures were developed to attempt to

somehow formalize it. One in particular, which recurrently appears in literature,

is known as the Kruskal’s stress.

Intuitively, Kruskal’s stress [38] considers reductions that preserve dissimilar-

ities between samples better that the ones which highly distort them. Formally,

let Xn×f be a data set with n samples and f dimensions, Yn×p its reduction to p

dimensions, and the dissimilarity measurements δij and δ̂ij defined for all samples

i and j in X and Y, respectively:

Stress = [

∑
i

∑
j(δij − δ̂ij)2∑
i

∑
j δ

2
ij

]
1
2

From the formula above, Stress is visibly contained in the interval [0, 1], where 0

represents the best possible fit (all dissimilarities are the same), while 1 represents

the worse.
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Chapter 4

Nonlinear Dimensionality

Reduction

Although PCA presents promising results in many cases, hence its great popularity

in dimensionality reduction problems, there are many examples in which PCA will

fail to understand the structure of the data. Consider the example bellow:

Figure 4.1: The Swiss roll data set.

The application of the PCA algorithm over the Swiss Roll data set results in

the following reductions:
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Figure 4.2: The Swiss Roll data set reductions to 3, 2 and 1 dimensions,

respectively, using the PCA algorithm.

Looking at figure 4.2 (specially in the last reduction, to a single dimension), it

becomes clear that PCA has a big draw back: it assumes that the data lies on a

liner subspace [10] and, therefore, applying linear transformations to it will rotate

and scale it, without distort the original data structure. When this assumption

does not hold, PCA will incorrectly extract the underlying structure, possibly

mixing very dissimilar samples. For a more detailed description, see section 5.3.

Clearly, linear dimensionality reduction techniques are not adequate to reduce

the Swiss-roll. Generally, it is not adequate to reduce any data set lying on a

nonlinear manifold.

4.1 The ISOMAP Algorithm

Firstly suggested by Tenenbaum, de Silva and Langfor, Isometric Feature Map-

ping (or ISOMAP) assumes that the data lies near a smooth manifold. If the

assumption is reasonable, it is possible to explore concepts such as neighborhood

and local linearity to map the manifold to a linear structure before reducing it
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with a linear algorithm.

4.1.1 Study of the ISOMAP Algorithm

As the original data set might be folded, twisted or curved [39], we must first find

a suitable linear representation for it.

Let S be our original data set, as illustrated in figure 4.3.

Figure 4.3: The data set S, consisting of 1000 samples and 3 features.

Additionally, consider the symmetric undirected weighted graph G = (V,E)

and w : E → R | w(x, y) = δxy, where δxy is the euclidean distance between the

samples x and y in S. That is,

δxy =

√∑
i

(xi − yi)2,∀(x,y) ∈ S× S | x 6= y

Now that only distances were kept, an infinite number of n-dimensional em-

beddings can be found with MDS, as every reduction can be transposed, rotated

or reflected while maintaining the original dissimilarities. This does not handle

the non-linearity of the data, though, as the original distances strictly constraint

the samples to their original pattern. In order to “unfold” the data set, Nearest
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neighbor search can be performed over G, resulting in the graph G′. Nearest-

neighbor search will preserve edges connecting closer samples, hence preserving

local (linear) distances, but erase edges connecting samples which are far from

each other (non necessarily linear). Obviously, the search parameters (k or ε)

must be carefully chosen to limit the connectivity of the vertices to a small (lin-

ear) neighborhood while maintaining the graph completely connected.

Figure 4.4: The graph G′.

At this moment, not all distances in G′ are defined. This can be easily han-

dled, though, by performing the Floyd-Warshall algorithm over G′, resulting in

the shortest-paths graph G′′. Alternatively, G′′ can be achieved by performing

Dijkstra’s algorithm for all nodes and joining all shortest-path trees found.

Finally, G′′ is a euclidean graph which roughly lies on a linear subspace. Fur-

thermore, the adjacency matrix associated to G′′ contains not the distance induced

by the L2 norm, but the geodesic pairwise distances [11]. The MDS method can

now be used to construct a representation in sub-spaces of the Rn. S, specifically,

can be reduced to the R2 or R:
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(a) Reduction to 2D. (b) Reduction to 1D.

Figure 4.5: S’ reductions.
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4.1.2 Formalization of the ISOMAP Algorithm

Let X be the original data set and p ∈ R the number of dimensions desired for the

reduced data set [39],

1. Construct the weighted graph G from the distances pairwise δxy,∀(x,y) ∈
X × X,x 6= y and find the graph G′ by applying the nearest-neighbor

algorithm on the graph G.

2. Compute the shortest path graph G′′ between all pairs of nodes from graph

G′. This might be done by the all-pairs Dijkstra’s or by the Floyd-

Warshall algorithm.

3. Use G′′ to construct the p-dimensional embedding using the MDS algorithm.

4.1.3 Computational Complexity

If n is the number of training samples, f ∈ R the number of features and k ∈ R
the number of nearest neighbors:

1. The time complexity associated with building the neighborhood graph is

O(n2), whereas the space necessary to represent the distances kept is n2.

2. Algorithms for finding shortest path graph can be executed in-place and do

not increase space complexity. Regarding time complexity, however:

(a) Dijkstra’s algorithm implementation using Fibonacci Heaps have time

complexity O(nk + n log n). As the algorithm must be calculated for

each node, this step has time complexity O[n2(k + log n)].

(b) Alternatively, using the Floyd-Warshall algorithm, this step has time

complexity equals to O(n3).

3. TakingO(n3) time steps to calculate the spectral decomposition, MDS clearly

is the bottleneck of the entire algorithm [10, 40]. As for space complexity,

O(f 2 + nf) is required for storing the matrices Σ and U.

The time complexity of the ISOMAP algorithm (when using Dijkstra’s) is,

therefore, O[n2 +n2(k+ log n) +n3], and the space complexity is O(n2 + f 2 +nf).
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Experiment 4.1.1 (Timing the ISOMAP Algorithm). Consider the data set Dig-

its with 1797 samples and 64 features. The following table indicates the time dura-

tion for each step of the ISOMAP algorithm when reducing Digits to 3 dimensions:

Pairwise distances from data set .44 s

K Nearest Neighbors Search 1.3 s

All Pairs Dijkstra’s 51.44 s

MDS 118.84 s

Total Time 172.69 s

Table 4.1: Listing of time spent on each step of the ISOMAP algorithm.

As expected, most of the time (68.81%) was spent executing MDS.

In practice, ISOMAP’s time complexity of O[n2 + n2(k + log n) + n3] makes it

unsuitable for data sets with high number of samples. This is illustrated in Shi

and Gu’s experiments: ISOMAP could not reduce data sets with more than 6000

samples in reasonable time [41].

Experiment 4.1.2. Let Spam be a data set with 4601 samples and 57 features.

The table bellow describes the time necessary for the implemented ISOMAP and

sk-ISOMAP (the algorithm from the scikit-learn library) to reduce Spam to 3 di-

mensions:

Algorithm Time

ISOMAP 29.9 m

sk-ISOMAP 10.76 s

Table 4.2: Timing the implemented ISOMAP and scikit-learn’s implementation.

The original ISOMAP implemented required almost 30 minutes to reduce Spam.

Surprisingly, scikit-learn’s implementation executed incredibly fast. A set of factors

contribute for this result:

� Ball Tree is used for efficient neighbor search (requiring only O(fn log k log n)

time steps).
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� Many components in scikit-learn have python signatures, but are actually

implemented in C, considerably increasing performance.

� ISOMAP is implemented as a kernel for the KernelPCA method. Further

investigation is done in section 4.1.4.

4.1.4 Extensions

ISOMAP as a variation of Kernel PCA

While “classic” PCA aims to find the principal components of the covariance

matrix Σ = 1
n
X>X = 1

n

∑
k xik · xkj,∀(i, j) ∈ [0, |S|]2 of a centered data set

X, it can be easily modified to attempt to do the same, but over the matrix

Σ′ = 1
n

∑
i φ(x)i · φ(y)i = 1

n

∑
iK(x, y), where φ : Rf → Rp is a function that

projects vectors in the original f -space to a different p-space and K : Rf×Rf → R
is a kernel function. Such modification is named Kernel PCA.

In his paper, Ghodsi describes how MDS (and therefore, ISOMAP) is equivalent

to Kernel PCA, given it is using the following kernel function [11]:

KISOMAP = −1

2
Hδ2H

Where Hδ2H is the double centered squared dissimilarity matrix, i.e, the dou-

ble centered squared geodesic distances between samples found from the shortest-

path graph.

An advantage of substituting the MDS algorithm by Kernel PCA is that the

latter provides an embedding, i.e., a transformation matrix from the original space

to the reduced one; whereas MDS only embeds the data set [42]. However, Silva

and Tenenbaum have shown that MDS’s result can be used to reduce new samples

(L-MDS) [40]. More will be discussed ahead, when L-ISOMAP is presented.

Figure 4.6 displays the reduction of the Swiss-roll data set done by the original

implementation of ISOMAP (using MDS) and scikit-learn’s implementation (using

Kernel PCA). Numerically, they are identical (i.e., save from difference which tends

to 0).

47



Figure 4.6: The embedded swiss-roll data set by the original and scikit-learn’s

implementation.

Incremental ISOMAP

The original ISOMAP algorithm reduces the data set in a single execution. Even

its implementation with Kernel PCA will not update the reduction model if new

data points are given, only reduce these points using the eigenvectors previously

found. Therefore, updating ISOMAP reduction model requires recalculating it at

every new data “batch”, which is very costly.

In order to allow ISOMAP to continuously learn from a stream of data, Incre-

mental ISOMAP was proposed [43]. Relying on the fact that new data points will

unlikely afect a large subset of vertices, it selectively updates the structures kept

by ISOMAP. The update is performed as follows.

Let [X]n×f be a data set with n samples and f features, δab be the dissimilarity

measure between two samples a and b, xi be a sample in the nearest neighbor

graph, xj a neighbor of xi such that their dissimilarity is higher among all xi’s

neighbors. Additionally, let [Y]n×d be the embedding of X in the d-dimensional

space. Finally, consider xn+1 a new sample to increment in the reduction model.

1. The new sample xn+1 will replace xj as a neighbor of xi if δxixn+1 < δxixj
. A

list of added or removed edges should be stored.

2. The update of the shorest-path graph:

(a) For every edge (xi,xj) removed, the shortest-path between any two

vertices (xa,xb) that contains (xi,xj) must be updated. That involves

48



applying a slightly modified Dijsktra’s algorithm, which will focus on

finding the paths from a given source u and its unreached destination

vertices, i.e., vertices C(u) = {ci} whose shortest-paths (u, ci) con-

tained a removed edge.

(b) The geodesic distances between all vertices and xn+1 must then be cal-

culated. Let A be the set of added edges:

g[n+ 1, i] = g[i, n+ 1] = min
j|(n+1,j)∈A

(g[i, j] + w(j, n+ 1)),∀i.

All the added edges are incident on vertex xn+1, naturally. Calcu-

lating the shorest-path consists on considering two whichever edges

(a,xn+1), (xn+1,b) and relaxing the edge (a,b) by considering the path

a→ xn+1 → b.

3. Finally, the eigenvectors/eigenvalues of the inner product matrix Bnew (which

contains the recently added sample xn+1) can be found through an iterative

scheme, where “a good initial guess for the subspace of dominant eigenvectors

is the column space of Y” [43] (the embedding before the xn+1 increment).

A better eigen-space for Bnew, and thus Ynew can be found by Subspace

iteration together with Rayleigh-Ritz acceleration [43]:

(a) Let Z = BnewY. Perform QR-decomposition on Z: Z = BnewY = QR.

(b) Take V = Q (remember that Q is intrinsically an orthogonal matrix)

and Z∗ = V>BnewV. Perform spectral-decomposition of [Z∗]d×d to find

Λ = diag(λi) and V = [vi]d×d. This is significantly faster than directly

decomposing Bnew, considering the dimensions of both matrices.

(c) Ynew = [Y,yn+1]>, where yn+1 is the d-dimensional embedding of xn+1:

yn+1 = (
1√
λ1

v1 · f, . . . ,
1√
λd
vd · f)

2fi ≈
1

n
[
∑
j

g2
ij −

∑
lj

g2
lj +

∑
l

g2
l,n+1]− g2

i,n+1

In regard to time complexity, considering q the maximum degree of the vertices

in the graph, F is the set of pairs whose shortest path contained a removed edge and

H is the set of vertex pairs whose geodesic distances were modified, Incremental
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ISOMAP will require O[q(|F | + |H|)] time steps in phase 1; O[n2(log n + q)] in

2; and O(n2) in 3. The time complexity of the algorithm is, therefore, O[q(|F | +
|H|) + n2(log n+ q + 1)].

L-ISOMAP

ISOMAP’s time complexity dependents mainly on the number of samples. Re-

member: for N samples, ISOMAP will require O[n2(log n + k)] and O[n3] time

operations to compute the shortest-paths and eigenvectors/values, respectively.

Landmark ISOMAP aims to reduce the complexity of the algorithm by finding

the dissimilarities between n landmarks (a small subset of samples) and all the

original samples. Its complexity can then be reduced to O[n2(logN + k) + n2N ].

If n� N , this represents a expressive performance improvement [40].

Let X be the initial data set of interest, l be the dimensionality to which X

should be reduced and ε > 0 ∈ N a number to “ensure stability” [40]. L-ISOMAP

is defined as it follows.

1. Select n random samples from X, such that n > l + 1 + ε.

2. Calculate the nearest-neighbors of each selected samples (all the original

samples should be considered as neighbors).

3. Calculate the shortest-paths from the neighborhood graph obtained in the

previous step and the dissimilarity matrix [δ]n×N .

4. Perform Landmark MDS, a slightly modified MDS:

(a) Apply classical MDS to the submatrix of landmarks [δ]n×n.

(b) Embbed the remaining points through:

y = −1

2
L−1(∆x − ∆̄n)

y = −1

2


vT1√
λ1
vT2√
λ2

. . .
vTn√
λn

 (∆x − ∆̄n)
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Where ∆x is the square dissimilarity column vector from sample x to

all landmarks and ∆̄n the vector containing the column mean of ∆n

(the square dissimilarity matrix between landmarks).

p-ISOMAP

The embedding found by ISOMAP is strongly depentend of the parameters k or ε.

When these parameters are too small, the neighborhood graph extracted might be

disconnected, causing the dissimilarity between some vertices to be infinite. On the

other hand, when the parameters are too big, vertices from different neighborhoods

are prone to stay connected, preventing the manifold to be “unfolded”. Hence the

importance of choosing appropriate parameters. However, in many cases, these

“appropriate” paramaters might not be evident. Hence the interest of developing

a parameterless ISOMAP.

p-ISOMAP is an extension that automatically selects the parameters k or ε [44].

Assuming an result of ISOMAP for a particular parameter value is available, a new

parameter will be considered and p-ISOMAP will iteratively update the soluton

by:

1. Adding/removing neighbors for every vertex in the neighborhood graph re-

garding the new parameter. This operation has time complexityO(nmaxi |∆ei|),
where |∆ei| is the number of inserted/removed edges associated with sample

xi.

2. Update the shortest-paths described by the pairs of vertices in F ⊂ Q, where

Q is the set of all pairs of vertices and F is the set of pairs associated with

the updated edges in the previous step.

(a) If the parameter value increased in comparison to the previous one,

edges might have been added. Updating the shortest-path tree consists

in simply relaxing edges associated with any of the vertices in the pairs

of F . The time complexity is loosely bounded by O(|A|q|F |), where |A|
is the number of inserted edges and q is the maximum degree of vertices

in G.

(b) If the parameter was decreased, then edges might have been removed

and all pairs of vertices whose shortest-paths contain those edges are
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added to F . Identifying F can be done in O(n2) times steps to execute,

given some optimzation (see [44]). Now, Dijkstra’s can be selectively

performed, requiring O(nmaxi(|E ′i| log |Vd(i)| + |E ′′i |), where, given a

vertex xi, Vd(i) = {xj|(xi,xj) ∈ F}, E ′i is the set of edges connecting

whichever pair of vertices in Vd(i) and E ′′i is the set of edges connecting

the vertices xa and xb such that xa is in Vd(i) and xb is not.

3. Finally, the last step is to update the eigenvectors and eigenvalues associated

with the matrix B. They can be approximated using the Lanczos algorithm,

an iterative refining method that takes an initial solution candiadate. Of-

ficially, the time complexity of Lanczoz algorithm is O(n2) [45]. Yet, its

timeframe for convergence also strongly depends on the solution candidate

given. Assuming the previous inner matrix and the current one are similar,

one might use the previous eigenvalues/vectors found as candidate. In this

scenario, Lanczoz’s will likely finish much faster than other algorithms.

The experiments presented in [44] have shown p-ISOMAP consistently main-

taining a better performance than regular ISOMAP for data sets with a samples

count varying between 500 and 3500. Additionally, the experiments have also

demonstrated how p-ISOMAP performance is sensible to high variances of k and

ε values.

4.1.5 Evaluating Reductions

ISOMAP’s aim is to “unfold” the data set and, of course, it might distort dis-

similarities between samples in the process. Hence drastically increasing Kruskal’s

stress. Clearly, this measure is unsuitable for evaluating ISOMAP. As proposed

by L. Shi and J. Gu, Kruskal’s stress can be easily updated to match ISOMAP

nature. That is, to preserve dissimilarities within neighborhoods [41]:

Let Xn×f be a data set with n samples and f dimensions, Yn×p its reduction to

p dimensions, and δij and δ̂ij the dissimilarity measurements defined for all samples

i and j in both X and Y. Furthermore, given a sample i and β ∈ N | β ≤ n, take

Ω = K
⋃

Θ, where K is the set containing the nearest neighbors of i and Θ is a
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set of random samples such that |Θ| ≤ β ≤ n:

StressISOMAP = [

∑
i

∑
j∈Ω(δij − δ̂ij)2∑
i

∑
j∈Ω δ

2
ij

]
1
2

4.1.6 Applicability and Limitations

From figure 4.5 and the experiment shown in section 5, it is quite clear that

ISOMAP outperforms PCA on the data set S. Unfortunately, this cannot be

projected for a generic case considering the strict and artificial nature of S. In

real-world data sets, the application of ISOMAP may lead to poor low-dimensional

embeddings [46]. Bellow are listed some of the issues that have great influence over

ISOMAP’s results:

Manifold Assumption It refers to the initial assumption that the data lies on

a low-dimensional manifold. Although wildly exploited by many authors,

it is difficult to assert whether such assumption holds or not in real-world

data sets [47]. Furthermore, even if the data roughly lies on a manifold,

discontinuities in the data pattern can characterize the manifold as non-

smooth. In these situations, graphs with edges that disrespect locality would

be extracted and, hence, poor low-dimensional representations are likely to

be produced.
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Manifold Convexity ISOMAP assumes that the data is geodesically convex [48].

This issue becomes clear when dealing with data sets with “holes” in it that

occupy sufficiently large areas, resulting in a neighborhood graph with great

disconnected areas that require paths with great curvature to get around.

Lerman demonstrated how reducing non-convex data sets with ISOMAP

can easily yield distorted results [49]:

(a) The non-convex Swiss-roll 6. (b) The expected reduction 6.

(c) The actual reduction 6.

6From “Manifold Learning Techniques: so which is the best?” by G. Lerman, Univer-

sity of California, Los Angeles. Available at: http://math.ucla.edu/~wittman/mani/mani_

presentation.pdf.
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Noise Noise in data is expressed by samples that somehow diverge from their

neighborhood (outliers). As these samples become farthest from its original

neighborhood, the chances of being linked to samples from other neighbor-

hood increase, possibly decreasing the quality of the solution. A possible

solution is to remove these samples during the pre-processing stage [46].

The image bellow illustrates an attempt to use ISOMAP to reduce the

Swissn=.4, which is the Swiss-roll data set subjected to a noise factor of

.8:

(a) The data set Swissn=.8.
(b) The neighborhood graph

extracted from Swissn=.8.

(c) Swissn=.8 reduced.

Figure 4.8: The ISOMAP applied on a noisy data set.

Observe how some outliers were sufficiently far from their original neighbor-

hood in the graph 4.8b, to the point that Nearest-Neighbor Search main-

tained the edge between them and samples of completely different colors.

MDS then attempted to maintain this dissimilarity, resulting in a deformed

reduction (figure 4.8c).
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Chapter 5

Experiments

This chapter will cover the experiments implemented throughout this project,

which focused on reducing data sets with the presented algorithms and evaluating

these reductions. Once again, it is quite difficult to evaluate reductions, but a set

of metrics were adopted to attempt to understand them as much as possible.

First, let Xn×f be a data set with n samples and f features, and D ⊂ N | d ∈
D =⇒ d ≤ f a set of dimensions to which X should be reduced. Additionally,

consider the score to be the class prediction accuracy or the coefficient of deter-

mination R2, depending on the nature (classification or regression) of the problem

of interest. Then, the sequence bellow represents a default format followed by all

experiments:

1. The data set X is loaded and its first three features are plotted, given an

initial idea of how the data is distributed for those features.

2. X is reduced to 3, 2 and 1 dimensions. Each reduction is plotted for visual-

ization.

3. Kruskal’s stress is calculated for X.

4. In an attempt to evaluate local dissimilarity preservation, a 1-NN classifier

or regressor is trained with 80% of X’s samples and tested with the other

20%. The score is kept for future reference.

5. Grid search is executed over X using a SVM classifier or regressor. This step

evaluates how a “real world” algorithm would perform over the original data

56



set.

6. for d ∈ D:

(a) X is embedded into the Rd, creating the data set Yn×d.

(b) Kruskal’s stress is calculated for Y.

(c) A 1-NN classifier or regressor is trained with the same samples used in

step 4, and tested with all the others. The score is compared to the one

retrieved in step 4.

(d) Grid Search is executed over Y and the score is compared to the one

presented in step 5.
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5.1 K Data Set

The synthetic data set K, with 1000 samples and 2 features.

Figure 5.1: The K data set.
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Reducing K Data Set With the PCA Algorithm

Figure 5.2: The reductions of K to 2 and 1 dimension, respectively.

Figure 5.2 illustrates the results of PCA algorithm application over K data set.

Notice that, for the second application, it correctly chose to discard the vertical

dimension, as the samples offer less variability in this component.

Original R2 R2 R
1-NN .99 .99 1

Score .982 .982 .994

Best parameters ’C’: 1000, ’k’:

’linear’

’C’: 1000, ’k’:

’linear’

’C’: 1000, ’g’:

10, ’k’: rbf

GridSearch time 2.55 s s 2.93 s 2.94 s

Reduction time - 1.97 s 1.93 s

Kruskal’s stress - 0 .0399

Data size 15.62 KB 15.62 KB 7.81 KB

Table 5.1: Description of predictions and reduction performance for K.
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From the table above, one can see that, given the linear nature of K, PCA

was an adequate method to reduce it, as both 1-NN regressor and SVM created

very accurate models. It is also possible to observe how Kruskal’s stress might

not be an appropriate quality measurement, given a specific domain. Indeed, K’s

stress increase resulted from the removal of one of the components did not imply

on prediction accuracy decrease.
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5.2 The Iris Flower Data Set

The Iris Flower data set, as presented in section 2.1, containing 150 samples and

4 features.

Figure 5.3: The Iris Flower data set.
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Reducing the Iris Flower Data Set With the PCA Algorithm

Figure 5.4: The reductions of Iris Flower to 3, 2, and 1 dimensions, respectively,

using the PCA algorithm.

One can infer from figure 5.4 that classes are still somewhat organized in different

clusters, even in the reductions for 2 and 1 dimensions. The Application of PCA

therefore results in fairly good visualizations.
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Original R3 R2 R
1-NN 1 1 1 .87

Score .99 .98 .97 .95

Best parameters g: .01, k:

rbf, C: 100

k: linear, C:

10

g: 10, k:

rbf, C: 1

g: .1, k: sig-

moid, C: 1

GridSearch time 2.14 s 2.64 s 2.42 s 2.64 s

Reduction time - .17 s .17 s .16 s

Kruskal’s stress - .01 .04 .11

Data size 4.69 KB 3.52 KB 2.34 KB 1.17 KB

Table 5.2: Description of predictions and reduction performance for the Iris

flower and PCA algorithm.

Kruskal’s stress kept bellow 11% for all reductions. Indeed, variations in the

learning phase performance were small: 1-NN and SVM score were high along all

reductions (except for the last one, perhaps, where 1-NN decreased to .87).
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Reducing the Iris Flower Data Set With the ISOMAP Algorithm

Figure 5.5: The reductions of Iris Flower to 3, 2, and 1 dimensions, respectively,

using the ISOMAP algorithm.

It is clear, from figure 5.5, that the ISOMAP algorithm has also resulted in accept-

able reductions of the Iris Flower data set, where classes kept a similar organization

compared to the reductions made by the PCA algorithm.
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Original R3 R2 R
1-NN 1 1 1 .87

Pred. accuracy .99 .98 .98 .93

Best parameters k: rbf, g:

0.01, C: 100

k: linear, C:

10

k: linear, C:

10

k: sigmoid,

g: 0.1, C: 1

GridSearch time 2 s 2.55 s 2.42 s 2.37 s

Reduction time - 1.28 s 1.3 s 1.27 s

Kruskal’s stress - .15 .15 .16

Data size 4.69 KB 3.52 KB 2.34 KB 1.17 KB

Table 5.3: Description of predictions and reduction performance for the Iris

flower and ISOMAP algorithm.

The results were very similar to the ones obtained when applying the PCA algo-

rithm. The differences consist on the Kruskal’s stress, now limited to 16% and the

reduction time, which has consistently increased due to the higher computational

cost of the ISOMAP algorithm.
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5.3 The Swiss Roll Data Set

The Swiss Roll data set, with 1000 samples and 3 features.

Figure 5.6: The Swiss Roll data set.
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Reducing the Swiss Roll Data Set With the PCA Algorithm

Figure 5.7: The reductions of the Swiss Roll to 3, 2 and 1 dimensions,

respectively, with the PCA algorithm.

Figure 5.7 illustrates how the PCA algorithm is not suitable for reducing the Swiss-

roll, given its non-linear distribution. Reductions to 2 and 1 dimensions have made

very dissimilar samples to become mixed, damaging the original structure of the

data set and, of course, confusing learners and reducing their score in the learning

process:
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Original R3 R2 R
1-NN 1 1 .26 .2

Score 1 1 .68 .54

Best parame-

ters

k: rbf, C:

100, g: 0.01

C: 100, k:

rbf, g: 0.01

C: 100, k:

rbf, g: 0.1

C: 1, k: rbf,

g: 0.1

GridSearch

time

12.72 s 15.13 s 9.07 s 7.11 s

Reduction

time

- 2.15 s 2.02 s 2.08 s

Kruskal’s

stress

- 0 .28 .53

Data size 23.44 KB 23.44 KB 15.63 KB 7.81 KB

Table 5.4: Description of predictions and reduction performance for the Swiss

Roll and PCA algorithm.

Notice that the learners trained during the grid search can achieve high scores in

the original space R3. When the same search is applied to the data set reductions,

learners only manage to retrieve significantly lower scores. Clearly, reducing non-

linear data sets with linear methods has a highly negative impact on the learning

process.
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Reducing the Swiss Roll Data Set With the ISOMAP Algorithm

Figure 5.8: The reductions of the Swiss Roll to 3, 2 and 1 dimensions,

respectively, with the ISOMAP algorithm.

Figure 5.8 illustrates the efficacy of the ISOMAP algorithm in reducing the Swiss

Roll while still preserving the original structure of the data set (similar samples

were maintained close to each other). Of course, this has a positive impact on

learning:
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Original R3 R2 R
1-NN 1 1 1 1

Score 1 1 1 1

Best parame-

ters

k: rbf, C:

100, g: 0.01

C: 10, k:

rbf, g: 0.01

C: 100, k:

rbf, g: 0.01

C: 10, k:

rbf, g: 0.01

GridSearch

time

2.41 s 2.21 s 2.13 s 2.35 s

Reduction

time

- 16.32 s 16.75 s 14.72 s

Kruskal’s

stress

- .49 .37 .46

Data size 23.44 KB 23.44 KB 15.63 KB 7.81 KB

Table 5.5: Description of predictions and reduction performance for the Swiss

Roll and ISOMAP algorithm.

Differently from the reductions with the PCA algorithm, learners trained over

reductions retrieved from ISOMAP maintained a perfect score throughout the en-

tire experiment, confirming that ISOMAP is a more adequate method for nonlinear

data set reduction.
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5.4 The Digits Data Set

Digits data set is composed by 1797 samples, 64 features and 10 classes. Each

sample is a 8x8 image of a hand-written digit from 0 to 9.

Figure 5.9: The Digits data set.
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Reducing the Digits Data Set With the PCA Algorithm

Figure 5.10: The reductions of Digits to 3, 2 and 1 dimensions, respectively, with

the PCA algorithm.

From figure 5.10, we have glimpse of Digits’s samples structure. The many classes’

clusters are visible in the 3D, although they become highly mixed in the 2D and

1D, yielding a confusing representation.
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Original R10 R3 R2 R
1-NN .99 .97 .68 .56 .28

Score .98 .95 .74 .64 .39

Best pa-

rameters

k: rbf, C:

10, g: .001

k: rbf, C:

10, g: .001

k: rbf, C:

10, g: .01

k: rbf, C: 1,

g: .01

k: rbf, C:

10, g: .001

GridSearch

time

11.75 s 26.97 s 150.91 s 125.64 s 104.41 s

Reduction

time

- 6.02 s 6.54 s 6.05 s 6.1 s

Kruskal’s

stress

- .16 .42 .54 .71

Data size 898.5 KB 140.4 KB 42.1 KB 28.08 KB 14 KB

Table 5.6: Description of predictions and reduction performance for Digits and

ISOMAP algorithm.

Notice that it was possible to eliminate 54 dimensions, consistently reducing

the data set size, and only suffering 3% of prediction accuracy loss. The score

drastically decreased, however, when more dimensions were removed. Further-

more, reductions to less than 10 dimensions would generate highly mixed samples,

requiring more time for grid searching. Finally, it is also clear that score was

inversely proportional to stress.
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Reducing the Digits Data Set With the ISOMAP Algorithm

Figure 5.11: The reductions of Digits to 3, 2 and 1 dimensions, respectively, with

the ISOMAP algorithm.

Digits reductions using ISOMAP, as illustrated in figure 5.11, have proven to

be much more organized, when compared to the reductions made by the PCA

algorithm. Indeed, the representation in the 2D shows much less mixed samples,

which translates into better scores:
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Original R10 R3 R2 R
1-NN .99 .99 .97 .92 .46

Score .94 .96 .93 .9 .56

Best pa-

rameters

k: linear,

C: 1

k: linear,

C: 1

k: linear,

C: 1

k: linear,

C: 1

g: 0.01, k:

rbf, C: 100

GridSearch

time

7.68 s 5.1 s 4.59 s 4.47 s 5.44 s

Reduction

time

- 47.93 s 47.99 s 48.31 s 48.82 s

Kruskal’s

stress

- .16 .44 .48 .63

Data size 898.5 KB 140.4 KB 42.1 KB 28.08 KB 14 KB

Table 5.7: Description of predictions and reduction performance for Digits and

ISOMAP algorithm.

1-NN’s and classification accuracy were kept above 90% for all reductions down

to the R2, being considerably higher than the scores obtained when testing over

Digits reduced with PCA. We can compare the reduction time as well, which has

increased significantly given the data set great number of samples and the higher

complexity of ISOMAP compared to PCA.

The Grid Search performed over the reduction to the R10 only took 58.2% of the

time of this same search when performed over the original data set: a consequence

of the great reduction of features, no doubt, filtering the necessary work done by

estimators in the learning phase.
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5.5 The Glass Data Set

Motivated by criminological investigations, the classification of different types of

glasses based on the material composition can be demonstrated by the Glass data

set, which contains 214 samples and 10 features, where each sample belongs to

a specific class (e.g., building windows glass, tableware and headlamps). Lastly,

it must be remarked that the first feature is the identification number of a given

sample, and was therefore removed during our experiment.

Figure 5.12: The Glass data set.
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Reducing the Glass Data Set With the ISOMAP Algorithm

Figure 5.13: The reductions of Glass to 3, 2 and 1 dimensions, respectively, with

the ISOMAP algorithm.

We can observe from the representation of Glass in the R3 (figure 5.13) that sam-

ples from different classes present little separation from each other. Indeed, learn-

ers will have more difficulty when processing such reductions.
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Original R8 R6 R4 R3

1-NN .63 .63 .6 .63 .65

Score .64 .65 .63 .65 .65

Best pa-

rameters

k: rbf, g:

0.001, C:

1000

k: rbf, g:

0.01, C:

100

k: rbf, g:

0.1, C:

100

k: rbf, g:

0.1, C: 10

k: rbf, g:

0.1, C: 10

GridSearch

time

1.96 s 2.85 s 2.89 s 3.21 s 3.40 s

Reduction

time

- 2.8 s 2.96 s 2.87 s 2.90 s

Kruskal’s

stress

- .2 .16 .15 .21

Data size 15.05 KB 13.38 KB 10.03 KB 6.69 KB 5.02 KB

Table 5.8: Description of predictions and reduction performance for Glass and

ISOMAP algorithm.

ISOMAP was able to reduce Glass with little structure deterioration, where 1-

NN’s and prediction accuracy were maintained throughout the entire experiment,

while no complexity increase in the learner parameters is visible. Grid Search time

slightly increased as the linear SVM requires more time given high values of C and

the compaction of data, which crunched samples together.

78



5.6 The Dermatology Data Set

The Dermatology data set, composed by 366 samples and 35 features. Here, the

target is to correctly diagnose the erythemato-squamous diseases.

Figure 5.14: The Dermatology data set.
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Reducing the Dermatology Data Set With the ISOMAP Algorithm

Figure 5.15: The reductions of Dermatology to 3, 2 and 1 dimensions,

respectively, with the ISOMAP algorithm.

From figure 5.15, we easily infer that two classes are trivially separable. The rest,

however, is highly convoluted in the origin of the space, hence higher dimensions

could be necessary to achieve high accuracy scores.
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Original R20 R10 R3 R2

1-NN .91 .89 .91 .72 .74

Score .95 .95 .96 .8 .78

Best pa-

rameters

k: linear,

C: 10

k: linear,

C: 1

k: linear,

C: 1

k: linear,

C: 100

k: linear,

C: 1

GridSearch

time

2.76 s 2.61 s 2.57 s 14.47 s 25.66 s

Reduction

time

- 66.04 s 65.89 s 65.85 s 66.18 s

Kruskal’s

stress

- .02 .03 .07 .1

Data size 97.22 KB 57.19 KB 28.59 KB 8.58 KB 5.72 KB

Table 5.9: Description of predictions and reduction performance for Glass and

ISOMAP algorithm.

Indeed, tests over reductions to the R3 and R2 presented lower scores when

compared to the ones performed over higher dimensions such as R20 and R10.

These latter presented very similar scores to the ones achieved when testing over

the original dimensional space, entailing that no drastic structural changes were

made.

81



5.7 The Leukemia Data Set

The Leukemia data set contains 72 samples and 7129 features, which express levels

of the genes in a given patient. Each sample belongs to a class t ∈ {−1, 1}, tagging

which of two variants of leukemia is present in the sample (AML, 25 samples, or

ALL, 47 samples) [50].

Figure 5.16: The Leukemia data set.
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Reducing the Leukemia Data Set With the ISOMAP Algorithm

Figure 5.17: The reductions of Leukemia to 3, 2 and 1 dimensions, respectively,

with the ISOMAP algorithm.

Visualization has barely changed from 7129 to 3 dimensions, as samples are still

very convoluted.
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Original R30 R20 R10

1-NN .6 .4 .33 .47

Score .99 .88 .9 .89

Best pa-

rameters

coef0: 10,

degree: 2, k:

poly

C: 1, k: lin-

ear

C: 1, k: lin-

ear

C: 1, k: lin-

ear

GridSearch

time

4.66 s 2.56 s 2.48 s 2.53 s

Reduction

time

- .1 s .1 s .09 s

Kruskal’s

stress

- 1.09 .97 .67

Data size 4010.06 KB 16.88 KB 11.25 KB 5.62 KB

Table 5.10: Description of predictions and reduction performance for Leukemia

and ISOMAP algorithm.

An impressive reduction was performed, where a data set lying on the R7129

and occupying 4010.06 KB was shrunk to the R30, now only occupying 16.88 KB.

We observe very high values for the Kruskal’s stress and low values for the 1-NN

classifier, which suggests that tests with the SVM would also achieve low prediction

accuracy. This, however, did not happen, as scores maintained a baseline of 88% for

all reductions. We therefore take this experiment as an example of how Kruskal’s

low stress is not always aligned with learners good performance and might not be

a suitable metric for evaluation.

Finally, as many features were discarded, Grid Search performed faster when

applied over the reductions than when performed over the original data set.
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5.8 The WDBC Data Set

The Wisconsin Diagnostic Breast Cancer (WDBC) data set, containing 596 sam-

ples and 32 features computed from a breast mass. WDBC has 357 benign samples

and 212 malignant. During this experiment, the first feature was disregarded, as

it represents the identification numbers of the samples.

Figure 5.18: The WDBC data set.
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Reducing the WDBC Data Set With the ISOMAP Algorithm

Figure 5.19: The reductions of WDBC to 3, 2 and 1 dimensions, respectively,

with the ISOMAP algorithm.

Reductions over WDBC seem to have somewhat contorted the original structure

and and do not help significantly in visualization.
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Original R20 R10 R3

1-NN .91 .89 .47 .89

Score .95 .89 .9 .9

Best pa-

rameters

C: 1, k: lin-

ear

C: 10, k:

linear

C: 10, k:

linear

C: 10, k:

linear

GridSearch

time

18.54 s 83.01 s 78.96 s 61.51 s

Reduction

time

- 3.23 s 3.22 s 3.3 s

Kruskal’s

stress

- .55 .47 .38

Data size 133.36 KB 88.91 KB 44.45 KB 13.34 KB

Table 5.11: Description of predictions and reduction performance for WDBC and

ISOMAP algorithm.

Although prediction accuracy was kept high throughout the whole experiment,

Grid Search time has intensively increased, which indicates that the estimators

would be having a great difficulty when learning from reductions. We conclude

that ISOMAP might not be the ideal option to reduce WDBC for the dimensions

specified in the table.
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Final Considerations

In this work, the subject of dimensionality reduction was approached. First, fo-

cusing on linear methods and their capacity of extracting features that maximize

variance in a data set, we successfully reduced, visualized and learned from well

known data sets. Furthermore, we demonstrated how these methods would fail to

reduce data sets that followed a nonlinear distribution.

In order to reduce nonlinear data sets, we introduced the ISOMAP algorithm,

which takes advantage of properties commonly present in manifolds (e.g., linear

locality, neighborhood) to map the data set of interest to an intermediate represen-

tation that only preserves dissimilarities of restrictive neighborhoods, “unfolding”

the data set before applying a linear reduction method. We then proceeded to

formally define ISOMAP’s implementation, to analyze its complexity and present

some of its limitations, variations and applications. Finally, we demonstrated that

ISOMAP can successfully reduce data sets that roughly lie on nonlinear manifolds,

but it also strongly dependents on many conditions, such as the manifold assump-

tion, manifold convexity and controlled data noise, severely affecting the number

of problems to which it might be applied.

In conclusion, we have observed that although its limitations, ISOMAP rep-

resented an advance in manifold learning, being a highly regarded method in di-

mensionality reduction until today. In practice, its importance is clearly observed

when considering the great number of machine learning libraries, languages and

computational environments which implement it, as well as the great load of study

done by many authors trying to apply, improve or extend it.
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