
UNIVERSIDADE FEDERAL DE SÃO CARLOS
CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE PRODUÇÃO

Daily Morales

SHEWHART-TYPE LOCATION CONTROL
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Abstract
Through their statistical limits, statistical control charts are essential tools for process
monitoring and control, helping to interpret its stability and detect deviations when the
process is under the action of special causes. This sensitivity is an advantage for processes
needing precise control but is a drawback where some slack in the process is permissible.
Even though small attributable causes may be inherent to the process, their removal may
become impossible, impractical, or expensive, and control charts need to be "desensitized"
in detecting small shifts that are not necessarily of practical significance. The increasing
availability of data made possible by the intensive use of sensors and data collectors,
typical of Industry 4.0, have made of profile monitoring an up-and-coming area of research,
and the location control chart a standing out alternative due to its applicability and
simplicity, keeping all the data information observed in each location where the profile
needs to be evaluated. This thesis discusses the need for desensitization of the location
control charts to ensure that signs of an out-of-control process that do not present a
high risk of producing non-conforming items are ignored. Using process capability indices
Ĉp and Ĉpk, this thesis aimed to propose and evaluate a location control graph model
with expanded limits based on Shewhart-type control charts, considering its practical and
economic significance. By comparing the results obtained for the location control chart
using the traditional approach and the location control chart with expanded limits based
on Ĉp and Ĉpk proposed in this thesis, was observed that the expanded control limits had
performed better. There was a significant reduction in the likelihood of signaling that the
process is out-of-control when this is irrelevant or, at least, does not present practical or
economic significance. Since the location control chart developed does not aim to control
the stability of the process but to prevent the process from producing items outside the
specification limits, the results demonstrate that, from the economic point of view, it
constitutes a more interesting alternative to the traditional approach.

Keywords: profile monitoring, process capabiblity indices, location control chart, practical
significance.



Resumo
Através de seus limites estatísticos, os gráficos de controle estatístico são ferramentas essen-
ciais para monitoramento e controle de processos, ajudando a interpretar sua estabilidade
e detectar desvios quando o processo está sob a ação de causas especiais. Essa sensibilidade
é uma vantagem para os processos que precisam de controle preciso, mas é uma desvan-
tagem onde alguma folga no processo é permitida. Embora pequenas causas atribuíveis
possam ser inerentes ao processo, sua remoção pode tornar-se impossível, impraticável ou
cara, e os gráficos de controle precisam ser "dessensibilizados" na detecção de pequenos
desvios que não são necessariamente de significado prático. A crescente disponibilidade
de dados possibilitados pelo uso intensivo de sensores e coletores de dados, típico da
Indústria 4.0, tornaram o monitoramento de perfis uma área de pesquisa atualizada e o
gráfico de controle de localização uma alternativa de destaque devido a sua aplicabilidade
e simplicidade, mantendo todas as informações observadas em cada local onde o perfil
precisa ser avaliado. Esta tese discute a necessidade de dessensibilização dos gráficos de
controle de localização para garantir que os sinais de um processo fora de controle que não
apresentem um alto risco de produzir itens não conforme sejam ignorados. Usando índices
de capacidade de processo Ĉp e Ĉpk, esta tese teve como objetivo propor e avaliar um
modelo de gráfico de controle de localização com limites expandidos baseados nas cartas de
Shewhart, considerando o seu significado prático e econômico. Ao comparar os resultados
obtidos para o gráfico de controle de localização usando a abordagem tradicional e o gráfico
de controle de localização com limites expandidos com base em Ĉp e Ĉpk propostos neste
tese, observou-se que os limites de controle expandidos tiveram melhor desempenho. Houve
uma redução significativa na probabilidade de sinalizar que o processo está fora de controle
quando isso é irrelevante ou, pelo menos, não apresenta significância prática ou econômica.
Como o gráfico de controle de local desenvolvido não visa controlar a estabilidade do
processo, mas evitar que o processo produza itens fora dos limites de especificação, os
resultados demonstram que, do ponto de vista econômico, constitui uma alternativa mais
interessante para a abordagem tradicional.

Palavras-chave: monitoramento de perfis. índices de capabilidade de processo. cartas de
controle de localização, significância prática.
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1 Introduction

1.1 Context of the study
The quality of products and services is an important decision factor in most

businesses. Regardless of whether the consumer is an individual, a corporation, a military
defense program, or a retail store when the consumer is making purchasing decisions, he or
she will be prone to consider quality with the same importance as the cost or the deadline
for delivery (MARTIN; ELG; GREMYR, 2020; MONTGOMERY, 2019; RALEA et al.,
2019; GARVIN, 1984).

The evolution of the production processes and the improvement of the technology
of machines and production systems have made that the control procedures advanced
significantly in recent times. The use of sensors, readers, and other forms of industrial
automation, typical of Industry 4.0, enabled advances that not only increased speed
and production volume but also allowed precise adjustments, reducing manufacturing
variability, as well as obtaining data of several variables simultaneously. Such advances
have enabled the gathering of large amounts of data, which provide the elements needed
for product optimization and process improvements (SCHÜTZE; HELWIG; SCHNEIDER,
2018; KHAN et al., 2017; REIS; GINS, 2017; CIVERCHIA et al., 2017; REIS; SARAIVA,
2012).

Since the use of control charts proposed by Shewhart (1931), technological advances
in industrial control procedures have greatly improved the quality of processes and products
in the modern industry. The use of electronic data collectors facilitates the collection of
data in a multitude of variables of all stages of production, and multivariate methods are
necessary whenever one wants to monitor various quality variables and take advantage of
any relationship between them. The use of these systems to control and monitor input,
output, and process variables reduces overall variation and leads to improved accuracy,
and lower production costs (GAO et al., 2020; SCHÜTZE; HELWIG; SCHNEIDER, 2018;
HE; WANG, 2018; BERSIMIS; PSARAKIS; PANARETOS, 2007; MASON; YOUNG,
1998).

In the traditional applications of statistical process monitoring, the process perfor-
mance considers measures of a single value or a vector of values of the quality characteristic
in a given time or space. However, as Kang e Albin (2000) pioneeringly argue, there
are situations in which the quality of the process or product can best be characterized
by a functional relationship between the response variable, corresponding to the quality
characteristic of interest, and one or more explanatory variables. (Figure 1a). In these
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applications, a set of data represented by a curve (profile) is obtained for each sample. The
statistical control of this profile is called profile monitoring (PM) and is used to monitor
the stability of the curves over time and to determine if the changes in the curve pattern
constitute signs of the presence of special causes in the process, as we can see in (Figure
1b) (NOOROSSANA; SAGHAEI; AMIRI, 2011).

(a) Profile.
(b) Signs of special causes changing curve

pattern.

Figure 1 – Set of data represented by a profile.
Source: Noorossana, Saghaei e Amiri (2011)

Gao et al. (2020), He e Wang (2018), Maleki, Amiri e Castagliola (2018) and
Megahed e Jones-Farmer (2015) state that the current trend in the industry involves
collecting data about the quality and stability of the production process, defining a func-
tional relationship between a response variable and one or more exploratory variables got
from multi-sensors of machine tools and production systems. This functional relationship
requires solutions for which traditional statistical control methods and process performance
evaluation present unsatisfactory performance or may not even be applicable. The authors
argue that the continuous evolution of equipment with integrated sensors, coupled with
increased computing power, is increasing the ability to exploit advanced data analysis to
monitor and control manufacturing processes.

Tools have been developed to provide processes capable of meeting customer expec-
tations regarding cost and quality aspects, allowing the evaluation of process performance.
Initially proposed by Kane (1986), capability indices are an essential concept in statistical
process control, quantifying the relationship between actual process performance and
the specification or tolerance limits of manufactured products (OPRIME et al., 2019;
OPRIME; MENDES, 2017; AHMAD; ASLAM; JUN, 2016; PEARN; LIN, 2004).

Several authors such as Ghartemani, Noorossana e Niaki (2016), Keshteli et al.
(2014b), Ebadi e Shahriari (2013) and Hosseinifard, Abbasi e Abdollahian (2011) point
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out that among few studies on the evaluation of the capability of processes whose quality
characteristic is a profile, most of them deal with profiles characterized by a linear
relationship between the response variable and the exploratory variable.

With their statistical limits, statistical control charts have the role of helping to
interpret the stability of the processes, and capability indices deal with the performance
of these processes in terms of the quality of conformation with the design specifications
of manufactured products. There has been a lot of research to study statistical meth-
ods that detect small deviations from the IC (In control process) model as quickly as
possible (ATASHGAR; ABBASSI, 2020; YAO et al., 2020; AWAD, 2017; ABDELLA et
al., 2016; ADIBI; BORROR; MONTGOMERY, 2015; JEN; FAN, 2014; KAZEMZADEH;
NOOROSSANA; AMIRI, 2009; KAZEMZADEH; NOOROSSANA; AMIRI, 2008; ZOU;
TSUNG; WANG, 2007). This high sensitivity to these small deviations can become a
problem in many industrial processes. This problem has been identified and has been
discussed (WOODALL; FALTIN, 2019). According to the authors, small attributable
causes may be inherent to the process, and their removal may become impossible, imprac-
tical, or expensive. Thus, as the authors argue, control charts need to be "desensitized",
pointing out that the current approaches of evaluating and comparing methods in control
charting have high sensitivity in detecting small shifts that are not necessarily of practical
significance.

This work contributes to the statistical process monitoring field through the use
of control charts considering the economic and practical aspects. The proposed thesis
introduces a new methodology for mathematical modeling and statistical interpretation
of a control chart when a functional relationship defines the quality characteristic, and
the process presents a high capability. This problem can be considered a problem of
articulation, modeling, and decision-making in real systems, which is little explored in
the literature and is not fully modeled in statistical terms. It is also noteworthy that the
classical approach is not suitable for processes with a high capability index (Cp; Cpk).
Shewhart control charts do not adequately monitor processes with small variability and
high capability (outline situation of this research). This aspect is not considered in scientific
articles, books, and recent works published in scientific journals, and the findings should
make an important contribution to the field of production engineering.

1.2 Research question and objectives
According to Deming (2000), Juran e Godfrey (1998) and Feigenbaum (1991), who

have developed the structured problem-solving methodology in the early years of the
quality revolution, a problem is defined as a discrepancy between an existing standard or
expectation and the actual situation. To improve a company’s performance, it is necessary
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to successfully solve problems that are causing dissatisfaction for internal or external
customers. In this perspective, a knowledge gap can be considered a problem to be solved
in the same way as an inaccurate or nonexistent procedure.

According to Diyoke, Okeke e Aniagwu (2016), an essential feature of an electric
motor is the relationship between its torque and its revolution in revolutions per minute
(RPM). In this case, the torque produced by each sampled electric motor is considered
a response variable while their corresponding revolutions (RPM) is considered as an
explanatory variable (Figure 2).

Figure 2 – Torque x RPM relationship of an electric motor.
Source: Diyoke, Okeke e Aniagwu (2016)

If the manufacturing process that produced the electric motor is under control, the
profiles describing the relationship between torque and RPM should be similar and stable.
In washing machines, the torque x RPM profile has a vital role in product performance and
energy efficiency, impacting water and energy consumption per wash cycle (RAKHMAWATI
et al., 2020). An eletric motor with some mechanical defect or other inadequacy will
produce a different profile than the one that meets the design specifications and, as
a consequence, may not meet the energy efficiency, water consumption, and electrical
safety requirements set by the technical standards as defined by the National Institute of
Metrology (INMETRO).

Although its importance is acknowledged, frequently, the functional relationship
between torque and RPM is unknown or at least disregarded when determining the
capability of the electric motor production processes, being used to define the product
quality only the values of the starting torque and the maximum torque.
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For this thesis, it is possible to define three aspects in which the research problem
could be addressed: 1) a technological problem related to the imprecise procedure to
determine the functional relationship between Torque and RPM for electric motors; 2)
an academic problem related to the absence of a method or structure to manage this
problem based on a statistical control chart; 3) a supportive method for decision making
in economic terms, especially when the process has high capability indices. The research
question this thesis intends to answer is: Is a Shewhart-type functional control chart
based on capability índices Ĉp and Ĉpk an acceptable control way to profile
monitoring?

1.2.1 General objectives

This thesis has as its theme the study of monitoring and analysis of process when a
polynomial profile characterizes the quality characteristic. Its main objective is to propose,
develop and evaluate a Shewhart-type functional control chart based on capability índices
Ĉp and Ĉpk applied to profiles in real situations found in the industry where the process
presents a high capability.

1.2.2 Specific objectives

• To do a review and analysis of the state-of-the-art research on profile monitoring;

• Develop a statistical model for control limits of the Shewhart-type functional charts
based on the capability índices Ĉp and Ĉpk;

• Evaluate the performance of the model developed using simulated data;

• Propose a profile monitoring framework based on process capability.

1.3 Motivation
The capability to detect tiny shifts in a profile is critical in high-precision production

processes, and the rapid progress of precision manufacturing also indicates the importance
of identifying minimal shift types of a process/product profile curve. Significant research
and development effort has been made to search for new methods to monitor small shifts
in the profile and minimal change in the process caused by special causes.

Nevertheless, when the process, despite having special causes, has a high capability
and produces items whose quality is acceptable, and when the special causes are known,
and their respective effects do not affect the performance and customer satisfaction, some
flexibility or desensitization in the use of control chart may be required.
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Problems related to have control chart signals associated with practical significance,
not just statistical significance. have technical and economic relevance, and the development
of new techniques for the analysis and determination of process performance, whose quality
characteristic is a polynomial profile, will contribute to the advancement of the state-
of-the-art in the analysis and optimization of products and industrial processes. This
contribution is relevant, given the low availability of research on this topic found in the
literature and its importance for decision-making procedures about the process.

The absence of adequate control limits that take into account the capability of the
process results in wrong management decisions and financial losses, negatively impacting
the performance and reliability of products and processes. There are few works on economic
and practical significance applied to a functional relationship, and it is necessary to fill this
gap. The completion of this work is expected to obtain significant results for production
engineering, presenting a method that offers a rationale for practitioners to use engineering
and subject matter knowledge so that signals have both practical importance and statistical
significance.

1.4 Methodology
According to Bertrand e Fransoo (2002), this thesis is classified as a quantitative

normative axiomatic research strongly based on real situations since it aims at the
development of norms, policies, strategies, and actions that improve the current situation
or available results in the literature. This research is based on models that prescribe a
decision to the problem, seeking to find a solution to a new problem or to compare the
performance of strategies that deal with the same problem (MORABITO; PUREZA,
2012).

The thesis will use the Modeling and Simulation method to operationalize the
research, which according to Morabito e Pureza (2012), addresses the development, analysis,
and testing of mathematical and symbolic descriptions of causal relationships between
control variables and performance variables.

To better illustrate the research steps, Figure 3 shows the method used from the
characterization of the problem until the evaluation of the results.

1.5 Thesis Structure
The rest of this text is organized as follows:

Chapter 2: This chapter presents a literature review regarding the profiles as the
quality characteristic to be monitored and the different approaches in its monitoring,
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Figure 3 – Research steps.
Source: Adapted from Leoni (2015).

highlighting its increasing importance in Industry 4.0. It presents the location control chart
as an alternative approach to profile monitoring, highlighting its applicability and simplicity.
This chapter still discussed the adoption of relaxation measures in the monitoring of the
process in those situations where it has high capability.

Chapter 3: This chapter initially presents a review of traditional process capabilities
indices, extending their definition for profile analysis. Introduces the concept of traditional
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univariate control charts based on Ĉp and Ĉpk indices, available in the literature, developing
and modeling it to functional data.

Chapter 4: This chapter presents the approach adopted to treat data received from
the company, arranging and transforming it consistently to allow its analysis and the
development of the models to be simulated.

Chapter 5: This chapter develops and simulates location control chart models by
adopting two approaches: Shewhart’s traditional approach and the proposed functional
control chart based on Ĉp and Ĉpk capability indices.

Chapter 6: This chapter presents the conclusions on the results achieved. Recog-
nizing the limitations of the current study, it summarises the main research findings and
explains the significance of the findings or contribution of the study. It ends by making
recommendations for further research work.
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2 Literature Review

Product and service quality plays an essential role in the success and performance
of organizations, whether they are manufacturing or service. An organization that meets
its customers’ quality requirements at competitive prices can outperform its competitors,
maintaining and conquering new markets. Many traditional statistical process control
(SPC) concepts and techniques grew in response to the manufacturing environments
prevalent several decades ago (GRIGG, 2020; MARTIN; ELG; GREMYR, 2020).

Different tools and methods of quality improvement and variability reduction was
developed to be used in practice to improve process performance. The richness and variety
of these applications have had a significant influence on the development of statistics as a
discipline (i.e., change point detection, dating back to the pioneering work of Shewhart in
the 1920s, developments in automatic process control, design of experiments, sequential
analysis, reliability, among others) (PERDIKIS; PSARAKIS, 2019; HOCKMAN; JENSEN,
2016; HOERL; SNEE, 2010; NAIR; HANSEN; SHI, 2000).

However, as Soriano, Oprime e Lizarelli (2017) and Lizarelli et al. (2016) observe,
advances made in the academic research world of SPC methods have not yet been fully
incorporated in the manufacturing best practices. According to the authors, this may be
a result of: i) cultural paradigms; ii) the types of groups used to promote and improve
the field of statistical quality control, such as task force and semi-autonomous groups; iii)
governance within groups (centralized or decentralized, use of specific methods or routines
and monitoring of activities) and iv) understanding and applying new techniques and
tools to problem identification and its solution.

Despite the gap between academic research and the adoption of best practices that
exists in many companies pointed out by Soriano, Oprime e Lizarelli (2017), in many
companies however, SPC is an effective element of the process control system, which
comprises a set of monitoring techniques that have been successfully utilized for process
monitoring and variation reduction in manufacturing applications.

Authors such as Rahali et al. (2021), He e Wang (2018), He e Wang (2017), Woodall
e Montgomery (2014), have used the term statistical process monitoring (SPM) to refer to
such developments and strategies because, in their opinion, it better reflects the application
of the methods. The authors also emphasize that additional methods are also needed to
visualize results when there are many data streams or a large amount of spatiotemporal
data.

With the advance of technology and data collection methods, the range of ap-
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plications of statistics has significantly expanded, and the outcome of the process can
be as diverse as healthcare monitoring, image monitoring, risk analysis or spatiotempo-
ral surveillance (HUBIG; LACK; MANSMANN, 2020; BUI; APLEY, 2018; KOOSHA;
NOOROSSANA; MEGAHED, 2017; WOODALL et al., 2017).

SPM consists of a robust set of tools for understanding the variation of a process
and characterizing its stability over time that help professionals improve the quality of
products and services, achieving process stability, and reducing process variability. Several
sources of variation can affect process performance. In particular, a process is said to be
in control (IC) when all fluctuations are due to common causes of variability that cannot
be removed without changing the process in some fundamental way, such as changing
the equipment used or the raw material. Conversely, the process is said to be out of
control (OC) when it operates under special causes of variation that must be identified
and removed as soon as possible (MONTGOMERY, 2019; ALLEN, 2019; REIS; GINS;
RATO, 2019; CAPIZZI, 2015; QIU, 2014).

As in traditional Statistical Process Control, Statistical Process Monitoring in-
volves two phases: Phase I and Phase II. Phase I includes methods for understanding
process behavior based on a historical baseline set of data. In-control parameter values
for appropriate models are estimated in the retrospective Phase I and used to evaluate
the stability of the process and design methods for on-going prospective monitoring in
Phase II. In Phase II, we decide about the stability of the process relative to the Phase I
baseline as each sample is collected over time. The objective of Phase II is to quickly detect
any change in the process from its in-control state (MONTGOMERY, 2019; WOODALL;
FALTIN, 2019).

However, the traditional Shewhart control chart does not consider whether a
process has a high capacity or not. It recommends an interruption of the process when
there is an indication of special causes to keep the production process at a stable level of
variation. There are cases where it is not financially appropriate to intervene, even in the
presence of special causes. Woodall e Faltin (2019), Oprime et al. (2019) and Oprime e
Mendes (2017) ensure that small changes in the statistical parameter, for example, in the
average, over time may have little or no practical importance, and the cost of false alarms
discourages the use of control charts. When the benefits of interrupting the process in the
presence of special causes are less than the costs, an excess of control can be considered
(MONTGOMERY, 2019; AIAG/ASQC, 1991; WOODALL, 1985)

2.1 Profile Monitoring
In standard SPC applications, we traditionally sought to monitor the performance

of a process or product by considering measurements on a single quality characteristic or a
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quality characteristic vector at a given time or space. Nowadays, advanced manufacturing
industries and more advanced technologies operate under much more complex and diverse
conditions.

Nair, Hansen e Shi (2000) argue that these changes have important implications for
the research directions in industrial statistics, not only in terms of identifying new problems
and developing new methods but also in re-evaluating the paradigms that inspired previous
approaches. Currently, large amounts of process and product quality data are collected
regularly, made possible by advances in information technology and data acquisition. Many
of these data have unique structures: images, functional data, marked point processes,
and high-dimensional time series are frequent, among others (HUANG et al., 2020; REIS;
GINS, 2017).

Advances in technology have enabled engineers and professionals to collect a large
number of processes or product measurements from reconstructing the entire functional
relationship to the process or product performance. This functional relationship is often
called a profile, signature, or waveform. For each profile, it is assumed that p response
variable values are measured along with the corresponding values of one or more explanatory
or independent variables (NOOROSSANA; SAGHAEI; AMIRI, 2011).

A bibliometric analysis conducted shows that there has been an increase in publi-
cations on this subject since 2006, with 51.2% of articles published in the last five years
(Figure 4).

Figure 4 – Annual scientific production related to profile monitoring from 2004 to 2021.
Source: Web of Science, 2021.

Figure 5 presents the relationship between the keywords of the articles analyzed
on the topics: linear profiles, control charts, phase I analysis, statistical process control,
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Figure 5 – Keyword co-occurrences diagram.
Source: Web of Science, 2021

polynomial profiles, and performance. The line thickness indicates how often two keywords
were used together.

While process capability plays an essential role in evaluating the performance of
a manufacturing process, Maleki, Amiri e Castagliola (2018), Woodall e Montgomery
(2014) and Woodall (2007) pointed out that little attention was paid to evaluating process
capability whose quality characteristic is a profile. More recently, other authors as Wu
(2016), Keshteli et al. (2014a) and Hosseinifard e Abbasi (2012b) agreeing with him, have
highlighted the inexistence, or at least, a small amount of articles published dealing with
this important issue. It is possible to observe from Figure 5 that among the published
works related to profile monitoring, few studies have contemplated process capability.

Starting with Kang e Albin (2000), many authors have discussed practical appli-
cations of profiles. In their paper, Kang e Albin (2000) use a linear profile to represent
the relationship between the pressure and the amount of flow in a calibration problem in
a semiconductor industry and a dissolution profile curve in the pharmaceutical industry.
They propose two approaches. In the first, the function is described by its parameters, and
these are monitored using the multivariate T 2 control chart. In the second, the function
is viewed as a collection of points, and the differences or residuals between the reference
points and the sample points are monitored using EWMA and R charts for the average
residual.

Maleki, Amiri e Castagliola (2018), Woodall e Montgomery (2014), Noorossana,
Saghaei e Amiri (2011), and Woodall et al. (2004) show an overview of some of the general
issues involved in using control charts to monitor process and product quality profiles, and
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relate the application of control charts to do functional data analysis reviewing applications
involving linear profiles, nonlinear profiles, and the use of splines and wavelets. These
authors pointing out that process and product profiles monitoring expands the area of
statistical process monitoring to include a much broader array of statistical methods, and
includes a much broader class of applications.

The current importance placed on profile analysis cannot be overstated, as pointed
out by Fallahdizcheh e Wang (2021). Woodall e Montgomery (2014), Woodall (2007) and
Woodall et al. (2004) who described it as "the most promising area of process control
research". More recently, Maleki, Amiri e Castagliola (2018) reviewed the literature from
the period 2008 up to 2018 presenting a conceptual classification scheme and classifying
the papers in this area. These authors concluded that an increasing interest on diagnosis
approaches has appeared by quality engineering researchers in recent years and the number
of papers in this subarea has increased from 6 in 2008–2013 to 16 papers in 2014–2018.

According to Maleki, Amiri e Castagliola (2018), Woodall e Montgomery (2014),
Noorossana, Saghaei e Amiri (2011), Woodall (2007) and Woodall et al. (2004), profile
data are common in many applications. For example, pressure in a chamber is a linear
function of flow setpoints in the calibration of a mass flow controller (KANG; ALBIN,
2000). The relationship between the torque of a car engine and its speed in revolutions
per minute (RPM) is an important quality feature in the automotive industry (AMIRI;
JENSEN; KAZEMZADEH, 2010). Tonnage signals over time in stamping processes are
other forms of profile data (JIN; SHI, 2001).

Discussing the use of profile monitoring techniques for a data-rich environment,
Schütze, Helwig e Schneider (2018), Reis e Gins (2017), Khan et al. (2017), Wang e
Tsung (2005) argue that on-line sensors combined with a huge sample size have become
a usual or ordinary thing in the modern manufacturing industry, due to the increasing
complexity of processes and products, and the availability of advanced sensing technology.
They exemplify their argument, citing as an example, a car factory in which an optical
coordinate measuring machine (OCMM) measures from 100 to 150 points in each main
assembly with a sample rate of 100%, for which efficient use of these data constitute
a challenge. Zou, Zhang e Wang (2006) introduce a Likelihood Ratio Test (LRT) and
EWMA control charts based on LRTs, designed to detect shifts in the intercept, slope,
and standard deviation of linear profiles, when process parameters are unknown but some
historical samples are available. They also provide two useful diagnostic aids to improve the
practicality of the EWMA chart: one provides valuable information to process engineers
concerning the time of the change, and the other decides which parameter has changed.

Centofanti et al. (2020) propose a new general framework for monitoring a functional
quality characteristic when functional covariates are available, referred to as functional
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regression control chart (FRCC). In particular, the quality characteristic is adjusted for
the effects of the covariates employing multivariate functional linear regression model and
then monitored by using jointly the Hotelling’s T2 and the squared prediction error (SPE)
control charts built on its functional principal component decomposition.

Outside the industrial environment, Capezza et al. (2021) presents an application
on modern ships, where the rapid development in data acquisition technologies produces
data-rich environments in which measurements of the variable are continuously streamed
and stored during navigation; therefore, they can be modeled as functional data or profiles.
Using a real case study of a Ro-Pax vessel operating in the Mediterranean Sea, the authors
demonstrate the applicability of the FRCC to the emissions of CO2 (quality characteristic
of interest) and the profiles of variables that have an impact on them (i.e., the covariates)
explored in light of the new global and European level regulations on the monitoring,
reporting, and verification of harmful emissions. In this paper, they show an application
of the FRCC to answer, at the end of each ship voyage, the question: given the value of
the covariates, is the observed CO2 emission profile as expected?

Large amounts of time and money are invested in recalibrating the production
process measuring system, even sometimes when the recalibration is not required. To
optimize the calibration frequency and maintain a certain level of accuracy and precision,
Gupta, Montgomery e Woodall (2006) propose two different schemes for simultaneous
monitoring of the intercept, slope, and error standard deviation of a linear profile: one
based on the classical calibration method monitoring the deviations from the regression
line (referred to as NIST method), and the other based on individually monitoring the
parameters of the linear profile (referred to as KMW method). The result of their study
shows that the NIST method has a poor performance when compared with the KMW
method.

Woodall (2007) highlighted the following important issues when monitoring profiles:
i) the importance of carefully distinguish between Phase I and Phase II applications;
ii) the decision regarding whether or not to include some between profile variation in
common cause variation; iii) the use of methods capable of detecting any type of shift in
the shape of the profile, and iv) the use of the simplest adequate profile model. In his paper,
he arguments that parametric or nonparametric methods can be used in both Phases I
and II. In many cases of profile monitoring, it is efficient to summarize the shape under
control of the profile with a parametric model and monitor changes in the parameters of
this model.The control charts are based on the estimated parameters of the model from
successive profile data observed over time. For non-parametric methods, it is possible to
alternatively monitor metrics that reflect the discrepancies between the observed profiles
and a baseline profile established using historical data from Phase I.
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Another point raised by Woodall (2007) is that, in many applications, the simple
linear regression model is not sufficient to represent the shape of a profile, so more compli-
cated methods are needed. To exemplify alternative and more appropriate approaches to
situations like this, he lists Multiple and Polynomial Regression Models (KAZEMZADEH;
NOOROSSANA; AMIRI, 2008; MAHMOUD, 2008), Nonlinear Regression Models (DING;
ZENG; ZHOU, 2006; WILLIAMS; WOODALL; BIRCH, 2007), Mixed Models (JENSEN;
BIRCH; WOODALL, 2008; MOSESOVA et al., 2006) and the use of Wavelets (REIS;
SARAIVA, 2006; JEONG; LU; WANG, 2006) as possible alternatives to linear models. Ac-
cording to (CHICKEN; JR; SIMPSON, 2009), wavelet methods are usually recommended
when the shape of the profiles is too complicated for linear and nonlinear models to work
well.

Zou, Tsung e Wang (2007) propose a method to monitor a general linear profile
that includes both a polynomial regression and a multiple linear regression model, using
to illustrate the implementation of the proposed method a deep reactive ion etching
(DRIE), taken from semiconductor manufacturing, which has a profile that fits a quadratic
polynomial regression model. According to Qiu, Zou e Wang (2010), in the literature,
most existing profile monitoring control charts require a fundamental assumption that the
observations in the profile are independent of each other, and warns that this is generally
invalid in applications. As they argue, in practice, the data within the profile is usually
spatially or serially correlated. Thus, they propose a new control graph, which incorporates
the local linear smoothing of the kernel in the exponentially weighted moving average
(EWMA) control scheme.

An example from the automotive industry is presented by Amiri, Jensen e Kazemzadeh
(2010), where one of the most important quality characteristics of an automotive engine
is the relationship between the torque produced by an engine and the engine speed in
revolutions per minute (RPM) (Figure 6). They model their problem as a second-order
polynomial profile with autocorrelations structures within each profile, using a linear
mixed model (LMM) approach to estimate polynomial regression parameters. To check
the stability of the process and the existence or not of outlying profiles, they use in Phase
I a T 2-based control procedure. Once a stable process is obtained, they estimate the mean
vector and variance-covariance matrix of polynomial regression parameters to form a T 2

based control chart to monitor polynomial profiles in Phase II.

2.1.1 Simple Linear Profile

Acording Noorossana, Saghaei e Amiri (2011), in a linear profile data set with a
single explanatory variable X and a response variable Y , data are m samples in form
{(Xi1, Yi1) , i = 1, 2, · · · , n1} , {(Xi2, Yi2) , i = 1, 2, · · · , n2}, {(Xim, Yim) , i = 1, 2, · · · , nm}.
In most research related to linear profile monitoring, it is assumed that the values for the
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Figure 6 – Functional relationship between Torque and RPM for a car engine.
Source: Amiri, Jensen e Kazemzadeh (2010)

explanatory variable X are fixed, using the same set of values for each sample. The simple
linear profile is a linear relationship between a response variable and one or more indepen-
dent variables that must be monitored over time. In its simplest form, this relationship
could be defined as follows:

Yij = β0j + β1jXij + εij, i = 1, 2, ..., nj e j = 1, 2, ..., m (2.1)

where Yij is the response variable corresponding to the value of ith value of explanatory
variable X to jth sampled profile.

The parameters β0j and β1j correspond to the intercept and slope, respectively.
The term ϵ corresponds to the error and follows a normal distribution with mean zero and
variance equal to one. Kang e Albin (2000) used linear profiling to solve the calibration
problem. Kim, Mahmoud e Woodall (2003) used an exponentially weighted moving average
(EWMA) control diagram scheme to monitor simple linear profiles. If the process is under
statistical control, that is, under the action of random causes only, the profile does not
change and remains stable over time. However, if special causes are brought to bear on
the process, this will lead to an increase in variability or a change in the mean profile,
signaling that the process is out of control and investigative procedures and intervention
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or corrective measures are required.

2.1.2 Multiple and Polynomial Profiles

More complicated models, such as multiple linear regression or polynomial regression
rather than simple linear regression, should sometimes be used to model some real cases. For
example, Amiri, Jensen e Kazemzadeh (2010) demonstrates that the functional relationship
between the torque produced by a car engine and its speed in revolutions per minute
(RPM), can be modeled by second-order polynomial regression. Parker e Finley (2007)
discuss an example of a multiple linear regression calibration model. Zou, Tsung e Wang
(2007) investigate a case of semiconductor fabrication that is modeled by a polynomial
regression profile.

Assuming there are m samples in the form (X1ij, X2ij, Xpij), i = 1, 2, · · · , nj,
j = 1, 2, · · · , m and nj > p with a response variable Y and explanatory variables
X1, X2, · · · , Xp. The model that relates the response variable and the explanatory
variables for each sample is given by the expression:

Yij = β0j + β1jX1ij + β2jX2ij + · · · + βpjXpij + εij (2.2)

where i = 1, 2, · · · , nj e j = 1, 2, · · · , m or in its vector form:

Yj = Xjβj + εj j = 1, 2, . . . , m (2.3)

where Yj =
(
Y1j, Y2j, · · · , Ynjj

)T
, εj =

(
ε1j, ε2j, · · · , εnjj

)T
, βj = (β1j, β2j, · · · , βpj)T and

matriz Xj is:

Xj =


1 x11j x21j · · · xp1j

1 x12j x22j · · · xp2j

... ... ... ... ...
1 x1njj x2njj · · · xpnjj



Its assumed that the x values are known constants in each sample and ϵij are
independent, identically normal distribution with mean zero and variance σ2

j . If the process
is in statistical control, them the regression parameters are constant in each sample
(NOOROSSANA; SAGHAEI; AMIRI, 2011).

When there is a kth-order polynomial relationship between a response variable and
one exploratory variable, Noorossana, Saghaei e Amiri (2011) propose an approach based
on the generalized likelihood ratio test. In its method, it is assumed that there are m
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samples of size nj in the form of [(xij, yij), i = 1, 2, . . . , nj, j = 1, 2, . . . , m]. Considering a
step shift in one or more regression parameters after sample m1, the following model is
assumed:

Yij = β01 + β11xij + β21x
2
ij + · · · + βk1x

k
ij + ϵij1

i = 1, 2, · · · , nj j = 1, 2, · · · , m1

Yij = β02 + β12xij + β22x
2
ij + · · · + βk2x

k
ij + ϵij2

i = 1, 2, · · · , nj j = 1, 2, · · · , m

(2.4)

where ϵij1 ∼ N(0, σ2
i ) and ϵij2 ∼ N(0, σ2

2), considering the following null and alternative
hypotheses,

H0 : β01 = β02 = β0, β11 = β12 = β1, · · · , βk1 = βk2 = βk

σ2
1 = σ2

2, · · · , = σ2
k

H1 : H0 is not true

2.2 Approaches for profile monitoring
Significant analysis and discussion on the subject were presented by Noorossana,

Saghaei e Amiri (2011). Colosimo e Pacella (2010) show that most of the approaches for
profile monitoring proposed in the literature share a typical structure, which consists of: i)
identifying a parametric model of the functional data; ii) estimating the model parameters,
and iii) designing a multivariate control chart on the estimated parameters and a univariate
control chart on the residual variance. The proposed approaches can then be classified
regarding the type of application faced (i.e., calibration study, process signal, or geometric
specification monitoring) or the modeling approach considered (mainly linear regression
or approaches for multivariate data reduction such as principal/independent component
analysis).

2.2.1 The location control chart

Proposed initially by Boeing (1998), the method consists of applying a traditional
Shewhart control chart separately to each data point observed at a given location on the
part, and where the control limits used for each location depend only on responses at that
location (Figure 7).

According to Woodall et al. (2004), the location control chart can be considered the
simplest approach for monitoring functional data, as it consists of applying a traditional
control chart to the data observed at each given location, intending to combine simplicity



Chapter 2. Literature Review 32

with the need to keep all the data information observed in each location where the profile
needs to be evaluated. Colosimo e Pacella (2010) observed that the location control chart
exhibits performance comparable to those achieved by the PCA-based approach. In a
few cases, especially for production scenarios with correlated errors, the location control
chart surprisingly outperforms both the regression-based and the PCA-based approaches.
confirming that the simple location control chart can be considered a valuable alternative
to parametric methods for profile monitoring.

Figure 7 – Location control chart for flangle-angle measurements on 13 parts
Source: Boeing (1998)

Given a specific profile, an alarm is issued when at least one point, in the set of p

observations, exceeds either the upper or the lower control limit at the specific location. It is
worth noting that the control limits used at each location depend only on the responses at
that specific position; thus, the main disadvantage of this method is that the multivariate
structure of the data is ignored. An illustration of a location chart from Boeing (1998)
is shown in Figure 7, where the response is the upper flange angle measured at p = 15
locations for n = 13 parts. The LSL and USL are the lower and upper specification
limits, respectively. The L̂NTL and ÛNTL are the natural tolerance limits that are three
standard deviations from the sample mean at each location (WOODALL et al., 2004).

The logic behind this approach is that if the observed profile is under control,
the data observed at that specific location must remain within that range with a certain
probability. On the other hand, when the process gets out of control, the control interval
is likely to be violated at one or more locations. According to this method, an alarm is
issued when at least one point, in the entire observed data set, exceeds the control limits
(NOOROSSANA; SAGHAEI; AMIRI, 2011).
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(a) Polar reference system. (b) Cartesian reference system.

Figure 8 – An example of circular profile.
Source: Colosimo, Semeraro e Pacella (2008)

Colosimo, Semeraro e Pacella (2008) present, as an example of functional data, a
set of points measured in a machined profile subject to geometric specifications (Figure 8).
According to authors, machined profiles and surfaces can be thought of as functional data
if a subset of the coordinates, which are used to describe the position of each sampled
point, can be represented as a function of one or more independent variables. In this case,
each point collected in the machined profile is related to a specific spatial location. Given
the simplicity of the location control chart, its use in practice can be justified in these
production situations, even if attention should be paid to properly designing (Phase I)
this tool.

2.2.2 Control limits of the location control charts

Assume we collect a group of n profiles, where each profile is a vector of p measure-
ments observed at a fixed set of locations. The location control chart consists of applying
a Shewhart’s control chart separately to each data point observed at a given location on
the part (i.e., by considering the mean and the standard deviation of the n data observed
at that location and by computing the common ±k standard deviations from the sample
mean). Given a profile, an alarm should be considered when at least one point, in the set
of p observations, exceeds either the upper or the lower control limit (Figure 9).

Let yj(x) denote the data measured at a specific location of index x on the jth

profile, where x = 1, 2, . . . , p and j = 1, 2, . . . , n. The control limits for the location of
index x are as follows:
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Figure 9 – One out of the profiles in 748 locations on part against the control limits of
location control chart; vertical axis scale in mm.
Source: Noorossana, Saghaei e Amiri (2011)

UCL(x) = ȳ(x) + Zα/2s(x)
CL(x) = ȳ(x)

LCL(x) = ȳ(x) − Zα/2s(x)

(2.5)

where ȳ(x) = 1
n

n∑
j=1

yj(x) and s(x) =
√√√√ 1

n − 1

n∑
j=1

[yj(x) − ȳ(x)]2 are, respectively, the sam-

ple mean and the sample standard deviation of the data observed at location x, while Zα/2

represents the (1 − α/2) percentile of the standard normal distribution (NOOROSSANA;
SAGHAEI; AMIRI, 2011).

The constant k = Zα/2 is computed, as in Shewhart’s traditional approach, as a
function of the required false alarm rate α. Since the fundamental ideas on which the
control charts are based are similar, in structure, to a hypothesis test, we assume some
statement, called the null hypothesis H0. We also established the alternative hypothesis
H1, which is what we are trying to conclude (if the data supports it). Every time a new
value is plotted on a control chart, a hypothesis is evaluated. The initial assumption is that
the process is stable (under control). If, after drawing a point, we have enough evidence to
reject this null hypothesis (we see a sign), we conclude that the alternative hypothesis
(the process is out of control) is true. Ideally, we would correctly reject H0 whenever the
process was really out of control. However, if the process is really out of control and we
have not detected it, we made a Type II error. The hypothesis statement can then be
expressed as follows:
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H0 : yj(x) = y0j(x) and σj(x) = σ0j(x)

H1 : yj(x) ̸= y0j(x) and/or σj(x) ̸= σ0j(x)
for j = 1, 2, · · · , n observations

and the probability of Error Type I (False Alarm) is calculated by

αj(x) = 1 − Pr [LCL(x) ≤ ȳj(x) ≤ UCL(x) | yj(x) = y0j(x); σj(x) = σ0j(x)]

However, as the control limits are computed at each given location, P dependent
control rules are simultaneously applied (i.e., simultaneous hypothesis testing for each value
assumed by an exploratory variable). This implies that the percentile of the standardized
normal distribution used to compute k should be corrected, because if multiple hypotheses
are tested, the chance of observing a rare event increases, and therefore, the probability of
incorrectly rejecting a null hypothesis (i.e., making a Type I error) increases. To this aim,
the Bonferroni’s rule for dependent events is used to attain an actual false alarm rate not
greater than a predefined value.

2.2.3 Bonferroni’s Rules

Let θ = (θ1, θ2, · · · , θk)′ be a (p × 1) vector of parameters elements in an expected
value vector or a variance-covariance matrix or partial regression coefficients in a general
linear model. If separate two-sided confidence intervals are constructed for each of the p

parameters, each with confidence coefficient 100 (1 − α) %, and if Ai denotes the event
that the interval for θi includes the actual value of θi, then, from the Bonferroni inequality,
it follows that the probability Pr [⋂p

i=1 Ai] that every interval includes the value of the
parameter it estimates is ar least (1 − pα). Formally,

Pr

[ p⋂
i=1

Ai

]
≥ 1 − pα (2.6)

Thus the "family confidence coefficient" is at least 100 (1 − α) %, whatever be the
dependence among the statistics used in constructing the confidence intervals. If the
confidence level for each separate interval is increased to 100

(
1 − αp

−1
)

%, then the family
confidence coefficient is at least 100 (1 − α) %. The resulting confidence intervals are called
Bonferroni intervals (ALT, 2006).

In obtaining Bonferroni intervals, it is not necessary that all the separate confidence
coefficiens [100 (1 − αi) %, i = 1, 2, · · · , p] be equal, only that ∑p

i=1 αi = α. Thus if a few
of parameter warrant greater interest than others, then the confidence coefficients for
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thes parameters could be larger. Regardless of the allocation of the αi’s, the conservative
Bonferroni intervals provide a viable alternative for achieving a family confidence coefficient
of at least (1 − α).

Since that P dependent control rules are applied simultaneously, the Bonferroni rule
for dependent events must be used to achieve an actual false alarm rate not greater than
a predefined value. Therefore, let α denote the upper limit of the first type of probability
error (false alarm probability); the value α = α′/P is used to calculate the control limits
of Equation 2.5. For example, assuming the standard value α′ = 0.01 as upper bound for
the type I error probability and 748 locations (Figure 9), the value of α = 1.3369 × 10−5

(i.e., Zα/2 = 4.354) is used to calculate the control limits of Equation 2.5. (COLOSIMO;
PACELLA, 2010).

2.3 Modified and Acceptance Control Charts
According to Oprime et al. (2019), Oprime e Mendes (2017), Holmes e Mergen

(2000), there are processes that, due to their nature, present inevitable changes in the
average value of the quality of interest characteristic, but are still capable of meeting the
specifications established in the project. This situation occurs when the process standard
deviation is too small concerning the tolerance width (i.e., the difference between the
lower and upper specification limits). In usual terms of statistical process control, this
process, while not necessarily under control, is capable of producing acceptable products
that must be protected against rejection. Montgomery (2019) argues that when a high
level of process capability is reached, it is sometimes useful to relax the vigilance level
provided by the standard control charts.

In these situations, an alternative to standard control charts could employ modified
control limits or acceptance control charts (ACC). The goal of ACC is different from that
of the Shewhart control charts. The Shewhart control charts mainly aim to verify whether
the process mean is stable over time, whereas ACC is concerned with maintaining the
process mean at a specific range so that the nonconforming fraction does not exceed a
desired value (ZHOU; GOVINDARAJU; JONES, 2019; OPRIME et al., 2019; OPRIME;
MENDES, 2017; MOHAMMADIAN; AMIRI, 2013).

2.3.1 Modified Control Limits for X̄ chart

The basic concept behind the first approach, the X̄ chart with modified limits, is
to allow the process mean to shift such that the fraction of nonconforming parts produced
does not exceed a specified value δ. Hill (1956) and Freund (1957) present a general
discussion of this technique. Montgomery (2019) also gives an extensive reference on this
technique from the statistical theory aspect.
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Assuming that the quality characteristic is normally distributed with an inherent
within-sample variance σ2. For a process with two-sided specification limits, in order to
produce parts with a non-conforming fraction less than δ, the process mean µ is only
allowed to shift within µL and µU , as shown in Figure 10.

Figure 10 – Distribution of normal quality characteristic.
Source: Chang e Gan (1999)

Consequently, µL and µU are expressed as

µL = LSL + Zδσ

µU = USL − Zδσ
(2.7)

where Zδ is the upper 100(1 − δ)% point of the standard normal distribution.

This chart, is based on a specified sample size n, a process fraction nonconforming
δ, and Type I error probability α. In such chart, we interpret δ as a process fraction
nonconforming that we will accept with probability 1-α being used in situations where the
natural variability or "spread" of the process is considerably smaller than the spread in the
specification limits, that is, Cp and Cpk is much greater than 1 (MONTGOMERY, 2019).

As shown if Figure 11, the lower and upper control limits can be derived with the
probability α, of Type I Error as

LCL = µL − Zα/2
σ√
n

= LSL +
(

Zδ −
Zα/2√

n

)
σ

(2.8)

UCL = µU + Zα/2
σ√
n

= USL −
(

Zδ −
Zα/2√

n

)
σ

(2.9)
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Figure 11 – Distribution of sample average of normal quality characteristic.
Source: Chang e Gan (1999)

2.3.2 Acceptance Control Charts

The second approach, the acceptance control chart (ACC), is to use a chart
to monitor the fraction of nonconforming units or the fraction of units that exceed
specifications. Developed originally by Freund (1957), ACC takes into account both the
risk of rejecting a process operating at a satisfactory level (Type I error or α-risk) and the
risk of accepting a process that is operating at an unacceptable level (Type II error or
β-risk).

The modified limits are established, taking as input the APLU and APLL values,
which are the largest and smallest permissible values of the mean, respectively (Figure 12).
They are known as acceptance process levels (APLs) representing the interval at which
the process mean can vary.

For the calculation of APLU and APLL, the specification limits, the standard
deviation of the process, and acceptance quality level (AQL) are considered as shown
below:

APLU = USL − ZAQLσ

APLL = LSL + ZAQLσ
(2.10)

where USL and LSL are the upper and lower specification limits, σ represents the
population standard deviation of the process and ZAQL is the upper 100(1 − AQL)
percentage point of the standard normal distribution related to the acceptable quality
level (AQL) defined as the maximum of the rejected product proportions, whereas the
process mean lies within the APLs (MOHAMMADIAN; AMIRI, 2013).

In order to protect the proportion of rejected products against possible assignable



Chapter 2. Literature Review 39

Figure 12 – AQL, APLs, RQL and RPLs values in an Acceptance Control Chart
Source: Mohammadian e Amiri (2013)

causes, Mohammadian e Amiri (2013) propose a protective range known as the rejectable
process levels (RPLU ; RPUL), a process level which is rejectable and should be rejected
most of the time. RPLs are determined based on the specification limits, the standard
process deviation, and the RQL, where RQL is defined as the maximum of rejected
product proportion that can be tolerated. Therefore, RPLU and RPUL are calculated by
expressions:

RPLU = USL − ZRQLσ

RPLL = USL + ZRQLσ
(2.11)

where ZRQL is a standard normal value associated with the probability RQL.

The region between APL and RPL is known as the zone of indifference because,
in this region, the process can neither be accepted nor rejected (Figure 12).

The control chart is then plotted based on a sample size n, Type I error probability
(α), and acceptable quality level (AQL). Thus, the control limits of ACC can be written
as:
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UCLACC = USL − ZAQLσ + Zα
σ√
n

LCLACC = LSL + ZAQLσ − Zα
σ√
n

(2.12)

as represented in the Figure 13.

Figure 13 – Control limits and probability of Type I and Type II erros of ACC
Source: Mohammadian e Amiri (2013)

As indicated by Figure 13, we can determine α and (1 − β) to the UCLACC by
Equations 2.13 and 2.14.

α = P
(
X̄ ≥ UCLACC | µ = APLU

)
= P

(
X̄ ≥ APLU + Zα

σ√
n

| µ = APLU

)

= P (Z ≥ Zα) =
∫ ∞

Zα

f(x)dx

(2.13)

1 − β = P
(
X̄ ≥ UCLACC | µ = RPLU

)
= P

(
X̄ ≥ APLU + Zα

σ√
n

| µ = RPLU

)

= P
(
Z ≥ ZAQL

√
n + Zα − ZRQL

√
n
)

=
∫ ∞

ZAQL
√

n+Zα−ZRQL
√

n
f(x)dx

(2.14)

and to the LCLACC by Equations 2.15 and 2.16, respectively.
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α = P
(
X̄ ≤ LCLACC | µ = APLL

)
= P

(
X̄ ≤ APLL − Zα

σ√
n

| µ = APLU

)

= P (Z ≤ Zα) =
∫ −Zα

−∞
f(x)dx

(2.15)

1 − β = P
(
X̄ ≤ LCLACC | µ = RPLL

)
= P

(
X̄ ≤ APLL − Zα

σ√
n

| µ = RPLL

)

= P
(
Z ≤ ZAQL

√
n − Zα − ZRQL

√
n
)

=
∫ ZAQL

√
n−Zα−ZRQL

√
n

−∞
f(x)dx

(2.16)

where f(x)dx is standard normal probability function.

2.3.3 Functional approach to determine ACC limits

As in the capability index calculation, the existence of a functional relationship
between the response variable y and the exploratory variable x imposes the need to
consider the calculation of the limits of ACC over the entire range of values assumed by
the exploratory variable (xl, xu). Thus, the limits UCLACC and LCLACC are expressed as
UCLACC(x) and LCLACC(x), respectively, corresponding to the functional forms of the
upper and lower control limits of the acceptance control chart for every value assumed by
exploratory variable in range xl and xu, expressed in Equations 2.17.

UCLACC(x) = USL(x) − ZAQLσ(x) + Zα
σ(x)√

n

LCLACC(x) = LSL(x) + ZAQLσ(x) − Zα
σ(x)√

n

(2.17)

where x ∈ [xl, xu].
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3 Process Capability Index Ĉp and Ĉpk

A producer of goods will always attempt to persuade potential buyers that his (her)
product is the best, being the leader in the field. Quality overkill may soon hinder
industrial and business activities’ progress and could have severe business cost and
resource implications. Nevertheless, the widespread (and sometimes uncritical) use of
Process Capability Indices (PCI) has led almost inadvertently to substantial quality
improvements. However, better knowledge of their properties would occasionally prevent
many wrong decisions regarding the process from being taken. In particular, quantifying a
manufacturing process’s "capability" is an essential initial step in any quality improvement
program. Dictionaries usually define capability as: "the ability to carry out a task, to
achieve an objective." As a rule, this activity usually involves an element of chance since
the task may not be achievable every time, but we may be able to estimate what proportion
of the time it can be achieved (WANG et al., 2021; MATSUURA, 2021; PEARN; KOTZ,
2006).

Process Capability Indices are widely used to determine whether a process can
produce items within engineering/customer specifications limits, comparing the in-control
process’s output to the specification limits. It uses both the specification range and the
process range to determine whether the process is capable (PERAKIS, 2021; AHMAD et
al., 2019; AHMAD; ASLAM; JUN, 2016). The objective is to manufacture so that the
measured value of the quality characteristic of interest (X) is X = T (where T is the
target value or nominal value) for each item produced. However, the reality is that X will
end up being a "random" variable. It is often assumed that X is normally distributed with
X ∼ N(µ, σ2).

The process’s ability to produce close to the target or nominal value will depend
on 1) the magnitude of σ, and 2) the relationship between µ and T . Ideally, we should
have µ = T . For a normal distribution, the interval of 6σ around µ contains all but
0.27% of the population. This value, called the capacity range, or just capacity, can give
a general indication of the process’s accuracy. Customers or manufacturers may wish to
define a required level for product values x. This can take the form of a target-centered
specification, T ± t, or in the form of lower and upper specification limits (LSL, USL),
the maximum acceptable range of key quality parameters Any item outside these limits
will be considered scrap or need for rework, and cannot be sold or it does not work and
must be classified as a nonconforming product. The use of specification limits allows the
possibility that the midpoint m (between LSL and USL) is not the target. There may be
situations where only one limit, LSL or USL, is needed.
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The objective of process capability analysis is to estimate, monitor, and reduce
the process’s variability relative to process specifications (MONTGOMERY, 2019). The
literature on process capability analysis is extensive and included univariate and multivari-
ate processes where the quality measurements follow normal or non-normal distributions
(AHMAD et al., 2019; FELIPE; BENEDITO, 2017; KOTZ; JOHNSON, 2002). More
recently, authors as Oprime et al. (2019) and Oprime e Mendes (2017) have discussed the
use of PCI in conjunction with control charts when the deviation of the process from the
standard is small compared to the tolerance. In this case, the purpose is not to control
but to approve the process.

Landim, Jardim e Oprime (2021) proposed a chart, named s2 Modified Control
Chart, where the process variance σ2 is allowed to be larger than the in-control variance
value σ2

0 until a maximum value σ2
MAX , as long as the process remains capable, only

detecting genuine increases in process variance, which significantly increases the production
rate of non-conforming items, preventing the practitioner from stopping the process and
looking for attributable causes if only a small increase in process variation occurs. This is
desirable in the sense that small increases in variance may not significantly affect the rate
of non-conforming items being produced, and pausing the process incurs extra costs.

3.1 Traditional approach applied to determine capability index
Univariate method for measures process performance was suggested by Kane (1986)

and investigated by other researchers such as Dianda, Quaglino e Pagura (2016), Wu,
Pearn e Kotz (2009) and Chan, Cheng e Spiring (1988). Traditionally, the PCI most widely
used in the evaluation of univariate processes are Cp and Cpk defined by Kane (1986) and
expressed in Equations 3.1 and 3.2.

Cp = USL − LSL

UNTL − LNTL
= USL − LSL

6σ
(3.1)

Cpk = min
{

USL − µ

UNTL − µ
,

µ − LSL

µ − LNTL

}
= min

{
USL − µ

3σ
,
µ − LSL

3σ

}
(3.2)

where µ represents the mean of process, σ is the process standard deviation, LSL is the
Lower Specification Limit, and USL is the Upper Specification Limit, both determined
externally.

The basic Cp gives only the magnitude of the overall process variation relative to
the specification limits and cannot detect the process’s shift from the specification center,
so it cannot thoroughly explain the process performance, only indicating the potential
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that the process has to meet the specifications. At the same time, the Cpk index considers
the location of the process mean and the process variation relative to the specification
limits, constituting a more reliable index of the real capacity of the process.

They may be set by management, the manufacturing engineers, the customer, or
by-product developers/designers. LNTL is the Lower Natural Tolerance Limit (LNTL =
µ − 3σ) and UNTL is Upper Natural Specification Limit (UNTL = µ + 3σ) (Figure 14).
In a practical application, the mean µ and the process standard deviation σ is almost
always unknown and must be replaced by an estimate, µ̂ and σ̂, respectively, obtained
from samples taken when the process is thought to be in control. For non-profile single
variable, µ̂, LSL, USL, L̂NTL and ÛNTL are considered as a single point (Figure 14).

Figure 14 – Specification and Natural Tolerance Limits of a traditional univariate quality
caracteristic.

3.2 Traditional approach applied to determine functional capability
index
Although the capability of a process plays an essential role in evaluating the

performance of a manufacturing process, Woodall (2007) points out that there is little
attention to assessing the capability of processes whose quality characteristic is a profile.
Keshteli et al. (2014b) reinforce that there are a few papers about the process capability
index in profiles, and most of them are focused on the process capability index applied
to linear profiles. However, as highlighted by the authors, in all of these methods, the
response variables at different levels of the explanatory variable are considered, but the
relationship in all ranges of the explanatory variable is neglected. They propose a new
method to determine a process capability index for circular profile, where process capability
index is defined as a functional form of the angle as explanatory variable. This results in
measuring process capability in each level of all range of explanatory variable as well as
determining a unique value of process capability index to give an overall judgment about
process capability. The application of the proposed method is illustrated through a real
case developed in an automotive industry.
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Since that time, some studies have been carried out to introduce some process ca-
pability indices for profiles with both univariate and multivariate response data (MALEKI;
AMIRI; CASTAGLIOLA, 2018). To exemplify the typical approach with which profile
monitoring is handled, we can cite: Hosseinifard, Abbasi e Abdollahian (2011) use the
Burr distribution to define a capability index applied to processes with a non-normal
distribution; Hosseinifard e Abbasi (2012a) seeks to estimate the process capability index
using the concept of nonconforming proportion applied to Phase I of a linear profile; Wang
(2014) in turn, proposes two new process capability indices for linear profiles with unilateral
specification, applying them in the process of producing electrolytic capacitors; Gharte-
mani, Noorossana e Niaki (2016) present a new approach to calculating the capability of
linear profile processes by applying it to a leather industry, assuming that the explanatory
variable assume fixed values while the specification limits are a linear relationships of the
explanatory variable.

Another research conducted by Ghartemani, Noorossana e Niaki (2016) propose
a method to estimate PCI of linear profiles, assuming functional relationships between
the process specification limits and an explanatory variable. Based on multivariate PCI
approach of Niavarani, Noorossana e Abbasi (2012), they assumed that the explanatory
variable is fixed and the specification limits are a linear function of the explanatory variable.
The results based only on simulation indicated appropriate performance of the proposed
method, but deteriorate when coded values of explanatory variable is used.

In the profile monitoring, the existence of a functional relationship between the
response variable y and the explanatory variable x imposes the need to consider the
capability over the entire range of values of the explanatory variable (xl; xu) (Figure 15).

Figure 15 – Specification functional limits (LSL, USL) and Natural tolerance functional
limits (L̂NTL, ÛNTL).

In this case, µ̂, L̂NTL, ÛNTL, LSL and USL, are expressed as µ̂(x), L̂NTL(x),
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ÛNTL(x), LSL(x) and USL(x), respectively, corresponding to the functional form of
mean, natural limits and specification limits of the process. Keshteli et al. (2014a) propose
to calculate Ĉp and Ĉpk by replacing functional forms of µ̂, LSL, USL, L̂NTL and ÛNTL

in the traditional process capability index (Equations 3.1 and 3.2) obtaining the following
equations:

Ĉp(x) = USLy(x) − LSLy(x)
ÛNTLy(x) − L̂NTLy(x)

, x ∈ [xl, xu] (3.3)

Ĉpk(x) = min
 USLy(x) − µ̂y(x)

ÛNTLy(x) − µ̂y(x)
,

µ̂y(x) − LSLy(x)
µ̂y(x) − L̂NTLy(x)

 , x ∈ [xl, xu] (3.4)

to evaluate the capability at each level of the explanatory variable. However, according to
Keshteli et al. (2014a), it is necessary to have a unique value of the process capability index
in all range of the explanatory variable in order to determine an overall judgment about
process capability. Integrating the functional form of mean, natural limits and specification
limits of the process over the entire range of values of the explanatory variable, that is,
between xl and xu, it is possible to compute Ĉp(profile) by

Ĉp(profile) =

∫ xu

xl

[USLy(x) − LSLy(x)] dx∫ xu

xl

[
ÛNTLy(x) − L̂NTLy(x)

]
dx

, x ∈ [xl, xu] (3.5)

Similarly, the functional form of Ĉpk(profile) is computed by

Ĉpk(profile) = min


∫ xu

xl

[USLy(x) − µ̂y(x)] dx∫ xu

xl

[
ÛNTLy(x) − µ̂y(x)

]
dx

,

∫ xu

xl

[µ̂y(x) − LSLy(x)] dx∫ xu

xl

[
µ̂y(x) − L̂NTLy(x)

]
dx


(3.6)

Machined or shaped profiles and surfaces can be treated as functional data if a set
of coordinates, used to describe the position of each sampled point, can be represented as
a function of one or more independent variables. When these independent variables are
fixed, they can be treated as a counter or index of the sampled points.

Analyzing the problem of defining process capability for circular profile monitoring,
Keshteli et al. (2014b) proposed an index for calculating capability for each level of the
explanatory variable. Since natural limits of tolerance and specification of the circular
profile have a functional shape, the process capability indices of the circular profile must
have an angle-based functional shape (Figure 16). The authors then obtained a unique
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value at each angle and, therefore, a unique value for the process capability indices at each
angle.

(a) Polar representation of a circular
profile

(b) Cp representation

Figure 16 – Process capability of a circular profile.
Source: Keshteli et al. (2014b)

The values of UNTLR(θ)(θ), LNTLR(θ)(θ), USLR(θ)(θ), LSLR(θ)(θ) e µR(θ)(θ) cor-
respond to the functional form of the natural limits, specification limits, and the average
of the traditional capability indices. Thus, Keshteli et al. (2014b) proposes to calculate Cp

and do Cpk the following expressions

Cp(θ) = USLR(θ)(θ) − LSLR(θ)(θ)
UNTLR(θ)(θ) − LNTLR(θ)(θ) (3.7)

which allows calculate Cp for each value of the explanatory variable θ, where θ ∈ [0, 2π].

Integrating the expression of Equation 3.7 throughout the θ value range, it is
possible to determine an overall capability index that is representative of process capability,
as follows in Equation 3.8

Cp(profile) =

∫ 2π

0
[USLR(θ) − LSLR(θ)]dθ∫ 2π

0
[UNTLR(θ) − LNTLR(θ)]dθ

(3.8)

which, similar to the traditional Cp, only displays the potential ability of the process to
meet specifications.

To calculate Cpk, we consider the "non-centrality" of the process around the average
profile, thus obtaining the expression:
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Cpk(θ) = min
{

USLR(θ)(θ) − µR(θ)(θ)
UNTLR(θ)(θ) − µR(θ)(θ) ,

µR(θ)(θ) − LSLR(θ)(θ)
µR(θ)(θ) − LNTLR(θ)(θ)

}
, θ ∈ [0, 2π]

(3.9)

which determines the value of Cpk for each value of θ.

Equation 3.9 can, in turn, be used to determine a unique value for Cpk that
simultaneously addresses the variability and "non-centrality" of the process, as we see in
Equation 3.10

Cpk(profile) = min



∫ 2π

0

[
USLR(θ)(θ) − µR(θ)(θ)

]
dθ∫ 2π

0

[
UNTLR(θ)(θ) − µR(θ)(θ)

]
dθ

;

∫ 2π

0

[
µR(θ)(θ) − LSLR(θ)(θ)

]
dθ∫ 2π

0

[
µR(θ)(θ) − LNTLR(θ)(θ)

]
dθ


, θ ∈ [0, 2π] (3.10)

The authors point out that the proposed approach can easily be applied to other
profile types, such as simple linear profiles, polynomial, and nonlinear profiles (KESHTELI
et al., 2014b).

3.3 Sample distribution of Ĉp and Ĉpk

Process capacity indices (PCI), such as Cp and Cpk, have been proposed in the
manufacturing industry to provide numerical measures of whether a process can produce
items within predefined specification limits (AHMAD; ASLAM; JUN, 2016). García-Díaz
e Aparisi (2005) claim that it is common to find industries that have Cp and Cpk, greater
than 2. In this case, such PCI can be used to design regions under control and out of
control, making it possible to decide if it is necessary or not to stop the process for
corrective actions. Thus, control charts for variables can be developed using PCI (Cp and
Cpk) in order to establish and monitor the process, employing control charts based on the
combination of two control mechanisms, namely, control limits (CL) and capability indices
(SUBRAMANI; BALAMURALI, 2012).

Oprime et al. (2019) presents a mathematical development of the model for sample
distribution of Ĉp and Ĉpk in the unconditional ARL function. According to Oprime et al.
(2019), all these indices have a degree of uncertainty because they are estimated, being
necessary to develop models that describe the probability distribution on the estimation
of these indices.
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Pearn e Lin (2004) investigated the natural estimator of the index Ĉpk, showing
that its distribution can be expressed as a mixture of the chi-square and the normal
distributions under the assumption of normality, implementing the theory of hypothesis
testing using the natural estimator of Ĉpk.

The specification limits USL and LSL are the maximum value allowed for the
product’s characteristic, and the nominal specification value is the standard (ideal) value
of the analyzed characteristic (N). Since the mathematical definitions of Cp and Cpk

are given by 3.1 and 3.2, when µ0 = N and the specification limits are equidistant
from the nominal value, the maximum Cpk obtained has the same value as Cp (i.e.
Cpkmax = Cp = (USL−LSL)

(6σ) = (USL−µ0)
(3σ0) = (µ0−LSL)

(3σ0) ), wherein Cp is denoted as the potential
capability and it does not consider the average location (OPRIME et al., 2019).

Pearn e Lin (2004) utilizing the identity min {a, b} = (a + b) /2 − |a − b| /2 present
an alternatively index Cpk written as

Cpk = d − |µ − m|
3σ

(3.11)

where d = (USL − LSL) /2 is half of the length of the specification interval, m =
(LSL + USL) /2 is the mid-point between the lower and the upper specification limits.
Replacing the process mean µ and the process stardard deviation σ by their conventional
estimators X̄ and S, which may be obtained from a process that is demonstrably stable
(under statistical control), they defined the natural estimator Ĉpk as

Ĉpk =
d −

∣∣∣X̄ − m
∣∣∣

3S
(3.12)

Considering the rth moment, and the first two moments as well as the mean and
the variance of Ĉpk obtained by Kotz e Johnson (2002), under the assumption of normality,
they define K = (n − 1) S2/σ2, Z =

√
n
(
X̄ − m

)
/σ, ξ = (µ − m) /σ, and Y = |Z|,

rewritten Ĉpk as

Ĉpk =
√

n − 1 (3Cp

√
n − Y )

3
√

nK
(3.13)

Kotz e Lovelace (1998 apud PEARN; LIN, 2004) argue that the construction of exact
confidence intervals and test procedures for Cpk are complicated because the distribution
of Ĉpk involves the joint distribution of two non-central t-distributed random variables, or
as claimed by Pearn, Kotz e Johnson (1992), as a joint distribution of folded-normal and
chi-square random variables. Under the normality assumption, K is distributed as χ2

n−1, a
chi-square distribution with n − 1 degrees of freedom. Further, since Z is distributed as
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the normal distribution N (
√

nξ, 1) with mean
√

nξ and variance 1, Y is distributed as
the folded-normal distribution. Since Cp = d/ (3σ), and |ξ| = 3 (Cp − Cpk), Pearn e Lin
(2004) written probability density function of Y as

fY (y) = ϕ
(
y − ξ

√
n
)

+ ϕ
(
y + ξ

√
n
)

= ϕ
(
y − |ξ|

√
n
)

+ ϕ
(
y + |ξ|

√
n
)

= ϕ
[
y − 3 (Cp − Cpk)

√
n
]

+ ϕ
[
y + 3 (Cp − Cpk)

√
n
]

, y ≥ 0
(3.14)

where ϕ (·) is the probability density function of the standard normal distribution N (0, 1).

The cumulative distribution function of Ĉpk can be obtained and expressed in terms
of a mixture of the chi-square distribution and the normal distribution as presented by
Vännman (1997). For x > 0

FĈpk
(x) = P

(
Ĉpk ≤ x

)
= P

(√
n − 1 (3Cp

√
n − Y )

3
√

nK
≤ x

)

= 1 − P

(√
nK <

√
n − 1 (3Cp

√
n − Y )

3x

)

= 1 −
∫ ∞

0
P

(√
nK <

√
n − 1 (3Cp

√
n − Y )

3x
|Y = y

)
fY (y) dy

= 1 −
∫ ∞

0
P

(√
nK <

√
n − 1 (3Cp

√
n − y)

3x

)
fY (y) dy

(3.15)

since K is distributed as χ2
n−1, then

P

(√
nK <

√
n − 1 (3Cp

√
n − y)

3x

)
= 0, (3.16)

for y > 3Cp

√
n and x > 0. Hence:

FĈpk
(x) = 1 −

∫ 3Cp
√

n

0
P

(√
nK <

√
n − 1 (3Cp

√
n − y)

3x

)
fY (y) dy

= 1 −
∫ 3Cp

√
n

0
P

K <
(n − 1) (3Cp

√
n − y)2

9nx2

 fY (y) dy

(3.17)

therefore

FĈpk
(x) = 1 −

∫ 3Cp
√

n

0
G

(n − 1) (3Cp

√
n − y)2

9nx2

 fY (y) dy (3.18)
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for x > 0 where fY (y) = ϕ [y + 3 (Cp − Cpk)
√

n] + ϕ [y − 3 (Cp − Cpk)
√

n] and G (·) is
the acumulative distribution function of the chi-square distribution χ2

n−1.

Given the cumulative distribution function of Ĉpk expressed in Equation 3.18,
Pearn e Lin (2004) present a test to determine if a given process is capable considering
the following statistical hypotheses:

H0 : Cpk ≤ C (process is not capable) ,

H1 : Cpk > C (process is capable)

Defining the decision making rule, test ϕ∗ (x), as the following: ϕ∗ (x) = 1, if
Ĉpk > c0; and ϕ∗ (x) = 0, otherwise. Thus, the test ϕ∗ rejects the null hypothesis
H0(Cpk ≤ C) if Ĉpk > c0, with Type I error α, (i.e. the chance of incorrectly con-
cluding an incapable process Cpk ≤ C as capable Cpk > C). As shown by Pearn e Lin
(2004), if the values of α and C are given, the critical value c0 can be obtained by solving
the equationP

(
Ĉpk ≥ c0 | Cpk = C

)
= α using available numerical integration methods.

Set an specific value of C (the capability requirement), the p-value corresponding to c∗, a
specific value of Ĉpk calculated from the sample data is

P
(
Ĉpk ≥ c∗ | Cpk = C

)
=
∫ 3Cp

√
n

0
G

(n − 1) (3Cp

√
n − y)2

9n (c∗)2

 {ϕ
[
y + 3 (Cp − Cpk)

√
n
]

+ ϕ
[
y − 3 (Cp − Cpk)

√
n
]
}dy (3.19)

Thus, given the capability requirement C, the process characteristic parameter Cp,
sample size n, and risk α, the critical value c0 can be obtained by solving the following
equation:

∫ 3Cp
√

n

0
G

(n − 1) (3Cp

√
n − y)2

9nc2
0

 {ϕ
[
y + 3 (Cp − Cpk)

√
n
]

+ ϕ
[
y − 3 (Cp − Cpk)

√
n
]
}dy = α (3.20)

3.4 X̄ control chart with Ĉp and Ĉpk indices
Oprime et al. (2019) proposed a new design for an acceptance X̄ control chart

when the average of the process is unknown, and the standard deviation is known using
expanded limits to create acceptable and unacceptable regions considering the capability
index. The acceptance X̄ proposed control chart considers the impact of the average
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variation on the capability indices, monitoring the percentage of nonconformities and the
Cpk, enabling the practitioners to make economic decisions, deciding when to stop the
process for taking corrective measures. As stated by the authors, all processes can be
classified according to the capability indices used to predict the performance of the process
in meeting product specifications.

The framework proposed by Oprime et al. (2019), shown in Figure 17, has regions of
control and out-of-control that considers average variations which impact on the capability
indices and, consequently, on the fraction of nonconforming concerning the specifications
of the product. The framework assumes that data has a normal distribution.

Figure 17 – Control chart design with expanded limits.
Source: Oprime et al. (2019)

The framework proposed presents three regions, as suggested by Woodall (1985):
(M0) when the process is in the acceptable condition; (M1) when the process is in the
unacceptable condition and (I) an indifferent region. In this new chart design built by
Oprime et al. (2019), the first region (M0) is given by the traditional Shewhart’s control
chart limits. The second region (I) is given by the expanded limits, considering Cp and Cpk

(indiferent region). The third region (M1) is when the average exceeds the expanded limits,
indicating that there were unacceptable variations in the parameter. The unacceptable
region was created considering the rule that a signal that exceeds the limits indicates an
out-of-control process.

The X̄ control chart is then designed defining CL as a function of the Cpk index,
considering that Cpk0 is the lowest acceptable value for the process,
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(1) When Cpk < Cpk0 : CL = ¯̄X ± 3
(
σ̂/

√
n
)

(traditional Shewhart’s limits)

(2) When Cpk ≥ Cpk0 : CL = ¯̄X ±
[
(3 (Cp − Cpk) σ̂0) + 3

(
σ̂0/

√
n
)]

In the new design proposed, the limits were expanded and out-of-control signals
are now associated with the levels of the capability indices:

M0 :
[ ¯̄X − 3

(
σ̂/

√
n
)

≤ X̄ ≤ ¯̄X + 3
(
σ̂/

√
n
)]

I :
[( ¯̄X − 3 (Cp − Cpk) σ̂0

)
− 3

(
σ̂0/

√
n
)

≤ X̄ < ¯̄X − 3
(
σ̂/

√
n
)]

and

:
[ ¯̄X + 3

(
σ̂/

√
n
)

≤ X̄ <
( ¯̄X + 3 (Cp − Cpk) σ̂0

)
+ 3

(
σ̂0/

√
n
)]

M1 :
[( ¯̄X − 3 (Cp − Cpk) σ̂0

)
− 3

(
σ̂0/

√
n
)

> X̄
]

or

:
[( ¯̄X + 3 (Cp − Cpk) σ̂0

)
+ 3

(
σ̂0/

√
n
)

< X̄
]

(3.21)

Since both M0 and I regions are considered as acceptable, the proposed design use
only two regions, acceptable (M0 and I) and unacceptable (M1) region. It’s considered
that a signal beyond the proposed new limits indicates that the process capability is
compromised by a variation of the average greater than acceptable (only the one-point
rule exceeding the CL was used in the performance analysis of the control chart).

3.4.1 Functional X̄ control chart with Ĉp and Ĉpk indices

As stated before, the existence of a functional relationship between the response
variable Torque and the explanatory variable RPM imposes the need to consider X̄ control
chart with Ĉp and Ĉpk indices over the entire range of values of the explanatory variable
RPM (rl; ru).

This work introduces an average variation permissible for the control limits in the
traditional X̄ control chart when it may have little or no practical importance. Using this
new design with the limits expanded, and the out-of-control signals associated with the
levels of the capacity indices according to the regions defined by Equation 3.22 and shown
in Figure 18 allow economic decisions about the process applying X̄ control chart with Ĉp

and Ĉpk indices separately to each data point observed at a given location.

However, as discussed before, since that P dependent control rules are applied
simultaneously, the Bonferroni rule for dependent events must be used to achieve an actual
false alarm rate not greater than a predefined value. Therefore, let α denote the upper
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limit of the first type of probability error (false alarm probability); the value α = α′/P is
used to calculate the control limits of Equation 3.22.

3.4.2 Functional X̄ control chart limits with Ĉp and Ĉpk indices

Assuming that the process produces items whose Torque distribution has a normal
distribution at each RPM value considered within the operating range, that is, between rl

and ru, lower and upper limit electric motor’s RPM operating range, respectively, then
there will be little danger of produce a defective item until the functional form of mean
µ̂(r) has shifted into rejectable process zone.

As previously stated in Section 2.2.2, the functional relationship between the
response variable Torque and the exploratory variable RPM imposes the need to consider
the calculation of the control limits (CL) over the entire range of values assumed by the
exploratory variable (rl, ru). Thus, the limits UCL and LCL are expressed as UCL(r) and
LCL(r), respectively, corresponding to the functional forms of the upper and lower control
limits of the acceptance control chart for every value assumed by exploratory variable in
range rl and ru, expressed in Equations 3.22. For the proposed design in this work we will
use only two regions, acceptable region (M0) and unacceptable region (M1), since the M0

and indifferent zones I are both considered as acceptable (Figure 18).

Based on the previous framework developed by Oprime et al. (2019) to address a
univariate problem, we extend and create a functional approach to be applied over the
entire range of values assumed by the explanatory variable RPM.

M0 :
[ ¯̄X(r) − k

(
σ̂(r)/

√
n
)

≤ X̄(r) ≤ ¯̄X(r) + k
(
σ̂(r)/

√
n
)]

I :
[ ¯̄X(r) − 3 ((Cp(r) − Cpk(r)) σ̂0(r)) − k

(
σ̂0(r)/

√
n
)

≤ X̄(r) < ¯̄X(r) − k
(
σ̂(r)/

√
n
)]

and

:
[ ¯̄X(r) + k

(
σ̂(r)/

√
n
)

≤ X̄(r) < ¯̄X(r) + 3 ((Cp(r) − Cpk(r)) σ̂0(r)) + k
(
σ̂0(r)/

√
n
)]

M1 :
[ ¯̄X(r) − 3 ((Cp(r) − Cpk(r)) σ̂0(r)) − k

(
σ̂0(r)/

√
n
)

> X̄(r)
]

or

:
[ ¯̄X(r) + 3 ((Cp(r) − Cpk(r)) σ̂0(r)) + k

(
σ̂0(r)/

√
n
)

< X̄(r)
]

(3.22)

where r corresponds to the values assumed by the exploratory variable RPM between rl

and ru, k is the Zα/2 corresponding to k sigma limits of Shewhart control charts corrected
by Bonferroni. In this work, it was assumed the standard value α

′ = 0.0027 as upper
bound for the Type I error probability. So, the value α = 1, 588x10−4 (i.e. Zα/2 = 3, 777)
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Figure 18 – (M1): unacceptable condition, (I): indifferent region, and (M0): traditional
Shewhart’s control chart limits at 500 RPM.

was used for designing the 17 control limits in Equation 3.22 over the region from rl =
100 RPM to ru = 1700 RPM.

Oliveira, Oprime e Jardim (2018) proposed a new design for an acceptance

Oprime et al. (2015) proposed a new design for an acceptance
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4 Data Tidying and Computer Procedures

The development of this research and the formulation of mathematical models
involved imply acquiring data from two distinct sources: i) their theoretical curves adjusted,
and ii) real data of the functional relationship between the torque and the rotation in
revolutions per minute (RPM) of sampled electric motors.

The data used to determine the functional relationship between the torque of
electric motors and the correspondent rotation in revolutions per minute (RPM) were
made available by the research and development sector of a Brazilian company’s industrial
plant. The company kindly assigned these data subject to the confidentiality terms
established between this researcher and the company.

We used RStudio (RStudio Team, 2019), an Integrated Development Environment
for the R language (R Core Team, 2020) to implement computational solutions. R is a
programming language for statistical computing and graphics to clean, analyze, and graph
data, and provides routines for exploratory and descriptive analysis of functional data
(i.e., information summarized in the form of profiles, where each data point is the response
observed in a given location, spatial or temporal). It is widely used by researchers from
diverse disciplines to estimate and display results and by teachers of statistics and research
methods. To develop the work, we use two additional packages: the qcc package to analyze
the process capability and plot its respective graphs, and the tydeverse package used to
plot ARL graphs.

The R code is available in Annex B. It was not possible to make the database
available due to the confidentiality terms established by the company.

4.1 Modeling the theoretical electric motor operating curve
The theoretical operating curves of electric motors were made available by the

company in the form of "pdf" files indicating the nominal Torque x RPM ratio and the
respective upper and lower specification limits (Figure 19).

Because it was a "pdf" file, the first step was to extract numerical data from the
information available in the form of an image. The following procedure was adopted:

1) obtaining the XY coordinates from the image

2) axis calibration by clicking known values to interpolate a coordinate system
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Figure 19 – Torque curve made available by the manufacturer of electric motors.

3) manually click each data point in a data series

This procedure was done using WebPlotDigitizer software, a free, open-source tool
that can operate on a wide variety of image file types (ROHATGI, 2011). Seventeen pairs
of points were obtained between the 100 and 1700 RPM range for the curves corresponding
to the nominal profile (NP ) and the lower (LSL) and upper (USL) specification limits
and were saved in "csv" format (Table 1). These data were later used in the mathematical
modeling of theoretical curves and the determination of process capability indices.

Table 1 – Theoretical values for Torque x RPM of electric motor Model 3, 220V

RPM LSL NP USL
100 1.5612 1.7519 1.9446
200 1.6124 1.8156 2.0051
300 1.6730 1.8706 2.0755
400 1.7228 1.9232 2.1230
500 1.7916 1.9989 2.1886
600 1.8327 2.0433 2.2589
700 1.9033 2.1105 2.3138
800 1.9711 2.1620 2.3729
900 1.9988 2.2298 2.4449

1000 2.0164 2.2568 2.4699
1100 2.0180 2.2712 2.5061
1200 1.9489 2.2060 2.4594
1300 1.8183 2.0768 2.3299
1400 1.6239 1.8581 2.0885
1500 1.3458 1.5090 1.7359
1600 0.9979 1.1346 1.2549
1700 0.5444 0.5869 0.6349
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4.1.1 Theoretical curve/model adjustment

The theoretical model of the Torque x RPM relationship shown in Figure 19 was
nonexistent, or at least, it was unknown by this researcher. Such a theoretical relationship is
of fundamental importance in developing this work since it makes it possible to determine
the torque specification limits for each rotation’s value of the electric motor and its
capability index. The theoretical model also plays an essential role in implementing the
simulations since it provides the base (Nominal Profile) from which we simulate the
samples.

Clearly, Torque and RPM’s relationship shown in Figure 19 is defined by a curve
and not a line. In this case, as the relationship between Torque and RPM is non-linear, it
will be modeled using polynomial regression, a particular case of multiple linear regression.
In general, we can model the expected value of y as an kth degree polynomial, yielding the
general polynomial regression model, as follows:

yi = β0 + β1xi + β2x
2
i + · · · + βkxk

i + ϵi, i = 1, 2, · · · , n (4.1)

where n is the pairs of observations (xi, yi); i = 1, 2, · · · , n, k is the degree of the polynomial
and ϵi is the random error associated with the response yi.

To determine the model that best fits the theoretical curve data was used the
R stats package (R Core Team, 2020). For each model, its parameters, the coefficient
of determination R2, and the coefficient of determination adjusted R2

adj were calculated
(Table 2).

Table 2 – Curve fitting model parameters of theoretical curve

Model β0 β1 β2 β3 β4 β5 β6 R2 R2
adj

Model 1 1.272e+00 2.584e-03 -1.645e-06 —- —- —- —- 0.8567 0.8362
Model 2 1.872e+00 -9.253e-04 3.092e-06 -1.754e-09 —- —- —- 0.9942 0.9929
Model 3 1.721e+00 4.124e-04 -3.484e-08 8.945e-10 -7.358e-13 —- —- 0.9984 0.9979
Model 4 1.618e+00 1.645e-03 -4.302e-06 6.928e-09 -4.447e-12 8.246e-16 —- 0.9993 0.9989
Model 5 1.686e+00 6.309e-04 4.258e-07 -2.764e-09 5.281e-12 -3.865e-15 8.685e-19 0.9994 0.9991

Graphically, it is possible to observe from the Figure 20 that the second and third-
order models, Model1 and Model2, do not fit properly to the data. The fourth (Model3),
fifth (Model4), and sixth (Model5) order models, in turn, have a much better fit quality.
The choice between Model3, Model4, and Model5 made only based on the determination
coefficient R2 may be inappropriate since R2 can be made artificially high by overfitting,
that is, by including many terms in the model.

To determine which model terms are statistically significant, analysis of variance
(ANOVA) between Models 3, Model 4, and Model 5 was performed using the anova function
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Figure 20 – Curve fitting models for theoretical curve of electric motor Model 3, 220V

Table 3 – Analysis of variance for curve model fitting.

Model Res.DF RSS Df Sum of Sq F Pr(>F)
Model1 14 0.44758 1
Model2 13 0.01810 1 0.42948 2408.2570 2.981e-13
Model3 12 0.00501 1 0.01309 73.4274 6.419e-06
Model4 11 0.00227 1 0.00274 15.3706 0.002864
Model5 10 0.00178 1 0.00048 2.7149 0.130437

available in the stats package of R. The results obtained are shown in the Table 3.

The partial F -statistic given by the anova function measures the effect of the sum
of squares of error by an increase in the extra variables in the equation. The test statistic
value F decreases as the sum of squares of error decreases by the addition of extra variables
to the equation. If the statistic F is not decreased, the extra variable cannot justify for its
inclusion in the equation and hence the extra variables can be excluded.

It can be seen from the data in Table 3 that, at the 0.01 level of significance, both
Model4 and Model5, aren’t significantly better than Model3, which explains 99.84% of
the variability observed in the response variable. However, as Walpole et al. (2007) points
out, it should be noted that the insignificance of any coefficient does not necessarily imply
that it does not belong in the final model. It merely suggests that it is insignificant in the
presence of all other variables in the problem. Given candidate models of similar predictive
or explanatory power, the simplest model is most likely to be the best choice.

So, for the development of the models, it was assumed the existence of m samples
of size nj in the form (xij, yij) , i = 1, 2, · · · , nj, j = 1, 2, · · · , m, where the subscript i
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Figure 21 – Theoretical curve of electric motor Model 3, 220V

represents the ith observation of each jth sampled profile. In this research, it was assumed
that there is a kth order polynomial relationship between the response variable y and the
exploratory variable x, as follows:

yij = β0j + β1jxij + β2jx
2
ij + β3jx

3
ij + β4jx

4
ij + ϵij (4.2)

where the errors ϵij are independent and identically distributed (i.i.d), with the mean zero
and variance σ2

ij for all i and j, (i.e., ϵij ∼ N(0, σ2
j )).

4.2 Modeling real Torque x RPM electric motors functional rela-
tionship
The company provided the actual data used in this research and which served as

the basis for the formulation of mathematical models in the "csv" format. The data were
obtained using a dynamometer developed by its engineering department. The specific
characteristics and technical details of the dynamometer operation were not provided
because its confidential technical information as outlined in the confidentiality terms
established between the university, the company, and the researchers for data availability.

Three electric motor models at voltages 127 and 220 volts were evaluated for their
Torque x RPM functional relationship. To ensure compliance with the confidentiality terms
established, the identification of the models was masked. Table 4 presents the number of
electric motors sampled for each model and voltage combination and their average number
of observations.
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Due to the inherent characteristics of the dynamometer data acquisition system,
the number of observations obtained in each sample is variable. For example, in the case
of Model 3, voltage 220 V, the number of observations ranged from 1897 (Sample 3) to
2055 (Sample 11), with the average number of observations shown in Table 4.

Table 4 – Electric motor models sampled

Model Voltage [V] Samples Average Number
of Observations

1 127 3 1945
1 220 3 1983
2 127 6 1969
2 220 7 1960
3 127 7 1987
3 220 11 1937

For unknown reasons, the dynamometer’s behavior at the ends of the acquisition
range presents an erratic behavior (Figure 22). For this reason, in this work will be
considered only the values between 100 and 1700 RPM.

Figure 22 – Torque curves of Model 3 - 220 V, got from dynamometer system indicanting
(in red) erratic behaviour on extremities of acquisition range.

The dynamometer data acquisition cycle comprises the period in which a load is
applied to the shaft of the electric motor and the period in which the shaft is released.
As a result, the empirical data can be represented by two torque curves (Figure 23). To
express the functional relationship between Torque and RPM representative of the electric
motor performance, only data related to the condition of the shaft under load will be
considered.
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Figure 23 – Curves of Model 3 - 220 V, representing acellerating and decelerating torque
conditions .

Another characteristic inherent to the dynamometer acquisition system was the
non-regularity observed in the acquisition interval between successive samples, as noted in
Figure 24.

Figure 24 – Differences in successive observations obtained by the dynamometer for Model
3 - 220V.

Due to the irregular behavior observed in the dynamometer acquisition system
at the extremities of the acquisition range, (i.e., values below 100 RPM and above 1700
RPM), these were disregarded in determining the functional relationship between Torque
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and RPM for the sampled electric motors. To determine a unique set of values for the
exploratory variable (RPM) applied to each sampled profile, an interval of 100 volts was
established, totaling 17 points. As the dynamometer’s signal acquisition system does not
allow establishing the values at which the RPM was sampled, it was necessary to obtain
the torque value for each of the RPM through a simple linear regression. This resulted
in a set of 17 values between 100 and 1700 RPM and the corresponding torque for each
sampled profile (Figure 25 ).

Figure 25 – Torque x RPM adjusted profiles for electric motor Model 3, 220 volts.

4.3 The Monte Carlo Computer Simulations Approach
We used to calculate the characteristics of the run-length (ARL) distribution.

This method’s popularity stems from the fact that, theoretically, no matter how complex
the distribution of run-lengths is, computer simulations can almost always be used with
relative ease to calculate precisely its distribution and their associated characteristics if
the simulation is large enough (KONRATH; DONATELLI; HAMBURG-PIEKAR, 2006).
In this work, we use 100000 simulations, as it is well known that the error of a run-length
function can be limited by sufficiently increasing the size of the simulation.

For this work, we implemented the simulation using the statistical language pro-
gramming R, running on a notebook equipped with Processor Intel(R) Core(TM) i3-8130U
CPU 2.20GHz, RAM 12.0 GB, and running Windows 10 64-bit operating system.

Below, we show a computer simulation procedure’s generic steps to calculate the
run-length distribution for a two-sided control chart.
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1. Specify the necessary parameters, such as the number of samples (m), number of
profiles per sample (n) ; number of observations per profile (p), Type of error I
assumed (α) and standard deviation, obtained from sample data (σ);

2. Simulate m samples with n profiles containing p observations centered on the nominal
profile and standard deviation σ, assuming normal distribution and regression model
defined in Equation 4.2;

3. Specify potential process capability (Cp) and minimum allowable capability (Cpk)
and calculates the control limits for the simulated values using Bonferroni correction
for 17 simultaneously hypothesis test;

4. Simulate n profiles containing p observations centered at δ standard deviations from
the nominal profile and standard deviation σ, assuming normal distribution and
regression model defined in Equation 4.2;

5. Determine the number N of profiles simulated presents at least one point outside of
control limits;

6. Repeat steps 4 to 5 in total 100000 and calculates ARL as the proportion N/100000;

7. Repeat steps 4 to 6 varying δ from 0.25 to 2.50 incrementing by 0.25;

8. After obtaining a "data set" with 100000 observations of the run-length distribution,
repeat steps 4 to 7 in total 100 times to get the characteristics of interest for the
run-length distribution and descriptive statistics such as mean, standard deviation,
median, and percentiles.
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5 Results and Discussion

As stated before in Section 2.2.1, the location control chart consists of applying
a Shewhart’s control chart separately to each data point observed at a given location.
For this work, each of the values assumed by the exploratory variable RPM in the speed
range between 100 and 1700 RPMs will be considered a local point where, with a given
probability, the data observed at that specific location should stay within the control
limits.

The logic behind this approach is that, if the observed shape obtained from the
functional relationship between Torque x RPM is under control, the data observed at that
specific location must remain within the control limits with a certain probability. So, an
alarm is issued when at least one point, in the whole set of data observed, exceeds the
control limits.

To assess the relative performance of the proposed model, we develop and simulates
location control chart models by adopting two approaches: Shewhart’s traditional approach
and the proposed functional control chart based on Ĉp and Ĉpk capability indices.

5.1 Design of the location control chart with traditional Shewhart
approach
Since 17 dependent control rules are applied simultaneously, the percentile of

standardized normal distribution used to compute Zα/2 in Equation 2.5 should be corrected.
For that, we applied Bonferroni’s rule for dependent events to attain a false alarm rate not
greater than a predefined probability of False Alarm or Error Type I. Let α

′ denote the
upper bound of False Alarm rate, the value α = α

′
/17 is used for designing the 17 control

limits in Equation 2.5. In particular, assuming the standard value α
′ = 0.0027 as upper

bound for the Type I error probability, the value α = 1, 588x10−4 (i.e. Zα/2 = 3, 777) is
used for designing the 17 control limits in Equation 2.5.

5.1.1 Phase I

In Phase I, a set of samples with n profiles is analyzed to assess the stability of
the process and estimate the control state’s parameters. During Phase I, the performance
of control charts is defined in terms of the probability of deciding whether the process is
in-control or not, that is, the probability of obtaining at least one statistic outside the
control limits in the whole set of data observed using the set of m process samples.
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It was considered 1000 simulations of Phase I control charting for different numbers
of profiles, specifically n = 25, 50, 75, and 100, to determine the performance of the location
control chart. The Run Length Average (ARL0) was computed as the number of samples
taken before at least one point exceeds the control limits, considering a global Type I
Risk (α′) of 0.0027. The value of (ARL0) was obtained through a Monte Carlo simulation
representing the actual value of the (ARL0).

To each simulation, it was assumed that for each location, the mean profile is the
theoretical nominal profile (NP) obtained from Equation 4.1, and that variability is the
variability means calculated in each location for sample profiles. In this case, the 17 values
between 100 and 1700 RPMs of Model 3 - 220 V (Figure 26).

Figure 26 – Simulated profiles for electric motor Model 3, 220 volts.

Table 5 summarizes the actual Average Run Length (ARL0) for In-Control Process
for n = 25, 50, 75, and 100 profiles and α

′ = 0.0027. As these results demonstrate, the
Average Run Length means is very low when compared with the nominal value 370,4,
mainly when the number of profiles per sample is small. For example, for n = 25, ARL0

is equal to 28,92, which corresponds to a Error Type I of 3,46%, much higher than the
value of 0,27% associated with α = 0.0027 of traditional Shewhart’s control charts. As
the number of profiles per sample increases, this value approaches the nominal value.
Obviously, the run length is a random variable, because it is determined by the collected
samples, which is random, with a geometric distribution (Figure 27).

For a given control chart, of course, the ideal situation is that its ARL0 value is
large and its ARL1 value, when the process is out-of-control, is small. However, similar to
the Type I and Type II error probabilities in the hypothesis testing context, this is not
easy to achieve. To handle this issue, in the SPC literature, we usually fix the ARL0 value
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Table 5 – Phase I Simulation Results: Average Run Length for In-Control Process (ARL0).
(1000 simulations, α‘ = 0.0027)

n 1st Q. Median Mean 3rd Q. sd
25 9,00 20,00 28,92 40,00 28,34
50 32,75 71,00 104,17 143,00 102,00
75 37,75 84,00 115,24 161,00 107,33

100 67,75 154,50 214,95 301,50 207,89

at a given level and try to make the ARL1 value as small as possible.

Figure 27 – Histograms of simulated distribution of ARL0 for samples with m profiles.
(1000 simulations, α

′ = 0.0027)

One possibility is to proceed a mathematical model’s reparametrization, changing
the α

′ from its original value to another that reduces False Alarm Rate, increasing the
ARL0. As shown in Table 6, when the parameter α

′ is changed from 0.0027 to 0.00135,
the Average Run Length ARL0 is increased, that is, the probability of Error Type I is
reduced. Note that a reduced false alarm rate could seem an advantage at first. However, it
means that control limits are too far from the centerline, thus, resulting in the ineffective
detection of out-of-control profiles when they arise.

To manage this trade-off, it is important to understand how the proposed model
behaves in the presence of special causes when the process is out of control.

5.1.2 Phase II

The objective in Phase II is to quickly detect any change in the process from its
in-control state. The monitoring approaches are compared in terms of the Average Run
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Table 6 – Phase I Simulation Results: Average Run Length for In-Control Process (ARL0).
(1000 simulations, α‘ = 0.00135)

n 1st Q. Median Mean 3rd Q. sd
25 10,00 22,00 31,27 43,00 30,08
50 17,00 39,00 56,72 76,25 59,54
75 136,80 325,00 477,20 644,00 481,42

100 162,00 384,00 571,00 760,20 582,89

Length (ARL1), where the run length is defined as the number of samples taken until an
out-of-control signal is issued.

In order to evaluate performance in Phase II, occurrence of assignable causes are
simulated. These out-of-controls are simulated assuming that the sample mean of the data
observed at every location (Equation 2.5) has a shift of size δ = Sσ (i.e the mean shift
from µ0 to µ1 = µ0 + Sσ) at a given time point.

It was considered 1000 simulations of Phase II control charting for different numbers
of profiles (n = 25, 50, 75, and 100) and different shifts (δ = 0.05, 0.10, 0.15, 0.20, 0.25).The
Average Run Length (ARL1) was computed as the number of samples taken before at
least one point exceeds the control limits, considering a global Type I Risk (α′) of 0.0027
(Figures 40-47).

Table 7 – Phase II Simulation Results: Average Run Length for Out-Of-Control Process
(ARL1). (1000 simulations, α

′ = 0.0027)

n δ 1st Q. Median Mean 3rd Q. sd
0.05 8,00 18,00 25,04 33,25 24,75
0.10 5,00 12,00 16,42 22,00 16,78

25 0.15 3,00 7,00 9,78 13,00 9,12
0.20 2,00 4,00 6,16 8,00 5,82
0.25 2,00 3,00 3,809 5,00 3,11
0.05 19,00 47,00 68,83 95,00 68,33
0.10 9,00 20,00 28,21 38,00 27,75

50 0.15 4,00 8,00 12,05 17,00 11,76
0.20 2,00 4,00 5,70 8,00 5,22
0.25 1,00 2,00 3,06 4,00 2,57
0.05 17,00 39,00 58,55 81,00 59,47
0.10 6,0 13,00 19,10 27,00 18,82

75 0.15 2,00 5,00 6,67 9,00 6,25
0.20 1,00 2,00 2,84 4,00 2,37
0.25 1,00 1,00 1,56 2,00 0,92
0.05 23,00 57,00 84,65 113,25 90,28
0.10 6,00 14,00 19,06 26,00 18,46

100 0.15 2,00 4,00 5,65 8,00 5,49
0.20 1,00 2,00 2,00 3,00 1,59
0.25 1,00 1,00 1,23 1,00 0,52
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Table 7 summarizes the actual Average Run Length (ARL1) for Out-Of-Control
Process for n = 25, 50, 75 and 100 profiles, α

′ = 0.0027 and δ = 0.05, 0.10, 0.15, 0.20, 0.25.
Performance comparison is based on the ideal assumption that the in-control parameters
are known.

As shown in Table 7, although the Average Run Length (ARL0) for In-Control
process using α

′ = 0.0027 is very low when compared with the nominal value (370, 4),
when the process is Out-Of-Control, the Average Run Length (ARL1) rapidly decrease.
For example, for m = 75, if the process has a shift of 0.25 standard deviation from de
centerline, the ARL1 mean is equal to 1, 56, which corresponds to an Error Type II or a
probability of non-detection β of 35, 9%. If instead n = 100 profiles had been used, the
ARL1 mean is equal to 1, 23 and Type II Error would be 18, 7%, being such deviation
detected up to the 2nd sample with 100% certainty.

From Table 8, it is possible to observe that when the parameter α
′ is changed from

0.0027 to 0.00135 there are an increase of Error Type II. For example, for n = 75, if the
process has a shift of 0.25 standard deviation from de centerline, the ARL1 mean increase
from 1, 56 to 2.74, which corresponds to an increase of Error Type II β from 35, 9% to
63, 5%. If instead n = 100 profiles had been used, the ARL1 mean is equal to 1, 87 that
represents an increase from 18, 7% to 46, 5%.

Table 8 – Phase II Simulation Results: Average Run Length for Out-Of-Control Process
(ARL1). (1000 simulations, α

′ = 0.00135)

n δ 1st Q. Median Mean 3rd Q. sd
0.05 8,00 18,00 26,05 36,00 25,92
0.10 5,00 11,00 16,38 22,00 15,96

25 0.15 3,00 7,00 10,45 14,00 10,66
0.20 2,00 5,00 6,65 9,00 6,17
0.25 1,00 3,00 3,92 5,00 3,39
0.05 11,00 26,00 36,99 51,25 36,16
0.10 5,00 12,00 17,40 25,00 16,78

50 0.15 2,00 5,00 7,35 10,00 6,63
0.20 1,00 3,00 3,69 5,00 3,17
0.25 1,00 2,00 2,18 3,00 1,53
0.05 69,00 145,00 205,00 279,00 199,32
0.10 16,00 39,00 59,71 83,25 62,93

75 0.15 5,00 12,00 18,14 26,00 17,40
0.20 2,00 4,00 6,15 9,00 5,45
0.25 1,00 2,00 2,74 4,00 2,19
0.05 66,00 139,00 199,80 266,00 189,53
0.10 14,00 31,00 44,00 63,25 43,67

100 0.15 4,00 9,00 12,33 17,00 11,91
0.20 2,00 3,00 4,26 6,00 3,83
0.25 1,00 1,00 1,87 2,00 1,27
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As expected, we have the trade-off between Error Type I and Error Type II.
Nevertheless, as it is possible to observe, the model’s reparametrization to reduce the Type
I Error, although it provokes an increase of the Type II Error, preserves the probability
that the shift will be detected since for delta values greater than 0.25 up, the control chart
will signal it to the 2nd sample with 100% certainty (Figure 28).

Figure 28 – Out-of-control Average Run Lenght (ARL1)

5.2 Designing functional process capability indices
The company obtains electric motors from a supplier and incorporates them into

its final product. For the appliance produced by the company to meet the requirements of
operating performance and compliance with legislation, the torque curve of the electric
motor must meet the design requirements. Such requirements are established on a theoret-
ical curve that contains the nominal profile, and the upper and lower specification limits,
all expressed by a curve. This experimentally obtained curve is available as an image, and
there is no mathematical model to define it (Figure 19).

Initially, through the WebPlotDigitizer application, the XY pairs were obtained
from the image of the theoretical curve corresponding to the functional relationship between
the torque and rotations per minute of the electric motors. These data were imported
into the R (R Core Team, 2020) statistical environment and the specification functional
limits USL(x) and LSL(x) as well as the nominal profile NP (x) were adjusted from the
theoretical curve and calculated as:

USL(x) = b0 USL + b1 USLx + b2 USLx2 + b3 USLx3 + b4 USLx4 (5.1)
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NP (x) = b0 NP + b1 NP x + b2 NP x2 + b3 NP x3 + b4 NP x4 (5.2)

LSL(x) = b0 LSL + b1 LSLx + b2 LSLx2 + b3 LSLx3 + b4 LSLx4 (5.3)

resulting in adjusted theoretical curve shown in Figure 29.

Figure 29 – Adjusted theoretical curve of electric motor Model 3, 220V

To determine the torque curves of the sampled electric motors, it was used a
dynamometer developed by the company’s engineering department. Data in the form “csv”
file were imported into the R statistical environment and treated to filter the values at the
extremities of the exploratory variable value range due to the anomalous dynamometer
behavior at these points. The functional average µ̂(x) was adjusted from the mean value
of yi at each level of the exploratory variable xi. Similarly, the values of ÛNTL(x) and
L̂NTL(x) from µi + 3σ̂i and µi − 3σ̂i, respectively, were estimated at each value assumed
by xi, resulting in Equations 5.3 through 5.5 as follows:

ÛNTL(x) = b0 UNT L + b1 UNT Lx + b2 UNT Lx2 + b3 UNT Lx3 + b4 UNT Lx4 (5.4)

µ̂y(x) = b0 µ + b1 µx + b2 µx2 + b3 µx3 + b4 µx4 (5.5)

L̂NTL(x) = b0 LNT L + b1 LNT Lx + b2 LNT Lx2 + b3 LNT Lx3 + b4 LNT Lx4 (5.6)
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Table 9 – Parameters of adjusted models to functional profiles of electric motor Model 3,
220V

Functional
Profile

Parameters of adjusted models
b0∗ b1∗ b2∗ b3∗ b4∗

∗USL 1.88e+00 8.15e-04 -1.19e-06 2.15e-09 -1.17e-12
∗NP 1.72e+00 4.12e-04 -3.48e-08 8.95e-10 -7.36e-13
∗LSL 1.54e+00 2.17e-04 6.01e-07 7.87e-11 -4.19e-13

∗ÛNTL 1.55e+00 8.48e-04 -7.33e-07 1.44e-09 -8.78e-13
∗µ̂ 1.50e+00 9.12e-04 -8.77e-07 1.51e-09 -8.83e-13

∗L̂NTL 1.45e+00 9.75e-04 -1.02e-06 1.58e-09 -8.87e-13

where each parameter was obtained from a polynomial adjustment of order k = 4 (Table
9).

Applying Equations 5.1 to 5.6 in equations 3.3 to 3.6, we obtain for the process
a Ĉp = 3.68 and a Ĉpk = 1.88, indicating that the production process of the sampled
electric motor model (Model 3, 220V) has a high capability. The high capability presented
compensates the fact that the profiles are not centered in relation to the nominal profile,
which is evidenced by the significantly lower value of Ĉpk when compared to the value of
Ĉp and shown in Figure 30.

Figure 30 – Theoretical curve and natural tolerance limits for the adjusted profiles indi-
cating high Cp

Although the process has a high potential capacity Ĉp, it is clear from Figure 31
that Ĉpk has a very low value at the ends of the RPM range values. However, you can see
that Ĉp and Ĉpk have a stable zone in the middle of the range. Therefore, one possibility
is to divide the entire interval into t intervals and establish a weighting, assigning different
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Figure 31 – Process Capability Index Ĉp and Ĉpk

weights to each interval according to their importance from the point of view of the
expected performance for the functional relationship between Torque and RPM. Such
weighting would be established in order to guarantee compliance with the specifications in
the most relevant range of the equipment’s operational performance.

Such approach, must use engineering and subject matter knowledge, so that the
weighting have both practical importance and statistical significance.

5.3 Designing functional X̄ control chart limits with Ĉp and Ĉpk

indices
In most situations where control charts are used, the focus is on monitoring or

statistical control of the process, reducing variability, and continuously improving it. When
a high level of process capability is achieved, as shown in Figure 32, it is sometimes
helpful to relax the standard control chart’s vigilance level. More often, when the natural
dispersion of the process is much less than the dispersion allowed by the specification
limits, some changes in the process level can be tolerated.

Although the process capability index is high, Ĉp = 3.68 and a Ĉpk = 1.88, due
to the nature of the functional relationship between Torque and RPM in this study, it is
possible to observe, based on Figure 31, that the process capability index (Ĉp and Ĉpk)
does not remain constant over the range of values considered for the independent variable
(RPM).
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This fluctuation in the values of Ĉp and Ĉpk should not be interpreted as a
deterioration of the process, occurring basically for two reasons: a) the fact that the sample
profile is not centralized in the nominal profile, mainly in the initial range of values of the
independent variable, and b) because the tolerance range does not remain constant over
the range of values considered for the independent variable, with a significant reduction of
Ĉpk in its upper end, as shown in Figure 32.

Figure 32 shows that, despite the inevitable variability in the average value of the
quality characteristic of interest, the process is still capable of meeting the specifications
established in the project, especially in the range of values between 500 and 1500 RPMs
where the process presents a high level of process capability, with Cpk ≈ 2 or above.

Figure 32 – Ĉpk process capability index over the electric motor’s operating range.

So high level of process capability means that, in this state, the standard deviation
of the average process values for each RPM is so small concerning the specification range
that it is possible that the process, although not considered under control, may still be
able to produce in an acceptable range (Figure 33).

Some shifts in process level must be expected and can be tolerated. These shifts
usually result from an assignable cause that cannot be eliminated because of engineering
or economic considerations. They often enter the system at infrequent or irregular intervals
but can rarely be treated as random variance components. When shifts appear, the process
may stabilize at a new level until the next event occurs. Between such disturbances, the
process runs in control concerning inherent variability. If tolerance limits are satisfied,
it not only may be uneconomic and wasteful of resources to control the process tightly,
but it is very likely to be counterproductive to improve capability by reducing variability
(WOODALL; FALTIN, 2019).

For the case under study, as shown in Figure 33, what is required is protection
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Figure 33 – Distribution of Torque at 500 RPM indicating a very capable process.

against a process shift that yields an undesirable percentage of items falling outside the
specification limits.

The existence of a functional relationship between the response variable Torque and
the exploratory variable RPM imposes the need to consider the calculation of the control
limits (CL) over the entire range of values assumed by the exploratory variable [xl, xu].
For each RPM, there is a central zone M0 (acceptable process) where the variable Torque
is indisputably acceptable. The outer zone M1 represents a process that is indisputably not
acceptable. Between the inner and the outer zone are indifferent zones I where the process
is acceptable but should be watched, and as the outer zone is approached, corrective action
may be taken (Figure 18).

5.3.1 Numerical analysis of ARL

For the analysis, we consider only the one-point rule that exceeds the CL as defined
in Equation 3.22. That is, if only one point for the response variable Torque correspondent
to each explanatory variable from xl to xu, is located in the region M1, we consider the
process not capable, and in fact, having an impact on the productive system with the
production of items out of specification. Thus, the following hypothesis test was taken
into consideration, as previously shown:

H0 : Cpk(x) ≤ Cpk0(x) (process is not capable) ,

H1 : Cpk(x) > Cpk0(x) (process is capable)
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If H0 is true, the process is not capable, and a location control chart with the
traditional Shewhart approach should be used. If H0 is false, it is necessary to decide the
m and n parameters to conduct Phase I and Phase II. For this work, it was assumed that
Cpk0 , the lowest acceptable value for the process, was 1.33 and 1.00, a target for processes
4 Sigma and 3 Sigma, respectively.

In the development of this thesis, we consider two more assumptions: 1) the shape
of the profile does not change (i.e., the regression coefficients (β) of the curve determined
by Equation 4.2 remain stable so that the profile moves as a block by δ; 2) the variability
of the response variable Torque is known for each value of RPM exploratory variable
considered.

For the scope of this work, it is considered that the process is not capable when, in
fact, it impacts the production system with the consequent production of non-conforming
items that do not meet the specification limits. The goal is to have control chart signals
associated with practical significance, not just statistical significance, since a sample
inconsistent with the assumed control model does not necessarily imply a process change
of practical importance. This problem becomes more relevant as the sample size increases
at each sampling point because then tiny changes in the process can be detected with high
probability.

Considering, for example, the lowest acceptable value for the process (Cpk0) as 1.33,
we can formulate the following hypothesis:

H0 : Cpk(x) ≤ 1.33 (process is not capable) ,

H1 : Cpk(x) > 1.33 (process is capable)

However, given that 17 dependent control rules are simultaneously applied, we
applied Bonferroni’s rule for dependent events to attain a false alarm rate not greater than
a predefined probability. If hypothesis H0 is rejected, the process is considered capable.

In order to evaluate performance in Phase II, the occurrence of assignable causes
is simulated adopting the Monte Carlos approaching shown in Section 4.3. These out-
of-controls are simulated assuming that the sample mean of the data observed at each
location (Equation 3.22) has a shift of δ = Sσ (i.e the mean shift from µ0 to µ1 = µ0 + δσ)
at a given time point. It was assumed that for each sample, the shape of the profile remains
the same (i.e., the coefficients of Equation 4.2 remains the same for all profiles simulated).

We use the equations shown in Section 3.4.2 to develop the analysis of the indepen-
dent variables (number samples and the number of profiles per sample) and their effects
on the ARL1 to the control chart proposed. Introducing Ĉp and Ĉpk in the ARL1 function,
the number of samples taken until an out-of-control signal is issued, increased considerably
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and the time needed to determine the actual number of simulations until obtaining an
out of control process signal as well. It can be noted that simulating the distribution of
run-lengths and their associated characteristics can be very time-consuming in the case of
the in-control process because the distribution of run-lengths slopes steeply to the right,
which means that there may be very long path values, which can take a long time to
achieve.

For this reason, instead of determining the actual number of simulations until
obtaining an out-of-control process signal, as done in Section 5.2, a very time-consuming
procedure, especially when the process displacement (δ) related to the profile nominal
is small, we adopted another strategy to implement the simulations, determining the
proportion of profiles outside the control limits concerning a fixed number of simulations.

It was considered 100000 simulations of Phase II control charting for differ-
ent numbers of profiles (m = 10, 20 and 40), diferent size samples (n = 3, 5, 9 and
15) and different displacement of the process in relation to the nominal profile (δ =
0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, and 2.50). The Average Run Length (ARL1)
was computed as ARL1 = 1/(1 − β), considering a global Type I Risk (α′) of 0.0027. Each
100000 simulations was repeated 100 times in order to get an average to ARL1 value,
assuming that the Torque has a normal distribution with mean unknown and standard
deviation known for each RPM.

Tables 10 to 12 presents ARL1 values when torque mean is unknown and torque
standard deviation is known for each RPM , and the lowest acceptable value for the
process Cpk0 is 1.33, that is, a process where 99.38% of the electric motors produced have
a torque curve that meets the specifications. For each Table, we consider a potential
process capability (Cp) to produce electric motors that have a torque curve that meets the
specifications equal to 2.00, 1.75, 1.50 and 1.33. The curves relating torque versus RPM
are presented in the Figures 34 to 36, respectively.

Closer inspection of the Tables 10 to 12 and Figures 34 to 36 shows that when
Cpk is higher than or equal to Cpk0 , the ARL1 is high and, consequently, indicates a low
probability of process interruption in search for special causes causing process instability,
since the process meets the limits concerning the specifications of the product. These
results corroborate the fact that the proposed control chart under analysis does not seek to
monitor or control the stability of the process but to prevent the process from producing
items outside the specification limits.

These tables are quite revealing in several ways. First, it is possible to observe that
when the potential capacity of the process (Cp) is high, there is a small probability of a
signal to be observed. For example, with m = 20, n = 3, Cpk0 = 1.33, and Cp = 2.00, if
the process average had a displacement δ of 1.00 caused by some factor, the probability of
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this average displacement is detected is only 0.169% (Table 11). In this condition, despite
the displacement being one standard deviation, the process still presents a capability
Cpk of 1.67, therefore above the minimum value tolerated for the process. This is good
since, from the standpoint of practical significance, we want a signal to be given only
when the process presents a high risk of producing defective items. When, however, the
process experiences a more significant deviation, causing its Cpk to be reduced to the
minimum value of acceptable capability for the process (Cpk0 = 1.33), a condition that
begin to present a high risk of producing non-conforming items, the probability that such
deviation be detected becomes equal to 3.125%. In this case, the decision to intervene
in the process must use engineering and subject matter knowledge so that the weighting
has both practical importance and statistical significance, evaluating whether attributable
causes may be inherent to the process and if their removal is impossible, impractical, or
expensive.

Second, there is a (rather) interesting outcome related to ARL1 which has the
following behavior: when Cpk is higher than or equal to Cpk0 , if n increases, the ARL1

increases too. This result is somewhat counterintuitive because for the traditional Shewhart
control chart, if you increases n, the power of a statistical test increases as well, resulting
in a greater probability of correctly rejecting H0. However, for Cpk less than Cpk0 there is
an inversely proportional relationship resulting that as n increases the ARL1 increases.

Third, when Cpk0 is equal to Cp, the behavior of the location control chart using
expanded limits based on Ĉp and Ĉpk, resembles the location control chart with the
traditional Shewhart approach described in Section 5.1.

Overall, these results indicate that the performance of the location control chart
with expanded limits based on Ĉp and Ĉpk indices presents a better performance than the
traditional location control chart based only on Shewhart approach for situations where
the difference between Ĉp and Ĉpk is large. However, considering the results of Tables
10 to 12, it can be observed that when the difference between Ĉp and Ĉpk is small, the
proposed control chart presents a lower performance.

The results shown in Tables 13 to 15 and Figures 37 to 39 corroborate the findings
of Tables 10 to 12 and Figures 34 to 36, indicating that when a high level of process
capability is achieved, it can be helpful relax the level of control for variability and special
causes reducing costs associated with unnecessary process stop. On the other hand, the
practitioner can return to traditional control when the process presents less than an
acceptable capability.

In this case, the difference between Ĉp and Ĉpk is greater than in Tables 13 to 15.
For example, if m = 20, n = 3, Cpk0 = 1.00, and Cp = 2.00, when the process average had a
displacement δ of 1.00 caused by some factor, the probability of this average displacement
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is detected is only 0.0125% (Table 14). In this condition, despite the displacement being
one standard deviation, the process exhibit a capability Cpk of 1.67, well above the lowest
acceptable capability for the process (1.00) that corresponds to a 3 Sigma process, a
process with 0.27% probability to produce non-conforming items.

Table 10 – Simulated ARL1 using expanded limits for m = 10 and Cpk0 = 1.33.
δ

Cp Cpk0 n 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Cpk 1.92 1.83 1.75 1.67 1.58 1.50 1.42 1.33 1.25 1.17

3 3616.3 2029.9 1043.2 518.3 258.3 128.4 64.4 32.8 17.0 8.9
5 > 105 14566.2 4269.4 1365.3 453.1 153.8 54.1 19.8 7.8 3.3
9 > 105 > 105 > 105 3756.4 629.5 118.6 25.1 6.3 2.1 1.22.00 1.33

15 > 105 > 105 > 105 > 105 > 105 2243.5 194.9 23.1 4.2 1.4
Cpk 1.67 1.58 1.50 1.42 1.33 1.25 1.17 1.08 1.00 0.92

3 516.0 301.6 157.3 80.0 40.7 21.0 11.0 5.9 3.3 2.0
5 1848.2 662.0 227.5 79.0 28.0 10.8 4.5 2.1 1.3 1.0
9 12032.8 1884.1 330.3 63.8 14.0 3.8 1.5 1.0 1.0 1.01.75 1.33

15 > 105 > 105 7577.4 559.0 54.4 7.6 1.8 1.0 1.0 1.0
Cpk 1.42 1.33 1.25 1.17 1.08 1.00 0.92 0.83 0.75 0.67

3 75.3 45.0 24.2 12.8 6.9 3.9 2.3 1.5 1.1 1.0
5 99.2 38.7 14.6 5.9 2.7 1.4 1.1 1.0 1.0 1.0
9 149.8 30.5 7.2 2.3 1.1 1.0 1.0 1.0 1.0 1.01.50 1.33

15 1387.1 116.2 12.8 2.3 1.1 1.0 1.0 1.0 1.0 1.0
Cpk 1.25 1.16 1.08 1.00 0.91 0.83 0.75 0.66 0.58 0.50

3 21.0 12.8 7.1 4.0 2.4 1.5 1.1 1.0 1.0 1.0
5 15.2 6.6 2.9 1.6 1.1 1.0 1.0 1.0 1.0 1.0
9 9.8 2.8 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.01.33 1.33

15 14.4 2.4 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Figure 34 – Curves ARL1 versus δ for m = 10 and Cpk0 = 1.33.
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Table 11 – Simulated ARL1 using expanded limits for m = 20 and Cpk0 = 1.33.
δ

Cp Cpk0 n 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Cpk 1.92 1.83 1.75 1.67 1.58 1.50 1.42 1.33 1.25 1.17

3 4300.9 2361.2 1190.0 590.7 290.3 144.7 72.6 36.9 19.1 10.0
5 > 105 13330.2 3883.9 1246.7 427.8 145.8 51.6 18.9 7.5 3.3
9 > 105 > 105 > 105 > 105 > 105 4375.8 719.2 127.7 25.4 6.02.00 1.33

15 > 105 > 105 > 105 > 105 > 105 9411.9 617.7 52.5 6.3 1.5
Cpk 1.67 1.58 1.50 1.42 1.33 1.25 1.17 1.08 1.00 0.92

3 575.5 320.7 164.7 84.0 42.7 21.9 11.5 6.2 3.5 2.1
5 1827.0 645.0 216.9 76.4 27.5 10.5 4.4 2.1 1.2 1.0
9 > 105 > 105 4907.3 787.2 138.9 27.3 6.4 2.0 1.1 1.01.75 1.33

15 > 105 > 105 17321.0 974.9 78.0 8.6 1.7 1.0 1.0 1.0
Cpk 1.42 1.33 1.25 1.17 1.08 1.00 0.92 0.83 0.75 0.67

3 77.8 45.0 23.9 12.6 6.8 3.9 2.3 1.5 1.1 1.0
5 99.1 37.7 14.2 5.7 2.6 1.4 1.0 1.0 1.0 1.0
9 797.7 142.8 27.7 6.4 2.0 1.1 1.0 1.0 1.0 1.01.50 1.33

15 1439.1 110.3 11.2 2.0 1.2 1.0 1.0 1.0 1.0 1.0
Cpk 1.25 1.16 1.08 1.00 0.91 0.83 0.75 0.66 0.58

3 20.8 12.4 6.9 3.9 2.3 1.5 1.1 1.0 1.0 1.0
5 15.1 6.4 2.9 1.5 1.1 1.0 1.0 1.0 1.0 1.0
9 24.6 5.9 1.9 1.1 1.0 1.0 1.0 1.0 1.0 1.01.33 1.33

15 12.0 2.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Figure 35 – Curves ARL1 versus δ for m = 20 and Cpk0 = 1.33.
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Table 12 – Simulated ARL1 using expanded limits for m = 40 and Cpk0 = 1.33.
δ

Cp Cpk0 n 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Cpk 1.92 1.83 1.75 1.67 1.58 1.50 1.42 1.33 1.25 1.17

3 3942.0 2224.5 1112.3 551.1 273.1 136.1 68.6 35.1 18.2 9.7
5 > 105 > 105 > 105 7594.5 2453.5 812.5 268.7 91.9 32.9 12.4
9 > 105 > 105 > 105 > 105 13400.8 1887.4 315.1 57.9 12.3 3.32.00 1.33

15 > 105 > 105 > 105 > 105 > 105 9342.0 607.7 51.0 6.1 1.5
Cpk 1.67 1.58 1.50 1.42 1.33 1.25 1.17 1.08 1.00 0.92

3 503.2 290.3 150.4 76.9 39.3 20.3 10.8 5.9 3.4 2.1
5 6831.2 2385.3 774.9 260.3 89.8 32.3 12.2 5.0 2.3 1.3
9 > 105 17635.0 2382.5 393.7 71.5 14.8 3.8 1.5 1.0 1.01.75 1.33

15 > 105 > 105 18274.6 982.0 78.1 8.6 1.7 1.0 1.0 1.0
Cpk 1.42 1.33 1.25 1.17 1.08 1.00 0.92 0.83 0.75 0.67

3 68.1 40.4 21.7 11.6 6.4 3.6 2.2 1.5 1.1 1.0
5 223.4 85.1 30.8 11.7 4.8 2.3 1.3 1.0 1.0 1.0
9 469.6 85.9 17.4 4.3 1.6 1.0 1.0 1.0 1.0 1.01.50 1.33

15 1533.5 115.8 11.7 2.1 1.0 1.0 1.0 1.0 1.0 1.0
Cpk 1.25 1.16 1.08 1.00 0.91 0.83 0.75 0.66 0.58 0.50

3 18.6 11.3 6.4 3.7 2.2 1.5 1.1 1.0 1.0 1.0
5 25.7 10.8 4.5 2.2 1.3 1.0 1.0 1.0 1.0 1.0
9 17.5 4.4 1.6 1.0 1.0 1.0 1.0 1.0 1.0 1.01.33 1.33

15 12.8 2.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Figure 36 – Curves ARL1 versus δ for m = 40 and Cpk0 = 1.33.
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Table 13 – Simulated ARL1 using expanded limits for m = 10 and Cpk0 = 1.00.
δ

Cp Cpk0 n 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Cpk 1.92 1.83 1.75 1.67 1.58 1.50 1.42 1.33 1.25 1.17

3 > 105 > 105 13996.2 6519.7 3079.9 1468.5 715.6 350.8 173.0 87.1
5 > 105 > 105 > 105 > 105 > 105 7914.4 2177.7 697.5 234.9 82.3
9 > 105 > 105 > 105 > 105 > 105 > 105 4630.4 735.0 138.5 29.32.00 1.00

15 > 105 > 105 > 105 > 105 > 105 > 105 > 105 > 105 5580.2 432.5
Cpk 1.67 1.58 1.50 1.42 1.33 1.25 1.17 1.08 1.00 0.92

3 6870.3 3718.0 1907.8 952.2 467.7 231.3 115.2 58.1 29.6 15.3
5 > 105 38144.1 11429.5 3547.0 1136.4 378.5 129.5 45.4 16.9 6.7
9 > 105 > 105 > 105 16527.7 2372.7 415.8 79.9 17.6 4.7 1.81.75 1.00

15 > 105 > 105 > 105 > 105 > 105 20508.0 1393.8 126.8 16.3 3.3
Cpk 1.42 1.33 1.25 1.17 1.08 1.00 0.92 0.83 0.75 0.67

3 973.2 555.3 287.8 144.9 73.3 37.2 19.2 10.1 5.5 3.1
5 4703.8 1721.0 566.3 193.2 67.2 24.4 9.4 4.0 1.9 1.2
9 > 105 8223.4 1240.2 222.6 44.4 10.3 3.0 1.3 1.0 1.01.50 1.00

15 > 105 > 105 > 105 4917.0 359.1 38.0 5.9 1.6 1.0 1.0
Cpk 1.25 1.16 1.08 1.00 0.91 0.83 0.75 0.66 0.58 0.50

3 257.5 151.5 79.6 41.0 21.2 11.1 6.0 3.4 2.0 1.3
5 623.7 234.5 52.1 29.7 11.2 4.6 2.2 1.3 1.0 1.0
9 2299.7 409.2 77.4 16.7 4.4 1.6 1.1 1.0 1.0 1.01.33 1.00

15 > 105 9322.0 655.8 61.1 8.1 1.8 1.0 1.0 1.0 1.0

Figure 37 – Curves ARL1 versus δ for m = 10 and Cpk0 = 1.00.
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Table 14 – Simulated ARL1 using expanded limits for m = 20 and Cpk0 = 1.00.
δ

Cp Cpk0 n 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Cpk 1.92 1.83 1.75 1.67 1.58 1.50 1.42 1.33 1.25 1.17

3 > 105 > 105 > 105 7979.3 3864.9 1848.3 905.2 447.5 219.6 110.1
5 > 105 > 105 > 105 > 105 22302.8 6330.5 1967.6 637.6 218.2 76.6
9 > 105 > 105 > 105 > 105 > 105 > 105 > 105 > 105 > 105 3318.82.00 1.00

15 > 105 > 105 > 105 > 105 > 105 > 105 > 105 > 105 > 105 3918.8
Cpk 1.67 1.58 1.50 1.42 1.33 1.25 1.17 1.08 1.00 0.92

3 8675.8 4637.3 2264.1 1094.1 542.1 266.2 132.8 67.0 34.1 17.6
5 > 105 > 105 10055.8 3059.6 1047.7 352.5 121.8 43.0 16.1 6.4
9 > 105 > 105 4907.3 787.2 138.9 27.3 6.4 2.0 1.1 1.01.75 1.00

15 > 105 > 105 > 105 > 105 > 105 > 105 7575.5 476.1 42.0 5.3
Cpk 1.42 1.33 1.25 1.17 1.08 1.00 0.92 0.83 0.75 0.67

3 1089.7 603.4 309.9 156.3 78.5 39.8 20.5 10.8 5.9 3.3
5 4957.4 1642.6 539.3 185.6 64.9 23.6 9.2 3.9 1.9 1.2
9 > 105 > 105 > 105 4443.2 725.1 127.5 25.1 5.9 1.9 1.11.50 1.00

15 > 105 > 105 > 105 12936.9 764.7 62.8 7.2 1.6 1.0 1.0
Cpk 1.25 1.16 1.08 1.00 0.91 0.83 0.75 0.66 0.58 0.50

3 280.1 157.6 81.5 41.9 21.7 11.4 6.2 3.5 2.1 1.4
5 631.9 227.7 79.5 28.8 11.0 4.5 2.1 1.3 1.0 1.0
9 > 105 4295.4 699.0 123.8 24.4 5.8 1.9 1.1 1.0 1.01.33 1.00

15 > 105 17345.8 926.9 73.6 8.1 1.7 1.0 1.0 1.0 1.0

Figure 38 – Curves ARL1 versus δ for m = 20 and Cpk0 = 1.00.



Chapter 5. Results and Discussion 84

Table 15 – Simulated ARL1 using expanded limits for m = 40 and Cpk0 = 1.00.
δ

Cp Cpk0 n 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Cpk 1.92 1.83 1.75 1.67 1.58 1.50 1.42 1.33 1.25 1.17

3 > 105 > 105 17929.5 7916.0 3714.8 1809.5 898.2 441.9 217.1 108.7
5 > 105 > 105 > 105 > 105 > 105 > 105 27217.9 7263.4 2295.4 755.0
9 > 105 > 105 > 105 > 105 > 105 > 105 > 105 > 105 8075.1 1236.42.00 1.00

15 > 105 > 105 > 105 > 105 > 105 > 105 > 105 > 105 > 105 3739.1
Cpk 1.67 1.58 1.50 1.42 1.33 1.25 1.17 1.08 1.00 0.92

3 7713.2 4298.1 2119.8 1038.9 512.5 253.6 126.8 64.2 32.7 17.0
5 > 105 > 105 > 105 > 105 7857.4 2429.8 773.3 256.6 88.2 31.6
9 > 105 > 105 > 105 > 105 > 105 10591.3 1612.7 272.8 50.5 10.91.75 1.00

15 > 105 > 105 > 105 > 105 > 105 > 105 7331.4 461.3 40.4 5.1
Cpk 1.42 1.33 1.25 1.17 1.08 1.00 0.92 0.83 0.75 0.67

3 964.0 551.7 282.6 143.9 72.6 37.0 19.2 10.2 5.6 3.2
5 23342.1 7090.1 2271.6 748.9 251.1 87.2 31.3 11.8 4.9 2.3
9 > 105 > 105 > 105 2060.9 341.6 62.8 13.1 3.5 1.4 1.01.50 1.00

15 > 105 > 105 > 105 12443.5 756.4 62.2 7.2 1.6 1.0 1.0
Cpk 1.25 1.16 1.08 1.00 0.91 0.83 0.75 0.66 0.58 0.50

3 244.1 141.5 74.1 38.2 19.9 10.6 5.8 3.3 2.0 1.4
5 1957.1 697.6 236.1 82.0 29.3 11.2 4.6 2.2 1.3 1.0
9 15867.7 2222.0 367.6 67.2 14.0 3.6 1.4 1.0 1.0 1.01.33 1.00

15 > 105 16556.5 939.8 74.5 8.2 1.7 1.0 1.0 1.0 1.0

Figure 39 – Curves ARL1 versus δ for m = 40 and Cpk0 = 1.00.



Chapter 5. Results and Discussion 85

As mentioned in the literature review, when we have a situation where some slack
in the process is generally allowed because the process is highly capable and where the
specification limits are very wide with respect to process variation, attention should be
directed to other issues more urgent, or in Woodall e Faltin (2019) words, of "greater
practical significance". The selection of control limits, with their associated ARLs, reflects
a judgment regarding the consequences of two types of errors that can be made: the false
alarm and its consequent compromise of the credibility of the control tool, and on the other
hand, the possibility of allowing a significant change in the process not to be detected in
time.

In the daily production routines of companies and organizations, the decision to
intervene in the process must use engineering knowledge and personal subject experience so
that the weighting has both practical importance and statistical significance. The "owner
of the process" would only want to react when a process change is significant enough to
justify a reaction in practice. It is unrealistic to assume that any deviation, however small,
should be detected as quickly as possible.

The use of a control region associated with the process capability indices Ĉp and
Ĉpk0 , presented by this thesis, so that only changes of practical importance are quickly
detected, is analogous to hypothesis testing when the null hypothesis establishes an
acceptable minimum value for the process’ operation. The location control chart, proposed
as an alternative to profile monitoring, explores the assumptions under Shewhart’s systems
thinking, expanding its traditional limits in order to "desensitized" it in detecting small
shifts that are not necessarily of practical significance. An important aspect of being
highlighted is its simplicity and applicability, keeping all the data information observed in
each location where the profile needs to be evaluated.
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6 Conclusion

Through their statistical limits, statistical control charts are essential tools in
process monitoring and control, helping to interpret its stability. The capability indices, in
turn, deal with the performance of these processes related to their capability of meeting
the specifications established in the project. Many researches have been developed to
design statistical methods able to detect small process deviations when the process is
under the action of special causes, or as it is commonly said, out of statistical control.

This sensitivity is an advantage for processes needing precise control but is a definite
drawback where some slack in the process is permissible. Although, small attributable
causes may be inherent to the process, their removal may become impossible, impractical,
or expensive. In reviewing the literature, it is possible to observe that few publications
deal with the development of control charts that incorporate aspects of economic and
practical significance to the control charts.

The literature review revealed that there has been a growing interest in monitoring
and controlling the quality characteristics of products and processes characterized by a
functional relationship between a response variable and one or more exploratory variables.
This interest has been driven by the increasing availability of data made possible by the
intensive use of sensors and data collectors, typical of Industry 4.0. This, combined with
the fact that the shape of manufactured products is often an important aspect of quality
and for which traditional control methods present unsatisfactory performance or may
not even be applicable, have done profile monitoring an up-and-coming area of research.
Among others approaches to profile monitoring, the location control chart presents as an
alternative standing out for its applicability and simplicity, keeping all the data information
observed in each location where the profile needs to be evaluated.

As with univariate statistical control charts, there is a need for desensitization of
the location control charts in order to ensure that signs of an out-of-control process that
do not present a high risk to produce non-conforming items, be ignored. Using process
capability indices Ĉp and Ĉpk, this thesis aimed to incorporate Shewhart-type location
control chart models considering practical and economic significance when a profile defines
the quality characteristic. The present thesis focused on the question: Is a Shewhart-type
functional control chart based on capability índices Ĉp and Ĉpk an acceptable
control way to profile monitoring?

This thesis addressed the research problem in three aspects: 1) modeling the
functional relationship between Torque and RPM for electric motors based on data
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given by a company; 2) modeling functional capability indices based on Torque x RPM
relationship modeled before, and finally; 3) modeling expanded control limits based on
capability indices to a location control chart. An interesting aspect in the development
of the work was the need to treat the data provided by the company in such a way that
they could be useful in the modeling and analysis stages. In a typical environment of
the emerging Industry 4.0, characterized by large volumes of data, new ways to produce,
organize, and analyze data need to be thought, since management decisions are only as
good as the data on which they are based.

Based on the models available in the literature that address the monitoring for
univariate statistics, this thesis has developed an acceptance control chart that incorporates
practical and economic significance to the monitoring of profiles. Using the proposed
approach by Boeing (1998) and Oprime et al. (2019), new functional control limits
expanded was determined by including two new parameters, Ĉp and Ĉpk, which appears to
be the first study with a similar approach, constituting a theoretical gap in the statistical
profile monitoring that was filled.

The built statistical model assumes that the average of the response variable is
unknown and that its standard deviation is known at each value assumed by the exploratory
variable, Other assumption assumed was that the profile shape keeps stable, that is, the
regression coefficients of the profile remain the same. With the use of the R language, the
performance analysis of the control charts was performed for the assumed assumptions.

By comparing the results obtained for the location control chart using the traditional
approach and the location control chart with expanded limits based on Ĉp and Ĉpk

proposed in this thesis, it was possible to observe that the expanded control limits have
performed better. There was a significant reduction in the likelihood of signaling that the
process is out-of-control when this is irrelevant or, at least, does not present practical
or economic significance. Since the location control chart developed does not attempt
to control the stability of the process but prevents the process from producing items
outside the specification limits, the results demonstrate that, from the economic point of
view, it constitutes a more interesting alternative to the traditional approach. In this way,
the answer to the research question proves to be positive: Shewhart-type functional
location control chart based on capability indices Ĉp and Ĉpk constitute an
acceptable control way to profile monitoring and presents an upper performance
compared to the traditional functional approach.

It is important to emphasize that the proposed method is similar to acceptance
charts. The idea is that the product be produced from a process under statistical control
at an acceptable level, but to assume that the process can present signs of out-of-control
provided that the probability of producing items outside the specification limits be small,
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determined by economic and practical aspects. The discoveries of this study have many
practical implications. For example, provide a basis for action on the process to find
the quality level with economically satisfying results for the company, using engineering
knowledge and practical experience.

Future research
This is a fruitful area for more investigation, and various issues remain unanswered.

Another study could evaluate the effect on the performance of the proposed location control
chart if the standard deviation of the response variable is unknown. Another question
that would deserve to be investigated would be the impact of variability in the profile
regression coefficients, altering its form.

Another interesting issue is that the specification ranges are not constant throughout
the entire extent considered for the exploratory variable. Further research could be
undertaken to explore how a weighting for the control limits according to each value of
exploratory variable could confer weight to those points where the characteristic of quality
is more relevant, from the point of view of the product performance.

Finally, other interesting possibility would be to research the applicability of the
proposed method in situations where the observed profile represents, not a functional
relationship between two variables, but effectively a geometric shape as, by example, in
the stamping processes.
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ANNEX A – Histograms

Figure 40 – Histograms of simulated distribution of ARL for samples with m = 25 profiles.
(1000 simulations, α

′ = 0.0027)

Figure 41 – Histograms of simulated distribution of ARL for samples with m = 50 profiles.
(1000 simulations, α

′ = 0.0027)
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Figure 42 – Histograms of simulated distribution of ARL for samples with m = 75 profiles.
(1000 simulations, α

′ = 0.0027)

Figure 43 – Histograms of simulated distribution of ARL for samples with m = 100
profiles. (1000 simulations, α

′ = 0.0027)
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Figure 44 – Histograms of simulated distribution of ARL for samples with m = 25 profiles.
(1000 simulations, α

′ = 0.00135)

Figure 45 – Histograms of simulated distribution of ARL for samples with m = 50 profiles.
(1000 simulations, α

′ = 0.00135)
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Figure 46 – Histograms of simulated distribution of ARL for samples with m = 75 profiles.
(1000 simulations, α

′ = 0.00135)

Figure 47 – Histograms of simulated distribution of ARL for samples with m = 100
profiles. (1000 simulations, α

′ = 0.00135)
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ANNEX B – R Code

# #########################################

#

# R Code to simulate ARL ( Tables 10 - 15)

#

# #########################################

rm(list = ls ()) # Clears environment variables

#Load required libraries

library ( tictoc )

library (Hmisc)

library ( rstudioapi )

#Set the location of the .R file as the session ’s working

directory

setwd ( dirname ( getSourceEditorContext ()$path))

## Defines which curve (R: Braking or A: Release ) will be used

s <- "R" # "R": Shaft braking ; "A": Shaft release

# Calculates the Torque corresponding to the values of the

explanatory variable

#by applying linear regression to the sample values immediately

below and after

#the applied indices (ex. 100, 200, ..., 1700)

calcTor <- function (index ,x1 ,y1 ,x2 ,y2){

return ((( y2 - y1)*(( index - x1)/(x2 - x1)) + y1))

}

file.ca <- "./Data/ XXXXXXXXX /220V/ XXXXXXXXXX / XXXXXXXXXXX .csv" #

Sample data

file.ct <- "./Data/ XXXXXXXXX /220V/ XXXXXXXXXXXX .csv" # Theoretical

data

#Read the sample data (ca)

ca <- read.csv(file.ca , header = FALSE)

#Read theoretical curve data (ct)
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ct <- read.csv2(file.ct , header = TRUE)

# Splits the data into two sets: RPM increase and decrease

ca.R <- ca [1: which .min(ca$V1) ,,] #RPM Decrease

ca.A <- ca[which .min(ca$V1) + 1:( length (ca$V1) - which .min(ca$V1)

) ,,] #RPM Increase

# Initializes torque and rotation vectors

rot.R <- c()

rot.A <- c()

tor.R <- c()

tor.A <- c()

index <- seq(from = 100, to = 1700 , by = 50)

if (s == "A") {

cv <- ca.A

} else if (s == "R") {

cv <- ca.R[order (ca.R$V1) ,,]

}

for (idx in index ) {

for (i in 1: length (cv$V1)) {

if (cv$V1[i] < idx & cv$V1[i + 1] > idx) {

# print(i)

rot.R <- c(rot.R,idx)

tor.R <- c(tor.R, calcTor (idx ,cv$V1[i],cv$V2[i],cv$V1[i + 1],cv

$V2[i + 1]))

}

}

}

rt <- ct$RPM [1:17] # Theoretical curve rotation data

tq.LM <- ct$LM [1:17] # Theoretical curve torque data (LM)

tq.LIE <- ct$LIE [1:17] # Theoretical curve torque data (LIE)

tq.LSE <- ct$LSE [1:17] # Theoretical curve torque data (LSE)

obs <- 17 # Number of observations per profile

intervalo <- (( max( index ) - min(index )))/(obs - 1)

x <- seq (100 , 1700 , by = intervalo )

#Fits a 4th -order regression model to the LM of the theoretical
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curve

fit.LM <- lm(ct$LM~poly(ct$RPM ,4, raw=TRUE))

a0.LM <- fit.LM$ coefficients [1]

a1.LM <- fit.LM$ coefficients [2]

a2.LM <- fit.LM$ coefficients [3]

a3.LM <- fit.LM$ coefficients [4]

a4.LM <- fit.LM$ coefficients [5]

y.LM <- a0.LM + a1.LM*x + a2.LM*x^2 + a3.LM*x^3 + a4.LM*x^4

tic () #Start counting time

# ##############################################

set.seed (1234) # Initializes a pseudo - random number generator

n_sims <- 100000 # Number of simulations

n_ samples <- 20 # Sample number

n_ profiles <- 3 # Number of profiles per sample

n_obs <- 17 # Number of observations per profile

alpha <- 0.0027 #Type I Error assumed

sigma <- 0.018 # Standard deviation obtained from sample data

Cp <- 2.00 #Cpk_max ( Potential process capability )

Cpk <- 1.33 #Cpk0 ( Minimum allowable capability )

#sigma <- mean ((tq.LSE -tq.LIE)/(6*Cp)) # Determinado a partir dos

LE para um Cp determinado

T <- array (0,c(n_samples ,n_profiles ,n_obs)) # Initialize the array

k <- abs( qnorm (( alpha/n_obs)/2)) #CC opening factor corrected by

Bonferroni

# Simulates n_ samples ( samples ) with n_ profiles ( profiles )

containing n_obs ( observations )

# centered on the nominal profile (LM) with standard deviation

sigmaT

for(i in 1:n_ samples ){

for (j in 1:n_ profiles ) {

T[i,j,] <- a0.LM + a1.LM*x + a2.LM*x^2 + a3.LM*x^3 + a4.LM*x^4

+

rnorm ( length (x) ,0,abs( rnorm (1,0, sigma)))

}
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}

mean_T <- vector ( length = n_obs) # Initialize Torque vector for/

each RPM

sd_T <- vector ( length = n_obs) # Initialize sd vector for/each

RPM

UCL_T <- vector ( length = n_obs) # Initialize UCL_T vector for/

each RPM

LCL_T <- vector ( length = n_obs) # Initialize LCL_T vector for/

each RPM

# Calculates the Control Limits for the simulated values (with

mean LM and sigma standard

# deviation )

for(i in 1:n_obs) {

#mean_T[i] <- y.LM[i] # Centered on Nominal Profile

mean_T[i] <- mean(T[,,i]) # Centered on Sample Average

sd_T[i] <- sd(T[,,i])

UCL_T[i] <- mean_T[i] + 3*(Cp - Cpk)*sd_T[i] + k*(sd_T[i]/sqrt(

n_ profiles ))

LCL_T[i] <- mean_T[i] - 3*(Cp - Cpk)*sd_T[i] - k*(sd_T[i]/sqrt(

n_ profiles ))

}

#View the Specification Limits , Control and Profiles of a given

sample

plot(x,y.LM , ylim = c(0 ,3) , type = "l", xlab = "RPM", ylab = "

Torque [N/m]")

lines (x,UCL_T, type = "l", col = "red")

lines (x,LCL_T, type = "l", col = "red")

lines (x,tq.LSE , type = "l", col = "red")

lines (x,tq.LIE , type = "l", col = "red")

for(i in 1:n_ samples ) {

for(j in 1:n_ profiles ) {

lines (x,T[i,j,], type = "l", col = "blue")

}

}

par(mfrow = c(2 ,3))

n_rep <- 100

results <- list ()
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shifts <- seq(from = 0, to = 2.5, by = 0.25)

# mean_arl <- seq (1: length ( shifts ))

# median _arl <- seq (1: length ( shifts ))

# sd_arl <- seq (1: length ( shifts ))

# min_arl <- seq (1: length ( shifts ))

# max_arl <- seq (1: length ( shifts ))

#arl <- vector ( length = n_sims)

arl <- vector ( length = length ( shifts ))

T_Sim <- matrix (0, nrow = n_profiles , ncol = n_obs) # Initialize

the array

for(r in 1:n_rep) {

signal _ global <- 0

for (delta in shifts ) {

signal <- 0

for (n_s in 1:n_sims) {

for (n_p in 1:n_ profiles ) {

T_Sim[n_p,] <- a0.LM + a1.LM*x + a2.LM*x^2 + a3.LM*x^3 + a4.

LM*x^4 +

rnorm ( length (x) ,0,abs( rnorm (1,0, sigma))) + delta* sigma

}

condition <- ( colMeans (T_Sim) > UCL_T | colMeans (T_Sim) < LCL_

T)

if(any( condition )) { signal <- signal + 1}

}

p <- signal /n_sims

arl[delta*(10/2.5) + 1] <- 1/p

}

results [[r]] <- arl

print (r)

}

results <- matrix ( unlist ( results ), ncol= length (arl),byrow = TRUE)

summary ( results )

toc ()#End counting time

#CV <- apply(X = results , MARGIN = 2, FUN = sd)/ apply(X = results

, MARGIN = 2, FUN = mean)

# #########################################

#
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# R Code to Plot ARL ( Figures 33 - 38)

#

# #########################################

library ( ggplot2 )

library ( readxl )

Results <- read_excel("G:/My Drive/ Doctoral Thesis Research /R

Codes / Simulation Results / Simulations Expanded Limits / Results .

xlsx",

sheet = " Amostra 40 - 100")

Results $n <- as. factor ( Results $n)

head( Results )

p <- ggplot (data = Results , mapping = aes(x = delta , y = ARL ,

color = n)) +

geom_ point () +

theme( panel .grid.major = element _line(color = "black",

size = 0.5,

linetype = 2)) +

geom_line () +

facet _wrap( facets = vars(Cp)) +

scale_y_log10 () +

scale_x_ continuous ( breaks = c(0.0 , 0.25 , 0.50 , 0.75 , 1.00 , 1.25 ,

1.50 , 1.75 , 2.00 , 2.25 , 2.50)) +

labs(x = "delta (\ u03b4)", color = "n")

theme _bw ()

to_ string <- as_ labeller (c(’1.33 ’ = "Cp = 1.33",

’1.5 ’ = "Cp = 1.50",

’1.75 ’ = "Cp = 1.75",

’2’ = "Cp = 2.00"))

p + facet _wrap( facets = vars(Cp), as. table = TRUE , labeller = to

_ string )

# #############################################

#

# R Code to Plot Process Capability Analysis ( Figures 31 - 38)

#
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# #############################################

rm(list = ls ())

library (Hmisc)

library ( readxl )

library (plyr)

library (readr)

library ( pracma )

library (qcc)

library ( rstudioapi )

setwd ( dirname ( getSourceEditorContext ()$path))

file.ct <- "./Data/ XXXXXXXXXXX /220V/ XXXXXXXXXXXXXXX .csv"

ct <- read.csv2(file.ct , header =TRUE)

rt <- ct$RPM [1:17]

tq.LM <- ct$LM [1:17]

tq.LIE <- ct$LIE [1:17]

tq.LSE <- ct$LSE [1:17]

par(mfrow=c(1 ,1))

plot(rt ,tq.LM , main=" Theoretical Curve with Sample Profiles ",

xlab="RPM", ylab=" Torque [N.m]", type = "n", lwd = 2, col = "

black",

xlim=c (100 ,1700) , ylim=c(0.0 ,2.5))

lines (rt ,tq.LIE , type= "n", lty = 2, col = "black")

lines (rt ,tq.LSE , type= "n", lty = 2, col = "black")

#lines(ss , lwd = 2)

minor.tick(nx = 20, ny = 10)

fit.LM <- lm(ct$LM~poly(ct$RPM ,4, raw=TRUE))

a0.LM <- fit.LM$ coefficients [1]

a1.LM <- fit.LM$ coefficients [2]

a2.LM <- fit.LM$ coefficients [3]

a3.LM <- fit.LM$ coefficients [4]

a4.LM <- fit.LM$ coefficients [5]

x.LM <- seq (100 ,1700 , by =100)

y.LM <- a0.LM + a1.LM*x.LM + a2.LM*x.LM ^2 + a3.LM*x.LM^3 + a4.LM*

x.LM^4
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lines (x.LM ,y.LM , col="black", lty =1, lwd =3)

fit.LIE <- lm(ct$LIE~poly(ct$RPM ,4, raw=TRUE))

a0.LIE <- fit.LIE$ coefficients [1]

a1.LIE <- fit.LIE$ coefficients [2]

a2.LIE <- fit.LIE$ coefficients [3]

a3.LIE <- fit.LIE$ coefficients [4]

a4.LIE <- fit.LIE$ coefficients [5]

x.LIE <- seq (100 ,1700 , by =100)

y.LIE <- a0.LIE + a1.LIE*x.LIE + a2.LIE*x.LIE ^2 + a3.LIE*x.LIE ^3

+ a4.LIE*x.LIE ^4

lines (x.LIE ,y.LIE , col="red", lty =2, lwd =3, )

fit.LSE <- lm(ct$LSE~poly(ct$RPM ,4, raw=TRUE))

a0.LSE <- fit.LSE$ coefficients [1]

a1.LSE <- fit.LSE$ coefficients [2]

a2.LSE <- fit.LSE$ coefficients [3]

a3.LSE <- fit.LSE$ coefficients [4]

a4.LSE <- fit.LSE$ coefficients [5]

x.LSE <- seq (100 ,1700 , by =100)

y.LSE <- a0.LSE + a1.LSE*x.LSE + a2.LSE*x.LSE ^2 + a3.LSE*x.LSE ^3

+ a4.LSE*x.LSE ^4

lines (x.LSE ,y.LSE , col="red", lty =2, lwd =3)

legend (x=" topright ",legend =c("USL", "NP", "LSL"), col=c("red","

black","red"),

lty =2:1 , lwd = 2, cex =0.8)

calcTor <- function (index ,x1 ,y1 ,x2 ,y2){

return (((y2 -y1)*(( index -x1)/(x2 -x1))+y1))

}

mydir <- "Data/ XXXXXXXXXX /220V/ XXXXXXXXXXX "

myfiles <- list.files(path=mydir , pattern ="*.csv", full. names =

TRUE)

n <- length ( myfiles ) # numero de amostras ( arquivos "csv ")

#le os dados amostrais (ca)
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ca <- lapply (myfiles , read.csv , header = FALSE)

ca.R <- vector ("list", n)

cv.R <- vector ("list", n)

ca.A <- vector ("list", n)

cv.A <- vector ("list", n)

for(i in 1:n){

ca.R[[i]] <- ca[[i]][1: which .min(ca[[i]]$V1) ,,]

ca.A[[i]] <- ca[[i]][ which .min(ca[[i]]$V1)+1:( length (ca[[i]]$V1)

-which .min(ca[[i]]$V1)) ,,]

}

rot.R <- vector ("list", n)

rot.A <- vector ("list", n)

tor.R <- vector ("list", n)

tor.A <- vector ("list", n)

index <- seq(from = 100, to = 1700 , by = 100)

for(i in 1:n){

cv.A[[i]] <- ca.A[[i]]

cv.R[[i]] <- ca.R[[i]][ order (ca.R[[i]]$V1) ,,]

}

for(j in 1:n){

for (idx in index ){

for (i in 1: length (cv.R[[j]]$V1)){

if (cv.R[[j]]$V1[i] < idx & cv.R[[j]]$V1[i+1] > idx){

# print(i)

rot.R[[j]] <- c(rot.R[[j]], idx)

tor.R[[j]] <- c(tor.R[[j]], calcTor (idx ,cv.R[[j]]$V1[i],cv.R[[

j]]$V2[i],cv.R[[j]]$V1[i+1],cv.R[[j]]$V2[i+1]))

}

}

}

for (idx in index ){

for (i in 1: length (cv.A[[j]]$V1)){

if (cv.A[[j]]$V1[i] < idx & cv.A[[j]]$V1[i+1] > idx){

# print(i)
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rot.A[[j]] <- c(rot.A[[j]], idx)

tor.A[[j]] <- c(tor.A[[j]], calcTor (idx ,cv.A[[j]]$V1[i],cv.A[[

j]]$V2[i],cv.A[[j]]$V1[i+1],cv.A[[j]]$V2[i+1]))

}

}

}

}

m <- n

x <- seq (100 ,1700 , by =100)

y <- matrix (0,m, length (x))

for (i in 1:m){

y[i,] <- tor.R[[i]] # Define (A) celeracao ou (R) educao

#y[i,] <- a0.LM + a1.LM*x + a2.LM*x^2 + a3.LM*x^3 + a4.LM*x^4 +

a5.LM*x^5 + a6.LM*x^6 + rnorm( length (x) ,0,abs(rnorm (1 ,0 ,0.03))

)

}

abline (v= c(seq (100 ,1600 ,100)), col = "black", lwd = 1, lty = 2)

# ##############################################

y.mean <- apply(y,2, mean)

y.sd <- apply(y,2,sd)

fit.LMd <- lm(y.mean~poly(x,4, raw=TRUE))

a0.LMd <- fit.LMd$ coefficients [1]

a1.LMd <- fit.LMd$ coefficients [2]

a2.LMd <- fit.LMd$ coefficients [3]

a3.LMd <- fit.LMd$ coefficients [4]

a4.LMd <- fit.LMd$ coefficients [5]

set.seed (1234)

n_obs <- 17

intervalo <- (( max( index )-min( index )))/(n_obs -1)

delta <- 0

alpha <- 0.0027

sigma <- 0.018
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m <- 20

num_sim <- 100

x <- seq (100 ,1700 , by= intervalo )

y <- matrix (0,m, length (x))

k <- abs( qnorm (( alpha/n_obs)/2))

# --------------------------------------------------

n_ samples <- 15

simulation <- array (0, dim = c(n_samples , m, n_obs))

# Simulate m profiles centered on the average profile of each

sample (LMd)

for (i in 1: num_sim){

for (j in 1:m){

y[j ,] <- a0.LMd + a1.LMd*x + a2.LMd*x^2 + a3.LMd*x^3 + a4.LMd*x

^4 + rnorm ( length (x) ,0,abs(rnorm (1,0, sigma))) + delta *sigma

}

simulation [i,,] <- y

}

# Simulates m profiles centered on the nominal profile of the

theoretical curve (LM)

# for (i in 1: num_sim){

# for (j in 1:m){

# y[j,] <- a0.LM + a1.LM*x + a2.LM*x^2 + a3.LM*x^3 + a4.LM*

x^4 + rnorm( length (x) ,0,abs(rnorm (1,0, sigma))) + delta *sigma

# }

# simulation [i,,] <- y

# }

#Plota as curvas ( perfis ) de CADA amostras (com m perfis e n

pontos )

# centralizada no perfil nominal

amostra <- 1

for (i in 1:m){

lines (x, simulation [amostra ,i,], type="l",col="blue")

}

RPM500 <- c()
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for(i in 1:n_ samples ){

for(j in 1:m){

RPM500 <- c(RPM500 , simulation [i,j ,5])

}

}

sample _size <- m

number _of_ samples <- n_ samples

sample <- rep (1: number _of_samples , each = sample _size)

df <- data. frame (RPM500 , sample )

RPM <- qccGroups (RPM500 , sample , data = df)

q <- qcc(RPM , type="xbar", nsigmas =3, plot=TRUE)

processCapability (q, spec. limits =c (1.7916 ,2.1886) , target =1.9989 ,

)


