

Universidade Federal de São Carlos CENTRO DE CIÊNCIAS AGRÁRIAS Curso de Engenharia Agronômica

LEONARDO HENRIQUE PAULOSSO

ANÁLISE DAS MUDANÇAS DA COLHEITA MANUAL DA CANA-DE-AÇÚCAR PARA A MECANIZADA NO SETOR SUCROENERGÉTICO

Universidade Federal de São Carlos CENTRO DE CIÊNCIAS AGRÁRIAS Curso de Engenharia Agronômica

LEONARDO HENRIQUE PAULOSSO

ANÁLISE DAS MUDANÇAS DA COLHEITA MANUAL DA CANA-DE-AÇÚCAR PARA A MECANIZADA NO SETOR SUCROENERGÉTICO

Monografia apresentada ao Curso de Engenharia Agronômica – CCA – UFSCar para a obtenção do título de Engenheiro Agrônomo

Orientadora: Profa. Dra. Marta Cristina Marjotta-Maistro

ARARAS - 2022

Dedico este trabalho a minha família, amigos que acreditaram no meu sonho e hoje se tornou realidade.

AGRADECIMENTOS

Agradeço a meu pai, mãe e irmãos por todo esforço que fizeram para que pudesse cursar Engenharia Agronômica na UFSCar campus Araras, espero hoje estar recompensando todo esforço e trazendo orgulho ao estar me tornando o primeiro Engenheiro da nossa família!

Também quero agradecer aos meus amigos de Araraquara que apoiaram minha decisão de quando escolhi meu curso e que, apesar da distância, continuaram torcendo por mim. E aos meus amigos que conheci na Faculdade, principalmente aos que tive a oportunidade de morar junto na Republica Taberna, vocês ao longo desses 5 anos foram muito mais que meus amigos, se tornaram meus irmãos, minha família. Estiveram nos meus melhores e piores momentos e, em todos eles, estivemos juntos para supera-los, seremos a família Taberna para sempre!

Gostaria de agradecer também a minha orientadora Marta, que sempre esteve ao meu lado durante grupo de estudo, iniciação cientifica e estagio curricular, ela sempre esteve à disposição para me ajudar profissionalmente e como formação de pessoa. E a todos professores do CCA que puderam me ensinar, aconselhar e ajudaram a formar a pessoa que sou hoje.

"Todos os nossos sonhos podem se tornar realidade se tivermos a coragem de persegui-los."

Walt Disney

RESUMO

O Brasil é o maior produtor de cana-de-açúcar do mundo e seus subprodutos, sendo que na safra de 2020/21 a moagem de cana-de-açúcar no Brasil foi de 657.433 mil toneladas, sendo a região Norte-nordeste responsável por 7,9% e a região Centro-sul por 92,1%, na qual apenas o estado de São Paulo é responsável por 54,22% da moagem brasileira (UNICA, 2022). Desde o surgimento da cultura no Brasil até 2002 se predominava o sistema manual na colheita, até a chegada da Lei n. 11.241 de 2002 e do Protocolo Agroambiental de 2007 que impulsionaram a mecanização na colheita, devido a proibição da prática da queima da palhada, o que resultou em mudanças no setor sucroenergético. Esse trabalho teve como objetivo analisar as mudanças ocasionadas no setor sucroenergético ocorridas pela transição do sistema de colheita manual para colheita mecanizada, ressaltando os aspectos econômicos, sociais e ambientais, ao longo das safras de 2000/01 a 2018/19, para o setor no Estado de São Paulo, tendo como metodologia a utilização de dados secundários que serão obtidos por meio de revisões bibliográficas, livros, trabalhos acadêmicos, entre outras produções existentes na literatura relacionados à área com ênfase no processo de colheita da cana-de-açúcar. Como resultado obteve-se no aspecto econômico que, da safra de 2007/08 para a safra 2018/19, ocorreu um aumento de 4437 colhedoras no estado de São Paulo e a área colhida mecanicamente saltou de 33% para 93,3%, enquanto a manual regrediu de 67% para 6,7%. No aspecto social podese notar uma redução de 222.943 vagas de atividades manuais no setor, desde 2007/08 a 2018/19, e um aumento no valor pago aos cortadores de cana. Já no âmbito ambiental nota-se uma redução de 46% no consumo de água, da safra 2010/11 para safra 2018/19, para produção de 1 tonelada de cana e, da safra de 2006/07 a 2020/21teve-se uma redução de 1,63 milhões de hectares com o uso da queimada autorizada e uma redução de 11,82 milhões de CO2 emitidos na at9fera. Nesse sentido, conclui-se que com a chegada do Protocolo Ambiental, em 2007, a prática da queimada da palhada teve seu uso limitado e gerou avanços no sistema de colheita, esses que resultaram em uma colheita mais sustentável e com menor número de mão de obra uma vez que as colhedoras tinham maior capacidade de colheita.

Palavras-Chave: Sucroenergético, Mecanizada, Manual, Protocolo Ambiental.

LISTA DE FIGURAS

Figura 1 - Fluxogramas de colheita manual e me	ecanizada para a cana-de-açúcar .18
Figura 2 - Operação de corte e carregamento	19

LISTA DE GRÁFICOS

Gráfico 1 - Área colhida de cana-de-açúcar em hectares, por região, do ano de 2001
a 2018 14
Gráfico 2 - Produção de etanol total, por regiões, safras 2000/01 a 2020/2021
Gráfico 3 - Produção de açúcar, por região, safras 2000/01 a 2020/21
Gráfico 4 - Nº de trabalhadores no setor sucroenergético do estado de SP em atividades mecanizadas <i>vs</i> manuais
Gráfico 5 – Valor pago por tonelada colhida ao trabalhador rural no sistema manual no Estado de São Paulo
Gráfico 6 - Hectares colhidos no Brasil e estado de São Paulo durante os anos 2000/01 a 2018/1925
Gráfico 7 – Colheita manual <i>v</i> s mecanizada no estado de São Paulo da safra 2000/01 a 2020/21 26
Gráfico 8 - Capacidade de colheita média por pessoa/dia26
Gráfico 9- Capacidade de colheita média por colhedora/dia27
Gráfico 10-Número de colhedoras no estado de São Paulo27
Gráfico 11 – Produtividade do Brasil e do estado de São Paulo da safra de 2000/01 à 2020/21
Gráfico 12 – Valor pago pela cana no campo e cana esteira no estado de São Paulo, no período das safras 2000/01 e 2020/2021 29
Gráfico 13- Valor pago as usinas de São Paulo no Kg do ATR29
Gráfico 14 – Redução da emissão de CO ₂ no estado de São Paulo 30
Gráfico 15 - Consumo de água na produção de cana no estado de São Paulo31

LISTA DE QUADROS

Quadro 1 - Cronograma para redução da prática da queimada	17
Quadro 2 - Descrição de tipos de composições	20

SUMÁRIO

1.	INTRODUÇÃO	.11
2.	REVISÃO DE LITERATURA E REFERENCIAL TEÓRICO	. 14
3.	OBJETIVOS	. 21
3. 1.	OBJETIVO GERAL	21
3.2	OBJETIVOS ESPECÍFICOS	21
4.	METODOLOGIA E FONTE DE DADOS	. 22
5.	RESULTADOS E DISCUSSÃO	. 23
5.1	Aspectos social	23
	Aspectos econômicos	
5.3	Aspecto ambiental	30
6.	CONCLUSÃO	. 32
7.	REFERENCIAS	. 34

1. INTRODUÇÃO

O Brasil é o maior produtor de cana-de-açúcar do mundo e seus subprodutos possuem grande expressão em âmbito mundial. Com isso essa cultura possui papel importante na economia brasileira, representando 2% do PIB (JORNALCANA, 2020). Na safra 2019/2020 foram colhidos 642,7 milhões de toneladas de cana-de-açúcar e a área colhida foi de 8,4 milhões de hectares (NOVACANA, 2020).

Os principais subprodutos obtidos da cana-de-açúcar são açúcar, etanol e a biomassa (utilizada para geração de energia), no qual o açúcar e o etanol apresentam-se em destaque mundiais, sendo que o Brasil é o segundo maior produtor de etanol e maior produtor de açúcar do mundo (CONAB, 2020).

Na safra de 2020/21 a moagem de cana-de-açúcar no Brasil foi de 657.433 mil toneladas, sendo a região Norte-nordeste responsável por 7,9% e a região Centro-sul por 92,1% (UNICA, 2022). Pode-se notar que a região Centro-sul se destaca no cenário sucroenergético, mas apenas o estado de São Paulo é responsável por 54,22%, 63,42% e 44,32% da moagem, produção de açúcar e etanol respectivamente da produção brasileira (UNICA, 2022). Sendo assim este trabalho irá ter enfoque no Estado de São Paulo devido sua importância na produção de cana-de-açúcar e seus subprodutos em âmbito nacional.

Devido à importância econômica e a grande área cultivada e empresas existente no setor sucroenergético, este setor se destaca na geração de empregos, sendo que na safra de 2018/19 foram gerados 2,4 milhões de empregos de forma indireta somando-se toda cadeia produtiva e, 744 mil empregos gerados diretamente pelo setor produtivo (UNICA, 2019).

Desde o surgimento da cultura de cana-de-açúcar no Brasil até 2002 o sistema predominante de colheita de cana de açúcar adotado no Brasil era o sistema manual, ou seja, utilizava-se um grande número de mão de obra braçal para realizar as etapas de corte e carregamento de cana. Para facilitar a colheita de cana e aumentar a quantidade colhida por trabalhador, utilizava-se da técnica da queima da palhada (EMBRAPA, 2000).

A técnica da queima da palhada da cana-de-açúcar facilitava o corte, porém causava impactos sociais e ambientais, entre eles problemas respiratórios causados pela elevada emissão de gases poluentes como dióxido de carbono,

óxido nitroso e metano (Borges et al, 2020). Esses gases, emitidos durante a queimada da palhada, além de afetar a população residente próximo a área cultivada afetava a atmosfera devido aos gases serem os responsáveis pelo efeito estufa.

Com esses problemas gerados pela colheita manual com uso de queimada, se fez necessário que surgisse um novo método de colheita, visando a melhoria dos aspectos ambientais e com a possibilidade e aumento da tonelada de cana colhida por hectare, isso motivou o surgimento da colheita mecanizada.

O avanço do índice de mecanização também ocorreu motivado pela Lei n. 11.241 de 2002 e a assinatura do Protocolo Agroambiental de 2007, que possuíam como intuito a proteção ao meio ambiental, por meio da exclusão da etapa da queima da palha da cana-de-açúcar, que ocorria antes da colheita manual com a finalidade de facilitar e aumentar a produtividade de corte manual por trabalhador.

A principal diferença entre o Protocolo Ambiental e a Lei é de que enquanto a Lei n. 11.241 prevê a eliminação total da queima em áreas com aptidão para o uso de máquinas para o ano de 2021, o Protocolo Agroambiental antecipou para 2014. Já para áreas com os problemas de declividade, que afeta a colheita mecanizada, o Protocolo Agroambiental impõe o ano de 2021 para o término das queimadas, enquanto a Lei permite a erradicação até o ano de 2031, ressaltando que o Protocolo cabe às usinas, empresas e fornecedores que aderiram ao Protocolo, enquanto aos demais devem seguir a Lei (IEA, 2019).

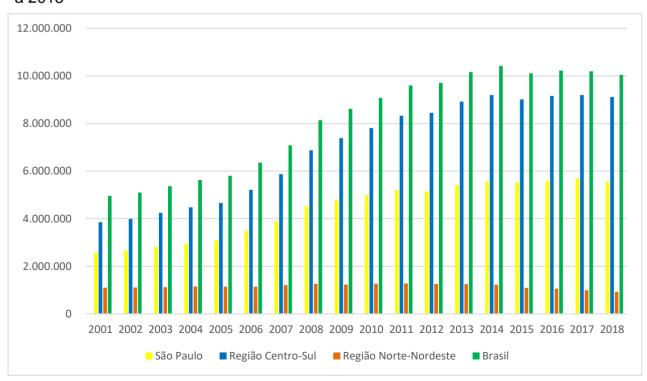
Em 2007, a área de cana-de-açúcar de usinas e fornecedores que participavam do Protocolo já correspondia a 56%, sendo que existiam 153 Usinas no estado de São Paulo e destas, 138 assinaram o Protocolo Ambiental (IEA, 2014). No ano de 2021, 91% da produção de cana do estado de São Paulo e advinda de usinas e fornecedores vieram de unidades que participam do Protocolo Ambiental (UNICA, 2021), isso corresponde a 131 usinas e 122 associações de fornecedores signatários do Protocolo Ambiental (SIMASP, 2021).

Atualmente o setor possui dois sistemas de colheita sendo eles a colheita manual com o uso de mão de obra humana de forma braçal (respeitando as novas leis) e, a principal forma de colheita praticada nos dias atuais, a colheita mecanizada através do uso de máquinas especializadas para a cultura.

Na safra de 2018/2019 foi registrado que no Estado de São Paulo o principal produto de cana-de-açúcar a atingiu 95.34 % do índice de mecanização (IEA,

2019).

Este trabalho encontra-se dividido em 6 capítulos, contando a partir dessa introdução. O capítulo 2, é referente a revisão de literatura e referencial teórico, onde são descritas as principais questões do setor sucroenergético, especificamente em relação ao açúcar, bem como a sua dinâmica produtiva e importância econômica. O objetivo geral e específicos, estão apresentados no capítulo 3. No capítulo 4 são apresentadas a metodologia e fonte de dados. No capítulo 5, são apresentados e discutidos os resultados. E por fim, no capítulo 6 são apresentadas as conclusões e finaliza com as referências bibliográficas.


2. REVISÃO DE LITERATURA E REFERENCIAL TEÓRICO

O cultivo de cana-de-açúcar no Brasil se iniciou em 1532 em São Vicente no nordeste brasileiro, no qual se construiu-se o primeiro engenho de açúcar (UDOP, 2003).

A migração do cultivo de cana-de-açúcar para o estado de São Paulo ocorreu no final do século XIX impulsionados pela produção de aguardente, que com o passar dos anos e o desenvolvimento da cultura e os produtos obtidos pela mesma ocasionaram o surgimento de institutos de pesquisa como Instituto do açúcar e Álcool (IAA) e Instituto agronômico de Campinas (IAC) e programas como o Proálcool, resultaram na expansão da cultura na região Centro-sul e a consolidação do estado de São Paulo como maior produtor de cana-de-açúcar e seus subprodutos (UDOP, 2003).

Para se ter melhor dimensão da evolução da cultura do Brasil, no **Gráfico 1** pode-se ver a evolução da área colhida de cana de açúcar durante os anos de 2001 a 2018 (UNICA, 2021), por região.

Gráfico 1 - Área colhida de cana-de-açúcar em hectares, por região, do ano de 2001 a 2018

Fonte: UNICA, 2021

Com os dados que constam no **Gráfico 1** pode-se ver que a área colhida no Brasil e na região Centro-sul dobraram de tamanho, enquanto a região Norte-Nordeste teve diminuição de 179.522 hectares, o que representa uma retração de 16,25%. Além disso, na safra de 2018, a região Centro-sul representou 90,78% da cana colhida no Brasil e o estado de São Paulo teve participação de 55,32% e 60,93% da área colhida em relação ao Brasil e a Região Centro-sul. Isso demonstra a importância do estado de São Paulo e da região Centro-sul no setor sucroenergético.

Com o avanço da área colhida, a produção dos subprodutos da cana-de-açúcar avançou. Nos **Gráficos 2 e 3**, pode-se notar a evolução histórica da produção de etanol e açúcar dentro das regiões e do estado de São Paulo.

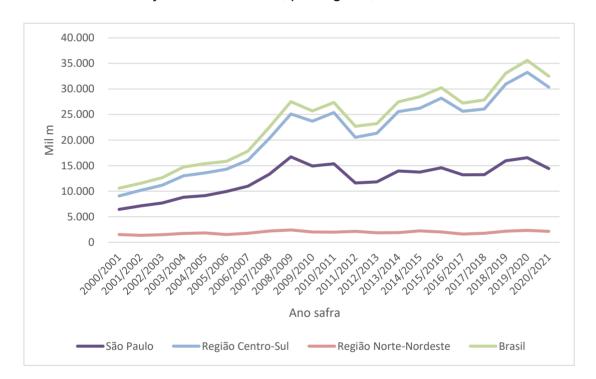


Gráfico 2 - Produção de etanol total, por regiões, safras 2000/01 a 2020/2021

Fonte: UNICA, 2021.

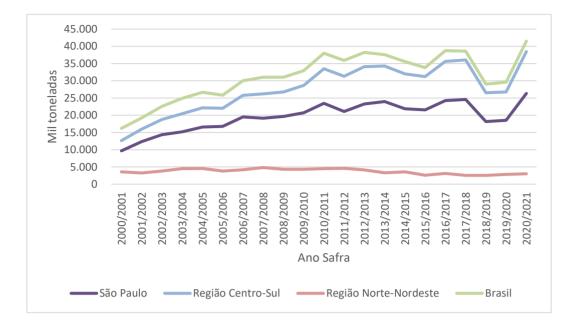


Gráfico 3 - Produção de açúcar, por região, safras 2000/01 a 2020/21

Fonte: UNICA, 2021.

Pode-se notar nos Gráficos 2 e 3 que as oscilações na produção de etanol total e açúcar no Brasil são seguidas pela produção da região Centro-sul e pelo Estado de São Paulo, isso demonstrando a importância e influencia desta região e estado na produção de etanol e açúcar ao longo das safras. Enquanto a região Norte-nordeste tem sua produção quase que retilínea sem apresentar essa oscilação verificada nas demais regiões.

Entre 1532 até 2002 o sistema de cultivo da cultura da cana-de-açúcar foi praticado predominante por operações manuais, que se baseava no elevado número de mão de obra e o uso das queimadas nas áreas de cana-de-açúcar, com a finalidade de queimar a palhada e facilitar a colheita (Borges et al, 2020).

De acordo com Bergonso et. al (2009) as queimadas dos canaviais proporcionam um aumento de 131% de partículas finas no ar, sendo que as partículas finas são as responsáveis por provocar problemas à saúde humana.

Os resíduos da cana-de-açúcar são responsáveis por 98% dos gases do efeito emitidos a partir da queima de resíduos agrícolas (Ronquim, 2010). A prática da queima da palhada ocasiona a liberação de gases como: dióxido de carbono (CO2), óxido nitroso (N2O) e metano (CH4) em grandes concentrações da atmosfera (Lima et.al, 1999).

Com isso no ano de 2002, foi decretado pelo governador do estado de São

Paulo a Lei n. 11.241 de 2002 que surgia para decretar a eliminação gradativa da prática das queimadas das palhadas nos canaviais (ALSP, 2002), conforme cronograma apresentado no **Quadro 1**.

Para fins da Lei foram pontuados fatores para determinar o que seria denominado como área mecanizável, entre eles terrenos acima de 150 ha com declividade igual ou inferior a 12% e que a estrutura físico-química do solo permitisse o uso das maquinário. A mesma ainda delimitava normativas padrões que determinavam regras para o uso das queimadas nas áreas não mecanizáveis e mecanizáveis até atingir 100% da eliminação das queimadas, vale ressaltar que está Lei tinha validade tanto para propriedades vinculas a unidade agroindustrial como para fornecedores (ALSP, 2002).

Quadro 1- Cronograma para redução da prática da queimada

ANO ÁREA MECANIZÁVEL ONDE NÃO SE PODE EFETUAR A QUEIMA		PERCENTAGEM DE ELIMINAÇÃO DA QUEIMA	
1º ano 20% da área cortada (2002)		20% da queima eliminada	
5º ano 30% da área cortada (2006)		30% da queima eliminada	
10º ano 50% da área cortada (2011)		50% da queima eliminada	
15º ano 80% da área cortada (2016)		80% da queima eliminada	
20º ano (2 <mark>0</mark> 21)	100% da área cortada	Eliminação total da queima	
ANO AREA NAO MECANIZAVEL, COM DECLIVIDADE SUPERIOR A 12% E/OU MENOR DE 150há (cento e cinquenta hec- tares), ONDE NÃO SE PODE EFETUAR A QUEIMA		PERCENTAGEM DE ELIMINAÇÃO DA QUEIMA	
10º ano 10% da área cortada (2011)		10% da queima eliminada	
15º ano 20% da área cortada (2016)		20% da queima eliminada	
20º ano 30% da área cortada (2021)		30% da queima eliminada	
25º ano 50% da área cortada (2026)		50% da queima eliminada	
30º ano 100% da área cortada (2031)		100% da queima eliminada	

Fonte: ALSP, 2002.

No entanto foi em 2007 que ocorreu o início definitivo para a alavancagem da mecanização como sistema de colheita de cana-de-açúcar, com o Protocolo Ambiental 2007, que resultou no acordo entre o governo do estado de São Paulo e a União da Industria da cana-de-açúcar (UNICA), Este Protocolo tinha como objetivo

impulsionar e consolidar a produção sustentável, visando a antecipação de prazos para o fim uso do fogo nos canaviais, proteção de matas ciliares, recuperação de nascentes e outras medidas de conservação (IEA, 2014).

De acordo com IEA (2014) o Protocolo Ambiental, em 2007, resultou no acordo de 138 unidades produtoras, enquanto em 2008 o mesmo compromisso foi acordado com a Associação dos fornecedores de cana-açúcar (ORPLANA). Após isso a eliminação do uso da prática da queimada da palhada nos canaviais teve sua data antecipada e o sistema mecanizado de colheita impulsionado.

Assim, durante este período, o setor sucroenergético possuía dois sistemas de colheita sendo praticados no setor, com características e fluxos de operações distintos como pode ser observado na **Figura 1**.

Planejamento Analise da área Mecanizado Manual Sistema e colheita Queima da Corte palhada mecanizado Carregamento Corte Manual do transbordo Transferência Carregamento de carga Bitrem Transporte Transporte Usina

Figura 1: Fluxogramas de colheita manual e mecanizada para a cana-de-acúcar

Fonte: Miller, 2008.

O sistema de colheita mecanizado trazia com sigo além da vantagem de não necessitar da técnica da queima da palhada, mas também vantagens de eficiência de colheita, uma vez que o maquinário podia trabalhar 24hrs por dia, diminuição na perda de água do solo, proporciona controle de algumas plantas daninhas (Ferreira, 2002). Por outro lado, a colheita mecanizada trazia consigo um maior número de perdas diretas e indiretas, compactação de solo e danos ao sistema radicular (Ferreira, 2002).

Em questões logísticas ambos os sistemas possuíam diferenças. Na colheita manual a logística envolvia mão de obra braçal e caminhões de transporte, onde após a queima da palhada, os cortadores de cana adentravam o canavial portando facões para corte da cana e posteriormente o empilhamento dos feixes em leiras para carregamento manual ou mecânico para os caminhões de transporte (Lenis, 2016).

Enquanto a colheita mecanizada o processo logístico começa no planejamento, visando tempo de transporte, danos aos equipamentos, áreas a serem colhidas, disposição e tipos de maquinários (Medeiros e Fernandez, 2018). Após o planejamento a colhedora de cana adentra o canavial acompanhada de um trator transbordo ou caminhão transbordo como demostrado na **Figura 2**, com o intuito de carregar as trelas do transbordo e posteriormente levar ao carregador para transferência de carga do trator para um caminhão canavieiro, esta etapa denomina de transbordamento (Machado et al, 2018).

No transporte do carreador até a usina pode ser utilizado alguns tipos de configurações de caminhões canavieiros como visto no **Quadro 2** (Silva, 2006).

Figura 2 – Operação de corte e carregamento

Fonte: MFRural, 2021

Quadro 2- Descrição de tipos de composições

COMPOSICAO	ESQUEMA	DESCRIÇÃO
Truck/Toco/Caminhão simples		Caminhão plataforma
Romeu e Julieta/Biminhão		Caminhão plataforma com uma carreta acoplada
Treminhão		Caminhão plataforma com duas carretas acopladas
Rodotrem	00 00 00 00	Cavalo mecânico com dois semi-reboques acoplados

Fonte: Silva, 2006.

Com essas diferenças logísticas e característica da mão de obra os custos envolvidos em cada sistemas são distintos entre si. Com a migração do sistema de colheita do manual para o mecanizado, mudanças aconteceram nos aspectos econômicos, sociais e ambientais no setor desde 2002 até os dias atuais, com isso este trabalho busca analisar essas mudanças dentro do setor ao longo do período, com foco no estado de São Paulo devido a sua relativa representatividade em termos de produção para o setor.

3. OBJETIVOS

3.1. OBJETIVO GERAL

O objetivo geral deste trabalho consiste em analisar as mudanças ocasionadas no setor sucroenergético ocorridas pela transição do sistema de colheita manual para colheita mecanizada, ressaltando os aspectos econômicos, sociais e ambientais, ao longo das safras de 2000/01 a 2018/19, para o setor no Estado de São Paulo.

3.2 OBJETIVOS ESPECÍFICOS

O objetivo geral foi dividido em 3 objetivos específicos, sendo levado em conta os diferentes aspectos abordados. Assim, para cada aspecto foram elencadas as variáveis a serem analisadas ao longo do período que coexistem os dois sistemas de colheitas, a saber:

- 1. Aspectos social: quadro de funcionários; nível de salário.
- Aspectos econômicos: hectares de área colhida; porcentagem de área colhida manual vs mecanizada; quantidade de colhedoras; produtividade de colheita manual vs mecanizada; valor pago por tonelada de cana colhida e ATR
- 3. Aspecto ambiental: emissão de gases, consumo de água

4. METODOLOGIA E FONTE DE DADOS

O trabalho final de graduação será conduzido com a utilização de dados secundários que serão obtidos por meio de revisões bibliográficas, livros, trabalhos acadêmicos, sites de instituições públicas e privadas, entre outras produções existentes na literatura relacionados à área do setor sucroenergético com ênfase no processo de colheita da cana-de-açúcar.

Como fontes de dados podem ser citadas:

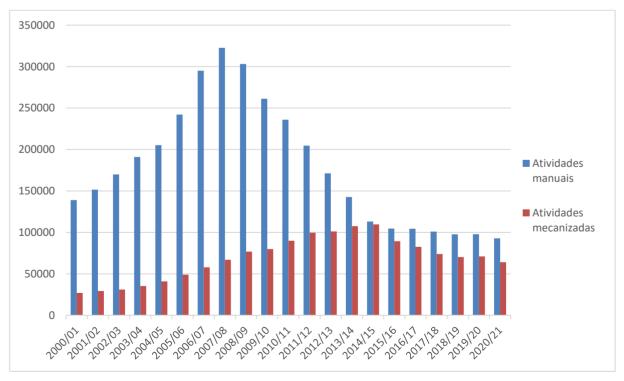
- para a análise dos aspectos econômicos: União da Indústria de Cana-de-Açúcar (UNICA); Companhia Nacional de Abastecimento (CONAB); Instituto Brasileiro de Geografia e Estatística (IBGE), União Nacional da Bioenergia (UDOP), Instituto de Economia Agrícola (IEA).
- para a análise dos aspectos sociais: Ministério do Trabalho (MTE), Instituto de Economia Agrícola (IEA), Companhia Nacional de Abastecimento (CONAB).
- para a análise dos aspectos ambientais: Secretaria da agricultura e abastecimento (SAA).

As variáveis que constituem o objetivo específico relacionado ao aspecto econômico foram selecionadas devido à literatura existente quanto ao tema, como por exemplo, o trabalho realizado anualmente por meio de Boletim, feito pela CONAB, que traz o acompanhamento de safra brasileira cana-de-açúcar (CONAB,2022) e o Observatório da cana disponibilizado pela UNICA (UNICA, 2022). Ambos os exemplos citados, trazem pontos pertinentes de discussão para o setor e, com isso, realizou-se a escolha dos principais pontos para serem abordados neste aspecto.

As variáveis que constituem o objetivo específico relacionado ao aspecto social foram escolhidas devido ao Ministério do Trabalho e Emprego realizar acompanhamentos anuais e verificar como está a atividade dos trabalhadores brasileiros em diferentes setores, inclusive no sucroenergético.

Por fim, as variáveis que constituem o objetivo específico relacionado ao aspecto ambiental foram escolhidas devido a relação existente com o Protocolo Ambiental de 2007.

5. RESULTADOS E DISCUSSÃO

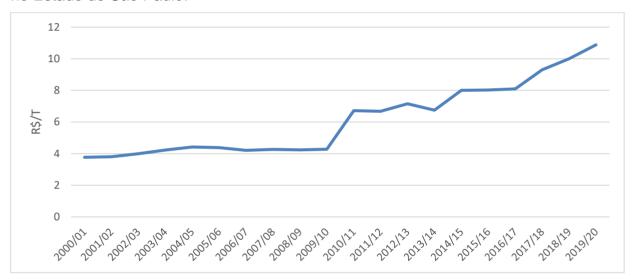

Neste capitulo serão apresentados os resultados obtidos sobre as mudanças ocorridos de sistema manual para mecanizado na colheita da cultura de cana-de-açúcar no estado de São Paulo, abordando os aspectos social, econômico e ambiental. Todos os valores monetários considerados neste trabalho são nominais.

5.1 Aspectos social

Com a transição no sistema de colheita, os salários tiveram alterações ao longo dos anos para ambos os sistemas, manual e mecanizado.

As atividades manuais, no setor sucroenergético, tiveram crescimento, até o ano de 2007, revertendo a tendência com o surgimento do Protocolo Ambiental que, ocasionou queda dos trabalhos com atividades manuais no setor, enquanto as atividades mecanizadas começaram a ter um maior crescimento, como pode-se ver no **Gráfico 4**.

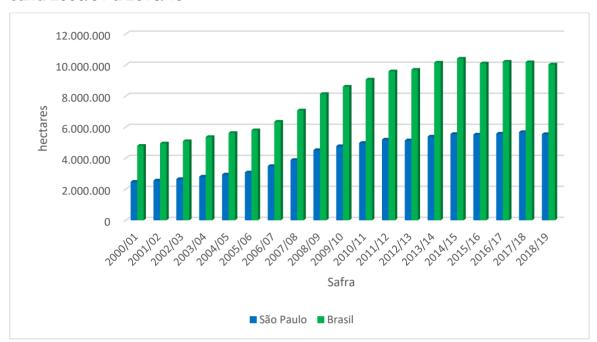
Gráfico 4 - Nº de trabalhadores no setor sucroenergético do estado de São Paulo em atividades mecanizadas *vs* manuais.



Fonte: RAIS-TEM, 2022.

No **Gráfico 5** pode-se ver o valor pago por tonelada colhida ao trabalhador rural no estado de São Paulo. Nota-se que na transição da dominância do sistema de colheita manual para a mecânica ocorrida na safra de 2007/08 para a de 2010/11, teve-se um acréscimo de 57% no salário por tonelada colhida, o mesmo ocorreu entre as safras de 2015/16 para 2019/20, que se obteve um aumento de 34%.

Esses aumentos podem estar relacionados à baixa oferta de mão de obra, uma vez que a colheita manual já representava menos de 6%, da participação na área colhida.


Gráfico 5 – Valor pago por tonelada colhida ao trabalhador rural no sistema manual no Estado de São Paulo.

Fonte: IEA, 2020.

5.2 Aspectos econômicos

A área colhida de cana de açúcar no Brasil dobrou de tamanho ao longo de 18 safras, da safra de 2000/01 para 2018/19 e o estado de São Paulo acompanhou esse crescimento de área. Ainda se nota no **Gráfico 6,** que o estado de São Paulo representa 50% dos hectares colhidos de cana-de-açúcar.

Gráfico 6 – Hectares colhidos no Brasil e estado de São Paulo durante os anos safra 2000/01 a 2018/19

Fonte: UNICA, 2022.

Durante as safras de 2000/01 à 2007/08 nota-se no **Gráfico 7**, uma predominância pelo sistema de colheita manual, na qual este sistema teve uma participação média de 64% da área colhida do estado de São Paulo. Mas, após o Protocolo Ambiental de 2007, pode-se ver que na safra de 2007/08 para 2009/10, a colheita manual sofreu uma queda de -25,6% % da área colhida, sendo essa área passada para o sistema mecanizado.

Após o ano safra 2007/08, a colheita manual foi perdendo espaço ano a ano, enquanto a colheita mecanizada foi tendo sua evolução na participação na área colhida, tendo como maior participação na safra 2020/21, com 98,3%. Atualmente a área mecanizada e manual representam respectivamente por 96,9% e 3,1%.

Gráfico 7 – Colheita manual *vs* mecanizada no estado de São Paulo da safra 2000/01 a 2020/21.

Fonte: UNICA, 2022. Moreno, 2022.

Esse aumento de área colhida é reflexo da expansão da cultura por novas áreas, atendendo a maior demanda por combustíveis de fonte renováveis e, ainda, aumento este atrelado com avanço da colheita mecanizada (Castro et al, 2022), uma vez que uma colhedora moderna, de duas linhas, consegue colher o equivalente a 117 pessoas. Nos **Gráficos 8** e **9** nota-se a diferença da capacidade de colheita no sistema manual e mecanizado.

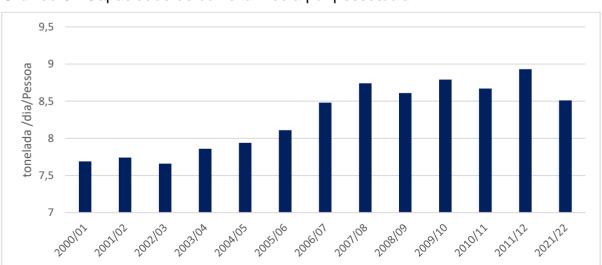


Gráfico 8 - Capacidade de colheita média por pessoa/dia

Fonte: Torquato, 2013.

A capacidade de colheita das colhedoras está segmentada em 4 épocas diferentes, como demonstrado no **Gráfico 9**, sendo a primeira colhedora lançada em 1966, passando pela primeira colhedora de cana picada até o último lançamento mais tecnológico de colhedoras de duas linhas.

Nas safras de 1997/98, 2002/03, 2010/11 e 2021/22 uma colhedora era capaz de colher equivalente/pessoas 31, 58, 63 e 117, respectivamente, com uma evolução de 860 toneladas de cana. No **Gráfico 10** apresenta-se a evolução no número de colhedoras presente no Brasil e no estado de São Paulo, sendo que apenas o estado de São Paulo possui 53,8% das colhedoras de cana-de-açúcar do Brasil.

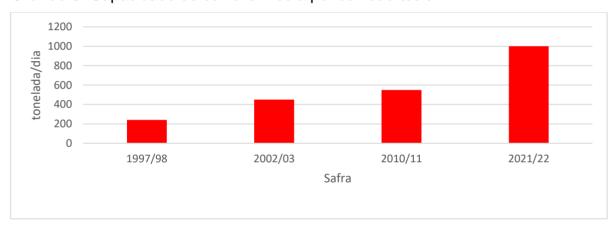
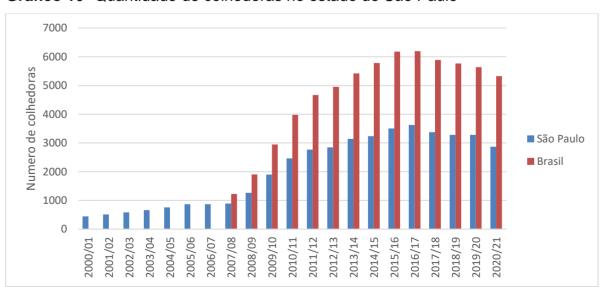
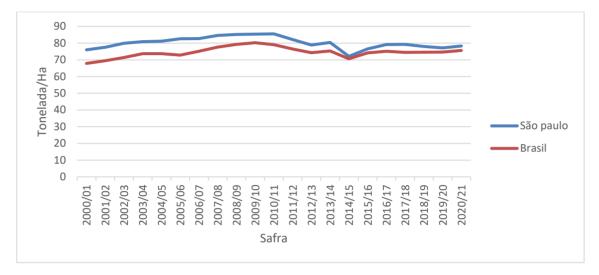


Gráfico 9- Capacidade de colheita média por colhedora/dia

Fonte: Agrolink, 2019; RPANews, 2018 e IEA, 2022.




Gráfico 10- Quantidade de colhedoras no estado de São Paulo

Fonte: IEA, 2002 e CONAB, 2022.

No Gráfico 11 nota-se a produtividade (tonelada/ha), observando-se que no

estado de São Paulo, saiu de 76 t/ha para 78,28 t/ha, no período safra de 2000/01 para 2020/21, enquanto o Brasil saiu de 67,87t/ha para 75,6 t/ha, assim correspondendo um aumento de 3% e 11,4% para São Paulo e Brasil, respectivamente.

Gráfico 11 – Produtividade do Brasil e do estado de São Paulo da safra de 2000/01 à 2020/21

Fonte: IBGE, 2022.

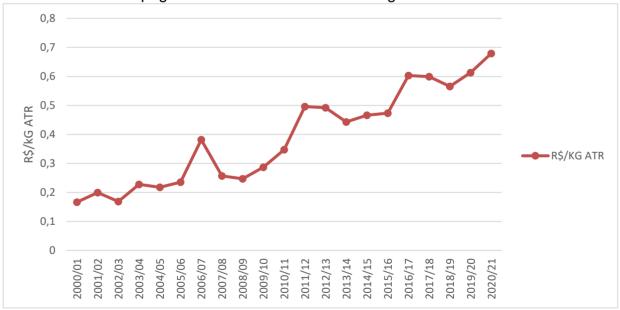

Apesar da produtividade do Estado de São Paulo ter crescido de maneira mais lenta quando comparada com os valores do Brasil, o valor pago por tonelada de cana entregue no campo e na esteira para os fornecedores tiveram comportamento oposto, ou seja, ocorreu uma evolução acentuada, na qual o valor saiu de R\$ 18,18 para R\$ 73,82 no valor pago na cana no campo e o valor pago pela cana na esteira saiu de R\$21,27 para R\$82,46 e assim houve um aumento de R\$52,64 e R\$61,19 para cana campo e esteira respectivamente da safra 2000/01 a 2020/21 como poder ver no **Gráfico 12**. Isso corresponde a 406% e 387% de aumento de aumento na cana campo e esteira, respectivamente ao longo de 20 anos safras. O valor pago pelo Kg de ATR saiu de R\$0,1665 na safra de 2000/01 para R\$0,6794 na safra de 2020/21 às usinas do estado de SP como demonstrado no **Gráfico 13**, isso representa um aumento de 408% no estado de São Paulo.

Gráfico 12 – Valor pago pela cana no campo e cana esteira no estado de São Paulo, no período das safras 2000/01 e 2020/2021

Fonte: UDOP, 2022.

Gráfico 13- Valor pago as usinas de São Paulo no Kg do ATR

Fonte: UDOP, 2022

5.3 Aspecto ambiental

Com a chegada do Protocolo Ambiental, em 2007, foram as características de manejo adotas que trouxeram benefícios ambientais, entre eles a redução da prática da queima da palhada e menor consumo de água.

Com isso, desde 2007, com a diminuição da área com uso da prática da queima da palhada, obteve-se uma redução de 71 milhões de toneladas de poluentes atmosféricos (monóxido de carbono, material particulado e hidrocarbonetos). (SAA, 2021).

No **Gráfico 14** pode-se notar a redução da área com o uso da queimada e o aumento da área colhida com mecanização, na qual na safra 2020/2021 teve-se 0,01 milhões de hectares com queima da palhada autorizada.

Com isso da safra de 2006/07 a 2020/21 teve-se uma redução de 1,63 milhões de hectares com o uso da queimada autorizada e uma redução de 11,82 milhões de CO₂ emitidos na atmosfera.

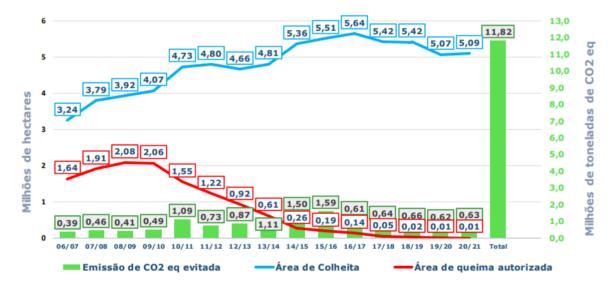


Gráfico 14 - Redução da emissão de CO₂ no estado de São Paulo.

Fonte: Secretaria de agricultura e abastecimento, 2021.

Nota-se no **Gráfico 15**, o consumo de água para produzir 1 tonelada de cana, dos anos 90 para safra de 2010/11, teve uma redução de 69,6% e, uma redução de 46%, da safra de 2010/11 para 2020/21 no consumo de água para produzir a mesma quantidade de cana.

Esses resultados devem-se, segundo SAA (2021), devido ao melhor uso da água e técnicas como: fechamento de circuitos, com reuso de água; aprimoramento dos processos industriais com maior eficiência e redução da captação; avanço da colheita crua e limpeza da cana à seco.

Gráfico 15 - Consumo de água na produção de cana no estado de São Paulo.

Fonte: Secretaria de Agricultura e Abastecimento, 2021.

6. CONCLUSÃO

Este trabalho teve o objetivo geral analisar as mudanças ocasionadas no setor sucroenergético devido à transição do sistema de colheita manual para colheita mecanizada, ressaltando os aspectos econômicos, sociais e ambientais, ao longo das safras de 2000/01 a 2018/19, para o setor no Estado de São Paulo.

O setor sucroenergético é de grande importância socioeconômica para o Brasil, tendo o estado de São Paulo como principal produtor da matéria prima e seus subprodutos, além de ser o estado responsável pelo Protocolo Ambiental de 2007, que teve o propósito de incentivar mudanças no sistema de colheita e em práticas agrícolas.

Após o levantamento histórico das safras de 2018/19, foi possível concluir no que se refere ao aspecto social, que o número de funcionários ligados às atividades manuais foram diminuindo após o Protocolo Ambiental de 2007, ao mesmo que tempo que o salário dos cortadores de cana aumentou, possivelmente em função da menor disponibilidade de mão de obra. Nesse sentido, ocorreu uma recomposição salarial para as categorias ligadas à colheita de cana-de-açúcar.

No que se refere ao aspecto econômico, pode se concluir que, a chegada do Protocolo ocasionou a necessidade de aquisição de colhedoras pelas usinas e fornecedores de cana, o que resultou numa maior capacidade de colheita e aumento de área colhida, assim ocasionando a queda da participação da colheita manual e uma ascensão da colheita mecanizada, consequentemente aquecendo o mercado desses equipamentos.

Ainda no que se refere ao aspecto econômico a mudança de sistema de mecanização, não se pode afirmar que a mudança de sistema de colheita está diretamente relacionada com o aumento de produtividade dos canaviais do estado de São Paulo, uma vez que a produtividade envolve fatores externos como fatores climáticos e avanços do manejo varietal.

No que se refere ao aspecto ambiental, conclui-se que, após o ano de 2007 com a determinação da exclusão da queima da palhada, passando para o sistema de colheita mecanizado, possibilitou-se uma pratica mais sustentável resultando no melhor aproveitamento de recursos hídricos e uma menor poluição da atmosfera.

De maneira geral, pode-se notar, portanto, que a adesão ao Protocolo Ambiental, de 2007, impulsionou a passagem do sistema de colheita manual para o sistema de

colheita mecanizado, impactando nos aspectos social, econômico e ambiental, conforme pôde ser mostrado ao longo da pesquisa.

Após a elaboração desta pesquisa, observou-se a oportunidade de serem realizados trabalhos futuros com foco na análise da produtividade de cana-de-açúcar, correlacionando com a colheita mecanizada que utiliza colhedoras alternadas *vs* colhedoras linha simples, assim, podendo inserir o sistema de plantio para a análise de diferenças de produção e produtividade.

7. REFERENCIAS

AGROLINK. Case IH celebra os 75 anos do início da mecanização da colheita de cana-de-açúcar no mundo. 2019. Disponível em: https://www.agrolink.com.br/noticias/case-ih-celebra-os-75-anos-do-inicio-da-mecanizacao-da-colheita-de-cana-de-acucar-no-mundo_425518.html. Acesso em: 2/04/2022

ASLP. Dispõe sobre a eliminação gradativa da queima da palha da cana-deaçúcar e dá providências correlatas. 2002. Disponível em: https://www.al.sp.gov.br/repositorio/legislacao/lei/2002/lei-11241-19.09.2002.html#:~:text=Disp%C3%B5e%20sobre%20a%20elimina%C3%A7%C3%A30%20gradativa,DO%20ESTADO%20DE%20S%C3%83O%20PAULO%3A&text=Artigo%201.%C2%BA%20%2D%20Esta%20lei,da%20cana%2Dde%2Da%C3%A7%C3%BAcar Acesso: 24/01.2022

BERGONSO, V.R.; FERREIRA, J. C.; SIQUEIRA, S. S. Impactos causados pela fuligem da cana-de-açúcar. 2009. Disponível em:

http://www.unisalesiano.edu.br/encontro2009/trabalho/aceitos/CC29554518862A.pdf. Acesso em: 10/03/2022.

BORGES, L F et al. Impactos ambientais e sociais causados pela queima da canade-açúcar. 2020. Disponível em: file:///C:/Users/Windows/Downloads/11-Texto%20do%20artigo-15-2-10-20200702.pdf. Acesso: 05/01/2022.

CASTRO, NICOLE RENNÓ, GILIO, LEANDRO E MACHADO, GABRIEL COSTEIRA. Impactos da mecanização na produtividade agrícola agregada da cana-deaçúcar no estado de São Paulo de 2007 a 2013. Revista de Economia e Sociologia Rural [online]. 2022, v. 60, n. 2 [Acessado 13 Maio 2022], e235496. Disponível em: https://doi.org/10.1590/1806-9479.2021.235496. Epub 27 Ago 2021. ISSN 1806-9479. https://doi.org/10.1590/1806-9479.2021.235496.

CONAB. **Acompanhamento da Safra Brasileira**. Disponível em: https://www.conab.gov.br/info-agro/safras/cana/boletim-da-safra-de-cana-de-acucar. Acesso em: 1/04/2022.

CONAB. **Safra Brasileira de cana-de-açúcar**. Disponível em: https://www.conab.gov.br/info-agro/safras/cana. Acesso em: 17/0/2022.

EMBRAPA. **Corte manual**. 2000. Disponível em: hhtp://www.agencia.cnptia.embrapa.br/CONTAG01_98_22122006154841.html. Acesso: 05/01/2022

Ferreira, I. **Pesquisa mostra vantagens na colheita mecanizada.** Esalq-USP 2002. Disponível em: http://www.usp.br/agen/repgs/2002/imprs/071.htm. Acesso: 12/03/2022

IBGE. **Produtividade da lavoura**. Disponível em: https://sidra.ibge.gov.br/tabela/1612#resultado. Acesso em: 5 /04/2022.

IEA. A Substituição De Empregos Por Máquinas: Uma Simulação para o corte da cana-de-açúcar em São Paulo. Brasil, 2002. Disponível em: http://www.iea.sp.gov.br/out/verTexto.php?codTexto=111. Acesso em: 5/04/2022.

IEA. Colheita Mecanizada da Cana-de-açúcar Atinge 95,3% das Áreas Produtivas do Estado SP Safra Agrícola. 2019. Disponível em:http://www.iea.agricultura.sp.gov.br/out/LerTexto.php?codTexto=14825.

Acesso:06//01/2022

IEA. Pagamento de Empreita nas Colheitas de Café, Cana-de-açúcar, Laranja, Limão e Tangerina, Estado de São Paulo, 2000-2019. Brasil, 2020. Disponível em: http://www.iea.agricultura.sp.gov.br/out/LerTexto.php?codTexto=13464. Acesso:05/04/2022

IEA. **Protocolo Agroambiental do Setor Sucroenérgetico**. 2014 Disponível em: http://www.iea.sp.gov.br/Relat%C3%B3rioConsolidado1512.pdf . Acesso: 10/02/2022

JORNALCANA. Setor sucroenergético representa 2% do PIB brasileiro, afirma diretor do ITC. 2020. Disponível em: https://jornalcana.com.br/setor-sucroenergetico-representa-2-do-pib-brasileiro-afirma-diretor-do-itc/. Acesso: 05/01/2022

LENIS, C . ANÁLISE DA LOGÍSTICA DE CORTE, CARREGAMENTO E

TRANSPORTE (CCT) EM UMA USINA DE AÇÚCAR E ETANOL. 2006. Disponível em :

https://repositorio.ufgd.edu.br/jspui/bitstream/prefix/3306/1/CarolinaErranLenis.pdf acesso: 29/03/2022

LIMA, M. A.; LIGO, M. A.; CABRAL, M. R.; BOEIRA, R. C.; PESSOA, M. C. P. Y.; NEVES, M. C. Emissão de gases do efeito estufa provenientes da queima de resíduos agrícolas no Brasil. Jaguariúna: Embrapa Meio Ambiente, 1999. 60 p.

MACHADO, A; VIEIRA, J; BOCCALETTI, H e SURIAN, S. **LOGÍSTICA NA COLHEITA MECANIZADA DA CANA-DE AÇÚCAR: CORTE, TRANSBORDO E TRANSPORTE**.

2018.

Disponível

https://fatecitapetininga.edu.br/perspectiva/pdf/13/e13artigo%20(3).pdf acesso: 25/03//2022

MEDEIROS, R e FERNANDES, G. **Estudo sobre a caracterização dos sistemas logísticos de cana-de-açúcar e a qualidade da matéria-prima pós-colheita**. 2018. Disponível em :

https://esalqlog.esalq.usp.br/upload/kceditor/files/2020/Inicia%c3%a7%c3%a3o%20 Cient%c3%adfica/MEDEIROS,%20R.%20G.;%20FERNANDES,%20G.%20D.%20Es tudo%20sobre%20a%20caracteriza%c3%a7%c3%a3o%20dos%20sistemas%20log %c3%adsticos%20de%20cana-de-

a%c3%a7%c3%bacar%20e%20a%20qualidade%20da%20mat%c3%a9ria-prima%20p%c3%b3s-colheita.pdf . Acesso: 28/03/2022

MFRURAL. **Colhedora e transbordo**. 2022. Disponível em: https://www.mfrural.com.br/detalhe/305938/frente-de-colheita-mecanizada-de-cana-de-acucar-completa-prestacao-de-servico-ou-locacao. Acesso: 29/03/2022

MILLER, L. **Exploração e Manejo da Lavoura da Cana-de-Açúcar.** 2008. Disponivel em:

http://www.sigacana.com.br/d_COLHEITA/4.PLANEJ_E_OPER_DA_COLHEITA_DE _CANA_INDUSTRIAL_atualiz.htm. Acesso: 05/02/2022

MORENO, Luis Marcelo. TRANSIÇÃO DA COLHEITA DE CANA-DE-AÇÚCAR MANUAL PARA MECANIZADA NO ESTADO DE SÃO PAULO:CÉNARIO E

PESPECTIVAS. Brasil/2011. Disponível em: https://teses.usp.br/teses/disponiveis/86/86131/tde-29082011-100955/publico/LuisMarcelo.pdf. Acesso em: 2/04/ 2022.

NOVA CANA. **Conab divulga levantamento final da safra de cana-de-açúcar**. 2020 Disponível em: https://www.novacana.com/n/cana/safra/conab-divulga-levantamento-final-safra-cana-de-acucar-2019-20-230420 .Acesso em: 05/01/2022.

RAIS-MTE. **Atividade econômica.** Disponível em: https://observatoriodacana.com.br/listagem.php?idMn=146. Acesso em: 7/04/2022.

RONQUIM, C. C. Queimada na colheita da cana-de-açúcar: impactos ambientais, sociais e econômicos. 2010. Disponível em https://ainfo.cnptia.embrapa.br/digital/bitstream/item/27830/1/Doc-77.pdf. Acesso 12/03/2022

RPANEWS. Colhedora de duas ou mais linhas deve ser o futuro da colheita em espaçamento simples. 2018. Disponível em: https://revistarpanews.com.br/colhedora-de-duas-ou-mais-linhas-deve-ser-o-futuro-da-colheita-em-espacamento-simples/#:~:text=Atualmente%20uma%20colhedora%20tem%20um,e%2080%20t%20por%20hora. Acesso em: 1/04/2022.

SAA. **Protocolo Agroambiental Etanol Mais Verde**. Disponível em: https://smastr16.blob.core.windows.net/etanolverde/sites/28/2021/04/2021_saa-comunicacao_protocolo-agroambiental-etanol-mais-verde.pdf. Acesso em: 5/04/2022.

SILVA, J; ALVES, M e MIGUEL, A. **Desenvolvimento de um modelo de** simulação para auxiliar o gerenciamento de sistemas de corte, carregamento e transporte de cana-de-açúcar. 2006. Disponível em:

https://repositorio.ufscar.br/handle/ufscar/3478. Acesso: 25/03/2022

SIMA: **Etano mais verde**. 2021. Disponível em: https://www.infraestruturameioambiente.sp.gov.br/etanolverde/ SIMA 2021. Acesso:

TORQUATO, Sergio Alves. Mecanização da colheita da cana-de-açúcar: benefícios ambientais e impactos na mudança do emprego no campo em São Paulo, Brasil. **Revista Brasileira de Ciências Ambientais**, Brasil, v. 1, n. 29, p. 1-14, set./2013. Disponível em: https://www.abes-dn.org.br/publicacoes/rbciamb/PDFs/29-07_Materia_4_artigos361.pdf. Acesso em: 31/03/2022.

UDOP. A História da Cana-de-açúcar - Da Antiguidade aos Dias Atuais. 2003. Disponível em:https://www.udop.com.br/noticia/2003/01/01/a-historia-da-cana-de-acucar-da-antiguidade-aos-dias atuais.html#:~:text=Oficialmente%2C%20foi%20Martim%20Affonso%20de,o%20pri meiro%20engenho%20de%20a%C3%A7%C3%BAcar.&text=A%20Europa%20enriq uecida%20pelo%20ouro,ser%20grande%20consumidora%20de%20a%C3%A7%C3%BAcar. Acesso:28/01/2022

UDOP. Valores de ATR e Preço da Tonelada de Cana-de-açúcar - Consecana do Estado de São Paulo. Disponível em: https://www.udop.com.br/cana/tabela_consecana_saopaulo.pdf. Acesso em: 4/04/2022.

UNICA. **ACOMPANHAMENTO DA SAFRA ATUAL NA REGIÃO CENTRO-SUL**. Disponível em: https://observatoriodacana.com.br/listagem.php?idMn=63. Acesso em: 04/04/2022.

UNICA. **Balanço de atividades**. 2019. Disponível em: https://www.unica.com.br/wp-content/uploads/2019/06/Relatorio-Atividades-201213-a-201819.pdf.Acesso 05/01/2022

UNICA. **Histórico de produção e moagem**. 2022. Disponível em: https://observatoriodacana.com.br/historico-de-producao-e-moagem.php?idMn=32&tipoHistorico=4&acao=visualizar&idTabela=2493&safra=202 0%2F2021&estado=RS%2CSC%2CPR%2CSP%2CRJ%2CMG%2CES%2CMS%2C MT%2CGO%2CDF%2CBA%2CSE%2CAL%2CPE%2CPB%2CRN%2CCE%2CPI%2 CMA%2CTO%2CPA%2CAP%2CRO%2CAM%2CAC%2CRR . Acesso em:05/03/2022

UNICA. **Protocolo ambiental**. 2021. Disponível em: https://unica.com.br/iniciativas/protocolo-agroambiental/. Acesso:05/02/2022

UNICA. **Observatório da cana**. Disponível em: https://observatoriodacana.com.br/. Acesso em: 17/05/2022.