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“No principio era o Verbo, e o Verbo estava com Deus, e o Verbo era Deus. FEle estava no
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foi feito se fez.” (Joao 1.1-3).
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Abstract

In this thesis we study property R., for some classes of finitely generated groups by the use
of the BNS invariant ¥! and some other geometric tools. In the combinatorial chapters of the
work (4, 5, 6, 10 and 11), we compute X! for the family of Generalized Solvable Baumslag-
Solitar groups I',, and use it to obtain a new proof of R, for them, by using Gongalves and
Kochloukova’s paper [42]. Then, we get nice information on finite index subgroups H of any T,
by finding suitable generators and a presentation, and by computing their 3. This gives a new
proof of R, for H and for every finite direct product of such groups. We also show that no
nilpotent quotients of the groups I';, have Ro,. With a help of Cashen and Levitt’s paper [19],
we give an algorithmic classification of all possible shapes for ! of GBS and GBS, groups
and show how to use it to obtain some partial twisted-conjugacy information in some specific
cases. Furthermore, we show that the existence of certain spherically convex and invariant
k-dimensional polytopes in the character sphere of a finitely generated group G can guarantee
R for G. In the geometric chapters (7 through 9), we study property R for hyperbolic and
relatively hyperbolic groups. First, we give a didactic presentation of the (already known) proof
of R for hyperbolic groups given by Levitt and Lustig in [68] (which also uses Paulin’s paper
[81]). Then, we expand and analyse the sketch of proof of R, for relatively hyperbolic groups
given by A. Fel’shtyn on his survey paper [31]: we point out the valid arguments and difficulties
of the proof, exhibit what would be a complete proof based on his sketch and show an example

where the proof method doesn’t work.

Keywords: property R.; topology; BNS invariants; combinatorial group theory; geo-

metric group theory.






Resumo

Nesta tese estudamos a propriedade R, para algumas classes de grupos finitamente gerados
através do uso do BNS invariante ! e de algumas outras ferramentas geométricas. Nos
capitulos combinatérios do trabalho (4, 5, 6, 10 e 11), computamos %! para a familia dos
grupos de Baumslag-Solitar soliveis generalizados I';, e o usamos para obter uma nova prova
de Ro para tais grupos, usando o artigo de Gongalves e Kochloukova [42]. Entao, obtemos
boas informacoes sobre os subgrupos H de indice finito de qualquer I';,, encontrando geradores
adequados, uma presentacio e computando seu X!. Com isto, obtemos uma nova prova de R
para H e para qualquer produto direto finito de tais grupos. Também provamos que nenhum
quociente nilpotente dos grupos I',, tem Ro. Com a ajuda do artigo de Cashen e Levitt [19],
damos uma classificacio algoritmica de todos os possiveis formatos do invariante X! para grupos
GBS e GBS, e mostramos como usa-lo para obter algumas informacoes parciais sobre classes
de conjugacao torcida em alguns casos especificos. Além disso, provamos que a existéncia
de certos poliedros esfericamente convexos e invariantes na esfera de caracteres de um grupo
finitamente gerado arbitrario G pode garantir R, para G. Nos capitulos geométricos (7 a 9),
estudamos a propriedade R, para grupos hiperbdlicos e relativamente hiperbdlicos. Primeiro,
apresentamos de forma didética a prova (ja conhecida) de Ry para grupos hiperbdlicos dada
por Levitt e Lustig em [68] (que também usa o artigo [81] de Paulin). Entao, expandimos
e analisamos o rascunho de prova de R., para grupos relativamente hiperbdlicos dado por
Fel’shtyn em seu artigo [31]: mostramos os argumentos validos e as dificuldades da prova,
exibimos como seria uma prova completa baseada em seu rascunho e damos um exemplo onde

tal método de prova nao funciona.

Palavras-chave: propriedade R.,; topologia; invariantes BNS; teoria combinatéria de

grupos; teoria geométrica de grupos.
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xix

Introduction

Hello, dear reader. It is good to have you here. This entire thesis is built around the study of
property R for finitely generated groups. In this introduction, we will catch you up on our
motivations and strategies for the work and also give you some historical background. At the
end of it, we describe the general structure of the thesis, the main content of each chapter and
the main original contributions for the theory.

We start with the R, property. Let G be any group and ¢ an automorphism of G. Two
elements g,h € G are p-twisted conjugated (or just twisted conjugated) if there exists z € G
such that zgp(z)~! = h. The number of equivalence classes in G given by this relation is denoted
by R(y¢) and called the Reidemeister number of ¢. A group G is said to have property R if
R(p) = oo for every ¢ € Aut(G), that is, if every automorphism of G has an infinite number
of twisted conjugacy classes. The search for groups with this property started mainly in 1994
in the paper [35], where the authors Fel’shtyn and Hill were studying the Reidemeister zeta
function with applications to Nielsen Theory. This is an indicator of the topological nature of
this property. Indeed, counting the topological Reidemeister number of a self-homeomorphism
of a space X in Nielsen theory is the same as counting the algebraic Reidemeister number of
the induced automorphism in the fundamental group of X. We show this relation at the end
of Section 1.1 (see also [57, 97]). With the use of property R it has been shown, for example,
that for any integer n > 5, there exists an n-dimensional nilmanifold M such that every self
homeomorphism f : M — M is isotopic to a fixed point free map (see [45]). We can, therefore,
see twisted conjugacy classes and property R., as a generalization of topological properties
and, ultimately, that’s probably the reason why we topologists are interested on this subject.
Furthermore, according to [36], twisted conjugacy has connections with Arthur-Selberg theory
[3, 89], algebraic geometry [51], Galois cohomology [87], the theory of linear algebraic groups
[91] and representation theory [39, 79, 90].

Since 1994 with the paper [35], the task of enlarging the list of groups with property Ru
is an active research topic in both combinatorial and geometric group theory. The list below
contains some of these groups and is based mainly on the list in the paper [36], together with

some more recent discoveries. It is not exhaustive and does not follow any particular order.

e Baumslag-Solitar groups BS(m,n), except for BS(1,1), and some nilpotent quotients of
them [32, 40];

e Generalized Baumslag-Solitar groups (or GBS groups), as well as any group which is

quasi-isometric to them [67, 93];

e the groups I';,, that is, the solvable generalization of the Baumslag-Solitar groups BS(1,n),
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as well as any group which is quasi-isometric to them [94];
non-elementary Gromov hyperbolic groups [30, 68];
a large class of saturated weakly branch groups [37, 49, 53];

Thompson’s groups F' and T, generalized Thompson’s groups F}, o and their finite direct
products [8, 18, 44];

Houghton’s groups [43, 58];

Symplectic groups Sp(2n,Z), some mapping class groups and the full braid groups B,,(.S)
with n > 4 strands, where S is either the disk D? or the sphere S? [33];

all pure Artin braid groups P, for n > 3 [25];
some Artin groups of infinite type [60];

some extensions of SL(n,Z), PSL(n,Z), GL(n,Z), PGL(n,Z), Sp(2n,Z) and PSp(2n,Z)
[74];

GL(n,K) and SL(n, K), over some special integral domains K and with n > 2 [77];
irreducible lattices inside some Lie groups [75];

some metabelian groups of the form Q" x Z and Z[1/p]™ x Z [34];

Lamplighter groups Z, ! Z if and only if 2|n or 3|n [46];

many different classes of free nilpotent groups N, of rank r and nilpotency class ¢, as well

as some free solvable groups S,; of rank r and class t [24, 45, 85];

e some crystallographic groups [26, 41, 54, 70].

Plenty of different techniques have been used to enlarge the list above, and each paper has

its own technical particularities. However, many of them could be classified according to their

use of some of the general strategies below. Some papers are listed as examples:

1) short exact sequences, especially the ones containing characteristic subgroups and quo-

tients of the group in question [42, 94];

2) isogredience classes [30, 38, 68];

3) the X-invariant of the group [42];

4) nilpotent quotients of the group [22, 23, 24, 40];

5) actions by isometries of the group (or related groups) on trees or hyperbolic spaces [93]

(also see the appendix of [33]);

6) representation theory [25, 38];

7) non-abelian cohomology groups [38].
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In this thesis we come across the first five items of the list, but our main focus is on items
3), 4) and 5). Items 3) and 4) correspond to the combinatorial part of the work (Part II and
Appendix) and item 5) to the geometric one (Part IIT). Now we will talk about each part.

In the year of 2010, the topologist D. L. Gongalves, together with the group theorist D.
Kochloukova found out that ¥-theory can be used to guarantee property R~ in the combinatorial
context of finitely generated groups (see [42]). To summarize, they considered the fact that
property Ro can be deduced by looking to some characteristic quotients of the group (item 1))
and realized that the invariance under automorphisms of X!, in some special cases, can produce

some of these quotients which are good enough.

The first of the most known versions of the ¥-invariants was defined in 1987 by R. Bieri,
W. Neumann and R. Strebel in [9] for arbitrary finitely generated groups (hence the name
“BNS”). Given a finitely generated group G and a finitely generated G-operator group A, they
associated to it a subset ¥4 = Y 4(G) of the character sphere S(G) defined by the finite (or
not) generation of A over a finitely generated submonoid of G. There they showed many general
properties of ¥4, the most known being its openness in S(G) and a characterization of the
finitely generated normal subgroups of G containing G’. Since then, the amount of research on
this invariant has grown considerably and led to the discovery of many connections with other
areas of mathematics. To get a little taste of what we are saying, the BNS invariant ¥ of
the fundamental group G of a smooth closed 3-manifold X is characterized by the existence of
non-vanishing 1-forms on X which are also non-vanishing on 0.X. Also, let X be a hyperbolic
3-manifold and consider the known Thurston’s norm on the second homology group Ha(X).
The unitary ball is then a polytope homeomorphic to S(m; (X)), and the interior of its faces can
be exactly seen as (71 (X)). One can also find close relations of the BNS-invariant with group
actions on R-trees, fibering of manifolds over S and others. Because of this, it is worth to call

the collection of theorems about this invariant by “3-theory”.

Despite this good amount of nice properties, the -invariant is in general hard to be effectively
computed. It would be of precious help to find an equivalent but more simple definition. In
fact, the desired definition was somewhat hidden inside the original paper [9], in part (ii) of
Proposition 3.4. Fortunately, later, Robert Bieri and, independently, Gaél Meigniez realized that
fact. They were able to rewrite that property in (i7) in terms of some kind of connectivity inside
the Cayley graph of G' (Definition 3.7, where the BNS-invariant is denoted by $!(G)). With this
graph definition it is easier to derive the basic properties (see our Chapter 3) and, in particular,
to see that X(G) (and also its complement X!(G)¢) is invariant under all automorphisms of G
(Theorem 3.18).

So, even without knowing precisely the structure of Aut(G), it becomes possible to re-
late ©!(G) with some properties about the automorphisms of G, in particular with property
R, as it is done in [42]. The topological nature of this property, together with Gongalves
and Kochloukova’s paper [42] and the geometric and graph-theoretical aspect of ! may have
been the main ingredients to bring the attention of the topologist P. Wong. At that time, J.
Taback and him had already dealed with GBS groups and the groups I';,, both generalizations
of Baumslag-Solitar groups (see the three first items of our first list above) and knew they are
Roo-groups. The fact that Ry, for BS(1,n) can be shown by the use of X-theory and the paper
[42] naturally arose the question of whether ¥-theory could also be used to deduce R, for Iy,
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and the GBS groups. This was the first goal of the combinatorial part of our project, and we get
a positive answer for the groups I';,. Furthermore, we show how to “algorithmically” compute
»! for a GBS - and GBS, - group (more details below).

The second goal is related to the following situation: it is well known that property R is
not invariant under quasi-isometry in general. However, it may be invariant inside some specific
families of groups. Taback and Wong show this is true inside the family of the groups I';, and of
GBS groups ([94] and [93], respectively). In particular, any finite index subgroup H of any I',,
is an R, group; so, we asked: can Y-theory be applied to show R, for H? The answer turned
out to be positive.

The main strategy of this combinatorial part is, therefore, to compute the geometric invari-
ants of some finitely generated groups in order to guarantee property R, for them, or at least
to see in what cases this can be done. From a topologist’s (illustrative) point of view, we start
with a topological space X and, in order to obtain information about its lifting and Nielsen
properties, we investigate the twisted conjugacy classes of its fundamental group G. To do that,
we compute its Y-invariant and see, for example, if it can guarantee property R, for G and,
consequently, nice topological properties of X. This is illustrated in the next figure, where GGT

means “Geometric Group Theory”.

Topology Algebra GGT

—> G:ﬂ'l(X) — 1G
A — R.? — =(6)

Although the X! invariant is in the core of the combinatorial part of our thesis, in the last
year of research an extra paper called my attention: in [22] (2020), the authors D. L. Gongalves
and K. Dekimpe studied the R, property for nilpotent quotients of the Baumslag-Solitar groups
BS(m,n), after having done the same for free groups, free nilpotent groups and free solvable
groups in [24] and also for surface groups in [23]. So, in the same way knowing information of
the X! invariant for BS(1,n) was the motivation to investigate X(T,,) in Chapter 5, knowing
which nilpotent quotients of BS(1,7n) had Ry could help us to understand the same property
for I';,. Based on this idea, we showed that no nilpotent quotients of the groups I';, have R..

After the combinatorial part of the work was complete, the quasi-isometric and geometric
likeness of Taback and Wong’s papers [94] and [93] turned our attention to two special families
of groups: hyperbolic groups and relatively hyperbolic groups, the former being a subfamily of
the latter. Hyperbolic groups were first defined by Gromov ([50], 1987) and definitely became
one of the most studied families of groups in Geometric Group Theory since then. For the
general theory of hyperbolic groups, first connections with other areas of mathematics and some
applications, we refer [21], [47] and [50]. The most interesting fact for us is that property Ro
for (non-elementary) hyperbolic groups was implicitly shown by Levitt-Lustig’s paper [68] in
2000 (and explicitly by [30] in 2001). At some point, the proof uses the well-known fact that the
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family of hyperbolic groups is closed under quasi-isometry (we can also say that hyperbolicity
is a “quasi-isometry invariant”). Intuitively, therefore, a generalization of this argument to
show R, for the larger class of relatively hyperbolic groups would need to use quasi-isometry
invariance for this class, something that was still not known.

Later, in 2006, Drutu [28] published a paper on quasi-isometry invariance for relatively
hyperbolic groups, breaking this barrier. So, in 2010, by quoting Drutu’s paper, together with
Belegradek-Szczepanski [5] and others, Fel’shtyn claimed property R to be true for (non-
elementary) relatively hyperbolic groups in his survey paper (Theorem 3.3 in [31]). However,
only a sketch of a proof is given there, based mainly on Levitt and Lustig’s proof [68]. Our idea,
therefore, was to study that proof sketch in all its details to maybe exhibit a more complete
and didactic proof of property Ro, for relatively hyperbolic groups, something still not present
in the literature. However, my general conclusion is that such a proof, based on that sketch, is
at least more complicated than it looks like, for it involves extra difficulties that do not exist in
the hyperbolic case. To know my specific conclusions, the readers must do what they do best:

keep reading.

General structure and chapters

Here we give an overview of the structure of this thesis, together with a general description of
each chapter.

Admittedly, this Ph.D. thesis turned out to be quite long. This is because I decided to
give the reader the option of reading a didactic presentation of (virtually) all the preliminary
background needed for the rest of the work. This is done in Part I (chapters 1 through 4), so
that the reader which is not used to the subject and the language can catch up with minimal
time. Chapter 1 contains the preliminaries on Combinatorial Group Theory, which are needed in
chapters 5, 6, 10 and 11. Similarly, Chapter 2 contains the geometric preliminaries for chapters
7 through 9. In Chapter 3, we present the basic results on »-theory we will need in chapters
5,6 and 11, based on the notes [92]. The reader may take a quick look at the table of contents
(Sumério) and skip the sections of these three chapters which he already knows. Chapter 4,
although counted as preliminary, is original. There, with a help of the results of [42], we show
that the existence of some invariant closed convex polytopes in the character sphere S(G) can
also guarantee property R, for a finitely generated group G. Since this result has a similar
fashion to the ones in Section 3.3, we decided to keep it as a preliminary chapter.

After the preliminaries, we have the combinatorial Part II (chapters 5 and 6), the geometric
Part I1T (chapters 7 through 9) and the combinatorial Appendix (chapters 10 and 11).

Part II is the one who contains the most number of original contributions, where we apply
Y-theory to study property Ro, for the Generalized Solvable Baumslag-Solitar groups I',,. In
Chapter 5, we compute the ! invariant of I',, and guarantee property R, for them by using
[42]. After this, in Chapter 6, we compute the ¥! invariant and guarantee Ry, for all finite index
subgroups H of I';, by finding good generators (with a help from Bogopolski’s paper [12]) and
a good group presentation for them. Finally, we discuss whether such finite index subgroups H
are (isomorphic to) I'y for some k£ > 1 (not all of them are).

Part III can be summarized as a study of property R for hyperbolic and relatively hyper-
bolic groups. We had the final purpose of studying the sketch of proof given by Fel’shtyn in
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[31] on property R for (non-elementary) relatively hyperbolic groups. Before doing that, we
carefully read Levitt and Lustig’s Section 3 of the paper [68] and their (implicit) proof of R
for the particular case of a hyperbolic group. So, Chapter 7 contains an exhibition of a proof for
a slight generalization of Levitt and Lustig’s result, in order to be also applicable to the relative
case. In simple words, their result shows that the existence of some “special” action of G on
an R-tree T is sufficient to guarantee R(yp) = oo for a fixed automorphism ¢ of G. Then, in
Chapter 8 we give a more detailed presentation of the R, proof in the hyperbolic case; that is,
we exhibit Paulin’s proof (Theorem A of [81]) of the fact that hyperbolic groups admit those
“special” actions. Finally, in Chapter 9 we exhibit what would be a proof of property R for
non-elementary relatively hyperbolic groups by following Fel’shtyn’s sketch, that is, by adapting
the proof of the hyperbolic case we give in chapter 8. We show that the proof would be complete
if it wasn’t for Lemma 9.29, which we believe is not true in general (although nothing prevents
it to be true in some particular examples). To convince the reader of this, in Section 9.5 we
show an example where Lemma 9.29 does not work. We decided to maintain the incomplete
proof in this thesis, anyway, to give the reader an idea of what a proof could look like.

At last, the Appendix. In Chapter 10, we follow [23] to define the R nilpotency index of
a group with property Ro. Then, by developing some theoretical background similar to the
one in [22] and by doing some matrix computations, we calculate the R, nilpotency index for
all groups I',,, showing it to be infinite. This is equivalent to say that none of the nilpotent
quotients of the groups I',, are R groups. In Chapter 11, we use a result from Cashen and
Levitt in [19] to algorithmically classify the possible shapes of the Y-invariant of GBS and GBS,
groups, given the associated finite graph of groups. We then use this to get some partial twisted

conjugacy results (not necessarily R, results) on some special cases.

Original contributions

Let us point out some original contributions of this thesis for the literature, in the natural order
of the text.

In general, this thesis is useful for any reader who wants a first contact with property R,
Y-theory and geometric group theory. We tried to keep all the text - including the more technical
proofs - very readable and enjoyable for anyone with basic math knowledge. I believe this is a
didactic contribution. Now let us get more specific.

In Section 1.3, we give a detailed exibition and proof of the Reidemeister-Schreier algorithm
(Theorem 1.50) by using group actions and the Cayley graph language of Serre’s book [86]. This
may be a more intuitive and enjoyable reading for topologists, in comparison with the strictly
combinatorial proofs that can be found in the literature. We give examples and it is possible to
see the generators for the subgroup H naturally appearing in the drawings. I think this proof
may turn Reidemeister-Schreier’s Theorem less counter-intuitive (as it was to me before).

We can say all results contained in chapters 4 through 6 are original work. Let us list and
comment them briefly.

In Chapter 4, Theorem 4.28 guarantees property Ro, for any finitely generated group whose
character sphere contains certain spherically convex invariant polytopes. Although this property
may have been in the minds of a few specialists as folklore, we couldn’t find any proof in the

literature for it. Our proof is built from scratch and quite detailed. Therefore, I believe it can
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be considered as original work.

Chapter 5 contains the first known computation of the X'-invariant for the Generalized
solvable Baumslag-Solitar groups I';, (Theorem 5.2). In fact, it computes the X!-invariant for
a slightly bigger family. This theorem is used to guarantee property R, for these groups.
Although property R was already known for the groups I',, (see [94]), we have the first proof
that uses >-theory. The partial generalizations of Theorems 5.5 and 5.7 are also original.

In Chapter 6, let H be a finite index subgroup of I',,. We have computed for the first time: a
suitable family of generators for H (Theorem 6.6), a presentation for H (Theorem 6.8) and the
Ylinvariant for H (Theorem 6.10). As in the ', case, it is already known via [94] that H has
property R, but our proof is the first one that uses -theory. In the last section, we showed
that the family of Generalized Solvable Baumslag-Solitar groups I';,, do not have the property of
being closed under finite index subgroups, which is also original work. This is important, for it
distinguishes this family from the family of Solvable Baumslag-Solitar groups BS(1,n), which
was shown to have this property by Bogopolski in [12].

Finally, the geometric part. The general content of Chapter 7 is not original, but Theorem 7.4
is a restatement of Levitt and Lustig’s Section 3 in [68] in a slightly more general way. It turned
out that the sufficient condition they find to guarantee an infinite Reidemeister number R(¢p)
for a fixed automorphism of GG is quite general, so we rewrote it in terms of an arbitrary finitely
generated group, so that this can be useful for future applications. That being said, Chapter
8 contains an exhibition of Paulin’s proof ([81], Theorem A) of the fact that non-elementary
hyperbolic groups satisfy that sufficient condition, being only a didactic contribution. Chapter
9 contains the first careful exhibition in the literature of what would be a complete proof of
property R, for finitely generated non-elementary relatively hyperbolic groups (Theorem 9.27),
based on Fel’shtyn’s sketch. Although we showed the proof to be probably incomplete (see
Lemma 9.29 and Section 9.5), we believe this may still help the discussion on the veracity of
property Ro, for this family of groups in the future.

Chapter 10 contains, as the main result, the first computation of the R, nilpotency index of
the groups I'y,, shown to be infinite in Theorem 10.14. This also establishes a good distinction
between I';, and Baumslag-Solitar groups, which have finite R~ nilpotency index in most cases
(see [22]). But it also contains fresh information about their nilpotent quotients I'y, ., such as
the first computation of their torsion subgroup (Proposition 10.5), of the terms of their lower
central series (Proposition 10.4) and of a presentation for them (Corollary 10.10).

Chapter 11 contains a presentation of some results of Cashen and Levitt’s paper [19] on the
Y -invariants of graphs of groups. We decided to put it there so the reader could get aware of the
techniques used. So, of course, these results are not original. The original work of Chapter 11
consists of the more “algorithmic” part; that is, if a graph of groups (G, T") is explicitly given, we
show which calculations must be performed to determine the shape of ¥!(G). For example, in
the GBS case, the existence or not of killing circuits determines if £!(G) is either empty, or the
whole sphere, or two antipodal open hemispheres. The same is done for the GBS,, groups, but
the possible cases are more complicated to be described here. The following results are original,
together with all the ones preceeding them: Lemmas 11.9 through 11.12; Theorem 11.14 through
Corollary 11.18; Theorem 11.23; Corollaries 11.25 through 11.29.
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Preliminaries






Capitulo 1

Combinatorial preliminaries

In this chapter, we want not only to fix notations and familiarize with them, but also to present
the combinatorial background in an organized, intuitive and not so rigorous way (some proofs
will be omitted), to clarify the reader’s mind in the combinatorial chapters of our work (chapters
5, 6, 10 and 11). Since we don’t want to make an extensive text, we need to assume that the
reader is at least familiarized with basic set theory, Algebra and basic facts about free groups

and group presentations (which can be found in [56] and [71]).

1.1 The R, property

Definition 1.1. Given a group G and an automorphism ¢ € Aut(G), we say that g, h € G are
p-twisted conjugated (or just twisted conjugated) and denote g ~, h if there exists z € G such
that
zgpo(2)”t = h.
It is straightforward to verify that this is an equivalence relation in G.

Definition 1.2. The equivalence classes of the relation ~, in G are called p-twisted conjugacy
classes (or just twisted classes). We denote the set of twisted classes by R(¢) = {[g], | ¢ € G} and
sometimes we denote a class [g], only by [¢g]. The Reidemeister number of ¢ is R(p) = card R(yp),

i.e., the number of twisted conjugacy classes of ¢ in G.

Example 1.3. Let G =7Z" =Z & ... ® Z be a finitely generated torsion-free abelian group, and
let ¢ € Aut(G). Here we use additive notation. Given g, h € G we have by definition

g~ h = z+9—¢(2) =hfor some z € G
< g—h=p(2) —z=(p—I1d)(z) for some z € G

< g—heim(e—Id)
G

Then R(yp) is exactly the index of the subgroup im(¢—Id) in Z". Since p—Id € Hom(Z",Z") ~

M(n x n,Z), we can associate ¢ — Id to its integer n x n matrix

A= [((p — Id)(el) (QD - Id)(en)]
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whose i column is the vector (o —Id)(e;). If det(A) = 0, then one of the columns are generated
by the other n — 1 ones. This implies im(¢ — Id) has rank » < n and therefore it has infinite
index in Z", by the following Lemma 1.4. Then R(y) = oco. If det(A) # 0, it is known that
the index of im(¢ — Id) in G = Z" is exactly | det(A)|, which is also the volume in R" of the
parallelepiped given by the vectors (¢ — Id)(e1),..., (¢ — Id)(en) (see figure). To summarize,
identify ¢ — I'd with A. Then

|det(p — Id)|, if det(p — Id) # 0,

R(p) =
0o, if det(¢ — Id) = 0.

Figura 1.1: The index of H = ((2,1),(1,2)) in Z? is 2.2 — 1.1 = 3, the area of the parallelepiped
above.

In particular, for the automorphism ¢ = —Id we have R(yp) = |det(—Id — Id)| =
| det(—2Id)| = 2" < o0, so G = Z" has not property Re.

Lemma 1.4. Let n > 1. If H < Z" is a finite index subgroup of Z", then rk(H) > n.

Demonstragao. Let us consider Z™ C R™ as a subset of the real n-dimensional vector space R™
in the usual way, and let us use additive notation. Suppose by contradiction that rk(H) =7 <n
and write H = (hq, ..., h,). Let W be the real subspace of R™ generated by the vectors hq, ..., h,.
We have the set inclusion H C W. Since dim(W) < r < n, W is a proper subspace of R"” and
so at least one of the canonical vectors e; must be outside W. Fix such e;. Then (e;) "W = {0}
as subspaces (because if Ae; € W for some A # 0 we would have ¢; = +(\e;) € W) and in
particular {je; | j € Z} N H = {0}. Then the set {je; | j € Z} is an infinite set of distinct coset
representatives of H in Z", because if j # j' then je; — j'e; = (j — j')e; ¢ H. This shows that

H has infinite index in Z", contradiction. O

Now we define our main object of study:

Definition 1.5. We say that a group G has property R, when R(p) = oo for all p € Aut(G).
In other words, when every automorphism of G has an infinite number of twisted conjugacy

classes.
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One of the most basic tools for studying twisted conjugacy classes is the following: consider

a commutative diagram of group homomorphisms, where ¢ and 1 are isomorphisms.

G-y H

o o W
G- H
Then the function

i R(p) — R(Y)

(9] — [n(9)]y
is well defined. Indeed,
g =11, = z90(z)"'=¢, 2€G
= n(2)nlgne(z)" =n(d), z€ G
= n(2)n(g)vn(z)"" =nly), n(z) e H
= [y = (g)]y-

Observation 1.6. It is obvious from the definition that if n is surjective, then 7 is surjective as

well. Also, if 7 is an isomorphism, 7) is bijective with inverse 17—\1 and therefore R(¢) = R(¢). In

fact, if we replace the right arrows 1 in the diagram by left ones with ™! we get a commutative

diagram because

en b =n"tnen ™t =7l =7y,

Then 77*\1 is well defined and easily we have 7 o 77*\1 =Id= n/*\l o1.

Lemma 1.7. Consider the following commutative diagram of group homomorphisms

~N-
—

1 B L, ¢

E Cko b

where the horizontal lines are exact sequences, that is, i is injective, p is surjective and
ker(p) = im(i). Denote Fix(p) = {c € C | ¥(c) = c}. Then

~-
—

1) if R(¥) = o, then R(p) = oo;

2) if R(§) = oo and Fiz(v) is finite, then R(p) = oco.
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Demonstragdao. Item 1) is easy: since p is surjective, p : R(p) — R(¢) is surjective. Then
R(y) > R(1)) = oo by hypothesis and we get R(p) = co. Let us show item 2). The set Fiz(v)
is a subgroup of C. We define an action of Fixz(¢) on the set R(§) in the following way: let
c € Fiz(y) and [al¢ € R(§). Take b € B such that p(b) = c. Since poi is the zero homomorphism

and 1(c) = ¢ we have

p(bi(a)p(b) ™) = p(b)pi(a)pe(b) ™! = p(b)pp(b) ™ = cyop(b) ' = ep(c) P =ect =1,

then bi(a)p(b)~! € ker(p) = im(i) and there must be o € A such that i(a) = bi(a)p(b)~! (note

that this « is unique because i is injective). We then define ¢ - [a]¢ = [o]¢.

Let us show that this is a well defined action. Suppose we had chosen two different b,' € B
such that p(b) = ¢ = p(b’) and also two different class representatives [a]e = [a]¢. We must show
that p(b) - [ale = p(b') - [a]¢. Write p(b) - [al¢ = [a]e and p(') - [a]e = [¢/]¢, that is, o and o' are
the unique elements in A such that i(a) = bi(a)p(b)~! and i(a/) = b'i(a’)p(b') ", respectively.
Now, from p(b) = p(b') we obtain that b=10’ € ker(p) = im(i) and b=’ = i(a), a € A. Also,
since [a]e = [a']¢ we have za&(x)™! = a’ for z € A and then applying ¢ in both sides and using
that poi = i o ¢ we have i(x)i(a)p(i(z))™ = i(a’). Since im(i) = ker(p) < B we can write

bi(azx)b~! = i(&) for some & € A. Now, by using all these identities we obtain

i(a') = Vi(d)pl)™
= bi(a)i(z)i(a)pi(z) T p(bi(a))

then o/ = @ag(a)~! because i is injective and we have by definition that [o/]¢ = o], as desired.

Let us show that this is a group action. First, if ¢ = 1, choose the preimage b = 1. We have by
definition 1-[a]¢ = [a¢, where « is the unique element of A such that i(a) = Lli(a)p(1)™! = i(a).
Since i is injective we have a = a and 1 - [a]¢ = [a]¢. Second, let ¢,¢ € C. We will show that
(cc)-lale = c-(¢'-[a]¢). Choose preimages b and b’ for ¢ and ¢, respectively. Write ¢ - [a]¢ = [o/].
Now, for the element c¢’ choose the preimage bb'. So (cc’) - [a]e = [@]¢, where by definition o

is the unique element such that
i(a") = (0b)i(a)p(bb') ™" = bb'i(a)p(t') (b))~ = bi(a)p(b) 1.

Therefore by uniqueness [o]¢ = ¢ [@/]¢ and so

/l]
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and we have a group action, as desired.

Now we finally show item 2): note that two classes [al¢, [o]¢ are in the same Flixz(1))-orbit if
and only if [i(a)], = [i(a)],. Indeed, ¢ [a]e = [a¢ for ¢ € Fiz(p) implies i(a) = bi(a)p(b)~!
for b € B which implies [i(a)], = [i(a)],. On the other hand, [i(a)], = [i(o)], implies i(a) =

bi(a)p(b)~! for b € B. This identity implies that p(b) € Fix(v)), because

1 = pi(a) = p(bi(a)p(b) ') = p(b)pi(a)pe(b) ™" = p(b)pp(b) " = p(b)p(b) .

Then p(b) - [al¢ = [o], by definition. Now, Fiz(1)) is finite, which means that all the orbits are
finite. So the infinite set (&) is being partitioned in finite orbits, which implies that we must

have an infinite number of orbits. By the equivalence shown above, we then have infinite classes
[i(a)], in B. Then R(y) = 0o, as desired. O

Throughout the thesis we will also need the following

Proposition 1.8. If G is a group and ¢ € Aut(G), then R(p) = R(p™1).

Demonstragdo. It is enough to show R(p) > R(¢~!) for every ¢, for then applying this to ¢!

we also obtain R(p~!) > R((¢p~1)"!) = R(y) and therefore R(¢) = R(¢ '), as desired. So, we
just have to show that there is a surjective map from R(¢) to R(p~1). Define f : R(p) — R(¢ 1)
by putting f([z],) = [t7!],-1 (for 2 € G). To see that it is well defined, suppose [z], = [y],.
Then there is 2z € G such that y = zxp(z)~!. Therefore

y = (zzp(2) )T = p(2)aT e = ()T e (e(2)
which implies f([z],) = [#7],-1 = [y p-1 = f([yly), as desired. To see that f is surjective,

just note that for every [z],-1 € R(¢™'), we have f([z7!],) = [z],-1. This completes the

©
proof. O

In a similar fashion of the Reidemeister number, we can define algebrically the number of

isogredience classes and what is called “property Sso”:

Definition 1.9. Let G be a group and let 7w : Aut(G) — Out(G) = ?gﬁgg; be the natural

projection onto the quotient of the automorphism group Aut(G) by its (normal) subgroup of

inner automorphisms of the form v, : G — G, v4(h) = ghg™! (for any h € G). Let ¥ =
m(a) € Out(G) be any element. Given two automorphisms 7., vsa € 7~ (), we say they are
isogredient if there is g € G such that v,vray, 1 = ~v4a. We define S(¥) to be the cardinality of
the set of such isogredience classes given by the relation above, that is, S(¥) = card(7~1(¥)/ ~).
We say that a group G has property S, if S(¥) = oo for every ¥ € Out(G).

Proposition 1.10. Let G be a group and ¥ = 7(a) € Out(G). If S(¥) = oo then R(a) = oo.
In particular, if G has property S then it also has property Roo.

Demonstragao. Denote by Z(G) the center of G, let f : G — G/Z(G) with f(g) = g be the
natural projection and @ be the naturally induced automorphism on this quotient. Given two

automorphisms of the form v, and ys«, we claim that they are isogredient if and only if 7 and
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S are a-conjugated in G/Z(G). Indeed, if there is g € G such that fyg'yroryg*l = ~,sa, then since

o['yg_l = Ya(g-1)@ We have 757 Yq(g- 1) = Vs, SO

Ygra(g=1) = YgVrVYa(g—1) = Vs> O Vgra(g—1)s—1 = Id,

and by definition of center we have gra(¢~')s™! € Z(G), or gr.a(g)™! = 5in G/Z(G), as
desired. Suppose now that 7 and s are a@-conjugated in G/Z(G) by an element g. Then, by
definition, there is z € Z(G) such that gra(g)~'s~! = 2. Then, since , = Id we have

'YQVTQ'Yg_l =Yg VrVa(h—1)%¥ = Vgra(h—1)& = Vzs@& = Vs,

which shows the claim. Because of this, we have exactly S(¥) = R(@) and so R(@) = oo by

hypothesis. Since we have the commuting diagram

G s a7

lOF

—— G/Z(G)

and f is surjective, we get R(«) = oo by using Lemma 1.7. The last assertion is an immediate

consequence. ]

1.2 Topological motivation for twisted conjugacy

In spite of having a purely algebraic definition, twisted conjugacy classes arise from a topological
viewpoint. This section will provide us a brief explanation of this fact. The reader just needs
to be familiar with basic facts on covering spaces, liftings and the classic fundamental group.

Let X be a topological space with universal covering p : X — X and fix points zg € X and

£o € X with p(zy) = . Let f : X — X be a homeomorphism and fix a lifting f (o) of the point
f(x0). Since X is simply connected, from lifting theory there exists a unique lift f : X — X of

f such that f (Z0) = f(zo) and p f = fp. Now, consider the covering transformation set,
D={a:X — X | ais continous and pa = p}.

This is a group with usual composition. Again, from lifting theory, any other lifting of f is of

the form af and this form is unique, that is, if af = o/ f then a = o' in D.

sy X 9y X
@
P

X

X

Jj-—h O “'-hz

X
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Because of this, we can define a function fp : D — D in the following way: given o € D,
since fa is another lifting of f (because p fa = fpa = fp) we must have fa = ' f for a unique
o € D and we set fp(a) = . In other words, fp is characterized by the equation fa = fp(a)f.
Then

fo(a)fp(B)f = fp(a)fB = faB = fp(aB)f,
so by uniqueness we have fp(af) = fp(a)fp(8) and fp is a homomorphism. Since f is a
homeomorphism, fp is an isomorphism.

Let us define now the topological Reidemeister number of f. One can define an equivalence

relation in the set L(f) of all liftings of f in the following way:
g~g ©3IBeD: Py =4,
The topological Reidemeister number R(f) is defined by the number of such classes

R(f) = card(L(f)/ ~).
This number arises when we count the fixed points Fiz(f) of f (see [57]):

Proposition 1.11. Under the conditions above, we have Fix(f) = Uyerp) p(Fiz(g)), and,
gien two liftings g and ¢', the sets p(Fixz(g)) and p(Fixz(g')) are the same if g ~ ¢’ and disjoint
if g~ ¢'. In other words,

Fiz(f)= || p(Fiz(g)).
GIEL(f)/~

It is worth to observe that R(f) coincides exactly with the number of fixed point classes
p(Fiz(g)) of f given above. It couldn’t have a more topological fashion!

We are ready to prove the main result of this section. It says that this topological (and
fixed-point-counting) Reidemeister number coincides with the algebraic Reidemeister number of

the induced automorphism in the fundamental group.

Proposition 1.12. Under the conditions above, R(f) = R(f«) where f. is the induced auto-

morphism in w1 (X, xg).

Demonstragao. First we show that R(f) = R(fp). Remember that any lifting of f is of the

form af for a unique o € D. Then, given two liftings of and o f of f, we have

I3BeD:Bafft=df
IBeD:Bafp(BH)f=df
3BeD: Bafp(f) =d

/] -
Qg in D,

af ~do'f

S A

so the number of fixed point classes R(f) is exactly the number of twisted conjugacy classes
R(fp) in D.

Now we show that R(fp) = R(f.). From covering space theory (see [76]) there is an isomor-
phism



10 1. Combinatorial preliminaries

[v] = « such that a(zp) = (1),

where 7 is the unique lifting of the path v starting at @y, and « is the unique covering transfor-
mation that sends the point 2o = 4(0) to the point ¥(1).

Consider then the following diagram:

(X, zp) —>’D

fi Jie

(X, ) _>D

If we show that it is a commuting diagram we are done by Observation 1.6, since F' is an

isomorphism. On one hand, by definition,

Ffl = FIf o4] = o/ such that o(F(z0)) = F o 7(1),

—_—

where ]72’/7 is the lifting of f o~y starting at f(xg). On the other hand,

foFly] = fpla) (where a(#) = (1))

= o (such that ' f = fa).

We are then left to show that o/ = «o”. By uniqueness it suffices to show that these two

transformations coincide in the point f (7o) = f(z0). But

and

o/ (f(0)) = o (f(0)) = f o ¥(1).

so we just have to see that ffg/v =fo 7. By uniqueness of liftings, it suffices to see that they
are liftings of the same path with the same initial point. But

pf7 = 7 = fv = pf,

and

as desired. Then R(f) = R(fp) = R(f.).
O

When we want to count fixed points of a map f, we use Nielsen fixed point theory, in which

the Nielsen number N(f) is a lower bound for the minimal possible number M|f] of fixed points
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of any map in the homotopy class [f]. For a large class of spaces (for example, for all compact
manifolds of dimension > 3 (see [97]) we do have N(f) = M|[f] and then, if N(f) =0, f can
be deformed by homotopy to a fixed point free map. Because of this, the Nielsen number is
the main object of study in the theory. But for many spaces we also have either N(f) = 0
and R(f) = oo, or N(f) = R(f) < oo (for example, for all Nilmanifolds). Then we can study
R(f) to count fixed points instead of N(f). By the above proposition, we just have to count
twisted conjugacy classes in the fundamental group. Just to visualize: if we consider a compact
Nilmanifold of dimension > 3, for example, then property R in its fundamental group would
imply that every self homeomorphism f is deformable by homotopy to a fixed point free map,
for R(f) = R(f.) = oo implies N(f) = 0, which implies the desired property.

1.3 Graphs, Cayley graphs and basic constructions

Here we follow a notation similar to the one in [86]. All the omitted proofs can be found there.
This section is a collection of definitions and constructions which will be used in different parts
of the text. The reader which is already familiarized with the language may skip it and come

back when needed.
Definition 1.13. A graph T is a 5-uple (V(T"), E(T'), 0,t, —), where
e V(T) is called the set of vertices;
e E(T) is called the set of edges;
e 0: E(I') —» V(I') with y — o(y) and o(y) is called the origin of y;
e t: E(T') = V(T') with y — t(y) and t(y) is called the terminus of y;
o —: E(I') —» E(I") with y — 7 and 7 is called the inverse edge of v,
and such that ¥ # y, ¥ = y and t(y) = o(y) for all edges y.

There is the obvious association of a “simple enough” graph with its drawing. For example,
if V(I') ={P,Q}, EI') = {y,7}, o(y) = P and t(y) = Q, we may call I a segment and associate

to it either one the following figures:

—» ° o °
P J Q P Q

Definition 1.14. A morphism f : I' — I” between two graphs I' and I consists of two maps
fo: V(') = V(I") and fe : E(T') — E(I") such that o(fc(y)) = fu(o(y)), t(fe(y)) = fo(t(y))

and f.(y) = fe(y) for every edge y € E(I'). If both f, and f. are injective (resp. surjective,
bijective) we say that f is injective (resp. surjective, isomorphism). An isomorphism f:I' — T’
is called and automorphism of I'. The set of automorphisms of I' with the natural composition

operation is a group and is denoted by Aut(T).
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Definition 1.15. An orientation for a graph I' is a subset ET(T') C E(T') such that E(T)

E*(T')uU E+(T) is the disjoint union of the set ET(T") and the set of its inverse edges E+(T") by

the function —.

An orientation in I' corresponds to choosing a direction for each edge in the drawing of I'; or
choosing between y and 7 for each edge y. We sometimes call y € ET(T") an oriented edge, due
to this geometric representation. When we are thinking about the drawing of I', we call {y, 7}
a geometric edge, since both edges represent the same “line drawing”. The vertices o(y), t(y) of
an edge y are called the extremities of y. Two vertices are said adjacent if they are extremities

of an edge.

Definition 1.16. Let I',T” be graphs and let ET(T') be an orientation for I'.  An oriented
morphism f : I' — I consists of two maps f, : V(I') — V(I) and f. : ET(I') — E(I") such
that o(fe(y)) = fu(o(y)) and t(fe(y)) = fu(t(y)) for every y € E¥(I).

Observation 1.17. Any oriented morphism f : I' — I"” induces a graph morphism f : I' —
I'. To define the morphism, we just have to extend the map f. : ET(T') — E(I') to a map
fe : E(T') — E(I"), so we have to define f.(y) for y € E+(T'). But since y € ET(T), f.(v)
is defined. So we define f.(y) = fc(y). It is straightforward to verify that f is an authentic

graph morphism. Furthermore, suppose E*(I”) is an orientation for IV and that the oriented
morphism f : T' — TV given initially is a bijection between the vertices f, : V(I') — V(I'') and
also between the oriented edges f. : ET (') — ET(I"). Then, since the inversion maps y — ¥ in
both graphs are also bijections, it is easy to verify that the extended map f, : E(T') — E(IV) is

also a bijection and so the graph morphism f is a graph isomorphism.

Definition 1.18. A path ~ of length n in a graph I' is a finite sequence v = yq, ..., yn of edges
such that ¢(y;) = o(yi41) for 1 <i <n—1. A backtracking in + is a subsequence having the form
vy Yie1, Vi, Uiy Yit2, ... for some i. We say that v is injective if the vertices o(y1), ..., 0(yn), t(yn)
are pairwise distinct. We say that ~ is closed if t(y,,) = o(y1). A loop is a closed path of length 1.
We say that 7 is a circuit if it is closed and the path y1, ..., y,—1 is injective (the latter condition

only needed if n > 1). Note, then, that every loop is also a circuit.

Definition 1.19 (Combinatorial trees). We say that two vertices P, @) in a graph I" are connected
by a path v = y1,...,yn in T if o(y1) = P and t(y,,) = Q. The graph T is said to be connected
if every two vertices in I' are connected by a path in I'. A (combinatorial) tree is a nonempty
connected graph with no circuits. We usually denote a tree by T, instead of I'. In a tree T, a

geodesic is a path with no backtrackings.

Note that, if a path + has a backtracking, we can remove it by considering the path +' =
Yl oo Y1, Yit2, ---, Yn- Then, if two vertices can be connected by a path, they can also be
connected by a path without backtrackings.

Trees play a fundamental role in graph theory because of the following property (see [86]):

Proposition 1.20. FEvery two vertices in a tree can be connected by a unique geodesic, and any

geodesic in a tree is an injective path.

Definition 1.21. Given a group G and a nonempty subset S C G, the Cayley graph I" = T'(G, S)
is given by



1.3. Graphs, Cayley graphs and basic constructions 13

o V() =G;

e E(I') = (G xS)U Z, where Z is a disjoint set from G x S with a bijection f: G xS — Z;
e 0: E(I') —» V(I') is defined by (g,s) — g and f(g,s) — gs;

e t: E(I') —» V(I) is defined by (g,s) — gs and f(g,s) — g;

e —: E(T') — E(T) is exactly the function f in G x S and the function f~!in Z.

To be more intuitive, the “drawing” of I' is given by all the connections of the form

@ = .
9 (g,s) 95

for all g € G and s € S. If s € S, we denote (g,s7') = f(gs~',s). This corresponds to

1 ls = g and

walking through the edge (gs~!,s) in the opposite direction, so (g, s™!) starts at gs—
finishes at gs~'. A path p in I is characterized by its initial vertex ¢ € G and the (oriented)
edges on which it walks. So we will denote a path in T' by p = (g, s1...5,) with s; € ST1. This
means that p starts in g, walks through the edge (g, s1) until gs;, then walks through the edge
(gs1,s2) until gsise, and so on, always by right multiplication. The set of paths is denoted by
P(I'). Sometimes we will denote the edges in the picture only by the label s. An orientation for

I'(G,S) is given by Et = G x S; it will always be its orientation, unless we say otherwise.

b b

Figura 1.2: Cayley graph of the dihedral group D5 = <a, b|a?=1,b°=1,abab= 1> with § =
{a,b}. Multiplying by a corresponds to crossing the red edges. Multiplying by b corresponds to
walking in the black edges in the indicated direction.

The shape of the Cayley graph detects free generation:

Proposition 1.22. Let G be a group, S C G and denote by I' = T'(G, S) its Cayley graph. Then
I' is a tree if and only if G is a free group with basis S.

Demonstragdo. Note that connecting a vertex g to 1 in I" by a path p = (1, s1...s,) corresponds
to writing ¢ = s1...s, for s; € ST. Then I is connected if and only if G = (S). Let us show
the proposition. If T is a tree, then we must have G = (S) and also SN S~! = ) (otherwise,

we would have either 1 € S and p = (1,1) would be a loop, or s’ = s~! € S for some element
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ERIEN
/

4
b

[+

Figura 1.3: a portion of the Cayley graph of the free group F» = (a,b) with S = {a,b}.
Multiplying by a is walking right and multiplying by b is walking up.

s € S and then p = (1, ss’) would be a circuit in I'). To show that G is free with basis S, we

just need to show that there is no equation of the form s{*...s{» = 1in G with s; € S, ¢ = £1

€41
i+1
an equation, and suppose it has minimal length. Then n > 3, because if n = 1, p = (1, s!)

and s;'s # 1 (see [71], page 4, Proposition 1.9). Suppose by contradiction that there is such

would be a loop and the case n = 2 we just treated above. Note that the vertices Py = 1 and

P; = s{'...s{" for 1 < i < n — 1 are pairwise distinct, because if P; = P,y we would have an

ff:llsff; = 1 in G with length < n, contradiction. Since n > 3 and the vertices

are pairwise distinct with P, = Py, the path p = (1,s}'...s5*) is a circuit in I', contradiction.

equation s

Then G is free with basis S. Conversely, suppose that G is free with basis S. Then I is
connected. We just have to show that I' does not contain any circuit. Suppose by contradiction
that p = (g, s1...8,) is a circuit in I with s; € S*. Since p has no backtrackings, the word si...s,,
is reduced in G, and since p is closed we have gs;...s, = g, which implies s;...s,, = 1 in G. Then

G cannot be a free group, contradiction. O

Definition 1.23. A subgraph IV of I' = (V(I"), E(T'), 0,t, —) is given by two subsets V(I'') C
V(T) and E(I") C E(T) such that the restrictions of o,¢ and — to I are well defined (i.e., we
have o : E(I") — V(I"), t : EI") — V(I”) and — : E(I") — E(I')). In other words, I" is
a graph with the respective restrictions of o,¢ and —. We denote this relation by I < TI'. A
subtree of I' is a subgraph that is a tree. A maximal tree T in I is a maximal element in the
set of all subtrees of I' with the partial order given by the subgraph relation “<”. This is the
same as saying that 7' is a subtree of I' and if 7" is a subtree of I' with 7" < T”, then T' = T".

By the well known Zorn’s Lemma, every nonempty graph I' has a maximal tree. Also,
one can show that every tree inside I' is contained in a maximal one. By a simple proof by

contradiction, one can also prove

Proposition 1.24. If T is a mazimal tree in T' then V(T) = V(I'), that is, T contais all the

vertices of I'.

When does the removal of an edge in a connected graph “breaks” it in two connected pieces?

The answer will be useful in Chapter 11 and is the following:
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Lemma 1.25. Let yg be an edge of a connected graph I' and let I' — yg denote the subgraph of
I' obtained by geometrically removing yo from T, that is, V(I — yo) = V(I') and E(T' — yy) =
ET) — {yo,90}. If there is a mazimal tree T of T' not containing yo then I' — yo is connected.
If not, then I' — yo contains exactly two connected components, each one containing one of the

extremities of .

In the latter situation we say yo is a separating edge of I'.

T
P Y0 Q P Y Q

Figura 1.4: yg is separating on the right, but not on the left.

Demonstracdo. In the former case, let T' be such a maximal tree and P, Q) be any two vertices
of I' — yo. By Proposition 1.24, P, (Q are vertices of T', so there is a path p connecting them in
T (therefore in T'). Since T does not contain yg, the path p is inside I" — g, as desired.

In the latter case, yp must be a segment with distinct extremities P = o(yp) and Q = t(yo)
(see figure). We claim that every path in I' from P to @ must cross yo. Indeed, let p be such
path. We can extract from p an injective subpath p from P to @), without backtrackings. Then
P, as a subgraph, is itself a tree and must be contained in a maximal tree T. By hypothesis, T
contains yg. But then p and the edge yq itself are by definition geodesics in T" from P to Q). By
uniqueness, p is the path yy and so p crosses yg, which shows the claim. Because of this, there
is no path from P to @ in I — yy, which means that this graph contains at least two connected
components, say, I'p and I'g. Let us show that they are the only ones. Let v be a vertex in
I' — yo which is not in I'p and let us show that it is in I'g. Let p be a path in I' from v to P.
Since such a path cannot exist inside I' — gy (because v is not in I'p) it must cross yo at least
once. Consider the first time p crosses yo. If it crossed “in the right direction”, that is, first
over P then over (), then the restriction of p from v to P would connect them inside I'" — vy,
contradiction. So, when p crosses the edge yg for the first time, it must be “in the left direction”,
that is, first () then P. But then the restriction of p from v to ) connects these vertices inside

I' — yo, which shows that v is in I'g, as desired. O

Definition 1.26. A closed path in a graph is contractible if, after removing all its backtrackings,

we obtain the constant path.

Proposition 1.27. Let v be a closed path in a graph I'. If v does not contain any circuit, then

it is contractible.

Demonstragao. Since v does not contain any circuit, the edges of v form a connected subgraph
of I' with no circuits, that is, a tree. Since every tree is contained in a maximal tree, v must
be contained in a maximal tree, say, T. Let P be the origin and terminus of v. Then, after
removing all the backtrackings of v we obtain a geodesic 7/ from P to P in T, by definition. By

the uniqueness of geodesics in a tree, we have that 4/ is the constant path, so v is contractible. []

Definition 1.28. A vertex P in a graph I' is terminal when it is the terminus of exactly one
edge of I'.
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The properties about terminal vertices we will need later are all summarized in the following

proposition (see [86]):

Proposition 1.29. Every finite tree must contain at least one terminal vertex. If P is terminal
in a graph T' and y is the edge with t(y) = P, let T' — P be the subgraph of T' defined as follows:
V(I -=P)=V(')—{P}, E(' = P)=E(T)—{y,y}. ThenT — P is a tree if and only ifT" is a

tree.

y TT~=>

Figura 1.5: the tree T on the left and the tree T'— P on the right

Other basic constructions we will need are the following:

Definition 1.30. Let I" be a graph and T' < I' a subtree. The contraction of T is how we call
the graph denoted by I'/T, which is defined by:

o V(I/T) = V(T')/ ~, where P~ Q iff P = Q or P,Q € V(T);

o E(I/T) = E(T) — E(T);

o 0: E(I/T) — V(I'/T) with y — [o(y)] (] denotes the class of an clement);
o t: E(I'/T) = V(I'/T) with y — [t(y)];

—: E('/T) — E(I'/T) is the restriction of — : E(T') — E(T).

Geometrically one can imagine that the entire tree 1" is being contracted to one single vertex
and all the other edges in I" are preserved. Obviously, if T' is a maximal tree, then all the vertices
become just one (thanks to Proposition 1.24) and I'/T" is what we call a “bouquet”, as in next
figure. More generally, we could define the contraction of a family of disjoint subtrees A = U, Ty,
by defining V(I'/A) = V(I')/ ~, where P ~ Q iff P = Q or P,Q € V(T,) for some a and
E('/A) = E(I') — E(A). This means that each tree T, is being contracted to a single vertex.
Intuitively, since contracting a tree do not “kill” any circuits, we have the following important

property (see [86], pg. 23, Corollary 2):

Proposition 1.31. Let I' be a graph and A = U,T, the disjoint union of a family of subtrees
of I'. Then T is a tree if and only if T'/A is a tree.

Definition 1.32. Let I' be a tree and A C V(I'). The subtree T generated by A is the smallest

(minimal, in the subgraph relation “<”) tree of I" which contains all the vertices in A.

Observation 1.33. It is straightforward to show that T is the tree consisting of all the edges and
vertices of all the geodesics in I' connecting all the vertices in A to each other. With a similar
argument one can also show that T is the tree consisting of all the edges and vertices of all the

geodesics in I' connecting the vertices in A to a fixed vertex P in A.
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Y
Y
T
4. /\?
z
z

Figura 1.6: the tree 7" in red is contracted to one vertex

The construction above shall not be confused with the following:

Definition 1.34. Let I" be any graph and A C V(T'). The subgraph I'y < T" induced by A is
given by

o V(l4)=4;

o E(I'a) ={y e ET) | o(y),t(y) € A}.

By the above definition, a path « in I" is contained in I'4 if and only if the extremities of all
its edges are in A, or, let’s say, if v runs only over vertices in A. Note also that I"4 need not be

connected, even if I is.

SISO

Figura 1.7: The vertices A on the left, not connected I" 4 on the right

QN ~ Q1N

Figura 1.8: The vertices A on the left, connected I'4 on the right

Definition 1.35. An action of a group G on a graph I' is a group homomorphism ¢ : G —
Aut(T'). When such an action exists we say that G acts on I'. Given g € G, the automorphism
©(g) then consists of two bijective maps ¢(g), (resp. ¢(g)e) between the vertices (resp. edges)
of T', so we abbreviate ¢(g),(P) by g - P for any vertex P and ¢(g).(y) by ¢ -y for any edge y.
With this notation, the action satisfies

1) (gh) - P=g-(h-P)and 1-P = P for any vertex P and g,h € G}

2) (gh)-y=g-(h-y)and 1-y =y for any edge y and g, h € G;
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3) o(g-y) =g-o(y) and t(g-y) = g - t(y) for any edge y and g € G;

4) g-y =9y for any edge y and g € G.
An inversion in such an action is a pair (g,y) € G x E(I') such that g -y =y. We say that
G acts without inversion in I' when such an inversion does not exists. We say that the action is

free and that G acts freely on I' when G acts without inversion and g - P = P implies g = 1.

Example 1.36. It is easy to verify that if G is a group and S C G, then G acts freely on its
Cayley graph I'(G, S) if we define the action as g - h = gh on a vertex h and g - (h,s) = (gh, s)
on an edge (h, s).

Definition 1.37. If G acts on I' without inversion, we define the quotient graph, or the orbit
graph G/T" by:

e V(G/T)=V(l')/ ~, where P ~ P"if g- P = P’ for some g € G;

e E(G/T)=E)/ ~, where y ~ ¢/ if g -y = 3/ for some g € G;

e o([y]) = [o(y)], t([y]) = [t(y)] and [y] = [y] for any edge y.

It is easy to verify that G/I' is a graph by using the properties of an action. In particular,
the action being without inversion is what guarantees that [y] # [y] for any edge [y], because
[7] = [y] would give rise to an inversion g -y = @, by definition. It is straightforward to see that
there is a natural surjective morphism p : I' — G/I" with p(P) = [P] and p(y) = [y]. The vertex

and edge classes [P] and [y] are called the orbits of the action.

Definition 1.38. Let a group G act without inversions on a graph I' and let p : I' — G/I" be
the natural projection defined above. If A < G/T", we say that a subgraph A <Tisalift of A if
p(]&) = A and the restriction morphism p|3 : A — A is an isomorphism. We also say that A is
lifted to A.

Proposition 1.39. Let a group G act without inversions on a graph I" and let p: T' — G/T" be
the projection. Every subtree T of G/T" can be lifted to a subtree T of T.

Demonstragio. Let Q = {T < T' | T isatree, p(T) C T and p|l; : T — T is injective}.
Obviously, Q # 0: indeed, if [P] is any vertex of T, then the single vertex P, thought as a
subtree of I', is in (). Let us ordinate €} by the subgraph relation “<”. Since the union UaTw
of any chain {7}« in € is an upper bound for the chain (homework for the reader), by Zorn’s
Lemma there is a maximal element in €, which we will also denote by T. We also have the
injection p|z : T —T. Let T = p(T) < T, so we have an isomorphism Pl T — T and T’ is
also a tree. We just have to show that 7" = T. Suppose by contradiction that there is an edge [z]
in T and outside T”, and because T is connected we can also suppose without loss of generality
that its origin [o(z)] is in 7" (see the next figure). Note then that its terminus [t(z)] must not
be in T”, because if both extremities of the edge [2] were in T” we could connect them inside T”
by a geodesic v, and then the concatenation of v with the edge [z] would be a circuit in T'. So,

the union of 7" with the edge [z] is also a tree by Proposition 1.29. Now, [o(z)] € T" = p(T)

by construction, so write [o(z)] = [Py] for some vertex Py in T. We must have g - o(z) = Py for
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some g € G. Then the edge ¢ - z is a lift of [z] (because p(g- z) = [g - z] = [2]) whose origin is in
T (because o(g - z) = g - o(z) = Pp). This edge must also be outside T, because if ¢ - z was in T
its projection [z] would be in p(T) = T", contradiction. Similarly, its terminus ¢(g - z) is outside
T, because its projection is [t(z)] which is not in 7”. So the union of 7" and the edge g - z is also
a tree by Proposition 1.29 and we have p as an isomorphism (see figure) between these extended
trees. Since [z] is in T, it is also an injection into 7". Therefore the extended tree in I' is in

and T is not maximal, contradiction. This completes the proof.

Definition 1.40. If a group G acts without inversion on a graph I', a tree of representatives of

I’ mod G is any lifting of a maximal tree of G/T.

Example 1.41. Define an action of Z on its Cayley graph I' = I'(Z,{1}) by n-m = 3n +m
for n € Z and a vertex m in I', and n - (m,1) = (3n + m, 1) for an edge (m,1) in I". It has
no inversions and since [3] = [0] the orbit graph Z/T" is isomorphic to a circuit of length 3 (see
figure). The blue path A = [(0,1)],[(1,1)] is a maximal tree in the orbit graph, so the blue path

A =(0,1),(1,1) is a lift for it and a tree of representatives of I' mod Z, by definition.

2 3

1 0. 1
p A
[1] l (0. 1)]

Example 1.42. The free group F» on two generators x and y acts naturally on its Cayley
graph I' = T'(Fy, {z,y}). So, every subgroup of F» also acts on I'. Let H < F5 be the subgroup
consisting of the words whose sum of all the z-exponents is even, as well as the sum of all the

y-exponents. In other words, H = ker(y) where
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QOIFQ—>ZQXZ2

w — ((w)*, (w)?).

Note that ¢ is surjective, so by the isomorphism theorem we have Fy/H ~ Zy X Zs and H has
index 4 in Fy with {1, z,y, zy} as a collection of coset representatives. Since the action of h € H
on a vertex g of I' is always given by h - g = hg, the orbit [g] of a vertex g is exactly the coset
Hyg. Since there are only 4 cosets, the orbit graph H/T" has only 4 vertices [1], [z], [y] and [zy].

There are also only 8 geometric edges, as the figure shows.

If the three edges [(1,y)],[(1,z)] and [(z,y)] are chosen as a maximal tree of H/T", we can
lift them to the three edges (1,y), (1,z) and (z,y) which form the blue tree of representatives
of I' mod H.

Proposition 1.43. Let G act on a graph I'. Then there is no inversion if and only if I' has
an orientation ET which is preserved by the action (that is, y € ET, g€ G = g-y € ET, or
G-Et CET).

Demonstragio. (<) Let ET be such orientation and suppose by contradiction that there is
an inversion g -y = . We have either y € ET or ¥ € ET. In the former case, we have
Y=g -y € G-ET — ET, contradiction. In the latter case, y=y=g-y=¢9g-y€ G-ET - ET,
also a contradiction. (=) Suppose the action has no inversion. Then we can consider the orbit
graph G/T'. Choose any orientation W in G/I" and define E* = {y € E(T) | [y] € W}. Tt is
straightforward to check that E7 is an orientation for I'. To see that G- E* C ET, let g € G
and y € Et. We have [g-y] = [y] € W, so by definition ¢g -y € E™, as desired. O

For example, we know that if S C G, the group G acts freely (in particular without inversion)
on I'(G, S). The orientation G x S of I'(G, S) is always preserved since g- (h, s) = (gh,s) € Gx S
for every g € G and (h,s) € G x S.
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1.4 The Reidemeister-Schreier algorithm

Finding a presentation for a subgroup H < G in terms of a presentation of G is not an easy task
in general. The first results in this direction were obtained by Schreier (1927) and Reidemeister
(1932), leading to the names “Reidemeister-Schreier” method, process, theorem or algorithm.
There are many versions of the Reidemeister-Schreier Theorem, for example in [72] (section 2.3,
Theorem 2.9, page 94) and [71] (Proposition 4.1, Chapter II, page 103). We are going to show
a more geometric version of it, based on some results of [86] about group actions and Cayley

graphs. This result will be useful especially in Chapter 6.

Theorem 1.44. Let a group G act freely on a tree X. Let A be a tree of representatives of X
mod G (associated to a mazimal tree A of G/X ) and let E* = E1(X) be an orientation of X

which is preserved under the action (see Proposition 1.43). Let
S={s#1€G|3yecE" witho(y) € A and t(y) € sA}.
Then G is a free group with basis S.

Demonstragao. The basic idea is to show that I'(G, S) ~ X', where X' is a quotient of the tree
X given by the contraction of some disjoint subtrees of X. Since X is a tree, X’ is also a tree
by Proposition 1.31 and then so it is I'(G,S). By Proposition 1.22, G must be free with basis
S.

Let us define the subtrees of X which we will contract. Denote by p : X — G/X the orbit
projection. Every g € G induces an automorphism of X, so all the gA, g € G, are also subtrees
of X. Furthermore, we claim that they are pairwise disjoint. Indeed, suppose two of them, say,
gA and hA have a common vertex. So g- P = h-Q for P,Q vertices of A. Then h™1g- P = Q
implies p(P) = p(Q). Since p|; is an isomorphism we have P = Q. So h=lg- P = P, but since
the action is free we must have h='g = 1, or h = g, which shows the claim. Denote this family
of disjoint subtrees by G- A. There is a bijection G- A — G with gA — ¢. Define X’ = X/(G-A)
their contraction in X, which we already know is a tree.

Each subtree gA in X becomes a single vertex in X’ which we denote by (gA). We claim
that these are the only vertices of X’. In fact, for every vertex P of X, [P] =p(P) € V(G/X) =
V(A) = p(V(A)) (using Proposition 1.24), so [P] = [Q] for some vertex Q of A. By definition,
P =g-Q € gA for some g € G. This shows that every vertex of X is inside some gA, so by
definition of X’ every vertex of X’ must be some (g]\) Because the gA are pairwise disjoint,
the vertices (gA) are pairwise distinct, so we have a bijection V(X’) — G - A with (gA) — gA.
By putting this bijection together with the one we obtained in the previous paragraph we have

a bijection

Then, by Observation 1.17, to create an isomorphism a : X’ — I'(G, S) we just have to put
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an orientation in X’ and define an oriented morphism « : X’ — T'(G, S) which is also a bijection
between the oriented edges. Remember that G x S is the orientation of I'(G, S).

By definition, E(X') = E(X) — E(G - A). Define E*(X') = E*(X) — E(G - A). We claim
that this is an orientation for X’. Indeed, using that y € E(G-A) < 7 € E(G - A) (because
E(G - A) is a subgraph of X), we have

y€E(X')=EX)-EG-A) = yecEX)=E"(X)UET(X)
= yeET(X)orye ET(X)
(X)—E(G-A) orge ET(X)— E(G-A),

= yeFE*

which shows that F(X') = ET(X') U E+(X’). Also,

ye ET(X)=E"(X)-E(G-AN) = yecET(X)
= 7¢ ET(X)
= y¢ ET(X) -
= ygéE*X’)

(
(
( E(G-A) = E*(X')
(
and so Et(X’) N E+(X’) = (), which shows the claim.

Now we define the oriented morphism « : X’ — I'(X, S) by defining the map a : ET(X') —
G x S. Given y € Et(X'), we must have o(y) = (gA) and t(y) = (¢A) in X' for g # ¢’ € G
(if g = ¢', y would be a loop in the tree X', contradiction). This implies s = ¢g~'¢’ € S by
definition of S. Indeed, s # 1 because g # ¢’. Also, the edge g~! -y is in B+ (X) (because y is
and the action preserves orientation) and is such that o(g~!-y) = g~!-o(y) € g~ 'gA = A and
tlg7t-y) =g ' - t(y) € g '¢’A = sA. Then we can define a(y) = (g,5). To see that « is an

oriented morphism, note that

e a(o(y)) = a((gh)) = g = o(g, s) = o(a(y));

o a(t(y)) = a((g'A) = ¢ = g9 g = gs = (g, s) = t(a(y)).
Finally, let us check that a : ET(X’) — G x S is a bijection:

e Let (g,s) € G xS. Let y € ET(X) such that o(y) € A and t(y) € sA. We claim
that ¢/ = g -y is an element of E*(X’) such that a(y’) = (g,s). Indeed, first note that
y € ET(X'). If that was not the case we would have y an edge of some hA for some
h € G. Then on one hand we would have o(y) € hA N A which would imply h = 1, and
on the other hand we would also have t(y) € hA N sA which would imply h = s, s0 s =1,
contradiction. Now, ¢/ = g-y is also in E1(X) because the action preserves the orientation
of X and if 3/ were in G- A we would have y =g~ 1-y/ € g~1-G-A C G- A, contradiction.
So i € ET(X'). Let us compute a(y’). Since in X o(y') = o(g-y) = g - o(y) € gA and
ty') =t(g-y) = g-t(y) € gsA, in X' we have o(y') = (gA) and t(y') = (gsA). So by
definition a(y') = (g, s') where s’ = g~!(gs) = s. So a(y’) = (g, s) and « is surjective.
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e Let y,y € ET(X') such that (g,5) = a(y) = a(g) = (g,5). By definition of o we have
o(y) = (gh), ty) = (9'A) and s = g7'¢’. Similarly, o(7) = (gA), t(5) = (F'A) and
5=§'3. Theng'¢ =s=5=§"'¢ =g '¢ and so ¢ = §’. Then, both edges y and
in X’ start in (gA) and finish in (¢’A). Since X' is a tree, y = . So a is injective, which

completes the proof.
O

Before walking in the direction of Reidemeister-Schreier Theorem, we point out two direct
and beautiful consequences of the theorem above which are important tools in geometric and

combinatorial group theory.
Corollary 1.45. A group G is free if and only if it acts freely on a tree.

Demonstragao. If G is free, say, with a basis Z, then by Proposition 1.22 I'(G, Z) is a tree on
which G acts freely. Conversely, if G acts freely on a tree X, by Theorem 1.44 G is free (with
the basis S given there). O

Corollary 1.46 (Schreier’s Theorem). Any subgroup of a free group is free.

Demonstracao. Let G be a free group and H < G. By the previous corollary, let X be a tree
on which G acts freely. Then it is easy to see that the restriction of this action to H is also a

free action of H in X. Again, by the previous corollary, H is a free group. O

After reading the corollary above, one could ask: if H is free, how to find a basis for it? The

answer is given by the next theorem.

Definition 1.47. Let G be a group and H < G. A Scherier’s transversal T' of G mod H is a
collection of coset representatives of G mod H (that is, T C G such that G = L Ht (disjoint
union)) with 1 € T and with the following property: “if ¢t = z{'...25 € T, ¢; = £1 is a reduced
word, then every initial track z{'...x;" of ¢ is also in T, for i = 1,...,n”. Given such a Schreier’s

transversal and g € G, we denote by g the (unique) element of T" such that Hg = Hg.

Theorem 1.48 (Explicit Schreier’s Theorem). Let F' be a free group with basis X and H < F

a subgroup. Then
a) There is a Schreier’s transversal T of F' mod H ;

b) If T is any Schreier’s transversal T of F' mod H, the set
R={tztz ' |teT,ze X, tx g T}

is a basis for the free group H.

Demonstragao. a) Let I' = I'(F, X) be the tree (Proposition 1.22) on which F' acts freely. The
restriction of this action to H is also a free action of H on I'. Let A be a maximal tree of H/T'
and lift it to a tree of representatives A of I' mod H. As in the proof of Theorem 1.44, the A,
h € H form a family of disjoint trees whose vertices partition the vertices of I'. Since all the hA

are isomorphic to A and have the same projection p(hA) = p(A) = A, all of them are also trees
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of representatives. So, by exchanging A by some RA if necessary, we can assume that A contains
the vertex 1 of T'.

Let T'=V(A) Cc V(I') = F. We claim that T is a Schreier’s transversal of F' mod H. First,
note that 1 € T' by construction. Since p|j : A = Ais an isomorphism, in particular we have a

bijection p: T'= V(A) — V(A). But by Proposition 1.24, V(A) = V(H/T) =V (")) ~=F/ ~,

where the orbit relation is
g~g e hg=g forsomehe H< g e Hy< Hg= Hg'.

Then the orbits [g] are precisely the cosets Hg and we have the bijection p: T'— {Hg | g € F'}
with p(t) = Ht. This shows that F' = UerHt. Finally, let ¢t = 2f'..25* € T, ¢, = £1 be a
reduced word in T. Then p = (1, z{"...z5") is a path from 1 to ¢ in I'. Since ¢ is a reduced word,
p has no backtrackings and since I' is a tree, p is a geodesic. Now, 1 and t are also vertices of
the tree A. Connect them by a geodesic p/ inside A using Proposition 1.20. Since p’ is also a
geodesic in the tree I', again by Proposition 1.20 we have p = p’. So p is a path inside A and

therefore its verices z{'...x{", i = 1, ...,n are vertices of A, that is, z{'...2;' € T,

b) If T is any Schreier’s transversal of F' mod H, let A < T be the subtree generated by
the elements (vertices) of T' (Definition 1.32). By Observation 1.33, A consists of the edges
and vertices of all the geodesics in T' connecting ¢t € T to 1 € T. We claim that A is a tree of

representatives of I' mod H. First, let us see that V(A) = T. Every element ¢ of T is the end
of a geodesic of I' connecting 1 to t, so obviously ¢ € V([&) Conversely, if w is a vertex of some
geodesic p = (1, x1...x,) connecting 1 to some ¢t € T in I, then we have w = x1...z; for some i
and because T is a Schreier’s transversal we must have w = z1...x; € T. Now we show the claim.
Let A = p(A) < H/T. We must show that A is a maximal tree of H/T' and that the restriction
p: A — Ais an isomorphism. It is obviously surjective. Furthermore, p : T — V(H/T) is a
bijection, because the vertices of H/T" are exactly the cosets Hg for g € F (see item a)) and
because F' = Usep Ht. Since V(A) = p(V(A)) = p(T) = V(H/T), p: A — A is a bijection on the
vertices. But it is straightforward to show the following general property: “if p : I' — I" is any
graph morphism, I is a tree and ¢, : V(I') = V(I") is injective, then ¢, : E(I') — E(I") is also
injective”. Then, in our case, p : E(A) — E(A) is also injective and, since it is also surjective,
p: A — A is an isomorphism. Then A is a tree which contains all the vertices of H /T and so it

is a maximal tree. This shows the claim.

Now we show what we want. Let us apply Theorem 1.44 to our case. H is a group acting
freely on a tree I, A is a tree of representatives of I' mod H and Et = F x X is an orientation

of I which is preserved by the action. By Theorem 1.44, then, H is a free group with basis
R={r#1ecH|3(g,x) € Fx X with g € A and gz € rA}.
But g € A as a vertex means g € V(A) = T. Then we rewrite
R={r#1e€H |3 (t,x) e T x X with tx € rT}.

The condition tx € rT is also equivalent to tz = ru for some u € T, or r = tzu~' for u € T.

Note also that tzu~™! = r € H is equivalent to Htz = Hu, so by uniqueness u = tx. Then
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r=tru~! = trtz * and
R={tatz '#1|teT,zec X}

Finally, since tz € rT and the trees hA are pairwise disjoint (in particular its vertices hT'), we
have tx € T < rT' =T < r = 1, so we can replace the expression totr * =7 #1byte ¢T.
Then

R={tztz ' |teT,oec X to¢ T}

is a basis for the free group H, as desired. O

Example 1.49. Let us go back to Example 1.42. The tree of representatives we chose there
has 4 vertices, which are T' = {1, z,y,zy}. By Theorem 1.48, T' is a Schreier’s transversal of
Fy mod H. Then, to find a free basis for H we just have to find the elements ¢ € T and
z € X = {z,y} such that tz ¢ T" and then compute tzfz . The 8 elements of the form tz are
z,y, 2%, 2y, yz, y?, xyr and xy®. The ones outside T are z2, yx,y?, xyx and zy?. For each one of

these, we compute tztz ', Since 22 = 1,77 = xy,y2 = 1,75z = y and zy? = z, a basis for H is

1 1

R = {2? yzy tz= y? zyzy™, 2?21},

There is also a more geometric way to see this. Remember that since the basis for Fy is
X = {z,y}, the oriented edges in I are the ones going up or right. By Theorem 1.44, a basis
for H consist of the elements 1 # r € H such that there is an oriented edge y in I" starting at
A and finishing in 7A. So we just have to look at the oriented edges which start at T (and leave
it) and see which trees of representatives they touch. We obtain the same 5 elements after all.

See the next figure.

__yQA

booaytn A
4

A 4
A
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H— zyxy A

Py K
<«

Figura 1.9: there are exactly 5 oriented edges starting A and leaving it.

Theorem 1.50 (Reidemeister-Schreier). Let G = (X | R) be a group and H < G a subgroup.
Let ¢ : Fx — G be the projection morphism such that ker(p) =< R >TX (the normal closure
of the set R in the free group Fx) and define H = ¢~ '(H) < Fx. If T C Fx is a Schreier’s
transversal of Fx mod H, then

H={{yt2)|teT,zeX,ta ¢ T} | {r(trt™') |t € T,r € R})
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is a presentation for H, where y(t,x) = totr " forte T,z € X* and
T(w) = v(1, 21)y(T1, x2)y(T1Z2, ©3) ... Y (T1---Tn—1, Tn)

for a word w = z1...x,, in Fy.

Demonstragio. Since T is a Schreier’s transversal of Fx mod H, by Theorem 1.48 H is a free
group with basis X' = {y(t,z) | t € T,z € X,tx ¢ T}. So we can denote H = Fx as a free
group on the basis X’. The restriction of the surjective morphism ¢ : Fx — G to the subgroup

H = Fx gives us the surjective projection morphism

o H— o(H)=9p(p ' (H)=H,

which we can denote by ¢’ : Fx: — H. So, by the definition of group presentations we are just
left to show that
ker(¢') =< {r(trt ) | t € T,r € R} >~

(note that the normal closure on the right is in the subgroup Fx/, not in the whole group Fx).

But we have
ker(¢') = A Nker(¢) = ¢~ (H) N~ ({1}) = ™1 ({1}) = ker(p) =< R >,

so we must show that < R >X=< {r(trt7!) | t € T,r € R} >Tx’'. Let us show that. The
reader shall remember the definitions of normal closure in a group.

(D) Since Fx: < Fx, we have < {r(trt™!) |t € T,r € R} >Ix c< {r(trt™!) |t € T,r €
R} >x_ So it is enough to show that < {r(trt™1) | t € T,r € R} >xCc< R >%. Since
< R >*'x is a normal subgroup of Fy it is enough to show that 7(trt™!) e< R > for all
t € T,r € R. Now, using that gg’ = g¢’ for all g, ¢’ € Fx note that, for every word w = ...z,

in Fx, z; € X*, we have

T(w) = ~(1,z1)v(T71, x2)y(T1T2, 23) ... Y(T1---Tn1, Tn)

11— =1 —1 _——
= T1x1 T1XTx1T2 T1X2X3T1T2T3 ill1e =1 L1...Tp—-1Tn

= xlfl_lzﬁxgzlxg 1x1x2x3m1x2x3 1...xl...xn,lxnxl...:pn,lxn 1
= :pl...xnm_l = w@_l,
so for every h € H we have 7(h) = W' = h. Since r € R c< R >Fx <1Fx, the conjugate
element trt~! is also in < R >X=ker(¢) C H and therefore 7(trt ') = trt~! e« R >FX as
desired.

(C) An arbitrary element of < R %% is a finite product of elements of the form grg=—! with
g€ Fx and r € R. Since < {7(trt™%) | t € T,r € R} >%x’ is a subgroup of F, it is enough to
show that grg~! €< {r(trt™) | t € T,r € R} >x'. But g € Fx = UerHt, so write g = ht
for h € H and t € T. Then

grg = htrt *hTl = hT(t?“t_l)h_l

and since h € H = Fxv, the element above is by definition inside < {r(trt=1) | t € T,r €
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R} >Fx’ as desired. This completes the proof. ]

Corollary 1.51. If G is finitely generated and H < G 1is a finite index subgroup, then H is
finitely generated.

Demonstragio. By the proof of Proposition 6.2, the subgroup H < Fy is of finite index. Then
the Schreier’s transversal T of Fx mod H (which exists by Theorem 1.48) is also finite. By
Theorem 1.50, the set {y(t,z) |t € T,z € X,tx ¢ T} generates H. But it is a finite set, since
T and X are finite. O]

Observation 1.52. The triumph of the Reidemeister-Schreier Theorem is that it is algorithmic.
The projection ¢ : Fx — G can be written as ¢(w) = w, where w = z1...z,,z; € XT is being
considered as a word in the domain Fx and as the product of the generators xj...z, of G in the
codomain G. If a Schreier’s transversal 1" of G mod H is known, then using Proposition 6.2 we
see that T = {w € Fx | w = @(w) € T} is a Schreier’s transversal of Fx mod H (from now on
we will identify 7' = T'). We do the following: we just have to find which are the elements (¢, x)
such that tz ¢ T, which will be the generators of H, and then write all the relations 7(trt=1)
in terms of these generators. Note that the generators are only the (¢, x) for x € X, not for
x € X1 So if some expression of the form ~(t,z~!) with 2 € X appears in the expression of

7(trt=1), we must figure it out which generator it represents. But

-1
T N (e prow -1 B oy Wiromensy pt S o VIS R TS Loy el SO -1
vtz x)" = [ tetate 1z = (te—late—tx = (te—lat™") " =ta 'tz =(t,x™),

so we replace (t,7~!) by the expression y(tx—1,2)~!, which is the inverse of the generator

~v(tz—1,x) of H, as one can see in the next example.

Example 1.53. Let us use Example 1.49 to use the Reidemeister-Schreier algorithm. Let
G=7ZdZ = <x,y ] a;ya;_ly_1> and H = 27Z © 2Z < G. Let us compute a presentation for
H (our intuition tells us to expect some presentation also having the form (a,b | aba™'b71)).
We have X = {z,y}, R = {zyz~'y '} and the projection ¢ : F» — G can be identified with
o(x) = (1,0) and ¢(y) = (0,1). Then H = ¢~ '(H) < F; is exactly the subgroup of Example
1.49. T = {1,z,y,xy} is a Schreier’s transversal of F» mod H and the generators of H are

a = 2°=~(z,1),
b = v =9yy),
c = yay a7t =q(y,2),

d = xyzy =72y, 2),

=1
L= q(zy,y).

e = :EyQ:n_

Now let us compute the 4 relations. Remember that (¢, z) = 1 if and only if tz € T*
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Tayr ™) = (Lo y)y(ey, e )y, y )

T(ezyzlylaTl) = g

Tyzyz~lyTlyTh) = o

and

T(ryzyr 'y Ty = (L o)y, )y ey, 2) v (v y) (LT )y (@ )y (ey, y Dy (e, e
= y(xy,z)v(y
(

(
)y (L )y (g

1 x)

1

y(zt

, T
Yz, z)”

= y(zy, z)7(y,y) “y(ayLy)
= y(zy,z)y(y,y) v(zy, y) ™!

= dba"te L.
Then a presentation for H is

H = <a, b,c,d,e | c_l,ad_l,ceb_l,dba_le_1>
= <a, b,d,e | ad_l,eb_l,dba_16_1>
= <a, b,e | ebil,aba71671>

= {a,b|aba b1,
(a0 |

as desired.
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Open question: could we also give a geometric approach (like the one above) to Johnson’s
method? This question is due to a personal communication with professor Vinicius Casteluber
Laass (DMAT - UFBa - Brazil) and Johnson’s method can be found in Chapter 13 of [59].

1.5 Commutators and lower central series

For the work of Chapter 10, we need to know some basic properties about commutators and

lower central series of a group. Our approach here will be minimal.

Definition 1.54. Let G be a group. Given two elements z,y € G, we denote [x,y] = zyx~ly~!

and call it the commutator of z and y. We also denote by 2¥ = yxy~! the conjugate of by
y. If z € G is another element, we define [z,y, 2| as [z,y, 2] = [[x,y], 2] and recursively define

(€1, .oy 2] = [[1, .oy xg—1], 2x) fOr £ > 4 and 21, ..., 2% € G.

Here are some basic identities of commutators, whose proofs are straightforward and will be

omitted:

Proposition 1.55. Let G be a group and x,y,z € G. Then

a) zy = [z,ylyz = yx[z 1,y '];
b) [z, y]™! = [y, z];
c) [z,yz] = [z, y][z, 2][2, 2, y];

d) [y, z] = [y, 2l[z, y, ][z, 2];

1

e) [yt 2V y, 2 lat 2,y = 1.

Definition 1.56 (Commutator subgroup). Given two subgroups H, K < G, we define the
subgroup [H, K] < G as the subgroup generated by all commutators [h, k] (with h € H and
k € K) and call it the commutator of H and K in G. If J < G is another subgroup, we define
[H,K,J] as [H, K, J| = [[H, K], J] and recursively define [Hy, ..., Hy| = [[H1, ..., Hx_1], Hy| for
k>4and Hy,...,H, <G.

It is easy to see that [H, K] = [K, H] for any subgroups H,K < G. Also, the group
[Hi, ..., Hy) is generated by all elements of the form [hq, ..., hg] (with h; € H;), which we call

k-fold commutators.

Definition 1.57 (Lower central series and nilpotent groups). Given any group G, the lower

central series of G is the sequence v1(G),72(G),v3(G), ... of subgroups of G defined by
e 1(G) =G;
e 12(G) = [G,G] = m(G), Gl;
¢ 7+1(G) = [%(G),G] for any k > 1.

It is not hard to prove by induction that +;(G) D v;+1(G), so it is (setwise) a decreasing sequence.
For ¢ > 1, we say G is nilpotent of class ¢ if 7.4+1(G) = 1 and if ¢ is the smallest positive integer

with this property.
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One can prove by easy induction that the subgroups v;(G) are all characteristic in G, that
is, (71:(G)) = vi(G) for all automorphisms ¢ € Aut(G). In particular, they are invariant under

conjugation.
Lemma 1.58. If G is a group and i,j > 1, then [v(G),v;(G)] < vi+4(G).

Demonstragdo. Induction on j. For j = 1, we have [;(GQ),7;(G)] = [%i(G),G] = 7i+1(G) =
Yi+j(G), as desired. Suppose now that, for some fixed j, we have [v;(G),7;(G)] < vi+;(G) for
any ¢ > 1 and let us show that [v;(G),vj+1(G)] < 7i+j+1(G) for any ¢ > 1. Given such i, we
have

[Yi(G),j4+1(G)] = [j41(G), %(G)] = [[7(G), G, %(G)] = [ (G), G, iG],

so every generator of [v;(G),v;4+1(G)] is of the form [a;j_l,z,yi] for z; € v;(G), z € G and
yi € vi(G). If we show this generator is in ;4 4+1(G) we are done. By Proposition 1.55, item e)
and basic computations we obtain
1zt
w5t 2] = () 7 (i e, 22) 7
oy L
= ([l [ wallPle [y g])%) ™

—1 -1
RANEN |

= [oj, =7 will

Since [z71y] € [G,%(G) = 74+1(G) we have by induction that [z;,[z71y]] €

S
—1

Yi+j+1(G). Similarly, using induction we show that [z, [y; ', z;]]% ¥ € 7iy;11(G) and so

Tz

(Vi (@), 7i+1(G)] < Vi+j+1(G), and since this subgroup is characteristic we get [x;, [z, y;]]%

[m;l, 2,Yi) € Yitj+1(G), which completes the proof. O

Definition 1.59. Given k > 1 and two elements z,y € GG, we say x and y are congruent modulo
7 (G) and denote x = y mod 14 (G) if z7x(G) = yyu(G), or, equivalently, if 'y € 7,(G). This

means x and y project onto the same element in G/~ (G).
The following propositions are the most important ones for Chapter 10.

Proposition 1.60. Let k,m,n > 1 and let x,y,z € G be elements of a group G such that
z € (G), y € Yym(G) and z € v, (G). Then

a) xy = yxr mod Yi+m(G);
b) [x7 yz] = [(L‘, y] [wv z] mod 7k+m+n(G);
c) [zy, 2] = [z, 2]y, 2] mod Yitmin(G).

Demonstragio. For item a), just note that [z71,y7 ! € Yym(G) and so zyViim(G)
yr[r™ y Yeem(G) = y2Yiem(G). Now, item b). By Lemma 1.58, we have [z,z,y] =
[z, 2], 4] € [ (G), w(G)], Y (G)] < [Vt (G)s Y (G)] < Vetntm(G); therefore,

[, Y2 Yk rman(G) = [2,9][2, 2][2, T, Y[ Vet man (G) = [2, Y][7, 2]k tm1n (G).

Item ¢) is similar: by using Lemma 1.58, we get that [z,y,2] € Ykin+m(G), that
[z, y, 2] 7" [2, 271 € Yhntm(G) (actually, this element is in Yort204m(G) < Vetnim(G)) and
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similarly that [[y, 2]71, [x,2]7!] € Yk 4nim(G). Now, using Proposition 1.55 we have

[y, 2 Vetnsm(G) = [y, 22, 7][2, 2] Vet nam (G)
= [y, 2z 2z g, 2l g, 2] 7 2 2] e (G)
= [y, 22, 2V am(G)
= [z, 2]ly, 2llly, 217 [z, 2 s (G)
= [= 2y, 2kt ntm(G),
as we wanted. O

At last, we need a little information about the quotients vx(G)/vk+1(G):

Proposition 1.61. If G is finitely generated by elements x1,...,z,. then, for any k > 1,
Y (G) /vk+1(G) is abelian and finitely generated by the cosets of the k-fold commutators

[Ty, .o iy, ], where 1 < iy <.

Demonstragdo. The proof comes from [72] but we rewrite it here. First, note that v, (G)/vk+1(G)
is abelian because, by Lemma 1.58, [v4(G),Vk(G)] < 72x(G) < x+1(G), so all commutators in
the quotient are trivial. Let us show by induction that the cosets of those k-fold commutators
generate Vix(G)/Vk+1(G). The case k = 1 is trivial for we know that G is generated by the
elements x; (or the 1-fold commutators), so their cosets generate G/v2(G), as desired. Suppose
the proposition is true for some k& > 1 and let us show it for k + 1. We know ~;11(G) =
[7:(G), G] is generated by the elements [h, g], where h € 7;(G) and g € G. By projecting h in
Y6(G)/Yk+1(G) and using induction we can write h = h{'...h&h’, where ¢; = £1, the h; are the
k-fold commutators of the induction and h' € ~,41(G). By using Proposition 1.60 above, we

have
[h,g] = [hT..hS R, g] = [h1, 9] ... [hs, 9] [P, g] mod yar11(G),

and since Yo5+1(G) < Yi2(G) this equality is true modulo v2(G). Since [, g] € Yi42(G), we
then have [h, g] = [h1, 9] ...[hs, 9] mod Yi12(G), so we can say vi+1(G)/7k+2(G) is generated
by the cosets of the elements [ﬁ, g], where h is one of those k-fold commutators and g € G. Now

write g = x;!...z;° for some ¢; = &1 and 1 <4; <r. Again by using Proposition 1.60 we get

[h,g] = [ﬁ zitast] = [lNL,:Uil]El...[fL, z;, | mod Yg42(G),

[t ls
50 Vi41(G) /Yk12(G) is generated by the cosets of the elements of the form [h, ], which are all
(k + 1)-fold commutators of the elements x1, ..., x,. This completes the proof. O]
1.6 Graphs of groups and its fundamental groups

We need the following notion to deal with GBS groups, since they will be defined in Chapter 11

as the fundamental groups of some special graphs of groups.

Definition 1.62. A graph of groups (G,I") consists of:

e a graph [';
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e a choice of an arbitrary group Gp for each vertex P of I';
e a choice of an arbitrary group G, for each edge y of I' such that Gy = G, for all y;

e a choice of a monomorphism f;, : Gy — Gy, for all edges y.

We can also think that for each edge y there are two monomorphisms f, : G, — Gy, and
fz: Gy = Go(y). We call the Gp the vertex groups and the G the edge groups.

We will give below the definition of the fundamental group of a graph of groups using the
presentation for it. There are other equivalent ones, for example, using the direct limit of groups
(see [86]).

Definition 1.63. Let (G,T') be a graph of groups with orientation £+ = ET(T") and T' a max-
imal tree in I'. Let Gp = (Xp | Rp) be presentations for the vertex groups. The fundamental
group of (G,T") (sometimes also denoted by m1(G,T',T) or just m(I")) is

G = (UpXpU {gy |y € E+} | Up Rp U {gyfy(a)gyilfg(a)_l |y € Et,ae Gy}
Wy |y € EXNE(T)}).

When necessary, we denote it by 71 (G,T',T) or just m(T).

Let’s get an intuition of the presentation above. For generators, we have all the generators
of the Gp and one extra generator g, (called stable letter) for each oriented edge y outside T

The relations are the ones from all the Gp and the equalities

gyfy(a)gy_l = fz(a)

forally € ET — E(T),a € Gy and
fy(a) = fy(a)

forally € EY N E(T),a € Gy. One can show that G is independent (up to isomorphism) from
the choices of the tree T, the orientation E1 and the presentations Gp = (Xp | Rp) (this last
independence is due to the direct limit definition in [86]). The groups Gp and G, can always

be seen as subgroups of G.

Definition 1.64. Given three groups G = (X | R), H = (Y | S) and A with two monomor-
phisms f: A< H and g : A — G, the amalgamated product G x4 H is the fundamental group
of the segment of groups I' with V(I') = {P,Q}, EI') = {y,y},Gp =G, Go=H,G, =Gz =A

and monomorphisms f, = f and f; = g. This means that
G = <X|_|Y |RUSU{f(a)g(a)" | ac A}>.

Definition 1.65. Let G = (X | R) and A < G with inclusion [ : A — G and another monomor-
phism 6 : A — G. The HNN extension G’ of (A, G, 0) is the fundamental group of the loop of
groups I' with V(I') = {P}, E(I') = {y,7}, Gp = G, Gy = Gy = A and monomorphisms f, = [
and fy = 0. This means that

G = <X,t | R,tat™ 0(a)™", a A>.
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Figura 1.10: segment of groups on the left and loop of groups on the right

Amalgamated products and HN N extensions are vastly studied classes of groups. Because
of this, we won’t prove its properties when necessary, but only give the reader references for
them. Most of the basic theory and properties can be found in [86] and [71].

The construction of the fundamental group of graph of groups is recursive: intuitively saying,
instead of taking the more complicated graph of groups, we can divide it in steps, each step
involving a simpler graph of groups, and in the end we obtain the same graph of groups. Let us

give two examples:

Example 1.66 (Reconstruction of trees). Let T' be a tree with @) a terminal vertex being the
terminus of the edge z with o(z) = Py, and consider the subtree 7" = T—Q. Let Gp = (Xp | Rp)
and Gy = (X, | R,) be the respective presentations for the vertex and edge groups of T'. Let us
denote by G the fundamental group of T and G’ the fundamental group of 7°. By definition,

we have

G' = (UpevrXp | Upcviry RrU{fy(9) = fylg) | y € B(T'), 9 € G,}).

Now, identifying fz : G, < Gp, with its composition with the inclusion G, — Gp, — G’,

consider the following segment of groups:

fz e
G < G — Gg
L - ®
P(] z Q

Now, the fundamental group of this graph is

G'xq.Gg = (Upev(rXpUXq | Upevry RpU{fy(9) = fyz(9) | y € E(T")}
URq U {f.(9) = fz(9)})
= (Upev)Xp | Upev(ry ReU{fy(9) = fz(9) |y € E(T),g9 € Gy})

—q,

and we re-obtained the fundamental group of the entire tree T'.

Example 1.67 (Reconstruction of bouquets). Let I' be a bouquet with vertex V(I') = {P},
vertex group Gp = (X |R), orientation ET and at least one edge. Fix one edge 2z and denote
by I the “sub bouquet” obtained by removing z and z from I'. Denote by G and G’ the
fundamental groups of I" and I”, respectively. By definition, taking the one-vertex maximal tree

we have

G = <X U{gy ye BT — {23} | RU{gyfy(a)gy fyla) " |y e EF —{z},ae Gy}> .
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Now, identifying the monomorphisms f,, fz : G, — Gp with its compositions with the inclusions

G, — Gp — @, consider the following loop of groups Z:

G’ P ' < G.

The fundamental group of this new graph of groups Z is

m(Z) = (XUu{gylye E* —{z}},9. | RU {gyfy(a)gy_lfﬂ(a)_l lye BT —{z},a € Gy},
ngZ(a)gzile(a)_lv a€Gy)
- (XU{gy |y € E*}| RU{gyfy(a)g, ' fz(a) ' |y € ET,a € Gy})
=G

and we got again the fundamental group of the whole bouquet. This reconstruction also works
if we remove a finite number of edges of the bouquet and start “putting them back” one by one

by repeating the argument above many times. We re-obtain the whole fundamental group after
all.
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Capitulo 2
Geometric preliminaries

As we did in Chapter 1, here we give the reader the notation and background necessary for the
geometric part of our work (ch. 7 through 9). Most proofs will be omitted to make the text
more compact, but we will give further theory references in the beginning of each section. The
reader must be used to the notions of metric spaces and isometries, basic topology and group

actions.

2.1 Hyperbolic spaces

We refer [55] for a great survey of hyperbolic spaces and their boundaries. Our approach here

will be minimal and with (almost) no proofs.

Definition 2.1. Let (X, d) be a metric space and x,y € X. A geodesic between x and y is a
path « : [0,d(z,y)] — X such that a(0) = z, a(d(z,y)) = y and d(a(t),a(t’)) = |t —t/| for every
t,t' € [0,d(z,y)]. We say that X is a geodesic space (sometimes “length space” in the literature)

if for every two points x,y € X, there is a unique geodesic between x and y.

Because of the uniqueness of « the set [z,y] = im(«) is well defined and is often also called
by the geodesic between = and ¥, or geodesic segment, or geodesic arc. If x # y we also call
[z,y] a non-degenerate geodesic or arc. Note that, as a subset, [z,y] = [y, z] and that [z,y] is
by definition always isometric to a compact interval of R.

A standard and important fact about geodesic spaces is the following (see [14]):

Proposition 2.2. Let (X,d) be geodesic and complete. Then X is locally compact if and only
if every closed ball B(x,r) (x € X, r > 0) is compact. In particular, any closed ball B(x,r) in

a proper (i.e. complete and locally compact) geodesic space is compact.
We will need to use the ends of a space, as well as the boundary of it:

Definition 2.3. Given a geodesic space (X, d), a (geodesic) line is a map ¢ : R — X such that
d(c(t),c(t’)) = |t—1'| for every t,t’ € R. Similarly, a (geodesic) ray in X is a map r : [0,00) — X
such that d(r(t),r(t")) = |t — ¢| for every t,t € [0,00). Given two such rays r,ry, we say that
they have “the same end” if for every compact set K C X there is N > 0 such that 1[N, co) and
r2[IN, 00) are both contained in the same connected component of X — K. This is an equivalence
relation on the set of geodesic rays of X. The equivalence class of a ray r will be denoted by
end(r) and the set of classes Ends(X) will be called the ends of X.
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Sometimes we will identify rays or lines with their images in the space X.

Definition 2.4. Given a geodesic space (X, d) and two rays r1,r2, we say that they have “the
same value at 0o” if there is a number K > 0 such that d(rq(t),r2(t)) < K for every ¢,t' € [0, 00).
This is also an equivalence relation on the set of geodesic rays of X. The class of a ray r will be
denoted by 7(oc0) and the set of classes 0X will be called the boundary of X. If c: R — X is
a geodesic line, we define ¢(00) = (¢j,00))(00) and c(—o0) = &(00), where é: [0,00) — X is the
ray ¢(t) = c(—t).

Now we proceed to define a hyperbolic space.

Definition 2.5. Given a geodesic space (X, d), a subset A C X and r > 0, the r-neighborhood
of Ain X is N,(A) = {z € X | 3 a € A such that d(a,z) < r}. Given x,y, z € X, the geodesic
triangle of x,y and z is denoted by A(z,y, 2) = [z,y] U [z, 2] U [y, 2]. We call the three geodesics
involved the edges of A(x,y, z).

Definition 2.6. Let § > 0 and (M, d) a geodesic space. We say that a geodesic triangle A in
X is d-slim if every edge of A is contained in the J-neighborhood of the union of the two other
edges. We say that a geodesic metric space is §-hyperbolic if every geodesic triangle in X is

o-slim.

Figura 2.1: source: Wikipedia

The boundaries of hyperbolic spaces have many known interesting properties that will be
explored on this thesis. To list some of them, we will use the following lemma (see [55] for a

proof):

Lemma 2.7 (Arzela-Ascoli). Let X, Y be metric spaces, with X separable andY compact. Then
every equicontinuous sequence of maps f, : X — Y contains a subsequence converging uniformly

(on compacts) to a uniformly continuous map f: X —Y.

This lemma is incredibly useful in the theory of hyperbolic spaces, for it can be used to
produce geodesic rays or lines (therefore, elements on 9X) from some sequences of other geodesics

or geodesic rays. An example of application is

Proposition 2.8. Let (X,d) be a proper geodesic space, p € X and q € 0X. Then there is a
geodesic ray ¢ : [0,00) — X such that ¢(0) = p and c¢(c0) = q.

Demonstragao. This is only a sketch of the proof for illustration. Let r : [0,00) — X be a

geodesic ray with r(oco) = ¢ (by definition). Of course, if 7(0) = p we are done, so assume
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r(0) # p. Define a sequence of maps ¢, : [0,00) — X in the following way: define ¢, to
be the geodesic [p,7(n)] (of course, in the interval [0,d(p,r(n))]) and put c,(t) = r(n) for
t € [d(p,r(n)),00). It is an equicontinuous family from the separable space [0, 00). Note that X
is not necessarily compact (but it is complete); so, with some minor adaptations on the proof of
Arzela-Ascoli’s Lemma we can indeed guarantee that a subsequence of (¢, ), converges uniformly

(on compacts) to a uniformly continuous map c: [0,00) — X (see next figure).

aac'r

P . iee

Since it is the limit of geodesics, ¢ can be shown to be a geodesic line starting from p. Finally,

by the geometric construction of the ¢, we can show ¢(co0) = r(oc0) = q. O

A similar use of the Arzela-Ascoli lemma can be seen in the following proposition, in the

case of hyperbolic spaces:

Proposition 2.9. If (X,d) is a proper geodesic and §-hyperbolic space, then for every pair
of distinct points q1,q2 € 0X there is a geodesic line ¢ : R — X such that ¢(—o00) = ¢
and c(o0) = qo. Furthermore, ¢ is on the closed d-neighborhood of the union of geodesic rays

representing p and q

Demonstragao. This is again only a sketch. Fix a point p € X. By the previous proposition, let
c1 and ¢y be rays starting at p with ¢;(c0) = ¢;. Let k > 0 be such that d(ci(k),im(cg)) > § (see
next figure). For each n > k, we consider the geodesic triangle with vertices ¢i(n), c2(n) and p.
Since it is §-slim, there must be a point p, € [c1(n), ca(n)] N B(c1(k),d).

By the compacity of B(ci(k),d) (Proposition 2.2) we can assume (pj ), to converge. Then, by
using the same argument of the previous proposition, a subsequence of the geodesics [py, ¢1(n)]
must converge by the Arzela-Ascoli’s Theorem. Now we look to this subsequence on the other
side, that is, the sequence ([c2(ng),pn,])k- By the same argument, a subsequence of it must
converge, so we can assume the sequence ([c1(ng), ca(ng)])r of maps converges. The limit can
be shown to be a geodesic line ¢ with ¢(—o00) = ¢1(c0) = ¢1 and ¢(c0) = c2(00) = g2. The last

assertion follows by the definition of §-hyperbolic space and by the construction of c. O
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From now on, we continue with our proper geodesic d-hyperbolic space X. Next we will give
some intuitive ideas of the construction of a topology for the space X = X U dX and some of

the properties that will be used later. Most of the details are found in [55].

Definition 2.10. We say a map ¢ : I — X is a generalized ray if either I = [0, R] and ¢ is a
geodesic or I = [0,00) and c is a geodesic ray. In the former case, we will denote ¢(t) = ¢(R) for
t > R and also denote ¢(oc0) = ¢(R).

Because of the definition above, the set X = X U X can be seen as
X = X UOX = {c(c0) | ¢ is a generalized ray in X}.

Definition 2.11. Fix p € X. Let (z,), be a sequence of elements of X and x € X. We say
xn, — x (as n — o0o) if there are generalized rays ¢, with ¢,(0) = p and ¢,(c0) = z,, such that
every subsequence of (¢,), contains a subsequence converging uniformly on compact sets to a
generalized ray ¢ with c(oo) = x. Now, we define a topology on X by defining its closed sets: a
subset F C X is closed on X if for every sequence (), C F converging to a point z € X we

have z € F.

It is possible to show this topology does not depend on the point p chosen. In the case
Ty € X for every n and x € 0X, the convergence x,, — x can be intuitively seen as next figure

shows.

p

A natural question is: if x and the xz, are all in X, is this convergence equivalent to the
metric convergence in (X,d)? Intuitively we can see this: suppose z, — = by the definition
above. Then, since uniform convergence implies pointwise convergence, the ends x,, of the finite
geodesics ¢, converge in X to the end x of the limit geodesic ¢. On the other hand, if x,, — =
in the usual sense, we can apply Arzela-Ascoli’s Lemma (in a similar way we did above) to the
geodesics [p, x,] to guarantee the convergence x,, — x according to definition above.

Because of this, since the two convergences in X coincide, the closed sets (which are char-
acterized by convergence) of both topologies on X must coincide and therefore both topologies

on X coincide. Therefore

Proposition 2.12. The inclusion map X < X is a homeomorphism onto its image. In partic-

ular, X is open in X and therefore 0X is closed. O
A sketch for a proof of the following (surprising) result can be found in [55].

Theorem 2.13. X is metrizable, that is, there is a metric on X whose induced topology coincides
with the one defined above.

Assuming theorem above, we can show
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Proposition 2.14. X and 0X are compact metric spaces.

Demonstragao. We won’t write all details. By theorem above both can be seen as metric spaces.
Since 0X is closed on X, it is enough to show that X is compact, or sequentially compact, since
it is a metric space. Let (z,,)n be a sequence in X and let us find a converging subsequence. The
set {n € N | z,, € X} is either infinite or finite, so we may assume without loss of generality that
either x,, € X for all n or z,, € 0X for all n. In the latter case, we can suppose by Proposition
2.8 that all rays emerge from a fixed point p. Then an easy adaptation of Arzela-Ascoli’s Lemma
give us the desired converging subsequence. In the former case, we have two subcases: if the
sequence (), C X is bounded, then it is contained in a closed ball B(z, R). Since such balls are
compact we find the convergent subsequence. If (x,), is not bounded fix a point z € X. There
must be a subsequence (xp, ) such that z,,, ¢ B(z, k). By applying the Arzela-Ascoli’s Lemma
for the sequence of geodesics ([z,7y,])r We find a subsequence of it (say ([z,z,]);) converging
uniformly on compacts to a geodesic ray ¢, and by definition of the convergence in X we have

exactly 2, — ¢(00) in X, as desired. O

Let g : X — X be an isometry, denoted by x — gz. If ¢ is a geodesic ray in X, then the map
gc:[0,00) — X with (gc)(t) = ge(t) is a geodesic ray, for d(ge(t), ge(t')) = d(c(t), c(t’)) = |t —t]
for every t,t' > 0. We define a map ¢ : 0X — 90X by putting g(c(o0)) = ge(o0). It is clear
that ¢(00) = ¢/(00) implies ge(o0) = g/ (0), so g is a well defined map. Furthermore, let us see
it is continuous. Since g is an isometry, is straightforward to show that if a sequence (c¢;), of
geodesic rays converge uniformly on compact sets to a geodesic ray ¢, then the sequence (gep)n
of geodesic rays converge uniformly on compact sets to gc. Because of this, it is straightforward
to see that if x,, — x in 0X, then gz, — gz, which shows the desired continuity. Since the

1

isometry ¢~ also induces a continuous map and gg~! = ¢~'g = Idyx, we have

Proposition 2.15. If g : X — X is an isometry, the induced map g : 0X — 0X is a homeo-

morphism. O

It is well known in the literature an equivalent definition of hyperbolicity that involves the

Gromov product:

Definition 2.16. Let (X, d) be any metric space and let w € X. The Gromov product of points
x,y € X with respect to w is defined as

(@) = gl w) + dly,w) — d(zy)].

Definition 2.17. Let (X, d) be a metric space and § > 0. We say X is (§)-hyperbolic (note the

parenthesis on ¢) if for every x,y, z,w € X,

<.’IJ, Z>w Z min{(x, y>w ) <y7 Z>w} — 0.
The equivalence is the following. For a proof, see [55].

Proposition 2.18. If X is a geodesic metric space, then X is hyperbolic (Definition 2.6) if and
only if there is § > 0 such that X is (§)-hyperbolic. Furthermore, X is 0-hyperbolic if and only
if it is (0)-hyperbolic.
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2.2 Quasi-isometries

In geometric group theory, quasi-isometries have the same importance homeomorphisms have
in classic topology, i.e., they are one of the most important criteria for comparing spaces with

respect to the characteristics the theory wants to preserve.

Definition 2.19 (Quasi Isometry and QI-embedding). Let (X, dx) and (Y, dy) be any metric
spaces. We say a map f : X — Y is a quasi-isometric embedding if there are constants A > 1
and € > 0 such that

dy (f(2), f(2')) < Adx(2,2") + e and dx(z,2) < Ady(f(2), f(2')) + €

for all z, 2’ € X. We also say that f is a (A, €)-Ql-embedding. If € = 0, we say f is A-bi-Lipschitz.
We say f is a quasi-isometry, or a (), €)-quasi-isometry, if f is a (A, €)-QI-embedding and, in
addition, there is K > 0 such that

For every y € Y, there is z € X such that dy (y, f(z)) < K.

In this case we denote X @ Y.

It can bee easily seen that the quasi-isometry relation @ is an equivalence relation. For the
basic theory about quasi-isometries, we reference [14] and [55].

A useful example of QI is found in the context of Cayley graphs. Let G be a finitely generated
group and S C G be a finite generating set. Denote by I' = I'(G, S) the Cayley graph. Given
a vertex g € G, it can be written in terms of words in the generators of S. denote by |g|
the minimum length of a word in S that represents the element G (which is always attained,
since words have only non-negative integer length). With this, we define a metric on the set
G by putting d(g,¢’) = |g~¢’|. This distance can be easily interpreted geometrically: it is the
minimum length of any combinatorial path between g and ¢’. If we think of the edges as compact
segments of R with length 1, we can extend naturally the distance to d : I'(G, S) x I'(G, S) — R
and the Cayley graph I' turns out to be a geodesic space. With this in hands, one can show the

following

Proposition 2.20 ([14]). Let G be finitely generated and S,S’ be two arbitrary finite sets of
generators for G. Then I'(G, S) £ rG,s).

Definition 2.21. We say two finitely generated groups G and H are quasi-isometric, and write
a¥ H,ifI'(G,S5) £ I'(H,S") for some finite sets of generators S C G and S’ C H.

By the proposition above, if T'(G, S) EY ['(H,S") for some finite such sets of generators, it

must be true for any such sets. Some standard facts about QI of groups are:
Proposition 2.22. If G is finitely generated and H < G is finite index, then G Y H.

Proposition 2.23 (QI invariance of hyperbolicity). Let X,Y be geodesic metric spaces. If
X @l Y, then X is hyperbolic if and only if Y is hyperbolic. In particular, if G, H are quasi-
isometric groups, then G is hyperbolic if and only if H is hyperbolic.
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2.3 R-trees

The trees we dealt with in the previous chapter are also known in the literature as “simplicial” or
“combinatorial” trees, because they arise in a more combinatorial fashion, instead of a topological
one. They are a special kind of the trees we are going to deal with here: the R-trees. These have
a more geometric and topological characterization. This section is mainly based on [2], with a

few adaptations.

Definition 2.24. An R-tree is a metric space (T, d) such that:
a) T is a geodesic space;
b) For every x,y,z € T there exists w € T such that [z,y] N [z, 2] = [z, w];
c) If [z, y] N[y, 2] = {y}, then [z, 2] = [z,y] Uy, z].

The point w of item b) above can be shown to be unique and will be denoted by w =
Y (y,x,z). In the case of item c), the point y is in the interior of the geodesic [z, z] and we write
[x,z] = [x,y,z]. Moreover, there is actually a well-defined total order “<” in every geodesic
segment, so we can similarly write [zg, z,] = [x0, 21, ..., Tn—1, T»] when the points x; are in the

geodesic [xg, x,] and g < 21 < ... < xpo1 < Ty

Definition 2.25. If 7' is an R-tree and 7" C T, we say that T” is a subtree if 7" is a convex
subset of T' (that is, x,y € T" = [z,y] C T"). This is equivalent to say that 7" is an R-tree with
the induced metric from T'. We say that the subset T" is a closed-subtree of T' if every nonempty

intersection 7" N [z, y] of T” with a geodesic segment [z, y] is also a geodesic segment of 7.

It is not hard to see that every closed-subtree T” is also a subtree (a convex subset), and
that if 7" is a subtree and is closed with the induced topology of T', then T” is a closed-subtree
of T.

Below we state the main basic properties of R-trees we are going to use. We are based on
[2] (p. 271-286), where the reader may find all the proofs.

Proposition 2.26 (The Y proposition). Let T' be an R-tree x,y,z € T and w = Y (y,x, z) as
in Definition 2.24. Then

o [y,w]N[w,z] ={w} (and therefore [y, z] = [y, w, z] = [y, w] U [w, 2]);
o d(y,z) =d(y,z) +d(z,x) — 2d(w, z);

o Y(z,y,2) =Y (y,2,2) =Y(2,2,y) =Y(y,2,7) =Y (2,2,y) =Y (2,9, 7).
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With this proposition one can show

Proposition 2.27 (The subtree proposition). Let T1, ..., T, be subtrees of an R-tree T.
o IfT;NTi1#0 fori=1,...n—1 then Ty U...UT, is a subtree;
o IfT;NT; #0 for every 1 <i,j <mn then Ty N...NT, # 0 is a nonempty subtree.
The subtree proposition, by its turn, implies

Proposition 2.28 (Piecewise geodesic). Let T be an R-tree and xg,x1,...,2n, € T. Then the

following are true:
o [z0,2y] C [0, 21] U 21, 22] U...U[Tp_1, Tn);
o Ifd(xo,xn) = E?:_Old(xi,xiﬂ) then [zo, xn] = [xo, Z1, ..., Tn);

o If|xi—1,xi|N[xi, xip1] = {ai} for everyl <i <n—1 and if x; # xi41 for everyl <i < n—2,

then d(x()a LL‘n) = E?;Old(xia $’i+1) (and S0 [1170, xn] = [$07 L1y eeey xn])
The less trivial of the propositions is
Proposition 2.29 (The bridge). If Ty and T are disjoint closed-subtrees of an R-tree T, there

is a unique geodesic segment [zo,z1] of T such that

(20,21) € To x Th, and for every (zo,z1) € Ty x T1 we have [z, z1] C [xo, x1].

17
T(] 20

<1

Furthermore, for i =1,2 we have [z0,21] N T; = {2z} and d(z0,21) = d(Tp,T1). The geodesic
[20, 21] is called the bridge between Ty and Ty in T.

Most papers use the following characterization of R-trees:

Proposition 2.30. A geodesic metric space (T, d) is an R-tree if and only if for every x,y € T
there is a unique topological embedding v : [0,d(z,y)] — T from x to y, with image being the

geodesic [x,y].
Let us show the important fact that the R-trees are the 0-hyperbolic spaces.
Proposition 2.31. A geodesic metric space (T,d) is an R-tree if and only if it is 0-hyperbolic.

Demonstragao. First note that, by Definition 2.6, T" is 0-hyperbolic if and only if every edge of
a geodesic triangle is contained in the union of the other two edges. Suppose first that 7" is an
R-tree and let A(z,y, z) be a geodesic triangle. It is enough to show that [x,y] C [z, 2] U [z, 9],

the other cases being similar. Let w = Y (y, x, z). Using the Y-proposition, we have

[z,y] = [z, w,y] = [z, w] U w,y] C [z,2]U 2],
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as desired. Suppose now 7' is 0-hyperbolic and let us check items a), b) and ¢) of Definition 2.24.
T is geodesic by assumption, so we have a). To show b), let z,y,z € T and let  : [0, d(z,y)] = T
(let &' : [0,d(x, 2)] = T) be the geodesic from x to y (from x to z). Let m = min{d(x,y),d(z, z)}
and

A={te[0,m] | alt)=d(t)}.

Of course, 0 € A # () and A is bounded, so let s = sup A. We claim that t € A = [0,¢] C A.
Indeed, if t € A, let a, &’ : [0,t] — T be the restrictions. Their images are geodesics between the
points a(0) = 2 = o/(0) and «a(t) = &/(t), so by uniqueness of geodesic a and o must coincide
in [0,¢], and so by definition we have [0,¢] C A, which shows the claim. This shows that A is
an interval containing 0 and inside [0, s]. If we show that s € A we will then have A = [0, s]. If
s = 0 then s is obviously in A. Suppose s > 0. By definition of supremum we have, for n large
enough, a sequence (), C A such that 0 < s — % < t, < s, so lim,t, = s. By hypothesis,
a(ty) = o (t,) (or d(a(ty), o/ (t,)) = 0) for every n in the sequence. Now, since «, o’ and d are

continuous we have
0 = limd(a(t,),d (ty)) = d(lim a(t,),lim o/ (t,)) = d(a(limt,),d’(limt,)) = d(a(s), d'(s)),

sos € Aand A = [0, s]. Now define w = a(s). We claim that [z, y]N[z, 2] = [z, w]. Of course (D)
is true. To see (C), suppose we have a point p in [z, y] N[z, 2], that is, suppose p = a(t) = /(1)

for some t,t. Because a, o’ are geodesics we have
t'=t' = 0] = d(/(t'),d/(0)) = d(a(t), z) = d(a(t), a(0)) = [t - 0| = ¢,

so at) = d/(t) and t € A = [0, s]. Therefore p = a(t) € a0, s] = [z, w], as desired. This shows
b). Let us show c¢): let x,y,z € T such that [z,y] N[y, 2] = {y} and let « : [0,d(z,y)] — T,
o :[0,d(y,z)] = T and " : [0,d(x,z)] — T be the geodesics representing [z,y], [y, z] and
[x, 2], respectively. Because of the 0-hyperbolicity we have [z,z] C [z,y] U [y, z]. We have
to show that [z,y] C [z,2] and [y,z] C [x,z]. For every 0 < t < d(z,y), we know «(t) €
[x,y] C [z,2] U ly,z]. But a(t) # y. So, since [x,y] N [y,z] = {y} the only possibility is
a(t) € [z,z]. So «af0,d(z,y)) C [z,z] and since [z, z] is compact (therefore closed) we must
have (by taking a sequence) y = «(d(z,y)) € [z,z] as well. Therefore [z,y] C [z,z]. Now,
ly, 2] and o”[d(x,y),d(x, z)] must be both geodesics from y to z. So they coincide and therefore
[y, z] = "[d(z,y),d(z,2)] C [z,z], as we wanted. This shows that [z,z] = [z,y] U [y, 2] and
finishes the proposition. O

As a consequence of this and of Proposition 2.18, we get

Corollary 2.32. A geodesic metric space (X,d) is an R-tree if and only if for every x,y, z,w €
X,
(x,2),, > min{(z,y),, , (¥ 2),}-

Because R-trees are very special hyperbolic spaces (§ = 0), the notions of ends and boundary

coincide. It is easy to show the following
Proposition 2.33. If r; and ro are rays in an R-tree T', the following are equivalent:

e im(ry) Nim(re) is not bounded;



44 2. Geometric preliminaries

e end(r1) = end(re) in Ends(T);

e 71(00) =r9(00) in OT.

2.4 Isometries and actions on R-trees

The next few pages are based on [20]. Here we will mostly denote the image of a point x under
an isometry ¢ (definition below) by gz instead of g(z) or g-z, as it is sometimes in the literature.
This will make the notation easier, and we will make sure the reader knows if a letter represents

a point or a map.

Definition 2.34. Let T" be an R-tree. An isometry of T is a map ¢g : T — T such that
d(gz, gy) = d(x,y) for every x,y € T. For such isometry, the length of g is denoted by ||g|| and
defined as

lgll = inf d(z, gz) 2 0.

Before we start talking about the isometries of R-trees, let us note that the length is invariant

under conjugation.
Lemma 2.35. If g, h are isometries of an R-tree T, then ||g|| = ||hgh™|.

Demonstragio. Given x € T, d(z,hgh™'z) = d(h~'z,gh~'z) > inf,er d(y, gy) = |lg||. Since
this is true for every = we have ||hgh™!|| = inf,er d(x, hgh~'z) > ||g||. Similarly, given = € T

we have

d(x, gx) = d(h~*hx, gh~*hz) = d(hx, hgh™ hx) > inf d(y, hgh™ly) = ||hgh™},
ye

from where we get ||g|| = inf,er d(z, gx) > ||hgh™||. Thus, ||g|| = |[[hgh™}]. O

Now, we are going to state the main propositions we need to know especially for Chapter
7. The first thing to do is to understand the two main types of isometries on R-trees and its

special characteristic sets:

Proposition 2.36 (Classification of isometries). Let g be an isometry of an R-tree T. Let
Cy={zeT | d(x,gz) =g}

Then Cy is a nonempty closed-subtree of T" which is invariant under g. Furthermore, the fol-
lowing assertions hold:

1) If ||lg|| = 0, then Cyq = Fix(g) is the set of fized points of g;

2) If ||lg|| > 0, then Cy is isometric to R and g acts on Cy as a translation by ||g||;

3) For every x € T, d(x, gz) = ||g|| + 2d(z, Cy);

4) The middle point of any geodesic of the form [z, gx] in T is in C.

Definition 2.37. Let g and T as above. If ||g|| = 0 we call g an eliptic isometry and Cy turns
out to be the fixed point set of g. If ||g]] > 0, we call g a hyperbolic isometry and Cj the

translation axis of g, where there is a well defined orientation (the direction of the translation).
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The proposition above shows that C; # (), which means that the infimum |g| =
infyer d(z, gr) is always attained. This implies that if g does not have a fixed point then
llgll > 0. So, the eliptic isometries are the ones with fixed points and the hyperbolic isometries

are the ones without them.

Proposition 2.38. Let g, h be two isometries of an R-tree T. If either
1) CgnCrL=0, or
2) CyNCy, is a single point and g, h are hyperbolic,

then
Ihgll = 1h~ gl = llgll + [kl + 2d(Cy, Cn).

In case 1), Cpy contains the bridge between Cy and Cy,.
Proposition 2.39. Let g, h be two hyperbolic isometries of an R-tree T'. Then
1) CgNCy # 0 < max{||hgl, |h~gll} = llgll + ||All;

2) |lhgl| > |k tg|| & C, N Cy, contains a non-degenerate segment whose orientations induced

by g and h coincide.

Of course, if h = g is hyperbolic, then Cy N Cy is nonempty and contains a non-degenerate

segment with same orientation, so by items 1) and 2) above we have

%]l = max{||g*[|, lg~"glI} = llgll + llgll = 2l|g]|-

It follows that g? is also hyperbolic and Cy C Cy2. Also, both axes are isometric to R, so they

must be equal. By induction we get

Corollary 2.40. If g is a hyperbolic isometry of an R-tree T and n > 1, then g™ is hyperbolic,
19"l = nllgll and Cgn = Cy.

Now we turn to actions by isometries on R-trees. The reader should be used with the

language of group actions.

Definition 2.41. We say that a group G acts by isometries on an R-tree (T, d) if G acts on T'
and every g € G induces an isometry of 7' (that will also be denoted by ¢). We use the expression
G ~ T for actions. The translation length function of such action by isometries is denoted by
l: G — R and defined by [(g) = ||g|| = infzer d(z, gx). We say the action is non-trivial if [ # 0.

If we need to clarify we can denote [ by Ir, lq, {(g1) or even (g 1,q)-
By using the subtrees proposition we can get

Proposition 2.42. If G is a finitely generated group acting by isometries on an R-tree T', then
the action is trivial if and only if there exists a point in T fized by all G.

An action by isometries G ~ T also induces a well defined action in the set of rays of T’
by putting (gr)(t) = g(r(t)). We also get well-defined actions (not necessarily by isometries)
G ~ Ends(T) and G ~ 0T by putting g(end(r)) = end(gr) and g(r(cc)) = (gr)(c0).

Since most actions in this work are by isometries, we will sometimes call them only by

actions.
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Definition 2.43. We say an action by isometries G ~ T of a group G on an R-tree T is

reducible if either
1) Every element g is eliptic (i.e. the action is trivial), or
2) There is a G-invariant line in 7', or
3) There is end(r) € Ends(T) fixed by all G.

An irreducible action is an action which is not reducible. That means none of the items above

are satisfied.

Definition 2.44. We say an action by isometries G ~ T of a group G on an R-tree T is

semi-simple if either
1) It has a global fixed point in T, or
2) There is a G-invariant line in 7', or
3) It is an irreducible action.

With irreducible actions, a translation axis C;, must always be disjoint of some translation

axis Cp. We can see this directly from

Proposition 2.45. If G ~ T is an action by isometries and if there exists g hyperbolic such
that Cy N Cy, # O for every hyperbolic element h € G, then the action is reducible.

Now we will define some specific types of actions and state the characterizations given in
[20].

Definition 2.46. Let G ~ T be an action. Given a geodesisc arc [z, y], the stabilizer of [z, y]
is the subgroup Stab([z,y]) ={g € G | gz =2V z € [z, y]} (similarly we define the stabilizer of
any subset S C T'). The action is said to be small if every arc stabilizer is virtually cyclic, that

is, it contains a finite index cyclic subgroup.

For the next definition, remember that any isometry of R is either a translation or the
composition of a translation with the reflection x — —x. The first type preserves and the
second type reverses the orientation of R. Now, if L is any G-invariant line of an action G ~ T,
we say G reverses the orientation of L if there is ¢ € G such that the isometry ¢ induced in
L ~ R reverses its orientation. Otherwise, we say that G preserves the orientation of L, i.e.,

every isometry g € G induced on L is a translation.

Definition 2.47. Let G ~ T be an action of type 2) in 2.43, that is, with at least one G-
invariant line. We say the action is dihedral if G reverses the orientation of every G-invariant
line. Otherwise, i.e., if G preserves the orientation of some G-invariant line, we say the action
is a shift.

We can classify the non-trivial actions in the following way:

Proposition 2.48. Any non-trivial action G ~ T is of one (and only one) of the following

types:
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o With a fixed end;
e Dihedral;
o Irreducible.

Demonstragao. This is just an observation. If the action has a fixed end, we are done. Suppose
it has no fixed ends. Then item 3) of definition 2.43 is false. Since the action is non-trivial, item
1) is also false. So either 2) is false (and the action is irreducible) or it is true and the action
is either dihedral or a shift. But every shift fixes 2 ends of T' (determined by the G-invariant
line whose orientation is preserved by G), so the action must be dihedral. This finishes the

proof. O

Below we summarize the main properties of the three types of non-trivial actions above. We

highlight the close relationship they have with its translation length functions.

Theorem 2.49 (Fixed end actions). Let G ~ T be a non-trivial action by isometries on an

R-tree T'. The following are equivalent:
a) There is end(r) € Ends(T) fized by all G;
b) l(g) = |p(g)| V g € G, where p: G — R is a homomorphism;
c) |lghg=th=| =0 for every g,h € G.

Theorem 2.50 (Dihedral actions). Let G ~ T be a non-trivial action by isometries on an

R-tree T'. The following are equivalent:
a) The action is dihedral;

b) 1(g) = I(f(g)), where f : G — Isom(R) is a homomorphism whose image contains a

reflection and [ is the translation length function of the natural action Isom(R) ~ R;

c) |lghg=th=|| = O for every hyperbolic elements g,h but there are elements a,b € G such
that ||aba=1b~Y|| > 0.

In the context of irreducible actions, there are two interesting facts:

Proposition 2.51. Let g, h be hyperbolic isometries of an R-tree T'. If either Cy N C}, is empty
or a geodesic segment of length less than min{||g||, ||k||}, then the subgroup (g,h) < Isom(T) is
free of rank 2.

Theorem 2.52 (Irreducible actions). Let G ~ T be a non-trivial action by isometries on an

R-tree T'. The following are equivalent:
a) The action is irreducible;
b) There are hyperbolic elements g, h such that ||ghg=th=!|| # 0;
c¢) There are hyperbolic elements g, h such that Cy N C}, is a non-degenerate geodesic;

d) G contains a free group of rank 2 acting freely and properly discontinuously on T'.
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Let us now define minimal actions and prove powerful tools for Chapter 7:

Definition 2.53. We say that an action G ~ T is minimal if 7" is a minimal G-invariant tree,
that is, there is no G-invariant subtree 77 C T other than T itself.

A standard fact in the literature is that it is easy to obtain a minimal action:

Proposition 2.54 (Minimal action). If G ~ T is a non-trivial action, there is a unique G-
invariant minimal subtree T' C T. The subtree T' is exactly the union of all translation azes of
the hyperbolic elements of G. Therefore, a non-trivial action G ~ T is minimal if and only if

T =T'. Furthermore, T' is contained in every G-invariant subtree of T
Most minimal actions also have a useful uniqueness, up to equivariant isometry:

Theorem 2.55. Suppose that G ~ (T1,d1) and G ~ (Ta,d2) are two minimal semi-simple
actions of a group G on any R-trees, with the same translation length function. Then there exists
a G-equivariant isometry h : (Ty,dy) — (Ta,dz), that is, a bijection such that da(h(x),h(y)) =
dy(z,y) for every x,y € Th and h(g-x) = g- h(x) for every g € G, x € Ty. If either action is

not a shift then the equivariant isometry is unique.

Theorem 2.56. If G ~ T is a minimal and irreducible action, then every geodesic [x,x'] is

contained in the translation axis of some hyperbolic isometry g € G.

Demonstragao. If x = 2’ the result is trivial since the action is minimal. So, suppose x # x’ and,
since T' is minimal, let g, ¢’ be hyperbolic elements such that x € Cy and 2’ € Cy. If x € Cy or
z' € Cy4, we are also done, so suppose neither x nor z’ are in the intersection (possibly empty)
CyNCy. If CgNCy =0, let [z, 2] be the bridge between Cy and Cy. If Cy N Cy # 0, by the
Y -proposition 2.26 we get a point z € Cy N Cy such that [z, 2] = [z, z,2'], and we define 2’ = 2.
In any of the two cases we have [z,2'] = [z, z,2/,2']. Now, since the action is irreducible, by
Proposition 2.45 there are translation axes C} and Cj disjoint from Cy and Cy, respectively.
So, let & = [w,y] and o = [w',y/] be the bridges from C}, to Cy and from Cj to Cy, respectively.
By acting replacing o by g™« for some n € Z and replacing C, by ¢"C}, if necessary, we can
suppose x € [y, z]. Similarly, suppose ' € [¢/,2/]. Then with a little patience one can use
the Piecewise geodesic proposition 2.28 to see that v = [w,y, z,2’,y/, w'] is a geodesic segment.
Since it is non-degenerate we have C, NCj, = (). If 4 is the bridge from C}, to Cy/, we have 4 C
by definition. But from the construction of v one can see that v = 4. So, [z, 2] is contained in
the bridge from Cj, to Cys. From Proposition 2.38, we have [z, 2] C Cpy is in the translation
axis of the hyperbolic element hh', as desired. ]

2.5 Filters and ultrafilters

Here we give a minimal approach to the notions of filters, ultrafilters and the ultralimit of a
sequence of metric spaces. All of this is going to be needed in chapters 8 and 9.
This section is all based on [13] and [62].

Definition 2.57 (Filters). A filter F in a nonempty set X is a collection of subsets of X such
that:
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e For every A C X, if A D B for some B € F then A € F;
o If By,...,B, € F then B1N...N B, € F;
o )¢ F.

We say (X, F) is a filtered space.

Of course, from the definition we can see that the finite intersection of elements of F is never
empty. Also, any nonempty filter F contains as an element the whole set X, for X contains
some element A € F and therefore X € F by the first item.

Example 2.58. The two examples we’re going to use are:

1) If (X, 7) is a topological space and xy € A, the collection
Fzo ={A C X | there is B € 7 such that zp € B C A}

is a filter in X and is called the neighborhood filter on .

2) If X is any infinite set, the collection
F={ACX | X — Ais finite}

is a filter in X and is called the finite complement filter. In particular, for the natural

numbers N, the finite complement filter is also called the Fréchet filter in N.
Filters can be used for a quite general definition of limit:

Definition 2.59 (Limit of a map over a filter). Let (X, F) be a filtered space, (Y,7) be a
topological space and f: X — Y be any map. We say that a point y € Y is the limit of f over
the filter F and denote y = lim f if, for every open set A € 7 of Y containing y, there is B € F
such that f(B) C A. If X = N, we denote z, = f(n) and use the notation y = limr x,, instead

of the previous one.

It is straightforward to see that this definition generalizes, for example, the well-known
notions of limit of a sequence and limit of a map in the topological sense. In fact, if (X, 7') and
(Y, 7) are both topological spaces, if o € X and F;, is the neighborhood filter on zg, then for
any y €Y,

y = gnsf &y = lim f(z).

T—rT0

Similarly, let X = N and let F be the Fréchet filter on N. If (), is any sequence in a topological
space (X,7) and € X, we easily see that

r=limz, < = lim z,.
F n—00

Because of the above fact, the convergence of a sequence can be thought in terms of the
existence of some good elements of a filter in N. So, the “bigger” a filter is (i.e., the more
elements it has), the more chance we have of finding such elements and therefore the more

convergence we have (of course, with respect to that filter). Keeping this intuitive notion in
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mind, we go in the direction of sequences in a compact space, in particular bounded sequences.
For we know that, in general, not every sequence in a compact space converges; in particular,
there are bounded sequences in R with no global limit points (for example, any non-constant
periodic sequence). An interesting question then arises: are there “big enough” filters in N
in order to guarantee the convergence of such sequences? Fortunately, the answer is positive.
These are the ultrafilters, as we will see now.

For the definition of ultrafilters below, note that the collection of all filters in a set X is
partially ordered by F < F' < F C F.

Definition 2.60 (Ultrafilters). We say that a filter U in a set X is an ultrafilter if it is a maximal

element in the collection of all filters of X; that is, if I/ is a filter and satisfies the following:
If Fis afilterin X and 4 C F, then U = F.

Ultrafilters are the answer to our previous question. Their maximality will guarantee they
are “big enough” in the sense we asked, as we will see next. A first and important observation is
that every ultrafilter U contains the set X as an element. Indeed, they are nonempty, because if
U = (), then the collection F = {X} is a filter in X and would contain U properly, a contradiction
with the maximality of ¢. Since U # (), we have X € U, as observed right after Definition 2.57.

As a standard and straightforward application of Zorn’s lemma, one can also show
Proposition 2.61. If F is any filter in a set X, there is an ultrafilter U in X such that F C U.
Another important property is

Proposition 2.62. LetU be an ultrafilter in X. If Ay, ..., A, C X are such that A1U...UA, € U,
then A; € U for some 1 < i < n. In particular, if X = Ay U...U A, then A; € U for some
1<t < n.

Demonstragao. It is enough to show the property for only two subsets, say, A and B, for the
general case follows by trivial induction. Suppose then by contradiction that A, B C X are such
that AUB €U but A ¢ U and B ¢ U. then it is easy to see that the collection

F={ScX|AuUSeUu}

would be a filter and would properly contain U, contradicting the maximality of ¢. This finishes
the first part. The particular case X = A; U ... U A, follows from the first part and from the
fact X € U we showed after Definition 2.60. O

Now we present the property we were talking about before:
Proposition 2.63. Let (X,U) be an (ultra)filtered space, (Y, T) be a compact and Hausdorff
topological space and let f : X — Y be any map. Then there is a unique y € X such that
= limu f
Demonstracao. For the existence, suppose by contradiction that every y € Y is not a limit point

of f. Then, by definition, there exists an open set A, of Y containing y such that there is no
B € U with f(B) C Ay. In particular, we have

fHA,) ¢ U for every y €, (2.1)
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for f(fil(Ay)) C Ay. We have Y = Uer
Ayy..y Ay, such that Y = Ay U...UA,, . Therefore,

A, an open cover of the compact set Y, so there are

X=f1Y) =1 (A) U UFHA,).

Since U is an ultrafilter in X, by the previous proposition we must have f *1(Ayi) € U for some
1. This is a contradiction with property 2.1. This shows existence.

To show uniqueness, suppose by contradiction there are distinct elements y; # ys such that
y1 = limy f and yo = limy f. Since Y is Hausdorff, let Ay, As € 7 containing y; and ys,
respectively, such that A; N Ay = ). By hypothesis, there are By, By € U such that f(By) C 4,
and f(Bg) C As. Then

BiNBy C f7H (AN fH(Ag) = fH (AN Ag) = fH0) =0

and By N By = (B, which is a contradiction because every finite intersection of elements of a filter

is nonempty. This concludes the proof. O

In particular, we have the very useful corollary below.

Corollary 2.64. If (N,U) is ultrafiltered and (z,)y is a bounded sequence in R, then there is
an unique y € R such that y = limy, x,.

Proposition 2.65. Let w be an ultrafilter of N containing the Fréchet filter (Proposition 2.61).
If x = limy 00 Ty, for a sequence {x,} in a topological space X, then x = lim, x,. In other

words, standard convergence implies w-convergence.

Demonstragdo. Let us represent the sequence (z,), by f: N — X with f(n) = z,. Let A be
open in X containing z. By hypothesis we have ng such that x,, € A for every n > ng, so we
have f(B) C A for B=N—{1,2,...,n9 — 1}. But since {1,2,...,n9 — 1} is finite we have B as
an element of the Fréchet filter and therefore by hypothesis B € w. This shows by definition

that x = lim,, x,,, as desired. ]

Below we give the basic properties about limits that we’re going to need in our context. The

proofs are omitted, for they the exact same fashion of the well known ones from basic analysis.
Proposition 2.66 (Basic properties). Let F be a filter in N. The following sentences are true:

e (Sum and scalar product) Let (xy)n and (yn)n be sequences in a real normed vector space
V and let A € R. Suppose x = limr x,, y = limry,. Then \x = limr Az, and x + y =
limz(2y + yn);

e (Order preserving) Let (xp)n, (Yn)n, T and y be as above and suppose V. =R. If z, < y,

for every n, then x <y, that is, limr z, < limgyy,;

e (Direct products) Let (xy)n and (yn)n be sequences in a real normed vector spaces V' and
W, respectively. Suppose x = limx x,, and y = limry,. Then, in the direct product V-x W
we have (z,y) = Umz(xn, yn);

e (Continuous maps) Let X,Y be topological spaces, f : X — Y a continuous map and

suppose x = limg x,, for some sequence () in X. Then f(x) =limg f(z,).
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2.6 Ultralimits

Let us now construct a space that we will call the ultralimit of a sequence of pointed metric
spaces. From now on, we let w be any ultrafilter of N containig the Fréchet filter (Example 2.58
and Proposition 2.61) and fix it. For every n > 1, let (X,,d,,pn) be a pointed metric space,
that is, (Xn,dy,) is a metric space and p, € Xp. Denote by [, Xy the set of all sequences

(zn)n such that z, € X,, for every n, and define

Xoo ={(xn)n € H Xy, | there is C' > 0 such that dy,(x,, pn) < C for every n > 1}.

n>1

It is easy to see from the definition and using the triangle inequality that for every two
elements (zp)n, (Yn)n € X0, the real sequence (dy, (2, yn))n is bounded and therefore by Propo-
sition 2.63 there is a unique (so, well-defined) real number lim,, dy,(zp,yn). So, we denote

x = (zp)n and y = (yn)n and define dy : Xoo X Xoo — R by putting
doo(xv y) = lim dn(xna yn)

This is what we call a pseudo-distance, that is, it satisfies the following properties for every
,y,2 € Xoo: doo(,2) = 0, doo(,y) = doo(y,x) and doo(, 2) < doo(,y) + doo(y, 2). All of
these can be easily verified using the properties in the previous part. For example, the triangle

inequality follows by the “sum” and “order preserving” properties:

doo (T, 2) lim d,, (xy,, 2n)

liin(dn(mn, Yn) + dn(Yn, 2n))

lim d,, (zy, yn) + lim dy, (yn, 2n)
w w

doo(xvy) + dOO(yv Z)'

I IA

The only property do, lacks to be a distance is “dso(x,y) = 0 = = = y”. So, to create a metric
space we need a quotient of X. Define the following relation in Xo: @ ~ y < do(z,y) = 0.
It is an equivalence relation, whose equivalence classes will be denoted by [x] = [(zy,),], for any

x=(Tp)n € Xoo-

Definition 2.67. The (w)-ultralimit of a given a sequence (X,,, dy,, pn)n of pointed metric spaces

is the space (X, d,), where X,, is the quotient
Xow=Xoo/~=A{[z] | z € Xoo}
given by the relation above, and d,, : X, X X, — R is defined as

dw([x]v [y]) = dOO(x7y) = hg]ndn(xnayn)'

Of course we could expect that the ultralimit inherits some properties of the metric spaces

involved. Below we present some of them. The first one is about hyperbolicity:

Proposition 2.68 (Properties of ultralimits). Let (X, dn, pn)n be a sequence of pointed metric

spaces.
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1) If each X, is geodesic, then X, is geodesic;

2) If each X,, is (6,)-hyperbolic (Definition 2.17) and there is 6 > 0 such that lim,, §, = ¢,
then X, is (0)-hyperbolic;

3) If each X,, is (6n)-hyperbolic (Definition 2.17) and lim,, 6, = 0, then X, is an R-tree.

Demonstragao. Ttem 1) is a straightforward construction that we left to the curious reader,
and item 3) is a consequence of item 2) and of Corollary 2.32. We will show item 2) by using
practically all the basic properties of w-limits (Proposition 2.66). Indeed, let z,y, z, w € X, and
let us show that (z,z), > min{(z,y),,,(y,2),} — 0 (remember Definition 2.17). For every n,

since X, Yn, 2n, Wy are elements of the (4, )-hyperbolic space X,,, we have

(Tn, Z”>wn > min{(z,, yn>wn  (Yn, Z”>wn} — On. (2.2)

Now, by linearity of w-limits we have

[dw(xaw) + dw(ya w) - dw($, z)]

1
<Qj, Z>w = 5

1
= 3 limd,, (zy, wy) + im dy, (yp, wy) — lim dy, (25, zn)}

1
= lim 5 [dn(xna wn) + dn(yna wn) - dn(xnv Zn)]

= li£n (Tns Zn)y, -
and the same is similarly true for (z,y), and (y,z),. Denote by f : R? — R the continuous

map f(z,y) = min{z,y}. By using again the properties of Proposition 2.66 and all information

above we finally get

min{(z,y),,, (¥, 2),} —6 = min {lim (Trs Yn)y,, » HM (Yn, Z”>wn} —lim§,

Bm (@, Yn) . - M (Yn, 20),, ) — lim 6,
n w n w

lim (<-’L'na yn>wn ) (yn, Z”>wn)) — hur)n On

hmf ((xna yn>wn ’ <yn7 Zn>wn) - hm 577,

lim (min { (Zn, Yn) y,, » U 20}, } — On)

w

IN

lim (z,,, Z”>wn

(@, 2),,
which concludes the proof. O

The second property is about actions:

Proposition 2.69. Let (X, dp,pn)n, Xoo and X, be as above. Suppose a group G acts by

isometries on each (X,,dy) and that
For every g € G, there is C = C(g) > 0 such that dy,(gpn,pn) < C for every n.

Then G acts naturally by isometries on both Xoo and X,,.
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Demonstracao. We will omit some easy verifying details. We naturally define G ~ X by
putting g(x,)n = (92n)n. This element is in X,. In fact, let K > 0 such that d,(z,,p,) < K.

Then, for every n,

dn(92n, Pn) < dn(9Tn, gpn) + dn(9gPn, Pn) = dn(@n, Pn) + dn(gpn, pn) < K + C,

as desired. It is easy to see that the action is by isometries by “passing the limit”. Now, we
define G ~ X, by putting g[(xn)n] = [(92n)n], which is in X, by what we already observed.
Let us see that this is well defined on classes: if [(zn)n] = [(Yn)n], then lim,, d,(xn, yn) = 0,
which implies limy, dy, (92n, gyn) = limy, dp(Tn, yn) = 0, 80 [(92n)n] = [(9Yn)n], as desired. It is

therefore a well defined action, and it is by isometries because

duw(g[(zn)nls 9[(Yn)n]) = doo((9Zn)n, (9Yn)n) = doo((Tn)ns (Yn)n) = dw([(Zn)n], [(Yn)n])-

O]

The last property is about the limit of a sequence of quasi-isometric embeddings. We will

omit the proof since it involves the exact same strategies we are already dealing with:

Proposition 2.70. Let (X,,,dy,pn)n and X, as in Definition 2.67. Suppose for each n > 1
there are maps f, : X, — X, that are (A, €,)-QI-embeddings and that lim,_,oo A\, = A and
lim;, 00 €, = € for some A > 1 and € > 0. If {dn(fn(pn),pn) | n > 1} is a bounded set, then the
fn give rise to a map

Jo 1 Xoo = Xay, [(@n)n] = [(fn(@n))n]

which is a (A, €)-QI-embedding.

2.7 Convergence actions by homeomorphisms

The topics of this section, especially Proposition 2.84, will be useful to the construction of
relatively hyperbolic groups of Chapter 9. Based on [15], we define the notion of convergence
action and show that it is equivalent to the existence of some properly discontinuous action on
an 3-unordered configuration space.

In the following pages, let (M, d) be a compact metric space (with at least 4 points, something
that will be eventually required) and suppose an infinite group G acts by homeomorphisms on
M. By a distinct sequence (gn)n in G we mean any sequence where the g, are pairwise distinct

elements of G.

Definition 2.71. We say a sequence (gn,), C G of elements of G is a collapsing sequence if there
are z,y € M such that the sequence of restrictions (g|ys—{»)) converge uniformly on compact
subsets to the constant map z € M — {z} — y. Explicitly, this is equivalent to say that for any
compact K C M — {z} and any € > 0, there is ng such that d(g,z,y) < € for any n > ng and
z € K. We can also say that (g, )n collapses on x,y and write gn|p/—(z} — ¥-

Definition 2.72. We say the action G ~ M above is a convergence action, and that G is a

convergence group, if every distinct sequence (g,,) in G contains a collapsing subsequence.

It will be useful to rewrite the definition above in terms of convergence of sequences:
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Proposition 2.73. If (gn)n is any sequence and x,y € M, then gu|y—(z) — y if, and only if,

the following statement is true:
If (gn, )k is a subsequence and (zp, ) C M with z,, — z # x and gn, 2n, — 2 € M, then 2’ =y.

Demonstragcao. We will show that the negations of the assertions above are equivalent. Suppose
(gn)n does not collapse on z,y. Then, by definition, there must be a compact K C M — {z}
and € > 0 such that for any ng there is n > ng such that K is not entirely mapped by g,
into B(y,€). In particular there must be a subsequence (g, )r and points (z,,)r C K such
that g, zn, € M — B(y,¢€) (note that M — B(y,€) is compact, for it is a closed subset of the
compact space M). Since K is compact, there must be a subsequence of (z,, ) - that will still
be denoted by (zn, )r - converging to z € K. Now, the asociated subsequence (gy, 2, )i inside
the compact M — B(y, €) must also have a subsequence - still denoted by (gn, 2n, )x - converging
to 2 € M — B(y,€). In particular, we got z,, — z # x (for x ¢ K) and gn, 2zn, — 2’ # v,
which is what we wanted. Suppose, on the other hand, we have such a situation and let us
show (g, )n does not collapse on z,y. Since y # 2z’ and x # z, let €, > 0 such that 2’ ¢ B(y,¢)
and x ¢ B(z,0). Let K = B(z,6) (it is compact, for it is closed and M is compact). If (gn)n
collapsed on z,y, there would be in particular kg such that g,, (K) C B(y,¢) for any k > kq. In
particular, since z,, € K for sufficiently large k, we would have gy, z,, € B(y, €) for sufficiently
large k, and so gy, z», could not converge to 2/, a contradiction. So (gn), cannot collapse on

x,1, as we desired. ]

Remember the well-known notion of a properly discontinuous action (see, for example, [14]):

Definition 2.74. If a group G acts on a topological space W, we say it is a properly dis-
continuous action if for every compact subsets K, L C W, the set {g € G | gK N L # 0} is
finite.

Let us now start again with the compact metric space M where an infinite group G acts
by homeomorphisms. We are going to construct a space O(M) with an induced action by
homeomorphisms G ~ ©(M). We will show that this new action is properly discontinuous if
and only if G »~ M is a convergence action. The space © (M) is well known, and for more details
of the following construction we refer [15].

Consider the cartesian product M3 = M x M x M, with product topology, and the “fat”
diagonal A = {(x,y,z) € M3 | card{x,y,z} < 2}, so that

M3 — A ={(z,y,2) € M* | card{x,y, 2} = 3}.

Define an equivalence relation on M? in the following way: declare (z,y,2) ~ (2/,%/, 2') if either
(z,y,2) = («/,y, 2’) or there are two coordinates in (z,y, 2) and other two in (z/, 3/, 2’) coinciding
(in other words, four of the elements z,y, z,2’,y, 2’ are the same, two in the first and two in
the second collections, for example (z,w,w) ~ (w,y’,w)). If 7 : M3 — M3/ ~ is the quotient
projection, denote by ©°(M) = w(M?3 — A) and 90°(M) = 7(A), so the quotient space is
0% M) U o8°(M). It is obvious that the relation ~ is trivial in M3 — A, so @°(M) ~ M3 — A,

but the relation is not trivial on A.

Lemma 2.75. 90°(M) ~ M.



56 2. Geometric preliminaries

Demonstragao. Let f: A — M be defined by

x, ifx =1y,
flx,y,2) = x, ifx =z,

y, if y = z.

It is obviously well defined, surjective and continuous by the Pasting Lemma. It is also easily
seen to be an open map, by the product topology properties. Since f(z,y,2) = f(2/,y,2')
m(x,y,2) = w(2',y,2"), by a known topology lemma there must be a (bijective) and continuous

map f : 00Y(M) — M such that the following diagram commutes:

We just have to check that the inverse map g : M — 90°(M) is continuous. But this is easy:
if AC 90%(M) is open, then g~!(A) = f(7~1(A)), which is open in M because 7 is continuous

and f is an open map. O

Let the symmetric group S3 act on M? by permuting coordinates. It is clear that (z,y,z) ~
(«',y/,2") implies o(x,y,2) ~ o(z’,y, 2') for any permutation o, so Ss also acts on the quotient
space ©%(M) U 90°(M), by “permutting coordinates” on ©°(M) ~ M? — A and trivially on
00°(M) ~ M. Because of this, we can quotient the space ©°(M) U d0°(M) by this action and
obtain a space

oT(M)=0e(M)uoe(M)

(here the letter 7" means “total”), where the two subsets on the right are the respective quotients
of @°(M) and 96°(M) by the action of S3. We still have 9O(M) ~ M by the same reasons
above, and the space ©(M) is exactly the space of unordered triples, the 3-configuration space
of M. To clear notation, we then denote an element of ©(M) by a set {x,y, 2z} of cardinality 3.
Since M is compact, 00(M) ~ M is compact and a closed subset of the (also compact) space
OT (M), while ©(M) is open. This is our ambient space.

If G acts on M by homeomorphisms, let us create an action G ~ ©T(M) on the total
space. Given g € G, consider it as a homeomorphism ¢ : M — M. By abuse of notation, it
induces a homeomorphism ¢ : M3 — M?3 acting as g on each coordinate. It is easy to see that
(x,y,2) ~ («',y/, 2") implies (gx, gy, gz) ~ (g2', gy, gz'), so we have an induced homeomorphism
g:0%M)uoe’ (M) — 6°(M)uU o6 (M) which clearly passes to the quotient by the action
of S3, giving rise to a homeomorphism g : ©7(M) — ©T (M), which acts like g : M — M on
its invariant subset 0©(M) and is of the form g{x,y, 2z} = {9z, gy, gz} on the (also invariant)
configuration space ©(M). These are the induced actions G ~ ©T(M) and G ~ O(M).

Definition 2.76. We say an action by homeomorphisms G ~ M of an infinite group G onto a
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compact metric space M is properly discontinuous on triples if the induced action G ~ O(M)

is properly discontinuous.
Our goal is to show

Theorem 2.77. Let G be an infinite group acting by homeomorphisms on a compact metric
space M. Then the action is properly discontinuous on triples if and only if it is a convergence
action (Definition 2.72).

In order to do this, we first rewrite the “properly discontinuous on triples” property in terms
of convergence of sequences (like we did for collapsing sequences), in order to get a common

language:

Proposition 2.78. The action above is properly discontinuous on triples if and only if the
following condition is satisfied: let (gn)n be a distinct sequence in G and (T )n, (Yn)n and (zn)n
be sequences in M such that T, — T, Yp — VY, Zn — 2, GnTn — T, gnyn — Yy and gpz, — 2 for
elements x,y,z, 2",y , 2’ € M. If card{x,y, 2z} = 3, then card{z’,y/, 2’} < 2.

Demonstragcao. Here we assume the basic properties about convergence in a configuration space.
We will show that the negations of the assertions above are equivalent. Suppose first that the
condition is false. So there must be a distinct sequence (g), in G, sequences (2 )n, (Yn)n and
(2n)n in M such that x, — =, yn = Y, 2, — 2, gnTn — ', gnyn — ' and gz, — 2’ for elements
x,y,z, 2,y 2 € M, with card{x,y,z} = 3 = card{z,y/,2'}. Then we have {x,yn,2,} —
{z,y,2} guiTn,Yn, 20} — {2',y,2'} inside O(M), which is open in ©T(M). Since IO(M) is
compact and {z,y,z}, {2/, v/, 2'} ¢ 0O(M), there are compact neighborhoods K,L C ©O(M)
(that is, disjoint from 9O(M)) containing {z,y, 2z} and {2',y’, 2'}, respectively. By the two
convergences above in ©(M) and compactness, there must be ng such that {z,,yn, z,} € K and
9niTn, Yn,z2n} € L for n > ng, thus gp{xn,Yn,2n} € go K N L for n > ng. Therefore, the set
{g € G| gKNL # 0} is infinite and the action is not properly discontinuous, as desired. Suppose
now the action is not properly discontinuous. Then there are compacts K, L C ©(M) such that
{g € G| gKNL+# 0} is infinite, and therefore a distinct sequence (g,), and (ky), C K and
(In)n C L such that g,k, = [,, (and we can write k,, = {xy, yn, 2} for every n). By compactness,
we find convergent subsequences of (ky), and (l,),, so to clear notation we can assume k, —
ke Kandl, -1 € L. If k= {x,y,z} and | = {2,¢/,2'}, then since K and L are inside
O©(M) we have card{z,y, 2} = 3 = card{a’,y/, 2’} and since k,, — k, without loss of generality
we can assume T, — ¥, Yy, — y and z, — z (after all, what matters is that the three points
are distinct). Similarly, since {gnZn, n¥n, Gnznt = GniTns Un, 2n} = gnkn =l — 1= {2’ 9/, 2'},
we can also assume ¢,x, — ¥’, goyn — ¥ and g,z, — z’. Therefore, the condition is false, as

desired. This completes the proof. O
Given the property above, the first half of Theorem 2.77 is the following:
Lemma 2.79. If G ~ M is a convergence action, then it is properly discontinuous on triples.

Demonstragao. Let us show that the condition of Proposition 2.78 is satisfied. That is, let (gn)n
be a distinct sequence in G and (zy,)n, (Yn)n and (z,)n be sequences in M such that z, — x,

Yn = Y, Zn — 2, GnTn — X', gnyn — ' and gz, — 2’ for elements z, vy, z, 2", y’, 2/ € M. Suppose
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card{z,y, 2z} = 3 and let us show card{z’,y/, 2’} < 2. By the definition of convergence action,
(gn)n must contain a collapsing subsequence. Since convergence passes to every subsequence, we
can assume without loss of generality that (gy,), collapses on a, b for some points a,b € M. Now,
since card{x,y, z} = 3, the point a must be at most one of these points, so assume = # a # v,
for example. Then, since gn|p—fsy — b and 2,y € M — {a}, in particular (considering the
compacts {z} and {y} and using the definition of convergence action) we must have g,x,, — b
and gnyn — b, so by uniqueness of limits we have 2/ = b = ¢/ and card{z/, v/, 2’} < 2, as we
wanted. O

To estabilish the second half of Theorem 2.77, we follow [15] and subdivide the proof into
some lemmas. Suppose from now on that the action G ~ M is properly discontinuous on triples.
We shall use the notation x,, — {a,b} for a sequence (z,,), in M and a,b € M if for every open

neighborhoods U,V of a and b, respectively, there is ng such that z, € U UV for any n > ng.

Lemma 2.80. Suppose x, — x, Yyp — Y, 2n — z with card{z,y,z} = 3 and that gpx, — a,
InYn — @ and gnzn — b # a. Then for any sequence w, — w # z we have gywy, — {a,b}.

Demonstragdo. Since x # y, w must be different from at least one of them, so suppose w # y.
The sequence (g,wy,)y, is inside the compact M, so it may be supposed to converge to a point ¢
without loss of generality. We then have the three sequences (yn)n, (2n)n and (wy,), converging
to three distinct points y, z and w, with gy, — @, gnzn, — b # a and gh,w, — c. If gyw, - {a, b}
we would have infinite elements g,w, outside of some union U UV of neighborhoods of a and
b, so in particular ¢ ¢ {a,b}. Therefore, we would have card{a,b,c} = 3 and the action would
not be properly discontinuous on triples by Proposition 2.78, a contradiction. This shows the

lemma. O

Lemma 2.81. Suppose x, — x, yp — Y, 2n, — 2z and w, — w with card{x,y, z,w} = 4 and
that gnxn — a, gnyn — a, gnzn — b and g,w, — b. Then b = a.

Demonstracdo. Let ¢ € M — {a,b} and define the sequence (u,), by putting u, = g, ‘e

By compactness we know we can assume u, to converge to a point u € M. Now, since
card{z,y, z,w} = 4, u is different from at least three of them, so suppose u ¢ {z,y,z} for
example (the other 3 cases are equally similar). If we had b # a, then by applying Lemma 2.80
to the sequences (zn)n, (Yn)n, (2n)n and (uy), we would have g,u,, — {a, b}, so ¢ = gpu, would

be either a or b, a contradiction. Then b = a. ]

Lemma 2.82. Suppose x,y,z € M with card{z,y,z} = 3 and z, — z. Suppose gz — a,
gny — a and gnzn — b # a. Then gu|y—g) — a.

Demonstragao. First let us show that the maps g| M—{z} converge pointwise to a. Let w €
M —{z} and let us show g,w — a. If w = x or w = y we are done by hypothesis, so we assume
w ¢ {x,y}. By applying Lemma 2.80 to the sequences z,, = z, y, = ¥y, the sequence (z,), and
wy, = w, we get gyw = guw, — {a,b}. If g,w - a, then we can easily see that a subsequence
(Gny,wn,, )k would converge to b, so by applying Lemma 2.81 to the sequences (Tn, )k, (Yn,)k>
(2n, )k and (wp, )i we would get b = a, a contradiction. Thus g,w — a, and the convergence is

pointwise.
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Now, let us show gn|pr—-} — a by showing that the condition of Proposition 2.73 is satisfied.
So, let (gn,)r be a subsequence and (wy,, ) C M with w,, — w # z and g,, w,, — w' € M,
and let us show w’ = a. By applying Lemma 2.80 to the sequences x,, = x, y,, = y and the
sequences (zy, )r and (wp, )k, we get gn, wn, — {a,b}. Suppose by contradiction g, wy,, - a.
Then we would have a subsequence (also denoted by gn,wy,) converging to b. In the case
w ¢ {z,y} we apply Lemma 2.81 to the sequences x,, = x, yn, = ¥, (2n,)r and wy, and get
b = a, a contradiction, so assume w € {z,y}, say w = . In this case we cannot apply the same
lemma for the same sequences, so let 2’ ¢ {y,z,w} be a new element and put z’,, = 2’. By
the pointwise convergence we have gy, z'n, — a, so now we have all hypotheses and can apply
Lemma 2.81 to (2'y, )k (Uny )k, (20, )k and (wy, )i to get b = a, a contradiction. Therefore,

GnyWn, — a and w’ = a by uniqueness of limits. This completes the proof. O

We are now ready to complete the proof of Theorem 2.77:
Lemma 2.83. If G ~ M 1is properly discontinuous on triples, then it is a convergence action.

Demonstragdao. Let (gn)n be a distinct sequence in G and let us find a collapsing subsequence.
Choose three distinct points x,y,z € M. Define the constant sequences x, = x, y, = y and
zn, = z. Since the sequences (gnTn)n, (gnYn)n and (gnzn)n are inside the compact M there must
be common converging subsequences (gn,Zn, )k — @, (InyYny )k — ¢ and (gn, 2n, )k — b for some
a,c,b € M. Since the action is properly discontinuous we have card{a, c,b} < 2 by Proposition
2.78, so suppose ¢ = a for example. If b # a then by applying Lemma 2.82 to z,y and (2p, )k
we immediately get gy, | M—{z} — a and we found a collapsing subsequence, so assume b = a.
in this case, let ¢ € M — {a} and define w,, = g;klc for any k. By compactness, we can
assume wy, — w € M. Since card{z,y, 2} = 3, w is at most one of them, and since all three
gn,-Sequences converge to the same point a, we can assume w ¢ {x,y}. Since (gn,wn,)x = ¢
obviously converges to ¢ # a, we apply Lemma 2.82 for z,y and (wp, )r get gn, |M_{w} — a and
we found again a collapsing subsequence, as desired. This completes the proof of the lemma and
therefore of Theorem 2.77. O

The purpose (and the main example) of convergence actions in this thesis is the following:
let G be an infinite and finitely generated group and X be a proper geodesic hyperbolic space.
Suppose G acts properly discontinuously on X by isometries. By Proposition 2.15, G acts by
homeomorphisms on dX by g - ¢(oc0) = ge(oo), which is a compact metric space by Theorem

2.13 and Proposition 2.14. We claim the following:
Proposition 2.84. The action G ~ 0X is a convergence action.

For the proof of this proposition, we will need the following Lemma, which has a straight-
forward proof. Remember a map between topological spaces is said to be proper if the inverse

image of any compact subset is compact.

Lemma 2.85. Let G be a group acting by homeomorphisms on two topological spaces X and
Y and let f : X — Y be a proper, continuous, surjective and G-equivariant map (that is,
g-f(x)=f(g-x) foranyx € X, g € G). Then G ~ X is properly discontinuous if and only if

G Y is properly discontinuous. O
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Let us give a sketch for a proof of Proposition 2.84. Let X be d-hyperbolic and define
Y C X x ©(0X) as the subset consisting of the pairs (a, {z,y,2}) € X x ©(0X) such that there
are geodesic lines a1, a2 and as connecting x to y, y to z and z to x, respectively, such that
d(ai,a) < 9§ for i =1,2,3 (see next figure).

There is an obvious action by homeomorphisms G ~ X x ©(0X) that is given by g -
(a,{z,y,z}) = (9a,{g9x, gy, gz}). The subset Y is G-invariant, for if (a,{z,y, 2}) € Y and a1, as
and a3 are the geodesic lines satisfying definition above, then the geodesic lines gay, gas and gas
connect gz to gy, gy to gz and gz to gz, respectively, and are such that d(ga;, ga) = d(a;,a) < §
for 1+ = 1,2,3, as desired. Therefore we have an action by homeomorphisms G ~ Y. Let
m Y — X and m 1 Y — ©(0X) be the natural projections, obviously continuous and G-

equivariant maps (by construction).
Lemma 2.86. 7 is proper.

Demonstragao. Let K C X be a compact and let us show 7 Y(K) is compact, by showing it
is sequentially compact. Let (an, {Zn,Yn, 2n})n be a sequence in 7, '(K) (in particular, in V).
Since K is compact, we can assume without loss of generality that a, — a for some a € K.
For any n there are geodesic lines «y,, 3, and 7, connecting x, to y,, ¥y, to z, and z, to x,,
respectively, such that d(ay,, an), d(Bn, an), d(yn, an) < d. Since a,, — a, by a similar construction
of Proposition 2.9 we can find subsequences (o, )k, (Bn, )k and (7p, )k converging (uniformly on
compact sets) to geodesic lines «, # and 7. Of course the endpoints of av,, , 5n, and 7, converge
in 0X to the respective endpoints of «, § and ~, so «, § and  form a geodesic “triangle” in
X U0X with “vertices” x,y,z € 0X. By construction, (an,,{Zn,, Yn,» 2n }) = (@, {z,y, 2}), so
if we show (a,{z,y,2}) € Y we are done. We're just left to show d(«,a),d(5,a),d(v,a) < 0,
so let us show d(«,a) < § for example. For any k£ > 1, there is by hypothesis p,, € a,, such
that d(pn,,an,) < 9, so it is easy to see (pp, )r is bounded and therefore contains a converging
subsequence (still denoted by the same subindexes) p,, — p. By the uniform convergence we
have p € a. Now, for any € > 0, d(p,a) < d(p, pn,) + d(Pn,,, an,) + d(an,,a) < €+ 0 + € for some
large enough ny. This implies d(a, a) < d(p,a) < 6, as desired. O

We can finally complete the proof of Proposition 2.84. The map m; can similarly be shown

to be surjective, and w5 can also be shown to be surjective and proper. Now we just have to
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apply Lemma 2.85. Since G ~ X is properly discontinuous, by Lemma 2.85 we have G ~ Y
properly discontinuous. Again, by Lemma 2.85, G ~ ©(0X) is properly discontinuous, so by

2.77 G ~ 0X is a convergence action, as desired.
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Capitulo 3
> invariant and property R~

Geometric invariants detect essential properties of groups in the same sense as algebraic invari-
ants detect properties of topological spaces in Algebraic Topology. Keeping this comparison in
mind, they behave with functorial properties as well. This means that isomorphic groups have
the same geometric invariants, in some sense we will define later. Also, homomorphisms between
groups will induce morphisms between the invariants, as one could expect. One of these is the
first BNS-invariant 3!, for finitely generated groups. In this chapter we will define it, show some

of its properties and explain how it can be used to detect property Reo.

3.1 The character sphere

We will denote the character sphere of a finitely generated group G by S(G). It is our “work
place” for the chapter, that is, the ambient space where we will define the geometric invariant
!, In this section we will define this sphere and show that it is really (homeomorphic to) a
finite dimensional euclidean sphere.

Let G be a finitely generated group. Denote by G’ the commutator subgroup G’ =
{{ghg™'h=1 | g,h € G}) and by G the abelianized group of G, that is, G* = G/G’. Note that
this is well defined since G’ is a characteristic subgroup of G, in particular a normal subgroup.
By basic facts of Algebra, G is a finitely generated abelian group and therefore by the Structure

Theorem for finitely generated abelian groups (see [56], Chapter 2) we have an isomorphism
GV 2@ . OLD Ly ® ... ® Lo,

for some 1 < kand 1 < mj for all 1 < j <k, where the Z-factors (and also the L, -factors) may
not appear in the isomorphism. Let n be the number of Z-factors above, which we call the free
rank of G®. Suppose n > 1. We will denote the projection on the quocient 7 : G — G/G' = G®

by g — g. Let x1, ..., Tn, y1, ..., yr be elements of G representing this isomorphism:
G = (T1) ® ... & (Ta) @ (1) © . ® (),
that is, (Tj) ~ Z for 1 < j <n and (75) ~ Zy,, for 1 <j < k. Let

Hom(G,R) = {x : G — R | x is a homomorphism},



64 3. ! invariant and property R,

where R is the additive group of real numbers. Hom/(G,R) is a real vector space with the natural
operations (x+x)(9) = x(9)+x'(9) and (rx)(g9) = rx(g). Next we show that is a n-dimensional

real vector space.

n

Lemma 3.1. We have a R-linear isomorphism Hom(G,R) ~ R".

Demonstracao. Let

T: Hom(G,R) — R"

X (X(@1), s X (@)

It is easy to see that it is a linear operator. For surjectivity, let (ai,...,a,) € R™. For each
1 < j < n, consider the homomorphisms ¢; : (Z;) — R with ¢;(Z;*) = ka;. Consider also the
zero homomorphisms z; : (y;) — R for all 1 < j < k. Then, by the Universal Property of the

direct sum (see [56]) there is a homomorphism

©:G?® —R
(T, T T, L U R) = 11 (T1) F e A T (Tn) + $121(T1) + -+ Skezk(Tk)

=rial1 + ... + rpQn,

so ¢(T;) = a; for all j. Now, xy = ¢ o is a homomorphism in Hom(G,R) such that

T(x) = (x(x1), -+, x(7n)) = (@(T1), .-, p(Tn)) = (a1, an),

as desired. For injectivity, suppose T'(x) = 0, that is, x(x;) = 0 for all 1 < j < n. Since
x(ghg™*h™1) = x(9) + x(h) — x(g) — x(h) = 0 for all generators ghg~'h~! of G’, we have
X/ = 0 and then there is a homomorphism ¥ : G — R with Yon = x. Forall 1 < j < n,

X(T;) = x(zj) = 0. Since (y;) = Z,; we have ;" =1 (identity element) and then

mx(y7) = X(g;™) = x(1) = 0,

from where we get X(7;) = 0 for all j, since m; > 1. The homomorphism X vanishes in all the

generators z; and ¥; of G, then ¥ = 0 and we get x = Y om = 0o m = 0, which concludes the

proof. O
If we make Hom(G,R) inherit the norm from R™ putting ||x|| = |T(x)| =
Vx(1)2 + ... + x(z)2, then because ||x|| = ||T'(x)| it turns out that the linear isomorphism

T become a homeomorphism with the norm-induced topologies. Now we intend to show that
S(G) is homeomorphic to the euclidean sphere S"~!. We will use the following standard lemma
which can be found in [76], Theorem 22.2 at page 142:

Lemma 3.2 (Quotient map Lemma). Let X, X be topological spaces with a quocient map p :

X — X. Let Z be another topological space and f : X — Z a continuous map. If f is fiber-
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preserving on p (that is, p(x) = p(2') = f(x) = f(a')) then there is a unique continuous map
f:X — Z such that fop = f.

Lemma 3.3. Let X,Y be topological spaces with homeomorphism T : X — Y. If a group G
acts in X, then there is an action of G in'Y such that the quocient spaces X/G ~ Y /G are

homeomorphic.

Demonstragcdo. This proof is straightforward. Define the action putting

g-y=T(g-T '(y) €Y

for g € G and y € Y. It is an action because

L-y=T1-T'(y) =T(T"'(y) =,

and

Denote by px : X — X/G and py : Y — Y/G the respective projections such that px(x) =
px(2') & g-x =2 and py(y) = py(¥) & g-y = ¢ for some g € G. Note that py o T is

fiber-preserving on px, because

px(x)=px(') = g-ax=2
5 g-T(@) = T(g-TN(T()) = Tlg- ) = T(@)
= py oT(z) =py(T(z)) = py(T(z") = py o T(a"),

then by the Quotient map Lemma there exists a continuous map 7/G : X/G — Y/G such that
T/Gopx =py oT. Similarly, px o 7! is fiber-preserving on py, because

py(y) =pv(y) = g-y=v
= T(g-T ' (y) =y
= g-T y) =T"T(g-T () =T"'(%)
= pxoT ' (y) = px(T7' () = px(T7'(¥)) = px o T (%)),

then there also exists a continuous map T~!/G : Y/G — X /G such that T~ /Gopy = pxoT L.

To finish, note that these maps are each other inverses. Indeed, for any z € Y/G write
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-1
XpYoT Y/G YpXoT; X/G
G 7 | G 7
pxl TG l TG

X/G Y/G

> = py (). Then
T/GoT /G(2) = (T/G)TY/GQ)py(y) = (T/G)pxT ' (y) =pyTT '(y) = pv (y) = .
Similarly, given w € X/G write w = px(x). Then
T7'/GoT/G(w) = (T /G)T/Gpx(z) = (T~ /G)pyT(x) = pxT 'T(x) = px(z) = w,

therefore /G : X/G — Y /G given by T/G([z]) = [T'(x)] is a homeomorphism, as desired. [

Let us denote by Ry the multiplicative group of the positive real numbers. R, acts in the

set Hom(G,R) — {0} in the natural way: r - x = rx. There is our character sphere:

Definition 3.4. Given a finitely generated group G, the character sphere of G is the orbit space
S(G) = (Hom(G,R) —{0})/R4 of the natural R -action on Hom(G,R) — {0}. In other words,

S(G) ={Ix] | x € Hom(G,R) — {0}}
with the relation [x] = [X'] & rx = X’ for some r > 0. The x # 0 are called the characters of G.
Definition 3.5. For any subgroup H < G of a finitely generated group G we define
S(G,H) ={x] € S(G) | x| =0}
and call it the sub sphere relative to H.

Proposition 3.6. If the free rank of G is n with generators T, ..., T, then S(G) ~ S~ with

homeomorphism

H:S5(G) — Ss"!

(x(x1), -y X(20))
[X] — (O (1), -y X (@)

Demonstragao. The restriction of the homeomorphism 7' : Hom(G,R) — R™ gives a homeomor-
phism T : Hom(G,R) — {0} — R™ — {0}. Since Ry acts on Hom(G,R) — {0}, by the previous

lemma we obtain that

S(G) = (Hom(G.,R) — {0})/R; ~ R" — {0}/R,
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by the homeomorphism [x] — [T'(x)], where the action of Ry on R™ — {0} is given by

r(a1,..,an) =T - T Ha, ...,an)) = T(rx) = (rx(z1), ..., vx (@) = (rai, ..., ray).

But with this action, we know that R” — {0}/R; ~ S"~! with homeomorphism [P] ﬁ.

Then the composition of both homeomorphisms leads us to the desired one:

H:S(G) — (R" — {0})/Ry — S

6 — (701 = (@) @) — 7

3.2 ¥!invariant and properties

Although we already have a great survey on the basic theory of Sigma invariants in [92], we
intend to develop it from the ground up, in order to produce a self-contained chapter. Here we
focus on the first BN S invariant X!. There are higher invariants X" for each n > 1 (see [7]).

For the next definition the reader must remember the definitions of the Cayley graph and of
the subgraph induced by a subset of vertices (definitions 1.21 and 1.34, respectively) in Chapter
1.

Definition 3.7. Let G be a finitely generated group, choose a finite generating subset S and
consider the Cayley graph I' = I'(G, S). Given [x] € S(G), let

Gy={9€G|x(g) =0} CcV(T)

be a collection of vertices inside I' and let I'y = T'g, , that is, the subgraph of I' induced by the
vertices Gy. The Yl-invariant of G (and S) is

»HG,S) = {[x] € S(G) | Ty is connected}.

Note that if r > 0 then G, = G, and therefore I'y, = I';.,. So the previous definition does
not depend on the class representative xy € [x] chosen and therefore X1(G, S) is well defined.
Later we are going to show that X! does not depend on the finite generator set S choosen either.
Because of this, from now on we will denote ¥!(G, S) only by X(G). In short, a point [x] € S(G)
is in X!(G) if any two vertices in T, can be connected by a path inside Ty, or, equivalently, if

any vertex in I'y can be connected to the identity vertex 1 inside Iy .

Example 3.8 (SY(Z®Z) = S(Z®Z)). The Cayley graph I'(Z®Z,{(1,0),(0,1)}) is the known
infinite grid in R%. Any character x can be seen as the restriction of a (non-vanishing) linear
map T : R? - R. ker(T) is one-dimensional and partition R? into two connected half-planes.
It turns out that I'y is exactly the intersection of the infinite grid with the half-plane {7}, > 0},
so one can see that it is connected and then [x] € SY(Z @ Z).
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Figura 3.1: the blue grid is a finite portion of the infinite connected subgraph I'y

Example 3.9 (The Baumslag-Solitar groups). This example is dedicated to the Baumslag-
Solitar groups. They were first defined in [4] and are a very important and vastly studied class
of groups in Geometric Group Theory. Here we are going to define them and give the reader
some intuitions on their Cayley graphs and X! to help understanding the generalizations in
Chapter 5. This example is based on [92] and [12]. If m # 0 # n, we define

BS(m,n) = {(a,t | ta™t™ ' = a™).

For m = 1 and n > 1, the groups G = BS(1,n) are solvable and we call them the Solvable
BS groups. The relation tat~! = a™ implies ta = a™t and ta~! = a™"t, so we can make all the
t-letters go right in a word. Similarly, we have at™! = t~!a” and a='t~! = t~'a™™, so we can
also make all the t~!-letters go left in a word. So every element assumes the form t*a"t* for
k,s > 0and r € Z. Define V = (t) < G and U = ker(¢)) <G, where ¢ : G — Z with ¥(g) = (g)*
is the homomorphism that sends g € G to the sum (g)! of all the t-exponents of g. Then
writing ¢t ¥a"t® = t57%t75¢"t5 we have that every element is of the form t*'u for some k' € Z
and u = t~%a"t* € ker(y)) = U. Then VU = G. Since VNU = {t* ¢ V | k= (t*) =0} = {1},
by Section 1.3 in [88] we have that G = U x V is the semidirect product of its subgroups U and
V. Now, t is torsion-free and then V ~ Z. On the other hand, using the Reidemeister-Schreier

Theorem 1.50 we obtain that U has a presentation
U=la, j€Z|a} = a1, j €L,

then U is isomorphic to the group of n-adic fractions Z[1] = {£ € Q | s € Z, r > 0} under
isomorphism a; — n/ with inverse £ — a®,.. Then BS(1,n) ~ Z[1] x Z (see [12]).

Now let us visualize the Cayley graph. Consider G = BS(1,2) and generators S = {a,t}.
We have BS(1,2) ~ Z[3] x Z. The generator a corresponds to (1,0) and ¢ corresponds to (0, 1).
The Z-action is given by n-x =2"x, n € Z, x € Z[%] Then the operation is

(x,n)(z',m) = (x +2"2',n+m).
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The vertices are Z[3] x Z C R2. Since (z,n)(0,£1) = (z,n £ 1) and (z,n)(£1,0) = (z £2",n),
there are four possible directions to walk, and the size of the horizontal movies is 2", depending

on the vertex height n.

(z,n+1)@ @ (v +2" n+1)

(1,0)
(r,n—1)@——@ (x+2" ' n—1)

Since in G we have a? = tat™! = tt~'a = a and so a = 1, we have G* = (t) ~ Z and then by
Proposition 3.6 there is a homeomorphism S(G) ~ S° with [x] — ngtgll So S(G) = {[x], [—x]},
where y(a) = 0 and x(t) = 1. Looking to the isomorphism, this means that y(x,n) = n. We
assert that (@) = {[~x]}. To see that I'y is not connected observe that the vertices of Ty are
the (z,n) such that n > 0. Then, as we told before, the size of all the horizontal movies inside
I, is at least 2° = 1. So it is impossible, for example, to connect the vertices (0,0) and (%,O)
of T'y inside I'y, because the horizontal distance between them is 5. Therefore [x] ¢ £!(G). On
the other hand, [—x] € £!(G). Indeed, given an arbitrary vertex (z,n) = (5, n) in I'_, (that is,
n < 0) let us connect it to the vertex (0,0). First, connect (x,n) to (z,—r) by going vertically
(note that we didn’t leave I'_,, because both n and —r are non-positive). Now, the horizontal
5= is a multiple of 27", by going horizontally
(again, not leaving I'_, ) we can connect (x,—r) to (0,—r), after |s| moves. Finally, it is easy

moves at height —r have size 27". Since = =

to connect (0, —r) to (0,0) by going up vertically. So I'_, is connected and ¥'(G) = {[—x]}, as

desired.

(32.0)

(0,0) =

Figura 3.2: connecting (2,0) to (0,0)

Before we explore the properties of X!, let us define another geometric invariant called Q.
The " invariants (n > 1) were first defined by N. Koban in [63] (2006) and are analogous of the

3™ ones. The definitions of Q2™ are nontrivial. However, when n = 1, a great characterization of
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Q! in terms of ¥! was given in [63] and allows us to define it in a much easier way:

Definition 3.10 ([63], Theorem 3.1, pg 1977). Let G be a finitely generated group and identify
S(G) with an euclidean sphere (see Proposition 3.6). The first Omega invariant of G is defined

QY(G) = {[x] € S(G) | Ba(lx],7/2) € BHG)},

where Bg([x], 7/2) is the open ball centered in [x] with ray 7, where d is the natural geodesic

distance on euclidean spheres.

It was shown in [63] that Q'(G) is closed in S(G). Also, we have the following fact shown in
[64]:

Definition 3.11. Let A € S™ and B C S™. The spherical join of A and B in S"t™*! is

(1 —t)a, tb) 1

A® B = { |la€ Abe B,te[0,1]p C ™t
1((L = t)a, tb)||

Theorem 3.12 ([64], main result). If G, H are finitely generated groups, then QY (G x H) =

OYG) ® QY (H) is the spherical join of Q*(G) and Q' (H) in S(G x H).

Since the Q'-invariant can be determined by the knowledge of X!, we will easily compute
them for some groups as corollaries in some later cases in the thesis, in case somebody needs

them at some point.

Some fundamental properties

Now we will show three fundamental properties of the invariant X!: its independence from the
generating set, its invariance under automorphism and a geometric criterion. Let us introduce
some notation that is going to be used in the rest of the work. The notation is based on [92].

Remember that the notation for a path in a Cayley graph I' = I'(G, S) is p = (g, S1...5n) €
P(T"). Given a G-character y, the path valuation function is

vy : PI') — R

p=(9g,81..-Sn) — min{x(g), x(gs1), x(g5152), ..., X(g5152...5,) }.

From the definition of 'y we get that a path p € P(I') runs inside Iy, if and only if all its vertices

lie in I'y, or equivalently, vy (p) > 0. There are three basic “path operations”:
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e The group G acts on P(I') by putting ¢’ - (g,51...5n) = (9’9, $1...8n). This corresponds

to translating the entire path by ¢’ in I'. Using the definition of v, and basic minimum

properties we obtain vy (¢" - p) = x(¢') + vy (p);

1

o If p = (g,51...5,) we define the inverse path of p by p~! = (gs1...8,, 5, '...s17}), that

walks in the exactly opposite direction. Of course we have vy (p) = v, (p™1);

o If p=1(g,51...8,) and p’ = (¢’,71...71,) are such that gsj...s, = ¢/, the concatenation of

p and p’ is defined by pp’ = (g, s1...8p71...7m). As one could expect, we have v, (pp’) =
min{vy (p), vy (p)}-

Independence from generating set

The first fundamental property of 3! is

Proposition 3.13 (Independence property). Let G be a finitely generated group and Sy, Se two
finite generating sets for G. Then ©1(G,S1) = £YG, Sa).

Demonstragao. It suffices to show that, given a finite generating set S and z € G we have
¥H(G,S) = ©YHG, S U {z}), that is, we can add one new element in S without changing !
Indeed, if we had shown this, then by adding in S7, one by one, all the elements of Sy we
obtain ¥!(G, S1) = (G, S1USs). Similarly, ¥!(G, S2) = (G, S2 U S;) and then X1(G, S1) =
Y@, 51U S) =BG, Sy), as desired.

Let S be a finite generating set of G and let z € G. Let 8" = SU{z}, I = I'(G,S) and
[ =T(G,S"). We have to show that 2}(G, S) = (G, ). Let [x] € S(G). We must show that
I'y is connected if and only if I"X is connected. Now, I' is a subgraph of I'. The two subgraphs
'y and I'), of I'" have exactly the same set Gy, of vertices, but I"} may have more edges, because
of the new generator z. So if I'y is connected, F;( is connected as well. The difficult is the
converse: suppose now F;( is connected. Let g,h € G two vertices in I'y, and let us connect them
inside I'y. Since z € G = (S), write z = s;...s,, with s; € S*L. Since x # 0, choose t € S*! such
that x(¢) > 0. Then there is k£ > 0 such that

x (%) > —min{0, v, (1, 51...55), vy (1, 8, Foos1 ™)}

Let g = t7*gt* and h' = t7Fht*. Both are vertices in I}, because x(¢') = x(g) > 0 and
x(h') = x(h) > 0. Since I} is connected by hypothesis, take a path p' = (¢',w’) from g’ to b’
inside F;. p’ is not a path in I because it involves the letter z. We solve this problem in the

S+ 5o write w' = w12 ..wy, 2", w; words in ST! and e; = +1.

following way: w’ is a word in
Replacing 2% by (s1...5,)¢ we define w = w1 (81...8,)°...Wp, (S1...8p) ™.
Now p = (¢’,w) is a path in T that is not necessarily inside Iy, but its translation th . pis.

Indeed,

v(p) = Vx(g’,wl(sl...sn)el...wm(sl...sn)em)
= 1 (¢, w1) (g w1, (s1...80)) (g w12, w2)...(¢ W12 ... Wy, (81...80)°™))

— min{yx(g’, w1), Vx(g'wl, (81..-8n)1), l/X(g'wlzel,wg), . VX(g'wlzel...wm, (81..-80)°™)}.
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Z = 81592

g g'wy g'wis1 gz '

Figura 3.3: exchanging p’ by p for 2! = z = 5159

Now, by construction all the paths (¢',w1), (¢'w12°, wa)...(¢'w12° ... w121, Wy, ) are sub-

paths of p’ and then have non-negative v,-value. Then

vy (p) > min{0, Z/X(g'wl, (81.-80)°"), Vx(g’wlzelwg, (81:4-80)%%), oey Vx(g'wlzel...wm, (81..-80)°™)}.

But every path (¢'wq2°...2% 1w, (s1...8,)%) above starts (again, by construction) with a ver-
tex in p’. Then vy (g'w12...2% 1 w;, (51...50)%) = x(g'w12° .25 w;) + vy (1, (s1...8,)%) >
Uy (1, (51...85)¢). Then

vy (p) > min{0, v (1, 51...55), Vx(l,snfl...sfl)}
and therefore
I/X(tk -p) = x(tF) + vy(p) > x(tF) + min{0, vy (1, s1...5,), Vx(l,snfl...sfl)} >0,

as desired. Now, t* - p is a path in I'y connecting thg’ = gt* and t*h' = ht*. But it is easy to
connect ¢ to gt¥ and h to ht* in I'y. The composition of these three paths connects g to h in

'y, which finishes the proof.

12 t t {

hik

Figura 3.4: connecting g to h

O

The freedom to choose any finite generating set of G for computing X(G) leads us to
many interesting consequences. We show two of them. The first one deals with the center
Z(G)={2€G|zg=9gzV geG}.

Corollary 3.14. If [x] € S(G) is such that x|z # 0, then [x] € B1(G).

Demonstragdo. Let z € Z(G) such that x(z) # 0 and suppose x(z) > 0, exchanging by 27! if

necessary. By the independence property, choose a finite generating set S of G containing z (if
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z ¢ S, just take the generating set S U {z}). Let us show that I'y is connected by connecting
two arbitrary vertices g,h € I'y. Since I' is always connected, choose a path p in I' from g to h.
Choose k > 0 such that x(2*) > —v,(p). Then the path z* - p connects z*g = g2* to zFh = hzF
and lies inside T, because v, (2* - p) = x(2*) + v, (p) > 0. Now, it is easy to connect g to h

inside I'y, in a similar way we did in the previous proof.

hzb=2kp

Corollary 3.15. If G is a finitely generated abelian group, then X' (G) = S(G).

Demonstragio. We have Z(G) = G. Then for every [x] € S(G), X|z@) = x # 0, so by the
previous corollary [x] € LH(G). O

Invariance under automorphisms

Let us concentrate on the second fundamental property. Let G, H be finitely generated groups

with an isomorphism ¢ : G — H. Consider the pullback

¢" : Hom(H,R) — Hom(G,R)
X——=>Xoy,

which is a linear map between two finite dimensional vector spaces and therefore continuous

1

(basic fact of Functional Analysis) with inverse ¢~ "%, that is, a homeomorphism. Restrict it to

o : Hom(H,R) — {0} — Hom(G,R) — {0}. We have
X =TinSH)=x"=rx, 7>0=¢"(X) =X cp=rxop=r¢"(x) = [¢" ()] = [¢" (X)),
which shows that the quotient map
o S(H) —s S(G)
[X] — [x 0 ]
L

is well defined. It is also continuous with continuous inverse ¢~ , so it is a homeomorphism

between the character spheres.

Now, fix a finite generating set S for G, and fix ¢(S) C H as a finite generating set for H.
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Lemma 3.16. ¢*(Z1(H, ¢(9))) = ZHG, 9).

Demonstra¢io. We will first show the equivalence [x] € Y1(H,¢(S)) & ¢*[x] = [x o ¢] €
¥1(G, S) for any [x] € S(G). By definition,

[x] € ZY(H,¢(S)) & Ty =T(H,(S))y is connected,
[xo¢] € BHG,S) & I'yop = T'(G, S)yop is connected.

But is easy to see that the isomorphism ¢ : G — H easily induces the graph isomorphism

I'(G,S) — T(H, (S))
g— ¢(9)
(9,5) — (p(9), p(s))

that maps the vertices and edges of I'y., on the vertices and edges of I'y. Indeed,

e(V(Tyop)) = {9 € G [ xowp(g) =0})
= {olg) € H | xop(g) =0}
= {heH|x(h) =0}
= V(Iy)

Pi(E(Tyop)) = s | 9,95 € V(T'xop)}

)
| x((9)), x(¢(gs)) > 0})
©(9),¢(s) | x((9)): x(p(9)p(s)) > 0}
hyp(s)) | hyho(s) € V(Ty)}

Then I'yo, ~ TI'y. In particular, I'yo, is connected if and only if I'y is, which shows the equiva-
lence. Now let us show the equality of the lemma. The (C) part follows directly from the (=)
part of the equivalence. Finally, let [¢] € Z1(G, S). Since ¢* is bijective write [¢] = ¢*[x] for
some [x] € S(H). Since p*[x] = [¢] € (G, S), from the (<) part of the equivalence we have
[x] € ZY(H, ¢(9)) and therefore [¢] € p*(S(H, p(S9))), as desired. O

Definition 3.17. Let G be finitely generated and A C S(G). We say that A is invariant (or
invariant by automorphisms) in S(G) if for all automorphism ¢ of G we have p*(A) = A (see
the induced homeomorphism ¢* above), or, equivalently, if [x o ¢| € A for all [x] € A.

Theorem 3.18 (Invariance under automorphism property). X1(G) and $1(G)¢ are invariant
subsets of S(G).

Demonstragao. Let ¢ € Aut(G). This is the special case of the above lemma for G = H. Fix
the finite generator sets S and ¢(S) of G. Since X! does not depend on the finite generator set
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choosen, we have

From the invariance above, two special characteristic subgroups of G arise:

Corollary 3.19. If G is a finitely generated group, then the subgroups

N = ﬂ ker(x) and N'= ﬂ ker(x)
Xex(@) ezt (@)

are characteristic subgroups of G. Furthermore, G/N and G/N' are abelian, finitely generated

and torsion-free groups (and so isomorphic to ZF for some k > 0, see [56]).

Demonstragdo. Let us show that N is characteristic, the proof for N’ being similar. Let ¢ €
Aut(G) and g € N. We must show that ¢(g) € N, so take [y] € £1(G) and let us show that
©(g) € ker(x). Since [x] € ¥'(G), by the Theorem above we have [y o] = ¢*[x] € ¥'(G). Now,
since g € N, in particular g € ker(x o ¢). Then x(¢(g)) = 0, that is, ¢(g) € ker(x), as desired.

Now we show the other properties for G/N, the proof for G/N’ being also similar. G/N
is obviously finitely generated because it is the quotient of a finitely generated group. Let
g,h € G/N. Since x(ghg™'h™") = x(g9) + x(h) — x(9) — x(h) = 0 for all [y] € X(G) (in
fact, this is true for every [x] € S(G)), we have ghg~'h~! € N and by definition of quotient
ghg='h=—1 =1, or gh = hg, that is, G/N is abelian. To finish, let § # I in G/N (or g ¢ N)
such that g¥ = T for some power k > 0, and let us show that k = 0. Since gF = g¥ = T we have
g* € N, or kx(g) = x(g*) = 0 for every [x] € }(G). Since g ¢ N we have xo(g) # 0 for some
[xo] € Z}(G). But since kxo(g) = 0 we must have k = 0. So G/N is torsion-free. O

Geometric criterion

To show the third property we need the following

Definition 3.20. Let G be a finitely generated group with finite generating set S and let
' =T(G,S) be its Cayley graph. If I C R is any interval, let Gf( ={g€ G| x(g) € I}. We
denote by Fi the subgraph of I' induced by the vertices in G{c.

By definition, I'y = Fg?’oo) and I'_, = F§<_°°’O]. Also, it is easy to see that an element of g
(9)

acts on these subgraphs by translation, that is, g - Fi =Ty 1 All these translation actions

are isomorphisms between the subgraphs.

Lemma 3.21. If rﬁ?o"”) is connected for some ag € R then Pﬁ?"’o) is connected for all a € R

(in particular, T'y is connected, that is, [x] € Z*(G)).
)

Demonstracdo. We show that Fg? °?) is connected in the two cases: a < ag and a > ag. The case

a = ayg is done by hypothesis.
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(a < ag) Since Y # 0, take a generator ¢ € ST such that x(¢) > 0 and a sufficient large k > 1 such

that a + x(t*) > ag. Now, let g, ¢’ be two vertices in I’g?’oo). Since x(t) > 0, the paths
)

p = (g,t*) and p’ = (¢, t*) remains inside Fg? >’ and connects g, g’ respectively with the
vertices gt¥ and ¢’t* which are inside Fg?o’oo), because x (gt*) = x(g)+x(t*) > a+x(t*) > ag
and x(g't*) = x(¢") + x(t*) > a + x(t¥) > ag. Since FL?O’OO) is connected by hypothesis,
connect the vertices gt* and ¢'t* by a path p inside Fg?o’oo) (therefore inside Fg?’oo)). So

obviously g and ¢’ can be connected inside Fg? ’Oo), as desired.

" " """ o

p
g ¢ ¢ ¢ ¢
./—D-\./—P-\./—P-\./—- ik
[a0,00)
i) o

Figura 3.5: a < ag case

(a > ap) Fix g € G such that x(g9) + a < ag. But g - I’g?’oo) = F§(9)+[a’°°) = Fgg‘(g)+a’oo). Since

x(g9) +a < ap, g- I‘g?’oo) is connected by the previous item. Therefore, I‘g?’oo) ~q- I‘g?’oo)
is connected, as desired.

O]

Theorem 3.22 (Geometric criterion for X!). Let G be a finitely generated group with finite
generating set S and denote Y = ST. Let [x] € S(G) and choose t € Y such that x(t) > 0.

Then the following are equivalent:

1) Ty is connected (or [x] € S1(Q));

2) For everyy € Y = ST, there exists a path py from t to yt in I' such that

v (py) > (L) (or vi(py) =i ((1,9)) > 0). (3.1)

Dy yt

Demonstracao.

1) = 2) Suppose I'y, = Fg?’oo) connected and let y € Y. We must build the path p, from ¢ to yt
satisfying 3.1. Let r, = min{x(¢), x(yt)}. By Lemma 3.21, I’gy’oo) is also connected. Since
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the vertices ¢t and yt are inside ng’“) by definition of r,, we can connect them by a path
py inside Fg:y’oo) (therefore, vy (p,) > ry). This path satisfies 3.1. In fact,

vx(py) > 7y = min{x(t), x(yt)}
= x(¢) + min{0, x(y)}

x(t) + vy ((1,9))

n((1,9)).

V

2) = 1) To show that I'y is connected, let g be any vertex of I'y and let us build a path from 1 to
g inside I'y. Write all the existing paths p, by p, = (t,w,), where each wy is a word in Y.
Let

d = min{vy(py) — vy ((1,9)) [y €Y} > 0.

Since the whole graph T' is always connected, take a path py € P(I') from 1 to g. If
vy (po) > 0 we are done. If not, then, starting from pg, we will modify it (without changing

the extremities 1 and g) until we get a path with v, > 0. To do so, define

T :P(I') — P(I)

p = (h,y1y2-..yn) —> T(p) = (h, twy, wy,...wy, t ).

Note that T'(p) has the same extremities of p. Note also that p can be written as the
path concatenation p = (h,y1)(hy1,y2)...(hY1Y2---Yn—1, yn) and T(p) can be written as the

concatenation

T(p) = (hy t)(h - py,) (hyr - pys) (hy1ya - Dys ) (hy1Y2- - Yn—1 - Dy ) (Y1--Ynt, )

as one can see in the example.

Te)™ TN by oyt yepy, et 2P

Yryyst
Yoty £
(2 ) (yiyays t)

1 Y1Y2Yys =g
- |

Figura 3.6: Applying the path transformation T
Write po = (1, y1y2...yn), ¥i € Y, 50 y1...yn = g. We claim that v, (T'(po)) > min{0, vy (po)+

d}. In fact, using first the concatenation equation (before Proposition 3.13) and then using
that v, (1,t) = 0 and v, (gt,t~1) = x(g) > 0 we have
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vx(T'(po))

min{l/x((l,t)), Vx(pw)a’/x(yl 'pyz)v ...,I/X(yl...yn,1 'pyn)>l/x(9t>t_1)}
> min{O, VX(pyl)7 VX(yl 'pyz)’ --'al/X(ylmynfl 'pyn)}-
min{0, vy (py, ) X (Y1) + Uy (Pys )5 s X (Y192 Yn—1) + vy (Py,) }-

Now, by definition of d we have vy (p,,) > v, (1,y;) +d for 1 <i <n. So

vy (T'(po))

v

min{0, vy (py, ), X(¥1) + Vx(Pya)s - X192+ Yn—1) + vy (Py,) }-
min{0, vy (1, y1) + d, x(y1) + vy (1, 92) +d, ..., x(y1y2---Yn—1) + vy (1, yn) + d}.
min{oa Vx(la yl) + da _H/X(yla y2) + da ceey _H/X(yly?--ynfl, yn) + d}

v

But all the paths (1,41), (y1,%2), -, (Yy1Y2.--Yn—1, Yn) above are pieces of py (see the figure)
so they have bigger x-value than pg and then

vy (T (po))

v

min{0, v\ (1,y1) + d, +1y (y1,42) + d, -, +x (Y192 Yn—1,Yn) + d}.
min{0, vy (po) + d, vy (po) + d, ..., v (po) + d}
= min{0, vy (po) + d},

v

which shows the claim. By induction one can easily prove that v, (T%(pg)) >
min{0, vy (po) + kd} for k > 1. Then v,(po) + kd > 0 for some large enough k and

v (T*(po)) = min{0, v (po) + kd} = 0.

This means that T%(pg) connects 1 and ¢ inside I'y, completing the proof.

O]

Theorem 3.22 above characterizes X*(G) in terms of a finite number of equations having the
form v, (py) — vy ((1,y)) > 0 (equation 3.1). But the maps x — vy (py) — vy ((1,y)) seem to be
continuous, so this system of equations should be an open condition for £!(G). We formalize

this in the following

Corollary 3.23 (Openess of X1(G)). If G is a finitely generated group, X(G) is an open set
of S(G).

Demonstragdo. Fix a finite generating set S for G and denote Y = ST as above. Let [xo] €
Y1(G) and fix t € Y such that yo(t) > 0. Write Y = {y1,...,yn} and fix the existing paths
Py s - Py, of Theorem 3.22. We must find a set A C S(G) which is open in S(G) and such that
[xo] € A C ¥1(G). We have the system
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VXO(pyl) - ng((l,yl)) > 0,
' (%)
Vo (Pyn) — Vo (1, 4n)) > 0.

Let f; : Hom(G,R) — R with fi(x) = vy(py;) — v ((1,4:)), 1 <i < n, and let 7 : Hom(G,R) —
R with 7(x) = x(¢). Since the numbers v, (p,,) and vy ((1,y;)) are given in terms of the x(y)
for y € Y and the topology of Hom(G,R) is also given in terms of some of them, the f; are
continuous, and since ¢ € Y, so it is 7. This implies that W = (', f; "1 ((0,00)) N 771((0, 0))
is open in Hom(G,R). Since W C Hom(G,R) — {0} (because 0 ¢ 771((0,00)), for example),
W is open in Hom(G,R) — {0}. Now let p: Hom(G,R) — {0} — S(G) be the natural quotient
map and let A = p(W) C S(G). We will show that A satisfy what we wanted:

e [xo] € A. If we show that xo € W, then [xo] = p(x0) € p(W) = A. But 7(x0) = xo0(t) > 0,
s0 xo € 771((0,00)), and the equations () show that xo € (i, i ((0, 00)).

e AC XHG). Let [x] € A= p(W). Then [x] = [Y'] for X' € W. We have x = ry’ for some
r > 0, then x(t) = rx/(t) > 0 and we can use the same ¢ and the same paths p,, to apply
Theorem 3.22 for [x]. Since x' € N, fi((0,00)), we have

Uy (Py) = vx((1,90)) = ey (Py;) = Ve (1, 93)) = (v (py,) — v (L, 93))) > 0,

so the n equations 3.1 are satisfied also for y and therefore by the Geometric Criterion
3.22, [x] € ZHG).

e A open in S(G). By definition of quotient topology, we just have to show that p~1(A4) =
p~!p(W) is open in Hom(G,R) —{0}. But W is open, so let us show that p~'p(W) = W.
Obviously, W C p~1p(W). Now, let x € p~ip(W), that is, [x] = [x/] for some X' € W.
Write x = rx’. Again, we have 7(x) = x(¢t) = rX/(t) > 0 and f;(x) = vy (py;) —vx((1,4:)) =
r(vy (py;) — vy ((1,93))) > 0, so x € W by definition.

O

To finish, we just cite Theorem A4.1 of [92], one of the reasons why the ¥ invariant is so
important: it detects the finite generation of normal subgroups N <G containing the commutator
G’

Theorem 3.24. Let G be a finitely generated group and N <G with G’ C N. Then N is finitely
generated if and only if S(G,N) C XY(G). In particular, G’ is finitely generated if and only if
yH(G) = S(G).

Other properties

Next we show some other important properties of ¥! under quotients, finite index subgroups,
direct and amalgamated products and HNN extensions. Each of them will be useful to the
present work at some point. Most proofs can be found in [92], although we give here some
additional details.
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Quotients
Proposition 3.25. Let G be a finitely generated group, N <<G a normal subgroup with projection
homomorphism 7 : G — G/N and let [x] € S(G/N). If [x o 7] € ZYG) then [x] € ZYH(G/N).

The converse is also true if N 1is finitely generated.

Demonstragao. Let S be a finite generating set for G, and fix 7w(S) as a finite generating set for
G/N. Denote I' = I'(G, S), T = I'(G/N,n(S)) and the induced subgraphs I'yor = I'(G, S)yor
and Ty, = I'(G/N,n(S))y. There is a natural surjective graph homomorphism

YT I —T
g—4g
(9,8) — (7,3)

such that

V(yor) ={9€ G| xom(g) =x(@) 20} =Y""({g e G/N | x(g) > 0}) =T (V(Ty))

and

E(Cxor) = {(9:8) [ 9,95 € V(I'yor)}

= {(9:9) | 9,95 € TH(V(T)}
T ({(7,99) | .95 € V(T})

TUET).

Then I'yor = T_l(fx) and this implies that the restriction homomorphism T : I'yor — fx
is also surjective, for Y(I'yor) = Y(T71(Ty)) = I'y. Now the first part of the proposition is
easy: if [x o 7] € ¥}(G), I'yor is connected. Then its image T’y under Y is connected, that is,
] € SHG/N).

Now suppose N is finitely generated by a fixed finite subset Z C N. By the independence
theorem of X!, we can add Z to the generator set of G without changing ¥!(G), so denote
I =T(G,SUZ) and I'yor = I'(G, S U Z)yon. Supppose [x] € Z1(G/N) (Ty is connected) and
let us show that [x o 1] € £1(G) (I'yor is connected). Let g be any vertex in I'yor and let us
connect 1 to g inside I'yor. Since x(g) = x o m(g) > 0, I and g are vertices of the connected
graph T',. Connect 1 to g by a path p = (1,57...35,) in ['y, 3 € 7(S)*. Note that vy (p) > 0
and § = S1...5,, = S1...S,. Because of this, we have g(sl...sm)_1 € N, so write g = nsi...Sm
for n € N = (Z) and write n = 2y...2, 2 € Z*. So, z1...2;51...5m is a word in the set S U Z,
v =(1,21...2kS1...8m,) is a path from 1 to zj...2;51...8y, = ns1...8y, = g and because z; € N we

have x o 7(z;) = x(1) = 0, which implies

Uyor(7) = min{0, x om(21), ..., x 0 (21...2), X © T(21...2k51), -0y X © TW(21...251...5m) }
= min{0, x o 7(s1), .., x © T(S1...8m)}
= 1(p) =0
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and finishes the proof. O

Finite index subgroups

With respect to finite index subgroups H, X! behaves better than one could expect. First we

need a

Lemma 3.26. Let x : G — R be a homomorphism of groups and H < G a subgroup of finite
indez in G. Then x =0 <= x|g =0.

Demonstragdo. If x = 01it is obvious that x|z = 0. Suppose x|z = 0 and let G = goHUg1 HU...Ll
gnH Dbe a finite coset decomposition of G (go = 1). For each g € G we have g = g;h for some i and
some h € H, so x(g) = x(gih) = x(g:) + x(h) = x(g:). Then im(x) C {x(g0), x(91), -, x(gn)} is
a finite subgroup of R. But since R is torsion-free, every nontrivial subgroup must be infinite.
Then im(y) = 0 and x = 0, as desired. O

Because of this lemma, if [x] € S(G) then the expression [x|x]| € S(H) makes sense because
Xlg #0. If i : H — G is the inclusion, we have the well defined map i* : S(G) — S(H) with
[x] = [x o] = [x|a]- Here is our main property:

Proposition 3.27. Let G be a finitely generated group with finite generating set S, H < G a
finite index subgroup and [x] € S(G). Then [x] € YG) <= [x|u] € Z1(H).

Demonstracao. A transversal T' of G mod H is a collection T" C G of coset representatives
(G = UerHt) with 1 € T. Fix such a transversal 7' (finite, in our case). We may assume
that x(¢) < 0 for every ¢t € T. In fact, if some ¢ € T is such that x(¢) > 0 (¢t # 1), by the
above Lemma 3.26 since x|g # 0 we can find h € H such that x(ht) = x(h) + x(¢) < 0. Since
Hht = Ht, then replacing ¢ by ht in the collection T" we still have a transversal. By doing
all the necessary replacements we get the desired transversal 1. Now, given g € GG, denote by
g the (unique) element of T such that Hg = Hg. We claim that H is generated by the set
W = {tsts ' |t € T,s € S*}. Indeed, given h € H, write h = s1...5p, for s; € S*. Let
ti1=s1€Tand t; =t;_15 € T for 2 < i < m. We have t,, = 1. Indeed, given g1,g2 € G,
we have Hg19o = Hg19o = Hg1go, so by uniqueness gigo = gigz. Using this, we have t; = 37,

to = t159 = 5182 = 5152 and recursively we get ¢, = t;—15m = S1---Sm—1Sm = S1---5m = h = 1.
Then

h = S81...8m = (181t1_1)(t182t2_1)...(tmflsmtm_l),

but all the parenthesis (¢;—1s;t;) = (ti_lsim_l) are by definition letters (elements) of W, so
h is generated by W, which shows the claim. Denote then I'y = I'(G, S)y, 'y = I'(H, W) and
Ty = D(H, W)y,

(=) Suppose I'y connected and let us connect 1 to any vertex h € I'y, inside I'gr,. Since
x(h) > 0, connect by hypothesis 1 to h inside Ty by a path p = (1, w) where w = s1..5,, s; € S*

is a word in S. Define the word

Uy = (181t171)(tlsgtgfl)...(tm_lsmtmil),

where t1 = 57 € T and t; = ti_1s;, € T for 2 < ¢ < m, like before. We have
tm = 1 and w, is a word in W. Then p’ = (1,uy,) is a path in Ty from 1 to
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(1s1t1 Y (trsata ™). (bm_15mtm ') = S1...8mtm + = ht,,~' = h and such that the y-values

in all of its vertices (1s1t; 1) (t1s2ta™1)...(t;i_15:t; ') are non-negative, because
X((lsltlil)(tlSgtgil)...(ti_lsitiil)) = X(3132_”Siti*1) = X(Slsg...si) — X(ti) > X(Slsg...si) > 0.

This shows that [x|g] € L1(H).

(<) Conversely, suppose [x|g] € X' (H). Since W generates H and G = Ucr Ht, every
g € G can be written as ¢ = ht = wy..wit, w; € WT, so G is generated by the finite set
W UT. By the independence property, we can fix this finite set of generators for G. Let us
show that [x] € £!(G). Let g be a vertex in I'y, = I'(G,W UT),, and write g = ht for h € H
and t € T. Since x(h) = x(gt™) = x(g) — x(t) > x(g9) > 0, h is a vertex of I'g,, and therefore
by hypothesis there is a path p = (1,w) inside 'y, from 1 to h, w being a word in W. Now,

the concatenated path p’ = (1,wt) goes from 1 to wt = ht = g and lies inside Iy, because
vy(p') = min{vy(p), x(9)} = 0.

This shows that [x] € £!(G) and concludes the proof. O

Note that the above proposition allows us to compute $!(G) in terms of X (H) (if we know
the latter, we can compute the former). The converse is not true in general, because the propo-
sition only deals with homomorphisms of Hom(H,R) which are restrictions of homomorphisms
of Hom(G,R). So, a special hypothesis about extension of characters on H is enough to show

the converse:

Corollary 3.28. Let G be a finitely generated group and H < G a finite index subgroup with
inclusion © : H — G. Suppose that any homomorphism x : H — R can be extended to a
homomorphism x : G — R (that is, X|g = x). Then

Y H) =i*(ZHQG)) and B (H)C = *(ZH(G)°).

Demonstragio. If [x] € X1(G) we have i*[x] = [x|u] € SY(H) by Proposition 3.27. This
shows that i*(X1(G)) € X' (H). Conversely, if [x] € X' (H), let ¥ be the extension of x to
G. Since [X|g] = [x] € (H), again by Proposition 3.27 we must have [{] € ¥'(G). Then
[x] = i*[x] € *(X1(G)) and so B (H) = i*(X!(G)). The second part is analogous. O

Corollary 3.29. Let G be a finitely generated subgroup. If G has a finite index abelian subgroup
H then ¥YG) = S(G).

Demonstragdo. Since G is finitely generated and H has finite index in G, by Corollary 1.51 H
is also finitely generated. Since H is abelian we have ¥'(H) = S(H) by Corollary 3.15. Now
let [x] € S(G). Since [x|y] € S(H) = L(H), by Proposition 3.27 we have [x] € Z}(G), as
desired. O
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Direct products

Let G = G1 x GGy be a direct product of two finitely generated groups. For i = 1,2, choose
and fix a finite generating set X; for GG; containing the identity element 1 of G;. Then X =
(X1 x{1})U({1} x X2) is a finite generating set for G. Fix X. Let 7, : G — G; and j; : G; - G

be the natural projections and injections, respectively, and consider the linear pullbacks

Ji* : Hom(G,R) — Hom(G;,R)

X — X © Jis

m* : Hom(G;,R) — Hom(G,R)

X — X © 7.

Since j;* o mi* = (m;0j;)" = Id* = Id, the m;* are injective. Consider the restrictions
mi* : Hom(G;,R) — {0} — Hom(G,R) — {0}. To take the quotient applications, note that

rx=x,1r>0

rx(9:) = X'(9:) ¥ 9 € Gi

rxmi(91,92) = X'mi(g1,92) ¥V 91 € G1,92 € G2
r(xom)=xom, r>0

L A

Dom] =[x om,

which shows that the applications

m": S(G;) — S(G)

[X] — [x o mi

are well defined and injective. We are ready to show the following theorem, which can be found
in [92]:

Theorem 3.30 (X! for direct products). If G = Gy x Ga is the direct product of two finitely
generated groups, then

SHG)® = m* (BH(G1)%) Uma™(B1(G2)Y).

Demonstragao. To simplify we will denote G x {1} and {1} X G2 only by G; and G2. The proof

is divided into easier steps:
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1)

m*(ZHG1)¢) = S(G, Gs) — BHG).

(C) Let [x] € m1*(2H(G1)¢), that is, [x] = m1*([x1]) = [x1 o m1] for [x1] ¢ ©'(G1). Since
x107i(1,92) = x1(1) = 0 for all (1,g2) € G2, we have [x] € S(G,G2). Let us show
that [x] ¢ ZHG). If [x] was in Z}(G), let us show that [y1] € X*(G1), contradiction.
Let g1 € G1 be a vertex in I'y,, that is, x1(g1) > 0. Then g = (g1,1) is in I'y because
x(g9) = x1(g91) > 0. By hypothesis, [x] € (), so connect 1 to g inside T, by a path
p = (1,w) (remember our path notation given before) with w a word in X. By definition
of X, w is a product of letters either of the form (y,1) (whose product is (g1,1)) and of
the form (1, z) (whose product is (1,1)). Since [x] € S(G, G2), the letters (1, z) does not

contribute to the x-values. So

0 S Vx(p) = min{X(ylla1)7X(y11y1271)7"'7X(y11y12~-'y1k71)}
= min{x1(y11), x1(y11y12), - X1 (Y11y12---y1x) }
= Uxa (pl)’

where p1 = (1, y11¥12---y1x). Then p; is a path in I'y, connecting 1 and y11y12...y1x = g1
and we have [x1] € £!(G1), a contradiction. Then [x] € S(G,G2) — ZHG).

(D) Let [x] € S(G, G2) —XY(G). Let x1 = xoj1. We have x; # 0, because if 0 = x1(g1) =
x(g1,1) for all g1 € G; we would have x(g1,92) = x(91,1) + x(1,92) = 0+ 0 = 0 for all
(91,92) € G (since [x] € S(G,G3)) and then we would have x = 0, contradiction. So,
[x1] € S(G1) and 71*([x1]) = [x1 o m1] = [x © j1 o m1] = [x], because

x o j1om(g1,92) = x°Jji(91) = x(91,1) = x(91,1) + x(1, 92) = x(g1,92)

for all (g1,92) € G. We are just left to show that [x1] ¢ X*(G1). Again, if [x1] € £}(G1)
let us show that [x] € ¥1(G), a contradiction. Let g = (g1,92) € G be a vertex in I'y,
that is, 0 < x(g) = x1 om1(9) = x1(g1). Then g1 € T,,. Since [x1] € X}(G1), we can
connect 1 to g; inside I'y, by a path py = (1,y11...y1%). Write go = y21...y2, as a word in
the generator set X and define the path

p= (1, (y11, 1)(y12, 1) (Y15, D (L, 921) (1, y22) (1, y21))-

It is a path connecting 1 to (yn, 1)(:{/12, 1)---(2411@, 1)(1,y21)(1,y22)...<1,y2h>
(Y11y12---Y1k> Y21y22---Y2n) = (91,92) = g and using that [x] € S(G,G2) we have vy(p) =
Uy, (p1) > 0, so [x] € (@), the desired contradiction. So [x] € m*(X1(Gy)9).

m*(21(G2)¢) = S(G,G1) — ¥1(G). Similar argument from item 1).

»HG) C S(G,G1)US(G,G)).

Let us prove by contradiction. Suppose [x] ¢ S(G,G1) U S(G,Ga), that is, x|q, # 0 #
Xlg, and let us show that [x] € SY(G). Let g = (g1,92) be a vertex in I'y, that is,
0 < x(91,92) = x(91,1) + x(1,92). Then x(g1,1) > 0 or x(1,92) > 0. Without loss of
generality, suppose x(g1,1) > 0 (the other case is similar) and let us connect 1 to g inside

I'y. Write g1 = y11...y1» and g2 = yo1...42s, Y1: € X1, y2; € Xo. Since Xla, # 0, take
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(1,a) € {1} x XoF with x(1,a) > 0 and a sufficient large k > 1 such that

x((1,@)%) + min{x(y11,1), X(y11912, 1), -+, X (W11912---917, 1)} > 0.

Because of this inequality, the path p; = (1, (1,a)*(y11,1)(y12,1)...(y1r, 1)) connects 1 to
(y11y12---Y1r, a¥) = (g1,a") inside T. Also, since x(g1,1) > 0 and x(1,a) > 0, the path
p2 = ((g1,1), (1,@)*) connects (g1,1) to (g1,a*) inside T',. Now, using that x|g, # 0, take
(b,1) € X1*% x {1} with x(b,1) > 0 and a sufficient large d > 1 such that

X (b, 1)) + min{x (g1, y21), X(91, Y21522), -+s X (g1, Y21Y22.-.Y2s5) } > 0.

Because of this inequality, the path ps = ((g1,1), (b, 1)%(1, y21)(1,922)...(1, y25)) connects
(91,1) to (g1b%, y21...y25) = (g1b%, g2) inside T'y. Also, since x(g1,92) > 0 and x(b,1) > 0,
the path ps = ((g1, 92), (b, 1)?) connects (g1, g2) to (g1b%, g2) inside I'y. A concatenation of
these four paths connects 1 to (g1, g2) inside I'y. Then [x] € £1(G), as desired.

1 0 (gr,a") o (g1,1) s (910", 9) —1 o (91,92)
. )

Now we finish the proof. By items 1) and 2), we have

T (SHG) ) UM (BHGL)) = (S(G,G2) —£HG) U(S(G,Gr) — £H(@))
= (S(G,G1)US(G,Gy)) —=HG).

Now, (S(G,G1)US(G,Gs)) —31(G) = S(G) — £(G). Indeed, the inclusion (C) is obvious, and
(D) follows easily from item 3). This completes the proof. O

Amalgamated products and HNN extensions

Now we will exhibit some behavior properties of the invariant ¥! concerning amalgamated
products and HN N extensions (see definitions 1.64 and 1.65). The two next propositions can
be found in Lemma 2.1 of [19] and will be especially useful to deal with GBS and GBS, groups

later.

Proposition 3.31. Let G = G*4 H be the amalgamated product of two finitely generated groups
G,H and let [x] € S(G). If x|a # 0, [xlc] € S(G) and [x|n] € S'(H) then [x] € 2'(G).

Demonstragao. Fix finite generating sets R and S for G and H, respectively, and fix the fi-
nite generating set R U S for G. We denote 'y, = I'(G,RU S), Tg, = I'(G, R)y, and
Ly =T(H,S9)y - J
connectivity of the first. Let g € G, say, § = gih1...9nhn, gi € G, h; € H, and let us connect 1

The last two subgraphs are connected by hypothesis and we want to show

to g inside I'y. We proceed by induction on n:

e (n =1). Tosimplify, write g = gh, g € G,h € H. Since x|4 # 0, fix a € A such that y(a) >
0 and sufficiently large so that x(ga) = x(g) + x(a) > 0, denoting ¢’ = ga. Now, choose
another @’ € A with y(a’) > 0 and large enough so that x(a~'ha’) = x(a='h) + x(a’) > 0,
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denoting ' = a~'ha'. Since A ¢ G N H, we have ¢’ € G and I/ € H. By construction,
both have nonnegative x-values, then by hypothesis there are paths p; from 1 to ¢’ in I'g,
and p from 1 to A’ in T'g, (note that these paths are also in I'y). Since x(g¢’) > 0, the
translated path ¢’ - pp is in 'y, (for v, (¢" - p2) = x(¢') + vy (p2) > 0+ 0 = 0) and goes from
g to ¢'h/ = gaa"'ha’ = ga'. Finally, connect a’ to 1 by a path p3 in I',. The translated
path §-p3 isin T'y (for vy (g - p3) = x(g) + vy (p3) > 0+ 0 = 0) and goes from ga’ to g.

The concatenation of p1,¢’ - p2 and g - p3 connects 1 to g inside I'y, as desired.

e (induction). Suppose the claim is true for n —1 > 1 and let § = gihy...gnhy, € éx-
The strategy is the same from above. Denote g9 = g1h1...9n—1hn—1. Find a € A with
x(a) > 0 and x(goa) > 0. Since goa = gihi...gn—1(hn—1a) is an alternated product of
length n — 1, by induction there is a path p; in I'y from 1 to goa. Now, choose a’ € A with
x(a’) > 0 and x(a"tgna’) > 0. Since a=1gna’ € G and [x|g] € £}(G), there is a path po
from 1 to a~1g,,a’ in Ty (therefore also in T'y). The translated path goa - p is in I'y (for
vy (goa-p2) = x(goa)+vy(p2) > 040 = 0) and goes from goa to goaa ' gma’ = gogma’. Take
a” € A with x(a”) > 0 and x(a' 'hpma”) > 0. Since o/ 'hya” € H and [x|g] € S'(H),
there is a path ps from 1 to @’ ‘hpa” in T Hy (therefore also in I'y). The translated path
gogma’ - p3 is in Ty (for vy(gogma' - p3) = x(gogma’) + vy(p3) > 0+ 0 = 0) and goes
from gogma’ t0 gogma'a' *hma’ = Ga’. To finish, since ’ € A C G, x(a”) > 0 and
[xlc] € Z4(G), connect a” to 1 by a path py in 'y (and so in I'y). The concatenation
path pi(goa - p2)(gogma’ - p3)(g - p4) connects 1 to § inside I'y, as desired.

The same thing can be done for HN N extensions:

Proposition 3.32. Let G = <X,t | R, tat™! 0(@)71, a € A> be an HN N extension of a finitely
generated group G = (X | R) and let [x] € S(G). If x|a # 0 and [x|g] € ZXG) then [x] €
>H@).

Demonstragao. Fix a finite generating set S for G and fix the finite generating set S U {¢} for
G. Denote I' = T'(G, S U {t}),T'y, = (G, S U {t}), and T'g, = I'(G, Syl < Ty. We first show
a useful property: “for every § € G, by, by € G, there is a path p in T’ from gb; to §bs such that
vy(p) > min{x(gb1), x(gb2)}”. Indeed, suppose without loss of generality that x(bi1) < x(b2).
Then (b1 'ba) = —x(b1) + x(b2) > 0 and so b; by € I'g,. By hypothesis, there is a path p’
from 1 to by 'by in I'gy. The translated path p = by - p’ goes from by to biby by = by and
vy (P) = x(b1) + vy (p') > x(b1) = min{x(b1), x(b2)}. Now the path p = § - p connects by to gbs
and vy (p) = x(9) + vy (D) > x(g) + min{x(b1), x(b2)} = min{x(gb1), x(gb2)}, which shows the
property.

Now we show that [y] € B'(G). Let § € Ty and let us connect 1 to § in I'y. We can write
g = gotgy...t gy, for g; € G and ¢; = +1. Like in 3.31, we proceed by induction on n:

e (n =0). This is the case § = go € G. Since [x|g] € £!(G), we can connect 1 to § inside

I'cy, in particular inside I'y, as desired.

e (induction). Suppose the claim is true for n — 1 > 0 and let § = got“ g;...t"g,,. Denote
g = got?gyr..t"1g,_1 (so g = ¢'t"g,). Like in 3.31, since x|4 # 0 choose a € A such
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that x(¢'a) = x(¢') + x(a) > 0 and x(¢'at®) = x(¢') + x(a) + x(t*) > 0. There are two

cases. If ¢, = 1, using the presentation for G write
§=g'tgn = g'taa” g, = g'0(a)ta” " gn.

But ¢'6(a) = got'g;...t"*(gn—10(a)) is an alternated product of length n — 1 such that
x(g'0(a)) = x(¢') + x(0(a)) = x(¢') + x(a) = x(g'a) > 0 (because x(#(a)) = x(tat™") =
x(t) + x(a) — x(t) = x(a)), so by induction we can connect 1 to g’6(a) by a path p; in
I'y. Now, connect g’'6(a) to g’f(a)t by the obvious path (¢'6(a),t), which is in T'y because
Xx(¢g'0(a)) > 0 and x(¢'0(a)t) = x(¢'at) > 0. Finally, use the property of the first paragraph
(for ¢/6(a)t € G and by = 1,by = a~'g, € G) to connect g'd(a)t to ¢'6(a)ta g, = § by a
path ps with vy (p2) > min{x(¢’0(a)t), x(g)} > 0. The concatenation of these three paths

is the desired path. In the case ¢, = —1 we write
§=9g1"gn=g'aa” "t g, = g'at'0(a"")gy.

Similarly, we use induction hypothesis to connect 1 to ¢g’a by p; in Ty, then we connect
g'a to g'at™! by (¢'a,t™1) (which is in Ty because x(g'a) > 0 and x(¢’at™!) > 0) and
use the property in the first paragraph to connect g’at~' and g'at~'0(a=!)g, = § in ry.

Concatenating these paths we finish the proposition.
O

There are other two useful properties of 3! concerning amalgamated products and HNN
extensions. However, since their proof involves a theorem about reduced forms in both cases we
will only enunciate them and use later. Both correspond to the two items of Proposition C2.13,
at page 136 of [92].

Proposition 3.33. Let G = G4 H be the amalgamated product of two finitely generated groups

G, H and let [x] € S(G). Suppose also that G 2 A G H, that is, A is a proper subgroup of both
G and H. If [x] € £(G) then x|a # 0.

Proposition 3.34. Let G = <X,t | R, tat™! G(a)_l, a€ A> be an HN N extension of a finitely

generated group G = (X | R) and let [x] € S(G). Suppose also that the inclusionl: A — G and
the monomorphism 0 : A < G are both proper (not surjective). If [x] € SY(G) then x|a # 0.

3.3 Property R, under X! invariant

The invariance under automorphisms of the Sigma invariant is the fundamental key to the
implications of this chapter. The use of X! to detect twisted conjugacy and R, properties was
first noted by D. Gongalves and D. Kochloukova in their paper [42] (2010), where they were
able to use X! to show property Rs., for example, for the generalized Thompson’s groups Fro
and their finite direct products, as well as finding many classes of groups G in which one can
guarantee the existence of a finite index subgroup H < Aut(G) whose automorphisms have an

infinite number of twisted conjugacy classes.
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In this section, we present these theoretic results. We also give a simple proof for the (known)
fact that this result of D. Gongalves and D. Kochloukova is also compatible with finite direct

products.

Definition 3.35. Let G be a finitely generated group. A character [x] € S(G) is called rational
(or discrete) if [x] = [x] for some homomorphism X’ : G — R such that im(x’) = Z C R.

This definition is essential for the next

Lemma 3.36 ([42], Lemma 3.1). Let G be a finitely generated group such that

SHG) = {Dxal - [xml}

is finite, nonempty and contains only rational points, and let ¢ € Aut(G). Let N = N, ker(x;),
V = Hom(G/N,R) and denote by 0 : V' — V the linear map induced by ¢. Suppose {XT1, ..., Xm }
s a basis for V.. Then 0 permutes the x;, where each class representative x; is chosen so that

the coordinates of the X; are integers with greatest common divisor 1.

Demonstragao. Let us first identify the objects. By Corollary 3.19, N is a characteristic sub-
group of G. Furthermore, G/N is an abelian, finitely generated and torsion-free group, so
we identify G/N ~ Z° = (g1,...,Gs). By definition, all the x; vanish in N, so we have the
induced homomorphisms %; : G/N — R with X;(g) = xi(g9). Since G/N =~ Z° we have
V = Hom(G/N,R) ~ Hom(Z?,R) ~ R® a real vector space of dimension s, and then s = m be-
cause {XT1, ---, Xm} is a basis for V. The isomorphism V' ~ R™ is given by a — (a(q1), ..., @(Gm))
and we call this vector the “coordinates” of a € V. Since NN is characteristic we also have the
induced group automorphism @ : G/N — G /N such that %(g) = ¢(g) which induces the linear
transpose isomorphism 0 = (%) : V — V with 0(a) = a0 % (see the diagram).

G X5 G/N -
\L‘P O l@ QT
G T G/N ...

Figura 3.7: The dashed elipse is V.= Hom(G/N,R)

Now we show the lemma. Since the [y;] are rational, up to multiplying each x; by a positive
real number (which does not change the class [y;]) we may suppose that im(y;) = Z and therefore
the coordinates {x;(g1), ..., xi(gm)} are integer. Because of the property gcd(m, M) =1
we can divide Y;, if necessary, by the greatest common divisor d of all its non-vanishing integer
coordinates x;(g;), and then the coordinates of x;/d will have greatest common divisor 1. Then,

up to switching x; by x;/d we may suppose there are integers k1, ..., ki, such that
kiixi(g1) + - + kimXi(gm) =1, 1 <i < m. (3:2)

Now, since ¢* : S(G) — S(G) is a homeomorphism and ¥!(G)¢ is invariant under ¢* (Theorem
3.18), the restriction ¢*|s1(g)e Y(G@)¢ — BYG)¢ is a bijection. Then there is a permutation
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T € Sy, (symmetric group on m elements) such that [x; o p] = ¢*[xi] = [Xx(;)] for each i, or
Xi © ¢ = TiXx(;) for some r; > 0. This implies

O(Xi) =Xi 0P =Xi 0P = TiXn(i) = "iXn(i), 1 <1 <m. (3.3)

We just have to show that r; = 1 for each i. We only know that r; > 0 at the moment.
First let us show that r; € Z for each i. If we identify G/N ~ Z™ then p € Aut(Z™) ~

Gl (Z) can be identified with an invertible m x m integer matrix A. So, write

ail A1m
p=A=
Gml -  Gmm
Writing the X5 in coordinates we have
0(xi(91), - Xi(gm)) = 0(X3) = Xz (i) = i (Xr(3) (91)5 > X (5) (9m))- (3.4)

On the other hand, we know from linear algebra that the matrix of a transpose map is exactly

the transpose matrix of the map. Then we can identify § = AT and

air - am1 | | xi(91) > iy ajixi(g;)
0(xi(91), - xilgm)) = |+ - : = : : (3.5)
Alm -+ Omm Xi(gm) Z;nzl aiji(gj)

Putting together 3.4 and 3.5 we have

(Tin(i) (91), - o TiXr (i) (gm)) Zalez i) Zajmxz 9;) (3.6)

and using 3.2 (for 7 (i), not for ¢) and 3.6 we finally get

ri = Tilkn(i)1Xr@)(91) + o+ Kr(iymXa(i) (gm))
= ke (TiXa) (91)) + oo + Er@ym (TiXa (i) (9m))

= kran Zalei(gj) + oo+ kr(iym Zaiji(gj)

€ Z,

then r; € {1,2,3,...}, as desired.
Now we show that ; = 1 for each i. Let k = m! = card(S,,). The order o(w) of 7 € S, must
divide k, so write k = o(m)n for some integer n > 1. We have 7% = 7o(Mn = (zo(M)" = 14" = Id.

We will successively apply ¢ in some fixed ;. We have 0(Xi) = 7iXx() 02(x;) = O(riX=(i)) =

7:0(Xx(i)) = TiTx(i)Xx2(;) and recursively we get that 0F(xz) = rire (&) Tk () Xk (s) = NiXis
where \; = 1 7(i)---T'ek—1() 1S @ positive integer multiple of r;. So it is enough to show that all

the \; = 1. Because 6%(x7) = \iX; for 1 <i < m, the matrix of ¥ over the basis {X7, ..., Xm} is
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exactly
A0 o0
0 A ... 0
0 0 ... A

whose determinant is A;...\;,,. On the other hand, the matrix of #* (over another basis) is also
the matrix (AT)k which is an integer matrix because A is. Since 6% is an automorphism its
determinant must be 1. But the determinant is independent from the basis chosen. Then
Al...A;n = £1. Since all the \; are positive we have Ai...\;,, = 1 and since they are integer we
have A\; = 1 for all 7, as desired. O

The next two theorems are the main results of this section. Theorem 3.38 is more important

for us, since it is easier to be applied.

Theorem 3.37 ([42], Theorem 3.2). Let G be a finitely generated group such that

UG = {Dxals s eml}

is finite, nonempty and contains only rational points. Let N = N, ker(x;) and V =
Hom(G/N,R). If {x1,..,Xm} s a basis for V, then G has property R

Demonstragdo. Let ¢ € Aut(G) and let us show that R(p) = oco. By the above lemma, if
we denote by 6 : V' — V the linear map induced by ¢, then by choosing the correct class
representatives x; we have 0(X;) = Xr(),1 < 4 < m for some permutation 7 € Sy,. Using

linearity and then rearranging the terms we obtain

O(XT + ..+ Xm) = O(X7) + .. + 0(Xm) = Xr(1) + -+ + Xor(m) = X1 + - + Xom-

Since {X1, ---, Xm } i a basis for V the vector X7+ ...+ X, is nontrivial and therefore by definition
it is an eigenvector of 6 with eigenvalue 1. Since the matrix of  is the transpose matrix of @
and matrix transposition does not alter eigenvalues, ¥ also has eigenvalue 1. Then there is
a nontrivial element § € G/N such that $(g) = g, or (p — Id)(g) = 0 (additive notation).
Identifying @ — Id with its matrix, we have det(p — Id) = 0 and therefore R(p) = oo by
Example 1.3. Then applying item 1) of Lemma 1.7 to the diagram

G T3 G/N

o P

G T G/N

we get R(p) = oo, as desired. O

The only reason we needed that {X1, ..., Xm } was a basis for V' in Theorem 3.37 above is that
we had to guarantee that the vector X1 + ... + X7, was nontrivial. This will also happen if the
points [x1], ..., [xm] are all inside some open half-space of S(G). Because of this, with a similar

proof (see [42]) we can show the following
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Theorem 3.38. Let G be a finitely generated group such that

SHG) = {Dxal, - Dxml}

is finite, nonempty and contains only rational points. If {[x1], ..., [xm]} is contained in an open

half-space of S(G), then G has property Rs.

Corollary 3.39 ([42],Corollary 3.4). Let G be a finitely generated group such that X' (G)¢ =
{Ix1], -+, [xm]} is nonempty, finite and consisting only of rational points. Then there is a finite
index normal subgroup H < Aut(G) such that R(p) = oo for each ¢ € H.

Demonstragdo. Let N = NI ker(x;) and V = Hom(G/N,R). Consider the group Aut(V') of

linear automorphisms of V' with the operation * defined as T xS = SoT. Let

T : Aut(G) — Aut(V)

o

where @ is the automorphism 6 defined in Theorem 3.37 above. T is a group homomorphism.
In fact, given ¢, € Aut(G) and o € V| we have

—~—

potp(a) =aoporh=aopot =@(a)oh=P(@(a) = (Yo d)a),

So m = 1) 0 3, and this implies

—_~—

Y(poy)=potp=1pop="T)oT(p)=T(p)*T(¥).

But, by Lemma 3.36, each ¢ must permute the set {X1, ..., Xm }, S0 there are only a finite number
of possibilities and then im(Y) is finite. Let H = ker(Y). By the Isomorphism Theorem we have
Aut(G)/H ~ im(Y), so H is a finite index normal subgroup. Furthermore, by definition of H,
if ¢ € H then ¢ = Id, which implies (as in Theorem 3.37) ¥ = Id and R(p) = oo because of
Lemma 1.3. Again, by Lemma 1.7, R(p) = co. So H is the desired group. O

We know that property R is not well-behaved for direct products in general. But when

R comes from Theorem 3.37, then it works perfectly, as we will see.

Theorem 3.40. Theorem 3.37 (and Theorem 3.38) are closed under direct products. That is, if
G1, ..., Gy, satisfy the hypothesis of Theorem 3.37 (or the ones of Theorem 3.38), then G1 X...x G,
also satisfy the hypothesis of Theorem 3.37 (Theorem 3.38) and so it has Reo.

Demonstragao. We will first show the cases of only two factors for both theorems. First, the

case of Theorem 3.37. Let GG, H be finitely generated groups and write
SHG) = {Ixals - Dxml}, M =072, ker(x;), V = Hom(G/M,R) and

SYH)C = {[o1], ..., [on]}, N = Nj—y ker(oj), W = Hom(G/N,R).
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To be more precise, take the Z-basis g, ..., Gm and hq, ..., h,, of the correspondent f.g. free abelian
quotients G/M ~ 7™ and H/N ~ 7Z". Then we have the R-isomorphisms

V=R

o — ((91); -, ©(Gm))

and

So, the hypothesis that the %; form a basis for V' is equivalent to saying that the m vectors
xi(91), - Xi(@m)) = (xi(g1), .-, xi(gm)) are independent in R™, or that the m x m matrix
A=\ (gj)]z‘j is an isomorphism. Similarly, saying that the &; form a basis for W is saying that

the n x n matrix B = [0;(h;)];; is an isomorphism.

ij

By Proposition 3.30,

SHGx H)" = *(8H(G))un"™ (51 (H)Y),

= {[xio7|,.... [xmoml [o107],..., [on 07|},

where m: G x H — G and 7’ : G x H — H are the natural projections. First note that these
m + n points are distinct: in fact, the [x; o 7] are pairwise distinct (because 7* is injective) as
well as the [o; o7’]. Since no y; o« vanish in G x {1} and all the o; o 7’ vanishes there, and the
opposite happens in {1} x H, no x; o m can be a multiple of any of the o; o 7/, which completes
the argument. Note also that they are rational points, for im(y; o 7) = im(y;) is rational, as

well as im(c; o 7') = im(o;).

We just have then to show that {xjom,...xXmom o100, ...,0,07'} is a basis for Z =
Hom((G x H)/L,R) where L = (N, ker(x; o 7)) N (NI, ker(o; o 7). But

ker(; o m) = ker(x;) x H, ker(o; on’) = G x ker(o;)
and so
L= (i (ker(xi) < H)) N (Mii (G x ker(03))) = (MiZy ker(xi)) x (Miy ker(oi)) = M x N.

Then we have the isomorphisms
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(G x H)/L = G/M x H/IN = zm™*"

(9i,1) (9i,1)

—|

—
—

And since the g; form a basis of G/M and the h; form a basis of H/N we can take the (g;,1)

together with the (1, h;) as a Z-basis of the f.g. free-abelian group (G x H)/L, obtaining the

isomorphism

7 Ly gmin

p— (90(917 1)7 ) Qp(gma 1)7 90(17 h1)7 s ‘70(17 hn))

But

T(Xioﬂ-) = (XiOﬂ-(glal)v"'aXiOﬂ-(gmvl)7XiOw(lahl)v"inOTr(

)

[u—y [u—
3
~—
~—

= (i om(g1,1); s X3 © T(gms 1), xa 0 (1, ha), ooy i 0 7(
= (Xl(gl))7Xl(gm)7O,7O)

and, similarly,
T(Ui © 7T/) = (07 B 07 Ui(h1)7 (X3} Ul(hn))7

so the vectors {x107,.... Xm o m,01 07, ...,0n 07} in Z correspond to the (m + n) x (m + n)-

matrix

Ame O
O BTLXTL

which is an isomorphism because A and B are isomorphisms. Then they form a basis for Z, as

desired.

Now, the case of Theorem 3.37. Suppose that both

EHG) = {Dxals -, D]}, and BHH)® = {[o1], ., [on]}

consist of rational points contained in open hemispheres H, of S(G) and H, of S(H), re-
spectively. As we already know, ¥'(G x H)® is nonempty, finite and of rational points. To
see that it is in an open hemisphere of S(G x H), we identify S(G) = S"~!, S(H) = s™1
and S(G x H) = S"™™~1 Under this identification, the maps 7* and 7’* assume the form
7*(z) = (z,0) and 7'*(y) = (0,y) and preserve inner products, because (7*(x),7*(z)) =
{(z,0),(2,0)) = (x,2), similar for 7'*. So, if ¥}(G)° ¢ H, and X'(H)° C H,, we claim that
SYG x H)® C Hyy) in S(G x H). Indeed, (7*(x), (v,w)) = ((2,0), (v,w)) = (z,v) > 0 for all
r € X1(G)¢ and similarly (7'*(y), (v,w)) = ((0,%), (v,w)) = (y,w) > 0 for all y € B (H)®. Since
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UG x H) = 7*(ZHG)) Un"™ (XL (H)), this shows the claim and finishes the two factor case.

The general case follows by trivial induction: suppose Theorem 3.37 (Theorem 3.38) is valid
for n factors and let Gy, ..., G411 satisfy its hypothesis. Let G = Gy and H = G2 X ... X Gp41.
By hypothesis, G and H satisfy Theorem 3.37 (Theorem 3.38). Then, by the previous case,
G1 X ... Xx Gpp1 = G x H satisfy Theorem 3.37 (Theorem 3.38), as desired. O

Open questions

)

Could some other equivalent definitions (or characterizations) of X!(G) be used in the
investigation of property Ro.? In this thesis, we have dealt with Definition 3.7 for its sim-
plicity. But, for example, we have Brown’s characterization in [17] in terms of the possible
existence of “non-trivial and abelian” actions of G on R-trees. This would correspond,
in the language we used in Sections 2.3 and 2.4, to fixed-end actions with no invariant
lines. We do not want to get into details here, but it seems like this definition could have
connections with hyperbolic or relatively hyperbolic groups G. The reason is that there

are natural constructions of actions of G on R-trees, as we will see in chapters 8 and 9.

Could the higher invariants ™, n > 1, be computed and used to determine property Rso?
The reader may read [7] to know the definitions. By their apparent complexity and the lack
of literature in the computation of these invariants, we decided to restrict our attention
only to X, However, since they are known to be invariant under automorphisms, Theorem

3.37 would equally work for them.
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Capitulo 4

Invariant convex polytopes and

property R

In this chapter we go in the same kind of direction of the last section of Chapter 3: we show that
the existence of some invariant closed convex polytopes in S(G) can also guarantee property
R of a finitely generated group G (Theorem 4.28). The intuitive idea that gave rise to this
result is that the induced homeomorphism ¢* : S(G) — S(G) of an automorphism ¢ : G — G
seemed like to map geodesics to geodesics (not linearly). So, we conjectured that if ¢* fixed a
polytope, then it should map vertices to vertices. This turned out to be true.

Like we already said, the key fact to guarantee property R, by the previous chapter is
that X! is an invariant subset of S(G); so we start this chapter by rewriting Theorem 3.38 by
replacing (X1)¢ with an arbitrary invariant subset of S(G). With the same proof we get

Theorem 4.1. Let G be a finitely generated group. Suppose there is a nonempty and finite
subset A C S(G) which is invariant in S(G), consisting only of rational points and contained in

an open half-space of S(G). Then G has property Roo.

In the rest of the chapter we will deal only with convex polytopes, although sometimes we
will call them simply by polytopes for simplification. Most of the results obtained here are surely

false for the not-convex ones.

4.1 Convex polytopes in Euclidean spaces

Since polytopes are not among the main goals of the project, our approach here is minimal. For
more details about convexity and convex polytopes in R¢, see [52], which was the basic literature

for this section.

Definition 4.2. Let R% d > 1 be the d-dimensional euclidean space. We say that a subset
K € R? is convex if every straight path between two points of K is contained in K. In other
words, K is convex if for all P,Q € K and t € [0,1] we have (1 —t)P +tQ € K.

Definition 4.3. For any subset A € R%, the convex hull of A in R is the smallest convex subset
of R? which contains A. We denote it by conv(A).
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Observation 4.4. Tt is easy to see that conv(A) is also the intersection of all the convex subsets

of R? containing A. Another description (see [52]) is
conv(A) = {tia1 + ... + tpan | n>1, a; € A, t; >0, Zti =1}

In particular, if A = {a1,...,a,} is finite, then we denote conv(A) by conv(ay,...,a,) and we
have
conv(ay, ...,an) = {t1a1 + ... + tpay | t; >0, Zti =1}

In the special case of only two points aj, as, since t; +t9 = 1 we have t; = 1 — t9 and so
conv(ay,az) = {(1 —t)a; +tag | t € [0,1]}.

Definition 4.5. A closed halfspace in R? is a set of the form H = {x € R? |(x,v) > B} for some
v € R? and 8 € R. Here the dot product of two vectors = (21, ...,24) and v = (az, ..., ag) is
(x,v) = a1x1 + ... + agrg. It follows that the set H is characterized by the z € R? satisfying the
equation

o121+ ... +agxg > S.

The boundary of H in R¢ is
OH = {z € R? | aqxy + ... + agzg = S}

Definition 4.6. A convex polytope K in R? is a finite intersection K = N, H; of closed
halfspaces of R? which is also a bounded subset in R%. It is always a convex and compact
subspace of R%. Since it is and also a submanifold of R? (with boundary), there is a well defined
dimension dim(K). We say that K is a r-polytope if dim(K) = r. From now on, we may omit

the word “convex” since we are dealing only with convex polytopes.

Definition 4.7. If K = N ;H; is a convex polytope, we say that the family {H;,..., H,} is
irredundant if for every 1 < ¢ < n we have K C N;4;Hj, that is, if K cannot be written as the
intersection of a proper subfamily of the H;. If K is a convex d-polytope in R? and {Hj, ..., H,,}
is irredundant, the facets of K are the subsets F; = (0H;) N K.

Observation 4.8. If the family {H;, ..., H,} is not irredundant then by a simple recursive ar-
gument we can write K = ﬁé?:lHij where {H;,, ..., H;, } is a proper irredundant subfamily of
{Hy,...,H,}. So, from now on, we will always suppose that the family of closed halfspaces

defining K is irredundant.
Observation 4.9. It follows from the definition that a convex polytope K is characterized by the
points € R? such that

any + ... + aqgzg > P,

Qp1T1 + oo+ Qpgq > B

for some a;, 5; € R. We can abbreviate this system by the expression “fij(x) > 5, i =1,...,n”,
where the f; : R? — R are linear maps given by fi(x) = i1 + ... + ajgrg. With this notation,
apoint x € K is in a facet Fj if and only if f;(z) = f;. It is then easy to show that the boundary
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of K in R% is
0K =F,U..UF,
and, if K is a d-polytope (that is, with maximal dimension), then it has nonempty interior given
by
int(K)={z e R | fi(x) > Bi, i =1,...,n}.
Of course, K = 0K Uint(K).
The main properties we need to know about d-polytopes in R¢ are below.

Lemma 4.10. Let K be a d-polytope in R? and P,Q € K. If the straight path {(1—t)P+tQ | t €
[0,1]} from P to Q is contained in OK then there is a facet F; containing P and Q.

kY

Demonstragdo. Let K be characterized by the system “f;(z) > f;, i = 1,...,n”. Suppose by

contradiction that there is no facet F; containing both P and (). This means that for every ¢,

there are only three possibilities:
e fi(P)=pB; and f;(Q) > B;, or
o fi(P)> B; and fi(Q) = fi, or
o fi(P)> B and fi(Q) > Bi.

Let R = (P + @)/2. Then R is contained in the straight path from P to Q. But for all 4, since

fi is linear we have

fi(R) = fi

P+Q\ _ filP)+ fi(Q)
2 2

and in any of the three cases above is easy to see that f;(R) > §; and so R € int(K). Therefore,
the straight path from P to () is not contained in K, contradiction. O

Lemma 4.11. If K is a d-polytope in R?, every facet of K contains a point which does not
belong to any other facet.

Demonstragdo. Let K be characterized by the system “f;(z) > B, j = 1,...,n” and let Fj
be one of its facets. Since K is d-dimensional, let P be a point of int(K), with f;(P) > 5;
for all j. Also, since the H; are irredundant, we have K C N;-;H;, so let Q be a point in
(Njx:Hj;) — Hy, that is, f;(Q) > B; for all j # i and f;(Q) < Bi. Let ypq(t) = (1 —t)P +tQ be
the straight path from P to ) and consider the continuous composition f; o vpg : [0,1] — R.
Since (fi o vp)(0) = fi(P) > B; and (fi ovp)(1l) = fi(Q) < B;, by the Intermediate Value
Theorem there is ¢y € (0,1) such that (f; o ypg)(to) = B;. Then the point Z = ypg(to) is such
that fi(Z) = f; and if j # i we have f;(Z) = f;(1 —t0) P +10Q) = (1 —1t0)f;(P) +10f;(Q) > B;
(since fj(P) > fB; and f;j(Q) > B;). This means that Z € K and F; is the only facet of K

containing Z. O
Lemma 4.12. Any d-polytope in R contains at least d + 1 facets.

Demonstracio. We will first show that a finite intersection of only d closed halfspaces of RY
cannot be bounded and therefore cannot be a polytope. Let K = ﬂilHi be defined by the

system
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a1121 + ... + qzrq > B,

agn 1+ ... + aggrg > By

and let P = (p1,...,pq) € K, so we have the equations f;(P) =~; > ; for i = 1,...,d. Since the

H; are irredundant, the system of equations

a1121 + ... + Q1gxg = 71,

ag—11T1 + ... + Q4—1,4%Td = VYd—1

for an arbitrary point = = (z1,...,24) € R? is equivalent to 2 having only one free coordinate
x; and all the other ones linearly dependent of z;, that is, x; = L;(x;) for affine functions
L;:R—R. Let v : R — R? given by

’y(t) = (L1 (t), ceuy Li_l(t), t, Li+1(t), veny Ld(t)).

Since the L; are affine maps, v is a straight line. By the above paragraph we also know that ()
satisfies the system of d—1 equations above for all £. So, to see if a point y(¢) is in K we only have
to see whether fy(v(t)) > B4. Because of this, let us analyze the composition fg0+, which is also
an affine map: we have fy(v(p;)) = fa(P) = va > Ba. If the derivative (fy07v)'(p;) > 0, then it is
a non-descending map and for every ¢ > p; we still have fy(v(¢)) > fa(v(p:i)) = 74 > B4, which
implies the entire semi-straight line y[p;, 00) is inside K. On the other hand, if (f;0~) (p;) < 0,
then it is a descending map and for every ¢t < p; we have fy(v(t)) > fa(v(pi)) = ya > Ba, which
implies the entire semi-straight line v(—o0, p;] is inside K. So in any way K is not bounded and
therefore is not a polytope.

Finally, if r < d, a finite intersection of r closed halfspaces contains a finite intersection of d

closed halfspaces and therefore also cannot be bounded. This completes the lemma. O

The vertices of a polytope should be the “least interior” points, which are not even in the

1-dimensional interiors of the polytope. Then, following [52], we define:

Definition 4.13. A point P of a d-polytope K C R? is a vertex of K if P is not in the interior
of any straight path contained in K. In other words, P is a vertex of K if for any straight line
7 : R — R? containing P (say, v(to) = P), there is no ¢ > 0 such that y(to —¢,t, +¢) C K. The
set of vertices of K is denoted by V(K).

Note that, since every straight line can be reparametrized by any translation of R, it is
enough to suppose g = 0 in the definition above. Now we characterize the vertices of K in a

way that will be useful for us:

Lemma 4.14. Let K C R? be a d-polytope and P € K. Then P is a vertex of K if, and only
if, P belongs to (at least) d distinct facets of K.

Demonstragao. Let K be defined by the system “f;(z) > £;, ¢ = 1,...,n” as described above
(we already know that n > d + 1) and let P = (p1,...,pq)-
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(=) Suppose P is only in r < d — 1 distinct facets of K, say, fi(P) = 5; for i = 1,...,r and
fi(P) > B; fori =r+1,...,n (after reordering the f; if necessary). Since the H; are irredundant,
the system of r equations above “f;(x) = B; fori = 1,...,r” for x = (z1, ..., z4) € R? is equivalent
to having d — r free coordinates and the other r coordinates of x being affinely dependent of

them, say,
file)=pifor 1 <i<r<ex= (21, Tdr, La—ri1(T1, oy Ta—r ), ooy La(T1, ooy Ta—y))

(after reordering the coordinates if necessary), where the Lj : R4" — R are affine maps. Let
v : R — R? with

PY(t) = (t7p27 <oy Dd—rs Ld*?“+l(tap27 "'7pd71”)7 (EX3} Ld(tapQ-"apdf'r'))-

Since the L; are affine maps, this is a straight line passing through v(p1) = P and by construction
we know that for all ¢, y(t) satisfies fi(v(t)) = Bi, 1 < i < r. Now, since f;(P) > p; for
i =r+1,..,n and these f; are continuous, there is an open ball B(P, ) such that f;(x) > f;
for i = r+1,...,n and for every z € B(P,0). By the continuity of -, let ¢ > 0 be such that
v(p1 —€,p1 +€) € B(P,6). Then by construction we have v(p; — €, p1 + €) C K and therefore P
is not a vertex of K.

(<) Suppose P is in d distinct facets of K, that is, f;(P) = §; for i = 1,...,d and f;(P) > 5;
for i = d+1,...,n (after reordering the f; if necessary). Since the H; are irredundant, the system
of d equations “f;(z) = f3; for i = 1,...,d” in R? has unique solution in R? which is P. Let
7 : R — R? be a straight line containing P, say, y(t) = P + tv for v € R? — {0} and consider
the affine composition maps f; oy : R — R. There must be 1 < i < d such that (f; ov)'(0) # 0;
otherwise, all the maps f; oy would be constant with value f; o v(0) = 5; and therefore all v(t)
would be a solution of the system of equations above, a contradiction. Let 1 < ¢ < d such that
(fioy)' (0) #0. If (f;07)(0) > 0, then f; o~ is an ascending map and f;ovy(—e¢) < fiov(0) = f;
for all € > 0, which implies v(—e,¢) ¢ K for all € > 0. Similarly, if (f; o)’(0) < 0, then f; oy is
an descending map and f; o y(€) < f; o y(0) = 5; for all € > 0, which also implies y(—¢,¢) ¢ K
for all € > 0. This shows that P is a vertex of K. O

Corollary 4.15. Every d-polytope of R% has a finite number of vertices.

Demonstragao. We showed above that V(K) is contained in the set of all possible intersections
of d (or more) facets of K. But in the part “(<=)” we showed that the systems of d equations
“fi(x) = B; for i = 1,...,d” which characterizes a vertex in K have unique solutions, so all these
d-intersections give rise to at most one vertex. Since there are a finite number of facets, V(K)
must be finite. O

Proposition 4.16. Let K C R? be a d-polytope and f : K — K a homeomorphism. If for
any P,Q € K, f(conv(P,Q)) = conv(f(P), f(Q)), then f maps vertices to vertices, that is,
fV(K)) = V(K).

Demonstragao. Let K be defined by the system “f;(x) > (;, i = 1,...,n”. Since f is a home-
omorphism, it must map the boundary 0K to itself, and so f(F1 U..UF,) = F; U...U F,.
Suppose by contradiction that a vertex P € K is mapped to a non-vertex point f(P) € K



100 4. Invariant convex polytopes and property R,

(but obviously P, f(P) € 0K). If a point @ € K belongs to any facet of K contain-
ing P (say, F'), then conv(Q,P) C F, since every facet is easily seen to be convex. Then
conv(f(Q), f(P)) C f(F) C 0K by hypothesis, which implies that the whole straight path
joining f(Q) and f(P) is contained in the boundary K. By Lemma 4.10, f(Q) must be in a
facet which also contains f(P). This argument shows that all the facets containing P must be
mapped into the facets containing f(P). By Lemma 4.14, there are at least d facets containing

P, say, Fi, ..., Fy and at most d — 1 facets containing f(P), say, Fj,, ..., F; Then we have

id—1*

f(Fl U... UFd) CEF,U.UF

d—1"

We continue: since there are at least d+ 1 facets, let Z € 0K be a point outside F;, U...U F;
say, Z € F;,. By Lemma 4.11, we can suppose Fj, is the only facet containing Z. Since f is
surjective, Z = f(W), so W must be a boundary point outside F} U ... U Fy, say, W € Fy.q.

d—17

Using again 4.14, we can show that all the facets containing W must be mapped into the facets

containing Z (only the facet Fj,). In particular, f(Fyy1) C F;, and so
f(Fl U...u Fd+1) chk,u..u Fid'

If d+1 = n, we stop. If not, we keep doing this same argument and adding facets to both sides

of the above expression. After finite steps we will have

f(FLU...UF,) C F;; U...UF;

n—17

so f(OK) C 0K, contradiction. O

4.2 Convex polytopes in Euclidean spheres and induced home-
omorphisms

Let G be a finitely generated group whose abelianized group G has free rank n. Consider the

homeomorphism

H:S5(G) — Ss"!

(xX(x1), -, x(n))
[X] — | (x (1), .o x (@)

where the z; € G are the free-abelian generators of G%. Given ¢ € Aut(G), we have the
induced homeomorphism ¢* : S(G) — S(G) with p*[x] = [x o ¢]. Let ¢° : S*1 — S"~1 be the
composition ¢ = H o ¢* o H 1.

By the definition above, it is easy to see that a subset K C S(G) is invariant in S(G) (that
is, invariant under ¢* for all ¢ € Aut(G)) if and only if H(K) is invariant under all ¢°. Before
defining a polytope in S(G), let us show a useful property of ©°:

Definition 4.17. Let A C S™ C R"*! and suppose A is contained in an open hemisphere of S™,
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say, A C O(v) = {z € 8" | (z,v) > 0} for some v € R**! — {0}. We say that A is (spherically)

convex if for any aj,as € A, the geodesic path from a; to as is contained in A, that is, if
1—t)a;+t

Yar,az(t) = Mﬁ € Aforallt € [0,1].

Definition 4.18. Let A ¢ S" C R™*! and suppose A C O(v) as above. The convex hull of A
in S™ is the smallest convex subset of O(v) which contains A. We denote this set by conv(A).

If A={a,...,an} is finite, we denote conv(A) by conv(ar, ..., am).
Proposition 4.19. Let A C S" C R"" and suppose A C O(v) as above. Then

tiay + ... + tpam,
||t1a1 + ...+ tmamH

conv(A) = { | m>1,a; € A, (t1,....tm) € [0,00)™ — {0}}

Demonstragao. It is straightforward to verify that the set on the right is spherically convex and
contains A, so (C) is valid. To show (D), let C' be any convex set in O(v) containing A and
let us show that C' must contain the set on the right. We will show this by induction on the

number of nonvanishing vectors in the elements it dtmdm , A = _ha
ltia1+...+tmam]| lt1a1]| ti]la1]|

Hg—i” = a1 € C, because A C C by hypothesis. Assume that we showed that any element of

t1a1+...+tmam tiai+..+Htmt1am+1
[trar+...+tmaml ltrar+.. .+ tmt1amit]]

with the ¢; > 0. By hypothesis, the element m is an element ¢ € C, so we denote

A= |[tia1 + ... + tman|| and write tyay + ... + tan, = Ae. Then

Form=1

the form (with the ¢; > 0) is in C' and consider and element

tiar + ... + tyr1Gm+1 _ A+ tmt1Gme1
[t1a1 + o + tmgrampt]l A+ tmyp1amyal]
Now, let X' = A+t1m+1 > 0. Then M\ =1 — Ntp,1 and we get
Ac + tm+1am+1 )\/)\C + )\’tm+1am+1 (1 — )\/tm+1)c + )\’tm+1am+1
= / / = / / € C’
[Ac + tmiramsr|l  [NAc+ Ntmyrameall (1= Ntmgr)e + Ntmgram ||
since ¢, a1 € C and C' is convex. This completes the proof. ]
The t; above are called the coefficients of P = lttimam = Ag in Euclidean spaces, the

”tl ai+...+tmam ” :
following happens:

Lemma 4.20. Let O(v) C S™ as above. The image of the geodesic path yp,q joining two points
of O(v) is the convex hull of {P,Q}.

Demonstragdo. By definition,

(1-t)P+1tQ
(1 =8)P + Q]

m(rme) = { te b
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and
th P+ tQ

[t1P + t2Q)

so it is obvious that im(ypg) C conv(P, Q). On the other hand, given (t1,t2) € [0,00)? — {0},
let

conv(P, Q) = { | (t1,2) € [0,00)% — {O}} )

1

A=
t1 + 12

> 0.

Then )\tl =1- )\252 and

tP+1Q  MiP+X2Q  (1—t)P+1tQ ¢ conv(P.Q)
[P+ 6:Q| — AP +A:2Q| (1 —t)P +1tQ| ‘

for t = Aty € [0, 1], as desired. O

Lemma 4.21. Let A C O(v) and suppose ¢°(A) C O(w) for some w. Then ¢°(conv(A)) =
conv(p®(A)), that is, the homeomorphism ¥ : S"~1 — S~ maps convex hulls to convex hulls.

In particular, it maps geodesic paths to geodesic paths.

Demonstracio. Let us show that ¢(conv(A)) C conv(p®(A)). If we show this, then
since (97)7 = (9%
conv(¢®(A)) C ¢°(conv(A)); therefore ¢°(conv(A)) = conv(p®(A)) and we are done.

we can similarly show that (gos)_l(conv(gos(A))) C conv(A), or

Let P € conv(A) and write P = m for some a; € A and t; > 0. For each
a;, since H : S(G) — S" ! is surjective we write a; = H|[y;] = Qa(@1)Xi(@n)) g1 gome

(i (1), xi (@)l
1 ] We can actually

[xi] € S(G) and, up to multiplying the representative y; by T @)

suppose a; = H|[x;] = (xi(x1), ..., Xi(zn)). Remember then that, by definition,

¢%(a;) = Hoyp*oH '(a)
= Hop"[xi]
= H[Xi © 90]

(xi 0 (1), s Xi © p(Tn))

[(xi © @(@1), .., Xi © (an))]]
= %(Xi 0 (1), -+, Xi © P(Tn)),

)

where \; = ||(xi 0 @(x1), ..., Xi © ©(x))|| > 0. Now we compute ¢°(P). But

((tix1 4 oo F tmXm)(@1), oy (1 X1 + oo F b)) (20))
[((F1x1 + o+ tXm ) (@1)5 oy (XD + oo+ T Xom) (20)) ]
(tixa(zy) + o+ tmXm(T1), - tixa (Tn) + oo + tXm (Tn))
[(tixa(z1) + oo+ tmXm(@1)s s X1 (T0) + oo+t Xom (T0)) |
tiar + ... + tmam
Ht1a1 + ...+ tmamH
= P.

H[tIXI + ...+ thm] =

By denoting

A=[l(t1(x109)(@1) + - + tm(Xm 0 @) (21), s ti(x1 © ©)(Tn) + o + L (Xm © ©) (zn) [,
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we have

¥ (P) = Hog*oH '(P)
= Ho‘p*[t1X1+'--+thm]
= H[(t1X1 + ...+ thm) © 90]

= H[tl(Xl © 90) + ..+ 75m(Xm © ‘P)]
(t1(x109)(®1) + o + tm(Xm 2 @) (1), s tilxa © ) (Tn) + o + L (Xm © ) (Tn))

)
= B0 0@ @) (1 0 D)) + o+ L (im0 @)1, s (i © ) (00)
B Mt 1 Amtm 1
= (e @)@ (e @)(@n)) 4 4 T ((m 0 @) (@) s O © ) ()
- %gp( D+ - +Am;msos( m)
Aty

(am)
(am

. Th S(ay) + ... + 2mtm S
1238 oS (1) + ... + Ambm S
€ conv(p®(A)),

(since the above vector is already unitary)

as desired. Since the convex hull of two points is the geodesic path between them (by the above

lemma), ¢ must map geodesic paths to geodesic paths. O

Observation 4.22. Note that the coeficients of ¢°(P) may not be the same of the ones of P. For

example, the middle point Z=al P +Q” between P and Q may not be mapped to the middle point

S S
%. However, we showed that it is certainly mapped into the geodesic path from

p°(P) to v°(Q).
If S c R"L let O(v) = {z € S™ | (x,v) > 0} be an open hemisphere of S™ for some v € S™.
Consider the affine n-space v + {v}* = {v +w | (w,v) = 0} C R""!. One can show that there

is a homeomorphism

P

0, : v+ {v}t = O(v) with 0,(P) = Izl

the inverse map given by P <H il >P From now on we identify R” = v + {v}+.

It is straightforward to show from the definitions that 6, : R" — O(v) maps convex hulls of
R™ to convex hulls of O(v). More precisely, 6,(conv(A)) = conv(6,(A)).

Definition 4.23. A closed hemisphere in S™ is a set having the form C(w) = {p € S™ | (p,w) >
0} for some w € S™. A polytope K C S™ is a finite intersection of closed hemispheres in S™.
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Lemma 4.24. Let K be a polytope contained in an open hemisphere O(v) of S™ and consider

the projection homeomorphism 6, : R® — O(v). Then 0, *(K) is a polytope in R™.

Demonstracio. We are identifying v + {v}* = R™. Let {e1,...,e,} be an orthogonal basis of
the n-vector space {v}* (so the identification R” = v + {v}* can be seen as (A1, ..., \p,) —
v+ Arer + ...+ A\pey). Write e; = (41, ..., €5,n41) for each i. First, let us see what is the inverse
image under 6, of a closed half space C(w) of S™. Let z = v + Aje1 + ... + A\e, € v + {v}t.
Then

2 €0, Y(Cw)) & <H;w> >0 (z,w) > 0.

But if v = (v, ..., Vp41) and w = (w1, ..o, Wnt1),
(z,w) = M(ennwi + ... + €1, 1Wni1) + oo + Ap(enrwr + ... + ennp1Wni1) + (v, w).

So, under the identification, v 4+ {v}* is characterized by the (A1, ..., A,) such that

<()\1, cees )\n), (611101 + ...+ €1 n+1Wnt1s vy E1W1 + ...+ €n7n+1’wn+1)> > —<U, w),

which is a closed half space of R”. This shows that the inverse image under 8, of closed half spaces
of S™ are closed half spaces of R™. Now we easily show the proposition. Since K C O(v) is by
definition a finite intersection of closed half spaces of S™ and 6, is a bijection, 6, "' (K) is a finite
intersection of closed halfspaces of R". Furthermore, K is closed (finite intersection of closed
subsets) inside the compact S™, and therefore compact. Then, because 6, is a homeomorphism,

6, 1(K) is compact and therefore bounded, so it is a polytope. O

Definition 4.25. Let K be a polytope contained in an open hemisphere O(v) of S™. The
vertices of K are V(K) = 0,(V (0, ' (K))), that is, the vertices of K are the projections of the
vertices of the polytope 6, !(K). The dimension of K is also defined to be the dimension of
0, H(K).

4.3 Property R, under convex polytopes

Definition 4.26. Let G be a finitely generated group with homeomorphism H : S(G) — S™~ 1.
We say that K C S(G) is a r-polytope in S(G) if H(K) is a r-polytope in S"~!. In this case,
we define the vertices of K as V(K) = H 1(V(H(K))), that is, [x] is a vertex of K if H[x]
is a vertex of H(K). We say that K is contained in an open hemisphere of S(G) if H(K) is

contained in an open hemisphere of S”~ 1.

Theorem 4.27. Let G be a finitely generated group and K C S(G) a polytope contained in an
open hemisphere of S(G). Then K is invariant in S(G) if and only if V(K) is invariant in
S(G).

Demonstragao. Let ¢ € Aut(G). By hypothesis, H(K) C O(v) for some open hemisphere of
S"=1 50 let 6, : R*™! — O(v) be the homeomorphism. By Lemma 4.24, K’ = 0, ' (H(K)) is
an r-polytope in R"~! for some 0 < r < n — 1. It is enough to show that H(K) is invariant
under ¢° if and only if V(H(K)) is. Suppose first that V(H (K)) is invariant under ¢°. But in
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Euclidean space, every convex polytope is the convex hull of its vertices (see [52]), so
conv(V(H(K))) = conv(0,(V(K"))) = 0,(conv(V(K"))) = 0,(K') = H(K),

that is, H(K) is also the convex hull of its vertices. Using this, the main hypothesis and Lemma
4.21, we have

as desired. Now, suppose p°(H(K)) = H(K). We know K’ is an r-polytope in R*~!. If
r < n — 1, then K’ is contained in a proper r-hyperspace (the translation of an r-subspace)
of R*~!. Indeed, if that was not the case, then since every r + 1 points are contained in an
r-hyperspace, there are r+2 points of K’ which are not contained in any r-hyperspace. But since
K’ is convex, K’ must contain the convex hull of these r +2 points, which is an 7+ 1-dimensional
closed simplex. Then dim(K') > r + 1, contradiction. Denote by E" the r-hyperspace of R"
containing K’. Considering E” as a linear space, there is a linear isomorphism and isometry
T:R" — E" and a r-polytope K C R" such that K/ = T(K) Consider the composition made

by (the restrictions of) the homeomorphisms

~ S —1 -1 ~

KL Kk 2 gk S ) k55 R
Since T" maps straight paths to straight paths, 6, maps straight paths to geodesic paths and
©° maps geodesic paths to geodesic paths, this composition is a homeomorphism which maps
straight paths to straight paths. By 4.16, it must map the vertices of K to themselves. Then,

since T' maps the vertices of K to the vertices of K’, the composition
-1
K' - H(K) — H(K) >~ K’

must map the vertices of K’ to themselves. Finally, since V(H (K)) = 0,(V(K")), the last fact
implies that ° must map the vertices of H(K) to themselves, as desired. O

Theorem 4.28. Let G be a finitely generated group. If there is an invariant polytope K C S(G)
contained in an open hemisphere of S(G) and with rational vertices, then G has property Ro.

In particular, if X" (G)° is such a polytope for some n > 1, then G has property R.

Demonstragao. By the previous theorem, V(K) C S(G) is finite, invariant and by definition
contained in an open half-space of S(G). Then the result follows directly from Theorem 4.1. [

Like we did in Theorem 3.40, we will now show that it is possible to guarantee property Roo

for a direct product if all factors have (X!)¢ as polytopes described above.

Lemma 4.29. Let A C O(v) C S™ and B C O(w) C S™ and consider the inclusions i :
S St with (21, .. Tpa1) = (21, 0, Tni1, 0,...,0) (which we abbreviate to x — (x,0))
and i' : S™ — STTMEL with (y1, e Yma1) = (0,0 0,91, oo Y1) (which we abbreviate to
y— (0,y)). If A and B are both convex subsets, then

A® B = conv(i(A) Ui (B)).
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Demonstragao. By the definition of spherical join (3.11), (C) is immediate. Let us show (D).
By Proposition 4.19, a general element of conv(i(A) U4'(B)) has the form

t1(a1,0) + ... +t(a,,0) +t7(0,01) + ... +5(0,b5)  (tra1 + ... + teap, t1by + ... + tlby)
lt1(a1,0) + ... + tr(ar, 0) + 1 (0,b1) + ... + (0, bs) || |(tiar + ... + trar, thb1 + ... + t4Ds) ||
t1 tr t) t
= (= ot —ap, by 4+ 20
<)\a1+ t eyt

for A = |[(t1a1+...+trap, tho1+...+tLbs) ||, (t1, ..., tr) € [0,00]"—{0} and (¢], ..., t,) € [0, 00]*—{0}.
Let

t t!
Lhy+ o+ 2,

t t
—1a1+...—|—lar h\ \

A= )

and )\2 =

Then, since A and B are convex, we can write

Qa4 ..+ 4 By 4+ G0
N\ @1 /\CLT 2\ 01 2\ Us

N =ac Aand o =beB
and 5o f ot t (A1a, Aob)
<>\a1 + .+ 3 Xbl + .+ )\Sbs> = (A1a, A2b) = m,
the last since the vector is unitary. Finally, let € = ﬁ Then
e T~ Tt ol = T aefe o €42 2
as desired. ]

Proposition 4.30. If Ki,..., K, are polytopes contained in open hemispheres, say, K; C
O(v;) C S™, then the spherical join K1 ®...® K, is a polytope contained in an open hemisphere.

Demonstragao. Let us show it by induction on m; first, the case m = 2. Let K C O(v) C S™
and K’ C O(w) C S™be polytopes. It is easy to see that K ® K’ C O(v,w). Now, write
K = n_,C(v) and K’ = N{_;C(w;) for v; € S™ and w; € S™. Consider the polytope in
Sn+m+1

K" = (N, C(05,0)) N (i C(0, wy)).

We claim that K ® K’ = K”. From the previous lemma, since K and K’ are convex we have
K ® K' = conv(i(K) Ui (K')), so we will show that conv(i(K) U (K")) = K”. On one hand,
it’s easy to see that K" is convex (is an intersection of convex sets) and contains i(K) Ui (K'),
so we have (C). On the other hand, let C' be a convex set containing (K) U4'(K’) and let us
show that K" C C. If (z,y) € K" we must have (z,v;) = ((z,y), (v;,0)) > 0forall 1 <i <r
and (y,w;) = ((z,y),(0,w;)) > 0forall 1 <i<s,s0xec K and y € K'. Then i(x),7(y) € C

and, since C' is convex,

(z,y) = (2,0) + (0,y) = i(x) +4'(y) =

as desired. This shows (D) and finishes the case m = 2.

Now suppose the fact is valid for m > 2 and let K1 ® ... ® K41 be a spherical join of
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polytopes K; C O(v;) C S™. By the induction hypothesis, K1 ® ... ® K, is a polytope in an
open hemisphere; then K1 ® ... ® Ky = (K1 ® ... ® K;p,) ® K41 is a polytope contained in

an open hemisphere by the case m = 2. This completes the proof. ]

Theorem 4.31. Let G = G1 X ... X Gy, be a direct product of finitely generated groups G;. If,
for all i, XY(G;)¢ is a polytope with rational vertices contained in an open hemisphere of S(G;),

then G has the Ry property.

Demonstragao. We will show the case m = 2, for the general case follows by trivial induction.
If we identify S(Gp) ~ S™~! and S(G3) ~ S™~! as in Theorem 3.6, we have S(G) = Snitn2+!
and the maps m;* : S(G;) — S(G) can be identified with inclusions of the form z +— (z,0) and
y — (0,y), respectively for i = 1,2. By using this fact, the hypothesis on X!(G;)¢ and the
product formula (Theorem 3.30) we have that X1(G)¢ = m*(XH(G1)¢) U m*(B1(G2)¢) is the
union of two convex polytopes in S(G). Since each one was contained in an open hemisphere
of S(G;), it is easy to see that X(G)¢ is contained in an open hemisphere of S(G) (see the end
of the proof of Theorem 3.40). Now, since X'(G)¢ is invariant in S(G) and the maps ¢° send
convex hulls to convex hulls (Lemma 4.21) we have conv(X!(G)¢) invariant in S(G). But the

¥1(G;)¢ are convex and the 7;* are inclusions, so by Lemma 4.29 we have
conv(XHG)¢) = conv(m*(B1(G1)%) Ume* (2H(G2)9)) = BHGh)* @ 2HGo)C,

so X1(G1)¢ ® X1(Go)° is invariant in S(G) and contained in an open hemisphere of it. By
Proposition 4.30, it is also a (rationally defined) polytope. Thus, the theorem follows from
Theorem 4.28. 0

Open question: are there any known groups in the literature having such invariant convex
polytopes in the character sphere? In particular, are there groups with the complementar of
the X! invariant being such polytopes? We know from the results of this chapter that, if the
set X1(G)¢ is finite, of rational points and contained in an open hemisphere, then its convex
closure in S(G) is such an invariant convex polytope and our Theorem 4.28 applies. But in this
case we have no particular gain with respect to twisted conjugacy, for Theorem 3.38 already
guarantees property Ro, for G. The interesting situation, therefore, would be either finding
invariant convex polytopes which are not convex closures of ¥!(G)¢, or groups such that X!(G)¢
are non degenerated convex polytopes. Is there any methodical way of building such groups by

using group presentations?
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Parte 11

The X! invariant of the Generalized
Solvable Baumslag-Solitar groups 1,

and of their finite index subgroups
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Capitulo 5

Generalized Solvable

Baumslag-Solitar groups '),

In this chapter we investigate the X! invariant of an important class of groups which generalizes
the solvable Baumslag-Solitar groups BS(1,n) and that we will call I'),. Property Roo is known
for these groups and for every group which is quasi-isometric to some I'), (see the paper [94]).
The techniques of the paper, nevertheless, do not involve geometric invariants. By computing
»!(T,,), we obtained a new proof of R, property for I',,.

Recently, it has been pointed out by professor Dessislava Hristova Kochloukova (which is a
specialist on the subject of BNS invariants) that the groups I',, are metabelian (that is, they
contain a normal abelian subgroup Z [%] with an abelian quotient Z", see the first paragraphs
of Chapter 6) and that a lot of good information is known about BNS invariants for this class
of groups. For example, it was already known by [11] (see also [10] and [9]) that X(T)¢ is finite
and could be explicitly computed by easy calculations involving the finite generation (or not)
of its commutator group as a module over a monoid @), inside the abelianized group Q = G/G’
(G =T,), the action being given by conjugation. We could have followed these directions, but
we decided to maintain the more elementary and geometric proofs below, for didactic reasons

and also to maintain the graphic-likeness of the thesis.

Definition 5.1. Let n > 2 be a positive integer with prime decomposition n = p1¥*...p,.¥", the
p; being pairwise distinct. We define the solvable generalization of the Baumslag-Solitar group
by

Ty = (a,t1, et | titj = tjts, i # 4, tiat; P =aP", i=1,...,7).

More generally, let nq, ..., n, be pairwise coprime positive integers and let us assume there is

at least one ¢ such that n; > 2. Define
G = P{m,...,nr} = <a,t1, vy by ‘ tit; = tit;, 1 # 4, tz‘atlfl =a", i=1, ...,7’> .

In the next section we will deal with this group G. The hypothesis n; > 2 for some ¢ is
just to turn the investigation to the interesting cases. Indeed, if n; = 1 for all i then all the
generators of G would commute and we would have G ~ Z"+! and ©!(G) = S(G), by Corollary
3.15. Also, G would not have the property R~ by Example 1.3 and so there would be nothing
to be done in this chapter. Note that for every n > 1, the group I';, = I'g; w1 p,ur) is a special
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case of our group G.

5.1 Computation of ¥}(I',) and property R,

In this section we intend to compute X(G) (in particular, £!(T,)) in order to guarantee the
property Rs for it. Note that G is torsion-free. In the abelianized G, taking i with n; > 2 we

have a™ = t;at;~! = a, then @™~ ! = 1, and so the homeomorphism

H:5G) — st

(X(tl)a ) X(tr))
H(X(tl)u 0 X(t'r’))H ‘

[X] —

We are going to use the geometric Y!-criterion given by Ralph Strebel (Theorem 3.22). In
our case, we have S = {a,t1,....t,}, Y = {a,a™ ', t;,t17, ..., t;,t,~'}. Using Theorem 3.22, we

will prove that
1) if there is 1 <4 < r such that x(¢;) < 0, then [x] € ¥1(G);
2) if there are 1 < 4,5 < r with i # j and such that x(#;), x(t;) > 0, then [x] € Z}(G).
Let’s do it:
1) if there is 1 < i < such that x(t;) < 0, then [x] € ¥1(G).

Fix t = t;~! and we have x(t) = —x(t;) > 0. By the Geometric criterion, it suffices to exhibit
2r 4+ 2 paths p, (y € Y) in I'(G, S) from ¢;7! to yt;~! such that vy (p,) — v, ((1,y)) > 0.

y = a: since t;at; "' = a™ in G we have at;~! = t;7'a™, so we take p, = (t;71,a™), as in the
figure. We have vy (pa) = min{x(t; '), x(t: 'a), ..., x(t: "1a™)} = —x(t;) (since x(a) = 0),
vy ((1,y)) = min{x(1), x(a)} = 0 and then vy (p,) — vy ((1,a)) = —x(t;) > 0, as desired.

. _ 1 ¢ -1 _n; __ -1
! ti ta t;a? ti a’ = at;

Figura 5.1: the path p,

1

1 = g™ in G we have a7 't;7! =

y=a"': as in the previous item, from the relation t;a~'t;
ti ta™™i, so we take p,-1 = (t;7!,a™™), as in the figure. We have vy(p,-1) =
man{x(t; "), x(t: " a™h), o x (G a T} = —x(t), v ((1,a7)) = min{x(1),x(a")} = 0

and then vy (p,-1) — vy ((1,a71)) = —x(t;) > 0, as desired.

y = t;: we just take p;, = (t;71,#;). So

vy(pr,) — vy ((1,1:)) = min{x(t;~"), 0} — min{0, x(t;)} = 0 — x(t;) = —x(t:) > 0,
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. 1 — e 1 —ni _ —1y —1
41 tta! ti a2 ti e =at;
a? a ! a!

as desired.

Figura 5.3: the path py,

y = t;~!: analogously, we take Py-1 = (t;~%,t;71). Then
(P —1) = ((Lt71) = min{—x(t:), =2x(t:)} — min{0, —x(t;)}
= _X(ti) —0>0,
as desired.
11 2=t
o . e

t;

Figura 5.4: the path p, 1

y =t;, j #i: Since tit; = t;t;, take p;, = (t;~1,t;). Then,
Ui (pe;) = min{—x(t:), —x(t:) + x(t;)} = —x(t:) + min{0, x(t;)}
and v, ((1,t5)) = min{0, x(¢;)}, and so
v (pr;) — x((1,¢5)) = —x(ti) + min{0, x(¢;)} — min{0, x(¢;)} = —x(t:) > 0,
as we wanted.

t_ifl t,jiltj = tjtijil
t

Figura 5.5: the path py;

y =t;"', j# i Since tit; = tjt;, take py; = (t;7', ;7). Then,

Ux(py;-1) = min{—x(t:), =x(t:) — x(¢;)} = —x(t;) + min{0, —x(¢;)}
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and Vx((latjil)) = min{0, —x(t;)}, and so
’/X(ptfl) - Vx((lvtj_l)) = —x(t;) + min{0, —x(t;)} — min{0, —x(t;)} = —x(t;) > 0,
as we wanted.
ti ! tfltfl = tjflt.,fl
;!

Figura 5.6: the path Py;—1

Since we obtained the 2r + 2 inequalities v, (py) — v, ((1,y)) > 0, one has [x] € Z}(G).
2) if there are 1 <i,j <r with i # j and such that x(¢;), x(¢;) > 0, then [x] € Z1(G).

This time we fix ¢ = t; with x(¢;) > 0. From the two relations t;at; "' = a™ and t;a~'t;7! =
a~™ it is easy to prove by induction that t;a*t;~! = a*™ for every k € Z. The same happens for
J: tjaktj*1 = ¢* . Finally, as n; and n; are coprime, take integers r, s such that rn; +sn; = 1.
Again, let us exhibit the 2r + 2 paths p, from ¢; to yt; with v, (p,) — v, ((1,y)) > 0.

y = a: Since v, ((1,a)) = 0, we have to create a path from t; to at; with vy (p,) > 0, that is, a
path having positive y-values in all its vertices. Based on the equation rn; + sn; = 1, we
take then p, = (t;, artjti_lastitj_l) and use the relations of the group to guarantee that

Pe ends in at;, as one can see at the (merely illustrative) figure.

™; R n, )i ¢ )i ST
tia" = a"™iy a ity =att; a a™ta® = a™a™it; = at;
i i J J J

(Ltjt,: = (Ltjtj

at; tj*l

Figura 5.7: the path p,
Again, as x(a) = 0, we have

vy(pa) = min{x(t:), x(tit;), x(t;)} = min{x(t:), x(t;)} > 0
and so vy (pa) — vy ((1,a)) = vy (pa) > 0, as we wanted.

y =a"': here, we use that —rn; — snj = —1 to construct a similar path as before: p,-1 =
(tiya "tit; ta=5tit; 7). Then vy (pg-1) — vy ((1,a71)) = min{x(t;), x(t;)} — 0 > 0.

y = t;: take py, = (t;,t;). Then vy (ps,) = min{x(t;),2x(t:)} = x(t;). Also, we have v, ((1,t;)) =
min{0, x(t;)} = 0 and so v, (py;) — vy ((1,t;)) = x(t;) > 0, as desired.
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(lirn"tiytj = (Lirn’tjt,; —Thig T —Sn;

. -y =S _ . — L
a L j a tjaTT =a  a ti=a

a ' 11 (Liltjt,; = (flt,;tj

Figura 5.8: the path p,—1

ti titi
o, e

Figura 5.9: the path py,
t;; 1 - t,‘yilt,"
t;!
Figura 5.10: the path p;
y=1t;"': we just take p, -1 = (t;,t;'). Then vy(p;,—1) = min{x(t;),0} = 0 and v, ((1,t;71)) =
min{0, —x(ti)} = —x(t;), and so vy (p;,-1) — vy ((1,5:71)) = 0 — (=x(t:)) = x(t;) > 0.

y =t;, j #i: again, using that ¢; commutes with t; we take p;, = (t;,t;). We have vy(py;) =
min{x(t:), x(t:) + x(t;)} = x(t:) + min{0,x(¢;)} and v\ ((1,4;)) = min{0,x(t;)},
Ux(p;) — i ((1,45)) = x(t:) + min{0, x(¢;)} — min{0, x(¢;)} = x(t:) > 0.

»n

(0}

t titj = tit;

Figura 5.11: the path py;

y=1t;"", jF# i let py 1 = (ti, t;7"). Then vy (py,—1) = min{x(t;), x(t:) — x(t;)} = x(t;) +min{0, —x(t;)}
and vy ((1,¢;71)) = min{0, —x(t;)} and so again we have I/X(ptjfl)—VX((l,tjil)) = x(t;) >

0, as desired.

t.i t,;t]'il = tjilt,;
& e
t

Figura 5.12: the path p; -1
Again, since we obtained 2r + 2 inequalities v, (p,) — vy ((1,)) > 0, one has [x] € Z}(G).
The two cases before cover almost the entire sphere S(G), except for the r points [x1], ..., [xr]

corresponding to the points (1,0, ...,0), (0,1, ...,0), ..., (0,0, ..., 1) of S*=% that is, x;(t;) = 1 and
xi(t;) = 0 if j # 4. Let us determine whether they are in ¥!(G). There are two cases:

1) if n; = 1, then [y;] € X}(G).

_ltj
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This is easy. In fact, if n; = 1, then t; commutes with ¢ in G and therefore it is in the center
Z(@). Since x;(t;) = 1 # 0, we have [y;] € ¥'(G) by Corollary 3.14.

2) if n; > 2, then [y;] ¢ 1(G).
To show this we will use mainly the following relations in G:
tha™ = "N and oV = RN iR > 0N €2, =1, .7,

Since the t; commute each other, this means that all the positive powers of the ¢; can be
entirely pushed to the right and the negative ones can be pushed to the left in a word, up to
multiplying the powers of a by some n? , k>0.

Suppose by contradiction that [x;] € X*(G), that is, Ty, = I'(G, 9),, is connected. Then
in particular there is a path p = (1,w) in Ty, from 1 to the vertex ¢; lat;, with w a word in
W{(a,ty,...,t,). The first thing to do is to eliminate the letters ¢; from w.

Write

1 1 2 2 m m .
w=t "t e R R a’™, with ké-, rj € Z.

Since p is a path in I'y,, all its vertices have nonnegative x; values, and then we have the

inequalities
1 _ kl kL
K= " k) >0
L k2 = it rra MR > 0
1 2 m—1  _ oy ki kL rig k2 k2 1y gt kot
ki + k24 ..+ K = iMoot Rra e e M Y >0
kP k24 BT R = x(w) = x(ti T lat) = —140+1=0.

We now use the relations we just mentioned: since k! > 0, push tikil to the right in w
until ;¥ and we get t;*it*. Since k! +k? > 0, push t;*i+k? to the right until % and we
get ;7 TRTR] We keep doing this until we get #;%i tKiT++k" as the only ¢; letter in w. Since

k:zl + kf + ...+ k" =0, we eliminated all the ¢; from w. Then we can write
w = wia twea? .. wy,a ™

where r; € Z (different from the first r; ones) and the w; are the words tlk{ ...ti_lkzj‘*l ti+1kg+1 ...trki
above but now without ¢;.

Now, since we must have w = t; 'at; in G and the w; commute with #;, we have

a=tywt; ' = ti(wla”...wmarm)ti_l = w1a™" . wy,atm,

or

T

w1a™™ w1 e T =1

in G. From this expression we will derive a contradiction. Specifically, we will conclude that

n; = 1. Note that, in this expression, for all fixed j the sum of all the powers of ¢; must be 0,
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n;ri

because x;(wia W@ M, e = (1) = 0.

We can push now all the positive powers of all the ¢; to the right and all the negative ones
to the left in this expression. After doing this, we will obtain an expression

=81 3 7Si—1,7Si41  4—sp 01(nT1)+.Fm—1(niTm—1)+m (nirm—1)4s Si41,5i—1 181 __
7t ti+1 Lt ¢ m vm mATem trr...tl-Jrl t,o .t =1,

. Il lim1, lita l
where each a; is 1 or a product ny'..n, " n/ 7 ..nr.

symmetrically since the sum of the powers of each ¢; is 0. Then, conjugating the expression we

Again, note that the powers s; appear

easily obtain

aa1(7l¢7‘1)+~~+0¢m—1(nirm—1)+am(nir’m71) =1
)

and since a is torsion-free we have
a1(niry) + ... + am—1(nitm—1) + am(niry, — 1) = 0.

Putting on the left side the multiples of n; and only «, on the right we obtain either

o N lic1 lig l
kn; = am = ni.n;Tynl oyt

or
kn; = oy, = 1.

In the latter case, since n; > 0 we must have n; = 1, contradiction. In the former case, n;

.. . li—1 s
divides auy, so ged(ni, amn) = n;. On the other hand, since «a;, = nlllnj_fnzﬁllni’“ does not

involve m; and the n; are pairwise coprime, n; and oy, have no commom prime divisors and
then ged(ng, apn) = 1. So, n; = ged(n;, ) = 1, a contradiction. Then [x;] ¢ X1(G) if n; > 2,

as desired, and we have proved
Theorem 5.2. The complement EI(F{nhm’nT})c of the group
F{m,...,nr} - <a”t17 . titj = tjti, 1 # J, tiati_l =a", i=1, "-7T>

s given by
El(r{m,...,nr})c = {lu] | ni > 2},

where x;(t;) =1 and x;(t;) = 0 if j # i. In particular, if n = p{"...p¥" then

El(rn)c = {[Xl]a SR [X?"]}'

Now we can guarantee property R for I'g,,, .}

Corollary 5.3. The group I'g,, . 5,1 has property Roo. In particular, the solvable generalization
Iy, of the Baumslag-Solitar group has R property.

Demonstracdo. Since ¥ (F{nl,.--,nr})c is nonempty, finite and of rational points we can apply The-
orem 3.37. Let SM Ty, 1) = {Ixa)s - [Xa )} N = ﬂ?zl ker(x;;) and V = Hom(G/N,R).
We just have to see that the natural induced maps X3, ..., X;, on V form a basis of V. The
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Figura 5.13: case r = 3 and nq, ng, n3 > 2. El(I’{nth’m})c are the red points.

relation in G/N is given by

g= <:>Xi1(g) :Xil(h)7-'-7><z’k(9> :Xik(h)'

So, it is easy to see that G/N is f.g. free abelian with basis #;,, ..., ;. Since i (f;;) = 1 and
Xi, (ti,) = 0if s # j, the elements X, ..., X, act exactly as a dual basis in V of the #;,, ..., ;,, so
they form a basis for V. Then, by Theorem 3.37, it follows that I'y,,  ,, has property Roc. [

Another easy consequence is

Corollary 5.4. If n = p¥"..p}", the first Q-invariant Q*(T,,) of the group
. . _ Yi .
L, = <a,t1, ety | tity = tity, i # §, tiat; P =aPi i =1, r>

s given by
QM) = {[x] € S(Tn) | x(t:) <0V i}.

<
5.2 Partial generalizations

The techniques we used to compute X! (F{m,...,nr}) above can be used for some special generalized

presentations. Here we show two of them.

Theorem 5.5. Let
G ={a,t,s | tat™" =a", sas™' =a", tst"'sT  =a)

for some coprime numbers n,m > 2 and some r € Z. Then G has property Reo.

Demonstragao. We have



5.2. Partial generalizations 119

H:S(G) — S!

(x(t), x(s))
M= T6@ )T

Let us compute ¥'(G) by using the geometric criterion. Fix X = {a,t,s} and so Y =

{a,a ¢, t7 1 5,571},

e if x(t) < 0 then [y] € X1(GQ). Fix t=! such that x(¢t~!) > 0. It is straightforward to
verify that the paths p, = (71, a"), pp-1 = (t71,a™™), pr = (t71,¢) and p1 = (71, t71)
satisfy the conditions of the criterion and are similar to those we used in I'y,, 3. The
paths ps and p,-1 need to be slightly different though, because ¢t and s do not commute
this time. Since st™! = t~1a"s and s7't7! = t71s7la7", the paths ps = (t71,a"s) and

ps—1 = (t71,571a™") are also easily seen to satisfy the criterion, so [x] € £(G).

e if x(s) < 0 then [y] € Z}(G). We fix s7! with x(s7!) > 0. The paths satisfying the
geometric criterion are analogous to the previous ones. Define p, = (s71,a™), po-1 =
(s7Ha™™), ps = (s71,s) and p,1 = (s71,571). Since s7la"t = ts7! and s ta" =
t~1s71, the paths p; = (s71,a™"t) and p,-1 = (s71,¢t7!a") also satisfy the criterion. So
] € S1(@).

Note that since ta = a™t, ta™' = a™"™t, ts = a"st and ts~! = s~ 'a™"t, all the positive
t-letters can be pushed right in a word of G without changing its power, and since at~! =
t7lam, a Ml =t71a™, st =t"ta"s and s71t71 = t7ls a7, all the negative t-letters
can go left in the same way. The same can be done with s: positive powers to the right
and negative ones to the left (obviously, the other adjacent letters may be affected because

both ¢ and s are not in the center of G). This is useful for the next two items:

e if x(t) = 1 and x(s) = 0 then [x] ¢ ¥'(G). The strategy is also somewhat similar to the
one we used in the case I'y,,, . ,,}. Suppose by contradiction that [x] € Y1(G). Then, in
particular, there is a path p = (1,w) in Ty from 1 to t~!at. Write

w = thughzgr  ghei ghezgre

Since p is contained in I'y, x(¢) = 1 and x(s) = 0 we must have
ki1 >0, ki1 +ko1 >0, .., kig+ ... +ke—11 > 0and kip + ... + kg = 0.

We push right t¥11 until ¢*21, then we push right t*11+%21 until %31, and so on. Since
k11 + ... + ke1 = 0, we eliminate from w all the ¢-letters and (after relabeling the s and a
powers) we can write

k1

w = ska" .. sFq"e

in G. But, as a vertex, w must be the end if the path p. So we have w = t~!at and
therefore

a=twt™t = t(sMa™ . sFea" )t = (a”s)M a1 (aTs)Rea™ e,
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or

w' = (ars)klaml...(ars)k”*lam'“l(cﬂ's)kcamﬁ1 =1

in G. Since the homomorphism G — Z x Z with w — ((w)?, (w)?®) is well defined in G,
we have ky + ..k = (w')* = (1)* = 0. Also, (a"s)a™ = a™(a"s) and a™(a"s)™' =
(a"s)"ta™M for every M € 7. This means that, in w’, the entire positive pieces (a"s)
can be pushed right and the negative ones can be pushed left. After doing this, we obtain

an expression of the form

(ars)7)\01041nrl+...+ac,1nrc,1+ac(nrcfl) (ars))\ — 1’

where each «; is either 1 or a positive power of m. By conjugating the expression,

aalnrl+...+ac_1nrc_1+o¢c(m“cfl) -1

which implies (since a is torsion-free in G)
aqnry + ... + ae—1nre—1 + ac(nre — 1) = 0.

By putting all the multiples of n above to the left and only a. on the right, we get either
Mn =1 (contradiction with the fact n > 2) or Mn = m® a positive power of m. In the
latter case, on one hand ged(n, m?) = n (because n divides m®) and on the other hand

ged(n, mQ) = 1 because n and m are coprime. Then n = 1, also a contradiction.
e if x(t) =0 and x(s) = 1 then [x] ¢ X!(G). This is analogous to the previous item.

Let us identify S(G) = S* by the homeomorphism H and let [x1] and [x2] be the points of
the third and fourth items above, respectively. The first two items showed that the geodesic v
in S(G) between these points (that is, the closed fourth part of the circle) contains ¥!(G)¢. We
claim that v is itself invariant in S(G). In fact, if ¢ € Aut(G) and p € ~, then by Lemma 4.21
©*(p) must be in the geodesic between ¢*[x1] and ¢*[x2]. But these points are in L(G)¢ by its
invariance and by the third and fourth items; therefore by the two first items they must be in ~.
Since + is a convex subset we have ¢*(p) € v, which shows our claim. So we have 7 an invariant
convex 1-dimensional polytope with the two rational vertices [y;], and so the proposition follows
from Theorem 4.28. O

Observation 5.6. Since n and m are coprime in the example above, it is also possible to show
that x(t),x(s) > 0 = [x] € X1(G), using the geometric criterion. Then X1(G)¢ consist of two
rational points inside an open halfspace and we could guarantee property R also by Theorem

4.1. We just wanted do register the usefulness of the kind of strategy we used above.

We actually tried to generalize the theorem above for all groups having the presentation

1

G=(o,x1,....x, | zjox; = ali Vi, a:ia:jxi_lxj_l =i v i, §)

for pairwise coprime integers P; > 1 and R;; € Z, but we were not able to show that the points
[xi] € S(G) defined by x;(z;) = 1 and x;(x;) = 0 (for j # i) are not in L!(G). So, because of
this, we added an additional hypothesis:
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Theorem 5.7. Let

G={a,x1,....;x, | oz, b =ali Vi, xixja:i_lxj_l =l v i,7)
for pairwise coprime integers P; > 1 and R;; € Z. If the commutator G’ is not finitely generated,

then G has property Roo.

Demonstragdo. Let us compute L!(G). We have Y = {a,a‘l,xl,xfl, vy Zp, '}, By using
the Geometric Criterion and paths similar to the ones in the previous theorem, we can show
that

e if there is i such that x(z;) < 0 then [y] € Z1(G).

Now, let us show that

e if there are i # j such that y(z;),x(z;) > 0 then [x] € X¥(G). In fact, fix =

with x(x;) > 0 and let M, N € Z such that M P, + NP; = 1. Using the relations of

G and that z;x; = aRijxja:i, we can see that the paths p, = (xi,aijxi_lainxj_l),

Po-1 = (T4, a_M:cjwi_la_inxj_l), Pz; = (w3, 2;) and Pyt = (24, a:i_l) satisfy the criterion.

We just have to build p,, and p_-1. If R;; = 0, they are p,, = (z;,x;) and p_-1 = z,x7h).
J J z; J J J Z; J

If R;; > 0, we define them as concatenations

a—Ri]’-l-l .

Pay = (Pa-1) (@ po1)o Pa-1)(0 iz, 2;)

and

Py = (zi,z; )z a9 pa) (@ a5 po). (2 e pa)

J

(see figure)

If R;; <0, though, the paths are defined as

Pe; = (Pa)(@ - pa)...(a” 57 po) (o Fiiay, a;)

and

Pyt = (l’i,l‘;l)(l’;la_Rij .pa_l)(x]fla—Ri]-A 1

“Pa—1)- (T @ pa1).

(see figure)

—R;;—1 Zj

zi P S — _..,.gw:}i-t/”\o
W—w—r—.—- .o

In any of the cases, the paths satisfy the Geometric Criterion and so [x] € Z}(G).
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-1 -1 -Ry-1 -1
x€T. -1 _—-R;: ) ] _ . _
Z; J el I ® Dot T epyt

This shows that X1(G)¢ C {[x1], .-, [x]} where x;(z;) = 1 and x;(z;) = 0 for j # i. So, X}(G)*
is a finite set of rational points contained in an open halfspace of S(G). If G’ is not finitely
generated, then by Theorem 3.24 ¥!(G)¢ is also non-empty and then the result follows from
Theorem 3.38. O

Open question: Could we also use Brown’s definition of the BNS invariants to compute
$1(',)? Brown’s characterization in [17] is given in terms of the possible existence of “non-
trivial and abelian” actions of G on R-trees. This corresponds, in the language of our Sections
2.3 and 2.4, to fixed-end actions with no invariant lines. One could start by trying to understand
the case of BS(1,2) (or BS(1,3)), with the help of [1] to understand the actions, and then by

trying to generalize it to I',.
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Capitulo 6
Finite index subgroups of 1),

In this chapter we turn the investigation to the finite index subgroups H of I';,. The reason for
doing this is that T',, has a nice X! invariant (Theorem 5.2) and we also have nice results relating
¥! of a group G and X! of a finite index subgroup H (Proposition 3.27 and Corollary 3.28). So
it is natural to guess that X!'(H) maybe should be nice enough to deduce property R., for H,

as we did in Corollary 5.3. In fact, we did get an affirmative answer to this question.

First, in Theorem 6.6 we find a nice set of generators for H using a generalization of a
technique developed by Bogopolski in [12]. We also get there enough conditions (on these
generators) that we may easily compute the index of H, by finding a nice collection of coset
representatives of I';, mod H. Then, in Theorem 6.8, we find a nice presentation for H and, in
Theorem 6.10, we compute X! (H) using Proposition 3.28. From this we deduce property R
for H in Corollary 6.11, based on Theorem 3.38. In the last section, we show that some of these

H are also Solvable Generalized Baumslag-Solitar groups and some of them are not.

Remember the definition of I',,: let n > 2 be a positive integer with prime decomposition

n = p1Y'...p.Y", the p; being pairwise distinct and define
Ty = (a,t1,cnte | titj =tjts, i £ 4, tiat; P =al", i=1,...,7).
It is known that I';, is characterized by the following exact sequence
1 P orpr
1-7Z|—| -1, 572" — 1.
n

To be more precise, if Z" has the presentation Z" = (t1,...,t, | t;t; = tjt;,i # j) then there is
a natural epimorphism T, % Z" sending a — 0 and #; — ¢;, whose kernel is (isomorphic to)
7 [l] =(aj, j €Z| a} = aj1, j € Z) and is generated by the elements

n

a; = (tl...tr)ja(tl...tr)_j.

This exact sequence easily splits with the homomorphism Z" — I',, sending ¢; — t;. So I'), =
Y/ [%] X 7" is the semidirect product of these two subgroups, and so every element w € I'); can
be written as w = ...t u for v € Z [1] and o; € Z. Two more properties will be useful (and
used many times): first, because of the homomorphism I, A 7", the “t;-coordinates” in I',, are

well behaved: that is, (t?l...tg‘Tu)(tfl...tT'BTu’) = t?lJrﬁl...t?TJrﬁTu” for some u” € Z [1]. Second,
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because of the presentation of the subgroup Z [%], we see that any two generators a;,a; must

be powers of the common generator a,,;,(; 3, S0 they must commute. So Z [%] is abelian.

6.1 Generators, cosets and index

Since we will deal with generators of a subgroup, we start by remembering a general and standard

argument:

Observation 6.1 (Changing generators argument). Let G be any group and H = (g1, ..., gn) <

G be a finitely generated subgroup. Choose some g; and words w,w’ in the elements

G155 Gi—1, Git1; - gn (except g;). Then

H = <gla 7gn> = <g17 "'7gi—17wgiwlvgi+17 ---7gn>,

that is, we can replace any generator g; by its product wg;w’ with any words w,w’ involving
the other generators. Indeed, to show this it suffices to see that wg;w’ € (g1, ..., gn) (Which is
obvious) and that g; € (g1, ..., gi—1, WGW', gi+1, ..., gn), Which is true because w and w’ does not

involve the generator g;.

We will also need the following lemmas:

Lemma 6.2. If ¢ : G — G’ is a group epimorphism and H < G is a subgroup such that o(H)

has infinite index in G', then H has infinite index in G.

Demonstragcao. We first note that for every epimorphism, the index of the preimage of a group
K < G’ in the group G is the same as the index of K in G’. In fact, denote by ¢ '(K)G
and K G’ the collection of right cosets of ¢~ 1(K) in G and of K in G/, respectively. There is a
natural function ¢~} (K)G — KG' with ¢ 1(K)g — K¢(g). Since ¢ is an epimorphism, this is
obviously surjective. Now suppose K¢(g) = Ko(g'). By definition, p(gg’ ") = ¢(g)p(q) ! €
K, or g¢ ' € o Y(K) and then ¢ '(K)g = ¢ }(K)g', so this is a bijection and we have
|G : o Y(K)| = |G’ : K|, as desired. Let us now show the lemma: if |G’ : p(H)| = oo, by
the previous comment we have |G : ¢ 1 (p(H))| = |G' : ¢(H)| = co. Since H < ¢~ 1(o(H)),
H is contained in an infinite index subgroup of G and therefore must have infinite index, as

desired. O

Lemma 6.3. Let n,s > 1 be integers. Let m be the biggest positive divisor of s such that

ged(m,n) = 1. Then s divides mn?®.

Demonstracdo. Let n = pi"..p/r and s = p*'...p,* be the prime decompositions of n and s,

with pairwise distinct primes p; and 0 < [;, k;. We define m' = p1t...p,% with

ki, if I; =0,
0, if I; > 0.

oy =

Let us show that m’ = m. Since «; < k;, m’ is a divisor of s, and, since min{a;, l;} = 0 we have
ged(m/,n) = pymirfevht p min{arl-t — 1 Finally, m’ is the biggest number with these two
properties. Indeed, suppose m = p1”'...p,Pr has these two properties and let us see that 8; < «;

for all 4, from where we conclude that m < m’. We must have 3; < k; because m divides s and
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min{f;,l;} = 0 because ged(m,n) = 1. If i is such that I; = 0 we have 8; < k; = «;. If i is such
that [; > 0 then, because min{j;,[;} = 0, we must have 8; = 0 and then 8; = 0 = «;, as desired.
Qo

By uniqueness, m = m’ = p1“!...p,

Now that we know precisely the number m we show the lemma. We have

)

s « « l l k1. ppkr a1+l k1. ppkr ar+l k1. ppkr
mn® = p1®.p, % (p L p )P P = 1(p1*1..pr )---pr rlr(p1*l..pp"T)

so s will divide mn® if and only if k; < a; + I;(p1**...p,*") for all 4. If i is such that I; = 0 then
by definition o; = k; and so k; = a; < o + ;i(p1*...p.*r). If 4 is such that I; > 0 (or I; > 1) we
have

ki < pifi <piPph <LipdFopdt) < g LM pdt,

which completes the proof. O

To find a good set of generators of a finite index subgroup of I',,, we must be able to

manipulate a little bit its (not so good) generators. To do so, we have the next two lemmas:

Lemma 6.4 (Replacing jo by any j). Let

H = (/" tFrall 4ok Fral2 ot Fralr 6l ) < T (6.1)
be a subgroup with arbitrary integers ki, 1 > 0, k;; > 0 and g;, li,jo € Z. Then, up to modifying
I > 0 by another positive integer (also called 1), we can replace a above by a for any choosen

k iyl k ko 1 Err ol 1l
j €Z, that is, H = (t;"1...t," ag s 2"t a6 ag ,a])

Demonstragao. If 7 < jo we know from the presentation of Z [%] that aj, is a positive

power of aj, so aé-o is also a positive power of a; and the lemma is obviously valid. Let

us treat the case j > jo. If we conjugate a] by one of the other r generators, we have
175, T‘k”‘

(tikii...trki’"aéii)aé-o(tik“ 1t k”aq) b= a%y P using that Z [1] is abelian and the re-

lations of I',. By induction, we get

kii Kir gliymi ol (1 Kii kir ,li ; Ipimivikii.p,mivrkic
(t;" .. 1, aqi)m ajo(ti Lt aqi) mi — f; P

for every integer m; > 0. By the exchanglng generators argument we can replace a in the

yik m;yrk;
expression of H by this element a T py T

, that is, we can multiply the power l of aj,
by pi™Yikii _p,miYrkir in 6.1, and since this new power is still positive we can repeat the process
recursively. So, by doing this for ¢ = 1,...,r we can replace the power [ of aj, in 6.1 by any

number of the form

l(p1m1y1k11 mprmwrku)(pzmzyzkm ‘..prm2y2k2r)“‘(prmryrkrr)

for any myq,...,m, > 0. By putting together the first primes in the parentheses we rewrite this

as
m k m k My Yrkry
P 1Y1 11])2 2Y2 22”'p Y l>\

—

for some integer A > 0 depending on the m;. In particular, for the integers m; = kq1...k;;...krr
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we can replace the power [ of a;, by
1V Epav?Fp, RN = nFl,

where k = ky1...ky-. But a?o I — gl Since k > 1 this is a positive power of aj,41, so we can

Jo+k*
replace ag-o in 6.1 by a positive power of aj,+1. By repeating this a finite number of times we
reach the index j > jo we wanted and the lemma is proved. O

Lemma 6.5 (Replacing | by m). Let

k kir 1 k kor 1 kyrr 1 l
H = (t;"1 ., ag, 12" rag sty ’"aq’;,aj> <T, (6.2)

be a subgroup with arbitrary integers ki, > 0, k;j; > 0 and ¢;,1;,j € Z. Let m be the biggest
divisor of | such that ged(m,n) = 1. Then we can replace aé- by ag»” in the expression above, that

. _ k kir 1 k kor A1 krr Ly
is, H = (t1"1...t,™ ag t2"2. a2ty aqr,a§”>.

Demonstragao. We just have to show that aé- € <t1k11...tTk1Taéll,t2k22...trk2ralq?2, ...,trk”aifr,agﬂ

and a7* € H. The first inclusion is easy, because [ is a multiple of m and so aé» is a power of

. The second inclusion is the hard part. By Lemma 6.3, [ must divide mn!, then it must also
lkrr

m
J
divide mn

a

. This implies that the number

_ mntkrrp 1k =Dtk p o1 o1 =1lker H}”;i | p;Yikiikrrl
7 I

is an integer. Let Aj,..., A, be the first r generators of H in 6.2, that is, H = (Aj, ...,Ar,aé-).
We will show that

Ayt Ay e A, 6k A A e A =

then a* € H, as desired. To show this, remember that conjugating (aé)V by an element of

J
7 [%] is the same as doing nothing, since 7Z [ ] is abelian. Note that n!fr = (p¥1...p,¥r ) =

1
n
prliker p,_Wr=1krrp ke and then

ly1k lyr—1k lyrk ki11—1)lk _1(kr—1.r—1—1)lk r—1 r ikiikprl
mpl Y1 TT”'p’r’—l Yr—1 rrpr Yr rrplyl( 11 ) rr”'pr_lyr 1( r—1,r—1 ) rr Hj—l Hi:j-{-lpiyz jikrr

7= l
lyrk k11krrl rkpt kel TTTL T ik iikrrl
B mpy Yr rrplyl 11Rrr ._.pr_ly'r 1Rr—1,r—1Rrr Hj:l Hi:j+1 piyz jikrr
l
lyrk r=1yqr ikiikrrl
_ pT y'r TTm H]:]- Hl:‘j pzyl Jt Tr
7 )
So
Uiyl ke Lo \—L( \prTErrm T2 T piikadkrrt g 1\
Ay (aj) A = (b Traq:) (aj)P" J=1 A= (tr Traq:)

_ lyrk r—1 s Yikiikrrl
= krrl(aj)Pr r TTmHj:I Hi:]‘ pi~tIt trkr-rl

-1 ko kerl
= (aj)" = i p?0

For each 1 < s <7 —1, let Bs = [[7, [[i-; piYiksikrrl We just showed that A,,_l(az-)WATl =
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(a;)™Er=1. Write now mE,_y = [[}_,_, pi¥*r-1i*'mE,_5. Then

Arfl_lkwAr_l((lé‘)’yArlArfﬁkw _ tr—_kifl,rflkrrlt;krfl,rkrrl(aj)mE,,«,Itﬁrfl,rkrrltfr_ill’,rilkr,rl
_ t;f;—1,r—1krrlt;kr_erTrl(aj)nlrzr_l plikr—vikrrl g
kr—l,T‘k’r‘Tltkr—l,r—lkr'rl
r r—1
= (aj)™Pr2,

Suppose by induction that, for some 2 < s <r —1,
AGthrr AR AT alb )T AL A Atk = (qy)m B
Write E,_1 = szsflpiyikS*Lik”lES_g. Then
At AT A ALAY A = AT (0 Al

i _lk . piYiks—1ikrrlyp o 4k
Asflw(aj) mem ° Asji

= (a;)"52

By induction,

—lkyr —lkpr g=1/ 1 I pglkry lkyy E yikitkrrl g yrkipkerl
Ay ther AT AS @by AL AR AR = ()P = (ay)mP proti

and finally
— — — — y1k11krrl yrkipkrrl
AR AT AT by ALASn A = AT R (g ymea T epr R gl
—_ — y1k11krrl yrkipkrrl

— tl kllkTTl-..tT klrkrrl(aj)mpl 1711 «.Pr 1 tfh«krrl”.t’fllkrrl
_ m
= aj,

which shows the lemma. O

Theorem 6.6. 1) Every finite index subgroup H of Ty, can be written as
H= <t1k“...trk”all,tgk”...t,«k”ab, ...,trk”alr,am> (%)

with k11 > 0, 0 < kj < ky for all1 < j <i<r,l; €Z and m > 0 an integer such that
ged(m,n) =1 and H N {(a) = (a").

2) If H is any subgroup of I';, given by the expression (x) for 0 < ki;,....;ki—1; < ki, l; € Z
and m > 0 such that gcd(m,n) = 1 and H N {a) = (a™), then T = {t;"1..t,%ra? | 0 <
Bi < kiiy, 0 < j < m} is a transversal of H in T',,. In particular, the index of H in Ty, is
k11...krrm and H has finite index in T'y,.

Demonstragao. (Item 1)). First, since I',, is finitely generated and H is finite index, by Corollary
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1.51 H must be also finitely generated and we write

H = <t1a11 ...tralrvl, ceey 1 &m1 ...tramrvm>
for oj; € Z and v; € Z [%] Note that m > r. Otherwise, ¢(H ) would be a subgroup of Z" with
rank < r and then would have infinite index by Lemma 1.4, so by Lemma 6.2 H would have
infinite index in I',,. Let us denote by ¢; : I'), — 7' the (surjective) composition I'y, R/ NG
of ¢ with the natural projection m of Z" onto the first ¢ coordinates. There must be at least
one ¢ such that a;; # 0. Otherwise, ¢1(H) = 0 < Z would be infinite index and by Lemma 6.2

H would be infinite index. Let kj; = ged {ay1}. Since k11 > 0 is the smallest positive linear
;170

combination of the ;1 # 0 and since the t;-coordinates are well behaved in I',,, we can obtain

inside H an element of the form ¢;%11...t,F17u; for some kqs, vy ki € Z and uy € Z [%], SO we

can write

H = (4% 4,0, b OOy, 60 R, (6.3)

Now, since all the nonzero «a;; are multiples of k11, say, a1 = d;k11, by the changing generators
argument we can replace t;%...t,%rv; by (t1%0..t, % ;) (t 1.t Fruy) T = t2a§2...tro‘§rvz’» in

6.3. Then, after relabeling these new generators, we can write
H = (£2%12 4,7 0y, L ™2t Oy, #0710 R,

We added a new generator and “eliminated” all the ¢; coordinates of the first m generators of
H. This was the first step. We have to do this for all the other to, ..., ¢, coordinates. Suppose
that, after j — 1 < r steps we have obtained

H = (t;%9 4,20y, 1m0 Omr g, M Ry ok g Reryy Lt RGenG-n g RG-or )
(6.4)
for some integer powers «,k and with ki1,...,k;_1)j-1) > 0. Let us describe the
4" step. There must be at least one i such that a;j # 0. Otherwise, ¢;(H) =
(trkn i tokez gk tj_lk(j*)(j*l)tjk(j*lﬁ> < 77 is generated by j — 1 elements and there-
fore have rank at most j — 1. By Lemma 1.4, it would be infinite index in Z’, so by Lemma 6.2

H would be infinite index in T',,. Let k;; = ged {a;;} > 0. Similarly as we did above, there must
Q5

be an element of the form ¢;%i..t,kiru; in H (written as a product of the m first generators

of 6.4). We can add this new generator to the expression 6.4. Also, since all the nonzero

are multiples of k;; and the ¢; coordinate is well behaved in I',,, we can use the exchanging

generators argument as in step 1 to eliminate the ¢; letters from the first m generators. After

relabeling these new m generators we obtain
H = <tj+1a1(j+1) ) P tj+1a7”(j+1) ...tTamT’Um, tlkn ...trk“ul, t2k22 ...trk2TUQ, cen tjkjj ...trkjruj>

for some integer powers o, k and with k11, ..., kj; > 0, which completes the inductive step. After
r steps, we added r new generators and eliminated all the t1,...,¢, letters from the first m

generators from H, so we have

k ki, k ko k.
H = (v1, .oy U, 015, ug 09722 8" g, o 6. )
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1
n

with k;; > 0 and v, u; € Z [ } Since every finitely generated subgroup of Z [%] is cyclic we

have (v1, ..., ) = (u) for some u € Z [1] and

H =t kg k22 g Ryt R, ) (6.5)

We have (t,_i*c-De-nt ke—vry, ) (tFrru,) = t,_Fo-ne-nt, ke-orthry! 5o by the ex-
changing generators argument we could replace the generator t,_i*r-ve-n¢ Fe-vry, | of H
by this product, with the same t,_j-power but with higher ¢,-power k(,_1), + krr > k(—1),-
So, by doing this process a finite number of times we may suppose that 0 < k1), < k. (or
even k(._p), > 0 if we wanted). Now we use this fact together with the exchanging generators
argument for the r'* (r — 1)"* and (r — 2)!* generators and we may similarly suppose that
0<kp—9r-1<kp—1y—1and0 < k,_g, <k (or both could be positive if we wanted). By doing
this recursively, we may suppose that 0 < kj; < ky; for all 1 < j <4 < r in 6.5. Finally, write

li g = aiI for ¢;,q,1;,1 € Z. Then

Ui = Qg;»

k kil 4 k kor 1 lepr e 1
H = (1™t ag 6272t al st ay ag ) (6.6)

-1

Let us show that we may assume [ > 0 above. If [ # 0 then, up to changing afl by (aé)_1 = a,

if necessary, we are done. If [ = 0, that is,

k kir 1 k koyr 1 k l
H = (/" fraly ok kel g el

(6.7)

we do the following: since Z" is abelian, every commutator of elements in H must be in ker(¢p)
(and obviously in H). Look to all the commutators between the r generators of H in 6.7: at
least one of them must be non-trivial. Otherwise, H would be a finite index abelian subgroup
of T',, and we would have $1(T,,) = S(T',,) by Corollary 3.29, a contradiction with Theorem 5.2.
Let then ag-/ (I" # 0) be a non-trivial commutator between two generators of H. We can add it

to 6.7 and up to changing aé-/ by its inverse we are done. So we may assume [ > 0 in 6.6.

Our next steps will be eliminating the subindexes ¢; from the a letters in the generators of
6.6. Fix some 1 <4 < r. If ¢; > 0, then ai;’i = o™l and by doing this substitution in 6.6 and
relabeling n%l; by I; again we removed the subindex ¢;. If ¢; < 0, by Lemma 6.4 we replace ¢
by ¢; in 6.6, that is,

H = <t1k“...t7«k“aéll,tgk”...trk”ag, ...,trk”affr,afh>

for some new positive integer [. Now, let m be the biggest divisor of [ such that ged(m,n) = 1.

By Lemma 6.5 we can replace [ by m above and obtain

k ki, 1 k ko, 1 k l m
H = (t"" .t ay 022, al ot ag  agt).

Since ged(m,n) = 1 we also have ged(m,n™%) = 1 and there must be &, € Z such that

am + Bn~% = 1. Then for a = [;& and 8 = I;3 we have am + n~% =;, or

li—ma=n"%p5.
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Then, using the changing generators argument and the relations in I',, we have

H = (a2 el b Rt Rl el
= (B Pl M el ke el e Erale )
= (M Pl M el ke ey P el a)
= (B Pl M el ke el alh)

and relabeling 8 by I;, m by [ and ¢; by ¢ again we have

H = (e, . Frall toF2 ot Foral2 i g Rrdt Lt Pralr al),

l;

o in 6.6. If we do this for all « we remove all the

that is, we removed the subindex ¢; from a
subindexes and obtain

H = <t1k“...trk”all,tgk”...trk%ab, ...,trk”alr,a@

for some q € Z. We can use Lemma 6.4 to replace ¢ by 0 and we get
H = (Mg Fral ok g kergle | Keegle oy ki 1> 0, 1 € Z.

To finish, let m (a new one) be the biggest divisor of [ such that ged(m,n) = 1. By Lemma
6.5, we replace a' by a™ in the expression above. If H N (a) = (a™), we are done. If not,
let m’ = min{k > 1| a* € H} (this set is not empty because it contains m). We claim that

/

HnN{a) = <am > The “(D)” part is obvious. On the other hand, if some o' € H, write
| = gm’ + 7 for some integer ¢ and 0 < 7 < m/. Then a’ = !~ = (a')(a™)~9 € H implies
7 = 0 (minimality of m’) and so a! = ()7 € <am,>, which shows the claim. Since a™ € H, m
is a multiple of m’ and we have ged(m/,n) = 1. Then, by adding @™ to the set of generators
of H, the generator a™ becomes useless and can be removed. By relabeling m’ by m, we obtain

the desired result.

(Item 2)). Let H be such a subgroup. Using the same argument from item 1), we may
suppose that k;; > 0 for all ¢, j. Let us first show that G = Utlﬁlu_trﬁrajeT Ht P t,Pral. Every
element of G is written as t; ~“...t,~“ralt;"...t,7 for a;,~; > 0 and | € Z. Since k;; > 0 for all
i,7,let ¢ > 1 be such that gki; —ay; > 0 for all i. We can write (t1%11...t,F1rgl1)7 = aliggakn ¢, akir

for some integer [}. Since tF kgl € H we have

Ht; =, %y, = H(tM g Frghyag = g, gl g,
! — —
= H(dh, g0k e gm0
/ _ _
= Hahty e g akr—erglym g o

_ Halll al”t171+qk11—041 mtrw-&-qklr—ar

l/ ! /'
= Ha" t;"..t,"
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for some integers I’ and / > 0. Relabeling them by [ and ~;, respectively, every coset of
G is of the form Ha't;"...t,7 for | € Z and 7; > 0. Now we claim that every such coset
can be also written as Ht;"...t,77a!" for some integer I/. In fact, because 1 = ged(m,n) =
ged(m, p1¥t...p,Y7), the prime decomposition of m does not involve any of the p;. Then it is also
true that ged(m, p"¥1...p,7¥) = 1. Let k, k' be integers such that km + k'p; MYt ..p, ¥ = 1.
Then [ + (—lk)m = (IK')p1 "Y' ...p, 7Y and relabeling —lk by k and k' by k' we get | + km =

k' pi"Y1 . .p, Y. Now since a™ € H we do

Hd't,.t," = H(a™Fkalt, .. 1,0
= Hadthmym g0

/1177191 Try
— HgFm pr T ’”tl’Yl'”tTVT

!
= H{" ..t a"

and relabeling &’ by I’ we showed the claim. So every coset is of the form Ht,"...t," a! with
v; > 0 and [ € Z. To transform this coset into one of the cosets in the theorem, we will apply
successive algorithms, defined as follows: choose some index 4. If v; < k;; we stop the algorithm.
If v; > ky;, we do

Ht el = HR ¢ el =t 07 al
= Ha big; ko g, Firg 0!
— Ha™ th—i-l kiivr ¢ *kirtl’ﬂ '.ti_l’h‘flti%*kz‘iti_i_l’ﬁﬂmtrwal

= Htiy~ kiiv1 ¢ 7kl7,ra7,t171 "ti_lwﬂti%*knti_’_l'ﬁﬂ”_tr%al

which we abbreviate to Hti+1*ki’i+1...trfk"al;tﬂl...tﬂ’ i t,77al. Now let ¢ > 1 be such that
qkiy1; —kij > 0foralli+1 <7 <r. Then

Htypq it g, Rirgliggm g0 ki g gl =
= Hi(tig Mg R glion)ay  —hiie g —hinglip gk g e g!
= Hdbont Povvinn g @ivvrg, “Riiey g “Rieglign g vk g gl
= Haliity Pk g ahivr—kirglipm g0k g gl
_ Hal7,;+1al;lalti+1qki+1,i+1*ki,i+1'”tquiJrl,r*ki,rtl’Yl'”ti’Yz i 4,
= Halutl'“...ti_l'ﬁflti%‘*kiiti+1’7i+1+qk¢+1,¢+1*ki,iﬂ__.tr%JquiH,rfki,T
”

= H#M _“ti_l')/i—lti'Yi*kiiti+17i+1+qk5i+l,i+l*ki,iJrl __.tr’yr+qki+1,r*ki,ra

)

using the claim in the last equality. By relabeling the i + 1, ..., powers we have shown that
Ht ot ral = Hty Mty VR i 06l

for some integer I’. If v; — ki < ki we stop the algorithm. If 7; — ki; > ki; we do all of this



132 6. Finite index subgroups of '),

again. Then after finite steps our “i-algorithm” shows that
Ht ", al = Ht;" . ;7! tzﬂi ti+1%{+1 . .tr’y’," CLl/

for some 0 < B; < k;. Now, starting with the coset Ht;"...t,"a!, we successively apply the

“j~algorithm” for ¢ = 1,2, ...,r and obtain exactly
Ht "t 7ab = H Pt Pra

for 0 < f8; < ki and I € Z. Finally, write I! = gm + j for 0 < j < m. Then Ht;#...t,Pra!’ =
Ht,% .. t,Pral because

PP (4P Prd) T = g P iy
= Pt Bramay, B g H

= (@t e g

This shows that G = Utlﬂl,..trﬁrajeT Ht, P t,.Prad.

Now let us show that the cosets in T are all distinct. Let Ht,t...t,Pral = Htlﬁi...trﬂi‘aj/ for
0 < B, B < kis and 0 < 7,5 < m. By definition,
w = aplylﬁl---pryrﬁr(j_j/)tlﬁl—ﬁi“‘trﬁr—ﬂé — tl/Bl'“trﬁraj_j,tl_ﬁl‘“tr_ﬁrtlﬁl_ﬁi“‘trﬁr_ﬁ;

= /M P d e ) e H.
Then, projecting in Z",
(B1 = By o Br = By) = p(w) € p(H) = ((k11, k12, s k1r), (0, k22, oo kar )y oovy (0,00, 0, Ky ))
Write
(B1 — By oy Br — BL) = M (K11, k12, ooy k1) + X2(0, kg, ooy ko) + oo 4+ Ar(0, .., 0, )

for integers );. We show by induction that all the A; must vanish. First, since the first vector
(k11, k12, ..., k1r) is the only one with non-vanishing first coordinate we have 81 — 8] = Ai1k11.
Since 0 < S, 8] < k11 we must have $; = [} and therefore A\; = 0. Suppose we have shown
that Ay = ... = A\; = 0 for some 1 <4 < r. Then the above equation gives

(07 ey 07 ﬁi-f—l - /Bz{+17 ey /BT‘ - 5;«) = Ai-ﬁ-l(oa ey 07 ki—i—l,i-}—lu ey ki-i—lﬂ“) + ...+ )\7“(07 ey 07 k’r"r‘)'

Since the (i + 1) vector (0, ...,0, k41,41, - ki+1,) is the only one with non-vanishing (i + 1)
coordinate we have ;11 — fi,; = Ait1kiy1,i41. Since 0 < Big1, B, < kiy1,i+1 we must have
Biy1 = B, and therefore A\;y1 = 0. This shows by induction that §; = g for all i. We just
have to show that j = j/. We already have aP"*" """ (i=3) ¢ H. Since H N (a) = (a™) (by
item 1)), we have

e p (G = ') = qm
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for some ¢ € Z. So m divides p1¥*#1...p,¥"P (j — j"). Since ged(n,m) = 1, m does not contain
any of the p; in its prime decomposition, and therefore m must divide 7 —j’. Since 0 < j,5' <m

we have j = j/, as desired. This completes the proof.

O]

Observation 6.7. The hypothesis H N (a) = (a™) cannot be removed in item 2) of Theorem

6.6, that is, if H N (a) # (a™), then the index of H in G is not necessarily ki1...kppm, it

can be smaller. For example, H = <tsa,sa2,a5> < I'g has not index 5 in I'g. Indeed, since

a'® = (tsa)(sa?)(tsa)~(sa?)~! € H and ged(5,18) = 1, we have
H= <tsa, sag,a5> = <tsa,sa2,a5,a18> = <tsa,sa2,a> = (ts,s,a) = (t,s,a) =G

and therefore the index is 1, that is, k11...k, = |G : H| in this case.

Despite this, we do know in general that kii..k,, < |G : H| < kij...ky,m, even with-
out assuming H N (a) = (a™). In fact, we did not need this hypothesis to show that
G = Utlgl_ntrmajeT Ht,%..t,%ra7, and therefore we have |G : H| < kiy...k,m. We also did
not use this hypothesis to see that two cosets Ht? .. ,Pral and Htlﬁi...trm“aj/ of T are differ-
ent unless 5; = f; for all i. In particular, all the cosets H t1%1..t,P of T are distinct and then
kii..kyr <|G: H|.

6.2 A presentation
Theorem 6.8. Let H be any finite index subgroup of T'y, (see Theorem 6.6), say,

H = <t1k“...trk”al1,tgk”...trk”ab, ...,trk’"’"al",am) (%)

with k11 > 0, 0 < kj < ky forall1 < j < i < r,l; € Z and m > 0 an integer such that
ged(m,n) =1 and HN (a) = (a™). Then H has the following presentation:

H ~ <a,x1, oy Ty | xia:ri_l = aPi, xixjxi_lxj_l = aR"j>,
where P; = p?ik“...p?’"k”’ (i=1,..,r) and R;j € Z characterized by
lz‘PZ‘(l — P]) — lej(l — Pz) = me

Demonstragdo. 1t is easy to see that (tf“...tf"ali)am(t?“...tf"ali)_1 =a™PinT,, fori=1,..,r.

Also, since
(¢he i gl ) (6599 am ala) (¢ thir i) A (6509 g ali) Tt = @B POSPD-URASP) € Hfa) = (@™,
we have [;Pi(1 — P;) — [;P;(1 — P;) = R;ym for some integer R;; and so we write

(¢ thirali) (£599 07 ala ) (£ thorali )~ 1 (8599 907 ali) 71 = @i Now let

G = <a,x1, ey Ty | xiaaci_l = ol xixj:vi_lxj_l = oeR“>.
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The group G has the relations

T, = aP"xi, l‘iOé_l = oz_P";vl-, Tl = ozRi-ij:Ui, xiafl =z !

R,
j j « I x,

which shows that, for every fixed i, all the z;-letters in a word with positive power can be pushed

right as much as we want. Similarly, the relations

-1 _ -1 P —-1,-1_,-1 -P . —1_ _—1 R
ar;, =zt o x =T, T =T

oo~ 1_-1_ _—1 -1 _—Ry;
g, wpwy s =x, g

show that all the x;-letters in a word with negative power can be pushed left as much as we

A1

want. Because of this, we claim that any element of G is of the form x*'...z; AraM xf*...:zfl for

Ai,0; > 0 and M € Z. Indeed, let

S11 Scl

— S1 T1 Ser A Tc
w—l‘l ....fL',’, "o ...ZL‘l ...l',r. (6%

be any element of G. Push all the z;-letters of w with positive (resp. negative) power to the
right (resp. left) extremity of w. Then w = :cl_’\lw’ x‘fl for some word w’ which does not involve
the letter 1. Now, push all the zo-letters of w’ with positive (resp. negative) power to the right
(resp. left) extremity of w’. Then w = xy May ?w”z52a4" for some word w” which does not

involve the letters 1 and x9. By doing this recursively we show the claim.

Now let us show that G ~ H. Define § : G — I',, by putting 6(a) = o™ and 6(z;) =

tf”...t,’f"ali for i = 1,...,r. We first check that 0 is a group homomorphism:
9(1’1)9(06)0(1'1)_1 _ (tfiimt/;?irali)am(tfiimtfirali)—l _ asz' — (9(04)1%7

and
H(xi)H(g;j)g(xi)*lg(xj)fl _ R — Q(Q)sz’

as desired. Also, by construction, im(f) = H <T,. So 6 : G — H is surjective and we only need
to show that 6 is also injective. Indeed, let w = fol...w;ATaMxﬁr...xfl € G such that §(w) = 1.

Then

-1 01

—A\r O
(R kgl T (R gt )T gmM (e ) (#har gk g™ = 1,

By projecting both sides of equation above on the ¢j-coordinate by the homomorphism w
(w)", we get k11(61 — A1) = 0 and so d; = A\;. Then by conjugating the above equation on both
sides by (t%1...thral )M we get

—A2 Or

“Ar 5
(t§22...t7]f2Tal2) '“(t?]f'r'r‘alr) amM(tfrralr) ...(tlgm...tf%alz) 2 _ 1.
Again, by projecting both sides of equation above on the to-coordinate by the homomorphism
w > (w)2, we get koa(da — A2) = 0 and so d2 = Aa. Then by conjugating the above equation on
both sides by (t522...thral2)*2 we get

—A3

—Ar ™ 6
(¢hss . thorglo) ™0 (¢hrrqley ™A qmM (gher gl ) (thss ghsrqls)®® — 1.
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By doing this recursively we get §; = A; for ¢ = 1,...,r and

M=,

Then M = 0 (since a is torsion free and m > 0). So

w= a:l_Al...:c;Arao:pi‘T...:vi‘l =1,

as desired. This completes the proof. O

6.3 X! invariant and property R,
Let H be a finite index subgroup of I';,, say,
H = (Mt firgh gokez g kargle g Fregle gmy ()

for ki > 0, kij > 0, [; € Z and m > 0 an integer such that ged(m,n) =1 and H N (a) = (a™).
We intend to apply Theorem 3.38 to guarantee property R., to H. To do so, we first need to
have an idea of S(H). Because of this, we use Theorem 6.8 to identify H with its presentation

_ -1 _ P —1 -1 _ Ry
H= <a,x1,...,xr | miox; " =o', xpwja; T =« ”>,

for P, = piik“...p%rk" (¢ =1,...,r) and some R;; € Z. Here, a = a™ and z; = tikii ot Firgli,
Since all the p!* are > 2, obviously the P; also are > 2 and so it is easy to see that o must
have torsion in the abelianized group H%. The z; are torsion-free, though. So we have the

homeomorphism

Now, we will compute X!(H) inside this sphere by using Corollary 3.28. So we need the

following

Lemma 6.9. Let H be a finite index subgroup of I'y,, say,
H= <t1k“...trk”al1,tgk”...trk”ab, ...,trk”'al",am) (%)

for ki >0, kij >0, [; € Z and m > 0 an integer such that gcd(m,n) =1 and H N (a) = (a™).
Then every homomorphism & : H — R can be extended to a homomorphism x : Iy, — R (that
is, X|H = 5)

Demonstracdo. Since H is generated by the elements x; = t;*.. .t Fral for i = 1,...,r, the
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equation |z = £ is equivalent to a system of r equations

X(EF Rl ) = (Rt Firgh),

X(tak22 . 4, k2ral2) = €(toke2 Lt Rergl2),

Xt ale) = &(t,brrale).

So to create such an extension y we just have to define y(a) = 0 and define the real numbers

x(t;) satisfying equations (1) to (r) above. Equation (r) is equivalent to

krrx(tr) = ’S(tﬁwah)a

so if we define x(t,) = k—irf(t’ﬁ”alr), equation (r) is satisfied. Similarly, equation (r — 1) is
equivalent to

kr—1r—1,kr—1,r _
krfl,rfIX(trfl) +k7r71,rX(tr) = g(tr_;’ 1tT b alT 1)>

so if we define x (t,1) = @l gl ) — Rty (1) equation (r—1) is satisfied.

kr—1,r—1 r—1,r—1

We proceed recursively: suppose that, for some 1 < i < r — 1 we have defined x(ti+1), ..., x(¢)
satisfying equations (i + 1), ..., (r). Equation (i) is equivalent to

ki (t:) + Eiirix(tivt) + - + kirx(t:) = @5tk gh),

so if we define

1 3 L kiit1 ki
X(t) = =€t tfral) — R (ti) — = (),
equation (7) is satisfied. After doing this to all i, we are done. O]
Theorem 6.10. Let H be a finite index subgroup of I'y,, say,
H = <t1k“...trk”al1,tgk”...trk”alz, ...,trk”alr,am) ()

for ki >0, kijj >0, l; € Z and m > 0 an integer such that gcd(m,n) =1 and H N (a) = (a™),
and let @ = a™ and x; = t;¥i .. .t Firali be its generators. Then L'(H)¢ = {[&1],..., [&]}, where
&i(xj) = kji if j <i and &(x;) = 0 if 7 > 4. In other words, if we identify S(H) ~ S"™! as we
did above, then

Zl(H)C — <k1170707"'70) (k127k22707"'70) (k1T7k2T7k37"7"'7k7‘7’)
[[(k11,0,0, ..., O) || [ (B12, k22, 0, es O) 177 ([ (s b2y Kzrs ooy ) ||

Demonstragdo. Because of Lemma 6.9, by Corollary 3.28 we have X1(H)¢ = i*(XY(T,)¢), where
i* : S(Ty,) — S(H) is given by i*[x] = [x|n]. By Theorem 5.2, SY(H)® = {[x1lu], .- [xr|z]}-
Since we are identifying H with its presentation we must compute y;(z;). Remember that
xi(tj) = 1ifi = j and x;(t;) = 0 if i # j. If j > 4, the generator z; = t;%i...t,kirali does not

involve t; and so x;(x;) = 0. If j <4, we have

Xi(aj) = xa(t 9t al) = k() + o kgexa(te) = ki,
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which completes the first claim. It is easy to see that the image of [x;|z] (which we denote by [§;])
under the homeomorphism S(H) ~ S"~! described above is W% This completes
the proof. n

Corollary 6.11. All finite index subgroups of Ty, have property Roo.

Demonstracao. Let H be a finite index subgroup of I',, and describe it as in Theorem 6.10
above. Then X!(H )¢ is a nonempty and finite set. Since the k;; are integer, these points are all
rational, and since k;; > 0, $1(H)¢ is contained, for example, in the open (geodesic) half space

By (H, g) So, by Theorem 3.38, H has property Ruo. O

6.4 Finite index subgroups that are not I';

In [12] it was shown that every finite index subgroup of a solvable Baumslag-Solitar group
BS(1,n) is also (isomorphic to) a solvable Baumslag-Solitar group BS(1,n*) for some k > 1.

Since the groups I',, are generalizations of these groups, a natural question arises:

Are all finite index subgroups of T', also (isomorphic to) another Iy for some k > 27

In this section we show that this question has a negative answer. Below, we will define a
specific type of finite index subgroup of I';, which can be shown to be (or not) isomorphic to
I'y, depending on the powers used. This leads us to an infinite number of finite index subgroups
which are examples (they are some I'y) and also an infinite number of counterexamples (which
are not any I'y).

Let I',, be described as before and let

H = (thrghe b b ghar | ghee gy
with k11 >0, 0 < kj; < ky for all 1 < j < i <7 and m > 0 such that ged(m,n) =1 (this is the
description of an arbitrary finite index subgroup of I',, with the condition [; = 0 for 1 <i <r).
It is also obvious that H N (a) = (a"). We will show that

H~Tj forsome k>2& kj;=0forall 1 <i<j<r.

Suppose first that k;; = 0 for all 1 <4 < j < r. Then from Theorem 6.8 we immediately
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get that H ~ Ty for k = pzi’lk“...p?’“k”. Suppose now that H ~ T’y for some k > 2 and
write K = ¢i*...¢”, @1 < @2 < ... < ¢s, zi > 1 the prime decomposition of k. Then we
have a homeomorphism X'(H)¢ ~ ¥1(I'y)¢. By theorems 5.2 and 6.10, s = card(XH(T)¢) =
card(X1(H)¢) =1, so k = ¢j*...¢Z". By Theorem 6.8, H has the presentation

H = (a,x1,....;x, | miaazi_l =a", z;x; = xjx; for all 4,7),

yrk

where n; = p/™"._p{™""". There is also a split exact sequence

1> ker(n) = HSZ" — 1

where 7(z;) = e;, () = 0 and ker(7) abelian. In particular, every element of H can be written
as xi\l...x,))’“u for some \; € Z and u € ker(m). Since H ~ I'y, then there must be r + 1 elements
inside H (which are the images of the analogous r + 1 elements in I'y), say, X; = xfgl...xfgrui,
1<i<rand A= a:l kru for some k”,k' € Z and u;, U € ker(m), such that

H=(X1,..,X,,A)

and
X AX; = A% forall 1 <i<r.

By projecting any of these equations on Z" we obtain k; = ... = k. = 0 and s0o A = @ =
xl_)‘l...x;’\TaMx,):““...xil for some A\; > 0 and M # 0. By replacing this in the r equations above

and using that ker(7) is abelian and the x; commute each other, we obtain the r equations in H

xlf“...:nf"onx;k"...xl_k“ — oMa* (7)

for each 1 <4 < r. If a power k:gj is nonnegative we can use a relation of H to conjugate a™. If
it is negative, though, then since all the z; commute we can push the two z; from the left side
to the right side of equation (i) and use the (now positive) power —k;; to conjugate aMa’ . So

Mg;* . Since

every equation (i) will always imply an equality of a power of o/ With a power of «
H is torsion-free and M # 0, this implies an equality of prime decompositions (we will call this a
prime equation) which depends on the signal of the ] ;- Note that the right side always involve a
positive power of the prime ¢;. The left side, on the other hand, can involve (at most) the prime
numbers p1, ..., p,. By uniqueness of prime decomposition, we must then have ¢; € {p1,...,p:},

for all 7. Since ¢; < ... < ¢, we must then have ¢; = p; for all 7, so k = pJ*...pZ.

We claim that k[, > 0 for all . Indeed, if some k}; < 0, then z; goes to the right side of (7)

yl k11(—k}y)

and we have a prime equation with a positive power p; on the right and only (possibly)

P2, ..., pr on the left (since ng,...,n, don’t involve p;), a contradiction. This shows the claim.

We claim that k:' = 0if i > j. We will show this by induction on j. For j = 1 and for every

y1k11k},

i > 1, the fact k/; > 0 implies a prime equation with p; on the left and no p; on the right
(again, because na, ...,n, and p;* don’t involve p1). So y1ki1k}; = 0 and therefore k}; = 0, since
the two first numbers are positive. This completes the proof for j = 1. Now let 1 < j <r—1

and suppose the fact is valid for any 1 < 5’ < j. Let us show it for 7 + 1. For any 7 > j + 1 we
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have also i > 1,2,..., 7, so by induction kj; = kjy = ... = kj; = 0 and equation (i) becomes
k! K, _K! —K! 24
g1 M ir +1 Mp;
jfﬁl T e Ty UL :E]_i_ij =a"Pi

With the same argument we used for k; before we can show that &; ;,; > 0. Because of this,

yg+1kj+1 J+1k1 1

(7) implies a prime equation with Py on the left and no p;;q on the right. Then

Yj+1kj+1,+1k; j41 =0 and so ki, q = 0, which shows the claim.

Equations (i) then become

K. K K -k, = .
x oMy, = oM (4)

Again, since n;41, ..., n, do not involve p; we must have k), > 0 for all i. We claim that k, =

for all ¢. In fact, by the last claim and by hypothesis we have

7" = w(H)
= m(Xy,..., X, A)
= (m(X1), .., m(Xr), m(A))
= ((k11, 12,...,k: r): (0, k:22,... 27~) - (0,0, ’k:“r»

Then the fact that e; belongs to the subgroup above implies kj; = +1. Since k}; > 0 we must
have kj; = 1. Now suppose kj; = ... = kj; = 1 for 1 <i < r and let us show that k{,,,,, = 1.

Since e;+1 belongs to the sugroup above we have
€ir1 = Ozl(kil, /12, cees kllr) + 042(07 kIQQ, . /27,) + ...+ OJT(O, 0, .. 7k;‘r)

for some o; € Z. Let ¢ be the 4t coordinate of the right element above. Then by the previous
equation we must have 0 = ¢; = ayk}; = ;. This implies ¢ = askby = ag and then 0 = ¢3 = as.
Recursively, we get a; = ... = a; = 0. This implies ¢;y1 = a;1k],; ;. Then, because the

(i + 1)** coordinate of e;y1 is 1 we have 1 = ¢;41 = @ip1kiyy 4. Then , = £1, which

i+1,i+
implies &, 41441 = 1, since it is non negative. This shows the claim.

Fix any 1 <7 < r. We claim that kgj = 0if i < 5. We'll show this by induction on j, starting
from j =i+ 1. We know that equation (i) is

K, K —K,. -k = .
a0 = QMR (4)

. . . . / yi+1ki7i+1k’-- _

Since n; and n;41 are the only numbers involving p;1, if k; ;1 < 0 we would have p;\ =
Yit1kit1,i+1(=k] ;1)

Pit1 T80

/ /
kijit1 = kiiv1kiy = Kiv1it1(=kiip1) = ki1,

which is a contradiction with our first description of the group H. Then k;;,; > 0 and equation

(1) implies
Yit1 (Kiir1 ki thiv i1k ;1)
Pit1 ' = 1.

Since yi+1 > 0 we must have k; 11k}, + kitr1,i+1k)

i1 = 0. Since all these numbers are non
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negative and k;i1,+1 = 1, we have k;; ; = 0, as desired. Suppose now k;,,, = ... = k;; = 0 for
some ¢ + 1 < j < r and let us show that k] j+1 = 0. By induction, equation (i) becomes

oM KL K —K Mp;

k! k! .
4,j+1 _ .
ey T P e Y = a ) (1)

%
kX2
Ty Tiyy

Because of this, n; and n;y1 are the only exponents which involve p;y1 in the equation above.
By the same type of argument we used above for i 4+ 1, we show that k; j+1 = 0 and then also

ki ;11 = 0. This shows the claim that k{; = 0 for all i < j. Then &j; is 1 if i = j and 0 otherwise.

-
The equations (i) become z;aMa; ! = oMPi". This implies

yikii, Yitr1Fi it Eir _ . Zi

piz ”pij,_l 1,1 pgr ir _piz’

which implies k; ;41 = ... = ki = 0. Since 7 is arbitrary, we showed that k;; = 0 for any

1<i<j<r, as desired.
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Parte 111

Hyperbolic and relatively hyperbolic

groups: an investigation of R
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Capitulo 7

Actions on hyperbolic spaces and

property Ro

A note on self-containment of Part III: The last part of this thesis is dedicated to the study
of property Ro, in a more geometric fashion - instead of combinatorial. The reader probably
noticed that all the combinatorial theory developed in the previous chapters is self-contained,
with only a few exceptions in the combinatorial preliminaries. The geometric preliminaries
and chapters 7 through 9, however, could not be done this way. Otherwise, we would have
many hundreds of preliminary pages on geometric group theory, hyperbolic groups, metric and
geodesic spaces, quasi-isometry invariants and so on. Instead, we give the necessary definitions
(so that the reader knows what we are talking about) and only state many well-known results,

giving references to proofs in the literature. After all, scientists depend on each other.

This chapter is a theoretical preparation for the results of chapters 8 and 9. Here we show
how some actions of a group G on hyperbolic spaces can be used to guarantee property Ry, for
G. We divide the chapter in two parts, considering whether the order of the projection m(p) of

an automorphism ¢ is finite or not in the quotient Out(G) = ?:ntggg The first part is based, for

example, on [33], with some adaptations and clarifications. The second part is a detailed proof
of a generalized version of a result by G. Levitt and M. Lustig (see [68], section 3), a key result

to chapters 8 and 9.

7.1 Finite order case

Let G be a group and denote by 7 : Aut(G) — Out(G) the natural projection. Let ¢ € Aut(G)
such that 7(¢) has finite order (say, m > 1) in Out(G). Define the group

Gy, =(G,t|t"=1, tgt ' =p(g), YVgeqG).

It is straightforward to see that G, is the semidirect product G x, (t) = G Xy, Zy,. In fact, G
is normal in G, by the relations tgt™! = ¢(g) € G and t~'gt = ¢~1(g) € G; also, we have the
relations tg = ¢(g)t and t~tg = p~!(g)t for every g € G, so all t-letters can be moved to the
right in a word of G, and so G, = G (t). Finally, to see that G N (t) = {1}, suppose there is an
element g = ¢" (with 0 <7 < m) in GN (t) and let us show r = 0 (and therefore g = 1). Since,
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for every g € G,

@ (G) =t"gt" = 939" = 4(3),

we have ¢" = 74 € Inn(G) and so m(p)" = 1 in Out(G). Since the order of m(yp) is m and
0 <r < m, we must have r = 0, as desired.

To show the main property in the case of finite order, we need a lemma of T. Delzant. To
state it, note that if a group G acts on a hyperbolic geodesic space X, there is a well defined

induced action G ~ 90X by putting g - r(c0) = (g - r)(0).

Definition 7.1. We say an action by isometries of a group G on a hyperbolic geodesic space X

is non-elementary if all items below are satisfied:
1) There is an element g € G whose action in X has infinite order;
2) There is not a global fixed point in 9X;
3) There is not a global invariant pair in 9.X.

Lemma 7.2 ([68], Lemma 3.4). Let G be a group acting non-elementary on a hyperbolic geodesic
space X. If K QG is such that G/K is abelian, then every coset Kg of K in G has an infinite

number of usual conjugacy classes.
Using Delzant’s Lemma above we obtain

Proposition 7.3. Let G be a group and ¢ € Aut(G) such that w(p) has finite order in Out(G).

If G, acts non-elementary on a hyperbolic geodesic space X, then R(p) = oo.

Demonstragao. Given g,h € G, we claim that g ~, h if and only if gt and ht are conjugate in
Gy. In fact, if g ~, h, let z € G such that zgp(z)~! = h. Then, by the relations in G,

2gtz! = zgo(2) Mt = ht

and therefore gt and ht are conjugated. On the other hand, if they are conjugated by any
element 2t" € G, then 29" (g)tz™ = 2t"gt "tz! = (2t")gt(2t") "' = ht and therefore

20" (9)p(2) 7! = (20 (9)p(2) Tt = (2" (g)tz” )T = Wit =,

so ¢"(g) ~, h are p-conjugated. But since both equalities g = gp(g9)p(g)™! and g =

g9 (g)e g™
for every integer k. In particular, g ~, ¢"(g), so by transitivity h ~, g, as desired.

are true, we have g ~, p=!(g), so by easy induction we can show g ~, ¢*(g)

Because of the fact above, the number of Reidemeister classes R(yp) is exactly the number
of conjugacy classes of elements of the form gt for ¢ € G. That is, it is the number of conjugacy
classes in the coset Gt of G,. Now we use Delzant’s lemma: by hypothesis, G, acts non-
elementary on a hyperbolic geodesic space X and the normal subgroup G < G, is such that
% = % >~ Zp, is abelian. It follows from Delzant’s Lemma that every coset Gz for z € G,
has an infinite number of conjugacy classes. In particular the coset Gt has, so R(¢) = oo and

the proof is complete. O
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7.2 Levitt and Lustig’s infinite order case

This section is dedicated to show Theorem 7.4 below, which is a slight generalization of Levitt
and Lustig’s result (see [68], section 3). Their result is the main part of the paper [68] on the
matter of showing R, for non-elementary hyperbolic groups. Although that paper is known as
the one who shows Ry for non-elementary hyperbolic groups (which is true), I would like to
point out the fact that their proof there relies on Paulin’s equally complex Theorem 8.9 (see
Chapter 8), so I would personally say that R, for hyperbolic groups is a result by Levitt and

Lustig and with a good contribution by Paulin.

Theorem 7.4. Let G be a finitely generated group and ¢ € Aut(G) such that w(p) has infinite
order in Out(G). Suppose there is a non-trivial, small and irreducible action by isometries of G

on an R-tree (T, d), whose translation length function | satisfies the following:
there is A > 1 such that lo @ = A,

and such that there is a unique map hy : T — T with d(hy(x), hy(y)) = Ad(z,y) for every
z,y €T and hy(g-x) = @(g) - hp(x) for every (g,x) € G x T. Then R(yp) = oo.

First we observe that the dilation A, is not alone: if H' = ({¢} U Inn(G)) = Inn(G) () and
Y € H', we actually have a unique dilation map hy : T — T such that hy(g - 2) = ¥(g) - hy(z)
for every € T. In fact, write ¢ = v4¢"™ € H' (9 € G,n € Z) and define the two following

actions:

G x (T,d) % (T.d) with ' oz = $(g) -«

and we also consider the action G ~ (T, d) but with dilated metric:
G x (T, \"d) > (T, \"d) with g’ ez =¢ - =

These actions are also irreducible (since G ~ T is), in particular semi-simple and not shifts.

They also have the same translation length function. Indeed, for every ¢’ € G,

lrao(g) = infd(z.g ox)
= Infd(z,9(g) - )
= U(¢(9)
= Ug¢"(9")g™)
= 1(¢¥"(9")
= \"l(g),

and

no_ . n / _ . n /. _\n: I (4
lranae)(g) = inf \'d(z, g e 2) = inf \"d(z, g - 2) = A" inf d(z, g - 2) = A"l(g).

Therefore by Theorem 2.55 there is a unique G-equivariant isometry hy, : (T, \*d) — (T, d). Its
isometry gives us d(hy(x), hy(y)) = A"d(x,y) for every x,y € T, that is, h is an affine map of
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(T, d) with A™ a dilation coefficient. Equivariance gives us hy (¢’ - z) = hy(g' @ x) = ¢’ o hy(z) =
J') - hy(x) for every ¢ € G, x € T. The map hy, is then the unique affine map that makes the
() P

following diagram commute for every g € G:

Because of this uniqueness of diagram it is straightforward to see that hyy = hyhy for

Y,1)" € H" and that h,, = g-. With this it is also easy to show that h,,, = gh, and Pyt =

ghwg_l. This will be used later. By Proposition 1.10, to show R(¢) = oo it is enough to show

i>
G
vig)

S(m(p)) = co. So, we will show that S(m(¢)) = 0o in the following two cases:

Case 1: A= 1.

In this case, the A-dilation hy, becomes an isometry of (7, d) and has a well defined char-
acteristic set Cp,. Let a C Cp, be any non-degenerate geodesic segment. Since the action is
minimal and irreducible, by Theorem 2.56 there is a hyperbolic element g € G such that o C Cy.
If the isometry h, is hyperbolic we can also suppose without loss of generality (replacing g by

Lif necessary) that the orientations of Cy and C},, are the same on «. Then, by Proposition

2.39 we have ||ghy|| = |lg|| + ||he||. Similarly, for any n > 1 we have
19" holl = llg" | + [[hell = nligll + [l

We claim the automorphisms v, n > 1, are pairwise non-isogredient, which gives us S(m(p)) =
oo and therefore R(p) = oo, completing case 1. In fact, if n, n" are such that v4np and g/ P are
isogredient let us show that n = n/. There is by definition ¢’ € G such that vy ygn gov;l = Yyu' P

1—1

Then, by what we observed in the beginning we have ¢'¢"h,g' ™ = g”/ hy. Since the translation

length function is invariant under conjugation of isometries, we have
nllgll + lhell = llg"holl = llg™ holl = n'llgll + IRy,

therefore n = n’ since ||g|| > 0. Case 1 is done.

Case 2: A > 1.

This case is at least “significantly” harder. We also want to show S(m(¢)) = co. We divide
the proof into 3 steps:

Step 1: fix a special point P and prove some general properties. We fix the point P in
the following way: if the A-dilation h, has a fixed point (easily seen to be unique), let P be
this point, and this is called the first situation. If h, has no fixed points, then by [69] there
is a hg-open-eigenray p : (0,00) — T, that is, an open ray such that h,(im(p)) = im(p) and
ho(p(t)) = p(At) for every t > 0. In this case, we let P be any point in the ray p, and this is
called the second situation. Note that, in any of the two situations, P € [h;'(P), hy(P)], with
hy(P) = P in the first situation and hy,(P) # P in the second one. It is useful to note that the

second situation gives rise to a fixed point in the metric completion T of T
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Proposition 7.5 ([78], Theorem 2.5). If (X,d) is any metric space, then X is isometric to a
dense subset of a complete metric space, denoted by (X,d) and called the metric completion of

X. Furthermore, any two such metric completions are isometric, so X is well defined. O

We usually identify X as a subspace of X and d as the restriction of d.
Let (T, d) be the metric completion of T'. It’s straightforward to see that one can naturally
extend the A-dilation h, of T to a A-dilation of T, that will also be called hy. Let D =

d(P,hy(P)). We have d(h;""H(P),h;"(P)) = a5 d(P, hyo(P)) = saer D for every n > 1, by

induction. Now, since the series Z]O’;l )\% converges with sum ﬁ —-1= ﬁ (for A > 1), the

sequence (r,)n = (hy,"(P))yn is Cauchy, for

d(.’En, xn-‘,—k) < d(ajna xn+1) + .+ 8(xn—l-lc—la xn—‘rk)

1 1
= Dt mEp
n+k 1
= D) I
Jj=n+1

<1
DZ E%O if n — oo.
j=n+1

IN

Therefore, since T is complete, (x,,), converges to a point x € T, that is clearly seen to corre-

spond to the origin of the ray p.

x hoX(P) h,'(P) P hy(P)
(% @ L L : - P
\—VA_“ ~ A
D/X* D/ D

The distance between P and x is

- =1 D
7j=1

The point z is a fixed point of hy. In fact, since hy(x,) — hy(x) (by continuity), we have

1 _ _ _
Dﬁ =d(zp, Tn-1) = d(Tn, hp(xn)) = d(z, hy(x)),
so d(x,hy(z)) = 0 since 5 — 0 as n — co. Since hy, is a A-dilation in T with A > 1, it has at
most one fixed point, so x turns out to be the only fixed point of h, in the whole completion T.
Facts similar to these will be used again soon.
After fixing the point P and before we move to the next step, let us state a lemma and show

another two, that will be useful to step 3.

Lemma 7.6 ([68], Lemma 3.6). Suppose [ o @ = N, where [ is the translation length function
of a non-trivial small action by isometries of a finitely generated group G on an R-tree T'. If

A > 1, then every stabilizer of an arc is finite. O
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Lemma 7.7. If p is any open eigenray ray of hy, and t > 0, then Stab(p(0,t)) = Stab(p(0, c0)).
In other words, the stabilizer subgroup of any inicial open segment of any open eigenray of hy,

is actually the stabilizer of the whole ray p.

Demonstragdo. Let us first show that Stab(p(0,At)) = ¢(Stab(p(0,t))). For (C), let g €
Stab(p(0, \t)) and let us show that ¢~ 1(g) € Stab(p(0,t)). Given z = p(s) € p(0,t), we have
As € (0, At) and so by hypothesis

hoo H(g) - p(s) = g hy(p(s)) = g - p(As) = p(As) = hy(p(s)),

so o7 1(g) - p(s) = p(s) and ¢~1(g) € Stab(p(0,t)), as desired. To show (D), let g € Stab(p(0,1t))
and let us show ¢(g) € Stab(p(0,\t)). If x = p(s) € p(0, \t), then \~1s € (0,1), so

©(9)p(s) = @(9)p(AN""5) = @(g)hop(A™'s) = hypgp(A's) = hyp(A's) = p(AX"'s) = p(s),

so p(g) € Stab(p(0, At)), as desired.

Now let us show the lemma. By Lemma 7.6, the subgroups Stab(p(0,t)) and Stab(p(0, \t)) =
©(Stab(p(0,t))) are both finite with Stab(p(0, At)) C Stab(p(0,t)) (for (0,¢) C (0,At)). Since
they are isometric by the isomorphism ¢, we must have Stab(p(0,t)) = Stab(p(0,At)). Re-
cursively we can actually show that Stab(p(0,t)) = Stab(p(0,A"t)) for every n > 1. With
this it is easy to see that Stab(p(0,t)) = Stab(p(0,00)). In fact, (D) is obvious, and if
g € Stab(p(0,t)) and = = p(s) € p(0,00), just take n such that s < A"¢, so z € p(0, \"t)
and since g € Stab(p(0,t)) = Stab(p(0, A"t)) we have gz = x; so, (C) is valid and the lemma is
complete. ]

Lemma 7.8. If p and p' are two open eigenrays of hy, and g € G takes an initial segment p(0,t)
to an initial segment p'(0,t), then g takes the whole ray p to p'.

Demonstragdo. Let us show that the element g~ '¢(g) € G fixes the segment p(0,t). In fact, let
p(s) € p(0,t). Since A > 1, the element p(A~'s) is also in p(0,t), so we have

9 ' 0(9)p(s) = g7 0(@)hop(N's) = g hpgp(Ats) = g T hop (AN s) = g7/ (s) = p(s),

as desired. By Lemma 7.7, g '¢(g) fixes the whole ray p, which means ¢ '¢(g)r = z or
gx = p(g)x for every x in the ray p (in particular, p’(0,t) = g- p(0,t) = ¢(g) - p(0,t)). Applying
this fact to the element p(g) we get ¢(g)r = p?(g)x for every x in the ray p and, recursively,

©"(g)x = gx for every such z and every n > 1. On the other hand we have

‘;0(9) : p(O, )‘t) = Qp(g)hlﬁp(ov t) = h¢gp(0, t) = htpp/(ov t) = p,(()? At)

and recursively we get ¢"(g) - p(0, A"t) = p'(0, \"t) for every n. Finally, by using this and the



7.2. Levitt and Lustig’s infinite order case 149

fact that the action of g and ¢"(g) coincides on the whole ray p, we get

g-p(0,00) = g-(UnZip(0,\"t))
= UpZ19-p(0,A")
= Unz19"(g) - p(0, A1)
= UpZ1p/(0,A"t)

= p,(o, OO)’
and the lemma is proved. O

Step 2: find two special hyperbolic isometries u,v € G. Precisely, they have to satisfy all of

the items below:

a) (u,v) ~ Fy is a free subgroup of G;

b) uP and vP both belong to the same path-connected component (or “path-component”)
of T — {P}, say, T";

¢) u~ 1P and v~ 'P both belong to another path-component T~ of T — {P} that is different

from T;
d) If hy(P) # P, then hZ'(P) € T*;
e) If hy,(P) = P, then hy,(T+) # T~

In the second situation we have h,(P) # P and P is an interior point of the non-degenerate
segment [, (P), hy(P)]. In this case u,v must satisfy only a),b),c) and d). We do the fol-
lowing: since the action is irreducible, by Theorem 2.56 we let u be a hyperbolic element
such that [h;l(P), hy(P)] C C, and suppose without loss of generality that the orientations of
[h;l(P), hy(P)] and Cy, coincide. We know C, is properly contained in T'; otherwise, 7" would be
a line and the action would then be either dihedral or a shift (with a fixed end), a contradiction
with Proposition 2.48, since the action is irreducible. So let @ ¢ C, and let a = [Q, z] be the
bridge from @ to C,. Denote by “<” the total order defined in C,, by its orientation. Since u

translate the bridge o by uniform distances let n > 1 such that

u "z < h;l(P) < P < hy(P) <u"z (see the figure).

u "Q) uw" ()
u "o h,'l(P) P h,(P) u o C,
o ® & * > o
u "z u"z

By construction and by properties of bridges, we have [uT"Q,u"Q)] =
[u*”Q,u*”z,hgl(P),P, heo(P),u"z,u™Q]. Now, again by Theorem 2.56, let v be a hy-

perbolic element such that [u™"Q,u"Q] C C,, with same orientation of C,, in the intersection
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CuNCy = [u"z,u"z] D [h;l(P),hw(P)]. Let us see that u and v satisfy a),b),c) and d).
First, since C; = Cym and |[g"] = m||g| for every m > 1 and every hyperbolic element g,
we can suppose without loss of generality that length(Cy, N C,) < min{||u,||v||}. Then, by
Proposition 2.51 we have a). Now, by the basic properties of R-trees it is easy to see that two
points x,y € T are in a different path-component of T — { P} if and only if [z, PN [P, y] = {P}.
So, if we denote by T (by T7) the path-component of T — {P} containing h,(P) (containing
h;l(P)), we easily have T # T~ and b), c) and d) being satisfied by construction.

Let us treat the first situation, where h,(P) = P is the unique fixed point of h, in T
Let us find u and v satisfying a),b),c) and e). Remember h, is a homeomorphism of 7" for it
is continuous with a continuous inverse h,-1. So, since hy,(P) = P, the map hy, : T — {P} —
T —{P} is a homeomorphism and therefore a bijection on the set of path-components of T'—{ P}
(we know there are at least two such components, for we are removing a point from an R-tree).
We have two subcases, a “good” one and a “bad” one.

Good subcase: suppose first that either 7'— { P} has exactly two path-components which are
both fixed by h, or that it has at least three path-components. In the former case we just let
T+ and T~ be the two components and we already have hy,(T+) =Tt % T; in the latter case

we use the incredibly easy lemma:

Lemma 7.9. If X is any set with card(X) > 3 and f: X — X is any bijection, there are two
distinct elements x1 # xo in X with f(x1) # x2. O

Since h,, is a bijection on the path-components of T — { P} we can choose by the lemma two
distinct components T # T~ such that h,(TT) # T, as well as we did in the 2-component
case. Now we do the following: let #+ € T and 2= € T~. Since T # T~ we have [z, P| N
[P,z~] = {P}, so P is an interior point of [x7,z%] = [z7, P,z"]. Now we apply the same
construction we did in the situation hy(P) # P (but using the geodesic [z, 2] instead of
[h;'(P), hy(P)]) and we get the desired elements u, v satisfying a),b),c) and e).

Bad subcase: the last subcase of the case h,(P) = P we have to deal is the “bad” one,
where T has exactly 2 components which are not fixed (therefore permuted) by h,. To find u,v

satisfying a), b), ¢) and e) in this subcase we need the following

Lemma 7.10. Suppose hi,hs : T — T are two A-affine maps with respective unique fixed points
Py # Py. Also, suppose

o hi(Py) is not in the path-component of T — {P1} containing Pa;
e ho(Py) is not in the path-component of T — { Py} containing P;.
Then hghfl is a hyperbolic isometry of T such that [Py, Py] C Ch2h1_1.

Demonstragao. The isometry part is easy, for

d(hahi!(z), hahy  (y)) = M(hy (), b (y) = A%d(x,y) =d(z,y).

Note that we still don’t know if the characteristic set Ch2 ht is a line for we still don’t know if
hahi ! is hyperbolic. By the two last hypotheses, [ha(P1), P2] N [Py, Pi] = {Py} and [h1(P2), P1]N
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[P1, P, = {P1}. Since P; # P», by Proposition 2.28 we have the geodesic [ha(Py), h1(P2)] =
=0

[ha(P1), Py, P, hi(P,)]. Since hy'(P1) = Py (for d(h'(Py), P1) = $d(Py, hi(P1)) = 0), we have

hoh ' [h1(P2), Pi] = [hahy 'hi(Py), hah{* (P1)] = [Pz, ha(P1)] (see the figure).

hy(Ps) P Py ha(P)
° P °

&
St A

By Proposition 2.36, the middle point of the segment [h1(Ps), hahy' - h1(P2)] = [h1(P2), P2
(say, xg) belongs to Ch2h1—1. Since [h1(P,), P1] is bigger (A times the size) than [Py, P»], 2o is in
the interior of [hq(P2), Pi]. Similarly, the middle point yo of the segment [Py, ho(P1)] belongs to
Ch2h1-1 and is in the interior of [Py, hao(P))].

hi (Ps) xo P Py oyo  ha(Py)
e . — *— o

Since Cth;1 is connected, [zg,yo] C Cth;1 and in particular [Py, Py] C Cth;L Finally,
since Py is a point of Cy, ;-1 which is not fixed by hohit (for hohTY(Py) = ho(P1) # P1), hohi!

must be hyperbolic and the lemma is done. ]

Let hy be in the bad subcase. There must be a hyperbolic element g € G such that P ¢
Cy, for if P € Cy for every hyperbolic the action would be reducible by Proposition 2.45, a
contradiction. Fix such g and let ¢’ = v, 0¢. We know h, = gh,, and so the dilation coefficient
of hy is also X. We also have R(¢’) = R(yp), since

R(p) = R(&), [alp = [zg7 ]y

is easily seen to be a bijection with inverse [z], + [zg],. Thus, if we show that h, is not in
the bad subcase (only subcase we still haven’t found the desired v and v), then we can find u,v
for hy and proceed the proof with h, instead of hy, to show R(¢") = oo and we will be done,
because R(yp) = R(¢’) = co. Suppose then by contradiction that h, is also in the bad subcase,
that is, it has a unique fixed point P’ and it permutes the only two path-components of T'—{ P’}.
We claim we can apply the lemma above for h, and h,s. In fact, they are both A-affine maps.
Their fixed points are distinct. Indeed, hy/ (P) = ghy(P) = gP # P (for g is hyperbolic and has
no fixed points), so P is not a fixed point of s, and therefore P # P’, as desired. Furthermore,
since both are in the bad subcase, P’ and h,(P’) are in distinct path-components of 7' — { P}
and similarly P and hy (P) are in distinct path-components of T'— {P’}. By the lemma above
we have h@/hgl a hyperbolic isometry such that [P, P'] C Chv,/ Bt in particular P € Chwl Wt
But hyhg, 1= ghwhgl = ¢, so we would have P € Chwl Wt = Cy, a contradiction. So hy cannot
be in the bad case and step 2 is complete. We fix u and v satisfying a) through e) and proceed
with the proof.

Step 3: prove that R(p) = oco. Remember that it is enough to show that S(w(¢)) = oc.
Suppose by contradiction that S(m(¢)) = K < oo. By the works of M. Bestvina and M.
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Feighn (see [6]), there is Ny > 1 such that, for every @ € T, the natural action of Stab(Q)) on
mo(T — {Q}) (the set of path-components of ' — {Q}) has at most Ny orbits. Also, by Lemma
7.6, arc stabilizers are finite groups, so let I = [P,uP] N [P,vP] (which is a non-trivial segment
because of a)) and let s = card(Stab(I)) < oco. The general idea is to use u,v to construct a
big enough collection of pairwise distinct rays, all of them containing I (within a same distance
from their respective origins, see the figure) and such that all of them are mapped to each other
by some isometry g. This will give us a number of s 4+ 1 such isometries g, all belonging to
Stab(I), a contradiction.

For every m > 1, consider the set W = W (m) of the words w written in the letters u,v (u™*

and v~! not allowed here) such that each of the two letters appears exactly m times in w (so the
length of w is exactly 2m). Since (u,v) ~ F5, the obvious map W — G (that considers a word as

)

an element of G) is injective, so we can consider W C G. It is easy to see that card(W) = (7).

Since card(W(m + 1)) = (2(721:11)) > 2(27;"), card(W) — oo as m — oo, so in particular we can
fix m big enough such that

card(W) > K Ny(s + 3).

The elements w € W have many interesting properties. First, write w = o1...09,,, for
o; € {u,v}. Let us show that [P,wP] = [P,01P,0102P,...,010%...09,, P] by induction. Indeed,
note that, by construction, C,, and C,, intercept in a non-trivial segment containing P in
its interior and with same orientation. Thus, by Proposition 2.39, ||oi02|| = ||o1]| + [|oz2]|.
Furthermore, in the proof of that proposition, we can see that C,,,, N Cy, also contains the

same non-trivial segment with P in its interior and same orientation, so

d(P, UlUQP) = H0102H = HUlH + HJQH = d(P, le) —i—d(P, UQP) = d(P, O’1P) + d(Ulp, 0102P),

thus [P,o109P] = [P,01P,0102P] by Proposition 2.28. Recursively we show by
induction until the m! step: suppose we have shown that [P, oi09...09;m_ 1P] =
[P,01P,0102P,...,0109...09m—1P], that |o1..00m—1| = |oill + ... + |[oam—1] and that

0109...09m—1 is hyperbolic whose characteristic set contains a non-trivial segment with P in
its interior and whose orientation coincides with the one on both C,, and C, in the intersection
with them. We repeat the same argument above, replacing o1 by 0103...09,,—1 and o3 by ooy,.

Proposition 2.28 gives us

lo1..oom|l = |lo1-..o2m—1ll + [|o2mll = [lo1]] + [|o2]| + ... + |o2m]],
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and the proof of Proposition 2.39 gives us that P € Cy,. 4,,,. Thus,0

d(P,o1...090;mP) = |o1...09m]
= Joull + lloall + - + loaml
= d(P,01P)+d(P,o9P)... + d(P, 09, P)
= d(P,01P)+d(01P,0109P) + ... + d(0109...09m—1 P, 0102...00, P),

and Proposition 2.28 gives us [P,wP]| = [P,01P,0109P, ...,0103...09, P], as desired. A second
property of every w € W is that

[P, why(P)] = [P,01P,0102P, ..., wP,why(P)].

In fact, in the case hy(P) = P this is true by the property above. In the case hy(P) # P,
by the property of R-trees and by the previous property, it is enough to show that [P,wP] N
[wP, why,(P)] = {wP}. The end of the segment [P, wP] is in w(C, N C,) with a positive orienta-
tion. Since the beginning of [P, h,(P)] has positive orientation in C,,NC, (by d)), the beginning
of [wP, wh,(P))] also has positive orientation in w(C, NCy), so [P,wP]N [wP,why(P)] = {wP}
and the second property is proved. In particular, if we define L = d(P, why(P)), then by this
property and by definition of W we have

L = d(P,why(P))
= d(P,wP) + d(wP, why(P))
= |loull + ... + |loom || + d(P, hpo(P))
= mlfull +m|[v]| + d(P, hy(P))

and so L is independent of w (it is the same for every w € W). Another thing to register is that

I C [P,01P] C [P,why(P)] for every w € W. To show a third property, let us show the simple

Lemma 7.11. Any bijective A-affine map h : T — T on an R-tree takes geodesic to geodesics,
that is, h([z,y]) = [h(z), h(y)] for z,y € T.

Demonstragdo. It is enough to show the part (C), for then, since h~! is a %—afﬁne map we apply
the first part to h~! and obtain h='[h(x), h(y)] C [h~ h(z),h " h(y)] = [z,y], or [h(x), h(y)] C
h([z,y]), completing the proof. Let us show (C). For every three points z,y, z in T, it is easy
to see (by taking the bridge from z to [z,y]) that d(z,z) + d(z,y) = d(x,y) + 2d(z, [z,y]).
Therefore, z € [z,y] < d(z,y) = d(z,z) + d(z,y). Now, let z € [z,y] and let us show that
h(z) € [h(z),h(y)]. But d(h(x),h(y)) = Md(z,y) = Md(z,2) + d(z,y)) = Md(x,2) + Nd(z,y) =
d(h(z),h(2)) + d(h(z), h(y)), so h(z) € [h(z), h(y)] and the lemma is finished. O

A third property of the elements w € W is that [P,why(P)] N [why(P), (why)?(P)] =
{why(P)}.  Let us show this in the two cases: if h,(P) = P, showing that [P,wP] N
[wP, whywP] = {wP} is equivalent to show that wP € [P, wh,wP], or that P € [w™' P, h,wP].
By the first property we already know that wP € T (it is easy to see that actually WP € T
for any word @ in the positive letters u and v) and similarly w™'P € T~. Since h,(TT) # T~
by e), howP cannot be in T~ and so the points w™ P and hy,wP are in different path-
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components of 7' — { P}, which implies P € [w™' P, h,wP], as desired. In the case h,(P) # P,
showing this property is equivalent to showing that wh,(P) € [P,whywhy(P)], or that
hy(P) € [w™ P, hywhy,(P)], or even (by the above lemma) that P € h;l[w”P, howhy,(P)] =
[h;lw_lP,whw(P)]. Again, showing this last assertion is equivalent to show that the points
h;lwflP and why(P) are in different path-components of 7" — P. On one hand, since
hyo(P) € Cy (on the positive side of P), we have h,(P) € [P,u"P] for some big n > 1 and
thus why,(P) € [wP,wu"P]. But both points wP and wu™P are in T, so why,(P) € TT. On
the other hand, since h;l has negative orientation in C,, N C,, it also has negative orientation in
wHC, N Cy). Since w™ P € T~, we have h;lw_lp € T~ # T, and this completes the proof
of the third property.

Now we are ready to construct the rays we talked about. By the third property, for any

n € Z we have

(why)" P, (wh)" (P)] N [(why)" 1 (P), (whe)"(P)] =

[
= (why)"[P,why(P)] N (why)" [why(P), (why)*(P)]
= (why)" ([P why(P)] N [why(P), (why)*(P)]) = (why)" {why (P)}
= {(why)""(P)},

which means [P, why(P)] is a fundamental domain for the action of wh,, on its Z-orbit

pw = Unez(why)" [P, why,(P)] (see the figure).

L/N L) H

As we observed in step 1 (applying it now to the A-dilation wh,), the sequence
((why) " P)p>1 converges to a point Q, € T, that is the unique fixed point of wh, in 7.
We also know that the distance d(Qy, P) = % is fixed and independent of w € W. A last
observation before proceeding is that the ray p,, is obviously isometric to (0, co) and [P, wh,(P)]
is the unique fundamental domain of p,, whose length is exactly L. In fact, identify p,, = (0, 00)
and let h be a A-dilation on (0, 00) with a fundamental domain [a,b] with b —a = L. Let [z,y]
be any other fundamental domain of (0,00) such that y — 2 = L and let us show [z, y] = [a, b].
Write © = a + k for some k € R. We have d(b, h(z)) = d(h(a),h(a + k)) = Md(a,a + k) = \k|,
so y = h(z) = b+ A\k. Then

L=d(z,y) =dla+k, b+ k) =b+ e —a—k=L+ (A—1)k,

which implies (A — 1)k = 0 and then £ = 0. So a = x and b = y + Ak = y, as desired. So far,
we have built the rays p,, eigenrays of wh,, for any w € W, all of them containing I within the
same distance % from the origin @, and with fundamental domain [P, why(P)] of uniform

length L. They are also pairwise distinct, for, by the first property, if w # w’, the segments
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[P,wP] and [P, w'p] must go in different directions at some point (see the figure).

wP
N vt
w' P

Note that the affine maps wh,, are the induced affine maps of the isomorphisms ~,,¢ of G.
So, let A be the set of isogredience classes [74¢]isogr Of ¢ (the set we supposed to be finite with
K elements) and let f: W — A with f(w) = [Yw@lisogr- We use the following easy and intuitive

principle:

Lemma 7.12 (Generalized Pigeonhole Principle). Let X,Y be two finite sets and let f : X —'Y
be any map. If card(Y) < n and card(X) > kn for some k,n > 1, then there are k different
elements in X with same image, that is, there is X' C X with card(X') = k and f(x) = f(2)
for any x,z € X'. O

Since card(A) = K and card(W) > Ny(s + 3)K, by the Generalized Pigeonhole Principle
there is W/ C W with card(W') = Ny(s + 3) such that for every w,w’ € W/, v,¢ and v, ¢
are isogredient. Fix wg € W’'. For any w € W', since v,¢ and ~,,¢ are isogredient there is

¢ = c(w) € G such that ve(vwp)v: ' = Y- Then

Yewep(c)=1P = Ve YwVp(e)=1P = VY YwP Vet = YwoP-

The induced affine maps of the two automorphisms in the equation above must then coincide,
so cwp(c) " hy, = wohy or cwhye™! = wohy,. With this we can see that ¢ maps the origin
Qu of py to the origin @, of py,. Indeed, since @, and @, are the unique fixed points of
why, and wohy,, respectively, and since wohy(cQuw) = cwhy(Quw) = cQuw, uniqueness gives us
cQuw = Qu,- The ray p,, is then mapped by ¢ = ¢(w) to a ray cp,, starting at Q. In the same
way we can see that cp, is also an eigenray of woh,, for if cx € cp, (for some z € p,,) then

wohy(cx) = cwhy(z) € cpy. Thus, we have the following configuration:

P

Puw

CPu
cwhy,(P)

Consider the action of Stab(Q,) on the set mo(T'—{Quwy, }) of path-components of T'—{Qu, }),
which has at most Ny orbits. The set Orb(mo(T — {Quw,})) of orbits under this action has at
most Ny elements. Let ' : W' — {wg} — Orb(mo(T — {Qu,})) be the map that associates
w e W' —{wp} to the orbit of mo(T — {Quw, }) containing the point cwhy(P). Since card(W’' —
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{wp}) = card(W') — 1 = No(s +3) — 1 > Ny(s + 2), the Generalized Pigeonhole Principle gives
us W” ¢ W' — {wo} with card(W”) = s + 2 and such that f'(w) = f'(w") for any w,w’ € W”,
that is, the path-components containing the points cwhy,(P) and ¢'w’hy(P) are in the same
Stab(Quy,)-orbit (here, ¢ = ¢(w’)). This means there must be g = g(w,w’) € Stab(Qu,) such
that the path-components of gcwh,(P) and ¢'w’h,(P) inside T — {Qu, } are the same, which is
equivalent to say that the rays gcp,, and ¢ p, coincide in a non-degenerate interval [0,t). See

the figure:

Pwy

P

Pw

dw'hy,(P)

- ("’f)w;

gewhy,(P) " 9CPw

g9

cwhy,(P) .
T CpPw

As we already know, the rays cp,, and ¢'p,s are eigenrays of the same A-affine map woh,,.
Since gepy(0,t) = ¢ pur (0, 1), by Lemma 7.8 g maps the whole ray cpy, onto ¢ pyr, 80 Gpuw = pur
for § = ¢ 'gc. Since this can be done for any w,w’ € W” and since card(W”") = s + 2, write

W" = {w, w1, ...,ws+1} and denote by g; the element such that §;p,,, = pw we just constructed.

The elements g; must be pairwise distinct. In fact, if g; = g = g; for 1 <i,5 < s+ 1, then
9pw; = GiPw; = P = GjPw; = GPw;> SO pw; = pw; and therefore i = j, since the rays p,, are
pairwise distinct (fact already shown). Finally, since d(I,Qy) = ﬁ = d(I,Qw,), the elements
g; must fix the segment I, so g; € Stab(I) for 1 < i < s+ 1. We then found s + 1 distinct
elements inside a set Stab(I) of cardinality s. This is a contradiction, so S(m(yp)) = oo and

therefore R(p) = oo, which completes the Theorem. O
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Capitulo 8
Property R~ for hyperbolic groups

In this chapter we give the details of the already known proof or property R for non-elementary
hyperbolic groups given by G. Levitt and M. Lustig in [68]. Knowing this proof will also be
especially useful for chapter 9.

The key ingredient of the above proof is an exhibition of Paulin’s result ([81], Theorem A,
corresponding to Theorem 8.9 here). This theorem implies that infinite-order automorphisms
of non-elementary hyperbolic groups satisfy the conditions of Levitt and Lustig’s result (given
in more general terms by our Theorem 7.4). Then, by Theorem 7.4, these automorphisms have
infinite Reidemeister numbers. So - as we have said in the previous chapter - although Levitt
and Lustig’s paper [68] is known as the one who shows R, for non-elementary hyperbolic groups
(which is true), I would like to point out the fact that their proof there relies on Paulin’s equally
complex Theorem 8.9, so I would personally say that R, for hyperbolic groups is a result by
Levitt, Lustig and with a good contribution by Paulin.

Hyperbolic groups were first defined in 1987 by Gromov [50]. This is a large (and also largely
studied) class of groups in geometric group theory. For other equivalent definitions of hyperbolic

groups, see [55].

Definition 8.1. Let GG be a group and § > 0. We say G is d-hyperbolic if G is finitely generated
and if its Cayley graph I'(G, S) is a d-hyperbolic space (for some finite generating set S). We
say G is hyperbolic if it is d-hyperbolic for some ¢ > 0.

If G is hyperbolic as above, it follows that, for every other finite generating set S’, we
have I'(G, S) @ I'(G, S") by Proposition 2.20 and therefore I'(G, S’) is also a hyperbolic space
by Proposition 2.23. So, it does not matter which generating set we choose for hyperbolicity.
Similarly, with the same argument, if two f.g. groups G and H are quasi-isometric (i.e., have
quasi-isometric Cayley graphs) and G is hyperbolic, then H is a hyperbolic group.

There are some trivial examples of hyperbolic groups. For example, finite groups are hyper-
bolic because their Cayley graphs, having finite diameter, are always hyperbolic spaces. Another
example is Z, whose usual Cayley graph is homeomorphic to R, which is an (0-hyperbolic) R-
tree. Let us go just a little bit further: suppose a group G is virtually ciclic, i.e., it contains a
finite index cyclic subgroup H. Then, by Proposition 2.22 we have G @ H and therefore by 2.23
G is hyperbolic, since H is. All these groups are relatively simple and not interesting for some

areas inside geometric group theory. Because of this, we usually make the following distinction:
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Definition 8.2. We say a hyperbolic group G is non-elementary if GG is infinite and is not

virtually cyclic.

Example 8.3. Here are some basic examples of non-elementary hyperbolic groups. First, all
finitely generated free groups F;, of rank n > 2 are non-elementary hyperbolic groups. In fact,
we know from Proposition 1.22 that the Cayley graph of such groups are (combinatorial) trees,
in particular O-hyperbolic spaces, as desired. Therefore, by Propositions 2.22 and 2.23, every
virtually-F}, group is also non-elementary hyperbolic. For example, direct products F;, X Z,, and
semidirect products F}, x S,, for the natural permutation action of S, on F;,. Other examples
of virtually-F), groups are the fundamental groups m1(G,T',T) (see chapter 1) of finite graphs
of groups (G,I') whose vertex and edge groups Gp and G, are all finite. In fact, they are
virtually-F), by [86] (see pages 120-122) and so hyperbolic.

One of them is the special linear group G = SLy(Z), or modular group, as some would say.

This is the group of the square integer matrices of size 2 with determinant 1. One can show
0 -1 11
that G is generated by S = Lo ) and T = <0 1). G acts on the (hyperbolic) upper half

plane H={z=x+yi € C| y > 0} by

(a b) az+b
2= .
c d cz+d

The half plane contains a G-invariant tree (in red), which is the 1-skeleton of a tessellation of

the hyperbolic plane, so we could very likely expect G to be hyperbolic. Fundamental domains

of the action are given in the figure, where the action can be geometrically seen.

71 Id T

The group G can be shown to have the following presentation:
G=(S,ST|S*=1, (ST)® =1, §? = (ST)*) ~ Zy %7, Zs,

which is clearly the fundamental group of a segment with Z4 and Zg as vertex groups and Zs as

edge group. So, as we already said, G is virtually-F,, by [86]. In this case, G' contains an index
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a b
6 copy of F5, which is the subgroup consisting of the matrices such that a,d are odd
c

and b, ¢ are even. Since G contains Fh, it must be a non-elementary hyperbolic group.

Example 8.4. A last and elegant example of hyperbolic group is every fundamental group G
of a closed hyperbolic n-manifold X, with n > 2. In fact, let X = H" be the universal covering
of X, which is the well-known n-dimensional simply connected hyperbolic space. It is known
that G = 71(X) is isomorphic to the covering transformation group of X (see [76]), a group
of isometries of X on which G acts properly discontinuously. Since the orbit space X /G ~ X
is compact, the action is cocompact and therefore G is a hyperbolic group (see [14]), for its
Cayley graph is quasi-isometric to X. If G was virtually cyclic, its Cayley graph would be quasi-
isometric to R = H!, so H" = X @ H! and it is known that this implies n = 1, a contradiction.
Therefore G is non-elementary, as desired. One of these groups is the fundamental group of the
bitorus, that is, G = w1 (T?4T?). It is widely known that G = <a, b,c,d | aba=tb"tede td™t = 1>.
The universal cover of the bitorus is the hyperbolic Poincare (open) disk #? and a model of the
covering map p can be seen in the figure. This map produces a tesselation of 2 by (hyperbolic)
regular octagons, such that each vertex has exactly 8 octagons adjacent to it, therefore called a
{8,8} tesselation of #2. The Cayley graph of G consists exactly of the edges inside the disk. It

is quasi-isometric to H? and so hyperbolic.

Non-elementary hyperbolic groups are way more interesting than the elementary ones and

have some “non-abelian-like” properties, such as
Proposition 8.5. [/7] Every non-elementary hyperbolic group has a finite center.

Proposition 8.6. [/7] Every non-elementary hyperbolic group contains a non-abelian free sub-

group of rank 2.
Another useful property is:

Proposition 8.7. [21] Every hyperbolic group is finitely presented.
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A key ingredient to show property R, for non-elementary hyperbolic groups is a theorem
due to Frédéric Paulin ([81], 1997). It creates, from a non-elementary hyperbolic group and a
special subgroup of automorphisms, a very special type of action on an R-tree, allowing us to
use the results on the previous chapter.

To state the theorem, we will use the notion of amenability for groups. Pier’s work ([84],
1984) contains a great number of definitions that are equivalent to amenability. Since it is not
vital for the strategy of the proof, we will postpone the definition and only state one of the

characterizations later, when necessary.

Definition 8.8 (Affine action). Let G ~ (X, d) be any action of a group G on a metric space
X. We say the action is affine if there is a multiplicative homomorphism A : G — (0, 00) such
that

d(gz, gy) = Mg)d(z,y) ¥ (z,y,9) € X x X x G.

Theorem 8.9 (Paulin’s Theorem). Let G be a non-elementary hyperbolic group and denote

7 Aut(G) = Out(G) = f:ﬁgg; the natural projection. If H < Aut(G) is amenable such that

w(H) has infinite center, then there is an R-tree T and an affine action (G x H) ~ T whose

restriction to G is a non-trivial, minimal and small action by isometries.

8.1 Proof of Paulin’s Theorem 8.9

The proof we are going to present is the main result of [81]. Since the proof is a bit long, we

divided it in three steps:

e Step 1: create a non-trivial and small action by isometries of G on an R-tree X,,. the
space X, will be defined as an ultralimit (see Chapter 2) of a sequence of hyperbolic spaces
X, on which we know G acts and whose hyperbolicity constants converge to 0. So it will

be an R-tree.

e Step 2: Extend the action above to a well-defined action (G x H) ~ X,. Using that
every ¢ € H induces a map f, on each X,, we put them together to a well defined
homeomorphism f, : X, — X,. We show these maps are coherent with the previous

action and give rise to (G x H) n~ X,.

e Step 3: Modify “a little bit” the R-tree X, and the action (G x H) ~ X, above to obtain
the affine action (G x H) ~ T desired. Here we create a linear action of H on a closed
convex cone of length functions and use amenability to find a special one, called [, of some
action of G on some R-tree T'. The special properties [ satisfies makes it possible to extend
this action to all G x H.

Step 1: create a non-trivial and small action by isometries of G on an R-tree X,,.

By hypothesis, let (¢,)n>1 be a sequence of elements of H such that the 7(v,,) are pairwise
distinct elements in the center of w(H). Let S = {s1, ..., sk} be a finite generating set for G such
that S = S~'. By Proposition 8.6, G contains a copy of the free group F» as a subgroup, so we
may assume (s1, S9) ~ Fj.

Let |.| : G — R be the natural geodesic length and d : T'(G, S) x I'(G, S) — R be the natural
geodesic metric on the Cayley graph of G (see Chapter 2). With this metric, G acts by isometries
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on I'(G, S), by extending by linearity the left multiplication action of G on itself. For now, let
us restrict d to the set G of vertices, which also becomes a metric space on which G acts by

isometries. Then, for each n > 1, define
An = inf {max{d(g, ¥n(s)g)}}.
geG =~ seS

Since d only takes integer values on G x G, A, is attained by (at least) one point (element) of

G, which we call p,,. Then
An = max{d(pm ?/)n(S)Pn)}
seS

We first claim that for every ¢ € G and n > 1, d(ppn, ¥n(9)pn) < |g|An. In fact, given g,
write g = $1...8, as a word in S with minimal length (and so |g| = m). Then, by using a finite
number of times the triangular inequality, the fact 1, is an automorphism and the fact that the

action is isometric we have

d(Pn, Yn(9)Pn) < d(Pn, ¥n(s1)pn) + d(n($1)Pn, Yn(s1)¥n(s2)pn) + ...
oo+ d(n(51) -V (Sm—1)Pns ¥n(9)Pn)

= d(pn7 1/%(81)1771) + d(pn7 1/}71(82)1)71) + ...+ d(Pm wn(sm)pn)
< A+ A+ o+ Ay (M times)

‘g‘)\na

as we claimed. We will need this information later.

Now we claim that lim,_,., A, = co. In fact, suppose by contradiction that it is false. Then
there is a bounded subsequence of (\y,),, which we will still call by (\,), just for simplicity on
the argument. Then there is K > 0 such that A\, < K for every n, and by the definitions of |.|,

d and of \,, we have

Ypo1¥n(s)] = D7 00 (8)Pn] = d(pry Yn(8)pn) < Ay < K for every s € S and n > 1.

This means for every n > 1 and s € S, the elements 7 -1 ¥ (s) - as vertices of the Cayley graph -
are all contained in the closed ball Bp(1, K) with center the identity element 1 and ray K. But
in a Cayley graph of a finitely generated group, every such ball contains only a finite number
of vertices. So there is a finite set V' of vertices such that ~ -1 Yn(s) € V for every n > 1 and

s € S. Since S = {s1, ..., S;m }, consider the map

FrN= V™ ne (v -10n(81), - Y,-10n(5m))-

Since V™ is finite and N is infinite, there are n; # ng such that f(n1) = f(ng). By the
definition of f and because G = (sq, ..., $p), we immediately have Vpri¥ny = fyp_lwm. Since
inner automorphisms are mapped to Id by 7, we have 7(¢y,,) = 7(¢n,), a contradiction, for we

chose all the 1, so that their projection are pairwise distinct. This shows our claim.

Let us create the sequence of pointed metric spaces. For every n > 1, define (X, d,, pn) by
putting X,, = G, p, the vertex considered above and d,, = %. For this last definition of d,,, we
must note that A, > 0, for since ¥, (s1) # 1, for example, we have X\, > d(pn, ¥n(s1)pn) > 1.
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Now, let w be an ultrafilter of N containing the Fréchet filter (Proposition 2.61). Define the
actions G ~ X, by putting

g - Ty = Yp(g)x, (multiplication in G)

for every x,, € X,,. So, G acts by isometries on each X,,. For every g, let C(g) = |g|. By what

we have shown before,

APn; Ynlg)Pn)

< —
. <lgl=C(9)

dn(pmg ) pn) =

for every n. By Proposition 2.69, these actions induce an action by isometries G ~ X,,, where X,
is the w-ultralimit of the sequence (X,,, dy, pn)n. The action is given by g- [(zn)n] = [(9-2n)n] =

To finish step 1, let us show that X, is an R-tree. We will do this by showing X, is
isometric to an R-tree Y. So, let us define the sequence (Yy,, dp, pn)n by putting Y, = I'(G, S)
(so X, = G C Y, is the set of vertices of Y},), dy, = % (where d is now the metric on the whole
Cayley graph) and putting p,, as the same points we chose for X,,. Since I'(G, S) is d-hyperbolic
with its distance d (for G is hyperbolic), it is easy to see that the Y, are %—hyperbolic. Since
lim,, oo % = 0 (for lim,, oo A\, = 00), it follows from Proposition 2.68 that Y, is an R-tree.
Now let us define the isometry. Since the X, are subsets of the Y,, and the metrics d,, on the
X, are easily seen to be restrictions of the metrics cZn on the Y,,, it follows that X, can be seen

as a metric subspace of Y,,. So, the natural inclusion
1: X, = Y, Z[(xn)n] = [([Bn)n]

is well defined and an isometric embedding of X,, in Y,,. We just have to see i is surjective. Let
[(Yn)n] € Y, For every n, the point y,, is in the Cayley graph Y,, = I'(G, S). Since the length of

every edge is 1, there is a vertex x,, such that d(z,,y,) < %
In Yn Yn  Tp

& & @ @ & 9
— —
2 2

Let us see that [(z,),] € X, that is, the sequence d,,(z,py) is uniformely bounded. By
hypothesis there is C' > 0 such that dn(yn,pn) < C for every n. Since A\, > 1 for every n we

also have /\i < 1. Then, for every n,

dn(Tn; pn) = dn(xmpn) < Cin(xnayn) + cZn(yn,pn) < 2/1\71 +C < % +C,
as desired. Finally, to see that i[(z,)n] = [(zn)n] = [(yn)n] in Y, we just have to check if
lim,, Jn(acn,yn) = 0. But this is clear since we just saw that (in(xn,yn) < ﬁ — 0as n — oo.
Thus, X, ~ Y, is an R-tree. By applying the results of [82], we guarantee the action G ~ X,
above is non-trivial and small, which completes step 1.
Step 2: Extend the action above to a well-defined action (G x H) ~ X,,.
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To create such action, we must create an action H ~ X, and show that it is compatible
(in the semidirect product sense) with the one from step 1. So, given ¢ € H, let us first create
maps fp 1 X, = X, (or fu, if we need to specify) for every n to use Proposition 2.70. Since

7(1,) is in the center of m(H) we have 7(¢)m(vn)m (@) " tr(vn) ™t = Id, 30 Ynp = 7y, @tn for
some inner automorphism ~,, and some y,, € G (also denoted by y, , if needed). Define then

o= fn,ap : X — X, by fn(x) = ynw(x)

Let C' = C(p) = sup,cg{max{|p(s)],|¢~(s)|}}. We claim f,, is C-bi-Lipschitz with the distance
d,, (same number C for every n). In fact, we first see that ¢ : G — G is C-bi-Lipschitz by showing
two inequalities. Given g € G, represent g by a reduced word w = si...5;, in S with minimal
length, so that |g| = m. If w; are reduced words representing (s;) with minimal length, then

w1...wy, 18 a (not necessarily reduced or minimal) word representing ¢(g), from where we have

lo(g)] < length(w;...wp)
= length(wy) + ... + length(wy,)
= Jp(s)| + ... + [p(sm)|
< C+ ..+ C (m times)

Clgl.
This is true for every g € G. Now, if g,¢' € G,

d(e(9), 0(9) = le(g) " e(g)| = lelg"d) < Clg'g'| = Cdlg. g'),

sp we have the first inequality. For the second one, note that C(p) = C(¢~!) and that the

1

inequality above works for every element in H, so applying it for =" we have

d(g,g') = de™ " (¢(9)), ¢ (0(g")) < Cle™d(e(g), (g") = C(e)d(v(9),0(g"),

so ¢ : G — G is C-bi-Lipschitz. By using these two inequalities and the fact that d is invariant
under left multiplication in G we get that f, is %—bi—Lipschitz (because d,, = %), and since A, >
1, fn is obviously also C-bi-Lipschitz, as desired. If we show that the set {d,(pn, fn(pn)) | n > 1}
is bounded, then by Proposition 2.70 the f,, will give rise to a C-bi-Lipschitz map f, : (X, d,) —

(Xw,dy), which defines our desired action. This is the next
Lemma 8.10. The set {dy,(pn, fn(pn)) | n > 1} is bounded.

Demonstragdo. Since d,, = %, we have to find D > 0 such that d(p,, fn(pn)) < DA, for every
n. Before this, let us show that there is D’ > 0 such that, for every n,

Sgg d(fr(Pn), n(8) fu(pn)) < D'\, and Sggd(pm?/)n(s)pn) < D'\,

The second inequality is not hard to be satisfied because sup,cgd(pn,¥n(s)pn) = An, so it

suffices to choose any D’ > 1. For the first one, we use many properties obtained so far to note
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that, for every s € S and n,

d(fn(pn); ¥n(s) fulpn) = d(yne(pn), ¥n(s)yne(Pn))
(Y@ (Pn), bnp (9" (5))ynsp(pn))
= d(Yn@(Pn), Ynptn (o (5))(pn))
(
(

I
.

Ya(p ™ (5))e(Pn))

©(pn), ¢
= d((pn), (Y™ (5))pn))
< Cd(pn, Ynle~ ' (s))pPn)
< Chale™'(9)]
< CCM,,

therefore sup,cg d(fn(Pn), ¥i(8) fn(pn)) < C%\y, and so the number D' = max{1, C?} satisfies
the two inequalities we wanted. Now let us find the number D of the lemma. It is enough to
find D > 0 such that d(p,, f(pn)) < DAy for every n but a finite set of indexes F C N. For if
we find such D, it is straightforward to see that D = max{D, maxnep{%z(p"))}} satisfies the
lemma. To find D, let § > 0 such that the Cayley graph Xg = I'(G, S) is d-hyperbolic. Define

vgs = card({g € G | |g] < 80})

as the number of vertices in the closed ball Br(1,89) and D = 2(4vgs + 8)D’. We claim D
satisfies what we want. Suppose by contradiction this is false. Then there is an infinite set of
indexes B C N such that, for every n € B, d(pn, fa(pn)) > DA, or

d(pn, fn(pn)) > 2(4vss + 8)D'\.

For every n € B, let I,, = [pn, fn(pn)] be the geodesic in Xg and let z,, be the middle point of
this geodesic segment. Now let n € B be a fixed index such that D'\, > 6 (for lim, e Ay, = 00).
Let us see that every segment I’ C I,, centered in x,, and with diameter less than 2(4vgs+5)D’' A,
must be in a distance less than 26 of both sets v, (s1)l, and ¥, (s2)I,, (see the figure).

> 2(4dvgs + 8) D'\,
S

n(5))0n Uu(53)f(pr)

<D\

> 2(4vgs + 8) D'\,

In fact, let j € {1,2} and z € I'. Then d(z,p,) > 3D'\,, for since d(p,,z,) > (4vgs +
8)D’'\,, > 3D'\,, by hypothesis, the only chance of d(z, p,) < 3D’\,, happening is if z € [p,, ).
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But then we would have
d(pn, Tn) = d(pn, z) + d(z,2,) < 3D'\,, + (dvgs + 5) D'\, = (dvgs +8) D'\,

and therefore d(pn, fn(pn)) = 2d(pn, Tn) < 2(4vss + 8) D'\, a contradiction with the number n
we chose. Now, the fact d(z,p,) > 3D’\,, implies

d(z,w) > 2D'\, for every w € [P, Yn(S5)Pn],

for if not we would have d(z,p,) < d(z,w) + d(w,p,) < 2D'\, + D'\, = 3D'\,, an-
other contradiction. So, d(z,w) > 2D'\, > D'\, > 0 for every w € [pn,¥n(sj)pn]. If
we consider the geodesic triangle A(py, fn(Pn), ¥n(sj)pn), 6-hyperbolicity implies there must
be 2/ € [fn(pn), ¥n(sj)pn] with d(z,2') < §. Now we similarly think in terms of the tri-
angle A(fn(pn); ¥n(8))Pn, ¥n(85) falpn)): for every w' € [fu(pn),¥n(s;)fn(pn)] we must have

d(z',w") > 4, for if not we would have
d(z, fo(pn)) < d(z,2') +d(Z' ') +d(W', fu(pn)) <6+ 8+ D'\, < 3D\,

a contradiction because one can show d(z, f,(p,)) > 3D’'X in the same way we showed d(z, p,) >
3D'X. So, by hyperbolicity again, there must be 2 € [¢y,(5;)pn, ¥n(85) frn(Pn)] = ¥n(sj)I such
that d(2/,2"”) < §. Therefore d(z,z"”) < 2§ and z has a bounded 20-distance from v,,(s;)I, as

desired.

With this, one can show that d(zy, [¢¥n(s1)", ¥n(s2)"|x,) < 86 forevery r =1, ..., vg5+1. Now,
since (s1,s2) is a free group, the commutators [s], s5] are pairwise distinct in G, and because
Yy, is injective, the elements h, = [t (s51)", Yn(s2)"] = ¥n([s], sh]) must be pairwise distinct.
Because of the action of G on its Cayley graph Xg, the vgs+ 1 points {h, -z, | 1 <7 < wvgs+ 1}
are pairwise distinct inside the set B(x,,85) N G - x,,. This is a contradiction because this set
contains at most vgs points. In fact, if x, is a vertex it contains exactly vgs points, because
of the symmetry of the Cayley graph. If it is not a vertex, then the distance between any two
points of the orbit G -z, is at least 1 (see next figure for the only 4 possible cases); therefore
card(B(zy,85) NG - z,) < vgs. This finishes the lemma.

N
T,
°<:>’ h
hx,
d (@, hea)=1 d(wn, hen) > 1
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Coming back to the main line of proof of step 2, we got a C-bi-Lipschitz map f, : X, = X,
for every ¢ € H. To show this defines an action H ~ X, (by putting ¢ - x = f,(x)), we must
show frq, = Idx,, and f,, = f,f. The first one is easy to see. To show the second one, note
that

UnPL" = Yy PUn? = Vo PV V0 = Vo Vo ) PL U = Vypmiolyr ) O Y-

Yol

On the other hand, by definition we know that 1,0’ = Yyt ngp(p' 1. Putting the equations
together and canceling the bijections 1, on the right, we get Voot n = Voo ) O equiv-
alently.

—1 — Id
Yy ks em Wt ) ’

so the element z, = y;;, WYonP (Y n) is by definition in the center of G. Now, for every n and

every x € X,

/

A(fop (@), fonfern(®) = d(Ype ne? (2); Yonp (Y ' (%))
= dYpe' P (2); Yo (Y ) 0 ()
= d(Ypp 0¥ (2): Yo' 2P (7))
= dYpp' 1P (2)s Yoo P () 20)

= d(1,z,)

= |zl

By Proposition 8.5, Z(G) is finite and there is @ > 0 such that |z,| < @ for every n. Then
d(fop' n (), fonfon(r)) < Q for every n and this easily implies f,r = f,, f,/, because for every
[(xn)n] € Xu,

dW(fgw’[(xn)nLfgofap’[(l’n)n]) = dw([(fgw’,n@n))n])[(f%nfcp’,n(xn))n])
= hogndn(ftptp’,n(xn)af%Nst’,n(xn))

= lim d(fsw’,n(@“n)a)\fsovnfw’:n(xn))
Q

lim —

<
= W,
= 0.

So we have an action H ~ X,,. It is important to note that since f,f,-1 = f,,—1 = fra = Id,
the f,, are bijections, continuous (bi-Lipschitz) with continuous inverse maps f,-1, so they are
all homeomorphisms of X,,. To complete step 2, we are only left to show that this action is
coherent with the action G ~ X, from step 1 in the semidirect product sense. By the definition

of semidirect product, this means we have to show that

©(9) - (fo(@)) = folg - @)
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for every g € G, ¢ € H and = = [(zy)n] € Xw. But for every n,

fa(n(9)2n) = ynp(¥n(g)zn)
= Ynp¥n(9)p(zn)
= YnpUn(9)Yn Ynp(n)
= Yy P¥n(9) fr(n)
= Ynp(9) fu(xn),

and this implies

do(p(9) - (fo(2), folg-x)) = dulp(g) - [(falzn))nl; fol(¥n(g)n)n])
= du([(Ynp(9) fr(@n))n]; [(fr(¥n(g)Tn))n])
= llgldn(¢n§0(g)fn(l'n)afn(d}n(g)fﬂn))

= limO0
w

= 0,

which completes step 2.

Step 3: Modify “a little bit” the R-tree X, and the action (G x H) ~ X,, above to obtain
the affine action (G x H) ~T desired.

By the definition of what should be an affine action (Gx H) ~ T, it suffices to find an R-tree
(T, d) (this metric d will have “nothing” to do with the one from step 1) and a non-trivial small
action by isometries G ~ T whose translation length function [ is such that: for every ¢ € H,
there is A(p) > 0 (with ¢ € H — A(¢) € (0, 00) a homomorphism) with [op~! = A(p)l and also
a unique affine map hy, : T'— T with A(¢) a dilation coefficient (d(hy(z), hy(y)) = Ap)d(x,y))
and such that hy(g - x) = ¢(g) - hp(x). Why would this give us an affine action? In fact,
the last equality is to guarantee all the maps h, combine with G ~ T to a well define action
(G x H) ~T. The dilation coefficients A\(p) are the affine part of the definition, together with
the coefficients A(g) = 1 for g € G. The fact [ o p~! = A\(¢)! is an extra information we will get
while we try to find the affine maps h,,.

First, since G ~ X, is non-trivial, let 77 C X, be the unique minimal G-invariant subtree
(Proposition 2.54). We claim that 7" is also H-invariant, therefore (G x H)-invariant. Let
¢ € H. Since f, is a homeomorphism, f,(7") is also a subtree of X,,, for it is connected and so
convex, by uniqueness of geodesics. It is also G-invariant, for if f,(x) € f,(7") is any element
and g € G, then g- f(x) = f(¢ "1 (g) - z) € f,(T"), as desired. But by Proposition 2.54, every
G-invariant subtree of X, must contain 7", so 7" C f,(7"). By using the same argument to o1
we get T" C f,-1(T"), or (because f,f,-1 = Id) f,(T') CT'. So ¢ -T" = f,(T") =T" and T" is
H-invariant, which gives an action (G x H) ~ T'. Denote then by d’ the restriction of d,, in X,
to T”. This action is clearly still non-trivial, small and by isometries. We will need from now on

a lot of convex cones:
Definition 8.11. A subset C C V in a real vector space V is a convex cone if

a) If x € C and ¢t > 0, then tx € C;|
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b) If z,y € C, then x +y € C.

It is easy to see that every convex cone is a convex subset in the natural meaning.
Denote by RT"*T" the set of all maps § : 7" x T’ — R. Given a map 6 € RT'*T" which is a

metric, define the following conditions:

i) The topology 75 induced in 7" by the metric § coincides with the topology 74 induced on
T by d (that iS, T5 = Td/);

ii) The action G ~ T", thought as an action G ~ (17, 9), is also isometric (that is, 6(g -z, g -
y) = 0(z,y) for z,y € T").

Define
D(T)=1{6 € RT T | § is a metric on T” satisfying ) and i4)}.

Of course D(T") # 0 for d’ is an element of it.

Lemma 8.12. D(T") is a convex cone of RT'*T". Furthermore, every 6 € D(T") induces on the
set T" an R-tree structure (T",§) for which the already known action G ~ T" is still non-trivial,
small and by isometries with the exact same characteristic sets, that is, C(y 15y = Cg 11 a4y for

every g € G.

This Lemma will open us up possibilities of choices of different metrics on 77 on which the

action of G is still good enough.

Demonstragao. Let us first show that D(T”) is a convex cone by showing conditions a) and b)
of the definition. First, let 6 € D(T") and t > 0 and let us show t§ € D(T") by showing it
satisfies i) and i7). Since Bs(x,r) = Bys(xz,tr) for every x € T’ and r > 0, the collections of
open balls of the metric spaces (T7,0) and (7”,td) coincide, so the topologies 75 and 75 are
the same. Therefore 7,5 = 75 = 74 and to satisfies i). Moreover, td also satisfies ii) because
(to)(g-z,g-y) =td(g-x,g-y) =td(x,y) = (t0)(x,y). Therefore t§ € D(T") and we have a).
Now, let 81,02 € D(T”) and let us show 1 + do € D(T"). It is easy to see their sum satisfy 1),

because

(614 02)(g9-2,9-y) =01(g-x,9-y) +02(g9-2,9-y) = d1(x,y) + d2(x,y) = (01 + 02)(x,y).

Item i) is not much harder. In fact, let us show that 75,15, = 7s,, for this will give us 75,15, =
Ts, = Tq, by hypothesis. To see 75,45, C T5,, let Bs,4s,(x,7) be an open ball. Since 75, =
Ty = Ts,, let ' > 0 such that Bs, (z,7") C Bys,(x,r/2). Now let 7 = min{r/2,7'}. For this 7
we have By, (x,7) C Bs,ts,(x,7), for if z € By, (x,7), then since 7 < 7/, z is also an element of
Bs, (z,7") C Bs,(z,7/2) and we have

(014 02)(z,x) = d1(z,2) + da(z,2) < 7+ = <

and this shows 75,45, C 75,. To see 75, C 75,15, just note that we always have By, s,(x,r) C
Bs, (z,7). So, item 4) is also true and &; + do € D(T”). This shows b) and so D(T”) is a convex
cone.

Now, let § € D(T"). Condition ii) says exactly that the action G ~ (T”,0) is still by

isometries. By condition i), the topologies of (T”,6) and (T”,d’) coincide, so to show the action
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G ~ (T',9) inherits all those properties of G ~ (T”,d’) we just have to show that non-triviality,
smallness and characteristic sets of an action depend only on the topology of 7" (instead of the
metric). First, because of the topological characterization of trees in Proposition 2.30, (77, 9) is
also an R-tree. Since G is finitely generated, proposition 2.42 says that triviality of an action of
G on T’ is characterized by the existence of a global fixed point, so it depends at most on the
topology of T” and therefore G ~ (T”,0) is also non-trivial. Since smallness of actions is given
in terms of stabilizers of topological arcs and the collection of such arcs on (T7”,d") and (17, 9)
coincide, G ~ (T”,0) is also small. Finally, to show the characteristic sets of G ~ (T”,0) are
the same of G ~ (T",d’), let us show a topologic characterization of a characteristic set Cy, for

any g € G. We claim
Cy={x €T | gz is in the topological arc from z to ggx}.

Indeed, (C) is clear from Proposition 2.36, both in the elliptic and hyperbolic cases. To show
(D), let = ¢ C, and let us show gz is not in the topological arc between x and ggx. Let o be
the bridge from x to Cy. Then ga and ggo are the bridges from gz and ggx to Cy, respectively.
By using Proposition 2.36 again, we can easily identify the arc between x and ggx and it is clear
that gx is not there, as the figure illustrates (elliptic case on the left, hyperbolic on the right).
This completes the proof.

T
r IV ggx
r gr ggxr
(@)
X

Of course, each element 0 of D(T”) gives rise to the action G ~ (T”,d) and therefore to a
translation length function /(7 5y = l5 on G (Definition 2.41). Denote by SLF(G) C RS — {0}
the set of all translation length functions of non-trivial and small actions by isometries of G (on
any R-trees), and define 6 : D(T") — SLF(G) by putting 6(0) = l(7v 5 = ls. Consider the image
C(T") = 6(D(T")). Denote also by P(G) the projective space of R“, that is, the quotient of
R — {0} by the equivalence relation = ~ y < x = Ay for some \ # 0 (possibly negative). Equip
P(G) with the quotient topology and denote by P : R“ — {0} — P(G) the natural projection.

Lemma 8.13. C(T") and its closure C(T") are both convex cones of RG. Moreover, C(T") C

SLF(G) and P(C(T")) is compact and convex.

Demonstragdao. To show b) for C(T"), let 6(01),0(d2) € C(T"). For every g € G, let x € C, and
we have [5,(g9) = 0;(x, g - x) and ls5,45,(9) = (01 + 62)(x, g - x) (since Cy is the same set for d1, da
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and for §; + 02, by the previous lemma). So

0(61 +3d2)(9) = ls+6,(9)
= (01 +d2)(z, 9 x)
= O0i(z,9-2) + d2(z, 9 )
= ls,(9) +15,(9)
= 0(61)(g) +0(02)(9)
= (0(d1) +6(52))(9)-

Therefore, 6(d1) + 0(d2) = 6(61 + d2) € C(T”), since §; + 62 € D(T”") (previous lemma). Item a)
is similar, so C'(T") is a convex cone. It is straightforward to check that the closure of a convex
cone is also a convex cone, so it is the closure C(T").

Let us show C(T") ¢ SLF(G). Since C(T") C SLF(G) by definition, it is enough to show
SLF(G) is closed in R, for then C(T") ¢ SLF(G) = SLF(G). By [83], P(SLF(G)) is compact
in the Hausdorff space P(G), so it is closed and therefore P~Y(P(SLF(Q))) is closed in RY.

But SLF(G) is closed under multiplication by positive scalars, for if [ is a translation function

of a small action of G on an R-tree (T,d) and ¢ > 0, then ¢l is the translation function of the
same action of G on (7, td) which is still non-trivial and small. No we show SLF(G) is closed:
suppose (z,,), is a sequence in SLF(G) converging to a point € R%. Then (P(z,)), is a
sequence in the compact set P(SLF(G)) converging to P(z), so P(z) € P(SLF(G)) and so
P(z) = P(y) for some y € SLF(G). Write x = Ay for A # 0. If A > 0, then by what we just
observed we have x € SLF(G), as desired. If A\ < 0 we get a contradiction. In fact, since y is
in particular a non-trivial length function we have y(g) > 0 for some g € G, so z(g) < 0. But
since x, — = and R has the product topology, in particular zn(g) — z(g), so we would have
zn(g) < 0 for some n. This is a contradiction because z,, is a translation length function and

therefore must assume only non-negative values.

Finally, let us show P(C(7")) is compact and convex. For compacity, since P(C(T")) C
P(SLF(Q)) is contained in a compact space, it is enough to show it is closed. By the quotient
topology of P(G), it is then enough to check if P~'P(C(T")) is closed in RE. But C(T") is a
convex cone, contained in the “half-space” of R of non-negative coordinates, so by the definition
of P we have P~1P(C(T")) = C(T") U (—C(T")) is the union of two closed spaces and therefore

is closed. The projection of any convex cone inside a half-space of RC is clearly a convex set

inside a hemisphere of P(G), so P(C(1")) is convex. This completes the lemma. O

Now, to find a special length function of a special action of G to satisfy our theorem, we

want to use the following:

Theorem 8.14 ([48], Theorem 3.3.5). A group H is amenable if and only if every time it acts
affinely and separately continuously on a compact convex set ) of a locally convex space E, there

s a global fized point p € Q, that is, h-p = p for every h € H.

So we want to create a special action of our group H on the compact convex set P(C(T"))
to find a global fixed point P(l), that will give rise to a translation length function [ of a small
and non-trivial action by isometries of G on an R-tree (T,d). So first we will make H act on
C(T"). Define an action H ~ RE by pex =z 0 L.
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Lemma 8.15. The sets C(T") and C(T") are both invariant under the action above.

Demonstragdo. Let us define an auxiliary action H ~ D(T”) by putting

(# % 6)(a,b) = 0(fo(a), fo(b))

for every ¢ € H, § € D(T') and a,b € T'. Since f, is a homeomorphism, it is easy to see
that ¢ % ¢ is a metric. Let us show ¢ xd € D(T") by showing it satisfies i) and ii). For i), it
is enough to show 7.5 = 75. For (D), let Bs(x,r) be any open ball. Since f;l is continuous
at a = fy(x), there is v’ > 0 such that 6(b,a) < ' = 8(f;'(b), f;(a)) < r. This implies
Byus(x,r") C Bs(x,r), for if y € Byys(z,r") then 0(f,(y), fo(x)) = (¢ * d)(y,x) < r’ and so
oy, z) = 6(f;1(f¢(y)), fgjl(f‘p(x))) < r. Part (C) is similar: if B.s(x,r) is any open ball, then
since f, is continuous at x there is 7' > 0 such that 6(y,z) <’ = §(f,(v), fo(z)) < r, and this
implies Bs(x,r") C Byys(x,r). Now, to show ii), we use the fact f,(gz) = ¢(9)f,(x), already

shown before, and the fact that ¢ satisfies i7). Then we have

(%) (92, 9y) = 6(fo(g2), fo(gy)) = 0(0(9) fo(x), 0(9) fo(y)) = 6(fo(x), fo(y)) = (¢ * 6)(z,y),

as desired. This shows ¢ *d € D(T") and the action H ~ D(T") is well defined.

Let us show now C(7") is invariant under the action. Let I(7v 5 = 0(5) be any element of
C(T') = 0(D(T")) and let ¢ € H. It is enough to show ¢~ e li1v 5 € C(T"), for H is a group.
For any g € G, fix a point x € Cy. Then gz € [z, ggz], and since f, is a homeomorphism, it

takes topological arcs to topological arcs. Then

(9) fo(x) = folgz) € fo([z,992]) = [fo(2), fo(992)] = [fo(x), (9)p(9) fo ()],

which implies f,(x) € Cy4) (by the topological characterization of characteristic sets we showed

above). Because of this,

(e elga)g) = (s oe)(9)
= s (e(9))
= 6(fo(2),0(9)fp(2))
= (fo(x), fo(g7))
= (p*d)(

6)(z, gx)
= 17 px5)(9),

)

s0 @t e ligr 5 =l pus) = O( % 8) € C(T") since ¢ x§ € D(T”). This shows C(1”) is invariant.

Finally, showing the invariance of C'(1") is straightforward: if z € C(7") and ¢ € H, let
(2,,)n be a sequence in C(T”) converging to 2. The map RY — R given by y +— @ ey is a
coordinate permutation (thinking of y as a G-uple), so it is easily seen to be a homeomorphism

on the product topology. It follows that ¢ e x, — ¢ e x. But by the invariance of C(T"),

pex, € C(T') for every n, so ¢ e x € C(T"), as desired. This completes the lemma. O

Now the action H ~ C(T") respects the projective relation, for if ' = Ax for A # 0 then

peor' =2’ op ™t = (A\x)op !l = ANzop™!) = A(pex). So the action gives rise to H ~ P(C(T"))
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by putting ¢ e [z] = [p @ z]. Since P(C(T")) is compact and convex, Theorem 8.14 gives us a
global fixed point P(I) = [I], that is, [[o o~} = [p e 1] = p e [I] = [I] for every p € H, or

lo Qoil = )\(QO)Z

for some X\ = A(yp), for every ¢ € H. To be even more specific we can write

(e (g9)) = Al(g)

for every g € G. Since | € C(T") C SLF(G), | is a translation length function of a non-trivial
and small action by isometries of G on some arbitrary R-tree (7, d), which is finally the tree
we were looking for in the statement of our theorem. Let us denote the action G ~ (T, d) by
denoting the action of ¢ € G on ¢ € T by g-x. We can assume without loss of generality
that T is minimal: if needed, just consider a minimal subtree and call it T" again. Since G is
non-elementary, by 8.6 we already know it contains a free subgroup of rank 2, which acts freely

and properly discontinuously on 7', so by Theorem 2.52 this action is irreducible.

We are just left to extend this action to an affine action (G x H) ~ (T,d). By what we
observed in the beginning of step 3, we are just left to show that A = A(¢) > 0 for every p € H,
that the association ¢ € H — A(¢) € (0,00) is a homomorphism and that there is a unique
affine map hy, : T — T, with A(p) a dilation coefficient, such that hy(g - ) = ¢(g) - hy(z).
The two first facts are easy. Given ¢ € H, since [ # 0 there is g € G with [(g) > 0. Then
0 <Il(¢71(g)) = Mp)l(g) and A(¢) # 0 implies A(¢) > 0. Now, let ,9 € H. Then

Apop)l =lo(thop) ™t =lop  oyp™ = (A(p)) o™ = (@) (loyh™ ") = M)A ()l = A(W) (@)l

so for the g above, A(¢ 0 )I(g) = A(¥)A(#)l(g), which implies A(y 0 p) = A()A(p). For the
last fact, we invoke Theorem 2.55. Given ¢ € H, denote A = A(¢~1). Based on the action
G~ (T,d), (g,z) — gz above we define:

G x (T,d) > (T,d) with goz = ¢(g) - z
and we also consider the action G ~ (T, d) but with dilated metric:
G x (T,\d) > (T,\d) with gex =g -z

Since G is non-elementar, these actions are irreducible, in particular semi-simple and not shifts.
They also have the same translation length function. Indeed, for every g € G,

lrae)(g) = inf d(w,gox) = inf d(z,¢(g) - z) = Ue(g)) = All9)

and

lir.ade)(9) = inf Ad(z,gex) = inf Md(x,g-z) = \inf d(z,g-x) = N(g).
R zeT zeT zeT

Therefore by Theorem 2.55 there is a unique G-equivariant isometry hy, : (T, Ad) — (T, d). Its

isometry gives us
d(hy(x), hyo(y)) = Ad(z,y)
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for every x,y € T, that is, h is an affine map of (7', d) with X a dilation coefficient. Equivariance

gives us
ho(g-z) = hy(gex) = gohy(z) = 9(g) - hy(z)

for every g € G, x € T, which was the last assertion to be shown. This completes the proof of
Theorem 8.9. ]

8.2 R, for non-elementary hyperbolic groups

This section is dedicated to finally show that
Theorem 8.16. FEvery non-elementary hyperbolic group has property Roo.

In fact, let ¢ € Aut(G) and let us show R(p) = oo. We divide the proof in two possible
cases:

Case 1: w(p) has finite order in Out(G).

Let m > 1 be the order of m(¢). By Proposition 7.3, it suffices to show G, acts non-
elementary on a hyperbolic geodesic space X. Since G,/G ~ Zj, is finite, G has finite index
in G,. Therefore, G, Ee; by Proposition 2.22, so G, is hyperbolic by Proposition 2.23 and
therefore by definition its Cayley graph must be a hyperbolic space where G, acts. Also, there is
a nonabelian free group F3 such that Iy < G < Gy, so G, must be a non-elementar hyperbolic
group. Then, to finish case 1), we're just left to show that the action of any non-elementar

hyperbolic group on its Cayley graph is non-elementary:

Lemma 8.17. Let G be any non-elementary hyperbolic group and G ~ I'(G,S) be its natural
action on its Cayley graph I' =T'(G,S). Then the action is non-elementary.

Demonstragdo. The action is combinatorially given by g - § = gg for any vertex g € G = V(I)
and g - (g,s) = (gg,s) for every (oriented) edge (g,s) € G x S = E(I'). As we observed in
Example 1.36, this action is (combinatorially) without inversions and free. Topologically, one
can think of the action on the vertices being linearly extended to the topological edges between
them. Let us check it is non-elementary by checking items 1) to 3) of Definition 7.1:

1) By Proposition 8.6, there must be in particular g € G with infinite order in G. We have
to show that ¢ has infinite order as an isometry of I'. If ¢" = Id as an isometry (for n # 0),
then by applying it to the vertex 1 € T' we get ¢" = Id(1) = 1 in G, contradiction. This shows
1).

2) Let x € OI'. Showing z is not a global fixed point is showing {z} C G - z, that is, x
is properly contained on its G-orbit. It is known (see, for example, the great survey [61]) that
OI' = OG by definition and that since G is non-elementary, OI' is an infinite compact metrizable
space with no isolated points, in particular infinite and Hausdorff. Because of this, no single
point in 9T" can be dense in it. But it is also known (see [61] again) that G - = is dense in OT,
so {z} C G -z, as desired.

3) Similar to item 2): let {p,q} be any pair (p # ¢) and let us show {p,q} € G{p,q}.
Since OT' is infinite and Hausdorff, let z ¢ {p, ¢} and let U be an open neighborhood of z not
intercepting {p,q}. Since G - p is dense in 9T, let g € G such that gp € U. In particular, we
have gp ¢ {p,q} and therefore g - {p,q} = {gp, 99} # {p,q}. This shows 3) and completes the
proof. O
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Case 2: m(p) has infinite order in Out(G).

Let H = () < Aut(G). Since the order of m(y) is infinite, ¢ also has infinite order, so
H ~ 7 is amenable (it is a well-known fact that Z is amenable) and 7(H) = (7 (¢)) ~ Z has an
infinite center. By Paulin’s Theorem, there is an R-tree (7', d) and an affine action (Gx H) ~ T
whose restriction to G is a non-trivial, minimal, small and irreducible action by isometries. By
what we observed in that proof, this gives a translation length function [ of the action and a
homomorphism ¢ € H +— A(¢) € (0,00) such that [ o ¢p~! = \(3)l, such that for every ¢ € H
there is a unique affine map hy : T — T, with A(¢) a dilation coefficient and also such that
hy(g - x) =(g) - hy(x) for every (g,2) € G x T.

In particular, since A(o ) A(¢) = A(Id) = 1, we either have A\(¢p™!) > 1 or A(p) > 1. In
the former case, we define A = A(p~1) > 1 and, since [ o ¢ = A, we can apply Theorem 7.4 for
¢, which gives us R(p) = oo, as desired. In the latter case, we define A = A(¢) > 1 and, since
lop! 1
this gives us R(¢) = oo by Proposition 1.8. This completes the proof of Theorem 8.16. O

= \l, we can apply Theorem 7.4 for the element ¢!, which gives us R(¢~!) = oo, and
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Capitulo 9

Relatively hyperbolic groups and
property R

This chapter contains a careful analysis of Fel’shtyn’s strong claim (item (2) of Theorem 3.3
in [31]) that every non-elementary relatively hyperbolic group has property Ro. To be more
precise, this chapter provides an exploration of what should be a natural and complete proof of
R for these groups, according to the sketch of proof Fel’shtyn provides in [31]. The basic (and
good) idea of the sketch is to generalize to the relative case the proof of R, for non-elementary
hyperbolic groups, given implicitly by G. Levitt and M. Lustig in [68] (and exhibited in our
previous chapter). However, as I will argument throughout this chapter, my conclusion is that
such a proof, based on that sketch, is at least more complicated than it looks like and at most
incomplete.

The aim of doing this analysis is to locate where are the valid arguments and the exact
difficulties in such a proof, in order to make an advance on the discussion of property R for
non-elementary relatively hyperbolic groups, given their importance for geometric group theory

and the importance of the claim for the R, subject.

9.1 Locating the difficulty

For the reader who has not read the paper [31] yet, we reproduce Fel’shtyn’s claim and sketch

of proof below:

Theorem 9.1 ([68], Theorem 3.3, item (2)). Non-elementary relatively hyperbolic groups have
the Roo property.

Fel’shtyn’s sketch of proof: Theorem 3.2 applies if G is a Gromov-hyperbolic group or rela-
tively hyperbolic group and if ¢ has finite order in Out(G). In fact, in this case, G, contains G
as a subgroup of finite index, thus is quasi-isometric to GG, and by quasi-isometry invariance, it
is itself a Gromov-hyperbolic or relatively hyperbolic group. Now let assume that an automor-
phism of a hyperbolic or relatively hyperbolic group has infinite order in Out(G). We describe
the main steps of the proof in this case (see [30, 68] for details). By [81] and [5], ® preserves
some R-tree T with nontrivial minimal small action of G (recall that an action of G is small if

all arc stabilizers are virtually cyclic; the action of G on T is always irreducible (no global fixed
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point, no invariant line, no invariant end)). This means that there is an R-tree T equipped with
an isometric action of G' whose length function satisfies [ - ® = Al for some A > 1.

Step 1. Suppose A = 1. Then the Reidemeister number R(¢) is infinite.

Step 2. Suppose A > 1. Assume arc stabilizers are finite, and there exists Ny € N such
that, for every @ € T, the action of Stab@ on mo(T — @) has at most Ny orbits. Then the
Reidemeister number R(¢) is infinite.

Step 3. If A > 1, then T has finite arc stabilizers. If A > 1 then from work of Bestvina and
Feighn [6] it follows that there exists Ny € N such that, for every Q € T, the action of StabQ
on mo(7T — (Q)) has at most Ny orbits. O

The expansion and investigation of the sketch of proof above will be done in Section 9.3.
For now, let us divide the sketch in sentences and just make brief comments about them. These
comments are being made based on my (already done) detailed investigation in 9.3.

“Theorem 3.2 applies if G is a Gromov-hyperbolic group or relatively hyperbolic group and if
¢ has finite order in Out(G). In fact, in this case, G, contains G as a subgroup of finite index,
thus is quasi-isometric to G, and by quasi-isometry invariance, it is itself a Gromov-hyperbolic
or relatively hyperbolic group.”

This argument turned out to be true. The “Theorem 3.2” quoted corresponds to our Propo-
sition 7.3, which works for every group acting non-elementary on a hyperbolic space. The
quasi-isometry invariance also works for relatively hyperbolic groups, as we will see. Now, look
at these two sentences:

“Now let assume that an automorphism of a hyperbolic or relatively hyperbolic group has
infinite order in Out(G). We describe the main steps of the proof in this case (see [30, 68] for
details).”

“Step 1 ... Step 2 ... Step 3.7

The language used in the first sentence above indicates that the proof for the relatively
hyperbolic case should be the same as the proof for the hyperbolic case. So, if we want to write
it in details, we should try to adapt the proof of Levitt and Lustig in [68]. The three steps
Fel’shtyn describes by the end of his sketch (second sentence above) are just the steps of Levitt
and Lustig’s proof. As we told in the beggining of section 7.2, by studying their result we noted
that it could be applied to any finitely generated group G, given the existence of some “super
special” action they describe. So, we decided to state and show their result within this more
general context, and that is our Theorem 7.4. To summarize, in these sentences Fel’shtyn wants
to apply “our” Theorem 7.4 for a relatively hyperbolic group. So far, everything is good and
the proof will work provided that we guarantee the existence of that “super special” action of
G (check Theorem 7.4).

Let us comment on the two remaining sentences of the sketch. They are:

“By [81] and [5], ® preserves some R-tree T' with nontrivial minimal small action of G (recall
that an action of G is small if all arc stabilizers are virtually cyclic; the action of G on T 1is
always irreducible (no global fized point, no invariant line, no invariant end)).”

“This means that there is an R-tree T equipped with an isometric action of G whose length
function satisfies | - ® = Al for some X > 1.7

By what we argued above, these two sentences should be the ones who guarantee the existence

of the “super special” action of G on an R-tree, described in the statement of Theorem 7.4. In
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the hyperbolic case, that action is proved to exist exactly by Paulin’s Theorem 8.9, whose proof
consists of three consecutive steps (which shouldn’t be confused with the three steps Fel’shtyn
describes in his sketch: from now one, those can be forgotten). Without further details, Paulin’s

steps can be summarized as:
1) Create a nontrivial, minimal, irreducible and small action of G on some R-tree T’
2) Extend the action above to an action of G x (¢) on T
3) Modify the action above to get the “special action” required.

As the reader can see, step 1 coincides with Fel’shtyn’s claim in the first sentence above. Can
that step be adapted to the relative case?” We showed it can, indeed, in Step 1 of Case 2 of
Theorem 9.27.

Therefore, Fel’shtyn’s second sentence above should be the one that guarantees (or at least
indicates) that steps 2 and 3 of Paulin’s proof can also be adapted to the relatively hyperbolic
case, guaranteeing the existence of the “super special” action. But that’s not what it does, and
that is where the difficulty is. By the expression “This means” followed by the description of the
“super special” action in Fel’shtyn’s second sentence, it looks like it is being assumed that steps
2 and 3 of Paulin’s proof can be adapted for any relatively hyperbolic group, with at least the
same kind of proof and no difficulties. The question is: can they? As the reader may see in our
section 9.4, if we assume that Paulin’s step 2 can be adapted to relatively hyperbolic groups,
then step 3 also follows, with the same proof as the one in the hyperbolic case. The problem is
with step 2. By trying to naturally adapt step 2 to the relative case, a new obstacle rose, which
we couldn’t overcome: basically, it is the non-compactness of the fundamental domain of the
action of G, which makes it difficult to guarantee that the automorphism ¢ acts naturally by a
quasi-isometry on X and therefore by a homeomorphism on the R-tree T'. In the hyperbolic case
(see Chapter 8), the fundamental domain is just a point; the action on X is ¢ itself, which is
easily seen to be bi-Lipschitz and in particular a quasi-isometry, so it induces a homeomorphism
onT.

Our conclusion, therefore, is that Paulin’s step 2 is the strong obstacle for Fel’shtyn’s sketch
of proof. To be more precise, the difficult is showing that an (infinite order) automorphism ¢
of a relatively hyperbolic group G acts by homeomorphisms on the R-tree T" induced by X, or
that it acts by quasi-isometries on X. This is stated in Lemma 9.29. We do not think this
Lemma can be proved for a general relatively hyperbolic group, for, in trying to prove it, we
found a counterexample; that is, we found a relatively hyperbolic group and an infinite order
automorphism which does not act on X by a quasi-isometry. So, it looks like the actions of the
automorphisms on X are not good enough as they should be so that Fel’sthyn proof could work
(see Section 9.5).

On the other hand, since Lemma 9.29 is the only obstacle we found, we have a complete
proof for the following positive result: every non-elementary relatively hyperbolic group G in
which all infinite order automorphisms act by quasi-isometries on the space X must have the
R property (see Corollary 9.31). However, we do not have much information on how to find
these groups.

The rest of the chapter is organized as follows: in Section 9.2, we define geometrically finite

actions, and use them to define relatively hyperbolic groups in Section 9.3. In that section, we
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also explore some properties of these groups (which will be useful in our context), especially
the fundamental domain of their action on the related hyperbolic space X. Then, Section 9.4 is
where we exhibit what would be a proof of property R for non-elementary relatively hyperbolic
groups by following Fel’shtyn’s sketch, that is, by adapting the proof of the hyperbolic case we
give in chapter 8. That proof would be complete if it wasn’t for Lemma 9.29, which we believe
is not true in general. To convince the reader of this, in Section 9.5 we show an example where
Lemma 9.29 does not work.

We decided to maintain the incomplete proof in this thesis, anyway, for two reasons: first, to
give the reader an idea of what could be a proof of Ry, for non-elementary relatively hyperbolic
groups. Second, if we assume that Lemma 9.29 works for some particular relatively hyperbolic
group G, we get property Ry for G (Corollary 9.31). A last comment is: we do not necessarily
believe Fel’shtyn’s claim is false. We haven’t found any non-elementary relatively hyperbolic
groups without property Ro.. Although we believe such a counterexample could be found, we
also think that Lemma 9.29 could be somehow avoided to a similar and complete proof. A third
possible option, of course, would be to find a totally different proof of R, for non-elementary
relatively hyperbolic groups; but that’s beyond my capacity for now. Maybe you, dear reader,

can help me someday.

9.2 Geometrically finite actions

Relatively hyperbolic groups were first defined by M. Gromov in his 1987 paper [50] on hyperbolic
groups. Since then, many other definitions were given, for example by Bowditch [16], Farb [29],
Drutu-Osin-Sapir [27], Osin [80] and others. All of these definitions are known to coincide
when the groups and subgroups involved are finitely generated and infinite. Because of the
geometric language used and our familiarity with the author, we will use the notions of relative
hyperbolicity given by Bowditch in [16], comparing with some of its equivalences.

Let G be an infinite and finitely generated group and X be a proper geodesic hyperbolic
space. Suppose G acts properly discontinuously on X by isometries. By Proposition 2.84, G
acts as a convergence group on the compact metric space M = 0X. For g € G, denote by
fiz(g) = {z € 0X | gx = x} the set of fixed points of g in M = 0X. The next definition should

not be confused with “elliptic” and “hyperbolic” isometries of an R-tree from Chapter 2.
Definition 9.2. We say an element g € G is

e clliptic if it has finite order in G;

e parabolic if it has infinite order in G and card(fiz(g)) = 1;

e lozodromic if it has infinite order in G and card(fiz(g)) = 2.

Of course these are mutually exclusive definitions. Furthermore, they form a partition of the

elements of G:
Proposition 9.3. Every element of G s either elliptic, parabolic or loxodromic.

Demonstracao. Let g € G. If g has finite order in G, it is elliptic. Suppose then it has infinite
order. We just have to show that 0 < card(fiz(g)) < 2. Consider the sequence (¢g"),. Since
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G ~ M is a convergence action, we have a collapsing subsequence, so we can assume without
loss of generality that gn|y/—f,y — y for 7,y € M. Let z € M —{x, g~ 'z}. Since z # z, g"z — .

Then ¢"tlz = gg"z — gy. But gz # x, so we also have g"t!

z = g"gz — y. By uniqueness,
gy =y and so 0 < card(fiz(g)). If g had three distinct fixed points, say, x,y and z, then {z,y, 2}
would be an element of ©(M) fixed by g. In particular, the set {h € G | h{z,y,2z} = {z,y,2}}
would contain all powers g",n € Z of g and be infinite, so the action G ~ O(M) would not
be properly discontinuous, a contradiction with Theorem 2.77. So card(fiz(g)) < 2 and we're

done. O

It is known in this context that parabolic and loxodromic elements do not live together very

well. For a proof, we refer [95].

Proposition 9.4. Let G and M be as above. Suppose every element of an infinite subgroup
H < G fixes a point p € M. Then H either consists entirely of elliptic and parabolic elements,
or it consists entirely of elliptic and loxodromic elements. In the latter case, H also fizes another

point ¢ € M — {p} and is virtually cyclic. O
With this in hands we can go in the direction of defining a geometrically finite action.

Definition 9.5. Let G act as a convergence group on a compact metric space M. We say a
subgroup H < G is parabolic if it is infinite, with no loxodromic elements and if it has a global
fixed point in M (z € M such that hp = p for every h € H). This fixed point is unique by

definition and will be called the associated parabolic point.

Proposition 9.6. If p € M is a parabolic point, the group Stabg(p) = {9 € G | gp = p} is

parabolic.

Demonstracao. Let H < G be the parabolic subgroup whose parabolic point is p. Since H <
Stabg(p) and H is infinite, Stabg(p) is infinite. Since by definition every element of it fixes p, by
Proposition 9.4 it either consists entirely of elliptic and parabolic elements (case 1), or it consists
entirely of elliptic and loxodromic elements (case 2). If H contains a parabolic element, then so
does Stabg(p) and then it must be in case 1, therefore not containing any loxodromics, so it is a
parabolic group, as desired. Suppose therefore H consists only of elliptic elements. If Stabg(p)
was in case 2, then by Proposition 9.4 it is virtually cyclic. So, H < Stabg(p) is virtually cyclic,
in particular finitely generated. Since every element of H is elliptic (finite order), H is a finite
group, a contradiction, for it is parabolic. Therefore Stabg(p) must be in case 2 and we are
done. O

Observation 9.7. There is therefore a one-to-one correspondence between the parabolic points p

in M and the groups Stab(p) < G, which are the maximal parabolic subgroups of G.

If H < G is a parabolic group with associated parabolic point p, then the action G ~ M by
homeomorphisms can be restricted to the action H ~ M — {p}, which gives rise to the quotient

topological orbit space M — {p}/H.

Definition 9.8 (bounded parabolic point). We say a parabolic group H < G with associated
parabolic point p is bounded if the orbit space M — {p}/H is compact. We say a parabolic point
p is bounded if the parabolic group Stabg(p) is bounded.
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Example 9.9. Let Z act on the upper half plane hyperbolic model by translations: n - (z,y) =
(x+n,y). This is a properly discontinuous action by isometries. If we think of this action on the
Poincare disk model 2, it is easy to see that the north pole p is the unique global fixed point in
OH? ~ S (so Z = Stab(p)), and that the quotient space (S* — {p})/Z ~ R/Z is homeomorphic
to S', which is compact. Therefore, Z is a bounded parabolic subgroup of itself in this action.
Next figure illustrates the Z-orbit of x € H?2.

1(“/’7!\‘4}‘
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Definition 9.10 (conical limit point). We say a point y € M = 90X is a conical limit point if
there is a point € X and a sequence (g,), in G such that g,x — y in X = X U9JX and that

d(gnz,7) < K for every n > 1, for some geodesic ray r representing y and some constant K > 0.

Definition 9.11. [geometrically finite action] Let G act as a convergence group on the compact
metric space M = 90X as above. We say the action is geometrically finite (or that G acts as a
geometrically finite convergence group on M) if every point of M is either a conical limit point

or a bounded parabolic point.

9.3 Defining a relatively hyperbolic group

Now we follow [16] to define our notion:

Definition 9.12 (Relatively hyperbolic groups). Let G be an infinite and finitely generated
group and X be a proper geodesic hyperbolic space. Suppose G acts properly discontinuously
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on X by isometries, and let H be a collection of finitely generated subgroups of G. We say
G is hyperbolic relative to H (or just that G is a relatively hyperbolic group) if the induced
(convergence) action G ~ 90X is a geometrically finite action (Definition 9.11) and the subgroups

of the collection H are exactly the maximal parabolic subgroups of G (Observation 9.7).

The subgroups in the collection H are called the peripheral subgroups of G. Some authors
in the literature use the notation (G, H) and call it a relatively hyperbolic structure. We may
sometimes use this notation. B.H. Bowditch shows in [16] the equivalence of definition above

with the following one:

Definition 9.13. Let G be an infinite and finitely generated group and suppose G acts on a
connected hyperbolic graph K. Let H be a collection of finitely generated subgroups of G. We
say G is hyperbolic relative to H if the following conditions are satisfied: for each n > 1, each
edge of K is contained in only finitely many circuits of length n; there are finitely many G-orbits
of edges, each edge stabilizer is finite and the subgroups of the collection H are exactly the

infinite vertex stabilizers of K.

Although the first definition is better for doing theory, both of them can be used to obtain
a few examples. Let’s contemplate some of them before studying the main properties of these

groups.

Example 9.14. Every hyperbolic group G is relatively hyperbolic with respect to the empty
collection H = ) (note that we do not assume H # ) in any of the definitions above), so in
particular all examples given in 8.3 and 8.4 are relatively hyperbolic. In fact, let us check this
by the second definition. The natural action (by left translations) of G on its Cayley graph
' = T(G,S) is properly discontinuous (it is in fact free) and cocompact, the quotient being a
bouquet with card S petals, for I' is card S-regular. In particular, there are only card S G-orbits
of edges. Also, for any n > 1, since T is regular it is enough to check if each edge (1,s) is
contained in a finite number of circuits of length n. But each such circuit gives rise to a different
relation w = 1 in the presentation of G, with the word w starting with s and having length
n. Since G is finitely presented (Proposition 8.7), there is only a finite number of such circuits.
Since the action is free, the edge stabilizers are all trivial and therefore finite. Finally, both
collections H and the set of infinite vertex stabilizers of K are empty, so they coincide and G is
relatively hyperbolic with respect to H = ().

Therefore, hyperbolic groups acting on their Cayley graphs correspond by the first definition
to the case where there are no parabolic points, subgroups or isometries (for H = )). In fact,
every element g = s1...5; € G (seen as an isometry of I' and a homeomorphism of dTI") is either
elliptic or loxodromic, in which case the fixed points in 0I' correspond to the two “ends” of the
geodesic line [ whose vertices are the subwords sj...s; (1 < ¢ < k) and its g"-translations for

n € Z. The action of g on [ is just translation by a distance of |g| = k (see figure).
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We can also see that every hyperbolic group is relatively hyperbolic by using the first defi-
nition. In fact, let y € OI" and let us show y is a conical limit point. By definition of the Cayley
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graph, y is the endpoint of a geodesic ray r : [0,00) — I' such that r(n) = s;...s,, is a vertex for
every n and s; € S for ¢ > 1. Then for g, = s1...s, and the point £ = 1 of I" we obviously have
gnt — y, and d(gnpx,r) = 0 (for g,z = s1...8, € r). That is, y is a “degenerated” conical limit

point.
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Example 9.15. Let (G,I") be a graph of groups with I' a finite graph, G, finite for every edge y
in I and Gp finitely generated for every vertex P in . Let G = m(G,T,T) be the fundamental
group of (G,T") and let us check G is relatively hyperbolic according to the second definition
above. By the theory of [86], there is a combinatorial tree X (which is 0-hyperbolic) on which
G acts without inversion, and the orbit quotient space is G /X ~T. Of course, for each n > 1,
each edge of X is contained in a finite number of circuits of length n (exactly 0 such circuits).
The number of G-orbits of edges in X is exactly the number of edges of G /X ~ T, which is
finite, and the edge stabilizers G, are finite by hypothesis. By the second definition, then, G is
hyperbolic relative to the collection H = {Gp | Gp is infinite} of infinite vertex stabilizers.

This example includes a wide class of groups, such as any finite amalgamation % 4G; of finitely
generated groups (1, ..., G, over a common finite subgroup A, in particular any such finite free
product G1 * ... * Gy,.

In the particular case of all Gp being also finite, G is then hyperbolic relative to the empty
collection H = (), so it is a hyperbolic group and we get again the last class of examples in 8.3.

For more complex and different classes of relatively hyperbolic groups, we refer [5].

Let’s comment about some known properties of relatively hyperbolic groups (G, H) and its
action on X, based on [16]. It is known that a conical limit point cannot be a parabolic point, so
the parabolic points are all bounded. From this and from the first definition it follows that the
groups in H are the groups of the form Stab(p), where p is a bounded parabolic point of 0.X. It is
also known that the intersection of any two such groups is a finite subgroup. In [96], Tukia shows
that there are only a finite number of conjugacy classes of the groups in H. This is equivalent to
the geometrical fact that there are only a finite number of G-orbits of the parabolic points in 0.X.
In fact, if H = stab(p) and g € G, it is easy to see that gHg~! = stab(gp) is a parabolic group
and gp a parabolic point. Therefore, conjugating an element of H by g corresponds to walking
from p to gp. It is also known that the collection of bounded parabolic points is countable.

We would rather have an even more geometric characterization of the geometrically finite
action of relatively hyperbolic groups on their spaces. To present the characterization given by

Bowditch in [16], we must deal with horospheres and horoballs (definitions are based on [55]).

Definition 9.16. Let X be a geodesic space and r be a geodesic ray in X. The Busemann

function (or just horofunction) b, : X — R associated to r is given by

be(z) = lim (d(z,r(t)) — t).

t—o00

If p = r(c0) € 0X is the endpoint of r, a horosphere of X on p is a level set of the form
S(p) = b, 1{k} for some k € R. A horoball on p is a sublevel set of the form B(p) = b, !(—o0, k].
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Observation 9.17. The limit above exists for every x. In fact, let us show the map t — d(z,r(t))—
t is non-increasing and bounded below. If 0 < ¢ < ¢, then d(x,r(t)) < d(z,r(t'))+d(r(t"),r(t))
d(z,r(t")) +t =t so d(xz,r(t')) —t' > d(x,r(t)) — t, as desired. Also, t — ¢ = d(r(t),r(t')) <
d(r(t),z)+d(xz,r(t')). In particular for ' = 0 we obtain ¢t < d(r(t), z)+d(z,7(0)), or d(r(t),z) —
t > —d(x,r(0)), so it is bounded below.

Example 9.18. In the Euclidean spaces R", let r(t) = a+tv be a geodesic ray, for some a € R”
and a unitary vector v € R™. Then b,(z) = (a — z,v). Let’s have an intuitive idea of this in R?
(see next figure). For a fixed ¢, the number ¢t —d(x, r(t)) = d(a,r(t)) —d(x,r(t)) can be obtained
by “lying” the vector x —r(t) over r fixing the point r(¢) (the red arcs represent this motion) and
then computing the size of the orange geodesic [a, z(t)]. As t gets bigger, the point z(¢) tends to
be the orthogonal projection of 2 on r and the size of [a, z(t)] therefore tends to (z — a,v). By

7 we get what we desired. It follows that horospheres

“multiplying the argument above by —1
of r are the orthogonal lines to r, and horoballs are the closed half spaces determined by these

lines (the ones containing r(¢) for all sufficiently large t).

Example 9.19. In the Poincare disk 2, horoballs and horospheres look like the Euclidean
ones, with the difference that their “center” is the boundary point p = r(c0). Since this is our
main intuitive model of a hyperbolic space, we can intuitively think of a horosphere S(p) as the
set of points of X which are all equidistant from p in X. Next figure shows a horoball B(p)
in H? and some geodesics tending to the north pole p. All of them cross the horophere S(p)

orthogonally at points equidistant from p.

Note that if we take the numbers k in B(p) = b '(—o0, k] to be arbitrarily large negative
numbers, the balls B(p) tend to be arbitrarily small.

From now on, suppose only that the induced action of G on 0.X is a convergence action, that

is, not necessarily a geometrically finite action. Horoballs and horospheres are used by Bowditch
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in this context to describe parabolic points of 0X in terms of the geometrical behavior of the

H-action of the associated parabolic groups H around them.

Proposition 9.20. If H is a parabolic group with p the parabolic point associated, then there is

a H-invariant horofunction around p.

This means b,(x) = b.(hz) for every (h,z) € H x X. In particular, there is a collection
of H-invariant horoballs and horospheres B(p) around p. This H-invariance can be perfectly

visualized in the figures of Examples 9.9 and 9.19. Using this fact, Bowditch obtained:

Proposition 9.21. Let H and p as above, and let B(p) be an H-invariant horoball with associ-
ated horosphere S(p). Then H is a bounded parabolic subgroup if and only if the quotient space
S(p)/H is compact.

Definition 9.22. If H, p and B(p) are as above, a cusp region for p is the space B(p)/H.

We can easily visualize a cusp region by lifting it to X. Since S(p)/H is compact, Bowditch
observes that every point  of B(p) is a bounded distance from a H-image of a ray r tending to
p inside the cusp. The cusp region C' is also shown to be quasi-isometric to this ray. See next

figure.
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Bounded parabolic points can also be separated by sufficiently far away horoballs:

Proposition 9.23. Let P be a G-invariant collection of bounded parabolic points of 0X. Then,
for any R < 0, there is a G-invariant collection B = {B(p) | p € P} of horoballs around the
points of P which is R-separated, that is, d(B(p), B(p')) > R for any p # p' in P.

Now, let P be a G-invariant collection of parabolic points of 9X and suppose B = {B(p) | p €
P} is a G-invariant and R-separated collection of horoballs around them, for some R > 0. We
denote Y (B) = X — Upep intB(p), which is clearly a closed and G-invariant subset of X. With

all these tools in hands, Bowditch shows the following characterization:
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Theorem 9.24. Let G be an infinite and finitely generated group acting by isometries on a
proper hyperbolic geodesic space X and let P be a G — invariant collection of parabolic points
of 0X. Then the (convergence) action G ~ 0X is geometrically finite (and P is the set of all
bounded parabolic points) if and only if there is R > 0 and an R-separated G-invariant collection
B={B(p) | p € P} of horoballs such that the quotient space Y (B)/G is compact.

Now we can finish the section by showing an intuitive drawing of a fundamental domain
of the action of a relatively hyperbolic group (G,H) on its hyperbolic space X. Let P be the
collection of all (bounded) parabolic points of dX, which we know is G-invariant. Bowditch
shows that, given R > 0, there’s an R-separated G-invariant collection B = {B(p) | p € P} of
horoballs. By the above theorem, the quotient space Y (B)/G is compact. We have

X/G = (Y (B) U(Upep intB(p)))/G = (Y (B)/G) U (Upep intB(p)/G).

To quotient all the interiors int B(p) by the action of G is obviously equivalent to quotient only
one representative intB(p) for each G-orbit of the horoballs (or the parabolic points). We know
there are only a finite number of such orbits, so we need to quotient by G only a finite number
of such horoballs, say, B(p1),..., B(pn). But if we quotient each ball B(p;) by G, in particular
we are taking the quotient by its associated parabolic stabilizer subgroup H(p) = Stab(p), so
we obtain exactly a cusp region. Then X/G is the union of a compact subspace with a finite
number of cusps. By lifting this to X, we get the following intuitive idea of a fundamental

domain F' (the expert reader might forgive me for the eventually unrealistic picture):

Here, the square represents a compact set K C X and we have one cusp for each bounded
parabolic point representing its G-orbit. Since K is compact, Bowditch observes that this implies
X/G is quasi-isometric to a finite wedge of geodesic rays.

We finish this section by giving a good and visual example of a relatively hyperbolic group,

the hyperbolic space associated and the fundamental domain of the action.

Example 9.25. This is a standard example of a relatively hyperbolic group. Let Y be a once
punctured torus and G = 71(Y") be its topological fundamental group. Instead of thinking of YV’
in R?, we may use the standard square representation, with the usual edge identifications of the
torus, with the only difference that the four vertices are now removed. With these adaptations,

let us imagine it as a hyperbolic square. The universal cover of Y can be thought as the open
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Poincare disk X = H?2. It is known that G then acts properly discontinuously and by isometries
on X, with fundamental domain being the infinite (and vertexless) hyperbolic squares given in
the figure. As G >~ F5 is free of rank 2, one can imagine the Cayley graph of G inside X, with
each vertex being the “center” of one of the hyperbolic squares. This way, the action of G on X
is easy to imagine, for an element g takes the central square isometrically onto the square whose

center is the vertex g of the Cayley graph.

All points in X ~ S! that are limits of geodesics in the Cayley graph can be easily seen to
be conical limit points (see the last paragraph of Example 9.14). It is known that these points
form a dense subset of X . The others are bounded parabolical points, fixed by cyclic subgroups
of G. For example, the point P = €' is fixed by the cyclic subgroup ([o, 8]) generated by the
commutator [a, 3] of the two generators of GG, which performs a “rotation around P” of the

fundamental squares, as the figure shows.

So, G is, by Definition 9.12, hyperbolic relative to this collection of cyclic subgroups. Note
that the fundamental domain of the action satisfies Theorem 9.24, for it can clearly be seen as

the union of a compact hyperbolic octagon and four cusp regions.
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9.4 An almost complete proof of R,

As we told before, in this section we exhibit what would be a proof of property R., for non-
elementary relatively hyperbolic groups by following Fel’shtyn’s sketch and, most importantly,
by assuming Lemma 9.29 to be true. This proof would be complete if it wasn’t for Lemma 9.29,

which we believe is not true in general, as we show in Section 9.5.

Definition 9.26. Let G be a relatively hyperbolic group and X the space on which it acts (first
definition). A subgroup H < G is called elementary if either H is finite, or if there is a point z
in 0X fixed by all H, or if there is a set {z,w} of distinct points in X which is invariant under
H.

It is known that the subgroup H above is elementary if and only if H is either finite, or
parabolic, or virtually cyclic. Consider then the special case of a hyperbolic group G and G
itself as a subgroup. Since there are no parabolic subgroups (in particular G is not parabolic),
then G is non elementary (according to the above definition) if and only if it is a non-elementary
hyperbolic group according to the previous chapter. Therefore, the above definition extends
the one of non-elementary hyperbolic groups. For example, the group Z of Example 9.9 is
elementary as a hyperbolic group (for it is cyclic), but it can also be seen as an elementary
relatively hyperbolic group, for it has a global fixed point p in OH?2.

From now on, let us assume Lemma 9.29 to be true. The rest of this section is dedicated to

show

Theorem 9.27. Assuming Lemma 9.29 to be true, every non-elementary relatively hyperbolic

group has property R .

Let G be a non-elementary relatively hyperbolic group with respect to a finite collection of
subgroups H and ¢ € Aut(G). Let us show R(p) = co. As we did in the hyperbolic chapter, we
divide the proof in two possible cases:

Case 1: w(p) has finite order in Out(G).

Let m > 1 be the order of m(y). By Proposition 7.3, it suffices to show G, acts non-
elementary on a hyperbolic geodesic space X. Since G,/G =~ Z,, is finite, G has finite index in
G. Therefore, G, “a by Proposition 2.22. But in [28], Drutu shows that relative hyperbolicity
is a quasi-isometric invariant, so G, is relatively hyperbolic, so by definition it acts by isometries
on a hyperbolic space X. Also, since it contains G, it must be non-elementary. Therefore, to

finish case 1, we're only left to show:

Lemma 9.28. Let (G,H) be any non-elementary relatively hyperbolic group with X the associ-

ated hyperbolic space. Then the action G ~ X is non-elementary.

Demonstragdo. Let us check items 1) to 3) from Definition 7.1 are satisfied. Items 2) and 3)
come directly from the definition of G' being non-elementary. To check item 1), let ¢ € G
have infinite order in G (since G is finitely generated and infinite, there must be such element;
otherwise, G would be finite). Let us show it has infinite order as an isometry of X. If ¢" = Idx
for some n > 1, then ¢*" = Id* = Id for every k € Z. Fix x € X. We have ¢*"z = x. But since
the action of G is properly discontinuous, in particular there should be only a finite number of
elements in G fixing z, a contradiction, for the elements ¢g*” € G are pairwise distinct. Thus, g

has infinite order as an isometry and the lemma is complete. O
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Case 2: m(p) has infinite order in Out(G).

We want to follow the three similar steps to the ones in Theorem 8.9. As step 1, let us
construct a non-trivial and small action by isometries of G on an R-tree X,,, in the same way
we did there, but now with a few adaptations. Let H = (). Since n(H) = (n(¢)) ~ Z has an
infinite center (itself), in particular for every n we can take v, € H such that the projections
7(1¢y) are pairwise distinct and all inside the center of 7w(H). Fix a finite generating set S for
G. For every n > 1, define

Ap = inf d(x, ¥n ;
nf {maxd(z,Yn(s)z)}

and by definition let z,, € X such that A\, < maxsesd(xn, ¥n(s)zy) < Ay + % We claim
limy, 00 A, = 0. In fact, suppose by contradiction that this is false. Then there is a bounded
subsequence of it, that we will still denote (), by simplicity of notation. Let then R =

2 + sup,, A\p, < 00.

By the geometric characterization of the action in the previous section, there’s an R-separated
G-invariant collection B = {B(p) | p € P} of horoballs around the collection P of bounded
parabolic points of 0X. Also, there is a connected fundamental domain F' of the action which
is the union of a compact set with a finite number of cusp regions, each one “converging” to a
bounded parabolic point representing a different G-orbit of P. Since F' is a fundamental domain,
for every n let g, € G such that g,x, € F. The sequence (g,x,), is either bounded in X or

not. We are going to derive a contradiction from each situation.

Suppose first that (g,x,)n is bounded. We have d(g,z,,y) < K for every n, for some point
y € X and some K > 0. Equivalently, g,z, € B(y, K) for every n. Now, for every s € S and

every n,

_ 1

SO
d(gn¢n(8)gil *gnTn, y) < d(gn@bn(s)ggl *GnTn, gnxn) + d(gnxna y) <R+ K,

and therefore g, (s)g,! - gntn € By, R+ K). But since g,z, € B(y, K), we already know
that gnllfn(s)g;l *GgnTn € gnwn(s)grzlg(yv K), so

gn¥n(s)g, ' By, K) N B(y, R+ K) # 0

for every s € S and every n. Since X is proper, such closed balls are compact. Therefore, since
the action G ~ X is properly discontinuous, the set W = {g ¥ (s)g;;t | s € S,n > 1} is finite.

Now, write S = {s1, ..., i} and consider the map

fPN=W"  ne (9n¢n(31)ggla ---,gnwn(sm)gﬁl)-

Since N is infinite and W™ is finite, there must be n; # ng such that f(n;) = f(n2). By
definition, this implies gn,¥n, (i)9n) = Gnotny(8i)gn, for every 1 < i < m, or Vg, Yny (8i) =
Vo, ¥ny (8i) for every 1 <4 < m. Since S generates G, we must have g, ¥n, = 7g,,¥ny, Which
implies

T(Yn,) = 7r(W’gnl Vny) = 7T(’7gn2 Vny) = T(Yny)
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in Out(QG), a contradiction, as desired.

Suppose now (gnzy), C F' is not bounded. Since the cusps of F' are the only not bounded
parts and there are a finite number of them, there must be a subsequence (still called (gnzn)n)
converging to the boundary of X inside some cusp, so g,x, must converge to the bounded
parabolic point p at the end of it. In particular, for some large enough n, g,x, must be inside
the horoball B(p) around p. Fix such number n. We claim every element of the form g,,1,,(g)g;*
(g9 € G) sends the point g,x, € B(p) to another point inside B(p). This can be easily proved
by induction on k = |g| (the length of g as a word in 5), so to facilitate notation we will show
only steps k = 1 and k = 2. First, let s € S. Since g,z, € B(p) and the collection B is G-
invariant, the element g,y (5)g; * - gn, must be in some horoball of the collection. But we have
d(gn¥n(8)9n " gnTn, gnn) < R (shown above) and the horoballs of B are pairwise R-separated,
so the only horoball g, (s)g,! - gnrn can be in is B(p). For k = 2, let 51,52 € S be any two
elements. By induction, we have g, (s1)g,, ' - gnzn € B(p). But it is clear that

d(gntn(5152)9n " - Gnn, gnn(51)9n " - gnen) = d(gntbn(52)9n " - GnTn, gntn) < R.

Since the horoballs are G-invariant and R-separated, again the only horoball g, ¢, (5152)g; ' gnn
can be is B(p). Induction follows similarly. With this, we showed the entire group g, (G)g;*
sends a point of B(p) to a point of B(p), so it must be contained in the subgroup Stab(p)
which is the subgroup of G that keeps invariant the whole horoball B(p). Finally, since 9, is
an automorphism we have g, (G)g;! = g.Gg,' = G, so G < Stab(p) and p must be a global

fixed point of G in 0X, a contradiction, since G is non-elementary.

Now we build the action on an R-tree: since A\,, — oo, in particular we can assume A, > 1
for every n > 1. Define then the sequence of pointed metric spaces (X, d,,z,) with X,, =
X,d, = % and the points z,, above. Let G act on X, by g -z = ¥, (g)z, clearly an action by
isometries, for G ~ X is. We have to show that for every g € G, there is C'(g) > 0 such that
dp(Tn, g - ) < C(g) for every n. Write g = s;...sp, (so that |g| =m). Then

A, g-an) = d(@n, Yn(g)zn)

= d(Tn, Pn(51)--Yn(5m)Tn)

< d(@n, Yn(s1)zn) + oo+ d(Wn(s1)- Un(Sm—1)Tn, Yn(s1)--tn(sm)Tn)

= d(xn, Yn(s1)xn) + d(zn, Yn(s2)xn) + ... + d(Tpn, Yn(Sm)Tn)

< (M+1/n)+ M +1/n)+ ..+ (A +1/n)

m(An, +1/n) = |g|(An + 1/n)
< 2[g[An,
therefore g )

dn(Tn, g - ¥n) = ———— < 2lg],

so C(g) = 2|g| satisfies our desired condition. By Proposition 2.69, the actions G ~ X, induce
an action by isometries G ~ X,,, where X, is the w-ultralimit of the sequence (X, dy, Zn)n.
Since each (X,,d,) is a )\%—hyperbolic space and % — 0 (for A, = ), X, is an R-tree by

Proposition 2.68. By [82], we know this action is non-trivial and small, as desired. This was
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step 1.

Step 2 is to extend the action above to an action (G x H) ~ X, such that the restriction
H ~ X, is an action by homeomorphisms. Remember also that H = () in our case. Because
of this, we can see that it is enough to find one homeomorphism f, : X, — X, such that
folgz) = ¢(9) fo(x) for every x € X, and g € G. Indeed, from that we can define fon = (f,)"
for n € Z, and with a simple proof by induction we show that f.n(g9x) = ¢"(g)fn(x) for
n € Z,x € X,,g € G, which gives the desired action (G x H) ~ X,,,.

Let us find then such map f,. As in the last chapter, the idea is to combine maps f, :
X, — X, together to get f, as an ultralimit map. Let us get a little intuition to define this
map in our case. If we read step 2 of Theorem 8.9, we see that, if we were in the particular case
H = (¢), the maps there would be all the same: f,(z) = ¢(z) for all n and all x € G (remember
that points were elements of G there). Intuitively, if we think of that action being a transitive
action, the points x are all individual fundamental domains of the action and the maps f, (or
“the map” f) is taking fundamental domains to their respective image by ¢. This is how we
will define our maps f, = f : X — X for every n. Let F' be the fundamental domain of the
action G ~ X (see the end of Section 9.2). Given z € X, there are unique elements y € F
and g € G such that z = gy. We then define f(x) = ¢(g)y. Geometrically, we have the same
situation of the hyperbolic case: each fundamental domain gF is being mapped isometrically to
the corresponding fundamental domain ¢(g)F in X. It is then clear that f : X — X is bijective.
We claim it is a quasi-isometry. In fact, since it is bijective, its image is obviously cobounded,
so we just have to show the two inequalities from Definition 2.19. But if we started with the
automorphism ¢!, the same definition above would give rise to an inverse map for f. So it is

easy to see that to show the claim it is enough to show only one inequality:
Lemma 9.29. There are A, B > 0 such that d(f(z), f(2')) < Ad(z,z") + B for every z,z’ € X.

Because of this, there are A,B > 0 such that f : X — X is a (A, B)-QIL. Then, the
maps f = fn, : X, = X, are easily seen by definition to be (A4, B/\,)-Ql. If we show the set
{dn(f(zpn),2s) | n > 1} is bounded, we can apply Proposition 2.70 to the maps f, = f. Since
the action G ~ X is properly discontinuous, the proof of Lemma 8.10 can be easily repeated
in our case, since it only demands the hyperbolicity of the space in question, which we have
here. Therefore, by Proposition 2.70, the maps f, = f give rise to a map f, : X, — X, by
fo(l(yn)n]) = [(fa(yn))n] = [(f(yn))n]. Since the f : X — Xy are (A, B/An)-QI and lim A, =
0o, we also have by Proposition 2.70 that f, is a (A4,0)-QI map, or an A-bi-Lipschitz map, in

1 it is straightforward to

particular continuous. Now, if we started with the automorphism ¢~
check that this construction would give rise to an inverse map f -1 for f,. In other words,
Jo1 = - I and fe is an homeomorphism of X,,, as we wanted.

To finish step 2, we are just left to show that f,(g9y) = ¢(g9)f,(y) for any y = [(yn)n] € Xu
and g € G. But the starting map f : X — X we defined satisfies this. In fact, if x € X and
g € G,let h € G and y € F be the unique elements such that x = hy. Then gxr = ghy with
y € F and, by definition, f(gz) = f(g9hy) = ¢(gh)y = v(g9)p(h)y = ¢(g)f(z). So, for any

y = [(Yyn)n] € X,

folgy) = [(f(gyn))n] = [((9) f(yn))n] = @(D(f (Yn))n] = ©(9) fo(y),
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and step 2 is complete.

Step 3 is, again, to “modify” the R-tree X, and the action (G x H) ~ X, above to obtain an
affine action (G x H) ~ T on some R-tree T'. As we saw in the beginning of step 3 in Theorem
8.9, the existence of this affine action will give us in particular an action G ~ T satisfying all
hypotheses of Theorem 7.4, which in turn gives us that R(¢) = oo, finishing our proof.

Fortunately, the entire proof of step 3 of Theorem 8.9 is applicable to our case. In fact, as
the reader can easily check, the only hypotheses we use in that proof (besides the existence of

the action built on step 2, of course) are:
1) the restriction G ~ X, is by isometries, non-trivial and small;
2) the restriction H ~ X, is by homeomorphisms;
3) H is amenable;
4) @G is finitely generated;
5) G contains a non-abelian free group.

All these hypotheses are satisfied in our case: item 1) comes from step 1, item 2) comes from
step 2, the group H = (p) is known to be amenable, G is by hypothesis finitely generated and,
since it is by hypothesis non-elementary, it is known to contain a copy of F5. So, step 3 can be
reproduced here and, as we argued above, this shows that R(p) = oo and finishes the proof of
Theorem 9.27. O

We could just restate the proof of Case 2 (the infinite order case) above in the following

ways:

Corollary 9.30. Let G be a non-elementary relatively hyperbolic group and (X, d) be the space G
acts on (Definition 9.12). Write 7 : Aut(G) — Out(G) as the usual projection. Let ¢ € Aut(Q)
such that () has infinite order in Out(G) and denote by f = f,: X — X the map defined in
the proof of Theorem 9.27 above. If there are A, B > 0 such that d(f(z), f(2')) < Ad(z,2") + B
for every z, 2’ € X, then R(p) = co. O

Corollary 9.31. Let G be a non-elementary relatively hyperbolic group and (X, d) be the space
G acts on (Definition 9.12). Suppose that, for every automorphism ¢ € Aut(G) such that w(p)
has infinite order in Out(G), there are A, B > 0 such that d(f(x), f(z')) < Ad(z,2') + B for
every v,x' € X. Then G has property Roo. O

9.5 A counterexample to Lemma 9.29

To finish the chapter, let us show why we believe Lemma 9.29 is not true in general, that is, for
any relatively hyperbolic group.

Let G and X be the group and space of Example 9.25, respectively. GG is a non-elementary
relatively hyperbolic group acting on the Poincare disk (X, d), with hyperbolic squares as fun-
damental domains. Since G = m1(Y) and Y is homotopically equivalent to the “figure 8, G
is isomorphic to the free group F5 on two generators. Let x and y be the two corresponding

generators of G and consider the automorphism ¢ with ¢(x) = zy and ¢(y) = y. We have an
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infinite order automorphism ¢ of G, which induces a bijection f : X — X by permuting the
fundamental domains of the action according to the map ¢. To be more precise, let F' be the
fixed fundamental domain of the action G ~ X. Given x € X, there are unique elements y € F
and g € G such that = gy. We then define f(z) = ¢(g)y. That is, each fundamental domain
gF is being mapped isometrically to the corresponding fundamental domain ¢(g)F in X.

We want to (intuitively) convince the reader that f cannot be a quasi isometry, or that
the numbers A and B of Lemma 9.29 cannot exist. Remember that these numbers are defined
to be such that d(f(z), f(z")) < Ad(z,2') + B for every x,2’ € X. Therefore, it is enough
for us to find two sequences (z,), and (yn)n in X such that {d(z,,y,) | n > 1} is bounded
but {d(f(xn), f(yn)) | n > 1} is not. If, in particular, (x,), and (yn), are sequences of points
inside geodesic lines contained in fundamental domains and converging to boundary points (and,
therefore, so will be the sequences (f(x))n and (f(yn))n), then by the definition of boundary
2.4 it is easy to see that the previous condition we want is equivalent to say that (z,,), and (y,)n
converge to the same boundary point P but (f(zy))n and (f(yn))n converge to distinct boundary
points. Now, finding such sequences is easy. Let x, = P — (%, %), where P = (@, g) is the
boundary point of Example 9.25. Of course, (z,)y, is in the (straigth) geodesic inside the central
“fundamental square” F' and converges to P. It is known about the Poincare disk that the
right-sided edge of this square (which is also the left sided edge of the square xF') is contained
in a circle C of R? = C. Now, for every n, let y,, be the inversion of x,, with respect to the circle
C. Since (xy,), is in a geodesic and converges to P € C, the sequence (yy ), is also in a geodesic

and converges to P. Since (x,), is entirely in the square F', (yy), is entirely in the square zF.

Since ¢(1) = 1, the square F' is mapped by f onto itself (p(1)F = 1F = F), so it remains
unmoved and f(x,) = x,. Therefore, the sequence (f(z,,)), still converges to P. On the other
hand, we will show that (f(y,))n converges to @ # P. Since f maps oF to p(z)F = zyF, its
restriction to zF can be written as the composition of the translations of zF by ™!, y and then
x, in that order, so that f is zF QT:; F yF & xzyF. These translations are illustrated in the

following figure, where the image of an edge has the same color of it:
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Because of this, one can easily see that the sequence (f(y,)), converges to the boundary

point @ # P, as in the next figure:

This shows that Lemma 9.29 does not hold in this case and completes our example.
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Open questions

)

2)

Is there anything we missed in our understanding of Fel’shtyn’s sketch of proof? We do

not believe so, but humility is important.

Are there non-elementary relatively hyperbolic groups that fit in the case of Corollary
9.317 If so, how common (or rare) these groups are with respect to the family of relatively
hyperbolic groups? Is there a methodical way to build such examples? Since it was quite
easy to build our counterexample of Lemma 9.29, we believe that such a group (if any)

must be of a very specific type.

Is there a way to avoid Lemma 9.29 in the proof of Theorem 9.277 In light of our coun-
terexample, we believe that a proof of R, for relatively hyperbolic groups would be, at

least, not so similar to the one we proposed and, at most, completely different.

Does any non-elementary relatively hyperbolic group has property Ro? We think a good
family for a possible counterexample would be the groups described in Example 9.15,

assuming they are not hyperbolic, of course.

Can we use either Brown’s characterization of 3! in [17] or Cashen and Levitt’s Theorem
11.4 to compute the BNS invariants for some relatively hyperbolic groups, in order to

obtain extra information about property Roo?
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Capitulo 10
Nilpotent quotients of ',

Given a group G with property R, we define the R, nilpotency index of G to be the smallest
number ¢ > 1 such that the quotient G/7.+1(G) has property Roo (if such number exists) and
to be infinite (or ¢ = o0) elsewhere, that is, if none of the quotients G/7.+1(G) have property
R In this chapter, we show that the groups ', have infinite R, nilpotency index. In contrast
to chapters 5 and 6, we shall see that the X! invariant cannot be used here, so our technique

here is different and that is the reason why this chapter is in the appendix.

Let us describe the motivation for our work in this chapter. The R, nilpotency index is
a quite recent notion, defined in 2016 for the first time in the paper [23]. There, the authors
D. L. Gongalves and K. Dekimpe compute the index for the surface group of a genus g > 1
surface and showed that it is 4 in the orientable case and 2(g — 1) in the non-orientable one.
Remember that surface groups are known to have property R since they are hyperbolic groups
(see Chapter 8). But even before this very recent definition, knowing whether some nilpotent
quotient has R, was already an active topic in combinatorial and geometric group theory.
For example, in [24] (2013), the same authors (among other results) generalized a result by
Roman’kov [85] (2011) and showed that the free groups F, have Ry nilpotency index 2r (but
did not use this terminology). But our most direct motivation was the paper [22] (2020), where
the two authors described the R nilpotency index of all Baumslag-Solitar groups BS(m,n).
So, in the same way knowing information of the X! invariant for BS(1,n) was the motivation
to investigate ¥!(T,,) (Chapter 5), knowing which nilpotent quotients of BS(1,n) had R led
us to investigate the same aspects for the groups I',,. That being said, it is clear that paper [22]

is the basis of the first computations of our chapter.
As in Chapter 5, let n > 2 be an integer with prime decomposition n = pi¥'...p,%", the p;
being pairwise distinct and g; > 0. We consider again the Generalized Solvable Baumslag-Solitar

group
Ty = (a,t1,cnte | titj =tjts, i £ 4, tiat; P =al", i=1,...7).

For any ¢ > 1, we will denote
Iy
Fpe=——,
e Yet1(I'n)
where .11 is the (¢ + 1) term of the lower central series of T',, (Definition 1.57). We know it
is a nilpotent group with nilpotency class < ¢, for ye41(T'nc) = ’YC+1(%+1;7(1F”)) = Zyzigzg =1.
In this chapter, the torsion subgroup of a nilpotent group G will be denoted by 7G = {g €
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G | g" =1 for some n > 1}.
Lemma 10.1. Let m = ged(p¥* — 1,...,p¥" —1). Then a™" € vpy1(Ty) for all k> 1.

Demonstragao. Induction on k. First, £ = 1. By using the group relations, note that, for any
1<i<r, abi' 1l = tiati_l(fl = [t;,a] € v2(T'y). Since this is true for any ¢ and m is an integer
combination of the p/* — 1, we have a™ € v(I',). Now, suppose the lemma is true for some
k > 1. Then

Yi_ k Yionk ok k _ _k k
aP' =DM — P mmT — g T = [t ™| € ypya(Th).

Again, since this is true for any ¢ and m is an integer combination of the p¥ — 1, we have

mmk k+

a = Yk+2(Ty), as desired. This completes the proof. O

:am

10.1 Torsion and lower central series

To compute the torsion of the groups I';, ., we need the following

Lemma 10.2. Let G be a nilpotent group of class < ¢ and denote y; = v;(G). If the quotients
V2 /Y3y ooy Yo/ Vetr1 are finite, then o is a torsion subgroup of G.

Demonstracio. Let g2 € y2 and let us find k > 1 such that g5 = 1. Since y2/~3 is finite there is
ks > 1 such that 9126373 = 73, Or 9153 € v3. Now, we have the element 95374 € 73/74. Since this
is a finite group, there is k4 > 1 such that g§3k4’y4 =y, Or g§3k4 € 4. If we proceed recursively

we obtain glg € Yet1 for k = ksky...kcy1 > 1. Since .41 = 1 we have g§ =1, as desired. O
Proposition 10.3. 7', . = (@, 72(T').c)), where @ = ayer1 = aYep1(Tn) € The.

Demonstragdao. In the case ¢ = 1 we have I'y, 1 is the abelianized group of I';,, so

le = <E,E, ,E | tit]’ = tjti, ia :EE, ap?i_l = 1> ~ T X ZT,

so 7'y 1 = (@) = (@,72(T'p 1)), since (I, 1) = 1.
Now let us show the proposition in the case ¢ > 2. For (C), let zv.41 € 7Ty This

means 2Fy.41 = (27c11)* = 7ey1 for some k > 1. Since ¢ > 2, we have 2*

€ Yet+1 C 72,
so 2 € 7I'y1 = (@). Write then z = algs for I € Z and go € 2 = 72(T,). This gives
Yer1 = (aYet41) (927e+1) € (@,72(Tne)), as we wanted. To show (D), we note that by Lemma
10.1 we get a™ =11in Iy, s0a€ 1l .. So, we just need to show that v2(I'y, ) is a torsion
subgroup of I', .. To do this, we invoke Lemma 10.2, by which we know it is enough to show

the quotients
Y2 (Fn,c) ’Yc(rn,c)
’Y3(Fn,c) T Ye+1 (Fn,C)

are all finite. But for every 2 < i < ¢, by the known Isomorphism Theorem for quotients, we

have

%(Fn,c) _ ’)’i(r‘n)/’)/c—i-l(r‘n) ~ %‘(Fn) :’7‘/’)/'
%ir1(Cne)  iriCa)/Yer1(Tn) — 7ira(L) Y

so let us show that v2 /73, ..., Ve/7Yet+1 are finite by induction. By Proposition 1.61, we know they

are abelian groups, generated by their i-fold comutator cosets.
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The group v2/73 is generated by the elements [t;, alys, 1 < i < r and by [t;,t;]v3 = 1v3 = 73,
which are trivial. By Proposition 1.60, we get

[ti,a]™ 3 = [ti, a™]y3 = 73,

since a" € 75 (Lemma 10.1). So all generators of 72 /3 have torsion. Since it is finitely generated
and abelian, it must be a finite group.

Finally, suppose by induction that 7;/v;+1 is finite for some i > 2. By Proposition 1.61,
Yi+1/Vi+2 is then generated by the elements of the form [z, y]y;+2 with z € T'), and y € ;. Since
i/7i+1 is finite, let k = k(z,y) > 1 with (y¥i41)" = Yit1, or y* € vi41. Then

[z, 9] Yir2 = [2, 9" vir2 = Yire-
By the same argument we just used, this implies 7;11/7;+2 is finite and completes the proof. [
Proposition 10.4. (') = <amk_1> for allk > 2 and ¢ > 1.

Demonstracao. First, we will show that

Yk (Fn c) <—mk’1
e ne) Gt (T, > . 10.1
7k+1(rn,c) v +1( TLC) ( )
For k = 2, by Proposition 1.61, % is generated by the cosets [t;,alv3(T'pn ). Since [t;,a] =

Yi
@i~ we have

2 F _ Y1 _nYr -
20ne) (1 1y (D)o@ M 5(T)) = (03T )
’YS(Fn,c)
(remember that m = ged(py* — 1,...,pf" — 1)). Suppose now 10.1 is true for some k > 2. We

Ve+1 (Fn,c)
Yk+2 (Fn,c)

. . . . k—1 .
induction, we can write z = a®”"  wy4 for some wy41 € Vi41(Fn ) and o € Z. Then, by using

know is generated by the cosets [z, z]vk+2(T'n ), where z € T'y, . and z € (I, ¢). By

Proposition 1.60 we get

k—1
[.1‘, Z]’Yk-ﬁ-? (Fn,c) = [JJ, a*™ wk+1]7k+2 (Fn,c)
k—1
= [ZE, a” ]a [:Ea wk+1]'7k:+2 (Fn,c)
1
= [z,a@ 1*Ve+2(Tnse),

t ’Yk-ﬁ—l(rn,c)
'Yk+2(rn,c)

Since |[a, Emkil] is obviously trivial, the quotient group is generated only by the generators

[t amk_1]7k+2(Fn7c). Since [f;,a™" '] = a® V™" "' we obtain

so the quotien is actually generated only by the cosets [x,wk71]7k+2(rn7c).

r Y1 k— ur k—1 N
M — <a(p11 m lfykﬁ(pn?c), m’a(pif Dm ’Yk+2(rn,c)> = <afjfyk+2(rn70)>,
’7k+2(Fn,c)

where

8= gcd((p?i’1 — 1)mk_1, ey (I — 1)mk_1) = mk-1 gcd(p%’1 —1,.,p 1) = mk,
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and this shows 10.1. Now, let us show the proposition. The (D) part is a direct consequence
of Lemma 10.1. Let us show (C). In the case ¢ < k, we have v;(I'yc) = 1 C <d’”k71>.

Suppose then ¢ > k and let z € (I, ). Since zy,11(Iye) € <6mk71'yk+1(11n,c)> (by 10.1),

write x = Ejkmkfla:kﬂ for jr € Z and 41 € Yg+1(I'ne). By using 10.1 again, we write

Tpy1 = 1" gy for jry € Z and xp12 € Yip42(n,c). We can do this recursively to obtain

k=1 s B el
x = @ @R @ ro
e N )
k-1
€ <am >,
and the proof is complete. O

By Lemma 10.1 and the two propositions above, we easily get

Corollary 10.5. 7I',, . = (@) and card(rI', ) < m°. O

10.2 An isomorphism for I, .

The next step is to find a presentation to I';, ., so we will find an isomorphism between I, . and
a more known group. Keep in mind all notations we have used above, such as n, p?i”, c,r and m.
In this chapter, we will use the notation Z,,c = <x |z = 1> and Z" = (s1,..., Sr |5isj = 5;5;).
We define the group

Gne="ZLpme 07",

where the group action Z" ~ Z,c is given by si:cs;l = aPi i<t <.

Observation 10.6. Note that the actions defined above are all automorphisms of Z,,c. In fact,
since 1 = p!" — (p!" — 1) = p" — kym for some k; € Z, we have ged(p!’,m) = 1 and so
ged(p!, m€) = 1 for any ¢ > 1, by elementary number theory. This implies the map z P
induced by s; is an automorphism of Z,,e, for it has an inverse given by z — z?, where ﬁpfi =1
mod m¢. Second, all such automorphisms commute, for Z,,c is cyclic. These two facts show

that there is a well defined homomorphism Z" — Aut(Z,c), so this semidirect product is well
defined.

We will show that I'y, . ~ G}, .. To do this, we need this:
Lemma 10.7. G, . is nilpotent of class < c.
Demonstragao. Since [s;, x] = a1 e (x) for every i, we have vy2(Gp.) C (™). Similarly,
since [s;, 2] = 2@ ~Dm ¢ <a:m2> for every 14, in particular we have [s;, 2] € <xm2> for every
z € 72(Gpye), so it is easy to see that v3(Gp.) C <.’L‘m2> Recursively, we can show that
Y&(Ghne) C <:Bmk71> for every k > 2. In particular, ye41(Gp,e) C <xmc> =1, since 2™ =1 in

Zume. This shows the lemma. ]

Corollary 10.8. 7G, . is a subgroup of Gpnc. Moreover, TGy . = Zpme = (z) and so

card(7Gp ) = m°.

Theorem 10.9. I', . ~ G, .
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Demonstragao. Let f:T'y, — Gy, be the map f(a) =z and f(¢;) = s;. Since
FE)f@f ()7 = siwsy =P = f),

[ is a well defined group homomorphism. Since f(v;(I';)) C 7i(Gn,) (in fact, that is true for

any group homomorphism), f induces the morphism (also denoted by f)

_ Fn N Gn,c
’YC+1(Fn) ’Yc—l—l(Gn,C)

fiTne = Gn,e

given by f(a) = z and f({;) = s;. It is obviously surjective. We are just left to show that
ker(f) = 1, and to do that we will make use of the torsion subgroups. Since f(7I', ) C TGy ¢
(again, that is true for any homomorphisms between nilpotent groups), there is the restriction
morphism f; : 7', . = TGy, .. By corollaries 10.5 and 10.8, we can actually write f; : (@) — (z).
Since fr(a) = x, it is clearly surjective. Now, f; is a surjective map from a finite set of < m¢
elements (Corollary 10.5) to a finite set with exactly m® elements (Corollary 10.8), so we must
have card((z)) = m® and f; an isomorphism. In particular, ker(f;) = 1. We claim that

ker(f) C 7I'y . In fact, let z € ker(f). By using the normal form of the elements in I',,, write

k. _ _ . R
L 7RO A MU P

2=
for k;,1 € Z and «; > 0. So
1= f(z) = st shrs7or sorglsor g7

r

Since x € TG, o <AGp.c we have s .5, zls 0 57 € 7Gpe = (x),50 1 = f(2) = s ..shral’
for some I’ € Z. By projecting this equality under the natural homomorphism G,, . — Z" we get

1= slfl...sz, which implies k; = 0 for every . Therefore
z=1, Y. dn . qM e TG e,
since @ € 7'y . < I'y, ¢, which shows the claim. Finally, this gives
ker(f) = ker(f) N7l = ker(fr) =1

and the theorem is proved. O

Corollary 10.10. For any c > 1, the nilpotent quotient I'y, . has the following presentation:
Tne = <x’31’ s | @ =1, sisj = sjsi, siws; | = xp?i>.
O

As we told in the introduction of the chapter, let us note that the X! invariant cannot be
directly used here. In fact, since I'y, . ™ Zy,c X Z", Z" is a finite index abelian subgroup and we
have (T, .) = S(I'y,c) by Corollary 3.29, so none of the $! theorems of chapters 3 and 4 can

be applied. Our approach, then, was more combinatorial and matricial, as you shall see.
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10.3 Reidemeister numbers

Because of the theorem above, in the rest of this chapter we will make the following identifications
Lhe=Gne="Zme XZ" = (x) ¥ (51,..., ).

It’s also worth pointing out that we will restrict us to investigate Reidemeister numbers of I';, .
only in the case r > 2, for, if r = 1, then I, is by definition a Baumslag-Solitar group BS(1,n)
and its Reidemeister numbers were studied in [22]. Let ¢ € Aut(I',c). Since p(7Iyc) C 7Thc,

we have an induced automorphism

K Ine _gr gr— Ine
T e Tl e
From now on, we will use the usual identification Aut(Z") = GL,(Z) which sees an automorphism
of Z" as its (integer invertible) matrix with respect to the coordinates s;. So, if §(s;) = s7...s0"i,

we will identify

aip - Qir aig
p = (az-j)ij = = [Al ce Af,«] , where A; = | 1 | €Z".

arl s
Proposition 10.11. If ¢ € Aut(I', ), the following are equivalent:

(1) R(p) = oo;

(2) R(p) = oo;

(3) det(p — Id) = 0;

(4) @ has 1 as an eigenvalue.

Demonstragao. Items (2),(3) and (4) are all equivalent (see Example 1.3), so we just have to

show that (1) and (2) are equivalent. We have the following commutative diagram:

So, if R(¥) = oo, by Lemma 1.7 we get R(¢) = oco. Let us show (1) = (2). To simplify the
computation, let us use the following notation in this proof: given y = (y1,...,y,) € Z" (either
a row or a column vector), we will denote the element s{'...s7" € ', by SY, and the scalar
product of k € Z by y is denoted by ky. With this notation, it turns out that any element of
¢ is of the form SYx” for some y € Z" and 8 € Z. Suppose then that R() = d < oo and write
R(®) = {[vi]e, ..., [va]z} for v; € Z" or, equivalently (Example 1.3), % = {1, ...,Uq} (where
T = vi+im(@—1Id)). Write p(x) = x# (for some p € Z with ged(p, m¢) = 1) and ¢(s;) = SAabi,
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Bi € Z. Given that the s;-coordinates behave well in the Ty, ., for any k = (k1,...,k,) € Z" and
[ € Z we have

go(Ska:l) = gp(sl)kl...go(sr)krgo(x)l
— (SAlxﬁl)kl.”(SA’V‘mﬁ’r‘)er/Ll
= ShAitethedr 0 for some 0 € Z

= Pk 0,

This implies that, for any j € Z and y € Z",

(S (SYa)p(S*al)™! = SkalgVpiy=05—Pk)
Serk*E(k)xé, for 6 €Z
QuHI=P)(k)

This means that, if two vectors vy, € Z" are such that 7 = 3/ € %,

SY27 is p-conjugated to some element SY' 2% for some 0 < @ < m¢. Since % ={v1,..., 04},

then every element

every element SYz? is ¢-conjugated to some SVz? 1 <i<d, 0<6 < mE, so
R(p) <dmf < o0

and the proposition is proved. O

In the rest of the chapter we will use the following notation: we know that ged(p{*, m¢) = 1.
This means that p;* is an invertible element in the commutative ring Z,,c (now thought in the
abelian notation Z,,c = {0,1,...,m¢ — 1}). So, as in commutative algebra, we will naturally
denote by p; ' the inverse element (p!")~! € Z,c and, similarly, we define pl-_kyi as (pfyi)_1 for

any k > 0, so it makes sense to write pfyi for any k € Z, thinking of it as an invertible element

of the ring Z,c. We are saying this to avoid a possible misinterpretation of p; ¥* as p%‘i € Q, for

k

ky;
example. With this notation, it is clear that sfacsi— — 27" for any k € Z.

Proposition 10.12. T, . has not property R if and only if there is M = (a;j)ij € Gl.(Z) such
that

o det(M — Id) #0;

o foranyl <i<r,

a1iY1,.02iY2  ariYr __

PtV g plritt = p¥' mod m°. (M, c,i)

Demonstra¢do. Suppose first that I'y . has not property Ro.. Let ¢ € Aut(I'y.) such that
R(p) < oo. Let M = @ € Gl (Z), and write M = (a;;);j. By Proposition 10.11, we have
det(M — Id) # 0. Since p(7I'yc) C 7y, we have p(z) = z# for some pu € Z such that
ged(p, m€) = 1. Let us show that for any 1 < ¢ < r the equation (M, ¢, ) holds. For any such i,
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1 i

since ¢ is a homomorphism of I, . it must satisfy p(s;)p(x)e(s:)™" = ¢(z)Pi , so

) Yi
§91 L s0righs i M = P
or, equivalently,
a1yl Apir i
Py R R
Then up"'..pr™?" = pp? mod me, and since ged(p, m€) = 1, we have p{*¥'..py¥" = p¥i

mod m€, which is exactly (M, ¢,4). This shows the “if” part. Suppose now that there is such a
matrix M = (a;j);; and let us show I';, . has not Ry. Define ¢ : 'y . — I'y, ¢ by ¢(2) =  and

a14 o024

o(s;) = 57" s5*...s¢ri. Let us check that ¢ is a well defined homomorphism:

a1;Y AriYr a1y AriYr Ys
ai; .a9g; a2; —ai; 14 1.“ T4 1z 1“. Trz i

p(si)p(@)p(si) ™ = syMsp sirias Wiy Pis M = g TP = o) = ()P
the last equality being true by (M, ¢, 7). Also, since the s; commute, we obviously have

Arj alj arj a1

Wi st sy = st s s st = p(s5)p(si).

p(si)p(sj) = 57

Finally,

so ( is in fact a homomorphism. Let us now construct an inverse homomorphism. Let N =
M~! € GL.(Z) and write N = (bij)ij. Let us show that, for any 1 < i < r, N satisfies the
equation (N, ¢, 1), that is pb“ylpbmy2 .pf«”y’" = pY" mod m®. Since MN = Id, for any 1 <i,j <r

we have

H aikbr; = (MN)ij = Idij = d;5,

where ¢;; is the Kronecker delta. Fix i. We do the following: for each fixed 1 < j < r, we raise
both sides of equation (M, ¢, j) to the power of b;; and obtain

aijbjiyy azjbjiya  arjbjiyr _ bjiy; c
2 Dy .y =D; mod m

Now, if we do the product of all the r equations above (on both sides, of course) and rearrange

the left side according to the primes we get

pgallb1i+~--+alrbri)y1pga21b1i+~~'+a2rbri)y2'"pgnarlbli‘i’m‘i'aﬂ"bri)yT — pbhylpb%w ,,p?Tin mod m°,
or
(TTg arxbra)yr (I a2xbri)y2  (TTx arkbrs)y briy1, bai bri
py RO gy e GORIYE i ORI it 2V plri¥r mod m”,
Oor even
pfiumpgziyg”pényr _ pblzylpbzzw "pfji% mod m°,
which results in
pl :pbuy1pb21y2 “pg'riyr mod m¢,

which is exactly (IV,c, ), as we wanted. Now define ¢ : I';, . — I'y, . by ¥(x) = 2 and ¢(s;) =
s?“sgm...s?”. As we did with ¢, the fact that N satisfies (N, ¢, ) for all i gives us that 1 is a
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group homomorphism. Of course we have p(¢(z)) = z. Also,

b1i  b2i i

P((si) = @(sPrs5 . s)r)
= @(51)"p(52)" . 0(sr)
= (s{.str)bui(gh2 | garz)bai | (gir  garr)bri

8(1a11bli+a12b2i+---+alrbm')Sga21b1i+a22b2i+---+a2rbm') S(ar1b1i+ar262i+...+aTTb”-)
.8

br;

[T a1ubri i aokbri  I1j arrbe:
$1 S5 ...5r
o 015 09; Ori
= 8§1'8y"...8,""

= S5;.

Similarly, we show that ¢ = Id by using that NM = Id, so ¢ € Aut(I'y ;). Since g = M we
have det(@ — Id) = det(M — Id) # 0 by hypothesis, so R(¢) < oo by Proposition 10.11. This
completes the proof. O

For the next theorem, we will need the following
Lemma 10.13. Let z,m > 2. If x =1 mod m, then ™" =1 mod m*+! for any k > 0.

Demonstragao. Induction on k. Note that the case k& = 0 is obvious. For k = 1, write by

hypothesis x = gm + 1 for some ¢ € Z and, by the known Binomial Theorem we have

2" =1 = (gm+1)" -1
- (" qg"'m™ + m g i e+ " @m? + " gn+1—-1
0 1 m — 2 m—1
— m qmmm+ m qm—lmm—l_i_m_‘_ m q2m2+ m qm
0 1 m — 2 m—1

Note that all summands above are obviously multiples of m? - except for the last one, which is
also a multiple of m? because (m”_ll) = m. This completes the case kK = 1. Suppose now the
lemma is true for some k > 1 and let us show it for £+ 1. Write by hypothesis gmt = gmFtl 41

for some ¢ € Z. Using this and the Binomial Theorem again we get

21 = @y

= (gm"'+ 1" -1

_ (m qmn,Lm(/ﬁq)Jr_“Jr m q2m2(k+1)+ m gmF 11 -1
0 m—2 m—1

_ (™ qmmm(k+1)+m+ m q2m2(k+1)+ m gm*T1
0 m—2 m—1

Again, all summands above can be seen to be multiples of m**2. In fact, for 2 < i < m
we have i(k + 1) = ik + i > k + 2, and these numbers i(k + 1) are exactly the powers of

m on the summands above - except for the last one, which is also a power of m**2, for it is

(mw_ll)quﬂ = mgm®*t1 = gm**2. This completes the proof. O
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Theorem 10.14. Let n > 2 have prime decomposition n = p1Y'...p,Y", the p; being pairwise
distinct and y; > 0. Suppose r > 2, that is, there are at least two primes involved. Then the
nilpotent quotient group I'y, o = T'y/Yer1(T'n) does not have property R for any ¢ > 1. In other

words, the Ry nilpotency index of I'y, is infinite.

Demonstragdo. Let m = ged(pf* — 1,...,p¥" — 1), as we have done in this chapter. If m = 1,
then none of the groups I';, . have property R.. This is because I';, . >~ Z" for any c in this
case (see Theorem 10.9), and we know Z" has not R. So, from now on, suppose m > 2. Of
course I'y, 1 does not have property R, for it is a finitely generated abelian group. Now, for
any fixed ¢ > 2, we will use Proposition 10.12, that is, for any r» > 2, we will find a matrix
M = (aij)ij € Gl.(Z) with det(M — Id) # 0 and satisfying equations (M, c,7) for 1 <i <r. We

will look for a particular family of matrices M, that is,
M =mFN + Id.

Here, k will be some suitable positive number, N = (jo3)as Will be some integer r x r matrix
with determinant 1 and m*N = (m*j,s)as is the natural scalar product of a number by a
matrix. The first thing to observe is that any such matrix M satisfies all the equations (M, ¢, )
for some big enough k > 1. Let us see that. It is easy to see that, for such M, the equations

(M, c,i) become exactly

(] pp2 i)™ =1 mod mC. (M, c,i)

For us to use the previous lemma, the term inside the parenthesis in the above equation
must be congruent to 1 modulo m, so we claim this is true. Since m divides each number p¥* — 1
(1 < s <r) by definition, we have pg®* = 1 mod m, so by the multiplicative property of integer

congruence we have

pjlliylp%mwmp_;riyr = 1J11I2 I mod m

= 1 mod m,

which shows our claim. Now let k¥ = ¢—1. By the above lemma we have (p]l.“y1 p%”yz ...M;Tiyr)mk =

1 mod m¢, so for every i equation (M, ¢, 1) is satisfied for such M.

It is then enough for us to find, for any r > 2, an integer matrix N which makes det(M) = 1
and det(M — Id) # 0. Since M = mFN + Id, we have

det(M — Id) = det(m*N) = m™det(N),

so for det(M — Id) to be non-zero it suffices us to have det(N) # 0. We claim therefore that,
for any r > 2, there is a matrix N such that det(N) = 1 and det(M) = det(m*N + Id) = 1. We

will show the cases r = 2, 3,4 separately and then show the case » > 4 by induction.

For r = 2, it is straightforward to see that det(M) = m?* det(N)+m*tr(N)+1so det(M) = 1
if and only if m* det(N) + tr(N) = 0. Let us find then N with det(N) = 1 and tr(N) = —m*,
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and we will be done. Now, this is an easy task: the matrix

fits the requirements. For r = 3, if we define

1 —(mF+2) mF+1
N=|1 —(mF+1) mF

0 1 0
and
mF+1 —mFmF+2)  mFmF +1)
M=mfN+Id=| mF —mFm*+1)+1 m?2k ;
0 mk 1

it is easy to see that det(IN) =1 = Det(M). For r = 4, the matrices

I —(mF+2) mF+1 —(mF4+1)

N— —(mF+1)  mF mF
1 0 0
0 1 0
and
mF+1  —mFm*+2)  mEmF+1) —mFmF + 1)
0 mb 1 0 ’
0 0 mF 1

satisfy det(N) = 1 = Det(M). Note the recursion here: the matrices N = N,11 and M = M, 14
of size r 4+ 1 always contain the matrices N = N, and M = M, of size r in their left superior
corner. We will keep doing this for » > 4. The induction will be the following: we will show
that, for any even number r > 4, we can find such matrices N and M with det(N) = 1 and
det(M) =1 for r+1 and r + 2. Let us show this claim to r = 4, that is, let us find the matrices
M, and N, for the cases r =5 and r = 6. For r = 5,

(1 —(mF+2) mP+1 —(mF+1) | mF+1]

1 —(mF4+1) mF mF mF
N=|0 1 0 0 0

0 1 0 0

0 0 1 0 |

and
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[mk +1 —m"“(m'C +2) mk(mk +1) —mk(mk +1) mk(mk + 1)-
mk _mk(mk +1)+1 m2k _m2k m2k
M=mFN+1d= 0 mb 1 0 0
0 0 mF 1 0
|0 0 0 mk 1 |

satisfy det(N) = 1 = det(M). For r = 6, the matrices

I —(mF+2) mF+1 —(mF4+1) mF+1| —(mF+1)
1 —(mF4+1) mb —mPF mk —mkF
N |0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
and
‘mF + 1 —mFmF +2)  mFmF 1) —mFmF +1) mEmF +1) | —mF(mF 1)_
mk —mE(m* +1) + 1 m2k _m2k m2k _m2k
Mo 0 m¥ 1 0 0 0
0 0 m¥ 1 0 0
0 0 0 m* 1 0
|0 0 0 0 m* 1 |

satisfy det(N) = 1 = det(M) (this can be checked by developing the determinant using the last
column of the matrices). The reader can easily see the induction step now. Suppose that, for

some even number r > 4, the square matrices

I —(m*F+2) mF+1 —(mF+1) -+ mF+1 —(mF+1)

1 —(mF+1 mF —mF e mF —mF

0 1 0 0 0 0
N, = |0 0 1 0 0 0

[an)
es}
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and
[mk 41 —mF(mkF+2)  mFm* +1) —mFmF +1) mF(mF +1) —mF(mF + 1)
mk —mF(mF + 1) + 1 m2k _m2k m2k _m2k
0 1 0 0 0
M, = 0 mk 1 0 0
0 0 0 1 0
| 0 0 0 m 1
have both determinant 1. For r + 1, the matrices
[ m* + 17 [ mF(mk +1)]
mk m?k
N’V’ O Mr 0
Nr+1 = and MT+1 = .
0
10 0 1 i 10 0 0 m ]

Have determinant 1. In fact, developing the determinant of NV,,; by the last column we get

det(Nr+1)

= (=) (mF £ 1)1 + (=) FH2mF 1 = mF + 1 — mF = 1, using that the two

submatrices are upper triangular with 1 in all diagonal entries and that r is even. Similarly, we

develop the determinant of M, ;1 by the last column. Using that r is even, that the first two

submatrices that appear are upper triangular and that det(M,) = 1 we get

det(Mr+1) =

(_1)r+1+1mk(mk + 1)mrk + (_1)T+1+2m2k(mk + 1)m(r—1)k + (_1)r+1+r+1det(Mr)

m(T-f—l)k(mk + 1) _ m(r—i—l)k(mk + 1) +1

1.

Finally, for r» 4+ 2, the matrices

Nr+2 =

Nr-‘,—l

—(m*+1)]

0

0 0

and M40 =

Mr+l

—m¥(m* +1)]

0

0

0

m

k

Have determinant 1. Indeed, developing the determinant of N,yo by the last column we get
det(Nyyo) = (—1)" P2 (—(mF +1)).1 + (=1)"T2F2(—mF).1 = mF + 1 — mF = 1, this time using

that the two submatrices are upper triangular with 1 in all diagonal entries and that r is even.

Similarly, we develop the determinant of M, 2 by the last column. Using that r is even, that
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the first two submatrices that appear are upper triangular and that det(M,1) = 1 we get

det(Mr+2) — (_1)r+3(_mk(mk + 1))m(r+1)k + (_1)r+4(_m2k)(mk + 1)mrk + (_1)27"-{-4.1
DR (k1) = mUTDE P 1) 1
= 1.
This completes the induction step and finishes our proof. O

Open question: is it possible to use similar techniques to compute the R, nilpotency index
for GBS groups? Indeed, this was one of the suggestions of the authors in [22] (2020), the main
paper inspiring our chapter. By this moment, with other combinatorial techniques, we have
already started this investigation and obtained some particular and interesting computations.
In particular, we know GBS groups with finite and with infinite R, nilpotency indexes, but the

research is still far away from its end.
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Capitulo 11

GBS and GBS, groups and X!

invariant

We dedicate this chapter to investigate the behaviour of the so called GBS (and GBS,,) groups
concerning X! and Q! and to try to guarantee Ro, or other twisted conjugacy properties for
these groups. The reason for this investigation is that property R.. has already been shown
to any non-elementary GBS group (see [67], Proposition 2.7 at pg. 486) and, in fact, for any
group that is quasi-isometric to a GBS group (see [93]), but geometric invariants have not been
used. So, could X-theory be applied to determine property R, for GBS and GBS, groups?
This turned out to be not so effective as it was in chapters 5 and 6, and that is the reason why
this chapter in the appendix. The problem is that ¥! is symmetric inside the character sphere,
as we shall see. However, we have good results here. In fact, by using a result from Cashen and
Levitt in [19], we algorithmically classify the possible shapes of the ¥-invariant of GBS (and
GBS,,) groups, given the associated finite graph of groups. We then use this to get some partial
twisted conjugacy results (not necessarily R, results) on some special cases.

We start by showing two quite general properties of ! concerning fundamental groups of
finite graphs of groups. The first one is Corollary 2.2 in [19]. The proof technique is interesting

enough to be shown below.

Proposition 11.1. Let G be the fundamental group of a finite and connected graph of groups
(G,T'), with each vertex and edge group being finitely generated. Let [x] € S(G). If x|a, # 0 for
each edge group Gy, and [x|c,p] € Y (Gp) for each vertex group Gp then [x] € Z1(G).

Demonstracao. We divide the proof into 3 steps.

e ' a finite tree. We show the proposition by induction on the number n of (geometric)
edges of I'. For n =1, I" is a segment of groups and G is an amalgamated product of two
finitely generated groups (Definition 1.64). In this case what we want to show is exactly
Proposition 3.31, already shown. Now suppose the claim to be true for n — 1 > 1 and
let I' be a finite tree with n edges. By Proposition 1.29, let Py be a terminal vertex of
I' associated to an edge yo and let I = T' — Py. Let (G,I”) be the restriction of (G,TI")
to I and G’ be its fundamental group. From Example 1.66 we have G = G’ g, Gp,.
By hypothesis, x|g, # 0 for each edge y of I' (in particular for every edge of I") and
[Xlcp] € Y (Gp) for each vertex P of T' (in particular for every vertex of I”). Since
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I is a tree with n — 1 edges, by induction hypothesis the claim is true for (G,I”) and
so [x|er] € HG"). Since Xla,, # 0 and [x[gy,] € Y1 (Gp,) by hypothesis, we apply
Proposition 3.31 for the amalgam G’ ¢, Gp, and conclude that [x] € £!(G), as desired.

e ' a finite bouquet. We show the proposition by induction on the number n of petals (edges)

of I'. For n =1, I' is a loop of groups and G is an HN N extension of a finitely generated
group (Definition 1.65). In this case what we want to show is exactly Proposition 3.32,
already shown. Now suppose the claim to be true for n — 1 > 1 and let I' be a finite
bouquet with n petals. Fix one petal z and denote by I the “sub bouquet” obtained by
removing z and Z from I'. Denote by G’ the fundamental group of I''. From Example 1.67
we have G = 71(Z), where Z is the loop of groups defined there and shown in the figure

below.

o' P ' — G,

By hypothesis, x|g, # 0 for each edge y of I' (in particular for every edge of I") and
[Xlgp] € B1(Gp). Since I is a bouquet with n — 1 edges, by induction hypothesis the
claim is true for (G’,T") and so [x|a/] € 1 (G"). Now, x|g. # 0 and [x|¢] € ZHG’), so we
can apply Proposition 3.32 for the loop of groups (HNN extension) Z to conclude that
[x] € 2YG), as desired.

e General case. Let I" be any connected finite graph and fix a maximal tree T of T". Let (G, T)

be the restriction of (G,T") to T and denote by G its fundamental group. By hypothesis,
xla, # 0 for each edge y of I' (in particular for every edge of T') and [x|¢,] € '(Gp)
for each vertex P of I' (in particular for every vertex of T'). Since T is a finite tree, by
the first case we have [x|g,] € X1 (Gr). Now let (H, W) be the following graph of groups:
define W = T'/T as the contraction of the maximal tree T" inside I, that is, H is a bouquet
whose vertex we call Py and whose edges are exactly the edges y of I' outside T'. Define

the vertex group as Hp, = G'r and the edge groups as H, = G,.

Y
Y
T
—@ /—\? GT
Z
<

Define the morphisms as

H, =G, <:> Go(y) < Gr = Hp,,
f
Hy =Gy <5 Gy, < Gr = Hp,.



11. GBS and GBS, groups and X! invariant 213

Then by the rebuilding argument (Example 1.67) the fundamental group of (H,W) is
exactly G. But W is a finite bouquet. Since x|n, = x|g, # 0 for every edge y of W and
(Xl #p,] = [Xler] € YY(Gr) = X1(Hp,), by the second case we have [x] € X}(G), and the

proof is complete.
O

The second and last property works like a partial converse to the previous one. Following
[19]:

Definition 11.2. We say that a graph of groups (G,I") is not an ascending HNN extension

f fg
if either I' is not a loop or I' is a loop but the monomorphisms G, <4 Gp and Gy <& Gp are
both proper (not surjective). We say that (G,T") is reduced if for every segment y of I' the

f 7
monomorphisms G S Gy(y) and Gy a Go(y) are both proper.

Proposition 11.3. Let G be the fundamental group of a finite, connected and reduced graph of
groups (G,T) which is not an ascending HNN extension, and with each vertex and edge group
being finitely generated. If [x] € X1(G) then Xla, # 0 for each edge group G, of (G,T).

Demonstragao. Again, we divide the proof into steps:

e [' is a segment or a loop. In this case, G is either an amalgamated product or an HNN
extension. In the former case, then because I' is reduced we have exactly the hypotheses
of Proposition 3.33, and we are done. In the latter case, then because (G,T") is not an
ascending H N N extension we have exactly the hypotheses of Proposition 3.34, and we are

done again.

Now let us show the general case, supposing that I' contains at least two edges (the one-edged
case is treated above). Fix an arbitrary edge yo of I and let us show that x|g, . # 0. There are

only two cases (see Lemma 1.25):

e I' — yo connected. In this case, let (G,I' — yo) be the restriction of (G,T') to I' — yo and
let G’ be its fundamental group. By the reconstruction argument 1.67, G is exactly the
fundamental group of the loop of groups (H, W) with Hp = G’, H, = G, and morphisms

i Ly
Hz = Gyo — Go(yo) — G = HP,

fug

l (11.1)
Hz = Gyo — Gt(yo) — G = Hp,

where [ are the respective inclusion morphisms.
G’ z

We already have [y] € £!(G), G being the fundamental group of (H,W). We want now
to use the loop case of the proposition to (H, W). To do so, we must guarantee that both
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morphisms in 11.1 are proper. If yg is a segment in I', then the morphisms fz; and f,, are
themselves proper, so are [ o fy; and [ o fy,. If yo is a loop, say, from P to P, it will be
enough to show that the inclusion [ : Gp — G’ is proper. Since I' has at least two edges,
let y be another edge different from gy starting in P. If y is a segment, say, from P to
some vertex @, then, since I is reduced, there is an element g € Gg < G’ which is not in
Gy = GpNGg, then g € G' — Gp and [ is proper, as desired. If y is a loop, also from
P to P, then the stable letter ¢, is by definition in G’ — Gp and [ is again proper. Then,
applying Proposition 3.34 to (H, W) we get x|g,, # 0, as we wanted.

e I' — yp with two components I'p and I'g (see Proposition 1.25). In this case, if T" is a
maximal tree of I', then TNI'p and T'NT'g are maximal trees of I'p and I'g. Let (G,I'p)
and (G,T'g) be the restriction of (G,T") to I'p and I'g with fundamental groups G’'p and
G'q, respectively. We have G' = G'p *¢,, G'q, that is, G is the fundamental group of the

following segment of groups

i f
with monomorphisms Gy, d Gp < G'p and Gy, Gl Ggo < G'q. Since fy; and fy, are
proper, this segment of groups is reduced and since [x] € £!(G), then by Proposition 3.33
we have X\gyo = 0, as desired. This completes the proof.

O]

Putting together the last two propositions we obtain a precious weapon for the rest of the

chapter. This theorem is actually Corollary 2.10 in [19]:

Theorem 11.4. Let G be the fundamental group of a finite, connected and reduced graph of
groups (G,T) which is not an ascending HNN extension, and with each vertex and edge group
being finitely generated. If ©1(Gp) = S(Gp) for each vertex P then

SHG) ={[x] € S(G) | x|, # 0 for each edge group Gy}.

Demonstragdo. 1f [x] € £1(G), then since (G, T) is reduced and not an ascending HN N exten-
sion we have x|g, # 0 for each edge group G, by Proposition 11.2. On the other hand, suppose
[x] € S(G) is such that x|q, # 0 for each edge group Gy. Since $'(Gp) = S(Gp) for each
vertex P, we have also [y|g,] € X}(Gp) and then by Proposition 11.1 we obtain [x] € X1(G),

as desired. O

It is worth observing a special case: when the monomorphisms maps onto finite index sub-

groups.

Corollary 11.5. Let G be as in Theorem 11.4. Assume also that all the edge monomorphisms
fz and f, maps all the edge groups G, onto finite index subgroups fz(Gy) of Gy and fy(Gy)
of Gy(yy- Then

SHG) = {Ix] € S(G) | xlay, # 0}

where Gp, is any fized vertex group.
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Demonstragcao. We will identify each G, with its isomorphic images f5(Gy) and f,(Gy). Given
any edge y in I', since Gy has finite index in both G, and Gy, by Lemma 3.26 we have
X6, # 0= xlg, # 0+ Xla,,, # 0. Now, let P be any vertex of I'. If T' is a maximal tree
for I', connect P and Py by a geodesic p in T'. By repeating the same finite index argument we just
used for all the edges of p we get that x|c, # 0 <= X|Gp, # 0. Then the »! condition“x|q, #
0 for each edge group G,” in Theorem 11.4 can be replaced just by “X|GP0 # 07, as desired. [

11.1 GBS groups

Definition 11.6. A graph of Z's is a graph of groups (G,I") with Gp = Z and G, = Z for all
vertices P and all edges y of T

For every edge y we then have two monomorphisms f, : Gy = Z — Z = Gy, and [y :
Gy = Z — Z = G,y that are uniquely determined by the nonzero integers n(y) = f,(1) and
m(y) = fy(1). The notation will be the following:

m(y) n(y)
————o
P y Q

An example of graph of Z's is given by the next figure.

Definition 11.7. A GBS group G is the fundamental group of a finite connected graph of Z’s.

Let T be a maximal tree and E1 an orientation of I'. If Gp = (ap) ~ 7Z, we call ap the vertex
letter associated to the vertex P. Let yi,...,y, be the edges of ET outside T' with associated
stable letters t1,...,t;. Then a presentation for the GBS group G is

G = {ap,t1,....,tg, P V(D) | a?((yy)) = azzz(f;), tia?(gz"’))tfl = azzz(/%), ye EYNE(T),1<i<k).

To clarify, the next figure shows the graph (G,T"), the maximal tree T" and the associated vertex

and stable letters. The associated presentation for G is

G=(a,b,c,d,t,s|a* =002 = ¢33 =d? ta®t™! = a3, scPs71 = bO).

The definition implies that for every oriented edge y (inside or outside T) we have the

following relation in the abelianized G:
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Definition 11.8. If (G,T") is a graph of Z’s, we say that a closed path v =y, ..., yx is killing if
n(y1)-.-n(ye) # myr)...m(yx).

Lemma 11.9 (Removing non-killing closed paths). If v = y1,...,yx (k > 3) is a killing closed
path in (G,T') and y;, ..., y; is a proper closed subpath in y such that n(y;)...n(y;) = m(y;)...m(y;),
then the path v = y1, ..., Yi—1,Yj+1, ---, Y obtained by removing this subpath is also a killing closed
path.

Demonstragdo. Let y;,...,y; be a proper closed subpath in v such that n(y)..n(y;) =
m(y;)...m(y;). Since n(y1)...n(yx) # m(y1)...m(yx), then by canceling n(y;)...n(y;) on the left
side and m(y;)...m(y;) on the right side of this inequality we continue with an inequality, which

says exactly that the closed path 4/ obtained by removing this subpath from = is still killing. [J

Corollary 11.10 (Removing backtrackings). If v = y1,...,yx (k > 3) is a killing closed path
in (G,T) and y;41 = Ui is a backtracking in v, the path v = y1, ..., Yi—1,Yit+2, .-, Yk obtained by

removing this backtracking is also a killing closed path.

Demonstragao. If yi1 = 7; is a backtracking we have m(yit1) = n(y;) and n(yit1) = m(y:)
by definition and then n(y;)n(yi+1) = m(yi)m(yi+1). Then applying the previous lemma to the
closed subpath y;,7; we are done. O

Lemma 11.11. There are no killing contractible closed paths.

Demonstragao. Let 7y be a closed contractible path with length 2k (every contractible path must
have even length by definition) and let us show by induction on k that - is not killing. If £k = 1 we
must have v = y,7, with n(y) = m(7) and n(g) = m(y), so n(y)n() = m@mly) = m(y)m(@)
and « is not killing. Suppose this is true for £ and let v be a contractible closed path of length
2(k+1). Suppose by contradiction that + is killing. Let y;+1 = 7; be a backtracking of . Then,
by the previous lemma, the path obtained by removing this backtracking of « is killing. Since
it is also contractible and of length 2k, by induction hypothesis it is not killing and we have a

contradiction. This concludes the proof. O
Lemma 11.12. Ewvery killing closed path in (G,T") contains a killing circuit.

Demonstragao. First we show this lemma for all killing closed paths of length 1 or 2. Since
contractible closed paths are not killing, we just have to analyze the non-contractible ones. If
the length is 1 the path itself is a killing circuit. If the length is 2, there are only three kinds of
non-contractible killing closed paths:

In the two left figures it is easy to see that if both loops are not killing then the entire path
is not killing, so at least one of them must be a killing loop. In the right figure, the path itself

is a killing circuit, as desired.
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Now we show the lemma. Let v = 1, ..., yx be a killing closed path, with £ > 3, and suppose

by contradiction that vy does not contain any killing circuits. If there is a backtracking in ~,
remove it with the “Removing backtrackings” Corollary 11.10, and we get a new killing closed
path with no killing circuits. If we repeat this process a finite number of times, we may suppose
that + is a killing closed path without backtrackings. Note that if, during this process, we
obtain a path with length 1 or 2, then by the first paragraph we find a killing circuit in v, a
contradiction, and we are done. So in the rest of the proof we may suppose all the paths obtained
have length at least 3. Now, since v has no backtrackings, it is not contractible by definition,
therefore by Proposition 1.27 it must contain a circuit ¢. By assumption, ¢ is not killing. So, if
c is the entire path v we are done with a contradiction, since 7 is killing. If ¢ is a proper circuit,
by the “Removing non-killing closed paths” Lemma 11.9 we can remove ¢ from v and continue
with a killing closed path ~'.

Repeat all the algorithm above to the path 4'. Each time we do this we find a new circuit in ~y
and remove it. Then, since v obviously contains a finite number of circuits, after a finite number
of steps we will obtain a killing closed path 4 with no more circuits. But by Proposition 1.27

again, v is contractible and therefore cannot be killing by Lemma 11.11, a contradiction. O

Before we show the main theorem of this section, we will highlight what we already obtained
about X! for GBS groups.

Corollary 11.13. Let G be a GBS group associated to the reduced graph of Z's (G,T). If G is
not a solvable Baumslag Solitar group BS(1,n), then

SHG) ={[x] € S(G) | x(a) # 0}

where a is any fixed vertex letter.

Demonstragao. We want to use Corollary 11.5. Remember that since Z is abelian we have
Y1(Gp) = S(Gp) for each vertex P by Corollary 3.15. Also, since all nontrivial subgroups of Z
have the form nZ and are of finite index, all the monomorphisms f, and f; map the edge groups
Gy onto finite index subgroups of the vertex groups Gp. Finally, if I' was an ascending HN N
extension then G would be by definition some solvable Baumslag Solitar group BS(1,n) for
n # 0, contradiction. Then, applying Corollary 11.5, we obtain that [x] € 31(G) <= x(Gp,) #
0 for some fixed vertex group Gp,. Since Gp, = Z = (a) for some vertex letter a, we have
X(Gp,) # 0 <= x(a) # 0, as desired. O

Now we use the concept of killing circuits to compute the dimension of the character sphere
of a reduced GBS group. Also, we use Corollary 11.13 to determine the possible shapes of X!

for these groups. This is the main result of the section:
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Theorem 11.14. Let G be a GBS group associated to the reduced graph of Z's (G,T') with
topological rank k > 0 and orientation E*. Assume that G is not a solvable Baumslag-Solitar

group BS(1,n) and fix a vertex letter a. There are only three distinct cases:
e IfT is a tree, then X1(GQ) = S(G) = {[x],[~x]}, where x(a) = 1;
e If there is a killing circuit in T' then S(G) ~ S¥~1 and ¥1(G) = 0.

e IfT is not a tree and there is not a killing circuit in T, then S(G) ~ S¥ and X*(G) is the

disjoint union of two antipodal open hemispheres in S(G) ~ S*.

Observation 11.15. The character sphere and the Sigma invariant have already been computed

for the solvable Baumslag Solitar groups BS(1,n) (see Example 3.9).

Demonstragdo. First of all, note that, if b, b’ are two adjacent vertex letters in an edge y, then in
G we have the relation ") = ™) therefore n(y)x(b) = m(y)x (V') or x(b) = %x(b’) for

every character x. This means that their y-value are dependent. Since % # 0, in particular

x(b) =0 < x(b') = 0. Since T is connected, all the y-values in the vertex letters depend only
of the value x(a). So all the vertex letters can contribute with at most one dimension in the
sphere S(G), depending if a is torsion-free or not in G®. Also, since the topological rank is k,
let yi, ..., yx be the oriented edges (if any) outside a maximal tree T" of I" chosen, with ¢1, ..., ¢
associated stable letters. It is obvious from the presentation that ¢, ...,y are always torsion-free
in G (if any).

If I is a tree, there are no stable letters and the only generators of G are the vertex letters.
Then, as we told, every character x depends uniquely on the value x(a). If x(a) = 0 then
we would have x = 0, a contradiction. Then y(a) # 0 for every character and a is torsion-
free in G%. This gives the unique dimension of Hom(G,R) and we have the homeomorphism
S(G) — 8° with [x] = 4. Now, by Corollary 11.13, [x] € $1(G) if and only if x(a) # 0,
then by the argument above ¥'(G) = S(G) = {[x], [~x]} is the whole 0-sphere.

If there is a killing circuit v = y1,...,ys in I, let Py = o(y1), P; = t(y;) for 1 <i < s and let
a; be the vertex letters associated to the P;, 0 <i < s. Then P; = Py and as = ag. By the first

paragraph, we have the following relations in G:

ag(yl) _ aT(yl),a?(yQ) — a;ﬂ(yz)’ ...,aggf) = q"ws),

Then a;n(yz)m(yl) _ a?f(yz)m(yl) my)n(y2) _ ag(yl)n(y2)

a, , and recursively we obtain

ave)-mv) - ag(ys)"'n(yl), or, since ag = as, we have

o) n)=mly)mlys) _ 4 Gab,

Since 7 is killing the exponent n(y1)...n(ys) —m(y1)...m(ys) is non-zero and then agp have torsion
in G or, equivalently, x(ag) = 0 for every character x. By the first paragraph again, x(a) = 0
for every character. This means that the vertex letter ay does not contribute with a dimension in
the sphere S(G), only the stable letters contribute. Then the homeomorphism is S(G) — S*~1
with [x] — M Since x(a) = 0 for every character we have ©!(G) = () by Corollary
11.13, as desired.
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Now, let us show that if I' is not a tree and there are no killing circuits in I" then o is
torsion-free in G%. By definition, the unique relations in G are the commutators (which does
not generate any torsion on the generators) and the ones having the form a?((;/)) = azzg) for all
oriented edges. Since these relations only appear between adjacent edges, the only way to obtain
a relation of the form a® = @ in G® is if we have a closed path in the vertex P associated
to a. Furthermore: if this closed path is not killing, then similarly to the previous paragraph
we would only obtain a relation of the form a(¥1)-7(us)=m(v1)--m(vs) = 1 with a zero exponent
n(y1)..n(ys) — m(y1)...m(ys), that is, a useless relation a® = 1. Then if a have torsion in G
we must have a killing closed path in I'. By the previous lemma, we must have a killing circuit

in I', a contradiction. Finally, since I' is not a tree we must have stable letters and since a is

(X(a)vx(tl)r”'vx(tk')) B
TOx(@-xt0),- XET =
Corollary 11.13 we know that [x] € X1(G) & x(a) # 0, so the points in 3'(G) correspond to

the points in the sphere S* with non-zero first coordinate x(a), that is, the disjoint union of the

also torsion-free we have the homeomorphism S(G) — S* with [x] —

two antipodal open hemispheres, as we wanted. ]

As a consequence of this, we have all the possible shapes of the Q'-invariants:

Theorem 11.16. Let G be a GBS group associated to the reduced graph of Z's (G,T') with
topological rank k > 0 and orientation ET. Assume that G is not a solvable Baumslag-Solitar

group BS(1,n) and fix a vertex letter a. There are only three distinct cases:
o IfT is a tree, then Q(G) = S(G);
o If there is a killing circuit in T then QY(G) = ().

e IfT is not a tree and there is not a killing circuit in T', then Q'(G) consists of two antipodal

rational points.

Demonstragio. The two first cases are obvious because we have ©}(G) = S(G) and 2HG) =
(), respectively. In the third case, since (@) is the disjoint union of two antipodal open
hemispheres in S(G) ~ S* (given respectively by {x(a) > 0} and {x(a) < 0}), it follows from
Definition 3.10 that Q'(G) consists of only two antipodal points [x], [~x] (where x(a) = 1 and

X vanishes the other generators). O

There is a special case in which we can guarantee an infinite Reidemeister number for at

least “half” of the automorphisms of G:
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Corollary 11.17. Let G be a GBS group associated to the reduced graph of Z’s (G,T) which
has rank k = 1 and does not contain any killing circuits. Suppose that G is not a solvable
Baumslag-Solitar group. Then there exists a normal subgroup H < Aut(G) with index 2 such
that R(p) = oo for every automorphism ¢ € H.

Demonstragao. Let t be the stable letter associated with the unique circuit of (G,T") and fix a

vertex letter a. By 11.14 we have the homeomorphism

and [y] € ©Y(G) if and only if x(a) # 0. Then the points [x] in the complement ¥!'(G)¢
corresponds only to the two antipodal points (0,1) and (0, —1) of S*. By Corollary 3.39, there is
a normal subgroup H <1 Aut(G) with finite index such that R(y) = oo for every automorphism
p € H. But, in the proof of that corollary, one can see that the index of H is the number of
possible permutations of the points in X' (G)¢, which is 2 in this case. Then H has index 2 and

we conclude the corollary. d

Based on Theorem 11.14 we also obtain the impossibility of finite generation of a family of

subgroups of some “bouquet” GBS groups.

Corollary 11.18. Let G be a Bouquet GBS group, that is, G is a GBS group associated to some
finite bouquet I' with r > 2 petals. Let G = <a,t1, ot | tia™it; T = a”i> be its presentation for
integers n; = 0 £ my; and 1 < ¢ < r. Suppose there is at least one © with m; = 1 and at least one

J such that nj # m;. Then the normal closure
N=<titjt; 't;7' |1 <i,j<r> <G

1s not finitely generated. Moreover, the subgroup H = <t¢tjtf1tj*1 |1<i,57< 7“> s mot normal
in G.

Demonstragao. Since there are no segments in I, it is reduced, and since r > 2, I' is not a solvable
Baumslag Solitar group, so we can apply Theorem 11.14. On one hand, the fact n; # m; for
some j means that some petal is a killing loop in T', so £}(G) = () by Theorem 11.14. On the
other hand, by the definition of N the quotient group G/N has the following presentation:

G/N = {a,t1, ..ty | titj = tit;, tia™it; " = a™).

Now, let i be the index such that m; = 1. Then we have the relation t;at; "' = a™ in G/N.
The generator t; is torsion-free in the abelianized of G/N, so let [x] € S(G/N) be any character
with x(¢;) < 0. Then by using the Geometric Criterion 3.22 and the same path construction of
the proof of Theorem 5.2 we can show that [x] € ¥1(G/N). If N was finitely generated, then
by Proposition 3.25 we would have [x o 1] € £1(G) = 0, a contradiction. This shows the first
claim of the corollary. If H was normal in G we would have by definition H =< H >»= N,
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then NV would be finitely generated because H is, which contradicts what we have just shown.

This completes the proof. O

The corollary above is interesting for at least two reasons. First, the X! invariant is most
known to be able to provide information about subgroups of a group G containing G’. Our
corollary, however, shows that X! can give information about subgroups which doesn’t neces-
sarily contain G, as it is the case of N above (because G/N is not abelian). Second, it shows in
particular that every generalized solvable Baumslag-Solitar group I';; can be seen as a quotient

of a GBS group by some infinitely generated subgroup.

11.2 Generalizing for GBS, groups

Based on the generality of the useful Theorem 11.4 we had the idea of trying to generalize the

results in the previous section to the GB.S,, groups.

Definition 11.19. Given n > 1, a graph of Z"’s is a graph of groups (G,T") with Gp = Z"™ and
G, = Z" for all vertices P and all edges y of I'. Here, Z" = Z @ ... ® Z is the direct sum of n

copies of Z.

Definition 11.20. Given n > 1, a GB.S,, group is the fundamental group of a finite connected
graph of Z™’s.

Observation 11.21. Note that a GBS group is then a GBS] group.

For every edge y we have two monomorphisms fy, : G, = Z" — Z" = Gy, and f5: G, =
Z" — 7" = Gy that, due to the linear-like behavior of Z", are uniquely determined by the n
images f,(e;) (respectively, fy(e;)) of the free-abelian generators ey, ..., e, of Z". This time, to
get a presentation for the GBS,, group G of the graph of Z™’s (G,T") we must choose n vertex
letters ay, ..., a,, for each vertex P, corresponding to the n generators of Gp = (ay, ..., a,) ~ Z".
Also, given an orientation ET and a maximal tree T of I, choose one stable letter ¢, for each
oriented edge y outside T'. These vertex and stable letters are the generators of G. The relations
are: all the commutators a;a; = aja; between two vertex letters associated to the same vertex
P (because they commute in Gp), all the relations f,(e;) = fy(e;),1 < i < n for the oriented
edges y inside T and all the relations t, f,(e;)t, ™t = fyz(e;),1 <i < n for the ones outside 7.

For each edge y, if we define the n x n matrices M = |fz(e1) ... fy(e,)| and N =

fyler) .. fy(en)} whose " columns are the n-vectors fy(e;) (respectively, f,(e;)), as in
linear algebra, and if the a; and b; are the corresponding vertex letters, we can use the following

notation:

M N

A1ye.eylp ) bla->-7bn

We can see these monomorphisms f, : Z" — Z™ as restrictions of the linear maps R" — R"
with corresponding integer matrix N. Because of this, f, being injective is equivalent to the
vectors fy(e;) being linearly independent vectors in R", which is equivalent to det(NN) # 0.
Moreover, the index of im(fy) in Z" = Gy, is exactly |det(V)|, and the index of im(fy) in
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7" = Gy is exactly |det(M

)| (see Example 1.3), so both are always finite index subgroups.
To summarize all of this,

fy 1 Z" — Z" injective < N with Li. columns < N with Li. lines < det(N) # 0.

10 1 2
0 2 3 4

®
a,b c,
ZQ ([1] g) ZQ (1 2) Z2 ZQ G 1)) ZQ c(? _32); ZQ

alt) e ¢ — P

Sdt — o —— Ad
a0 ey > A

Adt ——— ey — 23

G = {a,b,c,d,t| ab=ba,cd = dc,a = cd® b* = d* tcrdt " = ECd* te 2d* ! = APd).

Figura 11.1: An example of graph of Z?’s, its corresponding monomorphisms and the associated
GBSy group presentation.

Let y be the edge as we defined previously.

M N

A1, 5Qp Yy b]_,-»-7bn

Note that y may be a loop; in this case, a; = b; for all i. Let M = (my;);; and N = (1:5)i;
be the associated matrices. Then, by definition of the presentation of G, y gives rise to exactly
the following relations in the abelianized group G®:

ap™1ag™21q, ™t = bbb, T s

a1™z2a9™22, . a, "2 = b"M2by"22, b, 2,

a™nr a2 q,, M = byMnpy 2 b,

Then, applying an arbitrary character x to these equations we get that every character must
satisfy the system
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¢

miix(a1) +maix(az) + ... + mupix(an) = mix(b1) + n21x(b2) + ... + M1 x(byn),
mizx(a1) + mazax(az) + ... + muax(an) = max(b1) + n22x(b2) + ... + Mn2x(by),

mlnX(al) + anX(GQ) + ...+ mnnX(an) = nlnX(bl) + 772nX(b2) + ...+ nnnX(bn)

Since all the coordinates x/(a;), x(b;) are real numbers, this is equivalent to the real homogeneous
linear system
Ax =0,

where = (x(a1), ..., x(an), x(b1), ..., x(bn)) is the column vector of variables and

mip m21 ... Mp1 —N1 —N21 ... —Tnl
mi2 M2z ... Mp2 —M2 —N22 ... —1n2

A= = |MT \ —NT|.
Min M2p ... Mpp —MNn —T2n - —Tnn

Now, we know that all the lines and columns of M and N are by definition linearly independent.
So, by applying the Gaussian elimination process to the matrix A we can obtain an equivalent

reduced matrix having the form

0 —11 —O12 ... —U1p
A/ . 01 .. 0 —Q21 —Q22 ... —0Q9p
0 0 ... 1 —an1 —apy ... —apn

for some a;; € R. Then the equivalent linear system A’z = 0 can be written in the coordinate

form

x(a1) = anix(b1) + ar2x(b2) + ... + cpx(bn),
X(az) = a21x(b1) + azx(b2) + ... + c2nx(bn),

\X(an) = ap1Xx(b1) + an2x(b2) + ... + annX(bn),

which is finally equivalent to the system
@ = Byb,

where @ = (x(a1), ..., x(an)), b = (x(b1), ..., x(bn)) are the column vectors and By, = («;;); acts
like a change of basis matrix, allowing us to write the coordinates x(a;) in terms of the x(b;).
Note that this change of basis matrix is the same for every character y and it is invertible, since
it was obtained by applying Gaussian elimination to the invertible (over R) matrix —N7. The
linear system above is the only obstruction y can impose to the x(a;) and x(b;), by definition.
We can then define:

Definition 11.22. Fix a vertex P of I with vertex letters aq, ..., an. If v = y1,...,yx is a closed



224 11. GBS and GBS, groups and X! invariant

path in P, the matrix associated to v is M, = By, By,...By, .

If v is a closed path in P as in the above definition, then by induction on the argument
“a = Byb” above we get that @ = By, By,...B,, @, that is, M,a = @, or (M, — Id)a = 0. This
equation can kill some coordinates y(a;) of the vector @ = (x(a1), ..., x(an)), that is, can imply
that x(a;) is dependent of the other x(a;). From linear algebra we know that the number of
dependent variables of a homogeneous linear system is the rank of the matrix associated, because
it is exactly the number of pivots in its reduced Gaussian form. So y will kill exactly rk(M, —Id)
coordinates y(a;). This is the basic principle to understanding the following theorem, which

computes the dimension of the character sphere:

Theorem 11.23. Let G be a GBS, group associated to the graph of Z™’s (G, T"), with orientation
ET and mazimal tree T. Fiz any vertex P of I' with vertex letters ar, ..., an. Let yi, ...,y be the
oriented edges outside T with stable letters ty,...,t; associated. For each 1 < i < k, let v; be a
closed path in P that rounds the circuit containing y; once. Then S(G) =~ S"~"+k=1 where

M, —1Id
r=rk :

M, —1Id
The homeomorphism is given by

S(G) SN Sn—T+k—1

(X(ah)’ ) X(ain—r)’ X(t1>7 ) X(tk:))

X 0@ ) o, E) ox@)]

where a;,, ..., a;, , are the vertex letters which freely generates G,

Demonstragao. First of all, remember that every edge y generates a linear dependence @ = ByE
between the coordinates x(a;) and x(b;) of its two collection of vertex letters, for each character
X. Since I' is connected, by fixing the vertex P with the vertex letters a; we get that all the
vertex letter coordinates are linearly dependent only on x(ap),...,x(ay). The stable letters
x(t1), ..., x(t) are always torsion-free in G®. So we are just left to see how many coordinates
x(a;) are linearly independent, or equivalently, how many a; are needed to freely generate G,
Let us call the number of linear dependent coordinates x(a;) as the number of kills. Since
the relations in G% are given only between adjacent vertex letters by definition, the kills can
only be obtained by closed paths in P (as we justified in the GBS case), by the linear systems
(M., — Id)a = 0 we showed. So, at first, we should compute the kills from every closed path in
P. What we are going to do from now on is showing that the kills are all coming only from the
paths vy1, ..., Vk-

Let v = y1, ..., yx be a closed path in P. Suppose y;,7; is a backtracking in . From linear
algebra we know that the inverse of a basis change matrix is the basis change matrix in the
opposite direction. So By; = B?Ll and then

M, =By, ...By, By, By;B By, = By,...By, |B By, = M.,

Yiy2-- Yiy2-"r
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where 7/ is the closed path obtained by removing this backtracking from 7. Since the same
associated matrix generates the same kills, it is enough compute the kills from ~’. By induction,
we can remove all the backtrackings from -« and remain with the same kills. This shows that it is
enough considering closed paths without backtrackings. Furthermore, if the path - is contained
in T then it is contractible. So the matrices By, must cancel pairwise and M, = Id, which
implies that the linear system (M, — Id)a = 0 becomes 0 = 0 and does not lead to any kill. So
it is enough to consider closed paths without backtrackings which are not contained in 7T
Now, I' is a finite graph. So by [86], as a topological space, I' has the same homotopy type of
a finite bouquet Y. This homotopy equivalence is obtained by contracting the tree T' to the point
P. So the number of “petals” in the bouquet is exactly the number of edges outside T', that is,
k. Since the fundamental group is invariant by homotopy equivalence we get an isomorphism

7m1(T') — 71(T) which maps the paths v; exactly to the k& bouquet petals I;.

%%% Sl P "

Figura 11.2: the contraction maps the ; to the petals [;

But the [; are the generators of m (1) ~ *leZ. So by going back in the isomorphism, every
closed path ~ in I' is a finite concatenation of the +; and its inverses. If « is not inside 7', this
concatenation is non-trivial.

Now we show that the kills of a concatenation of closed paths in P are consequences of
the individual path kills. Let v = o109 be a concatenation of two closed paths in P. Then
M, = My, M,,, by definition of M,. The kills generated by v come from the system M,a = a.
But this system is a consequence of the systems M,a = a. In fact, if these two systems are
satisfied then

Mya = M, My,a= M, a=a.

This argument obviously work for a finite concatenation. Since the 7; (and its inverses) generate
all closed paths in P by finite concatenations, we only have to compute the kills from the ~; and
its inverses.

Finally, we show that the kills coming from a closed path and from its inverse path are the
same. Indeed, we already know that By = B, ! for every edge. Then, if v = y1, ...,y is closed,
we have y~! = 7, ..., 71 and then M, = By;...Bgr = BZZCI...By_l1 = M,Y_l. Then the kills coming

from the paths v and !

are, respectively, M,a = @ and M;lﬁ = a. Since M, and M;l are
invertible matrices, these systems are equivalent and therefore the kills are the same, so it is
enough to compute only the kills from the ~;. All these arguments showed that the number of
dependent variables x(a;) come only from the equations (M,, — Id)a = 0 for 1 < i < k, or the

linear system
M, —1d| |x(a1) 0

M, —Id| |x(ax) 0

From linear algebra we already commented that the number of dependent variables of a homo-



226 11. GBS and GBS, groups and X! invariant

geneous linear system is the rank of the matrix associated, because it is exactly the number of
pivots in its reduced Gaussian form. So the number of free variables x(a;) is exactly n —r where
7 is the rank of the matrix above. Then the free generators of G are some a;,, ..., a;,_, and

t1,...,tr, and the theorem follows from Theorem 3.6. O

Following Corollary 11.13, the analogous situation for X! of GBS, groups is the following:

Corollary 11.24. Let G be a GBS,, group associated to the reduced graph of Z™’s (G,T") which

18 not an ascending HN N extension. Then

BHG) = {[X] € S(G) | (x(a1), ... x(an)) # (0,...,0)}

where a1, ..., a, are fixed vertex letters of a verter Py.

Demonstracdo. We want to use Corollary 11.5 again. Since Z" is abelian we have X1(Gp) =
S(Gp) for each vertex P by Corollary 3.15. The monomorphisms f, and f; maps the edge
groups onto finite index subgroups of the vertex groups, the index being the absolute value of
the determinant of the matrix associated, like we already commented in this section. Applying
Corollary 11.5, we obtain that [y] € ¥!(G) <= x(Gp,) # 0 for some fixed vertex group Gp,.
Since Gp, = Z" = (ai1,...,a,) for some vertex letters ai,...,an, we have x(Gp,) # 0 <=
(x(a1),...,x(an)) # (0,...,0), as desired. O

Four corollaries arise from the previous corollary and Theorem 11.23:

Corollary 11.25. Let G be a GBS, group associated to the reduced graph of Z™’s (G,T'), with
I a tree. Then S(G) ~ S"! and we have ¥H(G) = S(G) and Q1 (G) = S(G).

Demonstragao. We are in a particular case of Theorem 11.23, where £k = 0 and » = 0. If
ai,...,a, are the vertex letters of the choosen vertex P, then because k = 0 the real numbers
x(a1), ..., x(an) are the only coordinates determining a character [x] € S(G), so x(a;) # 0 for at
least one a;. By Corollary 11.24, we have ¥!(G) = S(G) and therefore Q'(G) = S(G). O

Corollary 11.26. Let G be a GBS, group associated to the reduced graph of Z"’s (G,T).
Suppose that (G,T") is not an ascending HNN extension. If r = n (see Theorem 11.23), then
YHG) =0 and QHG) = 0.

Demonstragcao. By Theorem 11.23 we have exactly n — r free a;-coordinates determining a
character [x] € S(G). In our case, we have no free coordinates, that is, x(a;) =0 for 1 <1i <mn,
for every character [x]. It follows directly from Corollary 11.24 that $!(G) = 0 and therefore
QLG) = 0. O

Corollary 11.27. Let G be a GBS, group associated to the reduced graph of Z™’s (G,T).
Suppose that (G,I') is not a tree and it is not an ascending HNN extension. If n —r =1 (see
Theorem 11.23), then QY (G) consists of two antipodal rational points.

Demonstragao. We have exactly one free a;-coordinate determining whether a character [x] €
S(G) is in 2Y(G). Then (@) assumes the shape of the third case of Theorem 11.14, that
is, (@) is the disjoint union of two antipodal open hemispheres in S(G). It follows then
easily that Q!(G) consists of two antipodal and rational points [x], [~x], where x(a;) = 1 and x

vanishes the other generators. O
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Observation 11.28. The last three corollaries above are the respective generalizations of the three

cases of Theorem 11.14. The next one is a generalization of Corollary 11.17.

Corollary 11.29. Let G be a GBS, group associated to the reduced graph of Z™’s (G,TI").
Suppose that (G,T') is not an ascending HNN extension. If r < n and k = 1 (see Theorem
11.23), then there exists a normal subgroup H < Aut(G) with index 2 such that R(y) = oo for

every automorphism ¢ € H.

Demonstragao. By 11.23 we have the homeomorphism

From Corollary 11.24 we know that [x] € (@) if and only if x(a;;) # 0 for some 1 < j < n—r.

¢ corresponds only to the two antipodal points

Then the points [x] in the complement YX!(G)
(0,...,0,1) and (0,...,0,—1) in the sphere S ". By Corollary 3.39, there is a normal subgroup
H < Aut(G) with finite index such that R(p) = oo for every automorphism ¢ € H. But, in the
proof of that corollary, one can see that the index of H is the number of possible permutations
of the points in X!(G)¢, which is 2 in this case. Then H has index 2 and we conclude the

corollary. n

Open question: is it possible to use Cashen and Levitt’s Theorem 11.4 to compute some
examples of the X! invariant of hyperbolic and relatively hyperbolic groups? As we see in
chapters 8 and 9, examples of these groups can be easily constructed as fundamental groups of

graphs of groups.
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