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Resumo

O Problema de Alocação de Veı́culos (VAP) consiste em alocar uma frota de veı́culos para atender a de-

manda por serviços de transporte de carga entre terminais ao longo de um horizonte de planejamento. O

objetivo é maximizar os lucros gerados pelos serviços completados. Prévias abordagens determinı́sticas

e estocásticas utilizaram procedimentos heurı́sticos e de aproximação para resolver instâncias de grande

porte para o problema. Esta tese contribui com modelos e métodos de solução exatos para resolver efe-

tivamente instâncias do VAP de grande porte.

O primeiro método é um algoritmo Branch-and-Benders-Cut para resolver a formulação baseada na

rede de espaço-tempo do VAP. A reformulação de Benders resulta num subproblema com estrutura de

Problema de Fluxo de Custo Mı́nimo para cada tipo de veı́culo onde o �uxo é constituido por veı́culos

vazios exclusivamente. Nós propomos duas desigualdades válidas para tentar reduzir o número de

cortes de factibilidade e otimalidade necessários para atingir a solução ótima. Adicionalmente, uti-

lizamos algoritmos de �uxo em redes para acelerar o processo de geração de cortes. Experimentos

computacionais são mostrados para instâncias geradas aleatóriamente.

O segundo método é um algoritmo exato do tipo Branch-and-Price (BP), o qual proporciona soluções

ótimas ou certi�cados de qualidade para resolver problemas de grande porte em tempos computacionais

razoáveis. Este método é o resultado de reformular o modelo compacto de Programação Linear In-

teira do VAP por meio da reformulação Dantzig-Wolfe e utilizar procedimentos e�cientes para tratar

cada componente da reformulação. O Método de Geração de Colunas Primal-Dual (PDCGM) é usado

para resolver o problema mestre, enquanto o subproblema é modelado como um Problema de Fluxo de

Custo Máximo e resolvido via agregação de soluções ótimas de caminhos máximos em Grafos Acı́clicos

Direcionados (DAG). Finalmente, propomos três procedimentos de rami�cação para obter a solução

ótima inteira do VAP. Experimentos computacionais com instâncias de um estudo de caso e instâncias

aleatórias de tamanho realista são apresentadas e analisadas, o qual mostra a superioridade do método

proposto quando comparado com outros métodos exatos para resolver instâncias de grande porte do

VAP.

O terceiro método está baseado em preprocessar o grafo de espaço-tempo e reformular o problema

em termos de quantos veı́culos vazios rotear entre os nós de demanda (arcos no modelo prévio). O



tamanho do modelo resultante depende do número de nós de demanda e o tamanho da frota, o qual

pode ser vantajoso quando o número de pares terminal-perı́odos na rede de espaço-tempo é grande

comparado com o número de arcos de demanda. Nos propomos um método BP baseado na reformulação

Dantzig-Wolfe deste novo modelo. Os resultados de ambas, a reformulação resolvida com um solver de

proposito geral e o BP, mostram a superioridade desta nova abordagem para resolver instâncias de

tamanho realista para o VAP.

Palavras-chave: Problema de Alocação de Veı́culos, decomposição de Benders, decomposição de Dantzig-

Wolfe, geração de colunas, transporte rodoviário de carga, logı́stica.
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Abstract

�e Vehicle Allocation Problem (VAP) consists in allocating a �eet of vehicles to a�end the expected

demand for road freight transportation between terminals along a �nite multiperiod planning horizon.

�e objective is to maximize the pro�ts generated for the completed services. Previous determinis-

tic and stochastic approaches used heuristic procedures and approximation methods for solving large

scale instances of this problem. �is thesis contributes with models and solution methods for solving

e�ectively large-scale instances of the VAP.

�e �rst method is Branch-and-Benders-Cut (BBC) for solving the space-time network formulation

of the VAP. �e Benders reformulation results in each subproblem being a multiple origin-destination

minimum cost �ow problem among empty vehicles exclusively. We propose two valid inequalities in or-

der to reduce the number of infeasible cuts needed to reach a feasible and optimal solution. In addition,

we use network �ow algorithms in trying to accelerate the process of cut generation. Computational

results are shown for randomly generated instances.

�e second method is a tailored exact Branch-and-Price (BP) procedure, that provides optimal solu-

tions or certi�cates of quality, for solving large-scale problems within reasonable computational times.

�is method is the result of reformulating a compact Integer Linear Programming model of the VAP

through the Dantzig-Wolfe (DW) decomposition and using e�cient procedures for solving each com-

ponent of the reformulation. �e Primal Dual Column Generation Method (PDCGM) is used to solve

the master problem, while the subproblem is modeled as a Maximum Cost Flow Problem and solved

using the aggregation of optimal longest paths problems on Directed Acyclic Graphs (DAG). Finally, we

resort to three branching procedures to obtain the optimal integer solution of the VAP. Computational

experiments with instances from a case study and random realistic-sized instances are presented and

analyzed, showing that the method has a superior performance with respect to other exact approaches

in solving large-scale VAP instances.

�e third method is based on preprocessing the time-space extended graph and reformulating the

problem in terms of routing empty vehicles along demand nodes. �e resulting model’s size depends

on the number of demand nodes (arcs in the previous model) and �eet size, which can be advantageous

when the number of terminal-period pairs in the time-space extended network is large compared to



the actual number of loads requested. We propose a BP method based on the DW reformulation of this

new modelling approach. �e results of both, the reformulation solved by CPLEX and the BP, shows

the superior performance of this new approach in solving realistic-sized instances of the VAP.

Key words: Vehicle Allocation Problem, Dantzig-Wolfe decomposition, Benders decomposition, col-

umn generation, road freight transportation, logistics.
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Chapter 1

Introduction

Freight transportation plays an important role in supply chains and the overall economy, since it sup-

ports production, trade and consumption activities by ensuring the e�ective movement of available

resources, ranging from raw materials to �nished goods. �us, it is not a surprise that transportation

accounts for a signi�cant part of the national expenditures of any country and directly a�ects the com-

petitiveness and trading capacity of a country in the world trade system. �is fact can be seen by the

growing participation of the Brazilian economy through exports and purchasing power per capita, and

the increment of transportation as a percentage of participation in the Gross Domestic Product, rising

from 3.7% to 6.9% between 1985 and 2019
1
.

Several factors impact the e�ciency of road freight transportation in Brazil. �e most alarming

one being the overburdened road system when compared to other countries of continental dimensions,

such as USA and Canada. According to data from the National Confederation of Transportation (CNT),

approximately 59% of freight transportation in Brazil (and 93 % in the State of São Paulo) is moved

through the road system
2
. Additionally, the conditions of the national �eet and roads, on average, are

far below those of the aforementioned countries. �ese facts create a di�cult environment to manage

transportation operations e�ciently at a national level (Ribeiro and Ferreira, 2002).

Apart from the inadequate conditions of the physical resources involved in transportation, there are

other factors that impact freight transportation operations. Such is the case of the emergence of time-

sensitive paradigms for planning and executing supply chain operations (e.g. Just-In-Time and �ick-

Response-Manufacturing) whose concern for reducing lead times tightens the �exibility for carriers

to maneuver their resources in moving products among di�erent locations (Chase et al., 1998). As a

result of these changes, carriers have to rely on information technologies to enhance their response

capabilities to customers and stay competitive in this evolving market. Among those technologies that

1

Source: h�ps://data.oecd.org/brazil.htm#pro�le-economy; IBGE, Diretoria de Pesquisas, Coordenação de Contas Na-

cionais h�p ://www.ibge.gov.br Accessed: 21-04-2020

2

Source: FIESP, h�p://www.�esp.com.br/transporte-e-logistica/matriz-de-transporte/ Accessed: 30-07-2021
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have revolutionized the sector, are: Electronic Data Interchange (EDI) and the internet, which speed up

the exchange of information between organizations and customers; Global Positional Systems (GPS),

which allows to control and track on real-time the movement of vehicles; and Decision Support Systems

(DSS), which supports a more robust decision making process for the organization (Crainic, 2003; Roy,

2001).

Considering the challenges faced by carriers where inherently complex transportation operations

have to be planned and executed in uneasy environments as a result of the aspects mentioned above,

this work aims at contributing with optimization tools, which serves as a basis for developing DSS, to

support decisions faced by road freight carriers in managing their �eet. As a consequence of di�erent

demand levels for transportation services among geographically dispersed locations, it is common for

vehicles to accumulate in some regions whereas falling short in some others where they are indeed

needed. Even though the repositioning of empty vehicles do not contribute to the pro�ts of carriers

(their operational costs have to be covered by loaded trips), these movements are essential for providing

continuity to the overall operations of freight transportation. Hence, repositioning empty resources like

vehicles constitutes an important component in the planning activities of carriers. In this context, the

Vehicle Allocation Problem (VAP) comes out as a tool for supporting these decisions, and consists in:

given a set of demands for freight transportation services among di�erent terminals, how to reposition

vehicles so as to serve these demands, maximize the generated pro�ts and minimize the cost of empty

trips.

1.1 Objectives and Contributions

Previous works that treated the VAP in solving large realistic-size instances faced by Brazilian freight

carriers resorted to heuristic and metaheuristic techniques as the computational limitations of general-

purpose solvers did not allow to process these instances (Vasco and Morabito, 2016a,b). Although this

approach is pragmatic as it yields feasible solutions for the problem at hand, it poses the predicament to

the decision maker of not being able to evaluate how good are the solutions to be implemented. Hence,

the objective of this work is to study the VAP and to develop modelling approaches and exact solution

methods that provide optimal solutions or, at least, quality certi�cates of the solutions for large-scale

realistic-size instances. �e main contributions resulting from this work are: a Branch-and-Benders-

Cut (BBC) for solving the VAP, a Branch-and-Price (BP) method for solving large-scale instances of the

VAP, and �nally, a new formulation, the node-demand formulation, based on sequencing requests for

solving the VAP, and a BP method for solving this new formulation.
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1.2 Organization

�e remainder of this text is organized as follows: Chapter 2 presents a brief description of the freight

transportation operations and introduces the VAP, its deterministic mathematical formulation and a

toy-problem to illustrate the problem and facilitate its understanding. Chapter 3 presents the literature

review of the problem being studied. Chapter 4 presents the BBC for the arc-demand formulation of

VAP. Chapter 5 presents a BP method for solving the arc-demand formulation of the VAP. Chapter 6

presents a new formulation of the VAP and a BP method for solving this new formulation. Finally,

Chapter 7 presents the conclusions of this work and some perspectives for future research.
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Chapter 2

Freight Transportation

In this chapter, we brie�y describe freight transportation activities, as well as introduce the Vehicle

Allocation Problem (VAP).

2.1 Description of Freight Transportation Activities

Freight transportation is an essential component of any economy as it enables to shorten distances

between geographically separated supply and demand locations. Freight transportation can be divided

into �ve categories or modes, each one presenting distinct advantages, depending on the characteristics

of the load and the service required. �e modes are: railway, roadway, maritime, pipeline and airway.

Table 2.1 shows a comparison of these modes across �ve characteristics, being �ve the most favourable

and one otherwise (Ribeiro and Ferreira, 2002).

Characteristics Railway Roadway Maritime Pipeline Airway

Velocity 3 2 4 5 1

Availability 2 1 4 5 3

Reliability 3 2 4 1 5

Capacity 2 3 1 5 4

Frequency 4 2 5 1 3

Table 2.1: Operational Characteristics of Transportation Modes. Source: Ribeiro and Ferreira (2002).

Although each mode bears distinct advantages for each type of freight, Table 2.2 shows how unbal-

anced is the Brazilian transportation mode matrix, favouring the roadway system. With high logistics

costs incurred, as a consequence of the fewer options and hence inadequate modes of transportation in

some regions, the internal competitiveness is upset in the Brazilian market, especially within the less

developed regions (North and North-East). According to data from the Logistics and Transportation

National Plan (PNLT), the avoidable logistics costs (either in the internal or external market) are in

the order of US$2.5 billions per year. In view of the high participation of transportation costs within
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the overall logistics costs (approximately 31.8%), a more balanced transportation matrix would result

in a signi�cant cost reduction and a bene�t for the national economy
1
. Furthermore, considering that

changes directed to balance the transportation matrix involves long-term planning of di�erent actors,

it is important to develop tools that support an e�ective decision-making process of transportation

operations on the already overburdened road system.

Freight Transportation Matrix
Mode Millions (Tons per kilometer) Proportion (%)

Roadway 485.625 61.10%

Railway 164.809 20.70%

Maritime 108 13.60%

Pipeline 33.3 4.20%

Airway 3.169 0.40%

Total 794.903 100%

Table 2.2: Freight Transportation Matrix. Source: Serrano Colavite and Konishi (2015).

�e freight road transportation system can be divided in two categories. In long-haul or large-scale

freight transportation, goods are moved over long distances, the time-span of the involving activities

(trips, loading and unloading at terminals, among others) are long and loads (goods aggregated to a

single unit in order to be transported) are high-volume and big-weight, which limits their handling

at certain facilities and places. In short-haul or short-scale freight transportation, the services have

a limited coverage in terms of distances and times. Given the smaller loads (single boxes or single

products), it is easier to interact closer to the consumer (Crainic, 2003). In this work, the long-haul

freight transportation is the one to be approached.

Long-haul freight transportation systems can be divided in two subcategories, depending on the

entity transporting the loads: the shipper (producer) is the same carrier (the shipper owns its own �eet

and other resources necessary for moving loads) or the transporter can be a logistics operator, a “for

hire” carrier. In the former, there exists a limited number of origins that correspond to the company’s

facilities and a varied number of destinations. In this globalized environment, companies frequently

prefer to concentrate their e�orts in their core activities and turn to the la�er, logistics operators, to

perform their transportation activities. Logistics operators serve the transportation demands of several

companies at the same time, with di�erent points of origin-destination, di�erent types of loads, thus

turning their activities more complex when compared to the transportation activities of shippers with

their own �eet. In this work, the logistics operator decisions are the ones to be treated.

Logistics operators usually o�er two types of services: customized services and consolidation ser-

vices. In customized transportation, such as Truckload Trucking (TL Trucking), carriers o�er a typical

door-to-door long distance transportation. In this mode, each vehicle (or convoy of vehicles) is dedi-

1

Source: Plano Nacional de Logı́stica e Transportes Accessed: 21-04-2020.
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cated exclusively to one customer. When a customer calls for a service, a driver/truck is assigned to

it, and the vehicle is deadhead to the customers location to be loaded. �en, the vehicle moves to the

destination; thus performing the long-haul transportation part of the operation. When the vehicle is

unloaded, the driver informs its current state (location, loading state) to the central planner or dis-

patcher who decides if the vehicle waits for another demand to be served at the same location or move

to another more strategical location to anticipate a possible future demand.

Sometimes, transportation services cannot be customized because the loads are too small to call

for a full truckload service, or even it would be too expensive to hire smaller vehicles for that cause.

In that case, carriers provide consolidation of loads to serve customers while taking advantage of the

economies of scale provided by a truckload. One such service that works on the road system is the

Less-than-Truckload Trucking (LTL Trucking). When demands of several customers are served by

a common vehicle or convoy of vehicles, services cannot be tailored individually for each customer.

�erefore, carriers rely on a set of regular services and a network of hubs that supports those services.

Hubs are distribution centres or cross-docking facilities whose objective is to consolidate and reorganize

the goods into loads. Based on the portfolio of customers, the carriers establishes a set of schedules or

rules, and routes between hubs that aim at ful�lling the demands e�ectively. Figure 2.1 shows a typical

�ow of operations for a LTL trucking operator. �e cycle begins by collecting some goods that need

to be transported, which are transferred to the information processing centre. By means of a Decision

Support System (DSS) or based on the experience of the dispatcher, a vehicle picks-up the load and takes

it to a end-of-line terminal or hub, where they are unloaded and related information and documents are

veri�ed (Bill of Lading): weight, dimensions, type of freight, quantity, among others. �en, the load is

classi�ed according to its immediate destination and loaded in line-haul trailers, or simply moved to a

nearby break-bulk terminal in order to be classi�ed and consolidated. At this point begins the long-haul

part of the transportation where trucks are used to move big loads along distances (Roy, 2001).

Trailers are routed across intermediary terminals with consolidated (grouped) loads (possibly from

di�erent origins) heading to a common destination. At this point, loads can be again unloaded, classi�ed

and loaded again. Sometimes goods can be kept in the trailer while other merchandise is added to

the trailer without needing to reorganize, which reduces the handling costs and operations time. �e

number of stop-overs at terminals depends on the level of service required by the customer. Finally, at

the destination (end-of-line) terminal, the load is unloaded, veri�ed, classi�ed, codi�ed and moved to

the docks where smaller vehicles will deliver them. It is customary to transport the line-haul shipments

among terminals at night, so as to make deliveries at the beginning of each day.

One of the major problems faced by the carriers in both cases (TL and LTL Trucking) is what to do

with the vehicles a�er they make the deliveries. In the USA, for instance, empty vehicle movements
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Figure 2.1: Graphic representation of activities of LTL Trucking operator.

accounts for 18% of daily movement, which evidence a high proportion of movements that do not con-

tribute to pro�ts directly and impact the environment in a negative manner (Liu et al., 2010a). However,

due to the geographical dispersion and demand uncertainty along the planning horizon of the carrier,

it is necessary to reposition these resources in order to reduce the opportunity cost of losing possi-

ble customers. In this line, there exists the necessity to develop tools to improve the decision-making

process of this kind.

2.2 Vehicle Allocation Problem

In this context, arises the VAP, which can be brie�y described as follows. A shipper call a carrier to

move a load from location A to location B. �e carrier must deadhead a truck to the shipper where

the trailer is loaded and taken to location B. Once delivered, the carrier must decide what to do with

the truck at the arrival location. When routing the vehicle, more loads can be requested. �erefore,

at any point in time, the truck must be assigned another load, repositioned empty to another location

in anticipation of forecast loads, or held in its current location. It is important to note that there is no

consolidation of freight, as in vehicle routing or less-than-truckload routing, so that e�orts can be put

forth to e�ciently allocate vehicles (resources) to loads (tasks) over time.

Two important dimensions arise from this example that have to be considered for treating real-life

problems. First, the evolution of information, relates to the fact that in some problems the information
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available to the carrier may change during the execution of the plan, for example, the customer may

change the delivery location or loads may be called in a�er the execution of the plan. Second, the quality

of information relates to the level of certainty on the available data, for example, when customer’s

demand or travel times are only known as a range estimate. Based on these two dimensions, Pillac

et al. (2013) present a categorization for routing problems as shown in Table 2.3.

Table 2.3: Taxonomy of vehicle routing problems based on information evolution and quality.

Information �ality

Deterministic Input Stochastic Input

Information Evolution

Input known beforehand Static and Deterministic Static and Stochastic

Input changes over time Deterministic and Dynamic Dynamic and Stochastic

Source: (Pillac et al., 2013).

In static and deterministic problems, all input is assumed to be known beforehand and routes or

decisions are not changed during the execution of the plan. In static and stochastic problems, the in-

put parameters are known as random variables, minor recourse actions are considered for di�erent

realizations of the values and routes or decisions are not changed during the execution of the plan. In

deterministic and dynamic problems, part or all of the the input is unknown and revealed dynamically

during the execution of the plan. Finally, in dynamic and stochastic problems, part or all of the input

is unknown and revealed dynamically during the execution plan, however, contrary to the later cate-

gory, there is some probabilistic knowledge on the unknown data. �e last two categories, the dynamic

problems, represent an important trend for treating real life problems since technological support for

real-time communication (Geographical Positioning System - GPS and Geographical Information Sys-

tem - GIS) between the environment (changing a�ributes of the vehicles, conditions of the networks,

customers, among others) and the decision maker is more accesible nowadays, and thus can be used as

a tool to increase competitiveness for the organization (Marchet et al., 2012; Roy, 2001).

�e problem treated in this work was initially presented as the Dynamic Vehicle Allocation Problem

in the work of (Powell, 1986), where the identi�er dynamic was due to the fact that decisions are staged

over time. However, given this rather simple de�nition, it is possible to de�ne a dynamic model of

a problem in a static manner as shown in Aronson (1989) and Rockafellar (1998). �at is, a dynamic

network construct can be de�ned as a graph where each node is a pair location-time and each arc

represents a decision that extends over several periods, however, uncertainty and changing input data

is not incorporated into the model. �erefore, the con�ict over the word dynamic arises when applied

to problems and models, and that is an important distinction to make (Powell et al., 1995). A problem

is dynamic if one or more of its parameters is a function of time. �is includes problems with time-

windows and varying travel times. �e �rst type �ts into time-dependent data problems where data

is known in advance. �e second type �ts into dynamic data problems where data changes constantly
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over time.

Similarly, a model is considered dynamic when interaction between activities are explicitly incorpo-

rated over time, as in the work of Aronson (1989). Within dynamic models, it is important to distinguish

between deterministic dynamic models and stochastic models which truly captures the staging of de-

cisions and the realization of random variables. In fact, many deterministic dynamic models are solved

without considering the time-structured format of the model. By contrast, when solving stochastic dy-

namic models, speci�c steps for approaching the time-structure need to be taken into account in order

to design a solution strategy.

Finally, there is also the application of a model. In this context, the application of a model is dynamic

if it needs to be solved repeatedly or in an on-line fashion as new information is received. Hence, based

on the characterization of the de�nition of dynamism of Powell et al. (1995), the taxonomy of vehicle

routing presented in Pillac et al. (2013) refer to dynamism in the context of application of the model.

In order to keep up with the trends in the using of word dynamic, we decided to drop the identi�er

dynamic from the problem’s name as opposed to Vasco and Morabito (2016b).

2.3 An integer linear programming model for the VAP

In this section, we present a integer linear programming (ILP) model for the VAP, which is an exten-

sion of an Integer Multicommodity Network Flow Problem. We call this formulation the arc-demand

formulation, where demand is represented by arcs in a graph, as opposed to the formulation proposed

in Chapter 6 where demand occurs at the nodes of a graph. Let N be the set of terminals; T the set

of time periods; and V be the set of types of vehicles composing the �eet. Additionally, consider the

following parameters:

• τij : travel time from terminal i to terminal j, ∀i, j ∈ N .

• dijt : demand for transportation services (number of loaded vehicles) from i to j beginning at

time t, ∀i, j ∈ N , ∀t ∈ T .

• pijv : pro�t (income minus direct operational costs) obtained by serving the route from terminal

i to terminal j with a vehicle of type v, ∀i, j ∈ N , ∀v ∈ V .

• cijv : cost of moving an empty vehicle of type v from terminal i to terminal j, ∀i, j ∈ N , ∀v ∈ V .

• mitv : quantity of vehicles of type v that enter (i.e., become available) the system at terminal i at

time t, ∀i ∈ N , ∀t ∈ T , ∀v ∈ V .

• Aijv : restriction of movement between terminals i and j for vehicle type v, being 1: if the vehicle

is allowed to move, and 0: otherwise, ∀i ∈ N , j ∈ N and v ∈ V .
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Let the decision variables be:

• xijtv : �ow (number) of loaded vehicles of type v ∈ V that start moving from terminal i to

terminal j at time t to satisfy demand dijt, ∀i ∈ N , j ∈ N and t ∈ T .

• yijtv : �ow (number) of empty vehicles of type v ∈ V , that start moving from terminal i to

terminal j at time t, ∀i ∈ N , j ∈ N and t ∈ T .

From the above de�nitions, the model writes as:

max
∑
i∈N

∑
j∈N
i 6=j

∑
t∈T

∑
v∈V

(pijvxijtv − cijvyijtv) (2.1)

s.t:

∑
j∈N

(xijtv + yijtv)−
∑
j∈N,
j 6=i,
t>τji

(
xji(t−τji)v + yji(t−τki)v

)
− yii(t−1)v = mitv, (2.2)

∀i ∈ N, ∀t ∈ T, ∀v ∈ V,∑
v∈V

xijtv ≤ dijt, ∀i, j ∈ N, ∀t ∈ T, (2.3)

xijtv = 0 ∧ yijtv = 0, if Aijv = 0, ∀i, j ∈ N, ∀t ∈ T, ∀v ∈ V, (2.4)

xijtv ∈ Z+, yijtv ∈ Z+, ∀i, j ∈ N, ∀t ∈ T, ∀v ∈ V. (2.5)

�e objective function (2.1) maximizes the total pro�t over the planning horizon, which is equal

to the income generated from the loaded vehicle trips minus the cost of the empty vehicle trips. As

shown in Figure 2.2, constraints (2.2) guarantee the �ow of vehicles at each terminal i at time t for each

type of vehicle v. Constraints (2.3) establish an upper bound to loaded trips between terminals, which

equals the demand on that route. Constraints (2.4) establish the trips (loaded or empty) that can not be

made by each type of vehicle. �is constraints (2.5) impose restrictions on the variable’s domain. It is

worth mentioning that demand is de�ned in number of vehicles and all vehicle types are assumed to

have the same capacity, hence, the factor of conversion between loads for each vehicle type to ful�lled

demand is one in constraints (2.3). Nonetheless, the �eet is considered heterogeneous as owned and

hired vehicles generates di�erent costs and pro�ts (objective function (2.1)) as well as certain trips are

restricted for di�erent types of vehicles (constraints (2.4)).

Note that mitv = −1 can have the meaning of vehicles leaving the system during the planning

horizon due to scheduled �eet maintenance (and/or repairs) or �nished activities of outsourced �eet.

In some practical situations it is desirable to treat each vehicle individually instead of grouping them

into types. �is practice is purposed to improve the planning and control of the operational resources
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𝑚𝑖𝑡𝑣

𝑦𝑖𝑖(𝑡−1)𝑣

𝑥𝑘𝑖(𝑡−𝜏𝑘𝑖)𝑣 + 𝑦𝑘𝑖(𝑡−𝜏𝑘𝑖)𝑣

𝑥𝑖𝑗𝑡𝑣 + 𝑦𝑖𝑗𝑡𝑣

𝑘 ≠ 𝑖
𝑡 − 𝜏𝑘𝑖

𝑘

𝑖 𝑖 𝑗

Figure 2.2: Graphic representation of �ow conservation.

(Vasco and Morabito, 2014). Hence, each individual vehicle is considered as an individual type of vehicle

and the supply of vehicle turns into a binary parameter, i.e., mitv ∈ {0, 1}, ∀i ∈ N, ∀t ∈ T, ∀v ∈ V ,

such that

∑
i∈N

∑
t∈T

∑
v∈V

mitv = |V |.

When considering each vehicle individually, the size of the ILP model grows drastically as a function

of the number of variables and restrictions, thus, making it harder to be solved through general purpose

optimization solvers.

An important point to make is that when the �eet is homogeneous, the index v is not necessary any-

more and constraints (2.3) turn into an upper bound for an integer variable. �e resulting model of the

homogeneous �eet is a simple extension of a minimum cost �ow problem for which exact polynomial

algorithms exists. Nonetheless, the problem we are solving in this work contemplate di�erent pro�ts,

costs and restriction of movements on the arcs for each vehicle type, which makes it an extension of

the multicommodity cost �ow problem for which there is no polynomial algorithm (Ahuja et al., 1993).

�is model can be extended to represent situations in which vehicles need to disappear from the

network during the planning horizon. �ese events can be due to scheduled maintenance or �nishing

activities by outsourced vehicles, among others. �e extension can be done by allowing mitv to take

negative values, thus representing the quantity of vehicles of type v ∈ V that exit the system at terminal

i ∈ N in period t ∈ T .

2.3.1 Illustrative Example

To facilitate the understanding of the mathematical model for representing the problem, the following

is a small-scale example.
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Figure 2.3: South-east Brazil.

Brasília

Uberaba
Belo Horizonte

Sao Paulo

Curitiba

Figure 2.4: Set of terminals.

39



TransBras is a TL trucking logistics operator acting in the south-east region of Brazil, see Figures

2.3 and 2.4. Four requests for transportation of full loads were made: from Brasilia to Belo Horizonte

one load the �rst day, from Sao Paulo to Belo Horizonte three loads the second day, from Uberaba to

Sao Paulo one load the fourth day and from Curitiba to Brasilia one load the ��h day (Figure 2.5). �ere

are two available type-1 trucks the �rst day in Curitiba and there will be two type-2 trucks available the

second day in Uberaba. Travel times between the cities are estimated based on an average speed and are

presented in Table 2.4. Pro�t for servicing each demand and costs incurred from moving empty truck

are presented in Tables 2.5 and 2.6. Let T = {1, ..., 4} be the set of periods (days) and N = {Brasilia,

Belo Horizonte, Uberaba, Sao Paulo, Curitiba} = {1, ..., 5} be the set of terminals. �en, the demand

is represented as: d121 = 1, d422 = 3, d344 = 1, d515 = 1.

Brasília

Uberaba
Belo Horizonte

Sao Paulo

Curitiba

1 load on
4th day

1 load on
5th day

1 load on
1st day

3 loads on
2nd day

Figure 2.5: Problem’s parameters.

Table 2.4: Travel times between terminals for the TransBras example.

τij 1 2 3 4 5

1 0 1 2 1 3

2 1 0 1 2 2

3 2 1 0 1 2

4 1 2 1 0 1

5 3 2 2 1 0

�ere are two types of vehicles, i.e., |V | = 2. In addition, trips between Brasilia and Belo Horizonte

are not allowed due to road maintenance, i.e., A121 = A211 = A122 = A212 = 0. Figure 2.6 shows a
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Table 2.5: Cost of empty vehicle movement for the TransBras example.

cijv 1,1 2,1 3,1 4,1 5,1 1,2 2,2 3,2 4,2 5,2

1 0 1 2 2 2 0 3 3 2 2

2 1 0 2 2 2 3 0 3 3 2

3 2 2 0 2 1 3 3 0 1 2

4 2 2 2 0 1 2 3 1 0 3

5 2 2 1 1 0 2 2 2 3 0

Table 2.6: Pro�ts for the TransBras example.

pijv 1.1 2.1 3.1 4.1 5.1 1.2 2.2 3.2 4.2 5.2

1 0 1.8 3.6 3.6 3.6 0 4.2 4.2 3.6 3.6

2 1.8 0 3.6 3.6 3.6 4.2 0 4.2 4.2 3.6

3 3.6 3.6 0 3.6 1.8 4.2 4.2 0 4.5 3.6

4 3.6 3.6 3.6 0 3.6 3.6 4.2 4.5 0 4.2

5 3.6 3.6 1.8 3.6 0 3.6 3.6 3.6 4.2 0

graphic representation of the problem’s parameters over an extended space-time network. �e bold and

small arrows represent arcs were there are demand for loaded trips and supply of vehicles at terminals,

respectively. �e optimal solution for the VAP is presented in Figure 2.7. �e solid arrows represent

full-load vehicle movements, for instance, 2 type-1 loaded vehicles travel between terminals 4 and 2

starting at period 2. �e dash arrows represent empty vehicle movements or vehicles held idle in the

same terminal, for instance, 2 type I empty vehicles travel between terminals 5 and 4 starting at period

1 while 2 type-2 vehicles are held idle for 1 period starting at terminal 2 and period 2.
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Figure 2.6: Problem’s parameters in the space-time network.
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Figure 2.7: Optimal solution for the TransBras example.
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Chapter 3

Literature Review

�is section presents a literature review of works related to allocation of vehicles that serve freight

transportation. We �rst describe two modelling approaches for dealing with the present problem within

the mathematical programming paradigm: network �ow formulations and vehicle routing formula-

tions. In addition, we present works on related problems that use decomposition methods.

3.1 Arc-demand formulations

�is section describes the deterministic and stochastic models that were developed for the problem of

allocating vehicles based on the arc-demand formulation.

Powell et al. (1984) use a time-space expanded graph to represent the time-dependent aspect of the

decision making process in the allocation of empty vehicles. Given the demand is random, supply of

vehicles beyond the �rst time period is also random. �erefore, the �ow of vehicles corresponds to the

fraction of the supply at each terminal to be sent, and that quantity is determined before the actual

demand is realized. Given this assumption, the model generates empty miles by moving vehicles that

are not loaded.

Powell (1986) proposes an alternative model that allows vehicles to be held in inventory from one

period to another (null recourse) when the realized demand falls short from the outbound quantity of

vehicles. �e decisions to be taken correspond to: how many vehicles to send empty between terminals,

how many vehicles should be held at a given terminal and how many vehicles should be allowed to

handle demand between terminals. Given the structure of the constraints, the authors use the Frank-

Wolfe algorithm for solving the problem.

Dejax and Crainic (1987) propose a taxonomy of empty repositioning problems, looking to increase

the knowledge of these systems and identify possible trends for future research. �e authors present

a classi�cation based on scope and coverage, which they consider pertinent for the study of empty
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repositioning problems: operational models and policy-taking models.

Hughes et al. (1988) study the “end-e�ects” which are the result of considering a �nite number of

periods in the problem of allocating vehicles. Ideally, it would be desirable to consider in�nite planning

horizons; however, because of the resulting complexity of the problem, it is necessary to truncate the

number of periods. �e problem with truncation is that relevant information of the periods outside

the planning horizon is not taken into account in the analysis, which can lead to suboptimal solutions

in the global context of the operations. �e authors present three methods to mitigate these e�ects:

Dual Equilibrium, Generalized Summation e Leontie� Approximation. Although truncating the number

of periods can have negative e�ects in long-term solutions, considering long periods when treating

uncertain demands can also be counterproductive. According to Sethi and Sorger (1991), the main

reason for considering �nite planning horizons is that forecast of future distant demands tend to have

low reliability. For this reason, the idea is to de�ne a forecast horizon, which is the necessary number

of periods in order to establish optimal policies for allocating vehicles without being a�ected by the

remaining periods.

Frantzeskakis and Powell (1990) propose an N-stage stochastic programming formulation for the

VAP. As in previous models, the travel times are deterministic one-period discrete parameters, the �eet

is homogeneous and the demand for services beyond the current day of decision making is random.

Loads that cannot be serviced are assumed to be lost. Given that partitioning methods that were devel-

oped for problems with �xed recourse would eliminate the network structure for this formulation that

bears the property of network recourse, the authors propose a heuristic based on substitutions of the

expectations by linear approximations for maintaining the desired property in order to use network

techniques for solving the problem. �e method is named Successive Linear Approximation Method

(SLAM).

Cheung and Powell (1996) use the same multi-stage stochastic formulation of the aforementioned

work and propose the SCAM method (Successive Convex Approximation Method). Based on the work

of Powell and Cheung (1994), where they describe a method to �nd the exact expected function value

for a tree with random arc capacities and deterministic supply of vehicles, they develop a backward

recursion approach to successively calculate convex approximations of the expected recourse function

in each stage.

Shi et al. (2014) propose a multi-stage stochastic programming model for treating the VAP with

uncertain demands and customer chosen level of service. Given that deterministic travel times are

parameters that de�ne the form of the time-space network and varying travel times cannot be captured

within this same network, the authors model the service levels as discrete random variables. �us, an

arc in the deterministic counterpart of the problem generates multiple arcs and arrival nodes in the
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stochastic version depending on the possible realizations of the travel times at each stage. �e authors

propose a method called Successive Resource-Directive Decomposition Method (SREDM) which uses a

backward recursion framework to successively provide convex approximations of the expected recourse

functions at each stage.

Powell and Carvalho (1998) propose a formulation for treating the VAP based on logistics queue-

ing networks (LQN). �is formulation is based on discrete event dynamic systems, where demands are

queued at terminals while waiting for available vehicles. In this formulation, the authors solve sev-

eral sorting problems locally (for each terminal and each period), which consists in assigning units of

vehicles to waiting customers (or demands). In order to make the local decisions to match the global

optimization, two control mechanisms are proposed.

Erera et al. (2009) propose an adjustable robust formulation for repositioning empty resources on a

time-space expanded network. �e uncertain parameters in this model are the divergence of the nodes,

which can represent the supply of or demand for empty resources. �is approach aims at �nding a

repositioning plan that satis�es the �ow bounds and balance constraints for the nominal values of the

net supply of the nodes and is recoverable for each joint realization of the uncertain net supplies on

each node. In order to limit overconservatism of the robust repositioning solution, the authors adopt

the approach proposed in Bertsimas and Sim (2004) to restrict the potential joint realization of uncertain

parameters using an uncertainty budget as a function of the number of parameters that can take the

worst-case value. �ree strategies for the repositioning model are proposed based on the recoverable

actions.

Vasco (2012) and Vasco and Morabito (2016b) study the problem of �eet management in the context

of freight transportation in Brazil. �e authors part from a minimum cost �ow-like model stated in

Ghiani et al. (2004), and extend the model to include heterogeneous �eet, the necessity of outsourcing of

vehicles, backlog of demand (given the high level of competitiveness is detrimental to reject services),

capacity on the terminals, and restriction on the movement of vehicles through the networks. �e

resulting model is a deterministic multi-commodity network �ow problem with inventory constraints

for dealing with backlog. Because of the limitation of general purpose solver for solving the resulting

models, heuristic and metaheuristics methods like GRASP, Simulated Annealing (SA) and Ant Colony

Optimization (ACO) were used. Computational experiments were run on realistic instances of the

problem. Cruz (2017) uses this deterministic model and propose an exact method based on Dantzig-

Wolfe decomposition and Primal-dual Interior Point column generation for solving large-scale instances

with a quality certi�cate for optimal solution. Computational experiments show that for instances

where the �eet is totally disaggregated, this method gives be�er solutions in terms of e�ciency and

quality than the work of Vasco and Morabito (2016b).
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3.2 Node-demand formulations

�is section describes the main works within mathematical programming that treats the problem of

allocating empty vehicles (or resources) to requests as a variant of a vehicle routing problem. �e main

idea is to route vehicles along the requests (demand for transportation service between two locations),

while minimizing the movement of empty vehicles and complying with all requests, or maximizing the

pro�ts. In addition, in this literature there is the distinction between terminal and depot (one can be

both if the depot has an associated request that needs to be serviced), and vehicles have to end their

trips at depots exclusively.

Desrosiers et al. (1984) propose a model for treating the problem of shipping goods between a

speci�c pair of terminals or customers. �e problem is modelled as a VRP in which every vehicle has to

depart and arrive at the same depot. It is assumed that vehicles have enough capacity for carrying the

load, so that each demand between a pair of cities is represented as a node to be visited and vehicle’s

capacities are not considered. Also, each empty travel between the delivery of a load and the pickup of

another load is represented by an arc. �e objective is to minimize the empty travel costs while meeting

the demands and respecting the time windows. �ey solve the problem using Branch-and-Bound (BB)

and a set partitioning formulation using column generation. �e subproblem for pricing feasible routes

is a shortest path with time windows that is solved using an adaptation of Bellman-Ford algorithm, in

which labels are two dimensional (arrival time, cost of route).

Desrosiers et al. (1988) propose a model for treating the problem of shipping goods between a

speci�c pair of terminals or customers, and shipments constitute one or more full vehicle loads. It is

assumed there are several depots and each vehicle has to depart and arrive at the same depot. �e

objective is to minimize the total distance travelled while meeting all the demand for full loads and

respecting the duration of each trip to a prespeci�ed time duration. �e authors use an extended graph

to reformulate the problem as an asymmetrical distance constrained TSP. �e problem is solved by a

BB algorithm in which subtour elimination constraints are initially relaxed.

Powell et al. (2000) propose an adaptive heuristic labelling algorithm for solving the assignment

of trucks to loads. �e algorithm is based on updating labels for loads and tasks in an online fashion.

Labels of loads contain a�ributes that include: origin, destination, start of origin time window, end

of origin time window and length of task. Labels for drivers contain a�ributes that include: location,

time of availability, hours of service elapsed at any given time and daily duty time allowance. �e

model contains nonlinear restrictions and subtour elimination constraints. �us, the authors propose

two algorithms in which these restrictions are relaxed and the labels are updated by solving simpler

problems (network �ow problems) with penalization of the subtour constraints.
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Arunapuram et al. (2003) propose a model for solving the multiple depot vehicle routing-scheduling

problem with full truckloads. �e objective is to minimize the travelled distance while meeting all

demands for full loads with the vehicles available at each depot. �e problem is formulated as an ILP

with variables corresponding to feasible routes. �e ILP is solved using an LP-based BB using column

generation. Based on Desrochers and Soumis (1988), the authors proposed a DP algorithm for solving

the pricing problem that takes into account time windows and waiting costs for generating feasible

routes. Cuts are added to tighten the LP relaxation and branching procedures are based on the number

of vehicles and the selected routes.

Li and Lu (2014) proposed an extension of the full truckload vehicle routing problem. In their

problem, it is allowed that there are more than one delivery terminal for a single pick-up terminal, and

one order is served several times by the same or di�erent vehicles. �e vehicles are required to satisfy:

1) the maximum load of each route does not exceed the vehicle’s capacity, 2) the total travel time does

not exceed the maximum duration and 3) the carrier vehicles are limited and the whole �eet departs

and arrives at the same depot. Also, the outsourcing of �eet is allowed when necessary and pro�table

for the carrier. �e objective is to maximize the pro�ts of the logistics company. Since the problem has

embedded a Chinese Postman Problem, it is NP-hard and the authors opt for a hybrid genetic algorithm

for solving large scale instances.

Gendreau et al. (2015) study the one-commodity-full-truckload pickup-and-delivery problem, which

is a especial case of the pickup-delivery vehicle routing problem in which the demand of a customer

has to be delivered right a�er picking-up the corresponding load. It is assumed that the demand is

unitary (one load per trip and vehicle) between pairs of terminals. �e authors proposed two models

that integrates a routing and an assignment problem in two fashions: an integrated nonlinear model and

an integrated linear model. �e structure of the integrated models lends themselves for using Benders

decomposition and Generalized Benders Decomposition, respectively. Both reformulations are solved

using Branch-and-Cut (BC) algorithms.

Gronalt et al. (2003) propose a model for the problem of pickup and delivery of full truckloads un-

der time window constraints. �e objective is to minimize the empty travelled distance while meeting

all the demands and respecting the time windows for each order. �e authors propose four heuris-

tics: a saving algorithm, an opportunity saving algorithm, a simultaneous saving algorithm and the

opportunity simultaneous saving algorithm.

Liu et al. (2010a) propose a model for treating a problem called the multi-depot capacitated arc

routing problem with full truckloads. �e objective is to determine the tours for a set of vehicles located

at di�erent depots to serve a set of orders and minimize the total shipping costs. �e problem is NP-

hard, hence the authors proposed a two-phased heuristic for �nding feasible solutions. Liu et al. (2010b)
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propose a model for an extension of the problem called the task selection and routing full truckload

problem. In this problem, the carrier has to decide which services for full load transportation are served

by private �eet and outsourced �eet. Each vehicle has to depart and arrive at the depot while respecting

a given time span. It is assumed that each service can be served by only one vehicle, thus a service node

(equivalent to a pair pick-up-delivery arc) can be visited only once. �e objective is to minimize the

�xed and variable costs incurred by the travel of each vehicle. A memetic algorithm is used to solve

large instances of the problem.

Bai et al. (2015) propose a set covering model for solving the problem of transporting a large num-

ber of non-consolidatable commodities (containers) between a relatively small number of nodes (docks),

satisfying time window constraints concerning commodities and drivers. �e model is tailored to meet

speci�c features, such as: shi�-based schedules due to labor laws, consideration of service times at

terminal since they are not so di�erent from travel times, large variation of time windows for each

commodity and a large number of commodities to handle in short periods over a small network of

physical locations. �e objective is to create a set of vehicle routes to deliver all commodities at mini-

mum cost while respecting time windows. �e authors propose a three-stage heuristic solution.

Coslovich et al. (2006) propose an ILP model for treating the problem of container management

by the truckload carriers. �e solution method consists in relaxing the constraints that couples the

di�erent decision in a Lagrangean fashion and obtain lower bound through subgradient optimization

and upper bounds by construction heuristics.

3.2.1 Summary of the reviewed works and research development for this work.

Several works have been presented that solve the VAP or another related problem that consists in

allocating empty resources to serve demand for road freight transportation services. Two main lines

within mathematical programming were identi�ed for dealing with this problem: network �ow and

fulltruckload formulations. �ere is another line of research based on dynamic programming, which

is not discussed in the present work given its algorithmic approach di�ers from the one presented in

this work. �e following studies serve as a good starting point for the reader interested in this line of

research: Godfrey and Powell (2001, 2002a,b); Powell et al. (2002); Spivey and Powell (2004). Table 3.1

summarizes the relevant characteristics of all works that are directly related to the VAP.

48



Table 3.1: Relevant characteristics for the current work on the VAP

Articles Deterministic Stochastic Heuristic Exact Small-scale Large-scale Outsourcing

Powell (1986) x x x

Frantzeskakis and Powell (1990) x x x

Cheung and Powell (1996) x x x

Shi et al. (2014) x x x

Vasco and Morabito (2014, 2016b) x x x

Cruz (2017) x x x

Powell and Carvalho (1998) x x x

Erera et al. (2009) x x x

Powell et al. (2000) x x x x

Desrosiers et al. (1984) x x x

Desrosiers et al. (1988) x x x

Arunapuram et al. (2003) x x x

Li and Lu (2014) x x x x

Gendreau et al. (2015) x x x

Gronalt et al. (2003) x x x

Liu et al. (2010a) x x x x

Bai et al. (2015) x x x

Coslovich et al. (2006) x x x

From the reviewed works of the previous sections, it can be noted that many studies of the space-

time network and dynamic systems do not treat the multi-commodity case which is important and

add complexity to the problem (Ahuja et al., 1993; Bertsekas, 1998). Other important aspect, is the

lack of works addressing outsourcing possibilities in the network �ow formulations. Finally, there

is a gap in exact solution methods for solving large-scale instances of the deterministic network �ow

formulation of the VAP. �e present work aims at �lling these gaps by proposing exact solution methods

for solving large-scale instances of the deterministic VAP considering the multi-commodity case. It is

worth mentioning that exact decomposition-based methods have been used successfully to solve other

network �ow problems as stated in Section 3.3, hence the approach we take for developing our proposed

method for the VAP. Furthermore, we propose a reformulation based on the node-demand literature and

an exact method based on a BP for this new formulation. It should be noted that Gendreau et al. (2015)

developed an exact solution method for solving large-scale instances of a similar empty repositioning

problem. However, there is one aspect that di�erentiates their work from ours. �e empty container

repositioning problem they consider enables the possibility of a delivery terminal to be served from

one among many pickup terminals. �is is not the case for the problem we are currently dealing with,

in which the pair pickup-delivery terminal is prede�ned.
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3.3 Decomposition methods on related problems

�is section describes the main works that use decomposition methods for solving related network

�ow-based logistics problems. �e works reviewed in this section show promising results by apply-

ing decomposition methods to related NP-hard problems, namely the Multicommodity Network Flow

Problem (MCFP) and the Capacitated Network Design Problem (CNDP). In many of these works, the

decomposition has resulted in structural simpler subproblems such as the shortest path problem.

Jones et al. (1993) evaluate the impact of the type of formulation of the MCFP on the Dantzig-Wolfe

decomposition. �ree formulations are evaluated: several supply nodes to several demand nodes per

commodity, one supply (demand) node to several demand (supply) nodes per commodity and one supply

to one demand node per commodity. �e authors conclude that, even though the compact formulation

of the one-to-one formulation is inconvenient for large scale instances, it is more e�cient when applied

to the Dantzig-Wolfe decomposition.

Barnhart et al. (1994) uses a cycle-based representation to solve the MCNFP. �is representation

consists in describing solutions for each commodity as augmenting �ow on cycles for a given initial

path (see Flow Decomposition �eorem in Ahuja et al. (1993)). �e authors use a constructive iterative

procedure based on relaxing the domain of the �ow on cycles in order to solve large scale instances

found in telecommunications operations.

Barnhart et al. (2000) propose a Branch-and-Price-and-Cut (BPC) algorithm for solving the Origin-

Destination Integer MCFP. �e pricing problem is solved using shortest path algorithms. �e branching

procedure proposed is based on the variables of the reformulation and li�ing cuts are added to break

symmetry e�ects across the tree as well as tighten the linear relaxation.

Gondzio and Sarkissian (1996) use the Primal-Dual Column Generation Method (PDCGM) for solv-

ing the non-linear MCFP. Non-linear costs in network �ow problems, as is this case, are used for mod-

elling congestion e�ects. Contrary to the classical column generation where the master problem is

solved exactly, this method begins the procedure with loose optimality tolerance, which is gradually

adjusted as the optimal solution is approached. Similar to the Analytical Center Cu�ing Plane Method

(ACCPM), this method takes advantage of the use of central prices without being computationally ex-

pensive as the ACCPM.

Holmberg and Yuan (2003) uses the column generation method to solve the MCFP with side con-

straints. �e side constraints extension is suitable for modelling delay restrictions in data �ow across

telecommunication networks. �ese side constraints are handled within the pricing problem, which

turn out to be a constrained shortest path problem. �e pricing problem is solved using a pareto-based

multiple label-correcting algorithm.
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Peeters and Kroon (2008) describe a model and a Branch-and-Price (BP) method for solving the

rolling stock circulation problem. �is problem consists in assigning train units to one or several rail-

way lines, constrained to predetermined timetables and technological aspects of the operations, in order

to minimize seat shortages (hence maximize the level of service provided). �e modelling is based on

transition graphs for each train. �e pricing problem resulting from applying the Dantzig-Wolfe (DW)

decomposition is a shortest-path problem. �e authors used an adaptation of the branching procedure

described in Barnhart et al. (2000).

Alvelos and Carvalho (2007) present an extended model and a column generation method for the

origin-destination MCFP. �is new model has additional variables associated to �ow on circuits and

additional constraints to ensure equivalency to the classical formulation of the MCFP. �e extra vari-

ables are exclusively considered in the restricted master problem, hence, the pricing problem can be

solved by shortest path algorithms.

Moccia et al. (2009) studies the dynamic generalized assignment problem, which is an extension

of the assignment problem over a time discrete graph, with warehouse and yard management related

constraints. �e authors present three formulations and show that the strongest one models the prob-

lem as a single origin-destination integer MCNFP. �e authors use a column generation embedded in

a heuristic to �nd lower and upper bounds. �e pricing problem reduces to a shortest-path problem

called the generalized cardinality-constrained shortest path problem on a layered graph (GCSPPLG),

which is shown to be polynomially solvable. �e structural properties of this problem relevant for

dynamic programming algorithms was also studied in Spivey and Powell (2004).

Gendron and Larose (2014) present a Branch-and-Price-and-Cut (BPC) algorithm for solving the

related capacitated �xed-charge network design problem. �e restricted master problem is obtained

by considering a subset of commodities of the arc-node compact formulation. �e subproblem, which

prices out arc-�ow variables, is solved through the lagrangian relaxation of the �ow conservation and

capacity constraints. Cut generation with strong inequalities is used to strengthen the linear relax-

ation and, when needed, reliability branching (see Achterberg et al. (2005)) on the �xed-charge binary

variables is applied to obtain a integer optimal solution.

Sridhar and Park (2000) propose a Benders-and-cut algorithm for the �xed-charge CNDP, which

incorporates Benders and cutset inequalities into the BB. �e authors test the algorithm on a range of

problems with di�erent tra�c loads (proportion of total demand to the capacity of the network) and

show that Benders cuts are more e�ective under heavy tra�c load, while cutset inequalities are more

e�ective under light tra�c load. �ere is an extensive review of Benders decomposition applied to this

problem in Costa (2005).
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Costa et al. (2009) study the Benders decomposition on the related multicommodity CNDP. �e

authors show the relations between three types of inequalities: Benders, metric and cutset. In addi-

tion, they highlight the importance of strengthening Benders and cutset into metric inequalities for

computational e�ciency gains.

Lee et al. (2013) propose a Benders decomposition for solving the multicommodity CNDP with de-

mand uncertainty. By �xing the design variables, the Benders subproblem results in a multicommodity

network �ow problem. Uncertainty in demand (weights in �ow variables) is addressed through the

polyhedral uncertainty set by Bertsimas and Sim (2004), which only a�ects the Benders subproblem.

�ey propose a simultaneous cut generation to accelerate the algorithms convergence.
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Chapter 4

A Branch-and-Benders-Cut method for

the VAP

In this chapter, we explore the Benders decomposition method as applied to the VAP. More speci�-

cally, we propose a Branch-and-Benders-Cut (BBC) which consists of adding Benders cuts whenever

an integer solution is found along the Branch-and-Cut (BC) tree of a general purpose solver via lazy

constraints. We compare the results from this method to the ones obtained by solving the compact for-

mulation of the VAP using the standalone BC of the solver and the automatic Benders decomposition

strategy of the solver.

4.1 Benders Decomposition for the VAP

Benders decomposition is suited for problems whose variables can be partitioned into two sets, hence,

the set of decisions can be separated according to a trial-and-error-like method of two di�erent stages.

�is method works as follows. Suppose the company described in Section 2.3.1 has two departments.

�e sales department (A) is in charge of taking requests for freight transportation services and deciding

which to a�end, while the operations department (B) is in charge of allocating empty vehicles to comply

with the sales department plan. Suppose this week the sales department received the requests illustrated

in Figure 4.1.a (requests are represented by bold arcs between two terminals while small short arcs

represent the supplied quantity of vehicles at a given terminal), and naturally they accepted all requests

as speci�ed in Figure 4.2.b, wherein all x variables were set to match the demand d.

53



𝑡 =5 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 

𝑑121 = 3 

𝑑432 = 3 

2 

𝑡 =5 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 

𝑥121 = 3 

𝑥423 = 3 

a) b) 

Figure 4.1: a) Parameters. b) First x decision.
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Figure 4.2: a) First y decision. b) Second x decision.
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Figure 4.3: a) Second y decision. b) �ird x decision.

Since the operations department does not care about vehicle’s movements when they are loaded,

the information they get from the sales department is when, where and how many empty vehicles are

to become available (supplies) and disappear (sinks) as a consequence of loaded trips. �e operations

department also has information of their own �eet location and size. Figure 4.2.a illustrates the problem

faced by the operations department which is a minimum cost �ow problem. In trying to solve the

problem, they realize that no vehicle can disappear at node (1, 1) since there were none available before,

and notify the sales department of the plan’s lack of viability, which in turn revise their decision as

in Figure 4.2.b. Finally, the operations department receives a viable plan which they can optimize by

repositioning vehicles as pictured in Figure 4.3.a. �e added solutions of both departments (Figure 4.3.b)

is the optimal solution to the whole problem. �e previous approach shows the idea of partitioning

decision in Benders decomposition which we now formalize. Formulation (2.1)-(2.5) can be rewri�en

by se�ing equations (2.2) as inequality constraints Ax ≤ b, which will be useful in cu�ing o� half the

dual space of the subproblem stemming from the Benders decomposition. Henceforth, Formulation

(2.1)-(2.5) can be expressed as

max
∑
i∈N

∑
j∈N
i 6=j

∑
t∈T

∑
v∈V

(pijvxijtv)−
∑
v∈V

φv(x)

s.t.

∑
v∈V

xijtv ≤ dijt, ∀i, j ∈ N, ∀t ∈ T

xijtv = 0, if Aijv = 0, ∀i, j ∈ N, ∀t ∈ T, ∀v ∈ V
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xijtv ∈ Z+, ∀i, j ∈ N, ∀t ∈ T, ∀v ∈ V

where φv(x) is the objective value of the subproblem for each vehicle type v ∈ V , and is de�ned as

follows:

φv(x) = min
∑
i∈N

∑
j∈N
i 6=j

∑
t∈T

cijvyijtv (4.2)

s.t.

∑
j∈N

(xijtv + yijtv)−
∑
j∈N,
j 6=i,
t>τji

(
xji(t−τji)v + yji(t−τji)v

)
− yii(t−1)v ≤ mitv, (4.3)

∀i ∈ N, ∀t ∈ T (4.4)

yijtv = 0, if Aijv = 0, ∀i, j ∈ N, ∀t ∈ T (4.5)

yijtv ∈ Z+, ∀i, j ∈ N, ∀t ∈ T (4.6)

For a feasible x̄, the subproblem reduces to the minimum cost �ow problem (MCFP) (4.7)-(4.11)

which bear the integrality property.

φv(x̄) = min
∑
i∈N

∑
j∈N
i 6=j

∑
t∈T

cijvyijtv (4.7)

s.t.

∑
j∈N

yijtv −
∑
j∈N,
j 6=i,
t>τji

yji(t−τji)v − yii(t−1)v ≤ mitv −
∑
j∈N

x̄ijtv +
∑
j∈N,
j 6=i,
t>τji

x̄ji(t−τji)v (4.8)

∀i ∈ N, ∀t ∈ T (4.9)

yijtv = 0, if Aijv = 0, ∀i, j ∈ N, ∀t ∈ T (4.10)

yijtv ∈ R+, ∀i, j ∈ N, ∀t ∈ T (4.11)

�e dual problem of the MCFP is obtained by means of the dual variables u associated to constraints

(4.9), given by

φv(x̄) = max
∑
i∈N

∑
t∈T

mitv −
∑
j∈N

x̄ijtv +
∑
j∈N,
j 6=i,
t>τji

x̄ji(t−τji)v

uit (4.12)

s.t. uit − uj(t+τij) ≤ cijv, ∀i ∈ N, ∀j ∈ N, ∀t ∈ T (4.13)
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uit ∈ R−, ∀i ∈ N, ∀t ∈ T (4.14)

Note that the feasible space of the maximization problem is independent of the choice made for

variables x. �e feasible space for each vehicle type v ∈ V is composed of extreme points uq ∈ Qv and

extreme rays ur ∈ Qr , where Qv and Rv are the sets of extreme points an extreme rays, respectively,

for each v ∈ V . For a given feasible solution x̄, we have the following situations for each subproblem

v ∈ V :

• �e dual is unbounded: φv(x̄)→∞, then ∃urv ∈ Rv , such that

∑
i∈N

∑
t∈T

mitv −
∑
j∈N

x̄ijtv +
∑
j∈N,
j 6=i,
t>τji

x̄ji(t−τji)v

uritv > 0

�is means the primal subproblem for vehicle v ∈ V is infeasible and in order to avoid that we

impose the following cut when choosing x,

∑
i∈N

∑
t∈T

mitv −
∑
j∈N

xijtv +
∑
j∈N,
j 6=i,
t>τji

xji(t−τji)v

uritv ≤ 0

⇒
∑
i∈N

∑
j∈N

∑
t∈T

xijtvuritv −
∑
i∈N

∑
j∈N,
j 6=i,
t>τji

∑
t∈T

xji(t−τji)vuritv ≥
∑
i∈N

∑
t∈T

mitvuritv

which is called a Feasibility Cut.

• �e dual has an optimal solution: ∃uqv ∈ Qv , such that

∑
i∈N

∑
t∈T

mitv −
∑
j∈N

x̄ijtv +
∑
j∈N,
j 6=i,
t>τji

x̄ji(t−τji)v

uqitv

is bound on φv(x) which we can write:

∑
i∈N

∑
t∈T

mitv −
∑
j∈N

xijtv +
∑
j∈N,
j 6=i,
t>τji

xji(t−τji)v

uqitv ≤ φv
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⇒
∑
i∈N

∑
j∈N

∑
t∈T

xijtvuqitv −
∑
i∈N

∑
j∈N,
j 6=i,
t>τji

∑
t∈T

xji(t−τji)vuqitv ≥
∑
i∈N

∑
t∈T

mitvuqitv − φv

and this constraint is called an Optimality Cut.

Henceforth, by considering all possible Feasibility and Optimality cuts for each vehicle v ∈ V , we

obtain an equivalent formulation for problem (2.1)-(2.5) as follows

max
∑
i∈N

∑
j∈N
i 6=j

∑
t∈T

∑
v∈V

(pijvxijtv)−
∑
v∈V

φv (4.15)

s.t.

∑
v∈V

xijtv ≤ dijt, ∀i, j ∈ N, ∀t ∈ T (4.16)

∑
i∈N

∑
t∈T


∑
j∈N

xijtvūritv −
∑
j∈N,
j 6=i,
t>τji

xji(t−τji)vūritv


≥
∑
i∈N

∑
t∈T

mitvūritv, ∀r ∈ Rv, ∀v ∈ V (4.17)

∑
i∈N

∑
t∈T


∑
j∈N

xijtvūritv −
∑
j∈N,
j 6=i,
t>τji

xji(t−τji)vūritv


≥
∑
i∈N

∑
t∈T

mitvūqitv − φv, ∀q ∈ Qv,∀v ∈ V (4.18)

xijtv = 0, if , Aijv = 0, ∀i, j ∈ N, ∀t ∈ T, ∀v ∈ V (4.19)

xijtv ∈ Z+, ∀i, j ∈ N, ∀t ∈ T, ∀v ∈ V (4.20)

φv ≥ 0, ∀v ∈ V (4.21)

which is called the Benders Master Problem (MP). Given the large quantity of possible Feasibility and

Optimality cuts in many practical instances, the MP can be solved by relaxing (4.17) and (4.18), and

adding them iteratively. In the present work, we add the previous cuts as lazy constraints during the

execution of the BC algorithm of the solver. �us, every time the algorithm �nds an incumbent integer

solution x̄, the subproblem (4.12)-(4.14) is solved with x̄ �xed. If the subproblem is unbounded, a Fea-

sibility cut is generated and added to the MP. If the subproblem is bounded and has a optimal solution,

an Optimality cut is generated, which if violated by the current solution, is added to the MP.
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4.1.1 Valid Inequalities for the VAP

In many instances of the VAP, it could be the case that the total supply of vehicles before a given time

period is less than the total demand requested a�er that period. �is creates many infeasible initial

solutions for the subproblem, which could lower the e�ciency of the algorithm. For instance, if we

take period t = 2 of Figure 4.1.a, the total supply of vehicles before that period is 2 while the total

aggregated demand a�er that period is 5. �is creates an infeasible solution as described in Figure

4.1.b. To avoid these scenarios, we propose the following valid inequality to the master problem:

∑
v∈V

∑
i∈N

∑
j∈N
i 6=j

xijtv ≤
∑
v∈V

∑
i∈N

∑
l∈T
l≤t

milv, ∀t ∈ T (4.22)

In addition, suppose that in adding the previous valid inequality for a given period t, there are

highly pro�table demand arcs going from t0 < t until t1 > t. If carrying loads through those crossing

arcs is part of the optimal solution, we want to limit the loaded movements starting a�er t to be limited

by the total supply before tminus whatever loads are carried through those crossing arcs. Nonetheless,

since we do not know which crossing arcs are part of the optimal solution, we let the solver decide

which ones to use as follow:

∑
v∈V

∑
i∈N

∑
j∈N
i 6=j

xijtv ≤
∑
v∈V

∑
i∈N

∑
l∈T
l≤t

milv −
∑
v∈V

∑
i∈N

∑
j∈N
i 6=j

∑
l∈T
l<t

l+τij>t

xijlv, ∀t ∈ T (4.23)

Note both inequalities can be split and added to the MP according to each vehicle type v ∈ V .

However, this would signi�cantly increase the number of constraints in the MP, which could represent

a drawback when solving large-scale instances of the VAP.

4.1.2 Solving the subproblem via network �ow algorithms

When implementing Benders Decomposition, it is necessary to de�ne how to solve the subproblem

which is to be solved every time an integer solution is found along the Branch-and-Bound (BB) tree.

�e most common way is to use general purpose solvers for solving problem (4.12)-(4.14). In some

cases, when the subproblem have a special structure it is possible to get rid of general purpose solvers

by using specialized algorithms. Along with valid inequalities that enrich the relaxed MP, this constitute

a possible way of accelerating Benders Decomposition (Rahmaniani et al., 2017).

�e problem at hand is the dual problem of a Minimum Cost Flow Problem (MCFP) whose solution

can be feasible and optimal or unbounded (see Section 4.1). Since there are polynomial procedures for

obtaining optimal duals from optimal �ows and dual rays from primal infeasible instances, we opted to

use the Network Simplex Algorithm (NSA) of the open source graph library LEMON(C++) for solving
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the primal problem (i.e. MCFP) due to the following reasons: it outperformed many other algorithms in

solving benchmark instances of the MCFP as stated in Kovács (2015) and its easiness of implementation

and embedding within the benders decomposition algorithm.

When the solution to the dual problem is feasible and optimal, the NSA from LEMON automatically

generates the optimal dual values. If this was not the case, it would have been possible to �nd these

values by computing shortest paths from an arti�cial supply node (which is connected exclusively to

all supply nodes through arcs with cost equal to 0) to all other nodes over the �nal residual graph. For

a be�er understanding of this procedure and the concept of a residual graph see Chapter 9 of Ahuja

et al. (1993).

When the dual solution is unbounded, there is no straightforward manner of querying those values

from the output of the NSA, hence, we resort to checking for one su�cient condition and/or solving

a special case of the MCFP (namely, the Maximum Flow Problem) in order to compute the unbounded

rays. When solving the MFP, we used the push-relabel algorithm implementation of LEMON.

First, it is useful to understand when an instance for formulation (4.7)-(4.11) is infeasible. Figure

4.4.a shows an instance of two nodes of the MCFP, where bi units of �ow (empty vehicles) are supplied

through node i and bk units of �ow (empty vehicles) are demanded on node k. �is instance is infeasible

as there is not enough �ow arriving to node k. A dual ray for this problem equals ui = −1, uk = −1.

Figure 4.4.b shows an instance of three nodes whose total supply (bi+bj) is greater than the total demand

(bk), yet is infeasible as there is not enough �ow arriving to node k. A dual ray for this problem equals

ui = −1, uk = −1, uj = 0.

𝑖 𝑘

𝑏𝑖 = 1 𝑏𝑘 = −2

𝑖 𝑘

𝑏𝑖 = 1 𝑏𝑘 = −2

𝑗

𝑏𝑗 = 2

𝑎) 𝑏)

Figure 4.4: a) Infeasible instance of the MCFP with two nodes. b) Infeasible instance of the MCFP with

three nodes.

In topologically sorted graphs like those in Figures 4.4.a and 4.4.b, it su�ces to �nd a node k such

that bk < 0 and

∑
l<k bl < |bk|, to prove the instance is infeasible and build a dual ray. �erefore,

the dual ray of in�nite improvement, when such node k has been found, is u0 = .. = uk = −1 and

uk+1 = ... = 0. In a graph with N nodes, this ray is of in�nite improvement as
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∑
l∈N

ulbl =
∑
l≤k

ulbl +
∑
l>k

ulbl > 0 (4.24)

given

∑
l≤k ulbl > 0 and

∑
l>k ulbl = 0. In addition, since it is a ray it should lie in the recession cone

ATu ≤ 0 (where AT denotes the transpose of the incidence matrix A), for which we check the sign of

the di�erence between the duals of any two nodes when: both are in the set {0, ..,K} (equation (4.25)),

both are in the set {k+ 1, .., N} (equation (4.26)) and one node belongs to {0, ..,K} while the other to

{k + 1, .., N} (equation (4.27)).

∀i, j ∈ {0, .., k} ui − uj ≤ 0 (4.25)

∀i, j ∈ {k + 1, .., N} ui − uj ≤ 0 (4.26)

∀i ∈ {0, .., k}, j ∈ {k + 1, .., N} ui − uj ≤ 0 (4.27)

Checking for this condition has an asymptotic cost ofO(N). Unfortunately, the previous condition

is only su�cient as it may not hold true for a given topological order of the same graph. For instance,

Figure 4.5 shows two di�erent topological orders of a infeasible instance wherein the condition holds

true for the top graph while it does not for the bo�om graph.

2 𝑘

𝑏𝑘 = −4

3 4 5

𝑏3 = 2 𝑏4 = 2 𝑏2 = 1

0 1

𝑏0 = 1 𝑏1 = 1

2 𝑘

𝑏𝑘 = −4

3 4 5

𝑏3 = 2 𝑏4 = 2𝑏2 = 1

0 1

𝑏0 = 1 𝑏1 = 1

Figure 4.5: Two topological order of the same infeasible instance of the MCFP.

Situations like the one in Figure 4.5 can be overcome by backtracking (bold arrows and circles) on

a given (set of) demand node(s) and checking if the total supply in the inspected nodes is less than the

total demand. For instance, Figure 4.5 shows how backtracking starting from k proves the instance
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to be infeasible. By using a search graph algorithm on the reversed graph (same graph with reversed

arcs) departing from k, we discover that the only nodes being able to supply k are {0, 1, 2} whose total

supply (3) is not enough to cover the demand of k (4). �erefore, we can �nd an unbounded ray of

in�nite improvement by se�ing uk = −1, ∀k ∈ S and uk = 0,∀l ∈ S̄, where S is a set of demand

nodes plus all nodes inspected when backtracking from these demand nodes and S̄ is the complement

of S. If

∑
l∈S bl < 0, then this ray is of in�nite improvement as

∑
l∈N

ulbl =
∑
l∈S

ulbl +
∑
l∈S̄

ulbl > 0 (4.28)

2 𝑘3 4 50 1

𝑏𝑘 = −4𝑏3 = 2 𝑏4 = 2 𝑏2 = 1𝑏0 = 1 𝑏1 = 1

Figure 4.6: Infeasible instance showing how backtracking from a demand node can be useful in identi-

fying infeasibility.

It also lies in the recession cone ATu ≤ 0 as

∀i, j ∈ S ui − uj ≤ 0 (4.29)

∀i, j ∈ S̄ ui − uj ≤ 0 (4.30)

∀i ∈ S, j ∈ S̄ ui − uj ≤ 0 (4.31)

Note that the pair (i, j) where i ∈ S̄, j ∈ S is not possible due to the fact that an existing arc

between i and j would have enabled i to be inspected in the backtracking. Finding single demand

nodes and backtracking to evaluate if there is enough supply to that demand node is not su�cient

to prove that an instance is infeasible. Figure 4.7 shows an instance of a graph with two demand

nodes and we can observe that by backtracking from these nodes individually the above mentioned

condition for infeasibility does not hold. By contrast, Figure 4.8 shows that jointly backtracking from

both demand nodes a�est infeasibility as the total demand (not individual demands) cannot be supplied

from the reachable supply nodes. �erefore, to prove infeasibility it is necessary to �nd the correct set

of demand nodes that cannot be serviced from all their reachable supply nodes.
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Figure 4.7: Instance of a graph where backtracking on individual demand nodes may not prove infea-

sibility.

4 52 3 60 1
𝑏2 = 2𝑏0 = 2 𝑏1 = 1

7
𝑏6 = −3 𝑏8 = −3

8

Figure 4.8: Instance of a graph where infeasibility is proved by analyzing sets of demand nodes.

Even though there are 2|D| subsets of demand nodes, whereD is the total number of demand nodes

(b < 0) in a graph, and brute-force searching could be computationally expensive, we can solve a

simpler and polynomially solvable problem in order to �nd the correct subset of demand nodes that

enables us to come up with a unbounded ray, namely, the Maximum Flow Problem (MFP). Figure 4.9

shows a modi�ed directed acyclic graph where all demand (supply) nodes are connected to an arti�cial

demand (supply) node and the arti�cial arcs connecting the demand (supply) nodes to the arti�cial

demand (supply) have capacities w equal to |b|. All other arcs are uncapcitated as is the VAP case.
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Figure 4.9: Modi�ed graph with one supply and demand node in order to solve the Maximum Flow

Problem.

An optimal solution to the MFP, that is also a feasible solution to the MCFP, consists of a vector

�ow where all arti�cial demand arcs are saturated, i.e. there is no unused capacities among these arcs.

On the other hand, if the MCFP is infeasible, the optimal solution to the MFP will reveal a subset of

arti�cial demand arcs with unused capacity. Figure 4.10 shows the optimal solution to a MFP where A

denotes the saturated arti�cial supply arcs, B denotes the unsaturated arti�cial supply arcs, C denotes

the unsaturated arti�cial demand arcs and D denotes the unsaturated arti�cial supply arcs. �e sets S

and S̄ represent the partition of the graph’s nodes whose crossing arcs constitute the set of arcs with

minimum total capacity, i.e. the minimum cut.

𝑠 𝑡

𝐴

𝐵

𝐶

𝐷𝑆

ҧ𝑆

Figure 4.10: General scheme of an optimal solution for the MFP.

If we backtrack with a searching algorithm departing from all nodes in D, we will end up with the

set of nodesS as the one depicted in Figure 4.10. Backtracking from the nodes inD can not end up in any

node in S̄ as nodes inA have unused capacity that could have been used in �lling up nodes inD, hence

contradicting the fact of that being a maximum �ow. �erefore, the set S contains the set of unful�lled
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demand nodes and all its possible suppliers which was the condition we were initially looking for in

order to build an unbounded ray. Again, we can set the unbounded ray of in�nite improvement by

se�ing uk = −1,∀k ∈ S and uk = 0,∀l ∈ S̄. �is is a ray of in�nite improvement as

∑
l∈N

ulbl =
∑
l∈S

bl =
∑

l∈G+∩S
bl −

∑
l∈G−∩S

|bl| >
∑

l∈G+∩S
bl −

∑
l∈G−∩S

fit = 0

whereG+,G− and fit are the set of all supply nodes, all demand nodes and the �ow at optimality (in the

context of MFP) of arcs going from i to t, respectively. It also lies in the recession cone ATu ≤ 0 as per

equations (4.29)-(4.31). Knowing the asymptotic cost of the MFP algorithm, the pre�ow push-relabel

to be more speci�c, isO(N2√E) where N and E are the number of nodes and edges of the graph, we

decided to organize the search for the unbounded ray, once the instance has proven to be infeasible by

the NSA, as presented in Algorithm 1.

Algorithm 1 Unbounded Ray

net-supply = 0

for l← 0, N do
net-supply += bl
if net-supply < 0 then

Build Ray

EXIT

end if
end for
Solve Maximum Flow Problem

Build Ray

EXIT

4.2 Computational Results

To evaluate the computational performance of Benders Decomposition as applied to the VAP, we test

two ways of applying Benders Decomposition and compare their performance to the standalone BC

of the optimization solver IBM CPLEX Optimization Studio 12.8.1. in solving the compact formula-

tion. �e most straighforward way of implementing Benders Decomposition is through the automatic

Benders strategy of CPLEX in which annotations on variables are made over the compact formulation

de�nition. We use the following user de�ned annotations: x variables were given the 0 annotation

(annotations with 0 values assign the variables to the MP) and y variables for vehicle type v ∈ V were

given the v + 1 annotation (annotations with values greater than 0 assign the variables to its corre-

sponding subproblem). �en, CPLEX manage the interaction between MP and the subproblem as well

as solving the subproblem. CPLEX documentation claims this strategy can be helpful in some problems

as certain types of subproblem can be solved in parallel. Another way of implementing Benders De-
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composition is through callback functions in which the user has to implement the separation problem,

in this case the subproblem resulting from Benders decomposition, and add Benders cuts whenever an

infeasible integer solution is found along the BC tree. In the second case, we used the Network Simplex

Algorithm from LEMON graph library, for solving the separation problem as explained in Section 4.1.2.

All methods were implemented in C++ using the Concert library and LEMON graph library. All exper-

iments reported in this section were run in a PC with CPU Intel®Core i7-4790S 3.20GHz and 16 GB of

RAM. In the experiments, we solve small-scale randomly generated instances to test the viability of this

method. In naming each instance we use the following notation: terminals-periods-vehicles-requests.

�e instances were created in the following way using a uniformly distributed random number gener-

ator:

• We created a square with dimensions equal to the number of periods |T |.

• For each terminal, coordinates were randomly generated within this square .

• Euclidian distances were calculated for each pair of terminals, and they were truncated to its

lowest integer value to obtain the integer travel times τijv .

• Costs for empty movements were calculated by multiplying the travel times τijv by a random

number in the range [0, 20].

• Pro�ts for loaded movements were calculated by adding a random number in the range [1, 20] to

the cost of empty movements calculated in the previous step.

• Demands were randomly generated in the range [1, 10]. �e departure and destination terminals,

and starting period were randomly generated according to the number of terminals and periods,

respectively.

• �e entry of each vehicle mitv was randomly generated according to the number of terminals

and periods, respectively. None of these instances has mitv = −1.

• Restriction of movements were generated randomly by picking a random number p between 1

and (N ∗N)/2. �en, choose randomly p arcs out of N ∗N arcs and set its value Aijv = 0.

Tables 4.1 and 4.2 shows the computational times of the proposed method. Table 4.1 contains results

for instances with the number of terminals ranging from 10 to 19, number of vehicles from 20 to 50,

10 time periods and 20 loads. Table 4.2 contains results for instances with the number of terminals

ranging from 20 to 29, number of vehicles from 100 to 150, 20 time periods and 200 loads. Finally, Table

4.3 shows the percentage of computational time spent on solving the subproblem and the number of

Benders cuts generated by the proposed BBC for instances of Table 4.1. A time limit of 3600 seconds
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was imposed on each run. A sign “*” in the tables indicates that CPLEX could not solve or even mount

the model due to lack of computer memory. Columns in these tables refer to:

• Instance is the name of the instance (number of terminals - number of periods - number of vehi-

cles - number of requests).

• IP is the optimal ILP solution value of VAP.

• CPU IP is the time taken by the standalone BC of CPLEX to solve each ILP instance to optimality.

• CPU Be is the time taken by CPLEX with automatic Benders.

• CPU BeV1 is the time taken by CPLEX with automatic Benders and valid inequalities (4.22).

• CPU BeV2 is the time taken by CPLEX with automatic Benders and valid inequalities (4.23).

• CPU LEM is the time taken by the proposed BBC.

• CPU LEMV1 is the time taken by the proposed BBC and valid inequalities (4.22).

• CPU LEMV2 is the time taken by the proposed BBC and valid inequalities (4.23).

• % LEM is percentage of computational time spent on solving the subproblem by the proposed

BBC.

• F LEM is the number of feasibility cuts generated by the proposed BBC.

• O LEM is the number of optimality cuts generated by the proposed BBC.

• % LEMV1 is percentage of computational time spent on solving the subproblem by the proposed

BBC and valid inequalities (4.22).

• F LEMV1 is the number of feasibility cuts generated by the proposed BBC and valid inequalities

(4.22).

• O LEMV1 is the number of optimality cuts generated by the proposed BBC and valid inequalities

(4.22).

• % LEMV2 is percentage of computational time spent on solving the subproblem by the proposed

BBC and valid inequalities (4.23).

• F LEMV2 is the number of feasibility cuts generated by the proposed BBC and valid inequalities

(4.23).
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Table 4.1: Results of the small-scale instances with terminal in the range [10,19] for di�erent imple-

mentations of the Benders Decomposition as applied to the VAP.

Instance IP CPU IP CPU Be CPU BeV1 CPU BeV2 CPU LEM CPU LEMV1 CPU LEMV2

10-10-20-20 1937 0.52 0.152 0.145 0.163 6.24 3.58 7.79

11-10-20-20 1584 0.50 0.135 0.134 0.141 9.73 2.85 13.71

12-10-20-20 904 0.59 0.181 0.166 0.208 37.36 23.07 18.92

13-10-20-20 1259 0.18 0.251 0.235 0.254 19.57 25 27.94

14-10-20-20 633 0.21 0.178 0.173 0.194 2.37 1.91 2.89

15-10-20-20 560 0.26 0.253 0.255 0.251 22.55 9.35 22.26

16-10-20-20 736 0.46 0.319 0.289 0.314 72.11 221.59 44.99

17-10-20-20 632 0.30 0.295 0.291 0.289 8.83 30.12 61.71

18-10-20-20 1143 0.29 0.338 0.306 0.355 42.31 24.17 31.39

19-10-20-20 905 0.33 0.312 0.304 0.314 12.18 8.86 13.33

10-10-20-25 1857 0.12 0.136 0.123 0.120 6.49 1.59 2.11

11-10-20-25 659 0.13 0.138 0.130 0.142 2.97 2.63 4.45

12-10-20-25 396 0.21 0.150 0.148 0.155 1.45 1.36 1.58

13-10-20-25 669 0.26 0.207 0.214 0.216 84.66 136.16 152.34

14-10-20-25 1292 0.36 0.280 0.268 0.302 74.49 97.86 184.51

15-10-20-25 1202 0.27 0.287 0.261 0.257 255.93 257.64 475.13

16-10-20-25 1479 0.29 0.285 0.288 0.308 60.86 42.15 98.21

17-10-20-25 1611 0.31 0.384 0.311 0.292 483.79 305.4 352.26

18-10-20-25 291 0.41 0.271 0.279 0.293 3.56 3.45 3.95

19-10-20-25 535 0.36 0.380 0.347 0.390 19.67 13.28 25.63

10-10-20-30 501 0.10 0.096 0.094 0.100 1.47 1.56 2.2

11-10-20-30 1596 0.16 0.174 0.148 0.161 13.31 20.86 17.37

12-10-20-30 335 0.17 0.164 0.208 0.181 3.2 3.29 4.22

13-10-20-30 580 0.17 0.167 0.162 0.168 62.77 76.82 98.1

14-10-20-30 574 0.31 0.230 0.214 0.256 2.96 2.88 4.04

15-10-20-30 1451 0.26 0.279 0.261 0.269 18.87 13.89 29.3

16-10-20-30 1788 0.28 0.320 0.350 0.324 11.42 10.52 10.72

17-10-20-30 424 0.28 0.285 0.299 0.311 7.81 7.1 8.25

18-10-20-30 1835 0.29 0.454 0.369 0.365 113.27 602.71 458.71

19-10-20-30 1402 0.45 0.439 0.439 0.393 32.73 25.2 34.86

10-10-20-35 2464 0.16 0.142 0.308 0.143 12.12 12.84 15.71

11-10-20-35 2238 0.29 0.158 0.157 0.143 8.92 11.9 12.97

12-10-20-35 669 0.18 0.164 0.163 0.176 2 2.21 3.42

13-10-20-35 266 0.16 0.167 0.193 0.177 1.92 1.81 1.99

14-10-20-35 2057 0.21 0.245 0.219 0.221 11.07 13.66 15.61

15-10-20-35 1679 0.23 0.197 0.219 0.234 4.08 5.02 5.84

16-10-20-35 2037 0.27 0.275 0.262 0.300 8 4.48 6.3

17-10-20-35 2347 0.32 0.371 0.347 0.361 131.14 192.71 450.31

18-10-20-35 991 0.78 0.354 0.370 0.401 51.77 75.01 61.76

19-10-20-35 691 0.38 0.405 0.404 0.421 1074.71 3071.66 2147.35

10-10-20-50 421 0.15 0.147 0.157 0.195 2.09 1.73 2.16

11-10-20-50 2701 0.26 0.252 0.281 0.311 177.49 87.82 70.09

12-10-20-50 811 0.16 0.160 0.181 0.164 12.81 12.49 13.52

13-10-20-50 678 0.33 0.191 0.167 0.201 164.81 310.65 246.88

14-10-20-50 355 0.65 0.215 0.235 0.244 2.02 2.1 2.38

15-10-20-50 623 0.36 0.420 0.363 0.440 677.55 578.2 1380.42

16-10-20-50 1562 0.33 0.342 0.377 0.388 * * *

17-10-20-50 2202 0.37 0.373 0.418 0.422 197.44 148.09 149.91

18-10-20-50 550 0.35 0.485 0.509 0.568 97.64 126.16 143.28

19-10-20-50 2591 0.61 0.480 0.450 0.511 131.61 312.06 369.34
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Table 4.2: Results of the small-scale instances with terminal in the range [20,29] for testing the Benders

Decomposition as applied to the VAP.

Instance IP CPU IP CPU Be CPU BeV1 CPU BeV2

20-20-100-200 14471 16.23 24.073 26.900 26.690

20-20-130-200 31327 19.13 51.290 48.275 44.544

20-20-150-200 34618 22.10 58.536 60.649 61.194

21-20-100-200 2585 19.09 17.142 17.557 18.091

21-20-130-200 4056 21.65 39.251 38.586 42.458

21-20-150-200 27322 23.34 44.581 45.440 44.099

22-20-100-200 4902 23.76 39.907 38.630 40.453

22-20-130-200 12301 25.56 52.665 53.395 61.025

22-20-150-200 10971 34.33 71.556 68.402 65.962

23-20-100-200 14132 19.48 21.500 21.373 23.252

23-20-130-200 21745 27.30 51.433 51.442 52.676

23-20-150-200 23358 31.67 55.262 55.943 56.120

24-20-100-200 10155 24.04 34.142 36.996 36.251

24-20-130-200 3486 42.33 35.293 31.914 41.655

24-20-150-200 18156 52.91 119.447 105.599 110.724

25-20-100-200 9335 23.05 30.674 27.766 31.509

25-20-130-200 33905 38.92 83.977 67.335 79.588

25-20-150-200 32508 37.72 64.953 58.269 65.790

26-20-100-200 9815 22.13 47.205 42.733 43.493

26-20-130-200 16892 33.17 70.801 63.701 66.035

26-20-150-200 3731 67.78 52.401 50.378 57.074

27-20-100-200 21090 32.24 53.283 51.636 53.628

27-20-130-200 8456 55.14 133.089 125.644 138.139

27-20-150-200 26704 44.40 76.242 81.807 83.249

28-20-100-200 3641 42.01 50.944 54.572 125.903

28-20-130-200 25355 36.32 64.809 61.111 57.876

28-20-150-200 11222 57.47 125.888 126.390 207.826

29-20-100-200 5994 31.58 48.046 44.500 44.376

29-20-130-200 8978 49.86 142.506 121.911 232.190

29-20-150-200 7977 44.10 66.834 68.652 70.362
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• O LEMV2 is the number of optimality cuts generated by the proposed BBC and valid inequalities

(4.23).

From Tables 4.1-4.2 we observe that 34, 34 and 28 out of 80 instances are solved faster with auto-

matic Benders strategy, automatic Benders strategy with valid inequalities (4.22) and automatic Benders

strategy with valid inequalities (4.23), respectively, than with the compact formulation. On the other

hand, the proposed BBC was not able to solve any instance faster than the automatic Benders strategy

or the compact formulation. In particular, instance 16-10-20-50 and all instances with terminals in the

range [20,29] could not be solved to optimality with the proposed BBC due to CPLEX running out of

memory. In comparing the 3 ways of solving the problem with the automatic Benders strategy, we

observe that 49 and 22 out of 80 instances were solved faster with valid inequalities (4.22) and (4.23),

respectively, than without any valid inequality. Regarding the proposed BBC, 26 and 9 out of 49 in-

stances were solved faster with valid inequalities (4.22) and (4.23), respectively, than without any valid

inequality. �is suggests that valid inequality (4.22) may help enriching the Benders MP in order to

obtain more e�cient computational results, whereas, we suspect valid inequality (4.23) makes the MP

harder to solve, hence, the results are worse in both Benders approaches for this valid inequality.

From Table 4.3, we observe that the maximum percentage of computational time spent by the sub-

problem with the proposed BBC without valid inequalities, with valid inequalities (4.22) and with valid

inequalities (4.23) are 32.36%, 31.51%, and 33.85%, respectively. Furthermore, the average percentage

of computational time spent by the subproblem in all three cases are 9.24%, 8.56% and 7.26%, respec-

tively. �is shows that the majority of time is spent in solving and processing the MP along the BC

tree. Regarding the generated feasibility cuts, we observe that in all instances there was a reduction in

the number of feasibility cuts when valid inequalities (4.22) and (4.23) were enforced at the root. Yet,

as mentioned earlier, the computational times were not be�er in the case of valid inequality (4.23). Re-

garding the generated optimality cuts, less than half the instances showed an increase in the number of

optimality cuts when comparing the BBC with (4.22) and (4.23) to the BBC without valid inequalities.

As we will see in the next chapter, CPLEX in solving the compact formulation is able to solve instances

larger than the ones in Table 4.2. By contrast, Benders with both approaches fell short in memory

when trying to solve instances larger than those in Table 4.2. �e previous results suggest we need to

research be�er ways to enrich the MP in order to avoid generating a large number of cuts and improve

the convergence of the proposed method.

4.3 Final considerations and next steps

In this chapter we have presented results from applying Benders Decomposition to the VAP. We have

presented the formal decomposition and found that the subproblem is a multiple origin-destination
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Table 4.3: Subproblem times and number of Benders cuts of the small-scale instances with terminal in

the range [10,19] for di�erent implementations of the Benders Decomposition as applied to the VAP.

Instance % LEM F LEM O LEM % LEMV1 F LEMV1 O LEMV1 % LEMV2 F LEMV2 O LEMV2

10-10-20-20 4.17% 337 63 7.82% 306 61 3.08% 276 70

11-10-20-20 30.63% 353 809 9.82% 321 43 28.15% 288 937

12-10-20-20 1.31% 343 69 1.73% 288 59 1.90% 249 69

13-10-20-20 2.45% 350 76 1.80% 335 72 1.79% 282 72

14-10-20-20 18.99% 327 27 24.08% 268 55 12.11% 244 31

15-10-20-20 26.34% 350 821 5.88% 296 45 22.51% 251 677

16-10-20-20 1.10% 376 91 0.31% 381 103 1.64% 276 77

17-10-20-20 7.93% 375 49 31.51% 340 1056 33.85% 276 2283

18-10-20-20 1.91% 336 44 2.40% 283 37 2.33% 239 46

19-10-20-20 8.37% 370 42 10.38% 330 41 6.08% 251 48

10-10-20-25 32.36% 364 622 14.47% 273 29 10.90% 264 43

11-10-20-25 13.80% 430 46 12.55% 386 47 6.29% 294 44

12-10-20-25 24.83% 390 0 22.79% 372 0 19.62% 267 0

13-10-20-25 11.12% 498 1755 0.37% 381 106 5.44% 325 1545

14-10-20-25 0.97% 488 74 0.69% 431 109 0.30% 363 86

15-10-20-25 0.34% 477 85 0.31% 426 92 0.16% 338 86

16-10-20-25 1.58% 408 116 1.80% 346 76 0.77% 341 82

17-10-20-25 0.19% 454 67 0.29% 429 77 0.23% 367 62

18-10-20-25 17.13% 360 0 20.00% 284 0 15.44% 218 0

19-10-20-25 11.34% 430 193 7.15% 372 79 4.49% 345 90

10-10-20-30 17.69% 453 39 16.67% 337 42 10.00% 262 39

11-10-20-30 3.46% 505 77 2.40% 392 75 2.25% 316 69

12-10-20-30 14.06% 607 0 19.15% 523 0 14.69% 414 0

13-10-20-30 2.47% 506 356 0.92% 419 101 0.51% 329 70

14-10-20-30 21.96% 538 50 24.31% 487 45 16.09% 330 35

15-10-20-30 4.35% 543 62 4.75% 421 58 2.59% 384 52

16-10-20-30 7.62% 556 69 8.65% 484 56 7.00% 365 52

17-10-20-30 11.01% 476 60 12.54% 410 58 9.94% 299 57

18-10-20-30 1.17% 489 97 0.16% 384 72 0.20% 321 72

19-10-20-30 3.70% 541 55 4.40% 422 61 3.04% 361 66

10-10-20-35 2.48% 478 63 3.19% 438 58 2.23% 329 58

11-10-20-35 5.04% 577 64 3.53% 420 54 2.70% 378 47

12-10-20-35 19.00% 445 41 18.10% 340 42 11.99% 278 42

13-10-20-35 22.92% 460 0 21.55% 363 0 16.08% 258 0

14-10-20-35 6.78% 610 65 4.25% 420 52 3.52% 333 52

15-10-20-35 19.36% 512 35 15.94% 391 48 12.16% 313 45

16-10-20-35 13.00% 665 72 21.43% 509 69 12.86% 364 57

17-10-20-35 0.91% 648 94 0.58% 537 104 0.22% 449 84

18-10-20-35 2.14% 543 98 1.61% 518 81 2.33% 407 89

19-10-20-35 0.15% 615 112 0.05% 509 143 0.06% 404 101

10-10-20-50 15.79% 714 0 19.65% 487 0 14.81% 388 0

11-10-20-50 0.25% 750 82 0.61% 652 83 0.80% 506 83

12-10-20-50 4.45% 719 42 4.48% 530 42 3.40% 379 48

13-10-20-50 0.53% 794 74 0.22% 538 57 0.31% 460 109

14-10-20-50 31.68% 627 0 31.43% 479 0 19.75% 337 0

15-10-20-50 0.17% 971 99 0.20% 748 112 0.08% 630 104

16-10-20-50 * 960 117 * 679 125 * 549 100

17-10-20-50 0.77% 798 96 1.01% 638 104 0.81% 485 98

18-10-20-50 1.44% 893 65 1.16% 569 92 0.89% 479 88

19-10-20-50 1.32% 795 94 0.56% 602 102 7.32% 512 2365

minimum cost �ow problem. �is problem bears the integrality property, which allows us to apply the

classic Benders decomposition. We implemented this approach with the embedded Benders strategy of
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CPLEX and Benders using lazy constraints. In the case of Benders using lazy constraints, we resort to

Network Flow algorithms to speed up the process of generating constraints. However, both Benders

approaches are insu�cient in processing and solving large-scale instances as CPLEX ran out of memory

in solving instances with more than 30 terminals.

72



Chapter 5

A Branch-and-Price algorithm for the

VAP based on the arc-demand

formulation

One of the objectives of this work is to propose an exact solution method for solving large-scale realistic

instances of the VAP. Given the promising results obtained in Cruz (2017) in applying the Primal-Dual

Column Generation Method (PDCGM) from Gondzio et al. (2016) for solving the VAP, this work is

extended to a BP method for obtaining the integer optimal solution.

5.1 Dantzig-Wolfe Decomposition

In this section, the Dantzig-Wolfe (DW) decomposition and the column generation (CG) method are

presented for the VAP based on formulation (2.1)-(2.5). We chose to decompose according to types of

vehicles as it signi�cantly reduces the ILP model. �is reformulation has |N | × |N | × |T | + |V | con-

traints compared to |N |×|T |×|V |+ |N |×|N |×|T |+ |V | constraints from the compact formulation of

Section 2.3. Furthermore, even though the number of variables of the reformulation may be larger than

that of the compact formulation, in practice that number is smaller as only columns (hence variables)

with positive reduced cost are added to the model in a columns generation approach. From a practical

point of view, it is best for operations control to create programs according to vehicle groups or individ-

ual vehicles, and from a modelling perspective, quality results have been obtained in related network

problems when decomposing programs according to vehicle characteristics (Cruz et al., 2019; Cruz,

2017; Munari et al., 2019). In this way, consider the linear relaxation of problem (2.1)-(2.5) and leave the

demand-satisfying constraints (2.3) as the coupling constraints. �en, the remaining constraints can be
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grouped into the sets of solutions Xv, ∀v ∈ V , given by:

Xv =



(xv, yv)|
∑
j∈N

(xijtv + yijtv)−
∑
k∈N,
k 6=i,
t>τki

(
xki(t−τki)v + yki(t−τki)v

)

− yii(t−1)v = mitv, ∀i ∈ N, ∀t ∈ T,

xijtv = 0 ∧ yijtv = 0, if Aijv = 0, ∀i, j ∈ N, ∀t ∈ T,

xijtv ∈ R+, yijtv ∈ R+, ∀i, j ∈ N, ∀t ∈ T.


�us, the resulting equivalent formulation to (2.1)–(2.5) writes as:

max
∑
i∈N

∑
j∈N
i 6=j

∑
t∈T

∑
v∈V

(pijvxijtv − cijvyijtv)

s.t.:

∑
v∈V

xijtv ≤ dijt, ∀i, j ∈ N, ∀t ∈ T

(xv, yv) ∈ Xv, ∀v ∈ V.

By the representation theorem (see e.g. Bertsimas and Tsitsiklis (1997)), any solution (xv, yv) ∈ Xv

can be described as a linear convex combination of extreme points and a linear combination of extreme

rays of Xv . Note that the set Xv is described by �ow conservation equations where the le�-hand side

is the incidence matrix of a network, which in turn de�nes trees over a DAG for a feasible solution; the

right-hand side imposes a limit on the amount of vehicles �owing out of node (i, t). �erefore, the sets

Xv are bounded and the extreme rays are omi�ed in the description of the solution:

(xv, yv) =
∑
q∈Qv

(x̄vq, ȳvq)λvq,

∑
q∈Qv

λvq = 1, λvq ≥ 0,

where (x̄vq, ȳvq) denotes the extreme points of Xv , and Qv is the set of all extreme points. When sub-

stituting this representation in the linear relaxation of problem above, the result is the Master Problem

(MP):

max
∑
i∈N

∑
j∈N
i 6=j

∑
t∈T

∑
v∈V

pijv ∑
q∈Qv

x̄qijtvλvq − cijv
∑
q∈Qv

ȳqijtvλvq

 (5.1)

s.t.:

∑
v∈V

∑
q∈Qv

x̄qijtvλvq ≤ dijt, ∀i, j ∈ N, ∀t ∈ T, (uijt) (5.2)

∑
q∈Qv

λvq = 1, ∀v ∈ V, (wv) (5.3)
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λvq ≥ 0, ∀v ∈ V , ∀q ∈ Qv, (5.4)

�e reduced cost of each variable λvq is ((pvx̄vq − cvȳvq)− ux̄vq)−wv , where u and wv represent

the vector of dual variables of the coupling and convexity constraints, respectively. Given the huge

size of Qv and the fact that not all variables are part of the optimal basic feasible solution, variables are

iteratively added by �nding the columns with a positive reduced cost considering the following pricing

subproblem Zsp(v):

Zsp(v) = max
∑
i∈N

∑
j∈N
i 6=j

∑
t∈T

((pijvxijtv − cijvyijtv)− uijtxijtv) (5.5)

s.t.:

∑
j∈N

(xijtv + yijtv)−
∑
j∈N,
j 6=i,
t>τji

(
xji(t−τji)v + yji(t−τji)v

)
(5.6)

− yii(t−1)v = mitv, ∀i ∈ N, ∀t ∈ T,

xijtv = 0 ∧ yijtv = 0, if Aijv = 0, ∀i, j ∈ N, ∀t ∈ T, (5.7)

xijtv ∈ R+, yijtv ∈ R+, ∀i, j ∈ N, ∀t ∈ T, (5.8)

where the reduced cost of variable λvq is Zsp(v) − wv . �is allows us to initialize the MP with just

a subset of columns, resulting in what is called the Restricted Master Problem (RMP), and iteratively

generate new columns from the dual solutions of the RMP. �is procedure is known as the Column

Generation method, which converges to an optimal solution of the MP. Note that the solution obtained

through the CG corresponds to an optimal solution of the linear programming (LP) relaxation of the

original problem (2.1)–(2.5), in this particular case.

5.2 Primal-Dual Column Generation Method

�e standard CG based on optimal dual solutions presents several drawbacks, specially when the sim-

plex method is used to solve the RMP (Lübbecke and Desrosiers, 2005; Vanderbeck, 2005). Among them

are: slow convergence near the optimal solution (tailing-o� e�ect); the �rst iterations produce irrele-

vant columns and dual bounds due to poor dual information at the onset (heading-in e�ect); degeneracy

in the primal and hence multiple optimal solutions in the dual: the value of the RMP remains constant

for several iterations (plateau e�ect); instability in the dual solutions that jump from one extreme value

to another (yo-yo e�ect). To avoid the negative e�ects of these pathological behaviors, we rely on the

PDCGM (Gondzio and Munari, 2015; Gondzio et al., 2013, 2016). �is method is a variant of the stan-

dard CG which uses an interior-point algorithm to obtain stable and well-centered dual solutions in the
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feasible region of the RMP.

Given a primal-dual feasible, possibly not optimal, solution (λ̄, ū, w̄) of the RMP, both a lower and

upper bound to the optimal solution of the RMP can be obtained by using the primal and dual values

of the objective function as follows:

ZLB(λ̄) =
V∑
v=1

( ∑
q∈Qv

cvqλ̄vq

)

ZUB(ū, w̄) = bT ū+
V∑
v=1

w̄v

By assuming the solution is not optimal, we have that ZUB(ū, w̄) > ZLB(λ̄). �is solution is called

ε-optimal if it satis�es:

ZUB(ū, w̄)− ZLB(λ̄) ≤ ε(|ZLB(λ̄)|)

for some ε > 0. �e primal-dual interior point method provides well centralized dual solutions, in the

sense that the complementary products are kept within a vicinity of the central path from the centroid

to the optimal solution. More explicitly, a point is well centralized if it satis�es:

γµ ≤ (cvq − ūTavq − w̄v)λvq ≤
1
γ
µ, ∀v ∈ V,∀q ∈ Q̄v

where γ ∈ (0, 1), avq is the column of coe�cients of the extreme point q, and µ is the barrier parameter

that de�nes the central path for the interior point method. �e PDCGM dynamically adjusts the toler-

ance used to solve the RMP by initially se�ing a loose value and tightening as it approaches optimality.

Algorithm 2 describes the PDCGM.

Algorithm 2 Primal-Dual Column Generation Method

procedure PDCGM(εmax > 0, D > 1, δ > 0)

LB = −∞, UB =∞, gap=∞, ε = 0, 5
while gap ≥ δ do

Find a centralized primal-dual ε-optimal solution (λ̄, ū, w̄) of the RMP

LB = max{LB,ZLB(λ̄)}
Solve subproblems with values (ū, w̄)
UB = min{UB,ZUB(ū, w̄) + ZSP (ū, w̄)}
gap = (UB − LB)/(10−10 + |LB|)
ε = min{εmax, gap/D}
if ZSP (ū, w̄) > 0 then

add a column to the RMP

end if
end while

end procedure
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Tolerance for optimality (ε) is updated at each iteration using the relative gap (gap) between the

upper and lower bound. �e smaller the relative gap the smaller the intended distance to optimality is

as stated in ε = min{εmax, gap/D}. εmax is an upper bound that keeps the optimal solution not far

away from the optimum and D is the degree of optimality which relates the tolerance ε to the relative

gap at each iteration. Finally, δ establishes a termination condition based on the relative gap.

5.3 Longest Path algorithm for solving the pricing problem

�e subproblem (5.5)–(5.8) is a maximum �ow cost problem, and can be solved by the network simplex

method. However, by appropriately modifying the network, it can be solved more e�ciently with

longest path algorithms.

�e space-time network de�ned by setsN and T gives rise to the nodes (i, t) ∈ N×T (see Fig. 5.1).

�e arcs (i, j, t) have two incident nodes, the tail or departing node (i, t) and the head or destination

node (j, t+ τij). Some destination nodes are not de�ned explicitly by the set N ×T as they go beyond

the end of the planning horizon, i.e., t+ τij > T (see Fig. 5.2). In order to use a longest path algorithm

there needs to be a graph with all its arcs incident to explicit nodes. Next, an extension of the network

is described:

(1,1)

(2,1)

(1,2)

(2,2)

(1,3)

(2,3)

𝑡 = 1 𝑡 = 2 𝑡 = 3

𝑖 = 1

𝑖 = 2

Figure 5.1: Nodes of the network de�ned by sets N and T .

1. De�ne the new set T
′ = T ∪ {|T |+ 1}. �is last period |T | + 1 contains all nodes beyond the

planning horizon (i.e. t > T ).

2. For each (i, j, t) such that t+ τij > T , add an arc ((i, t), (j, |T |+ 1)).

3. Add a node nF and an arc ((i, |T |+ 1), nF ),∀(i, |T |+ 1). �ese arcs have a cost 0.
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(1,1)

(2,1)

(1,2)

(2,2)

(1,3)

(2,3)

Figure 5.2: Network representation.

Figures 5.3 and 5.4 illustrate an example of the extension in a graph with N = 2, T = 3 and travel

times: τ11 = τ22 = 0, τ12 = τ21 = 2.

(1,1)

(2,1)

(1,2)

(2,2)

(1,3)

(2,3)

(1,4)

(2,4)

Figure 5.3: Graphic representation of Steps 1 and 2.

�is extension of the network enables us to make an equivalence between the solution of the max-

imum cost �ow problem and the aggregated solution of multiple longest path problems. By solving

the maximum �ow cost problem, where the supply of node nF equals the sum of all vehicles of type v

entering the system within the planning horizon (i.e. −
∑
v∈V,i∈N,t∈T (mitv|mitv > 0)), the resulting

solution equals that of subproblem (5.5)–(5.8). For instance, suppose two vehicles of type 1 enter the

system at the pair terminal-period (1, 1) and (2, 2), i.e., m111 = 1 and m221 = 1, then the divergence

(supply) of node nF is equal to 2. �is feasible solution has the structure of an in-rooted tree (see Fig.

5.5). �e equivalence relation between an in-rooted tree and the aggregation of several paths with a

common destination is established in Rockafellar (1998), declared as follows:
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Fn

(1,1)

(2,1)

(1,2)

(2,2)

(1,3)

(2,3)

(1,4)

(2,4)

Figure 5.4: Graphic representation of Step 3.

Lemma 5.3.1. Let V be a set of vehicle types, Sv a set of supply nodes for vehicle type v ∈ V (i.e. all nodes

(i, t) such that mitv > 0 for some v), nF a destination node, Yv,nF a tree-�ow vector with destination nF

and Xv,s,nF a path-�ow vector going from s ∈ Sv to nF . If Y v,nF is feasible for the maximum cost �ow

problem with several origins and one destination, then there exist values for Xv,s,nF , ∀s ∈ Sv e v ∈ V ,

such that

Yv,nF =
∑
s∈Sv

Xv,s,nF

Fn

(1,1)

(2,1)

(1,2)

(2,2)

(1,3)

(2,3)

(1,4)

(2,4)

Figure 5.5: Representation of the tree.

5.3.1 Longest Path Algorithm for Directed Acyclic Graphs (DAG)

As the arcs of the graph can have non-negative costs (when pijv > uijt), it is not possible to use

Dijkstra’s algorithm for maximization problems (equivalent to not being able to use Dijkstra’s algorithm

when graphs have negative cost arcs in minimization/shortest-path problems). Nevertheless, given that
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the duration of the arcs is strictly positive (t + τijv > 0,∀i, j ∈ N ), the graph is acyclic in nature

(Rockafellar, 1998) and we can use a label-se�ing algorithm tailored for acyclic graphs.

�is algorithm’s preprocessing procedure requires �nding a topological order. For simplicity’s sake,

let NT = (N ×T ′)∪nF and AT = (k, k′), such that, k ↔ (i, t), k
′ ↔ (j, t+ τijv), and k, k

′ ∈ NT
. A

topological order is a partial order of the nodes with the following property: f(k), k ∈ NT
such that for

each arc (k, k′) ∈ AT , it holds that f(k) < f(k′). Figures 5.6 and 5.7 show the topological order from

the above example. From Figure 5.6, it can be observed that each node has a label between 1 and 13,

and the label of the tail is less than the label of the head for each arc. If the nodes are ordered according

to these new labels, it can be seen from Figure 5.7 that the direction of all arcs is unique (from le� to

right). Once there is a topological order on the nodes, the longest path algorithm consists in going

through all nodes in this order and update the node’s distances of the adjacent‘s incumbent node. �e

graph for each subproblem v ∈ V can be di�erent on account of constraints (5.7), however, they are

all topologically ordered subgraphs of the graph containing Aijv = 1, ∀i, j ∈ N, ∀t ∈ T, ∀v ∈ V . �is

property can be easily enforced on the optimal solution of the subproblems by penalizing the cost of

arcs Aijv = 0. In Section 5.3.2, an illustrative example is presented on how to �nd the longest path of

a graph.

1

2

3

4

5

6

7

8

9

Figure 5.6: Graphic Representation of the topological order for the illustrative example - 1.

Algorithm 3 is the pseudocode of a label-se�ing algorithm for DAGs (Ahuja et al., 1993). �e values

wx
k,k′

= pk,k′v − uk,k′ and wy
k,k′

= ck,k′v are the updated costs of moving loaded and moving empty of

the pricing subproblem.
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1 2 3 4 5 6 7 8 9

Figure 5.7: Graphic Representation of the topological order for the illustrative example - 2.

Algorithm 3 Longest path algorithm for DAGs

1: L = TopologicalSort(f(k), k ∈ NT
)

2: procedure DAG(s, nF )

3: Initialize d[k] = −∞ and p[k] = 0,∀k ∈ NT \{s}; d[s] = 0
4: for k ← 1, |NT | do
5: for k′ ∈ NT

such that(k, k′) ∈ AT do
6: let wx

k,k′
= pk,k′v − uk,k′ and wy

k,k′
= ck,k′v be the cost of arc (k, k′) for vehicle v ∈ V

7: if d[k′ ] > max{d[k] + wx
k,k′

, d[k] + wy
k,k′
} then

8: d[k′ ]← max{d[k] + wx
k,k′

, d[k] + wy
k,k′
}

9: p[k′ ]← k
10: end if
11: end for
12: end for
13: end procedure

5.3.2 Illustrative example for the Longest Path Problem

To facilitate the understanding of the longest path algorithm, an illustrative example is presented based

on the example of Section 5.3.1. �e described maximum path is between vertices f((1, 1)) = 1 and nF .

Table 5.1 shows the arc’s costs of loaded and empty trips. Initially, the precedence of all vertices is empty

and the label (distance) of vertex 1 equals 0 and the label of the remaining vertices equals−∞. �e bold

circles represent the incumbent node at each iteration of the algorithm (Line 4), and the shaded circles

connected to the bold circles represent the vertices whose labels are updated according to the optimality

condition (Lines 7 and 8). For instance, the labels at iteration 3 (Figure 5.10) corresponding to vertices 5

and 8 are updated according to functions: d[5]=max{−∞, 0+0, 0−∞} and d[8]=max{−∞, 0−1, 0−

2}, where the �rst term corresponds to the previous label and the second and third term correspond to

the distance when going through vertex 3 and taking the empty and loaded arcs, respectively, from 3

to the forward adjacent node. �e following are the graphic representations of the initialization phase,
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iteration 1 and 3, and the longest path between the �rst and last node of the illustrative example. �e

whole procedure is shown in Appendix A.

Table 5.1: Arcs’ costs for the ilustrative example

Arc 1-3 1-6 2-4 2-5 3-5 3-8 4-6 4-7 5-7 5-8 6-7 6-8 7-9 8-9

Empty cost 0,00 -2,50 0,00 -1,50 0,00 -1,00 0,00 -2,20 -2,00 -1,00 0,00 0,00 0,00 0,00

Loaded cost -inf 2,00 -inf -2,50 -inf -2,00 -inf 1,50 2,00 2,50 -inf -inf -inf -inf

1 2 3 4 5 6 7 8 9

d[1]=0 d[2]=-inf d[3]=-inf d[4]=-inf d[5]=-inf d[6]=-inf d[7]=-inf d[8]=-inf d[9]=-inf

p[1]=null p[2]=null p[3]=null p[4]=null p[5]=null p[6]=null p[7]=null p[8]=null p[9]=null
Figure 5.8: Initialization of Maximum Path

1 2 3 4 5 6 7 8 9

d[1]=0 d[2]=-inf d[3]=0 d[4]=-inf d[5]=-inf d[6]=2 d[7]=-inf d[8]=-inf d[9]=-inf

p[1]=null p[2]=null p[3]=1 p[4]=null p[5]=null p[6]=1 p[7]=null p[8]=null p[9]=null
Figure 5.9: Updating labels of vertex 1

1 2 3 4 5 6 7 8 9

d[1]=0 d[2]=-inf d[3]=0 d[4]=-inf d[5]=0 d[6]=2 d[7]=-inf d[8]=-1 d[9]=-inf

p[1]=null p[2]=null p[3]=1 p[4]=null p[5]=3 p[6]=1 p[7]=null p[8]=3 p[9]=null
Figure 5.10: Updating labels of vertex 3
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1 2 3 4 5 6 7 8 9

d[1]=0 d[2]=-inf d[3]=0 d[4]=-inf d[5]=0 d[6]=2 d[7]=2 d[8]=2.5 d[9]=2.5

p[1]=null p[2]=null p[3]=1 p[4]=null p[5]=3 p[6]=1 p[7]=5 p[8]=5 p[9]=8
Figure 5.11: Final path between nodes 0 and 9

5.4 Reducing each problem with aggregated �eet to a disaggregated

�eet

In this section, we present some results from Cruz (2017) to give evidence of the advantages in using a

disaggregated �eet. �e experiment uses realistic problem instances with 53 terminals, 36 periods and

130 vehicles, from the case study of Vasco (2012). In this case study, the authors proposed several integer

programming models that incorporate real features of a typical Brazilian logistics operator: restriction

on vehicle movement, �eet sizing and outsourcing decisions, terminal capacity and backlogged demand.

�ese models were validated through a structured questionnaire made to several professionals in the

area of the study’s partner-company. �e instances were grouped into 18 classes of 30 instances each,

with one class for each |V | = 1..17, 130, resulting in 18 x 30 = 540 instances. Note that the �rst class

(|V | = 1) considers that the 130 vehicles are of the same type, while the last class (|V | = 130) considers

each vehicle being a unique type of vehicle, that is, a total disaggregated �eet.

Table 5.2 summarizes the results of the following solution approaches applied to each group of

30 instances: (i) solving the LP relaxation of (2.1)–(2.5) using a general-purpose LP solver; (ii) using

PDCGM to solve the MP (5.1)–(5.4), together with the longest path algorithm described in Section

5.3.1 for the subproblem; and (iii) applying a simple MIP-heuristic to the last RMP solved by PDCGM

– this heuristic consists in imposing integrality to the lambda variables of the RMP (i.e. λvq ∈ Z+)

and solving the resulting ILP model by a general-purpose ILP solver. �e header’s columns refer to: the

name describing the parameters of the instances in each group (number of terminals - number of periods

- number of vehicles - number of types of vehicles - number of requests); the average computational

time for solving the LP relaxation of (2.1)–(2.5) using CPLEX (CPU LP); the average computational time

for solving the MP (5.1)–(5.4) using PDCGM (CPU PDCGM); and the average relative gap between the

feasible solution value obtained by the MIP-heuristic and the optimal value, in percentage (GAP). �e

relative gap for each instance is calculated as (fo−fh)/fo, where fo is the optimal value of the instance
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and fh is the value of the solution obtained by the MIP-heuristic. A gap of 100% in the fourth column

means the best feasible solution found by the MIP-heuristic is the trivial solution of leaving all vehicles

idle from when they appear until the end of the planning horizon.

�e results in Table 5.2 indicate that the more disaggregated the �eet, the lesser the computational

times for the PDCGM and the be�er the quality of the solutions obtained by the MIP-heuristic. It is

worth mentioning that for the instance group 53-36-130-130-300, the LP relaxation of model (2.1)–(2.5)

have 26,292,240 variables and 349,164 constraints, which poses excessive computer memory usage and

processing di�culties for general-purpose optimization so�ware. As a result, CPLEX could not solve

the LP relaxation. On the other hand, the MP model was easily solved by PDCGM and the MIP-heuristic

was successful in �nding optimal solutions for all instances in this group.

Table 5.2: Computational Times LP - IP - PDCGM for the VAP

Instances CPU LP (sec) CPU PDCGM (sec) GAP
53-36-130-1-300 1,16 2602,20 100.0%

53-36-130-2-300 5,48 1401,50 89.1%

53-36-130-3-300 12,79 784,50 55.6%

53-36-130-4-300 23,32 581,22 33.3%

53-36-130-5-300 39,05 453,50 22.8%

53-36-130-6-300 53,48 348,22 16.0%

53-36-130-7-300 71,19 255,43 11.4%

53-36-130-8-300 85,78 109,96 8.2%

53-36-130-9-300 104,15 174,36 5.6%

53-36-130-10-300 124,30 164,31 4.3%

53-36-130-11-300 265,35 158,80 2.6%

53-36-130-12-300 284,99 130,72 2.5%

53-36-130-13-300 275,99 120,47 1.7%

53-36-130-14-300 291,10 106,63 1.3%

53-36-130-15-300 295,40 102,91 0.7%

53-36-130-16-300 297,79 91,45 0.7%

53-36-130-17-300 270,41 83,61 0.4%

53-36-130-130-300 * 28,91 *

Source: Cruz (2017).

�ese results are in accordance with Jones et al. (1993), who studied the impact of the formulation on

the column generation for a related problem (MCNFP), the disaggregated formulations, that is, the ones

where solutions to pricing problems are trees with few leaves like a path, have a be�er performance in

terms of the number of iterations (number of times that the RMP is solved) until reaching optimality.

�is is due to the fact that the cardinality of extreme points generated in the RMP is smaller in the

disaggregated case than in the aggregated one. Furthermore, in the aggregated case it is harder to

�nd vehicles’ paths belonging to the optimal solution as they are part of more complex structures,

trees, which can make it infeasible to have a given column containing that optimal path. For instance,

suppose path 1-4-6 in Figure 5.12 is the optimal path for a given single vehicle (upper-le� graph). If
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more vehicles are considered within the subproblem as in the other graphs of Figure 5.12, then we can

have several optimal solutions containing path 1-4-6 with the inconvenience that other paths can make

that solution infeasible.

1 2 3 

4 5 

6 

1 2 3 

4 5 

6 

1 2 3 

4 5 

6 

1 2 3 

4 5 

6 

1 2 3 

4 5 

6 

1 2 3 

4 5 

6 

Figure 5.12: Trees containing path 1-4-6.

Another advantage of using the total diaggregated �eet is that is easier to deal with the negative

supply mitv . In this case, we do not need to modify the graph as described in Section 5.3; instead, we

just order the graph topologically and calculate the longest path between the positive supply node and

the negative supply node as shown in Figure 5.13.

1

-1

1

2

3

4

5

6

Figure 5.13: Longest path with negative supply.
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With this in mind, it can be seen that, without loss of generality, any VAP problem with aggregated

types of vehicles can be turned into the total disaggregated VAP case, i.e.

∑
i∈N,t∈T,v∈V mitv = |V |,

with the advantage of having a more e�cient algorithm for solving the pricing problem, in addition to

columns that hold be�er information about the optimal solution regarding the MP. For this reason, the

next section aims to explore an exact method based on branch-and-bound (BB) for proving optimality

in the disaggregated case, that is, each vehicle is its own type of vehicle.

5.5 Branching

Because the VAP was modeled as a binary ILP, in order to obtain an optimal solution, a BB procedure

will be needed. However, applying a standard BB procedure to the �nal RMP of the column generation

will not guarantee an optimal (or even feasible) solution, thus columns will need to be generated in each

node of the BB (Barnhart et al., 1998). �is method is called Branch-and-Price, and we have implemented

three procedures for branching in the present study.

When having to decide the next node to be processed along the search tree, we used the best-

�rst search, i.e, processing the node with the best dual bound (maximum dual bound in maximization

problems).

5.5.1 Branching on set of arcs

�is procedure uses the branching rule proposed by Barnhart et al. (2000), which is based on the arc

�ow binary variables xijtv and yijtv of formulation (2.1)-(2.5) and is compatible in keeping the structure

of the pricing problem along the nodes of the branch-and-bound tree. �is branching rule consists in

�nding two fractional paths q1 and q2, for a given vehicle v ∈ V . Since the case of a total disaggregated

�eet is the one being considered, then these two paths share a node in common from which both of

them split, as shown in Figure 5.14.
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𝑞1

𝑞2

𝑑

𝐴(𝑑, 𝑎1)

𝐴(𝑑, 𝑎2)

𝑑

𝐴(𝑑)

Figure 5.14: Branching rule from Barnhart et al. (2000)

A�er �nding the spli�ing node for both paths of vehicle v, called the divergence node (d), two sets

of arcs are formed out of the outgoing arcs of the divergence node A(d): A(d, a1) and A(d, a2). Set

A(d, a1) contains the spli�ing arc a1 from path λv1q and some other arcs. In the same way, setA(d, a2)

contains the spli�ing arc a2 from path λv2q and some other arcs. All outgoing arcs di�erent from a1

and a2 are evenly divided between both sets with the intuition of keeping a balanced search tree. �e

two subproblems are created by imposing the following constraints on each of the newly created nodes.

For the �rst:

∑
q∩A(d,a1)6=∅

λvq = 0

and for the second:

∑
q∩A(d,a2)6=∅

λvq = 0

In other words, on the �rst branch, no path from vehicle v is allowed to use any arc in set A(d, a1),

whereas on the second branch and for the same vehicle, no path is allowed to use any arc in setA(d, a2).

�is resulting division is valid as: 1) it prohibits a fractional solution of the LP on each branch; the

same divergence node could appear down the tree, however with di�erent fractional paths, and 2)

there is a �nite number of branches because the number of arcs and vehicles is �nite. Each node of the

branch-and-bound tree is formed by inheriting only the columns that does not contain any prohibited

arc generated in the branching scheme. �e subproblem is easily modi�ed by penalizing the costs of
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these newly generated prohibited arcs. �e branching selection is done, randomly among vehicles with

fractional paths, by taking the greatest fractional paths when there are more than two fractional paths

for the same vehicle.

5.5.2 Branching on the original variables

Now consider the case where branching is performed on the original variables xijtv ∈ [0, 1], yijtv ∈

[0, 1]. Suppose branching is performed on some xijtv and we try to impose xijtv = 0 on one branch and

xijtv = 1 on the other branch. �e case where xijtv = 0 is easily enforced by penalizing the variable’s

cost when solving the longest path problems. �e case where xijtv = 1 has the drawback of having

to deal with multiple, sequential arcs along the planning horizon. For instance, when branching in the

root node, enforcing xijtv = 1 entails solving two longest path problems instead of one, as follows:

the �rst going from the origin to (i, t) and the second going from (j, t + τij) to nF . When branching

in other nodes rather than the root, to enforce several variables to 1 (i.e., xijtv = 1 or yijtv = 1), we

have to deal with the additional problem of sequencing several longest paths among these arcs. �is

problem of sequencing several longest path is di�erent from the single origin-destination longest path

problem.

To avoid this di�culty, we use an adaption of the branching procedure of Vanderbeck and Wolsey

(1996). Instead of trying to enforce xijtv = 0 and xijtv = 1 directly within the subproblem, at a given

node s of the branch-and-bound tree, we apply branching constraints of the following form to the RMP:

xijtv ≤ 0↔
∑
q∈Qv

x̄ijtvqλvq ≤ 0 ∀(i, j, t, v) ∈ UXs
(5.9)

yijtv ≤ 0↔
∑
q∈Qv

ȳijtvqλvq ≤ 0 ∀(i, j, t, v) ∈ UY s
(5.10)

xijtv ≥ 1↔
∑
q∈Qv

x̄ijtvqλvq ≥ 1 ∀(i, j, t, v) ∈ LXs
(5.11)

yijtv ≥ 1↔
∑
q∈Qv

ȳijtvqλvq ≥ 1 ∀(i, j, t, v) ∈ LY s
(5.12)

where UXs
and UY s

are the set of index tuples related to upper bound branching constraints of the

x and y variables, respectively, and LXs
and LY s

are the set of index tuples related to lower bound

branching constraints of the x and y variables, respectively. To modify the subproblem and enforce

the branching constraints, we use the dual variables θijtv of the newly added constraints (5.9)-(5.12) to

modify the arc’s costs of the subproblem’s objective function Zsp(v) as follows:

Zsp(v) = max
∑
i∈N

∑
j∈N
i 6=j

∑
t∈T

(
(pijv − uijt)xijtv − cijvyijtv

)
−

∑
(i,j,t,v)∈

UXs∪LXs

θijtvxijtv −
∑

(i,j,t,v)∈
UY s∪LY s

θijtvyijtv.
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�e branching selection is performed by giving priority to the fractional x variables with earlier de-

parting times and choosing randomly among di�erent vehicles to break ties.

5.5.3 Branching on the demand constraints

In relaxed solutions λ̄, it may be the case that the total demand served by several vehicles at a given

arc (i, j, t) is fractional, i.e., ∑
v∈V

∑
q∈Qv

x̄ijtvqλ̄vq /∈ Z+. (5.13)

Since the partial demand served at a given arc must be integral, we propose the following branching

procedure based on adding branching constraints enforcing the integral demand served:

∑
v∈V

∑
q∈Qv

x̄ijtvqλvq ≥


∑
v∈V

∑
q∈Qv

x̄ijtvqλ̄vq

 ∀(i, j, t) ∈ LDs,

∑
v∈V

∑
q∈Qv

x̄ijtvqλvq ≤

∑
v∈V

∑
q∈Qv

x̄ijtvqλ̄vq

 ∀(i, j, t) ∈ UDs,

where d e and b c represent the ceiling and �oor functions for rounding fractional numbers. UDs
and

LDs
are the set of upper bound and lower bound branching constraints. As in the previous branching

procedure, the subproblem’s objective function Zsp(v) needs to be modi�ed through the dual variables

γijt of the branching constraints as follows:

Zsp(v) = max
∑
i∈N

∑
j∈N
i 6=j

∑
t∈T

(
(pijv − uijt)xijtv − cijvyijtv

)
−

∑
(i,j,t)∈

UDs∪LDs

γijtxijtv.

�e branching selection is performed by giving priority to the arcs with earlier departing times. It

is worth mentioning that di�erent from the other procedures, this branching scheme alone does not

guarantee an integer solution, as the summation in (5.13) may be an integer even for a solution λ̄ with

fractional components. Hence, in our implementation, this branching procedure is used hierarchically,

followed by branching on set of arcs (Section 5.5.1) or original variables (Section 5.5.2).

5.6 Computational Experiments

In this section, we present the results of computational experiments with the proposed CG approach

and the BP method. We analyse their performance with respect to other exact approaches based on

solving the ILP model (2.1)–(2.5) and its LP relaxation by general-purpose solvers. Additionally, we

verify the impact of each of the three branching procedures to the performance of the BP method. All

methods were implemented in C++ using the PDCGM library and the IBM CPLEX Optimization Studio
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12.8.1. All experiments reported in this section were run in a PC with CPU Intel®Core i7-4790S 3.20GHz

and 16 GB of RAM.

In the experiments, we solve the 30 large-scale instances from Vasco and Morabito (2016b) already

introduced in Section 5.4 (i.e., the instances in class 53-36-130-130-300 at the last line of Table 5.2 with

all vehicles of di�erent types). �ey represent realistic data in terms of network size, planning horizon

(24 six-hour periods over 6 days), expected number of loads over the planning horizon and �eet size of

a typical Brazilian logistics operator (Vasco, 2012). We also solved small- and large-scale realistic-sized

instances randomly generated. �e purpose of this instance generation was to test the algorithms with

instances having positive integrality gap (i.e. optimal value of the ILP problem strictly smaller than the

optimal value of the respective LP relaxation) as there were only six instances with this feature in the

group of instances of Vasco and Morabito (2016b). �ese instance were generated using the procedure

described in Section 4.2. A�er running the instance generator, we used the proposed BP method to

test for non-zero optimality gap between the LP and IP solutions. �ese problem instances and the

instance generator can be obtained upon request to the authors. We have created 4 branching schemes

by combining the branching procedures of Section 5.5, which results in four BP algorithms for trying

to solve optimally the integer VAP. �e schemes are

• Scheme A uses only the branching procedure of Section 5.5.1 (branching on set of arcs).

• Scheme B uses only the branching procedure of Section 5.5.2 (branching on original variables).

• Scheme C uses branching procedure of Section 5.5.3 (branching on demand constraints) followed

by branching procedure of Section 5.5.1 (branching on set of arcs). At a given node we evaluate

if there are fractional solutions on demand constraints and on set of arcs. If both are found, we

apply the branching on demand constraints.

• Scheme D works the same as Scheme C, however, branching procedure of Section 5.5.3 is followed

by branching procedure of Section 5.5.2 (branching on original variables) instead.

Tables 5.3 to 5.8 show the main results obtained by the proposed CG and BP methods, considering

di�erent branching procedures, and the LP and ILP solvers of CPLEX. Since we have four branching

schemes with di�erent characteristics that a�ect the performance of the BP method, we solved the 230

instances using each procedure. A time limit of 3600 seconds was imposed on each run. A sign “*”

in the tables indicates that CPLEX could not solve or even mount the model due to lack of computer

memory. Columns in these tables refer to:

• Instance is the name of the instance (number of terminals - number of periods - number of vehi-

cles - number of requests.)
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• LP is the optimal value of the LP relaxation of model (2.1)–(2.5).

• CPU LP (sec) is the time taken by CPLEX to solve each LP instance to optimality.

• IP is the optimal ILP value of model (2.1)–(2.5).

• CPU IP (sec) is the time taken by CPLEX to solve each ILP instance to optimality.

• CPU PD (sec) is the time taken by the PDCGM to solve the MP (5.1)–(5.4).

• CPU BP-α is the time taken by the BP to solve each ILP instance to optimality with the branching

scheme α ∈ {A,B,C,D}.

• N.T-α is total number of nodes created with the branching scheme α ∈ {A,B,C,D}.

• N.E-α is total number of nodes explored with the branching scheme α ∈ {A,B,C,D}.

• UB BP-α is the upperbound reached with the branching scheme α ∈ {A,B,C,D}.

• LB BP-α is the lowerbound reached with the branching scheme α ∈ {A,B,C,D}.

• GAP-α is the relative gap between UB BP-α and LB BP-α when using the branching scheme

α ∈ {A,B,C,D}.

Tables 5.3 and 5.4 show the results for the 30 large-scale instances from Vasco and Morabito (2016b).

We observe that the proposed CG approach based on the MP (5.1)–(5.4) was signi�cantly more e�cient

than solving the LP relaxation of model (2.1)–(2.5) by CPLEX. Regarding the IP optimal solution, only 6

instances had positive gap (instances with total number of nodes and number of explored nodes larger

than 1 in schemes A, B, C and D). It should be noted that scheme D proved optimality of these 6 instances

in less than half the computational time limit.

�e results for the randomly generated instances are presented in Tables 5.5 to 5.8. As mentioned

before, these instances have a positive integrality gap, as the optimal value of their ILP problems are

strictly smaller than the optimal values of the respective LP relaxations. Hence, they are used to be�er

test the e�ectiveness of the proposed branching procedures. First, we analyse the performance of the

proposed CG approach based on the MP (5.1)–(5.4) against solving the LP relaxation of model (2.1)–(2.5)

by CPLEX. From Tables 5.5 to 5.8, we observe that the CG approach achieved a superior performance in

terms of solving instances to proven optimality. It solved the whole subset of instances, while CPLEX

could not mount the models of instances from Tables 5.7 and 5.8.

Regarding the ILP approaches, from instances of Tables 5.5 and 5.7, we observe that the branching

based on original variables (scheme B) outperforms the branching based on set of arcs (scheme A).

Scheme A solved 8 out of 30 instances, while scheme B solved 17 out of 30 in Table 5.5. All these solved
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small instances took less than half the computational time limit. In addition, scheme A and B solved 4

and 10 out of 30 instances, respectively, in Table 5.7. Note that schemes A and B solved less than half

the instances presented in the mentioned tables, and even though scheme B performed be�er than A,

some of those solved instances took more than half the time limit to reach optimality. �ese results

are improved when we combine branching procedures as in schemes C and D. From Tables 5.6 and 5.8,

we observe that schemes C and D solved 58 out of 60 instances to optimality (except 2: 50-36-130-700

and 50-36-250-700. Note that scheme A was able to solve 50-36-250-700 in only 56.93 seconds). When

comparing schemes C and D, we observe that the di�erence in computational times is relatively small.

We consider these di�erences are due to implementation details between the branching procedures of

Section 5.5.1 and Section 5.5.2, given that the number of total nodes and of nodes explored in both

schemes are equal (columns 8,9,16 and 17 of Tables 5.6 and 5.8). �is assertion holds for the whole

set of instances, which suggests the branching procedure of Section 5.5.3 is very e�ective in spli�ing

polyhedra with fractional values in order to lower the dual bound obtained from the linear relaxation.

Finally, to further verify the performance of the proposed approaches according to di�erent instance

characteristics, we randomly generated additional instances having the number of terminals in the

ranges [10,19], [30,39], [40,49] and [56,59]. For each of these ranges, the number of vehicles varies

in the following way: for [10,19] it increases from 20 to 50 vehicles; for [30,39], from 200 to 250; for

[40,49], from 130 to 170; and for [56,59], from 100 to 25. �e numbers of periods are 10, 30, 36 and 36,

while the numbers of loads are 20, 300, 500 and 700 for each terminal range, respectively. �e detailed

results of solving these 200 instances with the same approaches used in the previous experiments are

presented in Appendix B. To summarize these results, we resort to the performance pro�les proposed

by Dolan and Moré (2002), brie�y described as follows. �e performance pro�le of a method can be

de�ned as the cumulative distribution function for a given performance metric. In our case, we used the

computational time to reach optimality as the performance metric. Since we are interested in obtaining

an optimal integer solution, the instances whose stopping criterion was due to exceeding the time limit

were considered not solved. More speci�cally, the value P (τ) for a given method corresponds to the

fraction of instances for which that method provides solutions with a computational time within a

factor of 2τ of the best computational time. When τ = 0, the value P (τ) indicates the proportion

of instances for which a given method performed the best, i.e., was the fastest; when τ → ∞, the

P (τ) indicates the proportion of instances that were solved by a given method. We �rst show the

performance pro�les regarding our CG approach (PDCGM) and the LP relaxation of model (2.1)–(2.5)

(CPLEX). Figure 5.15 shows the e�ectiveness of PDCGM, as it was the fastest in almost 80% of the

instances (τ = 0). In addition, it solved all instances to optimality, while CPLEX solved only 50% of

them within the time limit. It is worth noticing from the tables presented in Appendix A that instances
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that were solved faster by CPLEX have number of terminals in the range [10,19], although the di�erence

in computational times within this range do not exceed 1 second.
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Figure 5.15: Performance pro�le of PDCGM vs CPLEX.

Regarding the integer optimal solution, Figure 5.16 shows the performance pro�les for the branch-

ing schemes. We observe that scheme B (blue line) performed be�er than scheme A (purple line) in

terms of solving capabilities, as it solved 50% of the instances compared to 30%; and time e�ciency, as

it solved 15% of the instances faster compared to 5%. Both schemes A and B are outperformed by C (red

line) and D (green line) which give priority to branching on demand constraints. Both schemes, C and

D, solved all instances except two (the ones presented in Table 5.8) and they have similar time e�ciency

performance as evidenced by the closeness of both lines, which was already observed in Tables 5.5 to

5.8. Figure 5.17 compares the performance of CPLEX to the best of the four branching schemes: D. Even

though schemes C and D have similar performance (this similarity is mainly due to them sharing the

same main branching procedure), we chose scheme D as the best since its subjacent di�ering branching

procedure is more e�ective (as seen by comparing scheme B to A). We observe that our proposed algo-

rithm outperforms signi�cantly CPLEX in solving the integer VAP. It solved faster almost 80% of the

instances, it was able to solve almost 100% of the instances (albeit we still have high quality bounds for

the 2 unsolved), while CPLEX could not even mount the model of approximately 50% of the instances.

By and large, from the results shown in this section, it can be seen that the proposed BP is more

competitive than the BC from CPLEX when solving large-scale instances. �e proposed method with

the branching schemes C and D outperformed CPLEX in almost all of the instances with 20 or more
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Figure 5.16: Performance pro�le of the 4 branching schemes.
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Figure 5.17: Performance pro�le of CPLEX vs BP-D.

terminals in terms of solving capabilities and time e�ciency (except three 28-20-100-200, 29-20-130-

200 and 31-30-230-300 which CPLEX solved faster than schemes C and D, see Appendix B). In addition,

most instances with 40 or more terminals could not be processed by CPLEX, while they were optimally

solved by the proposed method, schemes C and D, within reasonable computational times. �ese results
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clearly show the advantage of using the proposed BP for solving large-scale instances of the VAP.

5.7 Final Considerations

In this chapter, we presented a BP method for the VAP, based on the arc-demand model presented in

Section 2.3. �e column generation is based on an Interior Point method and the subproblem was found

to be reduced to a multiple shortest path problem. We have adapted two branching procedures from

the literature and created four branching schemes for solving optimally the integer VAP. Small-scale

and large-scale instances were solved with the proposed method and its performance results analyzed

and compared to those obtained by the general-purpose solver CPLEX. �e BP method with two of the

branching schemes turned out to be more e�ective than CPLEX in solving large-scale instances. �e

main results of this chapter were published in Cruz et al. (2020).
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Chapter 6

A new formulation for the VAP and a

Branch-and-Price method

In this chapter, a new formulation for the VAP is proposed where demand for vehicles occur at the nodes

of the subjacent graph, hence, we call it the node-demand formulation. �e size of this new formulation

depends on di�erent parameters than the formulation of Chapter 5. Additionally, we proposed a BP

method to optimally solve small and large-scale instances with this new formulation.

6.1 De�nition of the node-demand formulation

To introduce the alternative formulation, we consider the notation presented in Section 2.3 and the ad-

ditional sets and parameters de�ned as follows. LetR be the set of all requests for freight transportation

services along the planning horizon. �ere is one request r ∈ {1, .., |R|} for each triplet (i, j, t) such

that dijt > 0, ∀i, j ∈ N, t ∈ T . Each request r ∈ R is determined by the departing terminal ir ∈ N ,

the delivery terminal jr ∈ N , the starting travel period tr ∈ T and the number of vehicles needed

to meet the demand Dr = dirjrtr . Based on this, the VAP consists in determining feasible sequences

of requests, such that each sequence is executed by a given available vehicle in a way that maximizes

the overall pro�t. In addition, two arti�cial requests (depots) are added: the 0 depot from which all se-

quences of requests have to depart and the |R|+ 1 depot where all sequences of requests arrive at. We

use kv and hv to denote the location and period, respectively, at which vehicle v appears according to

the previous de�nitionmitv used in the arc-demand formulation of Section 2.3. For example, m422 = 1

is represented as k1 = 4 and h1 = 2.

We then use a request network to represent the problem, instead of the space-time network used

in the arc-demand formulation. In this request network, there is one node for each request r ∈ R,

and one arc (r, s) for each pair of requests r, s ∈ R such that it is feasible to serve request r and then
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s consecutively, using the same vehicle (of at least one type). When the delivery terminal of r is the

same as the departing terminal of s (i.e., jr = is), then the traversal of arc (r, s) means that the vehicle

�nished request r and is ready to start request s, without repositioning. Otherwise, the arc traversal

corresponds to an empty movement of the vehicle, repositioning from jr to is.

To illustrate the transformation to the new formulation, we introduce a small instance in the time-

space network. Figure 6.1 shows an example for N = {1, ..., 6} and T = {1, ..., 6}. In this example,

there are four requests for freight transportation services (d422 = 3, d562 = 1, d233 = 3, d515 = 2) and

two vehicles (i.e., |V | = 2). Vehicle 1 becomes available at terminal 6 and time period 1 (m611 = 1) while

vehicle 2 becomes available at terminal 4 and time period 2 (m422 = 1). �ere is an extra column of

terminals (t > 6) representing all terminal-period pairs extending beyond the planning horizon. In ad-

dition, there is a sink nf capturing all the �ow coming from the extended space-time network, which is

helpful is de�ning the proposed formulation of this section. Figure 6.2 illustrates an optimal solution for

this example. In the solution, vehicle 1 follows path {(6, 5, 1), (5, 6, 2), (6, 5, 3), (5, 5, 4), (5, 1, 5), (1, 1, 6)}

and vehicle 2 follows path {(4, 2, 2), (2, 3, 3), (3, 3, 5), (3, 3, 6)}.
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Figure 6.1: �e problem’s parameters.
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Figure 6.2: An optimal solution for the example.

Figure 6.3 illustrates the request network for the above mentioned example. Circles represent re-

quests whereas triangles represent both arti�cial depots. �e numbers above the circles represent the

demand Dr while the triplets within contain the departing terminal ir ∈ N , the delivery terminal

jr ∈ N and the starting travel period tr ∈ T , which will be necessary in the pro�t/cost de�nition. Note

that by ordering the request nodes according to their starting time period tr , we inherit the acyclic

property from the formulation of Section 2.3. �e arcs in this network represent the transition of ve-

hicles either between two requests or between a request and a depot (and viceversa). Note that this

transition can represent no event at all when the delivery terminal of r (jr) is the same as the departing

terminal of s (is). Finally, in comparison to the space-time network, this alternative network shows

a reduced number of nodes and arcs for instances with a moderate number of requests. For example,

the 30 node and 216 arc space-time network presented in Figure 6.1 is reduced to a network of only 6

nodes and 15 arcs, totalling 30 decision variables and 18 constraints. Figure 6.4 shows the same optimal

solution illustrated in Figure 6.2 but considering the request network.

0 (4,2,2) (5,6,2) (2,3,3) (5,1,5)

3 23 1

|𝑅| + 1

Figure 6.3: Graphic representation of a request network for the same example in Figure6.1.
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0 (4,2,2) (5,6,2) (2,3,3) (5,1,5)

3 23 1

|𝑅| + 1

Figure 6.4: An optimal solution in the request network for the same example in Figure 6.2.

In the same way as the demands, pro�ts and costs from vehicles movements have to be rede�ned

in terms of requests. Let Prsv be either the pro�t or the cost associated to meeting request s ∈ R

consecutively a�er meeting request r ∈ R with vehicle v ∈ V . As mentioned before, the traversal

of arc (r, s) may require an empty movement of the vehicle, which may shadow the pro�t related to

meet the requests and, hence, Prsv ≥ 0 corresponds to a pro�t, or to a cost otherwise. �ese values

are straightforward to compute if the triangle inequality holds for the costs and if we assume that any

vehicle can move from a given terminal to any other. However, these are not valid in the VAP because

of the restriction of movements. Indeed, if Ajrisv = 0 for jr 6= is, the empty movement may still be

possible, but through the shortest path between these terminals, which is a consequence of the fact that

optimal solutions for each vehicle v ∈ V in the time-space network are longest paths since they are

maximizing pro�ts (see Lemma 5.3.1 in Section 5.3). Hence, we use the shortest path considering empty

costs only of each vehicle type v ∈ V to calculate the corresponding pro�ts of the following events

that can occur between two nodes of the request network: (a) traveling empty between the entering

location of the vehicle (kv) and a request; (b) traveling empty between the delivery terminal of one

request and the departing terminal of its consecutive request; (c) traveling empty between the delivery

terminal of a request and the end of the planning horizon; and (d) traveling empty between the entering

location of the vehicle and the end of the planning horizon. Note that in events (c) and (d) traveling

empty is still needed when holding vehicles in inventory is not possible (as is the case in some of the

realistic-sized instances considered in this paper).

From the previous de�nition of possible events between nodes, Prsv is de�ned in terms of param-

eters pijv and cijv as follows:

Prsv =



pirjrv − SP((jr, tr + τirjr ), (is, ts), v), if r, s ∈ R

pirjrv − SP((jr, tr + τirjr ), nf , v) if r ∈ R ∧ s = |R|+ 1

− SP((kv, hv), (is, ts), v), if r = 0 ∧ s ∈ R

− SP((kv, hv), nf , v), if r = 0 ∧ s = |R|+ 1
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where SP(A,B, v) denotes the shortest path for a vehicle of type v between nodes A and B of the time-

space network and arc lengths correspond to empty vehicle costs cijv . �is can be e�ciently computed

in advance and is used as an input parameter in the model. Whenever a vehicle ends a�ending a request

or enters the system at a given terminal where it is not allowed to be held idle, it is still necessary to

compute the shortest path to nf if there is no request to a�end a�erwards (Cases 2 and 4 of the pro�t

de�nition). Figure 6.5 shows the illustrative representation of these events in the request network and

their relationship to the de�nition of Prsv .

(𝑖𝑟 , 𝑗𝑟 , 𝑡𝑟) (𝑖𝑠, 𝑗𝑠 , 𝑡𝑠)0 |𝑅| + 1

Figure 6.5: Rede�nition of pro�t/cost Prsv

�e decision variables in the alternative formulation, de�ned as xrsv , take the value of 1 if vehicle

v serve request s a�er serving request r, and 0 otherwise. Using the presented de�nitions, the node-

demand formulation of the VAP writes as:

max

∑
v∈V

∑
r∈R∪{0}

∑
s∈S∪{|R|+1}

s>r

Prsvxrsv (6.1)

s.t.

∑
s∈R∪{|R|+1}

s>r

xrsv −
∑

s∈R∪{0}
s<r

xsrv =


1 if r = 0

− 1 if r = |R|+ 1

0 if r 6= 0 ∧ r 6= |R|+ 1


∀r ∈ R ∪ {0} ∪ {|R|+ 1},∀v ∈ V, (6.2)∑

v∈V

∑
s∈R
s>r

xrsv ≤ Dr, ∀r ∈ R, (6.3)

xsrv = 0 if Airjrv = 0, ∀r ∈ R ∪ {|R|+ 1},∀v ∈ V, (6.4)

xrsv = 0 if Airjrv = 0, ∀r ∈ R ∪ {0}, ∀v ∈ V, (6.5)

xrsv ∈ {0, 1}, ∀r ∈ R ∪ {0}, ∀s ∈ R ∪ {|R|+ 1},∀v ∈ V. (6.6)

�e objective function (6.1) seeks to maximize the total pro�t from meeting the requests, and returns
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the same optimal value on the objective function of formulation (2.1)-(2.5) from Section 2.3. Constraints

(6.2) enforce that all vehicles depart from and arrive at the arti�cial depots as well as ensure the �ow

conservation of the vehicles on the request nodes. Constraints (6.3) enforce the number of vehicles

that can be used to serve a given request. Constraints (6.4) and (6.5) prohibit the movements out of

and into r, respectively, when vehicle type v cannot cross the arc where the demand is placed. Finally,

constraints (6.6) impose the domain of decision variables. Note that if it is not possible to go from a node

A to another node B in the space-time network, the value of the shortest path between these two nodes

is∞ and, hence, the pro�t between the requests related to these nodes becomes −∞. We overcome

the inconveniences resulting from se�ing Big-M pro�ts by �xing xrsv = 0 whenever Prsv = −∞.

�e number of variables and constraints in the proposed model is equal to |V ||R|(|R| − 1)/2 and

|V ||R|+|R|, respectively (without considering the variables that are zeroed out). On the other hand, the

number of variables and constraints in formulation (2.1)-(2.5) is equal to |V ||T ||N |2 and |V ||T ||N | +

|T ||N |2, respectively. As can be observed, the proposed model does not depend explicitly on the number

of periods |T | and terminals |N | on the network, which can be of great advantage for solving some

realistic large-scale instances with a moderate quantity of requests |R| and vehicles |V |.

Finally, it is worth mentioning that formulation (6.1)–(6.6) has some similarities with a special-

ized formulation of the Full Truckload Vehicle Routing Problem (FTVRP) (Arunapuram et al., 2003;

Desrosiers et al., 1984, 1988; Gronalt et al., 2003). However, there is a structural di�erence that does not

enable us to use the solution methods previously developed for the FTVRP in an e�cient manner for

the VAP. In the FTVRP, it is necessary to serve (visit) all demand for shipping transport (customers),

hence feasible and optimal solutions are Hamiltonian paths over directed graphs. Since in the VAP

we consider the possibility of partially serving demand, solutions are simple paths in the time-space

network. Furthermore, in the alternative formulation proposed in this paper, we are able to show that

the graph is acyclic, thus, we can explore this property by using e�cient algorithms in our decom-

position approach. Finally, to the best of our knowledge, there is no other solution approach using a

node-demand network for the VAP.

6.2 Dantzig-Wolfe decomposition

In this section, the Dantzig-Wolfe (DW) decomposition is presented for the new formulation of the

VAP. We chose to decompose according to each vehicle since, from a practical point of view, it is best

for operations control to create set of decisions according to vehicle groups or individual vehicles, and

from a modelling perspective, quality results from Section 5.6 support this decision. �us, by taking

the demand-satisfying constraints (6.5) as the coupling constraints, the remaining constraints can be
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grouped into the sets of solutions Xv,∀v ∈ V , given by:

Xv =



xv |
∑

s∈R∪{|R|+1}
s>r

xrsv −
∑

s∈R∪{0}
s<r

xsrv =


1 if r = 0

− 1 if r = |R|+ 1

0 if r 6= 0 ∧ r 6= |R|+ 1


,

∀r ∈ R ∪ {0} ∪ {|R|+ 1},

xsrv = 0 if Airjrv = 0, ∀r ∈ R ∪ {|R|+ 1},

xrsv = 0 if Airjrv = 0, ∀r ∈ R ∪ {0},

xrsv ∈ {0, 1}, ∀r ∈ R ∪ {0}, s ∈ R ∪ {|R|+ 1}.


Hence, the resulting equivalent formulation to (6.1)–(6.6) writes as:

max

∑
v∈V

∑
r∈R∪{0}

∑
s∈S∪{|R|+1}

Prsvxrsv

s.t.

∑
v∈V ′

∑
s∈R
s>r

xrsv ≤ Dr, ∀r ∈ R,

xv ∈ Xv, ∀v ∈ V,

Each set Xv is a bounded polyhedron as it is de�ned exclusively by binary variables. �en, using the

discretization approach (Lübbecke and Desrosiers, 2005; Vanderbeck, 2005), we can write any solution

xv ∈ Xv as an integer combination of the extreme points of Xv as follows:

xv =
∑
q∈Qv

λvqx̄vq, with

∑
q∈Qv

λvq = 1, λvq ∈ {0, 1}, (6.7)

where x̄vq denotes the extreme points of Xv , and Qv is the set of indices of all extreme points. By

substituting this representation into (6.1)-(6.6), the result is the Master Problem (MP):

max

∑
v∈V

∑
r∈R∪{0}

∑
s∈S∪{|R|+1}

Prsv

∑
q∈Qv

λvqx̄vq

 (6.8)

s.t.

∑
v∈V ′

∑
s∈R
s>r

∑
q∈Qv

λvqx̄vq

 ≤ Dr, ∀r ∈ R, (ur) (6.9)

∑
q∈Qv

λvq = 1, ∀v ∈ V, (wv) (6.10)

λvq ∈ {0, 1}, ∀v ∈ V , ∀q ∈ Qv, (6.11)

where ur and wv represent the dual variables regarding the coupling and convexity constraints, re-
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spectively, for the linear programming (LP) relaxation of the MP. Given the huge size of Qv in realistic

problem instances and the fact that most variables are likely to assume the value of zero in an optimal

solution, we solve the LP relaxation of the MP using the Column Generation (CG) technique. More

speci�cally, we initialize the LP relaxation of the MP with just a subset of extreme points of Xv (in our

implementation, we use the empty path from node 0 to node |R|+ 1 in the request network, for each

vehicle v), resulting in what is called the Restricted Master Problem (RMP). Hence, the RMP starts with

a relatively small number of columns (variables) and we may generate new columns iteratively using

the dual solutions and the following pricing subproblems:

Zsp(v) = max
∑

r∈R∪{0}

∑
s∈S∪{|R|+1}

(Prsv − ur)xrsv (6.12)

s.t.

∑
s∈R∪{|R|+1}

s>r

xrsv −
∑

s∈R∪{0}
s<r

xsrv =


1 if r = 0

− 1 if r = |R|+ 1

0 if r 6= 0 ∧ r 6= |R|+ 1


∀r ∈ R ∪ {0} ∪ {|R|+ 1} (6.13)

xsrv = 0 if Airjrv = 0, ∀r ∈ R ∪ {|R|+ 1}, (6.14)

xrsv = 0 if Airjrv = 0, ∀r ∈ R ∪ {0}, (6.15)

xrsv ∈ R+, ∀r ∈ R ∪ {0}, s ∈ R ∪ {|R|+ 1}, (6.16)

for each v ∈ V . Hence, the reduced cost of a variable λvq is given by Zsp(v) − wv . In this particular

case of the addressed problem, the optimal solution obtained at the end of the CG procedure has the

same objective value as an optimal solution of the linear programming (LP) relaxation of the original

model (6.1)–(6.6), as the pricing subproblems (6.12)-(6.16) have the integrality property. Nevertheless,

the reformulation is still computationally a�ractive as the size of the MP is signi�cantly reduced in

comparison to the size of model (6.1)–(6.6) and the pricing subproblems can be e�ciently solved using

specialized shortest path algorithms on Directed Acyclic Graphs (DAG), as discussed in the next section.

6.3 Branch-and-price method

In this section, we propose a BP method to solve the MP (6.8)–(6.11), which consists in using the CG

technique within each node of Branch-and-Bound (BB) tree (Lübbecke and Desrosiers, 2005). Our im-

plementation is based on e�cient approaches to enhance the overall performance of the method, such

as a stabilized interior-point column generation technique (Subsection 6.3.1); a specialized algorithm for

solving the pricing subproblems (Subsection 6.3.2); and a hierarchical branching strategy that impose

constraints in the master problem (Subsection 6.3.3).
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6.3.1 Interior-point column generation technique

At each node of the BP tree, we need to solve the LP relaxation of the MP (6.8)–(6.11) with possibly

additional branching constraints. To avoid the well-known pathological behaviors resulting from using

extreme dual solutions provided by the simplex method when solving the RMP (Vanderbeck, 2005),

and in accordance with the promising results obtained in Chapter 5, we use the Primal-Dual Column

Generation Method (PDCGM) (Gondzio et al., 2013, 2016) for solving the LP relaxations. �e PDCGM

is a stabilized column generation technique that relies on a primal-dual interior point method to solve

each RMP. Hence, the obtained dual solutions are well-centered points in the dual feasible set and

promote a be�er overall performance of the method, particularly for earlier CG approaches developed

for the VAP (Cruz et al., 2019, 2020) and related problems (Alvarez and Munari, 2017; Gondzio and

Munari, 2015; Munari and Gondzio, 2013).

A�er the CG method �nishes, we check if the optimal solution provided is fractional and, if it is, we

run a simple model-based heuristic in an a�empt to quickly obtain an improved incumbent solution.

�is heuristic consists of (1) imposing integrality on the variables in the RMP solved in the last iteration

of the CG method; and (2) solving the resulting integer programming problem by a general-purpose

solver using a short time limit.

6.3.2 Pricing subproblem

Each subproblem (6.12)-(6.16) is a maximum cost �ow problem over a DAG in which we have to �ow

one vehicle from the starting depot (node 0) to the end depot (node |R| + 1), hence it is a longest

path problem (as we are maximizing pro�ts) over a directed acyclic network. Since the graph for each

vehicle is already topologically sorted, we can use a linear update for optimality conditions as described

in Algorithm 4. �e values yr,s correspond to the updated arc pro�ts through the dual values from the

coupling constraints of the master problem and whenever Airjrv = 0, we set yr,s = − inf .

Algorithm 4 DAG’s algorithm

1: procedure DAG(0, |R|+ 1)

2: Initialize d[k] = −∞ and p[k] = 0,∀k ∈ R ∪ {|R|+ 1};
3: d[0] = 0;

4: for r ← 0 : R do
5: for s← r + 1 : |R|+ 1 do
6: let yrs = Prsv − ur be the pro�t of arc (r, s) for vehicle v ∈ V
7: if d[s] > d[r] + yrs then
8: d[s]← d[r] + yrs
9: p[s]← r

10: end if
11: end for
12: end for
13: end procedure
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6.3.3 Branching strategy

�e branching strategy used in the proposed BP method consists of a hierarchical rule based on the

total served demand and on the arc �ow in a fractional solution. More speci�cally, given an optimal

solution λ̄ of the RMP solved in the last iteration of the CG technique, we verify if the total demand

served by all vehicles for a given r ∈ R is fractional, i.e.

∑
v∈V

∑
s∈R
s>r

∑
q∈Qv

x̄qrsvλ̄vq /∈ Z+. (6.17)

Among all indices that satisfy (6.17), we select the index r with the earliest departing time and then

generate two child nodes, one with the �rst and the other with the second of the following additional

branching constraints:

∑
v∈V

∑
s∈R
s>r

∑
q∈Qv

x̄qrsvλvq ≥


∑
v∈V

∑
s∈R
s>r

∑
q∈Qv

x̄qrsvλ̄vq

 , (6.18)

∑
v∈V

∑
s∈R
s>r

∑
q∈Qv

x̄qrsvλvq ≤

∑
v∈V

∑
s∈R
s>r

∑
q∈Qv

x̄qrsvλ̄vq

 , (6.19)

where the unary operators d e and b c represent the ceiling and �oor functions for rounding fractional

numbers. Since they are imposed in the LP relaxation of the MP, these branching constraints do not

damage the structure of the pricing subproblems. To account for the dual solution in the pricing sub-

problems in a given node k, we only need to include the following summation in the objective function

of vth subproblem, for each v ∈ V :

−
∑
r∈Bk

∑
s∈S∪{|R|+1}

b̄rxrsv,

where Bk
is the set of all indices r ∈ R such that a branching constraint of type (6.18) or (6.19) is

imposed in node k (coming from all its ancestral nodes in the tree), and b̄r is the dual solution associated

to the rth branching constraint of these types.

�is branching rule alone does not guarantee an integer solution as the summation in (6.17) may

be integer even for a solution λ̄ with fractional components. Hence, we resort to an additional rule

when the summation in (6.17) is integer for all r ∈ R. �is rule is based on the values of variables

xrsv , which are computed from solution λ̄ using the summation in (6.7). Requiring integrality of xrsv

is equivalent to requiring integrality of the MP variables λ, as we rely on discretization (Lübbecke and

Desrosiers, 2005). Hence, given a tuple of indices (r, s, v) such that xrsv is fractional, we branch by
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enforcing xrsv = 0 in one child node, and xrsv = 1 in the other child node. �e selection of (r, s, v)

is done giving priority to variables with earlier departing times, choosing randomly among di�erent

vehicles to break ties. To avoid damaging the structure of the subproblems, we impose the new bounds

of xrsv at the MP level, by inserting one of the following constraints:

∑
q∈Qv

x̄qrsvλvq ≤ 0 or

∑
q∈Qv

x̄qrsvλvq ≥ 1, (6.20)

which correspond to imposing xrsv ≤ 0 and xrsv ≥ 1, respectively. �en, similarly to the previous

branching rule, we only need to modify the objective function of the pricing subproblems to account

for the dual solution related to these new branching constraints. More speci�cally, in a given node k

of the tree, we include the following summation in the objective function of the vth subproblem:

−
∑

(r,s,v)∈Uk∪Lk

wrsvxrsv

where wrsv is the dual solution associated to constraints of type (6.20), and Uk and Lk are the set of

index tuples (r, s, v) related to the upper and lower bound constraints in (6.20) that are imposed in node

k. Note that the values wrsv can be easily incorporated into the subproblems as additional costs at the

arcs of the request network.

In summary, we have a hierarchical branching scheme in which we �rst verify if there is at least

one index r that satisfy (6.17) and, if no such index exists, we verify if there is at least one tuple (r, s, v)

such that xrsv is fractional. Finally, it is worth mentioning that we use the best-�rst search rule to

decide the next node to be processed along the search tree, i.e, the method selects the node with the

worst dual bound (maximum dual bound in maximization problems).

6.4 Computational Experiments

In this section, we present the results of computational experiments with the proposed approaches as

well as the approaches from Chapter 5 for solving the VAP, using small and large-scale realistic-sized

instances collected from Vasco and Morabito (2016b) and Chapter 5. First, we present the results of

solving the two considered compact formulations, namely the node-demand formulation proposed in

Section 6.1 and the arc-demand formulation presented in Section 2.3. �en, we show the results of the

experiments with the BP method proposed in Section 6.3 and the BP method proposed in Section 5.

All methods were implemented in C++ and use the Concert Library of the IBM CPLEX Optimization

Studio v.12.8.1. Additionally, for the BP method we use the PDCGM library (Gondzio et al., 2016) as

the CG solver. All experiments reported in this section were run on a PC with CPU Intel Core i7-4790S
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3.20GHz and 16 GB of RAM. A symbol “*” indicates that CPLEX could not solve or even mount the

model due to lack of computer memory. A time limit of 7200 seconds was imposed on each run.

We use two set of instances to develop the performance analysis of the above-mentioned solution

methods. �e �rst set comprises 30 instances from the work of Vasco and Morabito (2016b) which

share the same characteristics, namely, 53 terminals, 36 periods, 300 requests and 130 vehicles. �e

second set comprises the 200 generated instances from Chapter 5 with di�erent number of terminals,

periods, requests and vehicles. �ese instances will be referred to according to the range of the number

of terminals: [10, 19], [20, 29], [30, 39], [40, 49] and [50, 59]. For each of these terminal ranges, the

number of vehicles varies in the following way: for [10, 19] it increases from 20 to 50 vehicles; for

[20, 29], from 100 to 150; for [30, 39], from 200 to 250; for [40, 49], from 130 to 170; and for [50, 59],

from 100 to 250. �e numbers of periods are 10, 30, 36 and 36, while the number of requests are 50, 200,

300, 500 and 700 for each terminal range, respectively. �e detailed results of solving these instances

with the methods are presented in the Appendix C.

6.4.1 Comparison of arc-demand formulation and node-demand formulation

In this section, we compare the performance of the general-purpose ILP solver of CPLEX in solving the

compact formulations of Sections 2.3 and 6.1. Table 6.1 shows the computational times for solving the

LP relaxation and the ILP model of the arc-demand formulation (2.1)–(2.5) and the node-demand for-

mulation (6.1)–(6.6) for the set of instances [20,29], [30,39] of Chapter 5 and the 30 large-scale instances

of Vasco and Morabito (2016b). Table 6.1 includes only the computational times of the LP relaxation

and the corresponding ILP model for both formulations of instances [20,29], [30,39] of Chapter 5. Com-

putational times for the arc-demand formulation of instances from Vasco and Morabito (2016b) are not

included as CPLEX could not mount the corresponding models. It is worth mentioning that the re-

spective ILP arc-demand models of these instances have 26,292,240 variables and 349,164 constraints.

Objective values for all instances are detailed in Appendix C. Results for instances [10,19] are omi�ed

as all computational times do not exceed 1 second. In the case of instances [40,49], CPLEX only solved 2

and 11 instances to optimality for the arc-demand and node-demand formulations, respectively, which

are also detailed in Appendix C.

From Table 6.1, we observe that CPLEX in solving the model of the node-demand formulation

outperformed that of the arc-demand formulation as it solved faster all instances in the sets [20,29] and

[30,39]. �e solution of the LP relaxation of arc-demand model required up to 20 and 269 seconds for

the [20, 29] and [30, 39] instances, respectively, while that of the node-demand model required up to

3 and 19 seconds for the [20, 29] and [30, 39] instances, respectively. In the case of the ILP model, the

di�erence in computational times is more pronounced. It took up to 58 and 934 seconds for the arc-
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Table 6.1: Computational times for solving instances from Vasco and Morabito (2016b) and instances

with terminals in ranges [20, 29] and [30, 39] using the arc-demand and node-demand formulations.

Instance
Arc-demand Node-demand

Instance
Arc-demand Node-demand

Instance
Node-demand

LP ILP LP ILP LP ILP LP ILP LP ILP

20-20-100-200 3.49 16.23 1.56 2.64 30-30-200-300 100.44 392.92 7.26 9.54 53-36-130-300-p1 4.15 28.81

20-20-130-200 4.33 19.13 1.26 2.26 30-30-230-300 104.13 435.42 6.84 9.18 53-36-130-300-p2 3.19 5.05

20-20-150-200 5.45 22.10 1.73 2.97 30-30-250-300 153.42 750.87 13.72 16.14 53-36-130-300-p3 2.34 4.84

21-20-100-200 5.36 19.09 1.58 2.48 31-30-200-300 98.37 436.45 7.82 10.46 53-36-130-300-p4 4.55 29.11

21-20-130-200 5.01 21.65 1.30 2.27 31-30-230-300 135.00 716.02 10.75 13.15 53-36-130-300-p5 2.01 2.75

21-20-150-200 5.51 23.34 1.75 2.96 31-30-250-300 139.71 685.50 12.64 14.95 53-36-130-300-p6 5.79 12.30

22-20-100-200 5.82 23.76 1.46 2.56 32-30-200-300 132.54 497.74 7.67 9.83 53-36-130-300-p7 2.81 3.42

22-20-130-200 5.71 25.56 1.88 2.89 32-30-230-300 130.23 621.84 9.94 11.45 53-36-130-300-p8 4.01 14.68

22-20-150-200 7.14 34.33 2.68 4.20 32-30-250-300 154.61 730.32 14.49 16.02 53-36-130-300-p9 3.51 3.85

23-20-100-200 4.65 19.48 1.11 1.84 33-30-200-300 110.64 456.08 9.10 10.48 53-36-130-300-p10 3.75 2.64

23-20-130-200 6.44 27.30 1.62 2.90 33-30-230-300 268.12 933.43 12.97 14.46 53-36-130-300-p11 2.09 3.39

23-20-150-200 8.00 31.67 2.15 3.53 33-30-250-300 101.29 417.62 7.85 9.35 53-36-130-300-p12 4.50 15.54

24-20-100-200 5.30 24.04 1.33 2.29 34-30-200-300 131.44 639.94 10.56 11.93 53-36-130-300-p13 3.37 6.87

24-20-130-200 11.08 42.33 2.56 3.51 34-30-230-300 164.23 903.13 14.56 16.45 53-36-130-300-p14 2.90 4.34

24-20-150-200 12.68 52.91 2.38 3.87 34-30-250-300 * * 12.80 14.17 53-36-130-300-p15 4.04 4.48

25-20-100-200 5.20 23.05 1.35 2.53 35-30-200-300 115.12 536.07 7.17 9.46 53-36-130-300-p16 3.30 5.05

25-20-130-200 8.86 38.92 2.30 4.29 35-30-230-300 * * 10.95 12.96 53-36-130-300-p17 2.20 2.24

25-20-150-200 9.41 37.72 2.08 2.97 35-30-250-300 * * 10.39 12.87 53-36-130-300-p18 3.22 5.99

26-20-100-200 5.49 22.13 1.37 2.50 36-30-200-300 116.12 615.03 8.72 11.07 53-36-130-300-p19 2.00 2.23

26-20-130-200 7.66 33.17 1.59 2.93 36-30-230-300 * * 12.44 15.01 53-36-130-300-p20 2.78 5.51

26-20-150-200 19.33 67.78 2.39 4.36 36-30-250-300 * * 18.74 20.48 53-36-130-300-p21 7.36 16.13

27-20-100-200 7.05 32.24 1.66 2.38 37-30-200-300 144.08 826.57 9.75 11.46 53-36-130-300-p22 5.56 16.86

27-20-130-200 11.71 55.14 2.34 3.48 37-30-230-300 * * 9.46 11.01 53-36-130-300-p23 4.41 13.97

27-20-150-200 9.95 44.40 1.81 2.89 37-30-250-300 * * 10.59 12.85 53-36-130-300-p24 2.31 2.60

28-20-100-200 10.32 42.01 1.89 2.89 38-30-200-300 * * 7.21 9.07 53-36-130-300-p25 3.43 6.48

28-20-130-200 8.64 36.32 1.44 2.65 38-30-230-300 * * 11.67 13.96 53-36-130-300-p26 2.63 3.50

28-20-150-200 11.36 57.47 2.41 4.07 38-30-250-300 * * 12.50 14.76 53-36-130-300-p27 2.67 2.69

29-20-100-200 7.09 31.58 1.28 2.15 39-30-200-300 * * 8.57 11.01 53-36-130-300-p28 2.79 3.82

29-20-130-200 11.48 49.86 1.88 2.77 39-30-230-300 * * 13.52 16.77 53-36-130-300-p29 2.21 2.29

29-20-150-200 10.10 44.10 1.88 3.22 39-30-250-300 * * 10.49 12.32 53-36-130-300-p30 2.69 3.63

demand model in both set of instances, while it took up to 5 and 21 seconds for node-demand model

across both set of instances. Note that CPLEX could not mount the models of 13 instances in the set

[30, 39]. In the case of the larger instances from Vasco and Morabito (2016b), by using the proposed

node-demand model CPLEX was able to solve the LP relaxation of all instances in less than 8 seconds

and the ILP models in less than 30 seconds. It is worth mentioning, however, that many of the 300

requests describing these instances overlap on the same subset of arcs; hence, all of the instances have

a number of demand arcs in the range 50 to 70.

Table 6.2 presents the average computational times of solving the LP (Av LP ) and ILP (Av ILP )
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models, and the number of instances solved (Count) for the arc-demand and node-demand formulations.

Instances in the range [50,59] are not included as neither the arc-demand nor the node-demand models

could be mounted by CPLEX. From this table we observe that the computational times resulting from

using the node-demand formulation are be�er in each set of instances. Additionally, for the set [30,39],

[40,49] and the ones from Vasco and Morabito (2016b), CPLEX was able to solve a larger proportion of

instances using the proposed node-demand formulation.

Table 6.2: Average computational times and count of instances solved to optimality by CPLEX using

the arc-demand and node-demand formulations.

Instance
Arc-demand Node-demand

Av LP Av ILP Count Av LP Av ILP Count

[10,19] 0.12 0.31 50 0.01 0.04 50

[20,29] 7.99 33.96 30 1.80 2.97 30

[30,39] 135.26 623.23 17 10.70 12.76 30

[40,49] 321.51 1891.44 2 24.44 27.98 11

Vasco (2016) * * 0 3.44 7.82 30

6.4.2 Comparison of the BP methods based on the reformulations the arc-demand

and node-demand formulations

In this section, we analyze the performance of the BP method proposed in Section 6.3, based on the

reformulation of the node-demand model. Tables 6.3, 6.4 and 6.5 show the results of the BP method

proposed in this chapter and the BP method from Chapter 5, which is based on the reformulation of

the arc-demand model. Columns in all these tables refer to: Troot is the time taken to solve the root

node only and TBP is the time taken by the BP. �e detailed results for all sets of instances are shown

in Appendix C.

Table 6.3 shows the results of both BP methods in instances from the work of Vasco and Morabito

(2016b). We observe that even though both BP were able to process and solve the root node of all

instances, the node-demand BP method clearly outperforms the arc-demand BP method in terms of

computational times. All instances were solved in less than 45 seconds by the arc-based BP method,

while it took less than 1 second for the BP method based on the node-demand model. �e six instances

with boldfaced names are the only ones within this set that have positive integrality gaps at the root

node, i.e., the optimal value obtained at the root node is strictly larger than the optimal value of the

instance. For these instances, the node-demand BP method took less than 3 seconds, while the arc-

demand BP method took more than 46 seconds.

Table 6.4 shows the results of the BP methods in instances with terminals in ranges [20, 29] and
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Table 6.3: Results of the BP methods based on the arc-demand and node-demand formulations for

instances from Vasco and Morabito (2016b).

Instance
Arc-demand Node-demand

Instance
Arc-demand Node-demand

TRoot TBP TRoot TBP TRoot TBP TRoot TBP

53-36-130-300-p1 33.0 46.9 0.5 0.5 53-36-130-300-p16 36.0 36.0 0.2 0.2

53-36-130-300-p2 29.1 29.1 0.2 0.2 53-36-130-300-p17 33.5 33.5 0.2 0.2

53-36-130-300-p3 31.0 409.1 0.4 1.2 53-36-130-300-p18 36.6 83.0 0.5 0.8

53-36-130-300-p4 36.8 36.8 0.3 0.3 53-36-130-300-p19 37.2 37.2 0.2 0.2

53-36-130-300-p5 29.1 29.1 0.2 0.2 53-36-130-300-p20 36.3 36.3 0.2 0.2

53-36-130-300-p6 33.0 33.0 0.3 0.3 53-36-130-300-p21 44.8 44.8 0.3 0.3

53-36-130-300-p7 31.5 31.5 0.3 0.3 53-36-130-300-p22 37.6 37.6 0.4 0.4

53-36-130-300-p8 29.2 127.9 0.2 1.5 53-36-130-300-p23 34.4 34.4 0.3 0.3

53-36-130-300-p9 36.7 36.7 0.3 0.3 53-36-130-300-p24 27.3 27.3 0.2 0.2

53-36-130-300-p10 25.2 25.2 0.2 0.2 53-36-130-300-p25 33.9 33.9 0.3 0.3

53-36-130-300-p11 36.0 46.5 0.2 2.0 53-36-130-300-p26 30.2 30.2 0.2 0.2

53-36-130-300-p12 34.7 34.7 0.3 0.3 53-36-130-300-p27 27.1 27.1 0.2 0.2

53-36-130-300-p13 37.5 80.6 0.1 0.9 53-36-130-300-p28 37.9 37.9 0.2 0.2

53-36-130-300-p14 31.8 31.8 0.2 0.2 53-36-130-300-p29 30.2 30.2 0.2 0.2

53-36-130-300-p15 38.6 38.6 0.2 0.2 53-36-130-300-p30 33.7 33.7 0.2 0.2

[30, 39]. First, we compare the performance of the methods in solving the root node. In the set [20, 29],

the node-demand BP method took less than 1 second, while the arc-demand BP method took less than

4 seconds. In the set [30, 39], the di�erence is slightly more pronounced as it still took less than 1

second for the node-demand BP method and more than 9 seconds for the arc-demand BP method for all

instances. Regarding the performance of the BP methods to solve the instances to proven optimality,

the node-demand BP method solved all instances in the set [20, 29] in less than 37 seconds, whereas

the arc-demand BP method took 73 seconds (both maximum computational times occurred in instance

29-20-130-200). In the set [30, 39], it took less than 383 seconds for the node-demand BP method and

1540 seconds for the arc-demand BP method (both maximum computational times occurred in instance

31-30-230-300). It is worth highlighting that in all instances in this table, the proposed BP method was

faster than the arc-demand BP method of Chapter 5.

Finally, Table 6.5 shows the results of the BP methods in instances with terminals in ranges [40, 49]

and [50, 59]. Instances with boldfaced times (BP) correspond to instances that were not solved to proven

optimality within the time limit by the BP method of Chapter 5. �ese instances are 50-36-130-700

and 50-36-250-700, with upper bounds (lower bounds) of 57051.5 (57048.0) and 111448.0 (111444.0),

respectively; and both with �nal relative gaps of 0.0001%. Apart from these two, all remaining instances
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Table 6.4: Results of the BP methods based on the arc-demand and node-demand formulations for

instances with terminals in ranges [20, 29] and [30, 39].

Instance
Arc-demand Node-demand

Instance
Arc-demand Node-demand

TRoot TBP TRoot TBP TRoot TBP TRoot TBP

20-20-100-200 1.48 5.36 0.09 1.15 30-30-200-300 8.23 16.41 0.36 3.96

20-20-130-200 1.51 7.51 0.11 4.26 30-30-230-300 9.41 21.33 0.46 6.41

20-20-150-200 1.70 2.63 0.12 1.10 30-30-250-300 10.03 108.11 0.51 71.58

21-20-100-200 1.75 3.09 0.08 0.98 31-30-200-300 8.46 11.79 0.30 2.08

21-20-130-200 2.05 3.51 0.13 1.02 31-30-230-300 9.68 1539.31 0.41 382.25

21-20-150-200 1.88 3.56 0.12 1.06 31-30-250-300 10.34 13.13 0.49 4.01

22-20-100-200 1.96 5.71 0.10 1.36 32-30-200-300 9.11 39.08 0.35 9.51

22-20-130-200 1.99 4.04 0.11 0.94 32-30-230-300 10.83 18.04 0.40 2.51

22-20-150-200 2.12 5.47 0.12 1.40 32-30-250-300 17.02 394.39 0.57 176.37

23-20-100-200 1.90 2.99 0.09 0.75 33-30-200-300 9.86 254.35 0.35 21.98

23-20-130-200 1.94 3.02 0.09 1.17 33-30-230-300 11.13 32.99 0.40 6.21

23-20-150-200 2.20 5.03 0.12 1.93 33-30-250-300 11.59 65.80 0.41 16.85

24-20-100-200 2.37 6.28 0.08 1.32 34-30-200-300 14.44 63.03 0.45 14.86

24-20-130-200 3.51 13.02 0.14 5.79 34-30-230-300 12.19 56.14 0.45 11.04

24-20-150-200 3.26 9.43 0.15 2.36 34-30-250-300 12.77 21.54 0.44 4.00

25-20-100-200 2.33 5.93 0.07 1.09 35-30-200-300 11.06 170.60 0.34 34.44

25-20-130-200 2.64 4.07 0.12 0.99 35-30-230-300 13.41 45.84 0.40 6.39

25-20-150-200 2.91 6.05 0.14 1.80 35-30-250-300 13.90 61.65 0.44 13.50

26-20-100-200 2.64 4.16 0.08 0.73 36-30-200-300 13.64 29.92 0.39 4.82

26-20-130-200 2.76 3.93 0.10 0.70 36-30-230-300 14.57 28.51 0.44 6.79

26-20-150-200 3.94 21.92 0.14 5.35 36-30-250-300 14.50 21.88 0.47 2.76

27-20-100-200 3.31 4.54 0.08 0.76 37-30-200-300 13.07 16.96 0.29 6.33

27-20-130-200 3.95 29.05 0.14 6.51 37-30-230-300 16.65 1250.38 0.39 273.13

27-20-150-200 3.29 6.69 0.12 1.94 37-30-250-300 16.07 48.15 0.41 7.76

28-20-100-200 3.23 42.24 0.08 8.75 38-30-200-300 14.08 465.01 0.34 75.33

28-20-130-200 3.32 4.63 0.10 1.19 38-30-230-300 15.72 25.18 0.44 3.72

28-20-150-200 3.73 5.49 0.12 1.15 38-30-250-300 18.31 26.90 0.48 4.05

29-20-100-200 3.69 7.48 0.08 1.56 39-30-200-300 18.71 69.13 0.39 9.22

29-20-130-200 3.60 72.53 0.12 36.02 39-30-230-300 17.87 238.48 0.43 44.26

29-20-150-200 3.91 6.73 0.11 0.76 39-30-250-300 17.57 60.95 0.46 9.59
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reached optimality within the time limit. In the set [40, 49], for solving the root node only, the node-

based BP method took less than 1 second while the arc-demand BP method took more than 15 seconds,

considering all instances. In the set [50, 59], it took less than 3 seconds for the node-demand BP method

while it took more than 23 seconds for the arc-demand BP method for all instances. Regarding the

integer optimal solutions, the node-demand BP method clearly outperformed the arc-demand BP. In

the set, [40, 49] it took less 70 seconds for the method based on the node-demand model and less than

394 seconds for the method based on the arc-demand model. In the set [50, 59], apart from the instances

not solved by the arc-demand BP method, the node-demand BP method took less than 778 seconds,

while the arc-demand BP method took less than 2272 seconds. Note that both of the above mentioned

instances that could not be solved by the arc-demand BP method, were indeed solved by the node-

demand BP method in 2594.82 and 761.11 seconds. As observed in the results presented in the previous

tables, the proposed BP method was also faster than the BP method of Chapter 5 in all instances in the

sets [40, 49] and [50, 59].

Table 6.6 presents the average computational times of solving the root node only (Av TRoot), the

average computational time of solving the integer problem (Av TBP ) and the number of instances

solved (Count) for the arc-demand and node-demand formulations. From this table we observe that

the computational times resulting from using the node-demand formulation are be�er in each set of

instances. Additionally, we were able to solve two unsolved instances with respect to Chapter 5.

Table 6.6: Average computational times and count of instances solved to optimality using the BP meth-

ods based on the arc-demand and node-demand formulations.

Instance
Arc-demand Node-demand

Av TRoot Av TBP Count Av TRoot Av TBP Count

[10,14] 0.12 0.38 15 0.01 0.09 15

[15,19] 0.21 0.54 15 0.01 0.04 15

[20,29] 2.70 10.20 30 0.11 3.20 30

[30,39] 13.14 173.83 30 0.42 41.19 30

[40,49] 24.65 85.35 30 0.61 19.43 30

[50,54] 36.41 496.03 28 1.28 198.75 30

[55,59] 47.79 278.65 30 1.29 68.82 30

(Vasco and Morabito, 2016b) 33.67 53.35 30 0.27 0.43 30

In summary, from the results shown in this section regarding the addressed compact models and

BP methods, it can be observed that the proposed node-demand representation yields superior results

in computational e�ciency for realistic-sized instances using both the compact model in a general-

purpose ILP solver (CPLEX) and the tailored exact solution method based on column generation. By
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using CPLEX with the node-demand formulation, we were able to solve all instances of Vasco and

Morabito (2016b), while these same instances could not be even mounted in the case of the arc-demand

formulation. Furthermore, we were able to solve a larger proportion of instances from the 200 instances

of Chapter 5 using CPLEX as well. Regarding the BP method, we obtained be�er results in both classes

of instances, Vasco and Morabito (2016b) and Chapter 5, as we were able to solve all of them faster with

the new formulation. In addition, we were able to solve to optimality the two instances that could not

be solved by the BP method from Chapter 5.

Figure 6.6 shows the performance pro�les (Dolan and Moré, 2002) based on computational times

for each set of instances, considering the four solution approaches presented in this work, i.e., the

two compact models solved by CPLEX and the two BP methods. �e value P (τ) for a given method

corresponds to the fraction of instances for which that method provides solutions with a computational

time within a factor of 2τ of the best computational time. When τ = 0, the value P (τ) indicates

the proportion of instances for which a given method performed the best, i.e., was the fastest; when

τ → ∞, the P (τ) indicates the proportion of instances that were solved by a given method. In sets

[10, 19], [20, 29] and [30, 39], all four methods were able to solve all instances. �e compact node-

demand model is the most e�cient in solving the set of smallest instances, i.e., [10, 19]. For sets [20, 29]

and [30, 39], the node-based BP method is the fastest in most instances, although it takes longer than

the corresponding compact model to prove optimality for a few instances in these sets. �en, for the

sets [40, 49] and [50, 59], the node-demand BP method clearly superior to any other approach, as it is

the fastest in more than 90% of instances and is the �rst to prove optimality for all instances.

6.5 Final Considerations

In this chapter, we have presented a new formulation and a tailored exact solution method based on the

DW decomposition for solving the deterministic VAP. �is new formulation consists in preprocessing

the space-time network of the previous chapter, so that decisions can be reduced to exclusively allo-

cating empty vehicles between requests. We have solved this new formulation using CPLEX. From the

results obtained in this section, it can be seen that the new formulation poses greater advantages for

solving the VAP. In addition, we used the DW reformulation and proposed a BP method which relies

on solving the pricing problem using shortest path algorithms and a stabilized PDCGM for solving the

master problem. Results from computational experiments show advantages in solving capabilities and

time e�ciency from using this tailored exact solution method compared to the method presented in

the previous chapter.
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Figure 6.6: Performance pro�les of the four approaches considered in the computational experiments

with instances grouped according to the de�ned sets.
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Chapter 7

Conclusions

�e Vehicle Allocation Problem (VAP) bears great applicability in logistics systems, speci�cally on

freight road transportation operations. Given that realistic large-scale instances of the determinis-

tic formulation for this problem have been solved using only heuristic methods (Vasco and Morabito,

2016b), the aim of this work is to propose exact solution methods and models to e�ectively solve large-

scale instances of the VAP.

�e �rst method proposed is Branch-and-Benders-Cut for solving the integer VAP over the space-

time network, which consists of adding Benders cuts whenever an integer solution is found along the

branch-and-cut tree of a general purpose solver via lazy constraints. �e resulting subproblem for each

vehicle type from the Benders decomposition is a minimum cost �ow problem which bears the inte-

grality property and allows us to use the classical Benders cuts from dual theory. We use the network

simplex algorithm for solving the primal subproblem and obtain optimal dual values, and propose a

procedure based on network �ow algorithms to build the unbounded dual rays when the primal sub-

problem is infeasible. In addition, we propose two valid inequalities, which are added to the root MP,

with the aim of reducing the number of feasibility cuts. We test the proposed algorithm on randomly

generated instances and compare its runtime e�ciency to the automatic Benders implementation of a

general purpose solver as well as the standalone branch-and-cut of the same solver in solving the com-

pact formulation . �e results showed that the branch-and-benders-cut algorithm is not yet competitive

as all small scale instances were solved faster by the other two methods. Furthermore, we observe con-

vergence problems in the proposed method as none of the instances with 20 to 30 terminals could be

solved due to lack of memory considering the other two methods solved all these instances.

�e second method proposed is a Branch-and-Price for solving the Dantzig-Wolfe reformulation of

the VAP. To this end, we use the work developed in Cruz (2017) which relies on e�ective procedures

for solving each problem of the resulting decomposition and propose four branching schemes to obtain

the optimal solution of the integer VAP. Computational experiments consisted of comparing runtime
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e�ciency and solving capabilities of the proposed algorithm to the branch-and-cut of a general pur-

pose solver in solving the compact formulation of small and realistic large-scale randomly generated

instances as well as benchmark instances from the work of Vasco and Morabito (2016b). �e results

showed the superiority of the proposed algorithm as it was able to solve all large-scale instances faster

than the general purpose solver. In addition, it was able to solve almost all instances (except two) while

the branch-and-cut solved only 50% of the instances. �e main results of this chapter were published

in Cruz et al. (2020).

�e third approach is a new model that relies on a novel network representation for the problem

in which nodes correspond to the requests for transportation services. Di�erent from the ILP models

based on the space-time network, the size of the ILP model of this formulation depends exclusively on

the number of requests and number of vehicles. Additionally, we propose a branch-and-price algorithm

based on the Dantzig-Wolfe reformulation of this new model which relies on e�cient procedures such

as a stabilized column generation procedure, an e�cient algorithm to solve the subproblems and a hier-

archical branching scheme. Computational experiments consisted of comparing runtime e�ciency and

solving capabilities of the general purpose solver in solving the compact formulations of the VAP over

the space-time network and the proposed formulation. Also, we compare the runtime e�ciency and

solving capabilities of the branch-and-price algorithms in solving the Dantzig-Wolfe formulation of the

VAP over the space-time network and the Dantzig-Wolfe reformulation based on the proposed formu-

lation. We used the small and realistic large-scale randomly generated instances from Chapter 5 and

the benchmark instances from Vasco and Morabito (2016b). �e results showed that the proposed for-

mulation performed be�er in runtime e�ciency and solving capabilities when using a general purpose

solver than the existing model based on the space-time network. In addition, the proposed branch-

and-price proved to be superior in solving the realistic large-scale instances of Vasco and Morabito

(2016b) and Chapter 5 than the branch-and-price for solving the reformulation of the VAP based on the

space-time network.

In summary, the main contributions of the present work comprises algorithmic and modelling tools

for decision makers working in the freight transportation sector facing the problem of how to e�ciently

reposition empty trucks to serve demand between terminals over a given planning horizon. In previous

works, such as Vasco and Morabito (2016b), heuristic methods were used to obtain feasible solutions

of realistic large-scale instances representative of continental countries like Brazil. �e performance of

the solutions obtained in many of those instance were not possible to assess as heuristic methods lacked

quality certi�cates and the size of the resulting models made it impossible for them to be solved with

a general purpose solver. In the present work, we showed that by reformulating the problem in such a

way that the resulting model depends on di�erent parameters, namely the node-demand formulation,
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it is possible to make use of a general purpose solver to solve realistic instances that were not solved

using the classical formulation. Furthermore, we also showed that by properly designing exact methods

based on decompositions for the classical and proposed formulations, namely the Branch-and-Price, it

is possible to optimally solve, or at least obtain quality certi�cates, for instances where general purpose

solvers lack the computational capability to do the same task. Based on the previous considerations,

the next section outlines future steps for research on the VAP.

7.1 Future Research

�is section outlines two promising directions for future research. �e �rst consist in developing an

exact method based on column generation for solving a variant of the VAP that includes �eet siz-

ing decisions. �e second consists in developing a compact formulation for this variant based on the

node-demand graph representation as well as an exact solution method based on column generation.

Following, we present both compact formulations for the VAP with �eet sizing decisions in addition to

their respective Dantzig-Wolfe reformulation.

7.1.1 Fleet sizing VAP

Some carriers may not want to reject demand given the future �nancial loss and deterioration of the

customer service level it creates, hence the need to outsource, or postpone if possible, these services to

ful�ll this demand. To this end, Vasco and Morabito (2016a) proposed an extension of the VAP in which

outsourcing �eet is allowed. �ere are two possibilities for outsourcing services. �e �rst is the one

described in the works of Li and Lu (2014); Liu et al. (2010b), in which these services are outsourced to

other third-party logistics operator and they have control over the repositioning and allocation process.

�e other operator sets a price for ful�lling these services and the only decision to be taken is to decide

whether to contract these services or not. �e second way of outsourcing is to hire independent truck

owners, see Vasco (2012); Vasco and Morabito (2016a), who in many cases sets a rent price for using

the services during a speci�ed planning horizon. In this case, the decision maker has to decide whether

or not to hire vehicles, and if so, decide on how to reposition and allocate these incoming vehicles to

a�end all demand. Given that the second case poses a greater complexity in managing these systems,

we decided to propose extensions of the current work in that line. �e model of the �eet sizing VAP as

outlined in the second case, writes as

max
∑
i∈N

∑
j∈N
i 6=j

∑
t∈T

∑
v∈V

(pijvxijtv − cijvyijtv)
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−
∑
i∈N

∑
t∈T

∑
v∈V

Citvzitv (7.1)

s.t.

∑
j∈N

(xijtv + yijtv)−
∑
j∈N,
j 6=i,
t>τji

(
xji(t−τji)v + yji(t−τki)v

)
(7.2)

− yii(t−1)v − zitv = mitv, ∀i ∈ N, ∀t ∈ T, ∀v ∈ V,∑
v∈V

xijtv = dijt, ∀i, j ∈ N, ∀t ∈ T, (7.3)

xijtv = 0 ∧ yijtv = 0, if Aijv = 0, ∀i, j ∈ N, ∀t ∈ T, ∀v ∈ V, (7.4)

xijtv ∈ Z+, yijtv ∈ Z+, ∀i, j ∈ N, ∀t ∈ T, ∀v ∈ V (7.5)

zitv ∈ Z+, ∀i ∈ N, ∀t ∈ T, ∀v ∈ V. (7.6)

where zitv and mitv represent the variables and parameters, respectively, quantifying the number of

hired and owned vehicles at i ∈ N, t ∈ T from vehicle type v ∈ V , andCitv represent the cost of hiring

per vehicle type. If we apply the Dantzig-Wolfe decomposition to the linear relaxation of this problem

by leaving the demand constraints in the Master Problem (MP), we end up with the following MP

max
∑
i∈N

∑
j∈N
i 6=j

∑
t∈T

∑
v∈V

pijv

∑
q∈Qv

λvq(x̄vqijt) +
∑
r∈Rv

λvr(x̄vrijt)



−
∑
i∈N

∑
t∈T

∑
v∈V

Citv

∑
q∈Qv

λvq(z̄vqit) +
∑
r∈Rv

λvr(z̄vrit)


−
∑
i∈N

∑
j∈N
i 6=j

∑
t∈T

∑
v∈V

cijv

∑
q∈Qv

λvq(ȳvqijt) +
∑
r∈Rv

λvr(ȳvrijt)



s.t.:

∑
v∈V

∑
q∈Qv

λvq(x̄vqijt) +
∑
r∈Rv

λvr(x̄vrijt)

 = dijt, ∀i, j ∈ N, ∀t ∈ T (uijt)

∑
q∈Qv

λvq = 1, ∀v ∈ V (wv)

λvq ≥ 0, ∀v ∈ V,∀q ∈ Qv

λvq ≥ 0, ∀v ∈ V,∀r ∈ Rv

where Qv and Rv are the set of extreme points and extreme rays of the sets formed by each vehicle v;

u and w represent the vector of dual variables of the coupling and convexity constraints, respectively.

Since the MP may have an exponential number of extreme points and rays, columns are iteratively

priced out with the following subproblem
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Zvsp = max
∑
i∈N

∑
j∈N
i 6=j

∑
t∈T

((pijv − uijt)xijtv − cijvyijtv)

−
∑
i∈N

∑
t∈T

Citvzitv

s.t.

∑
j∈N

(xijtv + yijtv)−
∑
j∈N,
j 6=i,
t>τji

(
xji(t−τji)v + yji(t−τki)v

)

− yii(t−1)v − zitv = mitv, ∀i ∈ N, ∀t ∈ T,

xijtv = 0 ∧ yijtv = 0, if Aijv = 0, ∀i, j ∈ N, ∀t ∈ T,

xijtv ∈ Z+, yijtv ∈ Z+, ∀i, j ∈ N, ∀t ∈ T,

zitv ∈ Z+, ∀i ∈ N, ∀t ∈ T.

where, at a given iteration, a column is likely to be part of the optimal solution if Zvsp − wv > 0.

7.1.2 Fleet sizing node-demand VAP

𝑡 = 1 𝑡 = 2 𝑡 = 3

𝑖 = 1

𝑖 =3

𝑖 = 2

𝑛𝑓

𝑪𝟑𝟏𝟏

𝑪𝟐𝟐𝟐

𝑑232=3

𝐶211

𝐶111

𝐶312

𝐶212

𝐶112

𝐶221

Figure 7.1: Fleet sizing costs.

Another approach for dealing with �eet sizing in empty vehicle repositioning is to extend the node-

demand model of Chapter 6 as follows. Given that paths are between requests and arti�cial depots, we

now have to rede�ne the costs of �eet sizing at a given terminal to a�end a given demand. Figure 7.1

shows a situation in which we have one demand arc (d232) and we have to choose hiring between two

vehicle types to a�end this demand. All possible terminal-period pairs for hiring vehicles are indicated
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by small incoming arrows. If there is no limit on the quantity we can hire at a given point for any

vehicle type v, it is safe to say that, at an optimal solution, the demand arc is going to be serviced by

hired vehicles coming from the same origin whose combined costs of hiring and traveling are the lowest

among other terminal-period pairs. For instance, the best option for hiring type-1 vehicles is at (3, 1)

and then route them until (2, 2); and the best option for hiring type-2 vehicles is in the same origin of

the demand arc. Given this, we can de�ne the cost of hiring vehicles of type v to a�end request r as

Crv = min
(i,t)
{Citv + ShortestPath((i, t), (ir, tr))} (7.7)

and the whole model writes as

max
∑
v∈V

∑
r∈R∪{0}

∑
s∈S∪{|R|+1}

Prsvxrsv −
∑
v∈V

∑
r∈R∪{0}

Crvzrv (7.8)

s.t.

∑
s∈R∪|R|+1

s>r

xrsv =
∑

s∈R∪0
s<r

xsrv + zrv, ∀r ∈ R,∀v ∈ V (7.9)

∑
s∈R∪{|R|+1}

x0sv = mv, ∀v ∈ V (7.10)

∑
r∈R∪0

xr(|R|+1)v ≥ mv, ∀v ∈ V (7.11)

∑
v∈V

∑
s∈R
s>r

xrsv = Dr, ∀r ∈ R, (7.12)

zrv = 0 if Airjrv = 0, ∀r ∈ R,∀v ∈ V (7.13)

xsrv = 0 if Airjrv = 0, ∀r ∈ R ∪ {|R|+ 1}, ∀v ∈ V (7.14)

xrsv = 0 if Airjrv = 0, ∀r ∈ R ∪ {0},∀v ∈ V (7.15)

xrsv ∈ Z+, ∀r ∈ R ∪ {0}, s ∈ R ∪ {|R|+ 1},∀v ∈ V (7.16)

zrv ∈ Z+, ∀r ∈ R,∀v ∈ V (7.17)

where zrv denotes the number of vehicles hired from type v to a�end request r. Constraints (7.9)

enforce �ow conservation in the request nodes. Constraints (7.10) and 7.11 ensure mv vehicles of type

v depart from and arrive at depot {0} and |R|+ 1, respectively. Constraints (7.12) ensure all demand at

nodes r is covered. Constraints (7.13)-(7.15) restrict ingoing and outgoing �ow from nodes that can not

be visited by certain vehicle types. Constraints (7.16) and constraints (7.17) are the variables domain.

By applying the Dantzig Wolfe decomposition to the linear relaxation of model (7.8)-(7.15) and

leaving constraints (7.12) in the Master Problem, we obtain the following MP
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max
∑
v∈V

∑
r∈R∪{0}

∑
s∈S∪{|R|+1}

Prsv

∑
q∈Qv

λqvx̄qv +
∑
l∈Rv

λlvx̄lv

 (7.18)

s.t.

∑
v∈V

∑
s∈R
s>r

∑
q∈Qv

λqvx̄qv +
∑
l∈Rv

λlvx̄lv

 = Dr, ∀r ∈ R (ur) (7.19)

∑
q∈Qv

λqv = 1, ∀v ∈ V (wv) (7.20)

λqv ≥ 0, ∀v ∈ V , ∀q ∈ Qv (7.21)

where Qv and Rv are the set of extreme points and extreme rays of the sets formed by each vehicle v;

u and w represent the vector of dual variables of the coupling and convexity constraints, respectively.

Colums are priced out by solving the following subproblem

Zsp(v) = max
∑

r∈R∪{0}

∑
s∈S∪{|R|+1}

(Prsv − ur)xrsv −
∑

r∈R∪{0}
Crvzrv

s.t.

∑
s∈R∪|R|+1

s>r

xrsv =
∑

s∈R∪0
s<r

xsrv + zrv, ∀r ∈ R,∀v ∈ V

∑
s∈R∪{|R|+1}

x0sv = mv, ∀v ∈ V

∑
r∈R∪0

xr(|R|+1)v ≥ mv, ∀v ∈ V

∑
v∈V

∑
s∈R
s>r

xrsv = Dr, ∀r ∈ R,

zrv = 0 if Airjrv = 0, ∀r ∈ R,∀v ∈ V

xsrv = 0 if Airjrv = 0, ∀r ∈ R ∪ {|R|+ 1},∀v ∈ V

xrsv = 0 if Airjrv = 0, ∀r ∈ R ∪ {0},∀v ∈ V

xrsv ∈ Z+, ∀r ∈ R ∪ {0}, s ∈ R ∪ {|R|+ 1}, ∀v ∈ V

zrv ∈ Z+, ∀r ∈ R,∀v ∈ V

and evaluating if their reduced cost Zvsp − wv is minor than 0.

In this chapter, we have presented the main scienti�c contributions of the present work which

encompasses a new formulation and exact algorithms based on decomposition techniques in order to

solve deterministic formulations of the VAP. In addition, we have introduced a variant of the VAP which

models situations in which all demand needs to be serviced within the planning horizon by means of
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hiring an independent �eet. Future research based on this work contemplates devising exact algorithms

for this new variant and more realistic variants of the VAP.
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Appendix A

Detailed graphics of the longest path

algorithm for the illustrative example

of Section 5.3.2

In this section we show graphically every iteration of the longest path algorithm for the illustrative

example of Section 5.3.2. Table A.1 contains the travelling costs for empty and loaded arcs for a given

type of vehicle. �e initial (distance or cost) label of all nodes are −∞ while the label of the starting

node 1 is 0. �e initial precedence label of all nodes is empty. �e bold circles represent the incumbent

node at a given iteration (Line 4 of Algorithm 3, while the shaded circles represent the forward adjacent

nodes whose labels are being updated in the current bold circle’s iteration (Line 8 of Algorithm 3. �e

bold (either solid or dash) arrows indicate that labels of the adjacent nodes were updated through the

distance of the current node. Hence, if at a given iteration there is no bold (solid or dash) arrow, it

means the label of the adjacent nodes are not updated (since the current label is the maximum distance

according to the optimality conditions in Line 7 of Algorithm 3).

Arc 1-3 1-6 2-4 2-5 3-5 3-8 4-6 4-7 5-7 5-8 6-7 6-8 7-9 8-9

Empty cost 0,00 -2,50 0,00 -1,50 0,00 -1,00 0,00 -2,20 -2,00 -1,00 0,00 0,00 0,00 0,00

Loaded cost -inf 2,00 -inf -2,50 -inf -2,00 -inf 1,50 2,00 2,50 -inf -inf -inf -inf

Table A.1: Arcs’ costs for the ilustrative example
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1 2 3 4 5 6 7 8 9

d[1]=0 d[2]=-inf d[3]=-inf d[4]=-inf d[5]=-inf d[6]=-inf d[7]=-inf d[8]=-inf d[9]=-inf

p[1]=null p[2]=null p[3]=null p[4]=null p[5]=null p[6]=null p[7]=null p[8]=null p[9]=null

Figure A.1: Initialization of Maximum Path

1 2 3 4 5 6 7 8 9

d[1]=0 d[2]=-inf d[3]=0 d[4]=-inf d[5]=-inf d[6]=2 d[7]=-inf d[8]=-inf d[9]=-inf

p[1]=null p[2]=null p[3]=1 p[4]=null p[5]=null p[6]=1 p[7]=null p[8]=null p[9]=null

Figure A.2: Updating labels adjacent to node 1
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2 3 4 5 6 7 8 9

d[1]=0 d[2]=-inf d[3]=0 d[4]=-inf d[5]=-inf d[6]=2 d[7]=-inf d[8]=-inf d[9]=-inf

p[1]=null p[2]=null p[3]=1 p[4]=null p[5]=null p[6]=1 p[7]=null p[8]=null p[9]=null

1

Figure A.3: Updating labels adjacent to node 2

1 2 3 4 5 6 7 8 9

d[1]=0 d[2]=-inf d[3]=0 d[4]=-inf d[5]=0 d[6]=2 d[7]=-inf d[8]=-1 d[9]=-inf

p[1]=null p[2]=null p[3]=1 p[4]=null p[5]=3 p[6]=1 p[7]=null p[8]=3 p[9]=null

Figure A.4: Updating labels adjacent to node 3
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1 2 3 4 5 6 7 8 9

d[1]=0 d[2]=-inf d[3]=0 d[4]=-inf d[5]=0 d[6]=2 d[7]=-inf d[8]=-1 d[9]=-inf

p[1]=null p[2]=null p[3]=1 p[4]=null p[5]=3 p[6]=1 p[7]=null p[8]=3 p[9]=null

Figure A.5: Updating labels adjacent to node 4

1 2 3 4 5 6 7 8 9

d[1]=0 d[2]=-inf d[3]=0 d[4]=-inf d[5]=0 d[6]=2 d[7]=2 d[8]=2.5 d[9]=-inf

p[1]=null p[2]=null p[3]=1 p[4]=null p[5]=3 p[6]=1 p[7]=5 p[8]=5 p[9]=null

Figure A.6: Updating labels adjacent to node 5
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1 2 3 4 5 6 7 8 9

d[1]=0 d[2]=-inf d[3]=0 d[4]=-inf d[5]=0 d[6]=2 d[7]=2 d[8]=2.5 d[9]=-inf

p[1]=null p[2]=null p[3]=1 p[4]=null p[5]=3 p[6]=1 p[7]=5 p[8]=5 p[9]=null

Figure A.7: Updating labels adjacent to node 6

1 2 3 4 5 6 7 8 9

d[1]=0 d[2]=-inf d[3]=0 d[4]=-inf d[5]=0 d[6]=2 d[7]=2 d[8]=2.5 d[9]=2

p[1]=null p[2]=null p[3]=1 p[4]=null p[5]=3 p[6]=1 p[7]=5 p[8]=5 p[9]=7

Figure A.8: Updating labels adjacent to node 7
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1 2 3 4 5 6 7 8 9

d[1]=0 d[2]=-inf d[3]=0 d[4]=-inf d[5]=0 d[6]=2 d[7]=2 d[8]=2.5 d[9]=2.5

p[1]=null p[2]=null p[3]=1 p[4]=null p[5]=3 p[6]=1 p[7]=5 p[8]=5 p[9]=8

Figure A.9: Updating labels adjacent to node 8

1 2 3 4 5 6 7 8 9

d[1]=0 d[2]=-inf d[3]=0 d[4]=-inf d[5]=0 d[6]=2 d[7]=2 d[8]=2.5 d[9]=2.5

p[1]=null p[2]=null p[3]=1 p[4]=null p[5]=3 p[6]=1 p[7]=5 p[8]=5 p[9]=8

Figure A.10: Updating labels adjacent to node 9 (no forward adjacent nodes)
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1 2 3 4 5 6 7 8 9

d[1]=0 d[2]=-inf d[3]=0 d[4]=-inf d[5]=0 d[6]=2 d[7]=2 d[8]=2.5 d[9]=2.5

p[1]=null p[2]=null p[3]=1 p[4]=null p[5]=3 p[6]=1 p[7]=5 p[8]=5 p[9]=8

Figure A.11: Longest path between node 1 and 9
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Appendix B

Results of the Branch-and-Price for the

network �ow formulation of the VAP

�is appendix shows the results of solving 200 randomly generated instances with integrality gap in

order to test the proposed Branch-and-Price method. A sign “*” indicates that CPLEX could not solve

or even mount the model due to lack of computer memory. A time limit of 3600 seconds was imposed

on each run. �e following tables contain information that allow us to draw conclusions on the perfor-

mance of our proposed method compared to CPLEX. Columns refer to:

• Instance is the name of the instance (number of terminals - number of periods - number of vehi-

cles - number of requests.)

• LP is the optimal value of the LP relaxation of model (2.1)–(2.5).

• CPU LP (sec) is the time taken by CPLEX to solve each LP instance to optimality.

• IP is the optimal ILP value of model (2.1)–(2.5).

• CPU IP (sec) is the time taken by CPLEX to solve each ILP instance to optimality.

• CPU PD (sec) is the time taken by the PDCGM to solve the MP (5.1)–(5.4).

• CPU BP-α is the time taken by the B&P to solve each ILP instance to optimality with the branch-

ing scheme α ∈ {A,B,C,D}.

• N.T-α is total number of nodes created with the branching scheme α ∈ {A,B,C,D}.

• N.E-α is total number of nodes explored with the branching scheme α ∈ {A,B,C,D}.

• UB BP-α is the upperbound reached with the branching scheme α ∈ {A,B,C,D}.
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• LB BP-α is the lowerbound reached with the branching scheme α ∈ {A,B,C,D}.

• GAP-α is the relative gap between UB BP-α and LB BP-α when using the branching scheme

α ∈ {A,B,C,D}.
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Appendix C

Results of node-demand formulation

and Branch-and-Price

�is appendix shows the detailed results of the computational experiments described in Section 6.4,

using CPLEX to solve the node-demand and arc-demand models and the branch-and-price (BP) methods

based on these models. Recall that a time limit of 7200 seconds was imposed on each run. �e tables

in this appendix follow a similar structure as in Section 6.4. For each instance and solution approach,

they may show the following columns:

• Instance is the name of the instance.

• LP OV is the optimal value of the LP relaxation of the compact model.

• IP OV is the optimal value of the compact model.

• LP is the time taken by CPLEX to solve the LP relaxation of the compact model.

• IP is the time taken by CPLEX to solve the compact model.

• TRoot (sec) is the time taken by the BP method to solve the root node only.

• UB is the best upper bound reached by the BP method.

• ILPOV is the best lower bound reached by the BP method (the optimal value if the method

�nishes before the time limit).

• Gap is the relative optimality gap between the values of UB and ILPOV reached the BP method.

All times are displayed in seconds. A sign “*” indicates that CPLEX could not solve or even mount

the model due to lack of computer memory.
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Table C.1: Results from solving the compact model of the arc-based and node-based formulations in

instances with terminals ranging from 10 to 14.

Instance LP OV IP OV
Arc-demand Node-demand

LP ILP LP ILP

10-10-20-20 1940 1937 0.13 0.52 0.00 0.03

10-10-20-25 1874 1857 0.06 0.12 0.01 0.02

10-10-20-30 507 501 0.05 0.10 0.00 0.01

10-10-20-35 2474.5 2464 0.05 0.16 0.01 0.02

10-10-20-50 422.5 421 0.07 0.15 0.02 0.10

11-10-20-20 1601 1584 0.06 0.50 0.00 0.01

11-10-20-25 661.5 659 0.07 0.13 0.00 0.40

11-10-20-30 1606.5 1596 0.06 0.16 0.00 0.01

11-10-20-35 2240.5 2238 0.06 0.29 0.01 0.02

11-10-20-50 2704.5 2701 0.08 0.26 0.03 0.03

12-10-20-20 907 904 0.08 0.59 0.00 0.07

12-10-20-25 396.5 396 0.08 0.21 0.00 0.02

12-10-20-30 337 335 0.08 0.17 0.00 0.19

12-10-20-35 677.5 669 0.08 0.18 0.01 0.02

12-10-20-50 811.5 811 0.08 0.16 0.02 0.02

13-10-20-20 1259.5 1259 0.10 0.18 0.00 0.02

13-10-20-25 671.5 669 0.09 0.26 0.00 0.02

13-10-20-30 581 580 0.09 0.17 0.00 0.02

13-10-20-35 267.5 266 0.09 0.16 0.00 0.01

13-10-20-50 680 678 0.09 0.33 0.02 0.02

14-10-20-20 636.5 633 0.11 0.21 0.00 0.03

14-10-20-25 1295 1292 0.12 0.36 0.00 0.04

14-10-20-30 579 574 0.11 0.31 0.01 0.04

14-10-20-35 2058.5 2057 0.11 0.21 0.00 0.01

14-10-20-50 356 355 0.11 0.65 0.02 0.09
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Table C.2: Results from solving the compact model of the arc-based and node-based formulations in

instances with terminals ranging from 15 to 19.

Instance LP OV IP OV
Arc-demand Node-demand

LP ILP LP ILP

15-10-20-20 564 560 0.13 0.26 0.00 0.02

15-10-20-25 1202.5 1202 0.13 0.27 0.00 0.03

15-10-20-30 1454.5 1451 0.12 0.26 0.00 0.01

15-10-20-35 1679.5 1679 0.12 0.23 0.01 0.01

15-10-20-50 624 623 0.13 0.36 0.02 0.03

16-10-20-20 738 736 0.14 0.46 0.00 0.02

16-10-20-25 1481.5 1479 0.15 0.29 0.00 0.02

16-10-20-30 1800 1788 0.14 0.28 0.00 0.02

16-10-20-35 2040.5 2037 0.14 0.27 0.00 0.01

16-10-20-50 1564.5 1562 0.15 0.33 0.02 0.03

17-10-20-20 632.5 632 0.16 0.30 0.00 0.01

17-10-20-25 1613.5 1611 0.16 0.31 0.00 0.01

17-10-20-30 424.5 424 0.16 0.28 0.00 0.01

17-10-20-35 2349 2347 0.17 0.32 0.01 0.02

17-10-20-50 2210 2202 0.16 0.37 0.02 0.03

18-10-20-20 1147.5 1143 0.17 0.29 0.00 0.02

18-10-20-25 294.5 291 0.17 0.41 0.00 0.01

18-10-20-30 1836 1835 0.17 0.29 0.01 0.02

18-10-20-35 992 991 0.18 0.78 0.00 0.01

18-10-20-50 550.5 550 0.20 0.35 0.03 0.04

19-10-20-20 906.5 905 0.19 0.33 0.00 0.01

19-10-20-25 535.5 535 0.20 0.36 0.00 0.12

19-10-20-30 1405.5 1402 0.22 0.45 0.00 0.01

19-10-20-35 692.5 691 0.20 0.38 0.00 0.01

19-10-20-50 2599 2591 0.21 0.61 0.02 0.04
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Table C.3: Results from solving the compact model of the arc-based and node-based formulations in

instances with terminals ranging from 20 to 29.

Instance LP OV IP OV
Arc-demand Node-demand

LP ILP LP ILP

20-20-100-200 14473 14471 3.49 16.23 1.56 2.64

20-20-130-200 31331 31327 4.33 19.13 1.26 2.26

20-20-150-200 34622.5 34618 5.45 22.10 1.73 2.97

21-20-100-200 2585.5 2585 5.36 19.09 1.58 2.48

21-20-130-200 4056.5 4056 5.01 21.65 1.30 2.27

21-20-150-200 27333.5 27322 5.51 23.34 1.75 2.96

22-20-100-200 4902.5 4902 5.82 23.76 1.46 2.56

22-20-130-200 12304 12301 5.71 25.56 1.88 2.89

22-20-150-200 10972.5 10971 7.14 34.33 2.68 4.20

23-20-100-200 14133.5 14132 4.65 19.48 1.11 1.84

23-20-130-200 21749.5 21745 6.44 27.30 1.62 2.90

23-20-150-200 23366 23358 8.00 31.67 2.15 3.53

24-20-100-200 10157 10155 5.30 24.04 1.33 2.29

24-20-130-200 3486.5 3486 11.08 42.33 2.56 3.51

24-20-150-200 18158 18156 12.68 52.91 2.38 3.87

25-20-100-200 9336.5 9335 5.20 23.05 1.35 2.53

25-20-130-200 33906 33905 8.86 38.92 2.30 4.29

25-20-150-200 32517 32508 9.41 37.72 2.08 2.97

26-20-100-200 9816 9815 5.49 22.13 1.37 2.50

26-20-130-200 16895 16892 7.66 33.17 1.59 2.93

26-20-150-200 3731.5 3731 19.33 67.78 2.39 4.36

27-20-100-200 21095.5 21090 7.05 32.24 1.66 2.38

27-20-130-200 8457.5 8456 11.71 55.14 2.34 3.48

27-20-150-200 26709 26704 9.95 44.40 1.81 2.89

28-20-100-200 3641.5 3641 10.32 42.01 1.89 2.89

28-20-130-200 25359 25355 8.64 36.32 1.44 2.65

28-20-150-200 11225.5 11222 11.36 57.47 2.41 4.07

29-20-100-200 5995 5994 7.09 31.58 1.28 2.15

29-20-130-200 8979.5 8978 11.48 49.86 1.88 2.77

29-20-150-200 7978.5 7977 10.10 44.10 1.88 3.22
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Table C.4: Results from solving the compact model of the arc-based and node-based formulations in

instances with terminals ranging from 30 to 39.

Instance LP OV IP OV
Arc-demand Node-demand

LP ILP LP ILP

30-30-200-300 14513.5 14512 100.44 392.92 7.26 9.54

30-30-230-300 47060.5 47054 104.13 435.42 6.84 9.18

30-30-250-300 69007 68998 153.42 750.87 13.72 16.14

31-30-200-300 51227.5 51221 98.37 436.45 7.82 10.46

31-30-230-300 79462.5 79441 135.00 716.02 10.75 13.15

31-30-250-300 79072 79063 139.71 685.50 12.64 14.95

32-30-200-300 46440 46435 132.54 497.74 7.67 9.83

32-30-230-300 23500 23497 130.23 621.84 9.94 11.45

32-30-250-300 6280 6279 154.61 730.32 14.49 16.02

33-30-200-300 55926 55911 110.64 456.08 9.10 10.48

33-30-230-300 48200.5 48194 268.12 933.43 12.97 14.46

33-30-250-300 33573 33569 101.29 417.62 7.85 9.35

34-30-200-300 4623.5 4623 131.44 639.94 10.56 11.93

34-30-230-300 62736.5 62724 164.23 903.13 14.56 16.45

34-30-250-300 16987 * * * 12.80 14.17

35-30-200-300 29115 29110 115.12 536.07 7.17 9.46

35-30-230-300 76030 * * * 10.95 12.96

35-30-250-300 47615.5 * * * 10.39 12.87

36-30-200-300 40294.5 40288 116.12 615.03 8.72 11.07

36-30-230-300 52908 * * * 12.44 15.01

36-30-250-300 62943.5 * * * 18.74 20.48

37-30-200-300 57430 57422 144.08 826.57 9.75 11.46

37-30-230-300 7770.5 * * * 9.46 11.01

37-30-250-300 41585 * * * 10.59 12.85

38-30-200-300 28809.5 * * * 7.21 9.07

38-30-230-300 73705.5 * * * 11.67 13.96

38-30-250-300 24711 * * * 12.50 14.76

39-30-200-300 4989.5 * * * 8.57 11.01

39-30-230-300 67965 * * * 13.52 16.77

39-30-250-300 63911.5 * * * 10.49 12.32
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Table C.5: Results from solving the compact model of the arc-based and node-based formulations in

instances with terminals ranging from 40 to 49.

Instance LP OV IP OV
Arc-demand Node-demand

LP ILP LP ILP

40-36-130-500 48491 48485 233.74 1354.03 14.75 17.27

40-36-150-500 * * * * 19.29 23.76

40-36-170-500 * * * * * *

41-36-130-500 4350 4349 409.28 2428.86 25.71 30.59

41-36-150-500 63709.5 63691 * * 30.74 32.25

41-36-170-500 * * * * * *

42-36-130-500 15601.5 15598 * * 26.75 29.42

42-36-150-500 8179 8178 * * 31.74 35.39

42-36-170-500 * * * * * *

43-36-130-500 35992 35988 * * 15.24 19.23

43-36-150-500 53283.5 53269 * * 22.74 25.60

43-36-170-500 * * * * * *

44-36-130-500 55765 55748 * * 31.96 32.94

44-36-150-500 * * * * * *

44-36-170-500 * * * * * *

45-36-130-500 35025 35017 * * 25.74 32.31

45-36-150-500 * * * * * *

45-36-170-500 * * * * * *

46-36-130-500 4479.5 4479 * * 24.13 29.08

46-36-150-500 * * * *

46-36-170-500 * * * * * *

47-36-130-500 * * * * * *

47-36-150-500 * * * * * *

47-36-170-500 * * * * * *

48-36-130-500 * * * * * *

48-36-150-500 * * * * * *

48-36-170-500 * * * * * *

49-36-130-500 * * * * * *

49-36-150-500 * * * * * *

49-36-170-500 * * * * * *
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Table C.6: Results from solving the compact model of the arc-based and node-based formulations in

instances from Vasco and Morabito (2016b).

Instance LP OV IP OV
Arc-demand Node-demand

LP ILP LP ILP

53-36-130-300-p1 17437.8 17437.6 * * 4.15 28.81

53-36-130-300-p2 19260 19260 * * 3.19 5.05

53-36-130-300-p3 16634.5 16633.8 * * 2.34 4.84

53-36-130-300-p4 19560 19560 * * 4.55 29.11

53-36-130-300-p5 18169.2 18169.2 * * 2.01 2.75

53-36-130-300-p6 19969.4 19969.4 * * 5.79 12.30

53-36-130-300-p7 19213.8 19213.8 * * 2.81 3.42

53-36-130-300-p8 18475.9 18472.6 * * 4.01 14.68

53-36-130-300-p9 15371.4 15371.4 * * 3.51 3.85

53-36-130-300-p10 18344.8 18344.8 * * 3.75 2.64

53-36-130-300-p11 16799.9 16799.6 * * 2.09 3.39

53-36-130-300-p12 22008.4 22008.4 * * 4.50 15.54

53-36-130-300-p13 19628.6 19628.2 * * 3.37 6.87

53-36-130-300-p14 19616.6 19616.6 * * 2.90 4.34

53-36-130-300-p15 20673.2 20673.2 * * 4.48 4.04

53-36-130-300-p16 17796.2 17796.2 * * 3.30 5.05

53-36-130-300-p17 17345.2 17345.2 * * 2.20 2.24

53-36-130-300-p18 17850.7 17849.2 * * 3.22 5.99

53-36-130-300-p19 18190.6 18190.6 * * 2.00 2.23

53-36-130-300-p20 20754.4 20754.4 * * 2.78 5.51

53-36-130-300-p21 16953.2 16953.2 * * 7.36 16.13

53-36-130-300-p22 18699.2 18699.2 * * 5.56 16.86

53-36-130-300-p23 21525.6 21525.6 * * 4.41 13.97

53-36-130-300-p24 18266.2 18266.2 * * 2.31 2.60

53-36-130-300-p25 17064.8 17064.8 * * 3.43 6.48

53-36-130-300-p26 20324.4 20324.4 * * 2.63 3.50

53-36-130-300-p27 20003 20003 * * 2.67 2.69

53-36-130-300-p28 17956 17956 * * 2.79 3.82

53-36-130-300-p29 19074.6 19074.6 * * 2.21 2.29

53-36-130-300-p30 16464.6 16464.6 * * 2.69 3.63
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Table C.7: Results from solving the arc-based and node-based formulations via Branch-and-Price in

instances with terminals ranging from 10 to 14.

Instance
Arc-demand Node-demand

TRoot UB ILPOV Gap TBP TRoot UB ILPOV Gap TBP

10-10-20-20 0.09 1937 1937 0.0% 0.18 0.006 1937 1937 0.0% 0.06

10-10-20-25 0.06 1857 1857 0.0% 0.15 0.005 1857 1857 0.0% 0.06

10-10-20-30 0.06 501 501 0.0% 0.44 0.005 501 501 0.0% 0.09

10-10-20-35 0.07 2464 2464 0.0% 0.18 0.005 2464 2464 0.0% 0.06

10-10-20-50 0.07 421 421 0.0% 0.15 0.007 421 421 0.0% 0.05

11-10-20-20 0.09 1584 1584 0.0% 0.19 0.005 1584 1584 0.0% 0.06

11-10-20-25 0.09 659 659 0.0% 0.18 0.005 659 659 0.0% 0.03

11-10-20-30 0.06 1596 1596 0.0% 0.18 0.005 1596 1596 0.0% 0.02

11-10-20-35 0.07 2238 2238 0.0% 0.20 0.006 2238 2238 0.0% 0.07

11-10-20-50 0.37 2701 2701 0.0% 0.23 0.007 2701 2701 0.0% 0.06

12-10-20-20 0.16 904 904 0.0% 0.76 0.005 904 904 0.0% 0.10

12-10-20-25 0.09 396 396 0.0% 0.25 0.005 396 396 0.0% 0.06

12-10-20-30 0.11 335 335 0.0% 0.65 0.005 335 335 0.0% 0.53

12-10-20-35 0.13 669 669 0.0% 1.79 0.006 669 669 0.0% 0.27

12-10-20-50 0.10 811 811 0.0% 0.25 0.007 811 811 0.0% 0.04

13-10-20-20 0.12 1259 1259 0.0% 0.27 0.006 1259 1259 0.0% 0.03

13-10-20-25 0.12 669 669 0.0% 0.27 0.007 669 669 0.0% 0.07

13-10-20-30 0.18 580 580 0.0% 0.29 0.006 580 580 0.0% 0.06

13-10-20-35 0.10 266 266 0.0% 0.80 0.005 266 266 0.0% 0.10

13-10-20-50 0.11 678 678 0.0% 0.42 0.007 678 678 0.0% 0.08

14-10-20-20 0.16 633 633 0.0% 0.56 0.007 633 633 0.0% 0.08

14-10-20-25 0.11 1292 1292 0.0% 0.35 0.005 1292 1292 0.0% 0.03

14-10-20-30 0.13 574 574 0.0% 0.30 0.005 574 574 0.0% 0.04

14-10-20-35 0.13 2057 2057 0.0% 0.29 0.006 2057 2057 0.0% 0.03

14-10-20-50 0.13 355 355 0.0% 0.31 0.007 355 355 0.0% 0.07
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Table C.8: Results from solving the arc-based and node-based formulations via Branch-and-Price in

instances with terminals ranging from 15 to 19.

Instance
Arc-demand Node-demand

TRoot UB ILPOV Gap TBP TRoot UB ILPOV Gap TBP

15-10-20-20 0.14 560 560 0.0% 0.37 0.005 560 560 0.0% 0.04

15-10-20-25 0.32 1202 1202 0.0% 0.57 0.006 1202 1202 0.0% 0.07

15-10-20-30 0.11 1451 1451 0.0% 0.32 0.005 1451 1451 0.0% 0.02

15-10-20-35 0.15 1679 1679 0.0% 0.30 0.006 1679 1679 0.0% 0.03

15-10-20-50 0.15 623 623 0.0% 0.41 0.007 623 623 0.0% 0.03

16-10-20-20 0.32 736 736 0.0% 0.52 0.005 736 736 0.0% 0.08

16-10-20-25 0.16 1479 1479 0.0% 0.38 0.005 1479 1479 0.0% 0.03

16-10-20-30 0.16 1788 1788 0.0% 0.37 0.005 1788 1788 0.0% 0.06

16-10-20-35 0.14 2037 2037 0.0% 0.42 0.004 2037 2037 0.0% 0.05

16-10-20-50 0.16 1562 1562 0.0% 0.40 0.006 1562 1562 0.0% 0.04

17-10-20-20 0.24 632 632 0.0% 0.47 0.005 632 632 0.0% 0.03

17-10-20-25 0.18 1611 1611 0.0% 0.87 0.004 1611 1611 0.0% 0.02

17-10-20-30 0.18 424 424 0.0% 0.48 0.007 424 424 0.0% 0.03

17-10-20-35 0.24 2346.99 2346.99 0.0% 0.43 0.006 2347 2347 0.0% 0.05

17-10-20-50 0.17 2202 2202 0.0% 0.63 0.006 2202 2202 0.0% 0.09

18-10-20-20 0.31 1143 1143 0.0% 0.91 0.006 1143 1143 0.0% 0.09

18-10-20-25 0.23 291 291 0.0% 0.59 0.004 291 291 0.0% 0.02

18-10-20-30 0.25 1835 1835 0.0% 0.81 0.005 1835 1835 0.0% 0.05

18-10-20-35 0.18 991 991 0.0% 0.45 0.005 991 991 0.0% 0.04

18-10-20-50 0.22 550 550 0.0% 0.51 0.007 550 550 0.0% 0.04

19-10-20-20 0.25 905 905 0.0% 0.50 0.005 905 905 0.0% 0.03

19-10-20-25 0.28 535 535 0.0% 0.62 0.005 535 535 0.0% 0.03

19-10-20-30 0.18 1402 1402 0.0% 0.83 0.005 1402 1402 0.0% 0.04

19-10-20-35 0.22 691 691 0.0% 0.49 0.006 691 691 0.0% 0.06

19-10-20-50 0.23 2591 2591 0.0% 0.86 0.006 2591 2591 0.0% 0.06
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Table C.9: Results from solving the arc-based and node-based formulations via Branch-and-Price in

instances with terminals ranging from 20 to 29.

Instance
Arc-demand Node-demand

TRoot UB ILPOV Gap TBP TRoot UB ILPOV Gap TBP

20-20-100-200 1.48 14471 14471 0.0% 5.36 0.09 14471 14471 0.0% 1.15

20-20-130-200 1.51 31327 31327 0.0% 7.51 0.11 31327 31327 0.0% 4.26

20-20-150-200 1.70 34618 34618 0.0% 2.63 0.12 34618 34618 0.0% 1.10

21-20-100-200 1.75 2585 2585 0.0% 3.09 0.08 2585 2585 0.0% 0.98

21-20-130-200 2.05 4056 4056 0.0% 3.51 0.13 4056 4056 0.0% 1.02

21-20-150-200 1.88 27322 27322 0.0% 3.56 0.12 27322 27322 0.0% 1.06

22-20-100-200 1.96 4902 4902 0.0% 5.71 0.10 4902 4902 0.0% 1.36

22-20-130-200 1.99 12301 12301 0.0% 4.04 0.11 12301 12301 0.0% 0.94

22-20-150-200 2.12 10971 10971 0.0% 5.47 0.12 10971 10971 0.0% 1.40

23-20-100-200 1.90 14132 14132 0.0% 2.99 0.09 14132 14132 0.0% 0.75

23-20-130-200 1.94 21745 21745 0.0% 3.02 0.09 21745 21745 0.0% 1.17

23-20-150-200 2.20 23358 23358 0.0% 5.03 0.12 23358 23358 0.0% 1.93

24-20-100-200 2.37 10155 10155 0.0% 6.28 0.08 10155 10155 0.0% 1.32

24-20-130-200 3.51 3486 3486 0.0% 13.02 0.14 3486 3486 0.0% 5.79

24-20-150-200 3.26 18156 18156 0.0% 9.43 0.15 18156 18156 0.0% 2.36

25-20-100-200 2.33 9335 9335 0.0% 5.93 0.07 9335 9335 0.0% 1.09

25-20-130-200 2.64 33905 33905 0.0% 4.07 0.12 33905 33905 0.0% 0.99

25-20-150-200 2.91 32508 32508 0.0% 6.05 0.14 32508 32508 0.0% 1.80

26-20-100-200 2.64 9815 9815 0.0% 4.16 0.08 9815 9815 0.0% 0.73

26-20-130-200 2.76 16892 16892 0.0% 3.93 0.10 16892 16892 0.0% 0.70

26-20-150-200 3.94 3731 3731 0.0% 21.92 0.14 3731 3731 0.0% 5.35

27-20-100-200 3.31 21090 21090 0.0% 4.54 0.08 21090 21090 0.0% 0.76

27-20-130-200 3.95 8456 8456 0.0% 29.05 0.14 8456 8456 0.0% 6.51

27-20-150-200 3.29 26704 26704 0.0% 6.69 0.12 26704 26704 0.0% 1.94

28-20-100-200 3.23 3641 3641 0.0% 42.24 0.08 3641 3641 0.0% 8.75

28-20-130-200 3.32 25355 25355 0.0% 4.63 0.10 25355 25355 0.0% 1.19

28-20-150-200 3.73 11222 11222 0.0% 5.49 0.12 11222 11222 0.0% 1.15

29-20-100-200 3.69 5994 5994 0.0% 7.48 0.08 5994 5994 0.0% 1.56

29-20-130-200 3.60 8978 8978 0.0% 72.53 0.12 8978 8978 0.0% 36.02

29-20-150-200 3.91 7977 7977 0.0% 6.73 0.11 7977 7977 0.0% 0.76
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Table C.10: Results from solving the arc-based and node-based formulations via Branch-and-Price in

instances with terminals ranging from 30 to 39.

Instance
Arc-demand Node-demand

TRoot UB ILPOV Gap TBP TRoot UB ILPOV Gap TBP

30-30-200-300 8.23 14512 14512 0.0% 16.41 0.36 14512 14512 0.0% 3.96

30-30-230-300 9.41 47054 47054 0.0% 21.33 0.46 47054 47054 0.0% 6.41

30-30-250-300 10.03 68998 68998 0.0% 108.11 0.51 68998 68998 0.0% 71.58

31-30-200-300 8.46 51221 51221 0.0% 11.79 0.30 51221 51221 0.0% 2.08

31-30-230-300 9.68 79441 79441 0.0% 1539.31 0.41 79441 79441 0.0% 382.25

31-30-250-300 10.34 79063 79063 0.0% 13.13 0.49 79063 79063 0.0% 4.01

32-30-200-300 9.11 46435 46435 0.0% 39.08 0.35 46435 46435 0.0% 9.51

32-30-230-300 10.83 23497 23497 0.0% 18.04 0.40 23497 23497 0.0% 2.51

32-30-250-300 17.02 6279 6279 0.0% 394.39 0.57 6279 6279 0.0% 176.37

33-30-200-300 9.86 55911 55911 0.0% 254.35 0.35 55911 55911 0.0% 21.98

33-30-230-300 11.13 48194 48194 0.0% 32.99 0.40 48194 48194 0.0% 6.21

33-30-250-300 11.59 33569 33569 0.0% 65.80 0.41 33569 33569 0.0% 16.85

34-30-200-300 14.44 4623 4623 0.0% 63.03 0.45 4623 4623 0.0% 14.86

34-30-230-300 12.19 62724 62724 0.0% 56.14 0.45 62724 62724 0.0% 11.04

34-30-250-300 12.77 16985 16985 0.0% 21.54 0.44 16985 16985 0.0% 4.00

35-30-200-300 11.06 29110 29110 0.0% 170.60 0.34 29110 29110 0.0% 34.44

35-30-230-300 13.41 76015 76015 0.0% 45.84 0.40 76015 76015 0.0% 6.39

35-30-250-300 13.90 47613 47613 0.0% 61.65 0.44 47613 47613 0.0% 13.50

36-30-200-300 13.64 40288 40288 0.0% 29.92 0.39 40288 40288 0.0% 4.82

36-30-230-300 14.57 52902 52902 0.0% 28.51 0.44 52902 52902 0.0% 6.79

36-30-250-300 14.50 62932 62932 0.0% 21.88 0.47 62932 62932 0.0% 2.76

37-30-200-300 13.07 57422 57422 0.0% 16.96 0.29 57422 57422 0.0% 6.33

37-30-230-300 16.65 7769 7769 0.0% 1250.38 0.39 7769 7769 0.0% 273.13

37-30-250-300 16.07 41580 41580 0.0% 48.15 0.41 41580 41580 0.0% 7.76

38-30-200-300 14.08 28805 28805 0.0% 465.01 0.34 28805 28805 0.0% 75.33

38-30-230-300 15.72 73698 73698 0.0% 25.18 0.44 73698 73698 0.0% 3.72

38-30-250-300 18.31 24709 24709 0.0% 26.90 0.48 24709 24709 0.0% 4.05

39-30-200-300 18.71 4989 4989 0.0% 69.13 0.39 4989 4989 0.0% 9.22

39-30-230-300 17.87 67958 67958 0.0% 238.48 0.43 67958 67958 0.0% 44.26

39-30-250-300 17.57 63894 63894 0.0% 60.95 0.46 63894 63894 0.0% 9.59
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Table C.11: Results from solving the arc-based and node-based formulations via Branch-and-Price in

instances with terminals ranging from 40 to 49.

Instance
Arc-demand Node-demand

TRoot UB ILPOV Gap TBP TRoot UB ILPOV Gap TBP

40-36-130-500 15.23 48485 48485 0.0% 47.90 0.46 48485 48485 0.0% 11.66

40-36-150-500 17.29 28510 28510 0.0% 32.65 0.62 28510 28510 0.0% 8.89

40-36-170-500 18.22 76106 76106 0.0% 52.27 0.69 76106 76106 0.0% 11.44

41-36-130-500 18.11 4349 4349 0.0% 113.69 0.48 4349 4349 0.0% 27.03

41-36-150-500 19.53 63691 63691 0.0% 24.16 0.62 63691 63691 0.0% 5.85

41-36-170-500 20.81 54550 54550 0.0% 25.21 0.70 54550 54550 0.0% 4.64

42-36-130-500 19.18 15598 15598 0.0% 42.48 0.47 15598 15598 0.0% 6.05

42-36-150-500 22.40 8178 8178 0.0% 26.89 0.78 8178 8178 0.0% 7.63

42-36-170-500 21.62 36376 36376 0.0% 80.60 0.67 36376 36376 0.0% 62.20

43-36-130-500 20.24 35988 35988 0.0% 25.25 0.46 35988 35988 0.0% 4.94

43-36-150-500 21.36 53269 53269 0.0% 138.62 0.61 53269 53269 0.0% 30.75

43-36-170-500 21.77 37484 37484 0.0% 65.34 0.68 37484 37484 0.0% 15.47

44-36-130-500 20.28 55748 55748 0.0% 79.92 0.47 55748 55748 0.0% 16.84

44-36-150-500 22.88 70064 70064 0.0% 39.81 0.61 70064 70064 0.0% 7.70

44-36-170-500 25.29 37247 37247 0.0% 128.38 0.68 37247 37247 0.0% 26.54

45-36-130-500 21.41 35017 35017 0.0% 38.40 0.46 35017 35017 0.0% 7.64

45-36-150-500 22.82 35095 35095 0.0% 69.02 0.53 35095 35095 0.0% 13.67

45-36-170-500 25.23 67070 67070 0.0% 35.68 0.60 67070 67070 0.0% 6.51

46-36-130-500 26.07 4479 4479 0.0% 393.58 0.61 4479 4479 0.0% 69.61

46-36-150-500 24.76 25481 25481 0.0% 232.55 0.61 25481 25481 0.0% 62.85

46-36-170-500 28.27 45355 45355 0.0% 37.83 0.67 45355 45355 0.0% 6.55

47-36-130-500 34.85 4825 4825 0.0% 69.29 0.69 4825 4825 0.0% 11.31

47-36-150-500 26.57 54139 54139 0.0% 76.43 0.60 54139 54139 0.0% 42.31

47-36-170-500 30.42 46154 46154 0.0% 78.83 0.69 46154 46154 0.0% 13.71

48-36-130-500 28.28 26069 26069 0.0% 91.27 0.59 26069 26069 0.0% 15.70

48-36-150-500 33.14 4848 4848 0.0% 118.50 0.72 4848 4848 0.0% 20.66

48-36-170-500 29.44 68476 68476 0.0% 163.78 0.59 68476 68476 0.0% 26.56

49-36-130-500 28.81 38305 38305 0.0% 37.78 0.52 38305 38305 0.0% 5.06

49-36-150-500 40.63 4944 4944 0.0% 121.98 0.70 4944 4944 0.0% 19.01

49-36-170-500 34.51 4676 4676 0.0% 72.37 0.69 4676 4676 0.0% 14.07
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Table C.12: Results from solving the arc-based and node-based formulations via Branch-and-Price in

instances with terminals ranging from 50 to 54.

Instance
Arc-demand Node-demand

TRoot UB ILPOV Gap TBP TRoot UB ILPOV Gap TBP

50-36-100-700 23.56 50961 50961 0.0% 34.71 0.69 50961 50961 0.0% 7.61

50-36-130-700 29.24 57051.5 57048 0.0001% 7200.00 1.02 570489 57048 0.0% 5822.36

50-36-150-700 31.62 22656 22656 0.0% 68.35 1.19 22656 22656 0.0% 20.72

50-36-180-700 34.10 62122 62122 0.0% 627.10 1.39 62122 62122 0.0% 245.91

50-36-200-700 34.85 28843 28843 0.0% 37.93 1.50 28843 28843 0.0% 10.51

50-36-250-700 40.64 111448 111444 0.0001% 7200.00 1.91 111444 111444 0.0% 761.11

51-36-100-700 24.03 17676 17676 0.0% 99.31 0.59 17676 17676 0.0% 25.22

51-36-130-700 30.62 62845 62845 0.0% 42.11 1.02 62845 62845 0.0% 9.77

51-36-150-700 30.51 61608 61608 0.0% 171.96 1.16 61608 61608 0.0% 56.61

51-36-180-700 37.18 45116 45116 0.0% 1798.33 1.39 45116 45116 0.0% 777.42

51-36-200-700 38.92 69124 69124 0.0% 55.16 1.72 69124 69124 0.0% 10.71

51-36-250-700 49.22 29392 29392 0.0% 772.57 2.18 29392 29392 0.0% 268.88

52-36-100-700 25.76 47273 47273 0.0% 38.97 0.68 47273 47273 0.0% 7.48

52-36-130-700 33.24 60081 60081 0.0% 63.88 1.02 60081 60081 0.0% 11.91

52-36-150-700 28.20 75988 75988 0.0% 46.27 0.89 75988 75988 0.0% 7.81

52-36-180-700 37.01 54693 54693 0.0% 208.32 1.22 54693 54693 0.0% 73.72

52-36-200-700 43.32 33908 33908 0.0% 91.11 1.53 33908 33908 0.0% 18.60

52-36-250-700 52.17 8242 8242 0.0% 224.81 2.19 8242 8242 0.0% 9.48

53-36-100-700 26.39 18727 18727 0.0% 150.27 0.58 18727 18727 0.0% 58.73

53-36-130-700 31.03 36388 36388 0.0% 51.06 0.88 36388 36388 0.0% 12.69

53-36-150-700 38.67 63060 63060 0.0% 55.33 1.15 63060 63060 0.0% 11.14

53-36-180-700 38.71 28785 28785 0.0% 1023.86 1.39 28785 28785 0.0% 314.93

53-36-220-700 42.52 101729 101729 0.0% 105.90 1.44 101729 101729 0.0% 43.48

53-36-250-700 49.47 104922 104922 0.0% 65.19 1.90 104922 104922 0.0% 18.85

54-36-100-700 29.48 23551 23551 0.0% 137.10 0.68 23551 23551 0.0% 31.67

54-36-130-700 33.05 39535 39535 0.0% 45.46 1.01 39535 39535 0.0% 9.91

54-36-150-700 38.63 4722 4722 0.0% 81.05 1.16 4722 4722 0.0% 24.17

54-36-180-700 40.40 36084 36084 0.0% 107.63 1.56 36084 36084 0.0% 35.34

54-36-200-700 41.92 54198 54198 0.0% 45.06 1.31 54198 54198 0.0% 14.89

54-36-250-700 57.90 8531 8531 0.0% 1418.64 2.14 8531 8531 0.0% 469.17
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Table C.13: Results from solving the arc-based and node-based formulations via Branch-and-Price in

instances with terminals ranging from 55 to 59.

Instance
Arc-demand Node-demand

TRoot UB ILPOV Gap TBP TRoot UB ILPOV Gap TBP

55-36-100-700 29.75 28195 28195 0.0% 100.46 0.68 28195 28195 0.0% 16.99

55-36-130-700 47.77 4506 4506 0.0% 73.97 1.02 4506 4506 0.0% 12.71

55-36-150-700 40.81 7853 7853 0.0% 49.44 1.16 7853 7853 0.0% 14.83

55-36-180-700 43.37 40857 40857 0.0% 109.13 1.37 40857 40857 0.0% 27.87

55-36-200-700 45.23 29966 29966 0.0% 120.55 1.52 29966 29966 0.0% 30.83

55-36-250-700 55.72 54658 54658 0.0% 108.08 2.15 54658 54658 0.0% 34.86

56-36-100-700 35.63 3481 3481 0.0% 54.07 0.69 3481 3481 0.0% 5.23

56-36-130-700 52.44 4433 4433 0.0% 57.63 1.03 4433 4433 0.0% 13.00

56-36-150-700 41.97 11529 11529 0.0% 98.02 1.17 11529 11529 0.0% 20.91

56-36-180-700 48.28 44014 44014 0.0% 244.86 1.37 44014 44014 0.0% 73.35

56-36-200-700 51.13 71438 71438 0.0% 65.10 1.32 71438 71438 0.0% 14.93

56-36-250-700 54.70 85911 85911 0.0% 1942.71 2.12 85911 85911 0.0% 546.20

57-36-100-700 33.38 12646 12646 0.0% 49.92 0.68 12646 12646 0.0% 7.60

57-36-130-700 37.13 59518 59518 0.0% 153.09 0.87 59518 59518 0.0% 30.21

57-36-150-700 40.73 51978 51978 0.0% 80.27 1.00 51978 51978 0.0% 13.53

57-36-180-700 47.38 62345 62345 0.0% 62.52 1.54 62345 62345 0.0% 13.76

57-36-200-700 52.76 91807 91807 0.0% 57.93 1.72 91807 91807 0.0% 10.89

57-36-250-700 62.00 47464 47464 0.0% 63.98 2.12 47464 47464 0.0% 19.03

58-36-100-700 48.58 31050 31050 0.0% 99.66 1.19 31050 31050 0.0% 27.76

58-36-130-700 31.85 18790 18790 0.0% 49.34 0.58 18790 18790 0.0% 9.71

58-36-150-700 53.58 64722 64722 0.0% 51.38 1.50 64722 64722 0.0% 11.63

58-36-180-700 42.30 49225 49225 0.0% 164.57 0.98 49225 49225 0.0% 34.26

58-36-200-700 62.03 24632 24632 0.0% 80.03 2.12 24632 24632 0.0% 30.48

58-36-250-700 46.64 116424 116424 0.0% 2271.38 1.14 116424 116424 0.0% 632.19

59-36-100-700 46.65 3566 3566 0.0% 511.11 0.78 3566 3566 0.0% 99.67

59-36-130-700 50.34 4956 4956 0.0% 1147.60 1.28 4956 4956 0.0% 201.27

59-36-150-700 60.56 5374 5374 0.0% 79.93 1.12 5374 5374 0.0% 14.84

59-36-180-700 52.15 83504 83504 0.0% 256.82 1.36 83504 83504 0.0% 56.59

59-36-200-700 55.35 46808 46808 0.0% 73.87 1.31 46808 46808 0.0% 14.88

59-36-250-700 63.43 96410 96410 0.0% 82.01 1.86 96410 96410 0.0% 24.60
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Table C.14: Results from solving the arc-based and node-based formulations via Branch-and-Price in

instances from Vasco and Morabito (2016b).

Instance
Arc-demand Node-demand

TRoot UB ILPOV Gap TBP TRoot UB ILPOV Gap TBP

53-36-130-300-p1 32.98 17437.6 17437.6 0.0% 46.89 0.53 17437.6 17437.6 0.0% 0.45

53-36-130-300-p2 29.10 19260 19260 0.0% 29.10 0.24 19260 19260 0.0% 0.24

53-36-130-300-p3 31.03 16633.8 16633.8 0.0% 409.09 0.41 16634.2 16633.8 0.0% 1.24

53-36-130-300-p4 36.83 19560 19560 0.0% 36.83 0.34 19560 19560 0.0% 0.34

53-36-130-300-p5 29.08 18169.2 18169.2 0.0% 29.08 0.20 18169.2 18169.2 0.0% 0.20

53-36-130-300-p6 33.00 19969.4 19969.4 0.0% 33.00 0.28 19969.4 19969.4 0.0% 0.28

53-36-130-300-p7 31.51 19213.8 19213.8 0.0% 31.51 0.30 19213.8 19213.8 0.0% 0.30

53-36-130-300-p8 29.23 18472.6 18472.6 0.0% 127.94 0.17 18472.6 18472.6 0.0% 1.46

53-36-130-300-p9 36.74 15371.4 15371.4 0.0% 36.74 0.30 15371.4 15371.4 0.0% 0.30

53-36-130-300-p10 25.20 18344.8 18344.8 0.0% 25.20 0.19 18344.8 18344.8 0.0% 0.19

53-36-130-300-p11 36.01 16799.6 16799.6 0.0% 46.50 0.17 16799.7 16799.6 0.0% 2.04

53-36-130-300-p12 34.73 22008.4 22008.4 0.0% 34.73 0.33 22008.4 22008.4 0.0% 0.33

53-36-130-300-p13 37.51 19628.2 19628.2 0.0% 80.58 0.15 19628.2 19628.2 0.0% 0.93

53-36-130-300-p14 31.77 19616.6 19616.6 0.0% 31.77 0.22 19616.6 19616.6 0.0% 0.22

53-36-130-300-p15 38.57 20673.2 20673.2 0.0% 38.57 0.25 20673.2 20673.2 0.0% 0.25

53-36-130-300-p16 36.01 17796.2 17796.2 0.0% 36.01 0.23 17796.2 17796.2 0.0% 0.23

53-36-130-300-p17 33.52 17345.2 17345.2 0.0% 33.52 0.18 17345.2 17345.2 0.0% 0.18

53-36-130-300-p18 36.62 17849.2 17849.2 0.0% 82.99 0.51 17849.2 17849.2 0.0% 0.78

53-36-130-300-p19 37.23 18190.6 18190.6 0.0% 37.23 0.21 18190.6 18190.6 0.0% 0.21

53-36-130-300-p20 36.26 20754.4 20754.4 0.0% 36.26 0.24 20754.4 20754.4 0.0% 0.24

53-36-130-300-p21 44.80 16953.2 16953.2 0.0% 44.80 0.33 16953.2 16953.2 0.0% 0.33

53-36-130-300-p22 37.64 18699.2 18699.2 0.0% 37.64 0.36 18699.2 18699.2 0.0% 0.36

53-36-130-300-p23 34.35 21525.6 21525.6 0.0% 34.35 0.28 21525.6 21525.6 0.0% 0.28

53-36-130-300-p24 27.34 18266.2 18266.2 0.0% 27.34 0.17 18266.2 18266.2 0.0% 0.17

53-36-130-300-p25 33.85 17064.8 17064.8 0.0% 33.85 0.28 17064.8 17064.8 0.0% 0.28

53-36-130-300-p26 30.16 20324.4 20324.4 0.0% 30.16 0.23 20324.4 20324.4 0.0% 0.23

53-36-130-300-p27 27.10 20003 20003 0.0% 27.10 0.21 20003 20003 0.0% 0.21

53-36-130-300-p28 37.92 17956 17956 0.0% 37.92 0.24 17956 17956 0.0% 0.24

53-36-130-300-p29 30.23 19074.6 19074.6 0.0% 30.23 0.22 19074.6 19074.6 0.0% 0.22

53-36-130-300-p30 33.68 16464.6 16464.6 0.0% 33.68 0.22 16464.6 16464.6 0.0% 0.22
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vehicle routing problems. European Journal of Operational Research, 225(1):1 – 11, 2013. ISSN 0377-

2217. doi: h�ps://doi.org/10.1016/j.ejor.2012.08.015.

177



Warren B. Powell. A stochastic model of the dynamic vehicle allocation problem. Transportation Science,

20(2):117–129, 1986. ISSN 0041-1655.

Warren B. Powell and Tassio A. Carvalho. Dynamic control of logistics queueing networks for large-

scale �eet management. Transportation Science, 32(2):90–109, 1998.

Warren B. Powell and Raymond K.-M. Cheung. A network recourse decomposition method for dynamic

networks with random arc capacities. Networks, 24(7):369–384, 1994. ISSN 1097-0037. doi: 10.1002/

net.3230240703.

Warren B. Powell, Yosef She�, and Sebastien �iriez. �e dynamic vehicle allocation problem with

uncertain demands. In J. Volmuller and R. Hamerslag, editors, Proceedings of the Ninth International

Symposium on Transportation and Tra�c �eory, pages 357–374, 1984.

Warren B. Powell, Patrick Jaillet, and Amadeo. Odoni. Stochastic and dynamic networks and routing.

Network Routing, 8:141–295, 1995.

Warren B. Powell, Wayne Snow, and Raymond K. Cheung. Adaptive labeling algorithms for the dynamic

assignment problem. Transportation Science, 34(1):50–66, 2000. doi: 10.1287/trsc.34.1.50.12280.

Warren B. Powell, Joel A. Shapiro, and Hugo P. Simão. An adaptive dynamic programming algorithm

for the heterogeneous resource allocation problem. Transportation Science, 36(2):231–249, 2002. doi:

10.1287/trsc.36.2.231.561.

Ragheb Rahmaniani, Teodor Gabriel Crainic, Michel Gendreau, and Walter Rei. �e benders decom-

position algorithm: A literature review. European Journal of Operational Research, 259(3):801–817,

2017. ISSN 0377-2217. doi: h�ps://doi.org/10.1016/j.ejor.2016.12.005.
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