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RESUMO

Sistemas Adaptativos (SAs) avaliam seu próprio comportamento e são capazes de
modificá-lo quando a avaliação indica que ele não está mais atingindo seus objetivos
ou quando uma nova funcionalidade e desempenho estão disponíveis. Atualmente
esse tipo de sistemas atuam em vários domínios devido à capacidade de lidar com
as incertezas de contextos dinâmicos. Apesar de sua relevância, a qualidade da ar-
quitetura encarregada da adaptação não tem sido levada em conta apropriadamente
pelos engenheiros de software e em consequência essa falta de atenção pode afetar
atributos de qualidade tais como a manutibilidade e evolução. Uma possível ex-
plicação desse problema é que os engenheiros de software não são conscientes de
modelos de referências para projetar sistemas adaptativos ou seguem parcialmente
e isto faz com que surjam desvios arquiteturais, que ocorrem quando a Arquite-
tura Atual (CA) do sistema desvia-se da Arquitetura Planejada (PA). Apesar que
existem muitas abordagens para identificar desvios arquiteturais, eles utilizam um
vocabulário genérico para especificar as regras estruturais e de comunicação que
não refletem a semântica de um domínio em particular. Em domínios especializa-
dos, abstrações específicas são muito importantes e influenciam fortemente como
os sistemas devem ser projetados. Portanto, para apoiar as tarefas de Checagem
de Conformidade Arquitetural (CCA) em (SAs) propõe-se REMEDY, uma abor-
dagem específica de domínio que permite a especificação da arquitetura adaptativa
planejada baseada no modelo de referência MAPE-K, a recuperação da arquitetura
adaptativa atual, um processo de checagem de conformidade e a visualização das ar-
quiteturas. Para atingir os objetivos, foram investigadas as ocorrências dos desvios
arquiteturais em ASs representativos. Baseados nas descobertas, propõe-se uma
Linguagem Específica de Domínio (DSL) que implementa as abstrações canônicas
prescritas pelo MAPE-K e outras que não são evidentes no modelo de referência.
Além disso, a abordagem fornece regras de domínio pré-configuradas prontas para
ser checadas pelos engenheiros de software sem ter que especificá-las manualmente.
Foram realizadas duas avaliações: um experimento controlado para avaliar a DSL
e uma avaliação qualitativa para avaliar a atividade de checagem arquitetural. A
primeira avaliou a produtividade em termos de tempo e erros comparando a DSL
com a DCL-KDM, uma CCA genérica. A segunda avaliou a acurácia do processo de
checagem de conformidade em dois sistemas. Os resultados mostram que quando
os engenheiros de software projetam a parte adaptativa de um SA com a DSL, a
produtividade aumenta por sobre o uso de um enfoque genérico. Além disso, a
abordagem proposta atingiu 90% de acurácia em termos de precisão e cobertura na
hora de identificar os desvios arquiteturais.
Palavras-chave: sistema adaptativo, checagem de conformidade arquitetural, desvío
arquitetural





ABSTRACT

Adaptive Systems (ASs) evaluate their own behavior and change it when the evalua-
tion indicates it is not accomplishing the established goals, or when better function-
ality or performance is possible. Nowadays these kind of systems actuate in several
domains due to the capability to deal with uncertainties that came from dynamic
contexts. Despite the relevance they are acquiring and according to our findings,
the quality of the adaptive architecture have not been properly taken into account
by software engineers and consequently this lack of attention may affect quality at-
tributes such as maintenance and evolution. A possible explanation is that software
engineers are not aware of reference models to design ASs or they do not implement
them completely which makes arise a type of architectural anomaly called architec-
tural drift that occurs when the Current Architecture (CA) deviates from the Planned
Architecture (PA). Although there are several approaches to identify architectural
drifts they use a generic vocabulary to specify structural and communication rules
that do not reflect the semantics of a particular domain. In more specialized do-
mains, specific abstractions become important and strongly influence how systems
are designed. In these cases, systems involve components with very specific and
specialized roles that end up guiding how the the architecture must be designed.
Therefore to support the Architecture Conformance Checking (ACC) process in
ASs we propose REMEDY, a domain-specific approach that allows the specifica-
tion of the planned adaptive architecture based on the Monitor, Analyzer, Planner,

Executor, Knowledge (MAPE-K) reference model, the recovery of the current adap-
tive architecture, the conformance checking process and architecture visualizations.
To achieve our goals, we investigate the occurrences of architectural drifts in rep-
resentative ASs. Based on our findings we propose a Domain Specific Language
(DSL) that implements the canonical abstractions prescribed by the MAPE-K and
others that are not evident in the reference model. Also, our approach provides pre-
configured domain rules ready to be checked by software engineers without spec-
ifying them from the scratch. We perform two types of evaluation: a controlled
experiment to evaluate our DSL and a quality validation of our conformance check-
ing process. In the first one we evaluate productivity in terms of time and errors
by using our DSL against to DCL-KDM which is a generic ACC approach. In the
second one we evaluate the accuracy of our checking process in two subject sys-
tems. The results show that when software engineers design the adaptive part of
an AS with our DSL the productivity increased over a generic approach. Also, our
approach reached above of 90% of accuracy in terms of precision and recall at time
to identify the architectural drifts.
Keywords: adaptive system, architectural conformance checking, architectural drift
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Chapter 1
INTRODUCTION

1.1 Context
After years of maintenance, the architecture of software systems tend to deviate from the in-

tended architecture that was initially planned. A possible way to check if the current implemen-
tation is becoming different from the Planned Architecture (PA) is by employing Architecture
Conformance Checking (ACC) approaches, whose goal is to detect architectural drifts in exist-
ing systems. The motivation is obvious, if the system is deviating from its planned architecture,
its quality attributes may not be met anymore.

ACC approaches normally involve the following steps: i) specify the PA by using archi-
tectural abstractions and making evident the hierarchical compositions and the communication
rules among the architectural elements; ii) map source-code elements of the system to the archi-
tectural elements prescribed in the PA and iii) perform the checking/comparison between both
(KNODEL; NAAB, 2016; PRUIJT; KÖPPE; WERF, et al., 2017).

Most of the existing ACC approaches are domain-independent, i.e., they deliver canoni-
cal and domain-independent architectural abstractions such as components, layers and modules
(PASSOS et al., 2010; ROSIK et al., 2011; PRUIJT; KÖPPE; BRINKKEMPER, 2013). So,
software architects must work with these abstractions along the whole process by mapping all
the source code elements to them. However, in more specialized domains, specific abstractions
become very important and strongly influence how systems are designed. In these cases, sys-
tems involve components with very specific and specialized roles that end up guiding how the
the architecture must be designed.

Adaptive Systems (ASs) is an example of a domain that owns specific abstractions. ASs
are able to autonomously cope with disturbances that can show up in the environment, within
themselves and in their quality goals (LADDAGA; ROBERTSON; SHROBE, 2003; CHENG
et al., 2009; WEYNS; IFTIKHAR; MALEK, et al., 2012). Although this term - Adaptive

System - transmit the idea that the system is entirely adaptive, this is not true. The majority
of systems termed as adaptive contain a big core to deal with functional requirements and one
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or more specific and smaller modules responsible for performing the adaptations. Therefore,
the entire system have both a core that can be designed with layers, components and modules
and adaptive parts that should be designed with ASs-specific abstractions, like control loops,
alternatives, monitors and analyzers.

MAPE-K is a well known reference model for guiding the design of adaptive parts of ASs
(HELLERSTEIN et al., 2004; IBM, 2005; BRUN et al., 2009) but it does not present noth-
ing about how to structure the core of the system. It just prescribes the main abstractions that
must be used for architecting the adaptive parts as well some implicit access rules between
those abstractions (IBM, 2005). Moreover, although MAPE-K has become the de facto refer-
ence model for architecting ASs, frequently software engineers do not follow the principles of
MAPE-K. That is, many existing ASs present architectural drifts when compared to MAPE-
K (RAMIREZ; CHENG, 2010; SERIKAWA et al., 2016; SANTIBANEZ; SIQUEIRA; DE
CAMARGO; FERRARI, 2020).

This thesis presents an ACC approach and tooling support for ASs. It is composed of four
steps: i) the specification of the adaptive part of the AS; ii) the mappings of the source-code to
be analyzed, with architectural abstractions of AS domain; iii) the conformity checking and iv)
results and graphical visualization of drifts. All steps are novel in that they are tailored to the
peculiarities of ACC applied as specific case for ASs.

1.2 Motivations
This thesis was elaborated over two main motivations: i) the need of a better comprehension

and characterization of design problems that are specific of adaptive systems; ii) the absence of
an architectural conformance checking approach dedicated to check the conformance between
an AS and a AS-specific planned architecture, aligned with MAPE-K concepts.

A poor characterization of architectural design issues in ASs will led to implementations
where key abstractions of the domain will end up scattered and tangled among them because
of the lack of knowledge of software architects and as a consequence, maintenance and system
evolvability will be affected negatively. The first motivation have been already noticed by our
research group in a previous work (SERIKAWA et al., 2016) and it was the seed for this thesis.
In that research, we found some recurring problems in the design/implementation of monitors
in ASs, leading to maintenance, evolution and reuse issues. This evidence pushed us to think
about other types of architectural issues that could be found in ASs and not just limited to
architectural smells but also other types of architectural problems in other AS abstractions.

Moreover, we realized that the quality of ASs is a topic of interest by research commu-
nity. Works such as Kaddoum et al. (2010), Ramirez and Cheng (2010), Weyns, Schmerl, et al.
(2013), Raibulet, Arcelli Fontana, et al. (2017) among others present guidelines for the eval-
uation of adaptive systems. Nevertheless, although these approaches identify symptoms that
could compromise quality, none of them propose solutions to effectively improve the quality
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of such as systems. Another aspect that we took in consideration was the fact that researchers
in the field of ASs quality just have paid attention to the main MAPE-K abstractions without
deepen in others which are equally relevant in ASs domain.

In order to corroborate the initial findings, we performed a systematic mapping to get the
state of architectural anomalies in AS, a concept coined by Macia et al. (2012). The results
suggested the existence of several types of anomalies in ASs, such as architectural smells, ar-
chitectural technical debt, anti-patterns and architectural drifts that were reported in journals,
conferences and workshops. After a rigorous analysis of the findings of our systematic map-
ping, we concluded that the majority of them can be classified as architectural drifts. Thus, the
second motivation is a direct consequence from the first one - as the specific problems of ASs
need a tooling support for being detected.

Indeed, this led us to characterize architectural drifts by analyzing several ASs and as a re-
sult we published a paper entitled as “Characterizing Architectural Drifts of Adaptive Systems

” (SANTIBANEZ; SIQUEIRA; DE CAMARGO; FERRARI, 2020). Finally, in order to design
our approach of ACC, we took as a reference the work published by Landi, Santibanez, San-
tos, Cunha, Durelli, and Camargo (2022) which describes a non-extensible approach, domain-
independent for ACC in the Architecture-Driven Modernization (ADM) context. It uses the
Knowledge Discovery Metamodel (KDM), a platform and language-independent metamodel,
used to represent the PA, Current Architecture (CA) and to performed the conformance check-
ing by comparing these two models. Although it is possible to check the architectural con-
formance of ASs by using ACC approaches that specify the PA with domain-independent ab-
stractions (TERRA; VALENTE, 2009; MAFFORT et al., 2016), this kind of system and more
specifically the part in charge of the adaptations has some particularities; well-known abstrac-
tions and domain rules (BARESI; GUINEA, 2012; VELASCO et al., 2018; KRUPITZER;
TEMIZER, et al., 2020).

Moreover, nowadays there are many frameworks available for developing ASs that often
provide a combination of tools, middleware, development process workflows and component
libraries which prescribe the use of the MAPE-K reference architecture. (KRUPITZER; ROTH,
et al., 2015). Therefore, the more developers adopt these kind of frameworks to develop ASs,
the more implementations will follow the MAPE-K reference model. As systems aged, software
architects will need to check architecture conformance in order to maintain the system quality
attributes according to the needs. In that sense, our approach fit very well to that purposes
because it provides the domain language and expected domain rules to make the ACC process
more productive.

Thus we wanted to corroborate if a dedicated/domain specific approach could improve the
productivity in this process. Thus our approach adds a set of abstractions (canonical and others
that have not been explicitly mentioned in literature) and predefined rules (domain rules) to
support the ACC process of ASs as well as a new DSL with custom validators and a new
technique to identify and visualize the architectural drifts.



24 Chapter 1. Introduction

1.3 Goals
Our main goal is to provide a better characterization of architectural problems specific of

ASs and also to deliver an approach to facilitate the identification of architectural drifts in ASs.
We break the main goal down into the following four subgoals:

Goal 1: Deliver an ACC approach to support the AS domain. Although there are several ap-
proaches to perform the ACC they are generic, thus we need to design an approach
that takes into account the particularities of the AS domain in order to improve
the process of identifying architectural drifts and finally increase the productivity
of software architects when perform this task. The approach should incorporate
domain-specific knowledge rules in order to improve precision on the findings in
less time.

Goal 2: Conduct an empirical research study to catalog architectural drifts of ASs. Be-
sides the canonical abstractions prescribed by MAPE-K, there are other low level
abstractions equally important for reaching good levels of maintainability. As these
abstractions are not evident in MAPE-K we found that in some cases they are not
considered at time of architecting the system. Therefore, by analyzing a set of
representative ASs we can identify if researchers take into account those low level
abstractions and possible architectural drifts that involved them.

Goal 3: Characterize the state of art of architectural anomalies in AS domain. The aim
here is to unify the scattered knowledge about architectural anomalies found in lit-
erature regarding to ASs into one literary source to analyze what has been reported
in this area, highlight useful findings, and reflect on what is available. To this pur-
pose, we do not make distinctions between an adaptive software and self-adaptive

software.

Goal 4: Conduct experimental studies to evaluate the proposed approach. There are two
scopes that can be evaluated: i) perform a controlled experiment that provides
evidence of improved productivity when software architects use domain-specific
ACC approaches, particularly in the research area of AS and ii) evaluate the effec-
tiveness of the approach in detecting architectural drifts of ASs.

1.4 Contributions
In summary, the contributions of this thesis are:

• Theoretical Contributions:
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– An approach to perform ACC in KDM represented ASs;

– The identification and characterization of three architectural drifts for ASs: Mixed
Executor & Effectors, Scattered Reference Inputs and Obscure Alternatives;

– A systematic mapping for identifying architectural anomalies in AS where research
evidence of architectural problems were collected, collated and presented by fol-
lowing the B. A. Kitchenham et al. (2002) guidelines;

– A methodology for characterizing architectural drifts which consists in five steps:
Collecting ASs; Analysis of Literature; Enriching MAPE-K with lower level ab-
stractions; Analysis of Systems; Simulating Maintenance Tasks;

– Evidences through a controlled experiment showing that productivity of software
architects improve when using a DSL of a specific domain rather than a general-
purpose DSL;

– An architectural drift template to characterize architectural drifts of ASs;

• Technical Contributions:

– A DSL to specify PAs of ASs;

– A workbench called REMEDY that supports and guides software architects in the
ACC process for ASs.

1.5 Overview of the Approach

Our approach, called REMEDY1, has been developed since late 2017 and it has suffered
several modifications along these years. Some useful ideas were taken from the work publish
by Landi, Santibanez, Santos, Cunha, Durelli, and Camargo (2022) but we took the decision
of implementing it from the scratch due to two reasons: i) Acquire the technical knowledge
and know-how about the tools used in the implementation and ii) Due to changes in the design
which would impact how our approach would identify the architectural drifts in ASs. REMEDY
is an ACC workbench for ASs implemented as several Eclipse plugins and it uses KDM models
as the main artifacts. The goal is to identify architectural drifts between a PA model and another
one that represents the CA of an AS.

Figure 1.1 shows the steps of REMEDY from a software architect point of view. Step I,
also called “Specification of Planned Architecture”, aim to create a PA that will be used in next
steps of REMEDY. The execution of this step is supported by a DSL called DSL-REMEDY
that specify the adaptive part of an AS with a high level of abstraction. At the end of this step,
two artifacts are generated; a KDM instance representing the PA and a OCL file with rules to
be checked.
1 https://github.com/dsanmartins/REMEDY
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Step I: Specify Planned 
           Architecture

Step II: Map Architectural
             Elements

class A{
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}      

AdaptiveArchitecture{
    
      monitor m 
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      ….
}
Rules{
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     ….
} KDM

PA 
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class A monitor m
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method B.1 monitor m

method B.1 monitor m

.

.

Step III: Check Architecture
              Conformance

KDM
CA 

Step IV: Visualize Architectures

PA

CA

DIFF

Report

Figure 1.1 – A simplified view of steps of REMEDY

Step II, also called “Map Architectural Elements”, aim to recovery the CA of the system
being analyzed. The execution to generate the CA is supported by a third-party tool called
MoDisco (BRUNELIERE et al., 2010; BRUNELIÈRE et al., 2014) which extracts information
from the source-code and transform it into a KDM model. Then, software architects map the
AS abstractions from the PA to code elements that are represented in the model. The output of
this step is the CA of the system.

Step III, also called “Check Architecture Conformance”, aim to check the conformity of the
CA regarding to the PA by using the OCL file with the rules. Step IV, also called “Visualize
Architecture”, aim to exhibit architectural problems found by REMEDY. At the end of this step,
the software architect is capable to visualize which rules passed or not the conformity checking
process and a graphical view of the PA, CA and differences between both.
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1.6 Publications
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Engines in ADM Context: The RUTE-K2J Case. In: PROCEEDINGS of the XII Brazil-
ian Symposium on Software Components, Architectures, and Reuse. Sao Carlos, Brazil:
Association for Computing Machinery, 2018. (SBCARS ’18), p. 92–101
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1.7 Structure
The remainder of this thesis is structured as follows:

• Chapter 2 first provides the scientific background that is needed to understand the subse-
quent chapters;

• Chapter 3 presents a systematic mapping of architectural anomalies in adaptive systems.
This provides an overview of types of anomalies reported in literature and the evidences
to justify this work;

• Chapter 4 discusses work related to our approach. Section 4.1 covers approaches dealing
with non-extensible ACC approaches and Section 4.1.2 with extensible ACC approaches;

• Chapter 5 characterizes architectural drifts of ASs and the process that we follow to iden-
tify them. Also, we provide some examples of each drift in real systems;

• Chapter 6 describes in detail our approach of ACC for ASs called REMEDY. It consists
in four steps; Specify Planned Architecture, Map Architectural Elements, Check Archi-
tecture Conformance and Visualize Architectures;

• Chapter 7 presents a description of the use of REMEDY from the point of view of a
software architecture;

• Chapter 8 reports the results of initial experimental evaluation conducted to validate our
proposals, which consisted on a controlled experiment to validate DSL-REMEDY in
terms of productivity;

• Chapter 9 concludes the thesis. It summarizes what has been done, discusses results,
lessons learned and limitations, and gives an outlook on what research could be done in
this area in the future.



Chapter 2
FOUNDATIONS

Before we present our approach, we summarize the state-of-the-art in our chosen area of

research. This chapter is divided in four parts: first, in Section 2.1 we introduce concepts

related to software architecture. Second, in Section 2.2 we provide a clear definition of

concepts about architectural conformance checking. Third, Section 2.3 introduces the foun-

dation of adaptive systems. Fourth, Section 2.4 gives an introduction of the Knowledge

Discovery Metamodel and delves in architectural concepts of the metamodel which are im-

portant to understand our approach.

2.1 Software Architecture
Software Architecture is the fundamental properties of a system in its environment embod-

ied in its elements, relationships, and in the principles of its design and evolution (MAIER;
EMERY; HILLIARD, 2001) . It is a key tool for the software industry because it improves
communication between stakeholders, facilitates early design decisions, promotes transferable
abstractions of a system and can be used as the basis for system implementation (TAYLOR;
MEDVIDOVIC; DASHOFY, 2009).

According to Taylor, Medvidovic, and Dashofy (2009) there are three kind of architectural
elements that can be distinguished: processing elements; data elements; connecting elements.
These elements are organized according to a design which consists of properties and relation-
ships. Properties and relationships are used to define constraints on architectural elements.
Constraints are determined by considerations ranging from basic functional aspects to various
non-functional aspects such as economics, performance and reliability.

Bass, Clements, and Kazman (2012) define architecture as a set of software elements char-
acterized by externally visible properties and the relationships existing among them. By “ex-
ternally visible properties”, the authors refer to assumptions other components can make of
a component, such as provided services, performance characteristics, fault handling. In our
interpretation, assumptions can be intended as contracts when coupled with a complementary
number of constraints that ensure their validity. Based on the previous definitions, it is pos-
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sible conclude that architecture is partially defined through constraints. Architectural design
constraints have been often associated to patterns and styles (GIESECKE; HASSELBRING;
RIEBISCH, 2007; BASS; CLEMENTS; KAZMAN, 2012).

One of the main issues in software architecture is the erosion that occurs when the im-
plemented architecture of a system diverges from its intended architecture (TAYLOR; MED-
VIDOVIC; DASHOFY, 2009; DE SILVA; BALASUBRAMANIAM, 2012). According to
Dimech and Balasubramaniam (2013) such degradation may arise due to several factors, in-
cluding: i) unawareness by software developers; ii) possibly conflicting requirements that are
unforeseen in the early stages; iii) technical difficulties that arise during implementation; and
iv) the pressure of deadlines that are not uncommon in software development.

Some consequences of architecture erosion include failure to meet functional or quality re-
quirements, brittle systems, high maintenance costs and ultimately rapid software aging and
obsolescence (DE SILVA; BALASUBRAMANIAM, 2012). Architecture erosion is a well-
recognized problem and a number of approaches have been proposed to prevent, minimize or re-
pair erosion, mainly based on the concept of architecture conformance (KNODEL; POPESCU,
2007).

Software architecture might be specified in different forms and notations depending on the
purpose they serve. Caracciolo, Lungu, and Nierstrasz (2015) state that there are two groups of
modeling languages to specify software architecture; the first one are Architecture Definition
Languages (ADLs), used to describe an architecture in terms of properties and relations. The
second one are modeling languages that provide dedicated constructs for the definition of con-
straints. For instance, Garlan (1995) presents Aesop that enables users to declare topological
invariants (i.e., allowed dependencies) as part of the definition of an architectural style. Such
an invariant can be used to perform a structural check of the model and verify that entities of a
certain type are only connected to other entities of a certain type through predefined ports.

Moriconi and Riemenschneider (1997) present SADL that supports the declaration of first-
order logic predicates for the definition of similar invariants. Luckham et al. (1995) developed
Rapide that offers support for behavioral constraints that can be used to define run-time invari-
ants (e.g., message values, invocation sequences, abstract state). Garlan, Monroe, and Wile
(2000a) developed ACME that relies on a separated constraint language called Armani. This
language allows the writing of first-order logic predicates and can be used to define type con-
straints (like in previously mentioned languages) and heuristics (i.e.,numerical thresholds for
limiting the size of specific parts of the model). Feiler and Gluch (2012) propose REAL, a
language to verify type checking invariants and constraints on the graph structure.

OCL OMG (2005) is a language for defining constraints in UML models. UML is used
in order to describe a system in terms of entities and relationships. Entities can be annotated
(e.g., stereotypes, fields, methods) and relationships can be either static or dynamic (e.g., class
diagrams, sequence diagrams). OCL provides a set of functions that can be used to navigate
the graph structure of a model and create assertions on identified elements. Assertions can be
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defined to constraint property values, entity types and relationship cardinalities. OCL is a very
expressive language which has been taken as inspirational source in several other approaches for
defining architectural constraints in models based on Meta-Object Facility (MOF) metamodels
(MEDVIDOVIC, 2006).

2.2 Architectural Conformance Checking
Architecture Conformance Checking (ACC) is one of the main activities in software quality

control. ACC goals is to reveal the differences between the intended architecture or Planned
Architecture (PA) and its real implementation (KNODEL; POPESCU, 2007) or Current Archi-
tecture (CA). It reveals the relations and constraints foreseen by the PA that were violated by the
system’s implementation. Figure 2.1 illustrates a PA of a java system, used as example in the
work of Pruijt, Köppe, Werf, et al. (2017). The architecture is composed of two modules, Mod-

uleA and ModuleB and each one of them has two submodules. The classes in the submodules
are related via associations, showing for instance that an instance of Class1 may know upmost
one instance of Class2. The dependency arrows (the dashed arrows) show that ModuleA1 is
allowed to use ModuleB1 and that ModuleA2 is allowed to use ModuleB (PRUIJT; KÖPPE;
WERF, et al., 2017).

The full set of relationships rules are the following: i) ModuleA1 is allowed to use Mod-

uleB1; ii) ModuleA2 is allowed to use ModuleB, so also both sub modules, ModuleB1 and
ModuleB2; iii) ModuleA1 is not allowed to use ModuleB2; iv) The submodules of ModuleA are
allowed to use each other; v) The submodules of ModuleB are allowed to use each other. Notice
that in this case, the first three rules are explicitly visible in the diagram, while the last two are
implicit.

Figure 2.1 – Example of a planned architecture (From (PRUIJT; KÖPPE; WERF, et al., 2017)
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In order to check whether the source code of the system conforms the PA authors executed
several tools that support ACC. The dependency types checked by the tools were divided into
six groups: Import, Declaration, Call, Access, Inheritance and Annotation. Figure 2.2 shows
the complete dependency types with code example. Each code example shows a code construct
that, if programmed within Class1, would violate the intended architecture of Figure 2.1. This
is because the code construct includes a dependency to an element of ModuleB2, while the
intended architecture does not allow ModuleA1 to use ModuleB2.

Figure 2.2 – Dependency types in Pruijt, Köppe, Werf, et al. (2017) example

According to Caracciolo, Lungu, and Nierstrasz (2015) the specification of the PA could
be done mainly by techniques that fall into two categories; i) A Domain Specific Language
(DSL) which is designed to formulate concepts in a form and notation that is familiar to the
user. DSLs typically do not assume any kind of specific technical knowledge and are mostly
declarative and ii) A General Purpose Language (GPL) where commonly an extension of the
programming language has been developed to support architecture specification. Also, authors
categorize ACC tools as non-extensible and extensible. The first one are specialized and not
extensible off-the-shelf tools while the second one are off-the-shelf tools based on a plugin
architecture where the new functionality is partially adaptable by operators Caracciolo, Lungu,
and Nierstrasz (2015).

Figure 2.3 illustrates the vision of conformance checking in the broader context of the
software development lifecycle. The model and the code can change independently and the
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conformance checking operation detects any incompatibilities between the two descriptions as
violations of the conformance rules. As a result of the ACC, it is possible to get three kinds
of information. The first one is the relationships that were specified as “allowed” in the PA
that are implemented in the current system. These relationships are called “convergences”, and
they show that the implementation is compatible with the PA. The second one is the relation-
ships that were specified as “not allowed” in the PA, but they are present in the current system.
These relationships are called “divergence” or “architectural drifts”, and they reveal that the
implementation is not compatible with the PA. The third one is the relationships that were not
specified in the PA, but they are present in the current system. These relationships are called
“absences”, and they show that the relations in the implementation were not found in the PA
(DIMECH; BALASUBRAMANIAM, 2013).

Figure 2.3 – Overview of Conformance between Model and Implementation (DIMECH; BALA-
SUBRAMANIAM, 2013)

There are two ways of conducting ACC processes (KNODEL; POPESCU, 2007; MUR-
PHY; NOTKIN; SULLIVAN, 1995). The first one is the static verification in which the source
code is compared with the PA. The second one is the dynamic verification in which charac-
teristics of the running system is compared with the PA. Moreover, the two main static tech-
niques for performing ACC are Reflection Models and Compliance Relations Rules (KNODEL;
POPESCU, 2007; MURPHY; NOTKIN; SULLIVAN, 1995).

Reflection model is a technique that supports the use of a high-level system model as an
eyeglass to see the source code model. Usually, this technique is applied when there is a few
or none information about the system and its architecture (MURPHY; NOTKIN; SULLIVAN,
1995). The Compliance Relations Rules specify constraints between the architectural elements.
These constraints can allow, prohibit, or impose the relations between the elements (KNODEL;
POPESCU, 2007).

Several conformance checking tools have been analyzed in literature. For instance, de Silva
and Balasubramaniam (2012) proposes a taxonomy to categorize existing techniques and ap-
proaches. Pruijt, Köppe, and Brinkkemper (2013) and Passos et al. (2010) compare multiple
tools by evaluating their capabilities through an experiment. In both studies the authors con-
clude that existing tools offer complementary features and none of them can be considered as a
perfect replacement for all the others.
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Caracciolo, Lungu, and Nierstrasz (2014) performed a survey to discover which tools prac-
titioners use to test architectural constraints. Table 2.1 shows an overview of the most visible
conformance testing tools found in literature that accept textual specification as input. We in-
clude REMEDY, the approach that was developed in the context of this thesis. Solutions as DCL
, inCode.Rules and REMEDY verify constraints on relationships between classes and modules
such as access, declaration and extension. Some languages such as SOUL, LogEn and SCL fo-
cus more on structural properties of classes and methods. Notice that inCode.Rules also detects
code smells such as God class and Data class.
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constraint types
- relationships ! ! ! ! ! ! ! !

- elements ! ! ! ! ! !

- code smells !
detected RM relations
- convergence ! ! ! ! ! ! ! ! ! ! ! !

- absences ! ! ! ! ! ! ! !

- divergences ! ! ! ! ! ! ! !
DSL extensibility
- new predicates ! !
programming languages [J: Java; S: Smalltalk; P: Prolog, D: Datalog; C: C++]
- analyzed system J J J J/S J J/C J J J .net J J
- tool implem. J P J S D J J J J J .net J/Xtex

Table 2.1 – Comparison among conformance checking tools based on a textual DSL. Adapted from
Caracciolo, Lungu, and Nierstrasz (2014)

Most of these solutions, with exception of Terra and Valente (2009) (DCL), Gurgel et al.
(2014) (TamDera), Kramer (2012) (NDepend/CQLinq) and REMEDY, are only able to detect
one of the following violations: absences or divergences (MURPHY; NOTKIN; SULLIVAN,
1995). Only two of the reviewed solutions offer support for language-level extension (i.e.,
SOUL (MENS; WUYTS; D’HONDT, 1999) and LogEn (EICHBERG et al., 2008)). Both are
logic programming languages in which new predicates can be defined by composing existing
predicates.

The general lack of support for extensibility limits the expressiveness of the solution. Al-
most all techniques, with the exception of ArchFace (UBAYASHI; NOMURA; TAMAI, 2010)
and ArchJava (ALDRICH; CHAMBERS; NOTKIN, 2002), assume that architectural con-
straints are specified in a separated text file. ArchFace and ArchJava require the user to define
constraints directly in the source code by using special constructs that are checked at compile
time.

According to Caracciolo, Lungu, and Nierstrasz (2014), there are three requirements that
ACC should fulfill; extensibility, usability and multifaceted modeling. The first one is the
capability of adding new language constructs in order to model different architectures. The
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second one is the perception of language simplicity and it is intuitively enough to communicate
the right message to the stakeholders involved in the architecting phase, but shall also enable
formality so to drive analysis and other automatic tasks. The third one is about if the language
can describe several architectural viewpoint.

2.3 Adaptive Systems

Adaptive Systems or Self-Adaptive Systems are systems that deal with uncertainties by
reconfiguring their structure or adjust their behavior during operation (WEYNS, 2018). Ex-
amples of uncertainties are dynamic allocation of resources and evolving user requirements.
Architecture-based self-adaptation separates the concerns of the Managed System that is sub-
ject to adaptation and the the concerns of the Managing System that contains the adaptation
logic. The Managing System realizes a control mechanism that monitors and adapts the Man-
aged System to achieve the adaptation goals (BRUN et al., 2009).

Another term used by researchers to describe this kind of systems is autonomic comput-

ing systems (HORN, 2001). According to Kephart and Chess (2003), autonomic computing
exposes one or more self-* adaptation properties such as self-configuration, self-optimization,
self-healing and self-protection. Systems with self-configuration capabilities reconfigure them-
selves automatically, based on high level policies that specify evolution goals, as well as recon-
figuration symptoms and strategies.

Systems with self-optimizing property adapt themselves to improve non-functional prop-
erties according to business goals and changing environmental situations. Systems with self-
healing property can automatically detects, diagnoses, and repairs localized software and hard-
ware problems. Systems with self-protection property automatically defend against malicious
attacks or cascading failures. They use early warning to anticipate and prevent system wide
failures (KEPHART; CHESS, 2003; MULLER; VILLEGAS, 2014).

Many researchers use the terms autonomic and self-adaptive interchangeably. However,
according to Salehie and Tahvildari (2009) there are some similarities but also some differ-
ences between adaptive systems and autonomic computing. In their view, the term autonomic
refers to a broader context, handling all layers of the system’s architecture (from applications to
hardware), whereas self-adaptive has less coverage — constrained mostly to applications and
middleware — and, thus, falling under the umbrella of autonomic computing.

Figure 2.4 shows the conceptual architecture of an AS. The Managing System observes
the Managed System and the Environment through monitors. If it identifies changes on the
Managed System then adaptations are triggered to maintain the Managed System’s goals via
effectors.
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Adaptive System

Managing System

Managed System

Environment
Non-controllable software, hardware

network, physical context

monitor

monitor

adapt

effect

monitor

Figure 2.4 – Conceptual Architecture of an AS

2.3.1 Feedback Control Theory and Feedback Loops
The heart of an adaptive system is an abstraction called Feedback Control Loop which is a

concept that comes from the field of Control Theory (DOYLE; FRANCIS; TANNENBAUM,
1991). Figure 2.5 depicts a simplified view of a control system. The reference input is “the
desired value of the measured output” while the measured output is a “a measurable character-
istic of the target system” (HELLERSTEIN et al., 2004). In other words, the reference input

is the system requirements and the measured output is what is being monitored by the system.
For instance, consider a (simplified view of a) robot that must road in parallel to a wall with a
certain distance D1. While it is moving, a monitor captures data from a sensor according to its
polling rate. The data is the measure of the distance between the wall and its current position
D0 because, due to mechanical parts, in some points the distance measured could be greater or
lesser than the required distance. In this example, D1 is the reference input, whereas the current
distance D0 , which can be read from the robot sensor, is the measured output.

Figure 2.5 – Classical block diagram of a feedback control system

Given this information, the controller “computes values of the control input based on current
and past values of control error”. The control error is “the difference between the reference input
and the measured output”, while the control input is “a parameter that affects the behavior of
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the target system and can be adjusted dynamically”. Back to the example, the control error E
can be calculated as E = D1 −D0, leading to a straightforward definition for the control input:
if E < 0, the controller (a servo controller that controls a servo motor) should move the wheels
in direction to the wall to get back to the desired distance. Analogously, if E > 0, the controller

should move the wheels in direction away from the wall. The idea is to keep D0 as close as
possible to D1 at all times.

Finally, the disturbance input “are factors that affect the measured output but for which there
is no governing control input”. In other words, these are taken from the context in which the
system executes. Neither the system nor the controller have any control over these values. For
the robot, the inclination of the road or wheels wear are examples of disturbance inputs, as they
can have an influence on the measured distance D0.

In more complex systems, such as information systems that usually have multiple inputs
and multiple outputs, it is uncommon producing models with high degree of formality due to
human resources and time constraints. For these reasons, adaptive systems can be considered
a simplified view of control systems. Thus, the generic mechanism for adaptation in software
systems is the feedback control loop.

Feedback control loops provide the generic mechanism for adaptation and typically involves
four key activities: collect, analyze, decide, and act. Sensors collect data from the executing
system and its context about its current state. The accumulated data are then cleaned, filtered,
and pruned and, finally, stored for future reference to portray an accurate model of past and
current states. The diagnosis then analyzes the data to infer trends and identify symptoms. Sub-
sequently, the planning attempts to predict the future to decide on how to act on the executing
system and its context through actuators or effectors (BRUN et al., 2009).

A well-kown example of a feedback control loop is the the autonomic computing MAPE-
K reference model (HORN, 2001; KEPHART; CHESS, 2003), whose acronym stands for the
four activities that it performs: monitor, analyze, plan and execute. If adaptive systems need to
evaluate their behavior and act accordingly, they must have some kind of feedback loop among
their components, even if implicit or hidden in the system’s architecture.

Figure 2.6 shows the MAPE-K loop (monitor, analyzer, planner, executor, and knowledge
base). Monitors collect, aggregate and filter information from the environment and the target
system (i.e., the system to be evolved), and send this information in the form of symptoms
to the next element in the loop. Analyzers correlate the symptoms received from monitors to
decide about the need for adapting the system. Based on business policies, planners define the
maintenance activities to be executed to adapt or evolve the system. Executors implement the
set of activities defined by planners. The knowledge base enables the information flow along
the loop, and provides persistence for historical information and policies required to correlate
complex situations.

Sensors and effectors are endpoints that expose the state and control operations of managed
elements in the system. Sensors allow to gather information from both the environment and
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Figure 2.6 – The MAPE-K feedback control loop

other Managing Systems. Effectors provide the interfaces to implement the control actions that
evolve the managed element. Managed elements can be either system components or other
managing systems.

Researchers have expressed the need to make these feedback loops first-class citizens in the
design of adaptive systems (WEYNS; MALEK; ANDERSSON, 2010; VOGEL; GIESE, 2014).
For instance, Brun et al. (2009) notice that “while [some] research projects realized feedback
systems, the actual feedback loops were hidden or abstracted. [. . . ] With the proliferation
of adaptive software systems it is imperative to develop theories, methods and tools around
feedback loops.”

Cheng et al. (2009) declare that “Even though control engineering as well as feedback found
in nature are not targeting software systems, mining the rich experiences of these fields and
applying principles and findings to software-intensive adaptive systems is a most worthwhile
and promising avenue of research for self-adaptive systems. We further strongly believe that
self-adaptive systems must be based on this feedback principle.”

Therefore, feedback control loops are a fundamental architectural element in the design
of control systems, whereby the output to be controlled is compared to a desired reference
value and their difference is used to compute corrective control action (DOYLE; FRANCIS;
TANNENBAUM, 1991). In other words, measurements of a system’s output are used to achieve
externally specified goals by adjusting parameters that in some way affect indicators that these
goals are being achieved. For this reason, feedback loops are also called closed loops and are
present in some form in almost any system that is considered automatic, such as an automobile
cruise control or an industrial control system (HELLERSTEIN et al., 2004).
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2.3.2 Lower-level Abstractions of MAPE-K

MAPE-K reference model only depicts canonical abstractions of an AS but there are others,
equally important that software architects must pay attention for a good architectural quality
and we called them as “low level abstractions”. As these abstractions are not evident in MAPE-
K, we found that in some cases software architects are not aware of them and usually do not
consider them when architecting the system (RAMIREZ; CHENG, 2010). The schematic view
of MAPE-K that is used in this thesis is considered as a base reference model is described on
Chapter 5.

Normally, a system that is considered adaptive is composed of the Managed Subsytem,
which is the biggest base part, and one or more Managing Subsystems, which are modules
responsible for performing the adaptations. Notice that MAPE-K is much more devoted to de-
sign the adaptation parts than the base system itself. MAPE-K of Figure 5.1 contains the con-
ventional known abstractions and also three lower level abstractions presented by other works
(VILLEGAS et al., 2011; WEYNS; IFTIKHAR; SÖDERLUND, 2013; ARBOLEDA et al.,
2016; ABDENNADHER; BOUASSIDA RODRIGUEZ; JMAIEL, 2017).

Alternative represents a set of available options of adaptivity that an AS uses for changing
the system behavior. For instance, in a self-healing system a failing service could be replaced
by one that meets the same characteristics in order to complete successfully the assigned tasks
without manual intervention. The main role of a decision is to choose, among a set of possible
alternatives, the most suitable one according to the contextual situation (ABDENNADHER;
BOUASSIDA RODRIGUEZ; JMAIEL, 2017). A common strategy to implement it, is using
N-version programming defined as the independent generation of N functionally equivalent
programs from the same initial specification (CHEN; AVIZIENIS, 1995; PSAIER; DUSTDAR,
2011).

For instance, a typical example occurs when a cluster of virtual machines in a cloud comput-
ing environment needs to reach a certain goal conditioned by Service Level Agreements SLAs.
In this case, an autonomous self-optimizing system is required to identify overload servers and
migrated them to other servers to prevent violation of service level agreement (NAJAFIZADE-
GAN; NAZEMI; KHAJEHVAND, 2021).

Reference Inputs (requirements) consist of the concrete and specific set of values, and corre-
sponding types that are used to specify the state to be achieved and maintained in the managed
system by the adaptation mechanism, under changing conditions of system execution (VIL-
LEGAS et al., 2011). They could be implemented as single reference values, some form of
contract, service level objectives, among other possibilities.

Measured Outputs (indicators) consists of the set of values, and corresponding types that are
measured in the managed system. Naturally, as these measurements must be compared to the
Reference Inputs to evaluate whether the desired state has been achieved, it should be possible
to find relationships between these inputs and outputs (VILLEGAS et al., 2011).
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Reference models, like MAPE-K, are built after a long domain analysis process, combined
with knowledge of specialists in that domain. They prescribe certain abstractions that are not
straightforward to identify. Most of the times, these abstractions are the fundamental points of
maintenance and evolution steps in the system.

2.4 Knowledge Discovery Metamodel
The Knowledge Discovery Metamodel (KDM) is a metamodel part of the Architecture-

Driven Modernization (ADM) initiative whose intention is to promote industry consensus on
the modernization of the existing software system. The initiative combines reengineering con-
cepts, Model-Driven Architecture (MDA) principles and standard metamodels. Also, ADM
introduces several modernization standards besides KDM such as the Abstract Syntax Tree
Metamodel (ASTM) and Structured Metrics Metamodel (SMM) (PÉREZ-CASTILLO; DE
GUZMÁN; PIATTINI, 2011; OMG, 2017).

KDM is able to represent all the characteristics of software systems in a unique metamodel
(PÉREZ-CASTILLO; DE GUZMÁN; PIATTINI, 2011). A schematic representation of KDM
can be seen in Figure 2.7. It is divided into four layers that are further divided into packages.
Each package is an internal metamodel, concentrating on specific aspects of the software. Thus,
there are packages for representing a wide spectrum of systems abstractions, from low-level de-
tails like source-code (Code package) and run-time actions (Action package) to high-level de-
tails like User Interface (UI package), Business Rules (Conceptual package) and Architectural
View (Structure package) (OMG, 2009, 2016).

The modernization process starts by reverse engineering a system into a KDM instance that,
by its turn, is analyzed/mined to search for problems. Next, a set of refactorings and optimiza-
tions are performed to obtain a refactored and improved KDM instance (DURELLI, R. S. et al.,
2017; DURELLI, R. et al., 2014). The process is completed with the generation of the mod-
ernized system. According to Pérez-Castillo, De Guzmán, and Piattini (2011), ADM can sup-
port many kinds of modernization scenarios such as: platform migration, language to language
conversion, application improvement and architectural revitalization (ULRICH; NEWCOMB,
2010).

Conceptual Build Structure

Data Event UI

Code Actions

SourceKdm

Platform

Micro 
KDM Core

Abstractions 
Layer

Runtime Resource 
Layer

Program Elements 
Layer

Infrastructure 
Layer

Figure 2.7 – The four KDM layers and packages from (PÉREZ-CASTILLO; DE GUZMÁN; PI-
ATTINI, 2011)
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It is important to mention that although KDM is divided into layers, its packages can com-
municate with each other. These inter-package communications are a key point in KDM since it
allows mapping higher-level abstractions to lower-level ones. These communications between
the packages are schematically represented in Figure 2.7 by the two arrows from Structure
to Code and Action packages. These three packages are the most important packages in the
context of our research.

Code Package contains all the metaclasses for modeling the source code static structure.
For example, ClassUnit metaclass represents classes and InterfaceUnit metaclass repre-
sents interfaces. The Code package has a total of 90 metaclasses and all the abstract elements
for representing the source code (OMG, 2016). The Action Package defines metaclasses to
represent behavioral units. Examples of these behaviors are: declarations (Reads, Creates,
etc.), operators (Writes, Addresses, etc), and flow conditions (Flow, TrueFlow, etc.). When
generating a KDM instance, it is assumed that each element of the Action package corresponds
to a behavior in a programming language.

The Structure Package is one of the most important ones as it is able to represent the
logical architecture of a software system. Figure 2.8 shows in the left part, the Structure
package metaclasses in gray and other important related metaclasses in white. In the right
part, there is a schematic representation of a Structure package instance. Structure package
provides five metaclasses for representing architectural elements: Subsystem, Component,
SoftwareSystem, ArchitectureView and Layer. Besides, by means of the self-relationship
of the AbstractStructureElement, it is possible to create a hierarchy among these elements.
For instance, it is possible to create an architecture having a Software System with two subsys-
tems, which include two layers each, where each layer can include two components.

This package also provides an important means for specifying mappings between higher-
level concepts to lower-level ones. This can be seen like an abstract-concrete mapping and this is
done by an attribute named “implementation” (OMG, 2016), represented by the relationship
between the AbstractSctructureElement and KDMEntity metaclasses. Notice that KDMEntity
metaclass belongs to the Core package, which is a central KDM package that provides base
metaclasses for the other packages. KDMEntity is one of the most important metaclasses, since
all the other KDM metaclasses are direct or indirect subclasses of it. Thus, all KDM metaclasses
are KDM Entities.

AggregatedRelationship is another important metaclass herein because its role is to cap-
ture relationships among architectural abstractions. It is a kind of relationship that can group
other primitive relationships within it. This is being represented in the Figure by the 0..n asso-
ciation between the AggregatedRelationship metaclass and the KDMRelationship meta-
class. In KDM, every relationship type is represented by a metaclass, examples of primitive
relationships are method calls (Calls metaclass), object instantiation (Creates metaclass)
and implements relationships (Implements metaclass). Each AggregatedRelationship in-
volves two KDM Entities, the source (from property) and target (to property), as can be seen in
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AggregatedRelationship
Layer:
controller

(to)(from)

:calls
:extends
:creates
:reads
:imports
:hasType

Layer:
model

A B

Figure 2.8 – A - Structure Package Class Diagram from (OMG, 2017); B - Schematic example of a
Structure Package Instance

part A of Figure 2.8.

Since all the architectural elements are KDM Entities (due to the inheritance), it is possible
to represent relationships between these architectural elements employing the Aggregated-

Relationship, which is schematically shown in Figure 2.8 Part B. In the example, we have
a relationship between the layers Controller and Model. The cylinder between the two layers
represents an instance of the AggregatedRelationship metaclass. The controller layer rep-
resents the source (from) of the relationship, and the model layer represents the target (to) of the
relationship. An aggregated relationship incorporates primitive relationships inside itself. Prim-
itive relationships are “actions” or structural dependencies that are also represented as KDM
metaclasses. In Figure 2.8 Part B, they are represented by the set of arrows that connects the two
layers through the AggregatedRelationship instance. Every AggregatedRelationship

has a density, which represents the number of primitive relationships inside it. In this exam-
ple, the density is six since it involves six relationship instances (calls, extends, creates, reads,
imports, and hasType).

An important point here is regarding the types of relationships presented in KDM. Some
of them have cannonical names that makes easy to understand what they really are in source
code, such as: calls, extends, imports, etc. However, there are some other terms that ask for an
additional explanation. The terms are:

• HasType. This type of relationship occurs when a source code element has the type of
another source code element;

• UsesType. This type of relationship occurs when there is a line of code that makes a data
conversion.

2.5 Chapter Summary
In this chapter we introduced the main theoretical concepts that define the context of this

thesis. First, we give an overview of software architecture, its main concepts and ways to specify
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it. As the software evolves, it grows in complexity, became less maintainable over time and as
a consequence, problems begin to arise. One of the main problems is the architecture erosion
that occurs when the intended architecture tends to drift away. In order to correct it software
architects apply ACC techniques to detect divergences when a CA is not conforming to the PA.
We also reviewed existing tools and compare some characteristics of them with our approach.

Second, we present adaptive systems and the main abstraction that enables adaptivity in
systems. MAPE-K is a well-known reference model that provides the main abstractions for
designing ASs. The goal is to motivate software engineers in structuring ASs in such away
that the abstractions become evident and manageable. Besides to the main abstractions, there
are three that are not represented in the MAPE-K reference model, but have been reported by
other researchers. These other are in low-level of abstraction and are important when software
engineers need to design with more detail the adaptive system architecture (VILLEGAS et al.,
2011).

Finally, in this chapter we present ADM with focusing on KDM which is an important part
of our approach. KDM enables the representation of the architectural viewpoint of an Adaptive
System (AS), language and platform independent, and through the AggregatedRelationship
metaclass which represent a relationship between two KDM entities, it is possible to identify
architectural drifts in systems.





Chapter 3
SYSTEMATIC MAPPING: ARCHITECTURAL

ANOMALIES IN ADAPTIVE SYSTEMS

This chapter presents a systematic mapping of architectural anomalies in adaptive systems.

The questions to be answered by this revision are: What are the architectural anomalies

found in ASs?; Are there architectural anomalies specific of ASs? If so, what are the main

characteristics of them? and what approaches have been proposed to detect Architectural

Anomalies in Adaptive Systems?.

3.1 Introduction

Architectural anomalies are defined as the implementation of unintended design decisions
(PERRY; WOLF, 1992). Anomalies encompass a wide range of issues such as architectural
smells (GARCIA et al., 2009), architectural violations and drifts (S. LANDI et al., 2017) and
architectural antipatterns (BROWN et al., 1998). Each one of them has their own particulari-
ties, but there is a consensus in the research area that they impact negatively quality attributes
such as modularity, reusability, analisability, modifiability and testability (BASS; CLEMENTS;
KAZMAN, 2012).

In order to systematically manage architectural anomalies in ASs, it is necessary to have
a clear and thorough understanding on the state of the art of anomalies reported in ASs. It is
unclear what types of architectural anomalies are recurrent in ASs and if there are specific ones
on this domain. Answering these questions would help researchers to advance the state of the
art and practitioners to appraise and select techniques for dealing with them in their application
context.

In this chapter, we report the results of a systematic mapping (SM) study for examining the
concept of architectural anomalies in ASs. The SM was executed by considering three phases:
i) planning, ii) conducting and iv) reporting and discussion of the results.
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3.2 Planning
In this phase we have defined the protocol. This protocol contains: (i) the research questions,

(ii) the search strategy, (iii) the inclusion and exclusion criteria and (iv) the data extraction and
synthesis method.

The main objective of this SM is to categorize the types of architectural anomalies in ASs.
The motivation for realizing a SM comes from the work published by Raibulet, Arcelli Fontana,
et al. (2017), where authors identify general guidelines for the evaluation of self-adaptive sys-
tems, independent of their type, application domain, or implementation details. Particularly,
we focus on findings about software adaptability at the architectural level, where metrics have
been proposed to capture various aspects of an AS such as performance, design issues and
architectural characteristics at design time.

Thus the motivation comes up to know what kind of design issues affect AS, if they are
specific and how software engineers identify them. Therefore aiming at finding all primary
studies for the understanding and summarizing of evidence about architectural anomalies, the
following Research Questions (RQs) were established:

• RQ1: What are the architectural anomalies found in ASs?

• RQ2: Are there architectural anomalies specific of ASs? If so, what are the main charac-
teristics of them?

• RQ3: What approaches have been proposed to detect Architectural Anomalies in Adap-
tive Systems?

To define the search string, we used PICOC (Population, Intervention, Comparison, Out-
come and Context) approach, adapted by (KITCHENHAM, B. et al., 2009). The definition of
the PICOC elements are as follows:

• Population: Refers to specific Software Engineering role, category of software engineer,
an application area or an industry group. In our work, we defined population as the
literature about software systems that use/address properties of ASs and architectural
anomalies;

• Intervention: Refers to a software methodology, tool, technology, or procedure. In our
work, we defined intervention as the set of primary studies that found/mentioned archi-
tectural anomalies;

• Comparison: Not applied in this work, but we performed a snowballing forward;

• Outcomes of relevance: Refer to factors of importance to practitioners such as improved
reliability, reduced production costs, and reduced time to market. In our work, the out-
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comes were the characterization of the current state of the art about architectural anoma-
lies related to ASs;

• Context: Refers to which context the comparison come from (e.g. academia or industry),
the participants involved in the study (e.g. practitioners, academics, consultants, students)
and the tasks being performed (e.g. small scale, large scale). In our work, in general, the
context relates to practitioners and researchers who work with ASs.

Table 3.1 presents the complete set of keywords, synonyms and logic operators that were
executed in digital libraries. Also, each set of keywords and synonyms belongs to a scope: the
population or the intervention.

Keywords and synonyms of each scope have been associated with an OR operand and be-
tween the two scopes have been associated with an AND operand. Moreover, we included other
type of systems such as context-aware, cyber-physical, mobile, embedded, multi-agent and au-
tonomic because they also can be classified as ASs according to others SMs of the research area
(MATALONGA; RODRIGUES; TRAVASSOS, 2017).

We have used the search string on the following digital libraries: ACM (portal.acm.org),
IEEE (ieeexplore.ieee.org), Scopus (scopus.com) and Google Scholar (scholar.google.com).

In order to determine which primary studies are relevant to answer our research questions,
we have applied a set of inclusion and exclusion criteria. The inclusion criteria are:

I1- Studies that mention or discuss architectural anomalies in adaptive systems, present a
catalog of architectural anomalies or explore their impact on any facet of these type of
systems;

I2- Studies presenting or using a technique aimed to the identification of architectural anoma-
lies in adaptive systems;

Exclusion criteria utilized were:

E1- Duplicate papers or extensions of already included papers, in order to avoid possible
threats to conclusion validity;

E2- Papers that are not available, as we cannot inspect them;

E3- Secondary or tertiary studies (e.g. systematic literature reviews, surveys among others);

E4- Studies in the form of editorials and tutorial, short papers, and poster, as they are deemed
to not provide the required level of detail and information;

E5- Studies that have not been published in English language, as their analysis would result
to be too time consuming.



48 Chapter 3. Systematic Mapping: Architectural Anomalies in Adaptive Systems

Keyword OP Synonyms OP Scope

adaptive OR

self-adaptive OR

Population

self-adaptiveness OR
self-awareness OR

self-configuring OR
self-healing OR

self-managed OR
self-managing OR
self-optimizing OR
self-protecting OR

contex-aware OR context-awareness OR
cyber-physical – OR

embedded – OR
mobile – OR

multi-agent – OR
autonomic –

AND

architectural anomaly OR

architecture anti-pattern OR

Intervention

architecture antipattern OR
architectural antipattern OR
architectural bad smell OR

architectural defect OR
architectural flaw OR
architectural smell OR
architecture defect OR
architectural debt OR

architectural technical debt OR
architectural drift OR
architecture drift OR

architectural violation OR
architecture violation

Table 3.1 – Keywords and search string

We have created data extraction forms to record information obtained by the researchers
from the primary studies. The form for data extraction provides some standard information and
the following fields: (i) name of the anomalies, (ii) causes of the anomaly, (iii) characteristic of
the anomaly, (iv) context of the study and type of systems affected by the anomaly and (v) title,
authors, journal and publication details.

3.3 Conducting
During this phase, the generic search string of Table 3.1 was adapted according to the speci-

ficity of each digital library. The searches were performed in four digital libraries, as suggested
in Chen et al. (CHEN; BABAR; ZHANG, 2010), which are listed in Table 3.2.

Figure 3.1 presents the distribution of papers retrieved for each database after applying the
inclusion and exclusion criterion. Notice that we performed two iterations; the first one was
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carried out on November 2019 and the second one on March 2021. On the first iteration stage
1, 398 papers were returned from the digital libraries. After applying the exclusion criteria E1,
288 papers were stayed and 110 papers were left.

IEEE Xplore
1st ∶ 23

2nd ∶ 1

ACM Digital
Library
1st ∶ 68
2nd ∶ 1

Scopus
1st ∶ 68

2nd ∶ 38

Google
Scholar
1st ∶ 239

2nd ∶ 13

Total
1st ∶ 288

2st ∶ 28

Duplicated
1st ∶ 110

2nd ∶ 25

Total
1st ∶ 22

2nd ∶ 8

Total
1st ∶ 11

2st ∶ 2

Selected
1st ∶ 12

2st ∶ 3

Partial
reading

(title and abstract)

Full
reading

Snowballing
forward

Stage 1 Stage 2 Stage 3 Stage 4

Figure 3.1 – Selection of papers

On the first iteration Stage 2, by reading title and abstract and applying exclusion criterion
E2, E3, E4 and E5, 22 papers were selected. On the first iteration Stage 3, after reading full
text and applying inclusion criterion I1 and I2 11 stayed and 11 papers were left. Finally, on the
first iteration Stage 4, in order to avoid lifting out relevant studies, we applied the “snowballing
forward” technique to find more potentially relevant studies by checking other works that ref-
erence each selected study. After that, just one more paper was added to the final set, thus in
the third stage the number of papers for data extraction were 12. The second iteration followed
the same process as the first iteration and as a result three papers were added to our systematic
mapping.

Table 3.2 summarizes the number of primary Studies Obtained (SO), the number of primary
Studies Included (SI) in our SM, the Index Rate (IR), and the Precision Rate (PR) of each
selected source. For instance, 24 studies were recovered from ACM Digital Library and 6
studies were included in our SM. The precision rate is 25% (i.e., 6

24
) and the index rate is 46%

(i.e., 6
13

). Google Scholar and Scopus showed the best index rate, since 92.33% and 61.53%
of all included studies were indexed by these publication databases. In addition, Scopus and
IEEE Xplore showed the best precision rate, because 7.54% and 13.04% of the primary studies
recovered by these publication databases were included in our SM.
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Digital library SO SI IR PR

IEEExplore 24 6 46% 25%
ACM Digital Library 69 4 30.07% 5.79%
Scopus 106 8 61.53% 7.54%
Google Scholar 252 12 92.33% 4.76%
Total 451 30

Table 3.2 – Electronic databases searched
SO: Number of primary studies obtained;
SI: Number of primary studies included;
IR: Ratio between included primary studies of a database and the total of included primary studies in the
SLR;
PR: Ratio between the total of included studies of a database and the total of obtained primary studies
by this database.

Table 3.3 shows the selected publications of our SM with an ID for reference purposes. In
addition, Figure 3.2 summarizes the type of publication; 20% were published in journals, 46, 6%
were published in conferences and 33, 3% were published in workshops. A brief analysis of the
data revealed that the studies were published in different venues of publication but it draws
attention that none of them were published in the Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS). An explanation for it could be that researchers
are focusing on the treatment of the uncertainty according to the trends of interest in the research
community (WEYNS, 2018).

0 1 2 3 4 5 6 7

Conference papers
Journal papers

Workshop papers

7
3

5

Figure 3.2 – Number of papers selected from workshops, journals and conferences

3.4 Reporting
In this section, we present our synthesized observations to each research question. In order

to visualize the number of architectural anomalies found in literature we created a bubble chart
in Figure 3.3. It shows the distribution of studies according to the publication year, the type of
architectural anomaly and the frequency. The set of selected papers is not large and this could
be explained because the research topic has not been deeply investigated.

By observing Table 3.3, most of the papers retrieved came from industry practitioners in
the area of embedded system. This is aligned with the work of Weyns, Malek, and Andersson
(2012), where authors state that the three main application domains for which self-adaptation
has been used are services based systems, robotics and embedded systems. Thus it seems just
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ID Author Title Source Year

S01 Seo et al. Exploring the Role of Software Ar-
chitecture in Dynamic and Fault
Tolerant Pervasive Systems

Workshop on Software Engineering for Perva-
sive Computing Applications, Systems, and En-
vironments

2007

S02 Eliasson et al. Identifying and Visualizing Archi-
tectural Debt and Its Efficiency In-
terest in the Automotive Domain :
A Case Study

Workshop on Managing Technical Debt 2015

S03 Vogel-Heuser et al. Evolution of software in auto-
mated production systems: Chal-
lenges and research directions

Journal of Systems and Software 2015

S04 Ampatzoglou et al. The Perception of Technical Debt
in the Embedded Systems Domain
: An Industrial Case Study

Workshop on Managing Technical Debt 2016

S05 Oliveira et al. Embedded-Software Architects
It’s Not Only about the Software

IEEE Software 2016

S06 Bagheri et al. Software architectural principles
in contemporary mobile software:
from conception to practice

Journal of Systems and Software 2016

S07 Mera-Gómez et al. Elasticity Debt : A Debt-Aware
Approach to Reason About Elas-
ticity Decisions in the Cloud

IEEE/ACM International Conference on Utility
and Cloud Computing

2016

S08 Serikawa et al. Towards the Characterization of
Monitor Smells in Adaptive Sys-
tems

Brazilian Symposium on Components, Architec-
tures and Software Reuse

2016

S09* Vogelsang et al. Characterizing implicit communal
components as technical debt in
automotive software systems

Working IEEE/IFIP Conference on Software Ar-
chitecture

2016

S10 Mera-Gómez et al. A Debt-Aware Learning Approach
for Resource Adaptations in Cloud
Elasticity Management

International Conference on Service-Oriented
Computing

2017

S11 Pelliccione et al. Automotive Architecture Frame-
work: The experience of Volvo
Cars

Journal of Software Architecture 2017

S12 Vogel-Heuser et al. Adapting the concept of technical
debt to software of automated Pro-
duction Systems focusing on fault
handling, mode of operation and
safety aspects

International Federation of Automatic Control 2017

S13† San-Martín et al. Characterizing Architectural Drifts
of Adaptive Systems

International Conference on Software Analysis,
Evolution and Reengineering

2020

S14* Raibulet et al. SAS vs. NSAS: Analysis and
Comparison of Self-Adaptive Sys-
tems and Non-Self-Adaptive Sys-
tems based on Smells and Patterns

International Conference on Evaluation of Novel
Approaches to Software Engineering

2020

S15 Raibulet et al. A preliminary analysis of self-
adaptive systems according to dif-
ferent issues

Software Quality Journal 2020

* Paper retrieved by snowballing forward † Paper produced by this PhD thesis

Table 3.3 – Selected publications

in the last years academics have been paid attention to architectural anomalies in ASs but in
isolated way. As we stated before, there was no works publicated in main conferences and
journals of this area, such as SEAMS and TAAS1.

Based on these 15 primary studies we have identified 27 architectural anomalies (without
duplicates) in ASs. Table 3.4 shows the complete set of architectural anomalies identified on
each paper and domain of the study. Although, paper S12 presents architectural anomalies,
authors describe them superficially and in a mixed way so it is not clear the conditions where

1 Transactions on Autonomous and Adaptive Systems
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Figure 3.3 – Distribution of architectural anomalies in primary studies

they appear in real systems.

RQ1: What are the architectural anomalies found in ASs?

As some authors did not specify clearly the type of architectural reported in their papers,
we have classified the anomalies according to conventional categories found in literature. In the
following we outline the anomalies found in our SM; Architectural Smell, Architectural Tech-
nical Debt, Anti-Patterns and Architectural Drifts. The last category is developed in Chapter 5
because corresponds to a contribution of this thesis.

• Architectural Smell

Seo et al. (2007) proposed a dynamic software architecture for pervasive systems that
are mission critical and have stringent fault tolerance requirements. The application sce-
nario is composed of sensors, gateways, hubs and mobile devices. Sensors monitor the
environment around them, communicate their status to one another and to the gateways.
Gateways manage and coordinate sensors. Hubs are used to evaluate and visualize the
sensor data for the users, as well as provide an interface through which the user can send
control commands to the various sensors and gateways in the system. Mobile devices are
used by users to make decisions.

The reason to propose the new architecture came to the fact that architecture components
can fail due to two problems; i) finite batteries lives and ii) the wireless is susceptible
to permanent or temporary disconnections. Hence the software system should support
autonomic fail-over: if a host providing a given service fails, then another host in the
system should quickly be enabled as a new provider of the same service (SEO et al.,
2007).
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ID Architectural Anomaly Type Domain

S01 1. Coupled Components Smell Embedded Systems
S02 1. Misplaced Logical Components ATD Automotive
S03 1. Violation of architectural constraints ATD Manufacturing
S04 1. Violation of architectural constraints ATD Embedded Systems

S05
1. Extraneous Connector;
2. Scattered Functionality. Smell Automotive

S06

1. Inconsistent hierarchical (de)composition;
2. Extensibility limitations;
3. Omission of architectural concepts;
4. Broadcast receiver’s connector envy.

AP
AP
Smell
Smell

Mobile

S07 1. Elasticity Debt ATD Cloud Systems

S08
1. Obscure Monitor;
2. Oppressed Monitors.

Smell
Smell

Mobile

S09 1. Implicit communal components ATD Automotive
S10 1. Elasticity Debt ATD Cloud Systems
S11 1. Violation of architectural constraints ATD Automotive

S12

1. Violation of the five layer module model for modular-
ization.
2. No hierarchy in automatic mode;
3. Inappropriate modularity;
4. Suboptimal hierarchy in the field of fault handling;
5. Poor architecture of safety-related parts of the soft-
ware;
6. Structure of code does not allow to update alarm num-
bers.

ATD Machinery and
Plant

Manufacturing

S13
1. Scattered Reference Inputs
2. Obscure Alternatives
3.Mixed Executors and Effectors

Drift
Drift
Drift

Several Domains

S14
1. Unstable Dependency
2. Hub-Like Dependency
3. Cyclic Dependency

Smell
Smell
Smell

Several Domains

S15
1. Unstable Dependency
2. Hub-Like Dependency
3. Cyclic Dependency

Smell
Smell
Smell

Several Domains

Table 3.4 – Architectural anomalies per paper

As these are embedded systems, in nature they are resource-constrained so the existing
approaches for providing fault tolerance on traditional desktop platforms are often inef-
ficient in this domain (SEO et al., 2007). Moreover, many times the implementation of
an advanced fail-over support (i.e., replication, synchronization, and recovery) is cou-
pled with the application logic and as a consequence, it generates difficulties to engineers
when performing maintenance tasks.

Garcia et al. (2009) define an architectural smell as “a commonly (although not always

intentionally) used architectural decision that negatively impacts system quality”. They
may be caused by applying a design solution in an inappropriate context, mixing design
fragments that have undesirable emergent behaviors, or applying design abstractions at
the wrong level of granularity (GARCIA et al., 2009).

Therefore we classified this issue as an architectural smell and named it as Coupled Com-
ponents, because the decision of designing the fail-over system coupled with the applica-
tion logic affects the maintenance quality attribute.
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Vogelsang, Femmer, and Junker (2016) affirms that computer scientists’ knowledge of
embedded-systems concepts such as controllers and actuators is usually limited. So, the
role of embedded-software architect is often played by engineers from other fields who
have a limited education in software architecture. Thus, as consultancy they observed that
two recurrent problems arose with embedded-software architects; i) Incompleteness and
Inconsistencies Due to Missing Traceability and ii) Architectural Smell.

The first one points out that embedded-software architects neglect the fundamental trace-
ability that should exist between the architecture drivers and architecture design. The
second one points out that design decisions negatively impacted systems quality (VO-
GELSANG; FEMMER; JUNKER, 2016).

Two architectural smells are reported; i) Extraneous Connector and ii) Scattered Func-
tionality. The first one occurs when two connectors of different types connect a pair of
components (GARCIA et al., 2009). The second one occurs when multiple components
realize the same high-level concern and some of them are responsible for orthogonal con-
cerns (GARCIA et al., 2009).

Figure 3.4 shows the AS. It is composed of two sensors: a wheel rotation speed and a front
ultrasonic distance sensors. The data is requested by the Vehicle Sensor Processor com-
ponent which computes some measures by using the obstacle distance parameter from
the Cruise Control component. The data is sent to the CAN bus and the Transmission
Control Unit uses it to perform an adaptation such as slow down the vehicle.

The Extraneous Connector occurs because of the additional direct connection between the
Vehicle Sensor Processor and the Cruise Control. This architectural smell also implies a
deployment constraint because the vehicle speed control and cruise must be deployed on
the same ECU.

Bagheri et al. (2016) argue that the ADL-like manifest of Android app does not allow the
specification of key elements that are typically found in traditional ADLs such as connec-
tors, configurations resulting from interconnections between components and connectors
and required interfaces of components or connectors. As a consequence, the omission
of these architectural concepts hinder architectural analysis and understandability of an
app. As mobile apps can also be adaptive systems (SERIKAWA et al., 2016; SIQUEIRA;
JÚNIOR; FERRARI; SANTIBANEZ; MENOTTI; CAMARGO, 2018), the rigid mani-
fest cannot allow the specification of MAPE-K abstractions making difficult the system
understanding.

Another architectural smell reported by (BAGHERI et al., 2016) is the Connector Envy
(GARCIA et al., 2009). Android apps can send or receive broadcast messages from
the Android system and other Android apps, similar to the publish-subscribe design pat-
tern. These broadcasts are sent when an event of interest occurs. The problem is they
poorly separate concerns, resulting in deficiencies that affect maintainability and effi-
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Figure 3.4 – Extraneous Connector smell

ciency (BAGHERI et al., 2016). This poor separation of concerns stems from the fact
that Broadcast Receivers tend to include application-specific logic, which are the respon-
sibility of components, and distribute Intents to other components.

Serikawa et al. (2016) report two architectural smells; Obscure Monitor and Oppressed
Monitors. The first one occurs when a monitor is not implemented as a first-class entity,
making the source-code of this facet tangled with the source-code of other components.
In object-oriented systems, that means there is not a class or interface that represent the
monitor, but a set of lines of code inside arbitrary classes or methods. The second one
occurs when a set of monitors exhibits the following three main characteristics: i) they
are independent from each other concerning the data manipulated; ii) they have the same
polling rate and iii) the execution order of the monitors is predetermined in compilation
time and remain unmodified in runtime.

Raibulet, Fontana, and Carettoni (2020a) and Raibulet, Fontana, and Carettoni (2020b)
report the same three architectural smells; i) Unstable Dependency, ii) Hub-Like Depen-
dency and iii) Cyclic Dependency. According to authors, the first one occurs due to the
fact that ASs must adapt and change their structure and/or behavior based on changing
internal or external system variables; this means that the various classes and packages of
the system have to be able to maintain the highest possible degree of flexibility.
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The second one occurs due to the fact that ASs operate in dynamic environments so they
must interact with several components or controllers and they need to be able to analyze
and adapt changes in the surrounding environment simultaneously to ensure the quality
of the provided services. For the third one authors do not give an explanation.

• Architectural Technical Debt (ATD)

The concept of technical debt is a metaphor used to encapsulate numerous software qual-
ity problems that if they are not addressed in time they could get worse in future (ERNST
et al., 2015). Eliasson et al. (2015) present the Misplaced Logical Components ATD.
This ATD occurs when Logical Components (LCs) are deployed on different Electronic
Control Units (ECU) than the ones that were intended by the architects, resulting in non-
allowed dependencies between different domains. As a consequence, this violation may
result in a change in the amount of communication over the network and have an impact
on efficiency.

Vogel-Heuser, Fay, et al. (2015) present the problems and challenges that faces automated
production systems (aPS). This kind of systems are comprised of mechanical parts, elec-
trical and electronic parts (automation hardware) and software, all closely interwoven,
and thus represent a special class of mechatronic systems (VOGEL-HEUSER; FAY, et
al., 2015). For instance, the change of a feedback controller in the control model could
result in characteristics of system inputs (e.g., limits on the value or change rates), that
the employed mechanical actuactor might not be able to satisfy. A similar problem arises
if a sensor is replaced in the mechanical system that has different quality characteristics,
which affect the quality of a feedback controller of the software.

A typical architectural debt in this domain is the non-compliance between architectural
guidelines and the system architecture. Particularly, the violation of the Operator Con-
troller Module (OCM) pattern, which defines concrete layers and interfaces between them
for different parts of the embedded software – feedback controllers, hard real-time com-
munication and reconfiguration of the feedback controllers, and a soft real-time layer.

Ampatzoglou et al. (2016) state that a typical ATD in the embedded-systems domain are
architectural debts. This occurs when engineers do not follow the guidelines of the initial
architecture so they end up implementing new requirements or performing maintenance
tasks that do not conform the planned architecture. A possible cause of the debt occur
because some runtime quality attributes are given a higher priority than maintainabil-
ity. Specifically, the embedded systems domain prioritizes reliability, functionality, and
performance against maintainability.

Mera-Gómez et al. (2016, 2017) present the elasticity debt in cloud systems. It occurs
when there is a valuation of the gap between an optimal and an actual adaptation decision.
The cause is the difficulty in predicting resource demand, coarse computing resource
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granularity, elapsed time between computing resources are acquired and when they are
effectively ready to be used.

Vogelsang, Femmer, and Junker (2016) present the Implicit Communal Components
ATD. It occurs when developers (re)use any signal that is available on the bus system
to implement or adapt a feature, regardless of the origin of that signal. In many cases,
the signals a developer (re)uses originate from the implementation of another feature,
however, the developer is usually not aware of that.

Pelliccione et al. (2017) state the existence of a gap between prescriptive and descriptive
architecture that causes an architecture degradation in Volvo cars. This degradation might
show up in two different ways: i) architectural drift when the descriptive architecture in-
cludes changes that are not included in, encompassed by, or implied by the prescriptive
architecture, but which do not violate any of the prescriptive architecture’s design deci-
sions; ii) architectural erosion is the introduction of architectural design decisions into a
system’s descriptive architecture that violate its prescriptive architecture.

Vogel-Heuser and Neumann (2017) report a technical debt classification based on (LI;
AVGERIOU; LIANG, 2015) that shows six architectural debts in aPS; Violation of the
five layer module model for modularization; No hierarchy in automatic mode; Inappro-
priate modularity; Suboptimal hierarchy in the field of fault handling; Poor architecture
of safety-related parts of the software; Structure of code does no allow to update alarm
numbers.

• Anti-Patterns

Bagheri et al. (2016) report two anti-patterns: Inconsistent hierarchical (de) composi-
tion and Extensibility limitations. The first one is about that Android provides con-
structs with arbitrarily different structures, behaviors, and semantics at different levels
of hierarchy. Similarly, the rules of composition at one level are completely different
from another level. Software-architecture research has advocated for recursive rules of
(de)composition, whereby a component can be decomposed into lower-level components
of the same type and vice versa (TAYLOR; MEDVIDOVIC; DASHOFY, 2009). One
benefit of such an approach, is that the same set of composition rules can be applied at
different levels of hierarchy.

The second one points out that Android provides limited support for building other com-
ponent types that do not fit the semantics of Android’s predefined components. Con-
nectors in Android face similar extensibility limitations. They lack the ability to build
configurations corresponding to certain topologies. For instance, Android lacks support
for isolating groups of components into their own layers where each layer is separated by
a different event bus. Such a design provides loose coupling and separation of concerns
at a granularity above Android components (BAGHERI et al., 2016).
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The architectural anomalies extracted from the selected papers belong to different domains
but the prevalent is embedded systems. Even though automotive systems are relevant in this
SM a closer look shows that the anomalies found in this domain occurs in embedded systems
because this kind of systems are composed of embedded subsystems. It is important to point
out that some reported adaptive systems were developed by different specialists with different
architectural viewpoint.

For instance, in the developing of adaptive systems of aPS and automotive domains were
involved software engineers, mechanical engineers and electrical engineers where each one of
them tend to focus on isolated parts of the architecture design. As a consequence, the whole
architecture specification is often incomplete and inconsistent, which results in issues such as
architectural anomalies (VOGELSANG; FEMMER; JUNKER, 2016).

Another matter that draws attention is the fact that almost none of the selected works re-
port the abstractions involved where the anomalies are present in the system. We think this
information is important because if the anomaly always occurs in the same set of abstractions
with few variations, software architects can document it and effectively address it by means of
refactoring techniques/tools.

RQ2: Are there architectural anomalies specific of ASs? If so, what are the main character-
istics of them?

According to our findings we conclude that there are architectural anomalies reported in
literature that are specific for adaptive systems, but they can be generalized with existing oth-
ers. As we state in RQ1, there are several domains where ASs can actuate but few works
reported with details where the anomalies occurs. Moreover, none of the works explicitly rec-
ognize the MAPE-K as a key abstraction that performs a logical or structural adaptation in
the whole system, with the exception of the studies presented by Serikawa et al. (2016), San-
tibanez, Siqueira, de Camargo, and Ferrari (2020), Raibulet, Fontana, and Carettoni (2020a) and
Raibulet, Fontana, and Carettoni (2020b). Thus, it could indicate that in most cases software
architects are not awareness of the abstractions involved in the system adaptation or maybe they
do not recognize them as a first-class citizen abstractions so end up implemented hidden in the
system architecture.

The two most reported types of architectural anomalies are ATD and Architectural Smells.
Nevertheless, regarding to ATD it is very common that authors refer it as a violation of archi-
tectural rules, which is a generic term for architectural drifts (NORD et al., 2012). Regarding
to Architectural Smells authors report well-known smells cataloged by Garcia et al. (2009)
and Fontana et al. (2016) such as Unstable Dependency, Hub-Like Dependency, Cycle De-
pendency, Extraneous Connector and Scattered Functionality. The main characteristic of these
smells is that they typify modularization problems. Indeed, according to the classification of
Suryanarayana, Samarthyam, and Sharma (2014) most of them fit in the modularization design
principle scheme.
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In spite of an Architectural Smell is defined as “a commonly (although not always inten-
tionally) used architectural decision that negatively impacts system quality”, in literature we
can find other definitions. For instance, Zimmermann (2015) states that an Architectural Smell
are suspicions or indications that something in the architecture is no longer adequate under the
current requirements and constraints, which might differ from the original ones. This defini-
tion is very close to the definition of an Architectural Drift. Moreover, smells can occurs when
due to the non-adherence to best practices and process, violation of design principles and inap-
propriate use of patterns among others (SURYANARAYANA; SAMARTHYAM; SHARMA,
2014).

Therefore, we can conclude that researchers use already known architectural anomalies to
characterize in a generic way problems found in the architecture of ASs. Thus the lack of a
catalog of architectural anomalies specific of ASs without using terms of the AS domain add
more difficulties when software architects need to identify anomalies because generics one do
not capture the essence of the problem that exist in a specific domain (VELASCO et al., 2018).

RQ3: What approaches have been proposed to detect Architectural Anomalies in Adaptive
Systems?

In order to detect Architectural Anomalies researchers use automated tools for this purpose
because manual techniques are human-centric, tedious, time-consuming, and error prone. These
techniques require a great human effort, therefore not effective for detecting smells in large
systems (PEREIRA DOS REIS et al., 2021). Nevertheless, most of the works reported by our
SM do not specify if they used automated tools or manual techniques.

Particularly, Raibulet, Fontana, and Carettoni (2020b) inform that they used Arcan to col-
lect Architectural Smells. This tool can detect i) Cyclic Dependency (detected on classes and
packages) refers to a subsystem (component) that is involved in a chain of relations that break
the desirable acyclic nature of a subsystem’s dependency structure (RAIBULET; FONTANA;
CARETTONI, 2020b); ii) Unstable Dependency: (detected on packages) describes a subsys-
tem (component) that depends on other subsystems that are less stable than itself, according
to the Instability metric value (RAIBULET; FONTANA; CARETTONI, 2020b); and iii) Hub-
Like Dependency: (detected on classes) this smell arises when an abstraction has (outgoing and
ingoing) dependencies with a large number of other abstractions (RAIBULET; FONTANA;
CARETTONI, 2020b).

3.5 Chapter Summary

This chapter presented a systematic mapping of architectural anomalies of ASs. From 15
selected works we extracted 27 architectural anomalies and most of them reported from embed-
ded and automotive domains. Although researchers have been worried of detecting architectural
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anomalies and knowing their implications at mid long-term they still report them in a generic
way without taking into account ASs domain particularities.

A possible cause is that stakeholders are unconscious about ASs abstractions or they do not
identify them as first-class citizen with the exception of sensors and actuators, so the imple-
mentation of the adaptive part of the system ends up scattered and tangled with the business
logic. As a consequence, software architects do not use specific techniques/tools for identifying
architectural anomalies of ASs, but tools that identify common generic anomalies.

Therefore, there is a lack of approaches that effectively identify architectural anomalies in
adaptive systems that take into account the particularities of the domain. In spite of the SM re-
ported ATD (most of them related to constraint violations), they are not comprehensive enough.
So we see an opportunity of research that can help researchers and practitioners interested in
software architecture and dealed with adaptive systems to characterize and identify architectural
drifts.



Chapter 4
RELATED WORKS

In this chapter, we survey the state of the art in supporting architecture conformance check-

ing by reviewing existing approaches in terms of their main characteristics and comparing

them to our proposal.

4.1 Architecture Conformance Approaches

In this section we review ACC approaches that are related with our work. According to
our non-systematic review, the approaches can be divided in two main groups; non-extensible
and extensible. The approaches categorized in the first group can not be extended with new
concepts and abstractions to the language. On the other hand, the approaches categorized in the
second group allow extensions of new concepts and abstractions to the language.

Regardless of whether an approach is categorized as non-extensible or extensible, it can
hold characteristics that characterize it as a generic or domain-specific. Generic approaches use
a vocabulary that is capable to model software architectures in a wide range of contexts because
the atomic entities of the language are semantically correct on those contexts.

Regarding to Domain-Specific approaches, they use a specialized vocabulary that belongs
to a specific domain so the semantic of atomic entities of the language would not make sense
in other ones. Another key characteristic is that they hold the domain knowledge in terms of
rules that govern the domain. Thus, software architects could enable of disable them according
to certain particularities without to create them from the scratch.

Extensible approaches have slightly stronger relationship with our approach because they
can be extended with Adaptive System (AS) abstractions but the domain rules must be cre-
ated by software architects in any case. Our approach is considered as non-extensible domain-
specific for ASs
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4.1.1 Non-Extensible Approaches
A variety of approaches on ACC have been developed in order to detect architectural drifts.

Once identified, the aim is to refactor the CA to reconcile it as was initially designed. The
main characteristic of generic approaches is the use of a generic vocabulary to describe archi-
tectural abstractions such as entity, layer, module and subsystem. Moreover, some techniques
use vocabulary that relies on source-code concepts such as packages and classes to denote com-
ponents or modules for specifying the intended or planned architecture (BRUNET et al., 2012;
GURGEL et al., 2014).

One of the first approaches developed for detecting architectural violations is reflexion mod-
els (HOLT et al., 2000). This technique compare two models; a high-level model which con-
tains entities and relations between these entities and a low-level model commonly created from
source code and represented as a call graph. A mapping has to be performed between the two
models where entities from the high-level model have to be assigned to elements of the source
model, typically using regular expressions. Based on these models and the mapping, a software
reflexion model is computed to determine where the high-level model does (not) comply with
the source model (HOLT et al., 2000; MURPHY; NOTKIN; SULLIVAN, 1995).

Some tools that have been implemented with this approach were presented by Brunet et al.
(2012) and Herold et al. (2015). The first one uses Visual diff tool1 and manual inspection to
detect architectural drifts. It detects violations produced by method calls, field access, general-
ization, exceptions, returned types and received parameters. The second one presents JITTAC2

that performs comparisons between models and detect violations related to accesses and calls
of packages, classes and methods in Java.

Dependency structure matrix (DSM) is based on a square matrix, which the intersections
among lines and columns denotes a relation between components (classes) in an object-oriented
system (BALDWIN; CLARK, 2000; SANGAL et al., 2005). It visualizes in matrix how much
a component is associated with another one. It also supports the grouping of components into
modules, which facilitates analysis among component relations, allowing architects to work
with DSM in a hierarchical way, which they could use to analyze the architecture in different
abstraction levels. DSM can also be used in conjunction with architectural rules. An imple-
mentation of this approach is Lattix Architect3, which has a graphical interface showing the
dependencies in a system through a DSM. Architects can define new constraints in which they
allow or forbid dependencies between different types of entities (e.g., interfaces, classes, pack-
ages). Developers can identify rule violations and cycles by visually navigating the reverse
engineered DSM.

Other approaches are based on queries for detecting architectural drifts such as CQLink4 and

1 https://w3.cs.jmu.edu/bernstdh/web/common/tools/diff.php
2 http://actool.sourceforge.net/
3 http://lattix.com
4 http://www.ndepend.com
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Semmle .QL5. They are based on a SQL-inspired syntax where a query consists of a conditional
select statement and code entities that corresponds to types, methods, namespaces among others
which are compared with specific values. This technique works only at source code, which
is a low-level abstraction so it lacks of adequate support for the representation of high-level
concepts, with the consequence that it may be difficult to understand the architecture.

ArchLint (MAFFORT et al., 2016) is a well-known approach to verify the architectural
conformance that uses some heuristics implemented as SQL queries. The technique requires a
control version system (code history) and a high-level document modeling the system. Then,
it combines static code analysis, change history analysis, and a set of heuristics for detecting
absences and divergences to classify architectural dependencies or the lack of them.

On the other hand, there are solutions that uses a textual notation that are capable of checking
rules specified in a dedicated DSL. DCL 2.0 (ROCHA et al., 2017), DCL-KDM (S. LANDI
et al., 2017), TamDera (GURGEL et al., 2014) and InCode.Rules (MARINESCU; GANEA,
2010) are designed to define constraints on code dependencies (e.g., accesses, declarations,
extensions).

InCode.Rules can also be used to identify classes affected by specific design flaws (e.g., god
class, data class). DCL 2.0 allows the user to define rules as single statements with a clearly
defined syntactical structure. TamDera allows the user to define hierarchical concepts, which
slightly improves the modularity of the specification. InCode.Rules supports rule composition:
each rule can be used to define an exception to another rule. DCL-KDM (S. LANDI et al.,
2017) is an extesion of DCL 2.0 and supports architects in the specification and serialization of
PAs to be used in ADM-based projects. Particularly, the specification and serialization of PAs
with the original version of KDM modles and Structure Package.

Textual notation tools are characterized by high usability and a well defined strict specifica-
tion language. The authors of DCL 2.0 claim that their language is more usable than other logic
inspired alternatives. Those are supposedly based on a more complex and heavyweight nota-
tion and offer poor performance. Other researchers recognize the difficulty that typical users
encounter when approaching solutions that require a basic understanding of logic programming
(LOZANO; MENS; KELLENS, 2015). Rocha et al. (2017) also compare DCL 2.0 to alterna-
tive solutions based on refection models and dependency structure matrices, stating that their
language is more expressive, reusable and handles a wider set of constraint types. These type
of languages are declarative and do not require any specific programming skill and rules can be
defined by using the constructs offered by the supported notation.

Velasco et al. (2018) present an initial effort to characterize a set of architectural smells
relevant to the Model-View-Controller (MVC) architectural style. These smells correspond to
access among layers that must be forbidden according to the MVC architectural style. Table 4.1
describes a categorization of smells relevant to the MVC architectural style. Notice that these
smells can be treated as architectural drifts because all of them are access violations among

5 https://semmle.com/
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layers.

Name Description
Model includes View’s computations and/or data Happens when the Model contains presentation of data of

end-user requests (e.g. HTML code).
Model includes Controller’s computations and/or data Happens when the Model has direct access to variables that

represent the end-user’s request (i.e. direct access to $_GET,
$_POST variables).

View includes Model’s computations and/or data Happens when the Controller has domain logic (e.g. code of
DB queries).

View includes Controller’s computations and/or data Happens when the View has direct access to variables that
represent the end-user’s request (i.e. direct access to $_GET,
$_POST variables.).

Controller includes View’s computations and/or data Happens when the Model contains presentation of data of
end-user requests (e.g. HTML code).

Controller includes Model’s computations and/or data Happens when the Controller has domain logic (e.g. code of
DB queries).

Table 4.1 – Categorisation of smells relevant to the MVC architectural style (VELASCO et al.,
2018)

In order to detect these violations a static analysis tool (PHP_CodeSniffer) was implemented
that “sniffs” PHP code files according to a set of rules defined in a coding standard document.
It works by tokenising the contents of a code file into building blocks. These are then validated
through the use of text analysis to check a variety of aspects against the coding standard in
question. In this context, a coding standard can be seen as a set of conventions regulating
how code must be written. These conventions often include formatting, naming, and common
idioms. Multiple coding standards can be used within PHP_CodeSniffer. After the analysis
process, PHP_CodeSniffer outputs a list of violations found, with corresponding error messages
and line numbers.

4.1.2 Extensible Approaches
In this section we discuss extensible approaches for architecture conformance checking. As

we state before, this kind of approaches is a little bit more related to ours because it is possi-
ble to create new domain abstractions as AS abstractions. The main advantage of this type of
approaches is that they are inherently extensible within the boundaries set by the underlying
language model. Users can define new concepts by declaring and combining facts and predi-
cates.

This form of extensibility allows developers to adapt the notation to the specific vocab-
ulary required to describe their architecture. Nevertheless, according to Caracciolo, Lungu,
and Nierstrasz (2015) the usability is compromised because these kind of languages involves
programming capabilities which typically go beyond the skills possessed by average software
engineers.

Languages like SOUL (MENS; WUYTS; D’HONDT, 1999), LogEn (EICHBERG et al.,
2008) and SCL (HOU; HOOVER, 2006) are examples of solutions that can be used for confor-
mance checking. SOUL is a Prolog-inspired internal DSL implemented in Smalltalk. A set of
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predefined high-level predicates can be used to create architectural rules or define new predi-
cates. Pre-defined predicates are evaluated using dedicated analyzers. The representation of the
target architecture can be enriched by adding new facts to the fact base.

LogEn is an internal DSL implemented in DataLog, a subset of Prolog. Rules and generic
predicates are conceptually specified in the same way as in SOUL. Facts are automatically
extracted from the source code using a static analyzer. Source code entities can be grouped in
logical sets (called ensembles) programmatically using a dedicated predicate or declaratively
using specific annotations in the analyzed code. SCL is an external DSL inspired by OCL. The
language is used to define first-order logic formulas that can be automatically evaluated against
the source code of a target system. Users can express structural constraints in a declarative and
language-independent notation using pre-defined functions and predicates.

Caracciolo, Lungu, and Nierstrasz (2015) propose a solution that that aims at combining the
practical utility of existing compliance checking tools with some characteristics of Architectural
Description Languages (ADLs). Architectural rules can be specified through a domain specific
language (DSL) and automatically verified through external off-the-shelf analysis tools. The
DSL can be further extended as new concerns, and consequently tools, are supported. The
logical steps required to evaluate user-defined rules are encoded in purpose built tool adapters.
The authors claim most of the tools that performs architectural conformance checking are at
best used to provide basic support information during manual tasks. Developers still heavily
rely on manual reviews as a means to check architectural conformance. The use of manual
techniques does not scale and entails additional costs that could be minimized by automating
parts of the process and using existing solutions and technologies. Moreover, according to their
observations many tools provide insufficient documentation material so practitioners end up
discarding them because they do not fulfill with industry requirements and the adoption curve
is steep.

The approach consists of two subsystems; Dictõ and Probõ. The first one is a DSL for
the specification of architectural rules. The language aims at supporting software architects in
formalizing and testing prescriptive assertions on functional and non-functional aspects of a
software system. The second one is a tool coordination framework that verifies rules written
with Dicto using third-party tools. Supported tools and analyzers are managed through custom
crafted adapters (CARACCIOLO; LUNGU; NIERSTRASZ, 2015).

In Listing 4.1, lines 1−4 show the mapping between the symbolic entities used in rules and
the corresponding concrete entities present in the system. In this example, symbolic entities are
Test, View, Model and Controller. They have a type and properties. Concrete entities are name
of packages or classes of a system and wildcards can be used to select multiple entities. Line 5
shows a rule where all subject entities can only depend on the object entities.

The rules written in Dictõ are validated by Probõ and normalized to generate predicates,
which are evaluated though third-party tools with custom adapters. The adapters are assigned to
predicates according to a set of pre-defined syntactic matching criteria specified in the adaptor
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class. They are responsible of generating a test specification that, once executed, produces
sufficient information to evaluate the predicates they are assigned to (CARACCIOLO; LUNGU;
NIERSTRASZ, 2015). Listing 4.2 shows the rules created by Probõ with the input of Dictõ.� �
1 Test = Package with name:"com.app.Test"

2 View = Package with name:"com.app.View"

3 Model = Package with name:"com.app.Model"

4 Controller = Package with name:"com.app.Controller"

5 Test, View can only depend on Model, Controller� �
Listing 4.1 – Mappings between symbolic and concrete entities (CARACCIOLO; LUNGU;

NIERSTRASZ, 2015)� �
1 depend-on(com.app.Test,com.app.View)

2 depend-on(com.app.Test,com.app.Controller)

3 depend-on(com.app.Test,com.app.Test)

4 depend-on(com.app.Test,com.app.Model)� �
Listing 4.2 – Predicates generated by Probõ (CARACCIOLO; LUNGU; NIERSTRASZ, 2015)

Rules are essentially predicates related to a variable number of subjects through the use
of modal verbs (e.g., must, can). Particularly, this approach support must and cannot with its
variations only can and can only. If one of predicates fails then Probõ can conclude that the
original rule is not correctly enforced in the target system.

4.2 Comparison
Table 4.2 presents a comparison among the most representative approaches described in this

chapter. It includes the approach, abstractions that can be represented by the approach, how is
represented the PA and the CA, what mechanisms are used to detect the drifts and type of drift
detected by the approach.

Although we do not find in literature approaches/techniques of ACC used in AS domain, it is
clear that non-extensible and extensible approaches can be used for that purpose. Regarding to
non-extensible approaches they use generic terms to specify the system architecture where some
of them use concepts near to source-code (low-level of abstractions) and others use concepts
such as subsystems, components and layers (high-level of abstraction). Also, the majority of
them perform the conformance checking in systems developed in Java.

The exception is the work presented by Landi, Santibanez, Santos, Cunha, Durelli, and Ca-
margo (2022) that present Arch-KDM an ACC that uses DCL-KDM to specify the Planned
Architecture (PA). The Current Architecture (CA) is obtained by mapping subsystems, com-
ponents and layers to souce-code elements. In both cases a Knowledge Discovery Metamodel
(KDM) model instance is generated; one for the PA and another for the CA. These instances
are compared and as a result a list of drifts is presented to the software architect. As the con-
formance checking is performed in the KDM instance, which can represent the architectural
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Approach Abstractions PA representation CA representation Drift Detection Type of Drifts
(BRUNET et al.,
2012)

Packages, Classes,
Methods

Model from Docu-
mentation

System Code Visual Diff Tool &
Manual Inspection
(Reflexion Model)

Method Calls, Field
Access, General-
ization, Catched
and Thrown Ex-
ceptions, Returned
Types and Received
Parameters

(GURGEL et al.,
2014)

An abstraction
called Concept. It
represents Classes,
Interfaces, Methods
and Fields

First-Order Logic
Formula

System Code in
Knowledge Base

Prolog Queries Method Calls,
Creates, Declares,
Extends, Imple-
ments, Exception,
Handling, Depen-
dency

(HOLT et al., 2000) Subsystems, Mod-
ules and Entities

System hierarchy
with Subsystems
and Modules

System hierarchy
with entities (files)

PBS tools, lift Unexpected Depen-
dencies & Gratu-
itous dependencies

(MURPHY;
NOTKIN; SULLI-
VAN, 1995)

Modules and Calls
among them

High-Level Model System Code Reflexion Model Convergence,
Divergence and
Absence of Calls

(HEROLD et al.,
2015)

Packages, Classes,
Methods

Package Model System Code
Model

Reflexion Model Architecturally
misplaced software
units & Architec-
turally divergent
callbacks

(MAFFORT et al.,
2016)

Packages, Classes – Component Model SQL Queries method calls, vari-
able declaration,
inhertance, ex-
ceptions among
others

(ROCHA et al.,
2017)

Component Textual/DSL – Dependency
Checker in Source
Code

method calls, read-
ing/writing field,
creates, extends,
implements, inter-
faces, annotations,
exceptions, handles
and derives

(S. LANDI et al.,
2017)

SubSystems, Mod-
ules, Layers

Textual/DSL
creates a KDM
instance

KDM instance Comparisons be-
tween the PA and
the CA models

method calls, read-
ing/writing field,
creates, extends,
implements, inter-
faces, annotations,
exceptions, handles
and derives

Table 4.2 – Comparison of approaches of ACC

viewpoint of the system in a way that is language and platform independent, in theory the
approach could be applied to systems developed in any programming language and software
architects would only need the parser to transform the source-code into a KDM model.

Regarding to extensible approaches all of them are language dependent so they cannot be
reusable in systems developed with different programming languages. As we stated before,
although these kind of language provides flexibility because they allows the creation of new
concepts and abstractions, they cannot be extensible in terms of supporting preconceived do-
main rules due to the dependency with the new created abstractions. Moreover, the usability is
impaired because software engineers when approaching this kind of language, most of the time
have to get out of their comfort zone and learn a new programming paradigm such as declarative
or logical language (LOZANO; MENS; KELLENS, 2015).
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4.3 Chapter Summary
In this chapter we depicted the main approaches currently available for architecture confor-

mance in a non-systematic way. These approaches can be categorized according to the tech-
niques implemented for detecting architectural drifts; constrained, tool-specific languages with
support for simple and moderately complex predicates, formal languages that support the spec-
ification of rules as first-order predicates, where its extensibility is limited to the boundaries
inherited from the underlying logic formalism. Some approaches are used to define contracts
directly within source-code while others can be used to define complex architectural rules but
the use is limited to developers with specific technical skills.

Neither the approaches above mentioned uses a domain vocabulary nor prescribe domain
rules for detecting architectural drifts in ASs. As it was observed by Boutekkouk (2021), generic
approaches fail to model characteristics that are domain specific so there are two directions: i)
The use of domain specific ACC instead of general purpose ACC and ii) Using extensible ACC
approaches and frameworks to generate domain-specific ACC. Moreover, although extensible
approaches can be used to support AS domain vocabulary, they are unable to check predefined
domain rules without specifying them in order to reduce efforts of specifying the PA and at the
end, improve productivity.

In the remainder of the thesis, we investigate architectural anomalies of AS. Based on our
observations, we design REMEDY, an intuitive and executable DSL which can be used to spec-
ify the adaptive part of an AS architecture. Also, it checks architecture conformance by prede-
fined domain rules and custom rules.



Chapter 5
ARCHITECTURAL DRIFTS OF ADAPTIVE

SYSTEMS

In this Chapter we present the characterization of three drifts that are recurrent in some

ASs; Scattered Reference Inputs (SRI), Obscure Alternatives (OA) and Mixed Executors

and Effectors (MEE). By characterizing these drifts we are not only making evident existing

problems; we are also promoting the importance of these abstractions. Our characteriza-

tion scheme provides a name for the drift, presents the quality attributes impacted, lists the

potential reasons for its emergence, explains ways of how to identify them.

5.1 Architectural Drifts of ASs
This section highlights the main results of our efforts on characterizing architectural drifts.

Firstly, we provide a brief overview of the methodology we have followed and it consists in five
steps. Secondly, we present the characterization of the three architectural drifts we were able
to find in the ASs. In order to characterize them, we adopted a uniform template based on the
work of Suryanarayana et al. (SURYANARAYANA; SAMARTHYAM; SHARMA, 2014).

5.1.1 Methodology

The methodology we have followed for characterizing the drifts is described in the following
five steps.

1. Collecting Adaptive Systems: The goal of this step was to collect and create a database of
ASs for further analysis. Therefore, we set up a software repository with representative ASs. We
searched in open repositories such as GitHub and GitLab, research papers that mentioned the
location of ASs repositories and gray literature. Most of the collected ASs came from SEAMS
conference which is one of the major events in the self-adaptive systems area. We did a fork
of all ASs to the research group repository. We filtered the repository according to two rules:
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SYSTEM DESCRIPTION DRIFT LOCATION SOURCE LOC

Zanshin-ATM A system that provides basic
banking services, along with
managerial services, such as
having a bank operator turn
the ATM on/off.

SRI
Class: CashDispenser

Attribute: cashOnHand
Model: model.atm

https:
//github.com/
Advanse-Lab/
Zanshin

14.341

ASHYI-EDU A system that provides vir-
tual learning environment
(VLE) with dynamic adap-
tive planning.

SRI
Class: BeanASHYI

Method: isCambioContexto
Variable: datos.getContexto()

https:
//github.com/
Advanse-Lab/
ASHYI

371.091

mRubis-self-
healing*

A system that simulates a
marketplace on which users
sell or auction items.

SRI, OA R.I. are declared in the
CompArch model (Compo-
nentState metaclass) - Alter-
natives are implemented in
the Plan class

https:
//github.com/
Advanse-Lab/
mRUBiS

131.052

TAS* A system that provides
health support to chronic
condition sufferers.

OA
Class:TASStart

Method: initilize() https:
//github.com/
Advanse-Lab/
TAS

147.072

PhoneAdapter A mobile system that
performs behavioral adapta-
tions according to contex-
tual data and rules.

MEE
Class: MyBroadcastReceiver

Method: onReceive

https:
//github.com/
Advanse-Lab/
phoneadapter

11.638

AdaSim* An open-source simulator
for the automated traffic
routing problem which al-
lows for fast development of
solutions to the problem.

MEE
Class: Vehicle

Method: setStrategy https:
//github.com/
Advanse-Lab/
adasim

11.111

SAVE* A system that simulates the
recording and manipulation
of a video, using an mp4
stream and processing each
of the original frames to ob-
tain a compressed version of
the stream.

MEE
Class: Encode
Method: main https:

//github.com/
Advanse-Lab/
save

670

* Systems taken from the International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS)

Table 5.1 – Examples of Adaptive Systems containing the Proposed Drifts

clear documentation and all system resources should be available for execution. As a result, the
systems shown in Table 5.1 were chosen for analysis.

2. Analysis of Literature: The goal of this step was to analyze research literature from a non-
systematic review. Besides the main abstractions and their relationships, we also focused on
identifying low-level abstractions and their relationships. Thus, we analyzed publications re-
lated to reference models of ASs. Particularly, we focused on studies that dealt with the MAPE-
K reference model (BRUN et al., 2009) (HEBIG; GIESE; BECKER, 2010) (VILLEGAS et al.,
2011). These studies made a deep analysis of the MAPE-K, identifying and describing other ab-
stractions which enrich the MAPE-K reference model. This happens because MAPE-K delivers
just the most canonical and higher level abstractions of ASs, hiding lower-level abstractions.

The most relevant studies we have identified were the ones by Villegas et al. (VILLEGAS et
al., 2011), Weyns et al. (WEYNS; MALEK; ANDERSSON, 2012), and IBM (IBM, 2005). The
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first one provides the definitions of several abstractions found in ASs. The second one provides
a reference model which covers a wide spectrum of MAPE-K perspectives. The third one is
the architectural blueprint for autonomic computing. The abstractions are Reference Outputs,
Reference Input and Alternatives.
3. Enriching MAPE-K with lower level abstractions: The goal of this step was to com-
plement the MAPE-K reference model with lower level abstractions. After having identified
the canonical and also some lower level abstractions of MAPE-K, we elaborated the reference
model shown in Figure 5.1.

It is clear that the MAPE-K reference model is based on the design principle of separation
of concerns. However, it just takes into account high-level abstractions and their relationships,
leaving to software engineers the implementation of lower-level abstractions which could be
implemented in a wrong way, without architectural quality. As a consequence, architectural
drifts will affect the evolution of the AS, and hence hardening maintenance tasks.

Figure 5.1 presents the reference model mapped on the systems that we analyzed. Note that
the reference model adds three new abstractions: Alternative, Measured Outputs and Reference
Input to the schematic view of MAPE-K.

Subsystem2
Subsystem1

Managing Subsystem

Managed Subsystem

Sensor Measured
Output

Effector

Monitor Analyzer Planner Executor

Knowledge

Reference
Input

Alternative «Conceptual»
Other Information

0..*

+act
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+query+query
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change

Loop Manager Control
Loop
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1..* 1..*
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Figure 5.1 – MAPE-K enriched with lower-level abstractions

Normally, a system that is considered adaptive is composed of the Managed Subsytem,
which is the bigger base part, and one or more Managing Subsystems, which are modules
responsible for performing the adaptations. Notice that MAPE-K is much more devoted to
design the adaptation parts than the base system itself. Control Loops (CLs) could be declared
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in an existing Managing Subsystem or in Loop Managers. The latter occurs when two or more
Control Loops (not necessarily deployed in the same location) need some kind of interaction
for achieving the adaptation goal.

The CL abstraction contains the four MAPE-K abstractions as usually represented in the
literature. The Planner abstraction is not mandatory (multiplicity 0) because several ASs do not
require it to perform simple adaptations. Monitor, Analyzer, Planner and Executor abstractions
can access the Knowledge abstraction to get some information for using it in their reasoning.
Moreover, the Planner accesses the Alternative abstraction in order to select the best option that
fits with the adaptation goal. Analyzers should reason about whether or not there are symptoms
of adaptation by taking into account Measured Outputs and Reference Inputs.

Executors must perform the realization of the action plan given by the Planner or Analyzer
abstractions through one or more rules by means of the corresponding Effector (ARBOLEDA
et al., 2016). This abstraction could also have some kind of intelligence. For instance, it could
decide the priority of adaptive rules that will be executed on the managed subsystem and a
scheduling schema when there is time constraints (FARAHANI; NAZEMI; CABRI, 2016).

Effectors provide the necessary interfaces to modify the resources or artifacts of the man-
aged system. According to the autonomic blueprint, an effector consists of one or both of the
following: A collection of “set” operations that allow the state of the manageable resource to
be changed in some way, and a collection of operations that are implemented by autonomic
managers that allow the manageable resource to make requests from its manager (IBM, 2005).

If we look at the managed subsystem as a dependency graph, effectors should only have
outgoing dependencies to internal components. That means that the efferent coupling is low,
so it is easy to maintain them. On the other hand, if we look at the managing subsystem as a
dependency graph, executors should only have incoming dependencies so they should be more
stable because changing them could affect several planners or analyzers. The relation between
executors and effectors must be surjective, that is, every executor corresponds to one effector.

We argue that two of the five abstractions (Alternatives and Reference Inputs) are less rec-
ognized in literature and, as a consequence, developers do not pay enough attention to them. It
is important to make them visible because there is a great possibility that they receive mainte-
nance tasks. For instance, a self-healing system could need to add new alternatives to manage
uncertainties that software architects were not aware in the original design. In the same way,
changing or adding new Reference Inputs could be another recurring tasks when threshold val-
ues need to be adjusted in order to get a suitable adaptation.

4. Analysis of Systems: The goal of this step was to analyze the systems in two ways: a static
and dynamic analysis with automated tools and a manual analysis for searching the abstractions
of the reference model of Figure 5.1 and mapping them in the ASs. The result of this step was
a set of Architectural Drifts.

5. Simulating Maintenance Tasks: The goal of this step was to create several maintenance
tasks for analyzing the impact of quality attributes when they are applied in the systems. We
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raised a list of maintenance tasks for each system such as adding, modifying and removing
abstractions that are involved in the architectural drifts. As a result, we characterize the most
relevant Architectural Drifts and present them in Subsection 5.1.2. Table 5.2 presents the tem-
plate used in this work to document the drifts.

Template Element Description
Name & description An intuitive name and a concise description of the ar-

chitectural drift.
Rationale Reason/justification of why this is an anomaly in the

context of Adaptive Systems.
Potential causes List of typical reasons for the occurrence of the

anomaly.
Impacted quality attributes Quality attributes impacted negatively, such as mod-

ularity, reusability, analysability, modifiability and
testability.

Affected architectural abstractions Architectural abstractions of an adaptive system af-
fected by the architectural anomaly.

Practical considerations Sometimes, drifts are introduced intentionally either
due to constraints (such as language or platform lim-
itations) or to address a larger problem in the overall
design.

Identification of the anomaly How to identify the drift.
Instance of Whether the anomaly is an instance of a generic one.

Table 5.2 – Architectural drift template

5.1.2 Three Common Architectural Drifts of ASs
In this section we present the three architectural drifts we have identified and characterized.

It is important to emphasize that the focus of these drifts is on maintainability, i.e., the presence
of them suggests the conduction of maintenance tasks can be painful. For this, we based our
analysis on ISO 25010 standard (https://tinyurl.com/y6e6wru2); modularity, reusability,
analyzatility, modifiability and testability.

5.1.2.1 Scattered Reference Inputs (SRI)

Description: This drift arises when Reference Inputs are not localized/stored in the Knowl-
edge.
Rationale: The lack of a well-modularized module to store Reference Inputs, or their decla-
rations scattered through several modules, makes Analyzers to access different modules, other
than relying on a unique and consistent point (i.e. the Knowledge). Besides, the Reference
Inputs end up declared in modules that already have other responsibilities. To be more precise,
there are four problems:

• Increase on the efferent coupling of Analyzers: Analyzers need to have access to several
modules that are not specific of storing the Reference Inputs, increasing the coupling of
them with other modules;

https://tinyurl.com/y6e6wru2
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• Violation of the Encapsulation Principle: When Reference Inputs are defined into other
modules that are responsible for other abstractions, the abstractions are tangled, making
these other modules too exposed because they have to be accessed by the Analyzers;

• Decrease of the cohesion of other abstractions: As the other abstractions become tangled
with Reference Inputs, their level of cohesion decreases because of afferent coupling,
which turns them abstractions with high degree of responsibility;

• Compromising of the reusability: The reusability is also severely impacted. This hap-
pens because the reuse of Reference Inputs as a module in other contexts requires the
modification of all modules where they are located.

Potential Causes:

• Inadequate architecture analysis: Software architects did not consider the definition of
a well defined module to store the reference inputs at the beginning of the architecture
design due to tight deadlines, resource constraints or minor performance gains.

• Lack of refactoring: At the beginning of a project, few Reference Inputs were declared,
but as software evolves, the number of Reference Inputs could increase so it may be
needed to refactor them into a new abstraction. The lack of refactoring may lead to a
Scattered Reference Input drift.

Impacted Quality Attributes: Typical maintenance activities are: (i) adding Reference Inputs
when an AS needs to achieve new adaptation goal; and (ii) removing Reference Inputs when
some adaptation goals are not desirable anymore. Therefore, the following attributes may be
impacted:

• Modularity: The modularity of this abstraction is compromised because its implementa-
tion is spread through other modules such as monitors, analyzers, planners and executors,
increasing the likelihood of introducing side effects during maintenance tasks.

• Reusability: The reusability of this abstraction is compromised since it is difficult to
reuse the Reference Inputs in other contexts, considering that they are not encapsulated
in a unique module with a well defined interface.

• Analyzability: The analyzability of this abstraction is affected due to the nature of the
drift, more points of failures could be generated by adding or removing Reference Inputs
and, as a consequence, the the understanding decreases.

• Modifiability: The modifiabilty of the Managing Subsystem is impacted because changes
will take longer, since the time to find the Reference Inputs is higher. Maintenance also
becomes risky because it could affect other modules.
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• Testability: The testability of this abstraction is impacted because it will be necessary to
create different and totally independent test cases, since the Reference Inputs are spread
thought other modules. If Reference Inputs were declared in a dedicated module, the test
cases will be simpler.

Affected Architectural Abstractions: As the Reference Inputs are scattered, the Analyzer
could depend on several modules in order to query them for making an adaptation decision.

Practical Considerations: When there are few reference values to be queried by the analyzer,
it may be convenient to store the values in the Analyzer but, in a certain extent, if more values
are queried, it is desirable to create an abstraction to store all of them.

Identification of the drift: Once the analyzer is identified, software engineers have to check the
rules that triggers an adaptation. These rules are comparisons composed by Reference Inputs
and measured outputs. The engineer should analyze if the declaration of all Reference Inputs
are stored in a single abstraction, or if they are scattered in several modules.

Instance of: Broken Modularization: When data/methods that should have been localized into
a single abstraction are separated and spread across multiple abstractions (SHARMA; SPINEL-
LIS, 2018).

5.1.2.2 Obscure Alternatives (OA)

Description: This drift arises when the set of alternatives of an AS is not implemented as a first
class entity.

Rationale: When the Alternative abstraction is not evident in the design of the architecture
of the managing subsystem, it means that it was implemented tangled with other abstraction.
Consequently, it makes difficult to understand the mechanism of adaptation which may imply
raise of maintenance costs. In the MAPE-K reference model, the Analyzer accesses Alternative
abstraction for using an adaptation option to reach and maintain a quality level of response of
the system according to the environment state. Thus, it is likely that Alternative and Analyzer
were implemented as a unique abstraction without an evident difference between them. To be
more precise, there are two problems:

• Increasing the size of Analyzers: The main rule of modularization is to decompose ab-
stractions to manageable size. When this rule is violated, it becomes difficult to under-
stand and maintain these modules.

• Increasing the coupling between abstractions: Changing to another approach of adapta-
tion could be cumbersome and risky because that could imply major changes in the logic
of the Analyzer in order to support new approaches.

Potential Causes:
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• Centralized control: A centralized implementation could be better managed; however, the
abstraction will become responsible for a large amount of work and, as a consequence, it
could have several points of failures.

• Grouping all functionality together: Often, inexperienced developers tend to group to-
gether and provide all related functionality in a single module, without understanding
how the Single Responsibility Principle (SRP) should be properly applied.

Impacted Quality Attributes: Typical maintenance activities are: (ii) adding a new alterna-
tive when an AS needs to achieve new adaptation goal; (ii) modifying an alternative when the
purpose of an adaptation needs to change and iii) changing an alternative by a new one when it
corresponds. Therefore, the following attributes may be impacted:

• Modularity: The modularity of this abstraction could break because as alternatives are ob-
scure in the software architecture, adding a new alternative may confuse software main-
tainers, who would implement it in other abstraction.

• Analyzability: The analyzability of this abstraction is affected because it has noise that
makes hard to discern on each alternative, as well as on their purpose regarding the pos-
sible adaptations. For instance, when software maintainers need to modify an adaptation
alternative, the understanding degree becomes low.

• Modifiability: The modifiability of this abstraction is affected because as the alternatives
of adaptation are overlapped, a modification on one alternative may affect others.

Affected Architectural Abstractions: Regarding the Analyzer, strong coupling with Alterna-
tive abstraction could limit its capacity of evolving when maintenance or evolution tasks must
be performed. Regarding the Alternatives abstraction, adding or removing new alternatives for
adapting the managed subsystem could be error-prone tasks since their implementation pene-
trates the several parts of the analyzer.

Practical Considerations: As we stated before, a centralized control could facilitate the man-
agement of the analyzer. However, as long as it grows, there is a trade-off between modularity
and size.

Identification of the drift: Software engineers need to identify the Analyzer and the Alterna-
tive abstractions. If just the Analyzer abstraction is identified in the current architecture of an
AS, then it is likely that the set of alternatives has strongly coupling with the Analyzer.

Instance of: Insufficient Modularization: This drift arises when an abstraction exists that has
not been completely decomposed, and a further decomposition could reduce its size, implemen-
tation complexity, or both (SHARMA; SPINELLIS, 2018).
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5.1.2.3 Mixed Executors and Effectors (MEE)

Description: This drift occurs when Executors and Effectors are not evident in the architecture
of the AS.
Rationale: Executors and Effectors are two abstractions intrinsically connected because the
first one perform structural or behavioral changes on the managed subsystem by means of the
second one. According to MAPE-K, Effectors are implemented in the managed subsystem as
touch points for Executors, and the latter are implemented in the managing subsystem. How-
ever, it is very common to find the implementation of these abstractions in ASs in a mixed way,
without a clear distinction between them (SAMA et al., 2010), thus making difficult the com-
prehension of the adaptation mechanism. In such cases, it is not clear which parts conform the
managed and the managing subsystems. As a result, this could lead to error-prone maintenance
activities (MAGGIO et al., 2017).
Potential Causes:

• Lack of implementation guidelines for the MAPE-K reference model: Despite the fact
that MAPE-K shows a scheme of how the main abstractions must communicate among
them, it does not provide implementation guidelines; so, very often software engineers
end up developing Executors and Effectors in an obscure way, mixing them.

• Lack of knowledge of structural and behavioral properties of each abstraction: Although
the main abstractions are well depicted by the MAPE-K reference model, it is possible
that software engineers misunderstand the real purpose of each abstraction.

Impacted Quality Attributes: Typical Maintenance Activities are: adding or removing execu-
tors or effectors. Therefore, the following attributes may be impacted:

• Modularity: These abstractions are affected because as the AS evolves, the separation
of architectural abstractions are getting unclear because the code of Executors becomes
tangled with the code of Effectors.

• Reusability: These abstractions are affected because it is not possible to reuse executors
and effectors in isolation in other contexts when they are mixed.

• Modifiability: These abstractions are affected because as the functions are overlapped, a
single change may affect executors and effectors.

• Testability: These abstractions are affected because the Managed Subsystem cannot be
isolated from the Managing Subsystem due to the coupling between them. Hence, testing
activities becomes challenging.

Affected Architectural Abstractions: Executors and Effectors, because they cannot be differ-
entiated from each other.
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Practical Considerations: If an application contains a large number of decision points encoded
in different autonomic elements scattered through the application code, externalizing the self-
managing logic away from application objects will relief the burden for future maintainers.
There should be no practical considerations for the implementation of this drift.

Identification of the drift: Software engineers must identify the touch points responsible for
changing the managing subsystem in order to understand the logical separation of the two sub-
systems. Once these touch points have been identified, they need to check the degree of coupling
of the involved abstractions.

Instance of: The Grand Old Duke of York: This drift occurs when developers could not identify
the significance of good abstractions and ignore them even after being suggested by some team
members (SHARMA; SPINELLIS, 2018).

5.2 Examples
This section presents some Adaptive Systems that contain the drifts we have characterized.

Table 5.1 lists seven systems and the drifts they contain. The first column shows the name of the
system, the second shows a brief description, the third shows the drifts that were identified, the
fourth shows the source code artifacts where the drifts are located, the fifth shows the repository
and the sixth shows the lines of code.

We can see that three of the ASs present the Scattered Reference Input Declarations drift
(ASHYI, Zanshin, TAS), three of them present the the Mixed Executors and Effectors (Phone-
Adapter, AdaSim, SAVE) and two of them present the Obscure Alternatives drift (TAS, mRu-
bis).

With the analysis of the source code of these systems, it is clear that developers do not follow
naming conventions given by the MAPE-K reference model, so it is not trivial to understand
which part of the system conforms with monitors, analyzers, planners and executors. Moreover,
in many cases the adaptation mechanism is tangled with the system logic, so it becomes difficult
isolate each MAPE-K abstraction.

To present a more detailed example, we have selected two representative systems: Zanshin-
ATM and PhoneAdapter. Zanshin-ATM suffers with the presence of the SRI drift, and the
PhoneAdapter suffers with the presence of the MEE drift. Subsection 5.2.1 addresses the
Zanshin-ATM system, and Subsection 5.2.3 addresses the PhoneAdapter system.

5.2.1 Scattered Reference Inputs Example
To exemplify the SRI drift, we use the Zanshin-ATM system. Zanshin (TALLABACI;

SILVA SOUZA, 2013) is a framework for developing adaptive software and the ATM system
uses the Zanshin framework to make itself adaptive. The main goal of ATM is to provide basic
banking and managerial services.
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Two adaptations scenarios are implemented in this system:

1. Recovering from the malfunction of the ATM printer: In this first scenario, after ATM
terminal performing a transaction, it must print a receipt for the customer. If the printer
fails, the adaptation strategy is to retry twice the printing operation. If it still fails, then it
abort the printing operation.

2. Managing the shortage of cash: In this second scenario, the ATM terminal always must
check if it has enough banknotes when a withdraw operation is performed by customers.
In case the banknotes available are not enough to serve the customer’s request, this task
fails and the whole operation is canceled. Therefore, the adaptive system contains pre-
ventive actions such as augmenting the number of operators to refill the ATM with cash
if dispensers become empty.

In the shortage of cash scenario, the Reference Input of interest is the “total amount of cash
available on the ATM dispenser”. The measured value corresponds to the amount of money
that the customer needs to withdraw from the ATM. Therefore, an adaptation is triggered when
the measured value is greater than the Reference Input. Listing 5.1 presents a snippet of the
CashDispenser class, where this rule is implemented.� �
1 public class CashDispenser {

2

3 private Money cashOnHand;

4 ...

5 public void setInitialCash(Money initialCash) {

6 cashOnHand = initialCash;

7 }

8

9 public boolean checkCashOnHand(Money amount) {

10 return amount.lessEqual(cashOnHand);

11 }

12 ...

13 }� �
Listing 5.1 – Snippet of CashDispenser class (TALLABACI; SILVA SOUZA, 2013)

The CashDispenser class implements four methods (two of them are shown in Listing 5.1:
setInitialCash and checkCashOnHand). The first one (line 5) sets the amount of cash initially on
hand, and the second one (line 9) checks if there is enough cash on hand to satisfy a customer’s
request. The cahshOnHand class attribute (line 3) corresponds to the Reference Input, and the
variable amount of type Money (line 9) corresponds to Measured Output. The business rule in
line 10 returns true if the dispenser has an amount of cash greater or equal than the customer
needs in a withdraw operation. Otherwise, it returns false.

In the Printer Malfunction scenario, the Reference Input of interest is a fixed number of
retries. In this case, it was declared in a goal model that includes several adaptation requirements
(AR), each of them being composed by the adaptation strategy, the applicability condition, and
the resolution condition.
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Listing 5.2 presents a snippet of the goal model in an XMI file. Line 4 specifies the strategy
for this scenario, which is retrying the operation every 5 seconds, and the condition is to retry
at most twice, as defined in line 8.� �

1 ..

2 <children xsi:type="atm:AR3" ... >

3 <condition xsi:type="..SimpleResolutionCondition"/>

4 <strategies

5 xsi:type="..RetryStrategy"

6 time="5000">

7 <condition

8 xsi:type="..MaxExecutionsPerSession ApplicabilityCondition"

↪ maxExecutions="2"/>

9 </strategies>

10 </children>

11 ..

12 � �
Listing 5.2 – Snippet of goal model for ATM system (TALLABACI; SILVA SOUZA, 2013)

As we can see, these two Reference Inputs were declared in two different places of the
system. This makes difficult to understand the mechanism of adaptation, and hence makes
harder the maintenance activities involving these Reference Inputs. Adding new Reference
Input could be confusing and, in this case, it could affect business rules of the ATM system or
other abstractions of the MAPE-K.

A solution to this drift is the implementation of a class that declares all Reference Inputs
with their getters and setters. Thus, analyzers can have access to Reference Inputs, and ex-
ecutors could update the values and adjust them whenever it is necessary. This solution is in
conformance with the reference model of Figure 5.1, where Reference Inputs abstractions is
clearly identifiable.

5.2.2 Obscure Alternatives Example
To exemplify Obscure Alternatives drift, we use the TeleAssistance System (TAS) sys-

tem (WEYNS; CALINESCU, 2015). TAS provides health support to chronic condition suffer-
ers within the comfort of their homes. TAS uses a combination of sensors embedded in a wear-
able device and remote services from healthcare, pharmacy and emergency service providers.

TAS takes periodical measurements of the vital parameters of a patient and employs medical
service for their analysis. The analysis results may trigger the invocation of a pharmacy service
to deliver new medication to the patient, or to change the dose of medication, or the invocation
of an alarm service leading, e.g. to an ambulance being dispatched to the patient (WEYNS;
CALINESCU, 2015). This system is considered an AS with self-healing property. That means
it has the capability of discovering, diagnosing, and reacting to disruptions. It can also antic-
ipate potential problems, and accordingly take proper actions to prevent a failure (SALEHIE;
TAHVILDARI, 2009).
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TAS implements its self-healing property by means of n-versions of its active medical ser-
vices, so if one active service fail, then it can be replaced by a similar one. Figure 5.2 presents
the TASStart class, which implements the initializeTAS() method. This method defines all ser-
vices that will be available in the system. Once the system starts, all the defined services are
loaded in a service cache class named SDClass.

Figure 5.2 also shows two more classes: MainGui and ApplicationController. The first one
starts the application and the second one initializes graphical aspects of the system and service
quality profiles (performance, costs, preferable service). TASStart also executes the system
workflow, which runs several cycles according to a modifiable parameter.

Figure 5.2 – Class TASStart

Notice that services and its alternatives become obscure because: (i) the name of TASStart

class does not reflect its purpose, nor does the method name initializeTAS(); (ii) services and
their alternatives should be declared isolated from other concerns and in a recognizable class
for facilitating maintenance. In this case, the TASStart class also implements the execution of
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the workflow.

5.2.3 Mixed Executors and Effectors Example
To exemplify the Mixed Executors and Effectors drift, we use PhoneAdapter (LIU, 2013).

This application uses contextual information to adapt a phone’s configuration profile. These
profiles are settings that determine a phone’s behavior, such as display intensity, ring tone vol-
ume and vibration.

Instead of users selecting a profile manually, the application is driven by a set of adaptation
rules and each one of them specifies a predicate whose satisfaction automatically triggers the
activation of an associated profile. The selected profile prevails until a more suitable one is
chosen through the triggering of other rules. Basically, the system is divided in two modules:
The ContextManager class, and the AdaptationManager class. The former implements several
sensors and monitors to capture context data that is broadcast by means of Android intent ob-
jects to all components of the application. The latter filters messages with the new context data
to check whether or not the rules are satisfied, and performs changes in the mobile behavior.
Listing 5.3 presents a snippet of the AdaptationManager class.� �
1 public class AdaptationManager{

2

3 private AudioManager mAudioManager;

4 ..

5 public class MyBroadcastReceiver extends BroadcastReceiver{

6 public void onReceive(Context c, Intent i) {

7 if(volume >0){

8 mAudioManager.setRingerMode(AudioManager.RINGER_MODE_NORMAL);

9 mAudioManager.setStreamVolume(AudioManager.STREAM_RING ,

10 volume,AudioManager.FLAG_SHOW_UI);

11 }

12 if(vibration==1){

13 mAudioManager.setVibrateSetting(

14 AudioManager.VIBRATE_TYPE_RINGER ,

15 AudioManager.VIBRATE_SETTING_ON);

16 }

17 ..

18 }� �
Listing 5.3 – Snippet of AdaptationManager class of PhoneAdapter

Lines 9 and 13 show two adaptation rules. The first one modifies the volume of the ringtone,
and the second one activates the vibration mode.

The AdaptationManager class has more than 1000 lines of code, so it is not a trivial task to
understand which part of the code corresponds to executors and effectors. Moreover, as there is
not a clear distinction between these two abstractions, the Android API code becomes tangled
with the custom adaptation rules, and hence difficult to be maintained in case developers need
to add or remove new touch points.

Figure 5.3 presents a possible design for separating effectors and executors by using inter-
faces. In this case one executor could affect one or more effectors and one effector corresponds
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to one executor. It is a modular solution that separates these two abstractions in order to identi-
fies them clearly.

Executor

«interface»
IExecutor

Effector

«interface»
IEffector

1

1..*

Figure 5.3 – Separation of executors and effectors

By separating the abstractions from the implementations, placing each in different subysys-
tems, allows the flexibility to provide new implementations that could completely replace the
existing implementation. For instance, new effector implementation can be created and places
in the Managed Subsystem allowing to remove existing effector implementations without mod-
ifying the existing system.

5.3 Chapter Summary
To the best of our knowledge, this is the first effort in characterizing architectural drifts

specific of ASs. Our intention is that our catalog helps in disseminating good design practices
regarding ASs. After having analyzed several representative ASs, we have noticed that most of
them suffer from bad design practices that can impact maintainability.

As a result, we characterized three drifts. Scattered Reference Input expresses the lack of
modularization of Reference Inputs because they are not declared in a Knowledge abstraction.
Obscured Alternatives state that the set of alternatives of an AS is not implemented as a first
class entities. The Mixed Executors and Effectors indicates that the touch point where the
managing subsystem performs adaptation of the managed subsystem does not clearly identify
the Executors and Effectors.

Another important aspect is that most of the research initiatives that deal with architectural
drifts are domain-independent, i.e., they are applicable to several domains given that they use a
specific vocabulary (GARLAN; MONROE; WILE, 2000b; TEKINERDOGAN, 2016). Never-
theless, while it is possible to specify the architecture of a system using a generic vocabulary,
it is better to adopt a more specialized vocabulary when targeting architectures of a particular
application domain. Indeed, nowadays researchers are focusing on characterizing drifts that are
domain-dependent because it would aid more accurately software engineers when they need to
identify drifts of a particular domain.
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Also, we see that reference models that are too abstract do not take into account details that
might be necessary in the system implementation due to their lack of information. As a conse-
quence, developers could introduce architectural drifts in their designs. Given this scenario, we
have augmented the traditional MAPE-K reference model in order to expose some lower-level
abstractions. Although MAPE-K is not mandatory for designing the AS architecture, this work
serves as an indicator to software architects whether or not the system follows the MAPE-K
model. Of course, the final decision is up to architects who will know the details, contexts and
specifics of the system.

Characterizing architectural drifts is a subjective and difficult process for two main reasons.
First, there is no standard methodology for finding architectural drifts in practice. Second, it
is not straightforward to find a large set of ASs in existing repositories. Although we found
systems being characterized as adaptive, most of them were developed for academic purposes.
It would be desirable to collect more systems from industry for investigating whether there
exist other type of drifts, as well as if there exist drifts that corroborate our catalog of drifts.
By making these drifts evident, we expect software architects can improve the design and im-
plementation of ASs by taking into account these issues when creating new approaches and
frameworks, in order to improve architecture quality attributes.



Chapter 6
REMEDY: APPROACH FOR CONFORMANCE

CHECKING

In this chapter we present our steps towards an ACC approach called REMEDY. Our ap-

proach works with two kinds of abstractions: i) conventional architectural abstractions and

ii) ASs-specific ones. That is, besides conventional abstractions already used by other ap-

proaches (layers, components, modules, etc), it also delivers specific abstractions for better

addressing ASs-specific parts of the system, such as monitors, analyzers, planners and ex-

ecutors. Moreover, REMEDY enables software architects can map source-code elements

of the system to the abstract elements declared in the DSL and provides a mechanism for

comparing the Planned Architecture (PA) with the Current Architecture (CA) for showing

the found drifts.

6.1 An Adaptive Robotic System
In this section we present an adaptive robotic system that is used as an example across

the chapter to exemplify the application of Remedy. This system aims at monitoring indoor
environments following walls. It uses a light sensor for following the walls, trying to keep a
constant distance of them. The effort of the robot to keep a constant distance from walls is
controlled by a first control loop which makes adjustments in the percentage of turning the
wheels and in the velocity. Besides, there is a slower control loop over the first one which
analyze the adjustment parameters and change them to improve the performance of the robot.
The goal is to make the robot to move as straight as possible.

Figure 6.1 shows schematically the Planned Architecture for the system. All blocks/rect-
angles/packages (as the bigger as the smaller ones) represent instances of architectural abstrac-
tions available in our DSL. By the stereotypes it is possible to see the names of the abstractions
available in the DSL. In the upper part of the figure there is the Managing Subsystem, called
adaptationManager. In the lower part there is the Managed Subsystem, called Environment

Guard Robot. For simplicity reasons, the Managed part is not detailed, but usually this is much
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bigger than the Managing part. As can be seen, the Managing aggregates just one Loop Manger
loopManager. The abstractions ManagingSubSystem and ManagedSubsystem are “default” ab-
stractions, as they must be presented in any specification.

«ManagingSubsystem»
adaptationManager

«LoopManager»
loopManager

«Loop»
masterLoop

«Loop»
slaveLoop

«Monitor»
parameterMonitor

«Analyzer»
masterAnalyzer

«Planner»
masterPlanner

«Executor»
parameterExecutor

«Executor»
slaveExecutor

«Planner»
slavePlanner

«Analyzer»
slaveAnalyzer

«Monitor»
slaveMonitor

«ManagedSubsystem»
EnvironmentGuardRobot

«MeasuredOutput»
distance

«Sensor»
tachometer

«MeasuredOutput»
angularSpeed

«Effector»
wheels

servo-controller

«Sensor»
proximity

«Knowledge»
Knowledge«ReferenceInput»

rotationReference

«ReferenceInput»
proximityReference

«Alternative»
strategy_2

«Alternative»
strategy_1

+must-not-use

+must-not-use

+must-not-use

+must-not-use

+must-not-use

+must-not-use

+must-not-use

«Effector»
speed

+must-not-use

Model::Main

must-use UML Composition must-not-use UML Composition

Figure 6.1 – Adapted UML to represent the Robotic System

In this case, the LoopManager aggregates two Control Loops, masterLoop and slaveLoop.
Each one of the Control Loops was designed to have four abstractions; Monitor (parameter-

Monitor, slaveMonitor), Analyzer (masterAnalyzer, slaveAnalyzer) , Planner (masterPlanner,

slavePlanner) and Executor (parameterExecutor, slaveExecutor). In addition, slaveLoop also
contains a Knowledge abstraction called knowledge that is composed of two ReferenceInputs
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(proximityReference, rotationReference and two Alternatives (strategy_1, strategy_2), which
represent different strategies of adaptation.

The Managed is composed of two Sensors (proximity, tachometer), two effectors; wheels

and speed, two MeasuredOutput; (distance, angularSpeed) and a generic component called
servo-controller which is not detailed in the specification of the DSL.

There are two types of relations that can be identified in this figure. One type is represented
by the arrows among the elements - communication rules. The another type is represented
by the hierarchical compositions among them - structural relations. The last one occurs when
element/abstraction is within another one. Figure 6.1 shows 26 rules of type must-use, 8 rules of
type must-not-use and when a communication rule is not present it means that the relationship
is forbidden.

6.2 The REMEDY Approach
REMEDY approach involves four main steps A, B, C and D as can be seen in Figure 6.2.

The step A is when software architects create/specify the Planned Architecture (PA) using DSL-
REMEDY - this normally happens (but not always) at the early stages of life cycle. The spec-
ification process can be divided in three mutually-dependent substeps: i) Specify Structure
of Managing Elements - When software architects specify (Step A.1) the adaptive elements
that must exist in the system (monitor, analyzer, planner, executor, etc); ii) Specify Structure
of Managed Elements - when the core elements are specified (Step A.2) employing common
architectural abstractions (layers, components, modules, etc) and iii) Specify Communication
Rules (Step A.3).

Start

Specify Planned Architecture

Map Architectural
Elements

OCL
Constraints

Current
Architecture

End

Report

Planned
Architecture

Start

Specify Structure of
Managed Elements

End

Specify Structure of
Managing Elements

Specify
Communication Rules

Check Architecture
Conformance

Visualize
Architectures

End

A

B

C

D

1

3

2

Figure 6.2 – REMEDY approach

Step B aims at obtaining a representation of the Current Architecture (CA) of the system.
Here software architects must map the architectural elements declared in the specification (mon-
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itors, analyzers, layers, components, modules, etc.) to the source code elements (variables,
methods, etc.). This is the moment in which architects inform how the abstract elements are
materialized in the source code. Step C is automatic and it has the responsibility of identifying
the drifts by comparing the PA with the CA. Internally, both the PA and CA are represented
as KDM model instances (ULRICH; NEWCOMB, 2010). Finally, in Step D software archi-
tects can visualize graphically the PA, CA and the differences between them. REMEDY was
implemented as an eclipse plugin workbench which provides all user interfaces to support the
mentioned steps.

6.2.1 Specify the Planned Architecture
In this section we detail the substeps to specify a PA with our textual DSL. It is important

to highlight that all the subsets that must be performed by a software architect are done in the
same specification file. For a better comprehension we explain each substep in each subsection
below.

6.2.1.1 Specify the Structure of Managing Elements

In this substep software architects must start the elaboration of the planned architecture by
specifying the elements of the Managing Subsystem. Listing 6.1 shows the specification that
corresponds to the Managing Subsystem of Figure 6.1 that was performed with DLS-REMEDY.
The way the abstractions are composed follow a Java syntax/style which defines the structural
rules.� �

1 Architecture EnvironmentGuardRobot-PlannedArchitecture {

2 Managing adaptationManager {

3 LoopManager loopManager {

4
5 Loop masterLoop withDomainRules{

6 Monitor parameterMonitor;

7 Analyzer masterAnalyzer;

8 Planner masterPlanner;

9 Executor parameterExecutor;

10 }

11
12 Loop slaveLoop withDomainRules{

13 Monitor slaveMonitor;

14 Analyzer slaveAnalyzer;

15 Planner slavePlanner;

16 Executor slaveExecutor;

17 Knowledge knowledge {

18 ReferenceInput proximityReference;

19 ReferenceInput rotationReference;

20 Alternative strategy_1;

21 Alternative strategy_2;

22 ...

23 }� �
Listing 6.1 – Managing subsystem of the PA
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An abstraction can be composed of others or solely, then the nomenclature to specify it
follows:

[AS_Abstraction] [ID] [{..}]; | [AS_Abstraction] [ID];

Where [AS_Abstraction] is a MAPE-K abstraction and [ID] is a unique string that iden-
tifies the abstraction in the whole specification. Inside the brackets architects must specify the
abstractions that compound the abstraction of higher hierarchy. We intentionally implemented
the unique abstraction ID strategy to simplify the access to them at time of specifying commu-
nication rules.

In Line 1 one must inform a name that identifies this PA. In this example, there is just
one Managing subsystem (Line 2) and just one Loop Manager (line 3). A Loop Manager can
manage one or more Loops and in this case there are two of them specified in the PA (lines 5 and
12). Loops can holds several MAPE-K abstractions and the masterLoop, which is the Loop that
coordinates the slaveLoop, has four; a parameterMonitor, a masterAnalyzer, a masterPlanner

and a parameterExecutor (lines 6-9).
As the robot has constrained resources, this specification enables the decentralization of

Loops to a better scalability with respect to communication and computation. For instance, the
masterLoop could be deployed in a remote server and the slaveLoop in the robot. Thus, the
communication overhead is limited and the computational burden is spread over the two nodes
(WEYNS; IFTIKHAR; SÖDERLUND, 2013). The slaveLoop, is composed of 5 MAPE-K
abstractions. It adds a Knowledge called knowledge in line 17. This abstraction is composed
of four abstractions (lines 18-21); proximityReference, rotationReference, strategy_1 and strat-

egy_2. The first two are of type ReferenceInput and the second two are of type Alternative. The
proximityReference holds a value that indicates the distance between the robot and the wall. The
rotationReference holds a value that indicates the angular speed of wheels. Notice that Loops
are specified with the keyword withDomainRules (lines 5 and 12) to activate domain rules of
ASs which is explained in subsection 6.2.1.3.

6.2.1.2 Specify the Structure of Managed Elements

In this substep software architects must specify elements of the Managed subsystem (also
called system layer (GARLAN; CHENG, et al., 2004), managed resources (IBM, 2005), base-
level subsystem (WEYNS; MALEK; ANDERSSON, 2012), target system (HELLERSTEIN
et al., 2004)) that deals with the domain functionality. Managing subsystems have communica-
tion with the Managed subsystem by means of touchpoints which commonly are implemented
by sensors and effectors (IBM, 2005). DSL-REMEDY provides these abstractions to be spec-
ified in the Managed subsystem section. Also, it is possible to specify Measured Outputs that
corresponds to the measures in the Managed subsystem.

Listing 6.2 shows the specification of the Managed subsystem of the PA. Line 25 declares a
Managed subsystem which in this case is composed of two Sensors (proximity and tachometer),
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� �
23 Architecture EnvironmentGuardRobot-PlannedArchitecture {
24 ..
25 Managed environmentGuardRobot {
26 Sensor proximity;
27 Sensor tachometer;
28 Effector wheels;
29 Effector speed;
30 MeasuredOutput distance;
31 MeasuredOutput angularSpeed;
32 Component servo-controller;
33 }
34 }
35 ..� �

Listing 6.2 – Managed subsystem of the PA

lines 26− 27, two Effectors (wheels and speed)), lines 28− 29, two MeasuredOutput (distance

and angularSpeed) lines 30-31 and one generic component in line 32. At the writing of this
thesis is possible to specify generic abstractions such as subsystems, components and layers
with our DSL but implementations related to them such as code generators and validators we
leave them as part of a future work (see Section 9.4.1).

6.2.1.3 Specify Communication Rules

In DSL-REMEDY, we opt for having two types of coarse-grained communication rules:
must-use and must-not-use. Fine-grained access rules are not covered by our DSL because
types of dependencies among Adaptive System (AS) abstractions is limited and the majority of
abstractions are not compoundable in major abstractions. Therefore in order to avoid language
verbosity we do not include keywords that control accesses in a fine-grained level.

The must-use access means that an abstraction A must use an abstraction B. The dependency
type can be a callable method, objects creation, implementation of interfaces, class hierarchy,
exceptions, imports, casting, assignments, value initializer and type bindings. The must-not-use

means that an abstraction A must not access an abstraction B.

Table 6.1 presents all the rules allowed by the DSL that can be written by software architects.
Abstractions of each column must or must not use abstractions of each row. Notice that they can
be connected if they belong to the same level of abstraction. The only exceptions are Monitor
to Sensor, Executor to Effector, Analyzer to ReferenceInput, Analyzer to Alternative, Planner
to Alternative and Sensor to MeasuredOutput.

REMEDY implements twenty domain rules that can be activated or deactivated by software
architects with the aids of a workbench. These rules were obtained by means of the analysis
of the MAPE-K reference model. For instance, planners must not use monitors and vice-versa.
Table 6.2 presents the complete set of domain rules where⟶ represents the must-use accesses
and º represents the must-not-use accesses. When an AS does not conform its domain rules
we will refer to this concept as domain drift.

As we state before, the keyword withDomainRules must be declared in Loops to enable
domain rules. Thus, the rules will affect all abstractions that match with a specific rule. For
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Table 6.1 – The access rules allowed by the DSL

Monitor Analyzer Planner Executor Knowledge
º º º º Monitor

⟶ º º º Analyzer
º ⟶ º º Planner
º º ⟶ º Executor
⟶ ⟶ ⟶ ⟶ Knowledge

Table 6.2 – Domain rules of ASs

instance, if a Loop has two monitors and the rule Monitor º Planner is activated then a
constraint for each monitor will be generated to be checked in the CA. Listing 6.3 shows an
example of a Loop with domain rules enabled for its four abstractions.� �

1 Loop masterLoop withDomainRules{

2 Monitor parameterMonitor;

3 Analyzer masterAnalyzer;

4 Planner masterPlanner;

5 Executor parameterExecutor;

6 }� �
Listing 6.3 – Example of a Loop with domain rules activated

Listing 6.4 shows the communication rules of Figure 6.1. Lines 41 and 42 enable the com-
munication between masterLoop, slaveLoop and vice-versa. The DSL automatically checks
whether there are rules that connect both abstractions or not. If it detects the absence of rules
connecting them then one or more errors will raise at design time and PA will not generate its
output. On the other hand, if software architects specify that a Loop must not use another one
then all rules that connects both abstractions will not take into account in the generated output
of the PA. Also, it is possible to interconnect LoopManagers which follow the same rules as
Loops.

Lines 43 − 47 specify all rules related with Monitors and their accesses. Lines 48 − 53
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� �
40 Rules{
41 loop masterLoop must-use loop slaveLoop;
42 loop slaveLoop must-use loop masterLoop;
43 monitor parameterMonitor must-use monitor slaveMonitor;
44 monitor slaveMonitor must-use monitor parameterMonitor;
45 monitor slaveMonitor must-use sensor proximity;
46 monitor parameterMonitor must-not-use sensor proximity;
47 monitor slaveMonitor must-use sensor tachometer;
48 analyzer masterAnalyzer must-use analyzer slaveAnalyzer;
49 analyzer slaveAnalyzer must-use analyzer masterAnalyzer;
50 analyzer slaveAnalyzer must-use reference-input proximityReference;
51 analyzer slaveAnalyzer must-use reference-input rotationReference;
52 analyzer masterAnalyzer must-not-use reference-input proximityReference;
53 analyzer masterAnalyzer must-not-use reference-input rotationReference;
54 planner masterPlanner must-use planner slavePlanner;
55 planner slavePlanner must-use planner masterPlanner;
56 planner slavePlanner must-use alternative strategy_1;
57 planner slavePlanner must-use alternative strategy_2;
58 planner masterPlanner must-not-use alternative strategy_1;
59 planner masterPlanner must-not-use alternative strategy_2;
60 executor parameterExecutor must-use executor slaveExecutor;
61 executor slaveExecutor must-use executor parameterExecutor;
62 executor slaveExecutor must-use effector wheels;
63 executor slaveExecutor must-use effector speed;
64 executor parameterExecutor must-not-use effector wheels;
65 executor parameterExecutor must-not-use effector speed;
66 sensor proximity must-use measured-output distance;
67 sensor tachometer must-use measured-output angularSpeed;
68 effector wheels must-use Servo-Controller;
69 effector speed must-use Servo-Controller;
70 }� �

Listing 6.4 – Communication rules of the PA

specify all rules related with Analyzers and their accesses. Lines 54 − 59 specify all rules
related with Planners and their accesses. Lines 60 − 65 specify all rules related with Executors
and their accesses and finally lines 66− 69 specify all rules related with Sensors, Effectors and
their accesses.

6.2.1.4 DSL-REMEDY Validators

Despite the DSL-REMEDY can load domain rules they are not mandatory if a software
architect writes a custom rule that violates a specific domain rule. Thus it is important the
implementation of custom validators to check additional constraints in the DSL which cannot
be done at parsing time. DSL-REMEDY implements three types of validators. The first one
checks that abstractions do not access themselves. For instance, the rule monitor monitor_1

must-use monitor monitor_1 is forbidden. Listing 6.5 shows an example of this validator where
line 1 checks the monitor is not null, line 2 checks if a monitor is accessing itself and line 3
raise the error in the corresponding line where the rule was specified in the DSL. The same
implementation is valid for the other abstractions so we do not include them in the document.� �
1 if (dslRuleMonitor.monitor2 !== null)

2 if (dslRuleMonitor.monitor == dslRuleMonitor.monitor2)

3 error("Check a monitor does not have dependency with itself",

↪ SasDslPackage.eINSTANCE.DSLRuleMonitor_Monitor2 , DUPLICATE_MONITOR_ACCESS)� �
Listing 6.5 – Checking if an abstraction depend on itself
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The second one checks that rules can not be duplicated. Listing 6.6 shows an example of
this validator and in order to implement it, a Hash data structure is created for each abstraction
to disallow duplicate communication rules. Line 1 implements a for loop that iterates over the
elements of the Hash structure. In line 3, if there are duplicates then line 5 raise errors in the
corresponding lines where of duplicated rules.� �
1 for (entry:multiMapRuleMonitor2Monitor.asMap.entrySet) {

2 val duplicates = entry.value

3 if (duplicates.size > 1){

4 for (d:duplicates)

5 error("Duplicated rule",d, SasDslPackage.eINSTANCE.DSLRuleMonitor_Monitor2 ,

↪ DUPLICATE_RULES)

6 }

7 }� �
Listing 6.6 – Checking if a communication rule is duplicated

The third one checks if communicating rules are violating domain constraints. Listing 6.7
shows an example of this kind of validator that checks if a monitor must use a planner. Line
1 get the domain rule written in the DSL and line 5 verifies if the domain rule is deactivated
through the computational support. If the rule is presented but deactivated then a warning is
raised.� �
1 var dslDomain = dslRuleMonitor.monitor.eContainer.eContents.filter(DSLDomainRule).toList

2 if (!dslDomain.isEmpty) {

3 val queryClass = new QueryClass(MainView.getDatabaseUrl())

4 val rule = queryClass.ruleIsActive("Monitor","Planner");

5 if (Boolean.valueOf(rule.get(1)))

6 if (dslRuleMonitor.planner !== null && dslRuleMonitor.access.equals("must-use"))

7 warning("The rule is violating the domain rule number " + rule.get(0),

↪ SasDslPackage.eINSTANCE.DSLRuleMonitor_Planner)

8 }� �
Listing 6.7 – Checking if a rule is violating a domain rule

6.2.1.5 Outputs of DSL-REMEDY

In this subsection we detailed the two outputs of DSL-REMEDY: The AS planned architec-
ture and an OCL file generated automatically by taking into account the description language.
The AS planned architecture is an instance of the KDM metamodel. This instance can repre-
sent several viewpoints of a system and its main characteristic is that the model is language
and platform independent which makes REMEDY capable of identifying architectural drifts in
architectures that were implemented in several programming languages. In order to generate
the KDM model we use an existing tool called MoDisco that provides APIs for manipulating
some model generators called discoverers in Java (BRUNELIÈRE et al., 2014).

The KDM generated by MoDisco includes two models: one for representing the source-
code of the system and the other one for representing the inventory (physical resources of the
system such as system files). Thus, REMEDY implements several algorithms for creating the
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Structure Model (Architectural viewpoint of the system) in the KDM instance previously gen-
erated by MoDisco.

The Structure Model is created according to the mappings performed by software architects
which is composed of the abstractions and their relationships. One of the major challenge in
terms of implementation was to generate the relationships among the AS abstractions automat-
ically. These relationships are represented by the AggregatedRelationship metaclass of KDM
and takes into account the relationships among source-code elements (OMG, 2016, pp. 30–33).

Listing 6.8 shows a brief example of a structure model with AggregatedRelationShip. In this
case the architecture is composed by two abstractions; parameterMonitor (line 2) and master-

Analyzer (line 12. The first one access the second one by means of an aggregatedRelationship

(line 7). parameterMonitor is implemented by one code element, method C() (line 3). On the
other hand, masterAnalyzer is implemented by two code elements, methods A() and B() (line
13).� �

1 <model name="EnvironmentGuardRobot -PlannedArchitecture"

↪ xsi:type="structure:StructureModel">

2 <structureElement name="parameterMonitor" xsi:type="structure:Component"

3 implementation="//path/to/codeElement/C()"

4 outAggregated="//path/to/aggregated"

5 inAggregated=""

6 stereotype="/0/@extension.0/@stereotype.1">

7 <aggregated from="//path/to/parameterMonitor" to="//path/to/masterAnalyzer"

8 relation="Call Call

9 density="2"

10 />

11 </structureElement >

12 <structureElement name="masterAnalyzer" xsi:type="structure:Component"

13 implementation="//path/to/codeElement/A() //path/to/codeElement/B()"

14 outAggregated=""

15 inAggregated="//path/to/outAggregated"

16 stereotype="/0/@extension.0/@stereotype.0"

17 />

18 </model>� �
Listing 6.8 – Example of an AggregatedRelationship

Also, parameterMonitor is indicating an outgoing relationship (line 4) that references its
aggregated relationship (line 7). This relationship describes the from and to, the type of the re-
lation which, in this case, are two method calls (C()⟶ A() and B()⟶ A()) and the density
of the relationship (number of relationships between two abstractions). Finally, masterAnalyzer

must declare a reference for the incoming relationship (line 15) to validate the relationship.
Notice that both abstractions of Listing 6.8 have stereotypes in order to extend the KDM meta-
model by means of a lightweight mechanism extension . Figure 6.3 shows all the stereotypes
defined in the PA and the CA to support AS abstractions. These stereotypes help us to perform
the ACC without depending on the syntactic specification of the architectural elements.

Listing 6.9 shows a brief snippet of the OCL file generated from the PA of Listings 6.1, 6.2
and 6.4 but with domain rules activated for loop_2. DSL-REMEDY was built with the specifi-
cation of a grammar written in EBNF (extended backus-naur form) (see A.1) and implemented
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Figure 6.3 – KDM lightweight extension to support AS abstractions

� �
1 package structure
2 -- Check the existence of AS abstractions --
3 context StructureModel
4 inv exist_parameterMonitor: Component.allInstances()->exists(c|

↪ c.name='parameterMonitor' and c.stereotype ->asSequence()->first().name = 'Monitor')
5 -- Check structural rules of AS --
6 context StructureModel
7 inv composite_parameterMonitor: Component.allInstances()->select(c|

↪ c.name='parameterMonitor' and c.stereotype ->asSequence()->first().name =
↪ 'Monitor')->
↪ exists(d|d.oclContainer().oclAsType(Component).name='masterLoop' and
↪ d.oclContainer().oclAsType(Component).stereotype ->asSequence()->first().name =
↪ 'Loop')

8 -- Check communication rules of AS --
9 context StructureModel
10 inv not_access_parameterMonitor_proximity: not

↪ AggregatedRelationship.allInstances()->exists(c| c.from.name='parameterMonitor'
↪ and c.to.name='proximity')

11 -- Domain rules --
12 context StructureModel
13 inv domain_not_access_slaveMonitor_slavePlanner: not

↪ AggregatedRelationship.allInstances()->exists(c| c.from.name='slaveMonitor' and
↪ c.to.name='slavePlanner')

14 endpackage� �
Listing 6.9 – Snippet of OCL constraints file

in Xtext which allowed us to generate the constraints from the PA. Due to space restrictions, it
shows one rule per section because the whole file has more than 400 LoC.

Notice that the OCL file is composed of four sections. The first one verifies the existence of
the declared abstractions. The second one verifies the structural rules. The third one verifies the
communication rules and the fourth one verifies domain rules that were activated by software
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� �
1 package br.ufscar.advanse.adapters;
2 import java.util.concurrent.ThreadLocalRandom;
3 public final class BluetoothAdapter{
4 String address;
5 public void getScanMode(){int min =0; ..}
6 ...
7 }� �

Listing 6.10 – Snippet of source code of an AS

architects.

The first rule (lines 3 − 4), verifies the existence of the Monitor parameterMonitor. It
checks if exist an element with name parameterMonitor and if the stereotype corresponds to
a Monitor. The second rule (lines 6 − 8), verifies the composition of parameterMonitor in
loop_1. It checks if parameterMonitor is contained in loop_1. The third rule (lines 10 − 11),
verifies the forbidden access from parameterMonitor to proximity. It will check that there is
no AggregatedRelationship between parameterMonitor and proximity. The fourth rule (lines
13 − 14), verifies the domain rule Monitor º Planner.

6.2.2 Mapping Architectural Elements to Source Code
The mapping of the architectural elements, declared in the DSL (monitors, analyzers, etc), to

source code must be performed by a software architect who has the knowledge for recognizing
them. Figure 6.4 shows the user interface provided by REMEDY to perform the mapping. It
reflects code elements of the currently open class file such as package name, class name, fields
class, methods and variables. In this case, it is reflecting the content of Listing 6.10.

Figure 6.4 – Computational support for mapping abstractions

The fist column shows the code element, the second column the name of the code ele-
ment and third column the mapping. Notice that the types of code element are highlighted
with different colors for a better understanding. Also, the variables of a method (gray color)
are represented just below of the method where they belong. For instance, variables min and
randomNum belong to the method getScanMode. Thus, software architects should map code
elements with the abstraction that implements the AS architecture by picking them in the com-
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bobox. All mappings are stored in a embedded database, ready to be processed when software
architects need to apply the mappings in the CA. Figure 6.5 shows the relational data model to
store the information about architectural elements, code elements and their mappings.

abstraction_type

«column»
 PK id: INTEGER
 type: TEXT

«PK»
+ PK_abstraction_type(INTEGER)

abstractions

«column»
 PK id: INTEGER
 annotation: TEXT
 FK abstraction_type: INTEGER

«PK»
+ PK_abstractions(INTEGER)

«FK»
+ FK_abstractions_abstraction_type(INTEGER)

class_annotation

«column»
 project_name: TEXT
 package_name: TEXT
 name: TEXT
 file: TEXT
 annotation: TEXT
 belongs: TEXT

domain_rules

«column»
 abstraction1: TEXT
 access_type: TEXT
 abstraction2: TEXT
 switch: TEXT

field_annotation

«column»
 project_name: TEXT
 class_name: TEXT
 field_name: TEXT
 file: TEXT
 annotation: TEXT
 belongs: TEXT

generic_abstractions

«column»
 PK id: INTEGER
 annotation: TEXT
 FK abstraction_type: INTEGER

«PK»
+ PK_generic_abstractions(INTEGER)

«FK»
+ FK_generic_abstractions_abstraction_type(INTEGER)

generic_instances

«column»
 FK abstraction_id: INTEGER
 annotation: TEXT

«FK»
+ FK_generic_instances_generic_abstractions(INTEGER)

instances

«column»
 FK abstraction_id: INTEGER
 annotation: TEXT

«FK»
+ FK_instances_abstractions(INTEGER)

interface_annotation

«column»
 project_name: TEXT
 package_name: TEXT
 name: TEXT
 file: TEXT
 annotation: TEXT
 belongs: TEXT

method_annotation

«column»
 project_name: TEXT
 class_name: TEXT
 method_name: TEXT
 file: TEXT
 annotation: TEXT
 belongs: TEXT

package_annotation

«column»
 project_name: TEXT
 name: TEXT
 file: TEXT
 annotation: TEXT
 belongs: TEXT

variable_annotation

«column»
 project_name: TEXT
 class_name: TEXT
 method_name: TEXT
 variable_name: NUMERIC
 file: TEXT
 annotation: TEXT
 belongs: TEXT

+FK_abstractions_abstraction_type
+PK_abstraction_type

+FK_generic_abstractions_abstraction_type
+PK_abstraction_type

+FK_instances_abstractions
+PK_abstractions

+FK_generic_instances_generic_abstractions
+PK_generic_abstractions

Figure 6.5 – Relational data model for mappings

The abstraction_type table stores information about the type of abstractions that handles
REMEDY (AS domain and generic abstractions). Generic abstractions and their instances (ele-
ments) are stored in generic_abstracions and generic_instances respectively while AS abstrac-
tions and their instances are stored in abstractions and instances tables. The domain_rules table
stores the predefined domain rules of REMEDY. The package_annotation, class_annotation,
interface_annotation , method_annotation, field_annotation, variable_annotation tables store
the mappings according to the source-code element type.

In our example, it was mapped the package of the class with environmentGuardRobot, the
class with proximity and the variable min with proximityReference. The abstraction names
shown in the comboboxes of the Abstraction column are taken from the PA. Algorithm 6.11
shows, in a high-level of abstraction, the logic to create the Structure Model in the KDM of the
CA.

In Line 2, the method createStructureElementFromTree() creates the Structure Model into
the KDM with the AS elements that were mapped previously. The architectural representa-
tion follows the same hierarchy as was implemented in source code. For instance, if a class
and a field belonging to the same class were mapped with a Knowledge and a ReferenceInput

respectively then our algorithm will create a component of type Knowledge and inside of it a



98 Chapter 6. REMEDY: Approach for Conformance Checking

Algorithm 6.11 Algorithm for creating structure package of CA
Input: KDM CA (kdmResource)
Output: KDM CA with an instance of the Structure Model

1: for all packageMappings, classMappings,methodMappings, f ieldMappings, variableMappings do
2: kdmResource← createStructureElementFromTree()
3: kdmResource← createImplementations()
4: kdmResource← createRelationShips()
5: end for
6: return kdmResource

ReferenceInput component. To do so, we use the information stored in the embedded database
and BaseX1, a xquery engine to manage xml based files.

Listing A.2 shows the method with details. In Line 3 the method createImplementations()
adds all source code elements that contributes to the implementation of an architectural element.
For instance, it is possible to map two classes with the same abstraction and in that case both will
implement the mapped abstraction. To do so, we use Query/View/Transformation operational

(QVT-o), to perform the changes in the KDM CA. Listing A.3 shows the transformation file
with details.

In Line 4 the method createRelationShips() adds the relationships among AS elements.
REMEDY is capable of identifying 13 types of relationships and as we explained before, they
are created in the relation attribute of the aggregated metaclass. Thus, for every package, class,
method, field and variable mapped to an AS element the method identifies the relationships and
add them to a component or subsystem according to the case. Listing A.4 shows the transfor-
mation file with details.

6.2.3 Checking Architecture Conformance
In this step, REMEDY performs the ACC. From the user’s point of view, this step begins

when a software architect press a button. Thus internal mechanisms of the workbench executes
several algorithms in order to the OCL constraints be applied in the CA. Algorithm 6.12 shows
the checking process in a high level of abstraction.

Line 1 initializes the Pivot OCL engine that evaluates constraints in MOF (Meta-Object
Facility) models. Line 2 creates an interface to use the OCL engine. Line 3 gets the KDM
instance and store it in memory. Line 4 gets the OCL constraints and store them in memory.
Line 5 creates a HashMap to store the constraints in order to invoke them by key. Lines 6 − 14
gets all objects of Constraint type and put them in the HashMap.

Line 15 gets the structure model of the KDM instance. Line 16 iterates over all constraints
of the HashMap. Line 17 evaluates each constraint against the structure model of the KDM
instance. This is a boolean value that returns false whether the constraint is not satisfied in the
CA and true otherwise. Lines 18− 27 verifies the type of constraint that was checked for stored

1 https://basex.org/
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Algorithm 6.12 Algorithm for checking architectural constraints
Input: KDM CA, OCL constraintFile

1: initOCL()
2: ocl← OCL.newInstance
3: kdmResource← resourceSet.getResource(CA)
4: oclResource← ocl.parse(constraintFile)
5: constraintMap← HashMap < String,ExpressionInOCL >
6: for all object ∈ oclResource do
7: if object instanceof Constraint then
8: constraint← object as Constraint
9: expression← ocl.getSpeci f ication(constraint)

10: if expression not null then
11: constraintMap.put(expression.name, expression)
12: end if
13: end if
14: end for
15: structureModel← kdmResource.getStructure()
16: for all object ∈ constraintMap do
17: check ← ocl.evaluate(structureModel, object)
18: if object.key == “exist” then
19: database.insertExistence(check, object)
20: else if object.key == “composite” then
21: database.insertComposite(check, object)
22: else if object.key == “access” then
23: database.insertAccess(check, object)
24: else if object.key == “domain” then
25: database.insertDomain(check, object)
26: end if
27: end for

them in specific tables of the embedded database. The output of the checking algorithm is a
set of identified drifts (existence of the abstractions, structural rules, communication rules and
domain rules) that is stored in a embedded database of our workbench. Listing A.5 shows the
implementation with more details.

Figure 6.6 shows the relational data model to store the architectural drifts identified by
REMEDY which is composed of 11 tables.

access

«column»
 project_name: TEXT
 abstraction1: TEXT
 abstraction2: TEXT
 result: INTEGER

access_rules

«column»
 project_name: TEXT
 _key: TEXT
 rule: TEXT
 result: INTEGER
 id: INTEGER

architectural_anomaly

«column»
 id: INTEGER
 anomaly_type: TEXT
 name: TEXT
 description: TEXT
 constraint_type: TEXT
 _from: TEXT
 _to: TEXT

composite

«column»
 project_name: TEXT
 abstraction: TEXT
 result: INTEGER

composite_rules

«column»
 project_name: TEXT
 _key: TEXT
 rule: TEXT
 result: INTEGER
 id: INTEGER

domain

«column»
 project_name: TEXT
 abstraction1: TEXT
 abstraction2: TEXT
 result: INTEGER

domain_rules

«column»
 project_name: TEXT
 _key: TEXT
 rule: TEXT
 result: INTEGER
 id: INTEGER

drifts

«column»
 project_name: TEXT
 component: INTEGER
 subsystem: INTEGER
 association: INTEGER
 domain: INTEGER

existence

«column»
 project_name: TEXT
 abstraction: TEXT
 result: INTEGER

existence_rules

«column»
 project_name: TEXT
 _key: TEXT
 rule: TEXT
 result: INTEGER
 id: INTEGER

mapping

«column»
 id: INTEGER
 _key: TEXT

Figure 6.6 – Relational data model for architectural drifts
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Tables with prefix access_* store rules of type must-use/must-not-use and the result of ap-
plying them. Similarly, tables with prefix composite_* store rules related to abstractions com-
position, tables with prefix existence_* store rules related to the existence of the abstraction
and tables with prefix domain_* store domain rules and the corresponding result after applying
them in the CA. The drifts, architectural_anomaly and mapping tables are used to consolidate
data which aid in a report generation.

6.2.4 Architecture Visualizations
The visualization of architectures is an alternative step where software architects can visu-

alize graphically the PA, CA and the differences between both. This is possible due to model
transformations that is performed over the KDM instances and the result is used by a third party
tool called PlantUML 2 to visualize the architectures. The visualization of drifts is possible due
to another third party tool called Eclipse EMF Compare 3 which compares the PA and the CA
(as UML Package diagrams), compute differences and as a result a new model is created. This
model passes through the same process of transformation to be visualized graphically.

6.2.4.1 Model Transformation

The transformation from KDM to UML takes into account just the structure model of KDM.
The model is transformed into a UML Package Diagram. Listing 6.13 shows the main parts of
the QVT-o transformation file that takes as an input a KDM instance and return as a result
a UML instance. Line 4 and Line 8 (mapping Model2Model()) transform Subsystems and
Components of the Structure Package of KDM into UML Packages. In our case the Structure
Package is composed only of subsystems and components. Subsystems (the Managing and
Managed abstractions) can only be composed of Components (others AS abstractions) and a
Component can only be composed of Components.

Thus, in line 13 (mapping kdmSubsystem2UmlPackage()) the code transform components
that belong to a subsystem into UML Packages and it calls the mapping kdmSubsystem2UmlPa-

ckage() to recursively, if is the case, transform the composition of components into UML pack-
ages. Similarly, in line 21 it is done the same procedure if a Component is present in the
high-level of hierarchy of the model. As in our representation only components have rela-
tionships with other components it is necessary to implement a mapping that transforms the
AggregatedRelationship instances into UML Dependencies.

Line 27 shows the mapping to transform the relationships of Structure Package of KDM into
UML. In UML a dependency is composed by a client - supplier relationship so attribute from is
mapped to attribute client and attribute to is mapped to attribute supplier. Notice that we uses
the special keyword late in order to obtain a valid reference of the object to be transformed. A
2 https://plantuml.com/
3 https://www.eclipse.org/emf/compare/
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UML profile also is created to maintain a reference to the type of AS abstraction in the UML
Package.

Once the UML model is created, it is transformed again by using a specific API called
structurizr 4 to convert the UML model into a DSL for being interpreted by PlantUML.� �

1 mapping StructureModel :: Model2Model():Model when {self.name = modelName}{

2 name :="UML Package Diagram";

3 self.structureElement -> select(c | c.oclIsKindOf(Subsystem))[Subsystem] ->

↪ forEach(p){

4 result.nestedPackage += p->map kdmSubsystem2UmlPackage();

5 };

6
7 self.structureElement -> select(c | c.oclIsKindOf(Component))[Component] ->

↪ forEach(p){

8 result.nestedPackage += p->map kdmComponent2UmlPackage();

9 }

10 }

11 mapping Subsystem:: kdmSubsystem2UmlPackage(): uml::Package {

12 name := self.name;

13 nestedPackage += self.structureElement -> select(c |

↪ c.oclIsKindOf(Component))[Component] -> map kdmComponent2UmlPackage();

14 self -> any(c| c.aggregated ->notEmpty()) -> aggregated -> forEach(t) {

15
16 result.packagedElement += t-> map aggregated2dependency();

17 };

18 }

19 mapping Component:: kdmComponent2UmlPackage(): uml::Package {

20 name := self.name;

21 nestedPackage += self.structureElement -> select(c |

↪ c.oclIsKindOf(Component))[Component] -> map kdmComponent2UmlPackage();

22 self -> any(c| c.aggregated ->notEmpty()) -> aggregated -> forEach(t){

23
24 result.packagedElement += t-> map aggregated2dependency();

25 };

26 }

27 mapping AggregatedRelationship::aggregated2dependency():uml::Dependency {

28 client := self._from.late resolve(uml::Package);

29 supplier := self.to.late resolve(uml::Package);

30
31 }� �

Listing 6.13 – A QVT-o model transformation: from KDM to UML

The complete source code to transform from UML to Structurizr is available in Listing A.6.
The DSL generated is interpreted by PlantUML which is a textual notation to construct UML
diagrams. Listing A.7 shows the PlantUML code of PA of the Robotic System presented in
Figure 6.1.

6.3 Compute Differences Between the PA and CA
The computation of differences between the PA and CA is performed by a third-party plugin

called EMF Compare. This plugin allows to recognize elements of a EMF model that were
4 https://structurizr.com/
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deleted, added, changed or moved when it is compared with another EMF model. In our case
we identify architectural elements that are not presented in the PA when it is compared with the
CA. Algorithm 6.14 shows the comparison of the PA and CA by means of the UML Package
representation. Line 1 initialize the plugin. In line 2 the scope of comparisons is determined and
in our case the comparisons always begin from the root nodes of both models. Line 3 computes
the comparisons. Line 4 gets the differences between both models. Line 5 iterates over the
differences. If the difference is an AS element (line 6) and it is marked as “DELETE” then the
element is added into a list (line 8).

Algorithm 6.14 Algorithm for comparing the PA and CA
Input: UML Package PA (resourceSet1), UML Package CA (resourceSet2), PlantUML PA File (file)

1: initEMFCompare()
2: scope← rangeO f Comparison(resourceSet1, resourceSet2)
3: comparison← compare(scope)
4: di f f erences← comparison.getDi f f erences()
5: for all di f f erence ∈ di f f erences do
6: if di f f erence is an ASElement then
7: if di f f erence is marked as DELETE then
8: listDeletedASElement← di f f erence
9: end if

10: else if di f f erence is a Dependency then
11: if di f f erence is marked as DELETE and di f f erence is marked as ADD then
12: do nothing
13: else if di f f erence is marked as DELETE then
14: listDependency← di f f erence
15: end if
16: end if
17: end for
18: for all ASElement ∈ listDeletedASElement do
19: change the color of the AS element in file to gray
20: end for
21: for all Dependency ∈ listDependency do
22: change the color of the dependency in file to red
23: end for

if the difference is a Dependency (line 10) and it is marked as “DELETE” and “ADD”,
nothing is done because it means that the element was preserved in the CA. Otherwise if the
difference is just marked as “DELETE” then it means that this element does not appear in the
CA and therefore is added into a list (line 14).

Finally, all elements that belong to the list listDeletedASElement are searched in the Plan-
tUML PA file to change their color to gray (line 19). Similarly, all elements that belong to the
list istDependency are searched in the PlantUML PA file to change their color to red (line 22).

6.4 Quality of the Checking Process
In this section, we present and discuss results on applying the approach proposed in this

thesis in two systems. The main goal is to demonstrate the applicability of our approach in
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development contexts through an analysis of the accuracy of architectural drifts identification.

6.4.1 Definition of the Evaluation
Goal: The goal is to evaluate the effectiveness of the REMEDY in detecting architectural drifts
of ASs. Therefore, we are interested in the effectiveness of the Step C of our approach, detailed
in Section 6.2.3, where OCL constraints are applied in the CA in order to detect the drifts. As
REMEDY is a solution for detecting ASs drifts, we are interested in evaluating three points: i)
the detection of violations of structural rules; ii) detection of violations of communication rules
and iii) the detection of violations of domain rules.

Object of Study: The algorithms of REMEDY that perform the checking process.

Perspective: The perspective is from the point of view of software architects and researchers
i.e. they would like to know if REMEDY is capable of detecting architectural drifts of ASs.

Quality Focus: The main effect studied in the evaluation is the accuracy of REMEDY in de-
tecting the drifts. The focus is on Precision and Recall as follow:

Precision =
TP

TP + FP , Recall =
TP

TP + FN

Where TP (True Positives) are the number of drifts correctly identifies and FP, (False Posi-
tives) the number of drifts incorrectly identifies and f alseNegatives (False Negatives) are drifts
which were not identified but should have been. Thus precision is the fraction of relevant drifts
among the retrieved drifts while recall is the fraction of the total amount of relevant drifts that
were actually retrieved.

6.4.2 Planning
In this study, we focus on the accuracy of ACC support provided by REMEDY, which we

scoped in three main questions:

RQ1 : Assuming that the PA and CA specifications are correct, does REMEDY achieve high
levels of accuracy when detecting architectural drifts regarding to structural rules ?

RQ2 : Assuming that the PA and CA specifications are correct, does REMEDY achieve high
levels of accuracy when detecting architectural drifts regarding to communication rules?

RQ3 : Assuming that the PA and CA specifications are correct, does REMEDY achieve achieve
high levels of accuracy when detecting architectural drifts regarding to domain rules?
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Therefore, to answer the three questions we collected the drifts detected by REMEDY. The
focus is to verify if the checking algorithm is able to identify drifts among the AS abstractions
(MAPE-K) abstractions and lower-level AS abstractions).

6.4.2.1 Context Selection

To check the accuracy of our approach we have used two ASs: The first one is UNDERSEA
(GERASIMOU et al., 2017), a simulated UUV (unmanned underwater vehicles) exemplar built
on top of the open-source middleware MOOS-IvP2, a widely used platform for the implemen-
tation of autonomous applications on UUVs.

UNDERSEA was designed and implemented following MAPE-K and comprises a simu-
lated managed system (UUV) and its controller. It has four adaptation scenarios that the con-
troller must handle by adjusting: a) the UUV speed and b) the sensor configuration (on/off).
Figure 6.7 shows the architecture of UNDERSEA.

Figure 6.7 – High-level UNDERSEA architecture (From (GERASIMOU et al., 2017))

The UUV controller runs a MAPE loop, selects the desired vehicle speed and sensors con-
figuration, and communicates its decision to the managed UUV system through Effectors. The
managed UUV receives this decision through the UUV middleware and enforces the MOOS-
IvP5 to adapt the behavior of the UUV system by realizing the new configuration on sensors.
UNDERSEA has 3078 LoC which can be considered a small size project so it was possible to
map all abstractions in a short period of time.

The second one is TAS (WEYNS; CALINESCU, 2015), a reference implementation of
a Tele Assistance System (TAS) that provides health support to chronic condition sufferers
within the comfort of their homes. TAS uses a combination of sensors embedded in a wear-
able device and remote services from healthcare, pharmacy and emergency service providers
(WEYNS; CALINESCU, 2015). Figure 6.8 shows the TAS architecture with abstractions that
enables the adaptation mechanism. As it can be seen, the platform offers probes that monitor
5 An open source middleware for engineering autonomous applications on unmanned marine vehicles https:

//tinyurl.com/ya9n4mtv

https://tinyurl.com/ya9n4mtv
https://tinyurl.com/ya9n4mtv
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the service-based systems (SBSs), e.g., the WorkflowProbe monitors the start and completion
of the workflow executions and individual service invocations. Also, ReSeP offers effectors that
enbale runtime manipulation of the SBS architecture and parameters. An adaptation engine can
use these probes and effectors to track SBS behavior and adapt the SBS dynamically. Table 6.3
shows information on the size of both systems.

Figure 6.8 – Tele Assistance Service Based System

Undersea TAS
LOC 3,104 36,071
Packages 12 31
Components 44 103

Table 6.3 – Target systems used in the evaluation

6.4.3 Operation

6.4.3.1 Preparation

Undersea System
Listing 6.15 shows the PA used to identify the architectural drifts in the CA of UNDER-

SEA. The specification is composed of two subsystems, the Managing and Managed subsys-
tems (lines 2 and 14), one control loop (line 3), the canonical abstractions (lines 4-8), two
Reference Input (lines 9 − 10) that represents the value of the UUV speed and the number of
sensor configuration.

The Managed subsystem is composed of a Sensor (line 15), an Effector (line 16), two Mea-
sured Outputs (lines 17 − 18 and four communication rules (lines 20 − 23) were specified in
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section Rules. Notice that the keyword withDomainRules is declared in the loop so this assure
that the twenty domain rules are enabled to generate OCL rules that will be checked in the CA.

Table 6.4 shows the oracle of UNDERSEA which is composed of two columns: Relation-
ships and Type. The first one is the relationship that we discovered in the CA and the second
one is the type of the relationships; a convergence (C), a divergence (D) or an absence (A). We
found 29 relationships where 24 of them are absences compared to the PA and 5 of them are
convergences.

� �
1 Architecture Undersea {

2 Managing managing_1 {

3 Loop loop_1 withDomainRules{

4 Monitor monitor_1;

5 Analyzer analyzer_1;

6 Planner planner_1;

7 Executor executor_1;

8 Knowledge knowledge_1 {

9 ReferenceInput rinput_1;

10 ReferenceInput rinput_2;

11 }

12 }

13 }

14 Managed managed_1 {

15 Sensor sensor_1;

16 Effector effector_1;

17 MeasuredOutput moutput_1;

18 MeasuredOutput moutput_2;

19 }

20 }

21 Rules{
22 monitor monitor_1 must-use sensor sensor_1;

23 analyzer analyzer_1 must-use reference-input rinput_1;

24 analyzer analyzer_1 must-use reference-input rinput_2;

25 sensor sensor_1 must-use measured-output moutput_1;

26 sensor sensor_1 must-use measured-output moutput_2;

27 executor executor_1 must-use effector effector_1;

28 }� �
Listing 6.15 – PA of UNDERSEA

TAS System
Listing 6.16 shows the PA uses to identify the architectural drifts in the CA of TAS. The

specification is composed of two subsystems, the Managing and Managed subsystems (lines 2
and 14), one control loop (line 3), the canonical abstractions (lines 4-7), a Reference Input (line
8) that represents the value of the maximum response time of a service and an Alternative (line
9) that corresponds to a set of adaptation alternatives to replace a failed service. Notice that in
this case we do not specify a Planner abstraction because according to our source-code analysis
it was not considered as part of the implementation.

The Managed subsystem is composed of a Sensor (line 14), an Effector (line 15), a Mea-
sured Outputs (lines 16 and five communication rules (lines 20 − 24) were specified in section
Rules. In the same way as we done for UNDERSEA, the keyword withDomainRules is declared
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Relationships Type
[1] monitor monitor_1 use monitor monitor_1; A
[2] analyzer analyzer_1 use analyzer analyzer_1; A
[3] planner planner_1 use planner planner_1; A
[4] executor executor_1 use executor executor_1; A
[5] monitor monitor_1 use knowledge knowledge_1; C
[6] analyzer analyzer_1 use knowledge knowledge_1; C
[7] planner planner_1 use knowledge knowledge_1; C
[8] executor executor_1 use knowledge knowledge_1; C
[9] loop loop_1 use monitor monitor_1; A
[10] loop loop_1 use analyzer analyzer_1; A
[11] loop loop_1 use planner planner_1; A
[12] loop loop_1 use executor executor_1; A
[13] loop loop_1 use sensor sensor_1; A
[14] loop loop_1 use effector effector_1; A
[15] knowledge knowledge_1 use sensor sensor_1; A
[16] planner planner_1 use reference-input rinput_1; A
[17] effector effector_1 use executor executor_1; A
[18] planner planner_1 use reference-input rinput_2; A
[19] loop loop_1 use knowledge knowledge_1; A
[20] loop loop_1 use measured-output moutput_2; A
[21] sensor sensor_1 use measured-output moutput_2; C
[22] analyzer analyzer_1 use measured-output moutput_2; A
[23] analyzer analyzer_1 use sensor sensor_1; A
[24] planner planner_1 use reference-input rinput_2; A
[25] knowledge knowledge_1 use knowledge knowledge_1; A
[26] knowledge knowledge_1 use sensor sensor_1; A
[27] sensor sensor_1 use knowledge knowledge_1; A
[28] planner planner_1 use measured-output measured-output_1; A
[29] effector effector_1 use sensor sensor_1; A

Table 6.4 – Oracle for UNDERSEA

in the loop to assure that the twenty domain rules are enabled to generate the OCL rules that
will be checked in the CA.

Table 6.5 shows the oracle of TAS which is similar in structure to the oracle of UNDER-
SEA. We found 19 relationships where 15 of them are absences compared to the PA and 2 of
them are convergences and 2 of them are divergences. In this system the Managing subsystem
abstraction was mapped to a class called MyAdaptationEngine which realizes the monitoring
and effectoring, however the analyzer is not composing the Managing but we found it imple-
mented by the method invokeServiceOperation in the CompositeService class that was mapped
as the Managed subsystem.

� �
1 Architecture TasArchitecture {

2 Managing managing_1 {

3 Loop loop_1 withDomainRules{

4 Monitor monitor_1;
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5 Analyzer analyzer_1;

6 Executor executor_1;

7 Knowledge knowledge_1 {

8 ReferenceInput rinput_1;

9 Alternative alternative_1;

10 }

11 }

12 }

13 Managed managed_1 {

14 Sensor sensor_1;

15 Effector effector_1;

16 MeasuredOutput moutput_1;

17 }

18 }

19 Rules{
20 monitor monitor_1 must-use sensor sensor_1;

21 analyzer analyzer_1 must-use reference-input rinput_1;

22 sensor sensor_1 must-use measured-output moutput_1;

23 executor executor_1 must-use effector effector_1;

24 analyzer analyzer_1 must-use alternative alternative_1;

25 }� �
Listing 6.16 – PA of TAS

Relationships Type
[1] monitor monitor_1 use managing_1 managing_1; A
[2] managing managing_1 use monitor monitor_1; A
[3] alternative alternative_1 use executor executor_1; A
[4] executor executor_1 use effector effector_1; C
[5] executor executor_1 use managed managed_1; A
[6] effector effector_1 use managed managed_1; A
[7] managed managed_1 use analyzer analyzer_1; A
[8] managed managed_1 use measured-output moutput_1; A
[9] analyzer analyzer_1 use measured-output moutput_1; A
[10] analyzer analyzer_1 use analyzer analyzer_1; A
[11] analyzer analyzer_1 use reference-input rinput_1; C
[12] managed managed_1 use managed managed_1; A
[13] managed managed_1 use knowledge knowledge_1; A
[14] managed managed_1 use monitor monitor_1; A
[15] managed managed_1 use reference-input rinput_1; A
[16] managed managed_1 use reference-input rinput_1; A
[17] analyzer analyzer_1 use alternative alternative_1; D
[18] managing managing_1 use effector effector_1; A
[19] analyzer analyzer_1 use knowledge knowledge_1; D

Table 6.5 – Oracle for TAS

6.4.3.2 Execution & Data Validation

Undersea System



6.4. Quality of the Checking Process 109

The execution consisted of performing the domain drift detection. Figure 6.9 shows the
REMEDY Dashboard with all the statistics after the checking process. REMEDY found 18 vi-
olations; 2 related to abstraction presence, 8 related to composite rules, 5 related to access rules
and 3 related to domain rules. Notice that there are 23 unchecked relations or absences (relations
that exist in current but not in planned), but our oracle contains 24 absences relationships.

After a close look we realized that the relationship number 27 of our oracle was not gener-
ated by REMEDY. The cause of this missing was a lack of information on the KDM instance of
the CA because although the Sensor class in the parseReply method, makes a static call to the
Knowledge class, the Modisco plugin did not generate properly the method call. Nevertheless,
as in our PA we do not specify an access rule from sensor to knowledge, the relationship is not
considered in the calculation of the metrics.

Figure 6.9 – Architecture Conformance Checking on UNDERSEA

TAS System
Figure 6.10 shows the REMEDY Dashboard with all the statistics after the checking process.
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REMEDY found 15 violations; 2 related to abstraction presence, 8 related to composite rules,
1 related to access rules and 4 related to domain rules. Herein REMEDY found 15 absences.

In this case, REMEDY failed in identifying correctly two rules of our oracle; rule 17 and
rule 19. Similarly to the previous system, there is a lack of information in the generated KDM
CA. Particularly the problem occurs due to MoDisco cannot represent the relationship Has-

Value correctly. HasValue is a specific meta-model element that represents semantic relation
between a data element and its initialization element, which can be a data element or an action
element (OMG, 2016). Thus for rules 17 and 19 the elements that implement the architectural
abstractions are being communicated with this type of relationship but the KDM instance fail
to provide the destination of the relationship. We also report this problem in Landi, Santibanez,
Santos, Cunha, Durelli, and Camargo (2022).

Figure 6.10 – Architecture Conformance Checking on TAS
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6.4.4 Analysis

The goal here is to determine if REMEDY is able to identify structural, communication
and domain rules with high accuracy. Thus we calculate the precision and recall metrics to
our conformance checking process for UNDERSEA and TAS systems. Table 6.6 and Table
6.7 show these two metrics and as it can be seen for both systems, the precision and recall
reached 100% for structural rules. Regarding to communicatoin and domain rules, the values
are slightly different but with good values.

Precisionstructural =
26
26 = 1⟶ 100% Recall =

26
26 = 1⟶ 100%

Precisioncommunication =
6
6 = 1⟶ 100% Recall =

6
6 = 1⟶ 100%

Precisiondomain =
20
20 = 1⟶ 100% Recall =

20
20 = 1⟶ 100%

Table 6.6 – Precision and Recall for UNDERSEA

Precisionstructural =
20
20 = 1⟶ 100% Recall =

20
20 = 1⟶ 100%

Precisioncommunication =
2
2 = 1⟶ 100% Recall =

2
3 = 0.66⟶ 67%

Precisiondomain =
19
19

= 1⟶ 100% Recall =
19
20 = 0.95⟶ 95%

Table 6.7 – Precision and Recall for TAS

Therefore, the answer to RQ1, RQ2 and RQ3 is that REMEDY achieve high levels of
accuracy in the detection of architectural drifts of AS when the information of the KDM CA is
correct and complete. Also, it is important that the domain expert can map accurately the AS
abstractions in source-code in order to REMEDY creates the KDM CA with trusted information
to checked by the OCL rules from the PA. We are aware that more examples will be needed to
identify other possible flaws on the completeness of the KDM generated by MoDisco plugin.

6.4.5 Threats of Validity

We must state at least three threats of the reported evaluation. First, even though we rely on a
simulation but representative system of SEAMS community, we cannot claim that our approach
will provide equivalent accuracy rates in other ASs, as it usually happens in empirical studies
of software engineering which can be classified as an external validity. Second, we relied on
the PA and CA were correctly specified but in order to minimize any bias a deep analysis were
performed on these artifacts by the authors. As typical in human-based classifications, our
results might be affected by some degree of subjectivity also known as construct validity.
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6.5 Chapter Summary
We have presented REMEDY, an ACC approach whose focus is to identify drifts in Adaptive

Systems. As our approach involves a domain-specific part, software architects do not need to
create rules for checking dependencies stated by the MAPE-K reference model, just inform
which of them need to be checked. Although generic ACC approaches have the advantage of
being applied in a vast set of systems, there some points in favor of domain-dependent ACC
approaches:

• When working with specific domains, during the Mapping step, generic approaches ask
architects to map the generic elements declared in the PA (like components) to more
specific ones (like monitors). This is not so straightforward because there are a smaller
number of generic components than the number of specific ones;

• Besides, domain-specific elements have pre-defined behavior that is lost when this map-
ping is done;

• ACC domain-independent used for specifying the PA is not able to incorporate domain-
specific rules, forcing architects to write rules which are very common and canonical of
the domain. This waste of time could be avoided;

• Considering that the architects know the ASs domain, they can be much more precise
using a language which delivers the canonical abstractions of the domain, as they already
know the behavior of them.

Regarding when and how to use REMEDY, there are some considerations. i): The DSL
can be used at the early stages of development for creating the PA of a new system. In this
case, the PA guide the development process but, only when there are some source code avail-
able, the ACC process could be performed; ii) The checking process can also be conducted for
existing systems whose PA was not previously specified with our DSL. However, in this case,
the PA specification must be created and, many times, the problem is to recuperate/remember
the architectural decisions established in the beginning of the development. But, if documents
are describing the PA or experience architects, this is quite straightforward; iii) The frequency
of the checking process can vary. Once the PA specification and Mapping are done, it can
be triggered for every commit or a monthly checking process according to software architects
need.



Chapter 7
TOOLING SUPPORT: REMEDY

In this chapter we provide an overall description of a prototype workbench called REMEDY.

Its source code is available in GitHub1 and it has been developed for more than four years.

We also provide a detail of each one of its components. Section 7.1 presents the using of the

REMEDY through its user interfaces from the software architect’s point of view. Section 7.2

presents the architecture of REMEDY.

7.1 Remedy Workbench
In this section we present the user interfaces of REMEDY that support software architects

in performing the ACC process which is depicted in detail in Chapter 6. Recalling our process,
it is conformed by three main steps. In the first step software architects specify structural and
communication rules of the architecture of an Adaptive System (AS) by means of a textual
DSL. In the second step software architects map source code elements to architectural elements
of ASs and finally in the third step the conformance checking is performed to find architectural
drifts.

Figure 7.1 shows the Eclipse Platform with some projects available in the Project Explorer
part. The ACC process starts by selecting a project and opening a pop-up menu by clicking on
the menu called “REMEDY: Architectural Checking for Adaptive Concepts”. This will change
the Eclipse perspective to enable all the tools the software architect needs to perform the ACC
process. Also, the project explorer is updated with some artifacts that are necessary to aid in
the ACC and later in this section we discuss them.

We exemplify REMEDY by means of an AS called PhoneAdapter (SAMA et al., 2010).
It characterizes itself as “adaptive system” because it uses context information to adapt the
mobile phone profile. Phone profile is a configuration that determine the phone’s behavior. This
configuration may involve the display intensity, ring tone volume, vibration mode, Bluetooth
discovery and others. Due to its adaptability capacity, the application automatically changes

1 https://github.com/dsanmartins/REMEDY/tree/developing
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between profiles based on rules previously set. The selected profile prevails until a more suitable
one is activated through other rules.

Figure 7.1 – Pop-up menu to setup the ACC process

In order to proceed with the ACC, it is necessary to have the specification of the Planned
Architecture (PA). Therefore, if this specification already exists, the checking process can move
on. If it does not exist, one must firstly create it. To make easier the process of creating/elaborat-
ing the planned architecture, REMEDY provides an exemplar of the file called architecture.sas

that can be modified according to the needs of the software architect. The editor we have devel-
oped for specifying the PA provides all functionalities expected by an editor such as copy and
paste, automatic indentation and code auto-completion.

Figure 7.2 shows an hypothetical PA for PhoneAdapter that is used through this section for
exemplification purposes. As it can be seen, this PA is composed of structural rules, commu-
nication rules and domain rules. Structural Rules belong to the content of Architecture section,
Communication Rules belong to the content of Rules section and Domain Rules are enabled
by the special keyword withDomainRules. Once the architectural specification is completed
the software architect can proceed to recover the Current Architecture (CA) by mapping AS
elements to source code elements.

Notice that our PA specifies twelve architectural elements of AS. For each element, our
DSL will create an ocl rule to check the existence of the element and the composition of it if
correspond. Thus, regarding to structural rules DSL-REMEDY will create twelve ocl rules of
existence and ten ocl rules of composition (the managing and the managed abstractions are not
composable in a major abstraction). Regarding to communication rules, for each one of them
DSL-REMEDY will create an ocl rule which includes rules specified by the software architect
and domain rules. In our example there are twenty seven communication rules where seven are
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specified in the PA and twenty come from the domain rules. As the rule “monitor_1 must-use

analyzer analyzer_1;” was specified but also domain rules were enabled, REMEDY will
remove the duplicated rule. Therefore, the PA will create a total quantity of forty eight ocl rules
to be checked in a CA.

Figure 7.2 – Specify the planned architecture through the editor

Figure 7.3 shows the main window of REMEDY which is composed of three tabs: Code
to Abstraction Mapping, the Dashboard and Domain Rules. Particularly, Figure 7.3 is showing
the first one where software architects map the architectural abstractions declared in the DSL to
souce code elements of the system under analysis. REMEDY provides two types of architectural
elements; generic types (components, layers, modules) and AS types (domain abstractions) that
can be accessed by clicking on the radio button according to the preferences. These elements
are taken from the specification of the PA to fill comboboxes of the column Abstraction in the
grid.

In order to perform the mappings software architects must open each class file of the eclipse
project, thus the content of the class such as package name, class name, fields, methods and
variables will appear on the grid where each element is corresponding to one row. Once the
mapping is completed, software architects must press the “Apply Mappings” button to recovery
the CA. For instance, as can be seen the min variable was mapped to the architectural element
reference_1 that is a Reference Input abstraction.

At this point, the software architect has created the PA and the CA so the next step is the
execution of the conformance checking. Figure 7.4 depicts the dashboard of REMEDY that is
conformed by nine sections: Architecture Visualizations, Statistics, Architectural Drifts (Ab-
straction Presence, Composite/Structural Rules, Access/Communication Rules, Domain Rules),
Architectural Rules Ignored Architectural Rules and two pie charts (Valid Rules and All Rules).
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Figure 7.3 – Mapping architectural elements to code elements

Figure 7.4 – Dashboard of REMEDY

The execution of the ACC begins when the button Check Drifts is pressed (top left of dash-
board). The information does not take a long time in appear but it depends of the quantity of
rules to be checked. In our example, from the total quantity of forty eight ocl rules, twenty
five were considered valid rules and twenty three were ignored because there are architectural
elements that were not found in the CA (see Abstraction Presence grid in the dashboard). From
valid rules, effectively checked by REMEDY (25), 15 of them are violated in the CA: (7 ab-
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straction presence, 5 composition rules, 1 access rule and 2 domain rules).

Although rules of the Ignored Architectural Rules grid can be interpreted as violated rules,
the intention of this separation is to visualize what are the valid rules that were effectively
checked. Also, it has technical implications because as these rules are not validated by REM-
EDY, REMEDY is not overloaded with rules that beforehand are known as violated. The
Unchecked statistic means the quantity of abstractions and relations that are presented in the
CA but not in the PA. For instance, in our example all abstractions of the CA were defined in
the PA, that is why the number is zero. On the other hand, there are three relations that exist
in CA but not in PA. Pie Charts provide a graphical view of the information already shown in
Statistic section.

All grids that show drifts have two columns; column Rule shows the rule that have been
checked and column Drift Name shows a name that identify the drift and should be assigned
manually by the software architect. Rows in red color indicate that these rules does not passed
the checking while rules in green rows passed the checking. For instance, in the Abstraction
Presence grid, effector_1 does not passed the checking (it was not found in the CA) so it could
indicate the presence of Mixed Executors and Effectors drift.

Although the keyword withDomainRules enables the generator of domain rules, it only oc-
curs at DSL level. Software architects must specify which domain rules should be generated by
the DSL by means of a UI support. Figure 7.5 shows the domain rules interface which is a grid
that contains five columns.

Figure 7.5 – Domain rules interface



118 Chapter 7. Tooling Support: REMEDY

The first column holds the ID of the rule, the second and fourth columns holds the canonical
abstractions of MAPE-K (monitor, analyzer, planner, executor and knowledge) where the sec-
ond represents the caller (from) and the fourth the callee (to). The third column holds the type
of access (must-use or must-not-use) and the fifth column holds a switch to enable or disable
the rule.

In our example, the twenty domain rules were enabled but just six of them were checked
by REMEDY because, as several abstractions do not exist in the CA, they are ignored. From
that universe, two domain rules not passed the checking while four passed. Regarding to the
pie charts Valid Rules shows the percentages of violated rules and passed rules while All Rules

shows the percentages of violated, passed and ignored rules.

Software architects also have the possibility of viewing graphically the PA, CA and the
difference between both by clicking the radio buttons of the Architecture Visualization section
in the dashboard. Figure 7.6a shows the PA according to the specification shown in Figure 7.2.
The access rules that were specified are the following:

[1] monitor monitor_1 must-use analyzer analyzer_1; (*)

[2] analyzer analyzer_1 must-use planner planner_1;

[3] planner planner_1 must-use executor executor_1;

[4] analyzer analyzer_1 must-use reference-input reference_1;

[5] monitor monitor_1 must-use sensor sensor_1;

[6] executor executor_1 must-use effector effector_1;

[7] sensor sensor_1 must-use measured-output measured_1;

Regarding to the twenty domain rules created by REMEDY, it just checked the following
rules:

[8] knowledge knowledge_1 must-not-use analyzer analyzer_1;

[9] analyzer analyzer_1 must-use knowledge knowledge_1;

[10] monitor monitor_1 must-use knowledge knowledge_1;

[11] knowledge knowledge_1 must-not-use monitor monitor_1;

[12] monitor monitor_1 must-use analyzer analyzer_1; (*)

[13] analyzer analyzer_1 must-not-use monitor monitor_1;

As we stated before, there is one rule duplicated marked with an (*) on the rules above. In
this case just the domain rule is considered while the other one is disregarded. Figure 7.6b shows
the CA that was created after performing the mappings. REMEDY recovers automatically the
architectural relationships by identifying the relationships among source code elements mapped
to AS abstractions. In our example, REMEDY created five architectural relationships for the
CA and are the following:
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(a) Planned architecture

(b) Current architecture

(c) Differences between the PA and the CA

Figure 7.6 – The planned and current architectures and the differences
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[A] monitor monitor_1 use analyzer analyzer_1;

[B] knowledge knowledge_1 use analyzer analyzer_1;

[C] knowledge knowledge_1 use sensor sensor_1;

[D] monitor monitor_1 use knowledge knowledge_1;

[E] monitor monitor_1 use sensor sensor_1;

Figure 7.6c shows the difference between the PA and the CA which is computed by taking
as a reference the PA so that is the reason Figure 7.6c shows the PA but with different colors.
The comparison between both models is performed by a third-party tool after applied model
transformations as we explained in Section 6.2.4. In this case, rule [12] (PA) has its equivalent
to rule [A] (CA), rule [5] (PA) has its equivalent to rule [E], rule [10](PA) has its equivalent
to rule [D] (CA) and rules [11](PA), [13](PA) also are in conformance with the (CA), so all of
them passed the conformance checking. Rules [4], [8] and [9] have not an equivalent in the
CA so they did not pass the checking. Rules [2], [3], [6] and [7] were ignored because the
architectural elements of the CA do not exist in PA so they appear in the Ignored Architectural
Rules grid.

7.1.1 Artifacts Generated by REMEDY
In this subsection we detail the artifacts generated by REMEDY to support the ACC process.

Thus, Figure 7.7 shows the folders and files produced by REMEDY that are generated on each
step of the process.

(a) Artifacts of planned architecture (b) Artifacts of current architecture

Figure 7.7 – Artifacts of REMEDY

Figure 7.7a depicts several files that support the specification of a PA. As we state before,
REMEDY provides a template to guide software architects in the specification of a PA named
as architecture.sas. Once the specification is complete, two files are generated from the spec-
ification; Constraint.ocl and PlannedArchitecture.xmi. The first one contains all rules to be
checked in the CA and the second one is a Knowledge Discovery Metamodel (KDM) instance
that represents the PA. Files named as plannedArchitecture.uml and ComponentDiagram.txt are
created after the execution of the visualization of the PA. The first one is the result of model



7.2. Architecture of REMEDY 121

transformation from KDM to UML and the second one is the result of transformation from the
UML model to a plantUML file.

Figure 7.7b depicts the folder and files that support the visualization of the CA. After per-
forming the mappings, a KDM instance with the architectural representation of the AS is gen-
erated in the root of the eclipse project. When the software architect needs to visualize the CA
and the drifts, the KDM CA is transformed into a UML file named as currentArchitecture.uml.
The transformation uses two files to this purpose AdaptiveSystemProfile.uml and mapping.txt

that adds profile information to the currentArchitecture.uml file. ComponentDiagram.txt is the
result of the transformation from the UML file to a plantUML file. Also, differences.txt is a
plantUML file that shows graphically the drifts found by REMEDY.

7.2 Architecture of REMEDY
Figure 7.8 gives an overview of the REMEDY workbench. It is composed of seven plugins

with dependencies implemented in OSGi to be deployed in the eclipse framework.

br.ufscar.sa s.m2m
br.ufscar.sa s.reporting br.ufscar.sa s.mappingbr.ufscar.sa s.conformance br.ufscar.sa s.ca

br.ufscar.sa s.xtext.sa sds l

br.ufscar.sa s.view

MainViewParser

SasDslGenerator

SasDslScopeProvider

SasDslValidator

StructureGenerator

KDMCreator

CheckConstraint

DatabaseOperation

KDM2UML

UML2PlantUML

ModelDiff

DatabaseOperation

DatabaseModel

Reporting

EmbeddedDatabase Dependency Plugin

Figure 7.8 – Overview of the REMEDY workbench

First of all, when software architects need to specify the PA, the plugin br.ufscar.sas.xtext.sasdsl

is activated to deliver a set of functionalities for that purpose such as a text editor, validators and
generators. Component SasDslValidator validates the specification as we described in previous
chapter. Component SasDslScopeProvider enables local and global scoping of our language
such as cross-reference resolution. Component SasDslGenerator generates two artifacts, the
OCL file which contains the architectural rules to be applied in the CA and a KDM instance to
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represent the architectural model. The architectural elements specified by the software architect
are stored in an embedded database through the br.ufscar.sas.conformance plugin.

Once the specification of the PA is completed, the architect needs to generate the CA with
the mappings that relate architectural elements with source-code elements. The mappings are
performed by means of a UI implemented in SWT (Standard Widget Toolkit) and activated by
the MainView component. To process the mappings, firstly the KDMCreator component creates
the KDM CA from source code by using MoDisco plugin. The StructureGenerator component
implements the methods for creating the Structure Package of KDM, based on the mappings.
It uses a combination of a Xquery engine and qvt-o transformations to specify the architectural
elements and their relationships.

The visualization of the PA and CA is performed by the KDM2UML, UML2PlantUML and
ModelDiff components. The first one transforms a Structure Package into a UML Package. The
second one transforms the UML Package into a PlantUML file and the third one computes the
difference between both models (CA and PA) to show graphically the architectural drifts. The
ACC process is performed by the CheckConstraint component and Reporting component is in
charge of creating a word document with the information of the process.

DatabaseOperation and DatabaseModel are components to handle the connection and sql
queries with the embedded database. In the same way, DatabaseOperation from br.ufscar.sas.-

conformance plugin handles the connection and sql queries related to CheckConstraint compo-
nent, that involves domain rules and DSL validations.

7.3 Chapter Summary
In this chapter, we described a prototype workbench that has been created as part of our

research in order to help software architects with the architecture conformance checking process
for adaptive systems. That is possible due to the workbench implements concepts of adaptive
system domain based on the MAPE-K reference model.

The workbench, which as the the process described in Chapter 6 is also called REMEDY,
is composed of four different views: the specification of the PA, the mapping of code elements
with AS abstractions, domain rules and a dashboard. The specification of the PA is based on
Xtext, a framework for development of programming languages and domain-specific languages.
This PA is written in a file called architecture.sas which generates the KDM PA and OCL
constraints, as we describe in Section 6.2.1.5.

The mapping of code elements with AS abstractions is a grid with comboboxes preloaded
with AS abstractions already specified in the PA. It generates the KDM CA with an instance of
the Structure Package of the KDM metamodel. To do so, it uses two technologies, XQuery and
qvt-o both of them to handle xmi resources to perform operations over it such as queries and
model transformation. Domain rules is a grid that shows 20 predefined rules where software
architects can activate/deactivate the rules according to their needs. This grid works together
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with our DSL by using a special keyword (withDomainRules) in the specification of the PA to
enable the generation of the domain rules automatically without the need of specify them in the
rules section of the DSL.

Finally, the dashboard enables the ACC and shows the results of it in two ways; textually
by showing quantitatively the statistics and the rules passed or violated according to the color,
graphically by means of pie charts.





Chapter 8
EVALUATION

In this chapter we present a controlled experiment that aims at evaluating empirically

whether software engineers improve their productivity when they specify planned archi-

tectures of the adaptive part of an Adaptive System (AS) by means of a domain-specific

approach (DSL-REMEDY) against to a generic approach (DCL-KDM).

8.1 Controlled Experiment
In this section we present a controlled experiment for the empirical evaluation of DSL-

REMEDY, the DSL that aids software architects to specify Planned Architectures (PAs) of ASs,
against a generic ACC approach. The goal is to provide experimental evidence that the use of
a domain-specific approach improves software architects productivity by reducing the efforts
at time to specify the adaptive architecture. We follow the experiment process suggested by
Wohlin et al. (2012) that includes the following steps: scoping, setting, planning, analysis/dis-
cussion and threats of validity.

8.1.1 Scoping
One of the claimed benefits of using domain-specific ACC approaches is the improvement

of productivity because some structural and communication rules from the domain are already
known and do not need to be specified by the architects (VELASCO et al., 2018). Nevertheless,
at best of our knowledge, no controlled experiments have been conducted that provide evidence
of improved productivity when software architects use domain-specific ACC approaches, par-
ticularly in the research area of ASs.

Hence, the contribution of this section is to present a controlled experiment that compares
two different approaches/tools for ACC. The first is DCL-KDM (S. LANDI et al., 2017) a
generic ACC approach and the second is DSL-REMEDY, a domain-specific ACC approach for
ASs. The goal of our experiment is put in the following statement:
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Analyze the architecture specification of ASs with ACC tools †
for the purpose of evaluating two different tools
with respect to their productivity
from the point of view of researchers
in the context of final-year undergraduate students in computer engineering.
† We are referring to the adaptive part of an AS.

In this context, productivity relates to cost in time, quantity of errors and work effort required
to specify the architecture of the adaptive part of an AS. The experiment was carried out in the
context of a PhD study, involving students of the Computer Engineering Bachelor program in a
prestigious university in Chile.

8.1.2 Setting
The experiment was performed in one week at the end of the second semester of 2020. The

subjects of the experiment were 24 final-year undergraduate students that had been taken soft-
ware engineering, domain-specific language and software architecture courses. The experiment
consisted of three activities with four hours of work each day:

1. A training session was given covering the theoretical topics of AS, software architecture
and DSLs and a more practical topic teaching REMEDY and DCL-KDM. Also, they filled a
form that was used to profile the students for dividing them in two groups of 12 students each
one. Some of the questions asked to them were about programming skills, industry experience
and if they attended some courses of the bachelor’s program related with the experiment;

2. A pilot experiment was conducted to familiarize with the artifacts used in the real exper-
iment. Students signed a consent letter and the two groups perform two architectural spec-
ification of ASs by using REMEDY and DCL-KDM. With the provided information by the
pilot, we analyzed if the given time to complete the activity was optimal, if students understood
experiment instructions and if the tools were used correctly.

3. The experiment was then conducted with the same format as the pilot but different AS
architecture specifications.

REMEDY can be downloaded from this repository https://tinyurl.com/y34jyeut

while DCL-KDM from this one 10.5281/zenodo.5136838.

8.1.3 Planning
Subsequently, we discuss experiment design, hypotheses, and independent and dependent

variables.

8.1.3.1 Experimental Design

Table 8.1 presents the experiment design. Students were separated in two balanced groups
according to their profile and each group performed two different assignments for specifying

https://tinyurl.com/y34jyeut
10.5281/zenodo.5136838
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ASs. Both assignments are hypothetical, specified in UML notation, but they had the same level
of difficulty and were designed by taking into account well known patterns of AS (WEYNS;
IFTIKHAR; SÖDERLUND, 2013). Thus it involved the creation of AS abstractions and their
communication rules.

Group First Task Second Task
G1 S-I (DCL-KDM) S-II (REMEDY)
G2 S-II (REMEDY) S-I (DCL-KDM)

Table 8.1 – Experiment design

In the first task, Group 1 specified S-I by using DCL-KDM and Group 2 specified S-II by
using REMEDY. In the second task, Group 1 specified S-II by using REMEDY and Group 1
specified S-I by using DCL-KDM. The artifacts used in the controlled experiment such as forms
and architectural specifications are shown in Appendix B.4.

8.1.3.2 Hypotheses Formulation

The research goal of this experiment is to compare the use of DCL-KDM and REMEDY
regarding productivity in terms of time to complete an AS specification and the number of errors
made by subjects. Also, we want to know if there are differences of perception of effort when
subjects perform architectural specifications with both tools. Therefore, the research goal can
be refined in 3 sub-goals that map to a set of hypotheses. In particular, each sub-goal maps to a
null hypothesis to be tested, and an alternative hypothesis in favor and to be accepted if the null
hypothesis is rejected. We formulate 3 null hypotheses (H0) and three alternative hypotheses
(Hα):

• H01: There is no difference in time to complete an architectural specification of AS by
using DCL-KDM or REMEDY.

H01 ∶µtimeDCL−KDM = µtimeREMEDY (8.1)

Hα1 ∶µtimeDCL−KDM > µtimeREMEDY (8.2)

• H02: There is no difference on errors when specifying the architecture of an AS with
DCL-KDM or REMEDY.

H02 ∶µerrorsDCL−KDM = µerrorsREMEDY (8.3)

Hα2 ∶µerrorsDCL−KDM > µerrorsREMEDY (8.4)

• H03: There is no difference on effort when specifying the architecture of an AS with
DCL-KDM or REMEDY.

H03 ∶µe f f ortDCL−KDM = µe f f ortREMEDY (8.5)

Hα3 ∶µe f f ortDCL−KDM > µe f f ortREMEDY (8.6)
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8.1.3.3 Independent and Dependent Variables

Each hypothesis requires the definition of a set of independent and dependent variables, and
a selection of proper metrics to measure the dependent variables.

• Independent Variables: Independent variables are variables in the experiment that can be
manipulated and controlled. In our experiment, there are two independent variables:
- Techniques: The treatment used by a subject to solve an assignment. This variable is the
factor of the experiment that is changed to observe the effect on the dependent variables. The
two possible values of this factor are DCL-KDM and REMEDY;
- Specifications: The problem to be solved by the subject (specifications S-I and S-II). Since
the specifications have similar numbers of abstractions, the specification is not considered as a
factor but as a fixed variable.

•Dependent Variables: Dependent variables are variables that we want to study to see the effect
of different treatments. For each hypothesis, we defined the corresponding dependent variables:
- Time: The time in minutes to complete an architectural specification of AS;
- Errors: Number of errors found after finish the architectural specification;
- Effort: Likert-type scale from 1 to 4 that denotes the perception of effort of subjects, where 1
means easy to use and 4 very difficult.

8.1.4 Analysis & Discussion

8.1.4.1 Analysis

In total, 24 subjects provided usable data for paired comparison of time in minutes, number
of errors and effort. Table 8.2 depicts the mean and standard deviation for the factor Tool on
Time on Error and on Effort. The values show that there is a difference between the means but
to know if they are sufficiently different we applied an analysis of variance test.

Time Error Effort
Tool mean sd mean sd mean sd

DCL-KDM 64.75 18.43024 4.791 3.106 2.83 0.637
REMEDY 45.75 16.67920 1.291 1.122 1.70 0.624

Table 8.2 – Mean and Sd of Time, Error and Effort

As we have 1 factor with 2 levels within-subjects (repeated measures), we applied the paired
sample t-test. Also, in order to mitigate carryover effects which introduces biases in the results
we used a full counterbalancing strategy, as is depicted in Table 8.1. After applying a t-test
on Orders, we got a p-value of 0.9174 that suggests our results do not have an order effect
where order itself could cause differences of performance. The Shapiro-Wilk normality test
of residuals for subjects and subjects tools were 0.1119 and 0.06314 respectively indicating
normality. Indeed, Figure 8.1 shows graphically by means of Q-Q plots that the data is normally
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distributed. Figure 8.2 - (a) shows the boxplot of time per tools and it seems there is differences
on average when subjects performed with different tools. The t-test paired samples Time on
Tools gave us a p-value of 0.00088 that means there is a significant difference between both
approaches.

−2 −1 0 1 2

−
40

−
30

−
20

−
10

0
10

20

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

(a) Residuals on subjects

−2 −1 0 1 2

−
20

0
20

40

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

(b) Residuals on subjects/tool

Figure 8.1 – Q-Q plots
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Figure 8.2 – Boxplots for all measurements

Errors are a count response and often do not satisfy the assumption of normality for anovas.
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In our case the error data for DCL-KDM fits on a Poisson distribution with a p-value of
6.890398e−06 by using the goodness–of–fit tests. On the other hand, errors of REMEDY did
not fit so we chose to apply a non-parametric analysis, the wilcoxon signed-rank test. Figure
8.2 - (b) shows the boxplot of errors per tools and again it seems there is differences on average
when subjects performed with different tools. Thus the p-value after applying wilcoxon signed-
rank test was 5.722e−6 that means there is significant differences on Errors by using DCL-KDM
or REMEDY.

Effort is an ordinal likert-scale response from 1 to 4 and this psychometric scale rarely
satisfies the conditions for anova so we used again the non-parametric analysis wilcoxon signed-
rank test. The p-value was 9.537e−7 which indicates that there is differences on Effort when
subjects use DCL-KDM or REMEDY. Table 8.2 shows the mean and standard deviation for the
factor Tool on Effort. On average, the perception of subjects is that DCL-KDM is more difficult
to use than REMEDY for specifying the architecture of ASs.

Therefore, based on the statistical analysis every null hypothesis (H0) is rejected with a
significance level (α) of 0.05.

8.1.4.2 Discussion

The descriptive analysis shows that there is a clear improvement for the dependent variables
when subjects use REMEDY compared to DCL-KDM. This is confirmed by the statistical tests.
On average, time is about 30% lower with REMEDY compared to DCL-KDM. Closer examina-
tion of the specifications performed with REMEDY reveals that subjects made use of predefined
domain-specific rules support when needed so this could explain the saving time. Also, subjects
that performed the specifications with DCL-KDM wrote some abstractions with different types.
The solutions with both tools can be obtained in the following url 10.5281/zenodo.5136838.

For instance, DCL-KDM allows three types of abstractions; subsystem, layer and compo-
nent, where subsystem and layer can be composed of subsystems, layers and components. Thus
the choice decision among component, layer and subsystem for an AS abstraction could affect
the productivity at time to do the specification.

With regard to errors, Figure 8.3 shows a bar chart with the number of errors made by sub-
jects. When subjects used DCL-KDM the total number of errors was 115, where 46 correspond
to structural rules (SR) and 69 to communication rules (CR). On the other hand, when subjects
used REMEDY the total number of errors was 31 and all of them correspond to communication
rules.

The main characteristic of DCL-KDM is the capability of specifying compound abstractions
deeply. For instance, a subsystem can hold layers that in turn can hold other subsystems and
layers that in turn can hold components. On the other hand, the composition of abstractions in
REMEDY is well-known due to AS domain restrictions. Therefore in copy paste operations or
when the specification contains several lines of code that makes difficult to read and understand
it, subjects are more likely to make mistakes when specifying structural rules. Moreover, we

10.5281/zenodo.5136838
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found different types of error of communication rules in DCL-KDM such as duplicate rules and
circular rules due to lack of validation.

Regarding errors made with REMEDY all of them are related to communication rules of
low-level abstractions. A possible answer of why this happens is because subjects made copy
and paste of the communication rules where were involved reference input abstractions of dif-
ferent control loops. Indeed, this was a bug because when the rule that allows access between
two control loops was absent, REMEDY did not validate accesses of abstractions of one con-
trol loop to another with low-level abstractions. The bug was corrected in the next version of
REMEDY.

Finally, concerning effort the overall score was average for REMEDY and difficult for DCL-
KDM. We believe the results are strongly influenced by the type of DSL. REMEDY uses an
appropriate language for the AS domain and the way it constructs the structural rules is identical
to the MAPE-K reference model which contrast with DCL-KDM. Although, the results could
be predictable we were able to demonstrate it scientifically.

8.1.5 Threats of Validity

8.1.5.1 Threats to Internal Validity

Internal validity is the extent to which independent variables are responsible for the effects
seen to the dependent variables. Due to global pandemic of SARS-CoV-2, the controlled exper-
iment was carried out online and as a consequence the instructor could not verify in situ if there
was any kind of interaction among subjects about how to specify the architectures.

To reduce this threat, before experiment activities begin we explained to them that it was
not a competition so there was not any kind of rewards for finishing in less time or having
an optimal architecture. After having analyzed their specifications (pilot and experiment) we
determine that exists heterogeneity in architecture specifications, so if there was any type of
interaction among subjects it did not affect the experiment.
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8.1.5.2 Threats to Construct Validity

Construct validity is the degree to which the operationalization of measures in the study
represent the constructs in the real world. We have seen one type of such threats; Inadequate
preoperational explication of constructs. Although researchers delivered all concepts involved
in the experiment to subjects, maybe the depth of contents have not been optimal for the under-
standing of some subjects, this was due to some restrictions of the number of online sessions
and the time duration of each online session.

To reduce this threat, a subject profile was performed and contrasted with the academic
history of each participant. Moreover, a researcher of this study was in charge of at least one
course that subjects needed to attend to participate in this experiment so in a certain way we
already known subjects competencies.

8.1.5.3 Threats to External Validity and Conclusion Validity

External validity is the degree to which findings of a study can be generalized to other
subject populations and settings. Conclusion validity concerns generalizing the result of the
experiment to the concept or theory behind the experiment. Due to practical restrictions, we
deal with students of an undergraduate program in Computer Engineering as subjects for our
study. Although students do not represent expert software engineers, they are the next gener-
ation of software professionals (KITCHENHAM, B. A. et al., 2002). Also, it is possible the
specifications does not exists in real world applications. To mitigate this threat, the architectural
specifications were designed considering patterns based on influential papers of the area.

Finally, there is a threat concerning the reliability of time measure. We have asked the
subjects to set the starting and ending time. In this sense we could have had a problem because a
subject could forget to mark the time. To mitigate this, we use an online program to chronometer
the time. Each subject shared the chronometer so the instructor was aware of the time spent.

8.2 Chapter Summary
In this chapter, we conducted a controlled experiment to evaluate empirically the productiv-

ity of software architects by using DSL-REMEDY to perform the specification of PAs. It shows
that the use of a specific DSL such as REMEDY improves productivity at time of specifying the
adaptive part of an AS, by reducing the effort, time to complete the specification and reducing
the number of errors.



Chapter 9
CONCLUSION

This chapter concludes the thesis with retrospective view on the goals and how they have

been achieved, and further provides a general outlook of the work done on each step of our

approach. The chapter is organized as follow. Section 9.1 summarizes the main contribu-

tions and validation results, and Section 9.2 outlines benefits gained and scientific findings

made. Section 9.3 summarizes assumptions and limitations of our contributions. Section

9.4 suggests future work.

9.1 Contributions
Architecture erosion is usually the result of modifications to a system that disregard its fun-

damental architecture rules and as a consequence occurs a deviation from the intended software
architecture. Adaptive Systems (ASs) are not exempted from suffer this problem, and as we
shown in Chapter 3 by means of a systematic mapping, researchers are concerned about archi-
tectural anomalies in this kind of systems but more studies are needed in order to characterize
and report them.

Moreover, besides the canonical abstractions prescribed by MAPE-K, we shown in Chapter
5 that there are others equally important for reaching good levels of maintainability (we called
them as low level abstractions). As these abstractions are not evident in MAPE-K, software
architects are not aware of them and usually do not consider them when architecting the system
(RAMIREZ; CHENG, 2010). Therefore, the little knowledge about these abstractions and the
nonexistence of guidelines about how to design them leads to architectural drifts, that occurs
when the logical architecture (source code organization) of a system presents differences of the
prescribed reference model for that type of system (PERRY; WOLF, 1992). In order to control
the architecture deviation a process of architecture restoration must be applied which commonly
involves two strategies; architecture recovery and architecture reconciliation.

Up to the time of writing this thesis we have not found researches about Architecture Con-
formance Checking (ACC) of ASs that takes into account the Knowledge Discovery Metamodel
(KDM) metamodel, so this work will contribute with new knowledge in three research fields:
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AS, ACC and Architecture-Driven Modernization (ADM). Thus by delivering an approach and
tool this work will support software architects in detecting architectural drifts that could correct
them through model refactorings and conform the system to the intended architecture.

In this thesis, we presented an approach to identify architectural drifts in ASs and to support
software architects in the process of ACC, leading the following main contributions:

• An approach to perform ACC in KDM-represented ASs - We designed a process of
ACC for ASs that consists in four steps; i) Specify Planned Architecture; ii) Map Archi-
tectural Elements; iii) Check Architecture Conformance and iv) Visualize Architectures.
In the first one software architects specify the planned architecture through a DSL called
DLS-REMEDY. The specification involves some sub-steps; the specification of manag-
ing elements and managed elements with AS abstractions. We demonstrate in Chapter 8
that by using a domain vocabulary of AS the productivity improves so the use of DSL-
REMEDY over generic approaches is well justified. Another important activity that soft-
ware architects should perform is the specification of communication rules by using the
AS elements defined in previous sub-steps. These rules enable or forbid the access of
abstractions to others and their specification is aided by several custom validators. Our
DSL not only takes into account the main abstractions prescribed by the MAPE-K ref-
erence model but also low level abstractions (Chapter 5). The output is twofold, a file
with OCL queries to be applied on any KDM-represented AS for checking conformance
and a KDM representation of the Planned Architecture (PA) to visualize the architecture
graphically;

In the second one, software architects recover the Current Architecture (CA) after perform
mappings to source-code elements. The mappings enable the creation of the architecture
model of the KDM-represented AS where the ACC is realized by means of the OCL
file from the PA. In the third one, the ACC is executed to show the drifts found by the
process and finally in the fourth one software architects can visualize the CA, PA and
drifts graphically. As we reported in Chapter 3, we did not find approaches of ACC for
ASs so this contribution adds new knowledge in the state of art;

• Characterization of three drifts of ASs - In Chapter 5 we reported three architectural
drifts of ASs named as Scattered Reference Inputs, Obscure Alternatives and Mixed Ex-

ecutors and Effectors. Scattered Reference Inputs occurs when reference input of the
managing subsystem are not declared in a unique abstraction. Obscure Alternatives oc-
curs when the alternatives of an AS are not evident. Mixed Executors and Effectors arises
when there is not a clear distinction between executors and effectors. We analyzed seven
representative ASs and observed that these drifts occur in all of them which leads to con-
clude that although MAPE-K reference model is a well known model for designing the
architecture of an AS, it lacks of appropriate guidelines for developers when they need to
implement key architectural low-level abstractions, emerging some problems as the drifts
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we characterized. Moreover, another contribution is that we presented a well defined
methodology for discovering architectural drifts that can be used in other domains and a
template to characterize them;

• Systematic Mapping - In Chapter 3 we developed a systematic mapping of architectural
anomalies in ASs. To the best of our knowledge this is the first study that concern about
this topic. We find that most of the anomalies were reported in the domain of automotive
systems but as we shown it can occur in other domains where ASs actuate. This can
motivate other researchers in performing works on the area.

9.2 Lesson Learned

Assessed from a broader viewpoint, there are two scientific findings made by this thesis,
which we are going to point out below.

• Availability of Adaptive Systems - At the beginning of this research, one of the main
challenges of this project was related to the availability of ASs. Although the Software
Engineering for Adaptive and Self-Managing Systems (SEAMS) conference maintains
an open repository with software artifacts, most of them are academic investigations so it
may not reflect the reality of what occur on industry and practitioners that work with this
kind of systems while the others are partially published because copyright restrictions.
We also did a research in open repositories such as gitHub and gitLab, but most of them
were little systems with poor documentation so it was impracticable the installation and
operation;

• Software Architects Expertise - Another challenge we needed to overcome was the fact
that architectural elements of an AS can be implemented in several ways. For instance,
some implementations use specific frameworks for that purpose while others are imple-
mented in ad-hoc manner (from the scratch) which difficult the automated recognition
of such elements. We spent several months trying to find a solution, from the technical
point of view, that could be integrated to our approach without success. At the end, we
realized that more studies are needed to cope this issue and probably a new thesis could
deep on it, by developing machine learning algorithms to identify the AS architectural
abstractions. Therefore, we leave the recovery of the CA on hands of software architects
that have the expertise to recognize the architectural abstractions in source code by means
of mappings.
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9.3 Limitations of the approach
While our approach provides modeling AS abstractions, a systematic process and a work-

bench which can aid software architects in specifying and recovering adaptive systems and
performing ACC, this assistance is also limited in several aspects. The following list provides a
summary of limitations that we have identified for the approach:

• Specification of Generic Architecture Abstractions - Our approach just takes into ac-
count the specification and mappings of the adaptive part of ASs so at the moment of
writing this thesis, software architects are not able to specify the whole system architec-
ture in terms of generic components, modules and layers. This is a limitation because
domain abstractions could interact with generic abstractions with the consequence that
those relationships cannot be specified and therefore unable to check their conformance;

• Centralization - An analogous issue comes from the fact that REMEDY centralizes the
specification of control loops, whereas some systems like socio-technical systems, are
composed of independent self-organized agents which collaborate towards a resulting
adaptive system. Self-organization is the focus of conferences such as the International
Conference on Autonomic Computing and Self-Organizing Systems. Our based approach
could be used to specify independent software-based agents, but DSL-REMEDY do not
provide any mechanism to specify non-centralized feedback loops. Further investigation
is required to analyze the relation of our work with proposals on self-organized adaptive
systems. Initial ideas can be obtained from the work published by Alvares de Oliveira,
Sharrock, and Ledoux (2012) and Weyns, Schmerl, et al. (2013);

• MoDisco Dependency - MoDisco tool is not capable of generating the complete KDM
instance of an AS when specific meta-model elements need to be invoked. For instance,
we found that the meta-class HasValue (type of relationship) which represents semantic
relation between a data element (objects or primitive variables) and its initialization ele-
ment (data or one or more programming language statements), is not modeled completely
and a as a consequence, the ACC process will not identify drifts where the meta-class be
involved;

• Fine-grained Rules Specification - Although our approach uses a coarse-grained rules
specification that is functional to our purposes with must-use and must-not-use keywords,
in some cases software architects could need more control on checking the type of re-
lationship between the abstractions, thus non-trivial modifications must be done in the
DSL to support this feature and also the code generator should be capable of generating
the type of relationships supported by KDM;

• Experiments - This thesis reports on experiments with exemplars based on scenarios of
AS specification to evaluate if software architects (undergraduate students) perform better
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when using dedicated DSL of AS rather than generic ones. However, many other kinds of
experiments are needed in order to provide a more complete validation of the approach;

Surveys with practitioners can evaluate the proposed systematic approach and modeling
language, whereas the use of real applications instead of simulations would make for
a stronger case for the DSL’s effectiveness. Moreover, full-fledged case studies with
industrial partners would be advised before taking the results of this research to industrial
settings.

9.4 Future Work
The previous section highlighted several limitations of our proposal, all of which could be

considered an opportunity for future work. Nevertheless the next steps will be concentrated
in two areas; an integration with the Arch-KDM tool and add recommendation capabilities for
architectural refactorings. These are explained in the following next subsections.

9.4.1 ARCH-KDM Integration
In literature, there are several approaches to specify systems in a generic way by using

abstractions such as layers, components, modules and interfaces (TERRA; VALENTE, 2009;
JAMSHIDI et al., 2013). Thus to our purpose, we have started the integration of ARCH-KDM
developed by Landi et al. (S. LANDI et al., 2017) with our DSL. This approach also relies in
KDM models for checking the architectural conformance so it fits very well to our intentions.
In order to achieve the full integration three activities should be performed: i) Integrate ARCH-
KDM grammar into REMEDY with custom validations; ii) implement code generation of the
PA in a KDM instance and OCL constraints and; iii) add the generic abstractions of ARCH-
KDM into REMEDY to be mapped in the CA.

Up to the writing of this thesis, the first activity was completed in 50%, that means the gram-
mar of ARCH-KDM was integrated to REMEDY but custom validations must be written and
unit testing need to be performed. Listing 9.1 shows an example where a Managed subsystem
is specified with a Sensor proximity in the Subsystem sensorsSubsystem (Line 5).

In the second activity we will have to modify the generator template that is implemented
with the Xtend programming language. This template is conformed by two major parts; the fist
one implements the Managing subsystem and the second one the Managed subsystem.� �

1 ..

2 Managed environmentGuardRobot {

3 ..

4 subSystem sensorsSubsystem;

5 Sensor proximity , inSubSystem: sensorsSubsystem;

6 ..

7 }

8 ..
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� �
Listing 9.1 – Example of a generic abstraction in the PA

Listing 9.2 shows the template of the Managed subsystem implemented in Xtend. For every
sensor (Line 4), effector (Line 9) and measuredOuput (Line 14) element specified in the DSL a
structuredElement is created in the KDM instance that represents the PA.� �

1 ..

2 «FOR arch : architectureDefinition.managed»

3 <structureElement xsi:type="structure:Subsystem" name="«arch.name»" stereotype="/0/

↪ @extension.0/@stereotype.12">

4 «FOR sensor : arch.sensor»

5 <structureElement xsi:type="structure:Component" name="«sensor.name»"

↪ stereotype="/0/@extension.0/@stereotype.9" «outAggregatedPath.get(sensor.name)»

↪ «inAggregatedPath.get(sensor.name)»>

6 «aggregatedPath.get(sensor.name)»

7 </structureElement >

8 «ENDFOR»

9 «FOR effector : arch.effector»

10 <structureElement xsi:type="structure:Component" name="«effector.name»"

↪ stereotype="/0/@extension.0/@stereotype.10" «inAggregatedPath.get(effector.name)»>

11
12 </structureElement >

13 «ENDFOR»

14 «FOR measuredOutput : arch.measuredOutput»

15 <structureElement xsi:type="structure:Component" name="«measuredOutput.name»"

↪ stereotype="/0/@extension.0/@stereotype.6" «inAggregatedPath.get(measuredOutput.

↪ name)»>

16
17 </structureElement >

18 «ENDFOR»

19 </structureElement >

20 «ENDFOR»

21 ..� �
Listing 9.2 – Template of the Managed subsystem in Xtend

To extend it with generic architectural elements of ARCH-KDM, we need to modify the
Xtend template by implementing other FOR cycles as we did for AS elements to create new
structure elements. Something we need to validate is that the relationships among architectural
elements are correct, because as they are based on XPath paths and must be created dynamically
when the DSL is modified, paths could be pointing to wrong abstractions or abstractions that do
not exist. Thus some programming mechanisms need to be constructed to validate this aspect,
specially when generic elements include AS elements as shows Listing 9.1 in Line 5.

In the same way, the OCL Xtend template must be modified to include the new constraints
that will take into account generic elements of ARCH-KDM.

9.4.2 Refactoring Recommendations
The goal of a refactoring is to improve a certain quality while preserving others (FOWLER,

1999). For instance, code refactoring is a technique for restructuring code to make it more main-
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tainable without changing its observable behavior. Code refactorings work on machine-readable
entities such as packages, classes and methods; hence, they can leverage data structures from
compiler construction such as abstract syntax trees (ZIMMERMANN, 2015). Architectural
refactorings deal with architecture documentation and the manifestation of the architecture in
the code and run-time artifacts. Architectural refactorings pertain to components and connec-
tors (modeled, sketched, or represented implicitly in code), design decision logs (which come
as structured or unstructured text) planning artifacts such as work items in project management
tools (ZIMMERMANN, 2015).

architecturalModel
ArchitecturalRefactoringModel

name : EString
smell : EString
engine : EString
description : EString

AbstractArchitecturalOperation

description : EString
 abstraction : AbstractStructureElement

Move

 from : AbstractStructureElement
 to : AbstractStructureElement

Create

 in : AbstractStructureElement

Delete

 from : AbstractStructureElement

codeModel

AbstractCodeOperation

description : EString
 entity : AbstractCodeElement

Move

 from : AbstractCodeElement
 to : AbstractCodeElement

Create

 in : AbstractCodeElement

Delete

 from : AbstractCodeElement

constraintModel

AbstractCondition

oclQuery : EString

PreCondition PostCondition

[1..*] architecturalOperation[1..*] architecturalOperation

[1..*] codeOperation

[0..1] condition

[0..1] condition

Figure 9.1 – Refactoring metamodel

According to Lin et al. (2016), architectural refactorings can contain hundreds of steps and
experienced developers could carry them out over several weeks. Therefore, developers need to
explore a correct sequence of refactorings steps among many more incorrect alternatives. Thus,
we propose a refactoring metamodel to support architectural refactorings activities for ASs. The
main idea behind this is to provide a standardization of the refactorings to automate the process.
Several different instances of this meta-model would be recommended to the software architect
so it will pick one of them according to which best fit on the current situation.

Figure 9.1 shows the refactoring meta-model which is composed of three packages; a con-
straint model, an architectural model and a code model. The first one defines three meta-classes;
the AbstractCondition, PreCondition and PostCondition whose intention is to establish a pre
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and post condition through ocl queries to verify if it is possible to perform the refactorization
and validate the refactorization after its execution.

The second one aim at perform the architectural refactoring. It is composed of four meta-
classes; ArchitecturalRefactoringModel which provides a description of the refactoring such as
the name, type of smell that attends, transformation engine used to perform the refactoring and a
description. AbstractArchitecturalOperation which represent the refactoring operation through
three concrete classes Move, Create and Delete.

The third one is similar to the second one but at source-code level. This package is necessary
because the refactorings performed in high level of abstraction must be propagated to low level
of abstractions. Thus, the package is composed of four meta-classes; AbstractCodeOperation,
Move, Create and Delete.
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Appendix A
TECHNICAL ASPECTS OF REMEDY

In this Appendix we deep in technical of REMEDY such as its grammar and the mechanisms

to generate the CA and to enable the architecture visualizations.

A.1 REMEDY EBNF grammar

⟨ArchitectureDefinition⟩ ⊧ Architecture ⟨ID⟩ { ⟨DSLManaging+⟩ ⟨DSLManaged+⟩ }
Rules { ⟨DSLRules*⟩ }

⟨DSLRules⟩ ⊧ ⟨DSLRuleController⟩ ∣ ⟨DSLRuleMonitor⟩ ∣ ⟨DSLRuleAnalyzer⟩ ∣
⟨DSLRulePlanner⟩ ∣ ⟨DSLRuleExecutor⟩ ∣ ⟨DSLRuleMO⟩ ∣
⟨DSLRuleMController⟩ ∣ ⟨DSLRuleKnowledge⟩

⟨DSLRuleMController⟩ ⊧ loopManager ⟨DSLManagerController⟩ (must-use ∣ must-not-use)
loopManager ⟨DSLManagerController⟩;

⟨DSLRuleController⟩ ⊧ loop ⟨DSLController⟩ (must-use ∣ must-not-use)
loop ⟨DSLController⟩;

⟨DSLRuleMonitor⟩ ⊧ monitor ⟨DSLMonitor⟩ (must-use ∣ must-not-use)
monitor ⟨DSLMonitor⟩; ∣
monitor ⟨DSLMonitor⟩ (must-use ∣ must-not-use)
analyzer ⟨DSLAnalyzer⟩; ∣
monitor ⟨DSLMonitor⟩ (must-use ∣ must-not-use)
planner ⟨DSLPlanner⟩; ∣
monitor ⟨DSLMonitor⟩ (must-use ∣ must-not-use)
executor ⟨DSLExecutor⟩; ∣
monitor ⟨DSLMonitor⟩ (must-use ∣ must-not-use)
knowledge ⟨DSLKnowledge⟩; ∣
monitor ⟨DSLMonitor⟩ (must-use ∣ must-not-use)
sensor ⟨DSLSensor⟩;
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⟨DSLRuleAnalyzer⟩ ⊧ analyzer ⟨DSLAnalyzer⟩ (must-use ∣ must-not-use)
monitor ⟨DSLMonitor⟩; ∣
analyzer ⟨DSLAnalyzer⟩ (must-use ∣ must-not-use)
analyzer ⟨DSLAnalyzer⟩; ∣
analyzer ⟨DSLAnalyzer⟩ (must-use ∣ must-not-use)
planner ⟨DSLPlanner⟩; ∣
analyzer ⟨DSLAnalyzer⟩ (must-use ∣ must-not-use)
executor ⟨DSLExecutor⟩; ∣
analyzer ⟨DSLAnalyzer⟩ (must-use ∣ must-not-use)
knowledge ⟨DSLKnowledge⟩; ∣
analyzer ⟨DSLAnalyzer⟩ (must-use ∣ must-not-use)
reference-input ⟨DSLReferenceInput⟩;
analyzer ⟨DSLAnalyzer⟩ (must-use ∣ must-not-use)
alternative ⟨DSLAlternative⟩;

⟨DSLRulePlanner⟩ ⊧ planner ⟨DSLPlanner⟩ (must-use ∣ must-not-use)
monitor ⟨DSLMonitor⟩; ∣
planner ⟨DSLPlanner⟩ (must-use ∣ must-not-use)
analyzer ⟨DSLAnalyzer⟩; ∣
planner ⟨DSLPlanner⟩ (must-use ∣ must-not-use)
planner ⟨DSLPlanner⟩; ∣
planner ⟨DSLPlanner⟩ (must-use ∣ must-not-use)
executor ⟨DSLExecutor⟩; ∣
planner ⟨DSLPlanner⟩ (must-use ∣ must-not-use)
knowledge ⟨DSLKnowledge⟩; ∣
planner ⟨DSLPlanner⟩ (must-use ∣ must-not-use)
effector ⟨DSLEffector⟩;

⟨DSLRuleExecutor⟩ ⊧ planner ⟨DSLPlanner⟩ (must-use ∣ must-not-use)
monitor ⟨DSLMonitor⟩; ∣
planner ⟨DSLPlanner⟩ (must-use ∣ must-not-use)
analyzer ⟨DSLAnalyzer⟩; ∣
planner ⟨DSLPlanner⟩ (must-use ∣ must-not-use)
planner ⟨DSLPlanner⟩; ∣
planner ⟨DSLPlanner⟩ (must-use ∣ must-not-use)
executor ⟨DSLExecutor⟩; ∣
planner ⟨DSLPlanner⟩ (must-use ∣ must-not-use)
knowledge ⟨DSLKnowledge⟩; ∣
planner ⟨DSLPlanner⟩ (must-use ∣ must-not-use)
effector ⟨DSLEffector⟩;
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⟨DSLRuleKnowledge⟩ ⊧ knowledge ⟨DSLKnowledge⟩ (must-use ∣ must-not-use)
monitor ⟨DSLMonitor⟩; ∣
knowledge ⟨DSLKnowledge⟩ (must-use ∣ must-not-use)
analyzer ⟨DSLAnalyzer⟩; ∣
knowledge ⟨DSLKnowledge⟩ (must-use ∣ must-not-use)
planner ⟨DSLPlanner⟩; ∣
knowledge ⟨DSLKnowledge⟩ (must-use ∣ must-not-use)
executor ⟨DSLExecutor⟩;

⟨DSLRuleMO⟩ ⊧ sensor ⟨DSLSensor⟩ (must-use ∣ must-not-use)
measured ⟨DSLMeasuredOutput⟩;

⟨DSLManaging⟩ ⊧ Managing ⟨ID⟩ { ⟨DSLManagerController*⟩ ⟨DSLController*⟩ }
⟨DSLManaged⟩ ⊧ Managed ⟨ID⟩ { ⟨DCLStructureElement*⟩ ⟨DSLSensor*⟩ ⟨DSLEffector*⟩

⟨DSLMeasuredOutput*⟩ }
⟨DSLManagerController⟩ ⊧ LoopManager ⟨ID⟩ { ⟨DSLController*⟩ }

⟨DSLController⟩ ⊧ Loop ⟨ID⟩ (⟨DSLDomainRule⟩)? { ⟨DSLMonitor*⟩ ⟨DSLAnalyzer*⟩
⟨DSLPlanner*⟩ ⟨DSLExecutor*⟩ ⟨DSLKnowledge*⟩ }

⟨DSLDomainRule⟩ ⊧ (ID ∣ withDomainRules)
⟨DSLMonitor⟩ ⊧ Monitor ⟨ID⟩ ;
⟨DSLAnalyzer⟩ ⊧ Analyzer ⟨ID⟩ ;
⟨DSLPlanner⟩ ⊧ Planner ⟨ID⟩ ;

⟨DSLExecutor⟩ ⊧ Executor ⟨ID⟩ ;
⟨DSLKnowledge⟩ ⊧ Knowledge ⟨ID⟩ { ⟨DSLReferenceInput*⟩ ⟨DSLAlternative*⟩ }

⟨DSLSensor⟩ ⊧ Sensor ⟨ID⟩ ;
⟨DSLEffector⟩ ⊧ Effector ⟨ID⟩ ;

⟨DSLReferenceInput⟩ ⊧ ReferenceInput ⟨ID⟩ ;
⟨DSLMeasuredOutput⟩ ⊧ MeasuredOutput ⟨ID⟩ ;

⟨DSLAlternative⟩ ⊧ Alternative ⟨ID⟩ ;

Listing A.1 – EBNF grammar of REMEDY
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A.2 Codes to Create the Current Architecture
� �

1
2 public void createStructureElementFromTree(Manager baseXManager , String path_) throws

↪ Exception{

3 List<String> memory1 = new ArrayList <String >();

4 List<String> memory2 = new ArrayList <String >();

5 List<String> rootList = tree.getChildren("roots");

6 memory1.addAll(rootList);

7 memory2.addAll(rootList);

8 while (!memory1.isEmpty()){

9 String child = memory1.get(0);

10 rootList = tree.getChildren(child);

11 Set<String> set = new HashSet <>(rootList);

12 rootList.clear();

13 rootList.addAll(set);

14 if (!rootList.isEmpty()){

15 for (int i = rootList.size()-1; i >= 0; i--){

16 if (i == rootList.size()-1 ){

17 String parent = memory1.remove(0);

18 if (memory2.contains(new String(parent))){

19 memory2.remove(new String(parent));

20 this.createStructureElement(baseXManager , null, arent, path_);

21 }

22 memory1.add(0,rootList.get(i));

23 }

24 else

25 memory1.add(0,rootList.get(i));

26 this.createStructureElement(baseXManager , child, memory1.get(0),path_);

27 }

28 }

29 else

30 memory1.remove(0);

31 }

32 for (String memory: memory2)

33 this.createStructureElement(baseXManager , null, memory, path_);

34 }� �
Listing A.2 – Code to create an hierarchical structure of AS elements� �

1 modeltype kdm "strict" uses kdm('http://www.eclipse.org/MoDisco/kdm/kdm');

2 modeltype code "strict" uses code('http://www.eclipse.org/MoDisco/kdm/code');

3 modeltype core "strict" uses core('http://www.eclipse.org/MoDisco/kdm/core');

4 modeltype action "strict" uses action('http://www.eclipse.org/MoDisco/kdm/action');

5 modeltype source "strict" uses source('http://www.eclipse.org/MoDisco/kdm/source');

6 modeltype structure "strict" uses structure('http://www.eclipse.org/MoDisco/kdm/structure

↪ ');

7
8 transformation addImplement(inout sourceModel:kdm);

9
10 configuration property abstraction: String;

11 configuration property abstractionType: String;

12 configuration property codeElement: String;

13 configuration property elementType: String;

14 configuration property elementPath: String;

15
16 main() {

17
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18 --code Elements

19 if (abstractionType.equalsIgnoreCase("component"))

20 {

21 sourceModel.objectsOfType(Component)-> map addImplementationComponent();

22 }

23 elif (abstractionType.equalsIgnoreCase("subsystem")){

24
25 sourceModel.objectsOfType(Subsystem)-> map addImplementationSubsystem();

26 }

27 }

28
29 mapping Component::addImplementationComponent():Component when {self.name = abstraction}{

30 init{

31
32 if (elementType.equalsIgnoreCase("package")) {

33
34 var pk : Package := getPackage(codeElement);

35 var path: String := getCompletePath(pk);

36 path := path + codeElement;

37
38
39
40 if (path.equalsIgnoreCase(elementPath))

41 {

42 result := self->forOne(r){

43 r.implementation +=getPackage(codeElement);

44 }

45 }

46 }

47 elif (elementType.equalsIgnoreCase("class")){

48
49 var class_:ClassUnit := getClass(codeElement);

50 var path:String := getCompletePath(class_);

51 path := path + codeElement;

52
53 if (path.equalsIgnoreCase(elementPath))

54 {

55 result := self->forOne(r){

56 r.implementation +=getClass(codeElement);

57 }

58 }

59 }

60 elif (elementType.equalsIgnoreCase("interface")){

61
62 var class_:InterfaceUnit := getInterface(codeElement);

63 var path:String := getCompletePath(class_);

64 path := path + codeElement;

65
66 if (path.equalsIgnoreCase(elementPath))

67 {

68 result := self->forOne(r){

69 r.implementation +=getInterface(codeElement);

70 }

71 }

72 }

73 elif (elementType.equalsIgnoreCase("method")){

74
75 var method:MethodUnit := getMethod(codeElement);

76 var path:String := getCompletePath(method);

77 path := path + codeElement;
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78
79 if (path.equalsIgnoreCase(elementPath))

80 {

81 result := self->forOne(r){

82 r.implementation +=getMethod(codeElement);

83 }

84 }

85 }

86 elif (elementType.equalsIgnoreCase("variable") or elementType.equalsIgnoreCase("

↪ field")){

87
88 var varOrField:StorableUnit := getVariable(codeElement);

89 var path:String := getCompletePath(varOrField);

90 path := path + codeElement;

91
92 if (path.equalsIgnoreCase(elementPath))

93 {

94 result := self->forOne(r){

95 r.implementation +=getVariable(codeElement);

96 }

97 }

98 }

99 }

100 }

101
102 mapping Subsystem::addImplementationSubsystem():Subsystem when {self.name = abstraction}{

103 init{

104
105 if (elementType.equalsIgnoreCase("package")) {

106 result := self->forOne(r){

107 r.implementation +=getPackage(codeElement);

108 }

109 }

110 elif (elementType.equalsIgnoreCase("class")){

111
112 result := self->forOne(r){

113 r.implementation +=getClass(codeElement);

114 }

115 }

116 elif (elementType.equalsIgnoreCase("interface")){

117
118 result := self->forOne(r){

119 r.implementation +=getInterface(codeElement);

120 }

121 }

122 elif (elementType.equalsIgnoreCase("method")){

123
124 result := self->forOne(r){

125 r.implementation +=getMethod(codeElement);

126 }

127 }

128 elif (elementType.equalsIgnoreCase("variable") or elementType.equalsIgnoreCase("

↪ field")){

129
130 result := self->forOne(r){

131 r.implementation +=getVariable(codeElement);

132 }

133 }

134 }

135 }
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136
137 query getPackage(name:String):Package {

138
139 var packageName : String := name;

140 var pkg:Package:= null;

141
142 sourceModel.objectsOfType(Package) -> forEach(r){

143
144 if (packageName.equalsIgnoreCase(r.name))

145 {

146 pkg := r;

147 break;

148 };

149 };

150 return pkg;

151 }

152
153 query getClass(name:String):ClassUnit {

154
155 var className : String := name;

156 var class_:ClassUnit:= null;

157
158 sourceModel.objectsOfType(ClassUnit) -> forEach(r){

159
160 if (className.equalsIgnoreCase(r.name))

161 {

162 class_ := r;

163 break;

164 };

165 };

166 return class_;

167 }

168
169 query getInterface(name:String):InterfaceUnit {

170
171 var interfaceName : String := name;

172 var class_:InterfaceUnit:= null;

173
174 sourceModel.objectsOfType(InterfaceUnit) -> forEach(r){

175
176 if (interfaceName.equalsIgnoreCase(r.name))

177 {

178 class_ := r;

179 break;

180 };

181 };

182 return class_;

183 }

184
185 query getMethod(name:String):MethodUnit {

186
187 var methodName : String := name;

188 var method:MethodUnit:= null;

189
190 sourceModel.objectsOfType(MethodUnit) -> forEach(r){

191
192 if (methodName.equalsIgnoreCase(r.name))

193 {

194 method := r;

195 break;
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196 };

197 };

198 return method;

199 }

200
201
202 query getVariable(name:String):StorableUnit {

203
204 var variableName : String := name;

205 var variable:StorableUnit:= null;

206
207 sourceModel.objectsOfType(StorableUnit) -> forEach(r){

208
209 if (variableName.equalsIgnoreCase(r.name))

210 {

211 variable := r;

212 break;

213 };

214 };

215 return variable;

216 }

217
218 query getCompletePath(elementInput:Element): String{

219
220 var name_:String := "";

221 var element:Element := elementInput;

222
223 while (not element.oclIsTypeOf(CodeModel)){

224
225 element := element.container().oclAsType(Element);

226 if (element.oclIsTypeOf(MethodUnit)){

227
228 name_:= element.oclAsType(MethodUnit).name + "." + name_;

229
230 }

231 elif (element.oclIsTypeOf(ClassUnit)){

232
233 name_:= element.oclAsType(ClassUnit).name + "." + name_;

234 }

235 elif (element.oclIsTypeOf(InterfaceUnit)){

236
237 name_:= element.oclAsType(InterfaceUnit).name + "." + name_;

238 }

239 elif (element.oclIsTypeOf(Package)){

240
241 name_:= element.oclAsType(Package).name + "." + name_;

242 }

243 elif (element.oclAsType(StorableUnit))

244 {

245 name_:= element.oclAsType(StorableUnit).name + "." + name_;

246 }

247 };

248 return name_;

249 }� �
Listing A.3 – QVT-o file to add implementations in the KDM CA instance� �

1 modeltype kdm "strict" uses kdm('http://www.eclipse.org/MoDisco/kdm/kdm');

2 modeltype code "strict" uses code('http://www.eclipse.org/MoDisco/kdm/code');

3 modeltype core "strict" uses core('http://www.eclipse.org/MoDisco/kdm/core');
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4 modeltype action "strict" uses action('http://www.eclipse.org/MoDisco/kdm/action');

5 modeltype source "strict" uses source('http://www.eclipse.org/MoDisco/kdm/source');

6 modeltype structure "strict" uses structure('http://www.eclipse.org/MoDisco/kdm/structure

↪ ');

7
8 transformation addAggregated(inout sourceModel:kdm);

9
10 configuration property relationship: Set(KDMRelationship);

11 configuration property abstractionType: String;

12 configuration property abstractionFrom: String;

13 configuration property abstractionTo: String;

14
15 main() {

16
17 if (abstractionType.equalsIgnoreCase("component"))

18 {

19 sourceModel.objectsOfType(Component)-> map aggregatedComponent();

20 }

21 elif (abstractionType.equalsIgnoreCase("subsystem")){

22 sourceModel.objectsOfType(Subsystem)-> map aggregatedSubsystem();

23 }

24 }

25
26 mapping Component::aggregatedComponent():Component when {self.name = abstractionFrom }{

27
28 init{

29
30 var found:Boolean = false;

31 result := self->forEach(a){

32
33 a.aggregated -> forEach(b){

34
35 if (b._from.name.equalsIgnoreCase(abstractionFrom) and b.to.name.

↪ equalsIgnoreCase(abstractionTo)){

36 b.relation += relationship;

37 b.density := b.relation ->size();

38 found := true;

39 };

40 };

41
42 if (found = false){

43
44 a.aggregated +=object AggregatedRelationship{

45 _from:=getKDMEntity(abstractionFrom);

46 to:=getKDMEntity(abstractionTo);

47 relation += relationship;

48 density := relation->size();

49 };

50 }

51 }

52 }

53 }

54
55 mapping Subsystem::aggregatedSubsystem():Subsystem when {self.name = abstractionFrom }{

56
57 init{

58
59 var found:Boolean = false;

60 result := self->forEach(a){

61
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62 a.aggregated -> forEach(b){

63
64 if (b._from.name.equalsIgnoreCase(abstractionFrom) and b.to.name.

↪ equalsIgnoreCase(abstractionTo)){

65 b.relation += relationship;

66 b.density := b.relation->size();

67 found := true;

68 };

69 };

70
71 if (found = false){

72
73 a.aggregated +=object AggregatedRelationship{

74 _from:=getKDMEntity(abstractionFrom);

75 to:=getKDMEntity(abstractionTo);

76 relation += relationship;

77 density := relation ->size();

78 };

79 }

80 }

81 }

82 }

83
84 query getKDMEntity(name:String):KDMEntity {

85
86 var abstractionName : String := name;

87 var abstraction:KDMEntity:= null;

88
89 sourceModel.objectsOfType(Component) -> forEach(r){

90
91 if (abstractionName.equalsIgnoreCase(r.name))

92 {

93 abstraction := r;

94 break;

95 };

96 };

97
98 sourceModel.objectsOfType(Subsystem) -> forEach(r){

99
100 if (abstractionName.equalsIgnoreCase(r.name))

101 {

102 abstraction := r;

103 break;

104 };

105 };

106
107 return abstraction;

108 }� �
Listing A.4 – QVT-o file to add the relationships in the KDM CA instanca
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A.3 Architecture Conformance Checking Code
� �

1 public void checkConstraint(IFile currentArchitecturePath , IFile constraintPath) throws

↪ SQLException {

2 DataConstraint dataConstraint = new DataConstraint(workspacePath + projectName);

3 try {

4 dataConstraint.deleteTables();

5 } catch (Exception e3) {

6 // TODO Auto-generated catch block

7 e3.printStackTrace();

8 }

9
10 OCLstdlib.install();

11 CompleteOCLStandaloneSetup.doSetup();

12 OCLstdlibStandaloneSetup.doSetup();

13 EssentialOCLStandaloneSetup.doSetup();

14
15 KdmPackage.eINSTANCE.eClass();

16 Resource.Factory.Registry.INSTANCE.getExtensionToFactoryMap().put(Resource.Factory.

↪ Registry.DEFAULT_EXTENSION ,new XMIResourceFactoryImpl());

17 ResourceSet resourceSet = new ResourceSetImpl();

18 Resource resource = resourceSet.getResource(URI.createURI(currentArchitecturePath.

↪ getFullPath().toString()), true);

19 OCL ocl = OCL.newInstance(resource.getResourceSet());

20
21 // get an OCL text file via some hypothetical API

22 Resource asResource = ocl.parse(URI.createFileURI(constraintPath.getRawLocation().

↪ toOSString()));

23
24 Map<String, ExpressionInOCL > constraintMap = new HashMap<String, ExpressionInOCL >();

25 for (TreeIterator <EObject> tit = asResource.getAllContents(); tit.hasNext(); )

26 {

27 EObject next = tit.next();

28 if (next instanceof Constraint)

29 {

30 Constraint constraint = (Constraint)next;

31 ExpressionInOCL expressionInOCL = null;

32 try {expressionInOCL = ocl.getSpecification(constraint);} catch (ParserException

↪ e) {e.printStackTrace();}

33 if (expressionInOCL != null)

34 {

35 String name = constraint.getName();

36 if (name != null)

37 constraintMap.put(name, expressionInOCL);

38 }

39 }

40 }

41
42 StructureModel structureModel = (StructureModel) resource.getContents().get(0).

↪ eContents().get(4);

43 for (String key : constraintMap.keySet() ) {

44 Boolean check = false;

45 ExpressionInOCL expressionInOCL = constraintMap.get(key);

46 String type = key.split(Pattern.quote("_"))[0];

47 String abstraction = key.split(Pattern.quote("_"))[1] + "_" +key.split(Pattern.

↪ quote("_"))[2];

48
49 try {
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50 check = (Boolean) ocl.evaluate(structureModel , expressionInOCL);

51
52 if (type.equals("exist")) {

53
54 try {

55 int row = dataConstraint.insertExistence(projectName.replaceAll("\\/", ""),

↪ abstraction , (check.booleanValue() ? 1 : 0 ));

56 dataConstraint.insertExistenceRules(projectName.replaceAll("\\/", ""), key,

↪ expressionInOCL.getBody().replaceAll("\'","") , (check.booleanValue() ? 1 : 0 ),

↪ row);

57
58 } catch (Exception e) {

59 // TODO Auto-generated catch block

60 e.printStackTrace();

61 }

62 }

63 else {

64 if (type.equals("composite")) {

65
66 try {

67 int row =dataConstraint.insertComposite(projectName.replaceAll("\\/", ""),

↪ abstraction , (check.booleanValue() ? 1 : 0 ));

68 dataConstraint.insertCompositeRules(projectName.replaceAll("\\/", ""), key,

↪ expressionInOCL.getBody().replaceAll("\'","") , (check.booleanValue() ? 1 : 0 ),

↪ row);

69 } catch (Exception e) {

70 // TODO Auto-generated catch block

71 e.printStackTrace();

72 }

73 }

74 else {

75
76 if (type.equals("access")) {

77 String abstraction2 = key.split(Pattern.quote("_"))[3] + "_" + key.split(

↪ Pattern.quote("_"))[4];

78 try {

79 int row =dataConstraint.insertAccess(projectName.replaceAll("\\/", ""),

↪ abstraction , abstraction2 , (check.booleanValue() ? 1 : 0 ));

80 dataConstraint.insertAccessRules(projectName.replaceAll("\\/", ""), key,

↪ expressionInOCL.getBody().replaceAll("\'","") , (check.booleanValue() ? 1 : 0 ),

↪ row);

81 } catch (Exception e) {

82 // TODO Auto-generated catch block

83 e.printStackTrace();

84 }

85 }else

86 {

87 if (type.equals("not")) {

88 String abstraction2 = key.split(Pattern.quote("_"))[4] + "_" + key.split(

↪ Pattern.quote("_"))[5];

89 abstraction = key.split(Pattern.quote("_"))[2] + "_" + key.split(Pattern

↪ .quote("_"))[3];

90 try {

91 int row =dataConstraint.insertAccess(projectName.replaceAll("\\/", ""),

↪ abstraction , abstraction2 , (check.booleanValue() ? 1 : 0 ));

92 dataConstraint.insertAccessRules(projectName.replaceAll("\\/", ""), key

↪ , expressionInOCL.getBody().replaceAll("\'","") , (check.booleanValue() ? 1 : 0 ),

↪ row);

93 } catch (Exception e) {

94 // TODO Auto-generated catch block
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95 e.printStackTrace();

96 }

97 }

98 else {

99 if (type.equals("domain")) {

100
101 if (key.split(Pattern.quote("_"))[1].equals("not")) {

102
103 String abstraction2 = key.split(Pattern.quote("_"))[5] + "_" + key.

↪ split(Pattern.quote("_"))[6];

104 abstraction = key.split(Pattern.quote("_"))[3] + "_" + key.split(

↪ Pattern.quote("_"))[4];

105 try {

106 int row =dataConstraint.insertDomain(projectName.replaceAll("\\/",

↪ ""), abstraction , abstraction2 , (check.booleanValue() ? 1 : 0 ));

107 dataConstraint.insertDomainRules(projectName.replaceAll("\\/", ""),

↪ key, expressionInOCL.getBody().replaceAll("\'","") , (check.booleanValue() ? 1 :

↪ 0 ),row);

108 } catch (Exception e) {

109 // TODO Auto-generated catch block

110 e.printStackTrace();

111 }

112 }

113 else

114 {

115 String abstraction2 = key.split(Pattern.quote("_"))[4] + "_" + key.

↪ split(Pattern.quote("_"))[5];

116 abstraction = key.split(Pattern.quote("_"))[2] + "_" + key.split(

↪ Pattern.quote("_"))[3];

117 try {

118 int row =dataConstraint.insertDomain(projectName.replaceAll("\\/",

↪ ""), abstraction , abstraction2 , (check.booleanValue() ? 1 : 0 ));

119 dataConstraint.insertDomainRules(projectName.replaceAll("\\/", ""),

↪ key, expressionInOCL.getBody().replaceAll("\'","") , (check.booleanValue() ? 1 :

↪ 0 ),row);

120 } catch (Exception e) {

121 // TODO Auto-generated catch block

122 e.printStackTrace();

123 }

124 }

125 }

126 }

127 }

128 }

129 }

130 }

131 catch (InvalidValueException e)

132 {

133 if (type.equals("exist"))

134 try {

135 int row =dataConstraint.insertExistence(projectName.replaceAll("\\/", ""),

↪ abstraction , 0);

136 dataConstraint.insertExistenceRules(projectName.replaceAll("\\/", ""), key,

↪ expressionInOCL.getBody().replaceAll("\'","") , 0,row);

137 } catch (Exception e1) {

138 // TODO Auto-generated catch block

139 e1.printStackTrace();

140 }

141 else {

142 if (type.equals("composite")) {
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143 try {

144 int row =dataConstraint.insertComposite(projectName.replaceAll("\\/", ""),

↪ abstraction , 0);

145 dataConstraint.insertCompositeRules(projectName.replaceAll("\\/", ""), key,

↪ expressionInOCL.getBody().replaceAll("\'","") ,0,row);

146 } catch (Exception e1) {

147 // TODO Auto-generated catch block

148 e1.printStackTrace();

149 }

150 }

151 else {

152 if (type.equals("access")) {

153 String abstraction2 = key.split(Pattern.quote("_"))[3] + "_" + key.split(

↪ Pattern.quote("_"))[4];

154 try {

155 int row =dataConstraint.insertAccess(projectName.replaceAll("\\/", ""),

↪ abstraction , abstraction2 , 0);

156 dataConstraint.insertAccessRules(projectName.replaceAll("\\/", ""), key,

↪ expressionInOCL.getBody().replaceAll("\'","") ,0,row);

157 } catch (Exception e2) {

158 // TODO Auto-generated catch block

159 e2.printStackTrace();

160 }

161 }

162 else

163 {

164 if (type.equals("not")) {

165 String abstraction2 = key.split(Pattern.quote("_"))[4] + "_" + key.split(

↪ Pattern.quote("_"))[5];

166 abstraction = key.split(Pattern.quote("_"))[2] + "_" + key.split(Pattern

↪ .quote("_"))[3];

167 try {

168 int row =dataConstraint.insertAccess(projectName.replaceAll("\\/", ""),

↪ abstraction , abstraction2 , (check.booleanValue() ? 1 : 0 ));

169 dataConstraint.insertAccessRules(projectName.replaceAll("\\/", ""), key

↪ , expressionInOCL.getBody().replaceAll("\'","") , (check.booleanValue() ? 1 : 0 ),

↪ row);

170 } catch (Exception e3) {

171 // TODO Auto-generated catch block

172 e.printStackTrace();

173 }

174 }

175 else {

176 if (type.equals("domain")) {

177
178 if (key.split(Pattern.quote("_"))[1].equals("not")) {

179
180 String abstraction2 = key.split(Pattern.quote("_"))[4] + "_" + key.

↪ split(Pattern.quote("_"))[5];

181 abstraction = key.split(Pattern.quote("_"))[2] + "_" + key.split(

↪ Pattern.quote("_"))[3];

182 try {

183 int row =dataConstraint.insertDomain(projectName.replaceAll("\\/",

↪ ""), abstraction , abstraction2 , (check.booleanValue() ? 1 : 0 ));

184 dataConstraint.insertDomainRules(projectName.replaceAll("\\/", ""),

↪ key, expressionInOCL.getBody().replaceAll("\'","") , (check.booleanValue() ? 1 :

↪ 0 ),row);

185 } catch (Exception e4) {

186 // TODO Auto-generated catch block

187 e.printStackTrace();
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188 }

189
190 }

191 else

192 {

193 String abstraction2 = key.split(Pattern.quote("_"))[5] + "_" + key.

↪ split(Pattern.quote("_"))[6];

194 abstraction = key.split(Pattern.quote("_"))[3] + "_" + key.split(

↪ Pattern.quote("_"))[4];

195 try {

196 int row =dataConstraint.insertDomain(projectName.replaceAll("\\/",

↪ ""), abstraction , abstraction2 , (check.booleanValue() ? 1 : 0 ));

197 dataConstraint.insertDomainRules(projectName.replaceAll("\\/", ""),

↪ key, expressionInOCL.getBody().replaceAll("\'","") , (check.booleanValue() ? 1 :

↪ 0 ),row);

198 } catch (Exception e5) {

199 // TODO Auto-generated catch block

200 e.printStackTrace();

201 }

202 }

203 }

204 }

205 }

206 }

207 }

208 }

209 }

210
211 //Update constraints according to the existence of abstractions

212 try {

213 dataConstraint.checkRealConstraints();

214 } catch (Exception e) {

215 // TODO Auto-generated catch block

216 e.printStackTrace();

217 }

218 }� �
Listing A.5 – Code to check architectural drifts in the CA
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A.4 Codes to Transform from UML Package
Model to the Structurizr DSL

� �
1 public void createPlantComponentDiagram(Resource r, String path, String projectName ,

↪ String mappingPath , String title) {

2
3 Workspace workspace = new Workspace("Component Diagram", title);

4 Model model = workspace.getModel();

5 ViewSet views = workspace.getViews();

6 SoftwareSystem adaptiveSystem = model.addSoftwareSystem(Location.Internal , "Adaptive

↪ System Architecture", "Allows customers to view information about their bank

↪ accounts , and make payments.");

7
8 List<Package> memory1 = new ArrayList <Package >();

9 List<String> roots = new ArrayList <String >();

10
11 for (int z=0; z<r.getContents().get(0).eContents().size(); z++ )

12 {

13 if (r.getContents().get(0).eContents().get(z) instanceof Package)

14 {

15 Package package1 = (Package)r.getContents().get(0).eContents().get(z);

16 memory1.add(package1);

17 roots.add(package1.getName());

18 }

19 }

20 dependenciesList = LinkedListMultimap.create();

21 packagedList = LinkedListMultimap.create();

22
23 while (!memory1.isEmpty())

24 {

25 Package node = memory1.remove(0);

26 EList<Package> children = node.getNestedPackages();

27 ECollections.reverse(children);

28 if (!children.isEmpty()){

29
30 for (int i =0; i< children.size(); i++){

31 packagedList.put(node.getName(), children.get(i).getName());

32 memory1.add(0, children.get(i));

33 }

34 }

35
36 EList<Dependency > deps = node.getClientDependencies();

37 if (!deps.isEmpty()){

38 for (int i=0 ; i< deps.size(); i++) {

39
40 Dependency dependency = deps.get(i);

41 EList<NamedElement > suppliers = dependency.getSuppliers();

42 for (int j=0; j< suppliers.size(); j++)

43 {

44 NamedElement element = dependency.getSuppliers().get(j);

45 dependenciesList.put(node.getName(), element.getName());

46 }

47 }

48 }

49 }

50
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51 this.loadMappings(mappingPath);

52
53 List<DeploymentNode > architecture = new ArrayList <DeploymentNode >();

54 for (String key : packagedList.keySet()) {

55 if (roots.contains(key))

56 {

57 architecture.add(model.addDeploymentNode(key, key, key, mappingMap.get(key)));

58 roots.remove(key);

59 }

60 }

61
62 while (!architecture.isEmpty())

63 {

64 DeploymentNode n1 = architecture.remove(0);

65 List<String> children = packagedList.get(n1.getName());

66 if (!children.isEmpty()){

67 for (int i =0; i< children.size(); i++)

68 architecture.add(0, n1.addDeploymentNode(children.get(i), children.get(i),

↪ mappingMap.get(children.get(i))));

69 }

70 else

71 {

72 n1.addTags(END_NODE);

73 Container container = adaptiveSystem.addContainer("c"+n1.getName(), "c"+n1.

↪ getName(), "");

74 n1.add(container);

75 }

76 }

77
78
79 //Root nodes without children

80 for (int i = 0; i< roots.size(); i++)

81 {

82 DeploymentNode node= model.addDeploymentNode(roots.get(i), roots.get(i), roots.get(

↪ i), mappingMap.get(roots.get(i)));

83 Container container = adaptiveSystem.addContainer("NULL_"+i, "NULL", "NULL");

84 node.add(container);

85 }

86
87 List<Relationship > lRelationships = new ArrayList <Relationship >();

88
89 for (Element element : model.getElements())

90 {

91 if (element instanceof DeploymentNode || element instanceof Container )

92 {

93 List<String> dependencies = dependenciesList.get(element.getName());

94 for (String dependency : dependencies)

95 {

96 Optional <Element> oElement = model.getElements().stream().filter(e -> (e

↪ instanceof DeploymentNode || e instanceof Container) && (e.getName().equals(

↪ dependency))).findFirst();;

97 Element e = oElement.get();

98 if (e instanceof DeploymentNode && element instanceof DeploymentNode)

99 {

100 DeploymentNode d1 = (DeploymentNode) element;

101 DeploymentNode d2 = (DeploymentNode) e;

102 Relationship relationship = d1.uses(d2, "must-use","");

103 lRelationships.add(relationship);

104 }

105 }
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106 }

107 }

108
109 DeploymentView developmentView = views.createDeploymentView(adaptiveSystem , "

↪ LiveDeployment", title);

110 developmentView.setEnvironment("");

111 for (DeploymentNode node : model.getDeploymentNodes())

112 developmentView.add(node);

113
114 for (Relationship relation : lRelationships)

115 developmentView.add(relation);

116
117 StringWriter stringWriter = new StringWriter();

118 PlantUMLWriter plantUMLWriter = new PlantUMLWriter();

119 plantUMLWriter.write(workspace , stringWriter);

120
121 String diagram = stringWriter.toString();

122 diagram = diagram.replaceAll("(?m)rectangle.*", "");

123 diagram = diagram.replaceAll("(?m)@enduml.*", "");

124
125 String style = "skinparam node {\n" +

126 "\n" +

127 " backgroundColor <<Reference Input>> #3498db\n" +

128 " backgroundColor <<Alternative >> #3498db\n" +

129 " backgroundColor <<Measured Output>> #3498db\n" +

130 " backgroundColor <<Executor>> #3498db\n" +

131 " backgroundColor <<Sensor>> #3498db\n" +

132 " backgroundColor <<Monitor>> #3498db\n" +

133 " backgroundColor <<Analyzer>> #3498db\n" +

134 " backgroundColor <<Planner>> #3498db\n" +

135 " backgroundColor <<Effector>> #3498db\n" +

136 " FontColor <<Reference Input>> white\n" +

137 " FontColor <<Alternative >> white\n" +

138 " FontColor <<Measured Output>> white\n" +

139 " FontColor <<Executor>> white\n" +

140 " FontColor <<Sensor>> white\n" +

141 " FontColor <<Monitor>> white\n" +

142 " FontColor <<Analyzer>> white\n" +

143 " FontColor <<Planner>> white\n" +

144 " FontColor <<Effector>> white\n" +

145 "}\n" +

146 "@enduml";

147
148 diagram = diagram + style;

149
150 try {

151 Files.write(Paths.get(path + "ComponentDiagram.txt"), diagram.getBytes(),

↪ StandardOpenOption.CREATE, StandardOpenOption.TRUNCATE_EXISTING );

152 } catch (IOException e) {

153
154 e.printStackTrace();

155 }

156 }� �
Listing A.6 – Code to create the Structurizr DSL from UML Package model

� �
1 @startuml(id=LiveDeployment)

2 scale max 2000x2000

3 title Adaptive System Architecture
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4 caption This is the planned architecture of project:

↪ EnvironmentGuardRobotPlannedArchitecture

5
6 skinparam {

7 shadowing false

8 arrowColor #707070

9 actorBorderColor #707070

10 componentBorderColor #707070

11
12 noteBackgroundColor #ffffff

13 noteBorderColor #707070

14 }

15 node "adaptationManager" <<Managing Subsystem >> as 2 {

16 node "loopManager_1" <<Loop Manager>> as 4 {

17 node "slaveLoop" <<Loop>> as 6 {

18 node "slaveMonitor" <<Monitor>> as 9 {

19
20 }

21 node "slaveExecutor" <<Executor >> as 10 {

22
23 }

24 node "slaveAnalyzer" <<Analyzer >> as 11 {

25
26 }

27 node "knowledge" <<Knowledge >> as 8 {

28 node "strategy_1" <<Alternative >> as 18 {

29
30 }

31 node "strategy_2" <<Alternative >> as 19 {

32
33 }

34 node "rotationReference" <<Reference Input>> as 21 {

35
36 }

37 node "proximityReference" <<Reference Input>> as 20 {

38
39 }

40 }

41 node "slavePlanner" <<Planner>> as 7 {

42
43 }

44 }

45 node "masterLoop" <<Loop>> as 5 {

46 node "parameterMonitor" <<Monitor>> as 34 {

47
48 }

49 node "parameterExecutor" <<Executor >> as 35 {

50
51 }

52 node "masterAnalyzer" <<Analyzer >> as 33 {

53
54 }

55 node "masterPlanner" <<Planner>> as 32 {

56
57 }

58 }

59 }

60 }

61 node "environmentGuardRobot" <<Managed Subsystem >> as 3 {

62 node "wheels" <<Effector >> as 47 {



174 Appendix A. Technical Aspects of REMEDY

63
64 }

65 node "angularSpeed" <<Measured Output>> as 45 {

66
67 }

68 node "distance" <<Measured Output>> as 49 {

69
70 }

71 node "proximity" <<Sensor>> as 44 {

72
73 }

74 node "tachometer" <<Sensor>> as 48 {

75
76 }

77 node "speed" <<Effector >> as 46 {

78
79 }

80 }

81 33 .[#707070].> 32 : must-use

82 33 .[#707070].> 11 : must-use

83 32 .[#707070].> 35 : must-use

84 32 .[#707070].> 7 : must-use

85 35 .[#707070].> 10 : must-use

86 34 .[#707070].> 33 : must-use

87 34 .[#707070].> 9 : must-use

88 44 .[#707070].> 49 : must-use

89 11 .[#707070].> 8 : must-use

90 11 .[#707070].> 33 : must-use

91 11 .[#707070].> 20 : must-use

92 11 .[#707070].> 21 : must-use

93 11 .[#707070].> 7 : must-use

94 10 .[#707070].> 8 : must-use

95 10 .[#707070].> 35 : must-use

96 10 .[#707070].> 46 : must-use

97 10 .[#707070].> 47 : must-use

98 9 .[#707070].> 8 : must-use

99 9 .[#707070].> 34 : must-use

100 9 .[#707070].> 44 : must-use

101 9 .[#707070].> 11 : must-use

102 9 .[#707070].> 48 : must-use

103 7 .[#707070].> 8 : must-use

104 7 .[#707070].> 32 : must-use

105 7 .[#707070].> 10 : must-use

106 7 .[#707070].> 18 : must-use

107 7 .[#707070].> 19 : must-use

108 48 .[#707070].> 45 : must-use

109
110 skinparam node {

111
112 backgroundColor <<Reference Input>> #3498db

113 backgroundColor <<Alternative >> #3498db

114 backgroundColor <<Measured Output>> #3498db

115 backgroundColor <<Executor>> #3498db

116 backgroundColor <<Sensor>> #3498db

117 backgroundColor <<Monitor>> #3498db

118 backgroundColor <<Analyzer>> #3498db

119 backgroundColor <<Planner>> #3498db

120 backgroundColor <<Effector>> #3498db

121 FontColor <<Reference Input>> white

122 FontColor <<Alternative >> white
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123 FontColor <<Measured Output>> white

124 FontColor <<Executor>> white

125 FontColor <<Sensor>> white

126 FontColor <<Monitor>> white

127 FontColor <<Analyzer>> white

128 FontColor <<Planner>> white

129 FontColor <<Effector>> white

130 }

131 @enduml� �
Listing A.7 – DSL of PlantUML for the Environment Guard Robot





Appendix B
CONTROLLED EXPERIMENT ARTIFACTS

B.1 Consent Form

Informed Consent for Participant of a Comparative Experiment About
Architectural Domain-Specific Languages

Universidad de los Lagos

Title of the Experiment: Comparison of DCL-KDM and REMEDY.
Manager of the Experiment: Professor XXXXXX.

1. THE PURPOSE OF YOUR PARTICIPATION IN THIS EXPERIMENT
As part of this experiment, you are invited to participate in the evaluation of two architectural domain-specific languages

(DSL) that can be used to specify adaptive systems. The aim is to investigate empirically whether software engineers can reach
good levels of productivity when they specify architectures with DCL-KDM or REMEDY. In this experiment productivity
is measured by two variables: required time to complete an architecture specification and number of errors found in the
specification.

2. PROCEDURES
You will be asked to perform a set of tasks using DCL-KDM and REMEDY. These tasks consist of specifying the

architecture of two adaptive systems in a textually way according to the documentation of UML diagrams. Thus your role
is to write the architecture by using both DSLs and we will evaluate which DSL is more suitable for specifying adaptive
systems. The experiment will not evaluate your performance in any way.

Each one of the two sessions will last no more than 4 hours. The tasks are not very tiring but you are welcome to take
rest breaks as needed.

3. RISKS
There are no known risks to the participants of this experiment.

4. BENEFITS OF THIS EXPERIMENT
Your participation in this experiment will provide information that may be used to improve the development of DSLs in

the domain of adaptive systems. No guarantee of further benefits has been made to encourage you to participate. Your are
requested to refrain from discussing the evaluation with other people who might be in the candidate pool from which other
participants might be drawn.

5. EXTENT OF ANONYMITY AND CONFIDENTIALITY
The results of this experiment will be kept strictly confidential as your actions and comments as well. Your written consent

is required for the researchers to release any data identified with you as an individual to anyone other than personnel working
in the experiment. The information you provide will have your name removed and only a subject number will identify you
during analyses and any written reports of the research.

6. COMPENSATION
Your participation is voluntary and unpaid.

7. FREEDOM TO WITHDRAW
Your are free to withdraw from this experiment at any time for any reason.

1

Figure B.1 – Consent form in controlled experiment
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B.2 Subject Profile Form

Profile Questionnaire for Experiment Participants

Universidad de los Lagos

Title of the Experiment: Comparison of ARCH-KDM and REMEDY.
Manager of the Experiment: Professor Daniel San Martín.

Name: Date:

1. In the next two entries, please indicate the semester that corresponds to your lowest course unit and
the semester that corresponds to your highest course unit.

Lowest Semester: Highest Semester:

2. Have you programmed in any programming language? Yes No . If Yes please fill the following
fields.

a) What is the name of the programming language that you have the most experience with?

b) Programmer Experience:
• Less than 1 year
• 2 years
• More than 3 years

3. Have you ever attended a software engineering course? Yes No

4. Have you ever attended a software architecture course? Yes No

5. Have you ever attended a domain-specific language course? Yes No

6. Have you worked in industry as a software engineer? Yes No . If Yes please fill the following
fields.

a) Industry Experience:
• As a student internship
• Less than 1 year
• 2 years
• More than 3 years

Confidentiality and Data Protection: Subject to the following we will treat all information we hold
about you as private and confidential. You agree, however, that we may use this information just only for
the experiment entitled Comparison of ARCH-KDM and REMEDY.

1

Figure B.2 – Subject profile form
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B.3 Experiment Form

Experiment Report Form

Universidad de los Lagos

Title of the Experiment: Comparison of ARCH-KDM and REMEDY.
Manager of the Experiment: Professor Daniel San Martín.

Name : Experiment Date:

Group: Name of the Plugin:

1. Instructions
Please before start the activity, read and perform the following instructions:

1. Open the Eclipse IDE and create a new java project with the name of your group (GroupI or
GroupII);

2. Open the Plugin that has been assignment to you in order to perform the experiment. Create a new
file with the name of the group that you belong with the extension .dcl for ARCH-KDM or .sas
for REMEDY;

3. Open the created file but do not write on it;

4. Once previous steps are completed, analyze the UML diagram of this document and begin with
textual specification of the architecture. Before start writing in the editor annotate the start
time in this form. Once your specification is completed annotate the finish time in this
form.

5. If you need to go away from the computer then do not include that time. You can use an online
chronometer to control your work. http://online-stopwatch.chronme.com/;

6. Answer the questions that are at the end of this form;

7. When finishing, send an email to daniel.sanmartin@ulagos.cl with the following documents attached:

Informed Consent with signature;

Experiment Report Form;

Working files such as .dcl, .sas, .xmi and .ocl (specification and generated files) when appli-
cable.

1

Figure B.3 – Experiment form (Page 1)
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Start Time : End Time:

Leisure Time:

2. Questions
1. According to the work done in this activity, which is the effort employed to complete the activity

successfully?.

4. Very Difficult

3. Difficult

2. Average

1. Easy

2. Please choose one or more features that you consider strong in the plugin when specifying the
architecture of Figure 1.

a. Validity

b. Expressivity

c. Usability

d. Concisely

3. Please choose one or more features that you consider weak in the plugin when specifying the archi-
tecture of Figure 1.

a. Validity

b. Expressivity

c. Usability

d. Concisely

4. Write any observation or suggestion that you consider important to highlight.

3

Figure B.4 – Experiment form (Page 3)
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ANNEX A
IMPLEMENTATION REQUIREMENT OF ADAPTIVE

SYSTEMS

Table A.1 – Requisitos de implementação de um sistema adaptativo

Code Requirement
S-1 A Sensor element must collect measurements of variables of interest (from now on

referred to as sensed data) (e.g., quality attributes specified in the series of stan-
dards ISO 25000 like performance of a service, availability of resources, topology
information, configuration properties) in the context in which it is located, i.e. its
execution context or the context of the domain to which it belongs.

S-2 A Sensor element must temporarily store sensed data. Rationale. The Monitor
element’s responsiveness relies on the timely availability of the sensed data. This
availability can be achieved by supporting temporary storage, which would allow
Monitor elements to gather data at any moment. Nonetheless, Sensor elements can
use up memory space assigned to the Managed Application, thus, other storage
options should be taken into consideration.

S-3 A Sensor element must expose a subset of the sensed data to the set of Monitor
elements, whether both Monitor and Sensor elements have been deployed jointly or
independently.

S-4 A Sensor element must remove a subset of the sensed data being stored temporarily
when instructed by a Monitor element.

S-5 A Sensor element must perform primitive operations (e.g., count repetitions of a
measurement in a given time interval) on a subset of the sensed data. Rationale. The
ongoing transmission of sensed data from Sensor elements to Monitor elements can
overuse network resources, thereby hindering the Managed Application’s regular
operation. Placing primitive operations in Sensor elements can considerably reduce
the amount of data transmitted through the network when Monitor elements do not
require the entire collection of sensed data but, instead, calculations over it.

Continua na página seguinte
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Table A.1 – continua da página previa

Code Requirement
M-1 A Monitor element must obtain the sensed data from one or more Sensor elements

where it has been captured through the required access modes, i.e. by request (pull)
or per occurrence (push).

M-2 A Monitor element must calculate metrics (based on sensed data) related to the
variables of interest to characterize the current state of the Managed Application.
Said calculation can be made periodically or whenever a new measurement hap-
pens, which would produce average or instant calculations, respectively. This calcu-
lation can also involve the composition or correlation of metrics calculated by other
Monitor elements.

M-3 A Monitor element must make the calculated metrics available, through the Knowl-
edge Manager element, to other Monitor elements so they can compose their own
calculations.

M-4 A Monitor element must filter the calculated metrics before being reported to the
Analyzer element. The filter must be done through the application of a set of
domain-dependent monitoring rules over the calculated metrics.

M-5 A Monitor element must report to the Analyzer element control symptoms, i.e. the
metrics (simple or compound) that meet the conditions set by the monitoring rules.

M-6 A Monitor element must allow changing the periodicity in which it calculates its
metrics.

M-7 A Monitor element must allow to update the set of monitoring rules it applies to per-
form the filter of metrics. Such update may be triggered by, for example, a structural
change of the Managed Application, or a change in the quality scenarios. Rationale.
Business and system’s operation can make a variable of interest gain or lose rele-
vance, thereby requiring flexibility against such behavior at runtime. Furthermore,
providing elements with operations to control their internal behavior help support
such flexibility.

A-1 An Analyzer element must evaluate reported control symptoms against reference
values previously established (corrective behavior). Reference values must be re-
covered using the Knowledge Manager element. The evaluation should identify
violations that occur with respect to these reference values. A violation indicates an
adaptation symptom.

A-2 An Analyzer element must store a record of trends and violations through the
Knowledge Manager.

Continua na página seguinte



187

Table A.1 – continua da página previa

Code Requirement
A-3 An Analyzer element must reason about the reported control symptoms taking into

account the historical records of trends and violations (re-covered using the Knowl-
edge Manager element) to identify observable degradation trends with respect to the
reference values (also recovered using the Knowledge Manager element) to avoid
future violations (predictive behavior). The evaluation can employ time-series fore-
casting and queuing models. An observable degradation trend indicates an adapta-
tion symptom.

A-4 An Analyzer must create and send one or more change requests to the Planner ele-
ment if adaptation symptoms are detected. Such request must include which variable
of interest is at risk of being (predictive behavior) or has already been (corrective be-
havior) violated, the variable’s corresponding value, the motive for the request (e.g.,
violation, risk of violation), and the set of artifacts under the scope of the variable
of interest (i.e. affected artifacts).

P-1 A Planner element must reason about the variable of interest, the degree of the vio-
lation, and the set of affected artifacts to identify a reachable, optimum resolution.
For this reasoning, the Planner element must take into account the quality, quality
configuration, and artifact applicability models. This information must be recovered
using the Knowledge Manager.

P-2 A Planner element must perform a gap analysis to determine the necessary, high-
level actions (e.g., deploy new artifacts, redeploy existing artifacts, replace existing
artifacts with alternate ones, remove existing artifacts, update configuration setting)
to reach the identified resolution.

P-3 A Planner element must create and send an action plan to the Executor element.
Such action plan must include the set of high-level control actions determined with
the gap analysis that will modify the Managed Application.

P-4 A Planner element must store a record of optimum resolutions and their correspond-
ing action plans through the Knowledge Manager.

P-5 A Planner element must recover a previous action plan through the Knowledge Man-
ager if the reachable optimum resolution identified matches to one of the action
plans stored.

E-1 An Executor element must perform the realization of the action plan given by the
Planner element through the scripting of executable commands (e.g., compile, de-
ploy, redeploy) by the corresponding Effector elements.

E-2 An Executor element must use the corresponding Effector element to run commands
over the Managed Application.

Continua na página seguinte
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Table A.1 – continua da página previa

Code Requirement
EF-1 An Effector element must allow managing a resource or set of re- sources (e.g.,

manage a middleware to deploy, redeploy, and undeploy components).

K-1 A Knowledge Manager element must perform create, retrieve, update, and delete
operations over the repositories where the information of interest to the other ele-
ments of the autonomic infrastructure is stored.

K-2 A Knowledge Manager element must provide support operations for the analysis of
the information managed by it.
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