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Nomenclature

a specific surface area

ad additional geometric parameter

¢ concentration

d diameter

i density current

i unit value of current (+1 for charging and -1 for discharging)

j unit value of half-cell representation (-1 for negative and +1 for positive)

==

rate constant
n number of electrons, quantity (in mols), number of...
pressure

charge

s+ QT

time

<

ionic mobility

<

velocity

S

weight
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capacity
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energy density or Nernst potential
Faraday’s constant

length of residence path

current

thickness

flux
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power
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temperature
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Kk permeability
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7 initial condition
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i speciesi
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ij; i # j;i,j € N interaction coefficient or effect
in inlet electrode channel

[ liquid or ionic

loc local

m membrane

max maximum

min minimum

neg negative electrode
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out outlet electrode channel
ox oxidized species

p peak

p pump

pos positive electrode

red reduced species

s solid or electronic

t total

tp from trapezoid geometry
CP central point value

avg average value

br between reservoirs (or tanks)
g geometric

p parametric

var variable

opt optimum
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0 standard

b bulk

cc current collector

e electrolyte or electrode
ef f effective value

er electrolyte interfacial region
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m membrane
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s surface
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Resumo

OTIMIZACAO DE DESEMPENHO EM BATERIAS DE FLUXO REDOX: UMA
ABORDAGEM COMPUTACIONAL.

As baterias de fluxo redox (RFBs) surgem como uma tecnologia alternativa para o
armazenamento de energia em larga escala. As principais caracteristicas deste tipo de
dispositivo estdo relacionadas ao seu design unico, que proporciona escalabilidade,
desacoplamento entre poténcia e densidade de energia e a utilizacdo de diversos tipos de
espécies ativas. A RFB mais desenvolvida até hoje é a bateria de fluxo redox de vanadio
(VRFB), que usa V?*V3* em uma semi-célula e VO**(V(IV))/VO2*/(V(V)) em outra.
Apesar de suas vantagens, a VRFB enfrenta alguns desafios relacionados ao desempenho,
o0 que dificulta sua penetracdo no mercado. Dois dos problemas mais relevantes sdo a
perda de capacidade e a perda de voltagem. A perda de capacidade é causada pela
seletividade ndo ideal da membrana, que permite a contaminagédo cruzada entre as semi-
células, levando a reagdes de auto-descarga. A perda de voltagem é causada pelos
sobrepotenciais, que exigem potenciais de carga mais altos e diminuem o potencial de
saida. Com base nisso, propomos um método de abordagem para investigar as variaveis
relacionadas a esses problemas e sugerir estratégias de mitigacdo a serem testadas em
sistemas reais. Além dos problemas relacionados as VRFBs, também investigamos as
consequéncias da escolha de diferentes espécies ativas no desempenho de RFBs. Com
esta abordagem nds: (i) mostramos como a geometria influencia na mitigacdo dos
sobrepotenciais 6hmico e de concentracdo e como 0s parametros geométricos interagem
com as condigdes operacionais; (ii) identificamos as condigdes operacionais que afetam
a perda de capacidade e propomos uma estratégia de mitigacdo baseada na transferéncia
de volume entre tanques no sentido inverso da contaminacdo cruzada liquida; e (iii)
fornecermos insights Uteis para entender como a escolha de espécies ativas em RFBs é
relevante para a eficiéncia energética. Desta forma, conseguimos fornecer um
embasamento tedrico profundo para os experimentalistas entenderem os efeitos de

diversas variaveis no desempenho de baterias de fluxo redox.
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Abstract

PERFORMANCE OPTIMIZATION IN REDOX FLOW BATTERIES: A
COMPUTATIONAL APPROACH

Redox flow batteries (RFBs) emerge as an alternative technology for the storage of energy
on a large scale. The main characteristics of this type of device are related to its unique
design, which provides scalability, decoupling between power and energy density, and
the use of several types of active species. The more developed RFB to date is the all-
vanadium redox flow battery (VRFB), which uses VZ/V** in one half-cell and
VO (V(IV))/VO2*/(V(V)) in the other. Despite the advantages of this type of device, the
VRFB still faces some drawbacks related to performance, which hinder its marketing
penetration. Two of the most relevant problems are capacity loss and voltage loss. The
capacity loss is caused by the non-ideal selectivity of the membrane, which allows the
cross-contamination between the half-cells, leading to self-discharge reactions. The
voltage loss is caused by overpotential that requires higher charging voltages and
decreases the output voltage. Based on these problems, we propose a new computational
method of approach to investigate the variables related to these problems and to suggest
mitigation strategies to be further tested in real systems. Beyond the problems related to
VRFBs, we also investigate the consequences of choosing different actives species in the
performance of RFBs, based on this same method of approach. With this approach, we:
(i) show how geometry influences the mitigation of overpotential and how geometric
parameters interact with operating conditions; (ii) identify the operating conditions that
affect the capacity loss and purpose a mitigation strategy based on the volume transfer
between tanks in the reverse direction of net cross-contamination; and (iii) provide useful
insights to understand how the choice of active species in RFBs is relevant to energy
efficiency. Thus, we provide a set of theoretical backgrounds for experimentalists to
understand the effects of several variables in the performance of redox flow batteries.
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1 INTRODUCTION

This chapter provides an overview of the background: the
storage technologies, the redox flow batteries, the issues with
capacity loss and voltage loss, and the methods used (finite
element method and chemometric analysis).

The increasing global demand for energy and the concerns about the environmental
impacts of current energy production are driving forces for the improvement of renewable
energy sources, such as solar and wind. However, this type of energy source suffers from
intermittency, which is the major impediment to reliable electricity generation. The
intermittency leads to (i) the mismatch between electricity supply and demand, and (ii)
complicates the direct transport to the power grid?. For this reason, the wide application
of this type of energy source is highly dependent on energy storage systems (ESSS).

The principle of energy storage is transforming electrical energy into chemical,
electrochemical, or mechanical energy. This allows the decoupling between the electricity
generator from the electricity user?. In this situation, the power generated by off-peak
time may be stored and then smartly delivered when the demand grows?®. However, the
requirements for energy storage are wide, including fast response time, high energy
density, wide operating temperature, low cost, high round-trip efficiency, high lifetime,
low rate of self-discharge, safety, and low environmental effects®. No known ESS meets
all the requirements for large-scale energy storage. Despite this, some devices are already
widely used, as pumped-hydro energy storage, and others are at demonstration levels,
such as some advanced electrochemical capacitors and batteries®.

In the first section, a brief review of the most important ESSs is shown. In section
1.2, the focus is the emergent redox flow batteries (RFBs), which are electrochemical
energy storage devices based on the circulation of liquid electrolytes through porous
electrodes, where the energy conversion electrical/electrochemical occurs. Sections 1.3
and 1.4 the drawbacks related to performance — capacity loss and voltage loss - are widely
discussed. In section 1.5, the experimental evaluation of RFBs is discussed aiming at the
understanding of the theoretical choices in the next chapters. Finally, in sections 1.6 and
1.7, the methods used in this thesis — finite element method (FEM) and chemometric

analysis — are discussed.



1.1 Large-Scale Energy Storage

The ESSs are classified according to how energy is stored. Figure 1 shows some

examples based on this classification.

Energy Storage
Technologies

Mechanical systems Electrochemical systems Electromechanical systems
Batteries S
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R A T AT Redox Flow Batteries
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Figure 1. Classification of ESSs based on the form of stored energy. Based on references?*.

The pumped hydro storage is a very deployed technology and corresponds to most of
the total installed capacity connected with the grid (96% in 2018 in the world®). The
major advantages of this technology are the long working life, high capacity, and low
cost?,

The working principle of pumped hydro reminds the generation of energy by
hydroelectric sources. During low-demand periods, the water is pumped up to a reservoir
and the electric energy is converted into potential energy. When the demand grows, the
water flow drives the turbines to generate electric power. Thus, this type of technology is
restricted by geographical conditions and topography?.

Another type of ESS based on potential energy storage is compressed air energy
storage (CAES). The working principle of CAES is based on the compression of air using
electrical energy. When demands grow, the air under high pressure is delivered to drive
the turbines and generate electric power®. This type of storage technology shows high

capacity, low cost, and long cycle periods of energy storage?. However, CAES suffers



from low energy efficiency due to changes in temperature caused by
compression/expansion of the gas?. CAES plants also require suitable geological
conditions, since the air compressed is stored in underground caverns.

The flywheels storage technology is based on the conversion of electric energy into
kinetic energy by the angular speed of flywheels*. During peak-off times, an electromotor
drives the flywheel to high angular velocities; thus, electric energy is converted into
kinetic energy. When electric energy is required, the kinetic energy is reconverted to
electricity and the angular velocities decrease. The main advantages of this technology
are fast response, high power density, long cycle life, and environmentally friendly
operation®. The disadvantages include high capital cost and high self-discharge during
idling (capacity loss by friction)’.

The main advantage of electrochemical storage devices is the no geographical
requirement for installation. Beyond that, the electrochemical storage devices show
standalone modular design and fast response®. This class is usually divided into batteries
(e.g., lithium-ion, lead-acid), flow batteries (e.g., vanadium redox flow batteries), and
electrochemical capacitors. In the first two devices, the energy conversion is based on the
faradaic processes (redox chemical reactions), whereas the last one is based on the electric
field between the electrode and the electrolyte.

One of the most developed electrochemical energy storage devices is the lithium-ion
battery, widely employed in portable electronic devices, such as smartphones and laptops.
The success of the lithium-ion battery is related to the high energy and power density,
cost-effectiveness, high energy efficiency, and long operational life®. The low redox
potential of lithium (-3.04 vs SHE) and the low molar mass (6.94 g/mol) are what make
this chemical element so attractive, and allow the development of devices with high
power and energy densities.

The working principle of lithium-ion batteries is the ion lithium transfer between the
cathode and the anode. The anode is usually made of layered graphite and the cathode is
usually made of layered lithium metal oxide (e.g., LiCoO2, LiFePQ4)°. The layered
structure of both anode and cathode materials allows the intercalation and deintercalation
of Li*, at the same time that current flows in the circuit. During discharging procedure,

the external power source drives the oxidation in the anode and deintercalation of lithium:

LiCy = C; + Lit + e~ (anode) (1)



The current flows by the external circuit and the Li* is enabled to flow across a non-
aqueous electrolyte, where a soluble lithium salt (e.g., LiPFs) is dissolved and embedded
in a separator felt. Thus, the electrons will drive the reduction in the cathode and the

consecutive lithium intercalation:

Li* + e~ + MO, = LiMO, (cathode) @)

Where M is a cation of metallic element, as cobalt.

Thus, the overall and general cell reaction is:

Li,Cy + Li(y_yMO, 2 yC + LiMO, 3)

Despite the advantages of lithium-ion batteries, the application in large-scale energy
storage requires better safety, lower cost, wide temperature operational range, materials
availability and higher capacities than this device can currently provide>!°, The safety
issue is related to the possibility of explosion when the battery is short-circuited,
overcharged, or overheated?.

Because of the drawbacks of lithium-ion batteries, several other batteries have been
studied, such as sodium-sulfur, sodium-nickel, and redox flow batteries. The main
advantages of redox flow batteries are related to their modular design®!, which provides
attractive scalability and flexibility for stationary energy storage. The flexibility is
associated with the decoupling between power and energy capacity. The output power is
controlled by the size of the stack, whereas the energy capacity is controlled by the

volume of the electrolyte reservoirs.

1.2 Redox Flow Batteries

A typical design of a redox flow battery (RFBs) includes the anode and cathode
compartments, the separator, two current collectors, two electrolyte reservoirs, and

peristaltic pumps (see Figure 2).
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Figure 2. Schematic representation and working principle of a redox flow battery.

The energy conversion is based on the reversible electrochemical reaction of two
redox couples dissolved in the electrolytes, the anolyte (A) in the anode and the catholyte
(C) in the cathode:

yATTE 4+ xC™ = yA™ + xC™Y (4)

Where x is the number of electrons transferred in the anode reaction, y is the number
of electrons transferred in the cathode reaction, n and m are the redox state of the oxidized
anolyte and catholyte, respectively.

Both anode and cathode compartments are filled by porous electrodes (e.g., carbon
felt), where electrochemical reactions take place. Both electrolytes flow continuously
from reservoirs through the porous electrodes. The separator (e.g., ion-exchange
membrane) allows the ionic flux between the half-cells and prevents the mix of
electrolytes. And the current collectors are used to electrically connect the half-cells to
the load/source and allow the external electron flow.

The first RFB was developed in the 1970s by Lawrence Thaller at the U.S. National
Aeronautics and Space Administration (NASA)2. This device employed Cr3*/Cr?* as
anolyte and Fe3*/Fe?* as catholyte. The main issue with the first RFB was the cross-
contamination of active species between the half-cells and the consequent irreversible”
capacity loss. Other problems in this type of device include low coulombic efficiency and

*In this case, the terms reversible and irreversible do not have thermodynamic
meaning. This nomenclature is used just to determine if the capacity loss can be
mitigated by concentration rebalancing (reversible) or not (irreversible).



irreversible capacity loss caused by hydrogen evolution due to the low redox potential of
the Cr¥*/Cr?* couple?.

The first successful strategy for mitigation of cross-contamination in RFBs was
achieved by Skyllas-Kazacos in 1988% by using two redox couples from vanadium:
V2 V3" as anolyte and VO?'/VO," as catholyte. This battery is called all-vanadium redox
flow battery (VRFB). Although cross-contamination is still a problem in VRFBs, the
products of the reactions between the two half-cells are the vanadium species themselves.
Thus, the capacity loss in VRFBs is reversible and is mitigated by concentration
rebalancing®. The cross-contamination in VRFBs is discussed in more detail in section
14.

The VRFBs are the most well-established redox flow batteries to date and drive the
development of their entire class. However, this device suffers from some issues: (i) as
the narrow working temperature window (between 10 and 40 °C)8, which leads to active
species precipitation; (ii) oxygen®® and hydrogen'®’ side reactions that lower cell
efficiency and contributes to capacity loss; (iii) high cost of vanadium!® and the ion-
exchange membrane?®; (iv) low energy density?’; and (v) the reversible capacity loss*.

To overcome some of these issues, the search and development of new redox-active
materials increased since 2010%'. Usually, the systems are divided into aqueous or
nonaqueous. The benefits of using aqueous systems are the negligible environmental
impact, the low cost, and the high conductivity provided by high soluble salts in water.
This allows the operation of the cell in high currents without larger voltage losses?®.
However, the most problematic aspect of using an aqueous medium is the narrow
electrochemical window of water, which restricted the use of species with absolute high
redox potentials?®. The hydrogen and oxygen evolution (i) lowers efficiency, (ii)limits
power density, and (iii) increases capacity loss due to the use of a certain percentage of
current to drive the parasitic reactions?*,

Figure 3 illustrates the challenges faced by the RFB’s market penetration. These

challenges are divided according to the components of RFB.

Active Species. Regarding the classification of active species, they can be metal (e.g.,
vanadium, iron, cerium), metal-containing organic (e.g., metallocene®®2®, metallic
complexes?’?), and metal-free organic. This last class is also called redox organic
molecules (ROMSs). The choice of a suitable redox active material is usually related to the

theoretical energy density:



E = TlFCactU (5)

Where n is the number of electrons transferred in the reactions, F is the Faraday’s
constant, Cact is the concentration of the active species and U is the theoretical cell redox
potential.

As can be seen in Equation 5, two properties are related to the energy density: the
solubility and the redox potential. In the case of ROMs, these properties can be tunable
and this drives the attention of researchers to the development of organic materials for
RFBs application. ROMs also have benefits related to low cost and sustainability, since
these materials are composed of earth-abundant elements?,

Despite solubility and redox potential being the target properties for choosing the
suitable active species, their consequences on the battery’s efficiency are not known yet.

The most relevant drawback of using organic materials as active species in RFBs is
the instability of electrochemically generated radicals. The reduction or oxidation of
organic compounds usually occurs with coupled chemical reactions, such as dimerization
or cleavage. The formation of unstable radicals is very common®®3! and structural
modification plays a significant role in the improvement of chemical persistence of
electrochemically generated radicals. The strategies for mitigating the rate of coupled
chemical processes are wide, but usually involve the increase of spin delocalization3>%

and steric protection of unpaired electron®.
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Other key properties controlling RFB performance are the mass transport to the
electrode and the electron transfer rate®*. Despite the convective flow in the cell, the
diffusional transport to the electrode plays a role in the effective mass transfer from bulk
to the surface of the electrode due to the existence of a convective-dependent diffusional
layer®%, Thus, the magnitude of diffusion coefficients affects the concentration
overpotential and consequently the voltage efficiency. The electron transfer rate is even
a more important property because determines the usability of the cell to deliver a

desirable current density with high efficiency®,

Electrode material. The development of electrodes is also very important to achieve
competitive RFBs. The development of electrodes is especially important if the Kinetics
of active species is sluggish, as in VRFBs. Many researchers have studied methods to
improve the electrochemical activity of electrodes to increase the reversibility of

vanadium reaction aiming for a better energy efficiency®’.

Membrane. The membrane affects the capacity loss due to its selectivity but also
plays an important role in the cost-effectiveness of RFBs®. One of the most important
drawbacks in VRFBs is the cross-contamination caused by the non-selective transport of
ions across the Nafion membrane. The cross-contamination causes the self-discharge of
the cell and the consequent imbalance of active species between the half-cells'*, which
leads to reversible capacity loss. Despite being reversible, the capacity loss adds cost to
the VRFB operation.

Stack. The performance of RFBs is also dependent on stack design. A RFB can
operate with two designs based on the electrode configuration: flow-through and flow-
by®® (see Figure 4). In the flow-through design, the entire electrolyte is forced through
the porous electrode, whereas in the flow-by design the electrolyte is pumped by the
electrode with specified flow channels defined by flow fields, as serpentine flow field
(SFF) and interdigitated flow field (IFF)%.
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Figure 4. Representative scheme of stack designs: flow-through and flow-by.

The flow-through design demands thicker electrodes than the flow-by design. This is
because the pump power required for electrolyte circulation is large in the flow-through
design, and the mitigation strategy is the enlargement of the electrode. However, this
strategy led to a typical large ohmic overpotential®®. The main advantage of the flow-
through design is the uniformity of active species distribution, which is related to the
magnitude of concentration overpotential. However, the choice of the best design depends
on several factors: scale, cell dimensions, flow velocity, electrode compression, etc.

Indeed, there are no decisive studies about which design leads to the best performance®.

1.3 Strategies for Efficiency Improvement in VRFBs

Energy efficiency is defined as the relation between the retained energy in the
discharge procedure by the applied energy in the charging procedure. The energy can be

obtained by integration over time of the product between current and cell potential*:
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S I (tVe()at

Energy Ef ficiency (EE) = X 100% (6)
Where lq is the current in the discharge procedure, Vg is the discharging potential, I¢
is the current in the charging procedure, V. is the charging potential, tq is the discharging
time and tc is the charging time.
The integration over time of the current is equal to the delivered charge in the
discharging procedure (qq) and the retained charge in the charging procedure (gc). This

quotient is equal to the coulombic efficiency:

Jy41q(0)at

Coloumbic Ef ficiency (CE) = [ (Ot

X 100% = Z—d x100%  (7)
The CE is reduced by the crossover of active species across the membrane®®, and side
reactions*. For instance, the oxygen evolution reaction (OER) and hydrogen evolution
reaction (HER) consume a part of the current directed to the active species?* and lead to
the inactivation of active sites due to the bubble formation*.
The quotient between the mean discharging potential and the mean charging potential

at constant current is defined as voltage efficiency (VE)?:

fotdvd(t)dt
.. _ tq 0
Voltage Ef ficiency (VE) = Tevemar X 100% (8)

tc

The VE is reduced by the overpotential (ohmic, concentration, and activation)
generation. In the discharging procedure, the overpotential reduces the potential delivered
by the cell. In the charging procedure, the overpotential must be overcome and higher
potentials must be applied to charge the cell (see Figure 5). In the absence of
overpotential, just the thermodynamic potential is observed (open circuit potential, OCP)
and the voltage efficiency is equal to 100%.
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Figure 5. Cell potential and open circuit potential for a typical redox flow battery.

The overpotential is usually divided into ohmic, concentration, and activation. The
ohmic overpotential is related to the overall electric resistance of the cell. The
concentration overpotential is related to the mass transfer resistance of active species from
the bulk to the electrode surface®®. And the activation overpotential is related to the
potential needed to overcome the activation energy of the electrochemical reaction?®.
These three overpotentials can be analyzed separately and each one can be mitigated using
different strategies, from geometric modification of electrodes to the choice of active
species, membranes, and electrodes.

Thus, the energy efficiency can be redefined in a more intelligible way as the

product of coulombic and voltage efficiencies:

EE = CE X EE )

Another typical efficiency definition for redox flow batteries includes the

pumping energy consumption and is defined as the battery or system efficiency:

t t
fod Id(t)Ed(t)dt_fod Ppumpdt

Battery ef ficiency (BE) = J3€ Ie(©Ec(©)dt—[ L€ Ppumpdt

x 100% (10)
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Where Ppump IS the pump power.
The magnitude of the pump power is related to how compressed is the carbon felt,
the design of the cell (flow-through and flow-by), the electrode thickness, and the length

of the residence path.

Cross-contamination. The key property to avoid cross-contamination is the
membrane selectivity. The use of perfluorinated sulfonic acid membranes, such as
Nafion, is the most used membrane for VRFBs due to its high proton conductivity and
chemical stability®®. The drawbacks of this kind of separator include the high vanadium
permeability and high cost*’.

The cross-contamination in the VRFBs leads to self-discharge reactions. In the

negative electrode*®:

VO?*t +V? + 2HY - 2V3* + H,0 (11)

VOF + 2V + 4H* > 3V3+ 4+ 2H,0 (12)

In the positive electrode?®:

V2*+ 4 2V0F + 2H* > 3V0?* + H,0 (13)

V3t + VoS - 2v0?t (14)

The self-discharge reactions lead to the imbalance of active species between the half-
cells due to the different transfer properties among the four redox states of vanadium*3.
As the concentration of active species varies with time in each half-cell, the applied
charge in the charging procedure will be greater than the charge delivered in the discharge
one, leading to CE < 100%.

To mitigate this issue, several authors have proposed alternative non-perfluorinated
membranes®, anion exchange membranes*®, and porous membranes®® for VRFB
application. Beyond selectivity, several other properties must be considered when
choosing the suitable membrane: ionic conductivity, working current density, preparation
technologies, stability, and cost®®. The anion exchange membranes show lower

permeability, but have low stability and low conductivity®. The porous membranes are
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stable and cheap but are inefficient in the ion exchange process, leading to unsatisfactory

performance®,

OER and HER. As aforementioned, the OER and HER are responsible for lowering
the expected 100% of CE. The practical strategies to mitigate these reactions are: to limit
the operational SoC window between 10 and 90%*; choose properly the electrode
material'’; and use inhibitors®! (e.g., bismuth).

Activation overpotential. The mitigation of activation overpotential occurs on two
fronts: (1) the choice of active species with intrinsic fast electron transfer rate and (2) the
development of electrocatalysts with high electrochemical performance.

The two electron transfer processes involved in VRFBs are sluggish®:

V2t = V3t + e7, k%glassy carbon) = 5.4 X 107> cm s~ ! (15)

V0,** +2H* + e~ = VO* 4+ H,0,k°(glassy carbon) = 1.3 x
10~°>cm st (16)

The sluggish rate of the above reactions lead to large activation overpotential and
lower energy efficiency, especially when large operational currents are demanded.
Because of this, recent authors have studied different modifications in the carbon-based
electrodes to improve the electron transfer rate of vanadium reactions®. The electrode
modification is also important to increase the chemical stability, decrease ohmic

resistance and prevent gas evolution reactions®.

Concentration overpotential. The concentration overpotential directs the greatest
attention of researchers in the issue of efficiency improvement for VRFBs. Two types of
mitigation strategies are widely studied: (1) dynamic control of the flow rate>®! and (2)
modification of cell design. All these strategies are based on increasing the uniformity of
concentration.

Unlike a constant flow rate, the variation in flow rate throughout the operation of the
battery allows the lowing of pumping energy consumption during the intermediate SoCs
(lower rate), whereas significantly decreasing the concentration overpotential in the
extremes SoCs (higher rate)®. This type of strategy also leads to heat dissipation,

inhibiting the possible precipitation of active species®®.
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The modification of cell design includes (i) the use of optimized flow fields to
improve the distribution of active species in flow-by designs®?-° and (ii) the proposal of
new electrode geometries®-8 that allow a better mass distribution in the outlet channels,

where the concentration overpotential is usually larger.

Ohmic overpotential and pumping energy consumption. The mitigation strategies
for ohmic overpotential also affect the pumping energy consumption. Two strategies are
identified: (1) compression of the electrode and (2) the use of thin electrodes.

The compression of the electrode decreases the porosity of the electrode, which
defines the fraction of electrolyte inside each half-cell. As the electrode is more conductor

than the electrolyte, this operation decreases the cell electrical resistance:

R (17)

Where Lelectrode IS the electrode thickness, iappi is the operational current density, € is
the porosity of the electrode, of is the ionic conductivity of the electrolyte.

Usually, the compression of the electrode is made in situ, leading to the narrowing of
the electrode. These two processes - compression and narrowing of the electrode -mitigate
the ohmic overpotential. However, this same operation difficult the electrolyte
circulation requiring larger pump power and consequent increase in the pumping energy
consumption.

Park et al.®® have shown the improvement of voltage efficiency caused by the
compression of the electrode in situ. However, the coulombic efficiency is highly affected
when a porosity of 0.873 is achieved. This may be related to the increase of pressure

inside the cells, which increases cross-contamination.

1.4 Capacity loss in VRFBs

The theoretical capacity is defined as a measure of the amount of charge stored in the

cell?%
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C =nFcyy (18)

Where n is the number of electrons transferred, F is the Faraday’s constant, and Cact
is the concentration of active species.

This capacity varies over cycles due to the existence of side reactions and cross-
contamination. This phenomenon is named capacity loss and is responsible for the
decrease of cell lifespan.

The OER takes place in the positive electrode and the HER takes place in the negative
electrode. As these two electrochemical reactions have distinct Kinetics and
thermodynamics, they occur in an unbalanced way in the half-cells, passivating the active
sites and consuming the current non-uniformly in each half-cell. This leads to the
imbalance of active species in the cell, which corresponds to a limiting half-cell reaction
and consequent capacity loss®.

However, the most relevant issue for capacity loss in VRFBs is cross-contamination.
Cross-contamination is driven by four types of transport: diffusion, migration, osmosis,

and electroosmosis (see Figure 6).

Diffusion. The diffusion occurs due to the concentration difference of vanadium ions
between the positive and negative half-cells* and is the main transport mode in the cross-
contamination’®"*,

The imbalance of active species drives by diffusion depends on the diffusion
coefficients in membrane**, which are large for VV2* and V** in the negative electrode than
for VO?* and VO," in the positive electrode. Because of this, the total concentration of
vanadium ions increases in the positive half-cell and decreases in the negative half-cell.
Thus, the self-discharge reactions in the positive electrode occur more frequently and the
negative electrode limits the cycle operation. The diffusion direction is independent of

the direction of the electric field.
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Figure 6.The direction of vanadium flux due to diffusion, migration, osmosis, and electroosmosis in the
charging and discharging procedure.

Migration. Migration across the membrane is driven by the potential difference
between the positive and negative half-cells. The migration direction depends on the
direction of the electric field. In the charging procedure, the conventional electric current
flows from the negative to the positive electrode; thus, the generated ionic potential drives
the flow of positively charged species from the positive to the negative electrode. In the
discharging procedure, the direction is reverted.

The migration has a minimal effect on the net vanadium crossover’*. First, because
of the change of direction between the charging and discharging procedure. Second,

because of the similar magnitude of ionic conductivity among the vanadium species**.

Osmosis. Osmosis is a convective transport that occurs, in this case, due to pressure
differences between the half-cells. This pressure difference arises from the difference of
viscosity between the positive and negative electrolyte’?.

The viscosities of electrolytes depend on the concentration of active species,
concentration of supporting electrolyte, temperature, and state of charge (SoC)">73.
Usually, the negative electrolyte is more viscous than the positive electrolyte; thus, the

pressure needed to flow the negative electrolyte is greater. This larger pressure in the
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negative electrode drives the solution to flow across the membrane from the negative to

the positive half-cells.

Electroosmosis. Electroosmaosis is a convective transport that occurs due to the drag
of the solvent caused by the motion of an excess of charge in an applied electric field.

Nafion membranes contain negatively charged groups (-SOsH, sufonyl)®. When an
electric field is applied to the membrane, the cations move to the negative side, and the
anions move to the positive side. However, the number of cations in the membrane is
larger because of the existence of fixed sulfonyl groups. Thus, the motion of this excess

of charge drags the solvent® (see Figure 7).

® Fixedchargesin o
membrane

4—04_0
4—04_0

Free charges

F ixed chargesin
membrane

Figure 7. Representation of electroosmosis flow in a Nafion membrane.

The direction of electroosmosis flow depends on the direction of the electric field. In
the charging procedure, the potential difference drives the flow from the positive to the
negative electrode’. In discharging procedure, the flow is reverted.

The electroosmosis flow is an important mode of transport because affects the
magnitude and the direction of vanadium crossover. In s-Radel membranes, the

electroosmosis is even more important than the diffusion’?.
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Water transfer. The convection across the membrane caused by osmosis and
electroosmosis causes the water transfer from one half-cell to another. This process
increases the capacity loss of the cell because dilutes one electrolyte and concentrates the
other®"2, The self-discharge reactions (Equations 11-14) also are sources of water

transfer between the half-cells’.

Mitigation strategies. The strategies used to mitigate the capacity loss in VRFBs are
focused in minimize the driving forces discussed above.

In the discharging procedure, the direction of migration and convection amplifies the
disbalance caused by diffusion (see Figure 6), whereas in the charging procedure the
direction of electroosmosis and migration is the reverse of net diffusion. A mitigation
strategy consists in increasing the electroosmosis flow by using higher applied current
densities in charging than in discharging”™. As mentioned above, electroosmosis depends
on the electric field. Increasing the current will turn the electroosmosis flow superior to
the diffusional flow only in the charging procedure.

Another mitigation strategy is increasing the diffusional flow of vanadium ions from
the positive to the negative half-cell to offset the intrinsic higher diffusion coefficient of
V2 and V3*. This can be done by employing a larger concentration of active species in
the positive electrode than in the negative electrode’®. A good result was obtained by Lu
et al.”® using 2 mol L of active species in the positive electrode and 1.04 mol L in the
negative electrode. When the concentration of active species is equal, the discharge
capacity is lowered by 20.5% after 46 cycles. With the aforementioned asymmetric
concentrations, the capacity loss remained almost unchanged.

Instead of applying different concentrations, Park et al’” have used asymmetric
electrolyte volumes. The aim was to compensate in advance for the volume change caused
by water transfer and the imbalance of active species.

Another type of migration strategy is automatic rebalancing, which consists of the
volume transfer between the electrolyte in the reverse direction of net cross-
contamination. This method is cost-effective, simple and it was tested in medium-scale
batteries’®. Wang et al.”®, were the first to propose this strategy in 2017. They tested the
automatic rebalancing by placing a connector between the two electrolyte tanks for three
different conditions.
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For VFB-0 (Vanadium Flow Battery — case 0), there was no flow between the tanks.
For VFB-1, VFB-2, and VFB-3 the volume transfer occurs when the positive electrolyte
volume increases by 10, 20, and 30%, respectively.

In a regular operation, the electrolytes have the same volume before the charging
procedure. After some cycles, the volume changes, increasing in the positive electrolyte
and decreasing in the negative electrolyte. When a connector is placed between the tanks,
the excess volume in the positive tank flows to the negative tank, leading to a partial
volumetric rebalancing. But, the most important part of this process is the recuperation of
vanadium species in the negative half-cell due to the self-discharge reactions (see again
Equations 11-14).

For an applied current density of 80 mA cm, the best results were achieved by VFB-
3 case. Whereas, for an applied current density of 160 mA cm?, the best results were
achieved for VFB-2 case.

Thus, the applied current density influences the best condition of volume transfer
between the tanks. Despite, this being a low-cost, simple, and well-proved mitigation
strategy, it can be improved. For example, it can be determined which more operating
conditions (e.g., concentration, volumetric flow) influences the capacity loss and how we

can calculate the optimum condition considering these effects.

1.5 Experimental evaluation of VRFBs

Experimental setup. To understand the simulation steps taken in this thesis it is
necessary to first understand how experiments are carried out to evaluate the performance
of VRFBs. Figure 8 shows the components of an experimental VRFB in a flow-through

design.
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Figure 8. Components of a VRFB and cell stack. Based on references®81,

The basic structure described in the scheme from Figure 2 is also present in Figure
8: the electrodes of carbon felt, the electrolyte compartment, and the membrane. Rubber
gasket seals and steel tie-bolts are used to compress the cell stack®.

Since the electrolyte is oxidizing, no metallic component should be in contact with
the electrolyte®2. Because of this, chemically resistant polymers (e.g., PTFE) are used to
produce the battery components. The only metallic component is the current collector of

cupper or aluminum, usually separated from the electrolyte by graphite foils.

Performance evaluation. The first step in performance evaluation of a RFB consists
in determining what charging currents can be applied and at what the initial voltage would
be at those currents®. This is done by linear sweep voltammetry (LSV), as shown in
Figure 9.
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Figure 9. A typical Linear Sweep Voltammetry for a VRFB. From reference &,

In this example, the battery operating in 0.4 A cm™ (400 mA cm™) can deliver an
output cell voltage of approximately 1.63 V.

The charging/discharging cycling is performed using a chronopotentiometry test
(constant current) to charge and discharge the battery to obtain the cell voltage versus
time as response®. This data allows the calculation of CE, VE, and EE as described in
Equations 7, 8, and 9, respectively. The RFB can be charged and discharged by two
methods: voltage cut-off or time cut-off 8. The voltage cut-off is usually used to fully
charge and discharge the battery, whereas the time cut-off is usually used to discharge
and charge the battery at a specific SoC®. Figure 10 shows an example of the
charging/discharging cycle for a VRFB operating at various current densities in the
voltage cut-off method. In this case, the cell voltage versus time curve is replaced by cell
voltage versus capacity, which is more common.
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Figure 10. A typical single charging/discharging cycle for a VRFB at different values of current densities.
From reference &.

As the current density increases, the overpotential increases requiring higher charging
voltages and delivering lower discharging voltages. The increase of applied current
density also leads to a smaller use of total capacity due to the difficulty of maintaining
the required current.

Cell cycling is also utilized to evaluate the capacity loss of the battery across cycles.
The decrease of time discharge at the same voltage cut-off indicates this capacity loss, as
can be seen in Figure 11. The shortening of the cycles indicates the limitation of
discharging caused by the disbalancing of active species in the negative half-cell, as

discussed in the previous section.
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1.6 Finite element method (FEM)

24

There are several problems for which we cannot obtain the analytical solution for the
partial differential equations (PDES). To deal with this, a numerical method can be used

to approximate the exact solution. The first step of the finite element method is

discretization, which consists of dividing the continuum medium of interest into well-

defined components®*. These components are called elements and the ends are referred to

as the nodes (see Figure 12).

DISCRETIZATION
\
NoDE  ELEMENT

Figure 12. Discretization of a continuum medium by finite element method.
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The next step is to approximate the dependent variable in the PDE (we called this
variable u) by a guess (or trial) algebraic function un described by linear combinations of
basis functions®. We use linear functions to illustrate this step, but other functions may

be chosen (e.g. quadratic functions).

U= u, = X u; (19)

Where 1; denotes the basis functions and u; denotes the coefficients of the functions.
Figure 13 shows the real and approximated solutions of u along the x-axis. The linear
basis functions have a value of 1 at their respective nodes and 0 at other nodes. This

ensures the overlapping of functions along the x-axis®.

A ‘<—> Real solution

\\______, Approximated solution

Figure 13. Real and approximated solutions of variable u along the x-axis.

The next step is determining the coefficients of these functions by minimizing the
domain residual by mathematical techniques. The domain residual is defined as the
difference between the exact solution and the approximated solution. For example,
considering a simpler case (one-dimensional) based on the following governing

differential equation®:

d2
AE—+qo =0 (20)
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Where A, E and qo are constants.
This equation can assume the following approximate solution in a determined

boundary condition, based on a second-order polynomial®®:

U, = Uy (x% — 2Lx) (21)

Where u: is the coefficient.

Substituting Equation 21 in Equation 20, we get %:

AE(2u,) + qo = Ry (22)

For the exact solution, the domain residual is equal to zero, as described in Equation
21. Setting Rq = 0, we can determine the coefficient u for this case.

The General Weighted Residual (WR) method is based on the minimization of
residual at all points in the domain. Considering an approximate solution of the form of
Equation 19, the WR statement can be written as %:

fﬂ WiRyd2 =0 fori=1,2,..,n (23)

Where Wi are appropriately chosen weighting functions to minimize the residual over
the entire domain (£2) and Rq is the domain residual.

The choice of weighting functions (W) is arbitrary, but Galerkin suggested the idea
of W being the same as the trial functions®. For example, for a situation where the domain

residual is dependent on x, the residual cannot be set 0 everywhere in the domain®:

R, =u, (%)4 (EDsin (tx/L) — q, (24)

By the Galerkin procedure, we get®®:

fOL sin (”Tx) [ul (%)4 Elsin (”L—x) — qo] dx =0 (25)



27

Where the first sinusoidal function (in bold) represents a weighting function and the
second term is the domain residual. From this equation, we can get the value of the
coefficient us.

This method requires the use of trial solutions that satisfy the boundary conditions of
the problem®®.

Another technique is the Weak Form of the Weighted Residual Method, which
reduces the continuity requirement on the trial functions®. This is done by applying the

standard formula for integration by parts for a definite integral, that is:

fﬁudv— [uv]” fﬁvdu— (uv)lB—(uv)|a+fﬁvdu (26)

Example:

For the following governing differential equation &

d?u
AE E +ax =0 (27)

Applying the weighted residual statement 8°:

frw [AEd Uh | ax] dx =0 (28)
i.e.

fOL WAE d;;h dx + fOL Waxdx =0 (29)
Or

[y wd (AE d”h) + [ Waxdx = 0 (30)

For this case, u =W and v = AE%. Integrating the first term of the above equation, we

get 86
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dup

[WAE% - foL (AE dx

aw L
) )E + J, Waxdx =0 (31)

In the weighted residual statement, we had the term d?un/dx? and, in the weak form,
we get dun/dx. Thus, the trial function should at least be quadratic for the original
weighted residual statement, whereas in the weak form even linear trial functions can be
used ®. Therefore, the continuity demand on the trial function gone down and that on the

weighting function increases ®. This allows the use of a much wider of trial functions.

Advantages of the FEM®%, The advantages of using the finite element method are
the great freedom in the selection of discretization and then the use of complex
geometries; the well-developed theory, which turns the method consolidated and allows
the computation of total residual by summing up the residual of each element; and the
coupling between physics by using software packages. When several physics are utilized

in a same numerical model, we termed this model as multi-physical.

1.7 Chemometric analysis

Chemometrics consists of a wider quantity of techniques, from the exploratory
analysis of chemical data (e.g., PCA, HCA) and classification algorithms (e.g., KNN,
SIMCA) to the design of experiments. This last one is the focus of this work

The purposes of an experimental design are®”: (i) screening the variables that are
important for the interest response; (ii) the optimization of the response; (iii) saving time
and; (iv) obtaining a quantitative model. To achieve these benefits of experimental design

two approaches are used:

Factorial design®. The factorial design focus on the screening of variables. The
purpose is to evaluate the effect of each variable on the response, classifying them as
important or not to the response.

The number of variables dictates the number of experiments. If two variables are
used, we have a 22 factorial design and, then, 4 experiments as shown in Table 1. The

variables are represented as vi and v..
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Table 1.22 factorial design (codified).

ID V1 V2
1 -1 -1
2 +1 -1
3 -1 +1
4 +1 +1

When these experiments are run, we obtain the response of interest. For example, if
v is the temperature and v» is the type of catalyst, the response can be the yield, in
percentage, of the reaction under study. From these values of variables and responses, the

effect of each variable (T) can be calculated as®:

T=:—y-) (32)

Where y,and y_ are the average of a response corresponding to the higher and lower
level of each variable.

This simple calculation leads to primary effects when the variables are evaluated
separately. When the product of these variables is evaluated, we get secondary effects. If
the variables are in the same level (-1 and -1 or +1 and +1), the net level is higher, equal
to +1. If the variables are in the opposite level (-1 and +1 or +1 and -1), the net level is
lower.

If we want to study three variables instead of two, we will have a 22 factorial design

with 8 experiments, as shown in Table 2.

Table 2.23 factorial design.

ID V1 V2 V3
1 -1 -1 -1
2 +1 -1 -1
3 -1 +1 -1
4 +1 +1 -1
5 -1 -1 +1
6 +1 -1 +1
7 -1 +1 +1
8 +1 +1 +1

In this case, beyond the primary and secondary effects, we can calculate tertiary
effects between the variables 123, 124, 134, and 234. For the first experiment (ID = 1),
the level is lower, because -1 X -1 X -1 = -1. And for the second experiment, the level is
higher because of +1 X -1 X -1 = +1.
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The complete factorial design remains useful and fast until a certain point. When a
large number of variables are used, the fractional factorial design is a better option. For
five variables, a complete factorial design leads to 2° = 32 experiments, but if a fractional
factorial design is used, the number of experiments reduces by half. The following
notation is used 2% = 25/2 = 16 experiments. This can be done because the number of
higher-order interactions increases with the number of variables and usually these
interactions have small values®. Table 3 shows the 2° factorial design. The level of

variable 5 is determined by the product of the four variables.

Table 3.25* factorial design.

ID Vi Vo V3 Vy Vs
1 -1 -1 -1 -1 +1
2 +1 -1 -1 -1 -1
3 -1 +1 -1 -1 -1
4 +1 +1 -1 -1 +1
5 -1 -1 +1 -1 -1
6 +1 -1 +1 -1 +1
7 -1 +1 +1 -1 +1
8 +1 +1 +1 -1 -1
9 -1 -1 -1 +1 -1
10 +1 -1 -1 +1 +1
11 -1 +1 -1 +1 +1
12 +1 +1 -1 +1 -1
13 -1 -1 +1 +1 +1
14 +1 -1 +1 +1 -1
15 -1 +1 +1 +1 -1
16 +1 +1 +1 +1 +1

Regression models®. The regression models are used to predict the response based
on the values of the most important variables. This approach allows the use of a few
experiments to predict hundreds to thousands of responses, including their optimal values.

The regression quantitative models can be built by different designs: central
composite design (CC), Doehlert design (D), and Box-Behnken design (BB). Figure 14
shows these three designs for a set of three variables®.

The central composite design is based on the factorial design and has additional axial
regions. Thus, fewer experiments need to be carried out if a factorial design was
previously performed.

Doehlert design consists of an asymmetric factorial design, which enables the
evaluation of several variables at many levels. The main characteristic of this design is

the use of a variable - the most important one - in many levels concerning the others %,
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This allows the exploration of quadratic and interaction behaviors with few

experiments®,

Central composite : . Doehlert

Box-Behnken

Figure 14. Designs for building regression models for three variables.

The Box-Behken design consists of an incomplete factorial design and the levels are
vary between -1 and +1 to0%. The use of a design can be determined by the efficiency,
the ratio between the number of coefficients by the number of experiments (see Table
4)%. The Doehlert design has the higher efficiency for designs with 2,3 and 4 variables.

Table 4. Characteristics of experimental designs.

Variables Number of Number of experiments (n) Efficiency (p/n)
coefficients (p) CC D BB CcC D BB

2 6 9 7 - 0.67 0.86 -
3 10 15 13 13 0.67 0.77 0.77
4 15 25 21 25 060 071 0.60

Since the design is chosen and performed, the regression model can be built by the

determination of the coefficients using the least-squares fit method. This is done by the
following matrixial equation®®:
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w=XTX)"1xTy (33)

Where w is the vector containing the coefficients (b0, bl, b2...), X is the matrix
containing the experimental design information and y is the vector containing the

response.

Metrics of the regression model®”8, In this thesis, we designed simulation
calculations instead of carrying out experiments at the laboratory. However, the method
to evaluate the regression model is the same. The difference between experimental and
simulated results is just the pure error, that we can obtain experimentally by carrying out
replicates. The pure error can be used to determine the statistical significance of each
coefficient because it is one part of the residual from regression. The value of pure error
squared sum and residual squared sum are calculated by:

SS, = SSpe + SSio; (34)

Where S, is the residual sum of squares, SS,,, is the pure error sum of squares
and 55, is the lack of fit sum of squares.

SS, is determined by the squared difference between the predicted (¥;) and

experimental (y;) responses:

SS, = Xl (i — 91)? (35)

The SS,. provides information about the intrinsic error of the experiments.
SS,e Is determined by the squared difference between the average value of the

replicates (y;) by each replicate (y;;):

SSpe = Xiz1 Xj=1(Vij — yi)? (36)
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The S5, provides information about the incapacity of the model to adjust to
the experimental data. SS,, can be determined by the subtraction of SS; and SSpe

(see again Equation 34).

Instead of a pure error, the simulated results have domain residuals, since we use
numerical methods to solve the equations. However, these errors — residual domain and
pure error — are not equivalent. The response obtained by simulation does not vary for
each calculation, how it happens experimentally. Thus, for simulation, it is not necessary
to carry out replicates and the value of residual sum squares from regression is exactly

the value of lack of fit sum squares:

SS, = SSiof (37)

A suitable metric to determine the statistical significance of coefficients is the rooted

mean value of SS;, calculated by:

RMSE = ,/SS,/n (38)

Where RMSE is defined as the rooted mean squared error and n is the number of
designed experiments.

Another important metric of regression analysis is the coefficient of determination
(R?). The R? provides the quantity of information that regression can explain. This metric

is calculated by:

R2 = SSr
SSt

(39)

Where SS; is the total squared sum, determined by the squared difference

between the experimental values (y;) and the mean values (y):

SST = 2?:1(.% - 3_1)2 (40)
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Validation of regression model®’® The data set utilized to determine the coefficients

of the regression model is called training or calibration set. For instance, in a Doehlert

design, all the experiments are from the training set.

Since the coefficients are known and there is a good correlation between simulated

responses, we must validate this regression model by a second data set called testing or

validation set. Usually, the testing set is built by the values of variables that led to the

optimum response. For clarity, we will term this type of validation as validation of

optimum responses, because we also used a difference validation termed random

validation. These two types of validation are described below:

(i)

(i)

Validation of optimum responses: This validation is used to confirm the
values of optimum responses predicted by the regression model. Thus, the
testing set consists of variables that lead to the optimum responses. The
validation is carried out by setting the values of variables, which correspond
to the optimum responses, in the multi-physical model and solving it. The
response obtained by the simulation is, then, compared with the predicted
response.

Random validation: This validation is carried out to evaluate the robustness
of the regression model. The testing set is composed of 1/3 of experiments
concerning the training set. The values of all variables are determined
randomly by an operator. These values are set in the multi-physical model and

the regression model and, then, compared.

The use of one or another type of validation depends on the aims of each study.

Figure 15 schematizes the process just described.
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Figure 15. Schematic representation of the process of training and testing the regression model.
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2 OBJECTIVES

This thesis is based on the hypothesis that a computational approach can provide rich
and useful information for the understanding and improvement of performance of redox
flow batteries. Further, this information may be used to create mitigation strategies and
as guidelines for experimentalists.

Based on this hypothesis, the objective of this thesis is to propose a new method of
approach to investigate problems of RFBs and suggest robust mitigation strategies for
these problems. We aim to provide a useful theoretical background for the

experimentalists to understand the effects of variables on RFB’s performance.
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3 NUMERICAL MODEL FORMULATION

This chapter brings all the details of the numerical model per
component, including the governing differential equations and
the boundary conditions. This chapter also provides details
about the three different multi-physical models used in this work.

The numerical model described below is based on well-established studies from
literature, according to the citations. However, there are some novel contributions: The
modifiable domain (section 3.2), the way that self-discharge reactions are set up (section
3.10) and the development of a steady-state model to calculate voltage efficiency (section
3.11).

3.1 Domain

The domain is a 2D projection of a 3D redox flow battery composed of two electrolyte
tanks, pipes, two current collectors, two porous electrodes (carbon felt), and a Nafion
membrane. The current collectors, electrolyte tanks, and pipes are not present in the 2D
domain. The current collector and electrolyte tanks were simulated through boundary
conditions. The pipes' contribution to pumping energy consumption was added to the
model using equations to describe the pressure loss. Figure 16 shows the 3D geometry

of a redox flow battery and the 2D projection in the xy-plane.
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Figure 16. 3D scheme of a redox flow battery and its 2D projection in the xy-plane.

The symmetry of the xy-plane along the z-axis allows the use of a 2D projection,
without losing the physical characteristics of the device. The main benefit of using 2D
models is the decreasing of the computational cost.

3.2 Modifiable domain

A modifiable domain was obtained by the Bézies Polygon setting on COMSOL
Multiphysics. The purpose is to modify the cell geometry using a few parameters: the
angle of modification 0, the length of residence path (H), and the inlet electrode thickness
(Lin). This process allows the use of different cell geometry, from rectangular to trapezoid.

Each half-cell was built by four linear segments. These segments are A, B;, B;C;, C;D;

and D;A; (where j is the negative or positive electrode) as shown in Figure 17.



Positive
electrode

H Negative
electrode

Figure 17. Scheme of modifiable cell geometry.
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When 6 < 90° the geometry represents a trapezium and when 8 > 90° the geometry

represents an inverted trapezium.

For the negative half-ce”, the pOintS Aneg, Bneg, Cneg, and Dneg, are.

Aneg = (0,ad,)
Breg (adz, ad, + Htp)
Cneg = (Lep H)
Dreg = (Lep, 0)

And, for the positive half-cell, the points Apes, Bpos, Cpos, and Dpos are:

Apos = (Lep + Ly, 0)
pos (Ltp + Lmr Hcell)

Cpos = (2Lt,, + L,, — ad,, ad; + Hy,)
Dyos = (2Lep + Ly, ady)

(41)

(42)

The geometric parameters ad1, adz, Lip, and Hyp are calculated as follows, respectively:
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ad, = Lisin (a)
ad, = Hsin (f)
Ly = Lincos (a)
H., = ad, + Hcos (B)

(43)

Where the angles are defined as:

{a=180°—9 (44)

B =90°— 26

Where 6 is the angle of geometric modification.

The outlet electrode thickness is calculated by:

Loy = \/ (Lo, —ad,)” + (H — Hy, — ad,)’ (45)

All the above geometric parameters are determined by chosen values of 9, Lin, and H.

Table 5 shows the default values of the geometric parameters.

Table 5. Default values of the geometric parameters

Symbol Description Value (unit)"f

H Cell height (length of residence path) 10cm *°

Weelr Cell width 10 cm®
Lec Current collector thickness 6 mm %
Lin Inlet electrode thickness 4mm %0
L, Membrane thickness 180 um ©
0 Angle of modification 90°

3.3 Premises

The following premises were applied:

1. The cell is isothermal;

2. Fluids are considered incompressible;

3. The properties of charge and mass transfer are assumed to be isotropic and do not
change in different charge states;

4. Mass transport is described using a diluted solution model;
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5. In electrolytic tanks, the solutions are instantly homogenized.

3.4 Porous electrodes

As the electrode is porous there is a solid volumetric fraction (e-1) and a liquid
volumetric fraction equal to the porosity of the electrode (¢). For the vanadium redox flow
batteries, the electrolyte is composed of aqueous solutions of V#*/V3* (as sulfate salts)
and H,SO4 in the negative half-cell and VO?*/VO,* (as sulfate salts) and H2SO; in the

positive half-cell. The first dissociation of sulfuric acid is complete:

H,S0, > H* + HSO; (46)

The second dissociation is incomplete:

HSO; = HY + S02~ (47)

Thus, it is necessary to use a term that represents this last dissociation’:

S —Fk Cut~CHsoz B (48)
4= "d (ch+~Chso;)
Where Sq is the source of species (mol m=s1), kq is the coefficient of dissociation, c%
(k € {H*,HSO;}) is the concentration of species in the electrolyte and g is the
dissociation degree determined experimentally®?.

The mass conservation for each species is expressed as follows:

%(Ecie) +V- Nf = =S, (49)

Where ¢ is the porosity of the electrode, ci® (i € {V?*,V3*,V0%*, V05, H*,HS0;})
is the bulk concentration for each species, ﬁieis the flux and S; is the source term.

This equation is not applied to SO4%, because its concentration is calculated by
neutrality condition:
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Yizici =0 (50)
Where z; is the valence of each species.
For the flux, IVie, the Nernst-Planck equation is applied:

Nf = —DIVce — Zuf cfFV s + bt (51)

l

ef f

L

Where ¢; is the ionic potential (liquid phase), D is the effective diffusion

coefficient, u{ is the ionic mobility and ¥ is the velocity.

The effective diffusion coefficient is estimated by the Bruggemann correction:

3
Df'T = £2D, (52)

The velocity is determined by Darcy’s law:

¥ =———Vp (53)

Where u€ is the dynamic viscosity of the electrolyte, p is the pressure and k is the

permeability of electrode, which is determined by the Kozeny-Carman equation:

dz &3
—f &
" 180 (1-¢)2 (54)
Where d is the carbon electrode fiber diameter.
The charge conservation is expressed as follows:
V-,+V-7,=0 (55)

Where i, is the ionic current density (electrolyte) and 7, is the electronic current
density (electrode). This equation couples the transport of ionic species to the
electrochemical reaction and the electronic current™.

The ionic current density is described by Faraday’s law:
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i, =FY;z Nf (56)

The electronic current density is described by Ohm’s law:

I, = o e (57)

Where asef T is the effective conductivity of the porous electrode, calculated by the
Bruggemann correction:

O_Seff =(1- 8)3/205

(58)
Where o is the electronic conductivity of the electrode.
Table 6 shows the default values of the porous electrode parameters.
Table 6. Default values of the porous electrode
Symbol Description Value (unit)"f
a Specific surface area 2x10°m 1%
B HSO4 degree of dissociation 0257
dg Mean pore diameter 100.6 um ™
p H* diffusion coefficient 93x 10 9m?s7 1%
Do HSOy diffusion coefficient 1.3%x1077m2s71 %
Dﬁoz_ S0.? diffusion coefficient 11X 1079 m2s™1 %2
oot V(I1) diffusion coefficient 24x10710m2 718
e V(1) diffusion coefficient 24X 10710 p2 g1 8
D{ o+ V(IV) diffusion coefficient 39x10710m2 5718
D502+ (V) diffusion coefficient 3.9x 10710 pm2 g1 B
£ Electrode porosity 0937
ky HSO4 dissociation reaction rate constant 1x10* s7t7
Ogc Electronic conductivity of current collector 1000 S m=1 %
d Effective conductivity of the electrode 66.7Sm™17™
3.5 Electrochemical reactions
The Nernst potential for the electrochemical reactions are:
RT Cy3+
E" = EO" 4+ —In(X— (59)
F Cy2+
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C +C2+
EP = For 4+ R0y (M) (60)

F Cvo2+

The concentration of species is used instead of activity due to the premise of diluted
solution.

The local currents, iioc™ and iioc, are governed by the Butler-VVolmer equation:

N N
o ne.e 1—a™ ,.e ~a® |Sy2+ (1—a™Fn" €3+ —amFn™
ifhe = aFk™(co2r) ™% (coas) [—Ce exp( o ——e—exp(——F
v2+ v3+

(61)

s cS
. c —aP)FnP vo} —aPFnP
P _ pere _ \(A-aP) e ~aP [Svozt ((1 ab)Fn ) p ( n )
i, =aFkP(c C ex — ex
loc (Cyoz+) ( Vog) ct 2+ p RT oot P\ ke

2

(62)

Where K is the rate constant, a is the specific surface area, « is the charge transfer
coefficient, s denotes the surface concentration, e denotes the bulk concentration and 7 is
the overpotential, defined as:

n = ¢f — ¢pE — E® (63)

Where E°®J is the standard reduction potential. The obtained overpotential is

separated into concentration overpotential and activation overpotential °*:
nl = né + né (64)

The activation overpotential for & = 0.5 is calculated by °:

n
nt = —%sinh‘1 — Hdec (65)

e e
2FK™ ’CV2+CV3+
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p_ 2RT .1 i, (66)

Na _F Sin pos [ e =
2Fk c c
[voz+yot

Since n/ is known, the concentration overpotential for each cell is just the subtraction

of activation overpotential from the total overpotential.

The concentration overpotential arises from the local transfer resistance from the bulk
to the active reaction surface. This concentration overpotential is added to the Butler-
Volmer equations by the quotient between surface and bulk concentrations. The surface
concentrations are calculated by the species balance at active reaction surface’®. The ionic

current at the active reaction surface for each species is’®:

i/ = FD, (Ci ‘Ci) (67)

active surface df/2

Which is equal to each local current described by Butler-Volmer equations 54 and

55. This mass balance leads to the following equations:

For V2*:

C;2+—C‘S,2+ _ ne.e (1—a™) (e am C‘s,2+ ((1—a")F11")_
FDy2+ <—df/z )— aFk™(c,2+) (cp3+) o exp o

yar exp (_anF"n)] (68)

Cha+ RT

RT

yar exp (_anan)] (69)

Ce _CS n n Cs _n n
FDyss (L2 ) = Pk (cfan) 7 (cfan)” |22 exp (L2000
|4

For VO?*:



ct ,.-c3
o e

S
(1—ap)an) ‘vo

RT e

vo}

) P o2+
aFKP (Go2) 07" (601 L?Lexp( C

vo2+

For VO,*:

e N
C —C
vod Vo§r> _

FDVO;( df/z

e
Cv02+

S Cs +
e 1_0_,13 e ap Cv02+ (l—ap)an V02
—aF kP (cyo2) ™" (cpo4) [ exp ( — < ex

RT CVO'Z"

Isolating the surface concentration for each species, we get:

For V?*:
S _ CpaatAL(C a4+ 34)
2+ =
v 1+A1+B;
For V3*:
oS = o3+ +B1(CrartC34)
3+ =
v 1+A;+B;
Where:

n

_eFn™\ kd e, a
A1=exp(a n) f<V+>

RT 2Dy2+ cf/2+

1-a™
B, = ex ((1—a”)Fn“) k™dg (C53+>( )
1 p RT 2Dy3+ \CS 34
For VO?*:
e e e
CS CVO2++A2(CVO2++CVO.2|_)

2+ =
Vo 1+A5+B;

dl

_aprIp

RT

)
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exp (—a:;np)] (70)

(71)

(72)

(73)

(74)

(75)

(76)
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For VO™:
e e e
oS . = Cvo§+BZ(CV02++CV05L) 77
voy — 1+A4,+B,
Where:
aP
—aPFnP\ kPd o2+
A, = exp( d ) ! (‘S’O ) (78)
RT ZDVO2+ CV02+
oy Koy [0z T
1-aP)F Vo
Bl=exp(( )77) f(sz> (79)
RT 2Dyt ot

Table 7 shows the electrochemical model parameters.

Table 7. Electrochemical model parameters

Symbol Description Value (unit)™
EOm Standard reduction potential (negative) —0.255V %
EOP Standard reduction potential (positive) 1.004 V %

k" Reaction rate constant (negative electrode) 7x108mst7
kP Reaction rate constant (positive electrode) 25X108ms™17
a™ Charge transfer coefficient (negative) 0.5

aP Charge transfer coefficient (positive) 0.5

The charge transfer coefficients are set as 0.5 as an approximation to an easy

calculation of activation overpotentials (Equations 65 and 66).

3.6 Membrane

Since the Nafion membrane is not ideally selective to H**3, the transport of vanadium
species must be considered. The Nernst-Planck equation is applied and the concentration
of HSO.% is calculated by the electroneutrality condition, considering the fixed charges

at membrane:

ZfixCrix + 2 ZiCi" =0 (80)
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Where z¢;, and ¢y, are the valence and concentration of sulfonyl groups fixed at the

membrane.

The convection at the membrane is calculated by an alternative form of Schogl’s

equation’®:
N Kp K¢ m . FXziptve®
v, =——Vp——c, . F|V + 81
m m p L fix ( d)l ;'_;ZZ,:ZDPCF ( )

Where k,, is the hydraulic permeability, u,, is the viscosity of water, kg is the
electrokinetic permeability, V¢[" is the potential gradient across membrane and D™ (i €
{V2*+, V3t v02*, Vo5, Ht, HSO, } denotes the diffusion coefficient of each species in the
membrane.

The first term of Equation 81 represents the osmosis across the membrane caused by
pressure gradients between the two electrolytes. The second term represents the
electroosmosis caused by the drag of solvent in the membrane.

The flux of vanadium species in the electrode interface region is calculated by ™

_Dieff(cl?_cijunc) Cie_l_cijunc (¢e—¢m)
Nier = 5 - Zl-ul-e ( 2 )K¢ L 5 L (82)

Where cijunc represents the concentration of species at membranelelectrolyte
junction, § is the thickness of interfacial region, u{ is the ionic mobility in the electrolyte
and Ky is a fitting parameter that represents the percentage of the total potential-jump
occurring in the electrolyte interface region.

The flux of vanadium species in the membrane interface region is calculated by "*:

DM =) o[+ (@E—!)
N = 5 — Zu" (£ eel) . )(1 — Kp)—— 5 l (83)

The junction concentration, ¢, is calculated by setting the fluxes at the interface

equal and solving for ¢,

Table 8 shows the default values of the membrane.
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Table 8. Default values of the membrane

Symbol Description Value (unit)"f
it H* diffusion coefficient 335x 1079 m2 s 1%
Disor HSO, diffusion coefficient 4,0 X 10711 m? 71 97
g?)g— S0.? diffusion coefficient 22X 10710 p2 571 %8
D5+ V(1) diffusion coefficient 8,8x 10712 m2s 148
s V(111) diffusion coefficient 32X 10712 m2 57148
DJp2+ V(IV) diffusion coefficient 6,8x 10712 m?s71 4
]’/’;; (V) diffusion coefficient 59X 10712 m? 571 48
Cit o H* initial concentration 4772,5mol m=3 7
Crix Fixed acid concentration 2000 mol m=3 %
Zpix Fixed acid charge e
em Porosity of the membrane 0,135 %
K, Hydraulic permeability 1,58 x 10718 ;2 100
Kg Electrokinetic permeability 1,13 x 10720 m2 ™
U Viscosity of water 8.90x10"*Pas

3.7 Electrolyte tanks

The variation of quantity of species, in mol, in the electrolyte tanks follow the ODE:

dnt

{ Lou Lin
L= W (fo “evdx — [ civdx), n;(0) = cioVs (84)

Where ni' is the quantity, in mol, of species i in the electrolyte tank, v is the linear
velocity inside the cell, cig is the initial concentration of species i, and V' is the initial
volume of each tank.

Since there is a electrolyte transfer between the half-cells, caused by the convection
across membrane, a variation of volume is observed in the electrolyte tanks.The variation
of volume in each electrolyte tank follows the ODE:

avti . tj 7t
PP chellHUm,x' Ve (0) =V (85)
Where V% is the volume of each tank for each half-cell and j is the unit value of
semi-cell representation (-1 for the negative half-cell and +1 for the positive half-cell).

Thus, the concentration in the tanks follow the equation:
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¢f ==k (86)

3.8 Pumping energy consumption

The pumping energy consumption was considered by calculating the power required

for electrolyte circulation®¢10%;

__ Aprotaiw
Boump = tump (87)
Where a,,,my, is the pump efficiency and Ap;,4, is the total pressure loss, understood

as the sum of the pressure loss caused by the flow in the porous electrode (carbon felt)

and the pressure loss caused by the friction of the electrolyte in the pipes:

neg pos

_ neg pos
Aptotal - Apelectrode + Apelectrode + Appipes + Appipes (88)

The pressure loss related to the friction in the pipes was calculated by the Darcy-

Weisbach equation®:

. .2
j pipeP]V]

i L
Ap;])ipes = npipesfdj (89)

deipe

Where ny;,. is the number of pipes for each half-cell, L,;,. is the pipe length, p’is
the fluid density for each half-cell, v/ is the inlet flow velocity for each half-cell, dpipe

is the pipe diameter and fdj is the Darcy friction factor for each half-cell, given by:

i _ 16nujdpipe
fd - plw (90)
Where u/ is the dynamic viscosity of each electrolyte and w is the volumetric flow.
The number of pipes was assumed based on the cell width considering the number of

channels spaced four times the diameter of the pipes:
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_ Wecell

Nyipes — ——— 91
pipes 4dpipe ( )

The pressure loss through the porous electrode is derived from Darcy’s law and can

be determined by the pressure difference between the flow inlet and outlet:

fpi"dx fpoutdx)
Lin Lout

Apélectrode = ( (92)

Where p™ and p°“ are the inlet and outlet pressure, respectively.

Table 9 shows the default values of the hydraulic model parameters.

Table 9. Hydraulic model parameters

Symbol Description Value (unit)"f
Lpipe Pipe length 10H,.y;
Apipe Pipe diameter L, —0.5mm
pout Outlet pressure 1atm

Apump Pump efficiency 0.9 101

un Dynamic viscosity (negative) 25mPa-s ™
uP Dynamic viscosity (positive) 5.0mPa-s ™
p" Density of negative electrolyte 1300 kgm=3 "™
pP Density of positive electrolyte 1350 kgm=3 "™
w Volumetric flow 20 mL min~!

3.9 Initial and boundary conditions

The boundary conditions are assumed in the boundaries x1, X2, X3, X4, y1, and y- in the
domain (see Figure 18).
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Figure 18. 2D domain representation.
The conservation of flux and ionic current density are boundary conditions that reflect

the passage of species across the electrolyte/membrane and membrane/electrolyte

interface, that is:

i e
ﬁ'Nie=

Where 71 is the normal vector.

E

S 3!

~

X = Xy, X3 (93)

!

m
i

There is no species flux in the current collectors and the top and bottom of the

membrane, that is:

_ {ﬁ : ﬁi Y =Yu )2 (94)
@i N, X = Xq,X4

And, for the flow outlet (y = y,):
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p
{—ﬁ DTpce = 0 93)
The potential at the current collector boundary (x = x;) was zero:

sc=0 (96)

The inlet and outlet and the membrane/electrolyte were taken to be electrically

insulated:

—N-lg=—N"1 X=X3,X3Y=Y1,¥2 (97)

The concentration in the inlet is equal to the concentration of species in the electrolyte

tanks:

¢ =¢ Y= (98)

—R-N™=—-#-N"  x=2x,xs (99)

The flux of species across electrolytes due to cross-contamination is given by:

—R-NE=7#-NE" x=x,x (100)
i i 2,73

The charge/discharge cycle in galvanostatic mode may be obtained by SoC cut-off or
voltage cut-off.
For SoC cut-off, the following boundary condition was applied:

L oo {iappl SoC — S0C4, <0 ‘= (101)
= = X4

T T g SoC — SoCppin > 0

Where iy, is the current density applied, SoCp,q, is the maximum state of charge
(to the charge step) and SoC,,;, is the minimum state of charge (to the discharge step).

For voltage cut-off:
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i
> scc { appl X = X, (102)

T T g V= Vipin >0

Where V., 1S the maximum cell voltage (to the charge step) and V,,;, is the

minimum cell voltage (to the discharge step).

Table 10 shows the default values for the initial conditions.

Table 10. Initial conditions

Symbol Description Value (unit)™
S0Cax Maximum state of charge 0.85
S0Cmin Minimum state of charge 0.15
VT Electrolyte volume in each half-cell 50 mL
Ch+ o H* initial concentration (negative) 44475 molm=3 ™
cg+'0 H* initial concentration (positive) 5097.5molm=3 ™
CHsor,0 HSO initial concentration (negative) 2668.5molm=3 ™
cfm;,O HSOy initial concentration (positive) 3058.5molm™3 ™
Cyz+ g V(I1) initial concentration 150 mol m™3
Cy3+ g V(I11) initial concentration 850 mol m™3
Cpoz+ V(IV) initial concentration 850 mol m™3
Cvoso V(V) initial concentration 150 mol m™=3
Po Initial pressure in electrodes 0 atm
T Temperature 298.15K

3.10 Self-discharge reactions

To simulate the self-discharge reactions, the species V2* and V3* are also present in
the positive electrode, and the species VO?* and VO_" are present in the negative electrode
as V' pos, V¥ pos, VO?* e, and VO2*neq respectively. The self-discharge reactions were set
in y» axis for simplification.

For the negative electrode, the following equations are applied:

(l) - T_i b ﬁie = —2N13+ - ;2+ + 3N;3+ - N;02+ (103)
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= e

In this case, the VO neq limits the reaction; thus, for n C$02+neg =0=-n-Nf =

0.
(ll) - 771: - ]vl-e = _4N13+ - 2N;2+ + 3N;3+ - N;O; (104)
Forcpos =0 = —ii-Nf =0.
neg
For the positive electrode, the following equations are applied:
(i) =7+ Nf = =2Njg+ = Njav + 3Ng500 — 205 (105)
For C52+ =0= —-n- ﬁie = 0.
pos
(iv) =7 Nf = =Ngae + 2Ngg2e — 2Ny (106)

—

Forcys+ =0= —7n-Nf =0.
pos

3.11 The multi-physical models

The level of theory of a numerical model depends on the kind of response we want
to extract from it. For example, for the determination of cell potential, it is not necessary
to simulate the cross-contamination between half-cells. First, the cell potential of a single
cycle in a numerical model without cross-contamination is almost equal to a numerical
model with cross-contamination. That is, the cross-contamination has effects only for
several charge/discharge cycles. And second, the more complete a model, the higher the
computational cost. Then, is not reasonable to use a complete model just to obtain the cell
potential for a single cell. Because of this, we adapted the numerical model described in

this chapter according to the purpose of each study. These models are described below.
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(1) VRFB capacity loss model (time-dependent). This multi-physical model aims
to calculate the capacity loss of a vanadium redox flow battery across several
galvanostatic charge/discharge cycles All the equations related to this model were
described in this chapter. This model is the most complete used in this work.

The validation of this multi-physical model was performed by comparing the
experimental and simulated discharge capacity. The experimental values were taken from
literature 192,

Figure 19 shows the comparison between simulated and experimental discharge

capacity.

100 - — Simulation
® Experimental

95 ~

90 -

85 -

Discharge capacity(%)

80 -

?5 T L T T
0 10 20 30 40

Cycle number

Figure 19. Comparison between simulated and experimental discharge capacity. Experimental data from 2,

The simulated response captures the key trends of the experimental results. The
correction parameter used was the electrokinetic permeability, kg, just like in the multi-
physical model developed by Knehr et. al.”*. This correction parameter is modify so that
experimental results agree with the simulate results, considering a possible erros of

approximation in the model.

(2) VRFB cell potential model (time-dependent). This multi-physical model aims to

calculate the cell voltage of a vanadium redox flow battery in a single galvanostatic
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charge/discharge cycle. All equations related to this model were described in this section,
but membrane domain.

A simpler approach was employed from the membrane since the main purpose of this
model was the study of the effects on performance caused by overpotentials and pumping
energy consumption.

The ionic current was given by:

In = ="V (107)

Where ag;" is the ionic conductivity of the membrane.

And there were no sources of ionic current in the membrane:

Vi, =0 (108)

The Donnan potential condition was applied:

E™ = gf — g7 = in (L2 (109)

Where [H*], is the proton concentration in electrolyte and [H*],, is the proton
concentration in the membrane.

The validation of this multi-physical model was performed by comparing the
experimental and simulated cell voltage. The experimental values were taken from
literature 4.

Figure 20 shows the comparison between simulated and experimental cell

voltage.
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Figure 20. Comparison between simulated and experimental cell voltage. Experimental data from 7.

Despite the difference in concavity in charging procedure, the simulated response
captures the key trends of the experimental results. No correction parameter was used.

(3) RFB general model (stationary). This multi-physical model is an adaptation of
the time-dependent VRFB cell voltage model with two differences: (i) it is a general
model to portray any kind of redox flow battery and (ii) it is stationary, aiming at for the

reduction of computational costs.
It was considered a single-electron transfer reaction for both half-cells:

p = Odnoiyte T €~ (110)

anolyte ~~ “Yanolyte

y+ (111)

y -
0 te = Rcatholyte

catholyte

The Nernst equations are, respectively:

Cox—1
E" = EOn 4 RT In (_anolyte) (112)
F Cp

x
anolyte

CRy+1
catholyte

oy
E?P = EOpP 4 gln (M) (113)
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The steady-state condition is achieved by setting the concentration of active species
in the electrolyte tanks as constant. Thus, the cell is operating in a single SoC. It is possible
to simulate different SoCs just by varying the concentrations of active species in the tanks.

That is,

COanolyte = Ct(l - SOC) _ (114)
CRanolyte = CtSOC y=n
COcatholyte = CtSOC
- 115
{CRcatholyte = Ct(l - SOC) Y r1 ( )

The validation of this model was carried out by comparison of cell potential versus
the state of charge (SoC) from the VRFB transient model with the VRFB steady-state

model (see Figure 21).
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(b) Charge
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Figure 21. Comparison between steady-state and transient multi-physical model by cell potential versus the
state of charge (SoC) for (a) charge and (b) discharge.

The charging potential is identical for the steady-state and transient VRFB model.
However, the discharging potential is slightly different for high SoCs. This may be

associated with the contribution of proton concentration on the positive Nernst potential:

C C2
EP = EOP 4 Eln (M) (116)

F Cyo2+

In the transient model, the proton concentration in each half-cell changes over time
in the inlet channels due to crossover across membrane and chemical equilibria (see
equation below). In the steady-state model, the proton concentration does not change over

time in the inlet channels leading to the observed difference in cell potential.

HSO; = H* + S0z~ (117)
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4 METHODOLOGY

This chapter elucidates the computational method of approach
step-by-step, describes the numerical methods used to solve the
multi-physical models, and detail the three carried out
computational studies: Study 1: Understanding how operating
conditions affect optimal geometry for vanadium redox flow
batteries; Study 2: A robust mitigation strategy for capacity loss
in VRFBs under different operating conditions; Study 3: Insights
into the effects of active species properties on the performance of
redox flow batteries.

4.1 Method of Approach

The general method of approach consists of three levels: experimental results, multi-

physical model, and chemometrics analysis (see Figure 22).

(i) indicate a

Experimental
results

Problem

validated by

Multi-physical
model

(vii)
solve the

(iv) used to
built a

Cost and slowness

)
validated by

Chemometric
analysis

Figure 22. Scheme of the general method of approach.
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The steps are described below:

(i) Experimental indication of a problem. Previous studies indicate a drawback
related to the system under study. (e.g. capacity loss caused by cross-
contamination).

(it) Development of a multi-physical model. The problem indicated by the previous
step may be described by a suitable multi-physical model, aiming at the save of
time and cost to carry out several computational experiments.

(iii)Validation of the multi-physical model. The numerical model must be able to
portray reality with confidence. This step is done by the comparison of simulated
results with experimental data from literature.

(iv)Use of chemometric analysis. The use of chemometric analysis, as factorial
design and regression analysis, allows a deep understanding of the system, the
screening of important variables, and a fast prevision of hundreds to thousands of
responses in a short time.

(v) Validation of the chemometric analysis. In the case of regression analysis, it is
necessary to verify the capacity of the regression model to predict the responses
of the computational experiments. This is done by comparing the predicted
responses with the simulated data.

(vi and vii) Insights to develop a mitigation strategy. The knowledge obtained in

the previous step is used to develop a mitigation strategy for the problem of interest.

An additional step is validating this mitigation strategy in an experimental setup.

However, this work focus on developing this computational approach.

4.2 Numerical methods

The equations were implemented and solved using the finite element method with
COMSOL Multiphysics® package using the interfaces: Tertiary Current Distribution,
Second Current Distribution, Darcy’s Law, Events, and Global ODEs and DAESs. The
calculations were run on a PC with a 3.5 GHz processor i7 and 131 GB of RAM. The

approximated time for the computational experiments is 12 h, 70 min, and 2 min for the
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VRFB capacity loss model, VRFB cell potential model, and RFB general model,

respectively. The relative tolerance was set to 1x107,

4.3 Studies

4.3.1 Study 1: Understanding how operating conditions affect optimal geometry for

vanadium redox flow batteries

Since it is known that geometric conditions affect the voltage efficiency of VRFBs,
a systematic study can provide useful information for us to understand these effects.
Beyond studying geometric parameters, we want to evaluate how these parameters are
related to the operating conditions since these affect the performance too.

Based on the proposed method of approach, we identified the problem, developed
and validated the multi-physical model and, used the multivariate regression analysis to
predict thousands of responses based on the conditions under study. Table 11 shows the

previous characteristics (step (i) to (iv)) of Study 1 based on this approach

Table 11. Previous characteristics of Study 1 based on the method of approach.

Step Description Checklist
@) Experimental indication of a problem Energy efficiency loss caused by overpotential

and pumping energy consumption
(M) Development of a multi-physical model. VRFB cell potential model

(SoC cut-off)
(iii) Validation of the multi-physical model. Figure 20
(successfully validated)

(iv) Use of chemometric analysis. Multivariate regression analysis

The problem of this study is the energy efficiency loss caused by overpotential (ohmic
and concentration) and by pumping energy consumption. The multi-physical model used
is the VRFB cell potential model (time-dependent), which was successfully validated
comparing simulated and experimental results (see Figure 20). And the multivariate
regression analysis was the chemometric analysis used. The remaining steps ((v) to (vii))
were discussed in the RESULTS AND DISCUSSION section.

Design of experiments. The experimental space was built from five variables:

volumetric flow (w), applied current density (iappi), inlet electrode thickness (Lin) without
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compression, length of residence path (H), and the ratio between outlet electrode
thickness and inlet electrode thickness (Lout/Lin) Without compression. See Figure 23 to
identify the geometric parameters. Aiming for a robust exploration of the experimental

space, the Doehlert design was used to select the combination of the variables (see Table
12).

(Outletelectrode thickness)

Membrane

T
(Length of residence path)

Half-cells

(Inletelectrode thickness)

Figure 23. Schematic representation of geometric parameters.

Table 12. Doehlert design for five variables of Study 1 — codified
ID L.

iapp| (9] H Lout/Lin
1 0 0 0 0 0
2 1 0 0 0 0
3 0.5 0.866 0 0 0
4 0.5 0.289 0.817 0 0
5 0.5 0.289 0.204 0 0.791
6 0.5 0.289 0.204 0.775 0
7 -1.00 0 0 0 0
8 -0.50  -0.866 0 0 0
9 -0.50  -0.289 -0.817 0 0
10 -0.50  -0.289 -0.204 0 -0.791
11 -0.50  -0.866 -0.204 -0.775 -0.158
12 0.5 -0.289 0 0 0
13 0.5 -0.289 -0.817 0 0
14 0.5 -0.289 -0.204 0 -0.791




ID L iapp! ® H Lou/Lin
15 05 -0289 -0204 -0775 -0.158
16 05 0.866 0 0 0

17 0 0577  -0.817 0 0

18 0 0577  -0.204 0 -0.791
19 0 0577  -0.204  -0.775 0

20 05 0289 0817 0 0

21 0 0577 0.817 0 0

22 0 0 0.613 0 -0.791
23 0 0 0613  -0.775  -0.158
24 05 0289  0.204 0 0.791
25 0 0577 0.204 0 0.791
26 0 0 -0.613 0 0.791
27 0 0 0 -0.775  0.633
28 05 0289 0204 0775  0.158
29 0 0577 0204  0.775  0.158
30 0 0 0613 0775  0.158
31 0 0 0 0775  -0.633

The values used in the simulation was determined by:

a= 05(a, —a_)x+acp

65

(118)

Where a is the decodified value of a variable, x is the codified value, a, is the upper

value (x = +1), a_ is the lower value (x = —1) and ap is the central point value (x =

0).

For the studied variables, these values are:

Table 13. Codification parameters

parameter Le (mm) lappl (MACM?) o @ min') H(m)  LouwlLin
a, 8 200 1 50 1.6
a_ 3 20 0.15 10 0.4
Acp 5 100 0.5 30 1

Table 14 shows the decodified variables for the Doehlert design.

Table 14. Doehlert design of Study 1 - decodified

ID  Lin(mm)  iggp(MACM? @ min?) H(m) LowlLin
1 5.00 100.0000 0.5000 30.0 1.0000
2 7.50 100.0000 0.5000 30.0 1.0000
3 6.25 177.9400 0.5000 30.0 1.0000
4 6.25 126.0100 0.8472 30.0 1.0000
5 6.25 126.0100 0.5867 30.0 1.4746




ID  Lin(mm)  iagp (MACM?) o @ minY) H(m) Lol
6 6.25 126.0100 0.5867 45.5 1.0948
7 2.50 100.0000 0.5000 30.0 1.0000
8 3.75 22.0600 0.5000 30.0 1.0000
9 3.75 73.9900 0.1528 30.0 1.0000
10 3.75 73.9900 0.4133 30.0 0.5254
11 3.75 22.0600 0.4133 145 0.9052
12 6.25 73.9900 0.5000 30.0 1.0000
13 6.25 73.9900 0.1528 30.0 1.0000
14 6.25 73.9900 0.4133 30.0 0.5254
15 6.25 73.9900 0.4133 145 0.9052
16 3.75 177.9400 0.5000 30.0 1.0000
17 5.00 151.9300 0.1528 30.0 1.0000
18 5.00 151.9300 0.4133 30.0 0.5254
19 5.00 151.9300 0.4133 145 0.9052
20 3.75 126.0100 0.8472 30.0 1.0000
21 5.00 48.0700 0.8472 30.0 1.0000
22 5.00 100.0000 0.7605 30.0 0.5254
23 5.00 100.0000 0.7605 145 0.9052
24 3.75 126.0100 0.5867 30.0 1.4746
25 5.00 48.0700 0.5867 30.0 1.4746
26 5.00 100.0000 0.2395 30.0 1.4746
27 5.00 100.0000 0.5000 145 1.3798
28 3.75 126.0100 0.5867 45.5 1.0948
29 5.00 48.0700 0.5867 45.5 1.0948
30 5.00 100.0000 0.2395 45.5 1.0948
31 5.00 100.0000 0.5000 45.5 0.6202
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Regression Analysis. The designed conditions were used for calculation in the multi-

physical model 2. The voltage efficiency, battery efficiency, pumping energy

consumption, concentration overpotential, and ohmic overpotential were calculated. For

the overpotentials, the response corresponds to the mean value in the discharge procedure.

The responses were individually submitted to a quadratic regression aiming at the

determination of the following coefficients (in bold):

Response = Wy + W01Lin + WOZiappl + Wo3w + W04_H +

Wos (Lout/Lin) + W11L%n + wlZLiniappl + w13Linw + w14LinH +
W15Lin(Lout/Lin) + VVZZiappl2 + W23iapplw + W24iaple + WZSiappl(Lout/
Lin) + W330? + W3awH + W35 (Loye/Lin) + WaaH? + WasH (Loye/Lin) +
(119)

""55(Lout/l‘in)2

Where wy, is the intercept, wy; are linear coefficients, w;; are quadratic coefficients

and w;;, with i # j, are interaction coefficients.

The statistical significance of the coefficients was calculated based on rooted mean

squared error for regression with a significance level of 0.05.
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Performance metrics. The cell voltage was calculated as follows!®:

Veew = EP —E™ + (¢ — ¢ +nE + 08 —nit =0 +1, (120)

Where E is the Nernst potential and the difference ¢ — ¢ is the potential loss across
the membrane. The subscripts a, ¢ and o describe activation, concentration, and ohmic,
respectively.

The ohmic overpotential, n,, is given by the contributions of the current collector,

porous electrode, and membrane:

Mo = 2Mo)S* + o)™ + (o) 7 + (o)™ (121)

Where the superscripts cc, e, and m describe the current collector, electrode, and
membrane, respectively. The subscripts s and | describe the solid and liquid states,
respectively.

These components were expressed as:

. L
(TIO)§C = lappld_ii
S

Lavg

ej _ -
(no)l - lappl Eg/zo_le,j (122)

. L
Mo)™ = lappl#
Where L, is the average electrode thickness calculated as:

Ag

Lavg =2 (123)

Where A, is the area of the geometric 2D model for each half-cell.
The coulombic efficiency (CE) was calculated based on the times of charging and
discharging procedures. For this study, the charge/discharge cycles are symmetrical and

there are no parasitic reactions, then, the calculated CE for all experiments is 100%.

CE = i—d =1 (124)
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Where t, is the discharge time and t,. is the charge time.

The voltage efficiency (VE) was calculated as follows:

v = Lo = Uorvact)la (125)
Ve (fyCvedt)/tc

Where V, is the charging voltage and V. is the discharge voltage.

The energy efficiency (EE) was calculated as:

EE = CE -VE (126)

Since CE is equal to 1, the EE is:

EE =VE (127)

The pumping energy consumption is defined as:

t
Epump = J; Poump dt (128)

Where Ppump is the pump power.
The battery efficiency (BE), which includes the pumping energy consumption, was

calculated as:

BE = QaVa=Epump (129)

QCVC_Epump

Where Q is the retained charge in the discharging procedure and Q. is the charge

applied in the charging procedure.
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4.4.2 Study 2: A robust mitigation strategy for capacity loss in VRFBs under different

operating conditions

Since capacity loss is a big issue for the operational life of VRFBs, we designed a
study to investigate the variables that affect capacity loss and we studied the optimum
conditions of volume transfer between tanks aiming at its mitigation.

Based on the proposed method of approach, we identified the problem, developed
and validated the multi-physical model and, used a factorial design to screen the variables
and regression analysis to predict thousands of responses based on the conditions under
stud. Table 15 shows the previous characteristics (steps (i) to (iv)) of Study 2 based on

the method of approach.

Table 15. Previous characteristics of Study 2 based on the method of approach.

Step Description Checklist
@) Experimental indication of a problem Capacity loss caused by cross-contamination
(i) Development of a multi-physical model. VRFB capacity loss model
(voltage cut-off)
(iii) Validation of the multi-physical model. Figure 19
(successfully validated)
(v) Use of chemometric analysis. Factorial design and regression analysis

The problem of this study is the capacity loss caused by the cross-contamination
between the half-cells of a VRFB. The multi-physical model used is the VRFB capacity
loss model (time-dependent), which was successfully validated comparing simulated and
experimental results (see Figure 19). And the factorial design and the regression analysis
were the used chemometric tools. The remaining steps ((v) to (vii)) were discussed in the
RESULTS AND DISCUSSION section.

Factorial design. A 23 complete factorial design was performed analysing the
following variables: applied current density (iappi), active species concentration (Cact) and

volumetric flow (w). Table 16 describes these computational experiments.
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Table 16.23 factorial design of Study 2.

ID lappl (MACM?)  Ca (MOl LY w (L min)
1 50 1.10 15
2 100 1.10 15
3 50 1.80 15
4 100 1.80 15
5 50 1.10 30
6 100 1.10 30
7 50 1.8 30
8 100 1.8 30

The discharging capacity was calculated by’

t
C; = <22 % 100% (130)

tdllst
Where t ;. . is the discharge time of the " cycle and ¢, ;= is the discharge time of

the first cycle.

The capacity loss was calculated by:

CL = |100% — C"| (131)

Where C4™" is the discharge capacity at n'" cycle.

The potential cut-off for each experiment was determined by the SoC cut-off of 0.9
and 0.1 for the first cycle for charging and discharging procedures, respectively. The
concentration of supporting electrolyte was 3 mol L. And the capacity loss rate was

determined by:

i dCq i 1

i 2tdi

L ae X n
cycles

CLygse = (132)

Where neycles IS the total number of cycles.

Determination of electrolyte viscosity (). The concentration of active species
influences the electrolyte viscosity in each half-cell. And the viscosity influences the
capacity loss rate due to the contribution to the convective flow across the membrane. To
determine the suitable viscosity for both negative and positive electrolytes, a regression
analysis was performed with data available in literature’". The studied variables were

the SoC, concentration of supporting electrolyte, and concentration of active species. The
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parameters values of viscosity set up in each experiment of Table 16 were the mean
values of viscosity in each SoC.
The responses (positive and negative viscosity) were individually submitted to a

quadratic regression aiming at the determination of the following coefficients (in bold):

ll] = Wy + W01$OC + Wo2Cact + Wogcsup + W04T + Wll(SOC)Z +
W1250C 4. + W13S0CCgyy, + W14 S0CT + Woo 2. + W23CactCsup T
WoaCact T + W33Chyy + W34Cpypy + Wy T? (133)

Where csyp is the concentration of active species and T is the temperature of the
electrolyte.
This regression model was validated by cross-validation. The data set was split into

five subsets.

Model adaptation to include the volumetric transfer between tanks. To simulate the
volumetric transfer between tanks it is necessary to modify the ODEs related to the tanks.
In this case, the number of species, in mol, in each tank also depends on the flux of species
between the tanks. For the VO2*, VO?*, VO?"1eq, and VO2"reg the equation turns to:

d?’ltir _ Lout d Lin d : t
o = EWeen Jo T cudx — [ civdx ) — jwpyc] (134)
Where w,,, is the volumetric flow between the tanks.

For H" and HSO4" in both half-cells, the equation turns to:

Dl — e (J; 7 oo = f;" crvdx) = et 135
ar  Weeu ), GVAX— ], GVAX )= JWprC; (135)
Where i is the factor of current: +1 for charge and -1 for discharge.
For contaminant species in the positive electrode, that is, V?*ps and V3" pes, the ODE
remains unchanged.

The volume of the tank turns to:

dvti
dt

= Echllem,x — jwpt (136)
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Regression analysis. Since the variables that affect capacity loss are known, a
regression analysis may be performed with these variables and the velocity between
electrolytes tanks to evaluate how the discharge capacity behaves in these conditions. The
experimental space was built from three variables in a Doehlert design: velocity between
reservoirs (vor), applied current density (iappr) and active species concentration (Cact).

The capacity loss was submitted to a quadratic regression aiming at the determination

of the following coefficients (in bold):

— . 2 .
CL = Wy + WOlvp + +w021appl + Wo3Cqct + Wllvp + levplappl +
2 : 2
w13vpcact + W32 lappl + W23lapplcact + W33Cact (137)

Table 17 shows the design of experiments for this regression analysis.

Table 17. Doehlert design for three variables of Study 2.

ID vp (XVc) iappt (MA cM?)  Cact (Mol LY)
1 5.50 80.00 1.450
2 10.00 80.00 1.450
3 7.75 114.64 1.450
4 1.00 80.00 1.450
5 3.25 45.36 1.450
6 7.75 45.36 1.450
7 3.25 114.64 1.450
8 7.75 91.56 1777
9 3.25 68.44 1.123
10 7.75 68.44 1.123
11 5.50 103.08 1.123
12 3.25 91.56 1.777
13 5.50 56.92 1777
14 5.50 80.00 1.695
15 5.50 80.00 1.205

The real value of vy is calculated based on a volumetric coefficient (V). That is, the
value of vur depends on the volumetric flow (w) and the diameter of pipe between the two

reservoirs:

Vpr = 1V = 1, X 10‘5% (138)
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4.4.3 Study 3: Insights into the effects of active species properties on the voltage

efficiency of redox flow batteries

The choice of active species is one of the most important steps to achieve RFBs with
high energy density, high power density, and high performance. It is already understood
how the properties of active species affect energy density and power density. However,
there is a lack of understanding of how the properties of active species affect the
performance of RFBs. To obtain insights from this issue, we designed a study to
investigate which properties affect the RFBs' performance and which ones are the most
important.

Based on the proposed method of approach, we identified the problem, developed
and validated the multi-physical model and, used a factorial design to screen the variables.
Table 18 shows the complete characteristics (steps (i) to (iv)) of Study 3 based on the

method of approach.

Table 18. Complete characteristics of Study 3 based on the method of approach.

Step Description Checklist
@ Experimental indication of a problem Energy efficiency loss caused by choice of
active species
(i) Development of a multi-physical model. RFB general model
(SoC cut-off)
(iii) Validation of the multi-physical model. Figure 21
(successfully validated)
(iv) Use of chemometric analysis. Factorial design

The problem of this study is the energy efficiency loss caused by the choice of
different active species. The multi-physical model used is the RFB general model
(stationary), which was successfully validated comparing results from steady-state and
transient models (see Figure 21). The factorial design was used as the chemometric tool.
Thus, for this study, there was no need for the validation of regression analysis (Step (v)
from the method of approach). And there is no mitigation strategy to be developed (Steps
(vi) and (vii) from the method of approach) since the aim of the study is the obtaining of
information about the studied conditions.

Analyzing real systems. The first step of this study was exploring the already used

anolytes and catholytes in the general steady-state multi-physical model. Five active
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species were selected for the study (see Table 19). The studied variables were the
diffusion coefficient (D), the standard electrochemical rate constant (k%), and the standard
reduction potential (E?).

Table 19. Active species selected for Study 3

ID"ef Class D (X106 cm?s1)? K% (X10° cms?)® E° (V vs NHE)®
Methyl viologen?® Anolyte 25.7 280 -0.45
4-OH-TEMPO% Catholyte 29.5 260 0.80

FcNCI?® Catholyte 3.7 3.6 0.61
O Anolyte 2.4 7.0 -0.25
VIV)NVV) 7 Catholyte 3.9 25 1.00

2 Diffusion coefficient in water at 25°C, ® Glassy carbon electrode, ¢ Approximated from half-wave potential.

Three combinations were studied (see Table 20). Each system was simulated in ten
different applied current densities, from 50 to 140 mA cm™.

Table 20. Combination of active species for the Study 3

Anolyte Catholyte Cell potential (V)
Methyl viologen 4-OH-TEMPO 1.25
Methyl viologen FcNCI 1.06

VDN VIVINV(V) 1.25

Factorial design. A 2°* fractional factorial design was performed with the variables:
standard electrochemical rate constant (k%), diffusion coefficient (D), the standard cell
potential (E), applied current density (iappi), the concentration of active species (Cact) and

volumetric flow () (see Table 21).

Table 21.25* factorial design for six variables of Study 3.
ID log(k%)? D (X10%5cm?sH?®  E(V)® g (MACM?) cae (Mol LY o (mL min?)

1 -5.3 0.25 0.8 50 1 5
2 -2.3 0.25 0.8 50 1 20
3 -5.3 25 0.8 50 1 20
4 -2.3 25 0.8 50 1 5
5 -5.3 0.25 1.2 50 1 20
6 -2.3 0.25 1.2 50 1 5
7 -5.3 25 1.2 50 1 5
8 -2.3 25 1.2 50 1 20
9 -5.3 0.25 0.8 80 1 20
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ID log(k%)? D (X10%cm?sh?  E(V)® g (MACM?)  ca(MolLY) (mL min™)
10 -2.3 0.25 0.8 80 1 5
11 -5.3 2.5 0.8 80 1 5
12 -2.3 2.5 0.8 80 1 20
13 -5.3 0.25 1.2 80 1 5
14 -2.3 0.25 1.2 80 1 20
15 -5.3 2.5 1.2 80 1 20
16 -2.3 2.5 1.2 80 1 5
17 -5.3 0.25 0.8 50 2 20
18 -2.3 0.25 0.8 50 2 5
19 -5.3 2.5 0.8 50 2 5
20 -2.3 2.5 0.8 50 2 20
21 -5.3 0.25 1.2 50 2 5
22 -2.3 0.25 1.2 50 2 20
23 -5.3 2.5 1.2 50 2 20
24 -2.3 2.5 1.2 50 2 5
25 -5.3 0.25 0.8 80 2 5
26 -2.3 0.25 0.8 80 2 20
27 -5.3 2.5 0.8 80 2 20
28 -2.3 2.5 0.8 80 2 5
29 -5.3 0.25 1.2 80 2 20
30 -2.3 0.25 1.2 80 2 5
31 -5.3 2.5 1.2 80 2 5
32 -2.3 2.5 1.2 80 2 20

2For both anolyte and catholyte, "E%(anolyte)=-E/2 and E°(catholyte)=E/2.

Performance metrics. The performance metrics were calculated in the same way as

described for Study 1. The only difference is the calculation of voltage efficiency:

VE =

SN

(ngoc'd Val/ nSOC,d)

(ZZSOC'C Ve/nso C,c)

(139)

Where ng,c 4 and ng,c . are the number of calculations performed for each SoC

condition in the discharging and charging procedure, respectively.
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5 Understanding how operating conditions affect optimal geometry for

vanadium redox flow batteries

This chapter shows the results of Study 1. The first section shows
a brief introduction to the study. The second section describes
how geometric modifications affect energy efficiency in VRFBs.
The third section shows the figures of merit from regression
analysis. The next section discusses the coefficients obtained
from regression analysis and the consequences of their values.
Section 5.4 describes a new method to calculate the optimal
geometry for VRFBs operating at flow-through design. And
section 5.5 brings the details about the validation of regression
analysis.

5.1 Introduction to the chapter

Since geometric variables can affect the pumping energy consumption and the ohmic
and concentration overpotentials, we carried out a study to investigate the effects of
geometric modifications in VRFBs’ performance. We innovated by (i) using a geometry
larger than those in laboratory scale (400 cm? of area); (ii) using modifiable geometry;
(iii) studying the interaction effects between geometric modification and operating
conditions; (iv) coupling multi-physical model and regression analysis to deeply explore
the system; (v) proposing a method to calculate the optimal geometry to any flow-design
(flow-by or flow-through), type and scale of RFBs.

Figure 24 shows a graphical abstract for Study 1.
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Figure 24. Graphical abstract for Study 1.

5.2 Understanding the geometric variables

Before applying the method of approach, we aimed to understand how each geometric
condition affects the pumping energy consumption, the concentration overpotential, and
ohmic overpotential. In the next pages, we discuss the effects of the length of residence
path (H), the electrode thickness (L), and the trapezoidal geometry on the battery
efficiency of VRFBs.

Length of residence path (H). The increase of the length of residence path leads to
the decrease of regions of non-uniform concentration (see Figure 25). However, the
decrease of these regions of non-uniform concentration does not influences the

concentration overpotential
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H=5cm 0.9 H=5cm -10

Figure 25. Regions of non-uniform concentration (left) and the respective concentration overpotential (right)
for two cells with different lengths of residence path in the discharging procedure. Initial concentration of active
species is equal to 1 mol L.
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Another characteristic of decreasing the length of the residence path is the decrease

of power required for electrolyte recirculation. Thus, a smaller pump power is required

and, as consequence, the pumping energy consumption by cycle decreases. A schematic

representation of this conclusion is shown in Figure 26.

H=3.3cm

Ppump=0.04 W Carbon felt

H=10cm
Ppuny=0.14 W

Figure 26. Schematic representation comparing the effects of length of residence path on resistance to flow
inside the half-cells of carbon felt.
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A larger length of residence path (10 cm) requires more power of the pump (0.14 W)

to overcome the resistance to flow caused by the presence of carbon felt inside the cell.

If the length of the residence path is smaller (3.3 cm), the power required for recirculation

of electrolyte is also smaller (0.04 W), because the resistance to flow decreases. Now, it

is necessary to evaluate if this consequence on pump power is sufficient to change the

efficiency of the cell.

Electrode thickness (L). The increase of electrode thickness has the following

consequences:

(i)

(i)

lv

(i)

Increase of cell electrical resistance. The increase of electrode thickness also
increases the path taken by current and, as consequence, the ohmic
overpotential increases (see Figure 27).

Decrease of pump power required for electrolyte circulation due to the
decrease of resistance to flow caused by thicker channels. This condition also
led to the decrease of flow velocity (v) inside the cell, considering the same

volumetric flow (w):

SWcae)llLT (140)
If the flow velocity decrease, the mass transport is less effective and the
concentration overpotential increases.

Increase of active area per length of residence path!®. That is when thicker
electrodes are used the active area available for the electrochemical reaction
increase along the residence path, making the mass transport to the active
surface easier (see Figure 27). This is because there is less traffic for the mass
transport from the bulk to the electrode surface since there are more active
sites available for the electrochemical reaction. Since the mass transport is
more effective, the concentration overpotential is mitigated as the electrode is

made thicker.
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Figure 27. Comparing the effects of electrode thickness in the mass transport.
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The effects (ii) and (iii) are antagonists because one increases the concentration

overpotential towards thicker electrodes and the other decreases the concentration

overpotential towards thicker electrodes. The net effect depends on the cell scale. For a

cell with 400 cm? of area (ween X H), the more important effect is the increase of active

are per length of residence path (iii). Figure 28 shows the effect of increasing electrode

thickness in the active area per length of residence path and flow velocity (a) and the net

effect on the difference between bulk and surface concentration (b) for a 400 cm? cell.

@

T T T T T 20
|
v
e
v
745 1 /'/
's ] /- 16
Ny w
x \ g
a
5 N\ s
N .
S \ _/-
S h Ve L 12
v
-% l/. \.\'\
< 254 /./ .
A N
" '\.\ L8
l\.\.
\.\.\
15 . . . . —
2 3 4 5 6 7 8

Electrode thickness (mm)

Flow velocity (x10”m s7)



81

-10+

Bulk - Surface concentration (x1 073 mol L)
>
1

2 3 4 5 6 7 8
Electrode thickness (mm)

Figure 28. The effect of electrode thickness in (a) the active area along the residence path and the flow velocity,
and (b) in the difference between bulk and surface concentrations at discharging procedure.

Figure 28(b) shows that the difference between bulk and surface concentration of
vanadium species decreases as electrode thickness increases, proving that increase of
active area per length of residence path (effect (iii)) is more important than the decrease
of flow velocity (effect (ii)) in this scale. That way, the increase of electrode thickness

mitigates the overpotential concentration.

Trapezoidal geometry. The trapezoidal geometry was already studied®®®’. The
purpose is to accelerate the electrolyte from the inlet to the outlet - without interfering in
the operational conditions — to mitigate the regions of non-uniform concentration (see
Figure 29). However, these studies modified the ween, without interference in electrode
thickness. Our purpose is to add to this effect of electrolyte acceleration, the effects of

electrode narrowing: modification of ohmic and concentration overpotentials.
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Figure 29. Comparing the effects of Lou/Linon flow velocity.

In the first case, for Lou/Lin = 0.8, the geometry is trapezoidal and the flow velocity
decreases along the residence path. In the second case, we have the typical rectangular
geometry with the constant flow velocity. For Louw/Lin = 1.6, the geometric is an inverted
trapezoid and the velocity decreases along the residence path.

Beyond the effects on the velocity flow, the trapezoid geometries influence the
electrical resistance and the active area per unit of H. Thus, for Louw/Lin = 0.8, the ohmic
resistance decreases, and the concentration overpotential increases along the residence
path. And, for Louw/Lin = 1.6, the ohmic resistance increases, and the concentration

overpotential decreases along the residence path.

Next steps. The next section discusses the effect of these three geometric variables
with two operational conditions (applied current density and volumetric flow) on the

efficiency of the battery.

5.3 Regression analysis

Five responses related to performance were evaluated: voltage efficiency (VE),
battery efficiency (BE), pumping energy consumption (Epump), 0hmic overpotential (7o),

and concentration overpotential (yc). The complete list of results from designed
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computational experiments (from designed experiments of Table 14 in Methodology) is

described in Table 22.

Table 22. All responses from Doehlert design (Study 1)*

ID VE

BE

Epump Mo e

(%) (%) Q) (mV) (mV)
1 65.6 65.6 289.87 92.67 88.95
2 64.4 64.2 204.11 123.1 62.47
3 48.4 48.3 134.03 192.13 117.15
4 59.3 59.1 544.01 135.94 89.34
5 57.5 57.4 221.38 158.68 74.49
6 58.7 58.7 576.46 140.5 86.04
7 63.8 63.6 569.42 62.25 148.29
8 88.9 88.7 1718.95 17.08 28.85
9 70.6 70.4 a47.77 57.4 88.86
10 70.4 70.4 459.13 49.23 108.87
11 88.8 88.8 286.65 16.6 30.28
12 72.3 72.2 322.71 79.82 56.11
13 714 71.2 30.08 79.95 56.76
14 72.0 72.0 287.18 66.41 71.53
15 72.2 72.1 53.70 77.16 58.68
16 51.2 51.1 212.20 137.95 165.75
17 52.4 52.0 17.75 141.35 130.25
18 55.2 55.1 170.11 118.89 148.41
19 54.8 54.7 31.82 136.54 127.65
20 60.1 59.9 863.60 97.59 131.53
21 80.3 80.0 1735.58 44,52 46.24
22 65.6 65.5 880.48 78.09 109.89
23 65.9 65.8 163.89 89.78 92.33
24 60.0 59.9 348.11 111.25 112.8
25 80.4 80.3 704.57 51.45 37.73
26 65.0 64.8 56.14 107.25 74.56
27 65.6 65.5 58.97 104.23 76.65
28 60.1 59.8 914.79 100.35 127.5
29 80.3 80.0 1839.64 4591 44.29
30 64.9 64.8 147.18 95.67 85.99
31 65.7 65.5 815.70 81.07 105.14

*Algorithm developed to calculate responses is in Appendix A

The pumping energy consumption was irrelevant to a considerable lowering of the

battery efficiency. This was evaluated by the absolute difference between VE and BE for

all computational experiments, which are in the same scale of RMSE (see Figure 30).

This means that there was no statistical difference between BE and VE. Thus, the

evaluation of BE is redundant. This also indicates that the pumping energy consumption



84

(Epump) is low to reduce the energy efficiency in the studied scale. Thus, Epump iS not

important in being studied too.
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Figure 30. A plot of the absolute difference between calculated voltage and battery efficiencies for each
computational experiment, evidencing that there is no statistical difference between these two responses.

The remaining responses are VE, no, and #c, which were submitted to regression

analysis. Table 23 shows the figures of merit for regression analysis.

Table 23. Figures of merit for regression analysis*

VE (%) 1o (MV) e (MV)
R2 0.9991 0.9999 0.9977
RMSE 0.31 0.30 1.74

*Algorithm developed for regression analysis is in Appendix A

The coefficients of determination, R?, indicated that all responses were well-fitted to
quadratic regression analysis. The responses also have low values of root mean squared
error (RMSE). These conditions allowed the use of the regression models to a robust

prediction of VE, no,and 7. in the experimental space.

Empirical equations. The empirical equations for VE, 5o and 7., considering only the

statistically significant coefficients at p < 0.05 level based on RMSE, are, respectively:
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VE = 65.43 — 22.57igpp + 0.89w — 1.39L%, — 2.23Liniappr — 1.69Lin Lot/
Lin) + 6.19i4pp,° + 1.24ig,,0 — 1.5, (Loyt /Lin) — 0.82w? (141)

Mo = 93.03 + 31.23Ly, + 834704,y + 1.27H +
1848 (Loye/Lin) + 26.94Liqppr + 9.02L iy (Lowe /Lin) + 3450 0pp H +
15-92iappl(Lout/Lin) (142)

Ne = 89.62 —39.07Ly, + 69.68iqyp —

22.25 (Loye/Lin) + 15.8112, — 15.25Liyiqyp + 5.26Lin (Loue/Lin) —
1847142 — 7.32igppi® — 5.43igppiH — 12.28igpp; (Loue /Lin) + 444 (Loye/
Li)? (143)

The coefficients are calculated from the codified variables.

We change the variable L, discussed in the previous section, by Li,. This change in
nomenclature is necessary when we are working with the variable Lou/Lin at the same
time. Thus, we can change only Lin, because the electrode thickness (L) changes along the
residence path.

The next sections discuss the coefficients of the above equations and their

consequences on the performance of VRFBs.

5.3.1 Evaluation of linear and quadratic coefficients

Table 24 shows the statistically significant “pure” (linear and quadratic) coefficients
from equations above of VE, 1o, and 7. The term pure is used because the linear and
quadratic coefficients are calculated separately for each variable, differently from the
interaction coefficients, which is going to be discussed in section 5.2.2.



Table 24. Calculated linear and quadratic coefficients*-2

Response
Variable Coefficients  7o(mV) 5. (MV)  VE (%)
Lin Woq +31.23  -39.07 -
L, Wi - +1581  -1.39
iappl Wo2 +83.47 +69.68 -22.57
[— Wy, - -1847  +6.19
W Wos - - +0.89
w? W33 - - -0.82
H Woa +1.27 - -
H? Wayg - - -
Loyt/Lin Wos +18.48 -22.25 -
(Lout/Lin)2 Wss - +4.44 -

*Algorithm developed to determine the statistical significance is in Appendix A
aThe non-significant coefficients are omitted for clarity
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The use of codified values is important because sets all variables and coefficients on

the same scale. Another advantage of using codified variables (from -1 to +1) is that linear

and quadratic coefficients can be compared in magnitude. For example, if both linear and

quadratic coefficients are equal to 1, the partial response corresponding to each one of the

coefficients assumes the behavior portrayed in Figure 31.

Response = Ix + Ix’

(a)

(b)

Linear
Quadratic

Partial response
=
;
|Partial response|

+1

Figure 31. Comparison between linear and quadratic partial response (a) and absolute partial response (b).

Despite the linear and quadratic partial responses being very different (Figure 31(a)),

their absolute values are very similar (Figure 31(b)), which makes possible the

comparison between the coefficients. Considering this characteristic, in the next pages, a

comparison between the “pure” coefficients is made, and the physical consequences of

their values are discussed.
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Coefficients of inlet electrode thickness (Lin) (Wo1 and wi1). For ohmic overpotential,
just the linear coefficient was statistically significant (wo1(70)=+31.23), since the increase
of electrode thickness increases the cell electrical resistance, as discussed in section 5.1.

For concentration overpotential, the magnitude of the linear coefficient is more than
double of quadratic coefficient: woi(rc)=-39.07 and wii(nc)=+15.81, indicating the
prevalence of a linear behavior instead of a quadratic one (see Figure 32).

— 2
.= -39'07Lin + 15'01(1‘1") —Linear
Quadratic

0l L]
o 20 ¥
: g
g &
b o
L S 20-
< <

=204

-40 T T ‘ 0

B L;, (codified) oo L,, (codified) +1

Figure 32. Comparison between linear and quadratic partial response (a) and absolute partial response (b) for
concentration overpotential concerning inlet electrode thickness.

The physical meaning of this is related to the more important effect of increasing of
active area per length of residence path as electrode thickness increases (iii) than the effect
of decreasing flow velocity in this same direction (ii), as discussed in Section 5.1. Thus,
despite there being two antagonistic forces for decreasing the concentration overpotential,
one is more important than the other, making the mitigation of overpotential possible as
electrode thickness increases. Figure 33 illustrates this conclusion by showing the partial
responses and the total response for concentration overpotential concerning the inlet

electrode thickness.
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60 - n.=-39.07L, + 15.01(L; " |

Increasing active area per H

Increasing flow velocity

Value of response
=}
1

Linear partial response

Quadratic partial response

-60 - Total response
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Figure 33. The linear and quadratic partial responses and the total response for the concentration
overpotential concerning inlet electrode thickness.

Finally, the opposite effects for ohmic (increases as electrode thickness increases)
and concentration overpotential (decreases as electrode thickness decreases) explain the
statistical significance of the quadratic coefficient for voltage efficiency w11 (VE) = -1.39,

where a maximum response is expected.

Coefficients of applied current density (iappi) (Wo2 and wz2). For ohmic overpotential,
just the linear coefficient was statistically significant (wo2(70)=+87.43), since the increase
of current increases the ohmic overpotential by definition.

For concentration overpotential, the magnitude of the linear coefficient is more than
triple of quadratic coefficient: wo2(77c)=-69.68 and w22(1c)=-18.47, indicating the
prevalence of a linear behavior instead of a quadratic one. In the same way, we did for
inlet electrode thickness, we can visualize this mathematical behavior plotting the partial

and total responses (see Figure 34).
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Figure 34. The linear and quadratic partial responses and the total response for the concentration
overpotential concerning applied current density.

The physical meaning for this correlation between concentration overpotential and
applied current density is related to the demand for efficient mass transfer. High applied
current densities lead to faster reactions and the active species at the electrode surface
need to be replaced faster too. When this demand for mass transfer is not met, large
concentration overpotential arises.

The high positive linear correlation between applied current density and both
concentration overpotential and ohmic overpotentials implies a large negative linear
coefficient for voltage efficiency (wo2(VE)=-22.57). Thus, as expected, the increasing of

applied current density leads to lower voltage efficiencies.

Coefficients of flow velocity () (Woz and wsz). The flow velocity does not affect
ohmic overpotential. And the effect on concentration overpotential was insignificant,
indicating that the range of values of flow velocity employed was sufficient for the

mitigation of concentration overpotential.

Coefficients of the length of residence path (H) (wos and was). The only significant
coefficient for this variable was the linear one for ohmic overpotential (Woa(70)=+1.27) ,
but this value has no physical meaning. A variable just affects ohmic overpotential by

increasing the cross-sectional area of the cell or by increasing the electrode thickness. The
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length of the residence path does not affect the electrical resistance because the cross-
sectional area of the cell (400 cm?) is kept fixed in all experiments and has no effect on
electrode thickness. Graphs of ohmic overpotential versus applied current densities for
different values of H are shown in Figure 35, proving the no modification in the ohmic

overpotential caused by H.
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Figure 35. Ohmic overpotential versus applied current density for different length of residence path

Thus, despite regression analysis being a good tool for system understanding, its main
purpose is fitting. Because of that, the analysis of the significance for the coefficients has

to be made in both statistical and physical approaches.

Coefficients of Lout/Lin (Wos and wss). Increasing Lgy:/Lin implies in (i) the
increasing of ohmic overpotential (wys(n,) = +18.48) and (ii) the decrease of
concentration overpotential (wys(n.) = —22.55). These are the same qualitative effects
caused by the modification of inlet electrode thickness. However, the coefficients related
to Lout/Lin for voltage efficiency (wos(VE) and wss(VE)) were not statistically significant.
That is, the effects on ohmic and concentration overpotential caused by L,,;/L;, tend to

offset each other.
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Important variables. Therefore, the most important geometric variable for mitigation
of overpotential was the inlet electrode thickness. The length of the residence path and
the Lout/Lin had no net effect on voltage efficiency. For operating conditions, the applied
current density was relevant and the volumetric flow was sufficient for the mitigation of

concentration overpotential.

5.3.2 Evaluation of interaction effects

The analysis performed in the previous section considered just linear and quadratic
coefficients. However, interaction effects also contribute to battery performance. Table
Table 25 shows the statistically significant (at the p < 0.05 level based on RMSE)

interaction effects.

Table 25. Calculated interaction coefficients*:@

Response
Variable 1 Variable 2 Coefficients 7o ne VE

L Lappt Wiz +26.94 -15.25 -2.23

L w Wi - - -

L H Wig - - -

L Loye/Lin Wis +9.02 +5.26 -1.69
Lappl w W3 - -7.32 +1.24
Lappt H Waq +3.45 -5.43 -
Lappl Loyt/Lin Wsys +15.92 -12.28 -1.59

w H W3y - - -

w Lout/Lin W35 - - -

H Lout/Lin Wys - - =

*Algorithm developed to determine the statistical significance is in Appendix A

¥The non-significant coefficients are omitted for clarity

Negative effects between geometric parameters and applied current density (w12
and wzs). The statistically significant interaction coefficients between geometric
parameters and applied current density were wi2 for inlet electrode thickness and wos for
Lout/Lin. Despite Lout/Lin is irrelevant by itself for voltage efficiency, its interaction with
other variables contributes to cell performance. This is a finding that univariate analysis
usually neglects and is very common in electrochemical systems. These two negative

significant coefficients indicate that when large current densities are applied for thick
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electrodes (high values of Lin and/or Lout/Lin) there is an additional contribution to the
decrease of voltage efficiency (w12(VE) = -2.23 and wos(VE) = -1.59).

These negative effects on voltage efficiency are caused by a higher coefficient for
ohmic overpotential than for concentration overpotential. For Lin, the coefficient of ohmic
overpotential is almost double of the coefficient for concentration overpotential: wi2(%0)
= +26.94 and wiz(7c) = -15.25. For Lin/Low, the coefficient of ohmic overpotential is
close to the coefficient for concentration overpotential: wos(770) = +15.92 and was(7c) = -
12.28.

The larger contribution for ohmic overpotential than for concentration overpotential,
when large currents and thick electrodes are applied (high values of Lin and/or Lout/Lin), IS
physically explained by the definition of ohmic overpotential itself:

0107 = tappt 7o (144)

Where Lay is the average of electrode thickness, which increases by increasing both
Lin and Lout/Lin.

That is, the increasing of iappi, Lin and Lout/Lin increases the ohmic overpotential. Thus,
there is an interaction effect between these variables by definition, explaining the positive
values of wiz(70) = +26.94 and was(70) = +15.92.

This synergetic effect in ohmic overpotential does not happen for the concentration
overpotential, since high applied current densities increase the concentration
overpotential, whereas thick electrodes decrease the concentration overpotential. That is
an antagonistic effect, explaining the negative effects of wio(c) = -15.25 and wos(7c) = -
12.28.

Because of this, the interaction effect of ohmic overpotential is more relevant, and
the voltage efficiency tends to be lower when applied current densities are used with thick
electrodes. Figure 36 schematizes these considerations.

In the first case, thin electrodes are operating in small currents. The ohmic
overpotential is low because of both small current and thin electrodes (blue arrows at left).
On the other hand, the concentration overpotential tends to be large because of the thin
electrode at the same time that tends to be small because of the small current (red arrows
at left).
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In the second case, the thick electrodes are operating in large currents. The ohmic
overpotential is high because of both small current and thin electrodes (blue arrows at
right). On the other hand, the concentration overpotential tends to be small because of the
thick electrode at the same time that tends to be large because of the large current (red

arrows at right).

1
i
Case 1 iCurrent Case 2
ceeeee Effect caused by
Effect caused by large currents
small currents ) )
Effect caused by oty Eﬁ.“ect caused by
thin electrodes ERRS thick electrodes

Carbon felt
Effect on concentration
overpotential

Effect on ohmic
overpotential

Carbon felt

Figure 36. Schematic representation comparing thin electrodes operating in small currents with thick
electrodes operating in large currents.

Negative effects between geometric parameters (wis). Another significant
interaction arises from electrode thickness with Lout/Lin On voltage efficiency (wis(VE)=-
1.69). This is because both variables increase the average electrode thickness, leading to

large ohmic overpotentials and smaller concentration overpotentials.

Positive effects between operating conditions (w23). An interaction effect arises from
applied current density with the volumetric flow (w23(VE)=1.24). This effect is associated
with the demands for efficient mass transfer when applied current density increases. Thus,
high applied current densities demand high flow velocity for the effective mitigation of

concentration overpotential.

The effect between applied current density and length of residence path (w2s). This

coefficient is statistically significant just for concentration overpotential and ohmic
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overpotential. Despite statistical significance, the interaction effects for concentration and
ohmic overpotential have no physical meaning. This is reinforced by curves of
overpotential versus applied current density (see Figure 35 and Figure 37 ), where no

change was observed from the modification of the length of the residence path.
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Figure 37. Concentration overpotential versus applied current density for different lengths of residence path.

Important effects. Therefore, the most relevant interactions were between Lin,
Lout/Lin, and applied current density. The Lou/Lin ratio arises as a second geometric
variable for mitigation of both ohmic and concentration overpotential.

5.3.3 Interaction effects between geometric parameters and applied current density

By analysis of the coefficients, we confirmed that interaction effects exist and are
relevant for voltage efficiency. To further evaluate the relevant effects, three contour plots
of Lin versus Lout/Lin for different applied current densities were stacked in a 3D graph
(see Figure 38). The values of VE were normalized by the maximum value in each
applied current density, since the values of vary greatly when different iapp are used.
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Figure 38. Contour plots of normalized voltage efficiency (VE) for inlet electrode thickness (Lin) versus the
ratio between outlet electrode thickness and electrode thickness (Lout/Lin) for three different values of applied current

density (iapp!)*.
*Algorithm developed to plot this graph is present in Appendix A.

The predicted values indicated the inversion in the region of VE when the applied
current density goes from 40 to 160 mA cm. For large applied current densities (160
mA cm2; contour plot above), thin electrodes lead to optimum VE, whereas for smaller
applied current densities (40 mA cm?; contour plot below) thick electrodes imply better
voltage efficiency.

The above implications are explained in terms of the dominant overpotential in each
condition. For small applied current densities (e.g., 40 mA cm™), the concentration
overpotential is dominant concerning the ohmic overpotential (see Figure 39(a-b)). Thus,
the voltage efficiency is benefited in direction of smaller concentration overpotentials
(when the electrode is thick). On the other hand, the ohmic overpotential is dominant
concerning the concentration overpotential for large applied current densities (see Figure
39 (c-d)). Thus, the voltage efficiency is optimized in direction of small ohmic
overpotential (when the electrode is thin). For intermediate cases (e.g. 100 mA cm?) there

was a trade-off between the ohmic and concentration overpotential.
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Figure 39. Contour plots of concentration and ohmic overpotentials for electrode thickness (L) versus Lout/Lin for two different values of applied current density*.
*Algorithm developed to plot this graph is in Appendix A.
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To further understand how to achieve maximum voltage efficiency for each applied

current density, we calculated the optimal geometry. Figure 40 shows these results.
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Figure 40. Optimum geometric conditions for each applied current density™.
*Algorithm developed to plot this graph is in Appendix A.

Since the dominant overpotential changes from concentration to ohmic when applied

current density becomes large, the optimal inlet electrode thickness decreases in this

direction (see Cases 1 and 2 in Figure 41).

.

’appl
Case 1
: Primary mitigation
(by L)
Dominant overpotential: Concentration Ohmic
Non-dominant overpotential: Ohmic Concentration
Case 4
Secondary mitigation '
(by Lom/Lin)
Louf/Lz'n < 1 Lout/Lin > 1

Figure 41. Schematic representation of dominant and non-dominant overpotential for a range of applied
current density and the primary (by Lin) and secondary (by Lout/Lin) mitigations.
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Due to the focus on dominant overpotential, the modification of inlet electrode
thickness is characterized as primary mitigation. For small applied current densities, thick
electrodes mitigate the concentration overpotential (Case 1). On the other hand, thin
electrodes mitigate the ohmic overpotential for large applied current densities (Case 2).

The voltage efficiency is also optimized by the enlargement of the electrode in outlet
channels (Lout/Lin > 1) as the applied current increases. This characterizes a secondary
mitigation strategy. Whereas the dominant overpotential is mitigated by electrode
thickness, Louw/Lin modification is employed for the non-dominant overpotential.
Therefore, small applied current densities require Low/Lin < 1 to mitigate the ohmic
overpotential (Case 3) and large applied currents densities require Lout/Lin > 1 to mitigate
the concentration overpotential (Case 4).

Based on these results, we can calculate the percentage of mitigation for each
condition. The percentage mitigation can be defined as the ratio of the overpotential in a
given geometric condition, #(Lin,Lout/Lin), by the maximum overpotential (#max) for each

applied current density:

Percentage of mitigation = inLout/in) o 1 ()4 (145)

Nmax
*Algorithm developed to calculate the percentage of mitigation is in Appendix A.

The percentage of mitigation versus applied current density proves the
aforementioned findings (see Figure 42). The percentage of mitigation for primary
mitigation corresponds to the overpotential as a function of Liy for both ohmic and
concentration overpotentials; that is #o(Lin) and #c(Lin), respectively. And the percentage
mitigation for secondary mitigation corresponds to the overpotential as a function of
Lout/Lin for both ohmic and concentration overpotentials; that is 7o(Lout/ Lin) and #c(Lout/

Lin), respectively.
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Figure 42. Percentage mitigation of concentration overpotential (7c) and ohmic overpotential (1o) Versus
applied current density for (a) primary and (b) secondary mitigations.

For the primary mitigation, there is a region of transition (close to 120 mA cm)
between ohmic overpotential and concentration overpotential. This is in agreement with
(i) ohmic overpotential is dominant for large applied current densities and (ii)
concentration overpotential is dominant for small applied current densities. Figure 42
reinforces that secondary mitigation acts as a mitigation strategy for the non-dominant
overpotential because the secondary mitigation increases as the primary mitigation
decrease.
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The first case occurs when the primary mitigation is directed to ohmic overpotential
and the secondary mitigation is directed to concentration overpotential. In this case, the
primary mitigation is so effective for small applied current densities that the secondary
mitigation has a balancing effect just for large applied current densities.

The second case occurs when the primary mitigation is directed to concentration
overpotential and the secondary mitigation is directed to ohmic overpotential. When the
primary mitigation is more effective for small applied current densities, the secondary
mitigation acts in the concentration overpotential. On the other hand, when large current

densities are applied, the opposite effect occurs

5.4 Optimal geometry

In practice, a VRFB operates at various current densities making it impossible to
change the cell geometry for each of them. However, it is possible to determine an optimal
geometry for the overall current densities by choosing the geometry that leads to the
smaller variation of VE over the current densities. This was performed using the following

definition:

AVE = VE,qr(Lin, Loye/Lin) — VEopt * (146)

*Algorithm developed to calculate AVE is in Appendix A.

Where VEop is the constant optimum voltage efficiency for each applied current and
VEvar(Lin,Lout/Lin) is the voltage efficiency for each optimal geometry portrayed in Figure
40. For example, at 25 mA cm, the VEo is equal to 88.83%, the VEyar(7.57,0.57) =
88.83%, the VEvar(5.25,0.89) = 88.40% and the VEar(2.92,1.2) = 87.09%. Then, the
AVE is equal to, respectively: 0, -0.43, -1.74%. Figure 43(a) shows the AVE for three

values of applied current density versus the optimum geometric condition.
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Figure 43. (a) 4VE values versus optimum geometric condition for different values of applied current density
and (b) 6 values versus optimum geometric condition*.
*Algorithm developed to plot this graph is in Appendix A.

The difference between the maximum and minimum value of AVE indicates the
geometry that leads to the smaller variation of VE over the current densities. This

parameter is defined as

& = max(AVE) — min (AVE)* (147)
*Algorithm developed to calculate & is in Appendix A.

Figure 43(b) shows a plot of § versus the geometric condition. The minima
correspond to the optimal geometry: Lin = 4.49 mm and Louw/Lin = 0.99. Thus, traditional
geometries are better than trapezoidal geometries when the overall applied current
densities are considered.

Thus, despite the previous works suggesting that trapezoid geometries — by
employing wout/Win < 1 - leads to the better voltage efficiency %7, this is not observed for
our study, which employs a trapezoid geometry varying Lout/Lin. Unlike Wout/Win
modification, which just modifies the concentration overpotential by accelerating the
electrolyte inside the half-cell, the Louw/Lin controls the concentration overpotential by
varying the active area per H and the ohmic overpotential by varying the electrode

thickness. Indeed, the antagonistic consequences of both factors made the traditional
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rectangular geometry more suitable to achieve better voltage efficiency (Lout/Lin = 0.99).

Beyond that, an optimum electrode thickness can be defined by regulating these factors

(Lin = 4.49 mm).

5.5 Validation of regression model

All implications showed in the above sections are based on the regression model

obtained with 31 designed experiments. To confirm these implications, two validation

approaches were carried out. The first validation (random validation) was performed with

1/3 of computational experiments and all variables were changing randomly. The second

validation (validation of optimum responses) aims to confirm the values of maximum

voltage efficiency for each applied current density. Figure 44 shows the predicted versus

simulated voltage efficiency of the training set and the validation sets.
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Figure 44. Predicted versus simulated voltage efficiency for designed experiments and data validations*.

*Algorithm developed to plot this graph is in Appendix A.

The well-fitting of validation values were reached for voltage efficiency, ohmic and

concentration overpotentials (see Table 26). The rooted mean squared error (RMSE) of

voltage efficiency for both validations was large than those for the designed experiments

set, but are still extremely low when compared with all variations in the experimental
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space. Therefore, Validation 1 proved that the model is robust even in random choices of
variables, especially for voltage efficiency and ohmic overpotential. And Validation 2

confirmed, with low error, the values of maximum voltage efficiency.

Table 26. Figures of merit for validation*

VE 1o e
R? (random validation) 0.9976 0.9992 0.9856
RMSE (random validation) 0.58 1.59 4.05
R? (validation of optimum responses) 0.9971 0.9966 0.9970
RMSE (validation of optimum responses) 0.59 1.71 2.61

*Algorithm developed to determine these metrics is in Appendix A

5.6 Characteristics of the study based on the method of approach

Table 27 shows the complete characteristics of Study 1 based on the method of

approach.

Table 27. Complete characteristics of Study 1 based on the method of approach.

Step Description Checklist
@ Experimental indication of a Energy efficiency loss caused by overpotential
problem and pumping energy consumption
(i) Development of a multi-physical VRFB cell potential model
model. (SoC cut-off)
(iii) Validation of the multi-physical Figure 20
model. (Successfully validated)
(v) Use of chemometric analysis. Multivariate regression analysis
W) Validation of the chemometric Figure 44
analysis. (Successfully validated)
(vi) and (vii) Insights to develop a mitigation Section 5.3
strategy

As we saw in Methodology, the problem of this study is the energy efficiency loss
caused by overpotential (ohmic and concentration) and by pumping energy consumption.
Indeed, we observed that the pumping energy consumption is low to decrease the battery
efficiency in the studied scale. But, the ohmic and concentration overpotentials were very
relevant to voltage loss and, consequent, energy efficiency loss in VRFBs.

Steps (ii) and (iii) are related to the choice of a suitable multi-physical model and its
validation, respectively, as discussed in Methodology. And steps (iv) and (v) are related

to the choice of a chemometric tool and its validation. In this case, the chemometric tool
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was the multivariate regression analysis, which was validated by two types of approaches,
as can be seen in Figure 44. The validation was considered successful because the
predicted values from the regression model are very correlated to the values obtained
from the multi-physical model.

The last steps ((vi) and (viii)), are related to the insights to develop a mitigation
strategy. First, we identified the most important variables (Lin, Lout/Lin, and iappi), then we
understood their pure and interaction effects on voltage efficiency. These insights led us
to conclude that the optimum cell geometry depends on the applied current density. Thus,
we proposed a method to calculate the overall optimal geometry, since it is not reasonable
to modify the cell geometry for each operating condition. Beyond be applying in VRFBs,
the proposed method can be further applied in any type and scale of RFB and for flow-

design (flow-by or flow-through).
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6 A robust mitigation strategy for capacity loss in VRFBs under

different operating conditions

This chapter shows the results of Study 2. The first section shows
a brief introduction to the study. The second section describes
the first considerations about electrolyte viscosity and the
limiting electrolyte. The third section shows the results of 2°
factorial designs. The next section discusses the mitigation
strategy based on the volume transfer between the electrolyte
tanks. Section 6.5 brings the details about the validation of
regression analysis. Finally, the last section describes the
characteristics of Study 2, showing its main consequences.

6.1 Introduction to the chapter

Since the disbalancing of active species leads to the reversible capacity loss in
VRFBs, we added robustness in an already experimentally proposed method of automatic
rebalancing by volume transfer between the electrolyte tanks. First, we carried out a
systematic study to investigate which variables control the capacity loss. Then, we built
a regression model to predict the optimum value of flow velocity between the tanks. We
innovated by (i) coupling multi-physical model and chemometric tools to investigate the
capacity loss in VRFBs; (ii) predicting electrolyte viscosities from literature data and
setting these values in the multi-physical models; (iii) identifying the most important
operating conditions for capacity loss and explaining why they are important; (iii)
proposing a method to calculate the optimum velocity flow between tanks to achieve the
minimum capacity loss in VRFBSs

Figure 45 shows a graphical abstract for Study 2.
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Figure 45. Graphical abstract for Study 2.

6.2 Preliminary considerations

6.2.1 Electrolyte viscosity

The concentration of active species and the concentration of supporting electrolytes
influence the viscosity of electrolytes, as described by Song et al’?. The electrolyte
viscosity determines the pressure gradient between the half-cells and, as consequence, the
cross-contamination by osmosis. Since the concentration of active species is a variable of
this study, it is necessary to evaluate its effect on electrolyte viscosity.

The viscosity of each electrolyte was determined by a regression analysis using
experimental data from literature: 69 points for the negative electrolyte’ " and 71 points
for the positive electrolyte’’®. The experimental data were obtained for different values
of SoC, the concentration of active species and, the concentration of supporting
electrolyte. The values of electrolyte viscosity used in the multi-physical model were the
mean value of electrolyte viscosity in the SoC window for each half-cell. The temperature
was fixed at 298.15 K.
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Figure 46 shows the predicted versus experimental viscosity for each electrolyte. The

experimental data was well-fitted to the quadratic regression analysis for both positive

and negative electrolytes.

Predicted Viscosity (mPa.s)

Predicted Viscosity (mPa.s)

Figure 46. Predicted versus experimental viscosities for (a) negative and (b) positive electrolytes*.
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*Algorithm developed to plot this graph is in Appendix B.

10

The coefficients of determination (R?) of the training set for both regressions are high,

showing the strong correlation between predicted and experimental values. The high R?

of cross-validation for both cases show the capacity and robustness of the quantitative

model to predict the values of electrolyte viscosity.
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6.2.2 The limiting electrolyte

In a VRFB, the cross-contamination leads to the imbalance of active species between
the half-cells. The consequence of such imbalance across the cycles is visualized by the
increasing of maximum negative SoC and decreasing of maximum positive SoC per cycle

(see Figure 47).
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Figure 47. Typical behavior of negative SoC, positive SoC, and global SoC along 40 charge-discharge cycles.
(a) Results obtained from simulation* and (b) experimental results*.

The SoC behavior resulting from the simulation is in agreement with the experimental
behavior portrayed by Luo et al.*® (compare Figure 47(a) and Figure 47(b)).

Since the net cross-contamination occurs from the negative to the positive half-cell.
Thus, the negative SoC decreases across the cycles due to: (i) the passage of species
vanadium from one half-cell to another; and (ii) the higher diffusion coefficient of V3
than V2*:

1 S0Cpeq = —0D__ (148)

Levan+ieyvam
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The excess of vanadium species in the positive half-cell is mostly composed of VO?*
(V(IV)) due to the self-discharge reactions. This explains why the positive SoC decreases
across the cycles:

lCV(V)
lSoC,,, = ————— 149
POS teyayy ey ) (149)
Where ¢y and ¢y are the dischargeable vanadium species and ¢y and
cvavyare the chargeable vanadium species.
Thus, the negative electrolyte - lacking chargeable active species (cy < cyv)) —

limits the charging procedure of the battery (see Figure 48(a)). Whereas, the positive
electrolyte — lacking dischargeable species due to high self-discharge rate (cy )< cy )~

limits the discharging procedure of the battery (see Figure 48(b)).

(a) Charging
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Figure 48. Minimum concentration per cycle for charging (a) and discharging (b) procedures.

Thus, the negative electrolyte is the limiting electrolyte in the charging procedure and

the positive electrolyte is the limiting electrolyte in the discharging procedure.

6.3 Effects of variables on the capacity loss rate

Table 28 shows the values of electrolyte viscosity and capacity loss rate for the 23-

factorial design (from designed experiments of Table 16 in Methodology). The

electrolyte viscosities are the predicted values set in the multi-physical model. The CLrate

is the main response of each designed experiment.

Table 28. Responses of 23 factorial design (Study 2)*.

ID Lneg (MPa S) Upos (MPa s) ClLrate (%0/cycle)
1 3.30 2.92 0.59
2 3.30 2.92 0.50
3 5.30 4.32 0.87
4 5.30 4.32 0.63
5 3.30 2.92 0.57
6 3.30 2.92 0.46
7 5.30 4.32 0.86
8 5.30 4.32 0.61

*Algorithm developed to calculate these responses is in Appendix B.
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Figure 49 shows the percentage of each effect on the response (capacity loss rate)
and a probability graph of the effects.
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Figure 49. (a) Percentage of each effect on the capacity loss rate and cumulative sum and (b) the probability
graph of effects. (1) applied current density; (2) concentration of active species and; (3) volumetric flow. *
*Algorithm developed to plot this graph is in Appendix B.

The most relevant effects to the capacity loss rate were the concentration of active
species (effect 2), the applied current density (effect 1), and the interaction effect (effect
12) between these two variables. The volumetric flow (effect 3) had less than 5% of

contribution to the response, as well as the remaining secondary and tertiary effects.
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Effect of concentration on capacity loss rate. The increase of capacity loss rate is
about 0.20% per cycle when the concentration of active species goes from 1.1 to 1.8 mol
L. Thus, although the increased concentration of active species increases the theoretical
capacity of the cell, it also leads to the acceleration of capacity loss. An explication for
this effect is the increase of diffusional flux across the membrane due to a higher
concentration gradient in the membrane/electrode interface when a larger concentration
of active species is applied. Figure 50 shows the integrated net fluxes - total, diffusional,
migration, and convective - of vanadium species in the membrane/electrode interface for
two different concentrations of active species: 1.10 and 1.80 mol/L.

The fluxes were integrated in the membrane|electrolyte interface region to obtain the
quantity, in mols, of active species that cross the membrane (per unit of area) in each time
of the simulation. To obtain the net fluxes, we just took the mean values of fluxes in all
the calculated times, considering the change of direction in migration and convection

fluxes.

(a) 1.10 mol/L
- | 411))] vaii)
~ 4 4 A
S
S
g 2 A 2 A
- | N
~
Es-’ 0 L T T T T 0 L T T T T
§ total dif mig conv total dif mig conv
= 0 A — 0 4 —
3 -
£ 2 2
B -2 —2
g
I -4
vav) v
toéal dlif mlig colnv toll:al dlif mlig colnv




113

(b) 1.80 mol/L
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Figure 50. Integrated net fluxes (total, diffusional, migration, and convective) across membrane/electrolyte
interface for vanadium species with the initial concentration of (a) 1.10 and (b) 1.80 mol L. dif: diffusional flux;
mig: migration flux; conv: convective flux and; total: the sum of the diffusional, migration and convective flux*.

*Algorithm developed to plot these graphs is in Appendix B.

It is possible to observe the increase of diffusional flux for the four vanadium species
when the concentration of active species goes from 1.1 to 1.8 mol L. On the other hand,
the net migration and convective fluxes vary slightly for these cases. The net convective
and migration fluxes are close to 0 because they change direction depending on the
charging or discharging procedure.

The higher diffusional flux for 1.8 mol L™ accelerates the variation of the V(V)
limiting concentration during discharge, leading to higher capacity loss, as seen in the
dotted lines of Figure 51.
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Figure 51. The V(V) limiting concentration in discharging procedure for 1.10 and 1.80 mol L initial
concentration of active species*.
*Algorithm developed to plot these graphs is in Appendix B.
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This acceleration in the variation of V(V) limiting concentration is highlighted by its
derivative in the function of cycle number (solid lines in the above figure).

Thus, the increase of concentration of active species increases the diffusional fluxes
across the membrane and accelerates the consumption of the limiting active species. As
a consequence, the capacity loss across the cycles increases as concentration increases.
Figure 52 schematizes the effect of the concentration of active species on capacity loss.

Cacr

electrolyte membrane electrolyte membrane

P ® ®
o O O b ¢
o
Integrated flux Integrated flux
Capacity loss

Figure 52. Schematic representation of effect of concentration of active species on the capacity loss due to the
increase of fluxes across membrane.

Effect of applied current density on capacity loss rate. The decrease of capacity loss
rate is about 0.15% when the applied current density goes from 50 to 100 mA cm?.
Despite larger currents increasing the concentration and potential gradients in the
membrane/electrolyte interface, these cases also correspond to shorter charge/discharge
cycles. Thus, the integrated flux over time across the interface is smaller when larger

applied currents are applied (see Figure 53).
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Figure 53. Integrated net fluxes (total, diffusional, migration, and convective) across membrane/electrolyte
interface for vanadium species with an applied current density of (a) 50 and (b) 100 mA cm?#. dif: diffusional flux;
mig: migration flux; conv: convective flux and; total: the sum of the diffusional, migration and convective flux*.

*Algorithm developed to plot these graphs is in Appendix B.

The different integrated flux leads to different limiting concentration profiles, as

shown in Figure 54. As smaller currents lead to smaller integrated fluxes, the decrease

of limiting concentration per cycle is smaller too, explaining why the capacity loss rate

decreased.
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Figure 54. The V(V) limiting concentration in discharging procedure for 50 and 100 mA ¢cm?. *
*Algorithm developed to plot these graphs is in Appendix B.

Thus, the increase of applied current density shortens the charge/discharge cycles,
making fewer species cross the membrane and decreasing the capacity loss per cycle. As
consequence, the capacity loss across the cycles decreases. Figure 55 schematizes the
effect of the concentration of active species on capacity loss.
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Figure 55. Schematic representation of the effect of applied current density on the capacity loss due to the short
of charge/discharge cycles.

Interaction effect between concentration and current on capacity loss rate. The

interaction effect 12 is about -0.05% of capacity loss per cycle. Thus, when both variables
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— applied current density and concentration of active species — are at higher levels, there
is an additional decrease of 0.05% in the capacity loss rate.

Since the applied current density decreases the integrated net fluxes and the
concentration of active species increases the integrated net fluxes; this interaction effect
indicates that the increasing of applied current densities is sufficient to decrease the
integrated net fluxes caused by the increase of concentration. Thus, when a high
concentration of active species is used, the use of larger applied current densities is an
option to mitigate the increased capacity loss rate. Figure 56 schematizes the interaction
effect between applied current density and concentration of active species on capacity

loss.
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Figure 56. Schematic representation of interaction effect between applied current density and concentration of
active species.
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6.4 Mitigation strategy

6.4.1 Evaluating the volume transfer between electrolyte tanks

Since the variables that affect the capacity loss are known (concentration of active
species and applied current density), is possible to apply the mitigation strategy. This
strategy consists of the volume transfer between the electrolyte tanks in the inverse

direction of net cross-contamination (see Figure 57).

Volume transfer
—

Negative Positive
half-cell half-cell

VO** + V2 + 2H* - 2V3F + H,0

VO3 + 2V¥ + 4H™ - 3V3* + 2H,0

V(III) rebalancing

Figure 57. Scheme of mitigation strategy of capacity loss in VRFBs based on volume transfer between
electrolyte tanks.

This strategy is only possible because of self-discharge reactions that take place in
the negative half-cell. The VO2* (V(V)) and VO?* (V(IV)) react with V2* - in excess in
the negative half-cell - producing V**, initially in a small quantity. This process leads to
the rebalancing of V** in the negative half-cell especially by the consumption of V(IV).
Because of this, it is expected partial or total mitigation of capacity loss by using this
strategy. However, the suitable velocity of volume transfer between the electrolyte tanks
must be determined. For this, we changed the parameter v, in one order of magnitude to
evaluate the capacity loss (see Figure 58).
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Figure 58. (a) Discharge capacity versus cycle number for different values of velocity between tanks and (b)
capacity loss rate versus vp parameter.*
*Algorithm developed to plot these graphs is in Appendix B.

For the case without volume transfer (vp = 0) it was observed the expected capacity
loss at a rate of 0.59% per cycle. For the cases with volume transfer between tanks, the
capacity loss rate decreased slightly when v, = 1 m/s and approximates to 0% when v, =

5 m/s. This indicates that capacity loss can be completely mitigated by the proposed
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strategy. But it is necessary to choose properly the velocity between tanks because if high
velocities are used, the capacity loss rate increases again (see the cases for v, = 10 and 10
m/s). Thus, there is a region of the minimum that indicates the optimum velocity between

tanks.

6.4.2 Searching optimum flow velocity between tanks

As we saw in the previous sections, the concentration of active species and the applied
current density affect the capacity loss in a VRFB cell. We also observed that is a region
of optimum velocity between tanks for a given operating situation. The purpose now is
to turn our strategy general by finding the optimum velocity between tanks for any
condition of concentration and current. For this, a regression analysis was performed
based on a Doehlert design of experiments (from Table 17 in Methodology). Table 29

shows these results.

Table 29. All responses from Doehlert design (Study 2)*

ID CLrate (%/cycle)? CL (%)®
1 0.0010 0.04
2 0.4515 19.42
3 0.0767 4.60
4 0.3621 16.30
5 0.0924 2.13
6 0.3987 9.17
7 0.1130 7.23
8 0.1532 5.82
9 0.1024 4.81
10 0.1676 7.71
11 0.0370 2.63
12 0.1382 5.53
13 0.0109 0.25
14 0.0052 0.18
15 0.0589 141

#Calculated based on the first 20th cycles
®|100-discharge capacity| at 20th cycle
*Algorithm developed to calculate responses is in Appendix A

Figure 59 shows three stacked contour plots for capacity loss of vp versus applied
current density for three different concentrations of active species.
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Figure 59. Contour graphs stack (4D plot) of vp versus applied current density versus concentration of active
species for capacity loss. The capacity loss was determined by |100 — discharge capacity at 20th|*.
*Algorithm developed to plot these graphs is in Appendix B.

Three distinct cases can be identified in the above figure. The coordinates are

described as (Vp(M/s), iappl (MA/CM?), Cact(Mol/L)).

(1) (3, 75, 1.75). The chosen velocity between tanks leads to a capacity loss equal to
zero, in a global minimum region. If a higher value of vp is used (x-direction), the
capacity loss increases.

(2) (10, 45, 1.45). The chosen velocity between tanks leads to a larger capacity loss
located in the maximum region in the x-direction. If a low value of v; is used (x-
direction), the capacity loss decreases but does not reach zero.

(3) (2, 60, 1.15). The chosen velocity between tanks leads to a small capacity loss
different from zero, in the minimum region in the x-direction. If a high value of
vp is used (x-direction), the capacity loss increases.

Thus, not all combinations of iappi/Cact Will lead to null capacity loss, but regions of
the minimum are always identified in this experimental space. That way, it is possible to
identify the optimum velocity between tanks for any combination of variables by simply
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choosing the value of applied current density and concentration of active species and
identifying the region of minimum capacity loss. Figure 60 shows this process for the

three cases under study.
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Figure 60. Capacity loss versus vp for the three different cases. *
*Algorithm developed to plot these graphs is in Appendix B.

The optimum velocity between tanks varies slightly for the three cases portrayed in
the above figure. Thus, despite applied current density and concentration of active species
influencing the capacity loss, the optimum velocity between tanks is very close to a range
of variable values.

As previously mentioned, just for case (1) and case (2) the optimum velocity between
tanks led to null — or close to zero — capacity loss. In case (3), there was a minimum in

capacity loss, but it is different from zero (close to 2%).

6.5 Regression analysis validation

The validation of regression analysis was performed using a random combination of
variables. Figure 61 shows the predicted versus simulated capacity loss for the test and
train sets. The train set is used to determine the coefficients of the regression model and

the test set is used for validation.
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Figure 61. Predicted versus simulated capacity loss for test and train sets*.
*Algorithm developed to plot this graph is in Appendix B.

The coefficient of determination (R?) for the train set shows a well-fitting between

simulated and predicted capacity loss. The R? for the test set demonstrated the capacity

of the regression analysis in predicting the capacity loss even in random changes in the

studied variables.

6.6 Characteristics of the study based on the method of approach

Table 30 shows the complete characteristics of Study 2 based on the method of

approach.

Table 30. Complete characteristics of Study 2 based on the method of approach.

Step Description Checklist
@ Experimental indication of a problem Capacity loss caused by cross-
contamination
() Development of a multi-physical model. VRFB capacity loss model
(Voltage cut-off)

(iii) Validation of the multi-physical model. Figure 19
(Successfully validated)

(iv) Use of chemometric analysis. Factorial design and regression analysis

W) Validation of the chemometric analysis. Figure 61
(Successfully validated)

(vi) and (vii)  Insights to develop a mitigation strategy Section 6.3
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As we saw in the Methodology, the problem of this study is the capacity loss caused
by the cross-contamination at the membrane interface. A suitable multi-physical model
to simulate this condition was successfully developed and validated. For this study, two

chemometric analysis was carried out:

Q) Factorial design, for the determination of the most important variables that
affect the capacity loss in VRFBs. These variables are the applied current
density and the concentration of active species.

(i) Regression analysis, for the testing the robustness of the proposed mitigation
strategy by predicting the values of capacity loss caused by the applied current
density, concentration of active species, and the flow velocity between the
electrolyte tanks. The validation of regression analysis was made by
comparing the simulated and predicted capacity losses. This validation was
considered successful because the predicted values from the regression model
are very correlated to the values obtained from the multi-physical model.

The proposed method allowed us to understand the impacts of operating conditions
on VRFBs’ capacity loss and how the mitigation strategy behaved in these conditions.
(steps (vi) and (vii)). Thus, we contributed to an already proposed mitigation strategy’®
by studying it in several conditions and by providing a theoretical background to show
the potentialities of this strategy. By this process, we also provide a method to calculate
the optimum conditions to achieve the smallest possible capacity loss and, as
consequence, improve the operational life of VRFBs.
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7. Insights into the effects of active species properties on the voltage

efficiency of redox flow batteries

This chapter shows the results of Study 3. The first section shows
an introduction to the study. The second section describes how
real and different active species behave in the RFB general
model. The last section brings the results of 2° fractional
factorial design, discussing the consequences of choosing
different active species for RFBs and showing which properties

are more important.

7.1 Introduction to the chapter

Despite the use of metal-based active species (e.g., vanadium), the use of organic
active species — or redox organic molecules (ROMs) — for RFB application is highly
targeted due to the high adaptability of chemical and physical properties®®%7, This
allows the modification of properties aiming at the improvement of performance. In this
section, we discuss the main characteristics in the choice and development of active

species and show their consequences on RFBs’ performance.

(i) Solubility. Solubility is a factor of great interest in RFBs, as it determines the

magnitude of the capacity and energy density of the system defined as, respectively:

C =nFcy (150)

E=UC (151)
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Where n is the electrons transferred in the electrochemical reaction, F is the Faraday’s
constant, Cact IS the concentration of active species and U is the theoretical cell redox
potential. The concentration of active species is related to solubility since the solubility
dictates the maximum concentration.

In the context of organic compounds, given their functional adaptability, solubility
can be improved so that there is an increase in solute-solvent interactions?® There are still
other factors that govern the solubility of active species, such as the temperature of the
system, its state of charge (oxidized or reduced), and competition with the supporting

electrolyte used.

(if) Redox Potential. As well as solubility, the redox potential also determines the

magnitude of the energy density (Equation 151) and, additionally, the power density:

p=" (152)

Where iq is the discharging current and a is the active area of the battery.
To improve both metrics is necessary to choose anolytes with high negative redox

potential (Egpnoryte < 0) and catholytes with positive redox potential (Ecqtnoryte > 0)

since,

U= Ecatholyte - Eanolyte (153)

For ROMs, the redox potential is governed by the energy levels of the HOMO
(oxidation) and LUMO (reduction) orbitals®. Once again, the functional adaptation allows
for changes in the energies of these boundary orbitals, allowing the improvement of the
redox potential. The principle of this modification is based on functionalization using
electron-donating (EDG) or electron-withdrawing groups (EWG). In general, EDG
provides electrons to the redox centers resulting in a decrease in potential’®”, whereas
EWG shift the redox potential to more positive values due to an increase in the electron
affinity of the molecule %7, Figure 62 shows an example of this type of modification for

pyrylium ions with different substitutions in R,. The data was obtained from literature'®,
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Figure 62. Relationship between the half-wave potential in cyclic voltammetry and the substituent R2. Data
from108,

The nitro Rz-substitution increases the redox potential in 140 mV regarding H R»-
substitution, whereas the methoxy substitution in R2 decreases the redox potential in 80
mV. Thus, the methoxy-substituted pyrylium ion is a better anolyte than the H-
substituted. And the nitro-substituted pyrylium ion is a batter catholyte than the H-
substituted.

(iii) Stability. The chemical stability of the products generated in the electron transfer
process (oxidation or reduction) is one of the biggest challenges when it comes to the
application of ROMs in RFBs. In many cases, the loss or gain of electrons by the molecule
causes the formation of unstable radicals, which react generating electrochemically
irreversible species®®3. Such chemical processes will be reflected in the loss capacity

across the cycles.

These three properties, solubility, redox potential, and stability of electron-generated
radicals are the target properties in the choice of a suitable active species for RFB
application, due to the metrics discussed above. However, there is a lacking of

understanding in:

0] How solubility and redox potential affects the voltage efficiency in RFBs;
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(i) How mass (diffusion coefficient) and electron transfer (standard
electrochemical constant rate) properties also affect the RFB’s performance;
(i) Which are the most relevant target properties in the choice of suitable active

species for RFB application.

Based on the aforementioned information, we carried out a study to investigate how
active species properties affect the voltage efficiency and, as a consequence, the energy
efficiency of RFBs. We innovated by (i) coupling multi-physical model and chemometric
tools to investigate the effect of active species properties in RFBS; (ii) developing a multi-
physical model capable of simulating any combination of anolyte/catholyte to obtain
performance data; and (iii) providing a robust theoretical background to understand the
impacts of active species choosing in RFBs’ performance.

Figure 63 shows a graphical abstract for Study 3.

Challenges Active Species Efficiency

Electron
transfer (k)

. transfer (D) ‘ o
otentia

Figure 63. Graphical abstract for Study 3.

7.2 Analyzing real active species in the set boundary conditions

The starting point to understand the effects of active species properties on voltage
efficiency is to simulate how real active species behave in the set boundary conditions.
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Figure 64 shows the voltage efficiency versus applied current density for the three studied

systems.
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Figure 64. Voltage efficiency versus applied current density for three combinations of anolytes and catholytes
simulated in a steady-state multi-physical model.

Considering the same anolyte MV (methyl-viologen), the change of catholyte from
4-OH-TEMPO to FcNCI modified the behavior of voltage efficiency versus applied
current density. For MV/4-OH-TEMPO the voltage efficiency goes from 80% at 50 mA
cm? to 53% at 150 mA cm?, a difference of 27%. Whereas in the MV/FcNCI, the voltage
efficiency goes from 76% to 44% in the same conditions, a difference of 32%. 4-OH-
TEMPO has a larger diffusion coefficient, standard electrochemical rate constant, and
standard reduction potential (see Table 31). This explains why the combination MV/4-
OH-TEMPO presented an improved behavior compared to MV/FcNCI, but does not
identify which active species property has the important role in performance. To answer
this last question, it is necessary a systematic study, as shown in the next section.

The all-vanadium system shows an even lower voltage efficiency, especially because
of the sluggish electrochemical kinetics of both redox couple V?*/V3* and VO?*/VO,*.
There is a big difference between the all-vanadium and MV/FcNCI voltage efficiency

considering that just the anolytes have big differences in the properties (see Table 31).
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Table 31. Active species selected for Study 3

ID"f Class D (X10% cm?sh2  k° (X10® cms?t)? E° (V vs NHE)®
Methyl viologen® Anolyte 25.7 280 -0.45
4-OH-TEMPO% Catholyte 29.5 260 0.80

FcNCI* Catholyte 3.7 3.6 0.61
VIOWUDE Anolyte 2.4 7.0 -0.25
V(IVV(V) ™ Catholyte 3.9 2.5 1.00

a Diffusion coefficient in water at 25°C, ® Glassy carbon electrode, ¢ Approximated from half-wave potential.

Thus, despite VRFBs being the most developed RFBs — especially because of the
reversible capacity loss — it is clear that alternative active species can be applied to RFBs
aiming the performance optimization.

We showed that active species properties have a great influence on voltage efficiency,

in the next section the most important properties are identified and discussed.

7.3 Effects of active species on voltage efficiency

Table 32 shows the values of voltage efficiency and overpotential for the 2°-

factorial design (from designed experiments of Table 21).

Table 32. Responses for 25 factorial
design of six variables (Study 3)

ID  VE®%) 7 (mV)
1 53.80 84.49
2 69.45 2.35
3 56.79 81.40
4 68.42 0.33
5 68.08 83.52
6 76.76 2.46
7 67.55 82.05
8 79.66 0.32
9 38.91 120.52
10 51.41 4.72
11 37.50 119.57
12 57.22 0.51
13 52.17 125.06
14 67.72 3.80
15 55.89 116.97
16 66.32 0.59

17 63.36 4491




ID  VE®%) 7 (mV)
18 69.82 1.18
19 63.52 43.99
20 73.56 0.16
21 72.97 45.06
22 80.16 1.17
23 75.14 43.88
24 80.15 0.16
25 4559 69.45
26 58.16 1.88
27 4958 67.22
28 57.94 0.26
29 61.70 68.91
30 68.01 1.94
31 61.75 67.59
32 72.03 0.25

*Algorithm developed to calculate these responses is in Appendix C
2Concentration overpotential plus activation overpotential
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Figure 65 shows the primary and secondary effects of two operating conditions —

applied current density (iapp1) and volumetric flow (@) — and four active species properties
— standard electrochemical rate constant (k°), diffusion coefficient (D), the concentration
of active species (Cact) (related to solubility) and standard redox potential (E°) — to the

voltage efficiency. The most important effects (percentage > 5%) are iapp (24%), E°

(22%), k° (19%) and Cact (10%).
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Figure 65. (a) Percentage of each effect on the voltage efficiency and cumulative sum and (b) the probability
graph of effects*. (1) standard electrochemical rate constant (k°), (2) Diffusion coefficient (D), (3) Standard redox
potential (E®), (4) Applied current density (iappi), (5) Concentration of active species (Cact) and (6) volumetric flow

().
*Algorithm developed to plot this graph is in Appendix C.

Effect of applied current density on voltage efficiency. As already discussed in Study
1, the contribution of iappi to decrease voltage efficiency (effect 4 = -13.58% VE) is related
to the increase of ohmic and concentration overpotentials when large applied current

densities are applied.

Effect of standard redox potential on voltage efficiency. If two distinct systems have
the same k° and D and are operating at the same conditions of iappi, @ and Cact, but have
different redox potentials, the voltage efficiency is different. This conclusion arises from
the effect of variable E° (effect 3 = 11.94% VE) going from 0.4 to 0.6 V (absolute value
from both anolyte and catholyte). This is because the overpotential in the two cases is
equal, but the charging and discharging Nernstian potential are different. Thus, the
overpotential has a minor effect on the system with high redox potential, leading to a
better voltage efficiency:

VE :Ed,1—77
LBt g S BB, >E
Ey,-n @ Ba1 > Eaz Bea > Bca (154)
VE, = 2%
Ecotm

Where E ; is the mean discharging Nernst potential for each system, E_ ; is the mean

charging Nernst potential for each system and 1 is the total overpotential.
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Thus,

VE, > VE, (155)

Thus, in addition to increasing the energy density and power density, higher absolute
redox potentials also increase voltage efficiency.

Effect of standard electrochemical rate constant on voltage efficiency. The increase
of voltage efficiency caused by the increase of k° (effect 1 = -10.78% VE) is related to
the decrease of activation overpotential. Figure 66 shows the activation overpotential
versus the logarithm of k°.
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Figure 66. Activation overpotential versus the logarithm of the standard electrochemical rate constant.

When k° goes from 5X10° cm/s (logk® = -5.3) to 5X10° cm/s (logk® = -2.3), the
activation overpotential decreases about 60 mV. This data shows the importance of
choosing molecules that undergo facile electrochemical reactions to improve the energy
efficiency. However, the behavior of the activation overpotential is not linear; thus, there
is a large range of values from 1X10*cm/s (logk® = -4) to 0.03 cm/s (logk® = -1.5) where

the activation overpotential is low enough.
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Effect of concentration of active species on voltage efficiency. As k°, the increase of
concentration of active species decreases the activation overpotential (see Figure 67).
The effect of both variables is a consequence of the definition of activation overpotential
when a = 0. 5%:

I

— (156)
2aFVekj /C(J)xcrj'ed

Where j is the half-cell (negative or positive), a is the specific surface area of the

j  _ | 2RT . ., _4
Maee = £~ sinh

electrode, Ve is the total volume of the electrode, | is the applied current, cox is the
concentration of oxidized species and Creq iS the concentration of reduced species in the
bulk.
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Figure 67. (a) Percentage of each effect on the overpotential (concentration plus activation) and cumulative

sum and (b) the probability graph of effects*.
*Algorithm developed to plot this graph is in Appendix C

Most important properties. We demonstrated that redox potential, standard

electrochemical rate constant, and solubility (represented by the concentration of active

species) are the most important active species properties for the improvement of voltage

efficiency.
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8 CONCLUSIONS

The computational approach suggested by this study provided a deep understanding
of some problems related to the performance of redox flow batteries. The obtained
knowledge drives us to suggest strategies and methods to mitigate the capacity loss and
the voltage loss in VRFBs. Beyond that, we could understand in more detail the effects
of choosing active species on the RFBs’ performance.

For Study 1, we demonstrated the effects of geometric parameters in voltage loss in
VRFBs. The most important variables are the inlet electrode thickness and the trapezoidal
parameter Lout/Lin. We also showed that interaction effects between geometric parameters
and operating conditions are important to voltage efficiency. Because of this, the optimal
geometric condition depends on applied current densities. Since it is impossible to change
the geometry of the cell for each applied current density, we propose a method to calculate
the overall optimal geometry. For the studied scale, this geometry is rectangular and the
optimal electrode thickness is about 4.5 mm.

For Study 2, we demonstrated that the concentration of active species and the applied
current density are the most important variables that affect the capacity loss in VRFBs.
Based on this understanding, we could provide a robust mitigation strategy based on the
volume transfer between tanks in the reverse direction of net cross-contamination. The
proposed strategy was successful in the mitigation of capacity loss in several
combinations of applied current density and concentration, despite the capacity loss was
not null at some conditions.

Therefore, we provide a set of theoretical backgrounds for experimentalists to
understand the effects of several variables in the performance of redox flow batteries. We
acknowledge that the proposed approach will be useful, with further experimental
validation of the obtained results, for the determination of (i) optimal geometric design
for any scale and type of RFB and different flow-designs, aiming at the minimization of
operational costs; (ii) the bests conditions to mitigate the capacity loss in VRFBs for any
scale, aiming the increasing of operational life.

For Study 3, we could provide a systematic understanding of how the choice of active
species affects the energy efficiency of redox flow batteries, and not just the capacity,

energy density, and power density. The most important variables were the concentration
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of active species (related to the solubility), the standard electrochemical rate constant, and
the redox potential. Based on this, we provide (i) useful information for experimentalists
in the design of new active species and (ii) a multi-physical model capable of simulating

different combinations of anolyte/catholyte to obtain performance metrics.
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Algorithm to calculate the responses from COMSOL files (Table 22)
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The following algorithm (in python) was developed for the calculations of

efficiencies (coulombic, voltage, energetic, and battery) based on the multi-physical

model.

Input files: (COMSOL files) cell potential versus time, faradaic current versus time

and pump power versus time.

### importing libraries

import pandas as pd

import numpy as np

from scipy.signal import find_peaks
from scipy.integrate import trapz
import matplotlib.pyplot as plt

### reading files

Vt = input('Name of file V versus time:’)

it = input('Name of file i versus time:")

ppump = input('Name of file p_pump versus time:')
file_Vt = 'inputname.txt'.replace('inputname’,Vt)

file_it = inputname.txt'.replace('inputname’,it)

file_ppump = "inputname.txt'.replace(‘inputname’,ppump)
dfl_raw = pd.read_csv(file_Vt,skiprows=(7))

df2_raw = pd.read_csv(file_it,skiprows=(7))

df3_raw = pd.read_csv(file_ppump,skiprows=(7))

dfl = df1l_raw.rename(columns={'% X":'time','Height":'V'})
df2 = df2_raw.rename(columns={'% X":'time','Height"'i'})
df3 = df3_raw.rename(columns={"% X":'time','Height":'P_pump'})

### differentiation of discrete values of V versus time data (for time peak determination)
x_V = list(df1['timeT)
y_V = list(df1['V'])

dydx_V=[]

for i in range(len(x_V)):

if i==0:
dx=x_V[i:i+2]
dy=y_VI[i:i+2]
order=1

elif i==len(x_V)-1:
dx=x_VIi-1:i+1]
dy=y_VIi-1:i+1]
order=1

else:
dx=x_VI[i-1:i+2]
dy=y_VI[i-1:i+2]
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order=2
z=np.polyfit(dx,dy,len(dx)-1)
f=np.polyld(z)
df=np.polyder(f)
dydx_V.append(float(df(x_V[i])))
dydx_V=np.array(dydx_V)

### finding peaks charge/discharge
peaks = find_peaks(abs(dydx_V),height=0.000005,threshold=0.000005)
height = peaks[1]['peak_heights']
if height.shape[0] == 1:
height = np.append(peaks[1]['peak_heights],peaks[1]['peak_heights')

peak_pos = np.array(x_V)[peaks[0]]
if peak_pos.shape[0] == 1:
peak_pos = np.append(np.array(x_V)[peaks[0]],x_V[len(x_V)-1])

### plotting peaks

fig = plt.figure()

ax = fig.subplots()

ax.plot(x_V,abs(dydx_V),-k', label = 'Time derivative')
ax.scatter(peak_pos, height, color ='r', s = 15, marker = 'D', label = 'Peaks")
ax.legend()

ax.grid()

### calculating capacity loss

step_time =]

step_time.append(peak_pos[0])

z_ite=0

for i in range(len(peak_pos)):
if z_ite == len(peak_pos)-1:

break

step_time.append(peak_pos[z_ite+1]-peak_pos[z_ite])
z ite+=1

discharge_time = step_time[1:len(step_time):2]

capacity_loss =]

for i in range(len(discharge_time)):
capacity_loss.append(100*discharge_time[i]/discharge_time[0])

### preparing index, dataframes arrays for efficiencies calculation
discharge_steps = peak_pos[1:len(peak_pos):2]
charge_steps = peak_pos[0:len(peak_pos):2]

remove_duplicated_times_V = ~dfl.duplicated(subset="time")
dfl_corr = df1[remove_duplicated_times_V]

time_V = np.array(dfl_corr['timeT)

potential = np.array(dfl_corr['V'])

remove_duplicated_times_i = ~df2.duplicated(subset="time")
df2_corr = df2[remove_duplicated_times_i]

time_i = np.array(df2_corr['time])

current = np.array(df2_corr['i'])

remove_duplicated_times_P_pump = ~df3.duplicated(subset="time")
df3_corr = df3[remove_duplicated_times_P_pump]

time_P_pump = np.array(df3_corr['time)

P_pump = np.array(df3_corr['P_pump'])

charge_time = step_time[0:len(step_time):2]

a=0
index_discharge =[]
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while a < discharge_steps.shape[0]:
for i in range(time_V.shape[0]):
if time_V[i] == discharge_steps[a]:
index_discharge.append(i)
a+=1

b=0
index_charge =[]
while b < (charge_steps.shape[0]):
for i in range(time_V.shape[0]):
if time_V/[i] == charge_steps[b]:
index_charge.append(i)
b+=1

##t# calculating voltage efficiency
Avg_V =]
Avg_V .append((trapz(potential[0:index_charge[0]],x=time_V/[0:index_charge[0]]))/charge_time[0])

e=0
x_ite=1
n = int((discharge_steps.shape[0]+charge_steps.shape[0])/2-1)
for i in range(n+1):
if e == len(discharge_time):
break
Avg_dis =
(trapz(potential[index_charge[e]:index_discharge[e]],x=time_V/[index_charge[e]:index_discharge[e]]))/discharge_ti
me[e]
Avg_V.append(Avg_dis)
if x_ite == len(charge_time):
break
Avg_cha =
(trapz(potential[index_discharge[e]:index_charge[x_ite]],x=time_V[index_discharge[e]:index_charge[x_ite]]))/charg
e_time[x_ite]
Avg_V.append(Avg_cha)
e+=1
X_ite +=1

VE_prev =[]

for i in range(len(Avg_V)-1):
h = 100*Avg_VIi+1])/Avg_V[i]
VE_prev.append(h)

VE = VE_prev[0::2]

### calculating coulombic efficiency

Q=0

f=0
y_ite =1

for i in range(n+1):
Q_cha = current.mean()*step_time[f]

Q.append(Q_cha)
Q_dis = current.mean()*step_time[y_ite]

Q.append(Q_dis)
f+=1
y_ite+=1

CE_prev =]

for i in range(len(Q)-1):
g = 100*Q[i+11/Q[i]



CE_prev.append(g)

CE = CE_prev[0::2]

#it#calculating energy efficiency

EE =]

k=0

for i in range(len(VE)):
| = VE[K]*CE[k]/100
EE.append(l)
k+=1

#calculating pumping energy consumption in Joules

E_cons =]

E_cons.append(trapz(P_pump[0:index_charge[0]],x=time_P_pump[0:index_charge[0]]))

m=0
zite=1

for i in range(n+1):
if m == len(discharge_time):
break
E_cons_dis =

trapz(P_pump[index_charge[m]:index_discharge[m]],x=time_P_pump[index_charge[m]:index_discharge[m]])

E_cons.append(E_cons_dis)

if z_ite == len(charge_time):
break

E_cons_cha =
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trapz(P_pump[index_discharge[m]:index_charge[z_ite]],x=time_P_pump[index_discharge[m]:index_charge[z_ite]])

E_cons.append(E_cons_cha)
m+=1
z ite+=1

#it#calculating battery efficiency
E=[]

E.append(Avg_V[0]*Q[0]-E_cons[0])
E.append(Avg_V[1]*Q[1]-E_cons[1])

n_ite=2
0 ite=3

for i in range(n):
if n_ite == len(Avg_V):
break
E_cha = Avg_V[n_ite]*Q[n_ite]+E_cons[n_ite]
E.append(E_cha)
if o_ite == len(Avg_V):
break
E_dis = Avg_V[o_ite]*Q[o_ite]-E_cons[o_ite]
E.append(E_dis)
n_ite +=2
0_ite+=2

BE_prev =1]

p_ite=0

for i in range(len(E)-1):
g_const = 100*E[i+1]/E[i]
BE_prev.append(g_const)

BE = BE_prev[0::2]
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#it#creating and exporting DataFrames
n_cycles = np.arange(1,n+2,1)
capacity_loss_df = pd.DataFrame({'n_cycles':n_cycles, 'capacity_loss":np.array(capacity_loss)})

efficiencies_df = pd.DataFrame({'n_cycles":n_cycles,'voltage efficiency':np.array(VE),'coulombic
efficiency':np.array(CE),'energy efficiency':np.array(EE),
'battery efficiency':np.array(BE)})

efficiencies_df.to_csv(‘efficiencies_df.txt',sep="\t',decimal=",",index=False)

#it#plotting graphs

figl,ax1 = plt.subplots()
ax1l.plot(n_cycles,np.array(VE),'bo',label = 'Voltage")
ax1l.plot(n_cycles,np.array(CE),'ro',label = '‘Coulombic’)
ax1.plot(n_cycles,np.array(EE),'go’,label = 'Energy’)
ax1.plot(n_cycles,np.array(BE),'ko',label = 'Battery")
ax1.set(xlabel = 'Cycle number',ylabel = 'Efficiency(%)', title = 'Efficiencies’)
plt.xlim(0,n)

plt.xticks(n_cycles+1)

plt.ylim(40,105)

plt.legend()

plt.savefig(efficiencies.png’)

#itselecting data from first cycle
cyclel =[CE[0],VE[0],EE[0],BE[0],E_cons[0]]
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The following algorithm (in python) was developed for the calculations of
activation and concentration overpotentials based on multi-physical model output files:
cell voltage, concentration overpotential and activation overpotential. The calculated

value is the mean overpotential in discharging procedure.

Input files: activation overpotential versus time, concentration overpotential versus

time and cell potential versus time.

#i## importing libraries

import pandas as pd

import numpy as np

from scipy.signal import find_peaks
import matplotlib.pyplot as plt

##t# reading files

eta_t = input('Name of file eta versus time:")

Vt = input('Name of file V versus time:')

file_eta_t = 'inputname.txt'.replace(‘inputname’,eta_t)
file_Vt ="inputname.txt'.replace('inputname’,Vt)

dfl_raw = pd.read_csv(file_Vt,skiprows=(7))

df4_raw = pd.read_csv(file_eta_t,skiprows=(7))

dfl = df1l_raw.rename(columns={'% X':'time','Height":'V'})
df4 = df4_raw.rename(columns={'% X":'time','Height":'eta'})

### differentiation of discrete values of V versus time data (for time peak determination)
x_V = list(df1['time)
y_V = list(df1['V'])

dydx_V=[]

for i in range(len(x_V)):
if i==0:
dx=x_VI[i:i+2]
dy=y_VI[i:i+2]
order=1
elif i==len(x_V)-1:
dx=x_V[i-1:i+1]
dy=y_VIi-1:i+1]
order=1
else:
dx=x_V[i-1:i+2]
dy=y_VI[i-1:i+2]
order=2
z=np.polyfit(dx,dy,len(dx)-1)
f=np.polyld(z)
df=np.polyder(f)
dydx_V.append(float(df(x_V[il)))
dydx_V=np.array(dydx_V)

### finding peaks charge/discharge
peaks = find_peaks(abs(dydx_V),height=0.000005,threshold=0.000005)
height = peaks[1]['peak_heights']
if height.shape[0] == 1:
height = np.append(peaks[1]['peak_heights'],peaks[1]['peak_heights')



peak_pos = np.array(x_V)[peaks[0]]
if peak_pos.shape[0] == 1:
peak_pos = np.append(np.array(x_V)[peaks[0]],x_V[len(x_V)-1])

#it# preparing index, dataframes arrays
discharge_steps = peak_pos[1:len(peak_pos):2]
charge_steps = peak_pos[0:len(peak_pos):2]

step_time =]
for i in range(len(peak_pos)-1):
step_time.append(-peak_pos[i]+peak_pos[i+1])

discharge_time = step_time[1:len(step_time):2]
charge_time = step_time[0:len(step_time):2]

remove_duplicated_times_V = ~dfl.duplicated(subset="time")
dfl_corr = dfil[remove_duplicated_times_V]

time_V = np.array(dfl_corr['timeT)

potential = np.array(df1_corr['V'])

remove_duplicated_times_eta = ~df4.duplicated(subset="time")
df4_corr = df4[remove_duplicated_times_eta]

time_eta = np.array(df4_corr['time'])

overpotential = np.array(df4_corr['eta])

charge_time = step_time[0:len(step_time):2]

a=0
index_discharge = []
while a < discharge_steps.shape[0]:
for i in range(time_V .shape[0]):
if time_V/[i] == discharge_steps[a]:
index_discharge.append(i)
a+=1

b=0
index_charge =[]
while b < (charge_steps.shape[0]):
for i in range(time_V .shape[0]):
if time_V/[i] == charge_steps[b]:
index_charge.append(i)
b+=1

### selecting overpotential from the first cycle

charge= pd.DataFrame({'time": time_eta[0:index_charge[0]],
‘overpotential: overpotential[0:index_charge[0]]})

discharge= pd.DataFrame({'time": time_eta[index_charge[0]:index_discharge[0]],
‘overpotential: overpotential[index_charge[0]:index_discharge[0]]})

#it#data output

eta = 1000*abs(discharge['overpotential']).mean
print(eta)
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The following algorithm (in python) was developed for the calculations of ohmic
overpotential based on multi-physical model. The calculated value is the mean
overpotential in discharging procedure.

Input files: cell potential versus time and ohmic overpotential versus time.

### importing libraries

import pandas as pd

import numpy as np

from scipy.signal import find_peaks

#it# reading files

V_ohm = input('Name of file V_ohm versus time:')

V1t = input('Name of file V versus time:')

file_V_ohm ="inputname.txt'.replace('inputname’,V_ohm)
file_Vt ="inputname.txt'.replace('inputname’,VVt)

dfl_raw = pd.read_csv(file_Vt,skiprows=(7))

df4_raw = pd.read_csv(file_V_ohm,skiprows=(7))

dfl = df1l_raw.rename(columns={'% X':'time','Height":'V'})

df4 = df4_raw.rename(columns={'% X":'time','Height":''V_ohm'})

#i#t# differentiation of discrete values of V versus time data (for time peak determination)
x_V = list(df1['timeT)
y_V = list(df1['V'])

dydx_V=[]

for i in range(len(x_V)):
if i==0:
dx=x_VI[i:i+2]
dy=y_VI[i:i+2]
order=1
elif i==len(x_V)-1:
dx=x_V[i-1:i+1]
dy=y_VIi-1:i+1]
order=1
else:
dx=x_VI[i-1:i+2]
dy=y_VI[i-1:i+2]
order=2
z=np.polyfit(dx,dy,len(dx)-1)
f=np.poly1d(z)
df=np.polyder(f)
dydx_V.append(float(df(x_V[il)))
dydx_V=np.array(dydx_V)

### finding peaks charge/discharge

peaks = find_peaks(abs(dydx_V),height=0.000005,threshold=0.000005)
height = peaks[1]['peak_heights']

if height.shape[0] == 1:



height = np.append(peaks[1]['peak_heights],peaks[1]['peak_heights'])

peak_pos = np.array(x_V)[peaks[0]]
if peak_pos.shape[0] == 1:
peak_pos = np.append(np.array(x_V)[peaks[0]],x_V[len(x_V)-1])

#it# preparing index, dataframes arrays
discharge_steps = peak_pos[1:len(peak_pos):2]
charge_steps = peak_pos[0:len(peak_pos):2]

step_time =]
for i in range(len(peak_pos)-1):
step_time.append(-peak_pos[i]+peak_pos[i+1])

discharge_time = step_time[1:len(step_time):2]
charge_time = step_time[0:len(step_time):2]

remove_duplicated_times_V = ~dfl.duplicated(subset="time")
dfl_corr = dfi1[remove_duplicated_times_V]

time_V = np.array(df1_corr[timeT)

potential = np.array(df1_corr['V'])

remove_duplicated_times_V_ohm = ~df4.duplicated(subset="time")
df4_corr = df4[remove_duplicated_times_V_ohm]

time_V_ohm = np.array(df4_corr['time'])

V_ohm = np.array(df4_corr['V_ohmT)

charge_time = step_time[0:len(step_time):2]

a=0
index_discharge = []
while a < discharge_steps.shape[0]:
for i in range(time_V .shape[0]):
if time_V/[i] == discharge_steps[a]:
index_discharge.append(i)
a+=1

b=0
index_charge =[]
while b < (charge_steps.shape[0]):
for i in range(time_V .shape[0]):
if time_V/[i] == charge_steps[b]:
index_charge.append(i)
b+=1

### selecting ohmic drop from the first cycle
charge= pd.DataFrame({'time": time_V_ohm[0:index_charge[0]],
'V_ohm": V_ohm[0:index_charge[0]]})

discharge= pd.DataFrame({'time": time_V_ohm[index_charge[0]:index_discharge[0]],

'V_ohm': V_ohm[index_charge[0]:index_discharge[0]]})

#it#data output
ohm = 1000*abs(discharge['V_ohm]).mean()
print(ohm)

158



159

Algorithm for regression analysis (Table 23)

The following algorithm (in python) was developed for regression analysis. The
variables codified are used. The purpose was to obtain the coefficients on the same scale

for all variables.

Input files: data from Table 12. Doehlert design for five variables of Study 1 —
codified and Table 22. All responses from Doehlert design (Study 1)*.

### importing libraries

import pandas as pd

from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error,r2_score
import matplotlib.pyplot as plt

import numpy as np

#it# reading files

file_name=str(input('File name: "))

df_prev = 'inputname.txt'.replace('inputname’,file_name)
df = pd.read_csv(df_prev,sep="\t")

### selecting matrix X and vector y
X =df.iloc[;, 0:5].values
y = df.iloc[:, 5].values

#iH# setting regression

poly = PolynomialFeatures(degree = 2)
X1 = poly.fit_transform(X)

regressor = LinearRegression()
regressor.fit(X1,y)

### calculating predict values and coefficients
y_prev = regressor.predict(X1)

coef = regressor.coef_

inpt = regressor.intercept_

#it# dettermining metrics

RMSE = mean_squared_error(y, y_prev,squared=False)

r2 = r2_score(y,y_prev)

r2s = str(round(r2,4))

RMSEs = str(round(RMSE,?2))

figl, ax1 = plt.subplots()
ax1.plot(np.linspace(round(y.min()),round(y.max()),200),np.linspace(round(y.min()),round(y.max()),200),'k--")
ax1.plot(y,y_prev,'bo',markersize=7)

### ploting and exporting graphs

answer_name = str(input('Answer name (unit): "))

axl.set(xlabel = 'Simulated '+ answer_name,ylabel = 'Predicted '+ answer_name)
plt.grid()

plt.text(70,50," $R"2$:" + r2s + \n RMSE:' + RMSESs)

plt.savefig('Regression_'+file_name+"tiff',format="tiff',dpi=600)
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Algorithm to calculate the statistical significance of coefficients (Table 24 and
Table 25)

The following algorithm (in python) was developed for the determination of

statistical significance.

Input files: data from Table 12. Doehlert design for five variables of Study 1 —
codified and Table 22. All responses from Doehlert design (Study 1)*.

### importing libraries

import numpy as np

import pandas as pd

from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

from scipy import stats

#it# reading data

file_name=str(input(‘File name input: "))

df_prev = 'inputname.txt'.replace('inputname’,file_name)
df = pd.read_csv(df_prev,sep="\t")

df2 = pd.read_csv('coef.txt',sep="\t")

### selecting matrix X and vector y
X =df2.iloc[:, 0:5].values
y =df.iloc[:, 5].values

#iH# setting regression

poly = PolynomialFeatures(degree = 2)
X1 = poly.fit_transform(X)

regressor = LinearRegression()
regressor.fit(X1,y)

### calculating coefficients
y_prev = regressor.predict(X1)
coef = regressor.coef_

coef[0] = regressor.intercept_

wO,wl,w2,w3,w4,w5 = coef[0],coef[1],coef[2],coef[3],coef[4],coef[5]
wll,w12,wl13,wl4,wl5 = coef[6],coef[7],coef[8],coef[9],coef[10]
w22,w23,w24,w25 = coef[11],coef[12],coef[13],coef[14]
w33,w34,w35 = coef[15],coef[16],coef[17]

w44,w45 = coef[18],coef[19]

w55 = coef[20]

### calculating confidence intervals for coefficients
MSE = mean_squared_error(y, y_prev,squared=True)
A = MSE*np.linalg.inv(np.dot(X1.T,X1)).diagonal ()
sqrtA = np.sqrt(A)

t = stats.t.ppf(1-0.05/2,(X.shape[0]-len(coef)-1))

Ci = sqrtA*t

#it# selecting significant coefficients

coef_plus = coef+ci
coef_minus = coef-ci
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a_list=1]
b_list=1]

for i in range(len(coef_plus)):
c_const = coef_plus[i]>0
a_list.append(c_const)

for i in range(len(coef_minus)):
d_const = coef_minus[i]>0
b_list.append(d_const)

e_list=1]

for i in range(len(a_list)):
if a_list[i] == b_list[i]:
f_const = 'yes'
e_list.append(f_const)
else:
g_const=""
e_list.append(g_const)

### creating and exporting dataframe
coef_name = np.array(['w0','w01','w02','w03','w04','w05',
‘wll','wl2','wl3','wi4''wl5',
'w22','w23','w24','w25',
'w33','w34','w35',
‘wa4' 'w4s',
'W55')
coefsig_df = pd.DataFrame({'coefficient':coef_name,'significant?":np.array(e_list)})

coefsig_df.to_csv(file_name+'_coef.txt',sep="\',decimal=',",index=False)
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Algorithm to plot Figure 38

The following algorithm (in python) was developed for regression analysis and
4D plots. The variables decodified were used.

Input files: data from Table 12. Doehlert design for five variables of Study 1 —
codified and Table 22. All responses from Doehlert design (Study 1)*.

bB corresponds to L, /L;
I corresponds t0 gy

Q correspond to w.

import pandas as pd

from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error,r2_score
import matplotlib.pyplot as plt

import numpy as np

import matplotlib as mpl

from matplotlib import cm

# reading data
df_prev = "VE.txt'
df = pd.read_csv(df_prev,sep="\t")

# selecting matrix X and vector y
X =df.iloc[:, 0:5].values
y = df.iloc[:, 5].values

# setting regression

poly = PolynomialFeatures(degree = 2)
X1 = poly.fit_transform(X)

regressor = LinearRegression()
regressor.fit(X1,y)

# calculating predict values and coefficients
y_prev = regressor.predict(X1)
coef = regressor.coef_

#dettermining metrics

RMSE = mean_squared_error(y, y_prev,squared=False)
r2 =r2_score(y,y_prev)

r2s = str(round(r2,4))

RMSEs = str(round(RMSE,?2))

answer_name = 'Normalized VE (%)’

# preparing data for 4D plots
levels = 300
points = 200
transp = 0.9

il =40
i2 =100
i3 =160



163

bB1=05
bB2=1

bB3=15
Q1=0.15
Q2=05
Q3=0.85
L1=25
L2=5

L3=75
H1=145
H2 =30

H3 =455

L = np.linspace(L1,L3,points)
H = np.linspace(H1,H3,points)
bB = np.linspace(bB1,bB3,points)

W = regressor.intercept_

w0,wl,w2,w3,w4,w5 = coef[0],coef[1],coef[2],coef[3],coef[4],coef[5]
wll,w12,wl13,wl4,wl5 = coef[6],coef[7],coef[8],coef[9],coef[10]
w22,w23,w24,w25 = coef[11],coef[12],coef[13],coef[14]
w33,w34,w35 = coef[15],coef[16],coef[17]

w44,w45 = coef[18],coef[19]

w55 = coef[20]

# L versus bB versus current

const7 =
WAWOHW2*i1+W3*Q2+W4*H2+wW22*(i1**2)+w23*i1*Q2+w24*i1*H2+w33*(Q2**2)+w34*Q2*H2+wA44*(H2**2)
const8 =
WAWOHW2*i2+W3*Q2+WA*H2+wW22*(i2**2)+w23*i2*Q2+w24*i2*H2+w33*(Q2**2) +w34*Q2*H2+wA44* (H2**2)
const9 =

WHWO+W2*i3+w3*Q2+WA*H2+wW22*(13**2) +W23*i3*Q2+wW24*i3*H2+w33*(Q2**2)+w34*Q2*H2+w44*(H2**2)

del L
delH
del bB

L = np.linspace(L1,L3,points)
H = np.linspace(H1,H3,points)
bB = np.linspace(bB1,bB3,points)

L, bB = np.meshgrid(L, bB)

Z7 =
const7+wl*L+w5*pbB+w11*(L**2)+w12*L*il+wl3*L*Q2+w14*L*H2+w15*L*bB+w25*i1*bB+w35*Q2*bB+w4
5*H2*bB+w55*(bB**2)

Z8 =
const8+wl*L+w5*bB+wll*(L**2)+w12*L*i2+w13*L*Q2+w14*L*H2+w15*L*bB+w25*i2*bB+w35*Q2*bB+w4
5*H2*bB+w55*(bB**2)

Z9 =
constI+wl*L+w5*bB+wll*(L**2)+w12*L*i3+w13*L*Q2+w14*L*H2+w15*L*hB+w25*i3*bB+w35*Q2*hB+w4
5*H2*bB+w55*(bB**2)

Z7n=Z7/Z7.max()
Z8n=278/28.max()
Z9n=29/Z9.max()

ZQ_min = np.array([round(Z7n.min(),2),round(Z8n.min(),2),round(Z9n.min(),2)]).min()
ZQ_max = np.array([round(Z7n.max(),2),round(Z8n.max(),2),round(Z9n.max())]).max()

fig4 = plt.figure()
ax4 = fig4.gca(projection="3d")

plt.contourf(L, bB, Z7n, levels = levels,alpha=transp,offset=i1)
plt.clim(ZQ_min,ZQ_max)

plt.contourf(L, bB, Z8n, levels = levels,alpha=transp,offset=i2)
plt.clim(ZQ_min,ZQ_max)
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plt.contourf(L, bB, Z9n, levels = levels,alpha=transp,offset=i3)
plt.clim(ZQ_min,ZQ_max)

norm = mpl.colors.Normalize(vmin=ZQ_min,vmax=ZQ_max)
cb4=plt.colorbar(cm.ScalarMappable(norm=norm),
orientation="vertical’,
ticks=np.arange(ZQ_min,ZQ_max+0.01,0.06),
pad = 0.15)
ch4.set_label(answer_name,fontsize=10)
ch4.ax.tick_params(labelsize="small’,direction="in")

ax4.set(xlabel = 'L(mm)',ylabel = r$L_{out}$/$L_{in}}$' zlabel="$i_{appl}$ (MA/$cm"23$)")
ax4.xaxis.set_ticks(np.arange(L1, L3+0.01,2.5))

ax4.yaxis.set_ticks(np.arange(bB1, bB3+0.01,0.5))
ax4.zaxis.set_ticks(np.arange(i1,i3+10,60))

ax4.set_zlim(i1,i3)

plt.savefig('L_bB_i_VE.tiff', format="tiff',dpi=600)
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Algorithm to plot Figure 39

The following algorithm (in python) was developed to plot Figure 39

Input files: data from Table 12. Doehlert design for five variables of Study 1 —
codified and Table 22. All responses from Doehlert design (Study 1)*.

import pandas as pd

from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt

import numpy as np

import matplotlib as mpl

from matplotlib import cm

# reading data
dfl = pd.read_csv('ohm.txt',sep="\t")
df2 = pd.read_csv(‘etac.txt',sep="\t)

# selecting matrix X and vector y
X1 =dfl.iloc[:, 0:5].values
y1 =dfl.iloc[:, 5].values

X2 =df2.iloc[:, 0:5].values
y2 = df2.iloc[:, 5].values

# setting regression

poly = PolynomialFeatures(degree = 2)
X1p = poly fit_transform(X1)

X2p = poly fit_transform(X2)
regressor = LinearRegression()
regressor.fit(X1p,y1)

# calculating predict values and coefficients
y_prev = regressor.predict(X1p)
coef = regressor.coef_

# preparing data for 4D plots
levels = 300
points = 200
transp = 0.9

i1=40

i2 = 100
i3 =160
bB1=05
bB2=1
bB3=15
Q1=0.15
Q2=05
Q3=0.85
L1=25
L2=5
L3=75
H1=14.5
H2 =30
H3 =455

L = np.linspace(L1,L3,points)
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bB = np.linspace(bB1,bB3,points)

W = regressor.intercept_

wO,wl,w2,w3,w4,w5 = coef[0],coef[1],coef[2],coef[3],coef[4],coef[5]
wll,w12,wl13,wl4,wl5 = coef[6],coef[7],coef[8],coef[9],coef[10]
w22,w23,w24,w25 = coef[11],coef[12],coef[13],coef[14]
w33,w34,w35 = coef[15],coef[16],coef[17]

w44,w45 = coef[18],coef[19]

w55 = coef[20]

const7 =
WHWO+W2*i1+w3*Q2+WA*H2+wW22*(i11**2) +w23*i1*Q2+w24*i1*H2+w33*(Q2**2) +W34*Q2*H2+wA44*(H2**2)
const8 =
WHWO+W2*i2+W3*Q2+WA*H2+W22* (i2**2) +W23*i2*Q2+wW24*i2*H2+w33*(Q2**2) +w34*Q2*H2+wA44*(H2**2)
const9 =
WHWO+W2*i3+w3*Q2+WA*H2+wW22*(13**2) +w23*i3*Q2+w24*i3*H2+w33*(Q2**2) +w34*Q2*H2+wA44*(H2**2)

L = np.linspace(L1,L3,points)
bB = np.linspace(bB1,bB3,points)

L, bB = np.meshgrid(L, bB)

Z7 =
const7+wl*L+w5*bB+wll*(L**2)+w12*L*i1l+w13*L*Q2+w14*L*H2+w15*L*hB+w25*i1*bB+w35*Q2*hB+w4
5*H2*bB+w55*(bB**2)

Z8 =
const8+wl*L+w5*pbB+w11*(L**2)+w12*L*i2+w13*L*Q2+w14*L*H2+w15*L*bB+w25*i2*bB+w35*Q2*bB+w4
5*H2*bB+w55*(bB**2)

Z9 =
constI+wl*L+w5*bB+wll*(L**2)+w12*L*i3+w13*L*Q2+w14*L*H2+w15*L*bB+w25*i3*hB+w35*Q2*hB+w4
5*H2*bB+w55*(bB**2)

figl, axsl = plt.subplots()

norml1 = mpl.colors.Normalize(vmin=80,vmax=230)
imgl=axsl.contourf(L, bB, Z9, levels = levels,alpha=transp)
axsl.set(xlabel = 'L(mm)",ylabel = r$L_{out}$/$L$')
axsl.xaxis.set_ticks(np.arange(L1, L3+0.01,2.5))
axsl.yaxis.set_ticks(np.arange(bB1, bB3+0.01,0.5))
img1.set_clim(80,230)

# setting regression2
regressor.fit(X2p,y2)

y_prev = regressor.predict(X2p)
coef = regressor.coef_

W = regressor.intercept_

wO,wl,w2,w3,w4,w5 = coef[0],coef[1],coef[2],coef[3],coef[4],coef[5]
wll,w12,wl13,wl4,wl5 = coef[6],coef[7],coef[8],coef[9],coef[10]
w22,w23,w24,w25 = coef[11],coef[12],coef[13],coef[14]
w33,w34,w35 = coef[15],coef[16],coef[17]

w44,w45 = coef[18],coef[19]

w55 = coef[20]

const7 =
WHWO+W2*i1+w3*Q2+WA*H2+wW22*(11**2) +w23*i1*Q2+w24*i1*H2+w33*(Q2**2)+w34*Q2*H2+w44*(H2**2)
const8 =
WHWO+W2*i2+w3*Q2+WA*H2+W22*(12**2) +W23*i2*Q2+wW24*i2*H2+w33*(Q2**2) +w34*Q2*H2+wA44*(H2**2)
const9 =
WHWO+W2*i3+w3*Q2+WA*H2+wW22*(13**2) +w23*i3*Q2+w24*i3*H2+w33*(Q2**2) +w34*Q2*H2+wA44*(H2**2)

z7=
CONSLT+WL*L+WS*DB-+W11*(L**2)+W12*L *i1+W13*L*Q2+W14*L *H2+W15*L *bB-+W25*I1*bB+W35*Q2*bB+wé
5*H2*hB+W55*(hB**2)
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Z8 =
CONSt8-+WI*L+W5*hB+w11*(L**2)+w12*L*i2+W13*L *Q2+W14*L*H2+W15*L *bB+W25*i2*hB+W35*Q2*hB-+w4
5*H2*bB+W55*(bB**2)

79 =
CONStO-+WI*L+W5*hB-+w11*(L**2)+w12*L*i3+W13*L*Q2+W14*L *H2+w15*L *bB+W25*i3*hB+W35*Q2*hB+w4
5*H2*bB+W55*(bB**2)

img2=axsl.contourf(L, bB, Z9, levels = levels,alpha=transp)
axsl.set(xlabel = 'L(mm)")
axsl.xaxis.set_ticks(np.arange(L1, L3+0.01,2.5))
axsl.yaxis.set_ticks(np.arange(bB1, bB3+0.01,0.5))
img2.set_clim(80,230)

norm = mpl.colors.Normalize(vmin=80,vmax=230)
cb4=plt.colorbar(cm.ScalarMappable(norm=norm),
orientation="vertical’,
ticks=np.arange(80,230+0.01,40))
ch4.set_label("Overpotential (mV)',fontsize=10)
cb4.ax.tick_params(labelsize="small',direction="in")
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Algorithm to plot Figure 40

The following algorithm (in python) was developed to calculate the maximum
voltage efficiency for each applied current density and plot Figure 40.

Input files: data from Table 12. Doehlert design for five variables of Study 1 —
codified and Table 22. All responses from Doehlert design (Study 1)*.

import sympy as sp

import pandas as pd

import numpy as np

from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt

import matplotlib as mpl

from matplotlib import cm

# reading data

file_name="VE'

df_prev = "inputname.txt'.replace('inputname’,file_name)
df = pd.read_csv(df_prev,sep="\t")

# selecting matrix X and vector y
X =df.iloc[;, 0:5].values
y =df.iloc[:, 5].values

# setting regression

poly = PolynomialFeatures(degree = 2)
X1 = poly.fit_transform(X)

regressor = LinearRegression()
regressor.fit(X1,y)

# calculating coefficients

y_prev = regressor.predict(X1)

coef = regressor.coef_

wO,wl,w2,w3,w4,w5 = regressor.intercept_,coef[1],coef[2],coef[3],coef[4],coef[5]
wll,w12,wi13,wl4,wl5 = coef[6],coef[7],coef[8],coef[9],coef[10]
w22,w23,w24,w25 = coef[11],coef[12],coef[13],coef[14]

w33,w34,w35 = coef[15],coef[16],coef[17]

w44,w45 = coef[18],coef[19]

w55 = coef[20]

# building equations

Q=05

H=30
Q_array=np.linspace(Q,Q,10)
H_array=np.linspace(H,H,10)
I = np.arange(25,161,15)
L,bB = sp.symbols(['L','bB'])
L_plot=[]

bB_plot=[]

for i in range(len(l)):
const =
WO+W2*I[i]+w3*Q+wa*H+w22*(I[i]**2)+w23*[i]*Q+w24*I[i]*H+w33*(Q**2) +w34*Q*H+w44*(H**2)
eq=
const+wl*L+w5*hB+w11*(L**2)+wl12*L*I[i]+w13*L*Q+w14*L*H+w15*L *bB+w25*I[i]*bB+w35*Q*bB+wA45*
H*bB+w55*(bB**2)
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# differentiation
deq_dL = sp.diff(eq,L)
deq_dbB = sp.diff(eq,bB)

#system equations

mat_A = sp.linear_eq_to_matrix([deq_dL,deq_dbB],[L,bB])
mat_X = sp.Matrix([[L,bB]]).T

system = mat_A[0]*mat_X-mat_A[1]

ans = sp.solve(system)

a = round(float(ans[L]),2)

b = round(float(ans[bB]),2)

L_plot.append(a)

bB_plot.append(b)

# testing

df_pred=pd.DataFrame({'L_e":L_plot,'i_appl1,'Q":Q_array,'H":H_array,
'b/B":bB_plot})

X2 =df_pred.iloc[:,:].values

X3=poly.fit_transform(X2)

VE_max=regressor.predict(X3)

# plots
plt.figure(figsize=[4.8,4.8])
c=np.linspace(25,175,10)
plt.subplot(211)
plt.scatter(L_plot,bB_plot,c=c)
plt.xlabel('L (mm)',fontsize=10)
plt.ylabel( r'$L_{out}$/$L_{in}$' fontsize=10,labelpad=1.1)
plt.xticks(np.arange(2.5,7.7+0.01,1.5),fontsize=9)
plt.xlim(2.5,7.7)
plt.yticks(np.arange(0.5,1.3+0.01,0.4),fontsize=9)
plt.ylim(0.5,1.3)
norm = mpl.colors.Normalize(vmin=1l.min(),vmax=1.max())
cb = plt.colorbar(cm.ScalarMappable(norm=norm),
orientation="vertical’,
ticks=np.arange(l.min(),I.max()+0.01,40),
pad = 0.04,shrink=1.0)
cb.set_label('$i_{appl}$ (mA/$cm”2$)' fontsize=10)
ch.ax.tick_params(labelsize="small',direction="in")

plt.subplot(212)

plt.scatter(l,VE_max,color="black’)
plt.xlabel('$i_{appl}$ (MA/$cm"2$)',fontsize=10)
plt.ylabel( 'Maximum VE (%)',fontsize=10,labelpad=1)
plt.yticks(np.arange(50,100+0.1,10),fontsize=9)
plt.xticks(np.arange(25,165,40),fontsize=9)
plt.ylim(50,100)

plt.xlim(20,165,40)

plt.subplots_adjust(hspace=0.4)

plt.savefig('name.tiff',format="tiff',dpi=600)
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Algorithm to calculate percentage of mitigation (Equation 145).

The following algorithm (in python) was developed to calculate the percentage of

mitigation.

Input files: data from Table 12. Doehlert design for five variables of Study 1 —
codified and Table 22. All responses from Doehlert design (Study 1)*.

import pandas as pd

import numpy as np

from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression

file_name=str(input('File name: "))
df_prev = "inputname.txt'.replace('inputname’,file_name)
df = pd.read_csv(df_prev,sep="\t")

# selecting matrix X and vector y
X =df.iloc[:, 0:5].values
y =df.iloc[:, 5].values

# setting regression

poly = PolynomialFeatures(degree = 2)
X1 = poly.fit_transform(X)

regressor = LinearRegression()
regressor.fit(X1,y)

Xt = poly.fit_transform(X_t)
pred = regressor.predict(Xt)

#deffing values
Q=05
H=30

bB1=0.5
bB3 =15
L1=25
L3=75

points = 200

I = np.linspace(25,160,25)

L = np.linspace(L1,L3,points)

bB = np.linspace(bB1,bB3,points)
points = 200

L, bB =np.meshgrid(L, bB)

# calculating coefficients

y_prev = regressor.predict(X1)

coef = regressor.coef_

coef[0] = regressor.intercept_

wO,wl,w2,w3,w4,w5 = coef[0],coef[1],coef[2],coef[3],coef[4],coef[5]
wll,w12,wi13,wl4,wl5 = coef[6],coef[7],coef[8],coef[9],coef[10]
w22,w23,w24,w25 = coef[11],coef[12],coef[13],coef[14]
w33,w34,w35 = coef[15],coef[16],coef[17]

w44,w45 = coef[18],coef[19]

w55 = coef[20]
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# determination of mitigation
eta_max=[]

for i in range(len(l)):

const =
WOHW2*I[i]+W3*Q+wa*H+w22*(1[i]**2)+w23*1[i]*Q+W24*I [i]*H+W33*(Q**2)+W34*Q*H+w44*(H**2)

eq =
const+wl*L+w5*bB+w11*(L**2)+w12*L*I[i]+w13*L*Q+w14*L*H+w15*L*bB+w25*I[i]*bB+w35*Q*bB+w45*
H*bB+w55*(hB**2)

i_max = eq.max()

eta_max.append(i_max)

etal00 = 100*pred
etap = etal00/eta_max
etam = 100-etap
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Algorithm to calculate the optimal geometry (Equation 146, Equation 147 and
Figure 43).

The following algorithm (in python) was developed to calculate the general
optimal geometry and plot Figure 43.

Input files: data from Table 12. Doehlert design for five variables of Study 1 —
codified and Table 22. All responses from Doehlert design (Study 1)*.

import pandas as pd

from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt

import numpy as np

import sympy as sp

n_points=13

# reading data

file_name="VE'

df_prev = 'inputname.txt'.replace('inputname’,file_name)
df = pd.read_csv(df_prev,sep="\t")

# selecting matrix X and vector y
X =df.iloc[:, 0:5].values
y =df.iloc[:, 5].values

# setting regression

poly = PolynomialFeatures(degree = 2)
X1 = poly.fit_transform(X)

regressor = LinearRegression()
regressor.fit(X1,y)

# calculating predict values and coefficients
y_prev = regressor.predict(X1)

coef = regressor.coef_

inpt = regressor.intercept_

# maximum efficiency

wO,wl,w2,w3,w4,w5 = regressor.intercept_,coef[1],coef[2],coef[3],coef[4],coef[5]
wll,w12,wi13,wl4,wl5 = coef[6],coef[7],coef[8],coef[9],coef[10]
w22,w23,w24,w25 = coef[11],coef[12],coef[13],coef[14]

w33,w34,w35 = coef[15],coef[16],coef[17]

w44,w45 = coef[18],coef[19]

w55 = coef[20]

Q=05

H=30
Q_array=np.linspace(Q,Q,n_points)
H_array=np.linspace(H,H,n_points)
I = np.linspace(25,161,n_points)
L,bB = sp.symbols(['L','bB")
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L_plot=[]
bB_plot=[]

for i in range(len(l)):

const =
WOHW2*I[i]+W3*Q+wa*H+w22*(1[i]**2)+w23*1[i]*Q+W24*I [i]*H+W33*(Q**2)+W34*Q*H+w44*(H**2)

eq =
const+wl*L+w5*bB+w11*(L**2)+w12*L*I[i]+w13*L*Q+w14*L*H+w15*L*bB+w25*I[i]*bB+w35*Q*bB+w45*
H*bB+w55*(bB**2)

# differentiation
deq_dL = sp.diff(eq,L)
deq_dbB = sp.diff(eq,bB)

#system equations

mat_A = sp.linear_eq_to_matrix([deq_dL,deq_dbB],[L,bB])
mat_X = sp.Matrix([[L,bB]]).T

system = mat_A[0]*mat_X-mat_A[1]

ans = sp.solve(system)

a = round(float(ans[L]),2)

b = round(float(ans[bB]),2)

L_plot.append(a)

bB_plot.append(b)

df_pred=pd.DataFrame({'L_e":L_plot,'i_appl"1,'Q":Q_array,'H":H_array,
'b/B":bB_plot})

X2 =df_pred.iloc[:,:].values

X3=poly.fit_transform(X2)

VE_max=regressor.predict(X3)

### finding other values from VE
VE_values=[]
for i in range(len(L_plot)):

df_pred=pd.DataFrame({'L_e":np.linspace(L_plot[i],L_plot[i],n_points),'i_appl'1,'Q"Q_array,'H":H_array,
'b/B":np.linspace(bB_plot[i],bB_plot[i],n_points)})

X2 =df_pred.iloc[:,:].values

X3=poly fit_transform(X2)

y_prev2=regressor.predict(X3)

VE_values.append(y_prev2)

# finding best design

var =[]

for i in range(len(l)):
dif = VE_values[i]-VE_max
var.append(dif.max()-dif.min())

#plotting
fig, (ax1,ax2) = plt.subplots(1,2)

ax2.set_title('(b)")

ax2.plot(l,var,'k--")

ax2.scatter(1[6],var[6],label="Optimal geometry',color="red’)
ax2.set_xlabel('Geometric condition’)
ax2.tick_params(axis="x',bottom=False,labelbottom=False)
ax2.set_ylabel(‘'$\delta$ (%))
ax2.set_yticks(np.arange(0,3,1))

ax2.legend()



axl.set_title('(a)")
ax1.plot(VE_max*-1+VE_values[0],color="yellow'label="25 mA/$cm”2$')
ax1.plot(VE_max*-1+VE_values[3],color="green’,label="59 mA/$cm"2$')
ax1.plot(VE_max*-1+VE_values[9],color="blue',label="127 mA/$cm"2$")
ax1.plot(VE_max*-1+VE_values[12],color="indigo',label="161 mA/$cm"2$")
ax1.legend()

ax1l.set_xlabel('Geometric condition’)
ax1.tick_params(axis="x',bottom=False,labelbottom=False)
axl.set_ylabel('$\Delta$VE (%))

axl.set_yticks(np.arange(0,-1.51,-0.5))

fig.tight_layout(pad=2.0)

plt.savefig(‘final_strategy.tiff',format="tiff',dpi=300)
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Algorithm for validation of regression analysis (Figure 44 and Table 26).
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The following algorithm (in python) was developed to validate the regression

analysis and plot the Figure 44.

Input files: validation data.

import numpy as np

import pandas as pd

from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error,r2_score
import matplotlib.pyplot as plt

# loading files

file_training=str(input('File training input: "))

df_prev = 'inputname.txt'.replace(inputname’,file_training)
df = pd.read_csv(df_prev,sep="\t")

file_test=str(input(‘File test input:"))
df_prev2 = 'inputname.txt'.replace('inputname’,file_test)
df2 = pd.read_csv(df_prev2,sep="\t)

# selecting matrix X and vector y
X_train = df.iloc[;, 0:5].values
y_train = df.iloc[;, 5].values
X_test = df2.iloc[:,0:5].values
y_test = df2.iloc[:,5].values

# setting regression
poly = PolynomialFeatures(degree = 2)

X1 = poly.fit_transform(X_train)
X2 = poly.fit_transform(X_test)

regressor = LinearRegression()
training = regressor.fit(X1,y_train)

#prediction
y_prev = regressor.predict(X2)

#metrics

RMSE = mean_squared_error(y_test, y_prev,squared=False)
r2 = r2_score(y_test,y_prev)

r2s = str(round(r2,4))

RMSEs = str(round(RMSE,?2))

#plots
answer_name = str(input(‘"Answer name (unit): *))
figl, ax1 = plt.subplots()

ax1.plot(np.linspace(round(y_test.min()),round(y_test.max()),200),np.linspace(round(y_test.min()),round(y_test.max(

)),200),'k--")
ax1.plot(y_test,y_prev,'bo’,markersize=7)

ax1l.set(xlabel = 'Simulated '+ answer_name,ylabel = 'Predicted '+ answer_name)

plt.grid()
plt.text(140,20,' $R"2$:" + r2s + \n RMSE:" + RMSEs)

plt.savefig('Regression_'+file_test+tiff', format="tiff',dpi=600)
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Appendix B — Scripts for data treatment (Study 2)

Algorithm to determine electrolyte viscosity (Figure 46)

The following algorithm (in python) was developed to determine the positive and

negative electrolyte viscosity.

Input files: data from 273

For regression:

import pandas as pd

from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_absolute_error,r2_score
import matplotlib.pyplot as plt

import numpy as np

# importing data

base = pd.read_csv('file_name.txt',sep="\")
X = base.iloc[:, 0:4].values

y = base.iloc[:, 4].values

# setting regression
poly = PolynomialFeatures(degree = 2)
X1 = poly.fit_transform(X)

regressor = LinearRegression()

regressor.fit(X1, y)
y_prev = regressor.predict(X1)

r2 =r2_score(y,y_prev)
mse = mean_absolute_error(y, y_prev)

SoC = np.linspace(0.1,0.9,20)
c act=1.48

c sup=3.0

T =298.15

mi_prev =[]

for i in range(len(SoC)):
prev = np.array([SoC[i],c_act,c_sup, T]).reshape(1,-1)
prev_p = poly.fit_transform(prev)
pred=float(regressor.predict(prev_p))
mi_prev.append(pred)

std = round(np.array(mi_prev).std(),2)
mean = round(np.array(mi_prev).mean(),2)

mean_str = str(mean)
std_str = str(std)
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result = mean_str+' +/- "+std_str
print(result)

plt.plot(np.linspace(2,10,200),np.linspace(2,10,200),'k--")
plt.plot(y,y_prev,'bo’,markersize=7)
plt.xlabel("Experimental Viscosity (mPa.s)’)

plt.ylabel( 'Predicted Viscosity (mPa.s)")

plt.savefig(‘figure_name.tiff',formate="tiff")

For cross-validation:

import pandas as pd

from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
import numpy as np

from sklearn.model_selection import cross_val_score
from sklearn.model_selection import cross_validate
from sklearn.model_selection import KFold

# importing data
base = pd.read_csv('file_name.txt',sep="\t")

X = base.iloc[:, 0:4].values
y = base.iloc[:, 4].values

# setting regression

poly = PolynomialFeatures(degree = 2)
X_poly = poly.fit_transform(X)
regressor = LinearRegression()

# cross-validation

r2_list=1]

mae_list = []

for i in range(30):
kf=KFold(n_splits=5, random_state=i, shuffle=True)
cv_results = cross_validate(regressor,X_poly,y,cv=Kf,return_estimator=True)
a=cross_val_score(regressor, X_poly, y,cv=kf,scoring="r2").mean()
b=np.sqrt(abs(cross_val_score(regressor, X_poly, y,scoring="neg_mean_absolute_error',cv=kf))).mean()
r2_list.append(a)
mae_list.append(b)

r2 = np.array(r2_list).mean()
mae = np.array(mae_list).mean()
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Algorithm to calculate the responses from COMSOL files (Table 28 and Table
29)

The following algorithm (in python) was developed to calculate several responses
from the designed experiments: capacity loss rate in the first 20th cycles
(CL_pc_mean_20), the capacity loss rate of all cycles (CL_pc_mean), capacity loss at
20th cycle (C_20), capacity loss at final cycle (C_final), mean voltage efficiency
(VE_mean), mean coulombic efficiency (CE_mean) and mean energy efficiency
(EE_mean).

Input files: (COMSOL files) cell potential versus time, current versus time.

import pandas as pd

import numpy as np

from scipy.signal import find_peaks
import matplotlib.pyplot as plt

from scipy.interpolate import interpld
from scipy.integrate import trapz

# reading files

V1t = input('Name of file V versus time:')
it = input('Name of file i versus time:")
#code = str(input('Code:"))

file_Vt = 'inputname.txt'.replace('inputname’,Vt)
file_it = 'inputname.txt'.replace('inputname’,it)

dfl_raw = pd.read_csv(file_Vt,skiprows=(7))
df2_raw = pd.read_csv(file_it,skiprows=(7))

dfl = df1l_raw.rename(columns={'% X":'time','Height":'V'})
df2 = df2_raw.rename(columns={'% X':'time','Height":'i'})

# selecting data
x = list(df1['time")
y = list(df1['V'])

x2 = list(df2['time'])
y2 = list(df2['i'7)

#interpolation

it=200000

f=interpld(x,y)
x_V=np.linspace(np.array(x).min(),np.array(x).max(),it)
y_V=f(x_V)

f2=interpld(x2,y2)
x_i= np.linspace(np.array(x2).min(),np.array(x2).max(),it)
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y_i=12(x_i)

# differentiation of discrete values of V versus time data (for time peak determination)
dydx_V=np.gradient(y_V,x_V)

# finding peaks charge/discharge
peaks = find_peaks(abs(dydx_V),height=0.08)
height = peaks[1]['peak_heights']
if height.shape[0] == 1:
height = np.append(peaks[1]['peak_heights],peaks[1]['peak_heights')

peak_pos = np.array(x_V)[peaks[0]]
if peak_pos.shape[0] == 1:
peak_pos = np.append(np.array(x_V)[peaks[0]],x_V[len(x_V)-1])

# plotting peaks

fig = plt.figure()

ax = fig.subplots()

ax.plot(x_V,abs(dydx_V),-k', label = "Time derivative')
ax.scatter(peak_pos, height, color ='r', s = 15, marker = 'D', label = 'Peaks")
ax.legend()

ax.grid()

#calculating capacity loss

step_time =[]
step_time.append(peak_pos[0])
z ite=0

for i in range(len(peak_pos)):
if z_ite == len(peak_pos)-1:
break
step_time.append(peak_pos[z_ite+1]-peak_pos[z_ite])
z ite+=1
discharge_time = step_time[1:len(step_time):2]
capacity_loss =]
for i in range(len(discharge_time)):
capacity_loss.append(100*discharge_time[i]/discharge_time[0])

n_cycles = np.arange(1,len(capacity_loss)+1,1)

figl,ax1 = plt.subplots()
ax1.scatter(n_cycles,capacity_loss,c="black’)

ax1.set(xlabel = 'Cycle number',ylabel = 'Discharge capacity(%)’)
#plt.savefig(‘capacity_loss_'+code+"tiff',format="tiff',dpi=600)

# calculating capacity loss per cycle
CL_pc_list=1]

for i in range(len(capacity_loss)-1):
CL_pc = capacity_loss[i]-capacity_loss[i+1]
CL_pc_list.append(CL_pc)

CL_pc_mean_20 = np.array(CL_pc_list[0:20]).mean()
CL_pc_mean_total = np.array(CL_pc_list).mean()
C_20 = abs(100-capacity_loss[19])

C_final = abs(100-capacity_loss[len(capacity_loss)-1])

# preparing index, dataframes arrays for efficiencies calculation
discharge_steps = peak_pos[1:len(peak_pos):2]
charge_steps = peak_pos[0:len(peak_pos):2]

charge_time = step_time[0:len(step_time):2]
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a=0
index_discharge =[]
while a < discharge_steps.shape[0]:
for i in range(x_V.shape[0]):
if x_V/[i] == discharge_steps[a]:
index_discharge.append(i)
a+=1

b=0
index_charge =[]
while b < (charge_steps.shape[0]):
for i in range(x_V.shape[0]):
if Xx_V/[i] == charge_steps[b]:
index_charge.append(i)
b+=1

# calculating voltage efficiency
Avg_V =]
Avg_V.append((trapz(y_V[0:index_charge[0]],x=x_V[0:index_charge[0]]))/charge_time[0])

e=0
x_ite=1
n = int((discharge_steps.shape[0]+charge_steps.shape[0])/2-1)
for i in range(n+1):
if e == len(discharge_time):
break
Avg_dis =
(trapz(y_V/[index_charge[e]:index_discharge[e]],x=x_V[index_charge[e]:index_discharge[e]]))/discharge_time[e]
Avg_V.append(Avg_dis)
if x_ite == len(charge_time):
break
Avg_cha =
(trapz(y_V[index_discharge[e]:index_charge[x_ite]],x=x_V[index_discharge[e]:index_charge[x_ite]]))/charge_time[
x_ite]
Avg_V.append(Avg_cha)
e+=1
X_ite +=1

VE_prev =[]

for i in range(len(Avg_V)-1):
h =100*Avg_VIi+1])/Avg_V[i]
VE_prev.append(h)

VE = VE_prev[0::2]

VE_std = np.array(VE).std()
VE_mean = np.array(VE).mean()

for i in range(len(VE)):
if VE[i] > VE_mean + VE_std:
VE[i] = VE_mean
elif VE[i] < VE_mean - VE_std:
VE[i] = VE_mean

#calculating coulombic efficiency based on time
CE=]
g_ite=0

for i in range(n+1):
r_const = discharge_time[q_ite]*100/charge_time[q_ite]
CE.append(r_const)
g ite+=1
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#calculating energy efficiency

EE =]

s ite=0

for i in range(len(VE)):
t_const = VE[s_ite]*CE[s_ite]/100
EE.append(t_const)
s ite+=1

#creating and exporting DataFrames
n_cycles = np.arange(1,n+2,1)

CE_mean = (np.array(CE)[0:20]).mean()
VE_mean = (np.array(VE)[0:20]).mean()
EE_mean = (np.array(EE)[0:20]).mean()

mean_values = pd.DataFrame(['CL_rat and mean values',np.round(CL_pc_mean_20,4),
np.round(CL_pc_mean_total,4),
np.round(C_20,2),
np.round(C_final,2),
np.round(VE_mean,?2),
np.round(CE_mean,?2),
np.round(EE_mean,2)]).T

#plotting graphs

fig2,ax2 = plt.subplots()

ax2.plot(n_cycles,np.array(VE),'bo',label = "Voltage')
ax2.plot(n_cycles,np.array(CE),'ro',label = '‘Coulombic’)
ax2.plot(n_cycles,np.array(EE),'go’,label = 'Energy’)

ax2.set(xlabel = 'Cycle number',ylabel = 'Efficiency (%)', title = 'Efficiencies')
plt.ylim(50,100)

plt.legend()

plt.savefig(efficiencies_'+code+"tiff',format="tiff',dpi=600)

print(mean_values)



182

Algorithm to calculate effects (Figure 49)

The following algorithm (in python) was developed to calculate the effects of 23
factorial design

Input files: data from Table 17 and Table 28.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
from scipy.stats import norm

df=pd.read_csv('file_name.txt',sep="\t")

X = df.iloc[:,0:3].values
y = df.iloc[:,3].values

effects =[]

# primary effects
listl =]
list2 =]
list3 =]

for i in range(len(y)):
itl = X[i][0]*y[i]
listl.append(itl)
it2 = X[i][1]*y[i]
list2.append(it2)
it3 = X[i][2]*y[i]
list3.append(it3)

efl=2*np.array(listl).mean()
effects.append(efl)
ef2=2*np.array(list2).mean()
effects.append(ef2)
ef3=2*np.array(list3).mean()
effects.append(ef3)

#secondary effects
list12 =[]
list13 =]
list23 =[]

for i in range(len(y)):
it12 = X[i][0]*X[il[1]*V[i]
list12.append(it12)
it13 = X[J[O]*X[i][2]*y[i]
list13.append(it13)

it23 = X[][LX[i][2]*y(i]
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list23.append(it23)

ef12=2*np.array(list12).mean()
effects.append(ef12)
ef13=2*np.array(list13).mean()
effects.append(ef13)

ef23=2*np.array(list23).mean()
effects.append(ef23)

#terciary effects
list123 =[]

for i in range(len(y)):
it123 = X[ [O* X[ [11*X[i1[2]*YIi]
list123.append(it123)

ef123=2*np.array(list123).mean()
effects.append(ef123)

#creating plots
effects_name=['1','2",'3''12','13",'23','123"]

df_effects = pd.DataFrame({'effect':effects_name,'Value'.effects})
df_effects_or = df_effects.sort_values(by="Value',ignore_index=True)

#porcentage graph
effects_squared =[]

for i in range(len(effects)):
effects_squared.append(abs(effects[i]))

sum_effects_squared = np.array(effects_squared).sum()

percentage_ef =]

for i in range(len(effects_squared)):
b_ite = 100*effects_squared[i]/sum_effects_squared
percentage_ef.append(b_ite)

df_perc = pd.DataFrame({'effect':effects_name,'percentage’:percentage_ef})
df_perc_or = df_perc.sort_values(by="percentage’,ascending=False,ignore_index=True)
percentage_ef = df_perc_or.iloc[:,1].values

name_ef_perc = df_perc_or.iloc[:,0]

fig,(ax,ax3) = plt.subplots(1,2)
fig.set_figwidth(10)
ax.bar(name_ef_perc,percentage_ef,color='green’)
ax.set_xlabel('Standardized Effect’)
ax.set_ylabel('Percentage (%))
ax.yaxis.label.set_color('green’)
ax.tick_params(axis="y', colors='green")

perc_cum = percentage_ef.cumsum()

ax2 = ax.twinx()
ax2.plot(name_ef_perc,perc_cum,marker="0',color="black’)
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ax2.set_ylabel('Cumulative Sum (%))
ax.set_title('(a)")

#probability graph and pareto
effect_or = df_effects_or.iloc[:,1]
name_or = df_effects_or.iloc[:,0]

initial =[]

initial.append(0)

for i in range(len(effects)-1):
c_ite = 1/len(effects)+initial[i]
initial.append(c_ite)

final =[]
for i in range(len(initial)):
final.append(initial[i+1])
if len(initial) == len(final)+1:
break
final.append(1)

middle =[]

for i in range(len(initial)):
d_ite = (initial[i]+final[i])/2
middle.append(d_ite)

inv_norm = norm.ppf(middle)

ax3.scatter(effect_or,inv_norm,color="green’)

ax3.set_xlabel(‘Effect on $CL_{rate}$ (%)")

ax3.set_ylabel('z value’)

yline = np.linspace(np.array(inv_norm).min(),np.array(inv_norm).max(),10)
xline = np.linspace(0,0,10)

ax3.plot(xline,yline,color="black")

ax3.set_title('(b)")

plt.subplots_adjust(wspace=0.5)

for i, txt in enumerate(name_or):
ax3.annotate(txt,(effect_or[i],inv_norml[i]))

plt.text(11,45,'$i_{appl}$’)
plt.text(16.7,100,'$c_{act}$’)
plt.savefig('Fig_name.tiff',format="tiff',dpi=300)
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Algorithm to calculate integrated net fluxes (Figure 50 and Figure 53)

The following algorithm (in python) was developed to calculate the integrated net
fluxes across the membrane: total flux (tflux), diffusional flux (dflux), migration flux

(mflux) and convective flux (cflux).

Input files: (COMSOL files) total, diffusional, migrational and convective flux across
membrane for V(I1), V(I11), V(IV) and V(V).

import pandas as pd

import numpy as np

from scipy.signal import find_peaks
import matplotlib.pyplot as plt

from scipy.interpolate import interpld
from scipy.integrate import trapz

# reading files
df = pd.read_csv('vanadium_species_file.txt',skiprows=7)
df = df.rename(columns={'% X"'time','Height":'V'})

dfl = pd.read_csv(‘flux2_V2.txt',skiprows=7)
df2 = pd.read_csv(‘flux2_V3.txt',skiprows=7)
df3 = pd.read_csv(‘flux2_V4.txt',skiprows=7)
df4 = pd.read_csv(‘flux2_V5.txt',skiprows=7)

dfl = dfl.rename(columns={'% X"'time','Height"'tflux','Height.1":'dflux’,'Height.2":'mflux’,'Height.3"'cflux'})
df2 = df2.rename(columns={'% X"'time','Height":'tflux','Height.1":'dflux’,'Height.2":'mflux','Height.3"'cflux'})
df3 = df3.rename(columns={'% X':'time','Height":'tflux’,'Height.1"'dflux’,'Height.2":'mflux’,'Height.3"'cflux'})
df4 = df4.rename(columns={'% X":'time','Height":"tflux’,'Height.1"'dflux’,'Height.2":'mflux’,'Height.3"'cflux'})

# selecting data
x = list(df{'time")
y = list(df['V'])

ft=1e3

totall = df1['tflux’].values*ft
difl = df1['dflux.values*ft

migl = df1['mflux’].values*ft
convl = dfl['cflux.values*ft

total2 = df2['tflux'].values*ft
dif2 = df2['dflux'].values*ft

mig2 = df2['mflux'].values*ft
conv2 = df2['cflux.values*ft

total3 = df3['tflux'].values*ft
dif3 = df3['dflux'].values*ft

mig3 = df3['mflux].values*ft
conv3 = df3['cflux'].values*ft

total4 = df4['tflux’].values*ft
dif4 = df4['dflux'].values*ft
mig4 = df4['mflux'].values*ft
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conv4 = df4['cflux.values*ft

t = df1['time"].values

#interpolation

it=200000

f=interpld(x,y)
x_V=np.linspace(np.array(x).min(),np.array(x).max(),it)
y_V=1f(x_V)

# differentiation of discrete values of V versus time data (for time peak determination)
dydx_V=np.gradient(y_V,x_V)

# finding peaks charge/discharge
peaks = find_peaks(abs(dydx_V),height=0.00002,threshold=0.00002)
height = peaks[1]['peak_heights']
if height.shape[0] == 1:
height = np.append(peaks[1]['peak_heights],peaks[1]['peak_heightsT)

peak_pos = np.array(x_V)[peaks[0]]
if peak_pos.shape[0] == 1:
peak_pos = np.append(np.array(x_V)[peaks[0]],x_V[len(x_V)-1])

#calculating discharge/charge indexes and times
step_time =[]
step_time.append(peak_pos[0])
z_ite=0
for i in range(len(peak_pos)):
if z_ite == len(peak_pos)-1:
break
step_time.append(peak_pos[z_ite+1]-peak_pos[z_ite])
z ite+=1
discharge_time = step_time[1:len(step_time):2]

discharge_steps = peak_pos[1:len(peak_pos):2]
charge_steps = peak_pos[0:len(peak_pos):2]

charge_time = step_time[0:len(step_time):2]

a=0
index_discharge =[]
while a < discharge_steps.shape[0]:
for i in range(x_V.shape[0]):
if Xx_V/[i] == discharge_steps[a]:
index_discharge.append(i)
a+=1

b=0
index_charge =[]
while b < (charge_steps.shape[0]):
for i in range(x_V.shape[0]):
if Xx_VI[i] == charge_steps[b]:
index_charge.append(i)
b+=1

n_cycles = np.arange(1,len(height)+1,1)

#integrating fluxes V2



f=interpld(t,totall)
x_V=np.linspace(np.array(t).min(),np.array(t).max(),it)
y_V=1f(x_V)

iflux=1]
iflux.append(trapz(y_V[0:index_charge[0]],x=x_V[0:index_charge[0]]))

e=0
x_ite=1
n = int((discharge_steps.shape[0]+charge_steps.shape[0])/2-1)
for i in range(n+1):
if e == len(discharge_time):
break
iflux_dis = (trapz(y_V[index_charge[e]:index_discharge[e]],x=x_V[index_charge[e]:index_discharge[e]]))
iflux.append(iflux_dis)
if x_ite == len(charge_time):
break
iflux_cha=
(trapz(y_V/[index_discharge[e]:index_charge[x_ite]],x=x_V[index_discharge[e]:index_charge[x_ite]]))
iflux.append(iflux_cha)
e+=1
X_ite +=1

itotal_chal = np.array(iflux[0:len(iflux):2]).mean()
itotal_dis1 = np.array(iflux[1:len(iflux):2]).mean()

itotall = np.array(iflux).mean()

f= interpld(t,difl)
x_V=np.linspace(np.array(t).min(),np.array(t).max(),it)
y_V=1(x_V)

iflux=[]
iflux.append(trapz(y_V[0:index_charge[0]],x=x_V[0:index_charge[0]]))

e=0
X ite=1
n = int((discharge_steps.shape[0]+charge_steps.shape[0])/2-1)
for i in range(n+1):
if e == len(discharge_time):
break
iflux_dis = (trapz(y_V[index_charge[e]:index_discharge[e]],x=x_V[index_charge[e]:index_discharge[e]]))
iflux.append(iflux_dis)
if x_ite == len(charge_time):
break
iflux_cha=
(trapz(y_V[index_discharge[e]:index_charge[x_ite]],x=x_V[index_discharge[e]:index_charge[x_ite]]))
iflux.append(iflux_cha)
e+=1
X_ite +=1

idif_chal = np.array(iflux[0:len(iflux):2]).mean()
idif_dis1 = np.array(iflux[1:len(iflux):2]).mean()

idifl = np.array(iflux).mean()

f=interpld(t,migl)
x_V=np.linspace(np.array(t).min(),np.array(t).max(),it)
y_V =f(x_V)

iflux=[]
iflux.append(trapz(y_V[0:index_charge[0]],x=x_V[0:index_charge[0]]))

e=0
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x_ite=1
n = int((discharge_steps.shape[0]+charge_steps.shape[0])/2-1)
for i in range(n+1):
if e == len(discharge_time):
break
iflux_dis = (trapz(y_V/[index_charge[e]:index_discharge[e]],x=x_V[index_charge[e]:index_discharge[e]]))
iflux.append(iflux_dis)
if x_ite == len(charge_time):
break
iflux_cha=
(trapz(y_V[index_discharge[e]:index_charge[x_ite]],x=x_V[index_discharge[e]:index_charge[x_ite]]))
iflux.append(iflux_cha)
e+=1
X_ite +=1

imig_chal = np.array(iflux][0:len(iflux):2]).mean()
imig_dis1 = np.array(iflux[1:len(iflux):2]).mean()

imigl = np.array(iflux).mean()

f=interpld(t,convl)
x_V=np.linspace(np.array(t).min(),np.array(t).max(),it)
y_V=1(x_V)

iflux= ]
iflux.append(trapz(y_V[0:index_charge[0]],x=x_V[0:index_charge[0]]))

e=0
x_ite=1
n = int((discharge_steps.shape[0]+charge_steps.shape[0])/2-1)
for i in range(n+1):
if e == len(discharge_time):
break
iflux_dis = (trapz(y_V/[index_charge[e]:index_discharge[e]],x=x_V[index_charge[e]:index_discharge[e]]))
iflux.append(iflux_dis)
if x_ite == len(charge_time):
break
iflux_cha=
(trapz(y_V[index_discharge[e]:index_charge[x_ite]],x=x_V[index_discharge[e]:index_charge[x_ite]]))
iflux.append(iflux_cha)
e+=1
X_ite +=1

iconv_chal = np.array(iflux[0:len(iflux):2]).mean()
iconv_dis1 = np.array(iflux[1:len(iflux):2]).mean()

iconvl = np.array(iflux).mean()

#integrating fluxes V3

f= interpld(t,total2)
x_V=np.linspace(np.array(t).min(),np.array(t).max(),it)
y_V=f(x_V)

iflux=]
iflux.append(trapz(y_V[0:index_charge[0]],x=x_V[0:index_charge[0]]))

e=0
x_ite=1
n = int((discharge_steps.shape[0]+charge_steps.shape[0])/2-1)
for i in range(n+1):
if e == len(discharge_time):
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break
iflux_dis = (trapz(y_V[index_charge[e]:index_discharge[e]],x=x_V[index_charge[e]:index_discharge[e]]))
iflux.append(iflux_dis)
if x_ite == len(charge_time):
break
iflux_cha =
(trapz(y_V/[index_discharge[e]:index_charge[x_ite]],x=x_V[index_discharge[e]:index_charge[x_ite]]))
iflux.append(iflux_cha)
e+=1
X_ite +=1

itotal_cha2 = np.array(iflux[0:len(iflux):2]).mean()
itotal_dis2 = np.array(iflux[1:len(iflux):2]).mean()

itotal2 = np.array(iflux).mean()

f=interpld(t,dif2)
x_V=np.linspace(np.array(t).min(),np.array(t).max(),it)
y_V=1(x_V)

iflux=[]
iflux.append(trapz(y_V[0:index_charge[0]],x=x_V[0:index_charge[0]]))

e=0
x_ite=1
n = int((discharge_steps.shape[0]+charge_steps.shape[0])/2-1)
for i in range(n+1):
if e == len(discharge_time):
break
iflux_dis = (trapz(y_V/[index_charge[e]:index_discharge[e]],x=x_V[index_charge[e]:index_discharge[e]]))
iflux.append(iflux_dis)
if x_ite == len(charge_time):
break
iflux_cha=
(trapz(y_V[index_discharge[e]:index_charge[x_ite]],x=x_V[index_discharge[e]:index_charge[x_ite]]))
iflux.append(iflux_cha)
e+=1
x_ite +=1

idif_cha2 = np.array(iflux[0:len(iflux):2]).mean()
idif_dis2 = np.array(iflux[1:len(iflux):2]).mean()

idif2 = np.array(iflux).mean()

f=interpld(t,mig2)
x_V= np.linspace(np.array(t).min(),np.array(t).max(),it)
y_V=1f(x_V)

iflux=]
iflux.append(trapz(y_V[0:index_charge[0]],x=x_V[0:index_charge[0]]))

e=0
x_ite=1
n = int((discharge_steps.shape[0]+charge_steps.shape[0])/2-1)
for i in range(n+1):
if e == len(discharge_time):
break
iflux_dis = (trapz(y_V[index_charge[e]:index_discharge[e]],x=x_V[index_charge[e]:index_discharge[e]]))
iflux.append(iflux_dis)
if x_ite == len(charge_time):
break
iflux_cha=
(trapz(y_V[index_discharge[e]:index_charge[x_ite]],x=x_V[index_discharge[e]:index_charge[x_ite]]))
iflux.append(iflux_cha)
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e+=1
X_ite +=1

imig_cha2 = np.array(iflux][0:len(iflux):2]).mean()
imig_dis2 = np.array(iflux[1:len(iflux):2]).mean()

imig2 = np.array(iflux).mean()

f= interpld(t,conv2)
x_V=np.linspace(np.array(t).min(),np.array(t).max(),it)
y_V=1f(x_V)

iflux=1]
iflux.append(trapz(y_V[0:index_charge[0]],x=x_V[0:index_charge[0]]))

e=0
x_ite=1
n = int((discharge_steps.shape[0]+charge_steps.shape[0])/2-1)
for i in range(n+1):
if e == len(discharge_time):
break
iflux_dis = (trapz(y_V/[index_charge[e]:index_discharge[e]],x=x_V[index_charge[e]:index_discharge[e]]))
iflux.append(iflux_dis)
if x_ite == len(charge_time):
break
iflux_cha=
(trapz(y_V[index_discharge[e]:index_charge[x_ite]],x=x_V[index_discharge[e]:index_charge[x_ite]]))
iflux.append(iflux_cha)
e+=1
x_ite +=1

iconv_cha2 = np.array(iflux[0:len(iflux):2]).mean()
iconv_dis2 = np.array(iflux[1:len(iflux):2]).mean()

iconv2 = np.array(iflux).mean()

#integrating fluxes V4

f= interpld(t,total3)
x_V=np.linspace(np.array(t).min(),np.array(t).max(),it)
y_V =1f(x_V)

iflux=[]
iflux.append(trapz(y_V[0:index_charge[0]],x=x_V[0:index_charge[0]]))

e=0
X ite=1
n = int((discharge_steps.shape[0]+charge_steps.shape[0])/2-1)
for i in range(n+1):
if e == len(discharge_time):
break
iflux_dis = (trapz(y_V[index_charge[e]:index_discharge[e]],x=x_V[index_charge[e]:index_discharge[e]]))
iflux.append(iflux_dis)
if x_ite == len(charge_time):
break
iflux_cha=
(trapz(y_V[index_discharge[e]:index_charge[x_ite]],x=x_V[index_discharge[e]:index_charge[x_ite]]))
iflux.append(iflux_cha)
e+=1
x_ite +=1

itotal_cha3 = np.array(iflux[0:len(iflux):2]).mean()
itotal_dis3 = np.array(iflux[1:len(iflux):2]).mean()



itotal3 = np.array(iflux).mean()

f= interpld(t,dif3)
x_V=np.linspace(np.array(t).min(),np.array(t).max(),it)
y_V=1(x_V)

iflux=1]
iflux.append(trapz(y_V[0:index_charge[0]],x=x_V[0:index_charge[0]]))

e=0
x_ite=1
n = int((discharge_steps.shape[0]+charge_steps.shape[0])/2-1)
for i in range(n+1):
if e == len(discharge_time):
break
iflux_dis = (trapz(y_V[index_charge[e]:index_discharge[e]],x=x_V[index_charge[e]:index_discharge[e]]))
iflux.append(iflux_dis)
if x_ite == len(charge_time):
break
iflux_cha=
(trapz(y_V[index_discharge[e]:index_charge[x_ite]],x=x_V[index_discharge[e]:index_charge[x_ite]]))
iflux.append(iflux_cha)
e+=1
x_ite +=1

idif_cha3 = np.array(iflux[0:len(iflux):2]).mean()
idif_dis3 = np.array(iflux[1:len(iflux):2]).mean()

idif3 = np.array(iflux).mean()

f= interpld(t,mig3)
x_V=np.linspace(np.array(t).min(),np.array(t).max(),it)
y_V =1f(x_V)

iflux=[]
iflux.append(trapz(y_V[0:index_charge[0]],x=x_V[0:index_charge[0]]))

e=0
X ite=1
n = int((discharge_steps.shape[0]+charge_steps.shape[0])/2-1)
for i in range(n+1):
if e == len(discharge_time):
break
iflux_dis = (trapz(y_V/[index_charge[e]:index_discharge[e]],x=x_V[index_charge[e]:index_discharge[e]]))
iflux.append(iflux_dis)
if x_ite == len(charge_time):
break
iflux_cha=
(trapz(y_V[index_discharge[e]:index_charge[x_ite]],x=x_V[index_discharge[e]:index_charge[x_ite]]))
iflux.append(iflux_cha)
e+=1
x_ite +=1

imig_cha3 = np.array(iflux[0:len(iflux):2]).mean()
imig_dis3 = np.array(iflux[1:len(iflux):2]).mean()

imig3 = np.array(iflux).mean()

f= interpld(t,conv3)
x_V=np.linspace(np.array(t).min(),np.array(t).max(),it)
y_V=f(x_V)
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iflux=1]
iflux.append(trapz(y_V[0:index_charge[0]],x=x_V[0:index_charge[0]]))

e=0
x_ite=1
n = int((discharge_steps.shape[0]+charge_steps.shape[0])/2-1)
for i in range(n+1):
if e == len(discharge_time):
break
iflux_dis = (trapz(y_V[index_charge[e]:index_discharge[e]],x=x_V[index_charge[e]:index_discharge[e]]))
iflux.append(iflux_dis)
if x_ite == len(charge_time):
break
iflux_cha =
(trapz(y_V/[index_discharge[e]:index_charge[x_ite]],x=x_V[index_discharge[e]:index_charge[x_ite]]))
iflux.append(iflux_cha)
e+=1
X_ite +=1

iconv_cha3 = np.array(iflux[0:len(iflux):2]).mean()
iconv_dis3 = np.array(iflux[1:len(iflux):2]).mean()

iconv3 = np.array(iflux).mean()

#integrating fluxes V5

f= interpld(t,total4)
x_V=np.linspace(np.array(t).min(),np.array(t).max(),it)
y_V=1(x_V)

iflux=[]
iflux.append(trapz(y_V[0:index_charge[0]],x=x_V[0:index_charge[0]]))

e=0
X ite=1
n = int((discharge_steps.shape[0]+charge_steps.shape[0])/2-1)
for i in range(n+1):
if e == len(discharge_time):
break
iflux_dis = (trapz(y_V[index_charge[e]:index_discharge[e]],x=x_V[index_charge[e]:index_discharge[e]]))
iflux.append(iflux_dis)
if x_ite == len(charge_time):
break
iflux_cha=
(trapz(y_V[index_discharge[e]:index_charge[x_ite]],x=x_V[index_discharge[e]:index_charge[x_ite]]))
iflux.append(iflux_cha)
e+=1
X_ite +=1

itotal_cha4 = np.array(iflux[0:len(iflux):2]).mean()
itotal_dis4 = np.array(iflux[1:len(iflux):2]).mean()

itotal4 = np.array(iflux).mean()

f=interpld(t,dif4)
x_V=np.linspace(np.array(t).min(),np.array(t).max(),it)
y_V=1(x_V)

iflux=[]
iflux.append(trapz(y_V[0:index_charge[0]],x=x_V[0:index_charge[0]]))

e=0
x_ite=1
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n = int((discharge_steps.shape[0]+charge_steps.shape[0])/2-1)
for i in range(n+1):
if e == len(discharge_time):
break
iflux_dis = (trapz(y_V[index_charge[e]:index_discharge[e]],x=x_V[index_charge[e]:index_discharge[e]]))
iflux.append(iflux_dis)
if x_ite == len(charge_time):
break
iflux_cha =
(trapz(y_V[index_discharge[e]:index_charge[x_ite]],x=x_V[index_discharge[e]:index_charge[x_ite]]))
iflux.append(iflux_cha)
e+=1
X_ite +=1

idif_cha4 = np.array(iflux[0:len(iflux):2]).mean()
idif_dis4 = np.array(iflux[1:len(iflux):2]).mean()

idif4 = np.array(iflux).mean()

f=interpld(t,mig4)
x_V=np.linspace(np.array(t).min(),np.array(t).max(),it)
y_V=1(x_V)

iflux=[]
iflux.append(trapz(y_V[0:index_charge[0]],x=x_V[0:index_charge[0]]))

e=0
x_ite=1
n = int((discharge_steps.shape[0]+charge_steps.shape[0])/2-1)
for i in range(n+1):
if e == len(discharge_time):
break
iflux_dis = (trapz(y_V/[index_charge[e]:index_discharge[e]],x=x_V[index_charge[e]:index_discharge[e]]))
iflux.append(iflux_dis)
if x_ite == len(charge_time):
break
iflux_cha=
(trapz(y_V[index_discharge[e]:index_charge[x_ite]],x=x_V[index_discharge[e]:index_charge[x_ite]]))
iflux.append(iflux_cha)
e+=1
X_ite +=1

imig_cha4 = np.array(iflux[0:len(iflux):2]).mean()
imig_dis4 = np.array(iflux[1:len(iflux):2]).mean()

imig4 = np.array(iflux).mean()

f=interpld(t,conv4)
x_V=np.linspace(np.array(t).min(),np.array(t).max(),it)
y_V=1(x_V)

iflux=[]
iflux.append(trapz(y_V[0:index_charge[0]],x=x_V[0:index_charge[0]]))

e=0
X ite=1
n = int((discharge_steps.shape[0]+charge_steps.shape[0])/2-1)
for i in range(n+1):
if e == len(discharge_time):
break
iflux_dis = (trapz(y_V[index_charge[e]:index_discharge[e]],x=x_V[index_charge[e]:index_discharge[e]]))
iflux.append(iflux_dis)
if x_ite == len(charge_time):



break
iflux_cha=

(trapz(y_V[index_discharge[e]:index_charge[x_ite]],x=x_V[index_discharge[e]:index_charge[x_ite]]))

iflux.append(iflux_cha)
e+=1
X_ite +=1

iconv_cha4 = np.array(iflux[0:len(iflux):2]).mean()
iconv_dis4 = np.array(iflux[1:len(iflux):2]).mean()

iconv4 = np.array(iflux).mean()

# plotting

fig,ax = plt.subplots(nrows=2,ncols=2)
plt.subplot(2,2,1)

plt.bar(‘total',itotall)

plt.bar('dif',idifl)

plt.bar('mig',imig1)
plt.bar(‘conv',iconvl)

plt.ylim([-0.5,3])

plt.subplot(2,2,2)
plt.bar(‘total',itotal2)
plt.bar('dif',idif2)
plt.bar('mig',imig2)
plt.bar(‘conv',iconv2)
plt.ylim([-0.5,3])

plt.subplot(2,2,3)
plt.bar(‘total',itotal3)
plt.bar('dif',idif3)
plt.bar('mig',imig3)
plt.bar(‘conv',iconv3)
plt.ylim([-3,0.5])

plt.subplot(2,2,4)
plt.bar(‘total',itotal4)
plt.bar('dif',idif4)
plt.bar('mig',imig4)
plt.bar(‘conv',iconv4)
plt.ylim([-3,0.5])

plt.savefig(‘fig_name.tiff',format="tiff',dpi=300)
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Algorithm to calculate the V(V) limiting concentration (Figure 51 and Figure
54)

The following algorithm (in python) was developed to calculate the V(V) limiting

concentration and its derivative.

Input files: (COMSOL files) V(V) concentration versus time.

import pandas as pd

import numpy as np

from scipy.signal import find_peaks
import matplotlib.pyplot as plt

from scipy.interpolate import interpld

dfl = pd.read_csv('cl.txt',skiprows=7)
df2 = pd.read_csv('c2.txt',skiprows=7)
df3 = pd.read_csv('c3.txt',skiprows=7)

dfl = dfl.rename(columns={'% X"'time','Height":'cV2','Height.1"'cV3','Height.2":'cV4','Height.3":'c\VV5'})
df2 = df2.rename(columns={'% X'"'time','Height':'cV2','Height.1":'cV3','Height.2":'cVV4','Height.3"'cV5})
df3 = df3.rename(columns={'% X'"'time','Height":'cV2','Height.1":'c\V3','Height.2":'cV4','Height.3":'c\V5'})

cV5_1 =dfi['cV5T.values*-1
cV5_2 =df2['cVV5T.values*-1
cV5_3 =df3['cVV5T.values*-1

t1 = dfi['time’].values
t2 = df2['time"].values
t3 = df3['time’].values

it=200000

f=interpld(tl,cVv5_1)

x= np.linspace(np.array(t1).min(),np.array(t1).max(),it)
y =f(x)

peaks = find_peaks(y,height=-200,threshold=0.000000002)
height = peaks[1]['peak_heights’]
if height.shape[0] == 1:
height = np.append(peaks[1]['peak_heights'],peaks[1]['peak_heights'])

peak_pos = np.array(x)[peaks[0]]
if peak_pos.shape[0] == 1:
peak_pos = np.append(np.array(x)[peaks[0]],x[len(x)-1])

fig = plt.figure()

ax = fig.subplots()

ax.plot(x,y,-k', label = "Time derivative')

ax.scatter(peak_pos, height, color ='r', s = 15, marker = 'D', label = 'Peaks")
ax.legend()

ax.grid()

n_cyclesl = np.arange(1,len(height)+1,1)



Max = height*-1*0.001

it2 =18

f2=interpld(n_cyclesl,Max)

x2= np.linspace(np.array(n_cyclesl).min(),np.array(n_cycles1).max(),it2)
y2 = f2(x2)

d_Max1 = np.gradient(y2,x2)*1e3

fig = plt.figure()
ax = fig.subplots()
ax.plot(n_cyclesl,Max,'ko")

ax2=ax.twinx()
ax2.plot(x2,d_Max1,'k-",label="1.10 mol/L")

f=interpld(t3,cVV5_3)
x= np.linspace(np.array(t2).min(),np.array(t2).max(),it)
y =f(x)

peaks = find_peaks(y,height=-200,threshold=0.000000002)
height = peaks[1]['peak_heights']
if height.shape[0] == 1:
height = np.append(peaks[1]['peak_heights],peaks[1]['peak_heightsT)

peak_pos = np.array(x)[peaks[0]]
if peak_pos.shape[0] == 1:
peak_pos = np.append(np.array(x)[peaks[0]],x[len(x)-1])

n_cycles2 = np.arange(1,len(height)+1,1)
Max2 = height*-1*.001
ax.plot(n_cycles2,Max2,'bo")

f2=interpld(n_cycles2,Max2)
x2= np.linspace(np.array(n_cycles2).min(),np.array(n_cycles2).max(),it2)
y2 = f2(x2)

d_Max2 = np.gradient(y2,x2)*1e3
ax2.plot(x2,d_Max2,'b-',label="1.80 mol/L")
ax2.set_yticks(np.arange(-10,0,3))

ax.set_xlabel('Cycle number")

ax.set_ylabel("V(V) limiting concentration (mol/L)")
ax2.set_ylabel('Derivative (X10$"3$ mol/L)")
plt.xlim([0,20.5])
ax.set_xticks(np.arange(0,20.1,5))

""" f= interp1d(t3,cV5_3)
x= np.linspace(np.array(t3).min(),np.array(t3).max(),it)
y =f(x)

peaks = find_peaks(y,height=-200.,threshold=0.000000002)
height = peaks[1]['peak_heights']
if height.shape[0] == 1:
height = np.append(peaks[1]['peak_heights'],peaks[1]['peak_heights')

peak_pos = np.array(x)[peaks[0]]
if peak_pos.shape[0] == 1:
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peak_pos = np.append(np.array(x)[peaks[0]],x[len(x)-1])

n_cycles2 = np.arange(1,len(height)+1,1)
SoH_max2 = height
ax.plot(n_cycles2,SoH_max2*-1,'g-",label="c2,i1")

plt.legend()
ax.set_xlabel('Cycle number")
ax.set_ylabel("V5 concentration’)

plt.savefig('cV5 concentration_concentration.tiff',format="tiff',dpi=300)
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Algorithm to determine the suitable magnitude of velocity between electrolyte
tanks (Figure 58)

The following algorithm (in python) was developed to calculate the discharge
capacity and the capacity loss rate for different values of velocity between electrolyte
tanks.

Input files: (COMSOL files) cell potential versus time.

import pandas as pd

import numpy as np

from scipy.signal import find_peaks
import matplotlib.pyplot as plt

from scipy.interpolate import interpld
import matplotlib

# creating file names
V_file = ['VO.txt', V6.txt', V7.txt','V8.txt','V9.txt]
v_br_x4 =[0''1"'5'10",'50]

CL=[]
CL_rate =]

for i in range(len(V_file)):
dfl_raw = pd.read_csv(V_{file[i],skiprows=(7))

dfl = dfl_raw.rename(columns={'% X"'time','Height"'V'})

# selecting data
x = list(df1['timeT)
y = list(df1['V'])

#interpolation

it=200000

f=interpld(x,y)
x_V=np.linspace(np.array(x).min(),np.array(x).max(),it)
y_V=1(x_V)

# differentiation of discrete values of V versus time data (for time peak determination)
dydx_V=np.gradient(y_V,x_V)

# finding peaks charge/discharge

peaks = find_peaks(abs(dydx_V),height=0.02)
height = peaks[1]['peak_heights']

if height.shape[0] == 1:



height = np.append(peaks[1]['peak_heights],peaks[1]['peak_heightsT)

peak_pos = np.array(x_V)[peaks[0]]
if peak_pos.shape[0] == 1:
peak_pos = np.append(np.array(x_V)[peaks[0]],x_V[len(x_V)-1])

#calculating capacity loss
step_time =]
step_time.append(peak_pos[0])
z ite=0
for i in range(len(peak_pos)):
if z_ite == len(peak_pos)-1:
break
step_time.append(peak_pos[z_ite+1]-peak_pos[z_ite])
z_ ite+=1
discharge_time = step_time[1:len(step_time):2]
capacity_loss =]
for i in range(len(discharge_time)):
capacity_loss.append(100*discharge_time[i]/discharge_time[0])

CL_35 = capacity_loss[0:34]
CL.append(CL_35)

CL_pc_list=1]

for i in range(len(CL_35)-1):
CL_pc = CL_35[i]-CL_35[i+1]
CL_pc_list.append(CL_pc)

CL35_rate = np.array(CL_pc_list[0:20]).mean()

CL_rate.append(CL35_rate)

n_cycles = np.arange(1,35,1)

fig,(ax,ax2) = plt.subplots(1,2)
fig.set_figwidth(10)
plt.subplots_adjust(wspace=0.2)

cmap = matplotlib.cm.get_cmap('viridis')
c=np.linspace(0,20,5)

ax.set_title('(a)")

ax.set_xlabel(‘Cycle number")
ax.set_ylabel('Discharge capacity (%))
ax.plot(n_cycles,CL[0],color=cmap(0.0),label="0")
ax.plot(n_cycles,CL[1],color=cmap(0.25),label="1")
ax.plot(n_cycles,CL[2],color=cmap(0.50),label='5")
ax.plot(n_cycles,CL[3],color=cmap(0.75),label="10")
ax.plot(n_cycles,CL[4],color=cmap(1.0),label="'50")
ax.legend(title="$v_{p}$ (m/s)")

ax2.set_title('(b)")

ax2.set_xlabel(‘$v_{p}$ (m/s))

ax2.set_ylabel('Capacity loss rate (% per cycle)’)
ax2.scatter(v_br_x4,CL_rate,c=c,cmap='viridis',marker="D")

plt.savefig('magnitude_test.tiff',format="tiff',dpi=600)
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Algorithm for regression analysis and 4D plot (Figure 59)

The following algorithm (in python) was developed for regression analysis. The
variables decodified are used. The purpose was to obtain the coefficients on the same
scale for all variables.

Input files: data from Table 17. Doehlert design for three variables of Study 2. And
Table 29. All responses from Doehlert design (Study 2)*.

import pandas as pd

from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt

import numpy as np

from matplotlib import cm

import matplotlib as mpl

# importing data

base = pd.read_csv('data.txt',sep="\t")
X = base.iloc[:, 0:3].values

y = base.iloc[:, 3].values

# setting regression
poly = PolynomialFeatures(degree = 2)
X1 = poly.fit_transform(X)

regressor = LinearRegression()
regressor.fit(X1,y)

y_pred = regressor.predict(X1)

### creating data to 2D response surface

mesh = 100
levels = 20
transp = 0.9

vi=1
v2=55
v3=10

il =45.36
i2=280
i3=114.64

c1=1.123
c2=145
c3=1.777

v_br = np.linspace(1,10,mesh)
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i_appl = np.linspace(45.36,114.64,mesh)

#v_brversus i_appl com cl
v_br,i_appl=np.meshgrid(v_br,i_appl)

column_=np.linspace(0,0,mesh)
for il in range(mesh):

column = np.array([])

for i2 in range(mesh):
prev = np.array([v_br[i1][i2],i_appl[i1][i2],c1]).reshape(1,-1)
prev_p = poly.fit_transform(prev)
pred=regressor.predict(prev_p)
column=np.append(column,pred)

column_=np.column_stack((column_,column))

Z1 = np.delete(column_,0,1)

#v_br versus i_appl com c2
column_=np.linspace(0,0,mesh)
for il in range(mesh):

column = np.array([])

for i2 in range(mesh):
prev = np.array([v_br[i1][i2],i_appl[i1][i2],c2]).reshape(1,-1)
prev_p = poly fit_transform(prev)
pred=regressor.predict(prev_p)
column=np.append(column,pred)

column_=np.column_stack((column_,column))

Z2 = np.delete(column_,0,1)

#v_br versus i_appl com c3
column_=np.linspace(0,0,mesh)
for il in range(mesh):

column = np.array([])

for i2 in range(mesh):
prev = np.array([v_br[i1][i2],i_appl[i1][i2],c3]).reshape(1,-1)
prev_p = poly.fit_transform(prev)
pred=regressor.predict(prev_p)
column=np.append(column,pred)

column_=np.column_stack((column_,column))

Z3 = np.delete(column_,0,1)

# parameters

ZQ_min = np.array([round(Z1.min(),2),round(Z2.min(),2),round(Z3.min(),2)]).min()
ZQ_max = np.array([round(Z1.max(),2),round(Z2.max(),2),round(Z3.max(),2)]).max()
#it# ploting

fig = plt.figure()
ax = fig.gca(projection="3d")

plt.contourf(v_br, i_appl, Z1, levels = levels,alpha=transp,offset=c1)
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plt.clim(0,ZQ_max)

plt.contourf(v_br, i_appl, Z2, levels = levels,alpha=transp,offset=c2)
plt.clim(0,ZQ_max)

plt.contourf(v_br, i_appl, Z3, levels = levels,alpha=transp,offset=c3)
plt.clim(0,ZQ_max)

norm = mpl.colors.Normalize(vmin=Z2Q_min,vmax=Z2Q_max)
ch4=plt.colorbar(cm.ScalarMappable(norm=norm),
orientation="vertical',
ticks=np.arange(0,ZQ_max+0.01,5),
pad = 0.15)
cb4.set_label(‘Capacity loss (%), fontsize=10)
cb4.ax.tick_params(labelsize="small',direction="in")

ax.set(xlabel ='$v_{p}$ (m/s)"ylabel ='$i_{appl}$ (MA/$cm"2$)' zlabel="$c_{act}$ (mol/L)")
ax.xaxis.set_ticks(np.arange(v1, v3+0.01,4))

ax.yaxis.set_ticks(np.arange(45, 115+0.01,30))
ax.zaxis.set_ticks(np.arange(1.15,1.75+0.01,0.3))

ax.set_zlim(c1,c3)

plt.savefig('Fig_name.tiff', format="tiff',dpi=600)
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Algorithm to calculate optimum velocity between tanks (Figure 60)

The following algorithm (in python) was developed to determine the optimum
velocity between tanks for any combination of applied current density and concentration
of active species.

Input files: data from Table 17. Doehlert design for three variables of Study 2. And
Table 29. All responses from Doehlert design (Study 2)*.

import pandas as pd

from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt

import numpy as np

import matplotlib

# importing data

base = pd.read_csv('data.txt',sep="\t")
X = base.iloc[:, 0:3].values

y = base.iloc[:, 3].values

# setting regression
poly = PolynomialFeatures(degree = 2)
X1 = poly.fit_transform(X)

regressor = LinearRegression()
regressor.fit(X1,y)

y_pred = regressor.predict(X1)

#it# creating data to 2D response surface

mesh = 100
levels = 20
transp = 0.9

i1=75
i2=45
i3 =60

cl=175
c2=145
c3=1.15

v_br = np.linspace(1,10,mesh)



# case (1)

CL1=1]

for i in range(len(v_br)):
prev = np.array([v_br[i],i1,c1]).reshape(1,-1)
prev_p = poly.fit_transform(prev)
pred=float(regressor.predict(prev_p))
CL1.append(pred)

# case (2)

CL2=1]

for i in range(len(v_br)):
prev = np.array([v_brl[i],i2,c2]).reshape(1,-1)
prev_p = poly.fit_transform(prev)
pred=float(regressor.predict(prev_p))
CL2.append(pred)

# case (3)

CL3=1]

for i in range(len(v_br)):
prev = np.array([v_br[i],i3,c3]).reshape(1,-1)
prev_p = poly.fit_transform(prev)
pred=float(regressor.predict(prev_p))
CL3.append(pred)

### finding v optimum

v_optl=v_br[CL1.index(min(CL1))]
v1_str = str(round(v_opt1,1))
v_opt2=v_br[CL2.index(min(CL2))]
v2_str = str(round(v_opt2,1))
v_opt3=v_br[CL3.index(min(CL3))]
v3_str = str(round(v_opt3,1))

### ploting

cmap = matplotlib.cm.get_cmap('viridis’)

fig,ax = plt.subplots()

ax.plot(v_br,CL1,'k-",color=cmap(0),label="case (1) '+'$v_{opt}=$'+v1_str)
ax.plot(v_br,CL2,'r-",color=cmap(0.33),label="case (2) '+'$v_{opt}=$'+v2_str)
ax.plot(v_br,CL3,'b-",color=cmap(1.0),label="case (3) '+'$v_{opt}=$'+v3_str)
ax.set(xlabel ='$v_{p}$ (m/s)"ylabel ='CL (%))

plt.legend()

plt.savefig('Optimum_v.tiff',format="tiff',dpi=600)
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Algorithm for validation of regression analysis (Figure 61)

The following algorithm (in python) was developed to validate the regression
analysis and plot the Figure 61

Input files: validation data.

import pandas as pd

from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_absolute_error,r2_score
import matplotlib.pyplot as plt

import numpy as np

# importing data
base = pd.read_csv('data.txt',sep="\")

X = base.iloc[:, 0:3].values
y = base.iloc[:, 3].values

testl = pd.read_csv('data_validation_random.txt',sep="\t")
X_testl = testl.iloc[:,1:4].values
y_testl =testl.iloc[:,7].values

# setting regression

poly = PolynomialFeatures(degree = 2)
X1 = poly.fit_transform(X)

X1_testl = poly.fit_transform(X_test1)

regressor = LinearRegression()
regressor.fit(X1,y)

y_pred = regressor.predict(X1)
y_pred_test = regressor.predict(X1_test1)

#Figures of merit
R2_t=r2_score(y_testl,y pred_test)
R2 =r2_score(y,y_pred)

r2s = str(round(R2,4))
r2ts = str(round(R2_t,4))

figl,ax1 = plt.subplots()
ax1.plot(np.linspace(0,20,50),np.linspace(0,20,50),'k--")
ax1.plot(y_testl,y pred_test,'go’',markersize=7,label="Test set’)
ax1.plot(y,y_pred,'bo',markersize=7,label="Train set’)
plt.xlabel('Simulated capacity loss (%)")

plt.ylabel( 'Predicted capacity loss (%)")
plt.text(15,3,'SR™2_{train}$:' + r2s + '\n $RA2_{test}$:' + rts)
plt.legend()

plt.savefig(‘regression.tiff',formate="tiff',dpi=300)



Appendix C — Scripts for data treatment (Study 3)

Algorithm to calculate the responses from COMSOL files (Table 32)
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The following algorithm (in python) was developed to calculate the voltage efficiency

and the overpotential (activation plus concentration) of each designed computational

experiment.

Input files: (COMSOL files) cell potential versus SoC for charging and discharging,

overpotential (activation plus concentration) versus SoC for charging and discharging.

import pandas as pd
file_number=list(range(1,33))

Vd_file =]
Vc_file=1]
ec_file=T]
ed_file=1]

#creating name of files

for i in file_number:

Ve='Vc' + str(i) +.txt'
Vc_file.append(Vc)
Vd="Vd' + str(i) +'.txt'
Vd_file.append(\Vd)
ec='ec' + str(i) +".txt'
ec_file.append(ec)
ed='ed" + str(i) +".txt'
ed_file.append(ed)

#reading files
Ve_list=1]
Vd_list =]
ec_list=1]
ed_list=1]

for i in range(len(ed_file)):
df_Vc=pd.read_csv(Vc_file[i],skiprows=(7))
Vc_mean=df_Vc['Height].mean()
Vc_list.append(Vc_mean)
df_Vd=pd.read_csv(Vd_file[i],skiprows=(7))
Vd_mean=df_Vd['Height'].mean()
Vd_list.append(Vd_mean)
df_ec=pd.read_csv(ec_file[i],skiprows=(7))
ec_mean=df_ec['Height].mean()
ec_list.append(1000*abs(ec_mean))
df_ed=pd.read_csv(ed_file[i],skiprows=(7))
ed_mean=df_ed['Height].mean()
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ed_list.append(1000*abs(ed_mean))

#calculating voltage efficiency

VE=1]

for i in range(len(Vc_list)):
VE_ite = round(Vd_list[i]*100/Vc_list[i],2)
VE.append(VE_ite)

#exporting data
treated_data=pd.DataFrame({'VE":VE,'eta_charge'.ec_list,'eta_dis".ed_list})
treated_data.to_csv('treated_data.txt',sep="\t',decimal="',index=False)



Algorithm to calculate effects (Figure 65 and Figure 67)
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The following algorithm (in python) was developed to calculate the effects of 25!

factorial design.

Input files: data from Table 21 and Table 32.

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

from scipy.stats import norm

df=pd.read_csv(‘effect.txt',sep="\t")

X = df.iloc[:,0:6].values
y = df.iloc[:,6].values

effects =[]

# primary effects
listl =]
list2 =]
list3 =]
list4 =[]
list5 =[]
list6 =[]

for i in range(len(y)):
itl = X[i][0]*y[i]
listl.append(itl)
it2 = X[i][1]*y[i]
list2.append(it2)
it3 = X[i[2]*yIi]
list3.append(it3)
it4 = X[i1[31*y[i]
list4.append(it4)
it5 = X[i][4]*y[i]
list5.append(it5)
it6 = X[i][5]*y[i]
list6.append(it6)

efl=2*np.array(listl).mean()
effects.append(efl)
ef2=2*np.array(list2).mean()
effects.append(ef2)
ef3=2*np.array(list3).mean()
effects.append(ef3)
ef4=2*np.array(list4).mean()
effects.append(ef4)
ef5=2*np.array(list5).mean()
effects.append(ef5)
ef6=2*np.array(list6).mean()
effects.append(ef6)

#secondary effects
list12 =]



listl3 = []
listl4 = []
list15 = []
list16 = []
list23 = []
list24 = []
list25 = []
list26 = []
list34 = []
list35 = []
list36 = []
listd5 = []
list46 = []
list56 = []

for i in range(len(y)):
it12 = X[J[O0]*X[i][1]*y[i]
list12.append(it12)
it13 = X[i[0]*X[il[2]*y[i]
list13.append(it13)
it14 = X[i[0]*X[i1[31*YI[i]
listl4.append(it14)
it15 = X[i][0]*X[i1[4]*V[i]
list15.append(itl5)
it16 = X[i][0]*X[i1[51*YI[i]
list16.append(it16)
it23 = X[i[1]*X[i][2]*y[i]
list23.append(it23)
it24 = X[[1]*X[i1[3]*y[i]
list24.append(it24)
it25 = X[J[1]*X[i][4]*y[i]
list25.append(it25)
it26 = X[iJ[1]*X[i1[51*Y[i]
list26.append(it26)
it34 = X[i][2]*X[i1[3]*y[i]
list34.append(it34)
it35 = X[i][2]*X[i][4]*y[i]
list35.append(it35)
it36 = X[il[2]*X[i1[5]*VI[i]
list36.append(it36)
it45 = X[i][31*X[i1[4]*VI[i]
list45.append(it45)
it46 = X[][3]*X[i][5]*y[i]
list46.append(it46)
it56 = X[i][4]*X[i][5]*y[i]
list56.append(it56)

efl2=2*np.array(list12).mean()
effects.append(ef12)
ef13=2*np.array(list13).mean()
effects.append(ef13)
efl4=2*np.array(list14).mean()
effects.append(efl4)
efl5=2*np.array(list15).mean()
effects.append(ef15)
efl6=2*np.array(list16).mean()
effects.append(ef16)

ef23=2*np.array(list23).mean()
effects.append(ef23)
ef24=2*np.array(list24).mean()
effects.append(ef24)
ef25=2*np.array(list25).mean()
effects.append(ef25)
ef26=2*np.array(list26).mean()
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effects.append(ef26)

ef34=2*np.array(list34).mean()
effects.append(ef34)
ef35=2*np.array(list35).mean()
effects.append(ef35)
ef36=2*np.array(list36).mean()
effects.append(ef36)

ef45=2*np.array(list45).mean()
effects.append(ef45)
ef46=2*np.array(list46).mean()
effects.append(ef46)

ef56=2*np.array(list56).mean()
effects.append(ef56)

#creating plots

effects_name = ['1''2,'3''4,'5",'6",'12','13','14",'15','16','23",'24’,

'25','26','34','35','36','45','46','56']

df_effects = pd.DataFrame({'effect':effects_name,'Value'.effects})

df_effects_or = df_effects.sort_values(by="Value',ignore_index=True)

#porcentage graph
effects_squared =[]

for i in range(len(effects)):
effects_squared.append(abs(effects[i]))

sum_effects_squared = np.array(effects_squared).sum()

percentage_ef =]

for i in range(len(effects_squared)):
b_ite = 100*effects_squared[i]/sum_effects_squared
percentage_ef.append(b_ite)

#probability graph and pareto
effect_or = df_effects_or.iloc[:,1]
name_or = df_effects_or.iloc[:,0]

initial =[]

initial.append(0)

for i in range(len(effects)-1):
c_ite = 1/len(effects)+initial[i]
initial.append(c_ite)

final =[]
for i in range(len(initial)):
final.append(initial[i+1])
if len(initial) == len(final)+1:
break
final.append(1)

middle =[]

for i in range(len(initial)):
d_ite = (initial[i]+final[i])/2
middle.append(d_ite)

inv_norm = norm.ppf(middle)
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#plots

df_perc = pd.DataFrame({'effect':effects_name,'percentage’:percentage_ef})
df_perc_or = df_perc.sort_values(by="percentage’,ascending=False,ignore_index=True)
percentage_ef = df_perc_or.iloc[:,1].values

name_ef_perc = df_perc_or.iloc[:,0]

fig,ax = plt.subplots()
ax.bar(name_ef_perc,percentage_ef,color='green’)
ax.set_xlabel('Standardized Effect’)
ax.set_ylabel('Percentage (%)',color="darkgreen’)
ax.yaxis.label.set_color('green’)
ax.tick_params(axis='y', colors='green")

perc_cum = percentage_ef.cumsum()

ax2 = ax.twinx()
ax2.plot(name_ef_perc,perc_cum,marker="0",color="black’)
ax2.set_ylabel('Cumulative Sum (%)',color="black’)

#plt.savefig('percentage_graph.png',format="png',dpi=300)

fig3,ax3 = plt.subplots()

ax3.scatter(effect_or,inv_norm,color="green’)

ax3.set_xlabel('Effect’)

ax3.set_ylabel('z value’)

yline = np.linspace(np.array(inv_norm).min(),np.array(inv_norm).max(),10)
xline = np.linspace(0,0,10)

ax3.plot(xline,yline,color="black’)

for i, txt in enumerate(name_or):
ax3.annotate(txt, (effect_or[i],inv_norm[i]))

#plt.savefig(‘probability_graph.png',format="png’,dpi=300)



