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Resumo

Aprendizagem Profundo alcançou resultados estado-da-arte em vários domínios,
como processamento de imagem, processamento de linguagem natural e processa-
mento de áudio. Para alcançar tais resultados, usa-se redes neurais com várias ca-
madas de processamento juntamente com uma enorme quantidade de informações
rotuladas. Uma família particular de Aprendizagem Profundo são as Redes Neurais
Convolucionais (do inglês, Convolutional Neural Networks, CNNs), que funcionam uti-
lizando camadas convolucionais derivadas da área de processamento digital de sinais,
sendo muito úteis para detectar características relevantes em dados não estruturados,
como áudio e imagens. Uma forma de melhorar os resultados nas CNNs é o uso de al-
goritmos de regularização, que visam dificultar o processo de treinamento, mas geram
modelos que generalizam melhor para inferência quando usados em aplicações. O pre-
sente trabalho contribui na área de métodos de regularização para CNNs, propondo
mais métodos para uso em diferentes tarefas de processamento de imagens. Esta tese
apresenta uma coletânea de trabalhos desenvolvidos pelo autor durante o período de
pesquisa, que foram publicados ou submetidos até a atualidade, apresentando: (i) um
levantamento, listando trabalhos recentes de regularização e destacando as soluções
e problemas da área; (ii) um método de queda de neurônios para uso nos tensores
gerados durante o treinamento das CNNs; (iii) uma variação do método mencionado,
alterando as regras de descarte, visando diferentes características do tensor; e (iv) um
algoritmo de regularização de rótulos utilizado em diferentes problemas de processa-
mento de imagens.

Palavras-chave: Redes Neurais Convolucionais. Regularização.





Abstract

Deep Learning has achieved state-of-the-art results in several domains, such as im-
age processing, natural language processing, and audio processing. To accomplish
such results, it uses neural networks with several processing layers along with a mas-
sive amount of labeled information. One particular family of Deep Learning is the
Convolutional Neural Networks (CNNs), which works using convolutional layers de-
rived from the digital signal processing area, being very helpfull to detect relevant
features in unstructured data, such as audio and pictures. One way to improve results
on CNN is to use regularization algorithms, which aim to make the training process
harder but generate models that generalize better for inference when use in applica-
tions. The present work contributes in the area of regularization methods for CNNs,
proposing more methods for using in different image processing tasks. This thesis
presents a collection of works developed by the author during the research period,
which were published or submited until present time, presenting: (i) a survey, listing
recent regularization works and highlighting the solutions and problems of the area;
(ii) a neuron droping method to use in the tensors generated during CNNs training;
(iii) a variation of the mentioned method, changing the droping rules, targeting dif-
ferent features of the tensor; and (iv) a label regularization algorithm used in different
image processing problems.

Keywords: Convolutional Neural Networks. Regularization.
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Chapter 1

Introduction

Machine Learning models have been used for several years to solve different types
of problems, such as classification (??), data reconstruction (??), and biometry (??). To
use such techniques, it usually took some steps: first, it needed data preparation, such
as normalization; then another process called feature extraction was applied to detect
some relevant structures in the data; finally, the machine learning model was trained
using the information retrieved from the feature extraction process. This process is
still relevant if the information is structured, such as database information or sheets,
however, for unstructured data, such as images or sound, it is not the most effective
process to achieve a relevant result.

Deep neural networks, also known as Deep Learning, have achieved state-of-the-
art results in several tasks related to unstructured data, such as image classification (??),
natural language processing (??), and image reconstruction (??). Although these mod-
els still use data preparation, the process of feature extraction and the final task, such
as classification, is done during training. These neural networks are assembled in sev-
eral layers, which perform the feature extraction, and then the final layer performs the
desired task. The process of generating a model is more simple, however, it comes
with more costs for training because it needs more data to generate layers that extract
relevant information, and computational costs to process all the data.

The Convolutional Neural Networks (CNNs) are a set of Deep Learning models
often used to solve computer vision problems, such as image classification (??), object
detection (??), and image super-resolution (??). It was originally created to classify
digits from the MNIST data set (??), but now it is widely used in several different
problems. Its success in computer vision problems is due to the use of a convolutional
process among the layers, which can generate and detect relevant features in image-
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related data after the training process.
One key aspect of the Deep Learning models is that, usually, it needs a lot of labeled

data to create reliable models. In some cases, it is really hard to generate data for
training for different reasons. One case is to generate medical images to detect some
diseases. For instance, a magnetic resonance image has two costs problems: one is to
generate the image itself, which values can be a problem; the other point is to ask for
the help of a specialist to label the image correctly. These difficulties can be a problem
for Deep Learning models because they need a lot of labeled data to achieve the desired
results.

The data scarcity can lead to a problem known as overfitting, which means the
model can achieve good results on the training set but it does not reflect on the val-
idation data or in real-world applications. One way to solve this problem is to use
regularization algorithms to diminish the overfitting problem.

Regularization is defined as a set of techniques that lead to more difficulties in train-
ing time but generate more reliable models to use (??). One simple way to apply reg-
ularization is artificial data augmentation, where one can, for instance, apply some
transformation in the input data without corrupting the semantics. For example, for
image processing problems, one can move the image in some pixels to generate another
picture with the same relevant information. Even this very simple transformation can
lead to more accurate models (??).

1.1 Hypothesis

The hypothesis and contributions of the present thesis regard answering the fol-
lowing questions: a) could the Dropout logic be changed, i.e., instead of randomly
dropping neurons, using another dropping police, improve neural networks results?
And b) could a random change in the labels generate neural networks with better re-
sults? Three new algorithms are proposed to answer the questions. i) a new logic to
drop neurons during training time, based on the maximum output tensor values, ii)
an adaption of the previous method that considers the tensor structure for convolu-
tional neural networks, and iii) a label level regularization. The results shown in the
following chapters support the hypothesis. This thesis is formed from a collection
of works published and submitted by the authors during the research period.

1.2 Thesis Organization

Chapter 2 presents an in-depth analysis of regularization methods developed for
and applied for convolutional neural networks, comparing results of recently devel-
oped algorithms (no older than 5 years). In this research, thorough verification of the
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methods shows what are the strongest points of the research in the area and what could
be done to improve the research related to regularization.

Chapter 3 presents a new regularization method, called MaxDropout, which reg-
ularizes the neural network based on the maximum output value of a given tensor,
forcing the Deep Learning model to learn features from minor values.

The paper presented in Chapter 4 is an improvement of the previously mentioned
method, targeting specifically the drop for tensors generated by the convolutional pro-
cess, achieving similar results to the prior method, however, being faster during train-
ing.

Regularization on label level is not known as a common approach, however, in
Chapter 5 a new algorithm is demonstrated. It works by changing the values on the
label during training time, improving results on image classification, image super-
resolution, and software ISP via Deep Learning. Finally, Chapter 6 supplies a con-
clusion, other contributions of this thesis, and future works.
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Chapter 2

Avoiding Overfitting: A Survey on
Regularization Methods for
Convolutional Neural Networks

This chapter presents the content publish in the journal ACM Computing Sur-
veys (??), and it is used as theoretical background of this study, listing recent regu-
larization algorithms, their strenghts and some problems in the area.

2.1 Abstract

Several image processing tasks, such as image classification and object detection,
have been significantly improved using Convolutional Neural Networks (CNN). Like
ResNet and EfficientNet, many architectures have achieved outstanding results in at
least one dataset by the time of their creation. A critical factor in training concerns
the network’s regularization, which prevents the structure from overfitting. This work
analyzes several regularization methods developed in the last few years, showing sig-
nificant improvements for different CNN models. The works are classified into three
main areas: the first one is called “data augmentation", where all the techniques fo-
cus on performing changes in the input data. The second, named “internal changes",
which aims to describe procedures to modify the feature maps generated by the neu-
ral network or the kernels. The last one, called “label", concerns transforming the
labels of a given input. This work presents two main differences comparing to other
available surveys about regularization: (i) the first concerns the papers gathered in the
manuscript, which are not older than five years, and (ii) the second distinction is about
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reproducibility, i.e., all works refered here have their code available in public reposito-
ries or they have been directly implemented in some framework, such as TensorFlow
or Torch.

2.2 Introduction

Convolutional neural networks (CNNs) have achieved relevant results on several
computer vision-related tasks, such as image classification and object detection in scenes.
Such success can be explained by how the convolutional neuron works: it highlights
given features according to the spatial properties of the image. The initial layers high-
light less complex features, such as borders; however, more dept layers can detect
more complex traits, like entire objects or faces of people. Nowadays, it is hard to find
any other computer vision technique applied without any CNNs, from biometrics to
disease detection.

One key aspect concerning CNNs is how to stack the convolutional kernels to ac-
complish the best result on a given task. It is widespread to use the same basic ar-
chitecture on several different tasks, just changing the output. For instance, the basic
block used for EfficientNet (??), a neural network used for image classification, is also
used on the Efficient-Det (??) architecture to tackle the object detection task.

The architecture may be the central part of a computer vision model; however, there
are other relevant points before starting the training step. For instance, the optimiza-
tion technique can influence the final result. Even the kernels’ initial random values
can influence how well the model will perform in the end. This study focuses on one
of these aspects that can influence the final result: the regularization algorithms. De-
pending on the chosen regularization strategy used, some architectures can achieve a
relevant gain on the final results. One important aspect of using a good regularizer
is that it does not influence the final model’s performance. It means that, indepen-
dently of using or not one regularizer, the model’s computational cost for inference
is the same. However, in some cases, it can influence performance during the train-
ing phase, using a little computational overhead or pre-train epochs. In any way, the
results of the output usually overcompensate this cost.

2.2.1 How regularization works

CNNs are usually used for computer vision tasks, such as image classification and
object detection, to create models as powerful as human vision. If the amount of infor-
mation available is considered, it becomes clear the training task requires more data
variability than possible. Considering a healthy human with a regular brain and eyes,
we retain new information around 16 hours per day, on average, disregarding the time
we sleep. Even considering huge datasets such as ImageNet, the number of images
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available is minimal compared to the quantity of data a human brain receives through
the eyes. This unavailability of new data may lead to a situation known as overfitting,
where the model learns how to represent well the training data, but it does not per-
form well on new information, i.e., the test data. This situation usually happens when
the model has been trained exhaustively in the available training information that it
cannot generalize well in other new information.

As an artificial neural network, the training step of CNNs can be described as an
optimization problem, where the objective is to find out the weight values which, given
an input and a loss function, can transform the information in the desired output, such
as a label, with the lowest possible error. One way to achieve this goal is to minimize
the following function:

min
U,V
||X−WYT||2F, (1)

where ||.||2F is the Frobenius norm, X ∈ Rm×n defines the input data, and W ∈ Rm×d

and Y ∈ Rn×d denote the weight matrix and the target labels, respectively. According
to (??), the Frobenius norm imposes the similarity between X and WYT. This inter-
pretation has one main advantage: this formulation enables the optimization through
matrix factorization, producing a structured factorization of X. However, it is only
possible to achieve a global minimum if W or YT is fixed for optimizing both matrices
together converts the original equation into a non-convex formulation. This problem
can be solved if the matrix factorization is changed to a matrix approximation as fol-
lows:

min
A
||X− A||2F, (2)

where the target is to estimate the matrix A, which ends up in a convex optimization,
meaning it has a global minimum that can be found via gradient descent algorithms.
When using regularization, this equation becomes:

min
A
||X− A||2F + λΩ(A), (3)

where Ω(·) describes the regularization function based on A, and λ is the scalar fac-
tor that sets how much influence the regularization function infers on the objective
function.

One key aspect of the regularization methods, independent of the training phase
it works, is to prevent the model from overfitting the training data. It operates by in-
creasing the variability of the data on different stages of a CNN. When working with
images, the most straightforward method is random image changing, like rotation and
flipping. Several deep learning frameworks, such as Keras and TensorFlow, have their
implementation available, facilitating this kind of regularization and improving the
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results. Although this type of regularization works well, some points should be taken
into consideration. For example, some transformations may distort the image into an-
other existing class in the classification. The more straightforward example is baseline
image classification on the MNIST data set: if the rotation is too several, an input "6"
may be transformed into a "9", leading the model to learn wrong information.

2.2.2 Regularization vs. Normalization

A general problem in machine learning is to tune the parameters of a given model
to perform well on the training data and eventually new information, i.e., the test set.
The collection of algorithms that aims to reduce the error on the data that does not
belong to the training set is called regularization techniques.

One main difference between the normalization and regularization techniques is
that the second is not performed after the training period, while the first is kept in the
model. For example, Cutout (??) and MaxDropout (??) original codes show they do
not execute anything during the inference, but the BatchNormalization (??) executes
its algorithm in deducing the test set.

2.2.3 Scope of this work

This study focuses on the most recent regularization techniques for CNNs. Other
studies (????) focus on older and more general regularization methods. Here, we con-
sider three main points:

o Recently developed: besides Dropout (??), no other study is older than four years,
making this study very much up-to-date;

o Code availability: all related algorithms in this study are available in some way,
usually on Github. We considered it an essential point because it avoids studies
with possibly inaccurate results and allows reproducibility when necessary;

o Results: all techniques here were able to improve the results of the original models
significantly.

In this work, the regularization algorithms are divided into three main categories,
each one in a given section: the first one is called “data augmentation", and it describes
the techniques that change the input of a given CNN. The second category is called
“internal changes", and it describes the set of algorithms that changes values of a neu-
ral network internally, such as kernel values or weights. The third category is called
“label", in which techniques perform their changes over the desired output. Table 1
gives a list of all methods discussed in this work.
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Although we divided the methods into three different strategies, Table 1 highlights
that some algorithms work on two different levels. For instance, CutMix and CutBlur
work on both input and label levels. The majority of the methods work on input or
internal structures, which shows a lack of research on label regularization methods.

2.2.4 Comparison with Other Works

In a quick search, it is possible to find a diversity of works using Convolutional
Neural Networks, such as image classification (????????), object detection (????), and
image reconstruction (??????). However, the frequency of works for regularization
compared to other problems is very low. As far as we are concerned, we found only
two recent surveys about regularization for deep neural networks.

The first one (??) is an extensive analysis of regularization methods and their re-
sults. Although it is an interesting work, it focuses considerably on older methods,
such as adding noise to the input, DropConnect (??) and Bagging (??). Those methods
are still broadly used and have their importance; however, they are not exactly new.

Another relevant work found was a survey focused only on dropout-based ap-
proaches (??). Dropout (??) is undoubtedly an important regularization method for
different types of neural networks, and it has influenced several new approaches over
the years, besides being used in several different architectures.

In this work, we show very recent developments on strategies for improving the
results of Convolutional Neural Networks. As one can observe, it presents works as
recent as the one published on 2021 (????). The following sub-sections present more
insights and statistical information about the works surveyed in the manuscript.

2.2.5 Where do regularizers work primarily?

Even though most of the works are applied to the input, there are many studies
dedicated to internal structures and the label layer. Figure 1 depicts the proportion of
the scientific works presented in this survey.

Around 44% of the works relies on changes on the input, most known as data
augmentation strategies. The easiness of changing parameters and structures in a
CNN’s input may explain such an amount of works. Image processing- and computer
vision-driven applications still play a significant role when dealing with deep learning.
The second most common regularization approaches stand for the ones that perform
changes in the internal structures. Dropout (??) contributed considerably to advance
in this research area. Several works (??????) are mainly based on Dropout, while some
of them (????) are new approaches.
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Figure 1: Percentage of the regularization works surveyed in the manuscript.

2.2.6 Lack of Label Regularizers

We want to highlight the importance of more research on regularizers that work on
a neural network label level. Although around 22% of the works make changes on the
label as a regularization strategy, we found two relevant works on the area only (????).
Some hypotheses may be raised here.

The first one is that the label level is not intuitively changed as the input or in the
middle-level of a neural network. Performing changes in both levels is more natural,
for it is visually more obvious to understand what is going on during training and
inference. However, it is harder to explain what happens when label changes are per-
formed. Even though the original work (??) argues that it prevents the overconfidence
problem, it fails to explain why such a situation is avoided.

Another explanation is the lack of mathematical explanation for most approaches.
Fortunately, some techniques such as Dropout (??) and Mixup (??) present interesting
insights about their inner mechanism. An algebraic proof that label smoothing works
well may be an essential step for the development of new strategies concerning the last
level’s regularization.

Finally, it is always good to remember that one of the most critical steps for develop-
ing a machine learning area is creating reliable-labeled datasets. Although we focused
on regularization strategies, it is worth remembering that, eventually, a breakthrough
on the way we work with labels may lead to more powerful systems. Therefore, we
emphasize that more works related to the label-level regularization are worth research-
ing.
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2.3 Convolutional Neural Networks

Neural networks have been used since the 1950s when the first neuron emulation,
called Perceptron (??), was developed. However, it can primarily address linearly sep-
arable feature spaces. However, in the 1980s, the development of the backpropagation
algorithm (??) to set new values in a structure that uses several Perceptrons in more
than one layer, called the Multilayer Perceptron (MLP), made it possible to solve non-
linear problems as well. Even with these advances, it still lacks some relevant results
to solve unstructured data problems, such as images.

In late 1990, a new neuron structure emerged based on the 2D convolution pro-
cess, the so-called Convolutional Neural Network (??). The 2D convolution process
can find different features on an image, depending on the convolutional kernel’s size
and values. What makes a CNN so valuable for image processing is the possibility of
stacking convolutional processes to find out different features whose training can be
accomplished using the well-known backpropagation algorithm. Figure 2 illustrates a
standard structure of a Convolutional Neural Network.

Figure 2: The LeNet-5 structure. Inspired in the picture from (??).

Even being so powerful, it still needs lots of data to achieve relevant results, thus
requiring considerable computational power. In the middle of the 2000s, GPUs’ use
accelerated the training process hugely, becoming possible to solve image processing
problems in a feasible time. From 2010, the first relevant result emerged. The AlexNet
structure (??) achieved first place in the Image Net classification challenge, overcoming
the runner-up result by more than 10%. It is an 8-layer CNN with an MLP on top to
perform the classification. Since then, other CNN structures have appeared, each one
with new features in their structure.

The Visual Geometry Group developed the VGG architecture (??) which demon-
strates, for the first time, that stacking convolution layers with smaller kernels perform
better than shallow layers with bigger kernels, even then performing over the same re-
gion. This architecture achieved first place in the ImageNet classification challenge in
2012. Another architecture family with relevant results is the Inception (??????), which



34 Chapter 2. Related Works

was developed by Google by parallelizing kernel operations in the same layer and then
fusing them before the next layer.

About the same time the first Inception architecture showed up, Microsoft pre-
sented the Residual Network, most known as ResNet (??). It works by fusing the
output of layers with the same dimensions before the pooling operation. It looks like
a simple operation at first, but later on, it has been shown that this residual connection
helps the backpropagation algorithm to handle better the well-known vanishing/ex-
ploding gradient shortcoming (??).

Neural Architecture Search, known as NAS (??), developed a new way to find better
CNN architectures. Using an agent trained by the Q-Learning technique (??), it can find
out the CNN that can achieve the best result according to some rules. The drawback of
this technique is that it takes a considerable amount of time to discover the best neural
network architecture. However, recent studies (??) showed how to improve the search
algorithm, making it faster to discover new architectures.

Later in 2018, Google showed the NAS could be improved when some rules are
better designed, such as the computational limit, input size, and other parameters, and
incorporate other architectures, such as Squeeze-and-Excitation (??), ending up in the
EfficientNet family (??). The original work showed eight different architectures (called
B0-7), which perform using the same quantity of floating points operation (FLOP) as
other architectures but achieving better results. In the same study, the EfficientNet
architectures delivered state-of-the-art results in five different datasets.

All works discussed until now operate on the image classification problem. How-
ever, CNN’s can be used in several other tasks. One interesting problem is object de-
tection in natural scenes. The R-CNN (??), for instance, works in two stages, being
the first to find interest regions on the image, and the final stage classifies each region
in the desired objects. The You Only Look Once, known as YOLO (??), goes one step
further and performs the localization and classification steps in the same stage.

Another task well solved by CNN concerns image reconstruction. In this case, most
of them are Fully Convolutional Networks (FCN), which means that every single layer
on the neural network is a convolutional layer. One relevant work in this area is the
Residual Dense Network, which has a version for super-resolution (??) and image de-
noising (??) purposes. Another significant development is the DnCNN (??), which not
only resolves problems for image denoising, JPEG deblocking, and super-resolution
but has a version that can solve the three problems without any information about the
input image, performing a blind reconstruction.

The Generative Adversarial Network (GAN) was first developed using MLP (??);
however, it is used mainly with convolutional layers to solve diverse problems. One
problem tackled by GAN is the style transfer, in which the StackGAN (??) shows a
very nice result, being able to change the style completely without losing relevant in-
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formation. Another work with good results is the ERSGAN (??), which deals with the
super-resolution of images. The neural network shows outstanding results by training
a Residual-in-Residual Dense Network (RRDN) using the GAN approach.

2.4 Regularization based on data augmentation

When thinking about changes in the training data for CNNs, maybe the most in-
tuitive way is to perform alterations on the input for all changes can be visualized (or
at least imagined) before the beginning of the model’s training. Since the first CNN
model (??), basic data augmentation, such as flipping and noise adding, has proven it
can help the trained model generalize better.

2.4.1 Cutout

One straightforward but powerful technique to perform data augmentation is the
well-known Cutout (??). During training, it randomly removes regions of the image
before feeding the neural network. In (??), the authors exhaustly analyzed what would
be the ideal size of the removed region in the CIFAR-10 and CIFAR-100 datasets. The
ideal size varies according to the number of instances per class and the number of
classes for a given dataset. For example, the best results on the CIFAR-10 dataset were
accomplished by removing a patch of size 16× 16, while for CIFAR-100 the region size
concerning best results was 8× 8. For the SVHN dataset, the best crop size was found
out by using a grid search, which outputs the 20× 20 size as ideal. Regarding the STL-
10 dataset (??) the cut size for the best result was 32× 32. Figure 3 shows how Cutout
works.

Figure 3: How Cutout works. Extracted from (??)

2.4.2 RandomErasing

RandomErasing (??) was further developed based on the Cutout technique. While
the latter removes random crops of the image, RandomErasing is concerned about
removing and randomly adding information on the blank space, such as noise. Differ-
ent from Cutout, RadomErasing does not remove pieces of the image every time. In



36 Chapter 2. Related Works

this work, the authors evaluated the method on three different classification datasets
(CIFAR-10, CIFAR-100, and Fashion-MNIST), the PASCAL VOC 2007 (??) dataset for
object detection, and three different CNN architectures for person re-identification
(IDE (??), TriNet (??), and SVDNet (??)). For the classification task, four different archi-
tectures were used for evaluation purposes: ResNet (??), ResNet with pre-activation (??),
Wide Residual Networks (??) and ResNeXt (??), including four distinct setups for the
two first architectures. In all cases, the RandomErasing approach accomplishes a rel-
evant error reduction (at least 0.3%). For the object detection task, the mean average
precision (mAP) was increased by 0.5 when the model was trained only with the avail-
able data from the dataset and 0.4 gain when the training data was combined with the
PASCAL VOC 2012 training dataset (??). Figure 4 shows how RandomErasing works.

Figure 4: How RandomErasing works. Extracted from (??).

2.4.3 AutoAugment

AutoAugment (??) tries to find out what transformations over a given data set
would increase the accuracy of a model. It creates a search space for a given policy us-
ing five different transformations ruled by two additional parameters: the probability
of applying a given alteration (which are: Cutout, SamplePairing, Shear X/Y, Trans-
late X/Y, Rotate, AutoContrast, Invert, Equalize, Solarize, Posterize, Contrast, Color,
Brightness, and Sharpness) and the magnitude of this change. These policies are then
fed into a "child" model, which is a CNN trained with part of the training data set. The
accuracy of this CNN is informed to a "controller" model, which is a Recurrent Neural
Network (RNN) - more specifically, a Long-Short Term Memory. This RNN outputs
the probabilities of a given policy to be used in the future. At the end of the controller
training procedure, the five best policies (each one with five sub-policies) are used to
train the final model used to evaluate the data set. Using these generated policies and
sub-policies, AutoAugment accomplished state-of-the-art results on CIFAR-10, CIFAR-
100, SVHN, and ImageNet datasets. One huge advantage of this approach is the trans-
ferability of these policies across different datasets: in the original work, the policies
found out for ImageNet were used to train five other different datasets, improving the
results significantly even when the AutoAugment technique was not trained on them.
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One disadvantage of this approach is the time used to train the controller model: for
the ImageNet dataset, for instance, it took around 15, 000 hours of processing, which
may be impracticable in several cases. Fast AutoAugment (??) aimed at overcoming
such a bottleneck with a new algorithm, reducing the time related to the search proce-
dure significantly, besides producing similar results.

2.4.4 PBA

Population Based Augmentation (PBA) (??) not only showed a novel augmenta-
tion algorithm but demonstrated schedule policies instead of fixed policies, which im-
proves the results from the previous studies (????). At every 3 steps, it changes half
the policies, being 1/4 changes in the weights and the other 1/4 a change in the hyper-
parameter. While AutoAugment implies an overhead of 5, 000 hours for training over
the CIFAR-10 data set, PBA increases it by only 5 hours.

2.4.5 RandAugment

As mentioned before, a huge bottleneck for the methods which look for finding the
best data augmentation involves their computational burden since it may take longer
than the own neural network training. Another problem is related to the strategies
found during the search, which may end up in a sub-optimal strategy, i.e., it does
improve the results locally; however, it does not lead to the best global result for it
uses a shallower neural network and assumes that this rule can be applied to any
other, and possibly, deeper architecture. RandAugment (??) uses the 14 most common
policies found on previous works (??????) and performs the search of the magnitude
of each policy during training, thus removing the need for a preliminary exploration
step and tailoring the data amplification to the current training CNN. Results show
that the method is not only faster than previous approaches (??????) but improves the
outcomes significantly.

2.4.6 Mixup

One possibility for training CNN concerns mixing two images from the training
data set and forcing the model to determine which class this mixture belongs reliably.
However, it is not widespread how to generate the encoding label for such a mixture.
Providing this new input/output training pair allows the model to learn more features
from corrupted inputs. The original work shows that models using such an approach
can improve results not only in the image classification task but in speech recognition,
stabilization in generative adversarial networks, tabular datasets, and other problems.
Figure 5 demonstrates how mixup works.
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Figure 5: Two different examples using Mixup. Extracted from (??)

2.4.7 CutMix

Another strategy to mix inputs and labels to improve the results is the CutMix (??).
Unlike Mixup, CutMix replaces entire regions from a given input and changes the
label by giving the same weights as the area used by each class. For example, if a
cat’s image is replaced in 30% by an image of an airplane, the label is set to be 70% cat
and 30% airplane. This strategy shows a significant improvement in results. By using
techniques that map the most activated regions (e.g., grad-CAM (??)), one can observe
that the generated heat maps highlight better the areas that define the object of interest
more accurately. Figure 6 illustrates the technique.

Figure 6: How CutMix works. Extracted from (??).

2.4.8 CutBlur

Several Deep Learning tasks targeting image processing, such as image classifica-
tion or object detection, can improve their models by using data augmentation. Sev-
eral works, such as AutoAugment (????), Cutout (??), and RandomErasing (??) can
improve results significantly by applying some clever but straightforward transforma-
tions on the training images. However, for super-resolution (SR) tasks, the literature
lacks works that proposed regularization techniques to handle the problem explicitly.
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Even though the aforementioned techniques can be used and possibly improve re-
sults, they are not natively designed to cope with the SR problem. The only approach
found, so far, is the CutBlur (??), which works by replacing a given area on the high-
resolution image (HR) with a low resolution (LR) version from a similar region. The
authors showed that CutBlur helps the model generalize better on the SR problem but
that the same technique can be applied to reconstruct images degraded by gaussian
noise.

2.4.9 BatchAugment

One important hyperparameter for training CNNs concerns the mini-batch size,
which is used to calculate the gradient employed in the backpropagation. Usually, the
GPU’s upper limit is employed for such a hyperparameter, which is crucial to speed
up the convergence during training. The Batch Augmentation work (??) cleverly uses
this limit. Instead of just fulfilling the entire memory with different instances from
the dataset, it considers half of the memory limit using the default set up for data
augmentation and then duplicates all instances with different data augmentation pos-
sibilities. It sounds like a straightforward technique; however, results demonstrate that
neural networks that use such an approach have a significant improvement on the fi-
nal results. Another point is that, by duplicating the augmented images, the analysis
showed that it is necessary fewer epochs for convergence.

2.4.10 FixRes

The image resolution may influence both the training step efficiency and the final
classification accuracy. For instance, the research on EfficientNet (??) highlights this
idea by making the input size one of the parameters that influence the final result.
However, if a model is trained, for example, with a resolution of 224× 224, the test
set’s inference uses the exact resolution. The work proposed by (??) highlighted that
the resolution of the test set should be higher than the resolution used for training.
This change not only produces a more reliable neural network but it trains faster than
the traditional approach, for it requires less computational effort for training since the
images used for such a purpose are smaller than the ones used for inference. The
proposed approach shows it can improve the results on other datasets when transfer
learning is used.

2.4.11 Bag-of-Tricks

One critical point of the works analyzed here is that they frequently do not combine
any other regularizer with their current research. Hence, it is hard to know how two
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regularizers can influence one another. The Bag of Tricks research (??) performs this
investigation by combining several known regularization methods, such as Mixup (??),
Label Smoothing (??) and Knowledge Destilation (??). The ablation study shows that if
some cleverness is applied, the final result can be significantly improved. For instance,
a MobileNet (??) using this combination of methods improved its results by almost
1.5% in the ImageNet dataset, which is a significant gain. However, the research lacks
a deeper evaluation of methods for regularization among layers, such as Dropout (??).

2.5 Regularization based on internal structure changes

Regularization methods can work in different ways. In this paper, we define inter-
nal regularizers as the ones that change the weights or kernel values during training
without any explicit change on the input. This section is divided into two main parts:
the first presents a deeper description of how dropout works and some of its variants,
such as SpatialDropout and DropBlock. In the second part, we describe other methods
that aim to perform other tensors’ operations, such as Shake-shake regularization.

2.5.1 Dropout and variants

Dropout (??) was proposed as a simple but powerful regularizer that aims to re-
move some neurons, thus forcing the entire system to learn more features. The original
work shows it can be applied not only on CNNs but in Multilayer Perceptrons (MLPs)
and Restricted Boltzman Machines (RBMs). The probability of dropping out each neu-
ron is estimated through Bernoulli’s distribution at each step of the training phase,
thus adding some randomness in the process. The original work shows dropped neu-
ral networks can generalize better than standard ones.

2.5.2 MaxDropout

While Dropout (??) randomly removes the neurons in the training phase, Max-
dropout (??) deactivates the neurons based on their activations. It first normalizes the
tensor’s values and then sets to 0 every single output greater than a given threshold p,
so the higher this value, the most likely it to be deactivated. The original work shows
it can improve ResNet18 results on CIFAR-10 and CIFAR-100 (??) datasets, and it also
outperforms Dropout on the WideResNet-28-10 model (??).

2.5.3 DropBlock

CNN works so well on images and related fields (such as video) that it can gener-
ate correlated regions among its neurons. For instance, in the image classification task,
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heatmaps generated by techniques like grad-CAM (??) show that, when correctly es-
timated, CNN highlights regions of interest around the object that has been classified.
DropBlock (??) shows that removing entire areas of a given tensor (i.e., feature map)
can help the model to generalize better. By using ResNet-50 and AmoebaNet-B models
on the image classification task, RetinaNet on object detection, and ResNet-101 for im-
age segmentation, it shows that it can improve results better than Dropout and other
internal regularizers (????). DropBlock is applied on every feature map of the CNN,
starting the training with a small ratio and slowly increasing its value. Its experiments
show relevant results on the ImageNet dataset, increasing the baseline accuracy by
almost 2% when using ResNet-50, beating other regularizers, such as Cutout and Au-
toAugment, and around 0.3% when using AmoebaNet-B. In the object detection task,
the RetinaNet model is improved by more than 1.5 in the AP metric.

2.5.4 TargetDrop

Attention mechanism can be incorporated into a given regularizer so it can act in
the appropriate region. For instance, the TargetDrop (??) combines this mechanism
with DropBlock. During training, it allows the entire system to remove most discrim-
inative areas on a given channel. Results show this method not only accomplishes
better results than DropBlock but, by using grad-CAM (??), demonstrates more consis-
tency in the region that determines to which class a given input belongs.

2.5.5 AutoDrop

Although effective, Dropout lacks spatial information for choosing what neuron to
drop. DropBlock’s strategy is to drop entire random regions on hidden layers instead
of singular neurons, thus forcing a CNN to learn better spatial information. However,
the drop pattern is manually designed and fixed, which may be improved if these
patterns could be learned during training. AutoDrop (??) forces the CNN to learn
the best drop design according to information from training by using a controller that
learns, layer by layer, the best drop pattern. Results in CIFAR-10 and ImageNet show
that these patterns improve results and can be transferred in between data sets.

2.5.6 LocalDrop

The Rademacher complexity was used to redefine both Dropout and DropBlock (??).
After an extensive mathematical analysis of the problem, a new two-stage regulariza-
tion algorithm was proposed. Although very time-consuming, the proposed method
achieves relevant improvement on different CNN architectures targeting image classi-
fication.
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2.5.7 Other methods

In the last few years, the use of residual connections, first introduced in the well-
known neural architecture ResNet (??), and their further improvements (????) have
achieved relevant results on several tasks. Later studies (??) have shown that such
a success is due to the creation of a structure called “identity mapping", which is the
reconstruction of the original input. The residual connection then forces the model to
learn how to construct these structures.

2.5.8 Shake-Shake

One way to force regularization on these architectures is to give different weights to
each branch of the residual connections during training. The original ResNets works
by adding the weights on each branch without any differentiation. During training,
Shake-shake (??) works on 3-branch ResNets by changing the multiplication factor of
each branch on the forward pass and multiplying by a different value on the back-
ward pass, thus changing how each branch affects the final result. For the inference, it
multiplies each branch by a factor of 0.5.

Results on CIFAR-10 show that such an approach can improve outcomes by at least
0.15%, achieving almost 0.6% improvement on the best result. Results on the CIFAR-
100 were improved by 0.4%; however, in this specific case, the removal of weights’
changes on the backward pass ends up in slightly better results, improving by 0.5%.
Besides the improvement, this method only works on 3-branches ResNet, making it
hard to compare other methods directly.

2.5.9 ShakeDrop

One improvement to tackle the problems of Shake-shake is the ShakeDrop (??). It
works not only on ResNeXt architecture but on ResNet, Wide ResNet, and Pyramid-
Net too. To accomplish such results, ShakeDrop changes the formulation proposed by
Shake-shake. The combination of these perturbations on the branches shows Shake-
Drop has more tools not to be trapped on local minima. Results show that it can out-
perform the original results obtained by each architecture mentioned earlier.

2.5.10 Manifold Mixup

A neural network is usually generalized as a function that, given input data and
a set of learnable parameters, outputs the target value accordingly. The Manifold
Mixup (??) acts like the Mixup (??), however, operating in any internal layer of a CNN,
and not only in the input layer. A deep neural network can be considered a set of
smaller neural networks. Each one outputs some desired features; therefore, if all sub-
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nets work well, the final result can be regarded as a good one. Yang et al. (??) propose a
new strategy to design the loss function: it first calculates the traditional loss of a mini-
batch through the feedforward process. After that, it generates sub-networks from
the original one and then computes one loss for each model by supplying the same
mini-batch using different image transformations. Finally, the final loss is calculated
by adding the traditional loss with the losses from each sub-network. This technique
shows a great potential improvement in different datasets and CNN architectures.

2.6 Label Regularization

Revisiting some information on Table 1, other methods use label smoothing as part
of their regularization strategy. For instance, Mixup (??) averages the values of the
labels depending on the interpolation between two different images. The same rule
is applied for the Manifold Mixup technique (??); however, the data interpolation is
computed among the layers and the same calculus is used for resetting the label values.

Another regularizer that uses label transformation is Cutblur (??). In this case, the
transformation is used so wisely that, during training, the label could be inverted with
the input, making the input as the label, and the model would converge as expectedly.
The reason for this expected result is due to the cut size of the low-resolution and
high-resolution images, which are not defined beforehand. It means that the input can
be a low-resolution image with a crop from the high-resolution image, and the label
would be the high-resolution image with the crop from its low-resolution counterpart.
Therefore, inverting the label and input still makes sense.

Other methods can also have their results improved by using some rationale bor-
rowed from label smoothing. For instance, Cutout (??) removes parts from the input,
so it makes sense to "remove" part of the label according to the crop size as well. Pre-
tend the crop size is 25% of the image, so the active class could be dropped from 1
to 0.75. The same strategy can be applied to RandomErasing (??). Methods that drop
neurons during training, such as Dropout (??) could, for example, drop the values of
the hot label by the same range of the total active neurons deactivated during training.

2.6.1 Label Smoothing

It is widespread in a general classification task to use the one-hot vector to en-
code the labels. Dating back from 2015 (??), label smoothing proposes a regularization
technique in the label encoding process by changing the value on each position of the
hone-hot representation.

Label smoothing works by preventing two main problems. First, the well-known
overfitting, i.e., the situation where the model learns the information about the training
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set but cannot generalize the classification in the test set. The second and less obvious
is overconfidence. According to the authors (??), by using the smoothing factor over
the encoding label, the softmax function applied over the vector produces values closer
to the smoothed encoded vector, limiting the value used in the backpropagation algo-
rithm and producing a more realistic value according to the class.

2.6.2 TSLA

One difficulty of using label smoothing is to find out what value of ε (i.e., smooth-
ing factor) is the ideal, either for a general or for a specific data set. The original work
suggests that ε = 0.1 is the excellent condition; however, the Two-Stage Label Smooth-
ing (TSLA) (??) suggests that, in general, the gradient descent combined with the label
smoothing technique can only improve the results until a certain point of training, af-
ter that it is better to set all values to 0 and 1 for the active class. For instance, when
training the ResNet18 in the CIFAR-100 data set for 200 epochs, results suggest the best
performance is achieved when label smoothing is used until the epoch 160.

2.6.3 SLS

Usually, it is not straightforward to define appropriate values for the label smooth-
ness factor. Structural Label Smoothing (SLS) (??) proposes to compute such a value
by estimating the Bayes Estimation Error, which, according to authors, helps define the
label’s boundaries for each instance. Several experiments show that this approach can
overcome the traditional label smoothing method on different occasions. Although
the work is fully evaluated on MobileNet V2 (??), it does not consider other neural
network architectures. Even though some popular data sets were used for comparison
purposes, e.g., CIFAR and SVHN, the work is limited to MobileNet-V2 only.

2.6.4 JoCor

This work proposes a new approach to avoid the influence of noisy labels on a
neural networks. JoCoR (??) trains two similar neural networks on the same data set
and tries to correlate two different labels. The method calculates the loss by adding
the cross-entropy losses of both networks plus the contrastive loss between them and
then uses only the most negligible losses on the batch to update the parameter of the
architectures. The authors argue that both networks agree with the predictions by
using the smallest values to update parameters, and the labels tend to be less noisy.
Although the method was developed for weakly supervised problems, it could easily
fit traditional supervised problems, such as data classification, to improve outcomes.
The downside of this method is using two neural networks for training, which requires
more processing and memory.
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2.7 Methodology

We provide a direct comparison among each regularizer described in this work. We
divided each table by model for a more transparent comparison and then provided the
result for each dataset available on the original work and related works. The results
are shown on the classification task, showing how each algorithm performed in the
most common datasets.

2.7.1 Datasets

The last important part of training a neural network and defining the baseline is
to decide what dataset should be used for evaluation, either for training and valida-
tion. For the sake of research in regularization in image processing, two datasets are
considered the most frequent, i.e., CIFAR, Imagenet, and SVHN.

2.7.1.1 CIFAR

The original CIFAR (Canadian Institute For Advanced Research) dataset consisted
of 80 million images; however, due to some ethical problems, such as offensive and
prejudicial images, the authors decided to make it unavailable 1. Instead, two other
subsets have been frequently used in regularization research: (i) CIFAR-10 and (ii)
CIFAR-100.

The CIFAR-10 subset is compounded by 60, 000 32× 32 images, divided into 50, 000
figures for training and the remaining 10, 000 for test/validation. It is divided into ten
classes between animals (bird, cat, deer, dog, frog, and horse) and objects (airplane,
automobile, ship, and truck).

The CIFAR-100 is also built by 60, 000 32× 32 images, divided into 50, 000 figures
for training and the remaining 10, 000 for test/validation. However, it is divided into
100 classes, being harder to classify than its counterpart version. Objects and animals
also compound the classes. Besides, both versions of the CIFAR dataset use the same
images for training and testing.

2.7.1.2 ImageNet

Ordinarily called a “dataset", the ImageNet is a project developed to improve arti-
ficial intelligence tasks, such as image classification. ImageNet dataset is usually asso-
ciated with the “2012 ImageNet Large Scale Visual Recognition Challenge" (ILSVRC),
which comprises 1, 240, 000 224x224 images for training and 50, 000 for validation pur-
poses divided into 1, 000 classes. It has one order of magnitude bigger than the CIFAR
subsets.

1 More information: http://groups.csail.mit.edu/vision/TinyImages/



46 Chapter 2. Related Works

ImageNet is historically relevant in the deep learning community, mainly for those
who work with image classification, for it was in the 2010 ILSRVC that the first prac-
tical work using CNN was demonstrated: the AlexNet (??), a neural network com-
pounded by convolutional and a multilayer perceptron (MLP) layer, trained end-to-
end, achieved first place in the context, outperforming the runner-up by more than
10% in the accuracy metric. Since then, several deep learning architectures have been
designed to cope with image classification problems on that dataset (????????).

2.7.1.3 SVHN

Used less frequently than the datasets mentioned above, but it is still a good base-
line, the Street View House Numbers (SVHN) (??) is a set of images that comprises
houses’ numbers. Some characteristics come from the MNIST data set (??), like the 0-9
digits as the label; however, it has another order of magnitude of difficulty and number
of instances.

According to the website 2, there are two versions of the dataset. The first one is a
collection of images containing two or more digits in the same number, forming more
complex instances and not being frequently used. All images are colored and vary in
resolution and size.

Regularization works often uses the second version of the dataset. The same im-
ages from the first set are once more used; however, they are now segmented by each
digit, so every label is among the 0-9 range. These images are scaled in 32× 32 size,
varying in resolution and color. There are three divisions of the dataset. The first is the
original training set, formed by 73, 257 labeled instances. The second division contains
26, 032 images, and it is used for evaluation purposes. The third subset is called “extra"
and includes 531, 131 designated figures. Realize that some works use the “extra" and
“training" parts for training models, and others use the “training" portion to the size
and time taken for training. Results reported in Table 2 are the ones that use both sets
in training.

2.7.2 Architectures

For a fair comparison, two regularization methods must use the same architecture.
In all works mentioned earlier, at least one of the architectures described in this sub-
section is used.

2.7.2.1 ResNet

The oldest architecture used in most of the regularization works, the ResNet fam-
ily (??) is still one of the most commonly used CNNs. It stands for the first neural
2 http://ufldl.stanford.edu/housenumbers
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network to use residual connections, which is the concatenation of the output from
previous layers with further transformations. The residual connection is powerful,
functional, and easy to implement.

Several works use two variants of the ResNet. These variants are different not only
because of the depth of the neural network, but the blocks have a different constitution.
The ResNet-18, as the name suggests, is built from 18 layers with residual connections
between every block, each block having two or three layers of a sequence of convo-
lution and batch normalization (??), depending on the position of the block, with the
third layer as a pooling layer by changing the stride of the convolution to 2 instead
of 1. The other variant is the ResNet-50, which uses 50 layers; however, built-in more
complex blocks, the so-called “bottleneck". Every block has three or four layers of con-
volution and batch normalization, again depending on the block’s position. The fourth
block works as a pooling layer, with the same rules as previously described.

2.7.2.2 Wide Residual Network - WRN

Another widespread architecture in regularization works is the Wide Residual Net-
work (WRN) (??). It uses the same concept of residual connection between layers, but
it has some structural differences from ResNet. The first one is the use of the concept of
pre-activation (Pre-Act) layers. Both ResNet-18 and ResNet-50 use a sequence of con-
volution, batch normalization, and ReLU activation in their blocks. The Pre-Act block
changes this sequence, i.e., it first employs batch normalization, then ReLu activation,
and finally the convolution over the input. As shown in the original work (??), this
sequence can outperform the traditional chain.

The second difference is the change in the widening and depth of the neural net-
works. It is widespread to observe the WRN being called “WRN-d-k", with k as the
widening factor and d is the depth factor. The depth is the usual concept, i.e., it means
the number of convolutional layers; however, the widening changes the structure sig-
nificantly. When k = 1, it has the same structure as the ResNet; however, it means
the layer has more convolutional kernels in a given layer when this number increases.
This small change can generate a much shallower network (with 16 layers) with simi-
lar results as the ResNet-1001, containing 1, 001 layers. In the regularization works, the
most common architecture is to employ the WRN-28-10, but it is possible to find some
of them using the WRN-16-8 either.

The last distinction is the use of Dropout in the original architecture. The number
of convolutional layers increases drastically on each layer, which may lead to over-
fitting (??). Dropout regularization between the convolutional layers after the ReLU
activation helps perturb the batch normalization operation, which prevents overfit-
ting.
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2.7.2.3 ResNeXT

Intuitively, increasing the number of layers, blocks, or the number of kernels on
some layers leads to the idea of better final results. For instance, some studies increase
the number of blocks (??) or the number of convolution kernels in the layers (??) heav-
ily. ResNeXt (??) introduces the concept of cardinality to accomplish better results.

Since ResNet (??), most of the neural networks are composed of the main branch,
i.e., convolutional, activation, and batch normalization operations, followed by resid-
ual connections. In the ResNeXT architecture, the main string is divided by its cardi-
nality value: for example, if a ResNet has a branch with 32 convolutions, followed by
64 and then another 32 convolutions, a ResNeXT block with cardinality 32 divides the
main branch in 32 streams of 1, 2, and 1 convolution processes, and then concatenate
all units before adding the residual value. It looks just a tiny difference in the general
design; however, results in CIFAR and ImageNet datasets show that such a remodel-
ing leads to better results. Comparing to previous architechtures (??????), it showed
better outcomes.

2.7.2.4 PyramidNet

The last most common neural network is the one that achieves the best general
results among the four mentioned here. The PyramidNet (??) shows some new pro-
cedures to improve outcomes from previous convolutional neural networks. The first
difference is the size of each residual block. While most neural networks either keep
the size of the output or downsample it and increase the feature map in the following
layer, the PyradmidNet gradually increases the dimensionality in the subsequent layer.
Such a procedure has been shown to improve the results in the classification task.

Such an increase in the feature map’s size can also occur inside a residual block. It
means that adding outcomes from the residual branch can be a problem concerning the
dimensionality of the input tensor. To solve this, the authors proposed a Zero-Padded
Shortcut Connection, which adds the values from a previous smaller tensor into a big-
ger one. According to He et al. (??), this operation might influence the gradient value
because any change in this branch (even a scalar multiplication or a dropout regular-
ization) might lead to wrong backpropagation values; however, the study shows that
a zero-padded shortcut does not influence the values because no other operation is
performed in the residual connection.

The last improvement is a new residual building block. This study shows that
better results can be accomplished if the building block uses fewer ReLU activations.
The first ReLU activation of the block does not influence that much in the nonlinearity
of the system so that it can be removed.
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2.8 Experimental Results

Convolutional Neural Networks are usually designed to achieve the best possible
performance in image processing, depending on the targeting difficulty. Sometimes,
the same basic structure can be used in two or more problems, i.e., one needs to change
the output layer according to the labels. For instance, the EfficientNet structure (??) is
re-used in the Efficient-Det work (??). Concerning regularization techniques, other
components can be tricky to get rid of. Table 2 shows the results of several models on
CIFAR-10, CIFAR-100, SVHN, and ImageNet datasets. The next sections overview an
in-depth discussion about the experiments considered in this paper.
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2.8.1 State-of-the-art Regularizer?

Defining the best regularization technique is not something trivial. For example,
the baseline for determining the best image classifier is the one that achieves the best
results in the 2012 ILRSVC image classification challenge dataset. During this work,
the current research with the best impact on the mentioned dataset is the Meta Pseudo
Labels approach (??). One may argue that the best result achieved by a regularization
technique on a given architecture might be considered the best regularization method.

According to Table 2, which is a compilation of the results in the most common
architectures, one can observe that AutoAugment performs better than PBA using
ResNeXT architecture plus Shake-shake regularization in the CIFAR-10 dataset. How-
ever, when both regularization algorithms are compared using PyramidNet and Shake-
Drop regularization, the opposite happens: PBA achieves better results on CIFAR-10
than AutoAugment. Further analysis showed it is possible to observe other variations
in the results.

The best possible assumption about state-of-the-art regularization is based on the
results and sorting them into work areas. For example, the likely best regularizer con-
cerning the input layer is the RandAugment, for it does not affect the time spent for
training and achieves satisfactory results. For internal regularizers, it is even more
challenging. Take ShakeDrop as an example. It has not been evaluated within ResNet-
18, while MaxDropout was not assessed for the PyramidNet. Based only on a guess,
ShakeDrop appears to have the best results in this particular part. Unfortunately, there
are only two regularizers that work directly on labels. For this reason, the TSLA might
be considered the best one to be used on a label level.

2.8.2 Defining a basic protocol

There are several aspects to be considered for a fair evaluation of a new regularizer.
The primary purpose of using regularization is to improve a given baseline architec-
ture by using some operations in the input data, among layers, or in the label. How-
ever, a slight difference in the training protocol may infer a better result, not necessar-
ily related to the operations from the regularizer. Another protocol can be removing
any other regularization method, even small data augmentation and weight decay. As
such, it is possible to verify how a new regularizer can improve a baseline architecture
without any other influence.

Some papers (??????) train ResNet-18 using the same data transformations, i.e., ran-
dom flipping, padding pixels, and using the same values for the weight decay. Some
works use the same neural network, claim to have some relevant results but do not
make the source code available, turning the evaluation process not trustful since there
might be other transformations working on training, such as Dropout (??). Therefore,
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the primary condition to be cited in this survey is to have the source code available so
that it can be compared to other methods directly.

On the other hand, it might be crucial for different reasons to use more than one
regularizer in the same evaluation. For instance, the Wide Residual Network (??), a
common architecture used for evaluating new regularizers, has in its layers a dropout
regularization. Therefore, wherever a new regularization is proposed (in the input,
among layers, or in the label), it should be able to work with the dropout regulariza-
tion. Another point is that some regularizers incorporate other techniques naturally.
For instance, the AutoAugment (??) and the Fast AutoAugmentat (??) incorporate as
one of their policies the Cutout (??). Therefore, a new regularization technique should
be able to work with another regularizer and improve the results when both are used
together.

2.8.3 Use of minor architectures

As a general rule, regularization adds little overhead during training time (Au-
toAugmentation (??) is, perhaps, the only one that increases training time to find out
the better policies for data augmentation) and no overhead at all at inference. For this
reason, the use of regularizers for avoiding early overfitting of a neural network is
strongly recommended. Still, it should be encouraged, sometimes, to use more than
one at the same time. No matter what the problem is, everyone has the desire to im-
prove results; however, it is particularly necessary for shallower neural networks.

One point missing in all works analyzed in this survey is the lack of proper investi-
gation concerning lightweight CNNs. Architectures like MobileNet-V3 (??) should be
boosted in regularization works for these smaller designs usually have fewer parame-
ters or make use of less complex calculations. In the same direction, quantization (??)
should be dissected to know how a given regularization algorithm influences either
training a quantized neural network and performing the quantization after training.

EfficientNet (??) provides a clever calculation for defining how an efficient CNN
architecture should be designed, based on the width, depth, and resolution. However,
for faster and less resourceful hardware, this calculation presents better results when
neural networks’s resolution and depth are designated as more important than width.
It is possible to verify that in the TinyNet work (??). It might be a good idea to provide
comparisons using this minimal and fast neural network architecture to show that new
regularizers can improve results for smaller CNNs.

2.8.4 Use of more complex datasets

The most common datasets used in regularization works concern objects and an-
imals, which humans can easily distinguish. Another characteristic of these datasets
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is that they are perfectly balanced, meaning that every possible class has a similar
amount of samples in the training and test validation. Usually, in medical and some
real-world problems, such a balancing is hard to obtain.

In health-related problems, any increase in the results can lead to a safer treat-
ment or even avoid misuse of medication and death. For these reasons, some datasets,
like the Breast Cancer Histopathological Image Classification (BreakHis) (??), might be
used to increase the work’s relevance. In this specific case, where the results may infer
in a life-threatening situation, the idea is to use a deeper CNN, like the Efficient-Net
family (??) or ResNet (??).

2.8.5 Other problems besides classification

In the past, CNNs and other neural networks were mainly used for the image clas-
sification task. However, more recently, CNNs were also employed in other tasks, such
as object detection and speech recognition. For example, the YOLO architecture (??) is
a Fully Convolutional Network, which means that every layer performs a 2D convo-
lutional process. In that sense, some changes on the loss calculation allow final layers
to find out where objects on a given image are located. Another domain where CNNs
have state-of-the-art results is image reconstruction. The Residual Dense Network has
outstanding results on image reconstruction from noisy (??) and low-resolution im-
ages (??).

There are two suggestions in this case. The first one is the use of regularization
techniques in such different tasks or, at least, a reason for not using them in other do-
mains. The second proposal is the development of new regularization targeting these
specific problems. The only work found so far to solve different problems than image
classification is the CutBlur (??), thus highlighting the lack of works in this direction.

2.8.6 Source Code Links

As mentioned before, we only considered papers with the source code available.
Table 3 presents the list of links concerning the source codes for every paper surveyed
in this work.
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2.9 Conclusion

Regularization is a vital tool to improve the final CNN results since it helps prevent
the model from overfitting on the training data. This work aimed at showing the most
recent commitments in the area, targeting to deliver a brief resume on how they work
and their main results.

This work introduced a lineup of recent regularizers that can fit in most neural net-
works for outcome improvement. Although some can drastically increase the training
time, such as AutoAugment, most do not require any relevant extra time, and none
influences the time taken for inference. Right after the introduction, we provide a brief
explanation of how CNN works and a little history of its development, and then we
divided all works analyzed in this paper as follows:

o "input regularization", where the models work before the image is fed to the net-
work;

o "internal regularization", when the regularization algorithms work after the im-
age is feedforwarded to the model; and

o "label regularization", when the algorithm performs on the output layer.

Besides, the methodology presents the most popular datasets used to evaluate regu-
larization techniques and the most traditional CNN architectures for such a task. Such
information is crucial, for it helps standardize an evaluation protocol from now on.

Along with the reported results for each work, we provided our opinion on setting
up a state-of-the-art regularizer, an essential but trustful protocol evaluation for new
regularizers, which can help compare the results and provide insights for researchers
in this area. The same section highlights some issues we found in most of the works:

o the lack of using simpler architectures, which are the ones that could be more
benefited from the use of regularizers; and

o the lack of an evaluation of methods on more complex data, such as unbalanced
data sets, to provide richer information for other researchers.

Last but not least, we encourage the development of new regularization techniques on
tasks other than image classification, such as object detection and image reconstruc-
tion.
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Chapter 3

MaxDropout: Deep Neural Network
Regularization Based on Maximum
Output Values

This chapter presents the content publish in the conference 25th Internation Con-
ference on Pattern Recognition (ICPR 2020) (??), and it proposes a new regularization
method, changing the neuron randon drop rules of the classical Dropout (??) by drop-
ping the most active neurons on a given tensor.

3.1 Abstract

Different techniques have emerged in the deep learning scenario, such as Con-
volutional Neural Networks, Deep Belief Networks, and Long Short-Term Memory
Networks, to cite a few. In lockstep, regularization methods, which aim to prevent
overfitting by penalizing the weight connections, or turning off some units, have been
widely studied either. In this paper, we present a novel approach called MaxDropout,
a regularizer for deep neural network models that works in a supervised fashion by
removing (shutting off) the prominent neurons (i.e., most active) in each hidden layer.
The model forces fewer activated units to learn more representative information, thus
providing sparsity. Regarding the experiments, we show that it is possible to improve
existing neural networks and provide better results in neural networks when Dropout
is replaced by MaxDropout. The proposed method was evaluated in image classifica-
tion, achieving comparable results to existing regularizers, such as Cutout and Ran-
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domErasing, also improving the accuracy of neural networks that use Dropout by re-
placing the existing layer by MaxDropout.

3.2 Introduction

Following the advent of deeply connected systems and the new era of information,
tons of data are generated every moment by different devices, such as smartphones or
notebooks. A significant portion of the data can be collected from images or videos,
which are usually encoded in a high-dimensional domain. Deep Learning (DL) tech-
niques have been broadly employed in different knowledge fields, mainly due to their
ability to create authentic representations of the real world, even for multimodal infor-
mation. Recently, DL has emerged as a prominent area in Machine Learning, since its
techniques have achieved outstanding results and established several hallmarks in a
wide range of applications, such as motion tracking (??), action recognition (??), and
human pose estimation (????), to cite a few.

Deep learning architectures such as Convolutional Neural Networks (CNNs), Deep
Autoencoders, and Long Short-Term Memory Networks are powerful tools that deal
with different image variations such as rotation or noise. However, their performance
is highly data-dependent, which can cause some problems during training and further
generalization for unseen examples. One common problem is overfitting, where the
technique memorizes the data either due to the lack of information or because of too
complex neural network architectures.

Such a problem is commonly handled with regularization methods, which repre-
sent a wide area of study in the scientific community. The employment of one or more
of such techniques provides useful improvements in different applications. Among
them, two well-known methods can be referred: (i) so-called “Batch Normalization"
and (ii) “Dropout". The former was introduced by Ioffe et al. (??) and performs data
normalization in the output of each layer. The latter was introduced by Srivastava et
al. (??), and randomly deactivates some neurons present in each layer, thus forcing the
model to be sparse.

However, dropping neurons out at random may slow down convergence during
learning. To cope with this issue, we introduced an improved approach for regulariz-
ing deeper neural networks, hereinafter called “MaxDropout" 1, which shuts off neu-
rons based on their maximum activation values, i.e., the method drops the most active
neurons to encourage the network to learn better and more informative features. Such
an approach achieved remarkable results for the image classification task, concerning
two important well-established datasets.

1 https://github.com/cfsantos/MaxDropout-torch
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The remainder of this paper is presented as follows: Section 5.3 introduces the cor-
related works, while Section 5.4 presents the proposed approach. Further, Section 4.6
describes the methodology and datasets employed in this work. Finally, Sections 5.6
and 5.8 provide the experimental results and conclusions, respectively.

3.3 Related Works

Regularization methods are widely used by several deep neural networks (DNNs)
and with different architectures. The main idea is to help the system to prevent the
overfitting problem, which causes the data memorization instead of generalization,
also allowing DNNs to achieve better results. A well-known regularization method is
Batch Normalization (BN), which works by normalizing the output of a giving layer
at each iteration. The original work (??) showed that such a process speeds up conver-
gence for image classification tasks. Since then, several other works (????), including
the current state-of-the-art on image classification (??), also highlighted its importance.

As previously mentioned, Dropout is one of the most employed regularization
methods for DNNs. Such an approach was developed between 2012 and 2014 (??),
showing significant improvements in neural network’s performance for various tasks,
ranging from image classification, speech recognition, and sentimental analysis. The
standard Dropout works by creating, during training time, a mask that direct multiples
all values of a given tensor. The values of such a mask follow the Bernoulli distribution,
being 0 with a probability p and 1 with a probability 1− p (according to the original
work (??), the best value for p in hidden layers is 0.5). During training, some values
will be kept while others will be changed to 0. Visually, it means that some neurons
will be deactivated while others will work normally.

After the initial development of the standard Dropout, Wang and Manning (??)
explored different strategies for sampling since at each mini-batch a subset of input
features is turned off. Such a fact highlights an interesting Dropout feature since it rep-
resents an approximation by a Markov chain executed several times during training.
Since the Bernoulli distribution tends to a Normal distribution when the dimensional
space is high enough, such an approximation allows Dropout to its best without sam-
pling.

In 2015, Kingma et al. (??) proposed the Variational Dropout, a generalization of
Gaussian Dropout in which the dropout rates are learned instead of randomly at-
tributed. They investigated a local reparameterization approach to reduce the variance
of stochastic gradients in variational Bayesian inference of a posterior over the model
parameters, thus retaining parallelizability. On the other hand, in 2017, Gal et al. (??)
proposed a new Dropout variant to reinforcement learning models. Such a method
aims to improve the performance and better calibration of uncertainties once it is an
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intrinsic property of the Dropout. In such a field, the proposed approach allows the
agent to adapt its uncertainty dynamically as more data is seen.

Later on, Molchanov et al. (??) explored the Variational Dropout proposed by
Kingma et al. (??). The authors extended it to situations when dropout rates are un-
bounded, leading to very sparse solutions in fully-connected and convolutional layers.
Moreover, they achieved a reduction in the number of parameters up to 280 times on
LeNet architectures, and up to 68 times on VGG-like networks with a small decrease
in accuracy. Such a fact points out the importance of sparsity for parameter reduction
and performance overall improvement.

Paralleling, other regularization methods have been emerged, like the ones that
change the input of the neural network. For instance, Cutout (??) works by literally
cutting off a region of the image (by setting the values of a random region to 0). This
simple approach shows relevant results on several datasets. Another similar regular-
izer is the RandomErasing (??), that works in the same manner, but instead of setting
the values of the region to 0, it changes these pixels to random values.

By bringing the concepts mentioned above and works close to the proposed ap-
proach, one can point out that the MaxDropout is similar to the standard Dropout,
however, instead of randomly dropping out neurons, our approach follows a policy for
shutting off the most active cells, representing a selection of neurons that may overfit
the data, or discourage the fewer actives from extracting useful information.

3.4 Proposed Approach

The proposed approach aims at shutting out the most activated neurons, which is
responsible for inducing sparsity in the model, at the step that encourage the hidden
neurons to learn more informative features and extract useful information that posi-
tively impacts the network’s generalization ability.

For the sake of visualization, Figures 11a-c show the differences between the pro-
posed approach and the standard Dropout, in which Figure 11a stands for the original
grayscale image and Figures 11b and 11c denote their corresponding outcomes after
Dropout and MaxDropout. It is important to highlight that Dropout removes any pixel
of the image randomly, while MaxDropout tends to inactivate the lighter pixels.

The rationale behind the proposed approach can be better visualized in a tensor-
like data. Considering the colored image showed in Figure 11d, one can observe its
outcome after Dropout and MaxDropout transformations in Figures 11e and 11f, re-
spectively. Regarding standard Dropout, the image looks like a colored uniform noise,
while MaxDropout could remove entire regions composed of bright pixels (i.e., pixels
with high activation values, as expected).
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Simulation using grayscale (a)-(c) and colored images (d)-(f): (a) original
grayscale image and its outcomes after (b) Dropout and (c) MaxDropout transforma-
tions, respectively, and (d) original colored image and its outcomes after (e) Dropout
and (f) MaxDropout transformations, respectively. In all cases, the drop rout ate is 50%.

For the sake of clarification purposes, Algorithm 4.1 implements the proposed Max-
Dropout2: the main loop in Lines 1− 9 is in charge of the training procedure, and the

2 The pseudocode uses Keras syntax.
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inner loop in Lines 2− 8 is executed for each hidden layer. Line 3 computes a random
value uniformly distributed that is going to work as the dropout rate r. The output of
each layer produces an x× y× z tensor, where x and y stand for the image’s size, and
z denotes the number of feature maps produced for each convolutional kernel. Line 4
creates a copy of the original tensor and uses an L2 normalization to produce an output
between 0 and 1.

Listing 3.1: Original MaxDropout code

1 while t r a i n i n g do
2 for each l a y e r do
3 r a t e = U( o , r )
4 norm_tensor = L2Normalize ( tensor )
5 max = Max( tensor )
6 keptIdx = IdxOf ( norm_tensor , (1 − r a t e ) * max )
7 returnTensor = tensor * keptIdx
8 end for
9 end while

Later, Line 5 finds the biggest value in the normalized tensor, once it may not be
equal to one3. Line 6 creates another tensor with the same shape as the input one and
assigns 1 where (1− rate) × max at a certain tensor position is greater than a given
threshold; otherwise it sets such a position to 0. Finally, Line 7 creates the tensor to be
used in the training phase, where each position of the original tensor is multiplied by
the value in the respective position of the tensor created in the line before. Therefore,
such a procedure guarantees that only values smaller than the threshold employed in
Line 3 go further on.

3.5 Experiments

In this section, we describe the methodology employed to validate the robustness
of the proposed approach. The hardware used for the paper is an Intel Xeon Bronze®

3104 CPU with 6 cores (12 threads), 1.70GHz, 96GB RAM with 2666Mhz, and a GPU
Nvidia Tesla P4 with 8GB. Since most of the regularization methods aim to improve
image classification tasks, we decided to follow the same protocol and approaches for
a fair comparison.

3 Depending on the floating-point precision, the maximum value can be extremely close but not equal
to one.
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3.5.1 Neural Network Structure

Regarding the neural network structure, we evaluated the proposed approach in
two different practices. For the former experiments, regularization layers were added
to a neural network that does not drop any transformation between layers. Concern-
ing the latter experiments, the standard Dropout (??) layers were changed by the Max-
Dropout one to compare results.

For the first experiment, ResNet18 (??) was chosen because such an architecture
has been used in several works for comparison purposes when coming to new regu-
larizer techniques. ResNet18 is compounded by a sequence of convolutional residual
blocks, followed by the well-known BatchNormalization (??). As such, a MaxDropout
layer was added between these blocks, changing the basic structure during training
but keeping it to inference purposes.

In the second experiment, a slightly different approach has been performed. Here,
a neural network that already has the Dropout regularization in its composition was
considered for direct comparison among methods. The WideResNet (??) uses Dropout
layers in its blocks with outstanding results on image classification tasks, thus becom-
ing a good choice.

3.5.2 Training Protocol

In this work, we considered a direct comparison with other regularization algo-
rithms. To be consistent with the literature, we provided the error rate instead of
the accuracy itself (??????). Nonetheless, to ensure that the only difference between
the proposed approach and the baselines used for comparison purposes concerns the
MaxDropout layer, we strictly followed the protocols according to the original works.

To compare MaxDropout with other regularizers, we followed the protocol pro-
posed by DeVries and Taylor (??), in which five runs were repeated, and the mean
and the standard deviation are used for comparison purposes. For the experiment,
the images from the datasets were normalized per-channel using mean and standard
deviation.

During the training procedure, the images were shifted four pixels in every direc-
tion and then cropped into 32x32 pixels. Besides, the images were horizontally mir-
rored with a 50% probability. In such a case, two comparisons were provided. In the
first case, besides the data augmentation already described, only the MaxDropout was
included in the ResNet18 structure, directly comparing to the other methods. Regard-
ing the second case, the Cutout data augmentation was included, providing a direct
comparison of the results, showing that the proposed approach can work nicely.

As previously mentioned, to evaluate the MaxDropout against the standard Dropout,
we chose the Wide Residual Network (??), and the same training protocol and param-
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eters were employed to make sure the only difference concerns the type of neuron
dropping.

3.5.3 Datasets

In this work, two well-established datasets in the literature were employed, i.e.,
CIFAR-10 (??) and its enhanced version CIFAR-100 (??). Using such datasets allows
us to compare the proposed approach toward important baseline methods, such as the
standard Dropout (??) and CutOut (??). Figure 8 portrays random samples extracted
from the datasets mentioned above.

(a) (b)

Figure 8: Random training samples from: (a) CIFAR-10 and (b) CIFAR-100 datasets.

CIFAR-10 dataset comprises 10 classes equally distributed in 60, 000 colored image
samples, with a dimension of 32x32 pixels. The entire dataset is partitioned into 50, 000
training images and 10, 000 test images. On the other hand, CIFAR-100 dataset holds
similar aspects of its smaller version, but now with 100 classes equally distributed
in 60, 000 colored image samples, with 600 images samples per class. Nonetheless,
the higher number of classes and the low number of samples per class make image
classification significantly hard in this case.

3.6 Experimental Results

This section is divided into four main parts. First, we provided a convergence
study during training for all experiments. Later, we compared the results of Max-
Dropout with other methods showing that, when combined with other regularizers,
MaxDropout can lead to even better performance than their original versions. Finally,
in the last part, we make a direct comparison between the proposed approach and
standard Dropout by replacing the equivalent layer with the MaxDropout in the Wide-
ResNet.
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3.6.1 Training Evolution

Figures 9 and 10 depict the mean accuracies concerning the test set considering the
5 runs during training phase. Since we are dealing with regularizers, it makes sense
to analyze their behavior during training and, for each epoch, compute their accuracy
over the test set. One can notice that the proposed approach can improve the results
even when the model is near to overfit.
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Figure 9: Convergence over CIFAR-10 test set.
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Figure 10: Convergence over CIFAR-100 test set.

3.6.2 Comparison Against Other Regularizers

As aforementioned, we considered a comparison against some baselines over five
runs and exposed their mean accuracies and standard deviation in Table 4. Such re-
sults evidence the robustness of the proposed approach against two other well-known
regularizers, i.e., Cutout, and the RandomErasing.

From Table 4, one can notice that when MaxDropout is incorporated within ResNet18
blocks, it allows the model to accomplish relevant and better results. Regarding the
CIFAR-10 dataset, the model that uses MaxDropout achieved an absolute reduction of
around 0.54% in the error rate when compared to ResNet18 (and approximately 12%
on the relative error). However, concerning the CIFAR-100 dataset, the model achieved
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Approach CIFAR-100 CIFAR-10

ResNet18 (????) 24.50± 0.19 5.17± 0.18
ResNet18+RandomErasing (??) 24.03± 0.19 4.31± 0.07
ResNet18+Cutout (??) 21.96± 0.24 3.99 ± 0.13
ResNet18+MaxDropout 21.94 ± 0.23 4.63± 0.11

Table 4: Results of MaxDropout and other regularizers

over 2.5% less error than the same baseline (and approximately 12% on the relative er-
ror), besides being statistically similar to Cutout.

3.6.3 Working Along with Other Regularizers

Since MaxDropout works inside the neural network by changing the hidden layers’
values, it permits the concomitant functionality with other methods that change infor-
mation from the input, such as Cutout. Table 5 portrays the results of each stand-alone
approach and their combination. From these results, one can notice a slight improve-
ment in performance considering the CIFAR-100 dataset, but it ends up as a relevant
gain on CIFAR-10 dataset, reaching the best results so far.

Regularizer CIFAR-100 CIFAR-10

Cutout (??) 21.96± 0.24 3.99± 0.13
MaxDropout 21.94± 0.23 4.63± 0.11
MaxDropout + Cutout 21.82 ± 0.13 3.76 ± 0.08

Table 5: Results of the MaxDropout combined with Cutout.

3.6.4 MaxDropout x Dropout

One interesting point such a work stands for concerns the following question: Is
the MaxDropout comparable to the standard Dropout (??)? To answer this question,
we compared the proposed approach against standard Dropout by replacing it with
MaxDropout on the Wide Residual Network (WRN).

From Table 6, one can observe the model using MaxDropout works slightly bet-
ter than standard Dropout, leading to dropping in the error rate regarding CIFAR-100
and CIFAR-10 datasets by 0.04 and 0.05%, respectively. Although it may not look an
impressive improvement, we showed that the proposed approach has a margin to im-
prove the overall results, mainly when the threshold of the MaDropout is taken into
account (i.e., ablation studies)4.
4 We did not show the standard deviation since the original study did not present such an information

as well.
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Model CIFAR-100 CIFAR-10

WRN (??) 19.25 4.00
WRN + Dropout (??) 18.85 3.89
WRN + MaxDropout 18.81 3.84

Table 6: Results of Dropout and MaxDropout over the WRN.

3.6.5 Ablation Study

As aforementioned, we conducted several experiments with ResNet18 to determine
the optimal rate (r) employed on previous subsections for the MaxDropout. Such re-
sults are presented in Table 7.

MaxDropout Rate (r) CIFAR-100 CIFAR-10

05 22.05± 0.17 4.76± 0.09
10 22.06± 0.32 4.71± 0.09
15 22.16± 0.20 4.63 ± 0.11
20 21.99± 0.21 4.70± 0.08
25 21.94 ± 0.23 4.70± 0.06
30 22.08± 0.24 4.67± 0.12
35 22.10± 0.29 4.71± 0.16
40 22.17± 0.34 4.79± 0.20
45 22.31± 0.29 4.71± 0.11
50 22.33± 0.23 4.75± 0.10

Table 7: Ablation results concerning MaxDropout over ResNet18.

One can notice that r values vary with the dataset employed and the number of
classes5, i.e., for CIFAR-100 the lower error rate was achieved with r = 25%, while
for CIFAR-10 the r value was 15%. Such variance might be related to the number of
available images for each class. Therefore, the best r values were employed for each
dataset on the main experiments previously addressed.

3.7 Discussion

Unfortunately, the approaches employed for comparison purposes did not release
their training evolution for a direct comparison in Section 5.5.3. Nevertheless, it is pos-
sible to observe that all models performed very well for the image classification task. In
Table 4, MaxDropout shows a result as good as Cutout for CIFAR-100 dataset, demon-
strating it performs as expected when improving baseline models’ results. However, it

5 CIFAR-10 and CIFAR-100 uses mainly the same images but, with different classes
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did not perform as well for CIFAR-10 dataset, but it still improves the baseline model
results by almost 0.5%.

Results from Table 5 show that the MaxDropout supports the improvement when
another regularizer is used along with. Although Cutout has been used to demonstrate
the proposed approach’s effectiveness, one can consider other similar regularizers. The
most interesting results can be found in Table 6, where MaxDropout is directly com-
pared to the standard Dropout. It shows relevant gains over the baseline model, and
it performs a little better than Dropout using the same drop rate, indicating that it
may be the case to find out the best drop rates for MaxDropout, which can be data or
model-dependent.

3.8 Conclusions and Future Works

In this paper, we introduced MaxDropout, an improved version of the original
Dropout method. Experiments show that it can be incorporated into existing models,
working along with other regularizers, such as Cutout, and can replace the standard
Dropout with some accuracy improvement.

With relevant results, we intend to conduct a more in-depth investigation to figure
out the best drop rates depending on the model and the training data. Moreover, the
next step is to re-implement MaxDropout and make it available in other frameworks,
like TensorFlow and MXNet, and test in other tasks, such as object detection and image
segmentation.

Nonetheless, we showed that MaxDropout works very well for image classification
tasks. For future works, we intended to perform evaluations in other different tasks
such as natural language processing and automatic speech recognition.
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Chapter 4

MaxDropoutV2: An Improved Method
to Drop out Neurons in Convolutional
Neural Networks

This chapter presents the content publish in the conference 10th Iberian Confer-
ence on Pattern Recognition and Image Analysis(IbPRIA 2022) (??), and it proposes an
adaptation of the MaxDropout method to Convolutional Neuron Networks, achieving
similar results but being faster for training.

4.1 Abstract

In the last decade, exponential data growth supplied the machine learning-based
algorithms’ capacity and enabled their usage in daily life activities. Additionally, such
an improvement is partially explained due to the advent of deep learning techniques,
i.e., stacks of simple architectures that end up in more complex models. Although both
factors produce outstanding results, they also pose drawbacks regarding the learning
process since training complex models denotes an expensive task and results are prone
to overfit the training data. A supervised regularization technique called MaxDropout
was recently proposed to tackle the latter, providing several improvements concerning
traditional regularization approaches. In this paper, we present its improved version
called MaxDropoutV2. Results considering two public datasets show that the model
performs faster than the standard version and, in most cases, provides more accurate
results.
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4.2 Introduction

The last decades witnessed a true revolution in people’s daily life habits.
Computer-based approaches assume the central role in this process, exerting funda-
mental influence in basic human tasks, such as communication and interaction, enter-
tainment, working, studying, driving, and so on. Among such approaches, machine
learning techniques, especially a subfield usually called deep learning, occupy one of
the top positions of importance in this context since they empower computers with the
ability to act reasonably in an autonomous fashion.

Deep learning regards a family of machine learning approaches that stacks an as-
sortment of simpler models. The bottommost model’s output feeds the next layer,
and so on consecutively, with a set of possible intermediate operations among lay-
ers. The paradigm experienced exponential growth and magnificent popularity in the
last years due to remarkable results in virtually any field of application, ranging from
medicine (??????) and biology (??) to speech recognition (??) and computer vision (??).

Despite the success mentioned above, deep learning approaches still suffer from a
drawback very commonly observed in real-world applications, i.e., the lack of suffi-
cient data for training the model. Such a constraint affects the learning procedure in
two main aspects: (i) poor classification rates or (ii) overfitting to training data. The
former is usually addressed by changing to a more robust model, which generally
leads to the second problem, i.e., overfitting. Regarding the latter, many works tack-
led the problem using regularization approaches, such as the well-known batch nor-
malization (??), which normalizes the data traveling from one layer to the other, and
dropout (??), which randomly turns-off some neurons and forces the layer to generate
sparse outputs.

Even though dropout presents itself as an elegant solution to solve overfitting is-
sues, Santos et al. (??) claim that deactivating neurons at random may impact nega-
tively in the learning process, slowing down the convergence. To alleviate this impact,
the authors proposed the so-called MaxDropout, an alternative that considers deac-
tivating only the most active neurons, forcing less active neurons to prosecute more
intensively in the learning procedure and produce more informative features.

MaxDropout obtained significant results considering image classification’s task,
however, at the cost of considerable computational cost. This paper addresses such
an issue by proposing MaxDropoutV2, an improved and optimized version of Max-
Dropout capable of obtaining similar results with higher performance and substantial
reduction of the computational burden.

Therefore, the main contributions of this work are presented as follows:

o to propose a novel regularization approach called MaxDropoutV2, which stands
for an improved and optimized version of MaxDropout;
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o to evaluate MaxDropoutV2 overall accuracy and training time performance, com-
paring with the original MaxDropout and other regularization approaches; and

o to foster the literature regarding regularization algorithms and deep learning in
general.

The remainder of this paper is organized as follows. Section 4.3 introduces the main
works regarding Dropout and its variation, while Section 4.4 presents the proposed
approach. Further, Sections 4.5 and 4.5.2 describe the methodology adopted in this
work and the experimental results, respectively. Finally, Section 4.7 states conclusions
and future work.

4.3 Related Works

The employment of regularization methods for training deep neural networks (DNNs)
architectures is a well-known practice, and its use is almost always considered by de-
fault. The focus of such approaches is helping DNNs to avoid or prevent overfitting
problems, which reduce their generalization capability. Besides, regularization meth-
ods also allow DNNs to achieve better results considering the testing phase since the
model becomes more robust to unseen data.

Batch Normalization (BN) is a well-known regularization method that employs the
concept of normalizing the output of a given layer at every iteration in the training
process. In its seminal work, Ioffe and Szegedy (??) demonstrated that the technique
is capable of speeding up the convergence regarding the task of classification. Further,
several other works (????) highlighted its importance, including the current state-of-
the-art on image classification (??).

Among the most commonly employed techniques for DNN regularization is the
Dropout, which is usually applied to train such networks in most of the frameworks
used for the task. Developed by Srivastava et al. (??), Dropout shows significant im-
provements in a wide variety of applications of neural networks, like image classifica-
tion, speech recognition, and more. The standard approach has a simple and efficient
work procedure, in which a mask that directly multiplies the weight connections is
created at training time for each batch. Such a mask follows a Bernoulli distribution,
i.e., it assign values 0 with a probability p and 1 with a probability 1− p. The authors
showed that the best value for p in hidden layers is 0.5. During training, the random
mask varies, which means that some neurons will be deactivated while others will
work normally.

Following the initial development of the Dropout method, Wang and Manning (??)
focused on exploring different sampling strategies, considering that each batch corre-
sponds to a new subnetwork taken into account since different units are dropped out.



74 Chapter 4. MaxDropoutV2

In this manner, the authors highlighted that the Dropout represents an approximation
of a Markov chain executed several times during training time. Also, the Bernoulli
distribution tends to a Normal distribution in a high dimensional space, such that
Dropout performs best without sampling.

Similarly, Kingma et al. (??) proposed the Variational Dropout, which is a gener-
alization of the Gaussian Dropout with the particularity of learning the dropout rate
instead of randomly select one value. The authors aimed to reduce the variance of the
stochastic gradients considering the variational Bayesian inference of a posterior over
the model parameters, retaining the parallelization by investigating the reparametriza-
tion approach.

Further, Gal et al. (??) proposed a new Dropout variant to reinforcement learning
models. Such a method aims to improve the performance and calibrate the uncertain-
ties once it is an intrinsic property of the Dropout. The proposed approach allows
the agent to adapt its uncertainty dynamically as more data is provided. Molchanov
et al. (??) explored the Variational Dropout proposed by Kingma et al. (??). The au-
thors generalized the method to situations where the dropout rates are unbounded,
giving very sparse solutions in fully-connected and convolutional layers. Moreover,
they achieved a reduction in the number of parameters up to 280 times on LeNet ar-
chitectures and up to 68 times on VGG-like networks with a small decrease in accuracy
rates. Such a fact highlights the importance of sparsity for robustness and parameter
reduction, while the overall performance for “simpler” models can be improved.

Another class of regularization methods emerged in parallel, i.e., techniques that
change the neural network’s input. Among such methods, one can refer to the Cutout (??),
which works by cutting off/removing a region of the input image and setting such pix-
els at zero values. Such a simple approach provided relevant results in several datasets.
In a similar fashion emerged the RandomErasing (??), which works by changing the
pixel values at random for a given region in the input, instead of setting these values
for zero.

Roder et al. (??) proposed the Energy-based Dropout, a method that makes con-
scious decisions whether a neuron should be dropped or not based on the energy anal-
ysis. The authors designed such a regularization method by correlating neurons and
the model’s energy as an index of importance level for further applying it to energy-
based models, as Restricted Boltzmann Machines.

4.4 MaxDropoutV2 as an improved version of MaxDropout

This section provides an in-depth introduction to MaxDropout-based learning.



4.4. MaxDropoutV2 as an improved version of MaxDropout 75

4.4.1 MaxDropout

MaxDropout (??) is a Dropout-inspired (??) regularization task designed to avoid
overfitting on deep learning training methods. The main difference between both tech-
niques is that, while Dropout randomly selects a set of neurons to be cut off according
to a Bernoulli distribution, MaxDropout establishes a threshold value, in which only
neurons whose activation values higher than this threshold are considered in the pro-
cess. Results provided in (??) show that excluding neurons using their values instead
of the likelihood from a stochastic distribution while training convolutional neuron
networks produces more accurate classification rates.

Algorithm 4.1 implements the MaxDropout approach. Line 2 generates a normal-
ized representation of the input tensor. Line 3 attributes the normalized value to a
vector to be returned. Further, Lines 4 and 5 set this value to 0 where the normalized
tensor is bigger than the threshold. This process is only performed during training.
Concerning the inference, the original values of the tensor are used.

Listing 4.1: Original MaxDropout code

1 def MaxDropout ( tensor , threshold ) :
2 norm_tensor = normalize ( tensor )
3 r e t u r n _ t e n s o r = norm_tensor
4 i f norm_tensor > threshold :
5 r e t u r n _ t e n s o r = 0 where
6 return r e t u r n _ t e n s o r

Even though MaxDropout obtained satisfactory results for the task, it was not
tailored-designed for Convolutional Neural Networks (CNNs), thus presenting two
main drawbacks:

o it does not consider the feature map spacial distribution produced from a CNN
layer output since it relies on individual neurons, independently of their location
on a tensor; and

o it evaluates every single neuron from a tensor, which is computationally expen-
sive.

Such drawbacks motivated the development of an improved version of the model,
namely MaxDropoutV2, which addresses the issues mentioned above and provides a
faster and more effective approach. The following section describes the technique.

4.4.2 MaxDropoutV2

The main difference between MaxDropout and MaxDropoutV2 is that the latter
relies on a more representative feature space. While MaxDropout compares the values
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from each neuron directly, MaxDropoutV2 sums up these feature maps considering
the depth axis, thus providing a bidimensional representation. In a nutshell, consider
a CNN layer output tensor with dimensions 32× 32× 64. The original MaxDropout
performs 32× 32× 64, i.e., 65, 536 comparisons. The proposed method sums up the
values of the tensor over axis one (which would be the depth of the tensor) for each
32× 32 kernel, thus performing only 1, 024 comparisons.

Algorithm 4.2 provides the implementation of the proposed approach. Line 2 per-
forms the sum in the depth axis. Similar to Algorithm 4.1, Line 3 generates a normal-
ized representation of the sum in depth of the input tensor. Line 4 creates the mask that
defines what positions of the original tensor should be dropped, i.e., set to 0. Notice
that the process is performed faster in MaxDropoutV2 due to the reduced dimension-
ality of the tensor. Further, in Lines 5 and 6, the tensor is unsqueezed and repeated
so the mask can be used along all the tensor dimensions. Finally, the mask is applied
to the tensor in Line 8 and returned in Line 9. These operations are only performed
during training, similar to the original.

Listing 4.2: MaxDropoutV2 code

1 def MaxDropout_V2 ( tensor , threshold ) :
2 sum_axis = sum t ensor along a x i s 1
3 sum_axis = normalized ( sum_axis )
4 mask = 0 where sum_axis > threshold
5 mask_tensor = tensor . shape [ 0 ]
6 r e p e t i t i o n s of mask
7
8 r e t u r n _ t e n s o r = tensor * mask_tensor
9 return r e t u r n _ t e n s o r

Fig. 11 depicts an example of application, presenting an original image in Fig. 11a
and a simulation of output colors considering Dropout, MaxDropout, and MaxDropoutV2,
for Figs. 11b, 11c, and 11d, respectively.

4.5 Methodology

This section provides a brief description of the datasets employed in this work, i.e.,
CIFAR-10 and CIFAR-100, as well all the setup considered during the experiments.

4.5.1 Dataset

In this work, we consider the public datasets CIFAR-10 and CIFAR-100 (??) to eval-
uate the performance of MaxDropoutV2 since both datasets are widely employed in
similar regularization contexts (????????). Both datasets comprise 60, 000 color images
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(a) (b)

(c) (d)

Figure 11: Simulation using colored images. The original colored image is presented
in (a), and its outcomes are bestowed after (b) Dropout, (c) MaxDropout, and (d) Max-
DropoutV2 transformations using a dropout rate of 50%.

of animals, automobiles, and ships, to cite a few, with a size of 32× 32 pixels. Such
images are divided such that 50, 000 instances are employed for training, and 10, 000
samples are considered for evaluation purposes. The main difference between CIFAR-
10 and CIFAR-100 regards the number of classes, i.e., CIFAR-10 comprises 10 classes
while CIFAR-100 is composed of 100 classes.

4.5.2 Experimental Setup

To provide a fair comparison, we adopted the same protocol employed in sev-
eral works in the literature (??????), which evaluate the proposed techniques over the
ResNet-18 (??) neural network. Regarding the pre-processing steps, each image sam-
ple is resized to 32× 32 pixels for further extracting random crops of size 28× 28 pixels,
with the addition of horizontal flip. The network hyperparameter setup employs the
Stochastic Gradient Descent (SGD) with Nesterov momentum of 0.9 and a weight de-
cay of 5× 10−4. The initial learning rate is initially set to 0.1 and updated on epochs
60, 120, and 160 by multiplying its value by 0.2. Finally, the training is performed dur-
ing a total of 200 epochs and repeated during five rounds over each dataset to extract
statistical measures. It is important to highlight that this protocol is used in several
other works related to regularization on Deep Learning models (??????). In this work,
we compare our proposed method against other regularizers that explicitly target to
improve the results of CNNs.
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Regarding the hardware setup, experiments were conducted using an Intel 2x Xeon®E5-
2620 @ 2.20GHz with 40 cores, a GTX 1080 Ti GPU, and 128 GB of RAM.

4.6 Experimental Results

This section provides an extensive set of experiments where MaxDropoutV2 is com-
pared against several baselines considering both classification error rate and time ef-
ficiency. Additionally, it also evaluates combining MaxDropoutV2 with other regular-
ization techniques.

4.6.1 Classification Error

Table 8 shows the average error rate for all models and architectures regarding the
task of image classification. Highlighted values denote the best results, which were
obtained over five independent repetitions.

Table 8: Average classification error rate (%) over CIFAR-10 and CIFAR-100 datasets.
Notice ResNet18 results are provided as the baseline.

CIFAR-10 CIFAR-100

ResNet-18 (??) 4.72± 0.21 22.46± 0.31

Cutout (??) 3.99 ± 0.13 21.96± 0.24

RandomErasing (??) 4.31± 0.07 24.03± 0.19

LocalDrop (??) 4.3 22.2

MaxDropout (??) 4.66± 0.13 21.94± 0.07

MaxDropoutV2 (ours) 4.63± 0.04 21.92 ± 0.23

From the results presented in Table 8, one can observe that Cutout obtained the
lowest error rate over the CIFAR-10 dataset. Meanwhile, MaxDropoutV2 achieved the
most accurate results considering the CIFAR-100 dataset, showing itself capable of out-
performing its first version, i.e., MaxDropout, over more challenging tasks composed
of a higher number of classes.

Additionally, Figure 12 depicts the convergence evolution of MaxDropout and Max-
DropoutV2 over the training and validation splits, in which the training partition com-
prises 50, 000 samples, and the validation contains 10, 000 samples. In Figure 12, V1
stands for the MaxDropout method, and V2 stands for the proposed approach. One
can notice that MaxDropoutV2 does not overpass the MaxDropout validation accuracy,
mainly on the CIFAR-10 dataset. However, when dealing with more classes and the
same number of training samples, both performances was almost the same, indicating
the robustness of MaxDropoutV2.
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Figure 12: Convergence analysis regarding the CIFAR-10 and CIFAR-100 datasets.

4.6.2 Combining Regularization Techiniques

A critical point about regularization concerns avoiding overfitting and improving
the results of a given neural network architecture in any case. For instance, if some
regularization approach is already applied, including another regularization should
still improve the outcomes. In this context, MaxDropoutV2 performs this task with
success, as shown in Table 9.

Table 9: Average classification error rate (%) over CIFAR-10 and CIFAR-100 datasets
combining MaxDropout and MaxDropoutV2 with Cutout.

CIFAR-10 CIFAR-100

ResNet-18 (??) 4.72± 0.21 22.46± 0.31

Cutout (??) 3.99± 0.13 21.96± 0.24

MaxDropout (??) 4.66± 0.13 21.94± 0.07

MaxDropoutV2 4.63± 0.04 21.92± 0.23

MaxDropout + Cutout (??) 3.76 ± 0.08 21.82 ± 0.13

MaxDropoutV2 + Cutout (??) 3.95± 0.13 21.82 ± 0.12

4.6.3 Performance Evaluation

The main advantage of MaxDropoutV2 over MaxDropout regards its computa-
tional time. In this context, Tables 10 and 11 provides the average time demanded
to train both models considering each epoch and the total consumed time. Such re-
sults confirm the hypothesis stated in Section 4.4.2 since MaxDropoutV2 performed
around 10% faster than the standard version.
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Table 10: Time consumed in seconds for training ResNet-18 in CIFAR-10 dataset.

Seconds per Epoch Total time

MaxDropout (??) 32.8 6, 563

MaxDropoutV2 (ours) 29.8 5, 960

Table 11: Time consumed in seconds for training ResNet-18 in CIFAR-100 dataset.

Seconds per Epoch Total time

MaxDropout (??) 33.1 6, 621

MaxDropoutV2 (ours) 30.2 6, 038

4.6.4 Evaluating Distinct Drop Rate Scenarios

This section provides an in-depth analysis of MaxDropoutV2 and MaxDropout (??)
results considering a proper selection of the drop rate parameter. Tables 12 and 13
present the models’ results while varying the drop rate from 5% to 50% considering
CIFAR-10 and CIFAR-100 datasets, respectively.

Table 12: Mean error (%) concerning CIFAR-10 dataset.

Drop Rate MaxDropoutV2 MaxDropout

5 4.63 ± 0.03 4.76± 0.09

10 4.67± 0.13 4.71± 0.09

15 4.76± 0.12 4.63 ± 0.11

20 4.66± 0.13 4.70± 0.08

25 4.75± 0.11 4.70± 0.06

30 4.63± 0.16 4.67± 0.12

35 4.70± 0.18 4.71± 0.16

40 4.74± 0.13 4.79± 0.20

45 4.65± 0.16 4.71± 0.11

50 4.71± 0.04 4.75± 0.10

Even though MaxDropoutV2 did not achieve the best results in Table 8, the results
presented in Table 12 show the technique is capable of yielding satisfactory outcomes
considering small drop rate values, i.e., 5%, while the standard model obtained its
best results considering a drop rate of 15%. Additionally, one can notice that Max-
DropoutV2 outperformed MaxDropout in eight-out-of-ten scenarios, demonstrating
the advantage of the model over distinct circumstances.
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Table 13: Mean error (%) concerning CIFAR-100 dataset.

Drop Rate MaxDropoutV2 MaxDropout

5 22.26± 0.31 22.05± 0.17

10 22.19± 0.13 22.06± 0.32

15 22.25± 0.23 22.16± 0.20

20 22.26± 0.30 21.98± 0.21

25 22.02± 0.13 21.94 ± 0.23

30 21.92 ± 0.23 22.07± 0.24

35 22.00± 0.07 22.10± 0.29

40 22.09± 0.16 22.16± 0.34

45 21.95± 0.15 22.31± 0.29

50 22.13± 0.19 22.33± 0.23

In a similar fashion, Table 13 provides the mean classification error considering
distinct drop rate scenarios over CIFAR-100 dataset. In this context, both techniques
required larger drop rates to obtain the best results, i.e., 25 and 30 for MaxDropout and
MaxDropoutV2, respectively. Moreover, MaxDropoutV2 outperformed MaxDropout
in all cases when the drop rates are greater or equal to 30, showing more complex
problems demand higher drop rates.

4.6.5 Discussion

According to the provided results, the proposed method accomplishes at least equiv-
alent outcomes to the original MaxDropout, outperforming it in terms of classification
error in most cases. Moreover, MaxDropoutV2 presented itself as a more efficient al-
ternative, performing around 10% faster than the previous version for the task of CNN
training.

The main drawback regarding MaxDropoutV2 is that the model is cemented to the
network architecture, while MaxDropout applicability is available to any network’s
architecture. In a nutshell, MaxDropoutV2 relies on a matrix or high dimensional
tensors designed to accommodate CNNs’ layers outputs, while the standard Max-
Dropout works well for any neural network structure, such as Multilayer Perceptrons
and Transformers, for instance.
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4.7 Conclusion and Future Works

This paper presented an improved version of the regularization method MaxDropout,
namely MaxDropoutV2, which stands for a tailored made regularization technique for
convolutional neural networks. In short, the technique relies on a more representative
feature space to accommodate the convolutional layer outputs.

Experimental results showed the method significantly reduced the time demanded
to train the network, performing around 10% faster than the standard MaxDropout
with similar or more accurate results. Moreover, it demonstrated that MaxDropoutV2
is more robust to the selection of the drop rate parameter. Regarding future work,
we will evaluate MaxDropoutV2 in distinct contexts and applications, such as object
detection and image denoising.
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Chapter 5

Rethinking Regularization with
Random Label Smoothing

This chapter presents a paper under revision in the journal Pattern Recognition
Letters. This work proposes a new label regularization for three different image pro-
cessing tasks: image classification, image super-resolution and software ISP via Deep
Learning.

5.1 Abstract

Regularization helps to improve machine learning techniques by penalizing the
models during training. Such approaches act in either the input, internal, or output
layers. Regarding the latter, label smoothing is widely used to introduce noise in the
label vector, making learning more challenging. This work proposes a new label regu-
larization method, Random Label Smoothing, that attributes random values to the la-
bels while preserving their semantics during training. The idea is to change the entire
label space into fixed arbitrary values. Results show improvements in image classifi-
cation and super-resolution tasks, outperforming state-of-the-art techniques for such
purposes.

5.2 Introduction

Neural networks are acknowledged to be learn-by-example techniques. Assum-
ing the training set is representative, the problem becomes finding proper loss func-
tions to avoid local optima and a good backbone. We know that some Convolutional
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Neural Networks (CNNs) are more accurate than others. In image classification tasks,
ResNet (??) usually performs better than VGG (??), for it has a more complex architec-
ture and residual connections that help generalization (??).

Changing the training protocol is another approach to increase generalization. No-
tably, neural networks can obtain better results when more (and proper) training in-
stances are available. One can also train a model in some larger dataset before fine-
tuning it to the desired problem, i.e., transfer learning (??). Results show it can boost
the outcomes significantly in a variety of problems. Google improved results in the
ImageNet challenge (??) by creating a huge dataset with more than 300 million images
to first train a model and further fine-tune it in the ImageNet set (??).

However, some scenarios do not allow us to collect additional training data, for the
labeling cost is prohibitive. Regularization can come to this aid by either making train-
ing harder or the loss function landscape smoother (??). We expect to achieve improve-
ments in the model’s generalization after the application of such approaches. Clas-
sical regularization approaches in deep learning include data augmentation, which
shall consider semantics after transformation. A model that trains on the MNIST
dataset (??), for instance, can rotate images to some extent only. Rotating a “6" in 180
degrees ends up in a “9", generating a wrong instance-label pair.

This work introduces Random Label Smoothing (RLS), a new regularization ap-
proach that works on the output layer. RLS operates by randomly changing values in
the label vector (ground truth). We demonstrate state-of-the-art results in image classi-
fication and super-resolution, evidencing it can be used in a broad range of application
domains.

The manuscript is organized as follows. Sections 5.3 and 5.4 present some related
works and the proposed approach, respectively. Section 5.5 introduces the method-
ology, and Section 5.6 demonstrates the robustness of the proposed approach in ex-
periments under different scenarios. Section 5.7 provides a brief discussion about the
outcomes, and Section 5.8 states conclusions.

5.3 Related Works

Several regularization techniques are available for helping neural networks to ac-
complish better results in different domains. Regularization based on data augmen-
tation is classic and with many approaches in the literature. AutoAugment (??) per-
forms data augmentation by first learning the best policy for creating synthetic sam-
ples. However, it may take too long to determine the best data augmentation strategy
for a given data set. Aiming to make this process faster, Fast AutoAugment (??) cal-
culates the gradient from just one batch, decreasing the computational effort consider-
ably. Other methods, such as Cutout (??) and RandomErasing (??), work by removing
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random areas of the image. The former removes a patch and leaves its content empty,
while the other fills it with some random noise.

Other methods operate by changing the feature maps generated during training.
Dropout (??) randomly drops neurons, while MaxDropout (??) eliminates the most
active ones, i.e., the neurons with the highest activation values. An improved version,
called MaxDropoutV2 (??), includes a more efficient approach to finding the most ac-
tive neurons. Instead of directly comparing values on the output feature map from
a given layer, it first sums the value of each neuron in the depth axis for further per-
forming the comparison. MaxDropoutV2 carries more semantic information than its
original counterpart. Additional methods consider other internal aspects when train-
ing CNNs. Shake-Shake (??) changes the weights of the inference and the backpropa-
gation values on training time in a multi-branch model, such as ResNeXT (??). Results
show it can significantly improve the results.

A recent analysis of regularization methods for CNNs (??) raised some interesting
drawbacks in the area. The first one is the shortage of algorithms that perform regu-
larization on a label level. The other point concerns the application domain, i.e., most
regularization techniques designed for deep nets focus on image classification. Label
Smoothing (??) changes the values of the output layer (label vector), i.e., it decreases
the value of the position that represents the true label and increases the values of the
inactive labels. The Two-Stage Label Smoothing (TSLA) (??) changes the label values
to some extent during training. The work shows that stopping label smoothing in a
late training stage helps the model to generalize better.

5.4 Proposed Approach

According to (??), there are several issues related to some new regularization meth-
ods. We address quite a few of them in this work. Regularization approaches are often
evaluated in a single context only, primarily on image classification. Here, we also con-
sider image super-resolution. Still, according to (??), a good regularization technique
should improve results even if the model is already using another regularization tech-
nique, which RLS is capable of.

Traditional data augmentation usually changes features in the input data. A simple
way to perform data augmentation is to rotate the image to the left or to the right in ran-
dom degrees. Another way is to crop some areas of the input image, e.g., Cutout (??).
Following a similar logic, RLS augments the data by performing random but controlled
changes in the label of every single instance during training. We explain how to do that
for image classification and super-resolution tasks.
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Figure 13: Simulation of Label Smoothing and Random Label Smoothing over a batch
of labels during training for a classification model (active label in bold). Tradition-
ally, the active label is set to“1" while all other classes’ indices are set to ‘0". In Label
Smoothing, the active class is set to a constant (and higher) value, while the inactive
classes are set to a smaller invariant value. In Random Label Smoothing, the active
label receives a random (and higher) value (e.g., greater than 0.5) while the inactive
labels receive a random value that, summed with the active label value, reaches 1.

5.4.1 Image Classification

Concerning image classification, we vary the output values that define the label in
a controlled but random range of values. In the “active" position, i.e., the index repre-
sented by the value "1" that encodes the label (one-hot representation), we randomly
decrease its values between 0.05 and 0.49, guaranteeing that the active label will al-
ways have the greatest value. For the inactive positions (defined as "0"), we divided
the amount of value used earlier among these positions. For instance, if the problem
has 10 classes and the removed value is 0.3, the active position is set to 0.7, and all the
other 9 positions receive a portion of the remaining value.

By doing these transformations in the labels during training, we create various ac-
ceptable labels for a given instance, working as an augmented label algorithm. Our
results show it is functional for image classification, helping the model to generalize
better and overcoming other methods, such as TargetDrop (??) and MaxDropout (??).
Figure 13 demonstrates how RLS works for a classification problem in a toy example.

5.4.2 Image Super-Resolution

For image reconstruction, we first tried a similar approach to the classification task
by randomly changing the label’s values following a Gaussian distribution1. However,
it did not work as expected. The new reference image (modified ground truth) has
Gaussian noise by changing the pixel values using a Gaussian distribution. The entire
system then learns to reconstruct images with noise.

1 Now, the pixel values encode the labels.
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Changing the values pixel-by-pixel with different random values did not seem to
be a good strategy, for we lose semantic details. We, therefore, decided to perturb all
pixels by the same amount, i.e., a random value that can be either added or subtracted
by the pixel value in a given training interaction. The problem is now defining what
values range leads to the best results.

We achieved promising outcomes by reverse-engineering the results of the neural
networks employed in this study. We used the results (i.e., PSNR - peak signal-to-noise
ratio) of each architecture to set a range of values with better results. For instance,
PyNET (??) achieved a 21.19 dB of PSNR; then, converting this value to a gray-scale
amount results in about 12 units. Therefore, all pixel values (for all dataset images)
were either subtracted or added concerning that amount (in this example). For EDSR
(Enhanced Deep Residual Networks for Single Image Super-esolution) (??), the results
are a PSNR of 29.21 dB for Div2k (??) and 28.89 dB for the RealSR dataset (??). There-
fore, we set 4.5 units for both datasets.

We verified if the above methodology could be further improved in the last experi-
ment. We found out that we could achieve even better results by using half of the range
than using the full range. In this case, we used 6 units for the PyNet and 2.25 for EDSR.
Even though the image regions may be different, smaller differences in continuous re-
gions can help the entire model understand that smaller errors are more acceptable
than the exact value.

5.5 Methodology

This section provides a complete description of the experimentation protocol we
used to evaluate RLS. We divided the experiments into three main parts: first, all four
architectures we used for evaluating purposes are described. Right after, we presented
the training protocol and later a description of the datasets.

5.5.1 Scenarios

We considered three different scenarios to evaluate RLS. They all have, in some
ways, differences in the input data or the label level. The first one is standard image
classification, and the second task concerns image super-resolution. In this case, the
neural network’s task is to magnify the image input, creating another but amplified.
For example, for a magnification of four times, if the input has the size of 200× 200,
the model’s objective is to create an output of size 800× 800.

Last but not least, another challenge is to simulate an image signal processor (ISP),
which basically creates an RGB image from a CFA (color filter array) acquired by the
camera’s sensor. Therefore, given a CFA input, the task is to learn a CNN that can
generate its corresponding RBG output.
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5.5.2 Neural Network Architecture

As mentioned earlier (??), a good regularization technique should improve results
in different problems to show it can enhance a given CNN outcome. We tested four
neural backbones in different neural architectures to provide a fair evaluation: two for
image classification, one for single image super-resolution, and one for software ISP.

The first CNN we use to evaluate RLS is ResNet (??), more precisely, ResNet-18.
We have chosen this architecture because it is widely used for evaluating regulariza-
tion techniques, allowing a natural comparison. Such neural backbone comprises a
sequence of convolutional and pooling layers, with pooling after a sequence of two or
three convolutional layers. The significant innovation in its architecture concerns the
residual connections, which may improve effectiveness to a certain extent.

EDSR (??) is one of the scarce neural networks used to evaluate regularization
methods (??), ending up in another natural choice. It stands for a residual convolu-
tional network with a sequence of convolutional-ReLU activation-convolutional oper-
ations in its residual blocks and pixel shuffle operations (??) to perform image super-
resolution in the end. PyNET (??), a multi-branch CNN that has several layers in paral-
lel and uses different measures for error calculation, is interesting in evaluating prob-
lems related to image and signal processing, specifically image reconstruction.

5.5.3 Training Protocol

For the image classification problem, we considered the protocol suggested by (??).
The images were redimensioned to 32× 32 pixels and then randomly cropped in 28×
28 patches. Stochastic gradient descent with Nesterov momentum is used for gradient
calculation. The learning rate starts at 10e− 2 and is multiplied by 10e− 1 on epochs
80, 120, and 160.

Concerning image super-resolution, we did not find any defined or suggested pro-
tocol. We, therefore, followed the same parameters used in CutBlur (??) and PyNET (??).
We understand a natural comparison to these previous works by observing the same
parameters.

In all scenarios, five training runs were performed to avoid comparing results only
by chance. Our results report the mean and standard deviation values for each perfor-
mance measure.

5.5.4 Datasets

We used a different dataset for each task evaluated in this work to allow a fair
comparison against other methods. In each case, we selected datasets that, according
to our research, are the most used ones on each application domain considered here,
i.e., image classification and super-resolution.
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For the image classification task, we appointed CIFAR-100 (??), one of the most
used datasets to evaluate regularization techniques (??). It comprises 50, 000 images
from 100 different classes for training purposes and 10, 000 images as the validation
set.

For the single image super-resolution task, we considered two different datasets
inspired in (??). The first one stands for the Div2K (??) dataset, with 800 pairs of low
and high-resolution RGB images for training and 100 for evaluation. The other dataset
is RealSR (??), which comprises 459 pairs of images for training and 100 for model
validation. We used a magnification of four times for comparison purposes in both
cases.

The last one is the Zurich RAW to RGB Dataset (??), which evaluates techniques
for image reconstruction. This dataset is divided into 46, 839 pairs of RGB Bayer filter
data/RGB image for training and 1, 204 similar pairs for testing purposes.

5.6 Experimental Results

This section provides outcomes of RLS against some state-of-the-art regularization
approaches. RLS is first evaluated over image classification tasks (Section 5.6.1) and
later on image super-resolution problems (Section 5.6.2).

5.6.1 Image Classification

Table 14 presents the error rate concerning ResNet-18 in CIFAR-100 dataset. RLS
has achieved the best outcome solely, outperforming seven other techniques. The first
row in the table is our baseline, i.e., ResNet-18, without any regularization.

Method Error (%)
ResNet-18 (??) 24.50
Cutout (??) 21.96
RandomErasing (??) 24.03
MaxDropout (??) 21.93
MaxDropoutV2 (??) 21.92
TSLA (??) 21.45
TargetDrop (??) 21.45
RLS 21.18 ± 0.35

Table 14: Image classification experiment over CIFAR-100 dataset.

5.6.1.1 Working Along with Other Regularizers

As mentioned by (??), it is vital to check how a particular regularization algorithm
works along with other regularization methods. Here, we provide some interesting
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outcomes. Table 15 presents results of ResNet-18 using Cutout and other methods
working together. The proposed approach can outperform MaxDropout and Target-
Drop working jointly with Cutout by more than 0.5% on average, which is to be con-
sidered a good improvement.

Method Error (%)
ResNet-18 (??) 24.50
Cutout (??) 21.96
MaxDropout + Cutout (??) 21.82
MaxDropoutV2 + Cutout (??) 21.82
TargetDrop + Cutout (??) 21.25
RLS + Cutout 20.6 ± 0.16

Table 15: Results on CIFAR-100 using ResNet-18 with one or more regulization meth-
ods.

Combining PyramidNet with ShakeDrop and RLS results in some improvement
too. Table 16 shows the outcomes of PyramidNet without any regularization, using
ShakeDrop, and using ShakeDrop+RLS. On average, that combination allowed an im-
provement of 0.1%.

Method Error (%)
PyramidNet (??) 16.35
ShakeDrop (??) 16.22
ShakeDrop + RLS 16.12 ± 0.14

Table 16: Results on CIFAR-100 using PyramidNet with one or more regulization meth-
ods.

5.6.2 Image Super-Resolution

Table 17 shows the outcomes of EDSR backbone using different regularization tech-
niques from (??). Some conclusions can be drawn in this scenario. The first one con-
cerns Div2k dataset, whose results show that RLS using half of the perturbation value
(RLS-Half) outperforms all methods, including the situation when all techniques (i.e.,
EDSR, Cutout, Cutmix, Mixup, RGB permutation, Blend, and Cutblur) are used to-
gether (All).

The second analysis concerns the outcomes of the RealSR dataset. Although RLS
did not overcome the neural network trained using all methods, still, it has the best
individual result.

We considered an additional experiment related to image reconstruction. Table 18
shows the outcomes of PyNET using RLS algorithm considering PSNR and Multiscale
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Div2K RealSR
EDSR 29.21 28.89
Cutout 29.22± 0.01 28.95± 0.06
Cutmix 29.22± 0.01 28.89± 0.00
Mixup 29.26± 0.05 28.98± 0.09
CutMixup 29.27± 0.06 29.03± 0.14
RGB Permutation 29.30± 0.09 29.02± 0.13
Blend 29.23± 0.02 29.03± 0.14
Cutblur 29.26± 0.05 29.12± 0.23
All 29.30± 0.30 29.16 ± 0.27
RLS-Gaussian 28.03± 0.07 27.97± 0.04
RLS-Full 29.31± 0.01 29.05± 0.04
RLS-Half 29.32 ± 0.01 29.15± 0.03

Table 17: PSNR results on Div2K and RealSR datasets for EDSR using regulization
methods.

Structural Similarity Index Measure (MS-SSIM) (??) quality measures. An improve-
ment in the original results (i.e., standard PyNet) can be observed when RLS is ap-
plied. It is worth mentioning that, even though there are several regularization meth-
ods available for CNNs, none of them tackles, or at least is evaluated, in the context
of image reconstruction. As far as we are aware (??), this is the first regularization ap-
proach that improves the results of deep learning models in the aforementioned task.

Method PSNR MS-SSIM
PyNet (??) 21.19 0.862
Pynet + Gaussian-RLS 20.86 0.850
Pynet + Full-RLS 21.21 0.863
Pynet + Half-RLS 21.22 ± 0.01 0.867

Table 18: Results on Zurich RAW to RGB Dataset for PyNet.

5.7 Discussion

Providing new regularization algorithms is not straightforward for it often needs
the knowledge of a specialist in the problem. Deep learning by itself is already an area
of research that demands plenty of work when some improvements are required. This
section provides some discussion about the outcomes obtained in the previous section.

5.7.1 Lack of Label Regularization Methods

Achieving the best results using a neural network is always desired, and regular-
ization methods should be encouraged in most cases, as far as it does not break the
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semantics of the dataset. The label can be considered safe to test for multi-class clas-
sification, regardless of the application domain. The output is often hot-encoded, so
there are few possibilities to harm or lose semantics.

This work is about a regularization method for Convolutional Neural Networks. It
is fair and easy to compare with other algorithms because it follows the same evalu-
ation protocol. However, more techniques rather than TSLA are desired to perform a
better and direct comparison.

5.7.2 Lack of Comparison for General-purpose Applications

There might be a bias toward creating deep learning regularization algorithms
only for the image classification task. We could find several regularization meth-
ods (????????) for comparison purposes; however, we found only one for directly com-
paring in the context of image super-resolution (??). Besides, as far as we are aware, no
other in-depth study compared regularization techniques for image reconstruction.

The scarcity of works that aimed to compare regularization techniques in prob-
lems other than image classification is worrying. Indeed, we found some works (????)
that also complain about this scarcity of research on regularization algorithms in more
problems. We encourage the researchers to develop new methods for other image pro-
cessing problems, for there might be a promising area of research.

5.8 Conclusions and Future Works

We presented the RLS technique for label-level regularization concerning Convo-
lutional Neural networks. Our results demonstrate that it can outperform other tech-
niques when applied to different image processing problems. As such, we tackle not
only the enhancement of neural networks but the problem of generalizing regulariza-
tion algorithms, complained by (??). RLS can be combined with other techniques and
be used within any backbone.

We intend to apply RLS to other problems in future works, such as natural process-
ing language processing. Another intent is to check if there are random distributions
that can improve our current results.



93

Chapter 6

Conclusion

The present thesis was organized into six chapters, described as follows: an in-
troduction that describes the context, the motivation, and the main contribution to the
subject. Chapter 2 presented a background review in the area in a survey format, which
was published in the ACM Computing Surveys (??), with the title “Avoiding Overfit-
ting: A Survey on Regularization Methods for Convolutional Neural Networks". In
this work, we show the works we analized, as well as point some problems in re-
cent researches targeting new regularization methods. Chapter 3 presented a paper
published in 25th International Conference on Patter Recognition (ICPR 2020), named
“MaxDropout: Deep Neural Network Regularization Based on Maximum Output Val-
ues" and Chapter 4 presented the paper “MaxDropoutV2: An Improved Method to
Drop Out Neurons in Convolutional Neural Networks", presented on the 10th Iberian
Conference on Pattern Recognition and Image Analysis (IbPRIA 2022). The former
presented a new approach for dropping neurons during training while the latter pre-
sented an improved technique targeting convolutional neural networks.

The content of the Chapter 5 was submited to the Patten Recognition Letters (PR
Letters) with the title “Rethinking Regularization with Random Label Smoothing". In
this research, we demonstrated an algorithm that can perform regularization on a label
level in different tasks, accomplishing relevant results in the tested problems, suggest-
ing this approach can be used in several different tasks.

The results obtained in this thesis confirms the hypothesis that we can reduce the
overfitting of convolutional neural networks by applying new regularization algo-
rithms during training, encouraging the development for new techniques applied to
Deep Learning models.
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Name Type Qualis Year Status
Does pooling really matter?
an evaluation on gait recognition Conference A3 2019 Published

A hybrid approach for
breast mass categorization Conference A4 2019 Published

BreastNet: breast cancer
categorization using convolutional
neural networks

Conference A3 2020 Published

Does Removing Pooling
Layers from Convolutional Neural
Networks Improve Results?

Journal A4 2020 Published

Image Denoising using
Attention-Residual Convolutional
Neural Networks

Conference A3 2020 Published

Normalizing images is
good to improve computer-assisted
COVID-19 diagnosis

Book
Chapter — 2021 Published

MaxDropout: Deep Neural
Network Regularization Based
on Maximum Output Values

Conference A2 2021 Published

Improving Pre-Trained
Weights through Meta-Heuristics
Fine-Tuning

Conference A4 2021 Published

MaxDropoutV2: An Improved
Method to Drop Out Neurons in
Convolutional Neural Networks

Conference A4 2022 Published

Avoiding Overfitting: A Survey
on Regularization Methods for
Convolutional Neural Networks

Journal A1 2022 Published

Gait Recognition Based
on Deep Learning: A Survey Journal A1 2022 Published

ISP meets Deep Learning:
A Survey on Deep Learning Methods
for Image Signal Processing

Journal A1 2022 Submitted

Rethinking Regularization
with Random Label Smoothing Journal A1 2022 Submited

Table 19: List of publications developed by the author.

6.1 Publications and Other Works

Table 19 presents a list of studies developed during the research period.



6.2. Future Works 95

6.2 Future Works

I have been working as Artificial Inteligence Research Lead and Consultant in El-
dorado Research Institute since 2020. As a researcher the work includes but is not
limited to image super-resolution, software ISP via Deep Learning, sales forecasting,
and XAI, coordinating a team of about 15 researchers. As future work, I intend to
continue researches in the Deep Learning area, aiming the mentioned problems and
perhaps others that can request my attention.
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