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Resumo
Embora a guitarra elétrica venha sendo cada vez mais um objeto de investigação pela academia,
faltam ainda conclusões contundentes a respeito de suas características dinâmicas. Para oferecer
uma contribuição neste panorama, uma análise modal foi realizada tendo uma viga e uma guitarra
Squier by Fender Stratocaster 50th Anniversary como objetos. Juntamente com testes de bancada
experimentais, estratégias de cálculo analítico e modelagem foram aplicadas à viga de aço AISI
1020, enquanto o instrumento teve sua dinâmica descrita apenas com o auxílio de dados de
entrada experimentais. Para os testes, impactos de força desconhecida foram utilizados em dois
locais de ambos os objetos, que foram instrumentados com quatro acelerômetros ADXL 335,
todos conectados a um chassi National Instruments cDAQ-9178 equipado com um módulo
medidor de tensão NI-9201. Uma placa de prototipagem Arduino UNO foi utilizada como
fonte de tensão elétrica para os sensores. Após o processamento dos dados via MATLAB, as
frequências naturais de 7,34, 65,43 e 107,35 Hz, respectivamente para o 1o, 3o e 4o modos
de vibração da viga e 56,08, 140,65, 185,50 e 210,90 Hz para o 1o, 2o, 3o e 4o modos da
guitarra foram obtidas. Um algoritmo de análise modal baseada apenas na resposta (OOMA)
de decomposição no domínio da frequência (FDD) foi executado para a viga e para a guitarra,
resultando nas formas corretas para o 1o, 3o e 4o modos da viga e 1o, 2o e 3o modos da guitarra. Foi
verificado que o posicionamento falho dos sensores e aspectos da implementação do experimento
prejudicaram alguns dos resultados obtidos. Em geral, concluiu-se que a técnica de FDD deve ser
aliada a outros métodos de excitação para funcionar completamente, ao passo que as frequências
naturais podem ser alcançadas a partir de procedimentos mais simples.

Palavras-chave: Vibrações mecânicas. Análise modal baseada apenas na resposta. Decom-
posição no domínio da frequência. Guitarra elétrica.





Abstract
Although the electric guitar has been more and more an investigation object by the academy,
there are still important conclusions missing regarding its dynamic characteristics. To offer a
contribution over this panorama, a modal analysis was performed having a beam and a Squier by
Fender Stratocaster 50th Anniversary guitar as objects. Altogether with experimental bench tests,
analytical and modeling strategies were employed to the AISI 1020 steel beam, while the musical
instrument had its dynamics described only with the aid of empirical inputs. For the tests, impacts
of unknown force were deployed on two locations of both objects, that were instrumented with
four ADXL 335 accelerometers each and connected to a National Instruments cDAQ-9178
chassis equipped with a NI-9201 voltage modulus for the data acquisition. An Arduino UNO
board was used as voltage source for the sensors. After data processing via MATLAB, the natural
frequencies of 7.34, 65.43 and 107.35 Hz, respectively for the 1st, 3rd and 4th vibrational modes
of the beam and 56.08, 140.65, 185.50 and 210.90 Hz for the guitar’s 1st, 2nd, 3rd and 4th modes
were obtained. An Output-only modal analysis (OOMA) Frequency Domain Decomposition
(FDD) algorithm was performed for the beam and the guitar, resulting in correct shapes for the
1st, 3rd and 4th beam modes and the 1st, 2nd and 3rd guitar modes. It was verified that poor
sensor positioning and implementation of the experiment hindered some of the result reached. In
general, it was concluded that the FDD technique must be aligned to other excitation methods in
order to fully work, while natural frequencies can be accessed through simpler methods.

Keywords: Mechanical vibrations. Output-only modal analysis. Frequency domain decomposi-
tion. Electric guitar.
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1 Introduction

As an introduction, a brief contextualization of guitars development history will be
presented, just like explanations on how guitars relate to engineering in terms of structure. After
these topics, the motivation for the investigations made is described altogether with its objectives.

1.1 Electric guitars: history and nowadays

Electric guitars have a very rich history. Since the first half of the 20th century, when
this instrument was invented (HISCOCK, 1998), two brands have been on the spotlight of
musicians and enthusiasts imagery when it comes to guitars: Gibson, from 1902, and Fender,
which appeared in 1946 (SOUZA, 2002).

Aside that context, guitar’s evolving implied, through the course of years, on a poor,
scarce developing of concepts, technologies and knowledge overall applied to the guidance of
constructive and innovative capabilities. The fact that Fender and Gibson are, until current days,
the two most recognizable and renowned electric guitar brands is on its own a powerful statement
to that affirmation. Even more, there are not many guitar models that are, in the moment, so
popular that can be counted as legendary. For example, one can cite Gibson’s Les Paul and SG,
and Fender’s Stratocaster and Telecaster, and that is how far goes the extent of the most famous
of these instruments.

Between the cited famed designs, the Fender Stratocaster is considered the most popular
electric guitar of all times (TRUE FIRE, 2016). Like most of the Fender models, Stratocasters’
timbre tend do be more guided to high frequencies, but there is still much to be known about
the dynamic characteristics that cause that. Therefore studies that carry out a science-oriented
method to investigate this aspect are certainly suitable.

One of the reasons of the gap existing on the field is exactly the existing difficulties
on modeling and testing these instruments in order to obtain objective descriptive parameters.
However, engineering provides tools that, if correctly applied, can help on that matter.

1.2 The electric guitar as a dynamic system

According to Felicio (2010), a dynamic system is a set of components that founds itself
inside a frontier and has responses that vary over time. For dynamics and vibrations, these outputs
are often related to the position or the movement of the parts, instead of mechanical properties,
for example. That is a positive factor for works like the present one, as it is easier to estimate and
measure variables of movement than properties.
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This comes especially in hand because of one straightforward reason: just as all mechan-
ical structures, the guitars vibrate when in use. Rao (2009) defines vibration as "any movement
that repeats itself after a given period of time". With the aid of accelerometers or other sensors,
that concept suits guitars as one can directly measure the spacial oscillation all mechanical parts
of the guitar experience when a player pokes one or more strings.

The final product of a guitar (the sound), moreover, is itself a mechanical vibration and
result of air pressure oscillations. Strings behave similarly as spring-mass-damper systems when
played, and their variable distance to the pickups creates a floating electromagnetic field. That
variation creates an electric signal that is conducted to the amplifier, exciting its cone periodically
and, finally, producing sound. This path is represented in Figure 1.

Figure 1 – Operating principle of a guitar electromagnetic pickup

Source: adapted from Paté (2014).

Even though the structure of the guitar is not directly present on the path of sound
synthesis, it does have a big influence on the observed results. This is supported by many
references: Fujiso et al. (2009) found that guitars bodies’ material do have an influence on
listeners’ perception, while Paté (2014) stated that the coupling between the strings and the
body is important on how the vibration modes happen. Fleischer e Zwicker (1998) also made
conclusions towards the same direction by relating the bridge stiffness to how sound energy
propagates through the body of the instrument. Considering the consulted references, only Pereira
et al. (2010) reached results that deviates from that, and asserted that very few of the energy of
the strings is transmitted to other guitar’s structures anyway, and even less energy returns to the
strings, having these aspects, then, minor or no importance at all to the sound produced.

1.3 Undergraduate thesis goals and structure

Given how little dynamic aspects of guitars are investigated, the present work is proposed
in order to contribute to the evolution of this area of knowledge. Following section 1.3.1 is to
concisely develop and summarize that intention.
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1.3.1 Objectives

The general objective of this work is to describe the dynamic properties of a Stratocaster
guitar model by applying experimental and computational modal analysis methods, and so
develop the mechanical engineering capabilities to deal with acoustic and music issues.

The marked main goal is directly connected to several specific points, which shall be
listed hereinafter:

• To obtain the first four structural resonant frequencies of the guitar, as well as the mode
shapes related to them.

• To validate an output-only modal analysis method;

1.4 Thesis structure

The work is divided in order to be the most logical and as fluid as possible. For that,
subsections are used and the general argument exposition sequence is easily observed through its
titles.

The text is divided henceforth in three chapters. The second one introduces a literature
review over what has already been studied and developed in this thesis topics, like general
mechanical vibrations theory and some other tools and methods of the same context. Authors’
views and interpretations on these subjects are also considered.

In the third chapter, the methods and general aspects on which the work was developed
are described. This description is supported by the contents of the previous sections.

Finally, chapter four exposes all the results achieved both by the experiments and the
post-processing stages, while the conclusion and global considerations over the work here
registered are presented in chapter five.
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2 State of the Art

This part comprises all theoretical and developed knowledge of engineering that is related
to mechanical vibrations and necessary for the full understanding of the work. Based on classical
and modern literature, the text also features content on two of the pillars of the analyses made:
the impact hammer testing - used to get the data - and the output-only modal analysis method
of frequency domain decomposition. Finally, the specific field of electric guitars studies in
vibroacoustics is addressed and reviewed.

2.1 Mechanical Vibrations theory

Often invisible to the eyes, mechanical vibrations are present in most of the movements
a person comes across during a common day. People or cars passing by impact the floor, the
speakers of an amplifier oscillate and transmit music, vocal cords move from side to side and
have their lengths modified to make people talk and dogs bark. One way or another, all of this
can be identified as vibrations.

The phenomena of mechanical vibrations is necessarily associated with a regime of
oscillations that elastic materials produce to reach a stable position (NETO, 2007). Any solid
body, then, has the tendency to oscillate under excitation, in order to reach a stable state. This is
known as the "kinetic stability" and was first noted by Ziegler (1956).

But more than the relevance of passively using the mechanical vibrations theory to
measure and observe how things oscillate in different situations, this field of knowledge is even
more important as it can produce specific parameters derived by various characteristics of the
bodies (such as geometry, mass and materials) that are related to the way these bodies would
react to external stimuli. These are the so-called modal parameters and are usually of most
relevance to the study of vibrating bodies because they can help engineers both in project and
fail-preventing stages of devices or mechanisms.

One of the necessary steps to do so is to mathematically describe a physical model
representing the oscillatory behavior of mechanical structures. For example, in order to obtain
the response of a body in various configurations (submitted or not to external forces) models -
such as the mass-spring-damper shown on Figure 2 - are developed and, in combination with
their motion expressions (such as Equation 2.1 below) it is possible to describe the behavior over
time or frequency of the investigated moving part.

mẍ+ cẋ+ kx = f(t) (2.1)

This model is said to have only one degree of freedom (DOF). However, the system
possesses a mass (m), a damping element (c) and a stiffness element (k), associated respectively
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Figure 2 – Elementary model of 1 degree of freedom

Source: adapted from Mucheroni (2012).

to the mass acceleration (ẍ), velocity (ẋ) and displacement (x). The excitation force (f(t)) -
an external stimuli - can be null, determining if the vibration is free or forced (MUCHERONI,
2012). Considering all elements, a second order system is formed.

With the resolution of Equation 2.1, modal parameters can be reached through the
solution of an eigenvalue problem (RAO, 2009). One of the most important of these parameters
is the undamped natural frequency (ωn). According to Rao (2009), this is the value of frequency
(generally given in rad/s or Hertz) in which a dynamic system tend to oscillate on free vibrations
(i. e. when there is no external force acting). However, a real system has not only one natural
frequency: because a body can be identified as a composition of infinite moving parts (degrees of
freedom), Leckar e Sampaio (2000) stated that a n-DOF system may have n natural frequencies.
The first of these values is obtained by the equation 2.2, considering the equivalent mass and
siffness (keq) of the system for the 1st DOF.

ωn =

√
keq
m

(2.2)

In realistic applications, of course, the relevant natural frequencies are of finite amount.
This is due to the existence of modes of vibration (and extended not only to the frequencies
themselves but also to the shapes at which their displacements occur). In terms of energy, higher
modes tend to have a lower associated levels associated with, what causes modes and natural
frequencies of high order to be irrelevant for the actual oscillations (JARVIS, 2017).

Aside the natural frequencies and modes shapes, another modal parameter is usually
important: the normal damping associated with every mode, which is linked with the rate of
amplitude diminish, is expressed as the damping ratio ζ (STEIDEL, 1989). This variable is
always positive, being ζ = 0 associated with an undamped system, ζ < 1 an underdamped system,
ζ = 1 a critically damped system and ζ > 1 related to an overdamped system (FELICIO, 2010).
The characteristics of each kind of system with respect to the factor ζ are well-defined and can
be observed in Figure 3.
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Figure 3 – Normalized frequency response of a second order system for different damping factors

Source: adapted from Felicio (2010)

Furthermore, the values of ζ can be determined, in the case of the single DOF system,
with the aid of equations 2.3 and 2.4 (RAO, 2009).

ζ =
c

c̄
(2.3)

In which c is the damping coefficient of the system and c̄ is the critical damping coeffi-
cient.

c̄ = 2
√
km (2.4)

Having depicted the concepts of natural frequency and damping factor, one important
aspect remains to characterize vibrational modes: their shape. On that matter, the beam is a
commonly used representation, as this structure is abundant both for mechanical and civil
engineering. Taken as a thin straight frame (with its length much bigger than its cross-section)
over which only transversal forces act (TIMOSHENKO; GERE, 1983), if free constraints are
considered, the first four modes of a 760 mm beam can be depicted just as in Figure 4.

Let a return be made to the eigenvalue problem mentioned. It is based on the resolution
of generalization of the homogeneous part of Equation 2.1, that is, Equation 2.5 below:

[m]~̈x+ [c]~̇x+ [k]~x = ~0 (2.5)

Rao (2009) defines that a solution of that equation is given in the form of a set of constants
multiplied by a function in time. If these constants are named Xi for each ith DOF, a vector
~X = [X1X2...Xn]T can be formed for each vibration mode. This vector is called eigenvector
and stores the relative position the DOFs assume on the mode taken (RAO, 2009).
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Figure 4 – First four vibration mode shapes of a free-free beam

Source: Author.

Lastly, mathematical manipulations lead to Equation 2.6, that is a generalization to obtain
all natural frequencies ω of the system:

([k]− ω2[m]) ~X = ~0 (2.6)

From an experimental standpoint, however, it is not simple to obtain vibrational shapes
and other modal characteristics and patterns of one given dynamic system. There are a handful of
possibilities of which processes can be made to get reliable results, and these choices are related
mainly to the limiting factors of the tests: whether the input is known or not, what is the nature of
this input, where the sensors are attached and what is the level of noise in data are all important
aspects that must be taken into account. The knowledge of modal analysis allows engineers to
make smart picks on that matter, and so that is the logical next step to be talked over.

2.2 Modal analysis

In the study of dynamics, the main goal is to describe, through time, the responses of a
certain system to forces and initial conditions. In modal analysis, on the other hand, the objective
becomes to characterize a system through its modal parameters: their natural frequencies,
damping factors and modes shapes. This is useful because these values are global (depending on
the system as a whole), and in the end this kind of analysis allows for a simpler definition of the
dynamic system, since less parameters are needed for a complete characterization (WAGNER,
2017).
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Modal analysis is a distinct topic of many engineering fields. It is relevant, for example,
to structures in civil engineering, control circuits in electric engineering and rotary shafts
that transmit torque that mechanical engineers develop. Ultimately, modal analysis consists in
showing variables of interest over a changing frequency - that is often treated as an input to the
system.

The sequence of actions to indeed obtain modal parameters (such as the previously
mentioned natural frequencies, mode shapes and damping factors) is generally not obvious. To
begin with, the analysis may be divided into two categories: experimental modal analysis (EMA)
and operational modal analysis (OMA) (MIELOSZYK et al., 2015). The main difference is that
EMA includes both input and output data, while OMA counts only with the output info. For this
reason, OMA is also called output-only modal analysis (OOMA), and that is the way it shall be
treated on the present work.

The OOMA perspective is selected when it is difficult to measure the input of the
modal testing. This is constantly the case in civil engineering applications, given the difficult to
implement sensors efficiently in big structures under enviromental excitations (LJUNG, 1987).
Into that class, a few numerical algorithms have been developed over the years: SSI-COV, SSI-
DATA (in terms of subspace stochastic identification) and frequency domain decomposition
(FDD, a single degree of freedom based process) are some of the numerical techniques that can
be applied (CHAUHAN, 2015).

As the case of this work is of challenging evaluation of the inputs - and, moreover, the
output has high level of noise - the next sections are intended to be more focused on the OOMA
method of FDD. The obtaining of the output signal will be treated in more detail with a piece of
text on the impact hammer test, also applied in the present case.

2.2.1 Impact hammer test

There are two main input sources for modal analyses: the shaker and the impact hammer
(CRYSTAL INSTRUMENTS, 2019). The option to use one or another on modal analyses offers
at the same time possibilities and limitations. The shaker, for example, excite a wide range of
frequencies for sure, but generally at higher prices. Along with the need to attach the shaker to
the structure tested, it might be a more efficient decision to choose for the hammer, which is a
reasonably cheaper tool (REYNOLDS; PAVIC, 2000). The negative aspect of the hammer in
face of the shaker is that it is usually not capable of exciting wide frequency ranges (CRYSTAL
INSTRUMENTS, 2019).

In theory, considering an impulse taken over an infinitesimal time, all frequencies of
a system would be excited (FELICIO, 2010). One of the ways to represent the unit impulse
function is given by the Equation 2.7, that describe the known Dirac’s delta function:

δ(t) = lim∆t→0


1

∆t
, t ≤

∣∣∣∆t
2

∣∣∣
0, t >

∣∣∣∆t
2

∣∣∣ =

{
+∞, t = 0

0, t 6= 0
(2.7)
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This means that the unit impulse function is null at any given moment, except at t = 0,
where the function becomes infinite. The impulse is said unitary when its integral in the entire
time domain equals one, as shown on Equation 2.8. The function must be multiplied by the
magnitude of the impact for actual test applications.

∫ +∞

−∞
δ(t)dt = 1 (2.8)

The goal of the hammer impact test is to mimic the impulse entry on the system. However,
in a real experimental testing it is not easy to prevent double impacts of the hammer. Aside
that, as seen above the impact has a infinitesimal duration, which is impossible in reality. These
limitations result in having a narrower range of frequencies excited by the impact force. To get
around that problem, impact hammers with different designs are used for different purposes,
being selected in terms of structure and the targeted range of frequencies. Time and frequency
domain features of different hammer devices are presented in Figure 5.

Figure 5 – Frequency content of various pulses

Source: adapted from Agilent Technologies (2019).
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As it is easily deductible from Figure 5, the hardness of hammers’ tips are the most
important factor to get reliable outputs or not in a given frequency range. For example, still
according to Figure 5, if one is to excite frequencies over 1 kHz, the only satisfactory hammer
would be the hard one.

Another aspect that must be taken into account for the test to be well-succeeded is the
expected shape of the modes of vibration. An impulse over a node of a mode, for example, would
not cover that mode even with the right device. For this reason, it is generally advisable to impact
the structure on multiple points.

2.2.2 An output-only method: the frequency domain decomposition

The frequency domain decomposition (FDD) is one of the newest OOMA methods
developed and also one of the most practical. According to Rune et al. (2000), FDD approach
allows an accurate determination of natural frequencies and mode shapes, even using signals
with high levels of noise.

OOMA techniques can be arranged in two different categories: parametric (in time
domain) and non-parametric (in frequency domain) (MIELOSZYK et al., 2015). Le e Tamura
(2009) affirmed that non-parametric methods are better on obtaining modes shapes and natural
frequencies, as parametrics, on getting damping factors. Other than more suitable to define
natural frequencies and mode shapes, FDD offers also less computational cost than stochastic
subspace identification (SSI) methods (RUNE et al., 2000).

Tong et al. (2005) states that the FDD technique is capable of identifying closely coupled
modes by applying singular value decomposition (SVD) of multiple frequency signals. Even
though the mathematical interpretation of the method is not particularly interesting for the
goals of this work, it is worth saying that the main progression that technique provides is the
fundamentally the division of the response in single degree of system (SDOF) systems (RUNE
et al., 2000). This ends up causing complex multiple inputs and outputs (MIMO) systems to turn
into various singular input and output (SISO) arrangements, facilitating the analysis.

In terms of application, it is recommended that the method should be applied under
specific circumstances such as white noise excitation, small damping and orthogonal mode
shapes (MIELOSZYK et al., 2015). The white noise excitation is not the case for the present
work (since impacts are employed). However, due to the poor quality of measured signals in
terms of noise, the other OOMA methods can be less reliable. Other than that, still according to
Mieloszyk et al. (2015) the results should be trustworthy even if the white noise suggestion is
not followed. As for the instrumentation steps, Section 3 will lay over this topic.

2.3 Vibroacoustics on guitars

Although most scientists are not mainly occupied with studies of vibroacoustics specif-
ically on guitars or other musical instruments, the field has some developing and well-known
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reference authors. Multiple are the views and approaches of these productions. Wallmark et al.
(2018) conducted experiments to evaluate timbre perception of various instruments and at the
same time correlate the data with neural activity of the subjects; Fujiso et al. (2009) performed
a complete modal analysis of guitars with the same geometry and construction constrains, but
diverse materials to estimate how the change on this feature affects sound; Fleischer e Zwicker
(1998) operated tests to compare the energy different bridge systems transmit to the body of the
instrument; Paté (2014) mixed pure vibroacoustics with perception and psychology to investigate
solid body electric guitars; Pinto et al. (2016) correlated guitars made with traditional and
Brazilian woods. A few manuals and collections on guitar design and manufacturing were also
published, such as French (2009) and Koch (2001), in addition to general acoustics engineering
works like Fahy (2005).

There are many more examples of recent contributions to the field, but one of them is
directly applicable and, therefore, of interest to the development of this thesis. Russell e Pedersen
(1999) ran an experimental modal analysis on a solid guitar with body shape (an Epiphone
Coronet) similar to a Stratocaster, and obtained both the shapes and the natural frequencies of
the first five structural modes of the instrument. Figure 6 allow the observation that both for the
1st and 2nd modes, the guitar behaves just like a free-free beam. This is important as the actual
interpretation the present work offers towards the investigated guitar is of the instrument as a
beam. The same cannot be said of the 3rd and 4th modes, as it is noticeable that components of
torsion are present on these shapes. For this reason, the cited results shall be set as reference for
the analysis that follow. The damped natural frequencies (fn) are listed in Table 1. Those values
also function as standpoints for the upcoming evaluations.

Figure 6 – First four mode shapes of an Epiphone Coronet guitar

Source: adapted from Russell e Pedersen (1999).
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Table 1 – First four mode natural frequencies of an Epiphone Corona guitar

Mode fn [Hz]
1 55.3
2 160.1
3 189.4
4 300.5

Source:Russell e Pedersen (1999).
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3 Materials and methods

Three different steps were conceived for the investigation as a whole: at first, both the
analytical and simulation approach of a beam were put into place. The reference for that was
a piece of AISI 1020 steel with a rectangular cross section of 29.7 by 1.4 mm and 760 mm
long. The properties of the cited material compose the Table 2. Both softwares MATLAB and
COMSOL were used ah that initial stage, being MATLAB employed for the analytical treatment
and COMSOL for the finite elements analysis (FEM) implementation.

Table 2 – Physical and geometric properties of the beam

Parameter Value
Young’s modulus [GPa] 210

Density [kg/m3] 7870
Lenght [mm] 760
Width [mm] 29.7

Thickness [mm] 1.4
Source: MatWeb (2016).

After the modal analysis performed on finite element model of the structure, impact tests
were performed with the actual beam. For that, four ADXL 335 accelerometer sensors were
placed along the beam. Figures 7 and 8 show this part of the instrumentation and a graphic
scheme with the distances between sensors. The accelerometers are highlighted in Figure 7 by
orange circles and represented in Figure 8 by points s1, s2, s3 and s4. These sensors are capable
of measuring 0.5 to 1600 Hz on axes X and Y (which was, in fact, used), and 0.5 to 550 Hz
on axe Z under 1.8 to 3.6 V of input voltage (ANALOG DEVICES, 2009), which shows their
suitability for the tests.

As it is seen in Figure 7, the beam is divided into 20 elements of equal length. This
information is important as the tests were run using the location of elements as reference. Due to
the expected mode shapes, in order to excite the first four natural frequencies of the structure,
four impact tests were made: two with 10 non-measured impulses each over the elements 17
and the other two with the same amount of unknown excitations on the element 10. Figure 9
presents the location of the external forces applied on the beam. Impulses were made by hitting
the structure with two different devices: a ruler and a screwdriver.

Aside from that, to assure that the constrains of free edges and transversal displacements
would be predominant on the real oscillations, small pieces of string were attached to the tips
and served as support for the suspended beam. In this way, not only the previously mentioned
conditions were reached but also very low values of damping have been induced, maintaining,
thus, the dynamical characteristics of the system. The downside of this assembly is that the
wire itself induces a low pendular frequency on the oscillations that is not related to the modal
frequencies of the steel beam. At the same time, thin pieces of stiff unknown metal were put to
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Figure 7 – Setup for the beam’s tests

Source: Author.

Figure 8 – Sketch of the sensor’s disposal on the beam

Source: Author.

Figure 9 – Sketch of the force’s application disposal on the beam

Source: Author.

use to hold the strings, which could induce different resonances with respect to the idealized
system. The general aspects of the installation can also be seen in Figure 7.

For data acquisition, a straightforward setup was assembled. An Arduino UNO board
served as electric voltage source for the accelerometers, and the output of the sensors was
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captured with the National Instruments cDAQ-9178 chassis equipped with a NI-9201 voltage
measurement modulus. As the electrical voltage and data acquisition were provided by different
devices, to set one unique reference for the measurements, the ground of both the Arduino and the
chassis had to be assigned as the same. That was reached by the use of a regular protoboard. An
experiment routine was developed in LabView for the tests - as additional software parameters,
the sampling frequency was 10000 Hz and the tests time, 10 seconds. The depicted setup can be
observed in Figure 10.

Figure 10 – Setup of the instrumentation equipment

Source: Author.

The third and last step of the process included the electric guitar - more specifically, a
Squier by Fender Stratocaster 50th Anniversary. Experimental tests with the instrument were
basically the same as with the beam: using the same fixation setup, four ADXL 335 accelerome-
ters were distributed along the guitar (two on the body and two on the neck), as shown in Figure
11, but this time six tests were performed. The sensors fixed to the instrument are highlighted in
yellow.

Each of the six tests covered six impacts, making a total of 36 impulses of unmeasured
force at the two locations. The sketch in Figure 12 provides the distances between sensors (points
s1 to s4) on the structure.

Just like with the beam, there were two chosen locations for the impulses: near the bridge
(the metallic structure that holds the strings on the bottom part of the instrument) and by the
junction of neck and body. These positions are noted on Figure 13.

For the post-processing part, the time-domain data acquired on tests (for the beam and the
guitar) was considered as the input for the routines. The numerical procedures, in a first moment,
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Figure 11 – Setup for the guitar’s tests

Source: Author.

Figure 12 – Sketch of the sensor’s disposal on the guitar

Source: Author.

Figure 13 – Sketch of the force’s application on the guitar

Source: Author.

were responsible for taking the fast Fourier transform of this data (fft funcion in MATLAB). After
that, an algorithm of the output-only modal analysis method frequency domain decomposition
was applied, in order to obtain the approximated form of the first four modes of vibration of the
structures. The basic routine used is presented at the Appendix A.
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4 Results and discussion

Since the procedures described in section 3 were applied almost the same both for the
beam and the guitar, the present section is divided into two subsections, each one for one of these
systems. The beam is treated, from now on, as a known structure used to verify and validate the
analysis method to the guitar, the real intended investigation matter.

4.1 Bending vibration of a slender beam

For the beam, three main steps were enforced: the analytical calculations, and the
simulation and experimental parts.

4.1.1 Analytical model

This stage consisted on the implementation of natural frequencies equations for slender
beams on free vibration taken from Inman (2014) (Equations 4.1 and 4.2). According to that
author, the undamped natural frequencies of slender beams can be approximated using:

ωn = βn
2

√
EI

ρA
(4.1)

fn =
ωn

2π
(4.2)

In which ωn is the natural frequency (in rad/s), βn the dimensionless weighted natural
frequency (both for the mode n), E the Young’s modulus of the beam, I is moment of inertia, A
the cross-section area of the beam, ρ the density of its material and fn the natural frequency of
the nth mode in Hertz.

The values of βn for each mode are presented in Table 3 below:

Table 3 – First four βn of the beam - Analytical

Mode βn
1 6.22
2 10.33
3 14.46
4 18.60

Source: Inman (2014).

The same cited reference also defines an expression for the mode shapes of slender
beams.

σn =
coshβnl − cosβnl
sinhβnl − sinβnl

(4.3)
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−σn(sinhβnx+ sinβnx) (4.4)

In which σn is the mode shape coefficient of each mode, l is the length of the beam and
x the position on the structure.

Ultimately, the natural frequencies and mode shapes obtained can be observed in Table 4
and Figure 14, respectively.

Table 4 – First four natural frequencies of the beam - Analytical

Mode fn [Hz]
1 12.87
2 35.48
3 69.55
4 114.97
Source:Author.

Figure 14 – Mode shapes of a slender beam - Analytical
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4.1.2 Simulation

In COMSOL, with the beam physics and an automatic fine mesh generated by the
software, both mode shapes and natural frequencies were almost identical to the analytical
results. Figure 15 and Table 5 show these results. The error is obtained as the deviation between
the analytical and the simulation results, being the first of these values the reference.

Figure 15 – Modes shapes - Simulation

Source: Author.

Table 5 – First four natural frequencies of the beam - Analytical and simulated

Mode fn [Hz] (analytical) fn [Hz] (simulation) Error [%]
1 12.87 12.95 0.62
2 35.48 35.69 0.59
3 69.55 69.99 0.63
4 114.97 115.78 0.71

Source:Author.

As seen in Table 5 the divergence between simulation and analytical results is minimal,
what induces that the FEM model used is satisfactory.

4.1.3 Excitation on element 10

The fast Fourier transform was applied on experimental measurements of the four sensors
for both test locations. The results are exposed below in form of the average Fourier transform -
in other words, the simple average of the transform of all signals. Results are organized from test
locations.

When the excitation force is made over element 10 (that is, the middle of the beam),
modes 2 and 4 were not excited since this location is a node of these mode shapes. In this sense,
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the second and fourth natural frequencies were not expected to show up in the responses to this
excitation. This is visible in Figure 16. Having the analytical and simulation results, it is not
expected, then, to observe frequencies around 35 and 115 Hz (roughly the 2nd and 4th natural
frequencies presented in Table 5).

Figure 16 – Previewed modes - E.10 impact

Source: Author.

However, as it is observable in Figure 17 and Table 6, probably because of minor
deviations on the locations of the impulses, a frequency of approximately 107 Hz appears as a
resonance. The error of the obtained values is compared to analytical results in the mentioned
Table.

Table 6 – First four natural frequencies of the beam - Analytical and experimental - E.10

Mode fn [Hz] (analytical) fn [Hz] (experimental) Error [%]
1 12.87 7.19 44.13
2 35.48 - -
3 69.55 65.46 5.88
4 114.97 107.20 6.76

Source:Author.
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Figure 17 – Superposition of average FFT’s - E.10 - All sensors
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As expected, the error of experimental results with the analytical method is greater than
observed on previous comparison - between FEM and analytical models. This happens because
the experimental data is produced, obviously, with the damping of the actual system (what was
not considered in neither of the previews methods). Another reason that could explain these
differences is associated to the fact that the experiment was performed under different conditions
than the idealized, as the wire fixation does not correspond to free boundaries conditions.

After the obtaining of experimental natural frequencies, the FDD method was utilized
on tests data. The resulting frequencies of the previous evaluation were converted to peaks
selected on the FDD computation. The results can be observed in Figure 18, in which sensors
positions are indicated by yellow circles (sensors 1 to 4, from the left to the right). It is prudent
to conjecture, also, that the higher deviance for the 1st mode could mean that this is, in fact, a
rigid body resonant mode, which is not the focus of this work.

If Figure 18 is compared to Figure 4, of course, the shapes do not look the same. However,
due to the fact that the experiments were made with only four sensors along the structure, it is
possible to state that, exceptionally to the representation of mode 1 on Figure 18, all segments
are coherent.

For the problematic mode 1, there are three options: for a first glimpse, the algorithm did
not function well for sensors 1 and 4 or 2 and 3, or the own data was inconsistent. This is true
because the expected final shape was of inverse values for sensor 1 with respect to 2, and 4 with
respect to 3, for the same line. The erratic impulses (both on amplitude and location) probably
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Figure 18 – Mode shapes - E.10 - FDD

Source: Author.

affected negatively the data. A deeper inside could point, also, to a resonance induced by the
setup of the experiment, or even to a rigid body mode. However, as it is shown on Figure 17,
there are not observable peaks on the region of the 1st resonance, what leaves no options for
further analyses without more experiments.

4.1.4 Excitation on element 17

If the impact is made on element 17 of the beam, it is expected that all first four natural
modes of the beam will be excited since element 17 does not coincide with a zero-displacement
position on the mode shape. That statement is confirmed by Figure 19, that shows that graphically.

For the average FFT of time data, however, again the frequency that is possibly related to
the second mode does not appear. This outcome is represented in Figure 20. Resonant frequencies
roughly coincide with those listed in Table 6. A comparison between these values, including the
error score, is presented on Table 7.

Table 7 – First four natural frequencies of the beam - Experimental - E.10 and E.17

Mode fn [Hz] (E.10) fn [Hz] (E.17) Error [%]
1 7.19 7.48 4.03
2 - - -
3 65.46 65.41 0.08
4 107.20 107.50 0.28

Source:Author.
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Figure 19 – Previewed modes - E.17 impact

Source: Author.

Table 7 provides information that confirms the relevance of both data sets took, as the
error is almost null for all resonances measured. It is safe to say, then, that these values of
frequency in fact implicate resonances. Of course, the questioning about the origin of the 1st of
the resonances remains.

Just as done with the element 10 data, the FDD function was executed, this time for the
selected frequency-data of the beam for the impacts on element 17. Figure 21 shows the shapes
obtained for the modes of vibration.

Differently than with the element 10, the FDD function was able to reproduce the 1st,
3rd and 4th mode shapes more precisely with the related input data - with the obvious detail that
the output data for the sensor 3 is slightly above expected on mode 1. Those overall better results
happened, possibly, because the element 17 was positioned close to the supportive cable - Figure
7 clearly shows that. For that reason, both the maximum deflection and momentum caused by
impacts are smaller than in element 10, giving then much more stability to this region of the
object. Being more stable, the inputs were also more reliable and directed to the center of the
element, what came out as more reliable input data.

Considering all tests made with the beam, the natural frequencies and mode shapes
experimentally obtained are most correctly represented on Table 7 and Figure 21, respectively.
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Figure 20 – Superposition of average FFT’s - E.17 - All sensors
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Figure 21 – Mode shapes - E.17 - FDD

Source: Author.

4.2 Guitar

The most relevant tests for this work were the ones ran on the Stratocaster guitar.
Differently than with the beam, however, no analytical or simulation results were reached as no
physical model neither material’s properties were available. Once again the results are divided by
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the locations of the impacts made. Mode shapes are shown from the neck (left) to the body (right)
of the instrument. Modes of vibration are previewed according to those of the free-free beam,
but it is convenient to affirm that, because of the torsional components of guitars vibrations from
its 2nd, 3rd and 4th modes and the difference of stiffness between guitars’ body and neck, the
predictions are nothing but rough standpoints.

4.2.1 Excitation on body

This impact location relates to the F2 force in Figure 13. Results henceforth are presented
similarly than with the beam. A careful look on Figure 22 leads to state that the impacts on the
body of the guitar may be problematic on excite two of the four modes investigated: the 1st (in a
less precarious way) and the 2nd.

Figure 22 – Previewed modes - Body impacts

Source: Author.

This, however, was not the case specially for mode 1. Figure 23 shows that the excitation
of the frequency of 56 Hz is captured by all sensors, while the 140.5 Hz mark is showed as
prominent, mainly, for the sensors 3 and 4. Figure 24 offers a partial explanation for that, as the
sensor 1 is located on a node of the 2nd mode.

Found resonant frequencies of Figure 23 are visually listed in Table 8.
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Figure 23 – Superposition of average FFT’s - Body - All sensors
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Figure 24 – Previewed modes and sensors location - Guitar

Source: Author.



4.2. Guitar 47

Table 8 – First four natural frequencies of the guitar - Impacts on the body

Mode fn [Hz]
1 56.00
2 140.50
3 186.00
4 212.00
Source:Author.

Having in hands the resonance frequencies, the OOMA method of FDD is applied to the
time data from the sensors with the excitation on the body of the instrument. Figure 25 shows
the modal shapes obtained.

Figure 25 – Mode shapes - Body - FDD

Source: Author.

With the mode shapes produced, a few observations can be made having Figure 6 as
reference: the mode 1 seem to be correctly put. The different magnitudes of displacement of
sensors 2 and 3 are explained both by the asymmetrical manner these sensors are disposed on
the guitar and the different properties of the locations to which they were attached. Mode 3, in
addition, was also satisfactorily shown, but the same cannot be said of modes 2 and 4. The fact
that these modes present smaller displacement on body sensors may have affected negatively
sensors data. Other aspects worth-mentioning for that go from the bad quality of the impacts on
the instrument to the sources of noise inputed to the measurement. Also, it is again plausible to
state that the suspended guitar is not an assembly with proper free boundary conditions.
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4.2.2 Excitation on the neck

In opposition to the other excitation location, the neck of the instrument corresponds to
the F1 force in Figure 13. Once again the same sequence of results presentation is granted in the
following parts.

The probable nodes locations that the impacts overlay are exposed in Figure 26. As it
can be seen, mode 2 should be only partially excited and could result on inferior results for the
natural frequencies and shapes with the FDD application.

Figure 26 – Previewed modes - Neck impact

Source: Author.

This possible defect is shown in the correlate FFT image. In Figure 27 it is observable
that the 2nd natural frequency is minoritarily perceived, especially by sensor 3 and not recognized
at all by sensor 1. That detail is noted in Figure 28.

Figure 24 provides an interpretation on why that fact occur, as the sensor 1 is positioned
right at a node of the 2nd mode of vibration.

Either way, all four resonant frequencies have highlighted appearances on Figure 27. The
values of these modal parameters are listed in Table 9 and compared with the ones obtained by
the previous test.

Finally, the FDD algorithm was performed once more, this turn with the data produced
by the impulses on the neck of the instrument. Figure 29 contains the obtained mode shapes.
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Figure 27 – Superposition of average FFT’s - Neck - All sensors
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Figure 28 – Superposition of average FFT’s - Neck - All sensors - 2nd natural frequency
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Once again modes 1 and 3 are correctly produced with the FDD method. This time,
distinctly than with the body Figures, mode 2 is also accomplished with relative precision. In
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Table 9 – First four natural frequencies of the guitar - Body and neck

Mode fn [Hz] (Body) fn [Hz] (Neck) Error [%]
1 56.00 56.17 0.30
2 140.50 140.80 0.21
3 186.00 185.00 0.54
4 212.00 209.70 1.09

Source:Author.

Figure 29 – Mode shapes - Neck - FDD

Source: Author.

that analysis, however, mode 4 is incorrect. The difference of stiffness between the body and
the neck of the guitar may have contributed to these errors in general, since vibrations certainly
propagates unequally through these structures. In addition, all flawed conditions discussed before
continued to act.
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5 Conclusions

The present work had as main objective to describe the dynamic characteristics of an
electric guitar through the performance of an output-only modal analysis. To do so, tools and
concepts of mechanical vibrations were put to use, such as concepts of dynamic systems under
different conditions of excitation, the application of Fourier transform on time domain signals
and the use of the output-only modal analysis method of frequency domain decomposition.

Having based all the actual analysis of the guitar on highly similar methods made over
a known structure - an instrumented slender beam - a few considerations can be made. In
the first place, it is easy to note that the analytical and simulation handling of the beam were
well-implemented, given the minor error between results of both natures.

With these references in hand and the bench tests done, it was possible to numerically
process experimental data and to compare it with the previous results. This was enlightening,
given the fact that three of the four first modal frequencies were obtained empirically with
reasonable precision. The absence of the 2nd modal frequency on rendered data, however, was a
strong indicator that the actual tests were not capable of offering full accurate evidences of the
true nature of the objects investigated.

The fact that experiments showed to produce some unreliable data was itself important
for the continuation of the analyses. With the connection of the different steps performed, the
deficiency of the test was recognized to be associated with two main factors: the location of
sensors and external input (the impulse forces made to excite the structure) were not optimized if
the nodes of modes are to be considered and the realized suspension method was not capable of
deliver real free constraints boundary conditions.

All arguments presented, it is possible to sustain that the beam formed, in general, an
efficient standpoint to the analyses on the guitar dynamic characteristics. Taking that object into
account, the experiments stumbled upon similar limitations. However, the substantial differences
of both structures played a parallel role in that stage of the work.

For instance, the fact that the guitar is composed of two main parts (the body and the
neck) with vast variation of stiffness makes sensors prove sensitive differences in terms of
magnitude of the output signal. Even though the response of the sensors were normalized, to
guarantee smoother results, the amplitudes kept their relative gap. This is not wrong per say, but
can be misleading as the FDD method, for example, do not take these particularities into account
properly.

Although these factors cannot be simply ruled out of any stage of the investigation, the
modal analysis functioned perfectly well in terms of obtaining the first four modal frequencies.
It is easy to attest this statement as all four frequencies appeared on the tests of both locations
with great similarity.

Finally, it is prudent to declare that while the FFT function used on MATLAB worked
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well with the guitar’s data in general, the FDD method had several problems that have prevented
totally reliable results. With exception of the 1st and 3rd modes for both locations and the 2nd

mode for the impacts on the neck of the instrument, mode shapes produced were untrustworthy.
Aside the questions already brought, the fact that guitar’s asymmetry deliver torsional components
to the vibrations makes even more important the usage of more than four sensors to correctly
detect modes shapes.

In terms of its technical intentions, the work can be considered satisfactory. The learning
curve towards the possibilities and limitations of OOMA, in company with the understanding
of the factors that have contributed for the results obtained, were crucial for the next steps to
emerge.

5.1 Next steps

Having concluded this investigation, a few possibilities on how to evolve modal analysis
methods employed arise. Two supplementary modifications could be made in order to produce
enhanced results: to make impacts on more locations (a sweep with an impact hammer would fit,
for example) and to use a shaker excitation in order to get around modes nodes and to guarantee
the stimulation of wider ranges of frequencies via white noise. The strategy of roving sensors
can also be applied, considering the context of limitations in number of available sensors.

Other possible adaptation regards the suspensions system of the guitar, as foam pieces
could be used to guarantee smaller influence of induced stiffness and damping.

Aside those suggestions, a modeling component could be added on the figure of a FEM
model of the guitar. This way, the existence of more solid standpoint references could assist on
the evaluation of experimental designing and testing.
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APPENDIX A – MATLAB routine -
Guitar - Impacts on body

1 c l c
2 c l e a r a l l
3 c l o s e a l l
4

5 n _ s e n s o r s = 4 ; % number o f s e n s o r s

6 x = l i n s p a c e ( 0 , 7 7 5 , 4 ) ;
7

8 %% T e s t 1

9

10 A_1 = x l s r e a d ( ’ t e s t _ 0 0 1 _ 0 0 8 . x l s x ’ ) ;
11

12 c o l o r = { [ 0 . 4 0 . 1 0 . 7 ] ; [ 0 . 5 0 . 7 0 . 2 ] ; [0 0 . 8 0 . 8 ] ; [ 0 . 9 0 . 6
0 ] } ;

13 f o r i = 1 : n _ s e n s o r s % p l o t o f t i m e r e s p o n s e − t e s t 1

14 y_1 = A_1 ( : , i ) ;
15 % f i g u r e

16 % p l o t ( y_1 , ’ c o l o r ’ , c o l o r { i } ) ;

17 % %t i t l e ( [ ’ Se ns or s ’ , num2s t r ( i ) , ’ − G u i t a r − Body − T e s t

1 ’ ] ) ;

18 end
19

20 %% T e s t 2

21

22 A_2 = x l s r e a d ( ’ t e s t _ 0 0 1 _ 0 0 9 . x l s x ’ ) ;
23

24 f o r j = 1 : n _ s e n s o r s % p l o t o f t i m e r e s p o n s e − t e s t 2

25 y_2 = A_2 ( : , j ) ;
26 % f i g u r e

27 % p l o t ( y_2 , ’ c o l o r ’ , c o l o r { j } ) ;

28 % %t i t l e ( [ ’ Se ns or s ’ , num2s t r ( j ) , ’ − G u i t a r − Body − T e s t

2 ’ ] ) ;

29 end
30
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31 %% T e s t 3

32

33 A_3 = x l s r e a d ( ’ t e s t _ 0 0 1 _ 0 1 0 . x l s x ’ ) ;
34

35 f o r j = 1 : n _ s e n s o r s % p l o t o f t i m e r e s p o n s e − t e s t 3

36 y_3 = A_3 ( : , j ) ;
37 % f i g u r e

38 % p l o t ( y_3 , ’ c o l o r ’ , c o l o r { j } ) ;

39 % %t i t l e ( [ ’ Se ns or s ’ , num2s t r ( j ) , ’ − G u i t a r − Body − T e s t

3 ’ ] ) ;

40 end
41

42 %% Average Responses

43

44 f s = 1 e4 ;
45 T = 1 / f s ;
46 s i z e _ v i b = 2 e4 ;
47

48 bumps_1 = [ 3 . 2 9 5 e3 3 .494 e4 6 .414 e4 9 .296 e4 1 .216 e5 1 .515 e5 ] ; %

bumps t e s t 1

49 bumps_2 = [ 2 . 5 9 4 e4 5 .376 e4 8 . 3 4 e4 1 .115 e5 1 .422 e5 1 .703 e5 ] ; %

bumps t e s t 2

50 bumps_3 = [ 2 . 5 0 6 e4 5 .174 e4 8 . 1 9 e4 1 .098 e5 1 .391 e5 1 .686 e5 ] ; %

bumps t e s t 3

51 bumps = [ bumps_1 bumps_2 bumps_3 ] ; % v e c t o r o f a l l bumps

52

53 % A l l t e s t s

54 n_peaks = l e n g t h ( bumps ) ;
55

56 f o r n = 1 : n_peaks / 3
57 f o r k = 1 : n _ s e n s o r s
58 A ( : , k , n ) = A_1 ( bumps_1 ( n ) : ( bumps_1 ( n ) + s i z e _ v i b ) , k ) ;
59 end
60 end
61

62 f o r n = 1 : n_peaks / 3
63 f o r k = 1 : n _ s e n s o r s
64 A ( : , k , n +( n_peaks / 3 ) ) = A_2 ( bumps_2 ( n ) : ( bumps_2 ( n ) +

s i z e _ v i b ) , k ) ;
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65 end
66 end
67

68 f o r n = 1 : n_peaks / 3
69 f o r k = 1 : n _ s e n s o r s
70 A ( : , k , n +(2∗ n_peaks / 3 ) ) = A_3 ( bumps_3 ( n ) : ( bumps_3 ( n ) +

s i z e _ v i b ) , k ) ;
71 end
72 end
73

74 f o r i = 1 : n_peaks
75 A( : , 1 , i ) = A( : , 1 , i )−mean (A( : , 1 , i ) ) ;
76 A( : , 2 , i ) = A( : , 2 , i )−mean (A( : , 2 , i ) ) ;
77 A( : , 3 , i ) = A( : , 3 , i )−mean (A( : , 3 , i ) ) ;
78 A( : , 4 , i ) = A( : , 4 , i )−mean (A( : , 4 , i ) ) ;
79 A ( : , : , i ) = A ( : , : , i ) / max ( max (A ( : , : , i ) ) ) ;
80 end
81

82 f o r n = 1 : n_peaks
83 f o r k = 1 : n _ s e n s o r s
84 np = l e n g t h (A) ;
85 f r e q = 0 : ( f s / np ) : ( f s / 2 ) ;
86 temp = abs ( f f t (A ( : , k , n ) ) / round ( np / 2 ) ) ;
87 Y ( : , k , n ) = temp ( 1 : l e n g t h ( f r e q ) ) ;
88 end
89 end
90

91 f r e q _ s 1 = s q u e e z e (Y ( : , 1 , : ) ) ; % s e n s o r 1

92 f r e q _ s 2 = s q u e e z e (Y ( : , 2 , : ) ) ; % s e n s o r 2

93 f r e q _ s 3 = s q u e e z e (Y ( : , 3 , : ) ) ; % s e n s o r 3

94 f r e q _ s 4 = s q u e e z e (Y ( : , 4 , : ) ) ; % s e n s o r 4

95

96 f o r k = 1 : n _ s e n s o r s
97 i f k == 1
98 f r e q = f r e q ( 1 : round ( np / 2 ) ) ;
99

100 f i g u r e
101 p l o t ( f r e q , db ( f r e q _ s 1 ) , ’k−−’ , ’ l i n e w i d t h ’ , 0 . 3 ) ;
102 hold on
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103 p l o t ( f r e q , db ( mean ( f r e q _ s 1 ’ ) ) , ’ l i n e w i d t h ’ , 3 , ’ c o l o r ’ ,
c o l o r {k } ) ;

104 gr id minor
105 x l a b e l ( ’ F requency ( Hz ) ’ , ’ f o n t s i z e ’ , 1 2 ) ;
106 y l a b e l ( ’ Magni tude ( db ) ’ , ’ f o n t s i z e ’ , 1 2 ) ;
107 %t i t l e ( [ ’ Average FFT − G u i t a r − Body − Se ns or s ’ ,

num2s t r ( k ) ] ) ;

108 xl im ( [ 2 0 3 2 0 ] )
109

110 e l s e i f k == 2
111 f r e q = f r e q ( 1 : round ( np / 2 ) ) ;
112

113 f i g u r e
114 p l o t ( f r e q , db ( f r e q _ s 2 ) , ’k−−’ , ’ l i n e w i d t h ’ , 0 . 3 ) ;
115 hold on
116 p l o t ( f r e q , db ( mean ( f r e q _ s 2 ’ ) ) , ’ l i n e w i d t h ’ , 3 , ’ c o l o r ’ ,

c o l o r {k } ) ;
117 gr id minor
118 x l a b e l ( ’ F requency ( Hz ) ’ , ’ f o n t s i z e ’ , 1 2 ) ;
119 y l a b e l ( ’ Magni tude ( db ) ’ , ’ f o n t s i z e ’ , 1 2 ) ;
120 %t i t l e ( [ ’ Average FFT − G u i t a r − Body − Se ns or s ’ ,

num2s t r ( k ) ] ) ;

121 xl im ( [ 2 0 3 2 0 ] )
122

123 e l s e i f k == 3
124 f r e q = f r e q ( 1 : round ( np / 2 ) ) ;
125

126 f i g u r e
127 p l o t ( f r e q , db ( f r e q _ s 3 ) , ’k−−’ , ’ l i n e w i d t h ’ , 0 . 3 ) ;
128 hold on
129 p l o t ( f r e q , db ( mean ( f r e q _ s 3 ’ ) ) , ’ l i n e w i d t h ’ , 3 , ’ c o l o r ’ ,

c o l o r {k } ) ;
130 gr id minor
131 x l a b e l ( ’ F requency ( Hz ) ’ , ’ f o n t s i z e ’ , 1 2 ) ;
132 y l a b e l ( ’ Magni tude ( db ) ’ , ’ f o n t s i z e ’ , 1 2 ) ;
133 %t i t l e ( [ ’ Average FFT − G u i t a r − Body − Se ns or s ’ ,

num2s t r ( k ) ] ) ;

134 xl im ( [ 2 0 3 2 0 ] )
135
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136 e l s e i f k == 4
137 f r e q = f r e q ( 1 : round ( np / 2 ) ) ;
138

139 f i g u r e
140 p l o t ( f r e q , db ( f r e q _ s 4 ) , ’k−−’ , ’ l i n e w i d t h ’ , 0 . 3 ) ;
141 hold on
142 p l o t ( f r e q , db ( mean ( f r e q _ s 4 ’ ) ) , ’ l i n e w i d t h ’ , 3 , ’ c o l o r ’ ,

c o l o r {k } ) ;
143 gr id minor
144 x l a b e l ( ’ F requency ( Hz ) ’ , ’ f o n t s i z e ’ , 1 2 ) ;
145 y l a b e l ( ’ Magni tude ’ , ’ f o n t s i z e ’ , 1 2 ) ;
146 %t i t l e ( [ ’ Average FFT − G u i t a r − Body − Se ns or s ’ ,

num2s t r ( k ) ] ) ;

147 xl im ( [ 2 0 3 2 0 ] )
148 end
149 end
150

151 f i g u r e
152 p l o t ( f r e q , db ( mean ( f r e q _ s 1 ’ ) ) , ’ c o l o r ’ , c o l o r {1} ) ;
153 hold on
154 p l o t ( f r e q , db ( mean ( f r e q _ s 2 ’ ) ) , ’ c o l o r ’ , c o l o r {2} ) ;
155 hold on
156 p l o t ( f r e q , db ( mean ( f r e q _ s 3 ’ ) ) , ’ c o l o r ’ , c o l o r {3} ) ;
157 hold on
158 p l o t ( f r e q , db ( mean ( f r e q _ s 4 ’ ) ) , ’ c o l o r ’ , c o l o r {4} ) ;
159 x l a b e l ( ’ F requency ( Hz ) ’ , ’ f o n t s i z e ’ , 1 2 ) ;
160 y l a b e l ( ’ S p e c t r a l D e n s i t y ( g / Hz ) ’ , ’ f o n t s i z e ’ , 1 2 ) ;
161 %t i t l e ( ’ S u p e r p o s i t i o n o f average FFT ’ ’ s − G u i t a r − Body − A l l

s e n s o r s ’ ) ;

162 l egend ( { ’ s1 ’ , ’ s2 ’ , ’ s3 ’ , ’ s4 ’ } , ’ L o c a t i o n ’ , ’ b e s t ’ )
163 xl im ( [ 2 0 3 2 0 ] )
164

165 %% Output−o n l y modal a n a l y s i s

166

167 B = [ A_1 ; A_2 ] ;
168 [SV , F , Phi , I , SV_nums ] = fdd (B , [ ] , f s , [ ] ) ; % f r e q u e n c y−domain

d e c o m p o s i t i o n

169

170 f i g u r e
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171 c l f
172 f o r i = 1 : s i z e ( Phi , 2 )
173 s u b p l o t ( s i z e ( Phi , 2 ) , 1 , i )
174 z = Phi ( : , i ) ;
175 p l o t ( x , abs ( z ) . ∗ cos ( ang le ( z ) ) )
176 hold on
177 p l o t ( x ,−abs ( z ) . ∗ cos ( ang le ( z ) ) )
178 hold o f f
179

180 i f i == s i z e ( Phi , 2 )
181 x l a b e l ( ’ S t r u c t u r e p o s i t i o n (mm) ’ )
182 e l s e
183 x t i c k l a b e l s ( [ ] )
184 end
185 a x i s t i g h t
186 y l a b e l ( [ ’Mode ’ num2str ( i ) ] )
187 end
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