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“No prinćıpio era o Verbo, e o Verbo estava com Deus, e o Verbo era Deus. Ele estava no

prinćıpio com Deus. Todas as coisas foram feitas por intermédio dele, e, sem ele, nada do que

foi feito se fez.” (João 1.1-3).
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era Deus (João 1.1). É aquele “por meio do qual [Deus] também fez o universo” (Hebreus 1.2)

e sem o qual “nada do que foi feito se fez” (João 1.3). Ele é “a imagem do Deus inviśıvel, o
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Primeiro, agradeço muito à minha amada esposa, Karina, por me aguentar e permanecer
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irmãos na fé que mais nos acolheram (e acolhem) na cidade de Sumaré: aos Lange, Mathias,
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Agradeço aos meus queridos irmãos acadêmicos Givanildo Melo e Renato Diniz pelo ano que
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conhecimento, dinheiro ou prest́ıgio que substitua o amor. “Ainda que eu tenha o dom de

profetizar e conheça todos os mistérios e toda a ciência; ainda que eu tenha tamanha fé, a ponto
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Abstract

In this thesis we study property R∞ for some classes of finitely generated groups by the use

of the BNS invariant Σ1 and some other geometric tools. In the combinatorial chapters of the

work (4, 5, 6, 10 and 11), we compute Σ1 for the family of Generalized Solvable Baumslag-

Solitar groups Γn and use it to obtain a new proof of R∞ for them, by using Gonçalves and

Kochloukova’s paper [42]. Then, we get nice information on finite index subgroups H of any Γn

by finding suitable generators and a presentation, and by computing their Σ1. This gives a new

proof of R∞ for H and for every finite direct product of such groups. We also show that no

nilpotent quotients of the groups Γn have R∞. With a help of Cashen and Levitt’s paper [19],

we give an algorithmic classification of all possible shapes for Σ1 of GBS and GBSn groups

and show how to use it to obtain some partial twisted-conjugacy information in some specific

cases. Furthermore, we show that the existence of certain spherically convex and invariant

k-dimensional polytopes in the character sphere of a finitely generated group G can guarantee

R∞ for G. In the geometric chapters (7 through 9), we study property R∞ for hyperbolic and

relatively hyperbolic groups. First, we give a didactic presentation of the (already known) proof

of R∞ for hyperbolic groups given by Levitt and Lustig in [68] (which also uses Paulin’s paper

[81]). Then, we expand and analyse the sketch of proof of R∞ for relatively hyperbolic groups

given by A. Fel’shtyn on his survey paper [31]: we point out the valid arguments and difficulties

of the proof, exhibit what would be a complete proof based on his sketch and show an example

where the proof method doesn’t work.

Keywords: property R∞; topology; BNS invariants; combinatorial group theory; geo-

metric group theory.





Resumo

Nesta tese estudamos a propriedade R∞ para algumas classes de grupos finitamente gerados

através do uso do BNS invariante Σ1 e de algumas outras ferramentas geométricas. Nos

caṕıtulos combinatórios do trabalho (4, 5, 6, 10 e 11), computamos Σ1 para a famı́lia dos

grupos de Baumslag-Solitar solúveis generalizados Γn e o usamos para obter uma nova prova

de R∞ para tais grupos, usando o artigo de Gonçalves e Kochloukova [42]. Então, obtemos

boas informações sobre os subgrupos H de ı́ndice finito de qualquer Γn encontrando geradores

adequados, uma presentação e computando seu Σ1. Com isto, obtemos uma nova prova de R∞

para H e para qualquer produto direto finito de tais grupos. Também provamos que nenhum

quociente nilpotente dos grupos Γn tem R∞. Com a ajuda do artigo de Cashen e Levitt [19],

damos uma classificação algoŕıtmica de todos os posśıveis formatos do invariante Σ1 para grupos

GBS e GBSn e mostramos como usá-lo para obter algumas informações parciais sobre classes

de conjugação torcida em alguns casos espećıficos. Além disso, provamos que a existência

de certos poliedros esfericamente convexos e invariantes na esfera de caracteres de um grupo

finitamente gerado arbitrário G pode garantir R∞ para G. Nos caṕıtulos geométricos (7 a 9),

estudamos a propriedade R∞ para grupos hiperbólicos e relativamente hiperbólicos. Primeiro,

apresentamos de forma didática a prova (já conhecida) de R∞ para grupos hiperbólicos dada

por Levitt e Lustig em [68] (que também usa o artigo [81] de Paulin). Então, expandimos

e analisamos o rascunho de prova de R∞ para grupos relativamente hiperbólicos dado por

Fel’shtyn em seu artigo [31]: mostramos os argumentos válidos e as dificuldades da prova,

exibimos como seria uma prova completa baseada em seu rascunho e damos um exemplo onde

tal método de prova não funciona.

Palavras-chave: propriedade R∞; topologia; invariantes BNS; teoria combinatória de

grupos; teoria geométrica de grupos.
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xix

Introduction

Hello, dear reader. It is good to have you here. This entire thesis is built around the study of

property R∞ for finitely generated groups. In this introduction, we will catch you up on our

motivations and strategies for the work and also give you some historical background. At the

end of it, we describe the general structure of the thesis, the main content of each chapter and

the main original contributions for the theory.

We start with the R∞ property. Let G be any group and ϕ an automorphism of G. Two

elements g, h ∈ G are ϕ-twisted conjugated (or just twisted conjugated) if there exists z ∈ G
such that zgϕ(z)−1 = h. The number of equivalence classes in G given by this relation is denoted

by R(ϕ) and called the Reidemeister number of ϕ. A group G is said to have property R∞ if

R(ϕ) = ∞ for every ϕ ∈ Aut(G), that is, if every automorphism of G has an infinite number

of twisted conjugacy classes. The search for groups with this property started mainly in 1994

in the paper [35], where the authors Fel’shtyn and Hill were studying the Reidemeister zeta

function with applications to Nielsen Theory. This is an indicator of the topological nature of

this property. Indeed, counting the topological Reidemeister number of a self-homeomorphism

of a space X in Nielsen theory is the same as counting the algebraic Reidemeister number of

the induced automorphism in the fundamental group of X. We show this relation at the end

of Section 1.1 (see also [57, 97]). With the use of property R∞ it has been shown, for example,

that for any integer n ≥ 5, there exists an n-dimensional nilmanifold M such that every self

homeomorphism f : M →M is isotopic to a fixed point free map (see [45]). We can, therefore,

see twisted conjugacy classes and property R∞ as a generalization of topological properties

and, ultimately, that’s probably the reason why we topologists are interested on this subject.

Furthermore, according to [36], twisted conjugacy has connections with Arthur-Selberg theory

[3, 89], algebraic geometry [51], Galois cohomology [87], the theory of linear algebraic groups

[91] and representation theory [39, 79, 90].

Since 1994 with the paper [35], the task of enlarging the list of groups with property R∞

is an active research topic in both combinatorial and geometric group theory. The list below

contains some of these groups and is based mainly on the list in the paper [36], together with

some more recent discoveries. It is not exhaustive and does not follow any particular order.

• Baumslag-Solitar groups BS(m,n), except for BS(1, 1), and some nilpotent quotients of

them [32, 40];

• Generalized Baumslag-Solitar groups (or GBS groups), as well as any group which is

quasi-isometric to them [67, 93];

• the groups Γn, that is, the solvable generalization of the Baumslag-Solitar groups BS(1, n),
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as well as any group which is quasi-isometric to them [94];

• non-elementary Gromov hyperbolic groups [30, 68];

• a large class of saturated weakly branch groups [37, 49, 53];

• Thompson’s groups F and T , generalized Thompson’s groups Fn,0 and their finite direct

products [8, 18, 44];

• Houghton’s groups [43, 58];

• Symplectic groups Sp(2n,Z), some mapping class groups and the full braid groups Bn(S)

with n ≥ 4 strands, where S is either the disk D2 or the sphere S2 [33];

• all pure Artin braid groups Pn for n ≥ 3 [25];

• some Artin groups of infinite type [60];

• some extensions of SL(n,Z), PSL(n,Z), GL(n,Z), PGL(n,Z), Sp(2n,Z) and PSp(2n,Z)

[74];

• GL(n,K) and SL(n,K), over some special integral domains K and with n > 2 [77];

• irreducible lattices inside some Lie groups [75];

• some metabelian groups of the form Qn o Z and Z[1/p]n o Z [34];

• Lamplighter groups Zn o Z if and only if 2|n or 3|n [46];

• many different classes of free nilpotent groups Nrc of rank r and nilpotency class c, as well

as some free solvable groups Srt of rank r and class t [24, 45, 85];

• some crystallographic groups [26, 41, 54, 70].

Plenty of different techniques have been used to enlarge the list above, and each paper has

its own technical particularities. However, many of them could be classified according to their

use of some of the general strategies below. Some papers are listed as examples:

1) short exact sequences, especially the ones containing characteristic subgroups and quo-

tients of the group in question [42, 94];

2) isogredience classes [30, 38, 68];

3) the Σ-invariant of the group [42];

4) nilpotent quotients of the group [22, 23, 24, 40];

5) actions by isometries of the group (or related groups) on trees or hyperbolic spaces [93]

(also see the appendix of [33]);

6) representation theory [25, 38];

7) non-abelian cohomology groups [38].
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In this thesis we come across the first five items of the list, but our main focus is on items

3), 4) and 5). Items 3) and 4) correspond to the combinatorial part of the work (Part II and

Appendix) and item 5) to the geometric one (Part III). Now we will talk about each part.

In the year of 2010, the topologist D. L. Gonçalves, together with the group theorist D.

Kochloukova found out that Σ-theory can be used to guarantee property R∞ in the combinatorial

context of finitely generated groups (see [42]). To summarize, they considered the fact that

property R∞ can be deduced by looking to some characteristic quotients of the group (item 1))

and realized that the invariance under automorphisms of Σ1, in some special cases, can produce

some of these quotients which are good enough.

The first of the most known versions of the Σ-invariants was defined in 1987 by R. Bieri,

W. Neumann and R. Strebel in [9] for arbitrary finitely generated groups (hence the name

“BNS”). Given a finitely generated group G and a finitely generated G-operator group A, they

associated to it a subset ΣA = ΣA(G) of the character sphere S(G) defined by the finite (or

not) generation of A over a finitely generated submonoid of G. There they showed many general

properties of ΣA, the most known being its openness in S(G) and a characterization of the

finitely generated normal subgroups of G containing G′. Since then, the amount of research on

this invariant has grown considerably and led to the discovery of many connections with other

areas of mathematics. To get a little taste of what we are saying, the BNS invariant ΣG′ of

the fundamental group G of a smooth closed 3-manifold X is characterized by the existence of

non-vanishing 1-forms on X which are also non-vanishing on ∂X. Also, let X be a hyperbolic

3-manifold and consider the known Thurston’s norm on the second homology group H2(X).

The unitary ball is then a polytope homeomorphic to S(π1(X)), and the interior of its faces can

be exactly seen as Σ(π1(X)). One can also find close relations of the BNS-invariant with group

actions on R-trees, fibering of manifolds over S1 and others. Because of this, it is worth to call

the collection of theorems about this invariant by “Σ-theory”.

Despite this good amount of nice properties, the Σ-invariant is in general hard to be effectively

computed. It would be of precious help to find an equivalent but more simple definition. In

fact, the desired definition was somewhat hidden inside the original paper [9], in part (ii) of

Proposition 3.4. Fortunately, later, Robert Bieri and, independently, Gaël Meigniez realized that

fact. They were able to rewrite that property in (ii) in terms of some kind of connectivity inside

the Cayley graph of G (Definition 3.7, where the BNS-invariant is denoted by Σ1(G)). With this

graph definition it is easier to derive the basic properties (see our Chapter 3) and, in particular,

to see that Σ1(G) (and also its complement Σ1(G)c) is invariant under all automorphisms of G

(Theorem 3.18).

So, even without knowing precisely the structure of Aut(G), it becomes possible to re-

late Σ1(G) with some properties about the automorphisms of G, in particular with property

R∞, as it is done in [42]. The topological nature of this property, together with Gonçalves

and Kochloukova’s paper [42] and the geometric and graph-theoretical aspect of Σ1 may have

been the main ingredients to bring the attention of the topologist P. Wong. At that time, J.

Taback and him had already dealed with GBS groups and the groups Γn, both generalizations

of Baumslag-Solitar groups (see the three first items of our first list above) and knew they are

R∞-groups. The fact that R∞ for BS(1, n) can be shown by the use of Σ-theory and the paper

[42] naturally arose the question of whether Σ-theory could also be used to deduce R∞ for Γn
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and the GBS groups. This was the first goal of the combinatorial part of our project, and we get

a positive answer for the groups Γn. Furthermore, we show how to “algorithmically” compute

Σ1 for a GBS - and GBSn - group (more details below).

The second goal is related to the following situation: it is well known that property R∞ is

not invariant under quasi-isometry in general. However, it may be invariant inside some specific

families of groups. Taback and Wong show this is true inside the family of the groups Γn and of

GBS groups ([94] and [93], respectively). In particular, any finite index subgroup H of any Γn

is an R∞ group; so, we asked: can Σ-theory be applied to show R∞ for H? The answer turned

out to be positive.

The main strategy of this combinatorial part is, therefore, to compute the geometric invari-

ants of some finitely generated groups in order to guarantee property R∞ for them, or at least

to see in what cases this can be done. From a topologist’s (illustrative) point of view, we start

with a topological space X and, in order to obtain information about its lifting and Nielsen

properties, we investigate the twisted conjugacy classes of its fundamental group G. To do that,

we compute its Σ-invariant and see, for example, if it can guarantee property R∞ for G and,

consequently, nice topological properties of X. This is illustrated in the next figure, where GGT

means “Geometric Group Theory”.

Although the Σ1 invariant is in the core of the combinatorial part of our thesis, in the last

year of research an extra paper called my attention: in [22] (2020), the authors D. L. Gonçalves

and K. Dekimpe studied the R∞ property for nilpotent quotients of the Baumslag-Solitar groups

BS(m,n), after having done the same for free groups, free nilpotent groups and free solvable

groups in [24] and also for surface groups in [23]. So, in the same way knowing information of

the Σ1 invariant for BS(1, n) was the motivation to investigate Σ1(Γn) in Chapter 5, knowing

which nilpotent quotients of BS(1, n) had R∞ could help us to understand the same property

for Γn. Based on this idea, we showed that no nilpotent quotients of the groups Γn have R∞.

After the combinatorial part of the work was complete, the quasi-isometric and geometric

likeness of Taback and Wong’s papers [94] and [93] turned our attention to two special families

of groups: hyperbolic groups and relatively hyperbolic groups, the former being a subfamily of

the latter. Hyperbolic groups were first defined by Gromov ([50], 1987) and definitely became

one of the most studied families of groups in Geometric Group Theory since then. For the

general theory of hyperbolic groups, first connections with other areas of mathematics and some

applications, we refer [21], [47] and [50]. The most interesting fact for us is that property R∞

for (non-elementary) hyperbolic groups was implicitly shown by Levitt-Lustig’s paper [68] in

2000 (and explicitly by [30] in 2001). At some point, the proof uses the well-known fact that the
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family of hyperbolic groups is closed under quasi-isometry (we can also say that hyperbolicity

is a “quasi-isometry invariant”). Intuitively, therefore, a generalization of this argument to

show R∞ for the larger class of relatively hyperbolic groups would need to use quasi-isometry

invariance for this class, something that was still not known.

Later, in 2006, Drutu [28] published a paper on quasi-isometry invariance for relatively

hyperbolic groups, breaking this barrier. So, in 2010, by quoting Drutu’s paper, together with

Belegradek-Szczepanski [5] and others, Fel’shtyn claimed property R∞ to be true for (non-

elementary) relatively hyperbolic groups in his survey paper (Theorem 3.3 in [31]). However,

only a sketch of a proof is given there, based mainly on Levitt and Lustig’s proof [68]. Our idea,

therefore, was to study that proof sketch in all its details to maybe exhibit a more complete

and didactic proof of property R∞ for relatively hyperbolic groups, something still not present

in the literature. However, my general conclusion is that such a proof, based on that sketch, is

at least more complicated than it looks like, for it involves extra difficulties that do not exist in

the hyperbolic case. To know my specific conclusions, the readers must do what they do best:

keep reading.

General structure and chapters

Here we give an overview of the structure of this thesis, together with a general description of

each chapter.

Admittedly, this Ph.D. thesis turned out to be quite long. This is because I decided to

give the reader the option of reading a didactic presentation of (virtually) all the preliminary

background needed for the rest of the work. This is done in Part I (chapters 1 through 4), so

that the reader which is not used to the subject and the language can catch up with minimal

time. Chapter 1 contains the preliminaries on Combinatorial Group Theory, which are needed in

chapters 5, 6, 10 and 11. Similarly, Chapter 2 contains the geometric preliminaries for chapters

7 through 9. In Chapter 3, we present the basic results on Σ-theory we will need in chapters

5,6 and 11, based on the notes [92]. The reader may take a quick look at the table of contents

(Sumário) and skip the sections of these three chapters which he already knows. Chapter 4,

although counted as preliminary, is original. There, with a help of the results of [42], we show

that the existence of some invariant closed convex polytopes in the character sphere S(G) can

also guarantee property R∞ for a finitely generated group G. Since this result has a similar

fashion to the ones in Section 3.3, we decided to keep it as a preliminary chapter.

After the preliminaries, we have the combinatorial Part II (chapters 5 and 6), the geometric

Part III (chapters 7 through 9) and the combinatorial Appendix (chapters 10 and 11).

Part II is the one who contains the most number of original contributions, where we apply

Σ-theory to study property R∞ for the Generalized Solvable Baumslag-Solitar groups Γn. In

Chapter 5, we compute the Σ1 invariant of Γn and guarantee property R∞ for them by using

[42]. After this, in Chapter 6, we compute the Σ1 invariant and guarantee R∞ for all finite index

subgroups H of Γn by finding good generators (with a help from Bogopolski’s paper [12]) and

a good group presentation for them. Finally, we discuss whether such finite index subgroups H

are (isomorphic to) Γk for some k ≥ 1 (not all of them are).

Part III can be summarized as a study of property R∞ for hyperbolic and relatively hyper-

bolic groups. We had the final purpose of studying the sketch of proof given by Fel’shtyn in
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[31] on property R∞ for (non-elementary) relatively hyperbolic groups. Before doing that, we

carefully read Levitt and Lustig’s Section 3 of the paper [68] and their (implicit) proof of R∞

for the particular case of a hyperbolic group. So, Chapter 7 contains an exhibition of a proof for

a slight generalization of Levitt and Lustig’s result, in order to be also applicable to the relative

case. In simple words, their result shows that the existence of some “special” action of G on

an R-tree T is sufficient to guarantee R(ϕ) = ∞ for a fixed automorphism ϕ of G. Then, in

Chapter 8 we give a more detailed presentation of the R∞ proof in the hyperbolic case; that is,

we exhibit Paulin’s proof (Theorem A of [81]) of the fact that hyperbolic groups admit those

“special” actions. Finally, in Chapter 9 we exhibit what would be a proof of property R∞ for

non-elementary relatively hyperbolic groups by following Fel’shtyn’s sketch, that is, by adapting

the proof of the hyperbolic case we give in chapter 8. We show that the proof would be complete

if it wasn’t for Lemma 9.29, which we believe is not true in general (although nothing prevents

it to be true in some particular examples). To convince the reader of this, in Section 9.5 we

show an example where Lemma 9.29 does not work. We decided to maintain the incomplete

proof in this thesis, anyway, to give the reader an idea of what a proof could look like.

At last, the Appendix. In Chapter 10, we follow [23] to define the R∞ nilpotency index of

a group with property R∞. Then, by developing some theoretical background similar to the

one in [22] and by doing some matrix computations, we calculate the R∞ nilpotency index for

all groups Γn, showing it to be infinite. This is equivalent to say that none of the nilpotent

quotients of the groups Γn are R∞ groups. In Chapter 11, we use a result from Cashen and

Levitt in [19] to algorithmically classify the possible shapes of the Σ-invariant of GBS and GBSn

groups, given the associated finite graph of groups. We then use this to get some partial twisted

conjugacy results (not necessarily R∞ results) on some special cases.

Original contributions

Let us point out some original contributions of this thesis for the literature, in the natural order

of the text.

In general, this thesis is useful for any reader who wants a first contact with property R∞,

Σ-theory and geometric group theory. We tried to keep all the text - including the more technical

proofs - very readable and enjoyable for anyone with basic math knowledge. I believe this is a

didactic contribution. Now let us get more specific.

In Section 1.3, we give a detailed exibition and proof of the Reidemeister-Schreier algorithm

(Theorem 1.50) by using group actions and the Cayley graph language of Serre’s book [86]. This

may be a more intuitive and enjoyable reading for topologists, in comparison with the strictly

combinatorial proofs that can be found in the literature. We give examples and it is possible to

see the generators for the subgroup H naturally appearing in the drawings. I think this proof

may turn Reidemeister-Schreier’s Theorem less counter-intuitive (as it was to me before).

We can say all results contained in chapters 4 through 6 are original work. Let us list and

comment them briefly.

In Chapter 4, Theorem 4.28 guarantees property R∞ for any finitely generated group whose

character sphere contains certain spherically convex invariant polytopes. Although this property

may have been in the minds of a few specialists as folklore, we couldn’t find any proof in the

literature for it. Our proof is built from scratch and quite detailed. Therefore, I believe it can
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be considered as original work.

Chapter 5 contains the first known computation of the Σ1-invariant for the Generalized

solvable Baumslag-Solitar groups Γn (Theorem 5.2). In fact, it computes the Σ1-invariant for

a slightly bigger family. This theorem is used to guarantee property R∞ for these groups.

Although property R∞ was already known for the groups Γn (see [94]), we have the first proof

that uses Σ-theory. The partial generalizations of Theorems 5.5 and 5.7 are also original.

In Chapter 6, let H be a finite index subgroup of Γn. We have computed for the first time: a

suitable family of generators for H (Theorem 6.6), a presentation for H (Theorem 6.8) and the

Σ1-invariant for H (Theorem 6.10). As in the Γn case, it is already known via [94] that H has

property R∞, but our proof is the first one that uses Σ-theory. In the last section, we showed

that the family of Generalized Solvable Baumslag-Solitar groups Γn do not have the property of

being closed under finite index subgroups, which is also original work. This is important, for it

distinguishes this family from the family of Solvable Baumslag-Solitar groups BS(1, n), which

was shown to have this property by Bogopolski in [12].

Finally, the geometric part. The general content of Chapter 7 is not original, but Theorem 7.4

is a restatement of Levitt and Lustig’s Section 3 in [68] in a slightly more general way. It turned

out that the sufficient condition they find to guarantee an infinite Reidemeister number R(ϕ)

for a fixed automorphism of G is quite general, so we rewrote it in terms of an arbitrary finitely

generated group, so that this can be useful for future applications. That being said, Chapter

8 contains an exhibition of Paulin’s proof ([81], Theorem A) of the fact that non-elementary

hyperbolic groups satisfy that sufficient condition, being only a didactic contribution. Chapter

9 contains the first careful exhibition in the literature of what would be a complete proof of

property R∞ for finitely generated non-elementary relatively hyperbolic groups (Theorem 9.27),

based on Fel’shtyn’s sketch. Although we showed the proof to be probably incomplete (see

Lemma 9.29 and Section 9.5), we believe this may still help the discussion on the veracity of

property R∞ for this family of groups in the future.

Chapter 10 contains, as the main result, the first computation of the R∞ nilpotency index of

the groups Γn, shown to be infinite in Theorem 10.14. This also establishes a good distinction

between Γn and Baumslag-Solitar groups, which have finite R∞ nilpotency index in most cases

(see [22]). But it also contains fresh information about their nilpotent quotients Γn,c, such as

the first computation of their torsion subgroup (Proposition 10.5), of the terms of their lower

central series (Proposition 10.4) and of a presentation for them (Corollary 10.10).

Chapter 11 contains a presentation of some results of Cashen and Levitt’s paper [19] on the

Σ-invariants of graphs of groups. We decided to put it there so the reader could get aware of the

techniques used. So, of course, these results are not original. The original work of Chapter 11

consists of the more “algorithmic” part; that is, if a graph of groups (G,Γ) is explicitly given, we

show which calculations must be performed to determine the shape of Σ1(G). For example, in

the GBS case, the existence or not of killing circuits determines if Σ1(G) is either empty, or the

whole sphere, or two antipodal open hemispheres. The same is done for the GBSn groups, but

the possible cases are more complicated to be described here. The following results are original,

together with all the ones preceeding them: Lemmas 11.9 through 11.12; Theorem 11.14 through

Corollary 11.18; Theorem 11.23; Corollaries 11.25 through 11.29.
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Parte I

Preliminaries





3

Caṕıtulo 1

Combinatorial preliminaries

In this chapter, we want not only to fix notations and familiarize with them, but also to present

the combinatorial background in an organized, intuitive and not so rigorous way (some proofs

will be omitted), to clarify the reader’s mind in the combinatorial chapters of our work (chapters

5, 6, 10 and 11). Since we don’t want to make an extensive text, we need to assume that the

reader is at least familiarized with basic set theory, Algebra and basic facts about free groups

and group presentations (which can be found in [56] and [71]).

1.1 The R∞ property

Definition 1.1. Given a group G and an automorphism ϕ ∈ Aut(G), we say that g, h ∈ G are

ϕ-twisted conjugated (or just twisted conjugated) and denote g ∼ϕ h if there exists z ∈ G such

that

zgϕ(z)−1 = h.

It is straightforward to verify that this is an equivalence relation in G.

Definition 1.2. The equivalence classes of the relation ∼ϕ in G are called ϕ-twisted conjugacy

classes (or just twisted classes). We denote the set of twisted classes by <(ϕ) = {[g]ϕ | g ∈ G} and

sometimes we denote a class [g]ϕ only by [g]. The Reidemeister number of ϕ is R(ϕ) = card<(ϕ),

i.e., the number of twisted conjugacy classes of ϕ in G.

Example 1.3. Let G = Zn = Z⊕ ...⊕Z be a finitely generated torsion-free abelian group, and

let ϕ ∈ Aut(G). Here we use additive notation. Given g, h ∈ G we have by definition

g ∼ϕ h ⇐⇒ z + g − ϕ(z) = h for some z ∈ G

⇐⇒ g − h = ϕ(z)− z = (ϕ− Id)(z) for some z ∈ G

⇐⇒ g − h ∈ im(ϕ− Id)

⇐⇒ g = h in
G

im(ϕ− Id)
.

Then R(ϕ) is exactly the index of the subgroup im(ϕ−Id) in Zn. Since ϕ−Id ∈ Hom(Zn,Zn) '
M(n× n,Z), we can associate ϕ− Id to its integer n× n matrix

A = [(ϕ− Id)(e1) ... (ϕ− Id)(en)]
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whose ith column is the vector (ϕ−Id)(ei). If det(A) = 0, then one of the columns are generated

by the other n − 1 ones. This implies im(ϕ − Id) has rank r < n and therefore it has infinite

index in Zn, by the following Lemma 1.4. Then R(ϕ) = ∞. If det(A) 6= 0, it is known that

the index of im(ϕ − Id) in G = Zn is exactly |det(A)|, which is also the volume in Rn of the

parallelepiped given by the vectors (ϕ − Id)(e1), ..., (ϕ − Id)(en) (see figure). To summarize,

identify ϕ− Id with A. Then

R(ϕ) =

| det(ϕ− Id)|, if det(ϕ− Id) 6= 0,

∞, if det(ϕ− Id) = 0.

Figura 1.1: The index of H = 〈(2, 1), (1, 2)〉 in Z2 is 2.2− 1.1 = 3, the area of the parallelepiped
above.

In particular, for the automorphism ϕ = −Id we have R(ϕ) = |det(−Id − Id)| =

|det(−2Id)| = 2n <∞, so G = Zn has not property R∞.

Lemma 1.4. Let n ≥ 1. If H ≤ Zn is a finite index subgroup of Zn, then rk(H) ≥ n.

Demonstração. Let us consider Zn ⊂ Rn as a subset of the real n-dimensional vector space Rn

in the usual way, and let us use additive notation. Suppose by contradiction that rk(H) = r < n

and write H = 〈h1, ..., hr〉. Let W be the real subspace of Rn generated by the vectors h1, ..., hr.

We have the set inclusion H ⊂ W . Since dim(W ) ≤ r < n, W is a proper subspace of Rn and

so at least one of the canonical vectors ei must be outside W . Fix such ei. Then 〈ei〉∩W = {0}
as subspaces (because if λei ∈ W for some λ 6= 0 we would have ei = 1

λ(λei) ∈ W ) and in

particular {jei | j ∈ Z} ∩H = {0}. Then the set {jei | j ∈ Z} is an infinite set of distinct coset

representatives of H in Zn, because if j 6= j′ then jei − j′ei = (j − j′)ei /∈ H. This shows that

H has infinite index in Zn, contradiction.

Now we define our main object of study:

Definition 1.5. We say that a group G has property R∞ when R(ϕ) =∞ for all ϕ ∈ Aut(G).

In other words, when every automorphism of G has an infinite number of twisted conjugacy

classes.
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One of the most basic tools for studying twisted conjugacy classes is the following: consider

a commutative diagram of group homomorphisms, where ϕ and ψ are isomorphisms.

Then the function

η̂ :<(ϕ) −→ <(ψ)

[g]ϕ 7−→ [η(g)]ψ

is well defined. Indeed,

[g]ϕ = [g′]ϕ ⇒ zgϕ(z)−1 = g′, z ∈ G

⇒ η(z)η(g)ηϕ(z)−1 = η(g′), z ∈ G

⇒ η(z)η(g)ψ(η(z))−1 = η(g′), η(z) ∈ H

⇒ [η(g)]ψ = [η(g′)]ψ.

Observation 1.6. It is obvious from the definition that if η is surjective, then η̂ is surjective as

well. Also, if η is an isomorphism, η̂ is bijective with inverse η̂−1 and therefore R(ϕ) = R(ψ). In

fact, if we replace the right arrows η in the diagram by left ones with η−1 we get a commutative

diagram because

ϕη−1 = η−1ηϕη−1 = η−1ψηη−1 = η−1ψ.

Then η̂−1 is well defined and easily we have η̂ ◦ η̂−1 = Id = η̂−1 ◦ η̂.

Lemma 1.7. Consider the following commutative diagram of group homomorphisms

where the horizontal lines are exact sequences, that is, i is injective, p is surjective and

ker(p) = im(i). Denote Fix(ψ) = {c ∈ C | ψ(c) = c}. Then

1) if R(ψ) =∞, then R(ϕ) =∞;

2) if R(ξ) =∞ and Fix(ψ) is finite, then R(ϕ) =∞.
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Demonstração. Item 1) is easy: since p is surjective, p̂ : <(ϕ) → <(ψ) is surjective. Then

R(ϕ) ≥ R(ψ) =∞ by hypothesis and we get R(ϕ) =∞. Let us show item 2). The set Fix(ψ)

is a subgroup of C. We define an action of Fix(ψ) on the set <(ξ) in the following way: let

c ∈ Fix(ψ) and [a]ξ ∈ <(ξ). Take b ∈ B such that p(b) = c. Since p◦i is the zero homomorphism

and ψ(c) = c we have

p(bi(a)ϕ(b)−1) = p(b)pi(a)pϕ(b)−1 = p(b)pϕ(b)−1 = cψp(b)−1 = cψ(c)−1 = cc−1 = 1,

then bi(a)ϕ(b)−1 ∈ ker(p) = im(i) and there must be α ∈ A such that i(α) = bi(a)ϕ(b)−1 (note

that this α is unique because i is injective). We then define c · [a]ξ = [α]ξ.

Let us show that this is a well defined action. Suppose we had chosen two different b, b′ ∈ B
such that p(b) = c = p(b′) and also two different class representatives [a]ξ = [a′]ξ. We must show

that p(b) · [a]ξ = p(b′) · [a′]ξ. Write p(b) · [a]ξ = [α]ξ and p(b′) · [a′]ξ = [α′]ξ, that is, α and α′ are

the unique elements in A such that i(α) = bi(a)ϕ(b)−1 and i(α′) = b′i(a′)ϕ(b′)−1, respectively.

Now, from p(b) = p(b′) we obtain that b−1b′ ∈ ker(p) = im(i) and b−1b′ = i(ã), ã ∈ A. Also,

since [a]ξ = [a′]ξ we have xaξ(x)−1 = a′ for x ∈ A and then applying i in both sides and using

that ϕ ◦ i = i ◦ ξ we have i(x)i(a)ϕ(i(x))−1 = i(a′). Since im(i) = ker(p) C B we can write

bi(ãx)b−1 = i(α̃) for some α̃ ∈ A. Now, by using all these identities we obtain

i(α′) = b′i(a′)ϕ(b′)−1

= bi(ã)i(x)i(a)ϕi(x)−1ϕ(bi(ã))−1

= bi(ãx)i(a)ϕi(x)−1ϕ(i(ã))−1ϕ(b)−1

= bi(ãx)b−1i(α)ϕ(b)ϕi(x)−1ϕ(i(ã))−1ϕ(b)−1

= (bi(ãx)b−1)i(α)ϕ(bi(x)−1i(ã)−1b−1)

= (bi(ãx)b−1)i(α)ϕ(bi(ãx)b−1)−1

= i(α̃)i(α)ϕ(i(α̃))−1

= i(α̃)i(α)i(ξ(α̃)−1)

= i(α̃αξ(α̃)−1)

then α′ = α̃αξ(α̃)−1 because i is injective and we have by definition that [α′]ξ = [α]ξ, as desired.

Let us show that this is a group action. First, if c = 1, choose the preimage b = 1. We have by

definition 1 · [a]ξ = [α]ξ, where α is the unique element of A such that i(α) = 1i(a)ϕ(1)−1 = i(a).

Since i is injective we have α = a and 1 · [a]ξ = [a]ξ. Second, let c, c′ ∈ C. We will show that

(cc′) · [a]ξ = c · (c′ · [a]ξ). Choose preimages b and b′ for c and c′, respectively. Write c′ · [a]ξ = [α′].

Now, for the element cc′ choose the preimage bb′. So (cc′) · [a]ξ = [α′′]ξ, where by definition α′′

is the unique element such that

i(α′′) = (bb′)i(a)ϕ(bb′)−1 = bb′i(a)ϕ(b′)−1ϕ(b)−1 = bi(α′)ϕ(b)−1.

Therefore by uniqueness [α′′]ξ = c · [α′]ξ and so

(cc′) · [a]ξ = [α′′]ξ = c · [α′]ξ = c · (c′ · [a]ξ),
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and we have a group action, as desired.

Now we finally show item 2): note that two classes [a]ξ, [α]ξ are in the same Fix(ψ)-orbit if

and only if [i(a)]ϕ = [i(α)]ϕ. Indeed, c · [a]ξ = [α]ξ for c ∈ Fix(ϕ) implies i(α) = bi(a)ϕ(b)−1

for b ∈ B which implies [i(a)]ϕ = [i(α)]ϕ. On the other hand, [i(a)]ϕ = [i(α)]ϕ implies i(α) =

bi(a)ϕ(b)−1 for b ∈ B. This identity implies that p(b) ∈ Fix(ψ), because

1 = pi(α) = p(bi(a)ϕ(b)−1) = p(b)pi(a)pϕ(b)−1 = p(b)pϕ(b)−1 = p(b)ψp(b)−1.

Then p(b) · [a]ξ = [α], by definition. Now, Fix(ψ) is finite, which means that all the orbits are

finite. So the infinite set <(ξ) is being partitioned in finite orbits, which implies that we must

have an infinite number of orbits. By the equivalence shown above, we then have infinite classes

[i(a)]ϕ in B. Then R(ϕ) =∞, as desired.

Throughout the thesis we will also need the following

Proposition 1.8. If G is a group and ϕ ∈ Aut(G), then R(ϕ) = R(ϕ−1).

Demonstração. It is enough to show R(ϕ) ≥ R(ϕ−1) for every ϕ, for then applying this to ϕ−1

we also obtain R(ϕ−1) ≥ R((ϕ−1)−1) = R(ϕ) and therefore R(ϕ) = R(ϕ−1), as desired. So, we

just have to show that there is a surjective map from <(ϕ) to <(ϕ−1). Define f : <(ϕ)→ <(ϕ−1)

by putting f([x]ϕ) = [x−1]ϕ−1 (for x ∈ G). To see that it is well defined, suppose [x]ϕ = [y]ϕ.

Then there is z ∈ G such that y = zxϕ(z)−1. Therefore

y−1 = (zxϕ(z)−1)−1 = ϕ(z)x−1z−1 = ϕ(z)x−1ϕ−1(ϕ(z))−1,

which implies f([x]ϕ) = [x−1]ϕ−1 = [y−1]ϕ−1 = f([y]ϕ), as desired. To see that f is surjective,

just note that for every [x]ϕ−1 ∈ <(ϕ−1), we have f([x−1]ϕ) = [x]ϕ−1 . This completes the

proof.

In a similar fashion of the Reidemeister number, we can define algebrically the number of

isogredience classes and what is called “property S∞”:

Definition 1.9. Let G be a group and let π : Aut(G) → Out(G) = Aut(G)
Inn(G) be the natural

projection onto the quotient of the automorphism group Aut(G) by its (normal) subgroup of

inner automorphisms of the form γg : G → G, γg(h) = ghg−1 (for any h ∈ G). Let Ψ =

π(α) ∈ Out(G) be any element. Given two automorphisms γrα, γsα ∈ π−1(Ψ), we say they are

isogredient if there is g ∈ G such that γgγrαγ
−1
g = γsα. We define S(Ψ) to be the cardinality of

the set of such isogredience classes given by the relation above, that is, S(Ψ) = card(π−1(Ψ)/ ∼).

We say that a group G has property S∞ if S(Ψ) =∞ for every Ψ ∈ Out(G).

Proposition 1.10. Let G be a group and Ψ = π(α) ∈ Out(G). If S(Ψ) = ∞ then R(α) = ∞.

In particular, if G has property S∞ then it also has property R∞.

Demonstração. Denote by Z(G) the center of G, let f : G → G/Z(G) with f(g) = g be the

natural projection and α be the naturally induced automorphism on this quotient. Given two

automorphisms of the form γrα and γsα, we claim that they are isogredient if and only if r and
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s are α-conjugated in G/Z(G). Indeed, if there is g ∈ G such that γgγrαγ
−1
g = γsα, then since

αγ−1
g = γα(g−1)α we have γgγrγα(g−1)α = γsα, so

γgrα(g−1) = γgγrγα(g−1) = γs, or γgrα(g−1)s−1 = Id,

and by definition of center we have grα(g−1)s−1 ∈ Z(G), or g.r.α(g)−1 = s in G/Z(G), as

desired. Suppose now that r and s are α-conjugated in G/Z(G) by an element g. Then, by

definition, there is z ∈ Z(G) such that grα(g)−1s−1 = z. Then, since γz = Id we have

γgγrαγ
−1
g = γgγrγα(h−1)α = γgrα(h−1)α = γzsα = γsα,

which shows the claim. Because of this, we have exactly S(Ψ) = R(α) and so R(α) = ∞ by

hypothesis. Since we have the commuting diagram

and f is surjective, we get R(α) =∞ by using Lemma 1.7. The last assertion is an immediate

consequence.

1.2 Topological motivation for twisted conjugacy

In spite of having a purely algebraic definition, twisted conjugacy classes arise from a topological

viewpoint. This section will provide us a brief explanation of this fact. The reader just needs

to be familiar with basic facts on covering spaces, liftings and the classic fundamental group.

Let X be a topological space with universal covering p : X̃ → X and fix points x0 ∈ X and

x̃0 ∈ X̃ with p(x̃0) = x0. Let f : X → X be a homeomorphism and fix a lifting f̃(x0) of the point

f(x0). Since X̃ is simply connected, from lifting theory there exists a unique lift f̃ : X̃ → X̃ of

f such that f̃(x̃0) = f̃(x0) and pf̃ = fp. Now, consider the covering transformation set,

D = {α : X̃ → X̃ | α is continous and pα = p}.

This is a group with usual composition. Again, from lifting theory, any other lifting of f is of

the form αf̃ and this form is unique, that is, if αf̃ = α′f̃ then α = α′ in D.
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Because of this, we can define a function f̃D : D → D in the following way: given α ∈ D,

since f̃α is another lifting of f (because pf̃α = fpα = fp) we must have f̃α = α′f̃ for a unique

α′ ∈ D and we set f̃D(α) = α′. In other words, f̃D is characterized by the equation f̃α = f̃D(α)f̃ .

Then

f̃D(α)f̃D(β)f̃ = f̃D(α)f̃β = f̃αβ = f̃D(αβ)f̃ ,

so by uniqueness we have f̃D(αβ) = f̃D(α)f̃D(β) and f̃D is a homomorphism. Since f is a

homeomorphism, f̃D is an isomorphism.

Let us define now the topological Reidemeister number of f . One can define an equivalence

relation in the set L(f) of all liftings of f in the following way:

g ∼ g′ ⇔ ∃ β ∈ D : βgβ−1 = g′.

The topological Reidemeister number R(f) is defined by the number of such classes

R(f) = card(L(f)/ ∼).

This number arises when we count the fixed points Fix(f) of f (see [57]):

Proposition 1.11. Under the conditions above, we have Fix(f) =
⋃
g∈L(f) p(Fix(g)), and,

given two liftings g and g′, the sets p(Fix(g)) and p(Fix(g′)) are the same if g ∼ g′ and disjoint

if g � g′. In other words,

Fix(f) =
⊔

[g]∈L(f)/∼

p(Fix(g)).

It is worth to observe that R(f) coincides exactly with the number of fixed point classes

p(Fix(g)) of f given above. It couldn’t have a more topological fashion!

We are ready to prove the main result of this section. It says that this topological (and

fixed-point-counting) Reidemeister number coincides with the algebraic Reidemeister number of

the induced automorphism in the fundamental group.

Proposition 1.12. Under the conditions above, R(f) = R(f∗) where f∗ is the induced auto-

morphism in π1(X,x0).

Demonstração. First we show that R(f) = R(f̃D). Remember that any lifting of f is of the

form αf̃ for a unique α ∈ D. Then, given two liftings αf̃ and α′f̃ of f , we have

αf̃ ∼ α′f̃ ⇔ ∃ β ∈ D : βαf̃β−1 = α′f̃

⇔ ∃ β ∈ D : βαf̃D(β−1)f̃ = α′f̃

⇔ ∃ β ∈ D : βαf̃D(β−1) = α′

⇔ α ∼f̃D α
′ in D,

so the number of fixed point classes R(f) is exactly the number of twisted conjugacy classes

R(f̃D) in D.

Now we show that R(f̃D) = R(f∗). From covering space theory (see [76]) there is an isomor-

phism
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F : π1(X,x0) −→ D

[γ] 7−→ α such that α(x̃0) = γ̃(1),

where γ̃ is the unique lifting of the path γ starting at x̃0, and α is the unique covering transfor-

mation that sends the point x̃0 = γ̃(0) to the point γ̃(1).

Consider then the following diagram:

If we show that it is a commuting diagram we are done by Observation 1.6, since F is an

isomorphism. On one hand, by definition,

Ff∗[γ] = F [f ◦ γ] = α′ such that α′(f̃(x0)) = f̃ ◦ γ(1),

where f̃ ◦ γ is the lifting of f ◦ γ starting at f̃(x0). On the other hand,

f̃DF [γ] = f̃D(α) (where α(x̃0) = γ̃(1))

= α′′ (such that α′′f̃ = f̃α).

We are then left to show that α′ = α′′. By uniqueness it suffices to show that these two

transformations coincide in the point f̃(x̃0) = f̃(x0). But

α′′(f̃(x̃0)) = α′′f̃(x̃0) = f̃α(x̃0) = f̃ ◦ γ̃(1),

and

α′(f̃(x̃0)) = α′(f̃(x0)) = f̃ ◦ γ(1).

so we just have to see that f̃ ◦ γ = f̃ ◦ γ̃. By uniqueness of liftings, it suffices to see that they

are liftings of the same path with the same initial point. But

pf̃ γ̃ = fpγ̃ = fγ = pf̃γ,

and

f̃ ◦ γ̃(0) = f̃(x̃0) = f̃(x0) = f̃ ◦ γ(0),

as desired. Then R(f) = R(f̃D) = R(f∗).

When we want to count fixed points of a map f , we use Nielsen fixed point theory, in which

the Nielsen number N(f) is a lower bound for the minimal possible number M [f ] of fixed points
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of any map in the homotopy class [f ]. For a large class of spaces (for example, for all compact

manifolds of dimension ≥ 3 (see [97]) we do have N(f) = M [f ] and then, if N(f) = 0, f can

be deformed by homotopy to a fixed point free map. Because of this, the Nielsen number is

the main object of study in the theory. But for many spaces we also have either N(f) = 0

and R(f) = ∞, or N(f) = R(f) < ∞ (for example, for all Nilmanifolds). Then we can study

R(f) to count fixed points instead of N(f). By the above proposition, we just have to count

twisted conjugacy classes in the fundamental group. Just to visualize: if we consider a compact

Nilmanifold of dimension ≥ 3, for example, then property R∞ in its fundamental group would

imply that every self homeomorphism f is deformable by homotopy to a fixed point free map,

for R(f) = R(f∗) =∞ implies N(f) = 0, which implies the desired property.

1.3 Graphs, Cayley graphs and basic constructions

Here we follow a notation similar to the one in [86]. All the omitted proofs can be found there.

This section is a collection of definitions and constructions which will be used in different parts

of the text. The reader which is already familiarized with the language may skip it and come

back when needed.

Definition 1.13. A graph Γ is a 5-uple (V (Γ), E(Γ), o, t,−), where

• V (Γ) is called the set of vertices;

• E(Γ) is called the set of edges;

• o : E(Γ)→ V (Γ) with y 7→ o(y) and o(y) is called the origin of y;

• t : E(Γ)→ V (Γ) with y 7→ t(y) and t(y) is called the terminus of y;

• − : E(Γ)→ E(Γ) with y 7→ y and y is called the inverse edge of y,

and such that y 6= y, y = y and t(y) = o(y) for all edges y.

There is the obvious association of a “simple enough” graph with its drawing. For example,

if V (Γ) = {P,Q}, E(Γ) = {y, y}, o(y) = P and t(y) = Q, we may call Γ a segment and associate

to it either one the following figures:

Definition 1.14. A morphism f : Γ → Γ′ between two graphs Γ and Γ′ consists of two maps

fv : V (Γ) → V (Γ′) and fe : E(Γ) → E(Γ′) such that o(fe(y)) = fv(o(y)), t(fe(y)) = fv(t(y))

and fe(y) = fe(y) for every edge y ∈ E(Γ). If both fv and fe are injective (resp. surjective,

bijective) we say that f is injective (resp. surjective, isomorphism). An isomorphism f : Γ→ Γ

is called and automorphism of Γ. The set of automorphisms of Γ with the natural composition

operation is a group and is denoted by Aut(Γ).
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Definition 1.15. An orientation for a graph Γ is a subset E+(Γ) ⊂ E(Γ) such that E(Γ) =

E+(Γ) tE+(Γ) is the disjoint union of the set E+(Γ) and the set of its inverse edges E+(Γ) by

the function −.

An orientation in Γ corresponds to choosing a direction for each edge in the drawing of Γ, or

choosing between y and y for each edge y. We sometimes call y ∈ E+(Γ) an oriented edge, due

to this geometric representation. When we are thinking about the drawing of Γ, we call {y, y}
a geometric edge, since both edges represent the same “line drawing”. The vertices o(y), t(y) of

an edge y are called the extremities of y. Two vertices are said adjacent if they are extremities

of an edge.

Definition 1.16. Let Γ,Γ′ be graphs and let E+(Γ) be an orientation for Γ. An oriented

morphism f : Γ → Γ′ consists of two maps fv : V (Γ) → V (Γ′) and fe : E+(Γ) → E(Γ′) such

that o(fe(y)) = fv(o(y)) and t(fe(y)) = fv(t(y)) for every y ∈ E+(Γ).

Observation 1.17. Any oriented morphism f : Γ → Γ′ induces a graph morphism f : Γ →
Γ′. To define the morphism, we just have to extend the map fe : E+(Γ) → E(Γ′) to a map

fe : E(Γ) → E(Γ′), so we have to define fe(y) for y ∈ E+(Γ). But since y ∈ E+(Γ), fe(y)

is defined. So we define fe(y) = fe(y). It is straightforward to verify that f is an authentic

graph morphism. Furthermore, suppose E+(Γ′) is an orientation for Γ′ and that the oriented

morphism f : Γ → Γ′ given initially is a bijection between the vertices fv : V (Γ) → V (Γ′) and

also between the oriented edges fe : E+(Γ)→ E+(Γ′). Then, since the inversion maps y 7→ y in

both graphs are also bijections, it is easy to verify that the extended map fe : E(Γ)→ E(Γ′) is

also a bijection and so the graph morphism f is a graph isomorphism.

Definition 1.18. A path γ of length n in a graph Γ is a finite sequence γ = y1, ..., yn of edges

such that t(yi) = o(yi+1) for 1 ≤ i ≤ n−1. A backtracking in γ is a subsequence having the form

..., yi−1, yi, yi, yi+2, ... for some i. We say that γ is injective if the vertices o(y1), ..., o(yn), t(yn)

are pairwise distinct. We say that γ is closed if t(yn) = o(y1). A loop is a closed path of length 1.

We say that γ is a circuit if it is closed and the path y1, ..., yn−1 is injective (the latter condition

only needed if n > 1). Note, then, that every loop is also a circuit.

Definition 1.19 (Combinatorial trees). We say that two vertices P,Q in a graph Γ are connected

by a path γ = y1, ..., yn in Γ if o(y1) = P and t(yn) = Q. The graph Γ is said to be connected

if every two vertices in Γ are connected by a path in Γ. A (combinatorial) tree is a nonempty

connected graph with no circuits. We usually denote a tree by T , instead of Γ. In a tree T , a

geodesic is a path with no backtrackings.

Note that, if a path γ has a backtracking, we can remove it by considering the path γ′ =

y1, ..., yi−1, yi+2, ..., yn. Then, if two vertices can be connected by a path, they can also be

connected by a path without backtrackings.

Trees play a fundamental role in graph theory because of the following property (see [86]):

Proposition 1.20. Every two vertices in a tree can be connected by a unique geodesic, and any

geodesic in a tree is an injective path.

Definition 1.21. Given a group G and a nonempty subset S ⊂ G, the Cayley graph Γ = Γ(G,S)

is given by
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• V (Γ) = G;

• E(Γ) = (G×S)tZ, where Z is a disjoint set from G×S with a bijection f : G×S → Z;

• o : E(Γ)→ V (Γ) is defined by (g, s) 7→ g and f(g, s) 7→ gs;

• t : E(Γ)→ V (Γ) is defined by (g, s) 7→ gs and f(g, s) 7→ g;

• − : E(Γ)→ E(Γ) is exactly the function f in G× S and the function f−1 in Z.

To be more intuitive, the “drawing” of Γ is given by all the connections of the form

for all g ∈ G and s ∈ S. If s ∈ S, we denote (g, s−1) = f(gs−1, s). This corresponds to

walking through the edge (gs−1, s) in the opposite direction, so (g, s−1) starts at gs−1s = g and

finishes at gs−1. A path p in Γ is characterized by its initial vertex g ∈ G and the (oriented)

edges on which it walks. So we will denote a path in Γ by p = (g, s1...sn) with si ∈ S±1. This

means that p starts in g, walks through the edge (g, s1) until gs1, then walks through the edge

(gs1, s2) until gs1s2, and so on, always by right multiplication. The set of paths is denoted by

P (Γ). Sometimes we will denote the edges in the picture only by the label s. An orientation for

Γ(G,S) is given by E+ = G× S; it will always be its orientation, unless we say otherwise.

Figura 1.2: Cayley graph of the dihedral group D5 =
〈
a, b | a2 = 1, b5 = 1, abab = 1

〉
with S =

{a, b}. Multiplying by a corresponds to crossing the red edges. Multiplying by b corresponds to
walking in the black edges in the indicated direction.

The shape of the Cayley graph detects free generation:

Proposition 1.22. Let G be a group, S ⊂ G and denote by Γ = Γ(G,S) its Cayley graph. Then

Γ is a tree if and only if G is a free group with basis S.

Demonstração. Note that connecting a vertex g to 1 in Γ by a path p = (1, s1...sn) corresponds

to writing g = s1...sn for si ∈ S±. Then Γ is connected if and only if G = 〈S〉. Let us show

the proposition. If Γ is a tree, then we must have G = 〈S〉 and also S ∩ S−1 = ∅ (otherwise,

we would have either 1 ∈ S and p = (1, 1) would be a loop, or s′ = s−1 ∈ S for some element
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Figura 1.3: a portion of the Cayley graph of the free group F2 = 〈a, b〉 with S = {a, b}.
Multiplying by a is walking right and multiplying by b is walking up.

s ∈ S and then p = (1, ss′) would be a circuit in Γ). To show that G is free with basis S, we

just need to show that there is no equation of the form sε11 ...s
εn
n = 1 in G with si ∈ S, εi = ±1

and sεii s
εi+1

i+1 6= 1 (see [71], page 4, Proposition 1.9). Suppose by contradiction that there is such

an equation, and suppose it has minimal length. Then n ≥ 3, because if n = 1, p = (1, sε11 )

would be a loop and the case n = 2 we just treated above. Note that the vertices P0 = 1 and

Pi = sε11 ...s
εi
i for 1 ≤ i ≤ n − 1 are pairwise distinct, because if Pi = Pi+k we would have an

equation s
εi+1

i+1 ...s
εi+k
i+k = 1 in G with length < n, contradiction. Since n ≥ 3 and the vertices

are pairwise distinct with Pn = P0, the path p = (1, sε11 ...s
εn
n ) is a circuit in Γ, contradiction.

Then G is free with basis S. Conversely, suppose that G is free with basis S. Then Γ is

connected. We just have to show that Γ does not contain any circuit. Suppose by contradiction

that p = (g, s1...sn) is a circuit in Γ with si ∈ S±. Since p has no backtrackings, the word s1...sn

is reduced in G, and since p is closed we have gs1...sn = g, which implies s1...sn = 1 in G. Then

G cannot be a free group, contradiction.

Definition 1.23. A subgraph Γ′ of Γ = (V (Γ), E(Γ), o, t,−) is given by two subsets V (Γ′) ⊂
V (Γ) and E(Γ′) ⊂ E(Γ) such that the restrictions of o, t and − to Γ′ are well defined (i.e., we

have o : E(Γ′) → V (Γ′), t : E(Γ′) → V (Γ′) and − : E(Γ′) → E(Γ′)). In other words, Γ′ is

a graph with the respective restrictions of o, t and −. We denote this relation by Γ′ ≤ Γ. A

subtree of Γ is a subgraph that is a tree. A maximal tree T in Γ is a maximal element in the

set of all subtrees of Γ with the partial order given by the subgraph relation “≤”. This is the

same as saying that T is a subtree of Γ and if T ′ is a subtree of Γ with T ≤ T ′, then T = T ′.

By the well known Zorn’s Lemma, every nonempty graph Γ has a maximal tree. Also,

one can show that every tree inside Γ is contained in a maximal one. By a simple proof by

contradiction, one can also prove

Proposition 1.24. If T is a maximal tree in Γ then V (T ) = V (Γ), that is, T contais all the

vertices of Γ.

When does the removal of an edge in a connected graph “breaks” it in two connected pieces?

The answer will be useful in Chapter 11 and is the following:
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Lemma 1.25. Let y0 be an edge of a connected graph Γ and let Γ − y0 denote the subgraph of

Γ obtained by geometrically removing y0 from Γ, that is, V (Γ − y0) = V (Γ) and E(Γ − y0) =

E(Γ) − {y0, y0}. If there is a maximal tree T of Γ not containing y0 then Γ − y0 is connected.

If not, then Γ − y0 contains exactly two connected components, each one containing one of the

extremities of y0.

In the latter situation we say y0 is a separating edge of Γ.

Figura 1.4: y0 is separating on the right, but not on the left.

Demonstração. In the former case, let T be such a maximal tree and P,Q be any two vertices

of Γ − y0. By Proposition 1.24, P,Q are vertices of T , so there is a path p connecting them in

T (therefore in Γ). Since T does not contain y0, the path p is inside Γ− y0, as desired.

In the latter case, y0 must be a segment with distinct extremities P = o(y0) and Q = t(y0)

(see figure). We claim that every path in Γ from P to Q must cross y0. Indeed, let p be such

path. We can extract from p an injective subpath p̃ from P to Q, without backtrackings. Then

p̃, as a subgraph, is itself a tree and must be contained in a maximal tree T . By hypothesis, T

contains y0. But then p̃ and the edge y0 itself are by definition geodesics in T from P to Q. By

uniqueness, p̃ is the path y0 and so p crosses y0, which shows the claim. Because of this, there

is no path from P to Q in Γ− y0, which means that this graph contains at least two connected

components, say, ΓP and ΓQ. Let us show that they are the only ones. Let v be a vertex in

Γ − y0 which is not in ΓP and let us show that it is in ΓQ. Let p be a path in Γ from v to P .

Since such a path cannot exist inside Γ − y0 (because v is not in ΓP ) it must cross y0 at least

once. Consider the first time p crosses y0. If it crossed “in the right direction”, that is, first

over P then over Q, then the restriction of p from v to P would connect them inside Γ − y0,

contradiction. So, when p crosses the edge y0 for the first time, it must be “in the left direction”,

that is, first Q then P . But then the restriction of p from v to Q connects these vertices inside

Γ− y0, which shows that v is in ΓQ, as desired.

Definition 1.26. A closed path in a graph is contractible if, after removing all its backtrackings,

we obtain the constant path.

Proposition 1.27. Let γ be a closed path in a graph Γ. If γ does not contain any circuit, then

it is contractible.

Demonstração. Since γ does not contain any circuit, the edges of γ form a connected subgraph

of Γ with no circuits, that is, a tree. Since every tree is contained in a maximal tree, γ must

be contained in a maximal tree, say, T . Let P be the origin and terminus of γ. Then, after

removing all the backtrackings of γ we obtain a geodesic γ′ from P to P in T , by definition. By

the uniqueness of geodesics in a tree, we have that γ′ is the constant path, so γ is contractible.

Definition 1.28. A vertex P in a graph Γ is terminal when it is the terminus of exactly one

edge of Γ.
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The properties about terminal vertices we will need later are all summarized in the following

proposition (see [86]):

Proposition 1.29. Every finite tree must contain at least one terminal vertex. If P is terminal

in a graph Γ and y is the edge with t(y) = P , let Γ− P be the subgraph of Γ defined as follows:

V (Γ− P ) = V (Γ)− {P}, E(Γ− P ) = E(T )− {y, y}. Then Γ− P is a tree if and only if Γ is a

tree.

Figura 1.5: the tree T on the left and the tree T − P on the right

Other basic constructions we will need are the following:

Definition 1.30. Let Γ be a graph and T ≤ Γ a subtree. The contraction of T is how we call

the graph denoted by Γ/T , which is defined by:

• V (Γ/T ) = V (Γ)/ ∼, where P ∼ Q iff P = Q or P,Q ∈ V (T );

• E(Γ/T ) = E(Γ)− E(T );

• o : E(Γ/T )→ V (Γ/T ) with y 7→ [o(y)] ([.] denotes the class of an element);

• t : E(Γ/T )→ V (Γ/T ) with y 7→ [t(y)];

• − : E(Γ/T )→ E(Γ/T ) is the restriction of − : E(Γ)→ E(Γ).

Geometrically one can imagine that the entire tree T is being contracted to one single vertex

and all the other edges in Γ are preserved. Obviously, if T is a maximal tree, then all the vertices

become just one (thanks to Proposition 1.24) and Γ/T is what we call a “bouquet”, as in next

figure. More generally, we could define the contraction of a family of disjoint subtrees Λ = tαTα
by defining V (Γ/Λ) = V (Γ)/ ∼, where P ∼ Q iff P = Q or P,Q ∈ V (Tα) for some α and

E(Γ/Λ) = E(Γ) − E(Λ). This means that each tree Tα is being contracted to a single vertex.

Intuitively, since contracting a tree do not “kill” any circuits, we have the following important

property (see [86], pg. 23, Corollary 2):

Proposition 1.31. Let Γ be a graph and Λ = tαTα the disjoint union of a family of subtrees

of Γ. Then Γ is a tree if and only if Γ/Λ is a tree.

Definition 1.32. Let Γ be a tree and A ⊂ V (Γ). The subtree T generated by A is the smallest

(minimal, in the subgraph relation “≤”) tree of Γ which contains all the vertices in A.

Observation 1.33. It is straightforward to show that T is the tree consisting of all the edges and

vertices of all the geodesics in Γ connecting all the vertices in A to each other. With a similar

argument one can also show that T is the tree consisting of all the edges and vertices of all the

geodesics in Γ connecting the vertices in A to a fixed vertex P in A.
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Figura 1.6: the tree T in red is contracted to one vertex

The construction above shall not be confused with the following:

Definition 1.34. Let Γ be any graph and A ⊂ V (Γ). The subgraph ΓA ≤ Γ induced by A is

given by

• V (ΓA) = A;

• E(ΓA) = {y ∈ E(Γ) | o(y), t(y) ∈ A}.

By the above definition, a path γ in Γ is contained in ΓA if and only if the extremities of all

its edges are in A, or, let’s say, if γ runs only over vertices in A. Note also that ΓA need not be

connected, even if Γ is.

Figura 1.7: The vertices A on the left, not connected ΓA on the right

Figura 1.8: The vertices A on the left, connected ΓA on the right

Definition 1.35. An action of a group G on a graph Γ is a group homomorphism ϕ : G →
Aut(Γ). When such an action exists we say that G acts on Γ. Given g ∈ G, the automorphism

ϕ(g) then consists of two bijective maps ϕ(g)v (resp. ϕ(g)e) between the vertices (resp. edges)

of Γ, so we abbreviate ϕ(g)v(P ) by g · P for any vertex P and ϕ(g)e(y) by g · y for any edge y.

With this notation, the action satisfies

1) (gh) · P = g · (h · P ) and 1 · P = P for any vertex P and g, h ∈ G;

2) (gh) · y = g · (h · y) and 1 · y = y for any edge y and g, h ∈ G;
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3) o(g · y) = g · o(y) and t(g · y) = g · t(y) for any edge y and g ∈ G;

4) g · y = g · y for any edge y and g ∈ G.

An inversion in such an action is a pair (g, y) ∈ G× E(Γ) such that g · y = y. We say that

G acts without inversion in Γ when such an inversion does not exists. We say that the action is

free and that G acts freely on Γ when G acts without inversion and g · P = P implies g = 1.

Example 1.36. It is easy to verify that if G is a group and S ⊂ G, then G acts freely on its

Cayley graph Γ(G,S) if we define the action as g · h = gh on a vertex h and g · (h, s) = (gh, s)

on an edge (h, s).

Definition 1.37. If G acts on Γ without inversion, we define the quotient graph, or the orbit

graph G/Γ by:

• V (G/Γ) = V (Γ)/ ∼, where P ∼ P ′ if g · P = P ′ for some g ∈ G;

• E(G/Γ) = E(Γ)/ ∼, where y ∼ y′ if g · y = y′ for some g ∈ G;

• o([y]) = [o(y)], t([y]) = [t(y)] and [y] = [y] for any edge y.

It is easy to verify that G/Γ is a graph by using the properties of an action. In particular,

the action being without inversion is what guarantees that [y] 6= [y] for any edge [y], because

[y] = [y] would give rise to an inversion g · y = y, by definition. It is straightforward to see that

there is a natural surjective morphism p : Γ→ G/Γ with p(P ) = [P ] and p(y) = [y]. The vertex

and edge classes [P ] and [y] are called the orbits of the action.

Definition 1.38. Let a group G act without inversions on a graph Γ and let p : Γ → G/Γ be

the natural projection defined above. If Λ ≤ G/Γ, we say that a subgraph Λ̃ ≤ Γ is a lift of Λ if

p(Λ̃) = Λ and the restriction morphism p|Λ̃ : Λ̃ → Λ is an isomorphism. We also say that Λ is

lifted to Λ̃.

Proposition 1.39. Let a group G act without inversions on a graph Γ and let p : Γ→ G/Γ be

the projection. Every subtree T of G/Γ can be lifted to a subtree T̃ of Γ.

Demonstração. Let Ω = {T̃ ≤ Γ | T̃ is a tree, p(T̃ ) ⊂ T and p|T̃ : T̃ → T is injective}.
Obviously, Ω 6= ∅: indeed, if [P ] is any vertex of T , then the single vertex P , thought as a

subtree of Γ, is in Ω. Let us ordinate Ω by the subgraph relation “≤”. Since the union ∪αT̃α
of any chain {T̃α}α in Ω is an upper bound for the chain (homework for the reader), by Zorn’s

Lemma there is a maximal element in Ω, which we will also denote by T̃ . We also have the

injection p|T̃ : T̃ → T . Let T ′ = p(T̃ ) ≤ T , so we have an isomorphism p|T̃ : T̃ → T ′ and T ′ is

also a tree. We just have to show that T ′ = T . Suppose by contradiction that there is an edge [z]

in T and outside T ′, and because T is connected we can also suppose without loss of generality

that its origin [o(z)] is in T ′ (see the next figure). Note then that its terminus [t(z)] must not

be in T ′, because if both extremities of the edge [z] were in T ′ we could connect them inside T ′

by a geodesic γ, and then the concatenation of γ with the edge [z] would be a circuit in T . So,

the union of T ′ with the edge [z] is also a tree by Proposition 1.29. Now, [o(z)] ∈ T ′ = p(T̃ )

by construction, so write [o(z)] = [P0] for some vertex P0 in T̃ . We must have g · o(z) = P0 for
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some g ∈ G. Then the edge g · z is a lift of [z] (because p(g · z) = [g · z] = [z]) whose origin is in

T̃ (because o(g · z) = g · o(z) = P0). This edge must also be outside T̃ , because if g · z was in T̃

its projection [z] would be in p(T̃ ) = T ′, contradiction. Similarly, its terminus t(g · z) is outside

T̃ , because its projection is [t(z)] which is not in T ′. So the union of T̃ and the edge g · z is also

a tree by Proposition 1.29 and we have p as an isomorphism (see figure) between these extended

trees. Since [z] is in T , it is also an injection into T . Therefore the extended tree in Γ is in Ω

and T̃ is not maximal, contradiction. This completes the proof.

Definition 1.40. If a group G acts without inversion on a graph Γ, a tree of representatives of

Γ mod G is any lifting of a maximal tree of G/Γ.

Example 1.41. Define an action of Z on its Cayley graph Γ = Γ(Z, {1}) by n ·m = 3n + m

for n ∈ Z and a vertex m in Γ, and n · (m, 1) = (3n + m, 1) for an edge (m, 1) in Γ. It has

no inversions and since [3] = [0] the orbit graph Z/Γ is isomorphic to a circuit of length 3 (see

figure). The blue path Λ = [(0, 1)], [(1, 1)] is a maximal tree in the orbit graph, so the blue path

Λ̃ = (0, 1), (1, 1) is a lift for it and a tree of representatives of Γ mod Z, by definition.

Example 1.42. The free group F2 on two generators x and y acts naturally on its Cayley

graph Γ = Γ(F2, {x, y}). So, every subgroup of F2 also acts on Γ. Let H ≤ F2 be the subgroup

consisting of the words whose sum of all the x-exponents is even, as well as the sum of all the

y-exponents. In other words, H = ker(ϕ) where
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ϕ :F2 −→ Z2 × Z2

w 7−→ ((w)x, (w)y).

Note that ϕ is surjective, so by the isomorphism theorem we have F2/H ' Z2 × Z2 and H has

index 4 in F2 with {1, x, y, xy} as a collection of coset representatives. Since the action of h ∈ H
on a vertex g of Γ is always given by h · g = hg, the orbit [g] of a vertex g is exactly the coset

Hg. Since there are only 4 cosets, the orbit graph H/Γ has only 4 vertices [1], [x], [y] and [xy].

There are also only 8 geometric edges, as the figure shows.

If the three edges [(1, y)], [(1, x)] and [(x, y)] are chosen as a maximal tree of H/Γ, we can

lift them to the three edges (1, y), (1, x) and (x, y) which form the blue tree of representatives

of Γ mod H.

Proposition 1.43. Let G act on a graph Γ. Then there is no inversion if and only if Γ has

an orientation E+ which is preserved by the action (that is, y ∈ E+, g ∈ G ⇒ g · y ∈ E+, or

G · E+ ⊂ E+).

Demonstração. (⇐) Let E+ be such orientation and suppose by contradiction that there is

an inversion g · y = y. We have either y ∈ E+ or y ∈ E+. In the former case, we have

y = g · y ∈ G · E+ − E+, contradiction. In the latter case, y = y = g · y = g · y ∈ G · E+ − E+,

also a contradiction. (⇒) Suppose the action has no inversion. Then we can consider the orbit

graph G/Γ. Choose any orientation W in G/Γ and define E+ = {y ∈ E(Γ) | [y] ∈ W}. It is

straightforward to check that E+ is an orientation for Γ. To see that G · E+ ⊂ E+, let g ∈ G
and y ∈ E+. We have [g · y] = [y] ∈W , so by definition g · y ∈ E+, as desired.

For example, we know that if S ⊂ G, the group G acts freely (in particular without inversion)

on Γ(G,S). The orientation G×S of Γ(G,S) is always preserved since g ·(h, s) = (gh, s) ∈ G×S
for every g ∈ G and (h, s) ∈ G× S.
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1.4 The Reidemeister-Schreier algorithm

Finding a presentation for a subgroup H ≤ G in terms of a presentation of G is not an easy task

in general. The first results in this direction were obtained by Schreier (1927) and Reidemeister

(1932), leading to the names “Reidemeister-Schreier” method, process, theorem or algorithm.

There are many versions of the Reidemeister-Schreier Theorem, for example in [72] (section 2.3,

Theorem 2.9, page 94) and [71] (Proposition 4.1, Chapter II, page 103). We are going to show

a more geometric version of it, based on some results of [86] about group actions and Cayley

graphs. This result will be useful especially in Chapter 6.

Theorem 1.44. Let a group G act freely on a tree X. Let Λ̃ be a tree of representatives of X

mod G (associated to a maximal tree Λ of G/X) and let E+ = E+(X) be an orientation of X

which is preserved under the action (see Proposition 1.43). Let

S = {s 6= 1 ∈ G | ∃ y ∈ E+ with o(y) ∈ Λ̃ and t(y) ∈ sΛ̃}.

Then G is a free group with basis S.

Demonstração. The basic idea is to show that Γ(G,S) ' X ′, where X ′ is a quotient of the tree

X given by the contraction of some disjoint subtrees of X. Since X is a tree, X ′ is also a tree

by Proposition 1.31 and then so it is Γ(G,S). By Proposition 1.22, G must be free with basis

S.

Let us define the subtrees of X which we will contract. Denote by p : X → G/X the orbit

projection. Every g ∈ G induces an automorphism of X, so all the gΛ̃, g ∈ G, are also subtrees

of X. Furthermore, we claim that they are pairwise disjoint. Indeed, suppose two of them, say,

gΛ̃ and hΛ̃ have a common vertex. So g · P = h ·Q for P,Q vertices of Λ̃. Then h−1g · P = Q

implies p(P ) = p(Q). Since p|Λ̃ is an isomorphism we have P = Q. So h−1g · P = P , but since

the action is free we must have h−1g = 1, or h = g, which shows the claim. Denote this family

of disjoint subtrees by G · Λ̃. There is a bijection G · Λ̃→ G with gΛ̃→ g. Define X ′ = X/(G · Λ̃)

their contraction in X, which we already know is a tree.

Each subtree gΛ̃ in X becomes a single vertex in X ′ which we denote by (gΛ̃). We claim

that these are the only vertices of X ′. In fact, for every vertex P of X, [P ] = p(P ) ∈ V (G/X) =

V (Λ) = p(V (Λ̃)) (using Proposition 1.24), so [P ] = [Q] for some vertex Q of Λ̃. By definition,

P = g · Q ∈ gΛ̃ for some g ∈ G. This shows that every vertex of X is inside some gΛ̃, so by

definition of X ′ every vertex of X ′ must be some (gΛ̃). Because the gΛ̃ are pairwise disjoint,

the vertices (gΛ̃) are pairwise distinct, so we have a bijection V (X ′) → G · Λ̃ with (gΛ̃) 7→ gΛ̃.

By putting this bijection together with the one we obtained in the previous paragraph we have

a bijection

α : V (X ′) −→ G = V (Γ(G,S))

(gΛ̃) 7−→ g.

Then, by Observation 1.17, to create an isomorphism α : X ′ → Γ(G,S) we just have to put
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an orientation in X ′ and define an oriented morphism α : X ′ → Γ(G,S) which is also a bijection

between the oriented edges. Remember that G× S is the orientation of Γ(G,S).

By definition, E(X ′) = E(X) − E(G · Λ̃). Define E+(X ′) = E+(X) − E(G · Λ̃). We claim

that this is an orientation for X ′. Indeed, using that y ∈ E(G · Λ̃) ⇔ y ∈ E(G · Λ̃) (because

E(G · Λ̃) is a subgraph of X), we have

y ∈ E(X ′) = E(X)− E(G · Λ̃) ⇒ y ∈ E(X) = E+(X) ∪ E+(X)

⇒ y ∈ E+(X) or y ∈ E+(X)

⇒ y ∈ E+(X)− E(G · Λ̃) or y ∈ E+(X)− E(G · Λ̃),

which shows that E(X ′) = E+(X ′) ∪ E+(X ′). Also,

y ∈ E+(X ′) = E+(X)− E(G · Λ̃) ⇒ y ∈ E+(X)

⇒ y /∈ E+(X)

⇒ y /∈ E+(X)− E(G · Λ̃) = E+(X ′)

⇒ y /∈ E+(X ′),

and so E+(X ′) ∩ E+(X ′) = ∅, which shows the claim.

Now we define the oriented morphism α : X ′ → Γ(X,S) by defining the map α : E+(X ′)→
G × S. Given y ∈ E+(X ′), we must have o(y) = (gΛ̃) and t(y) = (g′Λ̃) in X ′ for g 6= g′ ∈ G
(if g = g′, y would be a loop in the tree X ′, contradiction). This implies s = g−1g′ ∈ S by

definition of S. Indeed, s 6= 1 because g 6= g′. Also, the edge g−1 · y is in E+(X) (because y is

and the action preserves orientation) and is such that o(g−1 · y) = g−1 · o(y) ∈ g−1gΛ̃ = Λ̃ and

t(g−1 · y) = g−1 · t(y) ∈ g−1g′Λ̃ = sΛ̃. Then we can define α(y) = (g, s). To see that α is an

oriented morphism, note that

• α(o(y)) = α((gΛ̃)) = g = o(g, s) = o(α(y));

• α(t(y)) = α((g′Λ̃)) = g′ = gg−1g′ = gs = t(g, s) = t(α(y)).

Finally, let us check that α : E+(X ′)→ G× S is a bijection:

• Let (g, s) ∈ G × S. Let y ∈ E+(X) such that o(y) ∈ Λ̃ and t(y) ∈ sΛ̃. We claim

that y′ = g · y is an element of E+(X ′) such that α(y′) = (g, s). Indeed, first note that

y ∈ E+(X ′). If that was not the case we would have y an edge of some hΛ̃ for some

h ∈ G. Then on one hand we would have o(y) ∈ hΛ̃ ∩ Λ̃ which would imply h = 1, and

on the other hand we would also have t(y) ∈ hΛ̃ ∩ sΛ̃ which would imply h = s, so s = 1,

contradiction. Now, y′ = g ·y is also in E+(X) because the action preserves the orientation

of X and if y′ were in G · Λ̃ we would have y = g−1 · y′ ∈ g−1 ·G · Λ̃ ⊂ G · Λ̃, contradiction.

So y′ ∈ E+(X ′). Let us compute α(y′). Since in X o(y′) = o(g · y) = g · o(y) ∈ gΛ̃ and

t(y′) = t(g · y) = g · t(y) ∈ gsΛ̃, in X ′ we have o(y′) = (gΛ̃) and t(y′) = (gsΛ̃). So by

definition α(y′) = (g, s′) where s′ = g−1(gs) = s. So α(y′) = (g, s) and α is surjective.
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• Let y, ỹ ∈ E+(X ′) such that (g, s) = α(y) = α(ỹ) = (g̃, s̃). By definition of α we have

o(y) = (gΛ̃), t(y) = (g′Λ̃) and s = g−1g′. Similarly, o(ỹ) = (g̃Λ̃), t(ỹ) = (g̃′Λ̃) and

s̃ = g̃−1g̃′. Then g−1g′ = s = s̃ = g̃−1g̃′ = g−1g̃′ and so g′ = g̃′. Then, both edges y and ỹ

in X ′ start in (gΛ̃) and finish in (g′Λ̃). Since X ′ is a tree, y = ỹ. So α is injective, which

completes the proof.

Before walking in the direction of Reidemeister-Schreier Theorem, we point out two direct

and beautiful consequences of the theorem above which are important tools in geometric and

combinatorial group theory.

Corollary 1.45. A group G is free if and only if it acts freely on a tree.

Demonstração. If G is free, say, with a basis Z, then by Proposition 1.22 Γ(G,Z) is a tree on

which G acts freely. Conversely, if G acts freely on a tree X, by Theorem 1.44 G is free (with

the basis S given there).

Corollary 1.46 (Schreier’s Theorem). Any subgroup of a free group is free.

Demonstração. Let G be a free group and H ≤ G. By the previous corollary, let X be a tree

on which G acts freely. Then it is easy to see that the restriction of this action to H is also a

free action of H in X. Again, by the previous corollary, H is a free group.

After reading the corollary above, one could ask: if H is free, how to find a basis for it? The

answer is given by the next theorem.

Definition 1.47. Let G be a group and H ≤ G. A Scherier’s transversal T of G mod H is a

collection of coset representatives of G mod H (that is, T ⊂ G such that G = tt∈THt (disjoint

union)) with 1 ∈ T and with the following property: “if t = xε11 ...x
εn
n ∈ T , εi = ±1 is a reduced

word, then every initial track xε11 ...x
εi
i of t is also in T , for i = 1, ..., n”. Given such a Schreier’s

transversal and g ∈ G, we denote by g the (unique) element of T such that Hg = Hg.

Theorem 1.48 (Explicit Schreier’s Theorem). Let F be a free group with basis X and H ≤ F

a subgroup. Then

a) There is a Schreier’s transversal T of F mod H;

b) If T is any Schreier’s transversal T of F mod H, the set

R = {txtx−1 | t ∈ T, x ∈ X, tx /∈ T}

is a basis for the free group H.

Demonstração. a) Let Γ = Γ(F,X) be the tree (Proposition 1.22) on which F acts freely. The

restriction of this action to H is also a free action of H on Γ. Let Λ be a maximal tree of H/Γ

and lift it to a tree of representatives Λ̃ of Γ mod H. As in the proof of Theorem 1.44, the hΛ̃,

h ∈ H form a family of disjoint trees whose vertices partition the vertices of Γ. Since all the hΛ̃

are isomorphic to Λ̃ and have the same projection p(hΛ̃) = p(Λ̃) = Λ, all of them are also trees
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of representatives. So, by exchanging Λ̃ by some hΛ̃ if necessary, we can assume that Λ̃ contains

the vertex 1 of Γ.

Let T = V (Λ̃) ⊂ V (Γ) = F . We claim that T is a Schreier’s transversal of F mod H. First,

note that 1 ∈ T by construction. Since p|Λ̃ : Λ̃→ Λ is an isomorphism, in particular we have a

bijection p : T = V (Λ̃)→ V (Λ). But by Proposition 1.24, V (Λ) = V (H/Γ) = V (Γ)/ ∼= F/ ∼,

where the orbit relation is

g ∼ g′ ⇔ hg = g′ for some h ∈ H ⇔ g′ ∈ Hg ⇔ Hg = Hg′.

Then the orbits [g] are precisely the cosets Hg and we have the bijection p : T → {Hg | g ∈ F}
with p(t) = Ht. This shows that F = tt∈THt. Finally, let t = xε11 ...x

εn
n ∈ T , εi = ±1 be a

reduced word in T . Then p = (1, xε11 ...x
εn
n ) is a path from 1 to t in Γ. Since t is a reduced word,

p has no backtrackings and since Γ is a tree, p is a geodesic. Now, 1 and t are also vertices of

the tree Λ̃. Connect them by a geodesic p′ inside Λ̃ using Proposition 1.20. Since p′ is also a

geodesic in the tree Γ, again by Proposition 1.20 we have p = p′. So p is a path inside Λ̃ and

therefore its verices xε11 ...x
εi
i , i = 1, ..., n are vertices of Λ̃, that is, xε11 ...x

εi
i ∈ T .

b) If T is any Schreier’s transversal of F mod H, let Λ̃ ≤ Γ be the subtree generated by

the elements (vertices) of T (Definition 1.32). By Observation 1.33, Λ̃ consists of the edges

and vertices of all the geodesics in Γ connecting t ∈ T to 1 ∈ T . We claim that Λ̃ is a tree of

representatives of Γ mod H. First, let us see that V (Λ̃) = T . Every element t of T is the end

of a geodesic of Γ connecting 1 to t, so obviously t ∈ V (Λ̃). Conversely, if w is a vertex of some

geodesic p = (1, x1...xn) connecting 1 to some t ∈ T in Γ, then we have w = x1...xi for some i

and because T is a Schreier’s transversal we must have w = x1...xi ∈ T . Now we show the claim.

Let Λ = p(Λ̃) ≤ H/Γ. We must show that Λ is a maximal tree of H/Γ and that the restriction

p : Λ̃ → Λ is an isomorphism. It is obviously surjective. Furthermore, p : T → V (H/Γ) is a

bijection, because the vertices of H/Γ are exactly the cosets Hg for g ∈ F (see item a)) and

because F = tt∈THt. Since V (Λ) = p(V (Λ̃)) = p(T ) = V (H/Γ), p : Λ̃→ Λ is a bijection on the

vertices. But it is straightforward to show the following general property: “if ϕ : Γ→ Γ′ is any

graph morphism, Γ is a tree and ϕv : V (Γ)→ V (Γ′) is injective, then ϕe : E(Γ)→ E(Γ′) is also

injective”. Then, in our case, p : E(Λ̃) → E(Λ) is also injective and, since it is also surjective,

p : Λ̃→ Λ is an isomorphism. Then Λ is a tree which contains all the vertices of H/Γ and so it

is a maximal tree. This shows the claim.

Now we show what we want. Let us apply Theorem 1.44 to our case. H is a group acting

freely on a tree Γ, Λ̃ is a tree of representatives of Γ mod H and E+ = F ×X is an orientation

of Γ which is preserved by the action. By Theorem 1.44, then, H is a free group with basis

R = {r 6= 1 ∈ H | ∃ (g, x) ∈ F ×X with g ∈ Λ̃ and gx ∈ rΛ̃}.

But g ∈ Λ̃ as a vertex means g ∈ V (Λ̃) = T . Then we rewrite

R = {r 6= 1 ∈ H | ∃ (t, x) ∈ T ×X with tx ∈ rT}.

The condition tx ∈ rT is also equivalent to tx = ru for some u ∈ T , or r = txu−1 for u ∈ T .

Note also that txu−1 = r ∈ H is equivalent to Htx = Hu, so by uniqueness u = tx. Then
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r = txu−1 = txtx
−1

and

R = {txtx−1 6= 1 | t ∈ T, x ∈ X}.

Finally, since tx ∈ rT and the trees hΛ̃ are pairwise disjoint (in particular its vertices hT ), we

have tx ∈ T ⇔ rT = T ⇔ r = 1, so we can replace the expression txtx
−1

= r 6= 1 by tx /∈ T .

Then

R = {txtx−1 | t ∈ T, x ∈ X, tx /∈ T}

is a basis for the free group H, as desired.

Example 1.49. Let us go back to Example 1.42. The tree of representatives we chose there

has 4 vertices, which are T = {1, x, y, xy}. By Theorem 1.48, T is a Schreier’s transversal of

F2 mod H. Then, to find a free basis for H we just have to find the elements t ∈ T and

z ∈ X = {x, y} such that tz /∈ T and then compute tztz
−1

. The 8 elements of the form tz are

x, y, x2, xy, yx, y2, xyx and xy2. The ones outside T are x2, yx, y2, xyx and xy2. For each one of

these, we compute tztz
−1

. Since x2 = 1, yx = xy, y2 = 1, xyx = y and xy2 = x, a basis for H is

R = {x2, yxy−1x−1, y2, xyxy−1, xy2x−1}.

There is also a more geometric way to see this. Remember that since the basis for F2 is

X = {x, y}, the oriented edges in Γ are the ones going up or right. By Theorem 1.44, a basis

for H consist of the elements 1 6= r ∈ H such that there is an oriented edge y in Γ starting at

Λ̃ and finishing in rΛ̃. So we just have to look at the oriented edges which start at Γ (and leave

it) and see which trees of representatives they touch. We obtain the same 5 elements after all.

See the next figure.

Figura 1.9: there are exactly 5 oriented edges starting Λ̃ and leaving it.

Theorem 1.50 (Reidemeister-Schreier). Let G = 〈X | R〉 be a group and H ≤ G a subgroup.

Let ϕ : FX → G be the projection morphism such that ker(ϕ) =� R �FX (the normal closure

of the set R in the free group FX) and define H̃ = ϕ−1(H) ≤ FX . If T ⊂ FX is a Schreier’s

transversal of FX mod H̃, then

H =
〈
{γ(t, x) | t ∈ T, x ∈ X, tx /∈ T} | {τ(trt−1) | t ∈ T, r ∈ R}

〉
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is a presentation for H, where γ(t, x) = txtx
−1

for t ∈ T, x ∈ X± and

τ(w) = γ(1, x1)γ(x1, x2)γ(x1x2, x3)...γ(x1...xn−1, xn)

for a word w = x1...xn in FX .

Demonstração. Since T is a Schreier’s transversal of FX mod H̃, by Theorem 1.48 H̃ is a free

group with basis X ′ = {γ(t, x) | t ∈ T, x ∈ X, tx /∈ T}. So we can denote H̃ = FX′ as a free

group on the basis X ′. The restriction of the surjective morphism ϕ : FX → G to the subgroup

H̃ = FX′ gives us the surjective projection morphism

ϕH̃ : H̃ → ϕ(H̃) = ϕ(ϕ−1(H)) = H,

which we can denote by ϕ′ : FX′ → H. So, by the definition of group presentations we are just

left to show that

ker(ϕ′) =� {τ(trt−1) | t ∈ T, r ∈ R} �FX′

(note that the normal closure on the right is in the subgroup FX′ , not in the whole group FX).

But we have

ker(ϕ′) = H̃ ∩ ker(ϕ) = ϕ−1(H) ∩ ϕ−1({1}) = ϕ−1({1}) = ker(ϕ) =� R�FX ,

so we must show that � R �FX=� {τ(trt−1) | t ∈ T, r ∈ R} �FX′ . Let us show that. The

reader shall remember the definitions of normal closure in a group.

(⊃) Since FX′ ≤ FX , we have � {τ(trt−1) | t ∈ T, r ∈ R} �FX′⊂� {τ(trt−1) | t ∈ T, r ∈
R} �FX . So it is enough to show that � {τ(trt−1) | t ∈ T, r ∈ R} �FX⊂� R �FX . Since

� R �FX is a normal subgroup of FX it is enough to show that τ(trt−1) ∈� R �FX for all

t ∈ T, r ∈ R. Now, using that gg′ = gg′ for all g, g′ ∈ FX note that, for every word w = x1...xn

in FX , xi ∈ X±, we have

τ(w) = γ(1, x1)γ(x1, x2)γ(x1x2, x3)...γ(x1...xn−1, xn)

= x1x1
−1x1x2x1x2

−1
x1x2x3x1x2x3

−1
...x1...xn−1xnx1...xn−1xn

−1

= x1x1
−1x1x2x1x2

−1x1x2x3x1x2x3
−1...x1...xn−1xnx1...xn−1xn

−1

= x1...xnx1...xn
−1 = ww−1,

so for every h ∈ H̃ we have τ(h) = hh
−1

= h. Since r ∈ R ⊂� R �FX CFX , the conjugate

element trt−1 is also in � R�FX= ker(ϕ) ⊂ H̃ and therefore τ(trt−1) = trt−1 ∈� R�FX , as

desired.

(⊂) An arbitrary element of� R�FX is a finite product of elements of the form grg−1 with

g ∈ FX and r ∈ R. Since � {τ(trt−1) | t ∈ T, r ∈ R} �FX′ is a subgroup of FX , it is enough to

show that grg−1 ∈� {τ(trt−1) | t ∈ T, r ∈ R} �FX′ . But g ∈ FX = tt∈T H̃t, so write g = ht

for h ∈ H̃ and t ∈ T . Then

grg−1 = htrt−1h−1 = hτ(trt−1)h−1

and since h ∈ H̃ = FX′ , the element above is by definition inside � {τ(trt−1) | t ∈ T, r ∈
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R} �FX′ , as desired. This completes the proof.

Corollary 1.51. If G is finitely generated and H ≤ G is a finite index subgroup, then H is

finitely generated.

Demonstração. By the proof of Proposition 6.2, the subgroup H̃ ≤ FX is of finite index. Then

the Schreier’s transversal T of FX mod H̃ (which exists by Theorem 1.48) is also finite. By

Theorem 1.50, the set {γ(t, x) | t ∈ T, x ∈ X, tx /∈ T} generates H. But it is a finite set, since

T and X are finite.

Observation 1.52. The triumph of the Reidemeister-Schreier Theorem is that it is algorithmic.

The projection ϕ : FX → G can be written as ϕ(w) = w, where w = x1...xn, xi ∈ X± is being

considered as a word in the domain FX and as the product of the generators x1...xn of G in the

codomain G. If a Schreier’s transversal T of G mod H is known, then using Proposition 6.2 we

see that T̃ = {w ∈ FX | w = ϕ(w) ∈ T} is a Schreier’s transversal of FX mod H̃ (from now on

we will identify T̃ = T ). We do the following: we just have to find which are the elements γ(t, x)

such that tx /∈ T , which will be the generators of H, and then write all the relations τ(trt−1)

in terms of these generators. Note that the generators are only the γ(t, x) for x ∈ X, not for

x ∈ X−1. So if some expression of the form γ(t, x−1) with x ∈ X appears in the expression of

τ(trt−1), we must figure it out which generator it represents. But

γ(tx−1, x)−1 =

(
tx−1xtx−1x

−1
)−1

=
(
tx−1xtx−1x

−1
)−1

= (tx−1xt−1)−1 = tx−1tx−1
−1

= γ(t, x−1),

so we replace γ(t, x−1) by the expression γ(tx−1, x)−1, which is the inverse of the generator

γ(tx−1, x) of H, as one can see in the next example.

Example 1.53. Let us use Example 1.49 to use the Reidemeister-Schreier algorithm. Let

G = Z ⊕ Z =
〈
x, y | xyx−1y−1

〉
and H = 2Z ⊕ 2Z ≤ G. Let us compute a presentation for

H (our intuition tells us to expect some presentation also having the form
〈
a, b | aba−1b−1

〉
).

We have X = {x, y}, R = {xyx−1y−1} and the projection ϕ : F2 → G can be identified with

ϕ(x) = (1, 0) and ϕ(y) = (0, 1). Then H̃ = ϕ−1(H) ≤ F2 is exactly the subgroup of Example

1.49. T = {1, x, y, xy} is a Schreier’s transversal of F2 mod H̃ and the generators of H are

a = x2 = γ(x, x),

b = y2 = γ(y, y),

c = yxy−1x−1 = γ(y, x),

d = xyxy−1 = γ(xy, x),

e = xy2x−1 = γ(xy, y).

Now let us compute the 4 relations. Remember that γ(t, z) = 1 if and only if tz ∈ T :
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τ(xyx−1y−1) = γ(1, x)γ(x, y)γ(xy, x−1)γ(y, y−1)

= γ(xy, x−1)

= γ(xyx−1, x)−1

= γ(y, x)−1

= c−1,

τ(xxyx−1y−1x−1) = γ(1, x)γ(x, x)γ(1, y)γ(y, x−1)γ(xy, y−1)γ(x, x−1)

= γ(x, x)γ(y, x−1)

= γ(x, x)γ(yx−1, x)−1

= γ(x, x)γ(xy, x)−1

= ad−1,

τ(yxyx−1y−1y−1) = γ(1, y)γ(y, x)γ(xy, y)γ(x, x−1)γ(1, y−1)γ(y, y−1)

= γ(y, x)γ(xy, y)γ(1, y−1)

= γ(y, x)γ(xy, y)γ(y−1, y)−1

= γ(y, x)γ(xy, y)γ(y, y)−1

= ceb−1,

and

τ(xyxyx−1y−1y−1x−1) = γ(1, x)γ(x, y)γ(xy, x)γ(y, y)γ(1, x−1)γ(x, y−1)γ(xy, y−1)γ(x, x−1)

= γ(xy, x)γ(y, y)γ(1, x−1)γ(x, y−1)

= γ(xy, x)γ(y, y)γ(x−1, x)−1γ(xy−1, y)−1

= γ(xy, x)γ(y, y)γ(x, x)−1γ(xy, y)−1

= dba−1e−1.

Then a presentation for H is

H =
〈
a, b, c, d, e | c−1, ad−1, ceb−1, dba−1e−1

〉
=

〈
a, b, d, e | ad−1, eb−1, dba−1e−1

〉
=

〈
a, b, e | eb−1, aba−1e−1

〉
=

〈
a, b | aba−1b−1

〉
,

as desired.
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Open question: could we also give a geometric approach (like the one above) to Johnson’s

method? This question is due to a personal communication with professor Vinicius Casteluber

Laass (DMAT - UFBa - Brazil) and Johnson’s method can be found in Chapter 13 of [59].

1.5 Commutators and lower central series

For the work of Chapter 10, we need to know some basic properties about commutators and

lower central series of a group. Our approach here will be minimal.

Definition 1.54. Let G be a group. Given two elements x, y ∈ G, we denote [x, y] = xyx−1y−1

and call it the commutator of x and y. We also denote by xy = yxy−1 the conjugate of x by

y. If z ∈ G is another element, we define [x, y, z] as [x, y, z] = [[x, y], z] and recursively define

[x1, ..., xk] = [[x1, ..., xk−1], xk] for k ≥ 4 and x1, ..., xk ∈ G.

Here are some basic identities of commutators, whose proofs are straightforward and will be

omitted:

Proposition 1.55. Let G be a group and x, y, z ∈ G. Then

a) xy = [x, y]yx = yx[x−1, y−1];

b) [x, y]−1 = [y, x];

c) [x, yz] = [x, y][x, z][z, x, y];

d) [xy, z] = [y, z][z, y, x][x, z];

e) [y−1, x, z]y[z−1, y, x]z[x−1, z, y]x = 1.

Definition 1.56 (Commutator subgroup). Given two subgroups H,K ≤ G, we define the

subgroup [H,K] ≤ G as the subgroup generated by all commutators [h, k] (with h ∈ H and

k ∈ K) and call it the commutator of H and K in G. If J ≤ G is another subgroup, we define

[H,K, J ] as [H,K, J ] = [[H,K], J ] and recursively define [H1, ...,Hk] = [[H1, ...,Hk−1], Hk] for

k ≥ 4 and H1, ...,Hk ≤ G.

It is easy to see that [H,K] = [K,H] for any subgroups H,K ≤ G. Also, the group

[H1, ...,Hk] is generated by all elements of the form [h1, ..., hk] (with hi ∈ Hi), which we call

k-fold commutators.

Definition 1.57 (Lower central series and nilpotent groups). Given any group G, the lower

central series of G is the sequence γ1(G), γ2(G), γ3(G), ... of subgroups of G defined by

• γ1(G) = G;

• γ2(G) = [G,G] = [γ1(G), G];

• γk+1(G) = [γk(G), G] for any k ≥ 1.

It is not hard to prove by induction that γi(G) ⊃ γi+1(G), so it is (setwise) a decreasing sequence.

For c ≥ 1, we say G is nilpotent of class c if γc+1(G) = 1 and if c is the smallest positive integer

with this property.



30 1. Combinatorial preliminaries

One can prove by easy induction that the subgroups γi(G) are all characteristic in G, that

is, ϕ(γi(G)) = γi(G) for all automorphisms ϕ ∈ Aut(G). In particular, they are invariant under

conjugation.

Lemma 1.58. If G is a group and i, j ≥ 1, then [γi(G), γj(G)] ≤ γi+j(G).

Demonstração. Induction on j. For j = 1, we have [γi(G), γj(G)] = [γi(G), G] = γi+1(G) =

γi+j(G), as desired. Suppose now that, for some fixed j, we have [γi(G), γj(G)] ≤ γi+j(G) for

any i ≥ 1 and let us show that [γi(G), γj+1(G)] ≤ γi+j+1(G) for any i ≥ 1. Given such i, we

have

[γi(G), γj+1(G)] = [γj+1(G), γi(G)] = [[γj(G), G], γi(G)] = [γj(G), G, γi(G)],

so every generator of [γi(G), γj+1(G)] is of the form [x−1
j , z, yi] for xj ∈ γj(G), z ∈ G and

yi ∈ γi(G). If we show this generator is in γi+j+1(G) we are done. By Proposition 1.55, item e)

and basic computations we obtain

[x−1
j , z, yi] = (([z−1, yi, xj ]

z)−1([y−1
i , xj , z]

yj )−1)x
−1
j

= ([xj , [z
−1, yi]]

z[z, [y−1
i , xj ]]

yj )x
−1
j

= [xj , [z
−1, yi]]

x−1
j z[z, [y−1

i , xj ]]
x−1
j yj .

Since [z−1, yi] ∈ [G, γi(G)] = γi+1(G) we have by induction that [xj , [z
−1, yi]] ∈

[γj(G), γi+1(G)] ≤ γi+j+1(G), and since this subgroup is characteristic we get [xj , [z
−1, yi]]

x−1
j z ∈

γi+j+1(G). Similarly, using induction we show that [z, [y−1
i , xj ]]

x−1
j yj ∈ γi+j+1(G) and so

[x−1
j , z, yi] ∈ γi+j+1(G), which completes the proof.

Definition 1.59. Given k ≥ 1 and two elements x, y ∈ G, we say x and y are congruent modulo

γk(G) and denote x = y mod γk(G) if xγk(G) = yγk(G), or, equivalently, if x−1y ∈ γk(G). This

means x and y project onto the same element in G/γk(G).

The following propositions are the most important ones for Chapter 10.

Proposition 1.60. Let k,m, n ≥ 1 and let x, y, z ∈ G be elements of a group G such that

x ∈ γk(G), y ∈ γm(G) and z ∈ γn(G). Then

a) xy = yx mod γk+m(G);

b) [x, yz] = [x, y][x, z] mod γk+m+n(G);

c) [xy, z] = [x, z][y, z] mod γk+m+n(G).

Demonstração. For item a), just note that [x−1, y−1] ∈ γk+m(G) and so xyγk+m(G) =

yx[x−1, y−1]γk+m(G) = yxγk+m(G). Now, item b). By Lemma 1.58, we have [z, x, y] =

[[z, x], y] ∈ [[γn(G), γk(G)], γm(G)] ≤ [γk+n(G), γm(G)] ≤ γk+n+m(G); therefore,

[x, yz]γk+m+n(G) = [x, y][x, z][z, x, y]γk+m+n(G) = [x, y][x, z]γk+m+n(G).

Item c) is similar: by using Lemma 1.58, we get that [z, y, x] ∈ γk+n+m(G), that

[[z, y, x]−1, [x, z]−1] ∈ γk+n+m(G) (actually, this element is in γ2k+2n+m(G) ≤ γk+n+m(G)) and
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similarly that [[y, z]−1, [x, z]−1] ∈ γk+n+m(G). Now, using Proposition 1.55 we have

[xy, z]γk+n+m(G) = [y, z][z, y, x][x, z]γk+n+m(G)

= [y, z][x, z][z, y, x][[z, y, x]−1, [x, z]−1]γk+n+m(G)

= [y, z][x, z]γk+n+m(G)

= [x, z][y, z][[y, z]−1, [x, z]−1]γk+n+m(G)

= [x, z][y, z]γk+n+m(G),

as we wanted.

At last, we need a little information about the quotients γk(G)/γk+1(G):

Proposition 1.61. If G is finitely generated by elements x1, ..., xr then, for any k ≥ 1,

γk(G)/γk+1(G) is abelian and finitely generated by the cosets of the k-fold commutators

[xi1 , ..., xik ], where 1 ≤ ij ≤ r.

Demonstração. The proof comes from [72] but we rewrite it here. First, note that γk(G)/γk+1(G)

is abelian because, by Lemma 1.58, [γk(G), γk(G)] ≤ γ2k(G) ≤ γk+1(G), so all commutators in

the quotient are trivial. Let us show by induction that the cosets of those k-fold commutators

generate γk(G)/γk+1(G). The case k = 1 is trivial for we know that G is generated by the

elements xi (or the 1-fold commutators), so their cosets generate G/γ2(G), as desired. Suppose

the proposition is true for some k ≥ 1 and let us show it for k + 1. We know γk+1(G) =

[γk(G), G] is generated by the elements [h, g], where h ∈ γk(G) and g ∈ G. By projecting h in

γk(G)/γk+1(G) and using induction we can write h = hε11 ...h
εs
s h
′, where εi = ±1, the hi are the

k-fold commutators of the induction and h′ ∈ γk+1(G). By using Proposition 1.60 above, we

have

[h, g] = [hε11 ...h
εs
s h
′, g] = [h1, g]ε1 ...[hs, g]εs [h′, g] mod γ2k+1(G),

and since γ2k+1(G) ≤ γk+2(G) this equality is true modulo γk+2(G). Since [h′, g] ∈ γk+2(G), we

then have [h, g] = [h1, g]ε1 ...[hs, g]εs mod γk+2(G), so we can say γk+1(G)/γk+2(G) is generated

by the cosets of the elements [h̃, g], where h̃ is one of those k-fold commutators and g ∈ G. Now

write g = xε1i1 ...x
εs
is

for some εi = ±1 and 1 ≤ ij ≤ r. Again by using Proposition 1.60 we get

[h̃, g] = [h̃, xε1i1 ...x
εs
is

] = [h̃, xi1 ]ε1 ...[h̃, xis ]
εs mod γk+2(G),

so γk+1(G)/γk+2(G) is generated by the cosets of the elements of the form [h̃, xij ], which are all

(k + 1)-fold commutators of the elements x1, ..., xr. This completes the proof.

1.6 Graphs of groups and its fundamental groups

We need the following notion to deal with GBS groups, since they will be defined in Chapter 11

as the fundamental groups of some special graphs of groups.

Definition 1.62. A graph of groups (G,Γ) consists of:

• a graph Γ;
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• a choice of an arbitrary group GP for each vertex P of Γ;

• a choice of an arbitrary group Gy for each edge y of Γ such that Gy = Gy for all y;

• a choice of a monomorphism fy : Gy → Gt(y) for all edges y.

We can also think that for each edge y there are two monomorphisms fy : Gy → Gt(y) and

fy : Gy → Go(y). We call the GP the vertex groups and the Gy the edge groups.

We will give below the definition of the fundamental group of a graph of groups using the

presentation for it. There are other equivalent ones, for example, using the direct limit of groups

(see [86]).

Definition 1.63. Let (G,Γ) be a graph of groups with orientation E+ = E+(Γ) and T a max-

imal tree in Γ. Let GP = 〈XP | RP 〉 be presentations for the vertex groups. The fundamental

group of (G,Γ) (sometimes also denoted by π1(G,Γ, T ) or just π1(Γ)) is

G = 〈tPXP t {gy | y ∈ E+} | tP RP t {gyfy(a)gy
−1fy(a)−1 | y ∈ E+, a ∈ Gy}

t{gy | y ∈ E+ ∩ E(T )}〉.

When necessary, we denote it by π1(G,Γ, T ) or just π1(Γ).

Let’s get an intuition of the presentation above. For generators, we have all the generators

of the GP and one extra generator gy (called stable letter) for each oriented edge y outside T .

The relations are the ones from all the GP and the equalities

gyfy(a)gy
−1 = fy(a)

for all y ∈ E+ − E(T ), a ∈ Gy and

fy(a) = fy(a)

for all y ∈ E+ ∩ E(T ), a ∈ Gy. One can show that G is independent (up to isomorphism) from

the choices of the tree T , the orientation E+ and the presentations GP = 〈XP | RP 〉 (this last

independence is due to the direct limit definition in [86]). The groups GP and Gy can always

be seen as subgroups of G.

Definition 1.64. Given three groups G = 〈X | R〉, H = 〈Y | S〉 and A with two monomor-

phisms f : A ↪→ H and g : A ↪→ G, the amalgamated product G ∗AH is the fundamental group

of the segment of groups Γ with V (Γ) = {P,Q}, E(Γ) = {y, y}, GP = G, GQ = H, Gy = Gy = A

and monomorphisms fy = f and fy = g. This means that

G =
〈
X t Y | R t S t {f(a)g(a)−1 | a ∈ A}

〉
.

Definition 1.65. Let G = 〈X | R〉 and A ≤ G with inclusion l : A ↪→ G and another monomor-

phism θ : A ↪→ G. The HNN extension G′ of (A,G, θ) is the fundamental group of the loop of

groups Γ with V (Γ) = {P}, E(Γ) = {y, y}, GP = G, Gy = Gy = A and monomorphisms fy = l

and fy = θ. This means that

G′ =
〈
X, t | R, tat−1 θ(a)−1, a ∈ A

〉
.
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Figura 1.10: segment of groups on the left and loop of groups on the right

Amalgamated products and HNN extensions are vastly studied classes of groups. Because

of this, we won’t prove its properties when necessary, but only give the reader references for

them. Most of the basic theory and properties can be found in [86] and [71].

The construction of the fundamental group of graph of groups is recursive: intuitively saying,

instead of taking the more complicated graph of groups, we can divide it in steps, each step

involving a simpler graph of groups, and in the end we obtain the same graph of groups. Let us

give two examples:

Example 1.66 (Reconstruction of trees). Let T be a tree with Q a terminal vertex being the

terminus of the edge z with o(z) = P0, and consider the subtree T ′ = T−Q. Let GP = 〈XP | RP 〉
and Gy = 〈Xy | Ry〉 be the respective presentations for the vertex and edge groups of T . Let us

denote by G the fundamental group of T and G′ the fundamental group of T ′. By definition,

we have

G′ =
〈
tP∈V (T ′)XP | tP∈V (T ′) RP t {fy(g) = fy(g) | y ∈ E(T ′), g ∈ Gy}

〉
.

Now, identifying fz : Gz ↪→ GP0 with its composition with the inclusion Gz ↪→ GP0 ↪→ G′,

consider the following segment of groups:

Now, the fundamental group of this graph is

G′ ∗Gz GQ = 〈tP∈V (T ′)XP tXQ | tP∈V (T ′) RP t {fy(g) = fy(g) | y ∈ E(T ′)}
tRQ t {fz(g) = fz(g)}〉

= 〈tP∈V (T )XP | tP∈V (T ) RP t {fy(g) = fy(g) | y ∈ E(T ), g ∈ Gy}〉
= G,

and we re-obtained the fundamental group of the entire tree T .

Example 1.67 (Reconstruction of bouquets). Let Γ be a bouquet with vertex V (Γ) = {P},
vertex group GP = 〈X |R〉, orientation E+ and at least one edge. Fix one edge z and denote

by Γ′ the “sub bouquet” obtained by removing z and z from Γ. Denote by G and G′ the

fundamental groups of Γ and Γ′, respectively. By definition, taking the one-vertex maximal tree

we have

G′ =
〈
X t {gy y ∈ E+ − {z}} | R t {gyfy(a)gy

−1fy(a)−1 | y ∈ E+ − {z}, a ∈ Gy}
〉
.
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Now, identifying the monomorphisms fz, fz : Gz ↪→ GP with its compositions with the inclusions

Gz ↪→ GP ↪→ G′, consider the following loop of groups Z:

The fundamental group of this new graph of groups Z is

π1(Z) = 〈X t {gy | y ∈ E+ − {z}}, gz | R t {gyfy(a)gy
−1fy(a)−1 | y ∈ E+ − {z}, a ∈ Gy},

gzfz(a)gz
−1fz(a)−1, a ∈ Gz〉

= 〈X t {gy | y ∈ E+} | R t {gyfy(a)gy
−1fy(a)−1 | y ∈ E+, a ∈ Gy}〉

= G

and we got again the fundamental group of the whole bouquet. This reconstruction also works

if we remove a finite number of edges of the bouquet and start “putting them back” one by one

by repeating the argument above many times. We re-obtain the whole fundamental group after

all.
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Caṕıtulo 2

Geometric preliminaries

As we did in Chapter 1, here we give the reader the notation and background necessary for the

geometric part of our work (ch. 7 through 9). Most proofs will be omitted to make the text

more compact, but we will give further theory references in the beginning of each section. The

reader must be used to the notions of metric spaces and isometries, basic topology and group

actions.

2.1 Hyperbolic spaces

We refer [55] for a great survey of hyperbolic spaces and their boundaries. Our approach here

will be minimal and with (almost) no proofs.

Definition 2.1. Let (X, d) be a metric space and x, y ∈ X. A geodesic between x and y is a

path α : [0, d(x, y)]→ X such that α(0) = x, α(d(x, y)) = y and d(α(t), α(t′)) = |t− t′| for every

t, t′ ∈ [0, d(x, y)]. We say that X is a geodesic space (sometimes “length space” in the literature)

if for every two points x, y ∈ X, there is a unique geodesic between x and y.

Because of the uniqueness of α the set [x, y] = im(α) is well defined and is often also called

by the geodesic between x and y, or geodesic segment, or geodesic arc. If x 6= y we also call

[x, y] a non-degenerate geodesic or arc. Note that, as a subset, [x, y] = [y, x] and that [x, y] is

by definition always isometric to a compact interval of R.

A standard and important fact about geodesic spaces is the following (see [14]):

Proposition 2.2. Let (X, d) be geodesic and complete. Then X is locally compact if and only

if every closed ball B(x, r) (x ∈ X, r ≥ 0) is compact. In particular, any closed ball B(x, r) in

a proper (i.e. complete and locally compact) geodesic space is compact.

We will need to use the ends of a space, as well as the boundary of it:

Definition 2.3. Given a geodesic space (X, d), a (geodesic) line is a map c : R→ X such that

d(c(t), c(t′)) = |t− t′| for every t, t′ ∈ R. Similarly, a (geodesic) ray in X is a map r : [0,∞)→ X

such that d(r(t), r(t′)) = |t− t′| for every t, t′ ∈ [0,∞). Given two such rays r1, r2, we say that

they have “the same end” if for every compact set K ⊂ X there is N ≥ 0 such that r1[N,∞) and

r2[N,∞) are both contained in the same connected component of X−K. This is an equivalence

relation on the set of geodesic rays of X. The equivalence class of a ray r will be denoted by

end(r) and the set of classes Ends(X) will be called the ends of X.
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Sometimes we will identify rays or lines with their images in the space X.

Definition 2.4. Given a geodesic space (X, d) and two rays r1, r2, we say that they have “the

same value at∞” if there is a number K ≥ 0 such that d(r1(t), r2(t)) ≤ K for every t, t′ ∈ [0,∞).

This is also an equivalence relation on the set of geodesic rays of X. The class of a ray r will be

denoted by r(∞) and the set of classes ∂X will be called the boundary of X. If c : R → X is

a geodesic line, we define c(∞) = (c|[0,∞))(∞) and c(−∞) = c̃(∞), where c̃ : [0,∞)→ X is the

ray c̃(t) = c(−t).

Now we proceed to define a hyperbolic space.

Definition 2.5. Given a geodesic space (X, d), a subset A ⊂ X and r ≥ 0, the r-neighborhood

of A in X is Nr(A) = {x ∈ X | ∃ a ∈ A such that d(a, x) ≤ r}. Given x, y, z ∈ X, the geodesic

triangle of x, y and z is denoted by ∆(x, y, z) = [x, y]∪ [x, z]∪ [y, z]. We call the three geodesics

involved the edges of ∆(x, y, z).

Definition 2.6. Let δ ≥ 0 and (M,d) a geodesic space. We say that a geodesic triangle ∆ in

X is δ-slim if every edge of ∆ is contained in the δ-neighborhood of the union of the two other

edges. We say that a geodesic metric space is δ-hyperbolic if every geodesic triangle in X is

δ-slim.

Figura 2.1: source: Wikipedia

The boundaries of hyperbolic spaces have many known interesting properties that will be

explored on this thesis. To list some of them, we will use the following lemma (see [55] for a

proof):

Lemma 2.7 (Arzelà-Ascoli). Let X,Y be metric spaces, with X separable and Y compact. Then

every equicontinuous sequence of maps fn : X → Y contains a subsequence converging uniformly

(on compacts) to a uniformly continuous map f : X → Y .

This lemma is incredibly useful in the theory of hyperbolic spaces, for it can be used to

produce geodesic rays or lines (therefore, elements on ∂X) from some sequences of other geodesics

or geodesic rays. An example of application is

Proposition 2.8. Let (X, d) be a proper geodesic space, p ∈ X and q ∈ ∂X. Then there is a

geodesic ray c : [0,∞)→ X such that c(0) = p and c(∞) = q.

Demonstração. This is only a sketch of the proof for illustration. Let r : [0,∞) → X be a

geodesic ray with r(∞) = q (by definition). Of course, if r(0) = p we are done, so assume
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r(0) 6= p. Define a sequence of maps cn : [0,∞) → X in the following way: define cn to

be the geodesic [p, r(n)] (of course, in the interval [0, d(p, r(n))]) and put cn(t) = r(n) for

t ∈ [d(p, r(n)),∞). It is an equicontinuous family from the separable space [0,∞). Note that X

is not necessarily compact (but it is complete); so, with some minor adaptations on the proof of

Arzelà-Ascoli’s Lemma we can indeed guarantee that a subsequence of (cn)n converges uniformly

(on compacts) to a uniformly continuous map c : [0,∞)→ X (see next figure).

Since it is the limit of geodesics, c can be shown to be a geodesic line starting from p. Finally,

by the geometric construction of the cn we can show c(∞) = r(∞) = q.

A similar use of the Arzelà-Ascoli lemma can be seen in the following proposition, in the

case of hyperbolic spaces:

Proposition 2.9. If (X, d) is a proper geodesic and δ-hyperbolic space, then for every pair

of distinct points q1, q2 ∈ ∂X there is a geodesic line c : R → X such that c(−∞) = q1

and c(∞) = q2. Furthermore, c is on the closed δ-neighborhood of the union of geodesic rays

representing p and q

Demonstração. This is again only a sketch. Fix a point p ∈ X. By the previous proposition, let

c1 and c2 be rays starting at p with ci(∞) = qi. Let k ≥ 0 be such that d(c1(k), im(c2)) > δ (see

next figure). For each n > k, we consider the geodesic triangle with vertices c1(n), c2(n) and p.

Since it is δ-slim, there must be a point pn ∈ [c1(n), c2(n)] ∩B(c1(k), δ).

By the compacity of B(c1(k), δ) (Proposition 2.2) we can assume (pn)n to converge. Then, by

using the same argument of the previous proposition, a subsequence of the geodesics [pn, c1(n)]

must converge by the Arzelà-Ascoli’s Theorem. Now we look to this subsequence on the other

side, that is, the sequence ([c2(nk), pnk ])k. By the same argument, a subsequence of it must

converge, so we can assume the sequence ([c1(nk), c2(nk)])k of maps converges. The limit can

be shown to be a geodesic line c with c(−∞) = c1(∞) = q1 and c(∞) = c2(∞) = q2. The last

assertion follows by the definition of δ-hyperbolic space and by the construction of c.
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From now on, we continue with our proper geodesic δ-hyperbolic space X. Next we will give

some intuitive ideas of the construction of a topology for the space X = X ∪ ∂X and some of

the properties that will be used later. Most of the details are found in [55].

Definition 2.10. We say a map c : I → X is a generalized ray if either I = [0, R] and c is a

geodesic or I = [0,∞) and c is a geodesic ray. In the former case, we will denote c(t) = c(R) for

t ≥ R and also denote c(∞) = c(R).

Because of the definition above, the set X = X ∪ ∂X can be seen as

X = X ∪ ∂X = {c(∞) | c is a generalized ray in X}.

Definition 2.11. Fix p ∈ X. Let (xn)n be a sequence of elements of X and x ∈ X. We say

xn → x (as n → ∞) if there are generalized rays cn with cn(0) = p and cn(∞) = xn such that

every subsequence of (cn)n contains a subsequence converging uniformly on compact sets to a

generalized ray c with c(∞) = x. Now, we define a topology on X by defining its closed sets: a

subset F ⊂ X is closed on X if for every sequence (xn)n ⊂ F converging to a point x ∈ X we

have x ∈ F .

It is possible to show this topology does not depend on the point p chosen. In the case

xn ∈ X for every n and x ∈ ∂X, the convergence xn → x can be intuitively seen as next figure

shows.

A natural question is: if x and the xn are all in X, is this convergence equivalent to the

metric convergence in (X, d)? Intuitively we can see this: suppose xn → x by the definition

above. Then, since uniform convergence implies pointwise convergence, the ends xn of the finite

geodesics cn converge in X to the end x of the limit geodesic c. On the other hand, if xn → x

in the usual sense, we can apply Arzelà-Ascoli’s Lemma (in a similar way we did above) to the

geodesics [p, xn] to guarantee the convergence xn → x according to definition above.

Because of this, since the two convergences in X coincide, the closed sets (which are char-

acterized by convergence) of both topologies on X must coincide and therefore both topologies

on X coincide. Therefore

Proposition 2.12. The inclusion map X ↪→ X is a homeomorphism onto its image. In partic-

ular, X is open in X and therefore ∂X is closed.

A sketch for a proof of the following (surprising) result can be found in [55].

Theorem 2.13. X is metrizable, that is, there is a metric on X whose induced topology coincides

with the one defined above.

Assuming theorem above, we can show
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Proposition 2.14. X and ∂X are compact metric spaces.

Demonstração. We won’t write all details. By theorem above both can be seen as metric spaces.

Since ∂X is closed on X, it is enough to show that X is compact, or sequentially compact, since

it is a metric space. Let (xn)n be a sequence in X and let us find a converging subsequence. The

set {n ∈ N | xn ∈ X} is either infinite or finite, so we may assume without loss of generality that

either xn ∈ X for all n or xn ∈ ∂X for all n. In the latter case, we can suppose by Proposition

2.8 that all rays emerge from a fixed point p. Then an easy adaptation of Arzelà-Ascoli’s Lemma

give us the desired converging subsequence. In the former case, we have two subcases: if the

sequence (xn)n ⊂ X is bounded, then it is contained in a closed ball B(z,R). Since such balls are

compact we find the convergent subsequence. If (xn)n is not bounded fix a point z ∈ X. There

must be a subsequence (xnk)k such that xnk /∈ B(z, k). By applying the Arzelà-Ascoli’s Lemma

for the sequence of geodesics ([z, xnk ])k we find a subsequence of it (say ([z, xnj ])j) converging

uniformly on compacts to a geodesic ray c, and by definition of the convergence in X we have

exactly xnj → c(∞) in X, as desired.

Let g : X → X be an isometry, denoted by x 7→ gx. If c is a geodesic ray in X, then the map

gc : [0,∞)→ X with (gc)(t) = gc(t) is a geodesic ray, for d(gc(t), gc(t′)) = d(c(t), c(t′)) = |t− t′|
for every t, t′ ≥ 0. We define a map g : ∂X → ∂X by putting g(c(∞)) = gc(∞). It is clear

that c(∞) = c′(∞) implies gc(∞) = gc′(∞), so g is a well defined map. Furthermore, let us see

it is continuous. Since g is an isometry, is straightforward to show that if a sequence (cn)n of

geodesic rays converge uniformly on compact sets to a geodesic ray c, then the sequence (gcn)n

of geodesic rays converge uniformly on compact sets to gc. Because of this, it is straightforward

to see that if xn → x in ∂X, then gxn → gx, which shows the desired continuity. Since the

isometry g−1 also induces a continuous map and gg−1 = g−1g = Id∂X , we have

Proposition 2.15. If g : X → X is an isometry, the induced map g : ∂X → ∂X is a homeo-

morphism.

It is well known in the literature an equivalent definition of hyperbolicity that involves the

Gromov product:

Definition 2.16. Let (X, d) be any metric space and let w ∈ X. The Gromov product of points

x, y ∈ X with respect to w is defined as

〈x, y〉w =
1

2
[d(x,w) + d(y, w)− d(x, y)].

Definition 2.17. Let (X, d) be a metric space and δ ≥ 0. We say X is (δ)-hyperbolic (note the

parenthesis on δ) if for every x, y, z, w ∈ X,

〈x, z〉w ≥ min{〈x, y〉w , 〈y, z〉w} − δ.

The equivalence is the following. For a proof, see [55].

Proposition 2.18. If X is a geodesic metric space, then X is hyperbolic (Definition 2.6) if and

only if there is δ ≥ 0 such that X is (δ)-hyperbolic. Furthermore, X is 0-hyperbolic if and only

if it is (0)-hyperbolic.
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2.2 Quasi-isometries

In geometric group theory, quasi-isometries have the same importance homeomorphisms have

in classic topology, i.e., they are one of the most important criteria for comparing spaces with

respect to the characteristics the theory wants to preserve.

Definition 2.19 (Quasi Isometry and QI-embedding). Let (X, dX) and (Y, dY ) be any metric

spaces. We say a map f : X → Y is a quasi-isometric embedding if there are constants λ ≥ 1

and ε ≥ 0 such that

dY (f(x), f(x′)) ≤ λdX(x, x′) + ε and dX(x, x′) ≤ λdY (f(x), f(x′)) + ε

for all x, x′ ∈ X. We also say that f is a (λ, ε)-QI-embedding. If ε = 0, we say f is λ-bi-Lipschitz.

We say f is a quasi-isometry, or a (λ, ε)-quasi-isometry, if f is a (λ, ε)-QI-embedding and, in

addition, there is K ≥ 0 such that

For every y ∈ Y, there is x ∈ X such that dY (y, f(x)) ≤ K.

In this case we denote X
QI∼ Y .

It can bee easily seen that the quasi-isometry relation
QI∼ is an equivalence relation. For the

basic theory about quasi-isometries, we reference [14] and [55].

A useful example of QI is found in the context of Cayley graphs. Let G be a finitely generated

group and S ⊂ G be a finite generating set. Denote by Γ = Γ(G,S) the Cayley graph. Given

a vertex g ∈ G, it can be written in terms of words in the generators of S. denote by |g|
the minimum length of a word in S that represents the element G (which is always attained,

since words have only non-negative integer length). With this, we define a metric on the set

G by putting d(g, g′) = |g−1g′|. This distance can be easily interpreted geometrically: it is the

minimum length of any combinatorial path between g and g′. If we think of the edges as compact

segments of R with length 1, we can extend naturally the distance to d : Γ(G,S)×Γ(G,S)→ R
and the Cayley graph Γ turns out to be a geodesic space. With this in hands, one can show the

following

Proposition 2.20 ([14]). Let G be finitely generated and S, S′ be two arbitrary finite sets of

generators for G. Then Γ(G,S)
QI∼ Γ(G,S′).

Definition 2.21. We say two finitely generated groups G and H are quasi-isometric, and write

G
QI∼ H, if Γ(G,S)

QI∼ Γ(H,S′) for some finite sets of generators S ⊂ G and S′ ⊂ H.

By the proposition above, if Γ(G,S)
QI∼ Γ(H,S′) for some finite such sets of generators, it

must be true for any such sets. Some standard facts about QI of groups are:

Proposition 2.22. If G is finitely generated and H ≤ G is finite index, then G
QI∼ H.

Proposition 2.23 (QI invariance of hyperbolicity). Let X,Y be geodesic metric spaces. If

X
QI∼ Y , then X is hyperbolic if and only if Y is hyperbolic. In particular, if G,H are quasi-

isometric groups, then G is hyperbolic if and only if H is hyperbolic.
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2.3 R-trees

The trees we dealt with in the previous chapter are also known in the literature as “simplicial” or

“combinatorial” trees, because they arise in a more combinatorial fashion, instead of a topological

one. They are a special kind of the trees we are going to deal with here: the R-trees. These have

a more geometric and topological characterization. This section is mainly based on [2], with a

few adaptations.

Definition 2.24. An R-tree is a metric space (T, d) such that:

a) T is a geodesic space;

b) For every x, y, z ∈ T there exists w ∈ T such that [x, y] ∩ [x, z] = [x,w];

c) If [x, y] ∩ [y, z] = {y}, then [x, z] = [x, y] ∪ [y, z].

The point w of item b) above can be shown to be unique and will be denoted by w =

Y (y, x, z). In the case of item c), the point y is in the interior of the geodesic [x, z] and we write

[x, z] = [x, y, z]. Moreover, there is actually a well-defined total order “≤” in every geodesic

segment, so we can similarly write [x0, xn] = [x0, x1, ..., xn−1, xn] when the points xi are in the

geodesic [x0, xn] and x0 ≤ x1 ≤ ... ≤ xn−1 ≤ xn.

Definition 2.25. If T is an R-tree and T ′ ⊂ T , we say that T ′ is a subtree if T ′ is a convex

subset of T (that is, x, y ∈ T ′ ⇒ [x, y] ⊂ T ′). This is equivalent to say that T ′ is an R-tree with

the induced metric from T . We say that the subset T ′ is a closed-subtree of T if every nonempty

intersection T ′ ∩ [x, y] of T ′ with a geodesic segment [x, y] is also a geodesic segment of T .

It is not hard to see that every closed-subtree T ′ is also a subtree (a convex subset), and

that if T ′ is a subtree and is closed with the induced topology of T , then T ′ is a closed-subtree

of T .

Below we state the main basic properties of R-trees we are going to use. We are based on

[2] (p. 271-286), where the reader may find all the proofs.

Proposition 2.26 (The Y proposition). Let T be an R-tree x, y, z ∈ T and w = Y (y, x, z) as

in Definition 2.24. Then

• [y, w] ∩ [w, z] = {w} (and therefore [y, z] = [y, w, z] = [y, w] ∪ [w, z]);

• d(y, z) = d(y, x) + d(z, x)− 2d(w, x);

• Y (x, y, z) = Y (y, x, z) = Y (x, z, y) = Y (y, z, x) = Y (z, x, y) = Y (z, y, x).
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With this proposition one can show

Proposition 2.27 (The subtree proposition). Let T1, ..., Tn be subtrees of an R-tree T .

• If Ti ∩ Ti+1 6= ∅ for i = 1, ..., n− 1 then T1 ∪ ... ∪ Tn is a subtree;

• If Ti ∩ Tj 6= ∅ for every 1 ≤ i, j ≤ n then T1 ∩ ... ∩ Tn 6= ∅ is a nonempty subtree.

The subtree proposition, by its turn, implies

Proposition 2.28 (Piecewise geodesic). Let T be an R-tree and x0, x1, ..., xn ∈ T . Then the

following are true:

• [x0, xn] ⊂ [x0, x1] ∪ [x1, x2] ∪ ... ∪ [xn−1, xn];

• If d(x0, xn) = Σn−1
i=0 d(xi, xi+1) then [x0, xn] = [x0, x1, ..., xn];

• If [xi−1, xi]∩[xi, xi+1] = {xi} for every 1 ≤ i ≤ n−1 and if xi 6= xi+1 for every 1 ≤ i ≤ n−2,

then d(x0, xn) = Σn−1
i=0 d(xi, xi+1) (and so [x0, xn] = [x0, x1, ..., xn]).

The less trivial of the propositions is

Proposition 2.29 (The bridge). If T0 and T1 are disjoint closed-subtrees of an R-tree T , there

is a unique geodesic segment [z0, z1] of T such that

(z0, z1) ∈ T0 × T1, and for every (x0, x1) ∈ T0 × T1 we have [z0, z1] ⊂ [x0, x1].

Furthermore, for i = 1, 2 we have [z0, z1] ∩ Ti = {zi} and d(z0, z1) = d(T0, T1). The geodesic

[z0, z1] is called the bridge between T0 and T1 in T .

Most papers use the following characterization of R-trees:

Proposition 2.30. A geodesic metric space (T, d) is an R-tree if and only if for every x, y ∈ T
there is a unique topological embedding γ : [0, d(x, y)] → T from x to y, with image being the

geodesic [x, y].

Let us show the important fact that the R-trees are the 0-hyperbolic spaces.

Proposition 2.31. A geodesic metric space (T, d) is an R-tree if and only if it is 0-hyperbolic.

Demonstração. First note that, by Definition 2.6, T is 0-hyperbolic if and only if every edge of

a geodesic triangle is contained in the union of the other two edges. Suppose first that T is an

R-tree and let ∆(x, y, z) be a geodesic triangle. It is enough to show that [x, y] ⊂ [x, z] ∪ [z, y],

the other cases being similar. Let w = Y (y, x, z). Using the Y -proposition, we have

[x, y] = [x,w, y] = [x,w] ∪ [w, y] ⊂ [x, z] ∪ [z, y],
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as desired. Suppose now T is 0-hyperbolic and let us check items a), b) and c) of Definition 2.24.

T is geodesic by assumption, so we have a). To show b), let x, y, z ∈ T and let α : [0, d(x, y)]→ T

(let α′ : [0, d(x, z)]→ T ) be the geodesic from x to y (from x to z). Let m = min{d(x, y), d(x, z)}
and

A = {t ∈ [0,m] | α(t) = α′(t)}.

Of course, 0 ∈ A 6= ∅ and A is bounded, so let s = supA. We claim that t ∈ A ⇒ [0, t] ⊂ A.

Indeed, if t ∈ A, let α, α′ : [0, t]→ T be the restrictions. Their images are geodesics between the

points α(0) = x = α′(0) and α(t) = α′(t), so by uniqueness of geodesic α and α′ must coincide

in [0, t], and so by definition we have [0, t] ⊂ A, which shows the claim. This shows that A is

an interval containing 0 and inside [0, s]. If we show that s ∈ A we will then have A = [0, s]. If

s = 0 then s is obviously in A. Suppose s > 0. By definition of supremum we have, for n large

enough, a sequence (tn)n ⊂ A such that 0 < s − 1
n < tn ≤ s, so limn tn = s. By hypothesis,

α(tn) = α′(tn) (or d(α(tn), α′(tn)) = 0) for every n in the sequence. Now, since α, α′ and d are

continuous we have

0 = lim
n
d(α(tn), α′(tn)) = d(lim

n
α(tn), lim

n
α′(tn)) = d(α(lim

n
tn), α′(lim

n
tn)) = d(α(s), α′(s)),

so s ∈ A and A = [0, s]. Now define w = α(s). We claim that [x, y]∩[x, z] = [x,w]. Of course (⊃)

is true. To see (⊂), suppose we have a point p in [x, y]∩ [x, z], that is, suppose p = α(t) = α′(t′)

for some t, t′. Because α, α′ are geodesics we have

t′ = |t′ − 0| = d(α′(t′), α′(0)) = d(α(t), x) = d(α(t), α(0)) = |t− 0| = t,

so α(t) = α′(t) and t ∈ A = [0, s]. Therefore p = α(t) ∈ α[0, s] = [x,w], as desired. This shows

b). Let us show c): let x, y, z ∈ T such that [x, y] ∩ [y, z] = {y} and let α : [0, d(x, y)] → T ,

α′ : [0, d(y, z)] → T and α′′ : [0, d(x, z)] → T be the geodesics representing [x, y], [y, z] and

[x, z], respectively. Because of the 0-hyperbolicity we have [x, z] ⊂ [x, y] ∪ [y, z]. We have

to show that [x, y] ⊂ [x, z] and [y, z] ⊂ [x, z]. For every 0 ≤ t < d(x, y), we know α(t) ∈
[x, y] ⊂ [x, z] ∪ [y, z]. But α(t) 6= y. So, since [x, y] ∩ [y, z] = {y} the only possibility is

α(t) ∈ [x, z]. So α[0, d(x, y)) ⊂ [x, z] and since [x, z] is compact (therefore closed) we must

have (by taking a sequence) y = α(d(x, y)) ∈ [x, z] as well. Therefore [x, y] ⊂ [x, z]. Now,

[y, z] and α′′[d(x, y), d(x, z)] must be both geodesics from y to z. So they coincide and therefore

[y, z] = α′′[d(x, y), d(x, z)] ⊂ [x, z], as we wanted. This shows that [x, z] = [x, y] ∪ [y, z] and

finishes the proposition.

As a consequence of this and of Proposition 2.18, we get

Corollary 2.32. A geodesic metric space (X, d) is an R-tree if and only if for every x, y, z, w ∈
X,

〈x, z〉w ≥ min{〈x, y〉w , 〈y, z〉w}.

Because R-trees are very special hyperbolic spaces (δ = 0), the notions of ends and boundary

coincide. It is easy to show the following

Proposition 2.33. If r1 and r2 are rays in an R-tree T , the following are equivalent:

• im(r1) ∩ im(r2) is not bounded;
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• end(r1) = end(r2) in Ends(T );

• r1(∞) = r2(∞) in ∂T .

2.4 Isometries and actions on R-trees

The next few pages are based on [20]. Here we will mostly denote the image of a point x under

an isometry g (definition below) by gx instead of g(x) or g ·x, as it is sometimes in the literature.

This will make the notation easier, and we will make sure the reader knows if a letter represents

a point or a map.

Definition 2.34. Let T be an R-tree. An isometry of T is a map g : T → T such that

d(gx, gy) = d(x, y) for every x, y ∈ T . For such isometry, the length of g is denoted by ‖g‖ and

defined as

‖g‖ = inf
x∈T

d(x, gx) ≥ 0.

Before we start talking about the isometries of R-trees, let us note that the length is invariant

under conjugation.

Lemma 2.35. If g, h are isometries of an R-tree T , then ‖g‖ = ‖hgh−1‖.

Demonstração. Given x ∈ T , d(x, hgh−1x) = d(h−1x, gh−1x) ≥ infy∈T d(y, gy) = ‖g‖. Since

this is true for every x we have ‖hgh−1‖ = infx∈T d(x, hgh−1x) ≥ ‖g‖. Similarly, given x ∈ T
we have

d(x, gx) = d(h−1hx, gh−1hx) = d(hx, hgh−1hx) ≥ inf
y∈T

d(y, hgh−1y) = ‖hgh−1‖,

from where we get ‖g‖ = infx∈T d(x, gx) ≥ ‖hgh−1‖. Thus, ‖g‖ = ‖hgh−1‖.

Now, we are going to state the main propositions we need to know especially for Chapter

7. The first thing to do is to understand the two main types of isometries on R-trees and its

special characteristic sets:

Proposition 2.36 (Classification of isometries). Let g be an isometry of an R-tree T . Let

Cg = {x ∈ T | d(x, gx) = ‖g‖}.

Then Cg is a nonempty closed-subtree of T which is invariant under g. Furthermore, the fol-

lowing assertions hold:

1) If ‖g‖ = 0, then Cg = Fix(g) is the set of fixed points of g;

2) If ‖g‖ > 0, then Cg is isometric to R and g acts on Cg as a translation by ‖g‖;

3) For every x ∈ T , d(x, gx) = ‖g‖+ 2d(x,Cg);

4) The middle point of any geodesic of the form [x, gx] in T is in Cg.

Definition 2.37. Let g and T as above. If ‖g‖ = 0 we call g an eliptic isometry and Cg turns

out to be the fixed point set of g. If ‖g‖ > 0, we call g a hyperbolic isometry and Cg the

translation axis of g, where there is a well defined orientation (the direction of the translation).
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The proposition above shows that Cg 6= ∅, which means that the infimum ‖g‖ =

infx∈T d(x, gx) is always attained. This implies that if g does not have a fixed point then

‖g‖ > 0. So, the eliptic isometries are the ones with fixed points and the hyperbolic isometries

are the ones without them.

Proposition 2.38. Let g, h be two isometries of an R-tree T . If either

1) Cg ∩ Ch = ∅, or

2) Cg ∩ Ch is a single point and g, h are hyperbolic,

then

‖hg‖ = ‖h−1g‖ = ‖g‖+ ‖h‖+ 2d(Cg, Ch).

In case 1), Chg contains the bridge between Cg and Ch.

Proposition 2.39. Let g, h be two hyperbolic isometries of an R-tree T . Then

1) Cg ∩ Ch 6= ∅ ⇔ max{‖hg‖, ‖h−1g‖} = ‖g‖+ ‖h‖;

2) ‖hg‖ > ‖h−1g‖ ⇔ Cg ∩Ch contains a non-degenerate segment whose orientations induced

by g and h coincide.

Of course, if h = g is hyperbolic, then Cg ∩ Cg is nonempty and contains a non-degenerate

segment with same orientation, so by items 1) and 2) above we have

‖g2‖ = max{‖g2‖, ‖g−1g‖} = ‖g‖+ ‖g‖ = 2‖g‖.

It follows that g2 is also hyperbolic and Cg ⊂ Cg2 . Also, both axes are isometric to R, so they

must be equal. By induction we get

Corollary 2.40. If g is a hyperbolic isometry of an R-tree T and n ≥ 1, then gn is hyperbolic,

‖gn‖ = n‖g‖ and Cgn = Cg.

Now we turn to actions by isometries on R-trees. The reader should be used with the

language of group actions.

Definition 2.41. We say that a group G acts by isometries on an R-tree (T, d) if G acts on T

and every g ∈ G induces an isometry of T (that will also be denoted by g). We use the expression

G y T for actions. The translation length function of such action by isometries is denoted by

l : G→ R and defined by l(g) = ‖g‖ = infx∈T d(x, gx). We say the action is non-trivial if l 6= 0.

If we need to clarify we can denote l by lT , ld, l(G,T ) or even l(G,T,d).

By using the subtrees proposition we can get

Proposition 2.42. If G is a finitely generated group acting by isometries on an R-tree T , then

the action is trivial if and only if there exists a point in T fixed by all G.

An action by isometries G y T also induces a well defined action in the set of rays of T

by putting (gr)(t) = g(r(t)). We also get well-defined actions (not necessarily by isometries)

Gy Ends(T ) and Gy ∂T by putting g(end(r)) = end(gr) and g(r(∞)) = (gr)(∞).

Since most actions in this work are by isometries, we will sometimes call them only by

actions.
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Definition 2.43. We say an action by isometries G y T of a group G on an R-tree T is

reducible if either

1) Every element g is eliptic (i.e. the action is trivial), or

2) There is a G-invariant line in T , or

3) There is end(r) ∈ Ends(T ) fixed by all G.

An irreducible action is an action which is not reducible. That means none of the items above

are satisfied.

Definition 2.44. We say an action by isometries G y T of a group G on an R-tree T is

semi-simple if either

1) It has a global fixed point in T , or

2) There is a G-invariant line in T , or

3) It is an irreducible action.

With irreducible actions, a translation axis Cg must always be disjoint of some translation

axis Ch. We can see this directly from

Proposition 2.45. If G y T is an action by isometries and if there exists g hyperbolic such

that Cg ∩ Ch 6= ∅ for every hyperbolic element h ∈ G, then the action is reducible.

Now we will define some specific types of actions and state the characterizations given in

[20].

Definition 2.46. Let G y T be an action. Given a geodesisc arc [x, y], the stabilizer of [x, y]

is the subgroup Stab([x, y]) = {g ∈ G | gz = z ∀ z ∈ [x, y]} (similarly we define the stabilizer of

any subset S ⊂ T ). The action is said to be small if every arc stabilizer is virtually cyclic, that

is, it contains a finite index cyclic subgroup.

For the next definition, remember that any isometry of R is either a translation or the

composition of a translation with the reflection x 7→ −x. The first type preserves and the

second type reverses the orientation of R. Now, if L is any G-invariant line of an action Gy T ,

we say G reverses the orientation of L if there is g ∈ G such that the isometry g induced in

L ' R reverses its orientation. Otherwise, we say that G preserves the orientation of L, i.e.,

every isometry g ∈ G induced on L is a translation.

Definition 2.47. Let G y T be an action of type 2) in 2.43, that is, with at least one G-

invariant line. We say the action is dihedral if G reverses the orientation of every G-invariant

line. Otherwise, i.e., if G preserves the orientation of some G-invariant line, we say the action

is a shift.

We can classify the non-trivial actions in the following way:

Proposition 2.48. Any non-trivial action G y T is of one (and only one) of the following

types:
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• With a fixed end;

• Dihedral;

• Irreducible.

Demonstração. This is just an observation. If the action has a fixed end, we are done. Suppose

it has no fixed ends. Then item 3) of definition 2.43 is false. Since the action is non-trivial, item

1) is also false. So either 2) is false (and the action is irreducible) or it is true and the action

is either dihedral or a shift. But every shift fixes 2 ends of T (determined by the G-invariant

line whose orientation is preserved by G), so the action must be dihedral. This finishes the

proof.

Below we summarize the main properties of the three types of non-trivial actions above. We

highlight the close relationship they have with its translation length functions.

Theorem 2.49 (Fixed end actions). Let G y T be a non-trivial action by isometries on an

R-tree T . The following are equivalent:

a) There is end(r) ∈ Ends(T ) fixed by all G;

b) l(g) = |ρ(g)| ∀ g ∈ G, where ρ : G→ R is a homomorphism;

c) ‖ghg−1h−1‖ = 0 for every g, h ∈ G.

Theorem 2.50 (Dihedral actions). Let G y T be a non-trivial action by isometries on an

R-tree T . The following are equivalent:

a) The action is dihedral;

b) l(g) = l̃(f(g)), where f : G → Isom(R) is a homomorphism whose image contains a

reflection and l̃ is the translation length function of the natural action Isom(R) y R;

c) ‖ghg−1h−1‖ = 0 for every hyperbolic elements g, h but there are elements a, b ∈ G such

that ‖aba−1b−1‖ > 0.

In the context of irreducible actions, there are two interesting facts:

Proposition 2.51. Let g, h be hyperbolic isometries of an R-tree T . If either Cg ∩Ch is empty

or a geodesic segment of length less than min{‖g‖, ‖h‖}, then the subgroup 〈g, h〉 ≤ Isom(T ) is

free of rank 2.

Theorem 2.52 (Irreducible actions). Let G y T be a non-trivial action by isometries on an

R-tree T . The following are equivalent:

a) The action is irreducible;

b) There are hyperbolic elements g, h such that ‖ghg−1h−1‖ 6= 0;

c) There are hyperbolic elements g, h such that Cg ∩ Ch is a non-degenerate geodesic;

d) G contains a free group of rank 2 acting freely and properly discontinuously on T .
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Let us now define minimal actions and prove powerful tools for Chapter 7:

Definition 2.53. We say that an action Gy T is minimal if T is a minimal G-invariant tree,

that is, there is no G-invariant subtree T ′ ⊂ T other than T itself.

A standard fact in the literature is that it is easy to obtain a minimal action:

Proposition 2.54 (Minimal action). If G y T is a non-trivial action, there is a unique G-

invariant minimal subtree T ′ ⊂ T . The subtree T ′ is exactly the union of all translation axes of

the hyperbolic elements of G. Therefore, a non-trivial action G y T is minimal if and only if

T = T ′. Furthermore, T ′ is contained in every G-invariant subtree of T .

Most minimal actions also have a useful uniqueness, up to equivariant isometry:

Theorem 2.55. Suppose that G y (T1, d1) and G y (T2, d2) are two minimal semi-simple

actions of a group G on any R-trees, with the same translation length function. Then there exists

a G-equivariant isometry h : (T1, d1) → (T2, d2), that is, a bijection such that d2(h(x), h(y)) =

d1(x, y) for every x, y ∈ T1 and h(g · x) = g · h(x) for every g ∈ G, x ∈ T1. If either action is

not a shift then the equivariant isometry is unique.

Theorem 2.56. If G y T is a minimal and irreducible action, then every geodesic [x, x′] is

contained in the translation axis of some hyperbolic isometry g ∈ G.

Demonstração. If x = x′ the result is trivial since the action is minimal. So, suppose x 6= x′ and,

since T is minimal, let g, g′ be hyperbolic elements such that x ∈ Cg and x′ ∈ Cg′ . If x ∈ Cg′ or

x′ ∈ Cg, we are also done, so suppose neither x nor x′ are in the intersection (possibly empty)

Cg ∩ Cg′ . If Cg ∩ Cg′ = ∅, let [z, z′] be the bridge between Cg and Cg′ . If Cg ∩ Cg′ 6= ∅, by the

Y -proposition 2.26 we get a point z ∈ Cg ∩Cg′ such that [x, x′] = [x, z, x′], and we define z′ = z.

In any of the two cases we have [x, x′] = [x, z, z′, x′]. Now, since the action is irreducible, by

Proposition 2.45 there are translation axes Ch and Ch′ disjoint from Cg and Cg′ , respectively.

So, let α = [w, y] and α′ = [w′, y′] be the bridges from Ch to Cg and from Ch′ to Cg′ , respectively.

By acting replacing α by gnα for some n ∈ Z and replacing Ch by gnCh, if necessary, we can

suppose x ∈ [y, z]. Similarly, suppose x′ ∈ [y′, z′]. Then with a little patience one can use

the Piecewise geodesic proposition 2.28 to see that γ = [w, y, x, x′, y′, w′] is a geodesic segment.

Since it is non-degenerate we have Ch∩Ch′ = ∅. If γ̃ is the bridge from Ch to Ch′ , we have γ̃ ⊂ γ
by definition. But from the construction of γ one can see that γ = γ̃. So, [x, x′] is contained in

the bridge from Ch to Ch′ . From Proposition 2.38, we have [x, x′] ⊂ Chh′ is in the translation

axis of the hyperbolic element hh′, as desired.

2.5 Filters and ultrafilters

Here we give a minimal approach to the notions of filters, ultrafilters and the ultralimit of a

sequence of metric spaces. All of this is going to be needed in chapters 8 and 9.

This section is all based on [13] and [62].

Definition 2.57 (Filters). A filter F in a nonempty set X is a collection of subsets of X such

that:
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• For every A ⊂ X, if A ⊃ B for some B ∈ F then A ∈ F ;

• If B1, ..., Bn ∈ F then B1 ∩ ... ∩Bn ∈ F ;

• ∅ /∈ F .

We say (X,F) is a filtered space.

Of course, from the definition we can see that the finite intersection of elements of F is never

empty. Also, any nonempty filter F contains as an element the whole set X, for X contains

some element A ∈ F and therefore X ∈ F by the first item.

Example 2.58. The two examples we’re going to use are:

1) If (X, τ) is a topological space and x0 ∈ A, the collection

Fx0 = {A ⊂ X | there is B ∈ τ such that x0 ∈ B ⊂ A}

is a filter in X and is called the neighborhood filter on x.

2) If X is any infinite set, the collection

F = {A ⊂ X | X −A is finite}

is a filter in X and is called the finite complement filter. In particular, for the natural

numbers N, the finite complement filter is also called the Fréchet filter in N.

Filters can be used for a quite general definition of limit:

Definition 2.59 (Limit of a map over a filter). Let (X,F) be a filtered space, (Y, τ) be a

topological space and f : X → Y be any map. We say that a point y ∈ Y is the limit of f over

the filter F and denote y = limF f if, for every open set A ∈ τ of Y containing y, there is B ∈ F
such that f(B) ⊂ A. If X = N, we denote xn = f(n) and use the notation y = limF xn instead

of the previous one.

It is straightforward to see that this definition generalizes, for example, the well-known

notions of limit of a sequence and limit of a map in the topological sense. In fact, if (X, τ ′) and

(Y, τ) are both topological spaces, if x0 ∈ X and Fx0 is the neighborhood filter on x0, then for

any y ∈ Y ,

y = lim
Fx0

f ⇔ y = lim
x→x0

f(x).

Similarly, let X = N and let F be the Fréchet filter on N. If (xn)n is any sequence in a topological

space (X, τ) and x ∈ X, we easily see that

x = lim
F
xn ⇔ x = lim

n→∞
xn.

Because of the above fact, the convergence of a sequence can be thought in terms of the

existence of some good elements of a filter in N. So, the “bigger” a filter is (i.e., the more

elements it has), the more chance we have of finding such elements and therefore the more

convergence we have (of course, with respect to that filter). Keeping this intuitive notion in
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mind, we go in the direction of sequences in a compact space, in particular bounded sequences.

For we know that, in general, not every sequence in a compact space converges; in particular,

there are bounded sequences in R with no global limit points (for example, any non-constant

periodic sequence). An interesting question then arises: are there “big enough” filters in N
in order to guarantee the convergence of such sequences? Fortunately, the answer is positive.

These are the ultrafilters, as we will see now.

For the definition of ultrafilters below, note that the collection of all filters in a set X is

partially ordered by F ≤ F ′ ⇔ F ⊂ F ′.

Definition 2.60 (Ultrafilters). We say that a filter U in a set X is an ultrafilter if it is a maximal

element in the collection of all filters of X; that is, if U is a filter and satisfies the following:

If F is a filter in X and U ⊂ F , then U = F .

Ultrafilters are the answer to our previous question. Their maximality will guarantee they

are “big enough” in the sense we asked, as we will see next. A first and important observation is

that every ultrafilter U contains the set X as an element. Indeed, they are nonempty, because if

U = ∅, then the collection F = {X} is a filter in X and would contain U properly, a contradiction

with the maximality of U . Since U 6= ∅, we have X ∈ U , as observed right after Definition 2.57.

As a standard and straightforward application of Zorn’s lemma, one can also show

Proposition 2.61. If F is any filter in a set X, there is an ultrafilter U in X such that F ⊂ U .

Another important property is

Proposition 2.62. Let U be an ultrafilter in X. If A1, ..., An ⊂ X are such that A1∪...∪An ∈ U ,

then Ai ∈ U for some 1 ≤ i ≤ n. In particular, if X = A1 ∪ ... ∪ An then Ai ∈ U for some

1 ≤ i ≤ n.

Demonstração. It is enough to show the property for only two subsets, say, A and B, for the

general case follows by trivial induction. Suppose then by contradiction that A,B ⊂ X are such

that A ∪B ∈ U but A /∈ U and B /∈ U . then it is easy to see that the collection

F = {S ⊂ X | A ∪ S ∈ U}

would be a filter and would properly contain U , contradicting the maximality of U . This finishes

the first part. The particular case X = A1 ∪ ... ∪ An follows from the first part and from the

fact X ∈ U we showed after Definition 2.60.

Now we present the property we were talking about before:

Proposition 2.63. Let (X,U) be an (ultra)filtered space, (Y, τ) be a compact and Hausdorff

topological space and let f : X → Y be any map. Then there is a unique y ∈ X such that

y = limU f .

Demonstração. For the existence, suppose by contradiction that every y ∈ Y is not a limit point

of f . Then, by definition, there exists an open set Ay of Y containing y such that there is no

B ∈ U with f(B) ⊂ Ay. In particular, we have

f−1(Ay) /∈ U for every y ∈ Y, (2.1)
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for f(f−1(Ay)) ⊂ Ay. We have Y =
⋃
y∈Y Ay an open cover of the compact set Y , so there are

Ay1 , ..., Ayn such that Y = Ay1 ∪ ... ∪Ayn . Therefore,

X = f−1(Y ) = f−1(Ay1) ∪ ... ∪ f−1(Ayn).

Since U is an ultrafilter in X, by the previous proposition we must have f−1(Ayi) ∈ U for some

i. This is a contradiction with property 2.1. This shows existence.

To show uniqueness, suppose by contradiction there are distinct elements y1 6= y2 such that

y1 = limU f and y2 = limU f . Since Y is Hausdorff, let A1, A2 ∈ τ containing y1 and y2,

respectively, such that A1 ∩A2 = ∅. By hypothesis, there are B1, B2 ∈ U such that f(B1) ⊂ A1

and f(B2) ⊂ A2. Then

B1 ∩B2 ⊂ f−1(A1) ∩ f−1(A2) = f−1(A1 ∩A2) = f−1(∅) = ∅

and B1∩B2 = ∅, which is a contradiction because every finite intersection of elements of a filter

is nonempty. This concludes the proof.

In particular, we have the very useful corollary below.

Corollary 2.64. If (N,U) is ultrafiltered and (xn)n is a bounded sequence in R, then there is

an unique y ∈ R such that y = limU xn.

Proposition 2.65. Let ω be an ultrafilter of N containing the Fréchet filter (Proposition 2.61).

If x = limn→∞ xn for a sequence {xn} in a topological space X, then x = limω xn. In other

words, standard convergence implies ω-convergence.

Demonstração. Let us represent the sequence (xn)n by f : N → X with f(n) = xn. Let A be

open in X containing x. By hypothesis we have n0 such that xn ∈ A for every n ≥ n0, so we

have f(B) ⊂ A for B = N− {1, 2, ..., n0 − 1}. But since {1, 2, ..., n0 − 1} is finite we have B as

an element of the Fréchet filter and therefore by hypothesis B ∈ ω. This shows by definition

that x = limω xn, as desired.

Below we give the basic properties about limits that we’re going to need in our context. The

proofs are omitted, for they the exact same fashion of the well known ones from basic analysis.

Proposition 2.66 (Basic properties). Let F be a filter in N. The following sentences are true:

• (Sum and scalar product) Let (xn)n and (yn)n be sequences in a real normed vector space

V and let λ ∈ R. Suppose x = limF xn, y = limF yn. Then λx = limF λxn and x + y =

limF (xn + yn);

• (Order preserving) Let (xn)n, (yn)n, x and y be as above and suppose V = R. If xn ≤ yn

for every n, then x ≤ y, that is, limF xn ≤ limF yn;

• (Direct products) Let (xn)n and (yn)n be sequences in a real normed vector spaces V and

W , respectively. Suppose x = limF xn and y = limF yn. Then, in the direct product V ×W
we have (x, y) = limF (xn, yn);

• (Continuous maps) Let X,Y be topological spaces, f : X → Y a continuous map and

suppose x = limF xn for some sequence (xn)n in X. Then f(x) = limF f(xn).
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2.6 Ultralimits

Let us now construct a space that we will call the ultralimit of a sequence of pointed metric

spaces. From now on, we let ω be any ultrafilter of N containig the Fréchet filter (Example 2.58

and Proposition 2.61) and fix it. For every n ≥ 1, let (Xn, dn, pn) be a pointed metric space,

that is, (Xn, dn) is a metric space and pn ∈ Xn. Denote by
∏
n≥1Xn the set of all sequences

(xn)n such that xn ∈ Xn for every n, and define

X∞ = {(xn)n ∈
∏
n≥1

Xn | there is C ≥ 0 such that dn(xn, pn) ≤ C for every n ≥ 1}.

It is easy to see from the definition and using the triangle inequality that for every two

elements (xn)n, (yn)n ∈ X∞, the real sequence (dn(xn, yn))n is bounded and therefore by Propo-

sition 2.63 there is a unique (so, well-defined) real number limω dn(xn, yn). So, we denote

x = (xn)n and y = (yn)n and define d∞ : X∞ ×X∞ → R by putting

d∞(x, y) = lim
ω
dn(xn, yn).

This is what we call a pseudo-distance, that is, it satisfies the following properties for every

x, y, z ∈ X∞: d∞(x, x) = 0, d∞(x, y) = d∞(y, x) and d∞(x, z) ≤ d∞(x, y) + d∞(y, z). All of

these can be easily verified using the properties in the previous part. For example, the triangle

inequality follows by the “sum” and “order preserving” properties:

d∞(x, z) = lim
ω
dn(xn, zn)

≤ lim
ω

(dn(xn, yn) + dn(yn, zn))

= lim
ω
dn(xn, yn) + lim

ω
dn(yn, zn)

= d∞(x, y) + d∞(y, z).

The only property d∞ lacks to be a distance is “d∞(x, y) = 0⇒ x = y”. So, to create a metric

space we need a quotient of X∞. Define the following relation in X∞: x ∼ y ⇔ d∞(x, y) = 0.

It is an equivalence relation, whose equivalence classes will be denoted by [x] = [(xn)n], for any

x = (xn)n ∈ X∞.

Definition 2.67. The (ω)-ultralimit of a given a sequence (Xn, dn, pn)n of pointed metric spaces

is the space (Xω, dω), where Xω is the quotient

Xω = X∞/ ∼ = {[x] | x ∈ X∞}

given by the relation above, and dω : Xω ×Xω → R is defined as

dω([x], [y]) = d∞(x, y) = lim
ω
dn(xn, yn).

Of course we could expect that the ultralimit inherits some properties of the metric spaces

involved. Below we present some of them. The first one is about hyperbolicity:

Proposition 2.68 (Properties of ultralimits). Let (Xn, dn, pn)n be a sequence of pointed metric

spaces.
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1) If each Xn is geodesic, then Xω is geodesic;

2) If each Xn is (δn)-hyperbolic (Definition 2.17) and there is δ ≥ 0 such that limω δn = δ,

then Xω is (δ)-hyperbolic;

3) If each Xn is (δn)-hyperbolic (Definition 2.17) and limω δn = 0, then Xω is an R-tree.

Demonstração. Item 1) is a straightforward construction that we left to the curious reader,

and item 3) is a consequence of item 2) and of Corollary 2.32. We will show item 2) by using

practically all the basic properties of ω-limits (Proposition 2.66). Indeed, let x, y, z, w ∈ Xω and

let us show that 〈x, z〉w ≥ min{〈x, y〉w , 〈y, z〉w} − δ (remember Definition 2.17). For every n,

since xn, yn, zn, wn are elements of the (δn)-hyperbolic space Xn, we have

〈xn, zn〉wn ≥ min{〈xn, yn〉wn , 〈yn, zn〉wn} − δn. (2.2)

Now, by linearity of ω-limits we have

〈x, z〉w =
1

2
[dω(x,w) + dω(y, w)− dω(x, z)]

=
1

2

[
lim
ω
dn(xn, wn) + lim

ω
dn(yn, wn)− lim

ω
dn(xn, zn)

]
= lim

ω

1

2
[dn(xn, wn) + dn(yn, wn)− dn(xn, zn)]

= lim
ω
〈xn, zn〉wn .

and the same is similarly true for 〈x, y〉w and 〈y, z〉w. Denote by f : R2 → R the continuous

map f(x, y) = min{x, y}. By using again the properties of Proposition 2.66 and all information

above we finally get

min{〈x, y〉w , 〈y, z〉w} − δ = min
{

lim
ω
〈xn, yn〉wn , limω 〈yn, zn〉wn

}
− lim

ω
δn

= f
(

lim
ω
〈xn, yn〉wn , limω 〈yn, zn〉wn

)
− lim

ω
δn

= f
(

lim
ω

(
〈xn, yn〉wn , 〈yn, zn〉wn

))
− lim

ω
δn

= lim
ω
f
(
〈xn, yn〉wn , 〈yn, zn〉wn

)
− lim

ω
δn

= lim
ω

(
min

{
〈xn, yn〉wn , 〈yn, zn〉wn

}
− δn

)
≤ lim

ω
〈xn, zn〉wn

= 〈x, z〉w ,

which concludes the proof.

The second property is about actions:

Proposition 2.69. Let (Xn, dn, pn)n, X∞ and Xω be as above. Suppose a group G acts by

isometries on each (Xn, dn) and that

For every g ∈ G, there is C = C(g) ≥ 0 such that dn(gpn, pn) ≤ C for every n.

Then G acts naturally by isometries on both X∞ and Xω.
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Demonstração. We will omit some easy verifying details. We naturally define G y X∞ by

putting g(xn)n = (gxn)n. This element is in X∞. In fact, let K ≥ 0 such that dn(xn, pn) ≤ K.

Then, for every n,

dn(gxn, pn) ≤ dn(gxn, gpn) + dn(gpn, pn) = dn(xn, pn) + dn(gpn, pn) ≤ K + C,

as desired. It is easy to see that the action is by isometries by “passing the limit”. Now, we

define G y Xω by putting g[(xn)n] = [(gxn)n], which is in Xω by what we already observed.

Let us see that this is well defined on classes: if [(xn)n] = [(yn)n], then limω dn(xn, yn) = 0,

which implies limω dn(gxn, gyn) = limω dn(xn, yn) = 0, so [(gxn)n] = [(gyn)n], as desired. It is

therefore a well defined action, and it is by isometries because

dω(g[(xn)n], g[(yn)n]) = d∞((gxn)n, (gyn)n) = d∞((xn)n, (yn)n) = dω([(xn)n], [(yn)n]).

The last property is about the limit of a sequence of quasi-isometric embeddings. We will

omit the proof since it involves the exact same strategies we are already dealing with:

Proposition 2.70. Let (Xn, dn, pn)n and Xω as in Definition 2.67. Suppose for each n ≥ 1

there are maps fn : Xn → Xn that are (λn, εn)-QI-embeddings and that limn→∞ λn = λ and

limn→∞ εn = ε for some λ ≥ 1 and ε ≥ 0. If {dn(fn(pn), pn) | n ≥ 1} is a bounded set, then the

fn give rise to a map

fω : Xω → Xω, [(xn)n] 7→ [(fn(xn))n]

which is a (λ, ε)-QI-embedding.

2.7 Convergence actions by homeomorphisms

The topics of this section, especially Proposition 2.84, will be useful to the construction of

relatively hyperbolic groups of Chapter 9. Based on [15], we define the notion of convergence

action and show that it is equivalent to the existence of some properly discontinuous action on

an 3-unordered configuration space.

In the following pages, let (M,d) be a compact metric space (with at least 4 points, something

that will be eventually required) and suppose an infinite group G acts by homeomorphisms on

M . By a distinct sequence (gn)n in G we mean any sequence where the gn are pairwise distinct

elements of G.

Definition 2.71. We say a sequence (gn)n ⊂ G of elements of G is a collapsing sequence if there

are x, y ∈ M such that the sequence of restrictions (gn|M−{x}) converge uniformly on compact

subsets to the constant map z ∈M − {x} 7→ y. Explicitly, this is equivalent to say that for any

compact K ⊂ M − {x} and any ε > 0, there is n0 such that d(gnz, y) < ε for any n ≥ n0 and

z ∈ K. We can also say that (gn)n collapses on x, y and write gn|M−{x} � y.

Definition 2.72. We say the action G y M above is a convergence action, and that G is a

convergence group, if every distinct sequence (gn) in G contains a collapsing subsequence.

It will be useful to rewrite the definition above in terms of convergence of sequences:
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Proposition 2.73. If (gn)n is any sequence and x, y ∈ M , then gn|M−{x} � y if, and only if,

the following statement is true:

If (gnk)k is a subsequence and (znk)k ⊂M with znk → z 6= x and gnkznk → z′ ∈M, then z′ = y.

Demonstração. We will show that the negations of the assertions above are equivalent. Suppose

(gn)n does not collapse on x, y. Then, by definition, there must be a compact K ⊂ M − {x}
and ε > 0 such that for any n0 there is n ≥ n0 such that K is not entirely mapped by gn

into B(y, ε). In particular there must be a subsequence (gnk)k and points (znk)k ⊂ K such

that gnkznk ∈ M − B(y, ε) (note that M − B(y, ε) is compact, for it is a closed subset of the

compact space M). Since K is compact, there must be a subsequence of (znk)k - that will still

be denoted by (znk)k - converging to z ∈ K. Now, the asociated subsequence (gnkznk)k inside

the compact M −B(y, ε) must also have a subsequence - still denoted by (gnkznk)k - converging

to z′ ∈ M − B(y, ε). In particular, we got znk → z 6= x (for x /∈ K) and gnkznk → z′ 6= y,

which is what we wanted. Suppose, on the other hand, we have such a situation and let us

show (gn)n does not collapse on x, y. Since y 6= z′ and x 6= z, let ε, δ > 0 such that z′ /∈ B(y, ε)

and x /∈ B(z, δ). Let K = B(z, δ) (it is compact, for it is closed and M is compact). If (gn)n

collapsed on x, y, there would be in particular k0 such that gnk(K) ⊂ B(y, ε) for any k ≥ k0. In

particular, since znk ∈ K for sufficiently large k, we would have gnkznk ∈ B(y, ε) for sufficiently

large k, and so gnkznk could not converge to z′, a contradiction. So (gn)n cannot collapse on

x, y, as we desired.

Remember the well-known notion of a properly discontinuous action (see, for example, [14]):

Definition 2.74. If a group G acts on a topological space W , we say it is a properly dis-

continuous action if for every compact subsets K,L ⊂ W , the set {g ∈ G | gK ∩ L 6= ∅} is

finite.

Let us now start again with the compact metric space M where an infinite group G acts

by homeomorphisms. We are going to construct a space Θ(M) with an induced action by

homeomorphisms G y Θ(M). We will show that this new action is properly discontinuous if

and only if GyM is a convergence action. The space Θ(M) is well known, and for more details

of the following construction we refer [15].

Consider the cartesian product M3 = M ×M ×M , with product topology, and the “fat”

diagonal ∆ = {(x, y, z) ∈M3 | card{x, y, z} ≤ 2}, so that

M3 −∆ = {(x, y, z) ∈M3 | card{x, y, z} = 3}.

Define an equivalence relation on M3 in the following way: declare (x, y, z) ∼ (x′, y′, z′) if either

(x, y, z) = (x′, y′, z′) or there are two coordinates in (x, y, z) and other two in (x′, y′, z′) coinciding

(in other words, four of the elements x, y, z, x′, y′, z′ are the same, two in the first and two in

the second collections, for example (x,w,w) ∼ (w, y′, w)). If π : M3 → M3/ ∼ is the quotient

projection, denote by Θ0(M) = π(M3 − ∆) and ∂Θ0(M) = π(∆), so the quotient space is

Θ0(M) ∪ ∂Θ0(M). It is obvious that the relation ∼ is trivial in M3 −∆, so Θ0(M) 'M3 −∆,

but the relation is not trivial on ∆.

Lemma 2.75. ∂Θ0(M) 'M .
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Demonstração. Let f : ∆→M be defined by

f(x, y, z) =


x, if x = y,

x, if x = z,

y, if y = z.

It is obviously well defined, surjective and continuous by the Pasting Lemma. It is also easily

seen to be an open map, by the product topology properties. Since f(x, y, z) = f(x′, y′, z′) ⇔
π(x, y, z) = π(x′, y′, z′), by a known topology lemma there must be a (bijective) and continuous

map f : ∂Θ0(M)→M such that the following diagram commutes:

We just have to check that the inverse map g : M → ∂Θ0(M) is continuous. But this is easy:

if A ⊂ ∂Θ0(M) is open, then g−1(A) = f(π−1(A)), which is open in M because π is continuous

and f is an open map.

Let the symmetric group S3 act on M3 by permuting coordinates. It is clear that (x, y, z) ∼
(x′, y′, z′) implies σ(x, y, z) ∼ σ(x′, y′, z′) for any permutation σ, so S3 also acts on the quotient

space Θ0(M) ∪ ∂Θ0(M), by “permutting coordinates” on Θ0(M) ' M3 − ∆ and trivially on

∂Θ0(M) 'M . Because of this, we can quotient the space Θ0(M) ∪ ∂Θ0(M) by this action and

obtain a space

ΘT (M) = Θ(M) ∪ ∂Θ(M)

(here the letter T means “total”), where the two subsets on the right are the respective quotients

of Θ0(M) and ∂Θ0(M) by the action of S3. We still have ∂Θ(M) ' M by the same reasons

above, and the space Θ(M) is exactly the space of unordered triples, the 3-configuration space

of M . To clear notation, we then denote an element of Θ(M) by a set {x, y, z} of cardinality 3.

Since M is compact, ∂Θ(M) ' M is compact and a closed subset of the (also compact) space

ΘT (M), while Θ(M) is open. This is our ambient space.

If G acts on M by homeomorphisms, let us create an action G y ΘT (M) on the total

space. Given g ∈ G, consider it as a homeomorphism g : M → M . By abuse of notation, it

induces a homeomorphism g : M3 → M3 acting as g on each coordinate. It is easy to see that

(x, y, z) ∼ (x′, y′, z′) implies (gx, gy, gz) ∼ (gx′, gy′, gz′), so we have an induced homeomorphism

g : Θ0(M) ∪ ∂Θ0(M) → Θ0(M) ∪ ∂Θ0(M) which clearly passes to the quotient by the action

of S3, giving rise to a homeomorphism g : ΘT (M) → ΘT (M), which acts like g : M → M on

its invariant subset ∂Θ(M) and is of the form g{x, y, z} = {gx, gy, gz} on the (also invariant)

configuration space Θ(M). These are the induced actions Gy ΘT (M) and Gy Θ(M).

Definition 2.76. We say an action by homeomorphisms GyM of an infinite group G onto a
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compact metric space M is properly discontinuous on triples if the induced action G y Θ(M)

is properly discontinuous.

Our goal is to show

Theorem 2.77. Let G be an infinite group acting by homeomorphisms on a compact metric

space M . Then the action is properly discontinuous on triples if and only if it is a convergence

action (Definition 2.72).

In order to do this, we first rewrite the “properly discontinuous on triples” property in terms

of convergence of sequences (like we did for collapsing sequences), in order to get a common

language:

Proposition 2.78. The action above is properly discontinuous on triples if and only if the

following condition is satisfied: let (gn)n be a distinct sequence in G and (xn)n, (yn)n and (zn)n

be sequences in M such that xn → x, yn → y, zn → z, gnxn → x′, gnyn → y′ and gnzn → z′ for

elements x, y, z, x′, y′, z′ ∈M . If card{x, y, z} = 3, then card{x′, y′, z′} ≤ 2.

Demonstração. Here we assume the basic properties about convergence in a configuration space.

We will show that the negations of the assertions above are equivalent. Suppose first that the

condition is false. So there must be a distinct sequence (gn)n in G, sequences (xn)n, (yn)n and

(zn)n in M such that xn → x, yn → y, zn → z, gnxn → x′, gnyn → y′ and gnzn → z′ for elements

x, y, z, x′, y′, z′ ∈ M , with card{x, y, z} = 3 = card{x′, y′, z′}. Then we have {xn, yn, zn} →
{x, y, z} gn{xn, yn, zn} → {x′, y′, z′} inside Θ(M), which is open in ΘT (M). Since ∂Θ(M) is

compact and {x, y, z}, {x′, y′, z′} /∈ ∂Θ(M), there are compact neighborhoods K,L ⊂ Θ(M)

(that is, disjoint from ∂Θ(M)) containing {x, y, z} and {x′, y′, z′}, respectively. By the two

convergences above in Θ(M) and compactness, there must be n0 such that {xn, yn, zn} ∈ K and

gn{xn, yn, zn} ∈ L for n ≥ n0, thus gn{xn, yn, zn} ∈ gnK ∩ L for n ≥ n0. Therefore, the set

{g ∈ G | gK∩L 6= ∅} is infinite and the action is not properly discontinuous, as desired. Suppose

now the action is not properly discontinuous. Then there are compacts K,L ⊂ Θ(M) such that

{g ∈ G | gK ∩ L 6= ∅} is infinite, and therefore a distinct sequence (gn)n and (kn)n ⊂ K and

(ln)n ⊂ L such that gnkn = ln (and we can write kn = {xn, yn, zn} for every n). By compactness,

we find convergent subsequences of (kn)n and (ln)n, so to clear notation we can assume kn →
k ∈ K and ln → l ∈ L. If k = {x, y, z} and l = {x′, y′, z′}, then since K and L are inside

Θ(M) we have card{x, y, z} = 3 = card{x′, y′, z′} and since kn → k, without loss of generality

we can assume xn → x, yn → y and zn → z (after all, what matters is that the three points

are distinct). Similarly, since {gnxn, gnyn, gnzn} = gn{xn, yn, zn} = gnkn = ln → l = {x′, y′, z′},
we can also assume gnxn → x′, gnyn → y′ and gnzn → z′. Therefore, the condition is false, as

desired. This completes the proof.

Given the property above, the first half of Theorem 2.77 is the following:

Lemma 2.79. If GyM is a convergence action, then it is properly discontinuous on triples.

Demonstração. Let us show that the condition of Proposition 2.78 is satisfied. That is, let (gn)n

be a distinct sequence in G and (xn)n, (yn)n and (zn)n be sequences in M such that xn → x,

yn → y, zn → z, gnxn → x′, gnyn → y′ and gnzn → z′ for elements x, y, z, x′, y′, z′ ∈M . Suppose
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card{x, y, z} = 3 and let us show card{x′, y′, z′} ≤ 2. By the definition of convergence action,

(gn)n must contain a collapsing subsequence. Since convergence passes to every subsequence, we

can assume without loss of generality that (gn)n collapses on a, b for some points a, b ∈M . Now,

since card{x, y, z} = 3, the point a must be at most one of these points, so assume x 6= a 6= y,

for example. Then, since gn|M−{a} � b and x, y ∈ M − {a}, in particular (considering the

compacts {x} and {y} and using the definition of convergence action) we must have gnxn → b

and gnyn → b, so by uniqueness of limits we have x′ = b = y′ and card{x′, y′, z′} ≤ 2, as we

wanted.

To estabilish the second half of Theorem 2.77, we follow [15] and subdivide the proof into

some lemmas. Suppose from now on that the action GyM is properly discontinuous on triples.

We shall use the notation xn → {a, b} for a sequence (xn)n in M and a, b ∈M if for every open

neighborhoods U, V of a and b, respectively, there is n0 such that xn ∈ U ∪ V for any n ≥ n0.

Lemma 2.80. Suppose xn → x, yn → y, zn → z with card{x, y, z} = 3 and that gnxn → a,

gnyn → a and gnzn → b 6= a. Then for any sequence wn → w 6= z we have gnwn → {a, b}.

Demonstração. Since x 6= y, w must be different from at least one of them, so suppose w 6= y.

The sequence (gnwn)n is inside the compact M , so it may be supposed to converge to a point c

without loss of generality. We then have the three sequences (yn)n, (zn)n and (wn)n converging

to three distinct points y, z and w, with gnyn → a, gnzn → b 6= a and gnwn → c. If gnwn 9 {a, b}
we would have infinite elements gnwn outside of some union U ∪ V of neighborhoods of a and

b, so in particular c /∈ {a, b}. Therefore, we would have card{a, b, c} = 3 and the action would

not be properly discontinuous on triples by Proposition 2.78, a contradiction. This shows the

lemma.

Lemma 2.81. Suppose xn → x, yn → y, zn → z and wn → w with card{x, y, z, w} = 4 and

that gnxn → a, gnyn → a, gnzn → b and gnwn → b. Then b = a.

Demonstração. Let c ∈ M − {a, b} and define the sequence (un)n by putting un = g−1
n c.

By compactness we know we can assume un to converge to a point u ∈ M . Now, since

card{x, y, z, w} = 4, u is different from at least three of them, so suppose u /∈ {x, y, z} for

example (the other 3 cases are equally similar). If we had b 6= a, then by applying Lemma 2.80

to the sequences (xn)n, (yn)n, (zn)n and (un)n we would have gnun → {a, b}, so c = gnun would

be either a or b, a contradiction. Then b = a.

Lemma 2.82. Suppose x, y, z ∈ M with card{x, y, z} = 3 and zn → z. Suppose gnx → a,

gny → a and gnzn → b 6= a. Then gn|M−{z} � a.

Demonstração. First let us show that the maps gn|M−{z} converge pointwise to a. Let w ∈
M −{z} and let us show gnw → a. If w = x or w = y we are done by hypothesis, so we assume

w /∈ {x, y}. By applying Lemma 2.80 to the sequences xn = x, yn = y, the sequence (zn)n and

wn = w, we get gnw = gnwn → {a, b}. If gnw 9 a, then we can easily see that a subsequence

(gnkwnk)k would converge to b, so by applying Lemma 2.81 to the sequences (xnk)k, (ynk)k,

(znk)k and (wnk)k we would get b = a, a contradiction. Thus gnw → a, and the convergence is

pointwise.
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Now, let us show gn|M−{z} � a by showing that the condition of Proposition 2.73 is satisfied.

So, let (gnk)k be a subsequence and (wnk)k ⊂ M with wnk → w 6= z and gnkwnk → w′ ∈ M ,

and let us show w′ = a. By applying Lemma 2.80 to the sequences xnk = x, ynk = y and the

sequences (znk)k and (wnk)k, we get gnkwnk → {a, b}. Suppose by contradiction gnkwnk 9 a.

Then we would have a subsequence (also denoted by gnkwnk) converging to b. In the case

w /∈ {x, y} we apply Lemma 2.81 to the sequences xnk = x, ynk = y, (znk)k and wnk and get

b = a, a contradiction, so assume w ∈ {x, y}, say w = x. In this case we cannot apply the same

lemma for the same sequences, so let x′ /∈ {y, z, w} be a new element and put x′nk = x′. By

the pointwise convergence we have gnkx
′
nk → a, so now we have all hypotheses and can apply

Lemma 2.81 to (x′nk)k, (ynk)k, (znk)k and (wnk)k to get b = a, a contradiction. Therefore,

gnkwnk → a and w′ = a by uniqueness of limits. This completes the proof.

We are now ready to complete the proof of Theorem 2.77:

Lemma 2.83. If GyM is properly discontinuous on triples, then it is a convergence action.

Demonstração. Let (gn)n be a distinct sequence in G and let us find a collapsing subsequence.

Choose three distinct points x, y, z ∈ M . Define the constant sequences xn = x, yn = y and

zn = z. Since the sequences (gnxn)n, (gnyn)n and (gnzn)n are inside the compact M there must

be common converging subsequences (gnkxnk)k → a, (gnkynk)k → c and (gnkznk)k → b for some

a, c, b ∈M . Since the action is properly discontinuous we have card{a, c, b} ≤ 2 by Proposition

2.78, so suppose c = a for example. If b 6= a then by applying Lemma 2.82 to x, y and (znk)k

we immediately get gnk |M−{z} � a and we found a collapsing subsequence, so assume b = a.

in this case, let c ∈ M − {a} and define wnk = g−1
nk
c for any k. By compactness, we can

assume wnk → w ∈ M . Since card{x, y, z} = 3, w is at most one of them, and since all three

gnk -sequences converge to the same point a, we can assume w /∈ {x, y}. Since (gnkwnk)k = c

obviously converges to c 6= a, we apply Lemma 2.82 for x, y and (wnk)k get gnk |M−{w} � a and

we found again a collapsing subsequence, as desired. This completes the proof of the lemma and

therefore of Theorem 2.77.

The purpose (and the main example) of convergence actions in this thesis is the following:

let G be an infinite and finitely generated group and X be a proper geodesic hyperbolic space.

Suppose G acts properly discontinuously on X by isometries. By Proposition 2.15, G acts by

homeomorphisms on ∂X by g · c(∞) = gc(∞), which is a compact metric space by Theorem

2.13 and Proposition 2.14. We claim the following:

Proposition 2.84. The action Gy ∂X is a convergence action.

For the proof of this proposition, we will need the following Lemma, which has a straight-

forward proof. Remember a map between topological spaces is said to be proper if the inverse

image of any compact subset is compact.

Lemma 2.85. Let G be a group acting by homeomorphisms on two topological spaces X and

Y and let f : X → Y be a proper, continuous, surjective and G-equivariant map (that is,

g · f(x) = f(g · x) for any x ∈ X, g ∈ G). Then Gy X is properly discontinuous if and only if

Gy Y is properly discontinuous.
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Let us give a sketch for a proof of Proposition 2.84. Let X be δ-hyperbolic and define

Y ⊂ X×Θ(∂X) as the subset consisting of the pairs (a, {x, y, z}) ∈ X×Θ(∂X) such that there

are geodesic lines α1, α2 and α3 connecting x to y, y to z and z to x, respectively, such that

d(αi, a) ≤ δ for i = 1, 2, 3 (see next figure).

There is an obvious action by homeomorphisms G y X × Θ(∂X) that is given by g ·
(a, {x, y, z}) = (ga, {gx, gy, gz}). The subset Y is G-invariant, for if (a, {x, y, z}) ∈ Y and α1, α2

and α3 are the geodesic lines satisfying definition above, then the geodesic lines gα1, gα2 and gα3

connect gx to gy, gy to gz and gz to gx, respectively, and are such that d(gαi, ga) = d(αi, a) ≤ δ
for i = 1, 2, 3, as desired. Therefore we have an action by homeomorphisms G y Y . Let

π1 : Y → X and π2 : Y → Θ(∂X) be the natural projections, obviously continuous and G-

equivariant maps (by construction).

Lemma 2.86. π1 is proper.

Demonstração. Let K ⊂ X be a compact and let us show π−1
1 (K) is compact, by showing it

is sequentially compact. Let (an, {xn, yn, zn})n be a sequence in π−1
1 (K) (in particular, in Y ).

Since K is compact, we can assume without loss of generality that an → a for some a ∈ K.

For any n there are geodesic lines αn, βn and γn connecting xn to yn, yn to zn and zn to xn,

respectively, such that d(αn, an), d(βn, an), d(γn, an) ≤ δ. Since an → a, by a similar construction

of Proposition 2.9 we can find subsequences (αnk)k, (βnk)k and (γnk)k converging (uniformly on

compact sets) to geodesic lines α, β and γ. Of course the endpoints of αnk , βnk and γnk converge

in ∂X to the respective endpoints of α, β and γ, so α, β and γ form a geodesic “triangle” in

X ∪ ∂X with “vertices” x, y, z ∈ ∂X. By construction, (ank , {xnk , ynk , znk})→ (a, {x, y, z}), so

if we show (a, {x, y, z}) ∈ Y we are done. We’re just left to show d(α, a), d(β, a), d(γ, a) ≤ δ,

so let us show d(α, a) ≤ δ for example. For any k ≥ 1, there is by hypothesis pnk ∈ αnk such

that d(pnk , ank) ≤ δ, so it is easy to see (pnk)k is bounded and therefore contains a converging

subsequence (still denoted by the same subindexes) pnk → p. By the uniform convergence we

have p ∈ α. Now, for any ε > 0, d(p, a) ≤ d(p, pnk) + d(pnk , ank) + d(ank , a) ≤ ε+ δ+ ε for some

large enough nk. This implies d(α, a) ≤ d(p, a) ≤ δ, as desired.

We can finally complete the proof of Proposition 2.84. The map π1 can similarly be shown

to be surjective, and π2 can also be shown to be surjective and proper. Now we just have to
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apply Lemma 2.85. Since G y X is properly discontinuous, by Lemma 2.85 we have G y Y

properly discontinuous. Again, by Lemma 2.85, G y Θ(∂X) is properly discontinuous, so by

2.77 Gy ∂X is a convergence action, as desired.
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Caṕıtulo 3

Σ1 invariant and property R∞

Geometric invariants detect essential properties of groups in the same sense as algebraic invari-

ants detect properties of topological spaces in Algebraic Topology. Keeping this comparison in

mind, they behave with functorial properties as well. This means that isomorphic groups have

the same geometric invariants, in some sense we will define later. Also, homomorphisms between

groups will induce morphisms between the invariants, as one could expect. One of these is the

first BNS-invariant Σ1, for finitely generated groups. In this chapter we will define it, show some

of its properties and explain how it can be used to detect property R∞.

3.1 The character sphere

We will denote the character sphere of a finitely generated group G by S(G). It is our “work

place” for the chapter, that is, the ambient space where we will define the geometric invariant

Σ1. In this section we will define this sphere and show that it is really (homeomorphic to) a

finite dimensional euclidean sphere.

Let G be a finitely generated group. Denote by G′ the commutator subgroup G′ =

〈{ghg−1h−1 | g, h ∈ G}〉 and by Gab the abelianized group of G, that is, Gab = G/G′. Note that

this is well defined since G′ is a characteristic subgroup of G, in particular a normal subgroup.

By basic facts of Algebra, Gab is a finitely generated abelian group and therefore by the Structure

Theorem for finitely generated abelian groups (see [56], Chapter 2) we have an isomorphism

Gab ' Z⊕ ...⊕ Z⊕ Zm1 ⊕ ...⊕ Zmk

for some 1 ≤ k and 1 ≤ mj for all 1 ≤ j ≤ k, where the Z-factors (and also the Zmj -factors) may

not appear in the isomorphism. Let n be the number of Z-factors above, which we call the free

rank of Gab. Suppose n ≥ 1. We will denote the projection on the quocient π : G→ G/G′ = Gab

by g 7→ g. Let x1, ..., xn, y1, ..., yk be elements of G representing this isomorphism:

Gab = 〈x1〉 ⊕ ...⊕ 〈xn〉 ⊕ 〈y1〉 ⊕ ...⊕ 〈yk〉,

that is, 〈xj〉 ' Z for 1 ≤ j ≤ n and 〈yj〉 ' Zmj for 1 ≤ j ≤ k. Let

Hom(G,R) = {χ : G→ R | χ is a homomorphism},
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where R is the additive group of real numbers. Hom(G,R) is a real vector space with the natural

operations (χ+χ′)(g) = χ(g)+χ′(g) and (rχ)(g) = rχ(g). Next we show that is a n-dimensional

real vector space.

Lemma 3.1. We have a R-linear isomorphism Hom(G,R) ' Rn.

Demonstração. Let

T : Hom(G,R) −→ Rn

χ 7−→ (χ(x1), ..., χ(xn)).

It is easy to see that it is a linear operator. For surjectivity, let (a1, ..., an) ∈ Rn. For each

1 ≤ j ≤ n, consider the homomorphisms ϕj : 〈xj〉 → R with ϕj(xj
k) = kaj . Consider also the

zero homomorphisms zj : 〈yj〉 → R for all 1 ≤ j ≤ k. Then, by the Universal Property of the

direct sum (see [56]) there is a homomorphism

ϕ : Gab −→ R

(x1
r1 , ..., xn

rn , y1
s1 , ..., yk

sk) 7−→ r1ϕ1(x1) + ...+ rnϕn(xn) + s1z1(y1) + ...+ skzk(yk)

= r1a1 + ...+ rnan,

so ϕ(xj) = aj for all j. Now, χ = ϕ ◦ π is a homomorphism in Hom(G,R) such that

T (χ) = (χ(x1), ..., χ(xn)) = (ϕ(x1), ..., ϕ(xn)) = (a1, ..., an),

as desired. For injectivity, suppose T (χ) = 0, that is, χ(xj) = 0 for all 1 ≤ j ≤ n. Since

χ(ghg−1h−1) = χ(g) + χ(h) − χ(g) − χ(h) = 0 for all generators ghg−1h−1 of G′, we have

χ|G′ = 0 and then there is a homomorphism χ : Gab → R with χ ◦ π = χ. For all 1 ≤ j ≤ n,

χ(xj) = χ(xj) = 0. Since 〈yj〉 ' Zmj we have yj
mj = 1 (identity element) and then

mjχ(yj) = χ(yj
mj ) = χ(1) = 0,

from where we get χ(yj) = 0 for all j, since mj ≥ 1. The homomorphism χ vanishes in all the

generators xj and yj of Gab, then χ = 0 and we get χ = χ ◦ π = 0 ◦ π = 0, which concludes the

proof.

If we make Hom(G,R) inherit the norm from Rn putting ‖χ‖ = ‖T (χ)‖ =√
χ(x1)2 + ...+ χ(xn)2, then because ‖χ‖ = ‖T (χ)‖ it turns out that the linear isomorphism

T become a homeomorphism with the norm-induced topologies. Now we intend to show that

S(G) is homeomorphic to the euclidean sphere Sn−1. We will use the following standard lemma

which can be found in [76], Theorem 22.2 at page 142:

Lemma 3.2 (Quotient map Lemma). Let X,X be topological spaces with a quocient map p :

X → X. Let Z be another topological space and f : X → Z a continuous map. If f is fiber-
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preserving on p (that is, p(x) = p(x′) ⇒ f(x) = f(x′)) then there is a unique continuous map

f : X → Z such that f ◦ p = f .

Lemma 3.3. Let X,Y be topological spaces with homeomorphism T : X → Y . If a group G

acts in X, then there is an action of G in Y such that the quocient spaces X/G ' Y/G are

homeomorphic.

Demonstração. This proof is straightforward. Define the action putting

g · y = T (g · T−1(y)) ∈ Y

for g ∈ G and y ∈ Y . It is an action because

1 · y = T (1 · T−1(y)) = T (T−1(y)) = y,

and

g · (g′ · y) = g · (T (g′ · T−1(y)))

= T (g · T−1(T (g′ · T−1(y))))

= T (g · (g · T−1(y)))

= T ((gg′) · T−1(y)) = (gg′) · y.

Denote by pX : X → X/G and pY : Y → Y/G the respective projections such that pX(x) =

pX(x′) ⇔ g · x = x′ and pY (y) = pY (y′) ⇔ g · y = y′ for some g ∈ G. Note that pY ◦ T is

fiber-preserving on pX , because

pX(x) = pX(x′) ⇒ g · x = x′

⇒ g · T (x) = T (g · T−1(T (x))) = T (g · x) = T (x′)

⇒ pY ◦ T (x) = pY (T (x)) = pY (T (x′)) = pY ◦ T (x′),

then by the Quotient map Lemma there exists a continuous map T/G : X/G→ Y/G such that

T/G ◦ pX = pY ◦ T . Similarly, pX ◦ T−1 is fiber-preserving on pY , because

pY (y) = pY (y′) ⇒ g · y = y′

⇒ T (g · T−1(y)) = y′

⇒ g · T−1(y) = T−1T (g · T−1(y)) = T−1(y′)

⇒ pX ◦ T−1(y) = pX(T−1(y)) = pX(T−1(y′)) = pX ◦ T−1(y′),

then there also exists a continuous map T−1/G : Y/G→ X/G such that T−1/G◦pY = pX ◦T−1.

To finish, note that these maps are each other inverses. Indeed, for any z ∈ Y/G write
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z = pY (y). Then

T/G ◦ T−1/G(z) = (T/G)(T−1/G)pY (y) = (T/G)pXT
−1(y) = pY TT

−1(y) = pY (y) = z.

Similarly, given w ∈ X/G write w = pX(x). Then

T−1/G ◦ T/G(w) = (T−1/G)T/GpX(x) = (T−1/G)pY T (x) = pXT
−1T (x) = pX(x) = w,

therefore T/G : X/G→ Y/G given by T/G([x]) = [T (x)] is a homeomorphism, as desired.

Let us denote by R+ the multiplicative group of the positive real numbers. R+ acts in the

set Hom(G,R)− {0} in the natural way: r · χ = rχ. There is our character sphere:

Definition 3.4. Given a finitely generated group G, the character sphere of G is the orbit space

S(G) = (Hom(G,R)−{0})/R+ of the natural R+-action on Hom(G,R)−{0}. In other words,

S(G) = {[χ] | χ ∈ Hom(G,R)− {0}}

with the relation [χ] = [χ′]⇔ rχ = χ′ for some r > 0. The χ 6= 0 are called the characters of G.

Definition 3.5. For any subgroup H ≤ G of a finitely generated group G we define

S(G,H) = {[χ] ∈ S(G) | χ|H = 0}

and call it the sub sphere relative to H.

Proposition 3.6. If the free rank of Gab is n with generators x1, ..., xn then S(G) ' Sn−1 with

homeomorphism

H : S(G) −→ Sn−1

[χ] 7−→ (χ(x1), ..., χ(xn))

‖(χ(x1), ..., χ(xn))‖
.

Demonstração. The restriction of the homeomorphism T : Hom(G,R)→ Rn gives a homeomor-

phism T : Hom(G,R)− {0} → Rn − {0}. Since R+ acts on Hom(G,R)− {0}, by the previous

lemma we obtain that

S(G) = (Hom(G,R)− {0})/R+ ' Rn − {0}/R+
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by the homeomorphism [χ] 7→ [T (χ)], where the action of R+ on Rn − {0} is given by

r · (a1, ..., an) = T (r · T−1(a1, ..., an)) = T (rχ) = (rχ(x1), ..., rχ(xn)) = (ra1, ..., ran).

But with this action, we know that Rn − {0}/R+ ' Sn−1 with homeomorphism [P ] 7→ P
‖P‖ .

Then the composition of both homeomorphisms leads us to the desired one:

H : S(G) −→ (Rn − {0})/R+ −→ Sn−1

[χ] 7−→ [T (χ)] = [(χ(x1), ..., χ(xn))] 7−→ (χ(x1), ..., χ(xn))

‖(χ(x1), ..., χ(xn))‖
.

3.2 Σ1 invariant and properties

Although we already have a great survey on the basic theory of Sigma invariants in [92], we

intend to develop it from the ground up, in order to produce a self-contained chapter. Here we

focus on the first BNS invariant Σ1. There are higher invariants Σn for each n ≥ 1 (see [7]).

For the next definition the reader must remember the definitions of the Cayley graph and of

the subgraph induced by a subset of vertices (definitions 1.21 and 1.34, respectively) in Chapter

1.

Definition 3.7. Let G be a finitely generated group, choose a finite generating subset S and

consider the Cayley graph Γ = Γ(G,S). Given [χ] ∈ S(G), let

Gχ = {g ∈ G | χ(g) ≥ 0} ⊂ V (Γ)

be a collection of vertices inside Γ and let Γχ = ΓGχ , that is, the subgraph of Γ induced by the

vertices Gχ. The Σ1-invariant of G (and S) is

Σ1(G,S) = {[χ] ∈ S(G) | Γχ is connected}.

Note that if r > 0 then Gχ = Grχ and therefore Γχ = Γrχ. So the previous definition does

not depend on the class representative χ ∈ [χ] chosen and therefore Σ1(G,S) is well defined.

Later we are going to show that Σ1 does not depend on the finite generator set S choosen either.

Because of this, from now on we will denote Σ1(G,S) only by Σ1(G). In short, a point [χ] ∈ S(G)

is in Σ1(G) if any two vertices in Γχ can be connected by a path inside Γχ or, equivalently, if

any vertex in Γχ can be connected to the identity vertex 1 inside Γχ.

Example 3.8 (Σ1(Z⊕Z) = S(Z⊕Z)). The Cayley graph Γ(Z⊕Z, {(1, 0), (0, 1)}) is the known

infinite grid in R2. Any character χ can be seen as the restriction of a (non-vanishing) linear

map Tχ : R2 → R. ker(Tχ) is one-dimensional and partition R2 into two connected half-planes.

It turns out that Γχ is exactly the intersection of the infinite grid with the half-plane {Tχ ≥ 0},
so one can see that it is connected and then [χ] ∈ Σ1(Z⊕ Z).
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Figura 3.1: the blue grid is a finite portion of the infinite connected subgraph Γχ

Example 3.9 (The Baumslag-Solitar groups). This example is dedicated to the Baumslag-

Solitar groups. They were first defined in [4] and are a very important and vastly studied class

of groups in Geometric Group Theory. Here we are going to define them and give the reader

some intuitions on their Cayley graphs and Σ1 to help understanding the generalizations in

Chapter 5. This example is based on [92] and [12]. If m 6= 0 6= n, we define

BS(m,n) = 〈a, t | tamt−1 = an〉.

For m = 1 and n ≥ 1, the groups G = BS(1, n) are solvable and we call them the Solvable

BS groups. The relation tat−1 = an implies ta = ant and ta−1 = a−nt, so we can make all the

t-letters go right in a word. Similarly, we have at−1 = t−1an and a−1t−1 = t−1a−n, so we can

also make all the t−1-letters go left in a word. So every element assumes the form t−karts for

k, s ≥ 0 and r ∈ Z. Define V = 〈t〉 ≤ G and U = ker(ψ)CG, where ψ : G→ Z with ψ(g) = (g)t

is the homomorphism that sends g ∈ G to the sum (g)t of all the t-exponents of g. Then

writing t−karts = ts−kt−sarts we have that every element is of the form tk
′
u for some k′ ∈ Z

and u = t−sarts ∈ ker(ψ) = U . Then V U = G. Since V ∩ U = {tk ∈ V | k = ψ(tk) = 0} = {1},
by Section 1.3 in [88] we have that G = U o V is the semidirect product of its subgroups U and

V . Now, t is torsion-free and then V ' Z. On the other hand, using the Reidemeister-Schreier

Theorem 1.50 we obtain that U has a presentation

U = 〈aj , j ∈ Z | anj = aj+1, j ∈ Z〉,

then U is isomorphic to the group of n-adic fractions Z[ 1
n ] = { snr ∈ Q | s ∈ Z, r ≥ 0} under

isomorphism aj 7→ nj with inverse s
nr 7−→ as−r. Then BS(1, n) ' Z[ 1

n ]o Z (see [12]).

Now let us visualize the Cayley graph. Consider G = BS(1, 2) and generators S = {a, t}.
We have BS(1, 2) ' Z[1

2 ]oZ. The generator a corresponds to (1, 0) and t corresponds to (0, 1).

The Z-action is given by n · x = 2nx, n ∈ Z, x ∈ Z[1
2 ]. Then the operation is

(x, n)(x′,m) = (x+ 2nx′, n+m).



3.2. Σ1 invariant and properties 69

The vertices are Z[1
2 ]× Z ⊂ R2. Since (x, n)(0,±1) = (x, n± 1) and (x, n)(±1, 0) = (x± 2n, n),

there are four possible directions to walk, and the size of the horizontal movies is 2n, depending

on the vertex height n.

Since inGab we have a2 = tat−1 = tt−1a = a and so a = 1, we haveGab = 〈t〉 ' Z and then by

Proposition 3.6 there is a homeomorphism S(G) ' S0 with [χ] 7→ χ(t)
‖χ(t)‖ . So S(G) = {[χ], [−χ]},

where χ(a) = 0 and χ(t) = 1. Looking to the isomorphism, this means that χ(x, n) = n. We

assert that Σ1(G) = {[−χ]}. To see that Γχ is not connected observe that the vertices of Γχ are

the (x, n) such that n ≥ 0. Then, as we told before, the size of all the horizontal movies inside

Γχ is at least 20 = 1. So it is impossible, for example, to connect the vertices (0, 0) and (1
2 , 0)

of Γχ inside Γχ, because the horizontal distance between them is 1
2 . Therefore [χ] /∈ Σ1(G). On

the other hand, [−χ] ∈ Σ1(G). Indeed, given an arbitrary vertex (x, n) = ( s
2r , n) in Γ−χ (that is,

n ≤ 0) let us connect it to the vertex (0, 0). First, connect (x, n) to (x,−r) by going vertically

(note that we didn’t leave Γ−χ because both n and −r are non-positive). Now, the horizontal

moves at height −r have size 2−r. Since x = s
2r is a multiple of 2−r, by going horizontally

(again, not leaving Γ−χ) we can connect (x,−r) to (0,−r), after |s| moves. Finally, it is easy

to connect (0,−r) to (0, 0) by going up vertically. So Γ−χ is connected and Σ1(G) = {[−χ]}, as

desired.

Figura 3.2: connecting (23
8 , 0) to (0, 0)

Before we explore the properties of Σ1, let us define another geometric invariant called Ω1.

The Ωn invariants (n ≥ 1) were first defined by N. Koban in [63] (2006) and are analogous of the

Σn ones. The definitions of Ωn are nontrivial. However, when n = 1, a great characterization of
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Ω1 in terms of Σ1 was given in [63] and allows us to define it in a much easier way:

Definition 3.10 ([63], Theorem 3.1, pg 1977). Let G be a finitely generated group and identify

S(G) with an euclidean sphere (see Proposition 3.6). The first Omega invariant of G is defined

as

Ω1(G) = {[χ] ∈ S(G) | Bd([χ], π/2) ⊂ Σ1(G)},

where Bd([χ], π/2) is the open ball centered in [χ] with ray π
2 , where d is the natural geodesic

distance on euclidean spheres.

It was shown in [63] that Ω1(G) is closed in S(G). Also, we have the following fact shown in

[64]:

Definition 3.11. Let A ⊂ Sn and B ⊂ Sm. The spherical join of A and B in Sn+m+1 is

A~B =

{
((1− t)a, tb)
‖((1− t)a, tb)‖

| a ∈ A, b ∈ B, t ∈ [0, 1]

}
⊂ Sn+m+1.

Theorem 3.12 ([64], main result). If G,H are finitely generated groups, then Ω1(G × H) =

Ω1(G)~ Ω1(H) is the spherical join of Ω1(G) and Ω1(H) in S(G×H).

Since the Ω1-invariant can be determined by the knowledge of Σ1, we will easily compute

them for some groups as corollaries in some later cases in the thesis, in case somebody needs

them at some point.

Some fundamental properties

Now we will show three fundamental properties of the invariant Σ1: its independence from the

generating set, its invariance under automorphism and a geometric criterion. Let us introduce

some notation that is going to be used in the rest of the work. The notation is based on [92].

Remember that the notation for a path in a Cayley graph Γ = Γ(G,S) is p = (g, s1...sn) ∈
P (Γ). Given a G-character χ, the path valuation function is

νχ : P (Γ) −→ R

p = (g, s1...sn) 7−→ min{χ(g), χ(gs1), χ(gs1s2), ..., χ(gs1s2...sn)}.

From the definition of Γχ we get that a path p ∈ P (Γ) runs inside Γχ if and only if all its vertices

lie in Γχ, or equivalently, νχ(p) ≥ 0. There are three basic “path operations”:
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• The group G acts on P (Γ) by putting g′ · (g, s1...sn) = (g′g, s1...sn). This corresponds

to translating the entire path by g′ in Γ. Using the definition of νχ and basic minimum

properties we obtain νχ(g′ · p) = χ(g′) + νχ(p);

• If p = (g, s1...sn) we define the inverse path of p by p−1 = (gs1...sn, sn
−1...s1

−1), that

walks in the exactly opposite direction. Of course we have νχ(p) = νχ(p−1);

• If p = (g, s1...sn) and p′ = (g′, r1...rm) are such that gs1...sn = g′, the concatenation of

p and p′ is defined by pp′ = (g, s1...snr1...rm). As one could expect, we have νχ(pp′) =

min{νχ(p), νχ(p′)}.

Independence from generating set

The first fundamental property of Σ1 is

Proposition 3.13 (Independence property). Let G be a finitely generated group and S1, S2 two

finite generating sets for G. Then Σ1(G,S1) = Σ1(G,S2).

Demonstração. It suffices to show that, given a finite generating set S and z ∈ G we have

Σ1(G,S) = Σ1(G,S ∪ {z}), that is, we can add one new element in S without changing Σ1.

Indeed, if we had shown this, then by adding in S1, one by one, all the elements of S2 we

obtain Σ1(G,S1) = Σ1(G,S1 ∪S2). Similarly, Σ1(G,S2) = Σ1(G,S2 ∪S1) and then Σ1(G,S1) =

Σ1(G,S1 ∪ S2) = Σ1(G,S2), as desired.

Let S be a finite generating set of G and let z ∈ G. Let S′ = S ∪ {z}, Γ = Γ(G,S) and

Γ′ = Γ(G,S′). We have to show that Σ1(G,S) = Σ1(G,S′). Let [χ] ∈ S(G). We must show that

Γχ is connected if and only if Γ′χ is connected. Now, Γ is a subgraph of Γ′. The two subgraphs

Γχ and Γ′χ of Γ′ have exactly the same set Gχ of vertices, but Γ′χ may have more edges, because

of the new generator z. So if Γχ is connected, Γ′χ is connected as well. The difficult is the

converse: suppose now Γ′χ is connected. Let g, h ∈ G two vertices in Γχ and let us connect them

inside Γχ. Since z ∈ G = 〈S〉, write z = s1...sn with si ∈ S±1. Since χ 6= 0, choose t ∈ S±1 such

that χ(t) > 0. Then there is k ≥ 0 such that

χ(tk) ≥ −min{0, νχ(1, s1...sn), νχ(1, sn
−1...s1

−1)}.

Let g′ = t−kgtk and h′ = t−khtk. Both are vertices in Γ′χ, because χ(g′) = χ(g) ≥ 0 and

χ(h′) = χ(h) ≥ 0. Since Γ′χ is connected by hypothesis, take a path p′ = (g′, w′) from g′ to h′

inside Γ′χ. p′ is not a path in Γ because it involves the letter z. We solve this problem in the

following way: w′ is a word in S′±1, so write w′ = w1z
e1 ...wmz

em , wi words in S±1 and ei = ±1.

Replacing zei by (s1...sn)ei we define w = w1(s1...sn)e1 ...wm(s1...sn)em .

Now p = (g′, w) is a path in Γ that is not necessarily inside Γχ, but its translation tk · p is.

Indeed,

νχ(p) = νχ(g′, w1(s1...sn)e1 ...wm(s1...sn)em)

= νχ((g′, w1)(g′w1, (s1...sn)e1)(g′w1z
e1 , w2)...(g′w1z

e1 ...wm, (s1...sn)em))

= min{νχ(g′, w1), νχ(g′w1, (s1...sn)e1), νχ(g′w1z
e1 , w2), ..., νχ(g′w1z

e1 ...wm, (s1...sn)em)}.
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Figura 3.3: exchanging p′ by p for ze1 = z = s1s2

Now, by construction all the paths (g′, w1), (g′w1z
e1 , w2)...(g′w1z

e1 ...wm−1z
em−1 , wm) are sub-

paths of p′ and then have non-negative νχ-value. Then

νχ(p) ≥ min{0, νχ(g′w1, (s1...sn)e1), νχ(g′w1z
e1w2, (s1...sn)e2), ..., νχ(g′w1z

e1 ...wm, (s1...sn)em)}.

But every path (g′w1z
e1 ...zei−1wi, (s1...sn)ei) above starts (again, by construction) with a ver-

tex in p′. Then νχ(g′w1z
e1 ...zei−1wi, (s1...sn)ei) = χ(g′w1z

e1 ...zei−1wi) + νχ(1, (s1...sn)ei) ≥
νχ(1, (s1...sn)ei). Then

νχ(p) ≥ min{0, νχ(1, s1...sn), νχ(1, sn
−1...s1

−1)}

and therefore

νχ(tk · p) = χ(tk) + νχ(p) ≥ χ(tk) + min{0, νχ(1, s1...sn), νχ(1, sn
−1...s1

−1)} ≥ 0,

as desired. Now, tk · p is a path in Γχ connecting tkg′ = gtk and tkh′ = htk. But it is easy to

connect g to gtk and h to htk in Γχ. The composition of these three paths connects g to h in

Γχ, which finishes the proof.

Figura 3.4: connecting g to h

The freedom to choose any finite generating set of G for computing Σ1(G) leads us to

many interesting consequences. We show two of them. The first one deals with the center

Z(G) = {z ∈ G | zg = gz ∀ g ∈ G}.

Corollary 3.14. If [χ] ∈ S(G) is such that χ|Z(G) 6= 0, then [χ] ∈ Σ1(G).

Demonstração. Let z ∈ Z(G) such that χ(z) 6= 0 and suppose χ(z) > 0, exchanging by z−1 if

necessary. By the independence property, choose a finite generating set S of G containing z (if
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z /∈ S, just take the generating set S ∪ {z}). Let us show that Γχ is connected by connecting

two arbitrary vertices g, h ∈ Γχ. Since Γ is always connected, choose a path p in Γ from g to h.

Choose k ≥ 0 such that χ(zk) ≥ −νχ(p). Then the path zk · p connects zkg = gzk to zkh = hzk

and lies inside Γχ, because νχ(zk · p) = χ(zk) + νχ(p) ≥ 0. Now, it is easy to connect g to h

inside Γχ, in a similar way we did in the previous proof.

Corollary 3.15. If G is a finitely generated abelian group, then Σ1(G) = S(G).

Demonstração. We have Z(G) = G. Then for every [χ] ∈ S(G), χ|Z(G) = χ 6= 0, so by the

previous corollary [χ] ∈ Σ1(G).

Invariance under automorphisms

Let us concentrate on the second fundamental property. Let G,H be finitely generated groups

with an isomorphism ϕ : G→ H. Consider the pullback

ϕ∗ : Hom(H,R) −→ Hom(G,R)

χ 7−→ χ ◦ ϕ,

which is a linear map between two finite dimensional vector spaces and therefore continuous

(basic fact of Functional Analysis) with inverse ϕ−1∗, that is, a homeomorphism. Restrict it to

ϕ∗ : Hom(H,R)− {0} −→ Hom(G,R)− {0}. We have

[χ] = [χ′] in S(H)⇒ χ′ = rχ, r > 0⇒ ϕ∗(χ′) = χ′ ◦ϕ = rχ ◦ϕ = rϕ∗(χ)⇒ [ϕ∗(χ)] = [ϕ∗(χ′)],

which shows that the quotient map

ϕ∗ : S(H) −→ S(G)

[χ] 7−→ [χ ◦ ϕ]

is well defined. It is also continuous with continuous inverse ϕ−1∗, so it is a homeomorphism

between the character spheres.

Now, fix a finite generating set S for G, and fix ϕ(S) ⊂ H as a finite generating set for H.
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Lemma 3.16. ϕ∗(Σ1(H,ϕ(S))) = Σ1(G,S).

Demonstração. We will first show the equivalence [χ] ∈ Σ1(H,ϕ(S)) ⇔ ϕ∗[χ] = [χ ◦ ϕ] ∈
Σ1(G,S) for any [χ] ∈ S(G). By definition,[χ] ∈ Σ1(H,ϕ(S))⇔ Γχ = Γ(H,ϕ(S))χ is connected,

[χ ◦ ϕ] ∈ Σ1(G,S)⇔ Γχ◦ϕ = Γ(G,S)χ◦ϕ is connected.

But is easy to see that the isomorphism ϕ : G→ H easily induces the graph isomorphism

ϕ∗ : Γ(G,S) −→ Γ(H,ϕ(S))

g 7−→ ϕ(g)

(g, s) 7−→ (ϕ(g), ϕ(s))

that maps the vertices and edges of Γχ◦ϕ on the vertices and edges of Γχ. Indeed,

ϕ∗(V (Γχ◦ϕ)) = ϕ∗({g ∈ G | χ ◦ ϕ(g) ≥ 0})

= {ϕ(g) ∈ H | χ ◦ ϕ(g) ≥ 0}

= {h ∈ H | χ(h) ≥ 0}

= V (Γχ)

ϕ∗(E(Γχ◦ϕ)) = ϕ∗({(g, s) | g, gs ∈ V (Γχ◦ϕ)})

= ϕ∗({(g, s) | χ(ϕ(g)), χ(ϕ(gs)) ≥ 0})

= {(ϕ(g), ϕ(s)) | χ(ϕ(g)), χ(ϕ(g)ϕ(s)) ≥ 0}

= {(h, ϕ(s)) | h, hϕ(s) ∈ V (Γχ)}

= E(Γχ).

Then Γχ◦ϕ ' Γχ. In particular, Γχ◦ϕ is connected if and only if Γχ is, which shows the equiva-

lence. Now let us show the equality of the lemma. The (⊂) part follows directly from the (⇒)

part of the equivalence. Finally, let [ξ] ∈ Σ1(G,S). Since ϕ∗ is bijective write [ξ] = ϕ∗[χ] for

some [χ] ∈ S(H). Since ϕ∗[χ] = [ξ] ∈ Σ1(G,S), from the (⇐) part of the equivalence we have

[χ] ∈ Σ1(H,ϕ(S)) and therefore [ξ] ∈ ϕ∗(Σ1(H,ϕ(S))), as desired.

Definition 3.17. Let G be finitely generated and A ⊂ S(G). We say that A is invariant (or

invariant by automorphisms) in S(G) if for all automorphism ϕ of G we have ϕ∗(A) = A (see

the induced homeomorphism ϕ∗ above), or, equivalently, if [χ ◦ ϕ] ∈ A for all [χ] ∈ A.

Theorem 3.18 (Invariance under automorphism property). Σ1(G) and Σ1(G)c are invariant

subsets of S(G).

Demonstração. Let ϕ ∈ Aut(G). This is the special case of the above lemma for G = H. Fix

the finite generator sets S and ϕ(S) of G. Since Σ1 does not depend on the finite generator set
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choosen, we have

ϕ∗(Σ1(G)) = ϕ∗(Σ1(G,ϕ(S))) = Σ1(G,S) = Σ1(G).

Since ϕ∗ is bijective we also have

ϕ∗(Σ1(G)c) = ϕ∗(S(G)− Σ1(G)) = ϕ∗(S(G))− ϕ∗(Σ1(G)) = S(G)− Σ1(G) = Σ1(G)c.

From the invariance above, two special characteristic subgroups of G arise:

Corollary 3.19. If G is a finitely generated group, then the subgroups

N =
⋂

[χ]∈Σ1(G)

ker(χ) and N ′ =
⋂

[χ]∈Σ1(G)c

ker(χ)

are characteristic subgroups of G. Furthermore, G/N and G/N ′ are abelian, finitely generated

and torsion-free groups (and so isomorphic to Zk for some k ≥ 0, see [56]).

Demonstração. Let us show that N is characteristic, the proof for N ′ being similar. Let ϕ ∈
Aut(G) and g ∈ N . We must show that ϕ(g) ∈ N , so take [χ] ∈ Σ1(G) and let us show that

ϕ(g) ∈ ker(χ). Since [χ] ∈ Σ1(G), by the Theorem above we have [χ◦ϕ] = ϕ∗[χ] ∈ Σ1(G). Now,

since g ∈ N , in particular g ∈ ker(χ ◦ ϕ). Then χ(ϕ(g)) = 0, that is, ϕ(g) ∈ ker(χ), as desired.

Now we show the other properties for G/N , the proof for G/N ′ being also similar. G/N

is obviously finitely generated because it is the quotient of a finitely generated group. Let

g, h ∈ G/N . Since χ(ghg−1h−1) = χ(g) + χ(h) − χ(g) − χ(h) = 0 for all [χ] ∈ Σ1(G) (in

fact, this is true for every [χ] ∈ S(G)), we have ghg−1h−1 ∈ N and by definition of quotient

ghg−1h−1 = 1, or gh = hg, that is, G/N is abelian. To finish, let g 6= 1 in G/N (or g /∈ N)

such that gk = 1 for some power k ≥ 0, and let us show that k = 0. Since gk = gk = 1 we have

gk ∈ N , or kχ(g) = χ(gk) = 0 for every [χ] ∈ Σ1(G). Since g /∈ N we have χ0(g) 6= 0 for some

[χ0] ∈ Σ1(G). But since kχ0(g) = 0 we must have k = 0. So G/N is torsion-free.

Geometric criterion

To show the third property we need the following

Definition 3.20. Let G be a finitely generated group with finite generating set S and let

Γ = Γ(G,S) be its Cayley graph. If I ⊂ R is any interval, let GIχ = {g ∈ G | χ(g) ∈ I}. We

denote by ΓIχ the subgraph of Γ induced by the vertices in GIχ.

By definition, Γχ = Γ
[0,∞)
χ and Γ−χ = Γ

(−∞,0]
χ . Also, it is easy to see that an element of g

acts on these subgraphs by translation, that is, g · ΓIχ = Γ
χ(g)+I
χ . All these translation actions

are isomorphisms between the subgraphs.

Lemma 3.21. If Γ
[a0,∞)
χ is connected for some a0 ∈ R then Γ

[a,∞)
χ is connected for all a ∈ R

(in particular, Γχ is connected, that is, [χ] ∈ Σ1(G)).

Demonstração. We show that Γ
[a,∞)
χ is connected in the two cases: a < a0 and a > a0. The case

a = a0 is done by hypothesis.
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(a < a0) Since χ 6= 0, take a generator t ∈ S± such that χ(t) > 0 and a sufficient large k ≥ 1 such

that a + χ(tk) ≥ a0. Now, let g, g′ be two vertices in Γ
[a,∞)
χ . Since χ(t) > 0, the paths

p = (g, tk) and p′ = (g′, tk) remains inside Γ
[a,∞)
χ and connects g, g′ respectively with the

vertices gtk and g′tk which are inside Γ
[a0,∞)
χ , because χ(gtk) = χ(g)+χ(tk) ≥ a+χ(tk) ≥ a0

and χ(g′tk) = χ(g′) + χ(tk) ≥ a + χ(tk) ≥ a0. Since Γ
[a0,∞)
χ is connected by hypothesis,

connect the vertices gtk and g′tk by a path p̃ inside Γ
[a0,∞)
χ (therefore inside Γ

[a,∞)
χ ). So

obviously g and g′ can be connected inside Γ
[a,∞)
χ , as desired.

Figura 3.5: a < a0 case

(a > a0) Fix g ∈ G such that χ(g) + a < a0. But g · Γ[a,∞)
χ = Γ

χ(g)+[a,∞)
χ = Γ

[χ(g)+a,∞)
χ . Since

χ(g) + a < a0, g · Γ[a,∞)
χ is connected by the previous item. Therefore, Γ

[a,∞)
χ ' g · Γ[a,∞)

χ

is connected, as desired.

Theorem 3.22 (Geometric criterion for Σ1). Let G be a finitely generated group with finite

generating set S and denote Y = S±. Let [χ] ∈ S(G) and choose t ∈ Y such that χ(t) > 0.

Then the following are equivalent:

1) Γχ is connected (or [χ] ∈ Σ1(G));

2) For every y ∈ Y = S±, there exists a path py from t to yt in Γ such that

νχ(py) > νχ((1, y)) (or νχ(py)− νχ((1, y)) > 0). (3.1)

Demonstração.

1)⇒ 2) Suppose Γχ = Γ
[0,∞)
χ connected and let y ∈ Y . We must build the path py from t to yt

satisfying 3.1. Let ry = min{χ(t), χ(yt)}. By Lemma 3.21, Γ
[ry ,∞)
χ is also connected. Since



3.2. Σ1 invariant and properties 77

the vertices t and yt are inside Γ
[ry ,∞)
χ by definition of ry, we can connect them by a path

py inside Γ
[ry ,∞)
χ (therefore, νχ(py) ≥ ry). This path satisfies 3.1. In fact,

νχ(py) ≥ ry = min{χ(t), χ(yt)}

= χ(t) + min{0, χ(y)}

= χ(t) + νχ((1, y))

> νχ((1, y)).

2)⇒ 1) To show that Γχ is connected, let g be any vertex of Γχ and let us build a path from 1 to

g inside Γχ. Write all the existing paths py by py = (t, wy), where each wy is a word in Y .

Let

d = min{νχ(py)− νχ((1, y)) | y ∈ Y } > 0.

Since the whole graph Γ is always connected, take a path p0 ∈ P (Γ) from 1 to g. If

νχ(p0) ≥ 0 we are done. If not, then, starting from p0, we will modify it (without changing

the extremities 1 and g) until we get a path with νχ ≥ 0. To do so, define

T :P (Γ) −→ P (Γ)

p = (h, y1y2...yn) 7−→ T (p) = (h, twy1wy2 ...wynt
−1).

Note that T (p) has the same extremities of p. Note also that p can be written as the

path concatenation p = (h, y1)(hy1, y2)...(hy1y2...yn−1, yn) and T (p) can be written as the

concatenation

T (p) = (h, t)(h · py1)(hy1 · py2)(hy1y2 · py3)...(hy1y2...yn−1 · pyn)(y1...ynt, t
−1)

as one can see in the example.

Figura 3.6: Applying the path transformation T

Write p0 = (1, y1y2...yn), yi ∈ Y , so y1...yn = g. We claim that νχ(T (p0)) ≥ min{0, νχ(p0)+

d}. In fact, using first the concatenation equation (before Proposition 3.13) and then using

that νχ(1, t) = 0 and νχ(gt, t−1) = χ(g) ≥ 0 we have
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νχ(T (p0)) = min{νχ((1, t)), νχ(py1), νχ(y1 · py2), ..., νχ(y1...yn−1 · pyn), νχ(gt, t−1)}

≥ min{0, νχ(py1), νχ(y1 · py2), ..., νχ(y1...yn−1 · pyn)}.

= min{0, νχ(py1), χ(y1) + νχ(py2), ..., χ(y1y2...yn−1) + νχ(pyn)}.

Now, by definition of d we have νχ(pyi) ≥ νχ(1, yi) + d for 1 ≤ i ≤ n. So

νχ(T (p0)) ≥ min{0, νχ(py1), χ(y1) + νχ(py2), ..., χ(y1y2...yn−1) + νχ(pyn)}.

≥ min{0, νχ(1, y1) + d, χ(y1) + νχ(1, y2) + d, ..., χ(y1y2...yn−1) + νχ(1, yn) + d}.

= min{0, νχ(1, y1) + d,+νχ(y1, y2) + d, ...,+νχ(y1y2...yn−1, yn) + d}.

But all the paths (1, y1), (y1, y2), ..., (y1y2...yn−1, yn) above are pieces of p0 (see the figure)

so they have bigger χ-value than p0 and then

νχ(T (p0)) ≥ min{0, νχ(1, y1) + d,+νχ(y1, y2) + d, ...,+νχ(y1y2...yn−1, yn) + d}.

≥ min{0, νχ(p0) + d, νχ(p0) + d, ..., νχ(p0) + d}

= min{0, νχ(p0) + d},

which shows the claim. By induction one can easily prove that νχ(T k(p0)) ≥
min{0, νχ(p0) + kd} for k ≥ 1. Then νχ(p0) + kd ≥ 0 for some large enough k and

so

νχ(T k(p0)) ≥ min{0, νχ(p0) + kd} = 0.

This means that T k(p0) connects 1 and g inside Γχ, completing the proof.

Theorem 3.22 above characterizes Σ1(G) in terms of a finite number of equations having the

form νχ(py) − νχ((1, y)) > 0 (equation 3.1). But the maps χ 7→ νχ(py) − νχ((1, y)) seem to be

continuous, so this system of equations should be an open condition for Σ1(G). We formalize

this in the following

Corollary 3.23 (Openess of Σ1(G)). If G is a finitely generated group, Σ1(G) is an open set

of S(G).

Demonstração. Fix a finite generating set S for G and denote Y = S± as above. Let [χ0] ∈
Σ1(G) and fix t ∈ Y such that χ0(t) > 0. Write Y = {y1, ..., yn} and fix the existing paths

py1 , ..., pyn of Theorem 3.22. We must find a set A ⊂ S(G) which is open in S(G) and such that

[χ0] ∈ A ⊂ Σ1(G). We have the system
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
νχ0(py1)− νχ0((1, y1)) > 0,

... (∗)

νχ0(pyn)− νχ0((1, yn)) > 0.

Let fi : Hom(G,R)→ R with fi(χ) = νχ(pyi)− νχ((1, yi)), 1 ≤ i ≤ n, and let τ : Hom(G,R)→
R with τ(χ) = χ(t). Since the numbers νχ(pyi) and νχ((1, yi)) are given in terms of the χ(y)

for y ∈ Y and the topology of Hom(G,R) is also given in terms of some of them, the fi are

continuous, and since t ∈ Y , so it is τ . This implies that W =
⋂n
i=1 fi

−1((0,∞)) ∩ τ−1((0,∞))

is open in Hom(G,R). Since W ⊂ Hom(G,R) − {0} (because 0 /∈ τ−1((0,∞)), for example),

W is open in Hom(G,R)− {0}. Now let p : Hom(G,R)− {0} → S(G) be the natural quotient

map and let A = p(W ) ⊂ S(G). We will show that A satisfy what we wanted:

• [χ0] ∈ A. If we show that χ0 ∈W , then [χ0] = p(χ0) ∈ p(W ) = A. But τ(χ0) = χ0(t) > 0,

so χ0 ∈ τ−1((0,∞)), and the equations (∗) show that χ0 ∈
⋂n
i=1 fi

−1((0,∞)).

• A ⊂ Σ1(G). Let [χ] ∈ A = p(W ). Then [χ] = [χ′] for χ′ ∈ W . We have χ = rχ′ for some

r > 0, then χ(t) = rχ′(t) > 0 and we can use the same t and the same paths pyi to apply

Theorem 3.22 for [χ]. Since χ′ ∈
⋂n
i=1 fi

−1((0,∞)), we have

νχ(pyi)− νχ((1, yi)) = νrχ′(pyi)− νrχ′((1, yi)) = r(νχ′(pyi)− νχ′((1, yi))) > 0,

so the n equations 3.1 are satisfied also for χ and therefore by the Geometric Criterion

3.22, [χ] ∈ Σ1(G).

• A open in S(G). By definition of quotient topology, we just have to show that p−1(A) =

p−1p(W ) is open in Hom(G,R)−{0}. But W is open, so let us show that p−1p(W ) = W .

Obviously, W ⊂ p−1p(W ). Now, let χ ∈ p−1p(W ), that is, [χ] = [χ′] for some χ′ ∈ W .

Write χ = rχ′. Again, we have τ(χ) = χ(t) = rχ′(t) > 0 and fi(χ) = νχ(pyi)−νχ((1, yi)) =

r(νχ′(pyi)− νχ′((1, yi))) > 0, so χ ∈W by definition.

To finish, we just cite Theorem A4.1 of [92], one of the reasons why the Σ invariant is so

important: it detects the finite generation of normal subgroups NCG containing the commutator

G′:

Theorem 3.24. Let G be a finitely generated group and NCG with G′ ⊂ N . Then N is finitely

generated if and only if S(G,N) ⊂ Σ1(G). In particular, G′ is finitely generated if and only if

Σ1(G) = S(G).

Other properties

Next we show some other important properties of Σ1 under quotients, finite index subgroups,

direct and amalgamated products and HNN extensions. Each of them will be useful to the

present work at some point. Most proofs can be found in [92], although we give here some

additional details.
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Quotients

Proposition 3.25. Let G be a finitely generated group, NCG a normal subgroup with projection

homomorphism π : G → G/N and let [χ] ∈ S(G/N). If [χ ◦ π] ∈ Σ1(G) then [χ] ∈ Σ1(G/N).

The converse is also true if N is finitely generated.

Demonstração. Let S be a finite generating set for G, and fix π(S) as a finite generating set for

G/N . Denote Γ = Γ(G,S), Γ = Γ(G/N, π(S)) and the induced subgraphs Γχ◦π = Γ(G,S)χ◦π

and Γχ = Γ(G/N, π(S))χ. There is a natural surjective graph homomorphism

Υ :Γ −→ Γ

g 7−→ g

(g, s) 7−→ (g, s)

such that

V (Γχ◦π) = {g ∈ G | χ ◦ π(g) = χ(g) ≥ 0} = Υ−1({g ∈ G/N | χ(g) ≥ 0}) = Υ−1(V (Γχ))

and

E(Γχ◦π) = {(g, s) | g, gs ∈ V (Γχ◦π)}

= {(g, s) | g, gs ∈ Υ−1(V (Γχ))}

= Υ−1({(g, gs) | g, gs ∈ V (Γχ)})

= Υ−1(E(Γχ)).

Then Γχ◦π = Υ−1(Γχ) and this implies that the restriction homomorphism Υ : Γχ◦π → Γχ

is also surjective, for Υ(Γχ◦π) = Υ(Υ−1(Γχ)) = Γχ. Now the first part of the proposition is

easy: if [χ ◦ π] ∈ Σ1(G), Γχ◦π is connected. Then its image Γχ under Υ is connected, that is,

[χ] ∈ Σ1(G/N).

Now suppose N is finitely generated by a fixed finite subset Z ⊂ N . By the independence

theorem of Σ1, we can add Z to the generator set of G without changing Σ1(G), so denote

Γ = Γ(G,S ∪ Z) and Γχ◦π = Γ(G,S ∪ Z)χ◦π. Supppose [χ] ∈ Σ1(G/N) (Γχ is connected) and

let us show that [χ ◦ π] ∈ Σ1(G) (Γχ◦π is connected). Let g be any vertex in Γχ◦π and let us

connect 1 to g inside Γχ◦π. Since χ(g) = χ ◦ π(g) ≥ 0, 1 and g are vertices of the connected

graph Γχ. Connect 1 to g by a path p = (1, s1...sm) in Γχ, si ∈ π(S)±. Note that νχ(p) ≥ 0

and g = s1...sm = s1...sm. Because of this, we have g(s1...sm)−1 ∈ N , so write g = ns1...sm

for n ∈ N = 〈Z〉 and write n = z1...zk, zi ∈ Z±. So, z1...zks1...sm is a word in the set S ∪ Z,

γ = (1, z1...zks1...sm) is a path from 1 to z1...zks1...sm = ns1...sm = g and because zi ∈ N we

have χ ◦ π(zi) = χ(1) = 0, which implies

νχ◦π(γ) = min{0, χ ◦ π(z1), ..., χ ◦ π(z1...zk), χ ◦ π(z1...zks1), ..., χ ◦ π(z1...zks1...sm)}

= min{0, χ ◦ π(s1), ..., χ ◦ π(s1...sm)}

= νχ(p) ≥ 0
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and finishes the proof.

Finite index subgroups

With respect to finite index subgroups H, Σ1 behaves better than one could expect. First we

need a

Lemma 3.26. Let χ : G → R be a homomorphism of groups and H ≤ G a subgroup of finite

index in G. Then χ = 0⇐⇒ χ|H = 0.

Demonstração. If χ = 0 it is obvious that χ|H = 0. Suppose χ|H = 0 and let G = g0Htg1Ht...t
gnH be a finite coset decomposition of G (g0 = 1). For each g ∈ G we have g = gih for some i and

some h ∈ H, so χ(g) = χ(gih) = χ(gi) + χ(h) = χ(gi). Then im(χ) ⊂ {χ(g0), χ(g1), ..., χ(gn)} is

a finite subgroup of R. But since R is torsion-free, every nontrivial subgroup must be infinite.

Then im(χ) = 0 and χ = 0, as desired.

Because of this lemma, if [χ] ∈ S(G) then the expression [χ|H ] ∈ S(H) makes sense because

χ|H 6= 0. If i : H → G is the inclusion, we have the well defined map i∗ : S(G) → S(H) with

[χ] 7→ [χ ◦ i] = [χ|H ]. Here is our main property:

Proposition 3.27. Let G be a finitely generated group with finite generating set S, H ≤ G a

finite index subgroup and [χ] ∈ S(G). Then [χ] ∈ Σ1(G)⇐⇒ [χ|H ] ∈ Σ1(H).

Demonstração. A transversal T of G mod H is a collection T ⊂ G of coset representatives

(G = tt∈THt) with 1 ∈ T . Fix such a transversal T (finite, in our case). We may assume

that χ(t) ≤ 0 for every t ∈ T . In fact, if some t ∈ T is such that χ(t) > 0 (t 6= 1), by the

above Lemma 3.26 since χ|H 6= 0 we can find h ∈ H such that χ(ht) = χ(h) + χ(t) ≤ 0. Since

Hht = Ht, then replacing t by ht in the collection T we still have a transversal. By doing

all the necessary replacements we get the desired transversal T . Now, given g ∈ G, denote by

g the (unique) element of T such that Hg = Hg. We claim that H is generated by the set

W = {tsts−1 | t ∈ T, s ∈ S±}. Indeed, given h ∈ H, write h = s1...sm for si ∈ S±. Let

t1 = s1 ∈ T and ti = ti−1si ∈ T for 2 ≤ i ≤ m. We have tm = 1. Indeed, given g1, g2 ∈ G,

we have Hg1g2 = Hg1g2 = Hg1g2, so by uniqueness g1g2 = g1g2. Using this, we have t1 = s1,

t2 = t1s2 = s1s2 = s1s2 and recursively we get tm = tm−1sm = s1...sm−1sm = s1...sm = h = 1.

Then

h = s1...sm = (1s1t1
−1)(t1s2t2

−1)...(tm−1smtm
−1),

but all the parenthesis (ti−1siti) = (ti−1siti−1si
−1

) are by definition letters (elements) of W , so

h is generated by W , which shows the claim. Denote then Γχ = Γ(G,S)χ, ΓH = Γ(H,W ) and

ΓHχ = Γ(H,W )χ|H .

(⇒) Suppose Γχ connected and let us connect 1 to any vertex h ∈ ΓHχ inside ΓHχ. Since

χ(h) ≥ 0, connect by hypothesis 1 to h inside Γχ by a path p = (1, w) where w = s1..sm, si ∈ S±

is a word in S. Define the word

uw = (1s1t1
−1)(t1s2t2

−1)...(tm−1smtm
−1),

where t1 = s1 ∈ T and ti = ti−1si ∈ T for 2 ≤ i ≤ m, like before. We have

tm = 1 and uw is a word in W . Then p′ = (1, uw) is a path in ΓH from 1 to
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(1s1t1
−1)(t1s2t2

−1)...(tm−1smtm
−1) = s1...smtm

−1 = htm
−1 = h and such that the χ-values

in all of its vertices (1s1t1
−1)(t1s2t2

−1)...(ti−1siti
−1) are non-negative, because

χ((1s1t1
−1)(t1s2t2

−1)...(ti−1siti
−1)) = χ(s1s2...siti

−1) = χ(s1s2...si)− χ(ti) ≥ χ(s1s2...si) ≥ 0.

This shows that [χ|H ] ∈ Σ1(H).

(⇐) Conversely, suppose [χ|H ] ∈ Σ1(H). Since W generates H and G = tt∈THt, every

g ∈ G can be written as g = ht = w1...wkt, wi ∈ W±, so G is generated by the finite set

W ∪ T . By the independence property, we can fix this finite set of generators for G. Let us

show that [χ] ∈ Σ1(G). Let g be a vertex in Γχ = Γ(G,W ∪ T )χ and write g = ht for h ∈ H
and t ∈ T . Since χ(h) = χ(gt−1) = χ(g)− χ(t) ≥ χ(g) ≥ 0, h is a vertex of ΓHχ and therefore

by hypothesis there is a path p = (1, w) inside ΓHχ from 1 to h, w being a word in W . Now,

the concatenated path p′ = (1, wt) goes from 1 to wt = ht = g and lies inside Γχ, because

νχ(p′) = min{νχ(p), χ(g)} ≥ 0.

This shows that [χ] ∈ Σ1(G) and concludes the proof.

Note that the above proposition allows us to compute Σ1(G) in terms of Σ1(H) (if we know

the latter, we can compute the former). The converse is not true in general, because the propo-

sition only deals with homomorphisms of Hom(H,R) which are restrictions of homomorphisms

of Hom(G,R). So, a special hypothesis about extension of characters on H is enough to show

the converse:

Corollary 3.28. Let G be a finitely generated group and H ≤ G a finite index subgroup with

inclusion i : H → G. Suppose that any homomorphism χ : H → R can be extended to a

homomorphism χ̂ : G→ R (that is, χ̂|H = χ). Then

Σ1(H) = i∗(Σ1(G)) and Σ1(H)c = i∗(Σ1(G)c).

Demonstração. If [χ] ∈ Σ1(G) we have i∗[χ] = [χ|H ] ∈ Σ1(H) by Proposition 3.27. This

shows that i∗(Σ1(G)) ⊂ Σ1(H). Conversely, if [χ] ∈ Σ1(H), let χ̂ be the extension of χ to

G. Since [χ̂|H ] = [χ] ∈ Σ1(H), again by Proposition 3.27 we must have [χ̂] ∈ Σ1(G). Then

[χ] = i∗[χ̂] ∈ i∗(Σ1(G)) and so Σ1(H) = i∗(Σ1(G)). The second part is analogous.

Corollary 3.29. Let G be a finitely generated subgroup. If G has a finite index abelian subgroup

H then Σ1(G) = S(G).

Demonstração. Since G is finitely generated and H has finite index in G, by Corollary 1.51 H

is also finitely generated. Since H is abelian we have Σ1(H) = S(H) by Corollary 3.15. Now

let [χ] ∈ S(G). Since [χ|H ] ∈ S(H) = Σ1(H), by Proposition 3.27 we have [χ] ∈ Σ1(G), as

desired.
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Direct products

Let G = G1 × G2 be a direct product of two finitely generated groups. For i = 1, 2, choose

and fix a finite generating set Xi for Gi containing the identity element 1 of Gi. Then X =

(X1×{1})∪ ({1}×X2) is a finite generating set for G. Fix X. Let πi : G→ Gi and ji : Gi → G

be the natural projections and injections, respectively, and consider the linear pullbacks

ji
∗ : Hom(G,R) −→ Hom(Gi,R)

χ 7−→ χ ◦ ji,

πi
∗ : Hom(Gi,R) −→ Hom(G,R)

χ 7−→ χ ◦ πi.

Since ji
∗ ◦ πi∗ = (πi ◦ ji)∗ = Id∗ = Id, the πi

∗ are injective. Consider the restrictions

πi
∗ : Hom(Gi,R)− {0} −→ Hom(G,R)− {0}. To take the quotient applications, note that

[χ] = [χ′] ⇔ rχ = χ′, r > 0

⇔ rχ(gi) = χ′(gi) ∀ gi ∈ Gi
⇔ rχπi(g1, g2) = χ′πi(g1, g2) ∀ g1 ∈ G1, g2 ∈ G2

⇔ r(χ ◦ πi) = χ′ ◦ πi, r > 0

⇔ [χ ◦ πi] = [χ′ ◦ πi],

which shows that the applications

πi
∗ : S(Gi) −→ S(G)

[χ] 7−→ [χ ◦ πi]

are well defined and injective. We are ready to show the following theorem, which can be found

in [92]:

Theorem 3.30 (Σ1 for direct products). If G = G1 × G2 is the direct product of two finitely

generated groups, then

Σ1(G)c = π1
∗(Σ1(G1)c) ∪ π2

∗(Σ1(G2)c).

Demonstração. To simplify we will denote G1×{1} and {1}×G2 only by G1 and G2. The proof

is divided into easier steps:
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1) π1
∗(Σ1(G1)c) = S(G,G2)− Σ1(G).

(⊂) Let [χ] ∈ π1
∗(Σ1(G1)c), that is, [χ] = π1

∗([χ1]) = [χ1 ◦ π1] for [χ1] /∈ Σ1(G1). Since

χ1 ◦ π1(1, g2) = χ1(1) = 0 for all (1, g2) ∈ G2, we have [χ] ∈ S(G,G2). Let us show

that [χ] /∈ Σ1(G). If [χ] was in Σ1(G), let us show that [χ1] ∈ Σ1(G1), contradiction.

Let g1 ∈ G1 be a vertex in Γχ1 , that is, χ1(g1) ≥ 0. Then g = (g1, 1) is in Γχ because

χ(g) = χ1(g1) ≥ 0. By hypothesis, [χ] ∈ Σ1(G), so connect 1 to g inside Γχ by a path

p = (1, w) (remember our path notation given before) with w a word in X. By definition

of X, w is a product of letters either of the form (y, 1) (whose product is (g1, 1)) and of

the form (1, z) (whose product is (1, 1)). Since [χ] ∈ S(G,G2), the letters (1, z) does not

contribute to the χ-values. So

0 ≤ νχ(p) = min{χ(y11, 1), χ(y11y12, 1), ..., χ(y11y12...y1k, 1)}

= min{χ1(y11), χ1(y11y12), ..., χ1(y11y12...y1k)}

= νχ1(p1),

where p1 = (1, y11y12...y1k). Then p1 is a path in Γχ1 connecting 1 and y11y12...y1k = g1

and we have [χ1] ∈ Σ1(G1), a contradiction. Then [χ] ∈ S(G,G2)− Σ1(G).

(⊃) Let [χ] ∈ S(G,G2)−Σ1(G). Let χ1 = χ◦ j1. We have χ1 6= 0, because if 0 = χ1(g1) =

χ(g1, 1) for all g1 ∈ G1 we would have χ(g1, g2) = χ(g1, 1) + χ(1, g2) = 0 + 0 = 0 for all

(g1, g2) ∈ G (since [χ] ∈ S(G,G2)) and then we would have χ = 0, contradiction. So,

[χ1] ∈ S(G1) and π1
∗([χ1]) = [χ1 ◦ π1] = [χ ◦ j1 ◦ π1] = [χ], because

χ ◦ j1 ◦ π1(g1, g2) = χ ◦ j1(g1) = χ(g1, 1) = χ(g1, 1) + χ(1, g2) = χ(g1, g2)

for all (g1, g2) ∈ G. We are just left to show that [χ1] /∈ Σ1(G1). Again, if [χ1] ∈ Σ1(G1)

let us show that [χ] ∈ Σ1(G), a contradiction. Let g = (g1, g2) ∈ G be a vertex in Γχ,

that is, 0 ≤ χ(g) = χ1 ◦ π1(g) = χ1(g1). Then g1 ∈ Γχ1 . Since [χ1] ∈ Σ1(G1), we can

connect 1 to g1 inside Γχ1 by a path p1 = (1, y11...y1k). Write g2 = y21...y2h as a word in

the generator set X2 and define the path

p = (1, (y11, 1)(y12, 1)...(y1k, 1)(1, y21)(1, y22)...(1, y2h)).

It is a path connecting 1 to (y11, 1)(y12, 1)...(y1k, 1)(1, y21)(1, y22)...(1, y2h) =

(y11y12...y1k, y21y22...y2h) = (g1, g2) = g and using that [χ] ∈ S(G,G2) we have νχ(p) =

νχ1(p1) ≥ 0, so [χ] ∈ Σ1(G), the desired contradiction. So [χ] ∈ π1
∗(Σ1(G1)c).

2) π2
∗(Σ1(G2)c) = S(G,G1)− Σ1(G). Similar argument from item 1).

3) Σ1(G)c ⊂ S(G,G1) ∪ S(G,G2).

Let us prove by contradiction. Suppose [χ] /∈ S(G,G1) ∪ S(G,G2), that is, χ|G1 6= 0 6=
χ|G2 and let us show that [χ] ∈ Σ1(G). Let g = (g1, g2) be a vertex in Γχ, that is,

0 ≤ χ(g1, g2) = χ(g1, 1) + χ(1, g2). Then χ(g1, 1) ≥ 0 or χ(1, g2) ≥ 0. Without loss of

generality, suppose χ(g1, 1) ≥ 0 (the other case is similar) and let us connect 1 to g inside

Γχ. Write g1 = y11...y1r and g2 = y21...y2s, y1i ∈ X1, y2i ∈ X2. Since χ|G2 6= 0, take
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(1, a) ∈ {1} ×X2
± with χ(1, a) > 0 and a sufficient large k ≥ 1 such that

χ((1, a)k) + min{χ(y11, 1), χ(y11y12, 1), ..., χ(y11y12...y1r, 1)} ≥ 0.

Because of this inequality, the path p1 = (1, (1, a)k(y11, 1)(y12, 1)...(y1r, 1)) connects 1 to

(y11y12...y1r, a
k) = (g1, a

k) inside Γχ. Also, since χ(g1, 1) ≥ 0 and χ(1, a) > 0, the path

p2 = ((g1, 1), (1, a)k) connects (g1, 1) to (g1, a
k) inside Γχ. Now, using that χ|G1 6= 0, take

(b, 1) ∈ X1
± × {1} with χ(b, 1) > 0 and a sufficient large d ≥ 1 such that

χ((b, 1)d) + min{χ(g1, y21), χ(g1, y21y22), ..., χ(g1, y21y22...y2s)} ≥ 0.

Because of this inequality, the path p3 = ((g1, 1), (b, 1)d(1, y21)(1, y22)...(1, y2s)) connects

(g1, 1) to (g1b
d, y21...y2s) = (g1b

d, g2) inside Γχ. Also, since χ(g1, g2) ≥ 0 and χ(b, 1) > 0,

the path p4 = ((g1, g2), (b, 1)d) connects (g1, g2) to (g1b
d, g2) inside Γχ. A concatenation of

these four paths connects 1 to (g1, g2) inside Γχ. Then [χ] ∈ Σ1(G), as desired.

Now we finish the proof. By items 1) and 2), we have

π1
∗(Σ1(G1)c) ∪ π2

∗(Σ1(G2)c) = (S(G,G2)− Σ1(G)) ∪ (S(G,G1)− Σ1(G))

= (S(G,G1) ∪ S(G,G2))− Σ1(G).

Now, (S(G,G1)∪S(G,G2))−Σ1(G) = S(G)−Σ1(G). Indeed, the inclusion (⊂) is obvious, and

(⊃) follows easily from item 3). This completes the proof.

Amalgamated products and HNN extensions

Now we will exhibit some behavior properties of the invariant Σ1 concerning amalgamated

products and HNN extensions (see definitions 1.64 and 1.65). The two next propositions can

be found in Lemma 2.1 of [19] and will be especially useful to deal with GBS and GBSn groups

later.

Proposition 3.31. Let G̃ = G∗AH be the amalgamated product of two finitely generated groups

G,H and let [χ] ∈ S(G̃). If χ|A 6= 0, [χ|G] ∈ Σ1(G) and [χ|H ] ∈ Σ1(H) then [χ] ∈ Σ1(G̃).

Demonstração. Fix finite generating sets R and S for G and H, respectively, and fix the fi-

nite generating set R ∪ S for G̃. We denote Γχ = Γ(G̃, R ∪ S), ΓGχ = Γ(G,R)χ|G and

ΓHχ = Γ(H,S)χ|H . The last two subgraphs are connected by hypothesis and we want to show

connectivity of the first. Let g̃ ∈ G̃χ, say, g̃ = g1h1...gnhn, gi ∈ G, hi ∈ H, and let us connect 1

to g̃ inside Γχ. We proceed by induction on n:

• (n = 1). To simplify, write g̃ = gh, g ∈ G, h ∈ H. Since χ|A 6= 0, fix a ∈ A such that χ(a) >

0 and sufficiently large so that χ(ga) = χ(g) + χ(a) ≥ 0, denoting g′ = ga. Now, choose

another a′ ∈ A with χ(a′) > 0 and large enough so that χ(a−1ha′) = χ(a−1h) +χ(a′) ≥ 0,
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denoting h′ = a−1ha′. Since A ⊂ G ∩ H, we have g′ ∈ G and h′ ∈ H. By construction,

both have nonnegative χ-values, then by hypothesis there are paths p1 from 1 to g′ in ΓGχ

and p2 from 1 to h′ in ΓHχ (note that these paths are also in Γχ). Since χ(g′) ≥ 0, the

translated path g′ · p2 is in Γχ (for νχ(g′ · p2) = χ(g′) + νχ(p2) ≥ 0 + 0 = 0) and goes from

g′ to g′h′ = gaa−1ha′ = g̃a′. Finally, connect a′ to 1 by a path p3 in ΓGχ. The translated

path g̃ · p3 is in Γχ (for νχ(g̃ · p3) = χ(g̃) + νχ(p3) ≥ 0 + 0 = 0) and goes from g̃a′ to g̃.

The concatenation of p1, g
′ · p2 and g̃ · p3 connects 1 to g̃ inside Γχ, as desired.

• (induction). Suppose the claim is true for n − 1 ≥ 1 and let g̃ = g1h1...gnhn ∈ G̃χ.

The strategy is the same from above. Denote g0 = g1h1...gn−1hn−1. Find a ∈ A with

χ(a) > 0 and χ(g0a) ≥ 0. Since g0a = g1h1...gn−1(hn−1a) is an alternated product of

length n− 1, by induction there is a path p1 in Γχ from 1 to g0a. Now, choose a′ ∈ A with

χ(a′) > 0 and χ(a−1gma
′) ≥ 0. Since a−1gma

′ ∈ G and [χ|G] ∈ Σ1(G), there is a path p2

from 1 to a−1gma
′ in ΓGχ (therefore also in Γχ). The translated path g0a · p2 is in Γχ (for

νχ(g0a·p2) = χ(g0a)+νχ(p2) ≥ 0+0 = 0) and goes from g0a to g0aa
−1gma

′ = g0gma
′. Take

a′′ ∈ A with χ(a′′) > 0 and χ(a′−1hma
′′) ≥ 0. Since a′−1hma

′′ ∈ H and [χ|H ] ∈ Σ1(H),

there is a path p3 from 1 to a′−1hma
′′ in ΓHχ (therefore also in Γχ). The translated path

g0gma
′ · p3 is in Γχ (for νχ(g0gma

′ · p3) = χ(g0gma
′) + νχ(p3) ≥ 0 + 0 = 0) and goes

from g0gma
′ to g0gma

′a′−1hma
′′ = g̃a′′. To finish, since a′′ ∈ A ⊂ G, χ(a′′) > 0 and

[χ|G] ∈ Σ1(G), connect a′′ to 1 by a path p4 in ΓGχ (and so in Γχ). The concatenation

path p1(g0a · p2)(g0gma
′ · p3)(g̃ · p4) connects 1 to g̃ inside Γχ, as desired.

The same thing can be done for HNN extensions:

Proposition 3.32. Let G̃ =
〈
X, t | R, tat−1 θ(a)−1, a ∈ A

〉
be an HNN extension of a finitely

generated group G = 〈X | R〉 and let [χ] ∈ S(G̃). If χ|A 6= 0 and [χ|G] ∈ Σ1(G) then [χ] ∈
Σ1(G̃).

Demonstração. Fix a finite generating set S for G and fix the finite generating set S ∪ {t} for

G̃. Denote Γ = Γ(G̃, S ∪ {t}),Γχ = Γ(G̃, S ∪ {t})χ and ΓGχ = Γ(G,S)χ|G ≤ Γχ. We first show

a useful property: “for every g̃ ∈ G̃, b1, b2 ∈ G, there is a path p in Γ from g̃b1 to g̃b2 such that

νχ(p) ≥ min{χ(g̃b1), χ(g̃b2)}”. Indeed, suppose without loss of generality that χ(b1) ≤ χ(b2).

Then χ(b1
−1b2) = −χ(b1) + χ(b2) ≥ 0 and so b1

−1b2 ∈ ΓGχ. By hypothesis, there is a path p′

from 1 to b1
−1b2 in ΓGχ. The translated path p̃ = b1 · p′ goes from b1 to b1b1

−1b2 = b2 and

νχ(p̃) = χ(b1) + νχ(p′) ≥ χ(b1) = min{χ(b1), χ(b2)}. Now the path p = g̃ · p̃ connects g̃b1 to g̃b2

and νχ(p) = χ(g̃) + νχ(p̃) ≥ χ(g̃) + min{χ(b1), χ(b2)} = min{χ(g̃b1), χ(g̃b2)}, which shows the

property.

Now we show that [χ] ∈ Σ1(G̃). Let g̃ ∈ Γχ and let us connect 1 to g̃ in Γχ. We can write

g̃ = g0t
ε1g1...t

εngn for gi ∈ G and εi = ±1. Like in 3.31, we proceed by induction on n:

• (n = 0). This is the case g̃ = g0 ∈ G. Since [χ|G] ∈ Σ1(G), we can connect 1 to g̃ inside

ΓGχ, in particular inside Γχ, as desired.

• (induction). Suppose the claim is true for n − 1 ≥ 0 and let g̃ = g0t
ε1g1...t

εngn. Denote

g′ = g0t
ε1g1...t

εn−1gn−1 (so g̃ = g′tεngn). Like in 3.31, since χ|A 6= 0 choose a ∈ A such
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that χ(g′a) = χ(g′) + χ(a) ≥ 0 and χ(g′atεn) = χ(g′) + χ(a) + χ(tεn) ≥ 0. There are two

cases. If εn = 1, using the presentation for G̃ write

g̃ = g′tgn = g′taa−1gn = g′θ(a)ta−1gn.

But g′θ(a) = g0t
ε1g1...t

εn−1(gn−1θ(a)) is an alternated product of length n − 1 such that

χ(g′θ(a)) = χ(g′) + χ(θ(a)) = χ(g′) + χ(a) = χ(g′a) ≥ 0 (because χ(θ(a)) = χ(tat−1) =

χ(t) + χ(a) − χ(t) = χ(a)), so by induction we can connect 1 to g′θ(a) by a path p1 in

Γχ. Now, connect g′θ(a) to g′θ(a)t by the obvious path (g′θ(a), t), which is in Γχ because

χ(g′θ(a)) ≥ 0 and χ(g′θ(a)t) = χ(g′at) ≥ 0. Finally, use the property of the first paragraph

(for g′θ(a)t ∈ G̃ and b1 = 1, b2 = a−1gn ∈ G) to connect g′θ(a)t to g′θ(a)ta−1gn = g̃ by a

path p2 with νχ(p2) ≥ min{χ(g′θ(a)t), χ(g̃)} ≥ 0. The concatenation of these three paths

is the desired path. In the case εn = −1 we write

g̃ = g′t−1gn = g′aa−1t−1gn = g′at−1θ(a−1)gn.

Similarly, we use induction hypothesis to connect 1 to g′a by p1 in Γχ, then we connect

g′a to g′at−1 by (g′a, t−1) (which is in Γχ because χ(g′a) ≥ 0 and χ(g′at−1) ≥ 0) and

use the property in the first paragraph to connect g′at−1 and g′at−1θ(a−1)gn = g̃ in Γχ.

Concatenating these paths we finish the proposition.

There are other two useful properties of Σ1 concerning amalgamated products and HNN

extensions. However, since their proof involves a theorem about reduced forms in both cases we

will only enunciate them and use later. Both correspond to the two items of Proposition C2.13,

at page 136 of [92].

Proposition 3.33. Let G̃ = G∗AH be the amalgamated product of two finitely generated groups

G,H and let [χ] ∈ S(G̃). Suppose also that G ! A  H, that is, A is a proper subgroup of both

G and H. If [χ] ∈ Σ1(G̃) then χ|A 6= 0.

Proposition 3.34. Let G̃ =
〈
X, t | R, tat−1 θ(a)−1, a ∈ A

〉
be an HNN extension of a finitely

generated group G = 〈X | R〉 and let [χ] ∈ S(G̃). Suppose also that the inclusion l : A ↪→ G and

the monomorphism θ : A ↪→ G are both proper (not surjective). If [χ] ∈ Σ1(G̃) then χ|A 6= 0.

3.3 Property R∞ under Σ1 invariant

The invariance under automorphisms of the Sigma invariant is the fundamental key to the

implications of this chapter. The use of Σ1 to detect twisted conjugacy and R∞ properties was

first noted by D. Gonçalves and D. Kochloukova in their paper [42] (2010), where they were

able to use Σ1 to show property R∞, for example, for the generalized Thompson’s groups Fn,0

and their finite direct products, as well as finding many classes of groups G in which one can

guarantee the existence of a finite index subgroup H ≤ Aut(G) whose automorphisms have an

infinite number of twisted conjugacy classes.
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In this section, we present these theoretic results. We also give a simple proof for the (known)

fact that this result of D. Gonçalves and D. Kochloukova is also compatible with finite direct

products.

Definition 3.35. Let G be a finitely generated group. A character [χ] ∈ S(G) is called rational

(or discrete) if [χ] = [χ′] for some homomorphism χ′ : G→ R such that im(χ′) = Z ⊂ R.

This definition is essential for the next

Lemma 3.36 ([42], Lemma 3.1). Let G be a finitely generated group such that

Σ1(G)c = {[χ1], ..., [χm]}

is finite, nonempty and contains only rational points, and let ϕ ∈ Aut(G). Let N = ∩mi=1 ker(χi),

V = Hom(G/N,R) and denote by θ : V → V the linear map induced by ϕ. Suppose {χ1, ..., χm}
is a basis for V . Then θ permutes the χi, where each class representative χi is chosen so that

the coordinates of the χi are integers with greatest common divisor 1.

Demonstração. Let us first identify the objects. By Corollary 3.19, N is a characteristic sub-

group of G. Furthermore, G/N is an abelian, finitely generated and torsion-free group, so

we identify G/N ' Zs = 〈g1, ..., gs〉. By definition, all the χi vanish in N , so we have the

induced homomorphisms χi : G/N → R with χi(g) = χi(g). Since G/N ' Zs we have

V = Hom(G/N,R) ' Hom(Zs,R) ' Rs a real vector space of dimension s, and then s = m be-

cause {χ1, ..., χm} is a basis for V . The isomorphism V ' Rm is given by α 7→ (α(g1), ..., α(gm))

and we call this vector the “coordinates” of α ∈ V . Since N is characteristic we also have the

induced group automorphism ϕ : G/N → G/N such that ϕ(g) = ϕ(g) which induces the linear

transpose isomorphism θ = (ϕ)T : V → V with θ(α) = α ◦ ϕ (see the diagram).

Figura 3.7: The dashed elipse is V = Hom(G/N,R)
.

Now we show the lemma. Since the [χi] are rational, up to multiplying each χi by a positive

real number (which does not change the class [χi]) we may suppose that im(χi) = Z and therefore

the coordinates {χi(g1), ..., χi(gm)} are integer. Because of the property gcd( a
gcd(a,b) ,

b
gcd(a,b)) = 1

we can divide χi, if necessary, by the greatest common divisor d of all its non-vanishing integer

coordinates χi(gj), and then the coordinates of χi/d will have greatest common divisor 1. Then,

up to switching χi by χi/d we may suppose there are integers ki1, ..., kim such that

ki1χi(g1) + ...+ kimχi(gm) = 1, 1 ≤ i ≤ m. (3.2)

Now, since ϕ∗ : S(G)→ S(G) is a homeomorphism and Σ1(G)c is invariant under ϕ∗ (Theorem

3.18), the restriction ϕ∗|Σ1(G)c : Σ1(G)c → Σ1(G)c is a bijection. Then there is a permutation
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π ∈ Sm (symmetric group on m elements) such that [χi ◦ ϕ] = ϕ∗[χi] = [χπ(i)] for each i, or

χi ◦ ϕ = riχπ(i) for some ri > 0. This implies

θ(χi) = χi ◦ ϕ = χi ◦ ϕ = riχπ(i) = riχπ(i), 1 ≤ i ≤ m. (3.3)

We just have to show that ri = 1 for each i. We only know that ri > 0 at the moment.

First let us show that ri ∈ Z for each i. If we identify G/N ' Zm then ϕ ∈ Aut(Zm) '
Glm(Z) can be identified with an invertible m×m integer matrix A. So, write

ϕ = A =


a11 ... a1m

...
. . .

...

am1 ... amm

 .
Writing the χi in coordinates we have

θ(χi(g1), ..., χi(gm)) = θ(χi) = riχπ(i) = ri(χπ(i)(g1), ..., χπ(i)(gm)). (3.4)

On the other hand, we know from linear algebra that the matrix of a transpose map is exactly

the transpose matrix of the map. Then we can identify θ = AT and

θ(χi(g1), ..., χi(gm)) =


a11 ... am1

...
. . .

...

a1m ... amm



χi(g1)

...

χi(gm)

 =


∑m

j=1 aj1χi(gj)
...∑m

j=1 ajmχi(gj)

 . (3.5)

Putting together 3.4 and 3.5 we have

(riχπ(i)(g1), ..., riχπ(i)(gm)) =

 m∑
j=1

aj1χi(gj), ...,
m∑
j=1

ajmχi(gj)

 (3.6)

and using 3.2 (for π(i), not for i) and 3.6 we finally get

ri = ri(kπ(i)1χπ(i)(g1) + ...+ kπ(i)mχπ(i)(gm))

= kπ(i)1(riχπ(i)(g1)) + ...+ kπ(i)m(riχπ(i)(gm))

= kπ(i)1

 m∑
j=1

aj1χi(gj)

+ ...+ kπ(i)m

 m∑
j=1

ajmχi(gj)


∈ Z,

then ri ∈ {1, 2, 3, ...}, as desired.

Now we show that ri = 1 for each i. Let k = m! = card(Sm). The order o(π) of π ∈ Sm must

divide k, so write k = o(π)n for some integer n ≥ 1. We have πk = πo(π)n = (πo(π))
n

= Idn = Id.

We will successively apply θ in some fixed χi. We have θ(χi) = riχπ(i), θ
2(χi) = θ(riχπ(i)) =

riθ(χπ(i)) = rirπ(i)χπ2(i) and recursively we get that θk(χi) = rirπ(i)...rπk−1(i)χπk(i) = λiχi,

where λi = rirπ(i)...rπk−1(i) is a positive integer multiple of ri. So it is enough to show that all

the λi = 1. Because θk(χi) = λiχi for 1 ≤ i ≤ m, the matrix of θk over the basis {χ1, ..., χm} is
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exactly 
λ1 0 ... 0

0 λ2 ... 0
...

...
. . .

...

0 0 ... λm


whose determinant is λ1...λm. On the other hand, the matrix of θk (over another basis) is also

the matrix (AT )
k

which is an integer matrix because A is. Since θk is an automorphism its

determinant must be ±1. But the determinant is independent from the basis chosen. Then

λ1...λm = ±1. Since all the λi are positive we have λ1...λm = 1 and since they are integer we

have λi = 1 for all i, as desired.

The next two theorems are the main results of this section. Theorem 3.38 is more important

for us, since it is easier to be applied.

Theorem 3.37 ([42], Theorem 3.2). Let G be a finitely generated group such that

Σ1(G)c = {[χ1], ..., [χm]}

is finite, nonempty and contains only rational points. Let N = ∩mi=1 ker(χi) and V =

Hom(G/N,R). If {χ1, ..., χm} is a basis for V , then G has property R∞.

Demonstração. Let ϕ ∈ Aut(G) and let us show that R(ϕ) = ∞. By the above lemma, if

we denote by θ : V → V the linear map induced by ϕ, then by choosing the correct class

representatives χi we have θ(χi) = χπ(i), 1 ≤ i ≤ m for some permutation π ∈ Sm. Using

linearity and then rearranging the terms we obtain

θ(χ1 + ...+ χm) = θ(χ1) + ...+ θ(χm) = χπ(1) + ...+ χπ(m) = χ1 + ...+ χm.

Since {χ1, ..., χm} is a basis for V the vector χ1 + ...+χm is nontrivial and therefore by definition

it is an eigenvector of θ with eigenvalue 1. Since the matrix of θ is the transpose matrix of ϕ

and matrix transposition does not alter eigenvalues, ϕ also has eigenvalue 1. Then there is

a nontrivial element g ∈ G/N such that ϕ(g) = g, or (ϕ − Id)(g) = 0 (additive notation).

Identifying ϕ − Id with its matrix, we have det(ϕ − Id) = 0 and therefore R(ϕ) = ∞ by

Example 1.3. Then applying item 1) of Lemma 1.7 to the diagram

we get R(ϕ) =∞, as desired.

The only reason we needed that {χ1, ..., χm} was a basis for V in Theorem 3.37 above is that

we had to guarantee that the vector χ1 + ... + χm was nontrivial. This will also happen if the

points [χ1], ..., [χm] are all inside some open half-space of S(G). Because of this, with a similar

proof (see [42]) we can show the following
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Theorem 3.38. Let G be a finitely generated group such that

Σ1(G)c = {[χ1], ..., [χm]}

is finite, nonempty and contains only rational points. If {[χ1], ..., [χm]} is contained in an open

half-space of S(G), then G has property R∞.

Corollary 3.39 ([42],Corollary 3.4). Let G be a finitely generated group such that Σ1(G)c =

{[χ1], ..., [χm]} is nonempty, finite and consisting only of rational points. Then there is a finite

index normal subgroup H CAut(G) such that R(ϕ) =∞ for each ϕ ∈ H.

Demonstração. Let N = ∩mi=1 ker(χi) and V = Hom(G/N,R). Consider the group Aut(V ) of

linear automorphisms of V with the operation ∗ defined as T ∗ S = S ◦ T . Let

Υ : Aut(G) −→ Aut(V )

ϕ 7−→ ϕ̃

where ϕ̃ is the automorphism θ defined in Theorem 3.37 above. Υ is a group homomorphism.

In fact, given ϕ,ψ ∈ Aut(G) and α ∈ V , we have

ϕ̃ ◦ ψ(α) = α ◦ ϕ ◦ ψ = α ◦ ϕ ◦ ψ = ϕ̃(α) ◦ ψ = ψ̃(ϕ̃(α)) = (ψ̃ ◦ ϕ̃)(α),

So ϕ̃ ◦ ψ = ψ̃ ◦ ϕ̃, and this implies

Υ(ϕ ◦ ψ) = ϕ̃ ◦ ψ = ψ̃ ◦ ϕ̃ = Υ(ψ) ◦Υ(ϕ) = Υ(ϕ) ∗Υ(ψ).

But, by Lemma 3.36, each ϕ̃ must permute the set {χ1, ..., χm}, so there are only a finite number

of possibilities and then im(Υ) is finite. Let H = ker(Υ). By the Isomorphism Theorem we have

Aut(G)/H ' im(Υ), so H is a finite index normal subgroup. Furthermore, by definition of H,

if ϕ ∈ H then ϕ̃ = Id, which implies (as in Theorem 3.37) ϕ = Id and R(ϕ) = ∞ because of

Lemma 1.3. Again, by Lemma 1.7, R(ϕ) =∞. So H is the desired group.

We know that property R∞ is not well-behaved for direct products in general. But when

R∞ comes from Theorem 3.37, then it works perfectly, as we will see.

Theorem 3.40. Theorem 3.37 (and Theorem 3.38) are closed under direct products. That is, if

G1, ..., Gn satisfy the hypothesis of Theorem 3.37 (or the ones of Theorem 3.38), then G1×...×Gn
also satisfy the hypothesis of Theorem 3.37 (Theorem 3.38) and so it has R∞.

Demonstração. We will first show the cases of only two factors for both theorems. First, the

case of Theorem 3.37. Let G,H be finitely generated groups and write

Σ1(G)c = {[χ1], ..., [χm]}, M = ∩mj=1 ker(χj), V = Hom(G/M,R) and

Σ1(H)c = {[σ1], ..., [σn]}, N = ∩nj=1 ker(σj), W = Hom(G/N,R).
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To be more precise, take the Z-basis g1, ..., gm and h1, ..., hn of the correspondent f.g. free abelian

quotients G/M ' Zm and H/N ' Zn. Then we have the R-isomorphisms

V
'−→ Rm

ϕ 7−→ (ϕ(g1), ..., ϕ(gm))

and

W
'−→ Rn

ϕ 7−→ (ϕ(h1), ..., ϕ(hn)).

So, the hypothesis that the χi form a basis for V is equivalent to saying that the m vectors

(χi(g1), ..., χi(gm)) = (χi(g1), ..., χi(gm)) are independent in Rm, or that the m × m matrix

A = [χi(gj)]ij is an isomorphism. Similarly, saying that the σi form a basis for W is saying that

the n× n matrix B = [σi(hj)]ij is an isomorphism.

By Proposition 3.30,

Σ1(G×H)c = π∗(Σ1(G)c) ∪ π′∗(Σ1(H)c),

= {[χ1 ◦ π], ..., [χm ◦ π], [σ1 ◦ π′], ..., [σn ◦ π′]},

where π : G ×H → G and π′ : G ×H → H are the natural projections. First note that these

m + n points are distinct: in fact, the [χi ◦ π] are pairwise distinct (because π∗ is injective) as

well as the [σi ◦ π′]. Since no χi ◦ π vanish in G×{1} and all the σj ◦ π′ vanishes there, and the

opposite happens in {1} ×H, no χi ◦ π can be a multiple of any of the σj ◦ π′, which completes

the argument. Note also that they are rational points, for im(χi ◦ π) = im(χi) is rational, as

well as im(σi ◦ π′) = im(σi).

We just have then to show that {χ1 ◦ π, ..., χm ◦ π, σ1 ◦ π′, ..., σn ◦ π′} is a basis for Z =

Hom((G×H)/L,R) where L = (∩mi=1 ker(χi ◦ π)) ∩ (∩ni=1 ker(σi ◦ π′)). But

ker(χi ◦ π) = ker(χi)×H, ker(σi ◦ π′) = G× ker(σi)

and so

L = (∩mi=1(ker(χi)×H)) ∩ (∩ni=1(G× ker(σi))) = (∩mi=1 ker(χi))× (∩ni=1 ker(σi)) = M ×N.

Then we have the isomorphisms
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(G×H)/L
'−→ G/M ×H/N '−→ Zm+n

(gi, 1) 7−→ (gi, 1)

(1, hi) 7−→ (1, hi)

And since the gi form a basis of G/M and the hi form a basis of H/N we can take the (gi, 1)

together with the (1, hi) as a Z-basis of the f.g. free-abelian group (G × H)/L, obtaining the

isomorphism

Z
T−→ Rm+n

ϕ 7−→ (ϕ(g1, 1), ..., ϕ(gm, 1), ϕ(1, h1), ..., ϕ(1, hn)).

But

T (χi ◦ π) = (χi ◦ π(g1, 1), ..., χi ◦ π(gm, 1), χi ◦ π(1, h1), ..., χi ◦ π(1, hn))

= (χi ◦ π(g1, 1), ..., χi ◦ π(gm, 1), χi ◦ π(1, h1), ..., χi ◦ π(1, hn))

= (χi(g1), ..., χi(gm), 0, ..., 0)

and, similarly,

T (σi ◦ π′) = (0, ..., 0, σi(h1), ..., σi(hn)),

so the vectors {χ1 ◦ π, ..., χm ◦ π, σ1 ◦ π′, ..., σn ◦ π′} in Z correspond to the (m+ n)× (m+ n)-

matrix [
Am×m 0

0 Bn×n

]
which is an isomorphism because A and B are isomorphisms. Then they form a basis for Z, as

desired.

Now, the case of Theorem 3.37. Suppose that both

Σ1(G)c = {[χ1], ..., [χm]}, and Σ1(H)c = {[σ1], ..., [σn]}

consist of rational points contained in open hemispheres Hv of S(G) and Hw of S(H), re-

spectively. As we already know, Σ1(G × H)c is nonempty, finite and of rational points. To

see that it is in an open hemisphere of S(G × H), we identify S(G) = Sn−1, S(H) = Sm−1

and S(G × H) = Sn+m−1. Under this identification, the maps π∗ and π′∗ assume the form

π∗(x) = (x, 0) and π′∗(y) = (0, y) and preserve inner products, because 〈π∗(x), π∗(z)〉 =

〈(x, 0), (z, 0)〉 = 〈x, z〉, similar for π′∗. So, if Σ1(G)c ⊂ Hv and Σ1(H)c ⊂ Hw, we claim that

Σ1(G×H)c ⊂ H(v,w) in S(G×H). Indeed, 〈π∗(x), (v, w)〉 = 〈(x, 0), (v, w)〉 = 〈x, v〉 > 0 for all

x ∈ Σ1(G)c and similarly 〈π′∗(y), (v, w)〉 = 〈(0, y), (v, w)〉 = 〈y, w〉 > 0 for all y ∈ Σ1(H)c. Since
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Σ1(G×H)c = π∗(Σ1(G)c) ∪ π′∗(Σ1(H)c), this shows the claim and finishes the two factor case.

The general case follows by trivial induction: suppose Theorem 3.37 (Theorem 3.38) is valid

for n factors and let G1, ..., Gn+1 satisfy its hypothesis. Let G = G1 and H = G2 × ...×Gn+1.

By hypothesis, G and H satisfy Theorem 3.37 (Theorem 3.38). Then, by the previous case,

G1 × ...×Gn+1 = G×H satisfy Theorem 3.37 (Theorem 3.38), as desired.

Open questions

1) Could some other equivalent definitions (or characterizations) of Σ1(G) be used in the

investigation of property R∞? In this thesis, we have dealt with Definition 3.7 for its sim-

plicity. But, for example, we have Brown’s characterization in [17] in terms of the possible

existence of “non-trivial and abelian” actions of G on R-trees. This would correspond,

in the language we used in Sections 2.3 and 2.4, to fixed-end actions with no invariant

lines. We do not want to get into details here, but it seems like this definition could have

connections with hyperbolic or relatively hyperbolic groups G. The reason is that there

are natural constructions of actions of G on R-trees, as we will see in chapters 8 and 9.

2) Could the higher invariants Σn, n ≥ 1, be computed and used to determine property R∞?

The reader may read [7] to know the definitions. By their apparent complexity and the lack

of literature in the computation of these invariants, we decided to restrict our attention

only to Σ1. However, since they are known to be invariant under automorphisms, Theorem

3.37 would equally work for them.
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Caṕıtulo 4

Invariant convex polytopes and

property R∞

In this chapter we go in the same kind of direction of the last section of Chapter 3: we show that

the existence of some invariant closed convex polytopes in S(G) can also guarantee property

R∞ of a finitely generated group G (Theorem 4.28). The intuitive idea that gave rise to this

result is that the induced homeomorphism ϕ∗ : S(G) → S(G) of an automorphism ϕ : G → G

seemed like to map geodesics to geodesics (not linearly). So, we conjectured that if ϕ∗ fixed a

polytope, then it should map vertices to vertices. This turned out to be true.

Like we already said, the key fact to guarantee property R∞ by the previous chapter is

that Σ1 is an invariant subset of S(G); so we start this chapter by rewriting Theorem 3.38 by

replacing (Σ1)c with an arbitrary invariant subset of S(G). With the same proof we get

Theorem 4.1. Let G be a finitely generated group. Suppose there is a nonempty and finite

subset A ⊂ S(G) which is invariant in S(G), consisting only of rational points and contained in

an open half-space of S(G). Then G has property R∞.

In the rest of the chapter we will deal only with convex polytopes, although sometimes we

will call them simply by polytopes for simplification. Most of the results obtained here are surely

false for the not-convex ones.

4.1 Convex polytopes in Euclidean spaces

Since polytopes are not among the main goals of the project, our approach here is minimal. For

more details about convexity and convex polytopes in Rd, see [52], which was the basic literature

for this section.

Definition 4.2. Let Rd, d ≥ 1 be the d-dimensional euclidean space. We say that a subset

K ∈ Rd is convex if every straight path between two points of K is contained in K. In other

words, K is convex if for all P,Q ∈ K and t ∈ [0, 1] we have (1− t)P + tQ ∈ K.

Definition 4.3. For any subset A ∈ Rd, the convex hull of A in Rd is the smallest convex subset

of Rd which contains A. We denote it by conv(A).
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Observation 4.4. It is easy to see that conv(A) is also the intersection of all the convex subsets

of Rd containing A. Another description (see [52]) is

conv(A) = {t1a1 + ...+ tnan | n ≥ 1, ai ∈ A, ti ≥ 0,
∑

ti = 1}.

In particular, if A = {a1, ..., an} is finite, then we denote conv(A) by conv(a1, ..., an) and we

have

conv(a1, ..., an) = {t1a1 + ...+ tnan | ti ≥ 0,
∑

ti = 1}.

In the special case of only two points a1, a2, since t1 + t2 = 1 we have t1 = 1− t2 and so

conv(a1, a2) = {(1− t)a1 + ta2 | t ∈ [0, 1]}.

Definition 4.5. A closed halfspace in Rd is a set of the form H = {x ∈ Rd |〈x, v〉 ≥ β} for some

v ∈ Rd and β ∈ R. Here the dot product of two vectors x = (x1, ..., xd) and v = (α1, ..., αd) is

〈x, v〉 = α1x1 + ...+αdxd. It follows that the set H is characterized by the x ∈ Rd satisfying the

equation

α1x1 + ...+ αdxd ≥ β.

The boundary of H in Rd is

∂H = {x ∈ Rd | α1x1 + ...+ αdxd = β}.

Definition 4.6. A convex polytope K in Rd is a finite intersection K = ∩ni=1Hi of closed

halfspaces of Rd which is also a bounded subset in Rd. It is always a convex and compact

subspace of Rd. Since it is and also a submanifold of Rd (with boundary), there is a well defined

dimension dim(K). We say that K is a r-polytope if dim(K) = r. From now on, we may omit

the word “convex” since we are dealing only with convex polytopes.

Definition 4.7. If K = ∩ni=1Hi is a convex polytope, we say that the family {H1, ...,Hn} is

irredundant if for every 1 ≤ i ≤ n we have K ( ∩j 6=iHj , that is, if K cannot be written as the

intersection of a proper subfamily of the Hi. If K is a convex d-polytope in Rd and {H1, ...,Hn}
is irredundant, the facets of K are the subsets Fi = (∂Hi) ∩K.

Observation 4.8. If the family {H1, ...,Hn} is not irredundant then by a simple recursive ar-

gument we can write K = ∩kj=1Hij where {Hi1 , ...,Hik} is a proper irredundant subfamily of

{H1, ...,Hn}. So, from now on, we will always suppose that the family of closed halfspaces

defining K is irredundant.

Observation 4.9. It follows from the definition that a convex polytope K is characterized by the

points x ∈ Rd such that 
α11x1 + ...+ α1dxd ≥ β1,

...

αn1x1 + ...+ αndxd ≥ βn.

for some αij , βi ∈ R. We can abbreviate this system by the expression “fi(x) ≥ βi, i = 1, ..., n”,

where the fi : Rd → R are linear maps given by fi(x) = αi1x1 + ...+ αidxd. With this notation,

a point x ∈ K is in a facet Fi if and only if fi(x) = βi. It is then easy to show that the boundary
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of K in Rd is

∂K = F1 ∪ ... ∪ Fn

and, if K is a d-polytope (that is, with maximal dimension), then it has nonempty interior given

by

int(K) = {x ∈ Rd | fi(x) > βi, i = 1, ..., n}.

Of course, K = ∂K t int(K).

The main properties we need to know about d-polytopes in Rd are below.

Lemma 4.10. Let K be a d-polytope in Rd and P,Q ∈ K. If the straight path {(1−t)P+tQ | t ∈
[0, 1]} from P to Q is contained in ∂K then there is a facet Fi containing P and Q.

Demonstração. Let K be characterized by the system “fi(x) ≥ βi, i = 1, ..., n”. Suppose by

contradiction that there is no facet Fi containing both P and Q. This means that for every i,

there are only three possibilities:

• fi(P ) = βi and fi(Q) > βi, or

• fi(P ) > βi and fi(Q) = βi, or

• fi(P ) > βi and fi(Q) > βi.

Let R = (P +Q)/2. Then R is contained in the straight path from P to Q. But for all i, since

fi is linear we have

fi(R) = fi

(
P +Q

2

)
=
fi(P ) + fi(Q)

2

and in any of the three cases above is easy to see that fi(R) > βi and so R ∈ int(K). Therefore,

the straight path from P to Q is not contained in ∂K, contradiction.

Lemma 4.11. If K is a d-polytope in Rd, every facet of K contains a point which does not

belong to any other facet.

Demonstração. Let K be characterized by the system “fj(x) ≥ βj , j = 1, ..., n” and let Fi

be one of its facets. Since K is d-dimensional, let P be a point of int(K), with fj(P ) > βj

for all j. Also, since the Hj are irredundant, we have K ( ∩j 6=iHj , so let Q be a point in

(∩j 6=iHj)−Hi, that is, fj(Q) ≥ βj for all j 6= i and fi(Q) < βi. Let γP,Q(t) = (1− t)P + tQ be

the straight path from P to Q and consider the continuous composition fi ◦ γP,Q : [0, 1] → R.

Since (fi ◦ γP,Q)(0) = fi(P ) > βi and (fi ◦ γP,Q)(1) = fi(Q) < βi, by the Intermediate Value

Theorem there is t0 ∈ (0, 1) such that (fi ◦ γP,Q)(t0) = βi. Then the point Z = γP,Q(t0) is such

that fi(Z) = βi and if j 6= i we have fj(Z) = fj((1− t0)P + t0Q) = (1− t0)fj(P ) + t0fj(Q) > βj

(since fj(P ) > βj and fj(Q) ≥ βj). This means that Z ∈ K and Fi is the only facet of K

containing Z.

Lemma 4.12. Any d-polytope in Rd contains at least d+ 1 facets.

Demonstração. We will first show that a finite intersection of only d closed halfspaces of Rd

cannot be bounded and therefore cannot be a polytope. Let K = ∩di=1Hi be defined by the

system
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
α11x1 + ...+ α1dxd ≥ β1,

...

αd1x1 + ...+ αddxd ≥ βd

and let P = (p1, ..., pd) ∈ K, so we have the equations fi(P ) = γi ≥ βi for i = 1, ..., d. Since the

Hi are irredundant, the system of equations
α11x1 + ...+ α1dxd = γ1,

...

αd−1,1x1 + ...+ αd−1,dxd = γd−1

for an arbitrary point x = (x1, ..., xd) ∈ Rd is equivalent to x having only one free coordinate

xi and all the other ones linearly dependent of xi, that is, xj = Lj(xi) for affine functions

Lj : R→ R. Let γ : R→ Rd given by

γ(t) = (L1(t), ..., Li−1(t), t, Li+1(t), ..., Ld(t)).

Since the Lj are affine maps, γ is a straight line. By the above paragraph we also know that γ(t)

satisfies the system of d−1 equations above for all t. So, to see if a point γ(t) is in K we only have

to see whether fd(γ(t)) ≥ βd. Because of this, let us analyze the composition fd ◦γ, which is also

an affine map: we have fd(γ(pi)) = fd(P ) = γd ≥ βd. If the derivative (fd ◦γ)′(pi) ≥ 0, then it is

a non-descending map and for every t ≥ pi we still have fd(γ(t)) ≥ fd(γ(pi)) = γd ≥ βd, which

implies the entire semi-straight line γ[pi,∞) is inside K. On the other hand, if (fd ◦ γ)′(pi) < 0,

then it is a descending map and for every t < pi we have fd(γ(t)) > fd(γ(pi)) = γd ≥ βd, which

implies the entire semi-straight line γ(−∞, pi] is inside K. So in any way K is not bounded and

therefore is not a polytope.

Finally, if r < d, a finite intersection of r closed halfspaces contains a finite intersection of d

closed halfspaces and therefore also cannot be bounded. This completes the lemma.

The vertices of a polytope should be the “least interior” points, which are not even in the

1-dimensional interiors of the polytope. Then, following [52], we define:

Definition 4.13. A point P of a d-polytope K ⊂ Rd is a vertex of K if P is not in the interior

of any straight path contained in K. In other words, P is a vertex of K if for any straight line

γ : R→ Rd containing P (say, γ(t0) = P ), there is no ε > 0 such that γ(t0− ε, to + ε) ⊂ K. The

set of vertices of K is denoted by V (K).

Note that, since every straight line can be reparametrized by any translation of R, it is

enough to suppose t0 = 0 in the definition above. Now we characterize the vertices of K in a

way that will be useful for us:

Lemma 4.14. Let K ⊂ Rd be a d-polytope and P ∈ K. Then P is a vertex of K if, and only

if, P belongs to (at least) d distinct facets of K.

Demonstração. Let K be defined by the system “fi(x) ≥ βi, i = 1, ..., n” as described above

(we already know that n ≥ d+ 1) and let P = (p1, ..., pd).
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(⇒) Suppose P is only in r ≤ d− 1 distinct facets of K, say, fi(P ) = βi for i = 1, ..., r and

fi(P ) > βi for i = r+1, ..., n (after reordering the fi if necessary). Since the Hi are irredundant,

the system of r equations above “fi(x) = βi for i = 1, ..., r” for x = (x1, ..., xd) ∈ Rd is equivalent

to having d − r free coordinates and the other r coordinates of x being affinely dependent of

them, say,

fi(x) = βi for 1 ≤ i ≤ r ⇔ x = (x1, ..., xd−r, Ld−r+1(x1, ..., xd−r), ..., Ld(x1, ..., xd−r))

(after reordering the coordinates if necessary), where the Lj : Rd−r → R are affine maps. Let

γ : R→ Rd with

γ(t) = (t, p2, ..., pd−r, Ld−r+1(t, p2, ..., pd−r), ..., Ld(t, p2..., pd−r)).

Since the Lj are affine maps, this is a straight line passing through γ(p1) = P and by construction

we know that for all t, γ(t) satisfies fi(γ(t)) = βi, 1 ≤ i ≤ r. Now, since fi(P ) > βi for

i = r + 1, ..., n and these fi are continuous, there is an open ball B(P, δ) such that fi(x) > βi

for i = r + 1, ..., n and for every x ∈ B(P, δ). By the continuity of γ, let ε > 0 be such that

γ(p1− ε, p1 + ε) ∈ B(P, δ). Then by construction we have γ(p1− ε, p1 + ε) ⊂ K and therefore P

is not a vertex of K.

(⇐) Suppose P is in d distinct facets of K, that is, fi(P ) = βi for i = 1, ..., d and fi(P ) ≥ βi
for i = d+1, ..., n (after reordering the fi if necessary). Since the Hi are irredundant, the system

of d equations “fi(x) = βi for i = 1, ..., d” in Rd has unique solution in Rd, which is P . Let

γ : R → Rd be a straight line containing P , say, γ(t) = P + tv for v ∈ Rd − {0} and consider

the affine composition maps fi ◦ γ : R→ R. There must be 1 ≤ i ≤ d such that (fi ◦ γ)′(0) 6= 0;

otherwise, all the maps fi ◦ γ would be constant with value fi ◦ γ(0) = βi and therefore all γ(t)

would be a solution of the system of equations above, a contradiction. Let 1 ≤ i ≤ d such that

(fi ◦γ)′(0) 6= 0. If (fi ◦γ)′(0) > 0, then fi ◦γ is an ascending map and fi ◦γ(−ε) < fi ◦γ(0) = βi

for all ε > 0, which implies γ(−ε, ε) 6⊂ K for all ε > 0. Similarly, if (fi ◦ γ)′(0) < 0, then fi ◦ γ is

an descending map and fi ◦ γ(ε) < fi ◦ γ(0) = βi for all ε > 0, which also implies γ(−ε, ε) 6⊂ K

for all ε > 0. This shows that P is a vertex of K.

Corollary 4.15. Every d-polytope of Rd has a finite number of vertices.

Demonstração. We showed above that V (K) is contained in the set of all possible intersections

of d (or more) facets of K. But in the part “(⇐)” we showed that the systems of d equations

“fi(x) = βi for i = 1, ..., d” which characterizes a vertex in K have unique solutions, so all these

d-intersections give rise to at most one vertex. Since there are a finite number of facets, V (K)

must be finite.

Proposition 4.16. Let K ⊂ Rd be a d-polytope and f : K → K a homeomorphism. If for

any P,Q ∈ K, f(conv(P,Q)) = conv(f(P ), f(Q)), then f maps vertices to vertices, that is,

f(V (K)) = V (K).

Demonstração. Let K be defined by the system “fi(x) ≥ βi, i = 1, ..., n”. Since f is a home-

omorphism, it must map the boundary ∂K to itself, and so f(F1 ∪ ... ∪ Fn) = F1 ∪ ... ∪ Fn.

Suppose by contradiction that a vertex P ∈ K is mapped to a non-vertex point f(P ) ∈ K
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(but obviously P, f(P ) ∈ ∂K). If a point Q ∈ K belongs to any facet of K contain-

ing P (say, F ), then conv(Q,P ) ⊂ F , since every facet is easily seen to be convex. Then

conv(f(Q), f(P )) ⊂ f(F ) ⊂ ∂K by hypothesis, which implies that the whole straight path

joining f(Q) and f(P ) is contained in the boundary ∂K. By Lemma 4.10, f(Q) must be in a

facet which also contains f(P ). This argument shows that all the facets containing P must be

mapped into the facets containing f(P ). By Lemma 4.14, there are at least d facets containing

P , say, F1, ..., Fd and at most d− 1 facets containing f(P ), say, Fi1 , ..., Fid−1
. Then we have

f(F1 ∪ ... ∪ Fd) ⊂ Fi1 ∪ ... ∪ Fid−1
.

We continue: since there are at least d+ 1 facets, let Z ∈ ∂K be a point outside Fi1 ∪ ...∪Fid−1
,

say, Z ∈ Fid . By Lemma 4.11, we can suppose Fid is the only facet containing Z. Since f is

surjective, Z = f(W ), so W must be a boundary point outside F1 ∪ ... ∪ Fd, say, W ∈ Fd+1.

Using again 4.14, we can show that all the facets containing W must be mapped into the facets

containing Z (only the facet Fid). In particular, f(Fd+1) ⊂ Fid and so

f(F1 ∪ ... ∪ Fd+1) ⊂ Fi1 ∪ ... ∪ Fid .

If d+ 1 = n, we stop. If not, we keep doing this same argument and adding facets to both sides

of the above expression. After finite steps we will have

f(F1 ∪ ... ∪ Fn) ⊂ Fi1 ∪ ... ∪ Fin−1 ,

so f(∂K) ( ∂K, contradiction.

4.2 Convex polytopes in Euclidean spheres and induced home-

omorphisms

Let G be a finitely generated group whose abelianized group Gab has free rank n. Consider the

homeomorphism

H : S(G) −→ Sn−1

[χ] 7−→ (χ(x1), ..., χ(xn))

‖(χ(x1), ..., χ(xn))‖
,

where the xi ∈ G are the free-abelian generators of Gab. Given ϕ ∈ Aut(G), we have the

induced homeomorphism ϕ∗ : S(G)→ S(G) with ϕ∗[χ] = [χ ◦ϕ]. Let ϕS : Sn−1 → Sn−1 be the

composition ϕS = H ◦ ϕ∗ ◦H−1.

By the definition above, it is easy to see that a subset K ⊂ S(G) is invariant in S(G) (that

is, invariant under ϕ∗ for all ϕ ∈ Aut(G)) if and only if H(K) is invariant under all ϕS . Before

defining a polytope in S(G), let us show a useful property of ϕS :

Definition 4.17. Let A ⊂ Sn ⊂ Rn+1 and suppose A is contained in an open hemisphere of Sn,
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say, A ⊂ O(v) = {x ∈ Sn | 〈x, v〉 > 0} for some v ∈ Rn+1 − {0}. We say that A is (spherically)

convex if for any a1, a2 ∈ A, the geodesic path from a1 to a2 is contained in A, that is, if

γa1,a2(t) = (1−t)a1+ta2
‖(1−t)a1+ta2‖ ∈ A for all t ∈ [0, 1].

Definition 4.18. Let A ⊂ Sn ⊂ Rn+1 and suppose A ⊂ O(v) as above. The convex hull of A

in Sn is the smallest convex subset of O(v) which contains A. We denote this set by conv(A).

If A = {a1, ..., am} is finite, we denote conv(A) by conv(a1, ..., am).

Proposition 4.19. Let A ⊂ Sn ⊂ Rn+1 and suppose A ⊂ O(v) as above. Then

conv(A) =

{
t1a1 + ...+ tmam
‖t1a1 + ...+ tmam‖

| m ≥ 1, ai ∈ A, (t1, ..., tm) ∈ [0,∞)m − {0}
}
.

Demonstração. It is straightforward to verify that the set on the right is spherically convex and

contains A, so (⊂) is valid. To show (⊃), let C be any convex set in O(v) containing A and

let us show that C must contain the set on the right. We will show this by induction on the

number of nonvanishing vectors in the elements t1a1+...+tmam
‖t1a1+...+tmam‖ . For m = 1, t1a1

‖t1a1‖ = t1a1
t1‖a1‖ =

a1
‖a1‖ = a1 ∈ C, because A ⊂ C by hypothesis. Assume that we showed that any element of

the form t1a1+...+tmam
‖t1a1+...+tmam‖ (with the ti > 0) is in C and consider and element t1a1+...+tm+1am+1

‖t1a1+...+tm+1am+1‖
with the ti > 0. By hypothesis, the element t1a1+...+tmam

‖t1a1+...+tmam‖ is an element c ∈ C, so we denote

λ = ‖t1a1 + ...+ tmam‖ and write t1a1 + ...+ tmam = λc. Then

t1a1 + ...+ tm+1am+1

‖t1a1 + ...+ tm+1am+1‖
=

λc+ tm+1am+1

‖λc+ tm+1am+1‖
.

Now, let λ′ = 1
λ+tm+1

> 0. Then λ′λ = 1− λ′tm+1 and we get

λc+ tm+1am+1

‖λc+ tm+1am+1‖
=

λ′λc+ λ′tm+1am+1

‖λ′λc+ λ′tm+1am+1‖
=

(1− λ′tm+1)c+ λ′tm+1am+1

‖(1− λ′tm+1)c+ λ′tm+1am+1‖
∈ C,

since c, am+1 ∈ C and C is convex. This completes the proof.

The ti above are called the coefficients of P = t1a1+...+tmam
‖t1a1+...+tmam‖ . As in Euclidean spaces, the

following happens:

Lemma 4.20. Let O(v) ⊂ Sn as above. The image of the geodesic path γP,Q joining two points

of O(v) is the convex hull of {P,Q}.

Demonstração. By definition,

im(γP,Q) =

{
(1− t)P + tQ

‖(1− t)P + tQ‖
| t ∈ [0, 1]

}
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and

conv(P,Q) =

{
t1P + t2Q

‖t1P + t2Q‖
| (t1, t2) ∈ [0,∞)2 − {0}

}
,

so it is obvious that im(γP,Q) ⊂ conv(P,Q). On the other hand, given (t1, t2) ∈ [0,∞)2 − {0},
let

λ =
1

t1 + t2
> 0.

Then λt1 = 1− λt2 and

t1P + t2Q

‖t1P + t2Q‖
=

λt1P + λt2Q

‖λt1P + λt2Q‖
=

(1− t)P + tQ

‖(1− t)P + tQ‖
∈ conv(P,Q)

for t = λt2 ∈ [0, 1], as desired.

Lemma 4.21. Let A ⊂ O(v) and suppose ϕS(A) ⊂ O(w) for some w. Then ϕS(conv(A)) =

conv(ϕS(A)), that is, the homeomorphism ϕS : Sn−1 → Sn−1 maps convex hulls to convex hulls.

In particular, it maps geodesic paths to geodesic paths.

Demonstração. Let us show that ϕS(conv(A)) ⊂ conv(ϕS(A)). If we show this, then

since (ϕ−1)
S

= (ϕS)
−1

we can similarly show that (ϕS)
−1

(conv(ϕS(A))) ⊂ conv(A), or

conv(ϕS(A)) ⊂ ϕS(conv(A)); therefore ϕS(conv(A)) = conv(ϕS(A)) and we are done.

Let P ∈ conv(A) and write P = t1a1+...+tmam
‖t1a1+...+tmam‖ for some ai ∈ A and ti ≥ 0. For each

ai, since H : S(G) → Sn−1 is surjective we write ai = H[χi] = (χi(x1),...,χi(xn))
‖(χi(x1),...,χi(xn))‖ for some

[χi] ∈ S(G) and, up to multiplying the representative χi by 1
‖(χi(x1),...,χi(xn))‖ we can actually

suppose ai = H[χi] = (χi(x1), ..., χi(xn)). Remember then that, by definition,

ϕS(ai) = H ◦ ϕ∗ ◦H−1(ai)

= H ◦ ϕ∗[χi]

= H[χi ◦ ϕ]

=
(χi ◦ ϕ(x1), ..., χi ◦ ϕ(xn))

‖(χi ◦ ϕ(x1), ..., χi ◦ ϕ(xn))‖

=
1

λi
(χi ◦ ϕ(x1), ..., χi ◦ ϕ(xn)),

where λi = ‖(χi ◦ ϕ(x1), ..., χi ◦ ϕ(xn))‖ > 0. Now we compute ϕS(P ). But

H[t1χ1 + ...+ tmχm] =
((t1χ1 + ...+ tmχm)(x1), ..., (t1χ1 + ...+ tmχm)(xn))

‖((t1χ1 + ...+ tmχm)(x1), ..., (t1χ1 + ...+ tmχm)(xn))‖

=
(t1χ1(x1) + ...+ tmχm(x1), ..., t1χ1(xn) + ...+ tmχm(xn))

‖(t1χ1(x1) + ...+ tmχm(x1), ..., t1χ1(xn) + ...+ tmχm(xn))‖

=
t1a1 + ...+ tmam
‖t1a1 + ...+ tmam‖

= P.

By denoting

λ = ‖(t1(χ1 ◦ ϕ)(x1) + ...+ tm(χm ◦ ϕ)(x1), ..., t1(χ1 ◦ ϕ)(xn) + ...+ tm(χm ◦ ϕ)(xn))‖,
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we have

ϕS(P ) = H ◦ ϕ∗ ◦H−1(P )

= H ◦ ϕ∗[t1χ1 + ...+ tmχm]

= H[(t1χ1 + ...+ tmχm) ◦ ϕ]

= H[t1(χ1 ◦ ϕ) + ...+ tm(χm ◦ ϕ)]

=
(t1(χ1 ◦ ϕ)(x1) + ...+ tm(χm ◦ ϕ)(x1), ..., t1(χ1 ◦ ϕ)(xn) + ...+ tm(χm ◦ ϕ)(xn))

λ

=
t1
λ

((χ1 ◦ ϕ)(x1), ..., (χ1 ◦ ϕ)(xn)) + ...+
tm
λ

((χm ◦ ϕ)(x1), ..., (χm ◦ ϕ)(xn))

=
λ1t1
λ

1

λ1
((χ1 ◦ ϕ)(x1), ..., (χ1 ◦ ϕ)(xn)) + ...+

λmtm
λ

1

λm
((χm ◦ ϕ)(x1), ..., (χm ◦ ϕ)(xn))

=
λ1t1
λ

ϕS(a1) + ...+
λmtm
λ

ϕS(am)

=
λ1t1
λ ϕS(a1) + ...+ λmtm

λ ϕS(am)

‖λ1t1λ ϕS(a1) + ...+ λmtm
λ ϕS(am)‖

(since the above vector is already unitary)

∈ conv(ϕS(A)),

as desired. Since the convex hull of two points is the geodesic path between them (by the above

lemma), ϕS must map geodesic paths to geodesic paths.

Observation 4.22. Note that the coeficients of ϕS(P ) may not be the same of the ones of P . For

example, the middle point P+Q
‖P+Q‖ between P and Q may not be mapped to the middle point

ϕS(P )+ϕS(Q)
‖ϕS(P )+ϕS(Q)‖ . However, we showed that it is certainly mapped into the geodesic path from

ϕS(P ) to ϕS(Q).

If Sn ⊂ Rn+1, let O(v) = {x ∈ Sn | 〈x, v〉 > 0} be an open hemisphere of Sn for some v ∈ Sn.

Consider the affine n-space v + {v}⊥ = {v + w | 〈w, v〉 = 0} ⊂ Rn+1. One can show that there

is a homeomorphism

θv : v + {v}⊥ → O(v) with θv(P ) =
P

‖P‖
,

the inverse map given by P 7→ ‖v‖2
〈P,v〉P . From now on we identify Rn = v + {v}⊥.

It is straightforward to show from the definitions that θv : Rn → O(v) maps convex hulls of

Rn to convex hulls of O(v). More precisely, θv(conv(A)) = conv(θv(A)).

Definition 4.23. A closed hemisphere in Sn is a set having the form C(w) = {p ∈ Sn | 〈p, w〉 ≥
0} for some w ∈ Sn. A polytope K ⊂ Sn is a finite intersection of closed hemispheres in Sn.
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Lemma 4.24. Let K be a polytope contained in an open hemisphere O(v) of Sn and consider

the projection homeomorphism θv : Rn → O(v). Then θv
−1(K) is a polytope in Rn.

Demonstração. We are identifying v + {v}⊥ = Rn. Let {e1, ..., en} be an orthogonal basis of

the n-vector space {v}⊥ (so the identification Rn = v + {v}⊥ can be seen as (λ1, ..., λn) 7→
v + λ1e1 + ...+ λnen). Write ei = (ei1, ..., ei,n+1) for each i. First, let us see what is the inverse

image under θv of a closed half space C(w) of Sn. Let z = v + λ1e1 + ... + λnen ∈ v + {v}⊥.

Then

z ∈ θv−1(C(w))⇔
〈

z

‖z‖
, w

〉
≥ 0⇔ 〈z, w〉 ≥ 0.

But if v = (v1, ..., vn+1) and w = (w1, ..., wn+1),

〈z, w〉 = λ1(e11w1 + ...+ e1,n+1wn+1) + ...+ λn(en1w1 + ...+ en,n+1wn+1) + 〈v, w〉.

So, under the identification, v + {v}⊥ is characterized by the (λ1, ..., λn) such that

〈(λ1, ..., λn), (e11w1 + ...+ e1,n+1wn+1, ..., en1w1 + ...+ en,n+1wn+1)〉 ≥ −〈v, w〉,

which is a closed half space of Rn. This shows that the inverse image under θv of closed half spaces

of Sn are closed half spaces of Rn. Now we easily show the proposition. Since K ⊂ O(v) is by

definition a finite intersection of closed half spaces of Sn and θv is a bijection, θv
−1(K) is a finite

intersection of closed halfspaces of Rn. Furthermore, K is closed (finite intersection of closed

subsets) inside the compact Sn, and therefore compact. Then, because θv is a homeomorphism,

θv
−1(K) is compact and therefore bounded, so it is a polytope.

Definition 4.25. Let K be a polytope contained in an open hemisphere O(v) of Sn. The

vertices of K are V (K) = θv(V (θv
−1(K))), that is, the vertices of K are the projections of the

vertices of the polytope θv
−1(K). The dimension of K is also defined to be the dimension of

θv
−1(K).

4.3 Property R∞ under convex polytopes

Definition 4.26. Let G be a finitely generated group with homeomorphism H : S(G)→ Sn−1.

We say that K ⊂ S(G) is a r-polytope in S(G) if H(K) is a r-polytope in Sn−1. In this case,

we define the vertices of K as V (K) = H−1(V (H(K))), that is, [χ] is a vertex of K if H[χ]

is a vertex of H(K). We say that K is contained in an open hemisphere of S(G) if H(K) is

contained in an open hemisphere of Sn−1.

Theorem 4.27. Let G be a finitely generated group and K ⊂ S(G) a polytope contained in an

open hemisphere of S(G). Then K is invariant in S(G) if and only if V (K) is invariant in

S(G).

Demonstração. Let ϕ ∈ Aut(G). By hypothesis, H(K) ⊂ O(v) for some open hemisphere of

Sn−1, so let θv : Rn−1 → O(v) be the homeomorphism. By Lemma 4.24, K ′ = θv
−1(H(K)) is

an r-polytope in Rn−1 for some 0 ≤ r ≤ n − 1. It is enough to show that H(K) is invariant

under ϕS if and only if V (H(K)) is. Suppose first that V (H(K)) is invariant under ϕS . But in
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Euclidean space, every convex polytope is the convex hull of its vertices (see [52]), so

conv(V (H(K))) = conv(θv(V (K ′))) = θv(conv(V (K ′))) = θv(K
′) = H(K),

that is, H(K) is also the convex hull of its vertices. Using this, the main hypothesis and Lemma

4.21, we have

ϕS(H(K)) = ϕS(conv(V (H(K)))) = conv(ϕS(V (H(K)))) = conv(V (H(K))) = H(K),

as desired. Now, suppose ϕS(H(K)) = H(K). We know K ′ is an r-polytope in Rn−1. If

r < n − 1, then K ′ is contained in a proper r-hyperspace (the translation of an r-subspace)

of Rn−1. Indeed, if that was not the case, then since every r + 1 points are contained in an

r-hyperspace, there are r+2 points of K ′ which are not contained in any r-hyperspace. But since

K ′ is convex, K ′ must contain the convex hull of these r+2 points, which is an r+1-dimensional

closed simplex. Then dim(K ′) ≥ r + 1, contradiction. Denote by Er the r-hyperspace of Rn

containing K ′. Considering Er as a linear space, there is a linear isomorphism and isometry

T : Rr → Er and a r-polytope K̃ ⊂ Rr such that K ′ = T (K̃). Consider the composition made

by (the restrictions of) the homeomorphisms

K̃
T−→ K ′

θv−→ H(K)
ϕS−→ H(K)

θv
−1

−→ K ′
T−1

−→ K̃.

Since T maps straight paths to straight paths, θv maps straight paths to geodesic paths and

ϕS maps geodesic paths to geodesic paths, this composition is a homeomorphism which maps

straight paths to straight paths. By 4.16, it must map the vertices of K̃ to themselves. Then,

since T maps the vertices of K̃ to the vertices of K ′, the composition

K ′
θv−→ H(K)

ϕS−→ H(K)
θv
−1

−→ K ′

must map the vertices of K ′ to themselves. Finally, since V (H(K)) = θv(V (K ′)), the last fact

implies that ϕS must map the vertices of H(K) to themselves, as desired.

Theorem 4.28. Let G be a finitely generated group. If there is an invariant polytope K ⊂ S(G)

contained in an open hemisphere of S(G) and with rational vertices, then G has property R∞.

In particular, if Σn(G)c is such a polytope for some n ≥ 1, then G has property R∞.

Demonstração. By the previous theorem, V (K) ⊂ S(G) is finite, invariant and by definition

contained in an open half-space of S(G). Then the result follows directly from Theorem 4.1.

Like we did in Theorem 3.40, we will now show that it is possible to guarantee property R∞

for a direct product if all factors have (Σ1)c as polytopes described above.

Lemma 4.29. Let A ⊂ O(v) ⊂ Sn and B ⊂ O(w) ⊂ Sm and consider the inclusions i :

Sn → Sn+m+1 with (x1, ..., xn+1) 7→ (x1, ..., xn+1, 0, ..., 0) (which we abbreviate to x 7→ (x, 0))

and i′ : Sm → Sn+m+1 with (y1, ..., ym+1) 7→ (0, ..., 0, y1, ..., ym+1) (which we abbreviate to

y 7→ (0, y)). If A and B are both convex subsets, then

A~B = conv(i(A) ∪ i′(B)).



106 4. Invariant convex polytopes and property R∞

Demonstração. By the definition of spherical join (3.11), (⊂) is immediate. Let us show (⊃).

By Proposition 4.19, a general element of conv(i(A) ∪ i′(B)) has the form

t1(a1, 0) + ...+ tr(ar, 0) + t′1(0, b1) + ...+ t′s(0, bs)

‖t1(a1, 0) + ...+ tr(ar, 0) + t′1(0, b1) + ...+ t′s(0, bs)‖
=

(t1a1 + ...+ trar, t
′
1b1 + ...+ t′sbs)

‖(t1a1 + ...+ trar, t′1b1 + ...+ t′sbs)‖

=

(
t1
λ
a1 + ...+

tr
λ
ar,

t′1
λ
b1 + ...+

t′s
λ
bs

)

for λ = ‖(t1a1+...+trar, t
′
1b1+...+t′sbs)‖, (t1, ..., tr) ∈ [0,∞]r−{0} and (t′1, ..., t

′
s) ∈ [0,∞]s−{0}.

Let

λ1 =

∥∥∥∥ t1λ a1 + ...+
tr
λ
ar

∥∥∥∥ and λ2 =

∥∥∥∥ t′1λ b1 + ...+
t′s
λ
bs

∥∥∥∥ .
Then, since A and B are convex, we can write

t1
λ a1 + ...+ tr

λ ar

λ1
= a ∈ A and

t′1
λ b1 + ...+ t′s

λ bs

λ2
= b ∈ B

and so (
t1
λ
a1 + ...+

tr
λ
ar,

t′1
λ
b1 + ...+

t′s
λ
bs

)
= (λ1a, λ2b) =

(λ1a, λ2b)

‖(λ1a, λ2b)‖
,

the last since the vector is unitary. Finally, let ε = 1
λ1+λ2

. Then

(λ1a, λ2b)

‖(λ1a, λ2b)‖
=

(ελ1a, ελ2b)

‖(ελ1a, ελ2b)‖
=

((1− ελ2)a, ελ2b)

‖((1− ελ2)a, ελ2b)‖
∈ A~B,

as desired.

Proposition 4.30. If K1, ...,Km are polytopes contained in open hemispheres, say, Ki ⊂
O(vi) ⊂ Sni, then the spherical join K1~ ...~Km is a polytope contained in an open hemisphere.

Demonstração. Let us show it by induction on m; first, the case m = 2. Let K ⊂ O(v) ⊂ Sn

and K ′ ⊂ O(w) ⊂ Smbe polytopes. It is easy to see that K ~ K ′ ⊂ O(v, w). Now, write

K = ∩ri=1C(vi) and K ′ = ∩si=1C(wi) for vi ∈ Sn and wi ∈ Sm. Consider the polytope in

Sn+m+1

K ′′ = (∩ri=1C(vi, 0)) ∩ (∩si=1C(0, wi)).

We claim that K ~K ′ = K ′′. From the previous lemma, since K and K ′ are convex we have

K ~K ′ = conv(i(K) ∪ i′(K ′)), so we will show that conv(i(K) ∪ i′(K ′)) = K ′′. On one hand,

it’s easy to see that K ′′ is convex (is an intersection of convex sets) and contains i(K) ∪ i′(K ′),
so we have (⊂). On the other hand, let C be a convex set containing i(K) ∪ i′(K ′) and let us

show that K ′′ ⊂ C. If (x, y) ∈ K ′′ we must have 〈x, vi〉 = 〈(x, y), (vi, 0)〉 ≥ 0 for all 1 ≤ i ≤ r

and 〈y, wi〉 = 〈(x, y), (0, wi)〉 ≥ 0 for all 1 ≤ i ≤ s, so x ∈ K and y ∈ K ′. Then i(x), i′(y) ∈ C
and, since C is convex,

(x, y) = (x, 0) + (0, y) = i(x) + i′(y) =
i(x) + i′(y)

‖i(x) + i′(y)‖
∈ C,

as desired. This shows (⊃) and finishes the case m = 2.

Now suppose the fact is valid for m ≥ 2 and let K1 ~ ... ~ Km+1 be a spherical join of
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polytopes Ki ⊂ O(vi) ⊂ Sni . By the induction hypothesis, K1 ~ ... ~Km is a polytope in an

open hemisphere; then K1 ~ ... ~Km+1 = (K1 ~ ... ~Km) ~Km+1 is a polytope contained in

an open hemisphere by the case m = 2. This completes the proof.

Theorem 4.31. Let G = G1 × ...×Gm be a direct product of finitely generated groups Gi. If,

for all i, Σ1(Gi)
c is a polytope with rational vertices contained in an open hemisphere of S(Gi),

then G has the R∞ property.

Demonstração. We will show the case m = 2, for the general case follows by trivial induction.

If we identify S(G1) ' Sn1−1 and S(G2) ' Sn2−1 as in Theorem 3.6, we have S(G) = Sn1+n2+1

and the maps πi
∗ : S(Gi) → S(G) can be identified with inclusions of the form x 7→ (x, 0) and

y 7→ (0, y), respectively for i = 1, 2. By using this fact, the hypothesis on Σ1(Gi)
c and the

product formula (Theorem 3.30) we have that Σ1(G)c = π1
∗(Σ1(G1)c) ∪ π2

∗(Σ1(G2)c) is the

union of two convex polytopes in S(G). Since each one was contained in an open hemisphere

of S(Gi), it is easy to see that Σ1(G)c is contained in an open hemisphere of S(G) (see the end

of the proof of Theorem 3.40). Now, since Σ1(G)c is invariant in S(G) and the maps ϕS send

convex hulls to convex hulls (Lemma 4.21) we have conv(Σ1(G)c) invariant in S(G). But the

Σ1(Gi)
c are convex and the πi

∗ are inclusions, so by Lemma 4.29 we have

conv(Σ1(G)c) = conv(π1
∗(Σ1(G1)c) ∪ π2

∗(Σ1(G2)c)) = Σ1(G1)c ~ Σ1(G2)c,

so Σ1(G1)c ~ Σ1(G2)c is invariant in S(G) and contained in an open hemisphere of it. By

Proposition 4.30, it is also a (rationally defined) polytope. Thus, the theorem follows from

Theorem 4.28.

Open question: are there any known groups in the literature having such invariant convex

polytopes in the character sphere? In particular, are there groups with the complementar of

the Σ1 invariant being such polytopes? We know from the results of this chapter that, if the

set Σ1(G)c is finite, of rational points and contained in an open hemisphere, then its convex

closure in S(G) is such an invariant convex polytope and our Theorem 4.28 applies. But in this

case we have no particular gain with respect to twisted conjugacy, for Theorem 3.38 already

guarantees property R∞ for G. The interesting situation, therefore, would be either finding

invariant convex polytopes which are not convex closures of Σ1(G)c, or groups such that Σ1(G)c

are non degenerated convex polytopes. Is there any methodical way of building such groups by

using group presentations?



108 4. Invariant convex polytopes and property R∞



109

Parte II

The Σ1 invariant of the Generalized

Solvable Baumslag-Solitar groups Γn

and of their finite index subgroups





111

Caṕıtulo 5

Generalized Solvable

Baumslag-Solitar groups Γn

In this chapter we investigate the Σ1 invariant of an important class of groups which generalizes

the solvable Baumslag-Solitar groups BS(1, n) and that we will call Γn. Property R∞ is known

for these groups and for every group which is quasi-isometric to some Γn (see the paper [94]).

The techniques of the paper, nevertheless, do not involve geometric invariants. By computing

Σ1(Γn), we obtained a new proof of R∞ property for Γn.

Recently, it has been pointed out by professor Dessislava Hristova Kochloukova (which is a

specialist on the subject of BNS invariants) that the groups Γn are metabelian (that is, they

contain a normal abelian subgroup Z
[

1
n

]
with an abelian quotient Zr, see the first paragraphs

of Chapter 6) and that a lot of good information is known about BNS invariants for this class

of groups. For example, it was already known by [11] (see also [10] and [9]) that Σ1(Γ)c is finite

and could be explicitly computed by easy calculations involving the finite generation (or not)

of its commutator group as a module over a monoid Qµ inside the abelianized group Q = G/G′

(G = Γn), the action being given by conjugation. We could have followed these directions, but

we decided to maintain the more elementary and geometric proofs below, for didactic reasons

and also to maintain the graphic-likeness of the thesis.

Definition 5.1. Let n ≥ 2 be a positive integer with prime decomposition n = p1
y1 ...pr

yr , the

pi being pairwise distinct. We define the solvable generalization of the Baumslag-Solitar group

by

Γn =
〈
a, t1, ..., tr | titj = tjti, i 6= j, tiati

−1 = api
yi , i = 1, ..., r

〉
.

More generally, let n1, ..., nr be pairwise coprime positive integers and let us assume there is

at least one i such that ni ≥ 2. Define

G = Γ{n1,...,nr} =
〈
a, t1, ..., tr | titj = tjti, i 6= j, tiati

−1 = ani , i = 1, ..., r
〉
.

In the next section we will deal with this group G. The hypothesis ni ≥ 2 for some i is

just to turn the investigation to the interesting cases. Indeed, if ni = 1 for all i then all the

generators of G would commute and we would have G ' Zr+1 and Σ1(G) = S(G), by Corollary

3.15. Also, G would not have the property R∞ by Example 1.3 and so there would be nothing

to be done in this chapter. Note that for every n ≥ 1, the group Γn = Γ{p1y1 ,...,pryr} is a special
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case of our group G.

5.1 Computation of Σ1(Γn) and property R∞

In this section we intend to compute Σ1(G) (in particular, Σ1(Γn)) in order to guarantee the

property R∞ for it. Note that G is torsion-free. In the abelianized Gab, taking i with ni ≥ 2 we

have ani = tiati
−1 = a, then ani−1 = 1, and so the homeomorphism

H : S(G) −→ Sr−1

[χ] 7−→ (χ(t1), ..., χ(tr))

‖(χ(t1), ..., χ(tr))‖
.

We are going to use the geometric Σ1-criterion given by Ralph Strebel (Theorem 3.22). In

our case, we have S = {a, t1, ..., tr}, Y = {a, a−1, t1, t1
−1, ..., tt, tr

−1}. Using Theorem 3.22, we

will prove that

1) if there is 1 ≤ i ≤ r such that χ(ti) < 0, then [χ] ∈ Σ1(G);

2) if there are 1 ≤ i, j ≤ r with i 6= j and such that χ(ti), χ(tj) > 0, then [χ] ∈ Σ1(G).

Let’s do it:

1) if there is 1 ≤ i ≤ r such that χ(ti) < 0, then [χ] ∈ Σ1(G).

Fix t = ti
−1 and we have χ(t) = −χ(ti) > 0. By the Geometric criterion, it suffices to exhibit

2r + 2 paths py (y ∈ Y ) in Γ(G,S) from ti
−1 to yti

−1 such that νχ(py)− νχ((1, y)) > 0.

y = a: since tiati
−1 = ani in G we have ati

−1 = ti
−1ani , so we take pa = (ti

−1, ani), as in the

figure. We have νχ(pa) = min{χ(ti
−1), χ(ti

−1a), ..., χ(ti
−1ani)} = −χ(ti) (since χ(a) = 0),

νχ((1, y)) = min{χ(1), χ(a)} = 0 and then νχ(pa)− νχ((1, a)) = −χ(ti) > 0, as desired.

Figura 5.1: the path pa

y = a−1: as in the previous item, from the relation tia
−1ti

−1 = a−ni in G we have a−1ti
−1 =

ti
−1a−ni , so we take pa−1 = (ti

−1, a−ni), as in the figure. We have νχ(pa−1) =

min{χ(ti
−1), χ(ti

−1a−1), ..., χ(ti
−1a−ni)} = −χ(ti), νχ((1, a−1)) = min{χ(1), χ(a−1)} = 0

and then νχ(pa−1)− νχ((1, a−1)) = −χ(ti) > 0, as desired.

y = ti: we just take pti = (ti
−1, ti). So

νχ(pti)− νχ((1, ti)) = min{χ(ti
−1), 0} −min{0, χ(ti)} = 0− χ(ti) = −χ(ti) > 0,
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Figura 5.2: the path pa−1

as desired.

Figura 5.3: the path pti

y = ti
−1: analogously, we take pti−1 = (ti

−1, ti
−1). Then

νχ(pti−1)− νχ((1, ti
−1)) = min{−χ(ti),−2χ(ti)} −min{0,−χ(ti)}

= −χ(ti)− 0 > 0,

as desired.

Figura 5.4: the path pti−1

y = tj , j 6= i: Since titj = tjti, take ptj = (ti
−1, tj). Then,

νχ(ptj ) = min{−χ(ti),−χ(ti) + χ(tj)} = −χ(ti) +min{0, χ(tj)}

and νχ((1, tj)) = min{0, χ(tj)}, and so

νχ(ptj )− νχ((1, tj)) = −χ(ti) +min{0, χ(tj)} −min{0, χ(tj)} = −χ(ti) > 0,

as we wanted.

Figura 5.5: the path ptj

y = tj
−1, j 6= i: Since titj = tjti, take ptj = (ti

−1, tj
−1). Then,

νχ(ptj−1) = min{−χ(ti),−χ(ti)− χ(tj)} = −χ(ti) +min{0,−χ(tj)}
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and νχ((1, tj
−1)) = min{0,−χ(tj)}, and so

νχ(ptj−1)− νχ((1, tj
−1)) = −χ(ti) +min{0,−χ(tj)} −min{0,−χ(tj)} = −χ(ti) > 0,

as we wanted.

Figura 5.6: the path ptj−1

Since we obtained the 2r + 2 inequalities νχ(py)− νχ((1, y)) > 0, one has [χ] ∈ Σ1(G).

2) if there are 1 ≤ i, j ≤ r with i 6= j and such that χ(ti), χ(tj) > 0, then [χ] ∈ Σ1(G).

This time we fix t = ti with χ(ti) > 0. From the two relations tiati
−1 = ani and tia

−1ti
−1 =

a−ni it is easy to prove by induction that tia
kti
−1 = akni for every k ∈ Z. The same happens for

j: tja
ktj
−1 = aknj . Finally, as ni and nj are coprime, take integers r, s such that rni + snj = 1.

Again, let us exhibit the 2r + 2 paths py from ti to yti with νχ(py)− νχ((1, y)) > 0.

y = a: Since νχ((1, a)) = 0, we have to create a path from ti to ati with νχ(pa) > 0, that is, a

path having positive χ-values in all its vertices. Based on the equation rni + snj = 1, we

take then pa = (ti, a
rtjti

−1astitj
−1) and use the relations of the group to guarantee that

pa ends in ati, as one can see at the (merely illustrative) figure.

Figura 5.7: the path pa

Again, as χ(a) = 0, we have

νχ(pa) = min{χ(ti), χ(titj), χ(tj)} = min{χ(ti), χ(tj)} > 0

and so νχ(pa)− νχ((1, a)) = νχ(pa) > 0, as we wanted.

y = a−1: here, we use that −rni − snj = −1 to construct a similar path as before: pa−1 =

(ti, a
−rtjti

−1a−stitj
−1). Then νχ(pa−1)− νχ((1, a−1)) = min{χ(ti), χ(tj)} − 0 > 0.

y = ti: take pti = (ti, ti). Then νχ(pti) = min{χ(ti), 2χ(ti)} = χ(ti). Also, we have νχ((1, ti)) =

min{0, χ(ti)} = 0 and so νχ(pti)− νχ((1, ti)) = χ(ti) > 0, as desired.
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Figura 5.8: the path pa−1

Figura 5.9: the path pti

Figura 5.10: the path pti−1

y = ti
−1: we just take pti−1 = (ti, ti

−1). Then νχ(pti−1) = min{χ(ti), 0} = 0 and νχ((1, ti
−1)) =

min{0,−χ(ti)} = −χ(ti), and so νχ(pti−1)− νχ((1, ti
−1)) = 0− (−χ(ti)) = χ(ti) > 0.

y = tj , j 6= i: again, using that ti commutes with tj we take ptj = (ti, tj). We have νχ(ptj ) =

min{χ(ti), χ(ti) + χ(tj)} = χ(ti) + min{0, χ(tj)} and νχ((1, tj)) = min{0, χ(tj)}, so

νχ(ptj )− νχ((1, tj)) = χ(ti) +min{0, χ(tj)} −min{0, χ(tj)} = χ(ti) > 0.

Figura 5.11: the path ptj

y = tj
−1, j 6= i: let ptj−1 = (ti, tj

−1). Then νχ(ptj−1) = min{χ(ti), χ(ti)−χ(tj)} = χ(ti) +min{0,−χ(tj)}
and νχ((1, tj

−1)) = min{0,−χ(tj)} and so again we have νχ(ptj−1)−νχ((1, tj
−1)) = χ(ti) >

0, as desired.

Figura 5.12: the path ptj−1

Again, since we obtained 2r + 2 inequalities νχ(py)− νχ((1, y)) > 0, one has [χ] ∈ Σ1(G).

The two cases before cover almost the entire sphere S(G), except for the r points [χ1], ..., [χr]

corresponding to the points (1, 0, ..., 0), (0, 1, ..., 0), ..., (0, 0, ..., 1) of Sr−1, that is, χi(ti) = 1 and

χi(tj) = 0 if j 6= i. Let us determine whether they are in Σ1(G). There are two cases:

1) if ni = 1, then [χi] ∈ Σ1(G).
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This is easy. In fact, if ni = 1, then ti commutes with a in G and therefore it is in the center

Z(G). Since χi(ti) = 1 6= 0, we have [χi] ∈ Σ1(G) by Corollary 3.14.

2) if ni ≥ 2, then [χi] /∈ Σ1(G).

To show this we will use mainly the following relations in G:

tkja
N = an

k
jN tkj and aN t−kj = t−kj an

k
jN , if k ≥ 0, N ∈ Z, j = 1, ..., r,

Since the tj commute each other, this means that all the positive powers of the tj can be

entirely pushed to the right and the negative ones can be pushed to the left in a word, up to

multiplying the powers of a by some nkj , k ≥ 0.

Suppose by contradiction that [χi] ∈ Σ1(G), that is, Γχi = Γ(G,S)χi is connected. Then

in particular there is a path p = (1, w) in Γχi from 1 to the vertex ti
−1ati, with w a word in

W (a, t1, ..., tr). The first thing to do is to eliminate the letters ti from w.

Write

w = t1
k11 ...tr

k1rar1t1
k21 ...tr

k2rar2 ...t1
km1 ...tr

kmr arm , with klj , rj ∈ Z.

Since p is a path in Γχi , all its vertices have nonnegative χi values, and then we have the

inequalities

k1
i = χi(t1

k11 ...tr
k1r ) ≥ 0

k1
i + k2

i = χi(t1
k11 ...tr

k1rar1t1
k21 ...tr

k2r ) ≥ 0

...

k1
i + k2

i + ...+ km−1
i = χi(t1

k11 ...tr
k1rar1t1

k21 ...tr
k2rar2 ...t1

km−1
1 ...tr

km−1
r ) ≥ 0

k1
i + k2

i + ...+ km−1
i + kmi = χ(w) = χ(ti

−1ati) = −1 + 0 + 1 = 0.

We now use the relations we just mentioned: since k1
i ≥ 0, push ti

k1i to the right in w

until ti
k2i and we get ti

k1i+k2i . Since k1
i + k2

i ≥ 0, push ti
k1i+k2i to the right until ti

k3i and we

get ti
k1i+k2i+k3i . We keep doing this until we get ti

k1i+k2i+...+kmi as the only ti letter in w. Since

k1
i + k2

i + ...+ kmi = 0, we eliminated all the ti from w. Then we can write

w = w1a
r1w2a

r2 ...wma
rm

where rj ∈ Z (different from the first rj ones) and the wj are the words t1
kj1 ...ti−1

kji−1ti+1
kji+1 ...tr

kjr

above but now without ti.

Now, since we must have w = ti
−1ati in G and the wj commute with ti, we have

a = tiwti
−1 = ti(w1a

r1 ...wma
rm)ti

−1 = w1a
nir1 ...wma

nirm ,

or

w1a
nir1 ...wm−1a

nirm−1wma
nirm−1 = 1

in G. From this expression we will derive a contradiction. Specifically, we will conclude that

ni = 1. Note that, in this expression, for all fixed j the sum of all the powers of tj must be 0,
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because χj(w1a
nir1 ...wm−1a

nirm−1wma
nirm−1) = χj(1) = 0.

We can push now all the positive powers of all the tj to the right and all the negative ones

to the left in this expression. After doing this, we will obtain an expression

t−s11 ...t
−si−1

i−1 t
−si+1

i+1 ...t−srr aα1(nir1)+...+αm−1(nirm−1)+αm(nirm−1)tsrr ...t
si+1

i+1 t
si−1

i−1 ...t
s1
1 = 1,

where each αj is 1 or a product nl11 ...n
li−1

i−1n
li+1

i+1 ...n
lr
r . Again, note that the powers sj appear

symmetrically since the sum of the powers of each tj is 0. Then, conjugating the expression we

easily obtain

aα1(nir1)+...+αm−1(nirm−1)+αm(nirm−1) = 1,

and since a is torsion-free we have

α1(nir1) + ...+ αm−1(nirm−1) + αm(nirm − 1) = 0.

Putting on the left side the multiples of ni and only αm on the right we obtain either

kni = αm = nl11 ...n
li−1

i−1n
li+1

i+1 ...n
lr
r

or

kni = αm = 1.

In the latter case, since ni ≥ 0 we must have ni = 1, contradiction. In the former case, ni

divides αm, so gcd(ni, αm) = ni. On the other hand, since αm = nl11 ...n
li−1

i−1n
li+1

i+1 ...n
lr
r does not

involve ni and the nj are pairwise coprime, ni and αm have no commom prime divisors and

then gcd(ni, αm) = 1. So, ni = gcd(ni, αm) = 1, a contradiction. Then [χi] /∈ Σ1(G) if ni ≥ 2,

as desired, and we have proved

Theorem 5.2. The complement Σ1(Γ{n1,...,nr})
c of the group

Γ{n1,...,nr} =
〈
a, t1, ..., tr | titj = tjti, i 6= j, tiati

−1 = ani , i = 1, ..., r
〉

is given by

Σ1(Γ{n1,...,nr})
c = {[χi] | ni ≥ 2},

where χi(ti) = 1 and χi(tj) = 0 if j 6= i. In particular, if n = py11 ...p
yr
r then

Σ1(Γn)c = {[χ1], ..., [χr]}.

Now we can guarantee property R∞ for Γ{n1,...,nr}

Corollary 5.3. The group Γ{n1,...,nr} has property R∞. In particular, the solvable generalization

Γn of the Baumslag-Solitar group has R∞ property.

Demonstração. Since Σ1(Γ{n1,...,nr})
c is nonempty, finite and of rational points we can apply The-

orem 3.37. Let Σ1(Γ{n1,...,nr})
c = {[χi1 ], ..., [χik ]}, N = ∩kj=1 ker(χij ) and V = Hom(G/N,R).

We just have to see that the natural induced maps χi1 , ..., χik on V form a basis of V . The
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Figura 5.13: case r = 3 and n1, n2, n3 ≥ 2. Σ1(Γ{n1,n2,n3})
c are the red points.

relation in G/N is given by

g = h⇔ χi1(g) = χi1(h), ..., χik(g) = χik(h).

So, it is easy to see that G/N is f.g. free abelian with basis ti1 , ..., tik . Since χij (tij ) = 1 and

χij (tis) = 0 if s 6= j, the elements χi1 , ..., χik act exactly as a dual basis in V of the ti1 , ..., tik , so

they form a basis for V . Then, by Theorem 3.37, it follows that Γ{n1,...,nr} has property R∞.

Another easy consequence is

Corollary 5.4. If n = py11 ...p
yr
r , the first Ω-invariant Ω1(Γn) of the group

Γn =
〈
a, t1, ..., tr | titj = tjti, i 6= j, tiati

−1 = ap
yi
i , i = 1, ..., r

〉
is given by

Ω1(Γn) = {[χ] ∈ S(Γn) | χ(ti) ≤ 0 ∀ i}.

5.2 Partial generalizations

The techniques we used to compute Σ1(Γ{n1,...,nr}) above can be used for some special generalized

presentations. Here we show two of them.

Theorem 5.5. Let

G = 〈a, t, s | tat−1 = an, sas−1 = am, tst−1s−1 = ar〉

for some coprime numbers n,m ≥ 2 and some r ∈ Z. Then G has property R∞.

Demonstração. We have
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H : S(G) −→ S1

[χ] 7−→ (χ(t), χ(s))

‖(χ(t), χ(s))‖
.

Let us compute Σ1(G) by using the geometric criterion. Fix X = {a, t, s} and so Y =

{a, a−1, t, t−1, s, s−1}.

• if χ(t) < 0 then [χ] ∈ Σ1(G). Fix t−1 such that χ(t−1) > 0. It is straightforward to

verify that the paths pa = (t−1, an), pa−1 = (t−1, a−n), pt = (t−1, t) and pt−1 = (t−1, t−1)

satisfy the conditions of the criterion and are similar to those we used in Γ{n1,...,nr}. The

paths ps and ps−1 need to be slightly different though, because t and s do not commute

this time. Since st−1 = t−1ars and s−1t−1 = t−1s−1a−r, the paths ps = (t−1, ars) and

ps−1 = (t−1, s−1a−r) are also easily seen to satisfy the criterion, so [χ] ∈ Σ1(G).

• if χ(s) < 0 then [χ] ∈ Σ1(G). We fix s−1 with χ(s−1) > 0. The paths satisfying the

geometric criterion are analogous to the previous ones. Define pa = (s−1, am), pa−1 =

(s−1, a−m), ps = (s−1, s) and ps−1 = (s−1, s−1). Since s−1a−rt = ts−1 and s−1t−1ar =

t−1s−1, the paths pt = (s−1, a−rt) and pt−1 = (s−1, t−1ar) also satisfy the criterion. So

[χ] ∈ Σ1(G).

Note that since ta = ant, ta−1 = a−nt, ts = arst and ts−1 = s−1a−rt, all the positive

t-letters can be pushed right in a word of G without changing its power, and since at−1 =

t−1an, a−1t−1 = t−1a−n, st−1 = t−1ars and s−1t−1 = t−1s−1a−r, all the negative t-letters

can go left in the same way. The same can be done with s: positive powers to the right

and negative ones to the left (obviously, the other adjacent letters may be affected because

both t and s are not in the center of G). This is useful for the next two items:

• if χ(t) = 1 and χ(s) = 0 then [χ] /∈ Σ1(G). The strategy is also somewhat similar to the

one we used in the case Γ{n1,...,nr}. Suppose by contradiction that [χ] ∈ Σ1(G). Then, in

particular, there is a path p = (1, w) in Γχ from 1 to t−1at. Write

w = tk11sk12ar1 ...tkc1skc2arc .

Since p is contained in Γχ, χ(t) = 1 and χ(s) = 0 we must have

k11 ≥ 0, k11 + k21 ≥ 0, ..., k11 + ...+ kc−1,1 ≥ 0 and k11 + ...+ kc1 = 0.

We push right tk11 until tk21 , then we push right tk11+k21 until tk31 , and so on. Since

k11 + ... + kc1 = 0, we eliminate from w all the t-letters and (after relabeling the s and a

powers) we can write

w = sk1ar1 ...skcarc

in G. But, as a vertex, w must be the end if the path p. So we have w = t−1at and

therefore

a = twt−1 = t(sk1ar1 ...skcarc)t−1 = (ars)k1anr1 ...(ars)kcanrc ,
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or

w′ = (ars)k1anr1 ...(ars)kc−1anrc−1(ars)kcanrc−1 = 1

in G. Since the homomorphism G → Z × Z with w 7→ ((w)t, (w)s) is well defined in G,

we have k1 + ...kc = (w′)s = (1)s = 0. Also, (ars)aM = amM (ars) and aM (ars)−1 =

(ars)−1amM for every M ∈ Z. This means that, in w′, the entire positive pieces (ars)ki

can be pushed right and the negative ones can be pushed left. After doing this, we obtain

an expression of the form

(ars)−λaα1nr1+...+αc−1nrc−1+αc(nrc−1)(ars)λ = 1,

where each αi is either 1 or a positive power of m. By conjugating the expression,

aα1nr1+...+αc−1nrc−1+αc(nrc−1) = 1

which implies (since a is torsion-free in G)

α1nr1 + ...+ αc−1nrc−1 + αc(nrc − 1) = 0.

By putting all the multiples of n above to the left and only αc on the right, we get either

Mn = 1 (contradiction with the fact n ≥ 2) or Mn = mQ a positive power of m. In the

latter case, on one hand gcd(n,mQ) = n (because n divides mQ) and on the other hand

gcd(n,mQ) = 1 because n and m are coprime. Then n = 1, also a contradiction.

• if χ(t) = 0 and χ(s) = 1 then [χ] /∈ Σ1(G). This is analogous to the previous item.

Let us identify S(G) = S1 by the homeomorphism H and let [χ1] and [χ2] be the points of

the third and fourth items above, respectively. The first two items showed that the geodesic γ

in S(G) between these points (that is, the closed fourth part of the circle) contains Σ1(G)c. We

claim that γ is itself invariant in S(G). In fact, if ϕ ∈ Aut(G) and p ∈ γ, then by Lemma 4.21

ϕ∗(p) must be in the geodesic between ϕ∗[χ1] and ϕ∗[χ2]. But these points are in Σ1(G)c by its

invariance and by the third and fourth items; therefore by the two first items they must be in γ.

Since γ is a convex subset we have ϕ∗(p) ∈ γ, which shows our claim. So we have γ an invariant

convex 1-dimensional polytope with the two rational vertices [χi], and so the proposition follows

from Theorem 4.28.

Observation 5.6. Since n and m are coprime in the example above, it is also possible to show

that χ(t), χ(s) > 0 ⇒ [χ] ∈ Σ1(G), using the geometric criterion. Then Σ1(G)c consist of two

rational points inside an open halfspace and we could guarantee property R∞ also by Theorem

4.1. We just wanted do register the usefulness of the kind of strategy we used above.

We actually tried to generalize the theorem above for all groups having the presentation

G = 〈α, x1, ..., xr | xiαxi−1 = αPi ∀ i, xixjxi−1xj
−1 = αRij ∀ i, j〉

for pairwise coprime integers Pi ≥ 1 and Rij ∈ Z, but we were not able to show that the points

[χi] ∈ S(G) defined by χi(xi) = 1 and χi(xj) = 0 (for j 6= i) are not in Σ1(G). So, because of

this, we added an additional hypothesis:
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Theorem 5.7. Let

G = 〈α, x1, ..., xr | xiαxi−1 = αPi ∀ i, xixjxi−1xj
−1 = αRij ∀ i, j〉

for pairwise coprime integers Pi ≥ 1 and Rij ∈ Z. If the commutator G′ is not finitely generated,

then G has property R∞.

Demonstração. Let us compute Σ1(G). We have Y = {α, α−1, x1, x
−1
1 , ..., xr, x

−1
r }. By using

the Geometric Criterion and paths similar to the ones in the previous theorem, we can show

that

• if there is i such that χ(xi) < 0 then [χ] ∈ Σ1(G).

Now, let us show that

• if there are i 6= j such that χ(xi), χ(xj) > 0 then [χ] ∈ Σ1(G). In fact, fix xi

with χ(xi) > 0 and let M,N ∈ Z such that MPi + NPj = 1. Using the relations of

G and that xixj = αRijxjxi, we can see that the paths pα = (xi, α
Mxjx

−1
i αNxix

−1
j ),

pα−1 = (xi, α
−Mxjx

−1
i α−Nxix

−1
j ), pxi = (xi, xi) and px−1

i
= (xi, x

−1
i ) satisfy the criterion.

We just have to build pxj and px−1
j

. If Rij = 0, they are pxj = (xi, xj) and px−1
j

= (xi, x
−1
j ).

If Rij > 0, we define them as concatenations

pxj = (pα−1)(α−1 · pα−1)...(α−Rij+1 · pα−1)(α−Rijxi, xj)

and

px−1
j

= (xi, x
−1
j )(x−1

j α−Rij · pα)(x−1
j α−Rij+1 · pα)...(x−1

j α−1 · pα)

(see figure)

If Rij < 0, though, the paths are defined as

pxj = (pα)(α · pα)...(α−Rij−1 · pα)(α−Rijxi, xj)

and

px−1
j

= (xi, x
−1
j )(x−1

j α−Rij · pα−1)(x−1
j α−Rij−1 · pα−1)...(x−1

j α · ·pα−1).

(see figure)

In any of the cases, the paths satisfy the Geometric Criterion and so [χ] ∈ Σ1(G).
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This shows that Σ1(G)c ⊂ {[χ1], ..., [χr]} where χi(xi) = 1 and χi(xj) = 0 for j 6= i. So, Σ1(G)c

is a finite set of rational points contained in an open halfspace of S(G). If G′ is not finitely

generated, then by Theorem 3.24 Σ1(G)c is also non-empty and then the result follows from

Theorem 3.38.

Open question: Could we also use Brown’s definition of the BNS invariants to compute

Σ1(Γn)? Brown’s characterization in [17] is given in terms of the possible existence of “non-

trivial and abelian” actions of G on R-trees. This corresponds, in the language of our Sections

2.3 and 2.4, to fixed-end actions with no invariant lines. One could start by trying to understand

the case of BS(1, 2) (or BS(1, 3)), with the help of [1] to understand the actions, and then by

trying to generalize it to Γn.
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Caṕıtulo 6

Finite index subgroups of Γn

In this chapter we turn the investigation to the finite index subgroups H of Γn. The reason for

doing this is that Γn has a nice Σ1 invariant (Theorem 5.2) and we also have nice results relating

Σ1 of a group G and Σ1 of a finite index subgroup H (Proposition 3.27 and Corollary 3.28). So

it is natural to guess that Σ1(H) maybe should be nice enough to deduce property R∞ for H,

as we did in Corollary 5.3. In fact, we did get an affirmative answer to this question.

First, in Theorem 6.6 we find a nice set of generators for H using a generalization of a

technique developed by Bogopolski in [12]. We also get there enough conditions (on these

generators) that we may easily compute the index of H, by finding a nice collection of coset

representatives of Γn mod H. Then, in Theorem 6.8, we find a nice presentation for H and, in

Theorem 6.10, we compute Σ1(H) using Proposition 3.28. From this we deduce property R∞

for H in Corollary 6.11, based on Theorem 3.38. In the last section, we show that some of these

H are also Solvable Generalized Baumslag-Solitar groups and some of them are not.

Remember the definition of Γn: let n ≥ 2 be a positive integer with prime decomposition

n = p1
y1 ...pr

yr , the pi being pairwise distinct and define

Γn =
〈
a, t1, ..., tr | titj = tjti, i 6= j, tiati

−1 = api
yi , i = 1, ..., r

〉
.

It is known that Γn is characterized by the following exact sequence

1→ Z
[

1

n

]
→ Γn

ϕ→ Zr → 1.

To be more precise, if Zr has the presentation Zr = 〈t1, ..., tr | titj = tjti, i 6= j〉 then there is

a natural epimorphism Γn
ϕ→ Zr sending a 7→ 0 and ti 7→ ti, whose kernel is (isomorphic to)

Z
[

1
n

]
= 〈aj , j ∈ Z | anj = aj+1, j ∈ Z〉 and is generated by the elements

aj = (t1...tr)
ja(t1...tr)

−j .

This exact sequence easily splits with the homomorphism Zr → Γn sending ti → ti. So Γn =

Z
[

1
n

]
o Zr is the semidirect product of these two subgroups, and so every element w ∈ Γn can

be written as w = tα1
1 ...tαrr u for u ∈ Z

[
1
n

]
and αi ∈ Z. Two more properties will be useful (and

used many times): first, because of the homomorphism Γn
ϕ→ Zr, the “ti-coordinates” in Γn are

well behaved: that is, (tα1
1 ...tαrr u)(tβ11 ...t

βr
r u′) = tα1+β1

1 ...tαr+βrr u′′ for some u′′ ∈ Z
[

1
n

]
. Second,
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because of the presentation of the subgroup Z
[

1
n

]
, we see that any two generators ai, aj must

be powers of the common generator amin{i,j}, so they must commute. So Z
[

1
n

]
is abelian.

6.1 Generators, cosets and index

Since we will deal with generators of a subgroup, we start by remembering a general and standard

argument:

Observation 6.1 (Changing generators argument). Let G be any group and H = 〈g1, ..., gn〉 ≤
G be a finitely generated subgroup. Choose some gi and words w,w′ in the elements

g1, ..., gi−1, gi+1, ..., gn (except gi). Then

H = 〈g1, ..., gn〉 = 〈g1, ..., gi−1, wgiw
′, gi+1, ..., gn〉,

that is, we can replace any generator gi by its product wgiw
′ with any words w,w′ involving

the other generators. Indeed, to show this it suffices to see that wgiw
′ ∈ 〈g1, ..., gn〉 (which is

obvious) and that gi ∈ 〈g1, ..., gi−1, wgiw
′, gi+1, ..., gn〉, which is true because w and w′ does not

involve the generator gi.

We will also need the following lemmas:

Lemma 6.2. If ϕ : G→ G′ is a group epimorphism and H ≤ G is a subgroup such that ϕ(H)

has infinite index in G′, then H has infinite index in G.

Demonstração. We first note that for every epimorphism, the index of the preimage of a group

K ≤ G′ in the group G is the same as the index of K in G′. In fact, denote by ϕ−1(K)G

and KG′ the collection of right cosets of ϕ−1(K) in G and of K in G′, respectively. There is a

natural function ϕ−1(K)G→ KG′ with ϕ−1(K)g → Kϕ(g). Since ϕ is an epimorphism, this is

obviously surjective. Now suppose Kϕ(g) = Kϕ(g′). By definition, ϕ(gg′−1) = ϕ(g)ϕ(g′)−1 ∈
K, or gg′−1 ∈ ϕ−1(K) and then ϕ−1(K)g = ϕ−1(K)g′, so this is a bijection and we have

|G : ϕ−1(K)| = |G′ : K|, as desired. Let us now show the lemma: if |G′ : ϕ(H)| = ∞, by

the previous comment we have |G : ϕ−1(ϕ(H))| = |G′ : ϕ(H)| = ∞. Since H ≤ ϕ−1(ϕ(H)),

H is contained in an infinite index subgroup of G and therefore must have infinite index, as

desired.

Lemma 6.3. Let n, s ≥ 1 be integers. Let m be the biggest positive divisor of s such that

gcd(m,n) = 1. Then s divides mns.

Demonstração. Let n = p1
l1 ...pr

lr and s = p1
k1 ...pr

kr be the prime decompositions of n and s,

with pairwise distinct primes pi and 0 ≤ li, ki. We define m′ = p1
α1 ...pr

αr with

αi =

ki, if li = 0,

0, if li > 0.

Let us show that m′ = m. Since αi ≤ ki, m′ is a divisor of s, and, since min{αi, li} = 0 we have

gcd(m′, n) = p1
min{α1,l1}...pr

min{αr,lr} = 1. Finally, m′ is the biggest number with these two

properties. Indeed, suppose m̃ = p1
β1 ...pr

βr has these two properties and let us see that βi ≤ αi
for all i, from where we conclude that m̃ ≤ m′. We must have βi ≤ ki because m̃ divides s and
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min{βi, li} = 0 because gcd(m̃, n) = 1. If i is such that li = 0 we have βi ≤ ki = αi. If i is such

that li > 0 then, because min{βi, li} = 0, we must have βi = 0 and then βi = 0 = αi, as desired.

By uniqueness, m = m′ = p1
α1 ...pr

αr .

Now that we know precisely the number m we show the lemma. We have

mns = p1
α1 ...pr

αr(p1
l1 ...pr

lr)p1
k1 ...prkr = p1

α1+l1(p1k1 ...prkr )...pr
αr+lr(p1k1 ...prkr ),

so s will divide mns if and only if ki ≤ αi + li(p1
k1 ...pr

kr) for all i. If i is such that li = 0 then

by definition αi = ki and so ki = αi ≤ αi + li(p1
k1 ...pr

kr). If i is such that li > 0 (or li ≥ 1) we

have

ki ≤ piki ≤ p1
k1 ...pr

kr ≤ li(p1
k1 ...pr

kr) ≤ αi + li(p1
k1 ...pr

kr),

which completes the proof.

To find a good set of generators of a finite index subgroup of Γn, we must be able to

manipulate a little bit its (not so good) generators. To do so, we have the next two lemmas:

Lemma 6.4 (Replacing j0 by any j). Let

H = 〈t1k11 ...trk1ral1q1 , t2
k22 ...tr

k2ral2q2 , ..., tr
krralrqr , a

l
j0〉 ≤ Γn (6.1)

be a subgroup with arbitrary integers kii, l > 0, kij ≥ 0 and qi, li, j0 ∈ Z. Then, up to modifying

l > 0 by another positive integer (also called l), we can replace alj0 above by alj for any choosen

j ∈ Z, that is, H = 〈t1k11 ...trk1ral1q1 , t2
k22 ...tr

k2ral2q2 , ..., tr
krralrqr , a

l
j〉.

Demonstração. If j ≤ j0 we know from the presentation of Z
[

1
n

]
that aj0 is a positive

power of aj , so alj0 is also a positive power of aj and the lemma is obviously valid. Let

us treat the case j > j0. If we conjugate alj0 by one of the other r generators, we have

(ti
kii ...tr

kiraliqi)a
l
j0

(ti
kii ...tr

kiraliqi)
−1 = alpi

yikii ...pryrkir
j0

, using that Z
[

1
n

]
is abelian and the re-

lations of Γn. By induction, we get

(ti
kii ...tr

kiraliqi)
mialj0(ti

kii ...tr
kiraliqi)

−mi = alpi
miyikii ...prmiyrkir

j0

for every integer mi > 0. By the exchanging generators argument we can replace alj0 in the

expression of H by this element alpi
miyikii ...prmiyrkir

j0
, that is, we can multiply the power l of aj0

by pi
miyikii ...pr

miyrkir in 6.1, and since this new power is still positive we can repeat the process

recursively. So, by doing this for i = 1, ..., r we can replace the power l of aj0 in 6.1 by any

number of the form

l(p1
m1y1k11 ...pr

m1yrk1r)(p2
m2y2k22 ...pr

m2y2k2r)...(pr
mryrkrr)

for any m1, ...,mr > 0. By putting together the first primes in the parentheses we rewrite this

as

p1
m1y1k11p2

m2y2k22 ...pr
mryrkrr lλ

for some integer λ > 0 depending on the mi. In particular, for the integers mi = k11...k̂ii...krr
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we can replace the power l of aj0 by

p1
y1kp2

y2k...pr
yrklλ = nklλ,

where k = k11...krr. But an
klλ
j0

= alλj0+k. Since k ≥ 1 this is a positive power of aj0+1, so we can

replace alj0 in 6.1 by a positive power of aj0+1. By repeating this a finite number of times we

reach the index j > j0 we wanted and the lemma is proved.

Lemma 6.5 (Replacing l by m). Let

H = 〈t1k11 ...trk1ral1q1 , t2
k22 ...tr

k2ral2q2 , ..., tr
krralrqr , a

l
j〉 ≤ Γn (6.2)

be a subgroup with arbitrary integers kii, l > 0, kij ≥ 0 and qi, li, j ∈ Z. Let m be the biggest

divisor of l such that gcd(m,n) = 1. Then we can replace alj by amj in the expression above, that

is, H = 〈t1k11 ...trk1ral1q1 , t2
k22 ...tr

k2ral2q2 , ..., tr
krralrqr , a

m
j 〉.

Demonstração. We just have to show that alj ∈ 〈t1k11 ...trk1ral1q1 , t2
k22 ...tr

k2ral2q2 , ..., tr
krralrqr , a

m
j 〉

and amj ∈ H. The first inclusion is easy, because l is a multiple of m and so alj is a power of

amj . The second inclusion is the hard part. By Lemma 6.3, l must divide mnl, then it must also

divide mnlkrr . This implies that the number

γ =
mnlkrrp1

y1(k11−1)lkrr ...pr−1
yr−1(kr−1,r−1−1)lkrr

∏r−1
j=1

∏r
i=j+1 pi

yikjikrrl

l

is an integer. Let A1, ..., Ar be the first r generators of H in 6.2, that is, H = 〈A1, ..., Ar, a
l
j〉.

We will show that

A1
−lkrr ...Ar−1

−lkrrAr
−l(alj)

γAr
lAr−1

lkrr ...A1
lkrr = amj ,

then amj ∈ H, as desired. To show this, remember that conjugating (alj)
γ by an element of

Z
[

1
n

]
is the same as doing nothing, since Z

[
1
n

]
is abelian. Note that nlkrr = (p1

y1 ...pr
yr)lkrr =

p1
ly1krr ...pr−1

lyr−1krrpr
lyrkrr and then

γ =
mp1

ly1krr ...pr−1
lyr−1krrpr

lyrkrrp1
y1(k11−1)lkrr ...pr−1

yr−1(kr−1,r−1−1)lkrr
∏r−1
j=1

∏r
i=j+1 pi

yikjikrrl

l

=
mpr

lyrkrrp1
y1k11krrl...pr−1

yr−1kr−1,r−1krrl
∏r−1
j=1

∏r
i=j+1 pi

yikjikrrl

l

=
pr
lyrkrrm

∏r−1
j=1

∏r
i=j pi

yikjikrrl

l
.

So

Ar
−l(alj)

γAr
l = (tr

krralrqr)
−l(aj)

prlyrkrrm
∏r−1
j=1

∏r
i=j pi

yikjikrrl

(tr
krralrqr)

l

= tr
−krrl(aj)

prlyrkrrm
∏r−1
j=1

∏r
i=j pi

yikjikrrl

tr
krrl

= (aj)
m

∏r−1
j=1

∏r
i=j pi

yikjikrrl

.

For each 1 ≤ s ≤ r − 1, let Es =
∏s
j=1

∏r
i=j pi

yikjikrrl. We just showed that Ar
−l(alj)

γAr
l =



6.1. Generators, cosets and index 127

(aj)
mEr−1 . Write now mEr−1 =

∏r
i=r−1 pi

yikr−1,ikrrlmEr−2. Then

Ar−1
−lkrrAr

−l(alj)
γAr

lAr−1
lkrr = t

−kr−1,r−1krrl
r−1 t

−kr−1,rkrrl
r (aj)

mEr−1t
kr−1,rkrrl
r t

kr−1,r−1krrl
r−1

= t
−kr−1,r−1krrl
r−1 t

−kr−1,rkrrl
r (aj)

∏r
i=r−1 pi

yikr−1,ikrrlmEr−2

t
kr−1,rkrrl
r t

kr−1,r−1krrl
r−1

= (aj)
mEr−2 .

Suppose by induction that, for some 2 ≤ s ≤ r − 1,

A−lkrrs ...A−lkrrr−1 A−lr (alj)
γAlrA

lkrr
r−1...A

lkrr
s = (aj)

mEs−1 .

Write Es−1 =
∏r
i=s−1 pi

yiks−1,ikrrlEs−2. Then

A−lkrrs−1 ...A−lkrrr−1 A−lr (alj)
γAlrA

lkrr
r−1...A

lkrr
s−1 = A−lkrrs−1 (aj)

mEs−1Alkrrs−1

= A−lkrrs−1 (aj)
∏r
i=s−1 pi

yiks−1,ikrrlmEs−2Alkrrs−1

= (aj)
mEs−2 .

By induction,

A−lkrr2 ...A−lkrrr−1 A−lr (alj)
γAlrA

lkrr
r−1...A

lkrr
2 = (aj)

mE1 = (aj)
mp1y1k11krrl...pryrk1rkrrl

and finally

A−lkrr1 ...A−lkrrr−1 A−lr (alj)
γAlrA

lkrr
r−1...A

lkrr
1 = A−lkrr1 (aj)

mp1y1k11krrl...pryrk1rkrrlAlkrr1

= t−k11krrl1 ...t−k1rkrrlr (aj)
mp1y1k11krrl...pryrk1rkrrltk1rkrrlr ...tk11krrl1

= amj ,

which shows the lemma.

Theorem 6.6. 1) Every finite index subgroup H of Γn can be written as

H = 〈t1k11 ...trk1ral1 , t2k22 ...trk2ral2 , ..., trkrralr , am〉 (∗)

with k11 > 0, 0 ≤ kji < kii for all 1 ≤ j < i ≤ r, li ∈ Z and m > 0 an integer such that

gcd(m,n) = 1 and H ∩ 〈a〉 = 〈am〉.

2) If H is any subgroup of Γn given by the expression (∗) for 0 ≤ k1i, ..., ki−1,i < kii, li ∈ Z
and m > 0 such that gcd(m,n) = 1 and H ∩ 〈a〉 = 〈am〉, then T = {t1β1 ...trβraj | 0 ≤
βi < kii, 0 ≤ j < m} is a transversal of H in Γn. In particular, the index of H in Γn is

k11...krrm and H has finite index in Γn.

Demonstração. (Item 1)). First, since Γn is finitely generated and H is finite index, by Corollary
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1.51 H must be also finitely generated and we write

H = 〈t1α11 ...tr
α1rv1, ..., t1

αm1 ...tr
αmrvm〉

for αij ∈ Z and vi ∈ Z
[

1
n

]
. Note that m ≥ r. Otherwise, ϕ(H) would be a subgroup of Zr with

rank < r and then would have infinite index by Lemma 1.4, so by Lemma 6.2 H would have

infinite index in Γn. Let us denote by ϕi : Γn → Zi the (surjective) composition Γn
ϕ→ Zr π→ Zi

of ϕ with the natural projection π of Zr onto the first i coordinates. There must be at least

one i such that αi1 6= 0. Otherwise, ϕ1(H) = 0 ≤ Z would be infinite index and by Lemma 6.2

H would be infinite index. Let k11 = gcd
αi1 6=0

{αi1}. Since k11 > 0 is the smallest positive linear

combination of the αi1 6= 0 and since the ti-coordinates are well behaved in Γn, we can obtain

inside H an element of the form t1
k11 ...tr

k1ru1 for some k12, ..., k1r ∈ Z and u1 ∈ Z
[

1
n

]
, so we

can write

H = 〈t1α11 ...tr
α1rv1, ..., t1

αm1 ...tr
αmrvm, t1

k11 ...tr
k1ru1〉. (6.3)

Now, since all the nonzero αi1 are multiples of k11, say, αi1 = dik11, by the changing generators

argument we can replace t1
αi1 ...tr

αirvi by (t1
αi1 ...tr

αirvi)(t1
k11 ...tr

k1ru1)−di = t2
α′i2 ...tr

α′irv′i in

6.3. Then, after relabeling these new generators, we can write

H = 〈t2α12 ...tr
α1rv1, ..., t2

αm2 ...tr
αmrvm, t1

k11 ...tr
k1ru1〉.

We added a new generator and “eliminated” all the t1 coordinates of the first m generators of

H. This was the first step. We have to do this for all the other t2, ..., tr coordinates. Suppose

that, after j − 1 < r steps we have obtained

H = 〈tjα1j ...tr
α1rv1, ..., tj

αmj ...tr
αmrvm, t1

k11 ...tr
k1ru1, t2

k22 ...tr
k2ru2, ..., tj−1

k(j−1)(j−1) ...tr
k(j−1)ruj−1〉

(6.4)

for some integer powers α, k and with k11, ..., k(j−1)(j−1) > 0. Let us describe the

jth step. There must be at least one i such that αij 6= 0. Otherwise, ϕj(H) =

〈t1k11 ...tjk1j , t2k22 ...tjk2j , ..., tj−1
k(j−1)(j−1)tj

k(j−1)j 〉 ≤ Zj is generated by j−1 elements and there-

fore have rank at most j − 1. By Lemma 1.4, it would be infinite index in Zj , so by Lemma 6.2

H would be infinite index in Γn. Let kjj = gcd
αij 6=0

{αij} > 0. Similarly as we did above, there must

be an element of the form tj
kjj ...tr

kjruj in H (written as a product of the m first generators

of 6.4). We can add this new generator to the expression 6.4. Also, since all the nonzero αij

are multiples of kjj and the tj coordinate is well behaved in Γn, we can use the exchanging

generators argument as in step 1 to eliminate the tj letters from the first m generators. After

relabeling these new m generators we obtain

H = 〈tj+1
α1(j+1) ...tr

α1rv1, ..., tj+1
αm(j+1) ...tr

αmrvm, t1
k11 ...tr

k1ru1, t2
k22 ...tr

k2ru2, ..., tj
kjj ...tr

kjruj〉

for some integer powers α, k and with k11, ..., kjj > 0, which completes the inductive step. After

r steps, we added r new generators and eliminated all the t1, ..., tr letters from the first m

generators from H, so we have

H = 〈v1, ..., vm, t1
k11 ...tr

k1ru1, t2
k22 ...tr

k2ru2, ..., tr
krrur〉
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with kii > 0 and vi, ui ∈ Z
[

1
n

]
. Since every finitely generated subgroup of Z

[
1
n

]
is cyclic we

have 〈v1, ..., vm〉 = 〈u〉 for some u ∈ Z
[

1
n

]
and

H = 〈t1k11 ...trk1ru1, t2
k22 ...tr

k2ru2, ..., tr
krrur, u〉 (6.5)

We have (tr−1
k(r−1)(r−1)tr

k(r−1)rur−1)(tr
krrur) = tr−1

k(r−1)(r−1)tr
k(r−1)r+krru′, so by the ex-

changing generators argument we could replace the generator tr−1
k(r−1)(r−1)tr

k(r−1)rur−1 of H

by this product, with the same tr−1-power but with higher tr-power k(r−1)r + krr > k(r−1)r.

So, by doing this process a finite number of times we may suppose that 0 ≤ k(r−1)r < krr (or

even k(r−1)r > 0 if we wanted). Now we use this fact together with the exchanging generators

argument for the rth, (r − 1)th and (r − 2)th generators and we may similarly suppose that

0 ≤ kr−2,r−1 < kr−1,r−1 and 0 ≤ kr−2,r < krr (or both could be positive if we wanted). By doing

this recursively, we may suppose that 0 ≤ kji < kii for all 1 ≤ j < i ≤ r in 6.5. Finally, write

ui = aliqi , u = alq for qi, q, li, l ∈ Z. Then

H = 〈t1k11 ...trk1ral1q1 , t2
k22 ...tr

k2ral2q2 , ..., tr
krralrqr , a

l
q〉. (6.6)

Let us show that we may assume l > 0 above. If l 6= 0 then, up to changing alq by (alq)
−1 = a−1

q

if necessary, we are done. If l = 0, that is,

H = 〈t1k11 ...trk1ral1q1 , t2
k22 ...tr

k2ral2q2 , ..., tr
krralrqr〉, (6.7)

we do the following: since Zr is abelian, every commutator of elements in H must be in ker(ϕ)

(and obviously in H). Look to all the commutators between the r generators of H in 6.7: at

least one of them must be non-trivial. Otherwise, H would be a finite index abelian subgroup

of Γn and we would have Σ1(Γn) = S(Γn) by Corollary 3.29, a contradiction with Theorem 5.2.

Let then al
′
j (l′ 6= 0) be a non-trivial commutator between two generators of H. We can add it

to 6.7 and up to changing al
′
j by its inverse we are done. So we may assume l > 0 in 6.6.

Our next steps will be eliminating the subindexes qi from the a letters in the generators of

6.6. Fix some 1 ≤ i ≤ r. If qi ≥ 0, then aliqi = an
qi li and by doing this substitution in 6.6 and

relabeling nqi li by li again we removed the subindex qi. If qi < 0, by Lemma 6.4 we replace q

by qi in 6.6, that is,

H = 〈t1k11 ...trk1ral1q1 , t2
k22 ...tr

k2ral2q2 , ..., tr
krralrqr , a

l
qi〉

for some new positive integer l. Now, let m be the biggest divisor of l such that gcd(m,n) = 1.

By Lemma 6.5 we can replace l by m above and obtain

H = 〈t1k11 ...trk1ral1q1 , t2
k22 ...tr

k2ral2q2 , ..., tr
krralrqr , a

m
qi 〉.

Since gcd(m,n) = 1 we also have gcd(m,n−qi) = 1 and there must be α̃, β̃ ∈ Z such that

α̃m+ β̃n−qi = 1. Then for α = liα̃ and β = liβ̃ we have αm+ βn−qi = li, or

li −mα = n−qiβ.
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Then, using the changing generators argument and the relations in Γn we have

H = 〈t1k11 ...trk1ral1q1 , t2
k22 ...tr

k2ral2q2 , ..., ti
kii ...tr

kiraliqi , ..., tr
krralrqr , a

m
qi 〉

= 〈t1k11 ...trk1ral1q1 , t2
k22 ...tr

k2ral2q2 , ..., ti
kii ...tr

kirali−mαqi , ..., tr
krralrqr , a

m
qi 〉

= 〈t1k11 ...trk1ral1q1 , t2
k22 ...tr

k2ral2q2 , ..., ti
kii ...tr

kiran
−qiβ
qi , ..., tr

krralrqr , a
m
qi 〉

= 〈t1k11 ...trk1ral1q1 , t2
k22 ...tr

k2ral2q2 , ..., ti
kii ...tr

kiraβ, ..., tr
krralrqr , a

m
qi 〉

and relabeling β by li, m by l and qi by q again we have

H = 〈t1k11 ...trk1ral1q1 , t2
k22 ...tr

k2ral2q2 , ..., ti
kii ...tr

kirali , ..., tr
krralrqr , a

l
q〉,

that is, we removed the subindex qi from aliqi in 6.6. If we do this for all i we remove all the

subindexes and obtain

H = 〈t1k11 ...trk1ral1 , t2k22 ...trk2ral2 , ..., trkrralr , alq〉

for some q ∈ Z. We can use Lemma 6.4 to replace q by 0 and we get

H = 〈t1k11 ...trk1ral1 , t2k22 ...trk2ral2 , ..., trkrralr , al〉, kij , l > 0, li ∈ Z.

To finish, let m (a new one) be the biggest divisor of l such that gcd(m,n) = 1. By Lemma

6.5, we replace al by am in the expression above. If H ∩ 〈a〉 = 〈am〉, we are done. If not,

let m′ = min{k ≥ 1 | ak ∈ H} (this set is not empty because it contains m). We claim that

H ∩ 〈a〉 =
〈
am
′
〉

. The “(⊃)” part is obvious. On the other hand, if some al ∈ H, write

l = qm′ + r̃ for some integer q and 0 ≤ r̃ < m′. Then ar̃ = al−qm
′

= (al)(am
′
)−q ∈ H implies

r̃ = 0 (minimality of m′) and so al = (am
′
)q ∈

〈
am
′
〉

, which shows the claim. Since am ∈ H, m

is a multiple of m′ and we have gcd(m′, n) = 1. Then, by adding am
′

to the set of generators

of H, the generator am becomes useless and can be removed. By relabeling m′ by m, we obtain

the desired result.

(Item 2)). Let H be such a subgroup. Using the same argument from item 1), we may

suppose that kij > 0 for all i, j. Let us first show that G =
⋃
t1β1 ...trβraj∈T Ht1

β1 ...tr
βraj . Every

element of G is written as t1
−α1 ...tr

−αralt1
γ1 ...tr

γr for αi, γi ≥ 0 and l ∈ Z. Since kij > 0 for all

i, j, let q ≥ 1 be such that qk1i−αi ≥ 0 for all i. We can write (t1
k11 ...tr

k1ral1)q = al
′
1t1

qk11 ...tr
qk1r

for some integer l′1. Since t1
k11 ...tr

k1ral1 ∈ H we have

Ht1
−α1 ...tr

−αralt1
γ1 ...tr

γr = H(t1
k11 ...tr

k1ral1)qt1
−α1 ...tr

−αralt1
γ1 ...tr

γr

= H(al
′
1t1

qk11 ...tr
qk1r)t1

−α1 ...tr
−αralt1

γ1 ...tr
γr

= Hal
′
1t1

qk11−α1 ...tr
qk1r−αralt1

γ1 ...tr
γr

= Hal
′
1al
′′
t1
γ1+qk11−α1 ...tr

γr+qk1r−αr

= Hal
′
t1
γ′1 ...tr

γ′r
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for some integers l′ and γ′i ≥ 0. Relabeling them by l and γi, respectively, every coset of

G is of the form Halt1
γ1 ...tr

γr for l ∈ Z and γi ≥ 0. Now we claim that every such coset

can be also written as Ht1
γ1 ...tr

γral
′

for some integer l′. In fact, because 1 = gcd(m,n) =

gcd(m, p1
y1 ...pr

yr), the prime decomposition of m does not involve any of the pi. Then it is also

true that gcd(m, p1
γ1y1 ...pr

γryr) = 1. Let k, k′ be integers such that km + k′p1
γ1y1 ...pr

γryr = 1.

Then l + (−lk)m = (lk′)p1
γ1y1 ...pr

γryr and relabeling −lk by k and lk′ by k′ we get l + km =

k′p1
γ1y1 ...pr

γryr . Now since am ∈ H we do

Halt1
γ1 ...tr

γr = H(am)kalt1
γ1 ...tr

γr

= Hal+kmt1
γ1 ...tr

γr

= Hak
′p1γ1y1 ...prγryr t1

γ1 ...tr
γr

= Ht1
γ1 ...tr

γrak
′

and relabeling k′ by l′ we showed the claim. So every coset is of the form Ht1
γ1 ...tr

γral with

γi ≥ 0 and l ∈ Z. To transform this coset into one of the cosets in the theorem, we will apply

successive algorithms, defined as follows: choose some index i. If γi < kii we stop the algorithm.

If γi ≥ kii, we do

Ht1
γ1 ...tr

γral = H(ti
kii ...tr

kirali)−1t1
γ1 ...tr

γral

= Ha−liti
−kii ...tr

−kir t1
γ1 ...tr

γral

= Ha−liti+1
−ki,i+1 ...tr

−kir t1
γ1 ...ti−1

γi−1ti
γi−kiiti+1

γi+1 ...tr
γral

= Hti+1
−ki,i+1 ...tr

−kiral
′
it1

γ1 ...ti−1
γi−1ti

γi−kiiti+1
γi+1 ...tr

γral

which we abbreviate to Hti+1
−ki,i+1 ...tr

−kiral
′
it1

γ1 ...ti
γi−kii ...tr

γral. Now let q ≥ 1 be such that

qki+1,j − kij ≥ 0 for all i+ 1 ≤ j ≤ r. Then

Hti+1
−ki,i+1 ...tr

−kiral
′
it1

γ1 ...ti
γi−kii ...tr

γral =

= H(ti+1
ki+1,i+1 ...tr

ki+1,rali+1)qti+1
−ki,i+1 ...tr

−kiral
′
it1

γ1 ...ti
γi−kii ...tr

γral

= Hal
′
i+1ti+1

qki+1,i+1 ...tr
qki+1,r ti+1

−ki,i+1 ...tr
−kiral

′
it1

γ1 ...ti
γi−kii ...tr

γral

= Hal
′
i+1ti+1

qki+1,i+1−ki,i+1 ...tr
qki+1,r−ki,ral

′
it1

γ1 ...ti
γi−kii ...tr

γral

= Hal
′
i+1al

′′
i al
′
ti+1

qki+1,i+1−ki,i+1 ...tr
qki+1,r−ki,r t1

γ1 ...ti
γi−kii ...tr

γr

= Hal
′′
t1
γ1 ...ti−1

γi−1ti
γi−kiiti+1

γi+1+qki+1,i+1−ki,i+1 ...tr
γr+qki+1,r−ki,r

= Ht1
γ1 ...ti−1

γi−1ti
γi−kiiti+1

γi+1+qki+1,i+1−ki,i+1 ...tr
γr+qki+1,r−ki,ral

′′′
,

using the claim in the last equality. By relabeling the i+ 1, ..., r powers we have shown that

Ht1
γ1 ...tr

γral = Ht1
γ1 ...ti−1

γi−1ti
γi−kiiti+1

γ′i+1 ...tr
γ′ral

′

for some integer l′. If γi − kii < kii we stop the algorithm. If γi − kii ≥ kii we do all of this
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again. Then after finite steps our “i-algorithm” shows that

Ht1
γ1 ...tr

γral = Ht1
γ1 ...ti−1

γi−1ti
βiti+1

γ′i+1 ...tr
γ′ral

′

for some 0 ≤ βi < kii. Now, starting with the coset Ht1
γ1 ...tr

γral, we successively apply the

“i-algorithm” for i = 1, 2, ..., r and obtain exactly

Ht1
γ1 ...tr

γral = Ht1
β1 ...tr

βral
′

for 0 ≤ βi < kii and l′ ∈ Z. Finally, write l′ = qm + j for 0 ≤ j < m. Then Ht1
β1 ...tr

βral
′

=

Ht1
β1 ...tr

βraj because

t1
β1 ...tr

βral
′
(t1

β1 ...tr
βraj)−1 = t1

β1 ...tr
βral

′−jtr
−βr ...t1

−β1

= t1
β1 ...tr

βramqtr
−βr ...t1

−β1

= (am)qp
β1y1
1 ...prβryr ∈ H.

This shows that G =
⋃
t1β1 ...trβraj∈T Ht1

β1 ...tr
βraj .

Now let us show that the cosets in T are all distinct. Let Ht1
β1 ...tr

βraj = Ht1
β′1 ...tr

β′raj
′

for

0 ≤ βi, β′i < kii and 0 ≤ j, j′ < m. By definition,

w = ap1
y1β1 ...pryrβr (j−j′)t1

β1−β′1 ...tr
βr−β′r = t1

β1 ...tr
βraj−j

′
t1
−β1 ...tr

−βr t1
β1−β′1 ...tr

βr−β′r

= t1
β1 ...tr

βraj(t1
β′1 ...tr

β′raj
′
)−1 ∈ H.

Then, projecting in Zr,

(β1 − β′1, ..., βr − β′r) = ϕ(w) ∈ ϕ(H) = 〈(k11, k12, ..., k1r), (0, k22, ..., k2r), ..., (0, ..., 0, krr)〉 .

Write

(β1 − β′1, ..., βr − β′r) = λ1(k11, k12, ..., k1r) + λ2(0, k22, ..., k2r) + ...+ λr(0, ..., 0, krr)

for integers λi. We show by induction that all the λi must vanish. First, since the first vector

(k11, k12, ..., k1r) is the only one with non-vanishing first coordinate we have β1 − β′1 = λ1k11.

Since 0 ≤ β1, β
′
1 < k11 we must have β1 = β′1 and therefore λ1 = 0. Suppose we have shown

that λ1 = ... = λi = 0 for some 1 ≤ i < r. Then the above equation gives

(0, ..., 0, βi+1 − β′i+1, ..., βr − β′r) = λi+1(0, ..., 0, ki+1,i+1, ..., ki+1,r) + ...+ λr(0, ..., 0, krr).

Since the (i+ 1)th vector (0, ..., 0, ki+1,i+1, ..., ki+1,r) is the only one with non-vanishing (i+ 1)th

coordinate we have βi+1 − β′i+1 = λi+1ki+1,i+1. Since 0 ≤ βi+1, β
′
i+1 < ki+1,i+1 we must have

βi+1 = β′i+1 and therefore λi+1 = 0. This shows by induction that βi = β′i for all i. We just

have to show that j = j′. We already have ap1
y1β1 ...pryrβr (j−j′) ∈ H. Since H ∩ 〈a〉 = 〈am〉 (by

item 1)), we have

p1
y1β1 ...pr

yrβr(j − j′) = qm
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for some q ∈ Z. So m divides p1
y1β1 ...pr

yrβr(j − j′). Since gcd(n,m) = 1, m does not contain

any of the pi in its prime decomposition, and therefore m must divide j− j′. Since 0 ≤ j, j′ < m

we have j = j′, as desired. This completes the proof.

Observation 6.7. The hypothesis H ∩ 〈a〉 = 〈am〉 cannot be removed in item 2) of Theorem

6.6, that is, if H ∩ 〈a〉 6= 〈am〉, then the index of H in G is not necessarily k11...krrm, it

can be smaller. For example, H =
〈
tsa, sa2, a5

〉
≤ Γ6 has not index 5 in Γ6. Indeed, since

a18 = (tsa)(sa2)(tsa)−1(sa2)−1 ∈ H and gcd(5, 18) = 1, we have

H =
〈
tsa, sa2, a5

〉
=
〈
tsa, sa2, a5, a18

〉
=
〈
tsa, sa2, a

〉
= 〈ts, s, a〉 = 〈t, s, a〉 = G

and therefore the index is 1, that is, k11...krr = |G : H| in this case.

Despite this, we do know in general that k11...krr ≤ |G : H| ≤ k11...krrm, even with-

out assuming H ∩ 〈a〉 = 〈am〉. In fact, we did not need this hypothesis to show that

G =
⋃
t1β1 ...trβraj∈T Ht1

β1 ...tr
βraj , and therefore we have |G : H| ≤ k11...krrm. We also did

not use this hypothesis to see that two cosets Ht1
β1 ...tr

βraj and Ht1
β′1 ...tr

β′raj
′

of T are differ-

ent unless βi = β′i for all i. In particular, all the cosets Ht1
β1 ...tr

βr of T are distinct and then

k11...krr ≤ |G : H|.

6.2 A presentation

Theorem 6.8. Let H be any finite index subgroup of Γn (see Theorem 6.6), say,

H = 〈t1k11 ...trk1ral1 , t2k22 ...trk2ral2 , ..., trkrralr , am〉 (∗)

with k11 > 0, 0 ≤ kji < kii for all 1 ≤ j < i ≤ r, li ∈ Z and m > 0 an integer such that

gcd(m,n) = 1 and H ∩ 〈a〉 = 〈am〉. Then H has the following presentation:

H '
〈
α, x1, ..., xr | xiαx−1

i = αPi , xixjx
−1
i x−1

j = αRij
〉
,

where Pi = pyikiii ...pyrkirr (i = 1, ..., r) and Rij ∈ Z characterized by

liPi(1− Pj)− ljPj(1− Pi) = Rijm.

Demonstração. It is easy to see that (tkiii ...tkirr ali)am(tkiii ...tkirr ali)−1 = amPi in Γn, for i = 1, ..., r.

Also, since

(tkiii ...tkirr ali)(t
kjj
j ...t

kjr
r alj )(tkiii ...tkirr ali)−1(t

kjj
j ...t

kjr
r alj )−1 = aliPi(1−Pj)−ljPj(1−Pi) ∈ H∩〈a〉 = 〈am〉 ,

we have liPi(1 − Pj) − ljPj(1 − Pi) = Rijm for some integer Rij and so we write

(tkiii ...tkirr ali)(t
kjj
j ...t

kjr
r alj )(tkiii ...tkirr ali)−1(t

kjj
j ...t

kjr
r alj )−1 = amRij . Now let

G =
〈
α, x1, ..., xr | xiαx−1

i = αPi , xixjx
−1
i x−1

j = αRij
〉
.
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The group G has the relations

xiα = αPixi, xiα
−1 = α−Pixi, xixj = αRijxjxi, xix

−1
j = x−1

j α−Rijxi,

which shows that, for every fixed i, all the xi-letters in a word with positive power can be pushed

right as much as we want. Similarly, the relations

αx−1
i = x−1

i αPi , α−1x−1
i = x−1

i α−Pi , xjx
−1
i = x−1

i αRijxj , x
−1
j x−1

i = x−1
i x−1

j α−Rij

show that all the xi-letters in a word with negative power can be pushed left as much as we

want. Because of this, we claim that any element of G is of the form x−λ11 ...x−λrr αMxδrr ...x
δ1
1 for

λi, δi ≥ 0 and M ∈ Z. Indeed, let

w = xs111 ...xs1rr αr1 ...xsc11 ...xscrr αrc

be any element of G. Push all the x1-letters of w with positive (resp. negative) power to the

right (resp. left) extremity of w. Then w = x−λ11 w′xδ11 for some word w′ which does not involve

the letter x1. Now, push all the x2-letters of w′ with positive (resp. negative) power to the right

(resp. left) extremity of w′. Then w = x−λ11 x−λ22 w′′xδ22 x
δ1
1 for some word w′′ which does not

involve the letters x1 and x2. By doing this recursively we show the claim.

Now let us show that G ' H. Define θ : G → Γn by putting θ(α) = am and θ(xi) =

tkiii ...tkirr ali for i = 1, ..., r. We first check that θ is a group homomorphism:

θ(xi)θ(α)θ(xi)
−1 = (tkiii ...tkirr ali)am(tkiii ...tkirr ali)−1 = amPi = θ(α)Pi ,

and

θ(xi)θ(xj)θ(xi)
−1θ(xj)

−1 = amRij = θ(α)Rij ,

as desired. Also, by construction, im(θ) = H ≤ Γn. So θ : G→ H is surjective and we only need

to show that θ is also injective. Indeed, let w = x−λ11 ...x−λrr αMxδrr ...x
δ1
1 ∈ G such that θ(w) = 1.

Then

(tk111 ...tk1rr al1)
−λ1

...(tkrrr alr)
−λr

amM (tkrrr alr)
δr
...(tk111 ...tk1rr al1)

δ1
= 1.

By projecting both sides of equation above on the t1-coordinate by the homomorphism w 7→
(w)t1 , we get k11(δ1− λ1) = 0 and so δ1 = λ1. Then by conjugating the above equation on both

sides by (tk111 ...tk1rr al1)λ1 we get

(tk222 ...tk2rr al2)
−λ2

...(tkrrr alr)
−λr

amM (tkrrr alr)
δr
...(tk222 ...tk2rr al2)

δ2
= 1.

Again, by projecting both sides of equation above on the t2-coordinate by the homomorphism

w 7→ (w)t2 , we get k22(δ2− λ2) = 0 and so δ2 = λ2. Then by conjugating the above equation on

both sides by (tk222 ...tk2rr al2)λ2 we get

(tk333 ...tk3rr al3)
−λ3

...(tkrrr alr)
−λr

amM (tkrrr alr)
δr
...(tk333 ...tk3rr al3)

δ3
= 1.
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By doing this recursively we get δi = λi for i = 1, ..., r and

amM = 1.

Then M = 0 (since a is torsion free and m > 0). So

w = x−λ11 ...x−λrr α0xλrr ...x
λ1
1 = 1,

as desired. This completes the proof.

6.3 Σ1 invariant and property R∞

Let H be a finite index subgroup of Γn, say,

H = 〈t1k11 ...trk1ral1 , t2k22 ...trk2ral2 , ..., trkrralr , am〉 (∗)

for kii > 0, kij ≥ 0, li ∈ Z and m > 0 an integer such that gcd(m,n) = 1 and H ∩ 〈a〉 = 〈am〉.
We intend to apply Theorem 3.38 to guarantee property R∞ to H. To do so, we first need to

have an idea of S(H). Because of this, we use Theorem 6.8 to identify H with its presentation

H =
〈
α, x1, ..., xr | xiαx−1

i = αPi , xixjx
−1
i x−1

j = αRij
〉
,

for Pi = pyikiii ...pyrkirr (i = 1, ..., r) and some Rij ∈ Z. Here, α = am and xi = ti
kii ...tr

kirali .

Since all the pyii are ≥ 2, obviously the Pi also are ≥ 2 and so it is easy to see that α must

have torsion in the abelianized group Hab. The xi are torsion-free, though. So we have the

homeomorphism

S(H) −→ Sr−1

[χ] 7−→ (χ(x1), ..., χ(xr))

‖(χ(x1), ..., χ(xr))‖
.

Now, we will compute Σ1(H) inside this sphere by using Corollary 3.28. So we need the

following

Lemma 6.9. Let H be a finite index subgroup of Γn, say,

H = 〈t1k11 ...trk1ral1 , t2k22 ...trk2ral2 , ..., trkrralr , am〉 (∗)

for kii > 0, kij ≥ 0, li ∈ Z and m > 0 an integer such that gcd(m,n) = 1 and H ∩ 〈a〉 = 〈am〉.
Then every homomorphism ξ : H → R can be extended to a homomorphism χ : Γn → R (that

is, χ|H = ξ).

Demonstração. Since H is generated by the elements xi = ti
kii ...tr

kirali for i = 1, ..., r, the



136 6. Finite index subgroups of Γn

equation χ|H = ξ is equivalent to a system of r equations

χ(t1
k11 ...tr

k1ral1) = ξ(t1
k11 ...tr

k1ral1),

χ(t2
k22 ...tr

k2ral2) = ξ(t2
k22 ...tr

k2ral2),
...

χ(tr
krralr) = ξ(tr

krralr).

So to create such an extension χ we just have to define χ(a) = 0 and define the real numbers

χ(ti) satisfying equations (1) to (r) above. Equation (r) is equivalent to

krrχ(tr) = ξ(tkrrr alr),

so if we define χ(tr) = 1
krr
ξ(tkrrr alr), equation (r) is satisfied. Similarly, equation (r − 1) is

equivalent to

kr−1,r−1χ(tr−1) + kr−1,rχ(tr) = ξ(t
kr−1,r−1

r−1 t
kr−1,r
r alr−1),

so if we define χ(tr−1) = 1
kr−1,r−1

ξ(t
kr−1,r−1

r−1 t
kr−1,r
r alr−1)− kr−1,r

kr−1,r−1
χ(tr), equation (r−1) is satisfied.

We proceed recursively: suppose that, for some 1 ≤ i ≤ r − 1 we have defined χ(ti+1), ..., χ(tr)

satisfying equations (i+ 1), ..., (r). Equation (i) is equivalent to

kiiχ(ti) + ki,i+1χ(ti+1) + ...+ kirχ(tr) = ξ(tkiii ...tkirr ali),

so if we define

χ(ti) =
1

kii
ξ(tkiii ...tkirr ali)− ki,i+1

kii
χ(ti+1)− ...− kir

kii
χ(tr),

equation (i) is satisfied. After doing this to all i, we are done.

Theorem 6.10. Let H be a finite index subgroup of Γn, say,

H = 〈t1k11 ...trk1ral1 , t2k22 ...trk2ral2 , ..., trkrralr , am〉 (∗)

for kii > 0, kij ≥ 0, li ∈ Z and m > 0 an integer such that gcd(m,n) = 1 and H ∩ 〈a〉 = 〈am〉,
and let α = am and xi = ti

kii ...tr
kirali be its generators. Then Σ1(H)c = {[ξ1], ..., [ξr]}, where

ξi(xj) = kji if j ≤ i and ξi(xj) = 0 if j > i. In other words, if we identify S(H) ' Sr−1 as we

did above, then

Σ1(H)c =

{
(k11, 0, 0, ..., 0)

‖(k11, 0, 0, ..., 0)‖
,

(k12, k22, 0, ..., 0)

‖(k12, k22, 0, ..., 0)‖
, ...,

(k1r, k2r, k3r, ..., krr)

‖(k1r, k2r, k3r, ..., krr)‖

}
.

Demonstração. Because of Lemma 6.9, by Corollary 3.28 we have Σ1(H)c = i∗(Σ1(Γn)c), where

i∗ : S(Γn) → S(H) is given by i∗[χ] = [χ|H ]. By Theorem 5.2, Σ1(H)c = {[χ1|H ], ..., [χr|H ]}.
Since we are identifying H with its presentation we must compute χi(xj). Remember that

χi(tj) = 1 if i = j and χi(tj) = 0 if i 6= j. If j > i, the generator xj = tj
kjj ...tr

kjralj does not

involve ti and so χi(xj) = 0. If j ≤ i, we have

χi(xj) = χi(tj
kjj ...tr

kjralj ) = kjjχi(tj) + ...+ kjrχi(tr) = kji,
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which completes the first claim. It is easy to see that the image of [χi|H ] (which we denote by [ξi])

under the homeomorphism S(H) ' Sr−1 described above is (k1i,...,kii,0,...,0)
‖(k1i,...,kii,0,...,0)‖ . This completes

the proof.

Corollary 6.11. All finite index subgroups of Γn have property R∞.

Demonstração. Let H be a finite index subgroup of Γn and describe it as in Theorem 6.10

above. Then Σ1(H)c is a nonempty and finite set. Since the kij are integer, these points are all

rational, and since kij ≥ 0, Σ1(H)c is contained, for example, in the open (geodesic) half space

Bd

(
(1,1,...,1)
‖(1,1,...,1)‖ ,

π
2

)
. So, by Theorem 3.38, H has property R∞.

6.4 Finite index subgroups that are not Γk

In [12] it was shown that every finite index subgroup of a solvable Baumslag-Solitar group

BS(1, n) is also (isomorphic to) a solvable Baumslag-Solitar group BS(1, nk) for some k ≥ 1.

Since the groups Γn are generalizations of these groups, a natural question arises:

Are all finite index subgroups of Γn also (isomorphic to) another Γk for some k ≥ 2?

In this section we show that this question has a negative answer. Below, we will define a

specific type of finite index subgroup of Γn which can be shown to be (or not) isomorphic to

Γk, depending on the powers used. This leads us to an infinite number of finite index subgroups

which are examples (they are some Γk) and also an infinite number of counterexamples (which

are not any Γk).

Let Γn be described as before and let

H = 〈tk111 tk122 ...tk1rr , tk222 ...tk2rr , ..., tkrrr , am〉

with k11 > 0, 0 ≤ kji < kii for all 1 ≤ j < i ≤ r and m > 0 such that gcd(m,n) = 1 (this is the

description of an arbitrary finite index subgroup of Γn with the condition li = 0 for 1 ≤ i ≤ r).
It is also obvious that H ∩ 〈a〉 = 〈am〉. We will show that

H ' Γk for some k ≥ 2⇔ kij = 0 for all 1 ≤ i < j ≤ r.

Suppose first that kij = 0 for all 1 ≤ i < j ≤ r. Then from Theorem 6.8 we immediately
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get that H ' Γk for k = py1k111 ...pyrkrrr . Suppose now that H ' Γk for some k ≥ 2 and

write k = qz11 ...q
zs
s , q1 < q2 < ... < qs, zi ≥ 1 the prime decomposition of k. Then we

have a homeomorphism Σ1(H)c ' Σ1(Γk)
c. By theorems 5.2 and 6.10, s = card(Σ1(Γk)

c) =

card(Σ1(H)c) = r, so k = qz11 ...q
zr
r . By Theorem 6.8, H has the presentation

H = 〈α, x1, ...., xr | xiαx−1
i = αni , xixj = xjxi for all i, j〉,

where ni = pyikiii ...pyrkirr . There is also a split exact sequence

1→ ker(π)→ H
π→ Zr → 1

where π(xi) = ei, π(α) = 0 and ker(π) abelian. In particular, every element of H can be written

as xλ11 ...xλrr u for some λi ∈ Z and u ∈ ker(π). Since H ' Γk, then there must be r+ 1 elements

inside H (which are the images of the analogous r + 1 elements in Γk), say, Xi = x
k′i1
1 ...x

k′ir
r ui,

1 ≤ i ≤ r and A = xk̃11 ...x
k̃r
r ũ for some k′ij , k̃i ∈ Z and ui, ũ ∈ ker(π), such that

H = 〈X1, ..., Xr, A〉

and

XiAX
−1
i = Aq

zi
i for all 1 ≤ i ≤ r.

By projecting any of these equations on Zr we obtain k̃1 = ... = k̃r = 0 and so A = ũ =

x−λ11 ...x−λrr αMxλrr ...x
λ1
1 for some λi ≥ 0 and M 6= 0. By replacing this in the r equations above

and using that ker(π) is abelian and the xi commute each other, we obtain the r equations in H

x
k′i1
1 ...x

k′ir
r αMx

−k′ir
r ...x

−k′i1
1 = αMq

zi
i (i)

for each 1 ≤ i ≤ r. If a power k′ij is nonnegative we can use a relation of H to conjugate αM . If

it is negative, though, then since all the xi commute we can push the two xj from the left side

to the right side of equation (i) and use the (now positive) power −k′ij to conjugate αMq
zi
i . So

every equation (i) will always imply an equality of a power of αM with a power of αMq
zi
i . Since

H is torsion-free and M 6= 0, this implies an equality of prime decompositions (we will call this a

prime equation) which depends on the signal of the k′ij . Note that the right side always involve a

positive power of the prime qi. The left side, on the other hand, can involve (at most) the prime

numbers p1, ..., pr. By uniqueness of prime decomposition, we must then have qi ∈ {p1, ..., pr},
for all i. Since q1 < ... < qr we must then have qi = pi for all i, so k = pz11 ...p

zr
r .

We claim that k′i1 ≥ 0 for all i. Indeed, if some k′i1 < 0, then x1 goes to the right side of (i)

and we have a prime equation with a positive power p
y1k11(−k′i1)
1 on the right and only (possibly)

p2, ..., pr on the left (since n2, ..., nr don’t involve p1), a contradiction. This shows the claim.

We claim that k′ij = 0 if i > j. We will show this by induction on j. For j = 1 and for every

i > 1, the fact k′i1 ≥ 0 implies a prime equation with p
y1k11k′i1
1 on the left and no p1 on the right

(again, because n2, ..., nr and pzii don’t involve p1). So y1k11k
′
i1 = 0 and therefore k′i1 = 0, since

the two first numbers are positive. This completes the proof for j = 1. Now let 1 ≤ j < r − 1

and suppose the fact is valid for any 1 ≤ j′ ≤ j. Let us show it for j + 1. For any i > j + 1 we
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have also i > 1, 2, ..., j, so by induction k′i1 = k′i2 = ... = k′ij = 0 and equation (i) becomes

x
k′i,j+1

j+1 ...x
k′ir
r αMx

−k′ir
r ...x

−k′i,j+1

j+1 = αMp
zi
i .

With the same argument we used for k′i1 before we can show that k′i,j+1 ≥ 0. Because of this,

(i) implies a prime equation with p
yj+1kj+1,j+1k

′
i,j+1

j+1 on the left and no pj+1 on the right. Then

yj+1kj+1,j+1k
′
i,j+1 = 0 and so k′i,j+1 = 0, which shows the claim.

Equations (i) then become

x
k′ii
i ...x

k′ir
r αMx

−k′ir
r ...x

−k′ii
i = αMp

zi
i . (i)

Again, since ni+1, ..., nr do not involve pi we must have k′ii ≥ 0 for all i. We claim that k′ii = 1

for all i. In fact, by the last claim and by hypothesis we have

Zr = π(H)

= π〈X1, ..., Xr, A〉

= 〈π(X1), ..., π(Xr), π(A)〉

= 〈(k′11, k
′
12, ..., k

′
1r), (0, k

′
22, ..., k

′
2r), ..., (0, 0, ..., k

′
rr)〉.

Then the fact that e1 belongs to the subgroup above implies k′11 = ±1. Since k′11 ≥ 0 we must

have k′11 = 1. Now suppose k′11 = ... = k′ii = 1 for 1 ≤ i < r and let us show that k′i+1,i+1 = 1.

Since ei+1 belongs to the sugroup above we have

ei+1 = α1(k′11, k
′
12, ..., k

′
1r) + α2(0, k′22, ..., k

′
2r) + ...+ αr(0, 0, ..., k

′
rr)

for some αj ∈ Z. Let cj be the jth coordinate of the right element above. Then by the previous

equation we must have 0 = c1 = α1k
′
11 = α1. This implies c2 = α2k

′
22 = α2 and then 0 = c2 = α2.

Recursively, we get α1 = ... = αi = 0. This implies ci+1 = αi+1k
′
i+1,i+1. Then, because the

(i + 1)th coordinate of ei+1 is 1 we have 1 = ci+1 = αi+1k
′
i+1,i+1. Then k′i+1,i+1 = ±1, which

implies k′i+1,i+1 = 1, since it is non negative. This shows the claim.

Fix any 1 ≤ i < r. We claim that k′ij = 0 if i < j. We’ll show this by induction on j, starting

from j = i+ 1. We know that equation (i) is

x
k′ii
i ...x

k′ir
r αMx

−k′ir
r ...x

−k′ii
i = αMp

zi
i . (i)

Since ni and ni+1 are the only numbers involving pi+1, if k′i,i+1 < 0 we would have p
yi+1ki,i+1k

′
ii

i+1 =

p
yi+1ki+1,i+1(−k′i,i+1)

i+1 , so

ki,i+1 = ki,i+1k
′
ii = ki+1,i+1(−k′i,i+1) ≥ ki+1,i+1,

which is a contradiction with our first description of the group H. Then k′i,i+1 ≥ 0 and equation

(i) implies

p
yi+1(ki,i+1k

′
ii+ki+1,i+1k

′
i,i+1)

i+1 = 1.

Since yi+1 > 0 we must have ki,i+1k
′
ii + ki+1,i+1k

′
i,i+1 = 0. Since all these numbers are non
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negative and ki+1,i+1 = 1, we have k′i,i+1 = 0, as desired. Suppose now k′i,i+1 = ... = k′ij = 0 for

some i+ 1 ≤ j < r and let us show that k′i,j+1 = 0. By induction, equation (i) becomes

x
k′ii
i x

k′i,j+1

j+1 ...x
k′ir
r αMx

−k′ir
r ...x

−k′i,j+1

j+1 x
−k′ii
i = αMp

zi
i . (i)

Because of this, ni and nj+1 are the only exponents which involve pj+1 in the equation above.

By the same type of argument we used above for i + 1, we show that k′i,j+1 ≥ 0 and then also

k′i,j+1 = 0. This shows the claim that k′ij = 0 for all i < j. Then k′ij is 1 if i = j and 0 otherwise.

The equations (i) become xiα
Mx−1

i = αMp
zi
i . This implies

pyikiii p
yi+1ki,i+1

i+1 ...pyrkirr = pzii ,

which implies ki,i+1 = ... = kir = 0. Since i is arbitrary, we showed that kij = 0 for any

1 ≤ i < j ≤ r, as desired.
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Parte III

Hyperbolic and relatively hyperbolic

groups: an investigation of R∞
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Caṕıtulo 7

Actions on hyperbolic spaces and

property R∞

A note on self-containment of Part III: The last part of this thesis is dedicated to the study

of property R∞ in a more geometric fashion - instead of combinatorial. The reader probably

noticed that all the combinatorial theory developed in the previous chapters is self-contained,

with only a few exceptions in the combinatorial preliminaries. The geometric preliminaries

and chapters 7 through 9, however, could not be done this way. Otherwise, we would have

many hundreds of preliminary pages on geometric group theory, hyperbolic groups, metric and

geodesic spaces, quasi-isometry invariants and so on. Instead, we give the necessary definitions

(so that the reader knows what we are talking about) and only state many well-known results,

giving references to proofs in the literature. After all, scientists depend on each other.

This chapter is a theoretical preparation for the results of chapters 8 and 9. Here we show

how some actions of a group G on hyperbolic spaces can be used to guarantee property R∞ for

G. We divide the chapter in two parts, considering whether the order of the projection π(ϕ) of

an automorphism ϕ is finite or not in the quotient Out(G) = Aut(G)
Inn(G) . The first part is based, for

example, on [33], with some adaptations and clarifications. The second part is a detailed proof

of a generalized version of a result by G. Levitt and M. Lustig (see [68], section 3), a key result

to chapters 8 and 9.

7.1 Finite order case

Let G be a group and denote by π : Aut(G)→ Out(G) the natural projection. Let ϕ ∈ Aut(G)

such that π(ϕ) has finite order (say, m ≥ 1) in Out(G). Define the group

Gϕ =
〈
G, t | tm = 1, tgt−1 = ϕ(g), ∀ g ∈ G

〉
.

It is straightforward to see that Gϕ is the semidirect product G oϕ 〈t〉 = G oϕ Zm. In fact, G

is normal in Gϕ by the relations tgt−1 = ϕ(g) ∈ G and t−1gt = ϕ−1(g) ∈ G; also, we have the

relations tg = ϕ(g)t and t−1g = ϕ−1(g)t for every g ∈ G, so all t-letters can be moved to the

right in a word of Gϕ and so Gϕ = G 〈t〉. Finally, to see that G∩ 〈t〉 = {1}, suppose there is an

element g = tr (with 0 ≤ r < m) in G ∩ 〈t〉 and let us show r = 0 (and therefore g = 1). Since,
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for every g̃ ∈ G,

ϕr(g̃) = trg̃t−r = gg̃g−1 = γg(g̃),

we have ϕr = γg ∈ Inn(G) and so π(ϕ)r = 1 in Out(G). Since the order of π(ϕ) is m and

0 ≤ r < m, we must have r = 0, as desired.

To show the main property in the case of finite order, we need a lemma of T. Delzant. To

state it, note that if a group G acts on a hyperbolic geodesic space X, there is a well defined

induced action Gy ∂X by putting g · r(∞) = (g · r)(∞).

Definition 7.1. We say an action by isometries of a group G on a hyperbolic geodesic space X

is non-elementary if all items below are satisfied:

1) There is an element g ∈ G whose action in X has infinite order;

2) There is not a global fixed point in ∂X;

3) There is not a global invariant pair in ∂X.

Lemma 7.2 ([68], Lemma 3.4). Let G be a group acting non-elementary on a hyperbolic geodesic

space X. If K CG is such that G/K is abelian, then every coset Kg of K in G has an infinite

number of usual conjugacy classes.

Using Delzant’s Lemma above we obtain

Proposition 7.3. Let G be a group and ϕ ∈ Aut(G) such that π(ϕ) has finite order in Out(G).

If Gϕ acts non-elementary on a hyperbolic geodesic space X, then R(ϕ) =∞.

Demonstração. Given g, h ∈ G, we claim that g ∼ϕ h if and only if gt and ht are conjugate in

Gϕ. In fact, if g ∼ϕ h, let z ∈ G such that zgϕ(z)−1 = h. Then, by the relations in Gϕ,

zgtz−1 = zgϕ(z)−1t = ht

and therefore gt and ht are conjugated. On the other hand, if they are conjugated by any

element ztr ∈ Gϕ, then zϕr(g)tz−1 = ztrgt−rtz−1 = (ztr)gt(ztr)−1 = ht and therefore

zϕr(g)ϕ(z)−1 = (zϕr(g)ϕ(z)−1t)t−1 = (zϕr(g)tz−1)t−1 = htt−1 = h,

so ϕr(g) ∼ϕ h are ϕ-conjugated. But since both equalities g = gϕ(g)ϕ(g)−1 and g =

gϕ−1(g)ϕ−1(g)−1 are true, we have g ∼ϕ ϕ±1(g), so by easy induction we can show g ∼ϕ ϕk(g)

for every integer k. In particular, g ∼ϕ ϕr(g), so by transitivity h ∼ϕ g, as desired.

Because of the fact above, the number of Reidemeister classes R(ϕ) is exactly the number

of conjugacy classes of elements of the form gt for g ∈ G. That is, it is the number of conjugacy

classes in the coset Gt of Gϕ. Now we use Delzant’s lemma: by hypothesis, Gϕ acts non-

elementary on a hyperbolic geodesic space X and the normal subgroup G C Gϕ is such that
Gϕ
G = GoZm

G ' Zm is abelian. It follows from Delzant’s Lemma that every coset Gz for z ∈ Gϕ
has an infinite number of conjugacy classes. In particular the coset Gt has, so R(ϕ) = ∞ and

the proof is complete.
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7.2 Levitt and Lustig’s infinite order case

This section is dedicated to show Theorem 7.4 below, which is a slight generalization of Levitt

and Lustig’s result (see [68], section 3). Their result is the main part of the paper [68] on the

matter of showing R∞ for non-elementary hyperbolic groups. Although that paper is known as

the one who shows R∞ for non-elementary hyperbolic groups (which is true), I would like to

point out the fact that their proof there relies on Paulin’s equally complex Theorem 8.9 (see

Chapter 8), so I would personally say that R∞ for hyperbolic groups is a result by Levitt and

Lustig and with a good contribution by Paulin.

Theorem 7.4. Let G be a finitely generated group and ϕ ∈ Aut(G) such that π(ϕ) has infinite

order in Out(G). Suppose there is a non-trivial, small and irreducible action by isometries of G

on an R-tree (T, d), whose translation length function l satisfies the following:

there is λ ≥ 1 such that l ◦ ϕ = λl,

and such that there is a unique map hϕ : T → T with d(hϕ(x), hϕ(y)) = λd(x, y) for every

x, y ∈ T and hϕ(g · x) = ϕ(g) · hϕ(x) for every (g, x) ∈ G× T . Then R(ϕ) =∞.

First we observe that the dilation hϕ is not alone: if H ′ = 〈{ϕ} ∪ Inn(G)〉 = Inn(G) 〈ϕ〉 and

ψ ∈ H ′, we actually have a unique dilation map hψ : T → T such that hψ(g · x) = ψ(g) · hψ(x)

for every x ∈ T . In fact, write ψ = γgϕ
n ∈ H ′ (g ∈ G,n ∈ Z) and define the two following

actions:

G× (T, d)
�→ (T, d) with g′ � x = ψ(g′) · x

and we also consider the action Gy (T, d) but with dilated metric:

G× (T, λnd)
•→ (T, λnd) with g′ • x = g′ · x

These actions are also irreducible (since G y T is), in particular semi-simple and not shifts.

They also have the same translation length function. Indeed, for every g′ ∈ G,

l(T,d,�)(g
′) = inf

x∈T
d(x, g′ � x)

= inf
x∈T

d(x, ψ(g′) · x)

= l(ψ(g′))

= l(gϕn(g′)g−1)

= l(ϕn(g′))

= λnl(g′),

and

l(T,λnd,•)(g
′) = inf

x∈T
λnd(x, g′ • x) = inf

x∈T
λnd(x, g′ · x) = λn inf

x∈T
d(x, g′ · x) = λnl(g′).

Therefore by Theorem 2.55 there is a unique G-equivariant isometry hψ : (T, λnd)→ (T, d). Its

isometry gives us d(hψ(x), hψ(y)) = λnd(x, y) for every x, y ∈ T , that is, h is an affine map of
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(T, d) with λn a dilation coefficient. Equivariance gives us hψ(g′ · x) = hψ(g′ • x) = g′ � hψ(x) =

ψ(g′) ·hψ(x) for every g′ ∈ G, x ∈ T . The map hψ is then the unique affine map that makes the

following diagram commute for every g ∈ G:

Because of this uniqueness of diagram it is straightforward to see that hψψ′ = hψhψ′ for

ψ,ψ′ ∈ H ′ and that hγg = g·. With this it is also easy to show that hγgϕ = ghϕ and hγgϕγ−1
g

=

ghϕg
−1. This will be used later. By Proposition 1.10, to show R(ϕ) = ∞ it is enough to show

S(π(ϕ)) =∞. So, we will show that S(π(ϕ)) =∞ in the following two cases:

Case 1 : λ = 1.

In this case, the λ-dilation hϕ becomes an isometry of (T, d) and has a well defined char-

acteristic set Chϕ . Let α ⊂ Chϕ be any non-degenerate geodesic segment. Since the action is

minimal and irreducible, by Theorem 2.56 there is a hyperbolic element g ∈ G such that α ⊂ Cg.
If the isometry hϕ is hyperbolic we can also suppose without loss of generality (replacing g by

g−1 if necessary) that the orientations of Cg and Chϕ are the same on α. Then, by Proposition

2.39 we have ‖ghϕ‖ = ‖g‖+ ‖hϕ‖. Similarly, for any n ≥ 1 we have

‖gnhϕ‖ = ‖gn‖+ ‖hϕ‖ = n‖g‖+ ‖hϕ‖.

We claim the automorphisms γgnϕ, n ≥ 1, are pairwise non-isogredient, which gives us S(π(ϕ)) =

∞ and therefore R(ϕ) =∞, completing case 1. In fact, if n, n′ are such that γgnϕ and γgn′ϕ are

isogredient let us show that n = n′. There is by definition g′ ∈ G such that γg′γgnϕγ
−1
g′ = γgn′ϕ.

Then, by what we observed in the beginning we have g′gnhϕg
′−1 = gn

′
hϕ. Since the translation

length function is invariant under conjugation of isometries, we have

n‖g‖+ ‖hϕ‖ = ‖gnhϕ‖ = ‖gn′hϕ‖ = n′‖g‖+ ‖hϕ‖,

therefore n = n′ since ‖g‖ > 0. Case 1 is done.

Case 2 : λ > 1.

This case is at least “significantly” harder. We also want to show S(π(ϕ)) =∞. We divide

the proof into 3 steps:

Step 1: fix a special point P and prove some general properties. We fix the point P in

the following way: if the λ-dilation hϕ has a fixed point (easily seen to be unique), let P be

this point, and this is called the first situation. If hϕ has no fixed points, then by [69] there

is a hϕ-open-eigenray ρ : (0,∞) → T , that is, an open ray such that hϕ(im(ρ)) = im(ρ) and

hϕ(ρ(t)) = ρ(λt) for every t > 0. In this case, we let P be any point in the ray ρ, and this is

called the second situation. Note that, in any of the two situations, P ∈ [h−1
ϕ (P ), hϕ(P )], with

hϕ(P ) = P in the first situation and hϕ(P ) 6= P in the second one. It is useful to note that the

second situation gives rise to a fixed point in the metric completion T of T :
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Proposition 7.5 ([78], Theorem 2.5). If (X, d) is any metric space, then X is isometric to a

dense subset of a complete metric space, denoted by (X, d) and called the metric completion of

X. Furthermore, any two such metric completions are isometric, so X is well defined.

We usually identify X as a subspace of X and d as the restriction of d.

Let (T , d) be the metric completion of T . It’s straightforward to see that one can naturally

extend the λ-dilation hϕ of T to a λ-dilation of T , that will also be called hϕ. Let D =

d(P, hϕ(P )). We have d(h−n−1
ϕ (P ), h−nϕ (P )) = 1

λn+1d(P, hϕ(P )) = 1
λn+1D for every n ≥ 1, by

induction. Now, since the series
∑∞

j=1
1
λj

converges with sum 1
1− 1

λ

− 1 = 1
λ−1 (for λ > 1), the

sequence (xn)n = (h−nϕ (P ))n is Cauchy, for

d(xn, xn+k) ≤ d(xn, xn+1) + ...+ d(xn+k−1, xn+k)

=
1

λn+1
D + ...+

1

λn+k
D

= D

n+k∑
j=n+1

1

λj

≤ D
∞∑

j=n+1

1

λj
→ 0 if n→∞.

Therefore, since T is complete, (xn)n converges to a point x ∈ T , that is clearly seen to corre-

spond to the origin of the ray ρ.

The distance between P and x is

d(P, x) =
∞∑
j=1

D
1

λj
=

D

λ− 1
.

The point x is a fixed point of hϕ. In fact, since hϕ(xn)→ hϕ(x) (by continuity), we have

D
1

λn
= d(xn, xn−1) = d(xn, hϕ(xn))→ d(x, hϕ(x)),

so d(x, hϕ(x)) = 0 since 1
λn → 0 as n → ∞. Since hϕ is a λ-dilation in T with λ > 1, it has at

most one fixed point, so x turns out to be the only fixed point of hϕ in the whole completion T .

Facts similar to these will be used again soon.

After fixing the point P and before we move to the next step, let us state a lemma and show

another two, that will be useful to step 3.

Lemma 7.6 ([68], Lemma 3.6). Suppose l ◦ ϕ = λl, where l is the translation length function

of a non-trivial small action by isometries of a finitely generated group G on an R-tree T . If

λ > 1, then every stabilizer of an arc is finite.
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Lemma 7.7. If ρ is any open eigenray ray of hϕ and t > 0, then Stab(ρ(0, t)) = Stab(ρ(0,∞)).

In other words, the stabilizer subgroup of any inicial open segment of any open eigenray of hϕ

is actually the stabilizer of the whole ray ρ.

Demonstração. Let us first show that Stab(ρ(0, λt)) = ϕ(Stab(ρ(0, t))). For (⊂), let g ∈
Stab(ρ(0, λt)) and let us show that ϕ−1(g) ∈ Stab(ρ(0, t)). Given x = ρ(s) ∈ ρ(0, t), we have

λs ∈ (0, λt) and so by hypothesis

hϕϕ
−1(g) · ρ(s) = g · hϕ(ρ(s)) = g · ρ(λs) = ρ(λs) = hϕ(ρ(s)),

so ϕ−1(g) · ρ(s) = ρ(s) and ϕ−1(g) ∈ Stab(ρ(0, t)), as desired. To show (⊃), let g ∈ Stab(ρ(0, t))

and let us show ϕ(g) ∈ Stab(ρ(0, λt)). If x = ρ(s) ∈ ρ(0, λt), then λ−1s ∈ (0, t), so

ϕ(g)ρ(s) = ϕ(g)ρ(λλ−1s) = ϕ(g)hϕρ(λ−1s) = hϕgρ(λ−1s) = hϕρ(λ−1s) = ρ(λλ−1s) = ρ(s),

so ϕ(g) ∈ Stab(ρ(0, λt)), as desired.

Now let us show the lemma. By Lemma 7.6, the subgroups Stab(ρ(0, t)) and Stab(ρ(0, λt)) =

ϕ(Stab(ρ(0, t))) are both finite with Stab(ρ(0, λt)) ⊂ Stab(ρ(0, t)) (for (0, t) ⊂ (0, λt)). Since

they are isometric by the isomorphism ϕ, we must have Stab(ρ(0, t)) = Stab(ρ(0, λt)). Re-

cursively we can actually show that Stab(ρ(0, t)) = Stab(ρ(0, λnt)) for every n ≥ 1. With

this it is easy to see that Stab(ρ(0, t)) = Stab(ρ(0,∞)). In fact, (⊃) is obvious, and if

g ∈ Stab(ρ(0, t)) and x = ρ(s) ∈ ρ(0,∞), just take n such that s < λnt, so x ∈ ρ(0, λnt)

and since g ∈ Stab(ρ(0, t)) = Stab(ρ(0, λnt)) we have gx = x; so, (⊂) is valid and the lemma is

complete.

Lemma 7.8. If ρ and ρ′ are two open eigenrays of hϕ and g ∈ G takes an initial segment ρ(0, t)

to an initial segment ρ′(0, t), then g takes the whole ray ρ to ρ′.

Demonstração. Let us show that the element g−1ϕ(g) ∈ G fixes the segment ρ(0, t). In fact, let

ρ(s) ∈ ρ(0, t). Since λ > 1, the element ρ(λ−1s) is also in ρ(0, t), so we have

g−1ϕ(g)ρ(s) = g−1ϕ(g)hϕρ(λ−1s) = g−1hϕgρ(λ−1s) = g−1hϕρ
′(λ−1s) = g−1ρ′(s) = ρ(s),

as desired. By Lemma 7.7, g−1ϕ(g) fixes the whole ray ρ, which means g−1ϕ(g)x = x or

gx = ϕ(g)x for every x in the ray ρ (in particular, ρ′(0, t) = g · ρ(0, t) = ϕ(g) · ρ(0, t)). Applying

this fact to the element ϕ(g) we get ϕ(g)x = ϕ2(g)x for every x in the ray ρ and, recursively,

ϕn(g)x = gx for every such x and every n ≥ 1. On the other hand we have

ϕ(g) · ρ(0, λt) = ϕ(g)hϕρ(0, t) = hϕgρ(0, t) = hϕρ
′(0, t) = ρ′(0, λt)

and recursively we get ϕn(g) · ρ(0, λnt) = ρ′(0, λnt) for every n. Finally, by using this and the
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fact that the action of g and ϕn(g) coincides on the whole ray ρ, we get

g · ρ(0,∞) = g · (∪∞n=1ρ(0, λnt))

= ∪∞n=1g · ρ(0, λnt)

= ∪∞n=1ϕ
n(g) · ρ(0, λnt)

= ∪∞n=1ρ
′(0, λnt)

= ρ′(0,∞),

and the lemma is proved.

Step 2: find two special hyperbolic isometries u, v ∈ G. Precisely, they have to satisfy all of

the items below:

a) 〈u, v〉 ' F2 is a free subgroup of G;

b) uP and vP both belong to the same path-connected component (or “path-component”)

of T − {P}, say, T+;

c) u−1P and v−1P both belong to another path-component T− of T − {P} that is different

from T+;

d) If hϕ(P ) 6= P , then h±1
ϕ (P ) ∈ T±1;

e) If hϕ(P ) = P , then hϕ(T+) 6= T−;

In the second situation we have hϕ(P ) 6= P and P is an interior point of the non-degenerate

segment [h−1
ϕ (P ), hϕ(P )]. In this case u, v must satisfy only a), b), c) and d). We do the fol-

lowing: since the action is irreducible, by Theorem 2.56 we let u be a hyperbolic element

such that [h−1
ϕ (P ), hϕ(P )] ⊂ Cu and suppose without loss of generality that the orientations of

[h−1
ϕ (P ), hϕ(P )] and Cu coincide. We know Cu is properly contained in T ; otherwise, T would be

a line and the action would then be either dihedral or a shift (with a fixed end), a contradiction

with Proposition 2.48, since the action is irreducible. So let Q /∈ Cu and let α = [Q, z] be the

bridge from Q to Cu. Denote by “<” the total order defined in Cu by its orientation. Since u

translate the bridge α by uniform distances let n ≥ 1 such that

u−nz < h−1
ϕ (P ) < P < hϕ(P ) < unz (see the figure).

By construction and by properties of bridges, we have [u−nQ, unQ] =

[u−nQ, u−nz, h−1
ϕ (P ), P, hϕ(P ), unz, unQ]. Now, again by Theorem 2.56, let v be a hy-

perbolic element such that [u−nQ, unQ] ⊂ Cv, with same orientation of Cu in the intersection
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Cu ∩ Cv = [u−nz, unz] ⊃ [h−1
ϕ (P ), hϕ(P )]. Let us see that u and v satisfy a), b), c) and d).

First, since Cg = Cgm and ‖gm‖ = m‖g‖ for every m ≥ 1 and every hyperbolic element g,

we can suppose without loss of generality that length(Cu ∩ Cv) < min{‖u‖, ‖v‖}. Then, by

Proposition 2.51 we have a). Now, by the basic properties of R-trees it is easy to see that two

points x, y ∈ T are in a different path-component of T −{P} if and only if [x, P ]∩ [P, y] = {P}.
So, if we denote by T+ (by T−) the path-component of T − {P} containing hϕ(P ) (containing

h−1
ϕ (P )), we easily have T+ 6= T− and b), c) and d) being satisfied by construction.

Let us treat the first situation, where hϕ(P ) = P is the unique fixed point of hϕ in T .

Let us find u and v satisfying a), b), c) and e). Remember hϕ is a homeomorphism of T for it

is continuous with a continuous inverse hϕ−1 . So, since hϕ(P ) = P , the map hϕ : T − {P} →
T−{P} is a homeomorphism and therefore a bijection on the set of path-components of T−{P}
(we know there are at least two such components, for we are removing a point from an R-tree).

We have two subcases, a “good” one and a “bad” one.

Good subcase: suppose first that either T −{P} has exactly two path-components which are

both fixed by hϕ or that it has at least three path-components. In the former case we just let

T+ and T− be the two components and we already have hϕ(T+) = T+ 6= T−; in the latter case

we use the incredibly easy lemma:

Lemma 7.9. If X is any set with card(X) ≥ 3 and f : X → X is any bijection, there are two

distinct elements x1 6= x2 in X with f(x1) 6= x2.

Since hϕ is a bijection on the path-components of T −{P} we can choose by the lemma two

distinct components T+ 6= T− such that hϕ(T+) 6= T−, as well as we did in the 2-component

case. Now we do the following: let x+ ∈ T+ and x− ∈ T−. Since T+ 6= T− we have [x+, P ] ∩
[P, x−] = {P}, so P is an interior point of [x−, x+] = [x−, P, x+]. Now we apply the same

construction we did in the situation hϕ(P ) 6= P (but using the geodesic [x−, x+] instead of

[h−1
ϕ (P ), hϕ(P )]) and we get the desired elements u, v satisfying a), b), c) and e).

Bad subcase: the last subcase of the case hϕ(P ) = P we have to deal is the “bad” one,

where T has exactly 2 components which are not fixed (therefore permuted) by hϕ. To find u, v

satisfying a), b), c) and e) in this subcase we need the following

Lemma 7.10. Suppose h1, h2 : T → T are two λ-affine maps with respective unique fixed points

P1 6= P2. Also, suppose

• h1(P2) is not in the path-component of T − {P1} containing P2;

• h2(P1) is not in the path-component of T − {P2} containing P1.

Then h2h
−1
1 is a hyperbolic isometry of T such that [P1, P2] ⊂ Ch2h−1

1
.

Demonstração. The isometry part is easy, for

d(h2h
−1
1 (x), h2h

−1
1 (y)) = λd(h−1

1 (x), h−1
1 (y)) = λ

1

λ
d(x, y) = d(x, y).

Note that we still don’t know if the characteristic set Ch2h−1
1

is a line for we still don’t know if

h2h
−1
1 is hyperbolic. By the two last hypotheses, [h2(P1), P2]∩ [P2, P1] = {P2} and [h1(P2), P1]∩
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[P1, P2] = {P1}. Since P1 6= P2, by Proposition 2.28 we have the geodesic [h2(P1), h1(P2)] =

[h2(P1), P2, P1, h1(P2)]. Since h−1
1 (P1) = P1 (for d(h−1

1 (P1), P1) = 1
λd(P1, h1(P1)) = 0), we have

h2h
−1
1 [h1(P2), P1] = [h2h

−1
1 h1(P2), h2h

−1
1 (P1)] = [P2, h2(P1)] (see the figure).

By Proposition 2.36, the middle point of the segment [h1(P2), h2h
−1
1 · h1(P2)] = [h1(P2), P2]

(say, x0) belongs to Ch2h−1
1

. Since [h1(P2), P1] is bigger (λ times the size) than [P1, P2], x0 is in

the interior of [h1(P2), P1]. Similarly, the middle point y0 of the segment [P1, h2(P1)] belongs to

Ch2h−1
1

and is in the interior of [P2, h2(P1)].

Since Ch2h−1
1

is connected, [x0, y0] ⊂ Ch2h−1
1

and in particular [P1, P2] ⊂ Ch2h−1
1

. Finally,

since P1 is a point of Ch2h−1
1

which is not fixed by h2h
−1
1 (for h2h

−1
1 (P1) = h2(P1) 6= P1), h2h

−1
1

must be hyperbolic and the lemma is done.

Let hϕ be in the bad subcase. There must be a hyperbolic element g ∈ G such that P /∈
Cg, for if P ∈ Cg for every hyperbolic the action would be reducible by Proposition 2.45, a

contradiction. Fix such g and let ϕ′ = γg ◦ϕ. We know hϕ′ = ghϕ and so the dilation coefficient

of hϕ′ is also λ. We also have R(ϕ′) = R(ϕ), since

<(ϕ)→ <(ϕ′), [x]ϕ 7→ [xg−1]ϕ′

is easily seen to be a bijection with inverse [x]ϕ′ 7→ [xg]ϕ. Thus, if we show that hϕ′ is not in

the bad subcase (only subcase we still haven’t found the desired u and v), then we can find u, v

for hϕ′ and proceed the proof with hϕ′ instead of hϕ to show R(ϕ′) = ∞ and we will be done,

because R(ϕ) = R(ϕ′) =∞. Suppose then by contradiction that hϕ′ is also in the bad subcase,

that is, it has a unique fixed point P ′ and it permutes the only two path-components of T−{P ′}.
We claim we can apply the lemma above for hϕ and hϕ′ . In fact, they are both λ-affine maps.

Their fixed points are distinct. Indeed, hϕ′(P ) = ghϕ(P ) = gP 6= P (for g is hyperbolic and has

no fixed points), so P is not a fixed point of hϕ′ and therefore P 6= P ′, as desired. Furthermore,

since both are in the bad subcase, P ′ and hϕ(P ′) are in distinct path-components of T − {P}
and similarly P and hϕ′(P ) are in distinct path-components of T − {P ′}. By the lemma above

we have hϕ′h
−1
ϕ a hyperbolic isometry such that [P, P ′] ⊂ Chϕ′h

−1
ϕ

, in particular P ∈ Chϕ′h−1
ϕ

.

But hϕ′h
−1
ϕ = ghϕh

−1
ϕ = g, so we would have P ∈ Chϕ′h−1

ϕ
= Cg, a contradiction. So hϕ′ cannot

be in the bad case and step 2 is complete. We fix u and v satisfying a) through e) and proceed

with the proof.

Step 3: prove that R(ϕ) = ∞. Remember that it is enough to show that S(π(ϕ)) = ∞.

Suppose by contradiction that S(π(ϕ)) = K < ∞. By the works of M. Bestvina and M.
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Feighn (see [6]), there is N0 ≥ 1 such that, for every Q ∈ T , the natural action of Stab(Q) on

π0(T − {Q}) (the set of path-components of T − {Q}) has at most N0 orbits. Also, by Lemma

7.6, arc stabilizers are finite groups, so let I = [P, uP ] ∩ [P, vP ] (which is a non-trivial segment

because of a)) and let s = card(Stab(I)) < ∞. The general idea is to use u, v to construct a

big enough collection of pairwise distinct rays, all of them containing I (within a same distance

from their respective origins, see the figure) and such that all of them are mapped to each other

by some isometry g̃. This will give us a number of s + 1 such isometries g̃, all belonging to

Stab(I), a contradiction.

For every m ≥ 1, consider the set W = W (m) of the words w written in the letters u, v (u−1

and v−1 not allowed here) such that each of the two letters appears exactly m times in w (so the

length of w is exactly 2m). Since 〈u, v〉 ' F2, the obvious map W → G (that considers a word as

an element of G) is injective, so we can consider W ⊂ G. It is easy to see that card(W ) =
(

2m
m

)
.

Since card(W (m + 1)) =
(

2(m+1)
m+1

)
≥ 2

(
2m
m

)
, card(W ) → ∞ as m → ∞, so in particular we can

fix m big enough such that

card(W ) > KN0(s+ 3).

The elements w ∈ W have many interesting properties. First, write w = σ1...σ2m, for

σi ∈ {u, v}. Let us show that [P,wP ] = [P, σ1P, σ1σ2P, ..., σ1σ2...σ2mP ] by induction. Indeed,

note that, by construction, Cσ1 and Cσ2 intercept in a non-trivial segment containing P in

its interior and with same orientation. Thus, by Proposition 2.39, ‖σ1σ2‖ = ‖σ1‖ + ‖σ2‖.
Furthermore, in the proof of that proposition, we can see that Cσ1σ2 ∩ Cσ1 also contains the

same non-trivial segment with P in its interior and same orientation, so

d(P, σ1σ2P ) = ‖σ1σ2‖ = ‖σ1‖+ ‖σ2‖ = d(P, σ1P ) + d(P, σ2P ) = d(P, σ1P ) + d(σ1P, σ1σ2P ),

thus [P, σ1σ2P ] = [P, σ1P, σ1σ2P ] by Proposition 2.28. Recursively we show by

induction until the mth step: suppose we have shown that [P, σ1σ2...σ2m−1P ] =

[P, σ1P, σ1σ2P, ..., σ1σ2...σ2m−1P ], that ‖σ1...σ2m−1‖ = ‖σ1‖ + ... + ‖σ2m−1‖ and that

σ1σ2...σ2m−1 is hyperbolic whose characteristic set contains a non-trivial segment with P in

its interior and whose orientation coincides with the one on both Cu and Cv in the intersection

with them. We repeat the same argument above, replacing σ1 by σ1σ2...σ2m−1 and σ2 by σ2m.

Proposition 2.28 gives us

‖σ1...σ2m‖ = ‖σ1...σ2m−1‖+ ‖σ2m‖ = ‖σ1‖+ ‖σ2‖+ ...+ ‖σ2m‖,
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and the proof of Proposition 2.39 gives us that P ∈ Cσ1...σ2m . Thus,0

d(P, σ1...σ2mP ) = ‖σ1...σ2m‖

= ‖σ1‖+ ‖σ2‖+ ...+ ‖σ2m‖

= d(P, σ1P ) + d(P, σ2P )...+ d(P, σ2mP )

= d(P, σ1P ) + d(σ1P, σ1σ2P ) + ...+ d(σ1σ2...σ2m−1P, σ1σ2...σ2mP ),

and Proposition 2.28 gives us [P,wP ] = [P, σ1P, σ1σ2P, ..., σ1σ2...σ2mP ], as desired. A second

property of every w ∈W is that

[P,whϕ(P )] = [P, σ1P, σ1σ2P, ..., wP,whϕ(P )].

In fact, in the case hϕ(P ) = P this is true by the property above. In the case hϕ(P ) 6= P ,

by the property of R-trees and by the previous property, it is enough to show that [P,wP ] ∩
[wP,whϕ(P )] = {wP}. The end of the segment [P,wP ] is in w(Cu∩Cv) with a positive orienta-

tion. Since the beginning of [P, hϕ(P )] has positive orientation in Cu∩Cv (by d)), the beginning

of [wP,whϕ(P )] also has positive orientation in w(Cu ∩Cv), so [P,wP ]∩ [wP,whϕ(P )] = {wP}
and the second property is proved. In particular, if we define L = d(P,whϕ(P )), then by this

property and by definition of W we have

L = d(P,whϕ(P ))

= d(P,wP ) + d(wP,whϕ(P ))

= ‖σ1‖+ ...+ ‖σ2m‖+ d(P, hϕ(P ))

= m‖u‖+m‖v‖+ d(P, hϕ(P ))

and so L is independent of w (it is the same for every w ∈W ). Another thing to register is that

I ⊂ [P, σ1P ] ⊂ [P,whϕ(P )] for every w ∈W . To show a third property, let us show the simple

Lemma 7.11. Any bijective λ-affine map h : T → T on an R-tree takes geodesic to geodesics,

that is, h([x, y]) = [h(x), h(y)] for x, y ∈ T .

Demonstração. It is enough to show the part (⊂), for then, since h−1 is a 1
λ -affine map we apply

the first part to h−1 and obtain h−1[h(x), h(y)] ⊂ [h−1h(x), h−1h(y)] = [x, y], or [h(x), h(y)] ⊂
h([x, y]), completing the proof. Let us show (⊂). For every three points x, y, z in T , it is easy

to see (by taking the bridge from z to [x, y]) that d(x, z) + d(z, y) = d(x, y) + 2d(z, [x, y]).

Therefore, z ∈ [x, y] ⇔ d(x, y) = d(x, z) + d(z, y). Now, let z ∈ [x, y] and let us show that

h(z) ∈ [h(x), h(y)]. But d(h(x), h(y)) = λd(x, y) = λ(d(x, z) + d(z, y)) = λd(x, z) + λd(z, y) =

d(h(x), h(z)) + d(h(z), h(y)), so h(z) ∈ [h(x), h(y)] and the lemma is finished.

A third property of the elements w ∈ W is that [P,whϕ(P )] ∩ [whϕ(P ), (whϕ)2(P )] =

{whϕ(P )}. Let us show this in the two cases: if hϕ(P ) = P , showing that [P,wP ] ∩
[wP,whϕwP ] = {wP} is equivalent to show that wP ∈ [P,whϕwP ], or that P ∈ [w−1P, hϕwP ].

By the first property we already know that wP ∈ T+ (it is easy to see that actually w̃P ∈ T+

for any word w̃ in the positive letters u and v) and similarly w−1P ∈ T−. Since hϕ(T+) 6= T−

by e), hϕwP cannot be in T− and so the points w−1P and hϕwP are in different path-
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components of T − {P}, which implies P ∈ [w−1P, hϕwP ], as desired. In the case hϕ(P ) 6= P ,

showing this property is equivalent to showing that whϕ(P ) ∈ [P,whϕwhϕ(P )], or that

hϕ(P ) ∈ [w−1P, hϕwhϕ(P )], or even (by the above lemma) that P ∈ h−1
ϕ [w−1P, hϕwhϕ(P )] =

[h−1
ϕ w−1P,whϕ(P )]. Again, showing this last assertion is equivalent to show that the points

h−1
ϕ w−1P and whϕ(P ) are in different path-components of T − P . On one hand, since

hϕ(P ) ∈ Cu (on the positive side of P ), we have hϕ(P ) ∈ [P, unP ] for some big n ≥ 1 and

thus whϕ(P ) ∈ [wP,wunP ]. But both points wP and wunP are in T+, so whϕ(P ) ∈ T+. On

the other hand, since h−1
ϕ has negative orientation in Cu∩Cv, it also has negative orientation in

w−1(Cu ∩ Cv). Since w−1P ∈ T−, we have h−1
ϕ w−1P ∈ T− 6= T+, and this completes the proof

of the third property.

Now we are ready to construct the rays we talked about. By the third property, for any

n ∈ Z we have

[(whϕ)nP, (whϕ)n+1(P )] ∩ [(whϕ)n+1(P ), (whϕ)n+2(P )] =

= (whϕ)n[P,whϕ(P )] ∩ (whϕ)n[whϕ(P ), (whϕ)2(P )]

= (whϕ)n([P,whϕ(P )] ∩ [whϕ(P ), (whϕ)2(P )]) = (whϕ)n{whϕ(P )}

= {(whϕ)n+1(P )},

which means [P,whϕ(P )] is a fundamental domain for the action of whϕ on its Z-orbit

ρw = ∪n∈Z(whϕ)n[P,whϕ(P )] (see the figure).

As we observed in step 1 (applying it now to the λ-dilation whϕ), the sequence

((whϕ)−nP )n≥1 converges to a point Qw ∈ T , that is the unique fixed point of whϕ in T .

We also know that the distance d(Qw, P ) = L
λ−1 is fixed and independent of w ∈ W . A last

observation before proceeding is that the ray ρw is obviously isometric to (0,∞) and [P,whϕ(P )]

is the unique fundamental domain of ρw whose length is exactly L. In fact, identify ρw = (0,∞)

and let h be a λ-dilation on (0,∞) with a fundamental domain [a, b] with b− a = L. Let [x, y]

be any other fundamental domain of (0,∞) such that y − x = L and let us show [x, y] = [a, b].

Write x = a + k for some k ∈ R. We have d(b, h(x)) = d(h(a), h(a + k)) = λd(a, a + k) = λ|k|,
so y = h(x) = b+ λk. Then

L = d(x, y) = d(a+ k, b+ λk) = b+ λk − a− k = L+ (λ− 1)k,

which implies (λ − 1)k = 0 and then k = 0. So a = x and b = y + λk = y, as desired. So far,

we have built the rays ρw, eigenrays of whϕ for any w ∈W , all of them containing I within the

same distance L
λ−1 from the origin Qw and with fundamental domain [P,whϕ(P )] of uniform

length L. They are also pairwise distinct, for, by the first property, if w 6= w′, the segments
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[P,wP ] and [P,w′p] must go in different directions at some point (see the figure).

Note that the affine maps whϕ are the induced affine maps of the isomorphisms γwϕ of G.

So, let A be the set of isogredience classes [γgϕ]isogr of ϕ (the set we supposed to be finite with

K elements) and let f : W → A with f(w) = [γwϕ]isogr. We use the following easy and intuitive

principle:

Lemma 7.12 (Generalized Pigeonhole Principle). Let X,Y be two finite sets and let f : X → Y

be any map. If card(Y ) ≤ n and card(X) ≥ kn for some k, n ≥ 1, then there are k different

elements in X with same image, that is, there is X ′ ⊂ X with card(X ′) = k and f(x) = f(z)

for any x, z ∈ X ′.

Since card(A) = K and card(W ) > N0(s + 3)K, by the Generalized Pigeonhole Principle

there is W ′ ⊂ W with card(W ′) = N0(s + 3) such that for every w,w′ ∈ W ′, γwϕ and γw′ϕ

are isogredient. Fix w0 ∈ W ′. For any w ∈ W ′, since γwϕ and γw0ϕ are isogredient there is

c = c(w) ∈ G such that γc(γwϕ)γ−1
c = γw0ϕ. Then

γcwϕ(c)−1ϕ = γcγwγϕ(c)−1ϕ = γcγwϕγc−1 = γw0ϕ.

The induced affine maps of the two automorphisms in the equation above must then coincide,

so cwϕ(c)−1hϕ = w0hϕ or cwhϕc
−1 = w0hϕ. With this we can see that c maps the origin

Qw of ρw to the origin Qw0 of ρw0 . Indeed, since Qw and Qw0 are the unique fixed points of

whϕ and w0hϕ, respectively, and since w0hϕ(cQw) = cwhϕ(Qw) = cQw, uniqueness gives us

cQw = Qw0 . The ray ρw is then mapped by c = c(w) to a ray cρw starting at Qw0 . In the same

way we can see that cρw is also an eigenray of w0hϕ, for if cx ∈ cρw (for some x ∈ ρw) then

w0hϕ(cx) = cwhϕ(x) ∈ cρw. Thus, we have the following configuration:

Consider the action of Stab(Qw0) on the set π0(T−{Qw0}) of path-components of T−{Qw0}),
which has at most N0 orbits. The set Orb(π0(T − {Qw0})) of orbits under this action has at

most N0 elements. Let f ′ : W ′ − {w0} → Orb(π0(T − {Qw0})) be the map that associates

w ∈ W ′ − {w0} to the orbit of π0(T − {Qw0}) containing the point cwhϕ(P ). Since card(W ′ −
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{w0}) = card(W ′)− 1 = N0(s+ 3)− 1 ≥ N0(s+ 2), the Generalized Pigeonhole Principle gives

us W ′′ ⊂ W ′ − {w0} with card(W ′′) = s+ 2 and such that f ′(w) = f ′(w′′) for any w,w′ ∈ W ′′,
that is, the path-components containing the points cwhϕ(P ) and c′w′hϕ(P ) are in the same

Stab(Qw0)-orbit (here, c′ = c(w′)). This means there must be g = g(w,w′) ∈ Stab(Qw0) such

that the path-components of gcwhϕ(P ) and c′w′hϕ(P ) inside T − {Qw0} are the same, which is

equivalent to say that the rays gcρw and c′ρw′ coincide in a non-degenerate interval [0, t). See

the figure:

As we already know, the rays cρw and c′ρw′ are eigenrays of the same λ-affine map w0hϕ.

Since gcρw(0, t) = c′ρw′(0, t), by Lemma 7.8 g maps the whole ray cρw onto c′ρw′ , so g̃ρw = ρw′

for g̃ = c′−1gc. Since this can be done for any w,w′ ∈ W ′′ and since card(W ′′) = s + 2, write

W ′′ = {w̃, w1, ..., ws+1} and denote by g̃i the element such that g̃iρwi = ρw̃ we just constructed.

The elements g̃i must be pairwise distinct. In fact, if g̃i = g̃ = g̃j for 1 ≤ i, j ≤ s + 1, then

g̃ρwi = g̃iρwi = ρw̃ = g̃jρwj = g̃ρwj , so ρwi = ρwj and therefore i = j, since the rays ρwi are

pairwise distinct (fact already shown). Finally, since d(I,Qw̃) = L
λ−1 = d(I,Qwi), the elements

g̃i must fix the segment I, so g̃i ∈ Stab(I) for 1 ≤ i ≤ s + 1. We then found s + 1 distinct

elements inside a set Stab(I) of cardinality s. This is a contradiction, so S(π(ϕ)) = ∞ and

therefore R(ϕ) =∞, which completes the Theorem.
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Caṕıtulo 8

Property R∞ for hyperbolic groups

In this chapter we give the details of the already known proof or property R∞ for non-elementary

hyperbolic groups given by G. Levitt and M. Lustig in [68]. Knowing this proof will also be

especially useful for chapter 9.

The key ingredient of the above proof is an exhibition of Paulin’s result ([81], Theorem A,

corresponding to Theorem 8.9 here). This theorem implies that infinite-order automorphisms

of non-elementary hyperbolic groups satisfy the conditions of Levitt and Lustig’s result (given

in more general terms by our Theorem 7.4). Then, by Theorem 7.4, these automorphisms have

infinite Reidemeister numbers. So - as we have said in the previous chapter - although Levitt

and Lustig’s paper [68] is known as the one who shows R∞ for non-elementary hyperbolic groups

(which is true), I would like to point out the fact that their proof there relies on Paulin’s equally

complex Theorem 8.9, so I would personally say that R∞ for hyperbolic groups is a result by

Levitt, Lustig and with a good contribution by Paulin.

Hyperbolic groups were first defined in 1987 by Gromov [50]. This is a large (and also largely

studied) class of groups in geometric group theory. For other equivalent definitions of hyperbolic

groups, see [55].

Definition 8.1. Let G be a group and δ ≥ 0. We say G is δ-hyperbolic if G is finitely generated

and if its Cayley graph Γ(G,S) is a δ-hyperbolic space (for some finite generating set S). We

say G is hyperbolic if it is δ-hyperbolic for some δ ≥ 0.

If G is hyperbolic as above, it follows that, for every other finite generating set S′, we

have Γ(G,S)
QI∼ Γ(G,S′) by Proposition 2.20 and therefore Γ(G,S′) is also a hyperbolic space

by Proposition 2.23. So, it does not matter which generating set we choose for hyperbolicity.

Similarly, with the same argument, if two f.g. groups G and H are quasi-isometric (i.e., have

quasi-isometric Cayley graphs) and G is hyperbolic, then H is a hyperbolic group.

There are some trivial examples of hyperbolic groups. For example, finite groups are hyper-

bolic because their Cayley graphs, having finite diameter, are always hyperbolic spaces. Another

example is Z, whose usual Cayley graph is homeomorphic to R, which is an (0-hyperbolic) R-

tree. Let us go just a little bit further: suppose a group G is virtually ciclic, i.e., it contains a

finite index cyclic subgroup H. Then, by Proposition 2.22 we have G
QI∼ H and therefore by 2.23

G is hyperbolic, since H is. All these groups are relatively simple and not interesting for some

areas inside geometric group theory. Because of this, we usually make the following distinction:



158 8. Property R∞ for hyperbolic groups

Definition 8.2. We say a hyperbolic group G is non-elementary if G is infinite and is not

virtually cyclic.

Example 8.3. Here are some basic examples of non-elementary hyperbolic groups. First, all

finitely generated free groups Fn of rank n ≥ 2 are non-elementary hyperbolic groups. In fact,

we know from Proposition 1.22 that the Cayley graph of such groups are (combinatorial) trees,

in particular 0-hyperbolic spaces, as desired. Therefore, by Propositions 2.22 and 2.23, every

virtually-Fn group is also non-elementary hyperbolic. For example, direct products Fn×Zm and

semidirect products Fn o Sn for the natural permutation action of Sn on Fn. Other examples

of virtually-Fn groups are the fundamental groups π1(G,Γ, T ) (see chapter 1) of finite graphs

of groups (G,Γ) whose vertex and edge groups GP and Gy are all finite. In fact, they are

virtually-Fn by [86] (see pages 120-122) and so hyperbolic.

One of them is the special linear group G = SL2(Z), or modular group, as some would say.

This is the group of the square integer matrices of size 2 with determinant 1. One can show

that G is generated by S =

(
0 −1

1 0

)
and T =

(
1 1

0 1

)
. G acts on the (hyperbolic) upper half

plane H = {z = x+ yi ∈ C | y > 0} by(
a b

c d

)
· z =

az + b

cz + d
.

The half plane contains a G-invariant tree (in red), which is the 1-skeleton of a tessellation of

the hyperbolic plane, so we could very likely expect G to be hyperbolic. Fundamental domains

of the action are given in the figure, where the action can be geometrically seen.

The group G can be shown to have the following presentation:

G =
〈
S, ST | S4 = 1, (ST )6 = 1, S2 = (ST )3

〉
' Z4 ∗Z2 Z6,

which is clearly the fundamental group of a segment with Z4 and Z6 as vertex groups and Z2 as

edge group. So, as we already said, G is virtually-Fn by [86]. In this case, G contains an index
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6 copy of F2, which is the subgroup consisting of the matrices

(
a b

c d

)
such that a, d are odd

and b, c are even. Since G contains F2, it must be a non-elementary hyperbolic group.

Example 8.4. A last and elegant example of hyperbolic group is every fundamental group G

of a closed hyperbolic n-manifold X, with n ≥ 2. In fact, let X̃ = Hn be the universal covering

of X, which is the well-known n-dimensional simply connected hyperbolic space. It is known

that G = π1(X) is isomorphic to the covering transformation group of X̃ (see [76]), a group

of isometries of X̃ on which G acts properly discontinuously. Since the orbit space X̃/G ' X

is compact, the action is cocompact and therefore G is a hyperbolic group (see [14]), for its

Cayley graph is quasi-isometric to X̃. If G was virtually cyclic, its Cayley graph would be quasi-

isometric to R = H1, so Hn = X̃
QI∼ H1 and it is known that this implies n = 1, a contradiction.

Therefore G is non-elementary, as desired. One of these groups is the fundamental group of the

bitorus, that is, G = π1(T 2]T 2). It is widely known that G =
〈
a, b, c, d | aba−1b−1cdc−1d−1 = 1

〉
.

The universal cover of the bitorus is the hyperbolic Poincare (open) disk H2 and a model of the

covering map p can be seen in the figure. This map produces a tesselation of H2 by (hyperbolic)

regular octagons, such that each vertex has exactly 8 octagons adjacent to it, therefore called a

{8, 8} tesselation of H2. The Cayley graph of G consists exactly of the edges inside the disk. It

is quasi-isometric to H2 and so hyperbolic.

Non-elementary hyperbolic groups are way more interesting than the elementary ones and

have some “non-abelian-like” properties, such as

Proposition 8.5. [47] Every non-elementary hyperbolic group has a finite center.

Proposition 8.6. [47] Every non-elementary hyperbolic group contains a non-abelian free sub-

group of rank 2.

Another useful property is:

Proposition 8.7. [21] Every hyperbolic group is finitely presented.
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A key ingredient to show property R∞ for non-elementary hyperbolic groups is a theorem

due to Frédéric Paulin ([81], 1997). It creates, from a non-elementary hyperbolic group and a

special subgroup of automorphisms, a very special type of action on an R-tree, allowing us to

use the results on the previous chapter.

To state the theorem, we will use the notion of amenability for groups. Pier’s work ([84],

1984) contains a great number of definitions that are equivalent to amenability. Since it is not

vital for the strategy of the proof, we will postpone the definition and only state one of the

characterizations later, when necessary.

Definition 8.8 (Affine action). Let G y (X, d) be any action of a group G on a metric space

X. We say the action is affine if there is a multiplicative homomorphism λ : G → (0,∞) such

that

d(gx, gy) = λ(g)d(x, y) ∀ (x, y, g) ∈ X ×X ×G.

Theorem 8.9 (Paulin’s Theorem). Let G be a non-elementary hyperbolic group and denote

π : Aut(G) → Out(G) = Aut(G)
Inn(G) the natural projection. If H ≤ Aut(G) is amenable such that

π(H) has infinite center, then there is an R-tree T and an affine action (G o H) y T whose

restriction to G is a non-trivial, minimal and small action by isometries.

8.1 Proof of Paulin’s Theorem 8.9

The proof we are going to present is the main result of [81]. Since the proof is a bit long, we

divided it in three steps:

• Step 1: create a non-trivial and small action by isometries of G on an R-tree Xω. the

space Xω will be defined as an ultralimit (see Chapter 2) of a sequence of hyperbolic spaces

Xn on which we know G acts and whose hyperbolicity constants converge to 0. So it will

be an R-tree.

• Step 2: Extend the action above to a well-defined action (G o H) y Xω. Using that

every ϕ ∈ H induces a map fn on each Xn, we put them together to a well defined

homeomorphism fϕ : Xω → Xω. We show these maps are coherent with the previous

action and give rise to (GoH) y Xω.

• Step 3: Modify “a little bit” the R-tree Xω and the action (GoH) y Xω above to obtain

the affine action (G o H) y T desired. Here we create a linear action of H on a closed

convex cone of length functions and use amenability to find a special one, called l, of some

action of G on some R-tree T . The special properties l satisfies makes it possible to extend

this action to all GoH.

Step 1: create a non-trivial and small action by isometries of G on an R-tree Xω.

By hypothesis, let (ψn)n≥1 be a sequence of elements of H such that the π(ψn) are pairwise

distinct elements in the center of π(H). Let S = {s1, ..., sk} be a finite generating set for G such

that S = S−1. By Proposition 8.6, G contains a copy of the free group F2 as a subgroup, so we

may assume 〈s1, s2〉 ' F2.

Let |.| : G→ R be the natural geodesic length and d : Γ(G,S)×Γ(G,S)→ R be the natural

geodesic metric on the Cayley graph of G (see Chapter 2). With this metric, G acts by isometries
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on Γ(G,S), by extending by linearity the left multiplication action of G on itself. For now, let

us restrict d to the set G of vertices, which also becomes a metric space on which G acts by

isometries. Then, for each n ≥ 1, define

λn = inf
g∈G
{max
s∈S
{d(g, ψn(s)g)}}.

Since d only takes integer values on G × G, λn is attained by (at least) one point (element) of

G, which we call pn. Then

λn = max
s∈S
{d(pn, ψn(s)pn)}.

We first claim that for every g ∈ G and n ≥ 1, d(pn, ψn(g)pn) ≤ |g|λn. In fact, given g,

write g = s1...sm as a word in S with minimal length (and so |g| = m). Then, by using a finite

number of times the triangular inequality, the fact ψn is an automorphism and the fact that the

action is isometric we have

d(pn, ψn(g)pn) ≤ d(pn, ψn(s1)pn) + d(ψn(s1)pn, ψn(s1)ψn(s2)pn) + ...

...+ d(ψn(s1)...ψn(sm−1)pn, ψn(g)pn)

= d(pn, ψn(s1)pn) + d(pn, ψn(s2)pn) + ...+ d(pn, ψn(sm)pn)

≤ λn + λn + ...+ λn (m times)

= |g|λn,

as we claimed. We will need this information later.

Now we claim that limn→∞ λn =∞. In fact, suppose by contradiction that it is false. Then

there is a bounded subsequence of (λn)n, which we will still call by (λn)n just for simplicity on

the argument. Then there is K ≥ 0 such that λn ≤ K for every n, and by the definitions of |.|,
d and of λn we have

|γp−1
n
ψn(s)| = |p−1

n ψn(s)pn| = d(pn, ψn(s)pn) ≤ λn ≤ K for every s ∈ S and n ≥ 1.

This means for every n ≥ 1 and s ∈ S, the elements γp−1
n
ψn(s) - as vertices of the Cayley graph -

are all contained in the closed ball BΓ(1,K) with center the identity element 1 and ray K. But

in a Cayley graph of a finitely generated group, every such ball contains only a finite number

of vertices. So there is a finite set V of vertices such that γp−1
n
ψn(s) ∈ V for every n ≥ 1 and

s ∈ S. Since S = {s1, ..., sm}, consider the map

f : N→ V m, n 7→ (γp−1
n
ψn(s1), ..., γp−1

n
ψn(sm)).

Since V m is finite and N is infinite, there are n1 6= n2 such that f(n1) = f(n2). By the

definition of f and because G = 〈s1, ..., sm〉, we immediately have γp−1
n1
ψn1 = γp−1

n2
ψn2 . Since

inner automorphisms are mapped to Id by π, we have π(ψn1) = π(ψn2), a contradiction, for we

chose all the ψn so that their projection are pairwise distinct. This shows our claim.

Let us create the sequence of pointed metric spaces. For every n ≥ 1, define (Xn, dn, pn) by

putting Xn = G, pn the vertex considered above and dn = d
λn

. For this last definition of dn, we

must note that λn > 0, for since ψn(s1) 6= 1, for example, we have λn ≥ d(pn, ψn(s1)pn) ≥ 1.
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Now, let ω be an ultrafilter of N containing the Fréchet filter (Proposition 2.61). Define the

actions Gy Xn by putting

g · xn = ψn(g)xn (multiplication in G)

for every xn ∈ Xn. So, G acts by isometries on each Xn. For every g, let C(g) = |g|. By what

we have shown before,

dn(pn, g · pn) =
d(pn, ψn(g)pn)

λn
≤ |g| = C(g)

for every n. By Proposition 2.69, these actions induce an action by isometriesGy Xω, whereXω

is the ω-ultralimit of the sequence (Xn, dn, pn)n. The action is given by g · [(xn)n] = [(g ·xn)n] =

[(ψn(g)xn)n].

To finish step 1, let us show that Xω is an R-tree. We will do this by showing Xω is

isometric to an R-tree Yω. So, let us define the sequence (Yn, d̃n, pn)n by putting Yn = Γ(G,S)

(so Xn = G ⊂ Yn is the set of vertices of Yn), d̃n = d
λn

(where d is now the metric on the whole

Cayley graph) and putting pn as the same points we chose for Xn. Since Γ(G,S) is δ-hyperbolic

with its distance d (for G is hyperbolic), it is easy to see that the Yn are δ
λn

-hyperbolic. Since

limn→∞
δ
λn

= 0 (for limn→∞ λn = ∞), it follows from Proposition 2.68 that Yω is an R-tree.

Now let us define the isometry. Since the Xn are subsets of the Yn and the metrics dn on the

Xn are easily seen to be restrictions of the metrics d̃n on the Yn, it follows that Xω can be seen

as a metric subspace of Yω. So, the natural inclusion

i : Xω → Yω, i[(xn)n] = [(xn)n]

is well defined and an isometric embedding of Xω in Yω. We just have to see i is surjective. Let

[(yn)n] ∈ Yω. For every n, the point yn is in the Cayley graph Yn = Γ(G,S). Since the length of

every edge is 1, there is a vertex xn such that d(xn, yn) ≤ 1
2 .

Let us see that [(xn)n] ∈ Xω, that is, the sequence dn(xn, pn) is uniformely bounded. By

hypothesis there is C ≥ 0 such that d̃n(yn, pn) ≤ C for every n. Since λn ≥ 1 for every n we

also have 1
λn
≤ 1. Then, for every n,

dn(xn, pn) = d̃n(xn, pn) ≤ d̃n(xn, yn) + d̃n(yn, pn) ≤ 1

2λn
+ C ≤ 1

2
+ C,

as desired. Finally, to see that i[(xn)n] = [(xn)n] = [(yn)n] in Yω, we just have to check if

limω d̃n(xn, yn) = 0. But this is clear since we just saw that d̃n(xn, yn) ≤ 1
2λn
→ 0 as n → ∞.

Thus, Xω ' Yω is an R-tree. By applying the results of [82], we guarantee the action G y Xω

above is non-trivial and small, which completes step 1.

Step 2: Extend the action above to a well-defined action (GoH) y Xω.
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To create such action, we must create an action H y Xω and show that it is compatible

(in the semidirect product sense) with the one from step 1. So, given ϕ ∈ H, let us first create

maps fn : Xn → Xn (or fϕ,n if we need to specify) for every n to use Proposition 2.70. Since

π(ψn) is in the center of π(H) we have π(ϕ)π(ψn)π(ϕ)−1π(ψn)−1 = Id, so ψnϕ = γynϕψn for

some inner automorphism γyn and some yn ∈ G (also denoted by yϕ,n if needed). Define then

fn = fn,ϕ : Xn → Xn by fn(x) = ynϕ(x).

Let C = C(ϕ) = sups∈S{max{|ϕ(s)|, |ϕ−1(s)|}}. We claim fn is C-bi-Lipschitz with the distance

dn (same number C for every n). In fact, we first see that ϕ : G→ G is C-bi-Lipschitz by showing

two inequalities. Given g ∈ G, represent g by a reduced word w = s1...sm in S with minimal

length, so that |g| = m. If wi are reduced words representing ϕ(si) with minimal length, then

w1...wn is a (not necessarily reduced or minimal) word representing ϕ(g), from where we have

|ϕ(g)| ≤ length(w1...wn)

= length(w1) + ...+ length(wm)

= |ϕ(s1)|+ ...+ |ϕ(sm)|

≤ C + ...+ C (m times)

= C|g|.

This is true for every g ∈ G. Now, if g, g′ ∈ G,

d(ϕ(g), ϕ(g′)) = |ϕ(g)−1ϕ(g′)| = |ϕ(g−1g′)| ≤ C|g−1g′| = Cd(g, g′),

sp we have the first inequality. For the second one, note that C(ϕ) = C(ϕ−1) and that the

inequality above works for every element in H, so applying it for ϕ−1 we have

d(g, g′) = d(ϕ−1(ϕ(g)), ϕ−1(ϕ(g′))) ≤ C(ϕ−1)d(ϕ(g), ϕ(g′)) = C(ϕ)d(ϕ(g), ϕ(g′)),

so ϕ : G→ G is C-bi-Lipschitz. By using these two inequalities and the fact that d is invariant

under left multiplication in G we get that fn is C
λn

-bi-Lipschitz (because dn = d
λn

), and since λn ≥
1, fn is obviously also C-bi-Lipschitz, as desired. If we show that the set {dn(pn, fn(pn)) | n ≥ 1}
is bounded, then by Proposition 2.70 the fn will give rise to a C-bi-Lipschitz map fϕ : (Xω, dω)→
(Xω, dω), which defines our desired action. This is the next

Lemma 8.10. The set {dn(pn, fn(pn)) | n ≥ 1} is bounded.

Demonstração. Since dn = d
λn

, we have to find D ≥ 0 such that d(pn, fn(pn)) ≤ Dλn for every

n. Before this, let us show that there is D′ ≥ 0 such that, for every n,

sup
s∈S

d(fn(pn), ψn(s)fn(pn)) ≤ D′λn and sup
s∈S

d(pn, ψn(s)pn) ≤ D′λn.

The second inequality is not hard to be satisfied because sups∈S d(pn, ψn(s)pn) = λn, so it

suffices to choose any D′ ≥ 1. For the first one, we use many properties obtained so far to note
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that, for every s ∈ S and n,

d(fn(pn), ψn(s)fn(pn)) = d(ynϕ(pn), ψn(s)ynϕ(pn))

= d(ynϕ(pn), ψnϕ(ϕ−1(s))ynϕ(pn))

= d(ynϕ(pn), ynϕψn(ϕ−1(s))ϕ(pn))

= d(ϕ(pn), ϕψn(ϕ−1(s))ϕ(pn))

= d(ϕ(pn), ϕ(ψn(ϕ−1(s))pn))

≤ Cd(pn, ψn(ϕ−1(s))pn)

≤ Cλn|ϕ−1(s)|

≤ CCλn,

therefore sups∈S d(fn(pn), ψi(s)fn(pn)) ≤ C2λn, and so the number D′ = max{1, C2} satisfies

the two inequalities we wanted. Now let us find the number D of the lemma. It is enough to

find D̃ ≥ 0 such that d(pn, fn(pn)) ≤ D̃λn for every n but a finite set of indexes F ⊂ N. For if

we find such D̃, it is straightforward to see that D = max{D̃,maxn∈F {d(pn,fn(pn))
λn

}} satisfies the

lemma. To find D̃, let δ ≥ 0 such that the Cayley graph XS = Γ(G,S) is δ-hyperbolic. Define

ν8δ = card({g ∈ G | |g| ≤ 8δ})

as the number of vertices in the closed ball BΓ(1, 8δ) and D̃ = 2(4ν8δ + 8)D′. We claim D̃

satisfies what we want. Suppose by contradiction this is false. Then there is an infinite set of

indexes B ⊂ N such that, for every n ∈ B, d(pn, fn(pn)) > D̃λn, or

d(pn, fn(pn)) > 2(4ν8δ + 8)D′λn.

For every n ∈ B, let In = [pn, fn(pn)] be the geodesic in XS and let xn be the middle point of

this geodesic segment. Now let n ∈ B be a fixed index such that D′λn > δ (for limn→∞ λn =∞).

Let us see that every segment I ′ ⊂ In centered in xn and with diameter less than 2(4ν8δ+5)D′λn

must be in a distance less than 2δ of both sets ψn(s1)In and ψn(s2)In (see the figure).

In fact, let j ∈ {1, 2} and z ∈ I ′. Then d(z, pn) ≥ 3D′λn, for since d(pn, xn) > (4ν8δ +

8)D′λn > 3D′λn by hypothesis, the only chance of d(z, pn) < 3D′λn happening is if z ∈ [pn, xn].
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But then we would have

d(pn, xn) = d(pn, z) + d(z, xn) < 3D′λn + (4ν8δ + 5)D′λn = (4ν8δ + 8)D′λn

and therefore d(pn, fn(pn)) = 2d(pn, xn) < 2(4ν8δ + 8)D′λn, a contradiction with the number n

we chose. Now, the fact d(z, pn) ≥ 3D′λn implies

d(z, w) ≥ 2D′λn for every w ∈ [pn, ψn(sj)pn],

for if not we would have d(z, pn) ≤ d(z, w) + d(w, pn) < 2D′λn + D′λn = 3D′λn, an-

other contradiction. So, d(z, w) ≥ 2D′λn > D′λn > δ for every w ∈ [pn, ψn(sj)pn]. If

we consider the geodesic triangle ∆(pn, fn(pn), ψn(sj)pn), δ-hyperbolicity implies there must

be z′ ∈ [fn(pn), ψn(sj)pn] with d(z, z′) ≤ δ. Now we similarly think in terms of the tri-

angle ∆(fn(pn), ψn(sj)pn, ψn(sj)fn(pn)): for every w′ ∈ [fn(pn), ψn(sj)fn(pn)] we must have

d(z′, w′) > δ, for if not we would have

d(z, fn(pn)) ≤ d(z, z′) + d(z′, w′) + d(w′, fn(pn)) ≤ δ + δ +D′λn < 3D′λn,

a contradiction because one can show d(z, fn(pn)) ≥ 3D′λ in the same way we showed d(z, pn) ≥
3D′λ. So, by hyperbolicity again, there must be z′′ ∈ [ψn(sj)pn, ψn(sj)fn(pn)] = ψn(sj)I such

that d(z′, z′′) ≤ δ. Therefore d(z, z′′) ≤ 2δ and z has a bounded 2δ-distance from ψn(sj)I, as

desired.

With this, one can show that d(xn, [ψn(s1)r, ψn(s2)r]xn) ≤ 8δ for every r = 1, ..., ν8δ+1. Now,

since 〈s1, s2〉 is a free group, the commutators [sr1, s
r
2] are pairwise distinct in G, and because

ψn is injective, the elements hr = [ψn(s1)r, ψn(s2)r] = ψn([sr1, s
r
2]) must be pairwise distinct.

Because of the action of G on its Cayley graph XS , the ν8δ + 1 points {hr ·xn | 1 ≤ r ≤ ν8δ + 1}
are pairwise distinct inside the set B(xn, 8δ) ∩ G · xn. This is a contradiction because this set

contains at most ν8δ points. In fact, if xn is a vertex it contains exactly ν8δ points, because

of the symmetry of the Cayley graph. If it is not a vertex, then the distance between any two

points of the orbit G · xn is at least 1 (see next figure for the only 4 possible cases); therefore

card(B(xn, 8δ) ∩G · xn) ≤ ν8δ. This finishes the lemma.
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Coming back to the main line of proof of step 2, we got a C-bi-Lipschitz map fϕ : Xω → Xω

for every ϕ ∈ H. To show this defines an action H y Xω (by putting ϕ · x = fϕ(x)), we must

show fIdG = IdXω and fϕϕ′ = fϕfϕ′ . The first one is easy to see. To show the second one, note

that

ψnϕϕ
′ = γyϕ,nϕψnϕ

′ = γyϕ,nϕγyϕ′,nϕ
′ψn = γyϕ,nγϕ(yϕ′,n)ϕϕ

′ψn = γyϕ,nϕ(yϕ′,n)ϕϕ
′ψn.

On the other hand, by definition we know that ψnϕϕ
′ = γyϕϕ′,nϕϕ

′ψn. Putting the equations

together and canceling the bijections ϕϕ′ψn on the right, we get γyϕϕ′,n = γyϕ,nϕ(yϕ′,n) or, equiv-

alently.

γy−1
ϕϕ′,nyϕ,nϕ(yϕ′,n) = Id,

so the element zn = y−1
ϕϕ′,nyϕ,nϕ(yϕ′,n) is by definition in the center of G. Now, for every n and

every x ∈ Xn,

d(fϕϕ′,n(x), fϕ,nfϕ′,n(x)) = d(yϕϕ′,nϕϕ
′(x), yϕ,nϕ(yϕ′,nϕ

′(x)))

= d(yϕϕ′,nϕϕ
′(x), yϕ,nϕ(yϕ′,n)ϕϕ′(x))

= d(yϕϕ′,nϕϕ
′(x), yϕϕ′,nznϕϕ

′(x))

= d(yϕϕ′,nϕϕ
′(x), yϕϕ′,nϕϕ

′(x)zn)

= d(1, zn)

= |zn|.

By Proposition 8.5, Z(G) is finite and there is Q ≥ 0 such that |zn| ≤ Q for every n. Then

d(fϕϕ′,n(x), fϕ,nfϕ′,n(x)) ≤ Q for every n and this easily implies fϕϕ′ = fϕfϕ′ , because for every

[(xn)n] ∈ Xω,

dω(fϕϕ′ [(xn)n], fϕfϕ′ [(xn)n]) = dω([(fϕϕ′,n(xn))n], [(fϕ,nfϕ′,n(xn))n])

= lim
ω
dn(fϕϕ′,n(xn), fϕ,nfϕ′,n(xn))

= lim
ω

d(fϕϕ′,n(xn), fϕ,nfϕ′,n(xn))

λn

≤ lim
ω

Q

λn
= 0.

So we have an action H y Xω. It is important to note that since fϕfϕ−1 = fϕϕ−1 = fId = Id,

the fϕ are bijections, continuous (bi-Lipschitz) with continuous inverse maps fϕ−1 , so they are

all homeomorphisms of Xω. To complete step 2, we are only left to show that this action is

coherent with the action Gy Xω from step 1 in the semidirect product sense. By the definition

of semidirect product, this means we have to show that

ϕ(g) · (fϕ(x)) = fϕ(g · x)
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for every g ∈ G, ϕ ∈ H and x = [(xn)n] ∈ Xω. But for every n,

fn(ψn(g)xn) = ynϕ(ψn(g)xn)

= ynϕψn(g)ϕ(xn)

= ynϕψn(g)y−1
n ynϕ(xn)

= γynϕψn(g)fn(xn)

= ψnϕ(g)fn(xn),

and this implies

dω(ϕ(g) · (fϕ(x)), fϕ(g · x)) = dω(ϕ(g) · [(fn(xn))n], fϕ[(ψn(g)xn)n])

= dω([(ψnϕ(g)fn(xn))n], [(fn(ψn(g)xn))n])

= lim
ω
dn(ψnϕ(g)fn(xn), fn(ψn(g)xn))

= lim
ω

0

= 0,

which completes step 2.

Step 3: Modify “a little bit” the R-tree Xω and the action (G oH) y Xω above to obtain

the affine action (GoH) y T desired.

By the definition of what should be an affine action (GoH) y T , it suffices to find an R-tree

(T, d) (this metric d will have “nothing” to do with the one from step 1) and a non-trivial small

action by isometries G y T whose translation length function l is such that: for every ϕ ∈ H,

there is λ(ϕ) > 0 (with ϕ ∈ H 7→ λ(ϕ) ∈ (0,∞) a homomorphism) with l ◦ϕ−1 = λ(ϕ)l and also

a unique affine map hϕ : T → T with λ(ϕ) a dilation coefficient (d(hϕ(x), hϕ(y)) = λ(ϕ)d(x, y))

and such that hϕ(g · x) = ϕ(g) · hϕ(x). Why would this give us an affine action? In fact,

the last equality is to guarantee all the maps hϕ combine with G y T to a well define action

(GoH) y T . The dilation coefficients λ(ϕ) are the affine part of the definition, together with

the coefficients λ(g) = 1 for g ∈ G. The fact l ◦ ϕ−1 = λ(ϕ)l is an extra information we will get

while we try to find the affine maps hϕ.

First, since G y Xω is non-trivial, let T ′ ⊂ Xω be the unique minimal G-invariant subtree

(Proposition 2.54). We claim that T ′ is also H-invariant, therefore (G o H)-invariant. Let

ϕ ∈ H. Since fϕ is a homeomorphism, fϕ(T ′) is also a subtree of Xω, for it is connected and so

convex, by uniqueness of geodesics. It is also G-invariant, for if fϕ(x) ∈ fϕ(T ′) is any element

and g ∈ G, then g · fϕ(x) = fϕ(ϕ−1(g) · x) ∈ fϕ(T ′), as desired. But by Proposition 2.54, every

G-invariant subtree of Xω must contain T ′, so T ′ ⊂ fϕ(T ′). By using the same argument to ϕ−1

we get T ′ ⊂ fϕ−1(T ′), or (because fϕfϕ−1 = Id) fϕ(T ′) ⊂ T ′. So ϕ · T ′ = fϕ(T ′) = T ′ and T ′ is

H-invariant, which gives an action (GoH) y T ′. Denote then by d′ the restriction of dω in Xω

to T ′. This action is clearly still non-trivial, small and by isometries. We will need from now on

a lot of convex cones:

Definition 8.11. A subset C ⊂ V in a real vector space V is a convex cone if

a) If x ∈ C and t > 0, then tx ∈ C;
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b) If x, y ∈ C, then x+ y ∈ C.

It is easy to see that every convex cone is a convex subset in the natural meaning.

Denote by RT ′×T ′ the set of all maps δ : T ′ × T ′ → R. Given a map δ ∈ RT ′×T ′ which is a

metric, define the following conditions:

i) The topology τδ induced in T ′ by the metric δ coincides with the topology τd′ induced on

T ′ by d′ (that is, τδ = τd′);

ii) The action Gy T ′, thought as an action Gy (T ′, δ), is also isometric (that is, δ(g · x, g ·
y) = δ(x, y) for x, y ∈ T ′).

Define

D(T ′) = {δ ∈ RT ′×T ′ | δ is a metric on T ′ satisfying i) and ii)}.

Of course D(T ′) 6= ∅ for d′ is an element of it.

Lemma 8.12. D(T ′) is a convex cone of RT ′×T ′. Furthermore, every δ ∈ D(T ′) induces on the

set T ′ an R-tree structure (T ′, δ) for which the already known action Gy T ′ is still non-trivial,

small and by isometries with the exact same characteristic sets, that is, C(g,T ′,δ) = C(g,T ′,d′) for

every g ∈ G.

This Lemma will open us up possibilities of choices of different metrics on T ′ on which the

action of G is still good enough.

Demonstração. Let us first show that D(T ′) is a convex cone by showing conditions a) and b)

of the definition. First, let δ ∈ D(T ′) and t > 0 and let us show tδ ∈ D(T ′) by showing it

satisfies i) and ii). Since Bδ(x, r) = Btδ(x, tr) for every x ∈ T ′ and r ≥ 0, the collections of

open balls of the metric spaces (T ′, δ) and (T ′, tδ) coincide, so the topologies τδ and τtδ are

the same. Therefore τtδ = τδ = τd′ and tδ satisfies i). Moreover, tδ also satisfies ii) because

(tδ)(g · x, g · y) = tδ(g · x, g · y) = tδ(x, y) = (tδ)(x, y). Therefore tδ ∈ D(T ′) and we have a).

Now, let δ1, δ2 ∈ D(T ′) and let us show δ1 + δ2 ∈ D(T ′). It is easy to see their sum satisfy ii),

because

(δ1 + δ2)(g · x, g · y) = δ1(g · x, g · y) + δ2(g · x, g · y) = δ1(x, y) + δ2(x, y) = (δ1 + δ2)(x, y).

Item i) is not much harder. In fact, let us show that τδ1+δ2 = τδ1 , for this will give us τδ1+δ2 =

τδ1 = τd′ , by hypothesis. To see τδ1+δ2 ⊂ τδ1 , let Bδ1+δ2(x, r) be an open ball. Since τδ1 =

τd′ = τδ2 , let r′ > 0 such that Bδ1(x, r′) ⊂ Bδ2(x, r/2). Now let r̃ = min{r/2, r′}. For this r̃

we have Bδ1(x, r̃) ⊂ Bδ1+δ2(x, r), for if z ∈ Bδ1(x, r̃), then since r̃ ≤ r′, z is also an element of

Bδ1(x, r′) ⊂ Bδ2(x, r/2) and we have

(δ1 + δ2)(z, x) = δ1(z, x) + δ2(z, x) < r̃ +
r

2
≤ r

2
+
r

2
= r,

and this shows τδ1+δ2 ⊂ τδ1 . To see τδ1 ⊂ τδ1+δ2 just note that we always have Bδ1+δ2(x, r) ⊂
Bδ1(x, r). So, item i) is also true and δ1 + δ2 ∈ D(T ′). This shows b) and so D(T ′) is a convex

cone.

Now, let δ ∈ D(T ′). Condition ii) says exactly that the action G y (T ′, δ) is still by

isometries. By condition i), the topologies of (T ′, δ) and (T ′, d′) coincide, so to show the action
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Gy (T ′, δ) inherits all those properties of Gy (T ′, d′) we just have to show that non-triviality,

smallness and characteristic sets of an action depend only on the topology of T ′ (instead of the

metric). First, because of the topological characterization of trees in Proposition 2.30, (T ′, δ) is

also an R-tree. Since G is finitely generated, proposition 2.42 says that triviality of an action of

G on T ′ is characterized by the existence of a global fixed point, so it depends at most on the

topology of T ′ and therefore G y (T ′, δ) is also non-trivial. Since smallness of actions is given

in terms of stabilizers of topological arcs and the collection of such arcs on (T ′, d′) and (T ′, δ)

coincide, G y (T ′, δ) is also small. Finally, to show the characteristic sets of G y (T ′, δ) are

the same of Gy (T ′, d′), let us show a topologic characterization of a characteristic set Cg, for

any g ∈ G. We claim

Cg = {x ∈ T ′ | gx is in the topological arc from x to ggx}.

Indeed, (⊂) is clear from Proposition 2.36, both in the elliptic and hyperbolic cases. To show

(⊃), let x /∈ Cg and let us show gx is not in the topological arc between x and ggx. Let α be

the bridge from x to Cg. Then gα and ggα are the bridges from gx and ggx to Cg, respectively.

By using Proposition 2.36 again, we can easily identify the arc between x and ggx and it is clear

that gx is not there, as the figure illustrates (elliptic case on the left, hyperbolic on the right).

This completes the proof.

Of course, each element δ of D(T ′) gives rise to the action G y (T ′, δ) and therefore to a

translation length function l(T ′,δ) = lδ on G (Definition 2.41). Denote by SLF (G) ⊂ RG − {0}
the set of all translation length functions of non-trivial and small actions by isometries of G (on

any R-trees), and define θ : D(T ′)→ SLF (G) by putting θ(δ) = l(T ′,δ) = lδ. Consider the image

C(T ′) = θ(D(T ′)). Denote also by P (G) the projective space of RG, that is, the quotient of

RG−{0} by the equivalence relation x ∼ y ⇔ x = λy for some λ 6= 0 (possibly negative). Equip

P (G) with the quotient topology and denote by P : RG − {0} → P (G) the natural projection.

Lemma 8.13. C(T ′) and its closure C(T ′) are both convex cones of RG. Moreover, C(T ′) ⊂
SLF (G) and P (C(T ′)) is compact and convex.

Demonstração. To show b) for C(T ′), let θ(δ1), θ(δ2) ∈ C(T ′). For every g ∈ G, let x ∈ Cg and

we have lδi(g) = δi(x, g · x) and lδ1+δ2(g) = (δ1 + δ2)(x, g · x) (since Cg is the same set for δ1, δ2
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and for δ1 + δ2, by the previous lemma). So

θ(δ1 + δ2)(g) = lδ1+δ2(g)

= (δ1 + δ2)(x, g · x)

= δ1(x, g · x) + δ2(x, g · x)

= lδ1(g) + lδ2(g)

= θ(δ1)(g) + θ(δ2)(g)

= (θ(δ1) + θ(δ2))(g).

Therefore, θ(δ1) + θ(δ2) = θ(δ1 + δ2) ∈ C(T ′), since δ1 + δ2 ∈ D(T ′) (previous lemma). Item a)

is similar, so C(T ′) is a convex cone. It is straightforward to check that the closure of a convex

cone is also a convex cone, so it is the closure C(T ′).

Let us show C(T ′) ⊂ SLF (G). Since C(T ′) ⊂ SLF (G) by definition, it is enough to show

SLF (G) is closed in RG, for then C(T ′) ⊂ SLF (G) = SLF (G). By [83], P (SLF (G)) is compact

in the Hausdorff space P (G), so it is closed and therefore P−1(P (SLF (G))) is closed in RG.

But SLF (G) is closed under multiplication by positive scalars, for if l is a translation function

of a small action of G on an R-tree (T, d) and t > 0, then tl is the translation function of the

same action of G on (T, td) which is still non-trivial and small. No we show SLF (G) is closed:

suppose (xn)n is a sequence in SLF (G) converging to a point x ∈ RG. Then (P (xn))n is a

sequence in the compact set P (SLF (G)) converging to P (x), so P (x) ∈ P (SLF (G)) and so

P (x) = P (y) for some y ∈ SLF (G). Write x = λy for λ 6= 0. If λ > 0, then by what we just

observed we have x ∈ SLF (G), as desired. If λ < 0 we get a contradiction. In fact, since y is

in particular a non-trivial length function we have y(g) > 0 for some g ∈ G, so x(g) < 0. But

since xn → x and RG has the product topology, in particular xn(g) → x(g), so we would have

xn(g) < 0 for some n. This is a contradiction because xn is a translation length function and

therefore must assume only non-negative values.

Finally, let us show P (C(T ′)) is compact and convex. For compacity, since P (C(T ′)) ⊂
P (SLF (G)) is contained in a compact space, it is enough to show it is closed. By the quotient

topology of P (G), it is then enough to check if P−1P (C(T ′)) is closed in RG. But C(T ′) is a

convex cone, contained in the “half-space” of RG of non-negative coordinates, so by the definition

of P we have P−1P (C(T ′)) = C(T ′) ∪ (−C(T ′)) is the union of two closed spaces and therefore

is closed. The projection of any convex cone inside a half-space of RG is clearly a convex set

inside a hemisphere of P (G), so P (C(T ′)) is convex. This completes the lemma.

Now, to find a special length function of a special action of G to satisfy our theorem, we

want to use the following:

Theorem 8.14 ([48], Theorem 3.3.5). A group H is amenable if and only if every time it acts

affinely and separately continuously on a compact convex set Ω of a locally convex space E, there

is a global fixed point p ∈ Ω, that is, h · p = p for every h ∈ H.

So we want to create a special action of our group H on the compact convex set P (C(T ′))

to find a global fixed point P (l), that will give rise to a translation length function l of a small

and non-trivial action by isometries of G on an R-tree (T, d). So first we will make H act on

C(T ′). Define an action H y RG by ϕ • x = x ◦ ϕ−1.
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Lemma 8.15. The sets C(T ′) and C(T ′) are both invariant under the action above.

Demonstração. Let us define an auxiliary action H y D(T ′) by putting

(ϕ ∗ δ)(a, b) = δ(fϕ(a), fϕ(b))

for every ϕ ∈ H, δ ∈ D(T ′) and a, b ∈ T ′. Since fϕ is a homeomorphism, it is easy to see

that ϕ ∗ δ is a metric. Let us show ϕ ∗ δ ∈ D(T ′) by showing it satisfies i) and ii). For i), it

is enough to show τϕ∗δ = τδ. For (⊃), let Bδ(x, r) be any open ball. Since f−1
ϕ is continuous

at a = fϕ(x), there is r′ > 0 such that δ(b, a) < r′ ⇒ δ(f−1
ϕ (b), f−1

ϕ (a)) < r. This implies

Bϕ∗δ(x, r
′) ⊂ Bδ(x, r), for if y ∈ Bϕ∗δ(x, r

′) then δ(fϕ(y), fϕ(x)) = (ϕ ∗ δ)(y, x) < r′ and so

δ(y, x) = δ(f−1
ϕ (fϕ(y)), f−1

ϕ (fϕ(x))) < r. Part (⊂) is similar: if Bϕ∗δ(x, r) is any open ball, then

since fϕ is continuous at x there is r′ > 0 such that δ(y, x) < r′ ⇒ δ(fϕ(y), fϕ(x)) < r, and this

implies Bδ(x, r
′) ⊂ Bϕ∗δ(x, r). Now, to show ii), we use the fact fϕ(gx) = ϕ(g)fϕ(x), already

shown before, and the fact that δ satisfies ii). Then we have

(ϕ ∗ δ)(gx, gy) = δ(fϕ(gx), fϕ(gy)) = δ(ϕ(g)fϕ(x), ϕ(g)fϕ(y)) = δ(fϕ(x), fϕ(y)) = (ϕ ∗ δ)(x, y),

as desired. This shows ϕ ∗ δ ∈ D(T ′) and the action H y D(T ′) is well defined.

Let us show now C(T ′) is invariant under the action. Let l(T ′,δ) = θ(δ) be any element of

C(T ′) = θ(D(T ′)) and let ϕ ∈ H. It is enough to show ϕ−1 • l(T ′,δ) ∈ C(T ′), for H is a group.

For any g ∈ G, fix a point x ∈ Cg. Then gx ∈ [x, ggx], and since fϕ is a homeomorphism, it

takes topological arcs to topological arcs. Then

ϕ(g)fϕ(x) = fϕ(gx) ∈ fϕ([x, ggx]) = [fϕ(x), fϕ(ggx)] = [fϕ(x), ϕ(g)ϕ(g)fϕ(x)],

which implies fϕ(x) ∈ Cϕ(g) (by the topological characterization of characteristic sets we showed

above). Because of this,

(ϕ−1 • l(T ′,δ))(g) = (l(T ′,δ) ◦ ϕ)(g)

= l(T ′,δ)(ϕ(g))

= δ(fϕ(x), ϕ(g)fϕ(x))

= δ(fϕ(x), fϕ(gx))

= (ϕ ∗ δ)(x, gx)

= l(T ′,ϕ∗δ)(g),

so ϕ−1 • l(T ′,δ) = l(T ′,ϕ∗δ) = θ(ϕ ∗ δ) ∈ C(T ′) since ϕ ∗ δ ∈ D(T ′). This shows C(T ′) is invariant.

Finally, showing the invariance of C(T ′) is straightforward: if x ∈ C(T ′) and ϕ ∈ H, let

(xn)n be a sequence in C(T ′) converging to x. The map RG → RG given by y 7→ ϕ • y is a

coordinate permutation (thinking of y as a G-uple), so it is easily seen to be a homeomorphism

on the product topology. It follows that ϕ • xn → ϕ • x. But by the invariance of C(T ′),

ϕ • xn ∈ C(T ′) for every n, so ϕ • x ∈ C(T ′), as desired. This completes the lemma.

Now the action H y C(T ′) respects the projective relation, for if x′ = λx for λ 6= 0 then

ϕ•x′ = x′ ◦ϕ−1 = (λx)◦ϕ−1 = λ(x◦ϕ−1) = λ(ϕ•x). So the action gives rise to H y P (C(T ′))
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by putting ϕ • [x] = [ϕ • x]. Since P (C(T ′)) is compact and convex, Theorem 8.14 gives us a

global fixed point P (l) = [l], that is, [l ◦ ϕ−1] = [ϕ • l] = ϕ • [l] = [l] for every ϕ ∈ H, or

l ◦ ϕ−1 = λ(ϕ)l

for some λ = λ(ϕ), for every ϕ ∈ H. To be even more specific we can write

l(ϕ−1(g)) = λl(g)

for every g ∈ G. Since l ∈ C(T ′) ⊂ SLF (G), l is a translation length function of a non-trivial

and small action by isometries of G on some arbitrary R-tree (T, d), which is finally the tree

we were looking for in the statement of our theorem. Let us denote the action G y (T, d) by

denoting the action of g ∈ G on x ∈ T by g · x. We can assume without loss of generality

that T is minimal: if needed, just consider a minimal subtree and call it T again. Since G is

non-elementary, by 8.6 we already know it contains a free subgroup of rank 2, which acts freely

and properly discontinuously on T , so by Theorem 2.52 this action is irreducible.

We are just left to extend this action to an affine action (G o H) y (T, d). By what we

observed in the beginning of step 3, we are just left to show that λ = λ(ϕ) > 0 for every ϕ ∈ H,

that the association ϕ ∈ H 7→ λ(ϕ) ∈ (0,∞) is a homomorphism and that there is a unique

affine map hϕ : T → T , with λ(ϕ) a dilation coefficient, such that hϕ(g · x) = ϕ(g) · hϕ(x).

The two first facts are easy. Given ϕ ∈ H, since l 6= 0 there is g ∈ G with l(g) > 0. Then

0 ≤ l(ϕ−1(g)) = λ(ϕ)l(g) and λ(ϕ) 6= 0 implies λ(ϕ) > 0. Now, let ϕ,ψ ∈ H. Then

λ(ψ◦ϕ)l = l◦(ψ◦ϕ)−1 = l◦ϕ−1◦ψ−1 = (λ(ϕ)l)◦ψ−1 = λ(ϕ)(l◦ψ−1) = λ(ϕ)λ(ψ)l = λ(ψ)λ(ϕ)l,

so for the g above, λ(ψ ◦ ϕ)l(g) = λ(ψ)λ(ϕ)l(g), which implies λ(ψ ◦ ϕ) = λ(ψ)λ(ϕ). For the

last fact, we invoke Theorem 2.55. Given ϕ ∈ H, denote λ = λ(ϕ−1). Based on the action

Gy (T, d), (g, x) 7→ g · x above we define:

G× (T, d)
�→ (T, d) with g � x = ϕ(g) · x

and we also consider the action Gy (T, d) but with dilated metric:

G× (T, λd)
•→ (T, λd) with g • x = g · x

Since G is non-elementar, these actions are irreducible, in particular semi-simple and not shifts.

They also have the same translation length function. Indeed, for every g ∈ G,

l(T,d,�)(g) = inf
x∈T

d(x, g � x) = inf
x∈T

d(x, ϕ(g) · x) = l(ϕ(g)) = λl(g)

and

l(T,λd,•)(g) = inf
x∈T

λd(x, g • x) = inf
x∈T

λd(x, g · x) = λ inf
x∈T

d(x, g · x) = λl(g).

Therefore by Theorem 2.55 there is a unique G-equivariant isometry hϕ : (T, λd) → (T, d). Its

isometry gives us

d(hϕ(x), hϕ(y)) = λd(x, y)
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for every x, y ∈ T , that is, h is an affine map of (T, d) with λ a dilation coefficient. Equivariance

gives us

hϕ(g · x) = hϕ(g • x) = g � hϕ(x) = ϕ(g) · hϕ(x)

for every g ∈ G, x ∈ T , which was the last assertion to be shown. This completes the proof of

Theorem 8.9.

8.2 R∞ for non-elementary hyperbolic groups

This section is dedicated to finally show that

Theorem 8.16. Every non-elementary hyperbolic group has property R∞.

In fact, let ϕ ∈ Aut(G) and let us show R(ϕ) = ∞. We divide the proof in two possible

cases:

Case 1 : π(ϕ) has finite order in Out(G).

Let m ≥ 1 be the order of π(ϕ). By Proposition 7.3, it suffices to show Gϕ acts non-

elementary on a hyperbolic geodesic space X. Since Gϕ/G ' Zm is finite, G has finite index

in Gϕ. Therefore, Gϕ
QI∼ G by Proposition 2.22, so Gϕ is hyperbolic by Proposition 2.23 and

therefore by definition its Cayley graph must be a hyperbolic space where Gϕ acts. Also, there is

a nonabelian free group F2 such that F2 ≤ G ≤ Gϕ, so Gϕ must be a non-elementar hyperbolic

group. Then, to finish case 1), we’re just left to show that the action of any non-elementar

hyperbolic group on its Cayley graph is non-elementary:

Lemma 8.17. Let G be any non-elementary hyperbolic group and G y Γ(G,S) be its natural

action on its Cayley graph Γ = Γ(G,S). Then the action is non-elementary.

Demonstração. The action is combinatorially given by g · g̃ = gg̃ for any vertex g̃ ∈ G = V (Γ)

and g · (g̃, s) = (gg̃, s) for every (oriented) edge (g̃, s) ∈ G × S = E(Γ). As we observed in

Example 1.36, this action is (combinatorially) without inversions and free. Topologically, one

can think of the action on the vertices being linearly extended to the topological edges between

them. Let us check it is non-elementary by checking items 1) to 3) of Definition 7.1:

1) By Proposition 8.6, there must be in particular g ∈ G with infinite order in G. We have

to show that g has infinite order as an isometry of Γ. If gn = Id as an isometry (for n 6= 0),

then by applying it to the vertex 1 ∈ Γ we get gn = Id(1) = 1 in G, contradiction. This shows

1).

2) Let x ∈ ∂Γ. Showing x is not a global fixed point is showing {x} ( G · x, that is, x

is properly contained on its G-orbit. It is known (see, for example, the great survey [61]) that

∂Γ = ∂G by definition and that since G is non-elementary, ∂Γ is an infinite compact metrizable

space with no isolated points, in particular infinite and Hausdorff. Because of this, no single

point in ∂Γ can be dense in it. But it is also known (see [61] again) that G · x is dense in ∂Γ,

so {x} ( G · x, as desired.

3) Similar to item 2): let {p, q} be any pair (p 6= q) and let us show {p, q} ( G{p, q}.
Since ∂Γ is infinite and Hausdorff, let z /∈ {p, q} and let U be an open neighborhood of z not

intercepting {p, q}. Since G · p is dense in ∂Γ, let g ∈ G such that gp ∈ U . In particular, we

have gp /∈ {p, q} and therefore g · {p, q} = {gp, gq} 6= {p, q}. This shows 3) and completes the

proof.
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Case 2 : π(ϕ) has infinite order in Out(G).

Let H = 〈ϕ〉 ≤ Aut(G). Since the order of π(ϕ) is infinite, ϕ also has infinite order, so

H ' Z is amenable (it is a well-known fact that Z is amenable) and π(H) = 〈π(ϕ)〉 ' Z has an

infinite center. By Paulin’s Theorem, there is an R-tree (T, d) and an affine action (GoH) y T

whose restriction to G is a non-trivial, minimal, small and irreducible action by isometries. By

what we observed in that proof, this gives a translation length function l of the action and a

homomorphism ψ ∈ H 7→ λ(ψ) ∈ (0,∞) such that l ◦ ψ−1 = λ(ψ)l, such that for every ψ ∈ H
there is a unique affine map hψ : T → T , with λ(ψ) a dilation coefficient and also such that

hψ(g · x) = ψ(g) · hψ(x) for every (g, x) ∈ G× T .

In particular, since λ(ϕ−1)λ(ϕ) = λ(Id) = 1, we either have λ(ϕ−1) ≥ 1 or λ(ϕ) ≥ 1. In

the former case, we define λ = λ(ϕ−1) ≥ 1 and, since l ◦ ϕ = λl, we can apply Theorem 7.4 for

ϕ, which gives us R(ϕ) = ∞, as desired. In the latter case, we define λ = λ(ϕ) ≥ 1 and, since

l ◦ ϕ−1 = λl, we can apply Theorem 7.4 for the element ϕ−1, which gives us R(ϕ−1) =∞, and

this gives us R(ϕ) =∞ by Proposition 1.8. This completes the proof of Theorem 8.16.
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Caṕıtulo 9

Relatively hyperbolic groups and

property R∞

This chapter contains a careful analysis of Fel’shtyn’s strong claim (item (2) of Theorem 3.3

in [31]) that every non-elementary relatively hyperbolic group has property R∞. To be more

precise, this chapter provides an exploration of what should be a natural and complete proof of

R∞ for these groups, according to the sketch of proof Fel’shtyn provides in [31]. The basic (and

good) idea of the sketch is to generalize to the relative case the proof of R∞ for non-elementary

hyperbolic groups, given implicitly by G. Levitt and M. Lustig in [68] (and exhibited in our

previous chapter). However, as I will argument throughout this chapter, my conclusion is that

such a proof, based on that sketch, is at least more complicated than it looks like and at most

incomplete.

The aim of doing this analysis is to locate where are the valid arguments and the exact

difficulties in such a proof, in order to make an advance on the discussion of property R∞ for

non-elementary relatively hyperbolic groups, given their importance for geometric group theory

and the importance of the claim for the R∞ subject.

9.1 Locating the difficulty

For the reader who has not read the paper [31] yet, we reproduce Fel’shtyn’s claim and sketch

of proof below:

Theorem 9.1 ([68], Theorem 3.3, item (2)). Non-elementary relatively hyperbolic groups have

the R∞ property.

Fel’shtyn’s sketch of proof : Theorem 3.2 applies if G is a Gromov-hyperbolic group or rela-

tively hyperbolic group and if ϕ has finite order in Out(G). In fact, in this case, Gϕ contains G

as a subgroup of finite index, thus is quasi-isometric to G, and by quasi-isometry invariance, it

is itself a Gromov-hyperbolic or relatively hyperbolic group. Now let assume that an automor-

phism of a hyperbolic or relatively hyperbolic group has infinite order in Out(G). We describe

the main steps of the proof in this case (see [30, 68] for details). By [81] and [5], Φ preserves

some R-tree T with nontrivial minimal small action of G (recall that an action of G is small if

all arc stabilizers are virtually cyclic; the action of G on T is always irreducible (no global fixed
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point, no invariant line, no invariant end)). This means that there is an R-tree T equipped with

an isometric action of G whose length function satisfies l · Φ = λl for some λ ≥ 1.

Step 1. Suppose λ = 1. Then the Reidemeister number R(φ) is infinite.

Step 2. Suppose λ > 1. Assume arc stabilizers are finite, and there exists N0 ∈ N such

that, for every Q ∈ T , the action of StabQ on π0(T − Q) has at most N0 orbits. Then the

Reidemeister number R(φ) is infinite.

Step 3. If λ > 1, then T has finite arc stabilizers. If λ > 1 then from work of Bestvina and

Feighn [6] it follows that there exists N0 ∈ N such that, for every Q ∈ T , the action of StabQ

on π0(T − (Q)) has at most N0 orbits.

The expansion and investigation of the sketch of proof above will be done in Section 9.3.

For now, let us divide the sketch in sentences and just make brief comments about them. These

comments are being made based on my (already done) detailed investigation in 9.3.

“Theorem 3.2 applies if G is a Gromov-hyperbolic group or relatively hyperbolic group and if

ϕ has finite order in Out(G). In fact, in this case, Gϕ contains G as a subgroup of finite index,

thus is quasi-isometric to G, and by quasi-isometry invariance, it is itself a Gromov-hyperbolic

or relatively hyperbolic group.”

This argument turned out to be true. The “Theorem 3.2” quoted corresponds to our Propo-

sition 7.3, which works for every group acting non-elementary on a hyperbolic space. The

quasi-isometry invariance also works for relatively hyperbolic groups, as we will see. Now, look

at these two sentences:

“Now let assume that an automorphism of a hyperbolic or relatively hyperbolic group has

infinite order in Out(G). We describe the main steps of the proof in this case (see [30, 68] for

details).”

“Step 1 ... Step 2 ... Step 3.”

The language used in the first sentence above indicates that the proof for the relatively

hyperbolic case should be the same as the proof for the hyperbolic case. So, if we want to write

it in details, we should try to adapt the proof of Levitt and Lustig in [68]. The three steps

Fel’shtyn describes by the end of his sketch (second sentence above) are just the steps of Levitt

and Lustig’s proof. As we told in the beggining of section 7.2, by studying their result we noted

that it could be applied to any finitely generated group G, given the existence of some “super

special” action they describe. So, we decided to state and show their result within this more

general context, and that is our Theorem 7.4. To summarize, in these sentences Fel’shtyn wants

to apply “our” Theorem 7.4 for a relatively hyperbolic group. So far, everything is good and

the proof will work provided that we guarantee the existence of that “super special” action of

G (check Theorem 7.4).

Let us comment on the two remaining sentences of the sketch. They are:

“By [81] and [5], Φ preserves some R-tree T with nontrivial minimal small action of G (recall

that an action of G is small if all arc stabilizers are virtually cyclic; the action of G on T is

always irreducible (no global fixed point, no invariant line, no invariant end)).”

“This means that there is an R-tree T equipped with an isometric action of G whose length

function satisfies l · Φ = λl for some λ ≥ 1.”

By what we argued above, these two sentences should be the ones who guarantee the existence

of the “super special” action of G on an R-tree, described in the statement of Theorem 7.4. In
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the hyperbolic case, that action is proved to exist exactly by Paulin’s Theorem 8.9, whose proof

consists of three consecutive steps (which shouldn’t be confused with the three steps Fel’shtyn

describes in his sketch: from now one, those can be forgotten). Without further details, Paulin’s

steps can be summarized as:

1) Create a nontrivial, minimal, irreducible and small action of G on some R-tree T ;

2) Extend the action above to an action of Go 〈ϕ〉 on T ;

3) Modify the action above to get the “special action” required.

As the reader can see, step 1 coincides with Fel’shtyn’s claim in the first sentence above. Can

that step be adapted to the relative case? We showed it can, indeed, in Step 1 of Case 2 of

Theorem 9.27.

Therefore, Fel’shtyn’s second sentence above should be the one that guarantees (or at least

indicates) that steps 2 and 3 of Paulin’s proof can also be adapted to the relatively hyperbolic

case, guaranteeing the existence of the “super special” action. But that’s not what it does, and

that is where the difficulty is. By the expression “This means” followed by the description of the

“super special” action in Fel’shtyn’s second sentence, it looks like it is being assumed that steps

2 and 3 of Paulin’s proof can be adapted for any relatively hyperbolic group, with at least the

same kind of proof and no difficulties. The question is: can they? As the reader may see in our

section 9.4, if we assume that Paulin’s step 2 can be adapted to relatively hyperbolic groups,

then step 3 also follows, with the same proof as the one in the hyperbolic case. The problem is

with step 2. By trying to naturally adapt step 2 to the relative case, a new obstacle rose, which

we couldn’t overcome: basically, it is the non-compactness of the fundamental domain of the

action of G, which makes it difficult to guarantee that the automorphism ϕ acts naturally by a

quasi-isometry on X and therefore by a homeomorphism on the R-tree T . In the hyperbolic case

(see Chapter 8), the fundamental domain is just a point; the action on X is ϕ itself, which is

easily seen to be bi-Lipschitz and in particular a quasi-isometry, so it induces a homeomorphism

on T .

Our conclusion, therefore, is that Paulin’s step 2 is the strong obstacle for Fel’shtyn’s sketch

of proof. To be more precise, the difficult is showing that an (infinite order) automorphism ϕ

of a relatively hyperbolic group G acts by homeomorphisms on the R-tree T induced by X, or

that it acts by quasi-isometries on X. This is stated in Lemma 9.29. We do not think this

Lemma can be proved for a general relatively hyperbolic group, for, in trying to prove it, we

found a counterexample; that is, we found a relatively hyperbolic group and an infinite order

automorphism which does not act on X by a quasi-isometry. So, it looks like the actions of the

automorphisms on X are not good enough as they should be so that Fel’sthyn proof could work

(see Section 9.5).

On the other hand, since Lemma 9.29 is the only obstacle we found, we have a complete

proof for the following positive result: every non-elementary relatively hyperbolic group G in

which all infinite order automorphisms act by quasi-isometries on the space X must have the

R∞ property (see Corollary 9.31). However, we do not have much information on how to find

these groups.

The rest of the chapter is organized as follows: in Section 9.2, we define geometrically finite

actions, and use them to define relatively hyperbolic groups in Section 9.3. In that section, we
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also explore some properties of these groups (which will be useful in our context), especially

the fundamental domain of their action on the related hyperbolic space X. Then, Section 9.4 is

where we exhibit what would be a proof of property R∞ for non-elementary relatively hyperbolic

groups by following Fel’shtyn’s sketch, that is, by adapting the proof of the hyperbolic case we

give in chapter 8. That proof would be complete if it wasn’t for Lemma 9.29, which we believe

is not true in general. To convince the reader of this, in Section 9.5 we show an example where

Lemma 9.29 does not work.

We decided to maintain the incomplete proof in this thesis, anyway, for two reasons: first, to

give the reader an idea of what could be a proof of R∞ for non-elementary relatively hyperbolic

groups. Second, if we assume that Lemma 9.29 works for some particular relatively hyperbolic

group G, we get property R∞ for G (Corollary 9.31). A last comment is: we do not necessarily

believe Fel’shtyn’s claim is false. We haven’t found any non-elementary relatively hyperbolic

groups without property R∞. Although we believe such a counterexample could be found, we

also think that Lemma 9.29 could be somehow avoided to a similar and complete proof. A third

possible option, of course, would be to find a totally different proof of R∞ for non-elementary

relatively hyperbolic groups; but that’s beyond my capacity for now. Maybe you, dear reader,

can help me someday.

9.2 Geometrically finite actions

Relatively hyperbolic groups were first defined by M. Gromov in his 1987 paper [50] on hyperbolic

groups. Since then, many other definitions were given, for example by Bowditch [16], Farb [29],

Drutu-Osin-Sapir [27], Osin [80] and others. All of these definitions are known to coincide

when the groups and subgroups involved are finitely generated and infinite. Because of the

geometric language used and our familiarity with the author, we will use the notions of relative

hyperbolicity given by Bowditch in [16], comparing with some of its equivalences.

Let G be an infinite and finitely generated group and X be a proper geodesic hyperbolic

space. Suppose G acts properly discontinuously on X by isometries. By Proposition 2.84, G

acts as a convergence group on the compact metric space M = ∂X. For g ∈ G, denote by

fix(g) = {x ∈ ∂X | gx = x} the set of fixed points of g in M = ∂X. The next definition should

not be confused with “elliptic” and “hyperbolic” isometries of an R-tree from Chapter 2.

Definition 9.2. We say an element g ∈ G is

• elliptic if it has finite order in G;

• parabolic if it has infinite order in G and card(fix(g)) = 1;

• loxodromic if it has infinite order in G and card(fix(g)) = 2.

Of course these are mutually exclusive definitions. Furthermore, they form a partition of the

elements of G:

Proposition 9.3. Every element of G is either elliptic, parabolic or loxodromic.

Demonstração. Let g ∈ G. If g has finite order in G, it is elliptic. Suppose then it has infinite

order. We just have to show that 0 < card(fix(g)) ≤ 2. Consider the sequence (gn)n. Since
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G y M is a convergence action, we have a collapsing subsequence, so we can assume without

loss of generality that gn|M−{x} � y for x, y ∈M . Let z ∈M−{x, g−1x}. Since z 6= x, gnz → y.

Then gn+1z = ggnz → gy. But gz 6= x, so we also have gn+1z = gngz → y. By uniqueness,

gy = y and so 0 < card(fix(g)). If g had three distinct fixed points, say, x, y and z, then {x, y, z}
would be an element of Θ(M) fixed by g. In particular, the set {h ∈ G | h{x, y, z} = {x, y, z}}
would contain all powers gn, n ∈ Z of g and be infinite, so the action G y Θ(M) would not

be properly discontinuous, a contradiction with Theorem 2.77. So card(fix(g)) ≤ 2 and we’re

done.

It is known in this context that parabolic and loxodromic elements do not live together very

well. For a proof, we refer [95].

Proposition 9.4. Let G and M be as above. Suppose every element of an infinite subgroup

H ≤ G fixes a point p ∈ M . Then H either consists entirely of elliptic and parabolic elements,

or it consists entirely of elliptic and loxodromic elements. In the latter case, H also fixes another

point q ∈M − {p} and is virtually cyclic.

With this in hands we can go in the direction of defining a geometrically finite action.

Definition 9.5. Let G act as a convergence group on a compact metric space M . We say a

subgroup H ≤ G is parabolic if it is infinite, with no loxodromic elements and if it has a global

fixed point in M (x ∈ M such that hp = p for every h ∈ H). This fixed point is unique by

definition and will be called the associated parabolic point.

Proposition 9.6. If p ∈ M is a parabolic point, the group StabG(p) = {g ∈ G | gp = p} is

parabolic.

Demonstração. Let H ≤ G be the parabolic subgroup whose parabolic point is p. Since H ≤
StabG(p) and H is infinite, StabG(p) is infinite. Since by definition every element of it fixes p, by

Proposition 9.4 it either consists entirely of elliptic and parabolic elements (case 1), or it consists

entirely of elliptic and loxodromic elements (case 2). If H contains a parabolic element, then so

does StabG(p) and then it must be in case 1, therefore not containing any loxodromics, so it is a

parabolic group, as desired. Suppose therefore H consists only of elliptic elements. If StabG(p)

was in case 2, then by Proposition 9.4 it is virtually cyclic. So, H ≤ StabG(p) is virtually cyclic,

in particular finitely generated. Since every element of H is elliptic (finite order), H is a finite

group, a contradiction, for it is parabolic. Therefore StabG(p) must be in case 2 and we are

done.

Observation 9.7. There is therefore a one-to-one correspondence between the parabolic points p

in M and the groups Stab(p) ≤ G, which are the maximal parabolic subgroups of G.

If H ≤ G is a parabolic group with associated parabolic point p, then the action GyM by

homeomorphisms can be restricted to the action H yM −{p}, which gives rise to the quotient

topological orbit space M − {p}/H.

Definition 9.8 (bounded parabolic point). We say a parabolic group H ≤ G with associated

parabolic point p is bounded if the orbit space M −{p}/H is compact. We say a parabolic point

p is bounded if the parabolic group StabG(p) is bounded.
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Example 9.9. Let Z act on the upper half plane hyperbolic model by translations: n · (x, y) =

(x+n, y). This is a properly discontinuous action by isometries. If we think of this action on the

Poincare disk model H2, it is easy to see that the north pole p is the unique global fixed point in

∂H2 ' S1 (so Z = Stab(p)), and that the quotient space (S1 − {p})/Z ' R/Z is homeomorphic

to S1, which is compact. Therefore, Z is a bounded parabolic subgroup of itself in this action.

Next figure illustrates the Z-orbit of x ∈ H2.

Definition 9.10 (conical limit point). We say a point y ∈ M = ∂X is a conical limit point if

there is a point x ∈ X and a sequence (gn)n in G such that gnx→ y in X = X ∪ ∂X and that

d(gnx, r) ≤ K for every n ≥ 1, for some geodesic ray r representing y and some constant K ≥ 0.

Definition 9.11. [geometrically finite action] Let G act as a convergence group on the compact

metric space M = ∂X as above. We say the action is geometrically finite (or that G acts as a

geometrically finite convergence group on M) if every point of M is either a conical limit point

or a bounded parabolic point.

9.3 Defining a relatively hyperbolic group

Now we follow [16] to define our notion:

Definition 9.12 (Relatively hyperbolic groups). Let G be an infinite and finitely generated

group and X be a proper geodesic hyperbolic space. Suppose G acts properly discontinuously
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on X by isometries, and let H be a collection of finitely generated subgroups of G. We say

G is hyperbolic relative to H (or just that G is a relatively hyperbolic group) if the induced

(convergence) action Gy ∂X is a geometrically finite action (Definition 9.11) and the subgroups

of the collection H are exactly the maximal parabolic subgroups of G (Observation 9.7).

The subgroups in the collection H are called the peripheral subgroups of G. Some authors

in the literature use the notation (G,H) and call it a relatively hyperbolic structure. We may

sometimes use this notation. B.H. Bowditch shows in [16] the equivalence of definition above

with the following one:

Definition 9.13. Let G be an infinite and finitely generated group and suppose G acts on a

connected hyperbolic graph K. Let H be a collection of finitely generated subgroups of G. We

say G is hyperbolic relative to H if the following conditions are satisfied: for each n ≥ 1, each

edge of K is contained in only finitely many circuits of length n; there are finitely many G-orbits

of edges, each edge stabilizer is finite and the subgroups of the collection H are exactly the

infinite vertex stabilizers of K.

Although the first definition is better for doing theory, both of them can be used to obtain

a few examples. Let’s contemplate some of them before studying the main properties of these

groups.

Example 9.14. Every hyperbolic group G is relatively hyperbolic with respect to the empty

collection H = ∅ (note that we do not assume H 6= ∅ in any of the definitions above), so in

particular all examples given in 8.3 and 8.4 are relatively hyperbolic. In fact, let us check this

by the second definition. The natural action (by left translations) of G on its Cayley graph

Γ = Γ(G,S) is properly discontinuous (it is in fact free) and cocompact, the quotient being a

bouquet with cardS petals, for Γ is cardS-regular. In particular, there are only cardS G-orbits

of edges. Also, for any n ≥ 1, since Γ is regular it is enough to check if each edge (1, s) is

contained in a finite number of circuits of length n. But each such circuit gives rise to a different

relation w = 1 in the presentation of G, with the word w starting with s and having length

n. Since G is finitely presented (Proposition 8.7), there is only a finite number of such circuits.

Since the action is free, the edge stabilizers are all trivial and therefore finite. Finally, both

collections H and the set of infinite vertex stabilizers of K are empty, so they coincide and G is

relatively hyperbolic with respect to H = ∅.
Therefore, hyperbolic groups acting on their Cayley graphs correspond by the first definition

to the case where there are no parabolic points, subgroups or isometries (for H = ∅). In fact,

every element g = s1...sk ∈ G (seen as an isometry of Γ and a homeomorphism of ∂Γ) is either

elliptic or loxodromic, in which case the fixed points in ∂Γ correspond to the two “ends” of the

geodesic line l whose vertices are the subwords s1...si (1 ≤ i ≤ k) and its gn-translations for

n ∈ Z. The action of g on l is just translation by a distance of |g| = k (see figure).

We can also see that every hyperbolic group is relatively hyperbolic by using the first defi-

nition. In fact, let y ∈ ∂Γ and let us show y is a conical limit point. By definition of the Cayley
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graph, y is the endpoint of a geodesic ray r : [0,∞)→ Γ such that r(n) = s1...sn is a vertex for

every n and si ∈ S for i ≥ 1. Then for gn = s1...sn and the point x = 1 of Γ we obviously have

gnx → y, and d(gnx, r) = 0 (for gnx = s1...sn ∈ r). That is, y is a “degenerated” conical limit

point.

Example 9.15. Let (G,Γ) be a graph of groups with Γ a finite graph, Gy finite for every edge y

in Γ and GP finitely generated for every vertex P in Γ. Let G̃ = π1(G,Γ, T ) be the fundamental

group of (G,Γ) and let us check G̃ is relatively hyperbolic according to the second definition

above. By the theory of [86], there is a combinatorial tree X (which is 0-hyperbolic) on which

G̃ acts without inversion, and the orbit quotient space is G̃/X ' Γ. Of course, for each n ≥ 1,

each edge of X is contained in a finite number of circuits of length n (exactly 0 such circuits).

The number of G̃-orbits of edges in X is exactly the number of edges of G̃/X ' Γ, which is

finite, and the edge stabilizers Gy are finite by hypothesis. By the second definition, then, G̃ is

hyperbolic relative to the collection H = {GP | GP is infinite} of infinite vertex stabilizers.

This example includes a wide class of groups, such as any finite amalgamation ∗AGi of finitely

generated groups G1, ..., Gn over a common finite subgroup A, in particular any such finite free

product G1 ∗ ... ∗Gn.

In the particular case of all GP being also finite, G̃ is then hyperbolic relative to the empty

collection H = ∅, so it is a hyperbolic group and we get again the last class of examples in 8.3.

For more complex and different classes of relatively hyperbolic groups, we refer [5].

Let’s comment about some known properties of relatively hyperbolic groups (G,H) and its

action on X, based on [16]. It is known that a conical limit point cannot be a parabolic point, so

the parabolic points are all bounded. From this and from the first definition it follows that the

groups in H are the groups of the form Stab(p), where p is a bounded parabolic point of ∂X. It is

also known that the intersection of any two such groups is a finite subgroup. In [96], Tukia shows

that there are only a finite number of conjugacy classes of the groups in H. This is equivalent to

the geometrical fact that there are only a finite number of G-orbits of the parabolic points in ∂X.

In fact, if H = stab(p) and g ∈ G, it is easy to see that gHg−1 = stab(gp) is a parabolic group

and gp a parabolic point. Therefore, conjugating an element of H by g corresponds to walking

from p to gp. It is also known that the collection of bounded parabolic points is countable.

We would rather have an even more geometric characterization of the geometrically finite

action of relatively hyperbolic groups on their spaces. To present the characterization given by

Bowditch in [16], we must deal with horospheres and horoballs (definitions are based on [55]).

Definition 9.16. Let X be a geodesic space and r be a geodesic ray in X. The Busemann

function (or just horofunction) br : X → R associated to r is given by

br(x) = lim
t→∞

(d(x, r(t))− t).

If p = r(∞) ∈ ∂X is the endpoint of r, a horosphere of X on p is a level set of the form

S(p) = b−1
r {k} for some k ∈ R. A horoball on p is a sublevel set of the form B(p) = b−1

r (−∞, k].
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Observation 9.17. The limit above exists for every x. In fact, let us show the map t 7→ d(x, r(t))−
t is non-increasing and bounded below. If 0 ≤ t′ < t, then d(x, r(t)) ≤ d(x, r(t′))+d(r(t′), r(t)) =

d(x, r(t′)) + t − t′, so d(x, r(t′)) − t′ ≥ d(x, r(t)) − t, as desired. Also, t − t′ = d(r(t), r(t′)) ≤
d(r(t), x)+d(x, r(t′)). In particular for t′ = 0 we obtain t ≤ d(r(t), x)+d(x, r(0)), or d(r(t), x)−
t ≥ −d(x, r(0)), so it is bounded below.

Example 9.18. In the Euclidean spaces Rn, let r(t) = a+ tv be a geodesic ray, for some a ∈ Rn

and a unitary vector v ∈ Rn. Then br(x) = 〈a− x, v〉. Let’s have an intuitive idea of this in R2

(see next figure). For a fixed t, the number t−d(x, r(t)) = d(a, r(t))−d(x, r(t)) can be obtained

by “lying” the vector x−r(t) over r fixing the point r(t) (the red arcs represent this motion) and

then computing the size of the orange geodesic [a, z(t)]. As t gets bigger, the point z(t) tends to

be the orthogonal projection of x on r and the size of [a, z(t)] therefore tends to 〈x− a, v〉. By

“multiplying the argument above by −1” we get what we desired. It follows that horospheres

of r are the orthogonal lines to r, and horoballs are the closed half spaces determined by these

lines (the ones containing r(t) for all sufficiently large t).

Example 9.19. In the Poincare disk H2, horoballs and horospheres look like the Euclidean

ones, with the difference that their “center” is the boundary point p = r(∞). Since this is our

main intuitive model of a hyperbolic space, we can intuitively think of a horosphere S(p) as the

set of points of X which are all equidistant from p in X. Next figure shows a horoball B(p)

in H2 and some geodesics tending to the north pole p. All of them cross the horophere S(p)

orthogonally at points equidistant from p.

Note that if we take the numbers k in B(p) = b−1
r (−∞, k] to be arbitrarily large negative

numbers, the balls B(p) tend to be arbitrarily small.

From now on, suppose only that the induced action of G on ∂X is a convergence action, that

is, not necessarily a geometrically finite action. Horoballs and horospheres are used by Bowditch
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in this context to describe parabolic points of ∂X in terms of the geometrical behavior of the

H-action of the associated parabolic groups H around them.

Proposition 9.20. If H is a parabolic group with p the parabolic point associated, then there is

a H-invariant horofunction around p.

This means br(x) = br(hx) for every (h, x) ∈ H × X. In particular, there is a collection

of H-invariant horoballs and horospheres B(p) around p. This H-invariance can be perfectly

visualized in the figures of Examples 9.9 and 9.19. Using this fact, Bowditch obtained:

Proposition 9.21. Let H and p as above, and let B(p) be an H-invariant horoball with associ-

ated horosphere S(p). Then H is a bounded parabolic subgroup if and only if the quotient space

S(p)/H is compact.

Definition 9.22. If H, p and B(p) are as above, a cusp region for p is the space B(p)/H.

We can easily visualize a cusp region by lifting it to X. Since S(p)/H is compact, Bowditch

observes that every point x of B(p) is a bounded distance from a H-image of a ray r tending to

p inside the cusp. The cusp region C is also shown to be quasi-isometric to this ray. See next

figure.

Bounded parabolic points can also be separated by sufficiently far away horoballs:

Proposition 9.23. Let P be a G-invariant collection of bounded parabolic points of ∂X. Then,

for any R ≤ 0, there is a G-invariant collection B = {B(p) | p ∈ P} of horoballs around the

points of P which is R-separated, that is, d(B(p), B(p′)) ≥ R for any p 6= p′ in P.

Now, let P be a G-invariant collection of parabolic points of ∂X and suppose B = {B(p) | p ∈
P} is a G-invariant and R-separated collection of horoballs around them, for some R ≥ 0. We

denote Y (B) = X −∪p∈P intB(p), which is clearly a closed and G-invariant subset of X. With

all these tools in hands, Bowditch shows the following characterization:
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Theorem 9.24. Let G be an infinite and finitely generated group acting by isometries on a

proper hyperbolic geodesic space X and let P be a G − invariant collection of parabolic points

of ∂X. Then the (convergence) action G y ∂X is geometrically finite (and P is the set of all

bounded parabolic points) if and only if there is R ≥ 0 and an R-separated G-invariant collection

B = {B(p) | p ∈ P} of horoballs such that the quotient space Y (B)/G is compact.

Now we can finish the section by showing an intuitive drawing of a fundamental domain

of the action of a relatively hyperbolic group (G,H) on its hyperbolic space X. Let P be the

collection of all (bounded) parabolic points of ∂X, which we know is G-invariant. Bowditch

shows that, given R ≥ 0, there’s an R-separated G-invariant collection B = {B(p) | p ∈ P} of

horoballs. By the above theorem, the quotient space Y (B)/G is compact. We have

X/G = (Y (B) ∪ (∪p∈P intB(p)))/G = (Y (B)/G) ∪ (∪p∈P intB(p)/G).

To quotient all the interiors intB(p) by the action ofG is obviously equivalent to quotient only

one representative intB(p) for each G-orbit of the horoballs (or the parabolic points). We know

there are only a finite number of such orbits, so we need to quotient by G only a finite number

of such horoballs, say, B(p1), ..., B(pn). But if we quotient each ball B(pi) by G, in particular

we are taking the quotient by its associated parabolic stabilizer subgroup H(p) = Stab(p), so

we obtain exactly a cusp region. Then X/G is the union of a compact subspace with a finite

number of cusps. By lifting this to X, we get the following intuitive idea of a fundamental

domain F (the expert reader might forgive me for the eventually unrealistic picture):

Here, the square represents a compact set K ⊂ X and we have one cusp for each bounded

parabolic point representing its G-orbit. Since K is compact, Bowditch observes that this implies

X/G is quasi-isometric to a finite wedge of geodesic rays.

We finish this section by giving a good and visual example of a relatively hyperbolic group,

the hyperbolic space associated and the fundamental domain of the action.

Example 9.25. This is a standard example of a relatively hyperbolic group. Let Y be a once

punctured torus and G = π1(Y ) be its topological fundamental group. Instead of thinking of Y

in R3, we may use the standard square representation, with the usual edge identifications of the

torus, with the only difference that the four vertices are now removed. With these adaptations,

let us imagine it as a hyperbolic square. The universal cover of Y can be thought as the open
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Poincare disk X = H2. It is known that G then acts properly discontinuously and by isometries

on X, with fundamental domain being the infinite (and vertexless) hyperbolic squares given in

the figure. As G ' F2 is free of rank 2, one can imagine the Cayley graph of G inside X, with

each vertex being the “center” of one of the hyperbolic squares. This way, the action of G on X

is easy to imagine, for an element g takes the central square isometrically onto the square whose

center is the vertex g of the Cayley graph.

All points in ∂X ' S1 that are limits of geodesics in the Cayley graph can be easily seen to

be conical limit points (see the last paragraph of Example 9.14). It is known that these points

form a dense subset of ∂X. The others are bounded parabolical points, fixed by cyclic subgroups

of G. For example, the point P = ei
π
4 is fixed by the cyclic subgroup 〈[α, β]〉 generated by the

commutator [α, β] of the two generators of G, which performs a “rotation around P” of the

fundamental squares, as the figure shows.

So, G is, by Definition 9.12, hyperbolic relative to this collection of cyclic subgroups. Note

that the fundamental domain of the action satisfies Theorem 9.24, for it can clearly be seen as

the union of a compact hyperbolic octagon and four cusp regions.
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9.4 An almost complete proof of R∞

As we told before, in this section we exhibit what would be a proof of property R∞ for non-

elementary relatively hyperbolic groups by following Fel’shtyn’s sketch and, most importantly,

by assuming Lemma 9.29 to be true. This proof would be complete if it wasn’t for Lemma 9.29,

which we believe is not true in general, as we show in Section 9.5.

Definition 9.26. Let G be a relatively hyperbolic group and X the space on which it acts (first

definition). A subgroup H ≤ G is called elementary if either H is finite, or if there is a point z

in ∂X fixed by all H, or if there is a set {z, w} of distinct points in ∂X which is invariant under

H.

It is known that the subgroup H above is elementary if and only if H is either finite, or

parabolic, or virtually cyclic. Consider then the special case of a hyperbolic group G and G

itself as a subgroup. Since there are no parabolic subgroups (in particular G is not parabolic),

then G is non elementary (according to the above definition) if and only if it is a non-elementary

hyperbolic group according to the previous chapter. Therefore, the above definition extends

the one of non-elementary hyperbolic groups. For example, the group Z of Example 9.9 is

elementary as a hyperbolic group (for it is cyclic), but it can also be seen as an elementary

relatively hyperbolic group, for it has a global fixed point p in ∂H2.

From now on, let us assume Lemma 9.29 to be true. The rest of this section is dedicated to

show

Theorem 9.27. Assuming Lemma 9.29 to be true, every non-elementary relatively hyperbolic

group has property R∞.

Let G be a non-elementary relatively hyperbolic group with respect to a finite collection of

subgroups H and ϕ ∈ Aut(G). Let us show R(ϕ) =∞. As we did in the hyperbolic chapter, we

divide the proof in two possible cases:

Case 1 : π(ϕ) has finite order in Out(G).

Let m ≥ 1 be the order of π(ϕ). By Proposition 7.3, it suffices to show Gϕ acts non-

elementary on a hyperbolic geodesic space X. Since Gϕ/G ' Zm is finite, G has finite index in

Gϕ. Therefore, Gϕ
QI∼ G by Proposition 2.22. But in [28], Drutu shows that relative hyperbolicity

is a quasi-isometric invariant, so Gϕ is relatively hyperbolic, so by definition it acts by isometries

on a hyperbolic space X. Also, since it contains G, it must be non-elementary. Therefore, to

finish case 1, we’re only left to show:

Lemma 9.28. Let (G,H) be any non-elementary relatively hyperbolic group with X the associ-

ated hyperbolic space. Then the action Gy X is non-elementary.

Demonstração. Let us check items 1) to 3) from Definition 7.1 are satisfied. Items 2) and 3)

come directly from the definition of G being non-elementary. To check item 1), let g ∈ G

have infinite order in G (since G is finitely generated and infinite, there must be such element;

otherwise, G would be finite). Let us show it has infinite order as an isometry of X. If gn = IdX

for some n ≥ 1, then gkn = Idk = Id for every k ∈ Z. Fix x ∈ X. We have gknx = x. But since

the action of G is properly discontinuous, in particular there should be only a finite number of

elements in G fixing x, a contradiction, for the elements gkn ∈ G are pairwise distinct. Thus, g

has infinite order as an isometry and the lemma is complete.
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Case 2 : π(ϕ) has infinite order in Out(G).

We want to follow the three similar steps to the ones in Theorem 8.9. As step 1, let us

construct a non-trivial and small action by isometries of G on an R-tree Xω, in the same way

we did there, but now with a few adaptations. Let H = 〈ϕ〉. Since π(H) = 〈π(ϕ)〉 ' Z has an

infinite center (itself), in particular for every n we can take ψn ∈ H such that the projections

π(ψn) are pairwise distinct and all inside the center of π(H). Fix a finite generating set S for

G. For every n ≥ 1, define

λn = inf
x∈X
{max
s∈S

d(x, ψn(s)x)},

and by definition let xn ∈ X such that λn ≤ maxs∈S d(xn, ψn(s)xn) < λn + 1
n . We claim

limn→∞ λn = ∞. In fact, suppose by contradiction that this is false. Then there is a bounded

subsequence of it, that we will still denote (λn)n by simplicity of notation. Let then R =

2 + supn λn <∞.

By the geometric characterization of the action in the previous section, there’s anR-separated

G-invariant collection B = {B(p) | p ∈ P} of horoballs around the collection P of bounded

parabolic points of ∂X. Also, there is a connected fundamental domain F of the action which

is the union of a compact set with a finite number of cusp regions, each one “converging” to a

bounded parabolic point representing a different G-orbit of P. Since F is a fundamental domain,

for every n let gn ∈ G such that gnxn ∈ F . The sequence (gnxn)n is either bounded in X or

not. We are going to derive a contradiction from each situation.

Suppose first that (gnxn)n is bounded. We have d(gnxn, y) ≤ K for every n, for some point

y ∈ X and some K ≥ 0. Equivalently, gnxn ∈ B(y,K) for every n. Now, for every s ∈ S and

every n,

d(gnψn(s)g−1
n · gnxn, gnxn) = d(gnψn(s)xn, gnxn) = d(ψn(s)xn, xn) < λn +

1

n
< R,

so

d(gnψn(s)g−1
n · gnxn, y) ≤ d(gnψn(s)g−1

n · gnxn, gnxn) + d(gnxn, y) < R+K,

and therefore gnψn(s)g−1
n · gnxn ∈ B(y,R + K). But since gnxn ∈ B(y,K), we already know

that gnψn(s)g−1
n · gnxn ∈ gnψn(s)g−1

n B(y,K), so

gnψn(s)g−1
n B(y,K) ∩B(y,R+K) 6= ∅

for every s ∈ S and every n. Since X is proper, such closed balls are compact. Therefore, since

the action Gy X is properly discontinuous, the set W = {gnψn(s)g−1
n | s ∈ S, n ≥ 1} is finite.

Now, write S = {s1, ..., sm} and consider the map

f : N→Wm, n 7→ (gnψn(s1)g−1
n , ..., gnψn(sm)g−1

n ).

Since N is infinite and Wm is finite, there must be n1 6= n2 such that f(n1) = f(n2). By

definition, this implies gn1ψn1(si)g
−1
n1

= gn2ψn2(si)g
−1
n2

for every 1 ≤ i ≤ m, or γgn1ψn1(si) =

γgn2ψn2(si) for every 1 ≤ i ≤ m. Since S generates G, we must have γgn1ψn1 = γgn2ψn2 , which

implies

π(ψn1) = π(γgn1ψn1) = π(γgn2ψn2) = π(ψn2)
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in Out(G), a contradiction, as desired.

Suppose now (gnxn)n ⊂ F is not bounded. Since the cusps of F are the only not bounded

parts and there are a finite number of them, there must be a subsequence (still called (gnxn)n)

converging to the boundary of X inside some cusp, so gnxn must converge to the bounded

parabolic point p at the end of it. In particular, for some large enough n, gnxn must be inside

the horoball B(p) around p. Fix such number n. We claim every element of the form gnψn(g)g−1
n

(g ∈ G) sends the point gnxn ∈ B(p) to another point inside B(p). This can be easily proved

by induction on k = |g| (the length of g as a word in S), so to facilitate notation we will show

only steps k = 1 and k = 2. First, let s ∈ S. Since gnxn ∈ B(p) and the collection B is G-

invariant, the element gnψn(s)g−1
n ·gnxn must be in some horoball of the collection. But we have

d(gnψn(s)g−1
n · gnxn, gnxn) < R (shown above) and the horoballs of B are pairwise R-separated,

so the only horoball gnψn(s)g−1
n · gnxn can be in is B(p). For k = 2, let s1, s2 ∈ S be any two

elements. By induction, we have gnψn(s1)g−1
n · gnxn ∈ B(p). But it is clear that

d(gnψn(s1s2)g−1
n · gnxn, gnψn(s1)g−1

n · gnxn) = d(gnψn(s2)g−1
n · gnxn, gnxn) < R.

Since the horoballs are G-invariant and R-separated, again the only horoball gnψn(s1s2)g−1
n ·gnxn

can be is B(p). Induction follows similarly. With this, we showed the entire group gnψn(G)g−1
n

sends a point of B(p) to a point of B(p), so it must be contained in the subgroup Stab(p)

which is the subgroup of G that keeps invariant the whole horoball B(p). Finally, since ψn is

an automorphism we have gnψn(G)g−1
n = gnGg

−1
n = G, so G ≤ Stab(p) and p must be a global

fixed point of G in ∂X, a contradiction, since G is non-elementary.

Now we build the action on an R-tree: since λn → ∞, in particular we can assume λn ≥ 1

for every n ≥ 1. Define then the sequence of pointed metric spaces (Xn, dn, xn) with Xn =

X,dn = d
λn

and the points xn above. Let G act on Xn by g · x = ψn(g)x, clearly an action by

isometries, for G y X is. We have to show that for every g ∈ G, there is C(g) ≥ 0 such that

dn(xn, g · xn) ≤ C(g) for every n. Write g = s1...sm (so that |g| = m). Then

d(xn, g · xn) = d(xn, ψn(g)xn)

= d(xn, ψn(s1)...ψn(sm)xn)

≤ d(xn, ψn(s1)xn) + ...+ d(ψn(s1)...ψn(sm−1)xn, ψn(s1)...ψn(sm)xn)

= d(xn, ψn(s1)xn) + d(xn, ψn(s2)xn) + ...+ d(xn, ψn(sm)xn)

≤ (λn + 1/n) + (λn + 1/n) + ...+ (λn + 1/n)

= m(λn + 1/n) = |g|(λn + 1/n)

≤ 2|g|λn,

therefore

dn(xn, g · xn) =
d(xn, g · xn)

λn
≤ 2|g|,

so C(g) = 2|g| satisfies our desired condition. By Proposition 2.69, the actions Gy Xn induce

an action by isometries G y Xω, where Xω is the ω-ultralimit of the sequence (Xn, dn, xn)n.

Since each (Xn, dn) is a δ
λn

-hyperbolic space and δ
λn
→ 0 (for λn → ∞), Xω is an R-tree by

Proposition 2.68. By [82], we know this action is non-trivial and small, as desired. This was
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step 1.

Step 2 is to extend the action above to an action (G oH) y Xω such that the restriction

H y Xω is an action by homeomorphisms. Remember also that H = 〈ϕ〉 in our case. Because

of this, we can see that it is enough to find one homeomorphism fϕ : Xω → Xω such that

fϕ(gx) = ϕ(g)fϕ(x) for every x ∈ Xω and g ∈ G. Indeed, from that we can define fϕn = (fϕ)n

for n ∈ Z, and with a simple proof by induction we show that fϕn(gx) = ϕn(g)fϕn(x) for

n ∈ Z, x ∈ Xω, g ∈ G, which gives the desired action (GoH) y Xω.

Let us find then such map fϕ. As in the last chapter, the idea is to combine maps fn :

Xn → Xn together to get fϕ as an ultralimit map. Let us get a little intuition to define this

map in our case. If we read step 2 of Theorem 8.9, we see that, if we were in the particular case

H = 〈ϕ〉, the maps there would be all the same: fn(x) = ϕ(x) for all n and all x ∈ G (remember

that points were elements of G there). Intuitively, if we think of that action being a transitive

action, the points x are all individual fundamental domains of the action and the maps fn (or

“the map” f) is taking fundamental domains to their respective image by ϕ. This is how we

will define our maps fn = f : X → X for every n. Let F be the fundamental domain of the

action G y X (see the end of Section 9.2). Given x ∈ X, there are unique elements y ∈ F

and g ∈ G such that x = gy. We then define f(x) = ϕ(g)y. Geometrically, we have the same

situation of the hyperbolic case: each fundamental domain gF is being mapped isometrically to

the corresponding fundamental domain ϕ(g)F in X. It is then clear that f : X → X is bijective.

We claim it is a quasi-isometry. In fact, since it is bijective, its image is obviously cobounded,

so we just have to show the two inequalities from Definition 2.19. But if we started with the

automorphism ϕ−1, the same definition above would give rise to an inverse map for f . So it is

easy to see that to show the claim it is enough to show only one inequality:

Lemma 9.29. There are A,B ≥ 0 such that d(f(x), f(x′)) ≤ Ad(x, x′) +B for every x, x′ ∈ X.

Because of this, there are A,B ≥ 0 such that f : X → X is a (A,B)-QI. Then, the

maps f = fn : Xn → Xn are easily seen by definition to be (A,B/λn)-QI. If we show the set

{dn(f(xn), xn) | n ≥ 1} is bounded, we can apply Proposition 2.70 to the maps fn = f . Since

the action G y X is properly discontinuous, the proof of Lemma 8.10 can be easily repeated

in our case, since it only demands the hyperbolicity of the space in question, which we have

here. Therefore, by Proposition 2.70, the maps fn = f give rise to a map fϕ : Xω → Xω by

fϕ([(yn)n]) = [(fn(yn))n] = [(f(yn))n]. Since the fn : Xn → Xn are (A,B/λn)-QI and limλn =

∞, we also have by Proposition 2.70 that fϕ is a (A, 0)-QI map, or an A-bi-Lipschitz map, in

particular continuous. Now, if we started with the automorphism ϕ−1, it is straightforward to

check that this construction would give rise to an inverse map fϕ−1 for fϕ. In other words,

fϕ−1 = f−1
ϕ , and fϕ is an homeomorphism of Xω, as we wanted.

To finish step 2, we are just left to show that fϕ(gy) = ϕ(g)fϕ(y) for any y = [(yn)n] ∈ Xω

and g ∈ G. But the starting map f : X → X we defined satisfies this. In fact, if x ∈ X and

g ∈ G, let h ∈ G and y ∈ F be the unique elements such that x = hy. Then gx = ghy with

y ∈ F and, by definition, f(gx) = f(ghy) = ϕ(gh)y = ϕ(g)ϕ(h)y = ϕ(g)f(x). So, for any

y = [(yn)n] ∈ Xω,

fϕ(gy) = [(f(gyn))n] = [(ϕ(g)f(yn))n] = ϕ(g)[(f(yn))n] = ϕ(g)fϕ(y),
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and step 2 is complete.

Step 3 is, again, to “modify” the R-tree Xω and the action (GoH) y Xω above to obtain an

affine action (GoH) y T on some R-tree T . As we saw in the beginning of step 3 in Theorem

8.9, the existence of this affine action will give us in particular an action G y T satisfying all

hypotheses of Theorem 7.4, which in turn gives us that R(ϕ) =∞, finishing our proof.

Fortunately, the entire proof of step 3 of Theorem 8.9 is applicable to our case. In fact, as

the reader can easily check, the only hypotheses we use in that proof (besides the existence of

the action built on step 2, of course) are:

1) the restriction Gy Xω is by isometries, non-trivial and small;

2) the restriction H y Xω is by homeomorphisms;

3) H is amenable;

4) G is finitely generated;

5) G contains a non-abelian free group.

All these hypotheses are satisfied in our case: item 1) comes from step 1, item 2) comes from

step 2, the group H = 〈ϕ〉 is known to be amenable, G is by hypothesis finitely generated and,

since it is by hypothesis non-elementary, it is known to contain a copy of F2. So, step 3 can be

reproduced here and, as we argued above, this shows that R(ϕ) = ∞ and finishes the proof of

Theorem 9.27.

We could just restate the proof of Case 2 (the infinite order case) above in the following

ways:

Corollary 9.30. Let G be a non-elementary relatively hyperbolic group and (X, d) be the space G

acts on (Definition 9.12). Write π : Aut(G)→ Out(G) as the usual projection. Let ϕ ∈ Aut(G)

such that π(ϕ) has infinite order in Out(G) and denote by f = fϕ : X → X the map defined in

the proof of Theorem 9.27 above. If there are A,B ≥ 0 such that d(f(x), f(x′)) ≤ Ad(x, x′) +B

for every x, x′ ∈ X, then R(ϕ) =∞.

Corollary 9.31. Let G be a non-elementary relatively hyperbolic group and (X, d) be the space

G acts on (Definition 9.12). Suppose that, for every automorphism ϕ ∈ Aut(G) such that π(ϕ)

has infinite order in Out(G), there are A,B ≥ 0 such that d(f(x), f(x′)) ≤ Ad(x, x′) + B for

every x, x′ ∈ X. Then G has property R∞.

9.5 A counterexample to Lemma 9.29

To finish the chapter, let us show why we believe Lemma 9.29 is not true in general, that is, for

any relatively hyperbolic group.

Let G and X be the group and space of Example 9.25, respectively. G is a non-elementary

relatively hyperbolic group acting on the Poincare disk (X, d), with hyperbolic squares as fun-

damental domains. Since G = π1(Y ) and Y is homotopically equivalent to the “figure 8”, G

is isomorphic to the free group F2 on two generators. Let x and y be the two corresponding

generators of G and consider the automorphism ϕ with ϕ(x) = xy and ϕ(y) = y. We have an
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infinite order automorphism ϕ of G, which induces a bijection f : X → X by permuting the

fundamental domains of the action according to the map ϕ. To be more precise, let F be the

fixed fundamental domain of the action Gy X. Given x ∈ X, there are unique elements y ∈ F
and g ∈ G such that x = gy. We then define f(x) = ϕ(g)y. That is, each fundamental domain

gF is being mapped isometrically to the corresponding fundamental domain ϕ(g)F in X.

We want to (intuitively) convince the reader that f cannot be a quasi isometry, or that

the numbers A and B of Lemma 9.29 cannot exist. Remember that these numbers are defined

to be such that d(f(x), f(x′)) ≤ Ad(x, x′) + B for every x, x′ ∈ X. Therefore, it is enough

for us to find two sequences (xn)n and (yn)n in X such that {d(xn, yn) | n ≥ 1} is bounded

but {d(f(xn), f(yn)) | n ≥ 1} is not. If, in particular, (xn)n and (yn)n are sequences of points

inside geodesic lines contained in fundamental domains and converging to boundary points (and,

therefore, so will be the sequences (f(xn))n and (f(yn))n), then by the definition of boundary

2.4 it is easy to see that the previous condition we want is equivalent to say that (xn)n and (yn)n

converge to the same boundary point P but (f(xn))n and (f(yn))n converge to distinct boundary

points. Now, finding such sequences is easy. Let xn = P −
(

1
n ,

1
n

)
, where P =

(√
2

2 ,
√

2
2

)
is the

boundary point of Example 9.25. Of course, (xn)n is in the (straigth) geodesic inside the central

“fundamental square” F and converges to P . It is known about the Poincare disk that the

right-sided edge of this square (which is also the left sided edge of the square xF ) is contained

in a circle C of R2 = C. Now, for every n, let yn be the inversion of xn with respect to the circle

C. Since (xn)n is in a geodesic and converges to P ∈ C, the sequence (yn)n is also in a geodesic

and converges to P . Since (xn)n is entirely in the square F , (yn)n is entirely in the square xF .

Since ϕ(1) = 1, the square F is mapped by f onto itself (ϕ(1)F = 1F = F ), so it remains

unmoved and f(xn) = xn. Therefore, the sequence (f(xn))n still converges to P . On the other

hand, we will show that (f(yn))n converges to Q 6= P . Since f maps xF to ϕ(x)F = xyF , its

restriction to xF can be written as the composition of the translations of xF by x−1, y and then

x, in that order, so that f is xF
x−1

7→ F
y7→ yF

x7→ xyF . These translations are illustrated in the

following figure, where the image of an edge has the same color of it:
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Because of this, one can easily see that the sequence (f(yn))n converges to the boundary

point Q 6= P , as in the next figure:

This shows that Lemma 9.29 does not hold in this case and completes our example.
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Open questions

1) Is there anything we missed in our understanding of Fel’shtyn’s sketch of proof? We do

not believe so, but humility is important.

2) Are there non-elementary relatively hyperbolic groups that fit in the case of Corollary

9.31? If so, how common (or rare) these groups are with respect to the family of relatively

hyperbolic groups? Is there a methodical way to build such examples? Since it was quite

easy to build our counterexample of Lemma 9.29, we believe that such a group (if any)

must be of a very specific type.

3) Is there a way to avoid Lemma 9.29 in the proof of Theorem 9.27? In light of our coun-

terexample, we believe that a proof of R∞ for relatively hyperbolic groups would be, at

least, not so similar to the one we proposed and, at most, completely different.

4) Does any non-elementary relatively hyperbolic group has property R∞? We think a good

family for a possible counterexample would be the groups described in Example 9.15,

assuming they are not hyperbolic, of course.

5) Can we use either Brown’s characterization of Σ1 in [17] or Cashen and Levitt’s Theorem

11.4 to compute the BNS invariants for some relatively hyperbolic groups, in order to

obtain extra information about property R∞?
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Parte IV

Appendix
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Caṕıtulo 10

Nilpotent quotients of Γn

Given a group G with property R∞, we define the R∞ nilpotency index of G to be the smallest

number c ≥ 1 such that the quotient G/γc+1(G) has property R∞ (if such number exists) and

to be infinite (or c = ∞) elsewhere, that is, if none of the quotients G/γc+1(G) have property

R∞. In this chapter, we show that the groups Γn have infinite R∞ nilpotency index. In contrast

to chapters 5 and 6, we shall see that the Σ1 invariant cannot be used here, so our technique

here is different and that is the reason why this chapter is in the appendix.

Let us describe the motivation for our work in this chapter. The R∞ nilpotency index is

a quite recent notion, defined in 2016 for the first time in the paper [23]. There, the authors

D. L. Gonçalves and K. Dekimpe compute the index for the surface group of a genus g > 1

surface and showed that it is 4 in the orientable case and 2(g − 1) in the non-orientable one.

Remember that surface groups are known to have property R∞ since they are hyperbolic groups

(see Chapter 8). But even before this very recent definition, knowing whether some nilpotent

quotient has R∞ was already an active topic in combinatorial and geometric group theory.

For example, in [24] (2013), the same authors (among other results) generalized a result by

Roman’kov [85] (2011) and showed that the free groups Fr have R∞ nilpotency index 2r (but

did not use this terminology). But our most direct motivation was the paper [22] (2020), where

the two authors described the R∞ nilpotency index of all Baumslag-Solitar groups BS(m,n).

So, in the same way knowing information of the Σ1 invariant for BS(1, n) was the motivation

to investigate Σ1(Γn) (Chapter 5), knowing which nilpotent quotients of BS(1, n) had R∞ led

us to investigate the same aspects for the groups Γn. That being said, it is clear that paper [22]

is the basis of the first computations of our chapter.

As in Chapter 5, let n ≥ 2 be an integer with prime decomposition n = p1
y1 ...pr

yr , the pi

being pairwise distinct and yi > 0. We consider again the Generalized Solvable Baumslag-Solitar

group

Γn =
〈
a, t1, ..., tr | titj = tjti, i 6= j, tiati

−1 = api
yi , i = 1, ..., r

〉
.

For any c ≥ 1, we will denote

Γn,c =
Γn

γc+1(Γn)
,

where γc+1 is the (c+ 1)th term of the lower central series of Γn (Definition 1.57). We know it

is a nilpotent group with nilpotency class ≤ c, for γc+1(Γn,c) = γc+1( Γn
γc+1(Γn)) = γc+1(Γn)

γc+1(Γn) = 1.

In this chapter, the torsion subgroup of a nilpotent group G will be denoted by τG = {g ∈
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G | gn = 1 for some n ≥ 1}.

Lemma 10.1. Let m = gcd(py11 − 1, ..., pyrr − 1). Then am
k ∈ γk+1(Γn) for all k ≥ 1.

Demonstração. Induction on k. First, k = 1. By using the group relations, note that, for any

1 ≤ i ≤ r, ap
yi
i −1 = tiat

−1
i a−1 = [ti, a] ∈ γ2(Γn). Since this is true for any i and m is an integer

combination of the pyii − 1, we have am ∈ γ2(Γn). Now, suppose the lemma is true for some

k ≥ 1. Then

a(p
yi
i −1)mk = ap

yi
i m

k
a−m

k
= tia

mkt−1
i a−m

k
= [ti, a

mk ] ∈ γk+2(Γn).

Again, since this is true for any i and m is an integer combination of the pyii − 1, we have

amm
k

= am
k+1 ∈ γk+2(Γn), as desired. This completes the proof.

10.1 Torsion and lower central series

To compute the torsion of the groups Γn,c, we need the following

Lemma 10.2. Let G be a nilpotent group of class ≤ c and denote γi = γi(G). If the quotients

γ2/γ3, ..., γc/γc+1 are finite, then γ2 is a torsion subgroup of G.

Demonstração. Let g2 ∈ γ2 and let us find k ≥ 1 such that gk2 = 1. Since γ2/γ3 is finite there is

k3 ≥ 1 such that gk32 γ3 = γ3, or gk32 ∈ γ3. Now, we have the element gk32 γ4 ∈ γ3/γ4. Since this

is a finite group, there is k4 ≥ 1 such that gk3k42 γ4 = γ4, or gk3k42 ∈ γ4. If we proceed recursively

we obtain gk2 ∈ γc+1 for k = k3k4...kc+1 ≥ 1. Since γc+1 = 1 we have gk2 = 1, as desired.

Proposition 10.3. τΓn,c = 〈a, γ2(Γn,c)〉, where a = aγc+1 = aγc+1(Γn) ∈ Γn,c.

Demonstração. In the case c = 1 we have Γn,1 is the abelianized group of Γn, so

Γn,1 =
〈
a, t1, ..., tr | titj = tjti, tia = ati, a

p
yi
i −1 = 1

〉
' Zm × Zr,

so τΓn,1 = 〈a〉 = 〈a, γ2(Γn,1)〉, since γ2(Γn,1) = 1.

Now let us show the proposition in the case c ≥ 2. For (⊂), let xγc+1 ∈ τΓn,c. This

means xkγc+1 = (xγc+1)k = γc+1 for some k ≥ 1. Since c ≥ 2, we have xk ∈ γc+1 ⊂ γ2,

so xγ2 ∈ τΓn,1 = 〈a〉. Write then x = alg2 for l ∈ Z and g2 ∈ γ2 = γ2(Γn). This gives

xγc+1 = (aγc+1)l(g2γc+1) ∈ 〈a, γ2(Γn,c)〉, as we wanted. To show (⊃), we note that by Lemma

10.1 we get am
c

= 1 in Γn,c, so a ∈ τΓn,c. So, we just need to show that γ2(Γn,c) is a torsion

subgroup of Γn,c. To do this, we invoke Lemma 10.2, by which we know it is enough to show

the quotients
γ2(Γn,c)

γ3(Γn,c)
, ...,

γc(Γn,c)

γc+1(Γn,c)

are all finite. But for every 2 ≤ i ≤ c, by the known Isomorphism Theorem for quotients, we

have
γi(Γn,c)

γi+1(Γn,c)
=

γi(Γn)/γc+1(Γn)

γi+i(Γn)/γc+1(Γn)
' γi(Γn)

γi+i(Γn)
= γi/γi+1,

so let us show that γ2/γ3, ..., γc/γc+1 are finite by induction. By Proposition 1.61, we know they

are abelian groups, generated by their i-fold comutator cosets.
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The group γ2/γ3 is generated by the elements [ti, a]γ3, 1 ≤ i ≤ r and by [ti, tj ]γ3 = 1γ3 = γ3,

which are trivial. By Proposition 1.60, we get

[ti, a]mγ3 = [ti, a
m]γ3 = γ3,

since am ∈ γ2 (Lemma 10.1). So all generators of γ2/γ3 have torsion. Since it is finitely generated

and abelian, it must be a finite group.

Finally, suppose by induction that γi/γi+1 is finite for some i ≥ 2. By Proposition 1.61,

γi+1/γi+2 is then generated by the elements of the form [x, y]γi+2 with x ∈ Γn and y ∈ γi. Since

γi/γi+1 is finite, let k = k(x, y) ≥ 1 with (yγi+1)k = γi+1, or yk ∈ γi+1. Then

[x, y]kγi+2 = [x, yk]γi+2 = γi+2.

By the same argument we just used, this implies γi+1/γi+2 is finite and completes the proof.

Proposition 10.4. γk(Γn,c) =
〈
am

k−1
〉

for all k ≥ 2 and c ≥ 1.

Demonstração. First, we will show that

γk(Γn,c)

γk+1(Γn,c)
=
〈
am

k−1
γk+1(Γn,c)

〉
. (10.1)

For k = 2, by Proposition 1.61,
γ2(Γn,c)
γ3(Γn,c)

is generated by the cosets [ti, a]γ3(Γn,c). Since [ti, a] =

ap
yi
i −1, we have

γ2(Γn,c)

γ3(Γn,c)
=
〈
ap

y1
1 −1γ3(Γn,c), ..., a

pyrr −1γ3(Γn,c)
〉

= 〈amγ3(Γn,c)〉

(remember that m = gcd(py11 − 1, ..., pyrr − 1)). Suppose now 10.1 is true for some k ≥ 2. We

know
γk+1(Γn,c)
γk+2(Γn,c)

is generated by the cosets [x, z]γk+2(Γn,c), where x ∈ Γn,c and z ∈ γk(Γn,c). By

induction, we can write z = aαm
k−1

wk+1 for some wk+1 ∈ γk+1(Γn,c) and α ∈ Z. Then, by using

Proposition 1.60 we get

[x, z]γk+2(Γn,c) = [x, aαm
k−1

wk+1]γk+2(Γn,c)

= [x, am
k−1

]α[x,wk+1]γk+2(Γn,c)

= [x, am
k−1

]αγk+2(Γn,c),

so the quotient
γk+1(Γn,c)
γk+2(Γn,c)

is actually generated only by the cosets [x, am
k−1

]γk+2(Γn,c).

Since [a, am
k−1

] is obviously trivial, the quotient group is generated only by the generators

[ti, a
mk−1

]γk+2(Γn,c). Since [ti, a
mk−1

] = a(p
yi
i −1)mk−1

, we obtain

γk+1(Γn,c)

γk+2(Γn,c)
=
〈
a(p

y1
1 −1)mk−1

γk+2(Γn,c), ..., a
(pyrr −1)mk−1

γk+2(Γn,c)
〉

=
〈
aβγk+2(Γn,c)

〉
,

where

β = gcd((py11 − 1)mk−1, ..., (pyrr − 1)mk−1) = mk−1 gcd(py11 − 1, ..., pyrr − 1) = mk,
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and this shows 10.1. Now, let us show the proposition. The (⊃) part is a direct consequence

of Lemma 10.1. Let us show (⊂). In the case c < k, we have γk(Γn,c) = 1 ⊂
〈
am

k−1
〉

.

Suppose then c ≥ k and let x ∈ γk(Γn,c). Since xγk+1(Γn,c) ∈
〈
am

k−1
γk+1(Γn,c)

〉
(by 10.1),

write x = ajkm
k−1

xk+1 for jk ∈ Z and xk+1 ∈ γk+1(Γn,c). By using 10.1 again, we write

xk+1 = ajk+1m
k
xk+2 for jk+1 ∈ Z and xk+2 ∈ γk+2(Γn,c). We can do this recursively to obtain

x = ajkm
k−1

ajk+1m
k
...ajcm

c−1
xc+1

= am
k−1(jk+jk+1m+...+jcmc−k)

∈
〈
am

k−1
〉
,

and the proof is complete.

By Lemma 10.1 and the two propositions above, we easily get

Corollary 10.5. τΓn,c = 〈a〉 and card(τΓn,c) ≤ mc.

10.2 An isomorphism for Γn,c

The next step is to find a presentation to Γn,c, so we will find an isomorphism between Γn,c and

a more known group. Keep in mind all notations we have used above, such as n, pyii , c, r and m.

In this chapter, we will use the notation Zmc =
〈
x |xmc = 1

〉
and Zr = 〈s1, ..., sr |sisj = sjsi〉.

We define the group

Gn,c = Zmc o Zr,

where the group action Zr y Zmc is given by sixs
−1
i = xp

yi
i , i ≤ i ≤ r.

Observation 10.6. Note that the actions defined above are all automorphisms of Zmc . In fact,

since 1 = pyii − (pyii − 1) = pyii − kim for some ki ∈ Z, we have gcd(pyii ,m) = 1 and so

gcd(pyii ,m
c) = 1 for any c ≥ 1, by elementary number theory. This implies the map x 7→ xp

yi
i

induced by si is an automorphism of Zmc , for it has an inverse given by x 7→ xβ, where βpyii = 1

mod mc. Second, all such automorphisms commute, for Zmc is cyclic. These two facts show

that there is a well defined homomorphism Zr → Aut(Zmc), so this semidirect product is well

defined.

We will show that Γn,c ' Gn,c. To do this, we need this:

Lemma 10.7. Gn,c is nilpotent of class ≤ c.

Demonstração. Since [si, x] = xp
yi
i −1 ∈ 〈x〉 for every i, we have γ2(Gn,c) ⊂ 〈xm〉. Similarly,

since [si, x
m] = x(p

yi
i −1)m ∈

〈
xm

2
〉

for every i, in particular we have [si, z] ∈
〈
xm

2
〉

for every

z ∈ γ2(Gn,c), so it is easy to see that γ3(Gn,c) ⊂
〈
xm

2
〉

. Recursively, we can show that

γk(Gn,c) ⊂
〈
xm

k−1
〉

for every k ≥ 2. In particular, γc+1(Gn,c) ⊂
〈
xm

c〉
= 1, since xm

c
= 1 in

Zmc . This shows the lemma.

Corollary 10.8. τGn,c is a subgroup of Gn,c. Moreover, τGn,c = Zmc = 〈x〉 and so

card(τGn,c) = mc.

Theorem 10.9. Γn,c ' Gn,c.
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Demonstração. Let f : Γn → Gn,c be the map f(a) = x and f(ti) = si. Since

f(ti)f(a)f(ti)
−1 = sixs

−1
i = xp

yi
i = f(a)p

yi
i ,

f is a well defined group homomorphism. Since f(γi(Γn)) ⊂ γi(Gn,c) (in fact, that is true for

any group homomorphism), f induces the morphism (also denoted by f)

f : Γn,c =
Γn

γc+1(Γn)
→ Gn,c

γc+1(Gn,c)
= Gn,c

given by f(a) = x and f(ti) = si. It is obviously surjective. We are just left to show that

ker(f) = 1, and to do that we will make use of the torsion subgroups. Since f(τΓn,c) ⊂ τGn,c

(again, that is true for any homomorphisms between nilpotent groups), there is the restriction

morphism fτ : τΓn,c → τGn,c. By corollaries 10.5 and 10.8, we can actually write fτ : 〈a〉 → 〈x〉.
Since fτ (a) = x, it is clearly surjective. Now, fτ is a surjective map from a finite set of ≤ mc

elements (Corollary 10.5) to a finite set with exactly mc elements (Corollary 10.8), so we must

have card(〈x〉) = mc and fτ an isomorphism. In particular, ker(fτ ) = 1. We claim that

ker(f) ⊂ τΓn,c. In fact, let z ∈ ker(f). By using the normal form of the elements in Γn, write

z = t1
k1 ...tr

kr t1
−α1 ...tr

−αraltr
αr ...t1

α1 ,

for ki, l ∈ Z and αi ≥ 0. So

1 = f(z) = sk11 ...s
kr
r s
−α1
1 ...s−αrr xls−αrr ...s−α1

1 .

Since x ∈ τGn,cCGn,c we have s−α1
1 ...s−αrr xls−αrr ...s−α1

1 ∈ τGn,c = 〈x〉, so 1 = f(z) = sk11 ...s
kr
r x

l′

for some l′ ∈ Z. By projecting this equality under the natural homomorphism Gn,c → Zr we get

1 = sk11 ...s
kr
r , which implies ki = 0 for every i. Therefore

z = t1
−α1 ...tr

−αraltr
αr ...t1

α1 ∈ τGn,c,

since a ∈ τΓn,c C Γn,c, which shows the claim. Finally, this gives

ker(f) = ker(f) ∩ τΓn,c = ker(fτ ) = 1

and the theorem is proved.

Corollary 10.10. For any c ≥ 1, the nilpotent quotient Γn,c has the following presentation:

Γn,c =
〈
x, s1, ..., sr | xm

c
= 1, sisj = sjsi, sixs

−1
i = xp

yi
i

〉
.

As we told in the introduction of the chapter, let us note that the Σ1 invariant cannot be

directly used here. In fact, since Γn,c ' Zmc o Zr, Zr is a finite index abelian subgroup and we

have Σ1(Γn,c) = S(Γn,c) by Corollary 3.29, so none of the Σ1 theorems of chapters 3 and 4 can

be applied. Our approach, then, was more combinatorial and matricial, as you shall see.
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10.3 Reidemeister numbers

Because of the theorem above, in the rest of this chapter we will make the following identifications

Γn,c = Gn,c = Zmc o Zr = 〈x〉o 〈s1, ..., sr〉 .

It’s also worth pointing out that we will restrict us to investigate Reidemeister numbers of Γn,c

only in the case r ≥ 2, for, if r = 1, then Γn is by definition a Baumslag-Solitar group BS(1, n)

and its Reidemeister numbers were studied in [22]. Let ϕ ∈ Aut(Γn,c). Since ϕ(τΓn,c) ⊂ τΓn,c,

we have an induced automorphism

ϕ :
Γn,c
τΓn,c

= Zr → Zr =
Γn,c
τΓn,c

.

From now on, we will use the usual identification Aut(Zr) = GLr(Z) which sees an automorphism

of Zr as its (integer invertible) matrix with respect to the coordinates si. So, if ϕ(si) = sα1i
1 ...sαrir ,

we will identify

ϕ = (aij)ij =


a11 · · · a1r

...
...

ar1 · · · arr

 = [A1 · · ·Ar] , where Ai =


a1i

...

ari

 ∈ Zr.
Proposition 10.11. If ϕ ∈ Aut(Γn,c), the following are equivalent:

(1) R(ϕ) =∞;

(2) R(ϕ) =∞;

(3) det(ϕ− Id) = 0;

(4) ϕ has 1 as an eigenvalue.

Demonstração. Items (2), (3) and (4) are all equivalent (see Example 1.3), so we just have to

show that (1) and (2) are equivalent. We have the following commutative diagram:

So, if R(ϕ) =∞, by Lemma 1.7 we get R(ϕ) =∞. Let us show (1)⇒ (2). To simplify the

computation, let us use the following notation in this proof: given y = (y1, ..., yr) ∈ Zr (either

a row or a column vector), we will denote the element sy11 ...s
yr
r ∈ Γn,c by Sy, and the scalar

product of k ∈ Z by y is denoted by ky. With this notation, it turns out that any element of

Γn,c is of the form Syxβ for some y ∈ Zr and β ∈ Z. Suppose then that R(ϕ) = d <∞ and write

R(ϕ) = {[v1]ϕ, ..., [vd]ϕ} for vi ∈ Zr or, equivalently (Example 1.3), Zr
im(ϕ−Id) = {v1, ..., vd} (where

vi = vi+im(ϕ−Id)). Write ϕ(x) = xµ (for some µ ∈ Z with gcd(µ,mc) = 1) and ϕ(si) = SAixβi ,
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βi ∈ Z. Given that the si-coordinates behave well in the Γn,c, for any k = (k1, ..., kr) ∈ Zr and

l ∈ Z we have

ϕ(Skxl) = ϕ(s1)k1 ...ϕ(sr)
krϕ(x)l

= (SA1xβ1)k1 ...(SArxβr)krxµl

= Sk1A1+...+krArxθ, for some θ ∈ Z

= Sϕ(k)xθ.

This implies that, for any j ∈ Z and y ∈ Zr,

(Skxl)(Syxj)ϕ(Skxl)−1 = SkxlSyxjx−θS−ϕ(k)

= Sy+k−ϕ(k)xθ̃, for θ̃ ∈ Z

= Sy+(Id−ϕ)(k)xθ̃.

This means that, if two vectors y, y′ ∈ Zr are such that y = y′ ∈ Zr
im(ϕ−Id) , then every element

Syxj is ϕ-conjugated to some element Sy
′
xθ for some 0 ≤ θ < mc. Since Zr

im(ϕ−Id) = {v1, ..., vd},
every element Syxj is ϕ-conjugated to some Svixθ, 1 ≤ i ≤ d, 0 ≤ θ < mc, so

R(ϕ) ≤ dmc <∞

and the proposition is proved.

In the rest of the chapter we will use the following notation: we know that gcd(pyii ,m
c) = 1.

This means that pyii is an invertible element in the commutative ring Zmc (now thought in the

abelian notation Zmc = {0, 1, ...,mc − 1}). So, as in commutative algebra, we will naturally

denote by p−yii the inverse element (pyii )−1 ∈ Zmc and, similarly, we define p−kyii as (pkyii )−1 for

any k ≥ 0, so it makes sense to write pkyii for any k ∈ Z, thinking of it as an invertible element

of the ring Zmc . We are saying this to avoid a possible misinterpretation of p−yii as 1
p
yi
i

∈ Q, for

example. With this notation, it is clear that ski xs
−k
i = xp

kyi
i for any k ∈ Z.

Proposition 10.12. Γn,c has not property R∞ if and only if there is M = (aij)ij ∈ Glr(Z) such

that

• det(M − Id) 6= 0;

• for any 1 ≤ i ≤ r,

pa1iy11 pa2iy22 ..pariyrr = pyii mod mc. (M, c, i)

Demonstração. Suppose first that Γn,c has not property R∞. Let ϕ ∈ Aut(Γn,c) such that

R(ϕ) < ∞. Let M = ϕ ∈ Glr(Z), and write M = (aij)ij . By Proposition 10.11, we have

det(M − Id) 6= 0. Since ϕ(τΓn,c) ⊂ τΓn,c, we have ϕ(x) = xµ for some µ ∈ Z such that

gcd(µ,mc) = 1. Let us show that for any 1 ≤ i ≤ r the equation (M, c, i) holds. For any such i,
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since ϕ is a homomorphism of Γn,c it must satisfy ϕ(si)ϕ(x)ϕ(si)
−1 = ϕ(x)p

yi
i , so

sa1i1 ...sarir xµs−arir ...s−a1i1 = xµp
yi
i

or, equivalently,

xµp
a1iy1
1 ...p

ariyr
r = xµp

yi
i .

Then µpa1iy11 ...pariyrr = µpyii mod mc, and since gcd(µ,mc) = 1, we have pa1iy11 ...pariyrr = pyii
mod mc, which is exactly (M, c, i). This shows the “if” part. Suppose now that there is such a

matrix M = (aij)ij and let us show Γn,c has not R∞. Define ϕ : Γn,c → Γn,c by ϕ(x) = x and

ϕ(si) = sa1i1 sa2i2 ...sarir . Let us check that ϕ is a well defined homomorphism:

ϕ(si)ϕ(x)ϕ(si)
−1 = sa1i1 sa2i2 ...sarir xs−arir ...s−a2i2 s−a1i1 = xp

a1iy1
1 ...p

ariyr
r = ϕ(x)p

a1iy1
1 ...p

ariyr
r = ϕ(x)p

yi
i ,

the last equality being true by (M, c, i). Also, since the si commute, we obviously have

ϕ(si)ϕ(sj) = sa1i1 ...sarir s
a1j
1 ...s

arj
r = s

a1j
1 ...s

arj
r sa1i1 ...sarir = ϕ(sj)ϕ(si).

Finally,

ϕ(x)m
c

= xm
c

= 1,

so ϕ is in fact a homomorphism. Let us now construct an inverse homomorphism. Let N =

M−1 ∈ GLr(Z) and write N = (bij)ij . Let us show that, for any 1 ≤ i ≤ r, N satisfies the

equation (N, c, i), that is pb1iy11 pb2iy22 ..pbriyrr = pyii mod mc. Since MN = Id, for any 1 ≤ i, j ≤ r
we have

r∏
k=1

aikbkj = (MN)ij = Idij = δij ,

where δij is the Kronecker delta. Fix i. We do the following: for each fixed 1 ≤ j ≤ r, we raise

both sides of equation (M, c, j) to the power of bji and obtain

p
a1jbjiy1
1 p

a2jbjiy2
2 ...p

arjbjiyr
r = p

bjiyj
j mod mc

Now, if we do the product of all the r equations above (on both sides, of course) and rearrange

the left side according to the primes we get

p
(a11b1i+...+a1rbri)y1
1 p

(a21b1i+...+a2rbri)y2
2 ...p(ar1b1i+...+arrbri)yr

r = pb1iy11 pb2iy22 ...pbriyrr mod mc,

or

p
(
∏
k a1kbki)y1

1 p
(
∏
k a2kbki)y2

2 ...p
(
∏
k arkbki)yr

r = pb1iy11 pb2iy22 ...pbriyrr mod mc,

or even

pδ1iy11 pδ2iy22 ...pδriyrr = pb1iy11 pb2iy22 ...pbriyrr mod mc,

which results in

pyii = pb1iy11 pb2iy22 ...pbriyrr mod mc,

which is exactly (N, c, i), as we wanted. Now define ψ : Γn,c → Γn,c by ψ(x) = x and ψ(si) =

sb1i1 sb2i2 ...sbrir . As we did with ϕ, the fact that N satisfies (N, c, i) for all i gives us that ψ is a
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group homomorphism. Of course we have ϕ(ψ(x)) = x. Also,

ϕ(ψ(si)) = ϕ(sb1i1 sb2i2 ...sbrir )

= ϕ(s1)b1iϕ(s2)b2i ...ϕ(sr)
bri

= (sa111 ...sar1r )b1i(sa121 ...sar2r )b2i ...(sa1r1 ...sarrr )bri

= s
(a11b1i+a12b2i+...+a1rbri)
1 s

(a21b1i+a22b2i+...+a2rbri)
2 ...s(ar1b1i+ar2b2i+...+arrbri)

r

= s
∏
k a1kbki

1 s
∏
k a2kbki

2 ...s
∏
k arkbki

r

= sδ1i1 sδ2i2 ...sδrir

= si.

Similarly, we show that ψϕ = Id by using that NM = Id, so ϕ ∈ Aut(Γn,c). Since ϕ = M we

have det(ϕ − Id) = det(M − Id) 6= 0 by hypothesis, so R(ϕ) < ∞ by Proposition 10.11. This

completes the proof.

For the next theorem, we will need the following

Lemma 10.13. Let x,m ≥ 2. If x = 1 mod m, then xm
k

= 1 mod mk+1 for any k ≥ 0.

Demonstração. Induction on k. Note that the case k = 0 is obvious. For k = 1, write by

hypothesis x = qm+ 1 for some q ∈ Z and, by the known Binomial Theorem we have

xm − 1 = (qm+ 1)m − 1

=

(
m

0

)
qmmm +

(
m

1

)
qm−1mm−1 + ...+

(
m

m− 2

)
q2m2 +

(
m

m− 1

)
qm+ 1− 1

=

(
m

0

)
qmmm +

(
m

1

)
qm−1mm−1 + ...+

(
m

m− 2

)
q2m2 +

(
m

m− 1

)
qm

Note that all summands above are obviously multiples of m2 - except for the last one, which is

also a multiple of m2 because
(
m
m−1

)
= m. This completes the case k = 1. Suppose now the

lemma is true for some k ≥ 1 and let us show it for k+ 1. Write by hypothesis xm
k

= qmk+1 + 1

for some q ∈ Z. Using this and the Binomial Theorem again we get

xm
k+1 − 1 = (xm

k
)m − 1

= (qmk+1 + 1)m − 1

=

(
m

0

)
qmmm(k+1) + ...+

(
m

m− 2

)
q2m2(k+1) +

(
m

m− 1

)
qmk+1 + 1− 1

=

(
m

0

)
qmmm(k+1) + ...+

(
m

m− 2

)
q2m2(k+1) +

(
m

m− 1

)
qmk+1

Again, all summands above can be seen to be multiples of mk+2. In fact, for 2 ≤ i ≤ m

we have i(k + 1) = ik + i ≥ k + 2, and these numbers i(k + 1) are exactly the powers of

m on the summands above - except for the last one, which is also a power of mk+2, for it is(
m
m−1

)
qmk+1 = mqmk+1 = qmk+2. This completes the proof.
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Theorem 10.14. Let n ≥ 2 have prime decomposition n = p1
y1 ...pr

yr , the pi being pairwise

distinct and yi > 0. Suppose r ≥ 2, that is, there are at least two primes involved. Then the

nilpotent quotient group Γn,c = Γn/γc+1(Γn) does not have property R∞ for any c ≥ 1. In other

words, the R∞ nilpotency index of Γn is infinite.

Demonstração. Let m = gcd(py11 − 1, ..., pyrr − 1), as we have done in this chapter. If m = 1,

then none of the groups Γn,c have property R∞. This is because Γn,c ' Zr for any c in this

case (see Theorem 10.9), and we know Zr has not R∞. So, from now on, suppose m ≥ 2. Of

course Γn,1 does not have property R∞, for it is a finitely generated abelian group. Now, for

any fixed c ≥ 2, we will use Proposition 10.12, that is, for any r ≥ 2, we will find a matrix

M = (aij)ij ∈ Glr(Z) with det(M − Id) 6= 0 and satisfying equations (M, c, i) for 1 ≤ i ≤ r. We

will look for a particular family of matrices M , that is,

M = mkN + Id.

Here, k will be some suitable positive number, N = (jαβ)αβ will be some integer r × r matrix

with determinant 1 and mkN = (mkjαβ)αβ is the natural scalar product of a number by a

matrix. The first thing to observe is that any such matrix M satisfies all the equations (M, c, i)

for some big enough k ≥ 1. Let us see that. It is easy to see that, for such M , the equations

(M, c, i) become exactly

(pj1iy11 pj2iy22 ...pjriyrr )m
k

= 1 mod mc. (M, c, i)

For us to use the previous lemma, the term inside the parenthesis in the above equation

must be congruent to 1 modulo m, so we claim this is true. Since m divides each number pyss −1

(1 ≤ s ≤ r) by definition, we have pyss = 1 mod m, so by the multiplicative property of integer

congruence we have

pj1iy11 pj2iy22 ...pjriyrr = 1j1i1j2i ...1jri mod m

= 1 mod m,

which shows our claim. Now let k = c−1. By the above lemma we have (pj1iy11 pj2iy22 ...pjriyrr )m
k

=

1 mod mc, so for every i equation (M, c, i) is satisfied for such M .

It is then enough for us to find, for any r ≥ 2, an integer matrix N which makes det(M) = 1

and det(M − Id) 6= 0. Since M = mkN + Id, we have

det(M − Id) = det(mkN) = mrkdet(N),

so for det(M − Id) to be non-zero it suffices us to have det(N) 6= 0. We claim therefore that,

for any r ≥ 2, there is a matrix N such that det(N) = 1 and det(M) = det(mkN + Id) = 1. We

will show the cases r = 2, 3, 4 separately and then show the case r ≥ 4 by induction.

For r = 2, it is straightforward to see that det(M) = m2k det(N)+mktr(N)+1 so det(M) = 1

if and only if mk det(N) + tr(N) = 0. Let us find then N with det(N) = 1 and tr(N) = −mk,
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and we will be done. Now, this is an easy task: the matrix

N =

[
1 −(mk + 2)

1 −(mk + 1)

]

fits the requirements. For r = 3, if we define

N =

1 −(mk + 2) mk + 1

1 −(mk + 1) mk

0 1 0


and

M = mkN + Id =

m
k + 1 −mk(mk + 2) mk(mk + 1)

mk −mk(mk + 1) + 1 m2k

0 mk 1

 ,
it is easy to see that det(N) = 1 = Det(M). For r = 4, the matrices

N =


1 −(mk + 2) mk + 1 −(mk + 1)

1 −(mk + 1) mk −mk

0 1 0 0

0 0 1 0


and

M = mkN + Id =


mk + 1 −mk(mk + 2) mk(mk + 1) −mk(mk + 1)

mk −mk(mk + 1) + 1 m2k −m2k

0 mk 1 0

0 0 mk 1

 ,

satisfy det(N) = 1 = Det(M). Note the recursion here: the matrices N = Nr+1 and M = Mr+1

of size r + 1 always contain the matrices N = Nr and M = Mr of size r in their left superior

corner. We will keep doing this for r ≥ 4. The induction will be the following: we will show

that, for any even number r ≥ 4, we can find such matrices N and M with det(N) = 1 and

det(M) = 1 for r+ 1 and r+ 2. Let us show this claim to r = 4, that is, let us find the matrices

Mr and Nr for the cases r = 5 and r = 6. For r = 5,

N =


1 −(mk + 2) mk + 1 −(mk + 1) mk + 1

1 −(mk + 1) mk −mk mk

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0


and
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M = mkN + Id =


mk + 1 −mk(mk + 2) mk(mk + 1) −mk(mk + 1) mk(mk + 1)

mk −mk(mk + 1) + 1 m2k −m2k m2k

0 mk 1 0 0

0 0 mk 1 0

0 0 0 mk 1


satisfy det(N) = 1 = det(M). For r = 6, the matrices

N =



1 −(mk + 2) mk + 1 −(mk + 1) mk + 1 −(mk + 1)

1 −(mk + 1) mk −mk mk −mk

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


and

M =



mk + 1 −mk(mk + 2) mk(mk + 1) −mk(mk + 1) mk(mk + 1) −mk(mk + 1)

mk −mk(mk + 1) + 1 m2k −m2k m2k −m2k

0 mk 1 0 0 0

0 0 mk 1 0 0

0 0 0 mk 1 0

0 0 0 0 mk 1


satisfy det(N) = 1 = det(M) (this can be checked by developing the determinant using the last

column of the matrices). The reader can easily see the induction step now. Suppose that, for

some even number r ≥ 4, the square matrices

Nr =



1 −(mk + 2) mk + 1 −(mk + 1) · · · mk + 1 −(mk + 1)

1 −(mk + 1) mk −mk · · · mk −mk

0 1 0 0 · · · 0 0

0 0 1 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 0

0 0 0 0 · · · 1 0


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and

Mr =



mk + 1 −mk(mk + 2) mk(mk + 1) −mk(mk + 1) · · · mk(mk + 1) −mk(mk + 1)

mk −mk(mk + 1) + 1 m2k −m2k · · · m2k −m2k

0 mk 1 0 · · · 0 0

0 0 mk 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0

0 0 0 0 · · · mk 1


have both determinant 1. For r + 1, the matrices

Nr+1 =



mk + 1

mk

Nr 0
...

0

0 0 · · · 0 1 0


and Mr+1 =



mk(mk + 1)

m2k

Mr 0
...

0

0 0 · · · 0 mk 1


Have determinant 1. In fact, developing the determinant of Nr+1 by the last column we get

det(Nr+1) = (−1)r+1+1(mk + 1).1 + (−1)r+1+2mk.1 = mk + 1 − mk = 1, using that the two

submatrices are upper triangular with 1 in all diagonal entries and that r is even. Similarly, we

develop the determinant of Mr+1 by the last column. Using that r is even, that the first two

submatrices that appear are upper triangular and that det(Mr) = 1 we get

det(Mr+1) = (−1)r+1+1mk(mk + 1)mrk + (−1)r+1+2m2k(mk + 1)m(r−1)k + (−1)r+1+r+1det(Mr)

= m(r+1)k(mk + 1)−m(r+1)k(mk + 1) + 1

= 1.

Finally, for r + 2, the matrices

Nr+2 =



−(mk + 1)

−mk

Nr+1 0
...

0

0 0 · · · 0 1 0


and Mr+2 =



−mk(mk + 1)

−m2k

Mr+1 0
...

0

0 0 · · · 0 mk 1


Have determinant 1. Indeed, developing the determinant of Nr+2 by the last column we get

det(Nr+2) = (−1)r+2+1(−(mk + 1)).1 + (−1)r+2+2(−mk).1 = mk + 1−mk = 1, this time using

that the two submatrices are upper triangular with 1 in all diagonal entries and that r is even.

Similarly, we develop the determinant of Mr+2 by the last column. Using that r is even, that
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the first two submatrices that appear are upper triangular and that det(Mr+1) = 1 we get

det(Mr+2) = (−1)r+3(−mk(mk + 1))m(r+1)k + (−1)r+4(−m2k)(mk + 1)mrk + (−1)2r+4.1

= m(r+2)k(mk + 1)−m(r+2)k(mk + 1) + 1

= 1.

This completes the induction step and finishes our proof.

Open question: is it possible to use similar techniques to compute the R∞ nilpotency index

for GBS groups? Indeed, this was one of the suggestions of the authors in [22] (2020), the main

paper inspiring our chapter. By this moment, with other combinatorial techniques, we have

already started this investigation and obtained some particular and interesting computations.

In particular, we know GBS groups with finite and with infinite R∞ nilpotency indexes, but the

research is still far away from its end.
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Caṕıtulo 11

GBS and GBSn groups and Σ1

invariant

We dedicate this chapter to investigate the behaviour of the so called GBS (and GBSn) groups

concerning Σ1 and Ω1 and to try to guarantee R∞ or other twisted conjugacy properties for

these groups. The reason for this investigation is that property R∞ has already been shown

to any non-elementary GBS group (see [67], Proposition 2.7 at pg. 486) and, in fact, for any

group that is quasi-isometric to a GBS group (see [93]), but geometric invariants have not been

used. So, could Σ-theory be applied to determine property R∞ for GBS and GBSn groups?

This turned out to be not so effective as it was in chapters 5 and 6, and that is the reason why

this chapter in the appendix. The problem is that Σ1 is symmetric inside the character sphere,

as we shall see. However, we have good results here. In fact, by using a result from Cashen and

Levitt in [19], we algorithmically classify the possible shapes of the Σ-invariant of GBS (and

GBSn) groups, given the associated finite graph of groups. We then use this to get some partial

twisted conjugacy results (not necessarily R∞ results) on some special cases.

We start by showing two quite general properties of Σ1 concerning fundamental groups of

finite graphs of groups. The first one is Corollary 2.2 in [19]. The proof technique is interesting

enough to be shown below.

Proposition 11.1. Let G be the fundamental group of a finite and connected graph of groups

(G,Γ), with each vertex and edge group being finitely generated. Let [χ] ∈ S(G). If χ|Gy 6= 0 for

each edge group Gy and [χ|GP ] ∈ Σ1(GP ) for each vertex group GP then [χ] ∈ Σ1(G).

Demonstração. We divide the proof into 3 steps.

• Γ a finite tree. We show the proposition by induction on the number n of (geometric)

edges of Γ. For n = 1, Γ is a segment of groups and G is an amalgamated product of two

finitely generated groups (Definition 1.64). In this case what we want to show is exactly

Proposition 3.31, already shown. Now suppose the claim to be true for n − 1 ≥ 1 and

let Γ be a finite tree with n edges. By Proposition 1.29, let P0 be a terminal vertex of

Γ associated to an edge y0 and let Γ′ = Γ − P0. Let (G,Γ′) be the restriction of (G,Γ)

to Γ′ and G′ be its fundamental group. From Example 1.66 we have G = G′ ∗Gy0 GP0 .

By hypothesis, χ|Gy 6= 0 for each edge y of Γ (in particular for every edge of Γ′) and

[χ|GP ] ∈ Σ1(GP ) for each vertex P of Γ (in particular for every vertex of Γ′). Since
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Γ′ is a tree with n − 1 edges, by induction hypothesis the claim is true for (G,Γ′) and

so [χ|G′ ] ∈ Σ1(G′). Since χ|Gy0 6= 0 and [χ|GP0 ] ∈ Σ1(GP0) by hypothesis, we apply

Proposition 3.31 for the amalgam G′ ∗Gy0 GP0 and conclude that [χ] ∈ Σ1(G), as desired.

• Γ a finite bouquet. We show the proposition by induction on the number n of petals (edges)

of Γ. For n = 1, Γ is a loop of groups and G is an HNN extension of a finitely generated

group (Definition 1.65). In this case what we want to show is exactly Proposition 3.32,

already shown. Now suppose the claim to be true for n − 1 ≥ 1 and let Γ be a finite

bouquet with n petals. Fix one petal z and denote by Γ′ the “sub bouquet” obtained by

removing z and z from Γ. Denote by G′ the fundamental group of Γ′. From Example 1.67

we have G = π1(Z), where Z is the loop of groups defined there and shown in the figure

below.

By hypothesis, χ|Gy 6= 0 for each edge y of Γ (in particular for every edge of Γ′) and

[χ|GP ] ∈ Σ1(GP ). Since Γ′ is a bouquet with n − 1 edges, by induction hypothesis the

claim is true for (G′,Γ′) and so [χ|G′ ] ∈ Σ1(G′). Now, χ|Gz 6= 0 and [χ|G′ ] ∈ Σ1(G′), so we

can apply Proposition 3.32 for the loop of groups (HNN extension) Z to conclude that

[χ] ∈ Σ1(G), as desired.

• General case. Let Γ be any connected finite graph and fix a maximal tree T of Γ. Let (G,T )

be the restriction of (G,Γ) to T and denote by GT its fundamental group. By hypothesis,

χ|Gy 6= 0 for each edge y of Γ (in particular for every edge of T ) and [χ|GP ] ∈ Σ1(GP )

for each vertex P of Γ (in particular for every vertex of T ). Since T is a finite tree, by

the first case we have [χ|GT ] ∈ Σ1(GT ). Now let (H,W ) be the following graph of groups:

define W = Γ/T as the contraction of the maximal tree T inside Γ, that is, H is a bouquet

whose vertex we call P0 and whose edges are exactly the edges y of Γ outside T . Define

the vertex group as HP0 = GT and the edge groups as Hy = Gy.

Define the morphisms as

Hy = Gy
fy
↪→ Go(y) ≤ GT = HP0 ,

Hy = Gy
fy
↪→ Gt(y) ≤ GT = HP0 .
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Then by the rebuilding argument (Example 1.67) the fundamental group of (H,W ) is

exactly G. But W is a finite bouquet. Since χ|Hy = χ|Gy 6= 0 for every edge y of W and

[χ|HP0 ] = [χ|GT ] ∈ Σ1(GT ) = Σ1(HP0), by the second case we have [χ] ∈ Σ1(G), and the

proof is complete.

The second and last property works like a partial converse to the previous one. Following

[19]:

Definition 11.2. We say that a graph of groups (G,Γ) is not an ascending HNN extension

if either Γ is not a loop or Γ is a loop but the monomorphisms Gy
fy
↪→ GP and Gy

fy
↪→ GP are

both proper (not surjective). We say that (G,Γ) is reduced if for every segment y of Γ the

monomorphisms Gy
fy
↪→ Gt(y) and Gy

fy
↪→ Go(y) are both proper.

Proposition 11.3. Let G be the fundamental group of a finite, connected and reduced graph of

groups (G,Γ) which is not an ascending HNN extension, and with each vertex and edge group

being finitely generated. If [χ] ∈ Σ1(G) then χ|Gy 6= 0 for each edge group Gy of (G,Γ).

Demonstração. Again, we divide the proof into steps:

• Γ is a segment or a loop. In this case, G is either an amalgamated product or an HNN

extension. In the former case, then because Γ is reduced we have exactly the hypotheses

of Proposition 3.33, and we are done. In the latter case, then because (G,Γ) is not an

ascending HNN extension we have exactly the hypotheses of Proposition 3.34, and we are

done again.

Now let us show the general case, supposing that Γ contains at least two edges (the one-edged

case is treated above). Fix an arbitrary edge y0 of Γ and let us show that χ|Gy0 6= 0. There are

only two cases (see Lemma 1.25):

• Γ − y0 connected. In this case, let (G,Γ − y0) be the restriction of (G,Γ) to Γ − y0 and

let G′ be its fundamental group. By the reconstruction argument 1.67, G is exactly the

fundamental group of the loop of groups (H,W ) with HP = G′, Hz = Gy0 and morphisms

Hz = Gy0
fy0
↪→ Go(y0)

l
↪→ G′ = HP ,

Hz = Gy0
fy0
↪→ Gt(y0)

l
↪→ G′ = HP ,

(11.1)

where l are the respective inclusion morphisms.

We already have [χ] ∈ Σ1(G), G being the fundamental group of (H,W ). We want now

to use the loop case of the proposition to (H,W ). To do so, we must guarantee that both
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morphisms in 11.1 are proper. If y0 is a segment in Γ, then the morphisms fy0 and fy0 are

themselves proper, so are l ◦ fy0 and l ◦ fy0 . If y0 is a loop, say, from P to P , it will be

enough to show that the inclusion l : GP → G′ is proper. Since Γ has at least two edges,

let y be another edge different from y0 starting in P . If y is a segment, say, from P to

some vertex Q, then, since Γ is reduced, there is an element g ∈ GQ ≤ G′ which is not in

Gy = GP ∩ GQ, then g ∈ G′ − GP and l is proper, as desired. If y is a loop, also from

P to P , then the stable letter ty is by definition in G′ −GP and l is again proper. Then,

applying Proposition 3.34 to (H,W ) we get χ|Gy0 6= 0, as we wanted.

• Γ − y0 with two components ΓP and ΓQ (see Proposition 1.25). In this case, if T is a

maximal tree of Γ, then T ∩ΓP and T ∩ΓQ are maximal trees of ΓP and ΓQ. Let (G,ΓP )

and (G,ΓQ) be the restriction of (G,Γ) to ΓP and ΓQ with fundamental groups G′P and

G′Q, respectively. We have G = G′P ∗Gy0 G
′
Q, that is, G is the fundamental group of the

following segment of groups

with monomorphisms Gy0
fy0
↪→ GP ≤ G′P and Gy0

fy0
↪→ GQ ≤ G′Q. Since fy0 and fy0 are

proper, this segment of groups is reduced and since [χ] ∈ Σ1(G), then by Proposition 3.33

we have χ|Gy0 6= 0, as desired. This completes the proof.

Putting together the last two propositions we obtain a precious weapon for the rest of the

chapter. This theorem is actually Corollary 2.10 in [19]:

Theorem 11.4. Let G be the fundamental group of a finite, connected and reduced graph of

groups (G,Γ) which is not an ascending HNN extension, and with each vertex and edge group

being finitely generated. If Σ1(GP ) = S(GP ) for each vertex P then

Σ1(G) = {[χ] ∈ S(G) | χ|Gy 6= 0 for each edge group Gy}.

Demonstração. If [χ] ∈ Σ1(G), then since (G,Γ) is reduced and not an ascending HNN exten-

sion we have χ|Gy 6= 0 for each edge group Gy by Proposition 11.2. On the other hand, suppose

[χ] ∈ S(G) is such that χ|Gy 6= 0 for each edge group Gy. Since Σ1(GP ) = S(GP ) for each

vertex P , we have also [χ|GP ] ∈ Σ1(GP ) and then by Proposition 11.1 we obtain [χ] ∈ Σ1(G),

as desired.

It is worth observing a special case: when the monomorphisms maps onto finite index sub-

groups.

Corollary 11.5. Let G be as in Theorem 11.4. Assume also that all the edge monomorphisms

fy and fy maps all the edge groups Gy onto finite index subgroups fy(Gy) of Go(y) and fy(Gy)

of Gt(y). Then

Σ1(G) = {[χ] ∈ S(G) | χ|GP0 6= 0}

where GP0 is any fixed vertex group.
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Demonstração. We will identify each Gy with its isomorphic images fy(Gy) and fy(Gy). Given

any edge y in Γ, since Gy has finite index in both Go(y) and Gt(y), by Lemma 3.26 we have

χ|Go(y) 6= 0⇐⇒ χ|Gy 6= 0⇐⇒ χ|Gt(y) 6= 0. Now, let P be any vertex of Γ. If T is a maximal tree

for Γ, connect P and P0 by a geodesic p in T . By repeating the same finite index argument we just

used for all the edges of p we get that χ|GP 6= 0⇐⇒ χ|GP0 6= 0. Then the Σ1 condition“χ|Gy 6=
0 for each edge group Gy” in Theorem 11.4 can be replaced just by “χ|GP0 6= 0”, as desired.

11.1 GBS groups

Definition 11.6. A graph of Z′s is a graph of groups (G,Γ) with GP = Z and Gy = Z for all

vertices P and all edges y of Γ.

For every edge y we then have two monomorphisms fy : Gy = Z ↪→ Z = Gt(y) and fy :

Gy = Z ↪→ Z = Go(y) that are uniquely determined by the nonzero integers n(y) = fy(1) and

m(y) = fy(1). The notation will be the following:

An example of graph of Z′s is given by the next figure.

Definition 11.7. A GBS group G is the fundamental group of a finite connected graph of Z′s.

Let T be a maximal tree and E+ an orientation of Γ. If GP = 〈aP 〉 ' Z, we call aP the vertex

letter associated to the vertex P . Let y1, ..., yk be the edges of E+ outside T with associated

stable letters t1, ..., tk. Then a presentation for the GBS group G is

G = 〈aP , t1, ..., tk, P ∈ V (Γ) | an(y)
t(y) = a

m(y)
o(y) , tia

n(yi)
t(yi)

ti
−1 = a

m(yi)
o(yi)

, y ∈ E+ ∩ E(T ), 1 ≤ i ≤ k〉.

To clarify, the next figure shows the graph (G,Γ), the maximal tree T and the associated vertex

and stable letters. The associated presentation for G is

G = 〈a, b, c, d, t, s | a4 = b5, b18 = c9, c−3 = d2, ta3t−1 = a3, sc3s−1 = b6〉.

The definition implies that for every oriented edge y (inside or outside T ) we have the

following relation in the abelianized Gab:

a
n(y)
t(y) = a

m(y)
o(y) .
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Definition 11.8. If (G,Γ) is a graph of Z’s, we say that a closed path γ = y1, ..., yk is killing if

n(y1)...n(yk) 6= m(y1)...m(yk).

Lemma 11.9 (Removing non-killing closed paths). If γ = y1, ..., yk (k ≥ 3) is a killing closed

path in (G,Γ) and yi, ..., yj is a proper closed subpath in γ such that n(yi)...n(yj) = m(yi)...m(yj),

then the path γ′ = y1, ..., yi−1, yj+1, ..., yk obtained by removing this subpath is also a killing closed

path.

Demonstração. Let yi, ..., yj be a proper closed subpath in γ such that n(yi)...n(yj) =

m(yi)...m(yj). Since n(y1)...n(yk) 6= m(y1)...m(yk), then by canceling n(yi)...n(yj) on the left

side and m(yi)...m(yj) on the right side of this inequality we continue with an inequality, which

says exactly that the closed path γ′ obtained by removing this subpath from γ is still killing.

Corollary 11.10 (Removing backtrackings). If γ = y1, ..., yk (k ≥ 3) is a killing closed path

in (G,Γ) and yi+1 = yi is a backtracking in γ, the path γ′ = y1, ..., yi−1, yi+2, ..., yk obtained by

removing this backtracking is also a killing closed path.

Demonstração. If yi+1 = yi is a backtracking we have m(yi+1) = n(yi) and n(yi+1) = m(yi)

by definition and then n(yi)n(yi+1) = m(yi)m(yi+1). Then applying the previous lemma to the

closed subpath yi, yi we are done.

Lemma 11.11. There are no killing contractible closed paths.

Demonstração. Let γ be a closed contractible path with length 2k (every contractible path must

have even length by definition) and let us show by induction on k that γ is not killing. If k = 1 we

must have γ = y, y, with n(y) = m(y) and n(y) = m(y), so n(y)n(y) = m(y)m(y) = m(y)m(y)

and γ is not killing. Suppose this is true for k and let γ be a contractible closed path of length

2(k+1). Suppose by contradiction that γ is killing. Let yi+1 = yi be a backtracking of γ. Then,

by the previous lemma, the path obtained by removing this backtracking of γ is killing. Since

it is also contractible and of length 2k, by induction hypothesis it is not killing and we have a

contradiction. This concludes the proof.

Lemma 11.12. Every killing closed path in (G,Γ) contains a killing circuit.

Demonstração. First we show this lemma for all killing closed paths of length 1 or 2. Since

contractible closed paths are not killing, we just have to analyze the non-contractible ones. If

the length is 1 the path itself is a killing circuit. If the length is 2, there are only three kinds of

non-contractible killing closed paths:

In the two left figures it is easy to see that if both loops are not killing then the entire path

is not killing, so at least one of them must be a killing loop. In the right figure, the path itself

is a killing circuit, as desired.
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Now we show the lemma. Let γ = y1, ..., yk be a killing closed path, with k ≥ 3, and suppose

by contradiction that γ does not contain any killing circuits. If there is a backtracking in γ,

remove it with the “Removing backtrackings” Corollary 11.10, and we get a new killing closed

path with no killing circuits. If we repeat this process a finite number of times, we may suppose

that γ is a killing closed path without backtrackings. Note that if, during this process, we

obtain a path with length 1 or 2, then by the first paragraph we find a killing circuit in γ, a

contradiction, and we are done. So in the rest of the proof we may suppose all the paths obtained

have length at least 3. Now, since γ has no backtrackings, it is not contractible by definition,

therefore by Proposition 1.27 it must contain a circuit c. By assumption, c is not killing. So, if

c is the entire path γ we are done with a contradiction, since γ is killing. If c is a proper circuit,

by the “Removing non-killing closed paths” Lemma 11.9 we can remove c from γ and continue

with a killing closed path γ′.

Repeat all the algorithm above to the path γ′. Each time we do this we find a new circuit in γ

and remove it. Then, since γ obviously contains a finite number of circuits, after a finite number

of steps we will obtain a killing closed path γ̃ with no more circuits. But by Proposition 1.27

again, γ̃ is contractible and therefore cannot be killing by Lemma 11.11, a contradiction.

Before we show the main theorem of this section, we will highlight what we already obtained

about Σ1 for GBS groups.

Corollary 11.13. Let G be a GBS group associated to the reduced graph of Z′s (G,Γ). If G is

not a solvable Baumslag Solitar group BS(1, n), then

Σ1(G) = {[χ] ∈ S(G) | χ(a) 6= 0}

where a is any fixed vertex letter.

Demonstração. We want to use Corollary 11.5. Remember that since Z is abelian we have

Σ1(GP ) = S(GP ) for each vertex P by Corollary 3.15. Also, since all nontrivial subgroups of Z
have the form nZ and are of finite index, all the monomorphisms fy and fy map the edge groups

Gy onto finite index subgroups of the vertex groups GP . Finally, if Γ was an ascending HNN

extension then G would be by definition some solvable Baumslag Solitar group BS(1, n) for

n 6= 0, contradiction. Then, applying Corollary 11.5, we obtain that [χ] ∈ Σ1(G)⇐⇒ χ(GP0) 6=
0 for some fixed vertex group GP0 . Since GP0 = Z = 〈a〉 for some vertex letter a, we have

χ(GP0) 6= 0⇐⇒ χ(a) 6= 0, as desired.

Now we use the concept of killing circuits to compute the dimension of the character sphere

of a reduced GBS group. Also, we use Corollary 11.13 to determine the possible shapes of Σ1

for these groups. This is the main result of the section:
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Theorem 11.14. Let G be a GBS group associated to the reduced graph of Z′s (G,Γ) with

topological rank k ≥ 0 and orientation E+. Assume that G is not a solvable Baumslag-Solitar

group BS(1, n) and fix a vertex letter a. There are only three distinct cases:

• If Γ is a tree, then Σ1(G) = S(G) = {[χ], [−χ]}, where χ(a) = 1;

• If there is a killing circuit in Γ then S(G) ' Sk−1 and Σ1(G) = ∅.

• If Γ is not a tree and there is not a killing circuit in Γ, then S(G) ' Sk and Σ1(G) is the

disjoint union of two antipodal open hemispheres in S(G) ' Sk.

Observation 11.15. The character sphere and the Sigma invariant have already been computed

for the solvable Baumslag Solitar groups BS(1, n) (see Example 3.9).

Demonstração. First of all, note that, if b, b′ are two adjacent vertex letters in an edge y, then in

Gab we have the relation bn(y) = b′m(y), therefore n(y)χ(b) = m(y)χ(b′) or χ(b) = m(y)
n(y) χ(b′) for

every character χ. This means that their χ-value are dependent. Since m(y)
n(y) 6= 0, in particular

χ(b) = 0 ⇔ χ(b′) = 0. Since Γ is connected, all the χ-values in the vertex letters depend only

of the value χ(a). So all the vertex letters can contribute with at most one dimension in the

sphere S(G), depending if a is torsion-free or not in Gab. Also, since the topological rank is k,

let y1, ..., yk be the oriented edges (if any) outside a maximal tree T of Γ chosen, with t1, ..., tk

associated stable letters. It is obvious from the presentation that t1, ..., tk are always torsion-free

in Gab (if any).

If Γ is a tree, there are no stable letters and the only generators of G are the vertex letters.

Then, as we told, every character χ depends uniquely on the value χ(a). If χ(a) = 0 then

we would have χ = 0, a contradiction. Then χ(a) 6= 0 for every character and a is torsion-

free in Gab. This gives the unique dimension of Hom(G,R) and we have the homeomorphism

S(G) → S0 with [χ] 7→ χ(a)
|χ(a)| . Now, by Corollary 11.13, [χ] ∈ Σ1(G) if and only if χ(a) 6= 0,

then by the argument above Σ1(G) = S(G) = {[χ], [−χ]} is the whole 0-sphere.

If there is a killing circuit γ = y1, ..., ys in Γ, let P0 = o(y1), Pi = t(yi) for 1 ≤ i ≤ s and let

ai be the vertex letters associated to the Pi, 0 ≤ i ≤ s. Then Ps = P0 and as = a0. By the first

paragraph, we have the following relations in Gab:

a
n(y1)
0 = a

m(y1)
1 , a

n(y2)
1 = a

m(y2)
2 , ..., a

n(ys)
s−1 = am(ys)

s .

Then a
m(y2)m(y1)
2 = a

n(y2)m(y1)
1 = a

m(y1)n(y2)
1 = a

n(y1)n(y2)
0 , and recursively we obtain

a
m(ys)...m(y1)
s = a

n(ys)...n(y1)
0 , or, since a0 = as, we have

a
n(y1)...n(ys)−m(y1)...m(ys)
0 = 1 in Gab.

Since γ is killing the exponent n(y1)...n(ys)−m(y1)...m(ys) is non-zero and then a0 have torsion

in Gab, or, equivalently, χ(a0) = 0 for every character χ. By the first paragraph again, χ(a) = 0

for every character. This means that the vertex letter a0 does not contribute with a dimension in

the sphere S(G), only the stable letters contribute. Then the homeomorphism is S(G)→ Sk−1

with [χ] 7→ (χ(t1),...,χ(tk))
‖(χ(t1),...,χ(tk))‖ . Since χ(a) = 0 for every character we have Σ1(G) = ∅ by Corollary

11.13, as desired.
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Now, let us show that if Γ is not a tree and there are no killing circuits in Γ then a is

torsion-free in Gab. By definition, the unique relations in Gab are the commutators (which does

not generate any torsion on the generators) and the ones having the form a
n(y)
t(y) = a

m(y)
o(y) for all

oriented edges. Since these relations only appear between adjacent edges, the only way to obtain

a relation of the form aβ = aδ in Gab is if we have a closed path in the vertex P associated

to a. Furthermore: if this closed path is not killing, then similarly to the previous paragraph

we would only obtain a relation of the form an(y1)...n(ys)−m(y1)...m(ys) = 1 with a zero exponent

n(y1)...n(ys) −m(y1)...m(ys), that is, a useless relation a0 = 1. Then if a have torsion in Gab

we must have a killing closed path in Γ. By the previous lemma, we must have a killing circuit

in Γ, a contradiction. Finally, since Γ is not a tree we must have stable letters and since a is

also torsion-free we have the homeomorphism S(G) → Sk with [χ] 7→ (χ(a),χ(t1),...,χ(tk))
‖(χ(a),χ(t1),...,χ(tk))‖ . By

Corollary 11.13 we know that [χ] ∈ Σ1(G) ⇔ χ(a) 6= 0, so the points in Σ1(G) correspond to

the points in the sphere Sk with non-zero first coordinate χ(a), that is, the disjoint union of the

two antipodal open hemispheres, as we wanted.

As a consequence of this, we have all the possible shapes of the Ω1-invariants:

Theorem 11.16. Let G be a GBS group associated to the reduced graph of Z′s (G,Γ) with

topological rank k ≥ 0 and orientation E+. Assume that G is not a solvable Baumslag-Solitar

group BS(1, n) and fix a vertex letter a. There are only three distinct cases:

• If Γ is a tree, then Ω1(G) = S(G);

• If there is a killing circuit in Γ then Ω1(G) = ∅.

• If Γ is not a tree and there is not a killing circuit in Γ, then Ω1(G) consists of two antipodal

rational points.

Demonstração. The two first cases are obvious because we have Σ1(G) = S(G) and Σ1(G) =

∅, respectively. In the third case, since Σ1(G) is the disjoint union of two antipodal open

hemispheres in S(G) ' Sk (given respectively by {χ(a) > 0} and {χ(a) < 0}), it follows from

Definition 3.10 that Ω1(G) consists of only two antipodal points [χ], [−χ] (where χ(a) = 1 and

χ vanishes the other generators).

There is a special case in which we can guarantee an infinite Reidemeister number for at

least “half” of the automorphisms of G:
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Corollary 11.17. Let G be a GBS group associated to the reduced graph of Z’s (G,Γ) which

has rank k = 1 and does not contain any killing circuits. Suppose that G is not a solvable

Baumslag-Solitar group. Then there exists a normal subgroup H C Aut(G) with index 2 such

that R(ϕ) =∞ for every automorphism ϕ ∈ H.

Demonstração. Let t be the stable letter associated with the unique circuit of (G,Γ) and fix a

vertex letter a. By 11.14 we have the homeomorphism

S(G) −→ S1

[χ] 7−→ (χ(a), χ(t))

‖(χ(a), χ(t))‖

and [χ] ∈ Σ1(G) if and only if χ(a) 6= 0. Then the points [χ] in the complement Σ1(G)c

corresponds only to the two antipodal points (0, 1) and (0,−1) of S1. By Corollary 3.39, there is

a normal subgroup H CAut(G) with finite index such that R(ϕ) =∞ for every automorphism

ϕ ∈ H. But, in the proof of that corollary, one can see that the index of H is the number of

possible permutations of the points in Σ1(G)c, which is 2 in this case. Then H has index 2 and

we conclude the corollary.

Based on Theorem 11.14 we also obtain the impossibility of finite generation of a family of

subgroups of some “bouquet” GBS groups.

Corollary 11.18. Let G be a Bouquet GBS group, that is, G is a GBS group associated to some

finite bouquet Γ with r ≥ 2 petals. Let G =
〈
a, t1, ..., tr | tiamiti−1 = ani

〉
be its presentation for

integers ni 6= 0 6= mi and 1 ≤ i ≤ r. Suppose there is at least one i with mi = 1 and at least one

j such that nj 6= mj. Then the normal closure

N =� titjti
−1tj

−1 | 1 ≤ i, j ≤ r � C G

is not finitely generated. Moreover, the subgroup H =
〈
titjti

−1tj
−1 | 1 ≤ i, j ≤ r

〉
is not normal

in G.

Demonstração. Since there are no segments in Γ, it is reduced, and since r ≥ 2, Γ is not a solvable

Baumslag Solitar group, so we can apply Theorem 11.14. On one hand, the fact nj 6= mj for

some j means that some petal is a killing loop in Γ, so Σ1(G) = ∅ by Theorem 11.14. On the

other hand, by the definition of N the quotient group G/N has the following presentation:

G/N =
〈
a, t1, ..., tr | titj = tjti, tia

miti
−1 = ani

〉
.

Now, let i be the index such that mi = 1. Then we have the relation tiati
−1 = ani in G/N .

The generator ti is torsion-free in the abelianized of G/N , so let [χ] ∈ S(G/N) be any character

with χ(ti) < 0. Then by using the Geometric Criterion 3.22 and the same path construction of

the proof of Theorem 5.2 we can show that [χ] ∈ Σ1(G/N). If N was finitely generated, then

by Proposition 3.25 we would have [χ ◦ π] ∈ Σ1(G) = ∅, a contradiction. This shows the first

claim of the corollary. If H was normal in G we would have by definition H =� H �= N ,
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then N would be finitely generated because H is, which contradicts what we have just shown.

This completes the proof.

The corollary above is interesting for at least two reasons. First, the Σ1 invariant is most

known to be able to provide information about subgroups of a group G containing G′. Our

corollary, however, shows that Σ1 can give information about subgroups which doesn’t neces-

sarily contain G′, as it is the case of N above (because G/N is not abelian). Second, it shows in

particular that every generalized solvable Baumslag-Solitar group Γn can be seen as a quotient

of a GBS group by some infinitely generated subgroup.

11.2 Generalizing for GBSn groups

Based on the generality of the useful Theorem 11.4 we had the idea of trying to generalize the

results in the previous section to the GBSn groups.

Definition 11.19. Given n ≥ 1, a graph of Zn’s is a graph of groups (G,Γ) with GP = Zn and

Gy = Zn for all vertices P and all edges y of Γ. Here, Zn = Z ⊕ ... ⊕ Z is the direct sum of n

copies of Z.

Definition 11.20. Given n ≥ 1, a GBSn group is the fundamental group of a finite connected

graph of Zn’s.

Observation 11.21. Note that a GBS group is then a GBS1 group.

For every edge y we have two monomorphisms fy : Gy = Zn ↪→ Zn = Gt(y) and fy : Gy =

Zn ↪→ Zn = Go(y) that, due to the linear-like behavior of Zn, are uniquely determined by the n

images fy(ei) (respectively, fy(ei)) of the free-abelian generators e1, ..., en of Zn. This time, to

get a presentation for the GBSn group G of the graph of Zn’s (G,Γ) we must choose n vertex

letters a1, ..., an for each vertex P , corresponding to the n generators of GP = 〈a1, ..., an〉 ' Zn.

Also, given an orientation E+ and a maximal tree T of Γ, choose one stable letter ty for each

oriented edge y outside T . These vertex and stable letters are the generators of G. The relations

are: all the commutators aiaj = ajai between two vertex letters associated to the same vertex

P (because they commute in GP ), all the relations fy(ei) = fy(ei), 1 ≤ i ≤ n for the oriented

edges y inside T and all the relations tyfy(ei)ty
−1 = fy(ei), 1 ≤ i ≤ n for the ones outside T .

For each edge y, if we define the n × n matrices M =
[
fy(e1) ... fy(en)

]
and N =[

fy(e1) ... fy(en)
]

whose ith columns are the n-vectors fy(ei) (respectively, fy(ei)), as in

linear algebra, and if the ai and bi are the corresponding vertex letters, we can use the following

notation:

We can see these monomorphisms fy : Zn → Zn as restrictions of the linear maps Rn → Rn

with corresponding integer matrix N . Because of this, fy being injective is equivalent to the

vectors fy(ei) being linearly independent vectors in Rn, which is equivalent to det(N) 6= 0.

Moreover, the index of im(fy) in Zn = Gt(y) is exactly | det(N)|, and the index of im(fy) in
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Zn = Go(y) is exactly |det(M)| (see Example 1.3), so both are always finite index subgroups.

To summarize all of this,

fy : Zn → Zn injective⇔ N with l.i. columns⇔ N with l.i. lines⇔ det(N) 6= 0.

Figura 11.1: An example of graph of Z2’s, its corresponding monomorphisms and the associated
GBS2 group presentation.

Let y be the edge as we defined previously.

Note that y may be a loop; in this case, ai = bi for all i. Let M = (mij)ij and N = (ηij)ij

be the associated matrices. Then, by definition of the presentation of G, y gives rise to exactly

the following relations in the abelianized group Gab:



a1
m11a2

m21 ...an
mn1 = b1

η11b2
η21 ...bn

ηn1 ,

a1
m12a2

m22 ...an
mn2 = b1

η12b2
η22 ...bn

ηn2 ,

...

a1
m1na2

m2n ...an
mnn = b1

η1nb2
η2n ...bn

ηnn .

Then, applying an arbitrary character χ to these equations we get that every character must

satisfy the system
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

m11χ(a1) +m21χ(a2) + ...+mn1χ(an) = η11χ(b1) + η21χ(b2) + ...+ ηn1χ(bn),

m12χ(a1) +m22χ(a2) + ...+mn2χ(an) = η12χ(b1) + η22χ(b2) + ...+ ηn2χ(bn),

...

m1nχ(a1) +m2nχ(a2) + ...+mnnχ(an) = η1nχ(b1) + η2nχ(b2) + ...+ ηnnχ(bn).

Since all the coordinates χ(ai), χ(bi) are real numbers, this is equivalent to the real homogeneous

linear system

Ax = 0,

where x = (χ(a1), ..., χ(an), χ(b1), ..., χ(bn)) is the column vector of variables and

A =


m11 m21 ... mn1 −η11 −η21 ... −ηn1

m12 m22 ... mn2 −η12 −η22 ... −ηn2

...

m1n m2n ... mnn −η1n −η2n ... −ηnn

 =
[
MT | −NT

]
.

Now, we know that all the lines and columns of M and N are by definition linearly independent.

So, by applying the Gaussian elimination process to the matrix A we can obtain an equivalent

reduced matrix having the form

A′ =


1 0 ... 0 −α11 −α12 ... −α1n

0 1 ... 0 −α21 −α22 ... −α2n

...

0 0 ... 1 −αn1 −αn2 ... −αnn


for some αij ∈ R. Then the equivalent linear system A′x = 0 can be written in the coordinate

form 

χ(a1) = α11χ(b1) + α12χ(b2) + ...+ α1nχ(bn),

χ(a2) = α21χ(b1) + α22χ(b2) + ...+ α2nχ(bn),

...

χ(an) = αn1χ(b1) + αn2χ(b2) + ...+ αnnχ(bn),

which is finally equivalent to the system

a = Byb,

where a = (χ(a1), ..., χ(an)), b = (χ(b1), ..., χ(bn)) are the column vectors and By = (αij)ij acts

like a change of basis matrix, allowing us to write the coordinates χ(ai) in terms of the χ(bi).

Note that this change of basis matrix is the same for every character χ and it is invertible, since

it was obtained by applying Gaussian elimination to the invertible (over R) matrix −NT . The

linear system above is the only obstruction y can impose to the χ(ai) and χ(bi), by definition.

We can then define:

Definition 11.22. Fix a vertex P of Γ with vertex letters a1, ..., an. If γ = y1, ..., yk is a closed



224 11. GBS and GBSn groups and Σ1 invariant

path in P , the matrix associated to γ is Mγ = By1By2 ...Byk .

If γ is a closed path in P as in the above definition, then by induction on the argument

“a = Byb” above we get that a = By1By2 ...Byka, that is, Mγa = a, or (Mγ − Id)a = 0. This

equation can kill some coordinates χ(ai) of the vector a = (χ(a1), ..., χ(an)), that is, can imply

that χ(ai) is dependent of the other χ(aj). From linear algebra we know that the number of

dependent variables of a homogeneous linear system is the rank of the matrix associated, because

it is exactly the number of pivots in its reduced Gaussian form. So γ will kill exactly rk(Mγ−Id)

coordinates χ(ai). This is the basic principle to understanding the following theorem, which

computes the dimension of the character sphere:

Theorem 11.23. Let G be a GBSn group associated to the graph of Zn’s (G,Γ), with orientation

E+ and maximal tree T . Fix any vertex P of Γ with vertex letters a1, ..., an. Let y1, ..., yk be the

oriented edges outside T with stable letters t1, ..., tk associated. For each 1 ≤ i ≤ k, let γi be a

closed path in P that rounds the circuit containing yi once. Then S(G) ' Sn−r+k−1, where

r = rk


Mγ1 − Id

...

Mγk − Id

 .
The homeomorphism is given by

S(G) −→ Sn−r+k−1

[χ] 7−→
(χ(ai1), ..., χ(ain−r), χ(t1), ..., χ(tk))

‖(χ(ai1), ..., χ(ain−r), χ(t1), ..., χ(tk))‖

where ai1 , ..., ain−r are the vertex letters which freely generates Gab.

Demonstração. First of all, remember that every edge y generates a linear dependence a = Byb

between the coordinates χ(ai) and χ(bi) of its two collection of vertex letters, for each character

χ. Since Γ is connected, by fixing the vertex P with the vertex letters ai we get that all the

vertex letter coordinates are linearly dependent only on χ(a1), ..., χ(an). The stable letters

χ(t1), ..., χ(tk) are always torsion-free in Gab. So we are just left to see how many coordinates

χ(ai) are linearly independent, or equivalently, how many ai are needed to freely generate Gab.

Let us call the number of linear dependent coordinates χ(ai) as the number of kills. Since

the relations in Gab are given only between adjacent vertex letters by definition, the kills can

only be obtained by closed paths in P (as we justified in the GBS case), by the linear systems

(Mγ − Id)a = 0 we showed. So, at first, we should compute the kills from every closed path in

P . What we are going to do from now on is showing that the kills are all coming only from the

paths γ1, ..., γk.

Let γ = y1, ..., yk be a closed path in P . Suppose yi, yi is a backtracking in γ. From linear

algebra we know that the inverse of a basis change matrix is the basis change matrix in the

opposite direction. So Byi = B−1
yi and then

Mγ = By1 ...Byi−1ByiByiByi+2 ...Byk = By1 ...Byi−1Byi+2 ...Byk = Mγ′ ,
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where γ′ is the closed path obtained by removing this backtracking from γ. Since the same

associated matrix generates the same kills, it is enough compute the kills from γ′. By induction,

we can remove all the backtrackings from γ and remain with the same kills. This shows that it is

enough considering closed paths without backtrackings. Furthermore, if the path γ is contained

in T then it is contractible. So the matrices Byi must cancel pairwise and Mγ = Id, which

implies that the linear system (Mγ − Id)a = 0 becomes 0 = 0 and does not lead to any kill. So

it is enough to consider closed paths without backtrackings which are not contained in T .

Now, Γ is a finite graph. So by [86], as a topological space, Γ has the same homotopy type of

a finite bouquet Υ. This homotopy equivalence is obtained by contracting the tree T to the point

P . So the number of “petals” in the bouquet is exactly the number of edges outside T , that is,

k. Since the fundamental group is invariant by homotopy equivalence we get an isomorphism

π1(Γ)→ π1(Υ) which maps the paths γi exactly to the k bouquet petals li.

Figura 11.2: the contraction maps the γi to the petals li

But the li are the generators of π1(Υ) ' ∗ki=1Z. So by going back in the isomorphism, every

closed path γ in Γ is a finite concatenation of the γi and its inverses. If γ is not inside T , this

concatenation is non-trivial.

Now we show that the kills of a concatenation of closed paths in P are consequences of

the individual path kills. Let γ = σ1σ2 be a concatenation of two closed paths in P . Then

Mγ = Mσ1Mσ2 , by definition of Mγ . The kills generated by γ come from the system Mγa = a.

But this system is a consequence of the systems Mσia = a. In fact, if these two systems are

satisfied then

Mγa = Mσ1Mσ2a = Mσ1a = a.

This argument obviously work for a finite concatenation. Since the γi (and its inverses) generate

all closed paths in P by finite concatenations, we only have to compute the kills from the γi and

its inverses.

Finally, we show that the kills coming from a closed path and from its inverse path are the

same. Indeed, we already know that By = B−1
y for every edge. Then, if γ = y1, ..., yk is closed,

we have γ−1 = yk, ..., y1 and then Mγ−1 = Byk ...By1 = B−1
yk
...B−1

y1 = M−1
γ . Then the kills coming

from the paths γ and γ−1 are, respectively, Mγa = a and M−1
γ a = a. Since Mγ and M−1

γ are

invertible matrices, these systems are equivalent and therefore the kills are the same, so it is

enough to compute only the kills from the γi. All these arguments showed that the number of

dependent variables χ(ai) come only from the equations (Mγi − Id)a = 0 for 1 ≤ i ≤ k, or the

linear system 
Mγ1 − Id

...

Mγk − Id



χ(a1)

...

χ(ak)

 =


0
...

0

 .
From linear algebra we already commented that the number of dependent variables of a homo-
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geneous linear system is the rank of the matrix associated, because it is exactly the number of

pivots in its reduced Gaussian form. So the number of free variables χ(ai) is exactly n−r where

r is the rank of the matrix above. Then the free generators of Gab are some ai1 , ..., ain−r and

t1, ..., tk, and the theorem follows from Theorem 3.6.

Following Corollary 11.13, the analogous situation for Σ1 of GBSn groups is the following:

Corollary 11.24. Let G be a GBSn group associated to the reduced graph of Zn’s (G,Γ) which

is not an ascending HNN extension. Then

Σ1(G) = {[χ] ∈ S(G) | (χ(a1), ..., χ(an)) 6= (0, ..., 0)}

where a1, ..., an are fixed vertex letters of a vertex P0.

Demonstração. We want to use Corollary 11.5 again. Since Zn is abelian we have Σ1(GP ) =

S(GP ) for each vertex P by Corollary 3.15. The monomorphisms fy and fy maps the edge

groups onto finite index subgroups of the vertex groups, the index being the absolute value of

the determinant of the matrix associated, like we already commented in this section. Applying

Corollary 11.5, we obtain that [χ] ∈ Σ1(G) ⇐⇒ χ(GP0) 6= 0 for some fixed vertex group GP0 .

Since GP0 = Zn = 〈a1, ..., an〉 for some vertex letters a1, ..., an, we have χ(GP0) 6= 0 ⇐⇒
(χ(a1), ..., χ(an)) 6= (0, ..., 0), as desired.

Four corollaries arise from the previous corollary and Theorem 11.23:

Corollary 11.25. Let G be a GBSn group associated to the reduced graph of Zn’s (G,Γ), with

Γ a tree. Then S(G) ' Sn−1 and we have Σ1(G) = S(G) and Ω1(G) = S(G).

Demonstração. We are in a particular case of Theorem 11.23, where k = 0 and r = 0. If

a1, ..., an are the vertex letters of the choosen vertex P , then because k = 0 the real numbers

χ(a1), ..., χ(an) are the only coordinates determining a character [χ] ∈ S(G), so χ(ai) 6= 0 for at

least one ai. By Corollary 11.24, we have Σ1(G) = S(G) and therefore Ω1(G) = S(G).

Corollary 11.26. Let G be a GBSn group associated to the reduced graph of Zn’s (G,Γ).

Suppose that (G,Γ) is not an ascending HNN extension. If r = n (see Theorem 11.23), then

Σ1(G) = ∅ and Ω1(G) = ∅.

Demonstração. By Theorem 11.23 we have exactly n − r free ai-coordinates determining a

character [χ] ∈ S(G). In our case, we have no free coordinates, that is, χ(ai) = 0 for 1 ≤ i ≤ n,

for every character [χ]. It follows directly from Corollary 11.24 that Σ1(G) = ∅ and therefore

Ω1(G) = ∅.

Corollary 11.27. Let G be a GBSn group associated to the reduced graph of Zn’s (G,Γ).

Suppose that (G,Γ) is not a tree and it is not an ascending HNN extension. If n− r = 1 (see

Theorem 11.23), then Ω1(G) consists of two antipodal rational points.

Demonstração. We have exactly one free ai-coordinate determining whether a character [χ] ∈
S(G) is in Σ1(G). Then Σ1(G) assumes the shape of the third case of Theorem 11.14, that

is, Σ1(G) is the disjoint union of two antipodal open hemispheres in S(G). It follows then

easily that Ω1(G) consists of two antipodal and rational points [χ], [−χ], where χ(ai) = 1 and χ

vanishes the other generators.
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Observation 11.28. The last three corollaries above are the respective generalizations of the three

cases of Theorem 11.14. The next one is a generalization of Corollary 11.17.

Corollary 11.29. Let G be a GBSn group associated to the reduced graph of Zn’s (G,Γ).

Suppose that (G,Γ) is not an ascending HNN extension. If r < n and k = 1 (see Theorem

11.23), then there exists a normal subgroup H C Aut(G) with index 2 such that R(ϕ) = ∞ for

every automorphism ϕ ∈ H.

Demonstração. By 11.23 we have the homeomorphism

S(G) −→ Sn−r

[χ] 7−→
(χ(ai1), ..., χ(ain−r), χ(t1))

‖(χ(ai1), ..., χ(ain−r), χ(t1))‖
.

From Corollary 11.24 we know that [χ] ∈ Σ1(G) if and only if χ(aij ) 6= 0 for some 1 ≤ j ≤ n−r.
Then the points [χ] in the complement Σ1(G)c corresponds only to the two antipodal points

(0, ..., 0, 1) and (0, ..., 0,−1) in the sphere Sn−r. By Corollary 3.39, there is a normal subgroup

H CAut(G) with finite index such that R(ϕ) =∞ for every automorphism ϕ ∈ H. But, in the

proof of that corollary, one can see that the index of H is the number of possible permutations

of the points in Σ1(G)c, which is 2 in this case. Then H has index 2 and we conclude the

corollary.

Open question: is it possible to use Cashen and Levitt’s Theorem 11.4 to compute some

examples of the Σ1 invariant of hyperbolic and relatively hyperbolic groups? As we see in

chapters 8 and 9, examples of these groups can be easily constructed as fundamental groups of

graphs of groups.
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hyperboliques de Gromov, Springer Verlag Berlin Heidelberg, 1990.
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[23] K. Dekimpe, D. Gonçalves, The R∞ property for nilpotent quotients of surface groups,

Transactions of the London Mathematical Society, Volume 3, Issue 1, 2016, pp. 28-46.
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