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Resumo

O Problema de Alocacao de Veiculos (VAP) consiste em alocar uma frota de veiculos para atender a de-
manda por servicos de transporte de carga entre terminais ao longo de um horizonte de planejamento. O
objetivo é maximizar os lucros gerados pelos servicos completados. Prévias abordagens deterministicas
e estocasticas utilizaram procedimentos heuristicos e de aproximacao para resolver instancias de grande
porte para o problema. Esta tese contribui com modelos e métodos de solucao exatos para resolver efe-
tivamente instancias do VAP de grande porte.

O primeiro método é um algoritmo Branch-and-Benders-Cut para resolver a formulagao baseada na
rede de espago-tempo do VAP. A reformulacao de Benders resulta num subproblema com estrutura de
Problema de Fluxo de Custo Minimo para cada tipo de veiculo onde o fluxo é constituido por veiculos
vazios exclusivamente. No6s propomos duas desigualdades validas para tentar reduzir o nimero de
cortes de factibilidade e otimalidade necessarios para atingir a solugao 6tima. Adicionalmente, uti-
lizamos algoritmos de fluxo em redes para acelerar o processo de geracao de cortes. Experimentos
computacionais sao mostrados para instincias geradas aleatériamente.

O segundo método é um algoritmo exato do tipo Branch-and-Price (BP), o qual proporciona solugoes
oOtimas ou certificados de qualidade para resolver problemas de grande porte em tempos computacionais
razoaveis. Este método é o resultado de reformular o modelo compacto de Programacao Linear In-
teira do VAP por meio da reformulacao Dantzig-Wolfe e utilizar procedimentos eficientes para tratar
cada componente da reformula¢do. O Método de Geragao de Colunas Primal-Dual (PDCGM) é usado
para resolver o problema mestre, enquanto o subproblema é modelado como um Problema de Fluxo de
Custo Maximo e resolvido via agregacao de solugoes otimas de caminhos maximos em Grafos Aciclicos
Direcionados (DAG). Finalmente, propomos trés procedimentos de ramificagao para obter a solucao
Otima inteira do VAP. Experimentos computacionais com instancias de um estudo de caso e instancias
aleatorias de tamanho realista sao apresentadas e analisadas, o qual mostra a superioridade do método
proposto quando comparado com outros métodos exatos para resolver instancias de grande porte do
VAP.

O terceiro método esta baseado em preprocessar o grafo de espago-tempo e reformular o problema

em termos de quantos veiculos vazios rotear entre os nds de demanda (arcos no modelo prévio). O



tamanho do modelo resultante depende do niimero de nos de demanda e o tamanho da frota, o qual
pode ser vantajoso quando o numero de pares terminal-periodos na rede de espaco-tempo é grande
comparado com o nimero de arcos de demanda. Nos propomos um método BP baseado na reformulacao
Dantzig-Wolfe deste novo modelo. Os resultados de ambas, a reformulacao resolvida com um solver de
proposito geral e o BP, mostram a superioridade desta nova abordagem para resolver instancias de
tamanho realista para o VAP.

Palavras-chave: Problema de Alocacao de Veiculos, decomposicao de Benders, decomposicao de Dantzig-

Wolfe, geracao de colunas, transporte rodoviario de carga, logistica.
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Abstract

The Vehicle Allocation Problem (VAP) consists in allocating a fleet of vehicles to attend the expected
demand for road freight transportation between terminals along a finite multiperiod planning horizon.
The objective is to maximize the profits generated for the completed services. Previous determinis-
tic and stochastic approaches used heuristic procedures and approximation methods for solving large
scale instances of this problem. This thesis contributes with models and solution methods for solving
effectively large-scale instances of the VAP.

The first method is Branch-and-Benders-Cut (BBC) for solving the space-time network formulation
of the VAP. The Benders reformulation results in each subproblem being a multiple origin-destination
minimum cost flow problem among empty vehicles exclusively. We propose two valid inequalities in or-
der to reduce the number of infeasible cuts needed to reach a feasible and optimal solution. In addition,
we use network flow algorithms in trying to accelerate the process of cut generation. Computational
results are shown for randomly generated instances.

The second method is a tailored exact Branch-and-Price (BP) procedure, that provides optimal solu-
tions or certificates of quality, for solving large-scale problems within reasonable computational times.
This method is the result of reformulating a compact Integer Linear Programming model of the VAP
through the Dantzig-Wolfe (DW) decomposition and using efficient procedures for solving each com-
ponent of the reformulation. The Primal Dual Column Generation Method (PDCGM) is used to solve
the master problem, while the subproblem is modeled as a Maximum Cost Flow Problem and solved
using the aggregation of optimal longest paths problems on Directed Acyclic Graphs (DAG). Finally, we
resort to three branching procedures to obtain the optimal integer solution of the VAP. Computational
experiments with instances from a case study and random realistic-sized instances are presented and
analyzed, showing that the method has a superior performance with respect to other exact approaches
in solving large-scale VAP instances.

The third method is based on preprocessing the time-space extended graph and reformulating the
problem in terms of routing empty vehicles along demand nodes. The resulting model’s size depends
on the number of demand nodes (arcs in the previous model) and fleet size, which can be advantageous

when the number of terminal-period pairs in the time-space extended network is large compared to



the actual number of loads requested. We propose a BP method based on the DW reformulation of this
new modelling approach. The results of both, the reformulation solved by CPLEX and the BP, shows
the superior performance of this new approach in solving realistic-sized instances of the VAP.

Key words: Vehicle Allocation Problem, Dantzig-Wolfe decomposition, Benders decomposition, col-

umn generation, road freight transportation, logistics.
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Chapter 1

Introduction

Freight transportation plays an important role in supply chains and the overall economy, since it sup-
ports production, trade and consumption activities by ensuring the effective movement of available
resources, ranging from raw materials to finished goods. Thus, it is not a surprise that transportation
accounts for a significant part of the national expenditures of any country and directly affects the com-
petitiveness and trading capacity of a country in the world trade system. This fact can be seen by the
growing participation of the Brazilian economy through exports and purchasing power per capita, and
the increment of transportation as a percentage of participation in the Gross Domestic Product, rising
from 3.7% to 6.9% between 1985 and 2019".

Several factors impact the efficiency of road freight transportation in Brazil. The most alarming
one being the overburdened road system when compared to other countries of continental dimensions,
such as USA and Canada. According to data from the National Confederation of Transportation (CNT),
approximately 59% of freight transportation in Brazil (and 93 % in the State of Sao Paulo) is moved
through the road system?. Additionally, the conditions of the national fleet and roads, on average, are
far below those of the aforementioned countries. These facts create a difficult environment to manage
transportation operations efficiently at a national level (Ribeiro and Ferreira, 2002).

Apart from the inadequate conditions of the physical resources involved in transportation, there are
other factors that impact freight transportation operations. Such is the case of the emergence of time-
sensitive paradigms for planning and executing supply chain operations (e.g. Just-In-Time and Quick-
Response-Manufacturing) whose concern for reducing lead times tightens the flexibility for carriers
to maneuver their resources in moving products among different locations (Chase et al., 1998). As a
result of these changes, carriers have to rely on information technologies to enhance their response

capabilities to customers and stay competitive in this evolving market. Among those technologies that

'Source: https://data.oecd.org/brazil. htm#profile-economy; IBGE, Diretoria de Pesquisas, Coordenacao de Contas Na-
cionais http ://www.ibge.gov.br Accessed: 21-04-2020
®Source: FIESP, http://www.fiesp.com.br/transporte-e-logistica/matriz-de-transporte/ Accessed: 30-07-2021
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have revolutionized the sector, are: Electronic Data Interchange (EDI) and the internet, which speed up
the exchange of information between organizations and customers; Global Positional Systems (GPS),
which allows to control and track on real-time the movement of vehicles; and Decision Support Systems
(DSS), which supports a more robust decision making process for the organization (Crainic, 2003; Roy,
2001).

Considering the challenges faced by carriers where inherently complex transportation operations
have to be planned and executed in uneasy environments as a result of the aspects mentioned above,
this work aims at contributing with optimization tools, which serves as a basis for developing DSS, to
support decisions faced by road freight carriers in managing their fleet. As a consequence of different
demand levels for transportation services among geographically dispersed locations, it is common for
vehicles to accumulate in some regions whereas falling short in some others where they are indeed
needed. Even though the repositioning of empty vehicles do not contribute to the profits of carriers
(their operational costs have to be covered by loaded trips), these movements are essential for providing
continuity to the overall operations of freight transportation. Hence, repositioning empty resources like
vehicles constitutes an important component in the planning activities of carriers. In this context, the
Vehicle Allocation Problem (VAP) comes out as a tool for supporting these decisions, and consists in:
given a set of demands for freight transportation services among different terminals, how to reposition
vehicles so as to serve these demands, maximize the generated profits and minimize the cost of empty

trips.

1.1 Objectives and Contributions

Previous works that treated the VAP in solving large realistic-size instances faced by Brazilian freight
carriers resorted to heuristic and metaheuristic techniques as the computational limitations of general-
purpose solvers did not allow to process these instances (Vasco and Morabito, 2016a,b). Although this
approach is pragmatic as it yields feasible solutions for the problem at hand, it poses the predicament to
the decision maker of not being able to evaluate how good are the solutions to be implemented. Hence,
the objective of this work is to study the VAP and to develop modelling approaches and exact solution
methods that provide optimal solutions or, at least, quality certificates of the solutions for large-scale
realistic-size instances. The main contributions resulting from this work are: a Branch-and-Benders-
Cut (BBC) for solving the VAP, a Branch-and-Price (BP) method for solving large-scale instances of the
VAP, and finally, a new formulation, the node-demand formulation, based on sequencing requests for

solving the VAP, and a BP method for solving this new formulation.
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1.2 Organization

The remainder of this text is organized as follows: Chapter 2 presents a brief description of the freight
transportation operations and introduces the VAP, its deterministic mathematical formulation and a
toy-problem to illustrate the problem and facilitate its understanding. Chapter 3 presents the literature
review of the problem being studied. Chapter 4 presents the BBC for the arc-demand formulation of
VAP. Chapter 5 presents a BP method for solving the arc-demand formulation of the VAP. Chapter 6
presents a new formulation of the VAP and a BP method for solving this new formulation. Finally,

Chapter 7 presents the conclusions of this work and some perspectives for future research.
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Chapter 2

Freight Transportation

In this chapter, we briefly describe freight transportation activities, as well as introduce the Vehicle

Allocation Problem (VAP).

2.1 Description of Freight Transportation Activities

Freight transportation is an essential component of any economy as it enables to shorten distances
between geographically separated supply and demand locations. Freight transportation can be divided
into five categories or modes, each one presenting distinct advantages, depending on the characteristics
of the load and the service required. The modes are: railway, roadway, maritime, pipeline and airway:.
Table 2.1 shows a comparison of these modes across five characteristics, being five the most favourable

and one otherwise (Ribeiro and Ferreira, 2002).

Characteristics | Railway Roadway Maritime Pipeline Airway
Velocity 3 2 4 5 1
Availability 2 1 4 5 3
Reliability 3 2 4 1 5
Capacity 2 3 1 5 4
Frequency 4 2 5 1 3

Table 2.1: Operational Characteristics of Transportation Modes. Source: Ribeiro and Ferreira (2002).

Although each mode bears distinct advantages for each type of freight, Table 2.2 shows how unbal-
anced is the Brazilian transportation mode matrix, favouring the roadway system. With high logistics
costs incurred, as a consequence of the fewer options and hence inadequate modes of transportation in
some regions, the internal competitiveness is upset in the Brazilian market, especially within the less
developed regions (North and North-East). According to data from the Logistics and Transportation
National Plan (PNLT), the avoidable logistics costs (either in the internal or external market) are in

the order of US$2.5 billions per year. In view of the high participation of transportation costs within
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the overall logistics costs (approximately 31.8%), a more balanced transportation matrix would result
in a significant cost reduction and a benefit for the national economy !. Furthermore, considering that
changes directed to balance the transportation matrix involves long-term planning of different actors,
it is important to develop tools that support an effective decision-making process of transportation

operations on the already overburdened road system.

Freight Transportation Matrix

Mode  Millions (Tons per kilometer) Proportion (%)
Roadway 485.625 61.10%
Railway 164.809 20.70%
Maritime 108 13.60%
Pipeline 33.3 4.20%
Airway 3.169 0.40%
Total 794.903 100%

Table 2.2: Freight Transportation Matrix. Source: Serrano Colavite and Konishi (2015).

The freight road transportation system can be divided in two categories. In long-haul or large-scale
freight transportation, goods are moved over long distances, the time-span of the involving activities
(trips, loading and unloading at terminals, among others) are long and loads (goods aggregated to a
single unit in order to be transported) are high-volume and big-weight, which limits their handling
at certain facilities and places. In short-haul or short-scale freight transportation, the services have
a limited coverage in terms of distances and times. Given the smaller loads (single boxes or single
products), it is easier to interact closer to the consumer (Crainic, 2003). In this work, the long-haul
freight transportation is the one to be approached.

Long-haul freight transportation systems can be divided in two subcategories, depending on the
entity transporting the loads: the shipper (producer) is the same carrier (the shipper owns its own fleet
and other resources necessary for moving loads) or the transporter can be a logistics operator, a “for
hire” carrier. In the former, there exists a limited number of origins that correspond to the company’s
facilities and a varied number of destinations. In this globalized environment, companies frequently
prefer to concentrate their efforts in their core activities and turn to the latter, logistics operators, to
perform their transportation activities. Logistics operators serve the transportation demands of several
companies at the same time, with different points of origin-destination, different types of loads, thus
turning their activities more complex when compared to the transportation activities of shippers with
their own fleet. In this work, the logistics operator decisions are the ones to be treated.

Logistics operators usually offer two types of services: customized services and consolidation ser-
vices. In customized transportation, such as Truckload Trucking (TL Trucking), carriers offer a typical

door-to-door long distance transportation. In this mode, each vehicle (or convoy of vehicles) is dedi-

!Source: Plano Nacional de Logistica e Transportes Accessed: 21-04-2020.
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cated exclusively to one customer. When a customer calls for a service, a driver/truck is assigned to
it, and the vehicle is deadhead to the customers location to be loaded. Then, the vehicle moves to the
destination; thus performing the long-haul transportation part of the operation. When the vehicle is
unloaded, the driver informs its current state (location, loading state) to the central planner or dis-
patcher who decides if the vehicle waits for another demand to be served at the same location or move
to another more strategical location to anticipate a possible future demand.

Sometimes, transportation services cannot be customized because the loads are too small to call
for a full truckload service, or even it would be too expensive to hire smaller vehicles for that cause.
In that case, carriers provide consolidation of loads to serve customers while taking advantage of the
economies of scale provided by a truckload. One such service that works on the road system is the
Less-than-Truckload Trucking (LTL Trucking). When demands of several customers are served by
a common vehicle or convoy of vehicles, services cannot be tailored individually for each customer.
Therefore, carriers rely on a set of regular services and a network of hubs that supports those services.
Hubs are distribution centres or cross-docking facilities whose objective is to consolidate and reorganize
the goods into loads. Based on the portfolio of customers, the carriers establishes a set of schedules or
rules, and routes between hubs that aim at fulfilling the demands effectively. Figure 2.1 shows a typical
flow of operations for a LTL trucking operator. The cycle begins by collecting some goods that need
to be transported, which are transferred to the information processing centre. By means of a Decision
Support System (DSS) or based on the experience of the dispatcher, a vehicle picks-up the load and takes
it to a end-of-line terminal or hub, where they are unloaded and related information and documents are
verified (Bill of Lading): weight, dimensions, type of freight, quantity, among others. Then, the load is
classified according to its immediate destination and loaded in line-haul trailers, or simply moved to a
nearby break-bulk terminal in order to be classified and consolidated. At this point begins the long-haul
part of the transportation where trucks are used to move big loads along distances (Roy, 2001).

Trailers are routed across intermediary terminals with consolidated (grouped) loads (possibly from
different origins) heading to a common destination. At this point, loads can be again unloaded, classified
and loaded again. Sometimes goods can be kept in the trailer while other merchandise is added to
the trailer without needing to reorganize, which reduces the handling costs and operations time. The
number of stop-overs at terminals depends on the level of service required by the customer. Finally, at
the destination (end-of-line) terminal, the load is unloaded, verified, classified, codified and moved to
the docks where smaller vehicles will deliver them. It is customary to transport the line-haul shipments
among terminals at night, so as to make deliveries at the beginning of each day.

One of the major problems faced by the carriers in both cases (TL and LTL Trucking) is what to do

with the vehicles after they make the deliveries. In the USA, for instance, empty vehicle movements
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Figure 2.1: Graphic representation of activities of LTL Trucking operator.

accounts for 18% of daily movement, which evidence a high proportion of movements that do not con-
tribute to profits directly and impact the environment in a negative manner (Liu et al., 2010a). However,
due to the geographical dispersion and demand uncertainty along the planning horizon of the carrier,
it is necessary to reposition these resources in order to reduce the opportunity cost of losing possi-
ble customers. In this line, there exists the necessity to develop tools to improve the decision-making

process of this kind.

2.2 Vehicle Allocation Problem

In this context, arises the VAP, which can be briefly described as follows. A shipper call a carrier to
move a load from location A to location B. The carrier must deadhead a truck to the shipper where
the trailer is loaded and taken to location B. Once delivered, the carrier must decide what to do with
the truck at the arrival location. When routing the vehicle, more loads can be requested. Therefore,
at any point in time, the truck must be assigned another load, repositioned empty to another location
in anticipation of forecast loads, or held in its current location. It is important to note that there is no
consolidation of freight, as in vehicle routing or less-than-truckload routing, so that efforts can be put
forth to efficiently allocate vehicles (resources) to loads (tasks) over time.

Two important dimensions arise from this example that have to be considered for treating real-life

problems. First, the evolution of information, relates to the fact that in some problems the information
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available to the carrier may change during the execution of the plan, for example, the customer may
change the delivery location or loads may be called in after the execution of the plan. Second, the quality
of information relates to the level of certainty on the available data, for example, when customer’s
demand or travel times are only known as a range estimate. Based on these two dimensions, Pillac

et al. (2013) present a categorization for routing problems as shown in Table 2.3.

Table 2.3: Taxonomy of vehicle routing problems based on information evolution and quality.

Information Quality

Deterministic Input Stochastic Input

Input known beforehand  Static and Deterministic Static and Stochastic
Input changes over time  Deterministic and Dynamic Dynamic and Stochastic

Source: (Pillac et al., 2013).

Information Evolution

In static and deterministic problems, all input is assumed to be known beforehand and routes or
decisions are not changed during the execution of the plan. In static and stochastic problems, the in-
put parameters are known as random variables, minor recourse actions are considered for different
realizations of the values and routes or decisions are not changed during the execution of the plan. In
deterministic and dynamic problems, part or all of the the input is unknown and revealed dynamically
during the execution of the plan. Finally, in dynamic and stochastic problems, part or all of the input
is unknown and revealed dynamically during the execution plan, however, contrary to the later cate-
gory, there is some probabilistic knowledge on the unknown data. The last two categories, the dynamic
problems, represent an important trend for treating real life problems since technological support for
real-time communication (Geographical Positioning System - GPS and Geographical Information Sys-
tem - GIS) between the environment (changing attributes of the vehicles, conditions of the networks,
customers, among others) and the decision maker is more accesible nowadays, and thus can be used as
a tool to increase competitiveness for the organization (Marchet et al., 2012; Roy, 2001).

The problem treated in this work was initially presented as the Dynamic Vehicle Allocation Problem
in the work of (Powell, 1986), where the identifier dynamic was due to the fact that decisions are staged
over time. However, given this rather simple definition, it is possible to define a dynamic model of
a problem in a static manner as shown in Aronson (1989) and Rockafellar (1998). That is, a dynamic
network construct can be defined as a graph where each node is a pair location-time and each arc
represents a decision that extends over several periods, however, uncertainty and changing input data
is not incorporated into the model. Therefore, the conflict over the word dynamic arises when applied
to problems and models, and that is an important distinction to make (Powell et al., 1995). A problem
is dynamic if one or more of its parameters is a function of time. This includes problems with time-
windows and varying travel times. The first type fits into time-dependent data problems where data

is known in advance. The second type fits into dynamic data problems where data changes constantly
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over time.

Similarly, a model is considered dynamic when interaction between activities are explicitly incorpo-
rated over time, as in the work of Aronson (1989). Within dynamic models, it is important to distinguish
between deterministic dynamic models and stochastic models which truly captures the staging of de-
cisions and the realization of random variables. In fact, many deterministic dynamic models are solved
without considering the time-structured format of the model. By contrast, when solving stochastic dy-
namic models, specific steps for approaching the time-structure need to be taken into account in order
to design a solution strategy:.

Finally, there is also the application of a model. In this context, the application of a model is dynamic
if it needs to be solved repeatedly or in an on-line fashion as new information is received. Hence, based
on the characterization of the definition of dynamism of Powell et al. (1995), the taxonomy of vehicle
routing presented in Pillac et al. (2013) refer to dynamism in the context of application of the model.
In order to keep up with the trends in the using of word dynamic, we decided to drop the identifier

dynamic from the problem’s name as opposed to Vasco and Morabito (2016b).

2.3 An integer linear programming model for the VAP

In this section, we present a integer linear programming (ILP) model for the VAP, which is an exten-
sion of an Integer Multicommodity Network Flow Problem. We call this formulation the arc-demand
formulation, where demand is represented by arcs in a graph, as opposed to the formulation proposed
in Chapter 6 where demand occurs at the nodes of a graph. Let N be the set of terminals; T the set
of time periods; and V' be the set of types of vehicles composing the fleet. Additionally, consider the

following parameters:
+ 7;j : travel time from terminal ¢ to terminal j, Vi, 7 € V.

+ dj;¢ : demand for transportation services (number of loaded vehicles) from 7 to j beginning at

time t,Vi,j € N,Vt € T.

* Pijv : profit (income minus direct operational costs) obtained by serving the route from terminal

1 to terminal j with a vehicle of type v, Vi, j € N,Vv € V.
* Cjjy : cost of moving an empty vehicle of type v from terminal i to terminal j, Vi, j € N,Vv € V.

« My, : quantity of vehicles of type v that enter (i.e., become available) the system at terminal ¢ at

timet,Vi € N,Vte T, Vv € V.

+ Ajjy : restriction of movement between terminals 7 and j for vehicle type v, being 1: if the vehicle

is allowed to move, and 0: otherwise, Vi € N, j € Nandv € V.
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Let the decision variables be:

* Zijtp : flow (number) of loaded vehicles of type v € V that start moving from terminal 7 to

terminal j at time ¢ to satisfy demand d;j;, Vi € N, j € Nandt € T.

* Yijtv : flow (number) of empty vehicles of type v € V/, that start moving from terminal i to

terminal j at time ¢,Vi € N,j € N andt € T.

From the above definitions, the model writes as:

max D202 > DiuTiji — cijulijo) (2.1)

ieN jeN teT veV
1#]
s.t: Z (Tijto + Yijto) — Z (xji(tfﬂ'ji)v + yji(thM)'U> — Yii(t—1)v = Mitv, (2.2)

JEN JEN,

J#,

t>Tj4

Vie N,VteT,Yv eV,

> @ijio < dije, Vi,j € NVt €T, (2.3)
veV
Tijto = 0A Yijtv = 0, if Aijv =0, Vi,je NVteT YveV, (2.4)
Tijtv € Ly, Yijto € Loy, Vi, j € NVteT YveV. (2.5)

The objective function (2.1) maximizes the total profit over the planning horizon, which is equal
to the income generated from the loaded vehicle trips minus the cost of the empty vehicle trips. As
shown in Figure 2.2, constraints (2.2) guarantee the flow of vehicles at each terminal ¢ at time ¢ for each
type of vehicle v. Constraints (2.3) establish an upper bound to loaded trips between terminals, which
equals the demand on that route. Constraints (2.4) establish the trips (loaded or empty) that can not be
made by each type of vehicle. This constraints (2.5) impose restrictions on the variable’s domain. It is
worth mentioning that demand is defined in number of vehicles and all vehicle types are assumed to
have the same capacity, hence, the factor of conversion between loads for each vehicle type to fulfilled
demand is one in constraints (2.3). Nonetheless, the fleet is considered heterogeneous as owned and
hired vehicles generates different costs and profits (objective function (2.1)) as well as certain trips are
restricted for different types of vehicles (constraints (2.4)).

Note that m;4, = —1 can have the meaning of vehicles leaving the system during the planning
horizon due to scheduled fleet maintenance (and/or repairs) or finished activities of outsourced fleet.

In some practical situations it is desirable to treat each vehicle individually instead of grouping them

into types. This practice is purposed to improve the planning and control of the operational resources
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Figure 2.2: Graphic representation of flow conservation.

(Vasco and Morabito, 2014). Hence, each individual vehicle is considered as an individual type of vehicle
and the supply of vehicle turns into a binary parameter, i.e., m, € {0,1},Vi € N,Vt € T,Vv € V,

such that

2.2 miw =Vl

1EN teT veV

When considering each vehicle individually, the size of the ILP model grows drastically as a function
of the number of variables and restrictions, thus, making it harder to be solved through general purpose
optimization solvers.

An important point to make is that when the fleet is homogeneous, the index v is not necessary any-
more and constraints (2.3) turn into an upper bound for an integer variable. The resulting model of the
homogeneous fleet is a simple extension of a minimum cost flow problem for which exact polynomial
algorithms exists. Nonetheless, the problem we are solving in this work contemplate different profits,
costs and restriction of movements on the arcs for each vehicle type, which makes it an extension of
the multicommodity cost flow problem for which there is no polynomial algorithm (Ahuja et al., 1993).

This model can be extended to represent situations in which vehicles need to disappear from the
network during the planning horizon. These events can be due to scheduled maintenance or finishing
activities by outsourced vehicles, among others. The extension can be done by allowing mj, to take
negative values, thus representing the quantity of vehicles of type v € V that exit the system at terminal

i € Ninperiodt € T.

2.3.1 Illustrative Example

To facilitate the understanding of the mathematical model for representing the problem, the following

is a small-scale example.
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TransBras is a TL trucking logistics operator acting in the south-east region of Brazil, see Figures
2.3 and 2.4. Four requests for transportation of full loads were made: from Brasilia to Belo Horizonte
one load the first day, from Sao Paulo to Belo Horizonte three loads the second day, from Uberaba to
Sao Paulo one load the fourth day and from Curitiba to Brasilia one load the fifth day (Figure 2.5). There
are two available type-1 trucks the first day in Curitiba and there will be two type-2 trucks available the
second day in Uberaba. Travel times between the cities are estimated based on an average speed and are
presented in Table 2.4. Profit for servicing each demand and costs incurred from moving empty truck
are presented in Tables 2.5 and 2.6. Let T' = {1, ..., 4} be the set of periods (days) and N = {Brasilia,
Belo Horizonte, Uberaba, Sao Paulo, Curitiba} = {1,...,5} be the set of terminals. Then, the demand

is represented as: di21 = 1,d422 = 3,d344 = 1,d515 = 1.

Brasilia

1load on

5th day Belo Horizonte

1 load on
4th day

3 loads on

Sao Paulo 2nd day

Curitiba

Figure 2.5: Problem’s parameters.

Table 2.4: Travel times between terminals for the TransBras example.
T; 1 2 3 4 5

1 0 1 2 1 3
2 1 0 1 2 2
32 1 0 1 2
4 1 2 1 0 1
5 3 2 2 1 0

There are two types of vehicles, i.e., |V| = 2. In addition, trips between Brasilia and Belo Horizonte

are not allowed due to road maintenance, i.e., Aj21 = A211 = A122 = A212 = 0. Figure 2.6 shows a
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Table 2.5: Cost of empty vehicle movement for the TransBras example.
G 1,1 21 31 41 51 1,2 22 32 42 5,2
1 0 1 2 2 2 0 3 3 2 2
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Table 2.6: Profits for the TransBras example.
pijuv 11 21 31 41 51 12 22 32 42 52
1 0 18 36 36 36 0 42 42 36 3.6
18 0 36 36 36 42 0 42 42 3.6
36 36 0 36 18 42 42 0 45 3.6
36 36 36 0 36 36 42 45 0 4.2
36 36 18 36 0 36 36 36 42 O

gk W

graphic representation of the problem’s parameters over an extended space-time network. The bold and
small arrows represent arcs were there are demand for loaded trips and supply of vehicles at terminals,
respectively. The optimal solution for the VAP is presented in Figure 2.7. The solid arrows represent
full-load vehicle movements, for instance, 2 type-1 loaded vehicles travel between terminals 4 and 2
starting at period 2. The dash arrows represent empty vehicle movements or vehicles held idle in the
same terminal, for instance, 2 type I empty vehicles travel between terminals 5 and 4 starting at period

1 while 2 type-2 vehicles are held idle for 1 period starting at terminal 2 and period 2.
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Figure 2.6: Problem’s parameters in the space-time network.
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Msyg = 2

Figure 2.7: Optimal solution for the TransBras example.
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Chapter 3

Literature Review

This section presents a literature review of works related to allocation of vehicles that serve freight
transportation. We first describe two modelling approaches for dealing with the present problem within
the mathematical programming paradigm: network flow formulations and vehicle routing formula-

tions. In addition, we present works on related problems that use decomposition methods.

3.1 Arc-demand formulations

This section describes the deterministic and stochastic models that were developed for the problem of
allocating vehicles based on the arc-demand formulation.

Powell et al. (1984) use a time-space expanded graph to represent the time-dependent aspect of the
decision making process in the allocation of empty vehicles. Given the demand is random, supply of
vehicles beyond the first time period is also random. Therefore, the flow of vehicles corresponds to the
fraction of the supply at each terminal to be sent, and that quantity is determined before the actual
demand is realized. Given this assumption, the model generates empty miles by moving vehicles that
are not loaded.

Powell (1986) proposes an alternative model that allows vehicles to be held in inventory from one
period to another (null recourse) when the realized demand falls short from the outbound quantity of
vehicles. The decisions to be taken correspond to: how many vehicles to send empty between terminals,
how many vehicles should be held at a given terminal and how many vehicles should be allowed to
handle demand between terminals. Given the structure of the constraints, the authors use the Frank-
Wolfe algorithm for solving the problem.

Dejax and Crainic (1987) propose a taxonomy of empty repositioning problems, looking to increase
the knowledge of these systems and identify possible trends for future research. The authors present

a classification based on scope and coverage, which they consider pertinent for the study of empty
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repositioning problems: operational models and policy-taking models.

Hughes et al. (1988) study the “end-effects” which are the result of considering a finite number of
periods in the problem of allocating vehicles. Ideally, it would be desirable to consider infinite planning
horizons; however, because of the resulting complexity of the problem, it is necessary to truncate the
number of periods. The problem with truncation is that relevant information of the periods outside
the planning horizon is not taken into account in the analysis, which can lead to suboptimal solutions
in the global context of the operations. The authors present three methods to mitigate these effects:
Dual Equilibrium, Generalized Summation e Leontieff Approximation. Although truncating the number
of periods can have negative effects in long-term solutions, considering long periods when treating
uncertain demands can also be counterproductive. According to Sethi and Sorger (1991), the main
reason for considering finite planning horizons is that forecast of future distant demands tend to have
low reliability. For this reason, the idea is to define a forecast horizon, which is the necessary number
of periods in order to establish optimal policies for allocating vehicles without being affected by the
remaining periods.

Frantzeskakis and Powell (1990) propose an N-stage stochastic programming formulation for the
VAP. As in previous models, the travel times are deterministic one-period discrete parameters, the fleet
is homogeneous and the demand for services beyond the current day of decision making is random.
Loads that cannot be serviced are assumed to be lost. Given that partitioning methods that were devel-
oped for problems with fixed recourse would eliminate the network structure for this formulation that
bears the property of network recourse, the authors propose a heuristic based on substitutions of the
expectations by linear approximations for maintaining the desired property in order to use network
techniques for solving the problem. The method is named Successive Linear Approximation Method
(SLAM).

Cheung and Powell (1996) use the same multi-stage stochastic formulation of the aforementioned
work and propose the SCAM method (Successive Convex Approximation Method). Based on the work
of Powell and Cheung (1994), where they describe a method to find the exact expected function value
for a tree with random arc capacities and deterministic supply of vehicles, they develop a backward
recursion approach to successively calculate convex approximations of the expected recourse function
in each stage.

Shi et al. (2014) propose a multi-stage stochastic programming model for treating the VAP with
uncertain demands and customer chosen level of service. Given that deterministic travel times are
parameters that define the form of the time-space network and varying travel times cannot be captured
within this same network, the authors model the service levels as discrete random variables. Thus, an

arc in the deterministic counterpart of the problem generates multiple arcs and arrival nodes in the
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stochastic version depending on the possible realizations of the travel times at each stage. The authors
propose a method called Successive Resource-Directive Decomposition Method (SREDM) which uses a
backward recursion framework to successively provide convex approximations of the expected recourse
functions at each stage.

Powell and Carvalho (1998) propose a formulation for treating the VAP based on logistics queue-
ing networks (LQN). This formulation is based on discrete event dynamic systems, where demands are
queued at terminals while waiting for available vehicles. In this formulation, the authors solve sev-
eral sorting problems locally (for each terminal and each period), which consists in assigning units of
vehicles to waiting customers (or demands). In order to make the local decisions to match the global
optimization, two control mechanisms are proposed.

Erera et al. (2009) propose an adjustable robust formulation for repositioning empty resources on a
time-space expanded network. The uncertain parameters in this model are the divergence of the nodes,
which can represent the supply of or demand for empty resources. This approach aims at finding a
repositioning plan that satisfies the flow bounds and balance constraints for the nominal values of the
net supply of the nodes and is recoverable for each joint realization of the uncertain net supplies on
each node. In order to limit overconservatism of the robust repositioning solution, the authors adopt
the approach proposed in Bertsimas and Sim (2004) to restrict the potential joint realization of uncertain
parameters using an uncertainty budget as a function of the number of parameters that can take the
worst-case value. Three strategies for the repositioning model are proposed based on the recoverable
actions.

Vasco (2012) and Vasco and Morabito (2016b) study the problem of fleet management in the context
of freight transportation in Brazil. The authors part from a minimum cost flow-like model stated in
Ghiani et al. (2004), and extend the model to include heterogeneous fleet, the necessity of outsourcing of
vehicles, backlog of demand (given the high level of competitiveness is detrimental to reject services),
capacity on the terminals, and restriction on the movement of vehicles through the networks. The
resulting model is a deterministic multi-commodity network flow problem with inventory constraints
for dealing with backlog. Because of the limitation of general purpose solver for solving the resulting
models, heuristic and metaheuristics methods like GRASP, Simulated Annealing (SA) and Ant Colony
Optimization (ACO) were used. Computational experiments were run on realistic instances of the
problem. Cruz (2017) uses this deterministic model and propose an exact method based on Dantzig-
Wolfe decomposition and Primal-dual Interior Point column generation for solving large-scale instances
with a quality certificate for optimal solution. Computational experiments show that for instances
where the fleet is totally disaggregated, this method gives better solutions in terms of efficiency and

quality than the work of Vasco and Morabito (2016b).
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3.2 Node-demand formulations

This section describes the main works within mathematical programming that treats the problem of
allocating empty vehicles (or resources) to requests as a variant of a vehicle routing problem. The main
idea is to route vehicles along the requests (demand for transportation service between two locations),
while minimizing the movement of empty vehicles and complying with all requests, or maximizing the
profits. In addition, in this literature there is the distinction between terminal and depot (one can be
both if the depot has an associated request that needs to be serviced), and vehicles have to end their
trips at depots exclusively.

Desrosiers et al. (1984) propose a model for treating the problem of shipping goods between a
specific pair of terminals or customers. The problem is modelled as a VRP in which every vehicle has to
depart and arrive at the same depot. It is assumed that vehicles have enough capacity for carrying the
load, so that each demand between a pair of cities is represented as a node to be visited and vehicle’s
capacities are not considered. Also, each empty travel between the delivery of a load and the pickup of
another load is represented by an arc. The objective is to minimize the empty travel costs while meeting
the demands and respecting the time windows. They solve the problem using Branch-and-Bound (BB)
and a set partitioning formulation using column generation. The subproblem for pricing feasible routes
is a shortest path with time windows that is solved using an adaptation of Bellman-Ford algorithm, in
which labels are two dimensional (arrival time, cost of route).

Desrosiers et al. (1988) propose a model for treating the problem of shipping goods between a
specific pair of terminals or customers, and shipments constitute one or more full vehicle loads. It is
assumed there are several depots and each vehicle has to depart and arrive at the same depot. The
objective is to minimize the total distance travelled while meeting all the demand for full loads and
respecting the duration of each trip to a prespecified time duration. The authors use an extended graph
to reformulate the problem as an asymmetrical distance constrained TSP. The problem is solved by a
BB algorithm in which subtour elimination constraints are initially relaxed.

Powell et al. (2000) propose an adaptive heuristic labelling algorithm for solving the assignment
of trucks to loads. The algorithm is based on updating labels for loads and tasks in an online fashion.
Labels of loads contain attributes that include: origin, destination, start of origin time window, end
of origin time window and length of task. Labels for drivers contain attributes that include: location,
time of availability, hours of service elapsed at any given time and daily duty time allowance. The
model contains nonlinear restrictions and subtour elimination constraints. Thus, the authors propose
two algorithms in which these restrictions are relaxed and the labels are updated by solving simpler

problems (network flow problems) with penalization of the subtour constraints.
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Arunapuram et al. (2003) propose a model for solving the multiple depot vehicle routing-scheduling
problem with full truckloads. The objective is to minimize the travelled distance while meeting all
demands for full loads with the vehicles available at each depot. The problem is formulated as an ILP
with variables corresponding to feasible routes. The ILP is solved using an LP-based BB using column
generation. Based on Desrochers and Soumis (1988), the authors proposed a DP algorithm for solving
the pricing problem that takes into account time windows and waiting costs for generating feasible
routes. Cuts are added to tighten the LP relaxation and branching procedures are based on the number
of vehicles and the selected routes.

Li and Lu (2014) proposed an extension of the full truckload vehicle routing problem. In their
problem, it is allowed that there are more than one delivery terminal for a single pick-up terminal, and
one order is served several times by the same or different vehicles. The vehicles are required to satisfy:
1) the maximum load of each route does not exceed the vehicle’s capacity, 2) the total travel time does
not exceed the maximum duration and 3) the carrier vehicles are limited and the whole fleet departs
and arrives at the same depot. Also, the outsourcing of fleet is allowed when necessary and profitable
for the carrier. The objective is to maximize the profits of the logistics company. Since the problem has
embedded a Chinese Postman Problem, it is NP-hard and the authors opt for a hybrid genetic algorithm
for solving large scale instances.

Gendreau et al. (2015) study the one-commodity-full-truckload pickup-and-delivery problem, which
is a especial case of the pickup-delivery vehicle routing problem in which the demand of a customer
has to be delivered right after picking-up the corresponding load. It is assumed that the demand is
unitary (one load per trip and vehicle) between pairs of terminals. The authors proposed two models
that integrates a routing and an assignment problem in two fashions: an integrated nonlinear model and
an integrated linear model. The structure of the integrated models lends themselves for using Benders
decomposition and Generalized Benders Decomposition, respectively. Both reformulations are solved
using Branch-and-Cut (BC) algorithms.

Gronalt et al. (2003) propose a model for the problem of pickup and delivery of full truckloads un-
der time window constraints. The objective is to minimize the empty travelled distance while meeting
all the demands and respecting the time windows for each order. The authors propose four heuris-
tics: a saving algorithm, an opportunity saving algorithm, a simultaneous saving algorithm and the
opportunity simultaneous saving algorithm.

Liu et al. (2010a) propose a model for treating a problem called the multi-depot capacitated arc
routing problem with full truckloads. The objective is to determine the tours for a set of vehicles located
at different depots to serve a set of orders and minimize the total shipping costs. The problem is NP-

hard, hence the authors proposed a two-phased heuristic for finding feasible solutions. Liu et al. (2010b)
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propose a model for an extension of the problem called the task selection and routing full truckload
problem. In this problem, the carrier has to decide which services for full load transportation are served
by private fleet and outsourced fleet. Each vehicle has to depart and arrive at the depot while respecting
a given time span. It is assumed that each service can be served by only one vehicle, thus a service node
(equivalent to a pair pick-up-delivery arc) can be visited only once. The objective is to minimize the
fixed and variable costs incurred by the travel of each vehicle. A memetic algorithm is used to solve
large instances of the problem.

Bai et al. (2015) propose a set covering model for solving the problem of transporting a large num-
ber of non-consolidatable commodities (containers) between a relatively small number of nodes (docks),
satisfying time window constraints concerning commodities and drivers. The model is tailored to meet
specific features, such as: shift-based schedules due to labor laws, consideration of service times at
terminal since they are not so different from travel times, large variation of time windows for each
commodity and a large number of commodities to handle in short periods over a small network of
physical locations. The objective is to create a set of vehicle routes to deliver all commodities at mini-
mum cost while respecting time windows. The authors propose a three-stage heuristic solution.

Coslovich et al. (2006) propose an ILP model for treating the problem of container management
by the truckload carriers. The solution method consists in relaxing the constraints that couples the
different decision in a Lagrangean fashion and obtain lower bound through subgradient optimization

and upper bounds by construction heuristics.

3.2.1 Summary of the reviewed works and research development for this work.

Several works have been presented that solve the VAP or another related problem that consists in
allocating empty resources to serve demand for road freight transportation services. Two main lines
within mathematical programming were identified for dealing with this problem: network flow and
fulltruckload formulations. There is another line of research based on dynamic programming, which
is not discussed in the present work given its algorithmic approach differs from the one presented in
this work. The following studies serve as a good starting point for the reader interested in this line of
research: Godfrey and Powell (2001, 2002a,b); Powell et al. (2002); Spivey and Powell (2004). Table 3.1

summarizes the relevant characteristics of all works that are directly related to the VAP.
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Table 3.1: Relevant characteristics for the current work on the VAP

Articles Deterministic Stochastic Heuristic Exact Small-scale Large-scale Outsourcing
Powell (1986) X X X

Frantzeskakis and Powell (1990) X X X

Cheung and Powell (1996) X X X

Shi et al. (2014) X X X

Vasco and Morabito (2014, 2016b) X X X

Cruz (2017) X X X

Powell and Carvalho (1998) X X be

Erera et al. (2009) X X X

Powell et al. (2000) X X X X

Desrosiers et al. (1984) X X X

Desrosiers et al. (1988) X X X

Arunapuram et al. (2003) X X X

Li and Lu (2014) X X X X
Gendreau et al. (2015) X X be

Gronalt et al. (2003) X X X

Liu et al. (2010a) X X X X
Bai et al. (2015) X X X

Coslovich et al. (2006) X X be

From the reviewed works of the previous sections, it can be noted that many studies of the space-
time network and dynamic systems do not treat the multi-commodity case which is important and
add complexity to the problem (Ahuja et al., 1993; Bertsekas, 1998). Other important aspect, is the
lack of works addressing outsourcing possibilities in the network flow formulations. Finally, there
is a gap in exact solution methods for solving large-scale instances of the deterministic network flow
formulation of the VAP. The present work aims at filling these gaps by proposing exact solution methods
for solving large-scale instances of the deterministic VAP considering the multi-commodity case. It is
worth mentioning that exact decomposition-based methods have been used successfully to solve other
network flow problems as stated in Section 3.3, hence the approach we take for developing our proposed
method for the VAP. Furthermore, we propose a reformulation based on the node-demand literature and
an exact method based on a BP for this new formulation. It should be noted that Gendreau et al. (2015)
developed an exact solution method for solving large-scale instances of a similar empty repositioning
problem. However, there is one aspect that differentiates their work from ours. The empty container
repositioning problem they consider enables the possibility of a delivery terminal to be served from
one among many pickup terminals. This is not the case for the problem we are currently dealing with,

in which the pair pickup-delivery terminal is predefined.

49



3.3 Decomposition methods on related problems

This section describes the main works that use decomposition methods for solving related network
flow-based logistics problems. The works reviewed in this section show promising results by apply-
ing decomposition methods to related NP-hard problems, namely the Multicommodity Network Flow
Problem (MCFP) and the Capacitated Network Design Problem (CNDP). In many of these works, the
decomposition has resulted in structural simpler subproblems such as the shortest path problem.

Jones et al. (1993) evaluate the impact of the type of formulation of the MCFP on the Dantzig-Wolfe
decomposition. Three formulations are evaluated: several supply nodes to several demand nodes per
commodity, one supply (demand) node to several demand (supply) nodes per commodity and one supply
to one demand node per commodity. The authors conclude that, even though the compact formulation
of the one-to-one formulation is inconvenient for large scale instances, it is more efficient when applied
to the Dantzig-Wolfe decomposition.

Barnhart et al. (1994) uses a cycle-based representation to solve the MCNFP. This representation
consists in describing solutions for each commodity as augmenting flow on cycles for a given initial
path (see Flow Decomposition Theorem in Ahuja et al. (1993)). The authors use a constructive iterative
procedure based on relaxing the domain of the flow on cycles in order to solve large scale instances
found in telecommunications operations.

Barnhart et al. (2000) propose a Branch-and-Price-and-Cut (BPC) algorithm for solving the Origin-
Destination Integer MCFP. The pricing problem is solved using shortest path algorithms. The branching
procedure proposed is based on the variables of the reformulation and lifting cuts are added to break
symmetry effects across the tree as well as tighten the linear relaxation.

Gondzio and Sarkissian (1996) use the Primal-Dual Column Generation Method (PDCGM) for solv-
ing the non-linear MCFP. Non-linear costs in network flow problems, as is this case, are used for mod-
elling congestion effects. Contrary to the classical column generation where the master problem is
solved exactly, this method begins the procedure with loose optimality tolerance, which is gradually
adjusted as the optimal solution is approached. Similar to the Analytical Center Cutting Plane Method
(ACCPM), this method takes advantage of the use of central prices without being computationally ex-
pensive as the ACCPM.

Holmberg and Yuan (2003) uses the column generation method to solve the MCFP with side con-
straints. The side constraints extension is suitable for modelling delay restrictions in data flow across
telecommunication networks. These side constraints are handled within the pricing problem, which
turn out to be a constrained shortest path problem. The pricing problem is solved using a pareto-based

multiple label-correcting algorithm.
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Peeters and Kroon (2008) describe a model and a Branch-and-Price (BP) method for solving the
rolling stock circulation problem. This problem consists in assigning train units to one or several rail-
way lines, constrained to predetermined timetables and technological aspects of the operations, in order
to minimize seat shortages (hence maximize the level of service provided). The modelling is based on
transition graphs for each train. The pricing problem resulting from applying the Dantzig-Wolfe (DW)
decomposition is a shortest-path problem. The authors used an adaptation of the branching procedure
described in Barnhart et al. (2000).

Alvelos and Carvalho (2007) present an extended model and a column generation method for the
origin-destination MCFP. This new model has additional variables associated to flow on circuits and
additional constraints to ensure equivalency to the classical formulation of the MCFP. The extra vari-
ables are exclusively considered in the restricted master problem, hence, the pricing problem can be
solved by shortest path algorithms.

Moccia et al. (2009) studies the dynamic generalized assignment problem, which is an extension
of the assignment problem over a time discrete graph, with warehouse and yard management related
constraints. The authors present three formulations and show that the strongest one models the prob-
lem as a single origin-destination integer MCNFP. The authors use a column generation embedded in
a heuristic to find lower and upper bounds. The pricing problem reduces to a shortest-path problem
called the generalized cardinality-constrained shortest path problem on a layered graph (GCSPPLG),
which is shown to be polynomially solvable. The structural properties of this problem relevant for
dynamic programming algorithms was also studied in Spivey and Powell (2004).

Gendron and Larose (2014) present a Branch-and-Price-and-Cut (BPC) algorithm for solving the
related capacitated fixed-charge network design problem. The restricted master problem is obtained
by considering a subset of commodities of the arc-node compact formulation. The subproblem, which
prices out arc-flow variables, is solved through the lagrangian relaxation of the flow conservation and
capacity constraints. Cut generation with strong inequalities is used to strengthen the linear relax-
ation and, when needed, reliability branching (see Achterberg et al. (2005)) on the fixed-charge binary
variables is applied to obtain a integer optimal solution.

Sridhar and Park (2000) propose a Benders-and-cut algorithm for the fixed-charge CNDP, which
incorporates Benders and cutset inequalities into the BB. The authors test the algorithm on a range of
problems with different traffic loads (proportion of total demand to the capacity of the network) and
show that Benders cuts are more effective under heavy traffic load, while cutset inequalities are more
effective under light traffic load. There is an extensive review of Benders decomposition applied to this

problem in Costa (2005).
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Costa et al. (2009) study the Benders decomposition on the related multicommodity CNDP. The
authors show the relations between three types of inequalities: Benders, metric and cutset. In addi-
tion, they highlight the importance of strengthening Benders and cutset into metric inequalities for
computational efficiency gains.

Lee et al. (2013) propose a Benders decomposition for solving the multicommodity CNDP with de-
mand uncertainty. By fixing the design variables, the Benders subproblem results in a multicommodity
network flow problem. Uncertainty in demand (weights in flow variables) is addressed through the
polyhedral uncertainty set by Bertsimas and Sim (2004), which only affects the Benders subproblem.

They propose a simultaneous cut generation to accelerate the algorithms convergence.
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Chapter 4

A Branch-and-Benders-Cut method for
the VAP

In this chapter, we explore the Benders decomposition method as applied to the VAP. More specifi-
cally, we propose a Branch-and-Benders-Cut (BBC) which consists of adding Benders cuts whenever
an integer solution is found along the Branch-and-Cut (BC) tree of a general purpose solver via lazy
constraints. We compare the results from this method to the ones obtained by solving the compact for-
mulation of the VAP using the standalone BC of the solver and the automatic Benders decomposition

strategy of the solver.

4.1 Benders Decomposition for the VAP

Benders decomposition is suited for problems whose variables can be partitioned into two sets, hence,
the set of decisions can be separated according to a trial-and-error-like method of two different stages.
This method works as follows. Suppose the company described in Section 2.3.1 has two departments.
The sales department (A) is in charge of taking requests for freight transportation services and deciding
which to attend, while the operations department (B) is in charge of allocating empty vehicles to comply
with the sales department plan. Suppose this week the sales department received the requests illustrated
in Figure 4.1.a (requests are represented by bold arcs between two terminals while small short arcs
represent the supplied quantity of vehicles at a given terminal), and naturally they accepted all requests

as specified in Figure 4.2.b, wherein all x variables were set to match the demand d.
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Figure 4.2: a) First y decision. b) Second z decision.
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Figure 4.3: a) Second y decision. b) Third z decision.

Since the operations department does not care about vehicle’s movements when they are loaded,
the information they get from the sales department is when, where and how many empty vehicles are
to become available (supplies) and disappear (sinks) as a consequence of loaded trips. The operations
department also has information of their own fleet location and size. Figure 4.2.a illustrates the problem
faced by the operations department which is a minimum cost flow problem. In trying to solve the
problem, they realize that no vehicle can disappear at node (1, 1) since there were none available before,
and notify the sales department of the plan’s lack of viability, which in turn revise their decision as
in Figure 4.2.b. Finally, the operations department receives a viable plan which they can optimize by
repositioning vehicles as pictured in Figure 4.3.a. The added solutions of both departments (Figure 4.3.b)
is the optimal solution to the whole problem. The previous approach shows the idea of partitioning
decision in Benders decomposition which we now formalize. Formulation (2.1)-(2.5) can be rewritten
by setting equations (2.2) as inequality constraints Ax < b, which will be useful in cutting off half the
dual space of the subproblem stemming from the Benders decomposition. Henceforth, Formulation

(2.1)-(2.5) can be expressed as

max Z Z Z Z(pz'jul‘ijtv) - Z bo()

i€EN jEN teT veV veV
i#]
s.t. Z Tijty < dijt7 Vi,j € NVteT
veV

CL‘ithZO, if AijUZO, Vi,j € NNYte T ,NveV
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ﬂ?ithEZ+, Vi,jeN,thT,VUGV

where ¢, (x) is the objective value of the subproblem for each vehicle type v € V, and is defined as

follows:

¢o(r) = min >N ciuiji (4.2)

iEN jEN teT
i#£]

s.t. > (@ijeo + Yiw) — Y ($ji(t—7—]-¢)v + yji(t—Tji)v) — Yii(t—1)o < Mity,  (4.3)
jEN jEN,
J#’L7
t>7j4

Vie NVteT (4.4)

Yijto = 0, of Aijv =0, Vi,j € NVt eT (4.5)

Yijto € Ly, Vi,j € NNVteT (4.6)

For a feasible 7, the subproblem reduces to the minimum cost flow problem (MCFP) (4.7)-(4.11)

which bear the integrality property.

¢o(Z) = min > D> cijuliji (4.7)

iEN jEN teT
i

s.t. Z Yijto — Z Yjilt—r;i)o — Yii(t—1)o < Mito — Z Zijty + Z Tji(t—rj)0  (48)
JEN JEN, JEN JEN,
i, i#i,
t>7j; t>7j;

Vie NNVteT (4.9)

Yijto =0, if Ay =0, Vi,j € NNVteT (4.10)

Yijto € Ry, Vi,j e NNVt T  (4.11)

The dual problem of the MCFP is obtained by means of the dual variables v associated to constraints

(4.9), given by

st(j) = max Z Z Mity — Z 'fijtv + Z "i‘j’i(thji)’U Uit (4-12)

iEN teT JEN JEN,
j¢i7
t>7j4
s.t. Ut — Uj(t+4r,;) < Cijv, Vie N,Vje NNVteT (4.13)
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uj € R, Vie NNVteT (4.14)

Note that the feasible space of the maximization problem is independent of the choice made for

variables x. The feasible space for each vehicle type v € V is composed of extreme points u, € @), and

extreme rays u, € Q, where ,, and R, are the sets of extreme points an extreme rays, respectively,

for each v € V. For a given feasible solution z, we have the following situations for each subproblem

veV:

« The dual is unbounded: ¢,(Z) — oo, then Ju,, € R,, such that

Z Z Mity — Z Zijto + Z jji(t—Tji)’U Upity > 0
iENtET JEN JEN,
JF1,
t>7j;
This means the primal subproblem for vehicle v € V' is infeasible and in order to avoid that we

impose the following cut when choosing z,

Z Z Mity — Z Tijto + Z Lji(t—7j;)v | Uritv <0

iEN teT JEN JEN,
J7t,
t>7j;
= Z Z Zﬂﬁz’jtvuritv - Z Z iji(thji)vuritv > Z Zmitvuritv
iEN jEN teT i€EN jEN, teT iEN teT
J7t,
t>7j;

which is called a Feasibility Cut.

+ The dual has an optimal solution: Jug, € @, such that

Z Z Mity — Z J_f'ijtfu + Z fji(tf'rji)v Ugity
iENteT jEN jEN,
JF#i,

t>7'ji

is bound on ¢, (z) which we can write:

Z Z Mity — Z Tijtv + Z Lji(t—7j)v | Ugitv < oy
1EN teT JEN JEN,
JF#i,

t>Tj4
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= Z Z Z TijtoUqity — Z Z iji(t—Tji)vuqitv > Z Zmitvuqitv — Oy

1€EN jeN teT 1€N jeEN, teT i€EN teT
j#i7
t>7j4

and this constraint is called an Optimality Cut.

Henceforth, by considering all possible Feasibility and Optimality cuts for each vehicle v € V, we

obtain an equivalent formulation for problem (2.1)-(2.5) as follows

max Y > Y Y (PieTijw) — Y b (4.15)

1EN jeEN teT veV veV
i#]

s.t. > wijro < dije, Vi,j e NNVteT (4.16)
veV

> > wijrtivie — > Tji(t—r; o Urity
iEN teT | jeN jEN,

J#4,

t>7j4

>3 Mitvilito, Vr € Ry, Yo eV (4.17)
i€EN teT

> D ijtolirite — D Tjit—ry)wlirite

iENteT | JEN JEN,

j#l?

t>Tji
> Z Zmitvﬂqitv — 0o, Vg € Qy,Yv eV (4.18)

iEN teT

Tijtw = 0, if Ay =0, Vi,je NVte T,YveV  (4.19)
Tijtv € Ly, Vi,j € NNVE€e T,Yv eV (4.20)
¢y >0, Yo eV (4.21)

which is called the Benders Master Problem (MP). Given the large quantity of possible Feasibility and
Optimality cuts in many practical instances, the MP can be solved by relaxing (4.17) and (4.18), and
adding them iteratively. In the present work, we add the previous cuts as lazy constraints during the
execution of the BC algorithm of the solver. Thus, every time the algorithm finds an incumbent integer
solution Z, the subproblem (4.12)-(4.14) is solved with  fixed. If the subproblem is unbounded, a Fea-
sibility cut is generated and added to the MP. If the subproblem is bounded and has a optimal solution,

an Optimality cut is generated, which if violated by the current solution, is added to the MP.
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4.1.1 Valid Inequalities for the VAP

In many instances of the VAP, it could be the case that the total supply of vehicles before a given time
period is less than the total demand requested after that period. This creates many infeasible initial
solutions for the subproblem, which could lower the efficiency of the algorithm. For instance, if we
take period ¢ = 2 of Figure 4.1.a, the total supply of vehicles before that period is 2 while the total
aggregated demand after that period is 5. This creates an infeasible solution as described in Figure

4.1.b. To avoid these scenarios, we propose the following valid inequality to the master problem:

DD @ < DY > may, VT (4.22)

vEV iEN jEN vEV iEN IET

i#j i<t
In addition, suppose that in adding the previous valid inequality for a given period ¢, there are
highly profitable demand arcs going from ¢y < ¢ until ¢£; > ¢. If carrying loads through those crossing
arcs is part of the optimal solution, we want to limit the loaded movements starting after ¢ to be limited
by the total supply before ¢ minus whatever loads are carried through those crossing arcs. Nonetheless,

since we do not know which crossing arcs are part of the optimal solution, we let the solver decide

which ones to use as follow:

22D wiw <) D D maw= ) ) > D, ww, V€T  (429)

veV ieN jJeN veV ieN IeT veVieN jeN €T
i#] <t iy I<t
l+7'ij>t

Note both inequalities can be split and added to the MP according to each vehicle type v € V.
However, this would significantly increase the number of constraints in the MP, which could represent

a drawback when solving large-scale instances of the VAP.

4.1.2 Solving the subproblem via network flow algorithms

When implementing Benders Decomposition, it is necessary to define how to solve the subproblem
which is to be solved every time an integer solution is found along the Branch-and-Bound (BB) tree.
The most common way is to use general purpose solvers for solving problem (4.12)-(4.14). In some
cases, when the subproblem have a special structure it is possible to get rid of general purpose solvers
by using specialized algorithms. Along with valid inequalities that enrich the relaxed MP, this constitute
a possible way of accelerating Benders Decomposition (Rahmaniani et al., 2017).

The problem at hand is the dual problem of a Minimum Cost Flow Problem (MCFP) whose solution
can be feasible and optimal or unbounded (see Section 4.1). Since there are polynomial procedures for
obtaining optimal duals from optimal flows and dual rays from primal infeasible instances, we opted to

use the Network Simplex Algorithm (NSA) of the open source graph library LEMON(C++) for solving
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the primal problem (i.e. MCFP) due to the following reasons: it outperformed many other algorithms in
solving benchmark instances of the MCFP as stated in Kovacs (2015) and its easiness of implementation
and embedding within the benders decomposition algorithm.

When the solution to the dual problem is feasible and optimal, the NSA from LEMON automatically
generates the optimal dual values. If this was not the case, it would have been possible to find these
values by computing shortest paths from an artificial supply node (which is connected exclusively to
all supply nodes through arcs with cost equal to 0) to all other nodes over the final residual graph. For
a better understanding of this procedure and the concept of a residual graph see Chapter 9 of Ahuja
et al. (1993).

When the dual solution is unbounded, there is no straightforward manner of querying those values
from the output of the NSA, hence, we resort to checking for one sufficient condition and/or solving
a special case of the MCFP (namely, the Maximum Flow Problem) in order to compute the unbounded
rays. When solving the MFP, we used the push-relabel algorithm implementation of LEMON.

First, it is useful to understand when an instance for formulation (4.7)-(4.11) is infeasible. Figure
4.4.a shows an instance of two nodes of the MCFP, where b; units of flow (empty vehicles) are supplied
through node ¢ and by, units of flow (empty vehicles) are demanded on node k. This instance is infeasible
as there is not enough flow arriving to node k. A dual ray for this problem equals u; = —1,u;, = —1.
Figure 4.4.b shows an instance of three nodes whose total supply (b;+0b;) is greater than the total demand
(bg), yet is infeasible as there is not enough flow arriving to node k. A dual ray for this problem equals

u; = —1Lup = —1,u; = 0.

a) b)

Figure 4.4: a) Infeasible instance of the MCFP with two nodes. b) Infeasible instance of the MCFP with

three nodes.

In topologically sorted graphs like those in Figures 4.4.a and 4.4.b, it suffices to find a node % such
that b, < 0 and Zl<k b < ‘bk

, to prove the instance is infeasible and build a dual ray. Therefore,
the dual ray of infinite improvement, when such node k has been found, is up = .. = uy = —1 and

Ug+1 = ... = 0. In a graph with /N nodes, this ray is of infinite improvement as
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> b= wb + > wb >0 (4.24)

leN <k >k
given >, wiby > 0and ;- wb; = 0. In addition, since it is a ray it should lie in the recession cone
ATy < 0 (where AT denotes the transpose of the incidence matrix A), for which we check the sign of
the difference between the duals of any two nodes when: both are in the set {0, .., K} (equation (4.25)),
both are in the set {k + 1, .., N} (equation (4.26)) and one node belongs to {0, .., K'} while the other to
{k+1,.., N} (equation (4.27)).

Vi, j € {0, ..,k} U — uj < 0 (4.25)
Vi, j € {kﬁ—i-l,,N} Ui — Uj <0 (4.26)
Vie{0,...k},je{k+1,.,N} wu—u; <0 (4.27)

Checking for this condition has an asymptotic cost of O(V). Unfortunately, the previous condition
is only sufficient as it may not hold true for a given topological order of the same graph. For instance,
Figure 4.5 shows two different topological orders of a infeasible instance wherein the condition holds

true for the top graph while it does not for the bottom graph.

Figure 4.5: Two topological order of the same infeasible instance of the MCFP.

Situations like the one in Figure 4.5 can be overcome by backtracking (bold arrows and circles) on
a given (set of) demand node(s) and checking if the total supply in the inspected nodes is less than the

total demand. For instance, Figure 4.5 shows how backtracking starting from % proves the instance
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to be infeasible. By using a search graph algorithm on the reversed graph (same graph with reversed
arcs) departing from k, we discover that the only nodes being able to supply k are {0, 1, 2} whose total
supply (3) is not enough to cover the demand of k (4). Therefore, we can find an unbounded ray of
infinite improvement by setting uy = —1,Vk € S and u;, = 0,VI € S, where S is a set of demand
nodes plus all nodes inspected when backtracking from these demand nodes and S is the complement

of S.If ;.5 by < 0, then this ray is of infinite improvement as

Z uby = Zulbl + Zulbl >0 (4.28)

leN les les

00000}6

Figure 4.6: Infeasible instance showing how backtracking from a demand node can be useful in identi-

fying infeasibility.

It also lies in the recession cone AT 4 < 0 as

Vi,j €S u; —u; <0 (4.29)
Vi,j €S u; —uj <0 (4.30)
VieS,jeS wu—u; <0 (4.31)

Note that the pair (i, ;) where i € S,j € S is not possible due to the fact that an existing arc
between ¢ and j would have enabled i to be inspected in the backtracking. Finding single demand
nodes and backtracking to evaluate if there is enough supply to that demand node is not sufficient
to prove that an instance is infeasible. Figure 4.7 shows an instance of a graph with two demand
nodes and we can observe that by backtracking from these nodes individually the above mentioned
condition for infeasibility does not hold. By contrast, Figure 4.8 shows that jointly backtracking from
both demand nodes attest infeasibility as the total demand (not individual demands) cannot be supplied
from the reachable supply nodes. Therefore, to prove infeasibility it is necessary to find the correct set

of demand nodes that cannot be serviced from all their reachable supply nodes.
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Figure 4.7: Instance of a graph where backtracking on individual demand nodes may not prove infea-

sibility.

Figure 4.8: Instance of a graph where infeasibility is proved by analyzing sets of demand nodes.

Even though there are 210! subsets of demand nodes, where D is the total number of demand nodes
(b < 0) in a graph, and brute-force searching could be computationally expensive, we can solve a
simpler and polynomially solvable problem in order to find the correct subset of demand nodes that
enables us to come up with a unbounded ray, namely, the Maximum Flow Problem (MFP). Figure 4.9
shows a modified directed acyclic graph where all demand (supply) nodes are connected to an artificial
demand (supply) node and the artificial arcs connecting the demand (supply) nodes to the artificial

demand (supply) have capacities w equal to |b|. All other arcs are uncapcitated as is the VAP case.
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Figure 4.9: Modified graph with one supply and demand node in order to solve the Maximum Flow

Problem.

An optimal solution to the MFP, that is also a feasible solution to the MCFP, consists of a vector
flow where all artificial demand arcs are saturated, i.e. there is no unused capacities among these arcs.
On the other hand, if the MCFP is infeasible, the optimal solution to the MFP will reveal a subset of
artificial demand arcs with unused capacity. Figure 4.10 shows the optimal solution to a MFP where A
denotes the saturated artificial supply arcs, B denotes the unsaturated artificial supply arcs, C' denotes
the unsaturated artificial demand arcs and D denotes the unsaturated artificial supply arcs. The sets S
and S represent the partition of the graph’s nodes whose crossing arcs constitute the set of arcs with

minimum total capacity, i.e. the minimum cut.

Figure 4.10: General scheme of an optimal solution for the MFP.

If we backtrack with a searching algorithm departing from all nodes in D, we will end up with the
set of nodes S as the one depicted in Figure 4.10. Backtracking from the nodes in D can not end up in any
node in S as nodes in A have unused capacity that could have been used in filling up nodes in D, hence

contradicting the fact of that being a maximum flow. Therefore, the set S contains the set of unfulfilled
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demand nodes and all its possible suppliers which was the condition we were initially looking for in
order to build an unbounded ray. Again, we can set the unbounded ray of infinite improvement by

setting up, = —1,Vk € S and uj, = 0,V € S. This is a ray of infinite improvement as

Sub=> b= > b— > > > b— > fa=0

leN les 1eG,NS leG_NS 1eGLNS leG_NS

where G4,G_ and f;; are the set of all supply nodes, all demand nodes and the flow at optimality (in the
context of MFP) of arcs going from i to ¢, respectively. It also lies in the recession cone A7u < 0 as per
equations (4.29)-(4.31). Knowing the asymptotic cost of the MFP algorithm, the preflow push-relabel
to be more specific, is O(N2v/E) where N and E are the number of nodes and edges of the graph, we
decided to organize the search for the unbounded ray, once the instance has proven to be infeasible by

the NSA, as presented in Algorithm 1.

Algorithm 1 Unbounded Ray
net-supply = 0
for/ <+ 0,N do
net-supply += ¥
if net-supply < 0 then
Build Ray
EXIT
end if
end for
Solve Maximum Flow Problem
Build Ray
EXIT

4.2 Computational Results

To evaluate the computational performance of Benders Decomposition as applied to the VAP, we test
two ways of applying Benders Decomposition and compare their performance to the standalone BC
of the optimization solver IBM CPLEX Optimization Studio 12.8.1. in solving the compact formula-
tion. The most straighforward way of implementing Benders Decomposition is through the automatic
Benders strategy of CPLEX in which annotations on variables are made over the compact formulation
definition. We use the following user defined annotations: x variables were given the 0 annotation
(annotations with 0 values assign the variables to the MP) and y variables for vehicle type v € V were
given the v 4 1 annotation (annotations with values greater than 0 assign the variables to its corre-
sponding subproblem). Then, CPLEX manage the interaction between MP and the subproblem as well
as solving the subproblem. CPLEX documentation claims this strategy can be helpful in some problems

as certain types of subproblem can be solved in parallel. Another way of implementing Benders De-
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composition is through callback functions in which the user has to implement the separation problem,
in this case the subproblem resulting from Benders decomposition, and add Benders cuts whenever an
infeasible integer solution is found along the BC tree. In the second case, we used the Network Simplex
Algorithm from LEMON graph library, for solving the separation problem as explained in Section 4.1.2.
All methods were implemented in C++ using the Concert library and LEMON graph library. All exper-
iments reported in this section were run in a PC with CPU Intel®Core i7-4790S 3.20GHz and 16 GB of
RAM. In the experiments, we solve small-scale randomly generated instances to test the viability of this
method. In naming each instance we use the following notation: terminals-periods-vehicles-requests.
The instances were created in the following way using a uniformly distributed random number gener-

ator:

« We created a square with dimensions equal to the number of periods |7T'|.
« For each terminal, coordinates were randomly generated within this square .

« Euclidian distances were calculated for each pair of terminals, and they were truncated to its

lowest integer value to obtain the integer travel times 7;;s,.

+ Costs for empty movements were calculated by multiplying the travel times 7;;, by a random

number in the range [0, 20].

« Profits for loaded movements were calculated by adding a random number in the range [1, 20] to

the cost of empty movements calculated in the previous step.

« Demands were randomly generated in the range [1, 10]. The departure and destination terminals,
and starting period were randomly generated according to the number of terminals and periods,

respectively.

« The entry of each vehicle m;;, was randomly generated according to the number of terminals

and periods, respectively. None of these instances has m;;,, = —1.

+ Restriction of movements were generated randomly by picking a random number p between 1

and (N * N)/2. Then, choose randomly p arcs out of N * IV arcs and set its value A;;, = 0.

Tables 4.1 and 4.2 shows the computational times of the proposed method. Table 4.1 contains results
for instances with the number of terminals ranging from 10 to 19, number of vehicles from 20 to 50,
10 time periods and 20 loads. Table 4.2 contains results for instances with the number of terminals
ranging from 20 to 29, number of vehicles from 100 to 150, 20 time periods and 200 loads. Finally, Table
4.3 shows the percentage of computational time spent on solving the subproblem and the number of

Benders cuts generated by the proposed BBC for instances of Table 4.1. A time limit of 3600 seconds
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was imposed on each run. A sign “*” in the tables indicates that CPLEX could not solve or even mount

the model due to lack of computer memory. Columns in these tables refer to:

« Instance is the name of the instance (number of terminals - number of periods - number of vehi-

cles - number of requests).
« IP is the optimal ILP solution value of VAP.
« CPUIP is the time taken by the standalone BC of CPLEX to solve each ILP instance to optimality.
+ CPU Be is the time taken by CPLEX with automatic Benders.
« CPU BeV1 is the time taken by CPLEX with automatic Benders and valid inequalities (4.22).
« CPU BeV2 is the time taken by CPLEX with automatic Benders and valid inequalities (4.23).
« CPU LEM is the time taken by the proposed BBC.
« CPU LEMV1 is the time taken by the proposed BBC and valid inequalities (4.22).
« CPU LEMV?2 is the time taken by the proposed BBC and valid inequalities (4.23).

« % LEM is percentage of computational time spent on solving the subproblem by the proposed

BBC.
« FLEM is the number of feasibility cuts generated by the proposed BBC.
+ O LEM is the number of optimality cuts generated by the proposed BBC.

« % LEMV1 is percentage of computational time spent on solving the subproblem by the proposed

BBC and valid inequalities (4.22).

« FLEMV1 is the number of feasibility cuts generated by the proposed BBC and valid inequalities
(4.22).

« O LEMV1 is the number of optimality cuts generated by the proposed BBC and valid inequalities
(4.22).

« % LEMV2 is percentage of computational time spent on solving the subproblem by the proposed
BBC and valid inequalities (4.23).

« FLEMV2 is the number of feasibility cuts generated by the proposed BBC and valid inequalities
(4.23).
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Table 4.1: Results of the small-scale instances with terminal in the range [10,19] for different imple-
mentations of the Benders Decomposition as applied to the VAP.

Instance IP CPUIP CPUBe CPUBeVl CPUBevV2 CPULEM CPULEMV1 CPULEMV2

10-10-20-20 1937 0.52 0.152 0.145 0.163 6.24 3.58 7.79
11-10-20-20 1584 0.50 0.135 0.134 0.141 9.73 2.85 13.71
12-10-20-20 904 0.59 0.181 0.166 0.208 37.36 23.07 18.92
13-10-20-20 1259 0.18 0.251 0.235 0.254 19.57 25 27.94
14-10-20-20 633 0.21 0.178 0.173 0.194 2.37 1.91 2.89
15-10-20-20 560 0.26 0.253 0.255 0.251 22.55 9.35 22.26
16-10-20-20 736 0.46 0.319 0.289 0.314 72.11 221.59 44.99
17-10-20-20 632 0.30 0.295 0.291 0.289 8.83 30.12 61.71
18-10-20-20 1143 0.29 0.338 0.306 0.355 42.31 24.17 31.39
19-10-20-20 905 0.33 0.312 0.304 0.314 12.18 8.86 13.33
10-10-20-25 1857 0.12 0.136 0.123 0.120 6.49 1.59 2.11
11-10-20-25 659 0.13 0.138 0.130 0.142 2.97 2.63 4.45
12-10-20-25 396 0.21 0.150 0.148 0.155 1.45 1.36 1.58
13-10-20-25 669 0.26 0.207 0.214 0.216 84.66 136.16 152.34
14-10-20-25 1292 0.36 0.280 0.268 0.302 74.49 97.86 184.51
15-10-20-25 1202 0.27 0.287 0.261 0.257 255.93 257.64 475.13
16-10-20-25 1479 0.29 0.285 0.288 0.308 60.86 42.15 98.21
17-10-20-25 1611 0.31 0.384 0.311 0.292 483.79 305.4 352.26
18-10-20-25 291 0.41 0.271 0.279 0.293 3.56 3.45 3.95
19-10-20-25 535 0.36 0.380 0.347 0.390 19.67 13.28 25.63
10-10-20-30 501 0.10 0.096 0.094 0.100 1.47 1.56 2.2
11-10-20-30 1596 0.16 0.174 0.148 0.161 13.31 20.86 17.37
12-10-20-30 335 0.17 0.164 0.208 0.181 3.2 3.29 4.22
13-10-20-30 580 0.17 0.167 0.162 0.168 62.77 76.82 98.1
14-10-20-30 574 0.31 0.230 0.214 0.256 2.96 2.88 4.04
15-10-20-30 1451 0.26 0.279 0.261 0.269 18.87 13.89 29.3
16-10-20-30 1788 0.28 0.320 0.350 0.324 11.42 10.52 10.72
17-10-20-30 424 0.28 0.285 0.299 0.311 7.81 7.1 8.25
18-10-20-30 1835 0.29 0.454 0.369 0.365 113.27 602.71 458.71
19-10-20-30 1402 0.45 0.439 0.439 0.393 32.73 25.2 34.86
10-10-20-35 2464 0.16 0.142 0.308 0.143 12.12 12.84 15.71
11-10-20-35 2238 0.29 0.158 0.157 0.143 8.92 11.9 12.97
12-10-20-35 669 0.18 0.164 0.163 0.176 2 2.21 3.42
13-10-20-35 266 0.16 0.167 0.193 0.177 1.92 1.81 1.99
14-10-20-35 2057 0.21 0.245 0.219 0.221 11.07 13.66 15.61
15-10-20-35 1679 0.23 0.197 0.219 0.234 4.08 5.02 5.84
16-10-20-35 2037 0.27 0.275 0.262 0.300 8 4.48 6.3
17-10-20-35 2347 0.32 0.371 0.347 0.361 131.14 192.71 450.31
18-10-20-35 991 0.78 0.354 0.370 0.401 51.77 75.01 61.76
19-10-20-35 691 0.38 0.405 0.404 0.421 1074.71 3071.66 2147.35
10-10-20-50 421 0.15 0.147 0.157 0.195 2.09 1.73 2.16
11-10-20-50 2701 0.26 0.252 0.281 0.311 177.49 87.82 70.09
12-10-20-50 811 0.16 0.160 0.181 0.164 12.81 12.49 13.52
13-10-20-50 678 0.33 0.191 0.167 0.201 164.81 310.65 246.88
14-10-20-50 355 0.65 0.215 0.235 0.244 2.02 2.1 2.38
15-10-20-50 623 0.36 0.420 0.363 0.440 677.55 578.2 1380.42
16-10-20-50 1562 0.33 0.342 0.377 0.388 * * *
17-10-20-50 2202 0.37 0.373 0.418 0.422 197.44 148.09 149.91
18-10-20-50 550 0.35 0.485 0.509 0.568 97.64 126.16 143.28
19-10-20-50 2591 0.61 0.480 0.450 0.511 131.61 312.06 369.34
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Table 4.2: Results of the small-scale instances with terminal in the range [20,29] for testing the Benders
Decomposition as applied to the VAP.

Instance P CPUIP CPUBe CPUBeVl CPUBeV2
20-20-100-200 14471 16.23 24.073 26.900 26.690
20-20-130-200 31327 19.13 51.290 48.275 44.544
20-20-150-200 34618 22.10 58.536 60.649 61.194
21-20-100-200 2585 19.09 17.142 17.557 18.091
21-20-130-200 4056 21.65 39.251 38.586 42.458
21-20-150-200 27322 23.34 44.581 45.440 44.099
22-20-100-200 4902 23.76 39.907 38.630 40.453
22-20-130-200 12301 25.56 52.665 53.395 61.025
22-20-150-200 10971 34.33 71.556 68.402 65.962
23-20-100-200 14132 19.48 21.500 21.373 23.252
23-20-130-200 21745 27.30 51.433 51.442 52.676
23-20-150-200 23358 31.67 55.262 55.943 56.120
24-20-100-200 10155 24.04 34.142 36.996 36.251
24-20-130-200 3486 42.33 35.293 31.914 41.655
24-20-150-200 18156 52.91 119.447 105.599 110.724
25-20-100-200 9335 23.05 30.674 27.766 31.509
25-20-130-200 33905 38.92 83.977 67.335 79.588
25-20-150-200 32508 37.72 64.953 58.269 65.790
26-20-100-200 9815 22.13 47.205 42.733 43.493
26-20-130-200 16892 33.17 70.801 63.701 66.035
26-20-150-200 3731 67.78 52.401 50.378 57.074
27-20-100-200 21090 32.24 53.283 51.636 53.628
27-20-130-200 8456 55.14  133.089 125.644 138.139
27-20-150-200 26704 44.40 76.242 81.807 83.249
28-20-100-200 3641 42.01 50.944 54.572 125.903
28-20-130-200 25355 36.32 64.809 61.111 57.876
28-20-150-200 11222 57.47 125.888 126.390 207.826
29-20-100-200 5994 31.58 48.046 44.500 44.376
29-20-130-200 8978 49.86 142.506 121.911 232.190
29-20-150-200 7977 44.10 66.834 68.652 70.362
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+ O LEMV2 is the number of optimality cuts generated by the proposed BBC and valid inequalities
(4.23).

From Tables 4.1-4.2 we observe that 34, 34 and 28 out of 80 instances are solved faster with auto-
matic Benders strategy, automatic Benders strategy with valid inequalities (4.22) and automatic Benders
strategy with valid inequalities (4.23), respectively, than with the compact formulation. On the other
hand, the proposed BBC was not able to solve any instance faster than the automatic Benders strategy
or the compact formulation. In particular, instance 16-10-20-50 and all instances with terminals in the
range [20,29] could not be solved to optimality with the proposed BBC due to CPLEX running out of
memory. In comparing the 3 ways of solving the problem with the automatic Benders strategy, we
observe that 49 and 22 out of 80 instances were solved faster with valid inequalities (4.22) and (4.23),
respectively, than without any valid inequality. Regarding the proposed BBC, 26 and 9 out of 49 in-
stances were solved faster with valid inequalities (4.22) and (4.23), respectively, than without any valid
inequality. This suggests that valid inequality (4.22) may help enriching the Benders MP in order to
obtain more efficient computational results, whereas, we suspect valid inequality (4.23) makes the MP
harder to solve, hence, the results are worse in both Benders approaches for this valid inequality.

From Table 4.3, we observe that the maximum percentage of computational time spent by the sub-
problem with the proposed BBC without valid inequalities, with valid inequalities (4.22) and with valid
inequalities (4.23) are 32.36%, 31.51%, and 33.85%, respectively. Furthermore, the average percentage
of computational time spent by the subproblem in all three cases are 9.24%, 8.56% and 7.26%, respec-
tively. This shows that the majority of time is spent in solving and processing the MP along the BC
tree. Regarding the generated feasibility cuts, we observe that in all instances there was a reduction in
the number of feasibility cuts when valid inequalities (4.22) and (4.23) were enforced at the root. Yet,
as mentioned earlier, the computational times were not better in the case of valid inequality (4.23). Re-
garding the generated optimality cuts, less than half the instances showed an increase in the number of
optimality cuts when comparing the BBC with (4.22) and (4.23) to the BBC without valid inequalities.
As we will see in the next chapter, CPLEX in solving the compact formulation is able to solve instances
larger than the ones in Table 4.2. By contrast, Benders with both approaches fell short in memory
when trying to solve instances larger than those in Table 4.2. The previous results suggest we need to
research better ways to enrich the MP in order to avoid generating a large number of cuts and improve

the convergence of the proposed method.

4.3 Final considerations and next steps

In this chapter we have presented results from applying Benders Decomposition to the VAP. We have

presented the formal decomposition and found that the subproblem is a multiple origin-destination
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Table 4.3: Subproblem times and number of Benders cuts of the small-scale instances with terminal in
the range [10,19] for different implementations of the Benders Decomposition as applied to the VAP.

Instance % LEM FLEM OLEM %LEMV1 FLEMV1 OLEMV1 %LEMV2 FLEMV2 OLEMV2
10-10-20-20 4.17% 337 63 7.82% 306 61 3.08% 276 70
11-10-20-20  30.63% 353 809 9.82% 321 43 28.15% 288 937
12-10-20-20 1.31% 343 69 1.73% 288 59 1.90% 249 69
13-10-20-20 2.45% 350 76 1.80% 335 72 1.79% 282 72
14-10-20-20  18.99% 327 27 24.08% 268 55 12.11% 244 31
15-10-20-20  26.34% 350 821 5.88% 296 45 22.51% 251 677
16-10-20-20 1.10% 376 91 0.31% 381 103 1.64% 276 77
17-10-20-20 7.93% 375 49 31.51% 340 1056 33.85% 276 2283
18-10-20-20 1.91% 336 44 2.40% 283 37 2.33% 239 46
19-10-20-20 8.37% 370 42 10.38% 330 41 6.08% 251 48
10-10-20-25  32.36% 364 622 14.47% 273 29 10.90% 264 43
11-10-20-25  13.80% 430 46 12.55% 386 47 6.29% 294 44
12-10-20-25  24.83% 390 0 22.79% 372 0 19.62% 267 0
13-10-20-25 11.12% 498 1755 0.37% 381 106 5.44% 325 1545
14-10-20-25 0.97% 488 74 0.69% 431 109 0.30% 363 86
15-10-20-25 0.34% 477 85 0.31% 426 92 0.16% 338 86
16-10-20-25 1.58% 408 116 1.80% 346 76 0.77% 341 82
17-10-20-25 0.19% 454 67 0.29% 429 77 0.23% 367 62
18-10-20-25 17.13% 360 0 20.00% 284 0 15.44% 218 0
19-10-20-25 11.34% 430 193 7.15% 372 79 4.49% 345 90
10-10-20-30  17.69% 453 39 16.67% 337 42 10.00% 262 39
11-10-20-30 3.46% 505 77 2.40% 392 75 2.25% 316 69
12-10-20-30  14.06% 607 0 19.15% 523 0 14.69% 414 0
13-10-20-30 2.47% 506 356 0.92% 419 101 0.51% 329 70
14-10-20-30  21.96% 538 50 24.31% 487 45 16.09% 330 35
15-10-20-30 4.35% 543 62 4.75% 421 58 2.59% 384 52
16-10-20-30 7.62% 556 69 8.65% 484 56 7.00% 365 52
17-10-20-30  11.01% 476 60 12.54% 410 58 9.94% 299 57
18-10-20-30 1.17% 489 97 0.16% 384 72 0.20% 321 72
19-10-20-30 3.70% 541 55 4.40% 422 61 3.04% 361 66
10-10-20-35 2.48% 478 63 3.19% 438 58 2.23% 329 58
11-10-20-35 5.04% 577 64 3.53% 420 54 2.70% 378 47
12-10-20-35  19.00% 445 41 18.10% 340 42 11.99% 278 42
13-10-20-35  22.92% 460 0 21.55% 363 0 16.08% 258 0
14-10-20-35 6.78% 610 65 4.25% 420 52 3.52% 333 52
15-10-20-35  19.36% 512 35 15.94% 391 48 12.16% 313 45
16-10-20-35  13.00% 665 72 21.43% 509 69 12.86% 364 57
17-10-20-35 0.91% 648 94 0.58% 537 104 0.22% 449 84
18-10-20-35 2.14% 543 98 1.61% 518 81 2.33% 407 89
19-10-20-35 0.15% 615 112 0.05% 509 143 0.06% 404 101
10-10-20-50  15.79% 714 0 19.65% 487 0 14.81% 388 0
11-10-20-50 0.25% 750 82 0.61% 652 83 0.80% 506 83
12-10-20-50 4.45% 719 42 4.48% 530 42 3.40% 379 48
13-10-20-50 0.53% 794 74 0.22% 538 57 0.31% 460 109
14-10-20-50  31.68% 627 0 31.43% 479 0 19.75% 337 0
15-10-20-50 0.17% 971 99 0.20% 748 112 0.08% 630 104
16-10-20-50 * 960 117 * 679 125 * 549 100
17-10-20-50 0.77% 798 96 1.01% 638 104 0.81% 485 98
18-10-20-50 1.44% 893 65 1.16% 569 92 0.89% 479 88
19-10-20-50 1.32% 795 94 0.56% 602 102 7.32% 512 2365

minimum cost flow problem. This problem bears the integrality property, which allows us to apply the

classic Benders decomposition. We implemented this approach with the embedded Benders strategy of
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CPLEX and Benders using lazy constraints. In the case of Benders using lazy constraints, we resort to
Network Flow algorithms to speed up the process of generating constraints. However, both Benders
approaches are insufficient in processing and solving large-scale instances as CPLEX ran out of memory

in solving instances with more than 30 terminals.
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Chapter 5

A Branch-and-Price algorithm for the
VAP based on the arc-demand

formulation

One of the objectives of this work is to propose an exact solution method for solving large-scale realistic
instances of the VAP. Given the promising results obtained in Cruz (2017) in applying the Primal-Dual
Column Generation Method (PDCGM) from Gondzio et al. (2016) for solving the VAP, this work is

extended to a BP method for obtaining the integer optimal solution.

5.1 Dantzig-Wolfe Decomposition

In this section, the Dantzig-Wolfe (DW) decomposition and the column generation (CG) method are
presented for the VAP based on formulation (2.1)-(2.5). We chose to decompose according to types of
vehicles as it significantly reduces the ILP model. This reformulation has |[N| x |N| x |T'| 4+ |V| con-
traints compared to | N| X |T'| x |V |4+ |N| x |[N| x |T|+|V| constraints from the compact formulation of
Section 2.3. Furthermore, even though the number of variables of the reformulation may be larger than
that of the compact formulation, in practice that number is smaller as only columns (hence variables)
with positive reduced cost are added to the model in a columns generation approach. From a practical
point of view, it is best for operations control to create programs according to vehicle groups or individ-
ual vehicles, and from a modelling perspective, quality results have been obtained in related network
problems when decomposing programs according to vehicle characteristics (Cruz et al,, 2019; Cruz,
2017; Munari et al., 2019). In this way, consider the linear relaxation of problem (2.1)-(2.5) and leave the

demand-satisfying constraints (2.3) as the coupling constraints. Then, the remaining constraints can be
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grouped into the sets of solutions X,, Vv € V, given by:

(@, 90l D (@ijeo + Yijew) = D (mki(t—-rki)v + yki(t—Tki)v)
JEN kEN,
ki,
t>T]ﬂ‘
Xy = — Yii(t—1)v = Mitv, Vie NVteT,
Tijto = 0 A Yijrw = 0, if Agjy =0, Vi,j € NVt €T,
Tijto € RY, yijen € RT, Vi,j € NVt eT.

Thus, the resulting equivalent formulation to (2.1)-(2.5) writes as:

max Z Z Z Z(pz'jvivijw — CijoYijtv)

i€N jEN teT veV
i#]
s.t.: Z Tijto < dijt7 Vi,j € NVteT
veV
(Tv, y0) € X, Yv e V.

By the representation theorem (see e.g. Bertsimas and Tsitsiklis (1997)), any solution (z, y,) € X,
can be described as a linear convex combination of extreme points and a linear combination of extreme
rays of X,,. Note that the set X, is described by flow conservation equations where the left-hand side
is the incidence matrix of a network, which in turn defines trees over a DAG for a feasible solution; the
right-hand side imposes a limit on the amount of vehicles flowing out of node (i, t). Therefore, the sets

X, are bounded and the extreme rays are omitted in the description of the solution:

(l'v,yy) = Z (ivqaqu))\vqa

q€Qu

> Mg =1, >0,
q€Qy

where (Z,q, Uvq) denotes the extreme points of X, and @, is the set of all extreme points. When sub-

stituting this representation in the linear relaxation of problem above, the result is the Master Problem

(MP):

max Z Z Z Z DPijo Z i‘qijtv)\vq — Cijv Z gqijtv)\vq (5.1)

i€N jEN teT veV q€Qw qEQy
i#]

s.t. Z Z i’qijtv/\vq < dz‘jty Vi,j € N,Vt e T, (uijt) (5.2)
vEV qEQy
> Ag =1, Yo eV, (wy) (5.3)
q€EQy
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Aog > 0, Yo € V,Yq € Q,, (5.4)

The reduced cost of each variable A, is ((PyZvg — Colvg) — UTyg) — Wy, Where v and w,, represent
the vector of dual variables of the coupling and convexity constraints, respectively. Given the huge
size of (), and the fact that not all variables are part of the optimal basic feasible solution, variables are

iteratively added by finding the columns with a positive reduced cost considering the following pricing

subproblem Z,(,:
Zpwy =max > Y > ((pijeTijiv — Cijolijiv) — UijiTijiv) (5.5)
i€EN jEN teT
1#]
s.t.: Z (Tijto + Yijeo) — Z (xji(t—Tji)v + yji(t—Tji)’U> (5.6)
jeN jEN,
];éz’
t>7j;
— Yii(t—1)v = Mitw,
Tijtv = 0OA Yijtv = 0, if Aijv =0, Vi,7 € N,Vte T, (5.7)
Tijtv € R—I—ayijtv € R+, VZ,] € N7 Vt € T> (58)

where the reduced cost of variable A\, is Z; — wy. This allows us to initialize the MP with just

p(v)
a subset of columns, resulting in what is called the Restricted Master Problem (RMP), and iteratively
generate new columns from the dual solutions of the RMP. This procedure is known as the Column
Generation method, which converges to an optimal solution of the MP. Note that the solution obtained

through the CG corresponds to an optimal solution of the linear programming (LP) relaxation of the

original problem (2.1)—(2.5), in this particular case.

5.2 Primal-Dual Column Generation Method

The standard CG based on optimal dual solutions presents several drawbacks, specially when the sim-
plex method is used to solve the RMP (Liibbecke and Desrosiers, 2005; Vanderbeck, 2005). Among them
are: slow convergence near the optimal solution (tailing-off effect); the first iterations produce irrele-
vant columns and dual bounds due to poor dual information at the onset (heading-in effect); degeneracy
in the primal and hence multiple optimal solutions in the dual: the value of the RMP remains constant
for several iterations (plateau effect); instability in the dual solutions that jump from one extreme value
to another (yo-yo effect). To avoid the negative effects of these pathological behaviors, we rely on the
PDCGM (Gondzio and Munari, 2015; Gondzio et al., 2013, 2016). This method is a variant of the stan-

dard CG which uses an interior-point algorithm to obtain stable and well-centered dual solutions in the
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feasible region of the RMP.
Given a primal-dual feasible, possibly not optimal, solution (), %, w) of the RMP, both a lower and
upper bound to the optimal solution of the RMP can be obtained by using the primal and dual values

of the objective function as follows:

(]

) v
Zre(N) Z <
v=1

Cugq )\vq>
v

Wy

o

qe

M=

v+

Zyp(u,w)
1

v

By assuming the solution is not optimal, we have that Zy g (u, w) > Zp(A). This solution is called

e-optimal if it satisfies:

Zyp(u,w) — Zrp(\) < e(|ZLe(N)])

for some € > 0. The primal-dual interior point method provides well centralized dual solutions, in the
sense that the complementary products are kept within a vicinity of the central path from the centroid

to the optimal solution. More explicitly, a point is well centralized if it satisfies:

1 _
v < (qu - aTavq - ﬁ)v))\vq < §H7vv € V,Vq € Qy

where v € (0, 1), a,,4 is the column of coefficients of the extreme point ¢, and p is the barrier parameter
that defines the central path for the interior point method. The PDCGM dynamically adjusts the toler-
ance used to solve the RMP by initially setting a loose value and tightening as it approaches optimality.

Algorithm 2 describes the PDCGM.

Algorithm 2 Primal-Dual Column Generation Method
procedure PDCGM(€,q, > 0, D > 1,6 > 0)
LB = —00,UB = o0, gap= 00,€ = 0,5
while gap > § do
Find a centralized primal-dual e-optimal solution (), %, ) of the RMP
LB =max{LB, Zrg(\)}
Solve subproblems with values (u, w)
UB = min{UB, Zyp(u,w) + Zgp(u,w)}
gap = (UB — LB)/(1071° + |LB|)
€ = min{€q4z, gap/D}
if Zgp(u, w) > 0 then
add a column to the RMP
end if
end while
end procedure
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Tolerance for optimality (€) is updated at each iteration using the relative gap (gap) between the
upper and lower bound. The smaller the relative gap the smaller the intended distance to optimality is
as stated in € = min{€4z, gap/D}. €mas is an upper bound that keeps the optimal solution not far
away from the optimum and D is the degree of optimality which relates the tolerance ¢ to the relative

gap at each iteration. Finally, J establishes a termination condition based on the relative gap.

5.3 Longest Path algorithm for solving the pricing problem

The subproblem (5.5)-(5.8) is a maximum flow cost problem, and can be solved by the network simplex
method. However, by appropriately modifying the network, it can be solved more efficiently with
longest path algorithms.

The space-time network defined by sets N and 7" gives rise to the nodes (i,t) € N x T (see Fig. 5.1).
The arcs (i, j, t) have two incident nodes, the tail or departing node (i, ) and the head or destination
node (j,t + 7;;). Some destination nodes are not defined explicitly by the set N x T" as they go beyond
the end of the planning horizon, i.e., t + 7;; > T (see Fig. 5.2). In order to use a longest path algorithm
there needs to be a graph with all its arcs incident to explicit nodes. Next, an extension of the network

is described:

t=1 t=2 t=3

(1,1) (1,2) (1,3)
i=1 o 0

(2,) (2,2) (2,3)
i=2 o) 0 (o}

Figure 5.1: Nodes of the network defined by sets N and T'.

1. Define the new set 7' = T U {|T'| + 1}. This last period |T'| + 1 contains all nodes beyond the

planning horizon (ie. t > T)).
2. For each (i, j,t) such that t + 7;; > T, add an arc ((¢, ), (4, |T| + 1)).

3. Add a node ng and an arc ((4,|T| + 1),nr),V(i, |T| + 1). These arcs have a cost 0.
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Figure 5.2: Network representation.

Figures 5.3 and 5.4 illustrate an example of the extension in a graph with N = 2,T" = 3 and travel

times: 711 = To9 = 0,712 = 191 = 2.

Figure 5.3: Graphic representation of Steps 1 and 2.

This extension of the network enables us to make an equivalence between the solution of the max-
imum cost flow problem and the aggregated solution of multiple longest path problems. By solving
the maximum flow cost problem, where the supply of node nr equals the sum of all vehicles of type v
entering the system within the planning horizon (i.e. — >, cyien ter(Mitv|Mity > 0)), the resulting
solution equals that of subproblem (5.5)-(5.8). For instance, suppose two vehicles of type 1 enter the
system at the pair terminal-period (1, 1) and (2, 2), i.e., m111 = 1 and mg2; = 1, then the divergence
(supply) of node nr is equal to 2. This feasible solution has the structure of an in-rooted tree (see Fig.
5.5). The equivalence relation between an in-rooted tree and the aggregation of several paths with a

common destination is established in Rockafellar (1998), declared as follows:
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Figure 5.4: Graphic representation of Step 3.

Lemma 5.3.1. Let V' be a set of vehicle types, S, a set of supply nodes for vehicle typev € V (i.e. all nodes

(i,t) such that mjz,, > 0 for some v), nr a destination node, Y, ,,,. a tree-flow vector with destination np

and X, s n,. a path-flow vector going from s € Sy, tonp. If YV"'F is feasible for the maximum cost flow

problem with several origins and one destination, then there exist values for X, s n.,Vs € S, ev € V',

such that

}/:Uﬂqu = Z vasan
SESy
(1,1) (1,2) (13) (1,4)
Qe o
ne
(21)  TTTreeeaoe- T 22) T T (23) (2,4)

Figure 5.5: Representation of the tree.

5.3.1 Longest Path Algorithm for Directed Acyclic Graphs (DAG)

As the arcs of the graph can have non-negative costs (when p;j, > wu;j;¢), it is not possible to use

Dijkstra’s algorithm for maximization problems (equivalent to not being able to use Dijkstra’s algorithm

when graphs have negative cost arcs in minimization/shortest-path problems). Nevertheless, given that
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the duration of the arcs is strictly positive (¢t + 735, > 0,Vi,j € N), the graph is acyclic in nature
(Rockafellar, 1998) and we can use a label-setting algorithm tailored for acyclic graphs.

This algorithm’s preprocessing procedure requires finding a topological order. For simplicity’s sake,
let N7 = (N xT'YUnp and AT = (k, k'), such that, k <> (i,t), k' <> (j,t +7ij0), and k, k' € NT. A
topological order is a partial order of the nodes with the following property: f(k), k € N such that for
each arc (k, k') € AT, it holds that f(k) < f(k'). Figures 5.6 and 5.7 show the topological order from
the above example. From Figure 5.6, it can be observed that each node has a label between 1 and 13,
and the label of the tail is less than the label of the head for each arc. If the nodes are ordered according
to these new labels, it can be seen from Figure 5.7 that the direction of all arcs is unique (from left to
right). Once there is a topological order on the nodes, the longest path algorithm consists in going
through all nodes in this order and update the node’s distances of the adjacent’s incumbent node. The
graph for each subproblem v € V' can be different on account of constraints (5.7), however, they are
all topologically ordered subgraphs of the graph containing A;;, = 1,Vi,j € N,Vt € T,Vv € V. This
property can be easily enforced on the optimal solution of the subproblems by penalizing the cost of
arcs A;j, = 0. In Section 5.3.2, an illustrative example is presented on how to find the longest path of

a graph.

Figure 5.6: Graphic Representation of the topological order for the illustrative example - 1.

Algorithm 3 is the pseudocode of a label-setting algorithm for DAGs (Ahuja et al., 1993). The values

Y

X —
Wy = Pri'v ~ Ui and Wy g

/= €}, i/, are the updated costs of moving loaded and moving empty of

the pricing subproblem.
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Figure 5.7: Graphic Representation of the topological order for the illustrative example - 2.

Algorithm 3 Longest path algorithm for DAGs

1. L = Topological Sort(f(k),k € NT)
2: procedure DAG(s, nr)
3 Initialize d[k] = —oo and p[k] = 0,Vk € NT\{s};d[s] =0

4 for k < 1,|N7| do

5: for k' € NTsuch that(k, k') € AT do

6 let w?k/ = Dt/ — U and wzk, = Cy ', De the cost of arc (k, /-cl) for vehiclev € V
7 if d[k'] > max{d[k] +w? ,, d[k] +w? .} then

8: d[k'] + max{d[k] + w? ,, d[k] +w? .}

9. plk] k&

10: end if

11: end for

12: end for

13: end procedure

5.3.2 Illustrative example for the Longest Path Problem

To facilitate the understanding of the longest path algorithm, an illustrative example is presented based
on the example of Section 5.3.1. The described maximum path is between vertices f((1,1)) = 1l and np.
Table 5.1 shows the arc’s costs of loaded and empty trips. Initially, the precedence of all vertices is empty
and the label (distance) of vertex 1 equals 0 and the label of the remaining vertices equals —oo. The bold
circles represent the incumbent node at each iteration of the algorithm (Line 4), and the shaded circles
connected to the bold circles represent the vertices whose labels are updated according to the optimality
condition (Lines 7 and 8). For instance, the labels at iteration 3 (Figure 5.10) corresponding to vertices 5
and 8 are updated according to functions: d[5]=max{—00,0+0,0— oo} and d[8]=max{—00,0—1,0—
2}, where the first term corresponds to the previous label and the second and third term correspond to
the distance when going through vertex 3 and taking the empty and loaded arcs, respectively, from 3

to the forward adjacent node. The following are the graphic representations of the initialization phase,
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iteration 1 and 3, and the longest path between the first and last node of the illustrative example. The

whole procedure is shown in Appendix A.

Table 5.1: Arcs’ costs for the ilustrative example
Arc 1-3 1-6 2-4 2-5 3-5 3-8 4-6 4-7 5-7 5-8 6-7 68 79 89

Empty cost 0,00 -2,50 0,00 -1,50 0,00 -1,00 0,00 -2,20 -2,00 -1,00 0,00 0,00 0,00 0,00
Loaded cost ~-inf 2,00 -inf -2,50 -inf -2,00 -inf 150 2,00 2,50 -inf -inf -inf -inf

Figure 5.8: Initialization of Maximum Path

Figure 5.9: Updating labels of vertex 1

Figure 5.10: Updating labels of vertex 3
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Figure 5.11: Final path between nodes 0 and 9

5.4 Reducing each problem with aggregated fleet to a disaggregated

fleet

In this section, we present some results from Cruz (2017) to give evidence of the advantages in using a
disaggregated fleet. The experiment uses realistic problem instances with 53 terminals, 36 periods and
130 vehicles, from the case study of Vasco (2012). In this case study, the authors proposed several integer
programming models that incorporate real features of a typical Brazilian logistics operator: restriction
on vehicle movement, fleet sizing and outsourcing decisions, terminal capacity and backlogged demand.
These models were validated through a structured questionnaire made to several professionals in the
area of the study’s partner-company. The instances were grouped into 18 classes of 30 instances each,
with one class for each |V| = 1..17, 130, resulting in 18 x 30 = 540 instances. Note that the first class
(|V| = 1) considers that the 130 vehicles are of the same type, while the last class (|V'| = 130) considers
each vehicle being a unique type of vehicle, that is, a total disaggregated fleet.

Table 5.2 summarizes the results of the following solution approaches applied to each group of
30 instances: (i) solving the LP relaxation of (2.1)-(2.5) using a general-purpose LP solver; (ii) using
PDCGM to solve the MP (5.1)-(5.4), together with the longest path algorithm described in Section
5.3.1 for the subproblem; and (iii) applying a simple MIP-heuristic to the last RMP solved by PDCGM
— this heuristic consists in imposing integrality to the lambda variables of the RMP (i.e. A\, € Z)
and solving the resulting ILP model by a general-purpose ILP solver. The header’s columns refer to: the
name describing the parameters of the instances in each group (number of terminals - number of periods
- number of vehicles - number of types of vehicles - number of requests); the average computational
time for solving the LP relaxation of (2.1)-(2.5) using CPLEX (CPU LP); the average computational time
for solving the MP (5.1)-(5.4) using PDCGM (CPU PDCGM); and the average relative gap between the
feasible solution value obtained by the MIP-heuristic and the optimal value, in percentage (GAP). The

relative gap for each instance is calculated as ( f, — 1)/ fo, where f, is the optimal value of the instance
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and f, is the value of the solution obtained by the MIP-heuristic. A gap of 100% in the fourth column
means the best feasible solution found by the MIP-heuristic is the trivial solution of leaving all vehicles
idle from when they appear until the end of the planning horizon.

The results in Table 5.2 indicate that the more disaggregated the fleet, the lesser the computational
times for the PDCGM and the better the quality of the solutions obtained by the MIP-heuristic. It is
worth mentioning that for the instance group 53-36-130-130-300, the LP relaxation of model (2.1)-(2.5)
have 26,292,240 variables and 349,164 constraints, which poses excessive computer memory usage and
processing difficulties for general-purpose optimization software. As a result, CPLEX could not solve
the LP relaxation. On the other hand, the MP model was easily solved by PDCGM and the MIP-heuristic

was successful in finding optimal solutions for all instances in this group.

Table 5.2: Computational Times LP - IP - PDCGM for the VAP

Instances CPULP (sec) CPUPDCGM (sec) GAP
53-36-130-1-300 1,16 2602,20 100.0%
53-36-130-2-300 5,48 1401,50 89.1%
53-36-130-3-300 12,79 784,50  55.6%
53-36-130-4-300 23,32 581,22 33.3%
53-36-130-5-300 39,05 453,50 22.8%
53-36-130-6-300 53,48 348,22 16.0%
53-36-130-7-300 71,19 255,43 11.4%
53-36-130-8-300 85,78 109,96 8.2%
53-36-130-9-300 104,15 174,36 5.6%
53-36-130-10-300 124,30 164,31 4.3%
53-36-130-11-300 265,35 158,80 2.6%
53-36-130-12-300 284,99 130,72 2.5%
53-36-130-13-300 275,99 120,47 1.7%
53-36-130-14-300 291,10 106,63 1.3%
53-36-130-15-300 295,40 102,91 0.7%
53-36-130-16-300 297,79 91,45 0.7%
53-36-130-17-300 270,41 83,61 0.4%

53-36-130-130-300 * 28,91 *

Source: Cruz (2017).

These results are in accordance with Jones et al. (1993), who studied the impact of the formulation on
the column generation for a related problem (MCNFP), the disaggregated formulations, that is, the ones
where solutions to pricing problems are trees with few leaves like a path, have a better performance in
terms of the number of iterations (number of times that the RMP is solved) until reaching optimality.
This is due to the fact that the cardinality of extreme points generated in the RMP is smaller in the
disaggregated case than in the aggregated one. Furthermore, in the aggregated case it is harder to
find vehicles’ paths belonging to the optimal solution as they are part of more complex structures,
trees, which can make it infeasible to have a given column containing that optimal path. For instance,

suppose path 1-4-6 in Figure 5.12 is the optimal path for a given single vehicle (upper-left graph). If
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more vehicles are considered within the subproblem as in the other graphs of Figure 5.12, then we can
have several optimal solutions containing path 1-4-6 with the inconvenience that other paths can make

that solution infeasible.

Figure 5.12: Trees containing path 1-4-6.

Another advantage of using the total diaggregated fleet is that is easier to deal with the negative
supply mig,. In this case, we do not need to modify the graph as described in Section 5.3; instead, we
just order the graph topologically and calculate the longest path between the positive supply node and

the negative supply node as shown in Figure 5.13.

Figure 5.13: Longest path with negative supply.
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With this in mind, it can be seen that, without loss of generality, any VAP problem with aggregated
types of vehicles can be turned into the total disaggregated VAP case, i.e. 3 ;cn tervev Mite = |V,
with the advantage of having a more efficient algorithm for solving the pricing problem, in addition to
columns that hold better information about the optimal solution regarding the MP. For this reason, the
next section aims to explore an exact method based on branch-and-bound (BB) for proving optimality

in the disaggregated case, that is, each vehicle is its own type of vehicle.

5.5 Branching

Because the VAP was modeled as a binary ILP, in order to obtain an optimal solution, a BB procedure
will be needed. However, applying a standard BB procedure to the final RMP of the column generation
will not guarantee an optimal (or even feasible) solution, thus columns will need to be generated in each
node of the BB (Barnhart et al., 1998). This method is called Branch-and-Price, and we have implemented
three procedures for branching in the present study.

When having to decide the next node to be processed along the search tree, we used the best-
first search, i.e, processing the node with the best dual bound (maximum dual bound in maximization

problems).

5.5.1 Branching on set of arcs

This procedure uses the branching rule proposed by Barnhart et al. (2000), which is based on the arc
flow binary variables x;;, and ;;t, of formulation (2.1)-(2.5) and is compatible in keeping the structure
of the pricing problem along the nodes of the branch-and-bound tree. This branching rule consists in
finding two fractional paths ¢; and g», for a given vehicle v € V. Since the case of a total disaggregated
fleet is the one being considered, then these two paths share a node in common from which both of

them split, as shown in Figure 5.14.
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Figure 5.14: Branching rule from Barnhart et al. (2000)

After finding the splitting node for both paths of vehicle v, called the divergence node (d), two sets
of arcs are formed out of the outgoing arcs of the divergence node A(d): A(d,ay) and A(d, ag). Set
A(d, a1) contains the splitting arc a; from path A, ; and some other arcs. In the same way, set A(d, a2)
contains the splitting arc as from path A,,; and some other arcs. All outgoing arcs different from a
and a9 are evenly divided between both sets with the intuition of keeping a balanced search tree. The

two subproblems are created by imposing the following constraints on each of the newly created nodes.

For the first:

> Ag=0

qﬂA(d7a1)7éQ)

and for the second:

> Ag=0

qNA(d,a2)#0
In other words, on the first branch, no path from vehicle v is allowed to use any arc in set A(d, a),
whereas on the second branch and for the same vehicle, no path is allowed to use any arc in set A(d, a2).
This resulting division is valid as: 1) it prohibits a fractional solution of the LP on each branch; the
same divergence node could appear down the tree, however with different fractional paths, and 2)
there is a finite number of branches because the number of arcs and vehicles is finite. Each node of the
branch-and-bound tree is formed by inheriting only the columns that does not contain any prohibited

arc generated in the branching scheme. The subproblem is easily modified by penalizing the costs of
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these newly generated prohibited arcs. The branching selection is done, randomly among vehicles with
fractional paths, by taking the greatest fractional paths when there are more than two fractional paths

for the same vehicle.

5.5.2 Branching on the original variables

Now consider the case where branching is performed on the original variables x;j:, € [0, 1], yijtn €
[0, 1]. Suppose branching is performed on some z;+, and we try to impose z;j+, = 0 on one branch and
Zijtv = 1 on the other branch. The case where x;;4, = 0 is easily enforced by penalizing the variable’s
cost when solving the longest path problems. The case where x;;4, = 1 has the drawback of having
to deal with multiple, sequential arcs along the planning horizon. For instance, when branching in the
root node, enforcing w;;s, = 1 entails solving two longest path problems instead of one, as follows:
the first going from the origin to (i, ) and the second going from (j,¢ + 7;;) to np. When branching
in other nodes rather than the root, to enforce several variables to 1 (i.e., Z;jzv = 1 or y;jtn = 1), we
have to deal with the additional problem of sequencing several longest paths among these arcs. This
problem of sequencing several longest path is different from the single origin-destination longest path
problem.

To avoid this difficulty, we use an adaption of the branching procedure of Vanderbeck and Wolsey
(1996). Instead of trying to enforce x;j4, = 0 and x;j4, = 1 directly within the subproblem, at a given

node s of the branch-and-bound tree, we apply branching constraints of the following form to the RMP:

Tijtv S 0 < Z jijtvq)\vq S 0 \V/(’L',j,t, U) € UXS (5-9)
qeQ”

Yijtv < 0« Z gijtvq)\vq < 0 V(i,j,t,’l)) € uys (5'10)
qeQ”

Tijtv >1<« Z jijtquvq >1 V(i,j,t,’l)) e LX? (5.11)
qeqQ”

Yijtv > 1+ Z gijtvq)\vq > 1 V(i,j,t,v) € Ly: (5-12)
qeqQ”

where U X® and UY? are the set of index tuples related to upper bound branching constraints of the
x and y variables, respectively, and LX*® and LY ® are the set of index tuples related to lower bound
branching constraints of the = and y variables, respectively. To modify the subproblem and enforce
the branching constraints, we use the dual variables 6;;, of the newly added constraints (5.9)-(5.12) to

modify the arc’s costs of the subproblem’s objective function Z,,, as follows:

p(v)

Zgp(v) = Max Z Z Z ((pijv — Uit ) Tijtv — Cz’jvyijtv) - Z OijtoTijty — Z O0ijtvYijto-

iEN jJEN tET (4,,t,0)€ (i,4,t,0)€
7“76.7 UXSULXS UYSULYS

88



The branching selection is performed by giving priority to the fractional = variables with earlier de-

parting times and choosing randomly among different vehicles to break ties.

5.5.3 Branching on the demand constraints

In relaxed solutions ), it may be the case that the total demand served by several vehicles at a given

arc (i, j, t) is fractional, i.e.,

Y D Tijtughg F Lo (5.13)

vEV qEQy
Since the partial demand served at a given arc must be integral, we propose the following branching

procedure based on adding branching constraints enforcing the integral demand served:

S Zijioghug > {Z > :z»z-jquvqw V(i,j,t) € LD?,

vEV qEQy veV qeQy
Z Z jijtquvq < Z Z '/Z.ijwqj\vq V(Z,j,t) € UDS;
veV (IEQU veV quv

where [ | and | | represent the ceiling and floor functions for rounding fractional numbers. U D® and
LD? are the set of upper bound and lower bound branching constraints. As in the previous branching
procedure, the subproblem’s objective function Z,,, needs to be modified through the dual variables

7i;¢ of the branching constraints as follows:

Zsp('u) = max Z Z Z ((pijv - uijt)ﬂﬁijw - Cz’jv?/ijtv) - Z YijtTijtv-

1€EN jEN teT (1,5,t)€
1#£j UDSULDS

The branching selection is performed by giving priority to the arcs with earlier departing times. It
is worth mentioning that different from the other procedures, this branching scheme alone does not
guarantee an integer solution, as the summation in (5.13) may be an integer even for a solution A with
fractional components. Hence, in our implementation, this branching procedure is used hierarchically,

followed by branching on set of arcs (Section 5.5.1) or original variables (Section 5.5.2).

5.6 Computational Experiments

In this section, we present the results of computational experiments with the proposed CG approach
and the BP method. We analyse their performance with respect to other exact approaches based on
solving the ILP model (2.1)-(2.5) and its LP relaxation by general-purpose solvers. Additionally, we
verify the impact of each of the three branching procedures to the performance of the BP method. All
methods were implemented in C++ using the PDCGM library and the IBM CPLEX Optimization Studio
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12.8.1. All experiments reported in this section were run in a PC with CPU Intel®Core i7-4790S 3.20GHz
and 16 GB of RAM.

In the experiments, we solve the 30 large-scale instances from Vasco and Morabito (2016b) already
introduced in Section 5.4 (i.e., the instances in class 53-36-130-130-300 at the last line of Table 5.2 with
all vehicles of different types). They represent realistic data in terms of network size, planning horizon
(24 six-hour periods over 6 days), expected number of loads over the planning horizon and fleet size of
a typical Brazilian logistics operator (Vasco, 2012). We also solved small- and large-scale realistic-sized
instances randomly generated. The purpose of this instance generation was to test the algorithms with
instances having positive integrality gap (i.e. optimal value of the ILP problem strictly smaller than the
optimal value of the respective LP relaxation) as there were only six instances with this feature in the
group of instances of Vasco and Morabito (2016b). These instance were generated using the procedure
described in Section 4.2. After running the instance generator, we used the proposed BP method to
test for non-zero optimality gap between the LP and IP solutions. These problem instances and the
instance generator can be obtained upon request to the authors. We have created 4 branching schemes
by combining the branching procedures of Section 5.5, which results in four BP algorithms for trying

to solve optimally the integer VAP. The schemes are

+ Scheme A uses only the branching procedure of Section 5.5.1 (branching on set of arcs).
+ Scheme B uses only the branching procedure of Section 5.5.2 (branching on original variables).

« Scheme C uses branching procedure of Section 5.5.3 (branching on demand constraints) followed
by branching procedure of Section 5.5.1 (branching on set of arcs). At a given node we evaluate
if there are fractional solutions on demand constraints and on set of arcs. If both are found, we

apply the branching on demand constraints.

« Scheme D works the same as Scheme C, however, branching procedure of Section 5.5.3 is followed

by branching procedure of Section 5.5.2 (branching on original variables) instead.

Tables 5.3 to 5.8 show the main results obtained by the proposed CG and BP methods, considering
different branching procedures, and the LP and ILP solvers of CPLEX. Since we have four branching
schemes with different characteristics that affect the performance of the BP method, we solved the 230
instances using each procedure. A time limit of 3600 seconds was imposed on each run. A sign “*”

in the tables indicates that CPLEX could not solve or even mount the model due to lack of computer

memory. Columns in these tables refer to:

« Instance is the name of the instance (number of terminals - number of periods - number of vehi-

cles - number of requests.)
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« LP is the optimal value of the LP relaxation of model (2.1)-(2.5).

« CPU LP (sec) is the time taken by CPLEX to solve each LP instance to optimality.
« IP is the optimal ILP value of model (2.1)—-(2.5).

« CPUIP (sec) is the time taken by CPLEX to solve each ILP instance to optimality.
« CPU PD (sec) is the time taken by the PDCGM to solve the MP (5.1)—(5.4).

+ CPU BP-« is the time taken by the BP to solve each ILP instance to optimality with the branching
scheme a € {A,B,C,D}.

« NT-« is total number of nodes created with the branching scheme « € {AB,C,D}.

« N.E-« is total number of nodes explored with the branching scheme a € {A,B,C,D}.
« UB BP-« is the upperbound reached with the branching scheme o € {A,B,C,D}.

« LB BP-« is the lowerbound reached with the branching scheme « € {A,B,C,D}.

+ GAP-« is the relative gap between UB BP-ov and LB BP-a when using the branching scheme
a € {AB,CD}.

Tables 5.3 and 5.4 show the results for the 30 large-scale instances from Vasco and Morabito (2016b).
We observe that the proposed CG approach based on the MP (5.1)-(5.4) was significantly more efficient
than solving the LP relaxation of model (2.1)-(2.5) by CPLEX. Regarding the IP optimal solution, only 6
instances had positive gap (instances with total number of nodes and number of explored nodes larger
than 1in schemes A, B, C and D). It should be noted that scheme D proved optimality of these 6 instances
in less than half the computational time limit.

The results for the randomly generated instances are presented in Tables 5.5 to 5.8. As mentioned
before, these instances have a positive integrality gap, as the optimal value of their ILP problems are
strictly smaller than the optimal values of the respective LP relaxations. Hence, they are used to better
test the effectiveness of the proposed branching procedures. First, we analyse the performance of the
proposed CG approach based on the MP (5.1)—(5.4) against solving the LP relaxation of model (2.1)-(2.5)
by CPLEX. From Tables 5.5 to 5.8, we observe that the CG approach achieved a superior performance in
terms of solving instances to proven optimality. It solved the whole subset of instances, while CPLEX
could not mount the models of instances from Tables 5.7 and 5.8.

Regarding the ILP approaches, from instances of Tables 5.5 and 5.7, we observe that the branching
based on original variables (scheme B) outperforms the branching based on set of arcs (scheme A).

Scheme A solved 8 out of 30 instances, while scheme B solved 17 out of 30 in Table 5.5. All these solved
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Table 5.3: Results of the 30 instances of class 53-36-130-130-300 from Vasco and Morabito (2016b) with schemes A and B.

Instance LP CPULP IP CPUIP CPUPD CPUBP-A NT-A NE-A UBBP-A LBBP-A GAP-A CPUBP-B NT-B NE-B UBBP-B LBBP-B GAP-B
53-36-130-300-p1 * * * * 32.98 3600.19 393 256 17437.8 17437.6  0.001% 3601.31 299 277 17437.8 17437.6  0.001%
53-36-130-300-p2 * * * * 28.62 28.85 1 1 19260 19260  0.000% 30.14 1 1 19260 19260  0.000%
53-36-130-300-p3 * * * * 31.03 3600.92 379 229 16634.5 16633.8  0.004% 3600.50 341 227 16634.5 16633.8  0.004%
53-36-130-300-p4 * * * * 35.71 35.94 1 1 19560 19560  0.000% 37.74 1 1 19560 19560  0.000%
53-36-130-300-p5 * * * * 28.78 29.01 1 1 18169.2 18169.2  0.000% 30.90 1 1 18169.2 18169.2  0.000%
53-36-130-300-p6 * * * * 32.67 32.90 1 1 19969.4 19969.4  0.000% 34.02 1 1 19969.4 199694  0.000%
53-36-130-300-p7 * * * * 31.33 31.56 1 1 19213.8 19213.8  0.000% 32.97 1 1 19213.8 19213.8  0.000%
53-36-130-300-p8 * * * * 29.23 3600.48 407 217 18475.9 18472.6  0.018% 3608.01 395 205 18475.9 18472.6  0.018%
53-36-130-300-p9 * * * * 36.45 36.68 1 1 15371.4 153714 0.000% 38.32 1 1 15371.4 153714 0.000%
53-36-130-300-p10  * * * * 24.62 24.85 1 1 18344.8 18344.8  0.000% 26.14 1 1 18344.8 18344.8  0.000%
53-36-130-300-p11 * * * * 36.01 3601.90 375 227 16799.9 16799.6  0.002% 183.89 11 11 16799.6 16799.6  0.000%
53-36-130-300-p12 * * * * 34.37 34.60 1 1 22008.4 22008.4  0.000% 36.03 1 1 22008.4 22008.4  0.000%
53-36-130-300-p13 * * * * 37.51 3607.20 417 244 19628.6 19628.2  0.002% 3601.13 365 231 19628.6 19628.2  0.002%
53-36-130-300-p14  * * * * 31.07 31.30 1 1 19616.6 19616.6  0.000% 32.84 1 1 19616.6 19616.6  0.000%
53-36-130-300-p15 * * * * 38.17 38.40 1 1 20673.2 20673.2  0.000% 40.39 1 1 20673.2 20673.2  0.000%
53-36-130-300-p16  * * * * 35.90 36.13 1 1 17796.2 17796.2  0.000% 37.44 1 1 17796.2 17796.2  0.000%
53-36-130-300-p17  * * * * 32.95 33.18 1 1 17345.2 173452 0.000% 35.09 1 1 17345.2 173452 0.000%
53-36-130-300-p18  * * * * 36.62 3601.01 405 240 17850.7 17849.2  0.008% 360.25 23 23 17849.2 17849.2  0.000%
53-36-130-300-p19  * * * * 37.09 37.32 1 1 18190.6 18190.6  0.000% 39.14 1 1 18190.6 18190.6  0.000%
53-36-130-300-p20  * * * * 36.21 36.44 1 1 20754.4 207544 0.000% 38.20 1 1 20754.4 20754.4  0.000%
53-36-130-300-p21 * * * * 44.80 45.03 1 1 16953.2 16953.2  0.000% 46.76 1 1 16953.2 16953.2  0.000%
53-36-130-300-p22 * * * * 36.82 37.05 1 1 18699.2 18699.2  0.000% 39.24 1 1 18699.2 18699.2  0.000%
53-36-130-300-p23 * * * * 33.96 34.19 1 1 21525.6 21525.6  0.000% 35.31 1 1 21525.6 21525.6  0.000%
53-36-130-300-p24  * * * * 26.51 26.74 1 1 18266.2 18266.2  0.000% 28.20 1 1 18266.2 18266.2  0.000%
53-36-130-300-p25 * * * * 33.49 33.72 1 1 17064.8 17064.8  0.000% 35.61 1 1 17064.8 17064.8  0.000%
53-36-130-300-p26  * * * * 29.71 29.94 1 1 20324.4 203244  0.000% 31.04 1 1 20324.4 203244 0.000%
53-36-130-300-p27  * * * * 26.61 26.84 1 1 20003 20003  0.000% 28.27 1 1 20003 20003  0.000%
53-36-130-300-p28  * * * * 37.70 37.93 1 1 17956 17956 0.000% 39.57 1 1 17956 17956 0.000%
53-36-130-300-p29  * * * * 30.19 30.42 1 1 19074.6 19074.6  0.000% 32.07 1 1 19074.6 19074.6  0.000%
53-36-130-300-p30  * * * * 32.78 33.01 1 1 16464.6 16464.6  0.000% 35.17 1 1 16464.6 16464.6  0.000%

Mean 33.32 747.12 0.001% 526.52 0.001%
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small instances took less than half the computational time limit. In addition, scheme A and B solved 4
and 10 out of 30 instances, respectively, in Table 5.7. Note that schemes A and B solved less than half
the instances presented in the mentioned tables, and even though scheme B performed better than A,
some of those solved instances took more than half the time limit to reach optimality. These results
are improved when we combine branching procedures as in schemes C and D. From Tables 5.6 and 5.8,
we observe that schemes C and D solved 58 out of 60 instances to optimality (except 2: 50-36-130-700
and 50-36-250-700. Note that scheme A was able to solve 50-36-250-700 in only 56.93 seconds). When
comparing schemes C and D, we observe that the difference in computational times is relatively small.
We consider these differences are due to implementation details between the branching procedures of
Section 5.5.1 and Section 5.5.2, given that the number of total nodes and of nodes explored in both
schemes are equal (columns 8,9,16 and 17 of Tables 5.6 and 5.8). This assertion holds for the whole
set of instances, which suggests the branching procedure of Section 5.5.3 is very effective in splitting
polyhedra with fractional values in order to lower the dual bound obtained from the linear relaxation.

Finally, to further verify the performance of the proposed approaches according to different instance
characteristics, we randomly generated additional instances having the number of terminals in the
ranges [10,19], [30,39], [40,49] and [56,59]. For each of these ranges, the number of vehicles varies
in the following way: for [10,19] it increases from 20 to 50 vehicles; for [30,39], from 200 to 250; for
[40,49], from 130 to 170; and for [56,59], from 100 to 25. The numbers of periods are 10, 30, 36 and 36,
while the numbers of loads are 20, 300, 500 and 700 for each terminal range, respectively. The detailed
results of solving these 200 instances with the same approaches used in the previous experiments are
presented in Appendix B. To summarize these results, we resort to the performance profiles proposed
by Dolan and Moré (2002), briefly described as follows. The performance profile of a method can be
defined as the cumulative distribution function for a given performance metric. In our case, we used the
computational time to reach optimality as the performance metric. Since we are interested in obtaining
an optimal integer solution, the instances whose stopping criterion was due to exceeding the time limit
were considered not solved. More specifically, the value P(7) for a given method corresponds to the
fraction of instances for which that method provides solutions with a computational time within a
factor of 27 of the best computational time. When 7 = 0, the value P(7) indicates the proportion
of instances for which a given method performed the best, i.e., was the fastest; when 7 — o0, the
P(7) indicates the proportion of instances that were solved by a given method. We first show the
performance profiles regarding our CG approach (PDCGM) and the LP relaxation of model (2.1)-(2.5)
(CPLEX). Figure 5.15 shows the effectiveness of PDCGM, as it was the fastest in almost 80% of the
instances (7 = 0). In addition, it solved all instances to optimality, while CPLEX solved only 50% of

them within the time limit. It is worth noticing from the tables presented in Appendix A that instances
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Table 5.6: Results of the small-scale instances for testing the BP with schemes C and D

Instance LP CPULP 1P CPUIP CPUPD CPUBP-C NT-C NE-C UBBP-C LBBP-C GAP-C CPUBP-D NTI-D N.E-D UBBP-D LBBP-D GAP-D
20-20-100-200 14473 3.49 14471 16.23 1.48 6.63 7 7 14471 14471 0.00% 5.36 7 7 14471 14471 0.00%
20-20-130-200 31331 433 31327 19.13 151 9.42 9 9 31327 31327 0.00% 7.51 9 9 31327 31327 0.00%
20-20-150-200  34622.5 545 34618 22.10 1.70 3.01 3 3 34618 34618 0.00% 2.63 3 3 34618 34618 0.00%
21-20-100-200 2585.5 5.36 2585 19.09 1.75 3.76 3 3 2585 2585 0.00% 3.09 3 3 2585 2585 0.00%
21-20-130-200 4056.5 5.01 4056 21.65 2.05 4.02 3 3 4056 4056 0.00% 3.51 3 3 4056 4056 0.00%
21-20-150-200  27333.5 5.51 27322 23.34 1.88 4.18 3 3 27322 27322 0.00% 3.56 3 3 27322 27322 0.00%
22-20-100-200 4902.5 5.82 4902 23.76 1.96 6.90 5 5 4902 4902 0.00% 5.71 5 5 4902 4902 0.00%
22-20-130-200 12304 5.71 12301 25.56 1.99 4.72 3 3 12301 12301 0.00% 4.04 3 3 12301 12301 0.00%
22-20-150-200  10972.5 7.14 10971 34.33 212 7.16 5 5 10971 10971 0.00% 5.47 5 5 10971 10971 0.00%
23-20-100-200  14133.5 4.65 14132 19.48 1.90 3.75 3 3 14132 14132 0.00% 2.99 3 3 14132 14132 0.00%
23-20-130-200  21749.5 6.44 21745 27.30 1.94 3.92 3 3 21745 21745 0.00% 3.02 3 3 21745 21745 0.00%
23-20-150-200 23366 8.00 23358 31.67 2.20 5.87 5 5 23358 23358 0.00% 5.03 5 5 23358 23358 0.00%
24-20-100-200 10157 5.30 10155 24.04 2.37 8.00 5 5 10155 10155 0.00% 6.28 5 5 10155 10155 0.00%
24-20-130-200 3486.5 11.08 3486 42.33 3.51 17.85 9 9 3486 3486 0.00% 13.02 9 9 3486 3486 0.00%
24-20-150-200 18158 12.68 18156 5291 3.26 12.45 7 7 18156 18156 0.00% 9.43 7 7 18156 18156 0.00%
25-20-100-200 9336.5 5.20 9335 23.05 2.33 7.10 5 5 9335 9335 0.00% 5.93 5 5 9335 9335 0.00%
25-20-130-200 33906 8.86 33905 38.92 2.64 4.65 3 3 33905 33905 0.00% 4.07 3 3 33905 33905 0.00%
25-20-150-200 32517 9.41 32508 37.72 291 6.87 5 5 32508 32508 0.00% 6.05 5 5 32508 32508 0.00%
26-20-100-200 9816 5.49 9815 22.13 2.64 4.37 3 3 9815 9815 0.00% 4.16 3 3 9815 9815 0.00%
26-20-130-200 16895 7.66 16892 33.17 2.76 4.20 3 3 16892 16892 0.00% 3.93 3 3 16892 16892 0.00%
26-20-150-200 3731.5 19.33 3731 67.78 3.94 24.24 11 11 3731 3731 0.00% 21.92 11 11 3731 3731 0.00%
27-20-100-200  21095.5 7.05 21090 32.24 3.31 4.93 3 3 21090 21090 0.00% 4.54 3 3 21090 21090 0.00%
27-20-130-200 8457.5 11.71 8456 55.14 3.95 33.61 19 19 8456 8456 0.00% 29.05 19 19 8456 8456 0.00%
27-20-150-200 26709 9.95 26704 44.40 3.29 7.41 5 5 26704 26704 0.00% 6.69 5 5 26704 26704 0.00%
28-20-100-200 3641.5 10.32 3641 42.01 3.23 47.20 29 29 3641 3641 0.00% 42.24 29 29 3641 3641 0.00%
28-20-130-200 25359 8.64 25355 36.32 3.32 5.14 3 3 25355 25355 0.00% 4.63 3 3 25355 25355 0.00%
28-20-150-200  11225.5 11.36 11222 57.47 3.73 6.16 3 3 11222 11222 0.00% 5.49 3 3 11222 11222 0.00%
29-20-100-200 5995 7.09 5994 31.58 3.69 8.81 5 5 5994 5994 0.00% 7.48 5 5 5994 5994 0.00%
29-20-130-200 8979.5 11.48 8978 49.86 3.60 80.44 49 49 8978 8978 0.00% 72.53 49 49 8978 8978 0.00%
29-20-150-200 7978.5 10.10 7977 44.10 3.91 7.37 3 3 7977 7977 0.00% 6.73 3 3 7977 7977 0.00%
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Table 5.8: Results of the large-scale instances for testing the BP with schemes C and D

Instance LP CPULP IP CPUIP CPUPD CPUBP-C NT-C N.E-C UBBP-C LBBP-C GAP-C CPUBP-D NT-D N.E-D UBBP-D LBBP-D GAP-D
50-36-100-700 * * * * 23.56 36.61 3 3 50961 50961 0.00% 34.71 3 3 50961 50961 0.00%
50-36-130-700 * * * * 29.24 3606.93 495 306 -57052.5 57048 0.01% 3601.84 525 328 57052.5 57048 0.01%
50-36-150-700 * * * * 31.62 68.46 5 5 22656 22656 0.00% 68.35 5 5 22656 22656 0.00%
50-36-180-700 * * * * 34.10 630.27 57 57 62122 62122 0.00% 627.10 57 57 62122 62122 0.00%
50-36-200-700 * * * * 34.85 38.00 3 3 28843 28843 0.00% 37.93 3 3 28843 28843 0.00%
50-36-250-700 * * * * 40.64 3600.66 329 213 111450 111444 0.01% 3611.77 329 216 111450 111444 0.01%
51-36-100-700 * * * * 24.03 99.38 11 11 17676 17676 0.00% 99.31 11 11 17676 17676 0.00%
51-36-130-700 * * * * 30.62 42.16 3 3 62845 62845 0.00% 42.11 3 3 62845 62845 0.00%
51-36-150-700 * * * * 30.51 171.83 17 17 61608 61608 0.00% 171.96 17 17 61608 61608 0.00%
51-36-180-700 * * * * 37.18 1802.81 153 153 45116 45116 0.00% 1798.33 153 153 45116 45116 0.00%
51-36-200-700 * * * * 38.92 54.47 3 3 69124 69124 0.00% 55.16 3 3 69124 69124 0.00%
51-36-250-700 * * * * 49.22 767.03 43 43 29392 29392 0.00% 772.57 43 43 29392 29392 0.00%
52-36-100-700 * * * * 25.76 38.55 3 3 47273 47273 0.00% 38.97 3 3 47273 47273 0.00%
52-36-130-700 * * * * 33.24 62.32 5 5 60081 60081 0.00% 63.88 5 5 60081 60081 0.00%
52-36-150-700 * * * * 28.20 45.83 3 3 75988 75988 0.00% 46.27 3 3 75988 75988 0.00%
52-36-180-700 * * * * 37.01 206.15 17 17 54693 54693 0.00% 208.32 17 17 54693 54693 0.00%
52-36-200-700 * * * * 43.32 89.17 5 5 33908 33908 0.00% 91.11 5 5 33908 33908 0.00%
52-36-250-700 * * * * 52.17 223.27 13 9 8242 8242 0.00% 224.81 13 9 8242 8242 0.00%
53-36-100-700 * * * * 26.39 147.35 15 15 18727 18727 0.00% 150.27 15 15 18727 18727 0.00%
53-36-130-700 * * * * 31.03 51.23 3 3 36388 36388 0.00% 51.06 3 3 36388 36388 0.00%
53-36-150-700 * * * * 38.67 54.46 3 3 63060 63060 0.00% 55.33 3 3 63060 63060 0.00%
53-36-180-700 * * * * 38.71 1020.99 77 77 28785 28785 0.00% 1023.86 77 77 28785 28785 0.00%
53-36-220-700 * * * * 42.52 106.86 7 7 101729 101729 0.00% 105.90 7 7 101729 101729 0.00%
53-36-250-700 * * * * 49.47 65.29 3 3 104922 104922 0.00% 65.19 3 3 104922 104922 0.00%
54-36-100-700 * * * * 29.48 135.83 13 13 23551 23551 0.00% 137.10 13 13 23551 23551 0.00%
54-36-130-700 * * * * 33.05 45.49 3 3 39535 39535 0.00% 45.46 3 3 39535 39535 0.00%
54-36-150-700 * * * * 38.63 79.96 5 5 4722 4722 0.00% 81.05 5 5 4722 4722 0.00%
54-36-180-700 * * * * 40.40 107.57 7 7 36084 36084 0.00% 107.63 7 7 36084 36084 0.00%
54-36-200-700 * * * * 41.92 44.16 3 3 54198 54198 0.00% 45.06 3 3 54198 54198 0.00%
54-36-250-700 * * * * 57.90 1416.50 59 59 8531 8531 0.00% 1418.64 59 59 8531 8531 0.00%
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that were solved faster by CPLEX have number of terminals in the range [10,19], although the difference

in computational times within this range do not exceed 1 second.

:1<s

P (logy(r,
(=]
w
RN

PDCGM CPLEX LP

Figure 5.15: Performance profile of PDCGM vs CPLEX.

Regarding the integer optimal solution, Figure 5.16 shows the performance profiles for the branch-
ing schemes. We observe that scheme B (blue line) performed better than scheme A (purple line) in
terms of solving capabilities, as it solved 50% of the instances compared to 30%; and time efficiency, as
it solved 15% of the instances faster compared to 5%. Both schemes A and B are outperformed by C (red
line) and D (green line) which give priority to branching on demand constraints. Both schemes, C and
D, solved all instances except two (the ones presented in Table 5.8) and they have similar time efficiency
performance as evidenced by the closeness of both lines, which was already observed in Tables 5.5 to
5.8. Figure 5.17 compares the performance of CPLEX to the best of the four branching schemes: D. Even
though schemes C and D have similar performance (this similarity is mainly due to them sharing the
same main branching procedure), we chose scheme D as the best since its subjacent differing branching
procedure is more effective (as seen by comparing scheme B to A). We observe that our proposed algo-
rithm outperforms significantly CPLEX in solving the integer VAP. It solved faster almost 80% of the
instances, it was able to solve almost 100% of the instances (albeit we still have high quality bounds for
the 2 unsolved), while CPLEX could not even mount the model of approximately 50% of the instances.

By and large, from the results shown in this section, it can be seen that the proposed BP is more
competitive than the BC from CPLEX when solving large-scale instances. The proposed method with

the branching schemes C and D outperformed CPLEX in almost all of the instances with 20 or more
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Figure 5.17: Performance profile of CPLEX vs BP-D.

terminals in terms of solving capabilities and time efficiency (except three 28-20-100-200, 29-20-130-
200 and 31-30-230-300 which CPLEX solved faster than schemes C and D, see Appendix B). In addition,
most instances with 40 or more terminals could not be processed by CPLEX, while they were optimally

solved by the proposed method, schemes C and D, within reasonable computational times. These results
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clearly show the advantage of using the proposed BP for solving large-scale instances of the VAP.

5.7 Final Considerations

In this chapter, we presented a BP method for the VAP, based on the arc-demand model presented in
Section 2.3. The column generation is based on an Interior Point method and the subproblem was found
to be reduced to a multiple shortest path problem. We have adapted two branching procedures from
the literature and created four branching schemes for solving optimally the integer VAP. Small-scale
and large-scale instances were solved with the proposed method and its performance results analyzed
and compared to those obtained by the general-purpose solver CPLEX. The BP method with two of the
branching schemes turned out to be more effective than CPLEX in solving large-scale instances. The

main results of this chapter were published in Cruz et al. (2020).
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Chapter 6

A new formulation for the VAP and a

Branch-and-Price method

In this chapter, a new formulation for the VAP is proposed where demand for vehicles occur at the nodes
of the subjacent graph, hence, we call it the node-demand formulation. The size of this new formulation
depends on different parameters than the formulation of Chapter 5. Additionally, we proposed a BP

method to optimally solve small and large-scale instances with this new formulation.

6.1 Definition of the node-demand formulation

To introduce the alternative formulation, we consider the notation presented in Section 2.3 and the ad-
ditional sets and parameters defined as follows. Let R be the set of all requests for freight transportation
services along the planning horizon. There is one request r € {1, ..,|R|} for each triplet (3, j,¢) such
that d;j; > 0,Vi,j € N,t € T. Each request r € R is determined by the departing terminal i, € N,
the delivery terminal j, € NN, the starting travel period ¢, € T and the number of vehicles needed
to meet the demand D, = d;, ;,+,. Based on this, the VAP consists in determining feasible sequences
of requests, such that each sequence is executed by a given available vehicle in a way that maximizes
the overall profit. In addition, two artificial requests (depots) are added: the 0 depot from which all se-
quences of requests have to depart and the |R| + 1 depot where all sequences of requests arrive at. We
use k, and h, to denote the location and period, respectively, at which vehicle v appears according to
the previous definition mj, used in the arc-demand formulation of Section 2.3. For example, m499 = 1
is represented as k1 = 4 and h = 2.

We then use a request network to represent the problem, instead of the space-time network used
in the arc-demand formulation. In this request network, there is one node for each request r € R,

and one arc (7, s) for each pair of requests r, s € R such that it is feasible to serve request r and then
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s consecutively, using the same vehicle (of at least one type). When the delivery terminal of r is the
same as the departing terminal of s (i.e., j, = i5), then the traversal of arc (r, s) means that the vehicle
finished request r and is ready to start request s, without repositioning. Otherwise, the arc traversal
corresponds to an empty movement of the vehicle, repositioning from j, to .

To illustrate the transformation to the new formulation, we introduce a small instance in the time-
space network. Figure 6.1 shows an example for N = {1,...,6} and T = {1, ...,6}. In this example,
there are four requests for freight transportation services (dso2 = 3, dsg2 = 1,d233 = 3,d515 = 2) and
two vehicles (i.e., |V'| = 2). Vehicle 1 becomes available at terminal 6 and time period 1 (mg1; = 1) while
vehicle 2 becomes available at terminal 4 and time period 2 (my22 = 1). There is an extra column of
terminals (¢ > 6) representing all terminal-period pairs extending beyond the planning horizon. In ad-
dition, there is a sink ny capturing all the flow coming from the extended space-time network, which is
helpful is defining the proposed formulation of this section. Figure 6.2 illustrates an optimal solution for
this example. In the solution, vehicle 1 follows path {(6, 5, 1), (5, 6, 2), (6, 5, 3), (5,5,4), (5,1,5),(1,1,6)}
and vehicle 2 follows path {(4, 2, 2), (2,3, 3), (3,3,5),(3,3,6)}.

t=1 t=2 t=3 t=4 t=5 t=6 t>6
1 1 1 1 1 1 1
o () () o () Q
2 2 2 2
(@) (®) (®) Q
dyza|=
3 3 3 3
o (0] (0] O.
dsis =2
4 4 4 4 4 4 4
©) (®) (e} o o o~
Mypp =1
5 5 5 5 5/
©) O

- o
O- /)
&

. .\;I le)
-

O« O«
Om
Oo
Oo

Mmepp =1

Figure 6.1: The problem’s parameters.
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Figure 6.2: An optimal solution for the example.

Figure 6.3 illustrates the request network for the above mentioned example. Circles represent re-
quests whereas triangles represent both artificial depots. The numbers above the circles represent the
demand D, while the triplets within contain the departing terminal ¢, € N, the delivery terminal
jr € N and the starting travel period ¢, € 7', which will be necessary in the profit/cost definition. Note
that by ordering the request nodes according to their starting time period ¢,, we inherit the acyclic
property from the formulation of Section 2.3. The arcs in this network represent the transition of ve-
hicles either between two requests or between a request and a depot (and viceversa). Note that this
transition can represent no event at all when the delivery terminal of r (j,-) is the same as the departing
terminal of s (¢s). Finally, in comparison to the space-time network, this alternative network shows
a reduced number of nodes and arcs for instances with a moderate number of requests. For example,
the 30 node and 216 arc space-time network presented in Figure 6.1 is reduced to a network of only 6
nodes and 15 arcs, totalling 30 decision variables and 18 constraints. Figure 6.4 shows the same optimal

solution illustrated in Figure 6.2 but considering the request network.
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Figure 6.3: Graphic representation of a request network for the same example in Figure6.1.
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Figure 6.4: An optimal solution in the request network for the same example in Figure 6.2.

In the same way as the demands, profits and costs from vehicles movements have to be redefined
in terms of requests. Let P,g, be either the profit or the cost associated to meeting request s € R
consecutively after meeting request » € R with vehicle v € V. As mentioned before, the traversal
of arc (7, s) may require an empty movement of the vehicle, which may shadow the profit related to
meet the requests and, hence, P,5, > 0 corresponds to a profit, or to a cost otherwise. These values
are straightforward to compute if the triangle inequality holds for the costs and if we assume that any
vehicle can move from a given terminal to any other. However, these are not valid in the VAP because
of the restriction of movements. Indeed, if 4, ; , = 0 for j, # i,, the empty movement may still be
possible, but through the shortest path between these terminals, which is a consequence of the fact that
optimal solutions for each vehicle v € V in the time-space network are longest paths since they are
maximizing profits (see Lemma 5.3.1 in Section 5.3). Hence, we use the shortest path considering empty
costs only of each vehicle type v € V to calculate the corresponding profits of the following events
that can occur between two nodes of the request network: (a) traveling empty between the entering
location of the vehicle (k,) and a request; (b) traveling empty between the delivery terminal of one
request and the departing terminal of its consecutive request; (c) traveling empty between the delivery
terminal of a request and the end of the planning horizon; and (d) traveling empty between the entering
location of the vehicle and the end of the planning horizon. Note that in events (c) and (d) traveling
empty is still needed when holding vehicles in inventory is not possible (as is the case in some of the
realistic-sized instances considered in this paper).

From the previous definition of possible events between nodes, P, is defined in terms of param-

eters p;j, and ¢;;, as follows:

pl}jrv - SP((jTat’f + Tirjr)v (i87t8)7v)7 if?”, ENS R

Divjrv — SP((Jrs tr + Tij, ), 0y, ) ifre RAs=|R|+1
Prsv =

_SP((kU7hU)7(isvtS))v)u 1fr:0/\8€R

— SP((ky, hy),nf,v), ifr=0As=|R|+1
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where SP(A, B, v) denotes the shortest path for a vehicle of type v between nodes A and B of the time-
space network and arc lengths correspond to empty vehicle costs ¢;j,. This can be efficiently computed
in advance and is used as an input parameter in the model. Whenever a vehicle ends attending a request
or enters the system at a given terminal where it is not allowed to be held idle, it is still necessary to
compute the shortest path to ny if there is no request to attend afterwards (Cases 2 and 4 of the profit
definition). Figure 6.5 shows the illustrative representation of these events in the request network and

their relationship to the definition of P,,.

Pirjrv

— SP((ky. hy), (is, ts), v) = SP((jr.tr + 7irj, ), (is. ts). v) - —SP((jr. 1, + Tipjp ) f5 V)

Figure 6.5: Redefinition of profit/cost P,

The decision variables in the alternative formulation, defined as x,.;,, take the value of 1 if vehicle
v serve request s after serving request 7, and 0 otherwise. Using the presented definitions, the node-

demand formulation of the VAP writes as:

max Z Z Z PrsyTrsy (6.1)

veV re RU{0} se SU{|R|+1}
s>

1 ifr=20
s.t. Z Trsy — Z Lsry = -1 ifr= ‘R’ +1
s€RU{|R|+1} seRU{0}
s=>r s<r 0 ifr#0Ar#|R|+1
Vre RU{O}U{|R|+1},Yv €V, (6.2)
> 4w < Dr, VreRr, (6.3)
veV seR
s>r
ZTspp =0 if Ay 5,0=0, Vre RU{|R|+1},VveV, (6.4)
Typsy = 0 if Airjrv = O, Vr e RU {0},VU € ‘/, (6.5)
rsy € {0,1}, Vre RU{0},Vs € RU{|R|+ 1},Yv e V. (6.6)

The objective function (6.1) seeks to maximize the total profit from meeting the requests, and returns
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the same optimal value on the objective function of formulation (2.1)-(2.5) from Section 2.3. Constraints
(6.2) enforce that all vehicles depart from and arrive at the artificial depots as well as ensure the flow
conservation of the vehicles on the request nodes. Constraints (6.3) enforce the number of vehicles
that can be used to serve a given request. Constraints (6.4) and (6.5) prohibit the movements out of
and into r, respectively, when vehicle type v cannot cross the arc where the demand is placed. Finally,
constraints (6.6) impose the domain of decision variables. Note that if it is not possible to go from a node
A to another node B in the space-time network, the value of the shortest path between these two nodes
is 0o and, hence, the profit between the requests related to these nodes becomes —oo. We overcome
the inconveniences resulting from setting Big-M profits by fixing x5, = 0 whenever P,g, = —o0.
The number of variables and constraints in the proposed model is equal to |V||R|(|R| — 1)/2 and
VIIR|+|R

, respectively (without considering the variables that are zeroed out). On the other hand, the
number of variables and constraints in formulation (2.1)-(2.5) is equal to |V||T||N|? and |V||T||N| +

|T'|| N |2, respectively. As can be observed, the proposed model does not depend explicitly on the number

of periods |T'| and terminals | N| on the network, which can be of great advantage for solving some
realistic large-scale instances with a moderate quantity of requests |R| and vehicles |V].

Finally, it is worth mentioning that formulation (6.1)-(6.6) has some similarities with a special-
ized formulation of the Full Truckload Vehicle Routing Problem (FTVRP) (Arunapuram et al., 2003;
Desrosiers et al., 1984, 1988; Gronalt et al., 2003). However, there is a structural difference that does not
enable us to use the solution methods previously developed for the FTVRP in an efficient manner for
the VAP. In the FTVREP, it is necessary to serve (visit) all demand for shipping transport (customers),
hence feasible and optimal solutions are Hamiltonian paths over directed graphs. Since in the VAP
we consider the possibility of partially serving demand, solutions are simple paths in the time-space
network. Furthermore, in the alternative formulation proposed in this paper, we are able to show that
the graph is acyclic, thus, we can explore this property by using efficient algorithms in our decom-
position approach. Finally, to the best of our knowledge, there is no other solution approach using a

node-demand network for the VAP.

6.2 Dantzig-Wolfe decomposition

In this section, the Dantzig-Wolfe (DW) decomposition is presented for the new formulation of the
VAP. We chose to decompose according to each vehicle since, from a practical point of view, it is best
for operations control to create set of decisions according to vehicle groups or individual vehicles, and
from a modelling perspective, quality results from Section 5.6 support this decision. Thus, by taking

the demand-satisfying constraints (6.5) as the coupling constraints, the remaining constraints can be
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grouped into the sets of solutions X,, Vv € V, given by:

1 ifr=20
Ty ‘ Z Lrsy — Z Tsry = -1 1f7“ = ‘R’ + 1 9
s€RU{|R|+1} s€ RU{0}
s>r s<r 0 ifr£Z0Ar#|R|+1
Xy = Vr e RU{0} U{|R|+ 1},

Tory =0 if Airjrv =0, Vre RU {|R| + 1}’

Ty = 0 if Ai'roU =0, Vre RU {0},

Zrsy € {0, 1}, Vre RU{0},s € RU{|R|+1}.

Hence, the resulting equivalent formulation to (6.1)-(6.6) writes as:

max Z Z Z PrsyTrsy

veV re RU{0} se SU{|R|+1}

s.t. Z Z Trsy < Dy, Vr € R,

veV' sER
s>r

T, € Xy, Y0EV,

Each set X, is a bounded polyhedron as it is defined exclusively by binary variables. Then, using the
discretization approach (Liibbecke and Desrosiers, 2005; Vanderbeck, 2005), we can write any solution

Zy € X, as an integer combination of the extreme points of X, as follows:
Ty = D Avglugs With D> Ayg =1, Ay € {0, 1}, (6.7)
q€Qu q€EQw

where 7,, denotes the extreme points of X,, and @), is the set of indices of all extreme points. By

substituting this representation into (6.1)-(6.6), the result is the Master Problem (MP):

max Z Z Z Prg, (Z )\Uq:cvq) (6.8)

veV re RU{0} se SU{|R|+1} q€Qu

s.t. > (Z )\vqxvq) <D,, VreR, (ur) (6.9)

veV’ §€>f§ q€Qy

> A =1, Yo eV, (wy) (6.10)
qEQu
Avg € {0, 1}, Vv € V,Vq € Qy, (6.11)

where u, and w, represent the dual variables regarding the coupling and convexity constraints, re-
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spectively, for the linear programming (LP) relaxation of the MP. Given the huge size of (), in realistic
problem instances and the fact that most variables are likely to assume the value of zero in an optimal
solution, we solve the LP relaxation of the MP using the Column Generation (CG) technique. More
specifically, we initialize the LP relaxation of the MP with just a subset of extreme points of X, (in our
implementation, we use the empty path from node 0 to node |R| + 1 in the request network, for each
vehicle v), resulting in what is called the Restricted Master Problem (RMP). Hence, the RMP starts with
a relatively small number of columns (variables) and we may generate new columns iteratively using

the dual solutions and the following pricing subproblems:

ZSP('U) = max Z Z (PT‘S’U - UT)szU (612)
reRU{0} seSU{|R|+1}
1 ifr=0
s.t. Z Trsy — Z Tsry = —1 ifr= ’R| +1
s€RU{|R|+1} s€e RU{0}
82T s<r 0 ifr Z0Ar #|R|+1
Vre RU{0} U{|R|+ 1} (6.13)
Too =0 if Ay =0, VreRU{|R|+1}, (6.14)
Trgpy =0 if Airjrv =0, VreRU {O}, (6.15)
Trsy €E Ry, Vre RU{0},s € RU{|R|+ 1}, (6.16)

for each v € V. Hence, the reduced cost of a variable \,, is given by Z,,) — w,. In this particular

p(v)
case of the addressed problem, the optimal solution obtained at the end of the CG procedure has the
same objective value as an optimal solution of the linear programming (LP) relaxation of the original
model (6.1)-(6.6), as the pricing subproblems (6.12)-(6.16) have the integrality property. Nevertheless,
the reformulation is still computationally attractive as the size of the MP is significantly reduced in

comparison to the size of model (6.1)-(6.6) and the pricing subproblems can be efficiently solved using

specialized shortest path algorithms on Directed Acyclic Graphs (DAG), as discussed in the next section.

6.3 Branch-and-price method

In this section, we propose a BP method to solve the MP (6.8)-(6.11), which consists in using the CG
technique within each node of Branch-and-Bound (BB) tree (Liibbecke and Desrosiers, 2005). Our im-
plementation is based on efficient approaches to enhance the overall performance of the method, such
as a stabilized interior-point column generation technique (Subsection 6.3.1); a specialized algorithm for
solving the pricing subproblems (Subsection 6.3.2); and a hierarchical branching strategy that impose

constraints in the master problem (Subsection 6.3.3).
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6.3.1 Interior-point column generation technique

At each node of the BP tree, we need to solve the LP relaxation of the MP (6.8)-(6.11) with possibly
additional branching constraints. To avoid the well-known pathological behaviors resulting from using
extreme dual solutions provided by the simplex method when solving the RMP (Vanderbeck, 2005),
and in accordance with the promising results obtained in Chapter 5, we use the Primal-Dual Column
Generation Method (PDCGM) (Gondzio et al., 2013, 2016) for solving the LP relaxations. The PDCGM
is a stabilized column generation technique that relies on a primal-dual interior point method to solve
each RMP. Hence, the obtained dual solutions are well-centered points in the dual feasible set and
promote a better overall performance of the method, particularly for earlier CG approaches developed
for the VAP (Cruz et al., 2019, 2020) and related problems (Alvarez and Munari, 2017; Gondzio and
Munari, 2015; Munari and Gondzio, 2013).

After the CG method finishes, we check if the optimal solution provided is fractional and, if it is, we
run a simple model-based heuristic in an attempt to quickly obtain an improved incumbent solution.
This heuristic consists of (1) imposing integrality on the variables in the RMP solved in the last iteration
of the CG method; and (2) solving the resulting integer programming problem by a general-purpose

solver using a short time limit.

6.3.2 Pricing subproblem

Each subproblem (6.12)-(6.16) is a maximum cost flow problem over a DAG in which we have to flow
one vehicle from the starting depot (node 0) to the end depot (node |R| + 1), hence it is a longest
path problem (as we are maximizing profits) over a directed acyclic network. Since the graph for each
vehicle is already topologically sorted, we can use a linear update for optimality conditions as described
in Algorithm 4. The values y;. s correspond to the updated arc profits through the dual values from the

coupling constraints of the master problem and whenever A; ; , = 0, we set 3, ; = — inf.

Algorithm 4 DAG’s algorithm

1: procedure DAG(0, |R| + 1)

2 Initialize d[k] = —oco and p[k] = 0,Vk € RU{|R| + 1};
3 d[0] = 0;

4 forr < 0: Rdo

5: fors«r+1:|R|+1do

6 let y,s = Pyrsy — u, be the profit of arc (r, s) for vehicle v € V'
7 if d[s] > d[r] + y,s then

8 d[s] < d[r] + yrs

9 pls] < r

10: end if

11: end for

12: end for
13: end procedure

111



6.3.3 Branching strategy

The branching strategy used in the proposed BP method consists of a hierarchical rule based on the
total served demand and on the arc flow in a fractional solution. More specifically, given an optimal
solution A of the RMP solved in the last iteration of the CG technique, we verify if the total demand

served by all vehicles for a given r € R is fractional, i.e.

Z Z Z jqrsvj\vq ¢ Z+- (6-17)

vEV sER qEQy
s>r

Among all indices that satisfy (6.17), we select the index r with the earliest departing time and then
generate two child nodes, one with the first and the other with the second of the following additional

branching constraints:

Z Z Z 'quSU/\Uq = Z Z Z jqrsvxvq s (6.18)

vEV SER GEQy vEV SER GEQy
s>r s>r

Z Z Z TqrsvAvg < Z Z Z jqrsvxvq ) (6.19)

vEV s€ER qEQy vEV sER qEQy
s>r L s>r

where the unary operators [ | and | | represent the ceiling and floor functions for rounding fractional
numbers. Since they are imposed in the LP relaxation of the MP, these branching constraints do not
damage the structure of the pricing subproblems. To account for the dual solution in the pricing sub-
problems in a given node k, we only need to include the following summation in the objective function

of vth subproblem, for each v € V:

=D > b,
reBk se SU{|R|+1}
where B is the set of all indices 7 € R such that a branching constraint of type (6.18) or (6.19) is
imposed in node k (coming from all its ancestral nodes in the tree), and b, is the dual solution associated
to the rth branching constraint of these types.

This branching rule alone does not guarantee an integer solution as the summation in (6.17) may
be integer even for a solution \ with fractional components. Hence, we resort to an additional rule
when the summation in (6.17) is integer for all » € R. This rule is based on the values of variables
.5y, which are computed from solution A using the summation in (6.7). Requiring integrality of .,
is equivalent to requiring integrality of the MP variables )\, as we rely on discretization (Liibbecke and

Desrosiers, 2005). Hence, given a tuple of indices (7, s,v) such that z,, is fractional, we branch by
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enforcing x,s, = 0 in one child node, and z,s, = 1 in the other child node. The selection of (7, s, v)
is done giving priority to variables with earlier departing times, choosing randomly among different
vehicles to break ties. To avoid damaging the structure of the subproblems, we impose the new bounds

of z,s, at the MP level, by inserting one of the following constraints:

Z i’qrsv)\vq <0 or Z -i'qrsv)\vq > 1, (6.20)
quv quv
which correspond to imposing x5, < 0 and x5, > 1, respectively. Then, similarly to the previous
branching rule, we only need to modify the objective function of the pricing subproblems to account
for the dual solution related to these new branching constraints. More specifically, in a given node k

of the tree, we include the following summation in the objective function of the vth subproblem:

- § WrsyLrsv

(r,s,v)€eURUL*

where w,., is the dual solution associated to constraints of type (6.20), and U* and L* are the set of
index tuples (7, s, v) related to the upper and lower bound constraints in (6.20) that are imposed in node
k. Note that the values w,g, can be easily incorporated into the subproblems as additional costs at the
arcs of the request network.

In summary, we have a hierarchical branching scheme in which we first verify if there is at least
one index r that satisfy (6.17) and, if no such index exists, we verify if there is at least one tuple (7, s, v)
such that x4, is fractional. Finally, it is worth mentioning that we use the best-first search rule to
decide the next node to be processed along the search tree, i.e, the method selects the node with the

worst dual bound (maximum dual bound in maximization problems).

6.4 Computational Experiments

In this section, we present the results of computational experiments with the proposed approaches as
well as the approaches from Chapter 5 for solving the VAP, using small and large-scale realistic-sized
instances collected from Vasco and Morabito (2016b) and Chapter 5. First, we present the results of
solving the two considered compact formulations, namely the node-demand formulation proposed in
Section 6.1 and the arc-demand formulation presented in Section 2.3. Then, we show the results of the
experiments with the BP method proposed in Section 6.3 and the BP method proposed in Section 5.
All methods were implemented in C++ and use the Concert Library of the IBM CPLEX Optimization
Studio v.12.8.1. Additionally, for the BP method we use the PDCGM library (Gondzio et al., 2016) as

the CG solver. All experiments reported in this section were run on a PC with CPU Intel Core i7-4790S

113



3.20GHz and 16 GB of RAM. A symbol “*” indicates that CPLEX could not solve or even mount the
model due to lack of computer memory. A time limit of 7200 seconds was imposed on each run.

We use two set of instances to develop the performance analysis of the above-mentioned solution
methods. The first set comprises 30 instances from the work of Vasco and Morabito (2016b) which
share the same characteristics, namely, 53 terminals, 36 periods, 300 requests and 130 vehicles. The
second set comprises the 200 generated instances from Chapter 5 with different number of terminals,
periods, requests and vehicles. These instances will be referred to according to the range of the number
of terminals: [10,19], [20,29], [30, 39], [40,49] and [50, 59]. For each of these terminal ranges, the
number of vehicles varies in the following way: for [10,19] it increases from 20 to 50 vehicles; for
[20, 29], from 100 to 150; for [30, 39], from 200 to 250; for [40, 49], from 130 to 170; and for [50, 59],
from 100 to 250. The numbers of periods are 10, 30, 36 and 36, while the number of requests are 50, 200,
300, 500 and 700 for each terminal range, respectively. The detailed results of solving these instances

with the methods are presented in the Appendix C.

6.4.1 Comparison of arc-demand formulation and node-demand formulation

In this section, we compare the performance of the general-purpose ILP solver of CPLEX in solving the
compact formulations of Sections 2.3 and 6.1. Table 6.1 shows the computational times for solving the
LP relaxation and the ILP model of the arc-demand formulation (2.1)—(2.5) and the node-demand for-
mulation (6.1)—(6.6) for the set of instances [20,29], [30,39] of Chapter 5 and the 30 large-scale instances
of Vasco and Morabito (2016b). Table 6.1 includes only the computational times of the LP relaxation
and the corresponding ILP model for both formulations of instances [20,29], [30,39] of Chapter 5. Com-
putational times for the arc-demand formulation of instances from Vasco and Morabito (2016b) are not
included as CPLEX could not mount the corresponding models. It is worth mentioning that the re-
spective ILP arc-demand models of these instances have 26,292,240 variables and 349,164 constraints.
Objective values for all instances are detailed in Appendix C. Results for instances [10,19] are omitted
as all computational times do not exceed 1 second. In the case of instances [40,49], CPLEX only solved 2
and 11 instances to optimality for the arc-demand and node-demand formulations, respectively, which
are also detailed in Appendix C.

From Table 6.1, we observe that CPLEX in solving the model of the node-demand formulation
outperformed that of the arc-demand formulation as it solved faster all instances in the sets [20,29] and
[30,39]. The solution of the LP relaxation of arc-demand model required up to 20 and 269 seconds for
the [20, 29] and [30, 39] instances, respectively, while that of the node-demand model required up to
3 and 19 seconds for the [20,29] and [30, 39] instances, respectively. In the case of the ILP model, the

difference in computational times is more pronounced. It took up to 58 and 934 seconds for the arc-
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Table 6.1: Computational times for solving instances from Vasco and Morabito (2016b) and instances
with terminals in ranges [20, 29] and [30, 39] using the arc-demand and node-demand formulations.

Arc-demand  Node-demand Arc-demand Node-demand Node-demand

Instance Instance Instance
LP ILP LP ILP LP ILP LP ILP LP ILP

20-20-100-200 349 1623 1.56 2.64 30-30-200-300 100.44 39292  7.26 9.54  53-36-130-300-p1 4.15 2881
20-20-130-200 433 1913 1.26 2.26 30-30-230-300 104.13 43542 6.84 9.18  53-36-130-300-p2 3.19 5.05
20-20-150-200 545 2210 1.73 2.97 30-30-250-300 153.42 750.87 13.72 16.14  53-36-130-300-p3 2.34 4.84
21-20-100-200 536 19.09 1.58 2.48 31-30-200-300  98.37  436.45 7.82 10.46 53-36-130-300-p4 455 29.11
21-20-130-200 5.01 21.65 1.30 2.27 31-30-230-300 135.00 716.02 10.75 13.15 53-36-130-300-p5 2.01 2.75
21-20-150-200 5.51 2334 175 2.96 31-30-250-300 139.71 685.50 12.64 14.95 53-36-130-300-p6 579  12.30
22-20-100-200 5.82 2376 1.46 2.56 32-30-200-300 132.54 497.74  7.67 9.83  53-36-130-300-p7 2.81 3.42
22-20-130-200 5.71 2556 1.88 2.89 32-30-230-300 130.23 621.84 9.94 1145 53-36-130-300-p8 4.01 14.68
22-20-150-200 7.14 3433 2.68 4.20 32-30-250-300 154.61 730.32 14.49 16.02 53-36-130-300-p9 3.51 3.85
23-20-100-200 465 1948 1.11 1.84 33-30-200-300 110.64 456.08 9.10  10.48 53-36-130-300-p10 3.75 2.64
23-20-130-200 6.44 2730 1.62 2.90 33-30-230-300 268.12 933.43 12,97 14.46 53-36-130-300-p11  2.09 3.39
23-20-150-200 8.00 31.67 2.15 3.53 33-30-250-300 101.29 417.62  7.85 9.35  53-36-130-300-p12 4.50  15.54
24-20-100-200 530 24.04 133 2.29 34-30-200-300 131.44 639.94 10.56 11.93  53-36-130-300-p13  3.37 6.87
24-20-130-200 11.08 42.33 2.56 3.51 34-30-230-300 164.23  903.13 14.56 16.45 53-36-130-300-p14 2.90 4.34
24-20-150-200 12.68 5291 2.38 3.87 34-30-250-300 * * 12.80 14.17  53-36-130-300-p15 4.04 4.48
25-20-100-200 520 23.05 135 2.53 35-30-200-300 115.12 536.07 7.17 9.46  53-36-130-300-p16  3.30 5.05
25-20-130-200 8.86 38.92 2.30 4.29 35-30-230-300 * * 10.95 1296  53-36-130-300-p17  2.20 2.24
25-20-150-200 9.41 37.72 2.08 2.97 35-30-250-300 * * 10.39  12.87  53-36-130-300-p18  3.22 5.99
26-20-100-200 549 2213 137 2.50 36-30-200-300 116.12 615.03 8.72  11.07  53-36-130-300-p19  2.00 2.23
26-20-130-200 7.66 33.17 1.59 2.93 36-30-230-300 * * 12.44 15.01 53-36-130-300-p20 2.78 5.51
26-20-150-200 19.33  67.78 2.39 4.36 36-30-250-300 * * 18.74  20.48  53-36-130-300-p21 7.36  16.13

27-20-100-200 7.05 3224 1.66 2.38 37-30-200-300 144.08 826.57 9.75  11.46  53-36-130-300-p22 556  16.86

27-20-130-200 11.71 55.14 2.34 3.48 37-30-230-300 * * 9.46  11.01  53-36-130-300-p23  4.41 13.97
27-20-150-200 9.95 4440 1.81 2.89 37-30-250-300 * * 10.59 12.85 53-36-130-300-p24 2.31 2.60
28-20-100-200 10.32  42.01 1.89 2.89 38-30-200-300 * * 7.21 9.07  53-36-130-300-p25 3.43 6.48
28-20-130-200 8.64 3632 1.44 2.65 38-30-230-300 * * 11.67 13.96  53-36-130-300-p26  2.63 3.50
28-20-150-200 11.36  57.47 241 4.07 38-30-250-300 * * 12,50  14.76  53-36-130-300-p27  2.67 2.69
29-20-100-200 7.09 3158 1.28 2.15 39-30-200-300 * * 8.57  11.01  53-36-130-300-p28  2.79 3.82
29-20-130-200 11.48 49.86 1.88 2.77 39-30-230-300 * * 13.52  16.77  53-36-130-300-p29  2.21 2.29
29-20-150-200 10.10 44.10 1.88 3.22 39-30-250-300 * * 10.49 1232 53-36-130-300-p30  2.69 3.63

demand model in both set of instances, while it took up to 5 and 21 seconds for node-demand model
across both set of instances. Note that CPLEX could not mount the models of 13 instances in the set
[30, 39]. In the case of the larger instances from Vasco and Morabito (2016b), by using the proposed
node-demand model CPLEX was able to solve the LP relaxation of all instances in less than 8 seconds
and the ILP models in less than 30 seconds. It is worth mentioning, however, that many of the 300
requests describing these instances overlap on the same subset of arcs; hence, all of the instances have
a number of demand arcs in the range 50 to 70.

Table 6.2 presents the average computational times of solving the LP (Av LP) and ILP (Av ILP)
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models, and the number of instances solved (Count) for the arc-demand and node-demand formulations.
Instances in the range [50,59] are not included as neither the arc-demand nor the node-demand models
could be mounted by CPLEX. From this table we observe that the computational times resulting from
using the node-demand formulation are better in each set of instances. Additionally, for the set [30,39],
[40,49] and the ones from Vasco and Morabito (2016b), CPLEX was able to solve a larger proportion of

instances using the proposed node-demand formulation.

Table 6.2: Average computational times and count of instances solved to optimality by CPLEX using
the arc-demand and node-demand formulations.

Arc-demand Node-demand
Instance

AvLP AvILP Count AvLP AvILP Count

[10,19] 0.12 0.31 50 0.01 0.04 50
[20,29] 7.99 33.96 30 1.80 2.97 30
[30,39] 135.26 623.23 17 10.70 12.76 30
[40,49] 321.51 1891.44 2 24.44 27.98 11
Vasco (2016) * * 0 3.44 7.82 30

6.4.2 Comparison of the BP methods based on the reformulations the arc-demand

and node-demand formulations

In this section, we analyze the performance of the BP method proposed in Section 6.3, based on the
reformulation of the node-demand model. Tables 6.3, 6.4 and 6.5 show the results of the BP method
proposed in this chapter and the BP method from Chapter 5, which is based on the reformulation of
the arc-demand model. Columns in all these tables refer to: T}, is the time taken to solve the root
node only and T'pp is the time taken by the BP. The detailed results for all sets of instances are shown
in Appendix C.

Table 6.3 shows the results of both BP methods in instances from the work of Vasco and Morabito
(2016b). We observe that even though both BP were able to process and solve the root node of all
instances, the node-demand BP method clearly outperforms the arc-demand BP method in terms of
computational times. All instances were solved in less than 45 seconds by the arc-based BP method,
while it took less than 1 second for the BP method based on the node-demand model. The six instances
with boldfaced names are the only ones within this set that have positive integrality gaps at the root
node, i.e., the optimal value obtained at the root node is strictly larger than the optimal value of the
instance. For these instances, the node-demand BP method took less than 3 seconds, while the arc-
demand BP method took more than 46 seconds.

Table 6.4 shows the results of the BP methods in instances with terminals in ranges [20, 29] and
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Table 6.3: Results of the BP methods based on the arc-demand and node-demand formulations for
instances from Vasco and Morabito (2016b).

Arc-demand  Node-demand Arc-demand  Node-demand
Instance Instance
Troot TBP Troot IBP Troot TIBP Troot Tpp
53-36-130-300-p1 33.0 46.9 0.5 0.5 53-36-130-300-p16 36.0 36.0 0.2 0.2
53-36-130-300-p2 29.1 29.1 0.2 0.2 53-36-130-300-p17 33.5 33.5 0.2 0.2

53-36-130-300-p3 31.0 409.1 0.4 1.2 53-36-130-300-p18 36.6 83.0 0.5 0.8

53-36-130-300-p4 36.8 36.8 0.3 0.3 53-36-130-300-p19 372  37.2 0.2 0.2
53-36-130-300-p5 29.1 29.1 0.2 0.2 53-36-130-300-p20 363 363 0.2 0.2
53-36-130-300-p6 33.0 33.0 0.3 0.3 53-36-130-300-p21 448 448 0.3 0.3
53-36-130-300-p7 31.5 31.5 0.3 0.3 53-36-130-300-p22 376  37.6 0.4 0.4
53-36-130-300-p8 29.2 1279 0.2 1.5 53-36-130-300-p23 344 344 0.3 0.3
53-36-130-300-p9 36.7 36.7 0.3 0.3 53-36-130-300-p24 273 273 0.2 0.2
53-36-130-300-p10 25.2 25.2 0.2 0.2 53-36-130-300-p25 33.9 339 0.3 0.3
53-36-130-300-p11 36.0 46.5 0.2 2.0  53-36-130-300-p26 30.2  30.2 0.2 0.2
53-36-130-300-p12 34.7 34.7 0.3 0.3 53-36-130-300-p27 271 271 0.2 0.2
53-36-130-300-p13 37.5 80.6 0.1 0.9 53-36-130-300-p28 379 379 0.2 0.2
53-36-130-300-p14 31.8 31.8 0.2 0.2 53-36-130-300-p29 30.2  30.2 0.2 0.2
53-36-130-300-p15 38.6 38.6 0.2 0.2 53-36-130-300-p30 33.7 337 0.2 0.2

[30, 39]. First, we compare the performance of the methods in solving the root node. In the set [20, 29],
the node-demand BP method took less than 1 second, while the arc-demand BP method took less than
4 seconds. In the set [30,39], the difference is slightly more pronounced as it still took less than 1
second for the node-demand BP method and more than 9 seconds for the arc-demand BP method for all
instances. Regarding the performance of the BP methods to solve the instances to proven optimality,
the node-demand BP method solved all instances in the set [20, 29] in less than 37 seconds, whereas
the arc-demand BP method took 73 seconds (both maximum computational times occurred in instance
29-20-130-200). In the set [30, 39], it took less than 383 seconds for the node-demand BP method and
1540 seconds for the arc-demand BP method (both maximum computational times occurred in instance
31-30-230-300). It is worth highlighting that in all instances in this table, the proposed BP method was
faster than the arc-demand BP method of Chapter 5.

Finally, Table 6.5 shows the results of the BP methods in instances with terminals in ranges [40, 49]
and [50, 59]. Instances with boldfaced times (BP) correspond to instances that were not solved to proven
optimality within the time limit by the BP method of Chapter 5. These instances are 50-36-130-700
and 50-36-250-700, with upper bounds (lower bounds) of 57051.5 (57048.0) and 111448.0 (111444.0),

respectively; and both with final relative gaps of 0.0001%. Apart from these two, all remaining instances
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Table 6.4: Results of the BP methods based on the arc-demand and node-demand formulations for
instances with terminals in ranges [20, 29] and [30, 39].

Arc-demand  Node-demand Arc-demand Node-demand

Instance Instance
TrRoot IBP Troot IBP Troot TP  Troot TBP

20-20-100-200 1.48 5.36 0.09 1.15 30-30-200-300 8.23 16.41 0.36 3.96
20-20-130-200 1.51 7.51 0.11 4.26  30-30-230-300 941 21.33 0.46 6.41
20-20-150-200 1.70 2.63 0.12 1.10  30-30-250-300  10.03 108.11 0.51 71.58
21-20-100-200 1.75 3.09 0.08 0.98  31-30-200-300 8.46 11.79 0.30 2.08
21-20-130-200 2.05 3.51 0.13 1.02  31-30-230-300 9.68 1539.31 0.41 382.25
21-20-150-200 1.88 3.56 0.12 1.06 31-30-250-300 10.34 13.13 0.49 4.01
22-20-100-200 1.96 5.71 0.10 1.36  32-30-200-300 9.11 39.08 0.35 9.51
22-20-130-200 1.99 4.04 0.11 0.94 32-30-230-300 10.83 18.04 0.40 2.51
22-20-150-200 2.12 5.47 0.12 1.40  32-30-250-300  17.02 394.39 0.57 176.37
23-20-100-200 1.90 2.99 0.09 0.75  33-30-200-300 9.86 254.35 0.35 21.98
23-20-130-200 1.94 3.02 0.09 1.17  33-30-230-300  11.13 32.99 0.40 6.21
23-20-150-200 2.20 5.03 0.12 1.93  33-30-250-300  11.59 65.80 0.41 16.85
24-20-100-200 2.37 6.28 0.08 1.32  34-30-200-300 14.44 63.03 0.45 14.86
24-20-130-200 351 13.02 0.14 5.79  34-30-230-300 12.19 56.14 0.45 11.04
24-20-150-200 3.26 9.43 0.15 2.36  34-30-250-300 12.77 21.54 0.44 4.00
25-20-100-200 2.33 5.93 0.07 1.09  35-30-200-300 11.06 170.60 0.34 34.44
25-20-130-200 2.64 4.07 0.12 0.99  35-30-230-300 13.41 45.84 0.40 6.39
25-20-150-200 291 6.05 0.14 1.80  35-30-250-300  13.90 61.65 0.44 13.50
26-20-100-200 2.64 4.16 0.08 0.73  36-30-200-300 13.64 29.92 0.39 4.82
26-20-130-200 2.76 3.93 0.10 0.70  36-30-230-300  14.57 28.51 0.44 6.79
26-20-150-200 394 2192 0.14 535 36-30-250-300 14.50 21.88 0.47 2.76
27-20-100-200 3.31 4.54 0.08 0.76  37-30-200-300  13.07 16.96 0.29 6.33
27-20-130-200 3.95 29.05 0.14 6.51 37-30-230-300 16.65 1250.38 039 273.13
27-20-150-200 3.29 6.69 0.12 1.94 37-30-250-300  16.07 48.15 0.41 7.76
28-20-100-200 323 42.24 0.08 8.75 38-30-200-300 14.08 465.01 0.34 75.33
28-20-130-200 3.32 4.63 0.10 1.19 38-30-230-300  15.72 25.18 0.44 3.72
28-20-150-200 3.73 5.49 0.12 1.15 38-30-250-300  18.31 26.90 0.48 4.05
29-20-100-200 3.69 7.48 0.08 1.56  39-30-200-300 18.71 69.13 0.39 9.22
29-20-130-200 3.60 72.53 0.12  36.02 39-30-230-300 17.87 238.48 0.43 44.26

29-20-150-200 391 6.73 0.11 0.76  39-30-250-300  17.57 60.95 0.46 9.59
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reached optimality within the time limit. In the set [40, 49], for solving the root node only, the node-
based BP method took less than 1 second while the arc-demand BP method took more than 15 seconds,
considering all instances. In the set [50, 59], it took less than 3 seconds for the node-demand BP method
while it took more than 23 seconds for the arc-demand BP method for all instances. Regarding the
integer optimal solutions, the node-demand BP method clearly outperformed the arc-demand BP. In
the set, [40, 49] it took less 70 seconds for the method based on the node-demand model and less than
394 seconds for the method based on the arc-demand model. In the set [50, 59], apart from the instances
not solved by the arc-demand BP method, the node-demand BP method took less than 778 seconds,
while the arc-demand BP method took less than 2272 seconds. Note that both of the above mentioned
instances that could not be solved by the arc-demand BP method, were indeed solved by the node-
demand BP method in 2594.82 and 761.11 seconds. As observed in the results presented in the previous
tables, the proposed BP method was also faster than the BP method of Chapter 5 in all instances in the
sets [40, 49] and [50, 59].

Table 6.6 presents the average computational times of solving the root node only (Av Troot), the
average computational time of solving the integer problem (Av Tpp) and the number of instances
solved (Count) for the arc-demand and node-demand formulations. From this table we observe that
the computational times resulting from using the node-demand formulation are better in each set of

instances. Additionally, we were able to solve two unsolved instances with respect to Chapter 5.

Table 6.6: Average computational times and count of instances solved to optimality using the BP meth-
ods based on the arc-demand and node-demand formulations.

Arc-demand Node-demand
Instance

AvTRroot AvTpp Count AvTgrost AvIgp Count

[10,14] 0.12 0.38 15 0.01 0.09 15
[15,19] 0.21 0.54 15 0.01 0.04 15
[20,29] 2.70 10.20 30 0.11 3.20 30
[30,39] 13.14 173.83 30 0.42 41.19 30
[40,49] 24.65 85.35 30 0.61 19.43 30
[50,54] 36.41 496.03 28 1.28 198.75 30
[55,59] 47.79 278.65 30 1.29 68.82 30
(Vasco and Morabito, 2016b) 33.67 53.35 30 0.27 0.43 30

In summary, from the results shown in this section regarding the addressed compact models and
BP methods, it can be observed that the proposed node-demand representation yields superior results
in computational efficiency for realistic-sized instances using both the compact model in a general-

purpose ILP solver (CPLEX) and the tailored exact solution method based on column generation. By
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using CPLEX with the node-demand formulation, we were able to solve all instances of Vasco and
Morabito (2016b), while these same instances could not be even mounted in the case of the arc-demand
formulation. Furthermore, we were able to solve a larger proportion of instances from the 200 instances
of Chapter 5 using CPLEX as well. Regarding the BP method, we obtained better results in both classes
of instances, Vasco and Morabito (2016b) and Chapter 5, as we were able to solve all of them faster with
the new formulation. In addition, we were able to solve to optimality the two instances that could not
be solved by the BP method from Chapter 5.

Figure 6.6 shows the performance profiles (Dolan and Moré, 2002) based on computational times
for each set of instances, considering the four solution approaches presented in this work, i.e., the
two compact models solved by CPLEX and the two BP methods. The value P(7) for a given method
corresponds to the fraction of instances for which that method provides solutions with a computational
time within a factor of 27 of the best computational time. When 7 = 0, the value P(7) indicates
the proportion of instances for which a given method performed the best, i.e., was the fastest; when
T — 00, the P(7) indicates the proportion of instances that were solved by a given method. In sets
[10,19], [20,29] and [30, 39], all four methods were able to solve all instances. The compact node-
demand model is the most efficient in solving the set of smallest instances, i.e., [10, 19]. For sets [20, 29]
and [30, 39], the node-based BP method is the fastest in most instances, although it takes longer than
the corresponding compact model to prove optimality for a few instances in these sets. Then, for the
sets [40, 49] and [50, 59], the node-demand BP method clearly superior to any other approach, as it is

the fastest in more than 90% of instances and is the first to prove optimality for all instances.

6.5 Final Considerations

In this chapter, we have presented a new formulation and a tailored exact solution method based on the
DW decomposition for solving the deterministic VAP. This new formulation consists in preprocessing
the space-time network of the previous chapter, so that decisions can be reduced to exclusively allo-
cating empty vehicles between requests. We have solved this new formulation using CPLEX. From the
results obtained in this section, it can be seen that the new formulation poses greater advantages for
solving the VAP. In addition, we used the DW reformulation and proposed a BP method which relies
on solving the pricing problem using shortest path algorithms and a stabilized PDCGM for solving the
master problem. Results from computational experiments show advantages in solving capabilities and
time efficiency from using this tailored exact solution method compared to the method presented in

the previous chapter.
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Figure 6.6: Performance profiles of the four approaches considered in the computational experiments
with instances grouped according to the defined sets.
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Chapter 7

Conclusions

The Vehicle Allocation Problem (VAP) bears great applicability in logistics systems, specifically on
freight road transportation operations. Given that realistic large-scale instances of the determinis-
tic formulation for this problem have been solved using only heuristic methods (Vasco and Morabito,
2016b), the aim of this work is to propose exact solution methods and models to effectively solve large-
scale instances of the VAP.

The first method proposed is Branch-and-Benders-Cut for solving the integer VAP over the space-
time network, which consists of adding Benders cuts whenever an integer solution is found along the
branch-and-cut tree of a general purpose solver via lazy constraints. The resulting subproblem for each
vehicle type from the Benders decomposition is a minimum cost flow problem which bears the inte-
grality property and allows us to use the classical Benders cuts from dual theory. We use the network
simplex algorithm for solving the primal subproblem and obtain optimal dual values, and propose a
procedure based on network flow algorithms to build the unbounded dual rays when the primal sub-
problem is infeasible. In addition, we propose two valid inequalities, which are added to the root MP,
with the aim of reducing the number of feasibility cuts. We test the proposed algorithm on randomly
generated instances and compare its runtime efficiency to the automatic Benders implementation of a
general purpose solver as well as the standalone branch-and-cut of the same solver in solving the com-
pact formulation . The results showed that the branch-and-benders-cut algorithm is not yet competitive
as all small scale instances were solved faster by the other two methods. Furthermore, we observe con-
vergence problems in the proposed method as none of the instances with 20 to 30 terminals could be
solved due to lack of memory considering the other two methods solved all these instances.

The second method proposed is a Branch-and-Price for solving the Dantzig-Wolfe reformulation of
the VAP. To this end, we use the work developed in Cruz (2017) which relies on effective procedures
for solving each problem of the resulting decomposition and propose four branching schemes to obtain

the optimal solution of the integer VAP. Computational experiments consisted of comparing runtime
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efficiency and solving capabilities of the proposed algorithm to the branch-and-cut of a general pur-
pose solver in solving the compact formulation of small and realistic large-scale randomly generated
instances as well as benchmark instances from the work of Vasco and Morabito (2016b). The results
showed the superiority of the proposed algorithm as it was able to solve all large-scale instances faster
than the general purpose solver. In addition, it was able to solve almost all instances (except two) while
the branch-and-cut solved only 50% of the instances. The main results of this chapter were published
in Cruz et al. (2020).

The third approach is a new model that relies on a novel network representation for the problem
in which nodes correspond to the requests for transportation services. Different from the ILP models
based on the space-time network, the size of the ILP model of this formulation depends exclusively on
the number of requests and number of vehicles. Additionally, we propose a branch-and-price algorithm
based on the Dantzig-Wolfe reformulation of this new model which relies on efficient procedures such
as a stabilized column generation procedure, an efficient algorithm to solve the subproblems and a hier-
archical branching scheme. Computational experiments consisted of comparing runtime efficiency and
solving capabilities of the general purpose solver in solving the compact formulations of the VAP over
the space-time network and the proposed formulation. Also, we compare the runtime efficiency and
solving capabilities of the branch-and-price algorithms in solving the Dantzig-Wolfe formulation of the
VAP over the space-time network and the Dantzig-Wolfe reformulation based on the proposed formu-
lation. We used the small and realistic large-scale randomly generated instances from Chapter 5 and
the benchmark instances from Vasco and Morabito (2016b). The results showed that the proposed for-
mulation performed better in runtime efficiency and solving capabilities when using a general purpose
solver than the existing model based on the space-time network. In addition, the proposed branch-
and-price proved to be superior in solving the realistic large-scale instances of Vasco and Morabito
(2016b) and Chapter 5 than the branch-and-price for solving the reformulation of the VAP based on the
space-time network.

In summary, the main contributions of the present work comprises algorithmic and modelling tools
for decision makers working in the freight transportation sector facing the problem of how to efficiently
reposition empty trucks to serve demand between terminals over a given planning horizon. In previous
works, such as Vasco and Morabito (2016b), heuristic methods were used to obtain feasible solutions
of realistic large-scale instances representative of continental countries like Brazil. The performance of
the solutions obtained in many of those instance were not possible to assess as heuristic methods lacked
quality certificates and the size of the resulting models made it impossible for them to be solved with
a general purpose solver. In the present work, we showed that by reformulating the problem in such a

way that the resulting model depends on different parameters, namely the node-demand formulation,
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it is possible to make use of a general purpose solver to solve realistic instances that were not solved
using the classical formulation. Furthermore, we also showed that by properly designing exact methods
based on decompositions for the classical and proposed formulations, namely the Branch-and-Price, it
is possible to optimally solve, or at least obtain quality certificates, for instances where general purpose
solvers lack the computational capability to do the same task. Based on the previous considerations,

the next section outlines future steps for research on the VAP.

7.1 Future Research

This section outlines two promising directions for future research. The first consist in developing an
exact method based on column generation for solving a variant of the VAP that includes fleet siz-
ing decisions. The second consists in developing a compact formulation for this variant based on the
node-demand graph representation as well as an exact solution method based on column generation.
Following, we present both compact formulations for the VAP with fleet sizing decisions in addition to

their respective Dantzig-Wolfe reformulation.

7.1.1 Fleet sizing VAP

Some carriers may not want to reject demand given the future financial loss and deterioration of the
customer service level it creates, hence the need to outsource, or postpone if possible, these services to
fulfill this demand. To this end, Vasco and Morabito (2016a) proposed an extension of the VAP in which
outsourcing fleet is allowed. There are two possibilities for outsourcing services. The first is the one
described in the works of Li and Lu (2014); Liu et al. (2010b), in which these services are outsourced to
other third-party logistics operator and they have control over the repositioning and allocation process.
The other operator sets a price for fulfilling these services and the only decision to be taken is to decide
whether to contract these services or not. The second way of outsourcing is to hire independent truck
owners, see Vasco (2012); Vasco and Morabito (2016a), who in many cases sets a rent price for using
the services during a specified planning horizon. In this case, the decision maker has to decide whether
or not to hire vehicles, and if so, decide on how to reposition and allocate these incoming vehicles to
attend all demand. Given that the second case poses a greater complexity in managing these systems,
we decided to propose extensions of the current work in that line. The model of the fleet sizing VAP as

outlined in the second case, writes as

max Z Z Z Z (PijuTijtv — CijvYijtv)
i€EN jEN teT veV
i#j
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- Z Z Z Citvzitv (7.1)

iEN teT veV
s.t. > (wijew + Yijro) — Y (xji(t—Tji)v + yji(t—rki)v) (7.2)
jeN jJEN,
J#,
t>Tji
= Yii(t—1)o — Zito = Mitv, Vie NNVieT,VveV,
> ijro = dije, Vi,j e NYteT, (7.3)
veV
Tijto = 0A Yijto = 0, if Aijv =0, Vi, € NVteT Yv eV, (7.4)
Tijto € Ly, Yijtw € Ly, Vi,j e NNYteT,YveV  (7.5)
Zity € Loy, Vie NVte T,)Vv e V. (7.6)

where 2;;, and mj;, represent the variables and parameters, respectively, quantifying the number of
hired and owned vehicles ati € N,t € T from vehicle type v € V, and Cj;, represent the cost of hiring
per vehicle type. If we apply the Dantzig-Wolfe decomposition to the linear relaxation of this problem

by leaving the demand constraints in the Master Problem (MP), we end up with the following MP

max Y Y D> Y piju ( > Aog(Zugijt) + > )\vr(a_:vrijt)>

iEN jEN teT veV q€Qy reR,
1#]
- Z Z Z Citv Z )\vq(quit) + Z )\vr (gvrit)
1eEN teT veV q€Qy rERy,
- Z Z Z Z Cijv Z )\vq(quijt) + Z )\vr(gm‘ijt)
i€N jeN teT veV q€Qy rER,
i#j
s.t.: Z Z )\vq(-ivqijt) + Z )\vr(-i'vrijt) = dijt7 Vi,je N,VieT (Uijt)
veV \g€Qy reR,
> Mg =1, YoeV (wy)
qu’U
Avg = 0, Vv € V,Vq € Q,
Avg > 0, Yv e V.Vr € R,

where Q¥ and R are the set of extreme points and extreme rays of the sets formed by each vehicle v;
u and w represent the vector of dual variables of the coupling and convexity constraints, respectively.
Since the MP may have an exponential number of extreme points and rays, columns are iteratively

priced out with the following subproblem
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Zg,=  max Z Z Z ((Pijo — Wijt)Tijto — CijoYijtv)

ieN jeN teT
i#j
- Z Z Citv Zito
iEN teT
s.t. Z (xijtv + yijtv) - Z (xji(t—Tji)’U + yji(t—’rki)v)
JEN JEN,
]¢Z7
t>T]'7;
— Yii(t—1)v — Zitv = Mit, Vie N,VteT,
Tijtv = 0 AN Yijio = 0, if Aijo =0, Vi,j € NVt eT,
Tijty € Lig, Yijtv € Lot Vi,j € N,VteT,
Zity € Ly, Vie N,vteT.

where, at a given iteration, a column is likely to be part of the optimal solution if Zg, — w, > 0.

7.1.2 Fleet sizing node-demand VAP

Clll

6212

Ny

6211

C312 .-~

i=3 o

C311

Figure 7.1: Fleet sizing costs.

Another approach for dealing with fleet sizing in empty vehicle repositioning is to extend the node-
demand model of Chapter 6 as follows. Given that paths are between requests and artificial depots, we
now have to redefine the costs of fleet sizing at a given terminal to attend a given demand. Figure 7.1
shows a situation in which we have one demand arc (d232) and we have to choose hiring between two

vehicle types to attend this demand. All possible terminal-period pairs for hiring vehicles are indicated
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by small incoming arrows. If there is no limit on the quantity we can hire at a given point for any
vehicle type v, it is safe to say that, at an optimal solution, the demand arc is going to be serviced by
hired vehicles coming from the same origin whose combined costs of hiring and traveling are the lowest
among other terminal-period pairs. For instance, the best option for hiring type-1 vehicles is at (3, 1)
and then route them until (2, 2); and the best option for hiring type-2 vehicles is in the same origin of

the demand arc. Given this, we can define the cost of hiring vehicles of type v to attend request r as

Cry = I(IllI)l {City + ShortestPath((7,t), (ir,tr))} (7.7)
it

and the whole model writes as

max Z Z Z PrsyTrsy — Z Z Crozry (7.8)

veV re RU{0} se SU{|R|+1} veV re RU{0}
s.t. Z Trsy = Z Tsry + Zry, VFrE RNveEV (7.9)
s€ERU|R|+1 s€RUO
s>r s<r
Y mes=my, WEV (7.10)
s€RU{|R|+1}
> TRt > My, YWEV (7.11)
reRU0
> > @ =D,, VreR, (7.12)
veV seR
s>r
Zrp =0 if Airjrv =0, VreRYweV (7.13)
oy =0 if A;;,=0, Vre RU{|R|+1},YveV (7.14)
Tpgp = 0 if Airjrv =0, VreRU {O},V’U eV (7.15)
Trsy € Ly, Yre RU{0},s € RU{|R|+1},Yv eV (7.16)
Zry €Ly, VreRNveV (7.17)

where 2, denotes the number of vehicles hired from type v to attend request r. Constraints (7.9)
enforce flow conservation in the request nodes. Constraints (7.10) and 7.11 ensure m,, vehicles of type
v depart from and arrive at depot {0} and | R| + 1, respectively. Constraints (7.12) ensure all demand at
nodes r is covered. Constraints (7.13)-(7.15) restrict ingoing and outgoing flow from nodes that can not
be visited by certain vehicle types. Constraints (7.16) and constraints (7.17) are the variables domain.
By applying the Dantzig Wolfe decomposition to the linear relaxation of model (7.8)-(7.15) and

leaving constraints (7.12) in the Master Problem, we obtain the following MP
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max > ) > P (Z AoZaw + )\lvflv> (7.18)

veV re RU{0} se SU{|R|+1} q€Qy leR,

st YY) (Z Aqulqo + Almv) =D, VreR (ur) (7.19)

vEV sER \qEQy leRy
s>T
S A =1, Yo eV (wy) (7.20)
q€Qy
Agw > 0, Yo e V,Vq € Q, (7.21)

where )V and R" are the set of extreme points and extreme rays of the sets formed by each vehicle v;
u and w represent the vector of dual variables of the coupling and convexity constraints, respectively.

Colums are priced out by solving the following subproblem

Zsp('u) = max Z Z (Prsv — Up)Trsy — Z Crvzry

reRU{0} se SU{|R|+1} reRU{0}
s.t. Z Trsy = Z Tsrp + Zry, VFE RNveEV
sERU|R|+1 sERUO
s>r s<r
Z Tosy = My, VVEV
s€eRU{|R|+1}
> TR = M, YO EV
re RUO
Z Z Trsy = Dy, Vr € R,
veV seR
s>r

2rp =0 if A j,=0, VreRYveV

oo =0 if A;j,=0, Vre RU{|R|+1},YveV
Trow =0 if A j,=0, Vre RU{0},YVveV
Trsy € Ly, Vre RU{0},s € RU{|R|+1},YveV

Zry €2y, Vre RNveV

and evaluating if their reduced cost Zg, — w, is minor than 0.

In this chapter, we have presented the main scientific contributions of the present work which
encompasses a new formulation and exact algorithms based on decomposition techniques in order to
solve deterministic formulations of the VAP. In addition, we have introduced a variant of the VAP which

models situations in which all demand needs to be serviced within the planning horizon by means of
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hiring an independent fleet. Future research based on this work contemplates devising exact algorithms

for this new variant and more realistic variants of the VAP.
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Appendix A

Detailed graphics of the longest path
algorithm for the illustrative example

of Section 5.3.2

In this section we show graphically every iteration of the longest path algorithm for the illustrative
example of Section 5.3.2. Table A.1 contains the travelling costs for empty and loaded arcs for a given
type of vehicle. The initial (distance or cost) label of all nodes are —oo while the label of the starting
node 1 is 0. The initial precedence label of all nodes is empty. The bold circles represent the incumbent
node at a given iteration (Line 4 of Algorithm 3, while the shaded circles represent the forward adjacent
nodes whose labels are being updated in the current bold circle’s iteration (Line 8 of Algorithm 3. The
bold (either solid or dash) arrows indicate that labels of the adjacent nodes were updated through the
distance of the current node. Hence, if at a given iteration there is no bold (solid or dash) arrow, it
means the label of the adjacent nodes are not updated (since the current label is the maximum distance

according to the optimality conditions in Line 7 of Algorithm 3).

Arc 1-3 1-6 2-4 2-5 3-5 3-8 4-6 4-7 5-7 5-8 6-7 68 7-9 89

Empty cost 0,00 -2,50 0,00 -1,50 0,00 -1,00 0,00 -2,20 -2,00 -1,00 0,00 0,00 0,00 0,00

Loaded cost -inf 2,00 -inf -2,50 ~-inf -2,00 ~-inf 150 2,00 250 -inf -inf -inf -inf

Table A.1: Arcs’ costs for the ilustrative example
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d[1]=0

d[2]=-inf

d[3]=-inf

d[4]=-inf

d[5]=-inf

d[6]=-inf

d[7)=-inf

d[8]=-inf

d[9]=-inf

p[1]=null

pl2]=null

p[3]=null

pl4]=null

p[5]=null

p[6]=null

p[7]=null

p[8]=null

p[9]=null

Figure A.1: Initialization of Maximum Path

d[1]=0

d[2]=-inf

d[3]=0

d[4]=-inf

d[5]=-inf

di6]=2

d[7]=-inf

d[8]=-inf

d[9]=-inf

p[1]=null

p[2]=null

p[3]=1

p[4]=null

p[5]=null

pl6]=1

p[7]=null

p[8]=null

p[9]=null

Figure A.2: Updating labels adjacent to node 1
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d[1]=0

d[2]=-inf

d[3]=0

d[4]=-inf

d[5]=-inf

d6]=2

d[7)=-inf

d[8]=-inf

d[9]=-inf

p[1]=null

p[2]=null

p[3]=1

p[4]=null

p[5]=null

p[6]=1

p[7]=null

p[8]=null

p[9]=null

Figure A.3: Updating labels adjacent to node 2

d[1]=0

d[2]=-inf

d[3]=0

d[4]=-inf

d[5]=0

d[6]=2

d[7]=-inf

d[8]=-1

d[9]=-inf

p[1]=null

p[2]=null

p[3]=1

p[4]=null

p[5]=3

p[6]=1

p[7]=null

p[8]=3

p[9]=null

Figure A.4: Updating labels adjacent to node 3
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d[1]=0

d[2]=-inf

d[3]=0

d[4]=-inf

d[5]=0

di6]=2

d[7]=-inf

d[8]=-1

d[9]=-inf

p[1]=null

pl2]=null

p[3]=1

p[4]=null

p[5]=3

p[6]=1

p[7]=null

p[8]=3

p[9]=null

Figure A.5: Updating labels adjacent to node 4

d[1]=0

d[2]=-inf

d[3]=0

d[4]=-inf

d[5]=0

d[6]=2

di7]=2

d[8]=2.5

d[9]=-inf

p[1]=null

p[2]=null

p[3]=1

p[4]=null

p[5]=3

p[6]=1

p[7]=5

p[8]=5

p[9]=null

Figure A.6: Updating labels adjacent to node 5
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d[1]=0

d[2]=-inf

d[3]=0

d[4]=-inf

d[5]=0

di6]=2

di7]=2

d[8]=2.5

d[9]=-inf

p[1]=null

p[2]=null

p[3]=1

p[4]=null

p[5]=3

p[6]=1

pl7]1=5

p[8]=5

p[9]=null

Figure A.7: Updating labels adjacent to node 6

d[1]=0

d[2]=-inf

d[3]=0

d[4]=-inf

d[5]=0

d[6]=2

di7]=2

d[8]=2.5

d[9]=2

p[1]=null

p[2]=null

p[3]=1

p[4]=null

p[5]=3

p[6]=1

p[7]=5

p[8]=5

p[9]=7

Figure A.8: Updating labels adjacent to node 7
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d[1]=0 | d[2]=-inf | d[3]=0 | d[4]=-inf | d[5]=0 | d[6]=2 | d[7]=2 | d[8]=2.5 | d[9]=2.5
p[i]=null | p[2]=null | p[3]=1 | p[4]=null | p[5]=3 p[6]=1 pl7]=5 pl[8]=5 p[9]=8

Figure A.9: Updating labels adjacent to node 8

d[1]=0 | d[2]=-inf | d[3]=0 | d[4]=-inf | d[5]=0 | d[6]=2 | d[7]=2 | d[8]=2.5 | d[9]=2.5
p(i]=null | p[2]=null | p[3]=1 | p[4l=null | p[5]=3 | pl6]=1 | pl7]=5 | pl8]=5 | pI9]=8

Figure A.10: Updating labels adjacent to node 9 (no forward adjacent nodes)
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p[1]=null

p[2]=null

p[3]=1

p[4]=null

p[5]=3

pl6]=1

p[7]=5

p[8]=5

p[9]=8

Figure A.11: Longest path between node 1 and 9
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Appendix B

Results of the Branch-and-Price for the

network flow formulation of the VAP

This appendix shows the results of solving 200 randomly generated instances with integrality gap in
order to test the proposed Branch-and-Price method. A sign “*” indicates that CPLEX could not solve
or even mount the model due to lack of computer memory. A time limit of 3600 seconds was imposed
on each run. The following tables contain information that allow us to draw conclusions on the perfor-

mance of our proposed method compared to CPLEX. Columns refer to:

« Instance is the name of the instance (number of terminals - number of periods - number of vehi-

cles - number of requests.)
« LP is the optimal value of the LP relaxation of model (2.1)-(2.5).
« CPU LP (sec) is the time taken by CPLEX to solve each LP instance to optimality.
o IP is the optimal ILP value of model (2.1)-(2.5).
« CPUIP (sec) is the time taken by CPLEX to solve each ILP instance to optimality.
« CPU PD (sec) is the time taken by the PDCGM to solve the MP (5.1)—(5.4).

« CPU BP-« is the time taken by the B&P to solve each ILP instance to optimality with the branch-
ing scheme o € {A,B,C,D}.

« NT-« is total number of nodes created with the branching scheme a € {AB,C,D}.
« N.E-« is total number of nodes explored with the branching scheme o € {A,B,C,D}.

« UB BP-« is the upperbound reached with the branching scheme o € {A,B,C,D}.
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« LB BP-« is the lowerbound reached with the branching scheme o € {A,B,C,D}.

+ GAP-« is the relative gap between UB BP-o and LB BP-a when using the branching scheme
a € {ABCD}.
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Table B.2: Results of the small-scale instances (number of terminals in the range [10,14]) for testing the B&P with schemes C and D

Instance Lp CPULP IP CPUIP CPUPD CPUBP-C NT-C NE-C UBBP-C LBBP-C GAP-C CPUBP-D NT-D NE-D UBBP-D LBBP-D GAP-D
10-10-20-20 1940 0.13 1937 0.52 0.09 0.18 3 3 1937 1937 0.00% 0.18 3 3 1937 1937 0.00%
10-10-20-25 1874 0.06 1857 0.12 0.06 0.15 3 3 1857 1857 0.00% 0.15 3 3 1857 1857 0.00%
10-10-20-30 507 0.05 501 0.10 0.06 0.59 9 9 501 501 0.00% 0.44 9 9 501 501 0.00%
10-10-20-35  2474.5 0.05 2464 0.16 0.07 0.19 3 3 2464 2464 0.00% 0.18 3 3 2464 2464 0.00%
10-10-20-50 422.5 0.07 421 0.15 0.07 0.31 3 3 421 421 0.00% 0.15 3 3 421 421 0.00%
11-10-20-20 1601 0.06 1584 0.50 0.09 0.18 3 3 1584 1584 0.00% 0.19 3 3 1584 1584 0.00%
11-10-20-25 661.5 0.07 659 0.13 0.09 0.22 3 3 659 659 0.00% 0.18 3 3 659 659 0.00%
11-10-20-30  1606.5 0.06 1596 0.16 0.06 0.18 3 3 1596 1596 0.00% 0.18 3 3 1596 1596 0.00%
11-10-20-35  2240.5 0.06 2238 0.29 0.07 0.22 3 3 2238 2238 0.00% 0.20 3 3 2238 2238 0.00%
11-10-20-50  2704.5 0.08 2701 0.26 0.37 0.46 3 3 2701 2701 0.00% 0.23 3 3 2701 2701 0.00%
12-10-20-20 907 0.08 904 0.59 0.16 1.32 9 9 904 904 0.00% 0.76 9 9 904 904 0.00%
12-10-20-25 396.5 0.08 396 0.21 0.09 0.24 3 3 396 396 0.00% 0.25 3 3 396 396 0.00%
12-10-20-30 337 0.08 335 0.17 0.11 1.04 7 7 335 335 0.00% 0.65 7 7 335 335 0.00%
12-10-20-35 677.5 0.08 669 0.18 0.13 3.30 23 23 669 669 0.00% 1.79 23 23 669 669 0.00%
12-10-20-50 811.5 0.08 811 0.16 0.10 0.26 3 3 811 811 0.00% 0.25 3 3 811 811 0.00%
13-10-20-20  1259.5 0.10 1259 0.18 0.12 0.27 3 3 1259 1259 0.00% 0.27 3 3 1259 1259 0.00%
13-10-20-25 671.5 0.09 669 0.26 0.12 0.29 3 3 669 669 0.00% 0.27 3 3 669 669 0.00%
13-10-20-30 581 0.09 580 0.17 0.18 0.35 3 3 580 580 0.00% 0.29 3 3 580 580 0.00%
13-10-20-35 267.5 0.09 266 0.16 0.10 0.89 9 9 266 266 0.00% 0.80 9 9 266 266 0.00%
13-10-20-50 680 0.09 678 0.33 0.11 0.45 5 5 678 678 0.00% 0.42 5 5 678 678 0.00%
14-10-20-20 636.5 0.11 633 0.21 0.16 1.21 5 5 633 633 0.00% 0.56 5 5 633 633 0.00%
14-10-20-25 1295 0.12 1292 0.36 0.11 0.39 3 3 1292 1292 0.00% 0.35 3 3 1292 1292 0.00%
14-10-20-30 579 0.11 574 0.31 0.13 0.31 3 3 574 574 0.00% 0.30 3 3 574 574 0.00%
14-10-20-35  2058.5 0.11 2057 0.21 0.13 0.29 3 3 2057 2057 0.00% 0.29 3 3 2057 2057 0.00%
14-10-20-50 356 0.11 355 0.65 0.13 0.31 3 3 355 355 0.00% 0.31 3 3 355 355 0.00%
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Table B.4: Results of the small-scale instances (number of terminals in the range [15,19]) for testing the B&P with schemes C and D

Instance Lp CPULP IP CPUIP CPUPD CPUBP-C NT-C NE-C UBBP-C LBBP-C GAP-C CPUBP-D NT-D NE-D UBBP-D LBBP-D GAP-D
15-10-20-20 564 0.13 560 0.26 0.14 0.64 3 3 560 560 0.00% 0.37 3 3 560 560 0.00%
15-10-20-25  1202.5 0.13 1202 0.27 0.32 0.68 5 5 1202 1202 0.00% 0.57 5 5 1202 1202 0.00%
15-10-20-30  1454.5 0.12 1451 0.26 0.11 0.33 3 3 1451 1451 0.00% 0.32 3 3 1451 1451 0.00%
15-10-20-35  1679.5 0.12 1679 0.23 0.15 0.33 3 3 1679 1679 0.00% 0.30 3 3 1679 1679 0.00%
15-10-20-50 624 0.13 623 0.36 0.15 0.44 3 3 623 623 0.00% 0.41 3 3 623 623 0.00%
16-10-20-20 738 0.14 736 0.46 0.32 0.68 3 3 736 736 0.00% 0.52 3 3 736 736 0.00%
16-10-20-25  1481.5 0.15 1479 0.29 0.16 0.40 3 3 1479 1479 0.00% 0.38 3 3 1479 1479 0.00%
16-10-20-30 1800 0.14 1788 0.28 0.16 0.44 3 3 1788 1788 0.00% 0.37 3 3 1788 1788 0.00%
16-10-20-35  2040.5 0.14 2037 0.27 0.14 0.44 3 3 2037 2037 0.00% 0.42 3 3 2037 2037 0.00%
16-10-20-50  1564.5 0.15 1562 0.33 0.16 0.47 3 3 1562 1562 0.00% 0.40 3 3 1562 1562 0.00%
17-10-20-20 632.5 0.16 632 0.30 0.24 0.49 3 3 632 632 0.00% 0.47 3 3 632 632 0.00%
17-10-20-25 1613.5 0.16 1611 0.31 0.18 0.98 7 7 1611 1611 0.00% 0.87 7 7 1611 1611 0.00%
17-10-20-30 424.5 0.16 424 0.28 0.18 0.83 3 3 424 424 0.00% 0.48 3 3 424 424 0.00%
17-10-20-35 2349 0.17 2347 0.32 0.24 0.56 3 3 -2346.99 2346.99 0.00% 0.43 3 3 2346.99 2346.99 0.00%
17-10-20-50 2210 0.16 2202 0.37 0.17 0.67 5 5 2202 2202 0.00% 0.63 5 5 2202 2202 0.00%
18-10-20-20  1147.5 0.17 1143 0.29 0.31 1.16 5 5 1143 1143 0.00% 0.91 5 5 1143 1143 0.00%
18-10-20-25 294.5 0.17 291 0.41 0.23 0.65 3 3 291 291 0.00% 0.59 3 3 291 291 0.00%
18-10-20-30 1836 0.17 1835 0.29 0.25 0.96 5 5 1835 1835 0.00% 0.81 5 5 1835 1835 0.00%
18-10-20-35 992 0.18 991 0.78 0.18 0.46 3 3 991 991 0.00% 0.45 3 3 991 991 0.00%
18-10-20-50 550.5 0.20 550 0.35 0.22 0.59 3 3 550 550 0.00% 0.51 3 3 550 550 0.00%
19-10-20-20 906.5 0.19 905 0.33 0.25 0.58 3 3 905 905 0.00% 0.50 3 3 905 905 0.00%
19-10-20-25 535.5 0.20 535 0.36 0.28 0.67 3 3 535 535 0.00% 0.62 3 3 535 535 0.00%
19-10-20-30  1405.5 0.22 1402 0.45 0.18 0.91 7 5 1402 1402 0.00% 0.83 7 5 1402 1402 0.00%
19-10-20-35 692.5 0.20 691 0.38 0.22 0.52 3 3 691 691 0.00% 0.49 3 3 691 691 0.00%
19-10-20-50 2599 0.21 2591 0.61 0.23 1.21 5 5 2591 2591 0.00% 0.86 5 5 2591 2591 0.00%
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Table B.6: Results of the small-scale instances (number of terminals in the range [20,29]) for testing the B&P with schemes C and D

Instance LP CPULP 1P CPUIP CPUPD CPUBP-C NT-C NE-C UBBP-C LBBP-C GAP-C CPUBP-D NTI-D N.E-D UBBP-D LBBP-D GAP-D
20-20-100-200 14473 3.49 14471 16.23 1.48 6.63 7 7 14471 14471 0.00% 5.36 7 7 14471 14471 0.00%
20-20-130-200 31331 433 31327 19.13 151 9.42 9 9 31327 31327 0.00% 7.51 9 9 31327 31327 0.00%
20-20-150-200  34622.5 545 34618 22.10 1.70 3.01 3 3 34618 34618 0.00% 2.63 3 3 34618 34618 0.00%
21-20-100-200 2585.5 5.36 2585 19.09 1.75 3.76 3 3 2585 2585 0.00% 3.09 3 3 2585 2585 0.00%
21-20-130-200 4056.5 5.01 4056 21.65 2.05 4.02 3 3 4056 4056 0.00% 3.51 3 3 4056 4056 0.00%
21-20-150-200  27333.5 5.51 27322 23.34 1.88 4.18 3 3 27322 27322 0.00% 3.56 3 3 27322 27322 0.00%
22-20-100-200 4902.5 5.82 4902 23.76 1.96 6.90 5 5 4902 4902 0.00% 5.71 5 5 4902 4902 0.00%
22-20-130-200 12304 5.71 12301 25.56 1.99 4.72 3 3 12301 12301 0.00% 4.04 3 3 12301 12301 0.00%
22-20-150-200  10972.5 7.14 10971 34.33 212 7.16 5 5 10971 10971 0.00% 5.47 5 5 10971 10971 0.00%
23-20-100-200  14133.5 4.65 14132 19.48 1.90 3.75 3 3 14132 14132 0.00% 2.99 3 3 14132 14132 0.00%
23-20-130-200  21749.5 6.44 21745 27.30 1.94 3.92 3 3 21745 21745 0.00% 3.02 3 3 21745 21745 0.00%
23-20-150-200 23366 8.00 23358 31.67 2.20 5.87 5 5 23358 23358 0.00% 5.03 5 5 23358 23358 0.00%
24-20-100-200 10157 5.30 10155 24.04 2.37 8.00 5 5 10155 10155 0.00% 6.28 5 5 10155 10155 0.00%
24-20-130-200 3486.5 11.08 3486 42.33 3.51 17.85 9 9 3486 3486 0.00% 13.02 9 9 3486 3486 0.00%
24-20-150-200 18158 12.68 18156 5291 3.26 12.45 7 7 18156 18156 0.00% 9.43 7 7 18156 18156 0.00%
25-20-100-200 9336.5 5.20 9335 23.05 2.33 7.10 5 5 9335 9335 0.00% 5.93 5 5 9335 9335 0.00%
25-20-130-200 33906 8.86 33905 38.92 2.64 4.65 3 3 33905 33905 0.00% 4.07 3 3 33905 33905 0.00%
25-20-150-200 32517 9.41 32508 37.72 291 6.87 5 5 32508 32508 0.00% 6.05 5 5 32508 32508 0.00%
26-20-100-200 9816 5.49 9815 22.13 2.64 4.37 3 3 9815 9815 0.00% 4.16 3 3 9815 9815 0.00%
26-20-130-200 16895 7.66 16892 33.17 2.76 4.20 3 3 16892 16892 0.00% 3.93 3 3 16892 16892 0.00%
26-20-150-200 3731.5 19.33 3731 67.78 3.94 24.24 11 11 3731 3731 0.00% 21.92 11 11 3731 3731 0.00%
27-20-100-200  21095.5 7.05 21090 32.24 3.31 4.93 3 3 21090 21090 0.00% 4.54 3 3 21090 21090 0.00%
27-20-130-200 8457.5 11.71 8456 55.14 3.95 33.61 19 19 8456 8456 0.00% 29.05 19 19 8456 8456 0.00%
27-20-150-200 26709 9.95 26704 44.40 3.29 7.41 5 5 26704 26704 0.00% 6.69 5 5 26704 26704 0.00%
28-20-100-200 3641.5 10.32 3641 42.01 3.23 47.20 29 29 3641 3641 0.00% 42.24 29 29 3641 3641 0.00%
28-20-130-200 25359 8.64 25355 36.32 3.32 5.14 3 3 25355 25355 0.00% 4.63 3 3 25355 25355 0.00%
28-20-150-200  11225.5 11.36 11222 57.47 3.73 6.16 3 3 11222 11222 0.00% 5.49 3 3 11222 11222 0.00%
29-20-100-200 5995 7.09 5994 31.58 3.69 8.81 5 5 5994 5994 0.00% 7.48 5 5 5994 5994 0.00%
29-20-130-200 8979.5 11.48 8978 49.86 3.60 80.44 49 49 8978 8978 0.00% 72.53 49 49 8978 8978 0.00%
29-20-150-200 7978.5 10.10 7977 44.10 3.91 7.37 3 3 7977 7977 0.00% 6.73 3 3 7977 7977 0.00%
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Table B.8: Results of the large-scale instances (number of terminals in the range [30,39]) for testing the B&P with schemes C and D

Instance LP CPULP 1P CPUIP CPUPD CPUBP-C NT-C NE-C UBBP-C LBBP-C GAP-C CPUBP-D NTI-D N.E-D UBBP-D LBBP-D GAP-D
30-30-200-300  14513.5 100.44 14512 392.92 8.23 18.33 3 3 14512 14512 0.00% 16.41 3 3 14512 14512 0.00%
30-30-230-300  47060.5 104.13 47054 435.42 9.41 24.20 5 5 47054 47054 0.00% 21.33 5 5 47054 47054 0.00%
30-30-250-300 69007 153.42 68998 750.87 10.03 122.18 29 29 68998 68998 0.00% 108.11 29 29 68998 68998 0.00%
31-30-200-300  51227.5 98.37 51221 436.45 8.46 12.80 3 3 51221 51221 0.00% 11.79 3 3 51221 51221 0.00%
31-30-230-300  79462.5 135.00 79441 716.02 9.68 1732.76 431 431 79441 79441 0.00% 1539.31 431 431 79441 79441 0.00%
31-30-250-300 79072 139.71 79063 685.50 10.34 14.41 3 3 79063 79063 0.00% 13.13 3 3 79063 79063 0.00%
32-30-200-300 46440 132.54 46435 497.74 9.11 43.18 11 11 46435 46435 0.00% 39.08 11 11 46435 46435 0.00%
32-30-230-300 23500 130.23 23497 621.84 10.83 19.39 3 3 23497 23497 0.00% 18.04 3 3 23497 23497 0.00%
32-30-250-300 6280 154.61 6279 730.32 17.02 438.41 65 65 6279 6279 0.00% 394.39 65 65 6279 6279 0.00%
33-30-200-300 55926 110.64 55911 456.08 9.86 285.58 63 63 55911 55911 0.00% 254.35 63 63 55911 55911 0.00%
33-30-230-300  48200.5 268.12  481%4 933.43 11.13 36.99 7 7 48194 48194 0.00% 32.99 7 7 48194 48194 0.00%
33-30-250-300 33573 101.29 33569 417.62 11.59 73.21 15 15 33569 33569 0.00% 65.80 15 15 33569 33569 0.00%
34-30-200-300 4623.5 131.44 4623 639.94 14.44 69.21 11 11 4623 4623 0.00% 63.03 11 11 4623 4623 0.00%
34-30-230-300  62736.5 164.23 62724 903.13 12.19 62.82 11 11 62724 62724 0.00% 56.14 11 11 62724 62724 0.00%
34-30-250-300 * * * * 12.77 24.03 3 3 16985 16985 0.00% 21.54 3 3 16985 16985 0.00%
35-30-200-300 29115 115.12 29110 536.07 11.06 188.37 39 39 29110 29110 0.00% 170.60 39 39 29110 29110 0.00%
35-30-230-300 * * * * 13.41 50.64 7 7 76015 76015 0.00% 45.84 7 7 76015 76015 0.00%
35-30-250-300 * * * * 13.90 67.28 11 11 47613 47613 0.00% 61.65 11 11 47613 47613 0.00%
36-30-200-300  40294.5 116.12 40288 615.03 13.64 32.82 5 5 40288 40288 0.00% 29.92 5 5 40288 40288 0.00%
36-30-230-300 * * * * 14.57 31.18 5 5 52902 52902 0.00% 28.51 5 5 52902 52902 0.00%
36-30-250-300 * * * * 14.50 24.01 3 3 62932 62932 0.00% 21.88 3 3 62932 62932 0.00%
37-30-200-300 57430 144.08 57422 826.57 13.07 18.33 3 3 57422 57422 0.00% 16.96 3 3 57422 57422 0.00%
37-30-230-300 * * * * 16.65 1375.93 197 197 7769 7769 0.00% 1250.38 197 197 7769 7769 0.00%
37-30-250-300 * * * * 16.07 52.34 7 7 41580 41580 0.00% 48.15 7 7 41580 41580 0.00%
38-30-200-300 * * * * 14.08 513.11 85 85 28805 28805 0.00% 465.01 85 85 28805 28805 0.00%
38-30-230-300 * * * * 15.72 27.76 3 3 73698 73698 0.00% 25.18 3 3 73698 73698 0.00%
38-30-250-300 * * * * 18.31 29.58 3 3 24709 24709 0.00% 26.90 3 3 24709 24709 0.00%
39-30-200-300 * * * * 18.71 74.92 7 7 4989 4989 0.00% 69.13 7 7 4989 4989 0.00%
39-30-230-300 * * * * 17.87 261.91 33 33 67958 67958 0.00% 238.48 33 33 67958 67958 0.00%
39-30-250-300 * * * * 17.57 67.42 9 9 63894 63894 0.00% 60.95 9 9 63894 63894 0.00%
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Table B.10: Results of the large-scale instances (number of terminals in the range [40,49]) for testing the B&P with schemes C and D

Instance LP CPULP 1P CPUIP CPUPD CPUBP-C NT-C NE-C UBBP-C LBBP-C GAP-C CPUBP-D NT-D N.E-D UBBP-D LBBP-D GAP-D
40-36-130-500 48491 233.74 48485  1354.03 15.23 51.52 7 7 48485 48485 0.00% 47.90 7 7 48485 48485 0.00%
40-36-150-500 * * * * 17.29 35.14 5 5 28510 28510 0.00% 32.65 5 5 28510 28510 0.00%
40-36-170-500 * * * * 18.22 56.59 7 7 76106 76106 0.00% 52.27 7 7 76106 76106 0.00%
41-36-130-500 4350 409.28 4349 2428.86 18.11 123.29 13 13 4349 4349 0.00% 113.69 13 13 4349 4349 0.00%
41-36-150-500 * * * * 19.53 25.77 3 3 63691 63691 0.00% 24.16 3 3 63691 63691 0.00%
41-36-170-500 * * * * 20.81 26.75 3 3 54550 54550 0.00% 25.21 3 3 54550 54550 0.00%
42-36-130-500 * * * * 19.18 43.52 5 5 15598 15598 0.00% 42.48 5 5 15598 15598 0.00%
42-36-150-500 * * * * 22.40 27.73 3 3 8178 8178 0.00% 26.89 3 3 8178 8178 0.00%
42-36-170-500 * * * * 21.62 86.85 11 11 36376 36376 0.00% 80.60 11 11 36376 36376 0.00%
43-36-130-500 * * * * 20.24 26.83 3 3 35988 35988 0.00% 25.25 3 3 35988 35988 0.00%
43-36-150-500 * * * * 21.36 152.43 17 17 53269 53269 0.00% 138.62 17 17 53269 53269 0.00%
43-36-170-500 * * * * 21.77 70.46 7 7 37484 37484 0.00% 65.34 7 7 37484 37484 0.00%
44-36-130-500 * * * * 20.28 87.39 11 11 55748 55748 0.00% 79.92 11 11 55748 55748 0.00%
44-36-150-500 * * * * 22.88 43.50 3 3 70064 70064 0.00% 39.81 3 3 70064 70064 0.00%
44-36-170-500 * * * * 25.29 141.57 11 11 37247 37247 0.00% 128.38 11 11 37247 37247 0.00%
45-36-130-500 * * * * 21.41 40.88 5 5 35017 35017 0.00% 38.40 5 5 35017 35017 0.00%
45-36-150-500 * * * * 22.82 73.93 7 7 35095 35095 0.00% 69.02 7 7 35095 35095 0.00%
45-36-170-500 * * * * 25.23 38.66 3 3 67070 67070 0.00% 35.68 3 3 67070 67070 0.00%
46-36-130-500 * * * * 26.07 425.27 35 35 4479 4479 0.00% 393.58 35 35 4479 4479 0.00%
46-36-150-500 * * * * 24.76 251.81 27 27 25481 25481 0.00% 232.55 27 27 25481 25481 0.00%
46-36-170-500 * * * * 28.27 40.57 3 3 45355 45355 0.00% 37.83 3 3 45355 45355 0.00%
47-36-130-500 * * * * 34.85 74.42 5 5 4825 4825 0.00% 69.29 5 5 4825 4825 0.00%
47-36-150-500 * * * * 26.57 81.61 7 7 54139 54139 0.00% 76.43 7 7 54139 54139 0.00%
47-36-170-500 * * * * 30.42 84.69 7 7 46154 46154 0.00% 78.83 7 7 46154 46154 0.00%
48-36-130-500 * * * * 28.28 98.27 9 9 26069 26069 0.00% 91.27 9 9 26069 26069 0.00%
48-36-150-500 * * * * 33.14 127.07 9 9 4848 4848 0.00% 118.50 9 9 4848 4848 0.00%
48-36-170-500 * * * * 29.44 178.74 15 15 68476 68476 0.00% 163.78 15 15 68476 68476 0.00%
49-36-130-500 * * * * 28.81 40.23 3 3 38305 38305 0.00% 37.78 3 3 38305 38305 0.00%
49-36-150-500 * * * * 40.63 130.17 9 9 4944 4944 0.00% 121.98 9 9 4944 4944 0.00%
49-36-170-500 * * * * 34.51 76.62 5 5 4676 4676 0.00% 72.37 5 5 4676 4676 0.00%
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Table B.12: Results of the large-scale instances (number of terminals in the range [50,54]) for testing the B&P with schemes C and D

Instance LP CPULP IP CPUIP CPUPD CPUBP-C NT-C NE-C UBBP-C LBBP-C GAP-C CPUBP-D NT-D NE-D UBBP-D LBBP-D GAP-D
50-36-100-700 * * * * 23.56 36.61 3 3 50961 50961 0.00% 34.71 3 3 50961 50961 0.00%
50-36-130-700 * * * * 29.24 3606.93 495 306 -57052.5 57048 0.01% 3601.84 525 328 57052.5 57048 0.01%
50-36-150-700 * * * * 31.62 68.46 5 5 22656 22656 0.00% 68.35 5 5 22656 22656 0.00%
50-36-180-700 * * * * 34.10 630.27 57 57 62122 62122 0.00% 627.10 57 57 62122 62122 0.00%
50-36-200-700 * * * * 34.85 38.00 3 3 28843 28843 0.00% 37.93 3 3 28843 28843 0.00%
50-36-250-700 * * * * 40.64 3600.66 329 213 111450 111444 0.01% 3611.77 329 216 111450 111444 0.01%
51-36-100-700 * * * * 24.03 99.38 11 11 17676 17676 0.00% 99.31 11 11 17676 17676 0.00%
51-36-130-700 * * * * 30.62 42.16 3 3 62845 62845 0.00% 42.11 3 3 62845 62845 0.00%
51-36-150-700 * * * * 30.51 171.83 17 17 61608 61608 0.00% 171.96 17 17 61608 61608 0.00%
51-36-180-700 * * * * 37.18 1802.81 153 153 45116 45116 0.00% 1798.33 153 153 45116 45116 0.00%
51-36-200-700 * * * * 38.92 54.47 3 3 69124 69124 0.00% 55.16 3 3 69124 69124 0.00%
51-36-250-700 * * * * 49.22 767.03 43 43 29392 29392 0.00% 772.57 43 43 29392 29392 0.00%
52-36-100-700 * * * * 25.76 38.55 3 3 47273 47273 0.00% 38.97 3 3 47273 47273 0.00%
52-36-130-700 * * * * 33.24 62.32 5 5 60081 60081 0.00% 63.88 5 5 60081 60081 0.00%
52-36-150-700 * * * * 28.20 45.83 3 3 75988 75988 0.00% 46.27 3 3 75988 75988 0.00%
52-36-180-700 * * * * 37.01 206.15 17 17 54693 54693 0.00% 208.32 17 17 54693 54693 0.00%
52-36-200-700 * * * * 43.32 89.17 5 5 33908 33908 0.00% 91.11 5 5 33908 33908 0.00%
52-36-250-700 * * * * 52.17 223.27 13 9 8242 8242 0.00% 224.81 13 9 8242 8242 0.00%
53-36-100-700 * * * * 26.39 147.35 15 15 18727 18727 0.00% 150.27 15 15 18727 18727 0.00%
53-36-130-700 * * * * 31.03 51.23 3 3 36388 36388 0.00% 51.06 3 3 36388 36388 0.00%
53-36-150-700 * * * * 38.67 54.46 3 3 63060 63060 0.00% 55.33 3 3 63060 63060 0.00%
53-36-180-700 * * * * 38.71 1020.99 77 77 28785 28785 0.00% 1023.86 77 77 28785 28785 0.00%
53-36-220-700 * * * * 42.52 106.86 7 7 101729 101729 0.00% 105.90 7 7 101729 101729 0.00%
53-36-250-700 * * * * 49.47 65.29 3 3 104922 104922 0.00% 65.19 3 3 104922 104922 0.00%
54-36-100-700 * * * * 29.48 135.83 13 13 23551 23551 0.00% 137.10 13 13 23551 23551 0.00%
54-36-130-700 * * * * 33.05 45.49 3 3 39535 39535 0.00% 45.46 3 3 39535 39535 0.00%
54-36-150-700 * * * * 38.63 79.96 5 5 4722 4722 0.00% 81.05 5 5 4722 4722 0.00%
54-36-180-700 * * * * 40.40 107.57 7 7 36084 36084 0.00% 107.63 7 7 36084 36084 0.00%
54-36-200-700 * * * * 41.92 44.16 3 3 54198 54198 0.00% 45.06 3 3 54198 54198 0.00%
54-36-250-700 * * * * 57.90 1416.50 59 59 8531 8531 0.00% 1418.64 59 59 8531 8531 0.00%
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Table B.14: Results of the large-scale instances (number of terminals in the range [55,59]) for testing the B&P with schemes C and D

Instance LP CPULP IP CPUIP CPUPD CPUBP-C NT-C NE-C UBBP-C LBBP-C GAP-C CPUBP-D NT-D NE-D UBBP-D LBBP-D GAP-D
55-36-100-700 * * * * 29.75 99.24 9 9 28195 28195 0.00% 100.46 9 9 28195 28195 0.00%
55-36-130-700 * * * * 47.77 73.85 3 3 4506 4506 0.00% 73.97 3 3 4506 4506 0.00%
55-36-150-700 * * * * 40.81 49.21 3 3 7853 7853 0.00% 49.44 3 3 7853 7853 0.00%
55-36-180-700 * * * * 43.37 108.91 7 7 40857 40857 0.00% 109.13 7 7 40857 40857 0.00%
55-36-200-700 * * * * 45.23 120.64 7 7 29966 29966 0.00% 120.55 7 7 29966 29966 0.00%
55-36-250-700 * * * * 55.72 108.39 5 5 54658 54658 0.00% 108.08 5 5 54658 54658 0.00%
56-36-100-700 * * * * 35.63 54.02 3 3 3481 3481 0.00% 54.07 3 3 3481 3481 0.00%
56-36-130-700 * * * * 52.44 57.47 3 3 4433 4433 0.00% 57.63 3 3 4433 4433 0.00%
56-36-150-700 * * * * 41.97 97.21 5 5 11529 11529 0.00% 98.02 5 5 11529 11529 0.00%
56-36-180-700 * * * * 48.28 244.52 17 15 44014 44014 0.00% 244.86 17 15 44014 44014 0.00%
56-36-200-700 * * * * 51.13 65.49 3 3 71438 71438 0.00% 65.10 3 3 71438 71438 0.00%
56-36-250-700 * * * * 54.70 1929.39 111 101 85911 85911 0.00% 1942.71 111 101 85911 85911 0.00%
57-36-100-700 * * * * 33.38 49.64 3 3 12646 12646 0.00% 49.92 3 3 12646 12646 0.00%
57-36-130-700 * * * * 37.13 150.45 11 11 59518 59518 0.00% 153.09 11 11 59518 59518 0.00%
57-36-150-700 * * * * 40.73 80.02 5 5 51978 51978 0.00% 80.27 5 5 51978 51978 0.00%
57-36-180-700 * * * * 47.38 62.45 3 3 62345 62345 0.00% 62.52 3 3 62345 62345 0.00%
57-36-200-700 * * * * 52.76 57.51 3 3 91807 91807 0.00% 57.93 3 3 91807 91807 0.00%
57-36-250-700 * * * * 62.00 63.95 3 3 47464 47464 0.00% 63.98 3 3 47464 47464 0.00%
58-36-100-700 * * * * 48.58 99.01 7 7 31050 31050 0.00% 99.66 7 7 31050 31050 0.00%
58-36-130-700 * * * * 31.85 48.85 3 3 18790 18790 0.00% 49.34 3 3 18790 18790 0.00%
58-36-150-700 * * * * 53.58 51.33 3 3 64722 64722 0.00% 51.38 3 3 64722 64722 0.00%
58-36-180-700 * * * * 42.30 161.57 9 9 49225 49225 0.00% 164.57 9 9 49225 49225 0.00%
58-36-200-700 * * * * 62.03 79.92 3 3 24632 24632 0.00% 80.03 3 3 24632 24632 0.00%
58-36-250-700 * * * * 46.64 2272.57 113 113 116424 116424 0.00% 2271.38 113 113 116424 116424 0.00%
59-36-100-700 * * * * 46.65 515.08 35 35 3566 3566 0.00% 511.11 35 35 3566 3566 0.00%
59-36-130-700 * * * * 50.34 1140.72 61 61 4956 4956 0.00% 1147.60 61 61 4956 4956 0.00%
59-36-150-700 * * * * 60.56 79.61 3 3 5374 5374 0.00% 79.93 3 3 5374 5374 0.00%
59-36-180-700 * * * * 52.15 255.74 15 15 83504 83504 0.00% 256.82 15 15 83504 83504 0.00%
59-36-200-700 * * * * 55.35 75.13 3 3 46808 46808 0.00% 73.87 3 3 46808 46808 0.00%
59-36-250-700 * * * * 63.43 82.43 3 3 96410 96410 0.00% 82.01 3 3 96410 96410 0.00%
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Appendix C

Results of node-demand formulation

and Branch-and-Price

This appendix shows the detailed results of the computational experiments described in Section 6.4,
using CPLEX to solve the node-demand and arc-demand models and the branch-and-price (BP) methods
based on these models. Recall that a time limit of 7200 seconds was imposed on each run. The tables
in this appendix follow a similar structure as in Section 6.4. For each instance and solution approach,

they may show the following columns:
« Instance is the name of the instance.
o LP OV is the optimal value of the LP relaxation of the compact model.
« IP OV is the optimal value of the compact model.
 LP is the time taken by CPLEX to solve the LP relaxation of the compact model.
o IP is the time taken by CPLEX to solve the compact model.
o TRroot (sec) is the time taken by the BP method to solve the root node only.
« UB is the best upper bound reached by the BP method.

o ILPpy is the best lower bound reached by the BP method (the optimal value if the method

finishes before the time limit).

+ Gap is the relative optimality gap between the values of UB and I L Ppy reached the BP method.

€k

All times are displayed in seconds. A sign “*” indicates that CPLEX could not solve or even mount

the model due to lack of computer memory.
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Table C.1: Results from solving the compact model of the arc-based and node-based formulations in
instances with terminals ranging from 10 to 14.

Arc-demand  Node-demand

Instance LPOV IPOV
LP ILP LP ILP

10-10-20-20 1940 1937 0.13 0.52 0.00 0.03
10-10-20-25 1874 1857 0.06 0.12 0.01 0.02
10-10-20-30 507 501 0.05 0.10 0.00 0.01
10-10-20-35  2474.5 2464 0.05 0.16 0.01 0.02
10-10-20-50 422.5 421  0.07 0.15 0.02 0.10
11-10-20-20 1601 1584 0.06 0.50 0.00 0.01
11-10-20-25 661.5 659 0.07 0.13 0.00 0.40
11-10-20-30  1606.5 1596  0.06 0.16 0.00 0.01
11-10-20-35  2240.5 2238 0.06 0.29 0.01 0.02
11-10-20-50  2704.5 2701 0.08 0.26 0.03 0.03
12-10-20-20 907 904 0.08 0.59 0.00 0.07
12-10-20-25 396.5 396 0.08 0.21 0.00 0.02
12-10-20-30 337 335 0.08 0.17  0.00 0.19
12-10-20-35 677.5 669  0.08 0.18 0.01 0.02
12-10-20-50 811.5 811 0.08 0.16 0.02 0.02
13-10-20-20  1259.5 1259 0.10 0.18 0.00 0.02
13-10-20-25 671.5 669  0.09 0.26  0.00 0.02
13-10-20-30 581 580 0.09 0.17  0.00 0.02
13-10-20-35 267.5 266 0.09 0.16 0.00 0.01
13-10-20-50 680 678 0.09 0.33 0.02 0.02
14-10-20-20 636.5 633 0.11 0.21 0.00 0.03
14-10-20-25 1295 1292 0.12 0.36  0.00 0.04
14-10-20-30 579 574 0.11 0.31 0.01 0.04
14-10-20-35  2058.5 2057 0.11 0.21 0.00 0.01

14-10-20-50 356 355 0.11 0.65 0.02 0.09
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Table C.2: Results from solving the compact model of the arc-based and node-based formulations in
instances with terminals ranging from 15 to 19.

Arc-demand  Node-demand

Instance LPOV IPOV
LP ILP LP ILP

15-10-20-20 564 560 0.13 0.26  0.00 0.02
15-10-20-25  1202.5 1202 0.13 0.27 0.00 0.03
15-10-20-30  1454.5 1451 0.12 0.26  0.00 0.01
15-10-20-35  1679.5 1679 0.12 0.23 0.01 0.01
15-10-20-50 624 623 0.13 0.36  0.02 0.03
16-10-20-20 738 736  0.14 0.46 0.00 0.02
16-10-20-25  1481.5 1479 0.15 0.29 0.00 0.02
16-10-20-30 1800 1788  0.14 0.28 0.00 0.02
16-10-20-35  2040.5 2037 0.14 0.27  0.00 0.01
16-10-20-50  1564.5 1562  0.15 0.33 0.02 0.03
17-10-20-20 632.5 632 0.16 0.30 0.00 0.01
17-10-20-25  1613.5 1611 0.16 0.31 0.00 0.01
17-10-20-30 424.5 424  0.16 0.28 0.00 0.01
17-10-20-35 2349 2347  0.17 0.32  0.01 0.02
17-10-20-50 2210 2202  0.16 0.37 0.02 0.03
18-10-20-20  1147.5 1143 0.17 0.29 0.00 0.02
18-10-20-25 294.5 291  0.17 0.41 0.00 0.01
18-10-20-30 1836 1835 0.17 0.29 0.01 0.02
18-10-20-35 992 991 0.18 0.78 0.00 0.01
18-10-20-50 550.5 550 0.20 0.35 0.03 0.04
19-10-20-20 906.5 905 0.19 0.33  0.00 0.01
19-10-20-25 535.5 535 0.20 0.36  0.00 0.12
19-10-20-30  1405.5 1402 0.22 0.45 0.00 0.01
19-10-20-35 692.5 691 0.20 0.38 0.00 0.01

19-10-20-50 2599 2591 0.21 0.61 0.02 0.04
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Table C.3: Results from solving the compact model of the arc-based and node-based formulations in
instances with terminals ranging from 20 to 29.

Arc-demand  Node-demand

Instance LPOV IPOV
LP ILP LpP ILP

20-20-100-200 14473 14471 349 16.23 1.56 2.64
20-20-130-200 31331 31327 433 1913 1.26 2.26
20-20-150-200 34622.5 34618 545 2210 1.73 2.97
21-20-100-200 2585.5 2585 536 19.09 1.58 2.48
21-20-130-200 4056.5 4056 5.01 21.65 1.30 2.27
21-20-150-200  27333.5 27322 551 2334 1.75 2.96
22-20-100-200 4902.5 4902 5.82 23.76 1.46 2.56
22-20-130-200 12304 12301 571 25,56 1.88 2.89
22-20-150-200 10972.5 10971 7.14 3433 2.68 4.20
23-20-100-200  14133.5 14132 4.65 1948 1.11 1.84
23-20-130-200 21749.5 21745 6.44 2730 1.62 2.90
23-20-150-200 23366 23358 8.00 31.67 2.15 3.53
24-20-100-200 10157 10155 530 24.04 1.33 2.29
24-20-130-200 3486.5 3486 11.08 42.33 2.56 3.51
24-20-150-200 18158 18156 12.68 5291 2.38 3.87
25-20-100-200 9336.5 9335 5.20 23.05 1.35 2.53
25-20-130-200 33906 33905 8.86 38.92 2.30 4.29
25-20-150-200 32517 32508 941 37.72 2.08 2.97
26-20-100-200 9816 9815 549 2213 137 2.50
26-20-130-200 16895 16892 7.66 33.17 1.59 2.93
26-20-150-200 3731.5 3731 1933  67.78 2.39 4.36
27-20-100-200  21095.5 21090 7.05 32.24 1.66 2.38
27-20-130-200 8457.5 8456 11.71 55.14 2.34 3.48
27-20-150-200 26709 26704 9.95 4440 1.81 2.89
28-20-100-200 3641.5 3641 1032 42.01 1.89 2.89
28-20-130-200 25359 25355 8.64 3632 1.44 2.65
28-20-150-200 11225.5 11222 1136 57.47 241 4.07
29-20-100-200 5995 5994 7.09 31.58 1.28 2.15
29-20-130-200 8979.5 8978 1148 49.86 1.88 2.77
29-20-150-200 7978.5 7977 10.10 44.10 1.88 3.22
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Table C.4: Results from solving the compact model of the arc-based and node-based formulations in
instances with terminals ranging from 30 to 39.

Arc-demand Node-demand

Instance LPOV POV
LP ILP LP ILP

30-30-200-300  14513.5 14512 100.44 392.92 7.26 9.54
30-30-230-300 47060.5 47054 104.13 435.42 6.84 9.18
30-30-250-300 69007 68998 153.42 750.87 13.72 16.14
31-30-200-300 51227.5 51221 98.37 436.45 7.82  10.46
31-30-230-300 79462.5 79441 135.00 716.02 10.75 13.15
31-30-250-300 79072 79063 139.71 685.50 12.64 14.95
32-30-200-300 46440 46435 132.54 497.74 7.67 9.83
32-30-230-300 23500 23497 130.23 621.84 9.94 1145
32-30-250-300 6280 6279 154.61 730.32 14.49 16.02
33-30-200-300 55926 55911 110.64 456.08 9.10 1048
33-30-230-300 48200.5 48194 268.12 933.43 1297 14.46
33-30-250-300 33573 33569 101.29 417.62 7.85 9.35
34-30-200-300 4623.5 4623 13144 63994 1056 11.93
34-30-230-300 62736.5 62724 164.23 903.13 14.56 16.45
34-30-250-300 16987 * * * 12.80  14.17
35-30-200-300 29115 29110 115.12  536.07 7.17 9.46
35-30-230-300 76030 * * * 1095 12.96
35-30-250-300 47615.5 * * * 10.39  12.87
36-30-200-300 40294.5 40288 116.12 615.03 8.72  11.07
36-30-230-300 52908 * * * 12.44 15.01
36-30-250-300  62943.5 * * * 18.74  20.48

37-30-200-300 57430 57422 144.08 826.57 9.75 11.46

37-30-230-300 7770.5 * * * 946 11.01
37-30-250-300 41585 * * * 10.59  12.85
38-30-200-300  28809.5 * * * 7.21 9.07
38-30-230-300  73705.5 * * * 11.67 13.96
38-30-250-300 24711 * * * 12.50  14.76
39-30-200-300 4989.5 * * * 8.57 11.01
39-30-230-300 67965 * * * 13.52 16.77
39-30-250-300  63911.5 * * * 10.49  12.32
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Table C.5: Results from solving the compact model of the arc-based and node-based formulations in
instances with terminals ranging from 40 to 49.

Arc-demand Node-demand

Instance LPOV IPOV
LP ILP LpP ILP

40-36-130-500 48491 48485 233.74 1354.03 14.75 17.27
40-36-150-500 * * * * 19.29  23.76
40-36-170-500 * * * * * *

41-36-130-500 4350 4349 409.28 2428.86 25.71  30.59

41-36-150-500 63709.5 63691 * * 30.74  32.25
41-36-170-500 * * * * * *
42-36-130-500 15601.5 15598 * * 26.75  29.42
42-36-150-500 8179 8178 * * 31.74  35.39
42-36-170-500 * * * * * *
43-36-130-500 35992 35988 * * 15.24  19.23
43-36-150-500  53283.5 53269 * * 22.74  25.60
43-36-170-500 * * * * * *
44-36-130-500 55765 55748 * * 31.96 3294
44-36-150-500 * * * * * *
44-36-170-500 * * * * * *
45-36-130-500 35025 35017 * * 25.74 3231
45-36-150-500 * * * * * *
45-36-170-500 * * * * * *
46-36-130-500 4479.5 4479 * * 2413 29.08
46-36-150-500 * * * *
46-36-170-500 * * * * * *
47-36-130-500 * * * * * *
47-36-150-500 * * * * * *
47-36-170-500 * * * * * *
48-36-130-500 * * * * * *
48-36-150-500 * * * * * *
48-36-170-500 * * * * * *
49-36-130-500 * * * * * *
49-36-150-500 * * * * * *
49-36-170-500 * * * * * *
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Table C.6: Results from solving the compact model of the arc-based and node-based formulations in
instances from Vasco and Morabito (2016b).

Arc-demand  Node-demand

Instance LPOV POV
LP ILP LP ILP
53-36-130-300-p1 17437.8 174376 * * 4.15 28.81
53-36-130-300-p2 19260 19260 * * 3.19 5.05
53-36-130-300-p3 16634.5 16633.8 * * 2.34 4.84
53-36-130-300-p4 19560 19560 * * 4.55 29.11
53-36-130-300-p5 18169.2 18169.2  * * 2.01 2.75
53-36-130-300-p6  19969.4 19969.4 * * 5.79 12.30
53-36-130-300-p7 19213.8 19213.8 * * 2.81 3.42
53-36-130-300-p8 18475.9 18472.6 * * 4.01 14.68
53-36-130-300-p9 15371.4 153714 * * 3.51 3.85
53-36-130-300-p10 18344.8 183448 * * 3.75 2.64
53-36-130-300-p11 16799.9 16799.6 * * 2.09 3.39
53-36-130-300-p12  22008.4 22008.4 * * 4.50 15.54
53-36-130-300-p13 19628.6 19628.2 * * 3.37 6.87
53-36-130-300-p14  19616.6 19616.6 * * 2.90 4.34
53-36-130-300-p15 20673.2 20673.2 * * 4.48 4.04
53-36-130-300-p16  17796.2 17796.2 * * 3.30 5.05
53-36-130-300-p17 17345.2 17345.2 * * 2.20 2.24
53-36-130-300-p18  17850.7 17849.2 * * 3.22 5.99
53-36-130-300-p19 18190.6 18190.6 * * 2.00 2.23
53-36-130-300-p20 20754.4 207544 * * 2.78 5.51
53-36-130-300-p21  16953.2 16953.2 * * 7.36 16.13
53-36-130-300-p22 18699.2 18699.2 * * 5.56 16.86
53-36-130-300-p23  21525.6  21525.6 * * 4.41 13.97
53-36-130-300-p24 18266.2 18266.2 * * 231 2.60
53-36-130-300-p25 17064.8 17064.8 * * 3.43 6.48
53-36-130-300-p26 203244 20324.4 * * 2.63 3.50
53-36-130-300-p27 20003 20003 * * 2.67 2.69
53-36-130-300-p28 17956 17956 * * 2.79 3.82
53-36-130-300-p29 19074.6 19074.6 * * 2.21 2.29
53-36-130-300-p30  16464.6 16464.6 * * 2.69 3.63
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Table C.7: Results from solving the arc-based and node-based formulations via Branch-and-Price in
instances with terminals ranging from 10 to 14.

Arc-demand Node-demand
Instance
Troot UB ILPpy Gap Tgp Treot UB ILPoy Gap Tpgp
10-10-20-20 0.09 1937 1937  0.0% 0.18 0.006 1937 1937  0.0% 0.06
10-10-20-25 0.06 1857 1857 0.0% 0.15 0.005 1857 1857 0.0% 0.06
10-10-20-30 0.06 501 501 0.0% 0.44 0.005 501 501 0.0% 0.09

10-10-20-35 0.07 2464 2464 0.0% 0.18 0.005 2464 2464 0.0% 0.06

10-10-20-50 0.07 421 421 0.0% 0.15 0.007 421 421 0.0% 0.05
11-10-20-20 0.09 1584 1584 0.0% 0.19 0.005 1584 1584 0.0% 0.06
11-10-20-25 0.09 659 659 0.0% 0.18 0.005 659 659 0.0% 0.03
11-10-20-30 0.06 1596 1596 0.0% 0.18 0.005 1596 1596  0.0%  0.02
11-10-20-35 0.07 2238 2238 0.0% 020 0.006 2238 2238 0.0%  0.07
11-10-20-50 0.37 2701 2701  0.0% 0.23 0.007 2701 2701  0.0% 0.06
12-10-20-20 0.16 904 904 0.0% 0.76 0.005 904 904 0.0% 0.10
12-10-20-25 0.09 396 396 0.0% 0.25 0.005 396 396 0.0% 0.06
12-10-20-30 0.11 335 335 0.0% 0.65 0.005 335 335 0.0% 0.53
12-10-20-35 0.13 669 669 0.0% 179 0.006 669 669 0.0% 0.27
12-10-20-50 0.10 811 811 0.0% 0.25 0.007 811 811 0.0% 0.04
13-10-20-20 0.12 1259 1259 0.0% 0.27 0.006 1259 1259 0.0% 0.03
13-10-20-25 0.12 669 669 0.0% 0.27 0.007 669 669 0.0% 0.07
13-10-20-30 0.18 580 580 0.0% 0.29 0.006 580 580 0.0% 0.06
13-10-20-35 0.10 266 266 0.0% 080 0.005 266 266 0.0% 0.10
13-10-20-50 0.11 678 678 0.0% 042 0.007 678 678 0.0% 0.08
14-10-20-20 0.16 633 633 0.0% 0.56 0.007 633 633 0.0% 0.08
14-10-20-25 0.11 1292 1292 0.0% 035 0.005 1292 1292 0.0%  0.03
14-10-20-30 0.13 574 574 0.0% 030 0.005 574 574 0.0% 0.04
14-10-20-35 0.13 2057 2057 0.0% 0.29 0.006 2057 2057 0.0% 0.03
14-10-20-50 0.13 355 355 0.0% 031 0.007 355 355 0.0% 0.07
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Table C.8: Results from solving the arc-based and node-based formulations via Branch-and-Price in
instances with terminals ranging from 15 to 19.

Arc-demand Node-demand
Instance

Troot UB  ILPoy Gap Tpp Troot UB ILPoy Gap Tpp
15-10-20-20 0.14 560 560 0.0% 0.37 0.005 560 560 0.0% 0.04
15-10-20-25 0.32 1202 1202 0.0% 0.57 0.006 1202 1202  0.0% 0.07
15-10-20-30 0.11 1451 1451 0.0% 032 0.005 1451 1451 0.0% 0.02
15-10-20-35 0.15 1679 1679 0.0% 030 0.006 1679 1679 0.0% 0.03
15-10-20-50 0.15 623 623 0.0% 041 0.007 623 623 0.0% 0.03
16-10-20-20 0.32 736 736 0.0% 0.52 0.005 736 736  0.0%  0.08
16-10-20-25 0.16 1479 1479 0.0% 038 0.005 1479 1479 0.0% 0.03
16-10-20-30 0.16 1788 1788 0.0% 037 0.005 1788 1788 0.0%  0.06
16-10-20-35 0.14 2037 2037 0.0% 042 0.004 2037 2037 0.0% 0.05
16-10-20-50 0.16 1562 1562 0.0% 0.40 0.006 1562 1562 0.0% 0.04
17-10-20-20 0.24 632 632 0.0% 0.47 0.005 632 632 0.0% 0.03
17-10-20-25 0.18 1611 1611 0.0% 0.87 0.004 1611 1611 0.0% 0.02
17-10-20-30 0.18 424 424 0.0% 0.48 0.007 424 424 0.0% 0.03
17-10-20-35 0.24 2346.99 234699 0.0% 043 0.006 2347 2347 0.0% 0.05
17-10-20-50 0.17 2202 2202 0.0% 0.63 0.006 2202 2202  0.0% 0.09
18-10-20-20 0.31 1143 1143 0.0% 091 0.006 1143 1143 0.0% 0.09
18-10-20-25 0.23 291 291 0.0% 0.59 0.004 291 291 0.0% 0.02
18-10-20-30 0.25 1835 1835 0.0% 0.81 0.005 1835 1835 0.0%  0.05
18-10-20-35 0.18 991 991 0.0% 0.45 0.005 991 991 0.0% 0.04
18-10-20-50 0.22 550 550 0.0% 0.51 0.007 550 550 0.0% 0.04
19-10-20-20 0.25 905 905 0.0% 0.50 0.005 905 905 0.0% 0.03
19-10-20-25 0.28 535 535 0.0% 0.62 0.005 535 535 0.0% 0.03
19-10-20-30 0.18 1402 1402 0.0% 0.83 0.005 1402 1402 0.0% 0.04
19-10-20-35 0.22 691 691 0.0% 0.49 0.006 691 691 0.0% 0.06
19-10-20-50 0.23 2591 2591 0.0% 086 0.006 2591 2591 0.0% 0.06
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Table C.9: Results from solving the arc-based and node-based formulations via Branch-and-Price in
instances with terminals ranging from 20 to 29.

Arc-demand Node-demand

Instance
Troot UB ILPoy Gap Tgp Treot UB ILPoy Gap Tgp

20-20-100-200 1.48 14471 14471  0.0% 5.36 0.09 14471 14471  0.0% 1.15
20-20-130-200 1.51 31327 31327 0.0% 7.51 0.11 31327 31327  0.0% 4.26
20-20-150-200 1.70 34618 34618 0.0% 2.63 0.12 34618 34618 0.0% 1.10
21-20-100-200 1.75 2585 2585 0.0% 3.09 0.08 2585 2585 0.0% 0.98
21-20-130-200 2.05 4056 4056 0.0% 3.51 0.13 4056 4056  0.0% 1.02
21-20-150-200 1.88 27322 27322 0.0% 3.56 0.12 27322 27322 0.0% 1.06
22-20-100-200 1.96 4902 4902  0.0% 5.71 0.10 4902 4902  0.0% 1.36
22-20-130-200 1.99 12301 12301  0.0% 4.04 0.11 12301 12301  0.0% 0.94
22-20-150-200 2.12 10971 10971  0.0% 5.47 0.12 10971 10971  0.0% 1.40
23-20-100-200 1.90 14132 14132 0.0% 2.99 0.09 14132 14132 0.0% 0.75
23-20-130-200 1.94 21745 21745 0.0% 3.02 0.09 21745 21745 0.0% 1.17
23-20-150-200 2.20 23358 23358 0.0% 5.03 0.12 23358 23358 0.0% 1.93
24-20-100-200 2.37 10155 10155 0.0% 6.28 0.08 10155 10155 0.0% 1.32
24-20-130-200 3.51 3486 3486 0.0% 13.02 0.14 3486 3486 0.0% 5.79
24-20-150-200 3.26 18156 18156  0.0% 9.43 0.15 18156 18156  0.0% 2.36
25-20-100-200 2.33 9335 9335 0.0% 5.93 0.07 9335 9335 0.0% 1.09
25-20-130-200 2.64 33905 33905 0.0% 4.07 0.12 33905 33905 0.0% 0.99
25-20-150-200 291 32508 32508 0.0% 6.05 0.14 32508 32508 0.0% 1.80
26-20-100-200 2.64 9815 9815 0.0% 4.16 0.08 9815 9815 0.0% 0.73
26-20-130-200 2.76 16892 16892  0.0% 3.93 0.10 16892 16892  0.0% 0.70
26-20-150-200 3.94 3731 3731 0.0% 21.92 0.14 3731 3731 0.0% 5.35
27-20-100-200 331 21090 21090 0.0% 4.54 0.08 21090 21090 0.0% 0.76
27-20-130-200 3.95 8456 8456 0.0% 29.05 0.14 8456 8456  0.0% 6.51
27-20-150-200 3.29 26704 26704 0.0% 6.69 0.12 26704 26704 0.0% 1.94
28-20-100-200 3.23 3641 3641 0.0% 42.24 0.08 3641 3641  0.0% 8.75
28-20-130-200 3.32 25355 25355 0.0% 4.63 0.10 25355 25355 0.0% 1.19

28-20-150-200 3.73 11222 11222 0.0% 5.49 0.12 11222 11222 0.0% 1.15

29-20-100-200 3.69 5994 5994 0.0% 7.48 0.08 5994 5994 0.0% 1.56
29-20-130-200 3.60 8978 8978 0.0% 72.53 0.12 8978 8978 0.0% 36.02
29-20-150-200 3.91 7977 7977  0.0% 6.73 0.11 7977 7977  0.0% 0.76
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Table C.10: Results from solving the arc-based and node-based formulations via Branch-and-Price in
instances with terminals ranging from 30 to 39.

Arc-demand Node-demand

Instance
Troot UB ILPoy Gap Tpp  Troot UB ILPoy Gap Tpp

30-30-200-300 8.23 14512 14512 0.0% 16.41 0.36 14512 14512 0.0% 3.96
30-30-230-300 9.41 47054 47054 0.0% 21.33 0.46 47054 47054 0.0% 6.41
30-30-250-300  10.03 68998 68998 0.0% 108.11 0.51 68998 68998 0.0% 71.58
31-30-200-300 8.46 51221 51221 0.0% 11.79 0.30 51221 51221 0.0% 2.08
31-30-230-300 9.68 79441 79441 0.0% 1539.31 0.41 79441 79441 0.0% 382.25
31-30-250-300  10.34 79063 79063 0.0% 13.13 0.49 79063 79063 0.0% 4.01
32-30-200-300 9.11 46435 46435 0.0% 39.08 0.35 46435 46435 0.0% 9.51
32-30-230-300 10.83 23497 23497 0.0% 18.04 0.40 23497 23497 0.0% 2.51
32-30-250-300  17.02 6279 6279  0.0% 394.39 0.57 6279 6279 0.0% 176.37
33-30-200-300 9.86 55911 55911 0.0% 254.35 0.35 55911 55911 0.0% 21.98
33-30-230-300 11.13 48194 48194 0.0% 32.99 0.40 48194 48194 0.0% 6.21
33-30-250-300  11.59 33569 33569 0.0% 65.80 0.41 33569 33569 0.0% 16.85
34-30-200-300  14.44 4623 4623  0.0% 63.03 0.45 4623 4623  0.0% 14.86
34-30-230-300 12.19 62724 62724 0.0% 56.14 045 62724 62724 0.0% 11.04
34-30-250-300  12.77 16985 16985  0.0% 21.54 0.44 16985 16985  0.0% 4.00
35-30-200-300 11.06 29110 29110 0.0% 170.60 0.34 29110 29110 0.0% 34.44
35-30-230-300 13.41 76015 76015 0.0% 45.84 0.40 76015 76015 0.0% 6.39
35-30-250-300 13.90 47613 47613  0.0% 61.65 044 47613 47613  0.0% 13.50
36-30-200-300 13.64 40288 40288 0.0% 29.92 0.39 40288 40288 0.0% 4.82
36-30-230-300  14.57 52902 52902  0.0% 28.51 0.44 52902 52902  0.0% 6.79
36-30-250-300  14.50 62932 62932  0.0% 21.88 0.47 62932 62932  0.0% 2.76
37-30-200-300  13.07 57422 57422  0.0% 16.96 0.29 57422 57422  0.0% 6.33
37-30-230-300  16.65 7769 7769  0.0% 1250.38 0.39 7769 7769  0.0% 273.13
37-30-250-300 16.07 41580 41580 0.0% 48.15 0.41 41580 41580 0.0% 7.76
38-30-200-300  14.08 28805 28805 0.0% 465.01 0.34 28805 28805 0.0% 75.33
38-30-230-300  15.72 73698 73698  0.0% 25.18 0.44 73698 73698  0.0% 3.72
38-30-250-300  18.31 24709 24709  0.0% 26.90 0.48 24709 24709  0.0% 4.05
39-30-200-300 18.71 4989 4989  0.0% 69.13 0.39 4989 4989  0.0% 9.22
39-30-230-300 17.87 67958 67958 0.0% 238.48 0.43 67958 67958 0.0% 44.26
39-30-250-300  17.57 63894 63894 0.0% 60.95 0.46 63894 63894 0.0% 9.59
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Table C.11: Results from solving the arc-based and node-based formulations via Branch-and-Price in
instances with terminals ranging from 40 to 49.

Arc-demand Node-demand

Instance
Troot UB ILPopy Gap Tpp Trot UB ILPopy Gap Tgp

40-36-130-500  15.23 48485 48485 0.0% 47.90 0.46 48485 48485 0.0% 11.66
40-36-150-500  17.29 28510 28510 0.0% 32.65 0.62 28510 28510 0.0% 8.89
40-36-170-500  18.22 76106 76106 0.0% 52.27 0.69 76106 76106 0.0% 11.44
41-36-130-500  18.11 4349 4349 0.0% 113.69 0.48 4349 4349 0.0% 27.03
41-36-150-500  19.53 63691 63691 0.0% 24.16 0.62 63691 63691 0.0% 5.85
41-36-170-500  20.81 54550 54550 0.0% 25.21 0.70 54550 54550 0.0% 4.64
42-36-130-500  19.18 15598 15598  0.0% 42.48 0.47 15598 15598  0.0% 6.05
42-36-150-500  22.40 8178 8178  0.0% 26.89 0.78 8178 8178  0.0% 7.63
42-36-170-500  21.62 36376 36376  0.0% 80.60 0.67 36376 36376  0.0% 62.20
43-36-130-500  20.24 35988 35988 0.0% 25.25 0.46 35988 35988 0.0% 4.94
43-36-150-500  21.36 53269 53269 0.0% 138.62 0.61 53269 53269 0.0% 30.75
43-36-170-500  21.77 37484 37484 0.0% 65.34 0.68 37484 37484 0.0% 1547
44-36-130-500  20.28 55748 55748 0.0% 79.92 0.47 55748 55748 0.0% 16.84
44-36-150-500 22.88 70064 70064 0.0% 39.81 0.61 70064 70064 0.0% 7.70
44-36-170-500  25.29 37247 37247 0.0% 128.38 0.68 37247 37247 0.0% 26.54
45-36-130-500  21.41 35017 35017 0.0% 38.40 0.46 35017 35017 0.0% 7.64
45-36-150-500  22.82 35095 35095 0.0% 69.02 0.53 35095 35095 0.0% 13.67
45-36-170-500  25.23 67070 67070  0.0% 35.68 0.60 67070 67070  0.0% 6.51
46-36-130-500  26.07 4479 4479 0.0% 393.58 0.61 4479 4479 0.0% 69.61
46-36-150-500 24.76 25481 25481 0.0% 232.55 0.61 254381 25481 0.0% 62.85
46-36-170-500  28.27 45355 45355 0.0% 37.83 0.67 45355 45355 0.0% 6.55
47-36-130-500  34.85 4825 4825 0.0% 69.29 0.69 4825 4825 0.0% 11.31
47-36-150-500  26.57 54139 54139 0.0% 76.43 0.60 54139 54139 0.0% 42.31
47-36-170-500  30.42 46154 46154 0.0% 78.83 0.69 46154 46154 0.0% 13.71
48-36-130-500  28.28 26069 26069 0.0% 91.27 0.59 26069 26069 0.0% 15.70
48-36-150-500  33.14 4848 4848 0.0% 118.50 0.72 4848 4848 0.0% 20.66
48-36-170-500  29.44 68476 68476 0.0% 163.78 0.59 68476 68476 0.0% 26.56
49-36-130-500 28.81 38305 38305 0.0% 37.78 0.52 38305 38305 0.0% 5.06
49-36-150-500  40.63 4944 4944 0.0% 121.98 0.70 4944 4944 0.0% 19.01
49-36-170-500  34.51 4676 4676  0.0% 72.37 0.69 4676 4676 0.0% 14.07
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Table C.12: Results from solving the arc-based and node-based formulations via Branch-and-Price in
instances with terminals ranging from 50 to 54.

Arc-demand Node-demand
Instance
TRoot UB ILPoy Gap Tep TRoot UB ILPpoy Gap Tgp
50-36-100-700  23.56 50961 50961 0.0% 34.71 0.69 50961 50961 0.0% 7.61

50-36-130-700  29.24  57051.5 57048 0.0001% 7200.00 1.02 570489 57048 0.0% 5822.36

50-36-150-700  31.62 22656 22656 0.0% 68.35 1.19 22656 22656  0.0% 20.72
50-36-180-700  34.10 62122 62122 0.0% 627.10 1.39 62122 62122  0.0% 24591
50-36-200-700  34.85 28843 28843 0.0% 37.93 1.50 28843 28843  0.0% 10.51

50-36-250-700  40.64 111448 111444 0.0001% 7200.00 191 111444 111444 0.0% 761.11

51-36-100-700  24.03 17676 17676 0.0% 99.31 0.59 17676 17676 0.0% 25.22
51-36-130-700  30.62 62845 62845 0.0% 42.11 1.02 62845 62845 0.0% 9.77
51-36-150-700  30.51 61608 61608 0.0% 171.96 1.16 61608 61608  0.0% 56.61
51-36-180-700  37.18 45116 45116 0.0%  1798.33 1.39 45116 45116  0.0% 777.42
51-36-200-700  38.92 69124 69124 0.0% 55.16 1.72 69124 69124 0.0% 10.71
51-36-250-700  49.22 29392 29392 0.0% 772.57 2.18 29392 29392 0.0% 268.88
52-36-100-700  25.76 47273 47273 0.0% 38.97 0.68 47273 47273  0.0% 7.48
52-36-130-700  33.24 60081 60081 0.0% 63.88 1.02 60081 60081 0.0% 11.91
52-36-150-700  28.20 75988 75988 0.0% 46.27 0.89 75988 75988 0.0% 7.81
52-36-180-700  37.01 54693 54693 0.0% 208.32 1.22 54693 54693  0.0% 73.72
52-36-200-700  43.32 33908 33908 0.0% 91.11 1.53 33908 33908 0.0% 18.60
52-36-250-700  52.17 8242 8242 0.0% 224.81 2.19 8242 8242 0.0% 9.48
53-36-100-700  26.39 18727 18727 0.0% 150.27 0.58 18727 18727  0.0% 58.73
53-36-130-700  31.03 36388 36388 0.0% 51.06 0.88 36388 36388 0.0% 12.69
53-36-150-700  38.67 63060 63060 0.0% 55.33 1.15 63060 63060 0.0% 11.14
53-36-180-700  38.71 28785 28785 0.0%  1023.86 1.39 28785 28785 0.0% 314.93
53-36-220-700  42.52 101729 101729 0.0% 105.90 1.44 101729 101729 0.0% 43.48
53-36-250-700  49.47 104922 104922 0.0% 65.19 1.90 104922 104922 0.0% 18.85
54-36-100-700  29.48 23551 23551 0.0% 137.10 0.68 23551 23551  0.0% 31.67
54-36-130-700  33.05 39535 39535 0.0% 45.46 1.01 39535 39535  0.0% 9.91
54-36-150-700  38.63 4722 4722 0.0% 81.05 1.16 4722 4722 0.0% 24.17
54-36-180-700  40.40 36084 36084 0.0% 107.63 1.56 36084 36084 0.0% 35.34
54-36-200-700  41.92 54198 54198 0.0% 45.06 1.31 54198 54198  0.0% 14.89
54-36-250-700  57.90 8531 8531 0.0%  1418.64 2.14 8531 8531 0.0% 469.17
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Table C.13: Results from solving the arc-based and node-based formulations via Branch-and-Price in
instances with terminals ranging from 55 to 59.

Arc-demand Node-demand

Instance
Troot UB  ILPoy Gap Tgp Trot UB  ILPoy Gap Tpp

55-36-100-700  29.75 28195 28195 0.0% 100.46 0.68 28195 28195 0.0% 16.99
55-36-130-700  47.77 4506 4506 0.0% 73.97 1.02 4506 4506 0.0% 12.71
55-36-150-700  40.81 7853 7853  0.0% 49.44 1.16 7853 7853  0.0% 14.83
55-36-180-700  43.37 40857 40857 0.0% 109.13 1.37 40857 40857 0.0% 27.87
55-36-200-700  45.23 29966 29966 0.0% 120.55 1.52 29966 29966  0.0% 30.83
55-36-250-700  55.72 54658 54658 0.0% 108.08 2.15 54658 54658 0.0% 34.86
56-36-100-700  35.63 3481 3481 0.0% 54.07 0.69 3481 3481 0.0% 5.23
56-36-130-700  52.44 4433 4433 0.0% 57.63 1.03 4433 4433 0.0% 13.00
56-36-150-700  41.97 11529 11529 0.0% 98.02 1.17 11529 11529 0.0% 20.91
56-36-180-700  48.28 44014 44014 0.0% 244.86 1.37 44014 44014 0.0% 73.35
56-36-200-700  51.13 71438 71438 0.0% 65.10 1.32 71438 71438 0.0% 14.93
56-36-250-700  54.70 85911 85911 0.0% 1942.71 2.12 85911 85911 0.0% 546.20
57-36-100-700  33.38 12646 12646 0.0% 49.92 0.68 12646 12646 0.0% 7.60
57-36-130-700  37.13 59518 59518 0.0% 153.09 0.87 59518 59518 0.0% 30.21
57-36-150-700  40.73 51978 51978  0.0% 80.27 1.00 51978 51978  0.0% 13.53
57-36-180-700  47.38 62345 62345 0.0% 62.52 1.54 62345 62345 0.0% 13.76
57-36-200-700  52.76 91807 91807 0.0% 57.93 1.72 91807 91807 0.0% 10.89
57-36-250-700  62.00 47464 47464 0.0% 63.98 2.12 47464 47464 0.0% 19.03
58-36-100-700  48.58 31050 31050 0.0% 99.66 1.19 31050 31050 0.0% 27.76
58-36-130-700  31.85 18790 18790  0.0% 49.34 0.58 18790 18790  0.0% 9.71
58-36-150-700  53.58 64722 64722  0.0% 51.38 1.50 64722 64722  0.0% 11.63
58-36-180-700  42.30 49225 49225 0.0% 164.57 0.98 49225 49225 0.0% 34.26
58-36-200-700  62.03 24632 24632  0.0% 80.03 2.12 24632 24632 0.0% 30.48
58-36-250-700 46.64 116424 116424 0.0% 2271.38 1.14 116424 116424 0.0% 632.19
59-36-100-700  46.65 3566 3566 0.0% 511.11 0.78 3566 3566 0.0% 99.67
59-36-130-700  50.34 4956 4956  0.0% 1147.60 1.28 4956 4956 0.0% 201.27
59-36-150-700  60.56 5374 5374 0.0% 79.93 1.12 5374 5374 0.0% 14.84
59-36-180-700  52.15 83504 83504 0.0% 256.82 1.36 83504 83504 0.0% 56.59
59-36-200-700  55.35 46808 46808 0.0% 73.87 1.31 46808 46808 0.0% 14.88
59-36-250-700  63.43 96410 96410 0.0% 82.01 1.86 96410 96410 0.0% 24.60
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Table C.14: Results from solving the arc-based and node-based formulations via Branch-and-Price in
instances from Vasco and Morabito (2016b).

Arc-demand Node-demand

Instance
TRoot UB ILPOV Gap TBP TRoot UB ILPOV Gap TBp

53-36-130-300-p1 3298 17437.6 17437.6 0.0% 46.89 0.53 17437.6 17437.6 0.0%  0.45
53-36-130-300-p2 29.10 19260 19260  0.0% 29.10 0.24 19260 19260 0.0% 0.24
53-36-130-300-p3 31.03 16633.8 16633.8 0.0% 409.09 041 16634.2 16633.8 0.0% 1.24
53-36-130-300-p4 36.83 19560 19560 0.0% 36.83 0.34 19560 19560 0.0% 0.34
53-36-130-300-p5 29.08 18169.2 18169.2 0.0% 29.08 0.20 18169.2 18169.2 0.0% 0.20
53-36-130-300-p6 33.00 19969.4 199694 0.0% 33.00 0.28 199694 199694 0.0% 0.28
53-36-130-300-p7 3151  19213.8 19213.8 0.0% 31.51 0.30 19213.8 19213.8 0.0% 0.30
53-36-130-300-p8 29.23 18472.6 18472.6 0.0% 127.94 0.17 18472.6 18472.6 0.0% 1.46
53-36-130-300-p9 36.74 15371.4 153714 0.0% 36.74 0.30 153714 153714 0.0% 0.30
53-36-130-300-p10  25.20 18344.8 18344.8 0.0% 25.20 0.19 18344.8 183448 0.0% 0.19
53-36-130-300-p11  36.01 16799.6 16799.6 0.0% 46.50 0.17 16799.7 16799.6 0.0% 2.04
53-36-130-300-p12  34.73 22008.4 22008.4 0.0% 34.73 0.33 22008.4 22008.4 0.0% 0.33
53-36-130-300-p13  37.51 19628.2 19628.2 0.0% 80.58 0.15 196282 19628.2 0.0% 0.93
53-36-130-300-p14  31.77 19616.6 19616.6 0.0% 31.77 0.22 19616.6 19616.6 0.0% 0.22
53-36-130-300-p15  38.57 20673.2 20673.2 0.0% 38.57 0.25 20673.2 20673.2 0.0% 0.25
53-36-130-300-p16  36.01 17796.2 17796.2 0.0% 36.01 0.23 17796.2 17796.2 0.0% 0.23
53-36-130-300-p17  33.52 17345.2 173452 0.0% 33.52 0.18 17345.2 173452 0.0% 0.18
53-36-130-300-p18  36.62 17849.2 17849.2 0.0% 82.99 0.51 17849.2 17849.2 0.0% 0.78
53-36-130-300-p19  37.23 18190.6 18190.6 0.0% 37.23 0.21 18190.6 18190.6 0.0% 0.21
53-36-130-300-p20  36.26 20754.4 207544 0.0% 36.26 0.24 207544 207544 0.0% 0.24
53-36-130-300-p21  44.80 16953.2 16953.2 0.0% 44.80 0.33 16953.2 16953.2 0.0% 0.33
53-36-130-300-p22  37.64 18699.2 18699.2 0.0% 37.64 0.36 18699.2 18699.2 0.0% 0.36
53-36-130-300-p23  34.35 21525.6 21525.6 0.0% 34.35 0.28 21525.6 21525.6 0.0% 0.28
53-36-130-300-p24  27.34 18266.2 18266.2 0.0% 27.34 0.17 18266.2 18266.2 0.0% 0.17
53-36-130-300-p25 33.85 17064.8 17064.8 0.0% 33.85 0.28 17064.8 17064.8 0.0% 0.28
53-36-130-300-p26 ~ 30.16 203244 203244 0.0% 30.16 0.23 203244 203244 0.0% 0.23
53-36-130-300-p27  27.10 20003 20003 0.0% 27.10 0.21 20003 20003 0.0% 0.21
53-36-130-300-p28  37.92 17956 17956  0.0% 37.92 0.24 17956 17956  0.0%  0.24
53-36-130-300-p29  30.23 19074.6 19074.6 0.0% 30.23 0.22 19074.6 190746 0.0% 0.22
53-36-130-300-p30  33.68 16464.6 16464.6 0.0% 33.68 0.22 16464.6 16464.6 0.0% 0.22
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