

UNIVERSIDADE FEDERAL DE SÃO CARLOS

CENTRO DE CIÊNCIAS E TECNOLOGIAS PARA A SUSTENTABILIDADE DEPARTAMENTO DE FÍSICA, QUÍMICA E MATEMÁTICA

PRODUTO EDUCACIONAL

EXPERIMENTOS COM O ARDUINO NO ENSINO DE FÍSICA: ESTUDANDO CONCEITOS CIENTÍFICOS DA TERMOLOGIA

JEFFERSON BUONAFINA PINHEIRO JUNIOR

Orientador: Professor Dr. Antonio Augusto Soares

SUMÁRIO

ROTEIRO DO PROFESSOR: CONDUÇÃO TÉRMICA	3
ROTEIRO DO PROFESSOR: CURVA DE AQUECIMENTO	9
ROTEIRO DO PROFESSOR: CALOR ESPECÍFICO	14
ROTEIRO DOS ESTUDANTES: CONDUÇÃO TÉRMICA	20
ROTEIRO DOS ESTUDANTES: CURVA DE AQUECIMENTO	24
ROTEIRO DOS ESTUDANTES: CALOR ESPECÍFICO	28

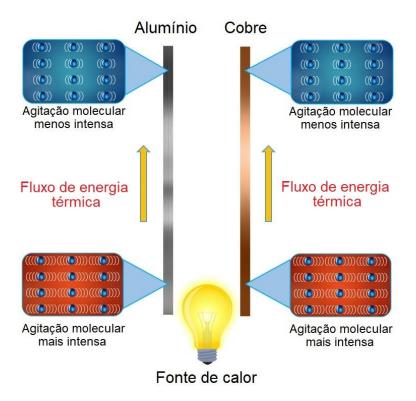
ROTEIRO DO PROFESSOR: CONDUÇÃO TÉRMICA

1. Objetivos

Ao término desta atividade, o estudante deverá ser capaz de:

- Concluir quais são as condições necessárias para que ocorra a propagação do calor;
- Identificar a condução térmica em situações cotidianas de propagação de calor;
- Compreender que diferentes materiais apresentam diferentes condutibilidades térmicas;

2. Preparação


O estudante deverá responder atentamente as questões a seguir:		
1.	O que é temperatura?	
2.	O que é calor?	

3. Introdução

Propagação de calor é a denominação dada à passagem de energia térmica de um corpo para outro ou de um ponto para outro de um mesmo corpo. Essa transmissão pode se processar de três maneiras distintas: condução, convecção e irradiação. De acordo com a Segunda Lei da Termodinâmica, a energia térmica sempre se propaga de um ponto com maior temperatura para um ponto de menor temperatura independentemente do processo de propagação de calor.

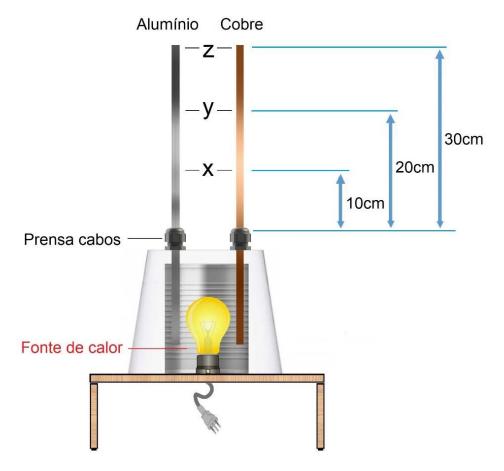
Este experimento aborda a condução térmica, no qual o calor é transmitido de um ponto a outro do material através da agitação molecular e dos choques entre as moléculas, conforme a representação esquemática da figura 1. Assim, para ocorrer a condução, deve existir um meio material. No entanto, é a energia que se propaga; as partes do corpo não se deslocam, havendo apenas agitação molecular.

Figura 1: Representação esquemática mostrando a agitação molecular e o sentido do fluxo de energia térmica.

Fonte: Compilação do autor.

A aquisição de dados deste experimento é automatizada e nos permite obter as curvas de aquecimento do cobre e do alumínio simultaneamente. São utilizados seis sensores de temperatura que estão conectados à uma placa de Arduino que, por sua vez, está conectada a um computador onde os dados sobre a temperatura dos materiais serão armazenados e analisados.

4. Material necessário

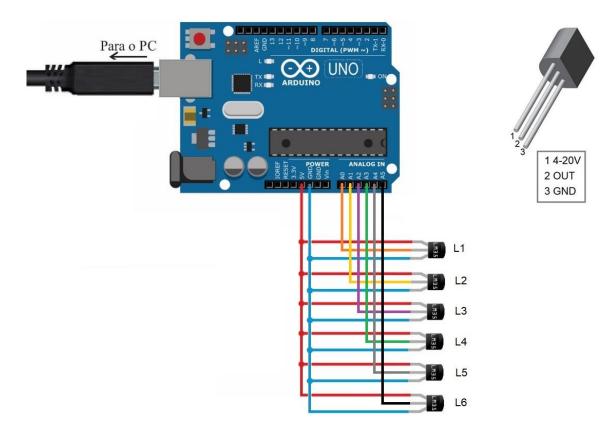

- 01 Barra chata de cobre com 50cm de comprimento e seção transversal 1/2" x 1/8";
- 01 Barra chata de alumínio com 50cm de comprimento e seção transversal 1/2" x 1/8";
- 06 Sensores de temperatura LM35;
- 01 Lâmpada halógena 70W/110V utilizada como fonte de calor;
- 01 Soquete com corpo em porcelana para lâmpada;
- 02 Prensa cabos para fixação das barras metálicas;
- 01 Lata para abrigar a lâmpada;
- 01 Balde acrílico para contenção do ar quente;
- 01 Base em MDF para fixação do experimento de dimensões 35x35 cm
- 01 Placa Arduino com cabo USB.
- 01 Computador.

5. Montagem e funcionamento do experimento

O experimento de condução térmica será montado pelo professor de acordo com as seguintes instruções:

- 1. Fixe as barras metálicas de alumínio e de cobre conforme indicado na figura 2. Para isso, são utilizados dois conectores do tipo prensa cabos;
- **2.** Cada barra metálica deve conter três sensores de temperatura fixados nas posições x, y e z indicadas na representação esquemática;

Figura 2: Representação esquemática do experimento destacando seus elementos e posições.



Fonte: Compilação do autor.

3. Cada um dos sensores térmicos deve ser conectado à placa Arduino, que deve ser ligada ao computador através de um cabo USB. As figuras 3 (a) e 3 (b) exibem, respectivamente, a representação esquemática da conexão de um desses sensores à placa e a especificação dos terminais do sensor de temperatura LM35.

Figura 3: (a) Representação esquemática da conexão dos sensores à placa Arduino. Em (b) são mostrados os terminais do sensor LM35. Os dois terminais das extremidades são utilizados na alimentação do sensor e o do meio é responsável pela geração do sinal de tensão proporcional à temperatura.

(a) (b)

Fonte: Compilação do autor.

- **4.** Inicie a planilha eletrônica no computador para coletar os dados das temperaturas;
- 5. Ligue a lâmpada halógena à rede elétrica (110V) dando início à atividade experimental;
- **6.** Monitore o aquecimento das barras metálicas por 30 minutos;
- 7. Após 30 minutos, desligue a lâmpada e analise as curvas de aquecimento desses materiais.

6. Código para o Arduino

O código que nos permite registrar diretamente os dados experimentais no Excel é apresentado a seguir:

 $\label{eq:constint} \begin{subarray}{ll} \begin{s$

```
void loop() {
  Temp1 = (float(analogRead(S1))*5/(1023))/0.01;
  Temp2 = (float(analogRead(S2))*5/(1023))/0.01;
  Temp3 = (float(analogRead(S3))*5/(1023))/0.01;
  Temp4 = (float(analogRead(S4))*5/(1023))/0.01;
  Temp5 = (float(analogRead(S5))*5/(1023))/0.01;
  Temp6 = (float(analogRead(S6))*5/(1023))/0.01;
  Serial.print("DATA,TIME,");
  Serial.print(t*5);
  Serial.print(", ");
  Serial.print(Temp1);
  Serial.print(", ");
  Serial.print(Temp2);
  Serial.print(", ");
  Serial.print(Temp3);
  Serial.print(", ");
  Serial.print(Temp4);
  Serial.print(", ");
  Serial.print(Temp5);
  Serial.print(", ");
  Serial.print(Temp6);
  Serial.println(", ");
  Serial.println("ROW, SET");
  t++;
  delay(5000);
```

7. Análise de resultados

}

Após a análise das curvas de aquecimento do alumínio e do cobre obtidos com a execução da atividade experimental, o estudante deverá responder atentamente as questões a seguir:

	temperatura flui entre elas? Justifique sua resposta.
2.	O calor pode fluir entre dois pontos com mesma energia interna? Justifique sua resposta.
3.	Por que para se mexer continuamente um alimento de cozimento demorado não se recomenda a utilização de um talher metálico?
4.	O que é o fenômeno da condução térmica?
5.	Materiais distintos quando são aquecidos ou resfriados simultaneamente por uma mesma fonte de calor sofrem variações de temperaturas iguais ou diferentes? Justifique sua resposta.
. Coi	nclusões

ROTEIRO DO PROFESSOR: CURVA DE AQUECIMENTO

1. Objetivos

Ao término desta atividade, o estudante deverá ser capaz de:

- Compreender as diferentes dinâmicas de aquecimento e resfriamento da água e da areia;
- Identificar e compreender a importância do calor específico da água e da areia na formação das brisas marítimas.

2. Preparação

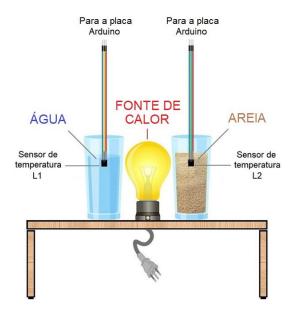
O es	tudante deverá responder atentamente as questões a seguir:
1. C	omo ocorre a propagação do calor na atmosfera?
2. Po	or que, em regiões próximas ao mar, a variação da temperatura é menor do que em regiões
de	esérticas?

3. Introdução

As propriedades térmicas da matéria e as trocas de calor estão relacionadas a diversos fenômenos climáticos do cotidiano. O calor específico é uma importante propriedade térmica que determina a quantidade de calor necessária para elevar em 1°C a temperatura de uma unidade de massa de um corpo. Dessa forma, quanto mais elevado for o calor específico de um material, mais elevada será a quantidade de calor necessária para produzir variação de temperatura. O experimento proposto nos possibilitará analisar as diferentes dinâmicas de aquecimento e resfriamento da água e da areia e compreender a importância do calor específico desses materiais na formação das brisas marítimas.

A aquisição de dados deste experimento é automatizada e nos permite obter as curvas de aquecimento e resfriamento da água e da areia simultaneamente. São utilizados dois sensores de temperatura que estão conectados à uma placa de Arduino que, por sua vez, está conectada a um computador onde os dados sobre a temperatura dos materiais serão armazenados e analisados.

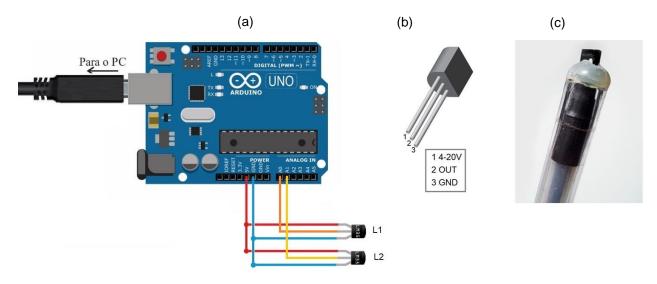
4. Material necessário


- 01 Copo de vidro de 250 ml contendo uma amostra de 160 g de água;
- 01 Copo de vidro de 250 ml contendo uma amostra de 260 g de areia do tipo lavada (facilita a remoção de resíduos preexistentes);
- Cola quente;
- 02 Sensores de temperatura LM35;
- 01 Mangueira cristal com diâmetro de 5/16" e comprimento de 8 cm;
- 01 Conduite termo retrátil com diâmetro de 8 mm e comprimento de 3 cm;
- 01 Lâmpada halógena de 70W/110V utilizada como fonte de calor;
- 01 Soquete com corpo em porcelana para lâmpada;
- 01 Base em MDF para fixação do experimento de dimensão 35x35 cm;
- 01 Placa Arduino com cabo USB;
- 01 Computador.

5. Montagem e funcionamento do experimento

Nosso experimento de curva de aquecimento será montado pelo professor de acordo com as seguintes instruções:

- Posicione os copos contendo as amostras de água e areia em posições simétricas em relação à fonte de calor conforme indicado na figura 1;
- 2. Conforme ilustrado na figura 1, fixe os sensores de temperatura no interior de cada um dos copos para que seja efetuado o monitoramento das variações de temperatura da água e da areia durante o processo de aquecimento e resfriamento;


Figura 1: Representação esquemática do experimento destacando seus elementos e posições.

Fonte: Compilação do autor.

3. Cada um dos sensores térmicos deve ser conectado à placa Arduino, que deve ser ligada ao computador através de um cabo USB. As figuras 2 (a) e 2 (b) exibem, respectivamente, a representação esquemática da conexão de um desses sensores à placa e a especificação dos terminais do sensor de temperatura LM35.

Figura 2: (a) Representação esquemática da conexão dos sensores à placa Arduino. Em (b) são mostrados os terminais do sensor LM35. Os dois terminais das extremidades são utilizados na alimentação do sensor e o do meio é responsável pela geração do sinal de tensão proporcional à temperatura. (c) Fotografia mostrando o sensor térmico L1 utilizado para o monitoramento da variação da temperatura da água.

Fonte: Compilação do autor

Conforme pode ser observado na figura 2(c), os terminais do LM35 devem ser devidamente isolados de modo que não entrem em contato com a água, pois isto pode trazer danos irreversíveis para o dispositivo. Para desenvolver essa proteção, foi utilizado o conduite termo retrátil como a primeira camada que reveste os terminais e a mangueira cristal como a camada mais externa. Para o fechamento da abertura da extremidade da mangueira, que fica na base do sensor térmico, utilizou-se um pouco de cola quente.

- 4. Inicie a planilha eletrônica no computador para coletar os dados das temperaturas;
- 5. Ligue a lâmpada halógena à rede elétrica (110V) dando início à atividade experimental;
- **6.** Monitore o aquecimento das substâncias por 30 minutos;
- 7. Após 30 minutos, desligue a lâmpada e acompanhe o processo de resfriamento das substâncias.

6. Código para o Arduino

O código que nos permite registrar diretamente os dados experimentais no Excel é apresentado a seguir:

//Sensor de temperatura LM35.

```
const int S1 = A0, S2 = A1;
float aux = 10, t = 0.0, Temp1 = 0.0, Temp2 = 0.0;
int LABEL = 1;
void setup() {
   Serial.begin(19200);
   Serial.println("CLEARDATA");
  Serial.println("LABEL,Hora,t,Temp1,Temp2");
}
void loop() {
  Temp1 = (float(analogRead(S1))*5/(1023))/0.01;
  Temp2 = (float(analogRead(S2))*5/(1023))/0.01;
  Serial.print ("DATA,TIME,");
   Serial.print(t*5);
   Serial.print(", ");
  Serial.print(Temp1);
   Serial.print(", ");
   Serial.print(Temp2);
   Serial.println(", ");
   Serial.println("ROW, SET");
   t++;
  delay(5000);
}
```

7. Análise de resultados

Após analisar as curvas de aquecimento e resfriamento da água e da areia obtidas com a execução da atividade experimental, o estudante deverá responder atentamente as questões a seguir:

1. Quando a água e areia foram expostos à mesma fonte de calor, qual material alcançou a maior temperatura?

2.	Quando a fonte de calor foi desligada qual substância reduziu mais rapidamente a temperatura?
3.	De acordo com as dinâmicas de aquecimento e resfriamento da água e da areia observadas qua substância possui maior calor específico? Justifique sua resposta.
4.	O que é o fenômeno da convecção térmica?
5.	Durante o dia a brisa sopra do mar para a praia. Já à noite, essa brisa sopra em sentido contrário da praia para o mar. Por que isso acontece? Justifique sua resposta.
8. Co	nclusões

ROTEIRO DO PROFESSOR: CALOR ESPECÍFICO

1. Objetivos

Ao término desta atividade, o estudante deverá ser capaz de:

- Compreender a razão pela qual a areia esquenta mais rápido do que a água;
- Reconhecer uma situação de equilíbrio térmico a partir de dados experimentais;
- Determinar quantitativamente o calor específico de uma amostra de areia.

2. Preparação

О	estudante deverá responder atentamente as questões a seguir:
1.	Defina o conceito de equilíbrio térmico.
2.	Quando um corpo perde calor para o ambiente e se resfria, que temperatura ele atinge depois de
	um tempo bastante longo?

3. Introdução

Quando dois ou mais corpos com temperaturas distintas mantém contato durante certo tempo, eles alcançam a condição de equilíbrio térmico na qual apresentam um mesmo valor de temperatura. Esse é um processo natural que ocorre devido às trocas de calor entre os corpos. O experimento proposto nos possibilitará verificar a situação de equilíbrio térmico quando amostras de água e areia com temperaturas diferentes são misturadas, bem como determinar quantitativamente o calor específico da areia utilizada na atividade experimental.

Aplicando a conservação de energia para o processo de trocas de calor, é possível escrever:

$$Q_{\rm w} + Q_{\rm s} = 0, \tag{1}$$

onde Q_w é a energia térmica perdida pela água e Q_s é a energia térmica recebida pela areia.

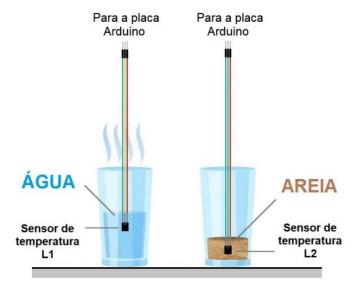
Determinamos o específico calor da areia (C_s) usando:

$$c_S = -\frac{m_W \cdot c_W \cdot \Delta T_W}{m_S \cdot \Delta T_S} , \qquad (2)$$

onde $c_{\rm w}$ é o calor específico da água, $\Delta T_{\rm w} = T_{\rm f}$ - T_0 é a variação de temperatura da água durante a troca de calor com a areia e $\Delta T_{\rm s} = T_{\rm f}$ - $T_{\rm 0s}$ é a variação de temperatura da areia até atingir o equilíbrio térmico com a água ($T_{\rm 0s}$ é temperatura inicial da areia).

A aquisição de dados deste experimento é automatizada e nos permite obter as informações das temperaturas da água e da areia ao longo da experimentação e da mistura de ambos. São utilizados dois sensores de temperatura que estão conectados à uma placa Arduino que, por sua vez, está conectada a um computador onde os dados sobre a temperatura dos materiais serão armazenados e analisados.

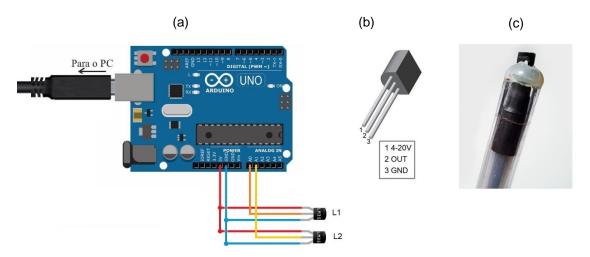
4. Material necessário


- 01 Copo de vidro de 250 ml contendo uma amostra de 190 g de água quente a uma temperatura aproximada de 65 °C;
- 01 Copo de vidro de 250 ml contendo uma amostra de 90 g de areia do tipo lavada (facilita a remoção de resíduos preexistentes);
- Cola quente;
- 02 Sensores de temperatura LM35;
- 01 Mangueira cristal com diâmetro de 5/16" e comprimento de 8 cm;
- 01 Conduite termo retrátil com diâmetro de 8 mm e comprimento de 3 cm;
- 01 Placa Arduino com cabo USB;
- 01 Computador.

5. Montagem e funcionamento do experimento

Nosso experimento do calor específico será montado pelo professor de acordo com as seguintes instruções:

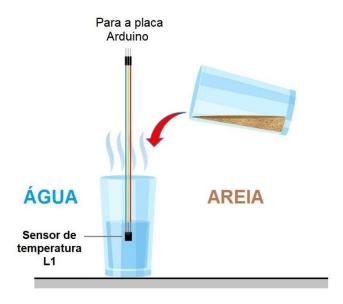
- Insira a massa de 190 gramas de água quente (temperatura ≈ 65 °C) em um dos copos de vidro e a massa de 90 gramas de areia no outro copo;
- **2.** Conforme ilustrado na figura 1, fixe os sensores de temperatura no interior de cada um dos copos para que seja efetuado o monitoramento das variações de temperatura da água e da areia;


Figura 1: Representação esquemática do experimento destacando seus elementos e posições.

Fonte: Compilação do autor.

3. Cada um dos sensores térmicos deve ser conectado à placa Arduino, que deve ser ligada ao computador através de um cabo USB. As figuras 2 (a) e 2 (b) exibem, respectivamente, a representação esquemática da conexão de um desses sensores à placa e a especificação dos terminais do sensor de temperatura LM35.

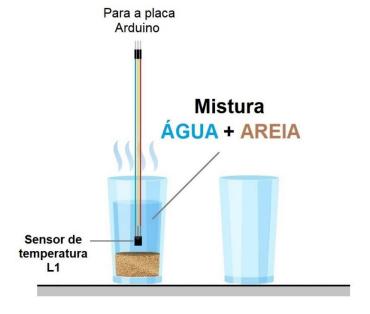
Figura 2: (a) Representação esquemática da conexão de um dos sensores à placa Arduino. Em (b) são mostrados os terminais do sensor LM35. Os dois terminais das extremidades são utilizados na alimentação do sensor e o do meio é responsável pela geração do sinal de tensão proporcional à temperatura. (c) Fotografia mostrando o sensor térmico L1 utilizado para o monitoramento da variação da temperatura da água.



Fonte: Compilação do autor

Conforme pode ser observado na figura 2(c), os terminais do LM35 devem ser devidamente isolados de modo que não entrem em contato com a água, pois isto pode trazer danos irreversíveis para o dispositivo. Para desenvolver essa proteção, foi utilizado o conduite termo retrátil como a primeira camada que reveste os terminais e a mangueira cristal como a camada mais externa. Para o fechamento da abertura da extremidade da mangueira, que fica na base do sensor térmico, utilizou-se um pouco de cola quente.

- 4. Inicie a planilha eletrônica no computador para coletar os dados das temperaturas;
- **5.** Aguarde a temperatura da água diminuir cerca de 10°C e introduza a massa de areia no copo que contem a água, conforme figura 3.


Figura 3: Representação esquemática da introdução da areia no copo que contem a água.

Fonte: Compilação do autor

6. Monitore a variação da temperatura da mistura durante o processo da troca de calor até que o equilíbrio térmico entre água e areia seja estabelecido, conforme a figura 4;

Figura 4: Representação esquemática do monitoramento da temperatura da mistura da água e da areia.

Fonte: Compilação do autor

7. Alcançado o equilíbrio térmico, aguarde a mistura esfriar cerca de 5°C e conclua a aquisição de dados.

6. Código para o Arduino

//Sensor de temperatura LM35.

O código que nos permite registrar diretamente os dados experimentais no Excel é apresentado a seguir:

const int S1 = A0, S2 = A1; float aux = 10, t = 0.0, Temp1 = 0.0, Temp2 = 0.0; int LABEL = 1;void setup() { Serial.begin(19200); Serial.println("CLEARDATA"); Serial.println("LABEL,Hora,t,Temp1,Temp2"); } void loop() { Temp1 = (float(analogRead(S1))*5/(1023))/0.01;Temp2 = (float(analogRead(S2))*5/(1023))/0.01;Serial.print ("DATA,TIME,"); Serial.print(t*5); Serial.print(", "); Serial.print(Temp1); Serial.print(", ");

7. Análise de resultados

Serial.print(Temp2);

Serial.println("ROW, SET");

Serial.println(", ");

t++;

}

delay(5000);

estudante deverá responder atentamente as questões a seguir: 1. Com base nos dados experimentais, calcule o calor específico da areia. 2. O valor do calor específico obtido experimentalmente coincide com o que era esperado para areia? Para responder a essa pergunta, compare esse valor com aquele apresentado em seu livro. 3. O desenvolvimento do experimento em sala de aula colaborou com a construção do seu aprendizado sobre o tema da Termologia? (_) Concordo (_) Discordo. Justifique. 4. As Tecnologias da Informação e Comunicação são ferramentas que devem ser exploradas no ensino de Física? (_) Concordo (_) Discordo. Justifique. 8. Conclusões

Após analisar a curva de resfriamento da água obtida com a execução da atividade experimental, o

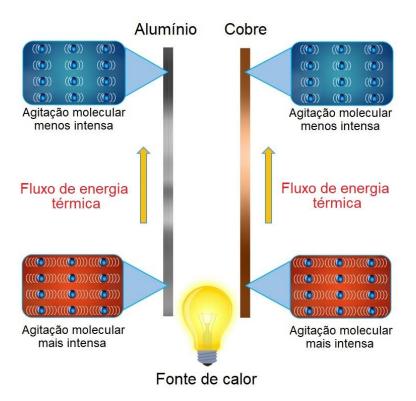
ROTEIRO DOS ESTUDANTES: CONDUÇÃO TÉRMICA

1. Objetivos

Ao término desta atividade, você deverá ser capaz de:

- Concluir quais são as condições necessárias para que ocorra a propagação do calor;
- Identificar a condução térmica em situações cotidianas de propagação de calor;
- Compreender que diferentes materiais apresentam diferentes condutibilidades térmicas;

2. Preparação


Responda atentamente as questões a seguir:			
1.	O que é temperatura?		
2.	O que é calor?		

3. Introdução

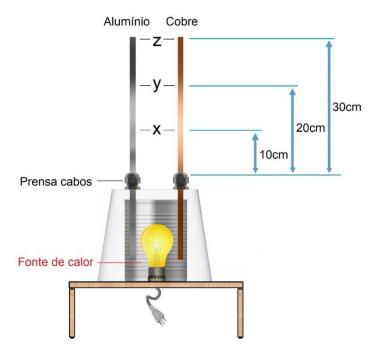
Propagação de calor é a denominação dada à passagem de energia térmica de um corpo para outro ou de um ponto para outro de um mesmo corpo. Essa transmissão pode se processar de três maneiras distintas: condução, convecção e irradiação. De acordo com a Segunda Lei da Termodinâmica, a energia térmica sempre se propaga de um ponto com maior temperatura para um ponto de menor temperatura independentemente do processo de propagação de calor.

Este experimento aborda a condução térmica, no qual o calor é transmitido de um ponto à outro do material através da agitação molecular e dos choques entre as moléculas, conforme a representação esquemática da figura 1. Assim, para ocorrer a condução, deve existir um meio material. No entanto, é a energia que se propaga; as partes do corpo não se deslocam, havendo apenas agitação molecular.

Figura 1: Representação esquemática mostrando a agitação molecular e o sentido do fluxo de energia térmica.

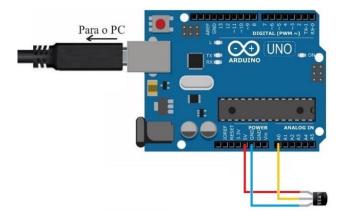
A aquisição de dados deste experimento é automatizada e nos permite obter as curvas de aquecimento do cobre e do alumínio simultaneamente. São utilizados seis sensores de temperatura que estão conectados à uma placa de Arduino que, por sua vez, está conectada a um computador onde os dados sobre a temperatura dos materiais serão armazenados e analisados.

4. Material necessário


- 01 Barra de cobre com 50cm de comprimento e seção transversal retangular;
- 01 Barra de alumínio com 50cm de comprimento e seção transversal retangular;
- 01 Lâmpada halógena de 70W/110V utilizada como fonte de calor;
- 01 Estrutura para fixação das barras
- 01 Sistema de aquisição de dados;
- 01 Computador.

5. Montagem e funcionamento do experimento

Nosso experimento de condução térmica será montado pelo professor de acordo com as seguintes instruções:


- 1. Fixe as barras metálicas de alumínio e de cobre conforme indicado na figura 2. Para isso, são utilizados dois conectores do tipo prensa cabos;
- **2.** Cada barra metálica deverá conter três sensores de temperatura fixados nas posições x, y e z indicadas na representação esquemática;

3. Cada um dos sensores deve ser conectado ao dispositivo de aquisição, que deve ser ligado ao computador através de um cabo USB. A figura 3 destaca a conexão de um desses sensores.

Figura 3: Representação esquemática da conexão de um dos sensores ao dispositivo de aquisição.

- 4. Inicie a planilha eletrônica no computador para coletar os dados das temperaturas;
- 5. Ligue a lâmpada halógena à rede elétrica (110V) dando início à atividade experimental;
- **6.** Monitore o aquecimento das barras metálicas por 30 minutos;

7. Após 30 minutos, desligue a lâmpada e analise as curvas de aquecimento desses materiais.

6. Análise de resultados

Após analisar as curvas de aquecimento do alumínio e do cobre obtidos com a execução da atividade imental, responda atentamente as questões a seguir:
Por que é errado afirmar que, quando uma substância quente aquece outra substância fria, a temperatura flui entre elas? Justifique sua resposta.
O calor pode fluir entre dois pontos com mesma energia interna? Justifique sua resposta.
Por que para se mexer continuamente um alimento de cozimento demorado não se recomenda a utilização de um talher metálico?
O que é o fenômeno da condução térmica?
Materiais distintos quando são aquecidos ou resfriados simultaneamente por uma mesma fonte de calor sofrem variações de temperaturas iguais ou diferentes? Justifique sua resposta.
nclusões

ROTEIRO DOS ESTUDANTES: CURVA DE AQUECIMENTO

1. Objetivos

Ao término desta atividade, você deverá ser capaz de:

- Compreender as diferentes dinâmicas de aquecimento e resfriamento da água e da areia;
- Identificar e compreender a importância do calor específico da água e da areia na formação das brisas marítimas.

2. Preparação

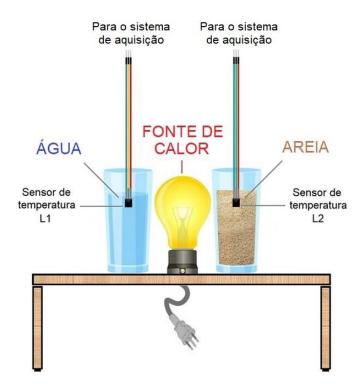
Re	esponda atentamente as questões a seguir:
1.	Como ocorre a propagação do calor na atmosfera?
2.	Por que, em regiões próximas ao mar, a variação da temperatura é menor do que em regiões desérticas?

3. Introdução

As propriedades térmicas da matéria e as trocas de calor estão relacionadas a diversos fenômenos climáticos do cotidiano. O calor específico é uma importante propriedade térmica que determina a quantidade de calor necessária para elevar em 1°C a temperatura de uma unidade de massa de um corpo. Dessa forma, quanto mais elevado for o calor específico de um material, mais elevada será a quantidade de calor necessária à sua variação de temperatura. O experimento proposto nos possibilitará analisar as diferentes dinâmicas de aquecimento e resfriamento da água e da areia e compreender a importância do calor específico desses materiais na formação das brisas marítimas.

A aquisição de dados deste experimento é automatizada e nos permite obter as curvas de aquecimento e resfriamento da água e da areia simultaneamente. São utilizados dois sensores de temperatura que estão conectados à uma placa de Arduino que, por sua vez, está conectada a um computador onde os dados sobre a temperatura dos materiais serão armazenados e analisados.

4. Material necessário


- 01 Copo de vidro de 250 ml contendo uma amostra de 160 g de água;
- 01 Copo de vidro de 250 ml contendo uma amostra de 260 g de areia;
- 01 Lâmpada halógena de 70W/110V utilizada como fonte de calor;
- 01 Sistema de aquisição de dados;
- 01 Computador.

5. Montagem e funcionamento do experimento

Nosso experimento de curva de aquecimento será montado pelo professor de acordo com os seguintes critérios:

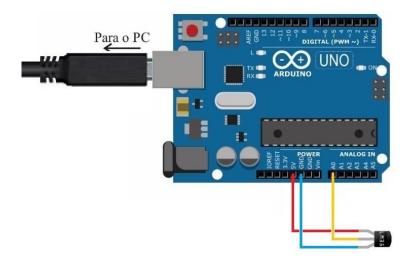

- 1. Posicione os copos contendo as amostras de água e areia em posições simétricas em relação à fonte de calor conforme indicado na figura 1;
- 2. Conforme ilustrado na figura 1, fixe os sensores de temperatura no interior de cada um dos copos para que seja efetuado o monitoramento das variações de temperatura da água e da areia durante o processo de aquecimento e resfriamento;

Figura 1: Representação esquemática do experimento destacando seus elementos e posições.

3. Cada um dos sensores deve ser conectado ao dispositivo de aquisição, que deve ser ligado ao computador através de um cabo USB. A figura 2 destaca a conexão de um desses sensores.

Figura 2: Representação esquemática da conexão de um dos sensores ao dispositivo de aquisição.

- 4. Inicie a planilha eletrônica no computador para coletar os dados das temperaturas;
- 5. Ligue a lâmpada halógena à rede elétrica (110V) dando início à atividade experimental;
- 6. Monitore o aquecimento das substâncias por 30 minutos;
- 7. Após 30 minutos, desligue a lâmpada e acompanhe o processo de resfriamento das substâncias.

6. Análise de resultados

Após analisar as curvas de aquecimento e resfriamento da água e da areia obtidas com a execução da atividade experimental, responda atentamente as questões a seguir:

1.	Quando a água e areia foram expostos à mesma fonte de calor, qual material alcançou a maior
	temperatura?
2.	Quando a fonte de calor foi desligada qual substância reduziu mais rapidamente a temperatura?

3.	substância possui maior calor específico? Justifique sua resposta.
4.	O que é o fenômeno da convecção térmica?
5.	Durante o dia a brisa sopra do mar para a praia. Já à noite, essa brisa sopra em sentido contrário da praia para o mar. Por que isso acontece? Justifique sua resposta.
7. Co	nclusões

ROTEIRO DOS ESTUDANTES: CALOR ESPECÍFICO

1. Objetivos

Ao término desta atividade, você deverá ser capaz de:

- Compreender a razão pela qual a areia esquenta mais rápido do que a água;
- Reconhecer uma situação de equilíbrio térmico a partir de dados experimentais;
- Determinar quantitativamente o calor específico de uma amostra de areia.

2. Preparação

Responda atentamente as questões a seguir:

1. Defina o conceito de equilíbrio térmico.

2.	Quando um corpo	perde calor	para o an	nbiente e se	resfria,	que tem	iperatura ele	e atinge of	depois of	de
	um tempo bastante	e longo?								

3. Introdução

Quando dois ou mais corpos com temperaturas distintas mantém contato durante certo tempo, eles alcançam a condição de equilíbrio térmicona qual apresentam um mesmo valor de temperatura. Esse é um processo natural que ocorre devido às trocas de calor entre os corpos. O experimento proposto nos possibilitará verificar a situação de equilíbrio térmico quando amostras de água e areia com temperaturas diferentes são misturadas, bem como determinar quantitativamente o calor específico da areia utilizada na atividade experimental.

Aplicando a conservação de energia para o processo de trocas de calor, é possível escrever:

$$Q_{\rm w} + Q_{\rm s} = 0, \tag{1}$$

onde Q_w é a energia térmica perdida pela água e Q_s é a energia térmica recebida pela areia.

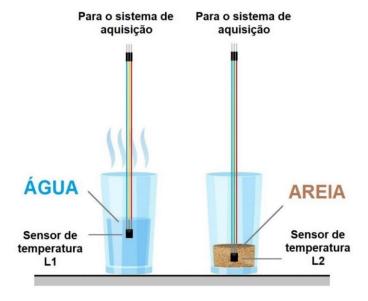
Determinamos o específico calor da areia (c_s) usando:

$$c_S = -\frac{m_W \cdot c_W \cdot \Delta T_W}{m_S \cdot \Delta T_S} , \qquad (2)$$

onde $c_{\rm w}$ é o calor específico da água, $\Delta T_{\rm w} = T_{\rm f}$ - T_0 é a variação de temperatura da água durante a troca de calor com a areia e $\Delta T_{\rm s} = T_{\rm f}$ - $T_{\rm 0s}$ é a variação de temperatura da areia até atingir o equilíbrio térmico com a água ($T_{\rm 0s}$ é temperatura inicial da areia).

A aquisição de dados deste experimento é automatizada e nos permite obter as informações das temperaturas da água e da areia ao longo da experimentação e da mistura de ambos. São utilizados dois sensores de temperatura que estão conectados à uma placa Arduino que, por sua vez, está conectada a um computador onde os dados sobre a temperatura dos materiais serão armazenados e analisados.

4. Material necessário


- 01 Copo de vidro de 250 ml contendo uma amostra de 190 g de água quente;
- 01 Copo de vidro de 250 ml contendo uma amostra de 90 g de areia do tipo lavada;
- 01 sistema de aquisição de dados;
- 01 computador.

5. Montagem e funcionamento do experimento

Nosso experimento do calor específico será montado pelo professor de acordo com as seguintes instruções:

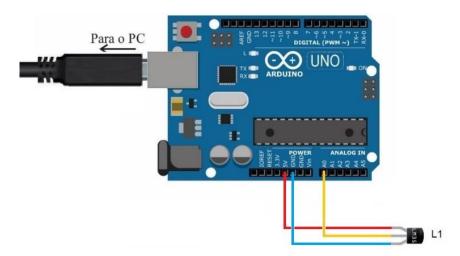

- Insira a massa de 190 gramas de água quente (temperatura ≈ 65 °C) em um dos copos de vidro e a massa de 90 gramas de areia no outro copo;
- 2. Conforme ilustrado na figura 1, fixe os sensores de temperatura no interiorde cada um dos copos para que seja efetuado o monitoramento das variações de temperatura da água e da areia;

Figura 1: Representação esquemática do experimento destacando seus elementos e posições.

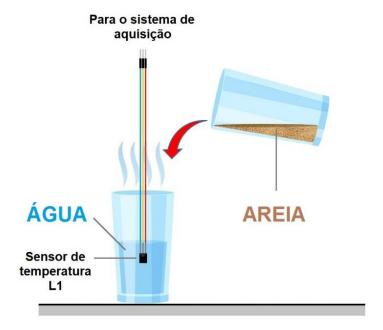

3. Cada um dos sensores deve ser conectado ao dispositivo de aquisição, que deve ser ligado ao computador através de um cabo USB. A figura 2 destaca a conexão de um dos sensores.

Figura 2: Representação esquemática da conexão de um sensor ao dispositivo de aquisição.

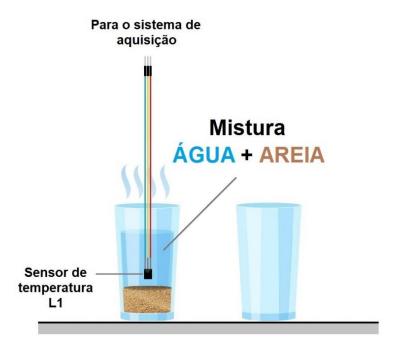

- 4. Inicie a planilha eletrônica no computador para coletar os dados das temperaturas;
- **5.** Aguarde a temperatura da água diminuir cerca de 10°C e introduza a massa de areia no copo que contem a água, conforme figura 3.

Figura 3: Representação esquemática da introdução da areia no copo que contem a água.

6. Monitore a variação da temperatura da mistura durante o processo da troca de calor até que o equilíbrio térmico entre água e areia seja estabelecido, conforme a figura 4;

Figura 4: Representação esquemática do monitoramento da temperatura da mistura da água e da areia.

7. Alcançado o equilíbrio térmico, aguarde a mistura esfriar cerca de 5°C e conclua a aquisição de dados.

6. Análise de resultados

Após analisar a curva de resfriamento da água obtida com a execução da atividade experimental, responda atentamente as questões a seguir:

1.	Com base nos dados experimentais, calcule o calor específico da areia.
2.	O valor do calor específico obtido experimentalmente coincide com o que era esperado para a areia? Para responder a essa pergunta, compare esse valor com aquele apresentado em seu livro.
3.	O desenvolvimento do experimento em sala de aula colaborou com a construção do seu aprendizado sobre o tema da Termologia? (_) Concordo (_) Discordo. Justifique.

4.	As Tecnologias da Informação e Comunicação são ferramentas que devem ser exploradas no ensino							
	de Física? (_) Concordo (_) Discordo. Justifique.							
7. Co	nclusões							