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[This page is intentionally left blank]



Resumo

O topico principal desta dissertacao é a K-Teoria Ordinaria e Torcida. Comecamos
descrevendo teorias cohomologicas generalizadas através dos Axiomas de Eilenberg-
Steenrod a fim de estabelecer a K-Teoria Ordinéria nesses termos. Isto nos permite
deduzir suas propriedades estruturais do arcabougo da cohomologia generalizada.
Entao, expomos as nocoes elementares da Geometria de Spin para relaciona-la com
a K-Teoria Ordinaria através do Teorema de Atiyah-Bott-Shapiro. Este resultado nos
permite definir o isomorfismo de Thom bem como o mapa de integracao, que ¢é
conhecido como mapa de Gysin. Depois disso, refraseamos a K-Teoria Ordinaria por
meio da aplicacdo do Indice, que nos fornece uma interpretacio da K-Teoria através de
classes de homotopia de funcoes continuas. Em seguida, lidamos com a K-Teoria Torcida.
Primeiro, introduzimos o grupo de Grothendieck dos fibrados vetoriais torcidos como
um modelo para a K-Teoria Torcida de ordem finita. Entao, descrevemos o modelo de
dimensao infinita, através de fibrados apropriados de operadores de Fredholm, que lida
com classes de torcao de qualquer ordem. Finalmente, comparamos estes dois modelos no

contexto de ordem finita.

Palavras-chave. K-Teoria Topologica; Teorias cohomolbgicas generalizadas; K-Teoria
Ordinéaria; Geometria de Spin; Isomorfismo de Thom; Mapa de Gysin; Operadores de

Fredholm; Aplicacdo do Indice; K-Teoria Torcida.
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Abstract

The main topic of this thesis consists in Ordinary and Twisted Topological
K-Theory. We begin by describing generalized cohomology theories through the
Eilenberg-Steenrod Axioms, in order to set Ordinary K-Theory in these terms. This allows
us to deduce its structural properties from the framework of generalized cohomology.
Then, we expose the elementary notions of Spin Geometry to relate it to Ordinary
K-Theory through the Atiyah-Bott-Shapiro Theorem.  This result enables us to
construct the Thom isomorphism as well as the integration map, which is known as
Gysin map. After that, we rephrase Ordinary K-Theory by means of the Index map,
which provides an interpretation of K-Theory through homotopy classes of continuous
functions.  Afterwards, we deal with Twisted K-Theory. First, we introduce the
Grothendieck group of twisted vector bundles as a model for finite-order Twisted
K-Theory. Then, we describe the infinite-dimensional model, through suitable bundles
of Fredholm operators, that holds for twisting classes of any order. Finally, we compare

these two models in the finite-order setting.

Keywords. Topological K-Theory; Generalized cohomology theories; Ordinary
K-Theory; Spin Geometry; Thom isomorphism; Gysin map; Fredholm operators;

Index map; Twisted K-Theory.
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Introduction

This work is placed in the area of mathematics that is called Algebraic Topology.
More precisely, it is inserted in the setting of cohomology theories, especially dealing
with K-Theory. This specialization has a transparent historical justification behind it,
since  K-Theory was the first generalized cohomology theory to appear in the
literature. In fact, Algebraic K-theory has its origins in the late 1950s due to a
generalization by Alexander Grothendieck (1928-2014) of the famous Riemann-Roch
Theorem. Roughly speaking, Grothendieck associated a group K(X) to each X in
some family of algebraic spaces. In this framework, he recovered the classical Riemann-
Roch Theorem as a special case of a general result involving K-groups. In particular,

Grothendieck told us that

The way I first visualized a K-group was as a group of “classes of objects”
of an abelian (or more generally, additive) category, such as coherent
sheaves on an algebraic variety, or vector bundles, etc. I would
presumably have called this group C(X) (X being a variety or any
other kind of “space”), C the initial letter of “class”, but my past in
Functional Analysis may have prevented this, as C(X) designates also
the space of continuous functions on X (when X is a topological space).
Thus, I reverted to K instead of C, since my mother tongue is German,
Class = Klasse (in German), and the sounds corresponding to C and K are
the same. [11l p. 2]

Afterwards, Friedrich Hirzebruch (1927-2012) and Michael Atiyah (1929-2019)
realized that these ideas could be exported to the world of Algebraic Topology. The
resulting K-theory of topological spaces, which we refer to as Ordinary K-Theory,
turned out to be quite powerful. In fact, for example, some of its early conquests are
the determination of the maximum number of linearly independent vector fields on
spheres, a classification theorem for real division algebras and the Atiyah-Singer

Index Theorem. Years later, in the late 1960s, Max Karoubi (1938 -) introduced Twisted



Introduction 2

K-Theory, also known as K-Theory with local coefficients, in his doctoral dissertation.
These versions of Topological K-Theory, Ordinary and Twisted, are the main subjects
of this thesis. In a nutshell, we begin by considering generalized cohomology theories
from an axiomatic viewpoint a la Filenberg-Steenrod.  After that, we discuss
the main models of Ordinary K-Theory, including tools from Spin Geometry in order
to construct the Thom isomorphism and the Gysin map. Finally, we deal with Twisted

K-Theory.

For completeness, we describe below the content of each chapter. We also
provide an overview of the references that we reviewed in this work. We emphasize

that more information about them will be given in convenient parts of the main text.

In Chapter we provide a presentation of generalized cohomology theories.
Thanks to this starting point, in the next chapters we will be able to set the properties
of K-Theory that descend directly from the Eilenberg-Steenrod axioms. In particular,
we establish the exact sequence of a triple and the Mayer-Vietoris sequences using
13, pp. 3 - 53]. We also discuss the additivity axiom, originally introduced in [28§],
and multiplicative structures on cohomology theories, following [21, pp. 38-40]. Our
presentation is thoroughly realized through the language and the notations of [13],
so that it is quite unitary. Since [I3] mainly deals with homology theories, we adapted
it to the cohomological setting. Other meaningful references for this chapter are the
following ones: [37] for historical notes; [26] for the language of category theory,
widely used in this thesis; [I7] for some algebraic notions; [12], [25] and [29] for the

basic concepts of general topology.

In Chapter 2] we expose the main notions of Ordinary K-Theory as a generalized
cohomology theory, taking advantage of the results proved in the previous chapter. The
main references are [2, pp. 43-94| and [19, pp. 52-111]. However, some applications
of K-Theory could not be written without [I5, pp. 38-72|]. We also used [I], [3],
[23, p. 65, pp. 70-76] and [33].

In Chapter we present the basic notions on Spin Geometry, that are
essential to construct the Thom isomorphism and the Gysin map, the latter being
the integration map in K-Theory. In particular, we carefully analyze the notions of

spin and spin® structure on vector bundles. The exposition of these topics in based on
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[2, pp. 102-116], [6], [9, pp. 37-47|, |23, pp. 7-40, 58-70, 77-85] and [34].

In Chapter we present another relevant model of Ordinary K-Theory.
The latter is realized through homotopy classes of functions taking values in the space
of Fredholm operators on an infinite-dimensional separable Hilbert space. This model
will be particularly useful in Chapter The main references for this part of the
text are [2, pp. 153 - 162], [8, pp. 7-18, 33-43|, [22] and [32] pp. 1-23, 55-67, 119-125,
175-183).

In Chapter | we develop two relevant models of Twisted K-Theory. We begin
by introducing the Grothendieck group of twisted vector bundles as a model of
finite-order Twisted K-Theory. Afterwards, we describe the infinite-dimensional model,
through suitable bundles of Fredholm operators, that holds for twisting classes of
any order. Finally, we compare these two models in the finite-order setting. We also
consider a suitable version of the Thom isomorphism in this framework. We used [4],

[6, pp. 5-8, 30-36, 43-45, 53-54], [T, pp. 42-43] and [20.

We conclude the main part of the thesis with “Further Perspectives”. Here we
indicate some topics that can be studied in a near future thanks to the subjects treated

in this thesis.

Afterwards, we present six appendixes in which the reader can find many
elementary concepts used in the thesis. We provide concise expositions, which hopefully
turn the text more readable. The biggest part of the subjects treated in the appendixes
is present in the references, but in a way that we did not manage to cite directly without

loss of clearness.

In Appendix [A] we provide an outline of direct limits of abelian groups.
This algebraic notion is essential to define the compactly-supported generalized
cohomology groups, used in Chapter [T It also appears in the definition of compactly-
supported Twisted K-Theory in Chapter For the categorical approach to this topic,
we used [26], pp. 105-112].

In Appendix we set a basic group-theoretical tool, that is essential to
define K-Theory, namely, the Grothendieck group of an abelian semigroup. The idea
behind such concept consists in finding the minimal extension of an abelian semigroup to

an abelian group, although it turns out not to be an extension in general. We followed
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[2, pp. 42-43], that presents such construction for generic abelian semigroups,
without assuming the existence of a unit. The notions presented here are mainly used in

Chapters [2] and [5] but they appear throughout the whole work.

In Appendix [C] we consider the fundamental notion underlying Ordinary
K-Theory, that is, the one of vector bundle. Since the corresponding theory is
extensive, we only selected some of its initial concepts and the results that play
essential roles in the main text. We used [2, pp. 1 - 41|, [I5, pp. 4 - 37|, [16, pp.
85 - 109|, [18, pp. 24 - 39|, [19, pp. 1 - 51|, |24, pp. 249 - 271] and [3I]. The notions
presented here are mainly used in Chapter

In Appendix D] we describe classical constructions with topological spaces:
wedge sum, smashed product, cones and suspensions. We restrict them to compact
Hausdorff spaces, since they are the spaces we used to construct K-Theory in Chapter [2|
We followed [14] pp. 8-10].

In Appendix [E] we explain the elementary concepts on real division
algebras.  Moreover, we provide some historical notes on the main real division
algebras: R, C, H and O. This is done because we think that it is a way to
understand the importance of the Bott-Milnor-Kervaire Theorem presented in
Chapter [2 which was one of the first achievements of K-Theory. We conclude our
presentation with two classical results about these algebras, which explain why they are

relevant and, in a certain sense, unique. Our exposition was based on [5], [10], [27],

[36] and [38].

Finally, in Appendix we review the initial concepts on principal bundles
and the results that play an essential role in our exposition. Moreover, since this
theory is, under a certain viewpoint, equivalent to the one of vector bundles, we
introduce some notions that show this equivalence. We mainly used [30, pp. 28-35]|

and [35, pp. 111-118].



Chapter 1

Generalized Cohomology Theories

In this chapter, we describe some of the structural properties of generalized
cohomology theories. This technical work is worth doing because, as we shall see
later in Chapter many results are then immediate once we prove that the
mathematical framework under consideration is a generalized cohomology theory.
In order to write this part of the text, we wused as main reference
M3, pp. 3 - 53]. Nevertheless, Section could not be completed without
[28] as well as Section could not be written without [2I, pp. 38-40]. In
addition, [37] was used as a reference for some historical facts involving Homological

Algebra.

1.1 Admissible categories of topological spaces

The notion of admissible category of topological spaces, which is described here,
will be used when we set the axioms for generalized cohomology theories. We begin with

the following definition.

Definition 1.1 (The category of ordered pairs of topological spaces). We define the
category of ordered pairs of topological spaces, and denote it by Top,, to be the one

whose:

e objects are ordered pairs (X, A) in which X is a topological space and A C X is
equipped with the induced topology; and
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e morphisms are continuous functions f : X — Y such that f(A) C B, usually

denoted by f: (X, A) = (Y, B). O

Historical experience shows that the natural environment to set a generalized

cohomology theory is a convenient subcategory of Top,. In fact, in some concrete

generalized cohomology theories, important theoretical results do not hold if we consider

the whole Top,. We will enlighten shortly the precise meaning of the word “convenient”.

First, let us show that we can select subcategories of Top, in a myriad of ways. For

example, we can consider:

(1)

TopO, to be the non-full subcategory whose objects are ordered pairs of topological

spaces and whose morphisms are open continuous maps;

TopHd, to be the full subcategory whose objects are ordered pairs of Hausdorff

spaces;

TopD, to be the full subcategory whose objects are ordered pairs of topological

spaces endowed with the discrete topology;

TopHdCpt, to be the full subcategory whose objects are ordered pairs (X, A) in
which X is compact Hausdorff;

TopHdCCpt, to be the full subcategory whose objects are ordered pairs (X, A) in
which X is compact Hausdorff and A is a closed subspace of X;

TopHdLocCptP, to be the non-full subcategory whose objects are ordered pairs
(X, A) in which X is locally compact Hausdorff, and whose morphisms are proper

continuous maps; and

TopHdLocCCptP, to be the non-full subcategory whose objects are ordered pairs
(X, A) in which X is locally compact Hausdorff and A is a closed subspace of X,

and whose morphisms are proper continuous maps.

As we can see from the preceding examples, there are basically two procedures to

set a subcategory of Top, (note that, in some cases, these procedures are applied at the

same time):



1. Generalized Cohomology Theories 7

e the first one is to restrict pairs of topological spaces (as in Examples (2), (3), (4),

(5), (6) and (7)); and

e the second one is to restrict morphisms between pairs of spaces (as in Examples (1),

(6) and (7).

Therefore, the idea behind the word “convenient” is that, in order to develop a generalized
cohomology theory in a subcategory of Top,, we need to be careful about not restricting
too much the pairs of spaces and their morphisms. This elementary idea is formalized by

the following definition.

Definition 1.2 (Admissible category of topological spaces). A subcategory € of Top, is
an admassible category of topological spaces if it satisfies all of the four conditions
listed below. In this situation, the pairs and the maps that belong to € are said to be

admissible.

(1) If (X, A) € €, then all pairs and inclusions maps of the following lattice of (X, A)

are in 6, where 0 denotes the empty set.

(X, 0)
PN
(0,0) —— (A,0) (X, A) — (X, X)
~.
(4, 4)

(2) If f : (X,A) — (Y.B) is in €, then (X, A) and (Y,B) are in € together with
all maps that f defines from members of the lattice of (X, A) into corresponding
members of the lattice of (Y, B).

(8) If1:=[0,1] and (X, A) € €, then
(X,A) xI = (X xI, Ax1I)

is in € together with the maps 1g,t1 : (X, A) = (X, A) x I given by 1o(x) = (x,0)
and 11 (z) = (z,1) for all x € X.
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(4) There exists an ordered pair (Q,0) in € where Q0 consists of a single point. In
addition, if (X, A) and (Y,0) are in €, Y is a single point and f : (Y,0) — (X, A)
is in Top,y, then f is also in €. &

Notation 1.3 (Identity maps). In an admissible category of topological spaces, the
identity maps of admissible pairs are always admissible because € is defined as a
subcategory of Top,. Hereafter, id(x a) : (X, A) — (X, A) is our notation for the identity
map on the admissible pair (X, A). &

Notation 1.4 (Ordered pairs with empty second components). In an admissible
category of topological spaces, we abbreviate an admissible pair (X,0) simply by X. In
particular, we shall say that X is an admissible space if its corresponding pair (X,0) is

admissible. &

The reader can prove that Top, and Examples (2), (5) and (7) are admissible
categories of topological spaces. On the other hand, Examples (1), (3), (4) and (6) are
non-admissible categories of topological spaces. We prove this latter statement in the

sequence. In fact:

e TopO, is non-admissible because a continuous map from a point into a space
is not always open. For example, the inclusion of the origin in any non-trivial
Euclidean space is not an open map. In other words, TopO, does not verify

Condition (4);

e TopD, is non-admissible because the product of a nonempty discrete space with
the unit interval is not a discrete space. In other words, TopD, does not verify

Condition (3);

e TopHdCpt, is non-admissible because, if (X, A) € TopHdCpt, is such that A is not
a closed subspace of X, then (A,0) does not belong to TopHdCpt,. This happens
because every compact subspace of a Hausdorff space is necessarily closed. In other

words, TopHdCpt, does not verify Condition (1); and

e TopHdLocCptP, is non-admissible because, if (X, A) € TopHdLocCptP, is such

that X is a compact Hausdorff space and A is not a closed subspace of X, then
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the inclusion ¢ : A — X is not a proper map. Indeed, we have that :1(X) = A
is not compact. In other words, we have that TopHdLocCptP, does not verify
Condition (1).

We leave to the reader the search for subcategories of Top, that do not verify
Condition (2) of Definition [.2] The interesting problem is to find subcategories of Top,
that satisfies all of the conditions of Definition but this one. To close this section,
we present the following important definitions which are useful to define the generalized

cohomology theories.

Definition 1.5 (Homotopy and homotopic maps). Let € be an admissible category of
topological spaces. Let 19,11 : (X, A) — (X, A) x I be the maps presented in the third
condition of Definition [1.3. In addition, let f,g : (X, A) — (Y, B) be admissible maps.
A homotopy between f and g is an admissible map © : (X, A) x I — (Y, B) such that

the diagrams

(X, A) ———— (X, A) X ——F—— (V. B)

L1

are commutative. If there exists an admissible homotopy between f and g, then these

maps are said to be homotopic. &

Remark 1.6 (Homotopy of maps is a compatible equivalence relation on the class of
morphisms of an admissible category). Let € be an admissible category of topological
spaces. The relation of homotopy of maps on the class of morphisms of € is defined as
follows: two admissible maps are related if and only if there exists a homotopy between
them. The reader can readily prove that this is an equivalence relation. Furthermore, this
relation is compatible with the composition in €. This means that r o f is homotopic to
s o g whenever f is homotopic to g and r is homotopic to s. These facts allow us to set

the following definition. O
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Definition 1.7 (The quotient category by the relation of homotopy of maps). Let € be
an admissible category of topological spaces. We define the quotient category of € by
the relation of homotopy of maps, and denote it by (€], to be the one whose:

e objects are the same objects of € ; and

e morphisms are the equivalence classes of morphisms of € under the relation of

homotopy of maps. &

Remark 1.8 (The quotient category is non-admissible). An admissible category of
topological spaces € is a suitable subcategory of Top,. Since the morphisms of (€] are not
morphisms of Top,, [€] cannot be a subcategory of Top,. A fortiori, €] cannot be an

admissible category of topological spaces. &

1.2 Axioms for generalized cohomology theories

Cohomology Theory was turned into an axiomatic theory by Samuel Eilenberg
(1913-1998) and Norman Steenrod (1910-1971) in the last century. These men set
the postulates that are known today as the Eilenberg-Steenrod Axioms. The
study of generalized cohomology theories starts removing one of Eilenberg-Steenrod
Axioms: the Dimension Axiom[D] In this section, we use the notion of admissible
category of topological spaces to state the following definition which contains the axioms

for a generalized cohomology theory.
Definition 1.9 (Generalized cohomology theory). Consider:

e % to be an admissible category of topological spaces;

o (W")pez to be a sequence of contravariant functors from € into the category
of abelian groups Y. We call h"(X,A) the nth generalized relative
cohomology group of the admissible pair (X, A). Especially, we call
R (X) = h"(X,0) the nth generalized absolute cohomology group of the

(UThe Dimension Axiom states that the cohomology groups of a one-point space are trivial in all degrees
with the possible exception of degree zero.
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admissible space X. Being f : (X, A) — (Y,B) an admissible map of pairs,
we say that h"(f) : h™(Y,B) — h"(X,A) is its nth generalized induced

homomorphism; and

o (0")nez to be a sequence of functions that assign to each admissible pair (X, A) a

homomorphism 0 4 h" 1 (A) — (X, A). We call d(x.a) the nth generalized
coboundary operator of (X, A).

These three pieces of data are said to be a generalized cohomology theory if the

following four azioms are satisfied.

(1) Commutativity Axziom. For every admissible map f: (X, A) — (Y, B) and every

(2)

n € 7, the following diagram is commutative.

h"1(fla)

h1(B) s hn1(A)
v, ) 9, 4)
WY, B) s (X, A)

In other words, if f : (X, A) — (Y, B) is admissible and f |a: A — B is the map
defined by f, then the two ways of mapping h"~'(B) into h"(X, A) presented in the

previous diagram have to coincide.

Ezxactness Aziom. Ifi: A — X and j: X — (X, A) are the natural inclusion
maps, then the following sequence composed of groups and of group homomorphisms
18 exact.

h (i)

87 n(j
S A) = (X A) S () H(A) ——

In other words, we require Imdfy o) = Kerh"(j), Imh"(j) = Kerh"(i) and
Imh™(i) = Keré?;{’lA) for all n € Z. This exact sequence is called the

generalized cohomology sequence of the admissible pair (X, A).
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(3) Homotopy Aziom. Admissible homotopic maps have the same generalized
induced homomorphisms in all degrees. More explicitly, if f,g : (X, A) — (Y, B)

are admissible homotopic maps, then
h'(f) =h"(g) : ®*(Y, B) — h"(X, A)

for every n € Z.

(4) Ezciston Aziom. If U is open in X and its closure is contained in the interior of
A, then the inclusion map (X —U, A—U) — (X, A), from now on called an excision
map or just an excision, if admissible, induces isomorphisms from h™(X, A) onto

(X —U,A=U) for alln € Z. O

Remark 1.10 (On an equivalent formulation of the Excision Axiom). In a generalized
cohomology theory, we have that the following statement is equivalent to the FExcision

Aziom.

Let X1 and Xo be subsets of an admissible space X such that Xy is closed and X is
the union of interiors of X1 and Xo. If

7 (Xl,XlﬂXQ) — (X1UX2,X2)

is admissible, then h™(i) : K™ (X1 U Xo, X2) — h™(X1, X1 N X2) is an isomorphism

for alln € Z.
Indeed, assuming the FExcision Axiom as in Definition the preceding assertion
follows since i : (X1,X1 N Xo) — (X3 U Xo, Xs) is the excision map obtained from
the pair (X1 U Xy, Xo) relatively to U = X — X;. Conversely, the Ezxcision Aziom
follows from the preceding assertion by taking A = X5 and U = X — X;. This proves

our claim. &

The beauty of an axiomatic treatment lies in the simplification obtained in some
proofs of theorems. As a matter of fact, proofs based directly on the axioms are usually
simple and conceptual. Furthermore, no one is faced at the end of a proof by the question:
Does the proof still hold if another generalized cohomology theory replaces the one used?
To close this section, we present our first illustrative examples of these ideas for generalized

cohomology theories.
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Theorem 1.11 (Trivial generalized cohomology groups). In a generalized cohomology
theory, if (X, A) is an admissible pair and the inclusion map i : A — X is such that
R*(i) - RM(X) — h™(A) is an isomorphism for all n € 7Z, then h"(X,A) is trivial
for alln € Z.

Proof. Let n be an integer number and j : X — (X, A) be an inclusion map. The
following section of the generalized cohomology sequence of (X, A) is exact by the

Exactness Axiom.

h™(3) h™(2)

(X)) ————— h"(A)

h=1(i) 9'x, a)

pr(X) 0 et W (X, A)

Therefore, since h"™(i) is an isomorphism, Kerh™(i) is trivial. ~ Thence, once

Imh™(j) = Ker h"(i), we have
Kerh™(j) = h"(X,A).
Correspondingly, since h"~1(4) is an isomorphism, it follows that
Imh" (i) = K" 1(A).

Thus, once Kerd(y 4y = Im h"~1(7), we have that Imdfy 4 is trivial. Hence, h"(X, A) is

trivial because Im 67y ;) = Ker h"(j), as we wished. O

Corollary 1.12 (The generalized cohomology groups of a pair with equal components).
In a generalized cohomology theory, if (X,X) is an admissible pair, then h™(X,X) is

trivial for all n € Z.

Proof. This result follows from Theorem [I.TT]since the identity map idy : X — X induces
idpn(xy - RM(X) — A™(X) for all n € Z. O

Corollary 1.13 (The generalized cohomology groups of the pair composed of empty
components). In a generalized cohomology theory, the generalized absolute cohomology

group h"™(0) is trivial for all n € Z.

Proof. The assertion follows from Corollary since the pair composed of empty

components has equal components. O
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1.3 Homomorphisms between generalized cohomology

sequences

The main result of this section is that an admissible map of pairs induces a
homomorphism of exact sequences between the generalized cohomology sequences of its
domain and codomain. After that, we set a classical result from Homological Algebra
to establish a condition under which generalized cohomology sequences are isomorphic.
Finally, we discuss some changeable features in the framework of generalized cohomology
theories with respect to Definition [I.9] We begin with the following remark that must be

kept in mind.

Remark 1.14 (Maps defined by a map of pairs). Let € be an admissible category
of topological spaces. FEvery admissible map of pairs f : (X, A) — (Y, B) defines the
maps

fi: X =Y and fo: A— B.

The reader can readily prove that fi and fo are admissible maps by writing them as
compositions between f and convenient admissible inclusions. An important fact is that,
although f1 and fy are defined by the same formula than f, these three maps are different

maps of pairs in general. %

Definition 1.15 (The generalized induced homomorphism between generalized
cohomology sequences). In a generalized cohomology theory, if f : (X, A) — (Y,DB)

18 an admissible map of pairs, then the sequence of group homomorphisms

h(f) = (- "N (A), RPN () RO, B (), B (f)s o)

18 the generalized induced homomorphism of f between the generalized cohomology

sequences of (Y, B) and (X, A). O

Theorem 1.16 (The generalized induced homomorphism between generalized
cohomology sequences is a homomorphism of exact sequences). In a generalized

cohomology theory, if f : (X, A) — (Y, B) is an admissible map of pairs, then h(f)
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18 a homomorphism of exact sequences between the generalized cohomology sequences of

(Y, B) and (X, A).

Proof. Leti: A— X,j: X — (X,A),i:B—Y and j': Y — (Y, B) be inclusion maps.
To verify the statement of the theorem we have to prove that the following diagram is
commutative.

(Y, B) Y ey O e

Y

( (

R™(f) R™(f1) h"

! | |

C——— WX, A) e (X)) e BU(A) — (X A) —— -
(X,4)

In fact, we have A°(j) o h°(f) = K*(f1) o k(') and K"(i) o h*(fr) = h"(f2) o " (7)
because of the functoriality of A" since foj = 5 o f; and fi 0i = i o fo. In turn,
(5?;{’}4) o h"'(fa) = h"*'(f) 0 83 ) because it is just a restatement of the Commutativity
Axiom. [l

Lemma 1.17 (The Five Lemma). The following commutative diagram of abelian groups

and homomorphisms has exact rows.

Cl > CQ > Cg > C4 > 05
| | | | |
D1 > D2 > D3 > D4 > D5

If 1, wa, w4 and s are isomorphisms, then p3 s also an isomorphism.

Proof. The reader can find a proof of this result in [I3| p. 16|, which is where the
lemma in question first appeared according to [37, p. 17]. This last reference is a
good one to acquire some knowledge on the history and on the main problems of

Homological Algebra. 0

Corollary 1.18 (Isomorphism of generalized cohomology sequences). In a generalized

cohomology theory, if f : (X, A) — (Y,B) is an admissible map of pairs such that
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R*(f1) : (YY) — h™(X) and h"(f2) : h"(B) — h™(A) are isomorphisms for all n € Z,
then
R (f): h"(Y,B) = h"(X, A)

is also an isomorphism for all n € 7Z. In particular, we have that h(f) is an

isomorphism of exact sequences between the generalized cohomology sequences of (Y, B)

and (X, A).

Proof. Let n be an integer number and i : A — X, j : X — (X,A),7 : B - Y
and j' : Y — (Y, B) be inclusion maps. The following diagram is commutative due to

Theorem [L.16

A=) 5tv,m)

pl(y) 8 ey gy

hl () hl(fa) h(f) h

! | ! |

Moreover, the Exactness Axiom says that the preceding commutative diagram has exact
rows. Therefore, since h"~1(f1), k" (fs), h"(f1) and h"(f2) are isomorphisms, it follows
from the Five Lemma that h"(f) : h"(Y, B) — h™(X, A) is also an isomorphism, as we
wished. O

To close this section, as we said at the beginning, we discuss some
changeable features in the framework of generalized cohomology theories with respect to
Definition [1.9] This discussion may help the reader to perfect his or her
understanding of the data involved in generalized cohomology theories. We begin with

the following definition.

Definition 1.19 (The category of exact sequences of abelian groups). We define the
category of exact sequences of abelian groups, and denote it by SeqExactAb, to be

the one whose:

e objects are infinite exact sequences of abelian groups. That s, exact sequences of

the form
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Pn Pn+1
—_— Yy, — s, — Oy —— -

)

where C., is an abelian group and ¢, : C,_1 — C, is a morphism of abelian groups

for alln € Z; and

e morphisms are homomorphisms of exact sequences of abelian groups. That is,
sequences of morphisms of abelian groups (&, : C,, — Dy )nez such that the following

diagram is commutative.

e Ch s O >y Cppp ———————— + -

§n— 1 fn £n+1

l | l

i—s Dy, ——— D, ———— Dy ——— -

Note that the rows of the preceding diagram are tacitly assumed to be exact sequences

of abelian groups. &

Remark 1.20 (The generalized cohomology functors and their domain and codomain
categories). To set a generalized cohomology theory, we considered a sequence (h™),ez

of contravariant functors from an admissible category € into the category of abelian groups

Y. Obuiously, h" sends:

e a pair (X, A) into the nth generalized cohomology group h"(X, A); and

e o map f : (X,A) — (Y,B) into the nth generalized induced homomorphism
r™(f): h(Y,B) = h"(X, A).

Moreover, the Homotopy Aziom says that homotopic admissible maps have the same
image through these functors. This allows a refinement of each h™ through the homotopy
equivalence of maps. The refinement is the contravariant functor [h]™ from [€] into G

that sends:

e a pair (X, A) into the nth generalized cohomology group h"(X, A); and

e a class [f : (X,A) — (Y,B)] into the nth generalized induced homomorphism
R (f): h"(Y,B) = h™(X, A).
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Consequently, we could have defined a generalized cohomology theory requiring a
sequence of contravariant functors from [€] into 9 instead of a sequence of
contravariant functors from € into Y. In this situation, the Homotopy Aziom would
have been an obvious consequence of the mathematical structure in question.
Furthermore, we could have considered a contravariant functor from [€] into the
category of exact sequences of abelian groups SeqExactAb.  More explicitly, this

functor would send:

e a pair (X, A) into its generalized cohomology sequence; and

e o class [f : (X,A) — (Y,B)] into the generalized induced homomorphism of
f between the generalized cohomology sequences of (Y, B) and (X, A).

In this situation, the Commutativity Aziom, the Exactness Aziom and the Homotopy
Axiom would have been obvious consequences of the mathematical structures in question.
The reader can easily combine these constructions to produce other ways of establishing
the data and the axioms of Definition[1.9. All of these approaches are equivalent and then

a matter of choice. &

1.4 Homeomorphic pairs and generalized cohomology

groups and sequences

In this section, we prove that, in a generalized cohomology theory, the generalized
cohomology groups and sequences are intrinsically the same for admissible homeomorphic
pairs. The results that are established here can be seen as immediate consequences of
the results involving homotopy equivalences that we shall present later. However, the
importance of homeomorphisms is a sufficient reason to set this section independently.

We begin with the following definition.

Definition 1.21 (Homeomorphism and homeomorphic pairs of topological spaces). In an
admissible category of topological spaces, two admissible pairs (X, A) and (Y,B)
are homeomorphic if there exist admissible maps f : (X,A) — (Y,B) and
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g: (Y,B) = (X,A) such that go f = id(x.a) and fog = idw,p). In this situation,

we say that f and g are inverse homeomorphisms. &

Remark 1.22 (Homeomorphism of pairs is an equivalence relation on the class of objects
of an admissible category). Let € be an admissible category of topological spaces. The
relation of homeomorphism of pairs on the class of objects of € s defined in the following
manner: two admissible pairs of topological spaces are related if and only if there exists
an admissible homeomorphism between them. The reader can readily prove that this is an

equivalence relation. &

Theorem 1.23 (Invariance of the cohomology groups under homeomorphisms of pairs).
In a generalized cohomology theory, if (X, A) and (Y, B) are admissible homeomorphic
pairs, then h(X, A) is isomorphic to h*(Y, B) for all n € Z. In other words, admissible

homeomorphic pairs have isomorphic generalized cohomology groups.

Proof. Let n be an integer number and f : (X, A) — (Y, B) be a homeomorphism of pairs.
The functorial properties of ™ imply

WY(f)oh™(f™h) = h"(f'of) = h'idixa = idpmxa and
R (foh™f) = R*(fof™") = R'idys = idwmyp).

Hence, h™(f~!) is a group isomorphism from h"(X, A) onto h"(Y, B). Then, h"(X, A) is
isomorphic to h"(Y, B), as we wished. ]

Corollary 1.24 (Isomorphism of the generalized cohomology sequences induced from an
admissible homeomorphism of pairs). In a generalized cohomology theory, if (X, A) and
(Y, B) are admissible homeomorphic pairs, then the generalized cohomology sequences of
(X, A) and (Y, B) are isomorphic. In other words, admissible homeomorphic pairs have

wsomorphic generalized cohomology sequences.

Proof. Let f : (X,A) — (Y,B) be a homeomorphism of pairs. It follows from the
preceding result that A(f) is an isomorphism between the generalized cohomology

sequences of (Y, B) and (X, A), as we wished. O
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1.5 The reduced generalized cohomology groups and

sequences

In this section, we present the reduced generalized cohomology groups and
sequences. In addition, we study their relation to the generalized cohomology groups
and sequences defined in the previous sections. These new mathematical objects are
important tools to simplify various calculus in cohomology theory. We begin with the

following definition.

Definition 1.25 (Collapsible topological spaces). Let € be an admissible category of
topological spaces and ) be an admissible single point. Let X be an admissible topological
space. If the only possible map px : X — Q is admissible, then X is said to be a
collapsible space. &

Remark 1.26 (Collapsibility of an admissible space is independent of the choice of the
admissible single point). Let € be an admissible category of topological spaces and X
be an admissible topological space. If € and T' are admissible single points, then X s
collapsible with respect to € if and only of it is collapsible with respect to I'. In fact, if X
18 collapsible with respect to ), then px : X — Q is admissible. Let f : Q0 — T" be the
only possible admissible map. It follows that qx = fopx : X — T is admissible, and then
that X is collapsible with respect to I'. The converse can be proved in the exactly same
way considering f~1: T — Q instead of f : Q — I'. Therefore, we are allowed to say that
an admissible topological space is collapsible without worrying about any specific choice of

the admissible single point. &

Remark 1.27 (A space can be collapsible in an admissible category of topological spaces
but non-collapsible in another one). In the first section of this chapter, we have seen
that Top,, TopHd,, TopHdCCpt, and TopHdLocCCptP, are admissible categories of
topological spaces. It is evident that every admissible space in Top,, in TopHd, and in
TopHdCCpt, s collapsible. On the other hand, the collapsible spaces in TopHdLocCCptP,
are the compact ones since the preimage of a point by a proper map must be compact.

Hence, for example, the Fuclidean spaces are all collapsible in Top, and in TopHd, but
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non-collapsible in TopHdLocCCptP,. It is to be noted that every space in TopHdCCpt,,
s collapsible in TopHdLocCCptP,. &

Theorem 1.28 (Categorical consequences of maps with collapsible codomains). Let €
be an admissible category of topological spaces and € be an admissible single point. Let
X and'Y be admissible spaces and f : X — Y be an admissible map. If Y is collapsible,
then X is collapsible. Furthermore, if (X, A) is an admissible pair, and X is collapsible,
then A is collapsible and p(x,ay : (X, A) = (,9) is admissible.

Proof. The first statement is a trivial consequence of the third property of admissible
categories. If (X, A) is admissible, the inclusion map A — X is admissible. If, in addition,
X is collapsible, the composite map A — X — () is admissible, and then A is collapsible.
Since X —  is admissible, so is (X, X) — (©,Q). Therefore, (X, A) — (X, X) — (©,9Q)

is also admissible. OJ

Definition 1.29 (The reduced generalized cohomology groups of an admissible collapsible
space). In a generalized cohomology theory, let Q) be an admissible single point and X be

an admissible collapsible space. In this situation, for alln € Z:

e the homomorphic image of h™(2) under h"(px) : h"(2) — h™(X) is denoted by
R (Q)x; and

e the quotient group of h™(X) by h™(Q)x is said to be the nth reduced generalized
cohomology group of X, and is denoted by E”(X) In other words, E”(X) is
defined as the cokernel of h™(px) : h™(2) — h™(X). O

Theorem 1.30 (The reduced generalized cohomology groups of a point). Let € be an
admissible category of topological spaces and 2 be an admissible single point. If T' s
another admissible single point, then h"(T) = h*(Q)r for alln € Z. In particular, h™(T)

1s the trivial group for all n € Z.

Proof. Let n be an integer number. The first claim is immediate since pr : I' — Q is a
homeomorphism. Therefore, since 2"(I') is the quotient group of A™(I') by h™(Q)r and
A™(T) = h™(Q)p, h*(T) is the trivial group. O
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Theorem 1.31 (A cohomological consequence of maps with collapsible codomains). In
a generalized cohomology theory, if Q is an admissible single point and f : X — Y s
an admissible map such that 'Y is collapsible, then h"(f) : h"(Y) — h"(X) maps h™(Q)y
isomorphically onto h"(Q) x for all n € Z.

Proof. Since Y is a collapsible space, we have that py : Y —  is an admissible map;
moreover, since f : X — Y is an admissible map, we have that X is also collapsible.
Then, let n be an integer number and 7 :  — Y be an admissible map. It is clear that
py oi = idg. Consequently, we have that h™(py) : h"(Q2) — A™(Y’) is a monomorphism
because

idpn() = h"(py oi) = h"(i) o h"(py).

Similarly, A"(f) o h™(py) = h™(py o f) : h"(X) — h"(Q2) is a monomorphism because

py o f ot =idg implies
idpn() = h"(py o foi) = h"(1) o h"(py o f).

These two facts prove that A™(f) : A™(Y) — A"(X) is an isomorphism from
Im A" (py) = h™(Q2)y onto Im h™(py o f) = h™(Q)x, as we wished. O

Definition 1.32 (The reduced generalized induced homomorphisms of an admissible
map with collapsible codomain). In a generalized cohomology theory, if f: X —Y is an
admissible map such that Y s a collapsible space, then the homomorphism
n(f) + h*(Y) — h*(X) generated by h"(f) is called the nth reduced generalized

induced homomorphism. %

Corollary 1.33 (The kernel of the generalized induced homomorphism is isomorphic
to the kernel of the reduced generalized induced homomorphism). In a generalized
cohomology theory, if Q0 is an admissible single point and f : X — Y is an
admissible map such that Y is a collapsible space, then Kerh"(f) is isomorphic to

Ker h™(f) for all n € Z.

Proof. Let n be an integer number. Since Y is a collapsible space, py : Y — € is
admissible; moreover, since f : X — Y is an admissible map, we have that X is also

collapsible.  Therefore, px : X — € is also admissible. = Consequently, the
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reduced generalized cohomology groups h"(X) and A"(Y) are well-defined. Then, let
7™ o k(X)) — h"(X) and 7% : h"(Y) — R™(Y) be the natural quotient maps. The
commutativity of the following diagram is a straightforward computation, that we leave
to the reader.

hr(y) — I x)

n n
Ty Tx

(YY) ———— h*(X)

™ (f)
We claim that the restriction map 7Y |kernn(s): Ker A (f) — Ker h"(f) is a well-defined

isomorphism. Indeed:

o 1 maps Ker h"(f) into Ker h"(f). This assertion is an immediate consequence
of the commutativity of the preceding diagram. In fact, if u € Ker h™(f), then
}L/”(f)(ﬂgﬁ(u)) = 7% (h"(f)(u)) = 7%(0) = [0]. Therefore, we have proved that
w3 (u) € Ker h"(f);

o Y |kernn(p) i5 injective. Let u € Ker h"(f) be in such manner that 7{(u) = [0].
This condition implies v € h™(Q2)y. Therefore, v € Kerh"(f) |pn@),. Since
R*(f) |mn@)yy: PM(Q)y — h™(Q)x is an isomorphism by Theorem [1.31} we have

u = 0. This proves the injectivity of 7} |kersn(p); and

o T |kernn(y) 5 surjective. Let [u] € Ker h"(f).  This assumption implies
[R*(f)(w)] = [0]. Thus, A™(f)(u) € h"(2)x. Consequently, there exists
v € h"(Q) such that h"(f)(u) = h"(px)(v). Since px = py o f, it follows that
W (px)(v) = W) (B (py)(v)). Therefore, h"(£)(u) = A"(£)("(py)(v)). Then,
R*(f)(w — h™(py)(v)) = 0 implies u — h™(py)(v) € Kerh™(f). Furthermore,
my(u — h"(py)(v)) = [u] because h"(py)(v) € h"(Q)y. This proves the

surjectivity of 7% |kerhn(s)- O

Theorem 1.34 (The coboundary operator in reduced generalized cohomology). In a

generalized cohomology theory, if Q is an admissible single point and (X, A) is an
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admissible pair of topological spaces such that X is a collapsible space, then h" ()4
lies in the kernel of oy 4 : h"YA) — h(X,A) for all n € Z. Therefore, this map
induces the homomorphism EELX,A) k"1 A) — h™(X, A) which is the nth coboundary

operator in the reduced generalized cohomology.

Proof. Let n be an integer number. Since X is collapsible, px : X — € is admissible.
Therefore, py : A — Q and pix,a) : (X, A) = (£,Q) are admissible maps because of
Theorem[1.28] Hence, the following diagram is not only well-defined but also commutative

by the Commutativity Axiom.

A"~ (pa)

hn—l(Q) hn—l(A)
90,0 0%, 4)
(2, Q) — (X, A)

Therefore, if u € h"1(Q)4, then there exists v € h"~1(Q) such that u = h"(pa)(v).
Thus,

0ix.ay (1) = x4 (A" (pa) (V) = h'pix.a) (S0 (v)) = h"pxa)(0) = 0

because d{g, o) (v) € h"(€2,€2) and h"(€2,€2) is the trivial group by Corollary Hence,
h"=1(Q)a really lies in the kernel of &y 4 : h"7'(A) — h"(X, A). Consequently, it is
defined the coboundary operator in the reduced generalized cohomology as the
natural map g{‘XA) . h1(A) — h"(X, A) induced by O )+ W"HA) = h"(X, A) from
A1(A) A1 Q) 4 = A" 1(A) into h"(X, A). O

In the next paragraphs, we use the results developed in this section to establish the
reduced generalized cohomology sequence of an admissible pair whose first component is

a collapsible space.

Definition 1.35 (The reduced generalized cohomology sequence of an admissible pair
whose first component is a collapsible space). In a generalized cohomology theory, if (X, A)
15 an admissible pair such that X is a collapsible space, then the reduced generalized

cohomology sequence of (X, A) is
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0%, a) () (0!

L ——— h"Y(A) h(X, A) I (X) h(A) —— -
where i : A — X and j : X — (X, A) are inclusions, g?X,A)  hL(A) — (X, A)
18 the nth coboundary operator in the reduced generalized cohomology, and the maps
(i) o h(X) — h*(A) and hr(j) : h*(X,A) — h™(X) are the nth reduced
generalized induced homomorphisms generated by, respectively, h™(i) : h*(X) — h"(A)

and h™(j) : h*(X, A) — h"(X). &

Theorem 1.36 (Exactness of the reduced generalized cohomology sequence). In a
generalized cohomology theory, if Q is an admissible single point, (X,A) is an
admissible pair such that X is a collapsible space and i : (Q,Q) — (X, A) is any
admissible map, then the generalized cohomology sequence of (X, A) decomposes into the

direct sum of two exact subsequences:

(1) the kernel of h(i); and

(2) the isomorphic image of the generalized cohomology sequence of (2,9Q) under

hpx.a-

Furthermore, the first subsequence 1s isomorphic to the reduced generalized cohomology
sequence of (X, A) under factorization of the generalized cohomology sequence of (X, A)
by the second subsequence. In particular, the reduced generalized cohomology sequence of

(X, A) is exact.

Proof. This result follows from purely algebraic arguments. The reader can find a proof

of it in [13, pp. 21-22|. ]

Definition 1.37 (The reduced generalized induced homomorphism between reduced
generalized cohomology sequences). In a generalized cohomology theory, if
f:(X,A) = (Y,B) is an admissible map of pairs such that X and Y are collapsible

spaces, then we say that the sequence of group homomorphisms

h(f) = (- \ BV7NR), BN, B(F), BP(fL), R™(fa), )
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1s the reduced generalized induced homomorphism of [ between the reduced

generalized cohomology sequences of (Y, B) and (X, A). &

Theorem 1.38 (The reduced generalized induced homomorphism between reduced
generalized cohomology sequences is a homomorphism of exact sequences). In a
generalized cohomology theory, if f @ (X,A) — (Y,B) is an admissible map of
pairs such that X and Y are collapsible spaces, then ﬁ(f) 18 a homomorphism

of exact sequences between the reduced generalized cohomology sequences of (Y, B)

and (X, A).

Proof. This result is an immediate consequence of Theorem [1.16] O]

To close this section, we establish another version of the reduced generalized
cohomology groups, which will be useful later. In addition, we prove that the new version
of the reduced generalized cohomology groups is isomorphic to the first one, although the
isomorphism is not usually canonical. The absence of canonicity is what makes the new
theory interesting. We leave to the reader the construction of the new reduced generalized
cohomology sequence of an admissible pair because the details are analogous to the ones

we have just seen.

Definition 1.39 (The pointed reduced generalized cohomology groups). In a generalized
cohomology theory, let Q be an admissible single point, X be an admissible space and
x € X be such that the map i, : Q — X defined by i,(Q2) = = is an admissible map.
Henceforth, for all n € Z, the kernel of h™(iy) : h™(X) — h™(Q) is called the nth
pointed reduced generalized cohomology group of X, and is denoted by ﬁZ(X)
Furthermore, we shall write u™(z) instead of h™(i,)(u) € h™(Q) for all n € Z and for
all u € h*(X). ¢

Theorem 1.40 (The pointed reduced generalized induced homomorphism). In a
generalized cohomology theory, let Q be an admissible single point and f : X — Y be
an admissible map. Therefore, for allm € Z, if v € X, y = f(x) and u € h*(Y), then
W (f oig)(u) = u™(y). Thus, h"(f) : h*(Y) — B"(X) maps h(Y) into h2(X) and h2(Y)
contains Ker h™(f). Hence, it is defined h"(f) : EZ(Y) — h™(X) which is the nth pointed

reduced generalized induced homomorphism.
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Proof. Let n be an integer number. The first claim follows from f o4, = 4,. Moreover,
this yields the commutativity of the following diagram since h™(f oi,) = h™(i;) o h"(f)
and u™(y) = h"(iy)(u) for all u € A™(Y).

Ar(Y) — s ()
h™(f)
hn(X) hn(Q)

h'n (11)

Therefore:

e given u € ﬁZ(Y) = Ker h"(i,), we have h™(i,)(h"(f)(w)) = h™(iy)(u) = 0. Thus,
R™(f) maps iNLZ(Y) into Ker h"(i,) = h™(X); and

e given u € Ker h"(f), we have h"(i,)(u) = h"(iy)(R"(f)(u)) = h™(i;)(0) = 0. Thus,
Ker h"(f) is contained in Ker h™(i,) = ?LZ(Y)

Consequently, it is indeed defined the pointed reduced generalized induced homomorphism
RE(f) s hi(Y) — R2(X) as the restriction h"(f) fp ey RI(Y) — h2(X), as we wished. [J
Theorem 1.41 (The connection between the generalized cohomology groups
and the pointed reduced generalized cohomology groups of an admissible space). In a
generalized cohomology theory, if € is an admissible single point and X s a
collapsible space, then the wunique admissible map px : X — Q induces an
isomorphism from h"™(Q2) onto h™(Q)x for all n € Z. Moreover, h™(X) decomposes
as the direct sum h™(X) ® h"(Q)x for alln € Z and for all z € X such that iy : Q — X

18 an admaissible map.

Proof. Let n be an integer number and z € X be such that the map i, : Q@ — X
given by i,({2) = z is admissible. Since the composition px o i, is the identity map
on €, the composition h™(i,) o h"(px) is the identity map on h"(§2). Therefore, h"(px)
is a monomorphism. This proves that py : X — Q induces an isomorphism from h"(£2)
onto Im h"(px) = h™(Q)x. On the other hand, h"(X) decomposes as h"(X) & h™(Q)x

because:
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o 1"(X) = Kerh"(iy) and h"(Q)x = Im h™(px) have only the zero element in their
intersection. In fact, if u € Ker h"(i,) NIm A" (px ), there exists v € h™(Q2) such that
h™*(px)(v) = u. Then,

v = idpney(v) = (h"(ia) o K" (px))(v) = h"(ia)(u) = O

implies u = h"(px)(v) = h™(px)(0) = 0; and

o cvery u € h"(X) is the sum of an element from h"(X) with an element from
h*(Q)x. In fact, let v = u — w where w = (h"(px) o h"(iz))(u). It is evident that
w e h(Q)x =Imh"(px). In turn,

h'(ia)(w) = (h"(iz) o h"(px) © h"(iz))(u) = h"(iz)(u)

implies h"(i,)(v) = h"(ip)(u — w) = h"(iy)(u) — h™(iz)(w) = 0. Therefore, we
have v € Ker h™(i,) = h"(X). The statement is proved because u = v + w, as we

wished. 0

Corollary 1.42 (The pointed reduced generalized cohomology groups and the reduced
generalized cohomology groups are always isomorphic). In a generalized cohomology
theory, if Q is an admissible single point, X is an admissible collapsible space
and i : Q — X is any fived admissible map, then h™(X) is isomorphic to }VL?(Q)(X)
for alln € Z.

Proof. Let n be an integer number and px : X —  be the only possible map that
is admissible because X is supposed to be a collapsible space. The natural quotient
map 7% : h"(X) — h"(X) is also defined. We know that the following sequence is a
short exact sequence since h™(p,) is injective, Im h™(px) = h™"(Q)x = Ker7'y, and 7% is

trivially surjective.

0— @) — P ) T () 5 0

To show that h"(p,) is injective, we use the admissible map ¢ : Q@ — X. Indeed, once
px o i = idg implies idyn) = h"(px o i) = h™(i) o h™*(px), the assertion is proved.
However, this equation also proves that the preceding short exact sequence is a split

short exact sequence. As a consequence, there exists an isomorphism between h™(X) and
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h™(Q) @ h™(X). In turn, this direct sum is isomorphic to A"(Q)y @ h"(X) since h™(px)
is an isomorphism from A"(Q) onto h"(Q)y. Thus, A"(Q)x ® h"(X) is isomorphic to

R (Q)x & E?(Q) (X) by Theorem [1.41] Actually, the isomorphisms considered here can be

chosen to produce an isomorphism
o M) x @B (X) — B (Q)x & hjjg)(X)

such that ¢(u,0) = (u,0) for all u € h"(Q)y. This fact implies that 2"(X) is isomorphic
to E;}Q)(X) Indeed, let M () R (Q)x & EZ”(Q)(X) — EZ”(Q)(X) be the projection onto
the second variable. The composition Moy (X) O 9 R (Q)x © h"(X) = hijg)(X) is such
that Ker(ﬂ%%)(x) o) = h"(2)x. Therefore, the First Isomorphism Theorem shows that
hiq)(X) is isomorphic to the quotient group of h"(Q2)x @ h"(X) by h"(€2)x. Since this
very same theorem also implies that this quotient group is isomorphic to ﬁ”(X ), we are

done here. 0

Remark 1.43 (The isomorphisms between the pointed reduced generalized
cohomology groups and the reduced generalized cohomology groups). In a generalized
cohomology theory, the existence of an isomorphism between %”(X) and %ZQ)(X) for
each fized admissible map i : Q — X allows us to see the reduced generalized
cohomology of X as the kernel of h™(i) : h"(X) — h™(Q). This characterization is
usually more tractable than the first one because kernels are much more concrete
objects than cokernels. Another important fact is that the absence of canonicity for an
isomorphism between h"(X) and %?(Q)(X) is related to the choice of i(Q2) € X. Indeed,
once we started considering any admissible map 1 : Q — X, there are many choices for
the image i(Q); for each admissible choice, there is an isomorphism between the groups

under consideration. &

1.6 Homotopy and generalized cohomology groups and

sequences

In this section, we prove that, in a generalized cohomology theory, the generalized
cohomology groups and sequences are intrinsically the same for admissible homotopic

pairs. We also prove here an important fact involving contractible topological spaces,
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which in many senses are seen to be the simplest topological spaces. We begin with the

following definition.

Definition 1.44 (Homotopy equivalence of pairs). Let € be an admissible category of
topological spaces. Admissible pairs (X, A) and (Y, B) are said to be homotopically
equivalent if there exist two maps f : (X, A) — (Y,B) and g : (Y,B) — (X, A) such
that the composition go f is homotopic to the identity map on (X, A) and the composition
f o g is homotopic to the identity map on (Y,B). The maps f and g are said to be a
homotopy equivalence. Frequently, each of the maps f and g will be referred to as a

homotopy equivalence. &

Remark 1.45 (Homotopy of pairs is an equivalence relation on the class of objects
of an admissible category). Let € be an admissible category of topological spaces. The
relation of homotopy of pairs on the class of objects of € is defined in the following
manner: two admissible pairs of topological spaces are related if and only if there exists a
homotopy equivalence between them. Once again, the reader can readily prove that this is

an equivalence relation. &

Remark 1.46 (Homeomorphisms and homotopy equivalences). Let € be an admissible
category of topological spaces. Any two homeomorphic pairs are homotopically
equivalent. This happens because the identity map on any admissible pair is homotopic to
itself. On the contrary, homotopically equivalent pairs are not necessarily homeomorphic
pairs. In fact, for example, non-trivial Fuclidean spaces are homotopically equivalent to a
one-point space in Top,. However, there is no homeomorphism between these spaces since
there is no bijection between their sets of points. This shows that the notion of homotopy

equivalence generalizes the one of homeomorphism. &

Theorem 1.47 (Invariance of the generalized cohomology groups under homotopy
equivalence of pairs). In a generalized cohomology theory, if (X, A) and (Y,B) are
admissible homotopically equivalent pairs, then h™(X,A) is isomorphic to h"(Y,B) for
all n € Z. In other words, admissible homotopically equivalent pairs have isomorphic

generalized cohomology groups.
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Proof. Let n be an integer number and f : (X, A) — (Y, B) and g : (Y, B) — (X, A) be
an admissible homotopy equivalence. Since g o f is homotopic to id x a), it follows from

the Homotopy Axiom that

h*(f)oh"(g) = h"(go f) = h"id(x ) = idun(x,a).

Similarly, once f o g is homotopic to id(y,py, it follows h"(g)oh"(f) = idp»(v,5). Therefore,
R™(f) and h"(g) are inverse isomorphisms between h"(X, A) and h"(Y, B), proving what

we wished. O

Corollary 1.48 (An isomorphism of generalized cohomology groups induced by
almost homotopically equivalent admissible pairs). In a generalized cohomology theory, if
f:(X,A) — (Y,B) is an admissible map of pairs in such manner that f; : X — Y
and fo : A — B are homotopy equivalences, then h™(X, A) is isomorphic to h*(Y, B)
for alln € Z.

Proof. Tt follows from the proof of Theorem that A™(f1) : A"(Y) — h™(X) and
R*(f2) : h™(B) — h™(A) are isomorphisms for all n € Z. It is then conspicuous from
Theorem that h"(f) : h™(Y, B) — h"™(X, A) is an isomorphism for all n € Z, proving

what we wished. O

Corollary 1.49 (Isomorphism of the generalized cohomology sequences induced by an
admissible homotopy equivalence). In a generalized cohomology theory, if (X, A) and
(Y, B) are admissible homotopically equivalent pairs, then their generalized cohomology
sequences are isomorphic. In other words, admissible homotopically equivalent pairs
have isomorphic generalized cohomology sequences. The same claim holds for reduced

generalized cohomology sequences.

Proof. Let f : (X,A) — (Y,B) be a homotopy equivalence. It is a consequence of
Theorem and a consequence of the proof of Theoremthat h(f) is an isomorphism
of exact sequences between the generalized cohomology sequences of (Y, B) and (X, A).
We leave to the reader the proof of the statement for reduced generalized cohomology

sequences. O
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To close this section, we present the notion of contractible topological spaces
and an immediate consequence of this idea from the viewpoint of generalized
cohomology groups. Usually, some authors take this consequence to be the definition

of contractible spaces.

Definition 1.50 (Contractible spaces). Let € be an admissible category of topological
spaces. An admissible space is a contractible space if there is a homotopy between its

identity map and a constant map. &

Theorem 1.51 (Contractibility and homotopy equivalences). In an admissible category
of topological spaces, if X is a contractible space, then X is homotopically equivalent to
any of its points. Therefore, in a generalized cohomology theory, Theorem implies
that h™(X) is isomorphic to h"(x) for all z € X.

Proof. Since X is a contractible space, we know that there exist o € X and an admissible
homotopy © : X x I — X in such manner that ©(z,0) = idx(z) and O(x,1) = z( for
all z € X. Then, let f: {xy} — X be the admissible map defined by f(xy) = xo. We
have that:

e O(-,1)o f is the identity map on {zo}; and

e O is a homotopy connecting f o O(-,1) to the identity map on X.

Thus, we have that O(-,1) and f form a homotopy equivalence. Hence, it follows that
X is homotopically equivalent to {x¢}. Consequently, since any two points of X are
homotopically equivalent (in fact, they are homeomorphic to each other) and homotopy
of pairs is an equivalence relation, this yields that X is homotopically equivalent to any

of its points, as we wished. m

1.7 The generalized cohomology sequence of a triple

In this section, we set another helpful tool in the calculus of generalized
cohomology groups, namely, the generalized cohomology sequence of a triple. The

main theorem here, whose proof is a long technical computation that we provide to
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the reader in detail, establishes the exactness of this sequence. We begin with the

following definition.

Definition 1.52 (Admissible triples and their maps). Let € be an admissible category of
topological spaces. We say that:

e (X, A, B) is an admaissible triple of spaces, where X, A and B are admissible
spaces such that B C A C X and A and B are equipped with the induced topology,
if the inclusion maps ZEXB : (A,B) — (X, B) and j(j((f)) : (X,B) = (X, A) are

admissible; and

e f: (X, A, B)— (Y,C,D) is an admissible map of triples, where (X, A, B) and
(Y,C, D) are admissible triples, if it is a continuous map f : X — Y such that
f(A) C C, f(B) C D and the maps f1: (X, A) = (Y,C), fo: (X,B) — (Y,D) and
f3: (A, B) — (C, D) are admissible. o

Notation 1.53 (The inclusion maps associated with an admissible triple of spaces).
Let € be an admissible category of topological spaces and (X, A, B) be an admissible
triple of spaces. The inclusion maps associated with the pairs (X, A), (X, B) and (A, B)
are denoted by iy : A — X, & - B - X, i . B = A, j()g(,A) X = (X, A4),
](X g X = (X,B) and JAB) A — (A, B). Moreover, we will not put these maps
between parentheses when we take theiwr induced homomorphisms to avoid overloading

the notation. &

Definition 1.54 (The generalized cohomology sequence of a triple). In a generalized

cohomology theory, we define the generalized cohomology sequence of the triple

(X, A, B) as the sequence
. ——— hnl(4, B) 22 Tuamy h(X, A) ﬂ h"(X, B) ﬂi h(A,B) — -,

where Oy o py h" YA, B) — h"(X,A), which is called the mth generalized
coboundary operator of the triple (X, A, B), is the composition between

WU gy s hPTH(A B) = hrTH(A) and 87y, hPTH(A) = hn(X A). %
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Theorem 1.55 (The generalized cohomology sequence of a triple is exact). In a
generalized cohomology theory, if (X, A, B) is an admissible triple of spaces, then its

generalized cohomology sequence is exact.

Proof. Let n be an integer number. We have that each square in the following diagram

is commutative.

hn— 1; (A B)

hY(X, B) (B, g1 A, B)

W itk.m) Wit my
-1 1 Rt -1
XY e (A h(B)
0x.a) 0x.p)
+ + Wi Eff g))
(X, A) ——— h"(X, B) ’ h"(A, B)
i (X.B)
J(x,4)
Wik m) W i(a.m)
(X)) ————— h(4)
X
Indeed:

o h" it o B 1]& B = h”_lj(“i1 g © h"! Eéﬁ) because we have the equality of

inclusions j (AB) oA

I @i = 1(Xp) © J(am);
° hnj())§ f) o (5”XA = (5 (x.p) © h"=1iB because it is a restatement of the Commutativity
(X,B i

Axiom since § is the restriction of j((XA)) to B; and
o hi% o h"j()gf B) = h"ijB o h"ig;’g)) because we have the equality of inclusions

X A _ (AB) A

J(x,B) ©'x = Y(x,B) °J(A,B)

Moreover:
. h"j% = hX o Wi %P hecause we have the equality of inclusions
J(x,A) J(x,B) J(x,4) Y

(X,B)
J&A) J(x,4) © J(X B)’
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(b).

(c)-

(d).

ik = K" o h"i§ because we have the equality of inclusion maps

‘B _ ;A | B.
iy = 1% 0ly;

577,

(a.8) = "

X.B) © 5&7 B) because it is a restatement of the Commutativity Axiom

since it is equivalent to 5& B)© idyn-1() = h”z'gf(’f;)) o (5& B) and id g is the restriction

of igff’?) to B; and

0.8 = Ox.a) © h"_lj&B) because of the definition of dfy 4 p)-

The preceding relations are used to prove the following six assertions, which complete the

proof of this theorem.

(1)

hnigf(’g)) o h"j((j((f)) . h(X,A) — h"(A, B) is the trivial homomorphism. Thus,

B)

Im h”j((;’A) C Ker 2

(X,B)"
Note that j(())é’f)) o igf(’?) :
of the inclusion maps k : (A,B) — (AA) and | : (AA) — (X, A).

Since h™(A,A) = 0 by Corollary rM(1) : h(X,A) — h"(A,A) is the

(A,B) — (X, A) can be expressed as the composition

trivial homomorphism. Therefore,

as we wished.

If w € h(X,B) and h”z’&:%(u) = 0, which is the same as u € Kerh"ig(”?),

then there exists u' € h™(X,A) such that h”j(())é’f))(u’) = u, which is the same as

u € Imhp” jg((:f)). Thus, Ker h"igé’?) CImpa» j(())éf)) .
Since h"ixh"jl py(u) = h”j&B)h”iEé’g)) (u) = h"j{ 5 (0) = 0 because of

the upper commutative square in the preceding diagram, h”jgg( B) (u) € Ker h"i%.
Then, the exactness of the generalized cohomology sequence of (X, A) implies that
there exists a € h"(X, A) such that h”j()gcA)(a) = h”j()ggB) (u). Therefore, Item (a)

yields

n: n (X,B n,: n,: n (X,
h ]()g(,B) <U —h J((X,A))<04)> = h J&,B)(u) —h J&,B)h J(x,4) ()
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In other words, we have u — h”]éf))(a) € Ker h”j)§< p)- Consequently, we know

that there exists 8 € h"~1(B) such that ox.py(B) =u—h" (;(f))( ) because of the
exactness of the generalized cohomology sequence of (X, B). Thus, Item (c) and

the fact that hmi\0?) o hnjt XB) : h"(X, A) — h"(A, B) is the trivial homomorphism

XB)
imply
n A7B mn
O(A pB) = h ZEX,B))CS X,B)(ﬁ)
— n (AvB) n (XvB)
= h i(XB) (u —h Jix ) (oz))
TLAgB nA,B nX,B
= h ZEX,B)) (u) —h ZEX,B))h ]((X,A))(a>
= 0.

Otherwise stated, we have g € Ker (5& B) For this reason and the exactness of
the generalized cohomology sequence of (A, B), there exists v € h""'(A) such that
h"=Yi%(y) = 3. Then, it is a consequence of the middle commutative square in the

preceding diagram that

h”j((;’f)) (a + 0(x,a) (7)) = hnj(())gf;)) () +h"5 XA)) (X )(’Y)
= Wi (@) + 0 "5 ()
= W (@) +0 < )
= hn](())gf)) (a) +u—h" (jgf))(a)
= Uu.

Thereby, it is proved that there exists v’ € h"(X, A) such that h"j(())i’f))(u’ ) = u,

as we wished.

Ofx. ap oW (AB h"YX,B) — h"(X, A) is the trivial homomorphism. Thus,

Tm 7" Yi( S € Ker 6 4 ).

Because of Item (d) and the upper commutative square in the preceding diagram,

O(x.A,B) © (XB —5(XA hn_lj (XB —5(XA o h" g o K505

J(x,B)-

Since the generalized cohomology sequence of (X, A) is exact, O('x,4) © v lig = 0.

Then, 6y 5 0 h" iy 5 =

IXp) = 0, as we wished.
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4) If v € " YA, B) and 6" = 0, which is the same as v € Ker§}* then
(X,A,B) (X,A,B)
there exists v' € h" (X, B) such that h" i j(45) (v') = v, which is the same as

Y(x,B)
v € Imh" 1 ‘;g Thus, Ker 6y 4 g € Im A" }4(?).
Since 5(‘X7A)h"*1j€‘473)(v) = O{xap() = 0 because of Item (d), it follows
W lilm () € Kerdfy . Then, A'"lig(a) = Rl p(v) for some

a € h"1(X) because of the exactness of the generalized cohomology sequence of
(X, A). Thus, since the exactness of the generalized cohomology sequence of (A, B)
implies A" "5 jd 5 = 0, Ttem (b) yields

W% (o) = KRR g (o) = R NE Ry (v) = 0.

In other words, we have o € Kerh" 'i¥.  Then, the exactness of the
generalized cohomology sequence of (X, B) implies that there exists 8 € h""}(X, B)
such that h"‘lj()g(’B) (B) = a. As a consequence of the lower commutative square in

the preceding diagram,

n— n— A n— . n— N n—1, A7
L i,B)( _ §X§§(5)> = W gy () — BT R ()
= hn_lj&g)(v) — K"l 1J(X,B)<5)
= "l () — b lig(a)

= 0.

Stated differently, we have v — h"! (f(?)(ﬁ) € Ker h"flj&B). Hence, the
exactness of the generalized cohomology sequence of (A, B) yields the existence
of v € h"%(B) such that o ]13)( )=v—h"! é?)(ﬁ). Then, it is a consequence
of Ttem (c) that

N (B 0k (1) = RTEERB) + N R 0 ()
n—1-(A
= h IZEX,BJ;))(ﬁ)—i_(;(AB()
n—1.(A n )
= WD B) v — BT ()

Thereby, it is proved that there exists v’ € h" (X, B) such that h"’lz‘gf(”B) (V') =,

as we wished.
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(5)

h”j())gff) °0(x B h"~Y(A, B) — h"(X, B) is the trivial homomorphism. Thus,

n(X,B)

Im(SXAB) C Kerh'™) Jix Ay

Because of Item (d) and the middle commutative square in the preceding diagram,

n (X,B n (X,B n n—1 - n n— n—
h j(XA)odXAB _h ]((X7A))05(X’A)Oh 1]&73):5()(73)0]1 h 1 AB)
Since the generalized cohomology sequence of (A, B) is exact, h™i% o h”j&’B) =0.

Then, h”j((jé’f)) o 5?X7A7B) = 0, as we wished.

If we h"(X,A) and h”jgf)(w) = 0, which is the same as w € Kerh”jgf)),

then there exists w' € h" (A, B) such that Oix.ap (W) =w, which is the same as

w € Im 5?X7A7B) Thus, Ker h”]((j((f) C Im 5"XAB)

Since h"ji 4 (w) = h"j XB)h"j((;f (w) = h"j% )(0) = 0 because of Item (a),
it follows w € Ker h”j(X’ A)- Then, the exactness of the generalized cohomology
sequence of (X, A) implies that there exists a € A" !(A) in such manner that
5&7 A)(a) = w. Consequently, the middle commutative square in the preceding

diagram yields
n n— n (X,B) n «(X,B
5(X,B)h K A( ) =h ]((XA 5(XA)( ) =h ]((X7A))(w) = 0.

In other words, we have h"71if(a) € Kerdfy 5. As a consequence of the
exactness of the generalized cohomology sequence of (X, B), we know that there
exists 8 € h" 1 (X) such that h" 1% (3) = h"~'if (a). Then, it follows from Item (b)
that
N (0= E) = (e — R 9)
= Wi (a) — AR (B)
= 0.

Said differently, we have o — h" 14 (8) € Ker h"~1i%. Therefore, we know that the
exactness of the generalized cohomology sequence of (A, B) implies that there exists
v € h""(A, B) such that h" 15y 5)(7) = a—h""'ig (). Thus, once the exactness of
the generalized cohomology sequence of (X, A) implies d{'y 4 0"~ 1i% = 0, Item (d)
yields
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team() = Oxah™ ilim(1) = 0ixay (@ — "% (8))
= Ofxa)() — ?X,A)hn_lzé(ﬁ)
= 5ELX,A)<04)

= w.

Thereby, it is proved that there exists w’ € h"~'(A, B) such that Oy am (W) = w,

as we wished. O

Definition 1.56 (The generalized induced homomorphism between generalized
cohomology sequences of triples). In a generalized cohomology theory, if
f: (X, A B) — (Y,C,D) is an admissible map of triples, then we say that the sequence

of group homomorphisms

h(f) = ( ) hn_l(f2)7 hn_l(f?»)v hn(fl)v hn(f2)7 hn(f3)> )

18 the generalized induced homomorphism of f between the generalized cohomology

sequences of the triples (Y,C, D) and (X, A, B). O

Theorem 1.57 (The generalized induced homomorphism between generalized
cohomology sequences of triples is a homomorphism of exact sequences). In a generalized
cohomology theory, if f: (X, A, B) — (Y,C, D) is an admissible map of triples, then h(f)
18 a homomorphism of exact sequences between the generalized cohomology sequences of

the triples (Y,C, D) and (X, A, B).

Proof. To verify the statement of this theorem we have to prove that the following diagram

is commutative.

h" ((Y,D)

(C,D)
Jtv.o) hi

Ov,c,p) (v.D)

. —— WY, D) h(Y, C) h"(Y, D)

(

h=1(f3) W (1) W (£2) e

| ! | |

> WHAB) e WX A) o WX, B) gy WA B) —— -

(X,A,B) h”j((;’f;

IS

In other words, we have to prove the following three relations for all n € Z. In fact, if n

is an integer number, then:



1. Generalized Cohomology Theories 40

® 0 ap) © R f3) = h™(f1) o d(yc,py- To prove that this relation holds we
consider the following diagram where the admissible map f |4: A — C is the

restriction of f to A.
577,

(Y,C,D)
hn=Y(C, D) s B0 ’ s (Y, C)
R"L(f3) R 1(fla) h™(f1)
h1(A B s h (A s (X, A
( | w ( | )
6?X,A,B)

Since f3 oj(f{1 B) = j(cc D) © f |a, the square on the left-hand side is commutative. In
turn, the square on the right-hand side is commutative because it is a restatement
of the Commutativity Axiom. Therefore, the whole diagram is commutative, which

ensures the relation in question;

o h”]é f) o h™(f1) = h™(f2) o h”](yc This relation is an obvious consequence of the

equality f1 0 j(y'y) = Jiy.c) © foi and

o h”ig?g? oh"(f2) = ( 3) o h" '(C’D)). This relation is an obvious consequence of the

equality fy o1 ;g)) = g o fs. O

Theorem 1.58 (Isomorphism of generalized cohomology groups whose pairs of spaces
come from an admissible triple of spaces). In a generalized cohomology theory, let (X, A, B)

be an admissible triple. In this situation:

(1) if i% : B — A induces isomorphisms from h™(A) onto h"(B) for all n € 7Z, then
]((XA (X,B) — (X, A) induces isomorphisms from h"(X,A) onto h"(X, B) for
alln € Z; and

(2) if i‘)“( : A — X induces isomorphisms from h"(X) onto h*(A) for all n € 7, then
(X B) : (A, B) = (X, B) induces isomorphisms from h"(X, B) onto h™(A, B) for all
n € 7.



1. Generalized Cohomology Theories 41

Proof.

(1) Since the inclusion map ¥ : B — A induces isomorphisms from h"(A) onto
h*(B) for all n € Z, Theorem says that h"(A, B) is the trivial group for all
n € Z. Therefore, the generalized cohomology sequence of the triple (X, A, B) is

the following one.

. (X,B)
J(x,4)

e}

g

> h"(X, A) h(X, B) > 0

The preceding sequence is exact by Theorem Consequently, we have that
h”j(j((f) . h"(X,A) — h"(X,B) is an isomorphism for all n € Z. Then,
](XA : (X, B) — (X, A) induces isomorphisms from h"(X, A) onto h"(X, B) for

all n € Z, as we wished.

(2) The proof of this assertion is analogous to the proof of the first part of this theorem.
We leave the details to the reader. O

1.8 Deformation retracts and the Excision Axiom

In this section, we present the important notion of deformation retracts.
Roughly speaking, a deformation retract is a homotopy of admissible pairs in which the
homotopy equivalence is composed of an inclusion map. We begin with the following

definition.

Definition 1.59 (Retract, deformation retract and strong deformation retract). Let €

be an admissible category of topological spaces and (X, A) be an admissible pair. An

admissible pair (Y, B) C (X, A) is called a:

e retract of (X, A) if there exists an admissible map r : (X, A) — (Y, B) such that
r(y) =y forally € Y. We say that such a map r : (X, A) — (Y, B) is a retraction
of (X, A) into (Y, B);

e deformation retract of (X, A) if there exists a retraction r : (X, A) — (Y, B)

such that its composition with the inclusion map (Y, B) — (X, A) is homotopic to
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the identity map on (X, A). We say that such a map r : (X, A) — (Y,B) is a
deformation retraction of (X, A) into (Y, B); and

e strong deformation retract of (X, A) if there exists a deformation retraction
r:(X,A) — (Y, B) in which the homotopy © : X x I — X between its composition
with the inclusion map (Y,B) — (X, A) and the identity map on (X, A) can be
chosen in such manner that O(y,t) =y for ally € Y and all t € 1. We say that
such a map r : (X, A) — (Y, B) is a strong deformation retraction of (X, A)
into (Y, B). &

Remark 1.60 (On retracts, deformation retracts and strong deformation retracts). Let €
be an admissible category of topological spaces and (X, A) be an admissible pair. If (Y, B)
is an admissible pair contained in (X, A) and the inclusion map i : (Y, B) — (X, A) is

admissible, then:

e (Y.B) is a retract of (X,A) if and only if there exists an admissible map
r:(X,A) — (Y, B) such that r oi is the identity map on (Y, B). Thus, the equality

implies that h™(i) is an epimorphism and that h™(r) is a monomorphism for all

n € Z; and

e if (Y, B) is a strong deformation retract of (X, A), then (Y, B) is also a deformation
retract of (X, A). In fact, a strong deformation retraction of (X, A) into (Y, B) is
a deformation retraction of (X, A) into (Y, B). On the other hand, (Y, B) being a
deformation retract of (X, A) does not imply that (Y, B) is also a strong deformation
retract of (X, A). The reader can find an example for this claim in [25, p. 215].
The discrepancy between these two notions will not play an important role in this
work since the magjority of its concrete examples is composed of strong deformation

retracts. &

Theorem 1.61 (Split exact sequence induced by a special retraction). In a generalized
cohomology theory, if an admissible pair (X, A) is such that the inclusioni: A — X is a

retraction, then the sequence
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R (j) h™ (i)

0 — h"(X, A) X)) ——— h"(A) ———— 0
is split exact for all n € Z, where j : X — (X, A) is the natural inclusion. Therefore,
in particular, we have that h"(X) is isomorphic to the direct sum h™(X,A) & h"(A)
for oll n € Z. This implies that, if (X,Q) is an admissible pair where Q is a
one-point space, then the relative group h™(X,Q) is isomorphic to the pointed reduced

group Eg(X) for alln € Z.

Proof. Since i : A — X is a retraction, there exists an admissible map r : X — A such
that r o4 = id4. Consequently, if the preceding sequence is exact, then it clearly splits

because

hn<Z) o) hn(T‘) == idhn(A).

Thus, we only have to prove the exactness of the sequence in question. We claim that
this follows from the exactness of the generalized cohomology sequence of the admissible
pair (X, A). Indeed, since h™(i) : h"(X) — h"(A) is an epimorphism for all n € Z,
we have

Kerdf{l, = Imh"(i) = h"(A).

Thus, 5Z‘X ) 1s trivial for all n € Z. This allows us to change its domain and codomain
as in the preceding sequence without losing exactness, which finishes the proof of the

theorem. O

Theorem 1.62 (Homotopy equivalence induced from a deformation retract). Let € be
an admissible category of topological spaces and (X, A) be an admissible pair. If (Y, B)
is a deformation retract of (X, A), then the inclusion map i : (Y, B) — (X, A) and any
deformation retraction of (X, A) into (Y, B) form a homotopy equivalence. In particular,
i a generalized cohomology theory, the proof of Theorem implies that h™ (X, A) is
isomorphic to h"(Y, B) for alln € Z.

Proof. Let r: (X, A) — (Y, B) be a deformation retraction of (X, A) into (Y, B). Then,
r o1 is the identity map on (Y, B) and i o r is homotopic to the identity map on (X, A).
Once the identity map on (Y, B) is homotopic to itself, we have that r and i form a

homotopy equivalence. O
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Corollary 1.63 (Isomorphism of generalized cohomology sequences induced by an
admissible deformation retract). In a generalized cohomology theory, if (Y,B) is a
deformation retract of an admissible pair (X, A), then the inclusion i : (Y,B) — (X, A)
induces an isomorphism of exact sequences between the generalized cohomology sequences
of (X, A) and (Y, B). The same claim holds considering reduced generalized cohomology

sequences.

Proof. This is a consequence of Corollary since i : (Y,B) — (X, A) is a homotopy
equivalence between (Y, B) and (X, A). O

To close this section, we present two extensions of the Excision Axiom. We
remind the reader that this axiom asserts that, if (X, A) is an admissible pair and U
is an open subset of X whose closure is contained in the interior of A, then the excision
map (X — U, A—U) — (X, A), if admissible, induces isomorphisms of the generalized
cohomology groups in all dimensions. We prove below that the condition of the
closure of U to be contained in the interior of A can be relaxed in two special cases
to U just contained in A. However, this relaxation of the hypothesis in question is not

generally reasonable.

Theorem 1.64 (The first extension of the Excision Axiom). In a generalized
cohomology theory, let (X, A) be an admissible pair and U and V' be open subsets of X
such that the closure of V' is contained in U which is contained in A. If the inclusion maps
i (X-UA-U)=»(X-V,A-V)andj: (X -V, A-V) = (X, A) are admissible
and (X — U, A —U) is a deformation retract of (X —V, A —V), then the inclusion map
joi: (X—=U A=U) — (X, A) induces isomorphisms of the generalized cohomology groups

in all dimensions.

Proof. Let n be an integer number. Since j : (X — VA —V) — (X, A) is an excision
map, the Excision Axiom implies that h"(j) : h"(X,A) — A*(X —V,A —V) is an
isomorphism. Furthermore, A"(i) : (X —V,A—-V) - (X —U,A—-U) is an
isomorphism because of Theorem Thus, we have that h"(j o) = h"(i) o h"(j)
is an isomorphism from h™(X, A) onto h"(X — U, A — U). This proves that the inclusion
joi: (X —-UA-U) — (X,A) induces isomorphisms of the generalized cohomology

groups in all dimensions, as we wished. O
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Theorem 1.65 (The second extension of the Excision Axiom). In a generalized
cohomology theory, let (X, A) be an admissible pair and U be an open subset of X
contained tn A. Moreover, assume that there exists a subset B of X containing A in

such manner that:

(a). the inclusion maps i : (X — U A—-U) — (X,A), j : (X,A) — (X,B),
k(X -UB-U) = (X,B) andl: (X ~UA—-U) > (X —UB—U) are

admissible;
(b). the closure of U is contained in the interior of B;
(c). A is a deformation retract of B; and

(d). A—U is a deformation retract of B —U.

Then, i : (X —U,A—U) — (X, A) induces isomorphisms of the generalized cohomology

groups in all dimensions.

Proof. Let n be an integer number. We tacitly use Item (a) whenever appears an induced

homomorphism. It is clear that
(k) :h"(X,B) - h"(X —U,B—-U)

is an isomorphism from Item (b) and the Excision Axiom. Furthermore, h"(A) is
isomorphic to h"(B) and h"(A — U) is isomorphic to h"(B — U) because of Item (c),
Item (d) and Corollary [1.63] Hence,

hh(j) : h"(X,B) = h™(X,A) and K1) : "X —UB-U) = h"(X —U,A-U)

are isomorphisms because of Theorem [1.58] Therefore, since the equality joi = kol
yields h"(i) o h™(j) = h™(1) o h™(k), it follows that

h"(i) = h™(I) o h™(k) o h"(j)*

is an isomorphism from h™(X, A) onto h"(X — U, A — U). This proves that the inclusion
map i : (X —U,A—U) — (X, A) induces isomorphisms of the generalized cohomology

groups in all dimensions, as we wished. O
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1.9 The Direct Sum Theorem and Milnor’s Additivity

Axiom

In this section, we prove an important theorem connecting the generalized
cohomology groups of an admissible pair to the generalized cohomology groups of the
components of a suitable decomposition of the spaces that belong to the pair in question.
After that, we set an axiom suggested by John Milnor (1931 - ) in |28, p. 337] which
treats the question of a possible extension of this theorem. We begin with the following

definition.

Definition 1.66 (Projective direct product representation of a group). Let C be a group
and (Ca)aeA be a family of groups indexed by an indexing set A. For each family of

group homomorphisms ® = (goa :C — C’a) we know that it is determined the group

a€eN’

homomorphism

[[ea: ¢ = J]Co

acel aEA
¢ = (¢al0)en

If Tlaen @a is an isomorphism of C onto [[,cn Ca, then ® is called a projective
direct product representation of C, and each component . s called a projection.

In this situation, for each sequence (co)aca € [ en Cas there is a unique ¢ € C such that

a€eN

valc) = o for all a € A. o

Remark 1.67 (Projective direct sum representation of a group). Let (Ca)aeA be a
family of groups indexed by an indexing set A. We remind the reader that the direct
product [],cn Co and the direct sum @@, .\ Co are different objects. Roughly
speaking, direct products are formed from a collection of groups taking all possible
combinations of elements of these groups. In turn, direct sums are formed from a
collection of groups taking only the combinations of elements of these groups which has
a finite number of elements different from the identity elements. Indeed, we can think about

direct products and direct sums in Group Theory as we think about boxr and

product topologies in General Topology, respectively. However, there is an important
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case to consider. When the indexing set A is finite, it is clear that the direct product
coincides with the direct sum. Hence, when we have a finite projective direct product
representation of a group, we say that it is a projective direct sum representation of
the group in question, and we use the notation associated with direct sums instead of the

one associated with direct products. &

Lemma 1.68 (Sufficient conditions for existence of a projective direct sum representation

of a group). The following diagram of groups and homomorphisms has each of its triangles

commutative.
Ch Cy
\ P2
m C 2
/ @1
Cy 1

If Im(pq) C Ker(11), Im(po) = Ker(vs) and n; and ne are isomorphisms, then (11, 19) is

a projective direct sum representation of C.

Proof. The reader can find a proof of this result in [13, p. 32|. O

Theorem 1.69 (The Direct Sum Theorem). In a generalized cohomology theory, let:

(X, A) be an admissible pair;

X =Uo_, Xo be a union of disjoint sets each of which are closed and open in X ;
o A, C X, be such that A =J._, Aa;

e all pairs formed of the sets X, and A, and all their unions are admissible and all

wncluston maps of such pairs are admissible; and

e i, : (Xo,An) — (X, A) be an inclusion map for each a between 1 and m, both

ncluded.
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Then, the family (h”(ia) (X A) — h”()(oé,zéla))::1 yields a projective direct sum
representation of h™(X,A) for all n € Z. In particular, h"(X,A) is isomorphic to
B, h"(Xa, Ay) for all n € Z.

Proof. We prove the result using the Finite Induction Principle.
e Induction basis. The theorem is obvious for m = 1.

e Induction hypothesis. Suppose the theorem holds for the admissible pair (Y, B),
where Y = U2 X, and B = U, A,. In other words, assume that the maps
r(i) « h™(Y,B) — h™(X,, A.) yield a projective direct sum representation of
h™(Y, B) for all n € Z, where i, : (X4, A,) — (Y, B) is an inclusion map for each «
between 1 and (m — 1), both included.

e Induction step. Let n be an integer number and consider the following diagram of

inclusion maps.

(X, X, UA) (X, YUA,)

A 4

1%

(Y, B) (Xom, Amm)

It is clear that h,,, k. o h,, h' and k' o b/ are excision maps. Then, h"(h,,),
h™*(ky), h™(h') and h™(k') are isomorphisms by the Excision Axiom. Further, the
exactness of the generalized cohomology sequences of the triples (X,Y U A,,, A)
and (X, X,, U A, A) implies Im ~"(j") = Ker h*(I') and Im ~h"(j,,) = Kerh"(l,,).
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Thus, the hypotheses of Lemma [1.68| are fulfilled and the induced homomorphisms
(") and h"(l,,) form a projective direct sum representation of the generalized
cohomology group h™(X, A). In a similar way, we have that h"(i") and h"(i,,) yield
a projective direct sum representation of h"(X, A). These facts can be seen more

easily in the following diagram.

(X, X, U A) "X, YUA,)

h™ (Jm

hn(k/)

W (Y U

h™(h')

(Y, B) (X, Am)

Additionally, h"(i,) = h"(il,) o h"(i') for all a between 1 and (m — 1), both
included. Consequently, the homomorphisms A" (i,) : h"(X, A) — h"(X,, As) form

a projective direct sum representation of A" (X, A), as we wished. O

A natural question that the reader may be asking himself or herself now is about
the existence of “The Direct Product Theorem”. More explicitly, the reader may be
asking if it is also true that, in all generalized cohomology theories, under the hypotheses
of The Direct Sum Theorem adapted to a decomposition of the admissible pair (X, A)
in an arbitrary number of components, we have that the natural admissible inclusion
maps induce a projective direct product representation of h™(X, A) for all n € Z. The
answer for this question is negative, and references in which this claim is proven can be
found in [28, p. 337|. This fact together with the trueness of the desired assertion in
Singular Cohomology, as well as in other relevant generalized cohomology theories, led to

the following axiom.
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Definition 1.70 (Milnor’s Additivity Axiom and additive generalized cohomology

theories). In a generalized cohomology theory, let:

(X, A) be an admissible pair;

A be an indexing set;
o X =, cr Xa be a union of disjoint sets each of which are closed and open in X;

A, C X, be such that A=, .p Aa;

aceA

all pairs formed of the sets X, and A, and all their unions are admissible and all

wncluston maps of such pairs are admissible; and

e i, : (Xa, An) = (X, A) be an inclusion map for each a € A.

We say that Milnor’s Additivity Axiom is the assertion that the family of
generalized induced homomorphisms (h"(ia) : h"(X,A) — h"(Xa,Aa))aeA produces a
projective direct product representation of h"(X,A) for all n € Z. In particular, this
axiom implies that h* (X, A) is isomorphic to [, cx V' (Xa, As) for all n € Z. Moreover,
if a generalized cohomology theory verifies Milnor’s Additivity Aziom, we say that it is an

additive generalized cohomology theory. &

Remark 1.71 (On Milnor’s Additivity Axiom). Some authors say that Milnor’s
Additivity Aziom is “Milnor’s Multiplicativity Axziom”.  Moreover, they add Milnor’s
Additivity Axiom among Filenberg-Steenrod Azioms to define generalized cohomology
theories. In this work, we will not follow these conventions. In particular, we will say
“additive generalized cohomology theory” when we mean a generalized cohomology theory
that verifies Milnor’s Additivity Aziom. We think that this is more respectful with the

history behind these concepts. &

1.10 Triads and proper triads

In this section, we generalize the notions of admissible triple and generalized

cohomology sequence of an admissible triple, presenting the concepts of proper triad
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and generalized cohomology sequence of a proper triad. These new mathematical objects
will play an important role when we discuss the generalized Mayer-Vietoris sequences,
which are fundamental tools in the calculus of generalized cohomology groups. We begin

with the following definition.

Definition 1.72 (Triads and proper triads). In a generalized cohomology theory, let X
be a topological space and X, and Xo be subspaces of X. We say that (X; X1, Xs) is a:

o triad if X, X1, X5, XqiU Xy, X1 N Xy and all pairs formed from these spaces are

admissible, and all their inclusion maps are admissible; and

e proper triad if it is a triad and the inclusions

kll (XQ,XlﬂXQ) — (X1UX2,X1) and

kZQZ (Xl,XlﬂXQ) — (X1UX27X2)

mduce isomorphisms of the generalized cohomology groups in all dimensions. &

Remark 1.73 (Some related triads and proper triads). In a generalized cohomology

theory, if (X; X1, Xs) is a triad, then:

o (X; X5, X)) is also a triad, which is distinct from (X; Xy, Xo) unless X; = Xo.
Moreover, (X; X1, X3) is a proper triad if and only if (X; Xo, X1) is a proper triad;

o (X7 U Xyo;X1,X5) s also a triad, which is distinct from (X; Xy, Xy) unless
X = XqUXs. Moreover, (X; Xy, Xs) is a proper triad if and only if (X;UXos; X1, X5)

is a proper triad. &

Remark 1.74 (Some kinds of triads that are proper in all generalized cohomology
theories). It is not hard to find examples of triads that are proper in a generalized
cohomology theory but non-proper in another one. However, some kinds of triads are

proper in all generalized cohomology theories. For example:

o if (X;X4,X3) is a triad such that Xo C Xy, then it is a proper triad. In fact, it
follows that
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k‘ll (XQ,XQ) — (Xl,Xl) and
kQZ (Xl,XQ) — (Xl,XQ)

are the inclusion maps that we have to consider. Hence, since h™(Xy,X1) and
h" (X, Xs) are trivial groups for alln € Z by Corollary[1.12, we have that the group
homomorphism

hn(k’l) : hn(Xl,Xl) — hn(XQ,XQ)

15 the only possible one for all n € Z. This is clearly a group isomorphism for all
n € Z. Moreover, since ky : (X1, Xo) — (X1, Xs) is the identity map, we have that

the group homomorphism
hn(k'g) : hn<X1,X2) — hn(Xl,Xg)

18 the identity for all n € 7, which is also a group isomorphism for all n € 7.

Consequently, (X; X1, X2) is a proper triad; and

o if (X7UXos; X1, X5) is a triad such that X, and Xy are closed in X1 U Xy, and the
closure of X1 — (X1 N Xy) in Xq U Xy is disjoint from the closure of Xo — (X1 N X5)
m X1 U Xs, then it is also a proper triad. Indeed, these hypotheses imply that the

inclusions

kll (XQ,XlﬂXQ) — (X1UX2,X1) and

kZQZ (Xl,XlﬂXQ) — (X1UX27X2)

are excision maps. Therefore, the triad (X, U Xo; X1, X2) is proper because of the
Excision Axiom. The reader can produce more examples of similar kinds of triads
that are proper in all generalized cohomology theories considering Theorem|1.64| and

Theorem |1.65] &

Theorem 1.75 (Necessary and sufficient condition for a triad to be proper). In a
generalized cohomology theory, a triad (X; Xy, Xs5) is proper if and only if the

nclusions
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11 - (X17X1 ﬂXQ) — (X1 UXQ,Xl ﬂXQ) and

ig : (XQ,Xl N XQ) — (Xl U X2,X1 N XQ)

induce a projective direct sum representation of h"(X; U X9, X7 N Xy) for all
n € Z. In other words, we have that a triad (X; Xy, Xs) is proper if and only if,
for each n € Z and for each (uy,uz) € h"(X1,X; N X3) & h"( Xy, X; N Xy), there
erists a unique u € h™(X; U Xo, Xi N Xo) in such manner that h™(i1)(u) = u; and
h™(ig)(u) = us.

Proof. Let the following diagram be composed of admissible pairs and inclusion maps

from the triad in question.

(X1 U Xo, X1) (X1 U X, Xo)

A A

J1 J2

/
§

k1 (X1UX2,X1QX2> ke

2

(Xs, X101 X5) (X1, X1 N X)

71

\
/

For all n € Z, the following diagram has commutative triangles because the preceding
diagram of inclusions verifies this property. Furthermore, Kerh"(j;) = Imh"(i;) and
Ker h™(ja) = Im h"(i2) for all n € Z since the generalized cohomology sequences of the
triples (X7 U Xo, X1, X1 N Xy) and (X; U X5, X, X7 N X5) are exact by Theorem m
Thus, if (X; X5, X3) is a proper triad, then h™(k;) and h™(ks) are isomorphisms for all
n € Z. Therefore, Lemma [1.68)implies that A" (i1) and h"(i2) yield a projective direct sum
representation of the generalized cohomology group h"(X; U X5, X7 N X5) for all n € Z,

as we wished.

h(X1 U Xo, X1) h(X1 U X, Xo)

N/

h™ (k1) X1 UXQ,Xl ﬂXQ h' (k2)

" (XQ,Xl N Xs) Xl,Xl N Xs)
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Conversely, if the inclusion maps i; and i, induce a projective direct sum representation
of the generalized cohomology group h™(X; U X5, X7 N X5) for all n € Z, then the group

homomorphism

hn(Zl) ) hn<22) : hn(Xl U XQ,Xl N XQ) — hn(Xl,Xl N XQ) ) hn(XQ,Xl N Xz),

u = (h"(0)(w), A" (i) (u)),

is an isomorphism for all n € Z. Then, we first claim that A™(j;) is a monomorphism
for all n € Z. Indeed, since h"'(i1) @& h" 1(iy) is an epimorphism, h"~!(i;) is also an
epimorphism. Hence, by the exactness of the generalized cohomology sequence of the

triple (X1 U X27X17X1 N XQ), we have that
KGI‘ 6?X1UX2,X1,X10X2) - III] hn_1(7/1> - h/?’l—l(X17X1 m XQ)

implies Im 'y, ,x, x, x,nx,) = 0- This proves that Ker A" (j1) = Im &y, x, x, x,nxy) = 0
for all n € Z. It is also true that h™(js) is a monomorphism for all n € Z, but since the
proof of this assertion is analogous to the one we have just done we leave the details to
the reader. Now, we claim that h™(k;) is an isomorphism for all n € Z. In fact, if n is an

integer number, then:

e h"(ky) is a monomorphism. Let u € h™(X; U X3, X;) be such that h"(k1)(u) = 0.
We have to show that u = 0 to ensure that h"(k;) is a monomorphism. Since we

have:

[1"(i1) ® B (i2)|(R" (1) (w)) = (R"(i0)R" (1) (w), " (i) " (1) (w)) = (0,0)

because h™(i2)h™(j1)(u) = h"(k1)(u) = 0 and because h"(i1) o h™(j1) is the trivial
homomorphism by the exactness of the generalized cohomology sequence of the
triple (X7 U X5, X1, X1 N Xy), it follows A"(j1)(u) = 0 once h™(iy) & h"(i2) is a
monomorphism. Therefore, it follows v = 0 since h™(j;) was shown to be a

monomorphism; and

e h(ky) is an epimorphism. Let u € h™(Xq, X1 N X3). To ensure that h™(k;) is an

epimorphism, we have to prove that there exists v € h"(X; U X5, X7) such that
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h™(k1)(v) = u. Because h™(i1) @ h™(iz) is an epimorphism, we know that there
exists w € h"(X; U Xy, X1 N X3) such that

[R"(i1) ® h™(i2))(w) = (0,u).

Moreover, since

[A"(i1) © h"(i2)|(w) = (h"(i1)(w), h"(iz)(w)),

we have that

h"™(i1)(w) = 0 and h"(i2)(w) = u.

Hence, once w € Kerh™(i;) and Ker h™(i;) = Imh"(j1) because of the exactness
of the generalized cohomology sequence of the triple (X; U Xo, X7, X1 N X5), there
exists v € h"(X; U Xy, X;) such that

h* (1)) = w.

In this situation, it follows that

h* (k1) (v) = h"(ix)h"(j1)(v) = h"(iz)(w) = wu.

The proof that h™(ky) is an isomorphism is analogous to the proof that h"(k;) is an
isomorphism. Then, we also leave these details to the reader. Hence, (X; X7, X5) is a

proper triad, as we wished. O

Definition 1.76 (The generalized cohomology sequence of a proper triad). In a
generalized cohomology sequence, we define the generalized cohomology sequence of

the proper triad (X; X1, X5) as the sequence

W)

X1UXo

hn(X7X1 UXQ) > hn(X,XQ)

n n(X1,X1NX
0(%:x1.Xp) h ZEX,IXQ)I »

e A HXL X N X) W (Xy, Xy N X)) —— -+
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where il (X0, XN Xp) = (X, Xp) and Gy, (X Xa) = (X, X5 U X)
are inclusion maps, and O'y.x, x,) RN X, X N Xy) — WYX, X, U X)), named the
nth generalized coboundary operator of the proper triad (X; X, Xs), consists of
the composition between h™ 1 (ky)™' : A" (X1, X1 N Xy) — h" Y X, U Xy, X5) and the
nth generalized coboundary operator of the triple (X, X, U Xy, Xy), which is the map

5?X,X1UX2,X2) : hn—l(Xl U XQ,XQ) — hn(X, X1 U XQ) <>

Remark 1.77 (The relation between the generalized cohomology sequences of triples and
triads). Let (X; Xy, X3) be a triad such that Xy is a subset of X1. Then, it is immediate
that (X, X1, Xs) is an admissible triple. Moreover, it was shown in Remark that
(X; X4, X2) is a proper triad. Now, we claim that the generalized cohomology sequence
of the proper triad (X; X1, X3) coincides with the generalized cohomology sequence of the
triple (X, X1, X2). Indeed, this happens because

6?X;X1,X2) = 5?X,X1,X2)

for all n € Z since the inverse of the generalized induced homomorphisms generated by

the inclusion map

/{322 (Xl,XQ) — (Xl,XQ)

1s the identity homomorphism for all n € 7Z. In particular, this assertion shows that
the generalized cohomology sequence of a proper triad generalizes the generalized
cohomology sequence of a triple, which is widely expected since proper triads generalize

admissible triples. &

Theorem 1.78 (The generalized cohomology sequence of a proper triad is exact). In a
generalized cohomology theory, if (X; X1, Xs) is a proper triad, then ilts generalized

cohomology sequence is exact.

Proof. We prove this result showing that the generalized cohomology sequence of the
proper triad (X; X;, X5) is isomorphic to the generalized cohomology sequence of the
admissible triple (X, X; U X3, X3). Note the sufficiency of this argument since exactness
is invariant under isomorphism of sequences, and since the latter sequence is exact by

Theorem [L.53
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e X, X) WX, Xy) ————— -

AN

_1.(X1UX2,X9) (X,X9)
R0 X x) R™5(x x5 uxs)

~

hnil(Xl U XQ, XQ) — §?X,X1UX2,X2) — hn(X, X; U X2>

idyn—1(x,x,) hn 1 (ka) dpn(x,x;0x,) idpn(x,x4)

-

5(’3{;X1,X2) — hn(X, X; U X2>

R HX, X N X)

n—1,;(X1,X1NX2) n (X, X2)
R %) R (X1 0x)

-

e (X XD) (X, Xy) —— -~

Indeed, as shown by the preceding diagram, the generalized cohomology sequence of the
proper triad (X; Xy, Xs) is obtained from the generalized cohomology sequence of the
triple (X, X1 U X3, X5) by replacing the group h"~'(X; U X5, X5) by the isomorphic group
"Xy, X1 N Xy) under 2" (ko) + A" X U Xy, Xp) — A" 1(X;, X1 N X>), and defining
O(x.x, X, SO that 0.y, v,)© (ko) = 0(x X,UX».X,)- Lhus, the generalized cohomology
sequence of (X; X7, X5) is isomorphic to the generalized cohomology sequence of the triple

(X, X1 U Xy, Xs), as we wished. O

Definition 1.79 (Maps of triads and of proper triads). In a generalized cohomology
theory, let (X; X1, Xo) and (Y;Y1,Ys) be (proper) triads. We say that f: (X; Xy, X2) —
(Y:Y1,Y3) is an admissible map of (proper) triads if f : X — Y is a continuous map

such that:

L4 f(Xl) g le;

o f(Xs) CYs; and
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e the maps of pairs fi : (X, X1 U Xy) — (Y, Y1UY2), fo : (X, X1) — (Y, V1),
30 (X, Xp) = (VY2), fa: (X1, XiNXy) = (Y1,Y1NY), f5: (X1U Xy, Xo) —
(Y1UY2, Ys) and fs: (X, X1 N Xs) — (Y, Y1 NY3) are all admissible. &

Definition 1.80 (The generalized induced homomorphism between generalized
cohomology sequences of proper triads). In a generalized cohomology theory, if
[ (XX, Xs) = (Y;Y1,Y3) is an admissible map of triads, then we say that the

sequence of group homomorphisms

h(f) = ( ) hn_l(fS)v hn_l(f4)v h’n(fl)v hn(fS)v hn(f4)v )

1s the generalized induced homomorphism of f between the generalized cohomology

sequences of the proper triads (Y;Y1,Ys) and (X; X4, X3). O

Theorem 1.81 (Homomorphism of generalized cohomology sequences of proper triads
induced by an admissible map of proper triads). In a generalized cohomology theory,
if [ (XX, Xe) — (V3 Y1,Y3) is an admissible map of proper triads, then h(f) is a
homomorphism of exact sequences between the generalized cohomology sequences of the

triads (Y;Y1,Y3) and (X; X4, Xo).

Proof. We have to prove the following three relations for all n € Z. In fact, if n is an

integer number, then:

o W™ 0 b (fs) = W (fa) o hr I This relation is an obvious

consequence of the equality f3o igl)éimxﬂ = Z.ESQ},};;HYQ) o fu

® 0. x, x0) © RN fy) = h™(f1) o O(y.v1.vy)- To prove this relation we consider the

following diagram.

5(Y:Y1»Y2)

n—1 /\y—1
N (Y, YN Y) —— B ey, U Yy, V) WY, Y; UYs)

R (fa) R (f5) h™(f1)

| l l

hn—l(Xl,Xl ﬂXz) W) hn_l(Xl UXQ,XQ) 6"—> hn(X, X1 UXQ)
2

(X,X1UX9,X9)

5(X;X1»X2>

on
(Y,Y1UY5,Ys)
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We have h"~1(fy) o h"1(ky) = h""Y(ky) o h"~1(f5) since kj o fy = f5 0 ko. Then,
it follows h" (ko)™' o h"7Y(fy) = h"(f5) o " L(k})~!, proving that the square
on the left-hand side is commutative. In turn, the square on the right-hand side is

commutative because of Theorem and

o h'(fs)oh"j iyy'fuyé) h" ](())g;fux oh™(f1). This relation is an obvious consequence

of the equality ](YyluYQ of3 = fioj ))g))g&xg)' This completes the proof of the

commutativity of the following diagram.

e Y YS) rmy,Y;) —— -

A

hn— 1; (Yl Y1NYp) hn (Y,Y3)
A D)) Jv,yiuvy)

v

hnil(}/la }/1 N YQ) JELY?Y1,Y2) —_— hn(K Yi U YV2)

h™=1(f3) h" =1 (fa) h™(f1) h™(f3)

~

X1 N XQ) _6?X;X1,X2) — hn(X, X1 U Xg)

n—1;(X1,X1NXg) n (X, X2)
Rl Ky R X 0xy)

F—— PHX, X) WX, Xy) ————— -

This finishes the proof of the theorem. O

1.11 The generalized Mayer-Vietoris sequences

In this section, we set the last notorious helpful tools in various calculus
of the generalized cohomology groups, namely, the generalized Mayer-Vietoris
cohomology sequences of proper triads. The main theorems here, whose proofs are just
technical computations that we leave to the reader, set the exactness of these sequences.

We begin with the following algebraic lemma.
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Lemma 1.82 (Hexagonal Lemma). The following diagram of groups and homomorphisms

has each of its triangles commutative.

Co
/ XJ
¢ o el
\ Y1 P2 /
Lt \ 5’ / M2
o, /' \ o
/ \
Cy Yo C,
x ~ /
Co

If Im(¢1) C Ker(yy), Im(ps) = Ker(vs), Im(pg) C Ker(¢g) and n1 and ny are

isomorphisms, then (y onyt o & = —(yomy 't 0 &.

Proof. This result is an immediate consequence of Lemma [1.68 The reader can find its
proof in [I3], p. 38|. ]

Theorem 1.83 (A consequence of the Hexagonal Lemma). In a generalized
cohomology theory, let the following commutative diagram be composed of admissible pairs

and inclusion maps which come from a proper triad (X; U Xo; X1, X5).

(X, X1 N Xo) (X1, X1 N Xo)

% i1

/
\

k1 (X1UX2,X1QX2> ko
/ T \

Ji J2

|
/

(X1UX27X1) J (XIUX27X2)

1 l

X1 U Xy

ha h

Ay
o

X1 N Xo
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The preceding diagram induces the following one, which is also commutative and in such

manner that
hn(ll) © hn(kl)_l © 5?X2,X1OX2) = _hn(l2) © hn(k2)_1 © 5?X1,X10X2)

for alln € Z.
"X N X)

o s
(X2,X1NX2) (X1,X1NX2)

hn(XQ,Xl ﬂXz) §?X1UX2,X10X2) hn(Xl,Xl ﬂXg)

4 4

h™ (k1) hn(Xl UXQ,Xl ﬂXg) h"(k2)

/h”(j1) h"(jz)\
]’Ln<X1UX2,X1> h™(5) hn(Xl UX27X2)
h™ (1) h"(l2)
h™( X7 U Xy)
h™(m2) h™(m1)
h(Xy) 0! h™(X1)
h™ (h2) h™(h1)
h™( Xy N Xs)

Proof. The diagram in question is commutative because the one of inclusion
maps is commutative, and because the Commutativity Axiom yields the equalities
h"(ig) o 5?X1uX2,X1mX2) = §"( X2, X1 N Xy) and h"(iy) o 5?X1UX2,X10X2) = 0"(X1, X1 N Xy)

for all n € Z. Moreover, for all n € Z:

e Kerh"(j1) = Imh™(iy) and Kerh"(jo) = Imh"™(iy) because the generalized
cohomology sequences of the triples (X;UX3, X1, X1NX3) and (X;UX5, Xo, X1NX5)
are exact by Theorem [1.55}
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e Im 6?X1UX2,X10X2) = Ker h™(j) because the generalized cohomology sequence of the

pair (X; U X5, X7 N Xy) is exact by the Exactness Axiom; and

e h"(ky) and h"(k2) are isomorphisms because (X; U Xo; X7, X3) is supposed to be a

proper triad.

Therefore, since we have seen that all hypotheses of Lemma hold, it follows
Rr(l) o W (k)™ 0 0y, xunxgy = —h"(l2) © W™ (k2) ™" 0 d7x, x,nx, for all m € Z, as we

wished. O

In the next paragraphs, we use the notations and the diagrams of Theorem to
define and study the generalized Mayer-Vietoris cohomology sequence of a proper triad
in which the main space is the union of its subspaces. This convention will be undone
when we reach Theorem [1.89] where new notations and diagrams need to be considered to
define and study the generalized relative Mayer-Vietoris cohomology sequence of a generic

proper triad.

Definition 1.84 (The generalized Mayer-Vietoris cohomology sequence of a proper triad).
In a generalized cohomology theory, we define the generalized Mayer-Vietoris

cohomology sequence of the proper triad (X1 U Xo; Xy, Xs) as the sequence:

h(X; U X,) Pn » W (X1) @ h"(Xo)
A?X1UX2;X17X2) U,
e S X N X) (XN Xy) —————— e

where:

o U, : h"(X;) @ h"(Xy) — h™(X1 N Xs) maps each (ui,us) € h"(X1) & h"(Xy) into
h”(hl)(ul) - hn(h2)<U2> S hn(Xl N XQ),'

e &, : M(X; U Xy) — h"(Xy) @ h"(X2) maps each v € h™(X; U Xy) into
(h™(m1)(v), h"(m2)(v)) € h™(X1) ® h"(X>); and
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o Al uxoxix) RHX, N Xy) — (X, U X)), named the nth generalized

Mayer-Vietoris coboundary operator of (X1 U Xo; X1, X5), is the composition
—h"(ly) o h"(ky)™t o Ox» xanx,) Which  coincides with the composition

h"(ly) o (ko)™ o O(x, x1nx) 0y Theorem . &

Theorem 1.85 (Relation between the generalized coboundary operator of a proper triad

and the generalized Mayer-Vietoris coboundary operator of an associated proper triad).

In a generalized cohomology theory, if (X; X1, Xs) is a proper triad, then the following

diagram is commutative for all n € Z.

AT
(X1UX9;X1,X9)

hnil(Xl N Xg) > hn(Xl U XQ)

19 gntl

n
(X1,X1NX3) (X,X1UX>)

v ~

hn(X17X1 ﬂXg) n+1—> hn+1(X7 X1 UXQ)
(X3X1,X2)

Proof. For all m € Z, we have d'xx x,x» = Ofxxuxy © " '(l2) by
Definition 0xxixs) = Ofxxiuxsxs © P"7'(k2)™" by Definition [1.76, and
Alx,uxyxixy = P(I2) o B(k2)™' o 0k, x,nx,) by Definition [1.84  Therefore, it

follows that

n+1 n n+1 n —1 n
6(;;X17X2) © 6(X1aleX2) = 5(;X1UX2,X2) © h (kz) © 6(X1,X10X2)
= 5?)?3)(1UX2) © hn(l2) © hn<k2)71 © 6?X1,X10X2)
n+1 n
= 6(;X1UX2) © A(X1UX2§X17X2)
for all n € Z, as we wished. O]

Theorem 1.86 (The generalized Mayer-Vietoris cohomology sequence is exact). In a

generalized cohomology theory, the generalized Mayer-Vietoris cohomology sequence of a

proper triad (X1 U Xo; X3, Xo) is ezact.

Proof. Let n be an integer number. The following six assertions complete the proof of

this theorem.
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(1) U, 0 ®, : "Xy U Xs) — A"(Xy N Xy) is the trivial homomorphism. Thus,
Im(®,) C Ker(¥,,).

(2) If (u1,u2) € h"(Xy) & h"(Xs) and V,(ui,us) = 0, which is the same as
(ur,u2) € Ker(W,,), then there exists v’ € h™(Xy U Xy) such that ®,(u") = (uy,us),
which is the same as (uy,uz) € Im(P,,). Thus, Ker(¥,) C Im(P,,).

(3) Pn 0o Alyuxaxy s © PHXT N Xa) = WN(Xy) @ hM(Xy) s the trivial

homomorphism. Thus, Im Ay x, x, x,) € Ker(®y).

(4) If v € (X7 U X3) and ®,(v) = (0,0), which is the same as v € Ker(®,,), then
there exists v' € k" 1(X; N X3) such that Alx Ux0:x1,x0) (V) = v, which is the same

asv € Im A?XlLJXQ;Xl,XQ)' Thus, Ker(®;,) € Im AT(ZX1UX2;X1,X2).

(5) Aly,uxexy g © Tno1 0 WXL @ BH(XR) = AM(X) U Xy) s the trivial

homomorphism. Thus, Im(¥,,_;) C Ker A?Xlqu;Xth)'

6) If w € A" H(X; N Xy) and Alx Uxaxs xoy(W) = 0, which is the same as
w € KerAlx x,.x,.x,) then there exists (wi,wy) € h"'(X1) @ h"'(Xy) such
that W, _1(wy,wy) = w, which is the same as w € Im(V, ).  Thus,

Ker Al'y, x,.x, x0) © Im(Wn1).

We leave these instructive details to the reader. In order to complete them, we recommend

a closer look at the proof of Theorem [I.55] O

Definition 1.87 (The generalized induced homomorphism between generalized
Mayer-Vietoris cohomology sequences of proper triads). In a generalized cohomology
theory, if f: (X1 U Xo; X1, Xo) = (Y1 UY5; Y1, Y5) is an admissible map of proper triads,

then we say that the sequence of group homomorphisms

h(f) = ( ) hnil(ﬁl |X1ﬂX2)ﬂ hn(fl ‘X1UX2)7 hn(fQ ’X1) EDhn(fS ’X2)7 hn(f4 ‘X1WX2)7 )

is the generalized induced homomorphism of f between the generalized
Mayer-Vietoris cohomology sequences of the proper triads (Y7 U Ya;Y1,Y3) and
(X1UX2;X1,X2). <>
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Theorem 1.88 (Homomorphism of generalized Mayer-Vietoris cohomology sequences
induced by a map of triads). In a generalized cohomology theory, if f : (X;UXs; X1, Xo) —
(Y1 UY5; Y1, Y5) is an admissible map of proper triads, then h(f) is a homomorphism of
exact sequences between the generalized Mayer-Vietoris cohomology sequences of the triads

(Vi UYas Y4, Y2) and (X; U Xs; X3, Xa).

Proof. To verify the statement of this theorem we have to prove that the following diagram

is commutative.

e WY (YN YY) h”(YlAﬂ Vo) ——mm— -+
Al Uvysvy,v) v
h”(Yl\’U Ys) @/, > h" (Y1) @ h"(Ya)
h" = (falxynxy) h™(f1lx,ux,) h™(falx,)®R™ (f3]x5) h™(falx,nx,)
h”(Xl:U Xs) @, : h“(Xl)é;h”(Xg)
Al UxX1,X2) U,
e (X N XD) h"(leﬂ Xy) ——— -+
We leave the details to the reader. O]

To close this section, we present the generalized relative Mayer-Vietoris cohomology
sequence of a generic proper triad. This sequence is not a generalization of the one that
we have just studied in this section. In fact, we will see later when we apply the new
sequence to a proper triad in which the main space is the union of its subspaces that
it yields a conclusion which the first sequence does not yield. Since the proofs here are

essentially the same as the preceding ones, we will leave them to the reader. We begin
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with the following theorem, whose notations and diagrams will be considered until the

end of this section.

Theorem 1.89 (Another consequence of the Hexagonal Lemma). In a generalized
cohomology theory, let the following (disconnected) commutative diagram be composed

of admassible pairs of topological spaces and of inclusion maps which come from a proper

triad (X, Xl; XQ)

(X, X1 N X,)

p 2

\
/

(Xo, X1 N Xy) j (X1, X1 NXy)

/
\

i2 i1

/
\

k1 (X1UX2,X1QX2> ko

-

(X1 U X5, X1) (X1 U X5, X5)

Z
\
-
/
N
Z

(X, X3 UXy)

(X, X5) (X, X1)

h

A
\/

(X, X1 NXy)

The preceding diagrams induce the following one, which is also commutative and in such

manner that

5?X,X1ux2,xl) © hml(kl)fl © hnil(pl) = _5?X,X1UX2,X2) © hnil(l@)fl © hnil(m)

for all n € Z.
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X, X N Xs)

h" = (p1) A"~ (p2)
hn—l(XQ’Xl ﬂXg) R"=1(5) hn—l(Xth ﬂXQ)
hnfl(iz) hnil(il)
h"=1 (k1) hnfl(Xl U Xs, X3 ng) Rt (k2)
R Y(q1) R 1(g2)
hn_1<X1 UXQ,Xl) 9%, X, UXg, X, NX2) hn_l(Xl UXQ,XQ)
6m m)

h™(m2) h™(m1)
h"(X, Xz) 0! h(X, X1)

h™ (hz2) h™(h1)

~

WX, X1 N Xo)

Proof. The proof of this result is analogous to the proof of Theorem Then, we leave
the details to the reader. O

Definition 1.90 (The generalized relative Mayer-Vietoris cohomology sequence
of a proper triad). In a generalized cohomology theory, we define the generalized
relative Mayer-Vietoris cohomology sequence of the proper triad (X; Xy, Xs) as

the sequence:

h(X, X1 U Xo) on y h(X, X1) @ h(X, Xs)
A?X;Xl,XQ) 2%

C— X, X N XD) P(X, XiNXy) —— -+
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where:

e U, : WX, X1) ®h(X,Xs) — A"(X, X1 N Xs) maps each pair of elements
(ul,u2) € hn(X, Xl) D hn(X, XQ) mto h”(hl)(ul) — hn(hz)(UQ> c hn(X’ X1 N XQ),'

o O, : (X, X1 UX5) = h"(X, X)) ®h"(X, Xs) maps each v € h"(X, X1 U Xs) into
(h™(mn)(v), h"(m2)(v)) € h™(X, X;1) ® h"(X, X5); and

o Alyix,xy @ PPTHX X N X)) = BM(X, X1 U Xa), named the nth generalized
relative Mayer-Vietoris coboundary operator of (X;Xi,X,), is the
composition —0(x y,,x,xy) © P k)T o KN (pr) which  coincides with the

composition 0 ., x, x,) © " (ky)™t o R Y(py) by Theorem . &

Theorem 1.91 (The generalized relative Mayer-Vietoris cohomology sequence is exact).
In a generalized cohomology theory, the generalized relative Mayer-Vietoris cohomology

sequence of a proper triad (X; X1, Xs) is exact.

Proof. The proof of this result is analogous to the proof of Theorem Then, we leave
the details to the reader. O

Remark 1.92 (The generalized relative Mayer-Vietoris cohomology sequence of a proper
triad in which the main space is the union of its subspaces). In a generalized
cohomology theory, let (X1UXy; Xy, X2) be a proper triad. The generalized Mayer-Vietoris
cohomology sequence of (X1 U Xo; X1, Xo) is different from the generalized relative
Mayer-Vietoris cohomology sequence of (X7 U Xo; Xq, Xo). In  particular, since
(X1 U X9, X5 U Xy) is the trivial group for all n € Z by Corollary the last

sequence s

hn(Xl U X27X1) D hn(Xl U XQ,XQ) L) ]’Ln<X1 U Xg,Xl N XQ)

T |

> 0 0

~

Therefore, since the preceding sequence s exact because of Theorem we have that ¥,
is an isomorphism from h"(X,UXs, X1) @ h"(X1U Xy, Xy) onto h™ (XU Xy, X1 N Xy) for
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all n € Z. In other words, for each n € Z and each element u € h"(X; U Xo, X1 N X5),
there exists a unique (uy,us) € h"(X; U Xo, X7) @ h"(X7 U Xo, Xo) in such manner that
u=h"(hy)(u1) — h"(h2)(uz). &

Definition 1.93 (The generalized induced homomorphism between generalized
relative  Mayer-Vietoris cohomology sequences of proper triads). In a generalized
cohomology theory, if f: (X; X1, Xo) — (Y;Y1,Y5) is an admissible map of proper triads,

then we say that the sequence of group homomorphisms

h(.f) = (a hn_l(fﬁ)a hn(fl)a hn(f?)@hn(fd)a hn(fﬁ)a )
1s the generalized induced homomorphism of f between the generalized
relative  Mayer-Vietoris cohomology sequences of the proper triads (Y;Y1,Y3) and

(X;Xl,X2)~ &

Theorem 1.94 (Homomorphism of generalized relative Mayer-Vietoris cohomology
sequences induced by a map of triads). In a generalized cohomology theory, if
[ (XX, Xe) = (V;Y1,Y,) is an admissible map of proper triads, then h(f) is a
homomorphism of exact sequences between the generalized relative Mayer-Vietoris

cohomology sequences of the triads (Y;Y1,Y3) and (X; X1, Xs).

Proof. The proof of this result is analogous to the proof of Theorem We leave
the details to the reader. O

1.12 Multiplicative generalized cohomology theories

In this section, we present axioms for multiplicative structures in generalized
cohomology theories. In general, the fact that cohomology theories can be enriched
with multiplicative structures turns them into stronger sources of information when
compared to homology theories. It is to be noted that the exposition below is not
common in the references, which prefer to treat multiplicative structures of particular
cohomology theories. = We begin with the following definition in which we select
between all of the admissible categories of topological spaces the ones that can support

multiplicative structures.
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Definition 1.95 (Multiplicative category of topological spaces). An admissible category
of topological spaces € is a multiplicative category of topological spaces if it satisfies

the following two conditions.
(1) If (X, A) and (Y, B) are admissible pairs, then the pair
(X,4) x (Y, B) = (X xY, ),

where Z = (AXY) U (X X B), is also admissible.

2) If f : (X,A) — (X,A) and g : (Y,B) — (Y',B’) are admissible maps of
pairs, then the natural map f x g : (X,A) x (V,B) —» (X,A") x (Y',B') s

also admissible. &

Definition 1.96 (Multiplicative generalized cohomology theories). In a generalized
cohomology theory based on a multiplicative category of topological spaces €, a
multiplicative structure is a map p that sends m,n € Z and (X,A),(Y,B) € €
mto a group homomorphism

WXy vpy - MMXGA) @ BM(Y,B) = BMTH(X X Y, Z)

that satisfies the following five azxioms. Here ® denotes the usual tensor product of
abelian groups. For convenience, we will denote u&nA) (V.B) simply by fimn (although

it is an abuse of notation).

(1) Naturality Azxiom. For every integer numbers m,n € 7Z and every admissible

maps [ : (X, A) — (X,A") and g : (Y,B) — (Y, B’), the following diagram is

commutative.
(X, A) @ h*(Y, B) fomn s (X x Y, Z)
™ (f) @ h™(g) R (fxg)

(X, A) @ k(Y B') s (X ) Y, Z)
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(2) Excision-compatibility Axiom. For every integer numbers m,n € Z and every

admissible pairs (X, A) and (Y, B), if the excision maps

n: (AXY, AxB) — (Z, XxB) and
0: (XxB, AxB) — (Z, AXY)

are admissible and induce isomorphisms in all degrees, then the following
two diagrams are commutative. Note that n is the excision of (Z, X x B) with
respect to (X — A) x B as well as 6 is the excision of (Z, A X Y') with respect
to Ax (Y — B).

6&,14) ® idhn(y,B)

h"(A) ® h*(Y, B)

s (X, A) @ hi(Y, B)
Hm,n

hm+n(A X Y, A x B) Hm+1,n

hmEn )

-

N hm+n+1<X X YV, Z)

rmt(Z, X x B) —
§(X><Y,Z,X><B)

(_1)midh”"(X,A) ® 5?}/73)

h(X, A) ® h™(B)

s (X, A) @ k(Y B)

Hm,n

~

hm+n(X X B7 A X B) HKm,n+1

hm+n (9)—1

-

N hm+n+1(X X }/’ Z)

hmt(Z, AXY) —
6(X><Y,Z,A><Y)
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(3) Associativity Aziom. For every integer numbers k,m,n € 7Z and every
admissible pairs (X, A), (Y, B) and (W,C), the following diagram is commutative,

where
= (CxX)U (WxA) and
= (CxXxY)U (WxZ).

dyk (w,cy ® Hm.n

WA (W, C) @ h™(X, A) @ h™(Y, B) s hE(W, C) @ k™ (X X Y, Z)

Bk,m ®1dpn (v, B) Fk,mtn

~

WM (W x X, U) ® h*(Y, B)

~

y RFTME(W < X x Y, V)

Hk+m,n

(4) Unit Aziom. Being Q a one-point space in €, there exists an element 1 € h°(Q)
such that
(h™(i1) o prom)(1 ®u) = u and

(h"™(i2) © pimo)(u®1) = u

for all m € Z and all w € h"(X,A), where iy : (X,A) — (2 x X,Q x A)
and iz : (X, A) = (X x Q, A x Q) are the natural inclusions. It is to be noted
that these inclusions are homeomorphisms since the natural projections are their

muerses.

(5) Commutativity Axiom. For every integer numbers m,n € 7Z and every

admissible pairs (X, A) and (Y, B), if
Z7' = (Bx X)U(Y x A),
then the following diagram is commutative, where
Upm(u®@0v) == (=1)"v®@u

for allu®@v e h"(X,A) @ h"(Y, B), and
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a:(XxY,Z) = (Y xX,ZY,

(z,y) = (y,2).

(X, A) @ h*(Y, B) o > hn(Y, B) @ h™(X, A)

Hm,n Hn,m

-

Wt (X X Y, Z) 4

-

hrEm (Y x X, 271

thrm(a)

A generalized cohomology theory equipped with a multiplicative structure is called
a multiplicative generalized cohomology theory. A multiplicative structure p
is also said to be an external multiplication. Moreover, if v € h"™(X,A) and
v € h'(Y,B), then pm,(u ® v) is denoted by u x v and is called the cross product
of these elements. &

Remark 1.97 (On the Excision-compatibility Axiom). In a multiplicative generalized
cohomology theory, let (X, A) and (Y,B) be admissible pairs of topological spaces.

Let the excision maps

n: (AxY, AxB) — (Z,XxB) and
0: (XxB, AxB) — (Z, AxY)

be as in Condition (2) of Definition . These maps induce tsomorphisms in all
degrees if (X — A) x B and A x (Y — B) are open subsets of Z such that their
closures are contained in the interiors of X X B and A x Y, respectively. In
particular, these conditions are satisfied if A and B are both open and closed subsets

of X andY, respectively. &

Theorem 1.98 (Internal and external multiplications). In a multiplicative generalized
cohomology theory, let (X, A) and (X,B) be admissible pairs of topological spaces.
If A0 X — X x X s the diagonal map, then the composition ¢, defined by the

commutative diagram
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Pm,n

T

18 a natural homomorphism, which is called the winternal multiplication or the
cup product. Moreover, the following diagram is commutative for all integer numbers
m,n € Z and all admissible pairs (X, A) and (Y, B), where m; : (X XY, AXxY) — (X, A)
and my 1 (X XY, X x B) — (Y, B) are the natural projections onto the first and the second
factors, respectively.

(X xY,AxY)®h"(X xY,X x B) o >y h (X X Y, Z)

AN

hm(71'1)®hn(7'r2)

Hm,n

(X, A) ® h™(Y, B)

This shows that we can recover the external multiplication from the internal multiplication

m a canonical way.

Proof. For every integer numbers m,n € Z and every admissible map f : X — X'
for which f(A) C A" and f(B) C B', the naturality of ¢,,, is ensured by the following

commutative diagram.

Pm,n
(X, A) @ h'(X, B) — ™ pmin(X x X, Z) — "B pmin(X, AU B)
R (f) @ ™ (f) Rt (fX f) R f)

hm<X,,A/) (2 hn(X/, B/) T> hm+n(X/ X X/, Z/) W) hm—i—n(X/’A/ U B/>

\—/

Pm,n
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Note that this diagram is commutative because its right-hand square is commutative
by the functoriality of the contravariant functor A" since (f X f) o A = A’ o f, and
because its left-hand square is commutative by the Naturality Axiom. Finally, note
that the last assertion of the statement follows from the fact that the following diagram

is commutative, where

U:=(AXxYxXXxY)U (X xY xX x B).

(X XY, AXY)®h"(X xY,X x B) fomn > WX XY x X x Y, U)

A

R™ (1) ® h™(72) R (A)

-

hm (X, A) @ h™(Y, B) sy (X X Y, Z)

Hm,n
In turn, this diagram is commutative because of the Naturality Axiom since we have

hm+n(A) = hm+n(’ff1 X 7T2)_1. ]

Remark 1.99 (Graded commutative ring and graded module of a multiplicative
generalized cohomology theory). In a multiplicative generalized cohomology theory, let
Q be an admissible single point. In this situation, the reader can prove that the following

assertions are true.

o If X is an admissible collapsible space and

hX) = @ n(X),
nez
then h(X) is a graded commutative ring with unit under the internal multiplication.
In fact, its unit is the obvious one formed from h°(px)(1), where px : X — € is the
only possible map and 1 € h°(Q) is the element whose existence is ensured by the

Unit Axiom.
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o If(X,A) is an admissible pair such that X is a collapsible space and

h(X,A) = @D h"(X, A),
nes
then h(X, A) is a graded module over the graded commutative ring with unit h(X)
defined above. &

1.13 Compactly-supported cohomology

In this section, we describe an important construction from the generalized
cohomology groups, namely, the compactly-supported generalized cohomology groups.
This new object is especially interesting when one desires to enlarge the scope of a
particular generalized cohomology theory. This last phrase will become clearer when
we define the compactly-supported K-Theory groups in Section [2.10] We begin with the

following definition.

Definition 1.100 (Compatible family of compact subspaces of an admissible space). Let
€ be an admissible category of topological spaces. Being X an admissible space, we
say that the compatible family of compact subspaces of X is the collection
Ry (X) whose elements are the compact subspaces of X that satisfy the following three

conditions.

(1) IFK,L € 8(X), then K UL € fs(X).
(2) If K € R¢(X), then (X, X — K) is an admissible pair in €.

(3) If K, L € Rye(X) with K C L, then the inclusion i, : (X, X — L) = (X, X — K)

1s an admissible map of pairs in €. &

Definition 1.101 (Generalized compactly-supported cohomology groups). In a
generalized cohomology theory based on an admissible category €, let X be an
admissible space. Being n an integer number, we say that the mth direct system
of generalized cohomology groups of X relative to compact subspaces is

the triple
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QlnX = (ﬁ%(X)a (hn(X7X_K))K€§(g(X)7 (h'nz%[/ : hn(XaX_K) — hn(Xax_L))K,LGJ%g(X))’

where h"i; + h(X, X — K) — h™(X,X — L) is the nth induced homomorphism of
the inclusion map i%; : (X, X — L) — (X, X — K) if K is contained in L, and is the
trivial homomorphism otherwise. Furthermore, we define the nth compactly-supported
generalized cohomology group of X, and denote it by h2(X), to be the direct limit of

abelian groups

BE(X) = lim h"(X X - K),

which is equipped with the family (V% : B"(X, X — K) — h2(X))ken, (x) of morphisms of

abelian groups. %

Remark 1.102 (On the notions presented above). We have the following facts about the

notions presented above.

e We have that Condition (1) of Definition ensures that Ry (X) is a direct
set with respect to the partial order given by the inclusion of compact
subspaces. Indeed, for any K,L € R¢(X), we have K C KUL, L C KUL
and K UL € Ry (X).

e We have that Condition (2) of Definition |1.100 ensures that, for every K € Ry (X),
it makes sense taking the generalized relative cohomology group h"(X,X — K)
for alln € Z.

e We have that Condition (3) of Definition|1.100 ensures that, for every K, L € R4 (X)
such that K C L, it makes sense taking the generalized induced homomorphism

i, - h(X, X — K) — h"(X,X — L) for alln € Z.

o The three items above ensure that A% is well-defined for all n € Z. However, in
order to prove that A% is a direct system of abelian groups, we still have to show
that hig,r = idpn(x x—K) for all K € R4(X) and that, for every K,L,M € R¢(X)
that verify K C L C M, we have h™ix,, = h™i¥,, o h"ix;. These equations are
immediate consequences of the functoriality of the generalized cohomology theory

under consideration.
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e The four items above ensure that the direct limit h(X) = in}(h”(X,X — K)
is well-defined. Moreover, because of Theorem [A.7, we know that two classes
[u], [v] € hX(X) are equal, where u € h"(X, X — K) and v € h"(X,X — L) with
K,L € R4(X), if and only if there exists M € Ry(X) for which K C M, L C M

and h™i,, (u) = i, (v).

e If X is a compact space, then h(X) is isomorphic to h"(X) for all n € Z. This
happens since R¢(X) contains a unique mazimal compact subspace of X, which is

X atself. &

Remark 1.103 (On the Excision Axiom in the literature). The Ezcision Aziom is not
always stated as in Definition [1.9. In fact, its other common version is equal to ours
but not requiring the openness condition on U. The motivation for this version (which
evidently restricts the range of generalized cohomology theories, being then a stronger
azxiom) is that it holds in Singular Cohomology and, as we shall see later, in K-Theory.

This stronger version is the one used until the end of this section. &

Theorem 1.104 (Isomorphism with the one-point Alexandroff compactification of a
locally compact Hausdorff space). In a generalized cohomology theory based on an
admissible category of topological spaces €, let X be an admaissible locally compact

Hausdorff space. Suppose that:

(a). (Xt ,00) is admissible, where Xt = X U {oo} is the one-point Alezandroff
compactification of X. In particular, note that this implies that X is an

admissible space;
(b). Re(X) C Re(XT);

(c). the excision map ix : (X, X — K) — (X7, Xt — K) is admissible for every
K e .ﬁcg(X),

(d). the inclusion map jrx : (XT,00) — (X7, XT — K) is admissible for every
K € Ry (X); and
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(e). there exists a fundamental set of open neighborhoods b = {Uy}aen of 0o in X,
where

U, = XT-K,

with K, € Re(X) for all a € A, such that U, is contractible for each o € .
See Figure[1.1]

Under these conditions, we have that the compactly-supported generalized cohomology
group h(X) is isomorphic to the pointed reduced generalized cohomology group %’;O(XJ“)
for alln € Z.

Proof. We have the following facts.

e The diagram below is commutative because its corresponding diagram of inclusions

is easily seen to be commutative.

(i -1
WX, X — K) — 0 pn(xt X~ K)
Wiy hri
h"(X, X — L) R s h"(X+, Xt —1L)
ir

Note that A" (ix) ™" is well-defined for all K € f¢(X) because of the Excision Axiom
(see Remark [1.103]). Therefore, by taking the direct limit on both sides, we obtain
the map

o, ANX) — lim (X, XT - K),
— KeRe(X)

which the reader can readily prove to be an isomorphism since each of its components

is an isomorphism.

e The diagram below is commutative because its corresponding diagram of inclusions

is easily seen to be commutative.

(2)The reader can prove that the existence of such a fundamental set of open neighborhoods is
ensured if X is locally contractible in oo. However, as one could expect, we cannot ensure a priori
that the elements of such a collection of open subspaces of Xt are formed from compact subspaces
in Ry (X).
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h"(jx)

(XT, XT - K) s h( X, 00)
hriX T
n + + _ v hN +
(Xt Xt — L) oy (X o)

Therefore, by taking the direct limit, we obtain the map

v, : lim A" (X7, XT—-K) — WX, c0),
— KERe(X)

which we now prove to be an isomorphism. Indeed, for each K € RKg(X),
since { is a fundamental set of open neighborhoods of co in X, there exists a € A
such that

U, = X"—-K, C X" -K.

Hence, we have that
RY(XT, XT - K) and R(XT, U,)

are identified in the direct limit. Moreover, by hypothesis, U, = Xt — K, is
contractible. Thus, it follows that

(XY, Uy) and h"(X™, oo)

are isomorphic because of Theorem [[.58 The reader may convince himself or

herself that this ensures our claim.

Consequently, since EZO(X*) is isomorphic to h"(X*,00) for all n € Z, the theorem is

proved because

U,0®,: h(X) — (X, c0)

is an isomorphism between the compactly-supported group AZ(X) and A"(XT,00)

for alln € Z. O
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Figure 1.1: This picture represents the one-point Alexandroff compactification X of a
space X that admits a fundamental set of open neighborhoods of oo as above. Note
that, by definition, an open set in this collection is the complement in Xt of a compact
subspace in 8¢ (X).

Remark 1.105 (On the hypotheses of the preceding result). The reader can prove that
we can weaken Items (c) and (d) of Theorem |1.104] by just requiring the existence of a
cofinal family of compact subspaces in Re(X) for which the properties stated in these

items are verified. &

Example 1.106 (The thesis of the preceding result is not always true). Let X be the
surface of countable-infinite genus obtained by connected summing two-dimensional tori.

In Singular Cohomology, we have

=
=
2

D
N

Therefore, in Singular Cohomology, H!(X) is not isomorphic to f[”(XJF) for all

n € Z. Thus, in a generalized cohomology theory, the conclusion of the preceding result

is not always true. &

Finally, in order to finish this section, we show that the multiplicative structures
studied before are well-behaved with respect to the compactly-supported cohomology
groups. This is done in the following theorem, whose proof we leave as an exercise to

the reader.
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Theorem 1.107 (Multiplicative structures in compactly-supported groups). In a

multiplicative generalized cohomology theory,

[oma] : B (X) @ hE(X) = h™™(X),

[w @ [v] = [pma(u®@0)],
18 well-defined, as well as

(] = R (X) @ BE(Y) = BTT(X X Y),

[u] @[] = [pmn(u@0)].

Proof. We leave the details of this proof to the reader since they just consist in
proving that
[omn(u @ v)] and [0 (U @ v)]

do not depend on the representing elements u and v of the compactly-supported classes

[u] and [v], respectively. O
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Chapter 2

Ordinary K-Theory as a Generalized
Cohomology Theory

In this chapter, we expose the main notions on Ordinary K-Theory as a
generalized cohomology theory, taking advantage of the results proved in Chapter [I]
In order to write this part of the text, we wused as main references
[2, pp. 43-94] and [19, pp. 52-111]. However, Sections and could not be
written without |15, pp. 38-72] as well as Sections and could not be completed
without [II, [3], [23, p. 65, pp. 70-76] and [33].

2.1 Absolute K-Theory

In this section, we start the study of Ordinary K-Theory defining its most
elementary notions, namely, the absolute K-Theory group and the induced group

homomorphisms. We begin with the following definition.

Definition 2.1 (The category of compact Hausdorff topological spaces). We define the
category of compact Hausdorff topological spaces, and denote it by TopHdCpt, to

be the one whose:

e objects are compact Hausdorff spaces; and

e morphisms are continuous functions f : X — Y where X and Y are compact

Hausdorff spaces. &
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Remark 2.2 (On some results from Appendixes [Bland [C]). We have the following facts

from the appendizes.

o Let S be an abelian semigroup. Theorems[B.3 and[B.4] say that there exists a unique,
up to a unique isomorphism, Grothendieck group K(S) of S. Moreover, Theorem
and Remark [B.7 imply that:

o the generic element of K(S) is a formal difference of classes [a] — [b] € K(S);

and

o two classes [a] and [b] in K(S) coincide if and only if there exists s € S for
which a +u = b+ u.

o Given a topological space X, the set Vectx of isomorphism classes of complex
vector bundles on X s an abelian semigrou when equipped with the direct
sum operation

@ : Vectxy x Vecty — Vecty,

(lE], [F]) = [EoF]

by Theorem [C.38

These two pieces of information are the ones that allow us to set the following

definition. &

Definition 2.3 (The absolute K-Theory group of a compact Hausdorff space). Let X
be an object in TopHdCpt and Vectyx be the semigroup of isomorphism classes of
complex vector bundles on X with respect to the induced direct sum. The absolute
K-Theory group of X, hereafter denoted by K(X), is the Grothendieck group associated
to Vecty. &

Remark 2.4 (On the elements of the absolute K-Theory group of a compact
Hausdorff space). Let X be an object in TopHACpt. It follows from Remark[2.4 and from

Definition that:

W1n fact, the induced direct sum operation turns Vecty into an abelian monoid. This happens
because the isomorphism class of the product vector bundle with trivial typical fiber is its identity
element.
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e the generic element of K(X) is a formal difference of classes [[E]] — [[F]] € K(X);

and

e two classes [[F]] and [[F]] in K(X) coincide if and only if there exists a complex
vector bundle G for which [E] ® [G] = [F] @ [G]. That is, [[E]] = [[F]] in K(X)
if and only if there exists a complex vector bundle G for which E® G and FF & G

are 1somorphic over X. O

Remark 2.5 (The reason for restricting the framework of absolute K-Theory groups to
TopHdCpt). The reader may be asking himself or herself why we are restricting to
compact Hausdorff spaces in Definition if the conclusions of Remark which
were immediately obtained from Remark are still true for all classes of
topological spaces. We now present answers for this question. However, these answers
will only become clear in next sections, where they turn out to be essential properties of
K-Theory groups of compact Hausdorff spaces. Indeed, let X be an object in TopHdCpt.
Thus:

e if [[E]] and [[F]] are coincident classes in K(X), then there exists a complex vector

bundle G such that

Therefore, because of Theorem we know that there exists a complex wvector
bundle H such that G & H is isomorphic to some trivial vector bundle of rank
n € N, which we will also denote by n. Hence, [[E]] = [[F]] in K(X) if and only
if there exists a trivial vector bundle n for which E & n and F & n are isomorphic

over X; and

e given a class [[E]] —[[F]] € K(X), Theorem ensures the ecistence of a complez
vector bundle G such that F' @& G is isomorphic to some trivial vector bundle n.

Therefore,
(B - [[F]) = [[E]+ (G - [[F]] - [[G]
= [FedG]-(Fed]
= [EeG] -]
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In other words, we have that any K-Theory class of a compact Hausdorff space can
be represented as a formal difference between a generic vector bundle and a trivial

vector bundle. &

Notation 2.6 (On the rank of K-Theory classes). Let X be an object in TopHdCpt
and x € X. Given a class a = [[E]] — [[F]] € K(X), we will use the notation rk,(«) to
indicate k. (E) — rk, (F). O

Definition 2.7 (Pullback in absolute K-Theory). Let f : X — Y be a morphism in
TopHdCpt. We say that the pullback of f in absolute K-Theory is the morphism of

abelian groups
K(f): K(Y) — K(X),
[(E] = [[F]] = [/ E = F,

where f*E and f*F are the pullbacks of the vector bundles E and F' through f, respectively.
Note that K(f) is well-defined because the pullbacks of isomorphic vector bundles are also

isomorphic. &

Remark 2.8 (Categorical interpretation of the absolute K-Theory data presented
above). Being Y., the standard category of abelian groups, we have the contravariant

functor
K : TopHdCpt — 9,
X — K(X),

f: X=Y = K(f): K(YY)— K(X).
Indeed, if f: X =Y and g:Y — Z are morphisms in TopHdCpt, then

K(ldx> = ldK(X) and

K(gof) = K(f)oK(g)

by Theorem [C.55. Furthermore, since Theorem imply that the pullbacks of vector

bundles through homotopic continuous maps are isomorphic over X, the contravariant

functor
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(K] : [TopHdCpt] — %,
X = K(X),

f: X—>Y] —» K(f): K(Y) > K(X),

is well-defined, where [TopHdCpt| is the quotient of TopHdCpt by the relation of
homotopy of maps, which s an equivalence relation that is compatible with the

composition in TopHdCpt. O

Example 2.9 (Absolute K-Theory groups of contractible compact Hausdorff
spaces). Let X be a contractible space in TopHdCpt. Since every vector bundle on X
is trivial by Corollary[C.58, Vectx is composed of an isomorphism class for each possible
dimension of the typical fiber of a trivial vector bundle on X. Thus, Vectx is isomorphic
to the additive monoid N. Consequently, K(X) is the additive group Z. In particular,
if Q1 is a one-point space, since it is a contractible compact Hausdorff space, K(2) is the

additive group Z. In addition:

e cvery element in K(Q) is a difference between two classes of trivial vector bundles
[[n]] = [[m]] € K (), which we hereafter identify with the integer number n—m € Z;

and

e given a continuous map f : Q — X, where X s any compact Hausdorff space, if

[E] - [[F]] € K(X), then the pullback K(f)([[E]] — [[F]]) is the integer number
vk po) (E) — rkgq) (F). &

Example 2.10 (Absolute K-Theory group of the circle). Let S' be the unit circle,
canonically embedded in the Fuclidean plane. We claim that every compler vector
bundle on S' is trivial. Indeed, let SL and SL be the superior and inferior semicircles,
respectively. Every complex vector bundle on S* with rank n € N is isomorphic to a vector

bundle obtained from the disjoint union
(SL xC™) u (SL xCm™)

by a quotient by an equivalence relation which, given a continuous function

f : S® - GL(n,C), identifies (z,w) with (z, f(w)) for all z € S° and all w € C".
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Thus, since the isomorphism class of this kind of wvector bundle only depends
on the homotopy class of f, our initial assertion is proved. In fact, since SU is discrete
and GL(n,C) is connected, every continuous map [ is homotopic to the unit
constant function. Therefore, K(S') is the group of the integer numbers equipped with

the ordinary sum. &

Remark 2.11 (On the reasoning used to obtain the absolute K-Theory groups of
the spaces considered in Examplesand 2.10). In the preceding examples, we deduced the
absolute K-Theory groups of the spaces under consideration by successively applying

these three steps:

(1) we set the compact Hausdorff space X ;
(2) we found the semigroup of isomorphism classes of vector bundles Vectx; and

(3) we calculated the Grothendieck group K(X) of Vecty.

The repeated wuse of this process may mislead the reader, suggesting that this
1s the natural way to find the K-Theory groups. In fact, finding Vectx for each given
compact Hausdorff space X is an extremely hard and unsolved problem. Then, the
strategy that we will follow in the next sections is to set K-Theory as a generalized
cohomology theory, which will allow us to use all the calculation tools developed in
Chapter [1.  Therefore, it must be clear that, since we still do not have the tools to
calculate the K-Theory groups, the reasoning applied to FExamples and 18 the
best we could do right now. More than that, the theory that we will develop in the next
sections is a way to avoid the problem of explicitly calculating Vectx. In summary, if we
could achieve the semigroups of isomorphism classes of vector bundles, then there would
be no use for K-Theory. However, since the first approach is intractable, K-Theory is the

way we have to understand these objects. &

Remark 2.12 (The absolute K-Theory groups given by a differentiable manifold). Let
r be a natural number or oco. In addition, let M be a real C"-manifold. Because of
Corollary we have that the Grothendieck group of M as a topological manifold
K(M) is isomorphic to the Grothendieck group of M as a real C"-manifold
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K(Vect/\c,{). More explicitly, this isomorphism tells us that, if we have a differential
manifold, then it suffices to consider its semigroup of differentiable isomorphism classes

of vector bundles to obtain its absolute K-Theory information. Moreover, because of

Remark [C72:

o if M is a real analytic manifold, then K(M) is always isomorphic to K (Vect { ),
where Vect/\c;lw 18 the semigroup of analytic isomorphism classes of vector bundles

on M; and

o if M is a complex manifold, then K(M) is not always isomorphic to K(Vectj\fl),
where Vectjfl is the semigroup of holomorphic isomorphism classes of vector bundles

on M. &

2.2 Reduced K-Theory

In this section, we define the reduced K-Theory groups and the induced group
homomorphisms. We also show that these objects are isomorphic to each other, although
the isomorphism is not usually canonical. In addition, we prove that there is an explicit
relation between them and the absolute K-Theory group. We begin with the following

definition.

Definition 2.13 (The category of compact Hausdorff pointed topological spaces). We
define the category of compact Hausdorff pointed topological spaces, and denote

it by TopHdCpt ., to be the one whose:

e objects are ordered pairs (X, xg) in which X is a compact Hausdorff space and

xo € X; and

e morphisms are continuous functions f : X — Y such that f(xg) = yo, usually

denoted by f: (X, x9) — (Y, %0)- &

Definition 2.14 (The reduced K-Theory group of a compact Hausdorff pointed space).
Let (X, x0) be an object in TopHdCpt, and ¢ : {0} — X be the inclusion map. We
define
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K(X,x9) = Ker K(i),

where K(i) : K(X) — K(zo) is the pullback of i in K-Theory. This new group is
said to be the reduced K-Theory group of the pointed space (X, xq). More explicitly,

K(X,xg) is formed by the K-Theory classes [[E]] — [[F]] € K(X) in such manner that
rk,, (E) = tky, (F). ¢

Remark 2.15 (On the reduced K-Theory group of a compact Hausdorff pointed space).
Let (X, x) be an object in TopHdCpt_ . Note that:

e cvery class in K(X,zo) can be represented in the form [[E]] — [[tka,(E)]]. This
implies that [?(X, xo) only depends on the connected component of xy in X.
Hence, if X is connected, then the condition for which [[E)] — [[F]] € K(X, )
simply becomes tk(E) = rk(F'). Therefore, in this situation, each class of reduced
K-Theory can represented as [[E]] — [[tk(E)]]. Therefore, K (X, z) does not depend

on xg € X; and

e we have the canonical isomorphism

D(xap): K(X) = K(X,20)®Z,

a = (a— ke (@)]]), [[rkay ()]]).

This shows the relation between the absolute and the reduced K-Theory groups,
which is K(X) being isomorphic to the direct sum of I?(X, xo) with one copy of Z.
In particular, this 7. factor corresponds to the subgroup of K(X) generated by the

trivial vector bundles. &

Remark 2.16 (On the image of relative K-Theory groups by pullbacks in absolute
K-Theory). Let f : (X,z0) — (Y,yo) be a morphism in TopHdCpt,. If a € [?(Y, Yo),
then the pullback K(f) : K(Y) — K(X) is such that K(f)(a) € K (X, x0). Indeed, let
i:{xo} = X and j : {yo} — Y be the inclusion maps. In addition, let n : {zo} — {yo}
be the only possible map. The reader can readily prove that the following diagram is

commutative.
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{zo} ——— {wo}
i J
X 7 >Y

Therefore, if o € K(Y, ), then

This proves that K(f)(a) € K(X,x), as we wished. Consequently, we are allowed to set
the following definition. &

Definition 2.17 (Pullback in pointed reduced K-Theory). Let f : (X,x9) — (Y, %0)
be a morphism in TopHdCpt,. We say that the pullback of f in pointed reduced
K-Theory is the morphism of abelian groups

K(f) == K(f) |f<(y,y0)5 —fé(Yayo) - I?(XJO)' ¢

Remark 2.18 (Categorical interpretation of the reduced K-Theory data presented

above). We have the contravariant functor

K : TopHdCpt, — Y,
(X,l'o) —> [?(X,l'o),
fi(X,z) = (Viy) — K(f): K(Y,y0) = K(X,x0).

Let f,g : (X,20) = (Y,y0) be morphisms in TopHdCpt . We say that a homotopy in
TopHdCpt . between f and g is a homotopy H : X x I =Y in TopHdCpt between these

two maps such that

H(zo,t) = o

for allt € I. Then, considering [TopHdCpt_ |, which is the quotient of TopHdCpt . by the
compatible equivalence relation of homotopy of pointed maps, we have the contravariant

functor
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K] : [TopHdCpt,] — %,
(X,xo) — [?(X,ZEQ),

[f: (X,z0) = (Yym0)] = K(f): K(Y.y0) = K(X, 20).

Clearly, [f] is defined up to homotopy in TopHdCpt, . Nevertheless, given morphisms
f,9 + (X,29) — (Y,yo) in TopHdCpt,, it is possible that f and g are homotopic as
morphisms in TopHdCpt but not as morphisms in TopHdCpt, . Even in this case, we
have K(f) = K(g) in reduced K-Theory. In fact, we have K(f) = K(g) in absolute

K-Theory and, moreover, the pullback in absolute K-Theory sends K(Y,yo) into

K(X,x). Therefore,

K(f) = K\ zwa = K@) lzamm = K9).

Hence, since a homotopy in TopHdCpt, is also a homotopy in TopHdCpt, we could

define the contravariant functor
[K] : [TopHdCpt,] — D,

considering [TopHdCpt ] to be the quotient of TopHdCpt, by the compatible equivalence
relation of homotopy of maps. However, this quotient is unnatural in TopHdCpt . In

any case, the pullback in reduced K-Theory is invariant. &

The preceding remark finishes the definitions and the construction of the reduced
K-Theory for compact Hausdorff pointed spaces. In the next and last paragraphs of this
section, we define an equivalent version of reduced K-Theory. This new approach defines
the ideas in question for compact Hausdorff spaces which do not have a special marked

point a priori.

Definition 2.19 (The reduced K-Theory group of a compact Hausdorff space). Let
Q be a one-point space and X be an object in TopHdCpt. In addition, let px : X — Q
be the only possible map and K(px) : K(Q) — K(X) be its pullback in absolute
K-Theory. We say that the quotient of K(X) by Im K(px), which we denote by I?(X),
1s the reduced K-Theory group of X. More directly, IN((X) s the cokernel of
K(px) : K(9) = K(X). o



2. Ordinary K-Theory as a Generalized Cohomology Theory 93

Remark 2.20 (On the relative K-Theory groups and the pullback in absolute K-Theory).
Let ) be a one-point space and f : X — Y be a morphism in TopHdCpt. In addition,
let px : X — Q and py : Y — Q be the only possible maps. The reader can readily prove

that the diagram
/

TN

X s ) < Y

pPx Py

is commutative. Therefore, for every a € K(Q), we have

K(f)K(py)(@) = K(px)(@).

Consequently, it is well-defined the map induced by K(f) from the quotient of K(Y) by
Im K (py) into the quotient of K(X) by Im K(px). This allows us to set the following
definition. &

Definition 2.21 (Pullback in reduced K-Theory). Let f : X — Y be a morphism in
TopHdCpt. We say that the pullback of f in reduced K-Theory is the morphism of

abelian groups

K(f): K(Y) — K(X),
o] = [K(f)(a)]. %

Remark 2.22 (Categorical interpretation of the reduced K-Theory data presented

above). We have the contravariant functor

IN(:TopHdet = Y,
X = K(X),

f:X =Y = K(f):KY)— K(X).

The reader can readily prove that the pullback in K-Theory of compact Hausdorff spaces
18 still homotopy invariant. Therefore, we have that it is well-defined the contravariant

functor
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[K]: [TopHdCpt] — Y,
X — K(X),

[f: X Y] = K(f): K(Y)— K(X),

where [TopHdCpt] is the quotient of TopHdACpt by the relation of homotopy of

maps, which is an equivalence relation that is compatible with the composition in

TopHdCpt. ¢

Remark 2.23 (Relation between the two versions of reduced K-Theory). Let 2 be a
one-point space and (X,xzo) be an object in TopHdCpt, . By definition, I?(X) is the
quotient of K(X) by Im K(px), where p, : X — Q is the only possible map. Thus, we

have the short exact sequence

K(px)

0 W/ » K(X) X » K(X) > 0,

where mx : K(X) — K(X) is the natural projection that sends a € K(X) into
[a] € K(X). The fact that K(X) is isomorphic to K(X) ® Z is still true.
However, the isomorphism is canonical only if X is connected. Indeed, wn order to
find an isomorphism between K(X) and [?(X) @ Z, we have to choose a right inverse
i Q — X for px : X — Q, which is equivalent to fix a point in X. Then,
K(i) : K(X) — Z splits the preceding short eract sequence. Therefore, we have the
1somorphism
P K(X) — K(X)aZ,

a = (rx(a), K(i)(a)).

The group K(X,xo) is a subgroup of K(X) while K(X) is a quotient of K(X). In
particular, in order to embed I?(X) in K(X), we have to choose a point xy € X, which
18 generally a non-canonical procedure in a space without a marked point. Nevertheless,
when X is connected, K(X) and K (X, zy) are canonically isomorphic because K (X, zo)
does not depend on xy € X. &
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2.3 Relative K-Theory

In this section, we define the last fundamental building blocks of Ordinary
K-Theory, namely, the relative K-Theory group and the induced group homomorphisms.
We begin with the following definition in which stands the admissible category of
topological spaces that we will use as grounding for K-Theory as a generalized

cohomology theory.

Definition 2.24 (The category of pairs of compact Hausdorff topological spaces). We
define the category of pairs of compact Hausdorff topological spaces, and denote

it by TopHdCCpt,, to be the one whose:

e objects are ordered pairs (X, A) in which X is a compact Hausdorff space and A C X

18 a closed subspace; and

e morphisms are continuous functions f : X — Y such that f(A) C B, usually
denoted by f: (X, A) = (Y, B). &

Definition 2.25 (The relative K-Theory group of a pair of compact Hausdorff spaces).
Let (X, A) be an object in TopHdCCpt,. We define

K(X,A) == K(X/A, A/A).

This new group s said to be the relative K-Theory group of the pair of
spaces (X, A). &

Remark 2.26 (On the relative K-Theory group of a pair of compact Hausdorff spaces).
Let (X, A) be an object in TopHdCCpt,. Note that:

e since A is a closed subspace of the compact Hausdorff X, the quotient X/A
is also a compact Hausdorff space. Therefore, (X/A, AJA) is really an element
of TopHdCpt,.  This allows us to set the relative K-Theory group as in
Definition |2.25; and
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e in Singular Cohomology, the relative cohomology of a pair (X, A) coincides up to
isomorphism with the reduced cohomology of the pointed space (X/A,AJA)
if (X,A) is a cofibration or a good pair. In general, this does not happen.
In K-Theory, the relative cohomology of a compact Hausdorff pair (X, A) is equal
to the reduced cohomology of the compact Hausdorff pointed space (X/A, AJA) by
definition. &

Notation 2.27 (On the pointed space induced by a pair of compact Hausdorff spaces).
Let (X, A) be an object in TopHdCCpt,. Once the quotient of X by A has a natural
marked point, which is the quotient of A by A, we will say that the former belongs
to TopHdCpt, without mentioning its marked point. In particular, we will use this

convention in pointed reduced K-Theory, which should cause no confusion with the

reduced K-Theory of Definition [2.19 O

Remark 2.28 (Morphism of pointed spaces induced by a morphism of pairs of
spaces). Let f : (X, A) — (Y, B) be a morphism in TopHdCCpt,. Then, we have the
morphism

f:X/A — Y/B,
[z] — [f(=)],

in TopHdCpt,. The reader can readily prove that this morphism is well-defined using
that f(A) C B. ¢

Definition 2.29 (Pullback in relative K-Theory). Let f : (X, A) — (Y, B) be a morphism
in TopHdCCpt,. We say that the pullback of f in relative K-Theory is the morphism
of abelian groups

K(f) == K(f): K(Y/B) = K(X/A),

where f : X/A — Y/B is the natural map of compact Hausdorff pointed spaces
defined in Remark [2.28 Finally, we will write K(f) : K(Y,B) — K(X, A) instead of
K(f): K(Y/B) = K(X/A), o



2. Ordinary K-Theory as a Generalized Cohomology Theory 97

Remark 2.30 (Categorical interpretation of the relative K-Theory data presented

above). We have the contravariant functor

K : TopHdCCpty, — %Y.,
(X,4) —» K(X,A),
f:(X;A) = (Y,B) — K(f):K(Y,B)— K(X,A).

Let f,g : (X,A) — (Y,B) be morphisms in TopHdCCpt,. We say that a homotopy
in TopHdCCpt, between f and g is a homotopy H : X x I — Y in TopHdCpt
between these two maps such that H(a,t) € B for all a € A and all t € 1. Then,
if there exists a homotopy of pairs H between f,qg: (X, A) — (Y, B), it is well-defined the

continuous function

H:(X/A)xI—Y/B

according to Remark[2.28. It can be readily proved that this map is a homotopy of pointed
maps between f,g: X/A — Y/B. Thus, we have

Therefore, we have the contravariant functor

[K] : [TopHdCCpty] — %,
(X,A) —» K(X,A),
[f]: (X, A) = (Y,B) = K(f):K(Y,B)— K(X,A4),

where [TopHdCCpt,| is the quotient of TopHdCCpt, by the compatible equivalence relation
of homotopy of maps of pairs. O

2.4 First relations

In this section, we establish the first relations between the absolute, reduced and
relative K-Theory groups through exact sequences. It is to be noted that the results

exposed here have technical proofs, which can be skipped if the reader prefers. However,
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the statements of these results cannot be ignored since they are essential in Sections [2.5
and to set the K-Theory cohomology sequences and their exactness. We begin with

the following theorem.

Theorem 2.31 (Exact sequence involving absolute and relative K-Theory groups). Let
(X, A) be an object in TopHdCCpty. In addition, let i : A — X and 7 : X — X/A
be the natural inclusion and projection, respectively. The pullback in absolute K-Theory

K(m): K(X/A) — K(X) can be restricted to
K(7) |rxa: K(X,4) = K(X),

since K(X,A) is a subgroup of K(X/A). Moreover, we will continue to denote
this restriction by K(m) : K(X,A) — K(X). Therefore, we have that the
sequence

KX, A) — 50 gxy — 59 ga).

is exact. This means that the image of K () is the set of classes of K(X) whose restriction

to A is zero.

Proof. Let us first prove that Im K(7) is a subset of Ker K(i). Indeed, consider
[[E']]—[[F"]] € K(X,A). The vector bundles E’ and F’ on X/A have the same rank on the
marked point A/A. This happens because of Definition since K (X, A) = K(X/A).
In addition, it follows from Corollary that the restrictions to A of £ := 7*E’ and

F := 7*F" are trivial. Therefore,

K@K@)([EN-F) = K@ E]) - [« F])
= K@([£] - [F1)
= [[E |all = [[F |a]]

= 0,

as we wished. Finally, we prove that Ker K (i) is a subset of Im K (7). In fact, let
a € Ker K(i). We can represent « in the form a = [[E]] — [[n]] where E and n are
a generic and a trivial vector bundles on X, respectively, because of Remark By

definition,
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K(i)(@) = KOIE] - K@) = [Z )] [l 4] = 0.

Therefore, it also follows from Remark that there exists a trivial vector bundle m
on X for which (E @ m) |4 is isomorphic to (n @ m) |4. Consequently, because of
Corollary the vector bundle E @ m is the pullback of a vector bundle on X/A. In
particular, let a : (E @ m) |4 — A x C"™™ be a global trivialization of (E @ m) |a.
Then, it is defined the quotient £’ of E' @& m by the a-equivalence relation, which is such
that [7*(E")] = [E @& m]. Thus,

K@ ([E) = [[n®m]) = K@ - K(m)[nem]

Definition 2.32 (The category of pointed pairs of compact Hausdorff topological spaces).
We define the category of pointed pairs of compact Hausdorff pointed topological
spaces, and denote it by TopHdCCpt,_, to be the category whose:

e objects are ordered triples (X, A, ap) in which (X, A) belongs to TopHdCCpt,

and ag € A; and

e morphisms are continuous functions f : X — Y such that f(A) C B and f(ag) = by,
usually denoted by f: (X, A, ag) — (Y, B, bo). &

Corollary 2.33 (Exact sequence involving pointed reduced and relative K-Theory
groups). Let (X, A, ag) be an object in TopHdCCpt,, . Moreover, let i : (A, ap) — (X, ao)
and 7™ 1 (X,a9) — X/A be the natural inclusion and projection, respectively. Then,

the sequence

KX, A) — 20 R(X,a0) — 5 KA, a0)

18 ezxact.
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Proof. Tt follows from Remark and from Theorem that the sequence
K(X,A) ——— [?(X,ao) Ol — [?(A,ao) &Y/

is exact. Now, let i,, : {ap} — A and j,, : {ap} — X be the inclusion maps. We claim
that, for each v € K(X) such that K(i)(a) = 0, we have K(j,,)(«) = 0. Indeed, since

Jag = 1 014y, We obtain
K(jap) (@) = (K(igy) 0 K(i))(a) = K(ig,)0 = 0.

Thus, o € K(X, ao). Therefore, the image of K (r) is a subset of K (X, ao). This finishes
the proof of the theorem. O

Corollary 2.34 (Exact sequence involving reduced and relative K-Theory groups). Let
(X, A) be an object in TopHdCCpty. In addition, let i : A — X and 7 : X — X/A
be the natural inclusion and projection, respectively. In this situation, we define the

homomorphism

K(r): K(X,4) - K(X)

to be the composition between K(m) : K(X,A) — K(X) of Theorem with the
projection K(X) — K(X) = K(X)/Z, where the factor Z is the one in the isomorphism
of Remark[2.15. Moreover, the homomorphism K (i) : K(X) — K(A) of Theorem [2.3]]
defines

K(i): K(X)=K(X)/Z — K(A) = K(A)/Z

since its image of any trivial vector bundle is also trivial. Therefore, we have that

the sequence

KX, A) — 20 gx) — 50 Ra

1S exact.

Proof. This assertion follows from Theorem since the projection K(X) — K(X)
restricts to isomorphisms Im K(7) — ImK(r) and Ker K(i) — Ker K(i). Indeed,
given a class [o] € KerK(i) or a class [a] € ImK(w), there exists a unique

a € KerK(i) = Im K(m) because, if we add a trivial vector bundle to «, then the
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resulting image is not zero in K(A). This means that [o] € Ker K(i) if and only if
there exists a unique o € Ker K (i) = Im K (7). In turn, this happens if and only if
[a] € Im K (). O

Remark 2.35 (On the exact sequences of the preceding corollaries). Because of

Corollary if A is contractible, then the homomorphisms induced by m in the

ezact sequences of Corollaries |2.39 and [2.34] are bijections. Indeed, since [1*] is an

isomorphism between Vect(X/A) and Vect(X), it is extended as an isomorphism
between the Grothendieck groups K(X/A) and K(X). In turn, this isomorphism
restricts to isomorphisms between the reduced K-Theory groups. It is to be noted that
this claim holds independently of the embedding of A into X being a cofibration, which is
needed in Singular Cohomology. &

2.5 K-Theory of negative degree

In this section, we extend the absolute, reduced and relative K-Theory groups
to other degrees, giving then the first explicit step towards the construction of the
data presented in Definition In order to do this, we use the constructions and the
notations presented in Appendix [D] However, we are not yet capable of constructing
K-Theory groups in all degrees. In fact, here we restrict ourselves to an extension of the
K-Theory groups to negative degrees. We begin with the following remark that justifies

this restriction.

Remark 2.36 (The suspension isomorphism in Singular Cohomology). In Singular
Cohomology, being (X, zo) an object in Top, and XX its reduced suspension, we have
a canonical isomorphism between H™(X,xo) and H"™(SX) for all n € Z, which is
known as the suspension tsomorphism. Iteratively, we obtain from this a canonical
1somorphism

H"(X,z0) ~ HF(X"X)

for all k,m € 7Z. Additionally, since the absolute group H™(X) is canonically
wsomorphic to the reduced group f]”(X+) where X, = X U{oo}, we also have a canonical

1somorphism
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H™(X) ~ H*S"X,).

In this context, the case in which k = 0 s not inleresting because we only obtain
trivial groups, with a possible exception when n = 0 (which is simple to be handled).
Nonetheless, in the K-Theory framework, we define the negative degree groups through

this case, as below. &

Definition 2.37 (K-Theory groups and homomorphisms of negative degree). Being n

a natural number, we give the following definitions.

e The nth negative degree absolute K-Theory group of a compact Hausdorff
space X, which is hereafter denoted by K~—"(X), is the pointed reduced K-Theory

group

K(Z"X,).
In addition, being f : X — Y a morphism of compact Hausdorff spaces, we
define the nth negative degree pullback of f in absolute K-Theory, and
denote it by K~"(f) : K™"(Y) — K (X), to be the pullback in pointed reduced
K-Theory

K(Z"f,): K(X"Y,) —» K(X"X,).

e The nth negative degree pointed reduced K-Theory group of an object
(X, z9) € TopHdCpt,, which is hereafter denoted by IN(_"(X, xo), s the pointed
reduced K-Theory group

K(Z"X).
In addition, being f : (X, x9) — (Y,y0) a morphism of pointed compact Hausdorff
spaces, we define the nth negative degree pullback of f in pointed reduced
K-Theory, and denote it by K—"(f) : K="(Y,y0) — K "(X, x0), to be the pullback

wn pointed reduced K-Theory
K(E"f): K("Y) — K(Z"X).

e The nth negative degree relative K-Theory group of an object
(X,A) € TopHdCCpt,, which is hereafter denoted by K~"(X,A), is the pointed
reduced K-Theory group
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K"(X/A).

In addition, being f : (X, A) — (Y, B) a morphism of pairs of compact Hausdorff
spaces, we define the nth negative degree pullback of f in relative K-Theory,
and denote it by K~"(f) : K™(Y,B) = K "(X,A), to be the pullback in pointed
reduced K-Theory

K"(f): K(Y/B) = K "™(X/A).

It is to be noted that
K'(X) = K(X),

K'(X,z) = K(X,z) and

K'(X,A) = K(X,A).

Evidently, these equations hold up to isomorphism, but such isomorphisms will not be

carried any further. %

Remark 2.38 (The categorical structure of the negative degree K-Theory). Being n
a natural number, the groups and the homomorphisms defined above induce the

following contravariant functors.

e Consider the covariant functor

+ : TopHdCpt — TopHdCpt .,
X = X4

fX—>Y — f+:X+—>Y+.
The composition of functors
K™ :=KoX"o 4 TopHdCpt — 9,
X - K"X),
f: X—=Y —» KT"f):K"Y) —K"X),
where K and X" are the contravariant and covariant functors defined in Remark

and in Definition[D.4) respectively, represents the negative degree absolute K-Theory

data presented above.
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e The composition of functors

K™ = KoX": TopHdCpt, — %,
(X,z0) — K (X)),

fi(X,20) = (Yio) — K "(f): K"(Yiyo) = K "(X, ),

where K and X" are as in the preceding item, represents the negative degree pointed

reduced K-Theory data presented above.

e (Consider the covariant functor

/+ TopHdCCpt, — TopHdCpt,,
(X, 4) — X/A
f:(X,A) = (YV,B) = f:X/A—Y/B,

The composition of functors

K™ = K™"o /: TopHdCCpt, — %,
(X,4) = K ™(X,A),
f(X,4) = (Y.B) — K™"(f): K"(Y,B)— K"(X,A4),

represents the negative degree relative K-Theory data presented above. &

Remark 2.39 (An overview of the results that will be proven here and in the next
sections). Being n a natural number and (X,zo) an object in TopHdCpt,, we prove
below that
K~"(X, x) and Ker K7"(7)

are isomorphic, where i : {xo} — X is the inclusion map. This establishes a natural
correspondence with Definition [2.1], which could then be adapted to define the negative
degree pointed reduced K-Theory groups. In particular, it suggests defining the nth
negative degree reduced K-Theory group of a compact Hausdorff space X, which
is hereafter denoted by I?_”(X), to be
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Coker K "(px),

where € is a one-point space and px : X — € is the only possible map. Thence,
as one could expect, we prove the existence of an isomorphism between lN(*”(X, xg)
and l?’"(X), which is non-canonical if X is not connected. In addition, we prove an

isomorphism

K™X) ~ KX, x9) & K "(x9).

Therefore, being 2 a one-point space, we also obtain a direct sum decomposition
K™(X) ~ KX) & K ().

Finally, since we will prove

K2(X) ~ KX)o Z and — KNX) ~ K-7Y(X).

These isomorphisms are canonical if we consider the pointed reduced K-Theory or

if X is connected. &

Now, before proving some of the results shown in Remark we prove that
the negative degree K-Theory groups induce a left long exact sequence, which will be
completed to a long exact sequence when we define the positive degree K-Theory
groups. First, however, let us consider the following lemma that contains some natural

“ isomorphisms.

Lemma 2.40 (Natural isomorphisms in K-Theory). Let (X, A, ag) be an object in
TopHdCCpt, . There are isomorphisms

K(X,A) ~ K(C(X,A)) and
K YA a) ~ K(C'XUCA).
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Proof. Since X/A is homeomorphic to C'(X, A)/C A, we have that

K(X,A) = K(X/A)  and  K(C(X,A)/CA)

are isomorphic. Further, once C'(A) is a contractible subspace of C'(X, A), we also have
that

K(C(X,A)/CA)  and  K(C(X,A)

are isomorphic. Hence, if ¢ : C(X,A)/CA — X/A is the natural homeomorphism
and m : C(X,A) — C(X,A)/CA is the natural projection, then we obtain the
isomorphism between K (X, A) and K(C(X, A)) given by the composition of the maps in

the sequence

K(m) ~

Kt R(C(X, A)).

K(X,A) = K(X/A) ——2 5 K(C(X,A)/CA)
Choosing the natural marked point of C(X,A), which is mapped by m into
the natural marked point of the quotient C(X,A)/C(A), it is well-defined

K(m) above. Additionally, since the suspension SA is homeomorphic to C(X,A)/X,

we have that

K(S4) and  K(C(X,A)/X)

are isomorphic. Furthermore, since C(X,A)/X is homeomorphic to the
quotient (C'X U CA)/C'X, and C'X is a contractible subspace of C'X U CA,

we have that

K(S4), K(C(X,A4)/X), K({C'XUCA/C'X) and  K(C'XUCA)

are isomorphic. Moreover, by restricting the isomorphism K(7) : K(XA) — K(SA) of
Definition to the pointed reduced K-Theory groups, we also have that the abelian

groups
K YA a) = K(ZA)  and  K(SA)

are isomorphic for any marked point of SA belonging to {ag} x L. Let us call
by v the inferior vertex of SA and by w the vertex of C’X. Thence, we obtain the

isomorphism between K '(A, ap) and K(C'X U CA,w) given by the composition of the

maps in the sequence
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KA, a0) = K(SA)

~

K(SA,v)

_ » K(C'X UCA)/C'X) ——— K(C'X UCA,w),
K(y) K(m2)

where ¢ : (C'X U CA)/C'X — SA denotes the natural homeomorphism and
Ty C'X UCA — (C'"X UCA)/C'X denotes the natural projection. O

Theorem 2.41 (Left long exact sequences in Ordinary K-Theory). Let (X, A, ay) be

an object in TopHdCCpt,, . We have the left long exact sequence in pointed reduced
K-Theory

(X, A) - K7"(X, ao) — K~"(A,ap) -
Rn(m) R0 o
x\///’ K Y ~ 1?712 ~
KX A) D R (X, ) Y R (Aa0)
5(X,A,a0)’/2
m(x, a0) : - KA, ap)
K(m) K(i)

Moreover, if we substitute X and A by X, and A, respectively, then we obtain the left

long exact sequence in absolute K-Theory
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Finally, if we quotient this last sequence by the appropriate subgroups generated
by the trivial vector bundles, then we obtain the left long eract sequence in reduced

K-Theory.
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Proof. Tt is sufficient to prove the exactness of the first left long sequence. Hence,
because of the canonical homeomorphisms between the quotient C'(X, A)/CX and SA,
and between the quotient (C'X U CA)/C(X,A) and SX, we have the exact sequences

in TopHdCpt

A : > X z » X/A,
X y O(X,A) — ™ SA  and
C(X,A) —“ s o'XucA — SX.

We now prove that these exact sequences in TopHdCpt, induce the exact sequences

in K-Theory
KX, A) — 20 R(X, a) RO R(A, ),
~ S " % (n ~
KA ap) —2) 1y jex, A) — 2 R(X,a9) and

= 7 = g a
KX, a0) —D 5 KA, ap) — 24, R(X, A).

In fact, the first sequence coincides with the one in Corollary The second sequence

is the one that turns the diagram

K(n')

K(SA,v) » K(C(X, A)) D R(X, a)
ITW) R(r1)o K(p)

_ \ -

R(A,00) —5 > K(X.4) = K(X.a)

@Let f : (X,20) — (Y,yo) be a morphism in TopHdCpt,. We say that the kernel of f is the
preimage f~'(yo) C X. Therefore, it is clear that the notion of exactness is also defined in the category

TopHdCpt, .
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into a commutative one, where K (m) is the restriction of the isomorphism given in

Definition and K(m) o K(y) is the obvious composition from Lemma m In
particular, note that d(x a4, is defined by the preceding diagram as the composition

K(p) ™o K(m)™ o K(x') o K(r). In a similar manner, the third sequence is the one

that turns the diagram

R(SX,u) s K(C'X UCAw) — 2 R(o(X, A))

] T |

K(m) K(m2) o K (1) o K (m) R(m)oK(p)

f('(ﬂ'”)

K—l(X’ CL(]) I?(z) > K—1<A,CL0> 5(X oo

» K(X,A).

into a commutative one, where K(r) is the restriction of the isomorphism given

in Definition and K () o K (¢) o K (7) is the obvious composition from Lemma .

Thence, gluing these three exact sequences together, we obtain the exact sequence with

five terms
R-1(A, ao) Sode) (X, A) K s R(X, ap)
K1) K (i)
K~Y(X, ao) K (A, a).

Since the quotient ¥.X /3 A is homeomorphic to £(X/A), one can prove (using induction)
that X" X/¥"A is homeomorphic to ¥"(X/A) for all n € N. Consequently, substituting
X and A by ¥"X and X"A in the preceding sequence, respectively, we obtain the exact

sequence
- 5 Z-n(n -
KA, ap) (X, A20) s K—(X, A) K s K"(X, ao)
I?_”_l(i) [N(_”(z)
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Therefore, gluing these last exact sequences together, we obtain the desired left long

exact sequence. ]

Theorem 2.42 (Split exact sequence induced by a special retraction). Let (X, A) be an
object in TopHdCCpt, such that the inclusion i : A — X is a retraction. For alln € N,

we have that

0 — K (X, A) e, K—(X) S OREN K™A) —— 0

18 a split short exact sequence. Therefore,

O, K"(X) —» K™(X,A) @ K™(A),

a = (a=—K™"(Gor)(a), K "(i)(«a)),

where v : X — A is a left inverse for the inclusion 1 : A — X, is an isomorphism
between K~(X) and K (X, A) ® K "(A). This proves that K~"(X) is isomorphic
to K™(X,x0) & K (), as claimed in Remark . Analogously, if (X, A, ag) is an
object in TopHdCCpt,_, then

00— K(X, A) — "y B=n(X,a9) ——P & F"(A,a) ——— 0
18 a split short exact sequence. The same result holds true considering the other reduced

version of K-Theory.

Proof. The reader can readily adapt the proof of Theorem in order to prove this
result. O

Corollary 2.43 (A direct decomposition of the pointed reduced K-Theory groups
of a product of pointed compact Hausdorff spaces). Let (X, zo) and (Y,yo) be objects
in TopHdCpt,. In addition, let m: X XY = X, m: X XY =Y, 410 X - X xY
and i9: Y — X XY be the canonical projections and inclusions. Thence, we have that

the map

\Ijn: Kﬁn(X X Y7 (150790)) — [A{'*H(X/\Y) D I?in(Y;yO) D [A{'in(Xa LU())



2. Ordinary K-Theory as a Generalized Cohomology Theory 112

defined by

1S a 1somorphism.

Proof. Since iy : X — X X Y and [is] : Y — (X x Y)/X are retractions, Theorem [2.42]
yields

KX x Y, (z0,50)) =~ K ™XxY,X)& K ™(X,x)

12

"((X X Y)/X) @ K"(X, @)

12

K-
l"(’v_
K-
["(ﬁ,

12

(
(

(X xY)/X,Y) @ K"(Y,y) ® K"(X, )
(

"X AY) & K(Y,ye) @ K (X, x).

This finishes the proof of this result once the reader can explicitly write the isomorphisms
indicated above in order to show that their composition coincides with the map W, set

in the statement. O

Remark 2.44 (Ensuring some of the results stated before). Let (X, o) be an object in
TopHdCpt, . We have that the relative group K~"(X, x¢) is canonically isomorphic to the
pointed reduced group I?_”(X, xg) for all n € N. Therefore, considering the first sequence
in Theorem with A = {zo}, we have that the group K—"(X, A) becomes K"(X, zy),
which is isomorphic to the image of K~ "(m) since this map is injective. In turn, this
image coincides with the kernel of K~"(i). This proves the first part of Remark
allowing us to reproduce the discussion made in Remark for negative degree reduced
K-Theory groups. &

2.6 The Bott Periodicity Theorem and K-Theory of

positive degree

In this section, we present a powerful result in Ordinary K-Theory, namely,
the Bott Periodicity Theorem. We do not prove this theorem here because of its

extent and because it is crystal clear in the literature. However, it allows us to finish
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the process of extending the K-Theory groups to other degrees, which was started in
the preceding section. We begin with the following remark in which stands the basic

tool behind the theorem in question, which are the natural multiplicative structures in

K-Theory.

Remark 2.45 (Internal and external multiplicative structures in Ordinary K-Theory).
Let X be a compact Hausdorff space. Because of Remark [C 423 and Theorem [C. 43, we
have the product

®: K(X)® K(X) - K(X),

[E@[F]] — [EeF],

which turns K(X) into a commutative ring with unit. Additionally, if Y is another
compact Hausdorff space, then we have the external multiplication (see Definition
given by
X: K(X)® KY) - KX xY),
[El@[[F]] — [[EXF],

where

EXF = mfEQmF

with m : X XY — X and my : X XY — Y being the natural projections onto the
first and the second factors, respectively. It is to be noted that the fiber of E X F
over (z,y) € X XY coincides with E, @ F,. Moreover, if X =Y and A : X - X x X
18 the diagonal map, then

E®F = A*(EXF).

This shows that the product on K(X) is an internal multiplication in the sense of
Theorem [1.98  Furthermore, if we choose marked points xo € X and yo € Y, then

we obtain by restriction

X: K(X,z0) @ K(Y,50) = K(XAY),

where the marked point of X N'Y 1is the natural one. Indeed, let a € [?(X, xy) and
B € lN((Y, Yo). Ifiy: X - X XY and iy: Y — X XY are the canonical inclusions,
then
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H(alp) = i(ria®@mp) = qma®imf = a®imf = a®(ryoi)’f.

Since mgoiy : X = Y is a constant function, we have (my0i1)*f = 0. Thus, it follows that
it (aXB) = 0. Analogously, one can readily prove that i5(aX ) = 0. Therefore, we obtain
alXpe I?(X NY'). Therefore, substituting X and Y by X" X and ™Y, respectively, we
obtain the product

X: K (X, 2) @ K™Y, 50) — K"™XAY).

In a similar manner, if we substitute X and Y by X" X, and XY, respectively, then we

obtain the product
X: KT"(X)® K-™Y) - K"™X xY).

once Xy ANY, is canonically homeomorphic to (X x Y),.. In both cases, if X =Y,
then the pullback of these maps through the diagonal map s the internal multiplication in

K-Theory. &

Notation 2.46 (Spheres and discs in Euclidean spaces). Let n be a natural number.

Hereafter, we denote the n-dimensional sphere by S" and the n-dimensional disc

by D" %

Definition 2.47 (Canonical line bundle on the two-dimensional sphere). We say that
the canonical line bundle on the two-dimensional sphere S* is the quotient 1 of

the disjoint union

(D?* x C) U (D?* x C)

by the relation that identifies (z,w), with (z,zw)y for all z € S* and all w € C, where
(z,w); indicates (z,w) in the first copy of D* x C and (z,w)y indicates (z,w) in the

second copy of D? x C. &

Theorem 2.48 (Bott Periodicity Theorem). Let (X,zo) be an object in TopHdCpt,.
In addition, let n be the canonical line bundle on the two-dimensional sphere S®. Then,

we have the map
B: K(X,z)) — K (X, x),

a = [n-1]Xa,
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since [?_Q(X, xg) is canonically isomorphic to [?(SQ A X). Furthermore, this map is an

wsomorphism of rings.

Proof. The reader can find proofs of this result in [2, pp. 44-64] and in [I5, pp. 41-55].
The treatment given by the first reference is more technical and general than the one
given by the second reference. This may help the reader in choosing which one of them

to follow. n

Remark 2.49 (Extending the Bott Periodicity Theorem to the other K-Theory groups).
The Bott Periodicity Theorem ensures that (complex) Ordinary K-Theory is 2-periodic.
This happens because, in Theorem |2.48, if we substitute:

o X by XX, then we obtain the isomorphism of rings

By ayy : KX, 20) = K" 72(X, 20);
o X by XX, then we obtain the isomorphism of rings
By : K(X) - K" %X); and
o X by X"(X/A), then we obtain the isomorphism of rings

Bixa: KX, 4) - K "X, A).

Therefore, when considering a K-Theory group, the only tmportant information is the
parity of its degree. In other words, the only significant K-Theory groups are the ones of
degree 0 and —1. &

Definition 2.50 (K-Theory groups and homomorphisms of positive degree). Let n be
a natural number. Because of Remark we extend the K-Theory groups to positive

degrees as follows.

e The nth positive degree absolute K-Theory group of a compact Hausdorff
space X, which is hereafter denoted by K™(X), is defined as the negative K-Theory

group
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KE(X).

In addition, being f : X — Y a morphism of compact Hausdorff spaces, we
define the mth positive degree pullback of f in absolute K-Theory,
and denote it by K"(f) : K"(Y) — K"(X), to be the nth negative degree
pullback

K™(f): K"(Y)—> K "(X).

e The nth positive degree pointed reduced K-Theory group of an object
(X, z9) € TopHdCpt, , which is hereafter denoted by IN(”(X, xg), is defined as the
negative K-Theory group

Kﬁn(X, 1‘0).

In addition, being f : (X, x9) — (Y,y0) a morphism of pointed compact Hausdorff
spaces, we define the nth positive degree pullback of f in pointed reduced
K-Theory, and denote it by K™(f) : K™(Y,yo) — K"(X,z0), to be the nth negative
degree pullback

K(f): K=Y, y0) — K (X, x0).

e The nth positive degree relative K-Theory group of an object
(X, A) € TopHdCCpt,, which is hereafter denoted by K™(X, A), is defined as the

negative degree K-Theory group
K™(X,A).

In addition, being f : (X, A) — (Y, B) a morphism of pairs of compact Hausdorff
spaces, we define the nth positive degree pullback of f in relative K-Theory,
and denote it by K"(f) : K"(Y,B) — K"(X,A), to be the nth negative degree
pullback

K™(f): K™(Y,B) —» K "(X,A).

The reader can readily set the categorical structure of the positive degree K-Theory

using Remark [2.58, &
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Corollary 2.51 (Long exact sequence in Ordinary K-Theory). Let (X, A) be an object
in TopHdCCpt,. In addition, let i : A — X and 7 : X — X/A be the canonical
wncluston and projection, respectively. In this situation, we have the long exact sequence

i K-Theory

0%, a) K™ (m) K™ (i)

e KA K™(X, A) K™(X) KM(A) —— -

where Oy 4y K" 1 (A) — K"(X,A) is naturally defined through the following

commutative diagram.

0, 4)

KN A) = K" (A) — & K 1(A) — 5 K(X, A) = K"(X, A).

n—1
BA

In fact, since (complex) K-Theory is 2-periodic, this sequence reduces to the exact

rectangle with siz significant groups

K(X, A) LGN (75's W0 . K(A)
8(x,4) 5%, a)
K=(A) < KHX) « K YX,A).

K~1(i) K=1(nm)

Proof. This result is a consequence of Theorem and of the ideas presented in

this section. N

2.7 Ordinary K-Theory as a generalized cohomology
theory

In this section, we finally prove that the data defined above establish a
generalized cohomology theory. After this is done, as we mentioned before, all of

the results proven in Chapter (1| hold true. In particular, we immediately obtain the
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K-Theory exact sequence of a triple, the K-Theory exact sequence of a proper triad,
the K-Theory Mayer-Vietoris absolute and relative exact sequences, et reliqua. We begin

with the following theorem.

Theorem 2.52 (K-Theory as a generalized cohomology theory). Let:

e TopHdCCpt, be the category of pairs of compact Hausdorff spaces;

e (K" : TopHACCpty — Yup)nez be the sequence of contravariant relative functors in

K-Theory; and

o (0")nez be the sequence of maps that send a pair (X, A) € TopHdCCpt, into the
homomorphism &'y 4 : K" 1(A) - K"(X, A).

We have that the three pieces of data above are a generalized cohomology theory

(see Definition [1.9).

Proof. We still only have to verify the Excision Axiom, which we now prove to hold
in the stronger version presented in Remark [1.103] Indeed, if (X, A) € TopHdCCpt,
and U is a subset of X whose closure is contained in the interior of A, then we claim that

the inclusion i : (X — U, A —U) — (X, A) induces isomorphisms
K"(i): K"(X,A) - K"(X —U,A-U)

for all n € Z. This happens because one can prove that the preceding inclusion
induces the canonical homeomorphism i : (X — U)/(A — U) — X/A, which ensures

the desired isomorphisms. O]

Remark 2.53 (Ordinary K-Theory is an additive generalized cohomology theory). Since
the category TopHdCCpt, is the building block for K-Theory, we have that Ordinary
K-Theory is an additive generalized cohomology theory. In fact, any decomposition of
a pair (X, A) € TopHdCCpt, as in Definition has to be a finite one (because a
compact Hausdorff space must have a finite number of connected components). Then,
the claim s obvious because Theorem holds in K-Theory once it is a generalized

cohomology theory. &
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Example 2.54 (K-Theory groups of spheres). We have the following facts.

e In Erample we have proved that, if Q0 is a one-point space, then K () is
wsomorphic to the integer numbers equipped with the usual sum. Consequently,
because of the isomorphism in Remark[2.15 and because X is homeomorphic to €,
we have that K=Y(Q) is trivial. Therefore, it follows from the Botl Periodicity
Theorem that

K72(Q) ~ Z and K2"71Q) ~ 0,

as claimed in Remark [2.39.

e In Ezample we have proved that, if S' is the one-dimensional sphere, then

K (SY) is isomorphic to the integer numbers equipped with the usual sum.

These results, together with the fact that
K"(SH) ~ K*(2*S%) ~ K" %S = K" %)

for all k € N and alln € Z, allow us to set Table which contains all of the K-theory
groups of the spheres. &

n | k| KMSF) | Kn(SF)

even | even 7 7. D7
even | odd 0 7
odd | even 0 0
odd | odd 7z 7

Table 2.1: K-Theory groups of spheres.

2.8 An application

In this brief section, we show the relevance of the theory developed in this
chapter by exhibiting one of its great achievements in the last century, which is a
classification theorem for real division algebras known as the Bott-Milnor-Kervaire

Theorem. Moreover, we expose a solution to the problem of the tangent bundles of
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spheres being trivial. We do not prove these results here because of their extent
and because they are crystal clear in the literature. However, we provide sketches of
their proofs in order to explain why K-Theory solved them. The reader who desires
to understand a bit more about the problem of the real division algebras is invited to
read Appendix where we mnot only establish the elementary facts on real
(division) algebras but also present a historical perspective to them. We begin with the

following definition.

Definition 2.55 (Topological and differential notions applied to spheres). Let n be a

natural number. We say that the n-dimensional sphere S™ is:

e an H-space if there exists a continuous binary operation - : S* x S* — S™ having a

two-sided identity elemen' and

e parallelizable if its tangent bundle TS™ is trivial. We remind the reader that it
18 equivalent to the existence of n linearly independent vector fields on S™. This
equivalence follows from Theorem since vector fields on S™ are global sections
in (T S™). &

Lemma 2.56 (Relation between real division algebras, parallelizable spheres and
H-spaces). Let n be a non-zero natural number. We have that the following assertions

hold true.

(1) If R" is a real division algebra, then S"~' is an H-space.

(2) If S*7' is parallelizable, then S"~' is an H-space.

Proof.

()1t is to be noted that a topological space being an H-space is weaker than it being a topological
group. This happens because the first notion does not require associativity and inverses for the binary
operation, while the second one does require these properties. Indeed, for example, S' and S® are
topological groups with the multiplications being the ones restricted from the complex numbers C and
from the quaternions H, respectively. In turn, S7 is an H-space with the multiplication being the one
restricted from the octonions Q. However, it is not a topological group since this multiplication lacks

associativity (see Example |E.7).
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(1) If R™ is a real division algebra (see Definition [E.1]), then

Snfl X Snfl SN Sn717
Ty

(l’, y) =
|2y

is a well-defined continuous binary operation having a two-sided identity element,
where the norm in question is the Euclidean one. This proves that S" ! is an

H-space.

(2) If S"~! is parallelizable, then let vy, -+ ,v,_; be linearly independent vector fields
on S~ 1. Because of the Gram-Schmidt Orthonormalization Process, we may assume
that the vectors z, vy (), - ,v,_1(x) are orthonormal for all z € S"~!. In addition,

we may also assume that

Ul<€1) = €2, "', Unfl(el) = €n,

where eq,--- ,e, is the standard basis on R™. This is possible because, if it is
not the case, then we can change the sign of v, _; to correct the orientations and
thence deform the vector fields in question near e; € R". Now, let o, : R® — R"
be the linear isometry that sends the standard basis into z,vi(x), -, v,_1(x)

for all x € S*~. Therefore,

—1 —1 —1
st ox sl sl

(z,y) = au(y),

defines an H-space structure on S" ! with the two-sided identity element being
e; since a,, = idgn and ag(e;) = x for all z € S"~!. This finishes the proof of

the lemma. O

Theorem 2.57 (Main results of this section). The following assertions are true only if

n=1,24 or8.
(1) There exists a real division algebra structure for an n-dimensional vector space <7 .

(2) The sphere S"~! is parallelizable.

The first assertion is called the Bott-Milnor-Kervaire Theorem.
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Proof. First, we prove that we can restrict the problem of real division algebras to
the one when the underlying n-dimensional vector space is the Euclidean space R".
Indeed, if & is an n-dimensional vector space, then let o : &/ — R™ be a linear

isomorphism. The diagram

MM gy
o X o &4 s o
axqo o
n n N n
R"” x R e s R

proves our assertion. In fact:

o if my, : o/ X of — o is a real division algebra structure on o7, then
Mpn = a0 my o (axa)t: R x R* — R”

is a real division algebra structure on R"; and

o if mg» : R” x R" — R” is a real division algebra structure on R", then
My = a P omgno(axa): o x o — o
is a real division algebra structure on <.

Therefore, in order to prove the assertions of the statement, it suffices to show that
S"=1 is an H-space only if n = 1,2, 4 or 8. This is a consequence of Lemma [2.56] In turn,
in order to prove this last assertion, we use the following K-Theory arguments. The Bott

Periodicity Theorem ensures that:

e the reduced K-Theory group K (S™) is the group of integer numbers for n even
and trivial for n odd (see Table . This comes from repeated application of the
periodicity isomorphism

B: K(X,z)) — K(S*AX),

a —~ [[n-1]Xa,
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where 7 is the canonical line bundle on S? (see Definition [2.47). In particular,
we immediately see that the generator of the ring K (S?*) is the k-fold external
product

[ — 1] --- B[y — 1]].

Moreover, we have that the multiplication in K(S?) is trivial since this ring is
the k-fold tensor product of the ring K (S?), which one can prove that has trivial

multiplication;

e the external product
X: K(S*) @ K(X) - K(S*AX)

is an isomorphism since it is an iterate of the periodicity isomorphism of the

preceding item; and

e the external product
X: K(S*) @ K(X) = K(S* x X)

is an isomorphism.  Since external product is a ring homomorphism, the
isomorphism between K(S* A X) and K(S%*) ® K(X) is a ring isomorphism.
For example, since K(S?*) can be described as the quotient ring Z[y]/(v?),
we can deduce that K(S?* x S%) is Za, 8]/(a?, B%) where a and 3 are the
pullbacks of the generators of K(S*) and K(S%) under the natural projections

of S?* x §? onto its factors. Thus, we have that an additive basis for K(S?* x S%)

is {1, o, 8, af}.
Thence, the proof splits in the following two cases.

(1) If k is a non-zero natural number, then S* is not an H-space. This claim follows
from the last item above. Indeed, suppose that p : S?* x S?* — S? is an H-space
multiplication. Hence, we have that the induced homomorphism of K-rings has

the form

K(p): ZR)/(v*) = Zlo, 8]/ (e, 57).
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We claim that
K(u)(v) = a+pB+map

for some m € Z. In fact, we have that the composition
§2k { §2k ¢ §2k H S2k

is the identity, where i is the inclusion into either of the subspaces S* x {1}
or {1} x S* with 1 being the identity element of the H-space structure pu.
Thus, K(i) for ¢ the inclusion onto the first factor sends «a to v and g to 0.
Consequently, the coefficient of v in K (u)(y) must be 1. In a similar manner, the
coefficient of § in K (u)(7y) must also be 1. However, this leads to a contradiction
since it implies

E(p)(v*) = (a+B+map)? = 2ap,
which is impossible since 7? = 0.

If k is a natural number different from 1, 2 and 4, then S**~! is not an H-space.
This is the hard part of the proof. The main idea is to associate to a map
fo Sl §2-1 y §2%1 5 map £ : %1 5 §% and then show that the Hopf
muvariant of J?is equal to plus or minus the unit if f is an H-space multiplication.
Consequently, the problem is solved proving that a map ¢ : S*~! — S?* has Hopf
invariant equal to plus or minus the unit only when n = 1,2 or 4. For this, one
has to prove the existence of a special kind of ring homomorphism in the K-Theory
framework, which is known as Adams Operations. The reader can find all the details

in [I5, pp. 59-72. O

Remark 2.58 (Complementing the preceding result). We have the following facts.

o There is a real division algebra structure for an n-dimensional vector space &/ when

n = 1,2,4 or 8 Once and again, we can restrict ourselves to the case when of
coincides with R™. Therefore, the problem 1is solved since the real numbers R, the
complex numbers C, the quaternions H and the octonions Q are real division algebras

of dimensions 1, 2, 4 and 8, respectively.
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o The spheres S°, S', S? and S7 are parallelizable. In order to prove this claim, we

use the notations of Examples[E.3, [E.4] and[E.3. Indeed, we can explicitly construct

a sufficient number of linearly independent vector fields on these spheres that ensure
their parallelizability. In fact:
o SU is parallelizable because its tangent bundle has rank zero;

o St is parallelizable because v : S' — TS', z — (2, e12), s a global vector

field on S';

o S? is parallelizable because

v S = TSP 20 (2, €12),
v S = TS 2 (2, e22),

v3: S = TS, 2 (2, e32),

are three linearly independent vector fields on S3; and

o S7 is parallelizable because

v : ST = TS, 2 (2, 12),
vy: ST = TS, 2z (2, e2),
v3: ST = TS, 2z (2, e32),
vy: ST = TS, 2 (2, es2),
vs: ST — TS, 2+ (2, e52),
ve: ST — TS, 2z (2, eg2),
v ST = TS, 2 (2, er2),
are seven linearly independent vector fields on S7. &

2.9 Euler characteristic

In this section, we will return to the relative K-Theory groups. Indeed,
until now, we have a discrepancy between the treatment of this idea and the form

we introduced absolute and reduced K-Theories. In fact, these latter concepts were
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introduced in a concrete and geometrical way.  The absolute K-Theory classes
were presented as wvirtual vector bundles, which admit minus signs before them.
In turn, the reduced K-Theory classes were presented as absolute K-Theory classes whose
rank is equal to zero. On the other hand, the motivation for Definition was shown
in Remark but it said nothing about the geometric structure of the relative
K-Theory classes. Among other things, we will fix this omission here. We begin with the

following definition.

Definition 2.59 (The category of exact sequences of vector bundles). Let (X, A) be an
object in TopHdCCpt,. We define the category of exact sequences of vector bundles
on (X, A), and denote it by C1(X, A), to be the category whose:

e objects are triples E = (Ey, Fo, ) where Ey and Ey are vector bundles on X and
a: By |a— Eqy|a is an isomorphism over A. This can be equivalently stated saying

that the sequence

0—>E1|A+>EO|A—>O

1 exact; and

e morphisms ¢ : E — F between E = (Ey, Ey,«0) and F = (Fy, Fy, 8) are pairs of
morphisms of vector bundles (¢ : Fy — Fi, po 1 Ey — Fy) in such manner that

the diagram
Eifa ———— Eola

v1la wola

B la ———— Fyla

is commutative. An isomorphism in C(X, A) is a morphism whose components

are 1somorphisms over X. %

Definition 2.60 (Elementary sequences and an equivalence relation induced by them).
Let (X, A) be an object in TopHdCCpt,. We say that an elementary sequence in
Ci1(X, A) is an object of the form
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E = (B, E, idg,).

In addition, given E = (E1, Ey,«) and F = (Fy, Fo, 8) in C1(X, A), we say that they
are equivalent if and only if there exist elementary sequences @@ and P in Ci(X,A)
for which

E & Q and FoP

are isomorphi. This definition naturally gives rise to an equivalence relation on the

class of objects of C1(X,A). The set of such equivalence classes is hereafter denoted

by L1(X, A). &

Notation 2.61 (The canonical commuting isomorphism). Let X be a topological space
and E and F be vector bundles on X. Hereafter, we will denote by ng r the canonical

1somorphism
7’]E7FSF@E — E@F,
(a,0) — (b,a). %

Theorem 2.62 (Natural structure of abelian group). Let (X, A) be an object in TopHdCCpt,.

The binary operation

b : El(XaA)X[d(X?A) — El(XaA)v

([E17E07 047 [Fla F07 /8]) = [El@Fla EO®FOa&@5]7

is well-defined. More than that, it turns the set of equivalences classes L1(X,A) into

an abelian group.

Proof. Let E = (Fy, Ey,«a) and E' = (Ef, E|, ') represent the same class in £1(X, A).
Analogously, let F' = (Fy, Fy, 8) and F' = (F], F{, /') represent the same class in £ (X, A).
We claim that

(Ey @ Fy, Ey® Fy, a® ) and (Ey® F|, E,® Fy, o/ &)

(When A is empty, since an object in C1(X) is just a pair E = (E;, Ey) € VectBdlg, we have that
E = (F4, Ey) is related to F' = (Fy, Fy) if and only if there exist vector bundles @ and P for which E; & Q
is isomorphic to F} ® P, and Ey @ @ is isomorphic to Fjy & P. This is an enlightening situation for this
equivalence.
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represent the same class in £4(X, A), which proves that the binary operation defined
in the statement is well-defined. Indeed, since [E] = [E'] in L£1(X,A), there exist
elementary sequences @ and P in Ci(X, A) for which there exists an isomorphism of
vector bundles (v1,7%) : F & Q — E’ @ P. Similarly, there exit elementary sequences @’
and P’ in Cy(X,A) for which there exists and isomorphism of vector bundles

(V1,7%) : F & Q — F' & P'. Thus,
(EroReQeQ, B FeQeQ, adfaidg, Gidy,)
and
(El@oFlePoP,EloF®oP® P, o dp @idp, ®idp,)

are isomorphic. Indeed, one can readily see that this isomorphism is ensured by the

commutative diagram

O‘@ﬁ@idQ\A@idQ’\A

(Bt FioQadQ)|a » (B0 o ®Qd Q) |a

idpy |, ®nQ.Fyla®idgr, idpg| 4 B0 Fyla Bldgy ,
(&@Qéﬁ@Qﬁu (%@Qéﬁ@QUM
vla ®vila Yola @v5la
(E,@PoFloP)|, (Eyo Po Fjo P') |4
g, @y pla @idpr) iy |, @My pla®idp,

(Ei®@ Fl®o P& P)|a » (B, F{@POP)|a.

o/ @ @idp|, Bidpr)

Furthermore, this binary operation evidently turns £;(X, A) into an abelian monoid.
Thus, we only have to prove the existence of inverses. In fact, let [E, F, o] € L£1(X, A).
We claim that
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—[E4, Ey, ] = [Ey, By, 7).

To prove this assertion, it suffices to show that (E; & Ey, Ey ® Ey,a ® a™!) is isomorphic
to an elementary sequence when summed up with another one. Indeed, let P be a
trivializing addendum for E, (see Theorem [C.51). This means that there exist a
trivial vector bundle 7" and an isomorphism of vector bundles 5 : Ey & P — T over

X. Hence, we have that
(E1®Ey® P, Ey®E,® P, ada ' @idp,) and (E1®T, By & T, idmer),)

are isomorphic. Indeed, one can readily see that this isomorphism is ensured by the

commutative diagram

aEBoFlGBidP‘A

(Ey®Ey® P) |a » (Eg® E1 ® P) |a

NE1,Eqla ®idp| ,
idpg, |, ®Bla (E1®Ey® P) |a
idg, |, ®Bla
E T s (B T .
(Ev@T) |a E— (Ev@T) |a 0

Theorem 2.63 (An interpretation for absolute K-Theory). Let X be an object in
TopHdCCpt,. We have that

@Xiﬁl(X) — K(X),
(B, Eo] = [[Eo]] — [[£4]],

18 a group tsomorphism. Moreover, this isomorphism is natural in the sense that diagram

Li(X) —ZF—— K(X)

L1(f) K(f)
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is commutative for all f : X — Y in TopHdCCpt,, where Li(f)[F1, Eo] = [f*En, f*Eo]
for all [Ey, Ey) € L4(Y).

Proof. Let us first prove that ¢y is well-defined. Indeed, let E = (FE;, Ey) and
E' = (Ei, E|) represent the same class in £4(X). Then, there exist vector bundle @
and P such that E; @ @ is isomorphic to ] @& P, and Ey @ @ is isomorphic to E| & P.
Consequently,

ex|Er, Eo] = [[Eo]] — [[E1]]
= [[Eo]] + [[Q]] — [[E1]] = [[Q]]
= [[Ev® Q] - [[E1© Q]
= [[Ey® P]] - [[E) & P]]
= [[E)] + ([P = [[E1]] = [[P]]
= [[E]] — [[E1]]
= ox[Ey, Eyl.

Now, let us prove that ¢x is a group homomorphism. In fact, if [Ey, Ey], [F1, Fo] € £1(X),
then

ox([Br, Eo) @ [F1, Fo]) = ox[Er® F, By ® Fo)
= [[Eo® Fo]] — [[E1 & F1]]
= [[Eo]] + [[Fo]] = [[£4]] — [[#1]]
= ([[Eo]] = [[EA]]) + ([[Fol] — [[F1]])
= px|F1, Fo) + ox[F1, Fol.

Moreover, since any class in absolute K-Theory can be represented as a formal
difference [[E]] — [[F]], ¢x|[F, E] = [[F]] — [[F]]. This proves surjectivity. Finally, if
[Eq, Eol, [F1, Fo) € £4(X) are such that

[Eol] = [[EAll = @x[E1, Eol = ¢x[Fy, Fo] = [[Fo]] - [[F1]],

then
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[Eo® A]] = [[Eo]] + [[FA]] = [[Fo]] + [[E]] = [[Fo @ EA]l.

Thus, there exists G € VectBdlx such that Ey & F; @ G is isomorphic to Fy & E; & G.
We set Q := Fy @ G and P := Ey @ G. Consequently, we obtain that E; & @ is
isomorphic to F; @ P, and that Ey® @ is isomorphic to Fy® P. Hence, [Ey, Eo| = [F1, Fo).
This ensures injectivity. The last claim of the statement is a straightforward computation

that we leave to the reader. O

Definition 2.64 (An Euler characteristic in K-Theory). Consider the contravariant

functor
L1 : TopHdCCpt, — 9,
(X, A) = Li(X,A),
f(X,A) = (Y.B) — Li(f): L1(Y,B) = Li(X, A),
where

Li(f)[Er, Eo, o = [f"Er, [fEy, [fo

for all [Ey, Eya] € L1(Y,B). Moreover, consider K : TopHdCCpty, — 9, to be the
contravariant functor defined in Remark [2.30. An Euler characteristic for L, is a
natural transformation

X1 = {Xl(X, A) : El(X, A) — K(X> A)}(X,A)ETopHdCCpt2

between the functors L and K such that

x1(X)[Er, Eo] = [[Eo]] — [[E4]]

for all X = (X,0) € TopHdCCpt,. We remind the reader that x1 : L1 — K
being a natural transformation means that the following diagram is commutative for all

f:(X,A) — (Y, B) in TopHdCCpt,.

Li(X,4) — 254 K(X,A)
L1(f) K(f)
(Y. B) ——— K(V.B) o
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Theorem 2.65 (Existence of an Euler characteristic for £y). There exists an Euler

characteristic x1 for L.

Proof. Let [Ey, Ey,a] € L1(X,A) where (X,A) is an object in TopHdCCpt,.
Subsequently, we define an element xi(X,A)[F1, Fy,a] € K(X,A) in such manner
that the map

x1(X,A4): L1(X,A) — K(X,A),

[Ela E07 04 — Xl(XyA)[EhEOva]a
is naturally defined with respect to (X, A) and that

X(X) = [[Eo]] — [[Ea]]
for all X = (X,0) € TopHdCCpt,. Indeed, let

Xo == X x{0} and
X1 = XX{l}

We set X to be the identification space obtained as the quotient of the disjoint union
Xo U X7 by the equivalence relation that identifies (a,0) with (a,1) for all a € A.

The natural sequence

0 — K(X, Xo) L K(%) L K(Xy) — 0
is an split exact sequence since i : Xy — X is a retraction (see Theorem [1.61). In
particular, we can consider its obvious right inverse p : X — X,. Furthermore, we

have the isomorphism

o K(X, Xo) = K(X, A)

which is induced by the inclusion (X, A) — (X,Xy) that identifies X with X; (see
Theorem [1.62). Thence, from [Ey, Ey, o] € L1(X,A), we define the vector bundle F
on X by setting F' |x, = Eo, F' |x, = Ei and identifying these restrictions over A via
the isomorphism « : E; |4 — Ey |a. The reader can prove that this vector bundle is

well-defined up to isomorphism and that
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[[F]] = [l (Eo)]] € Ker K(i).
Therefore, there exists a unique element (X, A)[E1, Ey, o] € K(X, A) for which

(K () oo™ a(X, A)[E1, By, o] = [[F]] = [[p"(Eo)]l.

This defines the homomorphism x;(X, A) that verifies the conditions presented at the
beginning. O]

Among other important things, we now show that an Euler characteristic
x1 : £1 — K is a natural isomorphism between the functors in question, which clearly
extends Theorem 2.63] In order to do this, we begin with the following technical
result that gives reasonable conditions under which one can monomorphically
(respectively, isomorphically) extend monomorphisms (respectively, isomorphisms)

of vector bundles.

Lemma 2.66 (Extension of monomorphisms and of isomorphisms of vector bundles). Let
(X, A) be an object in TopHdCCpt,. In addition, let E and F be vector bundles on X.
Ifa:E|s— F|aand p: E— F are monomorphisms such that B |4 is homotopic to «,
then a can be extended as a monomorphism of vector bundles to the whole X. The same

clarm holds for isomorphisms.

Proof. The reader can find a proof of this result in [2, pp. 89-90]. n

Lemma 2.67 (Euler characteristic of a pair of compact Hausdorff spaces whose
second component is a one-point space). Let (X, A) be an object in TopHdCCpt,. In
addition, leti: A — X and j : X — (X, A) be the inclusion maps. If A is a one-point

space, then

L1(7)

00— £(x,A) — 29 rix) 20

L1(A)

is an exact sequence. Consequently, in this situation, we have that, if x1 : L1 — K
is an Euler characteristic for Ly, then x1(X,A) : Li(X,A) — K(X,A) is an

1somorphism.
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Proof. Let x1 : £1 — K be an Euler characteristic for £, (see Theorem [2.65). The
fact that
Im £,(j) € Ker Ly(7)

follows from the commutativity of the following diagram.

L1(X, A) L) LX) — B9 e
x1(X,A) x1(X) x1(A)
K(X, A) —— K(X) o K(4)

In fact, since x1(A) is an isomorphism because of Theorem [2.63] we have
Li(i) o L1(j) = xi(A)~" o K(i) o K(j) o x1 (X, A).

Once K (i) o K(j) is the trivial homomorphism, our assertion is proved. More than that,

we have

Ker £,(i) C Im £4(j).

Indeed, if (Ey, Ey) represents an element of £,(X) whose image in £,(A) is zero, then
E; and Ej have the same dimension over A. Consequently, there exists an isomorphism
a : By |a — Ey |a because A is a one-point space. Thus, L£1(j)[E1, Eo, o] = [E1, Eo)
proves our second assertion. Therefore, we have just concluded the exactness of
the sequence

Li(X,A) — 29 x589 ra),

Now, we have to show that £,(j) is injective. Note that this is equivalent to prove
that the trivial class in £;(X, A) is the only one that is mapped by £;(j) into the trivial
class of £1(X). In fact, let [Ey, Ey,a] € L£1(X,A) have image zero in £,(X). Then,
there exists a vector bundle P and an isomorphism 8 : E1 & P — Ey @& P. Then,
Blao (a®idp,)" is an automorphism of (Ey @ P) |4. Since A is a one-point space,
any such automorphism must be homotopic to the identity. Hence, by Lemma [2.66),
B la o (a«@idp,) " extends to v : Ey ® P — Ey @& P. Thus, we have the following

commutative diagram.
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OtEBidp|A

(E1 @ P) [a (Eo® P) [a
Bla vla
(o ® P) |4 id(BgeP)|4 (B0 ® P) ]

Hence, (Fi, Fo,«) represents the trivial class in £4(X,A), as we wished. Thus,
Li(7) + L1(X,A) — L£4(X) is an injection. The last claim of the statement is proved
as follows. First, note that the surjectivity of x1(X, A) is obvious. Thence, note that the

injectivity of xi(X,A) is ensured by the following commutative diagram and

by Theorem [2.63]

0 — S Ly(X,A) — 29 r(x)

x1(X,A) x1(X)

0 > K(X,A) R0 > K(X)

Indeed, since y;(X) is an isomorphism by Theorem [2.63] it is an injection. Thus,
the composition x1(X) o L£4(j) is injective. Consequently, K(j) o x1(X,A) is also
injective. Therefore, by set-theoretic arguments, we have that x;(X, A) is an injection,

as we wished. O

Theorem 2.68 (Euler characteristic of a pair of compact Hausdorff spaces). Let (X, A)
be an object in TopHdCCpty. If m: (X, A) — (X/A, A/A) is the canonical projection,
then

Ly(m): L1(X/AAJA) = L1(X, A)

is an isomorphism. Consequently, if x1 : L1 — K is an Euler characteristic for L, then

X1(X,A) : L1(X,A) —» K(X,A) is an isomorphism.

Proof. Let x; : £ — K be an Euler characteristic for £;. We have that

X1(X/A,AJA) : L1(X/AAJA) — K(X/A,AJA)
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is an isomorphism by Lemma [2.67. Moreover, since the map

T X/A — (X/A)/(AJA),

2] = [r(@)];
is a homeomorphism, we also have that
K(r) = K(7): K(X/A,AJA) — K(X,A)
is an isomorphism. Thus,
K(m)ox1(X/A,AJA) : L1(X/AAJA) - K(X, A)

is an isomorphism. In particular, this map is injective. Therefore, since the following
diagram is commutative because y; : £; — K is an Euler characteristic, it follows that
X1(X, A) o L4(m) is injective. Hence, we conclude that £,(7) is injective by set-theoretic

arguments.
x1(X,A)

L1(X, A) y K(X,A)

L1(m) K(m)

Now let (Ei, Eyg,a) € C1(X,A). In addition, let P be a trivializing addendum for E;
(see Theorem [C.51). That is, P is a vector bundle on X for which there exist an
isomorphism £ : B @ P — X x ¥ over X, where X x ¥ is the product bundle with
typical fiber 7. We first claim that

[Ela EOa CY] = [X X /Va EOEBP7 ’.)/]7

where

v = (a@idp,) 0BG, AXY = (Ey®P)|a.

In fact, considering the elementary sequence (P,P,idp,) € Ci(X,A), the following
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commutative diagram shows that the sum (Ei, Ey, o) @ (P, P,idpy,) is isomorphic to

(X X7, Ey® P,7v), as we wished.

(E1 @ P) |a » (Eo® P)a
Bla d(myeP)| 4
Ax YV 5 > (Eg® P) |a

Furthermore,
Li(m)[X x V¥, (Bo® P)/v,v/7] = [X x ¥, Eg@® P, 9,

where (Ey @ P)/~ is defined in Section This equality is straightforward from the
proof of Corollary [C.62] although it is not immediate to be geometrically visualized. Thus,
we conclude that £(m) is surjective. Hence, we have that £;(7) is an isomorphism,

as desired. Therefore,
X1(X,A) = K(m) o x1(X/A,AJA) o ﬁl(ﬂ)_l.

This proves the last part of the statement since x;(X, A) is the composition of three

isomorphisms. O

Corollary 2.69 (Uniqueness of Euler characteristics for £q). If x1 and x}| are Euler

characteristics for L1, then x1 = X).

Proof. Because of Theorem for each (X, A) € TopHdCCpt,, we have that the
map x1(X,A) : £1(X,A) - K(X,A) is invertible. Therefore, it is defined the natural

transformation

xit o= {a(X,A) 7 K(X,A) = L1(X, A) Y xa)eToprdCCpt,

between K and L£;. In addition, once the composition of natural transformations

is also a natural transformation, we have the following natural transformation between

K and itself
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Xll © Xfl = {Xll (X7 A) © Xfl(Xv A) : K(X7 A) — K(X7 A)}(X,A)GTOpHdCCpt2~

We claim that x;(X) o x7'(X) = idg(x) for all X = (X,0) € TopHdCCpt,. Indeed,
according to Definition [2.64]

X1(X)[Ey, Eo] = [[Eo]] - [[E1]] = x1(X)[E1, B

for all [Ey, Ey] € L£1(X). Thus, xj(X) = x1(X) for all X = (X,0) € TopHdCCpt,,
which proves our assertion. Consequently, since the reader can readily prove that the
equality

X1(X, A) o xa (X, A) 7 = (G (X/A) 0 xa(X/A) ) Ikxay

holds for all (X, A) € TopHdCCpt,, the theorem is proved because
Xi(X/A) o xa(X/A) ™" = idg(x/a),s

as we showed before. O]

Corollary 2.70 (Dependence on the homotopy class). Let (X, A) be an object in
TopHdCCpt,. We have that the class of (Ey, Ey,«) in L1(X,A) only depends on the

homotopy class of a : Ey |4 — Ey |a.

Proof. First, we set (Y,B) := (X,A) x I. Thence, if 8 : E; |4 — Ep |4 is an
isomorphism of vector bundles which is homotopic to «, then we consider a
homotopy © : E; |4 x I — Ejy |4 between them. Thus, being 7 : (Y, B) — (X, A)
the natural projection onto the first factor, we have a natural isomorphism of vector
bundles

Yo: mEy | — 7Ey B,

(e, z,t) — (O(e ), z, t).

Now, let ig, 1 : (X, A) — (Y, B) be given by ig(z) = (z,0) and iy (z) = (z,1) for all z € X.
Since these maps are homotopic, being the identity on (Y, B) a homotopy between them,
we have

K(ip) = K(iy): K(Y,B) —» K(X,A).

Moreover, we have
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‘Cl(iO)[ﬂ-*Elu 7T*E07 7@] = [Ela EOJ Oé] and

El(il)[’ﬁ*Ela 7T*E07 ”YG)] = [Ela EOa B]

This happens because

7T0i0 = id(X’A) = 7TOi1

and because

-
e = «

and iive = p.

Finally, if x; : £1 — K is the Euler characteristic for £;, then the following diagram is

commutative.

L1(X,A)
L1 (io)

L1(Y, B)

L1(41)

2

L(X,A)

X1 (XvA)

K(X,A)
K (io0)

x1(v,B)— K(Y, B)

K (i1)

2

————— K(X,A)

Xl(XvA)

Thus, once every map in this diagram is an isomorphism’)}, we have £;(ig) = L£1(i1).

Therefore,
[El ’ EOa a]

as we wished.

L1 (ig)[7* B, 7 Eo, Yo
ﬁl(il)[W*EhW*EOﬁ@]

[E17 E07 6]7

]

() This happens because ig and 4; are homotopy equivalences between (X, A) and (Y, B). Indeed,
the reader can easily prove that the equality 7 oi; = id(x 4) holds. Moreover, one can readily show that

the map

I:(Y,B)xI — (Y,B),

(x,t,8) — (x,t-3),

is a homotopy between i; o m and id(y, ). This proves our assertion. Note that this technical arguments
just express the idea that a deformation retraction of (Y, B) into (X, A) is obtained by crushing the
cylinder X x I on one of its bases, which is an operation that obviously crushes the cylinder A x I on its

corresponding base.
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Remark 2.71 (Some necessary complements for this section). At this point, the
reader may be asking himself or herself why we wrote, for instance, Ci(X,A) and
L1(X,A) instead of C(X,A) and L(X,A), respectively. This is a righteous question
because, apparently, we have overloaded the notation without need. However, this is only
partially true. In fact, from a strict viewpoint, we overloaded the notion since most of
what we wrote could lose their subindexes without producing confusion. Nevertheless,
from a broader viewpoint, for each non-zero natural number n, we can define the category

Cn(X, A) whose:

e objects are (2n + 1)-tuples (Ep, -+ , Eo, ap, -+ , 1) where E; is a vector bundle on
X for each i between 0 and n, both included, and o; : E; |a— E;_1 |4 is a morphism
of vector bundles for i between 1 and n, both included, in such manner that the

sequence

0 —— Ep g —= E,_1|a y By jg ——— Ey|la —— 0

is eract. For convenience, we will usually denote an object in C,(X,A) by

E = (E;,a;); and

e morphisms ¢ : E — F between E = (E;,«;) and F = (F;, 3;) are collections of
morphisms of vector bundles ¢; : E; — F; for i between 0 and n, both included, such

that the diagram

0 —— Epja —2% By y By jg —2— Ey|la —— 0
| |
enla Pn-1la e1la wola
! ! ! !
0—>Fn|AT>Fn_1|A >F1|AT>F0|A—>O
is commutative. A morphism ¢ : E — F in C, between E = (E;,«;) and

F = (F;, 5;) is an isomorphism if ¢; : E; — F; is an isomorphism for i between

0 and n, both included.

Moreover, we can define an elementary sequence in C,(X, A) to be an object of the form

~
@]
~

0 N s 0 )Ei‘AL)Eifl‘A

L 0,
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where Iy = FE;_y and o; = idg,,. Thence, given E and F in Co(X, A), we can say
that they are equivalent if and only if there exist elementary sequences Qq1,--- , Q. and

Py, -, P for which

E & é@i and Fo épi
i=1 =1

are 1somorphic. This definition naturally gives rise to an equivalence relation on the class
of objects of C,(X, A). The set of such equivalence classes, which we hereafter denote by

L,(X,A), has a natural abelian group structure. This allows us to define the contravariant

functor
L, : TopHdCCpty, — Y,
(X, A4) = Lu(X,A4),
f(X;A) = (Y,B) — L.(f):L,(Y,B)— L,(X,A),
where

ﬁn(f)[E“ Oéz'] = [f*Eu f*Oéi]

for all [E;, 4] € L£,,(Y, B). In addition, being K : TopHdCCpt, — 9, the contravariant
functor defined in Remark we can define an FEuler characteristic for L, as a

natural transformation

Xn = {Xn(X,A) : L,(X,A) = K(X, A)}(x,4)cTopHdCCpt,

between the functors L, and K such that

Xn(X)[En, -+, Eo] = Y (—1[[E]]
i=1
for all X = (X,0) € TopHdCCpt,. As before, there exists a unique Euler characteristic
for L, for all non-zero natural number n. In particular, L,(X, A) is always isomorphic
to K(X,A). We will not prove this result here, but we will give a brief sketch for its
existence part. The reader will find the complete proof of this result in the references
indicated below. Indeed, let the canonical inclusion of C, (X, A) into Cpi1(X, A) be the

faithful covariant functor
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Ln: Co(X,A) = Cosa(X,A),
(Env"'vE()vana'”aal) — (OaE’na'”7E070_>ETL‘A7aTL7”'7O[1)7

(pn:Ep—Fy, -+, 00:Ey— Fy) — (0=0, pp:Epy— Fy, -, wo: Ey— Fp).
The map between objects of I, induces a homomorphism
tn: Lo(X,A) = Loa(X,A).

Thence, since one can prove that i, is always an isomorphism, we can define the Fuler

characteristic for L,

— -1
Xn = X1 9© L17n

between the contravariant functors L,, and K, where v, is the isomorphism indicated in

the following diagram.

L1n

£1(X,A) L—1> EQ(X,A) > > Enfl(X,A) T> £n<X,A)
We can also define Lo(X, A) to be the direct limit of the direct system
(N7 (En(Xa A))nENa (Ln,m . En(Xa A) — Em(Xa A))n,mGN)a

where Ly, s the trivial homomorphism if m < mn, and is the obvious composition
if n < m. Thus, we obtain a family of isomorphisms tneo @ Ln(X, A) — Loo(X, A)
indezed by the non-zero natural numbers. Any one of the isomorphisms of this family
proves the existence of an isomorphism x : Loo(X,A) — K(X,A). This is done
using the same reasoning that proved the existence of an Euler characteristic for L,. Thus,
the owverloading of the notation mentioned at the beginning of this remark s
explained by the ideas that we have just exposed here. The reader who fells the urge
to deepen his or her knowledge on this interesting topic will find in [2, pp. 87-94], [3]
and [23, pp. 64-65] good references. Finally, note that the results that we established
in this section can be trivially extended to the relative K-Theory group K™(X,A)
for all m € Z. %
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2.10 Compactly-supported K-Theory

In this section, we explicitly set the compactly-supported K-Theory groups. This
is mainly done because these groups are essential in Section in order to define
the Thom isomorphisms in K-Theory, which is a fundamental result that enables us
to discuss integration in K-Theory through the Gysin map. We begin with the following

definition.

Definition 2.72 (The category of locally compact Hausdorft spaces). We define the
category of locally compact Hausdorff spaces, and denote it by TopHdLocCptP,

to be the category whose:

e objects are locally compact Hausdorff spaces; and

e morphisms are proper continuous functions. We remind the reader that a function
18 proper if its preimage of any compact subspace of the codomain is compact in

the domain. &

Definition 2.73 (The one-point Alexandroff compactification covariant functor). We

define the covariant functor

*: TopHdLocCptP — TopHdCpt,
X - Xt
f:X—=Y = fr: Xt Yyt

This functor is known as the one-point Alexandroff compactification covariant

functor. &
Definition 2.74 (Compactly-supported K-Theory). Consider the composition of functors

K" := K" o *: TopHdLocCptP — %,
X = KX,

f:X =Y = K'(ff):K"Y*) = K"X"),

for each n € Z. We say that:
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e the nth compactly-supported K-Theory group of a locally compact Hausdorff
space X, which is denoted by K!(X), is the nth pointed reduced K-Theory group
K™(X1); and

e the nth compactly-supported induced homomorphism in K-Theory of a
proper continuous map f : X — Y between locally compact Hausdorff spaces,
which is denoted by KI(f) : KMNY) — K!X), is the nth induced homomorphism
K™(f*): KM(YT) = K"(X™). O

Remark 2.75 (On compactly-supported K-Theory groups). We have the following facts.

o If X is a compact Hausdorff space, then KI(X) is canonically isomorphic to

K(X).

o If X and Y are locally compact Hausdorff spaces, then, considering the product
between pointed reduced K-Theory groups in Remark we obtain the external
multiplication

X: KMX)® K™Y) - K'™™(X xY),

since the reader can readily prove that X+t A Y™ is canonically homeomorphic

to (X xY)*.

e The compactly-supported version of K-Theory is not homotopic invariant. Indeed,
for example, the real line R has the same homotopy type as a one-point space €,

but
K}Q) ~ K'Y = 0 and
K)R) = K'(@R") ~ K'S'Y) ~ Z.

o We can also define the relative version of compactly-supported K-Theory. In fact,
if (X,A) is a pair of locally compact Hausdorff spaces for which the inclusion

A — X is a proper map, then we define

KI(X,A) = K!(X/A) = K"((X/A)")

for all n € Z. Moreover, once we have a canonical homeomorphism between

XT/AT and (X/A)*, we have
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KMX,A) ~ K"(X*t/A).

for alln € Z. %

2.11 Real K-Theory

In this final section, we recapitulate the main notions of this chapter to set
real K-Theory. Indeed, until now, we have only considered K-Theory based on
complex vector bundles. However, there is an obvious analog to K-Theory based on
real vector bundles. Here we pinpoint the main differences between these two versions.
It is to be noted that there are other versions of K-theory, as the one that the reader can
find in [23, pp. 70-76], that we do not address in this work. We begin with the following

definition.

Definition 2.76 (The absolute real K-Theory group of a compact Hausdorff space).
Let X be an object in TopHdCpt and Vectyx be the semigroup of isomorphism classes of
real vector bundles on X with respect to the induced direct sum. The absolute
real K-Theory group of X, hereafter denoted by K(X), is the Grothendieck group

associated to Vectx. O

Definition 2.77 (Pullback in real absolute K-Theory). Let f : X — Y be a morphism in
TopHdCpt. We say that the pullback of f in real absolute K-Theory is the morphism
of abelian groups

K(f): KY) — K(X),
[E] - [F] = [ EN = FIL

where f*E and f*F are the pullbacks of the vector bundles E and F' through f, respectively.
Note that K(f) is well-defined because the pullbacks of isomorphic vector bundles are also

isomorphic. &

Remark 2.78 (Categorical interpretation of the real absolute K-Theory data presented
above). Being 9,, the standard category of abelian groups, we have the contravariant

functor
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K : TopHdCpt — 9,
X — K(X),
f:X=Y — K(f):KY)— K(X).

Furthermore, since Theorem imply that the pullbacks of vector bundles through
homotopic continuous maps f,g: X =Y, where X and Y are compact Hausdorff spaces,

are isomorphic over X, the contravariant functor

[K] : [TopHdCpt] — Y.,
X = K(X),
f: X—=>Y] —» K(f): K(Y) > K(X),

is well-defined, where [TopHdCpt| is the quotient of TopHdCpt by the relation of
homotopy of maps, which s an equivalence relation that is compatible with the

composition in TopHdCpt. &

From the functors of the preceding remark, we construct the real versions of
(pointed) reduced and relative K-Theory groups and homomorphisms in the exactly
same manner as was done in the complex case. Moreover, all of the results of this
chapter hold true for real K-Theory, adapting them to the Real Bott Periodicity

Theorem set below.

Theorem 2.79 (Real Bott Periodicity Theorem). Let (X, x¢) be an object in TopHdCpt ..

There exists an isomorphism of rings
K(X,x) — K 3(X,x0).

Proof. The reader can find more details and further developments of this result in

23, p. 63]. 0

In particular, we have that the real K-Theory is also an additive generalized
cohomology theory. Differing from the complex case, which is 2-periodic, we have that
real K-Theory is 8-periodic. We finish this section, and then the chapter, showing in

the following remark the relevance of this version of K-theory by exhibiting one of
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its great achievements in the last century, which is a theorem that properly answers
the question of what is the maximal number of linearly independent vector fields on

a sphere.

Remark 2.80 (An application of real K-Theory). Using real K-Theory, one can
prove that, if n is a non-zero natural number that we uniquely decompose in the
form

n = (2a —1)2%*,

then there exist at most 83 +27 —1 linearly independent vector fields on S*~1. The reader
can find proofs of this result in [1] and in [33]. The treatment given by the first reference
18 more technical than the one given by the second reference. This may help the reader in

choosing which one of them to follow. &
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Chapter 3

Spin Geometry and Ordinary K-Theory

In this chapter, we expose the necessary concepts of Spin Geometry
in order to set the Thom isomorphisms and the Gysin map in Ordinary K-Theory.
In particular, we study the Clifford algebras and their -classification, given
through Sylvester’s Law of Inertia. Furthermore, we work with the representation
theory of Clifford algebras, which leads us directly to the Atiyah-Bott-Shapiro
Theorem. Afterwards, we deal with Pin and Spin groups, in order to introduce the
notion of spin and spin® structures on vector bundles. In order to write this part of the
text, we used as main references [2, pp. 102-116|, [6] and k |23 pp. 7-40, 58-70, 77-85].
However, Sections and could not be written without [9, pp. 37-47| as well as
Section [3.8] could not be completed without the presence of [34].

3.1 Clifford algebras

In this section, we develop the fundamental notion that will be used throughout
this chapter, namely, the Clifford algebras. This concept will be used later to deepen our
present comprehension of Ordinary K-Theory. In particular, these special algebras are
the basic mathematical structure used in the Atiyah-Bott-Shapiro Theorem, which will
allow us to prove the existence of Thom classes in K-Theory. We begin by fixing the

following notation.
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Notation 3.1 (On real and complex numbers). When we do not desire to distinguish
between the field of real numbers and the field of complex numbers, we shall write
K to symbolize any of them. In particular, the vector spaces considered below are always

real or compler. &

Definition 3.2 (Category of vector spaces and symmetric bilinear forms). We define
the category of vector spaces and symmelric bilinear forms, and denote it by

VectSymBEF, to be the category whose:

e objects are ordered pairs (V,s) where ¥ is a finite-dimensional vector space and

s: ¥V x ¥V = K is a symmetric bilinear form; and

e morphisms are linear maps @ : V' — W such that sy o p = sy, usually denoted
by ¢ = (¥V,sy) — (W ,sy). In other words, morphisms are linear maps that

preserve the symmetric bilinear forms. &

Definition 3.3 (Category of vector spaces and quadratic forms). We define the category
of vector spaces and quadratic forms, and denote it by VectQF, to be the category

whose:

e objects are ordered pairs (V,q) where ¥ is a finite-dimensional vector space and

q:V — K is a quadratic form; and

e morphisms are linear maps @ : V' — W such that qy o ¢ = qy, usually denoted
by o © (V,qv) = (#,qy). In other words, morphisms are linear maps that

preserve the quadratic forms. &

Definition 3.4 (Clifford algebras). We give the following definitions.

o Let (V,s) be an object in VectSymBF. The Clifford algebra CI(¥,s) of (¥,s)
s said to be the associative free algebra with unit generated by ¥ and submitted to
the relations

vw+wv = —2s(v,w) -1 (3.1)

for all v,w € V.
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o Let (V,q) be an object in VectQF. The Clifford algebra CI(¥,q) of (¥,q) is
said to be the associative free algebra with unit generated by ¥ and submitted to
the relations

v? = —qv)-1 (3.2)

forallveV. %

Remark 3.5 (The Clifford algebras seen through the isomorphic categories of
vector spaces equipped with symmetric bilinear forms and quadratic forms). We have

the following facts.

o Let (V,s) be an object in VectSymBF. We define

gV — K

v o= s(v,v).

We have (V,qs) € VectQF. In addition, if ¢ : (V,sy) — (W ,sy) is a morphism
in VectSymBF, then it follows that ¢ : (V,qs,) — (#,qs,) is a morphism in
VectQF.

o Let (V,q) be an object in VectQF. We define

s5: Vx¥V — K,

(0. w) g (alo+w) — (o) — glw).

We have (V,s,) € VectSymBF. In addition, if ¢ : (V.,qv) — (W ,qr) is a
morphism in VectQF, then it follows that ¢ : (¥, s,,) — (W', s,,) is a morphism
in VectSymBF.

Since qs, = q and s,, = s, we have that

Q@ : VectSymBF — VectQF,
(%7 S) H (77 QS>7
@ <7/7 SV) — (W7 SW) = P <7/7 qS«;/) — (Wa QSW>7
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18 an isomorphism between VectSymBF and VectQF. Indeed, its inverse is the covariant

functor
S VectQF —  VectSymBF,
(7, a) = (7, s),
e:(Viar) =W, an) = o (Y, 8q,) = (W, Sq).

Consequently, symmetric bilinear forms and quadratic forms are indistinguishable
from a categorical viewpoint. Thus, we have that the following facts on Clifford algebras

hold true.

o Let (V,s) be an object in VectSymBF. The relations presented in Equation ((3.1)

are equivalent to

v = —q(v)- 1

for all v € V. Therefore, we have that CI(¥,s) is canonically isomorphic to
CU7,qs).

o Let (V,q) be an object in VectQF. The relations presented in Equation (3.2
are equivalent to

vw+wv = —2s,(v,w) -1

for all vyw € V. Therefore, we have that CI(V,q) is canonically isomorphic to
ClY, sq)-

In this text, we wuse these representations of the Clifford algebras interchangeably.

Moreover, when the symmetric bilinear form or the quadratic form are understood,

we write C1(¥). O

Theorem 3.6 (An alternative presentation to Clifford algebras). Let (¥, q) be an object
in VectQF. In addition, for all m € N, let ¥®™ be the m-times tensor product of ¥V
with itself. We define

T =P re.

ieN
Moreover, we define (¥ ,q) to be the ideal in T (V) formed by the elements of
the form v ® v 4+ q(v) - 1 for v € ¥. We have that CU(V,q) is isomorphic to the
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quotient of T (V) by F(V,q). Consequently, since ¥ is a subset of T (V) up to a

canonical 1somorphism, there exists a map
Ly V. — CUY,q)

whose image generates the whole Clifford algebra.

Proof. The assertion is obvious from the definitions of the objects in question. We leave

the details to the reader. O

Theorem 3.7 (Extending linear maps to Clifford algebras). Let (¥, q) be an object in
VectQF. In addition, let A be an associative algebra and o : V' — A be a linear map
such that

p(v)* = —q(v)-1 (3.3)

for all v € V. Under these conditions, we have that ¢ extends uniquely to an algebra

homomorphism

o Cl(7,q) — A

Furthermore, CI(V,q) is the unique associative algebra with this property. This is the
universal property of the Clifford algebras.

Proof. The reader can readily prove that ¢ : ¥ — A extends to a unique algebra

homomorphism

TV) — A.

Because of Equation ([3.3)), this homomorphism is trivial on .# (%', q). Thus, it descends

to unique algebra homomorphism
o Cl(V,q) — A,

as we wished. Now, let B be an associative algebra with unit over K equipped with
an embedding i : ¥ — B with the property that any linear map ¢ : ¥ — A as
above extends uniquely to an algebra homomorphism ® : B — A. Thence, the
isomorphism between ¥ C CI(¥,q) and i(¥) C B induces an algebra isomorphism
between Cl(7, q) and B. O
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Remark 3.8 (Functorial behavior of the Clifford algebras implied by the preceding
result). Let ¢ : (V,qv) — (W ,qy) be a morphism in VectQF. Additionally, let
ty W — CU W, qy) be the map defined in Theorem . Because of Theorem we
have that there exists a unique algebra homomorphism ® : CI(¥ ', qy) — CUH ,qy) that
extends Ly o @V — CUW ,qy). In particular, because of uniqueness, the reader can
prove that the induced map of a composition coincides with the composition of the
induced maps. Consequently, it follows that the induced map of an isomorphism s also

an isomorphism. &

Lemma 3.9 (Two linear maps). Let (¥, s) be an object in VectSymBF. For any m € N,
let A™ (V') denote the vector space of m-forms on ¥. For any m € N and v € ¥, we

define the linear maps
e A™(Y) — AT,
a — vAaQ,

and

S AV — AN,

VA AU, Z(—l)ifls(v,vi)vl/\---/\'z?i/\~--/\vm,
=1
which are such that the compositions
o™ A™(Y) — ATV and ST o 5 AT(Y) = ATV
are trivial homomorphisms. Moreover,
l;n_l o 5;” + 5zn+1 o l;n = q(v) : idAm(/y/).

It is to be note that, in order to define 9,', we tacitly supposed m strictly greater than
zero. Furthermore, as usual, the hat in v; indicates the removal of the element v; from

the expression.

Proof. The triviality of the composition [ o ["™ is obvious since, for all « € A™(¥),

we have
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("o ™ (a) = " (vAa) = vAvAa = 0.

In turn, we have that the triviality of the composition 6! o §™ is proved as follows.

Indeed, if

then

(6 o0 )(a) =

a = v A ANv, € N(Y),

ot (Z(—l)il s(v,v) VP A s AOFA - A Um>

o
Z (=)™ s(v,v;) s(V,0;) VL A ATFA - ATy A=+ AUy

m
+ Z (=) s (v, v)s8(v, v) VL Ao ATEA - AT A+ AUy
m
Z (=) s(v,v;) s(V, V) VL Ao AT A+~ AT A+ Ay,

m
- —1) 'SU,U s(V,v;) v1 N - Aaz/\/\@/\/\ijm
1)+ j ;

Finally, using the notation presented above, the last equality of the statement is proved

as follows. In fact,

and

m

(I odm) (@) = > (=1 s(v,0) v Avy A AT A Ay,

(6 o ") ()

Consequently,

as we wished.

i=1

= ™ u A a)

= a+z s(V, V) VAUV A= AN A v,
m

= q(v)-a—Z(—l)ifls(v,vi)v/\vl/\--~/\@-/\~-'/\Um.
i=1

(It ody + 0, ol (a) = q(v) - a,
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Theorem 3.10 (Clifford algebras of non-trivial spaces are also non-trivial). We have
that the map
Ly . vV — Cl(%)

defined in Theorem (3.6 is injective. This allows us to identify 1y (v) € C(Y) withv € ¥
when there can be no confusion. In particular, if V is a non-trivial vector space, then

Cl(¥) is a non-trivial algebra.

Proof. To prove the desired injectivity, we construct a representation of Cl(%#") over the

exterior algebra

AY) = @A)

1€N

as follows. First, we consider

n: Z(¥) — EndA(¥),

v Ly — Oy,

where

L= @ and 5, = P,

ieN ieN
being I! and 4! the special linear operators defined in Lemma Therefore, because
of this very same lemma, and because Equation holds true, we have that n projects
to the map

7: Cl(¥) — EndA(¥),

Ly(v) = 1y — 6.

Using the definitions of the maps [, and §, presented above, the reader can readily prove

the equality

nw)(1) = (lb=3,)(1) = v.
This implies

ey (0))(1) = v.

Consequently, if v is non-zero, then 1y (v) is also non-zero. This finishes the proof of

the theorem. O
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Remark 3.11 (Natural filtration on a Clifford algebra). Let (¥,q) be an object in
VectQF. We have

T = re

1€EN

Consequently, if we define
Vom = P ¥
i=0

for all m € N, then we obtain the filtration
Yoo € Vo1 € -+ C Yom C - C© T(V).

In particular, the reader can readily prove the existence of a natural isomorphism
between Vom/Vam-1) and V™. Furthermore, if © : T (V) — CU¥,q) is the natural
projection and

F () = 7(Vom)

for all m € N, then we obtain the filtration
FUV) € FH(Y) C - CFN(Y) C - C CUY ).

It is to be noted that this last filtration is compatible with the Clifford product, which
means that

Fr) - FUF) € T

for all m,n € N. Moreover, it is to be noted that F™(V) is generated by the
products of at most m wvectors of V. As a consequence, we have that there can be
products of m vectors contained in F" (V) with n < m. For instance, being v,w € ¥V,
we have vww € F V), although it is the product of three vectors, since the equality

vww = —q(w) - v holds. O

Lemma 3.12 (Understanding the projected map defined in the proof of the preceding
theorem). If
n: Cl(Y) — End A(¥)

18 the map defined in Theorem then, for all non-zero natural number m and all

Vi, Uma1 € ¥, we have
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ﬁ(vl "'Um+1><1) = N\ NUpyr + Qo

where

am € Mu(V) = EP N(7).

Proof. We prove the result using the Finite Induction Principle.

e Induction basis. If m = 0, then we have seen that 7(v)(1) = v for all v € V.
Therefore, in this situation, we have ay = 0. Consequently, the statement is true

for m = 0.

e Induction hypothesis. We suppose that the lemma holds for some m € N and

all vy, -+ v € 7.
e Induction step. Being vy, -+ ,vy40 € ¥, it follows from the induction hypothesis
that

Nr - Vmy2)(1) = 7(v1)n(va - Vmy2)(1)
= Nv1)(Va A AUpia + Q)

= VA AUpioF U A — 0y (Vo A v s AUpyo + Q).
Since ¢,, decreases degrees, we have
i1 = (V1 Aag) — 0 (Ve Ao AUy + i) € N (),

as desired. O

Theorem 3.13 (The Clifford and exterior algebras). Let (¥, s) be an object in VectSymBF.

The map
oy A(V) — CUY,s),

VIA AUy = (U1 U,

1 a canonical isomorphism of vector spaces, but not of algebras. In particular, we have

dim CI(¥, 5) = 24m("),
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Proof. According to the proof of Theorem [3.10, we have

AY) = P N().
ieN
Nevertheless, since A™(¥') is trivial when dim(?) < m, we have a canonical vector

space isomorphism
dim(¥7)

AY) ~ @ N). (3.4)

i=0
Moreover, because of what we have shown in Remark [3.11, we have a canonical vector

space isomorphism

CUV.s) ~ E Z'())F (). (3.5)

ieN
Now, let ®7 : A™(V) — F™(¥)/F™ Y(¥) be the restriction of ®y. Because of
the Isomorphisms and (3.5), it is clear that, if we prove that ®7 is an isomor-
phism for all m € N, then the theorem follows. First, however, we have to prove that ¢’}
is well-defined. This have to be done since the elements v; A ... A v, do not form a

basis for A™(¥'). Let

L oy gy F(Y),

VIR @Uy > U1 U]

This map is well-defined since it is the composition of 7 : 7 (%) — CI(¥,s) restricted
to #9™ with the projection F™(¥) — F™(¥)/F™ 1 (¥). We shall prove that 7
is the restriction of W'} to A™(¥). For this, let 3,, denote the permutation group on
m letters. Thence, if (i i + 1) € 3, is a transposition of consecutive elements, then we

obtain

[Ul C ViUt Um] = [Ul R T (—UZ‘UZ‘+1 — 23(1)1-7 Uz‘+1) . 1) Vipo - 'Um]
— —[’Ul cr VU541 ’Um] — [25(’1]7;7 UZ-+1)U1 Ce eV _1Vigo Um]

= —[v1- v Ul

where this last equality holds because

28(1)1‘, Ui+1)vl 2 UVi—1Ui42 - - Uy & ﬁm—Q(/y/) g fm_l(%)
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Therefore, since the collection of all transpositions of consecutive elements generates

Ym, We have

VP (Vo) ® - @ Up()) = (1) V(01 @+ @ ;)

for all 0 € ¥,,. Consequently, it follows that the restriction of W7 to A™(7') satisfies
the equality

VR0 A Avy) = VP(01 @+ @ uy,).
This proves that the function
VLA AUy = V(0 @ @uy),

which coincides with @7}, is well-defined. Furthermore,

o D7 is surjective. Indeed, if it is given a class [vy---vy| € F"™(V)/F™ V),
then we have

P (1 A Avp) = [+ Ul

In particular, this proves that .Z™(¥) = ZFIm)(¥) for all m greater than or
equal to dim(7); and

o O is injective. In fact, we explicitly show its inverse. Let p,, : A(¥) — A™(¥)

be the natural projection. We define

= YY) FNY) o A,

(V1 V] = P (V1 vm) (1)),

where 7 is the map defined in the proof of Theorem [3.10. Because of Lemma |3.12]

we have

EV 1 vm] = v A A v,
Therefore, we obtain =7 = (®7)~! as desired. This finishes the proof of the
theorem. 0

Remark 3.14 (Improving our comprehension on the Clifford algebras). Let (¥, s) be
an object in VectSymBE. If 1 = {e1, -+ ,edim(»)} s a basis for V', then collection of

m-forms
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(%m = {ekl VANCIIRIVAN ekm}1§k1<"'<kmgdim(7/)

is a basis for A™(V) for all m between 1 and dim(¥'), both included. Consequently,

the collection
dim(¥

)
B = U B,
=0

is a basis for AN(V), where By is defined to be the singleton containing 1 € K. Because of
Theorem

dim(¥7)

Oy (B) = ) 2v(2)

i=0
is a basis for the vector space CU(V,s). Therefore, we may think about an element in
Cl(7,s) as an m-form for some m between 1 and dim(¥'), both included. Nevertheless,
the wedge product is substituted by the Clifford product, which is not even isomorphic
to the former. In fact, leaving the isomorphism of CI(V', s) with A(¥") implicit, it can be
proved that
v = v A —6,(n)

for allv e ¥ and all n € CI(V). O

Remark 3.15 (Important decomposition of Clifford algebras). Let (¥, q) be an object in
VectQF. We have
Cl(¥,q) = CI°(¥,q) & CI'(¥,q), (3.6)

where:

o C1°(7,q) is the subalgebra of Cl(¥,q) generated by the products of an even

number of vectors of V'; and

o C1Y(V¥,q) is the subalgebra of C1(¥,q) generated by the products of an odd

number of vectors of V.
This claim can be proved by using two different viewpoints. Indeed:

e consider the split

T = T @ T,
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obtained by sorting out the homogeneous generators of even and odd degree in T (V).

Correspondingly,
IV = 70 @ IV q).

This split of F (¥ ,q) is possible because its generators v @ v+ q(v) - 1 are sums of
two terms with even degrees. In fact, since the generic element of J (¥ ,q) has

the form

k
Z%‘ ® (v; ®v; — q(v;) - 1) @ b;,
i=1

it splits in the sum of the terms such that 0; = deg(v;) + deg(6;) is even with
the terms such that 6; is odd. As a consequence of these splittings, we have the

1somorphism
CUY . q) =~ T°()/ IV q) @ T (V)] IV q) = CL(V,q) @ CLY(V,q),

as we wished; and

e consider the linear operator
a: VvV =V,

v = —.

Let 7 : C¥,q) — CU¥,q) be its induced homomorphism from Remark [3.8
We have that C1°(¥,q) and ClY(¥,q) are the eigenspaces relatively to the
eigenvalues 1 and —1 of 7. Thus, we can prove the desired result by showing
that any element in CL(7,q) can be written as a sum of an element in C1°(¥,q)
with an element in C1Y(¥,q). This happens because eigenspaces associated to
different eigenvalues are necessarily disjoint. In fact, for all n € C(¥,q), we have

the decomposition

n = S+ + 7)),

where n 4+ 7(n) € C1%(¥,q) and n — 7(n) € CI*(¥,q). As a consequence, we are

done here

Furthermore, we have

ClY(¥,q)-Cli(¥,q) C CI™H (¥, q), (3.7)
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where i,j € Zo. The decomposition in (3.6) together with the property in (3.7) turn
Cl(7,q) into a Zo-graded algebra. The structure of Zs-graded algebra provides a
modification on the tensor product of algebras, which we denote by ®, that relates the

Clifford algebra of a direct sum with the Clifford algebras of its summands. In fact,
if V=7 ® Y is such that

q(v1 +v2) = q(v1) +q(v2)
for all vi € ¥1 and all vo € V5, then there exists a natural isomorphism
Cl(¥,q) =~ Cl(") & CI(¥3),

where the quadratic forms on ¥, and V5 are the restrictions of the quadratic form
on V. This fact will be important in the next section. The reader who desires to
understand a bit more about this construction may find in [23, pp. 11-12] an

interesting reference. &

3.2 Classification of Clifford algebras

In this section, we present the complete classification of the real and complex
Clifford algebras. This interesting topic complements the formal study developed
in the preceding section. In fact, it supplies us with many concrete examples. The
essential result that enables such classification is Sylvester’s Law of Inertia, which is
a famous theorem from Linear Algebra that will be remarked in time. We begin by fixing

the following notation.

Notation 3.16 (Usual matrix algebras). Let n be a natural number. We shall denote
by R(n), C(n) and H(n) the algebra of square matrices of order n over R, C and H,
respectively. &

Definition 3.17 (Clifford algebra induced by a real canonical form). Let n be a natural
number. For each natural numbers a and b such that a + b is at most n, we define the

canonical real quadratic form
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n . n
Qup: R" — R,
a b
2 2
(1, ,xn) E %_E Tita
i=1 i=1

The representative matriz of the quadratic form q;, with respect to the canonical basis

1S given by
I, 0 0
0 —I, 0] € R(n). (3.8)
0 0 0

We say that Cl,(a,b) is the Clifford algebra of R™ with respect to the real quadratic
form qg, : R" — R. In addition, if qy, is non-degenerate, that is, if n = a + b,
then Cl,(a,b) is denoted by Cl(a,b). Finally, we agree on denoting Cl(n,0) simply by
Cl(n). &

Remark 3.18 (On real Clifford algebras). Let n be a natural number. The real
version of Sylvester’s Law of Inertia says that any real quadratic form q on an
n-dimensional real wvector space V¥ admits a basis under which its representative
matriz coincides with for some appropriate a,b € N. Thus, there exrists an

isomorphism @ @ ¥V — R™ such that
Qop © P = q-

As a consequence of this reasoning, it follows from Remark that there erxists an

algebra isomorphism

o : Cl(7,q) — Cl,(a,b).

This proves that any real Clifford algebra is isomorphic to some Cl,(a,b). Clearly,
if the quadratic form 1is non-degenerate, then its Clifford algebra is isomorphic to
some Cl(a,b). Therefore, we can rephrase the problem of classifying all of the real
Clifford algebras to the problem of classifying all of the real Clifford algebras Cl,(a,b).
In fact, it suffices to classify the real Clifford algebras Cl(a,b). Indeed, consider the
decomposition R" = R @ R"2=° yhere Qns |Reto s mon-degenerate and qp; |gn-a-s

is trivial. Because of Remark[3.15, we have
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Cl,(a,b) ~ Cl(a,b) & Cl,_,_(0,0). (3.9)

Thence, since Cl,_, (0, 0) is canonically isomorphic to the exterior algebra A(R"747%),
it is clear from Equation (3.9)) that we only have to classify the Clifford algebras Cl(a,b),

as we claimed. &

Definition 3.19 (Clifford algebra induced by a complex canonical form). Let n be a
natural number. For each natural number a between 0 and n, both included, we define the

canonical complex quadratic form

q : C" — C,

a
(21, ,2n) sz
i=1

The representative matriz of the quadratic form q) with respect to the canonical basis

1$ given by
I, 0
0 0

e C(n). (3.10)

We say that Cl,(a) is the Clifford algebra of C™ with respect to the complex quadratic
form ¢ : C" — C. In addition, if q" is non-degenerate, that is, if n = a, then Cl,(n)
is denoted by Cl(n). &

Remark 3.20 (On complex Clifford algebras). Let n be a natural number. The
complex version of Sylvester’s Law of Inertia says that any complex quadratic form q on
an n-dimensional complex vector space V' admits a basis under which its representative
matriz coincides with for some appropriate a € N. Thus, we have that there exists

an isomorphism o : ¥V — C" such that

qy ©p = q.

As a consequence of this reasoning, it follows from Remark that there exists an
algebra 1somorphism

®: Cl(Y,q) — Cl,(a).
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This proves that any complex Clifford algebra is isomorphic to some Cl,(a). Clearly,
if the quadratic form is non-degenerate, then its Clifford algebra is isomorphic to
some Cl(n). Therefore, we can rephrase the problem of classifying all of the complex
Clifford algebras to the problem of classifying all of the complex Clifford algebras
Cln(a). In fact, it suffices to classify the complex Clifford algebras Cl(n). Indeed,
consider the decomposition C* = C* & C"* where I} |ca is non-degenerate and q |cn—a

is trivial. Because of Remark[3.15, we have
Cln(a) =~ Cl(a) ® Cl,_4(0). (3.11)

Therefore, as before, it follows from FEquation (3.11) that we only have to classify the
Clifford algebras Cl(n), as we claimed. O

Remark 3.21 (A relation between real and complex Clifford algebras). We have the
following facts.

o If V is a real vector space, then we can define its complezification V¢ = ¥V Qg C.
Moreover, any real symmetric bilinear form on ¥ can be extended by C-linearity
to a complex symmetric bilinear form on Y. With respect to this data, we have
that the Clifford algebra Cl(¥¢) is canonically isomorphic to the complexification
Cl(7) ®@r C. Indeed, it suffices to identify v ® z € Cl(¥) ®r C with v® z € Y.
In particular, the complexification of Cl,(a,b) is isomorphic to Cl,(a +0b). Further,
we have that C1°(7¢) and C1* (7)) are canonically isomorphic to C1°(7) @ C and
Cl1Y(¥) ®g C, respectively.

o If V is a complex vector space, then we can define its realification Y& by restricting
its scalar product to real numbers. Moreover, any complex symmetric form on ¥V can
be restricted to a real symmetric bilinear form on Y&. With respect to this data, we
have that the Clifford algebra Cl(¥R) is canonically isomorphic to the realification
of CL(¥), where an isomorphism is given by the identity map. Furthermore, we
have that C1°(¥%) and Cl1'(¥&) are canonically isomorphic to the realifications of
C1%(¥) and C1*(¥), respectively. O
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Theorem 3.22 (The first concrete examples of real and complex Clifford algebras). We

have the isomorphisms

Cl(l) ~ C
Cl0,1) ~ ReR
Cl(1,1) ~ R(2)

Cl2) ~ H
C1(0,2) ~ R(2)

As immediate consequences of the first and forth of these isomorphisms, we obtain the

1somorphisms

Ci(l) ~ CeC and Ci(2) ~ C(2).
Proof. Indeed, we have that:

e CI(1) is the vector space generated by 1 and e;, with the only interesting
multiplication being e = —1. Therefore, we obtain the desired isomorphism by
identifying ¢ € C with e; € CI(1). Moreover, because of Remark we have the
isomorphism

o: Cli(1) —» CaC,
%(1+z’el) S (L0), S(1—ie) = (0.1)

e CI(0,1) is the vector space generated by 1 and e;, with the only interesting
multiplication being e? = 1. Therefore, we obtain the desired isomorphism through

the linear map

®: Cl0,1) —» RoR,

%(14‘61) — (170)7 %(1_61) = (Ovl)'

e CI(1,1) is the vector space generated by 1, e; and ey, with the only interesting
multiplications being e2 = —1, €2 = 1 and ejes = —eye;. Thus, we obtain the

desired isomorphism through the linear map
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o: Cl(1,1) — R(2),

0 1
e , €y
-1 0

Sl
[\
—_ =

e CI(2) is the vector space generated by 1, e; and ey, with the only interesting
multiplications being ¢? = e2 = —1 and e;es = —eze;. Thus, we obtain the desired
isomorphism by making the obvious identifications (see Example [E.4). Moreover,

we have the isomorphism

o Cl(2) — C2),
1 0 0 1

e CI(0,2) is the vector space generated by 1, e; and ey, with the only interesting
multiplications being e? = €2 = 1 and ejes = —ege;. Thus, we obtain the desired

isomorphism through the linear map

This finishes the proof of the theorem. O

We have seen hitherto that the problem of classifying (real or complex) Clifford
algebras can be rephrased to the problem of classifying the (real or complex) Clifford
algebras of K" obtained from the non-degenerate canonical quadratic forms. We now
classify these algebras. We start with the complex case, which is much simpler than

the real case.

Theorem 3.23 (Periodicity of complex Clifford algebras). Let n be a natural number.

The linear map
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®,: Clln+2) — Cl(n)®cCl(2),

1 1

I

Y

Yo L @ tagas,

T = Bn ®ioag,

I

Yn+1 1® ay,

Ytz 1&g,

is an algebra isomorphism, where {aq, s}, {61, -, B} and {1, -+ ,Ymi2} are the

canonical bases of R?, R™ and R"*2, respectively.

Proof. We start by showing that ®,, preserves products. In fact, it suffices to show that
this map preserves the relations in (3.1). This task consists in a pile of straightforward

computations. To keep clearness, we exemplify one of them. Indeed, for j and k£ between

1 and n, both included,

Ve + Yy = (=) @

= (BiBr + Bif;) @1

= (B;6k) @1+ (BrfB;) @1

= (B ®icqa)(Br ® toqag) + (B ® ioqas)(f; ® iagas)
because

(i()élOég)Q = —10201 g = (Oé1)2(042)2 = (-1)(-1) =1

once oy = —ae0y. Here we have that d;;, denotes the usual Kronecker delta. That is,
we have

1 if j =k,

0  otherwise.
Therefore, since ®,, is a linear map by definition, it is an algebra homomorphism. Now,
we prove that &, is bijective. As a matter of fact, we have that ®,, is surjective since

the generators §; ® 1 and 1 ® oy, of its codomain belong to its image. This happens

because
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ﬁj &® 1 = Bj (%9 —i2 = Z(ﬁj & ?:OélOCQO[lOCZ) = Z(ﬂj & ’i()élOég)(l X Oél>(1 X Oég).

Thence, the injectivity of ®, is obvious from the Rank-Nullity Theorem since both
Cl(n + 2) and Cl(n) ®c CI(2) have dimension 2"*2. This finishes the proof of the

theorem. O

Corollary 3.24 (Classification of complex Clifford algebras). We have the isomorphisms
Cl(2n) ~ C(2") and Ci(2n+1) ~ C(2") ® C(2")
for all n € N.

Proof. This result follows from Theorems [3.22] and We leave the immediate details
to the reader. O

Finally, we handle the classification of the real Clifford algebras obtained
from the non-degenerate canonical quadratic forms. The complete characterization of

these algebras, which immediately follows from the following three results, is shown

in Table B.1l

Theorem 3.25 (Reducing the classification of real Clifford algebras to a smaller class).

Let a and b be natural numbers. The linear map

B, Clla+1,b+1) — Cl(a,b) ®r CI(1,1),

1

I

L,

Mo B @ aras,

Yo = Ba®aian,

I

Va+t1 1 ® ay,

Yat2  Batr1 @ aqoo,

Yatot1 > Bats @ a1,

Vatbtz — 1@ g,
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is an algebra isomorphism, where we have that {aq, a0}, {P1, ", Bas Bas1, " Batv}

and {71, Yas Yas 1y Yar2, ** * » Yasbro) are the canonical bases of R?, R gnd ReT0+2,

respectively. Consequently:

e ifa<b, then
Cl(a,b) ~ CI(0,b—a) @ R(2%);

e ifa="0, then
Cl(a,b) ~ R(2%);

o if b<a, then
Cl(a,b) ~ Cl(a —b) @ R(2%).

These last three isomorphisms show that we can rephrase the problem of classifying all of
the Clifford algebras Cl(a, b) to the problem of classifying only the ones of the forms Cl(a)
and C1(0,b).

Proof. The proof of this result is analogous to the proof of Theorem We leave
the details to the reader. O

Lemma 3.26 (Two more isomorphisms in the framework of Clifford algebras). Let n be

a natural number. We have the isomorphisms
Cl(n+2) ~ Cl(0,n) ®g C1(2) and Cl(0,n+2) ~ Cl(n) ® CL(0,2),

which are define by

1 — 1,

M o= B ®oag,

T P ® aqoo,

)

Yrn+1 1® ay,

Yn+2 — 1®O{2,

where {a1, s}, {B1, -+, Bn} and {1, -+ ,Ynso} are the canonical bases of R?, R™ and

R™*2, respectively.
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Proof. Once and again, the proof of this result is analogous to the proof of Theorem [3.23]
We leave the details to the reader. O]

Theorem 3.27 (Periodicity of real Clifford algebras). For all n € N, we have the

1somorphisms

Cl(n+8) ~ Cl(n) ®g CI(8) and C1(0,n + 8) ~ CI(0,n) ®g C1(0,8),

where

Cl(8) ~ R(16) ~ CI(0,8).

Proof. Due to Lemma [3.26] we have

Cl(n+8) ~ Cl(n)®g Cl(0,2) ®x CL(2) ®g C1(0,2) ®g C1(2)
Cl(n) @g CI(8),

12

and

C1(0,n+8) =~ CI(0,n) ®r Cl(2) ®r CI(0,2) @ C1(2) ®r CL(0, 2)

12

C1(0,n) ®g CI(0,8).

Additionally,

12

Cl(8) ~ C1(0,2) ®=z C1(2) ®r C1(0,2) @z C1(2)

12

R(2) @r Her R(2) ®r H
) ©r R(4)

12

12
7~

(
R (4

(16)

(

12

R(4) ®r R(4)
H®r R(2) @r H®r R(2)
Cl(2) ®r CI(0,2) ®r C1(2) ®r CI(0, 2)

C1(0, 8).

12

12

12

This finishes the proof of the theorem. m
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Table 3.1: This table describes all of the Clifford algebras Cl(a,b) for a and b between 0
and 8, both included. It is to be noted that, as usual, a varies in columns while b varies
in rows.
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3.3 Representations of Clifford algebras

In this section, we expose some facts on the representation theory for Clifford
algebras. Interestingly, we have that most of these facts are direct consequences of
the classification theorems that we have set in the preceding section. In particular,
we establish the important notion of Clifford multiplication. We begin with the following

definition.

Definition 3.28 (Representation of a Clifford algebra and Clifford multiplication). Let
(7,q) be an object in VectQF. A representation of the Clifford algebra CI(¥ ,q) is an

algebra homomorphism

p: Cl(¥,q) — End(#),

where End(#') denotes the algebra of linear transformations of a finite-dimensional

vector space W . The space W is then a CI(V, q)-module. We simplify notation by writing

n-w = p(n)(w) (3.12)

Jor allw € # and all n € CI(V,q). The product defined in Equation (3.12)) is referred to
as Clifford multiplication. &

Definition 3.29 (Reducible and irreducible representations of a Clifford algebra). Let
(V,q) be an object in VectQF and p : CI(¥,q) — End(#') be a representation of the
Clifford algebra CI(¥,q). We say that p is reducible if # can be written as a nontrivial
direct sum

Vo= o W

such that
p(n)(#1) € M and p(n)(#2) € W5

for all p € CU(¥,q). In this situation, we have a decomposition of the representation
given by

p=pln ©plw,

where

plw () = p) |n



3. Spin Geometry and Ordinary K-Theory 175

for all m € CUY,q) and all i € {1,2}. In turn, we say that p is irreducible if it
18 not reducible. In other words, p is said to be irreducible if it does not admait proper

wmwvartant subspaces. &

Theorem 3.30 (Irreducible representations play a fundamental role). Let (¥, q) be
an object in VectQF. FEvery representation p : CI(¥,q) — End(#) of CI(V,q) can be

decomposed into a direct sum

m

p = @ pi: CUY,q) — End(#))

=1

where p; is an irreducible representation of CI(V',q) for each i between 1 and m,

both included.

Proof. We only have to prove the statement if p is reducible. In this situation, as we
have seen in Definition [3.29, p can be decomposed into a direct sum p = p; @ po.
If either p; or p, are reducible, then p can be further decomposed. The essential fact
is that this process must stop because # is a finite-dimensional CI1(¥, ¢)-module. This

finishes the proof of the theorem. O

Definition 3.31 (Equivalence of representations of a Clifford algebra). Let (¥, q) be an

object in VectQF. Two representations
p1: CUY,q) — End(#1) and p2: CU(Y, q) — End(#5)

of CI(¥,q) are said to be equivalent if there exists a linear isomorphism F : Wy — W5

such that the diagram

A, p1(n) N4

F F

2 > W
p2(n)

is commutative for all n € CI(V¥,q). This defines an equivalence relation on the set of

representations of CI(¥, q). %
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Remark 3.32 (Irreducible representations of the Clifford algebras). From Section
we have that every Clifford algebra Cl(a,b) is of the form K(2™) or K(2™) & K(2™)
for K = R, C or H. The representation theory of such algebras is particularly simple.

Indeed, one can prove that:

e the natural representation
pam : K(2™) — End(K*")

given by
pan(A)(v) == Av

for all v € K", is the only irreducible representation of the matriz algebra K(2™)

up to equivalence; and

e the algebra K(2™) @ K(2™) has two inequivalent irreducible representations up

to equivalence, which are

o K@2™) @ K(2™) — End(K*"),

(A7 B) = me(A),

and
pan: K™ @ K(@2™) — End(K*),
(A, B) = pan(B). %

Theorem 3.33 (Number of inequivalent irreducible representations of a Clifford algebra).

We have the following facts.

o Let a and b be natural numbers. In addition, let v,y be the number of inequivalent
irreducible representations of the Clifford algebra Cl(a,b). Whenever b is equal to
zero, for convenience, we shall write v, instead of v,o. Under these conditions, we
have

2 if a—b =3 (mod4),

1 otherwise.
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o Let n be a natural number. In addition, let vC be the number of inequivalent
irreducible representations of the Clifford algebra Cl(n). Under these circumstances,
we have

2 if mois odd,

1 if n s even.

Proof. This result is an immediate consequence of the classification of Clifford algebras

shown in Section 3.2 O

Theorem 3.34 (More information on some Clifford algebras). Let n be a natural number.

In addition, let:

d,, be the dimension of any irreducible Cl(n)-module;

dS be the dimension of any irreducible Cl(n)-module;

M, be the Grothendieck group of equivalence classes of irreducible representations

of the Clifford algebra Cl(n); and

INC be the Grothendieck group of equivalence classes of irreducible representations

of the Clifford algebra Cl(n).

For n between 1 and 8, both included, the elements v,, vF, d,, dS, M, and ME are

as in Table [3.3.

n Cl(n) Up | dn | 9N, Cl(n) vE | dl | mE
1 C 1| 2 Z CoC 2 |1 |zoz
2 H 1| 4 Z C(2) 1| 2 Z

3 H o H 2 | 4 |Z®Z | CR)aC(2)| 2 | 2 |ZoZ
4 H(2) 1| 8 Z C(4) 1| 4 Z

5 C(4) 1|8 Z CA4)oCH) | 2 | 4 |ZSZ
6 R(8) 1| 8 Z C(8) 1| 8 Z

7T I RBGRQB) | 2 | 8 |ZBZ | CQRDC) | 2 8 |ZBZ
8 R(16) 1|16 % C(16) 1 |16 | Z

Table 3.2: This table contains the Clifford algebras Cl(n) and Cl(n) as well as the elements
Vn, V.S, dp, A, M, and IME for n between 1 and 8, both included.

n’
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Furthermore, for n greater than 8, these elements can be easily computed from

Um+8k = VUm
va+2k = ng
drse = 2%d,,
d;C1+2k = de(rcn

Morss =~ M,
C - C
MmE ,, ~ M

where m and k are nonzero natural numbers.

Proof. This result is an immediate consequence of Corollary and Theorem [3.27]
We leave the details to the reader. O

Remark 3.35 (On an object defined in the preceding theorem). Let n be a natural
number and M, be the set of equivalence classes of irreducible representations of Cl(n).
In the preceding theorem, we defined M, to be the Grothendieck group of M,. We have
the following facts.

e The binary operation on M, is the direct sum. More explicitly, if [pl], 0] € A,
then

[l @ [o] == [p@ o]

The reader can prove that this definition makes sense by showing that it does not

depend on any representing element.

o Two elements [[p]] and [[o]] of M, coincide if and only if there exists [0] € M,
for which

et = [ploll] = [[]e[l] = o).

e Since any representation can be decomposed into a direct sum of irreducible ones
(Theorem , we have that it naturally corresponds to an element in M,

(with positive coefficients).

It is to be noted that, mutatis mutandis, the same observations hold true in the

complex case. &
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Remark 3.36 (Tensor product of irreducible representations). Let n be a natural number.

We have the following facts.

e The tensor product of irreducible representations of Cl(n) and CI(8) gives an

irreducible representation of Cl(n + 8) ~ Cl(n) ® CI(8).

e The tensor product of irreducible representations of Cl(n) and Cl(2) gives an

irreducible representation of Cl(n + 2) ~ Cl(n) ® CI(2).

Nevertheless, in general, Cl(n) @ Cl(m) and Cl(n) ® Cl(m) are not Clifford algebras.
Hence, to find a multiplicative structure in the representations of Clifford algebras, we

consider Zso-graded modules. &

Definition 3.37 (The category of Zy-graded modules for a Clifford algebra). Let n be a
natural number. We define the category of Zs-graded Cl(n)-modules, and denote it
by ZsMod,,, to be the category whose:

o objects are Zy-graded Cl(n)-modules (W, W°, #'). More explicitly, we have that
an object is a Cl(n)-module W equipped with a decomposition W = #° @ #'! such
that

Cli(n) - Wi C Wt

for i, € Zo; and

e morphisms are Cl(n)-module homomorphisms o : Wy — Ws for which o(#;°) C #5
and o(W1) C #,', which are usually denoted by o = (W1, W2, W) — (Wa, W, H5'),

as expected.

Note that, mutatis mutandis, we can define the category of Zs-graded Cl(n)-modules
ZsMod £ &

Theorem 3.38 (An equivalence of categories involving ZoMod,,). Let n be a natural
number and Mod,,_1 be the category of Cl(n — 1)-modules. There exists an equivalence
between ZoMod,, and Mod,_1. The same s true considering the categories ZgModf

and Mod & ;.
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Proof. Let (#,#°,#') be an object in ZyMod,,. Tt is immediate to see that #7° is a
C1°(n)-module. Therefore, since one can prove that Cl°(n) is canonically isomorphic
to Cl(n — 1), it follows that #° is a Cl(n — 1)-module. Thence, it makes all sense
to define

®: ZsMod,, — Mod,_1,
W WOWY) s W,
@ - (%7 7/1077/11) - (%7 7/207 %1) =P |W10: 7/10 - 7/20'

Moreover, we define

v MOdn_l — ZQMOdn7
W = (Cln) @com ¥, C1°(n) Qcom ¥, Cl'(n) R0y #),

The reader can readily prove that ® and U are equivalences of categories inverse to

each other. O

Remark 3.39 (The Zy-graded tensor product). Let n and m be natural numbers. In
addition, let (W1, W2, #.}) be an object in ZoMod,, and (Wa, W, #5') be an object in
ZsMod,,,. We set

W@ Wo = (W@ Wa, WL QWY + Wi @ W, WP @ W + Wit Hy),

which is an object in ZoMod .y, with respect to the action of Cl(n) ® Cl(m) on #; @ #s
given by

(w1 ® ’LUQ) . <UJ3 & ’LU4) = (_1)deg(w2)deg(w3)(w1w3) ® (w2w4).

Here the degree of an element is the obvious one induced by the decompositions of W
and Wo.  We left implicit the canonical isomorphism between Cl(n)® Cl(m) and
Cl(n +m). Once and again, all of these notions are still true considering the complex

framework. &

Theorem 3.40 (Another Grothendieck group in the context of Clifford algebras). Let n

and m be natural numbers. In analogy with the groups M, and ME defined in



3. Spin Geometry and Ordinary K-Theory 181

the statement of Theorem we define M, and /93\25 to be the Grothendieck groups
of Zo-graded Cl(n)-modules and Cl(n)-modules, respectively. Because of Theorem
we have

M, ~ M, 4 and mE ~ m¢ (3.13)

Moreover, we have natural pairings

o~ o~

Qﬁn ®Z §J\tm — mn+m
ﬁg ®Z i/)j\t?;C@ — 5:)/\tﬁgkm
induced by the Zso-graded tensor product. We have that these pairings are associative.
Thus,
M = @ f/D\TZ and Mme .= @ ﬁi‘c

1€N 1€N

have the structure of graded rings.

Proof. This result is an immediate consequence of Theorem [3.38 and Remark We
leave the details to the reader. O

3.4 The Atiyah-Bott-Shapiro Theorem

In this section, we present the Atiyah-Bott-Shapiro Theorem. This result was
originally proved in [3]. In our text, it will be mainly considered when we study
the Thom isomorphisms in K-Theory. Roughly speaking, the theorem in question will
ensure us the existence of Thom classes. We begin with the theorem itself, although
its statement does not make sense at a first glance, and then we explain the ideas that
are behind it. For a complete proof, we recommend to the reader the original reference

mentioned above.

Theorem 3.41 (The Atiyah-Bott-Shapiro Theorem). Let Q2 be a one-point space. We
define

K(Q) = PED, s

ieN
where D' and S are the closed unit disc and sphere in R?, respectively. There exists

a graded ring homomorphism
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o1 ME/7(MC) — K ().

Note that, mutatis mutandis, we obtain a graded ring homomorphism involving the

real K-Theory.

Proof. Let n be a natural number. Here we use the notations of Section For each
(W WO, W) € ZyModE, we define

on(W WO W) = D" x#O, D x H# ] € KD, S,

where

o STx #° = St x W,

(x, w) — (x,x w).

We have that the map
ZsMod® — K(D", s* 1),
W, oY = o, (WO,

is an additive homomorphism. Moreover, we have that ¢, (%, #°, #') depends only
on the isomorphism class of the Zs-graded Cl(n)-module (#,#°, #1). Therefore, we

obtain a homomorphism

ME — KD, S,

n

W HOWY = onW WO W),

Now, we consider
in: R" — R

(xla"' )xn> — (xh'" 7In70>7

to be the natural inclusion. By Remark this map induces a homomorphism of
algebras Cl(n) — Cl(n + 1). Restricting the action from Cl(n + 1) to Ci(n) thereby
induces a homomorphism 7, : ﬁfﬂ — ﬁf Thence, suppose that (¥, #° #') is a
Zs-graded Cl(n)-module which can be obtained from a Cl(n + 1)-module in the above
fashion. This means that the Clifford multiplications of R™ on # extends to all of R"*1,

As a consequence, if we set
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a:D" — [0,1],

A 1—|zf?,

then we may extend the isomorphism pu, to all of D™ by setting

On: D" x#° — D" x#!,

(x, w) = (2,2 -w+ a(x)e,4 - w),

where e, is a unit vector orthogonal to R™. Since [i,, is an isomorphism, o, (# , #°, #1)
must be zero. Therefore, the map ﬁf — K(D", S" ') defined above descends to a

homomorphism

on s ME/7,(ME ) — KD, S,

The second isomorphism in ([3.13)) ensures that
93755/%(93@%1) = mg—l/Tn(mf)'
Further, algebraic arguments show that

o€ / (Sﬁc) 0 if n is odd,
n—1 Tn =

n
7 if n is even.

Finally, we clarify the graded ring structures mentioned in the statement. Because of
Theorem [3.40]
ME/r(ME) = PME/m(MT,)

1€EN

is a graded ring. Moreover, since

K(D", S ~ K(S") ~ K~(Q),

K=*(Q) is also a graded ring. Finally, note that the map ¢ : 5)\?(:/7(53\?@) — K7*(Q)
in defined by

@ @i E/D\T,C/Ti(ﬁi‘il) — K(D', S ~ K7/(Q).

i€N

This finishes our exposition. [



3. Spin Geometry and Ordinary K-Theory 184

3.5 Pin and Spin groups

In this section, we present the notion that obliged us to develop the preceding
study on Clifford algebras, namely, the Pin and Spin groups. These mathematical
objects are of fundamental importance in this chapter. In fact, they are not only used in
the study of spin and spin® structures, but they are also applied in the study of Thom
isomorphisms in K-Theory to ensure the existence of Thom classes. We begin with the

following definition.

Definition 3.42 (Group of units of a Clifford algebra). Let (¥, q) be an object in VectQF.
We define

Cl*(V,q) == {neCl(¥,q) : m* =n"'n=1 for somen' € CL(V¥,q)}.

This group 1s said to be the multiplicative group of units in the Clifford algebra
CUY, q)- O

Remark 3.43 (Examples of elements in the multiplicative group of units of a Clifford

algebra). Let (¥, q) be an object in VectQF. We define
7,0 = {ve? : q(v) is not zero}.
We have that V™ 1s contained in the multiplicative group of units Cl™*(¥,q). Indeed,

if v e, then

In particular, if the symmetric bilinear form is an inner product, then every non-zero

vector in ¥V is an element in C1™ (¥, q). &

Theorem 3.44 (The adjoint representation). Let (¥, q) be an object in VectQF. In
addition, let GLCI(Y',q) be the group of automorphisms of Cl(¥,q). The adjoint
representation of CI(V,q) is

Ad: CI*(¥,q) — GLCIY,q),

n — Ad,,
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where

for all x € CI(V,q). We have
Ad,(¥) =V

for all v € V,*. In fact, the reader can readily prove that this equality follows from
the fact that
Sq(v, w)

—Ad,(w) = w—2 )

(3.14)

for allw e V.

Proof. Being v € 7,*, we only have to prove that Equation (3.14) holds for all w € 7.

Indeed, since

1 v
v = ———r,
q(v)
it follows from Equation (3.1)) that
q(v) Ad,(w) = q)vwv™ = V2w +25,(v, w)v = —q(v)w + 2s,(v, W)V,
as we wished. O

Remark 3.45 (Consequences of the preceding result). Let (¥, q) be an object in VectQF.
We are lead by Theorem to consider the subgroup of elements n € C1*(¥,q) for
which

Ady(¥) = V.

We have that ¥,* is contained in such a subgroup because of Theorem . Moreover,
if v e ¥x, then it follows from Equation (3.14) that

(o Ad,)(w) = g(w)

for all w € ¥. Under these circumstances, we define P(¥,q) to be the subgroup of
the multiplicative group of units C1*(¥,q) generated by the elements of Y,* . More
explicitly, we have that an element of P(¥,q) is a product vy ---v, € CU¥,q) such
that vy, - -+ ,v. € V. Further,
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Ad: P(7,q) — O(7,q)
18 a representation, where
O(.q) = {peGL(Y) : qop = q}

is the orthogonal group of (¥, q). The following definition presents the most important
subgroups of P(¥, q). &

Definition 3.46 (The Pin and Spin groups). Let (¥,q) be an object in VectQF. We

give the following definitions.

e The Pin group of (¥,q) is the subgroup Pin(¥,q) of P(¥,q) generated by the

elements v € ¥ for which
qv) =1 or q(v) = —1.

e The Spin group of (V,q) is the subgroup Spin(¥,q) of Pin(¥,q) defined as the

group intersection

Spin(¥,q) := Pin(¥,q) N C1°(¥,q).

More explicitly, we have that an element of Pin(¥,q) is a product vi---v, € P(¥,q) in
such manner that q(v;) = 1 or q(v;) = —1 for all i between 1 and r, both included.
In addition, an element of Spin(¥,q) is a product vy ---v, € Pin(¥,q) such that r is

an even number. &

Remark 3.47 (The twisted adjoint representation). Let (¥, q) be an object in VectQF.
The right-hand side of Equation (3.14) coincides with the map p, : V' — ¥ given by the

reflection across the hyperplane
vt o= {w eV i os,(v,w) = 0}.

We have that p, fizes v+ and maps v into —v. Unfortunately, there is a minus sign on
the left-hand side of Equation (3.14). This defect can be removed considering the twisted

adjoint representation
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Ad: CI¥(¥,q) — GLCLY,q),

n o~ Ad,,

where
1

Ad,(z) = T(n)an”

for all x € CI(V,q). In the preceding formula, 7 : CI(V',q) — CI(V,q) is the unique
extension of the linear map o : ¥V — ¥ defined in Remark[3.15, The reader can readily
prove that

e Ifn,0€Cl™*(¥,q), then
A\an@ = A\(/ln o ;‘:(/19.

o ifn € Cl*(¥,q)NCI°(¥,q), then

Ad, = Ad,.
Furthermore, if v € V™, then

Sq(v,w)

Ad,(w) = w—2 )

(3.15)

for allw € V. This is an immediate consequence of Equation (3.14) since, for allv € ¥,

we have

Under these conditions, we define the subgroup of C1™* (¥, q)
B(¥,q) == {neClX(¥,q) : Ad,(¥) = ¥ ]

Note that P(¥,q) C f’(”f/,q) C C1*(¥,q) because of Theorem . In [23, p. 16], it is
proved that A\(/in : V. — V preserves the quadratic form q for every n € ﬁ(”/,q). As a

consequence, we have a homomorphism

Ad: P(7,q) = O(¥,q).

() One can prove that ﬁ(”//, q) is not so different from P(¥,q). In fact, either 13(7/, q) =P(¥,q) or the
quotient of P(¥,q) by P(¥,q) is isomorphic to Z,.
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In particular, we obtain a homomorphism
Ad: P(¥,q) = O(,q)

such that

Ad 4 .0, = pu, 0 0Py, (3.16)

where p,, is the reflection across vt for all i between 1 and r, both included. Thus,
the image of P(¥,q) under Ad is the subgroup of O(Y,q) generated by the reflections.
Hence, because of the Cartan-Dieudonné Theorem, the image of P(V,q) under Ad is the
whole O(Y, q). &

Theorem 3.48 (The special orthogonal group). Let (¥,q) be an object in VectQF.
We define
SP(7,q) == P(¥,q) N C1°(¥,q).

More explicitly, an element of SP(¥,q) is a product vy---v, € P(¥,q) such that r
is an even number. Moreover, since ¥ is finite-dimensional, we define the special

orthogonal group of (V,q)
SO(7.q) == {p € O(¥,q) : det(p) = 1}.

We have that
Ad: SP(¥,q) — SO(¥,q)

18 surjective.

Proof. Initially, note that

det(p,) = —1
for all v € ¥ — {0}. In order to prove this claim, let {vy, -, vaim(»)} be a basis
for 7" in such manner that v; = v and s4(v,v;) = 0 for i between 2 and dim(7%),

both include. Therefore, by definition of the reflection p,, we have p,(v1) = —vy

(2)The existence of such a basis is easily proved. Indeed, since v is a nonzero vector in ¥, we can
find dim(%) — 1 vectors in ¥ that, together with v, form a basis for ¥. Then, applying the usual
Gram-Schmidt Process, we can turn these dim(¥") vectors into new vectors that are g-orthogonal, keeping
v intact, as desired.
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and p(v;) = wv; for all ¢ between 2 and dim(¥), both included. As a consequence,
we have det(p,) = —1, as claimed. Hence, because of the Cartan-Dieudonné Theorem,
we have

SO(7,q) = {pw,0---0py : v; €Y and r is even}.

Thence, Ad : SP(7,q) — SO(¥,q) is surjective because of Equation (3.16]). This
finishes the proof of the theorem. m

Remark 3.49 (On the preceding result). Let (¥, q) be an object in VectQF. In light
of Remark and Theorem |3.48, it is natural to ask whether the homomorphism
Ad : P(7,q) — O(7,q) restricted to Pin(¥,q) and Spin(¥,q) maps onto O(¥,q)
and SO(V,q), respectively. In fact, it seems likely since, at a first glance, we have the
equality

Pro = Pu
for all t € K — {0}. Therefore, we have that one should be able to normalize any

v € V,* to have g-length equal to 1 or —1. Of course, since q is quadratic, we have

the equation

altr) = £ qv).

Clearly, at least one of the equations
P = — and = ———

are solvable in . This 1s the main property used in the proof of the following theorem,

which 1s the principal result of this section. &

Theorem 3.50 (The twisted adjoint representation restricted to the Pin and Spin groups).
Let (V,q) be an object in VectQF. If q is non-degenerate, then there exist short exact

sequences

0 » Q s Pin(¥,q) — M L 0(¥,q) ———— 0

(3)Note that both equations are well-defined since g(v) is not zero because v € 7,%. Thence, if K is
the field of complex numbers, then both equations are solvable. In turn, if K is the field of real numbers,
then only one of them is solvable.
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and
0 s Q) » Spin(7, q) L SO(¥,q) —— 0
where

. 7y = {1,—1} if K =R,

Zy, = {1,-1,i,—i} if K=C.
Proof. The first two maps of the preceding sequences are inclusions. Thus, in order to

prove exactness, we just have to show that:

e () is the kernel of Ad. Indeed, if n € Pin(¥,q) is in the kernel of ;‘,\(/1, then it
is proved in [23, p. 19| that n*> = 1 or n* = —1. This establishes the kernel of

Ad in both cases, as above.

o Ad is surjective. This claim follows immediately from Remark because of the

Cartan-Dieudonné Theorem.

This finishes the proof of the theorem. n

In order to close this section, we examine the real case of Pin and Spin groups
in more detail. This is done because the information that is needed in the next
sections are mainly obtained from the real Spin groups. We begin with the following

definition.

Definition 3.51 (The groups of the Euclidean space equipped with the canonical real
quadratic forms). Let n be a natural number. For each natural numbers a and b such that

n =a-+b, we define

O(a,b) = O(R", q,)
SO(a,b) = SO(R", q;;)
Pin(a,b) := Pin(R", ¢7,)

Spin(a,b) := Spin(R", ¢;,)

P(a,b) = P(R", q53)

P(a,b) = P(R", Qap)-
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Here qi, : R" — R is the canonical real quadratic form presented in Definition .
For convenience, we denote O(n,0) ~ O(0,n) simply by O(n), and SO(n,0) ~ SO(0,n)
simply by SO(n). Finally, it is to be noted that, since we have the equality ¢, = —qj.,,

P(a,b) = P(a,b). %

Lemma 3.52 (The fundamental group of the special orthogonal groups). We have the
following facts.

(1) The fundamental group of SO(1) is trivial.
(2) The fundamental group of SO(2) is isomorphic to Z.

(8) The fundamental group of SO(n) is isomorphic to Zo for alln € N —{0,1,2}.
Proof. Indeed:

(1) we have that SO(1) is the trivial group. Thus, it is clear that its fundamental

group is also trivial.

(2) we have that SO(2) is homeomorphic to the unit circle S'. Thus, it is clear that

its fundamental group is isomorphic to Z.

(3) we consider the fibration 7 : SO(n + 1) — S" with fiber SO(n) defined as follows.
Let us fix a point in S", for example, e,,; € R"™. For each A € SO(n + 1),
we define

m(A) == Aepy € S

The map 7 is surjective since SO(n + 1) acts transitively on S. Moreover,
let w € S" and A € SO(n + 1) be such that Ae,.; = u. We have that the
elements of 77 !'(u) are of the form A’ = RA, where R is a rotation that

fixes e,+1. Hence, R € SO(n). Evidently, this proves that the fiber over u is

(I1In order to prove that SO(n 4 1) acts transitively on S”, it suffices to show that, for each u,v € S”,
there exists A € SO(n + 1) such that Au = v. This is a simple task to be done. Indeed, we can choose
n vectors in R™*! that, together with u, form a basis A for R"*!. Analogously, we can find n vectors
in R"*! that, together with v, form a basis B for R"*!. These bases can be taken orthonormal because,
if it is not the case, then we can apply the Gram-Schmidt Process in order to ensure the property in
question. Moreover, we have that A and B can be taken positively-oriented with their first elements
being u and v, respectively. Therefore, the automorphism A of R™*! that sends A into B is the desired
element of SO(n + 1).
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diffeomorphic to SO(n) for all v € S". Finally, note that 7 is locally trivial.
Indeed, if U is an open neighborhood of u, then there exists a smooth function

A:U — SO(n+ 1) such that

A(@)(ens1) = @

for all x € U. Thence, an element of 7—!(z) has the form A’(z) = RA(z), where
R € SO(n). This produces the local chart

o: 71 (U) — UxSO(n),
RA(xz) — (x, R).

As a consequence, we can consider the long exact sequence in homotopy that is
associated to the fibration 7 : SO(n + 1) — S™. This sequence contains the exact

sequence
0 = mS") ——— mSO(n) ——— mSO(n+1) —— m(S") = 0.

This proves that
mS0(n) ~ mSO(n+1).

Thus, we only have to calculate the fundamental group of SO(3). In fact, we
have mSO(3) =~ Z,. In order to prove this, let R, denote the rotation around
the axis u € R3 of angle § € [0, 2n], according to the right-hand rule. In addition,
let D? be the closed unit disc in R®. Thence, being | - | : R* — [0,00) the usual

Euclidean norm, we define

d: D* — S0(3),

idRB lf v = 0,
v =

Ry xjo|  otherwise.

The reader can readily prove that ® is continuous. Moreover, it is surjective since
any rotation can be achieved by fixing an axis and a rotation angle. Further,
we have that @ |ps_g2: D® — S? — SO(3) is injective. Indeed, if u,v € D3 — §?,
then:



3. Spin Geometry and Ordinary K-Theory 193

o if w and v form a linearly independent family in R3, then ®(u) is different

from ®(v) since these rotations have different axes; and

o if u = v, then ®(u) is different from ®(v) since these rotations have
different rotation angles. In fact, the rotation angles are the same only if

A =1, which implies u = wv.

In turn, if v € S?, then

More precisely, given distinct vectors u,v € D3, we have that ®(u) = ®(v) if and
only if w,v € S? and u = —v. Because of that, ® projects to a homeomorphism
between the real projective space RP® and SO(3). As a consequence, it follows
that 7,SO(3) is isomorphic to m (RP?). Luckily, it is a well-know fact that m; (RP?)

is isomorphic to Zs.

This finishes the proof of the lemma. O

Remark 3.53 (Important consequences of the preceding lemma). In Lemma
we have seen that mSO(2) ~ Z and mSO(n) ~ Z, for all natural number n greater
than 2. Therefore, there ezists a unique nontrivial two-sheeted covering of SO(n) for
all n € N —{0,1}. Furthermore, this two-sheeted covering is the universal covering for
all n greater than 2. The map z — z* is the nontrivial two-sheeted covering of SO(2).
The other cases are treated by the following result, which is the main theorem in the real

case of Pin and Spin groups. O

Theorem 3.54 (The Pin and Spin groups and two-sheeted coverings of the orthogonal
group and of the special orthogonal group). Let n be a natural number. For each natural

numbers a and b in such manner that n = a + b, we have that there exist short exact

sequences
0 VA s Pin(a,b) — 2+ O(a,b) ——— 0
and

0 VA s Spin(a,b) —24 4 §0(a,b) —— 0
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Furthermore, if a and b are not both equal to 1, then these two-sheeted coverings
are nontrivial over each connected component of O(a,b). In particular, in the special

case

0 y Zo , Spin(n) —— 21 S0(m) —— 5 0,

we have that the map Ad represents the universal covering homomorphism of SO(n)

for alln € N —{0,1,2}.

Proof. The short exact sequences in the statement are consequences of Theorem [3.50]
In turn, in order to prove that the two-sheeted coverings are nontrivial, it suffices to
join 1 and —1 by a continuous path in Spin(a,b). In fact, since a and b are not both
equal to 1, there exist orthogonal vectors u,v € R" such that 7 ,(u) = ¢} ,(v) = 1 or

qg,b(“) = qZZ,b(v) = —1. We set

v: [0,1] — Spin(a,b),
PN Tt n . 7t . it _ 7t
U COS 5 v sIn 5 v sin 5 U COS 5 .
As a consequence:

o if qg’b(u) = qg‘,b(v) = 1, then

Y(0) = —u? = ¢ly(u)-1 =1
and
(1) = v* = —ql(v) 1 = -1
o if g, (u) = qiy(v) = —1, then
Y(0) = —u® = giy(u) -1 = —1
and
(1) = v* = —¢0(v)-1 =1

This finishes the proof of the theorem. m
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3.6 Spin structures

In this section, we start the process of using the algebraic notions presented
in this chapter to study the geometry of vector bundles. In fact, we establish
a fundamental notion to study the Thom isomorphisms, namely, the spin structures
of oriented Euclidean vector bundles. We begin by remembering some ideas with the

following remark.

Remark 3.55 (On real vector bundles). Let 7 : E — X be a real vector bundle with

typical fiber V. We remind the reader of the following notions.

o We say that E is an Fuclidean wvector bundle iof it is equipped with an inner
product
(,): F®& E — R,

which s a continuous function that restricts in each fiber to an inner product.
Because of Theorem [C.49, it is always possible to turn a real vector bundle into

an Fuclidean vector bundle.

o We say that E is orientable if it can be equipped with an orientation. If it s
equipped with an orientation, then we say that E is oriented. In turn, in order
to define an orientation of E, let O, be an orientation of E, = 7w '(x) for

each v € X. Thence,
0 = {ﬁx}xEX

is said to be an orientation of E provided that, for a fixed orientation of ¥ and
for each © € X, there exists a local chart (U, p.) of E in x such that the
linear isomorphism ¢, |g,: E, — {y} x ¥ is orientation preserving for all
y € U,. Finally, we have that E is orientable if and only if it admits an oriented
atlas. An oriented atlas ®y = {(U;, ;) }ier of E is an atlas for which the transition
functions ¢;; = Uy; — GL(Y) are such that det y;;(x) is positive for all x € U
and all 1,57 € 1. It is not always possible to equip E with an orientation. For
example, a line bundle is orientable if and only if it is trivial. The following
result establishes a necessary and sufficient condition for the orientability of a

vector bundle. &
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Notation 3.56 (On Cech cohomology). Hereafter, we use the notation and the
ideas of Cech cohomology that are established in [9, pp. 37-47]. Since the subject in
question is widely known and [9] gives a fairly complete and didactic approach for it,
we do not elaborate our own details about this topic. Instead, we focus on its applications

to our context. &

Lemma 3.57 (Orientability of vector bundles). Let 7 : E — X be a real vector bundle
with typical fiber V. We assume that there exists an atlas @y = {(U;, ;) }ier such that
Uij is connected for all i,j € I. Being {pi; : Uyj — GL(¥)};jer the set of transition

functions of Oy, we define

1 if  dety;; > 0,
€ = sgn(det g;;) = ’
—1 if  dety;; < 0.
We set
wi(E) = [{e}iger] € H(X; Zy).

This 1s the first Stiefel-Whitney class of E. We have that E is orientable if and
only if wi(E) is trivial. In other words, the first Stiefel-Whitney class measures the

obstruction to orientability.

Proof. We remind the reader that GL(7) has exactly two connected components,

which are
GLT(7) = {p€GL(Y) : det(p) >0} and
GL (7)) = {veGL(Y) : det(¢) < 0}.

This ensures that ¢;; is well-defined for all 7, 7 € I. Indeed, since U;; is connected and ¢;;

is continuous, ¢;;(U;;) € GL(7) is connected. Therefore,
vii(Uyy) S GLY(V) or i (Uij) S GL™(¥).

In both cases, we have that the sign of the determinant of ¢;; is constant, as we wished.
Furthermore, we have that w; (E) is well-defined in the Cech cohomology group H'(X; Z,)

because:
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o {€}ijer is a cocycle. In fact,

eij€ineri = sgn(det p;;) sgn(det p;x) sgn(det ¢y;)
= sgn(det i;0jkpri)
= sgn(detidy)
=1
for all 7,7,k € I. As a consequence, we obtain 51{eij},~7je[ = 1, which proves

our assertion.

o wi(E) only depends on E. Indeed, let Wy = {(U;, ;) }ier be another atlas of E
based on 4. Being {¢;; : U;; — GL(7)}i jer the set of transition functions of Wy,

we set ¢;; 1= sgn(det ¢;;). We claim that
Heisbiger] = Heijtijerl € HY(X; Zy).

This happens because, since ®y and Wy are atlases of £ based on the same open
cover Y of X, we know that there exists a family {n; : U; — GL(?)}iesr in such

manner that
(wz])w = (nj)z © (@ij)x o (Th');l

for all x € U;; and all 4,5 € I. Hence,

det(vy;). = det(n;). det(wij)s det ()"

for all x € U;; and all 4, 5 € I. Consequently,

sgn(det1);;) = sgn(detn;)sgn(det ¢;;) sgn(detn;) "

for all 4,j € I. In other words, if we set v; := sgn(detn;) for all ¢ € I,
then we obtain €, = v;e;v; ' for all i,j € I. Since {vi}ies € CO(L; Zy), we are
done here.

Finally, let us prove the last part of the statement. If FE is orientable, then we can
choose an oriented atlas ®y = {(U;, ;) }ier with U;; being connected for all 7,5 € I.

Thence, since
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€;; = sgn(dety;;) = 1

for all i,7 € I, it follows that w;(F) is trivial. Conversely, we assume that w;(F) is
trivial. Let &y = {(U;, p:) }ier be any atlas of E and ¢ : ¥ — ¥ be any orientation
reversing automorphism of 7. Since w(F) is trivial, we have that there exists a family
{Vitier € CO(8; Zy) for which €j = I/jl/l-_l for all 7,5 € I. Under these circumstances,

we set

i if v =1,
Yiop it vy = -1,

for each ¢ € I. The reader can prove that @ := {(U;,¥})}ics is an oriented atlas.

This finishes the proof of the lemma. O]

Remark 3.58 (A class of orientable vector bundles). Let X be a simply connected
paracompact Hausdorff space. Fvery real vector bundle on X is orientable.  This
happens because

HY(X, Zy) ~ Hom(H,(X), Z)

is trivial. In fact, since H1(X) is the abelianization of the fundamental group of X, which
is trivial once X is simply connected, Hom(H(X), Zs) is trivial. Moreover, since X is
paracompact Hausdorff,

HY(X: Zy) ~ HY(X, Zy).

Therefore, the first Stiefel-Whitney class of any real vector bundle can only be trivial.
Euvidently, we are tacitly restricting the real vector bundles to the ones which admit an

atlas as in Lemma|3.57 &

Definition 3.59 (Spin structure). Let @ : E — X be an n-dimensional oriented
Fuclidean vector bundle. In addition, let mso : SO(E) — X be the SO(n)-principal
bundle of oriented orthonormal frames of FE. We say that a spin structure
on E is a Spin(n)-principal bundle mspm @ Spin(E) — X equipped with a two-sheeted
covering & : Spin(E) — SO(E) such that, if p, : Spin(n) — SO(n) is the projection,
then (&, pn) is a morphism of principal bundles over X. In this situation, the following

diagram s commutative.
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-

Spin(E) x Spin(n) & Xon > SO(F) x SO(n)

Spin(E) ¢ » SO(E)

T'Spin 7SO

Remark 3.60 (On principal bundles). The notions of principal bundles that we have
invoked in the preceding definition can be found in Appendiz [F. The only one that
demands further commentaries is the SO(n)-principal bundle of oriented orthonormal
frames of E. Indeed, assuming m : E — X to be an n-dimensional oriented FEuclidean

vector bundle, SO(E) can be described as follows. Let
{0ij + Uiz = SO(n) }ijer

be the set of transition functions of an atlas ®y of E. In addition, consider the disjoint

uniLon

iel
If v € Uj; and ¢ € SO(n), then we denote by (x,¢); the pair (xz,p) € U; x SO(n)
and by (x,p); the pair (x,p) € U; x SO(n). We define SO(E) as the quotient of
Dé‘o(n) by the equivalence relation that identifies (x,p); with (z, (pij). © ¢); for all
(x,0) € Uy x SO(n) and all i,j € I. We have

SO - SO(E) — X,

[(SU, %0)1] =,
as well as the SO(n)-right action

. SO(E) x SO(n) — SO(E),
([(.CE, 90)1‘}, w) = [(1’, 8007?)1']'
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Apparently, SO(n) depends on the atlas ®y of E. However, this is not the case since
SO(E) can be defined in an equivalent manner that does not depend on ®y. In fact,
we can also define SO(E) to be the SO(n)-principal bundle whose fibers are the sets of
orientation-preserving orthogonal maps. The reader may deduce the details by studying

the analogous ones that were developed about the frame bundle of a wvector bundle in

Section [F.7. &

Definition 3.61 (Equivalence of spin structures). Let w : E — X be an n-dimensional
oriented FEuclidean vector bundle. Two spin structures £ : Spin(E) — SO(FE) and
¢ : Spin’(E) — SO(E) on E are said to be equivalent if there exists an isomorphism
of Spin(n)-principal bundles p : Spin(E) — Spin'(E) such that the following diagram

1s commutative.

®

T

Spin(E) ————— SO(E) +———— Spin'(E) o

Theorem 3.62 (Existence of spin structures). Let 7 : E — X be an n-dimensional
oriented Euclidean vector bundle. We have that there exists a spin structure on E if and

only if there exist:

(1) an atlas Oy = {(U;, ¢;) bier where {@i; : Uij — SO(n)}; jer is its set of transition

functions; and

(2) a set of liftings of the transition functions {s;; : U;; — Spin(n)}; jer in such manner
that

Ski

Uijr * SiklUsjr * SilUsj = 1 (3.17)

forallv,j,k € I. We remind the reader that s;; being a lifting of ¢;; means that the

following diagram is commutative.

Sig

T

Ui > SO(n) < Spin(n) (3.18)

Pij Pn
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Proof. 1f there exists a spin structure £ : Spin(E) — SO(F) on E, then we consider
an atlas Wy = {(U;, s;) }ier of mepim @ Spin(E) — X whose set of transition functions
is {s;; : Uj; — Spin(n)}; er. Evidently, Equation is verified since it involves
transition functions of a principal bundle. Moreover, we have that there exists an atlas
Oy = {(Ui, ¢:) }ier of SO(E) whose transition functions ¢;; : U;; — SO(E) verify the
commutativity of Diagram . Conversely, we assume that Conditions (1) and (2)
of the statement are verified. We know that ® determines an isomorphism between

SO(E) and the quotient of the disjoint union
| | Ui x 8O(n)
i€l

by the equivalence relation that identifies (x,p); with (z, ¢;;(x) o ¢); for all x € Uj;
and all 7,7 € I. This suggests how to construct a spin structure. Indeed, let Spin(FE)

be the quotient of the disjoint union
|_| U; x Spin(n)
iel
by the equivalence relation that identifies (x,s); with (z, s;;(z) - s); for all x € U;; and
all 7,5 € I. We have that
¢: Spin(E) — SO(E),
[(z, 8)] = [(z, puls))];

is a spin structure on E. The reader can prove this claim since Equation (3.17)) ensures
that Spin(F) is a Spin(n)-principal bundle. ]

G)Let 7p : P — X and mg : @ — X be principal bundles with structure groups G' and H,
respectively. In addition, let (¢ : P — @, p : G — H) be a morphism of principal bundles over X
and g = {(U;, vi)}ier be an atlas of P defined by the local sections in {s; : U; — P};cr. The local
sections in

{ri == posi: Ui = Qlier

define an atlas Uy = {(U;, ) }icr of Q. Moreover, if {¢;; : U;; — G}icr is the set of transition functions
of &y, then

{ij == powij: Uy — H}ier
is the set of transition functions of W¢. The reader can prove this result by defining v; : 7@1 (U;) = U;xH,

@ o s;(z) - h — (x,h). Furthermore, the reader can readily deduce the claim of the main text from
this theorem.
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Remark 3.63 (Local behavior of spin structures). Let X be a paracompact Hausdorff
space and m : E — X be an n-dimensional oriented FEuclidean vector bundle. In
addition, let {pi; : Uy — SO(n)}ijer be the set of transition functions of an atlas
Oy = {(Us, i) Yier of E. Up to a refinement of Oy, we can find a set of liftings for
the transition functions

{Sij : Uij — Spin(n)}me]

such that p, o s;; = @;;. Indeed, since X is paracompact Hausdorff, we can find a locally
finite refinement of ®y. Thus, being x € X, we consider U,,,--- ,U,, to be the elements
of U containing x. For each k and h between 1 and m, both included, we choose a
neighborhood Vi, of i, (x) in SO(n) such that p,*(Viy) is the disjoint union of two

open sets homeomorphic to Vi,. We set

Ux = m ng_kih(th)
k,h=1
Moreover, for all x € X, we choose a function ¢;, for k between 1 and m, both included.

We set

Yz = i U, -

This gives us an atlas {(Uy, pz)}eex of E for which every transition function admits a
lifting to Spin(n). Furthermore, any spin structure on U, is trivial because the only spin
structure on U, x SO(n), up to equivalence, is U, x Spin(n). In other words, Spin(FE) |y,
is equivalent to U, x Spin(n). This information characterizes the local behavior of the

spin structures. &

Remark 3.64 (The second Stiefel-Whitney class in the framework of vector bundles).
Let X be a paracompact Hausdorff space and 7 : E — X be an n-dimensional oriented
Euclidean vector bundle. In addition, being Oy an atlas of E, let {s;; : U;; — Spin(n)}i jer
be a set of liftings for its transition functions {y;; : U;j — SO(n)}; jer such that we have

Dn © Sij = @ij for alli,j € 1. Since

(Spkz |UL]]¢)1.O(80]]€ U'ijk)g;o (80” Uijk)x - 1

forallx € X an all 1,5,k € I, we have
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Ski * Sjk - Sij = €ijk - 1,

where €, € Zy = {1,—1} for all i,j,k € I. Thus, we obtain {€;jx}ijrer € C*(Y, Zy).

With some abuse of notation, we write
51
{eijtigrer = 0 {sij}ijer-

Because of that, we have 6*{eji}ijner = 020 {sij}ijer = 0. Hence, it is well-defined
{€ijktijrer) € H*(8, Zy). Considering the direct limit on the open coverings of X,
we obtain

Keijitijwer) € HA(X, Zs).

Now we claim that this cohomology class only depends on E. Indeed, if we consider
different liftings r;;  U;; — Spin(n) with vy - v, - 1ij = piji - 1 for all 1,5,k € I, then
it follows that

Tij = Sij €ij
where €;; € Zy for alli,7 € I. As a consequence,
<1
Pijk = €ij. - 0 {€ij}ijer.
In other words,

{pijrtigrer] = [eijrtigrer]- (3.19)

Moreover, if we choose an atlas of SO(E) which produces transition functions
{Wi; : Uij = SO(n)}i jer, then

iy = 7]1‘0901']’077]'_1
for alli,5 € I. Thus, choosing the liftings r;j = n; 0 8,5 © n; ', we obtain
pijk -1 = (mioswong ') (mosmon ) (njosyon ') = €yp-1

for all i,5,k € 1. Therefore, we recover Equation (3.19). Finally, before the next
definition, we remind the reader that, since X 1is paracompact Hausdorff, FIQ(X; Zs)
is isomorphic to H*(X, Zs). &
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Definition 3.65 (The second Stiefel-Whitney class). Let X be a paracompact Hausdorff
space and ™ : E — X be an n-dimensional oriented Fuclidean vector bundle. Using the

notation of Remark|[3.64], we set
wy(E) = [{eintijrer] € HA(X; Zy) = H(X, Zy).

This is the second Stiefel-Whitney class of E. If X is a smooth manifold, then
we define its second Stiefel-Whitney class wa(X) to be the second Stiefel-Whitney class
of its tangent bundle. &

Corollary 3.66 (Existence of spin structures through the second Stiefel-Whitney class).
Let X be a paracompact Hausdorff space and 7 : E — X be an n-dimensional oriented
FEuclidean vector bundle. We have that there exists a spin structure on E if and only if

wo(E) is trivial.

Proof. Here we use the notation of Remark If there exists a spin structure on F,
then it follows from Theorem that we can choose €;;; = 1 for all 4,5,k € I.
As a consequence, it follows that wq(E) is trivial. Conversely, if wy(E) is trivial,

then

Ski* Sjk " Sij = €ki€jk €ij - 1

for all 7,5,k € I. We set

Tz'j = eij Sij

or all 7,7,k € I. Consequently, we have just obtained liftings r;; : U;; — Spin(n) for
©i; Ui = SO(n) such that

Thi - Tjk - Ty = 1

for all i, j,k € I. Thence, Theorem [3.62] ensures the existence of a spin structure on F,

as desired. O

Remark 3.67 (On the preceding corollary). Let X be a paracompact Hausdorff space
and ™ . £ — X be an n-dimensional oriented Fuclidean vector bundle. The preceding
result shows that the second Stiefel-Whitney class wo(E) measures the obstruction to

the existence of a spin structure on E. In fact, Corollary says that, if wo(F)
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is trivial, then it is possible to find local liftings of the transition functions of SO(FE)
to Spin(n), and multiply some of them by —1, in such manner that the cocycle
condition holds. At the same time, this procedure cannot be done if wy(E) is not

trivial. Putting it together with Remark and Lemma the following definition

arises naturally. &

Definition 3.68 (Spin bundle and spin manifold). Let X be a paracompact Hausdorff
space and ™ . E — X be an oriented Fuclidean vector bundle. We say that E 1is a
spin bundle provided that wi(F) and wy(E) are both trivial. Furthermore, if X is a
smooth manifold, then we say that it s a spin manifold if its tangent bundle is a

spin bundle. %

Theorem 3.69 (The number of inequivalent spin structures of a spin bundle). Let

7. E — X be an n-dimensional spin bundle. The number of inequivalent spin structures

on E is the order of HY (X, Zs).

Proof. Let @y be an atlas of SO(E) and {s;; : U;; — Spin(n)}ier be a set of liftings
for its transition functions satisfying (3.17). The total space of the corresponding spin

structure is the quotient of the disjoint union

|_| U; x Spin(n) (3.20)
iel
by the equivalence relation that identifies (x,s); with (z, s;(x) - s); for all x € Uj;
and all 7,5 € I. Any other spin structure on FE descends from a set of liftings
{sije;; + Uyj — Spin(n)}ijer where €; € Zy for all i,j € I. Since the cocycle
condition must be verified, we necessarily have 51{62']'}1'7]'6[ = 1. Consequently, it is
well-defined
Heisbiger] € H'(X, Zs). (3.21)

We have that one of these spin structures is equivalent to the first if and only if (3.21)) is
trivial, which means that there exists {¢; }ier € CO(4, Zy) for which 50{61'}1'61 = {e;}ijer-
Indeed:

e if there exists an equivalence of spin structures £ between the spin structures

given by the quotient of the disjoint union in ((3.20)):
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« by the equivalence relation that identifies (x,s); with (z, s;j(x) - s); for
all x € Uj; and all 4,5 € I; and
« by the equivalence relation that identifies (z,s); with (z, €; s;j(x) - s); for

all z € Uj; and all 7,5 € I,

then we have

£z, s)i = (z, €s); (3.22)

where €; € Z5 for all ¢ € I. This happens because ¢ commutes with the projections

onto SO(E). Therefore,

(x, €j8i5(x)s); = &(z, si5(x)s); = &(x, ) = (2, €3); = (T, €€,5;(x)s);.

Consequently,

Ej = € eij

for all 4,j € I. Equivalently, ¢;; = ¢;¢; ! for all 4,j € I. This proves the triviality

of (3.21), as desired; and

e if (3.21) is trivial, then the reader can readily prove that (3.22) defines an

equivalence of spin structures, where {¢;}ic; is any family in C°(U, Z,) for which

50{62}251 = {e;}ijer

Summarizing, let us fix a spin structure Spin(E) on E. Given o € HY(X, Zj),
we have just proved that the spin structure Spin(FE) - a is equivalent to Spin(FE)
if and only if @ = 1. As a consequence, we have that Spin(£) - « is equivalent
to Spin(E) - B if and only if a=!8 = 1. In other words, we have that Spin(F) - «
is equivalent to Spin(F) - 8 if and only if &« = f. This finishes the proof of the

theorem. O

Remark 3.70 (Spin structures and inner products). Let E be an n-dimensional oriented
FEuclidean bundle. The existence of a spin structure on E does not depend on its inner

product. This is a non-trivial consequence of the fact that SO(n) is a deformation retract

of GL*(n). &
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3.7 Spin¢ structures

In this section, we continue the process of using the algebraic notions that
were presented in this chapter to study the geometry of vector bundles. In fact,
we establish another fundamental notion to study the Thom isomorphisms, namely,
the spin® structures of oriented Euclidean vector bundles. We begin with the following

definition.

Definition 3.71 (The spin® groups). Let n be a natural number. We define the spin®

group
Spin‘(n) := Spin(n) xz, U(1)

where:

e U(1) is the subgroup of the complex numbers composed of the unit elements; and

e the product Xz, denotes the identification of the elements (s,—\) and (—s,\)
for all s € Spin(n) and all A\ € U(1). This justifies an element of Spin®(n)
being denoted by [s, A]. O

Remark 3.72 (The spin® groups and two-sheeted coverings). Let n be a natural number.

We define
Pt Spin‘(n) — SO(n) x U(1),

[s. Al = (pals), A,

where p, : Spin(n) — SO(n) is the usual two-sheeted covering of SO(n). This map not
only is well-defined but it also is a two-sheeted covering of SO(n) x U(1). In particular,

we have the short exact sequence

0 y Z » Spin®(n) ——2—— SO(n) x U(l) ———— 0.

Here Zo is the subgroup of Spin®(n) generated by [1,—1] € Spin®(n). Furthermore,
Spin(n) C Cl(n). Indeed, since Cl(n) is canonically isomorphic to Cl(n) @ C, it
follows from the fact that Spin®(n) is obtained by Zs-tensoring Spin(n) with the unit

complex numbers. &
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Definition 3.73 (Spin® structure). Let m : E — X be an n-dimensional oriented Eu-

clidean vector bundle. In addition, let:

e 750 : SO(E) — X be the SO(n)-principal bundle of oriented orthonormal frames
of E defined in Remark[3.60; and

e 7y : U(L) = X be the U(1)-principal bundle of unitary frames of a given Hermitian
line bundle L, which the reader can readily define by inspiring himself or herself

mn Remark[3.60.

We say that a spin® structure on E is a Spin®(n)-principal bundle
Tpinc : Spin‘(E) — X
equipped with a two-sheeted covering

£°: Spin“(E) — SO(E) x U(L)

SO, TU

(see Remark [C-59) such that, if pS : Spin°(n) — SO(n) x U(1) is the projection, then
(&°,p%) is a morphism of principal bundles over X. In this situation, the following

diagram is commutative.

§° X py,

Spin“(E) x Spin‘(n) > (SO(E) Xreo. 7 U(L)) x (SO(n) x U(1))

Spin‘(E) 1% > SO(E) Xpeo,my U(L)

TSpin¢ ™

X

In this diagram, ™ : SO(E) Xreom, U(L) — X is given by m(s,u) := mgo(s) = my(u)
for all (s,u) € SO(E) Xreo.my U(L). &
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Definition 3.74 (Equivalence of spin® structures). Let w : E — X be an n-dimensional

oriented Fuclidean vector bundle. Two spin® structures

€°: Spin“(E) — SO(E) Xpeo.ny U(L)  and

€' Spin®(E) — SO(FE) x U(M)

SO, TU
are said to be equivalent provided that there exists an isomorphism of Spin®(n)-
principal bundles ¢ : Spin°(E) — Spin® (E) such that the following diagram is

commutative.

Spin®(E) ——— SO(E) +——— Spin® (E)

0 &° 710 E°
In this diagram, m : SO(E) Xneo.m, U(-) — SO(E) is given by m(s,u) = s for all
(s,u) € SO(E) Xremp U(:)- O

Definition 3.75 (The third integral Stiefel-Whitney class). Let X be a paracompact
Hausdorff space and m : E — X be an n-dimenstonal oriented Euclidean vector bundle.

In addition, let the following short exact sequence be the usual one.

0 s 7. s 7. s Lo > 0

Being
®: H*(X, Zy) — H*(X,7Z)

the Bockstein homomorphism in Singular Cohomology with respect to the preceding short

exact sequence, we define

Ws(E) = ®(wa(E))

where wy(E) € H*(X,Zs) 1is the second Stiefel-Whitney class of E. This is the third
integral Stiefel-Whitney class of E. If X is a smooth manifold, then we define its
third integral Stiefel-Whitney class W3(X) to be the third integral Stiefel-Whitney class
of its tangent bundle. &
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Theorem 3.76 (Existence of spin® structures through the third integral Stiefel-Whitney
class). Let X be a paracompact Hausdorff space and 7 : E — X be an n-dimensional
oriented Fuclidean vector bundle. We have that there exists a spin® structure on E if and

only if W3(E) is trivial.

Proof. In order to construct a (local) spin€ lifting of F, we fix a complex Hermitian line
bundle 7, : L — X as a part of the initial data. We then obtain the corresponding
unitary frame bundle my : U(L) — X. For each open set U; of an appropriate open
cover 4 = {U;}ier of X, we choose a spin lifting 7§, : Spin(E;) — U; with a two-sheeted
covering &; : Spin(F;) — SO(E;). Furthermore, we choose a lifting 7% : U(L;) — U;
where L; := L |y, for all i € I, equipped with a two-sheeted covering n; : U(L;) — U(L;)
compatible with
p: UML) — UQ),
Ao A2

Under these circumstances, we obtain the spin€ lifting
nginc: Spin‘(E;) — U;

where

Spin“(FE;) = Spin(E;) U(L),

X i i
Lo ’ 71—Spin »Tp,

with the two-sheeted covering
gzc = 52 X m Splnc(EZ) — SO(EJ X”éovﬂ'z U(LZ)
Now we fix principal bundle isomorphisms

@y © Spin(E;) |v,, — Spin(E;)

Uij»s
lifting the identity SO(E;) |p,;= SO(E)) |v,,. It follows that
Pi © w}k © 90;]‘ = €iji -1

for all 4, 5,k € I. We also fix principal bundle isomorphisms
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W U(Ly)

Usj — U(LJ)

Uij»s

lifting the identity U(L;)

v, = U(L;)

u,,;- It follows that
Yhi © Y © Yy = Oigr = +1

for all 7, j, k € I. Thence, we obtain the principal bundle isomorphisms

U; Spin‘(E;)

9020_7 = 90;7 X w;] : Splnc(El) Usij»

lifting the identity (SO(E;) x U(L;))

v, = (SO(E;) x U(Ly)) |u,,- It follows that
Pri © Pk © i = €ijrbijn

for all 4,7,k € I. We can construct a global bundle Spin(E) if and only if it is possible

to choose these data in such a way that
€ijklije = 1

for all 7,j,k € I. This is equivalent to 0, = €;;; for all 4, j,k € I. Iixing a set of local
unitary sections z; : U; = L |y,, we obtain the set of transition functions h;;: U;; — U(1)
for which we have z; = h;jz; for all i,57 € I. Consecutively, we lift the sections z; to
z; + U = U(L;) so that we get transition functions h;; : U;; — U(1) such that ¢;;2; = hi.2;
for all 7,5 € I. It follows that

/ / /o
ki 'Yk hij - eijk

for all 7, 7, k € I. Hence, there exists a global spin® lifting of E if and only if it is possible
to find a cochain {h};}; jer € C?(4; U(1)) such that

rog r
i Py by = €ijie - 1

for all ¢,j,k € I. This is equivalent to the triviality of [{e;i}ijrer] as a U(1)-cocycle.
In turn, this is equivalent to W3(E) being trivial since it can be proved that
H?*(X,U(1)) is isomorphic to H3(X;Z). This last fact is true because, in the short

exact sequence
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exp

0 > Z > R > U(1) > 0,

the sheaf of real functions is acyclic. = Therefore, we have that the associated
long exact sequence consists of isomorphisms between H™(X,U(1)) and H"'(X;Z)
for all n € N. O

Definition 3.77 (Spin® bundle and spin® manifold). Let X be a paracompact Hausdorff
space and ™ : E — X be an oriented Fuclidean vector bundle. We say that E 1is a
spin® bundle provided that wi(FE) and W3(E) are both trivial. Furthermore, if X is a
smooth manifold, then we say that it s a spin® manifold if its tangent bundle is a

spint bundle. &

Remark 3.78 (Spin and spin® structures). We have that the following facts hold true.

o Any vector bundle that admits a spin structure carries a correspondingly canonically
determined spin® structure. Indeed, if m: E — X admits a spin structure Spin(FE),
then

Spin“(E) := Spin(E) xz, U(1)

is a spin® structure of E, where Zs acts diagonally by (—1,—1) and where U(1)
18 the trivial circle bundle. In addition, there are examples in the literature of
spin® bundles that admit no spin structures. Therefore, spin® bundles are more
common than spin bundles. Consequently, spin® manifolds are more common than

spin manifolds.

o Any complex vector bundle carries a canonically determined spin® structure. The
reader can find this construction in [23, pp. 392-393]. Therefore, we have that
every complex manifold (in fact, every almost complex manifold) is canonically

a spin® manifold. &

Although spin® structures are more common than spin structures, they do not always
exist. For example, the reader can find in [23, pp. 398-394] a non-spin® manifold that is
contained, up to open embeddings, in every non-spin® manifold belonging to a special class

of manifolds.
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Theorem 3.79 (The number of inequivalent spin® structures of a spin® bundle). Let

m: B — X be an n-dimensional spin® bundle. The number of inequivalent spin® structures

on E is the order of H*(X, Z).

Proof. The reader can adapt the arguments given in the proof of Theorem to

prove this result. O

3.8 Thom isomorphisms

In this section, we present the Thom isomorphisms in K-Theory. This is the
furthest achievement of this thesis on the subject of Ordinary K-Theory. This result is
a non-trivial consequence of the tools from Spin Geometry that we have presented until
now. Here we will be able to present only a brief sketch of proof for it. We begin with

the following remarks.

Remark 3.80 (An important module structure involving K-Theory). Let X be an object
in TopHdCpt and 7 : E — X be a real vector bundle. We have that E is locally compact
Hausdorff. The reader can readily prove that this follows from X being locally compact
Hausdorff because of the existence of the local trivializations for E. As as consequence,

we set

K.(E) = @ Ki(E).

i€z
We have that K.(E) has a natural K (X )-module structure. Indeed, using the product in
Remark[2.79, we define

 KM(X) @ KH(E) — KI'MM(E),

a®pB — K™ (aXpB).

where the map it : ET — (X x E)* is the only continuous extension of the proper map

defined by
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The reader can readily prove that this defines a K(X)-module structure on K.(FE).
In fact, one can prove that K.(E) is a unitary module with respect to this K(X)-module

structure. &

Remark 3.81 (Some of the ideas involved in Thom isomorphisms). Let n be a natural
number. In addition, let f:S™ — S™ be a continuous function. In Singular Cohomology,

we consider the pullback

H™(f): H*(S") — H"(S").

Up to isomorphism, H"(f) : Z — Z since H™(S") is isomorphic to Z. The degree of
f:S" — S" is defined as
deg(f) == H"(f)(1) € Z.

If g : S™ — S™ is another continuous map, then one can prove that

deg(go f) = deg(g) - deg(f).

As a consequence, since deg(idgn) = 1, we have that, if [ is a homeomorphism, then
deg(f) =1 or deg(f) = —1. Indeed, once there exists f~' : S® — S" in such manner that

f~ltof=idgn, we have

1 = deg(idgn) = deg(f~ "o f) = deg(f™) - deg(f),

which proves our assertion. Furthermore, it can be proved that, if f is a homeomorphism,

then

1 if [ preserves the orientation on S",
deg(f) =

-1 otherwise.

In particular, let ¢ : R — R"™ be a linear isomorphism. The one-point Aleczandroff

compactification

et (Rt ~S" - (RM)T ~ S

15 a homeomorphism. Therefore,

N 1 if o preserves the orientation on S",
deg(¢™) =
—1 otherwise.
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It can be proved that * preserves the orientation on S™ if and only if det(p) is positive.

Now let €2 be a one-point space. We have
K(Q) ~ K}R"). (3.23)

Indeed,
KMR™) ~ K"(S") ~ Z ~ K(9).

Since R"™ is a real vector bundle on (2, the idea of Thom isomorphisms is to generalize
(13.23) to any real vector bundle. Nevertheless, in order to do this, we have to establish
an adequate hypothesis, which is orientability. In fact, let E be an oriented real vector
bundle (see Remark[3.55). In addition, let Oy = {(U;, ;) }ier be an oriented atlas of E.
The transition functions of ®y can be compactified in each point x € X, defining maps
o+ S" = S"™ for which

deg(py) = 1

for all x € X. In particular, for a local chart @;: 7= 4(U;) — U; X R", we consider the
element

H"(¢:); (1) € H'(E], Z)

for each x € U;. We have that H"(¢;)5 (1) generates H"(E},Z) for all x € U;.
Moreover, these elements do not depend on the chosen chart and continuously vary
with x € X. In fact, E is orientable if and only if it is possible to continuously choose
a generator of H"(EY,7Z) for all x € X. This idea produces the following definition in
the K-Theory framework. &

Definition 3.82 (Weak orientation in K-Theory). Let 7 : E — X be an n-dimensional
real vector bundle. A weak orientation in K-Theory is a continuous choice of
generator for l?”(Ej) ~ 7 where v € X. We say that E is weak orientable if it

admits a weak orientation in K-Theory. &

The preceding definition is not convenient for our purposes. Indeed, one can
prove that the existence of a weak orientation in K-Theory is equivalent to the
existence of an orientation in the sense of Remark [3.55, In other words, orientation and

weak orientation in K-Theory are equivalent notions. Nevertheless, with respect to
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Singular Cohomology, the notion of weak orientability provides interesting results such
as the Poincaré Duality Theorem for smooth manifolds. This does not happen in the
K-Theory framework. This fact demands a better definition of orientability in K-Theory.
In fact, René Thom (1923-2002) extended the notion of orientability by proving the

following result.

Theorem 3.83 (Thom isomorphisms in Singular Cohomology). Let m : E — X be an
n-dimensional oriented real vector bundle. If we continuously choose a generator for
H™(EF) ~ H™E,) for each x € X, then there exists a unique element o € H™(E),
which s called the Thom class of E, whose restriction to E, is the chosen generator
of H(E,) for all x € X. Furthermore, considering the usual module structure given by
the cup product

H™(X; Z) ® H}E; Z) — HI"'™(E; Z),

we have that

T,: H"(X;Z) — HIM"(E;Z),

U = U~ aQ,

18 a group isomorphism for all m € Z. These group isomorphisms, which do not form
a ring isomorphism in general, are said to be the Thom isomorphisms of the vector

bundle in question.

Proof. The reader can find a complete proof of this result in [34]. O

Remark 3.84 (Thom classes and orientability). Let m : E — X be an oriented real
vector bundle. It follows from Theorem that there exist exactly two Thom classes
for E, each of which induces one of the two orientations of E. In the smooth
manifold setting, a Thom class consists in a differential form with compact support
whose restriction to each fiber is a unitary volume form of its one-point Alexandroff
compactification. In Singular Cohomology, the orientability of E is equivalent to the

existence of:

e o continuous choice of generator for the rk(E)th integral cohomology of each

compactified fiber; and
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e a global integral class with compact support for E that restricts to a generator

i each fiber.

For an arbitrary cohomology theory, these two properties are inequivalent, being the
second one stronger than the first one. More concretely, in K-Theory, a continuous
choice of generator for the integral cohomology of each fiber does not imply the existence
of a global class that restricts to the chosen generators. Because of that, the existence
of a global class turns out to be the best definition for orientability. This justifies the
following definition. &

Definition 3.85 (Thom class in K-Theory). Let 7 : E — X be an n-dimensional real
vector bundle. In K-Theory, a Thom class of E consists of an element u € K!(FE)
for which the restriction to each fiber u, € KX E,) ~ K!'R") ~ Z is a generator.
We say that E is K-orientable provided that there exists a Thom class of E in
K-Theory. In this situation, a choice of a Thom class of E is a K-orientation of the

vector bundle in question. &

Definition 3.86 (Spinor bundles). Let 7p : P — X be a G-principal bundle and
p: G — GL(¥) be a topological representation of G where ¥ is a finite-dimensional
vector space. In Definition we defined the p-associated bundle of P, which is
hereafter denoted by E,(P). Thence, being g : E — X an n-dimensional oriented

Fuclidean vector bundle:

o if E is a spin bundle, then we say that a complex spinor bundle of E consists of

a p-associated bundle

Sc(E) = &,Spin(E)

of a spin structure £ : Spin(E) — SO(FE) of E where ¥V is a left module for Cl(n)
and where y1 @ Spin(n) — SO(¥) C GL(¥) is the representation given by left

multiplication by elements of Spin(n); and

o if E is just a spin® bundle, then we say that a complex spinor bundle of E consists
of a A-associated bundle

S¢(E) = EaSpin‘(E)
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of a spin® structure £ : Spin°(E) — SO(E) x U(L) of E where ¥ is a left module
for Cl(n) and where A : Spin®(n) — GL(¥) is given by restriction of the Cl(n)-

representation to Spin®(n). &

Remark 3.87 (Final concepts for establishing Thom isomorphisms). Let 7 : E — X be
an 2n-dimensional spin bundle. In addition, let Sc(E) be the irreducible complex spinor

bundle of E. We can split Sc(E) into a direct sum
Sc(E) = SEH(E) @ S¢(B)

of C1°(E)-modules. Here CL(E) denotes the bundle of Clifford algebras generated
by E which is such that CI(E), = CI(E,) for all x € X. Moreover, C1°(E) and C1'(E)
are defined analogously. Now consider the global section of CI(F) ® C which at v € X

s given by
we = ey -ean
for any positively oriented orthonormal basis {ey,--- ,e,} of the fiber E,. Thence, we
have
wi =1
and
€e-We — —Wwc-e€e

for all e € C1'(E) ® C. We define S{(E) and Sg(E) to be the 1 and —1 eigenbundles
for Clifford multiplication by wc, respectively. If E is just a spin® bundle, then we
can analogously consider the irreducible complex spinor bundle SE(E) of E and split it

mto a direct sum

Se(E) = S¢H(E) ® Sg (E).

Now let D(E) and S(E) be the unit disc bundle and unit sphere bundle, respectively.
The pullbacks of SE(F) and Sg(E) through m : E — X over D(E) are canonically
isomorphic on S(E) by the map

p: ©SE(E) = 7Sc(E)
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given at e € S(E) by

for all 0 € T SL(E)e. These objects determine

[7*SE(E), 7S¢ (E), u] € K*(D(E), S(E)) ~ K*(E)\%)

C

We can then set the following result. &

Theorem 3.88 (Thom isomorphisms in K-Theory). Let X be a compact Hausdorff space
and m : E — X be a 2n-dimensional Fuclidean bundle. If E is a spin bundle, then the

class

S(E) = [**SE(E), 7Sz (E), 4] € K2(E)

18 a K-orientation of E. This remains true if E is just a spin® bundle. For this, we
have to change Sc(E) = SE(E) @ Sg(E) by S&(E) = SEH(E) @ S¢ (F). Furthermore,
we have that

T: K™(X) — KI'?(E),

a — a-s(E),

1s an 1somorphism for all m € 7Z. The multiplication here is the one of the module
structure defined in Remark[3.80. These group isomorphisms, which do not form a ring
1somorphism in general, are said to be the Thom isomorphisms of the vector bundle

m question.

Proof. The complete proof of this result can be found in [23, pp. 384-388]. Here we
provide a short sketch of it. Indeed, we begin by saying that a compactly-supported
K-Theory class of £ has the Bott periodicity property provided that it determines
a K-orientation in any local trivialization of E over a closed subset of X. Thence,

it can be proved that any such class having the Bott periodicity property is a global

(6)In fact, according the construction of Section we have [7*S{ (E), 7S¢ (E), u] € K(D(E), S(E)).
Nervertheless, since K(D(E), S(E)) is isomorphic to K2*(D(E), S(E)) because of the Bott Periodicity
Theorem, we can consider [7*S{(E), n*S¢ (E), ] € K?"(D(E), S(E)). Furthermore, we have that
K?"(D(E), S(E)) is isomorphic to K2"(E) because, when X is a compact Hausdorff space, there is a
canonical homeomorphism between the one-point Alexandroff compactification E+ and the quotient of
D(E) by S(F). In general, the quotient space of D(FE) by S(F) is referred to in the literature as the
Thom space of F.
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K-orientation of E. As a consequence, the statement follows by just proving that
s(E) has the Bott periodicity property. In fact, if C' is any closed subset of X for
which we have a local trivialization ¢¢ : F |¢c — X x R?*", then the class s(E) becomes
the element

s(El¢) € K*(C x R*™),

which is the pullback to the product of the canonical generator of K*"(R*") ~ Z
given by the Atiyah-Bott-Shapiro Theorem (Theorem [3.41). This implies that s(E)

O

has the Bott periodicity property.

Corollary 3.89 (Thom isomorphisms in K-Theory for all vector bundles). Let X be a
compact Hausdorff space and m : E — X be a (2n — 1)-dimensional Euclidean bundle.
If E is a spin (spin®) bundle, then it is K-orientable. Furthermore, there are natural

1somorphisms

T : K™(X) — K" Y(E)

for all m € Z. These are also said to be the Thom isomorphisms of the vector

bundle in question.

Proof. We have that the direct sum F @ R of E with the trivial bundle X x R — X is a
spin (spin®) bundle. We then obtain a K-orientation and the Thom isomorphisms for F
by properly restricting the ones of E'@ R from Theorem [3.88 This finishes the proof of
the corollary. O]

Remark 3.90 (Extending the Thom isomorphisms). The preceding results are still true
considering vector bundles on locally compact Hausdorff spaces. This claim can be

found in [23, p. 389]. ¢

3.9 Gysin map

In this final section, we present an object that follows from the Thom isomorphisms
in K-Theory, which is the Gysin map. This is the integration map in K-Theory. We
only present here its definition and first properties since the applications would demand
much more time to be developed. We begin with the following definition that treats an

important particular case.
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Figure 3.1: This picture gives a geometric visualization for the Gysin map described
in Definition Indeed, it says that, using the Thom isomorphism, we can associate
to a cohomology class of A a class of Ny>M. Thence, using the induced homomorphism
of oy, we map the resulting class of Ny M to a cohomology class of U. Finally, applying
the induced homomorphism of 7, we map this last cohomology class of U to a class of
M. This shows that the Gysin map extends a cohomology class of N to a class of M.
The price paid in this process is a translation in the degree of the initial cohomology
class by the rank of the normal bundle Ny M, which is due to the use of the Thom
isomorphism.

Definition 3.91 (Gysin map of an embedding). Let M be a smooth manifold. In
addition, let N be an embedded compact submanifold of M for which the normal bundle
NyM — N is K-orientable. We remind the reader that Ny M is the quotient of the
tangent bundle of M restricted to N' by the tangent bundle of N'. Since N is compact,
there exists a tubular neighborhood U of N in M. In other words, there exists an open
subset U of M containing N for which we have a homeomorphism oy : U — Ny M.
Being i : N — M the natural embedding, we define a group homomorphism called Gysin
map

Zr'n . Km(N) N K:@+dim(M)—dim(N) (M)

for each m € Z. In general, we have that these group homomorphisms do not form a
ring homomorphism. Furthermore, as one could naturally expect, if M is also compact,

then we obtain

Zr'n : Km(/\/’) N Km—i—dim(M)—dim(N) (M)

Being
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nu : M = U+,

x if x € U,
T

00 if v e Mt —U,

we define

imo= f(m+dim(/\/l)—dim(/\/)(nU) o [}m+dim(/\/l)—dim(/\f)(s0§) 0T,

for all m € 7Z. &

Definition 3.92 (Gysin map of a continuous function). Let M and N be compact
smooth manifolds. In addition, let f : N — M be any continuous map. Under these

cireumstances:

o let j: N — RN be an embedding. Thence, consider the embedding
(f,5): N = M xRV,

It 1s to be noted that this construction is possible because of the Whitney

Embedding Theorem; and

o since (M x RM)T is homeomorphic to M A (RN)F, which is homeomorphic to
MT ASY, we have that (M x RN)T is homeomorphic to SN M .. Therefore, for

all m € Z, we have the suspension isomorphism
sV KM x RY) — K™ N(M).

We define the Gysin map of f
e K™N) — Km+dim(M)—dim(/\/)(M>

as the group homomorphism

m
!

o= S7Nn+N+dim(M)7dim(/\/) o (f,7)

for all m € Z. It can be proved that this map does not depend on j : N — RYN. This is

a consequence of the fact that any two embeddings of a smooth manifold in a sufficiently
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large Fuclidean space are isotopic. That s, they are homotopic through a homotopy

composed only of embeddings. &

Theorem 3.93 (Some of the properties of the Gysin map). Let M, N and S be compact
smooth manifolds. In addition, let f : N — M and g : M — S be continuous maps.

The following facts are true.

(1) The Gysin map
f{n Km(N) N Km+dim(M)—dim(/\/)(M>

only depends on the homotopy class of f : N — M for each m € Z. In particular,

it does not depend on any embedding.

(2) For each m,n € Z,
fi e KM(f)(B) = fi*(a)- B

where « € K™(N') and 8 € K"(M).

(3) We have
(gof)qln — g:n"rdlm(/\/l)—dlm(/\/) o fzn
for all m € Z.
Proof. The reader can find a complete proof of this result in |19, p. 233]. O

Remark 3.94 (Extending the preceding definitions). Here we use the notations of
Definitions and [3.93. If N is locally compact, then, by means of an immersion
i: N = M, we can define the Gysin map ezactly as before. This happens because, under
these circumstances, there exists a tubular neighborhood of N in M as well. Thence,
we can also define the Gysin map of a proper map f : N — M. More than that, we can
define the Gysin map of any continuous map f : N — M that factors out by a proper
embedding. &



3. Spin Geometry and Ordinary K-Theory 224




225

Chapter 4

Rephrasing Ordinary K-Theory

In this chapter, we conclude the study of Ordinary K-Theory by presenting a
different but equivalent viewpoint for this theory. Indeed, here we use the language and
the initial results of Functional Analysis to set an interpretation of K-Theory through
homotopy classes of functions whose codomain is the space of Fredholm operators,
which are continuous linear operators defined on separable Hilbert spaces for which
the kernel and the cokernel are finite-dimensional. This model for K-Theory will be
particularly interesting in Chapter In order to write this part of the text, we used
as main references [2, pp. 153 - 162], [8, pp. 7-18, 33-43|, [22] and [32, pp. 1-23, 55-67,
119-125, 175-183.

4.1 Fredholm operators

In this section, we present the basic language of Functional Analysis that is
needed to develop the model of Fredholm operators for K-Theory. In particular, we
recover the notion of separable Hilbert space in order to define and study some
properties of Fredholm operators. The reader who is familiar with these notions
may skip this section and return to it later if it is necessary. We begin with the

following remark.

Remark 4.1 (Elementary notions on Functional Analysis). Let H be a complex
Hilbert space.  That s, H is a complex wvector space which 1s equipped with an

Hermatian product
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(,y: HxH — C

such that the induced norm
|-]: H — [0,00),

u (u, u),

turns H into a Banach space. Moreover, suppose that H s separable. In other words,
suppose that there exists a dense countable subset of H. By Zorn’s Lemma, this is
equivalent to the existence of a countable orthonormal basis for H. Therefore, one can
prove that every infinite-dimensional separable Hilbert space is isometrically isomorphic
to the famous space (* of infinite sequences of complex numbers z = (2,)nen for which

the series
(o)

D lf

n=0

converges, equipped with the Hermitian product given by

o0

(z, wy = Z Zn Wy,

n=0

for all z,w € (?. This may help the inexperienced reader to have a more concrete
picture of infinite-dimensional separable Hilbert spaces. Under these hypotheses, we
consider F€ to be the algebra of all bounded operators on H. We equip € with the

norm topology, where
| = [0,00),
T:-H—H sup  |T(u)].
we H; [u|=1
This makes 7 into a Banach space. In particular, the group of units F€* of 7€ forms
an open set. Furthermore, by the Closed Graph Theorem, any T € € which is an
algebraic automorphism is also a topological automorphism. This means that, if T}

exists in J€, then T € F*. %

Definition 4.2 (Fredholm operator). An operator T € 5 is a Fredholm operator
if KerT' and CokerT are finite-dimensional. We denote the collection of all Fredholm

operators on H by Fy. &
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Theorem 4.3 (The image of a Fredholm operator is always closed). If T' € Fy, then
T(H) is closed in H.

Proof. We have that the restriction
T |(kerr): (KerT)* — T(H)
is a bijection. Then, we define an extension of this map
T: (KerT)* @ ¢im©kerD) _ 7(H) ¢ CokerT,

by sending a basis of CH™(CokerT) into a basis of Coker 7. This map is a continuous
bijection.  Therefore, by the Open Mapping Theorem, we conclude that it is a
homeomorphism. Thus,

T(H) = T((KerT)*)

is closed. This happens because (KerT)! is easily seen to be closed since KerT

is closed. O

Corollary 4.4 (The adjoint of a Fredholm operator is also Fredholm). We remind the
reader that the adjoint of an operator T € F 1is the unique linear operator T* € F
for which

(Tu, v) = (u, T"v)

for all w,v € H. We have that T € Fy if and only if KerT and KerT* are both
finite-dimensional. In particular, an operator is Fredholm if and only if its adjoint is

Fredholm.

Proof. Since KerT* = T(H)*, H = T(H) ® T(H)* and T(H) is closed (Theorem [£.3),
we have

KerT* = T(H)* ~ H/T(H) = CokerT.

Thus, KerT™ is finite-dimensional if and only if Coker T is finite-dimensional. Therefore,

T is Fredholm if and only if 7™ is Fredholm. O]
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Theorem 4.5 (Relation between Fredholm operators and the Calkin Algebra). Let 2y
be the ideal of F formed by the compact opemtor. The Calkin Algebra of H is the
quotient | Ky . Let

T H — A Ky

be the natural projection. Under these circumstances, we have that T € € is a Fredholm
operator if and only if w(T) is invertible in the Calkin Algebra of H. In particular, we
have that an operator T € € is Fredholm if and only if there exists S € J€ in such

manner that

where K, L € .

Proof. The reader can find a proof of this result in [8 p. 14]. ]

Corollary 4.6 (The open subspace of Fredholm operators). The collection of Fredholm

operators on H is open in J€ .

Proof. The set o/ of invertible elements in the Calkin Algebra is open. Hence,
since the natural projection 7 : J# — /Ay is continuous, Fg = 7 () is
open in 7. It is to be noted that this last equality is an immediate consequence of

Theorem (.5l O

Corollary 4.7 (The subalgebra of Fredholm operators). The collection of Fredholm

operators on H is a subalgebra of 7.

Proof. We first have to verify that %y is a vector subspace of 7. We leave this
straightforward computation to the reader. Afterwards, we have to prove that, if
T and S are Fredholm operators, then the composition T o S is also a Fredholm
operator. In fact, if 7" and S are Fredholm operators, then there exist P,(Q €
such that

(We remind the reader that T' € # is a compact operator provided that T'(A) is precompact in H
whenever A is a bounded subset of H. In addition, we have that T(A) is precompact in H if its closure
is compact in this space.



4. Rephrasing Ordinary K-Theory 229

PoT = idy + K, ToP = idy + L,

QoS =idyg+ M and So@Q = idy + N,
where K, L, M, N € #y (Theorem . Therefore,

(ToS)o(QoP) = To(SoQ)oP
= To(idy+ N)oP
— (T+ToN)oP
= ToP+ToNoP

= idg+L+ToNoP.

Analogously, we obtain
(QoP)o(ToS) =idg+M+QoKoS.

Therefore, since L + T o N o P and M + Q o K o S are compact operators on H,
we have that T o S is a Fredholm operator (Theorem [4.5). This finishes the proof
of the theorem. N

4.2 Index of Fredholm operators

In this section, we define and study the notion of Fredholm index. This
concept produces a particular case of the main theorem of this chapter. However,
the naturality and the simplicity of the arguments used to establish this particular
case are sufficient reasons to set it as a motivation for the desired general result.
In fact, it is the logical path applied to this section. We begin with the following

definition.

Definition 4.8 (Index of a Fredholm operator). Let T € Fy. We say that the integer
number

indexy := dim(KerT") — dim(Coker T')

15 the index of T'. &
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Example 4.9 (Fredholm operators on a finite-dimensional complex Hilbert space). If
H is a finite-dimensional complex Hilbert space, then it is separable. Indeed, let A be
a basis for H, which is necessarily finite since H is finite-dimensional. Thence, the
collection of all linear combinations of the elements of A with rational coefficients is
a dense countable subset of H. Moreover, we have that every T € € is a Fredholm
operator. Finally, since CokerT = H/T(H), dim(CokerT) = dim H — dim7T(H).
Therefore,
indexy = dim(Ker7) — dim(Coker T')
= dim(KerT) +dimT(H) — dim H
= dimH —dim H

= 0

by the Rank-Nullity Theorem. &

Example 4.10 (Index of the adjoint of a Fredholm operator). Let T' € Fy. Because of
Corollary[{.4), T* € Fu. In addition, this result allows us to explicitly calculate the index
of T*. Indeed,

indexp« = dim(Ker7T™) — dim(Coker T™)
= dim(Ker T") — dim(Ker T"")
= dim(Ker7™) — dim(Ker T')

= —indexry. ¢

Theorem 4.11 (The index of Fredholm operators defined on an infinite-dimensional
separable Hilbert space is surjective). If H is an infinite-dimensional separable Hilbert

space, then
index: ¥y — Z,

T +— indexr,

18 surjective.  Note that this claim is not true for finite-dimensional Hilbert spaces

(see Example [{.9).
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Proof. Let {e;}ien be an orthonormal basis for H (see Remark [4.1). For each n € N,

we define:

e the right shift
S.,.: H — H,

(@) o
E zi€; ‘> g Zi€itn,
i=0 i=0

which is a Fredholm operator. Indeed:
e S_, is clearly injective. Thus, we have that KerS_,, is trivial, being then
finite-dimensional; and

e S_,(H) is the complement of the subspace generated by eg,---,e,1 € H.
Thus, we have that Coker S_,, is isomorphic to this vector subspace, being

then finite-dimensional.

Therefore, we have

indexg , = dim(KerS_,) — dim(CokerS_,,) = 0—n = —n; and

e the left shift
S,: H — H,

o oo
E zi€; > E Zi+n€i,
i=0 i=0

which is a Fredholm operator. Indeed:

e S, has as its kernel the subspace generated by eg,--- ,e, 1 € H, being then

finite-dimensional; and

e S, is clearly surjective. Thus, we have that Coker S, is trivial, being then

finite-dimensional.

Therefore, we have

indexg, = dim(KerS,,) — dim(Coker S,,)) = n—0 = n.

This finishes the proof of the theorem. O
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Remark 4.12 (Index and injectivity). If T € Fy is invertible, then T™' € Fy and
indexy = 0. Indeed, if T is invertible, then KerT and CokerT' are both trivial.

Consequently,

dim(KerT) = dim(CokerT) = 0,

which clearly implies our assertions. On the contrary, T is not necessarily invertible if
indexy = 0. In fact, this follows from Ezample [{.9. Nevertheless, being indexs = 0,

we have that:

o if T s injective, then it is also surjective. This happens because, being injective,
T has trivial kernel. Hence, since dim(KerT) = 0, we obtain dim(CokerT) = 0.

Thus, T has trivial cokernel; and

o if T is surjective, then it is also injective. This happens because, being surjective,
T has trivial cokernel. Hence, since dim(CokerT') = 0. we obtain dim(KerT') = 0.
Thus, T has trivial kernel.

In particular, the map of Theorem [{.11] is not injective since all invertible operators

have zero index. &

Lemma 4.13 (Exact sequences of finite-dimensional vector spaces). Let the following

sequence of finite-dimensional vector spaces and linear maps be exact.

0 > N > Yy > > V1 > > 0
In this situation,

D (~1)'dim(%) = 0.

i=1
Proof. The reader can find a proof of this result in [8, pp. 16-17]. O

Theorem 4.14 (The index of a composition of Fredholm operators). Let T,S € Fy.
Because of Corollary [{.7, it makes sense asking about the index of T o S € Fy. Indeed,

we have
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indexr.s = indexy + indexg.

Thus, the map of Theorem [[.11] is a group homomorphism. In particular, if T € Fy

18 tnvertible, then index -1 = —index p.

Proof. The reader can readily prove that the sequence of finite-dimensional vector

spaces and linear maps

Ker(T o S) —2— KerT —Z— Coker S —~— Coker(T o S)

0 — Ker S CokerT —— 0

is exact, where « is the inclusion, 7 is the projection and ( is the map that sends
an equivalence class modulo (T o S)(H) into an equivalence class modulo 7'(H). Thus,
by Lemma [4.13] we obtain that the alternate sum of the dimensions of the vector spaces
in this sequence is zero. This implies our assertion since such alternate sum can be
written as

index 1.5 — indexy — indexg = 0.

This finishes the proof of the theorem. m

Theorem 4.15 (The continuity of the index map of Fredholm operators). The group
homomorphism index : Fy — Z defined in Theorem is locally constant. Therefore,

it 18 continuous.

Proof. Let T € ZFgy. In addition, let P : (KerT)* — H be the inclusion and
Q) : H — T(H) be the orthogonal projection of H onto T(H). Since P has trivial
kernel and

Coker P = H/(KerT)* ~ KerT,

P is Fredholm and

index p = dim(Ker P) — dim(Coker P) = —dim(KerT).
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Similarly, once

KerQ = T(H)* ~ CokerT

and Coker () is trivial, ) is Fredholm and
indexy = dim(Ker @) — dim(Coker ) = dim(Coker 7).

Consequently,
indexr + indexp + indexg = 0. (4.1)

Since Qo T o P : (KerT)* — T(H) is invertible,
e = [(QoTolJ)™|
is positive. Thus, if S € %y is such that

T — S| <

then we obtain

QoToP—-QoSoP| = |Qo(T~S)oP|
< |QIIT - S11P|

< &L

This proves that ¢) oS o P is invertible. Thence, indexgosop = 0 by Remark [4.12]
Hence, Theorem yields

index g + indexp + indexg = 0. (4.2)

From Equations (4.1)) and (4.2)), we obtain index; = indexg. This finishes the proof
of the theorem. O

Corollary 4.16 (Index of translations by compact operators). Let T € Fy and K € Hy.
Then, T+ K € g and

index . = indexry.
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Proof. Since n(T' + K) = 7n(T), where m : S — /Xy is the natural projection,
T + K is a Fredholm operator if and only if 7" is Fredholm (Theorem [4.5). Now, consider
the continuous path

a: [0,1] — Fy,

t — T+tK.

Once the index is locally constant because of Theorem [4.15] this path ensures that
indexr;x = indexy for all ¢ € [0,1]. In particular, we obtain indexr,x = indexr,

as we wished. O

Lemma 4.17 (Path-connectedness of the space of invertible operators). The subalgebra

of invertible operators F€* of F is path-connected.

Proof. The reader can find a proof of this result in [8, pp. 18-21]. H

Theorem 4.18 (Bijection induced by the index between path-connected components of
the space of Fredholm operators and the integer numbers). Let mo.%y denote the set of
path-connected components of Fy. The Fredholm index defined in this section induces a

bijection mo.Fy — 7.

Proof. We only have to prove injectivity since surjectivity was shown in Theorem .11}
We define
Fip = {T € Fy : indexr = n}

for each n € Z. Since the Fredholm index is locally constant (Theorem [4.15)), we have
that injectivity follows provided we prove that %}, is path-connected. This is what is

done now. Indeed:

e if n = 0, then let T € #%. Because of Lemma m, it suffices to prove that T’
can be connected to an invertible operator by a path. In fact, since index, = 0,
we have dim(KerT) = dim(KerT*). Thus, let {v;}20" ™) and {w,}imEer?
be bases for KerT' and Ker T™, respectively. Therefore, under these circumstances,

if we have
dim(Ker T')

UZUO—FZ)\I'WEH

i=1
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with ug € (Ker T')*, then we define

dim(Ker T)
o(u) = Aiw;.
i=1

This correspondence sets an operator ¢ € 5 for which Kerp = (KerT)* and
o(H) = KerT*. We claim that T+ ¢ is invertible. In fact, it is clearly surjective.
Moreover, it is injective because, if u € Ker(T + ), then T'(u) = —p(u), which
implies v = 0. This very same reasoning proves that T + ty is invertible for all
t € (0,00). Thus,

v: 0,1 — Zp,

t — T+t

is a path contained in the space Zy that connects T with an invertible operator,

as desired;

o if n > 0, then let T € #}. In addition, let S_,, and S, be the right and
left shifts defined in the proof of Theorem (.11} respectively.  Because of
Corollary we have T o S_,, € Zy. Furthermore, because of Theorem [£.14]
indexros_, = 0 since indexg , = —n. Thus, we have T o S_, € Z5. Once
S_ 0S8, =idy,

T = (ToS )08, € Fpob,.

Hence, F5 C Z5 o S,. Additionally, ZY o S, C .Z% because of Theorem [4.14]
Consequently, it follows that Z% = Z3 o S, is path-connected because of the

preceding item; and

e if n < 0, then the path-connectedness of .#; is immediate from the preceding

item since

because of Example [4.10 O

Remark 4.19 (Interpreting the preceding result through homotopy classes and
K-Theory). Let Q be a one-point space. The reader can readily prove that there exists a

natural bijection
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o [Q, 32.1_1] — WogH,

where [Q, Fy| is the set of homotopy classes of continuous maps from  into Fg. Indeed,
Fredholm operators T and S are in the same path-connected component of Fy if and only
if the functions Q — T and Q +— S are homotopic. Moreover, we have K(2) = Z
by Example [2.9. Consequently, Theorem can be restated saying that there exists a
group isomorphism

index : [Q, Fy] — K(Q).

The goal of the next section is to generalize this result establishing a group isomorphism
when we change ) by any compact Hausdorff space. This assertion is known as the

Atiyah-Jdanich Theorem. &

4.3 Atiyah-Janich Theorem

In this section, we fulfill the program of this chapter stating and proving the
Atiyah-Jénich Theorem, which was mentioned in the last remark of the preceding
section. This result is the one that gives us the interpretation of K-Theory through
homotopy classes of functions whose codomain is the space of Fredholm operators. We

begin with the result itself.

Theorem 4.20 (Atiyah-Janich Theorem). For any compact Hausdorff space X, we have

a natural group isomorphism
index : [X, #g] — K(X).

In other words, the space of Fredholm operators Fy is a classifying or representing

space for K-Theory.

Proof. The proof of this result will be completed at the end of this section by a series

of lemmas and theorems. O

Remark 4.21 (An intuitive idea to prove the Atiyah-Janich Theorem that unhappily
does not work). Let X be a compact Hausdorff space and T : X — Fy be a continuous

function. We define
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KerT := | | KerTy,

zeX
where T, := T(x) € Fy. The intuitive idea to define the generalized index map of the

Atiyah-Jdinich Theorem is setting
index [T] := [KerT| — [Coker T

for oll [T] € [X, Fy]. Nevertheless, this is not generally possible since Ker T' and Coker T

usually do not have vector bundle structures. In fact, for example, consider the continuous

function
T: R — y@,
z — T,
where
T.(z) = zz

for all z € C. We have dim(KerTy) = 0 and dim(KerT,) = 1 for all non-zero x.
Since the real line is connected, any vector bundle on it must have constant rank. Thus,
KerT cannot be a wvector bundle. The reader will note that the technical lemmas

presented below to construct the generalized index map are the way we have to bypass

this difficulty. %

Lemma 4.22 (Existence of well-behaved neighborhoods in the space of Fredholm
operators). Let T € Fy and let V be a closed finite-codimensional subspace of H
such that V N KerT is trivial. Then, there exists an open neighborhood U of T in
such that:

(1) VNKerS is trivial for all S € U; and

(2) the disjoint union

|| #/5(V),

Seu
topologized as a quotient space of the product space U x H, s a trivial vector

bundle on U.
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Proof. For each S € ¢, we define the linear map

ws: Vo TV — H,

(u,v) — S(u)+w.
Then, we have the continuous linear map

o: H — LNVoTV), H),

S = s,

where % stands for the space of all continuous linear maps with the norm
topology. We have that ¢r is an isomorphism. In fact, @r is injective because
T |v: V — H is injective once V N KerT is trivial. Moreover, we have that or is

surjective because

or(V & T(V)Y) = T(V)eT(V): = H.

Since the isomorphisms form an open set in .Z, there exists a neighborhood U of T
in 7 in such manner that g is an isomorphism for all S € U. This implies the claims

of the statement. Indeed:

e since g is injective for all S € U, it follows that Ker S is trivial for all S € U.
Thus, V N Ker S is trivial for all S € U; and

e since S € U is an isomorphism,
H/S(V) ~ STYH))V ~ T(V)*.
Consequently,

|| #H/S(V) ~ | [{S} xT(V)" = UxT(V)"

Seu Seu
This proves that the disjoint union in question is a trivial vector bundle since
the reader can prove that T'(V)* is finite-dimensional once T € Fy and V is

finite-codimensional. O



4. Rephrasing Ordinary K-Theory 240

Theorem 4.23 (Vector bundles induced by a continuous map with codomain in the
space of Fredholm operators). Let X be a compact Hausdorff space and T : X — Fy
be a continuous map. Then, there exists a closed finite-codimensional subspace V. of H

such that:

(1) VNKerT, is trivial for all x € X; and

(2) H/T(V) = |,ex H/T:(V), topologized as a quotient space of X x H, is a

vector bundle on X.

Proof. For each z € X, let V, := (KerT,)' and let U, be an open neighborhood of
T, in 7 as in Lemma 4.22] We define

for all x € X. The collection {W,},cx is an open cover of X. As a consequence,
since X is a compact space, we can take a finite subcover {W, }", of X. Thence,

we define
V = ﬂ W,
i=1

We have that V' is a closed finite-codimensional subspace of . Moreover, V' satisfies
the first condition of this theorem because of Condition (1) of Lemma [4.22] Further,
V' satisfies the second condition of this theorem because we can apply Condition (2)
of Lemma m to T, for each x € X. This ensures that | | H/T,(V) is locally trivial
near z for all z € X. Therefore, H/T(V) is locally trivial, being then a vector bundle,
as desired. 0

(2)The fact that V is closed follows from it being the intersection of closed subspaces of H. To prove
that it is finite-codimensional, we show that any finite intersection of finite-codimensional subspaces of
H is also finite-codimensional. Indeed, let E and F' be finite-codimensional subspaces of H. We define
the linear map

®: H —» (H/E)® (H/F),
v = (W+E, V+F).

The kernel of this map is E'N F. Therefore, ® induces the injective linear map
H/(ENF) — (H/E) ® (H/F).

The injectivity of this induced map not only ensures that E N F is finite-codimensional, but also
yields the inequality codim(F N F) < codim(FE) + codim(F). The reader can prove the general case
using induction.
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Remark 4.24 (Splitting a map involving the vector bundle of the preceding result). We

can split the natural map
p: XxH — H/T(V),

(x,v) = [v]a,

where [v], denotes the equivalence class of v in H/T, (V). More precisely, we can find a
continuous map

0:H/T(V) > X x H

commuting with the projections on X and such that
po@ = iduyrw).

Indeed, by definition, p splits locally. Thus, being 8 = {U;}1, a finite open cover of X,
we can choose splittings ; over U; for each i between 1 and m, both included. Thence,

we have

Qij = Y= Py H/T(V) |Uij — Uij X V,

where U;; = U; NU; for all i and j between 1 and m, both included. Therefore, if
Y = {0y}, is a partition of the unilty subordinated to the open cover U, we define

the map
m
(91' = Zajeij.
J=1

Consequently, not only 0; is defined on U;, but also ¢ = @; — 0; is well-defined and
gives the required splitting. &

Definition 4.25 (The generalized index of the Atiyah-Jinich Theorem). Let X be a
compact Hausdorff space and T : X — Fy be a continuous map. In this situation,

we define:

e a choice for T to be a closed finite-codimensional subspace V' of H that satisfies

the conditions of Theorem [4.25; and

e being V' a choice for T,
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indexy = [[X x H/V]] = [[H/T(V)]] € K(X),

This rule defines the index map in Theorem |/.20. &

Remark 4.26 (The generalized index is well-defined). Let X be a compact Hausdorff
space and T : X — Fy be a continuous map. First, we prove that the generalized
idex of T defined above does not depend on the choice V' for T. Indeed, let W be
another choice for T. FEuvidently, V N W is also a choice for T. Therefore, we may
assume that W is a subspace of V. In this situation, we have the exact sequences of

vector bundles

00— XXV/W — s XXH/W ———— X x HIV ———— 0,

0O —— XxV/W ——— H/TW) — H/T(V) ——— 0.

Consequently,
[(X < H/V]] = [[X x H/W]] = [[X xV/W]] = [[H/T(V)]] - [[H/T(W)]].
Thence,
indexr = (X x H/V]| - [H/T(V)]
= [X xV/W]]

= [X x H/W]| = [[H/T(W)]],

as clarmed. Further, the generalized index is clearly functorial. Thus, if f 1Y — X is
a continuous map, then

indexroy = K(f)(indexr).

This follows from the fact that a choice V' for T is also a choice for T o f. Moreover,
let S : X — Fy be a continuous map homotopic to T. Under these circumstances,
there exists a homotopy T : X x I — Fg between T and S. Therefore, we have that
indexs € K(X x I) restricts to indexy € K(X x {0}) and to indexg € K(X x {1}).

Since
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KX xI) = K(Xx{0}) ~ K(X)
K(XxI) - K(Xx{1}) ~ K(X)

are 1somorphisms,

index(7") = index(S).

As a consequence,

index : [X, Zy| — K(X)

is well-defined. &

Lemma 4.27 (The generalized index presented in Definition is also a group
homomorphism). Let X be a compact Hausdorff space and T,S : X — Fg be
continuous maps. Under these circumstances, the composition of T and S is defined

to be the continuous map
ToS: X — ﬁH,
r — T,05,.

We have

indexr.s = indexr + indexg.

In particular, if T : X — Fy is such that T, € Fy is invertible for all x € X, then
index -1 = —index, where
T\ X — Zy,

r o= T,

Proof. Let W be a choice for 7. We may assume S(H) C W. Indeed, if it is not
the case, then we can replace S by the homotopic map my o S, where my : H — H
is the projection onto W, without changing the index. In addition, let V' be a choice
for S. The reader can prove that V is also a choice for 7" o S. Therefore, we have the

exact sequence of vector bundles
0 —— W/S(V) —L— H/(ToS)(V) —— H/T(W) —— 0.

Consequently,
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[H/(T o S)V)]] = [[W/S(WV)I] + [[H/T(W)]].

Furthermore, we have

[W/SWV = [[H/S(V)]] = [[X x H/W]].
Hence,
indexros = [[X x H/V]]—[[H/(T o S)(V)]],
= [[X xH/V]| = [[W/S(V)]] = [[H/T(W)]]
= [[X xH/V]]| = [[H/S(V)]] + [[X x H/W]] - [[H/T(W)]]
= indexg + indexp,
as required. N

Theorem 4.28 (An special exact sequence involving the generalized index map defined
above). Let X be a compact Hausdorff space. We have an exact sequence of groups and

group homomorphisms
(X, %] ——— [X, Fy] —index K(X) —— 0.

Proof. Let T : X — Zg be a continuous map of index zero. This means that, for any

choice V for T', we have

[X < H/V]] = [[H/T(V)]].

Therefore, we have that there exists a trivial vector bundle P on X for which
(X x H/V)@® P and H/T(V) @ P are isomorphic. Equivalently, if we replace V' by
one of its closed subspaces W such that dim(V/W) = dim A®)| then we obtain as a
consequence

X x H/W ~ H/T(W).

(3)This is possible because, once P has finite dimension, we are allowed to choose dim P linearly
independent vectors in V. Thence, we can consider the subspace U of V generated by these vectors.
Consequently, it suffices to set W := UL. Indeed, W is closed, once it is an orthogonal complement,
and the quotient space V/W is isomorphic to U. Therefore, this subspace of V' has the same dimension
of P by construction.
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Indeed,

12

X x HIW (X xH/V)® (X xV/W)

12

(X x HV)& P
) @

12

H/T

12

(v

H/T(V)& (X x V/W)

H/T(V)& (X xT(V)/T(W))
(

12

12

H/T(W).

Consequently, splitting

p: XxH — H/TW) ~ X x H/W

as in Remark we obtain a continuous map

v: XxH/W — X xH

that is linear on the fibers and commutes with the projections onto X. Then, we have

the continuous map

o X — Z(H/W,H),

r — P

where

O] = (mop)(z, [v])

for all [v] € H/W, being # : X x H — H the natural projection onto the second
factor. As a consequence of this, it follows from the construction of the splitting in

question that the map

T+d: X — #°,

x — T,+ P,

is continuous. Hence,
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T X xI — §H7

(x,t) — T+1td,

is a homotopy of maps connecting 1" with 7' 4 ®. This proves exactness in the middle
of the sequence in the statement. Thence, it only remains to show that the index is
surjective. With this purpose in mind, let £ be a vector bundle on X. In addition,
let 7, : V — V denote the projection onto the subspace corresponding to FE, for all

z € X. We define

S: X = Fuev ~ Fy,

r = Sym+idy® (1 —m,),

where S_; is the shift defined in the proof of Theorem The reader can prove that

S; is injective for all z € X and
HV/S(HeV) ~ E.

These facts imply

Moreover, the constant map
k: X — gH,

$F—>Sk,

where S}, is also the shift defined in the proof of Theorem [4.11] has index [[k]] € K(X).
Consequently,

index gos = [[K]] — [[E]]

because of Lemma [4.27] Therefore, since we have that every element of K(X) is of
the form [[k]] — [[E]], this shows that the index is surjective. The proof of the theorem

is then completed. O

Ultimately, the Atiyah-Janich Theorem (Theorem [4.20)) follows from Theorems
4.28] and [4.291 This last fundamental result is named after Nicolaas Kuiper
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(1920-1994). 1In fact, Theorem ensures that the exact sequence of Theorem [4.2§
is a short exact sequence, which is equivalent to the generalized index map being

an isomorphism.

Theorem 4.29 (Kuiper’s Theorem). The topological group F€* is contractible. As a
consequence, if X is a compact Hausdorff space, then we have that [X,7*| is the

trivial group.

Proof. The reader can find a complete proof of this result in [22] pp. 27-28]. This
proof is quite technical, involving notions such as partitions of the unity, nerve of

coverings, CW-complexes, et reliqgua. The reader may skip it since its details are not

needed in this thesis. O

Remark 4.30 (Hilbert bundles and its analogous K-Theory). Changing in Definition|[C.]]
the finite-dimenstonal vector space ¥ by a complexr Hilbert space H, we obtain the
notion of Hilbert bundle. Using Kuiper’s Theorem, one can prove that, if X is a
compact Hausdorff space, then every Hilbert bundle on X 1is trivial. In particular, if
we take the Grothendieck group of the monoid of isomorphism classes of Hilbert bundles
on X, then we obtain the trivial group. Therefore, we have that it is not interesting to
consider an infinite-dimensional version of K-Theory through the obvious adaptation

of the finite-dimensional case treated in Chapter [~ More details will be given in

Chapter [J. ¢
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Chapter 5

Twisted K-Theory

In this chapter, we close the text by putting together all of the theory studied
before in order to develop models of Twisted K-Theory. We begin by introducing
the Grothendieck group of twisted vector bundles as a model for finite-order
Twisted K-Theory. Afterwards, we describe the infinite-dimensional model, through
suitable bundles of Fredholm operators, that holds for twisting classes of any order.
Finally, we compare these two models in the finite-order setting. We also consider
versions of the Thom isomorphisms in this framework. We used [4], [6, pp. 5-8, 30-36,
43-45, 53-54|, |7, pp. 42-43] and [20)].

5.1 Twisted vector bundles

In this section, we present the fundamental notion that one must know in order
to understand the finite-dimensional model of Twisted K-Theory, which is the one
of twisted vector bundles. This concept has an obvious parallel with the one presented in
Appendix [C] This parallel will become even more evident in the next sections.
We begin with the following notation that must be kept in mind until the end of
the chapter.

Notation 5.1 (Good covers and Cech cohomology). In this chapter, X always denotes
a paracompact Hausdorff space that admits a good cover 8 = {U;}ie;. We remind the
reader that Y being a good cover means that it is an open cover for which every finite

intersection
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n
Uio“-in = ﬂUZJ
J=0

18 contmctibl. We also extend to this chapter the conventions on Cech cohomology of
Notation [3.56] In particular:

e we denote by U(n) the sheaf of U(n)-valued continuous functions on X; and

e when n = 1, we denote by C™(,U(1)), Z™W,U(1)) and H™L,U(1)) the
corresponding m-cochains, m-cocycles and m-cohomology classes, with respect to

the good cover Al. &
Definition 5.2 (Twisted vector bundle). Consider a 2-cochain
¢ = {Gjktigwer € C*(Y, U(1)).

We say that an n-dimensional (-twisted vector bundle E on X is a collection of

n-dimensional trivial Hermitian vector bundles {m; : E; — U, }icr (see Definition

and of unitary vector bundle isomorphisms {pi; : E; |v,—~ Ej |u,}ijer such that

the equality

. Eilugp,

ki |Brlo,, © ik |Blu,, © Pij = Gk - idpy,, (5.1)

holds for all ©,7,k € I. The notations used in this definition will be applied in the whole
chapter. %

Remark 5.3 (Ordinary vector bundles are twisted vector bundles up to identification).

The following facts hold true.

o If E is an ordinary vector bundle, then we can equip it with an Hermitian product
by Theorem [C.49 We choose a good cover 4 = {U;}ier of X such that E |y, is
trivial for all © € I. Thence, E is a (-twisted vector bundle where (5, = 1 for all

1,7,k € 1. Indeed, we set

(U There exist paracompact Hausdorff spaces that do not admit good covers. For example, every space
that is not locally contractible, such as the Hawaiian earring, does not admit a good cover. Nevertheless,
it is proved in [7, pp. 42-43] that every smooth manifold admits a good cover. Moreover, it is proved in
[7, p. 43] that the set of good covers of a smooth manifold is cofinal in the set of all open covers. This
means that every open cover admits a refinement that is a good cover. We shall admit that this property
holds for X when necessary.
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Ei = F

U;

foralli € I and

QOU = 1dEz‘U” .
foralli,jel.

o If I is a (-twisted vector bundle on X such that G = 1 for all i,5,k € I, then

the quotient of the disjoint union | |,.; E; by the equivalence relation that identifies

v with ¢;;(v)

These facts show the relation between ordinary and twisted vector bundles. In fact, they

show that twisted vector bundles generalize ordinary vector bundles, as one would naturally

expect. &

Lemma 5.4 (On the 2-cochain of a (-twisted vector bundle). In a (-twisted vector
bundle E, we have that ( = {ijk}ijker 15 necessarily a 2-cocycle. As a consequence,

the cohomology class

(] € H*(U, U(1)) ~ H*(X, Z)
1s well-defined.

Proof. Leaving some restrictions implicit, we have

(0%C)ijnt - gy, = (G Cira Cigt Ciz) ~ 1, V0

(ke G Gigt) - (i - idg,y,,,)
= (G Gy Gigt) - (03 © Prj © Pit)

(Gikt S )+ (Gigt 1 g, ) © (933 © i © i)

(Gt Gry) - (013 © 050 © 9i5) © (05i © kj © Pik)
= G- (G - idEi|UijM) o (¢1i 0 @j1 0 @ij) © (Pji © Prj © Pik)
= Gkt * (ki © ik © pit) © (915 © j1 © pij) © (Pji © Prj © Pik)
= ki 0wk 0 it o (Gre - idg |y, ) 0 Phj © Pik

= ©Pki O PIE © PY;1© (%%‘ O Pkl © @jk) O Pkj © Pik
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for all 4,j,k,l € I. Tt follows from the definitions of Cech cohomology that [(]
is well-defined. ~ Additionally, the reader may recall that HZ(4(, U(1)) is isomorphic
to H3(X,Z) from the end of the proof of Theorem [3.76f This finishes the proof of

the lemma. N

Definition 5.5 (Morphisms of twisted vector bundles). Let

E = ({mg : B = Ulier, {¢i : Ei

F = ({rr : Fi = Ubier, {¥ij + B

UZ.].—> Ej

Usj }z‘,je[) and

Uij F} Uij }i:jEI)

be (-twisted vector bundles. A morphism of (-twisted vector bundles from FE to F

15 a collection of vector bundle morphisms

[ =Afit B = Flir

such that the diagram

fi|E7',|U,L-j
E; v, > Fi vy,
Pij Pij
Ej Uij 7| >Fj Usj
JEj|Uij

1s commutative for all i,57 € I. We say that f : E — F is a unitary morphism if
fi - E; — F; is unitary for each © € I. In addition, an tsomorphism is an invertible
morphism, which is equivalent to f; : E; — F; being a vector bundle isomorphism for
all i € 1. We denote by VB.(X) the set of isomorphism classes of (-twisted
vector bundles on X. Finally, the category of (-twisted vector bundles TVecthlg(
is established as in Definition [C.6] &

Now we approach twisted vector bundles as we approached ordinary vector
bundles through nonabelian Cech cohomology in Appendix . Indeed, the following
definition generalizes to the nonabelian setting the basic tools of Cech cohomology

in low degree.
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Definition 5.6 (Twisted first degree nonabelian Cech cohomology). We have that a Cech

0-cochain of the sheaf U(n) is a collection of continuous functions
{9:: Ui = U(n)tier-

Similarly, we have that a Cech 1-cochain of the sheaf U(n) is a collection of continuous

functions

{9i5+ Uy — Un)}ijer

We denote the sets of 0-cochains and 1-cochains of U(n) by CO(U, U(n)) and C* (Y, U(n)),
respectively. For ¢ = {Gjrtijuer € C?(U, U(1)), a l-cochain {gi;}ijer € CH(U, U(n))
15 a {-cocycle provided that

ki 9k Gij = Gijk - In

for alli,j,k € I. We denote the set of (-cocycles by Zg(il, U(n)). We have an action of

0-cochains on 1-cochains defined by

O, Un)) x CHY, Un)) — CY(Y, Un)),

({gi}ier, 194 }ijer) {gigijgj_l}i,jel'

The reader can readily prove that this action determines an equivalence relation on
CY4, U(n)). It can also be proved that this relation restricts to an equivalence
relation on Zgl(il, U(n)). The quotient of ZCI (U, U(n)) by the action of 0-cochains, which
we hereafter denote by

H (8L, U(n)),

15 the (-twisted cohomology set of degree 1 and rank n. This finishes the construction

of twisted nonabelian Cech cohomology. &

Remark 5.7 (On the twisted first degree nonabelian Cech cohomology). Because of
Remark [5.3, when (G = 1 for all i,5,k € I, Definition becomes the ordinary first
degree nonabelian Cech cohomology of Definition . It classifies the isomorphism
classes of n-dimensional ordinary vector bundles on X (Remark . We can prove
that the twisted first degree nonabelian Cech cohomology plays the same role for twisted

vector bundles. In fact, let
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¢ = {Gjtijrer € C*(Y, U(1)).
In addition, consider

E = ({m: E = U}icr, {pij - Ei

UZ.].—> Ej

Uij }i,jGI)

to be an n-dimensional (-twisted vector bundle. For each i € I, we choose n pointwise
linearly independent local sections s1;,- -+, sn; : Ui — E; of unit norm, determining vector

bundle isomorphisms
52'3 EZ — UiXCn7

S Asala) = e, O )

We have that the isomorphisms y;; + E;

v, — Ej |vu,; determine local transition functions

gij » Uij = U(n) such that

@i (& @, V) = &z, gij(x) - )

Jor all x € Uy and all X € C". It follows from this equation that Equation (5.1)) is

equivalent to

ki Gik Gij = Gijk * In
for all i,j,k € 1. As a consequence, we have {g;j}ijer € Zvcl(il, U(n)). Finally, it
18 straightforward to verify, as for ordinary vector bundles, that the cohomology class

[{gi;}ijer] € [:ICI(EJ., U(n)) only depends on the isomorphism class of E. Consequently,

we have that
VB((X) — H(Y, U(n)),

[E] = [{gijtiger],

18 an isomorphism, as we wished. &

Theorem 5.8 (On the cohomology class of Lemma [5.4). In an n-dimensional (-twisted

vector bundle, it is a torsion class

(€] € H*(4, U(1)).
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Proof. Here we use the notation of Remark (.71 In fact, computing the determinants,

we obtain

det(gr:) det(gjx) det(gi;) = det(Cun - In) = (i

for all ¢, j,k € I. Therefore, since det(g;;) is a U(1)-valued function, it follows that

(" = Hnbimer] € H (4, U(1))

is a trivial cocycle. In particular, note that the order of [(] divides n. This finishes

the proof of the theorem. O

Theorem 5.9 (Dependence on the cocycle). Suppose that ¢, & € Z*(u, U(1)) are
cohomologous cocycles. Then, let n = {n;;}ijer be such that & = ¢-0'n. We have
that the map

®,: A8, Un)) — H, Un)),

Koistigerl = [gi; - mijtigedl,
s an 1somorphism.
Proof. The reader can readily prove that ¥, is the two-sided inverse of ®,, where
Uy He (W, Un)) — H (W, Uln)),
{hijYigerl = [{hij - 05 Yiger:
This finishes the proof of the theorem. m

Remark 5.10 (On the preceding result). Because of Remark Theorem can be

equivalently stated as
Q,: VB((X) — VB¢(X),
W Eitier, {@ijtiger) = [ Eitier, {0ij - mij tijer),

being an isomorphism. This approach shows that the set VB:(X) only depends on
[¢] € H2(Y, U(1)). Nevertheless, this dependence is non-canonical since ®, depends
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on n by construction. More precisely, the choice of 1 is unique up to a cocycle and
the equality @, = @, holds if and only if n~'x is a coboundary. Therefore, the set of
isomorphisms of the form ®, is a HY(Y, U(1))-torsor. In fact, since H' (4, U(1)) is
isomorphic to H*(X, Z), the first Chern class implies that the set of isomorphisms of
the form ®, is a Picx-torsor, the latter corresponding to the group of ordinary line
bundles on X (see Corollary . In particular, if H*(X, Z) is trivial, then we can
define VB((X) canonically. In general, VB¢(X) depends on the cocycle ( up to the

tensor product by a line bundle. %

Definition 5.11 (Pullback of a cocycle). Let B = {V,}acs be a good cover that refines
U = {Ui}ier. By definition, there exists a function ¢ : J — I such that V, C U
for every o € J. Given a cocycle ¢ = {(ijk}tijrer based on U, we define its pullback
through ¢ to be the cocycle based on U

¢*C = {Caprtapmes

where

Capy = Cola)d(B)o(n) |Vass

for all a, B,y € J. %

Remark 5.12 (On the pullback of cocycles). Here we use the notation of Definition[5.11]
We have that

(I)¢Z VBC(X> — VB¢*C(X),

{E}ier, {i}ijer) = [{Eataes, {@astasesl;

where

Ey, = Eywlv, and

Pap = Pe()p(8)Vas

for all o, B € J, is an isomorphism. Furthermore, in an analogous way, one can define

an 1somorphism

Oy H(U, Un)) = Hj. (T, U(n)).
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Such isomorphisms depend on the function ¢, which shows that they are non-canonical
i general.  Nevertheless, since the cohomology class represented by ¢*C does not

depend on ¢, the isomorphism ®4 is canonical when H*(X, Z) is trivial. In this case,

the sets H[lc] (X, U(n)) are well-defined and

VB(X) ~ | | Hy(X, Un))

neN

canonically. %

Definition 5.13 (Non-integral twisted vector bundles). Let ¢ be a constant cocycle,
that is, let ¢ € Z2(U, U(1)). We say that a C-twisted vector bundle is a non-integral
vector bundle. We denote the set of non-integral vector bundles with twisting class ¢ by

NIVB(X). &

Remark 5.14 (On non-integral vector bundles). Let ¢ € Z*(4, U(1)). We have that the
image of [(] in the cohomology of U(1) is always a torsion class. However, the image
of [C] in the cohomology of U(1) is not necessarily torsion. In fact, it is torsion if
the transition functions can be chosen constant, which easily follows by adapting the
proof of Theorem [5.8.  In this case, we have isomorphisms analogous to the ones of
Theorem and Remark but with respect to a U(1)-cochain n. Furthermore, it
follows that the set of isomorphisms of the form ®, is a torsor over the image of the

natural map

HY(81, U(L) — HY8L, U(1)),

where
HYY, U(1)) ~ HY(X, R/Z) and HYY, U(1)) ~ H*X, 7).

One can prove that this image is canonically isomorphic to Tor H*(X, Z). Therefore,
if Tor H*(X, Z) is trivial, then NIVB(X) is canonically defined. In particular,
note that this conclusion follows if X is simply connected. In fact, if X is simply
connected, then H(X, Z) is trivial. Hence, since H (X, R/Z) is isomorphic to the group
of homomorphisms from Hy(X,Z) into R/Z by the Universal Coefficient Theorem, we

are done here. &
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Notation 5.15 (The groups of roots of unity). Let r be a non-zero natural number.
We denote by T, the subgroup of U(1) formed by rth roots of unity. We have that ', is

the image of the group embedding

Z, — U(1),
a X,
In addition, we set
', := U T, and Zoo = Q.

r € N—{0}

We have that I is the image of the group embedding

Zo — U(1),

qg — e’ &

Definition 5.16 (More non-integral twisted vector bundles). Let r be a non-zero natural
number or oo. We say that a Z,-non-integral vector bundle is a (-twisted vector
bundle where ¢ € 22(11, [',). We denote the set of Z,.-non-integral vector bundles with
twisting class ¢ by NIVB{(X). &

Remark 5.17 (On the preceding non-integral vector bundles). Let r be a non-zero natural
number or co. The set of isomorphisms of the form ®, is a torsor over the image of the

natural map

', Z,) — H'(4, U(1),

where
HY(Y, Z,) ~ Hom(H,(X,Z), Zy,) and HY(4, U(1)) ~ H*(X, 7).

This image is canonically isomorphic to the subgroup of Tor H*(X, Z) formed by classes
of order r, that we denote by Tor,H*(X, Z). Therefore, if Tor,H*(X, Z) is trivial,
then NIVBfG(X) is canonically defined. As before, this conclusion holds if X 1is simply

connected. &
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5.2 Absolute Twisted K-Theory

In this section, we define the most elementary notions of Twisted K-Theory, namely,
the absolute Twisted K-Theory group and the induced group homomorphisms. In fact,
any general definition of Twisted K-theory involves some infinite-dimensional geometric
objects, like projective Hilbert bundles. Nevertheless, this is not necessary when the
twisting class has finite order, as we summarize below. We begin with the following

definition.

Definition 5.18 (The absolute Twisted K-Theory group). Let X be a paracompact
Hausdorff space as in Notation [5.1 In addition, let E = ({Ei}icr, {ij}ijer) and
F = ({F}ier, {tij}ijer) be (-twisted vector bundles on X, with ( € Z2(4U, U(1)).
We then define the direct sum of E and F as being the (-twisted vector bundle on X
given by
ESF = ({E©® Filicr, {9ij © Yij}ijer)-

This direct sum induces

&b : VBc(X) X VBc(X> — VBc(X),

([E], [F]) — [E®F]

We have that the set VB¢(X), endowed with this direct sum operation, is an abelian
semigroup. We then define its corresponding Grothendieck group, which we hereafter

call the (-twisted absolute K-theory group of X. We shall denote this group simply
by K¢(X). o

Definition 5.19 (Pullback in absolute Twisted K-Theory). Let f : X — Y be a
continuous map between paracompact Hausdorff spaces. We suppose that there exists a

good cover s\ = {U;}ier of Y for which
F= {7 U Yer

is a good cover of X. In this situation, being a 2-cocycle ¢ = {(iji bier € Z2(4, U(1)),
we define

F5¢ = {Gro flier € Z2(f74, U(L)).
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Moreover, being E = ({E;}icr, {pij}ijer) a (-twisted vector bundle, we define the
f*C-twisted vector bundle

fEE = ({f"Eitier, {1 ij}iger),

where f*E; and f*p;; are the usual pullbacks of E; and ;; through f, respectively.
Analogously, one can define the pullback of a morphism of twisted vector bundles.

Finally, we define
Ke(f) s Ke(Y) = Kyp(X),
[EN = [[F]] — [[fEE] - [IfEF],

which s hereafter called the pullback of f in absolute Twisted K-Theory, as one

could expect. &

Remark 5.20 (On the absolute Twisted K-Theory data presented above). The following
facts hold true for ¢ € Z*(sk, U(1)).

e Being X a paracompact Hausdorff space and 4 = {U;}icr any good cover of X,

we have

KC(ldX> = ldKC(X)

e Being f : X — Y and g : Y — Z continuous functions between paracompact
Hausdorff spaces for which there exists a good cover & = {U;}icr of Z such that
g and f*g* are good covers of Y and X, respectively. Under these conditions,

we have

Ki(go f) = Kgc(f) o Ke(g)

Furthermore, one can prove that the pullback presented in the preceding definition is

homotopy invariant. &

Remark 5.21 (An interesting fact in Ordinary K-Theory). Let n be a non-zero natural

number and

n

T = HSl

j=1
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be the n-dimensional torus. In addition, we consider the natural embeddings defined

supposing 1 € St as a marked point
i TP x X — T'x X

for 7 between 1 and n. The reader can prove, using induction, that we have a canonical
1somorphism

K™M(X) ~ ) Ker K(ij).

This intersection is a subgroup of K(T" x X). The following definition is enlightened
by these facts. &

Definition 5.22 (Absolute Twisted K-Theory groups of negative degree). Here we use
the notations of Remark [5.21 Fizing a good cover of S' such as the one in Figure
we easily obtain a good cover of T™ x X through Cartesian product. We also consider the
natural projection , : T* x X — X. Under these circumstances, for ¢ € Z*(4, U(1)),

we define

KM(X) = (1) Ker Kpsc(iy),

j=1
which is the subgroup of K-(T" x X) that we call nth negative degree absolute
Twisted K-Theory group of X. &

@

Figure 5.1: The open arcs of circle drawn in blue projects radially to the internal circle.
The projected sets form a good cover of St. There exists no good cover of S' with only
two open subsets.
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Definition 5.23 (Negative degree pullback in absolute Twisted K-Theory). Let n be a
natural number and f : X — Y be a continuous map between paracompact Hausdorff
spaces as in Definition[5.19. In addition, let m, : T" x Y — Y be the natural projection.
We define

K(f): K"(Y) — Kp(X)

to be the obvious restriction of
Kﬂ-;«lc(id'ﬂ‘n X f) : Kﬂ-;klc(Tn X Y) — K(idqpnxf)*w;‘lc<Tn X X)

This new homomorphism is the nth negative degree pullback of f in absolute

Twisted K-Theory. &

Remark 5.24 (Bott Periodicity Theorem in Twisted K-Theory). Before extending to
positive degrees the Twisted K-Theory data presented above, we have to introduce the
Boltt Periodicity Theorem. For this, we need a mulliplicative structure in Twisted
K-Theory. Being E = ({Ei}tier,{pijlijer) o (-twisted vector bundle on X and
F = ({EYier, {¥ij}ijer) a &-twisted vector bundle on X, with ¢, € Z2(U, U(1)),
we define the tensor product of E and F as being the (§-twisted vector bundle on X
given by
E®F = ({E;® Fi}ier, {pij ® ¥ij}ijer)-

This tensor product induces

X : VBc(X> &® VBg(Y) — VB(W}Q)(W;E)(X X Y),

[E]@ [F] = [(7x)cE @ (my)eFl,

where 7x - X XY = X and my : X xY — Y are the natural projections. Considering

the corresponding K-Theory classes, we obtain
K(X) © Ke(Y) = Kirpomyo(X X Y).

From Definition [5.29 and the natural homeomorphism between (T x X) x (T™ xY') and

T x X XY, we obtain
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K"(X) ® K;"(Y) — K@&%w(x xY).
Composing this last map with the pullback though the diagonal map A : X x X — X,

we obtain

K'(X) @ K;™(X) — K ™(X).

Now we establish the Bott Periodicity Theorem. For this, we consider the dual of
the tautological line bundle of PY(C), whose pullback through the map p : T? — §?
pictured in Figure 15 a line bundle n on the torus. The resull in question ensures
that

B,: K;"(X) — K" (X)),

a = (n—1)«,

18 a group isomorphism for all n € N. This fact is the one that justifies the following
definition. &

Y
Y

Y
A

T? S*

Figure 5.2: The map p : T? — S? acts as the identity on the identification squares of
T? and S2

Definition 5.25 (The absolute Twisted K-Theory groups and pullbacks of positive
degree). Let n be a natural number and ¢ € Z*(4, U(1)). The nth positive degree
absolute Twisted K-Theory group X, which is hereafter denoted by K!(X),
18 defined as the negative K-Theory group KC_"(X). In addition, being f + X — Y
a continuous map between paracompact Hausdorff spaces as in Definition |5.19, we
define the nth positive degree pullback of f in absolute Twisted K-Theory,
and denote it by K'(f) : K}(Y) — Kp(X), to be the nth negative degree pullback

K:"(f): KJ'(Y) = K72 (X). &



5. Twisted K-Theory 264

Remark 5.26 (Dependence on the cocycle). Suppose that (& € Z2(u, U(1)) are
cohomologous cocycles. Then, let 1 = {n;;j}ijer be such that & = ¢-0'n. We have
that the isomorphism in Remark [5.10] extends to the corresponding Grothendieck groups,
defining the isomorphism

(I)ni K<<X) — Kg(X)

This shows that the isomorphism class of K (X) only depends on [(]. As before,
we have that this dependence is non-canonical. In fact, the set of isomorphisms of
the form ®, is a torsor over H'(, U(1)) ~ H*(X,Z). In particular, if H*(X,7Z)
is trivial, then Kiq(X) is canonically defined and does not depend on the cover.
Finally, note that we are free to choose ¢ € Z*(, U(1)) or ¢ € Z*(, T,). Mutatis

mutandis, all of the previous considerations keep on holding. &

5.3 Relative and Reduced Twisted K-Theory

In this section, we define the last fundamental tools of Twisted K-Theory,
namely, the reduced and relative Twisted K-Theory groups and homomorphisms. The
ideas presented here descend directly from Section We begin with the following

definition.

Definition 5.27 (Reduced and relative Twisted K-Theory groups). Let A be a subspace
of a paracompact Hausdorff space X for which there exists a good cover sk = {U;}ier
such that

Ula = {UiN Alies

is a good cover of A. In addition, let i : A — X be the inclusion and ¢ € Z*(4, U(1)).
We define
"¢ e Z*(sh]a, U(1)).

We denote by L:(X,A) the set of triples (Ey, Ey, o), where Ey and Ey are (-twisted
vector bundles on X and o : Ey |4 — Ey |a is an isomorphism of i*(-twisted
vector bundles. Two triples (Ey, Ey,«) and (Fy, Fy, 8) are said to be isomorphic if
there exist isomorphisms of (-twisted vector bundles fi : F1 — Fy and fo : Ey — Fy such

that the diagram
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Ey ’A “ > Ey ’A
fila fola
Fi|a 5 > Fo |a

1s commutative. In this case, we write

(El,Eo,Oé) = (FlyF[l:ﬁ)'

Furthermore, we define

&1 Lo(X, A) x Lo(X, A) = Le(X, A),

((E1, Eo, o), (F1, Fy, ) = (E1 @ FL,Ey® Fy,a® f).

A triple of the form (E, E,idg,) is said to be an elementary triple. Furthermore, we
say that two triples (Ey, Eo, ) and (Fy, Fy, B) are equivalent if and only if there exist

elementary triples

(G, G, id(;|A> and (H, H, idH|A>

such that

(E17 EOJ Oé) S (GJ G7 1dG|A) = (Fla F07 5) S (H7 H7 1dH|A)

This is an equivalence relation on L;(X,A). The relative Twisted K-Theory group
of the pair (X, A), which we denote by K.(X,A), is the quotient of L:(X,A) by this
equivalence relation. Moreover, when A contains a single point xq € X, we define the

reduced Twisted K-Theory group of (X, xo) as

Kc(X, Io) = Kc(X, A)

Since the reduced groups are special cases of the relative ones, we concentrate on the

relative setting henceforth. &
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Remark 5.28 (On the preceding definition). Here we use the notation of Definition[5.27
We have that K:(X, A) is an abelian group since its neutral elemental is the class of any
elementary triple and

—[E1, Ey, 0] = [Ey, By, a7

These facts can be easily proven by adapting the proof of Theorem [2.63. Additionally,
when A is empty, we recover the usual group K. (X) by identifying [Ey, Ey| with
[Eo]] — [[EA]]. Once and again, the reader can prove this claim by adapting the proof

of Theorem [2.63, ¢

Definition 5.29 (Pullback in relative Twisted K-Theory). Let f : (X, A) — (Y, B) be
a map of pairs between paracompact Hausdorff spaces for which there exists a good
cover 31 of Y such that 4 | is a good cover of B, f* is a good cover of X and f*l |4
is a good cover of A. Under these circumstances, with ¢ € Z*(4U, U(1)), we define the

group homomorphism
Kc(f): KoY, B) — Kpo(X, A),

[E17E07a] = [fC*Ela fC*E'Oa fZOé]

This new map 1is hereafter called the pullback of f in relative Twisted K-Theory,

as one could expect. %

Definition 5.30 (Relative Twisted K-Theory groups and homomorphisms of all degrees).
The extension of relative groups and homomorphisms to all degrees is analogous to the

one of Section [5.2. In particular:

e considering the natural embeddings
ij o (TP x X, T x A) — (T" x X, T" x A)
for j between 1 and b, both included, we set
K_”XA = ﬁ Ker K (i),

which is the subgroup of Kp:c(T" x X, T" x A), where
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o (TPx X, T"x A) = (X, A)

1s the natural projection, that we hereafter call nth negative degree relative

Twisted K-Theory group of X; and

e we have a natural product

K2XX) x KX, A) = KE(X, A),

[E]] ® [Fi, Fo,a] — [E®F, E® F, idg, ®al.
Moreover, the Bott periodicity morphism,

Bn: K;"(X,A) — K" ?*(X, A,

a = (n—1)«,

1s well-defined.  Thus, we define the nth positive degree relative Twisted
K-Theory group X, which is hereafter denoted by K['(X,A), as the negative
K-Theory group Kg”(X, A). &

Remark 5.31 (Dependence on the cocycle). We have that the isomorphism presented in
Remark extends to the relative setting of Twisted K-Theory. In fact, it suffices to
apply the isomorphism in question to both Ey and Ey in the triple (Ey, Ey, ). Hence,
the isomorphism class of K'(X,A) only depends on [(]. In particular, if H*(X,Z) is
trivial, then Kf& (X,Y) is canonically defined. The reader can extend this reasoning for
¢ e Z2(U, UQ)) or ¢ € 22U, T,). $

5.4 Compactly-supported Twisted K-Theory

In this section, we establish the compactly-supported Twisted K-Theory groups.
In addition, we set induced homomorphisms of open embeddings in this framework.
This is mainly done because these compactly-supported groups are essential in the
next section to define the Thom isomorphisms in Twisted K-Theory. We begin with the

following notation.
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Notation 5.32 (A special difference of subspaces). In this section, X is always a
locally compact spac. In this situation, given a compact subset K of X, we define
X\ K as the closure of X — K in X. Equivalently, X \\ K is the complement of the
interior of K in X. &

Definition 5.33 (Compactly-supported Twisted K-Theory groups). Let n be an integer
number and ¢ € Z*(4, U(1)). We give the following definitions.

o A compact subspace K of X is $h-compact if U |x\x is a good cover of X \| K.
The set formed by the U-compact subspaces of X is denoted by Ry(X). This set
15 eastly proved to be a directed set with respect to the partial order given by
inclusion. Moreover, we shall assume that the good cover L of X s refined enough

so that

x= |J K

K e Ry(X)

e The nth compactly-supported Twisted K-Theory group of X, which is
denoted by K[ (X), is the direct limit

K2(X) = Tim K2(X, X\ K)

of the direct system A% . formed by Ku(X), (KZ(X, X \ K))keayx) and
(Kfigy + KX, X\ K) — KXNX, X\ L))k reayx) Here Klig; coincides
with the induced homomorphism of the inclusion iz, : (X, X \\ L) — (X, X \\ K)
if K is contained in L, and coincides with the trivial homomorphism otherwise.
This direct limit is equipped with the family of morphisms of abelian groups
(v + KX X\ K) = K2 (X)) ey

(2)In this chapter, X is always a paracompact Hausdorff space. Therefore, when we require X to be
locally compact, we are restricting X to a smaller class of topological spaces. Indeed, we remind the
reader that:

e there are examples of locally compact Hausdorff spaces that are not paracompact. In fact, there
are examples of locally compact Hausdorff spaces that are not even normal. One of them is the
deleted Tychonoff plank; and

e there are examples of paracompact Hausdorff spaces that are not locally compact. One of them is
the Sorgenfrey line. Nevertheless, every second countable Hausdorff space that is locally compact
is also paracompact.
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An element of K .(X) is an equivalence class [a] where o € KP(X, X \\ K) for some
K € Ru(X). Moreover, [al,[B] € K (X) are equal, where a € KX, X \\ K) and
Be KX, X\ L) with K, L € 8(X), if and only if there exists M € Ky(X) for which
K CM, LCM and Kr'i%y (o) = K2y (8). &

Definition 5.34 (Compactly-supported Twisted K-Theory homomorphisms). Let n be
an integer number and f : X — Y be an open embedding for which there exists a good
cover M of Y such that f*U is a good cover of X. For any f*U-compact subset K of X,
from the embedding of pairs frx : (X, X \ K) — (Y,Y \\ f(K)), we obtain the induced
morphism

K2 (fi) : KLV, f(K)) — KXX. X\ K).

This map is an excision isomorphism. Furthermore, if K C L with K,L € Rpy(X),

then the diagram

n K (fr) ™! n
KX, X\ K) » K2(Y, Y\ f(K))
Kgigy Kei o
KE(X, X\ 1)~ K2V Y\ S(D)

1s commutative. Therefore, we obtain an induced morphism between the direct limits,
which we denote by K' (f) : K{' (X) — K (V). We call K (f) the nth compactly-
supported induced homomorphism in Twisted K-Theory. This construction turns

KZ{C into a covariant functor. &

Remark 5.35 (Dependence on the cocycle). The isomorphism of Remark[5.1(] extended
to relative Twisted K-Theory induces an isomorphism between the compactly-supported
groups. Thence, the isomorphism class of K .(X) only depends on [(]. In particular,
if HX(X,Z) is trivial, then K[E],C(X) is canonically defined. The reader can extend this
reasoning for ¢ € Z2(4, U(1)) or ¢ € Z2(U, T,). &
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Remark 5.36 (The natural multiplicative structures on the framework of compactly-
supported Twisted K-Theory). Let m and n be integer numbers and ¢, € € Z2(4, U(1)).
We have the product

KMX) ® K¢ (X) — Kggfc”(X),

a®[f] = a-pf],

where a - B is an instance of KI"(X) ® K{(X, X \\ K) — K&““”(X,X \ K). Moreover,
we have the product
KP(X) @ K2.(X) = KIn(X),

[ @8] = [o-f]

where o - 3 is an instance of KX, X \\ K) @ K2 (X, X \\ K) — KX, X\ K).
These are natural products in the framework of compactly-supported Twisted K-Theory,
as desired. &

Theorem 5.37 (Real integration). Let n be an integer number. We have the canonical
1somorphism

/R: K! (R x X) = K H(X),

which is the induced homomorphism of the open embedding i: R x X — S' x X defined
by the natural map R — RT ~ S!.

Proof. We have

KPR xX) = lim KPR x X), (R x X) \\i([—=m,m] x K))

— meN, Kefy(X)

because all the elements [—m,m] x K, where m € N and K € £y(X), form a
cofinal subset of R;«(R x X). We have that the right-hand side of the preceding
equation is the group of compactly-supported classes in S' x X relative to {oo} x .
In turn, such a group is the kernel of K7 (i) : K7 .(S' x X) — K7 .(X), which is
exactly Kg;l(X), where iy, : X — X x S', 2 + (2, 00). This finishes the proof of
the theorem. ]

(3)Indeed, the compact support in S! x X only concerns X. Thus, we can define relative classes
with respect to the subspace {oo} of S! by considering pairs of the form (S! x K, {oo} x K) and applying
the direct limit.
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Remark 5.38 (S! - integration). Let n be an integer number. We can also define the

integration map

. K2 (S' x X) = K271 (X),

calling ¢ both the twisting cocycle on X and its pullback on S' x X. Let us consider the
embedding i1 : X — S' x X, defined through a marked point of S', and the projection
m St x X — X. We set

CK(S'x X) o KU(X),
st
o = Oé—K((Wl)KC(il)(a).

The reader can readily prove that o — K¢(m)K¢(i1)(a) € Ker K¢(iy) = Kc_l(X) since
m ody = idx. Now, since KZ'(S' x X) C K¢(S' xS' x X) and K*(X) € KZ'(S' x X),
we define

. KZU(S'x X) = K 2(X)

as the restriction of [o : Kc(S' x S' x X) — KC_I(Sl x X). Finally, we have that
this construction can be iterated and it can be extended to positive degrees by the Bott

Periodicity Theorem. %

5.5 Thom isomorphisms in Twisted K-Theory

In this section, we present the Thom isomorphisms in Twisted K-Theory. This is
the furthest achievement of this thesis on the subject of finite-order Twisted K-Theory.
This result also needs the tools from Spin Geometry presented in Chapter (3. We begin

with the following remark.

Remark 5.39 (Rephrasing some notions from Spin Geometry). Here we recall some
facts on Spin Geometry in order to fix the notation within the framework of twisted
bundles. For this, let m : E — X be a 2r-dimensional Fuclidean oriented vector
bundle. We have that the good cover & = {U;}ier of X induces the good cover of E
given by

U = {E; =7 (U) }ier.
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Now we consider the orthonormal frame bundle wso : SO(E) — X and the corresponding
restrictions who : SO(E;) — U; for each i € 1. Since U; is contractible, we can choose
a spin lift ﬂépin : Spin(E;) — U; for each i € 1. Moreover, we can fix principal bundle
1somorphisms

wij + Spin(E;)

Uy —7 SPIH(EJ)

Uij»s

lifting the identity SO(E;)

Uij = SO(EJ)

v, Under these circumstances, we have that
Pri © Qjk © Yij = €k 1
for alli,j,k € I. Thence, we obtain
we(E) = [{eijitijker] € H*(X, Z»),
that vanishes if and only if there exists a global spin lift. Furthermore, we call
p: Spin(2r) — U(2") C GL(C*)

the natural unitary representation of Spin(2r), acting on S := C?, that splits in the two
irreducible chirality representations S = S, @& S_. From each local spin lift Spin(E;),

we obtain the associated vector bundle

of rank 2" (the bundle of spinors), with the chirality splitting S(E;) = S+ (E;) @ S_(E;).

Being € := {€;ji}ijker, we get the e-twisted vector bundle

S(E) = ({S(Ei)}ier, {95 }iger),

where

¢y = Elpi) s E,Spin(E;) — &,Spin(E))

for all i,5 € 1. We also have the natural global splitting of e-twisted vector bundles
S(E)=S,(E)® S_(E). O
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Theorem 5.40 (Thom isomorphisms in Twisted K-Theory). Here we use the notations
of Remark[5.39 Choosing a refinement map ¢: J — I from 74U to a convenient good
cover U of E, and using the product established in Remark we obtain the group

1somorphism

T KINX) — K$?<2)7C(E),

a — K'(m)(a)-u,

for all m € Z. These group isomorphisms, which do not form a ring isomorphism
. general, are said to be the Thom tsomorphisms in Twisted K-Theory of the
vector bundle in question. Of course, we identified ¢ and € in X with 7*C and 7¥¢ in E

as twisting cocycles.

Proof. Now we explain some important details that are not clear in the statement of
the theorem. Let us begin by considering the projection 7 : £ — X and the pullback
on F

T S(E) = 7S (FE) & n*S_(F).

We define the morphism of twisted vector bundles
p: wSL(FE) — 7S_(F)

as follows. For any fixed point e € E,, with z € U;, the morphism p acts between
the fibers Sy (F;), and S_(FE;), as the Clifford multiplication by e € CI(E,) = CI(E;)..
It demands a straightforward computation to prove that p is actually a morphism of
twisted bundles and that it is an isomorphism on the closure of the complement of the
disk bundle D(E) of E. Thus, refining 7*4 on E in a suitable way, we obtain a good
cover ¥ = {V;},c; of E such that D(E) is V-compact and the union of the V-compact
sets is the whole In this way, we obtain a class

i = [rS(E), mS_(E), u] € K(E, E\ D(E)),

representing a compactly-supported class

(Y For example, if we fix a trivialization E; — U; x R”, then we have the cover formed by the sets U; x B
where B is an open ball in R".
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u € K:C(E),

the latter being a (twisted) Thom class. In all of these constructions, we tacitly
assumed n to be even. However, if n is odd, then we can consider a Thom class in
E ® R — X, which is the direct sum of £ with the trivial line bundle X x R — X.

Therefore, we obtain
ue KMYWE®R) = KMY(EXR) ~ K (E),

the last isomorphism being the one of Theorem This completes the construction of

the Thom isomorphisms. O

Remark 5.41 (Dependence on the cocycle). In general, the Thom isomorphisms defined
. Theorem depend on (, € and ¢. Nevertheless, they become canonical when
H?*(X,Z) s trivial. In fact, in this case, H*(E,Z) is trivial as well, since E retracts
by deformation on X. It follows that both K["(X) and Kgft"(E) only depend on the
cohomology class of their twisting cocycle. Hence, the isomorphism in question can be

written intrinsically as

. m m+n
T Kg(X) = K wym),(E),

a = K'(m)(a)-u.

Since € is constant, if ( is also constant, then we obtain a canonical isomorphism similar
to the preceding one on any manifold such that Tor H*(X;Z) is trivial. For this, we have
to replace W3(E) by wo(FE). &

Remark 5.42 (Thom isomorphism and spin® structures). Let us suppose that W3(E) is
trivial. Under this hypothesis, we will show how to recover the Thom isomorphisms in
Ordinary K-theory from the Thom isomorphisms in Theorem [5.40 Choosing ( = €, we
get the isomorphism

T, : K™(X) = K™"(E).

Since W5(E) is trivial and since W5(E) is the twisting (integral) class represented
by €, we have that K!"(X) is isomorphic to K™(X) in a non-canonical way. In order
to find an isomorphism as in Theorem we must fiz a trivialization of € in U(1). If

h = {hi;}ijer is such a trivialization, we obtain
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hii i hig = €igi - 1

for all i,5,k € I. This means that the choice of a spin® structure is equivalent to the

choice of an isomorphism

@, K™X) = K™(X)

(see Remark . The composition between @gl and the Thom isomorphism of
Theorem [5.40 is the ordinary Thom isomorphism, with respect to the Thom class induced
by the chosen spinc-structur. One can prove that the choice of € as a representative of

wy(E) is immaterial. &

5.6 Twisted Hilbert bundles

In this section, we present the fundamental notions that one must know in
order to understand the infinite-dimensional model of Twisted K-Theory, namely, the
twisted Hilbert bundles and the projective Hilbert bundles. We begin by fixing the

following notation.

Notation 5.43 (On Hilbert spaces). In this chapter, H is always a separable complex
Hilbert space. We remind the reader that we compiled some information on this kind
of Hilbert space in Remark [4.1 Furthermore, we shall denote the space of Fredholm
operators on H by Fy, and the space of continuous functions from Fy into itself
by C(ZFy). The following definition generalizes the notion of ordinary Hilbert bundle
(see Remark as well as twisted vector bundles generalized the notion of ordinary

vector bundles. &

Definition 5.44 (Twisted Hilbert bundle). Consider a 2-cocycle

¢ == {Gintijrer € 224, U()).

®)In fact, if we consider the associated bundles M; := & U(L;), where 1 denotes the fundamental
representation of U(1), and the isomorphisms ¢;; := &1y + M; |u,; — M; |u,;, then we obtain the
e-twisted line bundle

VL = ({M;}er, {¥i;Yiger)

such that VL ® VL = L. With this language, the isomorphism ®; can also be written in the form
@ p: KM(X) - K™(X), o a® VL.
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We say that o ¢-twisted Hilbert bundle with fiber H on X is a collection of trivial
Hilbert bundles {m; : E; — U;}ic; with fiber H and of Hilbert bundle isomorphisms

{wi : B

U,L.j—> Ej |Uij }i,je_[ such that

Phi |Ek|uijk © Pk |Ej|U2.jk ° ©ij By, = Gijk ldEi\Uijk

for all i,5,k € 1. We denote the set of (-twisted Hilbert bundles on X by \7]V3<(X).
Moreover, the notations used in this definition will be applied hereafter in this whole

chapter. %

Remark 5.45 (On the preceding definition). We have the following facts.

o Morphisms and isomorphisms of twisted Hilbert bundles are defined, mutatis

mutandis, as in Definition [5.5

e Because of Theorem if there ezists a (-twisted vector bundle, then [(] is
torsion. In addition, it can be proved that, for every torsion class in H?(U, U(1)),
there exists a corresponding twisted vector bundle. In turn, for every class in
H?(8, U(1)), not necessarily of finite order, there corresponds a twisted Hilbert
bundle. The reader can find a proof of this claim in [{]. The main difference
with respect to the finite-order setting is that any two (-twisted Hilbert bundles,
for a fized ¢, are isomorphic. The reader can find a proof of this claim in [20]. In

particular, this last assertion ensures that every ordinary Hilbert bundle is trivial

(see Remark[{.30). &

Definition 5.46 (Projective bundle and projective Hilbert bundle). We give the following

definitions.

e A projective bundle with typical fiber IP’(”V)@ s a fiber bundle that admits an
atlas whose transitions functions are projective transformations induced from

automorphisms of ¥ at each point of X.

6)The associated projective space P(7) of a complex vector space ¥ is the quotient of ¥ — {0}
by the equivalence relations that identifies v,w € ¥ — {0} if and only if there exists A € C for which
v = Aw.
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e The associated projective bundle P(E) of a twisted Hilbert bundle E is the
one obtained by projecting each fiber to the corresponding projective space. In

particular, P(E), = P(E,) for allz € X. &

Lemma 5.47 (Equivalence between projective bundles and projective Hilbert bundles).

Every projective bundle is a projective Hilbert bundle up to isomorphism.

Proof. Let m : P — X be a projective bundle with typical fiber P(¥#). Using local
triviality, we can define a projective Hilbert bundle E whose associated projective

bundle P(E) is isomorphic to P. For this, let
Oy = {(Us, i : 7 H(U) = Ui x P(Y)) bier

be an atlas of P whose transitions functions {¢;; : U;; — AutP(¥)}, jes are projective
transformations induced from automorphisms of 7 at each point of X. Under these

circumstances, we set

E = ({Ui x ¥ }ier, {@ij}ijer),

where

@UZ Uijx"f/ — Uijx”f/,
(z,v) = (2, (§ij)a(v)),
being (;;), an automorphism of ¥ that induces (¢;;),. Now the reader can fulfill the

details to prove the assertion. O

Remark 5.48 (On projective bundles). Let ¢ € Z?(4, U(1)). Because of Lemma
there exists a surjective map from isomorphism classes of twisted Hilbert bundles
to isomorphism classes of projective bundles. In the finite-dimensional case, such a
map s not injective for a fived (. This happens because, for example, every line bundle
projects to the trivial one. On the contrary, in the infinite-dimensional case, the unique
1somorphism class of (-twisted Hilbert bundles induces a unique isomorphism class of
projective bundles. Moreover, if ( and & are cohomologous with &€ = ¢ - d'n, then we have

the bijection
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®,: VB(X) — VB(X)

({Eitier, {@ijtijer) = ({Eitier, {@ij - mij}iger)-

As a consequence of P(E) = P(®,(F)), the isomorphism class of P(E) only depends
on the class [¢] € H>(Y, U(1)) ~ H*(X, Z) (see [{l]). In particular, H*(X, Z) classifies
projective Hilbert bundles on X. Further, if d'n = 1, then, since any two (-twisted bundles

are necessarily isomorphic, there exists an isomorphism

f = {fi}ie]: FEF — (I)n<E)

This means f; : E; — E; and (pij - mij) o fi = fj o pij for alli,j € 1. Hence, f induces
an automorphism f : P(E) — P(E). We claim that any automorphism f can be
realized in this way from suitable n and f. In fact, by local triviality, we can lift f to
fi: B; — E; for each i € I. Since the family {fi}icr glues to f, we have that there exists

nij such that
fiowij = (pijo fi) mij = (pij - mij) o fi

for alli,5 € I. The latter condition implies

Indeed, we have

Jio0rio Qi 0 Qi = Mk Pri © [k 0 Qjk © Yij
= Ukiﬁjk'@kio%kofjo%j

NkiNjkNij © Pki © Pjk © Pij © fi-

Canceling the extra terms on both sides, we obtain the thesis. Moreover, the only freedom
in constructing the cocycle n was the choice of the liftings. Any other choice is of the form

fi&i, that replaces n by n - 505. Therefore,

d: Aut P(E) — HYY, U(1)) ~ H* (X, 7Z),

o= Hnitiger,
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18 well-defined.  One can prove that it is a group homomorphism. Furthermore, it
follows from the previous construction that f € Aut P(E) lifts to an automorphism
of E if and only if ®(f) is zero. Thus, ®(f) can be thought of as the obstruction
to the existence of such a lifting. Note that these observations prove the following

result. &

Theorem 5.49 (On the automorphisms of a projective Hilbert bundle). We have that
¢ : Aut P(E) — H*(X, Z) is surjective. Furthermore, we have that its kernel coincides
with the connected component of the identity of Aut P(E).  Therefore, it follows
that ®© induces a canonical bijection between the connected components of Aut P(FE)

and H*(X, 7).

Proof. The surjectivity is proved above. We leave the proof of the other assertions to

the reader. O

5.7 Infinite-dimensional Twisted K-Theory

In this section, we use the language of twisted Hilbert bundles to establish
the infinite-dimensional version of Twisted K-Theory. As we pointed out before, the
advantage of this version is that it holds for twisting classes of any order. We begin with

the following definition.

Definition 5.50 (Twisted K-Theory). Let E = ({Ei}icr, {¢ij}ijer) be any (-twisted
Hilbert bundle where ¢ € Z2(U4, U(1)). We shall denote by Pppy the bundle of
projective reference frames of IP’(E) We have a natural adjoint action of

PU(H) = U(H)/U(1)
on Fy by conjugation, that we denote by

p: PU(H) — C(Fp).

(") This object is defined as the one presented in Definition In particular, we substitute the linear
isomorphisms by projective transformations, which are bijections between projective spaces induced by
linear isomorphisms of the corresponding vector spaces. Note that we followed a similar pattern in

Remark
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Hence, we construct the associated % g-bundle
FIP’(E) = gpp]p(E).

The set of global sections of Fpg) is denoted by I'(Fpg)). Additionally, we denote by
f’(F]p(E)) the corresponding quotient of I'(Fp(gy) by the equivalence relation of homotopy
of sections. The latter carries a natural abelian group structure, induced by composition
of Fredholm operators. The Twisted K-theory group KEO(X) s defined as the abelian

group f(F]p(E)). O

Remark 5.51 (On pointwise invertible sections). Since the space of bounded invertible
operators in H 1s contractible, we have that any pointwise invertible section of Fpg)
18 homotopic to the identity. Therefore, if a section is pointwise invertible in a subset
of X, then we consider it trivial on such a subset. This fact justifies the following

definition. &

Definition 5.52 (Compactly-supported Twisted K-Theory). Let E = ({E;}ier, {¢ij }ijer)
be any (-twisted Hilbert bundle where ¢ € Z*(8, U(1)). A section of Fpm) is said to
be compactly-supported if it is pointwise invertible in the complement of a compact
subset of X. We denote by U'o(Fp)) and To(Fpg) the space of compactly-supported
global sections of F'p(g) and its quotient up to compactly-supported homotopy, respectively.

We define the compactly-supported Twisted K-theory group Kf’;(X) as the abelian
group fc(FP(E) ) O

Remark 5.53 (Dependence on the cocycle). Apparently, Definitions |5.50 and |5.52

depend on E, not only on (. Nevertheless, fizing two (-tuisted Hilbert bundles E and
F, we have that an isomorphism f : E — F s unique up to an automorphism of E. It
follows from Lemma that the induced isomorphism P(f) : P(E) — P(F) is unique
up to an automorphism of P(E) connected to the identily, the latter inducing the identity
on D(Fpg)) and To(Fp(g)). Hence, K*(X) and K&(X) are canonically defined. On the

(®)When X is a compact space, Definitions and are equivalent. Actually, we will only apply
Definition when X is compact. Hence, it would be sufficient to state Definition for every (locally
compact) space.
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contrary, the definition is not canonical if we only fix the cohomology class [(]. In fact,
let us consider a C-twisted Hilbert bundle E and a &-twisted Hilbert bundle F', such that

€ =C-0". We have the isomorphism
D, KX(X) — K&(X), (5.2)

analogous to the one in the finite-order setting, defined as follows. First, we fixz an
isomorphism f : P(E) — P(F), belonging to the inverse image of [n] through
® : Aut P(E) — H?*(X,Z) (see Remark [5.48). Then, we apply the induced one
between the corresponding Twisted K-theory groups. This is equivalent to inducing the
identity between T'(Fpp)) and T'(Fpw,(py), that represents KgE(X) and K (X),
respectively. The isomorphism in depends on n up to coboundaries. FEquivalently,
the set of isomorphisms of the form is a torsor over H*(X, Z). Hence, if ( = &,
then we obtain an action of H*(X,Z) on K /(X). Only the quotient up to such an
action is well-defined. Of course, if H*(X, Z) is trivial, then we have the canonical group
Kﬁ(X), as in the finite-order setting. Analogous considerations hold about compactly-

supported K-theory. &

5.8 Comparison isomorphism

In this section, we prove that the finite-order and the infinite-dimensional Twisted
K-Theory coincide, up to isomorphism, in the finite-order setting. We begin with the

following remark.

Remark 5.54 (Technical facts on pullbacks). Let U = {V, }aecs be a good cover of X that
is a refinement of b = {U;}ier through the function ¢ : J — I. This means that
Vo © Ugay for every a € J. We set f = ¢*C. Under these circumstances, we obtain
the function

®y: VBe(X) — VBy(X),

({Eitier, {vijtijer) = ({Fotaes, {Yastaser);

where Fy := Eylv, and Yap = ©g)e8)lvas for all a,8 € J. Moreover, for every
E ¢ \7]/3<(X), we have the isomorphism
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whose inverse identifies the projectivized fiber P(F,), with P(Eg))e for all z € X.

Therefore, we obtain the isomorphism

By 0 KE(X) = K&2(X), (5.4)

where T'(Fp(g)) represents Twisted K-Theory in the domain and T(Fpw, (k) represents
Twisted K-Theory in the codomain, for any E € \7T3<(X). This latter isomorphism
1s well-defined because, fixing an isomorphism of (-twisted Hilbert bundles f : E — F,
we obtain the induced isomorphism of (-twisted bundles ¢*f : ®4(E) — ®y(F), where
&* f = {fs(a) Vi }aes, which is such that diagram

P(E) ! » P(F)
P(®y(E))  B(,(F))

&= f

is commutative. In particular, it follows that (5.4) does not depend on the chosen twisted
Hilbert bundle E € VB (X). &

Theorem 5.55 (The comparison isomorphism). Let 34 = {U;};,cr be a good cover of
a compact Hausdorff space X. In addition, let ( € Z*(4, U(1)) be a cocycle that
represents a finite-order cohomology class. We set 5 = ¢*C. Then, there exists an
1somorphism

0: KX(X) — K(X),

where KCA(X) is the group presented in Deﬁnition while K°(X) is the one presented
wn Definition |5.50.

Proof. We choose a good finite refinement U = {V;}72, of 4, through a refinement
function ¢ : {1,...,m} — I, such that V;, C Ugky for every k between 1 and m, both
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include Furthermore, we fix an N-dimensional (-twisted vector bundle E, for any
suitable NV € N. Up to isomorphism, it is straightforward to prove that we can represent

E in the form
E = ({Ul X CN}iEI? {gij}i,j61)7

where g;; : Uj; — U(N) for all ¢,j € I. Then, we consider the (-twisted Hilbert bundle
given by
EF = E®H,

where H denotes the trivial bundle X x H. Equivalently,
E = ({U;x (C" ® H)}ier, {9 @ 1}ijer)-

Since CV ® H is canonically isomorphic to H, we have that the bundle E satisfies
Definition [5.44l Hence, applying the first map presented in Remark (5.54), we obtain
the (-twisted Hilbert bundle

~

E = 04(E) = ({Vi x (CY @ H)}y, {g @ 1}7y),

where g = gomysq) v, for all k& and [ between 1 and m, both included. Now let us
consider a section s € I'(Fpg)), projecting to [s] € ['(Fpp)), the latter representing
K&°(X) up to canonical identification. Since the local bundles U; x (CN @ H) are already
trivialized, we have that the section s corresponds to a family of sections s; : U; = Fengpy

such that
s;i = (gi; ®1)-55- (9231 ® 1)

for all i, j € I. Thus, applying the isomorphism in ({5.3)), we obtain

t = ¢*8 S F(FIP’(<1>¢(E)))7

®)Under our hypotheses, it is always possible to find such a refinement % of 4. In fact, since X
is (para)compact, there exists a refinement 20 = {W;};c; of 4 such that W; C U; for every i € I
(see [29, p. 258]). Since good covers form a cofinal subset of the set of open covers of X, we are allowed
to choose a good refinement U’ = {V!},cs of 2. Then, since X is compact, we can extract a finite
(necessarily good) subcover U = {Vi.}iL; of U'. We have Vi, = V[ ;) C Wy, for every k between 1 and

m, both included, with respect to a suitable function ¢ : {1,...m} — I. Hence, Vi), € Wy C Ugay
for all k& between 1 and m, both included.
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represented by the family
te = Sew) lvi: Vi = Fonvgn
for all £ between 1 and m, both included. Additionally, we have the natural identification
CY®H ~ H®.

We call 7; : H®N — H the jth canonical projection for all j between 1 and N, both
included. By construction, the functions ¢ can be extended to V) (the extension being
s¢k) |y,)- Hence, for each z € Vi and for every k between 1 and m, both included,
we consider

N
ﬂ (Kerty(z))* C H.

Such a space is closed and finite-codimensional. In fact, Kert,(z) is finite-dimensional,
since tx(z) is Fredholm. Hence, each projection m;(Kert;(x)) is also finite-dimensional. It
follows that the orthogonal complement is closed and finite-codimensional. Thus, the same
holds about the finite intersection U, ;. Hence, ’Bﬁg is closed and finite-codimensional
in H®N. Moreover,

(Q]ig) N Kertg(z)

is trivial. This is immediate from the fact that
P C Kerty(z)™.

In fact, if v = (vy,...,0n) € Q]@k and w = (wy,...,wy) € Kertg(z), then, for every

7 between 1 and N, both included, we have
v; € mj(Kerty(z))* and w; € m;j(Kertg(x)).

Thence, we have (v;,w;) = 0, which implies (v,w) = 0. Following the proof of
Theorem m for each x € V) there exists a neighborhood W, C V1. such that
?U@iv N Kerty(y) is trivial for every y € W, ;. The family {W, 1}, v, is an open cover
of the compact space V. Therefore, we extract a finite subcover, that we denote by

{Way, kbt We set
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%k = ﬁ%zh,k and g = ﬁ%k
h=1 k=1

It follows that U®Y is closed and finite-codimensional in H®Y and that B N Ker t;(z)
is trivial for every x € V) and every k between 1 and m, both included. Moreover,

we have

(Gr0)2(TOY) = Y&

for every x € V; and every k and [ between 1 and m, both included, since the transition
functions act as complex matrices of order N on H®Y. Projecting to the quotient, we

obtain the pointwise isomorphism
(gkl)x : HEBN/Q}@N N H@N/mGBN'

Since (gy,). is defined for every o € Vy, it is particularly defined for every x € Vj.

Hence, obtain the é—twisted finite-dimensional vector bundle on X

Fo = ({Vk x (HGBN/%@N)}ZLU {gkl}km,l:1>'

We set
HON s, (0%N) = || HOY/(s1)2(B*"),

€V

as a quotient space of Vi x H¥N ~ | | .~ H®N. By Lemma the space H®N /s, (0oN)

eV

is a vector bundle on V). Thus, since Vj is contractible, it is a trivial vector bundle.

Moreover, we obtain a well-defined isomorphism
G+ HEY[s1,(BEY) — H /5,(T)

since

(9r0)a((51)2(TZ)) = (51)2((Gr)o(TEY)) = (50)a(TY).

Therefore, we have the é—twisted finite-dimensional vector bundle on X

Gy = ({H@N/Sk(snew)}?:p {Ekl}z,llzl)-
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With respect to the data above, we have the isomorphism

0: K&(X) — Ki(X),
[s] = [[F]] =[G

We set
O = d,'000d,: KZ(X) — K (X). (5.5)

One can prove that it is actually an isomorphism by following the same line of the
appendix of [2], adapted to the twisted framework. Moreover, one can prove that,
when H?(X, Z) is trivial, does not depend on the representative ¢ of the class
[(] € H*(X, U(1)) ~ H*(X, Z). This finishes the proof of the theorem and the main
part of the thesis. |
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Further Perspectives

Here we list some topics that can be studied in a near future thanks to the subjects

treated in this thesis.

e The first topic is the Atiyah-Singer Index Theorem and its numerous and remarkable

applications.

e The second topic consists in studying the following references and the notions

surrounding them.

« FREED, D. S. and HOPKINS, M. J.; TELEMAN, C. Loop groups and
twisted K-theory I, Journal of Topology, Volume 4, Issue 4, December 2011,
pp. 737-798.

« FREED, D. S. and HOPKINS, M. J.; TELEMAN, C. Loop groups and
twisted K-theory II, Journal of the American Mathematical Society, Volume
26, Number 3, July 2013, pp. 595-644.

« FREED, D. S. and HOPKINS, M. J.; TELEMAN, C. Loop groups and
twisted K-theory III, Annals of Mathematics 174 (2011), pp. 947-1007.

These papers contain non-trivial applications of Twisted K-Theory that show its

significance to Mathematics.

e The third and final topic is the differential extension of the cohomology theories

studied in this thesis.
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Appendix A

Direct Limits of Abelian Groups

In this appendix, we set an essential tool to define the compactly-supported
generalized cohomology groups, namely, the direct limit of abelian groups. The
categorical approach given to this topic is based on [26, pp. 105-112|. The reader
can easily generalize the ideas presented here to several categories, among which is the
category of sets. Finally, it is to be noted that the notions presented here are essentially

used in Chapter [I}

A.1 Direct systems of abelian groups

Definition A.1 (Direct system of abelian groups). We say that a triple

2 = (AJ (Ca)aeAa (/'a,B : Ca — Cﬁ)a,ﬁEA)

1 a direct system of abelian groups provided that:

o A is a direct set. This means that A is a partially ordered set equipped with a
partial order < such that, for all o, 8 € A, there exists v € N for which o < 7

and 8 < v;
o (Cy)aca is a family of abelian groups indexed by A; and

e (tap : Co — Cp)agpen is a collection of homomorphisms of abelian groups such

that Lo = ide, for all a € A and, for all o, B,y € A that verify a < B < 7,

lay = Lpy O lag- ¢
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Notation A.2 (On direct systems of abelian groups). Henceforth, the notation of
Definition will be used without explicit mention. In particular, we will denote a
direct system of abelian groups simply by 2. &

Example A.3 (Direct system of subgroups of a fixed abelian group). Let C' be an
abelian group and € be its family of subgroups. Clearly, € is a direct set with respect
to the partial order given by the inclusion of subgroups. Thus, being A, B € €, if we
define tap : A — B to be the inclusion map if A is contained in B, and the trivial

homomorphism otherwise, then
Qlc = (Q:, Q:, (//A,B A — B)A,BE@)

1s a direct system of abelian groups, which we call the direct system of subgroups of

the abelian group C. &

A.2 Direct limits of direct systems of abelian groups

Definition A.4 (Direct limit of a direct system of abelian groups). We say that an abelian
group lim C,, is a direct limit of A if there exists a family (1o @ Co — 1m Cpaeca
—«a —a
of homomorphisms of abelian groups in such manner that the following two conditions are

satisfied.

(1) For all a, B € A that verify a < B, the following diagram of morphisms of abelian

groups s commutative.

Ca > Cg > 1_1>m Ca (Al)

(2) Let C be any abelian group and (pq : Co — C)aen be any family of homomorphisms
of abelian groups for which the following diagram is commutative for all o, B € A

that verify a < .
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/%\
Ca > Cg y C (AQ)

There exists a unique morphism of abelian groups ¢ : lim C, — C such that the
— o«

following diagram is commutative.

C, of s C
Lo ©p (A.3)
l_i%Ca > y &

Example A.5 (The direct limit of the direct system of Example [A.3). Let C' be an
abelian group. The direct system A of Example [A.3 has as its direct limit C with the

family of homomorphisms of abelian groups being given by the inclusions of the subgroups

of C in C itself. &

A.3 Existence and uniqueness up to isomorphism

Theorem A.6 (Uniqueness of the direct limit up to a unique isomorphism). If
l_i)maC'a and E}n;Ca are direct limits of A with respect to the families of morphisms
of abelian groups ® = (1o @ C, — irréCa)aeA and " = (!, : C, — @;Ca)aeA,
respectively, then there necessarily exists a unique isomorphism of abelian groups

¢ : limC, — lim'C, in such manner that the following diagram is commutative for

—r —r
every o € A.
/i\
lim C, «— C, - » lim’C, (A.4)
— o 2% —

Proof. The diagrams presented in the statement and in the proof of this theorem
are reformulations of Diagram (A.3) when « coincides with . Moreover, we tacitly

use the commutativity of Diagrams (A.1)) and (A.2) with respect to the families ® and
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®’. Indeed, there exist unique morphisms of abelian groups ¢ : lim C, — lim'C, and
—r —r

VA T . . .
¢ h_r)naCa — lim C,, such that Diagrams (A.4) and (A.5) are commutative for every

—
o € A.
/L'\
lim' C,, < - Ca - > lim C,, (A.5)
— Lo « —

Then, the following diagrams are also commutative.

4;0/0 Lp /(PW\
lim C, —; Cq - > lim C, lim’ O, < - Ca - » lim' C,,
— o o —r @ — « Lo 25 —r

The homomorphisms represented in the upper arrows of the preceding diagrams are
unique. Therefore, since the identity maps also turn these diagrams commutative, we

have

/ . / .
¢ oy = idimc, and po¢ = idywc,-
Vo — «

Hence, ¢ is the unique group isomorphism for which Diagram (A.4) is commutative

for every a € A. O

Theorem A.7 (Existence of the direct limit of a direct system of abelian groups). We

define the disjoint union

DQ{ = |_| Ca.

aeA
Moreover, we define a relation on Dy as follows. Being o, € A, we say that
x € C, is related to y € Cp if and only if there exists v € A for which o < 7,
B < v and toy(x) = 13y(y). This is an equivalence relation on Dy. Furthermore,
the quotient of Dy by this equivalence relation, which we hereafter denote by Dy,
has a natural abelian group structure that turns it into the direct limit of the direct

system 2.

Proof. We start by showing that the relation defined in the statement of this theorem
is an equivalence relation on Dgy. Indeed, let a,5,7 € A. Then, we have that this

relation is:
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o reflexive. In fact, x € C,, is related to itself since a < @ and 140 () = = = toa(T);

o symmetric. In fact, if x € C, is related to y € Cjs, then there exists v € A for
which o < 7, 8 < v and ¢ (2) = 13,(y). Thus, tautologically, there exists v € A
such that 5 < v, a < v and ¢3,(y) = tay(x). This proves that y is also related

to x; and

o transitive. In fact, assume that o € C, is related to y € Cg. Then, there exists
Yay € A for which o < 7., B < Yoy and ta, () = ts,,(y). Moreover, assume
that y € Cjp is related to z € C,. Thus, there exists v, . € A such that 8 < ..,
N < Yy and tgy, (Y) = tyy,.(2). Since A is a direct set, there exists v € A such
that 7,, < v and 7, . < 7. Hence, we claim that a < v, n < v and 1o, (2) = 4,,(2).
These relations prove that z is also related to z. Indeed, we have a < 7., < 7,

N < Vy,. <7 and

tay(®) = (bysyy © tars, ) (@)
= (byuyy © B, ) ()
= 15y(y)
= (byy oy © by, -)(Y)
= (tyye7 © tyy.2) (2)

= [’7)’}’(’2)7

since we also have the comparisons f < 7,, < v and 8 < v,. < 7 in the direct

set under consideration.

Consequently, the quotient Dg of Dy by this equivalence relation is well-defined. Now,
let z € C, and y € Cp where o, € A. Being v € A such that « < v and 8 < 7,

we define

[z] +[y] = [Low(x) + Lﬁw(y)]'

The reader can readily prove that this binary operation on g is well-defined.

Hence, ®g is an abelian group, which is the direct limit of the direct system of

abelian groups 2. More explicitly, we claim that ®y = lim C,. In fact, for each o € A,
—

we define
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[ Ca — @Q{,
r = [zl
Thence:
e let a, 5 € A be such that a < 8. Then, we claim that Diagram (A.1)) is commutative,
clearly substituting lim C, by ®g. As a matter of fact, note that each z € C, is
—r

related to ta5(x) € Cg. Indeed, since A is a direct set, there exists v € A such that
a < 3 <. Thus,

tor(T) = (tgy 0 Lap)(®) = 1py(tas())-

Therefore, for every x € C,, we have

ta(z) = [3] = ltap(x)] = (180 tap)(2),
which proves our claim; and

e let C' be an abelian group and (¢, : C,, = C)aea be a family of homomorphisms
of abelian groups such that Diagram (A.2) is commutative for all o, € A that
verify a < 3. Then, we claim that there exists a unique morphism of abelian groups
© : D9 — C' such that Diagram is commutative, clearly substituting 1_1% Ca
by ®gy. In fact, if z € C,, for some n € A, then we define

plz] == p,(x) € C.

This map is well-defined because, if x is related to y, where y € Cs for some 0 € A,
then p;(y) = ¢,(x). Indeed, since x is related to y, there exists v € A such that
n <7, <y and 4, (x) = 15 (y). Thus,

5(y) = (py0t57)(y) = (0y0p)(T) = ().

Moreover, it is evident that this map turns the preceding diagram commutative since
Vo) = (tap 0 @s)(z) for all x € C,. Finally, the reader can prove the uniqueness

part of the assertion. O
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Remark A.8 (On the proof of the preceding result). Using the notation of the proof of

Theorem |A.7], the reader can readily prove that the map ¢ : lim C, — C' is bijective if
—

and only if

C = |J ealCa).

a€A
Furthermore, oo (x) = @3(y) if and only if there exists v € A for which o < 7, f < 7y
and to(x) = 15,(y). %

Remark A.9 (On a generalization of the preceding constructions). The reader may
have noted that, in all of the technical constructions above, we did not use the
neutral element or the inverses of the elements of the abelian groups. In fact, these
elements were only used to prove that the direct limit of abelian groups is also an abelian
group. Hence, one can readily prove that this appendiz can be restated for abelian
semigroups.  More than that, its definitions and its results are, mutatis mutandis,
exactly the same for abelian semigroups. We leave to the reader the completion of the

immediate details. &
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Appendix B

Grothendieck Groups

In this appendix, we set a basic algebraic tool from Group Theory that is
essential to define the K-Theory groups, namely, the Grothendieck group of an abelian
semigroup. The idea behind such concept is to find the minimal extension of an abelian
semigroup into an abelian group, although this is not always the case. We follow
2, pp. 42-43] that presents such construction for abelian semigroups, differing
from the majority of the references that restrict themselves to abelian monoids.

Finally, it is to be noted that the notions presented here are essentially used in

Chapters [2] and

B.1 Definition

Definition B.1 (Grothendieck group). A Grothendieck group of an abelian semigroup
S is a pair (K(S), ts) such that:

e K(S) is an abelian group;
o 15: S — K(S) is a semigroup homomorphism; and

o if C is any abelian group and ¢ : S — C is any semigroup homomorphism, then
there exists a unique group homomorphism & : K(S) — C such that the following

diagram is commutative.

/\
K(S) < = S > s C O
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Example B.2 (Grothendieck groups of the natural numbers). If we consider the abelian
monoid of natural numbers with the usual sum, then its Grothendieck group is the abelian
group of the integer numbers with the usual sum. However, if we consider the abelian
monoid of natural numbers with the usual product, then its Grothendieck group is the
trivial group. Moreover, if we consider the abelian monoid of non-zero natural numbers
with the usual product, then its Grothendieck group is the abelian group of positive rational

numbers with the usual product. &

B.2 Existence and uniqueness up to isomorphism

Theorem B.3 (Uniqueness of the Grothendieck group up to a unique isomorphism). If
(K(S), ts) and (K'(S), ts) are Grothendieck groups of an abelian semigroup S, then there
exists a unique group isomorphism & : K(S) — K'(S) in such manner that the following

diagram is commutative.

/i\
K(S) « = S > K'(S) (B.1)

Proof. There exist unique morphisms of abelian groups ¢ : K(S) — K'(S) and
¢ K'(S) — K(S) such that Diagrams (B.1)) and (B.2) are commutative.

/8\
K'(S) < s S K(S) (B.2)

Then, the following diagrams are also commutative.

- /gog\)
K(S) < = S = » K(S)  K'(S) « n S n > K'(S)

The homomorphisms represented in the upper arrows of the preceding diagrams are
unique. Therefore, since the identity maps also turn these diagrams commutative, we

have
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f’of = 1dK(S) and gOfl = ldK/(S)

Hence, £ is the unique group isomorphism for which Diagram (B.1)) is commutative, as

we wished. n

Theorem B.4 (Existence of a Grothendieck group). Let S be an abelian semigroup. We
define:

e K(S) as being the abelian group given by the following free presentation:

o the generators of K(S) are the elements of S. We denote an element a € S by
[a] € K(s) when it is thought as a generator of K(S);

o the relations in K(S) are the expressions [a + b] — [a] — [b] for all a,b € S.
Here [a + b] denotes the class of the sum of a and b in the abelian semigroup

S; and

e 15 : S — K(5) as being the morphism of abelian semigroups that is given by

ts(a) = [a] foralla € S.

Every element of K(S) is a difference between two classes of generators. Moreover,

(K(S), ts) is a Grothendieck group of S.

Proof. The first claim is obvious since the general element of K (S) is given by

n m

> lag] = > byl

J=1 J=1

which coincides with the difference of classes of generators

2o - 5]
j=1 j=1
For the second claim, let C' be an abelian group and ¢ : S — C be a morphism of
abelian semigroups. We define ¢ : K(S) — C as the morphism of abelian groups that
sends [a] € K(S) into ¢(a) € C, which is tacitly linearly extended to the whole group
K(S). Tt is clear that the image under £ of every relation [a + b] — [a] — [b] is zero

for all a,b € S. Thus, ¢ is well-defined. Furthermore, ¢ = & o tg by construction.
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Finally, we have to prove that & is the only morphism of abelian groups that verifies
this last property. Indeed, if n : K(S) — C is a morphism of abelian groups such that
@ = noug, then, for all [a] € K(5), we have nla] = n(s(a)) = ¢la) = ¢&lal.
Consequently, since 7 and ¢ take the same values over the generators of K(S), we have

n =&, as we wished. O]

Remark B.5 (Covariant functor defined by the Grothendieck group of abelian
semigroups). Let the semigroup homomorphism vg : S — K(S) be implicit, saying that
K(S) is a Grothendieck group of an abelian semigroup S. Hence, if S and Yy are
the categories of abelian semigroups and groups, respectively, then we have the covariant

functor
K:Sw — Yu,
S = K(9),
p:S—=>R — K(p): K(S)— K(R),

where K () is the only morphism of abelian groups that turns the following diagram

commutative.
©
S s R

K(S) —55— K(R)

More explicitly, K(p) : K(S) — K(R) is the group homomorphism that sends each
generator [s] € K(S) into [¢(s)] € K(R), which is tacitly linearly extended to the whole

group K(S). &
B.3 Understanding the structure

Theorem B.6 (Another existence result for Grothendieck groups). Let S be an abelian

semigroup. We define:

e K'(S) as being:
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e as a set, the quotient of S x S by the equivalence relation that identifies (a,b)
with (c,d) in S x S if and only if there exists u € S in such manner that
a+d+u=>b+c+u; and

e as an abelian group, equipped with the commutative binary operation
[a,b] + [c,d] = [a + ¢,b+ d]. Note that [a,a] is the identity in K'(S) and
that [b, a] is the inverse of [a,b] in K'(S); and

o s 1 S — K'(S) as being the morphism of abelian semigroups that is given by

Us(a) = [a+a,a] foralla € S.

We have that (K'(S), ') is a Grothendieck group of S.

Proof. Let C' be an abelian group and ¢ : S — C be a morphism of abelian
semigroups. We define ¢’ : K’(S) — C' as being the morphism of abelian groups that sends
la,b] € K'(S) into p(a) — ¢(b) € C. We have that £ is well-defined. Indeed, if (a,b) is
related to (¢, d), then there exists u € S in such manner that a +d +u = b+ ¢ + w.

Consequently,
p(a) + o(d) + ¢(u) = @) +p(c) + p(u).
Therefore,
§'la,b] = ¢la) —(b) = ¢lc) —(d) = e, d].
Moreover, we have ¢ = ¢ oy by construction. Finally, we have to prove that ¢

is the only morphism of abelian groups that verifies this last property. In fact, if
n' : K'(S) — C is a morphism of abelian groups such that ¢ = 7' o /g, then, for all
[a,b] € K'(S), we have

nla,0] = n'la+aa —n'[b+bb] = 1 (is(a)) —n'(s(b) = ¢la) —¢(b) = a,b].
This finishes the proof of the theorem. m
Remark B.7 (Understanding the structure of Grothendieck groups by means of

Theorems and . We know from Theorem that there exists a unique group
isomorphism between the Grothendieck groups defined in Theorems and [B.6. More
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properly, there exists a unique group isomorphism & : K'(S) — K(S) such that 1g = £ ol.

Therefore, for all a € S, we have

Consequently,

'a,b) = la+a,a] —E'b+b,b] = [a] — [b].
This shows the explicit definition of &'. However, this also shows when [a] = [b]
in K(S). Indeed, since & is an isomorphism, we have [a] = [b] in K(S) if and
only if

[a+a,a] = (€)7a] = (&)7'] = [b+0b,0]

in K'(S). This condition is the same as requiring the existence of uw € S in such manner
that
a+u = b+ u.

In fact, we have [a + a,a] = [b+ b, ] if and only if there exists v € S such that

a+(a+b+v) = 2a+b+v = a+2b+v = b+ (a+b+v),

which s the same as the existence of w € S such that a + u = b + u because we can

take u =a+ b+ v. &
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Appendix C

Ordinary Vector Bundles

In this appendix, we set the fundamental notion that one must know in order
to understand K-Theory, which is the one of vector bundles. However, since the theory
of vector bundles is extensive, we only expose here its initial concepts and the results
that play an essential role in the main text. Hence, it must be clear that we do not
intend to give a complete exposition of this subject in any sense. Indeed, we think that
the reader who fells the urge to deepen his or her knowledge in this interesting topic
may find in [2] pp. 1 - 41|, [I5, pp. 4 - 37|, [16] pp. 85 - 109], [I8, pp. 24 - 39],
19, pp. 1 - 51], [24, pp. 249 - 271] and [31] good references. It is to be noted that
the notions presented here are mainly used in Chapter [2] although some of them appear

generalized in Chapter

C.1 First definitions

Definition C.1 (Vector bundle). Let X be a connected topological space and ¥V be a
finite-dimensional real or complex vector space. A wvector bundle on X with typical

fiber ¥ is defined by the following data:

e a topological space E;
e a surjective continuous function m: E — X; and

e a vector space structure on w1 (x) for every x € X,

such that the following two conditions are satisfied.
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(1) For every x € X, there exist an open neighborhood U of x in X and a
homeomorphism

o:m N U) = Ux¥

verifying the commutativity of the following diagram, assuming that ¥ is endowed

with the topology that is naturally induced by its finite-dimensional vector space

structure.
/\
7 }(U) — > U « = Ux¥

(2) The function ¢ |—1y: 7 (y) — {y} X ¥ is linear for every y € U. Therefore,

being bijective, it is a vector space isomorphism for every y € U.

If X 1is not connected, then a vector bundle on X is defined by a vector bundle on each
connected component of X. In this situation, the typical fiber depends on each connected

component of X. &

Notation C.2 (On vector bundles). Henceforth, the notation of Definition will
be used without explicit mention. In particular, we will denote a wvector bundle with
typical fiber ¥V by m : E — X. Moreover, we will often denote the whole bundle by F,

for convenience. &

Definition C.3 (Standard nomenclature in the framework of vector bundles). Let

m: E — X be a vector bundle. We say that:

o for every x € X, the vector space w1 (z) is the fiber of E in x, which is hereafter

denoted by E,;

e I/ and X are, respectively, the total space and the base space of the vector bundle

B — X;
e a local chart or local trivialization of E is a pair (U, py) where:

e U C X 1is open; and

e oy :m NU) = U XV is a homeomorphism satisfying Conditions (1) and (2)
of Definition [C-1]
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Moreover, if x € U, then the local chart (U, py) is also said to be a local chart

n x;
e an atlas of E is a family g = {(U;, p;) }ier where:

o = {U}icr is an open cover of X; and

o (Ui, ;) is a local chart of E for alli € 1.

Note that the existence of an atlas of E follows from Conditions (1) and (2) of
Definition [C-1]; and

o given a point o € X, the dimension of the vector space E,, is the rank of E
in xo, which is hereafter denoted by rk,,(F). Since the rank only depends on the
connected component of xo and coincides with the dimension of the typical fiber, if
X is connected, then we denote it by vk(E). Furthermore, if the rank of E is one,
then E is said to be a line bundle. &

Remark C.4 (On the topology of the fibers of a vector bundle). In a vector bundle
m: E — X, we have that the topology of each fiber E, of E, induced as a topological
subspace of the total space E, coincides with the topology induced by its finite-dimensional
vector space structure. Indeed, fixing any local chart (U, py) of E, because of Condition (1)
of Definition we have that the map vy |g,: £y — {y} x ¥ is a homeomorphism for
every y € U. ¢

C.2 Morphisms and categories of vector bundles

Definition C.5 (Vector bundle morphisms). Let 7 : E — X and g : F — Y be vector
bundles. We give the following definitions.

e A vector bundle morphism from FE into F is a continuous function f: FE — F

such that:

o there exists a (unique) continuous function g : X — Y in such manner that

mro f=gomwg; and

o [ B, Ex = Fyy is linear for every v € X.
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This means that the following diagram is commutative with f being linear in each

fiber.
E ! , F
TE TF
X > Y

g

o If X =Y, then we say that a vector bundle morphism over X from E into F
1s a vector bundle morphism f : E — F in such manner that the induced function

g: X — X is the identity map.

Moreover, we say that an invertible vector bundle morphism (over X ) is a vector bundle

isomorphism (over X ). $

Definition C.6 (Categories of vector bundles). We say that:

e VectBdl is the category of vector bundles whose objects are vector bundles and

whose morphisms are vector bundle morphisms;

e VectBdl(¥) is the category of vector bundles with fixed typical fiber ¥ whose
objects are wvector bundles with typical fiber ¥ and whose morphisms are vector

bundle morphisms;

e VectBdly is the category of wvector bundles on X whose objects are vector

bundles on X and whose morphisms are vector bundle morphisms over X; and

e VectBdlx (7)) is the category of vector bundles on X with fized typical fiber
¥V whose objects are vector bundles on X with typical fiber V' and whose morphisms

are vector bundle morphisms over X. &

Remark C.7 (On the categories of vector bundles). We have the following diagram of
categories indicating the inclusion relations between VectBdl, VectBdl(¥'), VectBdlx and
VectBdlx (7).
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VectBdl(¥) » VectBdl

A

VectBdlx (¥) —————» VectBdlx

Indeed, VectBdl(?'), VectBdlx and VectBdlx(¥') are subcategories of VectBdl, being
VectBdL(?) its only full subcategory. Moreover, VectBdlx(?') is at the same time a
subcategory of VectBdl(?") and of VectBdly. However, VectBdlx (%) is only full as a
subcategory of VectBdly. O

Definition C.8 (Sets of equivalence classes of vector bundles). We say that:

e Vect is the quotient of the class of objects of VectBdl by its equivalence relation of
1somorphism of vector bundles. In other words, Vect is the set of tsomorphism

classes of vector bundles; and

e Vecty is the quotient of the class of objects of VectBdlxy by its equivalence
relation of isomorphism of vector bundles on X. In other words, Vecty is the set

of isomorphism classes of vector bundles on X.

The sets of isomorphism classes of vector bundles Vect(¥') and Vectx(¥) are defined in

a similar manner. &

C.3 Trivial bundles and restrictions

Definition C.9 (Product and trivial vector bundles). Let X be a connected topological
space. We say that:

e the product vector bundle with typical fiber ¥V is the projection onto the first
factor m: X x ¥ — X with the natural vector space structure induced by ¥ on each

fiber; and

e a vector bundle m : E — X with typical fiber ¥ is trivial if it is isomorphic over X
to the product bundle X x V. In this situation, an isomorphism from E onto the

product bundle 1s called a trivialization of E. &
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Definition C.10 (Restriction of a vector bundle). Let 7 : E — X be a vector bundle.
Given a topological subspace Y C X, the restriction of E to Y, which is hereafter denoted

by E |y, is the vector bundle 70 |—1(y): 7' (Y) = Y with the induced vector space structure

on each fiber on Y. O

Remark C.11 (On the restriction of vector bundles). Let 7 : E — X be a vector bundle

and Y be a topological subspace of X. Then:

e the restriction E |y is a vector bundle because we can verify Conditions (1) and
(2) of Definition by restricting a local chart (U, py) of E to the local chart
UNY, ou l=1wnyy) of £ |y; and

o if (U,py) is a local chart of E, then oy : 7= (U) — U x ¥ 1is a vector bundle
isomorphism over U between E |y and the product bundle. Therefore, a vector

bundle is locally trivial by definition. &

Remark C.12 (Covariant functor defined by the restriction of vector bundles). Let X
be a topological space and Y be a subspace of X. Then, we have the following
covariant functor
ly: VectBdly — VectBdly,
EF — F |y,

fE%F'—} f’y:E|y%F‘y,

where [ |y is the natural map that sends a € E |y into f(a) € F |y. In fact, since
f+ E —=Y is a vector bundle morphism over X, we know that np o f = wg. Therefore,

we have

Once E |y =75 (Y) and F |y = 7,*(Y), it follows that f |y is well-defined. In turn, the
fact

mF |7r;1(y) of ly= 7g ‘ngl(yy
which proves that f |y is a vector bundle morphism overY since it is obviously continuous

and linear in each fiber, is immediate from the fact that f is a vector bundle morphism

over X. &
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Definition C.13 (Common trivializing open cover for a family of vector bundles on
the same base space). Let X be a topological space and I = {m, : Ey — X}aea
be a family of vector bundles on X. A common trivializing open cover of X for
IT is an open cover b = {U;}icr of X in such manner that E, |y, is trivial for all

a €N andalliel. &

Remark C.14 (Existence of common trivializing open covers for finite families
of vector bundles). Let g : E — X and wp : F — X be vector bundles. There
exists a common trivializing open cover of X for E and F. Indeed, there exist open

Covers:.

o 3 ={U}icr of X such that E |y, is trivial for alli € I; and

o U = {V;};es of X such that F |y, is trivial for all j € J.

Therefore, for each x € X, there exist i, € I and j, € J such that x € U;, and x € V},.
We define W, = U;, NV, for every x € X. The reader can readily prove that
W = {W,}liex ensures our assertion. More than that, using induction, the reader
can prove that there exists a common trivializing open cover for any finite number of

vector bundles. &

C.4 Sections of vector bundles

Notation C.15 (On real and complex numbers). When we do not desire to distinguish
between the field of real numbers and the field of complex numbers, we shall write K

to symbolize any of them. %

Definition C.16 (Global and local sections of a vector bundle). Let 7 : E — X be a

vector bundle. We say that:

e o (global) section of E is a continuous function s : X — E in such manner
that mos = idx. The set of sections of E, which has a natural real or complex

vector space structure and o natural module structure over the ring of continuous
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functions C°(X,K), endowed with the pointwise sum and exterior product, is

hereafter denoted by T'(E); and

e if U C X is open, then a global section s : U — E |y of the restriction E |y is
said to be a local section of E. Moreover, if v € U, then s is also called a local

section in x. &

Theorem C.17 (Local charts induce bijections between the set of local sections and the
ring of continuous functions). Let 7 : E — X be a vector bundle. If (U, py) is a local
chart of E, then it induces a bijection between T'(E |y) and C°(U,¥). Moreover, this

bijection is a C°(U, K)-module isomorphism.

Proof. Let s : U — E |y be a local section of E. If x € U, then, since 1y o oy = 7 and

mo s = idy, we have

puls(z)) = (z, v(z))

with v(x) € ¥. Therefore, we obtain the function v : U — ¥, which is obviously
continuous once it is the composition between ¢y o s and the projection onto the second
factor my : U x ¥ — ¥. Conversely, given a continuous function v : U — ¥, we obtain

the local section of F

s: U — FE|y,

T gol}l(x, v(x)).

The reader can readily prove the last claim of the theorem, which states that this bijection

is a C°(U, K)-module isomorphism. O

Remark C.18 (Pushforward of sections induced by a morphism of vector bundles which
covers a homeomorphism). Let 7 : E — X and np : F — Y be vector bundles. If
f+ E — F is a morphism of vector bundles covering a homeomorphism g : X — Y,
then, for any open subset U CY, we obtain the following C°-module isomorphism, called

f-pushforward of sections

[ T(E g@w) — T(F |v),

s +— fosog
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In addition, if f is an isomorphism, then f, is also an isomorphism, whose inverse is the
fY-pushforward of sections, which is wusually said to be the f-pullback of
sections. Moreover, Theorem 1s a particular case of this construction applied to
the isomorphism oy @ E |y — U x ¥ because T(U x V) is isomorphic to C°(U, V).
Finally, note that, if f is a morphism over X, then we obtain f. : T'(E |y) — ['(F |v),
s+— fos. %

Remark C.19 (On sections of vector bundles). Let 7 : E — X be a vector bundle. It is
to be noted that:

e there always exists the vanishing global section 0 : X — FE of E, which is
defined by 0(z) := 0, for all x € X, where 0, denotes the origin of the vector space
E,.; and

o for any v € X such that rk,(F) is positive, there exists a local section of E in x
which does not vanish in any point. Indeed, it suffices to fix a local chart (U, py) of
E in x and a non-zero vector v € ¥ in order to define s(y) := o L (y,v) for every

y € U. Note that this is equivalent to consider the section s induced by the constant

function v as in Theorem [C.17 O

The following result gives a characterization of trivial vector bundles through their
global sections. Indeed, it says that a vector bundle is trivial if and only if there exist
its rank of pointwise independent global sections. In particular, this result complements
Remark proving that there exist vector bundles such that all of their global sections
are zero somewhere. In fact, as examples, it suffices to consider non-trivial vector bundles

of rank one.

Theorem C.20 (Equivalence between triviality of a vector bundle and the existence of
pointwise independent global sections). Let m : E — X be a vector bundle. Then, E is
trivial if and only if there exist tk(E) pointwise independent global sections
s1,-, Sp) € L(E). Moreover, a basis of ¥ induces a bijection between the set of
trivializations of E and the set of families {s1,--- , sw(m)} of tk(E) pointwise independent

global sections of E.
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Proof. Let {ai,--- ,anr)} be a basis of ». If E is a trivial vector bundle, then
let ox : B — X x 7 be one of its trivializations. For each n between 1 and rk(FE),

both included, it suffices to set
Sp: X — K,

T go)}l(x, an),

to obtain a family of rk(£) pointwise independent global sections of E. Conversely, given
a family si,--- , swm € I'(E) of rk(E) pointwise independent global sections of E, we

obtain the trivialization

QOXIE — XX7/,

rk(E) rk(E)
Z Ansn(z) — |z, Z A,
n=1

n=1

The reader can readily prove that these assignments are inverse to each other, completing

the last claim of the theorem. O

Remark C.21 (Another interpretation of local triviality of vector bundles). We have
seen in Remark that, given a generic vector bundle E, a choice of a local chart
(U, pu) is equivalent to a choice of a trivialization of E |y. Hence, because of
Theorem it is equivalent to a choice of tk(E) pointwise independent local sections
51, S(p) - U = E |y, which are obviously pointwise independent global sections of the

restriction E |y. &

C.5 Subbundles of vector bundles

Definition C.22 (Subbundle of a vector bundle). Let 7 : E — X be a wvector
bundle. We say that a vector subbundle F of E is a vector bundle of the form
m |p: F — X where ' C E is a topological subspace, and F, C FE, is a vector

subspace for every x € X. O

Remark C.23 (On subbundles of vector bundles). Let 7 : E' — X be a vector bundle.
Note that:

e we put no constraints on the typical fiber of a subbundle F of E, but it is necessarily

a vector subspace of the typical fiber of E up to isomorphism; and



C. Ordinary Vector Bundles 317

e if F'is a subbundle of E/, then the inclusion map i : F' — E is an injective vector
bundle morphism over X. Indeed, it s continuous, since it is an embedding of a
topological subspace, and it is linear in each fiber, since it is an inclusion of a vector

subspace.

We also observe that, when we restrict a vector bundle to Y, we are only considering the
fibers over the points of Y, but we take the whole fiber in each point. On the other hand,
considering a subbundle of a vector bundle, we restrict each fiber to a vector subspace, but
i the whole X. FEwvidently, we can apply both operations at the same time, considering

the restriction of a subbundle. &

The next result of this section enlightens subbundles of vector bundles. Indeed, it
shows a correspondence between subbundles and pointwise independent local sections of

the main vector bundle.

Theorem C.24 (Subbundles and local sections of a vector bundle). Let 7 : B — X
be a vector bundle. If F' C E 1is such that F, C E, is a vector subspace for every v € X,
then 7 |p: F'— X, where F is endowed with the induced topology and each F), is endowed
with the induced vector space structure, 1s a vector subbundle of E if and only if, for every
x € X, there exist an open neighborhood U of x in X and pointwise independent local
sections si,--- ,8, € I'(E |v), where n depends on x, such that {s1(y), - ,sn(y)} is a
basis for F, for every y € U. In particular, this implies that the dimension of the vector

space F, 1s locally constant in x.

Proof. (=). Since F' is a vector bundle, there exists a local chart of F' in every x € X.
Fixing a basis of the typical fiber 7', such a chart is equivalent to a choice of pointwise
independent local sections s1,- -, su,(r) € I'(F |r), which form a basis of F), for every
y € U. Once F is endowed with the induced topology, si,- - ,su,(m) : U = E |v
are continuous. Moreover, since the projection m |p: F' — X is the restriction of
m: E — X, we have m o s; = idy for every i between 1 and rk,(F), both included.
Therefore, si, -, su, (7 € I'(E |v). («). Since the sections s1,---,s, € I'(E |v)
are pointwise independent and span F, for every y € U, they define a local chart
ov : (7 |p) ' (U) = U x K" for every x € U. Hence, F is a vector bundle with
typical fiber K", O
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C.6 Transition functions of vector bundles

Remark C.25 (Relation between the local charts of a vector bundle endowed with an
atlas). Let m : E — X be a vector bundle endowed with an atlas ®y = {(U;, ¢;) }ier-
Let (Ui, i) and (Uj, ;) be any local charts of Oy such that U;; = U; N U; is nonempty.
Then, considering o; : 7 Y(U;) = U; X ¥ and ¢; : 7= YU;) = U; x ¥, we obtain the

composition

~ -1

Pij = @ lerwy) © ($i lrwy) U XV = Uy x 7.
For every x € Uyj, we have the automorphism (;j), € GL(7?') such that

&ij(xv U) = (l’, (6@])%(7]))

Consequently, given a € E, such that ¢;(a) = (x,v), it follows that the corresponding
representation in U; is @;(a) = (z, (@ij)z(v)). These facts allow us to set the following

definition. %

Definition C.26 (Transition functions of a vector bundle). Let 7 : E — X be a vector
bundle endowed with an atlas Oy = {(U;, i) bier- If Uiy :== U; N U; is nonempty, then the

transition function of E from U; to U; is defined by

Yij - Uij — GL(%),
We will denote (pi;)z, that is, @;j(x), equivalently by (pi;).. Moreover, it is immediate

to verify that the transition functions satisfy the following condition, called the cocycle

condition:

(Spjk Uijk‘)mo (Soij Uz‘jk)z - (%k Uijk)m

for all v € Uy = U; NU; N Uy, In particular, (pi). = idarLy) for all € U; and
(0ij)a = (pji)* for all x € Uy;. We will frequently omit the subindezes x in the preceding
formulas, admitting that whenever appears a composition it is happening in the topological

group GL(7). O
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Definition C.27 (First degree nonabelian Cech cohomology of GL(¥)). Let X be a
topological space and 4 = {U; }ic; be one of its open covers. Being ¥ a finite dimensional

vector space, we set
ZHNWGL(Y)) = {{wi : Uij = GLON}ijer = @ik lugs © @i luge = @ik oy, }-

We introduce in Z'(U, GL(¥)) the relation defined as follows: two of its families
{@ij}ijer and {1i;}ijer are related if and only if there exists a family {n; : U; — GL(¥") }ier
such that

(Wij)e = ()2 © (@ij)z © (0:); "

for all v € U;; and all i,j € I. The reader can readily prove that this is an equivalence
relation on Z* (U, GL(7)). We set H' (U, GL(¥)) as the quotient of Z' (4, GL(¥)) by this

equivalence relation. &

Remark C.28 (On the first degree nonabelian Cech cohomology of GL(¥)). Let
7 : E — X be a vector bundle endowed with an atlas gy = {(U;, vi)}icr. Being
{@ij}ijer the set of transition functions of E, Definition ensures that the

equivalence class

{i}iger) € H' (U, GL(Y))

1s well-defined.  Furthermore, the reader can readily prove that it does not depend
on the homeomorphisms of ®y. Therefore, the class [{¢ij}ijer] only depends
on the isomorphism class of E among the vector bundles that are trivial on each element
of the open cover s = {U, }icr of X. More than that, one can prove that an equivalence
class of transition functions in H'(, GL(¥)) determines a unique up to isomorphism
vector bundle with typical fiber ¥V that is trivial on each element of the open cover in

question. &

Remark C.29 (Dependence on the open cover of the first degree nonabelian Cech
cohomology of GL(7)). Let X be a topological space. When an open cover U = {U;}icr
is fized, we only consider vector bundles E such that E |y, is trivial for every i € I.

In general, this condition does not hold. However, for every vector bundle E, there
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exists a refinement B = {V;},cy of such that E |y, is trivial for every j € .

Then, let us consider the partial order < on the set of open covers of X which says that
U <0 if and only if B if a refinement of L. If b = {U;}ier and BV = {V,}aen are such
that U <G, then there exists a function p : A — I such that V, C Uyny. Therefore, we
obtain the function

p:ZNWGL(Y)) — ZY(T,GL(Y)),

{%’j}z’,jef = {SOp(a)p(ﬁ) |Vp<a)p(5>}a,ﬁeJ.

Furthermore, it is straightforward to verify that p projects to the function

prHYU,GL(Y)) — HY(T,GL(Y)),

{eijtigerl = {Pp@o) Vyiapm faset]-

More than that, we have that p* does not depend on p. Indeed, if p,v : A — 1
are two functions such that Vo, C Upya) and V, C Uy, then Vo, C Uyayu(a) and the
reader can prove that the family {Ypp(a) |vitaca realizes the equivalence between
p({@ij}ijer) and U({pi;}ijer). Consequently, the assignment that sends each open cover

U of X into the set H'(8A, GL(¥)) is a direct system of sets. Therefore, we obtain the
direct limit of set{®)]

H'(X,GL(¥)) = lim H' (4, GL(¥)).

The interesting fact is that one can prove that there exists a bijection between Vectx(¥)

and H (X, GL(¥)). ¢

WLet 4 = {U; }ies and U = {V;};es be two open covers of a topological space X. We say that U is a
refinement of il if there exists a function p : J — I such that V; C U,;) for all j € J. In the set of open
covers of X, we denote by U < U the fact that U is a refinement of 4{. The reader can readily prove that
this is a partial order relation on the set of open covers of X. Moreover, in the set of atlases of a vector
bundle, there exists a partial order relation as well, defined as follows. Given ®y = {(U;, ¢;)}ier and
Uy = {(V}, ¥j)}jes atlases of the same vector bundle, we set &g < ¥y if and only if 4l < U through a
function p : J — I such that v; = @,;) |v; for every j € J. In this situation, we also say that Wy is a
refinement of ®g.

)n fact, for every x € X, we fix i € I such that x € U;. Then, we consider a local chart (U, ¢y, ) of
E in z and set V,, := U, NU;. Clearly, U := {V, },cx is a refinement of il such that E |y, is trivial for
every x € X.

(3)The reader can easily adapt Appendixin order to define and explicitly characterize the direct limit
of sets.
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Remark C.30 (On the geometric interpretation of the first degree nonabelian Cech
cohomology of GL(¥)). Let 7 : E — X be a vector bundle endowed with an atlas
Oy = {(U;, ¢i)}ier-  Given a vector bundle mp : F — X isomorphic to E, if
[ F — FE is an isomorphism of vector bundles over X, then CIDf1 = {(U;, piof |7r;1(Ui))}i€I
is an atlas of F inducing the same transition functions of ®y. Firing a basis A of
V', this equivalently means that the families of local sections {Si7k}i€[;0<k§rk(E) and
{f*sirticr,0<k<rxr) induce the same transition functions, where f* is the f-pullback
of sections defined in Remark[C18. Conversely, if F' is a vector bundle endowed with a
family of local sections {t; 1 }ie 1. 0<k<rk(r) that induces the same transition functions of £
with respect to the family {s; 1 }ic 1, 0<k<wx(p), then there exists an isomorphism f : F — E
such that t;, = f*s;x for alli € I and all k between 1 and tk(E), both included. In fact,

it suffices to set

rk(E) I‘k(E)
f Z )\ktz,k(l’) = Z /\ksl,k(a:)
k=1 k=1

Therefore, we can conclude that:

e fizing an open cover b = {U}ier of X and a basis A of ¥V, a family
{¢ij}Yijer € ZYGL(¥)) corresponds geometrically to a wvector bundle
m: EF — X endowed with a family {Si7k}ie];0<kgrk(E) of pointwise independent
local sections, up to isomorphism respecting the local sections through pullback

(or pushforward);

e firing an open cover 4 = {Ulic; of X, a class [{pij}ijer] € H'(U,GL(¥))
corresponds geometrically to a vector bundle m : E — X such that E |y, is

trivial for every v € I, up to isomorphism; and

e a class [{¢ij}ijer]] € HY(X,GL(¥)) corresponds geometrically to a vector bundle

m: E— X, up to isomorphism. &

C.7 Operations on vector bundles

In this section, we will see that natural operations on vector spaces, specially
direct sum and tensor product, can be extended to the framework of vector

bundles. The only problem that we will face is the question of how one should
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topologize the resulting spaces. The beauty of the answer that will be presented here
is the fact that it gives a general method for extending operations from vector spaces
to vector bundles, handling all the situations uniformly. We begin with the following

definition.

Definition C.31 (The category of n-tuples of finite-dimensional vector spaces). Let
FDVectSps be the category of finite-dimensional (real or complex) wvector spaces.
For each non-zero natural number n, we define the category of n-tuples of
finite-dimensional vector spaces, and denote it by FDVectSps", to be the n-times
product category of FDVectSps. More explicitly, we have that FDVectSps"™ is the category

whose:

e objects are ordered n-tuples (¥1,---, %), where ¥; is a finite-dimensional vector

space for each v between 1 and n, both included; and

e morphisms are sequences of linear maps (®1 : ¥ — W, , P, Vo — Wp),

usually denoted by ® : (¥1,-+- , Vn) = (W1, -+, Wp). O

Remark C.32 (Desired relation between operations on vector spaces and on vector

bundles). We say that:

e an operation on vector spaces is a functor T : FDVectSps™ — FDVectSps; and

e an operation on wvector bundles is a functor © : VectBdly — VectBdly,

where VectBdly is analogously the n-times product category of VectBdly.

The main idea of this section is to exten an operation on wvector spaces T tlo an
operation on vector bundles Or in such manner that the action of this last one on each
fiber coincides with the action of the former. For this, however, we need to require an
additional property of the operation on vector spaces. Indeed, since a vector bundle is
a continuous (locally trivial) family of vector spaces, it is natural to ask T to obey some

continuity hypothesis. This is done in order to ensure that the action of O is well-behaved

(4) The word “extension” is appropriate when used in this context because, if X is a one-point space, then
VectBdly is canonically isomorphic to FDVectSps. Consequently, VectBdly is canonically isomorphic to
FDVectSps™.
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when we go from a fiber to the ones near it. This idea is formalized by the following

definition. &

Definition C.33 (Continuous operation on vector spaces). We say that a functor
T : FDVectSps" — FDVectSps is a continuous operation on vector spaces if its

action on morphisms

Ty/y/ : HomFDVeCtSpS”(/ya W) — HOHIFDVectSpS(T(ﬂ//%T(W)%

SV =W = Tyy(®):T(V)=>TW),

is continuous for all objects ¥V = (W1, ,Vn) and W = (W4, -+ , #,) of FDVectSps".
The topologies of the domain and of the codomain are the ones induced by their
finite-dimensional vector space structures. We will often omit the subindezes above and
admit that T is covariant in all of its factors. The reader can deal with the cases where

T is a contravariant or a mized functor. &

Theorem C.34 (Operation on vector bundles induced by a continuous operation
on vector spaces). Let T' : FDVectSps" — FDVectSps be a continuous operation
on vector spaces. For each topological space X, there exists an induced operation on

vector bundles

Or : VectBdly — VectBdly,

whose action on each fiber coincides with the action of the initial operation on

vector spaces.

Proof. We define O : VectBdly — VectBdly to be the functor whose actions on objects

and on morphisms are given as follows.

e Action on objects. Let Fy,--- | E, be vector bundles on X. Then, as a set, the total
space of the vector bundle ©¢(E,,--- , E,) is given by

G)T(Ewla"' 7En) = |_| T((El)a:7 7(En)x)

zeX

This precisely means that the action of ©7 on each fiber coincides with the

one of 7. The projection O¢(Ey,---,FE,) — X is the obvious one given by the
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disjoint union structure of ©r(E, -, E,). However, we still have to define the
topology on this total space. This will be done after we define the action of ©7 on

morphisms.

e Action on morphisms. Let &, : By — Fy,--- ,®, : E, — F,, be morphisms of vector

bundles over X. We define

®T(¢17"'7q)n): @T(Elu"' 7ETL) — @T(Fb'”aFn)

on each fiber as T((®1)z, -+, (Pn)z) : TU(ED) 2, 5 (Bn)z) = T((F1)e, - (Fn)z)-
We still have to prove the continuity of O7(®Pq, - -+, ®,,) with respect to the topology
of its domain and codomain. This is done now, together with the definition of these

topologies.

Indeed, the topology on ©7(Ey, - - - , E,) and the continuity of ©7(®Py,--- , ®,) are handled

in the following three steps.

e Let F4,---,FE, be product vector bundles on X. That is, E; = X x ¥ for
every ¢ between 1 and n, both included. In this case, there exists a canonical

bijection between

Op(X X #,--- , X XT) and XXTMN, ).

Therefore, we define the topology on the set (X x 71,---,X X ¥,) to be
the one induced by this canonical bijection from the product topology of
X xT(#, -+ ,%,). Moreover, let ®; : X x ¥ — X X #; be a morphism of
vector bundles over X for each ¢ between 1 and n, both included. Equivalently,
®; : X — Homppvecsps (¥, #;) for each i between 1 and n, both included. Thus, we

define the natural map

o: X — HomFDVectspsn(("f/lf“ ,7/71), (7/1, ,%))

Since 1" is a continuous operation on vector bundles, we have that the
composition T o ® : X —  Homppvecsps(T(¥1,- ), T(H,---, 7)) is
continuous. Hence, O7(Py, -+ ,®,) : X X T(,--- , V) = X x T (W, , Wy)
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is also continuous.  Furthermore, if ®,---, ®, are isomorphisms of vector
bundles over X, then necessarily ©p(®y,---,®,) is an isomorphism of vector

bundles over X.

e Now, let Fy,---,E, be trivial vector bundles on X. Then, we can choose a
global trivialization «; : F; — X x ¥; for each i between 1 and n, both included.

Consequently, we have
@T(a17"' ,Oén) : @T(Ela"' aEn) — @T(X X 7/17 ;X X %1)7

which is a bijection because it is bijective on each fiber. Once the topology
on Op(X x #,---, X x ¥,) is known from the preceding item, we give to
Or(Ey,- - ,E,) the least topology that turns ©Or(ay,---,q,) into a
homeomorphis Moreover, let ®; : E; — F; be a morphism of trivial vector
bundles over X for each ¢ between 1 and n, both included. If o; : E; — X X ¥
and B; : F; — X X #; are, respectively, global trivializations of F; and F; for each ¢

between 1 and n, both included, then

@T(ﬁh... 7571) o @T(q)h... 7(1)”) o @T(Oél_l,"' ,a;1)7

which sends O7(X x ¥7,--- , X X ¥,) into Op(X X #4,--+- , X X #},), is continuous
because of the preceding item. Therefore, O7 (P, -+ ,P,) is also continuous. In
addition, it follows from this construction that, if Y C X, then the induced topology
on Or(Ey, -+, E,) |y coincides with the topology on Or(E; |y, -+, E, |y), as

expected.
e Finally, let FEy,---,FE, be generic vector bundles on X. There exists a
common trivializing open cover Y = {U;}ie; of X for this finite family of

vector bundles because of Remark We define the topology on O (Fy,--- | E,)
as follows. We declare a subset V' C Op(Ey,---, E,) as open if and only if its

(5)The choice of the trivializations plays no role in this construction. Indeed, let 8; : E; — X x ¥
be another global trivialization of F; for each i between 1 and n, both included. Then, it follows
from the preceding item that @(6;1 oay, - ,B;toay) : Op(Ey,-- ,E,) — Orp(Ey, - ,E,) is
an isomorphism of vector bundles over X. Thus, we have that @(ﬁfl oag, B oa,) is a
homeomorphism between the topologies of ©r(Fy,- -, E,) induced by the families of trivializations

{a;} and {B;}.
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intersection with Op(F;

Ui By

v;) is open for all i € I@ Moreover, let
®, : E; — F; be a morphism of vector bundles over X for each ¢ between 1 and n,

both included. We have that
@T((I)la"' 7(1)77,) : 9T(E1,"' 7En) — @T(Fla"' aFn)

is continuous on each element of the open cover 4 because of the preceding item.
Thus, it is continuous. In addition, the reader can readily prove that, if Y C X,
then the induced topology on ©r(E,---, E,) |y coincides with the topology on
Or(Ey |y, -, E, |y), as expected.

This finishes the proof of the theorem. O

Remark C.35 (A characterization of the operations on vector bundles through
transition functions). For each topological space X and each continuous operation on
vector spaces T : FDVectSps" — FDVectSps, we have that Theorem produces an
operation on vector bundles O : VectBdl" — VectBdl. Furthermore, being 71, -+, ¥,
finite-dimensional vector spaces, we have the function on isomorphism classes of vector
bundles

©r] : ﬁVectX(%) — Vectx (T (Y1, -+, ).

Therefore, because of the conclusion of Remark|[C.29, we have the characterization of this

map by means of transition functions

O] : [[A'(X,GL(%)) = H'(X,GL(T(#,---, 7))
i=1
In particular, let Eq,--- , E, be vector bundles on X whose typical fibers are ¥1,--- , 7V,

respectively. There exists a common trivializing open cover A = {U;}icr of X for this

(6)We have that:

e this topology does not depend on the chosen common trivializing open cover of X. Indeed,
if 1" is another one, then i and 4’ define the same topology as any common refinement ("
of them; and

e in general, given a vector bundle £ — X and an open cover 4 = {U;};cr of X, V C E is open
if and only if its intersection with E |y, is open for each ¢ € I. This happens because {E |y, }icr
is an open cover of E. Therefore, if T is the identity on FDVectSps, then O is the identity on
VectBdlx, as expected.
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finite family of vector bundles because of Remark . Thus, let {(pfj}iyjel be a set of
transition functions that represents Ej with respect to U for each k between 1 and n, both
included. The reader can prove that, if p : T(¥, -, V) — W is a finite-dimensional
vector space isomorphism, then the transition functions {yi;}ijer of Op(Ey,--- , E,) are
given by

-1

pij(x) = po T(pj(x), - ,op(x)) o p

Note that, when T is a contravariant or a mized functor, we have to change gof](x) by
its inverse in the preceding equality. Howewver, this change must be done only in the

contravariant components of its domain. &

C.7.1 Direct sum of vector bundles

Definition C.36 (Direct sum of vector bundles). The following functor is the direct

sum functor:
@ : FDVectSps> — FDVectSps,
(N, 75) = V1@ Y,
(B W =W, By Vo= Wa) = PLDDy: DV — WD W,

where

(@1 @ Do) (v1,v2) 1= (P1(v1), Pa(v2))

for all (vyvy) € Y1 @ Y5. This is a continuous operation on vector spaces. For each
topological space X, we say that the corresponding wvector bundle operation
Og : VectBdlZ — VectBdlx induced by Theorem s the direct sum of vector
bundles on X. For convenience, if E and F' are vector bundles on X, then we will write

E & F instead of O4(E, F). &

Remark C.37 (On the direct sum of vector bundles). Let X be a topological space. We

have the following facts about the direct sum of vector bundles on X.

e Let B, F and G be vector bundles on X. Then, (E @ F) @ G is isomorphic to
E® (F & G) over X. Consequently, being Ey,--- , E, vector bundles on X, it is
defined the direct sum
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i=1
up to isomorphism.

o Let p: K" ® K™ — K" be the canonical isomorphism. For any linear maps
A: K" - K" and B : K™ — K™, represented by the matrices A and B with respect
to the canonical bases of K" and K™, respectively, we have that the natural linear
map A® B : K" — K" s represented in the canonical basis of K" by the

matrix
0

0 B

A®B =

Consequently, let E and F be vector bundles on X with typical fibers K™*) and
k() respectivel. Moreover, let {pi;}ijer and {1;;}ijer be representing sets of
transition functions for E and F, respectively. Then, the corresponding transition

functions of E @& F' are given by {@ij & Vi;}ijer- &

Theorem C.38 (Direct sum up to isomorphism). Let X be a topological space. Then,
the direct sum of vector bundles on X induces the commutative and associative binary

operation in Vect x
@ : Vecty X Vecty — Vecty,

([E], [F]) = [EeF]

In other words, we have that this induced binary operation turns Vectx into an abelian

SEMLGroup.

Proof. The reader can readily prove this result. More than that, one can prove that
this induced operation turns Vectx into an abelian monoid. This happens because the
isomorphism class of the product vector bundle with trivial typical fiber is its identity

element. Nevertheless, Vectx is not a group with this operation because of its lack of

(") This is no restriction on the vector bundles. Indeed, if 7 : E — X is a vector bundle with typical
fiber 7, then fix an isomorphism 7 : ¥ — K™(¥), For each local chart ¢y : 7~ 1(U) — U x ¥, we obtain
a local chart (idy x n) o gy : 7= 1(U) = U x K*¥(E)| Thus, E is also a vector bundle on X with typical
fiber K*(¥) " Once and again, here, we tacitly assumed X to be connected. The reader can adapt this
construction for the general case.
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inverses. Indeed, once the direct sum does not decrease the rank of the vector bundles,
any isomorphism class with positive rank cannot have an inverse in Vectyx with respect

to this operation. O

C.7.2 Dual vector bundle

Definition C.39 (Dual of a vector bundle). The following contravariant functor is the

dual functor:

x : FDVectSps — FDVectSps,
A
YV =W — ST Y,

where

' (p) == po®

for all ¢ € W*. This is a continuous operation on vector spaces. Therefore, for each
topological space X, we say that the corresponding wvector bundle operation
O, : VectBdlxy — VectBdly induced by Theorem is the dual of vector bundles

on X. For convenience, if E is a vector bundle on X, then we will write E* instead

of ©.(E). o

Remark C.40 (On the dual of a vector bundle). Let X be a topological space. We have

the following facts about the dual of a vector bundle on X.

e Since ¥V is canonically isomorphic to (¥*)* for all ¥ € FDVectSps, it follows
that, if E is a vector bundle on X, then E is isomorphic to (E*)* over X.

o Let p : (K")* — K" be the canonical isomorphism. For any linear map
A K" — K", represented by the matriz A with respect to the canonical basis
of K", we have that A* : (K")* — (K")* is represented by the matriz AT with
respect to the canonical basis of (K™)*. Consequently, let E be a vector bundle
with typical fiber KE) . Moreover, let {@i;j}ijer be a representing set of transition

functions for E. Then, the corresponding transition functions of E* are given by

the set {(gpi_jl)T}mg. &
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C.7.3 Tensor product of vector bundles

Definition C.41 (Tensor product of vector bundles). The following functor is the tensor

product functor:
® : FDVectSps> — FDVectSps,
(M, %) — Y@ Y,
(B =W, By Vo= Wa) = PIRDy: KRV — W@ Ws,

where

((I)l (29 @2)("01 X Ug) = (131(2}1) X (I)Q(Ug)

for all vi ® vo € V1 ® V4, being tacitly linearly extended to the whole vector space
Y ® V5. This is a continuous operation on vector spaces. For each topological space
X, we say that the corresponding vector bundle operation O, : Vecthl)% — VectBdl x
winduced by Theorem 1s the temsor product of wvector bundles on X. For

convenience, if E and F are vector bundles on X, then we will write E ® F instead

of Ox(E, F). %

Remark C.42 (On the tensor product of vector bundles). Let X be a topological space.

We have the following facts about the tensor product of vector bundles on X.

o Let E, F and G be vector bundles on X. Then, (E ® F) ® G is isomorphic to
E® (F®G) over X. Moreover, E® (F & Q) is isomorphic to (E® F) ® (E ® G)
over X. Consequently, being E, Ey,--- , E, vector bundles on X, it is defined the

tensor product

QRE = E1®---0E,
=1

up to isomorphism, and the vector bundles

n

E® (é Ez) and @(E ® E;)

i=1

are 1somorphic over X. In other words, we have that the tensor product of vector
bundles is distributive with respect to the direct sum of wvector bundles up to

1somorphism.
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o Let p: K" ® K™ — K™ be the canonical isomorphism. For any linear maps
A: K" — K" and B : K" — K™, represented by the matrices A = [a;;] and
B = [b;j] with respect to the canonical bases of K" and K™, respectively, we have
that the natural linear map A ® B : K" — K" s represented in the canonical
basis of K™ by the matriz A ® B whose element in line 17 and column Lk is given
by the product a;bj,. More directly, we have that A @ B is the matriz obtained
multiplying each element of A by the whole matriz B. Consequently, let £ and F
be vector bundles on X with typical fibers K™E) gnd K™*F) | respectively. Moreover,
let {@ij}ijer and {¢i;}ijer be representing sets of transition functions for E and F,

respectively. Then, the corresponding transition functions of E® F are given by the

set {@ij @ Vijtijer- &

Theorem C.43 (Tensor product up to isomorphism). Let X be a topological space. Then,
the tensor product of vector bundles on X induces the commutative and associative binary

operation in Vect x
® : Vectxy x Vecty — Vecty,

((E), [F]) = [E®F]

In other words, we have that this induced binary operation turns Vectyx into an abelian

Semigroup.

Proof. The reader can readily prove this result. More than that, one can prove that
this induced operation turns Vectx into an abelian monoid. This happens because the
isomorphism class of the product vector bundle with one-dimensional typical fiber is its
identity element. Nevertheless, Vectx is not a group with this operation because of its

lack of inverses. O

Definition C.44 (Set of isomorphism classes of line bundles). Let X be a topological
space. We say that Picx is the set of isomorphism classes of line bundles on
X. In other words, Picx is the subset of Vectx composed by the isomorphism classes of

rank-one vector bundles. &
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Corollary C.45 (The Picard group). Let X be a topological space. Then, the tensor
product of vector bundles on X induces the commutative and associative binary operation
i Picx

® : Picy x Picx — Picy,

([L], M]) = [L& M].

Furthermore, we have that this induced binary operation turns Picy into an abelian group.

This group is the Picard group of line bundles on X.

Proof. The first part of the statement is an immediate consequence of Theorem [C.43]
On the other hand, the reader can prove that any [L] € Picx has as its inverse [L*] € Picy.
This follows from the fact that, if £ is a vector bundle on X, then E* ® E is isomorphic
to End(FE), as will be shown in the following subsection. An interesting fact is that there
exists an isomorphism ¢; : Picxy — H?(X,Z) which is called the first Chern class. This
is a complete invariant in the sense that any isomorphism class [L] € Picx is completely

determined by ¢ [L] € H*(X,Z). O

C.7.4 HowMm and END of vector bundles

Definition C.46 (HOoMm and END of vector bundles). The following functor, which is
contravariant in the first variable and covariant in the second one, is the morphism

functor:

Hom : FDVectSps? — FDVectSps,
("1, 7%2) — Hom(, %),
(PN = W, Py V5 — W5) — Hom(Py, ) : Hom(#, ¥5) — Hom(¥,, #5),

where

Hom(q>1, @2)(@) = (I)Q oo (I)l

for all ¢ € Hom(#1,73). This is a continuous operation on vector spaces. For each
topological space X, we say that the corresponding wvector bundle operation

OHom Vecthl)? — VectBdlx induced by Theorem s the HOM of wvector
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bundles on X. For convenience, if E and F are vector bundles on X, then we
will write HOM(E, F) instead of Ouom(E, F). Furthermore, we consider the diagonal

functor
A : VectBdly — Vecthl)?,
E —~ (EB),

P F—-F — (P:E—F &:E—F).

We say that the composition Opem © A : VectBdl — VectBdl is the END of wvector
bundles on X. For convenience, if E is a vector bundle on X, then we will write END(E)

instead of (Opom 0 A)(E). &

Remark C.47 (On the HoM and on the END of vector bundles). Let X be a
topological space. We have the following facts about the HOM and the END of wvector
bundles on X.

e Consider the diagonal functor

A’ : FDVectSps — FDVectSps?,
Vo= (V,Y),
SOV W = (O W,V W)

We have that Hom o A’ : FDVectSps — FDVectSps is a continuous operation
on wvector spaces. Then, let Ogomonar @ VectBdl — VectBdl be its corresponding
vector bundle operation induced by Theorem [C.3f The reader can readily prove
that, if E is a vector bundle on X, then END(E) = (Opom 0 A)(E) is isomorphic to

@Hom o A/ (E) .

o For all V', W € FDVectSps, we have that Hom(?', #') is canonically isomorphic
to V*@ W . Thus, if E and F are a vector bundles on X, then HOM(FE, F) is
isomorphic to E* @ F over X. In particular, we have that END(E) is isomorphic

to B* @ F over X.

e Let E and F be vector bundles on X with typical fibers ¥ and W, respectively.

Moreover, let {@;;}ijer and {1j}ijer be representing sets of transition functions
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for E and F, respectively. The preceding item allows us to see the correspond-
ing transition functions of HOM(E, F) and END(FE) as the ones of E* @ F and
E* @ E described in Remark [C 43, respectively. Nevertheless, it is interesting
to note the following approach. Indeed, the corresponding transition functions of
Hom(E, F') are given by the set {Hom(p;;, ¢5j) : Uij — Hom(GL(¥"), GL(#))}ijer
where Hom (i, ¥ij)z (@) = (ij)z0po (pij);* for all z € Uy; and all p € GL(Y). In
particular, the corresponding transition functions of END(FE) are given by the set
{End(py) : Uiy = End(GL(¥))}ijer where End(py)a(9) = (9ij)s 0 9 0 (03)5
for all x € Uy;; and all ¢ € GL(7). &

C.8 Inner and Hermitian products on vector bundles

Definition C.48 (Inner and Hermitian products on vector bundles). We give the follow-

ing definitions.

e An inner product on a real vector bundle # : E — X is a continuous
function ( ,) : E® E — R that restricts in each fiber to an inner product
(that is, a positive definite symmelric bilinear form). Moreover, if a real vector

bundle s equipped with an inner product, then it is called an FEuclidean wvector

bundle.

e An Hermitian product on a complex wvector bundle m : E — X is a
continuous function (, ) : E@® E — C that restricts in each fiber to an Hermitian
product (that is, a positive definite antisymmetric sesquilinear form). Moreover, if
a complex vector bundle is equipped with an Hermitian product, then it is called an

Hermitian vector bundle. &

The next result answers the natural question that the reader may be asking himself
or herself now, which consists in finding conditions for the existence of inner and Hermitian
products in real and complex vector bundles, respectively. The interesting fact is that
a topological condition on the base space of vector bundles is sufficient to answer this

question.



C. Ordinary Vector Bundles 335

Theorem C.49 (Existence of inner and Hermitian products on vector bundles on
paracompact Hausdorff spaces). Let m# : E — X be a real (respectively, complex)
vector bundle. If X is a paracompact Hausdorff space, then there exists an inner

(respectively, Hermitian) product on E.

Proof. The reader can readily prove this result following the next two steps.

(1) Use local charts
o, T U = U x ¥V

of E to define local inner (respectively, Hermitian) products on E by pullbacking
the natural inner (respectively, Hermitian) product on the product bundle U; x ¥

induced by an inner (respectively, Hermitian) product of 7.

(2) Use the fact that X is a paracompact Hausdorfl space to choose a partition of
the unit subordinated to the open cover 3l = {U,};c; of X, which is produced by the
choices of local charts of E that were made in the preceding item, in order to
carefully glue together all the local inner (respectively, Hermitian) products on E,
which were also obtained in the preceding item, into a global inner (respectively,

Hermitian) product on FE. O

The following result generalizes a well-known theorem in Linear Algebra. The
theorem which we are referring to says that in a finite-dimensional vector space there
always exists an orthogonal complement for each of its vector subspaces. In fact, the
subsequent result ensures a corresponding theorem in the framework of vector bundles on

paracompact Hausdorff spaces.

Theorem C.50 (Existence of complements of subbundles in vector bundles on
paracompact Hausdorff spaces). Let # : E — X be a vector bundle. If X is
a paracompact Hausdorff space, then for every wvector subbundle F of E there
exists another wvector subbundle F*+ of E such that the direct sum F @& F* is

isomorphic to E over X.

Proof. The reader can find a proof of this result in [15, p. 12]. ]
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The next and last result of this section is one of the most important theorems in
this appendix. It concerns the existence of trivializing addenda for vector bundles on
compact Hausdorff spaces. In other words, it says that vector bundles on compact
Hausdorff spaces are trivial up to summing them with other vector bundles. In this
situation, a trivializing summand is called a trivializing addendum for the vector

bundle under consideration.

Theorem C.51 (Existence of trivializing addenda for vector bundles on compact
Hausdorff spaces). Let g : E — X be a vector bundle. If X is a compact Hausdorff
space, then there exists a vector bundle mp : F' — X such that the direct sum E @ F is a

trivial vector bundle.

Proof. The reader can find a proof of this result in [15, p. 13|. O

C.9 Pullback of vector bundles

Remark C.52 (Fiber product of topological spaces). Let f: X — Z and g:Y — Z be
continuous functions. The fiber product between X and Y with respect to f and g s the
topological subspace of X XY

X xp,V o= {(z,y) e X xY : f(z)=9g(y)}.

We define the projections

mX XY — X, and T X XsgY — Y,

(z,y) = =, (z,y) = y.

We have that the fiber product verifies the following universal property. Given a pair
of continuous functions h - W — X and k : W — Y, there exrists a unique continuous
function from W into X x5 ,Y, usually denoted by hx sk, such that the following diagram

18 commutative.
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s

XXV ——y

2 Y
ﬂlJ Jg
X > Z

f

In particular, the fiber product of spaces with respect to continuous functions with the
same codomain is unique up to a unique homeomorphism. We use fiber products to set

the following definition. O

Definition C.53 (Pullback of a vector bundle). Let f : X — Y be a continuous map
and m : E — Y be a vector bundle. We say that the pullback of E through f s
the vector bundle 7 : f*E — X where f*E = E x,; X and 7*(a,x) = z for all

(a,x) € f*E. &

Remark C.54 (On the pullback of a vector bundle being a vector bundle). Let
f X =Y be a continuous map and w : E — Y be a vector bundle. We can verify
that f*E s a vector bundle with the same typical fiber of E up to canonical isomorphism.
In fact, for every x € X, we have (f*E), = E) X {x}, which is canonically isomorphic
to Ey(y). Hence, the fiber of f*E in x is canonically isomorphic to the one of E in f(x).
More precisely, the fiber of f*E in x is canonically homeomorphic to the one of
E in f(z) and we endow it with the induced vector space structure, making the
fibers in question isomorphic as vector spaces. Moreover, fiting v € X, let (U, py) be
a local chart of E in f(z). Setting V := f~Y(U), we obtain the local chart (V,vy) of
[*E in x where y : (7%) (V) = V x ¥ is given by Yy (a) = (7*(a), Ty 0 py(a)), where
wy U XV — ¥ is the projection onto the second factor. This finishes the proof of our

last claim. &
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Theorem C.55 (Important properties of the pullbacks of vector bundles). We have the
following properties of the pullbacks of vector bundles.

(1) If f : X =Y and g:Y — Z are continuous maps and E is a vector bundle on Z,
then (g o f)*E is isomorphic to f*g*E over X.

(2) If X is a topological space and E is a vector bundle on X, then id g E is isomorphic
to £ over X.

3)If f . X — Y is a continuous map and E and F are vector bundles on Y, then
(
[*(E & F) is isomorphic to f*E & f*F over X. In other words, the pullback of

vector bundles commutes with the direct sum up to isomorphism.

(4) If f + X — Y is a continuous map and E and F are vector bundles on Y, then
f*(E® F) is isomorphic to f*E ® f*F over X. In other words, the pullback of

vector bundles commutes with the tensor product up to isomorphism.

Proof. These properties are straightforwardly implied by the fact that the pullback of a
vector bundle is unique up to isomorphism. The reader who wants more details may find

in [31, pp. 5 - 7| a good reference. ]

Remark C.56 (Covariant functor defined by the pullback of vector bundles). If

f: X =Y is a continuous function, then we have the covariant functor

f*: VectBdly (¥) — VectBdlx(7),
E — f'E,

n:E—=F — f'n:f'E— f'F,

where f*n . f*E — f*F is giwen by f*n(a,z) = (n(a),x) for all (a,x) € f*E.
Furthermore, if g : Y — Z is also a continuous functions, then Item (1) of Theorem
says that the covariant functor (g o f)* : VectBdly; — VectBdly is isomorphic to the
composition of the covariant functors f* and g* given by f* o g* : VectBdly; — VectBdly.
Also, Item (2) of Theorem says that idy : VectBdlx — VectBdlx is isomorphic to
the identity functor. &
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Theorem C.57 (Invariance of the pullbacks of a vector bundle through homotopic
maps with paracompact Hausdorff domains). Let m : E — Y be a vector bundle and
f,9: X =Y be continuous homotopic maps. If X is a paracompact Hausdorff space,

then the pullbacks f*E and g*E are isomorphic over X.

Proof. The reader can find a proof of this result in the case in which X is a compact
Hausdorff space in [2, p. 17]. In turn, a proof of the general case can be seen in

[15, pp. 20 - 21] and in [31] pp. 7 - §|. O

Corollary C.58 (Bijection of isomorphism classes of vector bundles induced by a
homotopy equivalence between paracompact Hausdorff spaces). Let X and Y be
paracompact Hausdorff spaces in such manner that there exists a homotopy equivalence

f: X =Y between them. Then,

[f*]: Vecty (V) — Vectx(¥),
[E] — [fE]

which 1s the quotient of the function between objects of the covariant functor
from Remark by the isomorphism equivalence relation, is a bijection between
Vecty (¥) and Vectx(¥'). In particular, we have that every vector bundle on a contractible

paracompact Hausdorff space is trivial.

Proof. Since f : X — Y is a homotopy equivalence, there exists a continuous function
g Y — X such that g o f is homotopic to idy : X — X and f o g is homotopic
to idy : Y — Y. Therefore, for all vector bundles £ on X and F on Y, Item (2) of

Theorem and Theorem imply

(go f)'E ~ idyE ~ E and

(fog)'F ~ idjF =~ F.

Thus, we have [(g o f)*] = idvecty(») and [(f 0 ¢)*] = idvecty (»). Furthermore, Item (1) of
Theorem implies
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[fTelg’] = Ugeof)] and
gl [f7] = [(feg)).

Consequently, it follows that [¢*] is the inverse function of [f*]. Hence, we have the
desired bijection between Vecty (¥) and Vectx (7). Finally, the last claim of the theorem
is obvious since a contractible paracompact Hausdorff space is homotopically equivalent
to a point space, which is evidently a paracompact Hausdorff space, and since every vector

bundle on a point space is trivial. O

Corollary C.59 (Vector bundles on cylinders are no new information). Let X be
a paracompact Hausdorff space and E be a wvector bundle on X x I, where 1 is the
usual real unit interval. For any fived j € I, we have that E and mj(E |xx(;) are

1somorphic, where
T X xIT — X x1I

(z, 1) = (2, 7).

Proof. Since the product of paracompact Hausdorff spaces is paracompact Hausdorff,
X x I is a paracompact Hausdorff space. Thus, once 7, idxxy : X xI — X x 1
are homotopic maps, it follows from Theorem that 75 (E |xx{;}) is isomorphic
to idy, (£ |xxg;3). Moreover, Item (2) of Theorem implies that id , ;(E |xx{})
is isomorphic to E |x(;;. Therefore, the result is proved because E |x.; is clearly

isomorphic to F. O

C.10 Collapsing vector bundles

Lemma C.60 (Existence of a local extension for an isomorphism of vector bundles
defined on a closed subspace of a compact Hausdorff space). Let A be a closed
subspace of a compact Hausdorff space X. In addition, let E and F be vector
bundles on X. If f : E |4 — F |4 is an isomorphism over A, then there exist an
open subspace U of X containing A and an extension F : E |y — F |y which is an

1somorphism over U.

Proof. The reader can find a proof of this result in [2, p. 17]. O
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Theorem C.61 (Collapsing a vector bundle defined on a compact Hausdorff space). Let
A be a closed subspace of a compact Hausdorff space X. In addition, let E be a vector
bundle on X for which there exists an isomorphism « @ E |4 — A X ¥, which will be
referred to as a trivialization of E over A. Being m: AX ¥V — ¥ the canonical projection
onto the second factor, we define an equivalence relation on E |4 as follows: a,b € E |4

are related if and only of
(moa)(a) = (moa)(b).

Trivially, we extend this relation on E |x_4 as the identity. Thus, if E/« is the quotient
space of E by this (extended) equivalence relation, then it is a vector bundle on X/A.
Moreover, its isomorphism class depends only on the homotopy class of the trivialization

m question.

Proof. The quotient space E/a has a natural structure of a family of vector spaces on
X/A. This happens because the process described just identified the fibers of E over
A through «, leaving the other ones intact. More than that, this reasoning shows that,
to prove that F/«a is a vector bundle, we only have to verify the local triviality of F/«a at
the base point A/A of X/A. Because of Lemma[C.60] we can extend « to an isomorphism
a: E |y— U x ¥ for some open subspace U of X containing A. Then, & induces an

isomorphism between

(E |v)/a and (UJ/A) x ¥,

which establishes the local triviality of E/a at A/A. For the last claim of the statement,
suppose that a and 3 are homotopic trivializations of E¥ over A. This means that we have
a trivialization v of F x [ over A x [ C X X I inducing o and 3 at the two end points of

I. Then, consider the natural map

T (X/A) xT — (X xI)/(Ax]I),

([x], t) — [z, t].

We have that the vector bundle 7*((E x I)/v) on (X/A) x I is such that its restriction
to (X/A) x {0} coincides with E/a, and that its restriction to (X/A) x {1} coincides
with E/5. Consequently, it follows from Theorem that £/« is isomorphic to £/,
as desired. O
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Corollary C.62 (Pullback of vector bundles of the natural projection). Let A be a closed
subspace of a compact Hausdorff space X. The projection m : X — X/A induces the
pullback

(7] : Vectx/a — Vecty,

[E] = [r"E],

which s the quotient of the function between objects of the covariant functor
7 : VectBdlx/a — VectBdlx from Remark|[C.56] by the isomorphism equivalence relation

of vector bundles. Then,
Im [7*] = {[F] € Vectx : E |4 is a trivial vector bundle}.

Proof. Once A/A is a one-point space, the fact that (7*E) |4 is trivial follows from
the equality
(T E) [a = (7 [4)"(Elaja).

On the other hand, let F be a vector bundle on X such that F |4 is trivial. Then, let
a: E|4s— Ax Y be a trivialization. We have that the collapsed vector bundle E/a on
X /A is such that

7" (E/a)] = [E].

This equality is straightforward, although it is not immediate to be visualized. This

finishes the proof of the theorem. O

Remark C.63 (On the proof of Corollary . In general, E/a obtained in the proof
of the preceding resull is not unique (not even up to isomorphism). Thus, [7*] is not
injective. Nevertheless, its isomorphism class only depends on the homotopy class of the
trivialization o of E |a. Hence, if we choose non-homotopic trivializations, then the
resulting vector bundles may not be isomorphic. Indeed, let X =1, A= 01 and E be the

trivial vector bundle I x R. Therefore:

e if we choose the identity trivialization, then we obtain the trivial vector bundle

St x R; and

e if we choose the trivialization given by «(0,t) = (0,t) and a(1,t) = (1,—t), then

we obtain the Mobius bundle, which is a non-trivial vector bundle.
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In the literature, the reader can find similar examples in the framework of complex
vector bundles. However, there is an exception in this reasoning, which is proved in

the following corollary. O

Corollary C.64 (Bijection induced by the natural projection). Let A be a closed

contractible subspace of a compact Hausdorff space X. Then, the map [7*] defined in

Corollary is a bijection.

Proof. Let E be a vector bundle on X. Because of Corollary it follows that F |4
is trivial. Then, let a : E |4 — A X ¥ be a trivialization of E over A. Moreover, we
have that two such trivializations differ by an automorphism of A x . That is, by a
map A — GL(¥). However, since GL(7) is connected (because it is homeomorphic to
GL(n) for some n € N) is connected and 7 is contractible, « is unique up to homotopy.
Thus, the isomorphism class of E/«a is uniquely determined by that of E. Hence, we
have constructed a map Vectx — Vecty,4 which is clearly a two-sided inverse for [7*].

Therefore, [7*] is a bijection. O

C.11 Smooth vector bundles

Definition C.65 (C"-vector bundles). Let M be a real C"-manifold where v is a
natural number or co. A C"-vector bundle on M is a vector bundle m : E — M

such that:

e F is a real C"-manifold;
e 1 is a C"-function; and

e cach homeomorphism oy : 7Y (U) — U x ¥ of Item (1) of Definition is a
C"-diffeomorphism.

(®)Indeed, if 3 : F |a — A x ¥ is another trivialization of E over A, then
a = (aof7h)op,

where a0 71 : A x ¥ — A x ¥ is the automorphism of A x ¥ under which the trivializations o and
of F over A differ.
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Moreover, we usually say that a C°-vector bundle is a (continuous) vector bundle, and

that a C*™-vector bundle is a smooth vector bundle. &

Definition C.66 (CP-vector bundle morphisms). Let M and N be, respectively, a real
C-manifold and a real C° manifold. In addition, let 7 : £ — M and " : F — N
be, respectively, a C"-vector bundle and a C*-vector bundle. For any p between 0 and

min{r, s}, both included:

e a CP-vector bundle morphism from E into F is a vector bundle morphism

f: E — F that is a CP-function which covers a CP-function g : M — N; and

o if M = N, then a CP-vector bundle morphism over M from E into F is a
CP-vector bundle morphism f : E — F such that the induced function g : M — M

18 the identity map.

Furthermore, we say thalt an invertible CP-vector bundle morphism (over M) is a
C?-vector bundle isomorphism (over M). Finally, when p = 0 or p = oo, we

will use a nomenclature for CP-vector bundle morphisms analogous to the one we set in

Definition [C.65. ¢

Remark C.67 (On C"-vector bundles). All the notions and results that we have
discussed up to mow about wvector bundles keeps on holding for CT-vector bundles,
provided we require that all of the topological spaces involved are real C"-manifolds, all
of the topological subspaces are real C"-submanifolds (embedded or immersed) and that all
of the continuous functions involved are C"-functions (in particular, each homeomorphism

must be a C"-diffeomorphism). Especially, we have:

e the categories of C'-vector bundles VectBdI®, VectBdl® (%), VectBdlS, and
Vecthlﬂ(”f/) together with the following diagram indicating their subcategory

relationships;
VectBdI® (¥) ————— VectBdl®

A

VectBdl§y (#) ——————— VectBdl§,
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o the sets of C"-isomorphism classes of C"-vector bundles Vect©", Vectcr(4//), Vectﬂ
and Vectjc\/;(“f/). Note that Vectﬂ is an abelian semigroup with the binary operation

wnduced by the direct sum;
o the set I'.(E) of C"-global sections of a C"-vector bundle 7 : E — M;
e tlhe transition functions of a C"-vector bundle being C"-diffeomorphisms;

e the direct sum and the tensor product of C"-vector bundles being a C"-vector

bundle; and

e the invariance of the pullbacks of a C"-vector bundle through C"-homotopic maps
with a real C"-manifold as domain. This happens because manifolds are paracompact

Hausdorff by definition. &

Theorem C.68 (C"-vector bundles on C*-manifolds). Let M be a real C*°-manifold.
FEvery C"-vector bundle m : E — M has a compatible smooth vector bundle structure.

Moreover, such a structure is unique up to C*°-isomorphism over M.

Proof. The reader can find a proof of this result in |16, p. 101|. This proof uses the notion
of classifying maps of C"-vector bundles, which we will not explain here. Indeed, the idea
behind the proof of the existence of a smooth vector bundle structure is to approximate
a C"-classifying map for the C"-vector bundle 7 : £ — M by a homotopic C*°-map, and
then apply Theorem [C.57] The uniqueness up to isomorphism of such a smooth structure
is handled similarly. O

Remark C.69 (On the compatible smooth vector bundle structure of a C"-vector
bundle). Let M be a real C®-manifold. We have just seen that a C"-vector bundle
w : B — M has a compatible smooth vector bundle structure. This means that the
C"-manifold E admits a real C®-manifold structure, hereafter denoted by E, such that
7B — M, a — w(a), is a smooth vector bundle. In particular, note that ™ and T are

equal as functions. &

Corollary C.70 (More about C"-vector bundles on C*-manifolds). Let M be a real
C>®-manifold. FEvery C"-vector bundle m : E — M is C"-isomorphic over M to a

smooth vector bundle.
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Proof. We can apply Theorem to endow 7 : E — M with a compatible smooth
vector bundle structure. Therefore, the identity map idg : £ — Eisa C"-isomorphism

over M, which proves what we wished. H

Corollary C.71 (Relation between Vect$; and Vect$, ). Let M be a real C*-manifold.
The abelian semigroups Vectf,: and Vectﬁo are isomorphic. In particular, Vecta s

1somorphic to Vectf,loo.

Proof. Let E and F be C"-vector bundles on M. Since the compatible smooth
vector bundle structure of a C"-vector bundle is unique up to C*-isomorphism by
Theorem we have that £ @ F and E/@? are C*-isomorphic. This proves
that the map from Vect$, into Vect§{, that sends [El¢- into [E]e= is a semigroup
homomorphism. In addition, the reader can readily prove that this semigroup
homomorphism is invertible exhibiting its inverse. Therefore, Vectﬂ is isomorphic to

Vectf,loo, as we wished. O

Remark C.72 (Holomorphic vector bundles on complex manifolds). In this
section, we considered real and complex vector bundles based on real C°-manifolds.
However, what about the trueness of its results for holomorphic vector bundles based
on complex manifolds? First of all, we observe that the proof of Theorem cannot
be adapted to this framework since there is no “Holomorphic Approximation Theorem”
for classifying maps of C-vector bundles on complex manifolds. More than that, it is
known that Theorem s false in this context because there exist examples in the
literature of holomorphic wvector bundles which are smoothly isomorphic but not
holomorphically isomorphic. Consequently, the abelian semigroup of isomorphism classes
of C™®-vector bundles on a complex manifold is not always isomorphic to the abelian
semigroup of isomorphism classes of holomorphic vector bundles on the same complex
manifold. Nevertheless, if we consider real C¥-manifolds instead of real C*°-manifolds in
Theorem then the result also holds true. The reader can prove this claim following
the comments of [16, p. 101]. O
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Appendix D

Constructions with compact Hausdorft

spaces

In this appendix, we describe classical constructions with topological spaces:
wedge sum, smashed product, cones and suspensions. We restrict them to the
framework of compact Hausdorff spaces since they are mainly used in Chapter [2] to
study K-Theory. However, even the reader who is unfamiliar with these constructions
will note that they can be extended to all kinds of topological spaces. The notations of
Chapter [2| are used here to establish these mathematical objects. We follow |14, pp. 8-10]

in this presentation.

D.1 Wedge sum

Definition D.1 (Wedge sum of pointed compact Hausdorff spaces). Let (X, x¢) and
(Y,y0) be objects in TopHdCpt,. We define the wedge sum of (X, xzo) and (Y, yo),
and denote it by X VY, to be the union

XVY = (X x{y}) Uz} xY),

which is naturally a pointed compact Hausdorff space. In fact, X V'Y 1is compact
Hausdorff because it is a finite union of products of compact Hausdorff spaces, and
(xo,y0) € X VY is its natural marked point, which is hereafter omitted. Furthermore,
we have the following functor with two covariant variables, which is called the wedge

sum functor:
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V : TopHdCpt, x TopHdCpt, — TopHdCpt,,
((Xax(])a (Y7y0)) = XVK

(f:(X,:EO)—>(Y,yO),g:(Z,zo)—>(W,w0)) = fVg: XVZ—=>YVW,

where
(f Vg, 2) = (f(x), 9(2))
for all (x,z) € XV Z. The reader will find a simple but helpful visualization of this

construction in Figure [D.1]

XVY

(w0, y0)

Figure D.1: In the images above, (X, o) and (Y, yy) are the line segments with marked
points on the left. We have that the wedge sum X VY is the cross on the right, whose
intersection point (zg,yo) € X VY is its natural marked point. Note that X and Y are
embedded in X VY. O

D.2 Smashed product

Definition D.2 (Smashed product of pointed compact Hausdorff spaces). Let (X, xo)
and (Y,yo) be objects in TopHdCpt, . We define the smashed product of (X, o) and
(Y, yo), and denote it by X AY, to be the identification space

X xY

XAY =
XvYy’

which is naturally a pointed compact Hausdorff space. In fact, X N'Y s compact
Hausdorff because it is the quotient of a compact Hausdorff space by one of its closed

subspaces, and
XVY

XAY
Xvy ©
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18 its natural marked point, which is hereafter omitted.  Moreover, we have the
following functor with two covariant wariables, which 1is called the smashed

product functor:
A : TopHdCpt, x TopHdCpt, — TopHdCpt,,
((X,SE(]), (Y7y0)> = X/\}/a

(f:(X,20) = (Y,%0), 9: (Z,20) = (W,wp)) — fAg:XANZ—=Y AW,

where

(fAGr, 2] = [f(z), 9(2)]

for all |x,z] € X N Z. Furthermore, the reader can readily prove that, being
n a non-zero natural number, the smashed product of n copies of S' is homeomorphic

to S™.  The reader will find a simple but helpful visualization of this construction

in Figure[D.2

XAY

Yo @

X o

Figure D.2: In the image above, (X, zg) and (Y,yo) are the line segments with marked
points at the bottom and on the left of the square. We have that the smashed product
X AY is obtained by collapsing the wedge sum X VY C X AY to its marked point
(xo,%0) € X VY. O

D.3 Cones

Definition D.3 (Absolute and relative cones of compact Hausdorff spaces). We define
I:=1[0,1] and —1:= [-1,0], and we give the following definitions.

o Let X be an object in TopHdCpt. We define the cone of X, and denote it by CX,

to be the identification space
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X x1I

“X = ey

which is naturally a pointed compact Hausdorff space. In fact, CX 1is compact
Hausdorff since it is the quotient of a compact Hausdorff space by one of its closed

subspaces, and
X x {1}

—F € CX,
X x {1}
1s its natural marked point, which is hereafter omitted. Moreover, we have the

following covariant functor, which is called the cone functor:

C: TopHdCpt — TopHdCpt,,
X — CX,
f: X—=Y — Cf:.CX — (Y,

where

Cflle, 1) = [f(2), 1]

for all [z, t] € CX. Analogously, we define the negative cone of X, and denote
it by C'X, to be the identification space:

X x -1

'X = ——————
¢ X x {1}’

which is naturally a pointed compact Hausdorff space. Similarly, we can define the
negative cone functor. In particular, note that the intersection of CX and C'X

18 the base X.

o Let (X,A) be an object in TopHdCCpt,. We define the cone of (X,A),
and denote it by C(X,A), to be the identification space obtained from the
disjoint union X U CA by collapsing every a € A to (a,0) € CA. This is also
a pointed compact Hausdorff space with the natural marked point of the cone of A.
In particular, it is to be noted that the cone of X coincides with the cone of (X, X).
Furthermore, we have the following covariant functor, which is called the relative

cone functor:
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C': TopHdCCpt, — TopHdCpt,,
(X,4) = C(X,A),
f (XA = (Y,B) — Cf:C(X,A) — C(Y,B),

where
Cf(lz, t]) = [f(z), 1]
for all [z, t] € C(X,A).
Finally, the reader will find a simple but helpful visualization of these constructions
in Figure[D.3

CX C(X,A)

c'X

Figure D.3: In the images above, X is the whole line segment at the bottom of the
triangles. On the left, we have the cone of X. In the middle, we have the negative
cone of X. Finally, on the right, being A the central part of the line segment X, we have
the cone of (X, A), which is obtained collapsing the subspace A of X with the base of the
cone of A. &

D.4 Suspensions

Definition D.4 (Absolute and reduced suspensions of compact Hausdorff spaces). We

define J := [—1,1] and we give the following definitions.



D. Constructions with compact Hausdorff spaces 352

e Let X be an object in TopHdCpt. We define the suspension of X, and denote it
by SX, to be the identification space

X xJ

X = T A< 1

where the comma in the denominator means that each of the spaces considered are
being collapsed to a different point. The suspension of X s compact Hausdorff
since it is the quotient of a compact Hausdorff space by one of its closed subspaces.
However, differing from the preceding cases, it does not have a natural marked point

once we are divided between

X x {1} X x{-1}

—F— € 5SX d —F € SX.

X x {1} © an X x{-1} ©
This is coherent with SX being homeomorphic to the union of the cones C'X and
C'X, which cannot have a natural marked point since each of its components has one.

Moreover, we have the following covariant functor, which is called the suspension

functor:
S : TopHdCpt — TopHdCpt,
X — SX,
f: X—=Y — Sf:5X — 95Y,
where

for all [x,t] € SX.

o Let (X,z0) be an object in TopHdCpt,. We define the suspension of (X, xo),

and denote it by XX, to be the identification space

X xJ

AT AR UK % (1) U ({w0) < )

which is naturally a pointed compact Hausdorff space. In fact, XX s compact
Hausdorff since it is the quotient of a compact Hausdorff space by one of its closed

subspaces, and
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(X X {1HU X x {1} U ({zo} x J)

X x (1)U x (1)U {m} xT) =

15 its natural marked point, which s hereafter omitted.  Moreover, XX is

homeomorphic to the spaces

SX

S'AX d S
o {20} x J

This last presentation of XX shows that the natural projection m : SX — XX
induces the isomorphism in absolute K-Theory K(m) : K(XX) — K(SX) since
{zo} x J is contractible. Furthermore, we have the following covariant functor,

which 1s called the reduced suspension functor:

> : TopHdCpt, — TopHdCpt_,
(X,.Io) — EX,

f(X,z0) > Y,yo) — Xf:3X - 3XY,

where

f([x, 1)) = [f(x), 1]

for all [z,t] € ¥X. Being n a non-zero natural number, we have that the reduced
suspension functor can be iterated n times, producing the n-reduced suspension

functor:
¥": TopHdCpt, — TopHdCpt,,
(X, SC(]) — EnX,

f:(X,zo) = (Yyo) — X"f:X"X — XY,

Since X"X is homeomorphic to S N X for all non-zero natural number n,
and S° A X is homeomorphic to X, we define the 0-reduced suspension
functor as the identity on TopHdCpt, . In addition, if X is an object in
TopHdCpt and X, := X U {oo} where oo is an independent connected
component in X, and s its marked point, then XX, is homeomorphic to the

wdentification space
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X xJ
(X x{1HUX x{-1})

Finally, the reader will find o simple but helpful visualization of these constructions

in Figure[D.4)

SX XX

SX,

Figure D.4: In the images above, X is the interior blue line segment. On the left,
we have the suspension of X, which coincides with the union of the cones C'X and
C'X. In the middle, considering g € X to be a given marked point in X, the
reduced suspension of (X, xg) is obtained by collapsing the interior black line segment
to the marked point xqg € X. Finally, on the right, we have the reduced suspension of
X1 = XU{oo} where 0o is an independent connected component in X and is its marked
point. &
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Appendix E

Real Division Algebras

In this appendix, we explain the elementary concepts of real division algebras.
Moreover, we provide some historical notes on the main real division algebras: R, C, H
and . This is a way to understand the importance of the Bott-Milnor-Kervaire Theorem
presented in Chapter 2| which was one of the first achievements of K-Theory. We finish our
presentation with two classical results about these real division algebras which explain
why they are relevant and, in a certain sense, unique. Our exposition is based on [5],

[10], [27], [36] and [38].

E.1 First definitions and historical examples

Definition E.1 (Real algebra and real division algebra). Let <7 be a finite-dimensional

real vector space and

m: A XA — A

be a bilinear map, which we will hereafter call a multiplication in o/ . The pair (<, m)

18 said to be:

e a real algebra provided that there exists a non-zero element 1 € o such that

m(1,a) =m(a,1) = a for all a € &7; and

e a real division algebra provided that it is a real algebra in which there are no zero
divisors. This means that, if a,b € & are such that m(a,b) = 0, then necessarily

either a =0 or b =0.
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We will say that <7 is a real (division) algebra, omitting its multiplication, and we will

write ab instead of m(a,b) for all a,b € o . &

Example E.2 (The real division algebra R). Here we define the real division
algebra of the real numbers, denoted by R, and give some ideas about its
historical development. Let 1 be the only vector of the canonical basis of the real Eu-

clidean one-dimensional space. Then:

e as a vector space, R is the real Fuclidean one-dimensional space, whose elements

are real multiples of 1; and

e as a real division algebra, R has the multiplication coincident with its vector space

scalar product.

Historically, it s not an easy task to choose since when the real numbers are part
of Mathematics. That is, when should we start telling the history of the real numbers?

Is it appropriate to start:

e in Prehistory with the cavemen and the counting of hunts and provisions?

e in the Ancient Eqypt with the practical problems surrounding the plantings on the

Nile margins?

e in the discovery of the irrational numbers by the Pythagoreans or even with Fudozus

and his work on incommensurability of quantities?

e in the Furopean Middle Ages with the construction of a meaning for negative

numbers as independent entities?

e in somewhere else in the history of eastern civilizations?

When s it appropriate to start? That is not a simple question to be answered.
In particular, note that trying to see the real numbers as the historical evolution of the
naturals, integers, rationals and irrationals is not coherent with the timeline presented in
the items before. In fact, for instance, the irrationals appear before the negative numbers.
Thus, the classical pedagogical presentation of the numerical sets play no role in this

discussion.
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Maybe, considering the nowadays stage of development of Mathematics, a
plausible and direct answer to that question is the first formalization of the real
numbers. Nevertheless, this is another problem: What is this first one? In [38] the reader
can find a compilation of wvarious formalization of the real numbers, which
curiously does not begin by Dedekind’s construction of 1872. Furthermore, this
paper may help the reader to realize the idea behind a formalization of the real
numbers, which 1s to extract an intuitive property of them and then set it as an axiom in

order to derive their familiar properties. &

Example E.3 (The real division algebra C). Here we define the real division
algebra of the compler numbers, denoted by C, and give some ideas about its
historical development. Let 1 and ey be the vectors of the canonical basis of the real

FEuclidean two-dimensional space. Then:

e as a vector space, C is the real Fuclidean two-dimensional space, whose elements
are linear combinations of the vectors of its canonical basis. Hence, for each z € C,

there exist unique o, ap € R such that

z = a+arey; and

e as a real division algebra, C has the multiplication bilinearly induced by the vector

relation e? = —1.

Historically, the complex numbers appeared in the surroundings of the problem of
explicitly solving a third degree polynomial equation. The mathematicians thal are
nowadays associated to this kind of equation are Girolamo Cardano (1501 - 1576)
and Niccolo Fontana (1500 - 1557). This last one is usually known as Tartaglia,
which means “stammerer” in Italian. This nickname is due to serious wounds in his jaw
and palate, acquired during a French invasion against Venice, which left him with a speech

impediment.

Nonetheless, the first man who solved the cubic equation was Scipione del Ferro
(1465-1526), who was a professor at the Bologna University. After accomplishing his

solution, he trusted the formula to a student of his called Antonio Maria del Fiore
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(XVI-XVII). After some time, Fiore challenged Tartaglia to a mathematical contest,
for which Tartaglia rediscovered del Ferro’s formula. More than that, Tartaglia won the
competition answering all the problems proposed by del Fiore, while this one could solve
none of the problems suggested by Tartaglia. In turn, Tartaglia told his formula,
without his proof, to Cardano, who then swore to secrecy. Having the formula,
Cardano deduced its proof. After that, he found out that del Ferro had discovered the
formula before Tartaglia. Then, he published it in his book Ars Magna (1545). It is
important to note that Cardano mentioned del Ferro as first author and Tartaglia as an

mdependent solver.

Probably, Cardano introduced the complex numbers in his book Ars Magna.
Nevertheless, it is known that Rafael Bombelli (1526 - 1572) was responsible for the
current notation /—1, which he named “pit. di meno” at the time, while he was
studying the application of Cardano-Tartaglia Formula to the equation x® = 15z + 4.
Other men whose names appear in the history of complex numbers are Leonhard Euler
(1707-1783), Jean-Robert Argand (1768-1822), Carl Friedrich Gauss (1777-1855)
and William Rowan Hamilton (1805-1865). The interested reader can find more
details in [27]. O

Example E.4 (The real division algebra H). Here we define the real division
algebra of the quaternions, denoted by H, and give some ideas about its
historical development. Let 1, e, es and e3 be the vectors of the canonical basis of the

real Fuclidean four-dimensional space. Then:

e as a vector space, H is the real Fuclidean four-dimensional space, whose elements
are linear combinations of the vectors of its canonical basis. Hence, for each q € H,

there exist unique o, aq, g, az € R such that

q = a4+ aje; + ases + azes; and

e as a real division algebra, H has the multiplication bilinearly induced by

Table which can be easily deduced from the mnemonic diagram presented in
Figure[E.1]
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Historically, William Rowan Hamilton (1805-1865) was responsible for
the introduction of the quaternions in Mathematics. Interestingly, before developing the
quaternitons, he was tnvolved with the compler numbers. In 1833, he completed his
Pawr Theory, which was understood at the time as a new algebraic representation
for the complex numbers. Nowadays, Hamilton’s formulation of the complex numbers
18 their definition in any first course. In fact, in his Pair Theory, Hamilton represented
a complex number as an ordered pair (a,b), where a and b are real numbers, and defined
the sum operation

(a,b) + (¢,d) := (a+c¢,b+d),

and the multiplication operation

(a,b)(¢c,d) = (ac—bd,ad+ be).

As a natural step, Hamilton tried to extend the complex numbers to a new algebraic
structure in which each element would be composed of one real part and two distinct
mmaginary parts. This idea would be known as his Triplets Theory. Inspired by the
way one represents rotations in the plane using complex numbers, Hamilton was carried
wnto this search for his desire to represent rotations in the three-dimensional space in
a similar manner. Indeed, much of his work after finding out the quaternions was to
publicize them through the idea that they were intrinsically linked with Geometry and
Physics.

Nevertheless, Hamilton had failed to create a new algebra for more than ten
years, until he found an answer on October 16th, 1843, while he walked with his wife,
across the Royal Canal in Dublin, going to a meeting of the Royal Irish Academy. In that
moment, he realized that he would need three imaginary parts instead of two. In fact, he
noted that the three distinct imaginary parts, which he named i, j and k, should verify the

conditions

Then, he wrote his results on the stone of the Brougham Bridge, which we unfortunately

cannot find today because of the action of time. The reader can find more details in



E. Real Division Algebras 360

[10]. In turn, [36] contains interesting ideas involving differentiability of quaternionic

functions, being a classical reference which complements some notions and questions that

the reader will find in [10]. &
€1 €2 €3
1 1 €1 (&) €3
e | €1 —1 €3 —€9
ey | eg | —e3 | —1 el
€3 | €3 €9 —€1 —1

Table E.1: This table describes the quaternionic multiplication of the vectors of the
canonical basis. In fact, it describes the result of multiplying the bold element in its ith
row by the bold element in its jth column.

Figure E.1: The arrows in this circular diagram indicate the positive sign to obtain the
third element from the product of the other ones. For example, eze; = e5 and ejes = e3.
If we multiply two elements linked by an arrow in the opposite direction, then we have to
put a minus sign in front of the third element. For instance, eze; = —e; and ese; = —es.
Moreover, we have to remember that e? = e3 = €2 = —1 by definition. This allows us to
deduce the equation ejeses = —1, which is also an important relation in the framework
of the quaternions.

€1 €2 €3 €4 €5 €6 €7
1 1 e1 €9 es €y es € er
€1 €1 -1 €4 €7 —E€9 €6 —€x5 —E€3
ey | ex | —eq | —1 es e | —es | er | —eg
€3 €3 —er7 —€x —1 €6 €9 —€4 €1
eqles| ey | —eg | —eg | —1 er es | —e;x
€5 €5 —E€g €3 —E€9 —er7 -1 €1 €y
€Eg €g €5 —er €4 —€3 —e€1 —1 (]
er | er | es e | —e1 | es | —eq | —eg | —1

Table E.2: This table describes the octonionic multiplication of the vectors of the canonical
basis. In fact, it describes the result of multiplying the bold element in its sth row by the
bold element in its jth column.
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Figure E.2: The mathematical object that allowed the construction of this diagram is
known as the Fano Plane, which was developed by Gino Fano (1871 - 1952). This is the
finite projective plane with the least number of points and lines. Indeed, it has seven
points and seven lines, with three points on each line and three lines through each point.
We use the arrows in this diagram to indicate the positive sign to obtain the third element
of each line from the product of the other ones. For example, e4eq = e3 and ezeq = eg. If
we multiply two elements linked by an arrow in the opposite direction, then we have to

put a minus sign in front of the third element. For instance, e;e4, = —ep and eje; = —es.
Furthermore, we have to remember that €? = e = €2 = ¢} = e = €2 = 2 = —1

by definition.

Example E.5 (The real division algebra Q). Here we define the real division
algebra of the octonions, denoted by O, and give some ideas about its historical
development. Let 1, eq, es, €3, €4, €5, €5 and ey be the vectors of the canonical basis

of the real Fuclidean eight-dimensional space. Then:

e as a vector space, Q s the real Fuclidean eight-dimensional space, whose elements
are linear combinations of the vectors of its canonical basis. Hence, for each r € Q,

there exist unique o, aq, Qa, iz, iy, (s, g, 7 € R such that

T = &+ 1€ + Qeta + (33 + ueyq + Q5e5 + gl + Qryer; and

e as a real division algebra, O has the multiplication bilinearly induced by

Table which can be easily deduced from the mnemonic diagram presented in
Figure[E 3

Historically, the octonions were first described by John Thomas Graves

(1806 - 1870), who was a Hamilton’s friend since both attended together the Trinity



E. Real Division Algebras 362

College in Dublin. In fact, Graves’ interest in algebra was particularly responsible
for Hamilton’s enterprise on the complexr numbers and on the triplets. At the same
day of his decisive walk across the Royal Canal, Hamilton sent a letter to Graves
describing the quaternions. Graves answered greeting him by the boldness of his idea,

adding that:

“There 1s still something in the system which gravels me. I have not yet any
clear views as to the extent to which we are at liberty arbitrarily to create
imaginaries, and to endow them with supernatural properties.”

Moreover, Graves asked “If with your alchemy you can make three pounds of gold, why

should you stop there?”

On December 26th, 1843, Graves wrote to Hamilton a description of a new
normed diwvision algebra of eight dimensions, which he called octaves. On January,
1844, Graves sent three letters to Hamilton expanding his discoveries. He even considered
the idea of a General Theory of 2™-itons and tried to construct a normed division
algebra of sizteen dimensions. On July, 1844, Hamilton answered Graves pinpointing that
the octonions were non-associative. Indeed, Hamilton invented the term associative at
that moment. Therefore, one can say that the octonions were essential to enlighten the
notion of associativity in Algebra. Then, Hamilton offered himself to publicize Graves’
discovery. However, since he was always engaged with the quaternions he had just

created, Hamilton kept postponing such offering.

In the meantime, the young Arthur Cayley (1821 - 1895) was thinking on
the quaternions since Hamilton announced their existence.  On March, 1845, he
published an article on the Philosophical Magazine entitled “On Jacobi’s Elliptic
Functions, in Reply to the Rev. B. Bronwin; and on Quaternions” In a significant
part of this article, Cayley tried to refute another paper, in which the author
pointed out errors in his work on elliptic functions. Apparently, Cayley gave a brief
description of the octonions in this work. In fact, Cayley’s article was so full of errors
that it was omitted from his collected works, with the exception of the part in which he

treated the octonions.

Annoyed with being beaten to publication, Graves attached a postscript in one of his
articles who would appear on the next edition of the Philosophical Magazine saying that

he knew about the octonions since the Christmas of 1843. On June 14th, 1847, Hamilton
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2

wrote a small note to the Transactions of The Royal Irish Academy alleging Graves
pioneerism. Nonetheless, it was too late, the octonions had already entered in history as
Cayley’s numbers. The reader can find more details in [J], which is also the main
reference for the purposes of this appendiz because it contains much information about the

real (division) algebras. &

Definition E.6 (Special kinds of real algebras). Let <7 be a real algebra. We say
that it:

e is commutative if ab = ba for all a,b € o7 ;
e is associative if (ab)c = a(bc) for all a,b,c € o7 ;

o is alternativd )| if a(bb) = (ab)b and (aa)b = a(ab) for all a,b € <. This is
equivalent to the fact that every subalgebra of <f generated by two elements is

associative;

e is normed if it has a norm |- | : &/ — [0,00) in such manner that |a||b| = |ab|

for all a,b € &7; and

e has multiplicative inverses if, for every non-zero a € <, there exits a=' € o

l=a7la=1. &

such that aa™

Example E.7 (On the algebras presented before). We have the following facts about the

real algebras that we presented before.

e R is an associative and commutative real division algebra. The proofs of these
assertions are consequences of the formalization which one chooses for the real

numbers.

e C is an associative and commutative real division algebra. The reader can readily

prove these claims.

(U This nomenclature follows from the fact that the associator [-,-,-] : & x o x o — o
given by [a,b,c] = (ab)c — a(be) “alternates” in an alternative algebra. That is, the associator changes
sign under an odd permutation of the letters a, b and ¢, but remains unchanged under an even
permutation. At this point, the reader may have noted the parallel between the associator and
the commutator [,-] : & x o/ — & given by [a,b] = ab — ba, which is identically zero in a
commutative algebra.
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e H is an associative and non-commutative real division algebra. In fact, it s
non-commutative since ejea = e3 and ese; = —es3. We leave to the reader the

straightforward computations which prove the associativity of the quaternions.

e O is an alternative, non-associative and non-commutative real division algebra.
In fact, it is non-commutative because ejes = e4 and ese; = —ey. Moreover, it

18 non-associative because

(e1e9)es = eqes = —eg  and

61(6263) = €165 = ¢€g.

Thus, note that the expression eieseseseseger in Q, which is analogous to the
expression ejeses = —1 in H, has no meaning. We leave to the reader the

strarghtforward computations which prove the alternance of the octonions.

All these four real division algebras have multiplicative inverses. Indeed, with the
exception of the real numbers in which we have to prove the existence of multiplicative
mverses by means of a formalization, all these proofs are again straightforward
computations. Note that Tables and may help with the quaternions and the
octonions, respectively. Furthermore, all these four real division algebras are normed

with respect to the canonical Fuclidean norm. &

Remark E.8 (On real algebras). We have the following instructive facts about generic

real algebras.

e In a real algebra, the absence of zero divisors for the multiplication of < is
equivalent to the operations of left and right multiplication by non-zero elements
being invertible. Indeed, since </ s a finite-dimensional vector space and these
operations are linear maps, the Rank-Nullity Theorem says that we only have to

prove their injectivities. We leave these proofs to reader.

e Fuvery associative real algebra is an alternative real algebra. However, the converse

is false as the octonions show in Example [E.]

e In a normed division algebra, we have |1| = 1. In fact, the result is obvious since

we have the equality |1|? = [1]|1] = [1].
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o A normed real algebra <7 is necessarily a division algebra. Indeed, if </ has zero
divisors, then it cannot be a normed algebra. This happens because, if a,b € of
are zero divisors, then the norm of the product ab is zero despite the product of the

norms of a and b being non-zero.

o An alternative real algebra with multiplicative inverses is a real division algebra.
Moreover, an alternative and commutative real algebra has multiplicative inverses if
and only if it is a real division algebra. On the other hand, there exist alternative and
non-commutative real division algebras without multiplicative inverses. For example,
if we only change Table declaring e = ey — 1, then ey has no multiplicative
inverse. Indeed, in this situation, we have that e3 — e; and —(e; + e3) are left
and right inverses for ey, respectively. Thus, since this new quaternionic algebra is

associative, we are done here. &

E.2 Morphisms of real algebras

Definition E.9 (Homomorphisms of real algebras and of real division algebras). Let <
and A be real (division) algebras. A linear map ¢ : o/ — B is a homomorphism
of real (division) algebras if o(1) = 1 and ¢(ab) = ¢(a)p(b) for all a,b € <.

Furthermore:

e o monomorphism of real (division) algebras is an injective homomorphism of

real (division) algebras;

e an epimorphism of real (division) algebras is a surjective homomorphism of

real (division) algebras; and
e an isomorphism of real (division) algebras is an invertible homomorphism of

real (division) algebras. O

Remark E.10 (On homomorphisms of real algebras). We have the following facts about

homomorphisms of real algebras.

o Let o/ be a real (division) algebra. The real division algebra of the real numbers
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is considered a subalgebra of </ by means of the monomorphism of real (division)
algebras

t:R — A,

a — ol

o Let o/ and B be real (division) algebras and ¢ : o/ — PB be a linear map
such that:

p(ab) = p(a)p(b) for all a,be .

If ¢ is surjective, then it is a homomorphism of real (division) algebras. Indeed,
by hypothesis, for all b € AB, there exists a € </ in such manner that p(a) = b.
Therefore,

e(1)b = ¢(1)p(a) = ¢(la) = p(a) = b.

Analogously, bo(1) = b.  From the uniqueness of the multiplicative identity,
©(1) = 1. This proves our claim. &

Definition E.11 (Categories of real algebras and of real division algebras). We say that:

o AlgR s the category of real algebras whose objects are real algebras and whose

morphisms are homomorphisms of real algebras; and

e AlgDR s the category of real division algebras whose objects are real division

algebras and whose morphisms are homomorphisms of real division algebras.

It is to be noted that AlgDR is a full subcategory of AlgR since every homomorphism
of real algebras between real division algebras is a homomorphism of real division

algebras. %

Definition E.12 (Anti-homomorphisms of real algebras and of real division
algebras). Let o/ and B be real (division) algebras. A linear map ¢ : & — A is an
anti-homomorphism of real (division) algebras if (1) = 1 and ¢(ab) = ¢(b)p(a)
for all a,b € of. Furthermore:

e an anti-monomorphism of real (division) algebras is an injective

anti-homomorphism of real (division) algebras;
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e an anti-epimorphism of real (division) algebras is a surjective

anti-homomorphism of real (division) algebras; and

e an anti-isomorphism of real (division) algebras is an invertible

anti-homomorphism of real (division) algebras. O

Remark E.13 (On anti-homomorphisms of real algebras). We have the following facts

about anti-homomorphisms of real algebras.

o Let o/ and A be real (division) algebras and ¢ : o — B be a linear map.
Then:

o if ¢ is surjective and p(ab) = p(b)p(a) for all a,b € o, then it is an
anti-homomorphism of real (division) algebras. We leave the details to the

reader, recommending a closer look into the arguments which we used in
Remark |l 10; and

o if B is a commutative real (division) algebra, then ¢ : o — AB is an
anti-homomorphism of real (division) algebras if and only if it is a

homomorphism of real (division) algebras.

e [t is not possible to define a category of real (division) algebras whose morphisms
are anti-homomorphisms of real (division) algebras. This happens because the
composition of two anti-homomorphisms of real (division) algebras is a
homomorphism of real (division) algebras. Nonetheless, we can define a category
of real (division) algebras whose morphisms are anti-homomorphisms of real
(division) algebras and homomorphisms of real (division) algebras, but this is

not standard. &

E.3 Cayley-Dickson algebras

Definition E.14 (Anti-involution and real star-algebra). We say that a real (division)

star-algebra is a pair (<, *) in which:

e o/ is a real (division) algebra; and
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o x: o/ — & is an anti-involution of the real (division) algebra <f, that is,
an anti-isomorphism of the real (division) algebra o/ whose inverse coincides with

itself.

We will say that </ is a real (division) star-algebra, omitting its anti-involution, and we
will write a* instead of x(a) for all a € <. Moreover, we will say that the real star-algebra
o is nicely normed if the sum a + a* is a real multiple of 1 € & and the products aa*
and a*a, which have two coincide, are a positive real multiple of 1 € &7 for all non-zero

element a € o . &

Example E.15 (The real division star-algebras R, C, H and Q). We have that:

R is a real division star-algebra with respect to the anti-involution * : R — R

given by o = «;

C is a real division star-algebra with respect to the anti-involution x : C — C

given by (a+ ager)* = a — ajeq;

H s a real division star-algebra with respect to the anti-involution x : H — H

given by (a+ age; + ages + azes)” = a — ape; — anes — azes;

O is a real division star-algebra with respect to the anti-involution * : O — O
given by (o + areq + aoen + ages + aygeq + ases + ageg + azer)* = a — aje; — ey

— (X3€3 — (€4 — 55 — gEg — Ql7€E7.

The reader can readily prove with straightforward computations that all these four real

star-algebras are nicely normed. &

Remark E.16 (On nicely normed real star-algebras). We have the following facts about

nicely normed real star-algebras.

o If o7 is a nicely normed real star-algebra, then it has multiplicative inverses. Indeed,
it suffices to see that, for every non-zero element a € </, the inverse a~! of a is

given by
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o If o/ is nicely normed and alternative, then it is a normed real algebra. In fact, we

define the norm
|-/ — [0,00),
a +— vaa*.

We claim that |a||b] = |ab| for all a,b € of. Indeed, since < is alternative, we

have
labl* = (ab)(ab)* = ab(b*a*) = a(bb*)a* = aa*|b]* = l|a|*|b?

for all a,b € o7, which proves the assertion. %

Definition E.17 (Cayley-Dickson algebra of a real star-algebra). The Cayley-Dickson
algebra of a real star-algebra (o, ) is said to be the real star-algebra CD(&7) in such

manner that:

e as a vector space, CD() is the direct sum of & o ;

e as a real algebra, CD(&7) has the multiplication CD (/) x CD(«) — CD(&) given
by (a,b)(c,d) = (ac — db*,a*d + cb); and

e as a real star-algebra, CD(<7) has the anti-involution % : CD(&/) — CD() given
by (a,b)* = (a*, —b). ¢

Theorem E.18 (Relations between a real star-algebra and its Cayley-Dickson algebra).
We have the following facts about a real star-algebra </ and its Cayley-Dickson algebra
CD(«).

(1) < is nicely normed if and only if CD(&7) is nicely normed.

(2) < is associative and nicely normed if and only if CD(</) is alternative and nicely

normed.

Proof. These facts are proved by straightforward computations that we leave to the

reader fulfill. O
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Example E.19 (The real algebra S). The real algebra of the sedenions is the
Cayley-Dickson algebra S := CD(Q). More explicitly, S is the real algebra given by the
sirteen-dimensional real Fuclidean space equipped with the multiplication bilinearly induced
by Table [E.5 The sedenions are our first example of a real algebra with zero divisors.

Indeed, for instance,

(es+e10)(e6 —e15) = eseg — es3€15 + €10€6 — E10€15
= e5 — €2+ €12 —¢€;5

= 0.

The reader can find more examples of zero divisors in S. Therefore, not only the
sedenions cannot be mnormed, but also Theorem implies that S is not an
alternative algebra. In fact, since Q@ and S = CD(Q) are nicely normed, we have that
S is alternative if and only if O is associative. Thus, since O is non-associative, it follows

that S is non-alternative. &

Remark E.20 (The real division star-algebra of the real numbers generates an
infinite family of real star-algebras through the Cayley-Dickson algebra construction).
We have

CDR) = C, CD(C) = H and CDH) = O.

More than that, iteratively applying the Cayley-Dickson algebra from the real numbers,
we obtain an infinite family of nicely normed real star-algebras, each of which has
dimension equal to a power of two. An important fact is that R, C, H and Q are the
only normed alternative real division algebras of this family. Indeed, all the other algebras
of this family, from the sedenions, have zero divisors and are non-alternative because they
contain copies of this sixteen-dimensional algebra. In particular, having zero divisors,

these algebras cannot be normed. &
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Table E.3: This table describes the sedenionic multiplication of the vectors of the
canonical basis. In fact, it describes the result of multiplying the bold element in its
1th row by the bold element in its jth column.
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E.4 Classical theorems

In Section we exposed the following result due to Raoul Bott (1923-2005),
John Milnor (1931-) and Michel Kervaire (1927-2007), whose proof uses Ordinary
K-Theory.

Theorem E.21 (Bott-Milnor-Kervaire Theorem). Every real division algebra has

dimension 1, 2, 4 or 8. 0

This result was independently proved by Bott-Milnor and by Kervaire in 1958,
according to [B, p. 150]. Moreover, as we mentioned before, the reader can find a
detailed proof of it in [I5] pp. 59-72]. When we look to the preceding section of this
appendix, an interesting consequence of Bott-Milnor-Kervaire Theorem is that there
is no way of changing the multiplication of the sedenions induced by Table to
turn it into a division algebra. More generally, it is not possible to change the
multiplication of the Cayley-Dickson algebras, starting from the sedenions, to turn them
into division algebras. On the other hand, we have proved that there exist real division
algebras in dimensions 1, 2, 4 and 8. Indeed, we have R, C, H and O in Examples [E.2]
[E.3] [E.4] and [E.5] respectively. Nevertheless, these algebras are not the only real division

algebras in these dimensions up to isomorphism (with the obvious exception of the real

numbers). Indeed:

e in dimension 2, one can consider the hyperbolic complex numbers Cy that are
defined exactly as the complex numbers, but declaring e = 1. The reader can

promptly prove that there can be no isomorphism of real division algebras between

C and Cy;

e in dimension 4, one can consider the quaternionic algebra defined in the last item
of Remark [E.8l This algebra cannot be isomorphic to H since its element e; has no
inverse. In fact, an isomorphism of real division algebras has to map inverses into

inverses; and

e in dimension 8, one can consider the Cayley-Dickson algebra of the quaternionic
algebra of the preceding item. This cannot be isomorphic to ©@ by the same reasoning

presented above.



E. Real Division Algebras 373

Therefore, we could ask if the historical division algebras R, C, H and O are also special
from a strictly mathematical viewpoint. Subsequently, we present two positive answers

for this question.

Theorem E.22 (Zorn’s Theorem). The only alternative real division algebras are R,

C, H and O. O

Theorem E.23 (Hurwitz’s Theorem). The only normed real division algebras are R, C,

H and O. O

The first theorem was proved by Max Zorn (1906-1993) in a paper of 1930
that was correlated to his doctoral thesis. The reader can find a mention to Zorn’s
original work in [B p. 150]. Moreover, the reader can find an interesting sketch of proof
of Hurwitz’s Theorem in 5, pp. 156-159]. It is to be noted that, although this result was
first proved by Adolf Hurwitz (1859-1919) in a paper of 1898, the sketch presented in
this reference is the one a modern proof that uses the ideas of Clifford algebras developed

in Chapter[3l This gives us one more reason to study these objects, which are intrinsically

linked to K-Theory (see Section [3.4)).
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Appendix F

Principal Bundles

In this appendix, we set the fundamental notion that one must know in order
to understand the spin and spin® structures that we deal with in the main text, which is
the one of principal bundles. We only expose here the initial concepts and the results that
play an essential role in our exposition. However, since the theory of principal bundles
is, under a certain viewpoint, equivalent to the one of vector bundles, we introduce some
notions that show this equivalence. The reader who fells the urge to deepen his or her
knowledge in this interesting topic may find in [30, pp. 28-35] and [35, pp. 111-118|
good references. Finally, it is to be noted that the notions presented here are mainly used

in Chapter

F.1 First definitions

Definition F.1 (Principal bundle). Let X be a connected topological space and G be a
topological group. A principal bundle on X with structure group G is defined by the
following data:

e q topological space P;
e a surjective continuous function m: P — X ; and

e a continuous right action of G on P such that w(x - g) = 7n(x) for all x € X
and all g € G,

such that the following two conditions are satisfied.
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(1) For every © € X, there exists an open neighborhood U of x in X and a

homeomorphism

p:7m ' (U) - UxG

verifying the commutatiity of the following diagram with o(7 1 (y)) = {y} x G
for every y € U.

/@\
T HU) — > U < 0 Ux@G

(2) For every y € U and every g,h € G, we have the compatibility condition
¢y, h) -9 = ¢ (y, hy).

If X is not connected, then a principal bundle on X s defined by a principal bundle on
each connected component of X. In this situation, the structure group depends on each

connected component of X. &

Notation F.2 (On principal bundles). Henceforth, the notation of Definition will
be used without explicit mention. In particular, we will denote a principal bundle with
structure group G by w: P — X. Moreover, we will often denote the whole bundle by P,

for convenience. &

Definition F.3 (Standard nomenclature in the framework of principal bundles). Let

m: P — X be a principal bundle. We say that:

o for everyx € X, the topological space 7= (z) is the fiber of P in x, which is hereafter
denoted by P,;

o P and X are, respectively, the total space and the base space of the principal

bundle m: P — X;
e a local chart or local trivialization of P is a pair (U, py) where:

e U C X is open; and



F. Principal Bundles 377

o oy HU) = U x G is a homeomorphism satisfying Conditions (1) and (2)
of Definition [F.1]

Moreover, if x € U, then the local chart (U, py) is also said to be a local chart

m x; and
e an atlas of P is a family &y = {(U;, pi) }icr where:

o 3= {U;}ics is an open cover of X; and

o (Ui, i) is a local chart of P for all i € 1.

Note that the existence of an atlas of P follows from Conditions (1) and (2) of
Definition [F.1] &

Remark F.4 (On principal bundles and their right actions). Let 7 : P — X be a
principal bundle. Because of Conditions (1) and (2) of Definition the G-orbit of
p € P, is the whole P,. Moreover, we have that P, is a G—torso. Hence, the projection
7 induces a homeomorphism between P/G and X. In particular, the G-action is free in

the whole P. &

Remark F.5 (Initial comparison between vector bundles and principal bundles). In a
vector bundle, by definition, each fiber is a vector space, which is required to be isomorphic
to the typical fiber. On the other hand, in a principal bundle, by definition, the fibers are
not groups, but only torsors with respect to the structure group. In particular, we have
the canonical embedding of the base of a vector bundle into its total space, which is given
by the vanishing global section, but no embedding of the base of a principal bundle into
its total space. This shows an asymmetry between these two notions. Nevertheless, vector
bundles and principal bundles turn out to be symmetric from another viewpoint, which we

will briefly describe in the end of this appendiz. &

(WA G-torsor is, roughly speaking, a group that has forgotten its identity element. In fact, given
any (non-empty) torsor with respect to a group G, we recover a group isomorphic to G by making what
is known as a trivialization of the G-torsor, which roughly corresponds to choosing an identity element.
More precisely, we say that a G-torsor is a non-empty set A together with a right action a: A x G — A
of G such that the map m4 X a: A X G — A x A is an isomorphism, where 74 : A x G — A is the natural
projection onto the first factor. In addition, a trivialization of a G-torsor A is a bijection between A and
the underlying set of G.
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F.2 Morphisms and categories of principal bundles

Definition F.6 (Principal bundle morphisms). Let 7p : P — X and 79 : Q@ — Y
be principal bundles with structure groups G and H, respectively. We give the following

definitions.

e A principal bundle morphism from P into Q is a pair (f,p), where f : P — Q
1s a continuous function and p : G — H is a topological group homomorphism, such

that:

o there exists a (unique) continuous function g : X — Y in such manner that

ngo f=gomp; and
o f(p-h)=f(p)-p(h) for allp € P and all h € G.

This means that the following diagram is commutative.

PxG Ixp sy Qx H
P f > @
y= 71'Q
X > Y

o If X =Y, then we say that a principal bundle morphism over X from P into
Q@ 1s a principal bundle morphism f : P — @ in such manner that the induced

function g : X — X is the identity map.

e IfG = H, a G-principal bundle morphism is a morphism of the form (f,idg).
Moreover, if X =Y and f induces g = idx, then we call it o G-principal bundle

morphism over X.

In all of these cases, we say that an invertible principal bundle morphism (over X ) is a

principal bundle isomorphism (over X ). O



F. Principal Bundles 379

Theorem F.7 (When principal bundle morphisms are principal bundle isomorphisms).
Let mp : P — X and mg : Q — Y be principal bundles with structure groups G and H,

respectively. Then:

(1)if (f -+ P — Q, p: G — H) is a principal bundle morphism, then it is a
principal bundle isomorphism if and only if g s a homeomorphism and p is a group

1somorphism;

(2)if X =Y and (f : P = Q, p : G — H) is a principal bundle morphism
over X, then it is a principal bundle isomorphism if and only if p is a group

1somorphism; and

(3)if X =Y, G =Hand (f : P - @, ides : G — G) is a G-principal
bundle morphism over X, then it necessarily is a G-principal bundle isomorphism

over X.

Proof. Evidently, we only have to prove that the first statement holds true. Indeed,
note that, if (f, p) is a principal bundle isomorphism, then clearly g is a homeomorphism
and p is a group isomorphism. Conversely, if g is a homeomorphism and p is a group

isomorphism, then:

e f is injective. Let p,q € P be such that f(p) = f(q). Since gomp = mg o f,
it follows that (g o mp)(p) = (g o mp)(q). Hence, once g is a homeomorphism,
mp(p) = mp(q). This last equation implies the existence of h € G for which ¢ = p- h.

Moreover,

flp) = flq) = f(p-h) = f(p)-p(h)

implies p(h) = 1y. Therefore, since p is an isomorphism, h = 1. Consequently,

we have p = ¢. This proves that f is injective.

o f us surjective. Let ¢ € ). Since mg is surjective, there exists y € Y for which
q € Q. Moreover, since g is a homeomorphism, there exists a unique x € X such
that g(z) = y. Thus, we have ¢ € Q). Hence, for any p € P,, we have f(p) =q-h
for a suitable h € H. Consequently, once p~t(h™1) € G is well-defined because p is

an isomorphism, we have
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flo-pH(h71) = f(p) plp~'(h71)) = flp)- ™" = (¢-h)-h™" = q.
This proves that f is surjective.

o (f71 p™Y) is a principal bundle morphism. By hypothesis, p™' : H — G
is a topological group homomorphism. Moreover, the reader can readily prove that
fYq-h)=fq) -p'(h) for all ¢ € Q and all h € H. Thus, it only remains to
show that f~' : Q — P is continuous. Choosing local charts (U, ¢) and (g(U),)
of P and (), respectively, we define the function o : U — H by means of the
equality

fle M@, 10)) = 7 (g(), a(2)).

Obviously, a is continuous because it is the composition of ¥ o f o o7 !(-, 1¢)
with the natural projection onto the second factor. For all h € G, it follows from

the preceding equation that

fle~ (. h)) = &~ (g(2), a(z)p(h)).

Therefore, for all h € H, we have

FHW  g(2), b)) = ¢ (z,p7 (a(x) " h).

This immediately implies that the composition f~' o1 ~! o (g x 1g) is continuous.
Consequently, we have that f~! is also continuous because 1)~ and g x 1y are

homeomorphisms.

This finishes the proof of the theorem. m

Definition F.8 (Categories of principal bundles). We say that:

e PrincBdl is the category of principal bundles whose objects are principal

bundles and whose morphisms are principal bundle morphisms;

e PrincBdl(G) is the category of principal bundles with fized structure
group G whose objects are principal bundles with structure group G and whose

morphisms are G-principal bundle morphisms;
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e PrincBdly s the category of principal bundles on X whose objects are
principal bundles on X and whose morphisms are principal bundle morphisms

over X; and

e PrincBdlx(G) is the category of principal bundles on X with fixzed
structure group G whose objects are principal bundles on X with structure
group G and whose morphisms are G-principal bundle morphisms over X. Note

that this category if a groupoid since its morphisms are always isomorphisms by

Theorem [F.7, &

Remark F.9 (On the categories of principal bundles). We have the following diagram of
categories indicating the inclusion relations between PrincBdl, PrincBdl(G), PrincBdly

and PrincBdlx (G).

PrincBdl(G) > PrincBdl

A

PrincBdlx(G) ———  PrincBdly

Differently from the diagram in Remark [CU7, the horizontal arrows of this diagram
are not full. This happens because, fixing the structure group G, the topological group
homomorphism p : G — G of any principal bundle morphism (f, p) is obliged to be the
identity map. &

Definition F.10 (Sets of equivalence classes of principal bundles). We say that:

e Princ s the quotient of the class of objects of PrincBdl by its equivalence relation of
wsomorphism of principal bundles. In other words, Princ is the set of tsomorphism

classes of principal bundles; and

e Princy is the quotient of the class of objects of PrincBdly by its equivalence
relation of isomorphism of principal bundles on X. In other words, Princy is the

set of isomorphism classes of principal bundles on X.
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The sets of isomorphism classes of principal bundles Princ(G) and Princx(G) are defined

m a similar manner. &

F.3 Trivial bundles and restrictions

Definition F.11 (Product and trivial principal bundles). Let X be a connected topological
space. We say that:

e the product principal bundle with structure group G is the projection onto

the first factor m: X x G — X equipped with the trivial action
(x,h) -k = (x,hk)

for all (x,h) € X x G and all k € G; and

e a principal bundle m : P — X with structure group G is trivial if it s
isomorphic over X and as a G-principal bundle to the product bundle X x G.
In this situation, an isomorphism from P onto the product bundle is said to be a

trivialization of P. O

Definition F.12 (Restriction of a principal bundle). Let 7w : P — X be a principal bundle.
Given a topological subspace Y C X, the restriction of P to Y, which is hereafter denoted
by P |y, is the principal bundle 7 | —1(yy: 71 (Y) = Y with the induced G-action on each
fiber on Y. &

Remark F.13 (On the restriction of principal bundles). Let 7 : P — X be a principal
bundle and Y be a topological subspace of X. Then:

e the restriction P |y is a principal bundle because we can verify Conditions (1) and
(2) of Definition by restricting a local chart (U,py) of P to the local chart
(UQY, Yu |7T*1(UOY)) OfP |Y;' and

e if (U, pu) is a local chart of P, then oy : 7= Y(U) — U x G is a principal bundle
isomorphism over U between P |y and the product bundle. Therefore, a principal

bundle is locally trivial by definition. &
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Remark F.14 (Covariant functor defined by the restriction of principal bundles). Let X
be a topological space and Y be a subspace of X. Then, we have the following

covartant functor
ly: PrincBdly — PrincBdly,
P - P ‘y,

(f:P=Q, p:G—H) —» (fly:Ply—=Qly, p:G— H),

where f |y is the natural map that sends a € P |y into f(a) € Q |y. The reader can
readily prove that this map is not only well-defined but also is a principal bundle morphism

over Y. To complete these details, we recommend a closer look at the arguments used in

Remark[C .13 &

Definition F.15 (Common trivializing open cover for a family of principal bundles on
the same base space). Let X be a topological space and 11 = {m, : P, — X}aea

be a family of principal bundles on X. A common trivializing open cover of X

for 11 is an open cover U = {U,;}icr of X in such manner that P,

aeNandalliel. O

v, 15 trivial for all

Remark F.16 (Existence of common trivializing open covers for finite families
of principal bundles). Let X be a topological space. Using induction, the reader can readily
prove that there exists a common trivializing open cover of X for any finite number of

principal bundles. To complete the details, we recommend a closer look at the arguments

used in Remark [C.14) O

F.4 Sections of principal bundles

Notation F.17 (On real and complex numbers). When we do not desire to distinguish
between the field of real numbers and the field of complex numbers, we shall write K to

symbolize them. &

Definition F.18 (Global and local sections of a principal bundle). Let 7 : P — X be a

principal bundle. We say that:
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e o (global) section of P is a continuous function s : X — P in such manner
that mos = idx. The set of sections of P, which is naturally a torsor with

respect to the group of continuous functions C°(X,G), is hereafter denoted

by T'(P); and

e if U C X is open, then a global section s : U — P |y of the restriction P |y is
said to be a local section of P. Moreover, if x € U, then s is also called a local

section in x. &

Theorem F.19 (Local charts induce bijections between the set of local sections and the
group of continuous functions). Let m : P — X be a principal bundle. If (U, y) is a
local chart of P, then it induces a bijection between T'(P |y) and C°(U,G). Moreover, this

bijection is a C°(U, G)-torsor isomorphism.

Proof. The proof of this result is similar to the one of Theorem [C.I7. The reader can
fulfill the details. O

The following result gives a characterization of trivial principal bundles
through their global sections. Indeed, it says that a principal bundle is trivial if
and only if it admits a global section. This shows one more discrepancy between

vector bundles and principal bundles. In fact, as one can readily see comparing

Theorems [C.20] and [F.20] the behavior of global and local sections in these frameworks

are radically different.

Theorem F.20 (Equivalence between triviality of a principal bundle and the
existence of a global section). Let # : P — X be a principal bundle with structure
group G. Then, P is trivial if and only if there exists a global section of P. Furthermore,
there exists a canonical bijection between the set of trivializations of P and the set of

its global sections.

Proof. If f: P — X x G is a trivialization of P, then

s: X — P,

r = [z, 1g),
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is a global section of P. Moreover, if s : X — P is a global section of P, then we obtain

the trivialization
f:P — XxG,

s(x)-g — (x,9)

The reader can readily prove that these assignments are inverse to each other,
being canonical bijections between the set of trivializations of P and the set of its

global sections. O]

Remark F.21 (Another interpretation of local triviality of principal bundles). We have
seen in Remark that, given a principal bundle P, a choice of a local chart (U, ¢y )
is equivalent to a choice of a trivialization of P |y. Hence, because of Theorem
it is equivalent to a choice of a local section s : U — P, which is obviously a global

section of P |y. &

F.5 Subbundles of principal bundles

Definition F.22 (Subbundle of a principal bundle). Let 7 : P — X be a principal bundle
and H be a subgroup of the structure group G. We say that a principal subbundle ()
of P with structure group H is an H-principal bundle of the form m |g: Q@ — X, where Q)

is a topological subspace of P and the action of H on Q is the restriction of the action of

H on P.

Remark F.23 (On subbundles of principal bundles). Let m# : P — X be a principal
bundle and () be a subbundle of P. Note that:

e if h € H and we consider its G-action on P, then Q) -h C Q). Therefore, since Q) is
obuviously a subset of Q) - h, we have Q = Q - h; and

e the inclusion (i,7) : (Q,H) — (P,G) is a morphism of principal bundles over X.
In fact, i is continuous since it is the inclusion of a topological subspace, j is the
inclusion of a topological subgroup by definition and i(q-h) =i(q)-j(h) for allq € Q
and all h € H.
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We also observe that, when we restrict a principal bundle to Y, we are only
considering the fibers over the points of Y, but we take the whole fiber in each point.
On the other hand, considering a subbundle of a principal bundle, we restrict each fiber to
a topological subspace with the group action being the one induced by the restriction, but
wn the whole X. FEwvidently, we can apply both operations at the same time, considering

the restriction of a subbundle. &

The next result of this section enlightens subbundles of principal bundles.
Indeed, it shows a correspondence between subbundles and local sections of the main

principal bundle.

Theorem F.24 (Subbundles and local sections of principal bundles). Let 7 : P — X
be a principal bundle and H be a subgroup of the structure group G. If Q is a
topological subspace of P such that Q -h C Q for all h € H, then 7 |g: Q — X, where
Q 1s endowed with the induced topology and Q. is endowed with the induced action of G
for all x € X, is a principal subbundle of P if and only if, for every x € X, there exists
an open neighborhood U of x in X and a local section s € T'(P |y) such that s(y) € @

for every y € U.

Proof. (=). Since @ is an H-principal bundle, it admits a local chart in every = € X.
Note that such a chart is equivalent to a local section s € I'(Q |y). Thus, once @ is
endowed with the induced topology, it follows that s : U — P is continuous. Moreover,
since the projection m |g: @ — X is the restriction of 7 : P — X, it follows that
mos = idy. Hence, s € T'(P |y) is such that s(y) € @ for every y € U. («<). For
every x € X, by hypothesis, there exists an open neighborhood U of x in X and a local
section s € T'(P |y) such that s(y) € Q for every y € U. This section defines a local
chart ¢ : (7 |g) ' (U) = U x H in x € X. Therefore, Q is a principal subbundle of P,

as we wished. 0

F.6 Transition functions of principal bundles

Remark F.25 (Relation between the local charts of a principal bundle endowed

with an atlas). Let 7 : P — X be a principal bundle endowed with an atlas
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Oy = {(Ui, wi)}Yier- In addition, let (U;,¢;) and (Uj, ;) be any local charts of Oy
such that U;; = U; N U; is nonempty. Then, consider ¢; : o 1U;) — U; x G and
;7 U;) = U; x G. Fizing x € Uy, if p € P, is such that ¢;(p) = (x,1¢), then
its corresponding representation in U; is of the form y;(p) = (x, g;;(z)) with g;j(x) € G.
Moreover, given any other point q € P,, there exists a unique g € G such that ¢ =p - g.
Therefore,

vila) = ¢ip) -9 = (x,16) -9 = (2,9).
Analogously, we have ¢;(q) = (z,g:;() - g). This means that the transition function is

given by left multiplication by a fized g;;(x) € G for every x € Uy;. This fact allows us to
set the following definition. &

Definition F.26 (Transition functions of a principal bundle). Let 7 : P — X be a
principal bundle endowed with an atlas Oy = {(U;, i) bier- If Ui := U;NUj is nonempty,

then the transition function of P from U; to U; is given by

gij Uy — G,
v = ma(pyo v (z, 1)),
where g : Uiy x G — G is the natural projection onto the second factor. Moreover, it is

immediate to verify that the transition functions satisfy the following condition, called the

cocycle condition:

9k Ui (x) © Gij Ui (JJ) = ik Ui (SL’),

for all v € Uy, == U; N U; N U,. In particular, g;(x) = lg for oll x € U; and
gij(x) = gji(x)~t for all x € U;;. We will frequently omit the point x in the preceding
formulas, admitting that whenever appears a product it is happening in the topological

group G. &

Definition F.27 (First degree nonabelian Cech cohomology of G). Let X be a
topological space and L = {U;};c; be one of its open covers. Being G a topological group,

we set
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ZVl(L(?Q) = {{gij : Uij _>G}i7j€l Y95k \Usje = Y45 Uiy = Gik Uy }

We introduce in Z'(8,G) the relation defined as follows: two of its families {9ij}ijer
and {hi;}ijer are related if and only if there exists a family {n; : U; — G} in such
manner that

hij(r) = ni(z) - gij(x) - Ui(m)il

for all x € U;; and all 3,5 € I. The reader can readily prove that this is an equivalence
relation on Z'(U,G). We set H' (8, G) as the quotient of Z'(8, G) by this equivalence

relation. &

Remark F.28 (On the first degree nonabelian Cech cohomology of G). Let
w1 P — X be a principal bundle endowed with an atlas ®y = {(U;, ¢;)}ier- Being
{gij}ijer the set of transition functions of P, Definition ensures that the

equivalence class

{gii}ijer) € H'(,G)

1s well-defined.  Furthermore, the reader can readily prove that it does not depend
on the homeomorphisms of ®y. Therefore, the class [{gij}ijer] only depends
on the isomorphism class of P among the principal bundles that are trivial on each element
of the open cover & = {U}ier of X. More than that, one can prove that an
equivalence class of transition functions n Hl(il,Q) determines a unique up to
1somorphism principal bundle with structure group G that s trivial on each element of the

open cover in question. Furthermore, we obtain the direct limit
HY(X,G) = lim HY (Y,G).
— 4

The interesting fact is that one can prove that there exists a bijection between Princx (G)

and HY(X, G). ¢

Remark F.29 (On the geometric interpretation of the first degree nonabelian Cech
cohomology of G). Repeating the same reasoning developed in Remark we

conclude that:

e fizing an open cover U = {Ulicr of X, a family {gij}ijer € Z'(U,G)
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corresponds geometrically to a G-principal bundle m : P — X endowed with
a family {s;}ic1, up to G-isomorphism respecting the local sections through

pullback (or pushforward);

e fizing an open cover 84 = {U}licr of X, a class [{gi}ijer] € H'(U,G)
corresponds geometrically to a G-principal bundle © : P — X such that P |y, is

trivial for every i € I, up to G-isomorphism; and

e a class [{gi;}ijei]] € HY(X,G) corresponds geometrically to a G-principal bundle
m: P — X, up to G-isomorphism. %

F.7 Frame bundle

In this section, we show that the transition functions of a vector bundle
with typical fiber ¥ can also be thought of as the ones of a principal bundle with
structure group GL(7). This idea is largely expected since the product coincides
with the composition in GL(7). We start the formalization of this reasoning in the
following definition, where we first consider vector bundles equipped with atlases. This
approach enlightens the structure of the desired principal bundle from the one of the

initial vector bundle.

Definition F.30 (Frame bundle of a vector bundle equipped with an atlas). Let X
be a topological space and E be a vector bundle on X with typical fiber ¥V equipped
with an atlas @y = {(Ui, i) bier-  In addition, let {p;; : Uy — GL(?)}ijer be the
set of transition functions of E with respect to ®y.  Furthermore, consider the
disjoint union

Dy = | | Ui x GL(7).

iel
If v € Ujj and ¢ € GL(V), then we denote by (x,p); the pair (z,¢) € U; x GL(7)
and by (x,¢); the pair (x,p) € U; x GL(¥). We define GL(E, ®y) as the quotient
of DéL(V) by the equivalence relation that identifies (x,); with (x, (pij)s © ©); for all
(z,0) € Uy x GL(¥) and all i,j € I. The frame bundle of E relative to ®y is the
GL(Y)-principal bundle
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m:GL(E,®y) — X,

[(.’B, (10)1] = T,
whose continuous GL(¥')-right action on GL(E, ®y) is given by

- GL(E, ®y) x GL(¥) — GL(E,®y),
([(@, @)il, ¥) = [(z, pov)i. o

With respect to the preceding reasoning, the only inconvenient of the
principal bundle obtained in the definition above is that it apparently depends on the atlas
that comes together with the vector bundle. Nevertheless, there is no such dependence
since we give below an equivalent intrinsic definition of the frame bundle, independent of

any atlas.

Remark F.31 (Vector bundle of linear isomorphisms). Let X be a topological space.
It is immediate from Definition [C 46 that, given vector bundles E and F on X with
the same typical fiber ¥, it is defined their morphism bundle HOM(E,F) with
typical fiber End(7).  Moreover, HOM(E, F), is the wvector space of linear maps
Hom(E,, F,) for all x € X. Now, let us consider ISO(E, F) to be topological subspace
of HOM(E, F') defined by

[SO(E, F), = Iso(E,, F,)

for all x € X. In general, this is not a vector subbundle of HOM(E, F'), being only a fiber
subbundl. More than that, 1SO(E, F') has a natural GL(¥)-right action if and only
if E = X x¥. This can be seen using the approach of transition functions presented
i Remark . Indeed, this shows that the transition functions of HOM(E, F) and
ISO(E, F) are given by

(0i)2(¢) = (ij)e © © 0 (¢ij); (F.1)

()In fact, vector bundles and principal bundles are enriched cases of fiber bundles. In this work,
fiber bundles will not play an important role by themselves. However, as the reader will see shortly
in the same paragraph of this footnote, it is important to know that all the elementary notions considered
here are also defined to this broader concept. Therefore, for instance, we have categories of fiber bundles,
morphisms of fiber bundles, sections of fiber bundles, transition functions of fiber bundles, et reliqua.
The reader who fells the urge to deepen his or her knowledge in this interesting topic may find in
[18, pp. 11-23, 61-66] a good reference.
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which are not coordinate changes of a principal bundle unless (pi;), = idy. In this
case, we have the right-action f, - @ = foo for all x € X, p € GL(¥) and all
fe€Iso(X x ¥, F),. O

Definition F.32 (Frame bundle of a vector bundle). Let X be a topological space and
E be a vector bundle with typical fiber V. We say that the frame bundle of E is the
GL(7)-principal bundle marg) : GL(E) — X where

GL(E) := Iso(X x ¥, E)

and the GL(¥)-right action on GL(E) is given by f, - ¢ = fr o for all x € X,
p € GL(7) and dll f, € GL(E),. o

Theorem F.33 (Equivalence between the frame bundles from Definitions and
['.32). Let X be a topological space and E be a vector bundle on X with typical fiber ¥V

equipped with an atlas Oy = {(U;, Vi) }icr. There exists a canonical isomorphism over X

between the frame bundle GL(E, ®y) of Definition and the frame bundle GL(E) of
Definition [F.59,

Proof. For every x € X, let i € I be such that x € U; and let f, € GL(E),. Then,

we define the isomorphism

®:GL(E) — GL(E,®y),
fa: = [(ZL‘, (@bz)mofm)Z]

It suffices to prove that ® is well-defined since, in this situation, it is clearly invertible
because (v;), is invertible for all z € U;. Indeed, if we choose j € I for which z € Uy,

then, using Equation (F.1)) with ¢;; = idy, we have

[(z, (Wj)zo fo)i] = (@, (005)a((¥i)e © f2));]
= [(z, (¥ij)x 0 (¥i)z © f2);]
= [(I, (wz)x o fx)z]

This finishes the proof of the theorem. O
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F.8 Associated bundle

In this section, we invert the reasoning of the preceding one. Indeed, we
show that the transition functions of a principal bundle with structure group GL(7")
can also be thought of as the ones of a vector bundle with typical fiber 7.
Furthermore, we show that, fixing a topological representation p : G — GL(¥)
where 7 is finite-dimensional vector space, the transition functions of a principal
bundle with structure group G can also be thought of as the ones of a vector bundle
with typical fiber 7. We begin the formalization of this reasoning in the following
definition, where we first consider principal bundles equipped with atlases. This
approach enlightens the structure of the desired vector bundle from the one of the

initial principal bundle.

Definition F.34 (Associated bundle of a principal bundle equipped with an atlas). Let X
be a topological space and P be a principal bundle on X with structure group GL(7)
equipped with an atlas @y = {(Ui, ;) }ier- In addition, let {¢;; : Uy — GL(?)}ijer
be the set of transition functions of P with respect to ®y. Furthermore, consider the
disjoint union

Dy = || Uix7.

icl
If v € Uj and v € ¥, then we denote by (z,v); the pair (x,v) € U; x ¥ and by
(z,v); the pair (x,v) € U; x ¥. We define E(P,®y) as the quotient of DY by the
equivalence relation that identifies (z,v); with (x, (vij).(v)); for all (z,v) € Uy x ¥
and all 1,7 € I. The associated bundle of P relative to ®y is the vector bundle with
typical fiber ¥

1:E(P,dy) — X,

[(z,v);] — =,

whose natural finite-dimensional vector space structure induced by ¥V in each fiber is
given by
[(z, v)i] + [(z, w)] = [z, v+w)] and
Al(z, v)i] = [(z, Av)i] o
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Once and again, with respect to the preceding reasoning, the only inconvenient
of the vector bundle obtained in the definition above is that it apparently depends on
the atlas that comes together with the principal bundle. Nevertheless, there is no such
dependence since we give below an equivalent intrinsic definition of the associated bundle,

independent of any atlas.

Remark F.35 (On trivializations of the fibers of principal bundles). Let X be a topological
space and P be a principal bundle on X with structure group GL(¥'). Fizing v € X,
consider the fiber P, of P. According to Remark[F.4, fizing a point py € P, is equivalent
to fix a trivialization @, : P, — GL(Y), po-g — g, of the fiber P,. Thus, py € P, induces

the function
& Pox vV o —

(Po-g,v) = g(v).

This function is clearly surjective since

§$<p07v) = éx(pO'id“l/a U) = id“f/(U) = .

Nevertheless, in general, it is not injective. In fact, let us verify when &,(p,v) = &.(q, w).

We have g = p-g and p = po- go for unique g, go € GL(?). Hence, we have to check when

90(v) = &(Po- g0, v) = &(po- Gog, w) = gog(w).

Since g,g0 € GL(V), this last equation is equivalent to w = g~ (v). Therefore, we have
&(p,v) = &(p-g,97 (v)). For this reason, we introduce in P, x ¥ the equivalence
relation that identifies (p,v) with (p-g,9 " (v)) for all p € P, and all g € GL(¥). Then,
considering E(P), to be the quotient of P, X ¥ by this equivalence relation, py € P,

mduces the homeomorphism
Ne: E(P)y — VY,

[(po; v)] = w.

This homeomorphism depends on py € P,. Nonetheless, once the equivalence relation

on E(P), does not have this dependence on py € Py, we have that E(P), is well-defined
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starting from P. Moreover, E(P), admits a natural finite-dimensional vector space

structure given by

(p, v)] + [(p, w)] = [(p,v+w)] and
A(p, 0)] == [(p, Mv)].
These facts allow us to set the following definition. &

Definition F.36 (Associated bundle of a GL(¥')-principal bundle). Let X be a
topological space and m : P — X be a principal bundle with structure group GL(¥).
We define E(P) as the quotient of P X ¥ by the equivalence relation that identifies (p,v)
with (p-g,9 ' (v)) for allp € P and all g € GL(V). We say that the associated bundle
of P is the vector bundle with typical fiber ¥

Tep) - ((':(P) — X,

[(p, v)] = =(p),

whose natural finite-dimensional vector space structure induced by ¥V in each fiber is

given by

[(p, v)] + [(p, w)] = [(p,v+w)] and
A[(]?u U)] = [(p7 AU)] <>

Theorem F.37 (Equivalence between the frame bundles from Definitions and [F.36]).
Let X be a topological space and P be a principal bundle on X with structure group GL(7)

equipped with an atlas Oy = {(U;, vi) }ier- There exists a canonical isomorphism over X

between the associated bundle £(P, ®y) of Definition and the associated bundle E(P)
of Definition [F.36,

Proof. For every x € X, let ¢ € I be such that z € U; and let [(p,v)] € E(P),.
We have [(p,v)] = [(¢"'(z,1g),v;)] for a unique v; € ¥. Then, we define the
isomorphism

O: E(P) — E(P,Dy),

[(p, )] = [(z, vi)il.
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It suffices to prove that ® is well-defined since, in this situation, it is clearly invertible
because the one-to-one correspondece between v and v;. Indeed, if we choose 5 € I for

which x € U;j, then
[(p7 U)] = [(902'_1(1‘7 lg), Ul)]
= [(¢; ' (x, gi(2)), v3)]

= [(¢; ' (z, L), gis(x)(v))]-

Consequently, we have v; = g,;(x)(v;). Thus, it follows [(z,v;),] = [(z, v;);]. This finishes
the proof of the theorem. O

Definition F.38 (Associated bundle of a principal bundle). Let X be a
topological space, m : P — X be a G-principal bundle and p : G — GL(¥) be a
topological representation of G where ¥V is a finite-dimensional vector space. We
define £,(P) as the quotient of P x ¥ by the equivalence relation that identifies (p,v)
with (p - g, p(g)~1(v)) for all p € P and all g € GL(¥). We say that the p-associated
bundle of P is the vector bundle with typical fiber ¥

TE,(P) + 8/)(]3) — X,
[(p, v)] = =(p),

whose natural finite-dimensional vector space structure induced by ¥ in each fiber is
given by
[(p, )] + (0, w)] = [(p, v+w)] and
M, v)] = [(p, o). o

Remark F.39 (On the associated bundle of Definition [F.38)). Let X be a topological space,
m: P — X be a G-principal bundle and p : G — GL(¥) be a topological representation
of G where ¥ is a finite-dimensional vector space. We have the following facts about the

associated bundle of the preceding definition.

o We have that, if G = GL(7) and p = idgL(r), then gy, (P) is equal to E(P).
This proves that Definition is a generalization of Definition as was

naturally expected.
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e One can prove that &E,(P) only depends on the homotopy class of the
representation p : G — GL(¥). This means that, if p,o : G — GL(¥) are
homotopic maps, then E,(P) is isomorphic to E,(P) over X. Therefore, in
particular, if G is contractible, then there exists only one E,(P) up to

isomorphism. &

F.9 Equivalence with vector bundles

In this section, we establish an equivalence between vector and principal
bundles. This will show that, although these two concepts have their discrepancies,
as we have seen along this appendix, the ample similarities that the reader may have
noted in their definitions and in the commentaries above are not pure chance. In fact,
we put together the frame and the associated bundles defined before to show the
equivalence between vector and principal bundles. Roughly speaking, we will show
that these constructions produces natural equivalences between the category of principal
bundles and the category of vector bundles. However, we will have to consider a restriction
on the morphisms of vector bundles in order to this reasoning work. We begin with the

following remark.

Remark F.40 (The associated bundle of the frame bundle of a vector bundle). Let
X be a topological space and E be a vector bundle on X with typical fiber ¥ equipped
with an atlas &y = {(Ui, i) tier.  The frame bundle GL(E, ®y) is defined from the
transition functions of E induced by Py, as in Definition . This GL(¥)-principal
bundle is endowed with an atlas Wy with the same transition functions as the ones of Py.
Similarly, E(GL(E, ®y), Vy) is defined by the transition functions of GL(E, ®y) induced
by Wy, as in Definition[F.3]] This vector bundle with typical fiber ¥V is endowed with an
atlas g with the same transition functions as the ones of Wy, which coincide with the
ones of ®y. Thus, E and E(GL(E, ®y), ¥y) are canonically isomorphic over X, being one

1somorphism
Op: E — E(GL(E,dy), Vy),

e = (@, (¢i)a(ea))i],
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where © € I 1s such that x € U;. We can also set a similar correspondence considering
the intrinsic Definitions and [F.36, Indeed, since E(GL(E)), is the quotient of
Iso(V,E,) x ¥ by the equivalence relation that identifies (p,v) with (¢, o ¥, "1 (v))

for every v € GL(¥'), we have the canonical isomorphism

Op: E(GL(E)) — E,

(2, V)] = @alv). o

Remark F.41 (The frame bundle of the associated bundle of a principal bundle). Let
X be a topological space. As in Remark given a GL(¥)-principal bundle P on X
equipped with an atlas Oy = {(U;, i) }ier, we have that E(P, ®y) is naturally endowed
with an atlas Wy with the same transition functions as the ones of ®y. Thus, we have the

canonical isomorphism
Epip — GL(E(P,(I)H),‘I]LO,

where 1 € I is such that x € U;. Analogously, we can set a similar correspondence
considering the intrinsic definitions. Indeed, since GL(E(P)), coincides with
Iso(¥,E(P):), where E(P), is the quotient of P, X ¥ by the equivalence relation that
identifies (pg,v) with (p - g,g ' (v)) for all ¢ € GL(¥), we have the canonical
1somorphism

=p: P — GLE(P)),

pe = (0= (pr, )]). %

The preceding remarks suggest that there exists an equivalence between the
category of vector bundles on X with typical fiber ¥ and the category of principal
bundles on X with structure group GL(7"). This is not the case since a morphism of
GL(¥)-principal bundles over X is necessarily an isomorphism (see Theorem ,
while there exist non-invertible morphisms between vector bundles on X with typical
fiber #.  Categorically, this means that PrincBdlx(GL(7)) is a groupoid while
VectBdlx (7)) is not. Nevertheless, we can consider the non-full subcategory

VectBdlIsox (7)) of VectBdlx(?') whose objects are all vector bundles, and whose
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morphisms are only the isomorphisms. By construction, VectBdlIsox (%) is a groupoid.

Moreover, we have the following result.

Theorem F.42 (Equivalence between vector and principal bundles). Consider the

following covariant functor, which is called the frame functor:

GL : VectBdlIsox(¥) — PrincBdlx(GL(¥)),
E — GL(E),
v:E—F — GL(p): GL(E) = GL(F),
where
GL(#)(¢2) = @z 01hs
for all v, € GL(E), and all x € X. Furthermore, consider the following covariant

functor, which s called the assoctated functor:

€ : PrineBdlx (GL(7)) — VectBdlIsox (%),
P

I
&
=3

p:P=Q = E(p):E(P) = E(Q),

where

g(@)[(pxa U)] = [(@x(px)a U)]

for all [(pz,v)] € E(P), and all x € X. These functors are equivalences of groupoids

inverse to each other.

Proof. We have to prove that £ o GL : VectBdllso,(?) — VectBdllsox(?) is
naturally isomorphic to the covariant identity functor IdvecBdisox(»), and that
GL o & : PrincBdlx(GL(7)) — PrincBdlx(GL(7)) is naturally isomorphic
to the covariant identity functor IdpincBaiy(ar(r)). This means that we have to
exhibit families of natural isomorphisms © = {Og : (£ o GL)(E) — E}gevectBdiisox (7)
and 2 = {Zp : P — (GL o &)(P)}peprincBdix(GL(»)) in such manner that the
following square diagrams are commutative for all ¢ € Iso(E,F) and all

Y € Hom(P,Q).
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OF =

(EoGL)(E) —2 | P— L (GLo&)(P)
(EoGL)(y) 2 ¢ (GLoE)(¥)

We claim that the isomorphisms ©p and Zp defined at the end of Remarks [F.40

and [F.41] respectively, are such that the preceding square diagrams are commutative.
Indeed:

e with respect to the first diagram, we have

(EoGL)(g) : (E0GL)(E) — (€oGL)(F),
(¥, 0)] = [(pw 0%z, v)],

where ¢, : ¥ — E,. Therefore,

(©F 0 (€0 GL)(0)[(Ws, v)] = Or[(pz 01w, v)] = (@z0:)(v).

Moreover,

(00 0p)[(¢e, v)] = ©(a(v) = (pz 0 te)(v).

Hence, the diagram commutes.

e with respect to the second diagram, (GL o £)(¢) : (GLo &)(P) — (GL o £)(Q)
is given as follows. Let us fix ¢, € (GL o £)(P). This means that we fix
0r VYV — E(P),. Thus,

(GLo &) (W) (¢z) = E(W)r 0 pu.

Therefore, if ¢, (v) = [(¢z, w)], then

(EW)z0@e)(v) = EW)al(ge, w)] = [(Yalgs), w)].
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Consequently, let p, € P. Applying Zp, we obtain the morphism ¢, that
sends p, into the map v — [(ps,v)]. Then, applying (GL o £)(¢), we obtain the
morphism v +— [(¢,(p;),v)]. This coincides with (Zg o ¢)(p,). Hence, the diagram

commutes.

This finishes the proof of the theorem. O

Remark F.43 (Generalizations of Theorem [F.42). In the preceding result, we proved
that the covariant functors in Diagram (F.2) are equivalences of groupoids inverse to

each other.

GL

T

VectBdlIsox (7) PrincBdlx (GL(¥)) (F.2)

\/

£

This idea can be generalized removing the fixed base space, allowing it to vary, as in
Diagram (F.3). In this case, VectBdIMaps(¥') is the non-full subcategory of VectBdl(¥)

whose:

e objects are all vector bundles; and

e morphisms are wvector-bundle maps. We say that a wvector-bundle map
between mg : E — X and g : F — Y is a vector bundle morphism f : E — F,
which covers a continuous function g : X — Y, such that f, : B, — Fyy) is an

wsomorphism for all x € X.

GL

T

VectBdIMaps(¥) PrincBdI(GL(7)) (F.3)

\/

&

It is to be noted that neither VectBdlMaps(¥') nor PrincBdl(GL(%")) are groupoids.
Moreover, the covariant functors GL and &€ in Diagram (F.3) are defined as in
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Theorem [F.42  However, we remark that, since GL(E) = Iso(X x ¥,E) and
GL(F) = Iso(Y x 7, F), we have ¢, o ¢y € GL(F)y ) where ¢' : X — Y s the
functions covered by p. Similarly, we have to keep in mind that in this new context we

have ¢, (p2) € Qui(z)-

GL

T,

VectBdIMapsPairs PrincBdIGL (F.4)

\/

&

Finally, the most general equivalence between vector and principal bundles is the one
sketched in Diagram (F.4), where the typical fibers of the vector bundles are also allowed
to vary. In this diagram, the categories VectBdlMapsPairs and PrincBdIGL are defined

as follows.

e VectBdlMapsPairs is the category whose:

o objects are all vector bundles; and

o morphisms are pairs (f,§) where f : E — F is a vector-bundle map
and £ V. — W is a vector-space isomorphism between the typical fibers of

E and F.
e PrincBdIGL is the category whose:

o objects are GL(¥)-principal bundles where ¥ is any finite-dimensional vector
space; and

o morphisms are principal bundle morphisms of the form (f, U¢) where
E:V — W is a vector-space isomorphism and Ve : GL(Y) — GL(#') is

its induced morphism of groups.

Furthermore, it is to be noted that the covariant functors GL and &€ in Diagram (F.4)
are defined exactly as before, but considering the composition with & : V' — W in the

natural way. &
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Wedge sum functor, [347]

Wedge sum of pointed compact Hausdorff spaces,

Z

Zero divisors in a real algebra, [355

Zo-graded algebra,
Z,-non-integral vector bundle, 25|
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