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RESUMO

IRIATE, Y. A. Distribuições Univariadas de Lambert-F para Dados Assimétricos. 2022.
103 p. Tese (Doutorado em Estatística – Programa Interinstitucional de Pós-Graduação em
Estatística) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo,
São Carlos – SP, 2022.

Nesta tese, propomos novas distribuições contínuas univariadas para modelar dados assimétricos.
Inicialmente, partindo de uma transformação paramétrica não linear de uma variável aleatória uni-
forme, propomos uma nova distribuição assimétrica de um parâmetro que estende a distribuição
uniforme, a chamada distribuição Lambert-uniforme. A transformação é expressa analiticamente
em termos do ramo principal da função Lambert W de tal forma que a transformação inversa
é expressa em termos de uma função exponencial. Conseqüentemente, a função densidade da
distribuição Lambert-uniforme tem uma forma fechada simples e exibe um comportamento
monótono crescente ou decrescente. Posteriormente, com base na distribuição Lambert-uniforme,
propomos um novo gerador de distribuição que permite adicionar um parâmetro de forma a uma
distribuição de referência arbitrária. O parâmetro adicionado permite uma variedade de formas
para a função de densidade da distribuição resultante, levando a uma expansão dos intervalos de
assimetria e curtose da distribuição de referência. Observamos que o parâmetro induzido pelo
gerador atua como parâmetro de assimetria quando a distribuição de referência é simétrica. Por
outro lado, quando a distribuição de referência tem suporte positivo, observamos que a função
taxa de risco da distribuição resultante corresponde a uma modificação nos tempos iniciais
da função taxa de risco da distribuição de referência. Isso é exemplificado através do estudo
de quatro casos especiais obtidos considerando as distribuições bimodal generalizada, slash,
exponencial e Rayleigh como distribuições de referência. Discutimos a estimação de parâmetros
pelo método de máxima verossimilhança e avaliamos o comportamento dos estimadores por
meio de experimentos de simulação. Finalmente, consideramos alguns exemplos de aplicação
que ilustram a utilidade das distribuições propostas em diferentes ambientes reais.

Palavras-chave: Distribuição de referência, Estimador de máxima verossimilhança, Função
densidade de probabilidade, Função de taxa de risco, Função Lambert W , Gerador de distribuição,
Parâmetro de forma.





ABSTRACT

IRIATE, Y. A. Lambert-F Univariate Distributions for Asymmetrical Data. 2022. 103 p.
Tese (Doutorado em Estatística – Programa Interinstitucional de Pós-Graduação em Estatística) –
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos –
SP, 2022.

In this dissertation, we propose new univariate continuous distributions for modeling asymmetri-
cal data. Initially, starting from a non-linear parametric transformation of an uniform random
variable, we propose a new asymmetric one-parameter distribution that extends the uniform
distribution, the so-called Lambert-uniform distribution. The transformation is expressed an-
alytically in terms of the principal branch of the Lambert W function in such a way that the
inverse transformation is expressed in terms of an exponential function. Consequently, the
density function of the Lambert-uniform distribution has a simple closed form and exhibits
increasing or decreasing monotonic behavior. Subsequently, based on the Lambert-uniform
distribution, we propose a new distribution generator that allows adding one shape parameter to
an arbitrary baseline distribution. The added parameter allows a variety of shapes for the density
function of the resulting distribution, leading to an expansion of the skewness and kurtosis ranges
of the baseline distribution. We observe that the parameter induced by the generator acts as
a skewness parameter when the baseline distribution is symmetric. On the other hand, when
the baseline distribution has positive support, we observe that the hazard rate function of the
resulting distribution corresponds to a modification in the early times of the hazard rate function
of the baseline distribution. This is exemplified through the study of four special cases obtained
by considering the generalized-bimodal, slash, exponential and Rayleigh distributions as baseline
distributions. We discuss the parameter estimation via the maximum likelihood method and
evaluate the behavior of the estimators through simulation experiments. Finally, we consider
some application examples that illustrate the usefulness of the proposed distributions in different
real settings.

Keywords: Baseline distribution, Probability density function, Distribution generator, Hazard
rate function, Lambert W function, Maximum likelihood estimator, Shape parameter.
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CHAPTER

1
INTRODUCTION

Univariate probability distributions play an important role in data analysis in various
fields of knowledge, such as economics, biology, medicine, epidemiology, engineering, among
others. For an analyst, having a wide range of distributions at his disposal turns out to be an
extremely favorable scenario, since through statistical tests it is possible to decide which is the
probability distribution that best represents the theoretical behavior of the phenomenon under
analysis.

An important variety of probability distributions can be found in the statistical literature.
These distributions are usually classified under different standard criteria, according to the
discrete or continuous nature of the corresponding random variable (rv), for example. In the
continuous case, a distribution is also usually classified according to the type of support it has
(bounded or unbounded) or according to the shapes exhibited by the probability density function
(pdf) (Monotonic, unimodal, etc.), or by the hazard rate function (hrf) in the case of a lifetime
distribution. Although the variety of distributions available in the literature is considerable, the
constant increase in the information to be analyzed in the modern globalized world requires
the use of new distributions to make an appropriate description of many of the phenomena or
experiments studied.

In this context, several studies proposing methods for the construction of univariate con-
tinuous distributions have been developed. In the case of lifetime distributions, a good summary
of these methods can be found in Lai (2013). Looking through the history of mathematical statis-
tics, it is possible to highlight two very popular approaches to constructing univariate continuous
distributions. The first consists of applying a transformation on a rv to obtain a new distribution
with a transformed support. The well-known log-normal distribution is a good example of this
approach considering that it can be derived from the exponential functional transformation of
a normal rv. The second approach is based on the principle of adding parameters to a baseline
distribution to obtain a new distribution with a larger parameter dimension, but which inherits
the support of the baseline distribution. In this case, the new distribution is usually generated by
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parametrically transforming the pdf, the cumulative distribution function (cdf), or the quantile
function (qf) of a particular baseline distribution. The new parameters allow a variety of new
shapes for the resulting pdf, which leads to a widening of the skewness and kurtosis ranges of
the baseline distribution. Consequently, in the analysis of certain random phenomena, direct
inferences about the data through new parameters open the possibility of an improvement in the
analyzes. Furthermore, the possibility of linking these new parameters with a set of covariates
through a regression type framework is an important justification for the development of studies
in this line.

This last approach is very popular in the literature because it has allowed the generation
of several asymmetric unbounded-support distributions that are derived from classical symmetric
distributions (See Azzalini (1985), Eugene, Lee and Famoye (2002), Ferreira and Steel (2006)
and Cordeiro and de Castro (2011), among others), which has favored the adequate description of
the theoretical behavior of random phenomena that present an intrinsic characteristic of skewness
evidenced in the sample data. A general approach that allows constructing univariate continuous
distributions can be found in Alzaatreh, Lee and Famoye (2013).

A function that plays an important role in this dissertation is the Lambert W function,
which is defined as the inverse function of f (z) = zez, z ∈C. By restricting z to be a real number,
this function is defined for z ≥−1/e, where e is the Euler’s number. In this case, it is possible
to distinguish three cases: If z < −1/e, then no solution exists in the reals; If z ∈ (−1/e,0),
then there are two solutions given by the principal branch, W0(z), and the non-principal branch,
W−1(z); If z ≥ 0, then the solution is unique, W0(z) =W−1(z).

Figure 1 illustrates the behavior of the branches of the Lambert W function, where it can
be seen that the principal branch exhibits an increasing monotonic behavior. As we will see in
later chapters, the results of this dissertation are largely based on the use of the principal branch
of the Lambert W function.

The Lambert W function has applications in many areas, in materials science, chemical
engineering, thermodynamics, and statistics, to name a few. In statistics, its use is wide. For
example, it has been used in hypothesis tests (STEHLÍK, 2003), in obtaining pseudo-random
numbers (JODRÁ, 2010) and to define new probability distributions (GOERG, 2011).

Regarding the latter, based on a systems theory and an input/output point of view, Goerg
(2011) proposes a new class of generalized distributions to model asymmetry, the Lambert W ×F

distributions. Specifically, Goerg (2011) focuses on a system represented by the transformation
Y = g(X ,δ ) = X exp(δX), where X is a symmetric input rv, Y is an asymmetric output rv, and
δ ∈ R is a shape parameter that controls the skewness level of the output Y . Here, the inverse
transformation X = g−1(Y,α) is expressed in closed form in terms of the principal and non-
principal branches of the Lambert W function, which leads to the pdf of the output Y also having
closed form in terms of the branches of this function.
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Figure 1 – Lambert W function.
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Goerg’s transformation is attractive in the sense that it allows asymmetric unbounded-
support distributions to be derived by transforming symmetric unbounded-range rv’s and not
the pdf, cdf, or qf of symmetric baseline distributions. On the other hand, a disadvantage of
this transformation is that the support of the distribution of X depends on the parameters. More
details of the Lambert W ×F distributions can be found in Goerg (2015).

In this dissertation, we propose new families of univariate continuous distributions for
modeling asymmetrical data. Initially, we derive a new asymmetric one-parameter distribution
that generalizes to the uniform distribution, the Lambert-uniform (LU) distribution. It arises
as a nonlinear parametric transformation of a uniform rv bounded to the interval (0,1). The
transformation is expressed in terms of the principal branch of the Lambert W function such
that the inverse transformation is expressed in terms of an exponential function. Consequently,
the pdf of the LU distribution has a simple closed form and its support does not depend on
parameters. Similar to the idea developed in Goerg (2011), the skewness characteristic of the LU
rv is a consequence of the parametric condition of the transformation applied on a symmetric
rv. However, our transformation is applied on a rv with a range bounded to the interval (0,1),
resulting in an asymmetric rv with the same range.

Second, we propose a distribution generator that allows adding one shape parameter
to an arbitrary baseline distribution, without restriction on the type of support it has, bounded
or unbounded. Thus, from a particular baseline distribution, it is possible to generate a more
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flexible distribution in terms of the skewness of the distribution. We use the proposed generator
to derive new asymmetric distributions of unbounded supports and positive supports. The new
distributions can be understood as extensions with one extra parameter of the well-known
generalized bimodal, slash, exponential and Rayleigh distributions. We discuss the parameter
estimation via the maximum likelihood (ML) method and evaluate the behavior of the estimators
through simulation experiments. Finally, we present some application examples in order to
illustrate the usefulness of the proposed distributions in different real-world settings.

The dissertation is structured with five interconnected chapters that are organized as
follows: In Chapter 2, the LU distribution is proposed. The main structural properties are studied.
The parameter estimation via the ML method is discussed. The behavior of the estimators is
evaluated through simulation experiments. An application example is presented. In Chapter 3,
the Lambert-F distribution generator is proposed. The main structural properties are studied.
Four special cases are derived. Parameter estimation via the ML method is discussed. The
behavior of the estimators is evaluated through simulation experiments. Two application examples
are presented. In Chapter 4, we propose two asymmetric unbounded-support distributions
that are derived from the Lambert-F generator. These distributions exhibit skewness while
capturing bimodality and high levels of kurtosis, respectively. In Chapter 5, we provide some
final comments associated with the main results of Chapters 2 and 3. Finally, in Chapter 6, we
present some ideas for future work associated with the distributions proposed in this dissertation.
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CHAPTER

2
LAMBERT-UNIFORM DISTRIBUTION

The beta (B) and Kumaraswamy (K) distributions (JOHNSON; KOTZ; BALAKRISH-
NAN, 1994; KUMARASWAMY, 1980) are two of the most widely used distributions for
modeling asymmetrical bounded data. When the histogram of a certain data set exhibits increas-
ing or decreasing behavior, the one-parameter special case called the power (P) distribution
becomes a viable alternative.

In this chapter, we propose a new one-parameter distribution for modeling asymmetric
bounded data, the Lambert-uniforme (LU) distribution. Using the principal branch of the Lambert
W function, the LU distribution arises from a nonlinear transformation of a uniform rv bounded
to the interval (0,1), hence the name of the distribution.

We study the main structural properties, such as the pdf, the cdf and the moment generat-
ing function that present simple closed forms. In addition, we derive the qf that can be written
in closed form in terms of the principal branch of the Lambert W function. From this result,
we observe that the pdf can be parameterized in terms of the qth quantile, which allows us to
formulate a model of quantile regression in a simple way. The parameter estimation is carried out
using the maximum likelihood method and the behavior of the estimators is evaluated through
simulation experiments. Finally, two application examples are considered in order to illustrate
the usefulness of the proposal.

2.1 Motivation

Consider the following adaptation for bounded rv’s in the system approach (Input/Output)
proposed by Goerg (2011).

Let X be a continuous input rv bounded to the interval (0,b), b > 0, and with standard
deviation sX . If Y is the output rv with standard deviation sY = αsX , α > 0, the location-scale
Lambert-W ×F rv is given by
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Y −b
σY

=
X −b

σX
eδ

X−b
σX =

α(X −b)
σY

eδα
X−b
σY ,

where δ ∈ R is the skewness parameter.

Now, it can be verified that if δ = log(α)σY/(αb), then Y has the same rank as X . Thus,
the output and input variables can be written as

Y = b− (b−X)α
X
b , α > 0, (2.1)

and

X =


b

log(α)
W0

(
log(α)(Y −b)

bα

)
+b, if α ∈ (0,1)∪ (1,∞),

Y, if α = 1,
(2.2)

respectively, where W (·) is the principal branch of the Lambert W function.

In Equation 2.1 (Input/Output system), the output Y is asymmetric and its skewness is
controlled only by α when input X is symmetric. Here, X can be obtained explicitly using the
principal branch of the Lambert W function (See the inverse system given in Equation 2.2),
which leads to the pdf of Y also having a closed form in terms of this function.

On the other hand, Equation 2.2 can also define a new asymmetric rv. For this, it is
enough to consider Equation 2.2 as a new system, where the output is now X and the input is Y .
Here, the output X is asymmetric and its skewness is only controlled by α when the input Y is
symmetric. One advantage that we see when working with Equation 2.2 is that some of the main
properties of the output X , for example its pdf and cdf, have closed forms that do not depend on
special functions.

In what follows, we will focus on studying the distribution of X considering the special
case b = 1 in which Y has a uniform distribution. In this way, we obtain a new asymmetric
one-parameter distribution that can be considered as an alternative to commonly used bounded
support distributions.

2.2 Lambert-Uniform Random Variable
In this section, we define the Lambert-uniform rv and derive some of its structural

properties.

Definition 1. A rv X follows the Lambert-uniform distribution, denoted as X ∼ LU(α), if it can
be represented as

X =


1

log(α)
W0

(
log(α)(U −1)

α

)
+1, if α ∈ (0,1)∪ (1,e),

U, if α = 1,
(2.3)
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where W0(·) is the principal branch of the Lambert W function, U is a rv with standard uniform
(U) distribution and e is the Euler’s number.

In Definition 1, it can be seen that the parameter α must necessarily be greater than 0
since the logarithm function is involved in the transformation. On the other hand, α must be
less than e to ensure that the cdf of X is a nondecreasing function. Considering α as known,
and remembering that W0(·) is a monotonic function, it is easy to see that X is a one-to-one
transformation of U . Thus, we concentrate on obtaining the limit values of X to determine its
range.

We see that

lim
U→1−1

X = 1 and lim
U→0+

X =
1

log(α)
W0

(
− log(α)

α

)
+1.

The first limit is direct. As for the second, considering the change of variable β =− log(α), it
is observed that limU→0+ X = − 1

β
W0(eβ )+ 1 = −1+ 1 = 0. Therefore, the range of X is the

interval (0,1).

Proposition 1. Let X ∼ LU(α). Then, the cdf of X is given by

FX(x;α) = 1− (1− x)αx, x ∈ (0,1)and α ∈ (0,e). (2.4)

Proof. From Equation (2.3), it is observed that

FX(x;α) = P(X ≤ x) =


P
(

W0

[
log(α)(U −1)

α

]
≤ log(α)(x−1)

)
, if α ∈ (1,e).

P
(

W0

[
log(α)(U −1)

α

]
≥ log(α)(x−1)

)
, if α ∈ (0,1).

Thus, by definition of the Lambert W function, it follows that

P(X ≤ x) = P
(

log(α)(U −1)
α

≤ log(α)(x−1)exp{− log(α)(x−1)}
)

= P(U ≤ 1− [1− x]αx) ,

and the result is obtained considering that P(U ≤ u) = u, once U follows a standard U distribution.
Note that the analytic expression obtained for the cdf of X is also valid for α = 1, since
FX(x;1) = x. □

The pdf of X can be obtained in a straightforward way from Equation (2.4).

Corollary 1. Let X ∼ LU(α). Then, the pdf of X is given by

fX(x;α) = [1− log(α)(1− x)]αx, x ∈ (0,1), α ∈ (0,e). (2.5)
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Consistent with Definition 1, it is observed that Equations (2.4) and (2.5) reduce to
the cdf and the pdf of the standard U distribution, respectively, when α = 1. Therefore, the
LU distribution can be understood as an extension with one extra parameter of the standard U
distribution.

The analytical description of the shapes for the LU pdf is simple and leads to establish
that

1. lim
x→0+

fX(x;α) = 1− log(α) and lim
x→1−

fX(x;α) = α.

2. fX(x;α) is a constant function if α = 1, a decreasing monotonic function if α ∈ (0,1) and
an increasing monotonic function if α ∈ (1,e).

Property 1 shows that the pdf of the LU distribution converges to finite values (greater
than 0) as x tends to the extreme values, 0 and 1, of the support. From Property 2, it follows that
the LU distribution is appropriate to fit bounded data whose relative frequency shows increasing
or decreasing behavior. Figure 2 shows some pdf curves of the LU distribution for different
values of α . Note that the behavior of the pdf curves is consistent with what is established above.
In addition, note that the curvature of the pdf varies depending on its behavior at the ends of the
support. This is a behavior similar to that exhibited by other one-parameter distributions known in
the literature, such that the P (JOHNSON; KOTZ; BALAKRISHNAN, 1994), skew-uniform (SU)
(SHAW; BUCKLEY, 2007) and Marshall-Olkin extended uniform (MOEU) (JOSE; KRISHNA,
2011) distributions.

Note that, due to the behavior of the pdf at the ends of the support, the LU distribution
may more adequately fit the extreme sample quantiles than a distribution whose pdf tends to ∞

and 0 at the ends of the support. In Section 2.7, we see that the LU distribution may perform
better in fitting data than the P, MOEU and SU distributions, even better than the two-parameter
beta (B) and Kumaraswamy (K) distributions whose pdf’s (in the monotonic case) tend to ∞ and
0 at the ends of the support.

Considering steps very similar to those of the proof of Proposition 1, the qf of the LU
distribution can be easily derived by inverting the cdf given in Proposition 1. The resulting
analytical expression for this function, for u ∈ (0,1), is given by

QX(u;α) =


1

log(α)
W0

(
log(α)(u−1)

α

)
+1, if α ∈ (0,1)∪ (1,e),

u, if α = 1.
(2.6)

Since the Lambert W function is implemented in different statistical software, Equation (2.6)
can be easily computed.

As a final consideration of this section, we highlight that the linear transformation a+bX ,
where X ∼ LU(α), a ∈R and b > 0, follows a LU distribution on the continuous range (a,a+b).
Therefore, the LU distribution can be easily used to fit bounded data to any real range.
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Figure 2 – Plot of the LU pdf for different values of α .
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2.3 Characterization of Skewness and Kurtosis

In the following, a description of the skewness and kurtosis characteristics of the LU
distribution is made by analyzing Fisher’s skewness and kurtosis coefficients. For this, the
moment generating function is first calculated.

Proposition 2. Let X ∼ LU(α). Then, in the case α = 1, the moment generating function of X

is given by MX(t) = (et −1)/t. In the case α ∈ (0,1)∪ (1,e), the moment generating function is
given by MX(t) = {log2(α)− [1− log(α)]t +αtet}[t + log(α)]−2.

Proof. In the case α = 1, the distribution LU reduces to standard U distribution, thus Mx(t) =

E(etX) = (et −1)/t. In the case α ∈ (0,1)∪ (1,e), we observe that

E(etX) =
[1− log(α)][α exp(t)−1]

t + log(α)
+ log(α)

∫ 1

0
xexp{x[t + log(α)]}dx,

and the result is obtained considering the usual method of integration by parts and an appropriate
algebra. □

Corollary 2. Let X ∼ LU(α). Then, in the case α = 1, the first four raw moments of X are
E(X) = 1/2, E(X2) = 1/3, E(X3) = 1/4 and E(X4) = 1/5. In the case α ∈ (0,1)∪ (1,e), for
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δ = log(α), the first four raw moments are given by

E(X) =
α −1−δ

δ 2 , E(X3) =
3[αδ 2 −2δ (2α +1)−6(1−α)]

δ 4 ,

E(X2) =
2[(α +1)δ +2(1−α)]

δ 3 , E(X4) =
4[αδ 2(δ −6)+6δ (3α +1)+24(1−α)]

δ 5 .

Corollary 3. Let X ∼ LU(α). Then, in the case α = 1, the skewness (γ1(α)) and kurtosis
(γ2(α)) coefficients assume the values 0 and 9/5, respectively. In the case α ∈ (0,1)∪ (1,e), the
coefficients are given by

γ1(α) =
µ3 −3µ1µ2 +2µ3

1

(µ2 −µ1)3/2 and γ2(α) =
µ4 −4µ1µ3 +6µ2

1 µ2 −3µ4
1

(µ2 −µ1)2 .

where µr = E(X r), with r = 1,2,3,4, are as in Corollary 2.

The skewness and kurtosis ranges for the LU distribution are (3e−6e2 +2e3 −4)[(2+
2e− e2)−3/2]< γ1(α)< 2 and 9/5 < γ2(α)< 9.

Figure 3 presents plots of the coefficients given in Corollary 3. The figure shows that the
LU distribution is symmetric only in the case α = 1, has positive skewness when α ∈ (0,1) and
has negative skewness when α ∈ (1,e). Furthermore, it is observed that the LU distribution can
model kurtosis levels higher than the kurtosis level of the U distribution.

2.4 Maximum Likelihood Estimation
For a random sample X1, . . . ,Xn, such that Xi ∼ LU(α), with i = 1, . . . ,n, the log-

likelihood function is given by

ℓ(α) = log
n

∏
i=1

fX(xi;α) = log(α)
n

∑
i=1

xi +
n

∑
i=1

log[1− log(α)(1− xi)], (2.7)

Thus, the score function is given by

U (α) =
∂ℓ(α)

∂α
=

1
α

n

∑
i=1

xi −
1
α

n

∑
i=1

1− xi

1− log(α)(1− xi)
. (2.8)

From Equation (2.8), it is observed that the maximum likelihood (ML) estimator for α

cannot be explicitly expressed. Therefore, the ML estimate of α must be obtained by solving the
equation U (α) = 0 by numerical procedures. The uniroot.all function available in the rootSolve
package of the R programming language (R Core Team, 2019) is a good option to tackle this
task.

Since the ML estimator of α does not have a closed form, a good alternative to obtain
the ML estimate is to solve the optimization problem maxα ℓ(α), subject to α ∈ (0,e). To solve
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Figure 3 – Plots of the skewness and kurtosis coefficients of the LU distribution (red color) and the U
distribution (circle)
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this problem, we use the optim function in the R programming language under the L-BFGS-B
algorithm (BYRD et al., 1995). This algorithm requires the specification of a value in the range
of α to initialize the iterative process. Through simulation experiments, we observe that the
initial value α0 = 1 is a good initial value.

The second partial derivative of the ℓ(α) function, with respect to α , is given by

∂ 2ℓ(α)

∂α2 =− 1
α2

n

∑
i=1

xi +
1

α2

n

∑
i=1

1− xi

1− log(α)(1− xi)
− 1

α2

n

∑
i=1

(
1− xi

1− log(α)(1− xi)

)2

.

Thus, under regularity conditions, we observe that the Fisher information is given by

I (α) =−E
(

∂ 2ℓ(α)

∂α2

)
=

n
α

∫ 1

0

u2

αu[1− log(α)u]
du. (2.9)

The integral in Equation (2.9) can be calculated by numerical integration, for example, the
integrate function of the R programming language can be used. Then, under regularity conditions,
the asymptotic distribution of (α̂ −α) is N(0,I −1(α)). Thus, the asymptotic standard error of
α̂ is given by 1/

√
I (α̂) and the asymptotic 100(1− γ)% confidence interval for α̂ is given by

α̂ ± zγ/2/
√

I (α̂), where γ/2 is the γ/2 upper quantile of the standard normal distribution.
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2.5 Quantile Regression Model

In statistical modeling, the regression technique is used to quantify the relationship
between the dependent variable (response) and one or more independent variables (covariates).
In the case in which the interest lies in quantifying the effect on the conditional mean response,
given the covariates, the classical least squares regression model and the generalized linear
models are especially valued. These models have been shown to be very useful when analyzing
data in various areas of knowledge. However, there are scenarios where it is equally or even more
important to quantify the effect on some other measure such as the conditional median or some
extreme conditional quantile of the response, see, e.g., Girma and Görg (2003) and Chunying
(2011). In this scenario, a quantile regression model is appropriate because it allows quantifying
the effect of the covariates on any quantile of the response.

In this section, we propose a quantile regression model formulated from a reparameterized
version of the LU distribution proposed in Section 2.2. In this model, it is only necessary to
estimate the regression coefficients, since it is formulated from a distribution with a single shape
parameter linked to the linear predictor through an appropriate link function. We highlight that
the performance of the proposed model is appropriate in scenarios where the histogram of the
observed values of the response variable exhibits a decreasing or increasing behavior.

2.5.1 The LU Model

The parameter α of the LU distribution can be explicitly expressed as a function of
the qth quantile, which allows reparameterizing the LU pdf in terms of the qth quantile and,
consequently, formulate a quantile regression model in a simple way.

Denoting by η the qth quantile of the LU distribution, from Equation (2.6), we obtain
that α = [(1−q)/(1−η)]1/η . Thus, the LU distribution can be easily reparameterized in terms
of the qth quantile, obtaining (for q ∈ (0,1) is known) the pdf given by

fX(x;η) =

(
1−q
1−η

) x
η
[

1− 1
η

log
(

1−q
1−η

)
(1− x)

]
, x,η ∈ (0,1). (2.10)

Let X1, . . . ,Xn be n random variables and denote by x1, . . . ,xn the observed values. As-
sume that each Xi has pdf fXi(x;ηi) given in Equation (2.10). The LU quantile regression model
is defined by establishing that the qth quantile ηi of Xi satisfies the functional relationship
g(ηi) = wt

iβ , i = 1, . . . ,n, where wi = (1,wi1, . . . ,wi(k−1))
t is the vector of covariates associated

to the response xi, β = (β0,β1, . . . ,β(k−1))
t is a k-dimensional vector of unknown regression

coefficients and g(·) is a strictly increasing and twice differentiable function that maps (0,1) into
R (link function). For instance, the most useful well-known link functions are the logit, log-log
and probit functions.
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2.5.2 ML Estimation

From Equation (2.10), the log-likelihood function is given by

ℓ(β ) = log(1−q)
n

∑
i=1

xi

ηi
−

n

∑
i=1

(1−ηi)xi

ηi
+

n

∑
i=1

log
[

1− 1
ηi

log
(

1−q
1−ηi

)
(1− xi)

]
, (2.11)

and the score functions are given by

∂ℓ(β )

∂βr
= − log(1−q)

n

∑
i=1

xiηi,r

η2
i

+
n

∑
i=1

xi log(1−ηi)ηi,r

η2
i

+
n

∑
i=1

xiηi,r

ηi(1−ηi)
(2.12)

+
n

∑
i=1

log
(

1−q
1−ηi

)
(1− xi)ηi,r

η2
i

[
1− 1

ηi
log
(

1−q
1−ηi

)
(1− xi)

] − n

∑
i=1

(1− xi)ηi,r

(1−ηi)
[
1− 1

ηi
log
(

1−q
1−ηi

)
(1− xi)

] ,
where ηi,r = ∂ηi/∂βr, ηi = g−1(wt

iβ ), with r = 0,1, . . . ,k−1. Note that ηi,r depends on the link
function. For example, if the logit link is considered, that is, g(u) = log(u/(1−u)), for u ∈ (0,1),
then ηir = ηi(1−ηi)wir, where ηi = exp(wt

iβ )/[1+ exp(wt
iβ )], wi0 = 1, with i = 1,2, . . . ,n,

r = 0,1, . . . ,k−1.

We observe from Equation (2.11) that the ML estimators for the coefficients β s cannot
be expressed in closed form. Thus, the ML estimates must be obtained by solving the system
of score equations using numerical procedures. In the R programming language, the multirrot
function of the rootSolve package is a good alternative to solve this system of equations.

In this case, since the ML estimators do not have a closed form, a good alternative to
obtain ML estimates is to solve the following optimization problem maxβ ℓ(β ), subject to βr ∈R,
r = 0,1, . . . ,k− 1, where ℓ(β ) is given in Equation (2.11). We solved this problem using the
function optim of the R programming language and, specifically, the BFGS algorithm was
applied.

Under regularity conditions, the asymptotic distribution of (β̂ML −β ) is Nk(0,K(β )−1),
where K(β ) is the expected information matrix. Since the function ℓ(β ) is not simple, it is not
easy to obtain the analytical expression of this matrix. However, we obtain an approximation
from the observed information matrix, whose elements are computed as minus the second partial
derivatives of the log-likelihood function with respect to all the parameters (evaluated at the ML
estimates). Thus, the observed information matrix is given by

I(β ) =


εβ0β0 εβ0β1 . . . εβ0βk−1

εβ0β1 εβ1β1 . . . εβ1βk−1
...

... . . . ...
εβ0βk−1

εβ1βk−1
. . . εβk−1βk−1

 ,

εβrβp =− ∂ 2ℓ(β )

∂βrβp

∣∣∣
β=β̂ML

, r, p = 0,1 . . . ,k−1,

where the second derivatives are presented in Appendix D.
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2.6 Simulation Studies

In this section, we initially carry out a simulation study to evaluate the behavior of the
ML estimators of the shape parameter of the LU distribution. Subsequently, we carried out a
second simulation study to evaluate the behavior of the ML estimators for the coefficients of the
LU quantile regression model.

2.6.1 First Simulation Study

In this study, 1000 random samples from the LU distribution were simulated considering
the sample sizes n = 10,20, . . . ,1000, respectively, in the scenarios A (α = 0.5) and B (α = 1.5).
These scenarios were chosen arbitrarily taking into account only the condition that in one the
skewness of the LU distribution is positive and in the other negative. The samples were generated
using the qf given in Equation (2.6). The LambertW package (GOERG, 2011) available in the R
programming language was used to compute the principal branch of the Lambert W function.
The estimates were obtained by maximizing the log-likelihood function under the considerations
of Section 2.4.

Figure 4 shows the average estimate (AE), the empirical standard deviation (SD) and
the roots of the mean squared error (RMSE) for each of the 1000 estimates obtained for each
scenario and sample size considered. In addition, the average of asymptotic standard errors (SE)
and the coverage probability (CP) of the 95% asymptotic confidence intervals are also reported.
In the figures, it is observed that the AE’s tend to be close to the true values of α as the sample
size increases. The SD’s, RMSE’s and SE’s are close and decrease to zero as the sample size
increases, as expected in standard asymptotic theory. It is also observed that the CP’s converge
to the nominal values as the sample size increases.

Regarding the comparison of the results obtained in both scenarios, we observe that: The
mean estimate in the smaller sample sizes is closer to the true value in scenario A; Consequently,
the SD, SE and RMSE values are higher for small sample sizes in scenario B; Finally, the PC
values in the smaller sample sizes are closer to the nominal value in scenario B. This is partly
explained because in this scenario the SE values are bigger.

2.6.2 Second Simulation Study

In this study, we simulated 1000 random samples from the LU distribution (with pdf
given in Equation (2.10)), considering the sample sizes n = 10,20, . . . , 1000, respectively. Here,
the shape parameter is linked via the logit function with three covariates. The samples were
generated as follows:

1. Definition of covariates: Generate w1 = (w11, . . . ,w1n)
t , w2 = (w21, . . . ,w2n)

t and w3 =

(w31, . . . ,w3n)
t , where (w1 j,w2 j) follows a bivariate normal distribution with parameters
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Figure 4 – The AE, SD, SE, RMSE and CP for each of the 1000 estimates of α obtained in the scenarios
A (top) and B (bottom), under the different sample sizes.
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µ1 = µ2 = 0, σ1 = σ2 = 1 and ρ = 0.7, with j = 1, . . . ,n and w3 is a binary variable with
probability of success depending on the variable w1 through the logistic function, that is,
w3 j ∼ Bernoulli(p j), where p j = 1/[1+ exp(−w1 j)] j = 1, . . . ,n.

2. Definition of scenarios: We considered two scenarios, A and B, where in both we picked
β0 = −2, β1 = 0.1, β2 = 0.5 and β3 = −2.5. Regarding the choices for q, we chose the
values 0.25 for Scenario A and 0.75 for Scenario B.

3. Simulate the response variable: Generate (u1, . . . ,un)
t , u j ∼ uniform(0,1), j = 1, . . . ,n,

and calculate

x j =
η j

log
(

1−q
1−η j

)W0

[
log
(

1−q
1−η j

)
u j −1

η j

(
1−η j

1−q

)1/η j
]
+1, j = 1, . . . ,n,

where η j = exp(wtβ )/[1+exp(wtβ )], such that wtβ = β0+β1w1 j +β2w2 j +β3w3 j, with
j = 1, . . . ,n.

In both scenarios, under the different sample sizes, it is possible to verify that the
histogram of the simulated values has a decreasing behavior.

For each simulated sample, we calculated the ML estimates for the coefficients β s under
the considerations of Section 2.5.2. Figures 5 and 6 show the AEs, SDs, SEs and RMSEs for
the estimates obtained in each scenario and sample size considered. In Figure 7, the CPs of the
95% asymptotic confidence intervals are reported. Similar to the results obtained in the first
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Figure 5 – The AE, SD, SE and RMSE for each of the 1000 estimates of the coefficients β s obtained in
Scenario A, under the different sample size.

simulation study, in the figures, it is observed that the AEs tend to be close to the true values of
the coefficients β s as the sample size increases. The SDs, RMSEs and SEs are close and decrease
to zero as the sample size increases, as expected in standard asymptotic theory. It is observed
that the CPs converge to the nominal values as the sample size increases.

Note that the increasing and decreasing patterns exhibited in the top panels of Figures 5
and 6 suggest an underestimation and overestimation, respectively, of the individual effect of the
covariates on the 0.25th and 0.75th quantiles of the response when the sample size is small.

When comparing the upper right panels of the figures, a different behavior pattern is
observed for the AEs of β3. Therefore, the effect of the covariate w3 on the 0.25th quantile of the
response can be underestimated when the sample size is small, while the effect on the 0.75th
quantile can be overestimated.

2.7 Data Analysis

In this section, two application examples are presented in order to illustrate the usefulness
of the LU distribution and the LU quantile regression model.

In the first, we compare the performance of the LU, P, MOEU, SU, B and K distributions
in fitting a real data set. In the second example, based on a real data frame, and in order to
quantify the effect of the covariates on the 0.25th, 0.5th and 0.75th quantiles of the response, we
compare the performance of the LU quantile regression model with the performance of other
models such as arc-secant-hyperbolic-normal (ASHN) (KORKMAZ; CHESNEAU; KORKMAZ,
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Figure 6 – The AE, SD, SE and RMSE for each of the 1000 estimates of the coefficients β s obtained in
Scenario B, under the different sample size.
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Figure 7 – The CPs for the estimates of the coefficients β s in: Scenario A (left); and Scenario B (right).
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2021) and K (MITNIK; BAEK, 2013) quantile regression models. In all three models, the logit
function is considered to relate the qth quantile of the response to the linear predictor. The pdfs
of the ASHN and K distributions are given, respectively, by

f (x;α,η) =
2αΦ−1(qα)

A(η)x
√

1− x2
φ

(
Φ−1(qα)A(x)

A(η)

)[
2−2Φ

(
Φ−1(qα)A(x)

A(η)

)]α−1

,

where x ∈ (0,1), qα = 1− (q1/α)/2, A(z) = log[(1+
√

1− z2)/z] is the hyperbolic arcsecant
function, α > 0 is a shape parameter, η ∈ (0,1) is a quantile parameter and q ∈ (0,1) is known,
and

f (x;β ,η) =
β log(1−q)
log(1−ηβ )

xβ−1(1− xβ )log(1−q)/ log(1−ηβ )−1, x ∈ (0,1),

where β > 0 is a shape parameter, η ∈ (0,1) is a quantile parameter and q ∈ (0,1) is known.

The regression framework for bounded responses based on the K and ASHN distributions
is very similar to the regression framework based on the LU distribution presented in Section
2.5.1. However, the main difference with LU regression is that it depends on a shape parameter
that gives great flexibility to the modeling.

In both examples, the parameters are estimated by maximizing the corresponding likeli-
hood functions with the optim function in the R language. We compared the performance of the
distributions by contrasting the maximum value of the log-likelihood function (ℓ) and contrasting
the values associated with the Akaike Information Criterion (AIC) (AKAIKE, 1974) and the
Bayesian Information Criterion (BIC) (SCHWARZ, 1978). In general, the best model can be
chosen as the one that shows the highest ℓ value and the lowest AIC and BIC values. In addition,
we consider the usual Anderson–Darling (AD) and Cramer–von Mises (CvM) goodness-of-fit
tests to assess the quality of the fits in the first example. In the second example, we use these
tests to assess the overall quality of fit of the regression models, by testing the hypothesis that
the randomize residuals (DUNN; SMYTH, 1996) follow the standard normal distribution. These
residuals follow a standard normal distribution when the overall quality of fit is appropriate. We
use the ad.test and cvm.test functions available in the goftest (FARAWAY et al., 2019) package
in the R programming language to calculate the statistics and p-values of these tests.

2.7.1 Peak Horizontal Acceleration Data

We consider a data set consisting of 182 observations on the peak horizontal acceleration
(g) in earthquakes recorded by observation stations in California, USA. These data were originally
analyzed by Joyner and Boore (1981) and can be found with the name attenu in the data sets
package of the R language. For these data, we note that the minimum value is equal to 0.003, the
maximum value is equal to 0.810, and the Fisher skewness value is equal to 1.641. Thus, added
to the fact that the histogram of the data exhibits a decreasing behavior (See Figure 9), we expect
that the LU distribution presents a good performance in the fit of these data.
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Table 1 – The parameter estimates (with standard errors in parentheses), the ℓ, AIC, CAIC and BIC values
and the p-values of the AD and CvM goodness-of-fit tests for the SU, P, MOEU, B, K and LU
distributions fitted to the peak horizontal acceleration data.

Parameter LU K B MOEU P SU

α 0.005 0.890 0.877 0.112 0.412 1.000
(0.002) (0.062) (0.080) (0.013) (0.030) (0.170)

β - 4.423 4.699 - - -
(0.571) (0.533)

ℓ 158.5 157.0 156.6 149.3 98.1 91.7

AIC −315.1 −310.1 −309.3 −296.7 −194.3 −181.5
BIC −311.9 −303.7 −302.9 −293.5 −191.1 −178.2

AD 0.978 0.882 0.486 0.069 <0.001 <0.001
CvM 0.965 0.884 0.576 0.140 <0.001 <0.001

Table 1 reports the ML estimates, the ℓ, AIC and BIC values and the p-values of the AD
and CvM goodness of fit tests for each distribution fitted to the peak horizontal acceleration data.
In this table, based on p-values, considering a significance level of 5%, we observe that the SU
and P distributions are not appropriate to fit the peak horizontal acceleration data. Note that the
MOEU, SU, P and LU distributions are uni-parametric, however the performance shown by the
LU distribution is clearly better. We also observe in Table 1 that the LU distribution is the one
with the lowest AIC and BIC values and the one with the highest ℓ value, evidencing that this
distribution must be selected over the others for the fit of the peak horizontal acceleration data.

Calculating limx→0+ fX(x) for each fitted distribution, we observe the limit value 6.298
for the LU distribution, 8.923 for the MOEU distribution, 2.000 for the SU distribution and ∞

for the B, K and P distributions. Now, calculating limx→1− fX(x), we observe the limit values
0.005 for the LU distribution, 0.112 for the MOEU distribution, 0.412 for the P distribution and
0 for the SU, B and K distributions. The fact that the LU pdf tends to finite values at both ends of
the support is an important feature when explaining the good performance of the LU distribution
in fitting this data set.

In Figure 9, the histogram of the data fitted with the LU, P, MOEU, SU, B and K
distributions is presented. Here, it can be seen that the curvature characteristics of the LU, B
and K pdf’s are similar, exhibiting a similar performance in the fit of the most central sample
quantiles. However, the LU pdf more appropriately fits the more extreme quantiles by tending to
the values 6.298 and 0.005 at the ends of the support.

Figure 8 presents the qqplots for the fitted distributions. This figure shows that the LU
distribution fits the peak horizontal acceleration data appropriately.
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Figure 8 – QQ-plots: (a) LU distribution; (b) K distribution; (c) B distribution; (d) MOEU distribution; (e)
P distribution; and (f) SU distribution.
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Figure 9 – Histogram of the peak horizontal acceleration data fitted with the LU, K, B, MOEU, P and SU
distributions.
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2.7.2 Risk Managements Practice Data

In this example, we consider the data frame presented by Schmit and Roth (1990)
consisting of observations of seven variables (73 observations for each variable) consulted
by means of a questionnaire sent to 374 risk managers of large US-based organizations. The
variables consulted are described below: FI represents the measure of the firm’s risk management
cost effectiveness, defined as total property and casualty premiums and uninsured losses as a
percentage of total assets; AS represents the per occurrence retention amount as a percentage
of total assets; CA indicates that the firm owns a captive insurance company; SI represents the
logarithm of total assets; IN represents a measure of the firm’s industry risk; CE represents a
measure of the importance of the local managers in choosing the amount of risk to be retained;
and SO represents a measure of the degree of importance in using analytical tools.

Gómez-Déniz, Sordo and Calderín-Ojeda (2014) considered a Log-Lindley regression
model to quantify the effect of the variables AS, CA, SI, IN, CE and SO on the mean of the
variable FI. In our case, we consider the LU quantile regression model to quantify the effect
of such covariates on the 0.25th, 0.5th and 0.75th quantiles of the variable FI, providing a
very informative scenario (which complements the one proposed by Gómez-Déniz, Sordo and
Calderín-Ojeda (2014)) to explain the behavior of the FI response in terms of the covariates
already described. We observe that the histogram of the variable FI shows a decreasing behavior.
Thus, we hope that the LU model can appropriately quantify the effect of the covariates on the
0.25th, 0.5th and 0.75th quantiles of the response variable.

As already mentioned, we compare the results with those obtained with the K and ASHN
quantile regression models. The regression structure assumed for ηi is given by logit(ηi) =

β1(q) + β2(q)ASi + β3(q)CAi + β4(q)SIi + β5(q) INi + β6(q)CEi + β7(q)SOi, i = 1, . . . ,73,
where ηi denotes the qth quantile of the LU, K and ASHN distributions.

Table 2 reports the ℓ, AIC and BIC values for the ASHN, K and LU models fitted to
the risk managements practice data. The p-values of the AD and CvM tests of the hypothesis
that the randomize residuals follow a standard normal distribution are also reported in Table
2. In this table, we see that the ℓ, AIC and BIC values change as the value of q changes. This
shows that the rate of change in the conditional quantile of the response FI, expressed by the
regression coefficients, depends on the value of q. On the other hand, based on the p-values
and considering a significance level of 5%, we observe that the assumption of normality of the
randomize residuals of the LU and K models is not rejected. Thus, under this significance level,
the global fit of these models is appropriate. Furthermore, we observe that the LU model is the
one with the highest ℓ value and the one with the lowest AIC and BIC values, suggesting that
this model should be selected to quantify the effect of the covariates on the 0.25th, 0.5th and
0.75th quantiles of the response.

Table 3 reports the estimates for the coefficients of the LU models fitted to the risk
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Table 2 – The ℓ, AIC, CAIC and BIC values for the ASHN, K and LU quantile regression models fitted to
the risk managements practice data and the p-values of the AD and CvM tests for the randomize
residuals.

Criterion p-Value for the
q Model ℓ AIC BIC AD Test CvM Test

0.25 ASHN 80.3 −144.7 −126.4 <0.001 <0.001
K 97.9 −179.8 −161.5 0.166 0.198

LU 107.8 −201.6 −185.6 0.134 0.231

0.5 ASHN 80.1 −144.2 −125.9 <0.001 <0.001
K 98.8 −181.6 −163.3 0.150 0.169

LU 108.1 −202.2 −186.2 0.154 0.252

0.75 ASHN 81.8 −147.7 −129.4 <0.001 <0.001
K 99.9 −183.9 −165.6 0.151 0.147

LU 108.6 −203.2 −187.2 0.158 0.230

managements practice data. In addition, the z statistics and the p-values of the significance tests
of the individual regression coefficients are reported. Here, we observe that the covariates SI
and IN (the logarithm of total assets and the measure of the firm’s industry risk) are statistically
significant at usual nominal levels. Additionally, it is important to point out that there is a
negative relationship between the 0.25th, 0.5th and 0.75th quantiles of the response (the firm’s
risk management cost effectiveness) and the covariate SI, while there is a positive relationship
between the 0.25th, 0.5th and 0.75th quantiles of the response and the covariate IN. On the other
hand, the covariates AS, CA, CE and SO are not significant. Figure 10 shows the estimates of the
coefficients with the 95% confidence intervals of the LU regression model assuming different
values for q. Here, we observe that the estimates of the coefficients of the covariates SI and IN
decrease and increase, respectively, distancing themselves more and more from the value 0 as q

increases. This illustrates a greater effect of these covariates on the high quantiles of the firm’s
risk management cost effectiveness.

2.8 Final Comments

In this section, we propose a new asymmetric one-parameter distribution for the modeling
of bounded data whose histograms show increasing or decreasing behavior. The new distribution,
called the Lambert-uniform distribution (LU), arises from a nonlinear transformation of a uniform
rv bounded to the interval (0,1), where the transformation is expressed in term of the principal
branch of the Lambert W function. An important aspect to highlight about the LU distribution is
that its pdf tends to finite values at the ends of the support, which allows the extreme sample
quantiles to be adequately modeled.

We derive the main structural properties of the LU distribution, including the moment
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Figure 10 – Coefficient estimates and its 95% confidence intervals for variables AS, CA, SI, IN, CE and
SO in different LU quantile regression models considering q = 0.1,0.2, . . . ,0.9 and response
variable FI.

Table 3 – Coefficient estimates for the LU quantile regression model fitted to the risk managements
practice data and significance tests of individual regression coefficients.

q Parameter Estimate SE z p-Value

0.25 Intercept 1.619 1.543 1.049 0.293
AS −0.022 0.017 −1.311 0.189
CA 0.318 0.314 1.013 0.310
SI −0.774 0.164 −4.717 <0.001
IN 3.494 0.888 3.932 <0.001
CE −0.044 0.112 −0.399 0.689
SO −0.009 0.028 −0.322 0.747

0.50 Intercept 2.730 1.601 1.705 0.088
AS −0.022 0.018 −1.263 0.206
CA 0.311 0.322 0.965 0.334
SI −0.802 0.167 −4.788 <0.001
IN 3.644 0.842 4.323 <0.001
CE −0.044 0.115 −0.388 0.697
SO −0.009 0.029 −0.333 0.738

0.75 Intercept 3.850 1.715 2.245 0.024
AS −0.023 0.019 −1.173 0.240
CA 0.293 0.340 0.863 0.387
SI −0.855 0.175 −4.869 <0.001
IN 3.946 0.826 4.777 <0.001
CE −0.045 0.122 −0.374 0.707
SO −0.010 0.031 −0.347 0.728
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generating function that is used to describe the features of skewness and kurtosis. The quantile
function of the LU distribution can be expressed in terms of Lambert W function, which allows
the pdf to be reparameterized in terms of its qth quantile, resulting in a pdf with a simple analytic
structure, easy to compute. Thus, we propose the LU quantile regression model that relates the qth
quantile of the response to a linear predictor through a link function. The parameter estimation
for the cases with and without covariates is performed with the maximum likelihood method. The
estimators of the parameters do not have a closed form, so the use of some computational routine
is required to obtain the estimates. We use the optim function in the R programming language to
obtain the estimates. We evaluate the behavior of the estimators through two simulation studies,
concluding that the maximum likelihood method provides acceptable estimates. Finally, we
present two application examples in order to illustrate the usefulness of the proposal. In the
first, considering data whose histogram shows a decreasing behavior, we illustrate that the LU
distribution can present a better fit than the P, MOEU, SU, B and K distributions. In the second
example, based on a real data frame, we illustrate that a quantile regression model formulated
from the LU distribution performs well when modeling the 0.25th, 0.5th and 0.75th quantiles of
the response (given a set of covariates), being a viable alternative to the other models such as the
ASHN and K quantile regression models.
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CHAPTER

3
LAMBERT-F DISTRIBUTION GENERATOR

In this chapter, we propose a new distribution generator formulated from the LU dis-
tribution. For any continuous baseline distribution F , the corresponding Lambert-F version
is generated by using the new generator. The result is a new class of distributions with one
extra parameter that generalizes the baseline distribution and whose quantile function can be
expressed in closed form in terms of the Lambert W function. The hazard rate function of
a Lambert-F distribution corresponds to a modification of the baseline hazard rate function,
greatly increasing or decreasing the baseline hazard rate for earlier times. We study the main
structural properties of the new class of distributions. Special attention is given to two particular
cases that can be understood as two-parameter extensions of the well-known exponential and
Rayleigh distributions. We discuss parameter estimation for the proposed models considering the
maximum likelihood method. Finally, two applications are developed to illustrate the usefulness
of the proposed distributions in the analysis of data from different real settings.

3.1 Motivation
One of the popular methods for constructing continuous probability distributions is to

define a new cdf by considering an appropriate transformation of the cdf of a rv of interest.

More specifically, if X is a rv with cdf F(x;θ), parameterized by the vector θ , then

FX(x;θ ,δ ) = r(F(x;θ),δ ), (3.1)

where δ is an extra parameter vector and r(·, ·) is a nondecreasing function such that r(u,δ )→ 0
as u ↓ 0, and r(u,δ )→ 1 as u ↑ 1, for u ∈ (0,1), is a cdf.

In the literature, Equation (3.1) is usually referred to as a distribution generator. Once
the analytic structure of the function r(·, ·) is established, each choice of F(·; ·) gives rise to a
more flexible cdf FX(·; ·, ·) by possessing a larger parameter dimension. For example, if r(u,δ =

α) = uα , α > 0, then Equation (3.1) corresponds to the cdf of the exponentiated distributions
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class; see Gupta and Kundu (1999), Nadarajah and Kotz (2006), Al-hussaini (2010), Castillo et

al. (2018) and Gómez-Déniz et al. (2019), among others. If r(u,δ = (α,β )) = Iu(α,β ), where
α,β > 0 and Iu(·, ·) denotes the incomplete beta function ratio, then Equation (3.1) corresponds
to the cdf of the beta-generated distributions class; see Eugene, Lee and Famoye (2002), Jones
(2004), Jones (2007) and Nadarajah and Kotz (2004), among others. Similarly, other alternative
expressions for r(u) can be found in Marshall and Olkin (1997), Shaw and Buckley (2007),
Zografos and Balakrishnan (2009), Cordeiro and de Castro (2011), Lai (2013), to name just a
few.

In what follows, we study a special case of Equation (3.1) obtained by considering a
new analytic expression for the function r(u,δ ), the expression r(u,δ = α) = 1− (1− u)αu,
for α ∈ (0,e). The proposed generator can be understood as the cdf of a rv represented by the
qf of an arbitrary baseline distribution, where the input of the qf corresponds to a rv with LU
distribution.

3.2 The Generator
In this section, we propose the Lambert-F distribution generator and derive the corre-

sponding density, survival, hazard rate and quantile functions.

Proposition 3. Let Z be a continuous baseline rv with cdf F(z;η) and qf F−1(z;η), where η is
a parameter vector. Then, the cdf of X = F−1(U ;η), where U ∼ LU(α), is given by

FX(x;η ,α) = 1− [1−F(x;η)]αF(x;η), α ∈ (0,e). (3.2)

Proof. If X = F−1(U ;η), where U ∼ LU(α) and F−1(·;η) is the qf of Z, then the cdf of X is
given by FX(x;η ,α) = P(X ≤ x) = FU(F(x;η);α), where F(·;η) is the cdf of Z and FU(·;α)

is the cdf of U . □

We refer to Equation (3.2) as the Lambert-F distribution generator since for each choice
of F(·;η) a new cdf is generated. We denote X ∼ LF(η ,α) to indicate that a rv X has a cdf as in
Equation (3.2).

Note that the cdf FX(x;η ,α) inherits the support of the baseline cdf F(x;η) and that
FX(x;η ,α) = F(x;η) when α = 1. Since the baseline cdf is arbitrary (without any conditions
on the type of support), the Lambert-F generator can be used to obtain new distributions with
unbounded or semi-bounded (positive) support.

Corollary 4. Let X ∼ LF(η ,α). Then, the probability density function (pdf), the survival
function (sf) and the hazard rate function (hrf) of X are given, respectively, by

fX(x;η ,α) = f (x;η)αF(x;η) [1− log(α)S(x;η)] , (3.3)

SX(x;η ,α) = S(x;η)αF(x;η) and (3.4)

hX(x;η ,α) = h(x;η)[1− log(α)S(x;η)], (3.5)
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where f (x;η), F(x;η), S(x;η) = 1−F(x;η) and h(x;η) = f (x;η)/S(x;η) are the pdf, the cdf,
the sf and the hrf of the baseline distribution, respectively.

We derive a linear representation for the pdf of the Lambert-F distributions using the
binomial theorem and the exponential expansion series.

Proposition 4. Let X ∼ LF(η ,α). Then, the pdf of X can be expressed as

fX(x;η ,α) =
∞

∑
k=0

ck(α) fE(x;η ,k), (3.6)

where

ck(α) = (−1)k+1
∞

∑
i=k−1

α[− log(α)]i

i!

(
i+1

k

)
,

and fE(x;η ,k) = k f (x;η)Fk−1(x;η) is the cdf of the exponentiated distributions with baseline
parameter vector η and shape parameter k (NADARAJAH; KOTZ, 2006).

Proof. We observe that Equation (3.4) can be written as

SX(x;η ,α) = α[1−F(x;η)]exp{− log(α)[1−F(x;η)]}

= α

∞

∑
i=0

[− log(α)]i

i!
[1−F(x;η)]i+1

=
∞

∑
k=1

∞

∑
i=k−1

[− log(α)]i

i!
(−1)k

(
i+1

k

)
Fk(x;η).

Finally, the result is obtained by calculating −∂SX(x;η ,α)/∂x. □

Equation (3.6) reveals that the pdf of the Lambert-F distribution can be expressed as an
infinite sum of exponentiated pdf’s.

From Corollary 4, we note that (due to the performance of extra parameter α) the pdf and
the hrf given in Equations (3.3) and (3.5) exhibit a wider variety of shapes than those exhibited
by corresponding baseline functions. These shapes are discussed in detail in the next section.

3.3 Shapes
The shapes of the pdf and the hrf presented in Corollary 4 can be described ana-

lytically. First of all, we see that (i) fX(0;η ,α) = [1 − log(α)] f (0;η); (ii) hX(0;η ,α) =

[1− log(α)]h(0;η) and hX(∞;η ,α) = h(∞;η).

Secondly, the critical points of the pdf of X are the roots of the equation

a1 f ′(x;η)+a2 f (x;η)(1+a1) = 0, (3.7)

where a1 = 1− log(α)S(x;η) and a2 = log(α) f (x;η). There may exist more than one root of
Equation (3.7). If x = x0 is a root of Equation (3.7), then it corresponds to a local maximum, a
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local minimum or a point of inflexion depending on whether ϕ(x0)< 0, ϕ(x0)> 0 or ϕ(x0) = 0,
where ϕ(x) = αF(x;η){(a1 +1)a2[3 f ′(x;η)+a2 f (x;η)]+a2

2 f (x;η)+a1 f ′′(x;η)}. The critical
points of the hrf of X are the roots of the equation[

f ′(x;η)

S(x;η)
+h2(x;η)

]
a1 +a2h(x;η) = 0. (3.8)

There may exist more than one root of Equation (3.8). If x = x0 is a root of Equation (3.8), then it
corresponds to a local maximum, a local minimum or a point of inflexion depending on whether
τ(x0)< 0, τ(x0)> 0 or τ(x0) = 0, where

τ(x) =
[

f ′′(x;η)

S(x;η)
+

3 f ′(x;η)h(x;η)

S(x;η)
+2h3(x;η)

]
a1 +

[
3 f ′(x;η)

S(x;η)
+2h2(x;η)

]
a2.

In the case where the baseline distribution is symmetric, it can be verified that the
parameter α acts as a skewness parameter allowing asymmetric shapes for the resulting pdf.
Thus, the Lambert-F generator can be used to obtain asymmetric distributions from symmetric
baseline distributions, see Section 4.

Giving greater attention to the hrf of the Lambert-F distributions, we point out the
following:

1. The hrf of the Lambert-F distribution approximates the hrf of the baseline distribution F

when x is large enough, that is, hX(x;η ,α)/h(x;η)→ 1 as x → ∞.

2. The hrf of the Lambert-F distribution is greater than the hrf of the baseline distribution F

if and only if α ∈ (1,e).

3. If α ∈ (1,e) and the hrf of the baseline distribution F is a nondecreasing monotonic
function, then the hrf of the Lambert-F distribution is a nondecreasing monotonic function.

In view of the above, the application of the proposed Lambert transformation to a baseline
distribution has a simple justification in terms of the hrf of the resulting model. The hrf induced
by the Lambert-F generator is more distant from the baseline hrf for lower values of X (earlier
times).

3.4 Moments

Corollary 5. Let X ∼ LF(η ,α). Then, from Equation (3.6), the r-th raw moment for the
Lambert-F distribution is given by

E(X r) =
∞

∑
k=0

ck(α)mr(η ,k), r = 1,2,3, . . . , (3.9)

where mr(η ,k) is the r-th raw moment of the exponentiated distributions with baseline parameter
vector η and shape parameter k.
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Therefore, the r-th raw moment for a Lambert-F distribution can be easily derived
from Equation (3.9) when the exponentiated version of the baseline distribution F is known.
For example, considering the exponential baseline distribution with hrf equal to 1/λ > 0, and
using the expression for the r-th raw moments of the exponentiated-exponential distribution
given in Nadarajah (2011), the r-th raw moment of the corresponding Lambert-exponential (LE)
distribution is given by

E(X r) =
∞

∑
k=0

(−1)r
λ

rkck(α)
∂ rB(k, p+1− k)

∂ pr

∣∣∣
p=k

.

Then, the mean and variance of the LE distribution are given by

E(X) = λ

∞

∑
k=0

ck(α)[ψ(k+1)+ γ] and

Var(X) = λ
2

∞

∑
k=0

ck(α)[π2 −6ψ ′(k+1)]
6

.

where ψ(·), ψ ′(·) and γ denote the gamma and digamma functions and Euler’s constant, respec-
tively.

The LE distribution will be discussed in more detail in Section 3.7. The following result
is useful for cases where the exponentiated version of the baseline distribution F is not known.

Proposition 5. Let X ∼ LF(η ,α). Then, for r = 1,2, . . . , the r-th raw moment of X can be
written as

µr = E(X r) =
∫ 1

0
α

u[F−1(u;η)]r[1− log(α)(1−u)]du, r = 1,2, . . . , (3.10)

where F−1(·;η) denotes the qf of the baseline distribution.

Proof. From the Lambert-F pdf given in Corollary 4, we have that µr =E(X r)=
∫

∞

0 xr f (x;η)αF(x;η)[1−
log(α){1−F(x;η)}]dx, and applying the change of variable u = F(x;η), the result is obtained.

3.5 Quantile Function
Proposition 6. Let X ∼ LF(η ,α). Then, the qf of X is given by

QX(u) =

F−1
[

1
log(α)W0

(
log(α)(u−1)

α

)
+1;η

]
, if α ̸= 1,

F−1(u;η), if α = 1,
(3.11)

where F−1(·;η) is the qf of the baseline distribution and W0(·) is the principal branch of the
Lambert W function.

Proof. From Equation (3.2) it is observed that the baseline cdf can be written as F(x;η) =

[log(α)]−1W0[α
−1(u−1) log(α)]+1. Then, solving this equation with respect to x, we obtain

the expression in Equation (3.11) for α ̸= 1. In the special case α = 1, the result is obtained
directly by calculating the inverse function of the baseline cdf.
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For α ∈ (0,1), we have that log(α)(u−1)/α > 0. Then, the Lambert W function has a
unique solution (principal branch). For α ∈ (1,e), we have that log(α)(u−1)/α ∈ (−1/e,0).
Then, the Lambert W function has two solutions but only the solution of the principal branch
guarantees that the input values of the baseline qf correspond to values in the interval (0,1).

3.6 Stochastic Order

The ordering of continuous random variables is an important tool for judging comparative
behavior. It is well known that a random variable X is smaller than a random variable Y in the
stochastic order (X ≤st Y ) if FX(x) ≥ FY (x) for all x, in the hazard rate order (X ≤hr Y ) if
hX(x)≥ hY (x) for all x, and in the likelihood ratio order (X ≤lr Y ) if fX(x)/ fY (x) decreases in x.
Also, the implications

X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y (3.12)

are well known (SHAKED; SHANTHIKUMAR, 2007).

Proposition 7. Let X1 ∼LF(η ,α1) and X2 ∼LF(η ,α2). If α1 >α2, then X1 ≤lr X2 and therefore
X1 ≤hr X2 and X1 ≤st X2.

Proof. First, notice that fX2(x;η ,α2)/ fX1(x;η ,α1)= (α2/α1)
F(x;η) {1−log(α2) [1−F(x;η)]}/{1−

log(α1) [1− F(x;η)]} is a nondecreasing function if and only if µ ′(x) ≥ 0, where µ(x) =

{1− log(α2) [1−F(x;η)]}/{1− log(α1) [1−F(x;η)]}. Some calculations show that µ ′(x) =

log(α2/α1) f (x;η){1− log(α1)[1−F(x;η)]}−2.

Now, note that α1 > α2 implies µ ′(x)< 0, that is, fX2(x;η)/ fX1(x;η) is decreasing in
x, which means X1 ≤lr X2. The remaining affirmations are derived from the implications in
Equation (3.12).

A direct consequence of Proposition 7 is that the hrf of the Lambert-F distribution is less
than the hrf of the baseline F distribution when α ∈ (1,e), which is consistent with what was
observed in Section 3.3.

3.7 Two Special Cases of Positive Supports

Positive support distributions are commonly considered in the analysis of a great variety
of random phenomena. For example, when analyzing the stature of individuals in a population or
the lifetime of a certain type of machine. The exponential (E), Rayleigh (R), Gamma (G) and
Weibull (W) (JOHNSON; KOTZ; BALAKRISHNAN, 1994; WEIBULL, 1939) distributions are
some of the distributions usually considered in data modeling associated with these phenomena.

In this section, we propose two new positive support distributions generated from the
Lambert-F generator by considering the classic E and R distributions (See Appendix A) as



3.7. Two Special Cases of Positive Supports 51

Figure 11 – Plots of the density and hazard rate functions of the LE and LR distributions for σ = 1 and
different values of α .
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baseline distributions. The resulting distributions (having two parameters, scale and shape) can
be considered as natural alternatives to the W and G distributions.

Definition 2. The random variable X follows the Lambert-exponential distribution, with scale
parameter σ > 0 and shape parameter α ∈ (0,e), denoted as X ∼ LE(σ ,α), if its pdf and hrf for
x > 0 are given, respectively, by

fX(x) =
1
σ

e−
x
σ α

1−e−
x
σ
[1− log(α)e−

x
σ ] and hX(x) =

1
σ
[1− log(α)e−

x
σ ].

Figure 11 (top panels) displays some plots of the pdf and the hrf of the the LE distribution
for σ = 1 and different values of shape parameter. In the figure, we can see that the LE pdf can
have monotonic or unimodal shapes depending on the parameter α .

Definition 3. The random variable X follows the Lambert-Rayleigh distribution, with scale
parameter σ > 0 and shape parameter α ∈ (0,e), denoted as X ∼ LR(σ ,α), if its pdf and hrf for



52 Chapter 3. Lambert-F Distribution Generator

x > 0 are given, respectively, by

fX(x) =
x

σ2 e−
x2

2σ2 α
1−e

− x2

2σ2
[1− log(α)e−

x2

2σ2 ] and hX(x) =
x

σ2 [1− log(α)e−
x2

2σ2 ].

Figure 11 (bottom panels) displays some plots of the pdf and the hrf of the LR distribution
for σ = 1 and different values of shape parameter. In the figure, we can see that the LR pdf
exhibits unimodal shapes with variations of skewness depending on the parameter α .

The new two-parameter distributions described above are members of the well-known
and popular shape and scale distributions family. The scale σ in both models is inherited from
the respective baseline distribution, while the shape parameter α arises from the application of
the Lambert transformation to the baseline distribution. From the results in Section 3.3, some
details are provided below regarding the shapes exhibited by these distributions.

Corollary 6. Let X ∼ LE(σ ,α). Then:

1. fX(0) = [1− log(α)]/σ , hX(0) = [1− log(α)]/σ and hX(∞) = 1/σ ;

2. Considering a = exp[(3−
√

5)/2], the pdf of X is a monotonically decreasing function
when α ∈ (0,a] or α = 1, and it is a unimodal function for α ∈ (a,1) or α ∈ (1,e). The
mode of X is given by Mod(X) = σ{log[2log(α)]− log(3−

√
5)};

3. The hrf of X is a monotonically decreasing function when α ∈ (0,1), a monotonically
increasing function when α ∈ (1,e) and a constant function for α = 1.

Corollary 7. Let X ∼ LR(σ ,α). Then:

1. fX(0) = 0, hX(0) = 0, and hX(∞) = ∞.

2. The pdf of X is a unimodal function for α ∈ (0,e) (Mode without explicit analytic
expression).

3. The hrf of X is a monotonically increasing function when α ∈ [0.1,e) and presents the
increasing-decreasing-increasing shape for α ∈ (0,0.1). The local maximum and the
local minimum are given by x = σ{1−2Wj[e1/2/ log(α2)]}1/2, j ∈ {0,−1}, where W0(·)
and W−1(·) denote the principal and non-principal branches of the Lambert W function,
respectively.

From these results, we observe that the shapes of the pdf and the hrf for the LE distri-
bution are similar to those presented by other two-parameter distributions such as the W and
G distributions. It is important to note that the LE, W and G distributions are two-parameter
extensions of the exponential distribution, so that the comparison between these models is quite
natural. A similar observation can be made for the LR and W distributions because both are
two-parameter extensions of the clasical R distribution.
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Table 4 – Comparison of the Lambert-exponential (LE), Lambert-Rayleigh (LR), Weibull (W) and gamma
(G) distributions in terms of the pdf.

Distribution Shape parameter Shape of the lim
x→0+

fX(x)

interval pdf, fX(x)

LE (0,exp 3−
√

5
2 ) or {1} Decreasing 1

σ
[1− log(α)]

(exp 3−
√

5
2 ,1) or (1,e) Unimodal 1

σ
[1− log(α)]

LR (0,e) Unimodal 0

W (0,1] Decreasing ∞ or 1
σ

(1,∞) Unimodal 0

G (0,1] Decreasing ∞ or 1
σ

(1,∞) Unimodal 0

In Tables 4 and 5, we present a comparison of the shapes of the pdf and the hrf of the LE
and LR distributions with those of the W and G distributions. In Table 4, it is seen that the pdf
of the LE distribution presents similar shapes to those of the W and G distributions. However,
unlike the W and G models, the pdf of the LE distribution tends to σ−1[1− log(α)] as x ↓ 0 when
it is unimodal, that is, it tends to a positive finite value. This leads us to establish that the LE
distribution can properly fit data sets whose frequency distributions are unimodal but there are
observations lumped around 0. On the other hand, the pdf of the LR distribution presents only the
unimodal shape but (as will be seen later) with variations of skewness and kurtosis. In Table 5, it
is seen that the shapes presented by the hrf of the LE distribution are similar to those of the W
and G distributions. However, from the results presented in Table 5, and similar to the behavior
of the LE pdf, an important difference is observed in the behavior of the LE hrf for lower values
of x (times close to 0). On the other hand, the LR distribution is the only distribution (among
the distributions considered) that has a hrf that can present the increasing-decreasing-increasing
shape.

Corollary 8. If X1 ∼ LE(σ ,α) and X2 ∼ LR(σ ,α), from Proposition 5, we obtain that (for
r = 1,2, . . .) the r-th raw moment of X j is given by E(X r

i ) = ai(σ)mr,α(ui), j = 1,2, where
mr,α(u j) =

∫ 1
0 αuur

j[1− log(α)(1− u)]du, a1(α) = σ r, a2(σ) = (2σ2)r/2, u1 = − log(1− u)

and u2 =
√

− log(1−u). Thus, the skewness (β1(Xi)
) and kurtosis (β2(Xi)

) coefficients for X j are
given by

β1(X j)
=

m3,α(u j)−3m1,α(u j)m2,α(u j)+2m3
1,α(u j)[

m2,α(u j)−m2
1,α(u j)

]3/2 and

β2(X j)
=

m4,α(u j)−4m1,α(u j)m3,α(u j)+6m2
1,α(u j)m2,α(u j)−3m4

1,α(u j)[
m2,α(u j)−m2

1,α(u j)
]2 .
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Table 5 – Comparison of the Lambert-exponential (LE), Lambert-Rayleigh (LR), Weibull (W) and gamma
(G) distributions in terms of the hrf.

Distribution Shape parameter Shape of lim
x→0+

hX(x) lim
x→∞

hX(x)

interval the hrf, hX(x)

LE (0,1) Decreasing 1
σ
[1− log(α)] 1

σ

(1,e) Increasing 1
σ
[1− log(α)] 1

σ

LR (0,1) Increasing-decreasing 0 ∞

-increasing
[1,e) Increasing 0 ∞

W (0,1) Decreasing ∞ 0
(1,∞) Increasing 0 ∞

G (0,1) Decreasing ∞
1
σ

(1,∞) Increasing 0 1
σ

If α = 1, the hrf of the LR distribution reduces to h(x) = x/σ2 (the Rayleigh hrf) and the hrf

of the LE, W, and G distributions to h(x) = 1/σ (the exponential hrf).

Figure 12 shows plots of the skewness and kurtosis coefficients for both the LE and
LR distributions as well as for the baseline distributions; E and R, respectively. Note that the
skewness and kurtosis values of the baseline distributions are extended to a range of values in
the respective Lambert versions, showing greater flexibility of these latter distributions. The
asymmetry and kurtosis ranges for the LE distribution are (1.456, 4.461) and (6.416, 48.814),
respectively, and for the LR distribution (0.342, 1.274) and (3.027, 6.005), respectively. These
ranges were calculated by minimizing and maximizing the skewness and kurtosis coefficients.
We use the integrate function in the R languaje to compute the mr,α(ui) functions. The optimize
function was used to minimize and maximize the coefficients.

A more detailed discussion on the structural properties of the LE and LR distributions
can be found in Iriarte, de Castro and Gómez (2020).

3.8 Maximum Likelihood Estimation
In this section, we deal with the problem of parameter estimation in the Lambert-F

distribution under the maximum likelihood (ML) method.

If X ∼ LF(θ), with θ = (η ,α)t and η = (η1, . . . ,ηk−1)
t , then the log-likelihood function

is given by

ℓ(θ ;x) = log[ f (x;η)]+F(x;η) log(α)+ log[1− log(α)S(x;η)], (3.13)

where f (x;η), F(x;η) and S(x;η) are the pdf, the cdf and the sf, respectively, of the baseline
distribution.
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Figure 12 – Plots of the skewness and kurtosis coefficients for the Lambert-exponential (red line) and
exponential (circle) distributions (top panels) and for the Lambert-Rayleigh (red line) and
Rayleigh (circle) distributions (bottom panels).
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Thus, the score functions are given by

∂ℓ(θ ;x)
∂η j

=
fη j(x;η)

f (x;η)
+ log(α)Fη j(x;η)−

log(α)Sη j(x;η)

1− log(α)S(x;η)
and (3.14)

∂ℓ(θ ;x)
∂α

=
1
α

F(x;η)− S(x;η)

α[1− log(α)S(x;η)]
, (3.15)

where fη j(x;η)= ∂ f (x;η)/∂η j, Fη j(x;η)= ∂F(x;η)/∂η j and Sη j(x;η)= ∂S(x;η)/∂η j, with
j = 1, . . . ,k−1.

For a random sample X1, . . . ,Xn from X ∼ LF(θ), we observe that the ML estimator θ̂

for θ cannot be expressed in closed form. The solution of the score equations gives rise to a
system of nonlinear equations (See Appendix B) that must be solved with the help of some
computational routine in search of ML estimates.

In this case, as the ML estimators do not have a closed form, a good alternative to obtain
ML estimates is to solve the optimization problem

max
θ

Σ
n
i=1ℓ(θ ;xi), subject to η j ∈ ∆ j, j = 1, . . . ,k−1, and α ∈ (0,e), (3.16)

where ℓ(·; ·) is given in Equation (3.13).

Under regularity conditions, the asymptotic distribution of (θ̂ML −θ) is Nk(0,K(θ)−1),
where K(θ) is the expected information matrix. As the function ∑

n
i=1 ℓ(θ ;xi) is not simple, it is
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not easy to obtain the analytical expression of this matrix. However, we obtain an approximation
from the observed information matrix, whose elements are computed as minus the second partial
derivatives of the log-likelihood function with respect to all the parameters (evaluated at the ML
estimates). Thus, for a random sample X1, . . . ,Xn from X ∼ LF(θ), the observed information
matrix is given by

I(θ) =



εη1η1 εη1η2 . . . εη1ηk−1 εη1α

εη2η1 εη2η2 . . . εη2ηk−1 εη2α

...
... . . . ...

...
εηk−1η1 εηk−1η2 . . . εηk−1ηk−1 εηk−1α

εαη1 εαη2 . . . εαηk−1 εαα


,

εθrθp =−
n

∑
i=1

∂ 2ℓ(θ ;xi)

∂θr∂θp

∣∣∣
θ=θ̂ML

, r = p = 1, . . . ,k,

(3.17)

where θs = ηs, with s = 1, . . . ,k−1, θk = α and the second partial derivatives are given by

∂ 2ℓ(θ ;x)
∂ηm∂η j

= log(α)Fηmη j(x;η)+
fηmη j(x;η)

f (x;η)
−

fηm(x;η) fη j(x;η)

f 2(x;η)

−
log(α)Sηmη j(x;η)

1− log(α)S(x;η)
−

log2(α)Sηm(x;η)Sη j(x;η)

[1− log(α)S(x;η)]2
,

∂ 2ℓ(θ ;x)
∂α∂η j

=
Fη j(x;η)

α
−

Sη j(x;η)

α[1− log(α)S(x;η)]
−

log(α)S(x;η)Sη j(x;η)

α[1− log(α)S(x;η)]
,

∂ 2ℓ(θ ;x)
∂η j∂α

=
∂ 2ℓ(θ ;x)
∂α∂η j

,

∂ 2ℓ(θ ;x)
∂α2 =

1
α2[1− log(α)S(x;η)]

− F(x;η)

α2 − S(x;η)

α2[1− log(α)S(x;η)]
,

where fηmη j(x;η) = ∂ 2 f (x;η)/∂ηm∂η j, Fηmη j(x;η) = ∂ 2F(x;η)/∂ηm∂η j and Sηmη j(x;η) =

∂ 2S(x;η)/∂ηm∂η j, wiht j = 1, . . . ,k−1.

Partial derivatives fη j(x;η), fηmη j(x;η), Fη j(x;η) and Fηmη j(x;η) related to the special
cases presented in Section 3.7 are presented in Appendix C. Although the ML estimates for
the parameters of the LE and LR distributions can be obtained by numerically solving the
corresponding systems of score equations, we prefer to obtain the ML estimates by solving the
optimization problem formulated in Equation (3.16). For this, we use the optim function of
the R programming language under the consideration of the L-BFGS-B algorithm. We verify
through simulation experiments that (sx,1), where sx represents the standard deviation of the
observations, is a good starting point for the iterative process.

In the presence of right-censoring, we adopt the following scheme. Assuming that
for each individual the failure time is independent of the censoring time (say, Yi and Ci for
i = 1, . . . ,n respectively). The observed times are given by Xi = min(Yi,Ci) and the failure
indicator is denoted as δi = I(Yi ≤Ci). Given a sample of observed times and failure indicators
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Table 6 – Scenarios considered in the simulation studies for the LE and LR distributions.

Scenario Parameters

A : σ = 1 and α = 1.5
B : σ = 1 and α = 2
C : σ = 1 and α = 2.5
D : σ = 2 and α = 1.5
E : σ = 3 and α = 2
F : σ = 4 and α = 2.5
G : σ = 0.5 and α = 1.5
H : σ = 1.5 and α = 2
I : σ = 2.5 and α = 2.5

(t1,δ1),(t2,δ2), . . . ,(tn,δn) and under the additional assumption of non-informative censoring,
the log-likelihood function for a Lambert-F type distribution is given by

ℓ(θ ,x) =
n

∑
i=1

δi log f (xi;η)+ log(α)
n

∑
i=1

δiF(xi;η)+
n

∑
i=1

δi log[1− log(α)S(xi;η)]

+
n

∑
i=1

(1−δi) logS(xi;η)+ log(α)
n

∑
i=1

(1−δi)F(xi;η),
(3.18)

where f (·; ·), F(·; ·) and S(·; ·) are the pdf, the cdf and the sf of the baseline distribution. For
δi = 1, i = 1, . . . ,n, the Equation (3.18) reduces to a log-likelihood function considered in the
optimization problem presented in Equation (3.16). Inference based on (3.18) can be performed
in a similar manner as was done in the uncensored case, as described above.

3.9 Simulation Studies

In this section, we carry out two simulation studies in order to evaluate the behavior of
the ML estimators for the parameters of the LE and LR distributions. For both distributions, from
the qf given in Equation (3.11), we generate 1000 random samples considering different sample
sizes (n) and different choices for the parameters. The LambertW package (GOERG, 2011) in
the R language was used to compute the principal branch of the Lambert W function. Table 12
presents the different scenarios considered for each distribution.

For each simulated sample, we obtain the ML estimates by solving (3.16) under the
considerations mentioned in Section 3.8. Tables 7 and 8 report the average estimate (AE), the
empirical standard deviation (SD), the asymptotic standard error (SE) and the root mean square
error (RMSE) obtained in each scenario and sample size considered. In the tables, it is observed
that the AE’s tend to approach the real values of the parameters as the size of the sample increases.
Furthermore, as expected in the standard asymptotic theory, it is observed that the SD’s, SE’s
and RMSE’s are close and decrease towards 0 as the sample size increases.
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Table 7 – Averages (AE), standard deviations (SD), root of the simulated mean square errors (RMSE), and
averages of asymptotic standard errors (SE) for the estimates of σ and α of the LE distribution.

σ̂ α̂

Scenario AE SD SE RMSE AE SD SE RMSE

n = 50

A 0.981 0.179 0.196 0.143 1.620 0.388 0.449 0.325
B 1.024 0.159 0.173 0.160 1.969 0.372 0.432 0.373
C 1.041 0.129 0.151 0.136 2.373 0.304 0.432 0.329
D 1.976 0.340 0.399 0.340 1.601 0.393 0.451 0.406
E 2.938 0.546 0.590 0.549 1.627 0.405 0.450 0.424
F 3.962 0.748 0.817 0.748 1.572 0.387 0.451 0.393
G 0.494 0.088 0.100 0.088 1.600 0.391 0.451 0.404
H 1.526 0.240 0.254 0.241 1.980 0.375 0.430 0.375
I 2.594 0.345 0.378 0.358 2.368 0.308 0.429 0.335

n = 100

A 0.994 0.137 0.145 0.137 1.540 0.310 0.325 0.313
B 1.010 0.109 0.115 0.109 2.002 0.285 0.297 0.285
C 1.022 0.091 0.097 0.093 2.426 0.220 0.271 0.232
D 1.991 0.281 0.288 0.281 1.555 0.319 0.323 0.323
E 2.986 0.407 0.432 0.407 1.547 0.310 0.324 0.313
F 3.992 0.558 0.579 0.558 1.551 0.310 0.324 0.315
G 0.498 0.067 0.072 0.067 1.555 0.302 0.323 0.307
H 1.524 0.172 0.174 0.174 1.993 0.285 0.299 0.285
I 2.552 0.222 0.243 0.228 2.431 0.222 0.270 0.232

n = 200

A 0.998 0.101 0.101 0.101 1.528 0.231 0.231 0.232
B 1.001 0.083 0.080 0.083 1.998 0.223 0.210 0.223
C 1.011 0.062 0.065 0.063 2.457 0.165 0.177 0.171
D 2.004 0.208 0.205 0.208 1.524 0.239 0.231 0.240
E 3.016 0.303 0.310 0.303 1.508 0.221 0.231 0.221
F 4.001 0.417 0.413 0.417 1.513 0.238 0.231 0.238
G 0.500 0.051 0.051 0.051 1.519 0.232 0.232 0.232
H 1.500 0.114 0.118 0.114 2.005 0.202 0.209 0.203
I 2.519 0.155 0.162 0.155 2.468 0.160 0.176 0.163
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Table 8 – Averages (AE), standard deviations (SD), root of the simulated mean square errors (RMSE), and
averages of asymptotic standard errors (SE) for the estimates of σ and α of the LR distribution.

σ̂ α̂

Scenario AE SD SE RMSE AE SD SE RMSE

n = 50

A 0.991 0.124 0.101 0.125 1.626 0.407 0.450 0.426
B 1.002 0.078 0.082 0.078 2.008 0.384 0.421 0.384
C 1.015 0.064 0.071 0.065 2.380 0.291 0.408 0.315
D 1.970 0.176 0.196 0.178 1.636 0.401 0.451 0.423
E 2.969 0.267 0.301 0.269 1.604 0.393 0.455 0.407
F 3.956 0.342 0.397 0.345 1.624 0.401 0.454 0.419
G 0.496 0.049 0.050 0.049 1.613 0.391 0.454 0.407
H 1.504 0.121 0.125 0.121 2.029 0.390 0.428 0.390
I 2.537 0.152 0.178 0.157 2.382 0.276 0.406 0.300

n = 100

A 0.997 0.069 0.072 0.069 1.541 0.299 0.325 0.302
B 1.003 0.055 0.056 0.055 2.010 0.291 0.295 0.291
C 1.006 0.042 0.047 0.043 2.445 0.204 0.260 0.211
D 1.994 0.137 0.144 0.137 1.554 0.309 0.309 0.314
E 2.976 0.193 0.211 0.194 1.565 0.295 0.324 0.302
F 3.989 0.263 0.286 0.263 1.556 0.295 0.325 0.300
G 0.496 0.034 0.035 0.034 1.568 0.317 0.323 0.325
H 1.498 0.084 0.084 0.084 2.014 0.290 0.295 0.290
I 2.519 0.107 0.118 0.109 2.433 0.200 0.261 0.211

n = 200

A 1.001 0.051 0.051 0.051 1.518 0.232 0.232 0.233
B 1.001 0.039 0.039 0.039 2.012 0.214 0.209 0.214
C 1.002 0.030 0.032 0.030 2.467 0.148 0.174 0.152
D 1.999 0.102 0.102 0.102 1.521 0.231 0.232 0.232
E 2.992 0.147 0.152 0.147 1.523 0.226 0.232 0.228
F 3.996 0.204 0.204 0.204 1.518 0.231 0.232 0.232
G 0.499 0.024 0.024 0.024 1.520 0.221 0.231 0.221
H 1.499 0.060 0.059 0.060 2.007 0.213 0.210 0.213
I 2.511 0.079 0.080 0.080 2.472 0.154 0.172 0.156
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3.10 Data Analysis

In this section, we fit two data sets in order to illustrate the usefulness of the LE and LR
distributions in real-world settings. Here, we provide evidence that the LE and LR distributions
may perform better than other commonly used distributions. In each case, the parameters
are estimated via the ML method using the optim function in the R language. We consider
the information criteria, AIC and BIC, to evaluate the comparative performance of the fitted
distributions.

The data considered are briefly described below:

Violent Crime Rate Data This data set consists of 1,173 observations on the violent
crime rate (incidents per 100,000 residents) recorded in 51 US states. This data set can be
found in the Guns database of the AER package (KLEIBER; ZEILEIS, 2008) in the R language.
For these data, we test hypothesis H0: the data have exactly one mode versus the alternative
hypothesis H1: the data have at least two modes. For this, we consider the excess mass test
(AMEIJEIRAS-ALONSO; CRUJEIRAS; RODRÍGUEZ-CASAL, 2019) using the modetest
function (AMEIJEIRAS-ALONSO; CRUJEIRAS; RODRÍGUEZ-CASAL, 2018) in R language.
Here, the observed statistic and the corresponding p-value are 0.032 and 0.154, respectively.
Thus, we observe that under a level of significance equal to 0.05, the hypothesis that the data
have exactly one mode is not rejected. The foregoing, added to the fact that the data exhibit a
positive skewness, and that the observations assume strictly positive values, we fit these data
with the LR distribution and compare its performance with that of other asymmetric unimodal
positive support distributions such as the W, G, R and generalized Rayleigh (GR) (SURLES;
PADGETT, 2001) distributions.

Monoclonal Gammopathy Data This data set comprises survival times (days) from
diagnosis to the last follow-up of 241 subjects diagnosed with apparently benign monoclonal
gammopathy at Mayo Clinic (US). Of the 241 subjects, 16 survived until the end of the follow-up
and three had monoclonal gammopathy of undetermined significance (MGUS) detected on the
day of death. This data set was previously analyzed in Kyle (1993) and is currently available
under the name mgus in the survival package(THERNEAU, 2015) of the R language. For these
data, we elaborated the TTT-plot (Figure 13) to identify which distribution can adequately
model survival times. In Figure 13, we observe that it is advisable to consider distributions with
increasing hrf’s for modeling these survival times. Consequently, we fit this data set with the LE
distribution and compare its performance with that of the baseline E distribution and with that
of other distributions with increasing hrf’s such as the G, W and generalized exponential (GE)
(GUPTA; KUNDU, 1999) distributions.

Table 16 reports ML estimates and AIC and BIC values for each distribution fitted to
violent crime rate data and monoclonal gammopathy data. Here, we observe that the LR and
LE distributions present the lowest AIC and BIC values, which suggests that these distributions
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Figure 13 – TTT-plot for survival times of individuals diagnosed with apparently benign monoclonal
gammopathy.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Cumulative Relative Frequency

S
c
a

le
d

 T
T

T
 S

ta
ti
s
ti
c

should be chosen over the others to model the corresponding data sets.

Figure 14 (Left panel) present the histogram of the inflation rate data, where it can be
seen that the LR density values are close to the empirical frequency values. In the right panel
of the same figure, the Kaplan-Meier survival curve and the survival curve fitted with the LE
distribution are presented for the subjects diagnosed with monoclonal gammopathy, where it is
observed that the survival curves are close.

3.11 Final Comments
In this chapter, we proposed a new distribution generator called the Lambert-F generator.

The new generator allows us to add one shape parameter to an arbitrary baseline distribution,
enabling a variety of shapes for the pdf and the hrf of the resulting distribution.

The Lambert-F generator arises from the qf of an arbitrary baseline distribution, where
the input of the qf is a Lambert-uniform rv. This construction leads to Lambert-F distributions
having attractive properties. Some of these are the following: First, the pdf, hrf and sf of
the Lambert-F distributions correspond to modifications in a multiplicative fashion of the
corresponding pdf, hrf and sf of the baseline distributions; Second, the Lambert-F qf can be
expressed in closed form in terms of the principal branch of the Lambert W function and in terms
of the qf of the baseline distribution. In this way, pseudo-random numbers can be easily generated
using the corresponding qf; Third, the hrf of a Lambert-F distribution can be understood as a
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Figure 14 – Left panel: Histogram of the violent crime rate data with the fitted pdf curves. Right panel:
Kaplan-Meier survival curve (black line) and the fitted LE survival curve (red line) for the
survival times of monoclonal gammopathy data.
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Table 9 – The ML estimates and their standard errors (in parentheses) for each distribution fitted to the
different data sets.

Violent crime rate data

Parameter LR W G GB R

σ 828.803 0.799 183.606 565.315 427.042
(46.143) (0.024) (7.865) (10.646) (0.6234)

α 0.017 1.579 2.739 1.640 -
(0.008) (0.118) (0.106) (0.033)

AIC 16414.4 16521.9 16432.0 16595.5 16626.8
BIC 16424.5 16532.1 16442.1 16605.7 16631.9

Monoclonal gammopathy data

Parameter LE W G GE E

σ 4173.763 6009.851 4909.396 5270.609 5810.491
(309.337) (345.316) (534.902) (441.299) (389.431)

α 1.830 1.186 1.174 1.159 -
(0.181) (0.067) (0.099) (0.100)

AIC 4338.5 4345.8 4350.8 4351.5 4352.3
BIC 4345.5 4352.7 4357.8 4358.4 4355.8
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modification in early times of the hrf of the baseline distribution; As for place, when the baseline
distribution is symmetric, the shape parameter α acts as a skewness parameter, enabling skewed
shapes for the pdf; Fifth, the Lambert-F rv’s can be ordered according to likelihood ratio order,
which implies ordering in relation to the usual stochastic order and the hazard rate order.

We derive two special cases of the Lambert-F generator, the LE and LR distributions.
These distributions are obtained considering the exponential and Rayleigh distributions as the
baseline distribution. We discussed the maximum likelihood estimators for the parameters of
the Lambert-F distributions. We provided guidance on numerical procedures that might be used.
Additionally, we carried out a simulation study to assess the behavior of the estimators for the
parameters of the LE and LR distribution. We observe that the maximum likelihood method
provides acceptable estimates for the parameters of these distributions. Finally, we consider
two applications to real data sets, thus providing evidence that the LE and LR distributions can
present a better fit than other two-parameter distributions such as Weibull, gamma, generalized
exponential, and generalized Rayleigh.
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CHAPTER

4
TWO UNBOUNDED-SUPPORT LAMBERT-F

DISTRIBUTIONS

In this section, we propose two unbounded support distributions that are capable of
modeling skewness in the presence of bimodality (the first) and skewness in the presence of high
levels of kurtosis (the second). Both distributions are obtained from the Lambert-F generator
considering symmetric baseline distributions, the generalized bimodal (GB) and slash (SL)
baseline distributions, respectively. The shapes of the pdf and the behavior of Fisher’s skewness
and kurtosis coefficients are studied. An analysis on the occurrence of alias distributions for
both distributions is considered. Parameter estimation is performed via the maximum likelihood
method. Simulation studies are developed to evaluate the behavior of the estimators. Finally, two
applications are presented in order to illustrate the utility of the proposed distributions in data
modeling in real settings.

4.1 Motivation

Unbounded support distributions play an important role in data analysis. When the data
exhibit unimodality and symmetry, distributions such as the normal, t-student, and Cauchy are
highly valued. On the other hand, when the data present another property such as skewness,
bimodality or excessive levels of kurtosis, for example, these distributions do not perform
properly. Consequently, the use of alternative distributions capable of capturing the properties
exhibited by the data is required.

The GB distribution is a bimodal symmetric distribution originally proposed by Rao
(1987) and later studied as a special case of the bimodal distribution proposed by Sarma, Rao
and Rao (1990). The GB distribution can also be derived as a special case of the class of
bimodal distributions proposed by Hassan and El-Bassiouni (2016), which is defined by the cdf
F(x) = Φ(x)− δ (x)φ(x), where δ (x) is a linear function of x. If δ (x) = x/(1+ γ), the cdf of
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this class reduces to the cdf of the GB distribution.

On the other hand, the SL distribution is a symmetric bell-shaped distribution that has
heavier tails than the normal distribution. Therefore, its use is highly valued when modeling data
that exhibit symmetry, unimodality, and high levels of kurtosis. Properties of this distribution can
be consulted in Johnson, Kotz and Balakrishnan (1994) and Gómez, Quintana and Torres (2007).
In Appendix A the analytical expressions of the pdf and the cdf for the GB and SL distributions
are presented.

The symmetry feature of the GB and SL distributions can be considered a desired feature
in some scenarios, but a limitation in others. The distributions proposed in this chapter have the
same shape characteristics as the GB and SL distributions, but they can also exhibit asymmetric
shapes while capturing bimodality and high levels of kurtosis.

4.2 Lambert-Generalized Bimodal and Lambert-Slash Dis-
tributions

In this section, we define two unbounded support Lambert-F distributions and discuss
the shapes of the corresponding pdf’s.

Definition 4. The rv X follows the Lambert-generalized bimodal distribution with location
parameter µ ∈ R, scale parameter σ > 0, and shapes parameters γ ∈ (0,2) and α ∈ (0,e),
denoted as X ∼ LGB(µ,σ ,γ,α), if its pdf is given by

fX(x; µ,σ ,γ,α) =
γ + z2

σ(γ +1)
φ(z)αΦ(z)− z

γ+1 φ(z)

×
{

1− log(α)

[
1−Φ(z)+

z
γ +1

φ(z)
]}

,

where x ∈ R, z = (x−µ)/σ and φ(·) and Φ(·) are the pdf and the cdf of the standard normal
distribution.

Figure 15 shows some pdf curves for the LGB distribution considering different values
of µ , σ , γ and α . Here, it can be seen that the LGB pdf is bimodal symmetric when α = 1. Note
that the parameter α has an effect on the shape of the LGB pdf allowing unimodal or bimodal
asymmetric shapes.

Definition 5. The rv X follows the Lambert-slash distribution with location parameter µ ∈ R,
scale parameter σ > 0, and shape parameters κ > 0 and α ∈ (0,e), denoted as X ∼LSL(µ,σ ,γ,α),
if its pdf is given by

fX(x; µ,σ ,κ,α) =
1
σ

f (z;κ)αΦ(z)− z
κ

f (z;κ)

×
{

1− log(α)
[
1−Φ(z)+

z
κ

f (z;κ)
]}

,
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Figure 15 – Pdf curves for the LGB distribution for µ = 5, σ = 2, and α = 1 in the top left panel; µ =−5,
σ = 4, and α = 0.5 in the top right panel; µ = 5, σ = 4, and α = 2 in the bottom left panel;
and µ = 10, σ = 5, and γ = 1.5 in the bottom right panel.

−10 −5 0 5 10 15 20

0.
00

0.
04

0.
08

x

D
en

si
ty

 fu
nc

tio
n γ

0.2
0.5
1
2
10

−10 −5 0

0.
00

0.
10

x

D
en

si
ty

 fu
nc

tio
n γ

0.5
1
2
3
4

−4 −2 0 2 4

0.
0

0.
2

0.
4

x

D
en

si
ty

 fu
nc

tio
n α

1
0.05
0.5
1.5
2.7

−4 −2 0 2 4

0.
0

0.
2

0.
4

x
D

en
si

ty
 fu

nc
tio

n α
1
0.05
0.5
1.5
2.7

Figure 16 – Pdf curves for the LSL distribution for µ = −20, σ = 5 and α = 0.1 in the top left panel,
µ = 20, σ = 5 and α = 2 in the top right panel and µ = 50, σ = 10 and q = 1 in the bottom
panels.
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where x ∈ R, z = (x−µ)/σ and Φ(·) is the standard normal cdf and f (z;κ) = κ
∫ 1

0 uκφ(uz)du

is the SL baseline cdf.

Figure 16 presents some curves of the LSL pdf for different values of the parameters.
Here, it can be seen that the LSL pdf has symmetric or asymmetric shape depending on the value
assumed by α and that the weight in the tails varies depending on the value of κ .

Corollary 9. If (x∗, fX(x∗;γ,α)) and (x∗∗, fX(x∗∗;γ,α)) are respectively a critical point and an
inflection point of the LGB pdf, then x∗ is a root of the equation

σ log(α)(γ + z2)(1+ z3)z1 + z(2− γ − z2)z3 = 0, (4.1)



68 Chapter 4. Two unbounded-support Lambert-F distributions

and x∗∗ a root of the equation

σ
2 log2(α)(γ + z2)(2+ z3)z2

1 +3σ log(α)z(2− γ − z2)(1+ z3)z1

+[2+ z4 − (5− γ)z2 − γ]z4 = 0, (4.2)

where z1 = {(γ + z2)/[σ(1+γ)]}φ(z), z2 = Φ(z)− [z/(1+γ)]φ(z), z3 = 1− log(α)(1− z2) and
z4 = 1− log(α)(1+ z2).

In the case α = 1, Equations (4.1) and (4.2) lead to establish that the LGB pdf is
bimodal with modes given by µ ±σ

√
2− γ , antimode given by µ , and abscissa of inflection

points given by µ ±σ
√w j, with j = 1,2, where w1 = [(5− γ)+

√
(5− γ)2 −4(2− γ)]/2 and

w2 = [(5− γ)−
√

(5− γ)2 −4(2− γ)]/2.

In the case α ̸= 1, it is not possible to obtain closed expressions for the modes, anti-
mode and abscissa of inflection points. Therefore, these values must be obtained by solving
Equations (4.1) and (4.2) by numerical procedures.

Figure 17 presents some profiles of Equations (4.1) and (4.2) and the corresponding LGB
pdf curves for different values of the parameters. In Figure 18, the regions of unimodality and
bimodality established in the plane defined by the ranges of γ and α are presented. This figure
was drawn by solving Equation (4.1) using the uniroot.all function (SOETAERT, 2009) in the R
language. From these figures, we observe that the LGB pdf is unimodal or bimodal depending
on the values of γ and α . In the unimodal case, we observe that the LGB pdf can have two or
four inflection points.

Corollary 10. If (x∗, fX(x∗;γ,α)) and (x∗∗, fX(x∗∗;γ,α)) are respectively a critical point and an
inflection point of the LGB pdf, then x∗ is a root of the equation

log(α)(z1 +1)− σκ

κ +2
z f (z;κ +2)z1

f 2(z;κ)
= 0, (4.3)

and x∗∗ a root of the equation

log(α) f (z;κ)

[
log(α)(z1 +1) f 2(z;κ)− κ

κ +2
z f (z;κ +2)z1

]
+ log(α) f (z;κ)

[
κ

κ +2
z(z1 +1) f (z;κ +2)+ log(α) f 2(z;κ)

]
− κ

κ +2
z1

[
f (z;κ +2)+

κ

κ +4
z2z1 f (z;κ +4)

]
−κ log(α)

κ +2
z(z1 +2) f (z;κ) f (z;κ +2) = 0, (4.4)

where z1 = 1− log(α) [1−Φ(z)+(z/κ) f (z;κ)].

Figure 19 presents some profiles of Equations (4.3) and (4.4) and the corresponding LSL
pdf curves for different values of the parameters. From this figure, we observe that the LSL pdf
is unimodal with two inflection points.
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Figure 17 – Critical and inflection points and pdf curve for the Lambert generalized bimodal (LGB)
distribution: LGB(5,2,1.5,0.005) (solid black curves), LGB(5,2,1.5,0.5) (dashed red curves),
LGB(5,2,0.5,0.5) (solid green curves), and LGB(5,2,0.5,1) (dashed blue curves).
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Figure 18 – Regions of unimodality (white region) and bimodality (gray region) for the Lambert general-
ized bimodal (LGB) distribution.
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Figure 19 – Critical and inflection points and pdf curve for the Lambert-slash (LSL) distribution:
LSL(5,1.5,2,0.5) (solid black curves) and LSL(-5,1,3,1.5) (dashed red curves).
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On the other hand, in order to provide more details on the shape of the pdf of the LGB
and LSL distributions, we analyze the behavior of the Fisher’s skewness and kurtosis coefficients.
For this, from the result given in Proposition 5, we first derive the raw moments for these
distributions.

Corollary 11. Let X1 ∼ LGB(µ,σ ,γ,α) and X2 ∼ LSL(µ,σ ,κ,α). Then, for r = 1,2, . . ., the r-
th raw moment of X j ( j = 1,2) is given by

E(X r
j ) =

r

∑
k=0

(
r

k

)
µ

r−k
σ

kak(θ j,α),

where ar(θ j,α) =
∫ 1

0 [Q j(u;θ j)]
rαu[1− log(α)(1−u)]du, such that Q1(u;θ1), with θ1 = γ , is

the qf of the GB distribution and Q2(u;θ2), with θ2 = κ , is the qf of the SL distribution.

Corollary 12. Let X1 ∼LGB(µ,σ ,γ,α) and X2 ∼LSL(µ,σ ,κ,α). Then, the skewness (β1(θ j,α))
and kurtosis (β2(θ j,α)) coefficients of X j ( j = 1,2) are given by

β1(θ j,α) =
E{[X j −E(X j)]

3}
[Var(X j)]3/2

=
a3(θ j,α)−3a1(θ j,α)a2(θ j,α)+2a3

1(θ j,α)

[a2(θ j,α)−a2
1(θ j,α)]3/2 and

β2(θ j,α) =
E{[X j −E(X j)]

4}
[Var(X j)]2

=
a4(θ j,α)−4a1(θ j,α)a3(θ j,α)+6a2

1(θ j,α)a2(θ j,α)−3a4
1(θ j,α)

[a2(θ j,α)−a2
1(θ j,α)]2

.
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Figure 20 – Plots of the skewness and kurtosis coefficients of the LGB (top panels) and LSL (bottom
panels) distributions.
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Note that the r-th raw moment of the LGB and LSL distributions must be computed
using numerical integration. The function integrate in the R language is a good choice for this
task.

Figure 20 (top left panel) presents some curves for the skewness coefficient of the LGB
distribution considering different values of γ and α . The top right panel of the same figure
presents some curves for the kurtosis coefficient of the LGB distribution when it is unimodal.
Figure 20 (bottom panels) presents some curves for the skewness and kurtosis coefficients of
the LSL distribution. In the figures, we observe the following: 1) The LGB and LSL pdf’s are
symmetric when α = 1, regardless of the value assumed by the parameters γ and κ ; 2) The LGB
and LSL pdf’s can be skewed (positively or negatively) depending on the value assumed by α .
If α ∈ (0,1) or α ∈ (1,e), then the pdf’s are skewed and the skewness is also controlled by the
parameters γ and κ . However, the effects of γ and κ on the skewness of the distributions are
especially important if these parameters assume lower values within their ranges. The lower
the values assumed for γ and κ , the more skewed the LGB and LS distributions will be; 3) If
the LGB pdf is unimodal, then it is asymmetric; 4) For both distributions, the excess kurtosis
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β2(θ j,α)−3, j = 1,2, is less than 0, that is, the LGB (when is unidomal) and LSL distributions
are platykurtic distributions; 5) Finally, we observe that the LSL distribution is able to model
kurtosis levels greater than the kurtosis levels of the SL baseline distribution (case α = 1).

A more detailed discussion on the structural properties of the LGB distribution can be
found in Iriarte, de Castro and Gómez (2021b).

4.3 Alias Distribution

From a distance perspective, the concept “alias distribution” is used to indicate that
members belonging to a particular family of distributions exhibit virtually identical behavior.
This means that for a given base distribution parameterization, it can be found sets of parameter
values for which two distributions are practically identical from a numerical standpoint, that is,
no matter what the sample size is, it is possible to find pairs of distributions that are so close in
terms of having nearly the same probability measure that a typical fitting routine would not be
able to distinguish between the two sets of parameters, not even for massively large sample sizes.

The analysis considered in this section is inspired by the cautionary note provided by
Hutson and Vexler (2018), a note referring to the occurrence of aliases in the beta-normal and
beta-logistic families. Hutson and Vexler (2018) state that the occurrence of alias distributions
is highly relevant in the context of testing subclasses of distributions within the family of
beta distributions, for example, normality tests as a submodel of the beta-distribution. normal.
Furthermore, they illustrate that the large-sample variance approximations of the maximum
likelihood estimators are very different between a given distribution and its respective alias, even
when the actual density functions are nearly identical.

In this section, we discuss the occurrence of alias distributions for the LGB and LSL
distributions. The justifications for carrying out an analysis of this type are the following: First,
taking into account that these families have four parameters, with two shape parameters, the
occurrence of aliases in the LGB and LSL families is not unreasonable. Second, we observe
that the skewness coefficients of these distributions behave as a non-monotonic function of the
shape parameter α when the shape parameter inherited from the baseline distribution (γ and κ ,
respectively) assumes certain values. Consequently, there may be two or more members of the
LGB and LSL families that have the same skewness value.

The latter is a serious problem for any unimodal Lambert-F distribution that is generated
from a symmetric baseline distribution, since here the level of skewness is determined by the
value of α . Thus, taking into account that α has a slight effect on kurtosis, it is enough to make
an appropriate choice of locations and scales in a location-scale Lambert-F family to identify
two members that have a virtually identical behavior.

In what follows, like Hutson and Vexler (2018), we use the Kullback-Leibler divergence
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to identify aliases for certain members of the LGB and LSL families. The Kullback-Leibler
divergence measures the degree of divergence between the distributions of two rv’s. For two
LGB or LSL rv’s consider the following proposition.

Proposition 8. Let X1 j ∼ LGB(µ j,σ j,δ1 j,α j) and X2 j ∼ LSL(µ j,σ j,δ2 j,α j), with j = 1,2,
such that δ11 = γ1, δ12 = γ2, δ21 = κ1 and δ22 = κ2. Then, the Kullback-Leibler divergence for
X1 j and X2 j is given by

K (Xi1,Xi2) = log(σi2/σi1)+
∫

∞

−∞

w∗
i fXi(w;0,1,δi1,α1)dw, i = 1,2, (4.5)

where w∗
i = log [ fXi(w;0,1,δi1,α1)/ fXi(h(w);0,1,δi2,α2)] and h(w) = (wσ1 + µ1 − µ2)/σ2,

such that fX1(·; ·, ·, ·, ·) is as in Definition 4 and fX2(·; ·, ·, ·, ·) is as in Definition 5.

Proof. From the definition of the Kullback-Leibler divergence, we obtain K (Xi1,Xi2) =

E [log{ fXi(x; µ1,σ1,δi1,α1)/ fXi (x; µ2,σ2,δi2,α2)}] , where the expectation is taken with respect
to Xi1. Then, the result is obtained by considering the change of variable w = z1 = (x−µ1)/σ1,
once z2 = (x−µ2)/σ2 can be written as z2 = (z1σ1 +µ1 −µ2)/σ2. □

We observed that the range of the parameters γ of the LGB distribution is the interval
(0,2). However, the range of α can be extended to (0,∞) so that the normal distribution can be
derived as the limiting case γ → ∞ (when α = 1) of the LGB distribution. Despite this interesting
property, this is not recommended since the skewness coefficient of the LGB distribution is not a
monotonic function of α .

In the left panels of Figure 20, it can be verified that the skewness coefficient of the LGB
and LSL distributions exhibit monotonous behavior when γ and κ assume values in the intervals
(0,2) and (0,5), respectively, which is not true when γ > 2 and κ > 5. Figure 21 presents some
skewness curves for the LGB and LSL distributions when γ > 2 and κ > 5. Here, it can be
clearly seen that the coefficients exhibit non-monotonous behavior.

Based on the minimization of Equation (4.5), we analyze the existence of alias distri-
butions for the LGB and LSL families in different scenarios. In each scenario, X1 j ∼ LGB(θ1 j)

and X2 j ∼ LSL(θ2 j), where θi j = (µi j,σi j,δi j,αi j)
t , i, j = 1,2, δ11 = γ11, δ12 = γ12, δ21 = κ21,

δ22 = κ22, θi1 is known and θi2 ̸= θi1 minimizes Equation (4.5).

Table 10 reports the values of θ11 and θ12 considered in each scenario together with
the corresponding Kullback-Leibler divergence values. Figure 22 reports the pdf curves of
of X11 ∼ LGB(θ11) and X12 ∼ LGB(θ12), where it is observed that in scenarios E and F the
distribution of X12 is an alias of the distribution of X11. On the other hand, it can be seen that in
scenarios A to D (γ < 2) the pdf of X12 has a smaller amount of inflection points than the pdf of
X11. Thus, the distribution of X12 is not an alias of the distribution of X11.

Table 11 reports the values of θ21 and θ22 considered in each scenario together with
the corresponding Kullback-Leibler divergence values. Figure 23 reports the pdf curves of
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Figure 21 – Some skewness curves for the LGB distribution with γ > 2 (left) and for the LSL distribution
with κ > 5 (right).
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Figure 22 – Pdf curves of X11 ∼ LGB(θ11) (black solid line) and X12 ∼ LGB(θ12) (red dashed line) in
scenarios A to F.
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Table 10 – The Kullback-Leibler divergence values for X11 ∼ LGB(θ11) and X12 ∼ LGB(θ12) obtained in
each scenario.

θ11 θ12

Scenario µ11 σ11 γ11 α11 µ12 σ12 γ12 α12 K (X11,X12)

A 0 1 1.5 0.5 2.568 1.719 1.462 0.002 0.029
B 0 1 0.5 0.2 2.600 1.891 0.999 0.001 0.091
C 0 1 1 1.5 3.686 1.896 1.999 0.001 0.054
D 0 1 1.5 2 3.402 1.631 1.999 0.002 0.039
E 0 1 100 2 2.221 1.359 95.000 0.003 1.077×10−3

F 0 1 50 0.2 0.488 1.020 5.010 0.043 2.210×10−4

Figure 23 – Pdf curves of X21 ∼ LGB(θ21) (black solid line) and X22 ∼ LSL(θ22) (red dashed line) in
scenarios A to F.
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of X21 ∼ LSL(θ21) and X22 ∼ LSL(θ22), where it is observed that in scenarios A to D the
distribution of X22 is an alias of the distribution of X21. On the other hand, it can be seen that
in scenarios E and F (κ < 5) the pdf of X22 has heavier tails than the pdf of X21. Thus, the
distribution of X22 is not an alias of the distribution of X21 .

Therefore, based on the previous results, it is observed that considering in the LGB and
LSL distributions the intervals (0,2) and (0,5) as the ranges of γ and κ , respectively, avoids the
occurrence of aliases for members of these families.
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Table 11 – The Kullback-Leibler divergence values for X21 ∼ LSL(θ21) and X22 ∼ LSL(θ22) obtained in
each scenario.

θ21 θ22

Scenario µ21 σ21 κ21 α21 µ22 σ22 κ22 α22 K (X21,X22)

A 0 1 30 0.158 -1.056 0.657 6.444 0.960 8.493×10−4

B 0 1 40 1.555 0.044 0.927 12.894 1.528 1.236×10−4

C 0 1 80 1.513 0.063 0.917 14.105 1.469 7.456×10−5

D 0 1 50 1.275 0.018 0.959 17.999 1.261 3.077×10−5

E 0 1 2 0.300 3.000 1.999 3.5000 0.003 0.049
F 0 1 1 0.151 3.545 2.128 1.889 0.001 0.078

Table 12 – Scenarios considered in the simulation studies for the LGB, LSL, LE and LR distributions.

Distribution Scenario

LGB A : µ = 5, σ = 2, γ = 0.5 and α = 0.5
B : µ =−5, σ = 4, γ = 0.75 and α = 1.5

LS A : µ =−5, σ = 1, κ = 2 and α = 1.5
B : µ = 5, σ = 2, κ = 1 and α = 0.5

4.4 Considerations on the Maximum Likelihood Estimate
and Simulations Studies

From Section 3.8, we have that the ML estimates for the parameters of the LGB and LSL
distributions can be obtained by solving the system of equations given in Appendix B, where
the baseline functions and the corresponding derivatives are presented in Appendices A and C.
However, as we have done so far, we prefer to obtain the estimates by solving the optimization
problem given in Equation (3.16). For this, we use the optim function of the R language via
the L-BFGS-B algorithm. We verify by simulation experiments that (x,sx,0,1) and (x,sx,1,1),
where x is the mean of the observations, and sx the corresponding standard deviation, are good
starting points for the iterative process in the LGB and LSL cases, respectively.

Based on the above considerations, we carry out two simulation studies in order to
evaluate the behavior of the ML estimators for the parameters of the LGB and LSL distributions.
For each of these distributions, from the qf given in Equation (3.11), we generate 1000 random
samples considering different sample sizes (n) and different choices for the parameters. The
LambertW package (GOERG, 2011) in the R language was used to compute the principal
branch of the LambertW function. Table 12 presents the different scenarios considered for each
distribution. Note that for each distribution we consider one value of α less than 1 and one
greater than 1. In this way, we are considering a scenario where the skewness is positive and
another where the skewness is negative.
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Tables 13 and 14 report the average estimate (AE), the empirical standard deviation (SD),
the asymptotic standard error (SE) and the root mean square error (RMSE) obtained in each
scenario and sample size considered. In the tables, it is observed that the AE’s tend to approach
the real values of the parameters as the size of the sample increases. Furthermore, as expected
in the standard asymptotic theory, it is observed that the SD’s, SE’s and RMSE’s are close and
decrease towards 0 as the sample size increases.

4.5 Data Analysis

In this section, we provide evidence that the LGB and LSL distributions can perform
better in fitting real data than other commonly used distributions. Here, the ML estimates for the
parameters of each fitted distribution are obtained using the optim function in the R language.
We also calculate the modified Cramer-von Mises (W ∗) and Anderson-Darling (A∗) statistics
(CHEN; BALAKRISHNAN, 1995) to test the hypothesis H0 : X1, . . . ,Xn is a random sample
from a continuous distribution F(x;θ), where F(·; ·) is known but θ is unknown. In these tests,
H0 is rejected at a significance level equal to 0.05 if W ∗ > 0.126 and A∗ > 0.752.

The data considered are briefly described below:

Inflation Rate Data This data set consists of 188 observations on the inflation rate (in %)
registered quarterly between the years 1950 and 1996 in Canada. These data can be found in the
Tbrate database of the Ecdat package (CROISSANT; GRAVES, 2019) in the R language.

Per-Capita Income Data This data set consists of 342 observations on the real per-
capita income (on the logarithmic scale) recorded in member countries of the Organization for
Economic Cooperation and Development (OECDE). These observations can be found in the
Gasoline database of the Ecdat package in the R language.

As in Section 3.10, for both data sets we test the hypothesis H0: the data have exactly
one mode versus the alternative hypothesis H1: the data have at least two modes. The observed
statistics and p-values associated with the excess mass test are presented in Table 15. In addition,
some descriptive statistics are also reported in this table.

From the figures of Table 15, we observe that the distribution of the inflation rate data is
at least bimodal and that it exhibits a positive skewness level. Consequently, we fit this data set
with the LGB distribution and compare its performance with that of other bimodal asymmetric
distributions such as the odd log-logistic skew-normal (OLLSN) (BRAGA; CORDEIRO; OR-
TEGA, 2018), gamma sinh-Cauchy (GSC) (GÓMEZ et al., 2019) and mixture-normal (MN)
(MCLACHLAN; PEEL, 2004) distributions. Regarding the per-capita income data, we observe
that the data have a high level of kurtosis and that (at a significance level equal to 0.05) the
hypothesis that the data have exactly one mode is not rejected. Consequently, we fit the per-
capita income data with the LSL distribution and compare its performance with that of the other
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Table 13 – Averages (AE), standard deviations (SD), root of the simulated mean square errors (RMSE),
and averages of asymptotic standard errors (SE) for the estimates of µ , σ , γ , and α of the LGB
distribution.
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Table 14 – Averages (AE), standard deviations (SD), root of the simulated mean square errors (RMSE),
and averages of asymptotic standard errors (SE) for the estimates of µ , σ , κ , and α of the LSL
distribution.
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Table 15 – Observed statistics and the p-value for the excess mass tests and descriptive statistics for the
inflation rate, per-capita income and violent crime rate data.

Excess mass test Descriptive statistics

Data Statistic p-value Minimum Maximum Skewness Kurtosis

Inflation Rate 0.050 0.050 -2.930 14 0.699 3.007
Per-Capita Income 0.033 0.126 -8.073 -5.221 -1.315 4.245

Figure 24 – Left panel: Histogram of the inflation rate data with the fitted pdf curves. Right panel:
Histogram of the real per-capita income data with the fitted pdf curves.
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heavy-tailed distributions such as the SL, skew-slash (SSL) (WANG; GENTON, 2006), modified
skew-slash (MSSL) (REYES; GÓMEZ; VIDAL, 2016) and generalized slash (GSL) (GENC,
2007) distributions.

Table 16 reports the ML estimates and their standard errors (in parentheses) for each
fitted distribution. Table 17 reports the values associated with the statistics A∗ and W ∗ and with
the information criteria. Here, based on the values of W ∗ and A∗, we observe that the quality of fit
performed by the LGB and LSL distributions is appropriate in each case. In addition, we observe
that the LGB and LSL distributions present the lowest AIC and BIC values, which suggests that
these distributions should be chosen over the others to model the corresponding data sets.

Figure 14 presents the histograms for both data sets with the corresponding fitted pdf’s.
In the figures, it can be seen that the LGB and LSL density values are close to the empirical
frequency values.
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Table 16 – The ML estimates and their standard errors (in parentheses) for each distribution fitted to the
inflation rate data and real per-capita income data.

Inflation rate data

Parameter LGB MN OLLSN GSC GB

µ 6.682 2.600 0.834 6.441 4.454
(0.307) (0.220) (1.048) (0.274) (0.379)

µ2 - 9.086 - - -
(0.585)

σ 2.545 2.001 4.129 1.176 2.631
(0.131) (0.161) (1.401) (0.104) (0.230)

σ2 - 2.026 - - -
(0.410)

γ 0.434 - 3.003 0.177 2.000
(0.175) - (0.880) (0.044) (1.321)

α 0.183 0.777 0.772 0.572 -
(0.060) (0.045) (0.294) (0.065) -

Real per-capita income data

Parameter LSL SSL MSSL GSL SL

µ -5.011 -5.446 -5.457 -5.973 -5.972
(0.063) (0.044) (0.022) (0.027) (0.027)

σ 0.398 0.609 0.580 0.268 0.266
(0.041) (0.106) (0.028) (0.028) (0.025)

κ 2.900 3.107 3.680 1.751 1.727
(0.307) (0.940) (0.122) (0.751) (0.223)

α 6.975×10−6 -4.907 -4.594 1.812 -
(3.220×10−8) (1.471) (0.120) (0.418)

Table 17 – Statistics W ∗ and A∗ and AIC and BIC values for each distribution fitted to the different data
sets.

Inflation rate data Real per-capita income data

Distribution W ∗ A∗ AIC BIC Distribution W ∗ A∗ AIC BIC

LGB 0.045 0.248 962.5 975.4 LSL 0.044 0.630 543.5 558.9
MN 0.040 0.246 965.5 981.7 SSL 0.160 1.268 548.4 563.8

OLLSN 0.085 0.558 973.7 986.6 MSSL 0.149 1.204 545.5 560.9
GSC 0.158 1.083 982.1 995.0 GSL 0.657 4.662 619.6 634.9
GB 0.610 3.318 996.7 1006.4 SL 0.647 4.580 617.7 629.2
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4.6 Final Comments
In this chapter, we proposed two new distributions to model skewness under the presence

of bimodality and high levels of kurtosis, respectively, the LGB and LSL distributions. These
distributions are generated considering as symmetric baseline distributions, the generalized
bimodal and slash distributions.

The ability to capture bimodality and high levels of kurtosis by the LGB and LSL
distributions, respectively, are capabilities inherited from the baseline distributions, while the
ability to capture skewness is due to the performance of α induced by the Lambert-F generator.

We observe that the skewness coefficient of the LGB and LSL distributions behaves as a
non-monotonic function of α when the shape parameter inherited by the baseline distribution
assumes a large value. Consequently, there may be different LGB (or LSL) distributions that
have the same skewness value, and it is enough to make an appropriate choice of locations and
scale to identify pairs of distributions that exhibit virtually identical behavior. By minimizing the
Kullback-Leibler divergence we see that the alias distributions in the LGB and LSL families can
be avoided if the ranges of γ and κ are set to be the intervals (0,2) and (0,5), respectively.

Parameter estimation of the LGB and LSL distributions is discussed using the ML
method. Through simulation experiments, we observe that the ML method provide acceptable
estimates of the parameters of these distributions. Finally, by fitting two real data sets, we
provide evidence that the LGB and LSL distributions can perform better than commonly used
distributions.
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CHAPTER

5
CONCLUDING REMARKS

In this dissertation, we propose new distributions to model asymmetry; the Lambert-
uniform (LU), Lambert-exponential (LE), Lambert-Rayleigh (LR), Lambert-generalized bimodal
(LGB), and Lambert-slash (LSL) distributions.

The LU distribution arises from a nonlinear transformation of a uniform rv, where the
transformation is expressed by the principal branch of the Lambert W function. The LU pdf
exhibits monotonic increasing/increasing shapes and tends to finite values at the extremes of
the support, which in certain scenarios allows fitting the extreme empirical quantiles more
appropriately than other distributions with bounded supports whose pdf’s tend to 0 and ∞ at the
ends of the support. We note that the shape parameter of the LU distribution can be explicitly
expressed as a function of the qth quantile, allowing us to parameterize the LU pdf in terms of
the qth quantile. With this result, we propose a regression model that relates the qth quantile of
the response to a linear predictor through an appropriate link function.

On the other hand, the LE, LR, LGB and LSL distributions arise as special cases of a
new distribution generator that we call the Lambert-F generator. This generator is formulated
from the qf of an arbitrary baseline distribution, where the argument of the qf is a LU rv. Thus,
for each choice of the baseline distribution, a new flexible distribution provided with one extra
shape parameter is defined.

When the baseline distribution has positive support, such as in the LE and LR distribu-
tions, we observe that the Lambert-F hrf corresponds to a modification in the early times of the
baseline hrf. When the baseline distribution is symmetric and has unbounded support, such as the
LGB and LSL distributions, the Lambert-F pdf corresponds to a modification in a multiplicative
fashion of the baseline pdf, allowing asymmetric shapes for the Lambert-F pdf. In the LGB
and LSL cases, we observe that these distributions inherit from the baseline distributions the
ability to capture bimodality and high levels of kurtosis, respectively, while the ability to capture
skewness is due to the performance of the shape parameter induced by the Lambert-F generator.
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For all the distributions proposed in this dissertation, the parameter estimation is per-
formed via the maximum likelihood method. The maximum likelihood estimators for the param-
eters of the proposed distributions do not have closed forms, so the estimates are obtained by
maximizing the corresponding likelihood functions using the optim function in the R language.
Through simulation experiments, we observe that the estimates provided by the ML method
are acceptable. Regarding the usefulness of the proposed distributions, by modeling data from
different real-world settings, we observe that the Lambert-F distributions may perform better
than commonly used distributions. Consequently, we conclude that these new distributions can
be considered as a viable alternative for classical distributions. Finally, based on the structural
properties of the proposed distributions, as well as on the application examples, we think that a
Lambert-F distribution is able to perform appropriately in scenarios where the baseline distribu-
tion is commonly used. However, the performances of these new distributions will be especially
valued in scenarios where the data exhibit levels of skewness that cannot be captured by the
baseline distributions.
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CHAPTER

6
FUTURE STUDIES

In this section, we propose some ideas for future work associated with the distributions
proposed in this dissertation.

6.1 Lambert-F Quantile Regresion Models
For a Lambert-F type distribution, we observe that the parameter α can be analytically

expressed as a function of the q-th quantile, which allows the distribution to be parameterized in
terms of its q-th quantile.

Denoting by γ the q-th quantile of a Lambert-F type distribution, from Equation (3.11),
we obtain that

α =

(
1−q

1−F(γ;η)

) 1
F(γ;η)

,

where F(·;η) is the cdf of the baseline distribution.

Thus, the LU distribution can be easily parameterized in terms of the qth quantile,
obtaining (for q ∈ (0,1) is known) the pdf given by

fX(x;η ,γ) = f (x;η)

(
1−q

1−F(γ;η)

) F(x;η)
F(γ;η)

×
[

1− 1
F(γ;η)

log
(

1−q
1−F(γ;η)

)
S(x;η)

]
, (6.1)

where f (·;η) and S(·;η) are the pdf and the sf of the baseline distribution.

Now, for a quantile regression model based on a Lambert-F type distribution, consider
the following.

Let X1, . . . ,Xn be n random variables and denote by x1, . . . ,xn the observed values. As-
sume that each Xi has pdf fXi(x;η ,γi) given in Equation (6.1). The Lambert-F quantile regression
model is defined by establishing that the qth quantile γi of Xi satisfies the functional relationship
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g(γi) = wt
iβ , i = 1, . . . ,n, where wi = (1,wi1, . . . ,wi(k−1))

t is the vector of covariates associated
to the response xi, β = (β0,β1, . . . ,β(k−1))

t is a k-dimensional vector of unknown regression co-
efficients and g(·) is a strictly increasing and twice differentiable function that must be specified
according to the support of the baseline distribution. For example, if the baseline distribution
has a bounded support to the interval (0,1), a feasible choice for g(·) is the logit function; If the
baseline distribution has unbounded support, a feasible choice for g(·) is the identity function.

A quantile regression model based on the LU distribution can be consulted in Iriarte, de
Castro and Gómez (2021a).

6.2 Lambert Transformed U distributions

In Definition 1, the distribution of the rv U does not necessarily have to be uniform. By
imposing only the conditions that U is continuous and has a range bounded to the interval (0,1),
new distributions that generalize to the LU distribution can be derived.

Definition 6. Let U be a continuous rv with range bonded to the interval (0,1) and cdf FU(u;β ),
where β is a parameter vector. Then, the rv X , represented as

X =


1

log(α)
W0

(
log(α)(U −1)

α

)
+1, if α ∈ (0,1)∪ (1,e),

U, if α = 1,

where W0(·) is the principal branch of the Lambert W function, is a Lambert transformed U rv.

In this case, the cdf and the pdf of X are given respectively by

FX(x;β ,α) = FU (1− (1− x)αx;β ) and

fX(x;β ,α) = fU(1− [1− x]αx;β )[1− log(α)(1− x)]αx,

where x ∈ (0,1), α ∈ (0,e) and FU(·;β ) and fU(·;β ) are the cdf and the pdf of U .

In Definition 1, the skewness of the rv X depends only on the value assumed by α . On
the other hand, in Definition 6, we suspect that the skewness of X may also be influenced by
some shape parameter of the distribution of the rv U . We leave the following questions open:

If U has a power distribution with shape parameter γ , what effect will γ have on the
skewness of the resulting Lambert transformed power distribution? Will the parameter γ allow
different shapes for the resulting pdf other than those displayed by the LU pdf?

If U has a beta distribution, with shape parameters γ1 and γ2 such that γ1 = γ2, what
effect will γ1 have on the skewness of the resulting Lambert transformed beta distribution? Will
the parameter γ1 allow different shapes for the resulting pdf other than those displayed by the
LU pdf?
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Note that the power distribution, unlike the uniform distribution, is an asymmetric
distribution. On the other hand, the beta distribution under the restriction imposed on the
parameters is a symmetric distribution.

6.3 Alternative Distribution Generators
Similar to the construction of the Lambert-F generator based on the LU rv, it is possible

to define a new distribution generator based on a Lambert transformed U rv.

Proposition 9. Let Z be an arbitrary rv with cdf F(z;η), where η is a parameter vector. The rv
Y follows the Lambert-FU F distribution, if its cdf is given by

FY (y;η ,β ,α) = FU

(
1− [1−F(y;η)]αF(y;η);β

)
,

where FU(·; ·) is the cdf of a Lambert transformed U rv.

Demonstration. If Y = F−1(U ;η), where F−1(·;η) is the qf of an arbitrary baseline rv and
U is a Lambert transformed U rv, then the cdf of Y is given by FY (y;η ,α) = P(Y ≤ y) =

FU(F(y;η);β ,α), where F(·;η) is the inverse function of the F−1(·;η) and FU(u;β ,α) =

FU(1− (1−u)αu;β ) is the cdf of U .

Proposition 9 defines a new distribution generator class. Once the functions F(·;η) and
FU(·;β ) are specified, a new family of distributions indexed by the parameter vector (η ,β ,α)t

is defined.
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APPENDIX

A
BASELINE FUNCTIONS FOR THE SPECIAL

CASES GIVEN IN SECTIONS 3.7 AND 4.2

Table 18 – The pdf, the cdf and the sf for the generalized-bimodal (GB), slash (SL), exponecial (E) and
Rayleigh (R) baseline distributions.

Distribution η1 η2 η3 Pdf f (x;η) Cdf F(x;η)

GB µ σ γ
γ+( x−µ

σ )
2

σ(1+γ) φ

(
x−µ

σ

)
, x ∈ R, Φ

(
x−µ

σ

)
− x−µ

σ(1+γ)φ

(
x−µ

σ

)
SL µ σ κ

κ

σ

∫ 1
0 uκφ

(
x−µ

σ
u
)

du, x ∈ R, Φ

(
x−µ

σ

)
− x−µ

σκ
f (x;η)

E σ - - 1
σ

e−
x
σ , x > 0, 1− e−

x
σ

R σ - - x
σ2 e−

x2

2σ2 , x > 0, 1− e−
x2

2σ2

For µ ∈ R (location), σ > 0 (scale), γ ∈ (0,2) and κ > 0 (shape).
Φ(·) and φ(z) denote the cdf and pdf of the standard normal distribution.
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APPENDIX

B
MAXIMUM LIKELIHOOD ESTIMATION FOR

THE LAMBERT-F DISTRIBUTION

Let X1, . . . ,Xn be a random sample of X ∼LF(η ,α) with η = (η1, . . . ,ηk−1)
t and (η ,α)t

unknown. Then, the ML estimate of (η ,α)t satisfies the system of equations

log(α)
n

∑
i=1

Sη1(xi;η)

1− log(α)S(xi;η)
− log(α)

n

∑
i=1

Fη1(xi;η) =
n

∑
i=1

fη1(xi;η)

f (xi;η)
,

...

log(α)
n

∑
i=1

Sηk−1(xi;η)

1− log(α)S(xi;η)
− log(α)

n

∑
i=1

Fηk−1(xi;η) =
n

∑
i=1

fηk−1(xi;η)

f (xi;η)
,

n

∑
i=1

S(xi;η)

1− log(α)S(xi;η)
=

n

∑
i=1

F(xi;η),

where fη j(x;η) = ∂ f (x;η)/∂η j, Fη j(x;η) = ∂F(x;η)/∂η j and Sη j(x;η) = −Fη j(x;η), with
j = 1, . . . ,k−1, obtained from the score equation system.
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APPENDIX

C
FUNCTIONS FOR THE COMPUTATION OF

THE SCORE FUNCTIONS AND THE
OBSERVED INFORMATION MATRIX OF THE

SPECIAL CASES REPORTED IN SECTIONS
3.7 AND 4.2

Table 19 – Partial derivatives for the pdf and the cdf of the E baseline distribution.

Derivative Expression

fσ (x;σ) − 1
σ

(
1− x

σ

)
f (x;σ)

fσσ (x;σ) 1
σ2

[(
1− x

σ

)(
2− x

σ

)
− x

σ

]
f (x;σ)

Fσ (x;σ) − x
σ

f (x;σ)

Fσσ (x;σ) x
σ2 f (x;σ)− x

σ
fσ (x;σ)

f (·; ·) being the pdf of the E distribution (See Table 18).

Table 20 – Partial derivatives for the pdf and the cdf of the R baseline distribution.

Derivative Expression

fσ (x;σ) − 1
σ

(
2− x2

σ2

)
f (x;σ)

fσσ (x;σ) 1
σ2

[(
3− x2

σ2

)(
2− x2

σ2

)
− 2x2

σ2

]
f (x;σ)

Fσ (x;σ) − x
σ

f (x;σ)

Fσσ (x;σ) x
σ2 f (x;σ)− x

σ
fσ (x;σ)

f (·; ·) being the pdf of the E distribution (See Table 18).
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APPENDIX C. Functions for the Computation of the Score Functions and the Observed Information

Matrix of the Special Cases Reported in Sections 3.7 and 4.2

Table 21 – Partial derivatives for the pdf and the cdf of the GB baseline distribution.

Derivative Expression

fµ(x; µ,σ ,γ) − 2z
σ2(1+γ)

φ(z)+ z
σ

f (x; µ,σ ,γ)

fσ (x; µ,σ ,γ) − γ+3z2

σ2(1+γ)
φ(z)+ z2

σ
f (x; µ,σ ,γ)

fγ(x; µ,σ ,γ) 1
σ(1+γ)φ(z)−

1
1+γ

f (x; µ,σ ,γ)

Fµ(x; µ,σ ,γ) − 1
σ

f (x; µ,σ ,γ)

Fσ (x; µ,σ ,γ) − z
σ

f (x; µ,σ ,γ)

Fγ(x; µ,σ ,γ) z
(1+γ)2 φ(z)

fµµ(x; µ,σ ,γ) 2(1−z2)
σ3(1+γ)

φ(z)− 1
σ2 f (x; µ,σ ,γ)+ z

σ
fµ(x; µ,σ ,γ)

fµσ (x; µ,σ ,γ) z
σ3

(
6

1+γ
+ z2

)
φ(z)− 2z

σ2 f (x; µ,σ ,γ)+ z
σ

fσ (x; µ,σ ,γ)

fµγ(x; µ,σ ,γ) 2z
σ2(1+γ)2 +

z
σ

fγ(x; µ,σ ,γ)

fσσ (x; µ,σ ,γ) 6z2

σ3(1+γ)
φ(z)+ (2−z2)(γ+3z2)

σ3(1+γ)
φ(z)− 3z2

σ2 f (x; µ,σ ,γ)

+ z2

σ
fσ (x; µ,σ ,γ)

fσγ(x; µ,σ ,γ) − 1−3z2

σ2(1+γ)2 φ(z)+ z2

σ
fγ(x; µ,σ ,γ)

fγγ(x; µ,σ ,γ) − 1
σ(1+γ)2 φ(z)+ 1

(1+γ)2 f (x; µ,σ ,γ)− 1
1+γ

fγ(x; µ,σ ,γ)

Fµµ(x; µ,σ ,γ) − 1
σ

fµ(x; µ,σ ,γ)

Fµσ (x; µ,σ ,γ) 1
σ2 f (x; µ,σ ,γ)− 1

σ
fσ (x; µ,σ ,γ)

Fµγ(x; µ,σ ,γ) − 1
σ

fγ(x; µ,σ ,γ)

Fσσ (x; µ,σ ,γ) 2z
σ2 f (x; µ,σ ,γ)− z

σ
fσ (x; µ,σ ,γ)

Fσγ(x; µ,σ ,γ) − z
σ

fγ(x; µ,σ ,γ)

Fγγ(x; µ,σ ,γ) − 2z
(1+γ)3 φ(z)

f (·; ·, ·, ·) being the pdf of the GB distribution (See Table 18), φ(·) the pdf of the
standard normal distribution and z = (x−µ)/σ .
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Table 22 – Partial derivatives for the pdf and the cdf of the SL baseline distribution.

Derivative Expression

fµ(x; µ,σ ,κ) κz
σ(κ+2) f (x; µ,σ ,κ +2)

fσ (x; µ,σ ,κ) − 1
σ

f (x; µ,σ ,κ)+ κz2

σ(κ+2) f (x; µ,σ ,κ +2)

fκ(x; µ,σ ,κ) 1
κ

f (x; µ,σ ,κ)+ κ

σ

∫ 1
0 uκ log(u)φ(z)du

Fµ(x; µ,σ ,κ) − 1
σ

f (x; µ,σ ,κ)

Fσ (x; µ,σ ,κ) − z
σ

f (x,µ,σ ,κ)

Fκ(x; µ,σ ,κ) z
κ2 φ(z)

fµµ(x; µ,σ ,κ) − κ

σ2(κ+2) f (x; µ,σ ,κ +2)+ z fµ(x; µ,σ ,κ +2)

fµσ (x; µ,σ ,κ) − 2κz
σ2(κ+2) f (x; µ,σ ,κ +2)+ κz

κ+2 fσ (x; µ,σ ,κ +2)

fµκ(x; µ,σ ,κ) 2z
σ(κ+2)2 f (x; µ,σ ,κ +2)+ κz

σ(κ+2) fκ(x; µ,σ ,κ +2)

fσσ (x; µ,σ ,κ) 1
σ2 f (x; µ,σ ,κ)− 1

σ
fσ (x; µ,σ ,κ)− 3κz2

σ2(κ+2) f (x; µ,σ ,κ +2)

+ κz2

(κ+2) fσ (x; µ,σ ,κ +2)

fσκ(x; µ,σ ,κ) − 1
σ

fκ(x; µ,σ ,κ)+ 2z2

σ(κ+2)2 f (x; µ,σ ,κ +2)

+ κz2

σ(κ+2) fκ(x; µ,σ ,κ +2)

fκκ(x; µ,σ ,κ) − 1
κ2 f (x; µ,σ ,κ)+ 1

κ
fκ(x; µ,σ ,κ)+ 1

σ

∫ 1
0 uκ log(u)φ(zu)du

+ κ

σ

∫ 1
0 uκ log2(u)φ(zu)du

Fµµ(x; µ,σ ,κ) − 1
σ

fµ(x; µ,σ ,κ)

Fµσ (x; µ,σ ,κ) − 1
σ2 f (x; µ,σ ,κ)− 1

σ
fσ (x; µ,σ ,κ)

Fµκ(x; µ,σ ,κ) − 1
σ

f (x; µ,σ ,κ)

Fσσ (x; µ,σ ,κ) 2z
σ2 f (x; µ,σ ,κ)+ z

σ
fσ (x; µ,σ ,κ)

Fσκ(x; µ,σ ,κ) − z
σ

fκ(x; µ,σ ,κ)

Fκκ(x; µ,σ ,κ) − 2z
κ3 φ(z)

f (·; ·, ·, ·) being the pdf of the SL distribution (See Table 18), φ(·) the pdf of the
standard normal distribution and z = (x−µ)/σ .
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D
SECOND PARTIAL DERIVATIVES OF THE

LOG-LIKELIHOOD FUNCTION GIVEN IN
EQUATION (2.11)

The second partial derivative of Equation (2.11) is given by

∂ 2ℓ(β )

∂βp∂βr
= − log(1−q)

n

∑
i=1

xiηi,r,p

η2
i

+2log(1−q)
n

∑
i=1

xiηi,rηi,p

η3
i

−
n

∑
i=1

xiηi,rηi,p

η2
i (1−ηi)

+
n

∑
i=1

xi log(1−ηi)ηi,r,p

η2
i

−2
n

∑
i=1

xi log(1−ηi)ηi,rηi,p

η3
i

+
n

∑
i=1

xi(1−ηi)ηi,r,p

η3
i

−
n

∑
i=1

xiηi,r(1−ηi)ηi,p

η4
i

+
n

∑
i=1

xiηi,rηi,p

η3
i

+
n

∑
i=1

(1− xi)ηi,rηi,p

η2
i (1−ηi)H(xi;ηi)

+
n

∑
i=1

(1− xi) log
(

1−q
1−ηi

)
ηi,r,p

η2
i H(xi;ηi)

−2
n

∑
i=1

(1− xi) log
(

1−q
1−ηi

)
ηi,rηi,p

η3
i H(xi;ηi)

−
n

∑
i=1

(1− xi)
2 log2

(
1−q
1−ηi

)
ηi,rηi,p

η4
i H2(xi;ηi)

−
n

∑
i=1

(1− xi)ηi,p

(1−ηi)H(xi;ηi)

−
n

∑
i=1

(1− xi)ηi,rηi,p

(1−ηi)2H(xi;η)
−

n

∑
i=1

(1− xi)
2 log

(
1−q
1−ηi

)
ηi,rηi,p

η2
i (1−ηi)H2(xi;ηi)

+
n

∑
i=1

(1− xi)
2ηi,rηi,p

ηi(1−ηi)2H2(xi;ηi)
,

where H(xi;ηi) = 1− (1/ηi) log[(1−q)/(1−ηi)](1−xi), ηi,r and ηi,s are as in Equation (2.12)
and ηi,r,p = ∂ 2ηi/(∂βp∂βr), with r, p = 0,1, . . . ,k − 1. Thus, under the consideration of the
link logit, we observe that ηi,0,p = δiwip, ηi,r,0 = δiwir and ηi,r,p = δiwirwip, where δi = ηi(1−
ηi)(1−2ηi), with i = 1,2, . . . ,n, and r, p = 0,1, . . . ,k−1.
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