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this thing that fed on it was now too strong to let it go. […]” 

Andrew Solomon 

 

 

 

 

“Because science is inseparable from the rest of human 
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Resumo 

OTIMIZAÇÃO DE DESEMPENHO EM BATERIAS DE FLUXO REDOX: UMA 

ABORDAGEM COMPUTACIONAL. 

As baterias de fluxo redox (RFBs) surgem como uma tecnologia alternativa para o 

armazenamento de energia em larga escala. As principais características deste tipo de 

dispositivo estão relacionadas ao seu design único, que proporciona escalabilidade, 

desacoplamento entre potência e densidade de energia e a utilização de diversos tipos de 

espécies ativas. A RFB mais desenvolvida até hoje é a bateria de fluxo redox de vanádio 

(VRFB), que usa V2+/V3+ em uma semi-célula e VO2+(V(IV))/VO2
+/(V(V)) em outra. 

Apesar de suas vantagens, a VRFB enfrenta alguns desafios relacionados ao desempenho, 

o que dificulta sua penetração no mercado. Dois dos problemas mais relevantes são a 

perda de capacidade e a perda de voltagem. A perda de capacidade é causada pela 

seletividade não ideal da membrana, que permite a contaminação cruzada entre as semi-

células, levando a reações de auto-descarga. A perda de voltagem é causada pelos 

sobrepotenciais, que exigem potenciais de carga mais altos e diminuem o potencial de 

saída. Com base nisso, propomos um método de abordagem para investigar as variáveis 

relacionadas a esses problemas e sugerir estratégias de mitigação a serem testadas em 

sistemas reais. Além dos problemas relacionados às VRFBs, também investigamos as 

consequências da escolha de diferentes espécies ativas no desempenho de RFBs. Com 

esta abordagem nós: (i) mostramos como a geometria influencia na mitigação dos 

sobrepotenciais ôhmico e de concentração e como os parâmetros geométricos interagem 

com as condições operacionais; (ii) identificamos as condições operacionais que afetam 

a perda de capacidade e propomos uma estratégia de mitigação baseada na transferência 

de volume entre tanques no sentido inverso da contaminação cruzada líquida; e (iii) 

fornecermos insights úteis para entender como a escolha de espécies ativas em RFBs é 

relevante para a eficiência energética. Desta forma, conseguimos fornecer um 

embasamento teórico profundo para os experimentalistas entenderem os efeitos de 

diversas variáveis no desempenho de baterias de fluxo redox. 
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Abstract 

PERFORMANCE OPTIMIZATION IN REDOX FLOW BATTERIES: A 

COMPUTATIONAL APPROACH 

Redox flow batteries (RFBs) emerge as an alternative technology for the storage of energy 

on a large scale. The main characteristics of this type of device are related to its unique 

design, which provides scalability, decoupling between power and energy density, and 

the use of several types of active species. The more developed RFB to date is the all-

vanadium redox flow battery (VRFB), which uses V2+/V3+ in one half-cell and 

VO2+(V(IV))/VO2
+/(V(V)) in the other. Despite the advantages of this type of device, the 

VRFB still faces some drawbacks related to performance, which hinder its marketing 

penetration. Two of the most relevant problems are capacity loss and voltage loss.  The 

capacity loss is caused by the non-ideal selectivity of the membrane, which allows the 

cross-contamination between the half-cells, leading to self-discharge reactions. The 

voltage loss is caused by overpotential that requires higher charging voltages and 

decreases the output voltage. Based on these problems, we propose a new computational 

method of approach to investigate the variables related to these problems and to suggest 

mitigation strategies to be further tested in real systems.  Beyond the problems related to 

VRFBs, we also investigate the consequences of choosing different actives species in the 

performance of RFBs, based on this same method of approach. With this approach, we: 

(i) show how geometry influences the mitigation of overpotential and how geometric 

parameters interact with operating conditions; (ii) identify the operating conditions that 

affect the capacity loss and purpose a mitigation strategy based on the volume transfer 

between tanks in the reverse direction of net cross-contamination; and (iii) provide useful 

insights to understand how the choice of active species in RFBs is relevant to energy 

efficiency. Thus, we provide a set of theoretical backgrounds for experimentalists to 

understand the effects of several variables in the performance of redox flow batteries. 
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1 INTRODUCTION 

This chapter provides an overview of the background: the 

storage technologies, the redox flow batteries, the issues with 

capacity loss and voltage loss, and the methods used (finite 

element method and chemometric analysis). 

 

The increasing global demand for energy and the concerns about the environmental 

impacts of current energy production are driving forces for the improvement of renewable 

energy sources, such as solar and wind. However, this type of energy source suffers from 

intermittency, which is the major impediment to reliable electricity generation1. The 

intermittency leads to (i) the mismatch between electricity supply and demand, and (ii) 

complicates the direct transport to the power grid2.   For this reason, the wide application 

of this type of energy source is highly dependent on energy storage systems (ESSs).  

The principle of energy storage is transforming electrical energy into chemical, 

electrochemical, or mechanical energy. This allows the decoupling between the electricity 

generator from the electricity user1. In this situation, the power generated by off-peak 

time may be stored and then smartly delivered when the demand grows1. However, the 

requirements for energy storage are wide, including fast response time, high energy 

density, wide operating temperature, low cost, high round-trip efficiency, high lifetime, 

low rate of self-discharge, safety, and low environmental effects3. No known ESS meets 

all the requirements for large-scale energy storage. Despite this, some devices are already 

widely used, as pumped-hydro energy storage, and others are at demonstration levels, 

such as some advanced electrochemical capacitors and batteries1. 

In the first section, a brief review of the most important ESSs is shown. In section 

1.2, the focus is the emergent redox flow batteries (RFBs), which are electrochemical 

energy storage devices based on the circulation of liquid electrolytes through porous 

electrodes, where the energy conversion electrical/electrochemical occurs. Sections 1.3 

and 1.4 the drawbacks related to performance – capacity loss and voltage loss - are widely 

discussed. In section 1.5, the experimental evaluation of RFBs is discussed aiming at the 

understanding of the theoretical choices in the next chapters. Finally, in sections 1.6 and 

1.7, the methods used in this thesis – finite element method (FEM) and chemometric 

analysis – are discussed. 
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1.1 Large-Scale Energy Storage 

The ESSs are classified according to how energy is stored. Figure 1 shows some 

examples based on this classification. 

 

 

Figure 1. Classification of ESSs based on the form of stored energy. Based on references2,4.  

  

The pumped hydro storage is a very deployed technology and corresponds to most of 

the total installed capacity connected with the grid (96% in 2018 in the world5).  The 

major advantages of this technology are the long working life, high capacity, and low 

cost2.  

The working principle of pumped hydro reminds the generation of energy by 

hydroelectric sources. During low-demand periods, the water is pumped up to a reservoir 

and the electric energy is converted into potential energy. When the demand grows, the 

water flow drives the turbines to generate electric power. Thus, this type of technology is 

restricted by geographical conditions and topography2.  

Another type of ESS based on potential energy storage is compressed air energy 

storage (CAES). The working principle of CAES is based on the compression of air using 

electrical energy. When demands grow, the air under high pressure is delivered to drive 

the turbines and generate electric power6. This type of storage technology shows high 

capacity, low cost, and long cycle periods of energy storage2. However, CAES suffers 
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from low energy efficiency due to changes in temperature caused by 

compression/expansion of the gas2. CAES plants also require suitable geological 

conditions, since the air compressed is stored in underground caverns.  

The flywheels storage technology is based on the conversion of electric energy into 

kinetic energy by the angular speed of flywheels4. During peak-off times, an electromotor 

drives the flywheel to high angular velocities; thus, electric energy is converted into 

kinetic energy. When electric energy is required, the kinetic energy is reconverted to 

electricity and the angular velocities decrease. The main advantages of this technology 

are fast response, high power density, long cycle life, and environmentally friendly 

operation1. The disadvantages include high capital cost and high self-discharge during 

idling (capacity loss by friction)7. 

The main advantage of electrochemical storage devices is the no geographical 

requirement for installation. Beyond that, the electrochemical storage devices show 

standalone modular design and fast response8. This class is usually divided into batteries 

(e.g., lithium-ion, lead-acid), flow batteries (e.g., vanadium redox flow batteries), and 

electrochemical capacitors. In the first two devices, the energy conversion is based on the 

faradaic processes (redox chemical reactions), whereas the last one is based on the electric 

field between the electrode and the electrolyte. 

One of the most developed electrochemical energy storage devices is the lithium-ion 

battery, widely employed in portable electronic devices, such as smartphones and laptops. 

The success of the lithium-ion battery is related to the high energy and power density, 

cost-effectiveness, high energy efficiency, and long operational life9. The low redox 

potential of lithium (-3.04 vs SHE) and the low molar mass (6.94 g/mol) are what make 

this chemical element so attractive, and allow the development of devices with high 

power and energy densities. 

The working principle of lithium-ion batteries is the ion lithium transfer between the 

cathode and the anode. The anode is usually made of layered graphite and the cathode  is 

usually made of layered lithium metal oxide (e.g., LiCoO2, LiFePO4)
10. The layered 

structure of both anode and cathode materials allows the intercalation and deintercalation 

of Li+, at the same time that current flows in the circuit. During discharging procedure, 

the external power source drives the oxidation in the anode and deintercalation of lithium: 

 

𝐿𝑖𝐶6  ⇌ 𝐶6 + 𝐿𝑖
+ + 𝑒− (anode)      (1) 
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The current flows by the external circuit and the Li+ is enabled to flow across a non-

aqueous electrolyte, where a soluble lithium salt (e.g., LiPF6) is dissolved and embedded 

in a separator felt. Thus, the electrons will drive the reduction in the cathode and the 

consecutive lithium intercalation: 

 

𝐿𝑖+ + 𝑒− +𝑀𝑂2 ⇌ 𝐿𝑖𝑀𝑂2 (cathode)      (2) 

 

Where M is a cation of metallic element, as cobalt. 

Thus, the overall and general cell reaction is: 

 

𝐿𝑖𝑥𝐶𝑦 + 𝐿𝑖(1−𝑥)𝑀𝑂2 ⇌ 𝑦𝐶 + 𝐿𝑖𝑀𝑂2      (3) 

  

Despite the advantages of lithium-ion batteries, the application in large-scale energy 

storage requires better safety, lower cost, wide temperature operational range, materials 

availability and higher capacities than this device can currently provide1,10. The safety 

issue is related to the possibility of explosion when the battery is short-circuited, 

overcharged, or overheated2.  

Because of the drawbacks of lithium-ion batteries, several other batteries have been 

studied, such as sodium-sulfur, sodium-nickel, and redox flow batteries. The main 

advantages of redox flow batteries are related to their modular design11, which provides 

attractive scalability and flexibility for stationary energy storage. The flexibility is 

associated with the decoupling between power and energy capacity. The output power is 

controlled by the size of the stack, whereas the energy capacity is controlled by the 

volume of the electrolyte reservoirs.   

 

1.2 Redox Flow Batteries 

A typical design of a redox flow battery (RFBs) includes the anode and cathode 

compartments, the separator, two current collectors, two electrolyte reservoirs, and 

peristaltic pumps (see Figure 2).  
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Figure 2. Schematic representation and working principle of a redox flow battery. 

 

The energy conversion is based on the reversible electrochemical reaction of two 

redox couples dissolved in the electrolytes, the anolyte (A) in the anode and the catholyte 

(C) in the cathode: 

 

𝑦𝐴𝑛−𝑥 + 𝑥𝐶𝑚 ⇌ 𝑦𝐴𝑛 + 𝑥𝐶𝑚−𝑦      (4) 

 

Where x is the number of electrons transferred in the anode reaction, y is the number 

of electrons transferred in the cathode reaction, n and m are the redox state of the oxidized 

anolyte and catholyte, respectively.  

Both anode and cathode compartments are filled by porous electrodes (e.g., carbon 

felt), where electrochemical reactions take place. Both electrolytes flow continuously 

from reservoirs through the porous electrodes. The separator (e.g., ion-exchange 

membrane) allows the ionic flux between the half-cells and prevents the mix of 

electrolytes. And the current collectors are used to electrically connect the half-cells to 

the load/source and allow the external electron flow.  

The first RFB was developed in the 1970s by Lawrence Thaller at the U.S. National 

Aeronautics and Space Administration (NASA)12. This device employed Cr3+/Cr2+ as 

anolyte and Fe3+/Fe2+ as catholyte. The main issue with the first RFB was the cross-

contamination of active species between the half-cells and the consequent irreversible* 

capacity loss. Other problems in this type of device include low coulombic efficiency and 

*In this case, the terms reversible and irreversible do not have thermodynamic 

meaning. This nomenclature is used just to determine if the capacity loss can be 

mitigated by concentration rebalancing (reversible) or not (irreversible). 

 



6 
 

 

irreversible capacity loss caused by hydrogen evolution due to the low redox potential of 

the Cr3+/Cr2+ couple2.   

The first successful strategy for mitigation of cross-contamination in RFBs was 

achieved by Skyllas-Kazacos in 198813 by using two redox couples from vanadium: 

V2+/V3+ as anolyte and VO2+/VO2
+ as catholyte. This battery is called all-vanadium redox 

flow battery (VRFB). Although cross-contamination is still a problem in VRFBs, the 

products of the reactions between the two half-cells are the vanadium species themselves. 

Thus, the capacity loss in VRFBs is reversible and is mitigated by concentration 

rebalancing14. The cross-contamination in VRFBs is discussed in more detail in section 

1.4. 

The VRFBs are the most well-established redox flow batteries to date and drive the 

development of their entire class. However, this device suffers from some issues: (i) as 

the narrow working temperature window (between 10 and 40 °C)8, which leads to active 

species precipitation; (ii) oxygen15 and hydrogen16,17 side reactions that lower cell 

efficiency and contributes to capacity loss; (iii) high cost of vanadium18 and the ion-

exchange membrane19; (iv) low energy density20; and (v) the reversible capacity loss14.  

To overcome some of these issues, the search and development of new redox-active 

materials increased since 201021. Usually, the systems are divided into aqueous or 

nonaqueous. The benefits of using aqueous systems are the negligible environmental 

impact, the low cost, and the high conductivity provided by high soluble salts in water. 

This allows the operation of the cell in high currents without larger voltage losses22. 

However, the most problematic aspect of using an aqueous medium is the narrow 

electrochemical window of water, which restricted the use of species with absolute high 

redox potentials23. The hydrogen and oxygen evolution (i) lowers efficiency, (ii)limits 

power density, and (iii) increases capacity loss due to the use of a certain percentage of 

current to drive the parasitic reactions24.  

Figure 3 illustrates the challenges faced by the RFB’s market penetration. These 

challenges are divided according to the components of RFB.  

 

Active Species. Regarding the classification of active species, they can be metal (e.g., 

vanadium, iron, cerium), metal-containing organic (e.g., metallocene25,26, metallic 

complexes27,28), and metal-free organic. This last class is also called redox organic 

molecules (ROMs). The choice of a suitable redox active material is usually related to the 

theoretical energy density: 
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𝐸 = 𝑛𝐹𝑐𝑎𝑐𝑡𝑈         (5) 

 

Where n is the number of electrons transferred in the reactions, F is the Faraday’s 

constant, cact is the concentration of the active species and U is the theoretical cell redox 

potential. 

As can be seen in Equation 5, two properties are related to the energy density: the 

solubility and the redox potential. In the case of ROMs, these properties can be tunable 

and this drives the attention of researchers to the development of organic materials for 

RFBs application. ROMs also have benefits related to low cost and sustainability, since 

these materials are composed of earth-abundant elements29.   

Despite solubility and redox potential being the target properties for choosing the 

suitable active species, their consequences on the battery’s efficiency are not known yet.  

The most relevant drawback of using organic materials as active species in RFBs is 

the instability of electrochemically generated radicals. The reduction or oxidation of 

organic compounds usually occurs with coupled chemical reactions, such as dimerization 

or cleavage. The formation of unstable radicals is very common30,31 and structural 

modification plays a significant role in the improvement of chemical persistence of 

electrochemically generated radicals. The strategies for mitigating the rate of coupled 

chemical processes are wide, but usually involve the increase of spin delocalization32,33 

and steric protection of unpaired electron30.   
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Figure 3. Challenges of redox flow batteries per cell components. 
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Other key properties controlling RFB performance are the mass transport to the 

electrode and the electron transfer rate34. Despite the convective flow in the cell, the 

diffusional transport to the electrode plays a role in the effective mass transfer from bulk 

to the surface of the electrode due to the existence of a convective-dependent diffusional 

layer35,36. Thus, the magnitude of diffusion coefficients affects the concentration 

overpotential and consequently the voltage efficiency. The electron transfer rate is even 

a more important property because determines the usability of the cell to deliver a 

desirable current density with high efficiency34.  

 

Electrode material. The development of electrodes is also very important to achieve 

competitive RFBs. The development of electrodes is especially important if the kinetics 

of active species is sluggish, as in VRFBs. Many researchers have studied methods to 

improve the electrochemical activity of electrodes to increase the reversibility of 

vanadium reaction aiming for a better energy efficiency37.  

 

Membrane. The membrane affects the capacity loss due to its selectivity but also 

plays an important role in the cost-effectiveness of RFBs38. One of the most important 

drawbacks in VRFBs is the cross-contamination caused by the non-selective transport of 

ions across the Nafion membrane. The cross-contamination causes the self-discharge of 

the cell and the consequent imbalance of active species between the half-cells14, which 

leads to reversible capacity loss. Despite being reversible, the capacity loss adds cost to 

the VRFB operation. 

 

Stack. The performance of RFBs is also dependent on stack design. A RFB can 

operate with two designs based on the electrode configuration: flow-through and flow-

by39 (see Figure 4). In the flow-through design, the entire electrolyte is forced through 

the porous electrode, whereas in the flow-by design the electrolyte is pumped by the 

electrode with specified flow channels defined by flow fields, as serpentine flow field 

(SFF) and interdigitated flow field (IFF)39.    
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Figure 4. Representative scheme of stack designs: flow-through and flow-by. 

  

The flow-through design demands thicker electrodes than the flow-by design. This is 

because the pump power required for electrolyte circulation is large in the flow-through 

design, and the mitigation strategy is the enlargement of the electrode. However, this 

strategy led to a typical large ohmic overpotential40. The main advantage of the flow-

through design is the uniformity of active species distribution, which is related to the 

magnitude of concentration overpotential. However, the choice of the best design depends 

on several factors: scale, cell dimensions, flow velocity, electrode compression, etc. 

Indeed, there are no decisive studies about which design leads to the best performance41.  

 

1.3 Strategies for Efficiency Improvement in VRFBs 

Energy efficiency is defined as the relation between the retained energy in the 

discharge procedure by the applied energy in the charging procedure. The energy can be 

obtained by integration over time of the product between current and cell potential42: 
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𝐸𝑛𝑒𝑟𝑔𝑦 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝐸𝐸) =  
∫ 𝐼𝑑(𝑡)𝑉𝑑(𝑡)𝑑𝑡
𝑡𝑑
0

∫ 𝐼𝑐(𝑡)𝑉𝑐(𝑡)𝑑𝑡
𝑡𝑐
0

× 100%   (6) 

  

Where Id is the current in the discharge procedure, Vd is the discharging potential, Ic 

is the current in the charging procedure, Vc is the charging potential, td is the discharging 

time and tc is the charging time.  

The integration over time of the current is equal to the delivered charge in the 

discharging procedure (qd) and the retained charge in the charging procedure (qc). This 

quotient is equal to the coulombic efficiency: 

 

𝐶𝑜𝑙𝑜𝑢𝑚𝑏𝑖𝑐 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝐶𝐸) =  
∫ 𝐼𝑑(𝑡)𝑑𝑡
𝑡𝑑
0

∫ 𝐼𝑐(𝑡)𝑑𝑡
𝑡𝑐
0

× 100% =
𝑞𝑑

𝑞𝑐
× 100% (7) 

  

The CE is reduced by the crossover of active species across the membrane43, and side 

reactions44. For instance, the oxygen evolution reaction (OER) and hydrogen evolution 

reaction (HER) consume a part of the current directed to the active species24 and lead to 

the inactivation of active sites due to the bubble formation45.  

The quotient between the mean discharging potential and the mean charging potential 

at constant current is defined as voltage efficiency (VE)22: 

 

𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝑉𝐸) =  

∫ 𝑉𝑑(𝑡)𝑑𝑡
𝑡𝑑
0

𝑡𝑑

∫ 𝑉𝑐(𝑡)𝑑𝑡
𝑡𝑐
0

𝑡𝑐

× 100%    (8) 

  

The VE is reduced by the overpotential (ohmic, concentration, and activation) 

generation. In the discharging procedure, the overpotential reduces the potential delivered 

by the cell. In the charging procedure, the overpotential must be overcome and higher 

potentials must be applied to charge the cell (see Figure 5). In the absence of 

overpotential, just the thermodynamic potential is observed (open circuit potential, OCP) 

and the voltage efficiency is equal to 100%. 
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Figure 5. Cell potential and open circuit potential for a typical redox flow battery. 

 

The overpotential is usually divided into ohmic, concentration, and activation. The 

ohmic overpotential is related to the overall electric resistance of the cell. The 

concentration overpotential is related to the mass transfer resistance of active species from 

the bulk to the electrode surface46. And the activation overpotential is related to the 

potential needed to overcome the activation energy of the electrochemical reaction46. 

These three overpotentials can be analyzed separately and each one can be mitigated using 

different strategies, from geometric modification of electrodes to the choice of active 

species, membranes, and electrodes.  

 Thus, the energy efficiency can be redefined in a more intelligible way as the 

product of coulombic and voltage efficiencies: 

 

𝐸𝐸 = 𝐶𝐸 × 𝐸𝐸         (9) 

  

 Another typical efficiency definition for redox flow batteries includes the 

pumping energy consumption and is defined as the battery or system efficiency: 

 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝐵𝐸) =  
∫ 𝐼𝑑(𝑡)𝐸𝑑(𝑡)𝑑𝑡
𝑡𝑑
0 −∫ 𝑃𝑝𝑢𝑚𝑝𝑑𝑡

𝑡𝑑
0

∫ 𝐼𝑐(𝑡)𝐸𝑐(𝑡)𝑑𝑡
𝑡𝑐
0 −∫ 𝑃𝑝𝑢𝑚𝑝

𝑡𝑐
0 𝑑𝑡

× 100%  (10) 
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Where Ppump is the pump power. 

The magnitude of the pump power is related to how compressed is the carbon felt, 

the design of the cell (flow-through and flow-by), the electrode thickness, and the length 

of the residence path. 

 

Cross-contamination. The key property to avoid cross-contamination is the 

membrane selectivity. The use of perfluorinated sulfonic acid membranes, such as 

Nafion, is the most used membrane for VRFBs due to its high proton conductivity and 

chemical stability38. The drawbacks of this kind of separator include the high vanadium 

permeability and high cost47.  

The cross-contamination in the VRFBs leads to self-discharge reactions. In the 

negative electrode48: 

 

𝑉𝑂2+ + 𝑉2+ + 2𝐻+ →  2𝑉3+ + 𝐻2𝑂      (11) 

 

𝑉𝑂2
+ +  2𝑉2+ + 4𝐻+ → 3𝑉3+  +  2𝐻2𝑂     (12) 

     

  In the positive electrode48: 

 

𝑉2+ + 2𝑉𝑂2
+ + 2𝐻+ →  3𝑉𝑂2+ + 𝐻2𝑂     (13) 

  

𝑉3+ + 𝑉𝑂2
+ →  2𝑉𝑂2+        (14) 

  

The self-discharge reactions lead to the imbalance of active species between the half-

cells due to the different transfer properties among the four redox states of vanadium43. 

As the concentration of active species varies with time in each half-cell, the applied 

charge in the charging procedure will be greater than the charge delivered in the discharge 

one, leading to CE < 100%. 

To mitigate this issue, several authors have proposed alternative non-perfluorinated 

membranes38, anion exchange membranes49, and porous membranes50 for VRFB 

application. Beyond selectivity, several other properties must be considered when 

choosing the suitable membrane: ionic conductivity, working current density, preparation 

technologies, stability, and cost38. The anion exchange membranes show lower 

permeability, but have low stability and low conductivity38. The porous membranes are 
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stable and cheap but are inefficient in the ion exchange process, leading to unsatisfactory 

performance38.   

 

OER and HER. As aforementioned, the OER and HER are responsible for lowering 

the expected 100% of CE. The practical strategies to mitigate these reactions are: to limit 

the operational SoC window between 10 and 90%43; choose properly the electrode 

material17; and use inhibitors51 (e.g., bismuth).  

 

Activation overpotential. The mitigation of activation overpotential occurs on two 

fronts: (1) the choice of active species with intrinsic fast electron transfer rate and (2) the 

development of electrocatalysts with high electrochemical performance.  

The two electron transfer processes involved in VRFBs are sluggish52: 

 

𝑉2+ ⇌ 𝑉3+ + 𝑒−, 𝑘0(𝑔𝑙𝑎𝑠𝑠𝑦 𝑐𝑎𝑟𝑏𝑜𝑛) = 5.4 × 10−5 𝑐𝑚 𝑠−1  (15) 

 

𝑉𝑂2
2+ + 2𝐻+ + 𝑒−   ⇌  𝑉𝑂2+ + 𝐻2𝑂, 𝑘

0(𝑔𝑙𝑎𝑠𝑠𝑦 𝑐𝑎𝑟𝑏𝑜𝑛) = 1.3 ×
10−5𝑐𝑚 𝑠−1          (16) 

 

The sluggish rate of the above reactions lead to large activation overpotential and 

lower energy efficiency, especially when large operational currents are demanded. 

Because of this, recent authors have studied different modifications in the carbon-based 

electrodes to improve the electron transfer rate of vanadium reactions53. The electrode 

modification is also important to increase the chemical stability, decrease ohmic 

resistance and prevent gas evolution reactions53. 

 

Concentration overpotential. The concentration overpotential directs the greatest 

attention of researchers in the issue of efficiency improvement for VRFBs. Two types of 

mitigation strategies are widely studied: (1) dynamic control of the flow rate54–61 and (2) 

modification of cell design. All these strategies are based on increasing the uniformity of 

concentration.  

Unlike a constant flow rate, the variation in flow rate throughout the operation of the 

battery allows the lowing of pumping energy consumption during the intermediate SoCs 

(lower rate), whereas significantly decreasing the concentration overpotential in the 

extremes SoCs (higher rate)56. This type of strategy also leads to heat dissipation, 

inhibiting the possible precipitation of active species56. 
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The modification of cell design includes (i) the use of optimized flow fields to 

improve the distribution of active species in flow-by designs62–65 and (ii) the proposal of 

new electrode geometries66–68 that allow a better mass distribution in the outlet channels, 

where the concentration overpotential is usually larger.  

 

Ohmic overpotential and pumping energy consumption. The mitigation strategies 

for ohmic overpotential also affect the pumping energy consumption. Two strategies are 

identified: (1) compression of the electrode and (2) the use of thin electrodes.  

The compression of the electrode decreases the porosity of the electrode, which 

defines the fraction of electrolyte inside each half-cell. As the electrode is more conductor 

than the electrolyte, this operation decreases the cell electrical resistance: 

 

𝜂𝑜 = 𝑖𝑎𝑝𝑝𝑙
𝐿𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒

𝜀3 2⁄ 𝜎𝑙
𝑒         (17) 

 

Where Lelectrode is the electrode thickness, iappl is the operational current density, 𝜀 is 

the porosity of the electrode,  𝜎𝑙
𝑒  is the ionic conductivity of the electrolyte. 

Usually, the compression of the electrode is made in situ, leading to the narrowing of 

the electrode. These two processes - compression and narrowing of the electrode -mitigate 

the ohmic overpotential.  However, this same operation difficult the electrolyte 

circulation requiring larger pump power and consequent increase in the pumping energy 

consumption.  

Park et al.69 have shown the improvement of voltage efficiency caused by the 

compression of the electrode in situ. However, the coulombic efficiency is highly affected 

when a porosity of 0.873 is achieved. This may be related to the increase of pressure 

inside the cells, which increases cross-contamination. 

 

1.4 Capacity loss in VRFBs 

The theoretical capacity is defined as a measure of the amount of charge stored in the 

cell22: 
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𝐶 = 𝑛𝐹𝑐𝑎𝑐𝑡         (18) 

  

Where n is the number of electrons transferred, F is the Faraday’s constant, and cact 

is the concentration of active species. 

This capacity varies over cycles due to the existence of side reactions and cross-

contamination. This phenomenon is named capacity loss and is responsible for the 

decrease of cell lifespan.  

The OER takes place in the positive electrode and the HER takes place in the negative 

electrode. As these two electrochemical reactions have distinct kinetics and 

thermodynamics, they occur in an unbalanced way in the half-cells, passivating the active 

sites and consuming the current non-uniformly in each half-cell. This leads to the 

imbalance of active species in the cell, which corresponds to a limiting half-cell reaction 

and consequent capacity loss45.  

However, the most relevant issue for capacity loss in VRFBs is cross-contamination. 

Cross-contamination is driven by four types of transport: diffusion, migration, osmosis, 

and electroosmosis (see Figure 6). 

 

Diffusion. The diffusion occurs due to the concentration difference of vanadium ions 

between the positive and negative half-cells43 and is the main transport mode in the cross-

contamination70,71.  

The imbalance of active species drives by diffusion depends on the diffusion 

coefficients in membrane44, which are large for V2+ and V3+ in the negative electrode than 

for VO2+ and VO2
+ in the positive electrode. Because of this, the total concentration of 

vanadium ions increases in the positive half-cell and decreases in the negative half-cell. 

Thus, the self-discharge reactions in the positive electrode occur more frequently and the 

negative electrode limits the cycle operation. The diffusion direction is independent of 

the direction of the electric field.  
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Figure 6.The direction of vanadium flux due to diffusion, migration, osmosis, and electroosmosis in the 

charging and discharging procedure. 

 

Migration. Migration across the membrane is driven by the potential difference 

between the positive and negative half-cells. The migration direction depends on the 

direction of the electric field. In the charging procedure, the conventional electric current 

flows from the negative to the positive electrode; thus, the generated ionic potential drives 

the flow of positively charged species from the positive to the negative electrode. In the 

discharging procedure, the direction is reverted.  

The migration has a minimal effect on the net vanadium crossover71. First, because 

of the change of direction between the charging and discharging procedure. Second, 

because of the similar magnitude of ionic conductivity among the vanadium species44. 

 

Osmosis. Osmosis is a convective transport that occurs, in this case, due to pressure 

differences between the half-cells. This pressure difference arises from the difference of 

viscosity between the positive and negative electrolyte72.  

The viscosities of electrolytes depend on the concentration of active species, 

concentration of supporting electrolyte, temperature, and state of charge (SoC)72,73. 

Usually, the negative electrolyte is more viscous than the positive electrolyte; thus, the 

pressure needed to flow the negative electrolyte is greater. This larger pressure in the 
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negative electrode drives the solution to flow across the membrane from the negative to 

the positive half-cells.  

 

Electroosmosis. Electroosmosis is a convective transport that occurs due to the drag 

of the solvent caused by the motion of an excess of charge in an applied electric field. 

Nafion membranes contain negatively charged groups (-SO3H, sufonyl)38. When an 

electric field is applied to the membrane, the cations move to the negative side, and the 

anions move to the positive side. However, the number of cations in the membrane is 

larger because of the existence of fixed sulfonyl groups. Thus, the motion of this excess 

of charge drags the solvent36 (see Figure 7).  

 

 

Figure 7. Representation of electroosmosis flow in a Nafion membrane. 

 

The direction of electroosmosis flow depends on the direction of the electric field. In 

the charging procedure, the potential difference drives the flow from the positive to the 

negative electrode70. In discharging procedure, the flow is reverted. 

The electroosmosis flow is an important mode of transport because affects the 

magnitude and the direction of vanadium crossover. In s-Radel membranes, the 

electroosmosis is even more important than the diffusion71.  
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Water transfer. The convection across the membrane caused by osmosis and 

electroosmosis causes the water transfer from one half-cell to another. This process 

increases the capacity loss of the cell because dilutes one electrolyte and concentrates the 

other45,72. The self-discharge reactions (Equations 11-14) also are sources of water 

transfer between the half-cells74. 

 

Mitigation strategies.  The strategies used to mitigate the capacity loss in VRFBs are 

focused in minimize the driving forces discussed above.  

In the discharging procedure, the direction of migration and convection amplifies the 

disbalance caused by diffusion (see Figure 6), whereas in the charging procedure the 

direction of electroosmosis and migration is the reverse of net diffusion. A mitigation 

strategy consists in increasing the electroosmosis flow by using higher applied current 

densities in charging than in discharging75. As mentioned above, electroosmosis depends 

on the electric field. Increasing the current will turn the electroosmosis flow superior to 

the diffusional flow only in the charging procedure. 

 Another mitigation strategy is increasing the diffusional flow of vanadium ions from 

the positive to the negative half-cell to offset the intrinsic higher diffusion coefficient of 

V2+ and V3+. This can be done by employing a larger concentration of active species in 

the positive electrode than in the negative electrode76. A good result was obtained by Lu 

et al.76 using 2 mol L-1 of active species in the positive electrode and 1.04 mol L-1 in the 

negative electrode. When the concentration of active species is equal, the discharge 

capacity is lowered by 20.5% after 46 cycles. With the aforementioned asymmetric 

concentrations, the capacity loss remained almost unchanged.   

Instead of applying different concentrations, Park et al77 have used asymmetric 

electrolyte volumes. The aim was to compensate in advance for the volume change caused 

by water transfer and the imbalance of active species. 

Another type of migration strategy is automatic rebalancing, which consists of the 

volume transfer between the electrolyte in the reverse direction of net cross-

contamination. This method is cost-effective, simple and it was tested in medium-scale 

batteries78. Wang et al.79, were the first to propose this strategy in 2017. They tested the 

automatic rebalancing by placing a connector between the two electrolyte tanks for three 

different conditions.  
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For VFB-0 (Vanadium Flow Battery – case 0), there was no flow between the tanks. 

For VFB-1, VFB-2, and VFB-3 the volume transfer occurs when the positive electrolyte 

volume increases by 10, 20, and 30%, respectively.  

In a regular operation, the electrolytes have the same volume before the charging 

procedure. After some cycles, the volume changes, increasing in the positive electrolyte 

and decreasing in the negative electrolyte.  When a connector is placed between the tanks, 

the excess volume in the positive tank flows to the negative tank, leading to a partial 

volumetric rebalancing. But, the most important part of this process is the recuperation of 

vanadium species in the negative half-cell due to the self-discharge reactions (see again 

Equations 11-14). 

For an applied current density of 80 mA cm-2, the best results were achieved by VFB-

3 case. Whereas, for an applied current density of 160 mA cm-2, the best results were 

achieved for VFB-2 case.  

Thus, the applied current density influences the best condition of volume transfer 

between the tanks. Despite, this being a low-cost, simple, and well-proved mitigation 

strategy, it can be improved. For example, it can be determined which more operating 

conditions (e.g., concentration, volumetric flow) influences the capacity loss and how we 

can calculate the optimum condition considering these effects. 

 

1.5 Experimental evaluation of VRFBs 

Experimental setup. To understand the simulation steps taken in this thesis it is 

necessary to first understand how experiments are carried out to evaluate the performance 

of VRFBs. Figure 8 shows the components of an experimental VRFB in a flow-through 

design.  
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Figure 8. Components of a VRFB and cell stack. Based on references80,81. 

 

The basic structure described in the scheme from Figure 2 is also present in Figure 

8: the electrodes of carbon felt, the electrolyte compartment, and the membrane.  Rubber 

gasket seals and steel tie-bolts are used to compress the cell stack82. 

Since the electrolyte is oxidizing, no metallic component should be in contact with 

the electrolyte82. Because of this, chemically resistant polymers (e.g., PTFE) are used to 

produce the battery components.  The only metallic component is the current collector of 

cupper or aluminum, usually separated from the electrolyte by graphite foils.  

 

Performance evaluation. The first step in performance evaluation of a RFB consists 

in determining what charging currents can be applied and at what the initial voltage would 

be at those currents83. This is done by linear sweep voltammetry (LSV), as shown in 

Figure 9. 
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Figure 9. A typical Linear Sweep Voltammetry for a VRFB. From reference 83. 

 

In this example, the battery operating in 0.4 A cm-2 (400 mA cm-2) can deliver an 

output cell voltage of approximately 1.63 V. 

The charging/discharging cycling is performed using a chronopotentiometry test 

(constant current) to charge and discharge the battery to obtain the cell voltage versus 

time as response83. This data allows the calculation of CE, VE, and EE as described in 

Equations 7, 8, and 9, respectively.  The RFB can be charged and discharged by two 

methods: voltage cut-off or time cut-off 83. The voltage cut-off is usually used to fully 

charge and discharge the battery, whereas the time cut-off is usually used to discharge 

and charge the battery at a specific SoC83. Figure 10 shows an example of the 

charging/discharging cycle for a VRFB operating at various current densities in the 

voltage cut-off method. In this case, the cell voltage versus time curve is replaced by cell 

voltage versus capacity, which is more common. 
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Figure 10. A typical single charging/discharging cycle for a VRFB at different values of current densities. 

From reference 83. 

 

As the current density increases, the overpotential increases requiring higher charging 

voltages and delivering lower discharging voltages. The increase of applied current 

density also leads to a smaller use of total capacity due to the difficulty of maintaining 

the required current.  

Cell cycling is also utilized to evaluate the capacity loss of the battery across cycles. 

The decrease of time discharge at the same voltage cut-off indicates this capacity loss, as 

can be seen in Figure 11. The shortening of the cycles indicates the limitation of 

discharging caused by the disbalancing of active species in the negative half-cell, as 

discussed in the previous section.  
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Figure 11. Discharge capacity versus cycle number for a typical VRFB. Data from reference43. 

 

1.6 Finite element method (FEM) 

There are several problems for which we cannot obtain the analytical solution for the 

partial differential equations (PDEs). To deal with this, a numerical method can be used 

to approximate the exact solution. The first step of the finite element method is 

discretization, which consists of dividing the continuum medium of interest into well-

defined components84. These components are called elements and the ends are referred to 

as the nodes (see Figure 12).  

 

 

Figure 12. Discretization of a continuum medium by finite element method. 
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The next step is to approximate the dependent variable in the PDE (we called this 

variable u) by a guess (or trial) algebraic function uh described by linear combinations of 

basis functions85. We use linear functions to illustrate this step, but other functions may 

be chosen (e.g. quadratic functions). 

 

𝑢 ≈ 𝑢ℎ = ∑ 𝑢𝑖𝜓𝑖𝑖         (19) 

 

Where 𝜓𝑖 denotes the basis functions and 𝑢𝑖 denotes the coefficients of the functions.  

Figure 13 shows the real and approximated solutions of u along the x-axis. The linear 

basis functions have a value of 1 at their respective nodes and 0 at other nodes. This 

ensures the overlapping of functions along the x-axis85. 

 

 

Figure 13. Real and approximated solutions of variable u along the x-axis. 

 

The next step is determining the coefficients of these functions by minimizing the 

domain residual by mathematical techniques. The domain residual is defined as the 

difference between the exact solution and the approximated solution. For example, 

considering a simpler case (one-dimensional) based on the following governing 

differential equation86: 

 

𝐴𝐸
𝑑2𝑢

𝑑𝑥2
+ 𝑞0 = 0         (20) 
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Where A, E and q0 are constants. 

This equation can assume the following approximate solution in a determined 

boundary condition, based on a second-order polynomial86: 

 

𝑢ℎ = 𝑢2(𝑥
2 − 2𝐿𝑥)        (21) 

 

Where u2 is the coefficient. 

Substituting Equation 21 in Equation 20, we get 86: 

 

𝐴𝐸(2𝑢2) + 𝑞0 = 𝑅𝑑        (22) 

 

For the exact solution, the domain residual is equal to zero, as described in Equation 

21. Setting Rd = 0, we can determine the coefficient u2 for this case.  

The General Weighted Residual (WR) method is based on the minimization of 

residual at all points in the domain. Considering an approximate solution of the form of 

Equation 19, the WR statement can be written as 86: 

 

∫ 𝑊𝑖𝑅𝑑𝑑𝛺
 

𝛺
= 0 𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑛      (23) 

 

Where Wi are appropriately chosen weighting functions to minimize the residual over 

the entire domain (Ω) and Rd is the domain residual.   

The choice of weighting functions (Wi) is arbitrary, but Galerkin suggested the idea 

of W being the same as the trial functions86. For example, for a situation where the domain 

residual is dependent on x, the residual cannot be set 0 everywhere in the domain86: 

 

𝑅𝑑 = 𝑢1 (
𝜋

𝐿
)
4
(𝐸𝐼)𝑠𝑖𝑛 (𝜋𝑥/𝐿) − 𝑞0      (24) 

 

By the Galerkin procedure, we get86: 

 

∫ 𝒔𝒊𝒏 (
𝝅𝒙

𝑳
) [𝑢1 (

𝜋

𝐿
)
4

𝐸𝐼𝑠𝑖𝑛 (
𝜋𝑥

𝐿
) − 𝑞0] 𝑑𝑥 = 0

𝐿

0
    (25) 
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Where the first sinusoidal function (in bold) represents a weighting function and the 

second term is the domain residual. From this equation, we can get the value of the 

coefficient u1. 

This method requires the use of trial solutions that satisfy the boundary conditions of 

the problem86. 

Another technique is the Weak Form of the Weighted Residual Method, which 

reduces the continuity requirement on the trial functions86. This is done by applying the 

standard formula for integration by parts for a definite integral, that is: 

 

∫ 𝑢𝑑𝑣
𝛽

𝛼
= [𝑢𝑣]𝛼

𝛽
− ∫ 𝑣𝑑𝑢

𝛽

𝛼
= (𝑢𝑣)|𝛽 − (𝑢𝑣)|𝛼 + ∫ 𝑣𝑑𝑢

𝛽

𝛼
   (26) 

 

Example: 

 For the following governing differential equation 86: 

 

𝐴𝐸
𝑑2𝑢

𝑑𝑥2
+ 𝑎𝑥 = 0        (27) 

 

 Applying the weighted residual statement 86: 

 

∫ 𝑊 [𝐴𝐸
𝑑2𝑢ℎ

𝑑𝑥2
+ 𝑎𝑥] 𝑑𝑥 = 0

𝐿

0
       (28) 

 

i.e. 

 

∫ 𝑊𝐴𝐸
𝑑2𝑢ℎ

𝑑𝑥2
𝑑𝑥 + ∫ 𝑊𝑎𝑥𝑑𝑥

𝐿

0
= 0

𝐿

0
      (29) 

 

Or 

 

∫ 𝑊𝑑 (𝐴𝐸
𝑑𝑢ℎ

𝑑𝑥
)  + ∫ 𝑊𝑎𝑥𝑑𝑥

𝐿

0
= 0

𝐿

0
      (30) 

 

For this case, u =W  and v = AE
𝑑𝑢ℎ

𝑑𝑥
. Integrating the first term of the above equation, we 

get 86: 
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[𝑊𝐴𝐸
𝑑𝑢ℎ

𝑑𝑥
]
0

𝐿

− ∫ (𝐴𝐸
𝑑𝑢ℎ

𝑑𝑥
)
𝑑𝑊

𝑑𝑥
 + ∫ 𝑊𝑎𝑥𝑑𝑥

𝐿

0
= 0

𝐿

0
    (31) 

 

In the weighted residual statement, we had the term d2uh/dx2 and, in the weak form, 

we get duh/dx. Thus, the trial function should at least be quadratic for the original 

weighted residual statement, whereas in the weak form even linear trial functions can be 

used 86. Therefore, the continuity demand on the trial function gone down and that on the 

weighting function increases 86. This allows the use of a much wider of trial functions.  

 

Advantages of the FEM84–86. The advantages of using the finite element method are 

the great freedom in the selection of discretization and then the use of complex 

geometries; the well-developed theory, which turns the method consolidated and allows 

the computation of total residual by summing up the residual of each element; and the 

coupling between physics by using software packages. When several physics are utilized 

in a same numerical model, we termed this model as multi-physical. 

 

1.7 Chemometric analysis 

Chemometrics consists of a wider quantity of techniques, from the exploratory 

analysis of chemical data (e.g., PCA, HCA) and classification algorithms (e.g., KNN, 

SIMCA) to the design of experiments. This last one is the focus of this work 

The purposes of an experimental design are87: (i) screening the variables that are 

important for the interest response; (ii) the optimization of the response; (iii) saving time 

and; (iv) obtaining a quantitative model. To achieve these benefits of experimental design 

two approaches are used: 

 

Factorial design88. The factorial design focus on the screening of variables. The 

purpose is to evaluate the effect of each variable on the response, classifying them as 

important or not to the response.  

The number of variables dictates the number of experiments. If two variables are 

used, we have a 22 factorial design and, then, 4 experiments as shown in Table 1. The 

variables are represented as v1 and v2. 
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Table 1.22 factorial design (codified). 

ID v1  v2 

1 -1 -1 

2 +1 -1 

3 -1 +1 

4 +1 +1 

 

When these experiments are run, we obtain the response of interest. For example, if 

v1 is the temperature and v2 is the type of catalyst, the response can be the yield, in 

percentage, of the reaction under study. From these values of variables and responses, the 

effect of each variable (T) can be calculated as88: 

 

𝑻 = (𝑦̅+ − 𝑦̅−)         (32) 

 

Where 𝑦̅+and 𝑦̅− are the average of a response corresponding to the higher and lower 

level of each variable.  

This simple calculation leads to primary effects when the variables are evaluated 

separately. When the product of these variables is evaluated, we get secondary effects. If 

the variables are in the same level (-1 and -1 or +1 and +1), the net level is higher, equal 

to +1. If the variables are in the opposite level (-1 and +1 or +1 and -1), the net level is 

lower.  

If we want to study three variables instead of two, we will have a 23 factorial design 

with 8 experiments, as shown in Table 2. 

 

Table 2.23 factorial design.  

ID v1 v2 v3 

1 -1 -1 -1 

2 +1 -1 -1 

3 -1 +1 -1 

4 +1 +1 -1 

5 -1 -1 +1 

6 +1 -1 +1 

7 -1 +1 +1 

8 +1 +1 +1 

 

In this case, beyond the primary and secondary effects, we can calculate tertiary 

effects between the variables 123, 124, 134, and 234. For the first experiment (ID = 1), 

the level is lower, because -1 X -1 X -1 = -1. And for the second experiment, the level is 

higher because of +1 X -1 X -1 = +1. 
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The complete factorial design remains useful and fast until a certain point. When a 

large number of variables are used, the fractional factorial design is a better option. For 

five variables, a complete factorial design leads to 25 = 32 experiments, but if a fractional 

factorial design is used, the number of experiments reduces by half. The following 

notation is used 25-1 = 25/2 = 16 experiments. This can be done because the number of 

higher-order interactions increases with the number of variables and usually these 

interactions have small values88. Table 3 shows the 25-1 factorial design. The level of 

variable 5 is determined by the product of the four variables.  

 

Table 3.25-1 factorial design.   

ID v1 v2 v3 v4 v5 

1 -1 -1 -1 -1 +1 

2 +1 -1 -1 -1 -1 

3 -1 +1 -1 -1 -1 

4 +1 +1 -1 -1 +1 

5 -1 -1 +1 -1 -1 

6 +1 -1 +1 -1 +1 

7 -1 +1 +1 -1 +1 

8 +1 +1 +1 -1 -1 

9 -1 -1 -1 +1 -1 

10 +1 -1 -1 +1 +1 

11 -1 +1 -1 +1 +1 

12 +1 +1 -1 +1 -1 

13 -1 -1 +1 +1 +1 

14 +1 -1 +1 +1 -1 

15 -1 +1 +1 +1 -1 

16 +1 +1 +1 +1 +1 

 

 

Regression models88. The regression models are used to predict the response based 

on the values of the most important variables. This approach allows the use of a few 

experiments to predict hundreds to thousands of responses, including their optimal values.  

The regression quantitative models can be built by different designs: central 

composite design (CC), Doehlert design (D), and Box-Behnken design (BB). Figure 14 

shows these three designs for a set of three variables89. 

The central composite design is based on the factorial design and has additional axial 

regions. Thus, fewer experiments need to be carried out if a factorial design was 

previously performed.  

Doehlert design consists of an asymmetric factorial design, which enables the 

evaluation of several variables at many levels. The main characteristic of this design is 

the use of a variable - the most important one - in many levels concerning the others 89. 
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This allows the exploration of quadratic and interaction behaviors with few 

experiments88. 

 

 

Figure 14. Designs for building regression models for three variables. 

 

The Box-Behken design consists of an incomplete factorial design and the levels are 

vary between -1 and +1 too89. The use of a design can be determined by the efficiency, 

the ratio between the number of coefficients by the number of experiments (see Table 

4)89. The Doehlert design has the higher efficiency for designs with 2,3 and 4 variables. 

 

Table 4. Characteristics of experimental designs.   

Variables Number of 

coefficients (p) 

Number of experiments (n) Efficiency (p/n) 

CC D BB CC D BB 

2 6 9 7 - 0.67 0.86 - 

3 10 15 13 13 0.67 0.77 0.77 

4 15 25 21 25 0.60 0.71 0.60 

 

Since the design is chosen and performed, the regression model can be built by the 

determination of the coefficients using the least-squares fit method. This is done by the 

following matrixial equation88: 



32 
 

 

 

𝑤 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦        (33) 

 

Where w is the vector containing the coefficients (b0, b1, b2…), X is the matrix 

containing the experimental design information and y is the vector containing the 

response.  

 

Metrics of the regression model87,88. In this thesis, we designed simulation 

calculations instead of carrying out experiments at the laboratory. However, the method 

to evaluate the regression model is the same. The difference between experimental and 

simulated results is just the pure error, that we can obtain experimentally by carrying out 

replicates. The pure error can be used to determine the statistical significance of each 

coefficient because it is one part of the residual from regression. The value of pure error 

squared sum and residual squared sum are calculated by: 

 

𝑆𝑆𝑟 = 𝑆𝑆𝑝𝑒 + 𝑆𝑆𝑙𝑜𝑓        (34) 

 

Where 𝑆𝑆𝑟 is the residual sum of squares, 𝑆𝑆𝑝𝑒  is the pure error sum of squares 

and 𝑆𝑆𝑙𝑜𝑓 is the lack of fit sum of squares. 

𝑆𝑆𝑟 is determined by the squared difference between the predicted (𝑦̂𝑖) and 

experimental (𝑦𝑖) responses: 

 

𝑆𝑆𝑟 = ∑ (𝑦𝑖 − 𝑦̂𝑖)
2𝑛

𝑖=1         (35) 

 

The 𝑆𝑆𝑝𝑒  provides information about the intrinsic error of the experiments. 

𝑆𝑆𝑝𝑒  is determined by the squared difference between the average value of the 

replicates (𝑦̅i) by each replicate (𝑦𝑖𝑗): 

 

𝑆𝑆𝑝𝑒 = ∑ ∑ (𝑦𝑖𝑗 − 𝑦̅𝑖)
2𝑛

𝑗=1
𝑚
𝑖=1        (36) 
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The 𝑆𝑆𝑙𝑜𝑓 provides information about the incapacity of the model to adjust to 

the experimental data. 𝑆𝑆𝑝𝑒  can be determined by the subtraction of SSr and SSpe 

(see again Equation 34). 

Instead of a pure error, the simulated results have domain residuals, since we use 

numerical methods to solve the equations. However, these errors – residual domain and 

pure error – are not equivalent. The response obtained by simulation does not vary for 

each calculation, how it happens experimentally.  Thus, for simulation, it is not necessary 

to carry out replicates and the value of residual sum squares from regression is exactly 

the value of lack of fit sum squares: 

 

𝑆𝑆𝑟 = 𝑆𝑆𝑙𝑜𝑓         (37) 

 

A suitable metric to determine the statistical significance of coefficients is the rooted 

mean value of SSr, calculated by: 

 

𝑅𝑀𝑆𝐸 = √𝑆𝑆𝑟/𝑛        (38) 

 

Where RMSE is defined as the rooted mean squared error and n is the number of 

designed experiments.  

Another important metric of regression analysis is the coefficient of determination 

(R2). The R2 provides the quantity of information that regression can explain. This metric 

is calculated by: 

 

𝑅2 =
𝑆𝑆𝑟

𝑆𝑆𝑡
          (39) 

 

Where SSt is the total squared sum, determined by the squared difference 

between the experimental values (𝑦𝑖) and the mean values (𝑦̅): 

 

𝑆𝑆𝑟 = ∑ (𝑦𝑖 − 𝑦̅)
2𝑛

𝑖=1         (40) 
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Validation of regression model87,88 The data set utilized to determine the coefficients 

of the regression model is called training or calibration set. For instance, in a Doehlert 

design, all the experiments are from the training set.  

Since the coefficients are known and there is a good correlation between simulated 

responses, we must validate this regression model by a second data set called testing or 

validation set.  Usually, the testing set is built by the values of variables that led to the 

optimum response.  For clarity, we will term this type of validation as validation of 

optimum responses, because we also used a difference validation termed random 

validation. These two types of validation are described below: 

 

(i) Validation of optimum responses: This validation is used to confirm the 

values of optimum responses predicted by the regression model. Thus, the 

testing set consists of variables that lead to the optimum responses. The 

validation is carried out by setting the values of variables, which correspond 

to the optimum responses, in the multi-physical model and solving it. The 

response obtained by the simulation is, then, compared with the predicted 

response.  

(ii)  Random validation: This validation is carried out to evaluate the robustness 

of the regression model. The testing set is composed of 1/3 of experiments 

concerning the training set. The values of all variables are determined 

randomly by an operator. These values are set in the multi-physical model and 

the regression model and, then, compared. 

 

The use of one or another type of validation depends on the aims of each study.  

Figure 15 schematizes the process just described.  
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Figure 15. Schematic representation of the process of training and testing the regression model.
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2 OBJECTIVES 

This thesis is based on the hypothesis that a computational approach can provide rich 

and useful information for the understanding and improvement of performance of redox 

flow batteries. Further, this information may be used to create mitigation strategies and 

as guidelines for experimentalists. 

Based on this hypothesis, the objective of this thesis is to propose a new method of 

approach to investigate problems of RFBs and suggest robust mitigation strategies for 

these problems. We aim to provide a useful theoretical background for the 

experimentalists to understand the effects of variables on RFB’s performance.  
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3 NUMERICAL MODEL FORMULATION 

This chapter brings all the details of the numerical model per 

component, including the governing differential equations and 

the boundary conditions. This chapter also provides details 

about the three different multi-physical models used in this work. 

 

The numerical model described below is based on well-established studies from 

literature, according to the citations. However, there are some novel contributions: The 

modifiable domain (section 3.2), the way that self-discharge reactions are set up (section 

3.10) and the development of a steady-state model to calculate voltage efficiency (section 

3.11). 

3.1 Domain 

The domain is a 2D projection of a 3D redox flow battery composed of two electrolyte 

tanks, pipes, two current collectors, two porous electrodes (carbon felt), and a Nafion 

membrane. The current collectors, electrolyte tanks, and pipes are not present in the 2D 

domain. The current collector and electrolyte tanks were simulated through boundary 

conditions. The pipes' contribution to pumping energy consumption was added to the 

model using equations to describe the pressure loss. Figure 16 shows the 3D geometry 

of a redox flow battery and the 2D projection in the xy-plane. 
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Figure 16. 3D scheme of a redox flow battery and its 2D projection in the xy-plane. 

 

The symmetry of the xy-plane along the z-axis allows the use of a 2D projection, 

without losing the physical characteristics of the device. The main benefit of using 2D 

models is the decreasing of the computational cost. 

3.2 Modifiable domain 

A modifiable domain was obtained by the Bézies Polygon setting on COMSOL 

Multiphysics. The purpose is to modify the cell geometry using a few parameters: the 

angle of modification θ, the length of residence path (H), and the inlet electrode thickness 

(Lin). This process allows the use of different cell geometry, from rectangular to trapezoid.  

Each half-cell was built by four linear segments. These segments are 𝐴𝐽𝐵𝑗, 𝐵𝐽𝐶𝑗, 𝐶𝐽𝐷𝑗 

and 𝐷𝐽𝐴𝑗 (where j is the negative or positive electrode) as shown in Figure 17.  
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Figure 17. Scheme of modifiable cell geometry. 

 

When 𝜃 < 90° the geometry represents a trapezium and when 𝜃 > 90° the geometry 

represents an inverted trapezium. 

For the negative half-cell, the points Aneg, Bneg, Cneg, and Dneg, are: 

 

{
 
 

 
 

𝐴𝑛𝑒𝑔 = (0, 𝑎𝑑1)

𝐵𝑛𝑒𝑔 = (𝑎𝑑2, 𝑎𝑑1 + 𝐻𝑡𝑝)

𝐶𝑛𝑒𝑔 = (𝐿𝑡𝑝, 𝐻)

𝐷𝑛𝑒𝑔 = (𝐿𝑡𝑝, 0)

       (41) 

  

And, for the positive half-cell, the points Apos, Bpos, Cpos, and Dpos are: 

 

{
 
 

 
 

𝐴𝑝𝑜𝑠 = (𝐿𝑡𝑝 + 𝐿𝑚 , 0)     

𝐵𝑝𝑜𝑠 = (𝐿𝑡𝑝 + 𝐿𝑚, 𝐻𝑐𝑒𝑙𝑙)

𝐶𝑝𝑜𝑠 = (2𝐿𝑡𝑝 + 𝐿𝑚 − 𝑎𝑑2, 𝑎𝑑1 + 𝐻𝑡𝑝)

𝐷𝑝𝑜𝑠 = (2𝐿𝑡𝑝 + 𝐿𝑚, 𝑎𝑑1)

     (42) 

 

The geometric parameters ad1, ad2, Ltp, and Htp are calculated as follows, respectively: 

 



40 
 

 

{
 

 
𝑎𝑑1 = 𝐿𝑖𝑛𝑠𝑖𝑛 (𝛼)         

𝑎𝑑2 = 𝐻𝑠𝑖𝑛 (𝛽)

𝐿𝑡𝑝 = 𝐿𝑖𝑛𝑐𝑜𝑠 (𝛼)

𝐻𝑡𝑝 = 𝑎𝑑1 + 𝐻𝑐𝑜𝑠 (𝛽)

       (43) 

 

Where the angles are defined as: 

 

{
𝛼 = 180° − 𝜃     
𝛽 = 90° − 2𝜃

        (44) 

 

Where 𝜃 is the angle of geometric modification. 

 The outlet electrode thickness is calculated by: 

 

𝐿𝑜𝑢𝑡 = √(𝐿𝑡𝑝 − 𝑎𝑑2)
2
+ (𝐻 − 𝐻𝑡𝑝 − 𝑎𝑑1)

2
    (45) 

  

 

All the above geometric parameters are determined by chosen values of θ, Lin, and H.  

Table 5 shows the default values of the geometric parameters. 

 

Table 5. Default values of the geometric parameters 

Symbol Description Value (unit)ref 

𝐻 Cell height (length of residence path)  10 𝑐𝑚 90 

𝑤𝑐𝑒𝑙𝑙  Cell width 10 𝑐𝑚 90 
𝐿𝑐𝑐  Current collector thickness 6 𝑚𝑚 90 

𝐿𝑖𝑛 Inlet electrode thickness 4 𝑚𝑚 90 

𝐿𝑚 Membrane thickness 180 𝜇𝑚 90 

𝜃 Angle of modification  90° 

 

3.3 Premises 

The following premises were applied: 

1. The cell is isothermal; 

2. Fluids are considered incompressible; 

3. The properties of charge and mass transfer are assumed to be isotropic and do not 

change in different charge states; 

4. Mass transport is described using a diluted solution model; 
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5. In electrolytic tanks, the solutions are instantly homogenized. 

3.4 Porous electrodes 

As the electrode is porous there is a solid volumetric fraction (ε-1) and a liquid 

volumetric fraction equal to the porosity of the electrode (ε). For the vanadium redox flow 

batteries, the electrolyte is composed of aqueous solutions of V2+/V3+ (as sulfate salts) 

and H2SO4 in the negative half-cell and VO2+/VO2
+ (as sulfate salts) and H2SO4 in the 

positive half-cell. The first dissociation of sulfuric acid is complete: 

 

𝐻2𝑆𝑂4 → 𝐻
+ + 𝐻𝑆𝑂4

−        (46) 

 

The second dissociation is incomplete: 

 

𝐻𝑆𝑂4
− ⇌ 𝐻+ + 𝑆𝑂4

2−        (47) 

 

Thus, it is necessary to use a term that represents this last dissociation74: 

 

 

𝑆𝑑 = 𝑘𝑑 (
𝑐
𝐻+
𝑒 −𝑐𝐻𝑆𝑂4

−
𝑒

(𝑐
𝐻+
𝑒 −𝑐𝐻𝑆𝑂4

−
𝑒 )

− 𝛽)       (48) 

 

Where Sd is the source of species (mol m-3 s-1), kd is the coefficient of dissociation, ce
k  

(𝑘 ∈ {𝐻+, 𝐻𝑆𝑂4
−}) is the concentration of species in the electrolyte and β is the 

dissociation degree determined experimentally91. 

The mass conservation for each species is expressed as follows: 

 

𝜕

𝜕𝑡
(𝜀𝑐𝑖

𝑒) + 𝛻 ∙ 𝑁⃗⃗ 𝑖
𝑒 = −𝑆𝑖        (49) 

  

Where ε is the porosity of the electrode, ci
e (𝑖 ∈ {𝑉2+, 𝑉3+, 𝑉𝑂2+, 𝑉𝑂2

+, 𝐻+, 𝐻𝑆𝑂4
−}) 

is the bulk concentration for each species, 𝑁⃗⃗ 𝑖
𝑒is the flux and 𝑆𝑖 is the source term. 

 This equation is not applied to SO4
2-, because its concentration is calculated by 

neutrality condition: 
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∑ 𝑧𝑖𝑐𝑖
𝑒 = 0𝑖          (50) 

 

Where 𝑧𝑖 is the valence of each species.  

For the flux, 𝑁⃗⃗ 𝑖
𝑒, the Nernst-Planck equation is applied: 

 

𝑁⃗⃗ 𝑖
𝑒 = −𝐷𝑖

𝑒𝑓𝑓
𝛻𝑐𝑖

𝑒 − 𝑧𝑖𝑢𝑖
𝑒𝑐𝑖

𝑒𝐹𝛻𝜙𝑙
𝑒 + 𝑣 𝑐𝑖

𝑒     (51) 

 

Where 𝜙𝑙
𝑒 is the ionic potential (liquid phase), 𝐷𝑖

𝑒𝑓𝑓
 is the effective diffusion 

coefficient, 𝑢𝑖
𝑒 is the ionic mobility and 𝑣  is the velocity. 

The effective diffusion coefficient is estimated by the Bruggemann correction: 

 

𝐷𝑖
𝑒𝑓𝑓

= 𝜀
3

2𝐷𝑖         (52) 

 

The velocity is determined by Darcy’s law: 

 

𝑣 = −
𝜅

𝜇𝑒,𝑗
𝛻𝑝         (53) 

  

 

Where 𝜇𝑒 is the dynamic viscosity of the electrolyte, 𝑝 is the pressure and 𝜅 is the 

permeability of electrode, which is determined by the Kozeny-Carman equation: 

 

𝜅 =
𝑑𝑓
2

180

𝜀3

(1−𝜀)2
         (54) 

  

Where 𝑑𝑓 is the carbon electrode fiber diameter. 

The charge conservation is expressed as follows: 

 

𝛻 ∙ 𝑖 𝑙 + 𝛻 ∙ 𝑖 𝑠 = 0        (55) 

 

Where 𝑖𝑙 is the ionic current density (electrolyte) and 𝑖 𝑠 is the electronic current 

density (electrode). This equation couples the transport of ionic species to the 

electrochemical reaction and the electronic current74.  

The ionic current density is described by Faraday’s law: 
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𝑖 𝑒 = 𝐹 ∑ 𝑧𝑖𝑖 𝑁⃗⃗ 𝑖
𝑒         (56) 

 

The electronic current density is described by Ohm’s law: 

 

𝑖 𝑠 = 𝜎𝑠
𝑒𝑓𝑓
𝛻𝜙𝑠

𝑒         (57) 

 

Where 𝜎𝑠
𝑒𝑓𝑓

 is the effective conductivity of the porous electrode, calculated by the 

Bruggemann correction: 

 

𝜎𝑠
𝑒𝑓𝑓

= (1 − 𝜀)3 2⁄ 𝜎𝑠         (58) 

 

 

Where 𝝈𝒔 is the electronic conductivity of the electrode. 

      

Table 6 shows the default values of the porous electrode parameters. 

 

Table 6. Default values of the porous electrode 

Symbol Description Value (unit)ref 

𝑎 Specific surface area  2 × 106 𝑚−1 90 

𝛽 HSO4
- degree of dissociation 0.25 74 

𝑑𝑓 Mean pore diameter 100.6 𝜇𝑚 74 

𝐷𝐻+
𝑒  H+ diffusion coefficient 9.3 × 10−9 𝑚2 𝑠−1 92 

𝐷𝐻𝑆𝑂4−
𝑒  HSO4

- diffusion coefficient 1.3 × 10−9 𝑚2 𝑠−1 92 

𝐷
𝑆𝑂4

2−
𝑒  SO4

2- diffusion coefficient 1.1 × 10−9 𝑚2 𝑠−1 92 

𝐷𝑉2+
𝑒  V(II) diffusion coefficient 2.4 × 10−10 𝑚2 𝑠−1 93 

𝐷𝑉3+
𝑒  V(III) diffusion coefficient 2.4 × 10−10 𝑚2 𝑠−1 93 

𝐷𝑉𝑂2+
𝑒  V(IV) diffusion coefficient 3.9 × 10−10 𝑚2 𝑠−1 93 

𝐷
𝑉𝑂2

+
𝑒   (V) diffusion coefficient 3.9 × 10−10 𝑚2 𝑠−1 93 

𝜀 Electrode porosity  0.93 74 

𝑘𝑑  HSO4
- dissociation reaction rate constant 1 × 104  𝑠−1 74 

𝜎𝑐𝑐  Electronic conductivity of current collector  1000 𝑆 𝑚−1 90 

𝜎𝑠
𝑒𝑓𝒇

 Effective conductivity of the electrode 66.7 𝑆 𝑚−1 74 

 

3.5 Electrochemical reactions 

The Nernst potential for the electrochemical reactions are: 

 

𝐸𝑛 = 𝐸0,𝑛 +
𝑅𝑇

𝐹
𝑙𝑛 (

𝑐
𝑉3+

𝑐𝑉2+
)       (59) 
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𝐸𝑝 = 𝐸0,𝑝 +
𝑅𝑇

𝐹
𝑙𝑛 (

𝑐
𝑉𝑂2

+𝑐
𝐻𝑝𝑜𝑠
+

2

𝑐𝑉𝑂2+
)       (60) 

 

The concentration of species is used instead of activity due to the premise of diluted 

solution. 

The local currents, iloc
n, and iloc

p, are governed by the Butler-Volmer equation: 

 

𝑖𝑙𝑜𝑐
𝑛 = 𝑎𝐹𝑘𝑛(𝑐𝑉2+

𝑒 )(1−𝛼
𝑛)(𝑐𝑉3+

𝑒 )𝛼
𝑛
[
𝑐
𝑉2+
𝑠

𝑐
𝑉2+
𝑒 𝑒𝑥𝑝 (

(1−𝛼𝑛)𝐹𝜂𝑛

𝑅𝑇
) −

𝑐
𝑉3+
𝑠

𝑐
𝑉3+
𝑒 𝑒𝑥𝑝 (

−𝛼𝑛𝐹𝜂𝑛

𝑅𝑇
)]  

          (61) 

 

𝑖𝑙𝑜𝑐
𝑝
= 𝑎𝐹𝑘𝑝(𝑐𝑉𝑂2+

𝑒 )(1−𝛼
𝑝)(𝑐𝑉𝑂2+

𝑒 )𝛼
𝑝
[
𝑐
𝑉𝑂2+
𝑠

𝑐
𝑉𝑂2+
𝑒 𝑒𝑥𝑝 (

(1−𝛼𝑝)𝐹𝜂𝑝

𝑅𝑇
) −

𝑐
𝑉𝑂2

+
𝑠

𝑐
𝑉𝑂2

+
𝑒 𝑒𝑥𝑝 (

−𝛼𝑝𝐹𝜂𝑝

𝑅𝑇
)]  

            (62) 

  

 

Where k is the rate constant, a is the specific surface area, α is the charge transfer 

coefficient, s denotes the surface concentration, e denotes the bulk concentration and η is 

the overpotential, defined as: 

 

𝜂𝑗 = 𝜙𝑙
𝑒 − 𝜙𝑠

𝑒 − 𝐸0,𝑗          (63) 

  

Where 𝐸0,𝑗 is the standard reduction potential. The obtained overpotential is 

separated into concentration overpotential and activation overpotential 94: 

 

𝑛𝑗 = 𝑛𝑐
𝑗
+ 𝑛𝑎

𝑗
         (64) 

 

The activation overpotential for α = 0.5 is calculated by 95: 

 

𝜂𝑎
𝑛 = −

2𝑅𝑇

𝐹
𝑠𝑖𝑛ℎ−1 (

𝑖𝑙𝑜𝑐
𝑛

2𝐹𝑘𝑛√𝑐
𝑉2+
𝑒 𝑐

𝑉3+
𝑒
)      (65) 
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𝜂𝑎
𝑝
= 

2𝑅𝑇

𝐹
𝑠𝑖𝑛ℎ−1(

𝑖𝑙𝑜𝑐
𝑝

2𝐹𝑘𝑝𝑜𝑠√𝑐𝑉𝑂2+
𝑒 𝑐

𝑉𝑂2
+

𝑒
)      (66) 

  

Since 𝑛𝑗 is known, the concentration overpotential for each cell is just the subtraction 

of activation overpotential from the total overpotential. 

The concentration overpotential arises from the local transfer resistance from the bulk 

to the active reaction surface. This concentration overpotential is added to the Butler-

Volmer equations by the quotient between surface and bulk concentrations. The surface 

concentrations are calculated by the species balance at active reaction surface76. The ionic 

current at the active reaction surface for each species is76: 

 

𝑖𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝑗

= 𝐹𝐷𝑖 (
𝑐𝑖
𝑒−𝑐𝑖

𝑠

𝑑𝑓 2⁄
)       (67) 

 

Which is equal to each local current described by Butler-Volmer equations 54 and 

55. This mass balance leads to the following equations: 

 

For V2+: 

 

𝐹𝐷𝑉2+ (
𝑐
𝑉2+
𝑒 −𝑐

𝑉2+
𝑠

𝑑𝑓 2⁄
) =  𝑎𝐹𝑘𝑛(𝑐𝑉2+

𝑒 )(1−𝛼
𝑛)(𝑐𝑉3+

𝑒 )𝛼
𝑛
[
𝑐
𝑉2+
𝑠

𝑐
𝑉2+
𝑒 𝑒𝑥𝑝 (

(1−𝛼𝑛)𝐹𝜂𝑛

𝑅𝑇
) −

𝑐
𝑉3+
𝑠

𝑐
𝑉3+
𝑒 𝑒𝑥𝑝 (

−𝛼𝑛𝐹𝜂𝑛

𝑅𝑇
)]         (68) 

  

 

For V3+: 

 

𝐹𝐷𝑉3+ (
𝑐
𝑉3+
𝑒 −𝑐

𝑉3+
𝑠

𝑑𝑓 2⁄
) =  𝑎𝐹𝑘𝑛(𝑐𝑉2+

𝑒 )(1−𝛼
𝑛)(𝑐𝑉3+

𝑒 )𝛼
𝑛
[
𝑐
𝑉2+
𝑠

𝑐
𝑉2+
𝑒 𝑒𝑥𝑝 (

(1−𝛼𝑛)𝐹𝜂𝑛

𝑅𝑇
) −

𝑐
𝑉3+
𝑠

𝑐
𝑉3+
𝑒 𝑒𝑥𝑝 (

−𝛼𝑛𝐹𝜂𝑛

𝑅𝑇
)]         (69) 

  

 

For VO2+: 
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𝐹𝐷𝑉𝑂2+ (
𝑐
𝑉𝑂2+
𝑒 −𝑐

𝑉𝑂2+
𝑠

𝑑𝑓 2⁄
) =

 𝑎𝐹𝑘𝑝(𝑐𝑉𝑂2+
𝑒 )(1−𝛼

𝑝)(𝑐𝑉𝑂2+
𝑒 )𝛼

𝑝
[
𝑐
𝑉𝑂2+
𝑠

𝑐
𝑉𝑂2+
𝑒 𝑒𝑥𝑝 (

(1−𝛼𝑝)𝐹𝜂𝑝

𝑅𝑇
) −

𝑐
𝑉𝑂2

+
𝑠

𝑐
𝑉𝑂2

+
𝑒 𝑒𝑥𝑝 (

−𝛼𝑝𝐹𝜂𝑝

𝑅𝑇
)] (70) 

 

For VO2
+: 

 

𝐹𝐷𝑉𝑂2+ (
𝑐
𝑉𝑂2

+
𝑒 −𝑐

𝑉𝑂2
+

𝑠

𝑑𝑓 2⁄
) =

 −𝑎𝐹𝑘𝑝(𝑐𝑉𝑂2+
𝑒 )(1−𝛼

𝑝)(𝑐𝑉𝑂2+
𝑒 )𝛼

𝑝
[
𝑐
𝑉𝑂2+
𝑠

𝑐
𝑉𝑂2+
𝑒 𝑒𝑥𝑝 (

(1−𝛼𝑝)𝐹𝜂𝑝

𝑅𝑇
) −

𝑐
𝑉𝑂2

+
𝑠

𝑐
𝑉𝑂2

+
𝑒 𝑒𝑥𝑝 (

−𝛼𝑝𝐹𝜂𝑝

𝑅𝑇
)]

           (71) 

 

 

Isolating the surface concentration for each species, we get: 

 

For V2+: 

 

𝑐𝑉2+
𝑠 =

𝑐
𝑉2+
𝑒 +𝐴1(𝑐𝑉2+

𝑒 +𝑐
𝑉3+
𝑒 )

1+𝐴1+𝐵1
       (72) 

 

For V3+: 

 

𝑐𝑉3+
𝑠 =

𝑐
𝑉3+
𝑒 +𝐵1(𝑐𝑉2+

𝑒 +𝑐
𝑉3+
𝑒 )

1+𝐴1+𝐵1
       (73) 

 

Where: 

 

𝐴1 = 𝑒𝑥𝑝 (
−𝛼𝑛𝐹𝜂𝑛

𝑅𝑇
)
𝑘𝑛𝑑𝑓

2𝐷𝑉2+
(
𝑐
𝑉2+
𝑒

𝑐
𝑉2+
𝑠 )

𝛼𝑛

      (74) 

 

𝐵1 = 𝑒𝑥𝑝 (
(1−𝛼𝑛)𝐹𝜂𝑛

𝑅𝑇
)
𝑘𝑛𝑑𝑓

2𝐷𝑉3+
(
𝑐
𝑉3+
𝑒

𝑐
𝑉3+
𝑠 )

(1−𝛼𝑛)

     (75) 

 

For VO2+: 

 

𝑐𝑉𝑂2+
𝑠 =

𝑐
𝑉𝑂2+
𝑒 +𝐴2(𝑐𝑉𝑂2+

𝑒 +𝑐
𝑉𝑂2

+
𝑒 )

1+𝐴2+𝐵2
       (76) 
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For VO2
+: 

 

𝑐𝑉𝑂2+
𝑠 =

𝑐
𝑉𝑂2

+
𝑒 +𝐵2(𝑐𝑉𝑂2+

𝑒 +𝑐
𝑉𝑂2

+
𝑒 )

1+𝐴2+𝐵2
       (77) 

 

Where: 

 

𝐴2 = 𝑒𝑥𝑝 (
−𝛼𝑝𝐹𝜂𝑝

𝑅𝑇
)

𝑘𝑝𝑑𝑓

2𝐷𝑉𝑂2+
(
𝑐
𝑉𝑂2+
𝑒

𝑐
𝑉𝑂2+
𝑠 )

𝛼𝑝

      (78) 

 

𝐵1 = 𝑒𝑥𝑝 (
(1−𝛼𝑝)𝐹𝜂𝑝

𝑅𝑇
)
𝑘𝑝𝑑𝑓

2𝐷
𝑉𝑂2

+
(
𝑐
𝑉𝑂2

+
𝑒

𝑐
𝑉𝑂2

+
𝑠 )

(1−𝛼𝑝)

     (79) 

 

 

 Table 7 shows the electrochemical model parameters. 

 

Table 7. Electrochemical model parameters 

Symbol Description Value (unit)ref 

𝐸0,𝑛 Standard reduction potential (negative) −0.255 𝑉 90 

𝐸0,𝑝 Standard reduction potential (positive) 1.004 𝑉 90 

𝑘𝑛 Reaction rate constant (negative electrode) 7 × 10−8 𝑚 𝑠−1 74 

𝑘𝑝 Reaction rate constant (positive electrode) 2.5 × 10−8 𝑚 𝑠−1 74 

𝛼𝑛 Charge transfer coefficient (negative) 0.5  
𝛼𝑝 Charge transfer coefficient (positive) 0.5  

 

 The charge transfer coefficients are set as 0.5 as an approximation to an easy 

calculation of activation overpotentials (Equations 65 and 66). 

3.6 Membrane 

Since the Nafion membrane is not ideally selective to H+43, the transport of vanadium 

species must be considered. The Nernst-Planck equation is applied and the concentration 

of HSO4
2- is calculated by the electroneutrality condition, considering the fixed charges 

at membrane: 

 

𝑧𝑓𝑖𝑥𝑐𝑓𝑖𝑥 + ∑ 𝑧𝑖𝑐𝑖
𝑚 = 0𝑖         (80) 
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Where 𝑧𝑓𝑖𝑥 and 𝑐𝑓𝑖𝑥 are the valence and concentration of sulfonyl groups fixed at the 

membrane. 

The convection at the membrane is calculated by an alternative form of Schogl’s 

equation74: 

 

𝑣 𝑚 = −
𝜅𝑝

𝜇𝑚
𝛻𝑝 −

𝜅𝜙

𝜇𝑚
𝑐𝑓𝑖𝑥𝐹 (𝛻𝜙𝑙

𝑚 +
𝐹 ∑𝑧𝑖𝐷𝑖

𝑚𝛻𝑐𝑖
𝑚

𝐹2

𝑅𝑇
∑𝑧𝑖

2𝐷𝑖
𝑚𝑐𝑖

𝑚
)    (81) 

 

Where 𝜅𝑝 is the hydraulic permeability, 𝜇𝑚 is the viscosity of water, 𝜅𝜙 is the 

electrokinetic permeability, ∇𝜙𝑙
𝑚 is the potential gradient across membrane and 𝐷𝑖

𝑚 (𝑖 ∈

{𝑉2+, 𝑉3+, 𝑉𝑂2+, 𝑉𝑂2
+, 𝐻+, 𝐻𝑆𝑂4

−} denotes the diffusion coefficient of each species in the 

membrane.  

The first term of Equation 81 represents the osmosis across the membrane caused by 

pressure gradients between the two electrolytes. The second term represents the 

electroosmosis caused by the drag of solvent in the membrane. 

The flux of vanadium species in the electrode interface region is calculated by 74: 

 

𝑁𝑖
𝑒𝑟 =

−𝐷𝑖
𝑒𝑓𝑓

(𝑐𝑖
𝑒−𝑐𝑖

𝑗𝑢𝑛𝑐
)

𝛿
− 𝑧𝑖𝑢𝑖

𝑒
(𝑐𝑖
𝑒+𝑐𝑖

𝑗𝑢𝑛𝑐
)

2
𝐾𝜙

(𝜙𝑙
𝑒−𝜙𝑙

𝑚)

𝛿
     (82) 

 

Where 𝑐𝑖
𝑗𝑢𝑛𝑐

 represents the concentration of species at membrane|electrolyte 

junction, 𝛿 is the thickness of interfacial region, 𝑢𝑖
𝑒 is the ionic mobility in the electrolyte 

and Kϕ is a fitting parameter that represents the percentage of the total potential-jump 

occurring in the electrolyte interface region.  

The flux of vanadium species in the membrane interface region is calculated by 74: 

 

𝑁𝑖
𝑚𝑟 =

−𝐷𝑖
𝑚(𝑐𝑖

𝑗𝑢𝑛𝑐
−𝑐𝑖

𝑚)

𝛿
− 𝑧𝑖𝑢𝑖

𝑚
(𝑐𝑖
𝑗𝑢𝑛𝑐

+𝑐𝑖
𝑚)

2
(1 − 𝐾𝜙)

(𝜙𝑙
𝑒−𝜙𝑙

𝑚)

𝛿
   (83) 

    

The junction concentration, cjunc, is calculated by setting the fluxes at the interface 

equal and solving for cjunc.  

 

 

Table 8 shows the default values of the membrane. 
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Table 8. Default values of the membrane 

Symbol Description Value (unit)ref 

𝐷𝐻+
𝑚  H+ diffusion coefficient 3.35 × 10−9 𝑚2 𝑠−1 96 

𝐷𝐻𝑆𝑂4−
𝑚  HSO4

- diffusion coefficient 4,0 × 10−11 𝑚2 𝑠−1 97 

𝐷
𝑆𝑂4

2−
𝑚  SO4

2- diffusion coefficient 2.2 × 10−10 𝑚2 𝑠−1 98 

𝐷𝑉2+
𝑚  V(II) diffusion coefficient 8,8 × 10−12 𝑚2 𝑠−1 48  

𝐷𝑉3+
𝑚  V(III) diffusion coefficient 3,2 × 10−12 𝑚2 𝑠−1 48 

𝐷𝑉𝑂2+
𝑚  V(IV) diffusion coefficient 6,8 × 10−12 𝑚2 𝑠−1 48 

𝐷
𝑉𝑂2

+
𝑚   (V) diffusion coefficient 5,9 × 10−12 𝑚2 𝑠−1 48 

𝑐𝐻+,0
𝑚  H+ initial concentration 4772,5 𝑚𝑜𝑙 𝑚−3 74 

𝑐𝑓𝑖𝑥  Fixed acid concentration 2000 𝑚𝑜𝑙 𝑚−3 99 

𝑧𝑓𝑖𝑥  Fixed acid charge −1 74 

𝜀𝑚 Porosity of the membrane 0,135 99 

𝜅𝑝 Hydraulic permeability 1,58 × 10−18 𝑚2  100 

𝜅𝜙 Electrokinetic permeability 1,13 × 10−20 𝑚2  74 

𝜇𝑚 Viscosity of water 8.90 × 10−4 𝑃𝑎 𝑠  

 

3.7 Electrolyte tanks 

The variation of quantity of species, in mol, in the electrolyte tanks follow the ODE: 

 

𝑑𝑛𝑖
𝑡

𝑑𝑡
= 𝜀𝑤𝑐𝑒𝑙𝑙 (∫ 𝑐𝑖𝑣𝑑𝑥

𝐿𝑜𝑢𝑡

0
− ∫ 𝑐𝑖𝑣𝑑𝑥

𝐿𝑖𝑛

0
),   𝑛𝑖

𝑡(0) = 𝑐𝑖,0𝑉0
𝑡   (84) 

  

Where ni
t is the quantity, in mol, of species i in the electrolyte tank, v is the linear 

velocity inside the cell, ci,0 is the initial concentration of species i, and Vt
0 is the initial 

volume of each tank. 

Since there is a electrolyte transfer between the half-cells, caused by the convection 

across membrane, a variation of volume is observed in the electrolyte tanks.The variation 

of volume in each electrolyte tank follows the ODE: 

 

𝑑𝑉𝑡,𝑗

𝑑𝑡
= 𝑗𝜀𝑤𝑐𝑒𝑙𝑙𝐻𝑣𝑚,𝑥 ,   𝑉

𝑡,𝑗(0) = 𝑉0
𝑡      (85) 

 

Where 𝑉𝑡,𝑗 is the volume of each tank for each half-cell and j is the unit value of 

semi-cell representation (-1 for the negative half-cell and +1 for the positive half-cell). 

Thus, the concentration in the tanks follow the equation: 
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𝑐𝑖
𝑡 =

𝑛𝑖
𝑡

𝑉𝑡,𝑗
          (86) 

 

3.8 Pumping energy consumption 

The pumping energy consumption was considered by calculating the power required 

for electrolyte circulation55,56,101: 

 

𝑃𝑝𝑢𝑚𝑝 =
∆𝑝𝑡𝑜𝑡𝑎𝑙𝜔

𝛼𝑝𝑢𝑚𝑝
         (87) 

  

Where 𝛼𝑝𝑢𝑚𝑝 is the pump efficiency and ∆𝑝𝑡𝑜𝑡𝑎𝑙 is the total pressure loss, understood 

as the sum of the pressure loss caused by the flow in the porous electrode (carbon felt) 

and the pressure loss caused by the friction of the electrolyte in the pipes: 

 

∆𝑝𝑡𝑜𝑡𝑎𝑙 = ∆𝑝𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒
𝑛𝑒𝑔

+ ∆𝑝𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒
𝑝𝑜𝑠

+ ∆𝑝𝑝𝑖𝑝𝑒𝑠
𝑛𝑒𝑔

+ ∆𝑝𝑝𝑖𝑝𝑒𝑠
𝑝𝑜𝑠

   (88) 

  

The pressure loss related to the friction in the pipes was calculated by the Darcy-

Weisbach equation56: 

 

∆𝑝𝑝𝑖𝑝𝑒𝑠
𝑗

= 𝑛𝑝𝑖𝑝𝑒𝑠𝑓𝑑
𝑗 𝐿𝑝𝑖𝑝𝑒𝜌

𝑗𝑣𝑗
2

2𝑑𝑝𝑖𝑝𝑒
       (89) 

  

Where 𝑛𝑝𝑖𝑝𝑒𝑠 is the number of pipes for each half-cell,  𝐿𝑝𝑖𝑝𝑒 is the pipe length, 𝜌𝑗  is 

the fluid density for each half-cell,  𝑣𝑗 is the inlet flow velocity for each half-cell, 𝑑𝑝𝑖𝑝𝑒 

is the pipe diameter and 𝑓𝑑
𝑗
 is the Darcy friction factor for each half-cell, given by: 

 

𝑓𝑑
𝑗
=

16𝜋𝜇𝑗𝑑𝑝𝑖𝑝𝑒

𝜌𝑗𝜔
         (90) 

  

Where 𝜇𝑗 is the dynamic viscosity of each electrolyte and  𝜔 is the volumetric flow. 

The number of pipes was assumed based on the cell width considering the number of 

channels spaced four times the diameter of the pipes: 
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𝑛𝑝𝑖𝑝𝑒𝑠 =
𝑤𝑐𝑒𝑙𝑙

4𝑑𝑝𝑖𝑝𝑒
         (91) 

 

The pressure loss through the porous electrode is derived from Darcy’s law and can 

be determined by the pressure difference between the flow inlet and outlet: 

 

∆𝑝𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒
𝑗

= (
∫𝑝𝑖𝑛𝑑𝑥

𝐿𝑖𝑛
−

∫𝑝𝑜𝑢𝑡𝑑𝑥

𝐿𝑜𝑢𝑡
)      (92) 

 

Where 𝑝𝑖𝑛 and 𝑝𝑜𝑢𝑡 are the inlet and outlet pressure, respectively. 

 

 Table 9 shows the default values of the hydraulic model parameters. 

 

Table 9. Hydraulic model parameters 

Symbol Description Value (unit)ref 

𝐿𝑝𝑖𝑝𝑒  Pipe length 10𝐻𝑐𝑒𝑙𝑙   

𝑑𝑝𝑖𝑝𝑒  Pipe diameter 𝐿𝑒 − 0.5 𝑚𝑚  
𝑝𝑜𝑢𝑡  Outlet pressure 1 𝑎𝑡𝑚  

𝛼𝑝𝑢𝑚𝑝 Pump efficiency 0.9 101 

𝜇𝑛 Dynamic viscosity (negative) 2.5 𝑚𝑃𝑎 ∙ 𝑠  74 

𝜇𝑝 Dynamic viscosity (positive) 5.0 𝑚𝑃𝑎 ∙ 𝑠  74 

𝜌𝑛 Density of negative electrolyte 1300 𝑘𝑔 𝑚−3 74 

𝜌𝑝 Density of positive electrolyte 1350 𝑘𝑔 𝑚−3 74 

𝜔 Volumetric flow 20 𝑚𝐿 𝑚𝑖𝑛−1  

 

3.9 Initial and boundary conditions 

The boundary conditions are assumed in the boundaries x1, x2, x3, x4, y1, and y2 in the 

domain (see Figure 18). 
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Figure 18. 2D domain representation. 

 

The conservation of flux and ionic current density are boundary conditions that reflect 

the passage of species across the electrolyte/membrane and membrane/electrolyte 

interface, that is: 

 

{
𝑛⃗ ∙ 𝑖 𝑖

𝑒 = 𝑛⃗ ∙ 𝑖 𝑖
𝑚

𝑛⃗ ∙ 𝑁⃗⃗ 𝑖
𝑒 = 𝑛⃗ ∙ 𝑁⃗⃗ 𝑖

𝑚
      𝑥 = 𝑥2, 𝑥3      (93) 

  

Where 𝑛⃗  is the normal vector. 

There is no species flux in the current collectors and the top and bottom of the 

membrane, that is: 

 

0 = {
𝑛⃗ ∙ 𝑁⃗⃗ 𝑖                 𝑦 = 𝑦1, 𝑦2 

𝑛⃗ ∙ 𝑁⃗⃗ 𝑖                  𝑥 = 𝑥1, 𝑥4 
             (94) 

 

And, for the flow outlet (𝑦 = 𝑦2): 

 



53 
 

 

{
𝑝 = 𝑝𝑜𝑢𝑡

−𝑛⃗ ∙ 𝐷𝑖
𝑒𝑓𝑓
𝛻𝑐𝑖

𝑒 = 0
 

 
        (95) 

 

The potential at the current collector boundary (𝑥 = 𝑥1) was zero: 

 

𝜙𝑠
𝑐𝑐 = 0          (96) 

 

The inlet and outlet and the membrane/electrolyte were taken to be electrically 

insulated: 

 

−𝑛⃗ ∙ 𝑖 𝑠 = −𝑛⃗ ∙ 𝑖 𝑙         𝑥 = 𝑥2, 𝑥3; 𝑦 = 𝑦1, 𝑦2     (97) 

  

The concentration in the inlet is equal to the concentration of species in the electrolyte 

tanks: 

 

𝑐𝑖
𝑡 = 𝑐𝑖

𝑖𝑛      𝑦 = 𝑦1        (98) 

 

The flux of species across membrane due cross-contamination is given by: 

 

−𝑛⃗ ∙ 𝑁⃗⃗ 𝑖
𝑚 = −𝑛⃗ ∙ 𝑁⃗⃗ 𝑖

𝑚𝑟         𝑥 = 𝑥2, 𝑥3      (99) 

 

The flux of species across electrolytes due to cross-contamination is given by: 

 

−𝑛⃗ ∙ 𝑁⃗⃗ 𝑖
𝑒 = 𝑛⃗ ∙ 𝑁⃗⃗ 𝑖

𝑒𝑟         𝑥 = 𝑥2, 𝑥3      (100) 

 

The charge/discharge cycle in galvanostatic mode may be obtained by SoC cut-off or 

voltage cut-off. 

For SoC cut-off, the following boundary condition was applied: 

 

−𝑛⃗ ∙ 𝑖 𝑠
𝑐𝑐 = {

𝑖𝑎𝑝𝑝𝑙            𝑆𝑜𝐶 − 𝑆𝑜𝐶𝑚𝑎𝑥 < 0 

−𝑖𝑎𝑝𝑝𝑙            𝑆𝑜𝐶 − 𝑆𝑜𝐶𝑚𝑖𝑛 > 0
    𝑥 = 𝑥4   (101) 

  

Where 𝑖𝑎𝑝𝑝𝑙 is the current density applied, 𝑆𝑜𝐶𝑚𝑎𝑥 is the maximum state of charge 

(to the charge step) and 𝑆𝑜𝐶𝑚𝑖𝑛 is the minimum state of charge (to the discharge step).  

For voltage cut-off: 
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−𝑛⃗ ∙ 𝑖 𝑠
𝑐𝑐 = {

𝑖𝑎𝑝𝑝𝑙            𝑉 − 𝑉𝑚𝑎𝑥 < 0 

−𝑖𝑎𝑝𝑝𝑙            𝑉 − 𝑉𝑚𝑖𝑛 > 0
    𝑥 = 𝑥4    (102) 

 

Where 𝑉𝑚𝑎𝑥 is the maximum cell voltage (to the charge step) and 𝑉𝑚𝑖𝑛 is the 

minimum cell voltage (to the discharge step).  

 

Table 10 shows the default values for the initial conditions. 

 

 

Table 10.  Initial conditions 

Symbol Description Value (unit)ref 

𝑆𝑜𝐶𝑚𝑎𝑥  Maximum state of charge 0.85 

𝑆𝑜𝐶𝑚𝑖𝑛 Minimum state of charge 0.15 

𝑉𝑇 Electrolyte volume in each half-cell 50 𝑚𝐿  

𝑐𝐻+,0
𝑛  H+ initial concentration (negative) 4447.5 𝑚𝑜𝑙 𝑚−3  74 

𝑐
𝐻+,0

𝑝  H+ initial concentration (positive) 5097.5 𝑚𝑜𝑙 𝑚−3  74 

𝑐𝐻𝑆𝑂4−,0
𝑛  HSO4

- initial concentration (negative) 2668.5 𝑚𝑜𝑙 𝑚−3  74 

𝑐𝐻𝑆𝑂4−,0
𝑝  HSO4

- initial concentration (positive) 3058.5 𝑚𝑜𝑙 𝑚−3  74 

𝑐𝑉2+,0 V(II) initial concentration 150 𝑚𝑜𝑙 𝑚−3  

𝑐𝑉3+,0 V(III) initial concentration 850 𝑚𝑜𝑙 𝑚−3  

𝑐𝑉𝑂2+,0 V(IV) initial concentration 850 𝑚𝑜𝑙 𝑚−3  

𝑐𝑉𝑂2+,0 V(V) initial concentration 150 𝑚𝑜𝑙 𝑚−3  

𝑝0 Initial pressure in electrodes 0 𝑎𝑡𝑚  

𝑇 Temperature 298.15 𝐾  

 

3.10 Self-discharge reactions 

To simulate the self-discharge reactions, the species V2+ and V3+ are also present in 

the positive electrode, and the species VO2+ and VO2
+ are present in the negative electrode 

as V2+
pos, V

3+
pos, VO2+

neg, and VO2
+

neg respectively. The self-discharge reactions were set 

in y2 axis for simplification. 

For the negative electrode, the following equations are applied: 

 

(𝑖) − 𝑛⃗ ∙ 𝑁⃗⃗ 𝑖
𝑒 = −2𝑁𝐻+

𝑒 − 𝑁𝑉2+
𝑒 + 3𝑁𝑉3+

𝑒 − 𝑁𝑉𝑂2+
𝑒

    (103) 
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In this case, the VO2+
neg limits the reaction; thus, for n 𝑐𝑉𝑂2+𝑛𝑒𝑔

𝑒 = 0 ⟹ −𝑛⃗ ∙ 𝑁⃗⃗ 𝑖
𝑒 =

0. 

 

(𝑖𝑖) − 𝑛⃗ ∙ 𝑁⃗⃗ 𝑖
𝑒 = −4𝑁𝐻+

𝑒 − 2𝑁𝑉2+
𝑒 + 3𝑁𝑉3+

𝑒 − 𝑁𝑉𝑂2+
𝑒      (104) 

      

For 𝑐𝑉𝑂2+𝑛𝑒𝑔
𝑒 = 0 ⟹ −𝑛⃗ ∙ 𝑁⃗⃗ 𝑖

𝑒 = 0. 

 

 

For the positive electrode, the following equations are applied: 

 

(iii) −𝑛⃗ ∙ 𝑁⃗⃗ 𝑖
𝑒 = −2𝑁𝐻+

𝑒 − 𝑁𝑉2+
𝑒 + 3𝑁𝑉𝑂2+

𝑒 − 2𝑁𝑉𝑂2+
𝑒

    (105) 

       

For  𝑐𝑉2+𝑝𝑜𝑠
𝑒 = 0 ⟹ −𝑛⃗ ∙ 𝑁⃗⃗ 𝑖

𝑒 = 0. 

 

(𝑖𝑣) − 𝑛⃗ ∙ 𝑁⃗⃗ 𝑖
𝑒 = −𝑁𝑉3+

𝑒 + 2𝑁𝑉𝑂2+
𝑒 − 2𝑁𝑉𝑂2+

𝑒
     (106) 

     

For 𝑐𝑉3+𝑝𝑜𝑠
𝑒 = 0 ⟹ −𝑛⃗ ∙ 𝑁⃗⃗ 𝑖

𝑒 = 0. 

 

3.11 The multi-physical models 

The level of theory of a numerical model depends on the kind of response we want 

to extract from it. For example, for the determination of cell potential, it is not necessary 

to simulate the cross-contamination between half-cells. First, the cell potential of a single 

cycle in a numerical model without cross-contamination is almost equal to a numerical 

model with cross-contamination. That is, the cross-contamination has effects only for 

several charge/discharge cycles. And second, the more complete a model, the higher the 

computational cost. Then, is not reasonable to use a complete model just to obtain the cell 

potential for a single cell. Because of this, we adapted the numerical model described in 

this chapter according to the purpose of each study. These models are described below. 
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(1) VRFB capacity loss model (time-dependent). This multi-physical model aims 

to calculate the capacity loss of a vanadium redox flow battery across several 

galvanostatic charge/discharge cycles All the equations related to this model were 

described in this chapter. This model is the most complete used in this work. 

 The validation of this multi-physical model was performed by comparing the 

experimental and simulated discharge capacity. The experimental values were taken from 

literature 102.  

 Figure 19 shows the comparison between simulated and experimental discharge 

capacity. 

 

 

Figure 19. Comparison between simulated and experimental discharge capacity. Experimental data from 102.  

 

The simulated response captures the key trends of the experimental results. The 

correction parameter used was the electrokinetic permeability, kϕ, just like in the multi-

physical model developed by Knehr et. al.74. This correction parameter is modify so that 

experimental results agree with the simulate results, considering a possible erros of 

approximation in the model. 

 

 

(2) VRFB cell potential model (time-dependent). This multi-physical model aims to 

calculate the cell voltage of a vanadium redox flow battery in a single galvanostatic 
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charge/discharge cycle. All equations related to this model were described in this section, 

but membrane domain.  

A simpler approach was employed from the membrane since the main purpose of this 

model was the study of the effects on performance caused by overpotentials and pumping 

energy consumption. 

The ionic current was given by: 

 

𝑖 𝑚 = −𝜎𝑙
𝑚𝛻𝜙𝑚         (107) 

  

Where 𝜎𝑙
𝑚 is the ionic conductivity of the membrane. 

And there were no sources of ionic current in the membrane: 

 

𝛻 ∙ 𝑖 𝑚 = 0         (108) 

  

The Donnan potential condition was applied: 

 

𝐸𝑚 = 𝜙𝑙
𝑒 − 𝜙𝑙

𝑚 =
𝑅𝑇

𝐹
𝑙𝑛 (

[𝐻+]𝑒

[𝐻+]𝑚
)      (109) 

  

Where [𝐻+]𝑒 is the proton concentration in electrolyte and [𝐻+]𝑚 is the proton 

concentration in the membrane. 

The validation of this multi-physical model was performed by comparing the 

experimental and simulated cell voltage. The experimental values were taken from 

literature 74 .  

 Figure 20 shows the comparison between simulated and experimental cell 

voltage. 
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Figure 20. Comparison between simulated and experimental cell voltage. Experimental data from 74. 

 

Despite the difference in concavity in charging procedure, the simulated response 

captures the key trends of the experimental results. No correction parameter was used. 

 

(3) RFB general model (stationary). This multi-physical model is an adaptation of 

the time-dependent VRFB cell voltage model with two differences: (i) it is a general 

model to portray any kind of redox flow battery and (ii) it is stationary, aiming at for the 

reduction of computational costs.  

It was considered a single-electron transfer reaction for both half-cells: 

 

𝑅𝑎𝑛𝑜𝑙𝑦𝑡𝑒
𝑥 ⇌ 𝑂𝑎𝑛𝑜𝑙𝑦𝑡𝑒

𝑥−1 + 𝑒−       (110) 

  

𝑂𝑐𝑎𝑡ℎ𝑜𝑙𝑦𝑡𝑒
𝑦

+ 𝑒− ⇌ 𝑅𝑐𝑎𝑡ℎ𝑜𝑙𝑦𝑡𝑒
𝑦+1

       (111) 

    

The Nernst equations are, respectively: 

 

𝐸𝑛 = 𝐸0,𝑛 +
𝑅𝑇

𝐹
𝑙𝑛 (

𝑐
𝑂𝑎𝑛𝑜𝑙𝑦𝑡𝑒
𝑥−1

𝑐𝑅𝑎𝑛𝑜𝑙𝑦𝑡𝑒
𝑥

)       (112) 

  

𝐸𝑝 = 𝐸0,𝑝 +
𝑅𝑇

𝐹
𝑙𝑛 (

𝑐
𝑂
𝑐𝑎𝑡ℎ𝑜𝑙𝑦𝑡𝑒
𝑦

𝑐
𝑅
𝑐𝑎𝑡ℎ𝑜𝑙𝑦𝑡𝑒
𝑦+1

)      (113) 
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The steady-state condition is achieved by setting the concentration of active species 

in the electrolyte tanks as constant. Thus, the cell is operating in a single SoC. It is possible 

to simulate different SoCs just by varying the concentrations of active species in the tanks. 

That is, 

 

 {
𝑐𝑂𝑎𝑛𝑜𝑙𝑦𝑡𝑒 = 𝑐𝑡(1 − 𝑆𝑜𝐶)

𝑐𝑅𝑎𝑛𝑜𝑙𝑦𝑡𝑒 = 𝑐𝑡𝑆𝑜𝐶
     𝑦 = 𝑦1      (114) 

 

{
𝑐𝑂𝑐𝑎𝑡ℎ𝑜𝑙𝑦𝑡𝑒 = 𝑐𝑡𝑆𝑜𝐶

𝑐𝑅𝑐𝑎𝑡ℎ𝑜𝑙𝑦𝑡𝑒 = 𝑐𝑡(1 − 𝑆𝑜𝐶)
      𝑦 = 𝑦1     (115) 

 

The validation of this model was carried out by comparison of cell potential versus 

the state of charge (SoC) from the VRFB transient model with the VRFB steady-state 

model (see Figure 21). 
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Figure 21. Comparison between steady-state and transient multi-physical model by cell potential versus the 

state of charge (SoC) for (a) charge and (b) discharge. 

 

The charging potential is identical for the steady-state and transient VRFB model. 

However, the discharging potential is slightly different for high SoCs. This may be 

associated with the contribution of proton concentration on the positive Nernst potential: 

 

𝐸𝑝 = 𝐸0,𝑝 +
𝑅𝑇

𝐹
𝑙𝑛 (

𝑐
𝑉𝑂2

+𝑐
𝐻𝑝𝑜𝑠
+

2

𝑐𝑉𝑂2+
)       (116) 

  

In the transient model, the proton concentration in each half-cell changes over time 

in the inlet channels due to crossover across membrane and chemical equilibria (see 

equation below). In the steady-state model, the proton concentration does not change over 

time in the inlet channels leading to the observed difference in cell potential. 

 

𝐻𝑆𝑂4
− ⇌ 𝐻+ + 𝑆𝑂4

2−        (117) 
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4 METHODOLOGY 

This chapter elucidates the computational method of approach 

step-by-step, describes the numerical methods used to solve the 

multi-physical models, and detail the three carried out 

computational studies: Study 1: Understanding how operating 

conditions affect optimal geometry for vanadium redox flow 

batteries; Study 2: A robust mitigation strategy for capacity loss 

in VRFBs under different operating conditions; Study 3: Insights 

into the effects of active species properties on the performance of 

redox flow batteries. 

 

4.1 Method of Approach 

The general method of approach consists of three levels: experimental results, multi-

physical model, and chemometrics analysis (see Figure 22). 

 

 

Figure 22. Scheme of the general method of approach. 
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The steps are described below: 

 

(i) Experimental indication of a problem. Previous studies indicate a drawback 

related to the system under study. (e.g. capacity loss caused by cross-

contamination). 

(ii) Development of a multi-physical model. The problem indicated by the previous 

step may be described by a suitable multi-physical model, aiming at the save of 

time and cost to carry out several computational experiments. 

(iii)Validation of the multi-physical model. The numerical model must be able to 

portray reality with confidence.  This step is done by the comparison of simulated 

results with experimental data from literature. 

(iv) Use of chemometric analysis. The use of chemometric analysis, as factorial 

design and regression analysis, allows a deep understanding of the system, the 

screening of important variables, and a fast prevision of hundreds to thousands of 

responses in a short time.  

(v) Validation of the chemometric analysis. In the case of regression analysis, it is 

necessary to verify the capacity of the regression model to predict the responses 

of the computational experiments.  This is done by comparing the predicted 

responses with the simulated data.  

(vi and vii) Insights to develop a mitigation strategy. The knowledge obtained in 

the previous step is used to develop a mitigation strategy for the problem of interest.  

 

An additional step is validating this mitigation strategy in an experimental setup. 

However, this work focus on developing this computational approach.   

4.2 Numerical methods 

 The equations were implemented and solved using the finite element method with 

COMSOL Multiphysics® package using the interfaces: Tertiary Current Distribution, 

Second Current Distribution, Darcy’s Law, Events, and Global ODEs and DAESs. The 

calculations were run on a PC with a 3.5 GHz processor i7 and 131 GB of RAM. The 

approximated time for the computational experiments is 12 h, 70 min, and 2 min for the 
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VRFB capacity loss model, VRFB cell potential model, and RFB general model, 

respectively. The relative tolerance was set to 1×10-3. 

4.3 Studies 

4.3.1 Study 1: Understanding how operating conditions affect optimal geometry for 

vanadium redox flow batteries 

Since it is known that geometric conditions affect the voltage efficiency of VRFBs, 

a systematic study can provide useful information for us to understand these effects. 

Beyond studying geometric parameters, we want to evaluate how these parameters are 

related to the operating conditions since these affect the performance too.  

 Based on the proposed method of approach, we identified the problem, developed 

and validated the multi-physical model and, used the multivariate regression analysis to 

predict thousands of responses based on the conditions under study. Table 11 shows the 

previous characteristics (step (i) to (iv)) of Study 1 based on this approach 

 

Table 11. Previous characteristics of Study 1 based on the method of approach. 

Step Description Checklist 

(i) Experimental indication of a problem Energy efficiency loss caused by overpotential 

and pumping energy consumption 

(ii) Development of a multi-physical model. VRFB cell potential model  

(SoC cut-off)  

(iii) Validation of the multi-physical model. Figure 20  

(successfully validated) 

(iv) Use of chemometric analysis. Multivariate regression analysis 

 

 

The problem of this study is the energy efficiency loss caused by overpotential (ohmic 

and concentration) and by pumping energy consumption. The multi-physical model used 

is the VRFB cell potential model (time-dependent), which was successfully validated 

comparing simulated and experimental results (see Figure 20). And the multivariate 

regression analysis was the chemometric analysis used. The remaining steps ((v) to (vii)) 

were discussed in the RESULTS AND DISCUSSION section. 

 

Design of experiments. The experimental space was built from five variables: 

volumetric flow (ω), applied current density (iappl), inlet electrode thickness (Lin) without 
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compression, length of residence path (H), and the ratio between outlet electrode 

thickness and inlet electrode thickness (Lout/Lin) without compression. See Figure 23 to 

identify the geometric parameters. Aiming for a robust exploration of the experimental 

space, the Doehlert design was used to select the combination of the variables (see Table 

12). 

 

 

Figure 23. Schematic representation of geometric parameters. 

 

Table 12. Doehlert design for five variables of Study 1 – codified  

ID Le iappl ω H Lout/Lin 

1 0 0 0 0 0 

2 1 0 0 0 0 

3 0.5 0.866 0 0 0 

4 0.5 0.289 0.817 0 0 

5 0.5 0.289 0.204 0 0.791 

6 0.5 0.289 0.204 0.775 0 

7 -1.00 0 0 0 0 

8 -0.50 -0.866 0 0 0 

9 -0.50 -0.289 -0.817 0 0 

10 -0.50 -0.289 -0.204 0 -0.791 

11 -0.50 -0.866 -0.204 -0.775 -0.158 

12 0.5 -0.289 0 0 0 

13 0.5 -0.289 -0.817 0 0 

14 0.5 -0.289 -0.204 0 -0.791 
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ID Le iappl ω H Lout/Lin 

15 0.5 -0.289 -0.204 -0.775 -0.158 

16 -0.5 0.866 0 0 0 

17 0 0.577 -0.817 0 0 

18 0 0.577 -0.204 0 -0.791 

19 0 0.577 -0.204 -0.775 0 

20 -0.5 0.289 0.817 0 0 

21 0 -0.577 0.817 0 0 

22 0 0 0.613 0 -0.791 

23 0 0 0.613 -0.775 -0.158 

24 -0.5 0.289 0.204 0 0.791 

25 0 -0.577 0.204 0 0.791 

26 0 0 -0.613 0 0.791 

27 0 0 0 -0.775 0.633 

28 -0.5 0.289 0.204 0.775 0.158 

29 0 -0.577 0.204 0.775 0.158 

30 0 0 -0.613 0.775 0.158 

31 0 0 0 0.775 -0.633 

 

The values used in the simulation was determined by: 

 

𝑎 =  0.5(𝑎+ − 𝑎−)𝑥 + 𝑎𝐶𝑃        (118) 

 

Where 𝑎 is the decodified value of a variable, 𝑥 is the codified value, 𝑎+ is the upper 

value (𝑥 = +1), 𝑎− is the lower value (𝑥 = −1) and 𝑎𝐶𝑃 is the central point value (𝑥 =

0). 

For the studied variables, these values are: 

 

Table 13. Codification parameters 

parameter Le (mm) iappl (mA cm-2) ω (L min-1) H (cm) Lout/Lin 

𝑎+ 8 200 1 50 1.6 

𝑎− 3 20 0.15 10 0.4 

𝑎𝐶𝑃 5 100 0.5 30 1 

 

Table 14 shows the decodified variables for the Doehlert design. 

 

Table 14. Doehlert design of Study 1 - decodified  

ID Lin (mm) iappl (mA cm-2) ω (L min-1) H (cm) Lout/Lin 

1 5.00 100.0000 0.5000 30.0 1.0000 

2 7.50 100.0000 0.5000 30.0 1.0000 

3 6.25 177.9400 0.5000 30.0 1.0000 

4 6.25 126.0100 0.8472 30.0 1.0000 

5 6.25 126.0100 0.5867 30.0 1.4746 
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ID Lin (mm) iappl (mA cm-2) ω (L min-1) H (cm) Lout/Lin 

6 6.25 126.0100 0.5867 45.5 1.0948 

7 2.50 100.0000 0.5000 30.0 1.0000 

8 3.75 22.0600 0.5000 30.0 1.0000 

9 3.75 73.9900 0.1528 30.0 1.0000 

10 3.75 73.9900 0.4133 30.0 0.5254 

11 3.75 22.0600 0.4133 14.5 0.9052 

12 6.25 73.9900 0.5000 30.0 1.0000 

13 6.25 73.9900 0.1528 30.0 1.0000 

14 6.25 73.9900 0.4133 30.0 0.5254 

15 6.25 73.9900 0.4133 14.5 0.9052 

16 3.75 177.9400 0.5000 30.0 1.0000 

17 5.00 151.9300 0.1528 30.0 1.0000 

18 5.00 151.9300 0.4133 30.0 0.5254 

19 5.00 151.9300 0.4133 14.5 0.9052 

20 3.75 126.0100 0.8472 30.0 1.0000 

21 5.00 48.0700 0.8472 30.0 1.0000 

22 5.00 100.0000 0.7605 30.0 0.5254 

23 5.00 100.0000 0.7605 14.5 0.9052 

24 3.75 126.0100 0.5867 30.0 1.4746 

25 5.00 48.0700 0.5867 30.0 1.4746 

26 5.00 100.0000 0.2395 30.0 1.4746 

27 5.00 100.0000 0.5000 14.5 1.3798 

28 3.75 126.0100 0.5867 45.5 1.0948 

29 5.00 48.0700 0.5867 45.5 1.0948 

30 5.00 100.0000 0.2395 45.5 1.0948 

31 5.00 100.0000 0.5000 45.5 0.6202 

 

 

Regression Analysis. The designed conditions were used for calculation in the multi-

physical model 2. The voltage efficiency, battery efficiency, pumping energy 

consumption, concentration overpotential, and ohmic overpotential were calculated. For 

the overpotentials, the response corresponds to the mean value in the discharge procedure. 

The responses were individually submitted to a quadratic regression aiming at the 

determination of the following coefficients (in bold): 

 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 =  𝒘𝟎 + 𝒘𝟎𝟏𝐿𝑖𝑛 + 𝒘𝟎𝟐𝑖𝑎𝑝𝑝𝑙 + 𝒘𝟎𝟑𝜔 + 𝒘𝟎𝟒𝐻 +

𝒘𝟎𝟓 (𝐿𝑜𝑢𝑡 𝐿𝑖𝑛) + 𝒘𝟏𝟏𝐿𝑖𝑛
2 +𝒘𝟏𝟐𝐿𝑖𝑛𝑖𝑎𝑝𝑝𝑙 +𝒘𝟏𝟑𝐿𝑖𝑛𝜔⁄ + 𝒘𝟏𝟒𝐿𝑖𝑛𝐻 +

𝒘𝟏𝟓𝐿𝑖𝑛(𝐿𝑜𝑢𝑡/𝐿𝑖𝑛) + 𝒘𝟐𝟐𝑖𝑎𝑝𝑝𝑙
2 +𝒘𝟐𝟑𝑖𝑎𝑝𝑝𝑙𝜔 +𝒘𝟐𝟒𝑖𝑎𝑝𝑝𝑙𝐻 +𝒘𝟐𝟓𝑖𝑎𝑝𝑝𝑙(𝐿𝑜𝑢𝑡/

𝐿𝑖𝑛) + 𝒘𝟑𝟑𝜔
2 +𝒘𝟑𝟒𝜔𝐻 +𝒘𝟑𝟓𝜔(𝐿𝑜𝑢𝑡/𝐿𝑖𝑛) + 𝒘𝟒𝟒𝐻

2 +𝒘𝟒𝟓𝐻(𝐿𝑜𝑢𝑡/𝐿𝑖𝑛) +
𝒘𝟓𝟓(𝐿𝑜𝑢𝑡/𝐿𝑖𝑛)

2         (119) 

  

Where 𝑤0 is the intercept, 𝑤0𝑖 are linear coefficients, 𝑤𝑖𝑖 are quadratic coefficients 

and 𝑤𝑖𝑗, with i ≠ j, are interaction coefficients. 

The statistical significance of the coefficients was calculated based on rooted mean 

squared error for regression with a significance level of 0.05. 
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Performance metrics. The cell voltage was calculated as follows103: 

 

𝑉𝑐𝑒𝑙𝑙 = 𝐸𝑝 − 𝐸𝑛 + (𝜙𝑙
𝑝
− 𝜙𝑙

𝑛) + 𝜂𝑎
𝑝
+ 𝜂𝑐

𝑝
− 𝜂𝑎

𝑛 − 𝜂𝑐
𝑛 + 𝜂𝑜   (120) 

 

Where E is the Nernst potential and the difference 𝜙𝑙
𝑝 − 𝜙𝑙

𝑛 is the potential loss across 

the membrane. The subscripts a, c and o describe activation, concentration, and ohmic, 

respectively.  

The ohmic overpotential, 𝜂𝑜, is given by the contributions of the current collector, 

porous electrode, and membrane: 

 

𝜂𝑜 = 2(𝜂𝑜)𝑠
𝑐𝑐 + (𝜂𝑜)𝑙

𝑒,𝑛 + (𝜂𝑜)𝑙
𝑒,𝑝
+ (𝜂𝑜)

𝑚     (121) 

  

Where the superscripts cc, e, and m describe the current collector, electrode, and 

membrane, respectively. The subscripts s and l describe the solid and liquid states, 

respectively.  

These components were expressed as: 

 

{
 
 

 
 (𝜂𝑜)𝑠

𝑐𝑐 = 𝑖𝑎𝑝𝑝𝑙
𝐿𝑐𝑐

𝜎𝑠
𝑐𝑐

(𝜂𝑜)𝑙
𝑒,𝑗
= 𝑖𝑎𝑝𝑝𝑙

𝐿𝑎𝑣𝑔

𝜀3 2⁄ 𝜎𝑙
𝑒,𝑗

(𝜂𝑜)
𝑚 = 𝑖𝑎𝑝𝑝𝑙

𝐿𝑚

𝜎𝑙
𝑚

        (122) 

 

Where 𝐿𝑎𝑣𝑔 is the average electrode thickness calculated as: 

 

𝐿𝑎𝑣𝑔 =
𝐴𝑔

𝐻
         (123) 

  

Where 𝐴𝑔 is the area of the geometric 2D model for each half-cell. 

The coulombic efficiency (CE) was calculated based on the times of charging and 

discharging procedures. For this study, the charge/discharge cycles are symmetrical and 

there are no parasitic reactions, then, the calculated CE for all experiments is 100%. 

 

𝐶𝐸 =  
𝑡𝑑

𝑡𝑐
= 1         (124) 
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Where 𝑡𝑑 is the discharge time and 𝑡𝑐 is the charge time. 

The voltage efficiency (VE) was calculated as follows: 

 

𝑉𝐸 =
𝑉̅𝑑

𝑉̅𝑐
=

(∫ 𝑉𝑑𝑑𝑡
𝑡𝑑
0

)/𝑡𝑑

(∫ 𝑉𝑐𝑑𝑡
𝑡𝑐
0

)/𝑡𝑐
        (125) 

  

Where 𝑉𝑑 is the charging voltage and 𝑉𝑐 is the discharge voltage. 

The energy efficiency (EE) was calculated as: 

 

𝐸𝐸 = 𝐶𝐸 ∙ 𝑉𝐸         (126) 

 

Since CE is equal to 1, the EE is: 

 

𝐸𝐸 = 𝑉𝐸          (127) 

  

The pumping energy consumption is defined as: 

 

𝐸𝑝𝑢𝑚𝑝 = ∫ 𝑃𝑝𝑢𝑚𝑝
𝑡

0
𝑑𝑡        (128) 

 

Where Ppump is the pump power. 

The battery efficiency (BE), which includes the pumping energy consumption, was 

calculated as: 

 

𝐵𝐸 =
𝑄𝑑𝑉̅𝑑−𝐸𝑝𝑢𝑚𝑝

𝑄𝑐𝑉̅𝑐−𝐸𝑝𝑢𝑚𝑝
         (129)

  

Where 𝑄𝑑 is the retained charge in the discharging procedure and 𝑄𝑐 is the charge 

applied in the charging procedure.  
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4.4.2 Study 2: A robust mitigation strategy for capacity loss in VRFBs under different 

operating conditions 

Since capacity loss is a big issue for the operational life of VRFBs, we designed a 

study to investigate the variables that affect capacity loss and we studied the optimum 

conditions of volume transfer between tanks aiming at its mitigation. 

Based on the proposed method of approach, we identified the problem, developed 

and validated the multi-physical model and, used a factorial design to screen the variables 

and regression analysis to predict thousands of responses based on the conditions under 

stud. Table 15 shows the previous characteristics (steps (i) to (iv)) of Study 2 based on 

the method of approach. 

 

Table 15. Previous characteristics of Study 2 based on the method of approach. 

Step Description Checklist 

(i) Experimental indication of a problem Capacity loss caused by cross-contamination 

(ii) Development of a multi-physical model. VRFB capacity loss model  

(voltage cut-off)  

(iii) Validation of the multi-physical model. Figure 19 

(successfully validated) 

(iv) Use of chemometric analysis. Factorial design and regression analysis 

 

The problem of this study is the capacity loss caused by the cross-contamination 

between the half-cells of a VRFB. The multi-physical model used is the VRFB capacity 

loss model (time-dependent), which was successfully validated comparing simulated and 

experimental results (see Figure 19). And the factorial design and the regression analysis 

were the used chemometric tools. The remaining steps ((v) to (vii)) were discussed in the 

RESULTS AND DISCUSSION section. 

 

Factorial design. A 23 complete factorial design was performed analysing the 

following variables: applied current density (iappl), active species concentration (cact) and 

volumetric flow (ω). Table 16 describes these computational experiments. 
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Table 16.23 factorial design of Study 2. 

ID iappl (mA cm-2) cact (mol L-1) ω ( L min-1) 

1 50 1.10 15 

2 100 1.10 15 

3 50 1.80 15 

4 100 1.80 15 

5 50 1.10 30 

6 100 1.10 30 

7 50 1.8 30 

8 100 1.8 30 

 

The discharging capacity was calculated by74: 

 

𝐶𝑑 = 
𝑡
𝑑,𝑛𝑡ℎ

𝑡𝑑,1𝑠𝑡
× 100%        (130) 

  

Where 𝑡𝑑𝑖𝑠,𝑛𝑡ℎ is the discharge time of the nth cycle and 𝑡𝑑𝑖𝑠,1𝑠𝑡 is the discharge time of 

the first cycle. 

The capacity loss was calculated by: 

 

𝐶𝐿 = |100% − 𝐶𝑑
𝑡ℎ|        (131) 

 

Where Cd
th is the discharge capacity at nth cycle. 

The potential cut-off for each experiment was determined by the SoC cut-off of 0.9 

and 0.1 for the first cycle for charging and discharging procedures, respectively. The 

concentration of supporting electrolyte was 3 mol L-1. And the capacity loss rate was 

determined by: 

 

𝐶𝐿𝑟𝑎𝑡𝑒 = ∑
𝑑𝐶𝑑,𝑖

𝑑𝑡

𝑖
1 ×

1

𝑛𝑐𝑦𝑐𝑙𝑒𝑠
       (132) 

  

Where ncycles is the total number of cycles. 

 

Determination of electrolyte viscosity (µj). The concentration of active species 

influences the electrolyte viscosity in each half-cell. And the viscosity influences the 

capacity loss rate due to the contribution to the convective flow across the membrane. To 

determine the suitable viscosity for both negative and positive electrolytes, a regression 

analysis was performed with data available in literature72,73. The studied variables were 

the SoC, concentration of supporting electrolyte, and concentration of active species. The 
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parameters values of viscosity set up in each experiment of Table 16 were the mean 

values of viscosity in each SoC.  

The responses (positive and negative viscosity) were individually submitted to a 

quadratic regression aiming at the determination of the following coefficients (in bold): 

 

𝜇𝑗 = 𝒘𝟎 + 𝒘𝟎𝟏𝑆𝑜𝐶 + 𝒘𝟎𝟐𝑐𝑎𝑐𝑡 + 𝒘𝟎𝟑𝑐𝑠𝑢𝑝 +𝒘𝟎𝟒𝑇 + 𝒘𝟏𝟏(𝑆𝑜𝐶)
2 +

𝒘𝟏𝟐𝑆𝑜𝐶𝑐𝑎𝑐𝑡 +𝒘𝟏𝟑𝑆𝑜𝐶𝑐𝑠𝑢𝑝 +𝒘𝟏𝟒𝑆𝑜𝐶𝑇 + 𝒘𝟐𝟐𝑐𝑎𝑐𝑡
2 +𝒘𝟐𝟑𝑐𝑎𝑐𝑡𝑐𝑠𝑢𝑝 +

𝒘𝟐𝟒𝑐𝑎𝑐𝑡𝑇 + 𝒘𝟑𝟑𝑐𝑠𝑢𝑝
2 +𝒘𝟑𝟒𝑐𝑠𝑢𝑝 +𝒘𝟒𝟒𝑇

2     (133) 

 

Where csup is the concentration of active species and T is the temperature of the 

electrolyte. 

This regression model was validated by cross-validation. The data set was split into 

five subsets. 

 

Model adaptation to include the volumetric transfer between tanks. To simulate the 

volumetric transfer between tanks it is necessary to modify the ODEs related to the tanks. 

In this case, the number of species, in mol, in each tank also depends on the flux of species 

between the tanks. For the VO2
+,  VO2+, VO2+

neg, and VO2
+

neg  the equation turns to: 

 

𝑑𝑛𝑖
𝑡

𝑑𝑡
= 𝜀𝑤𝑐𝑒𝑙𝑙 (∫ 𝑐𝑖𝑣𝑑𝑥

𝐿𝑜𝑢𝑡

0
− ∫ 𝑐𝑖𝑣𝑑𝑥

𝐿𝑖𝑛

0
) − 𝑗𝜔𝑏𝑟𝑐𝑖

𝑡    (134) 

 

Where 𝜔𝑏𝑟 is the volumetric flow between the tanks. 

For H+ and HSO4
- in both half-cells, the equation turns to: 

 

𝑑𝑛𝑖
𝑡

𝑑𝑡
= 𝜀𝑤𝑐𝑒𝑙𝑙 (∫ 𝑐𝑖𝑣𝑑𝑥

𝐿𝑜𝑢𝑡

0
− ∫ 𝑐𝑖𝑣𝑑𝑥

𝐿𝑖𝑛

0
) − 𝑖𝑗𝜔𝑏𝑟𝑐𝑖

𝑡    (135) 

 

Where i is the factor of current: +1 for charge and -1 for discharge. 

For contaminant species in the positive electrode, that is, V2+
pos and V3+

pos, the ODE 

remains unchanged.  

The volume of the tank turns to: 

 

𝑑𝑉𝑡,𝑗

𝑑𝑡
= 𝜀𝑤𝑐𝑒𝑙𝑙𝐻𝑣𝑚,𝑥 − 𝑗𝜔𝑏𝑡       (136) 
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Regression analysis. Since the variables that affect capacity loss are known, a 

regression analysis may be performed with these variables and the velocity between 

electrolytes tanks to evaluate how the discharge capacity behaves in these conditions. The 

experimental space was built from three variables in a Doehlert design: velocity between 

reservoirs (vbr), applied current density (iappl) and active species concentration (cact).  

The capacity loss was submitted to a quadratic regression aiming at the determination 

of the following coefficients (in bold): 

 

𝐶𝐿 =  𝒘𝟎 + 𝒘𝟎𝟏𝑣𝑝 + +𝒘𝟎𝟐𝑖𝑎𝑝𝑝𝑙 +𝒘𝟎𝟑𝑐𝑎𝑐𝑡 + 𝒘𝟏𝟏𝑣𝑝
2 +𝒘𝟏𝟐𝑣𝑝𝑖𝑎𝑝𝑝𝑙 +

𝒘𝟏𝟑𝑣𝑝𝑐𝑎𝑐𝑡 +𝒘𝟐𝟐𝑖𝑎𝑝𝑝𝑙
2 +𝒘𝟐𝟑𝑖𝑎𝑝𝑝𝑙𝑐𝑎𝑐𝑡 +𝒘𝟑𝟑𝑐𝑎𝑐𝑡

2     (137) 

 

Table 17 shows the design of experiments for this regression analysis. 

  

Table 17. Doehlert design for three variables of Study 2. 

ID vp (XVc) iappl (mA cm-2) cact (mol L-1) 

1 5.50 80.00 1.450 

2 10.00 80.00 1.450 

3 7.75 114.64 1.450 

4 1.00 80.00 1.450 

5 3.25 45.36 1.450 

6 7.75 45.36 1.450 

7 3.25 114.64 1.450 

8 7.75 91.56 1.777 

9 3.25 68.44 1.123 

10 7.75 68.44 1.123 

11 5.50 103.08 1.123 

12 3.25 91.56 1.777 

13 5.50 56.92 1.777 

14 5.50 80.00 1.695 

15 5.50 80.00 1.205 

 

The real value of vbr is calculated based on a volumetric coefficient (Vc). That is, the 

value of vbr depends on the volumetric flow (ω) and the diameter of pipe between the two 

reservoirs: 

 

𝑣𝑏𝑟 = 𝑣𝑝𝑉𝑐 = 𝑣𝑝 × 10
−5 𝜔

𝑑𝑏𝑟
2        (138) 
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4.4.3 Study 3: Insights into the effects of active species properties on the voltage 

efficiency of redox flow batteries 

The choice of active species is one of the most important steps to achieve RFBs with 

high energy density, high power density, and high performance. It is already understood 

how the properties of active species affect energy density and power density. However, 

there is a lack of understanding of how the properties of active species affect the 

performance of RFBs. To obtain insights from this issue, we designed a study to 

investigate which properties affect the RFBs' performance and which ones are the most 

important.  

Based on the proposed method of approach, we identified the problem, developed 

and validated the multi-physical model and, used a factorial design to screen the variables. 

Table 18 shows the complete characteristics (steps (i) to (iv)) of Study 3 based on the 

method of approach. 

 

Table 18.  Complete characteristics of Study 3 based on the method of approach. 

Step Description Checklist 

(i) Experimental indication of a problem Energy efficiency loss caused by choice of 

active species 

(ii) Development of a multi-physical model. RFB general model  

(SoC cut-off)  

(iii) Validation of the multi-physical model. Figure 21 

(successfully validated) 

(iv) Use of chemometric analysis. Factorial design  

 

The problem of this study is the energy efficiency loss caused by the choice of 

different active species. The multi-physical model used is the RFB general model 

(stationary), which was successfully validated comparing results from steady-state and 

transient models (see Figure 21). The factorial design was used as the chemometric tool. 

Thus, for this study, there was no need for the validation of regression analysis (Step (v) 

from the method of approach). And there is no mitigation strategy to be developed (Steps 

(vi) and (vii) from the method of approach) since the aim of the study is the obtaining of 

information about the studied conditions.  

 

Analyzing real systems. The first step of this study was exploring the already used 

anolytes and catholytes in the general steady-state multi-physical model. Five active 
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species were selected for the study (see Table 19). The studied variables were the 

diffusion coefficient (D), the standard electrochemical rate constant (k0), and the standard 

reduction potential (E0). 

 

Table 19. Active species selected for Study 3  

IDref Class D (X10-6 cm2 s-1)a k0 (X10-6  cm s-1)b E0 (V vs NHE)c 

Methyl viologen104 Anolyte 25.7 280 -0.45 

4-OH-TEMPO104 Catholyte 29.5 260 0.80 

FcNCl26 Catholyte 3.7 3.6 0.61 

V(II)/V(III)74 Anolyte 2.4 7.0 -0.25 

V(IV)/V(V) 74 Catholyte 3.9 2.5 1.00 
a Diffusion coefficient in water at 25°C, b Glassy carbon electrode, c Approximated from half-wave potential. 

 

Three combinations were studied (see Table 20). Each system was simulated in ten 

different applied current densities, from 50 to 140 mA cm-2. 

 

Table 20. Combination of active species for the Study 3 

Anolyte Catholyte Cell potential (V) 

Methyl viologen 4-OH-TEMPO 1.25 

Methyl viologen FcNCl 1.06 

V(II)/V(III)  V(IV)/V(V) 1.25 

 

 

Factorial design. A 25-1 fractional factorial design was performed with the variables: 

standard electrochemical rate constant (k0), diffusion coefficient (D), the standard cell 

potential (E), applied current density (iappl), the concentration of active species (cact) and 

volumetric flow (ω) (see Table 21).  

 

Table 21.25-1 factorial design for six variables of Study 3.  

ID log(k0)a  D (X10-5 cm2 s-1)a E(V)b iappl (mA cm-2) cact (mol L-1) ω ( mL min-1) 

1 -5.3 0.25 0.8 50 1 5 

2 -2.3 0.25 0.8 50 1 20 

3 -5.3 2.5 0.8 50 1 20 

4 -2.3 2.5 0.8 50 1 5 

5 -5.3 0.25 1.2 50 1 20 

6 -2.3 0.25 1.2 50 1 5 

7 -5.3 2.5 1.2 50 1 5 

8 -2.3 2.5 1.2 50 1 20 

9 -5.3 0.25 0.8 80 1 20 
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ID log(k0)a  D (X10-5 cm2 s-1)a E(V)b iappl (mA cm-2) cact (mol L-1) ω ( mL min-1) 

10 -2.3 0.25 0.8 80 1 5 

11 -5.3 2.5 0.8 80 1 5 

12 -2.3 2.5 0.8 80 1 20 

13 -5.3 0.25 1.2 80 1 5 

14 -2.3 0.25 1.2 80 1 20 

15 -5.3 2.5 1.2 80 1 20 

16 -2.3 2.5 1.2 80 1 5 

17 -5.3 0.25 0.8 50 2 20 

18 -2.3 0.25 0.8 50 2 5 

19 -5.3 2.5 0.8 50 2 5 

20 -2.3 2.5 0.8 50 2 20 

21 -5.3 0.25 1.2 50 2 5 

22 -2.3 0.25 1.2 50 2 20 

23 -5.3 2.5 1.2 50 2 20 

24 -2.3 2.5 1.2 50 2 5 

25 -5.3 0.25 0.8 80 2 5 

26 -2.3 0.25 0.8 80 2 20 

27 -5.3 2.5 0.8 80 2 20 

28 -2.3 2.5 0.8 80 2 5 

29 -5.3 0.25 1.2 80 2 20 

30 -2.3 0.25 1.2 80 2 5 

31 -5.3 2.5 1.2 80 2 5 

32 -2.3 2.5 1.2 80 2 20 
aFor both anolyte and catholyte, bE0(anolyte)=-E/2 and E0(catholyte)=E/2. 

 

Performance metrics. The performance metrics were calculated in the same way as 

described for Study 1. The only difference is the calculation of voltage efficiency: 

 

𝑉𝐸 =
𝑉̅𝑑

𝑉̅𝑐
=

(∑ 𝑉𝑑
𝑛𝑆𝑜𝐶,𝑑
0 /𝑛𝑆𝑜𝐶,𝑑)

(∑ 𝑉𝑐
𝑛𝑆𝑜𝐶,𝑐
0 /𝑛𝑆𝑜𝐶,𝑐)

       (139) 

 

Where 𝑛𝑆𝑜𝐶,𝑑 and 𝑛𝑆𝑜𝐶,𝑐 are the number of calculations performed for each SoC 

condition in the discharging and charging procedure, respectively. 
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5 Understanding how operating conditions affect optimal geometry for 

vanadium redox flow batteries 

 

 

This chapter shows the results of Study 1. The first section shows 

a brief introduction to the study. The second section describes 

how geometric modifications affect energy efficiency in VRFBs. 

The third section shows the figures of merit from regression 

analysis. The next section discusses the coefficients obtained 

from regression analysis and the consequences of their values. 

Section 5.4 describes a new method to calculate the optimal 

geometry for VRFBs operating at flow-through design. And 

section 5.5 brings the details about the validation of regression 

analysis.  

 

 

5.1 Introduction to the chapter 

 

Since geometric variables can affect the pumping energy consumption and the ohmic 

and concentration overpotentials, we carried out a study to investigate the effects of 

geometric modifications in VRFBs’ performance. We innovated by (i) using a geometry 

larger than those in laboratory scale (400 cm2 of area); (ii) using modifiable geometry; 

(iii) studying the interaction effects between geometric modification and operating 

conditions; (iv) coupling multi-physical model and regression analysis to deeply explore 

the system; (v) proposing a method to calculate the optimal geometry to any flow-design 

(flow-by or flow-through), type and scale of RFBs.  

Figure 24 shows a graphical abstract for Study 1. 
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Figure 24. Graphical abstract for Study 1. 

 

5.2 Understanding the geometric variables 

Before applying the method of approach, we aimed to understand how each geometric 

condition affects the pumping energy consumption, the concentration overpotential, and 

ohmic overpotential. In the next pages, we discuss the effects of the length of residence 

path (H), the electrode thickness (L), and the trapezoidal geometry on the battery 

efficiency of VRFBs. 

 

Length of residence path (H). The increase of the length of residence path leads to 

the decrease of regions of non-uniform concentration (see Figure 25). However, the 

decrease of these regions of non-uniform concentration does not influences the 

concentration overpotential 

 



78 
 

 

 

Figure 25. Regions of non-uniform concentration (left) and the respective concentration overpotential (right) 

for two cells with different lengths of residence path in the discharging procedure. Initial concentration of active 

species is equal to 1 mol L-1. 

 

  

Another characteristic of decreasing the length of the residence path is the decrease 

of power required for electrolyte recirculation. Thus, a smaller pump power is required 

and, as consequence, the pumping energy consumption by cycle decreases. A schematic 

representation of this conclusion is shown in Figure 26. 

 

 

Figure 26. Schematic representation comparing the effects of length of residence path on resistance to flow 

inside the half-cells of carbon felt. 
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A larger length of residence path (10 cm) requires more power of the pump (0.14 W) 

to overcome the resistance to flow caused by the presence of carbon felt inside the cell. 

If the length of the residence path is smaller (3.3 cm), the power required for recirculation 

of electrolyte is also smaller (0.04 W), because the resistance to flow decreases. Now, it 

is necessary to evaluate if this consequence on pump power is sufficient to change the 

efficiency of the cell. 

 

Electrode thickness (L). The increase of electrode thickness has the following 

consequences: 

(i) Increase of cell electrical resistance. The increase of electrode thickness also 

increases the path taken by current and, as consequence, the ohmic 

overpotential increases (see Figure 27). 

(ii) Decrease of pump power required for electrolyte circulation due to the 

decrease of resistance to flow caused by thicker channels. This condition also 

led to the decrease of flow velocity (v) inside the cell, considering the same 

volumetric flow (ω): 

 

↓ 𝒗 =
𝜔

𝜀𝑤𝑐𝑒𝑙𝑙𝑳↑
         (140) 

 

If the flow velocity decrease, the mass transport is less effective and the 

concentration overpotential increases.  

(iii) Increase of active area per length of residence path105. That is when thicker 

electrodes are used the active area available for the electrochemical reaction 

increase along the residence path, making the mass transport to the active 

surface easier (see Figure 27). This is because there is less traffic for the mass 

transport from the bulk to the electrode surface since there are more active 

sites available for the electrochemical reaction. Since the mass transport is 

more effective, the concentration overpotential is mitigated as the electrode is 

made thicker.  
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Figure 27. Comparing the effects of electrode thickness in the mass transport. 

 

The effects (ii) and (iii) are antagonists because one increases the concentration 

overpotential towards thicker electrodes and the other decreases the concentration 

overpotential towards thicker electrodes. The net effect depends on the cell scale. For a 

cell with 400 cm2 of area (wcell X H), the more important effect is the increase of active 

are per length of residence path (iii). Figure 28 shows the effect of increasing electrode 

thickness in the active area per length of residence path and flow velocity (a) and the net 

effect on the difference between bulk and surface concentration (b) for a 400 cm2 cell.  
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Figure 28. The effect of electrode thickness in (a) the active area along the residence path and the flow velocity, 

and (b) in the difference between bulk and surface concentrations at discharging procedure. 

 

Figure 28(b) shows that the difference between bulk and surface concentration of 

vanadium species decreases as electrode thickness increases, proving that increase of 

active area per length of residence path (effect (iii)) is more important than the decrease 

of flow velocity (effect (ii)) in this scale. That way, the increase of electrode thickness 

mitigates the overpotential concentration.  

 

Trapezoidal geometry. The trapezoidal geometry was already studied66,67. The 

purpose is to accelerate the electrolyte from the inlet to the outlet - without interfering in 

the operational conditions – to mitigate the regions of non-uniform concentration (see 

Figure 29). However, these studies modified the wcell, without interference in electrode 

thickness. Our purpose is to add to this effect of electrolyte acceleration, the effects of 

electrode narrowing: modification of ohmic and concentration overpotentials. 
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Figure 29. Comparing the effects of Lout/Lin on flow velocity.  

 

In the first case, for Lout/Lin = 0.8, the geometry is trapezoidal and the flow velocity 

decreases along the residence path. In the second case, we have the typical rectangular 

geometry with the constant flow velocity. For Lout/Lin = 1.6, the geometric is an inverted 

trapezoid and the velocity decreases along the residence path.  

Beyond the effects on the velocity flow, the trapezoid geometries influence the 

electrical resistance and the active area per unit of H. Thus, for Lout/Lin = 0.8, the ohmic 

resistance decreases, and the concentration overpotential increases along the residence 

path. And, for Lout/Lin = 1.6, the ohmic resistance increases, and the concentration 

overpotential decreases along the residence path. 

 

Next steps. The next section discusses the effect of these three geometric variables 

with two operational conditions (applied current density and volumetric flow) on the 

efficiency of the battery.  

5.3 Regression analysis 

Five responses related to performance were evaluated: voltage efficiency (VE), 

battery efficiency (BE), pumping energy consumption (Epump), ohmic overpotential (ηo), 

and concentration overpotential (ηc). The complete list of results from designed 
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computational experiments (from designed experiments of Table 14 in Methodology) is 

described in Table 22.  

 

Table 22. All responses from Doehlert design (Study 1)* 

ID VE  

(%) 

BE 

(%) 

Epump 

 (J) 

ηo  

(mV) 

ηc  

(mV) 

1 65.6 65.6 289.87 92.67 88.95 

2 64.4 64.2 204.11 123.1 62.47 

3 48.4 48.3 134.03 192.13 117.15 

4 59.3 59.1 544.01 135.94 89.34 

5 57.5 57.4 221.38 158.68 74.49 

6 58.7 58.7 576.46 140.5 86.04 

7 63.8 63.6 569.42 62.25 148.29 

8 88.9 88.7 1718.95 17.08 28.85 

9 70.6 70.4 47.77 57.4 88.86 

10 70.4 70.4 459.13 49.23 108.87 

11 88.8 88.8 286.65 16.6 30.28 

12 72.3 72.2 322.71 79.82 56.11 

13 71.4 71.2 30.08 79.95 56.76 

14 72.0 72.0 287.18 66.41 71.53 

15 72.2 72.1 53.70 77.16 58.68 

16 51.2 51.1 212.20 137.95 165.75 

17 52.4 52.0 17.75 141.35 130.25 

18 55.2 55.1 170.11 118.89 148.41 

19 54.8 54.7 31.82 136.54 127.65 

20 60.1 59.9 863.60 97.59 131.53 

21 80.3 80.0 1735.58 44.52 46.24 

22 65.6 65.5 880.48 78.09 109.89 

23 65.9 65.8 163.89 89.78 92.33 

24 60.0 59.9 348.11 111.25 112.8 

25 80.4 80.3 704.57 51.45 37.73 

26 65.0 64.8 56.14 107.25 74.56 

27 65.6 65.5 58.97 104.23 76.65 

28 60.1 59.8 914.79 100.35 127.5 

29 80.3 80.0 1839.64 45.91 44.29 

30 64.9 64.8 147.18 95.67 85.99 

31 65.7 65.5 815.70 81.07 105.14 

*Algorithm developed to calculate responses is in Appendix A 

 

The pumping energy consumption was irrelevant to a considerable lowering of the 

battery efficiency. This was evaluated by the absolute difference between VE and BE for 

all computational experiments, which are in the same scale of RMSE (see Figure 30). 

This means that there was no statistical difference between BE and VE. Thus, the 

evaluation of BE is redundant. This also indicates that the pumping energy consumption 
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(Epump) is low to reduce the energy efficiency in the studied scale. Thus, Epump is not 

important in being studied too. 

 

 

Figure 30. A plot of the absolute difference between calculated voltage and battery efficiencies for each 

computational experiment, evidencing that there is no statistical difference between these two responses. 

 

 

The remaining responses are VE, ηo, and ηc, which were submitted to regression 

analysis. Table 23 shows the figures of merit for regression analysis. 

 

Table 23. Figures of merit for regression analysis* 

 VE (%) ηo (mV) ηc (mV) 

R2 0.9991 0.9999 0.9977 

RMSE 0.31 0.30 1.74 
*Algorithm developed for regression analysis is in Appendix A 

 

The coefficients of determination, R2, indicated that all responses were well-fitted to 

quadratic regression analysis. The responses also have low values of root mean squared 

error (RMSE). These conditions allowed the use of the regression models to a robust 

prediction of VE, ηo, and ηc in the experimental space. 

 

Empirical equations. The empirical equations for VE, ηo and ηc, considering only the 

statistically significant coefficients at p < 0.05 level based on RMSE, are, respectively: 
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𝑉𝐸 =  65.43 − 22.57𝑖𝑎𝑝𝑝𝑙 +  0.89𝜔 − 1.39𝐿𝑖𝑛
2 − 2.23𝐿𝑖𝑛𝑖𝑎𝑝𝑝𝑙 − 1.69𝐿𝑖𝑛(𝐿𝑜𝑢𝑡/

𝐿𝑖𝑛) + 6.19𝑖𝑎𝑝𝑝𝑙
2 + 1.24𝑖𝑎𝑝𝑝𝑙𝜔 − 1.59𝑖𝑎𝑝𝑝𝑙(𝐿𝑜𝑢𝑡/𝐿𝑖𝑛) − 0.82𝜔

2  (141) 

 

𝜂𝑜 =  93.03 +  31.23𝐿𝑖𝑛 +  83.47𝑖𝑎𝑝𝑝𝑙 + 1.27𝐻 +

18.48 (𝐿𝑜𝑢𝑡 𝐿𝑖𝑛) + 26.94𝐿𝑖𝑛𝑖𝑎𝑝𝑝𝑙 +⁄ 9.02𝐿𝑖𝑛(𝐿𝑜𝑢𝑡/𝐿𝑖𝑛) + 3.45𝑖𝑎𝑝𝑝𝑙𝐻 +

15.92𝑖𝑎𝑝𝑝𝑙(𝐿𝑜𝑢𝑡/𝐿𝑖𝑛)        (142) 

 

𝜂𝑐 =  89.62 − 39.07𝐿𝑖𝑛 +  69.68𝑖𝑎𝑝𝑝𝑙 −

22.25 (𝐿𝑜𝑢𝑡 𝐿𝑖𝑛) + 15.81𝐿𝑖𝑛
2 − 15.25𝐿𝑖𝑛𝑖𝑎𝑝𝑝𝑙⁄ + 5.26𝐿𝑖𝑛(𝐿𝑜𝑢𝑡/𝐿𝑖𝑛) −

18.47𝑖𝑎𝑝𝑝𝑙
2 − 7.32𝑖𝑎𝑝𝑝𝑙𝜔 − 5.43𝑖𝑎𝑝𝑝𝑙𝐻 − 12.28𝑖𝑎𝑝𝑝𝑙(𝐿𝑜𝑢𝑡/𝐿𝑖𝑛) + 4.44(𝐿𝑜𝑢𝑡/

𝐿𝑖𝑛)
2           (143) 

 

The coefficients are calculated from the codified variables. 

We change the variable L, discussed in the previous section, by Lin. This change in 

nomenclature is necessary when we are working with the variable Lout/Lin at the same 

time. Thus, we can change only Lin, because the electrode thickness (L) changes along the 

residence path.  

The next sections discuss the coefficients of the above equations and their 

consequences on the performance of VRFBs. 

  

5.3.1 Evaluation of linear and quadratic coefficients 

Table 24 shows the statistically significant “pure” (linear and quadratic) coefficients 

from equations above of VE, ηo, and ηc. The term pure is used because the linear and 

quadratic coefficients are calculated separately for each variable, differently from the 

interaction coefficients, which is going to be discussed in section 5.2.2. 
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Table 24. Calculated linear and quadratic coefficients*,a 

  Response 

Variable Coefficients ηo (mV) ηc (mV) VE (%) 

𝐿𝑖𝑛 𝑤01 +31.23 -39.07 - 

𝐿𝑖𝑛
2  𝑤11 - +15.81 -1.39 

𝑖𝑎𝑝𝑝𝑙 𝑤02 +83.47 +69.68 -22.57 

𝑖𝑎𝑝𝑝𝑙
2 𝑤22 - -18.47 +6.19 

𝜔 𝑤03 - - +0.89 

𝜔2 𝑤33 - - -0.82 

𝐻 𝑤04 +1.27 - - 

𝐻2 𝑤44 - - - 

𝐿𝑜𝑢𝑡/𝐿𝑖𝑛 𝑤05 +18.48 -22.25 - 

(𝐿𝑜𝑢𝑡/𝐿𝑖𝑛)
2 𝑤55 - +4.44 - 

*Algorithm developed to determine the statistical significance is in Appendix A 
aThe non-significant coefficients are omitted for clarity 

 

The use of codified values is important because sets all variables and coefficients on 

the same scale. Another advantage of using codified variables (from -1 to +1) is that linear 

and quadratic coefficients can be compared in magnitude. For example, if both linear and 

quadratic coefficients are equal to 1, the partial response corresponding to each one of the 

coefficients assumes the behavior portrayed in Figure 31. 

 

 

Figure 31. Comparison between linear and quadratic partial response (a) and absolute partial response (b). 

 

Despite the linear and quadratic partial responses being very different (Figure 31(a)), 

their absolute values are very similar (Figure 31(b)), which makes possible the 

comparison between the coefficients. Considering this characteristic, in the next pages, a 

comparison between the “pure” coefficients is made, and the physical consequences of 

their values are discussed. 
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Coefficients of inlet electrode thickness (Lin) (w01 and w11). For ohmic overpotential, 

just the linear coefficient was statistically significant (w01(ηo)=+31.23), since the increase 

of electrode thickness increases the cell electrical resistance, as discussed in section 5.1.  

For concentration overpotential, the magnitude of the linear coefficient is more than 

double of quadratic coefficient: w01(ηc)=-39.07 and w11(ηc)=+15.81, indicating the 

prevalence of a linear behavior instead of a quadratic one (see Figure 32). 

 

 

Figure 32. Comparison between linear and quadratic partial response (a) and absolute partial response (b) for 

concentration overpotential concerning inlet electrode thickness. 

 

The physical meaning of this is related to the more important effect of increasing of 

active area per length of residence path as electrode thickness increases (iii) than the effect 

of decreasing flow velocity in this same direction (ii), as discussed in Section 5.1. Thus, 

despite there being two antagonistic forces for decreasing the concentration overpotential, 

one is more important than the other, making the mitigation of overpotential possible as 

electrode thickness increases. Figure 33 illustrates this conclusion by showing the partial 

responses and the total response for concentration overpotential concerning the inlet 

electrode thickness. 
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Figure 33. The linear and quadratic partial responses and the total response for the concentration 

overpotential concerning inlet electrode thickness. 

 

Finally, the opposite effects for ohmic (increases as electrode thickness increases) 

and concentration overpotential (decreases as electrode thickness decreases) explain the 

statistical significance of the quadratic coefficient for voltage efficiency w11(VE) = -1.39, 

where a maximum response is expected. 

 

Coefficients of applied current density (iappl) (w02 and w22). For ohmic overpotential, 

just the linear coefficient was statistically significant (w02(ηo)=+87.43), since the increase 

of current increases the ohmic overpotential by definition.  

For concentration overpotential, the magnitude of the linear coefficient is more than 

triple of quadratic coefficient: w02(ηc)=-69.68 and w22(ηc)=-18.47, indicating the 

prevalence of a linear behavior instead of a quadratic one. In the same way, we did for 

inlet electrode thickness, we can visualize this mathematical behavior plotting the partial 

and total responses (see Figure 34). 
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Figure 34. The linear and quadratic partial responses and the total response for the concentration 

overpotential concerning applied current density. 

 

The physical meaning for this correlation between concentration overpotential and 

applied current density is related to the demand for efficient mass transfer. High applied 

current densities lead to faster reactions and the active species at the electrode surface 

need to be replaced faster too. When this demand for mass transfer is not met, large 

concentration overpotential arises.  

The high positive linear correlation between applied current density and both 

concentration overpotential and ohmic overpotentials implies a large negative linear 

coefficient for voltage efficiency (w02(VE)=-22.57). Thus, as expected, the increasing of 

applied current density leads to lower voltage efficiencies.  

 

Coefficients of flow velocity (ω) (w03 and w33). The flow velocity does not affect 

ohmic overpotential. And the effect on concentration overpotential was insignificant, 

indicating that the range of values of flow velocity employed was sufficient for the 

mitigation of concentration overpotential. 

 

Coefficients of the length of residence path (H) (w04 and w44). The only significant 

coefficient for this variable was the linear one for ohmic overpotential (w04(ηo)=+1.27) , 

but this value has no physical meaning. A variable just affects ohmic overpotential by 

increasing the cross-sectional area of the cell or by increasing the electrode thickness. The 
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length of the residence path does not affect the electrical resistance because the cross-

sectional area of the cell (400 cm2) is kept fixed in all experiments and has no effect on 

electrode thickness. Graphs of ohmic overpotential versus applied current densities for 

different values of H are shown in Figure 35, proving the no modification in the ohmic 

overpotential caused by H.  

 

 

Figure 35. Ohmic overpotential versus applied current density for different length of residence path 

 

Thus, despite regression analysis being a good tool for system understanding, its main 

purpose is fitting. Because of that, the analysis of the significance for the coefficients has 

to be made in both statistical and physical approaches. 

 

Coefficients of Lout/Lin (w05 and w55).  Increasing  𝐿𝑜𝑢𝑡/𝐿𝑖𝑛 implies in (i) the 

increasing of ohmic overpotential (𝑤05(𝜂𝑜) = +18.48) and (ii) the decrease of 

concentration overpotential (𝑤05(𝜂𝑐) = −22.55). These are the same qualitative effects 

caused by the modification of inlet electrode thickness. However, the coefficients related 

to Lout/Lin for voltage efficiency (w05(VE) and w55(VE)) were not statistically significant. 

That is, the effects on ohmic and concentration overpotential caused by 𝐿𝑜𝑢𝑡/L𝑖𝑛 tend to 

offset each other.   
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Important variables. Therefore, the most important geometric variable for mitigation 

of overpotential was the inlet electrode thickness. The length of the residence path and 

the Lout/Lin had no net effect on voltage efficiency. For operating conditions, the applied 

current density was relevant and the volumetric flow was sufficient for the mitigation of 

concentration overpotential. 

 

5.3.2 Evaluation of interaction effects 

The analysis performed in the previous section considered just linear and quadratic 

coefficients. However, interaction effects also contribute to battery performance. Table 

Table 25 shows the statistically significant (at the p < 0.05 level based on RMSE) 

interaction effects.  

 

Table 25. Calculated interaction coefficients*,a
 

   Response 

Variable 1 Variable 2 Coefficients ηo ηc VE 

𝑳 𝒊𝒂𝒑𝒑𝒍 𝒘𝟏𝟐 +26.94 -15.25 -2.23 

𝐿 𝜔 𝑤13 - - - 

𝐿 𝐻 𝑤14 - - - 

𝑳 𝑳𝒐𝒖𝒕/𝑳𝒊𝒏 𝒘𝟏𝟓 +9.02 +5.26 -1.69 

𝒊𝒂𝒑𝒑𝒍 𝝎 𝒘𝟐𝟑 - -7.32 +1.24 

𝑖𝑎𝑝𝑝𝑙 𝐻 𝑤24 +3.45 -5.43 - 

𝒊𝒂𝒑𝒑𝒍 𝑳𝒐𝒖𝒕/𝑳𝒊𝒏 𝒘𝟐𝟓 +15.92 -12.28 -1.59 

𝜔 𝐻 𝑤34 - - - 

𝜔 𝐿𝑜𝑢𝑡/𝐿𝑖𝑛 𝑤35 - - - 

𝐻 𝐿𝑜𝑢𝑡/𝐿𝑖𝑛 𝑤45 - - - 

*Algorithm developed to determine the statistical significance is in Appendix A 

aThe non-significant coefficients are omitted for clarity 

 

Negative effects between geometric parameters and applied current density (w12 

and w25). The statistically significant interaction coefficients between geometric 

parameters and applied current density were w12 for inlet electrode thickness and w25 for 

Lout/Lin. Despite Lout/Lin is irrelevant by itself for voltage efficiency, its interaction with 

other variables contributes to cell performance. This is a finding that univariate analysis 

usually neglects and is very common in electrochemical systems. These two negative 

significant coefficients indicate that when large current densities are applied for thick 
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electrodes (high values of Lin and/or Lout/Lin) there is an additional contribution to the 

decrease of voltage efficiency (w12(VE) = -2.23 and w25(VE) = -1.59).  

These negative effects on voltage efficiency are caused by a higher coefficient for 

ohmic overpotential than for concentration overpotential. For Lin, the coefficient of ohmic 

overpotential is almost double of the coefficient for concentration overpotential: w12(ηo) 

= +26.94 and w12(ηc) = -15.25.  For Lin/Lout, the coefficient of ohmic overpotential is 

close to the coefficient for concentration overpotential: w25(ηo) = +15.92 and w25(ηc) = -

12.28. 

The larger contribution for ohmic overpotential than for concentration overpotential, 

when large currents and thick electrodes are applied (high values of Lin and/or Lout/Lin), is 

physically explained by the definition of ohmic overpotential itself: 

 

(𝜂𝑜)𝑙
𝑒,𝑗
= 𝑖𝑎𝑝𝑝𝑙

𝐿𝑎𝑣𝑔

𝜀3 2⁄ 𝜎𝑙
𝑒,𝑗        (144) 

 

Where Lavg is the average of electrode thickness, which increases by increasing both 

Lin and Lout/Lin. 

That is, the increasing of iappl, Lin and Lout/Lin increases the ohmic overpotential. Thus, 

there is an interaction effect between these variables by definition, explaining the positive 

values of w12(ηo) = +26.94 and w25(ηo) = +15.92. 

This synergetic effect in ohmic overpotential does not happen for the concentration 

overpotential, since high applied current densities increase the concentration 

overpotential, whereas thick electrodes decrease the concentration overpotential. That is 

an antagonistic effect, explaining the negative effects of w12(ηc) = -15.25 and w25(ηc) = -

12.28.  

Because of this, the interaction effect of ohmic overpotential is more relevant, and 

the voltage efficiency tends to be lower when applied current densities are used with thick 

electrodes. Figure 36 schematizes these considerations.  

In the first case, thin electrodes are operating in small currents. The ohmic 

overpotential is low because of both small current and thin electrodes (blue arrows at left). 

On the other hand, the concentration overpotential tends to be large because of the thin 

electrode at the same time that tends to be small because of the small current (red arrows 

at left).  
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In the second case, the thick electrodes are operating in large currents. The ohmic 

overpotential is high because of both small current and thin electrodes (blue arrows at 

right). On the other hand, the concentration overpotential tends to be small because of the 

thick electrode at the same time that tends to be large because of the large current (red 

arrows at right). 

 

 

Figure 36. Schematic representation comparing thin electrodes operating in small currents with thick 

electrodes operating in large currents. 

 

Negative effects between geometric parameters (w15). Another significant 

interaction arises from electrode thickness with Lout/Lin on voltage efficiency (w15(VE)=-

1.69). This is because both variables increase the average electrode thickness, leading to 

large ohmic overpotentials and smaller concentration overpotentials. 

 

Positive effects between operating conditions (w23). An interaction effect arises from 

applied current density with the volumetric flow (w23(VE)=1.24). This effect is associated 

with the demands for efficient mass transfer when applied current density increases. Thus, 

high applied current densities demand high flow velocity for the effective mitigation of 

concentration overpotential.   

 

The effect between applied current density and length of residence path (w24). This 

coefficient is statistically significant just for concentration overpotential and ohmic 
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overpotential. Despite statistical significance, the interaction effects for concentration and 

ohmic overpotential have no physical meaning. This is reinforced by curves of 

overpotential versus applied current density (see Figure 35 and Figure 37 ), where no 

change was observed from the modification of the length of the residence path. 

 

 

Figure 37. Concentration overpotential versus applied current density for different lengths of residence path. 

 

 Important effects. Therefore, the most relevant interactions were between Lin, 

Lout/Lin, and applied current density. The Lout/Lin ratio arises as a second geometric 

variable for mitigation of both ohmic and concentration overpotential. 

 

5.3.3 Interaction effects between geometric parameters and applied current density 

By analysis of the coefficients, we confirmed that interaction effects exist and are 

relevant for voltage efficiency. To further evaluate the relevant effects, three contour plots 

of Lin versus Lout/Lin for different applied current densities were stacked in a 3D graph 

(see Figure 38). The values of VE were normalized by the maximum value in each 

applied current density, since the values of vary greatly when different iappl are used. 
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Figure 38. Contour plots of normalized voltage efficiency (VE) for inlet electrode thickness (Lin) versus the 

ratio between outlet electrode thickness and electrode thickness (Lout/Lin) for three different values of applied current 

density (iappl)*.  
*Algorithm developed to plot this graph is present in Appendix A. 

 

The predicted values indicated the inversion in the region of VE when the applied 

current density goes from 40 to 160 mA cm-2. For large applied current densities (160 

mA cm-2; contour plot above), thin electrodes lead to optimum VE, whereas for smaller 

applied current densities (40 mA cm-2; contour plot below) thick electrodes imply better 

voltage efficiency.  

The above implications are explained in terms of the dominant overpotential in each 

condition. For small applied current densities (e.g., 40 mA cm-2), the concentration 

overpotential is dominant concerning the ohmic overpotential (see Figure 39(a-b)). Thus, 

the voltage efficiency is benefited in direction of smaller concentration overpotentials 

(when the electrode is thick). On the other hand, the ohmic overpotential is dominant 

concerning the concentration overpotential for large applied current densities (see Figure 

39 (c-d)). Thus, the voltage efficiency is optimized in direction of small ohmic 

overpotential (when the electrode is thin). For intermediate cases (e.g. 100 mA cm-2) there 

was a trade-off between the ohmic and concentration overpotential. 
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Figure 39. Contour plots of concentration and ohmic overpotentials for electrode thickness (L) versus Lout/Lin for two different values of applied current density*. 
*Algorithm developed to plot this graph is in Appendix A.  
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To further understand how to achieve maximum voltage efficiency for each applied 

current density, we calculated the optimal geometry. Figure 40 shows these results. 

 

 

Figure 40. Optimum geometric conditions for each applied current density*.  
*Algorithm developed to plot this graph is in Appendix A. 

 

Since the dominant overpotential changes from concentration to ohmic when applied 

current density becomes large, the optimal inlet electrode thickness decreases in this 

direction (see Cases 1 and 2 in Figure 41). 

 

 

Figure 41. Schematic representation of dominant and non-dominant overpotential for a range of applied 

current density and the primary (by Lin) and secondary (by Lout/Lin) mitigations. 
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Due to the focus on dominant overpotential, the modification of inlet electrode 

thickness is characterized as primary mitigation. For small applied current densities, thick 

electrodes mitigate the concentration overpotential (Case 1). On the other hand, thin 

electrodes mitigate the ohmic overpotential for large applied current densities (Case 2). 

The voltage efficiency is also optimized by the enlargement of the electrode in outlet 

channels (Lout/Lin > 1) as the applied current increases. This characterizes a secondary 

mitigation strategy.  Whereas the dominant overpotential is mitigated by electrode 

thickness, Lout/Lin modification is employed for the non-dominant overpotential. 

Therefore, small applied current densities require Lout/Lin < 1 to mitigate the ohmic 

overpotential (Case 3) and large applied currents densities require Lout/Lin > 1 to mitigate 

the concentration overpotential (Case 4).  

Based on these results, we can calculate the percentage of mitigation for each 

condition. The percentage mitigation can be defined as the ratio of the overpotential in a 

given geometric condition, η(Lin,Lout/Lin), by the maximum overpotential (ηmax) for each 

applied current density: 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 =
𝜂(𝐿𝑖𝑛,𝐿𝑜𝑢𝑡/𝐿𝑖𝑛)

𝜂𝑚𝑎𝑥
× 100%*   (145) 

*Algorithm developed to calculate the percentage of mitigation is in Appendix A. 

 

The percentage of mitigation versus applied current density proves the 

aforementioned findings (see Figure 42). The percentage of mitigation for primary 

mitigation corresponds to the overpotential as a function of Lin for both ohmic and 

concentration overpotentials; that is ηo(Lin) and ηc(Lin), respectively. And the percentage 

mitigation for secondary mitigation corresponds to the overpotential as a function of 

Lout/Lin for both ohmic and concentration overpotentials; that is ηo(Lout/ Lin) and ηc(Lout/ 

Lin), respectively. 

 

 



99 
 

 

 

Figure 42. Percentage mitigation of concentration overpotential (ηc) and ohmic overpotential (ηo) versus 

applied current density for (a) primary and (b) secondary mitigations. 

 

For the primary mitigation, there is a region of transition (close to 120 mA cm-2) 

between ohmic overpotential and concentration overpotential. This is in agreement with 

(i) ohmic overpotential is dominant for large applied current densities and (ii) 

concentration overpotential is dominant for small applied current densities. Figure 42 

reinforces that secondary mitigation acts as a mitigation strategy for the non-dominant 

overpotential because the secondary mitigation increases as the primary mitigation 

decrease. 
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The first case occurs when the primary mitigation is directed to ohmic overpotential 

and the secondary mitigation is directed to concentration overpotential. In this case, the 

primary mitigation is so effective for small applied current densities that the secondary 

mitigation has a balancing effect just for large applied current densities. 

The second case occurs when the primary mitigation is directed to concentration 

overpotential and the secondary mitigation is directed to ohmic overpotential. When the 

primary mitigation is more effective for small applied current densities, the secondary 

mitigation acts in the concentration overpotential. On the other hand, when large current 

densities are applied, the opposite effect occurs 

 

5.4 Optimal geometry 

In practice, a VRFB operates at various current densities making it impossible to 

change the cell geometry for each of them. However, it is possible to determine an optimal 

geometry for the overall current densities by choosing the geometry that leads to the 

smaller variation of VE over the current densities. This was performed using the following 

definition: 

 

∆𝑉𝐸 = 𝑉𝐸𝑣𝑎𝑟(𝐿𝑖𝑛, 𝐿𝑜𝑢𝑡/𝐿𝑖𝑛)   −  𝑉𝐸𝑜𝑝𝑡 *     (146) 
*Algorithm developed to calculate ΔVE is in Appendix A. 

  

Where VEopt is the constant optimum voltage efficiency for each applied current and 

VEvar(Lin,Lout/Lin) is the voltage efficiency for each optimal geometry portrayed in Figure 

40. For example, at 25 mA cm-2, the VEopt is equal to 88.83%, the VEvar(7.57,0.57)  = 

88.83%, the VEvar(5.25,0.89)  = 88.40% and the VEvar(2.92,1.2)  = 87.09%. Then, the 

ΔVE is equal to, respectively: 0, -0.43, -1.74%. Figure 43(a) shows the ∆𝑉𝐸 for three 

values of applied current density versus the optimum geometric condition. 
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Figure 43. (a) ΔVE values versus optimum geometric condition for different values of applied current density 

and (b) 𝛿 values versus optimum geometric condition*. 
*Algorithm developed to plot this graph is in Appendix A. 

 

The difference between the maximum and minimum value of ΔVE indicates the 

geometry that leads to the smaller variation of VE over the current densities. This 

parameter is defined as 

 

𝛿 = 𝑚𝑎𝑥(∆𝑉𝐸) − 𝑚𝑖𝑛 (∆𝑉𝐸)*      (147) 
*Algorithm developed to calculate δ is in Appendix A. 

 

Figure 43(b) shows a plot of 𝛿 versus the geometric condition. The minima 

correspond to the optimal geometry: Lin = 4.49 mm and Lout/Lin = 0.99. Thus, traditional 

geometries are better than trapezoidal geometries when the overall applied current 

densities are considered.   

Thus, despite the previous works suggesting that trapezoid geometries – by 

employing wout/win < 1 - leads to the better voltage efficiency 66,67, this is not observed for 

our study, which employs a trapezoid geometry varying Lout/Lin. Unlike wout/win 

modification, which just modifies the concentration overpotential by accelerating the 

electrolyte inside the half-cell, the Lout/Lin controls the concentration overpotential by 

varying the active area per H and the ohmic overpotential by varying the electrode 

thickness. Indeed, the antagonistic consequences of both factors made the traditional 
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rectangular geometry more suitable to achieve better voltage efficiency (Lout/Lin = 0.99). 

Beyond that, an optimum electrode thickness can be defined by regulating these factors 

(Lin = 4.49 mm). 

  

5.5 Validation of regression model 

All implications showed in the above sections are based on the regression model 

obtained with 31 designed experiments. To confirm these implications, two validation 

approaches were carried out. The first validation (random validation) was performed with 

1/3 of computational experiments and all variables were changing randomly. The second 

validation (validation of optimum responses) aims to confirm the values of maximum 

voltage efficiency for each applied current density. Figure 44 shows the predicted versus 

simulated voltage efficiency of the training set and the validation sets.  

 

 

Figure 44. Predicted versus simulated voltage efficiency for designed experiments and data validations*. 
*Algorithm developed to plot this graph is in Appendix A. 

 

The well-fitting of validation values were reached for voltage efficiency, ohmic and 

concentration overpotentials (see Table 26). The rooted mean squared error (RMSE) of 

voltage efficiency for both validations was large than those for the designed experiments 

set, but are still extremely low when compared with all variations in the experimental 
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space. Therefore, Validation 1 proved that the model is robust even in random choices of 

variables, especially for voltage efficiency and ohmic overpotential. And Validation 2 

confirmed, with low error, the values of maximum voltage efficiency. 

 

Table 26. Figures of merit for validation* 

 VE ηo ηc  

R2 (random validation) 0.9976 0.9992 0.9856 

RMSE (random validation) 0.58 1.59 4.05 

R2 (validation of optimum responses) 0.9971 0.9966 0.9970 

RMSE (validation of optimum responses) 0.59 1.71 2.61 
*Algorithm developed to determine these metrics is in Appendix A 

 

5.6 Characteristics of the study based on the method of approach 

Table 27 shows the complete characteristics of Study 1 based on the method of 

approach.  

 

Table 27. Complete characteristics of Study 1 based on the method of approach. 

Step Description Checklist 

(i) Experimental indication of a 

problem 

Energy efficiency loss caused by overpotential 

and pumping energy consumption 

(ii) Development of a multi-physical 

model. 

VRFB cell potential model  

(SoC cut-off)  

(iii) Validation of the multi-physical 

model. 

Figure 20  

(Successfully validated) 

(iv) Use of chemometric analysis. Multivariate regression analysis 

(v) Validation of the chemometric 

analysis. 

Figure 44 

(Successfully validated) 

(vi) and (vii) Insights to develop a mitigation 

strategy 

Section 5.3 

 

As we saw in Methodology, the problem of this study is the energy efficiency loss 

caused by overpotential (ohmic and concentration) and by pumping energy consumption. 

Indeed, we observed that the pumping energy consumption is low to decrease the battery 

efficiency in the studied scale. But, the ohmic and concentration overpotentials were very 

relevant to voltage loss and, consequent, energy efficiency loss in VRFBs. 

Steps (ii) and (iii) are related to the choice of a suitable multi-physical model and its 

validation, respectively, as discussed in Methodology. And steps (iv) and (v) are related 

to the choice of a chemometric tool and its validation. In this case, the chemometric tool 



104 
 

 

was the multivariate regression analysis, which was validated by two types of approaches, 

as can be seen in Figure 44.  The validation was considered successful because the 

predicted values from the regression model are very correlated to the values obtained 

from the multi-physical model. 

The last steps ((vi) and (viii)), are related to the insights to develop a mitigation 

strategy.  First, we identified the most important variables (Lin, Lout/Lin, and iappl), then we 

understood their pure and interaction effects on voltage efficiency. These insights led us 

to conclude that the optimum cell geometry depends on the applied current density. Thus, 

we proposed a method to calculate the overall optimal geometry, since it is not reasonable 

to modify the cell geometry for each operating condition. Beyond be applying in VRFBs, 

the proposed method can be further applied in any type and scale of RFB and for flow-

design (flow-by or flow-through).
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6 A robust mitigation strategy for capacity loss in VRFBs under 

different operating conditions 

 

 

This chapter shows the results of Study 2. The first section shows 

a brief introduction to the study. The second section describes 

the first considerations about electrolyte viscosity and the 

limiting electrolyte. The third section shows the results of 23 

factorial designs. The next section discusses the mitigation 

strategy based on the volume transfer between the electrolyte 

tanks. Section 6.5 brings the details about the validation of 

regression analysis. Finally, the last section describes the 

characteristics of Study 2, showing its main consequences. 

 

6.1 Introduction to the chapter 

Since the disbalancing of active species leads to the reversible capacity loss in 

VRFBs, we added robustness in an already experimentally proposed method of automatic 

rebalancing by volume transfer between the electrolyte tanks. First, we carried out a 

systematic study to investigate which variables control the capacity loss. Then, we built 

a regression model to predict the optimum value of flow velocity between the tanks. We 

innovated by (i) coupling multi-physical model and chemometric tools to investigate the 

capacity loss in VRFBs; (ii) predicting  electrolyte viscosities from literature data and 

setting these values in the multi-physical models; (iii) identifying the most important 

operating conditions for capacity loss and explaining why they are important; (iii) 

proposing a method to calculate the optimum velocity flow between tanks to achieve the 

minimum capacity loss in VRFBs 

Figure 45 shows a graphical abstract for Study 2. 
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Figure 45. Graphical abstract for Study 2. 

 

6.2 Preliminary considerations 

6.2.1 Electrolyte viscosity 

The concentration of active species and the concentration of supporting electrolytes 

influence the viscosity of electrolytes, as described by Song et al72. The electrolyte 

viscosity determines the pressure gradient between the half-cells and, as consequence, the 

cross-contamination by osmosis. Since the concentration of active species is a variable of 

this study, it is necessary to evaluate its effect on electrolyte viscosity.  

The viscosity of each electrolyte was determined by a regression analysis using 

experimental data from literature: 69 points for the negative electrolyte72,73 and 71 points 

for the positive electrolyte72,73.  The experimental data were obtained for different values 

of SoC, the concentration of active species and, the concentration of supporting 

electrolyte. The values of electrolyte viscosity used in the multi-physical model were the 

mean value of electrolyte viscosity in the SoC window for each half-cell. The temperature 

was fixed at 298.15 K. 
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Figure 46 shows the predicted versus experimental viscosity for each electrolyte. The 

experimental data was well-fitted to the quadratic regression analysis for both positive 

and negative electrolytes.  

 

 

Figure 46. Predicted versus experimental viscosities for (a) negative and (b) positive electrolytes*. 
*Algorithm developed to plot this graph is in Appendix B. 

 

The coefficients of determination (R2) of the training set for both regressions are high, 

showing the strong correlation between predicted and experimental values. The high R2 

of cross-validation for both cases show the capacity and robustness of the quantitative 

model to predict the values of electrolyte viscosity.   
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6.2.2 The limiting electrolyte 

In a VRFB, the cross-contamination leads to the imbalance of active species between 

the half-cells. The consequence of such imbalance across the cycles is visualized by the 

increasing of maximum negative SoC and decreasing of maximum positive SoC per cycle 

(see Figure 47). 

 

 

Figure 47. Typical behavior of negative SoC, positive SoC, and global SoC along 40 charge-discharge cycles. 

(a) Results obtained from simulation* and (b) experimental results45. 

 

The SoC behavior resulting from the simulation is in agreement with the experimental 

behavior portrayed by Luo et al.45 (compare Figure 47(a) and Figure 47(b)).  

Since the net cross-contamination occurs from the negative to the positive half-cell. 

Thus, the negative SoC decreases across the cycles due to: (i) the passage of species 

vanadium from one half-cell to another; and (ii) the higher diffusion coefficient of V3+ 

than V2+: 

 

↑ 𝑆𝑜𝐶𝑛𝑒𝑔 =
↓𝑐𝑉(𝐼𝐼)

↓𝑐𝑉(𝐼𝐼)+↓𝒄𝑽(𝑰𝑰𝑰)
       (148) 
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The excess of vanadium species in the positive half-cell is mostly composed of VO2+ 

(V(IV)) due to the self-discharge reactions. This explains why the positive SoC decreases 

across the cycles: 

 

↓ 𝑆𝑜𝐶𝑝𝑜𝑠 =
↓𝑐𝑉(𝑉)

↑𝒄𝑽(𝑰𝑽)+↓𝑐𝑉(𝑉)
       (149) 

 

Where 𝑐𝑉(𝐼𝐼) and 𝑐𝑉(𝑉) are the dischargeable vanadium species and 𝑐𝑉(𝐼𝐼𝐼) and 

𝑐𝑉(𝐼𝑉)are the chargeable vanadium species. 

Thus, the negative electrolyte - lacking chargeable active species (𝑐𝑉(𝐼𝐼𝐼)< 𝑐𝑉(𝐼𝑉)) – 

limits the charging procedure of the battery (see Figure 48(a)). Whereas, the positive 

electrolyte – lacking dischargeable species due to high self-discharge rate (𝑐𝑉(𝑉)< 𝑐𝑉(𝐼𝐼)– 

limits the discharging procedure of the battery (see Figure 48(b)). 
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Figure 48. Minimum concentration per cycle for charging (a) and discharging (b) procedures. 

 

Thus, the negative electrolyte is the limiting electrolyte in the charging procedure and 

the positive electrolyte is the limiting electrolyte in the discharging procedure. 

 

6.3 Effects of variables on the capacity loss rate 

Table 28 shows the values of electrolyte viscosity and capacity loss rate for the 23-

factorial design (from designed experiments of Table 16 in Methodology). The 

electrolyte viscosities are the predicted values set in the multi-physical model. The CLrate 

is the main response of each designed experiment. 

 

Table 28. Responses of 23 factorial design (Study 2)*. 

ID µneg (mPa s) µpos (mPa s) CLrate (%/cycle) 

1 3.30 2.92 0.59 

2 3.30 2.92 0.50 

3 5.30 4.32 0.87 

4 5.30 4.32 0.63 

5 3.30 2.92 0.57 

6 3.30 2.92 0.46 

7 5.30 4.32 0.86 

8 5.30 4.32 0.61 
*Algorithm developed to calculate these responses is in Appendix B. 
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Figure 49 shows the percentage of each effect on the response (capacity loss rate)  

and a probability graph of the effects.  

 

 

 

 

Figure 49. (a) Percentage of each effect on the capacity loss rate and cumulative sum and (b) the probability 

graph of effects. (1) applied current density; (2) concentration of active species and; (3) volumetric flow. * 
*Algorithm developed to plot this graph is in Appendix B. 

 

The most relevant effects to the capacity loss rate were the concentration of active 

species (effect 2), the applied current density (effect 1), and the interaction effect (effect 

12) between these two variables. The volumetric flow (effect 3) had less than 5% of 

contribution to the response, as well as the remaining secondary and tertiary effects. 
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Effect of concentration on capacity loss rate. The increase of capacity loss rate is 

about 0.20% per cycle when the concentration of active species goes from 1.1 to 1.8 mol 

L-1. Thus, although the increased concentration of active species increases the theoretical 

capacity of the cell, it also leads to the acceleration of capacity loss. An explication for 

this effect is the increase of diffusional flux across the membrane due to a higher 

concentration gradient in the membrane/electrode interface when a larger concentration 

of active species is applied. Figure 50 shows the integrated net fluxes - total, diffusional, 

migration, and convective - of vanadium species in the membrane/electrode interface for 

two different concentrations of active species: 1.10 and 1.80 mol/L.  

The fluxes were integrated in the membrane|electrolyte interface region to obtain the 

quantity, in mols, of active species that cross the membrane (per unit of area) in each time 

of the simulation. To obtain the net fluxes, we just took the mean values of fluxes in all 

the calculated times, considering the change of direction in migration and convection 

fluxes.   
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Figure 50. Integrated net fluxes (total, diffusional, migration, and convective) across membrane/electrolyte 

interface for vanadium species with the initial concentration of (a) 1.10 and (b) 1.80 mol L-1. dif: diffusional flux; 

mig: migration flux; conv: convective flux and; total: the sum of the diffusional, migration and convective flux*. 
*Algorithm developed to plot these graphs is in Appendix B. 

 

It is possible to observe the increase of diffusional flux for the four vanadium species 

when the concentration of active species goes from 1.1 to 1.8 mol L-1. On the other hand, 

the net migration and convective fluxes vary slightly for these cases. The net convective 

and migration fluxes are close to 0 because they change direction depending on the 

charging or discharging procedure. 

The higher diffusional flux for 1.8 mol L-1 accelerates the variation of the V(V) 

limiting concentration during discharge, leading to higher capacity loss, as seen in the 

dotted lines of Figure 51.  

 

 

Figure 51. The V(V) limiting concentration in discharging procedure for 1.10 and 1.80 mol L-1 initial 

concentration of active species*.  
*Algorithm developed to plot these graphs is in Appendix B. 
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This acceleration in the variation of V(V) limiting concentration is highlighted by its 

derivative in the function of cycle number (solid lines in the above figure). 

Thus, the increase of concentration of active species increases the diffusional fluxes 

across the membrane and accelerates the consumption of the limiting active species. As 

a consequence, the capacity loss across the cycles increases as concentration increases. 

Figure 52 schematizes the effect of the concentration of active species on capacity loss.  

 

 

Figure 52. Schematic representation of effect of concentration of active species on the capacity loss due to the 

increase of fluxes across membrane. 

 

Effect of applied current density on capacity loss rate. The decrease of capacity loss 

rate is about 0.15% when the applied current density goes from 50 to 100 mA cm2-. 

Despite larger currents increasing the concentration and potential gradients in the 

membrane/electrolyte interface, these cases also correspond to shorter charge/discharge 

cycles. Thus, the integrated flux over time across the interface is smaller when larger 

applied currents are applied (see Figure 53).  
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Figure 53. Integrated net fluxes (total, diffusional, migration, and convective) across membrane/electrolyte 

interface for vanadium species with an applied current density of (a) 50 and (b) 100 mA cm2-. dif: diffusional flux; 

mig: migration flux; conv: convective flux and; total: the sum of the diffusional, migration and convective flux*. 
*Algorithm developed to plot these graphs is in Appendix B. 

 

The different integrated flux leads to different limiting concentration profiles, as 

shown in Figure 54. As smaller currents lead to smaller integrated fluxes, the decrease 

of limiting concentration per cycle is smaller too, explaining why the capacity loss rate 

decreased.  
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Figure 54. The V(V) limiting concentration in discharging procedure for 50 and 100 mA cm2-. * 
*Algorithm developed to plot these graphs is in Appendix B.  

 

Thus, the increase of applied current density shortens the charge/discharge cycles, 

making fewer species cross the membrane and decreasing the capacity loss per cycle. As 

consequence, the capacity loss across the cycles decreases. Figure 55 schematizes the 

effect of the concentration of active species on capacity loss. 

 

 

Figure 55. Schematic representation of the effect of applied current density on the capacity loss due to the short 

of charge/discharge cycles. 

 

Interaction effect between concentration and current on capacity loss rate. The 

interaction effect 12 is about -0.05% of capacity loss per cycle. Thus, when both variables 
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– applied current density and concentration of active species – are at higher levels, there 

is an additional decrease of 0.05% in the capacity loss rate. 

Since the applied current density decreases the integrated net fluxes and the 

concentration of active species increases the integrated net fluxes; this interaction effect 

indicates that the increasing of applied current densities is sufficient to decrease the 

integrated net fluxes caused by the increase of concentration. Thus, when a high 

concentration of active species is used, the use of larger applied current densities is an 

option to mitigate the increased capacity loss rate. Figure 56 schematizes the interaction 

effect between applied current density and concentration of active species on capacity 

loss. 

 

 

Figure 56. Schematic representation of interaction effect between applied current density and concentration of 

active species. 
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6.4 Mitigation strategy 

6.4.1 Evaluating the volume transfer between electrolyte tanks 

Since the variables that affect the capacity loss are known (concentration of active 

species and applied current density), is possible to apply the mitigation strategy. This 

strategy consists of the volume transfer between the electrolyte tanks in the inverse 

direction of net cross-contamination (see Figure 57). 

 

 

Figure 57. Scheme of mitigation strategy of capacity loss in VRFBs based on volume transfer between 

electrolyte tanks. 

 

This strategy is only possible because of self-discharge reactions that take place in 

the negative half-cell. The VO2
+ (V(V)) and VO2+ (V(IV)) react with V2+ - in excess in 

the negative half-cell - producing V3+, initially in a small quantity. This process leads to 

the rebalancing of V3+ in the negative half-cell especially by the consumption of V(IV). 

Because of this, it is expected partial or total mitigation of capacity loss by using this 

strategy. However, the suitable velocity of volume transfer between the electrolyte tanks 

must be determined. For this, we changed the parameter vp in one order of magnitude to 

evaluate the capacity loss (see Figure 58). 
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Figure 58. (a) Discharge capacity versus cycle number for different values of velocity between tanks and (b) 

capacity loss rate versus vp parameter.* 
*Algorithm developed to plot these graphs is in Appendix B. 

 

For the case without volume transfer (vp = 0) it was observed the expected capacity 

loss at a rate of 0.59% per cycle. For the cases with volume transfer between tanks, the 

capacity loss rate decreased slightly when vp = 1 m/s and approximates to 0% when vp = 

5 m/s. This indicates that capacity loss can be completely mitigated by the proposed 
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strategy. But it is necessary to choose properly the velocity between tanks because if high 

velocities are used, the capacity loss rate increases again (see the cases for vp = 10 and 10 

m/s). Thus, there is a region of the minimum that indicates the optimum velocity between 

tanks.  

  

6.4.2 Searching optimum flow velocity between tanks 

As we saw in the previous sections, the concentration of active species and the applied 

current density affect the capacity loss in a VRFB cell. We also observed that is a region 

of optimum velocity between tanks for a given operating situation. The purpose now is 

to turn our strategy general by finding the optimum velocity between tanks for any 

condition of concentration and current. For this, a regression analysis was performed 

based on a Doehlert design of experiments (from Table 17 in Methodology). Table 29 

shows these results. 

 

Table 29. All responses from Doehlert design (Study 2)* 

ID CLrate (%/cycle)a CL (%)b  

1 0.0010 0.04 

2 0.4515 19.42 

3 0.0767 4.60 

4 0.3621 16.30 

5 0.0924 2.13 

6 0.3987 9.17 

7 0.1130 7.23 

8 0.1532 5.82 

9 0.1024 4.81 

10 0.1676 7.71 

11 0.0370 2.63 

12 0.1382 5.53 

13 0.0109 0.25 

14 0.0052 0.18 

15 0.0589 1.41 
aCalculated based on the first 20th cycles 

b|100-discharge capacity| at 20th cycle 

*Algorithm developed to calculate responses is in Appendix A 
 

 

Figure 59 shows three stacked contour plots for capacity loss of vp versus applied 

current density for three different concentrations of active species. 
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Figure 59. Contour graphs stack (4D plot) of vp versus applied current density versus concentration of active 

species for capacity loss. The capacity loss was determined by |100 – discharge capacity at 20th|*.  
*Algorithm developed to plot these graphs is in Appendix B. 

 

Three distinct cases can be identified in the above figure. The coordinates are 

described as (vp(m/s), iappl (mA/cm2), cact(mol/L)). 

(1) (3, 75, 1.75). The chosen velocity between tanks leads to a capacity loss equal to 

zero, in a global minimum region. If a higher value of vp is used (x-direction), the 

capacity loss increases.  

(2) (10, 45, 1.45). The chosen velocity between tanks leads to a larger capacity loss 

located in the maximum region in the x-direction. If a low value of vp is used (x-

direction), the capacity loss decreases but does not reach zero. 

(3) (2, 60, 1.15). The chosen velocity between tanks leads to a small capacity loss 

different from zero, in the minimum region in the x-direction. If a high value of 

vp is used (x-direction), the capacity loss increases.  

 

Thus, not all combinations of iappl/cact will lead to null capacity loss, but regions of 

the minimum are always identified in this experimental space. That way, it is possible to 

identify the optimum velocity between tanks for any combination of variables by simply 
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choosing the value of applied current density and concentration of active species and 

identifying the region of minimum capacity loss. Figure 60 shows this process for the 

three cases under study.  

 

 

Figure 60. Capacity loss versus vp for the three different cases. * 
*Algorithm developed to plot these graphs is in Appendix B. 

 

The optimum velocity between tanks varies slightly for the three cases portrayed in 

the above figure. Thus, despite applied current density and concentration of active species 

influencing the capacity loss, the optimum velocity between tanks is very close to a range 

of variable values.  

 As previously mentioned, just for case (1) and case (2) the optimum velocity between 

tanks led to null – or close to zero – capacity loss. In case (3), there was a minimum in 

capacity loss, but it is different from zero (close to 2%).  

6.5 Regression analysis validation 

The validation of regression analysis was performed using a random combination of 

variables. Figure 61 shows the predicted versus simulated capacity loss for the test and 

train sets. The train set is used to determine the coefficients of the regression model and 

the test set is used for validation. 
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Figure 61. Predicted versus simulated capacity loss for test and train sets*. 
*Algorithm developed to plot this graph is in Appendix B. 

 

The coefficient of determination (R2) for the train set shows a well-fitting between 

simulated and predicted capacity loss. The R2 for the test set demonstrated the capacity 

of the regression analysis in predicting the capacity loss even in random changes in the 

studied variables. 

 

6.6 Characteristics of the study based on the method of approach 

Table 30 shows the complete characteristics of Study 2 based on the method of 

approach. 

 

Table 30. Complete characteristics of Study 2 based on the method of approach. 

Step Description Checklist 

(i) Experimental indication of a problem Capacity loss caused by cross-

contamination 

(ii) Development of a multi-physical model. VRFB capacity loss model  

(Voltage cut-off)  

(iii) Validation of the multi-physical model. Figure 19 

(Successfully validated) 

(iv) Use of chemometric analysis. Factorial design and regression analysis 

(v) Validation of the chemometric analysis. Figure 61 

(Successfully validated) 

(vi) and (vii) Insights to develop a mitigation strategy Section 6.3 
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As we saw in the Methodology, the problem of this study is the capacity loss caused 

by the cross-contamination at the membrane interface. A suitable multi-physical model 

to simulate this condition was successfully developed and validated. For this study, two 

chemometric analysis was carried out: 

 

(i) Factorial design, for the determination of the most important variables that 

affect the capacity loss in VRFBs. These variables are the applied current 

density and the concentration of active species. 

(ii) Regression analysis, for the testing the robustness of the proposed mitigation 

strategy by predicting the values of capacity loss caused by the applied current 

density, concentration of active species, and the flow velocity between the 

electrolyte tanks. The validation of regression analysis was made by 

comparing the simulated and predicted capacity losses. This validation was 

considered successful because the predicted values from the regression model 

are very correlated to the values obtained from the multi-physical model. 

 

The proposed method allowed us to understand the impacts of operating conditions 

on VRFBs’ capacity loss and how the mitigation strategy behaved in these conditions. 

(steps (vi) and (vii)).  Thus, we contributed to an already proposed mitigation strategy78 

by studying it in several conditions and by providing a theoretical background to show 

the potentialities of this strategy. By this process, we also provide a method to calculate 

the optimum conditions to achieve the smallest possible capacity loss and, as 

consequence, improve the operational life of VRFBs.
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7. Insights into the effects of active species properties on the voltage 

efficiency of redox flow batteries 

 

 

This chapter shows the results of Study 3. The first section shows 

an introduction to the study. The second section describes how 

real and different active species behave in the RFB general 

model. The last section brings the results of 25-1 fractional 

factorial design, discussing the consequences of choosing 

different active species for RFBs and showing which properties 

are more important.  

 

 

7.1 Introduction to the chapter 

Despite the use of metal-based active species (e.g., vanadium), the use of organic 

active species – or redox organic molecules (ROMs) – for RFB application is highly 

targeted due to the high adaptability of chemical and physical properties106,107. This 

allows the modification of properties aiming at the improvement of performance. In this 

section, we discuss the main characteristics in the choice and development of active 

species and show their consequences on RFBs’ performance.  

 

(i) Solubility. Solubility is a factor of great interest in RFBs, as it determines the 

magnitude of the capacity and energy density of the system defined as, respectively: 

 

𝐶 = 𝑛𝐹𝑐𝑎𝑐𝑡         (150) 

 

𝐸 = 𝑈𝐶          (151) 
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Where n is the electrons transferred in the electrochemical reaction, F is the Faraday’s 

constant, cact is the concentration of active species and U is the theoretical cell redox 

potential. The concentration of active species is related to solubility since the solubility 

dictates the maximum concentration. 

In the context of organic compounds, given their functional adaptability, solubility 

can be improved so that there is an increase in solute-solvent interactions29 There are still 

other factors that govern the solubility of active species, such as the temperature of the 

system, its state of charge (oxidized or reduced), and competition with the supporting 

electrolyte used.  

 

(ii) Redox Potential. As well as solubility, the redox potential also determines the 

magnitude of the energy density (Equation 151) and, additionally, the power density: 

 

𝑃 =
𝑖𝑑𝑈

𝑎
          (152) 

  

Where id is the discharging current and a is the active area of the battery. 

To improve both metrics is necessary to choose anolytes with high negative redox 

potential (𝐸𝑎𝑛𝑜𝑙𝑦𝑡𝑒 ≪ 0) and catholytes with positive redox potential (𝐸𝑐𝑎𝑡ℎ𝑜𝑙𝑦𝑡𝑒 ≫ 0) 

since, 

 

𝑈 = 𝐸𝑐𝑎𝑡ℎ𝑜𝑙𝑦𝑡𝑒 − 𝐸𝑎𝑛𝑜𝑙𝑦𝑡𝑒  (153) 

 

For ROMs, the redox potential is governed by the energy levels of the HOMO 

(oxidation) and LUMO (reduction) orbitals8. Once again, the functional adaptation allows 

for changes in the energies of these boundary orbitals, allowing the improvement of the 

redox potential. The principle of this modification is based on functionalization using 

electron-donating (EDG) or electron-withdrawing groups (EWG). In general, EDG 

provides electrons to the redox centers resulting in a decrease in potential107, whereas 

EWG shift the redox potential to more positive values due to an increase in the electron 

affinity of the molecule 107. Figure 62 shows an example of this type of modification for 

pyrylium ions with different substitutions in R2. The data was obtained from literature108. 
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Figure 62. Relationship between the half-wave potential in cyclic voltammetry and the substituent R2. Data 

from108. 

 

The nitro R2-substitution increases the redox potential in 140 mV regarding H R2-

substitution, whereas the methoxy substitution in R2 decreases the redox potential in 80 

mV. Thus, the methoxy-substituted pyrylium ion is a better anolyte than the H-

substituted. And the nitro-substituted pyrylium ion is a batter catholyte than the H- 

substituted. 

 

(iii) Stability. The chemical stability of the products generated in the electron transfer 

process (oxidation or reduction) is one of the biggest challenges when it comes to the 

application of ROMs in RFBs. In many cases, the loss or gain of electrons by the molecule 

causes the formation of unstable radicals, which react generating electrochemically 

irreversible species30,31. Such chemical processes will be reflected in the loss capacity 

across the cycles.  

 

These three properties, solubility, redox potential, and stability of electron-generated 

radicals are the target properties in the choice of a suitable active species for RFB 

application, due to the metrics discussed above. However, there is a lacking of 

understanding in: 

 

(i) How solubility and redox potential affects the voltage efficiency in RFBs; 
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(ii) How mass (diffusion coefficient) and electron transfer (standard 

electrochemical constant rate) properties also affect the RFB’s performance; 

(iii) Which are the most relevant target properties in the choice of suitable active 

species for RFB application. 

 

Based on the aforementioned information, we carried out a  study to investigate how 

active species properties affect the voltage efficiency and, as a consequence, the energy 

efficiency of RFBs. We innovated by (i) coupling multi-physical model and chemometric 

tools to investigate the effect of active species properties in RFBS; (ii) developing a multi-

physical model capable of simulating any combination of anolyte/catholyte to obtain 

performance data; and (iii) providing a robust theoretical background to understand the 

impacts of active species choosing in RFBs’ performance.  

Figure 63 shows a graphical abstract for Study 3. 

 

 

Figure 63. Graphical abstract for Study 3. 

 

7.2 Analyzing real active species in the set boundary conditions 

The starting point to understand the effects of active species properties on voltage 

efficiency is to simulate how real active species behave in the set boundary conditions. 
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Figure 64 shows the voltage efficiency versus applied current density for the three studied 

systems. 

 

 

Figure 64. Voltage efficiency versus applied current density for three combinations of anolytes and catholytes 

simulated in a steady-state multi-physical model. 

 

Considering the same anolyte MV (methyl-viologen), the change of catholyte from 

4-OH-TEMPO to FcNCl modified the behavior of voltage efficiency versus applied 

current density. For MV/4-OH-TEMPO the voltage efficiency goes from 80% at 50 mA 

cm2- to 53% at 150 mA cm2-, a difference of 27%. Whereas in the MV/FcNCl, the voltage 

efficiency goes from 76% to 44% in the same conditions, a difference of 32%. 4-OH-

TEMPO has a larger diffusion coefficient, standard electrochemical rate constant, and 

standard reduction potential (see Table 31). This explains why the combination MV/4-

OH-TEMPO presented an improved behavior compared to MV/FcNCl, but does not 

identify which active species property has the important role in performance. To answer 

this last question, it is necessary a systematic study, as shown in the next section.  

The all-vanadium system shows an even lower voltage efficiency, especially because 

of the sluggish electrochemical kinetics of both redox couple V2+/V3+ and VO2+/VO2
+. 

There is a big difference between the all-vanadium and MV/FcNCl voltage efficiency 

considering that just the anolytes have big differences in the properties (see Table 31). 
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Table 31. Active species selected for Study 3  

IDref Class D (X10-6 cm2 s-1)a k0 (X10-6  cm s-1)b E0 (V vs NHE)c 

Methyl viologen104 Anolyte 25.7 280 -0.45 

4-OH-TEMPO104 Catholyte 29.5 260 0.80 

FcNCl26 Catholyte 3.7 3.6 0.61 

V(II)/V(III)74 Anolyte 2.4 7.0 -0.25 

V(IV)/V(V) 74 Catholyte 3.9 2.5 1.00 
a Diffusion coefficient in water at 25°C, b Glassy carbon electrode, c Approximated from half-wave potential. 

 

Thus, despite VRFBs being the most developed RFBs – especially because of the 

reversible capacity loss – it is clear that alternative active species can be applied to RFBs 

aiming the performance optimization.  

We showed that active species properties have a great influence on voltage efficiency, 

in the next section the most important properties are identified and discussed. 

 

7.3 Effects of active species on voltage efficiency  

Table 32 shows the values of voltage efficiency and overpotential for the 25-1-

factorial design (from designed experiments of Table 21). 

 

Table 32. Responses for 25-1 factorial 

design of six variables (Study 3) 

 

ID VE(%)  ηa (mV) 

1 53.80 84.49 

2 69.45 2.35 

3 56.79 81.40 

4 68.42 0.33 

5 68.08 83.52 

6 76.76 2.46 

7 67.55 82.05 

8 79.66 0.32 

9 38.91 120.52 

10 51.41 4.72 

11 37.50 119.57 

12 57.22 0.51 

13 52.17 125.06 

14 67.72 3.80 

15 55.89 116.97 

16 66.32 0.59 

17 63.36 44.91 
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ID VE(%)  ηa (mV) 

18 69.82 1.18 

19 63.52 43.99 

20 73.56 0.16 

21 72.97 45.06 

22 80.16 1.17 

23 75.14 43.88 

24 80.15 0.16 

25 45.59 69.45 

26 58.16 1.88 

27 49.58 67.22 

28 57.94 0.26 

29 61.70 68.91 

30 68.01 1.94 

31 61.75 67.59 

32 72.03 0.25 
*Algorithm developed to calculate these responses is in Appendix C 

aConcentration overpotential plus activation overpotential  
 

Figure 65 shows the primary and secondary effects of two operating conditions – 

applied current density (iappl) and volumetric flow (ω) – and four active species properties 

– standard electrochemical rate constant (k0), diffusion coefficient (D), the concentration 

of active species (cact) (related to solubility) and standard redox potential (E0) – to the 

voltage efficiency.  The most important effects (percentage > 5%) are iappl (24%), E0 

(22%), k0 (19%) and cact (10%).  
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Figure 65. (a) Percentage of each effect on the voltage efficiency and cumulative sum and (b) the probability 

graph of effects*. (1) standard electrochemical rate constant (k0), (2) Diffusion coefficient (D), (3) Standard redox 

potential (E0), (4) Applied current density (iappl), (5) Concentration of active species (cact) and (6) volumetric flow 

(ω). 
*Algorithm developed to plot this graph is in Appendix C. 

 

Effect of applied current density on voltage efficiency. As already discussed in Study 

1, the contribution of iappl to decrease voltage efficiency (effect 4 = -13.58% VE) is related 

to the increase of ohmic and concentration overpotentials when large applied current 

densities are applied.  

 

Effect of standard redox potential on voltage efficiency. If two distinct systems have 

the same k0 and D and are operating at the same conditions of iappl, ω and cact, but have 

different redox potentials, the voltage efficiency is different. This conclusion arises from 

the effect of variable E0 (effect 3 = 11.94% VE) going from 0.4 to 0.6 V (absolute value 

from both anolyte and catholyte). This is because the overpotential in the two cases is 

equal, but the charging and discharging Nernstian potential are different. Thus, the 

overpotential has a minor effect on the system with high redox potential, leading to a 

better voltage efficiency: 

 

{
𝑉𝐸1 =

𝐸̅𝑑,1−𝜂

𝐸̅𝑐,1+𝜂

𝑉𝐸2 =
𝐸̅𝑑,2−𝜂

𝐸̅𝑐,2+𝜂

 ;  𝐸̅𝑑,1 > 𝐸̅𝑑,2, 𝐸̅𝑐,1 > 𝐸̅𝑐,2     (154) 

 

Where 𝐸̅𝑑,𝑖 is the mean discharging Nernst potential for each system, 𝐸̅𝑐,𝑖 is the mean 

charging Nernst potential for each system and η is the total overpotential. 
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Thus, 

 

𝑉𝐸1 > 𝑉𝐸2         (155) 

 

Thus, in addition to increasing the energy density and power density, higher absolute 

redox potentials also increase voltage efficiency.  

 

Effect of standard electrochemical rate constant on voltage efficiency. The increase 

of voltage efficiency caused by the increase of k0 (effect 1 = -10.78% VE) is related to 

the decrease of activation overpotential. Figure 66 shows the activation overpotential 

versus the logarithm of k0. 

 

 

Figure 66. Activation overpotential versus the logarithm of the standard electrochemical rate constant. 

 

When k0 goes from 5X10-6 cm/s (logk0 = -5.3) to 5X10-3 cm/s (logk0 = -2.3), the 

activation overpotential decreases about 60 mV. This data shows the importance of 

choosing molecules that undergo facile electrochemical reactions to improve the energy 

efficiency. However, the behavior of the activation overpotential is not linear; thus, there 

is a large range of values from 1X10-4 cm/s (logk0 = -4) to 0.03 cm/s (logk0 = -1.5) where 

the activation overpotential is low enough.  
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Effect of concentration of active species on voltage efficiency. As k0, the increase of 

concentration of active species decreases the activation overpotential (see Figure 67). 

The effect of both variables is a consequence of the definition of activation overpotential 

when α = 0. 595: 

 

𝜂𝑎𝑐𝑡
𝑗

= ±
2𝑅𝑇

𝐹
𝑠𝑖𝑛ℎ−1 (

𝐼

2𝑎𝐹𝑉𝑒𝑘𝑗√𝑐𝑜𝑥
𝑗
𝑐𝑟𝑒𝑑
𝑗
)     (156) 

 

Where j is the half-cell (negative or positive), a is the specific surface area of the 

electrode, Ve is the total volume of the electrode, I is the applied current, cox is the 

concentration of oxidized species and cred is the concentration of reduced species in the 

bulk. 
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Figure 67. (a) Percentage of each effect on the overpotential (concentration plus activation) and cumulative 

sum and (b) the probability graph of effects*. 

*Algorithm developed to plot this graph is in Appendix C 

 

 

Most important properties. We demonstrated that redox potential, standard 

electrochemical rate constant, and solubility (represented by the concentration of active 

species) are the most important active species properties for the improvement of voltage 

efficiency.  
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8 CONCLUSIONS  

The computational approach suggested by this study provided a deep understanding 

of some problems related to the performance of redox flow batteries. The obtained 

knowledge drives us to suggest strategies and methods to mitigate the capacity loss and 

the voltage loss in VRFBs. Beyond that, we could understand in more detail the effects 

of choosing active species on the RFBs’ performance. 

For Study 1, we demonstrated the effects of geometric parameters in voltage loss in 

VRFBs. The most important variables are the inlet electrode thickness and the trapezoidal 

parameter Lout/Lin. We also showed that interaction effects between geometric parameters 

and operating conditions are important to voltage efficiency. Because of this, the optimal 

geometric condition depends on applied current densities. Since it is impossible to change 

the geometry of the cell for each applied current density, we propose a method to calculate 

the overall optimal geometry. For the studied scale, this geometry is rectangular and the 

optimal electrode thickness is about 4.5 mm. 

For Study 2, we demonstrated that the concentration of active species and the applied 

current density are the most important variables that affect the capacity loss in VRFBs. 

Based on this understanding, we could provide a robust mitigation strategy based on the 

volume transfer between tanks in the reverse direction of net cross-contamination. The 

proposed strategy was successful in the mitigation of capacity loss in several 

combinations of applied current density and concentration, despite the capacity loss was 

not null at some conditions.  

Therefore, we provide a set of theoretical backgrounds for experimentalists to 

understand the effects of several variables in the performance of redox flow batteries. We 

acknowledge that the proposed approach will be useful, with further experimental 

validation of the obtained results, for the determination of (i) optimal geometric design 

for any scale and type of RFB and different flow-designs, aiming at the minimization of 

operational costs; (ii) the bests conditions to mitigate the capacity loss in VRFBs for any 

scale, aiming the increasing of operational life. 

For Study 3, we could provide a systematic understanding of how the choice of active 

species affects the energy efficiency of redox flow batteries, and not just the capacity, 

energy density, and power density. The most important variables were the concentration 



137 
 

 

of active species (related to the solubility), the standard electrochemical rate constant, and 

the redox potential. Based on this, we provide (i) useful information for experimentalists 

in the design of new active species and (ii) a multi-physical model capable of simulating 

different combinations of anolyte/catholyte to obtain performance metrics. 
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Appendix A – Scripts for data treatment (Study 1) 

Algorithm to calculate the responses from COMSOL files (Table 22) 

The following algorithm (in python) was developed for the calculations of 

efficiencies (coulombic, voltage, energetic, and battery) based on the multi-physical 

model. 

Input files: (COMSOL files) cell potential versus time, faradaic current versus time 

and pump power versus time. 

 

### importing libraries 

import pandas as pd 

import numpy as np 

from scipy.signal import find_peaks 

from scipy.integrate import trapz 

import matplotlib.pyplot as plt 

 

 

### reading files 

Vt = input('Name of file V versus time:') 

it = input('Name of file i versus time:') 

ppump = input('Name of file p_pump versus time:') 

file_Vt = 'inputname.txt'.replace('inputname',Vt) 

file_it = 'inputname.txt'.replace('inputname',it) 

file_ppump = 'inputname.txt'.replace('inputname',ppump) 

df1_raw = pd.read_csv(file_Vt,skiprows=(7)) 

df2_raw = pd.read_csv(file_it,skiprows=(7)) 

df3_raw = pd.read_csv(file_ppump,skiprows=(7)) 

df1 = df1_raw.rename(columns={'% X':'time','Height':'V'}) 

df2 = df2_raw.rename(columns={'% X':'time','Height':'i'}) 

df3 = df3_raw.rename(columns={'% X':'time','Height':'P_pump'}) 

 

### differentiation of discrete values of V versus time data (for time peak determination) 

x_V = list(df1['time']) 

y_V = list(df1['V']) 

 

dydx_V=[] 

 

for i in range(len(x_V)): 

    if i==0: 

        dx=x_V[i:i+2] 

        dy=y_V[i:i+2] 

        order=1 

    elif i==len(x_V)-1: 

        dx=x_V[i-1:i+1] 

        dy=y_V[i-1:i+1] 

        order=1 

    else: 

        dx=x_V[i-1:i+2] 

        dy=y_V[i-1:i+2] 
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        order=2 

    z=np.polyfit(dx,dy,len(dx)-1) 

    f=np.poly1d(z) 

    df=np.polyder(f) 

    dydx_V.append(float(df(x_V[i]))) 

dydx_V=np.array(dydx_V) 

 

 

### finding peaks charge/discharge  

peaks = find_peaks(abs(dydx_V),height=0.000005,threshold=0.000005) 

height = peaks[1]['peak_heights'] 

if height.shape[0] == 1: 

    height =  np.append(peaks[1]['peak_heights'],peaks[1]['peak_heights']) 

 

peak_pos = np.array(x_V)[peaks[0]] 

if peak_pos.shape[0] == 1: 

    peak_pos = np.append(np.array(x_V)[peaks[0]],x_V[len(x_V)-1]) 

 

 

### plotting peaks 

fig = plt.figure() 

ax = fig.subplots() 

ax.plot(x_V,abs(dydx_V),'-k', label = 'Time derivative') 

ax.scatter(peak_pos, height, color = 'r', s = 15, marker = 'D', label = 'Peaks') 

ax.legend() 

ax.grid() 

 

 

### calculating capacity loss 

step_time = [] 

step_time.append(peak_pos[0]) 

z_ite = 0 

for i in range(len(peak_pos)): 

    if z_ite == len(peak_pos)-1: 

        break 

    step_time.append(peak_pos[z_ite+1]-peak_pos[z_ite]) 

    z_ite += 1 

discharge_time = step_time[1:len(step_time):2] 

capacity_loss = [] 

for i in range(len(discharge_time)): 

    capacity_loss.append(100*discharge_time[i]/discharge_time[0]) 

 

 

### preparing index, dataframes arrays for efficiencies calculation 

discharge_steps = peak_pos[1:len(peak_pos):2] 

charge_steps = peak_pos[0:len(peak_pos):2] 

 

remove_duplicated_times_V = ~df1.duplicated(subset='time') 

df1_corr = df1[remove_duplicated_times_V] 

time_V = np.array(df1_corr['time']) 

potential = np.array(df1_corr['V']) 

 

remove_duplicated_times_i = ~df2.duplicated(subset='time') 

df2_corr = df2[remove_duplicated_times_i] 

time_i = np.array(df2_corr['time']) 

current = np.array(df2_corr['i']) 

 

remove_duplicated_times_P_pump = ~df3.duplicated(subset='time') 

df3_corr = df3[remove_duplicated_times_P_pump] 

time_P_pump = np.array(df3_corr['time']) 

P_pump = np.array(df3_corr['P_pump']) 

 

charge_time = step_time[0:len(step_time):2] 

 

a = 0 

index_discharge = [] 
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while a < discharge_steps.shape[0]: 

    for i in range(time_V.shape[0]): 

        if time_V[i] == discharge_steps[a]: 

            index_discharge.append(i) 

    a += 1 

 

 

b = 0 

index_charge = [] 

while b < (charge_steps.shape[0]): 

    for i in range(time_V.shape[0]): 

        if time_V[i] == charge_steps[b]: 

            index_charge.append(i) 

    b += 1 

 

 

### calculating voltage efficiency 

Avg_V = [] 

Avg_V.append((trapz(potential[0:index_charge[0]],x=time_V[0:index_charge[0]]))/charge_time[0]) 

 

e = 0 

x_ite = 1 

n = int((discharge_steps.shape[0]+charge_steps.shape[0])/2-1) 

for i in range(n+1): 

    if e == len(discharge_time): 

        break 

    Avg_dis = 

(trapz(potential[index_charge[e]:index_discharge[e]],x=time_V[index_charge[e]:index_discharge[e]]))/discharge_ti

me[e] 

    Avg_V.append(Avg_dis) 

    if x_ite == len(charge_time): 

       break 

    Avg_cha = 

(trapz(potential[index_discharge[e]:index_charge[x_ite]],x=time_V[index_discharge[e]:index_charge[x_ite]]))/charg

e_time[x_ite] 

    Avg_V.append(Avg_cha) 

    e += 1 

    x_ite +=1 

     

VE_prev = [] 

 

for i in range(len(Avg_V)-1): 

    h = 100*Avg_V[i+1]/Avg_V[i] 

    VE_prev.append(h) 

     

VE = VE_prev[0::2] 

 

 

### calculating coulombic efficiency 

Q = [] 

 

f = 0 

y_ite  = 1 

 

for i in range(n+1): 

    Q_cha = current.mean()*step_time[f] 

    Q.append(Q_cha) 

    Q_dis = current.mean()*step_time[y_ite] 

    Q.append(Q_dis) 

    f += 1 

    y_ite += 1 

     

CE_prev = [] 

 

for i in range(len(Q)-1): 

    g = 100*Q[i+1]/Q[i] 
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    CE_prev.append(g) 

 

CE = CE_prev[0::2] 

 

 

###calculating energy efficiency 

 

EE = [] 

k = 0 

for i in range(len(VE)): 

    l = VE[k]*CE[k]/100 

    EE.append(l) 

    k += 1 

 

#calculating pumping energy consumption in Joules 

E_cons = [] 

E_cons.append(trapz(P_pump[0:index_charge[0]],x=time_P_pump[0:index_charge[0]])) 

 

m = 0 

z_ite = 1 

 

for i in range(n+1): 

    if m == len(discharge_time): 

        break 

    E_cons_dis = 

trapz(P_pump[index_charge[m]:index_discharge[m]],x=time_P_pump[index_charge[m]:index_discharge[m]]) 

    E_cons.append(E_cons_dis) 

    if z_ite == len(charge_time): 

        break 

    E_cons_cha = 

trapz(P_pump[index_discharge[m]:index_charge[z_ite]],x=time_P_pump[index_discharge[m]:index_charge[z_ite]]) 

    E_cons.append(E_cons_cha) 

    m += 1 

    z_ite += 1 

 

 

###calculating battery efficiency 

E = [] 

 

E.append(Avg_V[0]*Q[0]-E_cons[0]) 

E.append(Avg_V[1]*Q[1]-E_cons[1]) 

          

n_ite = 2 

o_ite = 3 

 

for i in range(n): 

    if n_ite == len(Avg_V): 

        break 

    E_cha = Avg_V[n_ite]*Q[n_ite]+E_cons[n_ite] 

    E.append(E_cha) 

    if o_ite == len(Avg_V): 

        break 

    E_dis = Avg_V[o_ite]*Q[o_ite]-E_cons[o_ite] 

    E.append(E_dis) 

    n_ite += 2 

    o_ite += 2 

 

BE_prev = [] 

 

p_ite = 0 

 

for i in range(len(E)-1): 

    q_const = 100*E[i+1]/E[i] 

    BE_prev.append(q_const) 

     

BE = BE_prev[0::2] 
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###creating and exporting DataFrames 

n_cycles = np.arange(1,n+2,1) 

capacity_loss_df = pd.DataFrame({'n_cycles':n_cycles,'capacity_loss':np.array(capacity_loss)}) 

 

efficiencies_df = pd.DataFrame({'n_cycles':n_cycles,'voltage efficiency':np.array(VE),'coulombic 

efficiency':np.array(CE),'energy efficiency':np.array(EE), 

                                'battery efficiency':np.array(BE)}) 

 

efficiencies_df.to_csv('efficiencies_df.txt',sep='\t',decimal=',',index=False) 

 

 

 

###plotting graphs 

fig1,ax1 = plt.subplots() 

ax1.plot(n_cycles,np.array(VE),'bo',label = 'Voltage') 

ax1.plot(n_cycles,np.array(CE),'ro',label = 'Coulombic') 

ax1.plot(n_cycles,np.array(EE),'go',label = 'Energy') 

ax1.plot(n_cycles,np.array(BE),'ko',label = 'Battery') 

ax1.set(xlabel = 'Cycle number',ylabel = 'Efficiency(%)', title = 'Efficiencies') 

plt.xlim(0,n) 

plt.xticks(n_cycles+1) 

plt.ylim(40,105) 

plt.legend() 

plt.savefig('efficiencies.png') 

 

###selecting data from first cycle 

cycle1 =[CE[0],VE[0],EE[0],BE[0],E_cons[0]] 
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The following algorithm (in python) was developed for the calculations of 

activation and concentration overpotentials based on multi-physical model output files: 

cell voltage, concentration overpotential and activation overpotential. The calculated 

value is the mean overpotential in discharging procedure. 

Input files: activation overpotential versus time, concentration overpotential versus 

time and cell potential versus time. 

 

 

### importing libraries 

import pandas as pd 

import numpy as np 

from scipy.signal import find_peaks 

import matplotlib.pyplot as plt 

 

 

### reading files 

eta_t = input('Name of file eta versus time:') 

Vt = input('Name of file V versus time:') 

file_eta_t = 'inputname.txt'.replace('inputname',eta_t) 

file_Vt = 'inputname.txt'.replace('inputname',Vt) 

df1_raw = pd.read_csv(file_Vt,skiprows=(7)) 

df4_raw = pd.read_csv(file_eta_t,skiprows=(7)) 

df1 = df1_raw.rename(columns={'% X':'time','Height':'V'}) 

df4 = df4_raw.rename(columns={'% X':'time','Height':'eta'}) 

 

### differentiation of discrete values of V versus time data (for time peak determination) 

x_V = list(df1['time']) 

y_V = list(df1['V']) 

 

dydx_V=[] 

 

for i in range(len(x_V)): 

    if i==0: 

        dx=x_V[i:i+2] 

        dy=y_V[i:i+2] 

        order=1 

    elif i==len(x_V)-1: 

        dx=x_V[i-1:i+1] 

        dy=y_V[i-1:i+1] 

        order=1 

    else: 

        dx=x_V[i-1:i+2] 

        dy=y_V[i-1:i+2] 

        order=2 

    z=np.polyfit(dx,dy,len(dx)-1) 

    f=np.poly1d(z) 

    df=np.polyder(f) 

    dydx_V.append(float(df(x_V[i]))) 

dydx_V=np.array(dydx_V) 

 

 

### finding peaks charge/discharge  

peaks = find_peaks(abs(dydx_V),height=0.000005,threshold=0.000005) 

height = peaks[1]['peak_heights'] 

if height.shape[0] == 1: 

    height =  np.append(peaks[1]['peak_heights'],peaks[1]['peak_heights']) 
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peak_pos = np.array(x_V)[peaks[0]] 

if peak_pos.shape[0] == 1: 

    peak_pos = np.append(np.array(x_V)[peaks[0]],x_V[len(x_V)-1]) 

     

 

### preparing index, dataframes arrays 

discharge_steps = peak_pos[1:len(peak_pos):2] 

charge_steps = peak_pos[0:len(peak_pos):2] 

 

step_time = [] 

for i in range(len(peak_pos)-1): 

    step_time.append(-peak_pos[i]+peak_pos[i+1]) 

     

discharge_time = step_time[1:len(step_time):2] 

charge_time = step_time[0:len(step_time):2] 

 

remove_duplicated_times_V = ~df1.duplicated(subset='time') 

df1_corr = df1[remove_duplicated_times_V] 

time_V = np.array(df1_corr['time']) 

potential = np.array(df1_corr['V']) 

 

remove_duplicated_times_eta = ~df4.duplicated(subset='time') 

df4_corr = df4[remove_duplicated_times_eta] 

time_eta = np.array(df4_corr['time']) 

overpotential = np.array(df4_corr['eta']) 

 

charge_time = step_time[0:len(step_time):2] 

 

a = 0 

index_discharge = [] 

while a < discharge_steps.shape[0]: 

    for i in range(time_V.shape[0]): 

        if time_V[i] == discharge_steps[a]: 

            index_discharge.append(i) 

    a += 1 

 

 

b = 0 

index_charge = [] 

while b < (charge_steps.shape[0]): 

    for i in range(time_V.shape[0]): 

        if time_V[i] == charge_steps[b]: 

            index_charge.append(i) 

    b += 1 

 

 

### selecting overpotential from the first cycle 

charge= pd.DataFrame({'time': time_eta[0:index_charge[0]], 

                         'overpotential': overpotential[0:index_charge[0]]}) 

discharge= pd.DataFrame({'time': time_eta[index_charge[0]:index_discharge[0]], 

                         'overpotential': overpotential[index_charge[0]:index_discharge[0]]}) 

 

###data output 

 

eta = 1000*abs(discharge['overpotential']).mean 

print(eta) 
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The following algorithm (in python) was developed for the calculations of ohmic 

overpotential based on multi-physical model. The calculated value is the mean 

overpotential in discharging procedure. 

Input files: cell potential versus time and ohmic overpotential versus time. 

 

 

### importing libraries 

import pandas as pd 

import numpy as np 

from scipy.signal import find_peaks 

 

### reading files 

V_ohm = input('Name of file V_ohm versus time:') 

Vt = input('Name of file V versus time:') 

file_V_ohm = 'inputname.txt'.replace('inputname',V_ohm) 

file_Vt = 'inputname.txt'.replace('inputname',Vt) 

df1_raw = pd.read_csv(file_Vt,skiprows=(7)) 

df4_raw = pd.read_csv(file_V_ohm,skiprows=(7)) 

df1 = df1_raw.rename(columns={'% X':'time','Height':'V'}) 

df4 = df4_raw.rename(columns={'% X':'time','Height':'V_ohm'}) 

 

### differentiation of discrete values of V versus time data (for time peak determination) 

x_V = list(df1['time']) 

y_V = list(df1['V']) 

 

dydx_V=[] 

 

for i in range(len(x_V)): 

    if i==0: 

        dx=x_V[i:i+2] 

        dy=y_V[i:i+2] 

        order=1 

    elif i==len(x_V)-1: 

        dx=x_V[i-1:i+1] 

        dy=y_V[i-1:i+1] 

        order=1 

    else: 

        dx=x_V[i-1:i+2] 

        dy=y_V[i-1:i+2] 

        order=2 

    z=np.polyfit(dx,dy,len(dx)-1) 

    f=np.poly1d(z) 

    df=np.polyder(f) 

    dydx_V.append(float(df(x_V[i]))) 

dydx_V=np.array(dydx_V) 

 

 

### finding peaks charge/discharge  

peaks = find_peaks(abs(dydx_V),height=0.000005,threshold=0.000005) 

height = peaks[1]['peak_heights'] 

if height.shape[0] == 1: 
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    height =  np.append(peaks[1]['peak_heights'],peaks[1]['peak_heights']) 

 

peak_pos = np.array(x_V)[peaks[0]] 

if peak_pos.shape[0] == 1: 

    peak_pos = np.append(np.array(x_V)[peaks[0]],x_V[len(x_V)-1]) 

     

### preparing index, dataframes arrays 

discharge_steps = peak_pos[1:len(peak_pos):2] 

charge_steps = peak_pos[0:len(peak_pos):2] 

 

step_time = [] 

for i in range(len(peak_pos)-1): 

    step_time.append(-peak_pos[i]+peak_pos[i+1]) 

     

discharge_time = step_time[1:len(step_time):2] 

charge_time = step_time[0:len(step_time):2] 

 

remove_duplicated_times_V = ~df1.duplicated(subset='time') 

df1_corr = df1[remove_duplicated_times_V] 

time_V = np.array(df1_corr['time']) 

potential = np.array(df1_corr['V']) 

 

remove_duplicated_times_V_ohm = ~df4.duplicated(subset='time') 

df4_corr = df4[remove_duplicated_times_V_ohm] 

time_V_ohm = np.array(df4_corr['time']) 

V_ohm = np.array(df4_corr['V_ohm']) 

 

charge_time = step_time[0:len(step_time):2] 

 

a = 0 

index_discharge = [] 

while a < discharge_steps.shape[0]: 

    for i in range(time_V.shape[0]): 

        if time_V[i] == discharge_steps[a]: 

            index_discharge.append(i) 

    a += 1 

 

 

b = 0 

index_charge = [] 

while b < (charge_steps.shape[0]): 

    for i in range(time_V.shape[0]): 

        if time_V[i] == charge_steps[b]: 

            index_charge.append(i) 

    b += 1 

 

 

### selecting ohmic drop from the first cycle 

charge= pd.DataFrame({'time': time_V_ohm[0:index_charge[0]], 

                         'V_ohm': V_ohm[0:index_charge[0]]}) 

discharge= pd.DataFrame({'time': time_V_ohm[index_charge[0]:index_discharge[0]], 

                         'V_ohm': V_ohm[index_charge[0]:index_discharge[0]]}) 

 

###data output 

ohm = 1000*abs(discharge['V_ohm']).mean() 

print(ohm) 
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Algorithm for regression analysis (Table 23) 

The following algorithm (in python) was developed for regression analysis. The 

variables codified are used. The purpose was to obtain the coefficients on the same scale 

for all variables. 

Input files: data from Table 12. Doehlert design for five variables of Study 1 – 

codified and Table 22. All responses from Doehlert design (Study 1)*. 

 

### importing libraries 
import pandas as pd 

from sklearn.preprocessing import PolynomialFeatures 

from sklearn.linear_model import LinearRegression 

from sklearn.metrics import mean_squared_error,r2_score 

import matplotlib.pyplot as plt 

import numpy as np 

 

 

### reading files 

file_name=str(input('File name: ')) 

df_prev = 'inputname.txt'.replace('inputname',file_name) 

df = pd.read_csv(df_prev,sep='\t') 

 

### selecting matrix X and vector y 

X = df.iloc[:, 0:5].values 

y = df.iloc[:, 5].values 

 

### setting regression  

poly = PolynomialFeatures(degree = 2) 

X1 = poly.fit_transform(X) 

regressor = LinearRegression() 

regressor.fit(X1,y) 

 

### calculating predict values and coefficients 

y_prev = regressor.predict(X1) 

coef = regressor.coef_ 

inpt = regressor.intercept_ 

 

### dettermining metrics 

RMSE = mean_squared_error(y, y_prev,squared=False) 

r2 = r2_score(y,y_prev) 

r2s = str(round(r2,4)) 

RMSEs = str(round(RMSE,2)) 

fig1, ax1 = plt.subplots() 

ax1.plot(np.linspace(round(y.min()),round(y.max()),200),np.linspace(round(y.min()),round(y.max()),200),'k--') 

ax1.plot(y,y_prev,'bo',markersize=7) 

 

 

### ploting and exporting graphs 

answer_name = str(input('Answer name (unit): ')) 

ax1.set(xlabel = 'Simulated '+ answer_name,ylabel = 'Predicted '+ answer_name) 

plt.grid() 

plt.text(70,50,' $R^2$:' + r2s + '\n RMSE:' + RMSEs) 

 

plt.savefig('Regression_'+file_name+'.tiff',format='tiff',dpi=600) 
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Algorithm to calculate the statistical significance of coefficients (Table 24 and 

Table 25) 

The following algorithm (in python) was developed for the determination of 

statistical significance.  

Input files: data from Table 12. Doehlert design for five variables of Study 1 – 

codified and Table 22. All responses from Doehlert design (Study 1)*. 

 

### importing libraries  

import numpy as np 

import pandas as pd 

from sklearn.preprocessing import PolynomialFeatures 

from sklearn.linear_model import LinearRegression 

from sklearn.metrics import mean_squared_error 

from scipy import stats 

 

### reading data 

file_name=str(input('File name input: ')) 

df_prev = 'inputname.txt'.replace('inputname',file_name) 

df = pd.read_csv(df_prev,sep='\t') 

df2 = pd.read_csv('coef.txt',sep='\t') 

 

### selecting matrix X and vector y 

X = df2.iloc[:, 0:5].values 

y = df.iloc[:, 5].values 

 

### setting regression  

poly = PolynomialFeatures(degree = 2) 

X1 = poly.fit_transform(X) 

regressor = LinearRegression() 

regressor.fit(X1,y) 

 

### calculating coefficients 

y_prev = regressor.predict(X1) 

coef = regressor.coef_ 

coef[0] = regressor.intercept_ 

 

w0,w1,w2,w3,w4,w5 = coef[0],coef[1],coef[2],coef[3],coef[4],coef[5] 

w11,w12,w13,w14,w15 = coef[6],coef[7],coef[8],coef[9],coef[10] 

w22,w23,w24,w25 = coef[11],coef[12],coef[13],coef[14] 

w33,w34,w35 = coef[15],coef[16],coef[17] 

w44,w45 = coef[18],coef[19] 

w55 = coef[20] 

 

### calculating confidence intervals for coefficients 

MSE = mean_squared_error(y, y_prev,squared=True) 

A = MSE*np.linalg.inv(np.dot(X1.T,X1)).diagonal() 

sqrtA = np.sqrt(A) 

t = stats.t.ppf(1-0.05/2,(X.shape[0]-len(coef)-1)) 

ci = sqrtA*t 

 

 

### selecting significant coefficients 

 

coef_plus = coef+ci 

coef_minus = coef-ci 
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a_list = [] 

b_list = [] 

 

for i in range(len(coef_plus)): 

    c_const = coef_plus[i]>0 

    a_list.append(c_const) 

     

for i in range(len(coef_minus)): 

    d_const = coef_minus[i]>0 

    b_list.append(d_const) 

 

e_list = [] 

 

for i in range(len(a_list)): 

    if a_list[i] == b_list[i]: 

        f_const = 'yes' 

        e_list.append(f_const) 

    else: 

        g_const = ' ' 

        e_list.append(g_const) 

         

 

### creating and exporting dataframe 

coef_name = np.array(['w0','w01','w02','w03','w04','w05', 

                      'w11','w12','w13','w14','w15', 

                      'w22','w23','w24','w25', 

                      'w33','w34','w35', 

                      'w44','w45', 

                      'w55']) 

coefsig_df = pd.DataFrame({'coefficient':coef_name,'significant?':np.array(e_list)}) 

 

 

coefsig_df.to_csv(file_name+'_coef.txt',sep='\t',decimal=',',index=False) 
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Algorithm to plot Figure 38 

The following algorithm (in python) was developed for regression analysis and 

4D plots. The variables decodified were used.  

Input files: data from Table 12. Doehlert design for five variables of Study 1 – 

codified and Table 22. All responses from Doehlert design (Study 1)*. 

 

bB corresponds to 𝐿𝑜𝑢𝑡/L; 

i corresponds to 𝑖𝑎𝑝𝑝𝑙;  

Q correspond to 𝜔. 

 

import pandas as pd 

from sklearn.preprocessing import PolynomialFeatures 

from sklearn.linear_model import LinearRegression 

from sklearn.metrics import mean_squared_error,r2_score 

import matplotlib.pyplot as plt 

import numpy as np 

import matplotlib as mpl 

from matplotlib import cm 

 

# reading data 

df_prev = 'VE.txt' 

df = pd.read_csv(df_prev,sep='\t') 

 

# selecting matrix X and vector y 

X = df.iloc[:, 0:5].values 

y = df.iloc[:, 5].values 

 

# setting regression  

poly = PolynomialFeatures(degree = 2) 

X1 = poly.fit_transform(X) 

regressor = LinearRegression() 

regressor.fit(X1,y) 

 

# calculating predict values and coefficients 

y_prev = regressor.predict(X1) 

coef = regressor.coef_ 

 

#dettermining metrics 

RMSE = mean_squared_error(y, y_prev,squared=False) 

r2 = r2_score(y,y_prev) 

r2s = str(round(r2,4)) 

RMSEs = str(round(RMSE,2)) 

 

answer_name = 'Normalized VE (%)' 

 

# preparing data for 4D plots 

levels = 300 

points = 200 

transp = 0.9 

 

i1 = 40 

i2 = 100 

i3 = 160 
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bB1 = 0.5 

bB2 = 1 

bB3 = 1.5 

Q1 = 0.15 

Q2 = 0.5 

Q3 = 0.85 

L1 = 2.5 

L2 = 5 

L3 = 7.5 

H1 = 14.5 

H2 = 30 

H3 = 45.5 

 

L = np.linspace(L1,L3,points) 

H = np.linspace(H1,H3,points) 

bB = np.linspace(bB1,bB3,points) 

 

w = regressor.intercept_ 

w0,w1,w2,w3,w4,w5 = coef[0],coef[1],coef[2],coef[3],coef[4],coef[5] 

w11,w12,w13,w14,w15 = coef[6],coef[7],coef[8],coef[9],coef[10] 

w22,w23,w24,w25 = coef[11],coef[12],coef[13],coef[14] 

w33,w34,w35 = coef[15],coef[16],coef[17] 

w44,w45 = coef[18],coef[19] 

w55 = coef[20] 

 

# L versus bB versus current 

const7 = 

w+w0+w2*i1+w3*Q2+w4*H2+w22*(i1**2)+w23*i1*Q2+w24*i1*H2+w33*(Q2**2)+w34*Q2*H2+w44*(H2**2) 

const8 = 

w+w0+w2*i2+w3*Q2+w4*H2+w22*(i2**2)+w23*i2*Q2+w24*i2*H2+w33*(Q2**2)+w34*Q2*H2+w44*(H2**2) 

const9 = 

w+w0+w2*i3+w3*Q2+w4*H2+w22*(i3**2)+w23*i3*Q2+w24*i3*H2+w33*(Q2**2)+w34*Q2*H2+w44*(H2**2) 

 

del L 

del H 

del bB 

 

L = np.linspace(L1,L3,points) 

H = np.linspace(H1,H3,points) 

bB = np.linspace(bB1,bB3,points) 

 

L, bB   = np.meshgrid(L, bB) 

Z7 = 

const7+w1*L+w5*bB+w11*(L**2)+w12*L*i1+w13*L*Q2+w14*L*H2+w15*L*bB+w25*i1*bB+w35*Q2*bB+w4

5*H2*bB+w55*(bB**2) 

Z8 = 

const8+w1*L+w5*bB+w11*(L**2)+w12*L*i2+w13*L*Q2+w14*L*H2+w15*L*bB+w25*i2*bB+w35*Q2*bB+w4

5*H2*bB+w55*(bB**2) 

Z9 = 

const9+w1*L+w5*bB+w11*(L**2)+w12*L*i3+w13*L*Q2+w14*L*H2+w15*L*bB+w25*i3*bB+w35*Q2*bB+w4

5*H2*bB+w55*(bB**2) 

 

Z7n=Z7/Z7.max() 

Z8n=Z8/Z8.max() 

Z9n=Z9/Z9.max() 

 

ZQ_min = np.array([round(Z7n.min(),2),round(Z8n.min(),2),round(Z9n.min(),2)]).min() 

ZQ_max = np.array([round(Z7n.max(),2),round(Z8n.max(),2),round(Z9n.max())]).max() 

 

fig4 = plt.figure() 

ax4 = fig4.gca(projection='3d') 

 

plt.contourf(L, bB, Z7n, levels = levels,alpha=transp,offset=i1) 

plt.clim(ZQ_min,ZQ_max) 

 

plt.contourf(L, bB, Z8n, levels = levels,alpha=transp,offset=i2) 

plt.clim(ZQ_min,ZQ_max) 
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plt.contourf(L, bB, Z9n, levels = levels,alpha=transp,offset=i3) 

plt.clim(ZQ_min,ZQ_max) 

 

norm = mpl.colors.Normalize(vmin=ZQ_min,vmax=ZQ_max) 

cb4=plt.colorbar(cm.ScalarMappable(norm=norm), 

                 orientation='vertical', 

                 ticks=np.arange(ZQ_min,ZQ_max+0.01,0.06), 

                 pad = 0.15) 

cb4.set_label(answer_name,fontsize=10) 

cb4.ax.tick_params(labelsize='small',direction='in') 

 

 

ax4.set(xlabel = 'L(mm)',ylabel = r'$L_{out}$/$L_{in}}$',zlabel='$i_{appl}$ (mA/$cm^2$)') 

ax4.xaxis.set_ticks(np.arange(L1, L3+0.01,2.5)) 

ax4.yaxis.set_ticks(np.arange(bB1, bB3+0.01,0.5)) 

ax4.zaxis.set_ticks(np.arange(i1,i3+10,60)) 

ax4.set_zlim(i1,i3) 

plt.savefig('L_bB_i_VE.tiff',format='tiff',dpi=600) 
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Algorithm to plot Figure 39 

The following algorithm (in python) was developed to plot Figure 39 

Input files: data from Table 12. Doehlert design for five variables of Study 1 – 

codified and Table 22. All responses from Doehlert design (Study 1)*. 

 

import pandas as pd 

from sklearn.preprocessing import PolynomialFeatures 

from sklearn.linear_model import LinearRegression 

import matplotlib.pyplot as plt 

import numpy as np 

import matplotlib as mpl 

from matplotlib import cm 

 

# reading data 

df1 = pd.read_csv('ohm.txt',sep='\t') 

df2 = pd.read_csv('etac.txt',sep='\t') 

 

# selecting matrix X and vector y 

X1 = df1.iloc[:, 0:5].values 

y1 = df1.iloc[:, 5].values 

 

X2 = df2.iloc[:, 0:5].values 

y2 = df2.iloc[:, 5].values 

 

# setting regression  

poly = PolynomialFeatures(degree = 2) 

X1p = poly.fit_transform(X1) 

X2p = poly.fit_transform(X2) 

regressor = LinearRegression() 

regressor.fit(X1p,y1) 

 

# calculating predict values and coefficients 

y_prev = regressor.predict(X1p) 

coef = regressor.coef_ 

 

 

# preparing data for 4D plots 

levels = 300 

points = 200 

transp = 0.9 

 

i1 = 40 

i2 = 100 

i3 = 160 

bB1 = 0.5 

bB2 = 1 

bB3 = 1.5 

Q1 = 0.15 

Q2 = 0.5 

Q3 = 0.85 

L1 = 2.5 

L2 = 5 

L3 = 7.5 

H1 = 14.5 

H2 = 30 

H3 = 45.5 

 

L = np.linspace(L1,L3,points) 
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bB = np.linspace(bB1,bB3,points) 

 

w = regressor.intercept_ 

w0,w1,w2,w3,w4,w5 = coef[0],coef[1],coef[2],coef[3],coef[4],coef[5] 

w11,w12,w13,w14,w15 = coef[6],coef[7],coef[8],coef[9],coef[10] 

w22,w23,w24,w25 = coef[11],coef[12],coef[13],coef[14] 

w33,w34,w35 = coef[15],coef[16],coef[17] 

w44,w45 = coef[18],coef[19] 

w55 = coef[20] 

 

 

const7 = 

w+w0+w2*i1+w3*Q2+w4*H2+w22*(i1**2)+w23*i1*Q2+w24*i1*H2+w33*(Q2**2)+w34*Q2*H2+w44*(H2**2) 

const8 = 

w+w0+w2*i2+w3*Q2+w4*H2+w22*(i2**2)+w23*i2*Q2+w24*i2*H2+w33*(Q2**2)+w34*Q2*H2+w44*(H2**2) 

const9 = 

w+w0+w2*i3+w3*Q2+w4*H2+w22*(i3**2)+w23*i3*Q2+w24*i3*H2+w33*(Q2**2)+w34*Q2*H2+w44*(H2**2) 

 

 

L = np.linspace(L1,L3,points) 

bB = np.linspace(bB1,bB3,points) 

 

L, bB   = np.meshgrid(L, bB) 

Z7 = 

const7+w1*L+w5*bB+w11*(L**2)+w12*L*i1+w13*L*Q2+w14*L*H2+w15*L*bB+w25*i1*bB+w35*Q2*bB+w4

5*H2*bB+w55*(bB**2) 

Z8 = 

const8+w1*L+w5*bB+w11*(L**2)+w12*L*i2+w13*L*Q2+w14*L*H2+w15*L*bB+w25*i2*bB+w35*Q2*bB+w4

5*H2*bB+w55*(bB**2) 

Z9 = 

const9+w1*L+w5*bB+w11*(L**2)+w12*L*i3+w13*L*Q2+w14*L*H2+w15*L*bB+w25*i3*bB+w35*Q2*bB+w4

5*H2*bB+w55*(bB**2) 

 

fig1, axs1 = plt.subplots() 

 

norm1 = mpl.colors.Normalize(vmin=80,vmax=230) 

img1=axs1.contourf(L, bB, Z9, levels = levels,alpha=transp) 

axs1.set(xlabel = 'L(mm)',ylabel = r'$L_{out}$/$L$') 

axs1.xaxis.set_ticks(np.arange(L1, L3+0.01,2.5)) 

axs1.yaxis.set_ticks(np.arange(bB1, bB3+0.01,0.5)) 

img1.set_clim(80,230) 

 

 

# setting regression2 

regressor.fit(X2p,y2) 

y_prev = regressor.predict(X2p) 

coef = regressor.coef_ 

 

w = regressor.intercept_ 

w0,w1,w2,w3,w4,w5 = coef[0],coef[1],coef[2],coef[3],coef[4],coef[5] 

w11,w12,w13,w14,w15 = coef[6],coef[7],coef[8],coef[9],coef[10] 

w22,w23,w24,w25 = coef[11],coef[12],coef[13],coef[14] 

w33,w34,w35 = coef[15],coef[16],coef[17] 

w44,w45 = coef[18],coef[19] 

w55 = coef[20] 

 

const7 = 

w+w0+w2*i1+w3*Q2+w4*H2+w22*(i1**2)+w23*i1*Q2+w24*i1*H2+w33*(Q2**2)+w34*Q2*H2+w44*(H2**2) 

const8 = 

w+w0+w2*i2+w3*Q2+w4*H2+w22*(i2**2)+w23*i2*Q2+w24*i2*H2+w33*(Q2**2)+w34*Q2*H2+w44*(H2**2) 

const9 = 

w+w0+w2*i3+w3*Q2+w4*H2+w22*(i3**2)+w23*i3*Q2+w24*i3*H2+w33*(Q2**2)+w34*Q2*H2+w44*(H2**2) 

 

Z7 = 

const7+w1*L+w5*bB+w11*(L**2)+w12*L*i1+w13*L*Q2+w14*L*H2+w15*L*bB+w25*i1*bB+w35*Q2*bB+w4

5*H2*bB+w55*(bB**2) 
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Z8 = 

const8+w1*L+w5*bB+w11*(L**2)+w12*L*i2+w13*L*Q2+w14*L*H2+w15*L*bB+w25*i2*bB+w35*Q2*bB+w4

5*H2*bB+w55*(bB**2) 

Z9 = 

const9+w1*L+w5*bB+w11*(L**2)+w12*L*i3+w13*L*Q2+w14*L*H2+w15*L*bB+w25*i3*bB+w35*Q2*bB+w4

5*H2*bB+w55*(bB**2) 

 

 

img2=axs1.contourf(L, bB, Z9, levels = levels,alpha=transp) 

axs1.set(xlabel = 'L(mm)') 

axs1.xaxis.set_ticks(np.arange(L1, L3+0.01,2.5)) 

axs1.yaxis.set_ticks(np.arange(bB1, bB3+0.01,0.5)) 

img2.set_clim(80,230) 

 

norm = mpl.colors.Normalize(vmin=80,vmax=230) 

cb4=plt.colorbar(cm.ScalarMappable(norm=norm), 

                 orientation='vertical', 

                 ticks=np.arange(80,230+0.01,40)) 

cb4.set_label('Overpotential (mV)',fontsize=10) 

cb4.ax.tick_params(labelsize='small',direction='in') 
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Algorithm to plot Figure 40 

The following algorithm (in python) was developed to calculate the maximum 

voltage efficiency for each applied current density and plot Figure 40. 

Input files: data from Table 12. Doehlert design for five variables of Study 1 – 

codified and Table 22. All responses from Doehlert design (Study 1)*. 

 

import sympy as sp 

import pandas as pd 

import  numpy as np 

from sklearn.preprocessing import PolynomialFeatures 

from sklearn.linear_model import LinearRegression 

import matplotlib.pyplot as plt 

import matplotlib as mpl 

from matplotlib import cm 

 

 

# reading data 

file_name='VE' 

df_prev = 'inputname.txt'.replace('inputname',file_name) 

df = pd.read_csv(df_prev,sep='\t') 

 

# selecting matrix X and vector y 

X = df.iloc[:, 0:5].values 

y = df.iloc[:, 5].values 

 

# setting regression  

poly = PolynomialFeatures(degree = 2) 

X1 = poly.fit_transform(X) 

regressor = LinearRegression() 

regressor.fit(X1,y) 

 

# calculating coefficients 

y_prev = regressor.predict(X1) 

coef = regressor.coef_ 

w0,w1,w2,w3,w4,w5 = regressor.intercept_,coef[1],coef[2],coef[3],coef[4],coef[5] 

w11,w12,w13,w14,w15 = coef[6],coef[7],coef[8],coef[9],coef[10] 

w22,w23,w24,w25 = coef[11],coef[12],coef[13],coef[14] 

w33,w34,w35 = coef[15],coef[16],coef[17] 

w44,w45 = coef[18],coef[19] 

w55 = coef[20] 

 

# building equations 

Q = 0.5 

H = 30 

Q_array=np.linspace(Q,Q,10) 

H_array=np.linspace(H,H,10) 

I = np.arange(25,161,15) 

L,bB = sp.symbols(['L','bB']) 

L_plot=[] 

bB_plot=[] 

 

for i in range(len(I)): 

    const = 

w0+w2*I[i]+w3*Q+w4*H+w22*(I[i]**2)+w23*I[i]*Q+w24*I[i]*H+w33*(Q**2)+w34*Q*H+w44*(H**2) 

    eq = 

const+w1*L+w5*bB+w11*(L**2)+w12*L*I[i]+w13*L*Q+w14*L*H+w15*L*bB+w25*I[i]*bB+w35*Q*bB+w45*

H*bB+w55*(bB**2) 
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    # differentiation 

    deq_dL = sp.diff(eq,L) 

    deq_dbB = sp.diff(eq,bB) 

 

    #system equations 

    mat_A = sp.linear_eq_to_matrix([deq_dL,deq_dbB],[L,bB]) 

    mat_X = sp.Matrix([[L,bB]]).T 

    system = mat_A[0]*mat_X-mat_A[1] 

    ans = sp.solve(system) 

    a = round(float(ans[L]),2) 

    b = round(float(ans[bB]),2) 

    L_plot.append(a) 

    bB_plot.append(b) 

 

 

# testing 

df_pred=pd.DataFrame({'L_e':L_plot,'i_appl':I,'Q':Q_array,'H':H_array, 

                                'b/B':bB_plot}) 

X2 = df_pred.iloc[:,:].values 

X3=poly.fit_transform(X2) 

VE_max=regressor.predict(X3) 

 

 

# plots 

plt.figure(figsize=[4.8,4.8]) 

c=np.linspace(25,175,10) 

plt.subplot(211) 

plt.scatter(L_plot,bB_plot,c=c) 

plt.xlabel('L (mm)',fontsize=10) 

plt.ylabel( r'$L_{out}$/$L_{in}$',fontsize=10,labelpad=1.1) 

plt.xticks(np.arange(2.5,7.7+0.01,1.5),fontsize=9) 

plt.xlim(2.5,7.7) 

plt.yticks(np.arange(0.5,1.3+0.01,0.4),fontsize=9) 

plt.ylim(0.5,1.3) 

norm = mpl.colors.Normalize(vmin=I.min(),vmax=I.max())        

cb = plt.colorbar(cm.ScalarMappable(norm=norm), 

                 orientation='vertical', 

                 ticks=np.arange(I.min(),I.max()+0.01,40), 

                 pad = 0.04,shrink=1.0) 

cb.set_label('$i_{appl}$ (mA/$cm^2$)',fontsize=10) 

cb.ax.tick_params(labelsize='small',direction='in') 

 

plt.subplot(212) 

plt.scatter(I,VE_max,color='black') 

plt.xlabel('$i_{appl}$  (mA/$cm^2$)',fontsize=10) 

plt.ylabel( 'Maximum VE (%)',fontsize=10,labelpad=1) 

plt.yticks(np.arange(50,100+0.1,10),fontsize=9) 

plt.xticks(np.arange(25,165,40),fontsize=9) 

plt.ylim(50,100) 

plt.xlim(20,165,40) 

 

plt.subplots_adjust(hspace=0.4) 

 

plt.savefig('name.tiff',format='tiff',dpi=600) 

 

 

 

 

 

 



170 
 

 

Algorithm to calculate percentage of mitigation (Equation 145). 

The following algorithm (in python) was developed to calculate the percentage of 

mitigation.  

Input files: data from Table 12. Doehlert design for five variables of Study 1 – 

codified and Table 22. All responses from Doehlert design (Study 1)*. 

 

import pandas as pd 

import  numpy as np 

from sklearn.preprocessing import PolynomialFeatures 

from sklearn.linear_model import LinearRegression 

 

 

 

file_name=str(input('File name: ')) 

df_prev = 'inputname.txt'.replace('inputname',file_name) 

df = pd.read_csv(df_prev,sep='\t') 

 

# selecting matrix X and vector y 

X = df.iloc[:, 0:5].values 

y = df.iloc[:, 5].values 

 

# setting regression  

poly = PolynomialFeatures(degree = 2) 

X1 = poly.fit_transform(X) 

regressor = LinearRegression() 

regressor.fit(X1,y) 

 

Xt = poly.fit_transform(X_t) 

pred = regressor.predict(Xt) 

 

#deffing values 

Q = 0.5 

H = 30 

 

bB1 = 0.5 

bB3 = 1.5 

L1 = 2.5 

L3 = 7.5 

 

points = 200 

I = np.linspace(25,160,25) 

L = np.linspace(L1,L3,points) 

bB = np.linspace(bB1,bB3,points) 

points = 200 

L, bB   = np.meshgrid(L, bB) 

 

# calculating coefficients 

y_prev = regressor.predict(X1) 

coef = regressor.coef_ 

coef[0] = regressor.intercept_ 

w0,w1,w2,w3,w4,w5 = coef[0],coef[1],coef[2],coef[3],coef[4],coef[5] 

w11,w12,w13,w14,w15 = coef[6],coef[7],coef[8],coef[9],coef[10] 

w22,w23,w24,w25 = coef[11],coef[12],coef[13],coef[14] 

w33,w34,w35 = coef[15],coef[16],coef[17] 

w44,w45 = coef[18],coef[19] 

w55 = coef[20] 
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# determination of mitigation  

eta_max=[] 

 

for i in range(len(I)): 

    const = 

w0+w2*I[i]+w3*Q+w4*H+w22*(I[i]**2)+w23*I[i]*Q+w24*I[i]*H+w33*(Q**2)+w34*Q*H+w44*(H**2) 

    eq = 

const+w1*L+w5*bB+w11*(L**2)+w12*L*I[i]+w13*L*Q+w14*L*H+w15*L*bB+w25*I[i]*bB+w35*Q*bB+w45*

H*bB+w55*(bB**2) 

    i_max = eq.max() 

    eta_max.append(i_max) 

     

 

eta100 = 100*pred 

etap = eta100/eta_max 

etam = 100-etap 
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Algorithm to calculate the optimal geometry (Equation 146, Equation 147 and 

Figure 43). 

The following algorithm (in python) was developed to calculate the general 

optimal geometry and plot Figure 43.  

Input files: data from Table 12. Doehlert design for five variables of Study 1 – 

codified and Table 22. All responses from Doehlert design (Study 1)*. 

 

import pandas as pd 

from sklearn.preprocessing import PolynomialFeatures 

from sklearn.linear_model import LinearRegression 

import matplotlib.pyplot as plt 

import numpy as np 

import sympy as sp 

 

n_points=13 

# reading data 

file_name='VE' 

df_prev = 'inputname.txt'.replace('inputname',file_name) 

df = pd.read_csv(df_prev,sep='\t') 

 

 

 

# selecting matrix X and vector y 

X = df.iloc[:, 0:5].values 

y = df.iloc[:, 5].values 

 

 

# setting regression  

poly = PolynomialFeatures(degree = 2) 

X1 = poly.fit_transform(X) 

regressor = LinearRegression() 

regressor.fit(X1,y) 

 

# calculating predict values and coefficients 

y_prev = regressor.predict(X1) 

coef = regressor.coef_ 

inpt = regressor.intercept_ 

 

 

# maximum efficiency 

 

w0,w1,w2,w3,w4,w5 = regressor.intercept_,coef[1],coef[2],coef[3],coef[4],coef[5] 

w11,w12,w13,w14,w15 = coef[6],coef[7],coef[8],coef[9],coef[10] 

w22,w23,w24,w25 = coef[11],coef[12],coef[13],coef[14] 

w33,w34,w35 = coef[15],coef[16],coef[17] 

w44,w45 = coef[18],coef[19] 

w55 = coef[20] 

 

 

Q = 0.5 

H = 30 

Q_array=np.linspace(Q,Q,n_points) 

H_array=np.linspace(H,H,n_points) 

I = np.linspace(25,161,n_points) 

L,bB = sp.symbols(['L','bB']) 
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L_plot=[] 

bB_plot=[] 

 

for i in range(len(I)): 

    const = 

w0+w2*I[i]+w3*Q+w4*H+w22*(I[i]**2)+w23*I[i]*Q+w24*I[i]*H+w33*(Q**2)+w34*Q*H+w44*(H**2) 

    eq = 

const+w1*L+w5*bB+w11*(L**2)+w12*L*I[i]+w13*L*Q+w14*L*H+w15*L*bB+w25*I[i]*bB+w35*Q*bB+w45*

H*bB+w55*(bB**2) 

 

    # differentiation 

    deq_dL = sp.diff(eq,L) 

    deq_dbB = sp.diff(eq,bB) 

 

    #system equations 

    mat_A = sp.linear_eq_to_matrix([deq_dL,deq_dbB],[L,bB]) 

    mat_X = sp.Matrix([[L,bB]]).T 

    system = mat_A[0]*mat_X-mat_A[1] 

    ans = sp.solve(system) 

    a = round(float(ans[L]),2) 

    b = round(float(ans[bB]),2) 

    L_plot.append(a) 

    bB_plot.append(b) 

 

 

 

df_pred=pd.DataFrame({'L_e':L_plot,'i_appl':I,'Q':Q_array,'H':H_array, 

                                'b/B':bB_plot}) 

X2 = df_pred.iloc[:,:].values 

X3=poly.fit_transform(X2) 

VE_max=regressor.predict(X3) 

 

     

### finding other values from VE 

VE_values=[] 

for i in range(len(L_plot)): 

 

    df_pred=pd.DataFrame({'L_e':np.linspace(L_plot[i],L_plot[i],n_points),'i_appl':I,'Q':Q_array,'H':H_array, 

                                'b/B':np.linspace(bB_plot[i],bB_plot[i],n_points)}) 

    X2 = df_pred.iloc[:,:].values 

    X3=poly.fit_transform(X2) 

    y_prev2=regressor.predict(X3) 

    VE_values.append(y_prev2) 

     

 

# finding best design 

 

var = [] 

for i in range(len(I)): 

    dif = VE_values[i]-VE_max 

    var.append(dif.max()-dif.min()) 

 

     

#plotting 

fig, (ax1,ax2) = plt.subplots(1,2) 

 

ax2.set_title('(b)') 

ax2.plot(I,var,'k--') 

ax2.scatter(I[6],var[6],label='Optimal geometry',color='red') 

ax2.set_xlabel('Geometric condition') 

ax2.tick_params(axis='x',bottom=False,labelbottom=False) 

ax2.set_ylabel('$\delta$ (%)') 

ax2.set_yticks(np.arange(0,3,1)) 

ax2.legend() 
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ax1.set_title('(a)') 

ax1.plot(VE_max*-1+VE_values[0],color='yellow',label='25 mA/$cm^2$') 

ax1.plot(VE_max*-1+VE_values[3],color='green',label='59 mA/$cm^2$') 

ax1.plot(VE_max*-1+VE_values[9],color='blue',label='127 mA/$cm^2$') 

ax1.plot(VE_max*-1+VE_values[12],color='indigo',label='161 mA/$cm^2$') 

ax1.legend() 

ax1.set_xlabel('Geometric condition') 

ax1.tick_params(axis='x',bottom=False,labelbottom=False) 

ax1.set_ylabel('$\Delta$VE (%)') 

ax1.set_yticks(np.arange(0,-1.51,-0.5)) 

 

fig.tight_layout(pad=2.0) 

 

plt.savefig('final_strategy.tiff',format='tiff',dpi=300) 
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Algorithm for validation of regression analysis (Figure 44 and Table 26). 

The following algorithm (in python) was developed to validate the regression 

analysis and plot the Figure 44. 

Input files: validation data. 

 

import numpy as np 

import pandas as pd 

from sklearn.preprocessing import PolynomialFeatures 

from sklearn.linear_model import LinearRegression 

from sklearn.metrics import mean_squared_error,r2_score 

import matplotlib.pyplot as plt 

 

# loading files 

file_training=str(input('File training input: ')) 

df_prev = 'inputname.txt'.replace('inputname',file_training) 

df = pd.read_csv(df_prev,sep='\t') 

 

file_test=str(input('File test input:')) 

df_prev2 = 'inputname.txt'.replace('inputname',file_test) 

df2 = pd.read_csv(df_prev2,sep='\t') 

 

# selecting matrix X and vector y 

X_train = df.iloc[:, 0:5].values 

y_train = df.iloc[:, 5].values 

X_test = df2.iloc[:,0:5].values 

y_test = df2.iloc[:,5].values 

 

# setting regression  

poly = PolynomialFeatures(degree = 2) 

 

X1 = poly.fit_transform(X_train) 

X2 = poly.fit_transform(X_test) 

 

regressor = LinearRegression() 

training = regressor.fit(X1,y_train) 

 

 

#prediction 

y_prev = regressor.predict(X2) 

 

#metrics 

RMSE = mean_squared_error(y_test, y_prev,squared=False) 

r2 = r2_score(y_test,y_prev) 

r2s = str(round(r2,4)) 

RMSEs = str(round(RMSE,2)) 

 

 

#plots 

answer_name = str(input('Answer name (unit): ')) 

fig1, ax1 = plt.subplots() 

ax1.plot(np.linspace(round(y_test.min()),round(y_test.max()),200),np.linspace(round(y_test.min()),round(y_test.max(

)),200),'k--') 

ax1.plot(y_test,y_prev,'bo',markersize=7) 

ax1.set(xlabel = 'Simulated '+ answer_name,ylabel = 'Predicted '+ answer_name) 

plt.grid() 

plt.text(140,20,' $R^2$:' + r2s + '\n RMSE:' + RMSEs) 

plt.savefig('Regression_'+file_test+'.tiff',format='tiff',dpi=600) 
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Appendix B – Scripts for data treatment (Study 2) 

Algorithm to determine electrolyte viscosity (Figure 46) 

The following algorithm (in python) was developed to determine the positive and 

negative electrolyte viscosity. 

Input files: data from 72,73. 

 

For regression: 

 

import pandas as pd 

from sklearn.preprocessing import PolynomialFeatures 

from sklearn.linear_model import LinearRegression 

from sklearn.metrics import mean_absolute_error,r2_score 

import matplotlib.pyplot as plt 

import numpy as np 

 

 

 

# importing data 

base = pd.read_csv('file_name.txt',sep='\t') 

X = base.iloc[:, 0:4].values 

y = base.iloc[:, 4].values 

 

# setting regression 

poly = PolynomialFeatures(degree = 2) 

X1 = poly.fit_transform(X) 

 

regressor = LinearRegression() 

 

 

regressor.fit(X1, y) 

y_prev = regressor.predict(X1) 

 

r2 = r2_score(y,y_prev) 

mse = mean_absolute_error(y, y_prev) 

 

SoC = np.linspace(0.1,0.9,20) 

c_act = 1.48 

c_sup = 3.0 

T = 298.15 

 

mi_prev = [] 

for i in range(len(SoC)): 

    prev = np.array([SoC[i],c_act,c_sup,T]).reshape(1,-1) 

    prev_p = poly.fit_transform(prev) 

    pred=float(regressor.predict(prev_p)) 

    mi_prev.append(pred) 

 

std = round(np.array(mi_prev).std(),2) 

mean = round(np.array(mi_prev).mean(),2) 

 

mean_str = str(mean) 

std_str = str(std) 
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result = mean_str+' +/- '+std_str 

print(result) 

 

plt.plot(np.linspace(2,10,200),np.linspace(2,10,200),'k--') 

plt.plot(y,y_prev,'bo',markersize=7) 

plt.xlabel('Experimental Viscosity (mPa.s)') 

plt.ylabel( 'Predicted Viscosity (mPa.s)') 

 

plt.savefig('figure_name.tiff',formate='tiff') 

 

 

For cross-validation: 

 

 

import pandas as pd 

from sklearn.preprocessing import PolynomialFeatures 

from sklearn.linear_model import LinearRegression 

import numpy as np 

from sklearn.model_selection import cross_val_score 

from sklearn.model_selection import cross_validate 

from sklearn.model_selection import KFold 

 

# importing data 

base = pd.read_csv('file_name.txt',sep='\t') 

 

X = base.iloc[:, 0:4].values 

y = base.iloc[:, 4].values 

 

# setting regression 

poly = PolynomialFeatures(degree = 2) 

X_poly = poly.fit_transform(X) 

regressor = LinearRegression() 

 

# cross-validation 

r2_list = [] 

mae_list = [] 

 

for i in range(30): 

     

    kf=KFold(n_splits=5, random_state=i, shuffle=True) 

 

    cv_results = cross_validate(regressor,X_poly,y,cv=kf,return_estimator=True) 

 

    a=cross_val_score(regressor, X_poly, y,cv=kf,scoring='r2').mean() 

    b=np.sqrt(abs(cross_val_score(regressor, X_poly, y,scoring='neg_mean_absolute_error',cv=kf))).mean() 

    r2_list.append(a) 

    mae_list.append(b) 

 

r2 = np.array(r2_list).mean() 

mae = np.array(mae_list).mean() 
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Algorithm to calculate the responses from COMSOL files (Table 28 and Table 

29) 

The following algorithm (in python) was developed to calculate several responses 

from the designed experiments: capacity loss rate in the first 20th cycles 

(CL_pc_mean_20), the capacity loss rate of all cycles (CL_pc_mean), capacity loss at 

20th cycle (C_20), capacity loss at final cycle (C_final), mean voltage efficiency 

(VE_mean), mean coulombic efficiency (CE_mean) and mean energy efficiency 

(EE_mean). 

Input files: (COMSOL files) cell potential versus time, current versus time. 

 

import pandas as pd 

import numpy as np 

from scipy.signal import find_peaks 

import matplotlib.pyplot as plt 

from scipy.interpolate import interp1d 

from scipy.integrate import trapz 

 

# reading files 

Vt = input('Name of file V versus time:') 

it = input('Name of file i versus time:') 

#code = str(input('Code:')) 

 

file_Vt = 'inputname.txt'.replace('inputname',Vt) 

file_it = 'inputname.txt'.replace('inputname',it) 

 

df1_raw = pd.read_csv(file_Vt,skiprows=(7)) 

df2_raw = pd.read_csv(file_it,skiprows=(7)) 

 

df1 = df1_raw.rename(columns={'% X':'time','Height':'V'}) 

df2 = df2_raw.rename(columns={'% X':'time','Height':'i'}) 

 

 

# selecting data 

x = list(df1['time']) 

y = list(df1['V']) 

 

x2 = list(df2['time']) 

y2 = list(df2['i']) 

 

 

#interpolation 

it=200000 

f= interp1d(x,y) 

x_V= np.linspace(np.array(x).min(),np.array(x).max(),it) 

y_V = f(x_V) 

 

 

f2= interp1d(x2,y2) 

x_i= np.linspace(np.array(x2).min(),np.array(x2).max(),it) 
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y_i = f2(x_i) 

 

 

# differentiation of discrete values of V versus time data (for time peak determination) 

dydx_V= np.gradient(y_V,x_V) 

 

# finding peaks charge/discharge  

peaks = find_peaks(abs(dydx_V),height=0.08) 

height = peaks[1]['peak_heights'] 

if height.shape[0] == 1: 

    height =  np.append(peaks[1]['peak_heights'],peaks[1]['peak_heights']) 

 

peak_pos = np.array(x_V)[peaks[0]] 

if peak_pos.shape[0] == 1: 

    peak_pos = np.append(np.array(x_V)[peaks[0]],x_V[len(x_V)-1]) 

 

 

# plotting peaks 

fig = plt.figure() 

ax = fig.subplots() 

ax.plot(x_V,abs(dydx_V),'-k', label = 'Time derivative') 

ax.scatter(peak_pos, height, color = 'r', s = 15, marker = 'D', label = 'Peaks') 

ax.legend() 

ax.grid() 

 

 

#calculating capacity loss 

step_time = [] 

step_time.append(peak_pos[0]) 

z_ite = 0 

for i in range(len(peak_pos)): 

    if z_ite == len(peak_pos)-1: 

        break 

    step_time.append(peak_pos[z_ite+1]-peak_pos[z_ite]) 

    z_ite += 1 

discharge_time = step_time[1:len(step_time):2] 

capacity_loss = [] 

for i in range(len(discharge_time)): 

    capacity_loss.append(100*discharge_time[i]/discharge_time[0]) 

 

n_cycles = np.arange(1,len(capacity_loss)+1,1) 

fig1,ax1 = plt.subplots() 

ax1.scatter(n_cycles,capacity_loss,c='black') 

ax1.set(xlabel = 'Cycle number',ylabel = 'Discharge capacity(%)') 

#plt.savefig('capacity_loss_'+code+'.tiff',format='tiff',dpi=600) 

 

 

 

# calculating capacity loss per cycle 

CL_pc_list = [] 

 

for i in range(len(capacity_loss)-1): 

    CL_pc = capacity_loss[i]-capacity_loss[i+1] 

    CL_pc_list.append(CL_pc) 

 

CL_pc_mean_20 = np.array(CL_pc_list[0:20]).mean() 

CL_pc_mean_total = np.array(CL_pc_list).mean() 

C_20 = abs(100-capacity_loss[19]) 

C_final = abs(100-capacity_loss[len(capacity_loss)-1]) 

 

 

# preparing index, dataframes arrays for efficiencies calculation 

discharge_steps = peak_pos[1:len(peak_pos):2] 

charge_steps = peak_pos[0:len(peak_pos):2] 

 

 

charge_time = step_time[0:len(step_time):2] 
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a = 0 

index_discharge = [] 

while a < discharge_steps.shape[0]: 

    for i in range(x_V.shape[0]): 

        if x_V[i] == discharge_steps[a]: 

            index_discharge.append(i) 

    a += 1 

 

 

b = 0 

index_charge = [] 

while b < (charge_steps.shape[0]): 

    for i in range(x_V.shape[0]): 

        if x_V[i] == charge_steps[b]: 

            index_charge.append(i) 

    b += 1 

 

 

# calculating voltage efficiency 

Avg_V = [] 

Avg_V.append((trapz(y_V[0:index_charge[0]],x=x_V[0:index_charge[0]]))/charge_time[0]) 

 

e = 0 

x_ite = 1 

n = int((discharge_steps.shape[0]+charge_steps.shape[0])/2-1) 

for i in range(n+1): 

    if e == len(discharge_time): 

        break 

    Avg_dis = 

(trapz(y_V[index_charge[e]:index_discharge[e]],x=x_V[index_charge[e]:index_discharge[e]]))/discharge_time[e] 

    Avg_V.append(Avg_dis) 

    if x_ite == len(charge_time): 

       break 

    Avg_cha = 

(trapz(y_V[index_discharge[e]:index_charge[x_ite]],x=x_V[index_discharge[e]:index_charge[x_ite]]))/charge_time[

x_ite] 

    Avg_V.append(Avg_cha) 

    e += 1 

    x_ite +=1 

     

VE_prev = [] 

 

for i in range(len(Avg_V)-1): 

    h = 100*Avg_V[i+1]/Avg_V[i] 

    VE_prev.append(h) 

     

VE = VE_prev[0::2] 

 

VE_std = np.array(VE).std() 

VE_mean = np.array(VE).mean() 

 

for i in range(len(VE)): 

    if VE[i] > VE_mean + VE_std: 

        VE[i] = VE_mean 

    elif VE[i] < VE_mean - VE_std: 

        VE[i] = VE_mean 

 

#calculating coulombic efficiency based on time 

CE = [] 

q_ite = 0 

 

for i in range(n+1): 

    r_const = discharge_time[q_ite]*100/charge_time[q_ite] 

    CE.append(r_const) 

    q_ite += 1 
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#calculating energy efficiency 

EE = [] 

s_ite = 0 

for i in range(len(VE)): 

    t_const = VE[s_ite]*CE[s_ite]/100 

    EE.append(t_const) 

    s_ite += 1 

 

#creating and exporting DataFrames 

n_cycles = np.arange(1,n+2,1) 

 

CE_mean = (np.array(CE)[0:20]).mean() 

VE_mean = (np.array(VE)[0:20]).mean() 

EE_mean = (np.array(EE)[0:20]).mean() 

 

mean_values = pd.DataFrame(['CL_rat and mean values',np.round(CL_pc_mean_20,4), 

                            np.round(CL_pc_mean_total,4), 

                            np.round(C_20,2), 

                            np.round(C_final,2), 

                            np.round(VE_mean,2), 

                            np.round(CE_mean,2), 

                            np.round(EE_mean,2)]).T 

 

 

#plotting graphs 

fig2,ax2 = plt.subplots() 

ax2.plot(n_cycles,np.array(VE),'bo',label = 'Voltage') 

ax2.plot(n_cycles,np.array(CE),'ro',label = 'Coulombic') 

ax2.plot(n_cycles,np.array(EE),'go',label = 'Energy') 

ax2.set(xlabel = 'Cycle number',ylabel = 'Efficiency (%)', title = 'Efficiencies') 

plt.ylim(50,100) 

plt.legend() 

plt.savefig('efficiencies_'+code+'.tiff',format='tiff',dpi=600) 

 

 

print(mean_values) 
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Algorithm to calculate effects (Figure 49) 

The following algorithm (in python) was developed to calculate the effects of 23 

factorial design  

Input files: data from Table 17 and Table 28. 

 

 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy.stats import norm 

 

df=pd.read_csv('file_name.txt',sep='\t') 

 

X = df.iloc[:,0:3].values 

y = df.iloc[:,3].values 

 

effects = [] 

 

# primary effects 

list1 = [] 

list2 = [] 

list3 = [] 

 

 

for i in range(len(y)): 

    it1 = X[i][0]*y[i] 

    list1.append(it1)    

    it2 = X[i][1]*y[i] 

    list2.append(it2)   

    it3 = X[i][2]*y[i] 

    list3.append(it3)  

 

ef1=2*np.array(list1).mean() 

effects.append(ef1) 

ef2=2*np.array(list2).mean() 

effects.append(ef2) 

ef3=2*np.array(list3).mean() 

effects.append(ef3) 

 

 

 

#secondary effects 

list12 = [] 

list13 = [] 

list23 = [] 

 

 

 

for i in range(len(y)): 

    it12 = X[i][0]*X[i][1]*y[i] 

    list12.append(it12)    

    it13 = X[i][0]*X[i][2]*y[i] 

    list13.append(it13)   

     

    it23 = X[i][1]*X[i][2]*y[i] 
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    list23.append(it23) 

 

     

 

ef12=2*np.array(list12).mean() 

effects.append(ef12) 

ef13=2*np.array(list13).mean() 

effects.append(ef13) 

 

 

ef23=2*np.array(list23).mean() 

effects.append(ef23) 

 

 

 

 

#terciary effects 

list123 = [] 

 

 

for i in range(len(y)): 

    it123 = X[i][0]*X[i][1]*X[i][2]*y[i] 

    list123.append(it123)    

     

 

ef123=2*np.array(list123).mean() 

effects.append(ef123) 

 

 

#creating plots 

effects_name=['1','2','3','12','13','23','123'] 

 

               

df_effects = pd.DataFrame({'effect':effects_name,'Value':effects}) 

 

df_effects_or = df_effects.sort_values(by='Value',ignore_index=True) 

 

#porcentage graph 

effects_squared = [] 

 

for i in range(len(effects)): 

    effects_squared.append(abs(effects[i])) 

     

sum_effects_squared = np.array(effects_squared).sum() 

 

percentage_ef = [] 

for i in range(len(effects_squared)): 

    b_ite = 100*effects_squared[i]/sum_effects_squared 

    percentage_ef.append(b_ite) 

 

df_perc = pd.DataFrame({'effect':effects_name,'percentage':percentage_ef}) 

df_perc_or = df_perc.sort_values(by='percentage',ascending=False,ignore_index=True) 

percentage_ef = df_perc_or.iloc[:,1].values 

name_ef_perc = df_perc_or.iloc[:,0] 

 

fig,(ax,ax3) = plt.subplots(1,2) 

fig.set_figwidth(10) 

ax.bar(name_ef_perc,percentage_ef,color='green') 

ax.set_xlabel('Standardized Effect') 

ax.set_ylabel('Percentage (%)') 

ax.yaxis.label.set_color('green') 

ax.tick_params(axis='y', colors='green') 

 

perc_cum = percentage_ef.cumsum() 

 

ax2 = ax.twinx() 

ax2.plot(name_ef_perc,perc_cum,marker='o',color='black') 
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ax2.set_ylabel('Cumulative Sum (%)') 

ax.set_title('(a)') 

 

 

#probability graph and pareto 

effect_or = df_effects_or.iloc[:,1] 

name_or = df_effects_or.iloc[:,0] 

 

initial = [] 

initial.append(0) 

for i in range(len(effects)-1): 

    c_ite = 1/len(effects)+initial[i] 

    initial.append(c_ite) 

     

final = [] 

for i in range(len(initial)): 

    final.append(initial[i+1]) 

    if len(initial) == len(final)+1: 

        break 

final.append(1) 

 

middle = [] 

for i in range(len(initial)): 

    d_ite = (initial[i]+final[i])/2 

    middle.append(d_ite) 

     

inv_norm = norm.ppf(middle) 

 

 

ax3.scatter(effect_or,inv_norm,color='green') 

ax3.set_xlabel('Effect on $CL_{rate}$ (%)') 

ax3.set_ylabel('z value') 

yline = np.linspace(np.array(inv_norm).min(),np.array(inv_norm).max(),10) 

xline = np.linspace(0,0,10) 

ax3.plot(xline,yline,color='black') 

ax3.set_title('(b)') 

 

plt.subplots_adjust(wspace=0.5) 

 

for i, txt in enumerate(name_or): 

    ax3.annotate(txt,(effect_or[i],inv_norm[i])) 

 

plt.text(11,45,'$i_{appl}$') 

plt.text(16.7,100,'$c_{act}$') 

plt.savefig('Fig_name.tiff',format='tiff',dpi=300) 
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Algorithm to calculate integrated net fluxes (Figure 50 and Figure 53) 

The following algorithm (in python) was developed to calculate the integrated net 

fluxes across the membrane: total flux (tflux), diffusional flux (dflux), migration flux 

(mflux) and convective flux (cflux). 

Input files: (COMSOL files) total, diffusional, migrational and convective flux across 

membrane for V(II), V(III), V(IV) and V(V). 

 

import pandas as pd 

import numpy as np 

from scipy.signal import find_peaks 

import matplotlib.pyplot as plt 

from scipy.interpolate import interp1d 

from scipy.integrate import trapz 

 

# reading files 

df = pd.read_csv('vanadium_species_file.txt',skiprows=7) 

df = df.rename(columns={'% X':'time','Height':'V'}) 

 

df1 = pd.read_csv('flux2_V2.txt',skiprows=7) 

df2 = pd.read_csv('flux2_V3.txt',skiprows=7) 

df3 = pd.read_csv('flux2_V4.txt',skiprows=7) 

df4 = pd.read_csv('flux2_V5.txt',skiprows=7) 

 

df1 = df1.rename(columns={'% X':'time','Height':'tflux','Height.1':'dflux','Height.2':'mflux','Height.3':'cflux'}) 

df2 = df2.rename(columns={'% X':'time','Height':'tflux','Height.1':'dflux','Height.2':'mflux','Height.3':'cflux'}) 

df3 = df3.rename(columns={'% X':'time','Height':'tflux','Height.1':'dflux','Height.2':'mflux','Height.3':'cflux'}) 

df4 = df4.rename(columns={'% X':'time','Height':'tflux','Height.1':'dflux','Height.2':'mflux','Height.3':'cflux'}) 

 

 

 

# selecting data 

x = list(df['time']) 

y = list(df['V']) 

 

ft=1e3 

 

total1 = df1['tflux'].values*ft 

dif1 = df1['dflux'].values*ft 

mig1 = df1['mflux'].values*ft 

conv1 = df1['cflux'].values*ft 

 

total2 = df2['tflux'].values*ft 

dif2 = df2['dflux'].values*ft 

mig2 = df2['mflux'].values*ft 

conv2 = df2['cflux'].values*ft 

 

total3 = df3['tflux'].values*ft 

dif3 = df3['dflux'].values*ft 

mig3 = df3['mflux'].values*ft 

conv3 = df3['cflux'].values*ft 

 

total4 = df4['tflux'].values*ft 

dif4 = df4['dflux'].values*ft 

mig4 = df4['mflux'].values*ft 
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conv4 = df4['cflux'].values*ft 

 

t = df1['time'].values 

 

 

#interpolation 

it=200000 

f= interp1d(x,y) 

x_V= np.linspace(np.array(x).min(),np.array(x).max(),it) 

y_V = f(x_V) 

 

 

 

# differentiation of discrete values of V versus time data (for time peak determination) 

dydx_V= np.gradient(y_V,x_V) 

 

# finding peaks charge/discharge  

peaks = find_peaks(abs(dydx_V),height=0.00002,threshold=0.00002) 

height = peaks[1]['peak_heights'] 

if height.shape[0] == 1: 

    height =  np.append(peaks[1]['peak_heights'],peaks[1]['peak_heights']) 

 

peak_pos = np.array(x_V)[peaks[0]] 

if peak_pos.shape[0] == 1: 

    peak_pos = np.append(np.array(x_V)[peaks[0]],x_V[len(x_V)-1]) 

 

 

#calculating discharge/charge indexes and times 

step_time = [] 

step_time.append(peak_pos[0]) 

z_ite = 0 

for i in range(len(peak_pos)): 

    if z_ite == len(peak_pos)-1: 

        break 

    step_time.append(peak_pos[z_ite+1]-peak_pos[z_ite]) 

    z_ite += 1 

discharge_time = step_time[1:len(step_time):2] 

 

     

discharge_steps = peak_pos[1:len(peak_pos):2] 

charge_steps = peak_pos[0:len(peak_pos):2] 

 

 

charge_time = step_time[0:len(step_time):2] 

 

a = 0 

index_discharge = [] 

while a < discharge_steps.shape[0]: 

    for i in range(x_V.shape[0]): 

        if x_V[i] == discharge_steps[a]: 

            index_discharge.append(i) 

    a += 1 

 

 

b = 0 

index_charge = [] 

while b < (charge_steps.shape[0]): 

    for i in range(x_V.shape[0]): 

        if x_V[i] == charge_steps[b]: 

            index_charge.append(i) 

    b += 1 

 

n_cycles = np.arange(1,len(height)+1,1) 

 

 

#integrating fluxes V2 
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f= interp1d(t,total1) 

x_V= np.linspace(np.array(t).min(),np.array(t).max(),it) 

y_V = f(x_V) 

 

iflux= [] 

iflux.append(trapz(y_V[0:index_charge[0]],x=x_V[0:index_charge[0]])) 

 

e = 0 

x_ite = 1 

n = int((discharge_steps.shape[0]+charge_steps.shape[0])/2-1) 

for i in range(n+1): 

    if e == len(discharge_time): 

        break 

    iflux_dis = (trapz(y_V[index_charge[e]:index_discharge[e]],x=x_V[index_charge[e]:index_discharge[e]])) 

    iflux.append(iflux_dis) 

    if x_ite == len(charge_time): 

       break 

    iflux_cha = 

(trapz(y_V[index_discharge[e]:index_charge[x_ite]],x=x_V[index_discharge[e]:index_charge[x_ite]])) 

    iflux.append(iflux_cha) 

    e += 1 

    x_ite +=1 

     

itotal_cha1 = np.array(iflux[0:len(iflux):2]).mean() 

itotal_dis1 = np.array(iflux[1:len(iflux):2]).mean() 

 

itotal1 = np.array(iflux).mean() 

 

 

f= interp1d(t,dif1) 

x_V= np.linspace(np.array(t).min(),np.array(t).max(),it) 

y_V = f(x_V) 

 

iflux= [] 

iflux.append(trapz(y_V[0:index_charge[0]],x=x_V[0:index_charge[0]])) 

 

e = 0 

x_ite = 1 

n = int((discharge_steps.shape[0]+charge_steps.shape[0])/2-1) 

for i in range(n+1): 

    if e == len(discharge_time): 

        break 

    iflux_dis = (trapz(y_V[index_charge[e]:index_discharge[e]],x=x_V[index_charge[e]:index_discharge[e]])) 

    iflux.append(iflux_dis) 

    if x_ite == len(charge_time): 

       break 

    iflux_cha = 

(trapz(y_V[index_discharge[e]:index_charge[x_ite]],x=x_V[index_discharge[e]:index_charge[x_ite]])) 

    iflux.append(iflux_cha) 

    e += 1 

    x_ite +=1 

     

idif_cha1 = np.array(iflux[0:len(iflux):2]).mean() 

idif_dis1 = np.array(iflux[1:len(iflux):2]).mean() 

 

idif1 = np.array(iflux).mean() 

 

 

 

f= interp1d(t,mig1) 

x_V= np.linspace(np.array(t).min(),np.array(t).max(),it) 

y_V = f(x_V) 

 

iflux= [] 

iflux.append(trapz(y_V[0:index_charge[0]],x=x_V[0:index_charge[0]])) 

 

e = 0 
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x_ite = 1 

n = int((discharge_steps.shape[0]+charge_steps.shape[0])/2-1) 

for i in range(n+1): 

    if e == len(discharge_time): 

        break 

    iflux_dis = (trapz(y_V[index_charge[e]:index_discharge[e]],x=x_V[index_charge[e]:index_discharge[e]])) 

    iflux.append(iflux_dis) 

    if x_ite == len(charge_time): 

       break 

    iflux_cha = 

(trapz(y_V[index_discharge[e]:index_charge[x_ite]],x=x_V[index_discharge[e]:index_charge[x_ite]])) 

    iflux.append(iflux_cha) 

    e += 1 

    x_ite +=1 

     

imig_cha1 = np.array(iflux[0:len(iflux):2]).mean() 

imig_dis1 = np.array(iflux[1:len(iflux):2]).mean() 

 

imig1 = np.array(iflux).mean() 

 

 

 

f= interp1d(t,conv1) 

x_V= np.linspace(np.array(t).min(),np.array(t).max(),it) 

y_V = f(x_V) 

 

iflux= [] 

iflux.append(trapz(y_V[0:index_charge[0]],x=x_V[0:index_charge[0]])) 

 

e = 0 

x_ite = 1 

n = int((discharge_steps.shape[0]+charge_steps.shape[0])/2-1) 

for i in range(n+1): 

    if e == len(discharge_time): 

        break 

    iflux_dis = (trapz(y_V[index_charge[e]:index_discharge[e]],x=x_V[index_charge[e]:index_discharge[e]])) 

    iflux.append(iflux_dis) 

    if x_ite == len(charge_time): 

       break 

    iflux_cha = 

(trapz(y_V[index_discharge[e]:index_charge[x_ite]],x=x_V[index_discharge[e]:index_charge[x_ite]])) 

    iflux.append(iflux_cha) 

    e += 1 

    x_ite +=1 

     

iconv_cha1 = np.array(iflux[0:len(iflux):2]).mean() 

iconv_dis1 = np.array(iflux[1:len(iflux):2]).mean() 

 

 

iconv1 = np.array(iflux).mean() 

 

 

 

#integrating fluxes V3 

 

f= interp1d(t,total2) 

x_V= np.linspace(np.array(t).min(),np.array(t).max(),it) 

y_V = f(x_V) 

 

iflux= [] 

iflux.append(trapz(y_V[0:index_charge[0]],x=x_V[0:index_charge[0]])) 

 

e = 0 

x_ite = 1 

n = int((discharge_steps.shape[0]+charge_steps.shape[0])/2-1) 

for i in range(n+1): 

    if e == len(discharge_time): 
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        break 

    iflux_dis = (trapz(y_V[index_charge[e]:index_discharge[e]],x=x_V[index_charge[e]:index_discharge[e]])) 

    iflux.append(iflux_dis) 

    if x_ite == len(charge_time): 

       break 

    iflux_cha = 

(trapz(y_V[index_discharge[e]:index_charge[x_ite]],x=x_V[index_discharge[e]:index_charge[x_ite]])) 

    iflux.append(iflux_cha) 

    e += 1 

    x_ite +=1 

     

itotal_cha2 = np.array(iflux[0:len(iflux):2]).mean() 

itotal_dis2 = np.array(iflux[1:len(iflux):2]).mean() 

 

itotal2 = np.array(iflux).mean() 

 

 

f= interp1d(t,dif2) 

x_V= np.linspace(np.array(t).min(),np.array(t).max(),it) 

y_V = f(x_V) 

 

iflux= [] 

iflux.append(trapz(y_V[0:index_charge[0]],x=x_V[0:index_charge[0]])) 

 

e = 0 

x_ite = 1 

n = int((discharge_steps.shape[0]+charge_steps.shape[0])/2-1) 

for i in range(n+1): 

    if e == len(discharge_time): 

        break 

    iflux_dis = (trapz(y_V[index_charge[e]:index_discharge[e]],x=x_V[index_charge[e]:index_discharge[e]])) 

    iflux.append(iflux_dis) 

    if x_ite == len(charge_time): 

       break 

    iflux_cha = 

(trapz(y_V[index_discharge[e]:index_charge[x_ite]],x=x_V[index_discharge[e]:index_charge[x_ite]])) 

    iflux.append(iflux_cha) 

    e += 1 

    x_ite +=1 

     

idif_cha2 = np.array(iflux[0:len(iflux):2]).mean() 

idif_dis2 = np.array(iflux[1:len(iflux):2]).mean() 

 

idif2 = np.array(iflux).mean() 

 

 

 

f= interp1d(t,mig2) 

x_V= np.linspace(np.array(t).min(),np.array(t).max(),it) 

y_V = f(x_V) 

 

iflux= [] 

iflux.append(trapz(y_V[0:index_charge[0]],x=x_V[0:index_charge[0]])) 

 

e = 0 

x_ite = 1 

n = int((discharge_steps.shape[0]+charge_steps.shape[0])/2-1) 

for i in range(n+1): 

    if e == len(discharge_time): 

        break 

    iflux_dis = (trapz(y_V[index_charge[e]:index_discharge[e]],x=x_V[index_charge[e]:index_discharge[e]])) 

    iflux.append(iflux_dis) 

    if x_ite == len(charge_time): 

       break 

    iflux_cha = 

(trapz(y_V[index_discharge[e]:index_charge[x_ite]],x=x_V[index_discharge[e]:index_charge[x_ite]])) 

    iflux.append(iflux_cha) 
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    e += 1 

    x_ite +=1 

     

imig_cha2 = np.array(iflux[0:len(iflux):2]).mean() 

imig_dis2 = np.array(iflux[1:len(iflux):2]).mean() 

 

imig2 = np.array(iflux).mean() 

 

 

 

f= interp1d(t,conv2) 

x_V= np.linspace(np.array(t).min(),np.array(t).max(),it) 

y_V = f(x_V) 

 

iflux= [] 

iflux.append(trapz(y_V[0:index_charge[0]],x=x_V[0:index_charge[0]])) 

 

e = 0 

x_ite = 1 

n = int((discharge_steps.shape[0]+charge_steps.shape[0])/2-1) 

for i in range(n+1): 

    if e == len(discharge_time): 

        break 

    iflux_dis = (trapz(y_V[index_charge[e]:index_discharge[e]],x=x_V[index_charge[e]:index_discharge[e]])) 

    iflux.append(iflux_dis) 

    if x_ite == len(charge_time): 

       break 

    iflux_cha = 

(trapz(y_V[index_discharge[e]:index_charge[x_ite]],x=x_V[index_discharge[e]:index_charge[x_ite]])) 

    iflux.append(iflux_cha) 

    e += 1 

    x_ite +=1 

     

iconv_cha2 = np.array(iflux[0:len(iflux):2]).mean() 

iconv_dis2 = np.array(iflux[1:len(iflux):2]).mean() 

 

 

iconv2 = np.array(iflux).mean() 

 

 

#integrating fluxes V4 

 

f= interp1d(t,total3) 

x_V= np.linspace(np.array(t).min(),np.array(t).max(),it) 

y_V = f(x_V) 

 

iflux= [] 

iflux.append(trapz(y_V[0:index_charge[0]],x=x_V[0:index_charge[0]])) 

 

e = 0 

x_ite = 1 

n = int((discharge_steps.shape[0]+charge_steps.shape[0])/2-1) 

for i in range(n+1): 

    if e == len(discharge_time): 

        break 

    iflux_dis = (trapz(y_V[index_charge[e]:index_discharge[e]],x=x_V[index_charge[e]:index_discharge[e]])) 

    iflux.append(iflux_dis) 

    if x_ite == len(charge_time): 

       break 

    iflux_cha = 

(trapz(y_V[index_discharge[e]:index_charge[x_ite]],x=x_V[index_discharge[e]:index_charge[x_ite]])) 

    iflux.append(iflux_cha) 

    e += 1 

    x_ite +=1 

     

itotal_cha3 = np.array(iflux[0:len(iflux):2]).mean() 

itotal_dis3 = np.array(iflux[1:len(iflux):2]).mean() 
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itotal3 = np.array(iflux).mean() 

 

 

f= interp1d(t,dif3) 

x_V= np.linspace(np.array(t).min(),np.array(t).max(),it) 

y_V = f(x_V) 

 

iflux= [] 

iflux.append(trapz(y_V[0:index_charge[0]],x=x_V[0:index_charge[0]])) 

 

e = 0 

x_ite = 1 

n = int((discharge_steps.shape[0]+charge_steps.shape[0])/2-1) 

for i in range(n+1): 

    if e == len(discharge_time): 

        break 

    iflux_dis = (trapz(y_V[index_charge[e]:index_discharge[e]],x=x_V[index_charge[e]:index_discharge[e]])) 

    iflux.append(iflux_dis) 

    if x_ite == len(charge_time): 

       break 

    iflux_cha = 

(trapz(y_V[index_discharge[e]:index_charge[x_ite]],x=x_V[index_discharge[e]:index_charge[x_ite]])) 

    iflux.append(iflux_cha) 

    e += 1 

    x_ite +=1 

     

idif_cha3 = np.array(iflux[0:len(iflux):2]).mean() 

idif_dis3 = np.array(iflux[1:len(iflux):2]).mean() 

 

idif3 = np.array(iflux).mean() 

 

 

 

f= interp1d(t,mig3) 

x_V= np.linspace(np.array(t).min(),np.array(t).max(),it) 

y_V = f(x_V) 

 

iflux= [] 

iflux.append(trapz(y_V[0:index_charge[0]],x=x_V[0:index_charge[0]])) 

 

e = 0 

x_ite = 1 

n = int((discharge_steps.shape[0]+charge_steps.shape[0])/2-1) 

for i in range(n+1): 

    if e == len(discharge_time): 

        break 

    iflux_dis = (trapz(y_V[index_charge[e]:index_discharge[e]],x=x_V[index_charge[e]:index_discharge[e]])) 

    iflux.append(iflux_dis) 

    if x_ite == len(charge_time): 

       break 

    iflux_cha = 

(trapz(y_V[index_discharge[e]:index_charge[x_ite]],x=x_V[index_discharge[e]:index_charge[x_ite]])) 

    iflux.append(iflux_cha) 

    e += 1 

    x_ite +=1 

     

imig_cha3 = np.array(iflux[0:len(iflux):2]).mean() 

imig_dis3 = np.array(iflux[1:len(iflux):2]).mean() 

 

imig3 = np.array(iflux).mean() 

 

 

 

f= interp1d(t,conv3) 

x_V= np.linspace(np.array(t).min(),np.array(t).max(),it) 

y_V = f(x_V) 
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iflux= [] 

iflux.append(trapz(y_V[0:index_charge[0]],x=x_V[0:index_charge[0]])) 

 

e = 0 

x_ite = 1 

n = int((discharge_steps.shape[0]+charge_steps.shape[0])/2-1) 

for i in range(n+1): 

    if e == len(discharge_time): 

        break 

    iflux_dis = (trapz(y_V[index_charge[e]:index_discharge[e]],x=x_V[index_charge[e]:index_discharge[e]])) 

    iflux.append(iflux_dis) 

    if x_ite == len(charge_time): 

       break 

    iflux_cha = 

(trapz(y_V[index_discharge[e]:index_charge[x_ite]],x=x_V[index_discharge[e]:index_charge[x_ite]])) 

    iflux.append(iflux_cha) 

    e += 1 

    x_ite +=1 

     

iconv_cha3 = np.array(iflux[0:len(iflux):2]).mean() 

iconv_dis3 = np.array(iflux[1:len(iflux):2]).mean() 

 

 

iconv3 = np.array(iflux).mean() 

 

 

#integrating fluxes V5 

 

f= interp1d(t,total4) 

x_V= np.linspace(np.array(t).min(),np.array(t).max(),it) 

y_V = f(x_V) 

 

iflux= [] 

iflux.append(trapz(y_V[0:index_charge[0]],x=x_V[0:index_charge[0]])) 

 

e = 0 

x_ite = 1 

n = int((discharge_steps.shape[0]+charge_steps.shape[0])/2-1) 

for i in range(n+1): 

    if e == len(discharge_time): 

        break 

    iflux_dis = (trapz(y_V[index_charge[e]:index_discharge[e]],x=x_V[index_charge[e]:index_discharge[e]])) 

    iflux.append(iflux_dis) 

    if x_ite == len(charge_time): 

       break 

    iflux_cha = 

(trapz(y_V[index_discharge[e]:index_charge[x_ite]],x=x_V[index_discharge[e]:index_charge[x_ite]])) 

    iflux.append(iflux_cha) 

    e += 1 

    x_ite +=1 

     

itotal_cha4 = np.array(iflux[0:len(iflux):2]).mean() 

itotal_dis4 = np.array(iflux[1:len(iflux):2]).mean() 

 

itotal4 = np.array(iflux).mean() 

 

 

f= interp1d(t,dif4) 

x_V= np.linspace(np.array(t).min(),np.array(t).max(),it) 

y_V = f(x_V) 

 

iflux= [] 

iflux.append(trapz(y_V[0:index_charge[0]],x=x_V[0:index_charge[0]])) 

 

e = 0 

x_ite = 1 
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n = int((discharge_steps.shape[0]+charge_steps.shape[0])/2-1) 

for i in range(n+1): 

    if e == len(discharge_time): 

        break 

    iflux_dis = (trapz(y_V[index_charge[e]:index_discharge[e]],x=x_V[index_charge[e]:index_discharge[e]])) 

    iflux.append(iflux_dis) 

    if x_ite == len(charge_time): 

       break 

    iflux_cha = 

(trapz(y_V[index_discharge[e]:index_charge[x_ite]],x=x_V[index_discharge[e]:index_charge[x_ite]])) 

    iflux.append(iflux_cha) 

    e += 1 

    x_ite +=1 

     

idif_cha4 = np.array(iflux[0:len(iflux):2]).mean() 

idif_dis4 = np.array(iflux[1:len(iflux):2]).mean() 

 

idif4 = np.array(iflux).mean() 

 

 

 

f= interp1d(t,mig4) 

x_V= np.linspace(np.array(t).min(),np.array(t).max(),it) 

y_V = f(x_V) 

 

iflux= [] 

iflux.append(trapz(y_V[0:index_charge[0]],x=x_V[0:index_charge[0]])) 

 

e = 0 

x_ite = 1 

n = int((discharge_steps.shape[0]+charge_steps.shape[0])/2-1) 

for i in range(n+1): 

    if e == len(discharge_time): 

        break 

    iflux_dis = (trapz(y_V[index_charge[e]:index_discharge[e]],x=x_V[index_charge[e]:index_discharge[e]])) 

    iflux.append(iflux_dis) 

    if x_ite == len(charge_time): 

       break 

    iflux_cha = 

(trapz(y_V[index_discharge[e]:index_charge[x_ite]],x=x_V[index_discharge[e]:index_charge[x_ite]])) 

    iflux.append(iflux_cha) 

    e += 1 

    x_ite +=1 

     

imig_cha4 = np.array(iflux[0:len(iflux):2]).mean() 

imig_dis4 = np.array(iflux[1:len(iflux):2]).mean() 

 

imig4 = np.array(iflux).mean() 

 

 

 

f= interp1d(t,conv4) 

x_V= np.linspace(np.array(t).min(),np.array(t).max(),it) 

y_V = f(x_V) 

 

iflux= [] 

iflux.append(trapz(y_V[0:index_charge[0]],x=x_V[0:index_charge[0]])) 

 

e = 0 

x_ite = 1 

n = int((discharge_steps.shape[0]+charge_steps.shape[0])/2-1) 

for i in range(n+1): 

    if e == len(discharge_time): 

        break 

    iflux_dis = (trapz(y_V[index_charge[e]:index_discharge[e]],x=x_V[index_charge[e]:index_discharge[e]])) 

    iflux.append(iflux_dis) 

    if x_ite == len(charge_time): 
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       break 

    iflux_cha = 

(trapz(y_V[index_discharge[e]:index_charge[x_ite]],x=x_V[index_discharge[e]:index_charge[x_ite]])) 

    iflux.append(iflux_cha) 

    e += 1 

    x_ite +=1 

     

iconv_cha4 = np.array(iflux[0:len(iflux):2]).mean() 

iconv_dis4 = np.array(iflux[1:len(iflux):2]).mean() 

 

 

iconv4 = np.array(iflux).mean() 

 

 

# plotting 

 

fig,ax = plt.subplots(nrows=2,ncols=2) 

plt.subplot(2,2,1) 

plt.bar('total',itotal1) 

plt.bar('dif',idif1) 

plt.bar('mig',imig1) 

plt.bar('conv',iconv1) 

plt.ylim([-0.5,3]) 

 

plt.subplot(2,2,2) 

plt.bar('total',itotal2) 

plt.bar('dif',idif2) 

plt.bar('mig',imig2) 

plt.bar('conv',iconv2) 

plt.ylim([-0.5,3]) 

 

 

plt.subplot(2,2,3) 

plt.bar('total',itotal3) 

plt.bar('dif',idif3) 

plt.bar('mig',imig3) 

plt.bar('conv',iconv3) 

plt.ylim([-3,0.5]) 

 

plt.subplot(2,2,4) 

plt.bar('total',itotal4) 

plt.bar('dif',idif4) 

plt.bar('mig',imig4) 

plt.bar('conv',iconv4) 

plt.ylim([-3,0.5]) 

 

plt.savefig('fig_name.tiff',format='tiff',dpi=300) 
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Algorithm to calculate the V(V) limiting concentration (Figure 51 and Figure 

54) 

The following algorithm (in python) was developed to calculate the V(V) limiting 

concentration and its derivative. 

Input files: (COMSOL files) V(V) concentration versus time. 

 

import pandas as pd 

import numpy as np 

from scipy.signal import find_peaks 

import matplotlib.pyplot as plt 

from scipy.interpolate import interp1d 

 

df1 = pd.read_csv('c1.txt',skiprows=7) 

df2 = pd.read_csv('c2.txt',skiprows=7) 

df3 = pd.read_csv('c3.txt',skiprows=7) 

 

df1 = df1.rename(columns={'% X':'time','Height':'cV2','Height.1':'cV3','Height.2':'cV4','Height.3':'cV5'}) 

df2 = df2.rename(columns={'% X':'time','Height':'cV2','Height.1':'cV3','Height.2':'cV4','Height.3':'cV5'}) 

df3 = df3.rename(columns={'% X':'time','Height':'cV2','Height.1':'cV3','Height.2':'cV4','Height.3':'cV5'}) 

 

 

cV5_1 = df1['cV5'].values*-1 

cV5_2 = df2['cV5'].values*-1 

cV5_3 = df3['cV5'].values*-1 

 

 

t1 = df1['time'].values 

t2 = df2['time'].values 

t3 = df3['time'].values 

 

it=200000 

f= interp1d(t1,cV5_1) 

x= np.linspace(np.array(t1).min(),np.array(t1).max(),it) 

y = f(x) 

 

peaks = find_peaks(y,height=-200,threshold=0.000000002) 

height = peaks[1]['peak_heights'] 

if height.shape[0] == 1: 

    height =  np.append(peaks[1]['peak_heights'],peaks[1]['peak_heights']) 

 

peak_pos = np.array(x)[peaks[0]] 

if peak_pos.shape[0] == 1: 

    peak_pos = np.append(np.array(x)[peaks[0]],x[len(x)-1]) 

     

fig = plt.figure() 

ax = fig.subplots() 

ax.plot(x,y,'-k', label = 'Time derivative') 

ax.scatter(peak_pos, height, color = 'r', s = 15, marker = 'D', label = 'Peaks') 

ax.legend() 

ax.grid() 

 

 

n_cycles1 = np.arange(1,len(height)+1,1) 
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Max = height*-1*0.001 

 

it2 = 18 

f2= interp1d(n_cycles1,Max) 

x2= np.linspace(np.array(n_cycles1).min(),np.array(n_cycles1).max(),it2) 

y2 = f2(x2) 

 

 

d_Max1 = np.gradient(y2,x2)*1e3 

 

fig = plt.figure() 

ax = fig.subplots() 

ax.plot(n_cycles1,Max,'ko') 

 

 

 

ax2=ax.twinx() 

ax2.plot(x2,d_Max1,'k-',label='1.10 mol/L') 

 

 

 

f= interp1d(t3,cV5_3) 

x= np.linspace(np.array(t2).min(),np.array(t2).max(),it) 

y = f(x) 

 

peaks = find_peaks(y,height=-200,threshold=0.000000002) 

height = peaks[1]['peak_heights'] 

if height.shape[0] == 1: 

    height =  np.append(peaks[1]['peak_heights'],peaks[1]['peak_heights']) 

 

peak_pos = np.array(x)[peaks[0]] 

if peak_pos.shape[0] == 1: 

    peak_pos = np.append(np.array(x)[peaks[0]],x[len(x)-1]) 

     

n_cycles2 = np.arange(1,len(height)+1,1) 

Max2 = height*-1*.001 

ax.plot(n_cycles2,Max2,'bo')  

 

 

f2= interp1d(n_cycles2,Max2) 

x2= np.linspace(np.array(n_cycles2).min(),np.array(n_cycles2).max(),it2) 

y2 = f2(x2) 

 

 

d_Max2 = np.gradient(y2,x2)*1e3 

ax2.plot(x2,d_Max2,'b-',label='1.80 mol/L') 

ax2.set_yticks(np.arange(-10,0,3)) 

 

 

ax.set_xlabel('Cycle number') 

ax.set_ylabel('V(V) limiting concentration (mol/L)') 

ax2.set_ylabel('Derivative (X10$^3$ mol/L)') 

plt.xlim([0,20.5]) 

ax.set_xticks(np.arange(0,20.1,5)) 

 

 

"""f= interp1d(t3,cV5_3) 

x= np.linspace(np.array(t3).min(),np.array(t3).max(),it) 

y = f(x) 

 

peaks = find_peaks(y,height=-200.,threshold=0.000000002) 

height = peaks[1]['peak_heights'] 

if height.shape[0] == 1: 

    height =  np.append(peaks[1]['peak_heights'],peaks[1]['peak_heights']) 

 

peak_pos = np.array(x)[peaks[0]] 

if peak_pos.shape[0] == 1: 
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    peak_pos = np.append(np.array(x)[peaks[0]],x[len(x)-1]) 

     

n_cycles2 = np.arange(1,len(height)+1,1) 

SoH_max2 = height 

ax.plot(n_cycles2,SoH_max2*-1,'g-',label='c2,i1') 

 

plt.legend() 

ax.set_xlabel('Cycle number') 

ax.set_ylabel('V5 concentration')""" 

 

plt.savefig('cV5 concentration_concentration.tiff',format='tiff',dpi=300) 
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Algorithm to determine the suitable magnitude of velocity between electrolyte 

tanks (Figure 58) 

The following algorithm (in python) was developed to calculate the discharge 

capacity and the capacity loss rate for different values of velocity between electrolyte 

tanks. 

Input files: (COMSOL files) cell potential versus time. 

 

 

import pandas as pd 

import numpy as np 

from scipy.signal import find_peaks 

import matplotlib.pyplot as plt 

from scipy.interpolate import interp1d 

import matplotlib 

 

 

 

# creating file names 

V_file = ['V0.txt','V6.txt','V7.txt','V8.txt','V9.txt'] 

v_br_x4 = ['0','1','5','10','50'] 

 

CL = [] 

CL_rate = [] 

 

for i in range(len(V_file)): 

    df1_raw = pd.read_csv(V_file[i],skiprows=(7)) 

 

    df1 = df1_raw.rename(columns={'% X':'time','Height':'V'}) 

 

 

 

    # selecting data 

    x = list(df1['time']) 

    y = list(df1['V']) 

 

 

 

    #interpolation 

    it=200000 

    f= interp1d(x,y) 

    x_V= np.linspace(np.array(x).min(),np.array(x).max(),it) 

    y_V = f(x_V) 

 

 

 

    # differentiation of discrete values of V versus time data (for time peak determination) 

    dydx_V= np.gradient(y_V,x_V) 

 

    # finding peaks charge/discharge  

    peaks = find_peaks(abs(dydx_V),height=0.02) 

    height = peaks[1]['peak_heights'] 

    if height.shape[0] == 1: 
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        height =  np.append(peaks[1]['peak_heights'],peaks[1]['peak_heights']) 

 

    peak_pos = np.array(x_V)[peaks[0]] 

    if peak_pos.shape[0] == 1: 

        peak_pos = np.append(np.array(x_V)[peaks[0]],x_V[len(x_V)-1]) 

 

 

    #calculating capacity loss 

    step_time = [] 

    step_time.append(peak_pos[0]) 

    z_ite = 0 

    for i in range(len(peak_pos)): 

        if z_ite == len(peak_pos)-1: 

            break 

        step_time.append(peak_pos[z_ite+1]-peak_pos[z_ite]) 

        z_ite += 1 

        discharge_time = step_time[1:len(step_time):2] 

        capacity_loss = [] 

        for i in range(len(discharge_time)): 

            capacity_loss.append(100*discharge_time[i]/discharge_time[0]) 

 

    CL_35 = capacity_loss[0:34] 

    CL.append(CL_35) 

     

    CL_pc_list = [] 

    for i in range(len(CL_35)-1): 

        CL_pc = CL_35[i]-CL_35[i+1] 

        CL_pc_list.append(CL_pc) 

    CL35_rate = np.array(CL_pc_list[0:20]).mean() 

     

    CL_rate.append(CL35_rate) 

 

      

n_cycles = np.arange(1,35,1) 

 

fig,(ax,ax2) = plt.subplots(1,2) 

fig.set_figwidth(10) 

plt.subplots_adjust(wspace=0.2) 

 

cmap = matplotlib.cm.get_cmap('viridis') 

c=np.linspace(0,20,5) 

ax.set_title('(a)') 

ax.set_xlabel('Cycle number') 

ax.set_ylabel('Discharge capacity (%)') 

ax.plot(n_cycles,CL[0],color=cmap(0.0),label='0') 

ax.plot(n_cycles,CL[1],color=cmap(0.25),label='1') 

ax.plot(n_cycles,CL[2],color=cmap(0.50),label='5') 

ax.plot(n_cycles,CL[3],color=cmap(0.75),label='10') 

ax.plot(n_cycles,CL[4],color=cmap(1.0),label='50') 

ax.legend(title='$v_{p}$ (m/s)') 

 

ax2.set_title('(b)') 

ax2.set_xlabel('$v_{p}$ (m/s)') 

ax2.set_ylabel('Capacity loss rate (% per cycle)') 

ax2.scatter(v_br_x4,CL_rate,c=c,cmap='viridis',marker='D') 

 

plt.savefig('magnitude_test.tiff',format='tiff',dpi=600) 
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Algorithm for regression analysis and 4D plot (Figure 59) 

The following algorithm (in python) was developed for regression analysis. The 

variables decodified are used. The purpose was to obtain the coefficients on the same 

scale for all variables. 

Input files: data from  Table 17. Doehlert design for three variables of Study 2. And 

Table 29. All responses from Doehlert design (Study 2)*. 

 

import pandas as pd 

from sklearn.preprocessing import PolynomialFeatures 

from sklearn.linear_model import LinearRegression 

import matplotlib.pyplot as plt 

import numpy as np 

from matplotlib import cm 

import matplotlib as mpl 

 

 

# importing data 

base = pd.read_csv('data.txt',sep='\t') 

X = base.iloc[:, 0:3].values 

y = base.iloc[:, 3].values 

 

# setting regression 

poly = PolynomialFeatures(degree = 2) 

X1 = poly.fit_transform(X) 

 

regressor = LinearRegression() 

regressor.fit(X1,y) 

 

y_pred = regressor.predict(X1) 

 

 

### creating data to 2D response surface 

 

mesh = 100 

levels = 20 

transp = 0.9 

 

 

v1 = 1 

v2 = 5.5 

v3 = 10 

 

 

i1 = 45.36 

i2 = 80 

i3 = 114.64 

 

 

c1 = 1.123 

c2 = 1.45 

c3 = 1.777 

 

v_br = np.linspace(1,10,mesh) 
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i_appl = np.linspace(45.36,114.64,mesh) 

 

 

 

# v_br versus i_appl com c1 

v_br,i_appl=np.meshgrid(v_br,i_appl) 

 

column_=np.linspace(0,0,mesh) 

for i1 in range(mesh): 

     

    column = np.array([]) 

    for i2 in range(mesh): 

        prev = np.array([v_br[i1][i2],i_appl[i1][i2],c1]).reshape(1,-1) 

        prev_p = poly.fit_transform(prev) 

        pred=regressor.predict(prev_p) 

        column=np.append(column,pred) 

    column_=np.column_stack((column_,column)) 

 

 

Z1 = np.delete(column_,0,1)     

 

 

# v_br versus i_appl com c2 

column_=np.linspace(0,0,mesh) 

for i1 in range(mesh): 

     

    column = np.array([]) 

    for i2 in range(mesh): 

        prev = np.array([v_br[i1][i2],i_appl[i1][i2],c2]).reshape(1,-1) 

        prev_p = poly.fit_transform(prev) 

        pred=regressor.predict(prev_p) 

        column=np.append(column,pred) 

    column_=np.column_stack((column_,column)) 

 

 

Z2 = np.delete(column_,0,1) 

 

 

# v_br versus i_appl com c3 

column_=np.linspace(0,0,mesh) 

for i1 in range(mesh): 

     

    column = np.array([]) 

    for i2 in range(mesh): 

        prev = np.array([v_br[i1][i2],i_appl[i1][i2],c3]).reshape(1,-1) 

        prev_p = poly.fit_transform(prev) 

        pred=regressor.predict(prev_p) 

        column=np.append(column,pred) 

    column_=np.column_stack((column_,column)) 

 

 

Z3 = np.delete(column_,0,1) 

     

 

# parameters 

 

 

ZQ_min = np.array([round(Z1.min(),2),round(Z2.min(),2),round(Z3.min(),2)]).min() 

ZQ_max = np.array([round(Z1.max(),2),round(Z2.max(),2),round(Z3.max(),2)]).max() 

 

 

### ploting 

 

fig = plt.figure() 

ax = fig.gca(projection='3d') 

 

plt.contourf(v_br, i_appl, Z1, levels = levels,alpha=transp,offset=c1) 
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plt.clim(0,ZQ_max) 

 

plt.contourf(v_br, i_appl, Z2, levels = levels,alpha=transp,offset=c2) 

plt.clim(0,ZQ_max) 

 

plt.contourf(v_br, i_appl, Z3, levels = levels,alpha=transp,offset=c3) 

plt.clim(0,ZQ_max) 

 

norm = mpl.colors.Normalize(vmin=ZQ_min,vmax=ZQ_max) 

cb4=plt.colorbar(cm.ScalarMappable(norm=norm), 

                 orientation='vertical', 

                 ticks=np.arange(0,ZQ_max+0.01,5), 

                 pad = 0.15) 

cb4.set_label('Capacity loss (%)',fontsize=10) 

cb4.ax.tick_params(labelsize='small',direction='in') 

 

 

ax.set(xlabel = '$v_{p}$ (m/s)',ylabel = '$i_{appl}$ (mA/$cm^2$)',zlabel='$c_{act}$ (mol/L)') 

ax.xaxis.set_ticks(np.arange(v1, v3+0.01,4)) 

ax.yaxis.set_ticks(np.arange(45, 115+0.01,30)) 

ax.zaxis.set_ticks(np.arange(1.15,1.75+0.01,0.3)) 

ax.set_zlim(c1,c3) 

plt.savefig('Fig_name.tiff',format='tiff',dpi=600) 
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Algorithm to calculate optimum velocity between tanks (Figure 60) 

The following algorithm (in python) was developed to determine the optimum 

velocity between tanks for any combination of applied current density and concentration 

of active species. 

Input files: data from  Table 17. Doehlert design for three variables of Study 2. And 

Table 29. All responses from Doehlert design (Study 2)*. 

 

 

import pandas as pd 

from sklearn.preprocessing import PolynomialFeatures 

from sklearn.linear_model import LinearRegression 

import matplotlib.pyplot as plt 

import numpy as np 

import matplotlib 

 

 

# importing data 

base = pd.read_csv('data.txt',sep='\t') 

X = base.iloc[:, 0:3].values 

y = base.iloc[:, 3].values 

 

# setting regression 

poly = PolynomialFeatures(degree = 2) 

X1 = poly.fit_transform(X) 

 

regressor = LinearRegression() 

regressor.fit(X1,y) 

 

y_pred = regressor.predict(X1) 

 

 

### creating data to 2D response surface 

 

mesh = 100 

levels = 20 

transp = 0.9 

 

 

i1 = 75 

i2 = 45 

i3 = 60 

 

 

 

c1 = 1.75 

c2 = 1.45 

c3 = 1.15 

 

v_br = np.linspace(1,10,mesh) 
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# case (1) 

CL1 = [] 

for i in range(len(v_br)): 

    prev = np.array([v_br[i],i1,c1]).reshape(1,-1) 

    prev_p = poly.fit_transform(prev) 

    pred=float(regressor.predict(prev_p)) 

    CL1.append(pred) 

 

# case (2) 

CL2 = [] 

for i in range(len(v_br)): 

    prev = np.array([v_br[i],i2,c2]).reshape(1,-1) 

    prev_p = poly.fit_transform(prev) 

    pred=float(regressor.predict(prev_p)) 

    CL2.append(pred) 

 

# case (3) 

CL3 = [] 

for i in range(len(v_br)): 

    prev = np.array([v_br[i],i3,c3]).reshape(1,-1) 

    prev_p = poly.fit_transform(prev) 

    pred=float(regressor.predict(prev_p)) 

    CL3.append(pred) 

 

 

### finding v optimum 

 

v_opt1=v_br[CL1.index(min(CL1))] 

v1_str = str(round(v_opt1,1)) 

v_opt2=v_br[CL2.index(min(CL2))] 

v2_str = str(round(v_opt2,1)) 

v_opt3=v_br[CL3.index(min(CL3))] 

v3_str = str(round(v_opt3,1)) 

 

 

### ploting 

cmap = matplotlib.cm.get_cmap('viridis') 

fig,ax = plt.subplots() 

ax.plot(v_br,CL1,'k-',color=cmap(0),label='case (1) '+'$v_{opt}=$'+v1_str) 

ax.plot(v_br,CL2,'r-',color=cmap(0.33),label='case (2) '+'$v_{opt}=$'+v2_str) 

ax.plot(v_br,CL3,'b-',color=cmap(1.0),label='case (3) '+'$v_{opt}=$'+v3_str) 

ax.set(xlabel = '$v_{p}$ (m/s)',ylabel = 'CL (%)') 

plt.legend() 

 

plt.savefig('Optimum_v.tiff',format='tiff',dpi=600) 
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Algorithm for validation of regression analysis (Figure 61) 

The following algorithm (in python) was developed to validate the regression 

analysis and plot the Figure 61 

Input files: validation data. 

 

 

import pandas as pd 

from sklearn.preprocessing import PolynomialFeatures 

from sklearn.linear_model import LinearRegression 

from sklearn.metrics import mean_absolute_error,r2_score 

import matplotlib.pyplot as plt 

import numpy as np 

 

 

# importing data 

base = pd.read_csv('data.txt',sep='\t') 

 

 

X = base.iloc[:, 0:3].values 

y = base.iloc[:, 3].values 

 

 

test1 = pd.read_csv('data_validation_random.txt',sep='\t') 

X_test1 = test1.iloc[:,1:4].values 

y_test1 = test1.iloc[:,7].values 

 

# setting regression 

poly = PolynomialFeatures(degree = 2) 

X1 = poly.fit_transform(X) 

X1_test1 = poly.fit_transform(X_test1) 

 

regressor = LinearRegression() 

regressor.fit(X1,y) 

 

y_pred = regressor.predict(X1) 

y_pred_test = regressor.predict(X1_test1) 

 

#Figures of merit 

R2_t = r2_score(y_test1,y_pred_test) 

R2 = r2_score(y,y_pred) 

 

r2s = str(round(R2,4)) 

r2ts = str(round(R2_t,4)) 

 

fig1,ax1 = plt.subplots() 

ax1.plot(np.linspace(0,20,50),np.linspace(0,20,50),'k--') 

ax1.plot(y_test1,y_pred_test,'go',markersize=7,label='Test set') 

ax1.plot(y,y_pred,'bo',markersize=7,label='Train set') 

plt.xlabel('Simulated capacity loss (%)') 

plt.ylabel( 'Predicted capacity loss (%)') 

plt.text(15,3,'$R^2_{train}$:' + r2s + '\n $R^2_{test}$:' + r2ts) 

plt.legend() 

 

 

plt.savefig('regression.tiff',formate='tiff',dpi=300)
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Appendix C – Scripts for data treatment (Study 3) 

Algorithm to calculate the responses from COMSOL files (Table 32) 

The following algorithm (in python) was developed to calculate the voltage efficiency 

and the overpotential (activation plus concentration) of each designed computational 

experiment. 

Input files: (COMSOL files) cell potential versus SoC for charging and discharging, 

overpotential (activation plus concentration) versus SoC for charging and discharging.  

 

import pandas as pd 

 

file_number=list(range(1,33)) 

 

Vd_file = [] 

Vc_file = [] 

ec_file = [] 

ed_file = [] 

 

#creating name of files 

 

for i in file_number: 

    Vc='Vc' + str(i) +'.txt' 

    Vc_file.append(Vc) 

    Vd='Vd' + str(i) +'.txt' 

    Vd_file.append(Vd) 

    ec='ec' + str(i) +'.txt' 

    ec_file.append(ec) 

    ed='ed' + str(i) +'.txt' 

    ed_file.append(ed) 

     

#reading files 

Vc_list = [] 

Vd_list = [] 

ec_list = [] 

ed_list = [] 

 

 

for i in range(len(ed_file)): 

    df_Vc=pd.read_csv(Vc_file[i],skiprows=(7)) 

    Vc_mean=df_Vc['Height'].mean() 

    Vc_list.append(Vc_mean) 

    df_Vd=pd.read_csv(Vd_file[i],skiprows=(7)) 

    Vd_mean=df_Vd['Height'].mean() 

    Vd_list.append(Vd_mean) 

    df_ec=pd.read_csv(ec_file[i],skiprows=(7)) 

    ec_mean=df_ec['Height'].mean() 

    ec_list.append(1000*abs(ec_mean)) 

    df_ed=pd.read_csv(ed_file[i],skiprows=(7)) 

    ed_mean=df_ed['Height'].mean() 
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    ed_list.append(1000*abs(ed_mean)) 

     

 

#calculating voltage efficiency 

 

VE = [] 

for i in range(len(Vc_list)): 

    VE_ite = round(Vd_list[i]*100/Vc_list[i],2) 

    VE.append(VE_ite) 

     

 

#exporting data 

treated_data=pd.DataFrame({'VE':VE,'eta_charge':ec_list,'eta_dis':ed_list}) 

treated_data.to_csv('treated_data.txt',sep='\t',decimal=',',index=False)
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Algorithm to calculate effects (Figure 65 and Figure 67) 

The following algorithm (in python) was developed to calculate the effects of 25-1 

factorial design. 

Input files: data from Table 21 and Table 32. 

 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy.stats import norm 

 

df=pd.read_csv('effect.txt',sep='\t') 

 

X = df.iloc[:,0:6].values 

y = df.iloc[:,6].values 

 

effects = [] 

 

# primary effects 

list1 = [] 

list2 = [] 

list3 = [] 

list4 = [] 

list5 = [] 

list6 = [] 

 

for i in range(len(y)): 

    it1 = X[i][0]*y[i] 

    list1.append(it1)    

    it2 = X[i][1]*y[i] 

    list2.append(it2)   

    it3 = X[i][2]*y[i] 

    list3.append(it3)  

    it4 = X[i][3]*y[i] 

    list4.append(it4)  

    it5 = X[i][4]*y[i] 

    list5.append(it5)  

    it6 = X[i][5]*y[i] 

    list6.append(it6)  

 

ef1=2*np.array(list1).mean() 

effects.append(ef1) 

ef2=2*np.array(list2).mean() 

effects.append(ef2) 

ef3=2*np.array(list3).mean() 

effects.append(ef3) 

ef4=2*np.array(list4).mean() 

effects.append(ef4) 

ef5=2*np.array(list5).mean() 

effects.append(ef5) 

ef6=2*np.array(list6).mean() 

effects.append(ef6) 

 

 

#secondary effects 

list12 = [] 
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list13 = [] 

list14 = [] 

list15 = [] 

list16 = [] 

list23 = [] 

list24 = [] 

list25 = [] 

list26 = [] 

list34 = [] 

list35 = [] 

list36 = [] 

list45 = [] 

list46 = [] 

list56 = [] 

 

 

for i in range(len(y)): 

    it12 = X[i][0]*X[i][1]*y[i] 

    list12.append(it12)    

    it13 = X[i][0]*X[i][2]*y[i] 

    list13.append(it13)   

    it14 = X[i][0]*X[i][3]*y[i] 

    list14.append(it14)  

    it15 = X[i][0]*X[i][4]*y[i] 

    list15.append(it15)  

    it16 = X[i][0]*X[i][5]*y[i] 

    list16.append(it16)  

    it23 = X[i][1]*X[i][2]*y[i] 

    list23.append(it23) 

    it24 = X[i][1]*X[i][3]*y[i] 

    list24.append(it24)  

    it25 = X[i][1]*X[i][4]*y[i] 

    list25.append(it25)  

    it26 = X[i][1]*X[i][5]*y[i] 

    list26.append(it26)  

    it34 = X[i][2]*X[i][3]*y[i] 

    list34.append(it34) 

    it35 = X[i][2]*X[i][4]*y[i] 

    list35.append(it35) 

    it36 = X[i][2]*X[i][5]*y[i] 

    list36.append(it36) 

    it45 = X[i][3]*X[i][4]*y[i] 

    list45.append(it45) 

    it46 = X[i][3]*X[i][5]*y[i] 

    list46.append(it46) 

    it56 = X[i][4]*X[i][5]*y[i] 

    list56.append(it56) 

     

 

ef12=2*np.array(list12).mean() 

effects.append(ef12) 

ef13=2*np.array(list13).mean() 

effects.append(ef13) 

ef14=2*np.array(list14).mean() 

effects.append(ef14) 

ef15=2*np.array(list15).mean() 

effects.append(ef15) 

ef16=2*np.array(list16).mean() 

effects.append(ef16) 

 

ef23=2*np.array(list23).mean() 

effects.append(ef23) 

ef24=2*np.array(list24).mean() 

effects.append(ef24) 

ef25=2*np.array(list25).mean() 

effects.append(ef25) 

ef26=2*np.array(list26).mean() 
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effects.append(ef26) 

 

ef34=2*np.array(list34).mean() 

effects.append(ef34) 

ef35=2*np.array(list35).mean() 

effects.append(ef35) 

ef36=2*np.array(list36).mean() 

effects.append(ef36) 

 

ef45=2*np.array(list45).mean() 

effects.append(ef45) 

ef46=2*np.array(list46).mean() 

effects.append(ef46) 

 

ef56=2*np.array(list56).mean() 

effects.append(ef56) 

 

 

 

#creating plots 

 

effects_name = ['1','2','3','4','5','6','12','13','14','15','16','23','24', 

              '25','26','34','35','36','45','46','56'] 

               

df_effects = pd.DataFrame({'effect':effects_name,'Value':effects}) 

 

df_effects_or = df_effects.sort_values(by='Value',ignore_index=True) 

 

#porcentage graph 

effects_squared = [] 

 

for i in range(len(effects)): 

    effects_squared.append(abs(effects[i])) 

     

sum_effects_squared = np.array(effects_squared).sum() 

 

percentage_ef = [] 

for i in range(len(effects_squared)): 

    b_ite = 100*effects_squared[i]/sum_effects_squared 

    percentage_ef.append(b_ite) 

     

#probability graph and pareto 

effect_or = df_effects_or.iloc[:,1] 

name_or = df_effects_or.iloc[:,0] 

 

initial = [] 

initial.append(0) 

for i in range(len(effects)-1): 

    c_ite = 1/len(effects)+initial[i] 

    initial.append(c_ite) 

     

final = [] 

for i in range(len(initial)): 

    final.append(initial[i+1]) 

    if len(initial) == len(final)+1: 

        break 

final.append(1) 

 

middle = [] 

for i in range(len(initial)): 

    d_ite = (initial[i]+final[i])/2 

    middle.append(d_ite) 

     

inv_norm = norm.ppf(middle) 
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#plots 

df_perc = pd.DataFrame({'effect':effects_name,'percentage':percentage_ef}) 

df_perc_or = df_perc.sort_values(by='percentage',ascending=False,ignore_index=True) 

percentage_ef = df_perc_or.iloc[:,1].values 

name_ef_perc = df_perc_or.iloc[:,0] 

 

fig,ax = plt.subplots() 

ax.bar(name_ef_perc,percentage_ef,color='green') 

ax.set_xlabel('Standardized Effect') 

ax.set_ylabel('Percentage (%)',color='darkgreen') 

ax.yaxis.label.set_color('green') 

ax.tick_params(axis='y', colors='green') 

 

perc_cum = percentage_ef.cumsum() 

 

ax2 = ax.twinx() 

ax2.plot(name_ef_perc,perc_cum,marker='o',color='black') 

ax2.set_ylabel('Cumulative Sum (%)',color='black') 

 

#plt.savefig('percentage_graph.png',format='png',dpi=300) 

 

fig3,ax3 = plt.subplots() 

ax3.scatter(effect_or,inv_norm,color='green') 

ax3.set_xlabel('Effect') 

ax3.set_ylabel('z value') 

yline = np.linspace(np.array(inv_norm).min(),np.array(inv_norm).max(),10) 

xline = np.linspace(0,0,10) 

ax3.plot(xline,yline,color='black') 

 

for i, txt in enumerate(name_or): 

    ax3.annotate(txt,(effect_or[i],inv_norm[i])) 

 

#plt.savefig('probability_graph.png',format='png',dpi=300) 

 


