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RESUMO

MONTCHO, D. H. A. Seleção Bayesiana de variáveis usando o algoritmo de saltos re-
versíveis direcionado pelos dados: uma aplicação a dados de esquizofrenia. 2022. 73 p.
Dissertação (Mestrado em Estatística – Programa Interinstitucional de Pós-Graduação em Esta-
tística) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São
Carlos – SP, 2022.

Diagnósticos médicos baseados em sintomas são conhecidos por suas limitações, especialmente
no entendimento de distúrbios complexos como esquizofrenia. Abordagens modernas e com-
plementares para predizer o risco de tais doenças integram dados genômicos e cerebrais. Nesta
monografia, nosso objetivo é inferencial e preditivo. Na inferência, com base em dados de
ressonância magnética funcional e de polimorfismo de nucleotídeo único obtidos de pessoas
saudáveis e diagnosticadas com esquizofrenia, utilizamos um modelo probito Bayesiano para
selecionar as variáveis mais importantes a fim de discriminar os pacientes. Para estimar o risco
preditivo, os modelos mais promissores são combinados usando a ponderação bayesiana de
modelos. Para estas finalidades, propomos o algoritmo de saltos reversíveis orientado pelos
dados para realizar a seleção de variáveis, estimação de parâmetros dos modelos e predição para
futuros pacientes.

Palavras-chave: Esquizofrenia, Genética, Algoritmo de saltos reversíveis, MCMC, Inferência
Bayesiana, Seleção de variáveis.





ABSTRACT

MONTCHO, D. H. A. Bayesian variable selection using data driven reversible jump: an ap-
plication to schizophrenia data. 2022. 73 p. Dissertação (Mestrado em Estatística – Programa
Interinstitucional de Pós-Graduação em Estatística) – Instituto de Ciências Matemáticas e de
Computação, Universidade de São Paulo, São Carlos – SP, 2022.

Symptom based diagnosis are known to be limited specially concerning complex disorders such
as schizophrenia. Modern attempts in providing predictive risk for such disease, to assist existing
diagnosis tools, integrate genetic and brain information in what is known as imaging genetics. In
this monography, our goal is both inferential and predictive. Regarding the inference, given the
functional Magnetic Resonance Image and the Single Nucleotide Polymorphisms information
of people diagnosed with schizophrenia and healthy people, we use a Bayesian probit model to
select discriminating variables, while to estimate the predictive risk, the most promising models
are combined using a Bayesian model averaging scheme. For these purposes, we propose an
adaptive reversible jump markov chain monte carlo, named data driven reversible jump, for
selecting the variables, estimating their effects and the predictive risk for future subjects.

Keywords: Schizophrenia, Genetics, Informed reversible jump, MCMC, Bayesian inference,
Variable selection .
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CHAPTER

1
INTRODUCTION

Schizophrenia is a multifactorial disease whose etiology and pathophysiology aren’t
completely elucidated. It affects almost 1% of the population and commonly observed signs
and symptoms are hallucinations, delusions, impairment of cognitive functions, disordering of
thinking and akinesia (PATEL et al., 2014). Furthermore, until today, there is no medical test for
its diagnosis which is symptom-based and some limitations of such methods have been pointed
in Jacob (2013). Moreover, early detection of prodromal symptoms could provide good insights
for better targeted treatment and possibly prevent functional degradation, delaying or avoiding
transition to psychosis (RUHRMANN; SCHULTZE-LUTTER; KLOSTERKÖTTER, 2003).
Therefore, the development of new methods or tests that could assist existing medical tools is of
great public health relevance.

Modern attempts in this direction integrate neurological and genetic information in what
is known as imaging genetics, connectome genetics and variants of these terminologies. Imaging
genetics is a growing field of research in which both neuroimaging and genetic dataset are
integrated to unravel the impact of genetic variants on brain structure and function. The reaches
of such integration are countless, going from better understanding of psychiatric disorders to
their prevention. However, this integration brought new statistical challenges because of the
complexity and high dimensionality of such dataset, both in number of covariates and size.
Nathoo et al. (2019) and Pluta et al. (2018) provide a comprehensive review of statistical
methods and challenges in imaging genetics, respectively.

In this work, we have available functional Magnetic Resonance Imaging (fMRI) and
Single Nucleotide Polymorphism (SNP) information on healthy and patients diagnosed with
schizophrenia. fMRI was mainly designed to identify brain’s response to task by detecting
regional neuronal activity captured by blood oxygenation level-dependent (BOLD) variations.
Actually, it is at the core of neuroimaging for studying schizophrenia because of its low invasive-
ness, absence of radiation and relatively high quality resolution. A deeper introduction to fMRI
usefulness and statistical analysis can be obtained in Glover (2011), Gur and Gur (2010) and
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Lindquist et al. (2008). SNPs are substitution of a single nucleotide at a specific position in the
genome that occur in at least 1% of the population. They are frequently used in Genome Wide
Association Studies (GWAS) to find possible associations to disease and phenotypes (MAH;
CHIA, 2007).

The available dataset was collected by the Mind Clinical Imaging Consortium (MCIC)
(CHEN et al., 2012) as an effort of deeper understanding of mental disorder and contains
both imaging data on activation patterns using fMRI during a sensorimotor task and multiple
SNPs allele frequencies which have previously been implicated in schizophrenia on 118 healthy
controls and 92 subjects affected by this disorder. The goal of the MCIC study was to identify
regions of interest (ROI) in the brain with discriminating activation patterns between cases and
controls and relate them to a relevant set of SNPs able to explain these variations, a variable
selection problem clearly. More description of the experimental study and pre-processing can be
found in Chen et al. (2012) and Stingo et al. (2013).

Chen et al. (2012) used principal and independent component analysis and found ev-
idence of significant association between fMRI and SNPs. Stingo et al. (2013) extended this
inferential problem and developed an integrative Bayesian hierarchical mixture model and ap-
plied it to link brain connectivity, through fMRI, to genetic information from SNPs of healthy and
schizophrenic patients. Their method was innovative because it includes a network that captures
shared information between connected brain Regions Of Interest (ROIs). They identified ROIs
and SNPs with discriminating activation patterns between case and control and used the model
as a classifier for future subjects. In Chekouo et al. (2016) the objective was both inferential and
predictive. The authors developed a Bayesian predictive model that includes ROIs based network
and a new network capturing relations between SNPs and ROIs to quantify a subject’s risk of
being schizophrenic based on fMRI and SNPs information. Auxiliary indicator variables with
spike-slab priors and a Bayesian model averaging were used for model selection and prediction,
respectively.

In the Bayesian framework, model selection can be done using a variety of techniques.
O’Hara and Sillanpää (2009) and Gelman, Hwang and Vehtari (2014) provide a review of
some of those methods jointly with worked examples for illustration and comparison. Some of
them are based on information criterion such as Akaike Information Criterion (AIC) (AKAIKE,
1973), Bayesian Information Criterion (BIC) (SCHWARZ et al., 1978), Deviance Information
Criterion (DIC) (SPIEGELHALTER et al., 2002) and Widely Applicable Information Criterion
or Watanabe Akaike Information Criterion (WAIC) (WATANABE, 2013), among others. Other
fully Bayesian methodology such as Bayes factor (KASS; RAFTERY, 1995), selection with
spike and slab priors (MITCHELL; BEAUCHAMP, 1988; GEORGE; MCCULLOCH, 1997;
ISHWARAN; RAO et al., 2005), selection with shrinkage prior (ERP; OBERSKI; MULDER,
2019) and Reversible Jump Markov Chain Monte Carlo (RJ) (GREEN, 1995) are also worth
mentioning and will be theme of this work. However, when doing prediction, one does not need
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to restrict to only one model. Bayesian model averaging (HOETING et al., 1999) takes model’s
uncertainty into account and compute the prediction averaging over all competing models with
weights given by the posterior probability of each model leading to more trustworthy prediction.

In this work, we propose a new Bayesian predictive risk model for schizophrenia based
on a sparse set of ROIs and SNPs, selected using an adaptive RJ. Though widely known for
its ability in joint model selection and parameters estimation, traditional RJ lacks a straight
way of designing efficient proposals for inter and intra models moves. Usually, models are
proposed using uniform distribution which is not our best option if the model space is very
large, for example when selecting covariates from a set of very large candidates and parameters
are sampled from some Gaussian distribution. Furthermore, including information about the
target distribution could increase the efficiency of Markov Chain Monte Carlo (MCMC) when
compared with methods based on naive, uniform or random walk. For instance, this is done in
Hamiltonian Monte Carlo (NEAL, 2011) using information from the gradient. In the special
context of RJ, many works have been dedicated to try to overcome these limitations (BROOKS;
GIUDICI; ROBERTS, 2003; JAIN; NEAL, 2004; SARAIVA; MILAN, 2012). Recently, Zanella
(2020) proposed locally balanced proposals for discrete spaces on top of which Gagnon (2019)
also creates another informed RJ.

A special informed RJ strategy proposed in Zuanetti and Milan (2016) and also used in
Zuanetti and Milan (2017), named Data Driven Reversible Jump Markov Chain Monte Carlo
(DDRJ) makes use of the data to inform about the next best candidate model and has been
proposed for Quantitative Trait Locus (QTL) mapping i.e. for categorical covariates. Its name
comes from the fact that the candidate proposal is designed to be driven by the data. This
methodology leads to a better mixing, improves acceptance ratio and effective sample size. In
this work, our main contribution is that we build on top of the DDRJ and extends it to the
context where we have numerical or both categorical and numerical covariates. It is also worth
mentioning that, the search for the next candidate could be done in parallel, can rely on batches
of the dataset and could be spread on multiple threads to accelerate the search. Finally, we also
combine the most visited models, using Bayesian model averaging, to create a classifier for
future subjects and we compare its performance in terms of misclassification error and area under
the receiver operating characteristic curve to our benchmark results in Chekouo et al. (2016),
LASSO (TIBSHIRANI, 1996) and Random forest (BREIMAN et al., 1984).

Our goals, selecting ROIs and SNPs, and assessing predictive risk for schizophrenia
based on functional Magnetic Resonance Imaging (fMRI) and Single Nucleotide Polymorphism
(SNPs) information have been reached. Most ROIs 35, 57, 61, 115 and SNP 22 that we selected
were in accordance with results from other authors and also known to be related to the disease,
even though some new findings ROI 96 and SNPs 32, 61 have been suggested and may be subject
of deeper research. Compared to other methodologies as traditional LASSO and Random Forest,
in terms of predictive accuracy, the DDRJ also perfoms well when predictions are done using the
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Bayesian Model Averaging.

This monography is organized as follow: Chapter 2 reviews some of the existing Bayesian
model selection approaches and in Chapter 3 we describe the Bayesian model under consideration
to jointly select ROIs and SNPs. In Chapter 4, the DDRJ algorithm for doing efficient proposals
and model selection is explained and Chapter 5 shows its efficiency on simulated data. Finally,
Chapters 6 and 7 contain a real application to the MCIC dataset, a discussion on results and final
considerations, respectively.
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CHAPTER

2
A REVIEW OF BAYESIAN MODEL

SELECTION

In model selection, we aim at selecting a given model from a set of competing ones.
Each model could represent a specific probability distribution or density for the dataset or
indexed by a subset of covariates, or the number of components in a mixture model, or even
different architectures for a deep neural network (LECUN; BENGIO; HINTON, 2015). For
instance, variable (covariates, features) selection aims at picking a subset of important features
from a considerably large set of covariates. In classification context, It is equivalent to find the
most discriminatory set of covariates whereas, in regression context, it aims at selecting those
covariates able to explain a large fraction of the variability in the response variable. At least two
reasons could motivate this problem. The first one refers to the underlying sparse nature of the
process, in which case there are only a few numbers of covariates that explain the variation in
the response variable. The second reason may be that of increasing the predictive capacity of
the model using again a small set of variables. In this chapter, we briefly review some Bayesian
model selection methods.

For this purpose, consider Y = (Y1,Y2, . . . ,Yn) be a data possibly generated from a set of
competing models M1,M2, . . . ,MK indexed by k ∈ {1, . . . ,K} and parameters θ1,θ2, . . . ,θK .

2.1 Bayes Factor

The Bayesian solution to this problem is straight. Compute the posterior probability
of each model and choose the one with the largest value. Formally stating, we assign a prior
probability πk = P(Mk) to each model Mk. Then, the posterior probability is derived from Bayes
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theorem as

P(Mk|Y ) =
πkP(Y |Mk)

∑
K
k=1 πkP(Y |Mk)

(2.1)

where

P(Y |Mk) =
∫

P(Y,θk|Mk)dθk =
∫

P(Y |θk,Mk)p(θk|Mk)dθk =
∫

Lk(θk|Y )Pk(θk)dθk (2.2)

with Lk(θk|Y ) and Pk(θk) being the likelihood function and prior probability distribution for the
parameters, respectively, under model Mk.

As we are only interested in comparing model’s posterior probability and due to difficul-
ties for computing the denominator in Equation (2.1), we could take the ratio Rk j =

P(Mk|Y )
P(M j|Y ) =

πk
π j

P(Y |Mk)
P(Y |M j)

and decide against model M j if it is greater than 1. From this ratio, define the Bayes
factor (KASS; RAFTERY, 1995), to quantify the increase of evidence from the data against
model M j as

BFk j =
P(Y |Mk)

P(Y |M j)
=

P(Mk|Y )
P(M j|Y )

π j

πk
. (2.3)

Applicability of Bayes Factor (BF) only depends on being able to compute the integral
in Equation (2.2). It is also sensitive to the prior distribution and for improper prior, we may
have to deal with the marginalization paradox. Kass and Raftery (1995) suggested the following
interpretation for BFk j in Table 1.

Table 1 – Bayes factor interpretation.

log10(BFk j) BFk j Evidence against M j

0− 1
2 1 - 3.2 not worth more than a bare mention

1
2 −1 3.2 - 10 substantial
1−2 10 - 100 strong
> 2 > 100 decisive

2.2 Information Criteria: AIC, BIC, DIC, WAIC
Information criterion measures aim, in general, at estimating expected out-of-sample

prediction error from an adjusted within-sample error (GELMAN; HWANG; VEHTARI, 2014)
and consequently select the best model under a given metric. The metric for selection is really
important. For instance, in predictive modelling, one is usually interested in selecting the model
with the largest predictive accuracy on future data whereas, in inferential modelling, where the
interest lies in depicting or understanding relationships between covariates and the response
variable, one is looking for the model that better approximates the real relations given by the true
model. Usually, an information criterion is a balance of goodness of fit and a penalty function.
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Goodness of fit could be measured by likelihood, deviance, or their expectation and the penalty
as a measure of the complexity of the model, i.e., parameters dimension, for instance.

2.2.1 Akaike Information Criterion- AIC

In this section, we will outline the derivation and intuition behind AIC (AKAIKE,
1973) in the statistical context. Consider again a set of K models M1,M2, . . . ,MK representing
probability distribution or densities p1(y|θ1), p2(y|θ2), . . . , pK(y|θK) and suppose available some
dataset Y = (Y1,Y2, . . . ,Yn) from a probability distribution or density p(y|θ). Define by θ̂ j the
maximum likelihood estimator of θ under model M j and an estimate for p(y|θ) is given by
p̂ j(y|θ) = p(y|θ̂ j). The quality of this estimate could be measured by the Kullback-Leibler
divergence (KL) (KULLBACK; LEIBLER, 1951):

KL(p(y|θ), p̂ j(y|θ)) =
∫

p(y|θ) log
(

p(y|θ)
p̂ j(y|θ)

)
dy

=
∫
[p(y|θ) log(p(y|θ))− p(y|θ) log(p̂ j(y|θ))]dy. (2.4)

The best estimate would be the one that minimizes Equation (2.4). The first part of this
difference does not depend on p̂ j(y|θ), then we could forget it and only focus on maximizing

KL j =
∫

p(y|θ) log(p̂ j(y|θ))dy.

An intuitive estimate for KL j is:

KL j =
1
n

n

∑
i=1

log(p̂ j(yi|θ)) =
l j(θ̂)

n
.

However, this estimate is biased and this bias was corrected by Akaike who derived an
approximately unbiased estimate of KL j as

K̂L j =
l j(θ̂)

n
−

dim(θ j)

n
and the AIC is finally given by:

AIC j =−2nK̂L j =−2l j(θ̂)+2dim(θ j). (2.5)

According to KL, and then to AIC, the best model would be that with the smallest AIC.
Some caveats are worth mentioning. From this derivation, one can see that AIC was designed to
select model looking at predictive accuracy, so it might not select the true model if this were part
of our competing models. Moreover, AIC is not Bayesian because we only need the likelihood
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to compute it. It is in fact a penalized likelihood, with the penalty given by the dimension of the
model. Nonetheless, we have decided to include it for its popularity and historical purpose for
being the first information criterion to select model. Last but not least, for hierarchical models
where the model’s dimension is not really clear or for likelihood free methods, AIC becomes
impracticable.

2.2.2 Bayesian Information Criterion- BIC

Bayesian Information Criterion-BIC was proposed by Schwarz et al. (1978) to be an
alternative of AIC adding harsher penalty to the log-likelihood as in AIC. It is given by the
formula in Equation (2.6) below

BIC j =−2l j(θ̂)+dim(θ j) log(n). (2.6)

BIC’s penalty is harsher than AIC due to this log(n) factor and this penalty increases with
the sample size. As one can see, contrary to its name, BIC is not really Bayesian, because the
posterior distribution or density is not used for its computation, but this metric is justified under
a Bayesian framework. Indeed, one can show that the BIC is consistent i.e. it, asymptotically,
approximates the Bayes factor when the prior’s effect of the model is negligible compared to the
likelihood function and assuming a uniform distribution over the set of models. Thus, the BIC is
trying to find the model with the largest posterior probability.

It should be noted that BIC and AIC are solving different problems. AIC is trying to
select the model with the largest accuracy or generalization power and BIC is trying to select the
true model, if this were part of our candidate models.

2.2.3 Deviance Information Criterion- DIC

This is probably the most used criterion for model selection in Bayesian context. The
main reasons are that it is easy to compute and it is available in most standard softwares as JAGS
by Plummer et al. (2003) and BUGS by Lunn et al. (2000). DIC defined by Spiegelhalter et al.

(2002) also contains two parts. The goodness of fit using the posterior mean deviance

Eθ |y(D(θ)) = D̄(θ) =−2
∫

log[p(y|θ)]p(θ |y)dθ (2.7)

and the complexity term named effective number of parameters

pD = D̄(θ)−D(Eθ |y[θ ])

pD = −2
∫

log[p(y|θ)]p(θ |y)dθ +2log[p(y|Eθ |y)[θ ])]. (2.8)

DIC is defined as the sum of Equation (2.7) and Equation (2.8)
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DIC = D̄(θ)+ pD

= D̄(θ)+ D̄(θ)−D(Eθ |y[θ ])

DIC = 2D̄(θ)−D(Eθ |y[θ ]). (2.9)

A Monte Carlo approximation can be used to compute the DIC using a sample from the
posterior distribution obtained via any mechanism, Markov Chain Monte Carlo (MCMC) for
instance. Again, DIC intends to be a generalization of AIC and according to this metric, the best
model should be the one with smallest DIC.

2.2.4 Watanabe Akaike Information Criterion- WAIC

WAIC also known as Widely Applicable Akaike Information Criterion was proposed
by Watanabe and Opper (2010) as a fully Bayesian information criterion that generalizes AIC.
Again, It is a balance of goodness of fit and model complexity. The goodness of fit is computed
by the log pointwise predictive density (lppd)

lppd = log
n

∏
i=1

∫
p(yi|θ)p(θ |y)dθ

=
n

∑
i=1

log
[∫

p(yi|θ)p(θ |y)dθ

]
(2.10)

and one of the complexity measure pwaic is

pwaic =
n

∑
i=1

Varθ |y [log(p(yi|θ))] . (2.11)

Finally the WAIC is defined by a combination of Equation (2.10) and Equation (2.11) as:

WAIC = −2lppd+2pwaic (2.12)

= −2
n

∑
i=1

log
[∫

p(yi|θ)p(θ |y)dθ

]
+2

n

∑
i=1

Varθ |y [log(p(yi|θ))] .

Gelman, Hwang and Vehtari (2014) advocates that WAIC should be preferred to AIC,
BIC and DIC not only for the fact that it is fully Bayesian, but also for being an approximation
to cross-validation even when the Fisher information matrix, usually positive definite, has zero
eigenvalues. Moreover, Watanabe (2013) also introduced WBIC (Widely Bayesian Information
Criterion) as a generalization of BIC. The author argues that WAIC should be used when
searching for selecting model according to predictive loss whereas WBIC should be preferred
when looking for the true model.
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There is a plethora of information criteria that has not been mentioned here, almost
all of them balancing goodness of fit and complexity. From this section, it should be clear
that, information criterion measures are impracticable when the set of models is large. Imagine
yourself having to compute the metric for each model and then comparing them all. A typical
example relates to variable selection in high dimensional setting (p >> n) where the number
of possible models is at least 2p if one doesn’t include interactions. Definitely, we need other
techniques for such problems, subject of the next topics.

2.3 Shrinkage prior

One of the most used method for variable selection under a non Bayesian framework
is the Least Absolute Shrinkage and Selection Operator (LASSO) (TIBSHIRANI, 1996). It
finds the least squares estimate with an L1 penalty on the parameters. In that seminal work,
the author has also provided a Bayesian interpretation of his methodology. Indeed, the Lasso’s
solution is equivalent to the maximum a posteriori estimate with an independent Laplace or
double-exponential prior for each parameter. The result is that covariates with large effects are
maintained in the model while those with small effects are shrunk to zero. Therefore, the selected
model is the one containing covariates with non-zero coefficients. The same could be said on
ridge regression (HOERL; KENNARD, 1970) corresponding to a Bayesian regression with
independent normal priors. Such ideas are easily extended to other shrinkage priors leading
to Bayesian penalized methods. In this section, we will outline some useful priors for model
selection. Most of what follows was inspired by Erp, Oberski and Mulder (2019), O’Hara and
Sillanpää (2009) that provide a thorough review of Bayesian penalized methods for variable
selection and a general review of Bayesian variable selection, respectively.

A general framework for defining shrinkage priors was proposed by Ishwaran, Rao et al.

(2005) and will be used here. For this purpose, consider the fully Bayesian regression below

yi|β ,xi,σ
2 ∼ N(xiβ ,σ

2); xi = (xi1, . . . ,xip); i = 1, . . . ,n

β |τ ∼ N(0,Diag(τ)); β = (β0, . . . ,βp)

τ ∼ p(τ) (2.13)

σ ∼ p(σ).

Shrinkage prior are defined as the marginal distribution of β . The main point of Ishwaran,
Rao et al. (2005) is that one can obtain most common shrinkage prior, i.e. a marginal distribution
for β , using the hierarchical framework in Equation (2.13) controlled by the distribution on the
hyperparameter τ .
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2.3.1 Ridge and Lasso

∙ Ridge

The Ridge prior assumes an independent normal distribution for each coefficient. In a hier-
archical setup, assuming a uniform distribution for the scale parameter τ and marginalizing
over it, leads to a marginal normal distribution for each coefficient, as below

β j|τ ∼ Normal(0,τ), j = 1, . . . , p

τ ∼ Uni f (0,λ )

β j ∼ Normal(0,
1
λ
).

∙ Lasso

The Lasso prior assumes an independent Laplace prior for each coefficient. In a hierarchical
setup, assuming a specific gamma distribution for the scale parameter τ and marginalizing
over it, leads to the double exponential distribution, as below

β j|τ ∼ N(0,τ), j = 1, . . . , p

τ ∼ Exp
(

λ 2

2

)
, λ > 0

β j ∼ Laplace(0,λ ).

Using the same hierarchical setup and with a bit of algebra one can derive fancier
marginal distribution for β s. It is also worth mentioning some priors that have been gaining
popularity like the Horseshoe prior by Carvalho, Polson and Scott (2009), the penalizing model
complexity priors, PC-priors by Simpson et al. (2017) and product moment prior (pMOM) by
Johnson and Rossell (2012) used in Chekouo et al. (2016) for features selection.

We could not end this section without citing a seminal paper on Bayesian variable
selection named Stochastic Search Variable Selection (SSVS) by George and McCulloch (1997)
that inspired many modern variable selection techniques. For this purpose, we will briefly review
their approach.

2.3.2 Stochastic Search Variable Selection-SSVS

SSVS, which probably has some inspiration in the work from Mitchell and Beauchamp
(1988), is a Bayesian methodology for variable selection coined initially in regression context.
However, extensions to generalized linear models, time series, etc already exist. The main idea
of SSVS is to define a latent indicator variable γ j for each covariate x j that controls its presence
or absence in the model. Being strict, a covariate is absent from the model if and only if its
coefficient β j equals zero. However and usually, one consider a covariate to be absent if its
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coefficient lies in a neighborhood of zero with small radius, i.e. having distribution concentrated
around 0. This strategy also avoids dealing with models of different dimensions. The authors
defined the following hierarchical Bayesian model

yi|β ,xi,σ
2 ∼ N(xiβ ,σ

2), i = 1, . . . ,n

β j|γ j ∼ (1− γ j)N(0,τ j)︸ ︷︷ ︸
spike

+ γ j N(0,c jτ j)︸ ︷︷ ︸
slab

π(γ = (γ1, . . . ,γp)) =
p

∏
j=1

π
γ j
j (1−π j)

(1−γ j), π j = P(γ j = 1)

π j ∼ Beta(a,b)

σ
2|γ ∼ Inverse Gamma(νγ/2,λγνγ/2). (2.14)

In summary, when γ j = 1, a slab prior, i.e. a normal distribution with large variance,
controlled by c j is assumed for β j and this occurs with probability π j. Otherwise, a spike prior,
i.e. a normal concentrated around zero, controlled by τ j, for β j and this occurs with probability
1−π j. The method is sensitive to choice for τ j and c j and a dedicated analysis and practical
guidelines have been done and suggested by Scott and Berger (2010). Being able to write this
mixture of spike and slab prior as a multivariate normal distribution and assuming conjugate
prior on π j and σ2 permits to derive all full conditional posteriors (normal for β , inverse gamma
for σ2 and binomial for γ) and use a Gibbs sampling scheme to obtain L samples from the
posterior distribution. For variable selection, the marginal posterior probability for inclusion of
X j could be estimated by P̂(γ j|X,Y ) = 1

L ∑
L
l=1 I(γ l

j = 1), and the final model could be containing
only those variables with posterior probability for inclusion above a user defined threshold.

2.4 Reversible Jump MCMC

The Reversible Jump Markov Chain Monte Carlo was proposed by Green (1995) as a
generalization of the Metropolis-Hastings (MH) algorithm (HASTINGS, 1970; METROPOLIS
et al., 1953) for obtaining samples from a distribution on spaces of varying dimensions. In this
section we briefly review RJ, we point out its usefulness in model selection context and its main
practical limitation. This section was inspired from Lopes (2006) and Fan and Sisson (2011).

Let’s reconsider our model selection problem from a set of competing models M =

{M1,M2, . . . ,Mk, . . .} indexed by {1,2, . . . ,k, . . .} and parameters θ = {θ1,θ2, . . . ,θk, . . .}. Un-
der model Mk, the joint posterior distribution of θk and the model index k is given by:

p(θk,k|y) ∝ p(k)p(θk|k)p(y|θk,k). (2.15)
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RJ is a broader version of MH such that one can sample from the joint distribution in
Equation (2.15) where moves can be done through Markov chain between models (k,θk) and
(k

′
,θk′ ) having different dimensions k and k

′
. Suppose that the current state of the Markov chain

is (k,θk), RJ works as follow

1. Propose to visit model Mk′ with probability p(k → k
′
).

As k may not be equal to k
′
, a dimension matching procedure is needed.

2. Sample u ∼ q(u)k→k′ and u
′ ∼ q(u

′
)k′→k such that k+dim(u) = k

′
+dim(u

′
).

The new set of parameters could be obtained from a bijective transformation of (θk,u) as
follow

3. (θk′ ,u
′
) = gk,k′ (θk,u).

4. Having the new set of parameters, we accept this move k→ k
′
with probability min(1,α(k,k

′
)),

where

α(k,k
′
) =

p(θk′ ,k
′
)p(y|θk′ ,k

′
)

p(θK,k)p(y|θk′ ,k
′
)

p(k
′ → k)

p(k → k′
)

q(u
′
)k′→k

q(u)k→k′

∣∣∣∣∣∂gk,k′ (θK,u)

∂ (θK,u)

∣∣∣∣∣ (2.16)

where the last term in Equation (2.16) is the Jacobian of g.,.(., .).

As, one can see there are some tuning functions to be chosen: the proposal to visit the
next model, the proposal to match the dimension, and the bijective function to obtain the new set
of parameters. Thus, RJ’s efficiency strongly depends on them and our attempt with this work
is to propose clever way of choosing some of them. Running this procedure L times leads to
a sample of (k,θk). Any subsequent inference can be done from it. For instance, the posterior
probability of model Mk could be estimated by p̂(Mk|y) = 1

L ∑
L
l=1 I(kl = k), with I(kt = k) being

the indicator function. Finally, the model with the largest posterior could be the selected one.

2.5 Bayesian Model Averaging
A typical statistical framework will choose the model with the largest probability, estimate

functions of parameters, create standard errors, credible intervals and make predictions. However,
making decisions relying solely on this model ignores the uncertainty in the model selection.
What if we could include this uncertainty in our whole posterior inference? This is exactly what
is intended with Bayesian model averaging (BMA). As we saw in the previous section on RJ, a
byproduct is the posterior probability of models under evaluation. Thus, these probabilities could
be used as weights for further estimation remembering ensembles methods in machine learning.

For instance, a posterior mean of a parameter η could be estimated as E(η |y) =
∑t η̂t p(Mt |y), where η̂t = E(η |y,Mt . Usually, t the number of visited models could be very
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large and the equation above would be computationally intensive. To reduce this cost, one could
reduce the number of models in certain way. One possible strategy only includes models with
posterior probability greater than a threshold c defined by the user and we could approximate the
posterior mean of η as E(η |y)≈ ∑t:p(Mt |y)≥c) η̂t p(Mt |y). However, this choice clearly doesn’t
account for some models, as they are assigned small posterior probability and may impact on
prediction.

In summary, in our schizophrenia context where we intend to select ROIs, SNPs, and
create a classifier for future subjects, DDRJ will be used to solve the first part of variable selection
and BMA will be used for doing prediction. In the next section, we will describe the Bayesian
models under consideration. Hoeting et al. (1999) provides a great introduction to BMA and a
more recent work by Fragoso, Bertoli and Louzada (2018) reviewed thoroughly BMA.
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3
BAYESIAN MODEL DESCRIPTION

Given n individuals, let Y =(Y1, . . . ,Yn) be a set of binary random variables characterizing
the disease status, healthy or diagnosed with schizophrenia, of an individual. Also define X =

[Xi j]n×g, Z = [Zi j]n×m as the matrix of g ROI-based summaries of BOLD intensity and the matrix
of m genetic covariates (SNPs), respectively. For our purpose, we consider three Probit models.
A first model analyzing the relation between schizophrenia and ROIs, a second model analyzing
the SNP’s effect on schizophrenia and a last model that considers the joint effect of ROIs and
SNPs on schizophrenia. With Model 1 and 2 being a special case, this section will concentrate
on describing in detail Model 3 only. Results concerning Model 1 and 2 can be derived with
minor adjustments.

3.1 Bayesian Probit Model

To introduce the idea of the Probit model from Albert and Chib (1993), consider the
biological process of information, i.e. electric signal, exchange between neurons (LOVINGER,
2008). When an electrical signal reaches a neuron at rest, through the axon, its values must be
above a threshold for the neuron to fire, otherwise the neuron will keep resting. Imagine, we only
have access to the output (fire - no fire) without knowing the underlying process. The Probit data
augmentation approach relies on a latent random variable, unseen electrical signal, normally
distributed and classify the output according to its value being above a threshold or not. On the
same way, we introduce a latent continuous variable Y *

i , viewed as a hidden process that depends
on ROIs and SNPs, such that when its value is positive, the patient is classified as schizophrenic
and healthy otherwise. Opting for the Gaussian distribution to model this underlying process
leads us to nice conditional distributions for all other random variables and allows us to use Gibbs
Sampling to estimate their parameters. Depending on the distribution of Y *

i , we can have more
elaborate data augmentation method and probably Metropolis-Hasting within Gibbs to sample
from the posterior distribution. For instance, one could have followed the data augmentation
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model proposed in Polson, Scott and Windle (2013) and then use a Bayesian logit model. In
summary, our model assume there is a latent variable Y *

i such that:

Y *
i = β0 + ∑

p∈ G

βpXip + ∑
k∈M

αkZik + ∑
k∈M

δk(1−|Zik|)+ εi, εi ∼ N(0,1), (3.1)

Yi = I(Y *
i > 0)

Zik ∈ {−1,0,1}, for SNPs having genotype aa, aA, AA, respectively

G = {ROIs in the model}, M = {SNPs in the model},

P = Cardinality(G ), K = Cardinality(M ).

The goal of this work is to select, under a Bayesian framework, a set of discriminatory
ROIs and SNPs indexed by P and K from the set of available ROIs (g) and SNPs (m), respectively.
We also aim at providing estimates for the coefficients β0, βps and for the additive and dominant
effects αk, δk, respectively for the selected features. Let us denote the unknown parameters by
θ = (γ,K,P) with γ = (β = (β0,β1, . . . ,βP),α = (α1, . . . ,αK),δ = (δ1, . . . ,δK)). The likelihood
function for θ is given by

L(θ |Y *,X ,Z) =
n

∏
i=1

P(Y *
i |θ ,X ,Z) (3.2)

=
1

(
√

2π)n
exp−∑

n
i=1 ε2

i ,

where

εi = y*i −β0 −
P

∑
p=1

βpxip −
K

∑
k=1

αkxik −
K

∑
k=1

δk(1−|zik|).

Generally, statisticians use dummy variables to encode categorical variables, and we
could have also done the same here. However, in biology the genetic interpretation is easier when
the SNPs are encoded as we have done above.

We complete our model assigning independent prior distribution to each parameter and
the joint prior distribution is defined as follow:

π(θ) = π(K)π(P)π(β |P)π(α|K)π(δ |K)︸ ︷︷ ︸
π(γ|K,P)

, (3.3)

where

K ∼ Uni f (g), P ∼Uni f (m), β ∼ NP+1(0,σ2
β
I), α ∼ NK(0,σ2

αI), δ ∼ NK(0,σ2
δ
I)

with all hyperparameters fixed.
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3.2 Conditional Posteriors
Model in Equation (4.7) is a usual regression model in which we are assuming gaussian

priors for the coefficients. Hence all conditional posteriors can be easily derived as:

π(β |Y *,X ,Z,α,δ ) = N(β *,Γ1)

β
* = Γ1 [1|X ]

′
{Y *−Zα

′
− [1−|Z|]δ

′
}

Γ1 =

{
1

σ2
β

IP+1 +[1|X ]
′
[1|X ]

}−1

, (3.4)

π(α|Y *,X ,Z,β ,δ ) = N(α*,Γ2)

α
* = Γ2 Z

′
{Y *− [1|X ]β

′
− [1−|Z|]δ

′
}

Γ2 =

{
1

σ2
α

IK +Z
′
Z
}−1

, (3.5)

π(δ |Y *,X ,Z,β ,α) = N(δ *,Γ3)

δ
* = Γ3[1−|Z|]

′
{Y *− [1|X ]β

′
−Zα

′
}]

Γ3 =

{
1

σ2
δ

IK +[1−|Z|]
′
[1−|Z|]

}−1

, (3.6)

π(Y *
i |,θ ,yi,xi,zi) = Nt([1|Xi]β

′
+Ziα

′
+(1−|Zi|)δ

′
,1, left = 0) if yi = 1

π(Y *
i |θ ,yi,xi,zi) = Nt([1|Xi]β

′
+Ziα

′
+(1−|Zi|)δ

′
,1, right = 0) if yi = 0,

(3.7)

with IN being the identity matrix of size N, Nt being the truncated Normal Distribution
and [1|X ] being a matrix of dimension n× (P+1) having 1’s in the first column..

For intra model movement, a Gibbs sampling scheme can be used to update the parame-
ters iteratively given K and P. In the next section, we describe the Data Driven Reversible Jump
(DDRJ) to propose efficient ROIs and SNPs to be included (birth) into the current model or
excluded (death) from it.
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4
DATA DRIVEN REVERSIBLE JUMP

Despite its generalization, RJ also has some drawbacks. Its performance relies on the
probability of visiting the next model and the proposal distribution to obtain the next set of
parameters. Indeed, bad proposals will usually lead to high rejection rate, low mixing and
consequently more iterations would be needed for convergence. In summary, the consequences
are inefficient moves and delay in convergence, even lack of convergence for a fixed number of
iterations. One reason to understand these points may be that of trying to move from a parameter
having high density in a bad model to a parameter of low density in a good model. There is a
high probability of this move being rejected and if the proposals are bad, this kind of move may
often happen and not be accepted.

Data Driven Reversible Jump (ZUANETTI; MILAN, 2016; ZUANETTI; MILAN, 2017)
is an attempt to solve this problem and will be matter of discussion in this chapter. Much of the
literature and recent works on RJ have been devoted to strategy of designing good proposals.
Brooks, Giudici and Roberts (2003), Ehlers and Brooks (2008), Papathomas, Dellaportas and
Vasdekis (2009), Gagnon (2019), Zanella (2020) have suggested some methods for designing
proposals in a variety of context. Our approach here follows that of Zuanetti and Milan (2016)
named Data Driven Reversible Jump (DDRJ) in sequel where the methodology was applied
in genetics context for Quantitative Locus Trait (QTL) mapping. The main idea is to design a
proposal driven by the data that leads to lower rejection rate, better mixing and higher effective
sample size.

Just for analogy to understand DDRJ, think about the standard greedy method when
creating classification trees (BREIMAN et al., 1984). First of all, one has to choose a loss or
negative loss function, usually Information Gain or Gini Impurity, to decide on the best split,
i.e. the combination of a node and a splitting point. For each combination of a candidate node
and splitting point, Information Gain or Gini Impurity is computed and the combination that
maximizes or minimizes our function is selected as the best split. DDRJ is quite similar with this
approach, in the sense that it introduces a metric for deciding on the next model but holding the
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random essence from RJ.

In particular, in traditional RJ for variable selection, the next model to be visited is chosen
uniformly from the set of candidate models, which is not the best we can do if our search space
is large as in many combinatorial problems. Therefore, instead of using a uniform distribution,
we propose a strategy to assign higher weights to more promising candidate models .

Our strategy relies on, at each iteration, trying to include or exclude a single covariate
from the current. Thus, consider the current model with some covariates and First, we decide
if we will include a new covariate (birth) or exclude (death) one that is present in the model.
Obviously, in the case where we don’t have any covariate, we would opt for a birth move and at
the other extreme when the model is saturated with all the covariates we would opt for a death
move. Then, we define a metric roughly understood as a criterion to choose the next candidate
and not a rigorous definition of metric in mathematics1. After obtaining the candidate model, we
sample the new set of parameters using any mechanism and we then test its acceptance. From
a practical perspective, this step should be fast and hopefully parallelizable and may not even
use the full dataset if possible to avoid more time consumption in our MCMC scheme. We also
argue that the DDRJ could be coupled with recent advances in scalable Bayes (ANGELINO;
JOHNSON; ADAMS, 2016), specially in the regime of big p and n.

1 a metric in math should have some properties as identity, symmetry, triangle inequality.
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4.1 Model 1: Selecting ROIs

In this section, we define the DDRJ for ROIs selection where the model under considera-
tion is

Y *
i = β0+ ∑

p∈G

βpXip+εi, εi ∼ N(0,1), Yi = I(Y *
i > 0), G = {ROIs in the model}. (4.1)

Assume that the current model in Equation (4.1) contains Card(G )2 = P ∈ {0,1, . . . ,g}
ROIs. Thus, the next move is decided as follow

1. if P = 0, no ROI is in the model, then a birth (b) movement is proposed with probability
p(b|P = 0) = 1;

2. if 0 < P < g, some ROIs are in the model, then a birth or death movement is proposed
with probability p(b|P) = p(d|P) = 1

2 ;

3. if P = g, all the ROIs are in the model, then a death (d) movement is proposed with
probability p(d|P = g) = 1.

∙ Birth

Let us suppose that the current model has P ROIs, denote by XP its design matrix and
that a birth move has been chosen. We propose to choose the next candidate from the
remaining ROIs X−P with probability given pb j =

|cor(ξP,X j)|
∑X−P |cor(ξP,X j)| , where cor(ξP,X j) is

the correlation between a candidate ROI X j and the residuals ξP from the current model.
Any other metric that could gather how relevant each candidate is in respect to the current
residual can be used to easier the Markov chain’s direction.

After selecting this ROI, we sample β
b from the full conditional π(β |XP+1,Y *), XP+1

being the design matrix with the new candidate, and test its acceptance with probability
ψb = min(1,Ab), where

Ab =
L(β b|XP+1,Y *)π(β b)q(β |β b)

L(β |XP,Y *)π(β )q(β b|β )
(4.2)

q(β b|β ) = p(b|P)pb jπ(β
b|Y *,XP+1) and

q(β |β b) = p(d|P+1)pd jπ(β |Y *,XP).

2 Card : cardinality
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∙ Death

A possible way of choosing the candidate ROI to be deleted is by comparing the size of
their coefficients after standardizing and scaling the design matrix. Then, we propose to

select a ROI to be excluded with probability pd j =
1

|β j |

∑
P
j=1

1
|β j |

. The greater the coefficient of

a given ROI, the lesser is its probability to be deleted. Again, any other metric to choose
the ROI to be deleted is valid.

After selecting this ROI, we sample β
d from the full conditional π(β |XP−1,Y *), XP−1

being the design matrix without the candidate covariate to be deleted, and test its acceptance
with probability ψd = min(1,Ad), where

Ad =
L(β d|XP−1,Y *)π(β d)q(β |β d)

L(β |XP,Y *)π(β )q(β d|β )
(4.3)

q(β d|β ) = p(d|P)pd jπ(β
d|Y *,XP−1), and

q(β |β d) = p(b|P−1)pb jπ(β |Y *,XP).

4.2 Model 2: Selecting SNPs

In this section, we define the DDRJ for SNPs selection where the model under considera-
tion is

Y *
i = β0 + ∑

k∈M

αkZik + ∑
k∈M

δk(1−|Zik|)+ εi, εi ∼ N(0,1), Yi = I(Y *
i > 0), (4.4)

M = {SNPs in the model}.

Assume that at a stage of the process, the model in Equation (4.4) contains Card(M ) =

K ∈ {0,1, . . . ,m} SNPs. Thus, the next step is decided as follow:

1. if K = 0, no SNP in the model, then a birth (b) movement is proposed with probability
p(b|K = 0) = 1;

2. if 0 < K < m, some SNPs are in the model, then a birth or death movement is proposed
with probability p(b|K) = p(d|K) = 1

2 ;

3. if K = m, all the SNPs are in the model, then a death (d) movement is proposed with
probability p(d|K = m) = 1.
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∙ Birth

Assume that the current model contains K SNPs. The choice of the next SNP is guided by
its association with the residuals ξK from model in Equation (4.4). Each SNP Zk is a factor
with 3 levels, thus the association with the current residuals can be measured using the
Kruskal-Wallis (KW) statistics and Zk is selected with probability pbk =

KW(ξk,Zk)
∑Z−K KW(ξk,Zk)

,

where KW(ξK,Zk) is the KW-statistics summarizing the association between the residuals
ξK and the candidate Zk, and Z−K is the set of remaining candidate SNPs to be included.
It’s worth mentioning that we are not testing hypothesis but only using the test’s statistic
as a metric to quantify levels of association. Again, any other measure of association could
have been used, F-statistic for instance just to cite one.

After selecting this SNP, we sample (β0,α , δ )b from π(β0,α,δ |ZK+1,Y *), ZK+1 being
the design matrix with the new candidate SNP. This sampling will occur in one step using
a joint matrix representation with a Gibbs sampling scheme and test its acceptance with
probability ψb = min(1,Ab).

Ab =
L((β0,α,δ )b|ZK+1,Y *)π((β0,α,δ )b)q((β0,α,δ )|(β0,α,δ )b)

L((β0,α,δ ))|ZK,Y *)π(β0,α,δ )q((β0,α,δ )b|(β0,α,δ ))
, (4.5)

q((β0,α,δ )b|(β0,α,δ )) = p(b|K)pbkπ((β0,α,δ )b|Y *,ZK+1) and

q((β0,α,δ )|(β0,α,δ )b) = p(d|K +1)pdkπ((β0,α,δ )|Y *,ZK).

∙ Death

As Zk only takes value in {−1,0,1}, the absolute value of the coefficients αk and δk

in Equation (4.4) gives a measure of its importance. We propose to select a SNP to be

excluded with probability pdk =
1

|αk |+|δk |

∑
K
k=1

1
|αk |+|δk |

. The higher the effect of the SNP, the lesser is

its probability to be deleted.

After selecting this SNP, we sample (β0,α , δ )d from π(β0,α,δ |ZK−1,Y *), ZK−1 being
the design matrix without the candidate SNP to be deleted. This sampling will occur in
one step and we test its acceptance with probability ψd = min(1,Ad), where

Ad =
L((β0,α,δ )d|ZK−1,Y *)π((β0,α,δ )d)q((β0,α,δ )|(β0,α,δ )d)

L((β0,α,δ ))|ZK,Y *)π(β0,α,δ )q((β0,α,δ )d|(β0,α,δ ))
, (4.6)

q((β0,α,δ )d|(β0,α,δ )) = p(d|K)pdkπ((β0,α,δ )d|Y *,ZK−1) and

q((β0,α,δ )|(β0,α,δ )d) = p(b|K −1)pbkπ((β0,α,δ )|Y *,ZK).
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4.3 Model 3: Selecting ROIs and SNPs
Model 3 aims at selecting ROIs and SNPs in an integrative manner, i.e. jointly. Let’s

remember the model under study defined by

Y *
i = β0 + ∑

p∈ G

βpXip + ∑
k∈M

αkZik + ∑
k∈M

δk(1−|Zik|)+ εi, εi ∼ N(0,1), (4.7)

Yi = I(Y *
i > 0), Zik ∈ {−1,0,1},

G = {ROIs in the model}, M = {SNPs in the model}.

We could think of, mainly, three alternatives to perform this joint variable selection, all
worth testing to draw conclusions about which is better. The final choice relies on whether one
sees ROIs or SNPs to be the most relevant part of the available information. The alternatives are

∙ Alternative 1: Select all possible ROIs and then select SNPs. In other words, run Model 1
and then run Model 2 conditional on selected ROIs;

∙ Alternative 2: Select all possible SNPs and then select ROIs i.e. In other words, run
Model 2 and then run Model 1 conditional on selected SNPs;

∙ Alternative 3: Randomly alternate between Model 1 and Model 2.

Alternatives 1 and 2 are just a combination of what have been discussed in the previous
sections. The last option is more challenging, mainly for one reason. In Model 1 and 2, all the
features were of the same type, either numerical or categorical, and thinking of a data driven
metric to include or exclude candidate was simple. However, in the joint framework, this is not
so obvious and the goal here is to propose a way to tackle this problem. First of all, when trying
to include or exclude ROIs we will keep using correlation and coefficients size as it was the case
in Model 1, and we will also keep using KW statistic and coefficients size to include or delete
SNPs as in Model 2.

At each stage of the process, we will randomly decide to work ROIs and SNPs in the
following manner:

1. Decide with probability s = g
m+g and 1− s = m

m+g to work on ROIs or SNPs, respectively.
This step allows us to jump into ROIs or SNPs space and then work on them separately.
This is fair enough if m ≈ g as s ≈ 0.5. However, if one dimension dominates the other,
it may be better to select variables separately using model 1 and 2 or simply design an
adaptive probability to favor any desired space.

2. If ROIs space has been selected, then we apply Model 1 strategy conditional on already
selected SNPs at this moment.
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3. If SNPs space has been selected, then we apply Model 2 strategy conditional on already
selected ROIs at this moment.

The next two subsections can be skipped if one has already understood all the process,
though we decided to include all necessary details for better understanding.

4.3.1 What if we jump into ROIs space?

Suppose that the current model contains P ROIs and K SNPs, with parameters θ =

(β ,α,δ ) and we decide to jump to ROIs space. Then:

1. if P = 0 then a birth (b) movement is proposed with probability p(b|P = 0) = 1;

2. if 0 < P < g then a birth or death movement is proposed with probability p(b|P) =
p(d|P) = 1

2 ;

3. if P = g then a death (d) movement is proposed with probability p(d|P = g) = 1.

∙ Birth

Let’s suppose that a birth move has been chosen. We propose to choose the next candidate
from the remaining ROIs X−P with probability pb j =

|cor(ξP,X j)|
∑X−P |cor(ξP,X j)| ,where cor(ξp,X j) is

the correlation between a candidate ROI X j and the residuals ξP from the current model.

After selecting a ROI, we sample θ b from the full conditional π(β ,α,δ |XP+1,ZK,Y *) and
test its acceptance with probability ψb = min(1,Ab), where

Ab =
L(θ b|XP+1,ZK,Y *)π(θ b)q(θ |θ b)

L(θ |XP,ZK,Y *)π(θ)q(θ b|θ)
, (4.8)

q(θ b|θ) = p(b|P)pb jπ(θ
b|XP+1,ZK,Y *) and

q(θ |θ b) = p(d|P+1)pd jπ(θ |XP,ZK,Y *).

∙ Death

A possible way of choosing the candidate ROI to be deleted is by comparing the size of
their coefficients after normalizing the design matrix. Then, we propose to select a ROI

to be excluded with probability pd j =
1

|β j |

∑
P
j=1

1
|β j |

. The greater the coefficient of a given ROI,

the lesser is its probability to be deleted.
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After selecting a ROI, we sample θ d from the full conditional π(β ,α,δ |XP−1,ZK,Y *) and
test its acceptance with probability ψd = min(1,Ad), where

Ad =
L(θ d|XP−1,ZK,Y *)π(θ d)q(θ |θ d)

L(θ |XP,ZK,Y *)π(θ)q(θ d|θ)
, (4.9)

q(θ d|θ) = p(d|P)pd jπ(θ
d|Y *,XP−1,ZK) and

q(θ |θ d) = p(b|P−1)pb jπ(θ |Y *,XP,ZK).

4.3.2 What if we jump into SNPs space?

Suppose that the current model contains P ROIs and K SNPs, with parameters θ =

(β ,α,δ ) and we decide to jump into SNPs space. Then:

1. if K = 0 then a birth (b) movement is proposed with probability p(b|K = 0) = 1;

2. if 0 < K < m then a birth or death movement is proposed with probability p(b|K) =

p(d|K) = 1
2 ;

3. if K = m then a death (d) movement is proposed with probability p(d|K = m) = 1.

∙ Birth

The choice of the next SNP is guided by its association with the residuals ξK from model in
Equation (4.7). Zk is a factor with 3 levels, so the association with the current residuals can
be measured using the Kruskal-Wallis(KW) statistics and Zk is selected with probability
pbk =

KW(ξk,Zk)
∑Z−K KW(ξk,Zk)

, where KW(ξk,Zk) is the KW-statistics summarizing the association

between the residuals ξK and the candidate Zk and Z−K is the set of remaining candidate
SNPs to be included. It’s worth mentioning that we’re not testing hypothesis but only using
the test’s statistic as a metric to quantify levels of association.

After selecting a SNP, we sample θ b from the full conditional π(β ,α,δ |XP,ZK+1,Y *) and
test its acceptance with probability ψb = min(1,Ab), where

Ab =
L(θ b|XP,ZK+1,Y *)π(θ b)q(θ |θ b)

L(θ |XP,ZK,Y *)π(θ)q(θ b|θ)
, (4.10)

q(θ b|θ) = p(b|K)pbkπ(θ b|XP,ZK+1,Y *) and

q(θ |θ b) = p(d|K +1)pdkπ(θ |XP,ZK,Y *).
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∙ Death

As Zk only takes value in {−1,0,1}, the absolute value of the coefficients αk and δk

in Equation (4.7) gives a measure of its importance. We propose to select a SNP to be

excluded with probability pdk =
1

|αk |+|δk |

∑
K
k=1

1
|αk |+|δk |

. The higher the effect of the SNP, the lesser

is its probability to be deleted.

After selecting a SNP, we sample θ d from the full conditional π(β ,α,δ |XP,ZK−1,Y *) and
test its acceptance with probability ψd = min(1,Ad).

Ad =
L(θ d|XP,ZK−1,Y *)π(θ d)q(θ |θ d)

L(θ |XP,ZK,Y *)π(θ)q(θ d|θ)
, (4.11)

q(θ d|θ) = p(d|K)pdkπ(θ d|Y *,XP,ZK−1) and

q(θ |θ d) = p(b|K −1)pbkπ(θ |Y *,XP,ZK).
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4.4 Algorithms

4.4.1 Model 1: Selecting ROIs

This section describes the algorithm for performing ROIs selection.

Algorithm for selecting ROIs

1. Setup P = 0 to start without any ROI and sample Y * from the truncated normal distribution
in Equation (3.7).

2. For the lth iteration l = 1, . . . ,L

a) Choose a birth or death movement

b) If a birth has been chosen then

i. Select the ROI to be included using pb j

ii. Sample the candidate value β
b from the full conditional in Equation (3.4)

iii. Accept the proposal with probability ψb given the new candidate parameters

iv. If the candidate is accepted, update the model size P(l) = P(l−1)+ 1, the new
parameters are β

b and sample Y *
b from π(Y *|β b,XP+1,Y ) given by the full

conditional in Equation (3.7)

v. If the candidate is not accepted, do P(l) = P(l−1) and the new set of parameters
β and Y * are just updated given the current XP using a Gibbs Sampling.

c) If a death has been chosen then

i. Select the ROI to be excluded using pd j

ii. Sample the candidate value β
d from the full conditional Equation (3.4)

iii. Accept the proposal with probability ψd given the candidate parameters

iv. If the candidate is accepted, update the model size P(l) = P(l−1)− 1, the new
parameters are β

d and sample Y *
d from π(Y *|β d,XP−1,Y ) given by the full

conditional in Equation (3.7)

v. If the candidate is not accepted, do P(l) = P(l−1) and the new set of parameters
β and Y * are just updated given the current XP and Y using a Gibbs Sampling.
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4.4.2 Model 2: Selecting SNPs

This section describes the algorithm for performing SNPs selection.

Algorithm for selecting SNPs

1. Setup K = 0 to start without SNPs and sample Y * from the truncated normal distribution
in Equation (3.7)

2. For the lth iteration l = 1, . . . ,L

a) Choose a birth or death movement

b) If a birth has been chosen then

i. Select the SNP to be included using pbk

ii. Sample the candidate value (β0, α , δ )b from the full conditional π(β0,α,δ |ZK+1,Y *)

iii. Accept the proposal with probability ψb in Equation (4.5) given the candidate
parameters

iv. If the candidate is accepted, update the model size K(l) = K(l−1)+1, the new
parameters are (β0,α,δ )b and sample Y *

b from π(Y *|(β0,α,δ )b,ZK+1,Y ) given
by the full conditional in Equation (3.7)

v. If the candidate is not accepted, do K(l) = K(l−1) and the new set of parameters
(β0,α,δ ), Y * are just updated given the current ZK using a Gibbs Sampling.

c) If a death has been chosen then

i. Select the SNP to be excluded using pdk

ii. Sample the candidate value (β0, α , δ )d from the full conditional π(β0,α,δ |ZK−1,Y *)

iii. Accept the proposal with probability ψd in Equation (4.6) given the candidate
parameters

iv. If the candidate is accepted, update the model size K(l) = K(l−1)−1, the new
parameters are (β0,α,δ )b and sample Y *

d from π(Y *|(β0,α,δ )b,ZK−1,Y ) given
by the full conditional in Equation (3.7)

v. If the candidate is not accepted, do K(l) = K(l−1) and the new set of parame-
ters (β0,α,δ ), Y * are just updated given the current ZK and Y using a Gibbs
Sampling.
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4.4.3 Model 3: Selecting ROIs and SNPs

This section describes the algorithm for performing ROIs and SNPs selection.

Algorithm for jointly selecting SNPs and ROIs

1. Setup P = K = 0 to start without ROIs or SNPs and sample Y * from the truncated normal
distribution in Equation (3.7)

2. For the lth iteration l = 1, . . . ,L

a) Choose a jump into ROIs or SNPs space

b) If a jump into ROIs has been accepted

i. Choose a birth or death movement

ii. If a birth has been chosen then:

A. Select the ROI to be included using pb j

B. Sample the candidate value θ
b from the full conditionals using Equations

(3.4), (3.5), (3.6)

C. Accept the proposal with probability ψb in Equation (4.8) given the candi-
date parameters

D. If the candidate is accepted, update the model size P(l) = P(l−1)+1, K(l) =

K(l−1), the new parameters are θ
b and sample Y *

b from π(Y *|θ b,XP+1,ZK,Y )

given by the full conditional in Equation (3.7)

E. If the candidate is not accepted, do P(l) = P(l−1), K(l) = K(l−1), and the new
parameters θ and Y * are updated given ZK(l−1) , XP(l−1) and Y .

iii. If a death has been chosen then

A. Select the ROI to be excluded using pd j

B. Sample the candidate value θ
d from the full conditionals using Equations

(3.4), (3.5), (3.6)

C. Accept the proposal with probability ψd in Equation (4.9) given the candi-
date parameters

D. If the candidate is accepted, update the model size P(l) = P(l−1)−1, K(l) =

K(l−1), the new parameters are θ
d and sample Y *

d from π(Y *|θ d,XP−1,ZK,Y )

given by the full conditional in Equation (3.7)

E. If the candidate is not accepted, do P(l) = P(l−1), K(l) = K(l−1), and the new
parameters θ and Y * are updated given ZK(l−1) , XP(l−1) and Y .

c) If a jump into SNPs space has been accepted

i. Choose a birth or death movement

ii. If a birth has been chosen then
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A. Select the SNP to be included using pbk from Equation (4.3.2)

B. Sample the candidate value θ
b from the full conditionals from Equations

(3.4), (3.5), (3.6) with minor change

C. Accept the proposal with probability ψb in Equation (4.10) given the candi-
date parameters

D. If the candidate is accepted, update the model size P(l) = P(l−1), K(l) =

K(l−1)+1, the new parameters are θ
b and sample Y *

b from π(Y *|θ b,XP,ZK+1,Y )

given by the full conditional in Equation (3.7)

E. If the candidate is not accepted, do P(l) = P(l−1), K(l) = K(l−1), and the new
parameters θ and Y * are updated given ZK(l−1) , XP(l−1) and Y .

iii. If a death has been chosen then:

A. select the SNP to be excluded using pdk

B. sample the candidate value θ
b from the full conditional Equation (3.4),

(3.5),(3.6) with minor change in one step using a joint structure

C. Accept the proposal with probability ψd in Equation (4.11) given the candi-
date parameters

D. Update the model size P(l) = P(l−1), K(l) = K(l−1)− 1, the new parame-
ters are θ

d and sample Y *
d from π(Y *|θ d,XP−1,ZK,Y ) given by the full

conditional in Equation (3.7)

E. If the candidate is not accepted, do P(l) = P(l−1), K(l) = K(l−1), and the new
parameters θ and Y * are updated given ZK(l−1) , XP(l−1) and Y .
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4.5 Variable selection and Prediction
As stated at the beginning of the work, our goal is two-fold: variable selection and

prediction that can be achieved using two different strategies. On one hand, this goal can be
attained in two separate steps with variable selection done using the full dataset and prediction
done with a cross-validation approach to access the model’s quality. On the other hand, the
full process can be done in only one step using a cross validation approach for both variable
selection and prediction. In any case, we can decide to select only those variables with posterior
probability of inclusion, estimated as the relative frequency of the coefficient being non null,
above a threshold (0.5 for instance).

Here, we opt for the first strategy where the full dataset is used for variable selection ,
which allows us to have a greater sample size that benefits our method, and we keep all features
with marginal posterior probability of inclusion greater than 0.5. For prediction, we use a 5-folds
cross-validation with the variable selection algorithm run on each fold. As it has been said
through out this work, the manuscripts from Chekouo et al. (2016) and Stingo et al. (2013) will
be our benchmark. Thus, following the same approach there, the 5-folds cross-validation with 94
healthy controls and 74 patients for the training set, and 24 healthy controls and 18 patients for
the validation set will be used for predictive performance analysis.

To predict the disease status for a new subject having ROIs and SNPs Xnew,Znew, the latent
variable Y *

new| · · · = ∑t

(
β̂0

t
+∑p∈G β̂p

t
Xnew

ip +∑k∈M α̂k
tZnew

ik +∑k∈M δ̂k
t
(1−|Znew

ik |)
)

P(Mt |y)
is first computed with parameters set to the posterior mean and the posterior predictive probability
of disease is computed as P(Ynew = 1| . . .) = Φ(Y *

new| . . .), Φ(.) being the standard normal
cumulative distribution function. Note how a Bayesian Model Averaging is employed to compute
the latent variable Y *

new| . . . using all the t visited models Mt . From these posterior probabilities
and latent variables, we can compute the Area Under the receiver operating characteristics Curve
(AUC) and Misclassification Error rate (MCE).
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CHAPTER

5
SIMULATION STUDY

This section summarizes a simulation study to demonstrate the efficiency of our method
for performing variable selection using Data Driven Reversible Jump and for making prediction
for future subjects. For each scenario, 35.000 MCMC iterations were run with a burn-in period
of 5.000 iterations holding one sample of ten. To access convergence, monitored through log
posterior, we run two chains with randomly chosen initial points. Each of the following section
contains two types of studies: one in which we test our method on a simulated dataset that
mimics the real dataset with the same number of ROIs and SNPs and in the second study we
increase the number of ROIs and SNPs. We also use the posterior probability of each model to
compare our method to the traditional Reversible jump with uniform proposals between models,
expecting that our methodology will assign a higher posterior probability to the true model, due
to faster convergence. Finally, we compare our model and inference methodology to the LASSO
and Random forest in terms of missclassification error and area under the ROC curve-AUC using
a 5-fold cross-validation. All the results were run using the R software (RStudio Team, 2020)
on a Intel(R) Core(TM) i7-8565U CPU 1.80GHz with the KW statistics being coded in C++ to
accelerate the proposal computation.



54 Chapter 5. Simulation Study

5.1 Model 1: Selecting ROIs
To mimic the real ROI dataset, we simulate 116 covariates from a multivariate normal

distribution with empirical mean and covariance matrix retrieved from the real design matrix
for 210 individuals. The second group of datasets is simulated from a standard multivariate
normal distribution with fixed sample size n = 300 and increased number of ROIs. From these
covariates, we select some ROIs with non-null effects and their coefficients were assigned to
maintain the healthy and diagnosed with schizophrenia proportion (43.8%). The disease status
was generated from the probit model in Equation (4.1) with coefficients summarized in Table
2 and the prior variance is set to σ2

β
= 100. We decide to select a ROI if its marginal posterior

probability of inclusion (mppi) is greater than 0.5. Our algorithm performed well in all the
scenarios, selecting all the relevant variables as well as providing good estimates and small
standard errors summarized in Table 3. Furthermore, in all the scenarios our methodology always
select and assign a higher posterior probability to the true model compared to the RJ with uniform
proposals as it is shown in Table 4, with those differences probably due to the faster convergence
of DDRJ and better mixing of DDRJ chain. Finally, in Table 5, MCE and AUC computed
from the Bayesian model averaging used for prediction show that our methodology generally
outperforms the Random Forest and is comparable to the LASSO, another well established
method for variable selection.

Table 2 – Coefficients in the simulation scenario for ROIs.

Relevant effect Non relevant effects
n = 210, g = 116 β0 = 1, β1 =−2, β3 =−2.5, β115 = 3 Normal(0,0.1)
n = 300, g = 300 β0 = 1, β1 =−1, β3 =−1.5, β299 = 2 Normal(0,0.1)
n = 300, g = 500 β0 = 1, β1 =−1, β3 = 0.8, β4 =−1.5, β499 = 2 Normal(0,0.1)
n = 300, g = 1000 β0 = 1, β1 =−2, β3 =−2.5, β115 = 3 Normal(0,0.1)

Table 4 – Comparing the DDRJ and RJ using the three most visited models with their posterior probability
for ROIs selection, where the real model column shows the true ROIs in the simulated model.

Real model DDRJ RJ

n = 210, g = 116
1 3 115 (0.342) 1 3 115 (0.304)

1 3 115 1 3 70 115 (0.045) 1 3 70 115 (0.112)
1 3 52 115 (0.039) 1 3 52 115 (0.042)

n = 300, g = 300
1 3 299 (0.341) 1 3 299 (0.329)

1 3 299 1 3 34 299 (0.026) 1 3 269 299 (0.029)
1 3 32 299 (0.020) 1 3 32 299 (0.023)

n = 300, g = 500
1 2 3 499 (0.0635) 1 2 3 486 499 (0.039)

1 2 3 499 1 2 3 486 499 (0.0607) 1 2 3 129 302 393 486 499 (0.014)
1 2 3 177 486 499 (0.045) 1 2 3 176 486 499 (0.011)

n = 300, g = 1000
1 2 3 4 1000 (0.083) 1 2 3 4 1000 (0.076)

1 2 3 4 1000 1 2 3 4 752 1000 (0.013) 1 2 3 4 752 1000 (0.041)
1 2 3 4 353 1000 (0.009) 1 3 4 752 1000 (0.034)
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Table 3 – Marginal posterior probability of inclusion, estimates and standard errors for selected ROIs on
simulated datasets.

mppi Estimate Real
β0 1.000 0.794 (0.184) 1.000

ROI 1 0.999 -2.020 (0.376) -2.000
n = 210, g = 116 ROI 3 0.999 -2.640 (0.526) -2.500

ROI 115 0.999 3.068 (0.496) 3.000
β0 1.000 0.833 (0.156) 1.000

ROI 1 0.999 -0.992 (0.164) -1.000
n = 300, g = 300 ROI 3 0.999 -1.770 (0.234) -1.500

ROI 299 0.999 1.968 (0.272) 2.000
β0 1.000 1.202 (0.212) 1.000

ROI 1 0.999 -1.306 (0.248) -1.000
ROI 3 0.999 0.887 (0.184) 0.800

n = 300, g = 500 ROI 4 0.999 -1.535 (0.233) -1.500
ROI 486 0.627 -0.340 (0.291) 0.007
ROI 499 0.999 2.145 (0.331) 2.000

β0 1.000 0.957 (0.278) 1.000
ROI 1 0.999 1.272 (0.330) 1.200
ROI 2 0.999 0.903 (0.266) 0.800

n = 300, g = 1000 ROI 3 0.999 -1.728 (0.461) -1.500
ROI 4 0.999 -1.206 (0.351) -1.000

ROI 1000 0.999 2.840 (0.692) 2.300

Table 5 – Comparing the predictive performance in terms of Misclassification error (MCE) and Area
under the ROC curve (AUC) on simulated ROIs dataset.

DDRJ LASSO RF

n = 210, g = 116
MCE 0.114 (0.061) 0.137 (0.073) 0.228 (0.064)
AUC 0.956 (0.034) 0.944 (0.057) 0.838 (0.054)

n = 300, g = 300
MCE 0.126 (0.055) 0.129 (0.047) 0.289 (0.035)
AUC 0.959 (0.021) 0.944 (0.028) 0.874 (0.018)

n = 300, g = 500
MCE 0.109 (0.025) 0.149 (0.031) 0.349 (0.016)
AUC 0.962 (0.020) 0.935 (0.029) 0.800 (0.061)

n = 300, g = 1000
MCE 0.133 (0.042) 0.109 (0.022) 0.369 (0.021)
AUC 0.942 (0.022) 0.951 (0.015) 0.820 (0.061)

5.2 Model 2: Selecting SNPs

Regarding the genetic dataset, we simulate 81 features from independent discrete distri-
butions with empirical probabilities retrieved from the real SNP dataset, while the second group
of dataset is simulated from independent discrete distribution with fixed sample size n = 300 and
increased number of SNPs. Then, we select some SNPs with non null effects and coefficients
assigned to maintain the healthy and diagnosed with schizophrenia proportion. The disease status
was generated from the probit model in Equation (4.4) with coefficients summarized in Table 6
and the prior variance is set to σ2

β0
= σ2

α = σ2
δ
= 100. Again, we decide to select a SNP if its
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mppi is greater than 0.5. Our algorithm performed well in all the scenarios, selecting all the
relevant variables as well as providing good estimates and small standard errors summarized in
Table 7. Moreover, in almost all the scenarios our methodology always select and assign a higher
posterior probability to the true model compared to the RJ with uniform proposals as it is shown
in Table 8, as a result of faster convergence of the DDRJ. Finally, in Table 9, MCE and AUC
computed from the Bayesian model averaging used for prediction show that our methodology
generally outperforms the Random Forest and is comparable and even better, in some cases, than
the LASSO, another well established method for variable selection.

Table 6 – Coefficients in the simulation scenario for SNPs.

Relevant effect Non Relevant effects
β0 = 1.7

n = 210, m = 81 (α1 = 1.3,α2 = 1,α3 =−1.5,α4 =−1.2) Normal(0,0.1)
(δ1 =−1,δ2 =−1.4,δ3 =−1.4,δ4 =−2)

β0 = 2
n = 300, m = 300 (α1 = 1.3,α2 = 1.2,α3 =−1,α4 =−1.5) Normal(0,0.1)

(δ1 =−1,δ2 =−1.4,δ3 =−1.5,δ4 =−2)
β0 = 1.3

n = 300, m = 500 (α1 = 1.3,α2 = 1.2,α3 =−1,α4 =−0.5) Normal(0,0.1)
(δ1 =−1,δ2 =−1.4,δ3 =−1.5,δ4 =−2)

β0 = 1.3
n = 300, m = 1000 (α1 = 1.3,α2 = 1.2,α3 =−1,α4 =−0.5) Normal(0,0.1)

(δ1 =−1,δ2 =−1.4,δ3 =−1.5,δ4 =−2)
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Table 7 – Marginal posterior probability of inclusion, estimates and standard errors for selected SNPs on
simulated datasets.

mppi α̂ α δ̂ δ

β0 1.000 1.640 (0.293) 1.700 - -
SNP 1 0.999 1.479 (0.235) 1.300 -0.538 (0.353) -1.000

n = 210, m = 81 SNP 2 0.999 1.025 (0.199) 1.000 -1.596 (0.409) -1.400
SNP 3 0.998 -1.545 (0.248) -1.500 -1.627 (0.431) -1.400
SNP 4 0.999 -0.954 (0.180) -1.200 -1.682 (0.437) -2.000

β0 1.000 2.129 (0.273) 2.000 - -
SNP 1 0.999 1.324 (0.189) 1.300 -1.560 (0.399) -1.000

n = 300, m = 300 SNP 2 0.999 1.320 (0.185) 1.200 -1.107 (0.294) -1.400
SNP 3 0.998 -0.956 (0.174) -1.000 -1.633 (0.382) -1.500
SNP 4 0.999 -1.662 (0.212) -1.500 -1.919 (0.340) -2.000

β0 1.000 1.260 (0.187) 1.300 - -
SNP 1 0.999 1.135 (0.150) 1.300 -0.721 (0.274) -1.000

n = 300, m = 500 SNP 2 0.998 0.933 (0.139) 1.200 -1.772 (0.316) -1.400
SNP 3 0.994 -0.912 (0.143) -1.000 -1.087 (0.293) -1.500
SNP 4 0.996 -0.414 (0.119) -0.500 -1.631 (0.301) -2.000

β0 1.000 1.213 (0.179) 1.300 - -
SNP 1 0.998 1.291 (0.166) 1.300 -1.336 (0.286) -1.000

n = 300, m = 1000 SNP 2 0.998 1.001 (0.147) 1.200 -1.393 (0.341) -1.400
SNP 3 0.998 -0.743 (0.142) -1.000 -1.390 (0.308) -1.500
SNP 4 0.999 -0.475 (0.122) -0.500 -2.092 (0.396) -2.000

Table 8 – Comparing the DDRJ and RJ using the three most visited models with their posterior probability
for SNPs selection, where the real model column shows the true SNPs in the simulated model.

Real model DDRJ RJ

n = 210, m = 81
1 2 3 4 (0.932) 1 2 3 4 (0.969)

1 2 3 4 1 2 3 4 75 (0.058) 1 2 3 4 75 (0.012)
1 2 3 4 30 (0.002) 1 2 3 4 58 (0.005)

n = 300, m = 300
1 2 3 4 (0.988) 1 2 3 4 (0.984)

1 2 3 4 1 2 3 4 167 (0.004) 1 2 3 4 258 (0.008)
1 2 3 4 217 (0.002) 1 2 3 4 17 (0.003)

n = 300, m = 500
1 2 3 4 (0.989) 1 2 3 4 (0.987)

1 2 3 4 1 2 3 4 261(0.002) 1 2 3 4 492 (0.001)
1 2 3 4 274 (0.001) 1 2 3 4 417 (0.001)

n = 300, m = 1000
1 2 3 4 (0.962) 1 2 3 4 (0.807)

1 2 3 4 1 2 3 4 833 (0.006) 1 3 (0.081)
1 2 3 4 990 (0.006) 1 2 3 (0.074)
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Table 9 – Comparing the predictive performance in terms of Misclassification error (MCE) and Area
under the ROC curve (AUC) on simulated SNPs dataset.

DDRJ LASSO RF

n = 210, m = 81
MCE 0.104 (0.031) 0.175 (0.024) 0.251 (0.041)
AUC 0.942 (0.020) 0.924 (0.015) 0.851 (0.030)

n = 300, m = 300
MCE 0.143 (0.049) 0.190 (0.062) 0.346 (0.021)
AUC 0.934 (0.033) 0.911 (0.033) 0.872 (0.053)

n = 300, m = 500
MCE 0.166 (0.065) 0.195 (0.055) 0.396 (0.015)
AUC 0.907 (0.004) 0.866 (0.039) 0.730 (0.007)

n = 300, m = 1000
MCE 0.176 (0.060) 0.229 (0.032) 0.400 (0.011)
AUC 0.905 (0.035) 0.864 (0.031) 0.719 (0.028)

5.3 Model 3: Selecting ROIs and SNPs

For the joint selection of ROIs and SNPs, the first dataset is a simulation of 116 ROIs
from a multivariate normal distribution with empirical mean and covariance matrix retrieved
from the design matrix and we simulate 81 SNPs from independent discrete distributions with
probabilities retrieved from the real SNP dataset for 210 individuals and the second group of
dataset contains a simulation from a standard multivariate normal and independent discrete
distribution with increased number of ROIs and SNPs respectively. Non null effects, summarized
in Table 10, for ROIs and SNPs were chosen to keep the proportion of healthy and diagnosed
with schizophrenia. The disease status was generated using the probit model in Equation (4.7)
with prior variance set to σ2

β
= σ2

α = σ2
δ
= 25. As the number of candidate models under

consideration grows for joint selection, we decided for a two steps procedure. In the first step,
we apply Algorithm 1 and 2 separately for a pre-filtering to reduce the numbers of ROIs and
SNPs, and we use a small threshold (0.1) for selection. From our studies, this strategy reduces
the number of covariates to approximately 10− 15%, in average. The selected variables are
then used together in the second step under Algorithm 3 for joint selection and prediction. Our
algorithm performed well in all the scenarios, selecting all the relevant variables as well as
providing good estimates and small standard errors summarized in Table 11. Moreover, in almost
all the scenarios our methodology always select and assign a higher posterior probability to the
true model compared to the RJ with uniform proposals as it is shown in Table 12, as a result
of faster convergence of the DDRJ. Finally, in Table 13, MCE and AUC computed from the
Bayesian model averaging used for prediction show that our methodology generally outperforms
the Random Forest and is comparable and even better, in some cases, than the LASSO, another
well established method for variable selection.
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Table 10 – Coefficients in simulation scenario for SNPs and ROIs.

Relevant effect Non relevant effects
β0 = 1

(β1 = 1.3,β3 = 1.5,β115 = 1)
n = 210, g = 116, m = 81 (α1 = 1.3,α2 =−1,α3 = 1.5,α4 = 1) Normal(0,0.1)

(δ1 =−1.2,δ2 =−1,δ3 =−1.3,δ4 =−2)
β0 = 1

(β1 = 1.3,β3 = 1.5,β299 = 1)
n = 300, g = m = 300 (α1 = 1.3,α2 =−1,α3 = 1.5,α4 = 1) Normal(0,0.1)

(δ1 =−1.2,δ2 =−1,δ3 =−1.3,δ4 =−2)
β0 = 1

(β1 = 1.3,β3 = 1.5,β499 = 1)
n = 300, g = m = 500 (α1 = 1.3,α2 =−1,α3 = 1.5,α4 = 1) Normal(0,0.1)

(δ1 =−1.2,δ2 =−1,δ3 =−1.3,δ4 =−2)
β0 = 1

(β1 = 1.3,β3 = 1.5,β999 = 1)
n = 300, g = m = 1000 (α1 = 1.3,α2 =−1,α3 = 1.5,α4 = 1) Normal(0,0.1)

(δ1 =−1.2,δ2 =−1,δ3 =−1.3,δ4 =−2)
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Table 11 – Marginal posterior probability of inclusion, estimates and standard errors for selected ROIs
and SNPs on simulated datasets.

mppi β̂ β α̂ α δ̂ δ

β0 1.289 (0.280) 1.000 - - - -
ROI 1 1.000 1.215 (0.238) 1.300 - - - -
ROI 3 0.999 1.669 (0.284) 1.500 - - - -

ROI 115 0.999 1.490 (0.292) 1.000 - - - -
n = 210 SNP 1 0.999 - - 1.401(0.301) 1.300 -2.614 (0.566) -1.200
g = 116 SNP 2 0.999 - - -1.105 (0.243) -1.000 -1.186 (0.513) -1.000
m = 81 SNP 3 0.999 - - 1.871 (0.336) 1.500 -0.840 (0.420) -1.300

SNP 4 0.999 - - 1.184 (0.230) 1.000 -2.439 (0.720) -2.000
β0 1.000 1.436 (0.377) 1.000 - - - -

ROI 1 0.998 1.303 (0.285) 1.300 - - - -
ROI 3 0.998 1.886 (0.406) 1.500 - - - -

ROI 299 0.998 1.323 (0.313) 1.000 - - - -
n = 300 SNP 1 0.999 - - 1.492 (0.351) 1.300 -1.605 (0.567) -1.200
g = 300 SNP 2 0.878 - - -0.964 (0.421) -1.000 -1.362 (0.660) -1.000
m = 300 SNP 3 0.999 - - 1.820 (0.388) 1.500 -1.579 (0.485) -1.300

SNP 4 0.999 - - 1.441 (0.323) 1.000 -3.063 (0.670) -2.000
β0 1.000 1.368 (0.292) 1.000 - - - -

ROI 1 0.999 1.716 (0.276) 1.300 - - - -
ROI 3 0.999 1.999 (0.318) 1.500 - - - -

ROI 499 0.998 1.131 (0.217) 1.000 - - - -
n = 300 SNP 1 0.999 - - 1.343 (0.247) 1.300 -2.480 (0.542) -1.200
g = 500 SNP 2 0.999 - - -1.101 (0.232) -1.000 -1.240 (0.390) -1.000
m = 500 SNP 3 0.999 - - 2.035 (0.323) 1.500 -1.761 (0.458) -1.300

SNP 4 0.999 - - 1.379 (0.258) 1.000 -2.834 (0.556) -2.000
β0 1.000 1.319 (0.243) 1.000 - - - -

ROI 1 0.998 1.361 (0.214) 1.300 - - - -
ROI 3 0.998 1.663 (0.253) 1.500 - - - -

ROI 999 0.998 1.001 (0.170) 1.000 - - - -
n = 300 SNP 1 0.999 - - 1.438 (0.233) 1.300 -1.426 (0.376) -1.200
g = 1000 SNP 2 0.878 - - -1.243 (0.208) -1.000 -1.413 (0.386) -1.000
m = 1000 SNP 3 0.999 - - 1.685 (0.230) 1.500 -2.193 (0.470) -1.300

SNP 4 0.999 - - 1.047 (0.196) 1.000 -2.292 (0.408) -2.000

Table 13 – Comparing the predictive performance in terms of Misclassification error (MCE) and Area
under the ROC curve (AUC) on simulated ROIs-SNPs dataset.

DDRJ LASSO RF

n = 210, m = 81
MCE 0.193 (0.061) 0.208 (0.026) 0.347 (0.054
AUC 0.880 (0.053) 0.890 (0.023) 0.758 (0.037)

n = 300, m = 300
MCE 0.113 (0.026) 0.149 (0.042) 0.302 (0.070)
AUC 0.960 (0.017) 0.944 (0.025) 0.791 (0.074)

n = 300, m = 500
MCE 0.156 (0.069) 0.182 (0.047) 0.409 (0.0.04)
AUC 0.926 (0.04) 0.899 (0.033) 0.673 (0.044)

n = 300, m = 1000
MCE 0.183 (0.035) 0.136 (0.059) 0.349 (0.028)
AUC 0.902 (0.029) 0.945(0.036) 0.743 (0.021)
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Table 12 – Comparing the DDRJ and RJ using the three most visited models with their posterior probability
for ROIs and SNPs selection, where the real model column shows the true ROIs and SNPs in
the simulated model.

Real model DDRJ RJ
n = 210 ROI (1,3,115)-SNP (1,2,3,4) (0.920) ROI (1,2,115)-SNP (1,2,3,4) (0.901)
m = 81 SNP (1,2,3,4) (1,3,107,115)-(1,2,3,4) (0.018) (1,3,7,115)-(1,2,3,4) (0.025)
g = 116 ROI (1,3,115) (1,3,7,115)-(1,2,3,4) (0.013) (1,3,49,115)-(1,2,3,4) (0.019)
n = 300 ROI (1,3,299)-SNP (1,2,3,4) (0.903) ROI (1,3,299)-SNP(1,2,3,4) (0.873)
m = 300 SNP (1,2,3,4) (1,3,75,115)-(1,2,3,4) (0.086) (1,3,75,115)-(1,2,3,4) (0.102)
g = 300 ROI (1,3,299) (1,3,16,115)-(1,2,3,4) (0.006) (1,3,16,115)-(1,2,3,4) (0.003)
n = 300 ROI (1,3,499)-SNP(1,2,3,4) (0.834) ROI (1,3,499)-SNP (1,2,3,4) (0.807)
m = 500 SNP (1,2,3,4) (1,3,499)-(1,2,3,4,63) (0.113) (1,3,499)-(1,2,3,4,63) (0.049)
g = 500 ROI (1,3,499) (1,3,499)-(1,3,4,63) (0.011) (1,3,499)-(1,3,4,63) (0.003)
n = 300 ROI (1,3,999)-SNP (1,2,3,4) (0.770) ROI (1,3,999)-SNP (1,2,3,4) (0.773)

m = 1000 SNP (1,2,3,4) (1,3,528,999)-(1,2,3,4) (0.220) (1,3,528,999)-(1,2,3,4) (0.221)
g = 1000 ROI (1,3,999) (1,3,999)-(1,3,4) (0.005) (1,3,999)-(1,3,4) (0.001)
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6
MCIC SCHIZOPHRENIA DATASET

The available dataset was collected by the Mind Clinical Imaging Consortium (MCIC)
(CHEN et al., 2012) as an effort of deeper understanding of mental disorder and contains
both imaging data on activation patterns using fMRI during a sensorimotor task and multiple
SNPs allele frequencies which have previously been implicated in schizophrenia on 118 healthy
controls and 92 subjects affected by this disorder, with no history of substance abuse and free of
any medical, neurological or psychiatric illnesses.

The goal of the MCIC study, a joint effort of four research teams from Boston, Iowa,
Minnesota and New Mexico, was to identify regions of interest (ROI) in the brain with discrimi-
nating activation patterns between cases and controls and relate them to a relevant set of SNPs
able to explain these variations, a model selection problem clearly. fMRI was mainly designed to
identify brain’s response to stimulus by detecting regional neuronal activity captured by blood
oxygenation level-dependent (BOLD) variations. The original fMRI data were collected during
sensorimotor task as response to auditory stimulation.

The data were then preprocessed in SPM5 <http://www.fil.ion.ucl.ac.uk/spm>, realigned
to correct for the subjects movements, spatially normalized to correct for anatomic variability,
spatially smoothed to improve signal to noise ratio. For each of the 116 ROIs, the activation
level was summarized as the median of the statistical parametric map values (FRISTON et al.,
1994) for that region. The genetic information of the available dataset is given by 81 SNPs,
already known to be related to schizophrenia retrieved from the Schizophrenia Research Forum
<http://www.schizophreniaforum.org/> information. In the original dataset, the SNP information
was coded as the number of minor allele for those with genotype aa, aA and AA respectively.
More details of the experimental study and preprocessing can be found in Chen et al. (2012) and
Stingo et al. (2013).

Our baseline comparison for model selection and prediction will be the results obtained
in Stingo et al. (2013) and Chekouo et al. (2016). Thus, for model selection, the full dataset will

http://www.fil.ion.ucl.ac.uk/spm
http://www.schizophreniaforum.org/
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be used while for prediction, we will keep the same 5-fold cross-validation configuration and use
AUC (Area under ROC curve), MCE (Misclassification error) as predictive performance metrics.

6.1 Model selection

For each scenario, 35.000 MCMC iterations were run with a burn-in period of 5.000
iterations holding each sample of 10. The prior variance is set to σ2

α = σ2
β
= σ2

δ
= 25 to ensure

that the prior is not too informative but also not too much large for our method to be effective.

6.1.1 Model 1: Selecting ROIs

For model selection, the full dataset have been used and the selected variables are ROIs
61 and 115 with mppi 0.837 and 0.932, but also suggesting more investigation on ROI 35 with
mppi 0.416 and estimated effects β̂ = (0.183,−0.181,−0.514,−0.607) summarised in Table 14.
ROIs 35 (left posterior cingulate region) and 61 (left inferior parietal region) were also selected
by Stingo et al. (2013) and Chekouo et al. (2016) and are known to be related to schizophrenia.
In special, ROI 115 (posterior inferior vermis- lobule IX) was a new findings that could narrow
future research on lobules I to X. Chekouo et al. (2016) found one more ROI 57 that has not
been selected here but was present in the top 3 models as shown in Table 15. A more careful
scientist may rely on this rule, include every covariate that appears in the top t models, here 3, to
select the ROIs and thus will select ROIs 35,57,61,96,115. As a result of faster convergence,
we were expecting the DDRJ to assign a higher probability to the most visited model compared
to the traditional RJ which didn’t happen in this case as shown in Table 15 and is probably
due to the multicollinearity between candidate ROIs and the correlation metric for selecting
the next model to be visited. If, for instance, there is a high collinearity between two ROIs, the
probability of selecting any of them is almost the same, according to our correlation metric, and
our algorithm may not be batter than traditional RJ in these cases. Regarding prediction, in Table
16 we show that our model, though simple, and methodology perform well in terms of predictive
performance compared to the results from Chekouo et al. (2016), LASSO and Random Forest,
with a misclassification error and area under the ROC curve of 0.399 (0.05) and 0.619 (0.06)
respectively.

Table 14 – Marginal posterior probability of inclusion, estimates and standard errors for selected ROIs on
the real dataset.

mppi β̂

β0 1.000 0.183 (0.095)
ROI 35 0.416 -0.181 (0.239)
ROI 61 0.837 -0.514 (0.286)

ROI 115 0.932 -0.607 (0.233)
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Table 15 – Comparing the DDRJ and RJ using the three most visited models with their posterior probability
for ROIs selection on the real dataset.

DDRJ RJ
ROI 61 115 (0.061) ROI 61 115 (0.076)
35 61 96 115 (0.055) 35 61 115 ( 0.051)

35 57 61 (0.021) 35 57 96 (0.019)

Table 16 – Comparing the predictive performance on the real ROI dataset in terms of Misclassification
error (MCE) and Area under ROC curve (AUC).

Benchmark DDRJ LASSO RF
MCE 0.37 (0.02) 0.399 (0.05) 0.379 (0.06) 0.351 (0.05)
AUC 0.66 (0.02) 0.619 (0.06) 0.653 (0.06) 0.684 (0.06)

6.1.2 Model 2: Selecting SNPs

In Table 17, we summarize the selected SNPs through the marginal posterior probability
of inclusion (mppi) using the full dataset. The selected variable would be SNP 22,61 with mppi
0.96 and 0.72 respectively. Although having a mppi 0.34 lesser than 0.5, we would also suggest
SNP 32. SNP 22 (rs3737597) is located in gene DISC1 (chromosome 1), a gene known to be
strongly associated to schizophrenia and was also found by Stingo et al. (2013) and Chekouo
et al. (2016) who also found SNPs 10 and 38 to be discriminatory. Table 18 shows that DDRJ
is also consistent with traditional RJ in the selected variable but also converges faster. Finally,
in Table 19 we show that our model, though simple, and methodology perform well in terms
of predictive performance compared to the results from Chekouo et al. (2016), LASSO and
Random Forest, with a misclassification error and area under the ROC curve of 0.475 (0.03) and
0.570 (0.02) respectively.

Table 17 – Marginal posterior probability of inclusion, estimates and standard errors for selected SNPs on
the real dataset.

mppi α̂ δ̂

β0 1.000 2.511 (0.349) -
SNP 22 0.957 -1.513 (0.248) 3.842 (0.664)
SNP 32 0.345 0.874 (0.482) 0.817 (0.462)
SNP 61 0.719 -2.159 (0.926) -1.960 (0.844)

Table 18 – Comparing the DDRJ and RJ using the three most visited models with their posterior probability
for SNPs selection on the real dataset.

DDRJ RJ
SNP 22 61 (0.096) SNP 22 61 (0.083)

22 32 61 (0.046) 22 ( 0.074)
22 (0.043) 22 32 61 (0.020)
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Table 19 – Comparing the predictive performance on the real SNP dataset in terms of Misclassification
error (MCE) and Area under ROC curve (AUC).

Benchmark DDRJ LASSO RF
MCE 0.45 (0.01) 0.475 (0.031) 0.446 (0.037) 0.437 (0.031)
AUC 0.64 (0.02) 0.570 (0.02) 0.558 (0.04) 0.557 (0.05)

6.1.3 Model 3: Selecting SNPs and ROIs

In this section, a joint selection of ROIs and SNPs is performed using Algorithm 3. Again
ROIs 35, 61, 115 and SNP 22 are suggested as discriminatory variables with mppi 0.291, 0.794,
0.968, 0.955 respectively. In Table 20, we summarise the mppi, estimates and standard errors
for each coefficients and Table 21 shows that our result is also consistent with traditional RJ,
though assigning a lower posterior probability. Moreover, in Table 22 we show that our model
and algorithm perform well in terms of predictive performance compared to the results from
Chekouo et al. (2016), LASSO and Random Forest, with a misclassification error and area under
the ROC curve of 0.427 (0.017) and 0.672 (0.05) respectively.

Table 20 – Marginal posterior probability of inclusion, estimates and standard errors for selected ROIs
and SNPs on the real dataset.

mppi β̂ α̂ δ̂

β0 1.000 2.945 (0.447) - -
ROI 35 0.291 -0.119 (0.203) - -
ROI 61 0.794 -0.479 (0.296) - -
ROI 115 0.968 0.619 (0.196) - -
SNP 22 0.955 - -1.602 (0.635) 2.607 (0.592)

Table 21 – Comparing the DDRJ and RJ using the three most visited models with their posterior probability
for ROIs and SNPs selection on the real dataset.

DDRJ RJ
ROI (61,115)-SNP (22) 0.067 ROI (61,115)-SNP (22) 0.082

(35,61,115)-(22) 0.044 (61,62,115)-(22) 0.055
(61,62,115)-(22) 0.017 (35,61,115)-(22) 0.026

Table 22 – Comparing the predictive performance on the real ROI-SNP dataset in terms of Misclassifica-
tion error (MCE) and Area under ROC curve (AUC).

Benchmark DDRJ LASSO RF
MCE 0.33 (0.02) 0.427 (0.017) 0.406 (0.037) 0.404 (0.01)
AUC 0.69 (0.03) 0.672 (0.05) 0.617 (0.04) 0.633 (0.06)
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CHAPTER

7
CONCLUSIONS

In this work, we have developed a Data Driven Reversible Jump for variable selection
using a Bayesian probit model. Our goals, selecting ROIs and SNPs, and assess predictive risk for
schizophrenia based on functional Magnetic Resonance Imaging (fMRI) and Single Nucleotide
Polymorphism (SNPs) information have been reached. Most ROIs 35, 57, 61, 115 and SNP 22
that we selected were in accordance with results from other authors and also known to be related
to the disease, even though some new findings ROI 96 and SNPs 32, 61 have been suggested and
may be subject of deeper research. Compared to other methodologies as traditional LASSO and
Random Forest, in terms of predictive accuracy, the DDRJ also perfoms well when predictions
are done using the Bayesian Model Averaging. We have also noticed that assuming the same
prior variance for ROIs and SNPs is quite restrictive. Thus, future work may use different prior
variance or assign a hyperprior to the variance.

From a methodological perspective, we noticed that the metric used inside the DDRJ
can improve or degrade the efficiency of the algorithm. For instance, in high dimensional setting
where features are usually correlated, using correlation between residuals and candidate variable
may not be efficient, because the probabilities of selecting any candidate could be similar and
then recast our algorithm into the traditional RJ with uniform jumps. Moreover, a metric as
correlation only captures linear relation, thus a more suitable idea may be a metric, like a kernel,
that captures some non-linearity.

Regarding extensions, another direction of studies would be testing other priors such as
those shrinkage priors introduced earlier to improve our current methodology. As we have also
mentioned, a distance matrix between ROIs is available and has not been used in this work. This
information could be included either as part of the DDRJ to make better jumps, or assume a
Markov Random Field type of prior for ROIs and apply the DDRJ to perform variable selection
and prediction for future subjects. Other extension of this work that is worth investigating is to
perform clustering while selecting discriminating ROIs and SNPs, and again the DDRJ could be
used to select the number of cluster and estimate parameters.
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