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Resumo

O tópico principal desta dissertação é a K-Teoria Ordinária e Torcida. Começamos

descrevendo teorias cohomológicas generalizadas através dos Axiomas de Eilenberg-

Steenrod a �m de estabelecer a K-Teoria Ordinária nesses termos. Isto nos permite

deduzir suas propriedades estruturais do arcabouço da cohomologia generalizada.

Então, expomos as noções elementares da Geometria de Spin para relacioná-la com

a K-Teoria Ordinária através do Teorema de Atiyah-Bott-Shapiro. Este resultado nos

permite de�nir o isomor�smo de Thom bem como o mapa de integração, que é

conhecido como mapa de Gysin. Depois disso, refraseamos a K-Teoria Ordinária por

meio da aplicação do Índice, que nos fornece uma interpretação da K-Teoria através de

classes de homotopia de funções contínuas. Em seguida, lidamos com a K-Teoria Torcida.

Primeiro, introduzimos o grupo de Grothendieck dos �brados vetoriais torcidos como

um modelo para a K-Teoria Torcida de ordem �nita. Então, descrevemos o modelo de

dimensão in�nita, através de �brados apropriados de operadores de Fredholm, que lida

com classes de torção de qualquer ordem. Finalmente, comparamos estes dois modelos no

contexto de ordem �nita.

Palavras-chave. K-Teoria Topológica; Teorias cohomológicas generalizadas; K-Teoria

Ordinária; Geometria de Spin; Isomor�smo de Thom; Mapa de Gysin; Operadores de

Fredholm; Aplicação do Índice; K-Teoria Torcida.



[This page is intentionally left blank]



Abstract

The main topic of this thesis consists in Ordinary and Twisted Topological

K-Theory. We begin by describing generalized cohomology theories through the

Eilenberg-Steenrod Axioms, in order to set Ordinary K-Theory in these terms. This allows

us to deduce its structural properties from the framework of generalized cohomology.

Then, we expose the elementary notions of Spin Geometry to relate it to Ordinary

K-Theory through the Atiyah-Bott-Shapiro Theorem. This result enables us to

construct the Thom isomorphism as well as the integration map, which is known as

Gysin map. After that, we rephrase Ordinary K-Theory by means of the Index map,

which provides an interpretation of K-Theory through homotopy classes of continuous

functions. Afterwards, we deal with Twisted K-Theory. First, we introduce the

Grothendieck group of twisted vector bundles as a model for �nite-order Twisted

K-Theory. Then, we describe the in�nite-dimensional model, through suitable bundles

of Fredholm operators, that holds for twisting classes of any order. Finally, we compare

these two models in the �nite-order setting.

Keywords. Topological K-Theory; Generalized cohomology theories; Ordinary

K-Theory; Spin Geometry; Thom isomorphism; Gysin map; Fredholm operators;

Index map; Twisted K-Theory.
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1

Introduction

This work is placed in the area of mathematics that is called Algebraic Topology.

More precisely, it is inserted in the setting of cohomology theories, especially dealing

with K-Theory. This specialization has a transparent historical justi�cation behind it,

since K-Theory was the �rst generalized cohomology theory to appear in the

literature. In fact, Algebraic K-theory has its origins in the late 1950s due to a

generalization by Alexander Grothendieck (1928-2014) of the famous Riemann-Roch

Theorem. Roughly speaking, Grothendieck associated a group K(X) to each X in

some family of algebraic spaces. In this framework, he recovered the classical Riemann-

Roch Theorem as a special case of a general result involving K-groups. In particular,

Grothendieck told us that

The way I �rst visualized a K-group was as a group of �classes of objects�
of an abelian (or more generally, additive) category, such as coherent
sheaves on an algebraic variety, or vector bundles, etc. I would
presumably have called this group C(X) (X being a variety or any
other kind of �space�), C the initial letter of �class�, but my past in
Functional Analysis may have prevented this, as C(X) designates also
the space of continuous functions on X (when X is a topological space).
Thus, I reverted to K instead of C, since my mother tongue is German,
Class = Klasse (in German), and the sounds corresponding to C and K are
the same. [11, p. 2]

Afterwards, Friedrich Hirzebruch (1927-2012) and Michael Atiyah (1929-2019)

realized that these ideas could be exported to the world of Algebraic Topology. The

resulting K-theory of topological spaces, which we refer to as Ordinary K-Theory,

turned out to be quite powerful. In fact, for example, some of its early conquests are

the determination of the maximum number of linearly independent vector �elds on

spheres, a classi�cation theorem for real division algebras and the Atiyah-Singer

Index Theorem. Years later, in the late 1960s, Max Karoubi (1938 -) introduced Twisted
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K-Theory, also known as K-Theory with local coe�cients, in his doctoral dissertation.

These versions of Topological K-Theory, Ordinary and Twisted, are the main subjects

of this thesis. In a nutshell, we begin by considering generalized cohomology theories

from an axiomatic viewpoint à la Eilenberg-Steenrod. After that, we discuss

the main models of Ordinary K-Theory, including tools from Spin Geometry in order

to construct the Thom isomorphism and the Gysin map. Finally, we deal with Twisted

K-Theory.

For completeness, we describe below the content of each chapter. We also

provide an overview of the references that we reviewed in this work. We emphasize

that more information about them will be given in convenient parts of the main text.

In Chapter 1, we provide a presentation of generalized cohomology theories.

Thanks to this starting point, in the next chapters we will be able to set the properties

of K-Theory that descend directly from the Eilenberg-Steenrod axioms. In particular,

we establish the exact sequence of a triple and the Mayer-Vietoris sequences using

[13, pp. 3 - 53]. We also discuss the additivity axiom, originally introduced in [28],

and multiplicative structures on cohomology theories, following [21, pp. 38-40]. Our

presentation is thoroughly realized through the language and the notations of [13],

so that it is quite unitary. Since [13] mainly deals with homology theories, we adapted

it to the cohomological setting. Other meaningful references for this chapter are the

following ones: [37] for historical notes; [26] for the language of category theory,

widely used in this thesis; [17] for some algebraic notions; [12], [25] and [29] for the

basic concepts of general topology.

In Chapter 2, we expose the main notions of Ordinary K-Theory as a generalized

cohomology theory, taking advantage of the results proved in the previous chapter. The

main references are [2, pp. 43-94] and [19, pp. 52-111]. However, some applications

of K-Theory could not be written without [15, pp. 38-72]. We also used [1], [3],

[23, p. 65, pp. 70-76] and [33].

In Chapter 3, we present the basic notions on Spin Geometry, that are

essential to construct the Thom isomorphism and the Gysin map, the latter being

the integration map in K-Theory. In particular, we carefully analyze the notions of

spin and spinc structure on vector bundles. The exposition of these topics in based on
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[2, pp. 102-116], [6], [9, pp. 37-47], [23, pp. 7-40, 58-70, 77-85] and [34].

In Chapter 4, we present another relevant model of Ordinary K-Theory.

The latter is realized through homotopy classes of functions taking values in the space

of Fredholm operators on an in�nite-dimensional separable Hilbert space. This model

will be particularly useful in Chapter 5. The main references for this part of the

text are [2, pp. 153 - 162], [8, pp. 7-18, 33-43], [22] and [32, pp. 1-23, 55-67, 119-125,

175-183].

In Chapter 5, we develop two relevant models of Twisted K-Theory. We begin

by introducing the Grothendieck group of twisted vector bundles as a model of

�nite-order Twisted K-Theory. Afterwards, we describe the in�nite-dimensional model,

through suitable bundles of Fredholm operators, that holds for twisting classes of

any order. Finally, we compare these two models in the �nite-order setting. We also

consider a suitable version of the Thom isomorphism in this framework. We used [4],

[6, pp. 5-8, 30-36, 43-45, 53-54], [7, pp. 42-43] and [20].

We conclude the main part of the thesis with �Further Perspectives�. Here we

indicate some topics that can be studied in a near future thanks to the subjects treated

in this thesis.

Afterwards, we present six appendixes in which the reader can �nd many

elementary concepts used in the thesis. We provide concise expositions, which hopefully

turn the text more readable. The biggest part of the subjects treated in the appendixes

is present in the references, but in a way that we did not manage to cite directly without

loss of clearness.

In Appendix A, we provide an outline of direct limits of abelian groups.

This algebraic notion is essential to de�ne the compactly-supported generalized

cohomology groups, used in Chapter 1. It also appears in the de�nition of compactly-

supported Twisted K-Theory in Chapter 5. For the categorical approach to this topic,

we used [26, pp. 105-112].

In Appendix B, we set a basic group-theoretical tool, that is essential to

de�ne K-Theory, namely, the Grothendieck group of an abelian semigroup. The idea

behind such concept consists in �nding the minimal extension of an abelian semigroup to

an abelian group, although it turns out not to be an extension in general. We followed
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[2, pp. 42-43], that presents such construction for generic abelian semigroups,

without assuming the existence of a unit. The notions presented here are mainly used in

Chapters 2 and 5, but they appear throughout the whole work.

In Appendix C, we consider the fundamental notion underlying Ordinary

K-Theory, that is, the one of vector bundle. Since the corresponding theory is

extensive, we only selected some of its initial concepts and the results that play

essential roles in the main text. We used [2, pp. 1 - 41], [15, pp. 4 - 37], [16, pp.

85 - 109], [18, pp. 24 - 39], [19, pp. 1 - 51], [24, pp. 249 - 271] and [31]. The notions

presented here are mainly used in Chapter 2.

In Appendix D, we describe classical constructions with topological spaces:

wedge sum, smashed product, cones and suspensions. We restrict them to compact

Hausdor� spaces, since they are the spaces we used to construct K-Theory in Chapter 2.

We followed [14, pp. 8-10].

In Appendix E, we explain the elementary concepts on real division

algebras. Moreover, we provide some historical notes on the main real division

algebras: R, C, H and O. This is done because we think that it is a way to

understand the importance of the Bott-Milnor-Kervaire Theorem presented in

Chapter 2, which was one of the �rst achievements of K-Theory. We conclude our

presentation with two classical results about these algebras, which explain why they are

relevant and, in a certain sense, unique. Our exposition was based on [5], [10], [27],

[36] and [38].

Finally, in Appendix F, we review the initial concepts on principal bundles

and the results that play an essential role in our exposition. Moreover, since this

theory is, under a certain viewpoint, equivalent to the one of vector bundles, we

introduce some notions that show this equivalence. We mainly used [30, pp. 28-35]

and [35, pp. 111-118].
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Chapter 1

Generalized Cohomology Theories

In this chapter, we describe some of the structural properties of generalized

cohomology theories. This technical work is worth doing because, as we shall see

later in Chapter 2, many results are then immediate once we prove that the

mathematical framework under consideration is a generalized cohomology theory.

In order to write this part of the text, we used as main reference

[13, pp. 3 - 53]. Nevertheless, Section 1.9 could not be completed without

[28] as well as Section 1.12 could not be written without [21, pp. 38-40]. In

addition, [37] was used as a reference for some historical facts involving Homological

Algebra.

1.1 Admissible categories of topological spaces

The notion of admissible category of topological spaces, which is described here,

will be used when we set the axioms for generalized cohomology theories. We begin with

the following de�nition.

De�nition 1.1 (The category of ordered pairs of topological spaces). We de�ne the

category of ordered pairs of topological spaces, and denote it by Top2, to be the one

whose:

� objects are ordered pairs (X,A) in which X is a topological space and A ⊆ X is

equipped with the induced topology; and
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� morphisms are continuous functions f : X → Y such that f(A) ⊆ B, usually

denoted by f : (X,A)→ (Y,B). ♦

Historical experience shows that the natural environment to set a generalized

cohomology theory is a convenient subcategory of Top2. In fact, in some concrete

generalized cohomology theories, important theoretical results do not hold if we consider

the whole Top2. We will enlighten shortly the precise meaning of the word �convenient�.

First, let us show that we can select subcategories of Top2 in a myriad of ways. For

example, we can consider:

(1) TopO2 to be the non-full subcategory whose objects are ordered pairs of topological

spaces and whose morphisms are open continuous maps;

(2) TopHd2 to be the full subcategory whose objects are ordered pairs of Hausdor�

spaces;

(3) TopD2 to be the full subcategory whose objects are ordered pairs of topological

spaces endowed with the discrete topology;

(4) TopHdCpt2 to be the full subcategory whose objects are ordered pairs (X,A) in

which X is compact Hausdor�;

(5) TopHdCCpt2 to be the full subcategory whose objects are ordered pairs (X,A) in

which X is compact Hausdor� and A is a closed subspace of X;

(6) TopHdLocCptP2 to be the non-full subcategory whose objects are ordered pairs

(X,A) in which X is locally compact Hausdor�, and whose morphisms are proper

continuous maps; and

(7) TopHdLocCCptP2 to be the non-full subcategory whose objects are ordered pairs

(X,A) in which X is locally compact Hausdor� and A is a closed subspace of X,

and whose morphisms are proper continuous maps.

As we can see from the preceding examples, there are basically two procedures to

set a subcategory of Top2 (note that, in some cases, these procedures are applied at the

same time):
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� the �rst one is to restrict pairs of topological spaces (as in Examples (2), (3), (4),

(5), (6) and (7)); and

� the second one is to restrict morphisms between pairs of spaces (as in Examples (1),

(6) and (7)).

Therefore, the idea behind the word �convenient� is that, in order to develop a generalized

cohomology theory in a subcategory of Top2, we need to be careful about not restricting

too much the pairs of spaces and their morphisms. This elementary idea is formalized by

the following de�nition.

De�nition 1.2 (Admissible category of topological spaces). A subcategory C of Top2 is

an admissible category of topological spaces if it satis�es all of the four conditions

listed below. In this situation, the pairs and the maps that belong to C are said to be

admissible.

(1) If (X,A) ∈ C , then all pairs and inclusions maps of the following lattice of (X,A)

are in C , where 0 denotes the empty set.

(X, 0)

(0, 0) (A, 0) (X,A) (X,X)

(A,A)

(2) If f : (X,A) → (Y,B) is in C , then (X,A) and (Y,B) are in C together with

all maps that f de�nes from members of the lattice of (X,A) into corresponding

members of the lattice of (Y,B).

(3) If I := [0, 1] and (X,A) ∈ C , then

(X,A)× I := (X × I, A× I)

is in C together with the maps ι0, ι1 : (X,A) → (X,A) × I given by ι0(x) = (x, 0)

and ι1(x) = (x, 1) for all x ∈ X.
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(4) There exists an ordered pair (Ω, 0) in C where Ω consists of a single point. In

addition, if (X,A) and (Y, 0) are in C , Y is a single point and f : (Y, 0)→ (X,A)

is in Top2, then f is also in C . ♦

Notation 1.3 (Identity maps). In an admissible category of topological spaces, the

identity maps of admissible pairs are always admissible because C is de�ned as a

subcategory of Top2. Hereafter, id(X,A) : (X,A)→ (X,A) is our notation for the identity

map on the admissible pair (X,A). ♦

Notation 1.4 (Ordered pairs with empty second components). In an admissible

category of topological spaces, we abbreviate an admissible pair (X, 0) simply by X. In

particular, we shall say that X is an admissible space if its corresponding pair (X, 0) is

admissible. ♦

The reader can prove that Top2 and Examples (2), (5) and (7) are admissible

categories of topological spaces. On the other hand, Examples (1), (3), (4) and (6) are

non-admissible categories of topological spaces. We prove this latter statement in the

sequence. In fact:

� TopO2 is non-admissible because a continuous map from a point into a space

is not always open. For example, the inclusion of the origin in any non-trivial

Euclidean space is not an open map. In other words, TopO2 does not verify

Condition (4);

� TopD2 is non-admissible because the product of a nonempty discrete space with

the unit interval is not a discrete space. In other words, TopD2 does not verify

Condition (3);

� TopHdCpt2 is non-admissible because, if (X,A) ∈ TopHdCpt2 is such that A is not

a closed subspace of X, then (A, 0) does not belong to TopHdCpt2. This happens

because every compact subspace of a Hausdor� space is necessarily closed. In other

words, TopHdCpt2 does not verify Condition (1); and

� TopHdLocCptP2 is non-admissible because, if (X,A) ∈ TopHdLocCptP2 is such

that X is a compact Hausdor� space and A is not a closed subspace of X, then
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the inclusion ι : A → X is not a proper map. Indeed, we have that ι−1(X) = A

is not compact. In other words, we have that TopHdLocCptP2 does not verify

Condition (1).

We leave to the reader the search for subcategories of Top2 that do not verify

Condition (2) of De�nition 1.2. The interesting problem is to �nd subcategories of Top2

that satis�es all of the conditions of De�nition 1.2 but this one. To close this section,

we present the following important de�nitions which are useful to de�ne the generalized

cohomology theories.

De�nition 1.5 (Homotopy and homotopic maps). Let C be an admissible category of

topological spaces. Let ι0, ι1 : (X,A) → (X,A) × I be the maps presented in the third

condition of De�nition 1.2. In addition, let f, g : (X,A) → (Y,B) be admissible maps.

A homotopy between f and g is an admissible map Θ : (X,A) × I → (Y,B) such that

the diagrams

(X,A) (X,A)× I (Y,B)ι0

f

Θ

(X,A) (X,A)× I (Y,B)ι1

g

Θ

are commutative. If there exists an admissible homotopy between f and g, then these

maps are said to be homotopic. ♦

Remark 1.6 (Homotopy of maps is a compatible equivalence relation on the class of

morphisms of an admissible category). Let C be an admissible category of topological

spaces. The relation of homotopy of maps on the class of morphisms of C is de�ned as

follows: two admissible maps are related if and only if there exists a homotopy between

them. The reader can readily prove that this is an equivalence relation. Furthermore, this

relation is compatible with the composition in C . This means that r ◦ f is homotopic to

s ◦ g whenever f is homotopic to g and r is homotopic to s. These facts allow us to set

the following de�nition. ♦
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De�nition 1.7 (The quotient category by the relation of homotopy of maps). Let C be

an admissible category of topological spaces. We de�ne the quotient category of C by

the relation of homotopy of maps, and denote it by [C ], to be the one whose:

� objects are the same objects of C ; and

� morphisms are the equivalence classes of morphisms of C under the relation of

homotopy of maps. ♦

Remark 1.8 (The quotient category is non-admissible). An admissible category of

topological spaces C is a suitable subcategory of Top2. Since the morphisms of [C ] are not

morphisms of Top2, [C ] cannot be a subcategory of Top2. A fortiori, [C ] cannot be an

admissible category of topological spaces. ♦

1.2 Axioms for generalized cohomology theories

Cohomology Theory was turned into an axiomatic theory by Samuel Eilenberg

(1913-1998) and Norman Steenrod (1910-1971) in the last century. These men set

the postulates that are known today as the Eilenberg-Steenrod Axioms. The

study of generalized cohomology theories starts removing one of Eilenberg-Steenrod

Axioms: the Dimension Axiom(1). In this section, we use the notion of admissible

category of topological spaces to state the following de�nition which contains the axioms

for a generalized cohomology theory.

De�nition 1.9 (Generalized cohomology theory). Consider:

� C to be an admissible category of topological spaces;

� (hn)n∈Z to be a sequence of contravariant functors from C into the category

of abelian groups Gab. We call hn(X,A) the nth generalized relative

cohomology group of the admissible pair (X,A). Especially, we call

hn(X) = hn(X, 0) the nth generalized absolute cohomology group of the

(1)The Dimension Axiom states that the cohomology groups of a one-point space are trivial in all degrees
with the possible exception of degree zero.



1. Generalized Cohomology Theories 11

admissible space X. Being f : (X,A) → (Y,B) an admissible map of pairs,

we say that hn(f) : hn(Y,B) → hn(X,A) is its nth generalized induced

homomorphism; and

� (δn)n∈Z to be a sequence of functions that assign to each admissible pair (X,A) a

homomorphism δn(X,A) : hn−1(A) → hn(X,A). We call δn(X,A) the nth generalized

coboundary operator of (X,A).

These three pieces of data are said to be a generalized cohomology theory if the

following four axioms are satis�ed.

(1) Commutativity Axiom. For every admissible map f : (X,A)→ (Y,B) and every

n ∈ Z, the following diagram is commutative.

hn−1(B) hn−1(A)

hn(Y,B) hn(X,A)

hn−1(f |A)

δn
(Y,B)

δn
(X,A)

hn(f)

In other words, if f : (X,A) → (Y,B) is admissible and f |A: A → B is the map

de�ned by f , then the two ways of mapping hn−1(B) into hn(X,A) presented in the

previous diagram have to coincide.

(2) Exactness Axiom. If i : A → X and j : X → (X,A) are the natural inclusion

maps, then the following sequence composed of groups and of group homomorphisms

is exact.

· · · hn−1(A) hn(X,A) hn(X) hn(A) · · ·
δn
(X,A) hn(j) hn(i)

In other words, we require Im δn(X,A) = Kerhn(j), Imhn(j) = Kerhn(i) and

Imhn(i) = Ker δn+1
(X,A) for all n ∈ Z. This exact sequence is called the

generalized cohomology sequence of the admissible pair (X,A).
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(3) Homotopy Axiom. Admissible homotopic maps have the same generalized

induced homomorphisms in all degrees. More explicitly, if f, g : (X,A) → (Y,B)

are admissible homotopic maps, then

hn(f) = hn(g) : hn(Y,B)→ hn(X,A)

for every n ∈ Z.

(4) Excision Axiom. If U is open in X and its closure is contained in the interior of

A, then the inclusion map (X−U,A−U)→ (X,A), from now on called an excision

map or just an excision, if admissible, induces isomorphisms from hn(X,A) onto

hn(X − U,A− U) for all n ∈ Z. ♦

Remark 1.10 (On an equivalent formulation of the Excision Axiom). In a generalized

cohomology theory, we have that the following statement is equivalent to the Excision

Axiom.

Let X1 and X2 be subsets of an admissible space X such that X1 is closed and X is

the union of interiors of X1 and X2. If

i : (X1, X1 ∩X2) → (X1 ∪X2, X2)

is admissible, then hn(i) : hn(X1 ∪X2, X2) → hn(X1, X1 ∩X2) is an isomorphism

for all n ∈ Z.

Indeed, assuming the Excision Axiom as in De�nition 1.9, the preceding assertion

follows since i : (X1, X1 ∩ X2) → (X1 ∪ X2, X2) is the excision map obtained from

the pair (X1 ∪ X2, X2) relatively to U = X − X1. Conversely, the Excision Axiom

follows from the preceding assertion by taking A = X2 and U = X − X1. This proves

our claim. ♦

The beauty of an axiomatic treatment lies in the simpli�cation obtained in some

proofs of theorems. As a matter of fact, proofs based directly on the axioms are usually

simple and conceptual. Furthermore, no one is faced at the end of a proof by the question:

Does the proof still hold if another generalized cohomology theory replaces the one used?

To close this section, we present our �rst illustrative examples of these ideas for generalized

cohomology theories.
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Theorem 1.11 (Trivial generalized cohomology groups). In a generalized cohomology

theory, if (X,A) is an admissible pair and the inclusion map i : A → X is such that

hn(i) : hn(X) → hn(A) is an isomorphism for all n ∈ Z, then hn(X,A) is trivial

for all n ∈ Z.

Proof. Let n be an integer number and j : X → (X,A) be an inclusion map. The

following section of the generalized cohomology sequence of (X,A) is exact by the

Exactness Axiom.

hn−1(X) hn−1(A) hn(X,A) hn(X) hn(A)
hn−1(i) δn

(X,A) hn(j) hn(i)

Therefore, since hn(i) is an isomorphism, Kerhn(i) is trivial. Thence, once

Imhn(j) = Kerhn(i), we have

Kerhn(j) = hn(X,A).

Correspondingly, since hn−1(i) is an isomorphism, it follows that

Imhn−1(i) = hn−1(A).

Thus, once Ker δn(X,A) = Imhn−1(i), we have that Imδn(X,A) is trivial. Hence, hn(X,A) is

trivial because Im δn(X,A) = Kerhn(j), as we wished.

Corollary 1.12 (The generalized cohomology groups of a pair with equal components).

In a generalized cohomology theory, if (X,X) is an admissible pair, then hn(X,X) is

trivial for all n ∈ Z.

Proof. This result follows from Theorem 1.11 since the identity map idX : X → X induces

idhn(X) : hn(X)→ hn(X) for all n ∈ Z.

Corollary 1.13 (The generalized cohomology groups of the pair composed of empty

components). In a generalized cohomology theory, the generalized absolute cohomology

group hn(0) is trivial for all n ∈ Z.

Proof. The assertion follows from Corollary 1.12 since the pair composed of empty

components has equal components.
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1.3 Homomorphisms between generalized cohomology

sequences

The main result of this section is that an admissible map of pairs induces a

homomorphism of exact sequences between the generalized cohomology sequences of its

domain and codomain. After that, we set a classical result from Homological Algebra

to establish a condition under which generalized cohomology sequences are isomorphic.

Finally, we discuss some changeable features in the framework of generalized cohomology

theories with respect to De�nition 1.9. We begin with the following remark that must be

kept in mind.

Remark 1.14 (Maps de�ned by a map of pairs). Let C be an admissible category

of topological spaces. Every admissible map of pairs f : (X,A) → (Y,B) de�nes the

maps

f1 : X → Y and f2 : A→ B.

The reader can readily prove that f1 and f2 are admissible maps by writing them as

compositions between f and convenient admissible inclusions. An important fact is that,

although f1 and f2 are de�ned by the same formula than f , these three maps are di�erent

maps of pairs in general. ♦

De�nition 1.15 (The generalized induced homomorphism between generalized

cohomology sequences). In a generalized cohomology theory, if f : (X,A) → (Y,B)

is an admissible map of pairs, then the sequence of group homomorphisms

h(f) := (· · · , hn−1(f1), hn−1(f2), hn(f), hn(f1), hn(f2), · · · )

is the generalized induced homomorphism of f between the generalized cohomology

sequences of (Y,B) and (X,A). ♦

Theorem 1.16 (The generalized induced homomorphism between generalized

cohomology sequences is a homomorphism of exact sequences). In a generalized

cohomology theory, if f : (X,A) → (Y,B) is an admissible map of pairs, then h(f)
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is a homomorphism of exact sequences between the generalized cohomology sequences of

(Y,B) and (X,A).

Proof. Let i : A→ X, j : X → (X,A), i′ : B → Y and j′ : Y → (Y,B) be inclusion maps.

To verify the statement of the theorem we have to prove that the following diagram is

commutative.

· · · hn(Y,B) hn(Y ) hn(B) hn+1(Y,B) · · ·

· · · hn(X,A) hn(X) hn(A) hn+1(X,A) · · ·

hn(j′)

hn(f)

hn(i′)

hn(f1)

δn+1
(Y,B)

hn(f2) hn+1(f)

hn(j) hn(i) δn+1
(X,A)

In fact, we have hn(j) ◦ hn(f) = hn(f1) ◦ hn(j′) and hn(i) ◦ hn(f1) = hn(f2) ◦ hn(i′)

because of the functoriality of hn since f ◦ j = j′ ◦ f1 and f1 ◦ i = i′ ◦ f2. In turn,

δn+1
(X,A) ◦ hn(f2) = hn+1(f) ◦ δn+1

(Y,B) because it is just a restatement of the Commutativity

Axiom.

Lemma 1.17 (The Five Lemma). The following commutative diagram of abelian groups

and homomorphisms has exact rows.

C1 C2 C3 C4 C5

D1 D2 D3 D4 D5

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

If ϕ1, ϕ2, ϕ4 and ϕ5 are isomorphisms, then ϕ3 is also an isomorphism.

Proof. The reader can �nd a proof of this result in [13, p. 16], which is where the

lemma in question �rst appeared according to [37, p. 17]. This last reference is a

good one to acquire some knowledge on the history and on the main problems of

Homological Algebra.

Corollary 1.18 (Isomorphism of generalized cohomology sequences). In a generalized

cohomology theory, if f : (X,A) → (Y,B) is an admissible map of pairs such that
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hn(f1) : hn(Y ) → hn(X) and hn(f2) : hn(B) → hn(A) are isomorphisms for all n ∈ Z,

then

hn(f) : hn(Y,B)→ hn(X,A)

is also an isomorphism for all n ∈ Z. In particular, we have that h(f) is an

isomorphism of exact sequences between the generalized cohomology sequences of (Y,B)

and (X,A).

Proof. Let n be an integer number and i : A → X, j : X → (X,A), i′ : B → Y

and j′ : Y → (Y,B) be inclusion maps. The following diagram is commutative due to

Theorem 1.16.

hn−1(Y ) hn−1(B) hn(Y,B) hn(Y ) hn(B)

hn−1(X) hn−1(A) hn(X,A) hn(X) hn(A)

hn−1(i′)

hn−1(f1)

δn
(Y,B)

hn−1(f2)

hn(j′)

hn(f)

hn(i′)

hn(f1) hn(f2)

hn−1(i) δn
(X,A) hn(j) hn(i)

Moreover, the Exactness Axiom says that the preceding commutative diagram has exact

rows. Therefore, since hn−1(f1), hn−1(f2), hn(f1) and hn(f2) are isomorphisms, it follows

from the Five Lemma that hn(f) : hn(Y,B) → hn(X,A) is also an isomorphism, as we

wished.

To close this section, as we said at the beginning, we discuss some

changeable features in the framework of generalized cohomology theories with respect to

De�nition 1.9. This discussion may help the reader to perfect his or her

understanding of the data involved in generalized cohomology theories. We begin with

the following de�nition.

De�nition 1.19 (The category of exact sequences of abelian groups). We de�ne the

category of exact sequences of abelian groups, and denote it by SeqExactAb, to be

the one whose:

� objects are in�nite exact sequences of abelian groups. That is, exact sequences of

the form
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· · · Cn−1 Cn Cn+1 · · · ,ϕn ϕn+1

where Cn is an abelian group and ϕn : Cn−1 → Cn is a morphism of abelian groups

for all n ∈ Z; and

� morphisms are homomorphisms of exact sequences of abelian groups. That is,

sequences of morphisms of abelian groups (ξn : Cn → Dn)n∈Z such that the following

diagram is commutative.

· · · Cn−1 Cn Cn+1 · · ·

· · · Dn−1 Dn Dn+1 · · ·

ξn−1 ξn ξn+1

Note that the rows of the preceding diagram are tacitly assumed to be exact sequences

of abelian groups. ♦

Remark 1.20 (The generalized cohomology functors and their domain and codomain

categories). To set a generalized cohomology theory, we considered a sequence (hn)n∈Z

of contravariant functors from an admissible category C into the category of abelian groups

Gab. Obviously, hn sends:

� a pair (X,A) into the nth generalized cohomology group hn(X,A); and

� a map f : (X,A) → (Y,B) into the nth generalized induced homomorphism

hn(f) : hn(Y,B)→ hn(X,A).

Moreover, the Homotopy Axiom says that homotopic admissible maps have the same

image through these functors. This allows a re�nement of each hn through the homotopy

equivalence of maps. The re�nement is the contravariant functor [h]n from [C ] into Gab

that sends:

� a pair (X,A) into the nth generalized cohomology group hn(X,A); and

� a class [f : (X,A) → (Y,B)] into the nth generalized induced homomorphism

hn(f) : hn(Y,B)→ hn(X,A).
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Consequently, we could have de�ned a generalized cohomology theory requiring a

sequence of contravariant functors from [C ] into Gab instead of a sequence of

contravariant functors from C into Gab. In this situation, the Homotopy Axiom would

have been an obvious consequence of the mathematical structure in question.

Furthermore, we could have considered a contravariant functor from [C ] into the

category of exact sequences of abelian groups SeqExactAb. More explicitly, this

functor would send:

� a pair (X,A) into its generalized cohomology sequence; and

� a class [f : (X,A) → (Y,B)] into the generalized induced homomorphism of

f between the generalized cohomology sequences of (Y,B) and (X,A).

In this situation, the Commutativity Axiom, the Exactness Axiom and the Homotopy

Axiom would have been obvious consequences of the mathematical structures in question.

The reader can easily combine these constructions to produce other ways of establishing

the data and the axioms of De�nition 1.9. All of these approaches are equivalent and then

a matter of choice. ♦

1.4 Homeomorphic pairs and generalized cohomology

groups and sequences

In this section, we prove that, in a generalized cohomology theory, the generalized

cohomology groups and sequences are intrinsically the same for admissible homeomorphic

pairs. The results that are established here can be seen as immediate consequences of

the results involving homotopy equivalences that we shall present later. However, the

importance of homeomorphisms is a su�cient reason to set this section independently.

We begin with the following de�nition.

De�nition 1.21 (Homeomorphism and homeomorphic pairs of topological spaces). In an

admissible category of topological spaces, two admissible pairs (X,A) and (Y,B)

are homeomorphic if there exist admissible maps f : (X,A) → (Y,B) and



1. Generalized Cohomology Theories 19

g : (Y,B) → (X,A) such that g ◦ f = id(X,A) and f ◦ g = id(Y,B). In this situation,

we say that f and g are inverse homeomorphisms. ♦

Remark 1.22 (Homeomorphism of pairs is an equivalence relation on the class of objects

of an admissible category). Let C be an admissible category of topological spaces. The

relation of homeomorphism of pairs on the class of objects of C is de�ned in the following

manner: two admissible pairs of topological spaces are related if and only if there exists

an admissible homeomorphism between them. The reader can readily prove that this is an

equivalence relation. ♦

Theorem 1.23 (Invariance of the cohomology groups under homeomorphisms of pairs).

In a generalized cohomology theory, if (X,A) and (Y,B) are admissible homeomorphic

pairs, then hn(X,A) is isomorphic to hn(Y,B) for all n ∈ Z. In other words, admissible

homeomorphic pairs have isomorphic generalized cohomology groups.

Proof. Let n be an integer number and f : (X,A)→ (Y,B) be a homeomorphism of pairs.

The functorial properties of hn imply

hn(f) ◦ hn(f−1) = hn(f−1 ◦ f) = hnid(X,A) = idhn(X,A) and

hn(f−1) ◦ hn(f) = hn(f ◦ f−1) = hnid(Y,B) = idhn(Y,B).

Hence, hn(f−1) is a group isomorphism from hn(X,A) onto hn(Y,B). Then, hn(X,A) is

isomorphic to hn(Y,B), as we wished.

Corollary 1.24 (Isomorphism of the generalized cohomology sequences induced from an

admissible homeomorphism of pairs). In a generalized cohomology theory, if (X,A) and

(Y,B) are admissible homeomorphic pairs, then the generalized cohomology sequences of

(X,A) and (Y,B) are isomorphic. In other words, admissible homeomorphic pairs have

isomorphic generalized cohomology sequences.

Proof. Let f : (X,A) → (Y,B) be a homeomorphism of pairs. It follows from the

preceding result that h(f) is an isomorphism between the generalized cohomology

sequences of (Y,B) and (X,A), as we wished.
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1.5 The reduced generalized cohomology groups and

sequences

In this section, we present the reduced generalized cohomology groups and

sequences. In addition, we study their relation to the generalized cohomology groups

and sequences de�ned in the previous sections. These new mathematical objects are

important tools to simplify various calculus in cohomology theory. We begin with the

following de�nition.

De�nition 1.25 (Collapsible topological spaces). Let C be an admissible category of

topological spaces and Ω be an admissible single point. Let X be an admissible topological

space. If the only possible map pX : X → Ω is admissible, then X is said to be a

collapsible space. ♦

Remark 1.26 (Collapsibility of an admissible space is independent of the choice of the

admissible single point). Let C be an admissible category of topological spaces and X

be an admissible topological space. If Ω and Γ are admissible single points, then X is

collapsible with respect to Ω if and only if it is collapsible with respect to Γ. In fact, if X

is collapsible with respect to Ω, then pX : X → Ω is admissible. Let f : Ω → Γ be the

only possible admissible map. It follows that qX = f ◦ pX : X → Γ is admissible, and then

that X is collapsible with respect to Γ. The converse can be proved in the exactly same

way considering f−1 : Γ→ Ω instead of f : Ω→ Γ. Therefore, we are allowed to say that

an admissible topological space is collapsible without worrying about any speci�c choice of

the admissible single point. ♦

Remark 1.27 (A space can be collapsible in an admissible category of topological spaces

but non-collapsible in another one). In the �rst section of this chapter, we have seen

that Top2, TopHd2, TopHdCCpt2 and TopHdLocCCptP2 are admissible categories of

topological spaces. It is evident that every admissible space in Top2, in TopHd2 and in

TopHdCCpt2 is collapsible. On the other hand, the collapsible spaces in TopHdLocCCptP2

are the compact ones since the preimage of a point by a proper map must be compact.

Hence, for example, the Euclidean spaces are all collapsible in Top2 and in TopHd2 but
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non-collapsible in TopHdLocCCptP2. It is to be noted that every space in TopHdCCpt2

is collapsible in TopHdLocCCptP2. ♦

Theorem 1.28 (Categorical consequences of maps with collapsible codomains). Let C

be an admissible category of topological spaces and Ω be an admissible single point. Let

X and Y be admissible spaces and f : X → Y be an admissible map. If Y is collapsible,

then X is collapsible. Furthermore, if (X,A) is an admissible pair, and X is collapsible,

then A is collapsible and p(X,A) : (X,A)→ (Ω,Ω) is admissible.

Proof. The �rst statement is a trivial consequence of the third property of admissible

categories. If (X,A) is admissible, the inclusion map A→ X is admissible. If, in addition,

X is collapsible, the composite map A→ X → Ω is admissible, and then A is collapsible.

Since X → Ω is admissible, so is (X,X)→ (Ω,Ω). Therefore, (X,A)→ (X,X)→ (Ω,Ω)

is also admissible.

De�nition 1.29 (The reduced generalized cohomology groups of an admissible collapsible

space). In a generalized cohomology theory, let Ω be an admissible single point and X be

an admissible collapsible space. In this situation, for all n ∈ Z:

� the homomorphic image of hn(Ω) under hn(pX) : hn(Ω) → hn(X) is denoted by

hn(Ω)X ; and

� the quotient group of hn(X) by hn(Ω)X is said to be the nth reduced generalized

cohomology group of X, and is denoted by h̃n(X). In other words, h̃n(X) is

de�ned as the cokernel of hn(pX) : hn(Ω)→ hn(X). ♦

Theorem 1.30 (The reduced generalized cohomology groups of a point). Let C be an

admissible category of topological spaces and Ω be an admissible single point. If Γ is

another admissible single point, then hn(Γ) = hn(Ω)Γ for all n ∈ Z. In particular, h̃n(Γ)

is the trivial group for all n ∈ Z.

Proof. Let n be an integer number. The �rst claim is immediate since pΓ : Γ → Ω is a

homeomorphism. Therefore, since h̃n(Γ) is the quotient group of hn(Γ) by hn(Ω)Γ and

hn(Γ) = hn(Ω)Γ, h̃n(Γ) is the trivial group.
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Theorem 1.31 (A cohomological consequence of maps with collapsible codomains). In

a generalized cohomology theory, if Ω is an admissible single point and f : X → Y is

an admissible map such that Y is collapsible, then hn(f) : hn(Y )→ hn(X) maps hn(Ω)Y

isomorphically onto hn(Ω)X for all n ∈ Z.

Proof. Since Y is a collapsible space, we have that pY : Y → Ω is an admissible map;

moreover, since f : X → Y is an admissible map, we have that X is also collapsible.

Then, let n be an integer number and i : Ω → Y be an admissible map. It is clear that

pY ◦ i = idΩ. Consequently, we have that hn(pY ) : hn(Ω) → hn(Y ) is a monomorphism

because

idhn(Ω) = hn(pY ◦ i) = hn(i) ◦ hn(pY ).

Similarly, hn(f) ◦ hn(pY ) = hn(pY ◦ f) : hn(X) → hn(Ω) is a monomorphism because

pY ◦ f ◦ i = idΩ implies

idhn(Ω) = hn(pY ◦ f ◦ i) = hn(i) ◦ hn(pY ◦ f).

These two facts prove that hn(f) : hn(Y ) → hn(X) is an isomorphism from

Imhn(pY ) = hn(Ω)Y onto Imhn(pY ◦ f) = hn(Ω)X , as we wished.

De�nition 1.32 (The reduced generalized induced homomorphisms of an admissible

map with collapsible codomain). In a generalized cohomology theory, if f : X → Y is an

admissible map such that Y is a collapsible space, then the homomorphism

h̃n(f) : h̃n(Y ) → h̃n(X) generated by hn(f) is called the nth reduced generalized

induced homomorphism. ♦

Corollary 1.33 (The kernel of the generalized induced homomorphism is isomorphic

to the kernel of the reduced generalized induced homomorphism). In a generalized

cohomology theory, if Ω is an admissible single point and f : X → Y is an

admissible map such that Y is a collapsible space, then Kerhn(f) is isomorphic to

Ker h̃n(f) for all n ∈ Z.

Proof. Let n be an integer number. Since Y is a collapsible space, pY : Y → Ω is

admissible; moreover, since f : X → Y is an admissible map, we have that X is also

collapsible. Therefore, pX : X → Ω is also admissible. Consequently, the
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reduced generalized cohomology groups h̃n(X) and h̃n(Y ) are well-de�ned. Then, let

πnX : hn(X) → h̃n(X) and πnY : hn(Y ) → h̃n(Y ) be the natural quotient maps. The

commutativity of the following diagram is a straightforward computation, that we leave

to the reader.

hn(Y ) hn(X)

h̃n(Y ) h̃n(X)

hn(f)

πnY πnX

h̃n(f)

We claim that the restriction map πnY |Kerhn(f): Kerhn(f) → Ker h̃n(f) is a well-de�ned

isomorphism. Indeed:

� πnY maps Kerhn(f) into Ker h̃n(f). This assertion is an immediate consequence

of the commutativity of the preceding diagram. In fact, if u ∈ Kerhn(f), then

h̃n(f)(πnY (u)) = πnX(hn(f)(u)) = πnX(0) = [0]. Therefore, we have proved that

πnY (u) ∈ Ker h̃n(f);

� πnY |Kerhn(f) is injective. Let u ∈ Kerhn(f) be in such manner that πnY (u) = [0].

This condition implies u ∈ hn(Ω)Y . Therefore, u ∈ Kerhn(f) |hn(Ω)Y . Since

hn(f) |hn(Ω)Y : hn(Ω)Y → hn(Ω)X is an isomorphism by Theorem 1.31, we have

u = 0. This proves the injectivity of πnY |Kerhn(f); and

� πnY |Kerhn(f) is surjective. Let [u] ∈ Ker h̃n(f). This assumption implies

[hn(f)(u)] = [0]. Thus, hn(f)(u) ∈ hn(Ω)X . Consequently, there exists

v ∈ hn(Ω) such that hn(f)(u) = hn(pX)(v). Since pX = pY ◦ f , it follows that

hn(pX)(v) = hn(f)(hn(pY )(v)). Therefore, hn(f)(u) = hn(f)(hn(pY )(v)). Then,

hn(f)(u − hn(pY )(v)) = 0 implies u − hn(pY )(v) ∈ Kerhn(f). Furthermore,

πnY (u − hn(pY )(v)) = [u] because hn(pY )(v) ∈ hn(Ω)Y . This proves the

surjectivity of πnY |Kerhn(f). �

Theorem 1.34 (The coboundary operator in reduced generalized cohomology). In a

generalized cohomology theory, if Ω is an admissible single point and (X,A) is an
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admissible pair of topological spaces such that X is a collapsible space, then hn−1(Ω)A

lies in the kernel of δn(X,A) : hn−1(A) → hn(X,A) for all n ∈ Z. Therefore, this map

induces the homomorphism δ̃n(X,A) : h̃n−1(A) → hn(X,A) which is the nth coboundary

operator in the reduced generalized cohomology.

Proof. Let n be an integer number. Since X is collapsible, pX : X → Ω is admissible.

Therefore, pA : A → Ω and p(X,A) : (X,A) → (Ω,Ω) are admissible maps because of

Theorem 1.28. Hence, the following diagram is not only well-de�ned but also commutative

by the Commutativity Axiom.

hn−1(Ω) hn−1(A)

hn(Ω,Ω) hn(X,A)

hn−1(pA)

δn
(Ω,Ω)

δn
(X,A)

hnp(X,A)

Therefore, if u ∈ hn−1(Ω)A, then there exists v ∈ hn−1(Ω) such that u = hn−1(pA)(v).

Thus,

δn(X,A)(u) = δn(X,A)(h
n−1(pA)(v)) = hnp(X,A)(δ

n
(Ω,Ω)(v)) = hnp(X,A)(0) = 0

because δn(Ω,Ω)(v) ∈ hn(Ω,Ω) and hn(Ω,Ω) is the trivial group by Corollary 1.12. Hence,

hn−1(Ω)A really lies in the kernel of δn(X,A) : hn−1(A) → hn(X,A). Consequently, it is

de�ned the coboundary operator in the reduced generalized cohomology as the

natural map δ̃n(X,A) : h̃n−1(A) → hn(X,A) induced by δn(X,A) : hn−1(A) → hn(X,A) from

hn−1(A)/hn−1(Ω)A = h̃n−1(A) into hn(X,A).

In the next paragraphs, we use the results developed in this section to establish the

reduced generalized cohomology sequence of an admissible pair whose �rst component is

a collapsible space.

De�nition 1.35 (The reduced generalized cohomology sequence of an admissible pair

whose �rst component is a collapsible space). In a generalized cohomology theory, if (X,A)

is an admissible pair such that X is a collapsible space, then the reduced generalized

cohomology sequence of (X,A) is
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· · · h̃n−1(A) hn(X,A) h̃n(X) h̃n(A) · · · ,
δ̃n
(X,A) h̃n(j) h̃n(i)

where i : A → X and j : X → (X,A) are inclusions, δ̃n(X,A) : h̃n−1(A) → hn(X,A)

is the nth coboundary operator in the reduced generalized cohomology, and the maps

h̃n(i) : h̃n(X) → h̃n(A) and h̃n(j) : hn(X,A) → h̃n(X) are the nth reduced

generalized induced homomorphisms generated by, respectively, hn(i) : hn(X) → hn(A)

and hn(j) : hn(X,A)→ hn(X). ♦

Theorem 1.36 (Exactness of the reduced generalized cohomology sequence). In a

generalized cohomology theory, if Ω is an admissible single point, (X,A) is an

admissible pair such that X is a collapsible space and i : (Ω,Ω) → (X,A) is any

admissible map, then the generalized cohomology sequence of (X,A) decomposes into the

direct sum of two exact subsequences:

(1) the kernel of h(i); and

(2) the isomorphic image of the generalized cohomology sequence of (Ω,Ω) under

h p(X,A).

Furthermore, the �rst subsequence is isomorphic to the reduced generalized cohomology

sequence of (X,A) under factorization of the generalized cohomology sequence of (X,A)

by the second subsequence. In particular, the reduced generalized cohomology sequence of

(X,A) is exact.

Proof. This result follows from purely algebraic arguments. The reader can �nd a proof

of it in [13, pp. 21-22].

De�nition 1.37 (The reduced generalized induced homomorphism between reduced

generalized cohomology sequences). In a generalized cohomology theory, if

f : (X,A) → (Y,B) is an admissible map of pairs such that X and Y are collapsible

spaces, then we say that the sequence of group homomorphisms

h̃(f) := (· · · , h̃n−1(f1), h̃n−1(f2), hn(f), h̃n(f1), h̃n(f2), · · · )
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is the reduced generalized induced homomorphism of f between the reduced

generalized cohomology sequences of (Y,B) and (X,A). ♦

Theorem 1.38 (The reduced generalized induced homomorphism between reduced

generalized cohomology sequences is a homomorphism of exact sequences). In a

generalized cohomology theory, if f : (X,A) → (Y,B) is an admissible map of

pairs such that X and Y are collapsible spaces, then h̃(f) is a homomorphism

of exact sequences between the reduced generalized cohomology sequences of (Y,B)

and (X,A).

Proof. This result is an immediate consequence of Theorem 1.16.

To close this section, we establish another version of the reduced generalized

cohomology groups, which will be useful later. In addition, we prove that the new version

of the reduced generalized cohomology groups is isomorphic to the �rst one, although the

isomorphism is not usually canonical. The absence of canonicity is what makes the new

theory interesting. We leave to the reader the construction of the new reduced generalized

cohomology sequence of an admissible pair because the details are analogous to the ones

we have just seen.

De�nition 1.39 (The pointed reduced generalized cohomology groups). In a generalized

cohomology theory, let Ω be an admissible single point, X be an admissible space and

x ∈ X be such that the map ix : Ω → X de�ned by ix(Ω) = x is an admissible map.

Henceforth, for all n ∈ Z, the kernel of hn(ix) : hn(X) → hn(Ω) is called the nth

pointed reduced generalized cohomology group of X, and is denoted by h̃nx(X).

Furthermore, we shall write un(x) instead of hn(ix)(u) ∈ hn(Ω) for all n ∈ Z and for

all u ∈ hn(X). ♦

Theorem 1.40 (The pointed reduced generalized induced homomorphism). In a

generalized cohomology theory, let Ω be an admissible single point and f : X → Y be

an admissible map. Therefore, for all n ∈ Z, if x ∈ X, y = f(x) and u ∈ hn(Y ), then

hn(f ◦ ix)(u) = un(y). Thus, hn(f) : hn(Y )→ hn(X) maps h̃ny (Y ) into h̃nx(X) and h̃ny (Y )

contains Kerhn(f). Hence, it is de�ned h̃nx(f) : h̃ny (Y )→ h̃nx(X) which is the nth pointed

reduced generalized induced homomorphism.
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Proof. Let n be an integer number. The �rst claim follows from f ◦ ix = iy. Moreover,

this yields the commutativity of the following diagram since hn(f ◦ ix) = hn(ix) ◦ hn(f)

and un(y) = hn(iy)(u) for all u ∈ hn(Y ).

hn(Y ) hn(Ω)

hn(X) hn(Ω)

hn(f)

hn(iy)

hn(ix)

Therefore:

� given u ∈ h̃ny (Y ) = Kerhn(iy), we have hn(ix)(h
n(f)(u)) = hn(iy)(u) = 0. Thus,

hn(f) maps h̃ny (Y ) into Kerhn(ix) = h̃nx(X); and

� given u ∈ Kerhn(f), we have hn(iy)(u) = hn(ix)(h
n(f)(u)) = hn(ix)(0) = 0. Thus,

Kerhn(f) is contained in Kerhn(iy) = h̃ny (Y ).

Consequently, it is indeed de�ned the pointed reduced generalized induced homomorphism

h̃nx(f) : h̃ny (Y )→ h̃nx(X) as the restriction hn(f) |h̃ny (Y ): h̃
n
y (Y )→ h̃nx(X), as we wished.

Theorem 1.41 (The connection between the generalized cohomology groups

and the pointed reduced generalized cohomology groups of an admissible space). In a

generalized cohomology theory, if Ω is an admissible single point and X is a

collapsible space, then the unique admissible map pX : X → Ω induces an

isomorphism from hn(Ω) onto hn(Ω)X for all n ∈ Z. Moreover, hn(X) decomposes

as the direct sum h̃nx(X)⊕ hn(Ω)X for all n ∈ Z and for all x ∈ X such that ix : Ω→ X

is an admissible map.

Proof. Let n be an integer number and x ∈ X be such that the map ix : Ω → X

given by ix(Ω) = x is admissible. Since the composition pX ◦ ix is the identity map

on Ω, the composition hn(ix) ◦ hn(pX) is the identity map on hn(Ω). Therefore, hn(pX)

is a monomorphism. This proves that pX : X → Ω induces an isomorphism from hn(Ω)

onto Imhn(pX) = hn(Ω)X . On the other hand, hn(X) decomposes as h̃nx(X) ⊕ hn(Ω)X

because:
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� h̃nx(X) = Kerhn(ix) and hn(Ω)X = Imhn(pX) have only the zero element in their

intersection. In fact, if u ∈ Kerhn(ix)∩ Imhn(pX), there exists v ∈ hn(Ω) such that

hn(pX)(v) = u. Then,

v = idhn(Ω)(v) = (hn(ix) ◦ hn(pX))(v) = hn(ix)(u) = 0

implies u = hn(pX)(v) = hn(pX)(0) = 0; and

� every u ∈ hn(X) is the sum of an element from h̃nx(X) with an element from

hn(Ω)X . In fact, let v = u − w where w = (hn(pX) ◦ hn(ix))(u). It is evident that

w ∈ hn(Ω)X = Imhn(pX). In turn,

hn(ix)(w) = (hn(ix) ◦ hn(pX) ◦ hn(ix))(u) = hn(ix)(u)

implies hn(ix)(v) = hn(ix)(u − w) = hn(ix)(u) − hn(ix)(w) = 0. Therefore, we

have v ∈ Kerhn(ix) = h̃nx(X). The statement is proved because u = v + w, as we

wished. �

Corollary 1.42 (The pointed reduced generalized cohomology groups and the reduced

generalized cohomology groups are always isomorphic). In a generalized cohomology

theory, if Ω is an admissible single point, X is an admissible collapsible space

and i : Ω → X is any �xed admissible map, then h̃n(X) is isomorphic to h̃ni(Ω)(X)

for all n ∈ Z.

Proof. Let n be an integer number and pX : X → Ω be the only possible map that

is admissible because X is supposed to be a collapsible space. The natural quotient

map πnX : hn(X) → h̃n(X) is also de�ned. We know that the following sequence is a

short exact sequence since hn(px) is injective, Imhn(pX) = hn(Ω)X = Ker πnX , and π
n
X is

trivially surjective.

0 hn(Ω) hn(X) h̃n(X) 0
hn(pX) πnX

To show that hn(px) is injective, we use the admissible map i : Ω → X. Indeed, once

pX ◦ i = idΩ implies idhn(Ω) = hn(pX ◦ i) = hn(i) ◦ hn(pX), the assertion is proved.

However, this equation also proves that the preceding short exact sequence is a split

short exact sequence. As a consequence, there exists an isomorphism between hn(X) and
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hn(Ω) ⊕ h̃n(X). In turn, this direct sum is isomorphic to hn(Ω)X ⊕ h̃n(X) since hn(pX)

is an isomorphism from hn(Ω) onto hn(Ω)X . Thus, hn(Ω)X ⊕ h̃n(X) is isomorphic to

hn(Ω)X ⊕ h̃ni(Ω)(X) by Theorem 1.41. Actually, the isomorphisms considered here can be

chosen to produce an isomorphism

ϕ : hn(Ω)X ⊕ h̃n(X)→ hn(Ω)X ⊕ h̃ni(Ω)(X)

such that ϕ(u, 0) = (u, 0) for all u ∈ hn(Ω)X . This fact implies that h̃n(X) is isomorphic

to h̃ni(Ω)(X). Indeed, let πh̃n
i(Ω)

(X) : hn(Ω)X ⊕ h̃ni(Ω)(X) → h̃ni(Ω)(X) be the projection onto

the second variable. The composition πh̃n
i(Ω)

(X) ◦ ϕ : hn(Ω)X ⊕ h̃n(X) → h̃ni(Ω)(X) is such

that Ker(πh̃n
i(Ω)

(X) ◦ ϕ) = hn(Ω)X . Therefore, the First Isomorphism Theorem shows that

h̃ni(Ω)(X) is isomorphic to the quotient group of hn(Ω)X ⊕ h̃n(X) by hn(Ω)X . Since this

very same theorem also implies that this quotient group is isomorphic to h̃n(X), we are

done here.

Remark 1.43 (The isomorphisms between the pointed reduced generalized

cohomology groups and the reduced generalized cohomology groups). In a generalized

cohomology theory, the existence of an isomorphism between h̃n(X) and h̃ni(Ω)(X) for

each �xed admissible map i : Ω → X allows us to see the reduced generalized

cohomology of X as the kernel of hn(i) : hn(X) → hn(Ω). This characterization is

usually more tractable than the �rst one because kernels are much more concrete

objects than cokernels. Another important fact is that the absence of canonicity for an

isomorphism between h̃n(X) and h̃ni(Ω)(X) is related to the choice of i(Ω) ∈ X. Indeed,

once we started considering any admissible map i : Ω → X, there are many choices for

the image i(Ω); for each admissible choice, there is an isomorphism between the groups

under consideration. ♦

1.6 Homotopy and generalized cohomology groups and

sequences

In this section, we prove that, in a generalized cohomology theory, the generalized

cohomology groups and sequences are intrinsically the same for admissible homotopic

pairs. We also prove here an important fact involving contractible topological spaces,
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which in many senses are seen to be the simplest topological spaces. We begin with the

following de�nition.

De�nition 1.44 (Homotopy equivalence of pairs). Let C be an admissible category of

topological spaces. Admissible pairs (X,A) and (Y,B) are said to be homotopically

equivalent if there exist two maps f : (X,A) → (Y,B) and g : (Y,B) → (X,A) such

that the composition g ◦f is homotopic to the identity map on (X,A) and the composition

f ◦ g is homotopic to the identity map on (Y,B). The maps f and g are said to be a

homotopy equivalence. Frequently, each of the maps f and g will be referred to as a

homotopy equivalence. ♦

Remark 1.45 (Homotopy of pairs is an equivalence relation on the class of objects

of an admissible category). Let C be an admissible category of topological spaces. The

relation of homotopy of pairs on the class of objects of C is de�ned in the following

manner: two admissible pairs of topological spaces are related if and only if there exists a

homotopy equivalence between them. Once again, the reader can readily prove that this is

an equivalence relation. ♦

Remark 1.46 (Homeomorphisms and homotopy equivalences). Let C be an admissible

category of topological spaces. Any two homeomorphic pairs are homotopically

equivalent. This happens because the identity map on any admissible pair is homotopic to

itself. On the contrary, homotopically equivalent pairs are not necessarily homeomorphic

pairs. In fact, for example, non-trivial Euclidean spaces are homotopically equivalent to a

one-point space in Top2. However, there is no homeomorphism between these spaces since

there is no bijection between their sets of points. This shows that the notion of homotopy

equivalence generalizes the one of homeomorphism. ♦

Theorem 1.47 (Invariance of the generalized cohomology groups under homotopy

equivalence of pairs). In a generalized cohomology theory, if (X,A) and (Y,B) are

admissible homotopically equivalent pairs, then hn(X,A) is isomorphic to hn(Y,B) for

all n ∈ Z. In other words, admissible homotopically equivalent pairs have isomorphic

generalized cohomology groups.
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Proof. Let n be an integer number and f : (X,A) → (Y,B) and g : (Y,B) → (X,A) be

an admissible homotopy equivalence. Since g ◦ f is homotopic to id(X,A), it follows from

the Homotopy Axiom that

hn(f) ◦ hn(g) = hn(g ◦ f) = hnid(X,A) = idhn(X,A).

Similarly, once f ◦g is homotopic to id(Y,B), it follows hn(g)◦hn(f) = idhn(Y,B). Therefore,

hn(f) and hn(g) are inverse isomorphisms between hn(X,A) and hn(Y,B), proving what

we wished.

Corollary 1.48 (An isomorphism of generalized cohomology groups induced by

almost homotopically equivalent admissible pairs). In a generalized cohomology theory, if

f : (X,A) → (Y,B) is an admissible map of pairs in such manner that f1 : X → Y

and f2 : A → B are homotopy equivalences, then hn(X,A) is isomorphic to hn(Y,B)

for all n ∈ Z.

Proof. It follows from the proof of Theorem 1.47 that hn(f1) : hn(Y ) → hn(X) and

hn(f2) : hn(B) → hn(A) are isomorphisms for all n ∈ Z. It is then conspicuous from

Theorem 1.18 that hn(f) : hn(Y,B)→ hn(X,A) is an isomorphism for all n ∈ Z, proving

what we wished.

Corollary 1.49 (Isomorphism of the generalized cohomology sequences induced by an

admissible homotopy equivalence). In a generalized cohomology theory, if (X,A) and

(Y,B) are admissible homotopically equivalent pairs, then their generalized cohomology

sequences are isomorphic. In other words, admissible homotopically equivalent pairs

have isomorphic generalized cohomology sequences. The same claim holds for reduced

generalized cohomology sequences.

Proof. Let f : (X,A) → (Y,B) be a homotopy equivalence. It is a consequence of

Theorem 1.16 and a consequence of the proof of Theorem 1.47 that h(f) is an isomorphism

of exact sequences between the generalized cohomology sequences of (Y,B) and (X,A).

We leave to the reader the proof of the statement for reduced generalized cohomology

sequences.
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To close this section, we present the notion of contractible topological spaces

and an immediate consequence of this idea from the viewpoint of generalized

cohomology groups. Usually, some authors take this consequence to be the de�nition

of contractible spaces.

De�nition 1.50 (Contractible spaces). Let C be an admissible category of topological

spaces. An admissible space is a contractible space if there is a homotopy between its

identity map and a constant map. ♦

Theorem 1.51 (Contractibility and homotopy equivalences). In an admissible category

of topological spaces, if X is a contractible space, then X is homotopically equivalent to

any of its points. Therefore, in a generalized cohomology theory, Theorem 1.47 implies

that hn(X) is isomorphic to hn(x) for all x ∈ X.

Proof. Since X is a contractible space, we know that there exist x0 ∈ X and an admissible

homotopy Θ : X × I → X in such manner that Θ(x, 0) = idX(x) and Θ(x, 1) = x0 for

all x ∈ X. Then, let f : {x0} → X be the admissible map de�ned by f(x0) = x0. We

have that:

� Θ(·, 1) ◦ f is the identity map on {x0}; and

� Θ is a homotopy connecting f ◦Θ(·, 1) to the identity map on X.

Thus, we have that Θ(·, 1) and f form a homotopy equivalence. Hence, it follows that

X is homotopically equivalent to {x0}. Consequently, since any two points of X are

homotopically equivalent (in fact, they are homeomorphic to each other) and homotopy

of pairs is an equivalence relation, this yields that X is homotopically equivalent to any

of its points, as we wished.

1.7 The generalized cohomology sequence of a triple

In this section, we set another helpful tool in the calculus of generalized

cohomology groups, namely, the generalized cohomology sequence of a triple. The

main theorem here, whose proof is a long technical computation that we provide to
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the reader in detail, establishes the exactness of this sequence. We begin with the

following de�nition.

De�nition 1.52 (Admissible triples and their maps). Let C be an admissible category of

topological spaces. We say that:

� (X,A,B) is an admissible triple of spaces, where X, A and B are admissible

spaces such that B ⊆ A ⊆ X and A and B are equipped with the induced topology,

if the inclusion maps i(A,B)
(X,B) : (A,B) → (X,B) and j(X,B)

(X,A) : (X,B) → (X,A) are

admissible; and

� f : (X,A,B) → (Y,C,D) is an admissible map of triples, where (X,A,B) and

(Y,C,D) are admissible triples, if it is a continuous map f : X → Y such that

f(A) ⊆ C, f(B) ⊆ D and the maps f1 : (X,A)→ (Y,C), f2 : (X,B)→ (Y,D) and

f3 : (A,B)→ (C,D) are admissible. ♦

Notation 1.53 (The inclusion maps associated with an admissible triple of spaces).

Let C be an admissible category of topological spaces and (X,A,B) be an admissible

triple of spaces. The inclusion maps associated with the pairs (X,A), (X,B) and (A,B)

are denoted by iAX : A → X, iBX : B → X, iBA : B → A, jX(X,A) : X → (X,A),

jX(X,B) : X → (X,B) and jA(A,B) : A → (A,B). Moreover, we will not put these maps

between parentheses when we take their induced homomorphisms to avoid overloading

the notation. ♦

De�nition 1.54 (The generalized cohomology sequence of a triple). In a generalized

cohomology theory, we de�ne the generalized cohomology sequence of the triple

(X,A,B) as the sequence

· · · hn−1(A,B) hn(X,A) hn(X,B) hn(A,B) · · · ,
δn
(X,A,B)

hnj
(X,B)
(X,A)

hni
(A,B)
(X,B)

where δn(X,A,B) : hn−1(A,B) → hn(X,A), which is called the nth generalized

coboundary operator of the triple (X,A,B), is the composition between

hn−1jA(A,B) : hn−1(A,B)→ hn−1(A) and δn(X,A) : hn−1(A)→ hn(X,A). ♦
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Theorem 1.55 (The generalized cohomology sequence of a triple is exact). In a

generalized cohomology theory, if (X,A,B) is an admissible triple of spaces, then its

generalized cohomology sequence is exact.

Proof. Let n be an integer number. We have that each square in the following diagram

is commutative.

hn−1(X,B) hn−1(A,B)

hn−1(X) hn−1(A) hn−1(B)

hn(X,A) hn(X,B) hn(A,B)

hn(X) hn(A)

hn−1i
(A,B)
(X,B)

hn−1jX
(X,B)

hn−1jA
(A,B)

hn−1iAX

δn
(X,A)

hn−1iBA

δn
(X,B)

hnj
(X,B)
(X,A)

hnjX
(X,B)

hni
(A,B)
(X,B)

hnjA
(A,B)

hniAX

Indeed:

� hn−1iAX ◦ hn−1jX(X,B) = hn−1jA(A,B) ◦ hn−1i
(A,B)
(X,B) because we have the equality of

inclusions jX(X,B) ◦ iAX = i
(A,B)
(X,B) ◦ jA(A,B);

� hnj
(X,B)
(X,A) ◦ δn(X,A) = δn(X,B) ◦ hn−1iBA because it is a restatement of the Commutativity

Axiom since iBA is the restriction of j(X,B)
(X,A) to B; and

� hniAX ◦ hnjX(X,B) = hnjA(A,B) ◦ hni
(A,B)
(X,B) because we have the equality of inclusions

jX(X,B) ◦ iAX = i
(A,B)
(X,B) ◦ jA(A,B).

Moreover:

(a). hnjX(X,A) = hnjX(X,B) ◦ hnj
(X,B)
(X,A) because we have the equality of inclusions

jX(X,A) = j
(X,B)
(X,A) ◦ jX(X,B);
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(b). hniBX = hniBA ◦ hniAX because we have the equality of inclusion maps

iBX = iAX ◦ iBA;

(c). δn(A,B) = hni
(A,B)
(X,B) ◦ δn(X,B) because it is a restatement of the Commutativity Axiom

since it is equivalent to δn(A,B) ◦ idhn−1(B) = hni
(A,B)
(X,B) ◦ δn(X,B) and idB is the restriction

of i(A,B)
(X,B) to B; and

(d). δn(X,A,B) = δn(X,A) ◦ hn−1jA(A,B) because of the de�nition of δn(X,A,B).

The preceding relations are used to prove the following six assertions, which complete the

proof of this theorem.

(1) hni(A,B)
(X,B) ◦ hnj

(X,B)
(X,A) : hn(X,A) → hn(A,B) is the trivial homomorphism. Thus,

Imhnj
(X,B)
(X,A) ⊆ Kerhni(A,B)

(X,B).

Note that j(X,B)
(X,A) ◦ i

(A,B)
(X,B) : (A,B) → (X,A) can be expressed as the composition

of the inclusion maps k : (A,B) → (A,A) and l : (A,A) → (X,A).

Since hn(A,A) = 0 by Corollary 1.12, hn(l) : hn(X,A) → hn(A,A) is the

trivial homomorphism. Therefore,

hni
(A,B)
(X,B) ◦ h

nj
(X,B)
(X,A) = hn(k) ◦ hn(l) = 0,

as we wished.

(2) If u ∈ hn(X,B) and hni
(A,B)
(X,B)(u) = 0, which is the same as u ∈ Kerhni(A,B)

(X,B),

then there exists u′ ∈ hn(X,A) such that hnj(X,B)
(X,A) (u′) = u, which is the same as

u ∈ Imhnj
(X,B)
(X,A) . Thus, Kerh

ni
(A,B)
(X,B) ⊆ Imhnj

(X,B)
(X,A) .

Since hniAXh
njX(X,B)(u) = hnjA(A,B)h

ni
(A,B)
(X,B)(u) = hnjA(A,B)(0) = 0 because of

the upper commutative square in the preceding diagram, hnjX(X,B)(u) ∈ KerhniAX .

Then, the exactness of the generalized cohomology sequence of (X,A) implies that

there exists α ∈ hn(X,A) such that hnjX(X,A)(α) = hnjX(X,B)(u). Therefore, Item (a)

yields

hnjX(X,B)

(
u− hnj(X,B)

(X,A) (α)
)

= hnjX(X,B)(u)− hnjX(X,B)h
nj

(X,B)
(X,A) (α)

= hnjX(X,B)(u)− hnjX(X,A)(α)

= 0.
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In other words, we have u − hnj
(X,B)
(X,A) (α) ∈ KerhnjX(X,B). Consequently, we know

that there exists β ∈ hn−1(B) such that δn(X,B)(β) = u− hnj(X,B)
(X,A) (α) because of the

exactness of the generalized cohomology sequence of (X,B). Thus, Item (c) and

the fact that hni(A,B)
(X,B) ◦hnj

(X,B)
(X,A) : hn(X,A)→ hn(A,B) is the trivial homomorphism

imply

δn(A,B)(β) = hni
(A,B)
(X,B)δ

n
(X,B)(β)

= hni
(A,B)
(X,B)

(
u− hnj(X,B)

(X,A) (α)
)

= hni
(A,B)
(X,B)(u)− hni(A,B)

(X,B)h
nj

(X,B)
(X,A) (α)

= 0.

Otherwise stated, we have β ∈ Ker δn(A,B). For this reason and the exactness of

the generalized cohomology sequence of (A,B), there exists γ ∈ hn−1(A) such that

hn−1iBA(γ) = β. Then, it is a consequence of the middle commutative square in the

preceding diagram that

hnj
(X,B)
(X,A)

(
α + δn(X,A)(γ)

)
= hnj

(X,B)
(X,A) (α) + hnj

(X,B)
(X,A) δ

n
(X,A)(γ)

= hnj
(X,B)
(X,A) (α) + δn(X,B)h

n−1iBA(γ)

= hnj
(X,B)
(X,A) (α) + δn(X,B)(β)

= hnj
(X,B)
(X,A) (α) + u− hnj(X,B)

(X,A) (α)

= u.

Thereby, it is proved that there exists u′ ∈ hn(X,A) such that hnj(X,B)
(X,A) (u′) = u,

as we wished.

(3) δn(X,A,B) ◦ hn−1i
(A,B)
(X,B) : hn−1(X,B) → hn(X,A) is the trivial homomorphism. Thus,

Imhn−1i
(A,B)
(X,B) ⊆ Ker δn(X,A,B).

Because of Item (d) and the upper commutative square in the preceding diagram,

δn(X,A,B) ◦ hn−1i
(A,B)
(X,B) = δn(X,A) ◦ hn−1jA(A,B) ◦ hn−1i

(A,B)
(X,B) = δn(X,A) ◦ hn−1iAX ◦ hn−1jX(X,B).

Since the generalized cohomology sequence of (X,A) is exact, δn(X,A) ◦ hn−1iAX = 0.

Then, δn(X,A,B) ◦ hn−1i
(A,B)
(X,B) = 0, as we wished.
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(4) If v ∈ hn−1(A,B) and δn(X,A,B)(v) = 0, which is the same as v ∈ Ker δn(X,A,B), then

there exists v′ ∈ hn−1(X,B) such that hn−1i
(A,B)
(X,B)(v

′) = v, which is the same as

v ∈ Imhn−1i
(A,B)
(X,B). Thus, Ker δ

n
(X,A,B) ⊆ Imhn−1i

(A,B)
(X,B).

Since δn(X,A)h
n−1jA(A,B)(v) = δn(X,A,B)(v) = 0 because of Item (d), it follows

hn−1jA(A,B)(v) ∈ Ker δn(X,A). Then, hn−1iAX(α) = hn−1jA(A,B)(v) for some

α ∈ hn−1(X) because of the exactness of the generalized cohomology sequence of

(X,A). Thus, since the exactness of the generalized cohomology sequence of (A,B)

implies hn−1iBAh
n−1jA(A,B) = 0, Item (b) yields

hn−1iBX(α) = hn−1iBAh
n−1iAX(α) = hn−1iBAh

n−1jA(A,B)(v) = 0.

In other words, we have α ∈ Kerhn−1iBX . Then, the exactness of the

generalized cohomology sequence of (X,B) implies that there exists β ∈ hn−1(X,B)

such that hn−1jX(X,B)(β) = α. As a consequence of the lower commutative square in

the preceding diagram,

hn−1jA(A,B)

(
v − hn−1i

(A,B)
(X,B)(β)

)
= hn−1jA(A,B)(v)− hn−1jA(A,B)h

n−1i
(A,B)
(X,B)(β)

= hn−1jA(A,B)(v)− hn−1iAXh
n−1jX(X,B)(β)

= hn−1jA(A,B)(v)− hn−1iAX(α)

= 0.

Stated di�erently, we have v − hn−1i
(A,B)
(X,B)(β) ∈ Kerhn−1jA(A,B). Hence, the

exactness of the generalized cohomology sequence of (A,B) yields the existence

of γ ∈ hn−2(B) such that δn−1
(A,B)(γ) = v − hn−1i

(A,B)
(X,B)(β). Then, it is a consequence

of Item (c) that

hn−1i
(A,B)
(X,B)

(
β + δn−1

(X,B)(γ)
)

= hn−1i
(A,B)
(X,B)(β) + hn−1i

(A,B)
(X,B)δ

n−1
(X,B)(γ)

= hn−1i
(A,B)
(X,B)(β) + δn−1

(A,B)(γ)

= hn−1i
(A,B)
(X,B)(β) + v − hn−1i

(A,B)
(X,B)(β)

= v.

Thereby, it is proved that there exists v′ ∈ hn−1(X,B) such that hn−1i
(A,B)
(X,B)(v

′) = v,

as we wished.
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(5) hnj(X,B)
(X,A) ◦ δn(X,A,B) : hn−1(A,B) → hn(X,B) is the trivial homomorphism. Thus,

Im δn(X,A,B) ⊆ Kerhnj(X,B)
(X,A) .

Because of Item (d) and the middle commutative square in the preceding diagram,

hnj
(X,B)
(X,A) ◦ δ

n
(X,A,B) = hnj

(X,B)
(X,A) ◦ δ

n
(X,A) ◦ hn−1jA(A,B) = δn(X,B) ◦ hn−1iBA ◦ hn−1jA(A,B).

Since the generalized cohomology sequence of (A,B) is exact, hniBA ◦ hnjA(A,B) = 0.

Then, hnj(X,B)
(X,A) ◦ δn(X,A,B) = 0, as we wished.

(6) If w ∈ hn(X,A) and hnj
(X,B)
(X,A) (w) = 0, which is the same as w ∈ Kerhnj(X,B)

(X,A) ,

then there exists w′ ∈ hn−1(A,B) such that δn(X,A,B)(w
′) = w, which is the same as

w ∈ Im δn(X,A,B). Thus, Kerh
nj

(X,B)
(X,A) ⊆ Im δn(X,A,B).

Since hnjX(X,A)(w) = hnjX(X,B)h
nj

(X,B)
(X,A) (w) = hnjX(X,B)(0) = 0 because of Item (a),

it follows w ∈ KerhnjX(X,A). Then, the exactness of the generalized cohomology

sequence of (X,A) implies that there exists α ∈ hn−1(A) in such manner that

δn(X,A)(α) = w. Consequently, the middle commutative square in the preceding

diagram yields

δn(X,B)h
n−1iBA(α) = hnj

(X,B)
(X,A) δ

n
(X,A)(α) = hnj

(X,B)
(X,A) (w) = 0.

In other words, we have hn−1iBA(α) ∈ Ker δn(X,B). As a consequence of the

exactness of the generalized cohomology sequence of (X,B), we know that there

exists β ∈ hn−1(X) such that hn−1iBX(β) = hn−1iBA(α). Then, it follows from Item (b)

that

hn−1iBA
(
α− hn−1iAX(β)

)
= hn−1iBA(α)− hn−1iBAh

n−1iAX(β)

= hn−1iBA(α)− hn−1iBX(β)

= 0.

Said di�erently, we have α− hn−1iAX(β) ∈ Kerhn−1iBA. Therefore, we know that the

exactness of the generalized cohomology sequence of (A,B) implies that there exists

γ ∈ hn−1(A,B) such that hn−1jA(A,B)(γ) = α−hn−1iAX(β). Thus, once the exactness of

the generalized cohomology sequence of (X,A) implies δn(X,A) ◦hn−1iAX = 0, Item (d)

yields
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δn(X,A,B)(γ) = δn(X,A)h
n−1jA(A,B)(γ) = δn(X,A)

(
α− hn−1iAX(β)

)
= δn(X,A)(α)− δn(X,A)h

n−1iAX(β)

= δn(X,A)(α)

= w.

Thereby, it is proved that there exists w′ ∈ hn−1(A,B) such that δn(X,A,B)(w
′) = w,

as we wished. �

De�nition 1.56 (The generalized induced homomorphism between generalized

cohomology sequences of triples). In a generalized cohomology theory, if

f : (X,A,B) → (Y,C,D) is an admissible map of triples, then we say that the sequence

of group homomorphisms

h(f) := (· · · , hn−1(f2), hn−1(f3), hn(f1), hn(f2), hn(f3), · · · )

is the generalized induced homomorphism of f between the generalized cohomology

sequences of the triples (Y,C,D) and (X,A,B). ♦

Theorem 1.57 (The generalized induced homomorphism between generalized

cohomology sequences of triples is a homomorphism of exact sequences). In a generalized

cohomology theory, if f : (X,A,B)→ (Y,C,D) is an admissible map of triples, then h(f)

is a homomorphism of exact sequences between the generalized cohomology sequences of

the triples (Y,C,D) and (X,A,B).

Proof. To verify the statement of this theorem we have to prove that the following diagram

is commutative.

· · · hn−1(C,D) hn(Y,C) hn(Y,D) hn(C,D) · · ·

· · · hn−1(A,B) hn(X,A) hn(X,B) hn(A,B) · · ·

δn
(Y,C,D)

hn−1(f3)

hnj
(Y,D)
(Y,C)

hn(f1)

hni
(C,D)
(Y,D)

hn(f2) hn(f3)

δn
(X,A,B) hnj

(X,B)
(X,A)

hni
(A,B)
(X,B)

In other words, we have to prove the following three relations for all n ∈ Z. In fact, if n

is an integer number, then:
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� δn(X,A,B) ◦ hn−1(f3) = hn(f1) ◦ δn(Y,C,D). To prove that this relation holds we

consider the following diagram where the admissible map f |A: A → C is the

restriction of f to A.

hn−1(C,D) hn−1(C) hn(Y,C)

hn−1(A,B) hn−1(A) hn(X,A)

hn−1jC
(C,D)

hn−1(f3)

δn
(Y,C,D)

δn
(Y,C)

hn−1(f |A) hn(f1)

hn−1jA
(A,B)

δn
(X,A,B)

δn
(X,A)

Since f3 ◦ jA(A,B) = jC(C,D) ◦ f |A, the square on the left-hand side is commutative. In

turn, the square on the right-hand side is commutative because it is a restatement

of the Commutativity Axiom. Therefore, the whole diagram is commutative, which

ensures the relation in question;

� hnj
(X,B)
(X,A) ◦ hn(f1) = hn(f2) ◦ hnj(Y,D)

(Y,C) . This relation is an obvious consequence of the

equality f1 ◦ j(X,B)
(X,A) = j

(Y,D)
(Y,C) ◦ f2; and

� hni
(A,B)
(X,B) ◦ hn(f2) = hn(f3) ◦ hni(C,D)

(Y,D) . This relation is an obvious consequence of the

equality f2 ◦ i(A,B)
(X,B) = i

(C,D)
(Y,D) ◦ f3. �

Theorem 1.58 (Isomorphism of generalized cohomology groups whose pairs of spaces

come from an admissible triple of spaces). In a generalized cohomology theory, let (X,A,B)

be an admissible triple. In this situation:

(1) if iBA : B → A induces isomorphisms from hn(A) onto hn(B) for all n ∈ Z, then

j
(X,B)
(X,A) : (X,B) → (X,A) induces isomorphisms from hn(X,A) onto hn(X,B) for

all n ∈ Z; and

(2) if iAX : A → X induces isomorphisms from hn(X) onto hn(A) for all n ∈ Z, then

i
(A,B)
(X,B) : (A,B)→ (X,B) induces isomorphisms from hn(X,B) onto hn(A,B) for all

n ∈ Z.
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Proof.

(1) Since the inclusion map iBA : B → A induces isomorphisms from hn(A) onto

hn(B) for all n ∈ Z, Theorem 1.11 says that hn(A,B) is the trivial group for all

n ∈ Z. Therefore, the generalized cohomology sequence of the triple (X,A,B) is

the following one.

· · · 0 hn(X,A) hn(X,B) 0 · · ·
hnj

(X,B)
(X,A)

The preceding sequence is exact by Theorem 1.55. Consequently, we have that

hnj
(X,B)
(X,A) : hn(X,A) → hn(X,B) is an isomorphism for all n ∈ Z. Then,

j
(X,B)
(X,A) : (X,B) → (X,A) induces isomorphisms from hn(X,A) onto hn(X,B) for

all n ∈ Z, as we wished.

(2) The proof of this assertion is analogous to the proof of the �rst part of this theorem.

We leave the details to the reader. �

1.8 Deformation retracts and the Excision Axiom

In this section, we present the important notion of deformation retracts.

Roughly speaking, a deformation retract is a homotopy of admissible pairs in which the

homotopy equivalence is composed of an inclusion map. We begin with the following

de�nition.

De�nition 1.59 (Retract, deformation retract and strong deformation retract). Let C

be an admissible category of topological spaces and (X,A) be an admissible pair. An

admissible pair (Y,B) ⊆ (X,A) is called a:

� retract of (X,A) if there exists an admissible map r : (X,A) → (Y,B) such that

r(y) = y for all y ∈ Y . We say that such a map r : (X,A)→ (Y,B) is a retraction

of (X,A) into (Y,B);

� deformation retract of (X,A) if there exists a retraction r : (X,A) → (Y,B)

such that its composition with the inclusion map (Y,B) → (X,A) is homotopic to
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the identity map on (X,A). We say that such a map r : (X,A) → (Y,B) is a

deformation retraction of (X,A) into (Y,B); and

� strong deformation retract of (X,A) if there exists a deformation retraction

r : (X,A)→ (Y,B) in which the homotopy Θ : X × I→ X between its composition

with the inclusion map (Y,B) → (X,A) and the identity map on (X,A) can be

chosen in such manner that Θ(y, t) = y for all y ∈ Y and all t ∈ I. We say that

such a map r : (X,A) → (Y,B) is a strong deformation retraction of (X,A)

into (Y,B). ♦

Remark 1.60 (On retracts, deformation retracts and strong deformation retracts). Let C

be an admissible category of topological spaces and (X,A) be an admissible pair. If (Y,B)

is an admissible pair contained in (X,A) and the inclusion map i : (Y,B) → (X,A) is

admissible, then:

� (Y,B) is a retract of (X,A) if and only if there exists an admissible map

r : (X,A)→ (Y,B) such that r ◦ i is the identity map on (Y,B). Thus, the equality

idhn(Y,B) = hn(r ◦ i) = hn(i) ◦ hn(r)

implies that hn(i) is an epimorphism and that hn(r) is a monomorphism for all

n ∈ Z; and

� if (Y,B) is a strong deformation retract of (X,A), then (Y,B) is also a deformation

retract of (X,A). In fact, a strong deformation retraction of (X,A) into (Y,B) is

a deformation retraction of (X,A) into (Y,B). On the other hand, (Y,B) being a

deformation retract of (X,A) does not imply that (Y,B) is also a strong deformation

retract of (X,A). The reader can �nd an example for this claim in [25, p. 215].

The discrepancy between these two notions will not play an important role in this

work since the majority of its concrete examples is composed of strong deformation

retracts. ♦

Theorem 1.61 (Split exact sequence induced by a special retraction). In a generalized

cohomology theory, if an admissible pair (X,A) is such that the inclusion i : A→ X is a

retraction, then the sequence
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0 hn(X,A) hn(X) hn(A) 0
hn(j) hn(i)

is split exact for all n ∈ Z, where j : X → (X,A) is the natural inclusion. Therefore,

in particular, we have that hn(X) is isomorphic to the direct sum hn(X,A) ⊕ hn(A)

for all n ∈ Z. This implies that, if (X,Ω) is an admissible pair where Ω is a

one-point space, then the relative group hn(X,Ω) is isomorphic to the pointed reduced

group h̃nΩ(X) for all n ∈ Z.

Proof. Since i : A → X is a retraction, there exists an admissible map r : X → A such

that r ◦ i = idA. Consequently, if the preceding sequence is exact, then it clearly splits

because

hn(i) ◦ hn(r) = idhn(A).

Thus, we only have to prove the exactness of the sequence in question. We claim that

this follows from the exactness of the generalized cohomology sequence of the admissible

pair (X,A). Indeed, since hn(i) : hn(X) → hn(A) is an epimorphism for all n ∈ Z,

we have

Ker δn+1
(X,A) = Imhn(i) = hn(A).

Thus, δn(X,A) is trivial for all n ∈ Z. This allows us to change its domain and codomain

as in the preceding sequence without losing exactness, which �nishes the proof of the

theorem.

Theorem 1.62 (Homotopy equivalence induced from a deformation retract). Let C be

an admissible category of topological spaces and (X,A) be an admissible pair. If (Y,B)

is a deformation retract of (X,A), then the inclusion map i : (Y,B) → (X,A) and any

deformation retraction of (X,A) into (Y,B) form a homotopy equivalence. In particular,

in a generalized cohomology theory, the proof of Theorem 1.47 implies that hn(X,A) is

isomorphic to hn(Y,B) for all n ∈ Z.

Proof. Let r : (X,A) → (Y,B) be a deformation retraction of (X,A) into (Y,B). Then,

r ◦ i is the identity map on (Y,B) and i ◦ r is homotopic to the identity map on (X,A).

Once the identity map on (Y,B) is homotopic to itself, we have that r and i form a

homotopy equivalence.
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Corollary 1.63 (Isomorphism of generalized cohomology sequences induced by an

admissible deformation retract). In a generalized cohomology theory, if (Y,B) is a

deformation retract of an admissible pair (X,A), then the inclusion i : (Y,B) → (X,A)

induces an isomorphism of exact sequences between the generalized cohomology sequences

of (X,A) and (Y,B). The same claim holds considering reduced generalized cohomology

sequences.

Proof. This is a consequence of Corollary 1.49 since i : (Y,B) → (X,A) is a homotopy

equivalence between (Y,B) and (X,A).

To close this section, we present two extensions of the Excision Axiom. We

remind the reader that this axiom asserts that, if (X,A) is an admissible pair and U

is an open subset of X whose closure is contained in the interior of A, then the excision

map (X − U,A − U) → (X,A), if admissible, induces isomorphisms of the generalized

cohomology groups in all dimensions. We prove below that the condition of the

closure of U to be contained in the interior of A can be relaxed in two special cases

to U just contained in A. However, this relaxation of the hypothesis in question is not

generally reasonable.

Theorem 1.64 (The �rst extension of the Excision Axiom). In a generalized

cohomology theory, let (X,A) be an admissible pair and U and V be open subsets of X

such that the closure of V is contained in U which is contained in A. If the inclusion maps

i : (X − U,A − U) → (X − V,A − V ) and j : (X − V,A − V ) → (X,A) are admissible

and (X − U,A− U) is a deformation retract of (X − V,A− V ), then the inclusion map

j◦i : (X−U,A−U)→ (X,A) induces isomorphisms of the generalized cohomology groups

in all dimensions.

Proof. Let n be an integer number. Since j : (X − V,A − V ) → (X,A) is an excision

map, the Excision Axiom implies that hn(j) : hn(X,A) → hn(X − V,A − V ) is an

isomorphism. Furthermore, hn(i) : hn(X − V,A − V ) → hn(X − U,A − U) is an

isomorphism because of Theorem 1.62. Thus, we have that hn(j ◦ i) = hn(i) ◦ hn(j)

is an isomorphism from hn(X,A) onto hn(X − U,A− U). This proves that the inclusion

j ◦ i : (X − U,A − U) → (X,A) induces isomorphisms of the generalized cohomology

groups in all dimensions, as we wished.
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Theorem 1.65 (The second extension of the Excision Axiom). In a generalized

cohomology theory, let (X,A) be an admissible pair and U be an open subset of X

contained in A. Moreover, assume that there exists a subset B of X containing A in

such manner that:

(a). the inclusion maps i : (X − U,A − U) → (X,A), j : (X,A) → (X,B),

k : (X − U,B − U) → (X,B) and l : (X − U,A − U) → (X − U,B − U) are

admissible;

(b). the closure of U is contained in the interior of B;

(c). A is a deformation retract of B; and

(d). A− U is a deformation retract of B − U .

Then, i : (X − U,A − U) → (X,A) induces isomorphisms of the generalized cohomology

groups in all dimensions.

Proof. Let n be an integer number. We tacitly use Item (a) whenever appears an induced

homomorphism. It is clear that

hn(k) : hn(X,B)→ hn(X − U,B − U)

is an isomorphism from Item (b) and the Excision Axiom. Furthermore, hn(A) is

isomorphic to hn(B) and hn(A − U) is isomorphic to hn(B − U) because of Item (c),

Item (d) and Corollary 1.63. Hence,

hn(j) : hn(X,B)→ hn(X,A) and hn(l) : hn(X − U,B − U)→ hn(X − U,A− U)

are isomorphisms because of Theorem 1.58. Therefore, since the equality j ◦ i = k ◦ l

yields hn(i) ◦ hn(j) = hn(l) ◦ hn(k), it follows that

hn(i) = hn(l) ◦ hn(k) ◦ hn(j)−1

is an isomorphism from hn(X,A) onto hn(X − U,A− U). This proves that the inclusion

map i : (X − U,A − U) → (X,A) induces isomorphisms of the generalized cohomology

groups in all dimensions, as we wished.
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1.9 The Direct Sum Theorem and Milnor's Additivity

Axiom

In this section, we prove an important theorem connecting the generalized

cohomology groups of an admissible pair to the generalized cohomology groups of the

components of a suitable decomposition of the spaces that belong to the pair in question.

After that, we set an axiom suggested by John Milnor (1931 - ) in [28, p. 337] which

treats the question of a possible extension of this theorem. We begin with the following

de�nition.

De�nition 1.66 (Projective direct product representation of a group). Let C be a group

and
(
Cα
)
α∈Λ

be a family of groups indexed by an indexing set Λ. For each family of

group homomorphisms Φ =
(
ϕα : C → Cα

)
α∈Λ

, we know that it is determined the group

homomorphism

∏
α∈Λ

ϕα : C →
∏
α∈Λ

Cα,

c 7→
(
ϕα(c)

)
α∈Λ

.

If
∏

α∈Λ ϕα is an isomorphism of C onto
∏

α∈ΛCα, then Φ is called a projective

direct product representation of C, and each component ϕα is called a projection.

In this situation, for each sequence (cα)α∈Λ ∈
∏

α∈ΛCα, there is a unique c ∈ C such that

ϕα(c) = cα for all α ∈ Λ. ♦

Remark 1.67 (Projective direct sum representation of a group). Let
(
Cα
)
α∈Λ

be a

family of groups indexed by an indexing set Λ. We remind the reader that the direct

product
∏

α∈ΛCα and the direct sum
⊕

α∈ΛCα are di�erent objects. Roughly

speaking, direct products are formed from a collection of groups taking all possible

combinations of elements of these groups. In turn, direct sums are formed from a

collection of groups taking only the combinations of elements of these groups which has

a �nite number of elements di�erent from the identity elements. Indeed, we can think about

direct products and direct sums in Group Theory as we think about box and

product topologies in General Topology, respectively. However, there is an important
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case to consider. When the indexing set Λ is �nite, it is clear that the direct product

coincides with the direct sum. Hence, when we have a �nite projective direct product

representation of a group, we say that it is a projective direct sum representation of

the group in question, and we use the notation associated with direct sums instead of the

one associated with direct products. ♦

Lemma 1.68 (Su�cient conditions for existence of a projective direct sum representation

of a group). The following diagram of groups and homomorphisms has each of its triangles

commutative.
C1 C2

C

C ′2 C ′1

ψ2ψ1

ϕ2

η1 η2

ϕ1

If Im(ϕ1) ⊆ Ker(ψ1), Im(ϕ2) = Ker(ψ2) and η1 and η2 are isomorphisms, then (ψ1, ψ2) is

a projective direct sum representation of C.

Proof. The reader can �nd a proof of this result in [13, p. 32].

Theorem 1.69 (The Direct Sum Theorem). In a generalized cohomology theory, let:

� (X,A) be an admissible pair;

� X =
⋃m
α=1 Xα be a union of disjoint sets each of which are closed and open in X;

� Aα ⊆ Xα be such that A =
⋃m
α=1Aα;

� all pairs formed of the sets Xα and Aα and all their unions are admissible and all

inclusion maps of such pairs are admissible; and

� iα : (Xα, Aα) → (X,A) be an inclusion map for each α between 1 and m, both

included.
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Then, the family
(
hn(iα) : hn(X,A) → hn(Xα, Aα)

)m
α=1

yields a projective direct sum

representation of hn(X,A) for all n ∈ Z. In particular, hn(X,A) is isomorphic to⊕m
α=1 h

n(Xα, Aα) for all n ∈ Z.

Proof. We prove the result using the Finite Induction Principle.

� Induction basis. The theorem is obvious for m = 1.

� Induction hypothesis. Suppose the theorem holds for the admissible pair (Y,B),

where Y =
⋃m−1
α=1 Xα and B =

⋃m−1
α=1 Aα. In other words, assume that the maps

hn(i′α) : hn(Y,B) → hn(Xα, Aα) yield a projective direct sum representation of

hn(Y,B) for all n ∈ Z, where i′α : (Xα, Aα)→ (Y,B) is an inclusion map for each α

between 1 and (m− 1), both included.

� Induction step. Let n be an integer number and consider the following diagram of

inclusion maps.

(X,Xm ∪ A) (X, Y ∪ Am)

(X,A)

(Y ∪ Am, A) (Xm ∪ A,A)

(Y,B) (Xm, Am)

jm j′

k′

l′

km

lm

h′

i′

hm

im

It is clear that hm, km ◦ hm, h′ and k′ ◦ h′ are excision maps. Then, hn(hm),

hn(km), hn(h′) and hn(k′) are isomorphisms by the Excision Axiom. Further, the

exactness of the generalized cohomology sequences of the triples (X, Y ∪ Am, A)

and (X,Xm ∪ A,A) implies Imhn(j′) = Kerhn(l′) and Imhn(jm) = Kerhn(lm).
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Thus, the hypotheses of Lemma 1.68 are ful�lled and the induced homomorphisms

hn(l′) and hn(lm) form a projective direct sum representation of the generalized

cohomology group hn(X,A). In a similar way, we have that hn(i′) and hn(im) yield

a projective direct sum representation of hn(X,A). These facts can be seen more

easily in the following diagram.

hn(X,Xm ∪ A) hn(X, Y ∪ Am)

hn(X,A)

hn(Y ∪ Am, A) hn(Xm ∪ A,A)

hn(Y,B) hn(Xm, Am)

hn(jm)

hn(k′) hn(km)

hn(j′)

hn(lm)hn(l′)

hn(i′) hn(im)

hn(h′) hn(hm)

Additionally, hn(iα) = hn(i′α) ◦ hn(i′) for all α between 1 and (m − 1), both

included. Consequently, the homomorphisms hn(iα) : hn(X,A)→ hn(Xα, Aα) form

a projective direct sum representation of hn(X,A), as we wished. �

A natural question that the reader may be asking himself or herself now is about

the existence of �The Direct Product Theorem�. More explicitly, the reader may be

asking if it is also true that, in all generalized cohomology theories, under the hypotheses

of The Direct Sum Theorem adapted to a decomposition of the admissible pair (X,A)

in an arbitrary number of components, we have that the natural admissible inclusion

maps induce a projective direct product representation of hn(X,A) for all n ∈ Z. The

answer for this question is negative, and references in which this claim is proven can be

found in [28, p. 337]. This fact together with the trueness of the desired assertion in

Singular Cohomology, as well as in other relevant generalized cohomology theories, led to

the following axiom.
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De�nition 1.70 (Milnor's Additivity Axiom and additive generalized cohomology

theories). In a generalized cohomology theory, let:

� (X,A) be an admissible pair;

� Λ be an indexing set;

� X =
⋃
α∈ΛXα be a union of disjoint sets each of which are closed and open in X;

� Aα ⊆ Xα be such that A =
⋃
α∈ΛAα;

� all pairs formed of the sets Xα and Aα and all their unions are admissible and all

inclusion maps of such pairs are admissible; and

� iα : (Xα, Aα)→ (X,A) be an inclusion map for each α ∈ Λ.

We say that Milnor's Additivity Axiom is the assertion that the family of

generalized induced homomorphisms
(
hn(iα) : hn(X,A) → hn(Xα, Aα)

)
α∈Λ

produces a

projective direct product representation of hn(X,A) for all n ∈ Z. In particular, this

axiom implies that hn(X,A) is isomorphic to
∏

α∈Λ h
n(Xα, Aα) for all n ∈ Z. Moreover,

if a generalized cohomology theory veri�es Milnor's Additivity Axiom, we say that it is an

additive generalized cohomology theory. ♦

Remark 1.71 (On Milnor's Additivity Axiom). Some authors say that Milnor's

Additivity Axiom is �Milnor's Multiplicativity Axiom�. Moreover, they add Milnor's

Additivity Axiom among Eilenberg-Steenrod Axioms to de�ne generalized cohomology

theories. In this work, we will not follow these conventions. In particular, we will say

�additive generalized cohomology theory� when we mean a generalized cohomology theory

that veri�es Milnor's Additivity Axiom. We think that this is more respectful with the

history behind these concepts. ♦

1.10 Triads and proper triads

In this section, we generalize the notions of admissible triple and generalized

cohomology sequence of an admissible triple, presenting the concepts of proper triad
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and generalized cohomology sequence of a proper triad. These new mathematical objects

will play an important role when we discuss the generalized Mayer-Vietoris sequences,

which are fundamental tools in the calculus of generalized cohomology groups. We begin

with the following de�nition.

De�nition 1.72 (Triads and proper triads). In a generalized cohomology theory, let X

be a topological space and X1 and X2 be subspaces of X. We say that (X;X1, X2) is a:

� triad if X, X1, X2, X1 ∪X2, X1 ∩X2 and all pairs formed from these spaces are

admissible, and all their inclusion maps are admissible; and

� proper triad if it is a triad and the inclusions

k1 : (X2, X1 ∩X2) → (X1 ∪X2, X1) and

k2 : (X1, X1 ∩X2) → (X1 ∪X2, X2)

induce isomorphisms of the generalized cohomology groups in all dimensions. ♦

Remark 1.73 (Some related triads and proper triads). In a generalized cohomology

theory, if (X;X1, X2) is a triad, then:

� (X;X2, X1) is also a triad, which is distinct from (X;X1, X2) unless X1 = X2.

Moreover, (X;X1, X2) is a proper triad if and only if (X;X2, X1) is a proper triad;

� (X1 ∪ X2;X1, X2) is also a triad, which is distinct from (X;X1, X2) unless

X = X1∪X2. Moreover, (X;X1, X2) is a proper triad if and only if (X1∪X2;X1, X2)

is a proper triad. ♦

Remark 1.74 (Some kinds of triads that are proper in all generalized cohomology

theories). It is not hard to �nd examples of triads that are proper in a generalized

cohomology theory but non-proper in another one. However, some kinds of triads are

proper in all generalized cohomology theories. For example:

� if (X;X1, X2) is a triad such that X2 ⊆ X1, then it is a proper triad. In fact, it

follows that
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k1 : (X2, X2) → (X1, X1) and

k2 : (X1, X2) → (X1, X2)

are the inclusion maps that we have to consider. Hence, since hn(X1, X1) and

hn(X2, X2) are trivial groups for all n ∈ Z by Corollary 1.12, we have that the group

homomorphism

hn(k1) : hn(X1, X1)→ hn(X2, X2)

is the only possible one for all n ∈ Z. This is clearly a group isomorphism for all

n ∈ Z. Moreover, since k2 : (X1, X2) → (X1, X2) is the identity map, we have that

the group homomorphism

hn(k2) : hn(X1, X2)→ hn(X1, X2)

is the identity for all n ∈ Z, which is also a group isomorphism for all n ∈ Z.

Consequently, (X;X1, X2) is a proper triad; and

� if (X1 ∪X2;X1, X2) is a triad such that X1 and X2 are closed in X1 ∪X2, and the

closure of X1− (X1 ∩X2) in X1 ∪X2 is disjoint from the closure of X2− (X1 ∩X2)

in X1 ∪ X2, then it is also a proper triad. Indeed, these hypotheses imply that the

inclusions

k1 : (X2, X1 ∩X2) → (X1 ∪X2, X1) and

k2 : (X1, X1 ∩X2) → (X1 ∪X2, X2)

are excision maps. Therefore, the triad (X1 ∪ X2;X1, X2) is proper because of the

Excision Axiom. The reader can produce more examples of similar kinds of triads

that are proper in all generalized cohomology theories considering Theorem 1.64 and

Theorem 1.65. ♦

Theorem 1.75 (Necessary and su�cient condition for a triad to be proper). In a

generalized cohomology theory, a triad (X;X1, X2) is proper if and only if the

inclusions
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i1 : (X1, X1 ∩X2) → (X1 ∪X2, X1 ∩X2) and

i2 : (X2, X1 ∩X2) → (X1 ∪X2, X1 ∩X2)

induce a projective direct sum representation of hn(X1 ∪ X2, X1 ∩ X2) for all

n ∈ Z. In other words, we have that a triad (X;X1, X2) is proper if and only if,

for each n ∈ Z and for each (u1, u2) ∈ hn(X1, X1 ∩ X2) ⊕ hn(X2, X1 ∩ X2), there

exists a unique u ∈ hn(X1 ∪ X2, X1 ∩ X2) in such manner that hn(i1)(u) = u1 and

hn(i2)(u) = u2.

Proof. Let the following diagram be composed of admissible pairs and inclusion maps

from the triad in question.

(X1 ∪X2, X1) (X1 ∪X2, X2)

(X1 ∪X2, X1 ∩X2)

(X2, X1 ∩X2) (X1, X1 ∩X2)

j1 j2

i2

k1

i1

k2

For all n ∈ Z, the following diagram has commutative triangles because the preceding

diagram of inclusions veri�es this property. Furthermore, Kerhn(j1) = Imhn(i1) and

Kerhn(j2) = Imhn(i2) for all n ∈ Z since the generalized cohomology sequences of the

triples (X1 ∪ X2, X1, X1 ∩ X2) and (X1 ∪ X2, X2, X1 ∩ X2) are exact by Theorem 1.55.

Thus, if (X;X1, X2) is a proper triad, then hn(k1) and hn(k2) are isomorphisms for all

n ∈ Z. Therefore, Lemma 1.68 implies that hn(i1) and hn(i2) yield a projective direct sum

representation of the generalized cohomology group hn(X1 ∪X2, X1 ∩X2) for all n ∈ Z,

as we wished.

hn(X1 ∪X2, X1) hn(X1 ∪X2, X2)

hn(X1 ∪X2, X1 ∩X2)

hn(X2, X1 ∩X2) hn(X1, X1 ∩X2)

hn(k1)

hn(j1)

hn(k2)

hn(j2)

hn(i2) hn(i1)



1. Generalized Cohomology Theories 54

Conversely, if the inclusion maps i1 and i2 induce a projective direct sum representation

of the generalized cohomology group hn(X1 ∪X2, X1 ∩X2) for all n ∈ Z, then the group

homomorphism

hn(i1)⊕ hn(i2) : hn(X1 ∪X2, X1 ∩X2) → hn(X1, X1 ∩X2)⊕ hn(X2, X1 ∩X2),

u 7→
(
hn(i1)(u), hn(i2)(u)

)
,

is an isomorphism for all n ∈ Z. Then, we �rst claim that hn(j1) is a monomorphism

for all n ∈ Z. Indeed, since hn−1(i1) ⊕ hn−1(i2) is an epimorphism, hn−1(i1) is also an

epimorphism. Hence, by the exactness of the generalized cohomology sequence of the

triple (X1 ∪X2, X1, X1 ∩X2), we have that

Ker δn(X1∪X2,X1,X1∩X2) = Imhn−1(i1) = hn−1(X1, X1 ∩X2)

implies Im δn(X1∪X2,X1,X1∩X2) = 0. This proves that Kerhn(j1) = Im δn(X1∪X2,X1,X1∩X2) = 0

for all n ∈ Z. It is also true that hn(j2) is a monomorphism for all n ∈ Z, but since the

proof of this assertion is analogous to the one we have just done we leave the details to

the reader. Now, we claim that hn(k1) is an isomorphism for all n ∈ Z. In fact, if n is an

integer number, then:

� hn(k1) is a monomorphism. Let u ∈ hn(X1 ∪ X2, X1) be such that hn(k1)(u) = 0.

We have to show that u = 0 to ensure that hn(k1) is a monomorphism. Since we

have:

[hn(i1)⊕ hn(i2)](hn(j1)(u)) =
(
hn(i1)hn(j1)(u), hn(i2)hn(j1)(u)

)
= (0, 0)

because hn(i2)hn(j1)(u) = hn(k1)(u) = 0 and because hn(i1) ◦ hn(j1) is the trivial

homomorphism by the exactness of the generalized cohomology sequence of the

triple (X1 ∪ X2, X1, X1 ∩ X2), it follows hn(j1)(u) = 0 once hn(i1) ⊕ hn(i2) is a

monomorphism. Therefore, it follows u = 0 since hn(j1) was shown to be a

monomorphism; and

� hn(k1) is an epimorphism. Let u ∈ hn(X2, X1 ∩ X2). To ensure that hn(k1) is an

epimorphism, we have to prove that there exists v ∈ hn(X1 ∪ X2, X1) such that
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hn(k1)(v) = u. Because hn(i1) ⊕ hn(i2) is an epimorphism, we know that there

exists w ∈ hn(X1 ∪X2, X1 ∩X2) such that

[hn(i1)⊕ hn(i2)](w) = (0, u).

Moreover, since

[hn(i1)⊕ hn(i2)](w) = (hn(i1)(w), hn(i2)(w)),

we have that

hn(i1)(w) = 0 and hn(i2)(w) = u.

Hence, once w ∈ Kerhn(i1) and Kerhn(i1) = Imhn(j1) because of the exactness

of the generalized cohomology sequence of the triple (X1 ∪X2, X1, X1 ∩X2), there

exists v ∈ hn(X1 ∪X2, X1) such that

hn(j1)(v) = w.

In this situation, it follows that

hn(k1)(v) = hn(i2)hn(j1)(v) = hn(i2)(w) = u.

The proof that hn(k2) is an isomorphism is analogous to the proof that hn(k1) is an

isomorphism. Then, we also leave these details to the reader. Hence, (X;X1, X2) is a

proper triad, as we wished.

De�nition 1.76 (The generalized cohomology sequence of a proper triad). In a

generalized cohomology sequence, we de�ne the generalized cohomology sequence of

the proper triad (X;X1, X2) as the sequence

hn(X,X1 ∪X2) hn(X,X2)

· · · hn−1(X1, X1 ∩X2) hn(X1, X1 ∩X2) · · · ,

hnj
(X,X2)

(X,X1∪X2)

hni
(X1,X1∩X2)

(X,X2)
δn
(X;X1,X2)
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where i(X1,X1∩X2)
(X,X2) : (X1, X1 ∩ X2) → (X,X2) and j

(X,X2)
(X,X1∪X2) : (X,X2) → (X,X1 ∪ X2)

are inclusion maps, and δn(X;X1,X2) : hn−1(X1, X1 ∩ X2) → hn(X,X1 ∪ X2), named the

nth generalized coboundary operator of the proper triad (X;X1, X2), consists of

the composition between hn−1(k2)−1 : hn−1(X1, X1 ∩ X2) → hn−1(X1 ∪ X2, X2) and the

nth generalized coboundary operator of the triple (X,X1 ∪ X2, X2), which is the map

δn(X,X1∪X2,X2) : hn−1(X1 ∪X2, X2)→ hn(X,X1 ∪X2). ♦

Remark 1.77 (The relation between the generalized cohomology sequences of triples and

triads). Let (X;X1, X2) be a triad such that X2 is a subset of X1. Then, it is immediate

that (X,X1, X2) is an admissible triple. Moreover, it was shown in Remark 1.74 that

(X;X1, X2) is a proper triad. Now, we claim that the generalized cohomology sequence

of the proper triad (X;X1, X2) coincides with the generalized cohomology sequence of the

triple (X,X1, X2). Indeed, this happens because

δn(X;X1,X2) = δn(X,X1,X2)

for all n ∈ Z since the inverse of the generalized induced homomorphisms generated by

the inclusion map

k2 : (X1, X2) → (X1, X2)

is the identity homomorphism for all n ∈ Z. In particular, this assertion shows that

the generalized cohomology sequence of a proper triad generalizes the generalized

cohomology sequence of a triple, which is widely expected since proper triads generalize

admissible triples. ♦

Theorem 1.78 (The generalized cohomology sequence of a proper triad is exact). In a

generalized cohomology theory, if (X;X1, X2) is a proper triad, then its generalized

cohomology sequence is exact.

Proof. We prove this result showing that the generalized cohomology sequence of the

proper triad (X;X1, X2) is isomorphic to the generalized cohomology sequence of the

admissible triple (X,X1 ∪X2, X2). Note the su�ciency of this argument since exactness

is invariant under isomorphism of sequences, and since the latter sequence is exact by

Theorem 1.55.
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· · · hn−1(X,X2) hn(X,X2) · · ·

hn−1(X1 ∪X2, X2) hn(X,X1 ∪X2)

hn−1(X1, X1 ∩X2) hn(X,X1 ∪X2)

· · · hn−1(X,X2) hn(X,X2) · · ·

idhn−1(X,X2)

hn−1i
(X1∪X2,X2)

(X,X2)

idhn(X,X2)hn−1(k2)

δn
(X,X1∪X2,X2)

idhn(X,X1∪X2)

hnj
(X,X2)

(X,X1∪X2)

δn
(X;X1,X2)

hnj
(X,X2)

(X,X1∪X2)
hn−1i

(X1,X1∩X2)

(X,X2)

Indeed, as shown by the preceding diagram, the generalized cohomology sequence of the

proper triad (X;X1, X2) is obtained from the generalized cohomology sequence of the

triple (X,X1∪X2, X2) by replacing the group hn−1(X1∪X2, X2) by the isomorphic group

hn−1(X1, X1∩X2) under hn−1(k2) : hn−1(X1∪X2, X2)→ hn−1(X1, X1∩X2), and de�ning

δn(X;X1,X2) so that δn(X;X1,X2) ◦ hn−1(k2) = δn(X,X1∪X2,X2). Thus, the generalized cohomology

sequence of (X;X1, X2) is isomorphic to the generalized cohomology sequence of the triple

(X,X1 ∪X2, X2), as we wished.

De�nition 1.79 (Maps of triads and of proper triads). In a generalized cohomology

theory, let (X;X1, X2) and (Y ;Y1, Y2) be (proper) triads. We say that f : (X;X1, X2)→

(Y ;Y1, Y2) is an admissible map of (proper) triads if f : X → Y is a continuous map

such that:

� f(X1) ⊆ Y1;

� f(X2) ⊆ Y2; and
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� the maps of pairs f1 : (X,X1 ∪ X2) → (Y, Y1 ∪ Y2), f2 : (X,X1) → (Y, Y1),

f3 : (X,X2) → (Y, Y2), f4 : (X1, X1 ∩ X2) → (Y1, Y1 ∩ Y2), f5 : (X1 ∪ X2, X2) →

(Y1 ∪ Y2, Y2) and f6 : (X,X1 ∩X2)→ (Y, Y1 ∩ Y2) are all admissible. ♦

De�nition 1.80 (The generalized induced homomorphism between generalized

cohomology sequences of proper triads). In a generalized cohomology theory, if

f : (X;X1, X2) → (Y ;Y1, Y2) is an admissible map of triads, then we say that the

sequence of group homomorphisms

h(f) = (· · · , hn−1(f3), hn−1(f4), hn(f1), hn(f3), hn(f4), · · · )

is the generalized induced homomorphism of f between the generalized cohomology

sequences of the proper triads (Y ;Y1, Y2) and (X;X1, X2). ♦

Theorem 1.81 (Homomorphism of generalized cohomology sequences of proper triads

induced by an admissible map of proper triads). In a generalized cohomology theory,

if f : (X;X1, X2) → (Y ;Y1, Y2) is an admissible map of proper triads, then h(f) is a

homomorphism of exact sequences between the generalized cohomology sequences of the

triads (Y ;Y1, Y2) and (X;X1, X2).

Proof. We have to prove the following three relations for all n ∈ Z. In fact, if n is an

integer number, then:

� hn−1i
(X1,X1∩X2)
(X,X2) ◦ hn−1(f3) = hn−1(f4) ◦ hn−1i

(Y1,Y1∩Y2)
(Y,Y2) . This relation is an obvious

consequence of the equality f3 ◦ i(X1,X1∩X2)
(X,X2) = i

(Y1,Y1∩Y2)
(Y,Y2) ◦ f4;

� δn(X;X1,X2) ◦ hn−1(f4) = hn(f1) ◦ δn(Y ;Y1,Y2). To prove this relation we consider the

following diagram.

hn−1(Y1, Y1 ∩ Y2) hn−1(Y1 ∪ Y2, Y2) hn(Y, Y1 ∪ Y2)

hn−1(X1, X1 ∩X2) hn−1(X1 ∪X2, X2) hn(X,X1 ∪X2)

δn
(Y ;Y1,Y2)

hn−1(k′2)−1

hn−1(f4)

δn
(Y,Y1∪Y2,Y2)

hn−1(f5) hn(f1)

δn
(X;X1,X2)

hn−1(k2)−1 δn
(X,X1∪X2,X2)
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We have hn−1(f4) ◦ hn−1(k′2) = hn−1(k2) ◦ hn−1(f5) since k′2 ◦ f4 = f5 ◦ k2. Then,

it follows hn−1(k2)−1 ◦ hn−1(f4) = hn−1(f5) ◦ hn−1(k′2)−1, proving that the square

on the left-hand side is commutative. In turn, the square on the right-hand side is

commutative because of Theorem 1.57; and

� hn(f3)◦hnj(Y,Y2)
(Y,Y1∪Y2) = hnj

(X,X2)
(X,X1∪X2) ◦hn(f1). This relation is an obvious consequence

of the equality j
(Y,Y2)
(Y,Y1∪Y2) ◦ f3 = f1 ◦ j(X,X2)

(X,X1∪X2). This completes the proof of the

commutativity of the following diagram.

· · · hn−1(Y, Y2) hn(Y, Y2) · · ·

hn−1(Y1, Y1 ∩ Y2) hn(Y, Y1 ∪ Y2)

hn−1(X1, X1 ∩X2) hn(X,X1 ∪X2)

· · · hn−1(X,X2) hn(X,X2) · · ·

hn−1(f3)

hn−1i
(Y1,Y1∩Y2)

(Y,Y2)

hn(f3)hn−1(f4)

δn
(Y ;Y1,Y2)

hn(f1)

hnj
(Y,Y2)

(Y,Y1∪Y2)

δn
(X;X1,X2)

hnj
(X,X2)

(X,X1∪X2)
hn−1i

(X1,X1∩X2)

(X,X2)

This �nishes the proof of the theorem.

1.11 The generalized Mayer-Vietoris sequences

In this section, we set the last notorious helpful tools in various calculus

of the generalized cohomology groups, namely, the generalized Mayer-Vietoris

cohomology sequences of proper triads. The main theorems here, whose proofs are just

technical computations that we leave to the reader, set the exactness of these sequences.

We begin with the following algebraic lemma.
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Lemma 1.82 (Hexagonal Lemma). The following diagram of groups and homomorphisms

has each of its triangles commutative.

C0

C ′1 C ′2

C

C2 C1

C ′0

ϕ0

ξ2ξ1

ψ2

ψ0

ψ1

η1

ϕ2

ζ1

η2

ζ2

ϕ1

If Im(ϕ1) ⊆ Ker(ψ1), Im(ϕ2) = Ker(ψ2), Im(ϕ0) ⊆ Ker(ψ0) and η1 and η2 are

isomorphisms, then ζ1 ◦ η−1
1 ◦ ξ1 = −ζ2 ◦ η−1

2 ◦ ξ2.

Proof. This result is an immediate consequence of Lemma 1.68. The reader can �nd its

proof in [13, p. 38].

Theorem 1.83 (A consequence of the Hexagonal Lemma). In a generalized

cohomology theory, let the following commutative diagram be composed of admissible pairs

and inclusion maps which come from a proper triad (X1 ∪X2;X1, X2).

(X2, X1 ∩X2) (X1, X1 ∩X2)

(X1 ∪X2, X1 ∩X2)

(X1 ∪X2, X1) (X1 ∪X2, X2)

X1 ∪X2

X2 X1

X1 ∩X2

k1

i2 i1

k2

j1 j2

j

l1 l2

m2 m1

i

h2 h1
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The preceding diagram induces the following one, which is also commutative and in such

manner that

hn(l1) ◦ hn(k1)−1 ◦ δn(X2,X1∩X2) = −hn(l2) ◦ hn(k2)−1 ◦ δn(X1,X1∩X2)

for all n ∈ Z.

hn−1(X1 ∩X2)

hn(X2, X1 ∩X2) hn(X1, X1 ∩X2)

hn(X1 ∪X2, X1 ∩X2)

hn(X1 ∪X2, X1) hn(X1 ∪X2, X2)

hn(X1 ∪X2)

hn(X2) hn(X1)

hn(X1 ∩X2)

δn
(X2,X1∩X2)

δn
(X1,X1∩X2)

δn
(X1∪X2,X1∩X2)

hn(j)

hn(i2) hn(i1)

hn(l1)

hn(j1)

hn(k1)

hn(l2)

hn(j2)

hn(k2)

hn(m2) hn(m1)

hn(i)

hn(h2) hn(h1)

Proof. The diagram in question is commutative because the one of inclusion

maps is commutative, and because the Commutativity Axiom yields the equalities

hn(i2) ◦ δn(X1∪X2,X1∩X2) = δn(X2, X1 ∩ X2) and hn(i1) ◦ δn(X1∪X2,X1∩X2) = δn(X1, X1 ∩ X2)

for all n ∈ Z. Moreover, for all n ∈ Z:

� Kerhn(j1) = Imhn(i1) and Kerhn(j2) = Imhn(i2) because the generalized

cohomology sequences of the triples (X1∪X2, X1, X1∩X2) and (X1∪X2, X2, X1∩X2)

are exact by Theorem 1.55;
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� Im δn(X1∪X2,X1∩X2) = Kerhn(j) because the generalized cohomology sequence of the

pair (X1 ∪X2, X1 ∩X2) is exact by the Exactness Axiom; and

� hn(k1) and hn(k2) are isomorphisms because (X1 ∪X2;X1, X2) is supposed to be a

proper triad.

Therefore, since we have seen that all hypotheses of Lemma 1.82 hold, it follows

hn(l1) ◦ hn(k1)−1 ◦ δn(X2,X1∩X2) = −hn(l2) ◦ hn(k2)−1 ◦ δn(X1,X1∩X2) for all n ∈ Z, as we

wished.

In the next paragraphs, we use the notations and the diagrams of Theorem 1.83 to

de�ne and study the generalized Mayer-Vietoris cohomology sequence of a proper triad

in which the main space is the union of its subspaces. This convention will be undone

when we reach Theorem 1.89, where new notations and diagrams need to be considered to

de�ne and study the generalized relative Mayer-Vietoris cohomology sequence of a generic

proper triad.

De�nition 1.84 (The generalized Mayer-Vietoris cohomology sequence of a proper triad).

In a generalized cohomology theory, we de�ne the generalized Mayer-Vietoris

cohomology sequence of the proper triad (X1 ∪X2;X1, X2) as the sequence:

hn(X1 ∪X2) hn(X1)⊕ hn(X2)

· · · hn−1(X1 ∩X2) hn(X1 ∩X2) · · · ,

Φn

Ψn∆n
(X1∪X2;X1,X2)

where:

� Ψn : hn(X1) ⊕ hn(X2) → hn(X1 ∩ X2) maps each (u1, u2) ∈ hn(X1) ⊕ hn(X2) into

hn(h1)(u1)− hn(h2)(u2) ∈ hn(X1 ∩X2);

� Φn : hn(X1 ∪ X2) → hn(X1) ⊕ hn(X2) maps each v ∈ hn(X1 ∪ X2) into(
hn(m1)(v), hn(m2)(v)

)
∈ hn(X1)⊕ hn(X2); and
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� ∆n
(X1∪X2;X1,X2) : hn−1(X1 ∩ X2) → hn(X1 ∪ X2), named the nth generalized

Mayer-Vietoris coboundary operator of (X1 ∪X2;X1, X2), is the composition

−hn(l1) ◦ hn(k1)−1 ◦ δn(X2,X1∩X2) which coincides with the composition

hn(l2) ◦ hn(k2)−1 ◦ δn(X1,X1∩X2) by Theorem 1.83. ♦

Theorem 1.85 (Relation between the generalized coboundary operator of a proper triad

and the generalized Mayer-Vietoris coboundary operator of an associated proper triad).

In a generalized cohomology theory, if (X;X1, X2) is a proper triad, then the following

diagram is commutative for all n ∈ Z.

hn−1(X1 ∩X2) hn(X1 ∪X2)

hn(X1, X1 ∩X2) hn+1(X,X1 ∪X2)

∆n
(X1∪X2;X1,X2)

δn
(X1,X1∩X2) δn+1

(X,X1∪X2)

δn+1
(X;X1,X2)

Proof. For all n ∈ Z, we have δn(X,X1∪X2,X2) = δn(X,X1∪X2) ◦ hn−1(l2) by

De�nition 1.54, δn(X;X1,X2) = δn(X,X1∪X2,X2) ◦ hn−1(k2)−1 by De�nition 1.76, and

∆n
(X1∪X2;X1,X2) = hn(l2) ◦ hn(k2)−1 ◦ δn(X1,X1∩X2) by De�nition 1.84. Therefore, it

follows that

δn+1
(X;X1,X2) ◦ δ

n
(X1,X1∩X2) = δn+1

(X,X1∪X2,X2) ◦ h
n(k2)−1 ◦ δn(X1,X1∩X2)

= δn+1
(X,X1∪X2) ◦ h

n(l2) ◦ hn(k2)−1 ◦ δn(X1,X1∩X2)

= δn+1
(X,X1∪X2) ◦∆n

(X1∪X2;X1,X2)

for all n ∈ Z, as we wished.

Theorem 1.86 (The generalized Mayer-Vietoris cohomology sequence is exact). In a

generalized cohomology theory, the generalized Mayer-Vietoris cohomology sequence of a

proper triad (X1 ∪X2;X1, X2) is exact.

Proof. Let n be an integer number. The following six assertions complete the proof of

this theorem.
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(1) Ψn ◦ Φn : hn(X1 ∪ X2) → hn(X1 ∩ X2) is the trivial homomorphism. Thus,

Im(Φn) ⊆ Ker(Ψn).

(2) If (u1, u2) ∈ hn(X1) ⊕ hn(X2) and Ψn(u1, u2) = 0, which is the same as

(u1, u2) ∈ Ker(Ψn), then there exists u′ ∈ hn(X1 ∪X2) such that Φn(u′) = (u1, u2),

which is the same as (u1, u2) ∈ Im(Φn). Thus, Ker(Ψn) ⊆ Im(Φn).

(3) Φn ◦ ∆n
(X1∪X2;X1,X2) : hn−1(X1 ∩ X2) → hn(X1) ⊕ hn(X2) is the trivial

homomorphism. Thus, Im∆n
(X1∪X2;X1,X2) ⊆ Ker(Φn).

(4) If v ∈ hn(X1 ∪ X2) and Φn(v) = (0, 0), which is the same as v ∈ Ker(Φn), then

there exists v′ ∈ hn−1(X1 ∩X2) such that ∆n
(X1∪X2;X1,X2)(v

′) = v, which is the same

as v ∈ Im∆n
(X1∪X2;X1,X2). Thus, Ker(Φn) ⊆ Im∆n

(X1∪X2;X1,X2).

(5) ∆n
(X1∪X2;X1,X2) ◦ Ψn−1 : hn−1(X1) ⊕ hn−1(X2) → hn(X1 ∪ X2) is the trivial

homomorphism. Thus, Im(Ψn−1) ⊆ Ker∆n
(X1∪X2;X1,X2).

(6) If w ∈ hn−1(X1 ∩ X2) and ∆n
(X1∪X2;X1,X2)(w) = 0, which is the same as

w ∈ Ker∆n
(X1∪X2;X1,X2), then there exists (w1, w2) ∈ hn−1(X1) ⊕ hn−1(X2) such

that Ψn−1(w1, w2) = w, which is the same as w ∈ Im(Ψn−1). Thus,

Ker∆n
(X1∪X2;X1,X2) ⊆ Im(Ψn−1).

We leave these instructive details to the reader. In order to complete them, we recommend

a closer look at the proof of Theorem 1.55.

De�nition 1.87 (The generalized induced homomorphism between generalized

Mayer-Vietoris cohomology sequences of proper triads). In a generalized cohomology

theory, if f : (X1 ∪X2;X1, X2)→ (Y1 ∪ Y2;Y1, Y2) is an admissible map of proper triads,

then we say that the sequence of group homomorphisms

h(f) := (· · · , hn−1(f4 |X1∩X2), hn(f1 |X1∪X2), hn(f2 |X1)⊕ hn(f3 |X2), hn(f4 |X1∩X2), · · · )

is the generalized induced homomorphism of f between the generalized

Mayer-Vietoris cohomology sequences of the proper triads (Y1 ∪ Y2;Y1, Y2) and

(X1 ∪X2;X1, X2). ♦
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Theorem 1.88 (Homomorphism of generalized Mayer-Vietoris cohomology sequences

induced by a map of triads). In a generalized cohomology theory, if f : (X1∪X2;X1, X2)→

(Y1 ∪ Y2;Y1, Y2) is an admissible map of proper triads, then h(f) is a homomorphism of

exact sequences between the generalized Mayer-Vietoris cohomology sequences of the triads

(Y1 ∪ Y2;Y1, Y2) and (X1 ∪X2;X1, X2).

Proof. To verify the statement of this theorem we have to prove that the following diagram

is commutative.

· · · hn−1(Y1 ∩ Y2) hn(Y1 ∩ Y2) · · ·

hn(Y1 ∪ Y2) hn(Y1)⊕ hn(Y2)

hn(X1 ∪X2) hn(X1)⊕ hn(X2)

· · · hn−1(X1 ∩X2) hn(X1 ∩X2) · · ·

hn−1(f4|X1∩X2
)

∆n
(Y1∪Y2;Y1,Y2)

hn(f4|X1∩X2
)hn(f1|X1∪X2

)

Φ′n

Ψ′n

hn(f2|X1
)⊕hn(f3|X2

)

Φn

Ψn∆n
(X1∪X2;X1,X2)

We leave the details to the reader.

To close this section, we present the generalized relative Mayer-Vietoris cohomology

sequence of a generic proper triad. This sequence is not a generalization of the one that

we have just studied in this section. In fact, we will see later when we apply the new

sequence to a proper triad in which the main space is the union of its subspaces that

it yields a conclusion which the �rst sequence does not yield. Since the proofs here are

essentially the same as the preceding ones, we will leave them to the reader. We begin
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with the following theorem, whose notations and diagrams will be considered until the

end of this section.

Theorem 1.89 (Another consequence of the Hexagonal Lemma). In a generalized

cohomology theory, let the following (disconnected) commutative diagram be composed

of admissible pairs of topological spaces and of inclusion maps which come from a proper

triad (X;X1, X2).

(X,X1 ∩X2)

(X2, X1 ∩X2) (X1, X1 ∩X2)

(X1 ∪X2, X1 ∩X2)

(X1 ∪X2, X1) (X1 ∪X2, X2)

(X,X1 ∪X2)

(X,X2) (X,X1)

(X,X1 ∩X2)

p1

i2

k1 k2

p2

i1

j

q1 q2

m2 m1

i

h2 h1

The preceding diagrams induce the following one, which is also commutative and in such

manner that

δn(X,X1∪X2,X1) ◦ hn−1(k1)−1 ◦ hn−1(p1) = −δn(X,X1∪X2,X2) ◦ hn−1(k2)−1 ◦ hn−1(p2)

for all n ∈ Z.
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hn−1(X,X1 ∩X2)

hn−1(X2, X1 ∩X2) hn−1(X1, X1 ∩X2)

hn−1(X1 ∪X2, X1 ∩X2)

hn−1(X1 ∪X2, X1) hn−1(X1 ∪X2, X2)

hn(X,X1 ∪X2)

hn(X,X2) hn(X,X1)

hn(X,X1 ∩X2)

hn−1(j)

hn−1(p1) hn−1(p2)

δn
(X,X1∪X2,X1∩X2)

hn−1(i2) hn−1(i1)

hn−1(q1)

hn−1(k1)

δn
(X,X1∪X2,X1)

hn−1(k2)

δn
(X,X1∪X2,X2)

hn−1(q2)

hn(i)

hn(m2) hn(m1)

hn(h2) hn(h1)

Proof. The proof of this result is analogous to the proof of Theorem 1.83. Then, we leave

the details to the reader.

De�nition 1.90 (The generalized relative Mayer-Vietoris cohomology sequence

of a proper triad). In a generalized cohomology theory, we de�ne the generalized

relative Mayer-Vietoris cohomology sequence of the proper triad (X;X1, X2) as

the sequence:

hn(X,X1 ∪X2) hn(X,X1)⊕ hn(X,X2)

· · · hn−1(X,X1 ∩X2) hn(X,X1 ∩X2) · · · ,

Φn

Ψn∆n
(X;X1,X2)
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where:

� Ψn : hn(X,X1) ⊕ hn(X,X2) → hn(X,X1 ∩ X2) maps each pair of elements

(u1, u2) ∈ hn(X,X1)⊕ hn(X,X2) into hn(h1)(u1)− hn(h2)(u2) ∈ hn(X,X1 ∩X2);

� Φn : hn(X,X1 ∪X2)→ hn(X,X1)⊕ hn(X,X2) maps each v ∈ hn(X,X1 ∪X2) into(
hn(m1)(v), hn(m2)(v)

)
∈ hn(X,X1)⊕ hn(X,X2); and

� ∆n
(X;X1,X2) : hn−1(X,X1 ∩ X2) → hn(X,X1 ∪ X2), named the nth generalized

relative Mayer-Vietoris coboundary operator of (X;X1, X2), is the

composition −δn(X,X1∪X2,X1) ◦ hn−1(k1)−1 ◦ hn−1(p1) which coincides with the

composition δn(X,X1∪X2,X2) ◦ hn−1(k2)−1 ◦ hn−1(p2) by Theorem 1.89. ♦

Theorem 1.91 (The generalized relative Mayer-Vietoris cohomology sequence is exact).

In a generalized cohomology theory, the generalized relative Mayer-Vietoris cohomology

sequence of a proper triad (X;X1, X2) is exact.

Proof. The proof of this result is analogous to the proof of Theorem 1.86. Then, we leave

the details to the reader.

Remark 1.92 (The generalized relative Mayer-Vietoris cohomology sequence of a proper

triad in which the main space is the union of its subspaces). In a generalized

cohomology theory, let (X1∪X2;X1, X2) be a proper triad. The generalized Mayer-Vietoris

cohomology sequence of (X1 ∪ X2;X1, X2) is di�erent from the generalized relative

Mayer-Vietoris cohomology sequence of (X1 ∪ X2;X1, X2). In particular, since

hn(X1 ∪ X2, X1 ∪ X2) is the trivial group for all n ∈ Z by Corollary 1.12, the last

sequence is

hn(X1 ∪X2, X1)⊕ hn(X1 ∪X2, X2) hn(X1 ∪X2, X1 ∩X2)

· · · 0 0 · · ·

Ψn

Therefore, since the preceding sequence is exact because of Theorem 1.91, we have that Ψn

is an isomorphism from hn(X1∪X2, X1)⊕hn(X1∪X2, X2) onto hn(X1∪X2, X1∩X2) for
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all n ∈ Z. In other words, for each n ∈ Z and each element u ∈ hn(X1 ∪X2, X1 ∩X2),

there exists a unique (u1, u2) ∈ hn(X1 ∪X2, X1) ⊕ hn(X1 ∪X2, X2) in such manner that

u = hn(h1)(u1)− hn(h2)(u2). ♦

De�nition 1.93 (The generalized induced homomorphism between generalized

relative Mayer-Vietoris cohomology sequences of proper triads). In a generalized

cohomology theory, if f : (X;X1, X2)→ (Y ;Y1, Y2) is an admissible map of proper triads,

then we say that the sequence of group homomorphisms

h(f) := (· · · , hn−1(f6), hn(f1), hn(f2)⊕ hn(f3), hn(f6), · · · )

is the generalized induced homomorphism of f between the generalized

relative Mayer-Vietoris cohomology sequences of the proper triads (Y ;Y1, Y2) and

(X;X1, X2). ♦

Theorem 1.94 (Homomorphism of generalized relative Mayer-Vietoris cohomology

sequences induced by a map of triads). In a generalized cohomology theory, if

f : (X;X1, X2) → (Y ;Y1, Y2) is an admissible map of proper triads, then h(f) is a

homomorphism of exact sequences between the generalized relative Mayer-Vietoris

cohomology sequences of the triads (Y ;Y1, Y2) and (X;X1, X2).

Proof. The proof of this result is analogous to the proof of Theorem 1.88. We leave

the details to the reader.

1.12 Multiplicative generalized cohomology theories

In this section, we present axioms for multiplicative structures in generalized

cohomology theories. In general, the fact that cohomology theories can be enriched

with multiplicative structures turns them into stronger sources of information when

compared to homology theories. It is to be noted that the exposition below is not

common in the references, which prefer to treat multiplicative structures of particular

cohomology theories. We begin with the following de�nition in which we select

between all of the admissible categories of topological spaces the ones that can support

multiplicative structures.
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De�nition 1.95 (Multiplicative category of topological spaces). An admissible category

of topological spaces C is a multiplicative category of topological spaces if it satis�es

the following two conditions.

(1) If (X,A) and (Y,B) are admissible pairs, then the pair

(X,A)× (Y,B) := (X × Y, Z),

where Z := (A× Y ) ∪ (X ×B), is also admissible.

(2) If f : (X,A) → (X ′, A′) and g : (Y,B) → (Y ′, B′) are admissible maps of

pairs, then the natural map f × g : (X,A) × (Y,B) → (X ′, A′) × (Y ′, B′) is

also admissible. ♦

De�nition 1.96 (Multiplicative generalized cohomology theories). In a generalized

cohomology theory based on a multiplicative category of topological spaces C , a

multiplicative structure is a map µ that sends m,n ∈ Z and (X,A), (Y,B) ∈ C

into a group homomorphism

µm,n(X,A),(Y,B) : hm(X,A) ⊗ hn(Y,B) → hm+n(X × Y, Z)

that satis�es the following �ve axioms. Here ⊗ denotes the usual tensor product of

abelian groups. For convenience, we will denote µm,n(X,A),(Y,B) simply by µm,n (although

it is an abuse of notation).

(1) Naturality Axiom. For every integer numbers m,n ∈ Z and every admissible

maps f : (X,A) → (X ′, A′) and g : (Y,B) → (Y ′, B′), the following diagram is

commutative.

hm(X, A)⊗ hn(Y, B) hm+n(X × Y, Z)

hm(X ′, A′)⊗ hn(Y ′, B′) hm+n(X ′ × Y ′, Z ′)

µm,n

hm(f)⊗hn(g)

µm,n

hm+n(f×g)
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(2) Excision-compatibility Axiom. For every integer numbers m,n ∈ Z and every

admissible pairs (X,A) and (Y,B), if the excision maps

η : (A× Y, A×B) → (Z, X ×B) and

θ : (X ×B, A×B) → (Z, A× Y )

are admissible and induce isomorphisms in all degrees, then the following

two diagrams are commutative. Note that η is the excision of (Z, X × B) with

respect to (X − A) × B as well as θ is the excision of (Z, A × Y ) with respect

to A× (Y −B).

hm(A)⊗ hn(Y, B) hm+1(X, A)⊗ hn(Y, B)

hm+n(A× Y, A×B)

hm+n(Z, X ×B) hm+n+1(X × Y, Z)

µm,n

δm
(X,A)

⊗ idhn(Y,B)

µm+1,n

hm+n(η)−1

δm+n
(X×Y, Z,X×B)

hm(X, A)⊗ hn(B) hm(X, A)⊗ hn+1(Y, B)

hm+n(X ×B, A×B)

hm+n(Z, A× Y ) hm+n+1(X × Y, Z)

µm,n

(−1)midhm(X,A)⊗ δn
(Y,B)

µm,n+1

hm+n(θ)−1

δm+n
(X×Y, Z,A×Y )
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(3) Associativity Axiom. For every integer numbers k,m, n ∈ Z and every

admissible pairs (X,A), (Y,B) and (W,C), the following diagram is commutative,

where

U := (C ×X) ∪ (W × A) and

V := (C ×X × Y ) ∪ (W × Z).

hk(W, C)⊗ hm(X, A)⊗ hn(Y, B) hk(W, C)⊗ hm+n(X × Y, Z)

hk+m(W ×X, U)⊗ hn(Y, B) hk+m+n(W ×X × Y, V )

id
hk(W,C)

⊗ µm,n

µk,m⊗ idhn(Y,B) µk,m+n

µk+m,n

(4) Unit Axiom. Being Ω a one-point space in C , there exists an element 1 ∈ h0(Ω)

such that

(hm(i1) ◦ µ0,m)(1⊗ u) = u and

(hm(i2) ◦ µm,0)(u⊗ 1) = u

for all m ∈ Z and all u ∈ hn(X,A), where i1 : (X,A) → (Ω × X,Ω × A)

and i2 : (X,A) → (X × Ω, A × Ω) are the natural inclusions. It is to be noted

that these inclusions are homeomorphisms since the natural projections are their

inverses.

(5) Commutativity Axiom. For every integer numbers m,n ∈ Z and every

admissible pairs (X,A) and (Y,B), if

Z−1 := (B ×X) ∪ (Y × A),

then the following diagram is commutative, where

νn,m(u⊗ v) := (−1)mnv ⊗ u

for all u⊗ v ∈ hm(X,A)⊗ hn(Y,B), and
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α : (X × Y, Z) → (Y ×X, Z−1),

(x, y) 7→ (y, x).

hm(X, A)⊗ hn(Y, B) hn(Y, B)⊗ hm(X, A)

hn+m(X × Y, Z) hn+m(Y ×X, Z−1)

νn,m

µm,n µn,m

hn+m(α)

A generalized cohomology theory equipped with a multiplicative structure is called

a multiplicative generalized cohomology theory. A multiplicative structure µ

is also said to be an external multiplication. Moreover, if u ∈ hm(X,A) and

v ∈ hn(Y,B), then µm,n(u ⊗ v) is denoted by u × v and is called the cross product

of these elements. ♦

Remark 1.97 (On the Excision-compatibility Axiom). In a multiplicative generalized

cohomology theory, let (X,A) and (Y,B) be admissible pairs of topological spaces.

Let the excision maps

η : (A× Y, A×B) → (Z, X ×B) and

θ : (X ×B, A×B) → (Z, A× Y )

be as in Condition (2) of De�nition 1.96. These maps induce isomorphisms in all

degrees if (X − A) × B and A × (Y − B) are open subsets of Z such that their

closures are contained in the interiors of X × B and A × Y , respectively. In

particular, these conditions are satis�ed if A and B are both open and closed subsets

of X and Y , respectively. ♦

Theorem 1.98 (Internal and external multiplications). In a multiplicative generalized

cohomology theory, let (X,A) and (X,B) be admissible pairs of topological spaces.

If ∆ : X → X × X is the diagonal map, then the composition ϕm,n de�ned by the

commutative diagram
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hm(X, A)⊗ hn(X, B) hm+n(X ×X,Z) hm+n(X,A ∪B)µm,n

ϕm,n

hm+n(∆)

is a natural homomorphism, which is called the internal multiplication or the

cup product. Moreover, the following diagram is commutative for all integer numbers

m,n ∈ Z and all admissible pairs (X,A) and (Y,B), where π1 : (X ×Y,A×Y )→ (X,A)

and π2 : (X×Y,X×B)→ (Y,B) are the natural projections onto the �rst and the second

factors, respectively.

hm(X × Y,A× Y )⊗ hn(X × Y,X ×B) hm+n(X × Y, Z)

hm(X, A)⊗ hn(Y, B)

ϕm,n

hm(π1)⊗hn(π2)
µm,n

This shows that we can recover the external multiplication from the internal multiplication

in a canonical way.

Proof. For every integer numbers m,n ∈ Z and every admissible map f : X → X ′

for which f(A) ⊆ A′ and f(B) ⊆ B′, the naturality of ϕm,n is ensured by the following

commutative diagram.

hm(X,A)⊗ hn(X,B) hm+n(X ×X,Z) hm+n(X,A ∪B)

hm(X ′, A′)⊗ hn(X ′, B′) hm+n(X ′ ×X ′, Z ′) hm+n(X ′, A′ ∪B′).

ϕm,n

µm,n hm+n(∆)

ϕm,n

hm(f)⊗hn(f)

µm,n hm+n(∆′)

hm+n(f×f) hm+n(f)
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Note that this diagram is commutative because its right-hand square is commutative

by the functoriality of the contravariant functor hm+n since (f × f) ◦ ∆ = ∆′ ◦ f , and

because its left-hand square is commutative by the Naturality Axiom. Finally, note

that the last assertion of the statement follows from the fact that the following diagram

is commutative, where

U := (A× Y ×X × Y ) ∪ (X × Y ×X ×B).

hm(X × Y,A× Y )⊗ hn(X × Y,X ×B) hm+n(X × Y ×X × Y, U)

hm(X, A)⊗ hn(Y, B) hm+n(X × Y, Z)

µm,n

hm+n(∆)hm(π1)⊗hn(π2)

µm,n

In turn, this diagram is commutative because of the Naturality Axiom since we have

hm+n(∆) = hm+n(π1 × π2)−1.

Remark 1.99 (Graded commutative ring and graded module of a multiplicative

generalized cohomology theory). In a multiplicative generalized cohomology theory, let

Ω be an admissible single point. In this situation, the reader can prove that the following

assertions are true.

� If X is an admissible collapsible space and

h(X) :=
⊕
n∈Z

hn(X),

then h(X) is a graded commutative ring with unit under the internal multiplication.

In fact, its unit is the obvious one formed from h0(pX)(1), where pX : X → Ω is the

only possible map and 1 ∈ h0(Ω) is the element whose existence is ensured by the

Unit Axiom.
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� If (X,A) is an admissible pair such that X is a collapsible space and

h(X,A) :=
⊕
n∈Z

hn(X,A),

then h(X,A) is a graded module over the graded commutative ring with unit h(X)

de�ned above. ♦

1.13 Compactly-supported cohomology

In this section, we describe an important construction from the generalized

cohomology groups, namely, the compactly-supported generalized cohomology groups.

This new object is especially interesting when one desires to enlarge the scope of a

particular generalized cohomology theory. This last phrase will become clearer when

we de�ne the compactly-supported K-Theory groups in Section 2.10. We begin with the

following de�nition.

De�nition 1.100 (Compatible family of compact subspaces of an admissible space). Let

C be an admissible category of topological spaces. Being X an admissible space, we

say that the compatible family of compact subspaces of X is the collection

KC (X) whose elements are the compact subspaces of X that satisfy the following three

conditions.

(1) If K,L ∈ KC (X), then K ∪ L ∈ KC (X).

(2) If K ∈ KC (X), then (X,X −K) is an admissible pair in C .

(3) If K,L ∈ KC (X) with K ⊆ L, then the inclusion iXKL : (X,X − L) → (X,X −K)

is an admissible map of pairs in C . ♦

De�nition 1.101 (Generalized compactly-supported cohomology groups). In a

generalized cohomology theory based on an admissible category C , let X be an

admissible space. Being n an integer number, we say that the nth direct system

of generalized cohomology groups of X relative to compact subspaces is

the triple
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AnX :=
(
KC (X), (hn(X,X−K))K∈KC (X), (hniXKL : hn(X,X−K)→ hn(X,X−L))K,L∈KC (X)

)
,

where hniXKL : hn(X,X − K) → hn(X,X − L) is the nth induced homomorphism of

the inclusion map iXKL : (X,X − L) → (X,X − K) if K is contained in L, and is the

trivial homomorphism otherwise. Furthermore, we de�ne the nth compactly-supported

generalized cohomology group of X, and denote it by hnc (X), to be the direct limit of

abelian groups

hnc (X) := lim
−→ K

hn(X,X −K),

which is equipped with the family (ιnK : hn(X,X −K)→ hnc (X))K∈KC (X) of morphisms of

abelian groups. ♦

Remark 1.102 (On the notions presented above). We have the following facts about the

notions presented above.

� We have that Condition (1) of De�nition 1.100 ensures that KC (X) is a direct

set with respect to the partial order given by the inclusion of compact

subspaces. Indeed, for any K,L ∈ KC (X), we have K ⊆ K ∪ L, L ⊆ K ∪ L

and K ∪ L ∈ KC (X).

� We have that Condition (2) of De�nition 1.100 ensures that, for every K ∈ KC (X),

it makes sense taking the generalized relative cohomology group hn(X,X − K)

for all n ∈ Z.

� We have that Condition (3) of De�nition 1.100 ensures that, for every K,L ∈ KC (X)

such that K ⊆ L, it makes sense taking the generalized induced homomorphism

hniXKL : hn(X,X −K)→ hn(X,X − L) for all n ∈ Z.

� The three items above ensure that An
X is well-de�ned for all n ∈ Z. However, in

order to prove that An
X is a direct system of abelian groups, we still have to show

that hniXKK = idhn(X,X−K) for all K ∈ KC (X) and that, for every K,L,M ∈ KC (X)

that verify K ⊆ L ⊆ M , we have hniXKM = hniXLM ◦ hniXKL. These equations are

immediate consequences of the functoriality of the generalized cohomology theory

under consideration.
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� The four items above ensure that the direct limit hnc (X) = lim
−→ K

hn(X,X − K)

is well-de�ned. Moreover, because of Theorem A.7, we know that two classes

[u], [v] ∈ hnc (X) are equal, where u ∈ hn(X,X − K) and v ∈ hn(X,X − L) with

K,L ∈ KC (X), if and only if there exists M ∈ KC (X) for which K ⊆ M , L ⊆ M

and hniXKM(u) = hniXLM(v).

� If X is a compact space, then hnc (X) is isomorphic to hn(X) for all n ∈ Z. This

happens since KC (X) contains a unique maximal compact subspace of X, which is

X itself. ♦

Remark 1.103 (On the Excision Axiom in the literature). The Excision Axiom is not

always stated as in De�nition 1.9. In fact, its other common version is equal to ours

but not requiring the openness condition on U . The motivation for this version (which

evidently restricts the range of generalized cohomology theories, being then a stronger

axiom) is that it holds in Singular Cohomology and, as we shall see later, in K-Theory.

This stronger version is the one used until the end of this section. ♦

Theorem 1.104 (Isomorphism with the one-point Alexandro� compacti�cation of a

locally compact Hausdor� space). In a generalized cohomology theory based on an

admissible category of topological spaces C , let X be an admissible locally compact

Hausdor� space. Suppose that:

(a). (X+,∞) is admissible, where X+ = X t {∞} is the one-point Alexandro�

compacti�cation of X. In particular, note that this implies that X+ is an

admissible space;

(b). KC (X) ⊆ KC (X+);

(c). the excision map iK : (X,X − K) → (X+, X+ − K) is admissible for every

K ∈ KC (X);

(d). the inclusion map jK : (X+,∞) → (X+, X+ − K) is admissible for every

K ∈ KC (X); and
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(e). there exists a fundamental set of open neighborhoods U = {Uα}α∈Λ of ∞ in X+,

where

Uα = X+ −Kα

with Kα ∈ KC (X) for all α ∈ Λ, such that Uα is contractible for each α ∈ Λ(2).

See Figure 1.1.

Under these conditions, we have that the compactly-supported generalized cohomology

group hnc (X) is isomorphic to the pointed reduced generalized cohomology group h̃n∞(X+)

for all n ∈ Z.

Proof. We have the following facts.

� The diagram below is commutative because its corresponding diagram of inclusions

is easily seen to be commutative.

hn(X, X −K) hn(X+, X+ −K)

hn(X, X − L) hn(X+, X+ − L)

hn(iK)−1

hniXKL hniX
+

KL

hn(iL)−1

Note that hn(iK)−1 is well-de�ned for all K ∈ KC (X) because of the Excision Axiom

(see Remark 1.103). Therefore, by taking the direct limit on both sides, we obtain

the map

Φn : hnc (X) → lim
−→ K∈KC (X)

hn(X+, X+ −K),

which the reader can readily prove to be an isomorphism since each of its components

is an isomorphism.

� The diagram below is commutative because its corresponding diagram of inclusions

is easily seen to be commutative.

(2)The reader can prove that the existence of such a fundamental set of open neighborhoods is
ensured if X+ is locally contractible in ∞. However, as one could expect, we cannot ensure a priori

that the elements of such a collection of open subspaces of X+ are formed from compact subspaces
in KC (X).



1. Generalized Cohomology Theories 80

hn(X+, X+ −K) hn(X+, ∞)

hn(X+, X+ − L) hn(X+, ∞)

hniX
+

KL

hn(jK)

hn(jL)

Therefore, by taking the direct limit, we obtain the map

Ψn : lim
−→ K∈KC (X)

hn(X+, X+ −K) → hn(X+, ∞),

which we now prove to be an isomorphism. Indeed, for each K ∈ KC (X),

since U is a fundamental set of open neighborhoods of ∞ in X+, there exists α ∈ Λ

such that

Uα = X+ −Kα ⊆ X+ −K.

Hence, we have that

hn(X+, X+ −K) and hn(X+, Uα)

are identi�ed in the direct limit. Moreover, by hypothesis, Uα = X+ − Kα is

contractible. Thus, it follows that

hn(X+, Uα) and hn(X+, ∞)

are isomorphic because of Theorem 1.58. The reader may convince himself or

herself that this ensures our claim.

Consequently, since h̃n∞(X+) is isomorphic to hn(X+,∞) for all n ∈ Z, the theorem is

proved because

Ψn ◦ Φn : hnc (X) → hn(X+, ∞)

is an isomorphism between the compactly-supported group hnc (X) and hn(X+,∞)

for all n ∈ Z.
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∞

X+

Figure 1.1: This picture represents the one-point Alexandro� compacti�cation X+ of a
space X that admits a fundamental set of open neighborhoods of ∞ as above. Note
that, by de�nition, an open set in this collection is the complement in X+ of a compact
subspace in KC (X).

Remark 1.105 (On the hypotheses of the preceding result). The reader can prove that

we can weaken Items (c) and (d) of Theorem 1.104 by just requiring the existence of a

co�nal family of compact subspaces in KC (X) for which the properties stated in these

items are veri�ed. ♦

Example 1.106 (The thesis of the preceding result is not always true). Let X be the

surface of countable-in�nite genus obtained by connected summing two-dimensional tori.

In Singular Cohomology, we have

H̃1(X+) '
∏
n∈N

Z and

H1
c (X) '

⊕
n∈N

Z.

Therefore, in Singular Cohomology, Hn
c (X) is not isomorphic to H̃n(X+) for all

n ∈ Z. Thus, in a generalized cohomology theory, the conclusion of the preceding result

is not always true. ♦

Finally, in order to �nish this section, we show that the multiplicative structures

studied before are well-behaved with respect to the compactly-supported cohomology

groups. This is done in the following theorem, whose proof we leave as an exercise to

the reader.
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Theorem 1.107 (Multiplicative structures in compactly-supported groups). In a

multiplicative generalized cohomology theory,

[ϕm,n] : hmc (X)⊗ hnc (X) → hn+m
c (X),

[u]⊗ [v] 7→ [ϕm,n(u⊗ v)],

is well-de�ned, as well as

[µm,n] : hmc (X)⊗ hnc (Y ) → hn+m
c (X × Y ),

[u]⊗ [v] 7→ [µm,n(u⊗ v)].

Proof. We leave the details of this proof to the reader since they just consist in

proving that

[ϕm,n(u⊗ v)] and [µm,n(u⊗ v)]

do not depend on the representing elements u and v of the compactly-supported classes

[u] and [v], respectively.
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Chapter 2

Ordinary K-Theory as a Generalized

Cohomology Theory

In this chapter, we expose the main notions on Ordinary K-Theory as a

generalized cohomology theory, taking advantage of the results proved in Chapter 1.

In order to write this part of the text, we used as main references

[2, pp. 43-94] and [19, pp. 52-111]. However, Sections 2.6 and 2.8 could not be

written without [15, pp. 38-72] as well as Sections 2.9 and 2.11 could not be completed

without [1], [3], [23, p. 65, pp. 70-76] and [33].

2.1 Absolute K-Theory

In this section, we start the study of Ordinary K-Theory de�ning its most

elementary notions, namely, the absolute K-Theory group and the induced group

homomorphisms. We begin with the following de�nition.

De�nition 2.1 (The category of compact Hausdor� topological spaces). We de�ne the

category of compact Hausdor� topological spaces, and denote it by TopHdCpt, to

be the one whose:

� objects are compact Hausdor� spaces; and

� morphisms are continuous functions f : X → Y where X and Y are compact

Hausdor� spaces. ♦
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Remark 2.2 (On some results from Appendixes B and C). We have the following facts

from the appendixes.

� Let S be an abelian semigroup. Theorems B.3 and B.4 say that there exists a unique,

up to a unique isomorphism, Grothendieck group K(S) of S. Moreover, Theorem B.4

and Remark B.7 imply that:

• the generic element of K(S) is a formal di�erence of classes [a]− [b] ∈ K(S);

and

• two classes [a] and [b] in K(S) coincide if and only if there exists s ∈ S for

which a+ u = b+ u.

� Given a topological space X, the set VectX of isomorphism classes of complex

vector bundles on X is an abelian semigroup(1) when equipped with the direct

sum operation

⊕ : VectX × VectX → VectX ,

([E], [F ]) 7→ [E ⊕ F ],

by Theorem C.38.

These two pieces of information are the ones that allow us to set the following

de�nition. ♦

De�nition 2.3 (The absolute K-Theory group of a compact Hausdor� space). Let X

be an object in TopHdCpt and VectX be the semigroup of isomorphism classes of

complex vector bundles on X with respect to the induced direct sum. The absolute

K-Theory group of X, hereafter denoted by K(X), is the Grothendieck group associated

to VectX . ♦

Remark 2.4 (On the elements of the absolute K-Theory group of a compact

Hausdor� space). Let X be an object in TopHdCpt. It follows from Remark 2.2 and from

De�nition 2.3 that:

(1)In fact, the induced direct sum operation turns VectX into an abelian monoid. This happens
because the isomorphism class of the product vector bundle with trivial typical �ber is its identity
element.
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� the generic element of K(X) is a formal di�erence of classes [[E]]− [[F ]] ∈ K(X);

and

� two classes [[E]] and [[F ]] in K(X) coincide if and only if there exists a complex

vector bundle G for which [E] ⊕ [G] = [F ] ⊕ [G]. That is, [[E]] = [[F ]] in K(X)

if and only if there exists a complex vector bundle G for which E ⊕ G and F ⊕ G

are isomorphic over X. ♦

Remark 2.5 (The reason for restricting the framework of absolute K-Theory groups to

TopHdCpt). The reader may be asking himself or herself why we are restricting to

compact Hausdor� spaces in De�nition 2.3 if the conclusions of Remark 2.4, which

were immediately obtained from Remark 2.2, are still true for all classes of

topological spaces. We now present answers for this question. However, these answers

will only become clear in next sections, where they turn out to be essential properties of

K-Theory groups of compact Hausdor� spaces. Indeed, let X be an object in TopHdCpt.

Thus:

� if [[E]] and [[F ]] are coincident classes in K(X), then there exists a complex vector

bundle G such that

[E]⊕ [G] = [F ]⊕ [G].

Therefore, because of Theorem C.51, we know that there exists a complex vector

bundle H such that G ⊕ H is isomorphic to some trivial vector bundle of rank

n ∈ N, which we will also denote by n. Hence, [[E]] = [[F ]] in K(X) if and only

if there exists a trivial vector bundle n for which E ⊕ n and F ⊕ n are isomorphic

over X; and

� given a class [[E]]− [[F ]] ∈ K(X), Theorem C.51 ensures the existence of a complex

vector bundle G such that F ⊕ G is isomorphic to some trivial vector bundle n.

Therefore,

[[E]]− [[F ]] = [[E]] + [[G]]− [[F ]]− [[G]]

= [[E ⊕G]]− [[F ⊕G]]

= [[E ⊕G]]− [[n]].
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In other words, we have that any K-Theory class of a compact Hausdor� space can

be represented as a formal di�erence between a generic vector bundle and a trivial

vector bundle. ♦

Notation 2.6 (On the rank of K-Theory classes). Let X be an object in TopHdCpt

and x ∈ X. Given a class α = [[E]] − [[F ]] ∈ K(X), we will use the notation rkx(α) to

indicate rkx(E)− rkx(F ). ♦

De�nition 2.7 (Pullback in absolute K-Theory). Let f : X → Y be a morphism in

TopHdCpt. We say that the pullback of f in absolute K-Theory is the morphism of

abelian groups

K(f) : K(Y ) → K(X),

[[E]]− [[F ]] 7→ [[f ∗E]]− [[f ∗F ]],

where f ∗E and f ∗F are the pullbacks of the vector bundles E and F through f , respectively.

Note that K(f) is well-de�ned because the pullbacks of isomorphic vector bundles are also

isomorphic. ♦

Remark 2.8 (Categorical interpretation of the absolute K-Theory data presented

above). Being Gab the standard category of abelian groups, we have the contravariant

functor

K : TopHdCpt → Gab,

X 7→ K(X),

f : X → Y 7→ K(f) : K(Y )→ K(X).

Indeed, if f : X → Y and g : Y → Z are morphisms in TopHdCpt, then

K(idX) = idK(X) and

K(g ◦ f) = K(f) ◦K(g)

by Theorem C.55. Furthermore, since Theorem C.57 imply that the pullbacks of vector

bundles through homotopic continuous maps are isomorphic over X, the contravariant

functor
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[K] : [TopHdCpt] → Gab,

X 7→ K(X),

[f : X → Y ] 7→ K(f) : K(Y )→ K(X),

is well-de�ned, where [TopHdCpt] is the quotient of TopHdCpt by the relation of

homotopy of maps, which is an equivalence relation that is compatible with the

composition in TopHdCpt. ♦

Example 2.9 (Absolute K-Theory groups of contractible compact Hausdor�

spaces). Let X be a contractible space in TopHdCpt. Since every vector bundle on X

is trivial by Corollary C.58, VectX is composed of an isomorphism class for each possible

dimension of the typical �ber of a trivial vector bundle on X. Thus, VectX is isomorphic

to the additive monoid N. Consequently, K(X) is the additive group Z. In particular,

if Ω is a one-point space, since it is a contractible compact Hausdor� space, K(Ω) is the

additive group Z. In addition:

� every element in K(Ω) is a di�erence between two classes of trivial vector bundles

[[n]]− [[m]] ∈ K(Ω), which we hereafter identify with the integer number n−m ∈ Z;

and

� given a continuous map f : Ω → X, where X is any compact Hausdor� space, if

[[E]] − [[F ]] ∈ K(X), then the pullback K(f)([[E]] − [[F ]]) is the integer number

rkf(Ω)(E)− rkf(Ω)(F ). ♦

Example 2.10 (Absolute K-Theory group of the circle). Let S1 be the unit circle,

canonically embedded in the Euclidean plane. We claim that every complex vector

bundle on S1 is trivial. Indeed, let S1
+ and S1

− be the superior and inferior semicircles,

respectively. Every complex vector bundle on S1 with rank n ∈ N is isomorphic to a vector

bundle obtained from the disjoint union

(S1
+ × Cn) t (S1

− × Cn)

by a quotient by an equivalence relation which, given a continuous function

f : S0 → GL(n,C), identi�es (z, w) with (z, f(w)) for all z ∈ S0 and all w ∈ Cn.
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Thus, since the isomorphism class of this kind of vector bundle only depends

on the homotopy class of f , our initial assertion is proved. In fact, since S0 is discrete

and GL(n,C) is connected, every continuous map f is homotopic to the unit

constant function. Therefore, K(S1) is the group of the integer numbers equipped with

the ordinary sum. ♦

Remark 2.11 (On the reasoning used to obtain the absolute K-Theory groups of

the spaces considered in Examples 2.9 and 2.10). In the preceding examples, we deduced the

absolute K-Theory groups of the spaces under consideration by successively applying

these three steps:

(1) we set the compact Hausdor� space X;

(2) we found the semigroup of isomorphism classes of vector bundles VectX ; and

(3) we calculated the Grothendieck group K(X) of VectX .

The repeated use of this process may mislead the reader, suggesting that this

is the natural way to �nd the K-Theory groups. In fact, �nding VectX for each given

compact Hausdor� space X is an extremely hard and unsolved problem. Then, the

strategy that we will follow in the next sections is to set K-Theory as a generalized

cohomology theory, which will allow us to use all the calculation tools developed in

Chapter 1. Therefore, it must be clear that, since we still do not have the tools to

calculate the K-Theory groups, the reasoning applied to Examples 2.9 and 2.10 is the

best we could do right now. More than that, the theory that we will develop in the next

sections is a way to avoid the problem of explicitly calculating VectX . In summary, if we

could achieve the semigroups of isomorphism classes of vector bundles, then there would

be no use for K-Theory. However, since the �rst approach is intractable, K-Theory is the

way we have to understand these objects. ♦

Remark 2.12 (The absolute K-Theory groups given by a di�erentiable manifold). Let

r be a natural number or ∞. In addition, let M be a real Cr-manifold. Because of

Corollary C.71, we have that the Grothendieck group of M as a topological manifold

K(M) is isomorphic to the Grothendieck group of M as a real Cr-manifold
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K(Vect C
r

M ). More explicitly, this isomorphism tells us that, if we have a di�erential

manifold, then it su�ces to consider its semigroup of di�erentiable isomorphism classes

of vector bundles to obtain its absolute K-Theory information. Moreover, because of

Remark C.72:

� if M is a real analytic manifold, then K(M) is always isomorphic to K(Vect C
ω

M ),

where Vect C
ω

M is the semigroup of analytic isomorphism classes of vector bundles

onM; and

� if M is a complex manifold, then K(M) is not always isomorphic to K(VectHM),

where VectHM is the semigroup of holomorphic isomorphism classes of vector bundles

onM. ♦

2.2 Reduced K-Theory

In this section, we de�ne the reduced K-Theory groups and the induced group

homomorphisms. We also show that these objects are isomorphic to each other, although

the isomorphism is not usually canonical. In addition, we prove that there is an explicit

relation between them and the absolute K-Theory group. We begin with the following

de�nition.

De�nition 2.13 (The category of compact Hausdor� pointed topological spaces). We

de�ne the category of compact Hausdor� pointed topological spaces, and denote

it by TopHdCpt+, to be the one whose:

� objects are ordered pairs (X, x0) in which X is a compact Hausdor� space and

x0 ∈ X; and

� morphisms are continuous functions f : X → Y such that f(x0) = y0, usually

denoted by f : (X, x0)→ (Y, y0). ♦

De�nition 2.14 (The reduced K-Theory group of a compact Hausdor� pointed space).

Let (X, x0) be an object in TopHdCpt+ and i : {x0} → X be the inclusion map. We

de�ne
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K̃(X, x0) := KerK(i),

where K(i) : K(X) → K(x0) is the pullback of i in K-Theory. This new group is

said to be the reduced K-Theory group of the pointed space (X, x0). More explicitly,

K̃(X, x0) is formed by the K-Theory classes [[E]] − [[F ]] ∈ K(X) in such manner that

rkx0(E) = rkx0(F ). ♦

Remark 2.15 (On the reduced K-Theory group of a compact Hausdor� pointed space).

Let (X, x0) be an object in TopHdCpt+. Note that:

� every class in K̃(X, x0) can be represented in the form [[E]] − [[rkx0(E)]]. This

implies that K̃(X, x0) only depends on the connected component of x0 in X.

Hence, if X is connected, then the condition for which [[E]] − [[F ]] ∈ K̃(X, x0)

simply becomes rk(E) = rk(F ). Therefore, in this situation, each class of reduced

K-Theory can represented as [[E]]− [[rk(E)]]. Therefore, K̃(X, x0) does not depend

on x0 ∈ X; and

� we have the canonical isomorphism

Φ(X,x0) : K(X) → K̃(X, x0)⊕ Z,

α 7→ (α− [[rkx0(α)]]), [[rkx0(α)]]).

This shows the relation between the absolute and the reduced K-Theory groups,

which is K(X) being isomorphic to the direct sum of K̃(X, x0) with one copy of Z.

In particular, this Z factor corresponds to the subgroup of K(X) generated by the

trivial vector bundles. ♦

Remark 2.16 (On the image of relative K-Theory groups by pullbacks in absolute

K-Theory). Let f : (X, x0) → (Y, y0) be a morphism in TopHdCpt+. If α ∈ K̃(Y, y0),

then the pullback K(f) : K(Y ) → K(X) is such that K(f)(α) ∈ K̃(X, x0). Indeed, let

i : {x0} → X and j : {y0} → Y be the inclusion maps. In addition, let η : {x0} → {y0}

be the only possible map. The reader can readily prove that the following diagram is

commutative.
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{x0} {y0}

X Y

η

i j

f

Therefore, if α ∈ K̃(Y, y0), then

K(i)K(f)(α) = K(η)K(j)(α) = K(η)0 = 0.

This proves that K(f)(α) ∈ K̃(X, x0), as we wished. Consequently, we are allowed to set

the following de�nition. ♦

De�nition 2.17 (Pullback in pointed reduced K-Theory). Let f : (X, x0) → (Y, y0)

be a morphism in TopHdCpt+. We say that the pullback of f in pointed reduced

K-Theory is the morphism of abelian groups

K̃(f) := K(f) |K̃(Y,y0): K̃(Y, y0)→ K̃(X, x0). ♦

Remark 2.18 (Categorical interpretation of the reduced K-Theory data presented

above). We have the contravariant functor

K̃ : TopHdCpt+ → Gab,

(X, x0) 7→ K̃(X, x0),

f : (X, x0)→ (Y, y0) 7→ K̃(f) : K̃(Y, y0)→ K̃(X, x0).

Let f, g : (X, x0) → (Y, y0) be morphisms in TopHdCpt+. We say that a homotopy in

TopHdCpt+ between f and g is a homotopy H : X × I→ Y in TopHdCpt between these

two maps such that

H(x0, t) = y0

for all t ∈ I. Then, considering [TopHdCpt+], which is the quotient of TopHdCpt+ by the

compatible equivalence relation of homotopy of pointed maps, we have the contravariant

functor
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[K̃] : [TopHdCpt+] → Gab,

(X, x0) 7→ K̃(X, x0),

[f : (X, x0)→ (Y, y0)] 7→ K̃(f) : K̃(Y, y0)→ K̃(X, x0).

Clearly, [f ] is de�ned up to homotopy in TopHdCpt+. Nevertheless, given morphisms

f, g : (X, x0) → (Y, y0) in TopHdCpt+, it is possible that f and g are homotopic as

morphisms in TopHdCpt but not as morphisms in TopHdCpt+. Even in this case, we

have K̃(f) = K̃(g) in reduced K-Theory. In fact, we have K(f) = K(g) in absolute

K-Theory and, moreover, the pullback in absolute K-Theory sends K̃(Y, y0) into

K̃(X, x0). Therefore,

K̃(f) = K(f) |K̃(Y,y0) = K(g) |K̃(Y,y0) = K̃(g).

Hence, since a homotopy in TopHdCpt+ is also a homotopy in TopHdCpt, we could

de�ne the contravariant functor

[K̃] : [TopHdCpt+] → Gab,

considering [TopHdCpt+] to be the quotient of TopHdCpt+ by the compatible equivalence

relation of homotopy of maps. However, this quotient is unnatural in TopHdCpt+. In

any case, the pullback in reduced K-Theory is invariant. ♦

The preceding remark �nishes the de�nitions and the construction of the reduced

K-Theory for compact Hausdor� pointed spaces. In the next and last paragraphs of this

section, we de�ne an equivalent version of reduced K-Theory. This new approach de�nes

the ideas in question for compact Hausdor� spaces which do not have a special marked

point a priori.

De�nition 2.19 (The reduced K-Theory group of a compact Hausdor� space). Let

Ω be a one-point space and X be an object in TopHdCpt. In addition, let pX : X → Ω

be the only possible map and K(pX) : K(Ω) → K(X) be its pullback in absolute

K-Theory. We say that the quotient of K(X) by ImK(pX), which we denote by K̃(X),

is the reduced K-Theory group of X. More directly, K̃(X) is the cokernel of

K(pX) : K(Ω)→ K(X). ♦
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Remark 2.20 (On the relative K-Theory groups and the pullback in absolute K-Theory).

Let Ω be a one-point space and f : X → Y be a morphism in TopHdCpt. In addition,

let pX : X → Ω and pY : Y → Ω be the only possible maps. The reader can readily prove

that the diagram

X Ω YpX

f

pY

is commutative. Therefore, for every α ∈ K(Ω), we have

K(f)K(pY )(α) = K(pX)(α).

Consequently, it is well-de�ned the map induced by K(f) from the quotient of K(Y ) by

ImK(pY ) into the quotient of K(X) by ImK(pX). This allows us to set the following

de�nition. ♦

De�nition 2.21 (Pullback in reduced K-Theory). Let f : X → Y be a morphism in

TopHdCpt. We say that the pullback of f in reduced K-Theory is the morphism of

abelian groups

K̃(f) : K̃(Y ) → K̃(X),

[α] 7→ [K(f)(α)]. ♦

Remark 2.22 (Categorical interpretation of the reduced K-Theory data presented

above). We have the contravariant functor

K̃ : TopHdCpt → Gab,

X 7→ K̃(X),

f : X → Y 7→ K̃(f) : K̃(Y )→ K̃(X).

The reader can readily prove that the pullback in K-Theory of compact Hausdor� spaces

is still homotopy invariant. Therefore, we have that it is well-de�ned the contravariant

functor
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[K̃] : [TopHdCpt] → Gab,

X 7→ K̃(X),

[f : X → Y ] 7→ K̃(f) : K̃(Y )→ K̃(X),

where [TopHdCpt] is the quotient of TopHdCpt by the relation of homotopy of

maps, which is an equivalence relation that is compatible with the composition in

TopHdCpt. ♦

Remark 2.23 (Relation between the two versions of reduced K-Theory). Let Ω be a

one-point space and (X, x0) be an object in TopHdCpt+. By de�nition, K̃(X) is the

quotient of K(X) by ImK(pX), where px : X → Ω is the only possible map. Thus, we

have the short exact sequence

0 Z K(X) K̃(X) 0,
K(pX) πX

where πX : K(X) → K̃(X) is the natural projection that sends α ∈ K(X) into

[α] ∈ K̃(X). The fact that K(X) is isomorphic to K̃(X) ⊕ Z is still true.

However, the isomorphism is canonical only if X is connected. Indeed, in order to

�nd an isomorphism between K(X) and K̃(X) ⊕ Z, we have to choose a right inverse

i : Ω → X for pX : X → Ω, which is equivalent to �x a point in X. Then,

K(i) : K(X) → Z splits the preceding short exact sequence. Therefore, we have the

isomorphism

ΦπX
K(i) : K(X) → K̃(X)⊕ Z,

α 7→ (πX(α), K(i)(α)).

The group K̃(X, x0) is a subgroup of K(X) while K̃(X) is a quotient of K(X). In

particular, in order to embed K̃(X) in K(X), we have to choose a point x0 ∈ X, which

is generally a non-canonical procedure in a space without a marked point. Nevertheless,

when X is connected, K̃(X) and K̃(X, x0) are canonically isomorphic because K̃(X, x0)

does not depend on x0 ∈ X. ♦
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2.3 Relative K-Theory

In this section, we de�ne the last fundamental building blocks of Ordinary

K-Theory, namely, the relative K-Theory group and the induced group homomorphisms.

We begin with the following de�nition in which stands the admissible category of

topological spaces that we will use as grounding for K-Theory as a generalized

cohomology theory.

De�nition 2.24 (The category of pairs of compact Hausdor� topological spaces). We

de�ne the category of pairs of compact Hausdor� topological spaces, and denote

it by TopHdCCpt2, to be the one whose:

� objects are ordered pairs (X,A) in which X is a compact Hausdor� space and A ⊆ X

is a closed subspace; and

� morphisms are continuous functions f : X → Y such that f(A) ⊆ B, usually

denoted by f : (X,A)→ (Y,B). ♦

De�nition 2.25 (The relative K-Theory group of a pair of compact Hausdor� spaces).

Let (X,A) be an object in TopHdCCpt2. We de�ne

K(X,A) := K̃(X/A, A/A).

This new group is said to be the relative K-Theory group of the pair of

spaces (X,A). ♦

Remark 2.26 (On the relative K-Theory group of a pair of compact Hausdor� spaces).

Let (X,A) be an object in TopHdCCpt2. Note that:

� since A is a closed subspace of the compact Hausdor� X, the quotient X/A

is also a compact Hausdor� space. Therefore, (X/A,A/A) is really an element

of TopHdCpt+. This allows us to set the relative K-Theory group as in

De�nition 2.25; and
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� in Singular Cohomology, the relative cohomology of a pair (X,A) coincides up to

isomorphism with the reduced cohomology of the pointed space (X/A,A/A)

if (X,A) is a co�bration or a good pair. In general, this does not happen.

In K-Theory, the relative cohomology of a compact Hausdor� pair (X,A) is equal

to the reduced cohomology of the compact Hausdor� pointed space (X/A,A/A) by

de�nition. ♦

Notation 2.27 (On the pointed space induced by a pair of compact Hausdor� spaces).

Let (X,A) be an object in TopHdCCpt2. Once the quotient of X by A has a natural

marked point, which is the quotient of A by A, we will say that the former belongs

to TopHdCpt+ without mentioning its marked point. In particular, we will use this

convention in pointed reduced K-Theory, which should cause no confusion with the

reduced K-Theory of De�nition 2.19. ♦

Remark 2.28 (Morphism of pointed spaces induced by a morphism of pairs of

spaces). Let f : (X,A) → (Y,B) be a morphism in TopHdCCpt2. Then, we have the

morphism

f̄ : X/A → Y/B,

[x] 7→ [f(x)],

in TopHdCpt+. The reader can readily prove that this morphism is well-de�ned using

that f(A) ⊆ B. ♦

De�nition 2.29 (Pullback in relative K-Theory). Let f : (X,A)→ (Y,B) be a morphism

in TopHdCCpt2. We say that the pullback of f in relative K-Theory is the morphism

of abelian groups

K(f) := K̃(f̄) : K̃(Y/B)→ K̃(X/A),

where f̄ : X/A → Y/B is the natural map of compact Hausdor� pointed spaces

de�ned in Remark 2.28. Finally, we will write K(f) : K(Y,B) → K(X,A) instead of

K(f) : K̃(Y/B)→ K̃(X/A). ♦
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Remark 2.30 (Categorical interpretation of the relative K-Theory data presented

above). We have the contravariant functor

K : TopHdCCpt2 → Gab,

(X,A) 7→ K(X,A),

f : (X,A)→ (Y,B) 7→ K(f) : K(Y,B)→ K(X,A).

Let f, g : (X,A) → (Y,B) be morphisms in TopHdCCpt2. We say that a homotopy

in TopHdCCpt2 between f and g is a homotopy H : X × I → Y in TopHdCpt

between these two maps such that H(a, t) ∈ B for all a ∈ A and all t ∈ I. Then,

if there exists a homotopy of pairs H between f, g : (X,A)→ (Y,B), it is well-de�ned the

continuous function

H̄ : (X/A)× I→ Y/B

according to Remark 2.28. It can be readily proved that this map is a homotopy of pointed

maps between f̄ , ḡ : X/A→ Y/B. Thus, we have

K(f) = K̃(f̄) = K̃(ḡ) = K(g).

Therefore, we have the contravariant functor

[K] : [TopHdCCpt2] → Gab,

(X,A) 7→ K(X,A),

[f ] : (X,A)→ (Y,B) 7→ K(f) : K(Y,B)→ K(X,A),

where [TopHdCCpt2] is the quotient of TopHdCCpt2 by the compatible equivalence relation

of homotopy of maps of pairs. ♦

2.4 First relations

In this section, we establish the �rst relations between the absolute, reduced and

relative K-Theory groups through exact sequences. It is to be noted that the results

exposed here have technical proofs, which can be skipped if the reader prefers. However,
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the statements of these results cannot be ignored since they are essential in Sections 2.5

and 2.6 to set the K-Theory cohomology sequences and their exactness. We begin with

the following theorem.

Theorem 2.31 (Exact sequence involving absolute and relative K-Theory groups). Let

(X,A) be an object in TopHdCCpt2. In addition, let i : A → X and π : X → X/A

be the natural inclusion and projection, respectively. The pullback in absolute K-Theory

K(π) : K(X/A)→ K(X) can be restricted to

K(π) |K(X,A): K(X,A) → K(X),

since K(X,A) is a subgroup of K(X/A). Moreover, we will continue to denote

this restriction by K(π) : K(X,A) → K(X). Therefore, we have that the

sequence

K(X,A) K(X) K(A).
K(π) K(i)

is exact. This means that the image of K(π) is the set of classes of K(X) whose restriction

to A is zero.

Proof. Let us �rst prove that ImK(π) is a subset of KerK(i). Indeed, consider

[[E ′]]−[[F ′]] ∈ K(X,A). The vector bundles E ′ and F ′ on X/A have the same rank on the

marked point A/A. This happens because of De�nition 2.14 since K(X,A) = K̃(X/A).

In addition, it follows from Corollary C.62 that the restrictions to A of E := π∗E ′ and

F := π∗F ′ are trivial. Therefore,

K(i)K(π)([[E ′]]− [[F ′]]) = K(i)([[π∗E]]− [[π∗F ]])

= K(i)([[E]]− [[F ]])

= [[E |A]]− [[F |A]]

= 0,

as we wished. Finally, we prove that KerK(i) is a subset of ImK(π). In fact, let

α ∈ KerK(i). We can represent α in the form α = [[E]] − [[n]] where E and n are

a generic and a trivial vector bundles on X, respectively, because of Remark 2.5. By

de�nition,
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K(i)(α) = K(i)[[E]]−K(i)[[n]] = [[E |A]]− [[n |A]] = 0.

Therefore, it also follows from Remark 2.5 that there exists a trivial vector bundle m

on X for which (E ⊕ m) |A is isomorphic to (n ⊕ m) |A. Consequently, because of

Corollary C.62, the vector bundle E ⊕m is the pullback of a vector bundle on X/A. In

particular, let α : (E ⊕ m) |A → A × Cn+m be a global trivialization of (E ⊕ m) |A.

Then, it is de�ned the quotient E ′ of E ⊕m by the α-equivalence relation, which is such

that [π∗(E ′)] = [E ⊕m]. Thus,

K(π)([[E ′]]− [[n⊕m]]) = K(π)[[E ′]]−K(π)[[n⊕m]]

= [[π∗E ′]]− [[n⊕m]]

= [[E ⊕m]]− [[n⊕m]]

= [[E]]− [[n]]

= α. �

De�nition 2.32 (The category of pointed pairs of compact Hausdor� topological spaces).

We de�ne the category of pointed pairs of compact Hausdor� pointed topological

spaces, and denote it by TopHdCCpt2+, to be the category whose:

� objects are ordered triples (X,A, a0) in which (X,A) belongs to TopHdCCpt2

and a0 ∈ A; and

� morphisms are continuous functions f : X → Y such that f(A) ⊆ B and f(a0) = b0,

usually denoted by f : (X,A, a0)→ (Y,B, b0). ♦

Corollary 2.33 (Exact sequence involving pointed reduced and relative K-Theory

groups). Let (X,A, a0) be an object in TopHdCCpt2+. Moreover, let i : (A, a0)→ (X, a0)

and π : (X, a0) → X/A be the natural inclusion and projection, respectively. Then,

the sequence

K(X,A) K̃(X, a0) K̃(A, a0)
K̃(π) K̃(i)

is exact.
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Proof. It follows from Remark 2.15 and from Theorem 2.31 that the sequence

K(X,A) K̃(X, a0)⊕ Z K̃(A, a0)⊕ Z

is exact. Now, let ia0 : {a0} → A and ja0 : {a0} → X be the inclusion maps. We claim

that, for each α ∈ K(X) such that K(i)(α) = 0, we have K(ja0)(α) = 0. Indeed, since

ja0 = i ◦ ia0 , we obtain

K(ja0)(α) = (K(ia0) ◦K(i))(α) = K(ia0)0 = 0.

Thus, α ∈ K̃(X, a0). Therefore, the image of K(π) is a subset of K̃(X, a0). This �nishes

the proof of the theorem.

Corollary 2.34 (Exact sequence involving reduced and relative K-Theory groups). Let

(X,A) be an object in TopHdCCpt2. In addition, let i : A → X and π : X → X/A

be the natural inclusion and projection, respectively. In this situation, we de�ne the

homomorphism

K̃(π) : K(X,A) → K̃(X)

to be the composition between K(π) : K(X,A) → K(X) of Theorem 2.31 with the

projection K(X)→ K̃(X) = K(X)/Z, where the factor Z is the one in the isomorphism

of Remark 2.15. Moreover, the homomorphism K(i) : K(X) → K(A) of Theorem 2.31

de�nes

K̃(i) : K̃(X) = K(X)/Z → K̃(A) = K(A)/Z

since its image of any trivial vector bundle is also trivial. Therefore, we have that

the sequence

K(X,A) K̃(X) K̃(A)
K̃(π) K̃(i)

is exact.

Proof. This assertion follows from Theorem 2.31 since the projection K(X) → K̃(X)

restricts to isomorphisms ImK(π) → Im K̃(π) and KerK(i) → Ker K̃(i). Indeed,

given a class [α] ∈ Ker K̃(i) or a class [α] ∈ Im K̃(π), there exists a unique

α ∈ KerK(i) = ImK(π) because, if we add a trivial vector bundle to α, then the
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resulting image is not zero in K(A). This means that [α] ∈ Ker K̃(i) if and only if

there exists a unique α ∈ KerK(i) = ImK(π). In turn, this happens if and only if

[α] ∈ Im K̃(π).

Remark 2.35 (On the exact sequences of the preceding corollaries). Because of

Corollary C.64, if A is contractible, then the homomorphisms induced by π in the

exact sequences of Corollaries 2.33 and 2.34 are bijections. Indeed, since [π∗] is an

isomorphism between Vect(X/A) and Vect(X), it is extended as an isomorphism

between the Grothendieck groups K(X/A) and K(X). In turn, this isomorphism

restricts to isomorphisms between the reduced K-Theory groups. It is to be noted that

this claim holds independently of the embedding of A into X being a co�bration, which is

needed in Singular Cohomology. ♦

2.5 K-Theory of negative degree

In this section, we extend the absolute, reduced and relative K-Theory groups

to other degrees, giving then the �rst explicit step towards the construction of the

data presented in De�nition 1.9. In order to do this, we use the constructions and the

notations presented in Appendix D. However, we are not yet capable of constructing

K-Theory groups in all degrees. In fact, here we restrict ourselves to an extension of the

K-Theory groups to negative degrees. We begin with the following remark that justi�es

this restriction.

Remark 2.36 (The suspension isomorphism in Singular Cohomology). In Singular

Cohomology, being (X, x0) an object in Top2 and ΣX its reduced suspension, we have

a canonical isomorphism between H̃n(X, x0) and H̃n+1(ΣX) for all n ∈ Z, which is

known as the suspension isomorphism. Iteratively, we obtain from this a canonical

isomorphism

H̃k−n(X, x0) ' H̃k(ΣnX)

for all k, n ∈ Z. Additionally, since the absolute group Hn(X) is canonically

isomorphic to the reduced group H̃n(X+) where X+ = X t{∞}, we also have a canonical

isomorphism
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Hk−n(X) ' H̃k(ΣnX+).

In this context, the case in which k = 0 is not interesting because we only obtain

trivial groups, with a possible exception when n = 0 (which is simple to be handled).

Nonetheless, in the K-Theory framework, we de�ne the negative degree groups through

this case, as below. ♦

De�nition 2.37 (K-Theory groups and homomorphisms of negative degree). Being n

a natural number, we give the following de�nitions.

� The nth negative degree absolute K-Theory group of a compact Hausdor�

space X, which is hereafter denoted by K−n(X), is the pointed reduced K-Theory

group

K̃(ΣnX+).

In addition, being f : X → Y a morphism of compact Hausdor� spaces, we

de�ne the nth negative degree pullback of f in absolute K-Theory, and

denote it by K−n(f) : K−n(Y ) → K−n(X), to be the pullback in pointed reduced

K-Theory

K̃(Σnf+) : K̃(ΣnY+) → K̃(ΣnX+).

� The nth negative degree pointed reduced K-Theory group of an object

(X, x0) ∈ TopHdCpt+, which is hereafter denoted by K̃−n(X, x0), is the pointed

reduced K-Theory group

K̃(ΣnX).

In addition, being f : (X, x0) → (Y, y0) a morphism of pointed compact Hausdor�

spaces, we de�ne the nth negative degree pullback of f in pointed reduced

K-Theory, and denote it by K̃−n(f) : K̃−n(Y, y0)→ K̃−n(X, x0), to be the pullback

in pointed reduced K-Theory

K̃(Σnf) : K̃(ΣnY ) → K̃(ΣnX).

� The nth negative degree relative K-Theory group of an object

(X,A) ∈ TopHdCCpt2, which is hereafter denoted by K−n(X,A), is the pointed

reduced K-Theory group
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K̃−n(X/A).

In addition, being f : (X,A) → (Y,B) a morphism of pairs of compact Hausdor�

spaces, we de�ne the nth negative degree pullback of f in relative K-Theory,

and denote it by K−n(f) : K−n(Y,B) → K−n(X,A), to be the pullback in pointed

reduced K-Theory

K̃−n(f̄) : K̃−n(Y/B) → K̃−n(X/A).

It is to be noted that

K0(X) = K(X),

K̃0(X, x0) = K̃(X, x0) and

K0(X,A) = K(X,A).

Evidently, these equations hold up to isomorphism, but such isomorphisms will not be

carried any further. ♦

Remark 2.38 (The categorical structure of the negative degree K-Theory). Being n

a natural number, the groups and the homomorphisms de�ned above induce the

following contravariant functors.

� Consider the covariant functor

+ : TopHdCpt → TopHdCpt+,

X 7→ X+,

f : X → Y 7→ f+ : X+ → Y+.

The composition of functors

K−n := K̃ ◦ Σn ◦ + : TopHdCpt → Gab,

X 7→ K−n(X),

f : X → Y 7→ K−n(f) : K−n(Y )→ K−n(X),

where K̃ and Σn are the contravariant and covariant functors de�ned in Remark 2.18

and in De�nition D.4, respectively, represents the negative degree absolute K-Theory

data presented above.
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� The composition of functors

K̃−n := K̃ ◦ Σn : TopHdCpt+ → Gab,

(X, x0) 7→ K̃−n(X, x0),

f : (X, x0)→ (Y, y0) 7→ K̃−n(f) : K̃−n(Y, y0)→ K̃−n(X, x0),

where K̃ and Σn are as in the preceding item, represents the negative degree pointed

reduced K-Theory data presented above.

� Consider the covariant functor

/ : TopHdCCpt2 → TopHdCpt+,

(X,A) 7→ X/A,

f : (X,A)→ (Y,B) 7→ f̄ : X/A→ Y/B.

The composition of functors

K−n := K̃−n ◦ / : TopHdCCpt2 → Gab,

(X,A) 7→ K−n(X,A),

f : (X,A)→ (Y,B) 7→ K−n(f) : K−n(Y,B)→ K−n(X,A),

represents the negative degree relative K-Theory data presented above. ♦

Remark 2.39 (An overview of the results that will be proven here and in the next

sections). Being n a natural number and (X, x0) an object in TopHdCpt+, we prove

below that

K̃−n(X, x0) and KerK−n(i)

are isomorphic, where i : {x0} → X is the inclusion map. This establishes a natural

correspondence with De�nition 2.14, which could then be adapted to de�ne the negative

degree pointed reduced K-Theory groups. In particular, it suggests de�ning the nth

negative degree reduced K-Theory group of a compact Hausdor� space X, which

is hereafter denoted by K̃−n(X), to be
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CokerK−n(pX),

where Ω is a one-point space and pX : X → Ω is the only possible map. Thence,

as one could expect, we prove the existence of an isomorphism between K̃−n(X, x0)

and K̃−n(X), which is non-canonical if X is not connected. In addition, we prove an

isomorphism

K−n(X) ' K̃−n(X, x0) ⊕ K−n(x0).

Therefore, being Ω a one-point space, we also obtain a direct sum decomposition

K−n(X) ' K̃−n(X) ⊕ K−n(Ω).

Finally, since we will prove

K−2n(Ω) ' Z and K−2n−1(Ω) ' 0,

we obtain the isomorphisms

K−2n(X) ' K̃−2n(X) ⊕ Z and K−2n−1(X) ' K̃−2n−1(X).

These isomorphisms are canonical if we consider the pointed reduced K-Theory or

if X is connected. ♦

Now, before proving some of the results shown in Remark 2.39, we prove that

the negative degree K-Theory groups induce a left long exact sequence, which will be

completed to a long exact sequence when we de�ne the positive degree K-Theory

groups. First, however, let us consider the following lemma that contains some natural

´ isomorphisms.

Lemma 2.40 (Natural isomorphisms in K-Theory). Let (X,A, a0) be an object in

TopHdCCpt2+. There are isomorphisms

K(X,A) ' K̃(C(X,A)) and

K̃−1(A, a0) ' K̃(C ′X ∪ CA).
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Proof. Since X/A is homeomorphic to C(X,A)/CA, we have that

K(X,A) = K̃(X/A) and K̃(C(X,A)/CA)

are isomorphic. Further, once C(A) is a contractible subspace of C(X,A), we also have

that

K̃(C(X,A)/CA) and K̃(C(X,A))

are isomorphic. Hence, if ϕ : C(X,A)/CA → X/A is the natural homeomorphism

and π1 : C(X,A) → C(X,A)/CA is the natural projection, then we obtain the

isomorphism between K(X,A) and K̃(C(X,A)) given by the composition of the maps in

the sequence

K(X,A) = K̃(X/A) K̃(C(X,A)/CA) K̃(C(X,A)).
K̃(ϕ) K̃(π1)

Choosing the natural marked point of C(X,A), which is mapped by π1 into

the natural marked point of the quotient C(X,A)/C(A), it is well-de�ned

K̃(π1) above. Additionally, since the suspension SA is homeomorphic to C(X,A)/X,

we have that
K̃(SA) and K̃(C(X,A)/X)

are isomorphic. Furthermore, since C(X,A)/X is homeomorphic to the

quotient (C ′X ∪ CA)/C ′X, and C ′X is a contractible subspace of C ′X ∪ CA,

we have that

K̃(SA), K̃(C(X,A)/X), K̃(C ′X ∪ CA/C ′X) and K̃(C ′X ∪ CA)

are isomorphic. Moreover, by restricting the isomorphism K(π) : K(ΣA) → K(SA) of

De�nition D.4 to the pointed reduced K-Theory groups, we also have that the abelian

groups
K̃−1(A, a0) = K̃(ΣA) and K̃(SA)

are isomorphic for any marked point of SA belonging to {a0} × I. Let us call

by v the inferior vertex of SA and by w the vertex of C ′X. Thence, we obtain the

isomorphism between K̃−1(A, a0) and K̃(C ′X ∪ CA,w) given by the composition of the

maps in the sequence
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K̃−1(A, a0) = K̃(ΣA)

K̃(SA, v) K̃((C ′X ∪ CA)/C ′X) K̃(C ′X ∪ CA,w),

K̃(π)

K̃(ψ) K̃(π2)

where ψ : (C ′X ∪ CA)/C ′X → SA denotes the natural homeomorphism and

π2 : C ′X ∪ CA→ (C ′X ∪ CA)/C ′X denotes the natural projection.

Theorem 2.41 (Left long exact sequences in Ordinary K-Theory). Let (X,A, a0) be

an object in TopHdCCpt2+. We have the left long exact sequence in pointed reduced

K-Theory

· · ·

K−n−1(X,A) K̃−n−1(X, a0) K̃−n−1(A, a0)

K−n(X,A) K̃−n(X, a0) K̃−n(A, a0)

K−1(X,A) K̃−1(X, a0) K̃−1(A, a0)

K(X,A) K̃(X, a0) K̃(A, a0).

K̃−n−1(π) K̃−n−1(i)

δ−n
(X,A,a0)

K̃−n(π) K̃−n(i)

K̃−1(π) K̃−1(i)

δ(X,A,a0)

K̃(π) K̃(i)

Moreover, if we substitute X and A by X+ and A+, respectively, then we obtain the left

long exact sequence in absolute K-Theory
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· · ·

K−n−1(X,A) K−n−1(X) K−n−1(A)

K−n(X,A) K−n(X) K−n(A)

K−1(X,A) K−1(X) K−1(A)

K(X,A) K(X) K(A).

K−n−1(π) K−n−1(i)

δ−n
(X,A)

K−n(π) K−n(i)

K−1(π) K−1(i)

δ(X,A)

K(π) K(i)

Finally, if we quotient this last sequence by the appropriate subgroups generated

by the trivial vector bundles, then we obtain the left long exact sequence in reduced

K-Theory.

· · ·

K−n−1(X,A) K̃−n−1(X) K̃−n−1(A)

K−n(X,A) K̃−n(X) K̃−n(A)

K−1(X,A) K̃−1(X) K̃−1(A)

K(X,A) K̃(X) K̃(A).

K̃−n−1(π) K̃−n−1(i)

δ̃−n
(X,A)

K̃−n(π) K̃−n(i)

K̃−1(π) K̃−1(i)

δ̃(X,A)

K̃(π) K̃(i)
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Proof. It is su�cient to prove the exactness of the �rst left long sequence. Hence,

because of the canonical homeomorphisms between the quotient C(X,A)/CX and SA,

and between the quotient (C ′X ∪ CA)/C(X,A) and SX, we have the exact sequences

in TopHdCpt+
(2)

A X X/A,

X C(X,A) SA and

C(X,A) C ′X ∪ CA SX.

i π

i′ π′

i′′ π′′

We now prove that these exact sequences in TopHdCpt+ induce the exact sequences

in K-Theory

K(X,A) K̃(X, a0) K̃(A, a0),

K̃−1(A, a0) K(X,A) K̃(X, a0) and

K̃−1(X, a0) K̃−1(A, a0) K(X,A).

K̃(π) K̃(i)

δ(X,A,a0) K̃(π)

K̃(i) δ(X,A,a0)

In fact, the �rst sequence coincides with the one in Corollary 2.33. The second sequence

is the one that turns the diagram

K̃(SA, v) K̃(C(X,A)) K̃(X, a0)

K̃−1(A, a0) K(X,A) K̃(X, a0).

K̃(π′) K̃(i′)

δ(X,A,a0)

K̃(π) K̃(π1) ◦ K̃(ϕ)

K̃(π)

(2)Let f : (X,x0) → (Y, y0) be a morphism in TopHdCpt+. We say that the kernel of f is the
preimage f−1(y0) ⊆ X. Therefore, it is clear that the notion of exactness is also de�ned in the category
TopHdCpt+.
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into a commutative one, where K̃(π) is the restriction of the isomorphism given in

De�nition D.4 and K̃(π1) ◦ K̃(ϕ) is the obvious composition from Lemma 2.40. In

particular, note that δ(X,A,a0) is de�ned by the preceding diagram as the composition

K̃(ϕ)−1 ◦ K̃(π1)−1 ◦ K̃(π′) ◦ K̃(π). In a similar manner, the third sequence is the one

that turns the diagram

K̃(SX, u) K̃(C ′X ∪ CA,w) K̃(C(X,A))

K̃−1(X, a0) K̃−1(A, a0) K(X,A).

K̃(π′′) K̃(i′′)

K̃(i)

K̃(π)

δ(X,A,a0)

K̃(π2) ◦ K̃(ψ) ◦ K̃(π) K̃(π1) ◦ K̃(ϕ)

into a commutative one, where K̃(π) is the restriction of the isomorphism given

in De�nition D.4 and K̃(π2) ◦ K̃(ψ) ◦ K̃(π) is the obvious composition from Lemma 2.40.

Thence, gluing these three exact sequences together, we obtain the exact sequence with

�ve terms

K̃−1(A, a0) K(X,A) K̃(X, a0)

K̃−1(X, a0) K̃(A, a0).

δ(X,A,a0) K̃(π)

K̃(i)K̃−1(i)

Since the quotient ΣX/ΣA is homeomorphic to Σ(X/A), one can prove (using induction)

that ΣnX/ΣnA is homeomorphic to Σn(X/A) for all n ∈ N. Consequently, substituting

X and A by ΣnX and ΣnA in the preceding sequence, respectively, we obtain the exact

sequence

K̃−n−1(A, a0) K−n(X,A) K̃−n(X, a0)

K̃−n−1(X, a0) K̃−n(A, a0).

δ−n
(X,A,a0) K̃−n(π)

K̃−n(i)K̃−n−1(i)
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Therefore, gluing these last exact sequences together, we obtain the desired left long

exact sequence.

Theorem 2.42 (Split exact sequence induced by a special retraction). Let (X,A) be an

object in TopHdCCpt2 such that the inclusion i : A → X is a retraction. For all n ∈ N,

we have that

0 K−n(X,A) K−n(X) K−n(A) 0
K−n(π) K−n(i)

is a split short exact sequence. Therefore,

Φn : K−n(X) → K−n(X,A) ⊕ K−n(A),

α 7→ (α−K−n(i ◦ r)(α), K−n(i)(α)),

where r : X → A is a left inverse for the inclusion i : A → X, is an isomorphism

between K−n(X) and K−n(X,A) ⊕ K−n(A). This proves that K−n(X) is isomorphic

to K̃−n(X, x0) ⊕ K−n(x0), as claimed in Remark 2.39. Analogously, if (X,A, a0) is an

object in TopHdCCpt2+, then

0 K−n(X,A) K̃−n(X, a0) K̃−n(A, a0) 0
K̃−n(π) K̃−n(i)

is a split short exact sequence. The same result holds true considering the other reduced

version of K-Theory.

Proof. The reader can readily adapt the proof of Theorem 1.61 in order to prove this

result.

Corollary 2.43 (A direct decomposition of the pointed reduced K-Theory groups

of a product of pointed compact Hausdor� spaces). Let (X, x0) and (Y, y0) be objects

in TopHdCpt+. In addition, let π1 : X × Y → X, π2 : X × Y → Y , i1 : X → X × Y

and i2 : Y → X × Y be the canonical projections and inclusions. Thence, we have that

the map

Ψn : K̃−n(X × Y, (x0, y0)) → K̃−n(X ∧ Y ) ⊕ K̃−n(Y, y0) ⊕ K̃−n(X, x0)
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de�ned by

Ψn(α) := (α− K̃−n(i1 ◦ π1)(α)− K̃−n(i2 ◦ π2)(α), K̃−n(i2 ◦ π2)(α), K̃−n(i1 ◦ π1)(α))

is a isomorphism.

Proof. Since i1 : X → X × Y and [i2] : Y → (X × Y )/X are retractions, Theorem 2.42

yields

K̃−n(X × Y, (x0, y0)) ' K−n(X × Y,X)⊕ K̃−n(X, x0)

' K̃−n((X × Y )/X) ⊕ K̃−n(X, x0)

' K−n((X × Y )/X, Y ) ⊕ K̃−n(Y, y0) ⊕ K̃−n(X, x0)

' K̃−n(X ∧ Y ) ⊕ K̃−n(Y, y0) ⊕ K̃−n(X, x0).

This �nishes the proof of this result once the reader can explicitly write the isomorphisms

indicated above in order to show that their composition coincides with the map Ψn set

in the statement.

Remark 2.44 (Ensuring some of the results stated before). Let (X, x0) be an object in

TopHdCpt+. We have that the relative group K−n(X, x0) is canonically isomorphic to the

pointed reduced group K̃−n(X, x0) for all n ∈ N. Therefore, considering the �rst sequence

in Theorem 2.42 with A = {x0}, we have that the group K−n(X,A) becomes K̃−n(X, x0),

which is isomorphic to the image of K−n(π) since this map is injective. In turn, this

image coincides with the kernel of K−n(i). This proves the �rst part of Remark 2.39,

allowing us to reproduce the discussion made in Remark 2.23 for negative degree reduced

K-Theory groups. ♦

2.6 The Bott Periodicity Theorem and K-Theory of

positive degree

In this section, we present a powerful result in Ordinary K-Theory, namely,

the Bott Periodicity Theorem. We do not prove this theorem here because of its

extent and because it is crystal clear in the literature. However, it allows us to �nish
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the process of extending the K-Theory groups to other degrees, which was started in

the preceding section. We begin with the following remark in which stands the basic

tool behind the theorem in question, which are the natural multiplicative structures in

K-Theory.

Remark 2.45 (Internal and external multiplicative structures in Ordinary K-Theory).

Let X be a compact Hausdor� space. Because of Remark C.42 and Theorem C.43, we

have the product

⊗ : K(X) ⊗ K(X) → K(X),

[[E]]⊗ [[F ]] 7→ [[E ⊗ F ]],

which turns K(X) into a commutative ring with unit. Additionally, if Y is another

compact Hausdor� space, then we have the external multiplication (see De�nition 1.96)

given by

� : K(X) ⊗ K(Y ) → K(X × Y ),

[[E]]⊗ [[F ]] 7→ [[E � F ]],

where

E � F := π∗1E ⊗ π∗2F

with π1 : X × Y → X and π2 : X × Y → Y being the natural projections onto the

�rst and the second factors, respectively. It is to be noted that the �ber of E � F

over (x, y) ∈ X × Y coincides with Ex ⊗ Fy. Moreover, if X = Y and ∆ : X → X ×X

is the diagonal map, then

E ⊗ F = ∆∗(E � F ).

This shows that the product on K(X) is an internal multiplication in the sense of

Theorem 1.98. Furthermore, if we choose marked points x0 ∈ X and y0 ∈ Y , then

we obtain by restriction

� : K̃(X, x0) ⊗ K̃(Y, y0) → K̃(X ∧ Y ),

where the marked point of X ∧ Y is the natural one. Indeed, let α ∈ K̃(X, x0) and

β ∈ K̃(Y, y0). If i1 : X → X × Y and i2 : Y → X × Y are the canonical inclusions,

then
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i∗1(α� β) = i∗1(π∗1α⊗ π∗2β) = i∗1π
∗
1α⊗ i∗1π∗2β = α⊗ i∗1π∗2β = α⊗ (π2 ◦ i1)∗β.

Since π2 ◦ i1 : X → Y is a constant function, we have (π2 ◦ i1)∗β = 0. Thus, it follows that

i∗1(α�β) = 0. Analogously, one can readily prove that i∗2(α�β) = 0. Therefore, we obtain

α� β ∈ K̃(X ∧ Y ). Therefore, substituting X and Y by ΣnX and ΣmY , respectively, we

obtain the product

� : K̃−n(X, x0) ⊗ K̃−m(Y, y0) → K̃−n−m(X ∧ Y ).

In a similar manner, if we substitute X and Y by ΣnX+ and ΣmY+, respectively, then we

obtain the product

� : K−n(X) ⊗ K−m(Y ) → K−n−m(X × Y ).

once X+ ∧ Y+ is canonically homeomorphic to (X × Y )+. In both cases, if X = Y ,

then the pullback of these maps through the diagonal map is the internal multiplication in

K-Theory. ♦

Notation 2.46 (Spheres and discs in Euclidean spaces). Let n be a natural number.

Hereafter, we denote the n-dimensional sphere by Sn and the n-dimensional disc

by Dn. ♦

De�nition 2.47 (Canonical line bundle on the two-dimensional sphere). We say that

the canonical line bundle on the two-dimensional sphere S2 is the quotient η of

the disjoint union

(D2 × C) t (D2 × C)

by the relation that identi�es (z, w)1 with (z, zw)2 for all z ∈ S1 and all w ∈ C, where

(z, w)1 indicates (z, w) in the �rst copy of D2 × C and (z, w)2 indicates (z, w) in the

second copy of D2 × C. ♦

Theorem 2.48 (Bott Periodicity Theorem). Let (X, x0) be an object in TopHdCpt+.

In addition, let η be the canonical line bundle on the two-dimensional sphere S2. Then,

we have the map

B : K̃(X, x0) → K̃−2(X, x0),

α 7→ [[η − 1]] � α,
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since K̃−2(X, x0) is canonically isomorphic to K̃(S2 ∧ X). Furthermore, this map is an

isomorphism of rings.

Proof. The reader can �nd proofs of this result in [2, pp. 44-64] and in [15, pp. 41-55].

The treatment given by the �rst reference is more technical and general than the one

given by the second reference. This may help the reader in choosing which one of them

to follow.

Remark 2.49 (Extending the Bott Periodicity Theorem to the other K-Theory groups).

The Bott Periodicity Theorem ensures that (complex) Ordinary K-Theory is 2-periodic.

This happens because, in Theorem 2.48, if we substitute:

� X by ΣnX, then we obtain the isomorphism of rings

Bn
(X,x0) : K̃−n(X, x0) → K̃−n−2(X, x0);

� X by ΣnX+, then we obtain the isomorphism of rings

Bn
X : K−n(X) → K−n−2(X); and

� X by Σn(X/A), then we obtain the isomorphism of rings

Bn
(X,A) : K−n(X,A) → K−n−2(X,A).

Therefore, when considering a K-Theory group, the only important information is the

parity of its degree. In other words, the only signi�cant K-Theory groups are the ones of

degree 0 and −1. ♦

De�nition 2.50 (K-Theory groups and homomorphisms of positive degree). Let n be

a natural number. Because of Remark 2.49, we extend the K-Theory groups to positive

degrees as follows.

� The nth positive degree absolute K-Theory group of a compact Hausdor�

space X, which is hereafter denoted by Kn(X), is de�ned as the negative K-Theory

group
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K−n(X).

In addition, being f : X → Y a morphism of compact Hausdor� spaces, we

de�ne the nth positive degree pullback of f in absolute K-Theory,

and denote it by Kn(f) : Kn(Y ) → Kn(X), to be the nth negative degree

pullback

K−n(f) : K−n(Y )→ K−n(X).

� The nth positive degree pointed reduced K-Theory group of an object

(X, x0) ∈ TopHdCpt+, which is hereafter denoted by K̃n(X, x0), is de�ned as the

negative K-Theory group

K̃−n(X, x0).

In addition, being f : (X, x0) → (Y, y0) a morphism of pointed compact Hausdor�

spaces, we de�ne the nth positive degree pullback of f in pointed reduced

K-Theory, and denote it by K̃n(f) : K̃n(Y, y0)→ K̃n(X, x0), to be the nth negative

degree pullback

K̃−n(f) : K̃−n(Y, y0)→ K̃−n(X, x0).

� The nth positive degree relative K-Theory group of an object

(X,A) ∈ TopHdCCpt2, which is hereafter denoted by Kn(X,A), is de�ned as the

negative degree K-Theory group

K−n(X,A).

In addition, being f : (X,A) → (Y,B) a morphism of pairs of compact Hausdor�

spaces, we de�ne the nth positive degree pullback of f in relative K-Theory,

and denote it by Kn(f) : Kn(Y,B) → Kn(X,A), to be the nth negative degree

pullback

K−n(f) : K−n(Y,B)→ K−n(X,A).

The reader can readily set the categorical structure of the positive degree K-Theory

using Remark 2.38. ♦
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Corollary 2.51 (Long exact sequence in Ordinary K-Theory). Let (X,A) be an object

in TopHdCCpt2. In addition, let i : A → X and π : X → X/A be the canonical

inclusion and projection, respectively. In this situation, we have the long exact sequence

in K-Theory

· · · Kn−1(A) Kn(X,A) Kn(X) Kn(A) · · · ,
δn
(X,A) Kn(π) Kn(i)

where δn(X,A) : Kn−1(A) → Kn(X,A) is naturally de�ned through the following

commutative diagram.

Kn−1(A) = K−n+1(A) K−n−1(A) K−n(X,A) = Kn(X,A).
Bn−1
A

δn
(X,A)

δ−n
(X,A)

In fact, since (complex) K-Theory is 2-periodic, this sequence reduces to the exact

rectangle with six signi�cant groups

K(X,A) K(X) K(A)

K−1(A) K−1(X) K−1(X,A).

K(π) K(i)

δ−1
(X,A)

δ(X,A)

K−1(i) K−1(π)

Proof. This result is a consequence of Theorem 2.41 and of the ideas presented in

this section.

2.7 Ordinary K-Theory as a generalized cohomology

theory

In this section, we �nally prove that the data de�ned above establish a

generalized cohomology theory. After this is done, as we mentioned before, all of

the results proven in Chapter 1 hold true. In particular, we immediately obtain the
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K-Theory exact sequence of a triple, the K-Theory exact sequence of a proper triad,

the K-Theory Mayer-Vietoris absolute and relative exact sequences, et reliqua. We begin

with the following theorem.

Theorem 2.52 (K-Theory as a generalized cohomology theory). Let:

� TopHdCCpt2 be the category of pairs of compact Hausdor� spaces;

� (Kn : TopHdCCpt2 → Gab)n∈Z be the sequence of contravariant relative functors in

K-Theory; and

� (δn)n∈Z be the sequence of maps that send a pair (X,A) ∈ TopHdCCpt2 into the

homomorphism δn(X,A) : Kn−1(A)→ Kn(X,A).

We have that the three pieces of data above are a generalized cohomology theory

(see De�nition 1.9).

Proof. We still only have to verify the Excision Axiom, which we now prove to hold

in the stronger version presented in Remark 1.103. Indeed, if (X,A) ∈ TopHdCCpt2

and U is a subset of X whose closure is contained in the interior of A, then we claim that

the inclusion i : (X − U,A− U)→ (X,A) induces isomorphisms

Kn(i) : Kn(X,A) → Kn(X − U,A− U)

for all n ∈ Z. This happens because one can prove that the preceding inclusion

induces the canonical homeomorphism ī : (X − U)/(A − U) → X/A, which ensures

the desired isomorphisms.

Remark 2.53 (Ordinary K-Theory is an additive generalized cohomology theory). Since

the category TopHdCCpt2 is the building block for K-Theory, we have that Ordinary

K-Theory is an additive generalized cohomology theory. In fact, any decomposition of

a pair (X,A) ∈ TopHdCCpt2 as in De�nition 1.70 has to be a �nite one (because a

compact Hausdor� space must have a �nite number of connected components). Then,

the claim is obvious because Theorem 1.69 holds in K-Theory once it is a generalized

cohomology theory. ♦
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Example 2.54 (K-Theory groups of spheres). We have the following facts.

� In Example 2.9, we have proved that, if Ω is a one-point space, then K(Ω) is

isomorphic to the integer numbers equipped with the usual sum. Consequently,

because of the isomorphism in Remark 2.15 and because ΣΩ is homeomorphic to Ω,

we have that K−1(Ω) is trivial. Therefore, it follows from the Bott Periodicity

Theorem that

K−2n(Ω) ' Z and K−2n−1(Ω) ' 0,

as claimed in Remark 2.39.

� In Example 2.10, we have proved that, if S1 is the one-dimensional sphere, then

K(S1) is isomorphic to the integer numbers equipped with the usual sum.

These results, together with the fact that

K̃n(Sk) ' K̃n(ΣkS0) ' K̃n−k(S0) = K−n−k(Ω)

for all k ∈ N and all n ∈ Z, allow us to set Table 2.1, which contains all of the K-theory

groups of the spheres. ♦

n k K̃n(Sk) Kn(Sk)

even even Z Z⊕ Z
even odd 0 Z
odd even 0 0
odd odd Z Z

Table 2.1: K-Theory groups of spheres.

2.8 An application

In this brief section, we show the relevance of the theory developed in this

chapter by exhibiting one of its great achievements in the last century, which is a

classi�cation theorem for real division algebras known as the Bott-Milnor-Kervaire

Theorem. Moreover, we expose a solution to the problem of the tangent bundles of
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spheres being trivial. We do not prove these results here because of their extent

and because they are crystal clear in the literature. However, we provide sketches of

their proofs in order to explain why K-Theory solved them. The reader who desires

to understand a bit more about the problem of the real division algebras is invited to

read Appendix E, where we not only establish the elementary facts on real

(division) algebras but also present a historical perspective to them. We begin with the

following de�nition.

De�nition 2.55 (Topological and di�erential notions applied to spheres). Let n be a

natural number. We say that the n-dimensional sphere Sn is:

� an H-space if there exists a continuous binary operation · : Sn × Sn → Sn having a

two-sided identity element(3); and

� parallelizable if its tangent bundle TSn is trivial. We remind the reader that it

is equivalent to the existence of n linearly independent vector �elds on Sn. This

equivalence follows from Theorem C.20 since vector �elds on Sn are global sections

in Γ(TSn). ♦

Lemma 2.56 (Relation between real division algebras, parallelizable spheres and

H-spaces). Let n be a non-zero natural number. We have that the following assertions

hold true.

(1) If Rn is a real division algebra, then Sn−1 is an H-space.

(2) If Sn−1 is parallelizable, then Sn−1 is an H-space.

Proof.

(3)It is to be noted that a topological space being an H-space is weaker than it being a topological
group. This happens because the �rst notion does not require associativity and inverses for the binary
operation, while the second one does require these properties. Indeed, for example, S1 and S3 are
topological groups with the multiplications being the ones restricted from the complex numbers C and
from the quaternions H, respectively. In turn, S7 is an H-space with the multiplication being the one
restricted from the octonions O. However, it is not a topological group since this multiplication lacks
associativity (see Example E.7).
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(1) If Rn is a real division algebra (see De�nition E.1), then

Sn−1 × Sn−1 → Sn−1,

(x, y) 7→ xy

|xy|
,

is a well-de�ned continuous binary operation having a two-sided identity element,

where the norm in question is the Euclidean one. This proves that Sn−1 is an

H-space.

(2) If Sn−1 is parallelizable, then let v1, · · · , vn−1 be linearly independent vector �elds

on Sn−1. Because of the Gram-Schmidt Orthonormalization Process, we may assume

that the vectors x, v1(x), · · · , vn−1(x) are orthonormal for all x ∈ Sn−1. In addition,

we may also assume that

v1(e1) = e2, · · · , vn−1(e1) = en,

where e1, · · · , en is the standard basis on Rn. This is possible because, if it is

not the case, then we can change the sign of vn−1 to correct the orientations and

thence deform the vector �elds in question near e1 ∈ Rn. Now, let αx : Rn → Rn

be the linear isometry that sends the standard basis into x, v1(x), · · · , vn−1(x)

for all x ∈ Sn−1. Therefore,

Sn−1 × Sn−1 → Sn−1,

(x, y) 7→ αx(y),

de�nes an H-space structure on Sn−1 with the two-sided identity element being

e1 since αe1 = idRn and αx(e1) = x for all x ∈ Sn−1. This �nishes the proof of

the lemma. �

Theorem 2.57 (Main results of this section). The following assertions are true only if

n = 1, 2, 4 or 8.

(1) There exists a real division algebra structure for an n-dimensional vector space A .

(2) The sphere Sn−1 is parallelizable.

The �rst assertion is called the Bott-Milnor-Kervaire Theorem.



2. Ordinary K-Theory as a Generalized Cohomology Theory 122

Proof. First, we prove that we can restrict the problem of real division algebras to

the one when the underlying n-dimensional vector space is the Euclidean space Rn.

Indeed, if A is an n-dimensional vector space, then let α : A → Rn be a linear

isomorphism. The diagram

A × A A

Rn × Rn Rn

mA

α×α α

mRn

proves our assertion. In fact:

� if mA : A ×A → A is a real division algebra structure on A , then

mRn := α ◦ mA ◦ (α× α)−1 : Rn × Rn → Rn

is a real division algebra structure on Rn; and

� if mRn : Rn × Rn → Rn is a real division algebra structure on Rn, then

mA := α−1 ◦ mRn ◦ (α× α) : A × A → A

is a real division algebra structure on A .

Therefore, in order to prove the assertions of the statement, it su�ces to show that

Sn−1 is an H-space only if n = 1, 2, 4 or 8. This is a consequence of Lemma 2.56. In turn,

in order to prove this last assertion, we use the following K-Theory arguments. The Bott

Periodicity Theorem ensures that:

� the reduced K-Theory group K̃(Sn) is the group of integer numbers for n even

and trivial for n odd (see Table 2.1). This comes from repeated application of the

periodicity isomorphism

B : K̃(X, x0) → K̃(S2 ∧X),

α 7→ [[η − 1]] � α,
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where η is the canonical line bundle on S2 (see De�nition 2.47). In particular,

we immediately see that the generator of the ring K̃(S2k) is the k-fold external

product

[[η − 1]] � · · ·� [[η − 1]].

Moreover, we have that the multiplication in K̃(S2k) is trivial since this ring is

the k-fold tensor product of the ring K̃(S2), which one can prove that has trivial

multiplication;

� the external product

� : K̃(S2k) ⊗ K̃(X) → K̃(S2k ∧X)

is an isomorphism since it is an iterate of the periodicity isomorphism of the

preceding item; and

� the external product

� : K(S2k) ⊗ K(X) → K(S2k ×X)

is an isomorphism. Since external product is a ring homomorphism, the

isomorphism between K̃(S2k ∧ X) and K̃(S2k) ⊗ K̃(X) is a ring isomorphism.

For example, since K(S2k) can be described as the quotient ring Z[γ]/(γ2),

we can deduce that K(S2k × S2l) is Z[α, β]/(α2, β2) where α and β are the

pullbacks of the generators of K̃(S2k) and K̃(S2l) under the natural projections

of S2k × S2l onto its factors. Thus, we have that an additive basis for K(S2k × S2l)

is {1, α, β, αβ}.

Thence, the proof splits in the following two cases.

(1) If k is a non-zero natural number, then S2k is not an H-space. This claim follows

from the last item above. Indeed, suppose that µ : S2k × S2k → S2k is an H-space

multiplication. Hence, we have that the induced homomorphism of K-rings has

the form

K(µ) : Z[γ]/(γ2) → Z[α, β]/(α2, β2).
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We claim that

K(µ)(γ) = α + β +mαβ

for some m ∈ Z. In fact, we have that the composition

S2k S2k × S2k S2ki µ

is the identity, where i is the inclusion into either of the subspaces S2k × {1}

or {1} × S2k with 1 being the identity element of the H-space structure µ.

Thus, K(i) for i the inclusion onto the �rst factor sends α to γ and β to 0.

Consequently, the coe�cient of α in K(µ)(γ) must be 1. In a similar manner, the

coe�cient of β in K(µ)(γ) must also be 1. However, this leads to a contradiction

since it implies

K(µ)(γ2) = (α + β +mαβ)2 = 2αβ,

which is impossible since γ2 = 0.

(2) If k is a natural number di�erent from 1, 2 and 4, then S2k−1 is not an H-space.

This is the hard part of the proof. The main idea is to associate to a map

f : S2k−1 × S2k−1 → S2k−1 a map f̂ : S4k−1 → S2k, and then show that the Hopf

invariant of f̂ is equal to plus or minus the unit if f is an H-space multiplication.

Consequently, the problem is solved proving that a map g : S4k−1 → S2k has Hopf

invariant equal to plus or minus the unit only when n = 1, 2 or 4. For this, one

has to prove the existence of a special kind of ring homomorphism in the K-Theory

framework, which is known as Adams Operations. The reader can �nd all the details

in [15, pp. 59-72]. �

Remark 2.58 (Complementing the preceding result). We have the following facts.

� There is a real division algebra structure for an n-dimensional vector space A when

n = 1, 2, 4 or 8. Once and again, we can restrict ourselves to the case when A

coincides with Rn. Therefore, the problem is solved since the real numbers R, the

complex numbers C, the quaternions H and the octonions O are real division algebras

of dimensions 1, 2, 4 and 8, respectively.
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� The spheres S0, S1, S3 and S7 are parallelizable. In order to prove this claim, we

use the notations of Examples E.3, E.4 and E.5. Indeed, we can explicitly construct

a su�cient number of linearly independent vector �elds on these spheres that ensure

their parallelizability. In fact:

• S0 is parallelizable because its tangent bundle has rank zero;

• S1 is parallelizable because v : S1 → TS1, z 7→ (z, e1z), is a global vector

�eld on S1;

• S3 is parallelizable because

v1 : S3 → TS3, z 7→ (z, e1z),

v2 : S3 → TS3, z 7→ (z, e2z),

v3 : S3 → TS3, z 7→ (z, e3z),

are three linearly independent vector �elds on S3; and

• S7 is parallelizable because

v1 : S7 → TS7, z 7→ (z, e1z),

v2 : S7 → TS7, z 7→ (z, e2z),

v3 : S7 → TS7, z 7→ (z, e3z),

v4 : S7 → TS7, z 7→ (z, e4z),

v5 : S7 → TS7, z 7→ (z, e5z),

v6 : S7 → TS7, z 7→ (z, e6z),

v7 : S7 → TS7, z 7→ (z, e7z),

are seven linearly independent vector �elds on S7. ♦

2.9 Euler characteristic

In this section, we will return to the relative K-Theory groups. Indeed,

until now, we have a discrepancy between the treatment of this idea and the form

we introduced absolute and reduced K-Theories. In fact, these latter concepts were
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introduced in a concrete and geometrical way. The absolute K-Theory classes

were presented as virtual vector bundles, which admit minus signs before them.

In turn, the reduced K-Theory classes were presented as absolute K-Theory classes whose

rank is equal to zero. On the other hand, the motivation for De�nition 2.25 was shown

in Remark 2.26, but it said nothing about the geometric structure of the relative

K-Theory classes. Among other things, we will �x this omission here. We begin with the

following de�nition.

De�nition 2.59 (The category of exact sequences of vector bundles). Let (X,A) be an

object in TopHdCCpt2. We de�ne the category of exact sequences of vector bundles

on (X,A), and denote it by C1(X,A), to be the category whose:

� objects are triples E = (E1, E0, α) where E1 and E0 are vector bundles on X and

α : E1 |A→ E0 |A is an isomorphism over A. This can be equivalently stated saying

that the sequence

0 E1 |A E0 |A 0α

is exact; and

� morphisms ϕ : E → F between E = (E1, E0, α) and F = (F1, F0, β) are pairs of

morphisms of vector bundles (ϕ1 : E1 → F1, ϕ0 : E0 → F0) in such manner that

the diagram
E1 |A E0 |A

F1 |A F0 |A

α

ϕ1|A ϕ0|A

β

is commutative. An isomorphism in C1(X,A) is a morphism whose components

are isomorphisms over X. ♦

De�nition 2.60 (Elementary sequences and an equivalence relation induced by them).

Let (X,A) be an object in TopHdCCpt2. We say that an elementary sequence in

C1(X,A) is an object of the form
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E = (E, E, idE|A).

In addition, given E = (E1, E0, α) and F = (F1, F0, β) in C1(X,A), we say that they

are equivalent if and only if there exist elementary sequences Q and P in C1(X,A)

for which

E ⊕ Q and F ⊕ P

are isomorphic(4). This de�nition naturally gives rise to an equivalence relation on the

class of objects of C1(X,A). The set of such equivalence classes is hereafter denoted

by L1(X,A). ♦

Notation 2.61 (The canonical commuting isomorphism). Let X be a topological space

and E and F be vector bundles on X. Hereafter, we will denote by ηE,F the canonical

isomorphism

ηE,F : F ⊕ E → E ⊕ F,

(a, b) 7→ (b, a). ♦

Theorem 2.62 (Natural structure of abelian group). Let (X,A) be an object in TopHdCCpt2.

The binary operation

⊕ : L1(X,A)× L1(X,A) → L1(X,A),

([E1, E0, α], [F1, F0, β]) 7→ [E1 ⊕ F1, E0 ⊕ F0, α⊕ β],

is well-de�ned. More than that, it turns the set of equivalences classes L1(X,A) into

an abelian group.

Proof. Let E = (E1, E0, α) and E ′ = (E ′1, E
′
0, α

′) represent the same class in L1(X,A).

Analogously, let F = (F1, F0, β) and F ′ = (F ′1, F
′
0, β

′) represent the same class in L1(X,A).

We claim that

(E1 ⊕ F1, E0 ⊕ F0, α⊕ β) and (E ′1 ⊕ F ′1, E ′0 ⊕ F ′0, α′ ⊕ β′)

(4)When A is empty, since an object in C1(X) is just a pair E = (E1, E0) ∈ VectBdl 2X , we have that
E = (E1, E0) is related to F = (F1, F0) if and only if there exist vector bundles Q and P for which E1⊕Q
is isomorphic to F1 ⊕ P , and E0 ⊕Q is isomorphic to F0 ⊕ P . This is an enlightening situation for this
equivalence.
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represent the same class in L1(X,A), which proves that the binary operation de�ned

in the statement is well-de�ned. Indeed, since [E] = [E ′] in L1(X,A), there exist

elementary sequences Q and P in C1(X,A) for which there exists an isomorphism of

vector bundles (γ1, γ0) : E ⊕Q → E ′ ⊕ P . Similarly, there exit elementary sequences Q′

and P ′ in C1(X,A) for which there exists and isomorphism of vector bundles

(γ′1, γ
′
0) : F ⊕Q′ → F ′ ⊕ P ′. Thus,

(E1 ⊕ F1 ⊕Q⊕Q′, E0 ⊕ F1 ⊕Q⊕Q′, α⊕ β ⊕ idQ|A ⊕ idQ′|A)

and

(E ′1 ⊕ F ′1 ⊕ P ⊕ P ′, E ′0 ⊕ F ′1 ⊕ P ⊕ P ′, α′ ⊕ β′ ⊕ idP |A ⊕ idP ′|A)

are isomorphic. Indeed, one can readily see that this isomorphism is ensured by the

commutative diagram

(E1 ⊕ F1 ⊕Q⊕Q′) |A (E0 ⊕ F0 ⊕Q⊕Q′) |A

(E1 ⊕Q⊕ F1 ⊕Q′) |A (E0 ⊕Q⊕ F0 ⊕Q′) |A

(E ′1 ⊕ P ⊕ F ′1 ⊕ P ′) |A (E ′0 ⊕ P ⊕ F ′0 ⊕ P ′) |A

(E ′1 ⊕ F ′1 ⊕ P ⊕ P ′) |A (E ′0 ⊕ F ′0 ⊕ P ⊕ P ′) |A .

α⊕β⊕ idQ|A ⊕ idQ′|A

idE1|A ⊕ ηQ,F1
|A⊕ idQ′|A idE0|A ⊕ ηQ,F0

|A⊕ idQ′|A

γ1|A⊕ γ′1|A γ0|A⊕ γ′0|A

idE′1|A
⊕ ηF ′1,P

|A⊕ idP ′|A idE′0|A
⊕ ηF ′0,P

|A⊕ idP ′|A

α′⊕β′⊕ idP |A ⊕ idP ′|A

Furthermore, this binary operation evidently turns L1(X,A) into an abelian monoid.

Thus, we only have to prove the existence of inverses. In fact, let [E,F, α] ∈ L1(X,A).

We claim that
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−[E1, E0, α] = [E0, E1, α
−1].

To prove this assertion, it su�ces to show that (E1⊕E0, E0⊕E1, α⊕ α−1) is isomorphic

to an elementary sequence when summed up with another one. Indeed, let P be a

trivializing addendum for E0 (see Theorem C.51). This means that there exist a

trivial vector bundle T and an isomorphism of vector bundles β : E0 ⊕ P → T over

X. Hence, we have that

(E1 ⊕ E0 ⊕ P, E0 ⊕ E1 ⊕ P, α⊕ α−1 ⊕ idP |A) and (E1 ⊕ T, E1 ⊕ T, id(E⊕T )|A)

are isomorphic. Indeed, one can readily see that this isomorphism is ensured by the

commutative diagram

(E1 ⊕ E0 ⊕ P ) |A (E0 ⊕ E1 ⊕ P ) |A

(E1 ⊕ E0 ⊕ P ) |A

(E1 ⊕ T ) |A (E1 ⊕ T ) |A .

α⊕α−1⊕ idP |A

idE1|A⊕β|A

ηE1,E0
|A⊕ idP |A

idE1|A ⊕β|A

id(E1⊕T )|A �

Theorem 2.63 (An interpretation for absolute K-Theory). Let X be an object in

TopHdCCpt2. We have that

ϕX : L1(X) → K(X),

[E1, E0] 7→ [[E0]]− [[E1]],

is a group isomorphism. Moreover, this isomorphism is natural in the sense that diagram

L1(X) K(X)

L1(Y ) K(Y )

ϕX

ϕY

L1(f) K(f)
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is commutative for all f : X → Y in TopHdCCpt2, where L1(f)[E1, E0] = [f ∗E1, f
∗E0]

for all [E1, E0] ∈ L1(Y ).

Proof. Let us �rst prove that ϕX is well-de�ned. Indeed, let E = (E1, E0) and

E ′ = (E ′1, E
′
0) represent the same class in L1(X). Then, there exist vector bundle Q

and P such that E1 ⊕ Q is isomorphic to E ′1 ⊕ P , and E0 ⊕ Q is isomorphic to E ′0 ⊕ P .

Consequently,

ϕX [E1, E0] = [[E0]]− [[E1]]

= [[E0]] + [[Q]]− [[E1]]− [[Q]]

= [[E0 ⊕Q]]− [[E1 ⊕Q]]

= [[E ′0 ⊕ P ]]− [[E ′1 ⊕ P ]]

= [[E ′0]] + [[P ]]− [[E ′1]]− [[P ]]

= [[E ′0]]− [[E ′1]]

= ϕX [E ′1, E
′
0].

Now, let us prove that ϕX is a group homomorphism. In fact, if [E1, E0], [F1, F0] ∈ L1(X),

then

ϕX([E1, E0]⊕ [F1, F0]) = ϕX [E1 ⊕ F1, E0 ⊕ F0]

= [[E0 ⊕ F0]]− [[E1 ⊕ F1]]

= [[E0]] + [[F0]]− [[E1]]− [[F1]]

= ([[E0]]− [[E1]]) + ([[F0]]− [[F1]])

= ϕX [E1, E0] + ϕX [F1, F0].

Moreover, since any class in absolute K-Theory can be represented as a formal

di�erence [[E]] − [[F ]], ϕX [F,E] = [[E]] − [[F ]]. This proves surjectivity. Finally, if

[E1, E0], [F1, F0] ∈ L1(X) are such that

[[E0]]− [[E1]] = ϕX [E1, E0] = ϕX [F1, F0] = [[F0]]− [[F1]],

then
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[[E0 ⊕ F1]] = [[E0]] + [[F1]] = [[F0]] + [[E1]] = [[F0 ⊕ E1]].

Thus, there exists G ∈ VectBdlX such that E0 ⊕ F1 ⊕ G is isomorphic to F0 ⊕ E1 ⊕ G.

We set Q := F0 ⊕ G and P := E0 ⊕ G. Consequently, we obtain that E1 ⊕ Q is

isomorphic to F1⊕P , and that E0⊕Q is isomorphic to F0⊕P . Hence, [E1, E0] = [F1, F0].

This ensures injectivity. The last claim of the statement is a straightforward computation

that we leave to the reader.

De�nition 2.64 (An Euler characteristic in K-Theory). Consider the contravariant

functor

L1 : TopHdCCpt2 → Gab,

(X,A) 7→ L1(X,A),

f : (X,A)→ (Y,B) 7→ L1(f) : L1(Y,B)→ L1(X,A),

where

L1(f)[E1, E0, α] := [f ∗E1, f
∗E0, f

∗α]

for all [E1, E0 α] ∈ L1(Y,B). Moreover, consider K : TopHdCCpt2 → Gab to be the

contravariant functor de�ned in Remark 2.30. An Euler characteristic for L1 is a

natural transformation

χ1 = {χ1(X,A) : L1(X,A)→ K(X,A)}(X,A)∈TopHdCCpt2

between the functors L1 and K such that

χ1(X)[E1, E0] = [[E0]]− [[E1]]

for all X = (X, 0) ∈ TopHdCCpt2. We remind the reader that χ1 : L1 → K

being a natural transformation means that the following diagram is commutative for all

f : (X,A)→ (Y,B) in TopHdCCpt2.

L1(X,A) K(X,A)

L1(Y,B) K(Y,B)

χ1(X,A)

χ1(Y,B)

L1(f) K(f)

♦
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Theorem 2.65 (Existence of an Euler characteristic for L1). There exists an Euler

characteristic χ1 for L1.

Proof. Let [E1, E0, α] ∈ L1(X,A) where (X,A) is an object in TopHdCCpt2.

Subsequently, we de�ne an element χ1(X,A)[E1, E0, α] ∈ K(X,A) in such manner

that the map

χ1(X,A) : L1(X,A) → K(X,A),

[E1, E0, α] 7→ χ1(X,A)[E1, E0, α],

is naturally de�ned with respect to (X,A) and that

χ(X) = [[E0]]− [[E1]]

for all X = (X, 0) ∈ TopHdCCpt2. Indeed, let

X0 := X × {0} and

X1 := X × {1}.

We set X to be the identi�cation space obtained as the quotient of the disjoint union

X0 t X1 by the equivalence relation that identi�es (a, 0) with (a, 1) for all a ∈ A.

The natural sequence

0 K(X, X0) K(X) K(X0) 0
K(j) K(i)

is an split exact sequence since i : X0 → X is a retraction (see Theorem 1.61). In

particular, we can consider its obvious right inverse ρ : X → X0. Furthermore, we

have the isomorphism

ϕ : K(X, X0) → K(X, A)

which is induced by the inclusion (X,A) → (X, X0) that identi�es X with X1 (see

Theorem 1.62). Thence, from [E1, E0, α] ∈ L1(X,A), we de�ne the vector bundle F

on X by setting F |X0 = E0, F |X1 = E1 and identifying these restrictions over A via

the isomorphism α : E1 |A → E0 |A. The reader can prove that this vector bundle is

well-de�ned up to isomorphism and that
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[[F ]]− [[ρ∗(E0)]] ∈ KerK(i).

Therefore, there exists a unique element χ1(X,A)[E1, E0, α] ∈ K(X,A) for which

(K(j) ◦ ϕ−1)χ1(X,A)[E1, E0, α] = [[F ]]− [[ρ∗(E0)]].

This de�nes the homomorphism χ1(X,A) that veri�es the conditions presented at the

beginning.

Among other important things, we now show that an Euler characteristic

χ1 : L1 → K is a natural isomorphism between the functors in question, which clearly

extends Theorem 2.63. In order to do this, we begin with the following technical

result that gives reasonable conditions under which one can monomorphically

(respectively, isomorphically) extend monomorphisms (respectively, isomorphisms)

of vector bundles.

Lemma 2.66 (Extension of monomorphisms and of isomorphisms of vector bundles). Let

(X,A) be an object in TopHdCCpt2. In addition, let E and F be vector bundles on X.

If α : E |A → F |A and β : E → F are monomorphisms such that β |A is homotopic to α,

then α can be extended as a monomorphism of vector bundles to the whole X. The same

claim holds for isomorphisms.

Proof. The reader can �nd a proof of this result in [2, pp. 89-90].

Lemma 2.67 (Euler characteristic of a pair of compact Hausdor� spaces whose

second component is a one-point space). Let (X,A) be an object in TopHdCCpt2. In

addition, let i : A → X and j : X → (X,A) be the inclusion maps. If A is a one-point

space, then

0 L1(X,A) L1(X) L1(A)
L1(j) L1(i)

is an exact sequence. Consequently, in this situation, we have that, if χ1 : L1 → K

is an Euler characteristic for L1, then χ1(X,A) : L1(X,A) → K(X,A) is an

isomorphism.
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Proof. Let χ1 : L1 → K be an Euler characteristic for L1 (see Theorem 2.65). The

fact that

ImL1(j) ⊆ KerL1(i)

follows from the commutativity of the following diagram.

L1(X,A) L1(X) L1(A)

K(X,A) K(X) K(A)

L1(j)

χ1(X,A)

L1(i)

χ1(X) χ1(A)

K(j) K(i)

In fact, since χ1(A) is an isomorphism because of Theorem 2.63, we have

L1(i) ◦ L1(j) = χ1(A)−1 ◦K(i) ◦K(j) ◦ χ1(X,A).

Once K(i) ◦K(j) is the trivial homomorphism, our assertion is proved. More than that,

we have

KerL1(i) ⊆ ImL1(j).

Indeed, if (E1, E0) represents an element of L1(X) whose image in L1(A) is zero, then

E1 and E0 have the same dimension over A. Consequently, there exists an isomorphism

α : E1 |A → E0 |A because A is a one-point space. Thus, L1(j)[E1, E0, α] = [E1, E0]

proves our second assertion. Therefore, we have just concluded the exactness of

the sequence

L1(X,A) L1(X) L1(A).
L1(j) L1(i)

Now, we have to show that L1(j) is injective. Note that this is equivalent to prove

that the trivial class in L1(X,A) is the only one that is mapped by L1(j) into the trivial

class of L1(X). In fact, let [E1, E0, α] ∈ L1(X,A) have image zero in L1(X). Then,

there exists a vector bundle P and an isomorphism β : E1 ⊕ P → E0 ⊕ P . Then,

β |A ◦ (α ⊕ idP |A)−1 is an automorphism of (E0 ⊕ P ) |A. Since A is a one-point space,

any such automorphism must be homotopic to the identity. Hence, by Lemma 2.66,

β |A ◦ (α ⊕ idP |A)−1 extends to γ : E0 ⊕ P → E0 ⊕ P . Thus, we have the following

commutative diagram.
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(E1 ⊕ P ) |A (E0 ⊕ P ) |A

(E0 ⊕ P ) |A (E0 ⊕ P ) |A

α⊕ idP |A

β|A γ|A

id(E0⊕P )|A

Hence, (E1, E0, α) represents the trivial class in L1(X,A), as we wished. Thus,

L1(j) : L1(X,A) → L1(X) is an injection. The last claim of the statement is proved

as follows. First, note that the surjectivity of χ1(X,A) is obvious. Thence, note that the

injectivity of χ1(X,A) is ensured by the following commutative diagram and

by Theorem 2.63.

0 L1(X,A) L1(X)

0 K(X,A) K(X)

L1(j)

χ1(X,A) χ1(X)

K(j)

Indeed, since χ1(X) is an isomorphism by Theorem 2.63, it is an injection. Thus,

the composition χ1(X) ◦ L1(j) is injective. Consequently, K(j) ◦ χ1(X,A) is also

injective. Therefore, by set-theoretic arguments, we have that χ1(X,A) is an injection,

as we wished.

Theorem 2.68 (Euler characteristic of a pair of compact Hausdor� spaces). Let (X,A)

be an object in TopHdCCpt2. If π : (X,A) → (X/A,A/A) is the canonical projection,

then

L1(π) : L1(X/A,A/A)→ L1(X,A)

is an isomorphism. Consequently, if χ1 : L1 → K is an Euler characteristic for L1, then

χ1(X,A) : L1(X,A)→ K(X,A) is an isomorphism.

Proof. Let χ1 : L1 → K be an Euler characteristic for L1. We have that

χ1(X/A,A/A) : L1(X/A,A/A)→ K(X/A,A/A)
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is an isomorphism by Lemma 2.67. Moreover, since the map

π̄ : X/A → (X/A)/(A/A),

[x] 7→ [π(x)],

is a homeomorphism, we also have that

K(π) = K̃(π̄) : K(X/A,A/A) → K(X,A)

is an isomorphism. Thus,

K(π) ◦ χ1(X/A,A/A) : L1(X/A,A/A)→ K(X,A)

is an isomorphism. In particular, this map is injective. Therefore, since the following

diagram is commutative because χ1 : L1 → K is an Euler characteristic, it follows that

χ1(X,A) ◦ L1(π) is injective. Hence, we conclude that L1(π) is injective by set-theoretic

arguments.

L1(X,A) K(X,A)

L1(X/A,A/A) K(X/A,A/A)

χ1(X,A)

χ1(X/A,A/A)

L1(π) K(π)

Now let (E1, E0, α) ∈ C1(X,A). In addition, let P be a trivializing addendum for E1

(see Theorem C.51). That is, P is a vector bundle on X for which there exist an

isomorphism β : E1 ⊕ P → X × V over X, where X × V is the product bundle with

typical �ber V . We �rst claim that

[E1, E0, α] = [X × V , E0 ⊕ P, γ],

where

γ := (α⊕ idP |A) ◦ β |−1
(F |A): A× V → (E0 ⊕ P ) |A .

In fact, considering the elementary sequence (P, P, idP |A) ∈ C1(X,A), the following
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commutative diagram shows that the sum (E1, E0, α) ⊕ (P, P, idP |A) is isomorphic to

(X × V , E0 ⊕ P, γ), as we wished.

(E1 ⊕ P ) |A (E0 ⊕ P )A

A× V (E0 ⊕ P ) |A

α⊕ idP |A

β|A id(E0⊕P )|A

γ

Furthermore,

L1(π)[X × V , (E0 ⊕ P )/γ, γ/γ] = [X × V , E0 ⊕ P, γ],

where (E0 ⊕ P )/γ is de�ned in Section C.10. This equality is straightforward from the

proof of Corollary C.62, although it is not immediate to be geometrically visualized. Thus,

we conclude that L1(π) is surjective. Hence, we have that L1(π) is an isomorphism,

as desired. Therefore,

χ1(X,A) = K(π) ◦ χ1(X/A,A/A) ◦ L1(π)−1.

This proves the last part of the statement since χ1(X,A) is the composition of three

isomorphisms.

Corollary 2.69 (Uniqueness of Euler characteristics for L1). If χ1 and χ′1 are Euler

characteristics for L1, then χ1 = χ′1.

Proof. Because of Theorem 2.68, for each (X,A) ∈ TopHdCCpt2, we have that the

map χ1(X,A) : L1(X,A) → K(X,A) is invertible. Therefore, it is de�ned the natural

transformation

χ−1
1 := {χ1(X,A)−1 : K(X,A)→ L1(X,A)}(X,A)∈TopHdCCpt2

between K and L1. In addition, once the composition of natural transformations

is also a natural transformation, we have the following natural transformation between

K and itself
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χ′1 ◦ χ−1
1 = {χ′1(X,A) ◦ χ−1

1 (X,A) : K(X,A)→ K(X,A)}(X,A)∈TopHdCCpt2 .

We claim that χ′1(X) ◦ χ−1
1 (X) = idK(X) for all X = (X, 0) ∈ TopHdCCpt2. Indeed,

according to De�nition 2.64,

χ′1(X)[E1, E0] = [[E0]]− [[E1]] = χ1(X)[E1, E0]

for all [E1, E0] ∈ L1(X). Thus, χ′1(X) = χ1(X) for all X = (X, 0) ∈ TopHdCCpt2,

which proves our assertion. Consequently, since the reader can readily prove that the

equality

χ′1(X,A) ◦ χ1(X,A)−1 = (χ′1(X/A) ◦ χ1(X/A)−1) |K(X,A)

holds for all (X,A) ∈ TopHdCCpt2, the theorem is proved because

χ′1(X/A) ◦ χ1(X/A)−1 = idK(X/A),

as we showed before.

Corollary 2.70 (Dependence on the homotopy class). Let (X,A) be an object in

TopHdCCpt2. We have that the class of (E1, E0, α) in L1(X,A) only depends on the

homotopy class of α : E1 |A → E0 |A.

Proof. First, we set (Y,B) := (X,A) × I. Thence, if β : E1 |A → E0 |A is an

isomorphism of vector bundles which is homotopic to α, then we consider a

homotopy Θ : E1 |A × I → E0 |A between them. Thus, being π : (Y,B) → (X,A)

the natural projection onto the �rst factor, we have a natural isomorphism of vector

bundles

γΘ : π∗E1 |B → π∗E0 |B,

(e, x, t) 7→ (Θ(e, t), x, t).

Now, let i0, i1 : (X,A)→ (Y,B) be given by i0(x) = (x, 0) and i1(x) = (x, 1) for all x ∈ X.

Since these maps are homotopic, being the identity on (Y,B) a homotopy between them,

we have

K(i0) = K(i1) : K(Y,B) → K(X,A).

Moreover, we have
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L1(i0)[π∗E1, π
∗E0, γΘ] = [E1, E0, α] and

L1(i1)[π∗E1, π
∗E0, γΘ] = [E1, E0, β].

This happens because

π ◦ i0 = id(X,A) = π ◦ i1

and because

i∗0γΘ = α and i∗1γΘ = β.

Finally, if χ1 : L1 → K is the Euler characteristic for L1, then the following diagram is

commutative.
L1(X,A) K(X,A)

L1(Y,B) K(Y,B)

L1(X,A) K(X,A)

χ1(X,A)

χ1(Y,B)

L1(i0)

L1(i1)

K(i0)

K(i1)

χ1(X,A)

Thus, once every map in this diagram is an isomorphism(5), we have L1(i0) = L1(i1).

Therefore,

[E1, E0, α] = L1(i0)[π∗E1, π
∗E0, γΘ]

= L1(i1)[π∗E1, π
∗E0, γΘ]

= [E1, E0, β],

as we wished.

(5)This happens because i0 and i1 are homotopy equivalences between (X,A) and (Y,B). Indeed,
the reader can easily prove that the equality π ◦ ij = id(X,A) holds. Moreover, one can readily show that
the map

Γ : (Y,B)× I → (Y,B),

(x, t, s) 7→ (x, t · s),

is a homotopy between ij ◦ π and id(Y,B). This proves our assertion. Note that this technical arguments
just express the idea that a deformation retraction of (Y,B) into (X,A) is obtained by crushing the
cylinder X × I on one of its bases, which is an operation that obviously crushes the cylinder A× I on its
corresponding base.
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Remark 2.71 (Some necessary complements for this section). At this point, the

reader may be asking himself or herself why we wrote, for instance, C1(X,A) and

L1(X,A) instead of C(X,A) and L(X,A), respectively. This is a righteous question

because, apparently, we have overloaded the notation without need. However, this is only

partially true. In fact, from a strict viewpoint, we overloaded the notion since most of

what we wrote could lose their subindexes without producing confusion. Nevertheless,

from a broader viewpoint, for each non-zero natural number n, we can de�ne the category

Cn(X,A) whose:

� objects are (2n + 1)-tuples (En, · · · , E0, αn, · · · , α1) where Ei is a vector bundle on

X for each i between 0 and n, both included, and αi : Ei |A→ Ei−1 |A is a morphism

of vector bundles for i between 1 and n, both included, in such manner that the

sequence

0 En |A En−1 |A · · · E1 |A E0 |A 0
αn α1

is exact. For convenience, we will usually denote an object in Cn(X,A) by

E = (Ei, αi); and

� morphisms ϕ : E → F between E = (Ei, αi) and F = (Fi, βi) are collections of

morphisms of vector bundles ϕi : Ei → Fi for i between 0 and n, both included, such

that the diagram

0 En |A En−1 |A · · · E1 |A E0 |A 0

0 Fn |A Fn−1 |A · · · F1 |A F0 |A 0

αn

ϕn|A ϕn−1|A

α1

ϕ1|A ϕ0|A

βn β1

is commutative. A morphism ϕ : E → F in Cn between E = (Ei, αi) and

F = (Fi, βi) is an isomorphism if ϕi : Ei → Fi is an isomorphism for i between

0 and n, both included.

Moreover, we can de�ne an elementary sequence in Cn(X,A) to be an object of the form

0 · · · 0 Ei |A Ei−1 |A 0 · · · 0,
αi
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where Ei = Ei−1 and αi = idEi|A. Thence, given E and F in Cn(X,A), we can say

that they are equivalent if and only if there exist elementary sequences Q1, · · · , Qr and

P1, · · · , Ps for which

E ⊕
r⊕
i=1

Qi and F ⊕
s⊕
i=1

Pi

are isomorphic. This de�nition naturally gives rise to an equivalence relation on the class

of objects of Cn(X,A). The set of such equivalence classes, which we hereafter denote by

Ln(X,A), has a natural abelian group structure. This allows us to de�ne the contravariant

functor

Ln : TopHdCCpt2 → Gab,

(X,A) 7→ Ln(X,A),

f : (X,A)→ (Y,B) 7→ Ln(f) : Ln(Y,B)→ Ln(X,A),

where

Ln(f)[Ei, αi] := [f ∗Ei, f
∗αi]

for all [Ei, αi] ∈ Ln(Y,B). In addition, being K : TopHdCCpt2 → Gab the contravariant

functor de�ned in Remark 2.30, we can de�ne an Euler characteristic for Ln as a

natural transformation

χn = {χn(X,A) : Ln(X,A)→ K(X,A)}(X,A)∈TopHdCCpt2

between the functors Ln and K such that

χn(X)[En, · · · , E0] =
n∑
i=1

(−1)i[[Ei]]

for all X = (X, 0) ∈ TopHdCCpt2. As before, there exists a unique Euler characteristic

for Ln for all non-zero natural number n. In particular, Ln(X,A) is always isomorphic

to K(X,A). We will not prove this result here, but we will give a brief sketch for its

existence part. The reader will �nd the complete proof of this result in the references

indicated below. Indeed, let the canonical inclusion of Cn(X,A) into Cn+1(X,A) be the

faithful covariant functor
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In : Cn(X,A) → Cn+1(X,A),

(En, · · · , E0, αn, · · · , α1) 7→ (0, En, · · · , E0, 0→ En |A, αn, · · · , α1),

(ϕn : En → Fn, · · · , ϕ0 : E0 → F0) 7→ (0→ 0, ϕn : En → Fn, · · · , ϕ0 : E0 → F0).

The map between objects of In induces a homomorphism

ιn : Ln(X,A) → Ln+1(X,A).

Thence, since one can prove that ιn is always an isomorphism, we can de�ne the Euler

characteristic for Ln
χn := χ1 ◦ ι−1

1,n

between the contravariant functors Ln and K, where ι1,n is the isomorphism indicated in

the following diagram.

L1(X,A) L2(X,A) · · · Ln−1(X,A) Ln(X,A)ι1

ι1,n

ιn−1

We can also de�ne L∞(X,A) to be the direct limit of the direct system

(N, (Ln(X,A))n∈N, (ιn,m : Ln(X,A)→ Lm(X,A))n,m∈N),

where ιn,m is the trivial homomorphism if m < n, and is the obvious composition

if n ≤ m. Thus, we obtain a family of isomorphisms ιn,∞ : Ln(X,A) → L∞(X,A)

indexed by the non-zero natural numbers. Any one of the isomorphisms of this family

proves the existence of an isomorphism χ : L∞(X,A) → K(X,A). This is done

using the same reasoning that proved the existence of an Euler characteristic for Ln. Thus,

the overloading of the notation mentioned at the beginning of this remark is

explained by the ideas that we have just exposed here. The reader who fells the urge

to deepen his or her knowledge on this interesting topic will �nd in [2, pp. 87-94], [3]

and [23, pp. 64-65] good references. Finally, note that the results that we established

in this section can be trivially extended to the relative K-Theory group Km(X,A)

for all m ∈ Z. ♦
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2.10 Compactly-supported K-Theory

In this section, we explicitly set the compactly-supported K-Theory groups. This

is mainly done because these groups are essential in Section 3.8 in order to de�ne

the Thom isomorphisms in K-Theory, which is a fundamental result that enables us

to discuss integration in K-Theory through the Gysin map. We begin with the following

de�nition.

De�nition 2.72 (The category of locally compact Hausdor� spaces). We de�ne the

category of locally compact Hausdor� spaces, and denote it by TopHdLocCptP,

to be the category whose:

� objects are locally compact Hausdor� spaces; and

� morphisms are proper continuous functions. We remind the reader that a function

is proper if its preimage of any compact subspace of the codomain is compact in

the domain. ♦

De�nition 2.73 (The one-point Alexandro� compacti�cation covariant functor). We

de�ne the covariant functor

+ : TopHdLocCptP → TopHdCpt,

X 7→ X+,

f : X → Y 7→ f+ : X+ → Y +.

This functor is known as the one-point Alexandro� compacti�cation covariant

functor. ♦

De�nition 2.74 (Compactly-supported K-Theory). Consider the composition of functors

Kn
c := K̃n ◦ + : TopHdLocCptP → Gab,

X 7→ K̃n(X+),

f : X → Y 7→ K̃n(f+) : K̃n(Y +)→ K̃n(X+),

for each n ∈ Z. We say that:
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� the nth compactly-supported K-Theory group of a locally compact Hausdor�

space X, which is denoted by Kn
c (X), is the nth pointed reduced K-Theory group

K̃n(X+); and

� the nth compactly-supported induced homomorphism in K-Theory of a

proper continuous map f : X → Y between locally compact Hausdor� spaces,

which is denoted by Kn
c (f) : Kn

c (Y ) → Kn
c (X), is the nth induced homomorphism

K̃n(f+) : K̃n(Y +)→ K̃n(X+). ♦

Remark 2.75 (On compactly-supported K-Theory groups). We have the following facts.

� If X is a compact Hausdor� space, then Kn
c (X) is canonically isomorphic to

Kn(X).

� If X and Y are locally compact Hausdor� spaces, then, considering the product

between pointed reduced K-Theory groups in Remark 2.45, we obtain the external

multiplication

� : Kn
c (X) ⊗ Km

c (Y ) → Kn+m
c (X × Y ),

since the reader can readily prove that X+ ∧ Y + is canonically homeomorphic

to (X × Y )+.

� The compactly-supported version of K-Theory is not homotopic invariant. Indeed,

for example, the real line R has the same homotopy type as a one-point space Ω,

but

K1
c (Ω) ' K1(Ω) = 0 and

K1
c (R) = K̃1(R+) ' K̃1(S1) ' Z.

� We can also de�ne the relative version of compactly-supported K-Theory. In fact,

if (X,A) is a pair of locally compact Hausdor� spaces for which the inclusion

A→ X is a proper map, then we de�ne

Kn
c (X,A) := Kn

c (X/A) = K̃n((X/A)+)

for all n ∈ Z. Moreover, once we have a canonical homeomorphism between

X+/A+ and (X/A)+, we have
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Kn
c (X,A) ' K̃n(X+/A+).

for all n ∈ Z. ♦

2.11 Real K-Theory

In this �nal section, we recapitulate the main notions of this chapter to set

real K-Theory. Indeed, until now, we have only considered K-Theory based on

complex vector bundles. However, there is an obvious analog to K-Theory based on

real vector bundles. Here we pinpoint the main di�erences between these two versions.

It is to be noted that there are other versions of K-theory, as the one that the reader can

�nd in [23, pp. 70-76], that we do not address in this work. We begin with the following

de�nition.

De�nition 2.76 (The absolute real K-Theory group of a compact Hausdor� space).

Let X be an object in TopHdCpt and VectX be the semigroup of isomorphism classes of

real vector bundles on X with respect to the induced direct sum. The absolute

real K-Theory group of X, hereafter denoted by K(X), is the Grothendieck group

associated to VectX . ♦

De�nition 2.77 (Pullback in real absolute K-Theory). Let f : X → Y be a morphism in

TopHdCpt. We say that the pullback of f in real absolute K-Theory is the morphism

of abelian groups

K(f) : K(Y ) → K(X),

[[E]]− [[F ]] 7→ [[f ∗E]]− [[f ∗F ]],

where f ∗E and f ∗F are the pullbacks of the vector bundles E and F through f , respectively.

Note that K(f) is well-de�ned because the pullbacks of isomorphic vector bundles are also

isomorphic. ♦

Remark 2.78 (Categorical interpretation of the real absolute K-Theory data presented

above). Being Gab the standard category of abelian groups, we have the contravariant

functor
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K : TopHdCpt → Gab,

X 7→ K(X),

f : X → Y 7→ K(f) : K(Y )→ K(X).

Furthermore, since Theorem C.57 imply that the pullbacks of vector bundles through

homotopic continuous maps f, g : X → Y , where X and Y are compact Hausdor� spaces,

are isomorphic over X, the contravariant functor

[K] : [TopHdCpt] → Gab,

X 7→ K(X),

[f : X → Y ] 7→ K(f) : K(Y )→ K(X),

is well-de�ned, where [TopHdCpt] is the quotient of TopHdCpt by the relation of

homotopy of maps, which is an equivalence relation that is compatible with the

composition in TopHdCpt. ♦

From the functors of the preceding remark, we construct the real versions of

(pointed) reduced and relative K-Theory groups and homomorphisms in the exactly

same manner as was done in the complex case. Moreover, all of the results of this

chapter hold true for real K-Theory, adapting them to the Real Bott Periodicity

Theorem set below.

Theorem 2.79 (Real Bott Periodicity Theorem). Let (X, x0) be an object in TopHdCpt+.

There exists an isomorphism of rings

K̃(X, x0) → K̃−8(X, x0).

Proof. The reader can �nd more details and further developments of this result in

[23, p. 63].

In particular, we have that the real K-Theory is also an additive generalized

cohomology theory. Di�ering from the complex case, which is 2-periodic, we have that

real K-Theory is 8-periodic. We �nish this section, and then the chapter, showing in

the following remark the relevance of this version of K-theory by exhibiting one of
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its great achievements in the last century, which is a theorem that properly answers

the question of what is the maximal number of linearly independent vector �elds on

a sphere.

Remark 2.80 (An application of real K-Theory). Using real K-Theory, one can

prove that, if n is a non-zero natural number that we uniquely decompose in the

form

n = (2α− 1) 24β+γ,

then there exist at most 8β+ 2γ−1 linearly independent vector �elds on Sn−1. The reader

can �nd proofs of this result in [1] and in [33]. The treatment given by the �rst reference

is more technical than the one given by the second reference. This may help the reader in

choosing which one of them to follow. ♦
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Chapter 3

Spin Geometry and Ordinary K-Theory

In this chapter, we expose the necessary concepts of Spin Geometry

in order to set the Thom isomorphisms and the Gysin map in Ordinary K-Theory.

In particular, we study the Cli�ord algebras and their classi�cation, given

through Sylvester's Law of Inertia. Furthermore, we work with the representation

theory of Cli�ord algebras, which leads us directly to the Atiyah-Bott-Shapiro

Theorem. Afterwards, we deal with Pin and Spin groups, in order to introduce the

notion of spin and spinc structures on vector bundles. In order to write this part of the

text, we used as main references [2, pp. 102-116], [6] and k [23, pp. 7-40, 58-70, 77-85].

However, Sections 3.6 and 3.7 could not be written without [9, pp. 37-47] as well as

Section 3.8 could not be completed without the presence of [34].

3.1 Cli�ord algebras

In this section, we develop the fundamental notion that will be used throughout

this chapter, namely, the Cli�ord algebras. This concept will be used later to deepen our

present comprehension of Ordinary K-Theory. In particular, these special algebras are

the basic mathematical structure used in the Atiyah-Bott-Shapiro Theorem, which will

allow us to prove the existence of Thom classes in K-Theory. We begin by �xing the

following notation.
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Notation 3.1 (On real and complex numbers). When we do not desire to distinguish

between the �eld of real numbers and the �eld of complex numbers, we shall write

K to symbolize any of them. In particular, the vector spaces considered below are always

real or complex. ♦

De�nition 3.2 (Category of vector spaces and symmetric bilinear forms). We de�ne

the category of vector spaces and symmetric bilinear forms, and denote it by

VectSymBF, to be the category whose:

� objects are ordered pairs (V , s) where V is a �nite-dimensional vector space and

s : V × V → K is a symmetric bilinear form; and

� morphisms are linear maps ϕ : V → W such that sW ◦ ϕ = sV , usually denoted

by ϕ : (V , sV ) → (W , sW ). In other words, morphisms are linear maps that

preserve the symmetric bilinear forms. ♦

De�nition 3.3 (Category of vector spaces and quadratic forms). We de�ne the category

of vector spaces and quadratic forms, and denote it by VectQF, to be the category

whose:

� objects are ordered pairs (V , q) where V is a �nite-dimensional vector space and

q : V → K is a quadratic form; and

� morphisms are linear maps ϕ : V → W such that qW ◦ ϕ = qV , usually denoted

by ϕ : (V , qV ) → (W , qW ). In other words, morphisms are linear maps that

preserve the quadratic forms. ♦

De�nition 3.4 (Cli�ord algebras). We give the following de�nitions.

� Let (V , s) be an object in VectSymBF. The Cli�ord algebra Cl(V , s) of (V , s)

is said to be the associative free algebra with unit generated by V and submitted to

the relations

vw + wv = −2s(v, w) · 1 (3.1)

for all v, w ∈ V .
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� Let (V , q) be an object in VectQF. The Cli�ord algebra Cl(V , q) of (V , q) is

said to be the associative free algebra with unit generated by V and submitted to

the relations

v2 = −q(v) · 1 (3.2)

for all v ∈ V . ♦

Remark 3.5 (The Cli�ord algebras seen through the isomorphic categories of

vector spaces equipped with symmetric bilinear forms and quadratic forms). We have

the following facts.

� Let (V , s) be an object in VectSymBF. We de�ne

qs : V 7→ K,

v 7→ s(v, v).

We have (V , qs) ∈ VectQF. In addition, if ϕ : (V , sV ) → (W , sW ) is a morphism

in VectSymBF, then it follows that ϕ : (V , qsV
) → (W , qsW

) is a morphism in

VectQF.

� Let (V , q) be an object in VectQF. We de�ne

sq : V × V → K,

(v, w) 7→ 1

2
(q(v + w)− q(v)− q(w)).

We have (V , sq) ∈ VectSymBF. In addition, if ϕ : (V , qV ) → (W , qW ) is a

morphism in VectQF, then it follows that ϕ : (V , sqV ) → (W , sqW ) is a morphism

in VectSymBF.

Since qsq = q and sqs = s, we have that

Q : VectSymBF → VectQF,

(V , s) 7→ (V , qs),

ϕ : (V , sV )→ (W , sW ) 7→ ϕ : (V , qsV
)→ (W , qsW

),
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is an isomorphism between VectSymBF and VectQF. Indeed, its inverse is the covariant

functor

S : VectQF → VectSymBF,

(V , q) 7→ (V , sq),

ϕ : (V , qV )→ (W , qW ) 7→ ϕ : (V , sqV )→ (W , sqW ).

Consequently, symmetric bilinear forms and quadratic forms are indistinguishable

from a categorical viewpoint. Thus, we have that the following facts on Cli�ord algebras

hold true.

� Let (V , s) be an object in VectSymBF. The relations presented in Equation (3.1)

are equivalent to

v2 = −qs(v) · 1

for all v ∈ V . Therefore, we have that Cl(V , s) is canonically isomorphic to

Cl(V , qs).

� Let (V , q) be an object in VectQF. The relations presented in Equation (3.2)

are equivalent to

vw + wv = −2sq(v, w) · 1

for all v, w ∈ V . Therefore, we have that Cl(V , q) is canonically isomorphic to

Cl(V , sq).

In this text, we use these representations of the Cli�ord algebras interchangeably.

Moreover, when the symmetric bilinear form or the quadratic form are understood,

we write Cl(V ). ♦

Theorem 3.6 (An alternative presentation to Cli�ord algebras). Let (V , q) be an object

in VectQF. In addition, for all m ∈ N, let V ⊗m be the m-times tensor product of V

with itself. We de�ne

T (V ) :=
⊕
i∈N

V ⊗i.

Moreover, we de�ne I (V , q) to be the ideal in T (V ) formed by the elements of

the form v ⊗ v + q(v) · 1 for v ∈ V . We have that Cl(V , q) is isomorphic to the
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quotient of T (V ) by I (V , q). Consequently, since V is a subset of T (V ) up to a

canonical isomorphism, there exists a map

ιV : V → Cl(V , q)

whose image generates the whole Cli�ord algebra.

Proof. The assertion is obvious from the de�nitions of the objects in question. We leave

the details to the reader.

Theorem 3.7 (Extending linear maps to Cli�ord algebras). Let (V , q) be an object in

VectQF. In addition, let A be an associative algebra and ϕ : V → A be a linear map

such that

ϕ(v)2 = −q(v) · 1 (3.3)

for all v ∈ V . Under these conditions, we have that ϕ extends uniquely to an algebra

homomorphism

Φ : Cl(V , q) → A.

Furthermore, Cl(V , q) is the unique associative algebra with this property. This is the

universal property of the Cli�ord algebras.

Proof. The reader can readily prove that ϕ : V → A extends to a unique algebra

homomorphism

T (V ) → A.

Because of Equation (3.3), this homomorphism is trivial on I (V , q). Thus, it descends

to unique algebra homomorphism

Φ : Cl(V , q) → A,

as we wished. Now, let B be an associative algebra with unit over K equipped with

an embedding i : V → B with the property that any linear map ϕ : V → A as

above extends uniquely to an algebra homomorphism Φ : B → A. Thence, the

isomorphism between V ⊆ Cl(V , q) and i(V ) ⊆ B induces an algebra isomorphism

between Cl(V , q) and B.
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Remark 3.8 (Functorial behavior of the Cli�ord algebras implied by the preceding

result). Let ϕ : (V , qV ) → (W , qW ) be a morphism in VectQF. Additionally, let

ιW : W → Cl(W , qW ) be the map de�ned in Theorem 3.6. Because of Theorem 3.7, we

have that there exists a unique algebra homomorphism Φ : Cl(V , qV ) → Cl(W , qW ) that

extends ιW ◦ ϕ : V → Cl(W , qW ). In particular, because of uniqueness, the reader can

prove that the induced map of a composition coincides with the composition of the

induced maps. Consequently, it follows that the induced map of an isomorphism is also

an isomorphism. ♦

Lemma 3.9 (Two linear maps). Let (V , s) be an object in VectSymBF. For any m ∈ N,

let Λm(V ) denote the vector space of m-forms on V . For any m ∈ N and v ∈ V , we

de�ne the linear maps

lmv : Λm(V ) → Λm+1(V ),

α 7→ v ∧ α,

and

δmv : Λm(V ) → Λm−1(V ),

v1 ∧ · · · ∧ vm 7→
m∑
i=1

(−1)i−1 s(v, vi) v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vm,

which are such that the compositions

lm+1
v ◦ lmv : Λm(V )→ Λm+2(V ) and δm−1

v ◦ δmv : Λm(V )→ Λm−2(V )

are trivial homomorphisms. Moreover,

lm−1
v ◦ δmv + δm+1

v ◦ lmv = q(v) · idΛm(V ).

It is to be note that, in order to de�ne δmv , we tacitly supposed m strictly greater than

zero. Furthermore, as usual, the hat in v̂i indicates the removal of the element vi from

the expression.

Proof. The triviality of the composition lm+1
v ◦ lmv is obvious since, for all α ∈ Λm(V ),

we have
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(lm+1
v ◦ lmv )(α) = lm+1

v (v ∧ α) = v ∧ v ∧ α = 0.

In turn, we have that the triviality of the composition δm−1
v ◦ δmv is proved as follows.

Indeed, if

α = v1 ∧ · · · ∧ vm ∈ Λm(V ),

then

(δm−1
v ◦ δmv )(α) = δm−1

v

(
m∑
i=1

(−1)i−1 s(v, vi) v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vm

)

=
m∑
i=2

i−1∑
j=1

(−1)i+j s(v, vi) s(v, vj) v1 ∧ · · · ∧ v̂j ∧ · · · ∧ v̂i ∧ · · · ∧ vm

+
m−1∑
i=1

m∑
j=i+1

(−1)i+j−1s(v, vi)s(v, vj)v1 ∧ · · · ∧ v̂i ∧ · · · ∧ v̂j ∧ · · · ∧ vm

=
m∑
i=2

i−1∑
j=1

(−1)i+j s(v, vi) s(v, vj) v1 ∧ · · · ∧ v̂j ∧ · · · ∧ v̂i ∧ · · · ∧ vm

−
m∑
j=2

j−1∑
i=1

(−1)i+j s(v, vj) s(v, vi) v1 ∧ · · · ∧ v̂i ∧ · · · ∧ v̂j ∧ · · · ∧ vm

= 0.

Finally, using the notation presented above, the last equality of the statement is proved

as follows. In fact,

(lm−1
v ◦ δmv )(α) =

m∑
i=1

(−1)i−1 s(v, vi) v ∧ v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vm

and

(δm+1
v ◦ lmv )(α) = δm+1

v (v ∧ α)

= q(v) · α +
m∑
i=1

(−1)i s(v, vi) v ∧ v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vm

= q(v) · α−
m∑
i=1

(−1)i−1 s(v, vi) v ∧ v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vm.

Consequently,

(lm−1
v ◦ δmv + δm+1

v ◦ lmv )(α) = q(v) · α,

as we wished.
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Theorem 3.10 (Cli�ord algebras of non-trivial spaces are also non-trivial). We have

that the map

ιV : V → Cl(V )

de�ned in Theorem 3.6 is injective. This allows us to identify ιV (v) ∈ Cl(V ) with v ∈ V

when there can be no confusion. In particular, if V is a non-trivial vector space, then

Cl(V ) is a non-trivial algebra.

Proof. To prove the desired injectivity, we construct a representation of Cl(V ) over the

exterior algebra

Λ(V ) :=
⊕
i∈N

Λi(V )

as follows. First, we consider

η : T (V ) → EndΛ(V ),

v 7→ lv − δv,

where

lv :=
⊕
i∈N

liv and δv :=
⊕
i∈N

δiv

being liv and δiv the special linear operators de�ned in Lemma 3.9. Therefore, because

of this very same lemma, and because Equation (3.2) holds true, we have that η projects

to the map

η̄ : Cl(V ) → EndΛ(V ),

ιV (v) 7→ lv − δv.

Using the de�nitions of the maps lv and δv presented above, the reader can readily prove

the equality

η(v)(1) = (lv − δv)(1) = v.

This implies

η̄(ιV (v))(1) = v.

Consequently, if v is non-zero, then ιV (v) is also non-zero. This �nishes the proof of

the theorem.
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Remark 3.11 (Natural �ltration on a Cli�ord algebra). Let (V , q) be an object in

VectQF. We have

T (V ) =
⊕
i∈N

V ⊗i.

Consequently, if we de�ne

V⊗m :=
m⊕
i=0

V ⊗i

for all m ∈ N, then we obtain the �ltration

V⊗0 ⊆ V⊗1 ⊆ · · · ⊆ V⊗m ⊆ · · · ⊆ T (V ).

In particular, the reader can readily prove the existence of a natural isomorphism

between V⊗m/V⊗(m−1) and V ⊗m. Furthermore, if π : T (V ) → Cl(V , q) is the natural

projection and

Fm(V ) := π(V⊗m)

for all m ∈ N, then we obtain the �ltration

F 0(V ) ⊆ F 1(V ) ⊆ · · · ⊆ Fm(V ) ⊆ · · · ⊆ Cl(V , q).

It is to be noted that this last �ltration is compatible with the Cli�ord product, which

means that

Fm(V ) ·F n(V ) ⊆ Fm+n(V )

for all m,n ∈ N. Moreover, it is to be noted that Fm(V ) is generated by the

products of at most m vectors of V . As a consequence, we have that there can be

products of m vectors contained in F n(V ) with n < m. For instance, being v, w ∈ V ,

we have vww ∈ F 1(V ), although it is the product of three vectors, since the equality

vww = −q(w) · v holds. ♦

Lemma 3.12 (Understanding the projected map de�ned in the proof of the preceding

theorem). If

η̄ : Cl(V ) → EndΛ(V )

is the map de�ned in Theorem 3.10, then, for all non-zero natural number m and all

v1, · · · , vm+1 ∈ V , we have
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η̄(v1 · · · vm+1)(1) = v1 ∧ · · · ∧ vm+1 + αm,

where

αm ∈ Λm(V ) :=
m⊕
i=0

Λi(V ).

Proof. We prove the result using the Finite Induction Principle.

� Induction basis. If m = 0, then we have seen that η̄(v)(1) = v for all v ∈ V .

Therefore, in this situation, we have α0 = 0. Consequently, the statement is true

for m = 0.

� Induction hypothesis. We suppose that the lemma holds for some m ∈ N and

all v1, · · · , vm+1 ∈ V .

� Induction step. Being v1, · · · , vm+2 ∈ V , it follows from the induction hypothesis

that

η̄(v1 · · · vm+2)(1) = η̄(v1)η̄(v2 · · · vm+2)(1)

= η̄(v1)(v2 ∧ · · · ∧ vm+2 + αm)

= v1 ∧ · · · ∧ vm+2 + v1 ∧ αm − δv1(v2 ∧ · · · ∧ vm+2 + αm).

Since δv1 decreases degrees, we have

αm+1 := (v1 ∧ αm)− δv1(v2 ∧ . . . ∧ vm+2 + αm) ∈ Λm+1(V ),

as desired. �

Theorem 3.13 (The Cli�ord and exterior algebras). Let (V , s) be an object in VectSymBF.

The map

ΦV : Λ(V ) → Cl(V , s),

v1 ∧ · · · ∧ vm 7→ [v1 · · · vm],

is a canonical isomorphism of vector spaces, but not of algebras. In particular, we have

dimCl(V , s) = 2dim(V ).
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Proof. According to the proof of Theorem 3.10, we have

Λ(V ) =
⊕
i∈N

Λi(V ).

Nevertheless, since Λm(V ) is trivial when dim(V ) < m, we have a canonical vector

space isomorphism

Λ(V ) '
dim(V )⊕
i=0

Λi(V ). (3.4)

Moreover, because of what we have shown in Remark 3.11, we have a canonical vector

space isomorphism

Cl(V , s) '
⊕
i∈N

F i(V )/F i−1(V ). (3.5)

Now, let Φm
V : Λm(V ) → Fm(V )/Fm−1(V ) be the restriction of ΦV . Because of

the Isomorphisms (3.4) and (3.5), it is clear that, if we prove that Φm
V is an isomor-

phism for all m ∈ N, then the theorem follows. First, however, we have to prove that Φm
V

is well-de�ned. This have to be done since the elements v1 ∧ . . . ∧ vm do not form a

basis for Λm(V ). Let

Ψm
V : V ⊗m → Fm(V )/Fm−1(V ),

v1 ⊗ · · · ⊗ vm 7→ [v1 · · · vm].

This map is well-de�ned since it is the composition of π : T (V ) → Cl(V , s) restricted

to V ⊗m with the projection Fm(V ) → Fm(V )/Fm−1(V ). We shall prove that Φm
V

is the restriction of Ψm
V to Λm(V ). For this, let Σm denote the permutation group on

m letters. Thence, if (i i + 1) ∈ Σm is a transposition of consecutive elements, then we

obtain

[v1 · · · vi+1vi · · · vm] = [v1 · · · vi−1 (−vivi+1 − 2s(vi, vi+1) · 1) vi+2 · · · vm]

= −[v1 · · · vivi+1 · · · vm] − [2s(vi, vi+1)v1 · · · vi−1vi+2 · · · vm]

= −[v1 · · · vivi+1 · · · vm],

where this last equality holds because

2s(vi, vi+1)v1 · · · vi−1vi+2 · · · vm ∈ Fm−2(V ) ⊆ Fm−1(V ).
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Therefore, since the collection of all transpositions of consecutive elements generates

Σm, we have

Ψm
V (vσ(1) ⊗ · · · ⊗ vσ(i)) = (−1)σΨm

V (v1 ⊗ · · · ⊗ vi)

for all σ ∈ Σm. Consequently, it follows that the restriction of Ψm
V to Λm(V ) satis�es

the equality

Ψm
V (v1 ∧ · · · ∧ vm) = Ψm

V (v1 ⊗ · · · ⊗ vm).

This proves that the function

v1 ∧ · · · ∧ vm 7→ Ψm
V (v1 ⊗ · · · ⊗ vm),

which coincides with Φm
V , is well-de�ned. Furthermore,

� Φm
V is surjective. Indeed, if it is given a class [v1 · · · vm] ∈ Fm(V )/Fm−1(V ),

then we have

Φm
V (v1 ∧ · · · ∧ vm) = [v1 · · · vm].

In particular, this proves that Fm(V ) = F dim(V )(V ) for all m greater than or

equal to dim(V ); and

� Φm
V is injective. In fact, we explicitly show its inverse. Let pm : Λ(V ) → Λm(V )

be the natural projection. We de�ne

Ξm
V : Fm(V )/Fm−1(V ) → Λm(V ),

[v1 · · · vm] 7→ pm(η̄(v1 · · · vm)(1)),

where η̄ is the map de�ned in the proof of Theorem 3.10. Because of Lemma 3.12,

we have

Ξm
V [v1 · · · vm] = v1 ∧ · · · ∧ vm.

Therefore, we obtain Ξm
V = (Φm

V )−1, as desired. This �nishes the proof of the

theorem. �

Remark 3.14 (Improving our comprehension on the Cli�ord algebras). Let (V , s) be

an object in VectSymBF. If B1 = {e1, · · · , edim(V )} is a basis for V , then collection of

m-forms
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Bm := {ek1 ∧ · · · ∧ ekm} 1≤ k1 < ···<km≤ dim(V )

is a basis for Λm(V ) for all m between 1 and dim(V ), both included. Consequently,

the collection

B :=

dim(V )⋃
i=0

Bi

is a basis for Λ(V ), where B0 is de�ned to be the singleton containing 1 ∈ K. Because of

Theorem 3.13,

ΦV (B) :=

dim(V )⋃
i=0

ΦV (Bi)

is a basis for the vector space Cl(V , s). Therefore, we may think about an element in

Cl(V , s) as an m-form for some m between 1 and dim(V ), both included. Nevertheless,

the wedge product is substituted by the Cli�ord product, which is not even isomorphic

to the former. In fact, leaving the isomorphism of Cl(V , s) with Λ(V ) implicit, it can be

proved that

v · η ' v ∧ η − δv(η)

for all v ∈ V and all η ∈ Cl(V ). ♦

Remark 3.15 (Important decomposition of Cli�ord algebras). Let (V , q) be an object in

VectQF. We have

Cl(V , q) ' Cl 0(V , q) ⊕ Cl 1(V , q), (3.6)

where:

� Cl 0(V , q) is the subalgebra of Cl(V , q) generated by the products of an even

number of vectors of V ; and

� Cl 1(V , q) is the subalgebra of Cl(V , q) generated by the products of an odd

number of vectors of V .

This claim can be proved by using two di�erent viewpoints. Indeed:

� consider the split

T (V ) = T 0(V ) ⊕ T 1(V ),
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obtained by sorting out the homogeneous generators of even and odd degree in T (V ).

Correspondingly,

I (V , q) = I 0(V , q) ⊕ I 1(V , q).

This split of I (V , q) is possible because its generators v ⊗ v + q(v) · 1 are sums of

two terms with even degrees. In fact, since the generic element of I (V , q) has

the form
k∑
i=1

γi ⊗ (vi ⊗ vi − q(vi) · 1)⊗ θi,

it splits in the sum of the terms such that δi := deg(γi) + deg(θi) is even with

the terms such that δi is odd. As a consequence of these splittings, we have the

isomorphism

Cl(V , q) ' T 0(V )/I 0(V , q) ⊕ T 1(V )/I 1(V , q) = Cl 0(V , q)⊕ Cl 1(V , q),

as we wished; and

� consider the linear operator

α : V → V ,

v 7→ −v.

Let τ : Cl(V , q) → Cl(V , q) be its induced homomorphism from Remark 3.8.

We have that Cl 0(V , q) and Cl 1(V , q) are the eigenspaces relatively to the

eigenvalues 1 and −1 of τ . Thus, we can prove the desired result by showing

that any element in Cl(V , q) can be written as a sum of an element in Cl 0(V , q)

with an element in Cl 1(V , q). This happens because eigenspaces associated to

di�erent eigenvalues are necessarily disjoint. In fact, for all η ∈ Cl(V , q), we have

the decomposition

η =
1

2
(η + τ(η)) +

1

2
(η − τ(η)),

where η + τ(η) ∈ Cl 0(V , q) and η − τ(η) ∈ Cl 1(V , q). As a consequence, we are

done here

Furthermore, we have

Cl i(V , q) · Cl j(V , q) ⊆ Cl i+j(V , q), (3.7)
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where i, j ∈ Z2. The decomposition in (3.6) together with the property in (3.7) turn

Cl(V , q) into a Z2-graded algebra. The structure of Z2-graded algebra provides a

modi�cation on the tensor product of algebras, which we denote by ⊗̂, that relates the

Cli�ord algebra of a direct sum with the Cli�ord algebras of its summands. In fact,

if V = V1 ⊕ V2 is such that

q(v1 + v2) = q(v1) + q(v2)

for all v1 ∈ V1 and all v2 ∈ V2, then there exists a natural isomorphism

Cl(V , q) ' Cl(V1) ⊗̂ Cl(V2),

where the quadratic forms on V1 and V2 are the restrictions of the quadratic form

on V . This fact will be important in the next section. The reader who desires to

understand a bit more about this construction may �nd in [23, pp. 11-12] an

interesting reference. ♦

3.2 Classi�cation of Cli�ord algebras

In this section, we present the complete classi�cation of the real and complex

Cli�ord algebras. This interesting topic complements the formal study developed

in the preceding section. In fact, it supplies us with many concrete examples. The

essential result that enables such classi�cation is Sylvester's Law of Inertia, which is

a famous theorem from Linear Algebra that will be remarked in time. We begin by �xing

the following notation.

Notation 3.16 (Usual matrix algebras). Let n be a natural number. We shall denote

by R(n), C(n) and H(n) the algebra of square matrices of order n over R, C and H,

respectively. ♦

De�nition 3.17 (Cli�ord algebra induced by a real canonical form). Let n be a natural

number. For each natural numbers a and b such that a + b is at most n, we de�ne the

canonical real quadratic form
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qna,b : Rn → R,

(x1, · · · , xn) 7→
a∑
i=1

x2
i −

b∑
i=1

x2
i+a.

The representative matrix of the quadratic form qna,b with respect to the canonical basis

is given by 
Ia 0 0

0 −Ib 0

0 0 0

 ∈ R(n). (3.8)

We say that Cln(a, b) is the Cli�ord algebra of Rn with respect to the real quadratic

form qna,b : Rn → R. In addition, if qna,b is non-degenerate, that is, if n = a + b,

then Cln(a, b) is denoted by Cl(a, b). Finally, we agree on denoting Cl(n, 0) simply by

Cl(n). ♦

Remark 3.18 (On real Cli�ord algebras). Let n be a natural number. The real

version of Sylvester's Law of Inertia says that any real quadratic form q on an

n-dimensional real vector space V admits a basis under which its representative

matrix coincides with (3.8) for some appropriate a, b ∈ N. Thus, there exists an

isomorphism ϕ : V → Rn such that

qna,b ◦ ϕ = q.

As a consequence of this reasoning, it follows from Remark 3.8 that there exists an

algebra isomorphism

Φ : Cl(V , q) → Cln(a, b).

This proves that any real Cli�ord algebra is isomorphic to some Cln(a, b). Clearly,

if the quadratic form is non-degenerate, then its Cli�ord algebra is isomorphic to

some Cl(a, b). Therefore, we can rephrase the problem of classifying all of the real

Cli�ord algebras to the problem of classifying all of the real Cli�ord algebras Cln(a, b).

In fact, it su�ces to classify the real Cli�ord algebras Cl(a, b). Indeed, consider the

decomposition Rn = Ra+b ⊕ Rn−a−b where qna,s |Ra+b is non-degenerate and qna,b |Rn−a−b

is trivial. Because of Remark 3.15, we have
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Cln(a, b) ' Cl(a, b) ⊗̂ Cln−a−b(0, 0). (3.9)

Thence, since Cln−a−b(0, 0) is canonically isomorphic to the exterior algebra Λ(Rn−a−b),

it is clear from Equation (3.9) that we only have to classify the Cli�ord algebras Cl(a, b),

as we claimed. ♦

De�nition 3.19 (Cli�ord algebra induced by a complex canonical form). Let n be a

natural number. For each natural number a between 0 and n, both included, we de�ne the

canonical complex quadratic form

qna : Cn → C,

(z1, · · · , zn) 7→
a∑
i=1

z2
i .

The representative matrix of the quadratic form qna with respect to the canonical basis

is given by Ia 0

0 0

 ∈ C(n). (3.10)

We say that Cln(a) is the Cli�ord algebra of Cn with respect to the complex quadratic

form qna : Cn → C. In addition, if qna is non-degenerate, that is, if n = a, then Cln(n)

is denoted by Cl(n). ♦

Remark 3.20 (On complex Cli�ord algebras). Let n be a natural number. The

complex version of Sylvester's Law of Inertia says that any complex quadratic form q on

an n-dimensional complex vector space V admits a basis under which its representative

matrix coincides with (3.10) for some appropriate a ∈ N. Thus, we have that there exists

an isomorphism ϕ : V → Cn such that

qna ◦ ϕ = q.

As a consequence of this reasoning, it follows from Remark 3.8 that there exists an

algebra isomorphism

Φ : Cl(V , q) → Cln(a).
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This proves that any complex Cli�ord algebra is isomorphic to some Cln(a). Clearly,

if the quadratic form is non-degenerate, then its Cli�ord algebra is isomorphic to

some Cl(n). Therefore, we can rephrase the problem of classifying all of the complex

Cli�ord algebras to the problem of classifying all of the complex Cli�ord algebras

Cln(a). In fact, it su�ces to classify the complex Cli�ord algebras Cl(n). Indeed,

consider the decomposition Cn = Ca ⊕ Cn−a where qna |Ca is non-degenerate and qna |Cn−a

is trivial. Because of Remark 3.15, we have

Cln(a) ' Cl(a) ⊗̂ Cln−a(0). (3.11)

Therefore, as before, it follows from Equation (3.11) that we only have to classify the

Cli�ord algebras Cl(n), as we claimed. ♦

Remark 3.21 (A relation between real and complex Cli�ord algebras). We have the

following facts.

� If V is a real vector space, then we can de�ne its complexi�cation VC := V ⊗R C.

Moreover, any real symmetric bilinear form on V can be extended by C-linearity

to a complex symmetric bilinear form on VC. With respect to this data, we have

that the Cli�ord algebra Cl(VC) is canonically isomorphic to the complexi�cation

Cl(V ) ⊗R C. Indeed, it su�ces to identify v ⊗ z ∈ Cl(V ) ⊗R C with v ⊗ z ∈ VC.

In particular, the complexi�cation of Cln(a, b) is isomorphic to Cln(a+ b). Further,

we have that Cl 0(VC) and Cl 1(V ) are canonically isomorphic to Cl 0(V ) ⊗R C and

Cl 1(V )⊗R C, respectively.

� If V is a complex vector space, then we can de�ne its reali�cation VR by restricting

its scalar product to real numbers. Moreover, any complex symmetric form on V can

be restricted to a real symmetric bilinear form on VR. With respect to this data, we

have that the Cli�ord algebra Cl(VR) is canonically isomorphic to the reali�cation

of Cl(V ), where an isomorphism is given by the identity map. Furthermore, we

have that Cl 0(VR) and Cl 1(VR) are canonically isomorphic to the reali�cations of

Cl 0(V ) and Cl 1(V ), respectively. ♦
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Theorem 3.22 (The �rst concrete examples of real and complex Cli�ord algebras). We

have the isomorphisms

Cl(1) ' C

Cl(0, 1) ' R⊕ R

Cl(1, 1) ' R(2)

Cl(2) ' H

Cl(0, 2) ' R(2).

As immediate consequences of the �rst and forth of these isomorphisms, we obtain the

isomorphisms

Cl(1) ' C⊕ C and Cl(2) ' C(2).

Proof. Indeed, we have that:

� Cl(1) is the vector space generated by 1 and e1, with the only interesting

multiplication being e2
1 = −1. Therefore, we obtain the desired isomorphism by

identifying i ∈ C with e1 ∈ Cl(1). Moreover, because of Remark 3.21, we have the

isomorphism

Φ : Cl(1) → C⊕ C,
1

2
(1 + ie1) 7→ (1, 0),

1

2
(1− ie1) 7→ (0, 1).

� Cl(0, 1) is the vector space generated by 1 and e1, with the only interesting

multiplication being e2
1 = 1. Therefore, we obtain the desired isomorphism through

the linear map

Φ : Cl(0, 1) → R⊕ R,
1

2
(1 + e1) 7→ (1, 0),

1

2
(1− e1) 7→ (0, 1).

� Cl(1, 1) is the vector space generated by 1, e1 and e2, with the only interesting

multiplications being e2
1 = −1, e2

2 = 1 and e1e2 = −e2e1. Thus, we obtain the

desired isomorphism through the linear map



3. Spin Geometry and Ordinary K-Theory 168

Φ : Cl(1, 1) → R(2),

e1 7→

 0 1

−1 0

 , e2 7→ 1√
2

1 1

1 −1

 .

� Cl(2) is the vector space generated by 1, e1 and e2, with the only interesting

multiplications being e2
1 = e2

2 = −1 and e1e2 = −e2e1. Thus, we obtain the desired

isomorphism by making the obvious identi�cations (see Example E.4). Moreover,

we have the isomorphism

Φ : Cl(2) → C(2),

e1 7→

i 0

0 −i

 , e2 7→

 0 1

−1 0

 .

� Cl(0, 2) is the vector space generated by 1, e1 and e2, with the only interesting

multiplications being e2
1 = e2

2 = 1 and e1e2 = −e2e1. Thus, we obtain the desired

isomorphism through the linear map

Φ : Cl(0, 2) → R(2),

e1 7→
1√
2

1 1

1 −1

 , e2 7→ 1√
2

 1 −1

−1 −1

 .
This �nishes the proof of the theorem.

We have seen hitherto that the problem of classifying (real or complex) Cli�ord

algebras can be rephrased to the problem of classifying the (real or complex) Cli�ord

algebras of Kn obtained from the non-degenerate canonical quadratic forms. We now

classify these algebras. We start with the complex case, which is much simpler than

the real case.

Theorem 3.23 (Periodicity of complex Cli�ord algebras). Let n be a natural number.

The linear map
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Φn : Cl(n+ 2) → Cl(n)⊗C Cl(2),

1 7→ 1,

γ1 7→ β1 ⊗ iα1α2,

...

γn 7→ βn ⊗ iα1α2,

γn+1 7→ 1⊗ α1,

γn+2 7→ 1⊗ α2,

is an algebra isomorphism, where {α1, α2}, {β1, · · · , βn} and {γ1, · · · , γn+2} are the

canonical bases of R2, Rn and Rn+2, respectively.

Proof. We start by showing that Φn preserves products. In fact, it su�ces to show that

this map preserves the relations in (3.1). This task consists in a pile of straightforward

computations. To keep clearness, we exemplify one of them. Indeed, for j and k between

1 and n, both included,

γjγk + γkγj = (−δjk)⊗ 1

= (βjβk + βkβj)⊗ 1

= (βjβk)⊗ 1 + (βkβj)⊗ 1

= (βj ⊗ iα1α2)(βk ⊗ iα1α2) + (βk ⊗ iα1α2)(βj ⊗ iα1α2)

because

(iα1α2)2 = −α1α2α1α2 = (α1)2(α2)2 = (−1)(−1) = 1

once α1α2 = −α2α1. Here we have that δjk denotes the usual Kronecker delta. That is,

we have

δjk =

1 if j = k,

0 otherwise.

Therefore, since Φn is a linear map by de�nition, it is an algebra homomorphism. Now,

we prove that Φn is bijective. As a matter of fact, we have that Φn is surjective since

the generators βj ⊗ 1 and 1 ⊗ αk of its codomain belong to its image. This happens

because
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βj ⊗ 1 = βj ⊗−i2 = i(βj ⊗ iα1α2α1α2) = i(βj ⊗ iα1α2)(1⊗ α1)(1⊗ α2).

Thence, the injectivity of Φn is obvious from the Rank-Nullity Theorem since both

Cl(n + 2) and Cl(n) ⊗C Cl(2) have dimension 2n+2. This �nishes the proof of the

theorem.

Corollary 3.24 (Classi�cation of complex Cli�ord algebras). We have the isomorphisms

Cl(2n) ' C(2n) and Cl(2n+ 1) ' C(2n) ⊕ C(2n)

for all n ∈ N.

Proof. This result follows from Theorems 3.22 and 3.23. We leave the immediate details

to the reader.

Finally, we handle the classi�cation of the real Cli�ord algebras obtained

from the non-degenerate canonical quadratic forms. The complete characterization of

these algebras, which immediately follows from the following three results, is shown

in Table 3.1.

Theorem 3.25 (Reducing the classi�cation of real Cli�ord algebras to a smaller class).

Let a and b be natural numbers. The linear map

Φa,b : Cl(a+ 1, b+ 1) → Cl(a, b)⊗R Cl(1, 1),

1 7→ 1,

γ1 7→ β1 ⊗ α1α2,

...

γa 7→ βa ⊗ α1α2,

γa+1 7→ 1⊗ α1,

γa+2 7→ βa+1 ⊗ α1α2,

...

γa+b+1 7→ βa+b ⊗ α1α2,

γa+b+2 7→ 1⊗ α2,
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is an algebra isomorphism, where we have that {α1, α2}, {β1, · · · , βa, βa+1, · · · , βa+b}

and {γ1, · · · , γa, γa+1, γa+2, · · · , γa+b+2} are the canonical bases of R2, Ra+b and Ra+b+2,

respectively. Consequently:

� if a < b, then

Cl(a, b) ' Cl(0, b− a) ⊗R R(2a);

� if a = b, then

Cl(a, b) ' R(2a);

� if b < a, then

Cl(a, b) ' Cl(a− b) ⊗R R(2b).

These last three isomorphisms show that we can rephrase the problem of classifying all of

the Cli�ord algebras Cl(a, b) to the problem of classifying only the ones of the forms Cl(a)

and Cl(0, b).

Proof. The proof of this result is analogous to the proof of Theorem 3.23. We leave

the details to the reader.

Lemma 3.26 (Two more isomorphisms in the framework of Cli�ord algebras). Let n be

a natural number. We have the isomorphisms

Cl(n+ 2) ' Cl(0, n)⊗R Cl(2) and Cl(0, n+ 2) ' Cl(n)⊗R Cl(0, 2),

which are de�ne by

1 7→ 1,

γ1 7→ β1 ⊗ α1α2,

...

γn 7→ βn ⊗ α1α2,

γn+1 7→ 1⊗ α1,

γn+2 7→ 1⊗ α2,

where {α1, α2}, {β1, · · · , βn} and {γ1, · · · , γn+2} are the canonical bases of R2, Rn and

Rn+2, respectively.
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Proof. Once and again, the proof of this result is analogous to the proof of Theorem 3.23.

We leave the details to the reader.

Theorem 3.27 (Periodicity of real Cli�ord algebras). For all n ∈ N, we have the

isomorphisms

Cl(n+ 8) ' Cl(n)⊗R Cl(8) and Cl(0, n+ 8) ' Cl(0, n)⊗R Cl(0, 8),

where

Cl(8) ' R(16) ' Cl(0, 8).

Proof. Due to Lemma 3.26, we have

Cl(n+ 8) ' Cl(n)⊗R Cl(0, 2)⊗R Cl(2)⊗R Cl(0, 2)⊗R Cl(2)

' Cl(n)⊗R Cl(8),

and

Cl(0, n+ 8) ' Cl(0, n)⊗R Cl(2)⊗R Cl(0, 2)⊗R Cl(2)⊗R Cl(0, 2)

' Cl(0, n)⊗R Cl(0, 8).

Additionally,

Cl(8) ' Cl(0, 2)⊗R Cl(2)⊗R Cl(0, 2)⊗R Cl(2)

' R(2)⊗R H⊗R R(2)⊗R H

' R(4)⊗R R(4)

' R(16)

' R(4)⊗R R(4)

' H⊗R R(2)⊗R H⊗R R(2)

' Cl(2)⊗R Cl(0, 2)⊗R Cl(2)⊗R Cl(0, 2)

' Cl(0, 8).

This �nishes the proof of the theorem.
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0
1

2
3

4
5

6
7

8

0
R

C
H

H
⊕

H
H

(2
)

C
(4

)
R

(8
)

R
(8

)
⊕

R
(8

)
R

(1
6)

1
R
⊕

R
R

(2
)

C
(2

)
H

(2
)

H
(2

)
⊕

H
(2

)
H

(4
)

C
(8

)
R

(1
6)

R
(1

6)
⊕

R
(1

6)

2
R

(2
)

R
(2

)
⊕

R
(2

)
R

(4
)

C
(4

)
H

(4
)

H
(4

)
⊕

H
(4

)
H

(8
)

C
(1

6)
R

(3
2)

3
C

(2
)

R
(4

)
R

(4
)
⊕

R
(4

)
R

(8
)

C
(8

)
H

(8
)

H
(8

)
⊕

H
(8

)
H

(1
6)

C
(3

2)

4
H

(2
)

C
(4

)
R

(8
)

R
(8

)
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R
(8

)
R

(1
6)

C
(1

6)
H

(1
6)

H
(1

6)
⊕

H
(1

6)
H

(3
2)

5
H

(2
)
⊕

H
(2

)
H

(4
)

C
(8

)
R

(1
6)

R
(1

6)
⊕

R
(1

6)
R

(3
2)

C
(3

2)
H

(3
2)

H
(3

2)
⊕

H
(3

2)

6
H
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)

H
(4

)
⊕

H
(4

)
H

(8
)

C
(1

6)
R

(3
2)

R
(3

2)
⊕

R
(3

2)
R

(6
4)

C
(6

4)
H

(6
4)

7
C

(8
)

H
(8

)
H

(8
)
⊕

H
(8

)
H

(1
6)

C
(3

2)
R

(6
4)

R
(6

4)
⊕

R
(6

4)
R

(2
18

)
C

(1
28

)

8
R

(1
6)

C
(1

6)
H

(1
6)

H
(1

6)
⊕

H
(1

6)
H

(3
2)

C
(6

4)
R

(1
28

)
R

(1
28

)
⊕

R
(1

28
)

R
(2

56
)

Table 3.1: This table describes all of the Cli�ord algebras Cl(a, b) for a and b between 0
and 8, both included. It is to be noted that, as usual, a varies in columns while b varies
in rows.
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3.3 Representations of Cli�ord algebras

In this section, we expose some facts on the representation theory for Cli�ord

algebras. Interestingly, we have that most of these facts are direct consequences of

the classi�cation theorems that we have set in the preceding section. In particular,

we establish the important notion of Cli�ord multiplication. We begin with the following

de�nition.

De�nition 3.28 (Representation of a Cli�ord algebra and Cli�ord multiplication). Let

(V , q) be an object in VectQF. A representation of the Cli�ord algebra Cl(V , q) is an

algebra homomorphism

ρ : Cl(V , q) → End(W ),

where End(W ) denotes the algebra of linear transformations of a �nite-dimensional

vector space W . The space W is then a Cl(V , q)-module. We simplify notation by writing

η · w := ρ(η)(w) (3.12)

for all w ∈ W and all η ∈ Cl(V , q). The product de�ned in Equation (3.12) is referred to

as Cli�ord multiplication. ♦

De�nition 3.29 (Reducible and irreducible representations of a Cli�ord algebra). Let

(V , q) be an object in VectQF and ρ : Cl(V , q) → End(W ) be a representation of the

Cli�ord algebra Cl(V , q). We say that ρ is reducible if W can be written as a nontrivial

direct sum

W = W1 ⊕ W2

such that

ρ(η)(W1) ⊆ W1 and ρ(η)(W2) ⊆ W2

for all η ∈ Cl(V , q). In this situation, we have a decomposition of the representation

given by

ρ = ρ |W1 ⊕ ρ |W2 ,

where

ρ |Wi (η) := ρ(η) |Wi
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for all η ∈ Cl(V , q) and all i ∈ {1, 2}. In turn, we say that ρ is irreducible if it

is not reducible. In other words, ρ is said to be irreducible if it does not admit proper

invariant subspaces. ♦

Theorem 3.30 (Irreducible representations play a fundamental role). Let (V , q) be

an object in VectQF. Every representation ρ : Cl(V , q) → End(W ) of Cl(V , q) can be

decomposed into a direct sum

ρ =
m⊕
i=1

ρi : Cl(V , q)→ End(Wi)

where ρi is an irreducible representation of Cl(V , q) for each i between 1 and m,

both included.

Proof. We only have to prove the statement if ρ is reducible. In this situation, as we

have seen in De�nition 3.29, ρ can be decomposed into a direct sum ρ = ρ1 ⊕ ρ2.

If either ρ1 or ρ2 are reducible, then ρ can be further decomposed. The essential fact

is that this process must stop because W is a �nite-dimensional Cl(V , q)-module. This

�nishes the proof of the theorem.

De�nition 3.31 (Equivalence of representations of a Cli�ord algebra). Let (V , q) be an

object in VectQF. Two representations

ρ1 : Cl(V , q)→ End(W1) and ρ2 : Cl(V , q)→ End(W2)

of Cl(V , q) are said to be equivalent if there exists a linear isomorphism F : W1 → W2

such that the diagram

W1 W1

W2 W2

ρ1(η)

F F

ρ2(η)

is commutative for all η ∈ Cl(V , q). This de�nes an equivalence relation on the set of

representations of Cl(V , q). ♦
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Remark 3.32 (Irreducible representations of the Cli�ord algebras). From Section 3.2,

we have that every Cli�ord algebra Cl(a, b) is of the form K(2m) or K(2m) ⊕ K(2m)

for K = R, C or H. The representation theory of such algebras is particularly simple.

Indeed, one can prove that:

� the natural representation

ρ2m : K(2m) → End(K2m)

given by

ρ2m(A)(v) := Av

for all v ∈ K2m, is the only irreducible representation of the matrix algebra K(2m)

up to equivalence; and

� the algebra K(2m) ⊕ K(2m) has two inequivalent irreducible representations up

to equivalence, which are

ρ1
2m : K(2m)⊕K(2m) → End(K2m),

(A, B) 7→ ρ2m(A),

and

ρ2
2m : K(2m)⊕K(2m) → End(K2m),

(A, B) 7→ ρ2m(B). ♦

Theorem 3.33 (Number of inequivalent irreducible representations of a Cli�ord algebra).

We have the following facts.

� Let a and b be natural numbers. In addition, let νa,b be the number of inequivalent

irreducible representations of the Cli�ord algebra Cl(a, b). Whenever b is equal to

zero, for convenience, we shall write νa instead of νa,0. Under these conditions, we

have

νa,b =

2 if a− b ≡ 3 (mod 4),

1 otherwise.
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� Let n be a natural number. In addition, let ν C
n be the number of inequivalent

irreducible representations of the Cli�ord algebra Cl(n). Under these circumstances,

we have

ν C
n =

2 if n is odd,

1 if n is even.

Proof. This result is an immediate consequence of the classi�cation of Cli�ord algebras

shown in Section 3.2.

Theorem 3.34 (More information on some Cli�ord algebras). Let n be a natural number.

In addition, let:

� dn be the dimension of any irreducible Cl(n)-module;

� dC
n be the dimension of any irreducible Cl(n)-module;

� Mn be the Grothendieck group of equivalence classes of irreducible representations

of the Cli�ord algebra Cl(n); and

� MC
n be the Grothendieck group of equivalence classes of irreducible representations

of the Cli�ord algebra Cl(n).

For n between 1 and 8, both included, the elements νn, ν C
n , dn, d

C
n , Mn and MC

n are

as in Table 3.2.

n Cl(n) νn dn Mn Cl(n) ν C
n dC

n MC
n

1 C 1 2 Z C⊕ C 2 1 Z⊕ Z
2 H 1 4 Z C(2) 1 2 Z
3 H⊕H 2 4 Z⊕ Z C(2)⊕ C(2) 2 2 Z⊕ Z
4 H(2) 1 8 Z C(4) 1 4 Z
5 C(4) 1 8 Z C(4)⊕ C(4) 2 4 Z⊕ Z
6 R(8) 1 8 Z C(8) 1 8 Z
7 R(8)⊕ R(8) 2 8 Z⊕ Z C(8)⊕ C(8) 2 8 Z⊕ Z
8 R(16) 1 16 Z C(16) 1 16 Z

Table 3.2: This table contains the Cli�ord algebras Cl(n) and Cl(n) as well as the elements
νn, ν C

n , dn, d
C
n , Mn and MC

n for n between 1 and 8, both included.
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Furthermore, for n greater than 8, these elements can be easily computed from

νm+8k = νm

ν C
m+2k = ν C

m

dm+8k = 24kdm

dC
m+2k = 2kdCm

Mm+8k ' Mm

MC
m+2k ' MC

m,

where m and k are nonzero natural numbers.

Proof. This result is an immediate consequence of Corollary 3.24 and Theorem 3.27.

We leave the details to the reader.

Remark 3.35 (On an object de�ned in the preceding theorem). Let n be a natural

number and Mn be the set of equivalence classes of irreducible representations of Cl(n).

In the preceding theorem, we de�ned Mn to be the Grothendieck group of Mn. We have

the following facts.

� The binary operation on Mn is the direct sum. More explicitly, if [ρ], [σ] ∈ Mn,

then

[ρ] ⊕ [σ] := [ρ⊕ σ].

The reader can prove that this de�nition makes sense by showing that it does not

depend on any representing element.

� Two elements [[ρ]] and [[σ]] of Mn coincide if and only if there exists [θ] ∈ Mn

for which

[ρ⊕ θ] = [ρ]⊕ [θ] = [σ]⊕ [θ] = [σ ⊕ θ].

� Since any representation can be decomposed into a direct sum of irreducible ones

(Theorem 3.30), we have that it naturally corresponds to an element in Mn

(with positive coe�cients).

It is to be noted that, mutatis mutandis, the same observations hold true in the

complex case. ♦
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Remark 3.36 (Tensor product of irreducible representations). Let n be a natural number.

We have the following facts.

� The tensor product of irreducible representations of Cl(n) and Cl(8) gives an

irreducible representation of Cl(n+ 8) ' Cl(n)⊗ Cl(8).

� The tensor product of irreducible representations of Cl(n) and Cl(2) gives an

irreducible representation of Cl(n+ 2) ' Cl(n)⊗ Cl(2).

Nevertheless, in general, Cl(n) ⊗ Cl(m) and Cl(n) ⊗ Cl(m) are not Cli�ord algebras.

Hence, to �nd a multiplicative structure in the representations of Cli�ord algebras, we

consider Z2-graded modules. ♦

De�nition 3.37 (The category of Z2-graded modules for a Cli�ord algebra). Let n be a

natural number. We de�ne the category of Z2-graded Cl(n)-modules, and denote it

by Z2Modn, to be the category whose:

� objects are Z2-graded Cl(n)-modules (W ,W 0,W 1). More explicitly, we have that

an object is a Cl(n)-module W equipped with a decomposition W = W 0 ⊕W 1 such

that

Cl i(n) · W j ⊆ W i+j

for i, j ∈ Z2; and

� morphisms are Cl(n)-module homomorphisms ϕ : W1 → W2 for which ϕ(W 0
1 ) ⊆ W 0

2

and ϕ(W 1
1 ) ⊆ W 1

2 , which are usually denoted by ϕ : (W1,W 0
1 ,W

1
1 )→ (W2,W 0

2 ,W
1

2 ),

as expected.

Note that, mutatis mutandis, we can de�ne the category of Z2-graded Cl(n)-modules

Z2Mod C
n . ♦

Theorem 3.38 (An equivalence of categories involving Z2Modn). Let n be a natural

number and Modn−1 be the category of Cl(n − 1)-modules. There exists an equivalence

between Z2Modn and Modn−1. The same is true considering the categories Z2Mod C
n

and Mod C
n−1.



3. Spin Geometry and Ordinary K-Theory 180

Proof. Let (W ,W 0,W 1) be an object in Z2Modn. It is immediate to see that W 0 is a

Cl0(n)-module. Therefore, since one can prove that Cl0(n) is canonically isomorphic

to Cl(n − 1), it follows that W 0 is a Cl(n − 1)-module. Thence, it makes all sense

to de�ne

Φ : Z2Modn → Modn−1,

(W ,W 0,W 1) 7→ W 0,

ϕ : (W1,W
0

1 ,W
1

1 )→ (W2,W
0

2 ,W
1

2 ) 7→ ϕ |W 0
1

: W 0
1 → W 0

2 .

Moreover, we de�ne

Ψ : Modn−1 → Z2Modn,

W 7→ (Cl(n)⊗Cl0(n) W , Cl0(n)⊗Cl0(n) W , Cl1(n)⊗Cl0(n) W ),

ϕ 7→ idCl(n) ⊗Cl0(n) ϕ.

The reader can readily prove that Φ and Ψ are equivalences of categories inverse to

each other.

Remark 3.39 (The Z2-graded tensor product). Let n and m be natural numbers. In

addition, let (W1,W 0
1 ,W

1
1 ) be an object in Z2Modn and (W2,W 0

2 ,W
1

2 ) be an object in

Z2Modm. We set

W1 ⊗̂ W2 := (W1 ⊗W2, W 0
1 ⊗W 0

2 + W 1
1 ⊗W 1

2 , W 0
1 ⊗W 1

2 + W 1
1 ⊗W 0

2 ),

which is an object in Z2Modn+m with respect to the action of Cl(n) ⊗̂Cl(m) on W1 ⊗W2

given by

(w1 ⊗ w2) · (w3 ⊗ w4) := (−1)deg(w2) deg(w3)(w1w3)⊗ (w2w4).

Here the degree of an element is the obvious one induced by the decompositions of W1

and W2. We left implicit the canonical isomorphism between Cl(n) ⊗̂Cl(m) and

Cl(n + m). Once and again, all of these notions are still true considering the complex

framework. ♦

Theorem 3.40 (Another Grothendieck group in the context of Cli�ord algebras). Let n

and m be natural numbers. In analogy with the groups Mn and MC
n de�ned in
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the statement of Theorem 3.34, we de�ne M̂n and M̂C
n to be the Grothendieck groups

of Z2-graded Cl(n)-modules and Cl(n)-modules, respectively. Because of Theorem 3.38,

we have

M̂n ' Mn−1 and M̂C
n ' MC

n−1. (3.13)

Moreover, we have natural pairings

M̂n ⊗Z M̂m → M̂n+m

M̂C
n ⊗Z M̂C

m → M̂C
n+m

induced by the Z2-graded tensor product. We have that these pairings are associative.

Thus,

M̂ :=
⊕
i∈N

M̂i and M̂C :=
⊕
i∈N

M̂C
i

have the structure of graded rings.

Proof. This result is an immediate consequence of Theorem 3.38 and Remark 3.39. We

leave the details to the reader.

3.4 The Atiyah-Bott-Shapiro Theorem

In this section, we present the Atiyah-Bott-Shapiro Theorem. This result was

originally proved in [3]. In our text, it will be mainly considered when we study

the Thom isomorphisms in K-Theory. Roughly speaking, the theorem in question will

ensure us the existence of Thom classes. We begin with the theorem itself, although

its statement does not make sense at a �rst glance, and then we explain the ideas that

are behind it. For a complete proof, we recommend to the reader the original reference

mentioned above.

Theorem 3.41 (The Atiyah-Bott-Shapiro Theorem). Let Ω be a one-point space. We

de�ne

K−∗(Ω) :=
⊕
i∈N

K(Di, Si−1)

where Di and Si−1 are the closed unit disc and sphere in Ri, respectively. There exists

a graded ring homomorphism
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ϕ : M̂C/τ(M̂C) → K−∗(Ω).

Note that, mutatis mutandis, we obtain a graded ring homomorphism involving the

real K-Theory.

Proof. Let n be a natural number. Here we use the notations of Section 2.9. For each

(W ,W 0,W 1) ∈ Z2ModC
n , we de�ne

ϕn(W ,W 0,W 1) := [Dn ×W 0, Dn ×W 1, µn] ∈ K(Dn, Sn−1),

where

µn : Sn ×W 0 → Sn ×W 1,

(x, w) 7→ (x, x · w).

We have that the map

Z2ModC
n → K(Dn, Sn−1),

(W ,W 0,W 1) 7→ ϕn(W ,W 0,W 1),

is an additive homomorphism. Moreover, we have that ϕn(W ,W 0,W 1) depends only

on the isomorphism class of the Z2-graded Cl(n)-module (W ,W 0,W 1). Therefore, we

obtain a homomorphism

M̂C
n → K(Dn, Sn−1),

[W ,W 0,W 1] 7→ ϕn(W ,W 0,W 1).

Now, we consider

in : Rn → Rn+1,

(x1, · · · , xn) 7→ (x1, · · · , xn, 0),

to be the natural inclusion. By Remark 3.8, this map induces a homomorphism of

algebras Cl(n) → Cl(n + 1). Restricting the action from Cl(n + 1) to Cl(n) thereby

induces a homomorphism τn : M̂C
n+1 → M̂C

n . Thence, suppose that (W ,W 0,W 1) is a

Z2-graded Cl(n)-module which can be obtained from a Cl(n + 1)-module in the above

fashion. This means that the Cli�ord multiplications of Rn on W extends to all of Rn+1.

As a consequence, if we set
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α : Dn → [0, 1],

x 7→
√

1− |x|2,

then we may extend the isomorphism µn to all of Dn by setting

µ̄n : Dn ×W 0 → Dn ×W 1,

(x, w) 7→ (x, x · w + α(x)en+1 · w),

where en+1 is a unit vector orthogonal to Rn. Since µ̄n is an isomorphism, ϕn(W ,W 0,W 1)

must be zero. Therefore, the map M̂C
n → K(Dn, Sn−1) de�ned above descends to a

homomorphism

ϕn : M̂C
n /τn(M̂C

n+1) → K(Dn, Sn−1).

The second isomorphism in (3.13) ensures that

M̂C
n /τn(M̂C

n+1) ' MC
n−1/τn(MC

n ).

Further, algebraic arguments show that

MC
n−1/τn(MC

n ) =

0 if n is odd,

Z if n is even.

Finally, we clarify the graded ring structures mentioned in the statement. Because of

Theorem 3.40,

M̂C/τ(M̂C) :=
⊕
i∈N

M̂C
i /τi(M̂

C
i+1)

is a graded ring. Moreover, since

K(Dn, Sn−1) ' K̃(Sn) ' K−n(Ω),

K−∗(Ω) is also a graded ring. Finally, note that the map ϕ : M̂C/τ(M̂C) → K−∗(Ω)

in de�ned by ⊕
i∈N

ϕi : M̂C
i /τi(M̂

C
i+1) → K(Di, Si−1) ' K−i(Ω).

This �nishes our exposition.
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3.5 Pin and Spin groups

In this section, we present the notion that obliged us to develop the preceding

study on Cli�ord algebras, namely, the Pin and Spin groups. These mathematical

objects are of fundamental importance in this chapter. In fact, they are not only used in

the study of spin and spinc structures, but they are also applied in the study of Thom

isomorphisms in K-Theory to ensure the existence of Thom classes. We begin with the

following de�nition.

De�nition 3.42 (Group of units of a Cli�ord algebra). Let (V , q) be an object in VectQF.

We de�ne

Cl×(V , q) := {η ∈ Cl(V , q) : ηη−1 = η−1η = 1 for some η−1 ∈ Cl(V , q)}.

This group is said to be the multiplicative group of units in the Cli�ord algebra

Cl(V , q). ♦

Remark 3.43 (Examples of elements in the multiplicative group of units of a Cli�ord

algebra). Let (V , q) be an object in VectQF. We de�ne

V ×
q := {v ∈ V : q(v) is not zero}.

We have that V ×
q is contained in the multiplicative group of units Cl×(V , q). Indeed,

if v ∈ V ×
q , then

v−1 = − v

q(v)
.

In particular, if the symmetric bilinear form is an inner product, then every non-zero

vector in V is an element in Cl×(V , q). ♦

Theorem 3.44 (The adjoint representation). Let (V , q) be an object in VectQF. In

addition, let GLCl(V , q) be the group of automorphisms of Cl(V , q). The adjoint

representation of Cl(V , q) is

Ad : Cl×(V , q) → GLCl(V , q),

η 7→ Adη,
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where

Adη(x) := ηxη−1

for all x ∈ Cl(V , q). We have

Adv(V ) = V

for all v ∈ V ×
q . In fact, the reader can readily prove that this equality follows from

the fact that

−Adv(w) = w − 2
sq(v, w)

q(v)
v (3.14)

for all w ∈ V .

Proof. Being v ∈ V ×
q , we only have to prove that Equation (3.14) holds for all w ∈ V .

Indeed, since

v−1 = − v

q(v)
,

it follows from Equation (3.1) that

q(v)Adv(w) = q(v)vwv−1 = v2w + 2 sq(v, w) v = −q(v)w + 2 sq(v, w) v,

as we wished.

Remark 3.45 (Consequences of the preceding result). Let (V , q) be an object in VectQF.

We are lead by Theorem 3.44 to consider the subgroup of elements η ∈ Cl×(V , q) for

which

Adη(V ) = V .

We have that V ×
q is contained in such a subgroup because of Theorem 3.44. Moreover,

if v ∈ V ×
q , then it follows from Equation (3.14) that

(q ◦ Adv)(w) = q(w)

for all w ∈ V . Under these circumstances, we de�ne P(V , q) to be the subgroup of

the multiplicative group of units Cl×(V , q) generated by the elements of V ×
q . More

explicitly, we have that an element of P(V , q) is a product v1 · · · vr ∈ Cl(V , q) such

that v1, · · · , vr ∈ V ×
q . Further,
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Ad : P(V , q) → O(V , q)

is a representation, where

O(V , q) := {ϕ ∈ GL(V ) : q ◦ ϕ = q}

is the orthogonal group of (V , q). The following de�nition presents the most important

subgroups of P(V , q). ♦

De�nition 3.46 (The Pin and Spin groups). Let (V , q) be an object in VectQF. We

give the following de�nitions.

� The Pin group of (V , q) is the subgroup Pin(V , q) of P(V , q) generated by the

elements v ∈ V for which

q(v) = 1 or q(v) = −1.

� The Spin group of (V , q) is the subgroup Spin(V , q) of Pin(V , q) de�ned as the

group intersection

Spin(V , q) := Pin(V , q) ∩ Cl 0(V , q).

More explicitly, we have that an element of Pin(V , q) is a product v1 · · · vr ∈ P(V , q) in

such manner that q(vi) = 1 or q(vi) = −1 for all i between 1 and r, both included.

In addition, an element of Spin(V , q) is a product v1 · · · vr ∈ Pin(V , q) such that r is

an even number. ♦

Remark 3.47 (The twisted adjoint representation). Let (V , q) be an object in VectQF.

The right-hand side of Equation (3.14) coincides with the map ρv : V → V given by the

re�ection across the hyperplane

v⊥ := {w ∈ V : sq(v, w) = 0}.

We have that ρv �xes v⊥ and maps v into −v. Unfortunately, there is a minus sign on

the left-hand side of Equation (3.14). This defect can be removed considering the twisted

adjoint representation
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Ãd : Cl×(V , q) → GLCl(V , q),

η 7→ Ãdη,

where

Ãdη(x) := τ(η)xη−1

for all x ∈ Cl(V , q). In the preceding formula, τ : Cl(V , q) → Cl(V , q) is the unique

extension of the linear map α : V → V de�ned in Remark 3.15. The reader can readily

prove that

� If η, θ ∈ Cl×(V , q), then

Ãdηθ = Ãdη ◦ Ãdθ.

� if η ∈ Cl×(V , q) ∩ Cl 0(V , q), then

Ãdη = Adη.

Furthermore, if v ∈ V ×
q , then

Ãdv(w) = w − 2
sq(v, w)

q(v)
v (3.15)

for all w ∈ V . This is an immediate consequence of Equation (3.14) since, for all v ∈ V ,

we have

τ(v) = α(v) = −v.

Under these conditions, we de�ne the subgroup of Cl×(V , q)

P̃(V , q) := {η ∈ Cl×(V , q) : Ãdη(V ) = V }(1).

Note that P(V , q) ⊆ P̃(V , q) ⊆ Cl×(V , q) because of Theorem 3.44. In [23, p. 16], it is

proved that Ãdη : V → V preserves the quadratic form q for every η ∈ P̃(V , q). As a

consequence, we have a homomorphism

Ãd : P̃(V , q) → O(V , q).

(1)One can prove that P̃(V , q) is not so di�erent from P(V , q). In fact, either P̃(V , q) = P(V , q) or the

quotient of P̃(V , q) by P(V , q) is isomorphic to Z2.
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In particular, we obtain a homomorphism

Ãd : P(V , q) → O(V , q)

such that

Ãd v1 ··· vr = ρv1 ◦ · · · ◦ ρvr , (3.16)

where ρvi is the re�ection across v⊥i for all i between 1 and r, both included. Thus,

the image of P(V , q) under Ãd is the subgroup of O(V , q) generated by the re�ections.

Hence, because of the Cartan-Dieudonné Theorem, the image of P(V , q) under Ãd is the

whole O(V , q). ♦

Theorem 3.48 (The special orthogonal group). Let (V , q) be an object in VectQF.

We de�ne

SP(V , q) := P(V , q) ∩ Cl 0(V , q).

More explicitly, an element of SP(V , q) is a product v1 · · · vr ∈ P(V , q) such that r

is an even number. Moreover, since V is �nite-dimensional, we de�ne the special

orthogonal group of (V , q)

SO(V , q) := {ϕ ∈ O(V , q) : det(ϕ) = 1}.

We have that

Ãd : SP(V , q) → SO(V , q)

is surjective.

Proof. Initially, note that

det(ρv) = −1

for all v ∈ V − {0}. In order to prove this claim, let {v1, · · · , vdim(V )} be a basis

for V in such manner that v1 = v and sq(v, vi) = 0 for i between 2 and dim(V ),

both included(2). Therefore, by de�nition of the re�ection ρv, we have ρv(v1) = −v1

(2)The existence of such a basis is easily proved. Indeed, since v is a nonzero vector in V , we can
�nd dim(V ) − 1 vectors in V that, together with v, form a basis for V . Then, applying the usual
Gram-Schmidt Process, we can turn these dim(V ) vectors into new vectors that are q-orthogonal, keeping
v intact, as desired.
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and ρ(vi) = vi for all i between 2 and dim(V ), both included. As a consequence,

we have det(ρv) = −1, as claimed. Hence, because of the Cartan-Dieudonné Theorem,

we have

SO(V , q) = {ρv1 ◦ · · · ◦ ρvr : vi ∈ V ×
q and r is even}.

Thence, Ãd : SP(V , q) → SO(V , q) is surjective because of Equation (3.16). This

�nishes the proof of the theorem.

Remark 3.49 (On the preceding result). Let (V , q) be an object in VectQF. In light

of Remark 3.47 and Theorem 3.48, it is natural to ask whether the homomorphism

Ãd : P(V , q) → O(V , q) restricted to Pin(V , q) and Spin(V , q) maps onto O(V , q)

and SO(V , q), respectively. In fact, it seems likely since, at a �rst glance, we have the

equality

ρtv = ρv

for all t ∈ K − {0}. Therefore, we have that one should be able to normalize any

v ∈ V ×
q to have q-length equal to 1 or −1. Of course, since q is quadratic, we have

the equation

q(tv) = t2 q(v).

Clearly, at least one of the equations

t2 =
1

q(v)
and t2 = − 1

q(v)

are solvable in K(3). This is the main property used in the proof of the following theorem,

which is the principal result of this section. ♦

Theorem 3.50 (The twisted adjoint representation restricted to the Pin and Spin groups).

Let (V , q) be an object in VectQF. If q is non-degenerate, then there exist short exact

sequences

0 Ω Pin(V , q) O(V , q) 0Ãd

(3)Note that both equations are well-de�ned since q(v) is not zero because v ∈ V ×q . Thence, if K is
the �eld of complex numbers, then both equations are solvable. In turn, if K is the �eld of real numbers,
then only one of them is solvable.
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and

0 Ω Spin(V , q) SO(V , q) 0Ãd

where

Ω =

Z2 = {1,−1} if K = R,

Z4 = {1,−1, i,−i} if K = C.

Proof. The �rst two maps of the preceding sequences are inclusions. Thus, in order to

prove exactness, we just have to show that:

� Ω is the kernel of Ãd. Indeed, if η ∈ Pin(V , q) is in the kernel of Ãd, then it

is proved in [23, p. 19] that η2 = 1 or η2 = −1. This establishes the kernel of

Ãd in both cases, as above.

� Ãd is surjective. This claim follows immediately from Remark 3.49 because of the

Cartan-Dieudonné Theorem.

This �nishes the proof of the theorem.

In order to close this section, we examine the real case of Pin and Spin groups

in more detail. This is done because the information that is needed in the next

sections are mainly obtained from the real Spin groups. We begin with the following

de�nition.

De�nition 3.51 (The groups of the Euclidean space equipped with the canonical real

quadratic forms). Let n be a natural number. For each natural numbers a and b such that

n = a+ b, we de�ne

O(a, b) := O(Rn, qna,b)

SO(a, b) := SO(Rn, qna,b)

Pin(a, b) := Pin(Rn, qna,b)

Spin(a, b) := Spin(Rn, qna,b)

P(a, b) := P(Rn, qna,b)

P̃(a, b) := P̃(Rn, qna,b).
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Here qna,b : Rn → R is the canonical real quadratic form presented in De�nition 3.17.

For convenience, we denote O(n, 0) ' O(0, n) simply by O(n), and SO(n, 0) ' SO(0, n)

simply by SO(n). Finally, it is to be noted that, since we have the equality qna,b = −qnb,a,

P(a, b) = P̃(a, b). ♦

Lemma 3.52 (The fundamental group of the special orthogonal groups). We have the

following facts.

(1) The fundamental group of SO(1) is trivial.

(2) The fundamental group of SO(2) is isomorphic to Z.

(3) The fundamental group of SO(n) is isomorphic to Z2 for all n ∈ N− {0, 1, 2}.

Proof. Indeed:

(1) we have that SO(1) is the trivial group. Thus, it is clear that its fundamental

group is also trivial.

(2) we have that SO(2) is homeomorphic to the unit circle S1. Thus, it is clear that

its fundamental group is isomorphic to Z.

(3) we consider the �bration π : SO(n + 1) → Sn with �ber SO(n) de�ned as follows.

Let us �x a point in Sn, for example, en+1 ∈ Rn+1. For each A ∈ SO(n + 1),

we de�ne

π(A) := Aen+1 ∈ Sn.

The map π is surjective since SO(n + 1) acts transitively on Sn(4). Moreover,

let u ∈ Sn and A ∈ SO(n + 1) be such that Aen+1 = u. We have that the

elements of π−1(u) are of the form A′ = RA, where R is a rotation that

�xes en+1. Hence, R ∈ SO(n). Evidently, this proves that the �ber over u is

(4)In order to prove that SO(n+ 1) acts transitively on Sn, it su�ces to show that, for each u, v ∈ Sn,
there exists A ∈ SO(n + 1) such that Au = v. This is a simple task to be done. Indeed, we can choose
n vectors in Rn+1 that, together with u, form a basis A for Rn+1. Analogously, we can �nd n vectors
in Rn+1 that, together with v, form a basis B for Rn+1. These bases can be taken orthonormal because,
if it is not the case, then we can apply the Gram-Schmidt Process in order to ensure the property in
question. Moreover, we have that A and B can be taken positively-oriented with their �rst elements
being u and v, respectively. Therefore, the automorphism A of Rn+1 that sends A into B is the desired
element of SO(n+ 1).
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di�eomorphic to SO(n) for all u ∈ Sn. Finally, note that π is locally trivial.

Indeed, if U is an open neighborhood of u, then there exists a smooth function

A : U → SO(n+ 1) such that

A(x)(en+1) = x

for all x ∈ U . Thence, an element of π−1(x) has the form A′(x) = RA(x), where

R ∈ SO(n). This produces the local chart

ϕ : π−1(U) → U × SO(n),

RA(x) 7→ (x, R).

As a consequence, we can consider the long exact sequence in homotopy that is

associated to the �bration π : SO(n + 1) → Sn. This sequence contains the exact

sequence

0 = π2(Sn) π1SO(n) π1SO(n+ 1) π1(Sn) = 0.

This proves that

π1SO(n) ' π1SO(n+ 1).

Thus, we only have to calculate the fundamental group of SO(3). In fact, we

have π1SO(3) ' Z2. In order to prove this, let Ru,θ denote the rotation around

the axis u ∈ R3 of angle θ ∈ [0, 2π], according to the right-hand rule. In addition,

let D3 be the closed unit disc in R3. Thence, being | · | : R3 → [0,∞) the usual

Euclidean norm, we de�ne

Φ : D3 → SO(3),

v 7→

idR3 if v = 0,

Rv, π|v| otherwise.

The reader can readily prove that Φ is continuous. Moreover, it is surjective since

any rotation can be achieved by �xing an axis and a rotation angle. Further,

we have that Φ |D3−S2 : D3 − S2 → SO(3) is injective. Indeed, if u, v ∈ D3 − S2,

then:
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• if u and v form a linearly independent family in R3, then Φ(u) is di�erent

from Φ(v) since these rotations have di�erent axes; and

• if u = λv, then Φ(u) is di�erent from Φ(v) since these rotations have

di�erent rotation angles. In fact, the rotation angles are the same only if

λ = 1, which implies u = v.

In turn, if v ∈ S2, then

Φ(v) = Φ(−v).

More precisely, given distinct vectors u, v ∈ D3, we have that Φ(u) = Φ(v) if and

only if u, v ∈ S2 and u = −v. Because of that, Φ projects to a homeomorphism

between the real projective space RP3 and SO(3). As a consequence, it follows

that π1SO(3) is isomorphic to π1(RP3). Luckily, it is a well-know fact that π1(RP3)

is isomorphic to Z2.

This �nishes the proof of the lemma.

Remark 3.53 (Important consequences of the preceding lemma). In Lemma 3.52,

we have seen that π1SO(2) ' Z and π1SO(n) ' Z2 for all natural number n greater

than 2. Therefore, there exists a unique nontrivial two-sheeted covering of SO(n) for

all n ∈ N − {0, 1}. Furthermore, this two-sheeted covering is the universal covering for

all n greater than 2. The map z 7→ z2 is the nontrivial two-sheeted covering of SO(2).

The other cases are treated by the following result, which is the main theorem in the real

case of Pin and Spin groups. ♦

Theorem 3.54 (The Pin and Spin groups and two-sheeted coverings of the orthogonal

group and of the special orthogonal group). Let n be a natural number. For each natural

numbers a and b in such manner that n = a + b, we have that there exist short exact

sequences

0 Z2 Pin(a, b) O(a, b) 0Ãd

and

0 Z2 Spin(a, b) SO(a, b) 0Ãd
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Furthermore, if a and b are not both equal to 1, then these two-sheeted coverings

are nontrivial over each connected component of O(a, b). In particular, in the special

case

0 Z2 Spin(n) SO(n) 0,Ãd

we have that the map Ãd represents the universal covering homomorphism of SO(n)

for all n ∈ N− {0, 1, 2}.

Proof. The short exact sequences in the statement are consequences of Theorem 3.50.

In turn, in order to prove that the two-sheeted coverings are nontrivial, it su�ces to

join 1 and −1 by a continuous path in Spin(a, b). In fact, since a and b are not both

equal to 1, there exist orthogonal vectors u, v ∈ Rn such that qna,b(u) = qna,b(v) = 1 or

qna,b(u) = qna,b(v) = −1. We set

γ : [0, 1] → Spin(a, b),

t 7→
[
u cos

(
πt

2

)
+ v sin

(
πt

2

)][
v sin

(
πt

2

)
− u cos

(
πt

2

)]
.

As a consequence:

� if qna,b(u) = qna,b(v) = 1, then

γ(0) = −u2 = qna,b(u) · 1 = 1

and

γ(1) = v2 = −qna,b(v) · 1 = −1;

� if qna,b(u) = qna,b(v) = −1, then

γ(0) = −u2 = qna,b(u) · 1 = −1

and

γ(1) = v2 = −qna,b(v) · 1 = 1.

This �nishes the proof of the theorem.
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3.6 Spin structures

In this section, we start the process of using the algebraic notions presented

in this chapter to study the geometry of vector bundles. In fact, we establish

a fundamental notion to study the Thom isomorphisms, namely, the spin structures

of oriented Euclidean vector bundles. We begin by remembering some ideas with the

following remark.

Remark 3.55 (On real vector bundles). Let π : E → X be a real vector bundle with

typical �ber V . We remind the reader of the following notions.

� We say that E is an Euclidean vector bundle if it is equipped with an inner

product

〈 , 〉 : E ⊕ E → R,

which is a continuous function that restricts in each �ber to an inner product.

Because of Theorem C.49, it is always possible to turn a real vector bundle into

an Euclidean vector bundle.

� We say that E is orientable if it can be equipped with an orientation. If it is

equipped with an orientation, then we say that E is oriented. In turn, in order

to de�ne an orientation of E, let Ox be an orientation of Ex = π−1(x) for

each x ∈ X. Thence,

O := {Ox}x∈X

is said to be an orientation of E provided that, for a �xed orientation of V and

for each x ∈ X, there exists a local chart (Ux, ϕx) of E in x such that the

linear isomorphism ϕx |Ey : Ey → {y} × V is orientation preserving for all

y ∈ Ux. Finally, we have that E is orientable if and only if it admits an oriented

atlas. An oriented atlas ΦU = {(Ui, ϕi)}i∈I of E is an atlas for which the transition

functions ϕij : Uij → GL(V ) are such that detϕij(x) is positive for all x ∈ Uij

and all i, j ∈ I. It is not always possible to equip E with an orientation. For

example, a line bundle is orientable if and only if it is trivial. The following

result establishes a necessary and su�cient condition for the orientability of a

vector bundle. ♦
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Notation 3.56 (On �ech cohomology). Hereafter, we use the notation and the

ideas of �ech cohomology that are established in [9, pp. 37-47]. Since the subject in

question is widely known and [9] gives a fairly complete and didactic approach for it,

we do not elaborate our own details about this topic. Instead, we focus on its applications

to our context. ♦

Lemma 3.57 (Orientability of vector bundles). Let π : E → X be a real vector bundle

with typical �ber V . We assume that there exists an atlas ΦU = {(Ui, ϕi)}i∈I such that

Uij is connected for all i, j ∈ I. Being {ϕij : Uij → GL(V )}i,j∈I the set of transition

functions of ΦU, we de�ne

εij := sgn(detϕij) =

 1 if detϕij > 0,

−1 if detϕij < 0.

We set

ω1(E) := [{εij}i,j∈I ] ∈ Ȟ1(X; Z2).

This is the �rst Stiefel-Whitney class of E. We have that E is orientable if and

only if ω1(E) is trivial. In other words, the �rst Stiefel-Whitney class measures the

obstruction to orientability.

Proof. We remind the reader that GL(V ) has exactly two connected components,

which are

GL+(V ) := {ϕ ∈ GL(V ) : det(ϕ) > 0} and

GL−(V ) := {ψ ∈ GL(V ) : det(ψ) < 0}.

This ensures that εij is well-de�ned for all i, j ∈ I. Indeed, since Uij is connected and ϕij

is continuous, ϕij(Uij) ⊆ GL(V ) is connected. Therefore,

ϕij(Uij) ⊆ GL+(V ) or ϕij(Uij) ⊆ GL−(V ).

In both cases, we have that the sign of the determinant of ϕij is constant, as we wished.

Furthermore, we have that ω1(E) is well-de�ned in the �ech cohomology group Ȟ1(X;Z2)

because:
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� {εij}i,j∈I is a cocycle. In fact,

εijεjkεki = sgn(detϕij) sgn(detϕjk) sgn(detϕki)

= sgn(detϕijϕjkϕki)

= sgn(det idV )

= 1

for all i, j, k ∈ I. As a consequence, we obtain δ̌1{εij}i,j∈I = 1, which proves

our assertion.

� ω1(E) only depends on E. Indeed, let ΨU = {(Ui, ψi)}i∈I be another atlas of E

based on U. Being {ψij : Uij → GL(V )}i,j∈I the set of transition functions of ΨU,

we set ε′ij := sgn(detψij). We claim that

[{εij}i,j∈I ] = [{ε′ij}i,j∈I ] ∈ Ȟ1(X; Z2).

This happens because, since ΦU and ΨU are atlases of E based on the same open

cover U of X, we know that there exists a family {ηi : Ui → GL(V )}i∈I in such

manner that

(ψij)x = (ηj)x ◦ (ϕij)x ◦ (ηi)
−1
x

for all x ∈ Uij and all i, j ∈ I. Hence,

det(ψij)x = det(ηj)x det(ϕij)x det(ηi)
−1
x

for all x ∈ Uij and all i, j ∈ I. Consequently,

sgn(detψij) = sgn(det ηj) sgn(detϕij) sgn(det ηi)
−1

for all i, j ∈ I. In other words, if we set νi := sgn(det ηi) for all i ∈ I,

then we obtain ε′ij = νj εij ν
−1
i for all i, j ∈ I. Since {νi}i∈I ∈ Č0(U; Z2), we are

done here.

Finally, let us prove the last part of the statement. If E is orientable, then we can

choose an oriented atlas ΦU = {(Ui, ϕi)}i∈I with Uij being connected for all i, j ∈ I.

Thence, since
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εij = sgn(detϕij) = 1

for all i, j ∈ I, it follows that ω1(E) is trivial. Conversely, we assume that ω1(E) is

trivial. Let ΦU = {(Ui, ϕi)}i∈I be any atlas of E and ϕ : V → V be any orientation

reversing automorphism of V . Since ω1(E) is trivial, we have that there exists a family

{νi}i∈I ∈ Č0(U; Z2) for which εij = νjν
−1
i for all i, j ∈ I. Under these circumstances,

we set

ϕ′i :=

ϕi if νi = 1,

ϕi ◦ ϕ if νi = −1,

for each i ∈ I. The reader can prove that Φ′U := {(Ui, ϕ′i)}i∈I is an oriented atlas.

This �nishes the proof of the lemma.

Remark 3.58 (A class of orientable vector bundles). Let X be a simply connected

paracompact Hausdor� space. Every real vector bundle on X is orientable. This

happens because

H1(X, Z2) ' Hom(H1(X), Z2)

is trivial. In fact, since H1(X) is the abelianization of the fundamental group of X, which

is trivial once X is simply connected, Hom(H1(X), Z2) is trivial. Moreover, since X is

paracompact Hausdor�,

Ȟ1(X; Z2) ' H1(X, Z2).

Therefore, the �rst Stiefel-Whitney class of any real vector bundle can only be trivial.

Evidently, we are tacitly restricting the real vector bundles to the ones which admit an

atlas as in Lemma 3.57. ♦

De�nition 3.59 (Spin structure). Let π : E → X be an n-dimensional oriented

Euclidean vector bundle. In addition, let πSO : SO(E) → X be the SO(n)-principal

bundle of oriented orthonormal frames of E. We say that a spin structure

on E is a Spin(n)-principal bundle πSpin : Spin(E) → X equipped with a two-sheeted

covering ξ : Spin(E) → SO(E) such that, if pn : Spin(n) → SO(n) is the projection,

then (ξ, pn) is a morphism of principal bundles over X. In this situation, the following

diagram is commutative.
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Spin(E)× Spin(n) SO(E)× SO(n)

Spin(E) SO(E)

X

ξ× pn

· ·

ξ

πSpin πSO

♦

Remark 3.60 (On principal bundles). The notions of principal bundles that we have

invoked in the preceding de�nition can be found in Appendix F. The only one that

demands further commentaries is the SO(n)-principal bundle of oriented orthonormal

frames of E. Indeed, assuming π : E → X to be an n-dimensional oriented Euclidean

vector bundle, SO(E) can be described as follows. Let

{ϕij : Uij → SO(n)}i,j∈I

be the set of transition functions of an atlas ΦU of E. In addition, consider the disjoint

union

DU
SO(n) :=

⊔
i∈I

Ui × SO(n).

If x ∈ Uij and ϕ ∈ SO(n), then we denote by (x, ϕ)i the pair (x, ϕ) ∈ Ui × SO(n)

and by (x, ϕ)j the pair (x, ϕ) ∈ Uj × SO(n). We de�ne SO(E) as the quotient of

DU
SO(n) by the equivalence relation that identi�es (x, ϕ)i with (x, (ϕij)x ◦ ϕ)j for all

(x, ϕ) ∈ Uij × SO(n) and all i, j ∈ I. We have

πSO : SO(E) → X,

[(x, ϕ)i] 7→ x,

as well as the SO(n)-right action

· : SO(E)× SO(n) → SO(E),

([(x, ϕ)i], ψ) 7→ [(x, ϕ ◦ ψ)i].
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Apparently, SO(n) depends on the atlas ΦU of E. However, this is not the case since

SO(E) can be de�ned in an equivalent manner that does not depend on ΦU. In fact,

we can also de�ne SO(E) to be the SO(n)-principal bundle whose �bers are the sets of

orientation-preserving orthogonal maps. The reader may deduce the details by studying

the analogous ones that were developed about the frame bundle of a vector bundle in

Section F.7. ♦

De�nition 3.61 (Equivalence of spin structures). Let π : E → X be an n-dimensional

oriented Euclidean vector bundle. Two spin structures ξ : Spin(E) → SO(E) and

ξ′ : Spin′(E) → SO(E) on E are said to be equivalent if there exists an isomorphism

of Spin(n)-principal bundles ϕ : Spin(E) → Spin′(E) such that the following diagram

is commutative.

Spin(E) SO(E) Spin′(E)
ξ

ϕ

ξ′ ♦

Theorem 3.62 (Existence of spin structures). Let π : E → X be an n-dimensional

oriented Euclidean vector bundle. We have that there exists a spin structure on E if and

only if there exist:

(1) an atlas ΦU = {(Ui, ϕi)}i∈I where {ϕij : Uij → SO(n)}i,j∈I is its set of transition

functions; and

(2) a set of liftings of the transition functions {sij : Uij → Spin(n)}i,j∈I in such manner

that

ski|Uijk · sjk|Uijk · sij|Uijk = 1 (3.17)

for all i, j, k ∈ I. We remind the reader that sij being a lifting of ϕij means that the

following diagram is commutative.

Uij SO(n) Spin(n)ϕij

sij

pn
(3.18)
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Proof. If there exists a spin structure ξ : Spin(E) → SO(E) on E, then we consider

an atlas ΨU = {(Ui, si)}i∈I of πSpin : Spin(E) → X whose set of transition functions

is {sij : Uij → Spin(n)}i,j∈I . Evidently, Equation (3.17) is veri�ed since it involves

transition functions of a principal bundle. Moreover, we have that there exists an atlas

ΦU = {(Ui, ϕi)}i∈I of SO(E) whose transition functions ϕij : Uij → SO(E) verify the

commutativity of Diagram (3.18)(5). Conversely, we assume that Conditions (1) and (2)

of the statement are veri�ed. We know that ΦU determines an isomorphism between

SO(E) and the quotient of the disjoint union

⊔
i∈I

Ui × SO(n)

by the equivalence relation that identi�es (x, ϕ)i with (x, ϕij(x) ◦ ϕ)j for all x ∈ Uij

and all i, j ∈ I. This suggests how to construct a spin structure. Indeed, let Spin(E)

be the quotient of the disjoint union

⊔
i∈I

Ui × Spin(n)

by the equivalence relation that identi�es (x, s)i with (x, sij(x) · s)j for all x ∈ Uij and

all i, j ∈ I. We have that

ξ : Spin(E) → SO(E),

[(x, s)] 7→ [(x, pn(s))],

is a spin structure on E. The reader can prove this claim since Equation (3.17) ensures

that Spin(E) is a Spin(n)-principal bundle.

(5)Let πP : P → X and πQ : Q → X be principal bundles with structure groups G and H,
respectively. In addition, let (ϕ : P → Q, ρ : G → H) be a morphism of principal bundles over X
and ΦU = {(Ui, ϕi)}i∈I be an atlas of P de�ned by the local sections in {si : Ui → P}i∈I . The local
sections in

{ri := ϕ ◦ si : Ui → Q}i∈I
de�ne an atlas ΨU = {(Ui, ψi)}i∈I of Q. Moreover, if {ϕij : Uij → G}i∈I is the set of transition functions
of ΦU, then

{ψij := ρ ◦ ϕij : Uij → H}i∈I
is the set of transition functions of ΨU. The reader can prove this result by de�ning ψi : π−1Q (Ui)→ Ui×H,
ϕ ◦ si(x) · h 7→ (x, h). Furthermore, the reader can readily deduce the claim of the main text from
this theorem.
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Remark 3.63 (Local behavior of spin structures). Let X be a paracompact Hausdor�

space and π : E → X be an n-dimensional oriented Euclidean vector bundle. In

addition, let {ϕij : Uij → SO(n)}i,j∈I be the set of transition functions of an atlas

ΦU = {(Ui, ϕi)}i∈I of E. Up to a re�nement of ΦU, we can �nd a set of liftings for

the transition functions

{sij : Uij → Spin(n)}i,j∈I

such that pn ◦ sij = ϕij. Indeed, since X is paracompact Hausdor�, we can �nd a locally

�nite re�nement of ΦU. Thus, being x ∈ X, we consider Ui1 , · · · , Uim to be the elements

of U containing x. For each k and h between 1 and m, both included, we choose a

neighborhood Vkh of ϕikih(x) in SO(n) such that p−1
n (Vkh) is the disjoint union of two

open sets homeomorphic to Vkh. We set

Ux :=
m⋂

k,h=1

ϕ−1
ikih

(Vkh).

Moreover, for all x ∈ X, we choose a function ϕik for k between 1 and m, both included.

We set

ϕx := ϕik |Ux .

This gives us an atlas {(Ux, ϕx)}x∈X of E for which every transition function admits a

lifting to Spin(n). Furthermore, any spin structure on Ux is trivial because the only spin

structure on Ux× SO(n), up to equivalence, is Ux× Spin(n). In other words, Spin(E) |Ux
is equivalent to Ux × Spin(n). This information characterizes the local behavior of the

spin structures. ♦

Remark 3.64 (The second Stiefel-Whitney class in the framework of vector bundles).

Let X be a paracompact Hausdor� space and π : E → X be an n-dimensional oriented

Euclidean vector bundle. In addition, being ΦU an atlas of E, let {sij : Uij → Spin(n)}i,j∈I
be a set of liftings for its transition functions {ϕij : Uij → SO(n)}i,j∈I such that we have

pn ◦ sij = ϕij for all i, j ∈ I. Since

(
ϕki |Uijk

)
x
◦
(
ϕjk |Uijk

)
x
◦
(
ϕij |Uijk

)
x

= 1

for all x ∈ X an all i, j, k ∈ I, we have
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ski · sjk · sij = εijk · 1,

where εijk ∈ Z2 = {1,−1} for all i, j, k ∈ I. Thus, we obtain {εijk}i,j,k∈I ∈ Č2(U, Z2).

With some abuse of notation, we write

{εijk}i,j,k∈I = δ̌1{sij}i,j∈I .

Because of that, we have δ̌2{εijk}i,j,k∈I = δ̌2δ̌1{sij}i,j∈I = 0. Hence, it is well-de�ned

[{εijk}i,j,k∈I ] ∈ H2(U, Z2). Considering the direct limit on the open coverings of X,

we obtain

[{εijk}i,j,k∈I ] ∈ H2(X, Z2).

Now we claim that this cohomology class only depends on E. Indeed, if we consider

di�erent liftings rij : Uij → Spin(n) with rki · rjk · rij = ρijk · 1 for all i, j, k ∈ I, then

it follows that

rij = sij εij

where εij ∈ Z2 for all i, j ∈ I. As a consequence,

ρijk = εijk · δ̌1{εij}i,j∈I .

In other words,

[{ρijk}i,j,k∈I ] = [{εijk}i,j,k∈I ]. (3.19)

Moreover, if we choose an atlas of SO(E) which produces transition functions

{ψij : Uij → SO(n)}i,j∈I , then

ψij = ηi ◦ ϕij ◦ η−1
j

for all i, j ∈ I. Thus, choosing the liftings rij = ηj ◦ sij ◦ η−1
i , we obtain

ρijk · 1 = (ηi ◦ ski ◦ η−1
k ) · (ηk ◦ sjk ◦ η−1

j ) · (ηj ◦ sij ◦ η−1
i ) = εijk · 1

for all i, j, k ∈ I. Therefore, we recover Equation (3.19). Finally, before the next

de�nition, we remind the reader that, since X is paracompact Hausdor�, Ȟ2(X; Z2)

is isomorphic to H2(X, Z2). ♦
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De�nition 3.65 (The second Stiefel-Whitney class). Let X be a paracompact Hausdor�

space and π : E → X be an n-dimensional oriented Euclidean vector bundle. Using the

notation of Remark 3.64, we set

ω2(E) := [{εijk}i,j,k∈I ] ∈ Ȟ2(X; Z2) ' H2(X, Z2).

This is the second Stiefel-Whitney class of E. If X is a smooth manifold, then

we de�ne its second Stiefel-Whitney class ω2(X) to be the second Stiefel-Whitney class

of its tangent bundle. ♦

Corollary 3.66 (Existence of spin structures through the second Stiefel-Whitney class).

Let X be a paracompact Hausdor� space and π : E → X be an n-dimensional oriented

Euclidean vector bundle. We have that there exists a spin structure on E if and only if

ω2(E) is trivial.

Proof. Here we use the notation of Remark 3.64. If there exists a spin structure on E,

then it follows from Theorem 3.62 that we can choose εijk = 1 for all i, j, k ∈ I.

As a consequence, it follows that ω2(E) is trivial. Conversely, if ω2(E) is trivial,

then

ski · sjk · sij = εki εjk εij · 1

for all i, j, k ∈ I. We set

rij := εij sij

or all i, j, k ∈ I. Consequently, we have just obtained liftings rij : Uij → Spin(n) for

ϕij : Uij → SO(n) such that

rki · rjk · rij = 1

for all i, j, k ∈ I. Thence, Theorem 3.62 ensures the existence of a spin structure on E,

as desired.

Remark 3.67 (On the preceding corollary). Let X be a paracompact Hausdor� space

and π : E → X be an n-dimensional oriented Euclidean vector bundle. The preceding

result shows that the second Stiefel-Whitney class ω2(E) measures the obstruction to

the existence of a spin structure on E. In fact, Corollary 3.66 says that, if ω2(E)
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is trivial, then it is possible to �nd local liftings of the transition functions of SO(E)

to Spin(n), and multiply some of them by −1, in such manner that the cocycle

condition holds. At the same time, this procedure cannot be done if ω2(E) is not

trivial. Putting it together with Remark 3.55 and Lemma 3.57, the following de�nition

arises naturally. ♦

De�nition 3.68 (Spin bundle and spin manifold). Let X be a paracompact Hausdor�

space and π : E → X be an oriented Euclidean vector bundle. We say that E is a

spin bundle provided that ω1(E) and ω2(E) are both trivial. Furthermore, if X is a

smooth manifold, then we say that it is a spin manifold if its tangent bundle is a

spin bundle. ♦

Theorem 3.69 (The number of inequivalent spin structures of a spin bundle). Let

π : E → X be an n-dimensional spin bundle. The number of inequivalent spin structures

on E is the order of H1(X, Z2).

Proof. Let ΦU be an atlas of SO(E) and {sij : Uij → Spin(n)}i∈I be a set of liftings

for its transition functions satisfying (3.17). The total space of the corresponding spin

structure is the quotient of the disjoint union

⊔
i∈I

Ui × Spin(n) (3.20)

by the equivalence relation that identi�es (x, s)i with (x, sij(x) · s)j for all x ∈ Uij

and all i, j ∈ I. Any other spin structure on E descends from a set of liftings

{sijεij : Uij → Spin(n)}i,j∈I where εij ∈ Z2 for all i, j ∈ I. Since the cocycle

condition must be veri�ed, we necessarily have δ̌1{εij}i,j∈I = 1. Consequently, it is

well-de�ned

[{εij}i,j∈I ] ∈ Ȟ1(X,Z2). (3.21)

We have that one of these spin structures is equivalent to the �rst if and only if (3.21) is

trivial, which means that there exists {εi}i∈I ∈ Č0(U, Z2) for which δ̌0{εi}i∈I = {εij}i,j∈I .

Indeed:

� if there exists an equivalence of spin structures ξ between the spin structures

given by the quotient of the disjoint union in (3.20):
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• by the equivalence relation that identi�es (x, s)i with (x, sij(x) · s)j for

all x ∈ Uij and all i, j ∈ I; and

• by the equivalence relation that identi�es (x, s)i with (x, εij sij(x) · s)j for

all x ∈ Uij and all i, j ∈ I,

then we have

ξ(x, s)i = (x, εis)i (3.22)

where εi ∈ Z2 for all i ∈ I. This happens because ξ commutes with the projections

onto SO(E). Therefore,

(x, εjsij(x)s)j = ξ(x, sij(x)s)j = ξ(x, s)i = (x, εis)i = (x, εiεijsij(x)s)j.

Consequently,

εj = εi εij

for all i, j ∈ I. Equivalently, εij = εjε
−1
i for all i, j ∈ I. This proves the triviality

of (3.21), as desired; and

� if (3.21) is trivial, then the reader can readily prove that (3.22) de�nes an

equivalence of spin structures, where {εi}i∈I is any family in Č0(U, Z2) for which

δ̌0{εi}i∈I = {εij}i,j∈I .

Summarizing, let us �x a spin structure Spin(E) on E. Given α ∈ Ȟ1(X, Z2),

we have just proved that the spin structure Spin(E) · α is equivalent to Spin(E)

if and only if α = 1. As a consequence, we have that Spin(E) · α is equivalent

to Spin(E) · β if and only if α−1β = 1. In other words, we have that Spin(E) · α

is equivalent to Spin(E) · β if and only if α = β. This �nishes the proof of the

theorem.

Remark 3.70 (Spin structures and inner products). Let E be an n-dimensional oriented

Euclidean bundle. The existence of a spin structure on E does not depend on its inner

product. This is a non-trivial consequence of the fact that SO(n) is a deformation retract

of GL+(n). ♦
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3.7 Spinc structures

In this section, we continue the process of using the algebraic notions that

were presented in this chapter to study the geometry of vector bundles. In fact,

we establish another fundamental notion to study the Thom isomorphisms, namely,

the spinc structures of oriented Euclidean vector bundles. We begin with the following

de�nition.

De�nition 3.71 (The spinc groups). Let n be a natural number. We de�ne the spin c

group

Spinc(n) := Spin(n) ×Z2 U(1)

where:

� U(1) is the subgroup of the complex numbers composed of the unit elements; and

� the product ×Z2 denotes the identi�cation of the elements (s,−λ) and (−s, λ)

for all s ∈ Spin(n) and all λ ∈ U(1). This justi�es an element of Spinc(n)

being denoted by [s, λ]. ♦

Remark 3.72 (The spinc groups and two-sheeted coverings). Let n be a natural number.

We de�ne

pcn : Spinc(n) → SO(n)× U(1),

[s, λ] 7→ (pn(s), λ2),

where pn : Spin(n) → SO(n) is the usual two-sheeted covering of SO(n). This map not

only is well-de�ned but it also is a two-sheeted covering of SO(n) × U(1). In particular,

we have the short exact sequence

0 Z2 Spinc(n) SO(n)× U(1) 0.
pcn

Here Z2 is the subgroup of Spinc(n) generated by [1,−1] ∈ Spinc(n). Furthermore,

Spinc(n) ⊆ Cl(n). Indeed, since Cl(n) is canonically isomorphic to Cl(n) ⊗ C, it

follows from the fact that Spinc(n) is obtained by Z2-tensoring Spin(n) with the unit

complex numbers. ♦
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De�nition 3.73 (Spinc structure). Let π : E → X be an n-dimensional oriented Eu-

clidean vector bundle. In addition, let:

� πSO : SO(E) → X be the SO(n)-principal bundle of oriented orthonormal frames

of E de�ned in Remark 3.60; and

� πU : U(L)→ X be the U(1)-principal bundle of unitary frames of a given Hermitian

line bundle L, which the reader can readily de�ne by inspiring himself or herself

in Remark 3.60.

We say that a spinc structure on E is a Spinc(n)-principal bundle

πSpinc : Spinc(E) → X

equipped with a two-sheeted covering

ξc : Spinc(E) → SO(E)×πSO, πU U(L)

(see Remark C.52) such that, if pcn : Spinc(n) → SO(n) × U(1) is the projection, then

(ξc, pcn) is a morphism of principal bundles over X. In this situation, the following

diagram is commutative.

Spinc(E)× Spinc(n) (SO(E)×πSO, πU U(L))× (SO(n)× U(1))

Spinc(E) SO(E)×πSO, πU U(L)

X

ξc× pcn

· ·

ξc

πSpinc π

In this diagram, π : SO(E) ×πSO,πU U(L) → X is given by π(s, u) := πSO(s) = πU(u)

for all (s, u) ∈ SO(E)×πSO,πU U(L). ♦
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De�nition 3.74 (Equivalence of spinc structures). Let π : E → X be an n-dimensional

oriented Euclidean vector bundle. Two spinc structures

ξc : Spinc(E) → SO(E)×πSO, πU U(L) and

ξc
′
: Spinc

′
(E) → SO(E)×πSO, πU U(M)

are said to be equivalent provided that there exists an isomorphism of Spinc(n)-

principal bundles ϕc : Spinc(E) → Spinc
′
(E) such that the following diagram is

commutative.

Spinc(E) SO(E) Spinc
′
(E)

π1 ◦ ξc

ϕc

π1 ◦ ξc
′

In this diagram, π1 : SO(E) ×πSO, πU U(·) → SO(E) is given by π1(s, u) = s for all

(s, u) ∈ SO(E)×πSO,πU U(·). ♦

De�nition 3.75 (The third integral Stiefel-Whitney class). Let X be a paracompact

Hausdor� space and π : E → X be an n-dimensional oriented Euclidean vector bundle.

In addition, let the following short exact sequence be the usual one.

0 Z Z Z2 0

Being

Φ : H2(X, Z2) → H3(X, Z)

the Bockstein homomorphism in Singular Cohomology with respect to the preceding short

exact sequence, we de�ne

W3(E) := Φ(ω2(E))

where ω2(E) ∈ H2(X,Z2) is the second Stiefel-Whitney class of E. This is the third

integral Stiefel-Whitney class of E. If X is a smooth manifold, then we de�ne its

third integral Stiefel-Whitney class W3(X) to be the third integral Stiefel-Whitney class

of its tangent bundle. ♦
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Theorem 3.76 (Existence of spinc structures through the third integral Stiefel-Whitney

class). Let X be a paracompact Hausdor� space and π : E → X be an n-dimensional

oriented Euclidean vector bundle. We have that there exists a spinc structure on E if and

only if W3(E) is trivial.

Proof. In order to construct a (local) spinc lifting of E, we �x a complex Hermitian line

bundle πL : L → X as a part of the initial data. We then obtain the corresponding

unitary frame bundle πU : U(L) → X. For each open set Ui of an appropriate open

cover U = {Ui}i∈I of X, we choose a spin lifting πiSpin : Spin(Ei)→ Ui with a two-sheeted

covering ξi : Spin(Ei) → SO(Ei). Furthermore, we choose a lifting πiL : U(Li) → Ui

where Li := L |Ui for all i ∈ I, equipped with a two-sheeted covering ηi : U(Li)→ U(Li)

compatible with

ρ : U(1) → U(1),

λ 7→ λ2.

Under these circumstances, we obtain the spinc lifting

πiSpinc : Spinc(Ei) → Ui

where

Spinc(Ei) := Spin(Ei)×Z2, πiSpin, π
i
L
U(Li),

with the two-sheeted covering

ξci := ξi × ηi : Spinc(Ei) → SO(Ei)×πi
SO
, πiL

U(Li).

Now we �x principal bundle isomorphisms

ϕ′ij : Spin(Ei) |Uij→ Spin(Ej) |Uij ,

lifting the identity SO(Ei) |Uij= SO(Ej) |Uij . It follows that

ϕ′ki ◦ ϕ′jk ◦ ϕ′ij = εijk · I

for all i, j, k ∈ I. We also �x principal bundle isomorphisms
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ψ′ij : U(Li) |Uij→ U(Lj) |Uij ,

lifting the identity U(Li) |Uij= U(Lj) |Uij . It follows that

ψ′ki ◦ ψ′jk ◦ ψ′ij = θijk = ±1

for all i, j, k ∈ I. Thence, we obtain the principal bundle isomorphisms

ϕcij := ϕ′ij × ψ′ij : Spinc(Ei) |Uij→ Spinc(Ej) |Uij ,

lifting the identity (SO(Ei)× U(Li)) |Uij= (SO(Ej)× U(Lj)) |Uij . It follows that

ϕcki ◦ ϕcjk ◦ ϕcij = εijkθijk

for all i, j, k ∈ I. We can construct a global bundle Spinc(E) if and only if it is possible

to choose these data in such a way that

εijkθijk = 1

for all i, j, k ∈ I. This is equivalent to θijk = εijk for all i, j, k ∈ I. Fixing a set of local

unitary sections zi : Ui → L |Ui , we obtain the set of transition functions hij : Uij → U(1)

for which we have zi = hijzj for all i, j ∈ I. Consecutively, we lift the sections zi to

z′i : Ui → U(Li) so that we get transition functions h′ij : Uij → U(1) such that ψ′ijz
′
i = h′ijz

′
j

for all i, j ∈ I. It follows that

h′ki h
′
jk h

′
ij = θijk

for all i, j, k ∈ I. Hence, there exists a global spinc lifting of E if and only if it is possible

to �nd a cochain {h′ij}i,j∈I ∈ Č2(U;U(1)) such that

h′ki h
′
jk h

′
ij = εijk · I

for all i, j, k ∈ I. This is equivalent to the triviality of [{εijk}i,j,k∈I ] as a U(1)-cocycle.

In turn, this is equivalent to W3(E) being trivial since it can be proved that

Ȟ2(X,U(1)) is isomorphic to H3(X;Z). This last fact is true because, in the short

exact sequence
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0 Z R U(1) 0,
exp

the sheaf of real functions is acyclic. Therefore, we have that the associated

long exact sequence consists of isomorphisms between Ȟn(X,U(1)) and Hn+1(X;Z)

for all n ∈ N.

De�nition 3.77 (Spinc bundle and spinc manifold). Let X be a paracompact Hausdor�

space and π : E → X be an oriented Euclidean vector bundle. We say that E is a

spinc bundle provided that ω1(E) and W3(E) are both trivial. Furthermore, if X is a

smooth manifold, then we say that it is a spinc manifold if its tangent bundle is a

spinc bundle. ♦

Remark 3.78 (Spin and spinc structures). We have that the following facts hold true.

� Any vector bundle that admits a spin structure carries a correspondingly canonically

determined spinc structure. Indeed, if π : E → X admits a spin structure Spin(E),

then

Spinc(E) := Spin(E) ×Z2 U(1)

is a spinc structure of E, where Z2 acts diagonally by (−1,−1) and where U(1)

is the trivial circle bundle. In addition, there are examples in the literature of

spinc bundles that admit no spin structures. Therefore, spinc bundles are more

common than spin bundles. Consequently, spinc manifolds are more common than

spin manifolds.

� Any complex vector bundle carries a canonically determined spinc structure. The

reader can �nd this construction in [23, pp. 392-393]. Therefore, we have that

every complex manifold (in fact, every almost complex manifold) is canonically

a spinc manifold. ♦

Although spinc structures are more common than spin structures, they do not always

exist. For example, the reader can �nd in [23, pp. 393-394] a non-spinc manifold that is

contained, up to open embeddings, in every non-spinc manifold belonging to a special class

of manifolds.
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Theorem 3.79 (The number of inequivalent spinc structures of a spinc bundle). Let

π : E → X be an n-dimensional spinc bundle. The number of inequivalent spinc structures

on E is the order of H2(X, Z).

Proof. The reader can adapt the arguments given in the proof of Theorem 3.69 to

prove this result.

3.8 Thom isomorphisms

In this section, we present the Thom isomorphisms in K-Theory. This is the

furthest achievement of this thesis on the subject of Ordinary K-Theory. This result is

a non-trivial consequence of the tools from Spin Geometry that we have presented until

now. Here we will be able to present only a brief sketch of proof for it. We begin with

the following remarks.

Remark 3.80 (An important module structure involving K-Theory). Let X be an object

in TopHdCpt and π : E → X be a real vector bundle. We have that E is locally compact

Hausdor�. The reader can readily prove that this follows from X being locally compact

Hausdor� because of the existence of the local trivializations for E. As as consequence,

we set

Kc(E) :=
⊕
i∈Z

Ki
c(E).

We have that Kc(E) has a natural K(X)-module structure. Indeed, using the product in

Remark 2.75, we de�ne

· : Km(X)⊗Kn
c (E) → Km+n

c (E),

α⊗ β 7→ Km+n(i+)(α� β).

where the map i+ : E+ → (X × E)+ is the only continuous extension of the proper map

de�ned by

i : E → X × E,

e 7→ (π(e), e).
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The reader can readily prove that this de�nes a K(X)-module structure on Kc(E).

In fact, one can prove that Kc(E) is a unitary module with respect to this K(X)-module

structure. ♦

Remark 3.81 (Some of the ideas involved in Thom isomorphisms). Let n be a natural

number. In addition, let f : Sn → Sn be a continuous function. In Singular Cohomology,

we consider the pullback

Hn(f) : Hn(Sn) → Hn(Sn).

Up to isomorphism, Hn(f) : Z → Z since Hn(Sn) is isomorphic to Z. The degree of

f : Sn → Sn is de�ned as

deg(f) := Hn(f)(1) ∈ Z.

If g : Sn → Sn is another continuous map, then one can prove that

deg(g ◦ f) = deg(g) · deg(f).

As a consequence, since deg(id Sn) = 1, we have that, if f is a homeomorphism, then

deg(f) = 1 or deg(f) = −1. Indeed, once there exists f−1 : Sn → Sn in such manner that

f−1 ◦ f = id Sn, we have

1 = deg(id Sn) = deg(f−1 ◦ f) = deg(f−1) · deg(f),

which proves our assertion. Furthermore, it can be proved that, if f is a homeomorphism,

then

deg(f) =

 1 if f preserves the orientation on Sn,

−1 otherwise.

In particular, let ϕ : Rn → Rn be a linear isomorphism. The one-point Alexandro�

compacti�cation

ϕ+ : (Rn)+ ' Sn → (Rn)+ ' Sn

is a homeomorphism. Therefore,

deg(ϕ+) =

 1 if ϕ+ preserves the orientation on Sn,

−1 otherwise.
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It can be proved that ϕ+ preserves the orientation on Sn if and only if det(ϕ) is positive.

Now let Ω be a one-point space. We have

K(Ω) ' Kn
c (Rn). (3.23)

Indeed,

Kn
c (Rn) ' K̃n(Sn) ' Z ' K(Ω).

Since Rn is a real vector bundle on Ω, the idea of Thom isomorphisms is to generalize

(3.23) to any real vector bundle. Nevertheless, in order to do this, we have to establish

an adequate hypothesis, which is orientability. In fact, let E be an oriented real vector

bundle (see Remark 3.55). In addition, let ΦU = {(Ui, ϕi)}i∈I be an oriented atlas of E.

The transition functions of ΦU can be compacti�ed in each point x ∈ X, de�ning maps

ϕ+
x : Sn → Sn for which

deg(ϕ+
x ) = 1

for all x ∈ X. In particular, for a local chart ϕi : π−1(Ui) → Ui × Rn, we consider the

element

Hn(ϕi)
+
x (1) ∈ Hn(E+

x , Z)

for each x ∈ Ui. We have that Hn(ϕi)
+
x (1) generates Hn(E+

x ,Z) for all x ∈ Ui.

Moreover, these elements do not depend on the chosen chart and continuously vary

with x ∈ X. In fact, E is orientable if and only if it is possible to continuously choose

a generator of Hn(E+
x ,Z) for all x ∈ X. This idea produces the following de�nition in

the K-Theory framework. ♦

De�nition 3.82 (Weak orientation in K-Theory). Let π : E → X be an n-dimensional

real vector bundle. A weak orientation in K-Theory is a continuous choice of

generator for K̃n(E+
x ) ' Z where x ∈ X. We say that E is weak orientable if it

admits a weak orientation in K-Theory. ♦

The preceding de�nition is not convenient for our purposes. Indeed, one can

prove that the existence of a weak orientation in K-Theory is equivalent to the

existence of an orientation in the sense of Remark 3.55. In other words, orientation and

weak orientation in K-Theory are equivalent notions. Nevertheless, with respect to
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Singular Cohomology, the notion of weak orientability provides interesting results such

as the Poincaré Duality Theorem for smooth manifolds. This does not happen in the

K-Theory framework. This fact demands a better de�nition of orientability in K-Theory.

In fact, René Thom (1923-2002) extended the notion of orientability by proving the

following result.

Theorem 3.83 (Thom isomorphisms in Singular Cohomology). Let π : E → X be an

n-dimensional oriented real vector bundle. If we continuously choose a generator for

H̃n(E+
x ) ' Hn

c (Ex) for each x ∈ X, then there exists a unique element α ∈ Hn
c (E),

which is called the Thom class of E, whose restriction to Ex is the chosen generator

of Hn
c (Ex) for all x ∈ X. Furthermore, considering the usual module structure given by

the cup product

Hm(X; Z)⊗Hn
c (E; Z)

^−→ Hm+n
c (E; Z),

we have that

Tm : Hm(X; Z) → Hm+n
c (E; Z),

u 7→ u ^ α,

is a group isomorphism for all m ∈ Z. These group isomorphisms, which do not form

a ring isomorphism in general, are said to be the Thom isomorphisms of the vector

bundle in question.

Proof. The reader can �nd a complete proof of this result in [34].

Remark 3.84 (Thom classes and orientability). Let π : E → X be an oriented real

vector bundle. It follows from Theorem 3.83 that there exist exactly two Thom classes

for E, each of which induces one of the two orientations of E. In the smooth

manifold setting, a Thom class consists in a di�erential form with compact support

whose restriction to each �ber is a unitary volume form of its one-point Alexandro�

compacti�cation. In Singular Cohomology, the orientability of E is equivalent to the

existence of:

� a continuous choice of generator for the rk(E)th integral cohomology of each

compacti�ed �ber; and
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� a global integral class with compact support for E that restricts to a generator

in each �ber.

For an arbitrary cohomology theory, these two properties are inequivalent, being the

second one stronger than the �rst one. More concretely, in K-Theory, a continuous

choice of generator for the integral cohomology of each �ber does not imply the existence

of a global class that restricts to the chosen generators. Because of that, the existence

of a global class turns out to be the best de�nition for orientability. This justi�es the

following de�nition. ♦

De�nition 3.85 (Thom class in K-Theory). Let π : E → X be an n-dimensional real

vector bundle. In K-Theory, a Thom class of E consists of an element u ∈ Kn
c (E)

for which the restriction to each �ber ux ∈ Kn
c (Ex) ' Kn

c (Rn) ' Z is a generator.

We say that E is K-orientable provided that there exists a Thom class of E in

K-Theory. In this situation, a choice of a Thom class of E is a K-orientation of the

vector bundle in question. ♦

De�nition 3.86 (Spinor bundles). Let πP : P → X be a G-principal bundle and

ρ : G → GL(V ) be a topological representation of G where V is a �nite-dimensional

vector space. In De�nition F.38, we de�ned the ρ-associated bundle of P , which is

hereafter denoted by Eρ(P ). Thence, being πE : E → X an n-dimensional oriented

Euclidean vector bundle:

� if E is a spin bundle, then we say that a complex spinor bundle of E consists of

a µ-associated bundle

SC(E) := EµSpin(E)

of a spin structure ξ : Spin(E) → SO(E) of E where V is a left module for Cl(n)

and where µ : Spin(n) → SO(V ) ⊂ GL(V ) is the representation given by left

multiplication by elements of Spin(n); and

� if E is just a spinc bundle, then we say that a complex spinor bundle of E consists

of a ∆-associated bundle

ScC(E) := E∆Spinc(E)
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of a spinc structure ξ : Spinc(E) → SO(E) × U(L) of E where V is a left module

for Cl(n) and where ∆ : Spinc(n) → GL(V ) is given by restriction of the Cl(n)-

representation to Spinc(n). ♦

Remark 3.87 (Final concepts for establishing Thom isomorphisms). Let π : E → X be

an 2n-dimensional spin bundle. In addition, let SC(E) be the irreducible complex spinor

bundle of E. We can split SC(E) into a direct sum

SC(E) = S+
C (E) ⊕ S−C (E)

of Cl 0(E)-modules. Here Cl(E) denotes the bundle of Cli�ord algebras generated

by E which is such that Cl(E)x = Cl(Ex) for all x ∈ X. Moreover, Cl 0(E) and Cl 1(E)

are de�ned analogously. Now consider the global section of Cl(E) ⊗ C which at x ∈ X

is given by

ωC = in e1 · · · e2n

for any positively oriented orthonormal basis {e1, · · · , en} of the �ber Ex. Thence, we

have

ω2
C = 1

and

e · ωC = −ωC · e

for all e ∈ Cl 1(E) ⊗ C. We de�ne S+
C (E) and S−C (E) to be the 1 and −1 eigenbundles

for Cli�ord multiplication by ωC, respectively. If E is just a spinc bundle, then we

can analogously consider the irreducible complex spinor bundle ScC(E) of E and split it

into a direct sum

ScC(E) = Sc+C (E) ⊕ Sc−C (E).

Now let D(E) and S(E) be the unit disc bundle and unit sphere bundle, respectively.

The pullbacks of S+
C (E) and S−C (E) through π : E → X over D(E) are canonically

isomorphic on S(E) by the map

µ : π∗S+
C (E) → π∗S−C (E)
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given at e ∈ S(E) by

µe(σ) = e · σ

for all σ ∈ π∗S+
C (E)e. These objects determine

[π∗S+
C (E), π∗S−C (E), µ] ∈ K2n(D(E), S(E)) ' K2n

c (E)(6).

We can then set the following result. ♦

Theorem 3.88 (Thom isomorphisms in K-Theory). Let X be a compact Hausdor� space

and π : E → X be a 2n-dimensional Euclidean bundle. If E is a spin bundle, then the

class

s(E) := [π∗S+
C (E), π∗S−C (E), µ] ∈ K2n

c (E)

is a K-orientation of E. This remains true if E is just a spinc bundle. For this, we

have to change SC(E) = S+
C (E) ⊕ S−C (E) by ScC(E) = Sc+C (E) ⊕ Sc−C (E). Furthermore,

we have that

Tm : Km(X) → Km+2n
c (E),

α 7→ α · s(E),

is an isomorphism for all m ∈ Z. The multiplication here is the one of the module

structure de�ned in Remark 3.80. These group isomorphisms, which do not form a ring

isomorphism in general, are said to be the Thom isomorphisms of the vector bundle

in question.

Proof. The complete proof of this result can be found in [23, pp. 384-388]. Here we

provide a short sketch of it. Indeed, we begin by saying that a compactly-supported

K-Theory class of E has the Bott periodicity property provided that it determines

a K-orientation in any local trivialization of E over a closed subset of X. Thence,

it can be proved that any such class having the Bott periodicity property is a global

(6)In fact, according the construction of Section 2.9, we have [π∗S+
C (E), π∗S−C (E), µ] ∈ K(D(E), S(E)).

Nervertheless, since K(D(E), S(E)) is isomorphic to K2n(D(E), S(E)) because of the Bott Periodicity
Theorem, we can consider [π∗S+

C (E), π∗S−C (E), µ] ∈ K2n(D(E), S(E)). Furthermore, we have that
K2n(D(E), S(E)) is isomorphic to K2n

c (E) because, when X is a compact Hausdor� space, there is a
canonical homeomorphism between the one-point Alexandro� compacti�cation E+ and the quotient of
D(E) by S(E). In general, the quotient space of D(E) by S(E) is referred to in the literature as the
Thom space of E.
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K-orientation of E. As a consequence, the statement follows by just proving that

s(E) has the Bott periodicity property. In fact, if C is any closed subset of X for

which we have a local trivialization ϕC : E |C→ X × R2n, then the class s(E) becomes

the element

s(E |C) ∈ K2n
c (C × R2n),

which is the pullback to the product of the canonical generator of K2n
c (R2n) ' Z

given by the Atiyah-Bott-Shapiro Theorem (Theorem 3.41). This implies that s(E)

has the Bott periodicity property.

Corollary 3.89 (Thom isomorphisms in K-Theory for all vector bundles). Let X be a

compact Hausdor� space and π : E → X be a (2n − 1)-dimensional Euclidean bundle.

If E is a spin (spinc) bundle, then it is K-orientable. Furthermore, there are natural

isomorphisms

Tm : Km(X) → Km+2n−1
c (E)

for all m ∈ Z. These are also said to be the Thom isomorphisms of the vector

bundle in question.

Proof. We have that the direct sum E ⊕R of E with the trivial bundle X ×R→ X is a

spin (spinc) bundle. We then obtain a K-orientation and the Thom isomorphisms for E

by properly restricting the ones of E ⊕ R from Theorem 3.88. This �nishes the proof of

the corollary.

Remark 3.90 (Extending the Thom isomorphisms). The preceding results are still true

considering vector bundles on locally compact Hausdor� spaces. This claim can be

found in [23, p. 389]. ♦

3.9 Gysin map

In this �nal section, we present an object that follows from the Thom isomorphisms

in K-Theory, which is the Gysin map. This is the integration map in K-Theory. We

only present here its de�nition and �rst properties since the applications would demand

much more time to be developed. We begin with the following de�nition that treats an

important particular case.
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Figure 3.1: This picture gives a geometric visualization for the Gysin map described
in De�nition 3.91. Indeed, it says that, using the Thom isomorphism, we can associate
to a cohomology class of N a class of NNM. Thence, using the induced homomorphism
of ϕ+

U , we map the resulting class of NNM to a cohomology class of U . Finally, applying
the induced homomorphism of ηU , we map this last cohomology class of U to a class of
M. This shows that the Gysin map extends a cohomology class of N to a class ofM.
The price paid in this process is a translation in the degree of the initial cohomology
class by the rank of the normal bundle NNM, which is due to the use of the Thom
isomorphism.

De�nition 3.91 (Gysin map of an embedding). Let M be a smooth manifold. In

addition, let N be an embedded compact submanifold ofM for which the normal bundle

NNM → N is K-orientable. We remind the reader that NNM is the quotient of the

tangent bundle of M restricted to N by the tangent bundle of N . Since N is compact,

there exists a tubular neighborhood U of N in M. In other words, there exists an open

subset U of M containing N for which we have a homeomorphism ϕU : U → NNM.

Being i : N →M the natural embedding, we de�ne a group homomorphism called Gysin

map

im! : Km(N ) → Km+dim(M)−dim(N )
c (M)

for each m ∈ Z. In general, we have that these group homomorphisms do not form a

ring homomorphism. Furthermore, as one could naturally expect, if M is also compact,

then we obtain

im! : Km(N ) → Km+dim(M)−dim(N )(M).

Being
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ηU : M+ → U+,

x 7→

x if x ∈ U,

∞ if x ∈M+ − U,

we de�ne

im! := K̃m+dim(M)−dim(N )(ηU) ◦ K̃m+dim(M)−dim(N )(ϕ+
U) ◦ Tm

for all m ∈ Z. ♦

De�nition 3.92 (Gysin map of a continuous function). Let M and N be compact

smooth manifolds. In addition, let f : N → M be any continuous map. Under these

circumstances:

� let j : N → RN be an embedding. Thence, consider the embedding

(f, j) : N → M × RN .

It is to be noted that this construction is possible because of the Whitney

Embedding Theorem; and

� since (M × RN)+ is homeomorphic to M+ ∧ (RN)+, which is homeomorphic to

M+ ∧ SN , we have that (M × RN)+ is homeomorphic to ΣNM+. Therefore, for

all m ∈ Z, we have the suspension isomorphism

sNm : Km
c (M × RN) → Km−N(M).

We de�ne the Gysin map of f

fm! : Km(N ) → Km+dim(M)−dim(N )(M)

as the group homomorphism

fm! := sNm+N+dim(M)−dim(N ) ◦ (f, j)m!

for all m ∈ Z. It can be proved that this map does not depend on j : N → RN . This is

a consequence of the fact that any two embeddings of a smooth manifold in a su�ciently
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large Euclidean space are isotopic. That is, they are homotopic through a homotopy

composed only of embeddings. ♦

Theorem 3.93 (Some of the properties of the Gysin map). LetM, N and S be compact

smooth manifolds. In addition, let f : N → M and g : M → S be continuous maps.

The following facts are true.

(1) The Gysin map

fm! : Km(N ) → Km+dim(M)−dim(N )(M)

only depends on the homotopy class of f : N →M for each m ∈ Z. In particular,

it does not depend on any embedding.

(2) For each m,n ∈ Z,

fm+n
! (α ·Kn(f)(β)) = fm! (α) · β

where α ∈ Km(N ) and β ∈ Kn(M).

(3) We have

(g ◦ f)m! = g
m+dim(M)−dim(N )
! ◦ fm!

for all m ∈ Z.

Proof. The reader can �nd a complete proof of this result in [19, p. 233].

Remark 3.94 (Extending the preceding de�nitions). Here we use the notations of

De�nitions 3.91 and 3.92. If N is locally compact, then, by means of an immersion

i : N →M, we can de�ne the Gysin map exactly as before. This happens because, under

these circumstances, there exists a tubular neighborhood of N in M as well. Thence,

we can also de�ne the Gysin map of a proper map f : N →M. More than that, we can

de�ne the Gysin map of any continuous map f : N → M that factors out by a proper

embedding. ♦
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Chapter 4

Rephrasing Ordinary K-Theory

In this chapter, we conclude the study of Ordinary K-Theory by presenting a

di�erent but equivalent viewpoint for this theory. Indeed, here we use the language and

the initial results of Functional Analysis to set an interpretation of K-Theory through

homotopy classes of functions whose codomain is the space of Fredholm operators,

which are continuous linear operators de�ned on separable Hilbert spaces for which

the kernel and the cokernel are �nite-dimensional. This model for K-Theory will be

particularly interesting in Chapter 5. In order to write this part of the text, we used

as main references [2, pp. 153 - 162], [8, pp. 7-18, 33-43], [22] and [32, pp. 1-23, 55-67,

119-125, 175-183].

4.1 Fredholm operators

In this section, we present the basic language of Functional Analysis that is

needed to develop the model of Fredholm operators for K-Theory. In particular, we

recover the notion of separable Hilbert space in order to de�ne and study some

properties of Fredholm operators. The reader who is familiar with these notions

may skip this section and return to it later if it is necessary. We begin with the

following remark.

Remark 4.1 (Elementary notions on Functional Analysis). Let H be a complex

Hilbert space. That is, H is a complex vector space which is equipped with an

Hermitian product
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〈 , 〉 : H ×H → C

such that the induced norm

| · | : H → [0,∞),

u 7→
√
〈u, u〉,

turns H into a Banach space. Moreover, suppose that H is separable. In other words,

suppose that there exists a dense countable subset of H. By Zorn's Lemma, this is

equivalent to the existence of a countable orthonormal basis for H. Therefore, one can

prove that every in�nite-dimensional separable Hilbert space is isometrically isomorphic

to the famous space `2 of in�nite sequences of complex numbers z = (zn)n∈N for which

the series
∞∑
n=0

|zn|2

converges, equipped with the Hermitian product given by

〈z, w〉 :=
∞∑
n=0

znwn

for all z, w ∈ `2. This may help the inexperienced reader to have a more concrete

picture of in�nite-dimensional separable Hilbert spaces. Under these hypotheses, we

consider H to be the algebra of all bounded operators on H. We equip H with the

norm topology, where

| · | : H → [0,∞),

T : H → H 7→ sup
u∈H; |u|= 1

|T (u)|.

This makes H into a Banach space. In particular, the group of units H ∗ of H forms

an open set. Furthermore, by the Closed Graph Theorem, any T ∈ H which is an

algebraic automorphism is also a topological automorphism. This means that, if T−1

exists in H , then T ∈H ∗. ♦

De�nition 4.2 (Fredholm operator). An operator T ∈ H is a Fredholm operator

if KerT and CokerT are �nite-dimensional. We denote the collection of all Fredholm

operators on H by FH . ♦
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Theorem 4.3 (The image of a Fredholm operator is always closed). If T ∈ FH , then

T (H) is closed in H.

Proof. We have that the restriction

T |(KerT )⊥ : (KerT )⊥ → T (H)

is a bijection. Then, we de�ne an extension of this map

T̂ : (KerT )⊥ ⊕ Cdim(CokerT ) → T (H) ⊕ CokerT,

by sending a basis of Cdim(CokerT ) into a basis of CokerT . This map is a continuous

bijection. Therefore, by the Open Mapping Theorem, we conclude that it is a

homeomorphism. Thus,

T (H) = T̂ ((KerT )⊥)

is closed. This happens because (KerT )⊥ is easily seen to be closed since KerT

is closed.

Corollary 4.4 (The adjoint of a Fredholm operator is also Fredholm). We remind the

reader that the adjoint of an operator T ∈ H is the unique linear operator T ∗ ∈ H

for which

〈Tu, v〉 = 〈u, T ∗v〉

for all u, v ∈ H. We have that T ∈ FH if and only if KerT and KerT ∗ are both

�nite-dimensional. In particular, an operator is Fredholm if and only if its adjoint is

Fredholm.

Proof. Since KerT ∗ = T (H)⊥, H = T (H) ⊕ T (H)⊥ and T (H) is closed (Theorem 4.3),

we have

KerT ∗ = T (H)⊥ ' H/T (H) = CokerT.

Thus, KerT ∗ is �nite-dimensional if and only if CokerT is �nite-dimensional. Therefore,

T is Fredholm if and only if T ∗ is Fredholm.
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Theorem 4.5 (Relation between Fredholm operators and the Calkin Algebra). Let KH

be the ideal of H formed by the compact operators(1). The Calkin Algebra of H is the

quotient H /KH . Let

π : H → H /KH

be the natural projection. Under these circumstances, we have that T ∈H is a Fredholm

operator if and only if π(T ) is invertible in the Calkin Algebra of H. In particular, we

have that an operator T ∈ H is Fredholm if and only if there exists S ∈ H in such

manner that

S ◦ T = idH +K and T ◦ S = idH + L

where K,L ∈ KH .

Proof. The reader can �nd a proof of this result in [8, p. 14].

Corollary 4.6 (The open subspace of Fredholm operators). The collection of Fredholm

operators on H is open in H .

Proof. The set AH of invertible elements in the Calkin Algebra is open. Hence,

since the natural projection π : H → H /KH is continuous, FH = π−1(AH) is

open in H . It is to be noted that this last equality is an immediate consequence of

Theorem 4.5.

Corollary 4.7 (The subalgebra of Fredholm operators). The collection of Fredholm

operators on H is a subalgebra of H .

Proof. We �rst have to verify that FH is a vector subspace of H . We leave this

straightforward computation to the reader. Afterwards, we have to prove that, if

T and S are Fredholm operators, then the composition T ◦ S is also a Fredholm

operator. In fact, if T and S are Fredholm operators, then there exist P,Q ∈ H

such that

(1)We remind the reader that T ∈ H is a compact operator provided that T (A) is precompact in H
whenever A is a bounded subset of H. In addition, we have that T (A) is precompact in H if its closure
is compact in this space.
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P ◦ T = idH +K, T ◦ P = idH + L,

Q ◦ S = idH +M and S ◦Q = idH +N,

where K,L,M,N ∈ KH (Theorem 4.5). Therefore,

(T ◦ S) ◦ (Q ◦ P ) = T ◦ (S ◦Q) ◦ P

= T ◦ (idH +N) ◦ P

= (T + T ◦N) ◦ P

= T ◦ P + T ◦N ◦ P

= idH + L+ T ◦N ◦ P.

Analogously, we obtain

(Q ◦ P ) ◦ (T ◦ S) = idH +M +Q ◦K ◦ S.

Therefore, since L + T ◦ N ◦ P and M + Q ◦ K ◦ S are compact operators on H,

we have that T ◦ S is a Fredholm operator (Theorem 4.5). This �nishes the proof

of the theorem.

4.2 Index of Fredholm operators

In this section, we de�ne and study the notion of Fredholm index. This

concept produces a particular case of the main theorem of this chapter. However,

the naturality and the simplicity of the arguments used to establish this particular

case are su�cient reasons to set it as a motivation for the desired general result.

In fact, it is the logical path applied to this section. We begin with the following

de�nition.

De�nition 4.8 (Index of a Fredholm operator). Let T ∈ FH . We say that the integer

number

indexT := dim(KerT )− dim(CokerT )

is the index of T . ♦
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Example 4.9 (Fredholm operators on a �nite-dimensional complex Hilbert space). If

H is a �nite-dimensional complex Hilbert space, then it is separable. Indeed, let A be

a basis for H, which is necessarily �nite since H is �nite-dimensional. Thence, the

collection of all linear combinations of the elements of A with rational coe�cients is

a dense countable subset of H. Moreover, we have that every T ∈ H is a Fredholm

operator. Finally, since CokerT = H/T (H), dim(CokerT ) = dimH − dimT (H).

Therefore,

indexT = dim(KerT )− dim(CokerT )

= dim(KerT ) + dimT (H)− dimH

= dimH − dimH

= 0

by the Rank-Nullity Theorem. ♦

Example 4.10 (Index of the adjoint of a Fredholm operator). Let T ∈ FH . Because of

Corollary 4.4, T ∗ ∈ FH . In addition, this result allows us to explicitly calculate the index

of T ∗. Indeed,

indexT ∗ = dim(KerT ∗)− dim(CokerT ∗)

= dim(KerT ∗)− dim(KerT ∗∗)

= dim(KerT ∗)− dim(KerT )

= −indexT . ♦

Theorem 4.11 (The index of Fredholm operators de�ned on an in�nite-dimensional

separable Hilbert space is surjective). If H is an in�nite-dimensional separable Hilbert

space, then

index : FH → Z,

T 7→ indexT ,

is surjective. Note that this claim is not true for �nite-dimensional Hilbert spaces

(see Example 4.9).
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Proof. Let {ei}i∈N be an orthonormal basis for H (see Remark 4.1). For each n ∈ N,

we de�ne:

� the right shift

S−n : H → H,
∞∑
i=0

ziei 7→
∞∑
i=0

ziei+n,

which is a Fredholm operator. Indeed:

• S−n is clearly injective. Thus, we have that KerS−n is trivial, being then

�nite-dimensional; and

• S−n(H) is the complement of the subspace generated by e0, · · · , en−1 ∈ H.

Thus, we have that CokerS−n is isomorphic to this vector subspace, being

then �nite-dimensional.

Therefore, we have

indexS−n = dim(KerS−n)− dim(CokerS−n) = 0− n = −n; and

� the left shift

Sn : H → H,
∞∑
i=0

ziei 7→
∞∑
i=0

zi+nei,

which is a Fredholm operator. Indeed:

• Sn has as its kernel the subspace generated by e0, · · · , en−1 ∈ H, being then

�nite-dimensional; and

• Sn is clearly surjective. Thus, we have that CokerSn is trivial, being then

�nite-dimensional.

Therefore, we have

indexSn = dim(KerSn)− dim(CokerSn) = n− 0 = n.

This �nishes the proof of the theorem.



4. Rephrasing Ordinary K-Theory 232

Remark 4.12 (Index and injectivity). If T ∈ FH is invertible, then T−1 ∈ FH and

indexT = 0. Indeed, if T is invertible, then KerT and CokerT are both trivial.

Consequently,

dim(KerT ) = dim(CokerT ) = 0,

which clearly implies our assertions. On the contrary, T is not necessarily invertible if

indexT = 0. In fact, this follows from Example 4.9. Nevertheless, being indexT = 0,

we have that:

� if T is injective, then it is also surjective. This happens because, being injective,

T has trivial kernel. Hence, since dim(KerT ) = 0, we obtain dim(CokerT ) = 0.

Thus, T has trivial cokernel; and

� if T is surjective, then it is also injective. This happens because, being surjective,

T has trivial cokernel. Hence, since dim(CokerT ) = 0. we obtain dim(KerT ) = 0.

Thus, T has trivial kernel.

In particular, the map of Theorem 4.11 is not injective since all invertible operators

have zero index. ♦

Lemma 4.13 (Exact sequences of �nite-dimensional vector spaces). Let the following

sequence of �nite-dimensional vector spaces and linear maps be exact.

0 V1 V2 · · · Vn−1 Vn 0

In this situation,
n∑
i=1

(−1)i dim(Vi) = 0.

Proof. The reader can �nd a proof of this result in [8, pp. 16-17].

Theorem 4.14 (The index of a composition of Fredholm operators). Let T, S ∈ FH .

Because of Corollary 4.7, it makes sense asking about the index of T ◦ S ∈ FH . Indeed,

we have
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indexT◦S = indexT + indexS.

Thus, the map of Theorem 4.11 is a group homomorphism. In particular, if T ∈ FH

is invertible, then indexT−1 = −indexT .

Proof. The reader can readily prove that the sequence of �nite-dimensional vector

spaces and linear maps

Ker(T ◦ S) KerT CokerS Coker(T ◦ S)

0 KerS CokerT 0

S π T

βα

is exact, where α is the inclusion, π is the projection and β is the map that sends

an equivalence class modulo (T ◦ S)(H) into an equivalence class modulo T (H). Thus,

by Lemma 4.13, we obtain that the alternate sum of the dimensions of the vector spaces

in this sequence is zero. This implies our assertion since such alternate sum can be

written as

indexT◦S − indexT − indexS = 0.

This �nishes the proof of the theorem.

Theorem 4.15 (The continuity of the index map of Fredholm operators). The group

homomorphism index : FH → Z de�ned in Theorem 4.11 is locally constant. Therefore,

it is continuous.

Proof. Let T ∈ FH . In addition, let P : (KerT )⊥ → H be the inclusion and

Q : H → T (H) be the orthogonal projection of H onto T (H). Since P has trivial

kernel and

CokerP = H/(KerT )⊥ ' KerT,

P is Fredholm and

indexP = dim(KerP )− dim(CokerP ) = − dim(KerT ).
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Similarly, once

KerQ = T (H)⊥ ' CokerT

and CokerQ is trivial, Q is Fredholm and

indexQ = dim(KerQ)− dim(CokerQ) = dim(CokerT ).

Consequently,

indexT + indexP + indexQ = 0. (4.1)

Since Q ◦ T ◦ P : (KerT )⊥ → T (H) is invertible,

ε := |(Q ◦ T ◦ J)−1|

is positive. Thus, if S ∈ FH is such that

|T − S| < ε−1

|Q| |P |
,

then we obtain

|Q ◦ T ◦ P −Q ◦ S ◦ P | = |Q ◦ (T − S) ◦ P |

≤ |Q| |T − S| |P |

< ε−1.

This proves that Q ◦ S ◦ P is invertible. Thence, indexQ◦S◦P = 0 by Remark 4.12.

Hence, Theorem 4.14 yields

indexS + indexP + indexQ = 0. (4.2)

From Equations (4.1) and (4.2), we obtain indexT = indexS. This �nishes the proof

of the theorem.

Corollary 4.16 (Index of translations by compact operators). Let T ∈ FH and K ∈ KH .

Then, T +K ∈ FH and

indexT+K = indexT .
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Proof. Since π(T + K) = π(T ), where π : H → H /KH is the natural projection,

T +K is a Fredholm operator if and only if T is Fredholm (Theorem 4.5). Now, consider

the continuous path

α : [0, 1] → FH ,

t 7→ T + tK.

Once the index is locally constant because of Theorem 4.15, this path ensures that

indexT+tK = indexT for all t ∈ [0, 1]. In particular, we obtain indexT+K = indexT ,

as we wished.

Lemma 4.17 (Path-connectedness of the space of invertible operators). The subalgebra

of invertible operators H ∗ of H is path-connected.

Proof. The reader can �nd a proof of this result in [8, pp. 18-21].

Theorem 4.18 (Bijection induced by the index between path-connected components of

the space of Fredholm operators and the integer numbers). Let π0FH denote the set of

path-connected components of FH . The Fredholm index de�ned in this section induces a

bijection π0FH → Z.

Proof. We only have to prove injectivity since surjectivity was shown in Theorem 4.11.

We de�ne

F n
H := {T ∈ FH : indexT = n}

for each n ∈ Z. Since the Fredholm index is locally constant (Theorem 4.15), we have

that injectivity follows provided we prove that F n
H is path-connected. This is what is

done now. Indeed:

� if n = 0, then let T ∈ F 0
H . Because of Lemma 4.17, it su�ces to prove that T

can be connected to an invertible operator by a path. In fact, since indexT = 0,

we have dim(KerT ) = dim(KerT ∗). Thus, let {vi}dim(KerT )
i=1 and {wi}dim(KerT )

i=1

be bases for KerT and KerT ∗, respectively. Therefore, under these circumstances,

if we have

u = u0 +

dim(KerT )∑
i=1

λivi ∈ H
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with u0 ∈ (KerT )⊥, then we de�ne

ϕ(u) :=

dim(KerT )∑
i=1

λiwi.

This correspondence sets an operator ϕ ∈ H for which Kerϕ = (KerT )⊥ and

ϕ(H) = KerT ∗. We claim that T + ϕ is invertible. In fact, it is clearly surjective.

Moreover, it is injective because, if u ∈ Ker(T + ϕ), then T (u) = −ϕ(u), which

implies u = 0. This very same reasoning proves that T + tϕ is invertible for all

t ∈ (0,∞). Thus,

γ : [0, 1] → F 0
H ,

t 7→ T + tϕ,

is a path contained in the space F 0
H that connects T with an invertible operator,

as desired;

� if n > 0, then let T ∈ F n
H . In addition, let S−n and Sn be the right and

left shifts de�ned in the proof of Theorem 4.11, respectively. Because of

Corollary 4.7, we have T ◦ S−n ∈ FH . Furthermore, because of Theorem 4.14,

indexT◦S−n = 0 since indexS−n = −n. Thus, we have T ◦ S−n ∈ F 0
H . Once

S−n ◦ Sn = idH ,

T = (T ◦ S−n) ◦ Sn ∈ F 0
H ◦ Sn.

Hence, F n
H ⊆ F 0

H ◦ Sn. Additionally, F 0
H ◦ Sn ⊆ F n

H because of Theorem 4.14.

Consequently, it follows that F n
H = F 0

H ◦ Sn is path-connected because of the

preceding item; and

� if n < 0, then the path-connectedness of F n
H is immediate from the preceding

item since

F n
H = (F−n

H )∗

because of Example 4.10. �

Remark 4.19 (Interpreting the preceding result through homotopy classes and

K-Theory). Let Ω be a one-point space. The reader can readily prove that there exists a

natural bijection
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α : [Ω, FH ] → π0FH ,

where [Ω,FH ] is the set of homotopy classes of continuous maps from Ω into FH . Indeed,

Fredholm operators T and S are in the same path-connected component of FH if and only

if the functions Ω 7→ T and Ω 7→ S are homotopic. Moreover, we have K(Ω) = Z

by Example 2.9. Consequently, Theorem 4.18 can be restated saying that there exists a

group isomorphism

index : [Ω, FH ] → K(Ω).

The goal of the next section is to generalize this result establishing a group isomorphism

when we change Ω by any compact Hausdor� space. This assertion is known as the

Atiyah-Jänich Theorem. ♦

4.3 Atiyah-Jänich Theorem

In this section, we ful�ll the program of this chapter stating and proving the

Atiyah-Jänich Theorem, which was mentioned in the last remark of the preceding

section. This result is the one that gives us the interpretation of K-Theory through

homotopy classes of functions whose codomain is the space of Fredholm operators. We

begin with the result itself.

Theorem 4.20 (Atiyah-Jänich Theorem). For any compact Hausdor� space X, we have

a natural group isomorphism

index : [X, FH ] → K(X).

In other words, the space of Fredholm operators FH is a classifying or representing

space for K-Theory.

Proof. The proof of this result will be completed at the end of this section by a series

of lemmas and theorems.

Remark 4.21 (An intuitive idea to prove the Atiyah-Jänich Theorem that unhappily

does not work). Let X be a compact Hausdor� space and T : X → FH be a continuous

function. We de�ne
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KerT :=
⊔
x∈X

KerTx,

where Tx := T (x) ∈ FH . The intuitive idea to de�ne the generalized index map of the

Atiyah-Jänich Theorem is setting

index [T ] := [KerT ]− [CokerT ]

for all [T ] ∈ [X,FH ]. Nevertheless, this is not generally possible since KerT and CokerT

usually do not have vector bundle structures. In fact, for example, consider the continuous

function

T : R → FC,

x 7→ Tx,

where

Tx(z) = xz

for all z ∈ C. We have dim(KerT0) = 0 and dim(KerTx) = 1 for all non-zero x.

Since the real line is connected, any vector bundle on it must have constant rank. Thus,

KerT cannot be a vector bundle. The reader will note that the technical lemmas

presented below to construct the generalized index map are the way we have to bypass

this di�culty. ♦

Lemma 4.22 (Existence of well-behaved neighborhoods in the space of Fredholm

operators). Let T ∈ FH and let V be a closed �nite-codimensional subspace of H

such that V ∩ KerT is trivial. Then, there exists an open neighborhood U of T in H

such that:

(1) V ∩KerS is trivial for all S ∈ U ; and

(2) the disjoint union ⊔
S∈U

H/S(V ),

topologized as a quotient space of the product space U × H, is a trivial vector

bundle on U .
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Proof. For each S ∈H , we de�ne the linear map

ϕS : V ⊕ T (V )⊥ → H,

(u, v) 7→ S(u) + v.

Then, we have the continuous linear map

ϕ : H → L (V ⊕ T (V )⊥, H),

S 7→ ϕS,

where L stands for the space of all continuous linear maps with the norm

topology. We have that ϕT is an isomorphism. In fact, ϕT is injective because

T |V : V → H is injective once V ∩ KerT is trivial. Moreover, we have that ϕT is

surjective because

ϕT (V ⊕ T (V )⊥) = T (V )⊕ T (V )⊥ = H.

Since the isomorphisms form an open set in L , there exists a neighborhood U of T

in H in such manner that ϕS is an isomorphism for all S ∈ U . This implies the claims

of the statement. Indeed:

� since ϕS is injective for all S ∈ U , it follows that KerS is trivial for all S ∈ U .

Thus, V ∩KerS is trivial for all S ∈ U ; and

� since S ∈ U is an isomorphism,

H/S(V ) ' S−1(H)/V ' T (V )⊥.

Consequently,

⊔
S∈U

H/S(V ) '
⊔
S∈U

{S} × T (V )⊥ = U × T (V )⊥.

This proves that the disjoint union in question is a trivial vector bundle since

the reader can prove that T (V )⊥ is �nite-dimensional once T ∈ FH and V is

�nite-codimensional. �
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Theorem 4.23 (Vector bundles induced by a continuous map with codomain in the

space of Fredholm operators). Let X be a compact Hausdor� space and T : X → FH

be a continuous map. Then, there exists a closed �nite-codimensional subspace V of H

such that:

(1) V ∩KerTx is trivial for all x ∈ X; and

(2) H/T (V ) :=
⊔
x∈X H/Tx(V ), topologized as a quotient space of X × H, is a

vector bundle on X.

Proof. For each x ∈ X, let Vx := (KerTx)⊥ and let Ux be an open neighborhood of

Tx in H as in Lemma 4.22. We de�ne

Wx := T−1(Ux)

for all x ∈ X. The collection {Wx}x∈X is an open cover of X. As a consequence,

since X is a compact space, we can take a �nite subcover {Wxi}mi=1 of X. Thence,

we de�ne

V :=
m⋂
i=1

Wxi .

We have that V is a closed �nite-codimensional subspace of H(2). Moreover, V satis�es

the �rst condition of this theorem because of Condition (1) of Lemma 4.22. Further,

V satis�es the second condition of this theorem because we can apply Condition (2)

of Lemma 4.22 to Tx for each x ∈ X. This ensures that
⊔
yH/Ty(V ) is locally trivial

near x for all x ∈ X. Therefore, H/T (V ) is locally trivial, being then a vector bundle,

as desired.

(2)The fact that V is closed follows from it being the intersection of closed subspaces of H. To prove
that it is �nite-codimensional, we show that any �nite intersection of �nite-codimensional subspaces of
H is also �nite-codimensional. Indeed, let E and F be �nite-codimensional subspaces of H. We de�ne
the linear map

Φ : H → (H/E) ⊕ (H/F ),

v 7→ (v + E, V + F ).

The kernel of this map is E ∩ F . Therefore, Φ induces the injective linear map

H/(E ∩ F ) → (H/E) ⊕ (H/F ).

The injectivity of this induced map not only ensures that E ∩ F is �nite-codimensional, but also
yields the inequality codim(E ∩ F ) ≤ codim(E) + codim(F ). The reader can prove the general case
using induction.



4. Rephrasing Ordinary K-Theory 241

Remark 4.24 (Splitting a map involving the vector bundle of the preceding result). We

can split the natural map

ρ : X ×H → H/T (V ),

(x, v) 7→ [v]x,

where [v]x denotes the equivalence class of v in H/Tx(V ). More precisely, we can �nd a

continuous map

ϕ : H/T (V )→ X ×H

commuting with the projections on X and such that

ρ ◦ ϕ = idH/T (V ).

Indeed, by de�nition, ρ splits locally. Thus, being U = {Ui}mi=1 a �nite open cover of X,

we can choose splittings ϕi over Ui for each i between 1 and m, both included. Thence,

we have

θij := ϕi − ϕj : H/T (V ) |Uij→ Uij × V,

where Uij := Ui ∩ Uj for all i and j between 1 and m, both included. Therefore, if

Σ = {σi}mi=1 is a partition of the unity subordinated to the open cover U, we de�ne

the map

θi :=
m∑
j=1

σjθij.

Consequently, not only θi is de�ned on Ui, but also ϕ = ϕi − θi is well-de�ned and

gives the required splitting. ♦

De�nition 4.25 (The generalized index of the Atiyah-Jänich Theorem). Let X be a

compact Hausdor� space and T : X → FH be a continuous map. In this situation,

we de�ne:

� a choice for T to be a closed �nite-codimensional subspace V of H that satis�es

the conditions of Theorem 4.23; and

� being V a choice for T ,
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indexT := [[X ×H/V ]]− [[H/T (V )]] ∈ K(X),

This rule de�nes the index map in Theorem 4.20. ♦

Remark 4.26 (The generalized index is well-de�ned). Let X be a compact Hausdor�

space and T : X → FH be a continuous map. First, we prove that the generalized

index of T de�ned above does not depend on the choice V for T . Indeed, let W be

another choice for T . Evidently, V ∩ W is also a choice for T . Therefore, we may

assume that W is a subspace of V . In this situation, we have the exact sequences of

vector bundles

0 X × V/W X ×H/W X ×H/V 0,

0 X × V/W H/T (W ) H/T (V ) 0.

Consequently,

[[X ×H/V ]]− [[X ×H/W ]] = [[X × V/W ]] = [[H/T (V )]]− [[H/T (W )]].

Thence,

indexT = [[X ×H/V ]]− [[H/T (V )]]

= [[X × V/W ]]

= [[X ×H/W ]]− [[H/T (W )]],

as claimed. Further, the generalized index is clearly functorial. Thus, if f : Y → X is

a continuous map, then

indexT◦f = K(f)(indexT ).

This follows from the fact that a choice V for T is also a choice for T ◦ f . Moreover,

let S : X → FH be a continuous map homotopic to T . Under these circumstances,

there exists a homotopy T : X × I → FH between T and S. Therefore, we have that

indexT ∈ K(X × I) restricts to indexT ∈ K(X × {0}) and to indexS ∈ K(X × {1}).

Since
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K(X × I) → K(X × {0}) ' K(X)

K(X × I) → K(X × {1}) ' K(X)

are isomorphisms,

index(T ) = index(S).

As a consequence,

index : [X,FH ] → K(X)

is well-de�ned. ♦

Lemma 4.27 (The generalized index presented in De�nition 4.25 is also a group

homomorphism). Let X be a compact Hausdor� space and T, S : X → FH be

continuous maps. Under these circumstances, the composition of T and S is de�ned

to be the continuous map

T ◦ S : X → FH ,

x 7→ Tx ◦ Sx.

We have

indexT◦S = indexT + indexS.

In particular, if T : X → FH is such that Tx ∈ FH is invertible for all x ∈ X, then

indexT−1 = −indexT , where

T−1 : X → FH ,

x 7→ T−1
x .

Proof. Let W be a choice for T . We may assume S(H) ⊆ W . Indeed, if it is not

the case, then we can replace S by the homotopic map πW ◦ S, where πW : H → H

is the projection onto W , without changing the index. In addition, let V be a choice

for S. The reader can prove that V is also a choice for T ◦ S. Therefore, we have the

exact sequence of vector bundles

0 W/S(V ) H/(T ◦ S)(V ) H/T (W ) 0.T

Consequently,
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[[H/(T ◦ S)(V )]] = [[W/S(V )]] + [[H/T (W )]].

Furthermore, we have

[[W/S(V )]] = [[H/S(V )]]− [[X ×H/W ]].

Hence,

indexT◦S = [[X ×H/V ]]− [[H/(T ◦ S)(V )]],

= [[X ×H/V ]]− [[W/S(V )]]− [[H/T (W )]]

= [[X ×H/V ]]− [[H/S(V )]] + [[X ×H/W ]]− [[H/T (W )]]

= indexS + indexT ,

as required.

Theorem 4.28 (An special exact sequence involving the generalized index map de�ned

above). Let X be a compact Hausdor� space. We have an exact sequence of groups and

group homomorphisms

[X,H ∗] [X,FH ] K(X) 0.index

Proof. Let T : X → FH be a continuous map of index zero. This means that, for any

choice V for T , we have

[[X ×H/V ]] = [[H/T (V )]].

Therefore, we have that there exists a trivial vector bundle P on X for which

(X × H/V ) ⊕ P and H/T (V ) ⊕ P are isomorphic. Equivalently, if we replace V by

one of its closed subspaces W such that dim(V/W ) = dimP (3), then we obtain as a

consequence

X ×H/W ' H/T (W ).

(3)This is possible because, once P has �nite dimension, we are allowed to choose dimP linearly
independent vectors in V . Thence, we can consider the subspace U of V generated by these vectors.
Consequently, it su�ces to set W := U⊥. Indeed, W is closed, once it is an orthogonal complement,
and the quotient space V/W is isomorphic to U . Therefore, this subspace of V has the same dimension
of P by construction.
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Indeed,

X ×H/W ' (X ×H/V )⊕ (X × V/W )

' (X ×H/V )⊕ P

' H/T (V )⊕ P

' H/T (V )⊕ (X × V/W )

' H/T (V )⊕ (X × T (V )/T (W ))

' H/T (W ).

Consequently, splitting

ρ : X ×H → H/T (W ) ' X ×H/W

as in Remark 4.24, we obtain a continuous map

ϕ : X ×H/W → X ×H

that is linear on the �bers and commutes with the projections onto X. Then, we have

the continuous map

Φ : X → L (H/W, H),

x 7→ Φx,

where

Φx[v] = (π ◦ ϕ)(x, [v])

for all [v] ∈ H/W , being π : X × H → H the natural projection onto the second

factor. As a consequence of this, it follows from the construction of the splitting in

question that the map

T + Φ : X → H ∗,

x 7→ Tx + Φx,

is continuous. Hence,
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T : X × I → FH ,

(x, t) 7→ T + tΦ,

is a homotopy of maps connecting T with T + Φ. This proves exactness in the middle

of the sequence in the statement. Thence, it only remains to show that the index is

surjective. With this purpose in mind, let E be a vector bundle on X. In addition,

let πx : V → V denote the projection onto the subspace corresponding to Ex for all

x ∈ X. We de�ne

S : X → FH⊗V ' FH ,

x 7→ S−1 ⊗ πx + idH ⊗ (1− πx),

where S−1 is the shift de�ned in the proof of Theorem 4.11. The reader can prove that

Sx is injective for all x ∈ X and

H ⊗ V/S(H ⊗ V ) ' E.

These facts imply

indexS = −[[E]].

Moreover, the constant map

k : X → FH ,

x 7→ Sk,

where Sk is also the shift de�ned in the proof of Theorem 4.11, has index [[k]] ∈ K(X).

Consequently,

index k◦S = [[k]]− [[E]]

because of Lemma 4.27. Therefore, since we have that every element of K(X) is of

the form [[k]] − [[E]], this shows that the index is surjective. The proof of the theorem

is then completed.

Ultimately, the Atiyah-Jänich Theorem (Theorem 4.20) follows from Theorems

4.28 and 4.29. This last fundamental result is named after Nicolaas Kuiper
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(1920-1994). In fact, Theorem 4.29 ensures that the exact sequence of Theorem 4.28

is a short exact sequence, which is equivalent to the generalized index map being

an isomorphism.

Theorem 4.29 (Kuiper's Theorem). The topological group H ∗ is contractible. As a

consequence, if X is a compact Hausdor� space, then we have that [X,H ∗] is the

trivial group.

Proof. The reader can �nd a complete proof of this result in [22, pp. 27-28]. This

proof is quite technical, involving notions such as partitions of the unity, nerve of

coverings, CW-complexes, et reliqua. The reader may skip it since its details are not

needed in this thesis.

Remark 4.30 (Hilbert bundles and its analogous K-Theory). Changing in De�nition C.1

the �nite-dimensional vector space V by a complex Hilbert space H, we obtain the

notion of Hilbert bundle. Using Kuiper's Theorem, one can prove that, if X is a

compact Hausdor� space, then every Hilbert bundle on X is trivial. In particular, if

we take the Grothendieck group of the monoid of isomorphism classes of Hilbert bundles

on X, then we obtain the trivial group. Therefore, we have that it is not interesting to

consider an in�nite-dimensional version of K-Theory through the obvious adaptation

of the �nite-dimensional case treated in Chapter 2. More details will be given in

Chapter 5. ♦
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Chapter 5

Twisted K-Theory

In this chapter, we close the text by putting together all of the theory studied

before in order to develop models of Twisted K-Theory. We begin by introducing

the Grothendieck group of twisted vector bundles as a model for �nite-order

Twisted K-Theory. Afterwards, we describe the in�nite-dimensional model, through

suitable bundles of Fredholm operators, that holds for twisting classes of any order.

Finally, we compare these two models in the �nite-order setting. We also consider

versions of the Thom isomorphisms in this framework. We used [4], [6, pp. 5-8, 30-36,

43-45, 53-54], [7, pp. 42-43] and [20].

5.1 Twisted vector bundles

In this section, we present the fundamental notion that one must know in order

to understand the �nite-dimensional model of Twisted K-Theory, which is the one

of twisted vector bundles. This concept has an obvious parallel with the one presented in

Appendix C. This parallel will become even more evident in the next sections.

We begin with the following notation that must be kept in mind until the end of

the chapter.

Notation 5.1 (Good covers and �ech cohomology). In this chapter, X always denotes

a paracompact Hausdor� space that admits a good cover U = {Ui}i∈I . We remind the

reader that U being a good cover means that it is an open cover for which every �nite

intersection
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Ui0 ··· in :=
n⋂
j=0

Uij

is contractible(1). We also extend to this chapter the conventions on �ech cohomology of

Notation 3.56. In particular:

� we denote by U(n) the sheaf of U(n)-valued continuous functions on X; and

� when n = 1, we denote by Čm(U,U(1)), Žm(U,U(1)) and Ȟm(U,U(1)) the

corresponding m-cochains, m-cocycles and m-cohomology classes, with respect to

the good cover U. ♦

De�nition 5.2 (Twisted vector bundle). Consider a 2-cochain

ζ := {ζijk}i,j,k∈I ∈ Č2(U, U(1)).

We say that an n-dimensional ζ-twisted vector bundle E on X is a collection of

n-dimensional trivial Hermitian vector bundles {πi : Ei → Ui}i∈I (see De�nition C.48)

and of unitary vector bundle isomorphisms {ϕij : Ei |Uij→ Ej |Uij}i,j∈I such that

the equality

ϕki |Ek|Uijk ◦ ϕjk |Ej |Uijk ◦ ϕij |Ei|Uijk = ζijk · idEi|Uijk (5.1)

holds for all i, j, k ∈ I. The notations used in this de�nition will be applied in the whole

chapter. ♦

Remark 5.3 (Ordinary vector bundles are twisted vector bundles up to identi�cation).

The following facts hold true.

� If E is an ordinary vector bundle, then we can equip it with an Hermitian product

by Theorem C.49. We choose a good cover U = {Ui}i∈I of X such that E |Ui is

trivial for all i ∈ I. Thence, E is a ζ-twisted vector bundle where ζijk = 1 for all

i, j, k ∈ I. Indeed, we set

(1)There exist paracompact Hausdor� spaces that do not admit good covers. For example, every space
that is not locally contractible, such as the Hawaiian earring, does not admit a good cover. Nevertheless,
it is proved in [7, pp. 42-43] that every smooth manifold admits a good cover. Moreover, it is proved in
[7, p. 43] that the set of good covers of a smooth manifold is co�nal in the set of all open covers. This
means that every open cover admits a re�nement that is a good cover. We shall admit that this property
holds for X when necessary.
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Ei := E |Ui

for all i ∈ I and

ϕij := idEi|Uij : Ei |Uij→ Ej |Uij

for all i, j ∈ I.

� If E is a ζ-twisted vector bundle on X such that ζijk = 1 for all i, j, k ∈ I, then

the quotient of the disjoint union
⊔
i∈I Ei by the equivalence relation that identi�es

v with ϕij(v) for all v ∈ Ei |Uij and all i, j ∈ I is an ordinary vector bundle.

These facts show the relation between ordinary and twisted vector bundles. In fact, they

show that twisted vector bundles generalize ordinary vector bundles, as one would naturally

expect. ♦

Lemma 5.4 (On the 2-cochain of a ζ-twisted vector bundle). In a ζ-twisted vector

bundle E, we have that ζ = {ζijk}i,j,k∈I is necessarily a 2-cocycle. As a consequence,

the cohomology class

[ζ] ∈ Ȟ2(U, U(1)) ' H3(X, Z)

is well-de�ned.

Proof. Leaving some restrictions implicit, we have

(δ̌2ζ)ijkl · idEi|Uijkl = (ζjkl ζ
−1
ikl ζijl ζ

−1
ijk) · idEi|Uijkl

= (ζjkl ζ
−1
ikl ζijl) · (ζ

−1
ijk · idEi|Uijkl )

= (ζjkl ζ
−1
ikl ζijl) · (ϕji ◦ ϕkj ◦ ϕik)

= (ζjkl ζ
−1
ikl ) · (ζijl · idEi|Uijkl ) ◦ (ϕji ◦ ϕkj ◦ ϕik)

= (ζjkl ζ
−1
ikl ) · (ϕli ◦ ϕjl ◦ ϕij) ◦ (ϕji ◦ ϕkj ◦ ϕik)

= ζjkl · (ζ−1
ikl · idEi|Uijkl ) ◦ (ϕli ◦ ϕjl ◦ ϕij) ◦ (ϕji ◦ ϕkj ◦ ϕik)

= ζjkl · (ϕki ◦ ϕlk ◦ ϕil) ◦ (ϕli ◦ ϕjl ◦ ϕij) ◦ (ϕji ◦ ϕkj ◦ ϕik)

= ϕki ◦ ϕlk ◦ ϕjl ◦ (ζjkl · idEj |Uijkl ) ◦ ϕkj ◦ ϕik

= ϕki ◦ ϕlk ◦ ϕjl ◦ (ϕlj ◦ ϕkl ◦ ϕjk) ◦ ϕkj ◦ ϕik

= 1 · idEi|Uijkl
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for all i, j, k, l ∈ I. It follows from the de�nitions of �ech cohomology that [ζ]

is well-de�ned. Additionally, the reader may recall that Ȟ2(U, U(1)) is isomorphic

to H3(X,Z) from the end of the proof of Theorem 3.76. This �nishes the proof of

the lemma.

De�nition 5.5 (Morphisms of twisted vector bundles). Let

E = ({πEi : Ei → Ui}i∈I , {ϕij : Ei |Uij→ Ej |Uij}i,j∈I) and

F = ({πFi : Fi → Ui}i∈I , {ψij : Fi |Uij→ Fj |Uij}i,j∈I)

be ζ-twisted vector bundles. A morphism of ζ-twisted vector bundles from E to F

is a collection of vector bundle morphisms

f = {fi : Ei → Fi}i∈I

such that the diagram

Ei |Uij Fi |Uij

Ej |Uij Fj |Uij

ϕij

fi|Ei|Uij

ψij

fj |Ej |Uij

is commutative for all i, j ∈ I. We say that f : E → F is a unitary morphism if

fi : Ei → Fi is unitary for each i ∈ I. In addition, an isomorphism is an invertible

morphism, which is equivalent to fi : Ei → Fi being a vector bundle isomorphism for

all i ∈ I. We denote by VBζ(X) the set of isomorphism classes of ζ-twisted

vector bundles on X. Finally, the category of ζ-twisted vector bundles TVectBdlζX

is established as in De�nition C.6. ♦

Now we approach twisted vector bundles as we approached ordinary vector

bundles through nonabelian �ech cohomology in Appendix C. Indeed, the following

de�nition generalizes to the nonabelian setting the basic tools of �ech cohomology

in low degree.
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De�nition 5.6 (Twisted �rst degree nonabelian �ech cohomology). We have that a �ech

0-cochain of the sheaf U(n) is a collection of continuous functions

{gi : Ui → U(n)}i∈I .

Similarly, we have that a �ech 1-cochain of the sheaf U(n) is a collection of continuous

functions

{gij : Uij → U(n)}i,j∈I .

We denote the sets of 0-cochains and 1-cochains of U(n) by Č0(U, U(n)) and Č1(U, U(n)),

respectively. For ζ = {ζijk}i,j,k∈I ∈ Č2(U, U(1)), a 1-cochain {gij}i,j∈I ∈ Č1(U, U(n))

is a ζ-cocycle provided that

gki gjk gij = ζijk · In

for all i, j, k ∈ I. We denote the set of ζ-cocycles by Ž1
ζ (U, U(n)). We have an action of

0-cochains on 1-cochains de�ned by

· : Č0(U, U(n))× Č1(U, U(n)) → Č1(U, U(n)),

({gi}i∈I , {gij}i,j∈I) 7→ {gi gij g−1
j }i,j∈I .

The reader can readily prove that this action determines an equivalence relation on

Č1(U, U(n)). It can also be proved that this relation restricts to an equivalence

relation on Ž1
ζ (U, U(n)). The quotient of Ž1

ζ (U, U(n)) by the action of 0-cochains, which

we hereafter denote by

Ȟ1
ζ (U, U(n)),

is the ζ-twisted cohomology set of degree 1 and rank n. This �nishes the construction

of twisted nonabelian �ech cohomology. ♦

Remark 5.7 (On the twisted �rst degree nonabelian �ech cohomology). Because of

Remark 5.3, when ζijk = 1 for all i, j, k ∈ I, De�nition 5.6 becomes the ordinary �rst

degree nonabelian �ech cohomology of De�nition C.27. It classi�es the isomorphism

classes of n-dimensional ordinary vector bundles on X (Remark C.29). We can prove

that the twisted �rst degree nonabelian �ech cohomology plays the same role for twisted

vector bundles. In fact, let
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ζ = {ζijk}i,j,k∈I ∈ Č2(U, U(1)).

In addition, consider

E = ({πi : Ei → Ui}i∈I , {ϕij : Ei |Uij→ Ej |Uij}i,j∈I)

to be an n-dimensional ζ-twisted vector bundle. For each i ∈ I, we choose n pointwise

linearly independent local sections s1,i, · · · , sn,i : Ui → Ei of unit norm, determining vector

bundle isomorphisms

ξi : Ei → Ui × Cn,
n∑
j=1

λjsj,i(x) 7→ (x, (λ1, · · · , λn)).

We have that the isomorphisms ϕij : Ei |Uij→ Ej |Uij determine local transition functions

gij : Uij → U(n) such that

ϕij(ξ
−1
i (x, λ)) = ξ−1

j (x, gij(x) · λ)

for all x ∈ Uij and all λ ∈ Cn. It follows from this equation that Equation (5.1) is

equivalent to

gki gjk gij = ζijk · In

for all i, j, k ∈ I. As a consequence, we have {gij}i,j∈I ∈ Ž1
ζ (U, U(n)). Finally, it

is straightforward to verify, as for ordinary vector bundles, that the cohomology class

[{gij}i,j∈I ] ∈ Ȟ1
ζ (U, U(n)) only depends on the isomorphism class of E. Consequently,

we have that

VBζ(X) → Ȟ1
ζ (U, U(n)),

[E] 7→ [{gij}i,j∈I ],

is an isomorphism, as we wished. ♦

Theorem 5.8 (On the cohomology class of Lemma 5.4). In an n-dimensional ζ-twisted

vector bundle, it is a torsion class

[ζ] ∈ Ȟ2(U, U(1)).
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Proof. Here we use the notation of Remark 5.7. In fact, computing the determinants,

we obtain

det(gki) det(gjk) det(gij) = det(ζijk · In) = ζnijk

for all i, j, k ∈ I. Therefore, since det(gij) is a U(1)-valued function, it follows that

[ζ]n = [{ζnijk}i,j,k∈I ] ∈ Ȟ2(U, U(1))

is a trivial cocycle. In particular, note that the order of [ζ] divides n. This �nishes

the proof of the theorem.

Theorem 5.9 (Dependence on the cocycle). Suppose that ζ, ξ ∈ Ž2(U, U(1)) are

cohomologous cocycles. Then, let η = {ηij}i,j∈I be such that ξ = ζ · δ̌1η. We have

that the map

Φη : Ȟ1
ζ (U, U(n)) → Ȟ1

ξ (U, U(n)),

[{gij}i,j∈I ] 7→ [{gij · ηij}i,j∈I ],

is an isomorphism.

Proof. The reader can readily prove that Ψη is the two-sided inverse of Φη, where

Ψη : Ȟ1
ξ (U, U(n)) → Ȟ1

ζ (U, U(n)),

[{hij}i,j∈I ] 7→ [{hij · η−1
ij }i,j∈I ].

This �nishes the proof of the theorem.

Remark 5.10 (On the preceding result). Because of Remark 5.7, Theorem 5.9 can be

equivalently stated as

Φη : VBζ(X) → VBξ(X),

[{Ei}i∈I , {ϕij}i,j∈I ] 7→ [{Ei}i∈I , {ϕij · ηij}i,j∈I ],

being an isomorphism. This approach shows that the set VBζ(X) only depends on

[ζ] ∈ Ȟ2(U, U(1)). Nevertheless, this dependence is non-canonical since Φη depends
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on η by construction. More precisely, the choice of η is unique up to a cocycle and

the equality Φη = Φχ holds if and only if η−1χ is a coboundary. Therefore, the set of

isomorphisms of the form Φη is a Ȟ1(U, U(1))-torsor. In fact, since Ȟ1(U, U(1)) is

isomorphic to H2(X, Z), the �rst Chern class implies that the set of isomorphisms of

the form Φη is a PicX-torsor, the latter corresponding to the group of ordinary line

bundles on X (see Corollary C.45). In particular, if H2(X, Z) is trivial, then we can

de�ne VB[ζ](X) canonically. In general, VBζ(X) depends on the cocycle ζ up to the

tensor product by a line bundle. ♦

De�nition 5.11 (Pullback of a cocycle). Let V = {Vα}α∈J be a good cover that re�nes

U = {Ui}i∈I . By de�nition, there exists a function φ : J → I such that Vα ⊆ Uφ(α)

for every α ∈ J . Given a cocycle ζ = {ζijk}i,j,k∈I based on U, we de�ne its pullback

through φ to be the cocycle based on V

φ∗ζ = {ζ̃αβγ}α,β,γ∈J

where

ζ̃αβγ := ζφ(α)φ(β)φ(γ) |Vαβγ

for all α, β, γ ∈ J . ♦

Remark 5.12 (On the pullback of cocycles). Here we use the notation of De�nition 5.11.

We have that

Φφ : VBζ(X) → VBφ∗ζ(X),

[{Ei}i∈I , {ϕij}i,j∈I ] 7→ [{Ẽα}α∈J , {ϕ̃αβ}α,β∈J ],

where

Ẽα := Eφ(α)|Vα and

ϕ̃αβ := ϕφ(α)φ(β)|Vαβ

for all α, β ∈ J , is an isomorphism. Furthermore, in an analogous way, one can de�ne

an isomorphism

Φφ : Ȟ1
ζ (U, U(n)) → Ȟ1

φ∗ζ(V, U(n)).
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Such isomorphisms depend on the function φ, which shows that they are non-canonical

in general. Nevertheless, since the cohomology class represented by φ∗ζ does not

depend on φ, the isomorphism Φφ is canonical when H2(X, Z) is trivial. In this case,

the sets Ȟ1
[ζ](X, U(n)) are well-de�ned and

VB[ζ](X) '
⊔
n∈N

Ȟ1
[ζ](X, U(n))

canonically. ♦

De�nition 5.13 (Non-integral twisted vector bundles). Let ζ be a constant cocycle,

that is, let ζ ∈ Ž2(U, U(1)). We say that a ζ-twisted vector bundle is a non-integral

vector bundle. We denote the set of non-integral vector bundles with twisting class ζ by

NIVBζ(X). ♦

Remark 5.14 (On non-integral vector bundles). Let ζ ∈ Ž2(U, U(1)). We have that the

image of [ζ] in the cohomology of U(1) is always a torsion class. However, the image

of [ζ] in the cohomology of U(1) is not necessarily torsion. In fact, it is torsion if

the transition functions can be chosen constant, which easily follows by adapting the

proof of Theorem 5.8. In this case, we have isomorphisms analogous to the ones of

Theorem 5.9 and Remark 5.10, but with respect to a U(1)-cochain η. Furthermore, it

follows that the set of isomorphisms of the form Φη is a torsor over the image of the

natural map

Ȟ1(U, U(1)) → Ȟ1(U, U(1)),

where

Ȟ1(U, U(1)) ' H1(X, R/Z) and Ȟ1(U, U(1)) ' H2(X, Z).

One can prove that this image is canonically isomorphic to TorH2(X, Z). Therefore,

if TorH2(X, Z) is trivial, then NIVB[ζ](X) is canonically de�ned. In particular,

note that this conclusion follows if X is simply connected. In fact, if X is simply

connected, then H1(X, Z) is trivial. Hence, since H1(X, R/Z) is isomorphic to the group

of homomorphisms from H1(X,Z) into R/Z by the Universal Coe�cient Theorem, we

are done here. ♦



5. Twisted K-Theory 258

Notation 5.15 (The groups of roots of unity). Let r be a non-zero natural number.

We denote by Γr the subgroup of U(1) formed by rth roots of unity. We have that Γr is

the image of the group embedding

Zr → U(1),

a 7→ e2πia
r .

In addition, we set

Γ∞ :=
⋃

r∈N−{0}

Γr and Z∞ := Q.

We have that Γ∞ is the image of the group embedding

Z∞ → U(1),

q 7→ e2πiq. ♦

De�nition 5.16 (More non-integral twisted vector bundles). Let r be a non-zero natural

number or ∞. We say that a Zr-non-integral vector bundle is a ζ-twisted vector

bundle where ζ ∈ Ž2(U, Γr). We denote the set of Zr-non-integral vector bundles with

twisting class ζ by NIVBrζ(X). ♦

Remark 5.17 (On the preceding non-integral vector bundles). Let r be a non-zero natural

number or ∞. The set of isomorphisms of the form Φη is a torsor over the image of the

natural map

Ȟ1(U, Zr) → Ȟ1(U, U(1)),

where

Ȟ1(U, Zr) ' Hom(H1(X,Z), Zr) and Ȟ1(U, U(1)) ' H2(X, Z).

This image is canonically isomorphic to the subgroup of TorH2(X, Z) formed by classes

of order r, that we denote by TorrH2(X, Z). Therefore, if TorrH2(X, Z) is trivial,

then NIVBr[ζ](X) is canonically de�ned. As before, this conclusion holds if X is simply

connected. ♦
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5.2 Absolute Twisted K-Theory

In this section, we de�ne the most elementary notions of Twisted K-Theory, namely,

the absolute Twisted K-Theory group and the induced group homomorphisms. In fact,

any general de�nition of Twisted K-theory involves some in�nite-dimensional geometric

objects, like projective Hilbert bundles. Nevertheless, this is not necessary when the

twisting class has �nite order, as we summarize below. We begin with the following

de�nition.

De�nition 5.18 (The absolute Twisted K-Theory group). Let X be a paracompact

Hausdor� space as in Notation 5.1. In addition, let E = ({Ei}i∈I , {ϕij}i,j∈I) and

F = ({Fi}i∈I , {ψij}i,j∈I) be ζ-twisted vector bundles on X, with ζ ∈ Ž2(U, U(1)).

We then de�ne the direct sum of E and F as being the ζ-twisted vector bundle on X

given by

E ⊕ F := ({Ei ⊕ Fi}i∈I , {ϕij ⊕ ψij}i,j∈I).

This direct sum induces

⊕ : VBζ(X)× VBζ(X) → VBζ(X),

([E], [F ]) 7→ [E ⊕ F ].

We have that the set VBζ(X), endowed with this direct sum operation, is an abelian

semigroup. We then de�ne its corresponding Grothendieck group, which we hereafter

call the ζ-twisted absolute K-theory group of X. We shall denote this group simply

by Kζ(X). ♦

De�nition 5.19 (Pullback in absolute Twisted K-Theory). Let f : X → Y be a

continuous map between paracompact Hausdor� spaces. We suppose that there exists a

good cover U = {Ui}i∈I of Y for which

f ∗U := {f−1(Ui)}i∈I

is a good cover of X. In this situation, being a 2-cocycle ζ = {ζijk}i∈I ∈ Ž2(U, U(1)),

we de�ne

f ∗ζ := {ζijk ◦ f}i∈I ∈ Ž2(f ∗U, U(1)).
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Moreover, being E = ({Ei}i∈I , {ϕij}i,j∈I) a ζ-twisted vector bundle, we de�ne the

f ∗ζ-twisted vector bundle

f ∗ζE := ({f ∗Ei}i∈I , {f ∗ϕij}i,j∈I),

where f ∗Ei and f ∗ϕij are the usual pullbacks of Ei and ϕij through f , respectively.

Analogously, one can de�ne the pullback of a morphism of twisted vector bundles.

Finally, we de�ne

Kζ(f) : Kζ(Y ) → Kf∗ζ(X),

[[E]]− [[F ]] 7→ [[f ∗ζE]]− [[f ∗ζ F ]],

which is hereafter called the pullback of f in absolute Twisted K-Theory, as one

could expect. ♦

Remark 5.20 (On the absolute Twisted K-Theory data presented above). The following

facts hold true for ζ ∈ Ž2(U, U(1)).

� Being X a paracompact Hausdor� space and U = {Ui}i∈I any good cover of X,

we have

Kζ(idX) = idKζ(X).

� Being f : X → Y and g : Y → Z continuous functions between paracompact

Hausdor� spaces for which there exists a good cover U = {Ui}i∈I of Z such that

g∗U and f ∗g∗U are good covers of Y and X, respectively. Under these conditions,

we have

Kζ(g ◦ f) = Kg∗ζ(f) ◦ Kζ(g).

Furthermore, one can prove that the pullback presented in the preceding de�nition is

homotopy invariant. ♦

Remark 5.21 (An interesting fact in Ordinary K-Theory). Let n be a non-zero natural

number and

Tn :=
n∏
j=1

S1
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be the n-dimensional torus. In addition, we consider the natural embeddings de�ned

supposing 1 ∈ S1 as a marked point

ij : Tn−1 ×X → Tn ×X

for j between 1 and n. The reader can prove, using induction, that we have a canonical

isomorphism

K−n(X) '
n⋂
j=1

KerK(ij).

This intersection is a subgroup of K(Tn × X). The following de�nition is enlightened

by these facts. ♦

De�nition 5.22 (Absolute Twisted K-Theory groups of negative degree). Here we use

the notations of Remark 5.21. Fixing a good cover of S1 such as the one in Figure 5.1,

we easily obtain a good cover of Tn ×X through Cartesian product. We also consider the

natural projection πn : Tn × X → X. Under these circumstances, for ζ ∈ Ž2(U, U(1)),

we de�ne

K−nζ (X) :=
n⋂
j=1

KerKπ∗nζ(ij),

which is the subgroup of Kπ∗nζ(T
n × X) that we call nth negative degree absolute

Twisted K-Theory group of X. ♦

Figure 5.1: The open arcs of circle drawn in blue projects radially to the internal circle.
The projected sets form a good cover of S1. There exists no good cover of S1 with only
two open subsets.
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De�nition 5.23 (Negative degree pullback in absolute Twisted K-Theory). Let n be a

natural number and f : X → Y be a continuous map between paracompact Hausdor�

spaces as in De�nition 5.19. In addition, let πn : Tn × Y → Y be the natural projection.

We de�ne

K−nζ (f) : K−nζ (Y ) → K−nf∗ζ(X)

to be the obvious restriction of

Kπ∗nζ(idTn × f) : Kπ∗nζ(T
n × Y ) → K(idTn×f)∗π∗nζ(T

n ×X).

This new homomorphism is the nth negative degree pullback of f in absolute

Twisted K-Theory. ♦

Remark 5.24 (Bott Periodicity Theorem in Twisted K-Theory). Before extending to

positive degrees the Twisted K-Theory data presented above, we have to introduce the

Bott Periodicity Theorem. For this, we need a multiplicative structure in Twisted

K-Theory. Being E = ({Ei}i∈I , {ϕij}i,j∈I) a ζ-twisted vector bundle on X and

F = ({Fi}i∈I , {ψij}i,j∈I) a ξ-twisted vector bundle on X, with ζ, ξ ∈ Ž2(U, U(1)),

we de�ne the tensor product of E and F as being the ζξ-twisted vector bundle on X

given by

E ⊗ F := ({Ei ⊗ Fi}i∈I , {ϕij ⊗ ψij}i,j∈I).

This tensor product induces

� : VBζ(X) ⊗ VBξ(Y ) → VB(π∗Xζ)(π
∗
Y ξ)

(X × Y ),

[E]⊗ [F ] 7→ [(πX)∗ζE ⊗ (πY )∗ξF ],

where πX : X × Y → X and πY : X × Y → Y are the natural projections. Considering

the corresponding K-Theory classes, we obtain

Kζ(X) ⊗ Kξ(Y ) → K(π∗Xζ)(π
∗
Y ξ)

(X × Y ).

From De�nition 5.22 and the natural homeomorphism between (Tn×X)× (Tm× Y ) and

Tn+m ×X × Y , we obtain
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K−nζ (X) ⊗ K−mξ (Y ) → K−n−m(π∗Xζ)(π
∗
Y ξ)

(X × Y ).

Composing this last map with the pullback though the diagonal map ∆ : X × X → X,

we obtain

K−nζ (X) ⊗ K−mξ (X) → K−n−mζξ (X).

Now we establish the Bott Periodicity Theorem. For this, we consider the dual of

the tautological line bundle of P1(C), whose pullback through the map p : T2 → S2

pictured in Figure 5.2 is a line bundle η on the torus. The result in question ensures

that

Bn : K−nζ (X) → K−n−2
ζ (X),

α 7→ (η − 1)α,

is a group isomorphism for all n ∈ N. This fact is the one that justi�es the following

de�nition. ♦

p

T2 S2

Figure 5.2: The map p : T2 → S2 acts as the identity on the identi�cation squares of
T2 and S2.

De�nition 5.25 (The absolute Twisted K-Theory groups and pullbacks of positive

degree). Let n be a natural number and ζ ∈ Ž2(U, U(1)). The nth positive degree

absolute Twisted K-Theory group X, which is hereafter denoted by Kn
ζ (X),

is de�ned as the negative K-Theory group K−nζ (X). In addition, being f : X → Y

a continuous map between paracompact Hausdor� spaces as in De�nition 5.19, we

de�ne the nth positive degree pullback of f in absolute Twisted K-Theory,

and denote it by Kn
ζ (f) : Kn

ζ (Y ) → Kn
f∗ζ(X), to be the nth negative degree pullback

K−nζ (f) : K−nζ (Y )→ K−nf∗ζ(X). ♦
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Remark 5.26 (Dependence on the cocycle). Suppose that ζ, ξ ∈ Ž2(U, U(1)) are

cohomologous cocycles. Then, let η = {ηij}i,j∈I be such that ξ = ζ · δ̌1η. We have

that the isomorphism in Remark 5.10 extends to the corresponding Grothendieck groups,

de�ning the isomorphism

Φη : Kζ(X) → Kξ(X).

This shows that the isomorphism class of Kζ(X) only depends on [ζ]. As before,

we have that this dependence is non-canonical. In fact, the set of isomorphisms of

the form Φη is a torsor over Ȟ1(U, U(1)) ' H2(X,Z). In particular, if H2(X,Z)

is trivial, then K[ζ](X) is canonically de�ned and does not depend on the cover.

Finally, note that we are free to choose ζ ∈ Ž2(U, U(1)) or ζ ∈ Ž2(U, Γr). Mutatis

mutandis, all of the previous considerations keep on holding. ♦

5.3 Relative and Reduced Twisted K-Theory

In this section, we de�ne the last fundamental tools of Twisted K-Theory,

namely, the reduced and relative Twisted K-Theory groups and homomorphisms. The

ideas presented here descend directly from Section 2.9. We begin with the following

de�nition.

De�nition 5.27 (Reduced and relative Twisted K-Theory groups). Let A be a subspace

of a paracompact Hausdor� space X for which there exists a good cover U = {Ui}i∈I
such that

U |A := {Ui ∩ A}i∈I

is a good cover of A. In addition, let i : A → X be the inclusion and ζ ∈ Ž2(U, U(1)).

We de�ne

i∗ζ ∈ Ž2(U |A, U(1)).

We denote by Lζ(X,A) the set of triples (E1, E0, α), where E1 and E0 are ζ-twisted

vector bundles on X and α : E1 |A → E0 |A is an isomorphism of i∗ζ-twisted

vector bundles. Two triples (E1, E0, α) and (F1, F0, β) are said to be isomorphic if

there exist isomorphisms of ζ-twisted vector bundles f1 : E1 → F1 and f0 : E0 → F0 such

that the diagram
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E1 |A E0 |A

F1 |A F0 |A

α

f1|A f0|A

β

is commutative. In this case, we write

(E1, E0, α) ' (F1, F0, β).

Furthermore, we de�ne

⊕ : Lζ(X, A)× Lζ(X, A) → Lζ(X, A),

((E1, E0, α), (F1, F0, β)) 7→ (E1 ⊕ F1, E0 ⊕ F0, α⊕ β).

A triple of the form (E,E, idE|A) is said to be an elementary triple. Furthermore, we

say that two triples (E1, E0, α) and (F1, F0, β) are equivalent if and only if there exist

elementary triples

(G, G, idG|A) and (H, H, idH|A)

such that

(E1, E0, α) ⊕ (G, G, idG|A) ' (F1, F0, β) ⊕ (H, H, idH|A).

This is an equivalence relation on Lζ(X,A). The relative Twisted K-Theory group

of the pair (X,A), which we denote by Kζ(X,A), is the quotient of Lζ(X,A) by this

equivalence relation. Moreover, when A contains a single point x0 ∈ X, we de�ne the

reduced Twisted K-Theory group of (X, x0) as

K̃ζ(X, x0) := Kζ(X,A)

Since the reduced groups are special cases of the relative ones, we concentrate on the

relative setting henceforth. ♦
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Remark 5.28 (On the preceding de�nition). Here we use the notation of De�nition 5.27.

We have that Kζ(X,A) is an abelian group since its neutral elemental is the class of any

elementary triple and

−[E1, E0, α] = [E0, E1, α
−1].

These facts can be easily proven by adapting the proof of Theorem 2.62. Additionally,

when A is empty, we recover the usual group Kζ(X) by identifying [E1, E0] with

[[E0]] − [[E1]]. Once and again, the reader can prove this claim by adapting the proof

of Theorem 2.63. ♦

De�nition 5.29 (Pullback in relative Twisted K-Theory). Let f : (X,A) → (Y,B) be

a map of pairs between paracompact Hausdor� spaces for which there exists a good

cover U of Y such that U |B is a good cover of B, f ∗U is a good cover of X and f ∗U |A
is a good cover of A. Under these circumstances, with ζ ∈ Ž2(U, U(1)), we de�ne the

group homomorphism

Kζ(f) : Kζ(Y, B) → Kf∗ζ(X, A),

[E1, E0, α] 7→ [f ∗ζE1, f
∗
ζE0, f

∗
ζ α].

This new map is hereafter called the pullback of f in relative Twisted K-Theory,

as one could expect. ♦

De�nition 5.30 (Relative Twisted K-Theory groups and homomorphisms of all degrees).

The extension of relative groups and homomorphisms to all degrees is analogous to the

one of Section 5.2. In particular:

� considering the natural embeddings

ij : (Tn−1 ×X, Tn−1 × A) → (Tn ×X, Tn × A)

for j between 1 and b, both included, we set

K−nζ (X,A) :=
n⋂
j=1

KerKπ∗nζ(ij),

which is the subgroup of Kπ∗nζ(T
n ×X, Tn × A), where
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πn : (Tn ×X, Tn × A) → (X, A)

is the natural projection, that we hereafter call nth negative degree relative

Twisted K-Theory group of X; and

� we have a natural product

Kn
ζ (X)×Km

ξ (X, A) → Kn+m
ζξ (X, A),

[[E]] ⊗ [F1, F0, α] 7→ [E ⊗ F1, E ⊗ F0, idE|A ⊗ α].

Moreover, the Bott periodicity morphism

Bn : K−nζ (X, A) → K−n−2
ζ (X, A),

α 7→ (η − 1)α,

is well-de�ned. Thus, we de�ne the nth positive degree relative Twisted

K-Theory group X, which is hereafter denoted by Kn
ζ (X,A), as the negative

K-Theory group K−nζ (X,A). ♦

Remark 5.31 (Dependence on the cocycle). We have that the isomorphism presented in

Remark 5.10 extends to the relative setting of Twisted K-Theory. In fact, it su�ces to

apply the isomorphism in question to both E1 and E0 in the triple (E1, E0, α). Hence,

the isomorphism class of Kn
ζ (X,A) only depends on [ζ]. In particular, if H2(X,Z) is

trivial, then Kn
[ζ](X, Y ) is canonically de�ned. The reader can extend this reasoning for

ζ ∈ Ž2(U, U(1)) or ζ ∈ Ž2(U, Γr). ♦

5.4 Compactly-supported Twisted K-Theory

In this section, we establish the compactly-supported Twisted K-Theory groups.

In addition, we set induced homomorphisms of open embeddings in this framework.

This is mainly done because these compactly-supported groups are essential in the

next section to de�ne the Thom isomorphisms in Twisted K-Theory. We begin with the

following notation.
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Notation 5.32 (A special di�erence of subspaces). In this section, X is always a

locally compact space(2). In this situation, given a compact subset K of X, we de�ne

X \\ K as the closure of X − K in X. Equivalently, X \\ K is the complement of the

interior of K in X. ♦

De�nition 5.33 (Compactly-supported Twisted K-Theory groups). Let n be an integer

number and ζ ∈ Ž2(U, U(1)). We give the following de�nitions.

� A compact subspace K of X is U-compact if U |X\\K is a good cover of X \\ K.

The set formed by the U-compact subspaces of X is denoted by KU(X). This set

is easily proved to be a directed set with respect to the partial order given by

inclusion. Moreover, we shall assume that the good cover U of X is re�ned enough

so that

X =
⋃

K ∈KU(X)

K.

� The nth compactly-supported Twisted K-Theory group of X, which is

denoted by Kn
ζ, c(X), is the direct limit

Kn
ζ, c(X) := lim

−→ K
Kn
ζ (X,X \\K)

of the direct system An
X,U, ζ formed by KU(X), (Kn

ζ (X,X \\ K))K∈KU(X) and

(Kn
ζ i
X
KL : Kn

ζ (X,X \\ K) → Kn
ζ (X,X \\ L))K,L∈KU(X). Here Kn

ζ i
X
KL coincides

with the induced homomorphism of the inclusion iXKL : (X,X \\ L) → (X,X \\ K)

if K is contained in L, and coincides with the trivial homomorphism otherwise.

This direct limit is equipped with the family of morphisms of abelian groups

(ιnK : Kn
ζ (X,X \\K)→ Kn

ζ, c(X))K∈KU(X).

(2)In this chapter, X is always a paracompact Hausdor� space. Therefore, when we require X to be
locally compact, we are restricting X to a smaller class of topological spaces. Indeed, we remind the
reader that:

� there are examples of locally compact Hausdor� spaces that are not paracompact. In fact, there
are examples of locally compact Hausdor� spaces that are not even normal. One of them is the
deleted Tychono� plank; and

� there are examples of paracompact Hausdor� spaces that are not locally compact. One of them is
the Sorgenfrey line. Nevertheless, every second countable Hausdor� space that is locally compact
is also paracompact.



5. Twisted K-Theory 269

An element of Kn
ζ, c(X) is an equivalence class [α] where α ∈ Kn

ζ (X,X \\ K) for some

K ∈ KU(X). Moreover, [α], [β] ∈ Kn
ζ, c(X) are equal, where α ∈ Kn

ζ (X,X \\ K) and

β ∈ Kn
ζ (X,X \\ L) with K,L ∈ KU(X), if and only if there exists M ∈ KU(X) for which

K ⊆M , L ⊆M and Kn
ζ i
X
KM(α) = Kn

ζ i
X
LM(β). ♦

De�nition 5.34 (Compactly-supported Twisted K-Theory homomorphisms). Let n be

an integer number and f : X → Y be an open embedding for which there exists a good

cover U of Y such that f ∗U is a good cover of X. For any f ∗U-compact subset K of X,

from the embedding of pairs fK : (X,X \\ K) → (Y, Y \\ f(K)), we obtain the induced

morphism

Kn
ζ (fK) : Kn

ζ (Y, Y \\ f(K)) → Kn
ζ (X,X \\K).

This map is an excision isomorphism. Furthermore, if K ⊆ L with K,L ∈ Kf∗U(X),

then the diagram

Kn
ζ (X, X \\K) Kn

ζ (Y, Y \\ f(K))

Kn
ζ (X, X \\ L) Kn

ζ (Y, Y \\ f(L))

Kn
ζ (fK)−1

Kn
ζ i
X
KL

Kn
ζ i
Y
f(K)f(L)

Kn
ζ (fL)−1

is commutative. Therefore, we obtain an induced morphism between the direct limits,

which we denote by Kn
ζ, c(f) : Kn

ζ, c(X)→ Kn
ζ, c(Y ). We call Kn

ζ, c(f) the nth compactly-

supported induced homomorphism in Twisted K-Theory. This construction turns

Kn
ζ, c into a covariant functor. ♦

Remark 5.35 (Dependence on the cocycle). The isomorphism of Remark 5.10 extended

to relative Twisted K-Theory induces an isomorphism between the compactly-supported

groups. Thence, the isomorphism class of Kn
ζ, c(X) only depends on [ζ]. In particular,

if H2(X,Z) is trivial, then Kn
[ζ], c(X) is canonically de�ned. The reader can extend this

reasoning for ζ ∈ Ž2(U, U(1)) or ζ ∈ Ž2(U, Γr). ♦
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Remark 5.36 (The natural multiplicative structures on the framework of compactly-

supported Twisted K-Theory). Let m and n be integer numbers and ζ, ξ ∈ Ž2(U, U(1)).

We have the product

Km
ζ (X) ⊗ Kn

ξ, c(X) → Km+n
ζξ, c (X),

α⊗ [β] 7→ [α · β],

where α · β is an instance of Km
ζ (X) ⊗Kn

ξ (X,X \\K) → Km+n
ζξ (X,X \\K). Moreover,

we have the product

Km
ζ, c(X) ⊗ Kn

ξ, c(X) → Km+n
ζξ, c (X),

[α]⊗ [β] 7→ [α · β],

where α · β is an instance of Km
ζ (X,X \\ K) ⊗ Kn

ξ (X,X \\ K) → Km+n
ζξ (X,X \\ K).

These are natural products in the framework of compactly-supported Twisted K-Theory,

as desired. ♦

Theorem 5.37 (Real integration). Let n be an integer number. We have the canonical

isomorphism ∫
R

: Kn
ζ, c(R×X) → Kn−1

ζ, c (X),

which is the induced homomorphism of the open embedding i : R × X → S1 × X de�ned

by the natural map R→ R+ ≈ S1.

Proof. We have

Kn
ζ, c(R×X) = lim

−→ m∈N,K∈KU(X)
Kn
ζ ((R×X), (R×X) \\ i([−m,m]×K))

because all the elements [−m,m] × K, where m ∈ N and K ∈ KU(X), form a

co�nal subset of Ki∗U(R × X). We have that the right-hand side of the preceding

equation is the group of compactly-supported classes in S1 ×X relative to {∞} ×X(3).

In turn, such a group is the kernel of Kn
ζ, c(i∞) : Kn

ζ, c(S1 × X) → Kn
ζ, c(X), which is

exactly Kn−1
ζ,c (X), where i∞ : X → X × S1, x 7→ (x, ∞). This �nishes the proof of

the theorem.

(3)Indeed, the compact support in S1 × X only concerns X. Thus, we can de�ne relative classes
with respect to the subspace {∞} of S1 by considering pairs of the form (S1×K, {∞}×K) and applying
the direct limit.
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Remark 5.38 (S1 - integration). Let n be an integer number. We can also de�ne the

integration map ∫
S1

: Kn
ζ (S1 ×X)→ Kn−1

ζ (X),

calling ζ both the twisting cocycle on X and its pullback on S1 ×X. Let us consider the

embedding i1 : X → S1 × X, de�ned through a marked point of S1, and the projection

π1 : S1 ×X → X. We set

∫
S1

: Kζ(S1 ×X) → K−1
ζ (X),

α 7→ α−Kζ(π1)Kζ(i1)(α).

The reader can readily prove that α − Kζ(π1)Kζ(i1)(α) ∈ KerKζ(i1) = K−1
ζ (X) since

π1 ◦ i1 = idX . Now, since K−1
ζ (S1×X) ⊂ Kζ(S1× S1×X) and K−2

ζ (X) ⊂ K−1
ζ (S1×X),

we de�ne ∫
S1

: K−1
ζ (S1 ×X) → K−2

ζ (X)

as the restriction of
∫
S1 : Kζ(S1 × S1 × X) → K−1

ζ (S1 × X). Finally, we have that

this construction can be iterated and it can be extended to positive degrees by the Bott

Periodicity Theorem. ♦

5.5 Thom isomorphisms in Twisted K-Theory

In this section, we present the Thom isomorphisms in Twisted K-Theory. This is

the furthest achievement of this thesis on the subject of �nite-order Twisted K-Theory.

This result also needs the tools from Spin Geometry presented in Chapter 3. We begin

with the following remark.

Remark 5.39 (Rephrasing some notions from Spin Geometry). Here we recall some

facts on Spin Geometry in order to �x the notation within the framework of twisted

bundles. For this, let π : E → X be a 2r-dimensional Euclidean oriented vector

bundle. We have that the good cover U = {Ui}i∈I of X induces the good cover of E

given by

π∗U = {Ei := π−1(Ui)}i∈I .
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Now we consider the orthonormal frame bundle πSO : SO(E)→ X and the corresponding

restrictions πiSO : SO(Ei) → Ui for each i ∈ I. Since Ui is contractible, we can choose

a spin lift πiSpin : Spin(Ei) → Ui for each i ∈ I. Moreover, we can �x principal bundle

isomorphisms

ϕij : Spin(Ei) |Uij → Spin(Ej) |Uij ,

lifting the identity SO(Ei) |Uij= SO(Ej) |Uij . Under these circumstances, we have that

ϕki ◦ ϕjk ◦ ϕij = εijk · 1

for all i, j, k ∈ I. Thence, we obtain

w2(E) = [{εijk}i,j,k∈I ] ∈ H2(X, Z2),

that vanishes if and only if there exists a global spin lift. Furthermore, we call

ρ : Spin(2r) → U(2r) ⊆ GL(C2r)

the natural unitary representation of Spin(2r), acting on S := C2r , that splits in the two

irreducible chirality representations S = S+ ⊕ S−. From each local spin lift Spin(Ei),

we obtain the associated vector bundle

S(Ei) := EρSpin(Ei)

of rank 2r (the bundle of spinors), with the chirality splitting S(Ei) = S+(Ei) ⊕ S−(Ei).

Being ε := {εijk}i,j,k∈I , we get the ε-twisted vector bundle

S(E) := ({S(Ei)}i∈I , {ϕ′ij}i,j∈I),

where

ϕ′ij := Eρ(ϕij) : EρSpin(Ei) → EρSpin(Ej)

for all i, j ∈ I. We also have the natural global splitting of ε-twisted vector bundles

S(E) = S+(E)⊕ S−(E). ♦
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Theorem 5.40 (Thom isomorphisms in Twisted K-Theory). Here we use the notations

of Remark 5.39. Choosing a re�nement map φ : J → I from π∗U to a convenient good

cover V of E, and using the product established in Remark 5.36, we obtain the group

isomorphism

Tm : Km
ζ (X) → Km+n

φ∗(ζε), c(E),

α 7→ Km
ζ (π)(α) · u,

for all m ∈ Z. These group isomorphisms, which do not form a ring isomorphism

in general, are said to be the Thom isomorphisms in Twisted K-Theory of the

vector bundle in question. Of course, we identi�ed ζ and ε in X with π∗ζ and π∗ε in E

as twisting cocycles.

Proof. Now we explain some important details that are not clear in the statement of

the theorem. Let us begin by considering the projection π : E → X and the pullback

on E

π∗S(E) = π∗S+(E) ⊕ π∗S−(E).

We de�ne the morphism of twisted vector bundles

µ : π∗S+(E) → π∗S−(E)

as follows. For any �xed point e ∈ Ex, with x ∈ Ui, the morphism µ acts between

the �bers S+(Ei)x and S−(Ei)x as the Cli�ord multiplication by e ∈ Cl(Ex) = Cl(Ei)x.

It demands a straightforward computation to prove that µ is actually a morphism of

twisted bundles and that it is an isomorphism on the closure of the complement of the

disk bundle D(E) of E. Thus, re�ning π∗U on E in a suitable way, we obtain a good

cover V = {Vj}j∈J of E such that D(E) is V-compact and the union of the V-compact

sets is the whole E(4). In this way, we obtain a class

ũ := [π∗S+(E), π∗S−(E), µ] ∈ Kn
ε (E, E \\ D(E)),

representing a compactly-supported class

(4)For example, if we �x a trivialization Ei → Ui×Rn, then we have the cover formed by the sets Ui×B
where B is an open ball in Rn.
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u ∈ Kn
ε, c(E),

the latter being a (twisted) Thom class. In all of these constructions, we tacitly

assumed n to be even. However, if n is odd, then we can consider a Thom class in

E ⊕ R → X, which is the direct sum of E with the trivial line bundle X × R → X.

Therefore, we obtain

u ∈ Kn+1
ε, c (E ⊕ R) = Kn+1

ε, c (E × R) ' Kn
ε, c(E),

the last isomorphism being the one of Theorem 5.37. This completes the construction of

the Thom isomorphisms.

Remark 5.41 (Dependence on the cocycle). In general, the Thom isomorphisms de�ned

in Theorem 5.40 depend on ζ, ε and φ. Nevertheless, they become canonical when

H2(X,Z) is trivial. In fact, in this case, H2(E,Z) is trivial as well, since E retracts

by deformation on X. It follows that both Km
ζ (X) and Km+n

ζε, c (E) only depend on the

cohomology class of their twisting cocycle. Hence, the isomorphism in question can be

written intrinsically as

Tm : Km
[ζ](X) → Km+n

[ζ] +W3(E), c(E),

α 7→ Km
ζ (π)(α) · u.

Since ε is constant, if ζ is also constant, then we obtain a canonical isomorphism similar

to the preceding one on any manifold such that TorH2(X;Z) is trivial. For this, we have

to replace W3(E) by w2(E). ♦

Remark 5.42 (Thom isomorphism and spinc structures). Let us suppose that W3(E) is

trivial. Under this hypothesis, we will show how to recover the Thom isomorphisms in

Ordinary K-theory from the Thom isomorphisms in Theorem 5.40. Choosing ζ = ε, we

get the isomorphism

Tm : Km
ε (X) → Km+n

c (E).

Since W3(E) is trivial and since W3(E) is the twisting (integral) class represented

by ε, we have that Km
ε (X) is isomorphic to Km(X) in a non-canonical way. In order

to �nd an isomorphism as in Theorem 5.9, we must �x a trivialization of ε in U(1). If

h = {hij}i,j∈I is such a trivialization, we obtain
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hki hjk hij = εijk · I

for all i, j, k ∈ I. This means that the choice of a spinc structure is equivalent to the

choice of an isomorphism

Φh : Km
ε (X) → Km(X)

(see Remark 5.10). The composition between Φ−1
h and the Thom isomorphism of

Theorem 5.40 is the ordinary Thom isomorphism, with respect to the Thom class induced

by the chosen spinc-structure(5). One can prove that the choice of ε as a representative of

w2(E) is immaterial. ♦

5.6 Twisted Hilbert bundles

In this section, we present the fundamental notions that one must know in

order to understand the in�nite-dimensional model of Twisted K-Theory, namely, the

twisted Hilbert bundles and the projective Hilbert bundles. We begin by �xing the

following notation.

Notation 5.43 (On Hilbert spaces). In this chapter, H is always a separable complex

Hilbert space. We remind the reader that we compiled some information on this kind

of Hilbert space in Remark 4.1. Furthermore, we shall denote the space of Fredholm

operators on H by FH , and the space of continuous functions from FH into itself

by C(FH). The following de�nition generalizes the notion of ordinary Hilbert bundle

(see Remark 4.30) as well as twisted vector bundles generalized the notion of ordinary

vector bundles. ♦

De�nition 5.44 (Twisted Hilbert bundle). Consider a 2-cocycle

ζ := {ζijk}i,j,k∈I ∈ Ž2(U, U(1)).

(5)In fact, if we consider the associated bundles Mi := E1U(Li), where 1 denotes the fundamental
representation of U(1), and the isomorphisms ψ′ij := E1ψij : Mi |Uij

→ Mj |Uij
, then we obtain the

ε-twisted line bundle √
L := ({Mi}i∈I , {ψ′ij}i,j∈I),

such that
√
L ⊗

√
L = L. With this language, the isomorphism Φh can also be written in the form

Φ√L : Km
ε (X)→ Km(X), α 7→ α⊗

√
L.
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We say that a ζ-twisted Hilbert bundle with �ber H on X is a collection of trivial

Hilbert bundles {πi : Ei → Ui}i∈I with �ber H and of Hilbert bundle isomorphisms

{ϕij : Ei |Uij→ Ej |Uij}i,j∈I such that

ϕki |Ek|Uijk ◦ ϕjk |Ej |Uijk ◦ ϕij |Ei|Uijk = ζijk · idEi|Uijk

for all i, j, k ∈ I. We denote the set of ζ-twisted Hilbert bundles on X by ṼBζ(X).

Moreover, the notations used in this de�nition will be applied hereafter in this whole

chapter. ♦

Remark 5.45 (On the preceding de�nition). We have the following facts.

� Morphisms and isomorphisms of twisted Hilbert bundles are de�ned, mutatis

mutandis, as in De�nition 5.5.

� Because of Theorem 5.8, if there exists a ζ-twisted vector bundle, then [ζ] is

torsion. In addition, it can be proved that, for every torsion class in Ȟ2(U, U(1)),

there exists a corresponding twisted vector bundle. In turn, for every class in

Ȟ2(U, U(1)), not necessarily of �nite order, there corresponds a twisted Hilbert

bundle. The reader can �nd a proof of this claim in [4]. The main di�erence

with respect to the �nite-order setting is that any two ζ-twisted Hilbert bundles,

for a �xed ζ, are isomorphic. The reader can �nd a proof of this claim in [20]. In

particular, this last assertion ensures that every ordinary Hilbert bundle is trivial

(see Remark 4.30). ♦

De�nition 5.46 (Projective bundle and projective Hilbert bundle). We give the following

de�nitions.

� A projective bundle with typical �ber P(V )(6) is a �ber bundle that admits an

atlas whose transitions functions are projective transformations induced from

automorphisms of V at each point of X.

(6)The associated projective space P(V ) of a complex vector space V is the quotient of V − {0}
by the equivalence relations that identi�es v, w ∈ V − {0} if and only if there exists λ ∈ C for which
v = λw.
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� The associated projective bundle P(E) of a twisted Hilbert bundle E is the

one obtained by projecting each �ber to the corresponding projective space. In

particular, P(E)x = P(Ex) for all x ∈ X. ♦

Lemma 5.47 (Equivalence between projective bundles and projective Hilbert bundles).

Every projective bundle is a projective Hilbert bundle up to isomorphism.

Proof. Let π : P → X be a projective bundle with typical �ber P(V ). Using local

triviality, we can de�ne a projective Hilbert bundle E whose associated projective

bundle P(E) is isomorphic to P . For this, let

ΦU = {(Ui, ϕi : π−1(Ui)→ Ui × P(V ))}i∈I

be an atlas of P whose transitions functions {ϕij : Uij → AutP(V )}i,j∈I are projective

transformations induced from automorphisms of V at each point of X. Under these

circumstances, we set

E := ({Ui × V }i∈I , {ϕ̃ij}i,j∈I),

where

ϕ̃ij : Uij × V → Uij × V ,

(x, v) 7→ (x, (ϕ̃ij)x(v)),

being (ϕ̃ij)x an automorphism of V that induces (ϕij)x. Now the reader can ful�ll the

details to prove the assertion.

Remark 5.48 (On projective bundles). Let ζ ∈ Ž2(U, U(1)). Because of Lemma 5.47,

there exists a surjective map from isomorphism classes of twisted Hilbert bundles

to isomorphism classes of projective bundles. In the �nite-dimensional case, such a

map is not injective for a �xed ζ. This happens because, for example, every line bundle

projects to the trivial one. On the contrary, in the in�nite-dimensional case, the unique

isomorphism class of ζ-twisted Hilbert bundles induces a unique isomorphism class of

projective bundles. Moreover, if ζ and ξ are cohomologous with ξ = ζ · δ̌1η, then we have

the bijection
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Φη : ṼBζ(X) → ṼBξ(X)

({Ei}i∈I , {ϕij}i,j∈I) 7→ ({Ei}i∈I , {ϕij · ηij}i,j∈I).

As a consequence of P(E) = P(Φη(E)), the isomorphism class of P(E) only depends

on the class [ζ] ∈ Ȟ2(U, U(1)) ' H3(X, Z) (see [4]). In particular, H3(X, Z) classi�es

projective Hilbert bundles on X. Further, if δ̌1η = 1, then, since any two ζ-twisted bundles

are necessarily isomorphic, there exists an isomorphism

f = {fi}i∈I : E → Φη(E).

This means fi : Ei → Ei and (ϕij · ηij) ◦ fi = fj ◦ ϕij for all i, j ∈ I. Hence, f induces

an automorphism f̄ : P(E) → P(E). We claim that any automorphism f̄ can be

realized in this way from suitable η and f . In fact, by local triviality, we can lift f̄ to

fi : Ei → Ei for each i ∈ I. Since the family {fi}i∈I glues to f̄ , we have that there exists

ηij such that

fj ◦ ϕij = (ϕij ◦ fi) · ηij = (ϕij · ηij) ◦ fi

for all i, j ∈ I. The latter condition implies

δ̌1η = 1.

Indeed, we have

fi ◦ ϕki ◦ ϕjk ◦ ϕij = ηki · ϕki ◦ fk ◦ ϕjk ◦ ϕij

= ηkiηjk · ϕki ◦ ϕjk ◦ fj ◦ ϕij

= ηkiηjkηij · ϕki ◦ ϕjk ◦ ϕij ◦ fi.

Canceling the extra terms on both sides, we obtain the thesis. Moreover, the only freedom

in constructing the cocycle η was the choice of the liftings. Any other choice is of the form

fiξi, that replaces η by η · δ̌0ξ. Therefore,

Φ : Aut P(E) → Ȟ1(U, U(1)) ' H2(X, Z),

f̄ 7→ [{ηij}i,j∈I ],
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is well-de�ned. One can prove that it is a group homomorphism. Furthermore, it

follows from the previous construction that f̄ ∈ Aut P(E) lifts to an automorphism

of E if and only if Φ(f̄) is zero. Thus, Φ(f̄) can be thought of as the obstruction

to the existence of such a lifting. Note that these observations prove the following

result. ♦

Theorem 5.49 (On the automorphisms of a projective Hilbert bundle). We have that

Φ : Aut P(E) → H2(X, Z) is surjective. Furthermore, we have that its kernel coincides

with the connected component of the identity of Aut P(E). Therefore, it follows

that Φ induces a canonical bijection between the connected components of Aut P(E)

and H2(X, Z).

Proof. The surjectivity is proved above. We leave the proof of the other assertions to

the reader.

5.7 In�nite-dimensional Twisted K-Theory

In this section, we use the language of twisted Hilbert bundles to establish

the in�nite-dimensional version of Twisted K-Theory. As we pointed out before, the

advantage of this version is that it holds for twisting classes of any order. We begin with

the following de�nition.

De�nition 5.50 (Twisted K-Theory). Let E = ({Ei}i∈I , {ϕij}i,j∈I) be any ζ-twisted

Hilbert bundle where ζ ∈ Ž2(U, U(1)). We shall denote by PP(E) the bundle of

projective reference frames of P(E)(7). We have a natural adjoint action of

PU(H) := U(H)/U(1)

on FH by conjugation, that we denote by

ρ : PU(H) → C(FH).

(7)This object is de�ned as the one presented in De�nition F.30. In particular, we substitute the linear
isomorphisms by projective transformations, which are bijections between projective spaces induced by
linear isomorphisms of the corresponding vector spaces. Note that we followed a similar pattern in
Remark 3.60.
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Hence, we construct the associated FH-bundle

FP(E) := EρPP(E).

The set of global sections of FP(E) is denoted by Γ(FP(E)). Additionally, we denote by

Γ̄(FP(E)) the corresponding quotient of Γ(FP(E)) by the equivalence relation of homotopy

of sections. The latter carries a natural abelian group structure, induced by composition

of Fredholm operators. The Twisted K-theory group K∞ζ (X) is de�ned as the abelian

group Γ̄(FP(E)). ♦

Remark 5.51 (On pointwise invertible sections). Since the space of bounded invertible

operators in H is contractible, we have that any pointwise invertible section of FP(E)

is homotopic to the identity. Therefore, if a section is pointwise invertible in a subset

of X, then we consider it trivial on such a subset. This fact justi�es the following

de�nition. ♦

De�nition 5.52 (Compactly-supported Twisted K-Theory). Let E = ({Ei}i∈I , {ϕij}i,j∈I)

be any ζ-twisted Hilbert bundle where ζ ∈ Ž2(U, U(1)). A section of FP(E) is said to

be compactly-supported if it is pointwise invertible in the complement of a compact

subset of X. We denote by Γc(FP(E)) and Γ̄c(FP(E)) the space of compactly-supported

global sections of FP(E) and its quotient up to compactly-supported homotopy, respectively.

We de�ne the compactly-supported Twisted K-theory group K∞ζ,c(X) as the abelian

group Γ̄c(FP(E))
(8). ♦

Remark 5.53 (Dependence on the cocycle). Apparently, De�nitions 5.50 and 5.52

depend on E, not only on ζ. Nevertheless, �xing two ζ-twisted Hilbert bundles E and

F , we have that an isomorphism f : E → F is unique up to an automorphism of E. It

follows from Lemma 5.49 that the induced isomorphism P(f) : P(E) → P(F ) is unique

up to an automorphism of P(E) connected to the identity, the latter inducing the identity

on Γ̄(FP(E)) and Γ̄c(FP(E)). Hence, K∞ζ (X) and K∞ζ,c(X) are canonically de�ned. On the

(8)When X is a compact space, De�nitions 5.50 and 5.52 are equivalent. Actually, we will only apply
De�nition 5.50 when X is compact. Hence, it would be su�cient to state De�nition 5.52 for every (locally
compact) space.
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contrary, the de�nition is not canonical if we only �x the cohomology class [ζ]. In fact,

let us consider a ζ-twisted Hilbert bundle E and a ξ-twisted Hilbert bundle F , such that

ξ = ζ · δ̌1η. We have the isomorphism

Φη : K∞ζ (X) → K∞ξ (X), (5.2)

analogous to the one in the �nite-order setting, de�ned as follows. First, we �x an

isomorphism f̄ : P(E) → P(F ), belonging to the inverse image of [η] through

Φ : Aut P(E) → H2(X, Z) (see Remark 5.48). Then, we apply the induced one

between the corresponding Twisted K-theory groups. This is equivalent to inducing the

identity between Γ̄(FP(E)) and Γ̄(FP(Φη(E))), that represents K∞ζ (X) and K∞ξ (X),

respectively. The isomorphism in (5.2) depends on η up to coboundaries. Equivalently,

the set of isomorphisms of the form (5.2) is a torsor over H2(X, Z). Hence, if ζ = ξ,

then we obtain an action of H2(X, Z) on Kζ(X). Only the quotient up to such an

action is well-de�ned. Of course, if H2(X, Z) is trivial, then we have the canonical group

K∞[ζ](X), as in the �nite-order setting. Analogous considerations hold about compactly-

supported K-theory. ♦

5.8 Comparison isomorphism

In this section, we prove that the �nite-order and the in�nite-dimensional Twisted

K-Theory coincide, up to isomorphism, in the �nite-order setting. We begin with the

following remark.

Remark 5.54 (Technical facts on pullbacks). Let V = {Vα}α∈J be a good cover of X that

is a re�nement of U = {Ui}i∈I through the function φ : J → I. This means that

Vα ⊆ Uφ(α) for every α ∈ J . We set ζ̂ := φ∗ζ. Under these circumstances, we obtain

the function

Φφ : ṼBζ(X) → ṼBζ̂(X),

({Ei}i∈I , {ϕij}i,j∈I) 7→ ({Fα}α∈J , {ψαβ}α,β∈J),

where Fα := Eφ(α)|Vα and ψαβ := ϕφ(α)φ(β)|Vαβ for all α, β ∈ J . Moreover, for every

E ∈ ṼBζ(X), we have the isomorphism
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Φ̄φ,E : P(E) → P(Φφ(E)), (5.3)

whose inverse identi�es the projectivized �ber P(Fα)x with P(Eφ(α))x for all x ∈ X.

Therefore, we obtain the isomorphism

Φ̄φ : K∞ζ (X) → K∞
ζ̂

(X), (5.4)

where Γ̄(FP(E)) represents Twisted K-Theory in the domain and Γ̄(FP(Φφ(E))) represents

Twisted K-Theory in the codomain, for any E ∈ ṼBζ(X). This latter isomorphism

is well-de�ned because, �xing an isomorphism of ζ-twisted Hilbert bundles f : E → F ,

we obtain the induced isomorphism of ζ̂-twisted bundles φ∗f : Φφ(E) → Φφ(F ), where

φ∗f = {fφ(α) |Vα}α∈J , which is such that diagram

P(E) P(F )

P(Φφ(E)) P(Φφ(F ))

f

Φφ,E Φφ,E′

φ∗f

is commutative. In particular, it follows that (5.4) does not depend on the chosen twisted

Hilbert bundle E ∈ ṼBζ(X). ♦

Theorem 5.55 (The comparison isomorphism). Let U = {Ui}i∈I be a good cover of

a compact Hausdor� space X. In addition, let ζ ∈ Ž2(U, U(1)) be a cocycle that

represents a �nite-order cohomology class. We set ζ̂ := φ∗ζ. Then, there exists an

isomorphism

Θ : K∞ζ (X) → Kζ̂(X),

where Kζ̂(X) is the group presented in De�nition 5.18 while K∞ζ (X) is the one presented

in De�nition 5.50.

Proof. We choose a good �nite re�nement V = {Vk}mk=1 of U, through a re�nement

function φ : {1, . . . ,m} → I, such that V k ⊆ Uφ(k) for every k between 1 and m, both
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included(9). Furthermore, we �x an N -dimensional ζ-twisted vector bundle Ẽ, for any

suitable N ∈ N. Up to isomorphism, it is straightforward to prove that we can represent

Ẽ in the form

Ẽ := ({Ui × CN}i∈I , {gij}i,j∈I),

where gij : Uij → U(N) for all i, j ∈ I. Then, we consider the ζ-twisted Hilbert bundle

given by

E := Ẽ ⊗H,

where H denotes the trivial bundle X ×H. Equivalently,

E := ({Ui × (CN ⊗H)}i∈I , {gij ⊗ 1}i,j∈I).

Since CN ⊗ H is canonically isomorphic to H, we have that the bundle E satis�es

De�nition 5.44. Hence, applying the �rst map presented in Remark (5.54), we obtain

the ζ̂-twisted Hilbert bundle

Ê := Φφ(E) = ({Vk × (CN ⊗H)}mk=1, {ĝkl ⊗ 1}mk,l=1),

where ĝkl = gφ(k)φ(l) |Vkl for all k and l between 1 and m, both included. Now let us

consider a section s ∈ Γ(FP(E)), projecting to [s] ∈ Γ̄(FP(E)), the latter representing

K∞ζ (X) up to canonical identi�cation. Since the local bundles Ui× (CN ⊗H) are already

trivialized, we have that the section s corresponds to a family of sections si : Ui → FCN⊗H

such that

si = (gij ⊗ 1) · sj · (g−1
ij ⊗ 1)

for all i, j ∈ I. Thus, applying the isomorphism in (5.3), we obtain

t := φ∗s ∈ Γ(FP(Φφ(E))),

(9)Under our hypotheses, it is always possible to �nd such a re�nement V of U. In fact, since X
is (para)compact, there exists a re�nement W = {Wi}i∈I of U such that W i ⊆ Ui for every i ∈ I
(see [29, p. 258]). Since good covers form a co�nal subset of the set of open covers of X, we are allowed
to choose a good re�nement V′ = {V ′α}α∈J of W. Then, since X is compact, we can extract a �nite
(necessarily good) subcover V = {Vk}mk=1 of V′. We have Vk = V ′α(k) ⊆Wφ(k) for every k between 1 and

m, both included, with respect to a suitable function φ : {1, . . .m} → I. Hence, V k ⊆ Wφ(k) ⊆ Uφ(k)
for all k between 1 and m, both included.
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represented by the family

tk := sφ(k) |Vk : Vk → FCN⊗H

for all k between 1 and m, both included. Additionally, we have the natural identi�cation

CN ⊗H ' H⊕N .

We call πj : H⊕N → H the jth canonical projection for all j between 1 and N , both

included. By construction, the functions tk can be extended to V k (the extension being

sφ(k) |V k). Hence, for each x ∈ V k and for every k between 1 and m, both included,

we consider

Vx,k :=
N⋂
j=1

πj(Ker tk(x))⊥ ⊆ H.

Such a space is closed and �nite-codimensional. In fact, Ker tk(x) is �nite-dimensional,

since tk(x) is Fredholm. Hence, each projection πj(Ker tk(x)) is also �nite-dimensional. It

follows that the orthogonal complement is closed and �nite-codimensional. Thus, the same

holds about the �nite intersection Vx,k. Hence, V⊕Nx,k is closed and �nite-codimensional

in H⊕N . Moreover,

(V⊕Nx,k ) ∩ Ker tk(x)

is trivial. This is immediate from the fact that

V⊕Nx,k ⊆ Ker tk(x)⊥.

In fact, if v = (v1, . . . , vN) ∈ V⊕Nx,k and w = (w1, . . . , wN) ∈ Ker tk(x), then, for every

j between 1 and N , both included, we have

vj ∈ πj(Ker tk(x))⊥ and wj ∈ πj(Ker tk(x)).

Thence, we have 〈vj, wj〉 = 0, which implies 〈v, w〉 = 0. Following the proof of

Theorem 4.23, for each x ∈ V k there exists a neighborhood Wx,k ⊆ V k such that

V⊕Nx,k ∩ Ker tk(y) is trivial for every y ∈ Wx,k. The family {Wx,k}x∈V k is an open cover

of the compact space V k. Therefore, we extract a �nite subcover, that we denote by

{Wxh,k}
nk
h=1. We set
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Vk :=

nk⋂
h=1

Vxh,k and V :=
m⋂
k=1

Vk.

It follows that V⊕N is closed and �nite-codimensional in H⊕N and that V⊕N ∩ Ker tk(x)

is trivial for every x ∈ V k and every k between 1 and m, both included. Moreover,

we have

(ĝkl)x(V
⊕N) = V⊕N

for every x ∈ V kl and every k and l between 1 and m, both included, since the transition

functions act as complex matrices of order N on H⊕N . Projecting to the quotient, we

obtain the pointwise isomorphism

(gkl)x : H⊕N/V⊕N → H⊕N/V⊕N .

Since (gkl)x is de�ned for every x ∈ V kl, it is particularly de�ned for every x ∈ Vkl.

Hence, obtain the ζ̂-twisted �nite-dimensional vector bundle on X

Fs := ({Vk × (H⊕N/V⊕N)}mk=1, {gkl}mk,l=1).

We set

H⊕N/sk(V
⊕N) :=

⊔
x∈Vk

H⊕N/(sk)x(V
⊕N),

as a quotient space of Vk×H⊕N '
⊔
x∈Vk H

⊕N . By Lemma 4.22, the space H⊕N/sk(V⊕N)

is a vector bundle on Vk. Thus, since Vk is contractible, it is a trivial vector bundle.

Moreover, we obtain a well-de�ned isomorphism

gkl : H⊕N/sk(V
⊕N) → H⊕N/sl(V

⊕N)

since

(ĝkl)x((sk)x(V
⊕N)) = (sl)x((ĝkl)x(V

⊕N)) = (sl)x(V
⊕N).

Therefore, we have the ζ̂-twisted �nite-dimensional vector bundle on X

Gs := ({H⊕N/sk(V⊕N)}mk=1, {gkl}mk,l=1).
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With respect to the data above, we have the isomorphism

Θ̂ : K∞
ζ̂

(X) → Kζ̂(X),

[s] 7→ [[Fs]]− [[Gs]].

We set

Θ := Φ−1
φ ◦ Θ̂ ◦ Φφ : K∞ζ (X) → Kζ(X). (5.5)

One can prove that it is actually an isomorphism by following the same line of the

appendix of [2], adapted to the twisted framework. Moreover, one can prove that,

when H2(X, Z) is trivial, (5.5) does not depend on the representative ζ of the class

[ζ] ∈ Ȟ2(X, U(1)) ' H3(X, Z). This �nishes the proof of the theorem and the main

part of the thesis.
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Further Perspectives

Here we list some topics that can be studied in a near future thanks to the subjects

treated in this thesis.

� The �rst topic is the Atiyah-Singer Index Theorem and its numerous and remarkable

applications.

� The second topic consists in studying the following references and the notions

surrounding them.

• FREED, D. S. and HOPKINS, M. J.; TELEMAN, C. Loop groups and

twisted K-theory I, Journal of Topology, Volume 4, Issue 4, December 2011,

pp. 737-798.

• FREED, D. S. and HOPKINS, M. J.; TELEMAN, C. Loop groups and

twisted K-theory II, Journal of the American Mathematical Society, Volume

26, Number 3, July 2013, pp. 595-644.

• FREED, D. S. and HOPKINS, M. J.; TELEMAN, C. Loop groups and

twisted K-theory III, Annals of Mathematics 174 (2011), pp. 947-1007.

These papers contain non-trivial applications of Twisted K-Theory that show its

signi�cance to Mathematics.

� The third and �nal topic is the di�erential extension of the cohomology theories

studied in this thesis.
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Appendix A

Direct Limits of Abelian Groups

In this appendix, we set an essential tool to de�ne the compactly-supported

generalized cohomology groups, namely, the direct limit of abelian groups. The

categorical approach given to this topic is based on [26, pp. 105-112]. The reader

can easily generalize the ideas presented here to several categories, among which is the

category of sets. Finally, it is to be noted that the notions presented here are essentially

used in Chapter 1.

A.1 Direct systems of abelian groups

De�nition A.1 (Direct system of abelian groups). We say that a triple

A =
(
Λ, (Cα)α∈Λ, (ιαβ : Cα → Cβ)α,β∈Λ

)
is a direct system of abelian groups provided that:

� Λ is a direct set. This means that Λ is a partially ordered set equipped with a

partial order ≺ such that, for all α, β ∈ Λ, there exists γ ∈ Λ for which α ≺ γ

and β ≺ γ;

� (Cα)α∈Λ is a family of abelian groups indexed by Λ; and

� (ιαβ : Cα → Cβ)α,β∈Λ is a collection of homomorphisms of abelian groups such

that ιαα = idCα for all α ∈ Λ and, for all α, β, γ ∈ Λ that verify α ≺ β ≺ γ,

ιαγ = ιβγ ◦ ιαβ. ♦
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Notation A.2 (On direct systems of abelian groups). Henceforth, the notation of

De�nition A.1 will be used without explicit mention. In particular, we will denote a

direct system of abelian groups simply by A. ♦

Example A.3 (Direct system of subgroups of a �xed abelian group). Let C be an

abelian group and C be its family of subgroups. Clearly, C is a direct set with respect

to the partial order given by the inclusion of subgroups. Thus, being A,B ∈ C, if we

de�ne ιA,B : A → B to be the inclusion map if A is contained in B, and the trivial

homomorphism otherwise, then

AC :=
(
C, C, (ιA,B : A→ B)A,B∈C

)
is a direct system of abelian groups, which we call the direct system of subgroups of

the abelian group C. ♦

A.2 Direct limits of direct systems of abelian groups

De�nition A.4 (Direct limit of a direct system of abelian groups). We say that an abelian

group lim
−→ α

Cα is a direct limit of A if there exists a family (ια : Cα → lim
−→ α

Cα)α∈Λ

of homomorphisms of abelian groups in such manner that the following two conditions are

satis�ed.

(1) For all α, β ∈ Λ that verify α ≺ β, the following diagram of morphisms of abelian

groups is commutative.

Cα Cβ lim
−→ α

Cαιαβ

ια

ιβ
(A.1)

(2) Let C be any abelian group and (ϕα : Cα → C)α∈Λ be any family of homomorphisms

of abelian groups for which the following diagram is commutative for all α, β ∈ Λ

that verify α ≺ β.
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Cα Cβ Cιαβ

ϕα

ϕβ
(A.2)

There exists a unique morphism of abelian groups ϕ : lim
−→ α

Cα → C such that the

following diagram is commutative.

Cα Cβ

lim
−→ α

Cα C

ιαβ

ια ϕβ

ϕ

(A.3)

♦

Example A.5 (The direct limit of the direct system of Example A.3). Let C be an

abelian group. The direct system AC of Example A.3 has as its direct limit C with the

family of homomorphisms of abelian groups being given by the inclusions of the subgroups

of C in C itself. ♦

A.3 Existence and uniqueness up to isomorphism

Theorem A.6 (Uniqueness of the direct limit up to a unique isomorphism). If

lim
−→ α

Cα and lim′
−→ α

Cα are direct limits of A with respect to the families of morphisms

of abelian groups Φ = (ια : Cα → lim
−→ α

Cα)α∈Λ and Φ′ = (ι′α : Cα → lim′
−→ α

Cα)α∈Λ,

respectively, then there necessarily exists a unique isomorphism of abelian groups

ϕ : lim
−→ α

Cα → lim′
−→ α

Cα in such manner that the following diagram is commutative for

every α ∈ Λ.

lim
−→ α

Cα Cα lim′
−→ α

Cα

ϕ

ια ι′α
(A.4)

Proof. The diagrams presented in the statement and in the proof of this theorem

are reformulations of Diagram (A.3) when α coincides with β. Moreover, we tacitly

use the commutativity of Diagrams (A.1) and (A.2) with respect to the families Φ and
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Φ′. Indeed, there exist unique morphisms of abelian groups ϕ : lim
−→ α

Cα → lim′
−→ α

Cα and

ϕ′ : lim′
−→ α

Cα → lim
−→ α

Cα such that Diagrams (A.4) and (A.5) are commutative for every

α ∈ Λ.

lim′
−→ α

Cα Cα lim
−→ α

Cα

ϕ′

ι′α
ια

(A.5)

Then, the following diagrams are also commutative.

lim
−→ α

Cα Cα lim
−→ α

Cα

ϕ′◦ϕ

ια ια
lim′
−→ α

Cα Cα lim′
−→ α

Cα

ϕ ◦ϕ′

ι′α ι′α

The homomorphisms represented in the upper arrows of the preceding diagrams are

unique. Therefore, since the identity maps also turn these diagrams commutative, we

have

ϕ′ ◦ ϕ = id lim
−→ α

Cα and ϕ ◦ ϕ′ = id lim′
−→ α

Cα .

Hence, ϕ is the unique group isomorphism for which Diagram (A.4) is commutative

for every α ∈ Λ.

Theorem A.7 (Existence of the direct limit of a direct system of abelian groups). We

de�ne the disjoint union

DA :=
⊔
α∈Λ

Cα.

Moreover, we de�ne a relation on DA as follows. Being α, β ∈ Λ, we say that

x ∈ Cα is related to y ∈ Cβ if and only if there exists γ ∈ Λ for which α ≺ γ,

β ≺ γ and ιαγ(x) = ιβγ(y). This is an equivalence relation on DA. Furthermore,

the quotient of DA by this equivalence relation, which we hereafter denote by DA,

has a natural abelian group structure that turns it into the direct limit of the direct

system A.

Proof. We start by showing that the relation de�ned in the statement of this theorem

is an equivalence relation on DA. Indeed, let α, β, η ∈ Λ. Then, we have that this

relation is:
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� re�exive. In fact, x ∈ Cα is related to itself since α ≺ α and ιαα(x) = x = ιαα(x);

� symmetric. In fact, if x ∈ Cα is related to y ∈ Cβ, then there exists γ ∈ Λ for

which α ≺ γ, β ≺ γ and ιαγ(x) = ιβγ(y). Thus, tautologically, there exists γ ∈ Λ

such that β ≺ γ, α ≺ γ and ιβγ(y) = ιαγ(x). This proves that y is also related

to x; and

� transitive. In fact, assume that x ∈ Cα is related to y ∈ Cβ. Then, there exists

γx,y ∈ Λ for which α ≺ γx,y, β ≺ γx,y and ιαγx,y(x) = ιβγx,y(y). Moreover, assume

that y ∈ Cβ is related to z ∈ Cη. Thus, there exists γy,z ∈ Λ such that β ≺ γy,z,

η ≺ γy,z and ιβγy,z(y) = ιηγy,z(z). Since Λ is a direct set, there exists γ ∈ Λ such

that γx,y ≺ γ and γy,z ≺ γ. Hence, we claim that α ≺ γ, η ≺ γ and ιαγ(x) = ιηγ(z).

These relations prove that x is also related to z. Indeed, we have α ≺ γx,y ≺ γ,

η ≺ γy,z ≺ γ and

ιαγ(x) = (ιγx,yγ ◦ ιαγx,y)(x)

= (ιγx,yγ ◦ ιβγx,y)(y)

= ιβγ(y)

= (ιγy,zγ ◦ ιβγy,z)(y)

= (ιγy,zγ ◦ ιηγy,z)(z)

= ιηγ(z),

since we also have the comparisons β ≺ γx,y ≺ γ and β ≺ γy,z ≺ γ in the direct

set under consideration.

Consequently, the quotient DA of DA by this equivalence relation is well-de�ned. Now,

let x ∈ Cα and y ∈ Cβ where α, β ∈ Λ. Being γ ∈ Λ such that α ≺ γ and β ≺ γ,

we de�ne

[x] + [y] := [ιαγ(x) + ιβγ(y)].

The reader can readily prove that this binary operation on DA is well-de�ned.

Hence, DA is an abelian group, which is the direct limit of the direct system of

abelian groups A. More explicitly, we claim that DA = lim
−→ α

Cα. In fact, for each α ∈ Λ,

we de�ne
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ια : Cα → DA,

x 7→ [x].

Thence:

� let α, β ∈ Λ be such that α ≺ β. Then, we claim that Diagram (A.1) is commutative,

clearly substituting lim
−→ α

Cα by DA. As a matter of fact, note that each x ∈ Cα is

related to ιαβ(x) ∈ Cβ. Indeed, since Λ is a direct set, there exists γ ∈ Λ such that

α ≺ β ≺ γ. Thus,

ιαγ(x) = (ιβγ ◦ ιαβ)(x) = ιβγ(ιαβ(x)).

Therefore, for every x ∈ Cα, we have

ια(x) = [x] = [ιαβ(x)] = (ιβ ◦ ιαβ)(x),

which proves our claim; and

� let C be an abelian group and (ϕα : Cα → C)α∈Λ be a family of homomorphisms

of abelian groups such that Diagram (A.2) is commutative for all α, β ∈ Λ that

verify α ≺ β. Then, we claim that there exists a unique morphism of abelian groups

ϕ : DA → C such that Diagram (A.3) is commutative, clearly substituting lim
−→ α

Cα

by DA. In fact, if x ∈ Cη for some η ∈ Λ, then we de�ne

ϕ[x] := ϕη(x) ∈ C.

This map is well-de�ned because, if x is related to y, where y ∈ Cδ for some δ ∈ Λ,

then ϕδ(y) = ϕη(x). Indeed, since x is related to y, there exists γ ∈ Λ such that

η ≺ γ, δ ≺ γ and ιηγ(x) = ιδγ(y). Thus,

ϕδ(y) = (ϕγ ◦ ιδγ)(y) = (ϕγ ◦ ιηγ)(x) = ϕη(x).

Moreover, it is evident that this map turns the preceding diagram commutative since

ϕα(x) = (ιαβ ◦ ϕβ)(x) for all x ∈ Cα. Finally, the reader can prove the uniqueness

part of the assertion. �
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Remark A.8 (On the proof of the preceding result). Using the notation of the proof of

Theorem A.7, the reader can readily prove that the map ϕ : lim
−→ α

Cα → C is bijective if

and only if

C =
⋃
α∈Λ

ϕα(Cα).

Furthermore, ϕα(x) = ϕβ(y) if and only if there exists γ ∈ Λ for which α ≺ γ, β ≺ γ

and ιαγ(x) = ιβγ(y). ♦

Remark A.9 (On a generalization of the preceding constructions). The reader may

have noted that, in all of the technical constructions above, we did not use the

neutral element or the inverses of the elements of the abelian groups. In fact, these

elements were only used to prove that the direct limit of abelian groups is also an abelian

group. Hence, one can readily prove that this appendix can be restated for abelian

semigroups. More than that, its de�nitions and its results are, mutatis mutandis,

exactly the same for abelian semigroups. We leave to the reader the completion of the

immediate details. ♦
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Appendix B

Grothendieck Groups

In this appendix, we set a basic algebraic tool from Group Theory that is

essential to de�ne the K-Theory groups, namely, the Grothendieck group of an abelian

semigroup. The idea behind such concept is to �nd the minimal extension of an abelian

semigroup into an abelian group, although this is not always the case. We follow

[2, pp. 42-43] that presents such construction for abelian semigroups, di�ering

from the majority of the references that restrict themselves to abelian monoids.

Finally, it is to be noted that the notions presented here are essentially used in

Chapters 2 and 5.

B.1 De�nition

De�nition B.1 (Grothendieck group). A Grothendieck group of an abelian semigroup

S is a pair (K(S), ιS) such that:

� K(S) is an abelian group;

� ιS : S → K(S) is a semigroup homomorphism; and

� if C is any abelian group and ϕ : S → C is any semigroup homomorphism, then

there exists a unique group homomorphism ξ : K(S) → C such that the following

diagram is commutative.

K(S) S C

ξ

ιS ϕ ♦
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Example B.2 (Grothendieck groups of the natural numbers). If we consider the abelian

monoid of natural numbers with the usual sum, then its Grothendieck group is the abelian

group of the integer numbers with the usual sum. However, if we consider the abelian

monoid of natural numbers with the usual product, then its Grothendieck group is the

trivial group. Moreover, if we consider the abelian monoid of non-zero natural numbers

with the usual product, then its Grothendieck group is the abelian group of positive rational

numbers with the usual product. ♦

B.2 Existence and uniqueness up to isomorphism

Theorem B.3 (Uniqueness of the Grothendieck group up to a unique isomorphism). If

(K(S), ιS) and (K ′(S), ι′S) are Grothendieck groups of an abelian semigroup S, then there

exists a unique group isomorphism ξ : K(S) → K ′(S) in such manner that the following

diagram is commutative.

K(S) S K ′(S)

ξ

ιS ι′S
(B.1)

Proof. There exist unique morphisms of abelian groups ξ : K(S) → K ′(S) and

ξ′ : K ′(S)→ K(S) such that Diagrams (B.1) and (B.2) are commutative.

K ′(S) S K(S)

ξ′

ι′S
ιS

(B.2)

Then, the following diagrams are also commutative.

K(S) S K(S)

ξ′◦ ξ

ιS ιS
K ′(S) S K ′(S)

ξ◦ξ′

ι′S ι′S

The homomorphisms represented in the upper arrows of the preceding diagrams are

unique. Therefore, since the identity maps also turn these diagrams commutative, we

have
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ξ′ ◦ ξ = idK(S) and ξ ◦ ξ′ = idK′(S).

Hence, ξ is the unique group isomorphism for which Diagram (B.1) is commutative, as

we wished.

Theorem B.4 (Existence of a Grothendieck group). Let S be an abelian semigroup. We

de�ne:

� K(S) as being the abelian group given by the following free presentation:

• the generators of K(S) are the elements of S. We denote an element a ∈ S by

[a] ∈ K(s) when it is thought as a generator of K(S);

• the relations in K(S) are the expressions [a + b] − [a] − [b] for all a, b ∈ S.

Here [a + b] denotes the class of the sum of a and b in the abelian semigroup

S; and

� ιS : S → K(S) as being the morphism of abelian semigroups that is given by

ιS(a) = [a] for all a ∈ S.

Every element of K(S) is a di�erence between two classes of generators. Moreover,

(K(S), ιS) is a Grothendieck group of S.

Proof. The �rst claim is obvious since the general element of K(S) is given by

n∑
j=1

[aj] −
m∑
j=1

[bj],

which coincides with the di�erence of classes of generators[
n∑
j=1

aj

]
−

[
m∑
j=1

bj

]
.

For the second claim, let C be an abelian group and ϕ : S → C be a morphism of

abelian semigroups. We de�ne ξ : K(S) → C as the morphism of abelian groups that

sends [a] ∈ K(S) into ϕ(a) ∈ C, which is tacitly linearly extended to the whole group

K(S). It is clear that the image under ξ of every relation [a + b] − [a] − [b] is zero

for all a, b ∈ S. Thus, ξ is well-de�ned. Furthermore, ϕ = ξ ◦ ιS by construction.
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Finally, we have to prove that ξ is the only morphism of abelian groups that veri�es

this last property. Indeed, if η : K(S) → C is a morphism of abelian groups such that

ϕ = η ◦ ιS, then, for all [a] ∈ K(S), we have η[a] = η(ιS(a)) = ϕ(a) = ξ[a].

Consequently, since η and ξ take the same values over the generators of K(S), we have

η = ξ, as we wished.

Remark B.5 (Covariant functor de�ned by the Grothendieck group of abelian

semigroups). Let the semigroup homomorphism ιS : S → K(S) be implicit, saying that

K(S) is a Grothendieck group of an abelian semigroup S. Hence, if Sab and Gab are

the categories of abelian semigroups and groups, respectively, then we have the covariant

functor

K : Sab → Gab,

S 7→ K(S),

ϕ : S → R 7→ K(ϕ) : K(S)→ K(R),

where K(ϕ) is the only morphism of abelian groups that turns the following diagram

commutative.
S R

K(S) K(R)

ιS

ϕ

ιR

K(ϕ)

More explicitly, K(ϕ) : K(S) → K(R) is the group homomorphism that sends each

generator [s] ∈ K(S) into [ϕ(s)] ∈ K(R), which is tacitly linearly extended to the whole

group K(S). ♦

B.3 Understanding the structure

Theorem B.6 (Another existence result for Grothendieck groups). Let S be an abelian

semigroup. We de�ne:

� K ′(S) as being:
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• as a set, the quotient of S × S by the equivalence relation that identi�es (a, b)

with (c, d) in S × S if and only if there exists u ∈ S in such manner that

a+ d+ u = b+ c+ u; and

• as an abelian group, equipped with the commutative binary operation

[a, b] + [c, d] = [a + c, b + d]. Note that [a, a] is the identity in K ′(S) and

that [b, a] is the inverse of [a, b] in K ′(S); and

� ι′S : S → K ′(S) as being the morphism of abelian semigroups that is given by

ι′S(a) = [a+ a, a] for all a ∈ S.

We have that (K ′(S), ι′S) is a Grothendieck group of S.

Proof. Let C be an abelian group and ϕ : S → C be a morphism of abelian

semigroups. We de�ne ξ′ : K ′(S)→ C as being the morphism of abelian groups that sends

[a, b] ∈ K ′(S) into ϕ(a) − ϕ(b) ∈ C. We have that ξ′ is well-de�ned. Indeed, if (a, b) is

related to (c, d), then there exists u ∈ S in such manner that a + d + u = b + c + u.

Consequently,

ϕ(a) + ϕ(d) + ϕ(u) = ϕ(b) + ϕ(c) + ϕ(u).

Therefore,

ξ′[a, b] = ϕ(a)− ϕ(b) = ϕ(c)− ϕ(d) = ξ′[c, d].

Moreover, we have ϕ = ξ′ ◦ ι′S by construction. Finally, we have to prove that ξ′

is the only morphism of abelian groups that veri�es this last property. In fact, if

η′ : K ′(S) → C is a morphism of abelian groups such that ϕ = η′ ◦ ι′S, then, for all

[a, b] ∈ K ′(S), we have

η′[a, b] = η′[a+ a, a]− η′[b+ b, b] = η′(ι′S(a))− η′(ι′S(b)) = ϕ(a)− ϕ(b) = ξ′[a, b].

This �nishes the proof of the theorem.

Remark B.7 (Understanding the structure of Grothendieck groups by means of

Theorems B.4 and B.6). We know from Theorem B.3 that there exists a unique group

isomorphism between the Grothendieck groups de�ned in Theorems B.4 and B.6. More
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properly, there exists a unique group isomorphism ξ′ : K ′(S)→ K(S) such that ιS = ξ′◦ι′S.

Therefore, for all a ∈ S, we have

[a] = ιS(a) = ξ′ ◦ ι′S(a) = ξ′[a+ a, a].

Consequently,

ξ′[a, b] = ξ′[a+ a, a]− ξ′[b+ b, b] = [a]− [b].

This shows the explicit de�nition of ξ′. However, this also shows when [a] = [b]

in K(S). Indeed, since ξ′ is an isomorphism, we have [a] = [b] in K(S) if and

only if

[a+ a, a] = (ξ′)−1[a] = (ξ′)−1[b] = [b+ b, b]

in K ′(S). This condition is the same as requiring the existence of u ∈ S in such manner

that

a+ u = b+ u.

In fact, we have [a+ a, a] = [b+ b, b] if and only if there exists v ∈ S such that

a+ (a+ b+ v) = 2a+ b+ v = a+ 2b+ v = b+ (a+ b+ v),

which is the same as the existence of u ∈ S such that a + u = b + u because we can

take u = a+ b+ v. ♦



307

Appendix C

Ordinary Vector Bundles

In this appendix, we set the fundamental notion that one must know in order

to understand K-Theory, which is the one of vector bundles. However, since the theory

of vector bundles is extensive, we only expose here its initial concepts and the results

that play an essential role in the main text. Hence, it must be clear that we do not

intend to give a complete exposition of this subject in any sense. Indeed, we think that

the reader who fells the urge to deepen his or her knowledge in this interesting topic

may �nd in [2, pp. 1 - 41], [15, pp. 4 - 37], [16, pp. 85 - 109], [18, pp. 24 - 39],

[19, pp. 1 - 51], [24, pp. 249 - 271] and [31] good references. It is to be noted that

the notions presented here are mainly used in Chapter 2, although some of them appear

generalized in Chapter 5.

C.1 First de�nitions

De�nition C.1 (Vector bundle). Let X be a connected topological space and V be a

�nite-dimensional real or complex vector space. A vector bundle on X with typical

�ber V is de�ned by the following data:

� a topological space E;

� a surjective continuous function π : E → X; and

� a vector space structure on π−1(x) for every x ∈ X,

such that the following two conditions are satis�ed.
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(1) For every x ∈ X, there exist an open neighborhood U of x in X and a

homeomorphism

ϕ : π−1(U)→ U × V

verifying the commutativity of the following diagram, assuming that V is endowed

with the topology that is naturally induced by its �nite-dimensional vector space

structure.

π−1(U) U U × Vπ

ϕ

πU

(2) The function ϕ |π−1(y): π
−1(y) → {y} × V is linear for every y ∈ U . Therefore,

being bijective, it is a vector space isomorphism for every y ∈ U .

If X is not connected, then a vector bundle on X is de�ned by a vector bundle on each

connected component of X. In this situation, the typical �ber depends on each connected

component of X. ♦

Notation C.2 (On vector bundles). Henceforth, the notation of De�nition C.1 will

be used without explicit mention. In particular, we will denote a vector bundle with

typical �ber V by π : E → X. Moreover, we will often denote the whole bundle by E,

for convenience. ♦

De�nition C.3 (Standard nomenclature in the framework of vector bundles). Let

π : E → X be a vector bundle. We say that:

� for every x ∈ X, the vector space π−1(x) is the �ber of E in x, which is hereafter

denoted by Ex;

� E and X are, respectively, the total space and the base space of the vector bundle

π : E → X;

� a local chart or local trivialization of E is a pair (U,ϕU) where:

• U ⊆ X is open; and

• ϕU : π−1(U)→ U × V is a homeomorphism satisfying Conditions (1) and (2)

of De�nition C.1.
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Moreover, if x ∈ U , then the local chart (U,ϕU) is also said to be a local chart

in x;

� an atlas of E is a family ΦU = {(Ui, ϕi)}i∈I where:

• U = {Ui}i∈I is an open cover of X; and

• (Ui, ϕi) is a local chart of E for all i ∈ I.

Note that the existence of an atlas of E follows from Conditions (1) and (2) of

De�nition C.1; and

� given a point x0 ∈ X, the dimension of the vector space Ex0 is the rank of E

in x0, which is hereafter denoted by rkx0(E). Since the rank only depends on the

connected component of x0 and coincides with the dimension of the typical �ber, if

X is connected, then we denote it by rk(E). Furthermore, if the rank of E is one,

then E is said to be a line bundle. ♦

Remark C.4 (On the topology of the �bers of a vector bundle). In a vector bundle

π : E → X, we have that the topology of each �ber Ex of E, induced as a topological

subspace of the total space E, coincides with the topology induced by its �nite-dimensional

vector space structure. Indeed, �xing any local chart (U,ϕU) of E, because of Condition (1)

of De�nition C.1, we have that the map ϕU |Ey : Ey → {y} × V is a homeomorphism for

every y ∈ U . ♦

C.2 Morphisms and categories of vector bundles

De�nition C.5 (Vector bundle morphisms). Let πE : E → X and πF : F → Y be vector

bundles. We give the following de�nitions.

� A vector bundle morphism from E into F is a continuous function f : E → F

such that:

• there exists a (unique) continuous function g : X → Y in such manner that

πF ◦ f = g ◦ πE; and

• f |Ex : Ex → Fg(x) is linear for every x ∈ X.
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This means that the following diagram is commutative with f being linear in each

�ber.

E F

X Y

πE

f

πF

g

� If X = Y , then we say that a vector bundle morphism over X from E into F

is a vector bundle morphism f : E → F in such manner that the induced function

g : X → X is the identity map.

Moreover, we say that an invertible vector bundle morphism (over X) is a vector bundle

isomorphism (over X). ♦

De�nition C.6 (Categories of vector bundles). We say that:

� VectBdl is the category of vector bundles whose objects are vector bundles and

whose morphisms are vector bundle morphisms;

� VectBdl(V ) is the category of vector bundles with �xed typical �ber V whose

objects are vector bundles with typical �ber V and whose morphisms are vector

bundle morphisms;

� VectBdlX is the category of vector bundles on X whose objects are vector

bundles on X and whose morphisms are vector bundle morphisms over X; and

� VectBdlX(V ) is the category of vector bundles on X with �xed typical �ber

V whose objects are vector bundles on X with typical �ber V and whose morphisms

are vector bundle morphisms over X. ♦

Remark C.7 (On the categories of vector bundles). We have the following diagram of

categories indicating the inclusion relations between VectBdl, VectBdl(V ), VectBdlX and

VectBdlX(V ).
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VectBdl(V ) VectBdl

VectBdlX(V ) VectBdlX

Indeed, VectBdl(V ), VectBdlX and VectBdlX(V ) are subcategories of VectBdl, being

VectBdl(V ) its only full subcategory. Moreover, VectBdlX(V ) is at the same time a

subcategory of VectBdl(V ) and of VectBdlX . However, VectBdlX(V ) is only full as a

subcategory of VectBdlX . ♦

De�nition C.8 (Sets of equivalence classes of vector bundles). We say that:

� Vect is the quotient of the class of objects of VectBdl by its equivalence relation of

isomorphism of vector bundles. In other words, Vect is the set of isomorphism

classes of vector bundles; and

� VectX is the quotient of the class of objects of VectBdlX by its equivalence

relation of isomorphism of vector bundles on X. In other words, VectX is the set

of isomorphism classes of vector bundles on X.

The sets of isomorphism classes of vector bundles Vect(V ) and VectX(V ) are de�ned in

a similar manner. ♦

C.3 Trivial bundles and restrictions

De�nition C.9 (Product and trivial vector bundles). Let X be a connected topological

space. We say that:

� the product vector bundle with typical �ber V is the projection onto the �rst

factor π : X×V → X with the natural vector space structure induced by V on each

�ber; and

� a vector bundle π : E → X with typical �ber V is trivial if it is isomorphic over X

to the product bundle X × V . In this situation, an isomorphism from E onto the

product bundle is called a trivialization of E. ♦
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De�nition C.10 (Restriction of a vector bundle). Let π : E → X be a vector bundle.

Given a topological subspace Y ⊆ X, the restriction of E to Y , which is hereafter denoted

by E |Y , is the vector bundle π |π−1(Y ): π
−1(Y )→ Y with the induced vector space structure

on each �ber on Y . ♦

Remark C.11 (On the restriction of vector bundles). Let π : E → X be a vector bundle

and Y be a topological subspace of X. Then:

� the restriction E |Y is a vector bundle because we can verify Conditions (1) and

(2) of De�nition C.1 by restricting a local chart (U,ϕU) of E to the local chart

(U ∩ Y, ϕU |π−1(U∩Y )) of E |Y ; and

� if (U,ϕU) is a local chart of E, then ϕU : π−1(U) → U × V is a vector bundle

isomorphism over U between E |U and the product bundle. Therefore, a vector

bundle is locally trivial by de�nition. ♦

Remark C.12 (Covariant functor de�ned by the restriction of vector bundles). Let X

be a topological space and Y be a subspace of X. Then, we have the following

covariant functor

|Y : VectBdlX → VectBdlY ,

E 7→ E |Y ,

f : E → F 7→ f |Y : E |Y → F |Y ,

where f |Y is the natural map that sends a ∈ E |Y into f(a) ∈ F |Y . In fact, since

f : E → Y is a vector bundle morphism over X, we know that πF ◦ f = πE. Therefore,

we have

f(π−1
E (Y )) ⊆ π−1

F (Y ).

Once E |Y = π−1
E (Y ) and F |Y = π−1

F (Y ), it follows that f |Y is well-de�ned. In turn, the

fact

πF |π−1
F (Y ) ◦ f |Y = πE |π−1

E (Y ),

which proves that f |Y is a vector bundle morphism over Y since it is obviously continuous

and linear in each �ber, is immediate from the fact that f is a vector bundle morphism

over X. ♦
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De�nition C.13 (Common trivializing open cover for a family of vector bundles on

the same base space). Let X be a topological space and Π = {πα : Eα → X}α∈Λ

be a family of vector bundles on X. A common trivializing open cover of X for

Π is an open cover U = {Ui}i∈I of X in such manner that Eα |Ui is trivial for all

α ∈ Λ and all i ∈ I. ♦

Remark C.14 (Existence of common trivializing open covers for �nite families

of vector bundles). Let πE : E → X and πF : F → X be vector bundles. There

exists a common trivializing open cover of X for E and F . Indeed, there exist open

covers:

� U = {Ui}i∈I of X such that E |Ui is trivial for all i ∈ I; and

� V = {Vj}j∈J of X such that F |Vj is trivial for all j ∈ J .

Therefore, for each x ∈ X, there exist ix ∈ I and jx ∈ J such that x ∈ Uix and x ∈ Vjx.

We de�ne Wx := Uix ∩ Vjx for every x ∈ X. The reader can readily prove that

W := {Wx}x∈X ensures our assertion. More than that, using induction, the reader

can prove that there exists a common trivializing open cover for any �nite number of

vector bundles. ♦

C.4 Sections of vector bundles

Notation C.15 (On real and complex numbers). When we do not desire to distinguish

between the �eld of real numbers and the �eld of complex numbers, we shall write K

to symbolize any of them. ♦

De�nition C.16 (Global and local sections of a vector bundle). Let π : E → X be a

vector bundle. We say that:

� a (global) section of E is a continuous function s : X → E in such manner

that π ◦ s = idX . The set of sections of E, which has a natural real or complex

vector space structure and a natural module structure over the ring of continuous
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functions C0(X,K), endowed with the pointwise sum and exterior product, is

hereafter denoted by Γ(E); and

� if U ⊆ X is open, then a global section s : U → E |U of the restriction E |U is

said to be a local section of E. Moreover, if x ∈ U , then s is also called a local

section in x. ♦

Theorem C.17 (Local charts induce bijections between the set of local sections and the

ring of continuous functions). Let π : E → X be a vector bundle. If (U,ϕU) is a local

chart of E, then it induces a bijection between Γ(E |U) and C0(U,V ). Moreover, this

bijection is a C0(U,K)-module isomorphism.

Proof. Let s : U → E |U be a local section of E. If x ∈ U , then, since πU ◦ ϕU = π and

π ◦ s = idU , we have

ϕU(s(x)) = (x, v(x))

with v(x) ∈ V . Therefore, we obtain the function v : U → V , which is obviously

continuous once it is the composition between ϕU ◦ s and the projection onto the second

factor πV : U × V → V . Conversely, given a continuous function v : U → V , we obtain

the local section of E

s : U → E |U ,

x 7→ ϕ−1
U (x, v(x)).

The reader can readily prove the last claim of the theorem, which states that this bijection

is a C0(U,K)-module isomorphism.

Remark C.18 (Pushforward of sections induced by a morphism of vector bundles which

covers a homeomorphism). Let πE : E → X and πF : F → Y be vector bundles. If

f : E → F is a morphism of vector bundles covering a homeomorphism g : X → Y ,

then, for any open subset U ⊆ Y , we obtain the following C0-module isomorphism, called

f-pushforward of sections

f∗ : Γ(E |g−1(U)) → Γ(F |U),

s 7→ f ◦ s ◦ g−1.
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In addition, if f is an isomorphism, then f∗ is also an isomorphism, whose inverse is the

f−1-pushforward of sections, which is usually said to be the f-pullback of

sections. Moreover, Theorem C.17 is a particular case of this construction applied to

the isomorphism ϕU : E |U → U × V because Γ(U × V ) is isomorphic to C0(U,V ).

Finally, note that, if f is a morphism over X, then we obtain f∗ : Γ(E |U) → Γ(F |U),

s 7→ f ◦ s. ♦

Remark C.19 (On sections of vector bundles). Let π : E → X be a vector bundle. It is

to be noted that:

� there always exists the vanishing global section 0 : X → E of E, which is

de�ned by 0(x) := 0x for all x ∈ X, where 0x denotes the origin of the vector space

Ex; and

� for any x ∈ X such that rkx(E) is positive, there exists a local section of E in x

which does not vanish in any point. Indeed, it su�ces to �x a local chart (U,ϕU) of

E in x and a non-zero vector v ∈ V in order to de�ne s(y) := ϕ−1(y, v) for every

y ∈ U . Note that this is equivalent to consider the section s induced by the constant

function v as in Theorem C.17. ♦

The following result gives a characterization of trivial vector bundles through their

global sections. Indeed, it says that a vector bundle is trivial if and only if there exist

its rank of pointwise independent global sections. In particular, this result complements

Remark C.19, proving that there exist vector bundles such that all of their global sections

are zero somewhere. In fact, as examples, it su�ces to consider non-trivial vector bundles

of rank one.

Theorem C.20 (Equivalence between triviality of a vector bundle and the existence of

pointwise independent global sections). Let π : E → X be a vector bundle. Then, E is

trivial if and only if there exist rk(E) pointwise independent global sections

s1, · · · , srk(E) ∈ Γ(E). Moreover, a basis of V induces a bijection between the set of

trivializations of E and the set of families {s1, · · · , srk(E)} of rk(E) pointwise independent

global sections of E.
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Proof. Let {a1, · · · , ark(E)} be a basis of V . If E is a trivial vector bundle, then

let ϕX : E → X × V be one of its trivializations. For each n between 1 and rk(E),

both included, it su�ces to set

sn : X → E,

x 7→ ϕ−1
X (x, an),

to obtain a family of rk(E) pointwise independent global sections of E. Conversely, given

a family s1, · · · , srk(E) ∈ Γ(E) of rk(E) pointwise independent global sections of E, we

obtain the trivialization

ϕX : E → X × V ,
rk(E)∑
n=1

λnsn(x) 7→

x, rk(E)∑
n=1

λnan

 .

The reader can readily prove that these assignments are inverse to each other, completing

the last claim of the theorem.

Remark C.21 (Another interpretation of local triviality of vector bundles). We have

seen in Remark C.11 that, given a generic vector bundle E, a choice of a local chart

(U, ϕU) is equivalent to a choice of a trivialization of E |U . Hence, because of

Theorem C.20, it is equivalent to a choice of rk(E) pointwise independent local sections

s1, · · · , srk(E) : U → E |U , which are obviously pointwise independent global sections of the

restriction E |U . ♦

C.5 Subbundles of vector bundles

De�nition C.22 (Subbundle of a vector bundle). Let π : E → X be a vector

bundle. We say that a vector subbundle F of E is a vector bundle of the form

π |F : F → X where F ⊆ E is a topological subspace, and Fx ⊆ Ex is a vector

subspace for every x ∈ X. ♦

Remark C.23 (On subbundles of vector bundles). Let π : E → X be a vector bundle.

Note that:

� we put no constraints on the typical �ber of a subbundle F of E, but it is necessarily

a vector subspace of the typical �ber of E up to isomorphism; and



C. Ordinary Vector Bundles 317

� if F is a subbundle of E, then the inclusion map i : F → E is an injective vector

bundle morphism over X. Indeed, it is continuous, since it is an embedding of a

topological subspace, and it is linear in each �ber, since it is an inclusion of a vector

subspace.

We also observe that, when we restrict a vector bundle to Y , we are only considering the

�bers over the points of Y , but we take the whole �ber in each point. On the other hand,

considering a subbundle of a vector bundle, we restrict each �ber to a vector subspace, but

in the whole X. Evidently, we can apply both operations at the same time, considering

the restriction of a subbundle. ♦

The next result of this section enlightens subbundles of vector bundles. Indeed, it

shows a correspondence between subbundles and pointwise independent local sections of

the main vector bundle.

Theorem C.24 (Subbundles and local sections of a vector bundle). Let π : E → X

be a vector bundle. If F ⊆ E is such that Fx ⊆ Ex is a vector subspace for every x ∈ X,

then π |F : F → X, where F is endowed with the induced topology and each Fx is endowed

with the induced vector space structure, is a vector subbundle of E if and only if, for every

x ∈ X, there exist an open neighborhood U of x in X and pointwise independent local

sections s1, · · · , sn ∈ Γ(E |U), where n depends on x, such that {s1(y), · · · , sn(y)} is a

basis for Fy for every y ∈ U . In particular, this implies that the dimension of the vector

space Fx is locally constant in x.

Proof. (⇒). Since F is a vector bundle, there exists a local chart of F in every x ∈ X.

Fixing a basis of the typical �ber V , such a chart is equivalent to a choice of pointwise

independent local sections s1, · · · , srkx(F ) ∈ Γ(F |U), which form a basis of Fy for every

y ∈ U . Once F is endowed with the induced topology, s1, · · · , srkx(F ) : U → E |U
are continuous. Moreover, since the projection π |F : F → X is the restriction of

π : E → X, we have π ◦ si = idU for every i between 1 and rkx(F ), both included.

Therefore, s1, · · · , srkx(F ) ∈ Γ(E |U). (⇐). Since the sections s1, · · · , sn ∈ Γ(E |U)

are pointwise independent and span Fy for every y ∈ U , they de�ne a local chart

ϕU : (π |F )−1(U) → U × Kn for every x ∈ U . Hence, F is a vector bundle with

typical �ber Kn.
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C.6 Transition functions of vector bundles

Remark C.25 (Relation between the local charts of a vector bundle endowed with an

atlas). Let π : E → X be a vector bundle endowed with an atlas ΦU = {(Ui, ϕi)}i∈I .

Let (Ui, ϕi) and (Uj, ϕj) be any local charts of ΦU such that Uij := Ui ∩ Uj is nonempty.

Then, considering ϕi : π−1(Ui) → Ui × V and ϕj : π−1(Uj) → Uj × V , we obtain the

composition

ϕ̃ij := ϕj |π−1(Uij) ◦
(
ϕi |π−1(Uij)

)−1
: Uij × V → Uij × V .

For every x ∈ Uij, we have the automorphism (ϕ̃ij)x ∈ GL(V ) such that

ϕ̃ij(x, v) = (x, (ϕ̃ij)x(v)).

Consequently, given a ∈ Ex such that ϕi(a) = (x, v), it follows that the corresponding

representation in Uj is ϕj(a) = (x, (ϕ̃ij)x(v)). These facts allow us to set the following

de�nition. ♦

De�nition C.26 (Transition functions of a vector bundle). Let π : E → X be a vector

bundle endowed with an atlas ΦU = {(Ui, ϕi)}i∈I . If Uij := Ui ∩Uj is nonempty, then the

transition function of E from Ui to Uj is de�ned by

ϕij : Uij → GL(V ),

x 7→ (ϕ̃ij)x.

We will denote (ϕ̃ij)x, that is, ϕij(x), equivalently by (ϕij)x. Moreover, it is immediate

to verify that the transition functions satisfy the following condition, called the cocycle

condition: (
ϕjk |Uijk

)
x
◦
(
ϕij |Uijk

)
x

=
(
ϕik |Uijk

)
x

for all x ∈ Uijk := Ui ∩ Uj ∩ Uk. In particular, (ϕii)x = idGL(V ) for all x ∈ Ui and

(ϕij)x = (ϕji)
−1
x for all x ∈ Uij. We will frequently omit the subindexes x in the preceding

formulas, admitting that whenever appears a composition it is happening in the topological

group GL(V ). ♦
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De�nition C.27 (First degree nonabelian �ech cohomology of GL(V )). Let X be a

topological space and U = {Ui}i∈I be one of its open covers. Being V a �nite dimensional

vector space, we set

Ž1(U,GL(V )) :=
{
{ϕij : Uij → GL(V )}i,j∈I : ϕjk |Uijk ◦ ϕij |Uijk = ϕik |Uijk

}
.

We introduce in Ž1(U,GL(V )) the relation de�ned as follows: two of its families

{ϕij}i,j∈I and {ψij}i,j∈I are related if and only if there exists a family {ηi : Ui → GL(V )}i∈I
such that

(ψij)x = (ηj)x ◦ (ϕij)x ◦ (ηi)
−1
x

for all x ∈ Uij and all i, j ∈ I. The reader can readily prove that this is an equivalence

relation on Ž1(U,GL(V )). We set Ȟ1(U,GL(V )) as the quotient of Ž1(U,GL(V )) by this

equivalence relation. ♦

Remark C.28 (On the �rst degree nonabelian �ech cohomology of GL(V )). Let

π : E → X be a vector bundle endowed with an atlas ΦU = {(Ui, ϕi)}i∈I . Being

{ϕij}i,j∈I the set of transition functions of E, De�nition C.26 ensures that the

equivalence class

[{ϕij}i,j∈I ] ∈ Ȟ1(U,GL(V ))

is well-de�ned. Furthermore, the reader can readily prove that it does not depend

on the homeomorphisms of ΦU. Therefore, the class [{ϕij}i,j∈I ] only depends

on the isomorphism class of E among the vector bundles that are trivial on each element

of the open cover U = {Ui}i∈I of X. More than that, one can prove that an equivalence

class of transition functions in Ȟ1(U,GL(V )) determines a unique up to isomorphism

vector bundle with typical �ber V that is trivial on each element of the open cover in

question. ♦

Remark C.29 (Dependence on the open cover of the �rst degree nonabelian �ech

cohomology of GL(V )). Let X be a topological space. When an open cover U = {Ui}i∈I
is �xed, we only consider vector bundles E such that E |Ui is trivial for every i ∈ I.

In general, this condition does not hold. However, for every vector bundle E, there
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exists a re�nement V = {Vj}j∈J of U(1) such that E |Vj is trivial for every j ∈ J (2).

Then, let us consider the partial order ≺ on the set of open covers of X which says that

U ≺ V if and only if V if a re�nement of U. If U = {Ui}i∈I and V = {Vα}α∈Λ are such

that U ≺ V, then there exists a function ρ : Λ → I such that Vα ⊆ Uρ(α). Therefore, we

obtain the function

ρ̂ : Ž1(U,GL(V )) → Ž1(V,GL(V )),

{ϕij}i,j∈I 7→ {ϕρ(α)ρ(β) |Vρ(α)ρ(β)
}α,β∈J .

Furthermore, it is straightforward to verify that ρ̂ projects to the function

ρ̂ ∗ : Ȟ1(U,GL(V )) → Ȟ1(V,GL(V )),

[{ϕij}i,j∈I ] 7→ [{ϕρ(α)ρ(β) |Vρ(α)ρ(β)
}α,β∈J ].

More than that, we have that ρ̂ ∗ does not depend on ρ. Indeed, if ρ, ν : Λ → I

are two functions such that Vα ⊆ Uρ(α) and Vα ⊆ Uν(α), then Vα ⊆ Uρ(α)ν(α) and the

reader can prove that the family {ϕρ(α)ν(α) |Vα}α∈Λ realizes the equivalence between

ρ̂({ϕij}i,j∈I) and ν̂({ϕij}i,j∈I). Consequently, the assignment that sends each open cover

U of X into the set Ȟ1(U,GL(V )) is a direct system of sets. Therefore, we obtain the

direct limit of sets(3)

Ȟ1(X,GL(V )) := lim
−→ U

Ȟ1(U,GL(V )).

The interesting fact is that one can prove that there exists a bijection between VectX(V )

and Ȟ1(X, GL(V )). ♦

(1)Let U = {Ui}i∈I and V = {Vj}j∈J be two open covers of a topological space X. We say that V is a
re�nement of U if there exists a function ρ : J → I such that Vj ⊆ Uρ(j) for all j ∈ J . In the set of open
covers of X, we denote by U ≺ V the fact that V is a re�nement of U. The reader can readily prove that
this is a partial order relation on the set of open covers of X. Moreover, in the set of atlases of a vector
bundle, there exists a partial order relation as well, de�ned as follows. Given ΦU = {(Ui, ϕi)}i∈I and
ΨV = {(Vj , ψj)}j∈J atlases of the same vector bundle, we set ΦU ≺ ΨV if and only if U ≺ V through a
function ρ : J → I such that ψj = ϕρ(j) |Vj

for every j ∈ J . In this situation, we also say that ΨV is a
re�nement of ΦU.

(2)In fact, for every x ∈ X, we �x i ∈ I such that x ∈ Ui. Then, we consider a local chart (Ux, ϕUx
) of

E in x and set Vx := Ux ∩ Ui. Clearly, V := {Vx}x∈X is a re�nement of U such that E |Vx
is trivial for

every x ∈ X.

(3)The reader can easily adapt Appendix A in order to de�ne and explicitly characterize the direct limit
of sets.
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Remark C.30 (On the geometric interpretation of the �rst degree nonabelian �ech

cohomology of GL(V )). Let πE : E → X be a vector bundle endowed with an atlas

ΦU = {(Ui, ϕi)}i∈I . Given a vector bundle πF : F → X isomorphic to E, if

f : F → E is an isomorphism of vector bundles over X, then Φf
U := {(Ui, ϕi◦f |π−1

F (Ui)
)}i∈I

is an atlas of F inducing the same transition functions of ΦU. Fixing a basis A of

V , this equivalently means that the families of local sections {si,k}i∈ I; 0<k≤ rk(E) and

{f ∗si,k}i∈ I; 0<k≤ rk(E) induce the same transition functions, where f ∗ is the f -pullback

of sections de�ned in Remark C.18. Conversely, if F is a vector bundle endowed with a

family of local sections {ti,k}i∈ I; 0<k≤ rk(E) that induces the same transition functions of E

with respect to the family {si,k}i∈ I; 0<k≤ rk(E), then there exists an isomorphism f : F → E

such that ti,k = f ∗si,k for all i ∈ I and all k between 1 and rk(E), both included. In fact,

it su�ces to set

f

rk(E)∑
k=1

λkti,k(x)

 :=

rk(E)∑
k=1

λksi,k(x).

Therefore, we can conclude that:

� �xing an open cover U = {Ui}i∈I of X and a basis A of V , a family

{ϕij}i,j∈I ∈ Ž1(U,GL(V )) corresponds geometrically to a vector bundle

π : E → X endowed with a family {si,k}i∈ I; 0<k≤ rk(E) of pointwise independent

local sections, up to isomorphism respecting the local sections through pullback

(or pushforward);

� �xing an open cover U = {Ui}i∈I of X, a class [{ϕij}i,j∈I ] ∈ Ȟ1(U,GL(V ))

corresponds geometrically to a vector bundle π : E → X such that E |Ui is

trivial for every i ∈ I, up to isomorphism; and

� a class [[{ϕij}i,j∈I ]] ∈ Ȟ1(X,GL(V )) corresponds geometrically to a vector bundle

π : E → X, up to isomorphism. ♦

C.7 Operations on vector bundles

In this section, we will see that natural operations on vector spaces, specially

direct sum and tensor product, can be extended to the framework of vector

bundles. The only problem that we will face is the question of how one should
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topologize the resulting spaces. The beauty of the answer that will be presented here

is the fact that it gives a general method for extending operations from vector spaces

to vector bundles, handling all the situations uniformly. We begin with the following

de�nition.

De�nition C.31 (The category of n-tuples of �nite-dimensional vector spaces). Let

FDVectSps be the category of �nite-dimensional (real or complex) vector spaces.

For each non-zero natural number n, we de�ne the category of n-tuples of

�nite-dimensional vector spaces, and denote it by FDVectSpsn, to be the n-times

product category of FDVectSps. More explicitly, we have that FDVectSpsn is the category

whose:

� objects are ordered n-tuples (V1, · · · ,Vn), where Vi is a �nite-dimensional vector

space for each i between 1 and n, both included; and

� morphisms are sequences of linear maps (Φ1 : V1 → W1, · · · ,Φn : Vn → Wn),

usually denoted by Φ : (V1, · · · ,Vn)→ (W1, · · · ,Wn). ♦

Remark C.32 (Desired relation between operations on vector spaces and on vector

bundles). We say that:

� an operation on vector spaces is a functor T : FDVectSpsn → FDVectSps; and

� an operation on vector bundles is a functor Θ : VectBdl nX → VectBdlX ,

where VectBdl nX is analogously the n-times product category of VectBdlX .

The main idea of this section is to extend(4) an operation on vector spaces T to an

operation on vector bundles ΘT in such manner that the action of this last one on each

�ber coincides with the action of the former. For this, however, we need to require an

additional property of the operation on vector spaces. Indeed, since a vector bundle is

a continuous (locally trivial) family of vector spaces, it is natural to ask T to obey some

continuity hypothesis. This is done in order to ensure that the action of ΘT is well-behaved

(4)The word �extension� is appropriate when used in this context because, if X is a one-point space, then
VectBdlX is canonically isomorphic to FDVectSps. Consequently, VectBdl nX is canonically isomorphic to
FDVectSpsn.
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when we go from a �ber to the ones near it. This idea is formalized by the following

de�nition. ♦

De�nition C.33 (Continuous operation on vector spaces). We say that a functor

T : FDVectSpsn → FDVectSps is a continuous operation on vector spaces if its

action on morphisms

TV ,W : HomFDVectSpsn(V ,W ) → HomFDVectSps(T (V ), T (W )),

Φ : V → W 7→ TV ,W (Φ) : T (V )→ T (W ),

is continuous for all objects V = (V1, · · · ,Vn) and W = (W1, · · · ,Wn) of FDVectSpsn.

The topologies of the domain and of the codomain are the ones induced by their

�nite-dimensional vector space structures. We will often omit the subindexes above and

admit that T is covariant in all of its factors. The reader can deal with the cases where

T is a contravariant or a mixed functor. ♦

Theorem C.34 (Operation on vector bundles induced by a continuous operation

on vector spaces). Let T : FDVectSpsn → FDVectSps be a continuous operation

on vector spaces. For each topological space X, there exists an induced operation on

vector bundles

ΘT : VectBdl nX → VectBdlX ,

whose action on each �ber coincides with the action of the initial operation on

vector spaces.

Proof. We de�ne ΘT : VectBdl nX → VectBdlX to be the functor whose actions on objects

and on morphisms are given as follows.

� Action on objects. Let E1, · · · , En be vector bundles on X. Then, as a set, the total

space of the vector bundle ΘT (E1, · · · , En) is given by

ΘT (E1, · · · , En) :=
⊔
x∈X

T ((E1)x, · · · , (En)x).

This precisely means that the action of ΘT on each �ber coincides with the

one of T . The projection ΘT (E1, · · · , En) → X is the obvious one given by the
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disjoint union structure of ΘT (E1, · · · , En). However, we still have to de�ne the

topology on this total space. This will be done after we de�ne the action of ΘT on

morphisms.

� Action on morphisms. Let Φ1 : E1 → F1, · · · ,Φn : En → Fn be morphisms of vector

bundles over X. We de�ne

ΘT (Φ1, · · · ,Φn) : ΘT (E1, · · · , En) → ΘT (F1, · · · , Fn)

on each �ber as T ((Φ1)x, · · · , (Φn)x) : T ((E1)x, · · · , (En)x) → T ((F1)x, · · · , (Fn)x).

We still have to prove the continuity of ΘT (Φ1, · · · ,Φn) with respect to the topology

of its domain and codomain. This is done now, together with the de�nition of these

topologies.

Indeed, the topology on ΘT (E1, · · · , En) and the continuity of ΘT (Φ1, · · · ,Φn) are handled

in the following three steps.

� Let E1, · · · , En be product vector bundles on X. That is, Ei = X × Vi for

every i between 1 and n, both included. In this case, there exists a canonical

bijection between

ΘT (X × V1, · · · , X × Vn) and X × T (V1, · · · ,Vn).

Therefore, we de�ne the topology on the set ΘT (X × V1, · · · , X × Vn) to be

the one induced by this canonical bijection from the product topology of

X × T (V1, · · · ,Vn). Moreover, let Φi : X × Vi → X × Wi be a morphism of

vector bundles over X for each i between 1 and n, both included. Equivalently,

Φi : X → HomFDVectSps(Vi,Wi) for each i between 1 and n, both included. Thus, we

de�ne the natural map

Φ : X → HomFDVectSpsn((V1, · · · ,Vn), (W1, · · · ,Wn)).

Since T is a continuous operation on vector bundles, we have that the

composition T ◦ Φ : X → HomFDVectSps(T (V1, · · · ,Vn), T (V1, · · · ,Vn)) is

continuous. Hence, ΘT (Φ1, · · · ,Φn) : X × T (V1, · · · ,Vn) → X × T (W1, · · · ,Wn)
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is also continuous. Furthermore, if Φ1, · · · ,Φn are isomorphisms of vector

bundles over X, then necessarily ΘT (Φ1, · · · ,Φn) is an isomorphism of vector

bundles over X.

� Now, let E1, · · · , En be trivial vector bundles on X. Then, we can choose a

global trivialization αi : Ei → X × Vi for each i between 1 and n, both included.

Consequently, we have

ΘT (α1, · · · , αn) : ΘT (E1, · · · , En) → ΘT (X × V1, · · · , X × Vn),

which is a bijection because it is bijective on each �ber. Once the topology

on ΘT (X × V1, · · · , X × Vn) is known from the preceding item, we give to

ΘT (E1, · · · , En) the least topology that turns ΘT (α1, · · · , αn) into a

homeomorphism(5). Moreover, let Φi : Ei → Fi be a morphism of trivial vector

bundles over X for each i between 1 and n, both included. If αi : Ei → X × Vi

and βi : Fi → X ×Wi are, respectively, global trivializations of Ei and Fi for each i

between 1 and n, both included, then

ΘT (β1, · · · , βn) ◦ ΘT (Φ1, · · · ,Φn) ◦ ΘT (α−1
1 , · · · , α−1

n ),

which sends ΘT (X × V1, · · · , X × Vn) into ΘT (X ×W1, · · · , X ×Wn), is continuous

because of the preceding item. Therefore, ΘT (Φ1, · · · ,Φn) is also continuous. In

addition, it follows from this construction that, if Y ⊆ X, then the induced topology

on ΘT (E1, · · · , En) |Y coincides with the topology on ΘT (E1 |Y , · · · , En |Y ), as

expected.

� Finally, let E1, · · · , En be generic vector bundles on X. There exists a

common trivializing open cover U = {Ui}i∈I of X for this �nite family of

vector bundles because of Remark C.14. We de�ne the topology on ΘT (E1, · · · , En)

as follows. We declare a subset V ⊆ ΘT (E1, · · · , En) as open if and only if its

(5)The choice of the trivializations plays no role in this construction. Indeed, let βi : Ei → X × Vi
be another global trivialization of Ei for each i between 1 and n, both included. Then, it follows
from the preceding item that Θ(β−11 ◦ α1, · · · , β−1n ◦ αn) : ΘT (E1, · · · , En) → ΘT (E1, · · · , En) is
an isomorphism of vector bundles over X. Thus, we have that Θ(β−11 ◦ α1, · · · , β−1n ◦ αn) is a
homeomorphism between the topologies of ΘT (E1, · · · , En) induced by the families of trivializations
{αi} and {βi}.
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intersection with ΘT (E1 |Ui , · · · , En |Ui) is open for all i ∈ I(6). Moreover, let

Φi : Ei → Fi be a morphism of vector bundles over X for each i between 1 and n,

both included. We have that

ΘT (Φ1, · · · ,Φn) : ΘT (E1, · · · , En) → ΘT (F1, · · · , Fn)

is continuous on each element of the open cover U because of the preceding item.

Thus, it is continuous. In addition, the reader can readily prove that, if Y ⊆ X,

then the induced topology on ΘT (E1, · · · , En) |Y coincides with the topology on

ΘT (E1 |Y , · · · , En |Y ), as expected.

This �nishes the proof of the theorem.

Remark C.35 (A characterization of the operations on vector bundles through

transition functions). For each topological space X and each continuous operation on

vector spaces T : FDVectSpsn → FDVectSps, we have that Theorem C.34 produces an

operation on vector bundles ΘT : VectBdl n → VectBdl. Furthermore, being V1, · · · ,Vn
�nite-dimensional vector spaces, we have the function on isomorphism classes of vector

bundles

[ΘT ] :
n∏
i=1

VectX(Vi) → VectX(T (V1, · · · ,Vn)).

Therefore, because of the conclusion of Remark C.29, we have the characterization of this

map by means of transition functions

[ΘT ]∗ :
n∏
i=1

Ȟ1(X,GL(Vi)) → Ȟ1(X,GL(T (V1, · · · ,Vn))).

In particular, let E1, · · · , En be vector bundles on X whose typical �bers are V1, · · · ,Vn,

respectively. There exists a common trivializing open cover U = {Ui}i∈I of X for this

(6)We have that:

• this topology does not depend on the chosen common trivializing open cover of X. Indeed,
if U′ is another one, then U and U′ de�ne the same topology as any common re�nement U′′

of them; and

• in general, given a vector bundle E → X and an open cover U = {Ui}i∈I of X, V ⊆ E is open
if and only if its intersection with E |Ui is open for each i ∈ I. This happens because {E |Ui}i∈I
is an open cover of E. Therefore, if T is the identity on FDVectSps, then ΘT is the identity on
VectBdlX , as expected.
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�nite family of vector bundles because of Remark C.14. Thus, let {ϕkij}i,j∈I be a set of

transition functions that represents Ek with respect to U for each k between 1 and n, both

included. The reader can prove that, if ρ : T (V, · · · ,Vn) → W is a �nite-dimensional

vector space isomorphism, then the transition functions {ϕij}i,j∈I of ΘT (E1, · · · , En) are

given by

ϕij(x) = ρ ◦ T (ϕ1
ij(x), · · · , ϕnij(x)) ◦ ρ−1.

Note that, when T is a contravariant or a mixed functor, we have to change ϕkij(x) by

its inverse in the preceding equality. However, this change must be done only in the

contravariant components of its domain. ♦

C.7.1 Direct sum of vector bundles

De�nition C.36 (Direct sum of vector bundles). The following functor is the direct

sum functor:

⊕ : FDVectSps2 → FDVectSps,

(V1,V2) 7→ V1 ⊕ V2,

(Φ1 : V1 → W1, Φ2 : V2 → W2) 7→ Φ1 ⊕ Φ2 : V1 ⊕ V2 → W1 ⊕W2,

where

(Φ1 ⊕ Φ2)(v1, v2) := (Φ1(v1),Φ2(v2))

for all (v1v2) ∈ V1 ⊕ V2. This is a continuous operation on vector spaces. For each

topological space X, we say that the corresponding vector bundle operation

Θ⊕ : VectBdl 2
X → VectBdlX induced by Theorem C.34 is the direct sum of vector

bundles on X. For convenience, if E and F are vector bundles on X, then we will write

E ⊕ F instead of Θ⊕(E,F ). ♦

Remark C.37 (On the direct sum of vector bundles). Let X be a topological space. We

have the following facts about the direct sum of vector bundles on X.

� Let E, F and G be vector bundles on X. Then, (E ⊕ F ) ⊕ G is isomorphic to

E ⊕ (F ⊕ G) over X. Consequently, being E1, · · · , En vector bundles on X, it is

de�ned the direct sum
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n⊕
i=1

Ei = E1 ⊕ · · · ⊕ En

up to isomorphism.

� Let ρ : Kn ⊕ Km → Kn+m be the canonical isomorphism. For any linear maps

A : Kn → Kn and B : Km → Km, represented by the matrices A and B with respect

to the canonical bases of Kn and Km, respectively, we have that the natural linear

map A ⊕ B : Kn+m → Kn+m is represented in the canonical basis of Kn+m by the

matrix

A⊕B =

A 0

0 B

 .
Consequently, let E and F be vector bundles on X with typical �bers Krk(E) and

Krk(F ), respectively(7). Moreover, let {ϕij}i,j∈I and {ψij}i,j∈I be representing sets of

transition functions for E and F , respectively. Then, the corresponding transition

functions of E ⊕ F are given by {ϕij ⊕ ψij}i,j∈I . ♦

Theorem C.38 (Direct sum up to isomorphism). Let X be a topological space. Then,

the direct sum of vector bundles on X induces the commutative and associative binary

operation in VectX

⊕ : VectX × VectX → VectX ,

([E], [F ]) 7→ [E ⊕ F ].

In other words, we have that this induced binary operation turns VectX into an abelian

semigroup.

Proof. The reader can readily prove this result. More than that, one can prove that

this induced operation turns VectX into an abelian monoid. This happens because the

isomorphism class of the product vector bundle with trivial typical �ber is its identity

element. Nevertheless, V ectX is not a group with this operation because of its lack of

(7)This is no restriction on the vector bundles. Indeed, if π : E → X is a vector bundle with typical
�ber V , then �x an isomorphism η : V → Krk(E). For each local chart ϕU : π−1(U)→ U ×V , we obtain
a local chart (idU × η) ◦ ϕU : π−1(U)→ U ×Krk(E). Thus, E is also a vector bundle on X with typical
�ber Krk(E). Once and again, here, we tacitly assumed X to be connected. The reader can adapt this
construction for the general case.
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inverses. Indeed, once the direct sum does not decrease the rank of the vector bundles,

any isomorphism class with positive rank cannot have an inverse in VectX with respect

to this operation.

C.7.2 Dual vector bundle

De�nition C.39 (Dual of a vector bundle). The following contravariant functor is the

dual functor:

∗ : FDVectSps → FDVectSps,

V 7→ V ∗,

Φ : V → W 7→ ΦT : W ∗ → V ∗,

where

ΦT (ϕ) := ϕ ◦ Φ

for all ϕ ∈ W ∗. This is a continuous operation on vector spaces. Therefore, for each

topological space X, we say that the corresponding vector bundle operation

Θ∗ : VectBdlX → VectBdlX induced by Theorem C.34 is the dual of vector bundles

on X. For convenience, if E is a vector bundle on X, then we will write E∗ instead

of Θ∗(E). ♦

Remark C.40 (On the dual of a vector bundle). Let X be a topological space. We have

the following facts about the dual of a vector bundle on X.

� Since V is canonically isomorphic to (V ∗)∗ for all V ∈ FDVectSps, it follows

that, if E is a vector bundle on X, then E is isomorphic to (E∗)∗ over X.

� Let ρ : (Kn)∗ → Kn be the canonical isomorphism. For any linear map

A : Kn → Kn, represented by the matrix A with respect to the canonical basis

of Kn, we have that A∗ : (Kn)∗ → (Kn)∗ is represented by the matrix AT with

respect to the canonical basis of (Kn)∗. Consequently, let E be a vector bundle

with typical �ber Krk(E). Moreover, let {ϕij}i,j∈I be a representing set of transition

functions for E. Then, the corresponding transition functions of E∗ are given by

the set {(ϕ−1
ij )T}i,j∈I . ♦
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C.7.3 Tensor product of vector bundles

De�nition C.41 (Tensor product of vector bundles). The following functor is the tensor

product functor:

⊗ : FDVectSps2 → FDVectSps,

(V1,V2) 7→ V1 ⊗ V2,

(Φ1 : V1 → W1, Φ2 : V2 → W2) 7→ Φ1 ⊗ Φ2 : V1 ⊗ V2 → W1 ⊗W2,

where

(Φ1 ⊗ Φ2)(v1 ⊗ v2) := Φ1(v1)⊗ Φ2(v2)

for all v1 ⊗ v2 ∈ V1 ⊗ V2, being tacitly linearly extended to the whole vector space

V1 ⊗ V2. This is a continuous operation on vector spaces. For each topological space

X, we say that the corresponding vector bundle operation Θ⊗ : VectBdl 2
X → VectBdlX

induced by Theorem C.34 is the tensor product of vector bundles on X. For

convenience, if E and F are vector bundles on X, then we will write E ⊗ F instead

of Θ⊗(E,F ). ♦

Remark C.42 (On the tensor product of vector bundles). Let X be a topological space.

We have the following facts about the tensor product of vector bundles on X.

� Let E, F and G be vector bundles on X. Then, (E ⊗ F ) ⊗ G is isomorphic to

E ⊗ (F ⊗G) over X. Moreover, E ⊗ (F ⊕G) is isomorphic to (E ⊗ F )⊕ (E ⊗G)

over X. Consequently, being E,E1, · · · , En vector bundles on X, it is de�ned the

tensor product
n⊗
i=1

Ei = E1 ⊗ · · · ⊗ En

up to isomorphism, and the vector bundles

E ⊗

(
n⊕
i=1

Ei

)
and

n⊕
i=1

(E ⊗ Ei)

are isomorphic over X. In other words, we have that the tensor product of vector

bundles is distributive with respect to the direct sum of vector bundles up to

isomorphism.
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� Let ρ : Kn ⊗ Km → Knm be the canonical isomorphism. For any linear maps

A : Kn → Kn and B : Km → Km, represented by the matrices A = [aij] and

B = [bij] with respect to the canonical bases of Kn and Km, respectively, we have

that the natural linear map A ⊗ B : Knm → Knm is represented in the canonical

basis of Knm by the matrix A⊗ B whose element in line ij and column lk is given

by the product ailbjk. More directly, we have that A ⊗ B is the matrix obtained

multiplying each element of A by the whole matrix B. Consequently, let E and F

be vector bundles on X with typical �bers Krk(E) and Krk(F ), respectively. Moreover,

let {ϕij}i,j∈I and {ψij}i,j∈I be representing sets of transition functions for E and F ,

respectively. Then, the corresponding transition functions of E⊗F are given by the

set {ϕij ⊗ ψij}i,j∈I . ♦

Theorem C.43 (Tensor product up to isomorphism). Let X be a topological space. Then,

the tensor product of vector bundles on X induces the commutative and associative binary

operation in VectX

⊗ : VectX × VectX → VectX ,

([E], [F ]) 7→ [E ⊗ F ].

In other words, we have that this induced binary operation turns VectX into an abelian

semigroup.

Proof. The reader can readily prove this result. More than that, one can prove that

this induced operation turns VectX into an abelian monoid. This happens because the

isomorphism class of the product vector bundle with one-dimensional typical �ber is its

identity element. Nevertheless, VectX is not a group with this operation because of its

lack of inverses.

De�nition C.44 (Set of isomorphism classes of line bundles). Let X be a topological

space. We say that PicX is the set of isomorphism classes of line bundles on

X. In other words, PicX is the subset of VectX composed by the isomorphism classes of

rank-one vector bundles. ♦
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Corollary C.45 (The Picard group). Let X be a topological space. Then, the tensor

product of vector bundles on X induces the commutative and associative binary operation

in PicX

⊗ : PicX × PicX → PicX ,

([L], [M ]) 7→ [L⊗M ].

Furthermore, we have that this induced binary operation turns PicX into an abelian group.

This group is the Picard group of line bundles on X.

Proof. The �rst part of the statement is an immediate consequence of Theorem C.43.

On the other hand, the reader can prove that any [L] ∈ PicX has as its inverse [L∗] ∈ PicX .

This follows from the fact that, if E is a vector bundle on X, then E∗ ⊗ E is isomorphic

to End(E), as will be shown in the following subsection. An interesting fact is that there

exists an isomorphism c1 : PicX → H2(X,Z) which is called the �rst Chern class. This

is a complete invariant in the sense that any isomorphism class [L] ∈ PicX is completely

determined by c1[L] ∈ H2(X,Z).

C.7.4 Hom and End of vector bundles

De�nition C.46 (Hom and End of vector bundles). The following functor, which is

contravariant in the �rst variable and covariant in the second one, is the morphism

functor:

Hom : FDVectSps2 → FDVectSps,

(V1,V2) 7→ Hom(V1,V2),

(Φ1 : V1 → W1, Φ2 : V2 → W2) 7→ Hom(Φ1,Φ2) : Hom(W1,V2)→ Hom(V1,W2),

where

Hom(Φ1,Φ2)(ϕ) := Φ2 ◦ ϕ ◦ Φ1

for all ϕ ∈ Hom(W1,V2). This is a continuous operation on vector spaces. For each

topological space X, we say that the corresponding vector bundle operation

ΘHom : VectBdl 2
X → VectBdlX induced by Theorem C.34 is the Hom of vector
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bundles on X. For convenience, if E and F are vector bundles on X, then we

will write Hom(E,F ) instead of ΘHom(E,F ). Furthermore, we consider the diagonal

functor

∆ : VectBdlX → VectBdl 2
X ,

E 7→ (E,E),

Φ : E → F 7→ (Φ : E → F, Φ : E → F ).

We say that the composition ΘHom ◦ ∆ : VectBdl → VectBdl is the End of vector

bundles on X. For convenience, if E is a vector bundle on X, then we will write End(E)

instead of (ΘHom ◦∆)(E). ♦

Remark C.47 (On the Hom and on the End of vector bundles). Let X be a

topological space. We have the following facts about the Hom and the End of vector

bundles on X.

� Consider the diagonal functor

∆′ : FDVectSps → FDVectSps2,

V 7→ (V ,V ),

Φ : V → W 7→ (Φ : V → W , Φ : V → W ).

We have that Hom ◦ ∆′ : FDVectSps → FDVectSps is a continuous operation

on vector spaces. Then, let ΘHom ◦∆′ : VectBdl → VectBdl be its corresponding

vector bundle operation induced by Theorem C.34. The reader can readily prove

that, if E is a vector bundle on X, then End(E) = (ΘHom ◦∆)(E) is isomorphic to

ΘHom ◦∆′(E).

� For all V ,W ∈ FDVectSps, we have that Hom(V ,W ) is canonically isomorphic

to V ∗ ⊗ W . Thus, if E and F are a vector bundles on X, then Hom(E,F ) is

isomorphic to E∗ ⊗ F over X. In particular, we have that End(E) is isomorphic

to E∗ ⊗ E over X.

� Let E and F be vector bundles on X with typical �bers V and W , respectively.

Moreover, let {ϕij}i,j∈I and {ψij}i,j∈I be representing sets of transition functions
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for E and F , respectively. The preceding item allows us to see the correspond-

ing transition functions of Hom(E,F ) and End(E) as the ones of E∗ ⊗ F and

E∗ ⊗ E described in Remark C.42, respectively. Nevertheless, it is interesting

to note the following approach. Indeed, the corresponding transition functions of

Hom(E,F ) are given by the set {Hom(ϕij, ψij) : Uij → Hom(GL(V ),GL(W ))}i,j∈I
where Hom(ϕij, ψij)x(ϕ) = (ψij)x ◦ϕ◦ (ϕij)

−1
x for all x ∈ Uij and all ϕ ∈ GL(V ). In

particular, the corresponding transition functions of End(E) are given by the set

{End(ϕij) : Uij → End(GL(V ))}i,j∈I where End(ϕij)x(ϕ) = (ϕij)x ◦ ϕ ◦ (ϕij)
−1
x

for all x ∈ Uij and all ϕ ∈ GL(V ). ♦

C.8 Inner and Hermitian products on vector bundles

De�nition C.48 (Inner and Hermitian products on vector bundles). We give the follow-

ing de�nitions.

� An inner product on a real vector bundle π : E → X is a continuous

function 〈 , 〉 : E ⊕ E → R that restricts in each �ber to an inner product

(that is, a positive de�nite symmetric bilinear form). Moreover, if a real vector

bundle is equipped with an inner product, then it is called an Euclidean vector

bundle.

� An Hermitian product on a complex vector bundle π : E → X is a

continuous function 〈 , 〉 : E ⊕ E → C that restricts in each �ber to an Hermitian

product (that is, a positive de�nite antisymmetric sesquilinear form). Moreover, if

a complex vector bundle is equipped with an Hermitian product, then it is called an

Hermitian vector bundle. ♦

The next result answers the natural question that the reader may be asking himself

or herself now, which consists in �nding conditions for the existence of inner and Hermitian

products in real and complex vector bundles, respectively. The interesting fact is that

a topological condition on the base space of vector bundles is su�cient to answer this

question.
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Theorem C.49 (Existence of inner and Hermitian products on vector bundles on

paracompact Hausdor� spaces). Let π : E → X be a real (respectively, complex)

vector bundle. If X is a paracompact Hausdor� space, then there exists an inner

(respectively, Hermitian) product on E.

Proof. The reader can readily prove this result following the next two steps.

(1) Use local charts

ϕUi : π−1(Ui)→ Ui × V

of E to de�ne local inner (respectively, Hermitian) products on E by pullbacking

the natural inner (respectively, Hermitian) product on the product bundle Ui × V

induced by an inner (respectively, Hermitian) product of V .

(2) Use the fact that X is a paracompact Hausdor� space to choose a partition of

the unit subordinated to the open cover U = {Ui}i∈I of X, which is produced by the

choices of local charts of E that were made in the preceding item, in order to

carefully glue together all the local inner (respectively, Hermitian) products on E,

which were also obtained in the preceding item, into a global inner (respectively,

Hermitian) product on E. �

The following result generalizes a well-known theorem in Linear Algebra. The

theorem which we are referring to says that in a �nite-dimensional vector space there

always exists an orthogonal complement for each of its vector subspaces. In fact, the

subsequent result ensures a corresponding theorem in the framework of vector bundles on

paracompact Hausdor� spaces.

Theorem C.50 (Existence of complements of subbundles in vector bundles on

paracompact Hausdor� spaces). Let π : E → X be a vector bundle. If X is

a paracompact Hausdor� space, then for every vector subbundle F of E there

exists another vector subbundle F⊥ of E such that the direct sum F ⊕ F⊥ is

isomorphic to E over X.

Proof. The reader can �nd a proof of this result in [15, p. 12].
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The next and last result of this section is one of the most important theorems in

this appendix. It concerns the existence of trivializing addenda for vector bundles on

compact Hausdor� spaces. In other words, it says that vector bundles on compact

Hausdor� spaces are trivial up to summing them with other vector bundles. In this

situation, a trivializing summand is called a trivializing addendum for the vector

bundle under consideration.

Theorem C.51 (Existence of trivializing addenda for vector bundles on compact

Hausdor� spaces). Let πE : E → X be a vector bundle. If X is a compact Hausdor�

space, then there exists a vector bundle πF : F → X such that the direct sum E ⊕ F is a

trivial vector bundle.

Proof. The reader can �nd a proof of this result in [15, p. 13].

C.9 Pullback of vector bundles

Remark C.52 (Fiber product of topological spaces). Let f : X → Z and g : Y → Z be

continuous functions. The �ber product between X and Y with respect to f and g is the

topological subspace of X × Y

X ×f,g Y :=
{

(x, y) ∈ X × Y : f(x) = g(y)
}
.

We de�ne the projections

π1 : X ×f,g Y → X, and π2 : X ×f,g Y → Y,

(x, y) 7→ x, (x, y) 7→ y.

We have that the �ber product veri�es the following universal property. Given a pair

of continuous functions h : W → X and k : W → Y , there exists a unique continuous

function fromW into X×f,gY , usually denoted by h×f,gk, such that the following diagram

is commutative.
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W

X ×f,g Y Y

X Z

h×f,gk

h

k

π1

π2

g

f

In particular, the �ber product of spaces with respect to continuous functions with the

same codomain is unique up to a unique homeomorphism. We use �ber products to set

the following de�nition. ♦

De�nition C.53 (Pullback of a vector bundle). Let f : X → Y be a continuous map

and π : E → Y be a vector bundle. We say that the pullback of E through f is

the vector bundle π∗ : f ∗E → X where f ∗E := E ×π,f X and π∗(a, x) := x for all

(a, x) ∈ f ∗E. ♦

Remark C.54 (On the pullback of a vector bundle being a vector bundle). Let

f : X → Y be a continuous map and π : E → Y be a vector bundle. We can verify

that f ∗E is a vector bundle with the same typical �ber of E up to canonical isomorphism.

In fact, for every x ∈ X, we have (f ∗E)x = Ef(x) × {x}, which is canonically isomorphic

to Ef(x). Hence, the �ber of f ∗E in x is canonically isomorphic to the one of E in f(x).

More precisely, the �ber of f ∗E in x is canonically homeomorphic to the one of

E in f(x) and we endow it with the induced vector space structure, making the

�bers in question isomorphic as vector spaces. Moreover, �xing x ∈ X, let (U,ϕU) be

a local chart of E in f(x). Setting V := f−1(U), we obtain the local chart (V, ψV ) of

f ∗E in x where ψV : (π∗)−1(V )→ V × V is given by ψV (a) = (π∗(a), πV ◦ϕU(a)), where

πV : U × V → V is the projection onto the second factor. This �nishes the proof of our

last claim. ♦
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Theorem C.55 (Important properties of the pullbacks of vector bundles). We have the

following properties of the pullbacks of vector bundles.

(1) If f : X → Y and g : Y → Z are continuous maps and E is a vector bundle on Z,

then (g ◦ f)∗E is isomorphic to f ∗g∗E over X.

(2) If X is a topological space and E is a vector bundle on X, then id ∗XE is isomorphic

to E over X.

(3) If f : X → Y is a continuous map and E and F are vector bundles on Y , then

f ∗(E ⊕ F ) is isomorphic to f ∗E ⊕ f ∗F over X. In other words, the pullback of

vector bundles commutes with the direct sum up to isomorphism.

(4) If f : X → Y is a continuous map and E and F are vector bundles on Y , then

f ∗(E ⊗ F ) is isomorphic to f ∗E ⊗ f ∗F over X. In other words, the pullback of

vector bundles commutes with the tensor product up to isomorphism.

Proof. These properties are straightforwardly implied by the fact that the pullback of a

vector bundle is unique up to isomorphism. The reader who wants more details may �nd

in [31, pp. 5 - 7] a good reference.

Remark C.56 (Covariant functor de�ned by the pullback of vector bundles). If

f : X → Y is a continuous function, then we have the covariant functor

f ∗ : VectBdlY (V ) → VectBdlX(V ),

E 7→ f ∗E,

η : E → F 7→ f ∗η : f ∗E → f ∗F,

where f ∗η : f ∗E → f ∗F is given by f ∗η(a, x) = (η(a), x) for all (a, x) ∈ f ∗E.

Furthermore, if g : Y → Z is also a continuous functions, then Item (1) of Theorem C.55

says that the covariant functor (g ◦ f)∗ : VectBdlZ → VectBdlX is isomorphic to the

composition of the covariant functors f ∗ and g∗ given by f ∗ ◦ g∗ : VectBdlZ → VectBdlX .

Also, Item (2) of Theorem C.55 says that id ∗X : VectBdlX → VectBdlX is isomorphic to

the identity functor. ♦
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Theorem C.57 (Invariance of the pullbacks of a vector bundle through homotopic

maps with paracompact Hausdor� domains). Let π : E → Y be a vector bundle and

f, g : X → Y be continuous homotopic maps. If X is a paracompact Hausdor� space,

then the pullbacks f ∗E and g∗E are isomorphic over X.

Proof. The reader can �nd a proof of this result in the case in which X is a compact

Hausdor� space in [2, p. 17]. In turn, a proof of the general case can be seen in

[15, pp. 20 - 21] and in [31, pp. 7 - 8].

Corollary C.58 (Bijection of isomorphism classes of vector bundles induced by a

homotopy equivalence between paracompact Hausdor� spaces). Let X and Y be

paracompact Hausdor� spaces in such manner that there exists a homotopy equivalence

f : X → Y between them. Then,

[f ∗] : VectY (V ) → VectX(V ),

[E] 7→ [f ∗E],

which is the quotient of the function between objects of the covariant functor

from Remark C.56 by the isomorphism equivalence relation, is a bijection between

VectY (V ) and VectX(V ). In particular, we have that every vector bundle on a contractible

paracompact Hausdor� space is trivial.

Proof. Since f : X → Y is a homotopy equivalence, there exists a continuous function

g : Y → X such that g ◦ f is homotopic to idX : X → X and f ◦ g is homotopic

to idY : Y → Y . Therefore, for all vector bundles E on X and F on Y , Item (2) of

Theorem C.55 and Theorem C.57 imply

(g ◦ f)∗E ' id∗XE ' E and

(f ◦ g)∗F ' id∗Y F ' F.

Thus, we have [(g ◦ f)∗] = idVectX(V ) and [(f ◦ g)∗] = idVectY (V ). Furthermore, Item (1) of

Theorem C.55 implies
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[f ∗] ◦ [g∗] = [(g ◦ f)∗] and

[g∗] ◦ [f ∗] = [(f ◦ g)∗].

Consequently, it follows that [g∗] is the inverse function of [f ∗]. Hence, we have the

desired bijection between VectY (V ) and VectX(V ). Finally, the last claim of the theorem

is obvious since a contractible paracompact Hausdor� space is homotopically equivalent

to a point space, which is evidently a paracompact Hausdor� space, and since every vector

bundle on a point space is trivial.

Corollary C.59 (Vector bundles on cylinders are no new information). Let X be

a paracompact Hausdor� space and E be a vector bundle on X × I, where I is the

usual real unit interval. For any �xed j ∈ I, we have that E and π∗j (E |X×{j}) are

isomorphic, where

πj : X × I → X × I,

(x, t) 7→ (x, j).

Proof. Since the product of paracompact Hausdor� spaces is paracompact Hausdor�,

X × I is a paracompact Hausdor� space. Thus, once πj, idX×I : X × I → X × I

are homotopic maps, it follows from Theorem C.57 that π∗j (E |X×{j}) is isomorphic

to id∗X×I(E |X×{j}). Moreover, Item (2) of Theorem C.55 implies that id∗X×I(E |X×{j})

is isomorphic to E |X×{j}. Therefore, the result is proved because E |X×{j} is clearly

isomorphic to E.

C.10 Collapsing vector bundles

Lemma C.60 (Existence of a local extension for an isomorphism of vector bundles

de�ned on a closed subspace of a compact Hausdor� space). Let A be a closed

subspace of a compact Hausdor� space X. In addition, let E and F be vector

bundles on X. If f : E |A → F |A is an isomorphism over A, then there exist an

open subspace U of X containing A and an extension F : E |U → F |U which is an

isomorphism over U .

Proof. The reader can �nd a proof of this result in [2, p. 17].
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Theorem C.61 (Collapsing a vector bundle de�ned on a compact Hausdor� space). Let

A be a closed subspace of a compact Hausdor� space X. In addition, let E be a vector

bundle on X for which there exists an isomorphism α : E |A → A × V , which will be

referred to as a trivialization of E over A. Being π : A×V → V the canonical projection

onto the second factor, we de�ne an equivalence relation on E |A as follows: a, b ∈ E |A
are related if and only if

(π ◦ α)(a) = (π ◦ α)(b).

Trivially, we extend this relation on E |X−A as the identity. Thus, if E/α is the quotient

space of E by this (extended) equivalence relation, then it is a vector bundle on X/A.

Moreover, its isomorphism class depends only on the homotopy class of the trivialization

in question.

Proof. The quotient space E/α has a natural structure of a family of vector spaces on

X/A. This happens because the process described just identi�ed the �bers of E over

A through α, leaving the other ones intact. More than that, this reasoning shows that,

to prove that E/α is a vector bundle, we only have to verify the local triviality of E/α at

the base point A/A of X/A. Because of Lemma C.60, we can extend α to an isomorphism

α̃ : E |U→ U × V for some open subspace U of X containing A. Then, α̃ induces an

isomorphism between

(E |U)/α and (U/A)× V ,

which establishes the local triviality of E/α at A/A. For the last claim of the statement,

suppose that α and β are homotopic trivializations of E over A. This means that we have

a trivialization γ of E × I over A× I ⊆ X × I inducing α and β at the two end points of

I. Then, consider the natural map

π : (X/A)× I → (X × I)/(A× I),

([x], t) 7→ [x, t].

We have that the vector bundle π∗((E × I)/γ) on (X/A) × I is such that its restriction

to (X/A) × {0} coincides with E/α, and that its restriction to (X/A) × {1} coincides

with E/β. Consequently, it follows from Theorem C.57 that E/α is isomorphic to E/β,

as desired.
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Corollary C.62 (Pullback of vector bundles of the natural projection). Let A be a closed

subspace of a compact Hausdor� space X. The projection π : X → X/A induces the

pullback

[π∗] : VectX/A → VectX ,

[E] 7→ [π∗E],

which is the quotient of the function between objects of the covariant functor

π∗ : VectBdlX/A → VectBdlX from Remark C.56 by the isomorphism equivalence relation

of vector bundles. Then,

Im [π∗] = {[E] ∈ VectX : E |A is a trivial vector bundle}.

Proof. Once A/A is a one-point space, the fact that (π∗E) |A is trivial follows from

the equality

(π∗E) |A = (π |A)∗(E|A/A).

On the other hand, let E be a vector bundle on X such that E |A is trivial. Then, let

α : E |A → A× V be a trivialization. We have that the collapsed vector bundle E/α on

X/A is such that

[π∗(E/α)] = [E].

This equality is straightforward, although it is not immediate to be visualized. This

�nishes the proof of the theorem.

Remark C.63 (On the proof of Corollary C.62). In general, E/α obtained in the proof

of the preceding result is not unique (not even up to isomorphism). Thus, [π∗] is not

injective. Nevertheless, its isomorphism class only depends on the homotopy class of the

trivialization α of E |A. Hence, if we choose non-homotopic trivializations, then the

resulting vector bundles may not be isomorphic. Indeed, let X = I, A = ∂ I and E be the

trivial vector bundle I× R. Therefore:

� if we choose the identity trivialization, then we obtain the trivial vector bundle

S1 × R; and

� if we choose the trivialization given by α(0, t) = (0, t) and α(1, t) = (1,−t), then

we obtain the Möbius bundle, which is a non-trivial vector bundle.
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In the literature, the reader can �nd similar examples in the framework of complex

vector bundles. However, there is an exception in this reasoning, which is proved in

the following corollary. ♦

Corollary C.64 (Bijection induced by the natural projection). Let A be a closed

contractible subspace of a compact Hausdor� space X. Then, the map [π∗] de�ned in

Corollary C.62 is a bijection.

Proof. Let E be a vector bundle on X. Because of Corollary C.58, it follows that E |A
is trivial. Then, let α : E |A → A × V be a trivialization of E over A. Moreover, we

have that two such trivializations di�er by an automorphism of A × V (8). That is, by a

map A → GL(V ). However, since GL(V ) is connected (because it is homeomorphic to

GL(n) for some n ∈ N) is connected and V is contractible, α is unique up to homotopy.

Thus, the isomorphism class of E/α is uniquely determined by that of E. Hence, we

have constructed a map VectX → VectX/A which is clearly a two-sided inverse for [π∗].

Therefore, [π∗] is a bijection.

C.11 Smooth vector bundles

De�nition C.65 (Cr-vector bundles). Let M be a real Cr-manifold where r is a

natural number or ∞. A Cr-vector bundle on M is a vector bundle π : E → M

such that:

� E is a real Cr-manifold;

� π is a Cr-function; and

� each homeomorphism ϕU : π−1(U) → U × V of Item (1) of De�nition C.1 is a

Cr-di�eomorphism.

(8)Indeed, if β : E |A → A× V is another trivialization of E over A, then

α = (α ◦ β−1) ◦ β,

where α ◦ β−1 : A× V → A× V is the automorphism of A× V under which the trivializations α and β
of E over A di�er.
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Moreover, we usually say that a C0-vector bundle is a (continuous) vector bundle, and

that a C∞-vector bundle is a smooth vector bundle. ♦

De�nition C.66 (Cp-vector bundle morphisms). Let M and N be, respectively, a real

Cr-manifold and a real Cs manifold. In addition, let π : E → M and π′ : F → N

be, respectively, a Cr-vector bundle and a Cs-vector bundle. For any p between 0 and

min{r, s}, both included:

� a Cp-vector bundle morphism from E into F is a vector bundle morphism

f : E → F that is a Cp-function which covers a Cp-function g :M→ N ; and

� if M = N , then a Cp-vector bundle morphism over M from E into F is a

Cp-vector bundle morphism f : E → F such that the induced function g :M→M

is the identity map.

Furthermore, we say that an invertible Cp-vector bundle morphism (over M) is a

Cp-vector bundle isomorphism (over M). Finally, when p = 0 or p = ∞, we

will use a nomenclature for Cp-vector bundle morphisms analogous to the one we set in

De�nition C.65. ♦

Remark C.67 (On Cr-vector bundles). All the notions and results that we have

discussed up to now about vector bundles keeps on holding for Cr-vector bundles,

provided we require that all of the topological spaces involved are real Cr-manifolds, all

of the topological subspaces are real Cr-submanifolds (embedded or immersed) and that all

of the continuous functions involved are Cr-functions (in particular, each homeomorphism

must be a Cr-di�eomorphism). Especially, we have:

� the categories of Cr-vector bundles VectBdl C
r

, VectBdl C
r

(V ), VectBdl C
r

M and

VectBdl C
r

M(V ) together with the following diagram indicating their subcategory

relationships;

VectBdl C
r

(V ) VectBdl C
r

VectBdl C
r

M(V ) VectBdl C
r

M
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� the sets of Cr-isomorphism classes of Cr-vector bundles Vect Cr , Vect Cr(V ), Vect C
r

M

and Vect C
r

M(V ). Note that Vect C
r

M is an abelian semigroup with the binary operation

induced by the direct sum;

� the set Γr(E) of Cr-global sections of a Cr-vector bundle π : E →M;

� the transition functions of a Cr-vector bundle being Cr-di�eomorphisms;

� the direct sum and the tensor product of Cr-vector bundles being a Cr-vector

bundle; and

� the invariance of the pullbacks of a Cr-vector bundle through Cr-homotopic maps

with a real Cr-manifold as domain. This happens because manifolds are paracompact

Hausdor� by de�nition. ♦

Theorem C.68 (Cr-vector bundles on C∞-manifolds). Let M be a real C∞-manifold.

Every Cr-vector bundle π : E → M has a compatible smooth vector bundle structure.

Moreover, such a structure is unique up to C∞-isomorphism overM.

Proof. The reader can �nd a proof of this result in [16, p. 101]. This proof uses the notion

of classifying maps of Cr-vector bundles, which we will not explain here. Indeed, the idea

behind the proof of the existence of a smooth vector bundle structure is to approximate

a Cr-classifying map for the Cr-vector bundle π : E →M by a homotopic C∞-map, and

then apply Theorem C.57. The uniqueness up to isomorphism of such a smooth structure

is handled similarly.

Remark C.69 (On the compatible smooth vector bundle structure of a Cr-vector

bundle). Let M be a real C∞-manifold. We have just seen that a Cr-vector bundle

π : E → M has a compatible smooth vector bundle structure. This means that the

Cr-manifold E admits a real C∞-manifold structure, hereafter denoted by Ẽ, such that

π̃ : Ẽ →M, a 7→ π(a), is a smooth vector bundle. In particular, note that π and π̃ are

equal as functions. ♦

Corollary C.70 (More about Cr-vector bundles on C∞-manifolds). Let M be a real

C∞-manifold. Every Cr-vector bundle π : E → M is Cr-isomorphic over M to a

smooth vector bundle.
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Proof. We can apply Theorem C.68 to endow π : E → M with a compatible smooth

vector bundle structure. Therefore, the identity map idE : E → Ẽ is a Cr-isomorphism

overM, which proves what we wished.

Corollary C.71 (Relation between Vect C
r

M and Vect C
∞

M ). LetM be a real C∞-manifold.

The abelian semigroups Vect C
r

M and Vect C
∞

M are isomorphic. In particular, VectM is

isomorphic to Vect C
∞

M .

Proof. Let E and F be Cr-vector bundles on M. Since the compatible smooth

vector bundle structure of a Cr-vector bundle is unique up to C∞-isomorphism by

Theorem C.65, we have that Ẽ ⊕ F̃ and Ẽ ⊕ F are C∞-isomorphic. This proves

that the map from Vect C
r

M into Vect C
∞

M that sends [E]Cr into [Ẽ]C∞ is a semigroup

homomorphism. In addition, the reader can readily prove that this semigroup

homomorphism is invertible exhibiting its inverse. Therefore, Vect C
r

M is isomorphic to

Vect C
∞

M , as we wished.

Remark C.72 (Holomorphic vector bundles on complex manifolds). In this

section, we considered real and complex vector bundles based on real C∞-manifolds.

However, what about the trueness of its results for holomorphic vector bundles based

on complex manifolds? First of all, we observe that the proof of Theorem C.68 cannot

be adapted to this framework since there is no �Holomorphic Approximation Theorem�

for classifying maps of C∞-vector bundles on complex manifolds. More than that, it is

known that Theorem C.68 is false in this context because there exist examples in the

literature of holomorphic vector bundles which are smoothly isomorphic but not

holomorphically isomorphic. Consequently, the abelian semigroup of isomorphism classes

of C∞-vector bundles on a complex manifold is not always isomorphic to the abelian

semigroup of isomorphism classes of holomorphic vector bundles on the same complex

manifold. Nevertheless, if we consider real Cω-manifolds instead of real C∞-manifolds in

Theorem C.68, then the result also holds true. The reader can prove this claim following

the comments of [16, p. 101]. ♦
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Appendix D

Constructions with compact Hausdor�

spaces

In this appendix, we describe classical constructions with topological spaces:

wedge sum, smashed product, cones and suspensions. We restrict them to the

framework of compact Hausdor� spaces since they are mainly used in Chapter 2 to

study K-Theory. However, even the reader who is unfamiliar with these constructions

will note that they can be extended to all kinds of topological spaces. The notations of

Chapter 2 are used here to establish these mathematical objects. We follow [14, pp. 8-10]

in this presentation.

D.1 Wedge sum

De�nition D.1 (Wedge sum of pointed compact Hausdor� spaces). Let (X, x0) and

(Y, y0) be objects in TopHdCpt+. We de�ne the wedge sum of (X,x0) and (Y, y0),

and denote it by X ∨ Y , to be the union

X ∨ Y := (X × {y0}) ∪ ({x0} × Y ),

which is naturally a pointed compact Hausdor� space. In fact, X ∨ Y is compact

Hausdor� because it is a �nite union of products of compact Hausdor� spaces, and

(x0, y0) ∈ X ∨ Y is its natural marked point, which is hereafter omitted. Furthermore,

we have the following functor with two covariant variables, which is called the wedge

sum functor:
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∨ : TopHdCpt+ × TopHdCpt+ → TopHdCpt+,(
(X, x0), (Y, y0)

)
7→ X ∨ Y,(

f : (X, x0)→ (Y, y0), g : (Z, z0)→ (W,w0)
)
7→ f ∨ g : X ∨ Z → Y ∨W,

where

(f ∨ g)(x, z) := (f(x), g(z))

for all (x, z) ∈ X ∨ Z. The reader will �nd a simple but helpful visualization of this

construction in Figure D.1.

X
x0

Y
y0

(x0, y0)
X

Y
X ∨ Y

Figure D.1: In the images above, (X, x0) and (Y, y0) are the line segments with marked
points on the left. We have that the wedge sum X ∨ Y is the cross on the right, whose
intersection point (x0, y0) ∈ X ∨ Y is its natural marked point. Note that X and Y are
embedded in X ∨ Y . ♦

D.2 Smashed product

De�nition D.2 (Smashed product of pointed compact Hausdor� spaces). Let (X, x0)

and (Y, y0) be objects in TopHdCpt+. We de�ne the smashed product of (X,x0) and

(Y, y0), and denote it by X ∧ Y , to be the identi�cation space

X ∧ Y :=
X × Y
X ∨ Y

,

which is naturally a pointed compact Hausdor� space. In fact, X ∧ Y is compact

Hausdor� because it is the quotient of a compact Hausdor� space by one of its closed

subspaces, and
X ∨ Y
X ∨ Y

∈ X ∧ Y
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is its natural marked point, which is hereafter omitted. Moreover, we have the

following functor with two covariant variables, which is called the smashed

product functor:

∧ : TopHdCpt+ × TopHdCpt+ → TopHdCpt+,(
(X, x0), (Y, y0)

)
7→ X ∧ Y,(

f : (X, x0)→ (Y, y0), g : (Z, z0)→ (W,w0)
)
7→ f ∧ g : X ∧ Z → Y ∧W,

where

(f ∧ g)[x, z] := [f(x), g(z)]

for all [x, z] ∈ X ∧ Z. Furthermore, the reader can readily prove that, being

n a non-zero natural number, the smashed product of n copies of S1 is homeomorphic

to Sn. The reader will �nd a simple but helpful visualization of this construction

in Figure D.2.

x0

y0

X

Y

X ∧ Y

Figure D.2: In the image above, (X, x0) and (Y, y0) are the line segments with marked
points at the bottom and on the left of the square. We have that the smashed product
X ∧ Y is obtained by collapsing the wedge sum X ∨ Y ⊆ X ∧ Y to its marked point
(x0, y0) ∈ X ∨ Y . ♦

D.3 Cones

De�nition D.3 (Absolute and relative cones of compact Hausdor� spaces). We de�ne

I := [0, 1] and −I := [−1, 0], and we give the following de�nitions.

� Let X be an object in TopHdCpt. We de�ne the cone of X, and denote it by CX,

to be the identi�cation space
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CX :=
X × I
X × {1}

,

which is naturally a pointed compact Hausdor� space. In fact, CX is compact

Hausdor� since it is the quotient of a compact Hausdor� space by one of its closed

subspaces, and
X × {1}
X × {1}

∈ CX,

is its natural marked point, which is hereafter omitted. Moreover, we have the

following covariant functor, which is called the cone functor:

C : TopHdCpt → TopHdCpt+,

X 7→ CX,

f : X → Y 7→ Cf : CX → CY,

where

Cf([x, t]) := [f(x), t]

for all [x, t] ∈ CX. Analogously, we de�ne the negative cone of X, and denote

it by C ′X, to be the identi�cation space:

C ′X :=
X ×−I
X × {−1}

,

which is naturally a pointed compact Hausdor� space. Similarly, we can de�ne the

negative cone functor. In particular, note that the intersection of CX and C ′X

is the base X.

� Let (X,A) be an object in TopHdCCpt2. We de�ne the cone of (X,A),

and denote it by C(X,A), to be the identi�cation space obtained from the

disjoint union X t CA by collapsing every a ∈ A to (a, 0) ∈ CA. This is also

a pointed compact Hausdor� space with the natural marked point of the cone of A.

In particular, it is to be noted that the cone of X coincides with the cone of (X,X).

Furthermore, we have the following covariant functor, which is called the relative

cone functor:



D. Constructions with compact Hausdor� spaces 351

C : TopHdCCpt2 → TopHdCpt+,

(X,A) 7→ C(X,A),

f : (X,A)→ (Y,B) 7→ Cf : C(X,A)→ C(Y,B),

where

Cf([x, t]) := [f(x), t]

for all [x, t] ∈ C(X,A).

Finally, the reader will �nd a simple but helpful visualization of these constructions

in Figure D.3.

CX

C ′X

C(X,A)

X

X

A
X

Figure D.3: In the images above, X is the whole line segment at the bottom of the
triangles. On the left, we have the cone of X. In the middle, we have the negative
cone of X. Finally, on the right, being A the central part of the line segment X, we have
the cone of (X,A), which is obtained collapsing the subspace A of X with the base of the
cone of A. ♦

D.4 Suspensions

De�nition D.4 (Absolute and reduced suspensions of compact Hausdor� spaces). We

de�ne J := [−1, 1] and we give the following de�nitions.
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� Let X be an object in TopHdCpt. We de�ne the suspension of X, and denote it

by SX, to be the identi�cation space

SX :=
X × J

X × {1}, X × {−1}
,

where the comma in the denominator means that each of the spaces considered are

being collapsed to a di�erent point. The suspension of X is compact Hausdor�

since it is the quotient of a compact Hausdor� space by one of its closed subspaces.

However, di�ering from the preceding cases, it does not have a natural marked point

once we are divided between

X × {1}
X × {1}

∈ SX and
X × {−1}
X × {−1}

∈ SX.

This is coherent with SX being homeomorphic to the union of the cones CX and

C ′X, which cannot have a natural marked point since each of its components has one.

Moreover, we have the following covariant functor, which is called the suspension

functor:

S : TopHdCpt → TopHdCpt,

X 7→ SX,

f : X → Y 7→ Sf : SX → SY,

where

Sf([x, t]) := [f(x), t]

for all [x, t] ∈ SX.

� Let (X, x0) be an object in TopHdCpt+. We de�ne the suspension of (X,x0),

and denote it by ΣX, to be the identi�cation space

ΣX :=
X × J

(X × {1}) ∪ (X × {−1}) ∪ ({x0} × J)
,

which is naturally a pointed compact Hausdor� space. In fact, ΣX is compact

Hausdor� since it is the quotient of a compact Hausdor� space by one of its closed

subspaces, and
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(X × {1}) ∪ (X × {−1}) ∪ ({x0} × J)

(X × {1}) ∪ (X × {−1}) ∪ ({x0} × J)
∈ ΣX

is its natural marked point, which is hereafter omitted. Moreover, ΣX is

homeomorphic to the spaces

S1 ∧X and
SX

{x0} × J

This last presentation of ΣX shows that the natural projection π : SX → ΣX

induces the isomorphism in absolute K-Theory K(π) : K(ΣX) → K(SX) since

{x0} × J is contractible. Furthermore, we have the following covariant functor,

which is called the reduced suspension functor:

Σ : TopHdCpt+ → TopHdCpt+,

(X, x0) 7→ ΣX,

f : (X, x0)→ (Y, y0) 7→ Σf : ΣX → ΣY,

where

Σf([x, t]) := [f(x), t]

for all [x, t] ∈ ΣX. Being n a non-zero natural number, we have that the reduced

suspension functor can be iterated n times, producing the n-reduced suspension

functor:

Σn : TopHdCpt+ → TopHdCpt+,

(X, x0) 7→ ΣnX,

f : (X, x0)→ (Y, y0) 7→ Σnf : ΣnX → ΣnY.

Since ΣnX is homeomorphic to Sn ∧ X for all non-zero natural number n,

and S0 ∧ X is homeomorphic to X, we de�ne the 0-reduced suspension

functor as the identity on TopHdCpt+. In addition, if X is an object in

TopHdCpt and X+ := X t {∞} where ∞ is an independent connected

component in X+ and is its marked point, then ΣX+ is homeomorphic to the

identi�cation space
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X × J
(X × {1}) ∪ (X × {−1})

.

Finally, the reader will �nd a simple but helpful visualization of these constructions

in Figure D.4.

SX ΣX

X X
x0

X

ΣX+

Figure D.4: In the images above, X is the interior blue line segment. On the left,
we have the suspension of X, which coincides with the union of the cones CX and
C ′X. In the middle, considering x0 ∈ X to be a given marked point in X, the
reduced suspension of (X, x0) is obtained by collapsing the interior black line segment
to the marked point x0 ∈ X. Finally, on the right, we have the reduced suspension of
X+ = Xt{∞} where∞ is an independent connected component in X+ and is its marked
point. ♦
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Appendix E

Real Division Algebras

In this appendix, we explain the elementary concepts of real division algebras.

Moreover, we provide some historical notes on the main real division algebras: R, C, H

and O. This is a way to understand the importance of the Bott-Milnor-Kervaire Theorem

presented in Chapter 2, which was one of the �rst achievements of K-Theory. We �nish our

presentation with two classical results about these real division algebras which explain

why they are relevant and, in a certain sense, unique. Our exposition is based on [5],

[10], [27], [36] and [38].

E.1 First de�nitions and historical examples

De�nition E.1 (Real algebra and real division algebra). Let A be a �nite-dimensional

real vector space and

m : A ×A → A

be a bilinear map, which we will hereafter call a multiplication in A . The pair (A ,m)

is said to be:

� a real algebra provided that there exists a non-zero element 1 ∈ A such that

m(1, a) = m(a, 1) = a for all a ∈ A ; and

� a real division algebra provided that it is a real algebra in which there are no zero

divisors. This means that, if a, b ∈ A are such that m(a, b) = 0, then necessarily

either a = 0 or b = 0.
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We will say that A is a real (division) algebra, omitting its multiplication, and we will

write ab instead of m(a, b) for all a, b ∈ A . ♦

Example E.2 (The real division algebra R). Here we de�ne the real division

algebra of the real numbers, denoted by R, and give some ideas about its

historical development. Let 1 be the only vector of the canonical basis of the real Eu-

clidean one-dimensional space. Then:

� as a vector space, R is the real Euclidean one-dimensional space, whose elements

are real multiples of 1; and

� as a real division algebra, R has the multiplication coincident with its vector space

scalar product.

Historically, it is not an easy task to choose since when the real numbers are part

of Mathematics. That is, when should we start telling the history of the real numbers?

Is it appropriate to start:

� in Prehistory with the cavemen and the counting of hunts and provisions?

� in the Ancient Egypt with the practical problems surrounding the plantings on the

Nile margins?

� in the discovery of the irrational numbers by the Pythagoreans or even with Eudoxus

and his work on incommensurability of quantities?

� in the European Middle Ages with the construction of a meaning for negative

numbers as independent entities?

� in somewhere else in the history of eastern civilizations?

When is it appropriate to start? That is not a simple question to be answered.

In particular, note that trying to see the real numbers as the historical evolution of the

naturals, integers, rationals and irrationals is not coherent with the timeline presented in

the items before. In fact, for instance, the irrationals appear before the negative numbers.

Thus, the classical pedagogical presentation of the numerical sets play no role in this

discussion.
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Maybe, considering the nowadays stage of development of Mathematics, a

plausible and direct answer to that question is the �rst formalization of the real

numbers. Nevertheless, this is another problem: What is this �rst one? In [38] the reader

can �nd a compilation of various formalization of the real numbers, which

curiously does not begin by Dedekind's construction of 1872. Furthermore, this

paper may help the reader to realize the idea behind a formalization of the real

numbers, which is to extract an intuitive property of them and then set it as an axiom in

order to derive their familiar properties. ♦

Example E.3 (The real division algebra C). Here we de�ne the real division

algebra of the complex numbers, denoted by C, and give some ideas about its

historical development. Let 1 and e1 be the vectors of the canonical basis of the real

Euclidean two-dimensional space. Then:

� as a vector space, C is the real Euclidean two-dimensional space, whose elements

are linear combinations of the vectors of its canonical basis. Hence, for each z ∈ C,

there exist unique α, α1 ∈ R such that

z = α + α1e1; and

� as a real division algebra, C has the multiplication bilinearly induced by the vector

relation e2
1 = −1.

Historically, the complex numbers appeared in the surroundings of the problem of

explicitly solving a third degree polynomial equation. The mathematicians that are

nowadays associated to this kind of equation are Girolamo Cardano (1501 - 1576)

and Niccolò Fontana (1500 - 1557). This last one is usually known as Tartaglia,

which means �stammerer� in Italian. This nickname is due to serious wounds in his jaw

and palate, acquired during a French invasion against Venice, which left him with a speech

impediment.

Nonetheless, the �rst man who solved the cubic equation was Scipione del Ferro

(1465-1526), who was a professor at the Bologna University. After accomplishing his

solution, he trusted the formula to a student of his called Antonio Maria del Fiore
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(XVI-XVII). After some time, Fiore challenged Tartaglia to a mathematical contest,

for which Tartaglia rediscovered del Ferro's formula. More than that, Tartaglia won the

competition answering all the problems proposed by del Fiore, while this one could solve

none of the problems suggested by Tartaglia. In turn, Tartaglia told his formula,

without his proof, to Cardano, who then swore to secrecy. Having the formula,

Cardano deduced its proof. After that, he found out that del Ferro had discovered the

formula before Tartaglia. Then, he published it in his book Ars Magna (1545). It is

important to note that Cardano mentioned del Ferro as �rst author and Tartaglia as an

independent solver.

Probably, Cardano introduced the complex numbers in his book Ars Magna.

Nevertheless, it is known that Rafael Bombelli (1526 - 1572) was responsible for the

current notation
√
−1, which he named �più di meno� at the time, while he was

studying the application of Cardano-Tartaglia Formula to the equation x3 = 15x + 4.

Other men whose names appear in the history of complex numbers are Leonhard Euler

(1707-1783), Jean-Robert Argand (1768-1822), Carl Friedrich Gauss (1777-1855)

and William Rowan Hamilton (1805-1865). The interested reader can �nd more

details in [27]. ♦

Example E.4 (The real division algebra H). Here we de�ne the real division

algebra of the quaternions, denoted by H, and give some ideas about its

historical development. Let 1, e1, e2 and e3 be the vectors of the canonical basis of the

real Euclidean four-dimensional space. Then:

� as a vector space, H is the real Euclidean four-dimensional space, whose elements

are linear combinations of the vectors of its canonical basis. Hence, for each q ∈ H,

there exist unique α, α1, α2, α3 ∈ R such that

q = α + α1e1 + α2e2 + α3e3; and

� as a real division algebra, H has the multiplication bilinearly induced by

Table E.1, which can be easily deduced from the mnemonic diagram presented in

Figure E.1.
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Historically, William Rowan Hamilton (1805-1865) was responsible for

the introduction of the quaternions in Mathematics. Interestingly, before developing the

quaternions, he was involved with the complex numbers. In 1833, he completed his

Pair Theory, which was understood at the time as a new algebraic representation

for the complex numbers. Nowadays, Hamilton's formulation of the complex numbers

is their de�nition in any �rst course. In fact, in his Pair Theory, Hamilton represented

a complex number as an ordered pair (a, b), where a and b are real numbers, and de�ned

the sum operation

(a, b) + (c, d) := (a+ c, b+ d),

and the multiplication operation

(a, b)(c, d) := (ac− bd, ad+ bc).

As a natural step, Hamilton tried to extend the complex numbers to a new algebraic

structure in which each element would be composed of one real part and two distinct

imaginary parts. This idea would be known as his Triplets Theory. Inspired by the

way one represents rotations in the plane using complex numbers, Hamilton was carried

into this search for his desire to represent rotations in the three-dimensional space in

a similar manner. Indeed, much of his work after �nding out the quaternions was to

publicize them through the idea that they were intrinsically linked with Geometry and

Physics.

Nevertheless, Hamilton had failed to create a new algebra for more than ten

years, until he found an answer on October 16th, 1843, while he walked with his wife,

across the Royal Canal in Dublin, going to a meeting of the Royal Irish Academy. In that

moment, he realized that he would need three imaginary parts instead of two. In fact, he

noted that the three distinct imaginary parts, which he named i, j and k, should verify the

conditions

i2 = j2 = k2 = ijk = −1.

Then, he wrote his results on the stone of the Brougham Bridge, which we unfortunately

cannot �nd today because of the action of time. The reader can �nd more details in
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[10]. In turn, [36] contains interesting ideas involving di�erentiability of quaternionic

functions, being a classical reference which complements some notions and questions that

the reader will �nd in [10]. ♦

· 1 e1 e2 e3
1 1 e1 e2 e3

e1 e1 −1 e3 −e2

e2 e2 −e3 −1 e1

e3 e3 e2 −e1 −1

Table E.1: This table describes the quaternionic multiplication of the vectors of the
canonical basis. In fact, it describes the result of multiplying the bold element in its ith
row by the bold element in its jth column.

e2

e3 e1

Figure E.1: The arrows in this circular diagram indicate the positive sign to obtain the
third element from the product of the other ones. For example, e3e1 = e2 and e1e2 = e3.
If we multiply two elements linked by an arrow in the opposite direction, then we have to
put a minus sign in front of the third element. For instance, e3e2 = −e1 and e2e1 = −e3.
Moreover, we have to remember that e2

1 = e2
2 = e2

3 = −1 by de�nition. This allows us to
deduce the equation e1e2e3 = −1, which is also an important relation in the framework
of the quaternions.

· 1 e1 e2 e3 e4 e5 e6 e7
1 1 e1 e2 e3 e4 e5 e6 e7

e1 e1 −1 e4 e7 −e2 e6 −e5 −e3

e2 e2 −e4 −1 e5 e1 −e3 e7 −e6

e3 e3 −e7 −e5 −1 e6 e2 −e4 e1

e4 e4 e2 −e1 −e6 −1 e7 e3 −e5

e5 e5 −e6 e3 −e2 −e7 −1 e1 e4

e6 e6 e5 −e7 e4 −e3 −e1 −1 e2

e7 e7 e3 e6 −e1 e5 −e4 −e2 −1

Table E.2: This table describes the octonionic multiplication of the vectors of the canonical
basis. In fact, it describes the result of multiplying the bold element in its ith row by the
bold element in its jth column.
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e3 e2 e5

e6

e7

e4 e1

Figure E.2: The mathematical object that allowed the construction of this diagram is
known as the Fano Plane, which was developed by Gino Fano (1871 - 1952). This is the
�nite projective plane with the least number of points and lines. Indeed, it has seven
points and seven lines, with three points on each line and three lines through each point.
We use the arrows in this diagram to indicate the positive sign to obtain the third element
of each line from the product of the other ones. For example, e4e6 = e3 and e7e2 = e6. If
we multiply two elements linked by an arrow in the opposite direction, then we have to
put a minus sign in front of the third element. For instance, e1e4 = −e2 and e1e7 = −e3.
Furthermore, we have to remember that e2

1 = e2
2 = e2

3 = e2
4 = e2

5 = e2
6 = e2

7 = −1
by de�nition.

Example E.5 (The real division algebra O). Here we de�ne the real division

algebra of the octonions, denoted by O, and give some ideas about its historical

development. Let 1, e1, e2, e3, e4, e5, e6 and e7 be the vectors of the canonical basis

of the real Euclidean eight-dimensional space. Then:

� as a vector space, O is the real Euclidean eight-dimensional space, whose elements

are linear combinations of the vectors of its canonical basis. Hence, for each r ∈ O,

there exist unique α, α1, α2, α3, α4, α5, α6, α7 ∈ R such that

r = α + α1e1 + α2e2 + α3e3 + α4e4 + α5e5 + α6e6 + α7e7; and

� as a real division algebra, O has the multiplication bilinearly induced by

Table E.2, which can be easily deduced from the mnemonic diagram presented in

Figure E.2.

Historically, the octonions were �rst described by John Thomas Graves

(1806 - 1870), who was a Hamilton's friend since both attended together the Trinity
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College in Dublin. In fact, Graves' interest in algebra was particularly responsible

for Hamilton's enterprise on the complex numbers and on the triplets. At the same

day of his decisive walk across the Royal Canal, Hamilton sent a letter to Graves

describing the quaternions. Graves answered greeting him by the boldness of his idea,

adding that:

�There is still something in the system which gravels me. I have not yet any
clear views as to the extent to which we are at liberty arbitrarily to create
imaginaries, and to endow them with supernatural properties.�

Moreover, Graves asked �If with your alchemy you can make three pounds of gold, why

should you stop there?�

On December 26th, 1843, Graves wrote to Hamilton a description of a new

normed division algebra of eight dimensions, which he called octaves. On January,

1844, Graves sent three letters to Hamilton expanding his discoveries. He even considered

the idea of a General Theory of 2m-ions and tried to construct a normed division

algebra of sixteen dimensions. On July, 1844, Hamilton answered Graves pinpointing that

the octonions were non-associative. Indeed, Hamilton invented the term associative at

that moment. Therefore, one can say that the octonions were essential to enlighten the

notion of associativity in Algebra. Then, Hamilton o�ered himself to publicize Graves'

discovery. However, since he was always engaged with the quaternions he had just

created, Hamilton kept postponing such o�ering.

In the meantime, the young Arthur Cayley (1821 - 1895) was thinking on

the quaternions since Hamilton announced their existence. On March, 1845, he

published an article on the Philosophical Magazine entitled �On Jacobi's Elliptic

Functions, in Reply to the Rev. B. Bronwin; and on Quaternions�. In a signi�cant

part of this article, Cayley tried to refute another paper, in which the author

pointed out errors in his work on elliptic functions. Apparently, Cayley gave a brief

description of the octonions in this work. In fact, Cayley's article was so full of errors

that it was omitted from his collected works, with the exception of the part in which he

treated the octonions.

Annoyed with being beaten to publication, Graves attached a postscript in one of his

articles who would appear on the next edition of the Philosophical Magazine saying that

he knew about the octonions since the Christmas of 1843. On June 14th, 1847, Hamilton
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wrote a small note to the Transactions of The Royal Irish Academy alleging Graves'

pioneerism. Nonetheless, it was too late, the octonions had already entered in history as

Cayley's numbers. The reader can �nd more details in [5], which is also the main

reference for the purposes of this appendix because it contains much information about the

real (division) algebras. ♦

De�nition E.6 (Special kinds of real algebras). Let A be a real algebra. We say

that it:

� is commutative if ab = ba for all a, b ∈ A ;

� is associative if (ab)c = a(bc) for all a, b, c ∈ A ;

� is alternative(1) if a(bb) = (ab)b and (aa)b = a(ab) for all a, b ∈ A . This is

equivalent to the fact that every subalgebra of A generated by two elements is

associative;

� is normed if it has a norm | · | : A → [0,∞) in such manner that |a| |b| = |ab|

for all a, b ∈ A ; and

� has multiplicative inverses if, for every non-zero a ∈ A , there exits a−1 ∈ A

such that aa−1 = a−1a = 1. ♦

Example E.7 (On the algebras presented before). We have the following facts about the

real algebras that we presented before.

� R is an associative and commutative real division algebra. The proofs of these

assertions are consequences of the formalization which one chooses for the real

numbers.

� C is an associative and commutative real division algebra. The reader can readily

prove these claims.

(1)This nomenclature follows from the fact that the associator [·, ·, ·] : A × A × A → A
given by [a, b, c] = (ab)c − a(bc) �alternates� in an alternative algebra. That is, the associator changes
sign under an odd permutation of the letters a, b and c, but remains unchanged under an even
permutation. At this point, the reader may have noted the parallel between the associator and
the commutator [·, ·] : A × A → A given by [a, b] = ab − ba, which is identically zero in a
commutative algebra.
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� H is an associative and non-commutative real division algebra. In fact, it is

non-commutative since e1e2 = e3 and e2e1 = −e3. We leave to the reader the

straightforward computations which prove the associativity of the quaternions.

� O is an alternative, non-associative and non-commutative real division algebra.

In fact, it is non-commutative because e1e2 = e4 and e2e1 = −e4. Moreover, it

is non-associative because

(e1e2)e3 = e4e3 = −e6 and

e1(e2e3) = e1e5 = e6.

Thus, note that the expression e1e2e3e4e5e6e7 in O, which is analogous to the

expression e1e2e3 = −1 in H, has no meaning. We leave to the reader the

straightforward computations which prove the alternance of the octonions.

All these four real division algebras have multiplicative inverses. Indeed, with the

exception of the real numbers in which we have to prove the existence of multiplicative

inverses by means of a formalization, all these proofs are again straightforward

computations. Note that Tables E.1 and E.2 may help with the quaternions and the

octonions, respectively. Furthermore, all these four real division algebras are normed

with respect to the canonical Euclidean norm. ♦

Remark E.8 (On real algebras). We have the following instructive facts about generic

real algebras.

� In a real algebra, the absence of zero divisors for the multiplication of A is

equivalent to the operations of left and right multiplication by non-zero elements

being invertible. Indeed, since A is a �nite-dimensional vector space and these

operations are linear maps, the Rank-Nullity Theorem says that we only have to

prove their injectivities. We leave these proofs to reader.

� Every associative real algebra is an alternative real algebra. However, the converse

is false as the octonions show in Example E.7.

� In a normed division algebra, we have |1| = 1. In fact, the result is obvious since

we have the equality |1|2 = |1| |1| = |1|.
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� A normed real algebra A is necessarily a division algebra. Indeed, if A has zero

divisors, then it cannot be a normed algebra. This happens because, if a, b ∈ A

are zero divisors, then the norm of the product ab is zero despite the product of the

norms of a and b being non-zero.

� An alternative real algebra with multiplicative inverses is a real division algebra.

Moreover, an alternative and commutative real algebra has multiplicative inverses if

and only if it is a real division algebra. On the other hand, there exist alternative and

non-commutative real division algebras without multiplicative inverses. For example,

if we only change Table E.1 declaring e2
1 = e2 − 1, then e1 has no multiplicative

inverse. Indeed, in this situation, we have that e3 − e1 and −(e1 + e3) are left

and right inverses for e1, respectively. Thus, since this new quaternionic algebra is

associative, we are done here. ♦

E.2 Morphisms of real algebras

De�nition E.9 (Homomorphisms of real algebras and of real division algebras). Let A

and B be real (division) algebras. A linear map ϕ : A → B is a homomorphism

of real (division) algebras if ϕ(1) = 1 and ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ A .

Furthermore:

� a monomorphism of real (division) algebras is an injective homomorphism of

real (division) algebras;

� an epimorphism of real (division) algebras is a surjective homomorphism of

real (division) algebras; and

� an isomorphism of real (division) algebras is an invertible homomorphism of

real (division) algebras. ♦

Remark E.10 (On homomorphisms of real algebras). We have the following facts about

homomorphisms of real algebras.

� Let A be a real (division) algebra. The real division algebra of the real numbers
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is considered a subalgebra of A by means of the monomorphism of real (division)

algebras

ι : R → A ,

α 7→ α1.

� Let A and B be real (division) algebras and ϕ : A → B be a linear map

such that:

ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ A .

If ϕ is surjective, then it is a homomorphism of real (division) algebras. Indeed,

by hypothesis, for all b ∈ B, there exists a ∈ A in such manner that ϕ(a) = b.

Therefore,

ϕ(1) b = ϕ(1)ϕ(a) = ϕ(1a) = ϕ(a) = b.

Analogously, b ϕ(1) = b. From the uniqueness of the multiplicative identity,

ϕ(1) = 1. This proves our claim. ♦

De�nition E.11 (Categories of real algebras and of real division algebras). We say that:

� AlgR is the category of real algebras whose objects are real algebras and whose

morphisms are homomorphisms of real algebras; and

� AlgDR is the category of real division algebras whose objects are real division

algebras and whose morphisms are homomorphisms of real division algebras.

It is to be noted that AlgDR is a full subcategory of AlgR since every homomorphism

of real algebras between real division algebras is a homomorphism of real division

algebras. ♦

De�nition E.12 (Anti-homomorphisms of real algebras and of real division

algebras). Let A and B be real (division) algebras. A linear map ϕ : A → B is an

anti-homomorphism of real (division) algebras if ϕ(1) = 1 and ϕ(ab) = ϕ(b)ϕ(a)

for all a, b ∈ A . Furthermore:

� an anti-monomorphism of real (division) algebras is an injective

anti-homomorphism of real (division) algebras;
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� an anti-epimorphism of real (division) algebras is a surjective

anti-homomorphism of real (division) algebras; and

� an anti-isomorphism of real (division) algebras is an invertible

anti-homomorphism of real (division) algebras. ♦

Remark E.13 (On anti-homomorphisms of real algebras). We have the following facts

about anti-homomorphisms of real algebras.

� Let A and B be real (division) algebras and ϕ : A → B be a linear map.

Then:

• if ϕ is surjective and ϕ(ab) = ϕ(b)ϕ(a) for all a, b ∈ A , then it is an

anti-homomorphism of real (division) algebras. We leave the details to the

reader, recommending a closer look into the arguments which we used in

Remark E.10; and

• if B is a commutative real (division) algebra, then ϕ : A → B is an

anti-homomorphism of real (division) algebras if and only if it is a

homomorphism of real (division) algebras.

� It is not possible to de�ne a category of real (division) algebras whose morphisms

are anti-homomorphisms of real (division) algebras. This happens because the

composition of two anti-homomorphisms of real (division) algebras is a

homomorphism of real (division) algebras. Nonetheless, we can de�ne a category

of real (division) algebras whose morphisms are anti-homomorphisms of real

(division) algebras and homomorphisms of real (division) algebras, but this is

not standard. ♦

E.3 Cayley-Dickson algebras

De�nition E.14 (Anti-involution and real star-algebra). We say that a real (division)

star-algebra is a pair (A , ∗) in which:

� A is a real (division) algebra; and
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� ∗ : A → A is an anti-involution of the real (division) algebra A , that is,

an anti-isomorphism of the real (division) algebra A whose inverse coincides with

itself.

We will say that A is a real (division) star-algebra, omitting its anti-involution, and we

will write a∗ instead of ∗(a) for all a ∈ A . Moreover, we will say that the real star-algebra

A is nicely normed if the sum a+ a∗ is a real multiple of 1 ∈ A and the products aa∗

and a∗a, which have two coincide, are a positive real multiple of 1 ∈ A for all non-zero

element a ∈ A . ♦

Example E.15 (The real division star-algebras R, C, H and O). We have that:

� R is a real division star-algebra with respect to the anti-involution ∗ : R → R

given by α∗ = α;

� C is a real division star-algebra with respect to the anti-involution ∗ : C → C

given by (α + α1e1)∗ = α− α1e1;

� H is a real division star-algebra with respect to the anti-involution ∗ : H → H

given by (α + α1e1 + α2e2 + α3e3)∗ = α− α1e1 − α2e2 − α3e3;

� O is a real division star-algebra with respect to the anti-involution ∗ : O → O

given by (α + α1e1 + α2e2 + α3e3 + α4e4 + α5e5 + α6e6 + α7e7)∗ = α − α1e1 − α2e2

− α3e3 − α4e4 − α5e5 − α6e6 − α7e7.

The reader can readily prove with straightforward computations that all these four real

star-algebras are nicely normed. ♦

Remark E.16 (On nicely normed real star-algebras). We have the following facts about

nicely normed real star-algebras.

� If A is a nicely normed real star-algebra, then it has multiplicative inverses. Indeed,

it su�ces to see that, for every non-zero element a ∈ A , the inverse a−1 of a is

given by

a−1 =
1

aa∗
a∗.
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� If A is nicely normed and alternative, then it is a normed real algebra. In fact, we

de�ne the norm

| · | : A → [0,∞),

a 7→
√
aa∗.

We claim that |a| |b| = |ab| for all a, b ∈ A . Indeed, since A is alternative, we

have

|ab|2 = (ab)(ab)∗ = ab(b∗a∗) = a(bb∗)a∗ = aa∗ |b|2 = |a|2 |b|2

for all a, b ∈ A , which proves the assertion. ♦

De�nition E.17 (Cayley-Dickson algebra of a real star-algebra). The Cayley-Dickson

algebra of a real star-algebra (A , ∗) is said to be the real star-algebra CD(A ) in such

manner that:

� as a vector space, CD(A ) is the direct sum A ⊕A ;

� as a real algebra, CD(A ) has the multiplication CD(A )×CD(A )→ CD(A ) given

by (a, b)(c, d) = (ac− db∗, a∗d+ cb); and

� as a real star-algebra, CD(A ) has the anti-involution ∗ : CD(A ) → CD(A ) given

by (a, b)∗ = (a∗,−b). ♦

Theorem E.18 (Relations between a real star-algebra and its Cayley-Dickson algebra).

We have the following facts about a real star-algebra A and its Cayley-Dickson algebra

CD(A ).

(1) A is nicely normed if and only if CD(A ) is nicely normed.

(2) A is associative and nicely normed if and only if CD(A ) is alternative and nicely

normed.

Proof. These facts are proved by straightforward computations that we leave to the

reader ful�ll.
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Example E.19 (The real algebra S). The real algebra of the sedenions is the

Cayley-Dickson algebra S := CD(O). More explicitly, S is the real algebra given by the

sixteen-dimensional real Euclidean space equipped with the multiplication bilinearly induced

by Table E.3. The sedenions are our �rst example of a real algebra with zero divisors.

Indeed, for instance,

(e3 + e10)(e6 − e15) = e3e6 − e3e15 + e10e6 − e10e15

= e5 − e12 + e12 − e5

= 0.

The reader can �nd more examples of zero divisors in S. Therefore, not only the

sedenions cannot be normed, but also Theorem E.18 implies that S is not an

alternative algebra. In fact, since O and S = CD(O) are nicely normed, we have that

S is alternative if and only if O is associative. Thus, since O is non-associative, it follows

that S is non-alternative. ♦

Remark E.20 (The real division star-algebra of the real numbers generates an

in�nite family of real star-algebras through the Cayley-Dickson algebra construction).

We have

CD(R) = C, CD(C) = H and CD(H) = O.

More than that, iteratively applying the Cayley-Dickson algebra from the real numbers,

we obtain an in�nite family of nicely normed real star-algebras, each of which has

dimension equal to a power of two. An important fact is that R, C, H and O are the

only normed alternative real division algebras of this family. Indeed, all the other algebras

of this family, from the sedenions, have zero divisors and are non-alternative because they

contain copies of this sixteen-dimensional algebra. In particular, having zero divisors,

these algebras cannot be normed. ♦
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Table E.3: This table describes the sedenionic multiplication of the vectors of the
canonical basis. In fact, it describes the result of multiplying the bold element in its
ith row by the bold element in its jth column.
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E.4 Classical theorems

In Section 2.8, we exposed the following result due to Raoul Bott (1923-2005),

John Milnor (1931-) and Michel Kervaire (1927-2007), whose proof uses Ordinary

K-Theory.

Theorem E.21 (Bott-Milnor-Kervaire Theorem). Every real division algebra has

dimension 1, 2, 4 or 8. �

This result was independently proved by Bott-Milnor and by Kervaire in 1958,

according to [5, p. 150]. Moreover, as we mentioned before, the reader can �nd a

detailed proof of it in [15, pp. 59-72]. When we look to the preceding section of this

appendix, an interesting consequence of Bott-Milnor-Kervaire Theorem is that there

is no way of changing the multiplication of the sedenions induced by Table E.3 to

turn it into a division algebra. More generally, it is not possible to change the

multiplication of the Cayley-Dickson algebras, starting from the sedenions, to turn them

into division algebras. On the other hand, we have proved that there exist real division

algebras in dimensions 1, 2, 4 and 8. Indeed, we have R, C, H and O in Examples E.2,

E.3, E.4 and E.5, respectively. Nevertheless, these algebras are not the only real division

algebras in these dimensions up to isomorphism (with the obvious exception of the real

numbers). Indeed:

� in dimension 2, one can consider the hyperbolic complex numbers CH that are

de�ned exactly as the complex numbers, but declaring e2
1 = 1. The reader can

promptly prove that there can be no isomorphism of real division algebras between

C and CH;

� in dimension 4, one can consider the quaternionic algebra de�ned in the last item

of Remark E.8. This algebra cannot be isomorphic to H since its element e1 has no

inverse. In fact, an isomorphism of real division algebras has to map inverses into

inverses; and

� in dimension 8, one can consider the Cayley-Dickson algebra of the quaternionic

algebra of the preceding item. This cannot be isomorphic toO by the same reasoning

presented above.
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Therefore, we could ask if the historical division algebras R, C, H and O are also special

from a strictly mathematical viewpoint. Subsequently, we present two positive answers

for this question.

Theorem E.22 (Zorn's Theorem). The only alternative real division algebras are R,

C, H and O. �

Theorem E.23 (Hurwitz's Theorem). The only normed real division algebras are R, C,

H and O. �

The �rst theorem was proved by Max Zorn (1906-1993) in a paper of 1930

that was correlated to his doctoral thesis. The reader can �nd a mention to Zorn's

original work in [5, p. 150]. Moreover, the reader can �nd an interesting sketch of proof

of Hurwitz's Theorem in [5, pp. 156-159]. It is to be noted that, although this result was

�rst proved by Adolf Hurwitz (1859-1919) in a paper of 1898, the sketch presented in

this reference is the one a modern proof that uses the ideas of Cli�ord algebras developed

in Chapter 3. This gives us one more reason to study these objects, which are intrinsically

linked to K-Theory (see Section 3.4).
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Appendix F

Principal Bundles

In this appendix, we set the fundamental notion that one must know in order

to understand the spin and spinc structures that we deal with in the main text, which is

the one of principal bundles. We only expose here the initial concepts and the results that

play an essential role in our exposition. However, since the theory of principal bundles

is, under a certain viewpoint, equivalent to the one of vector bundles, we introduce some

notions that show this equivalence. The reader who fells the urge to deepen his or her

knowledge in this interesting topic may �nd in [30, pp. 28-35] and [35, pp. 111-118]

good references. Finally, it is to be noted that the notions presented here are mainly used

in Chapter 3.

F.1 First de�nitions

De�nition F.1 (Principal bundle). Let X be a connected topological space and G be a

topological group. A principal bundle on X with structure group G is de�ned by the

following data:

� a topological space P ;

� a surjective continuous function π : P → X; and

� a continuous right action of G on P such that π(x · g) = π(x) for all x ∈ X

and all g ∈ G,

such that the following two conditions are satis�ed.
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(1) For every x ∈ X, there exists an open neighborhood U of x in X and a

homeomorphism

ϕ : π−1(U) → U ×G

verifying the commutativity of the following diagram with ϕ(π−1(y)) = {y} × G

for every y ∈ U .

π−1(U) U U ×Gπ

ϕ

πU

(2) For every y ∈ U and every g, h ∈ G, we have the compatibility condition

ϕ−1(y, h) · g = ϕ−1(y, hg).

If X is not connected, then a principal bundle on X is de�ned by a principal bundle on

each connected component of X. In this situation, the structure group depends on each

connected component of X. ♦

Notation F.2 (On principal bundles). Henceforth, the notation of De�nition F.1 will

be used without explicit mention. In particular, we will denote a principal bundle with

structure group G by π : P → X. Moreover, we will often denote the whole bundle by P ,

for convenience. ♦

De�nition F.3 (Standard nomenclature in the framework of principal bundles). Let

π : P → X be a principal bundle. We say that:

� for every x ∈ X, the topological space π−1(x) is the �ber of P in x, which is hereafter

denoted by Px;

� P and X are, respectively, the total space and the base space of the principal

bundle π : P → X;

� a local chart or local trivialization of P is a pair (U,ϕU) where:

• U ⊆ X is open; and
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• ϕU : π−1(U) → U ×G is a homeomorphism satisfying Conditions (1) and (2)

of De�nition F.1.

Moreover, if x ∈ U , then the local chart (U,ϕU) is also said to be a local chart

in x; and

� an atlas of P is a family ΦU = {(Ui, ϕi)}i∈I where:

• U = {Ui}i∈I is an open cover of X; and

• (Ui, ϕi) is a local chart of P for all i ∈ I.

Note that the existence of an atlas of P follows from Conditions (1) and (2) of

De�nition F.1. ♦

Remark F.4 (On principal bundles and their right actions). Let π : P → X be a

principal bundle. Because of Conditions (1) and (2) of De�nition F.1, the G-orbit of

p ∈ Px is the whole Px. Moreover, we have that Px is a G-torsor(1). Hence, the projection

π induces a homeomorphism between P/G and X. In particular, the G-action is free in

the whole P . ♦

Remark F.5 (Initial comparison between vector bundles and principal bundles). In a

vector bundle, by de�nition, each �ber is a vector space, which is required to be isomorphic

to the typical �ber. On the other hand, in a principal bundle, by de�nition, the �bers are

not groups, but only torsors with respect to the structure group. In particular, we have

the canonical embedding of the base of a vector bundle into its total space, which is given

by the vanishing global section, but no embedding of the base of a principal bundle into

its total space. This shows an asymmetry between these two notions. Nevertheless, vector

bundles and principal bundles turn out to be symmetric from another viewpoint, which we

will brie�y describe in the end of this appendix. ♦

(1)A G-torsor is, roughly speaking, a group that has forgotten its identity element. In fact, given
any (non-empty) torsor with respect to a group G, we recover a group isomorphic to G by making what
is known as a trivialization of the G-torsor, which roughly corresponds to choosing an identity element.
More precisely, we say that a G-torsor is a non-empty set A together with a right action α : A×G→ A
of G such that the map πA×α : A×G→ A×A is an isomorphism, where πA : A×G→ A is the natural
projection onto the �rst factor. In addition, a trivialization of a G-torsor A is a bijection between A and
the underlying set of G.
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F.2 Morphisms and categories of principal bundles

De�nition F.6 (Principal bundle morphisms). Let πP : P → X and πQ : Q → Y

be principal bundles with structure groups G and H, respectively. We give the following

de�nitions.

� A principal bundle morphism from P into Q is a pair (f, ρ), where f : P → Q

is a continuous function and ρ : G→ H is a topological group homomorphism, such

that:

• there exists a (unique) continuous function g : X → Y in such manner that

πQ ◦ f = g ◦ πP ; and

• f(p · h) = f(p) · ρ(h) for all p ∈ P and all h ∈ G.

This means that the following diagram is commutative.

P ×G Q×H

P Q

X Y

f×ρ

· ·

f

πP πQ

g

� If X = Y , then we say that a principal bundle morphism over X from P into

Q is a principal bundle morphism f : P → Q in such manner that the induced

function g : X → X is the identity map.

� If G = H, a G-principal bundle morphism is a morphism of the form (f, idG).

Moreover, if X = Y and f induces g = idX , then we call it a G-principal bundle

morphism over X.

In all of these cases, we say that an invertible principal bundle morphism (over X) is a

principal bundle isomorphism (over X). ♦
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Theorem F.7 (When principal bundle morphisms are principal bundle isomorphisms).

Let πP : P → X and πQ : Q → Y be principal bundles with structure groups G and H,

respectively. Then:

(1) if (f : P → Q, ρ : G → H) is a principal bundle morphism, then it is a

principal bundle isomorphism if and only if g is a homeomorphism and ρ is a group

isomorphism;

(2) if X = Y and (f : P → Q, ρ : G → H) is a principal bundle morphism

over X, then it is a principal bundle isomorphism if and only if ρ is a group

isomorphism; and

(3) if X = Y , G = H and (f : P → Q, idG : G → G) is a G-principal

bundle morphism over X, then it necessarily is a G-principal bundle isomorphism

over X.

Proof. Evidently, we only have to prove that the �rst statement holds true. Indeed,

note that, if (f, ρ) is a principal bundle isomorphism, then clearly g is a homeomorphism

and ρ is a group isomorphism. Conversely, if g is a homeomorphism and ρ is a group

isomorphism, then:

� f is injective. Let p, q ∈ P be such that f(p) = f(q). Since g ◦ πP = πQ ◦ f ,

it follows that (g ◦ πP )(p) = (g ◦ πP )(q). Hence, once g is a homeomorphism,

πP (p) = πP (q). This last equation implies the existence of h ∈ G for which q = p ·h.

Moreover,

f(p) = f(q) = f(p · h) = f(p) · ρ(h)

implies ρ(h) = 1H . Therefore, since ρ is an isomorphism, h = 1G. Consequently,

we have p = q. This proves that f is injective.

� f is surjective. Let q ∈ Q. Since πQ is surjective, there exists y ∈ Y for which

q ∈ Qy. Moreover, since g is a homeomorphism, there exists a unique x ∈ X such

that g(x) = y. Thus, we have q ∈ Qg(x). Hence, for any p ∈ Px, we have f(p) = q ·h

for a suitable h ∈ H. Consequently, once ρ−1(h−1) ∈ G is well-de�ned because ρ is

an isomorphism, we have
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f(p · ρ−1(h−1)) = f(p) · ρ(ρ−1(h−1)) = f(p) · h−1 = (q · h) · h−1 = q.

This proves that f is surjective.

� (f−1, ρ−1) is a principal bundle morphism. By hypothesis, ρ−1 : H → G

is a topological group homomorphism. Moreover, the reader can readily prove that

f−1(q · h) = f−1(q) · ρ−1(h) for all q ∈ Q and all h ∈ H. Thus, it only remains to

show that f−1 : Q → P is continuous. Choosing local charts (U,ϕ) and (g(U), ψ)

of P and Q, respectively, we de�ne the function α : U → H by means of the

equality

f(ϕ−1(x, 1G)) = ψ−1(g(x), α(x)).

Obviously, α is continuous because it is the composition of ψ ◦ f ◦ ϕ−1(·, 1G)

with the natural projection onto the second factor. For all h ∈ G, it follows from

the preceding equation that

f(ϕ−1(x, h)) = ψ−1(g(x), α(x)ρ(h)).

Therefore, for all h ∈ H, we have

f−1(ψ−1(g(x), h)) = ϕ−1(x, ρ−1(α(x)−1h)).

This immediately implies that the composition f−1 ◦ ψ−1 ◦ (g × 1H) is continuous.

Consequently, we have that f−1 is also continuous because ψ−1 and g × 1H are

homeomorphisms.

This �nishes the proof of the theorem.

De�nition F.8 (Categories of principal bundles). We say that:

� PrincBdl is the category of principal bundles whose objects are principal

bundles and whose morphisms are principal bundle morphisms;

� PrincBdl(G) is the category of principal bundles with �xed structure

group G whose objects are principal bundles with structure group G and whose

morphisms are G-principal bundle morphisms;
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� PrincBdlX is the category of principal bundles on X whose objects are

principal bundles on X and whose morphisms are principal bundle morphisms

over X; and

� PrincBdlX(G) is the category of principal bundles on X with �xed

structure group G whose objects are principal bundles on X with structure

group G and whose morphisms are G-principal bundle morphisms over X. Note

that this category if a groupoid since its morphisms are always isomorphisms by

Theorem F.7. ♦

Remark F.9 (On the categories of principal bundles). We have the following diagram of

categories indicating the inclusion relations between PrincBdl, PrincBdl(G), PrincBdlX

and PrincBdlX(G).

PrincBdl(G) PrincBdl

PrincBdlX(G) PrincBdlX

Di�erently from the diagram in Remark C.7, the horizontal arrows of this diagram

are not full. This happens because, �xing the structure group G, the topological group

homomorphism ρ : G → G of any principal bundle morphism (f, ρ) is obliged to be the

identity map. ♦

De�nition F.10 (Sets of equivalence classes of principal bundles). We say that:

� Princ is the quotient of the class of objects of PrincBdl by its equivalence relation of

isomorphism of principal bundles. In other words, Princ is the set of isomorphism

classes of principal bundles; and

� PrincX is the quotient of the class of objects of PrincBdlX by its equivalence

relation of isomorphism of principal bundles on X. In other words, PrincX is the

set of isomorphism classes of principal bundles on X.
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The sets of isomorphism classes of principal bundles Princ(G) and PrincX(G) are de�ned

in a similar manner. ♦

F.3 Trivial bundles and restrictions

De�nition F.11 (Product and trivial principal bundles). Let X be a connected topological

space. We say that:

� the product principal bundle with structure group G is the projection onto

the �rst factor π : X ×G→ X equipped with the trivial action

(x, h) · k := (x, hk)

for all (x, h) ∈ X ×G and all k ∈ G; and

� a principal bundle π : P → X with structure group G is trivial if it is

isomorphic over X and as a G-principal bundle to the product bundle X × G.

In this situation, an isomorphism from P onto the product bundle is said to be a

trivialization of P . ♦

De�nition F.12 (Restriction of a principal bundle). Let π : P → X be a principal bundle.

Given a topological subspace Y ⊆ X, the restriction of P to Y , which is hereafter denoted

by P |Y , is the principal bundle π |π−1(Y ): π
−1(Y )→ Y with the induced G-action on each

�ber on Y . ♦

Remark F.13 (On the restriction of principal bundles). Let π : P → X be a principal

bundle and Y be a topological subspace of X. Then:

� the restriction P |Y is a principal bundle because we can verify Conditions (1) and

(2) of De�nition F.1 by restricting a local chart (U,ϕU) of P to the local chart

(U ∩ Y, ϕU |π−1(U∩Y )) of P |Y ; and

� if (U,ϕU) is a local chart of P , then ϕU : π−1(U) → U × G is a principal bundle

isomorphism over U between P |U and the product bundle. Therefore, a principal

bundle is locally trivial by de�nition. ♦



F. Principal Bundles 383

Remark F.14 (Covariant functor de�ned by the restriction of principal bundles). Let X

be a topological space and Y be a subspace of X. Then, we have the following

covariant functor

|Y : PrincBdlX → PrincBdlY ,

P 7→ P |Y ,

(f : P → Q, ρ : G→ H) 7→ (f |Y : P |Y → Q |Y , ρ : G→ H),

where f |Y is the natural map that sends a ∈ P |Y into f(a) ∈ Q |Y . The reader can

readily prove that this map is not only well-de�ned but also is a principal bundle morphism

over Y . To complete these details, we recommend a closer look at the arguments used in

Remark C.12. ♦

De�nition F.15 (Common trivializing open cover for a family of principal bundles on

the same base space). Let X be a topological space and Π = {πα : Pα → X}α∈Λ

be a family of principal bundles on X. A common trivializing open cover of X

for Π is an open cover U = {Ui}i∈I of X in such manner that Pα |Ui is trivial for all

α ∈ Λ and all i ∈ I. ♦

Remark F.16 (Existence of common trivializing open covers for �nite families

of principal bundles). Let X be a topological space. Using induction, the reader can readily

prove that there exists a common trivializing open cover of X for any �nite number of

principal bundles. To complete the details, we recommend a closer look at the arguments

used in Remark C.14. ♦

F.4 Sections of principal bundles

Notation F.17 (On real and complex numbers). When we do not desire to distinguish

between the �eld of real numbers and the �eld of complex numbers, we shall write K to

symbolize them. ♦

De�nition F.18 (Global and local sections of a principal bundle). Let π : P → X be a

principal bundle. We say that:
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� a (global) section of P is a continuous function s : X → P in such manner

that π ◦ s = idX . The set of sections of P , which is naturally a torsor with

respect to the group of continuous functions C0(X,G), is hereafter denoted

by Γ(P ); and

� if U ⊆ X is open, then a global section s : U → P |U of the restriction P |U is

said to be a local section of P . Moreover, if x ∈ U , then s is also called a local

section in x. ♦

Theorem F.19 (Local charts induce bijections between the set of local sections and the

group of continuous functions). Let π : P → X be a principal bundle. If (U,ϕU) is a

local chart of P , then it induces a bijection between Γ(P |U) and C0(U,G). Moreover, this

bijection is a C0(U,G)-torsor isomorphism.

Proof. The proof of this result is similar to the one of Theorem C.17. The reader can

ful�ll the details.

The following result gives a characterization of trivial principal bundles

through their global sections. Indeed, it says that a principal bundle is trivial if

and only if it admits a global section. This shows one more discrepancy between

vector bundles and principal bundles. In fact, as one can readily see comparing

Theorems C.20 and F.20, the behavior of global and local sections in these frameworks

are radically di�erent.

Theorem F.20 (Equivalence between triviality of a principal bundle and the

existence of a global section). Let π : P → X be a principal bundle with structure

group G. Then, P is trivial if and only if there exists a global section of P . Furthermore,

there exists a canonical bijection between the set of trivializations of P and the set of

its global sections.

Proof. If f : P → X ×G is a trivialization of P , then

s : X → P,

x 7→ f−1(x, 1G),
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is a global section of P . Moreover, if s : X → P is a global section of P , then we obtain

the trivialization

f : P → X ×G,

s(x) · g 7→ (x, g).

The reader can readily prove that these assignments are inverse to each other,

being canonical bijections between the set of trivializations of P and the set of its

global sections.

Remark F.21 (Another interpretation of local triviality of principal bundles). We have

seen in Remark F.13 that, given a principal bundle P , a choice of a local chart (U, ϕU)

is equivalent to a choice of a trivialization of P |U . Hence, because of Theorem F.20,

it is equivalent to a choice of a local section s : U → P , which is obviously a global

section of P |U . ♦

F.5 Subbundles of principal bundles

De�nition F.22 (Subbundle of a principal bundle). Let π : P → X be a principal bundle

and H be a subgroup of the structure group G. We say that a principal subbundle Q

of P with structure group H is an H-principal bundle of the form π |Q: Q→ X, where Q

is a topological subspace of P and the action of H on Q is the restriction of the action of

H on P .

Remark F.23 (On subbundles of principal bundles). Let π : P → X be a principal

bundle and Q be a subbundle of P . Note that:

� if h ∈ H and we consider its G-action on P , then Q · h ⊆ Q. Therefore, since Q is

obviously a subset of Q · h, we have Q = Q · h; and

� the inclusion (i, j) : (Q,H) → (P,G) is a morphism of principal bundles over X.

In fact, i is continuous since it is the inclusion of a topological subspace, j is the

inclusion of a topological subgroup by de�nition and i(q ·h) = i(q) ·j(h) for all q ∈ Q

and all h ∈ H.
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We also observe that, when we restrict a principal bundle to Y , we are only

considering the �bers over the points of Y , but we take the whole �ber in each point.

On the other hand, considering a subbundle of a principal bundle, we restrict each �ber to

a topological subspace with the group action being the one induced by the restriction, but

in the whole X. Evidently, we can apply both operations at the same time, considering

the restriction of a subbundle. ♦

The next result of this section enlightens subbundles of principal bundles.

Indeed, it shows a correspondence between subbundles and local sections of the main

principal bundle.

Theorem F.24 (Subbundles and local sections of principal bundles). Let π : P → X

be a principal bundle and H be a subgroup of the structure group G. If Q is a

topological subspace of P such that Q · h ⊆ Q for all h ∈ H, then π |Q: Q → X, where

Q is endowed with the induced topology and Qx is endowed with the induced action of G

for all x ∈ X, is a principal subbundle of P if and only if, for every x ∈ X, there exists

an open neighborhood U of x in X and a local section s ∈ Γ(P |U) such that s(y) ∈ Q

for every y ∈ U .

Proof. (⇒). Since Q is an H-principal bundle, it admits a local chart in every x ∈ X.

Note that such a chart is equivalent to a local section s ∈ Γ(Q |U). Thus, once Q is

endowed with the induced topology, it follows that s : U → P is continuous. Moreover,

since the projection π |Q: Q → X is the restriction of π : P → X, it follows that

π ◦ s = idU . Hence, s ∈ Γ(P |U) is such that s(y) ∈ Q for every y ∈ U . (⇐). For

every x ∈ X, by hypothesis, there exists an open neighborhood U of x in X and a local

section s ∈ Γ(P |U) such that s(y) ∈ Q for every y ∈ U . This section de�nes a local

chart ϕ : (π |Q)−1(U) → U × H in x ∈ X. Therefore, Q is a principal subbundle of P ,

as we wished.

F.6 Transition functions of principal bundles

Remark F.25 (Relation between the local charts of a principal bundle endowed

with an atlas). Let π : P → X be a principal bundle endowed with an atlas
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ΦU = {(Ui, ϕi)}i∈I . In addition, let (Ui, ϕi) and (Uj, ϕj) be any local charts of ΦU

such that Uij := Ui ∩ Uj is nonempty. Then, consider ϕi : π−1(Ui) → Ui × G and

ϕj : π−1(Uj) → Uj × G. Fixing x ∈ Uij, if p ∈ Px is such that ϕi(p) = (x, 1G), then

its corresponding representation in Uj is of the form ϕj(p) = (x, gij(x)) with gij(x) ∈ G.

Moreover, given any other point q ∈ Px, there exists a unique g ∈ G such that q = p · g.

Therefore,

ϕi(q) = ϕi(p) · g = (x, 1G) · g = (x, g).

Analogously, we have ϕj(q) = (x, gij(x) · g). This means that the transition function is

given by left multiplication by a �xed gij(x) ∈ G for every x ∈ Uij. This fact allows us to

set the following de�nition. ♦

De�nition F.26 (Transition functions of a principal bundle). Let π : P → X be a

principal bundle endowed with an atlas ΦU = {(Ui, ϕi)}i∈I . If Uij := Ui∩Uj is nonempty,

then the transition function of P from Ui to Uj is given by

gij : Uij → G,

x 7→ πG(ϕj ◦ ϕ−1
i (x, 1G)),

where πG : Uij ×G→ G is the natural projection onto the second factor. Moreover, it is

immediate to verify that the transition functions satisfy the following condition, called the

cocycle condition:

gjk |Uijk (x) · gij |Uijk (x) = gik |Uijk (x),

for all x ∈ Uijk := Ui ∩ Uj ∩ Uk. In particular, gii(x) = 1G for all x ∈ Ui and

gij(x) = gji(x)−1 for all x ∈ Uij. We will frequently omit the point x in the preceding

formulas, admitting that whenever appears a product it is happening in the topological

group G. ♦

De�nition F.27 (First degree nonabelian �ech cohomology of G). Let X be a

topological space and U = {Ui}i∈I be one of its open covers. Being G a topological group,

we set
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Ž1(U, G) :=
{
{gij : Uij → G}i,j∈I : gjk |Uijk · gij |Uijk = gik |Uijk

}
.

We introduce in Ž1(U, G) the relation de�ned as follows: two of its families {gij}i,j∈I
and {hij}i,j∈I are related if and only if there exists a family {ηi : Ui → G}i∈I in such

manner that

hij(x) = ηj(x) · gij(x) · ηi(x)−1

for all x ∈ Uij and all i, j ∈ I. The reader can readily prove that this is an equivalence

relation on Ž1(U, G). We set Ȟ1(U, G) as the quotient of Ž1(U, G) by this equivalence

relation. ♦

Remark F.28 (On the �rst degree nonabelian �ech cohomology of G). Let

π : P → X be a principal bundle endowed with an atlas ΦU = {(Ui, ϕi)}i∈I . Being

{gij}i,j∈I the set of transition functions of P , De�nition F.26 ensures that the

equivalence class

[{gij}i,j∈I ] ∈ Ȟ1(U, G)

is well-de�ned. Furthermore, the reader can readily prove that it does not depend

on the homeomorphisms of ΦU. Therefore, the class [{gij}i,j∈I ] only depends

on the isomorphism class of P among the principal bundles that are trivial on each element

of the open cover U = {Ui}i∈I of X. More than that, one can prove that an

equivalence class of transition functions in Ȟ1(U, G) determines a unique up to

isomorphism principal bundle with structure group G that is trivial on each element of the

open cover in question. Furthermore, we obtain the direct limit

Ȟ1(X,G) := lim
−→ U

Ȟ1(U, G).

The interesting fact is that one can prove that there exists a bijection between PrincX(G)

and Ȟ1(X, G). ♦

Remark F.29 (On the geometric interpretation of the �rst degree nonabelian �ech

cohomology of G). Repeating the same reasoning developed in Remark C.30, we

conclude that:

� �xing an open cover U = {Ui}i∈I of X, a family {gij}i,j∈I ∈ Ž1(U, G)
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corresponds geometrically to a G-principal bundle π : P → X endowed with

a family {si}i∈ I , up to G-isomorphism respecting the local sections through

pullback (or pushforward);

� �xing an open cover U = {Ui}i∈I of X, a class [{gij}i,j∈I ] ∈ Ȟ1(U, G)

corresponds geometrically to a G-principal bundle π : P → X such that P |Ui is

trivial for every i ∈ I, up to G-isomorphism; and

� a class [[{gij}i,j∈I ]] ∈ Ȟ1(X,G) corresponds geometrically to a G-principal bundle

π : P → X, up to G-isomorphism. ♦

F.7 Frame bundle

In this section, we show that the transition functions of a vector bundle

with typical �ber V can also be thought of as the ones of a principal bundle with

structure group GL(V ). This idea is largely expected since the product coincides

with the composition in GL(V ). We start the formalization of this reasoning in the

following de�nition, where we �rst consider vector bundles equipped with atlases. This

approach enlightens the structure of the desired principal bundle from the one of the

initial vector bundle.

De�nition F.30 (Frame bundle of a vector bundle equipped with an atlas). Let X

be a topological space and E be a vector bundle on X with typical �ber V equipped

with an atlas ΦU = {(Ui, ϕi)}i∈I . In addition, let {ϕij : Uij → GL(V )}i,j∈I be the

set of transition functions of E with respect to ΦU. Furthermore, consider the

disjoint union

DU
GL(V ) :=

⊔
i∈I

Ui ×GL(V ).

If x ∈ Uij and ϕ ∈ GL(V ), then we denote by (x, ϕ)i the pair (x, ϕ) ∈ Ui × GL(V )

and by (x, ϕ)j the pair (x, ϕ) ∈ Uj × GL(V ). We de�ne GL(E,ΦU) as the quotient

of DU
GL(V ) by the equivalence relation that identi�es (x, ϕ)i with (x, (ϕij)x ◦ ϕ)j for all

(x, ϕ) ∈ Uij × GL(V ) and all i, j ∈ I. The frame bundle of E relative to ΦU is the

GL(V )-principal bundle
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π : GL(E,ΦU) → X,

[(x, ϕ)i] 7→ x,

whose continuous GL(V )-right action on GL(E,ΦU) is given by

· : GL(E,ΦU)×GL(V ) → GL(E,ΦU),

([(x, ϕ)i], ψ) 7→ [(x, ϕ ◦ ψ)i]. ♦

With respect to the preceding reasoning, the only inconvenient of the

principal bundle obtained in the de�nition above is that it apparently depends on the atlas

that comes together with the vector bundle. Nevertheless, there is no such dependence

since we give below an equivalent intrinsic de�nition of the frame bundle, independent of

any atlas.

Remark F.31 (Vector bundle of linear isomorphisms). Let X be a topological space.

It is immediate from De�nition C.46 that, given vector bundles E and F on X with

the same typical �ber V , it is de�ned their morphism bundle Hom(E,F ) with

typical �ber End(V ). Moreover, Hom(E,F )x is the vector space of linear maps

Hom(Ex, Fx) for all x ∈ X. Now, let us consider Iso(E,F ) to be topological subspace

of Hom(E,F ) de�ned by

Iso(E,F )x := Iso(Ex, Fx)

for all x ∈ X. In general, this is not a vector subbundle of Hom(E,F ), being only a �ber

subbundle(2). More than that, Iso(E,F ) has a natural GL(V )-right action if and only

if E = X × V . This can be seen using the approach of transition functions presented

in Remark C.47. Indeed, this shows that the transition functions of Hom(E,F ) and

Iso(E,F ) are given by

(σij)x(ϕ) = (ψij)x ◦ ϕ ◦ (ϕij)
−1
x , (F.1)

(2)In fact, vector bundles and principal bundles are enriched cases of �ber bundles. In this work,
�ber bundles will not play an important role by themselves. However, as the reader will see shortly
in the same paragraph of this footnote, it is important to know that all the elementary notions considered
here are also de�ned to this broader concept. Therefore, for instance, we have categories of �ber bundles,
morphisms of �ber bundles, sections of �ber bundles, transition functions of �ber bundles, et reliqua.
The reader who fells the urge to deepen his or her knowledge in this interesting topic may �nd in
[18, pp. 11-23, 61-66] a good reference.



F. Principal Bundles 391

which are not coordinate changes of a principal bundle unless (ϕij)x = idV . In this

case, we have the right-action fx · ϕ := fx ◦ ϕ for all x ∈ X, ϕ ∈ GL(V ) and all

fx ∈ Iso(X × V , F )x. ♦

De�nition F.32 (Frame bundle of a vector bundle). Let X be a topological space and

E be a vector bundle with typical �ber V . We say that the frame bundle of E is the

GL(V )-principal bundle πGL(E) : GL(E)→ X where

GL(E) := Iso(X × V , E)

and the GL(V )-right action on GL(E) is given by fx · ϕ := fx ◦ ϕ for all x ∈ X,

ϕ ∈ GL(V ) and all fx ∈ GL(E)x. ♦

Theorem F.33 (Equivalence between the frame bundles from De�nitions F.30 and

F.32). Let X be a topological space and E be a vector bundle on X with typical �ber V

equipped with an atlas ΦU = {(Ui, ψi)}i∈I . There exists a canonical isomorphism over X

between the frame bundle GL(E,ΦU) of De�nition F.30 and the frame bundle GL(E) of

De�nition F.32.

Proof. For every x ∈ X, let i ∈ I be such that x ∈ Ui and let fx ∈ GL(E)x. Then,

we de�ne the isomorphism

Φ : GL(E) → GL(E,ΦU),

fx 7→ [(x, (ψi)x ◦ fx)i].

It su�ces to prove that Φ is well-de�ned since, in this situation, it is clearly invertible

because (ψi)x is invertible for all x ∈ Ui. Indeed, if we choose j ∈ I for which x ∈ Uij,

then, using Equation (F.1) with ϕij = idV , we have

[(x, (ψj)x ◦ fx)j] = [(x, (σij)x((ψi)x ◦ fx))j]

= [(x, (ψij)x ◦ (ψi)x ◦ fx)j]

= [(x, (ψi)x ◦ fx)i].

This �nishes the proof of the theorem.
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F.8 Associated bundle

In this section, we invert the reasoning of the preceding one. Indeed, we

show that the transition functions of a principal bundle with structure group GL(V )

can also be thought of as the ones of a vector bundle with typical �ber V .

Furthermore, we show that, �xing a topological representation ρ : G → GL(V )

where V is �nite-dimensional vector space, the transition functions of a principal

bundle with structure group G can also be thought of as the ones of a vector bundle

with typical �ber V . We begin the formalization of this reasoning in the following

de�nition, where we �rst consider principal bundles equipped with atlases. This

approach enlightens the structure of the desired vector bundle from the one of the

initial principal bundle.

De�nition F.34 (Associated bundle of a principal bundle equipped with an atlas). Let X

be a topological space and P be a principal bundle on X with structure group GL(V )

equipped with an atlas ΦU = {(Ui, ϕi)}i∈I . In addition, let {ϕij : Uij → GL(V )}i,j∈I
be the set of transition functions of P with respect to ΦU. Furthermore, consider the

disjoint union

DU
V :=

⊔
i∈I

Ui × V .

If x ∈ Uij and v ∈ V , then we denote by (x, v)i the pair (x, v) ∈ Ui × V and by

(x, v)j the pair (x, v) ∈ Uj × V . We de�ne E(P,ΦU) as the quotient of DU
V by the

equivalence relation that identi�es (x, v)i with (x, (ϕij)x(v))j for all (x, v) ∈ Uij × V

and all i, j ∈ I. The associated bundle of P relative to ΦU is the vector bundle with

typical �ber V

π : E(P,ΦU) → X,

[(x, v)i] 7→ x,

whose natural �nite-dimensional vector space structure induced by V in each �ber is

given by

[(x, v)i] + [(x, w)i] := [(x, v + w)i] and

λ[(x, v)i] := [(x, λv)i] ♦
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Once and again, with respect to the preceding reasoning, the only inconvenient

of the vector bundle obtained in the de�nition above is that it apparently depends on

the atlas that comes together with the principal bundle. Nevertheless, there is no such

dependence since we give below an equivalent intrinsic de�nition of the associated bundle,

independent of any atlas.

Remark F.35 (On trivializations of the �bers of principal bundles). Let X be a topological

space and P be a principal bundle on X with structure group GL(V ). Fixing x ∈ X,

consider the �ber Px of P . According to Remark F.4, �xing a point p0 ∈ Px is equivalent

to �x a trivialization ϕx : Px → GL(V ), p0 · g 7→ g, of the �ber Px. Thus, p0 ∈ Px induces

the function

ξx : Px × V → V ,

(p0 · g, v) 7→ g(v).

This function is clearly surjective since

ξx(p0, v) = ξx(p0 · idV , v) = idV (v) = v.

Nevertheless, in general, it is not injective. In fact, let us verify when ξx(p, v) = ξx(q, w).

We have q = p ·g and p = p0 ·g0 for unique g, g0 ∈ GL(V ). Hence, we have to check when

g0(v) = ξx(p0 · g0, v) = ξx(p0 · g0g, w) = g0g(w).

Since g, g0 ∈ GL(V ), this last equation is equivalent to w = g−1(v). Therefore, we have

ξx(p, v) = ξx(p · g, g−1(v)). For this reason, we introduce in Px × V the equivalence

relation that identi�es (p, v) with (p · g, g−1(v)) for all p ∈ Px and all g ∈ GL(V ). Then,

considering E(P )x to be the quotient of Px × V by this equivalence relation, p0 ∈ Px

induces the homeomorphism

ηx : E(P )x → V ,

[(p0, v)] 7→ v.

This homeomorphism depends on p0 ∈ Px. Nonetheless, once the equivalence relation

on E(P )x does not have this dependence on p0 ∈ Px, we have that E(P )x is well-de�ned



F. Principal Bundles 394

starting from P . Moreover, E(P )x admits a natural �nite-dimensional vector space

structure given by

[(p, v)] + [(p, w)] := [(p, v + w)] and

λ[(p, v)] := [(p, λv)].

These facts allow us to set the following de�nition. ♦

De�nition F.36 (Associated bundle of a GL(V )-principal bundle). Let X be a

topological space and π : P → X be a principal bundle with structure group GL(V ).

We de�ne E(P ) as the quotient of P × V by the equivalence relation that identi�es (p, v)

with (p · g, g−1(v)) for all p ∈ P and all g ∈ GL(V ). We say that the associated bundle

of P is the vector bundle with typical �ber V

πE(P ) : E(P ) → X,

[(p, v)] 7→ π(p),

whose natural �nite-dimensional vector space structure induced by V in each �ber is

given by

[(p, v)] + [(p, w)] := [(p, v + w)] and

λ[(p, v)] := [(p, λv)]. ♦

Theorem F.37 (Equivalence between the frame bundles from De�nitions F.34 and F.36).

Let X be a topological space and P be a principal bundle on X with structure group GL(V )

equipped with an atlas ΦU = {(Ui, ϕi)}i∈I . There exists a canonical isomorphism over X

between the associated bundle E(P,ΦU) of De�nition F.34 and the associated bundle E(P )

of De�nition F.36.

Proof. For every x ∈ X, let i ∈ I be such that x ∈ Ui and let [(p, v)] ∈ E(P )x.

We have [(p, v)] = [(ϕ−1(x, 1G), vi)] for a unique vi ∈ V . Then, we de�ne the

isomorphism

Φ : E(P ) → E(P,ΦU),

[(p, v)] 7→ [(x, vi)i].
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It su�ces to prove that Φ is well-de�ned since, in this situation, it is clearly invertible

because the one-to-one correspondece between v and vi. Indeed, if we choose j ∈ I for

which x ∈ Uij, then

[(p, v)] = [(ϕ−1
i (x, 1G), vi)]

= [(ϕ−1
j (x, gij(x)), vi)]

= [(ϕ−1
j (x, 1G), gij(x)(vi))].

Consequently, we have vj = gij(x)(vi). Thus, it follows [(x, vj)j] = [(x, vi)i]. This �nishes

the proof of the theorem.

De�nition F.38 (Associated bundle of a principal bundle). Let X be a

topological space, π : P → X be a G-principal bundle and ρ : G → GL(V ) be a

topological representation of G where V is a �nite-dimensional vector space. We

de�ne Eρ(P ) as the quotient of P × V by the equivalence relation that identi�es (p, v)

with (p · g, ρ(g)−1(v)) for all p ∈ P and all g ∈ GL(V ). We say that the ρ-associated

bundle of P is the vector bundle with typical �ber V

πEρ(P ) : Eρ(P ) → X,

[(p, v)] 7→ π(p),

whose natural �nite-dimensional vector space structure induced by V in each �ber is

given by

[(p, v)] + [(p, w)] := [(p, v + w)] and

λ[(p, v)] := [(p, λv)]. ♦

Remark F.39 (On the associated bundle of De�nition F.38). Let X be a topological space,

π : P → X be a G-principal bundle and ρ : G → GL(V ) be a topological representation

of G where V is a �nite-dimensional vector space. We have the following facts about the

associated bundle of the preceding de�nition.

� We have that, if G = GL(V ) and ρ = idGL(V ), then EidGL(V )
(P ) is equal to E(P ).

This proves that De�nition F.38 is a generalization of De�nition F.36, as was

naturally expected.
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� One can prove that Eρ(P ) only depends on the homotopy class of the

representation ρ : G → GL(V ). This means that, if ρ, σ : G → GL(V ) are

homotopic maps, then Eρ(P ) is isomorphic to Eσ(P ) over X. Therefore, in

particular, if G is contractible, then there exists only one Eρ(P ) up to

isomorphism. ♦

F.9 Equivalence with vector bundles

In this section, we establish an equivalence between vector and principal

bundles. This will show that, although these two concepts have their discrepancies,

as we have seen along this appendix, the ample similarities that the reader may have

noted in their de�nitions and in the commentaries above are not pure chance. In fact,

we put together the frame and the associated bundles de�ned before to show the

equivalence between vector and principal bundles. Roughly speaking, we will show

that these constructions produces natural equivalences between the category of principal

bundles and the category of vector bundles. However, we will have to consider a restriction

on the morphisms of vector bundles in order to this reasoning work. We begin with the

following remark.

Remark F.40 (The associated bundle of the frame bundle of a vector bundle). Let

X be a topological space and E be a vector bundle on X with typical �ber V equipped

with an atlas ΦU = {(Ui, ϕi)}i∈I . The frame bundle GL(E,ΦU) is de�ned from the

transition functions of E induced by ΦU, as in De�nition F.30. This GL(V )-principal

bundle is endowed with an atlas ΨU with the same transition functions as the ones of ΦU.

Similarly, E(GL(E,ΦU),ΨU) is de�ned by the transition functions of GL(E,ΦU) induced

by ΨU, as in De�nition F.34. This vector bundle with typical �ber V is endowed with an

atlas ΣU with the same transition functions as the ones of ΨU, which coincide with the

ones of ΦU. Thus, E and E(GL(E,ΦU),ΨU) are canonically isomorphic over X, being one

isomorphism

ΘE : E → E(GL(E,ΦU),ΨU),

ex 7→ [(x, (ϕi)x(ex))i],
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where i ∈ I is such that x ∈ Ui. We can also set a similar correspondence considering

the intrinsic De�nitions F.32 and F.36. Indeed, since E(GL(E))x is the quotient of

Iso(V , Ex) × V by the equivalence relation that identi�es (ϕx, v) with (ϕx ◦ ψ, ψ−1(v))

for every ψ ∈ GL(V ), we have the canonical isomorphism

ΘE : E(GL(E)) → E,

[(ϕx, v)] 7→ ϕx(v). ♦

Remark F.41 (The frame bundle of the associated bundle of a principal bundle). Let

X be a topological space. As in Remark F.40, given a GL(V )-principal bundle P on X

equipped with an atlas ΦU = {(Ui, ϕi)}i∈I , we have that E(P,ΦU) is naturally endowed

with an atlas ΨU with the same transition functions as the ones of ΦU. Thus, we have the

canonical isomorphism

ΞP : P → GL(E(P,ΦU),ΨU),

px 7→ [(x, (ϕi)x(px))i],

where i ∈ I is such that x ∈ Ui. Analogously, we can set a similar correspondence

considering the intrinsic de�nitions. Indeed, since GL(E(P ))x coincides with

Iso(V , E(P )x), where E(P )x is the quotient of Px × V by the equivalence relation that

identi�es (px, v) with (p · g, g−1(v)) for all g ∈ GL(V ), we have the canonical

isomorphism

ΞP : P → GL(E(P )),

px 7→ (v 7→ [(px, v)]). ♦

The preceding remarks suggest that there exists an equivalence between the

category of vector bundles on X with typical �ber V and the category of principal

bundles on X with structure group GL(V ). This is not the case since a morphism of

GL(V )-principal bundles over X is necessarily an isomorphism (see Theorem F.7),

while there exist non-invertible morphisms between vector bundles on X with typical

�ber V . Categorically, this means that PrincBdlX(GL(V )) is a groupoid while

VectBdlX(V ) is not. Nevertheless, we can consider the non-full subcategory

VectBdlIsoX(V ) of VectBdlX(V ) whose objects are all vector bundles, and whose
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morphisms are only the isomorphisms. By construction, VectBdlIsoX(V ) is a groupoid.

Moreover, we have the following result.

Theorem F.42 (Equivalence between vector and principal bundles). Consider the

following covariant functor, which is called the frame functor:

GL : VectBdlIsoX(V ) → PrincBdlX(GL(V )),

E 7→ GL(E),

ϕ : E → F 7→ GL(ϕ) : GL(E)→ GL(F ),

where

GL(ϕ)(ψx) := ϕx ◦ ψx

for all ψx ∈ GL(E)x and all x ∈ X. Furthermore, consider the following covariant

functor, which is called the associated functor:

E : PrincBdlX(GL(V )) → VectBdlIsoX(V ),

P 7→ E(P ),

ϕ : P → Q 7→ E(ϕ) : E(P )→ E(Q),

where

E(ϕ)[(px, v)] := [(ϕx(px), v)]

for all [(px, v)] ∈ E(P )x and all x ∈ X. These functors are equivalences of groupoids

inverse to each other.

Proof. We have to prove that E ◦ GL : VectBdlIsox(V ) → VectBdlIsoX(V ) is

naturally isomorphic to the covariant identity functor IdVectBdlIsoX(V ), and that

GL ◦ E : PrincBdlX(GL(V )) → PrincBdlX(GL(V )) is naturally isomorphic

to the covariant identity functor IdPrincBdlX(GL(V )). This means that we have to

exhibit families of natural isomorphisms Θ = {ΘE : (E ◦ GL)(E) → E}E∈VectBdlIsoX(V )

and Ξ = {ΞP : P → (GL ◦ E)(P )}P∈PrincBdlX(GL(V )) in such manner that the

following square diagrams are commutative for all ϕ ∈ Iso(E,F ) and all

ψ ∈ Hom(P,Q).
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(E ◦GL)(E) E

(E ◦GL)(F ) F

ΘE

(E◦GL)(ϕ) ϕ

ΘF

P (GL ◦ E)(P )

Q (GL ◦ E)(Q)

ψ

ΞP

(GL◦E)(ψ)

ΞQ

We claim that the isomorphisms ΘE and ΞP de�ned at the end of Remarks F.40

and F.41, respectively, are such that the preceding square diagrams are commutative.

Indeed:

� with respect to the �rst diagram, we have

(E ◦GL)(ϕ) : (E ◦GL)(E) → (E ◦GL)(F ),

[(ψx, v)] 7→ [(ϕx ◦ ψx, v)],

where ψx : V → Ex. Therefore,

(ΘF ◦ (E ◦GL)(ϕ))[(ψx, v)] = ΘF [(ϕx ◦ ψx, v)] = (ϕx ◦ ψx)(v).

Moreover,

(ϕ ◦ΘE)[(ψx, v)] = ϕ(ψx(v)) = (ϕx ◦ ψx)(v).

Hence, the diagram commutes.

� with respect to the second diagram, (GL ◦ E)(ψ) : (GL ◦ E)(P ) → (GL ◦ E)(Q)

is given as follows. Let us �x ϕx ∈ (GL ◦ E)(P ). This means that we �x

ϕx : V → E(P )x. Thus,

(GL ◦ E)(ψ)(ϕx) = E(ψ)x ◦ ϕx.

Therefore, if ϕx(v) = [(qx, w)], then

(E(ψ)x ◦ ϕx)(v) = E(ψ)x[(qx, w)] = [(ψx(qx), w)].
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Consequently, let px ∈ P . Applying ΞP , we obtain the morphism ϕx that

sends px into the map v 7→ [(px, v)]. Then, applying (GL ◦ E)(ψ), we obtain the

morphism v 7→ [(ψx(px), v)]. This coincides with (ΞQ ◦ ψ)(px). Hence, the diagram

commutes.

This �nishes the proof of the theorem.

Remark F.43 (Generalizations of Theorem F.42). In the preceding result, we proved

that the covariant functors in Diagram (F.2) are equivalences of groupoids inverse to

each other.

VectBdlIsoX(V ) PrincBdlX(GL(V ))

GL

E

(F.2)

This idea can be generalized removing the �xed base space, allowing it to vary, as in

Diagram (F.3). In this case, VectBdlMaps(V ) is the non-full subcategory of VectBdl(V )

whose:

� objects are all vector bundles; and

� morphisms are vector-bundle maps. We say that a vector-bundle map

between πE : E → X and πF : F → Y is a vector bundle morphism f : E → F ,

which covers a continuous function g : X → Y , such that fx : Ex → Fg(x) is an

isomorphism for all x ∈ X.

VectBdlMaps(V ) PrincBdl(GL(V ))

GL

E

(F.3)

It is to be noted that neither VectBdlMaps(V ) nor PrincBdl(GL(V )) are groupoids.

Moreover, the covariant functors GL and E in Diagram (F.3) are de�ned as in
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Theorem F.42. However, we remark that, since GL(E) = Iso(X × V , E) and

GL(F ) = Iso(Y × V , F ), we have ϕx ◦ ψx ∈ GL(F )ϕ′(x) where ϕ′ : X → Y is the

functions covered by ϕ. Similarly, we have to keep in mind that in this new context we

have ϕx(px) ∈ Qϕ′(x).

VectBdlMapsPairs PrincBdlGL

GL

E

(F.4)

Finally, the most general equivalence between vector and principal bundles is the one

sketched in Diagram (F.4), where the typical �bers of the vector bundles are also allowed

to vary. In this diagram, the categories VectBdlMapsPairs and PrincBdlGL are de�ned

as follows.

� VectBdlMapsPairs is the category whose:

• objects are all vector bundles; and

• morphisms are pairs (f, ξ) where f : E → F is a vector-bundle map

and ξ : V → W is a vector-space isomorphism between the typical �bers of

E and F .

� PrincBdlGL is the category whose:

• objects are GL(V )-principal bundles where V is any �nite-dimensional vector

space; and

• morphisms are principal bundle morphisms of the form (f,Ψξ) where

ξ : V → W is a vector-space isomorphism and Ψξ : GL(V ) → GL(W ) is

its induced morphism of groups.

Furthermore, it is to be noted that the covariant functors GL and E in Diagram (F.4)

are de�ned exactly as before, but considering the composition with ξ : V → W in the

natural way. ♦
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Real Bott Periodicity Theorem, 146

Real division algebra, 355

Reduced generalized cohomology group, 21

Reduced generalized cohomology sequence, 24

Reduced generalized induced homomorphism, 22

Reduced generalized induced homomorphism between generalized cohomology sequences, 26

Reduced K-Theory group of a compact Hausdor� pointed space, 90

Reduced K-Theory group of a compact Hausdor� space, 93

Reduced suspension functor, 353

Reduced Twisted K-Theory group, 265

Reducible representation of a Cli�ord algebra, 174

Relative cone functor, 350

Relative K-Theory group of a pair of compact Hausdor� spaces, 95

Relative Twisted K-Theory group, 265

Representation of a Cli�ord algebra, 174

Representing space, 237

Restriction of a principal bundle, 382

Restriction of a vector bundle, 312

Retract, 41

Retraction, 41

Right shift, 231
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Second Stiefel-Whitney class, 204

Section of a principal bundle, 384

Section of a vector bundle, 313

Set of isomorphism classes of line bundles, 331

Set of isomorphism classes of ζ-twisted vector bundles, 252

Set of isomorphism classes of principal bundles, 381

Set of isomorphism classes of principal bundles on X, 381

Set of isomorphism classes of vector bundles, 311

Set of isomorphism classes of vector bundles on X, 311

Set of sections of a principal bundle, 384

Set of sections of a vector bundle, 313

smashed product functor, 349

Smashed product of pointed compact Hausdor� spaces, 348

Smooth vector bundle, 344

Special orthogonal group, 188

Spin bundle, 205

Spin group, 186

Spin manifold, 205

Spin structure, 198

Spinc bundle, 212

Spinc manifold, 212

Spinc structure, 208

Strong deformation retract, 42

Strong deformation retraction, 42

Structure group, 375

Subbundle of a principal bundle, 385

Subbundle of a vector bundle, 316

Suspension functor, 352

Suspension Isomorphism, 101

Suspension of a compact Hausdor� space, 352

Suspension of a pointed compact Hausdor� space, 352

Sylvester's Law of Inertia, 163

T
Tensor product functor, 330

Tensor product of twisted vector bundles, 262

Tensor product of vector bundles, 330

The Atiyah-Bott-Shapiro Theorem, 181
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The Bott-Milnor-Kervaire Theorem, 121

The real algebra of the sedenions, 370

The real division algebra of the complex numbers, 357

The real division algebra of the octonions, 361

The real division algebra of the quaternions, 358

The real division algebra of the real numbers, 356

Third integral Stiefel-Whitney class, 209

Thom class in K-Theory, 217

Thom class in Singular Cohomology, 216

Thom isomorphisms in K-Theory, 219

Thom isomorphisms in Twisted K-Theory, 273

Thom space, 219

Total space, 308, 376

Transition function, 318, 387

Triad, 51

Trivial principal bundle, 382

Trivial vector bundle, 311

Trivialization of a principal bundle, 382

Trivialization of a vector bundle, 311

Trivializing addendum for a vector bundle, 336

Twisted adjoint representation, 186

Twisted cohomology set, 253

Twisted Hilbert bundle, 276

Twisted K-Theory group, 279

Twisted vector bundle, 250

Typical �ber, 307

U
Unit Axiom, 72

Unitary morphism of twisted vector bundles, 252

V
Vanishing global section, 315

Vector bundle, 307

Vector bundle isomorphism, 310

Vector bundle morphism, 309

Vector bundle morphism over X, 310

Vector-bundle maps, 400

W
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Weak orientable vector bundle, 215

Weak orientation in K-Theory, 215

Wedge sum functor, 347

Wedge sum of pointed compact Hausdor� spaces, 347

Z
Zero divisors in a real algebra, 355

Z2-graded algebra, 163

Zr-non-integral vector bundle, 258
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