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Abstract

Logistics Network Planning (LNP) involves decisions such as facility location, demand alloca-
tion, inventory, and transportation management. These decisions differ in terms of periodicity
and frequency over the planning horizon. However, the integration of these decisions has been
receiving attention from academics and practitioners in the last years aiming to achieve an ade-
quate service level and efficient performance, in terms of network logistics costs and competitive
advantages. Nevertheless, there is still a lack of research in this area. Thus, in this work, we
study integrated planning in logistics networks. Foremost, we carry out a systematic literature
review to understand the main decisions in logistics planning, the integration approaches, and
the solution methods.

Then, we present a generic mathematical model for the integration of network design, inven-
tory, and transportation planning. We integrate features and characteristics of the real-world
application, such as demand variability, location-based lead times, storage capacity constraints
in distribution centers (DCs), piecewise linear transportation costs, and a multi-period and
multi-product context. The model determines the DC locals to rent; the selection of the capac-
ity level at the DCs; the assignment of retailers to DCs; the cycle, safety stock, and anticipation
inventory levels at DCs; the selection of the cost range/segment for transportation. In addition,
we investigate solution methods exploring specific characteristics of the problem. A Logic-based
Benders decomposition (LBBD) that enhances the master problem with a non-standard decom-
position and a piecewise linear lower bound function of safety stock is proposed.

Furthermore, we address the case of a pharmaceutical logistics network in Brazil to propose
mathematical modeling for location and transportation planning with some characteristics such
as safety measures in cargo transportation and tax issues. Particularly, we address the Tax of
Circulation of Goods and Services (Imposto de Circulação de Mercadorias e Serviços - ICMS, in
Portuguese), a relevant tax for supply chains in Brazil, but it is little explored in the literature.
We also handle uncertainty in demand by proposing a robust counterpart of the mathematical
model. We deal with instances based on real data, for which a general-purpose software provides
poor-quality solutions. Therefore, we propose a Fix-and-Optimize heuristic to solve the models
near optimality. We also present robustness analyses and practical insights about the problem.

The results show the potential of the models and solution methods to address integrated
problems in LNP. Therefore, by studying relevant practical features and suggesting effective
solution methods, this thesis contributes to the literature on supply chain optimization and the
development of tools to support decision-making in practice.

Keywords: Logistics; location; inventory policy; safety stock; transportation; Logic-based
Benders decomposition; Fix-and-Optimize heuristic; uncertainty; robust optimization.



Resumo

O Planejamento de Rede Logística (LNP em inglês) envolve decisões como localização de
instalações, alocação de demanda, gerenciamento de estoque e transporte. Essas decisões diferem
em termos de periodicidade e frequência ao longo do horizonte de planejamento. No entanto, a
integração dessas decisões há recebido atenção de acadêmicos e profissionais nos últimos anos,
visando alcançar um nível de serviço adequado e desempenho eficiente, em termos de custos
logísticos e vantagens competitivas. No entanto, ainda falta pesquisa nesta área. Assim, neste
trabalho, estudamos o planejamento integrado em redes logísticas. Primeiro, realizamos uma
revisão sistemática da literatura para entender as principais decisões no planejamento logístico,
as estratégias de integração de decisões na modelagem matemática e os métodos de solução.

Em seguida, apresentamos um modelo matemático genérico para a integração do projeto de
rede, gerenciamento de estoque e planejamento de transporte. Na modelagem matemática, se
consideram características práticas, como variabilidade de demanda, prazos de entrega baseados
em localização das instalações, restrições de capacidade de armazenamento em centros de dis-
tribuição (CDs), custos de transporte com descontos por quantidade (função linear por partes),
em um contexto de múltiplos períodos e produtos. O modelo determina os locais do CD a serem
alugados; a seleção do nível de capacidade nos CDs; a alocação de varejistas a CDs; os niveis
de estoque antecipado, de ciclo, e de segurança nos CDs; a seleção da faixa/segmento de custo
para transporte.

Além disso, investiga-se métodos de solução explorando características específicas do prob-
lema. Um algoritmo baseado em decomposição de Benders, Logic-based Benders decomposition
(LBBD) que aprimora o problema mestre com uma decomposição não padrão e um limite inferior
do estoque de segurança é proposta.

Além disso, abordamos o caso de uma rede logística farmacêutica no Brasil para propor
modelagem matemática para planejamento de localização e transporte considerando caracterís-
ticas como medidas de segurança no transporte de carga e questões fiscais. Particularmente,
abordamos o Imposto de Circulação de Mercadorias e Serviços (ICMS), um imposto relevante
para cadeias produtivas no Brasil, mas pouco explorado na literatura. Também lidamos com
a incerteza na demanda propondo um modelo de optimização robusta. Resolvemos instâncias
baseadas em dados reais, para as quais um software de uso geral fornece soluções de baixa qual-
idade. Portanto, propomos uma heurística Fix-and-Optimize para obter soluções próximas à
otimalidade. Também apresentamos análises de robustez e insights práticos sobre o problema.

Os resultados mostram o potencial dos modelos e métodos de solução para abordar problemas
integrados em LNP. Portanto, ao estudar características práticas relevantes e sugerir métodos de
solução eficazes, esta tese contribui para a literatura sobre otimização da cadeia de suprimentos
e o desenvolvimento de ferramentas para apoiar a tomada de decisão na prática.

Palavras-chave: Logística; localização; política de estoque; estoque de segurança; trans-
porte; Logic-based Benders decomposition; heurística Fix-and-Optimize; incerteza; otimização
robusta.



Resumen

La planificación de la red logística (LNP en inglés) implica la toma de decisiones como
la localización de instalaciones, la asignación de la demanda, a gestión del inventario y del
transporte. Estas decisiones difieren en términos de periodicidad y frecuencia a lo largo del
horizonte de planificación.

Sin embargo, la integración de estas decisiones ha recibido la atención de académicos y
profesionales en los últimos años buscando lograr un nivel de servicio adecuado y un desempeño
eficiente, en términos de costos logísticos y ventajas competitivas. Sin embargo, todavía falta
investigación en esta área. Así, en este trabajo se estudia la planificación integrada en las redes
logísticas. Primero, llevamos a cabo una revisión sistemática de la literatura para comprender las
principales decisiones en la planificación logística, las estrategias de integración en el modelaje
matemático y los métodos de solución.

Luego, se presenta un modelo matemático genérico para la integración de la configuración de
redes, la gestión del inventario y la planificación del transporte. Se integran características del
mundo real como la variabilidad de la demanda, los plazos de entrega basados en la ubicación de
las instalaciones, las restricciones de capacidad de almacenamiento en los centros de distribución
(CD), los costos de transporte con descuentos por cantidad (función lineal por partes), en un
contexto de múltiples períodos y productos. El modelo determina los locales de los CD a rentar;
la selección del nivel de capacidad en los CD; la asignación de minoristas a centros de distribución;
los niveles de inventario anticipado, de ciclo y de seguridad en los centros de distribución; la
selección del rango/segmento de costo para el transporte.

Además, se investigan métodos de solución explorando características del problema. Se pro-
pone una descomposición de Benders, Logic-based Benders decomposition que mejora el problema
maestro con una descomposición no estándar y un límite inferior del inventario de seguridad.

Además, abordamos el caso de una red logística farmacéutica en Brasil para proponer mod-
elos matemáticos para la planificación de localización y transporte con algunas características
como medidas de seguridad en el transporte de carga y cuestiones fiscales. En particular, abor-
damos el Impuesto de Circulación de Bienes y Servicios ( Imposto de Circulação de Mercadorias
e Serviços - ICMS, en portugués), un impuesto relevante para las cadenas de suministro en
Brasil, pero poco explorado en la literatura. También manejamos la incertidumbre en la de-
manda al proponer modelo de optimización robusta. Se resuelven instancias basadas en datos
reales, para las cuales un software de propósito general no proporciona soluciones de buena cal-
idad. Por lo tanto, se propone una heurística Fix-and-Optimize para resolver los modelos cerca
de la optimalidad. También presentamos análisis de robustez y un análisis sobre el problema.

Los resultados muestran el potencial de los modelos y métodos de solución para abordar
problemas integrados en LNP. Por lo tanto, al estudiar características prácticas relevantes y
sugerir métodos de solución efectivos, esta tesis contribuye a la literatura sobre la optimización
de la cadena de suministro y el desarrollo de herramientas para apoyar la toma de decisiones en
la práctica.



Palabras clave: Logística; localización; política de inventario; inventario de seguridad;
transporte; Logic-based Benders decomposition; heurística Fix-and-Optimize; incertidumbre; op-
timización robusta.
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Chapter 1

Introduction

1.1 Context

Logistics Network Planning (LNP) mainly involves four types of decisions that are strongly
interrelated. The first deals with facility location and demand allocation to the facilities, the
second deals with inventory management, the third includes production planning, and the fourth
is transportation decisions, such as vehicle routing and transportation mode selection (Ballou
and Masters, 1993; Liao et al., 2011a,b; Arabzad et al., 2014). These decisions are set in different
scopes of the planning horizon and concern different levels of details. Due to the importance of
the interactions among these decisions, important benefits can be obtained by approaching the
network as a whole and integrating the decisions, such as responding quickly to changes in the
business environment, eliminating conflicts and inconsistencies between decisions, and reducing
costs (Cordeau et al., 2006). Some decisions such as facility location were made typically for the
long-term. Nevertheless, currently, they are revisited more frequently and integrated problems
is a major trend in supply chain management.

Mathematical models that integrate decisions in LNP can identify opportunities in which
location decisions can be adapted to the variability that occurs at other hierarchical levels,
tactical and operational. Nevertheless, decision timing and frequency, and the computational
complexity of optimizing integrated problems are some challenges regarding integration (Liu
et al., 2020). Due to the different planning horizon lengths for each level, the time periods used
to model each decision level should also be different, adapted to each decision type and the
interdependence among them (Brunaud and Grossmann, 2017; Biuki et al., 2020). Thus, LNP
becomes more complicated, while it is essential to formulate representative models and apply
appropriate solution methods to address the planning challenges arising from integration. Other
important aspect to be considered in LNP is the variability and uncertainty in some information
necessary for decision-making, such as retailer demand. Disregarding uncertainties can result in
impractical solutions; solutions that deteriorate the service level; or solutions with high logistics
costs and tax. Thus, it is important to deal with uncertainties in the planning parameters
through methodologies that provide robust solutions that are little impacted by changes in the
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macroeconomic scenario.
In this thesis, we first investigate the integrated LNP, focusing on the development of math-

ematical models and solution methods for the integration of decisions under demand variability
and uncertainty. This research is framed in the operational research area. Foremost, we carry
out an extensive literature review to identify research gaps and opportunities. Based on our
findings, we develop research on two fronts: normative-axiomatic research based on mathemat-
ical models and solution methods in the literature and empirical-normative research based on a
real case study. These studies are not directly linked, since they were not developed sequentially,
but in parallel, in order to fill different research gaps, such as considering the decision timing
in the integration, addressing demand variability and uncertainty, dealing with discrete costs
and mode selection in transportation planning, addressing real features in logistics planning
(e.g., multiple products, location-based lead times, storage capacity constraints in DC, security
measures and costs, and taxes), and proposing efficient solution methods.

1.2 Organization and contributions

In this section we present the organization of this thesis, briefly describing the contents of each
chapter and highlighting their main contributions.

In Chapter 2, we present a systematic review to identify the main integrated decisions, their
timing and planning horizon, the integration approaches, the solution methods, and mainly the
opportunities to research all these features. The literature on LNP has considerably simplified
data aggregation and some practical features are neglected. The studies presented elaborated
models and solution methods. However, few studies applied the mathematical models in real
cases. Regarding the solution methods, there is a predominance of heuristic approaches over
exact ones, including methods based on decomposition or sequential procedures. Based on
the findings of this systematic review, we outline a conceptual framework presenting the main
modeling assumptions, integration strategies, and solution methods to the integrated problems,
and we also discuss some promising research opportunities. This is a qualitative research because
we aim to evaluate a significant sample (articles addressing the problem) in order to draw
conclusions about that sample (Miguel and Ho, 2012).

In Chapter 3, we analyze an integrated location-inventory-transportation problem under
demand uncertainty. We propose a generic modeling approach to integrate facility location
with inventory and transportation decisions under demand uncertainty in a multi-period and
multi-product context. Inventory planning decisions are made under a periodic review policy
(T, S), consolidating the inventory of the retailers at distribution centers (DCs). Transportation
decisions consider discrete costs by the selection of cost ranges/segments. Thus, the model
determines the DC locals to rent, the assignment of retailers to DCs, the safety stock and
anticipation inventory levels at DCs, aiming to minimize the total cost composed by rental costs,
inventory costs, and transportation costs. The model is formulated as a nonlinear mixed-integer
programming model. To solve the problem, we present a Logic-based Benders decomposition by
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exploiting the structure of the problem and obtain subproblems that preserve the characteristics
of the original problem. To find a lower bound of safety stock in the master problem, we use
a piecewise linear function. We also enhance the master problem including information about
the subproblems and use a multi-cut to accelerate the convergence of the method. This is a
normative axiomatic research because it is based on mathematical programming models that
prescribe decisions for the problem. It is aiming to develop strategies and actions to improve the
results available in the literature, to find an optimal solution for the problem, and to compare
the performance of strategies that address the same problem (Morabito and Pureza, 2012).

In Chapter 4, we also address a LNP of a real case of a pharmaceutical company in Brazil.
Most of the works in the literature about optimization models in the pharmaceutical industry
focus on production planning. We describe practical features of the logistics context of the
pharmaceutical industry in Brazil and propose a mathematical model that integrates network
design and distribution planning decisions considering those features that have not been con-
templated in the literature, such as safety measures in cargo transportation. We incorporate
in the modeling tax aspects that are specific to the logistics networks in Brazil, such as the
Tax of Circulation of Goods and Services (ICMS). This tax is little explored in the literature
and is relevant for the decision-making of companies in Brazil. We also address variability and
uncertainty in some problem parameters for decision-making in planning. A robust counterpart
of the mathematical model is presented by using the robust optimization theory for handling the
demand uncertainty. We investigate solution methods exploring specific characteristics of the
problem, such as decomposition-based approaches, Fix-and-Optimize with partitions by period
and arcs. The results show the potential of the models and solution methods to address some
relevant problems in LNP, particularly in the context of the pharmaceutical industry in Brazil.
This research has elements of empirical-normative research, because the modeling process con-
siders the real characteristics of the problem and the main concern is to ensure that there is
adherence between the real problem and the model elaborated for that reality, to develop poli-
cies, strategies, and actions that improve the existing situation (Morabito and Pureza, 2012;
Bertrand and Fransoo, 2002).

Finally, in Chapter 5 we present an overall final discussion and concluding remarks together
with perspectives for future research arising from the developments presented in this thesis.
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Chapter 2

Literature review of integrated
logistics network planning

This chapter presents a literature review about Logistics network planning (LNP). The objec-
tive is to identify the main integrated decisions, their scopes, integration approaches, and the
solution methods used. Although this review addresses research with decisions at different hier-
archical planning levels, we observed that integration of strategic and tactical decisions is more
common and some of the integration approaches are single-level mono-period models, single-
level multi-period models, multi-time scale models, and multi-level models. These models are
defined and discussed in what follows. There is a predominance of aggregated data in these
studies. Regarding the solution methods, there is a predominance of heuristic approaches over
exact ones, including methods based on decomposition or sequential procedures. Based on the
findings of this systematic review, we draw a conceptual framework presenting the main mod-
eling assumptions, integration strategies, and solution methods to the integrated problems, and
we also discuss some promising research opportunities.

* An article with the contents of this chapter was published as: Jalal et al. (2021)
Aura Maria Jalal, Eli Angela Vitor Toso and Reinaldo Morabito (2021): Integrated ap-

proaches for logistics network planning: a systematic literature review, International Journal of
Production Research, doi:10.1080/00207543.2021.1963875.
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2.1 Logistics network planning

Logistics network planning (LNP) involves making decisions about the number, location, and
capacity of the facilities (factories, warehouses, and distribution centers - DCs), as well as select-
ing suppliers, allocating products to plants, choosing distribution channels, and transportation
modes, and determining flows of raw materials, semi-finished and finished products through
the network. The aim is to meet customer demands and reduce fixed and variable costs of
acquisition, production, storage, and transportation (Cordeau et al., 2006). These decisions
are set in different scopes of the planning horizon and concern different levels of details, con-
figuring the levels of strategic, tactical, and operational decisions. The strategic level involves
long-term planning decisions that affect the structure and capacity of the network. The tactical
level includes medium-term decisions related to the allocation and distribution of materials and
products among the facilities. The operational level refers to decisions related to manufacturing,
warehousing, distribution, and fulfilling demand operations (Gebennini et al., 2009).

The relationship between decision levels and planning horizons varies according to the supply
chain (SC) context and planning concepts (Fleischmann et al., 2002). In practice, the decisions
cross the boundaries of hierarchical levels and are associated with the various stages of the
SC, therefore they have impacts on the overall performance of the SC (Manzini et al., 2008).
Particularly in LNP, there are four types of decisions that are strongly interrelated (Ballou
and Masters, 1993). The first deals with facility location (production or storage facilities) and
demand allocation to the facilities. The second deals with inventory management decisions that
concern inventory control. The third includes production planning at a tactical level and the
main tasks are demand assignment to sites, process selection, and lot-sizing. The fourth is
transportation decisions, such as vehicle routing and transportation mode selection. Most of the
studies in LNP focus on economic objectives (e.g., minimizing costs), although service level is a
growing concern in SC. Thus, some decisions include managing customer service levels (Ballou
and Masters, 1993; Liao et al., 2011a,b; Arabzad et al., 2014). According to Cordeau et al.
(2006), due to the importance of the interactions among these decisions, important benefits
can be obtained by approaching the network as a whole and integrating the decisions. The
integration allows the logistics networks to react to the dynamic conditions of the business
environment, in addition to the potential cost reductions and improvements.

Mathematical models that integrate decisions in LNP can identify opportunities in which
strategic decisions can be adapted to the variability that occurs at other hierarchical levels.
Nevertheless, decision timing and frequency, and the computational complexity of optimizing
integrated problems pose a challenges regarding integration (Liu et al., 2020). Due to the
different planning horizon lengths for each level, the time periods used to model each decision
level should be different, adapted to each decision type and the interdependence among them
(Brunaud and Grossmann, 2017; Biuki et al., 2020). Thus, LNP becomes extremely complicated,
while it is essential to formulate representative models and apply appropriate solution methods
to address the planning challenges arising from integration.
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In recent years, several authors have addressed different problems proposing models and
solution methods to support decision-making in LNP considering the integration of different
hierarchical levels (Manzini et al., 2008). In this context, our objective is to develop a systematic
literature review focusing on two main questions from a broader perspective: (i) how did the
authors integrate designing, planning, and operations decisions in logistics networks under a
dynamic and uncertain environment, and (ii) what are the research gaps and opportunities in
this area? To address these research questions, we developed a systematic review based on the
protocol-driven methodology proposed by Denyer and Tranfield (2009). A systematic review
enables us to identify relevant studies, evaluate their contributions, and summarize their results.

From this literature review, we aim to understand how the integration levels have been made
by the operations management/operations research community. Therefore, the reference papers
are analyzed in terms of different decision-making levels, integration strategies/approaches, and
solution methods. Furthermore, we examine the planning horizons of the models and the timing
of the decisions involved. Finally, we highlight some gaps and point out opportunities for
future research. To present our research findings, we designed a conceptual framework with
the challenges and benefits of the integrated LNP, the main characteristics and premises of the
modeling, as well as the integration proposals and solution methods identified in the literature
review. To the best of our knowledge, no review paper has examined the same aspects taken
into account in this paper.

The rest of this chapter is structured as follows: Section 2.2 indicates the contribution of
this work when compared to other reviews published on this topic. Section 2.3 describes the
review methodology used in this article and Section 2.4, presents a descriptive analysis. Section
2.5 reports a detailed overview of the integrated decisions and strategies for integration in LNP.
Section 2.6 discusses the solution methods and approaches used to solve the integrated models.
Section 2.7 presents our conceptual framework and some research gaps. Finally, Section 2.8
presents our concluding remarks.

2.2 Recent related literature reviews

We initially searched for literature reviews and seminal works that have been published on
integrated optimization problems in LNP, aiming to identify if these papers provide insights
or address issues such as integrating decisions with different planning horizons, main integrated
decisions, and methods to solve the integrated models. Analyzing these articles was an important
step to define our literature review protocol. Table 2.1 shows the papers found and their scope
in the period from 2000 to 2020. Integrated optimization in the field of network design has
received more attention and there are several reviews addressing different integrated problems.

In the first decade of the 2000s, Melo et al. (2009) developed a literature review of facility
location and SC management. The authors addressed the decisions in SC network design,
solution approaches (exact/heuristics), and some modeling features, namely, the number of
layers, commodities, the nature of the planning horizon (single/multi-period), and the type of
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Table 2.1: Literature reviews in recent years on integrated optimization problems in LNP (2009
onwards).

Paper Research focus Is it a systematic Number Time
review? of papers horizon

Melo et al. (2009) Facility location models in SC No 120 1997-2007
Farahani et al.
(2014)

Location-inventory problem in
SC

No 73 1976-2013

Prodhon and Prins
(2014)

Location-routing problems No 72 2007-2013

Drexl and Schneider
(2015)

Variants of the
location-routing problem

No n/a 2006-2013

Govindan et al.
(2015a)

Reverse logistics and
closed-loop SC

Yes 382 2007-2013

Barbosa-Póvoa et al.
(2018)

OR for sustainable SC Yes 220 1999-2015

Farahani et al.
(2018)

OR models in USFL Yes 110 1970-2017

n/a: non applicable.

data (deterministic/stochastic). They concluded that tactical and operational decisions related
to inventory and production were often integrated with location, while others such as vehicle
routing and transportation mode selection were relatively neglected until that moment.

Farahani et al. (2014) presented a literature review of the Location-Inventory (LI) problems,
which aims to integrate location with inventory management and control decisions. The review
focuses on the key modeling attributes, the objective function cost components, the solution
methods adopted, and the real-world applications investigated. The authors also verified the
time structure of the models and concluded that most of the proposed models assume a planning
horizon with a single period.

Taking into account that vehicle routing can improve transportation costs in facility location
problems, Prodhon and Prins (2014) focus on location-routing problems (LR) in their review.
According to these authors, several studies have already shown that although the location of
facilities is a strategic decision and that vehicle routes must be built at the tactical and op-
erational decision levels, these decisions are interdependent and the total cost of the system
can be excessive if they are addressed separately. They also established that all LR problems
with multiple periods were recently proposed, although the selection of clients to be served
in each period shows the tactical dimension that was missing between the strategic decision
level (location) and the operational decision level (route). The community has been propos-
ing new variants of this problem, which include considering new characteristics (e.g., stochastic
parameters, continuous location, multi-layers, multi-objectives) and the incorporation of other
decisions, for example, Inventory-LR, Pickup-and-delivery-LR, and Split-delivery-LR (Drexl and
Schneider, 2015). Farahani et al. (2018) developed a survey on the specific context of Urban
Service Facility Location (USFL), concluding that routing decisions are often integrated into
USFL models. However, other decisions, in particular, fleet sizing and inventory management
decisions, are rarely addressed in these models.

Sustainability has been increasingly considered in SC management. Govindan et al. (2015b)
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and Barbosa-Póvoa et al. (2018) present literature reviews on sustainable SC, reverse logistics,
and closed-loop SC. The reviews found that optimization models applied to strategic levels
are the most preponderant studies. Barbosa-Póvoa et al. (2018) identified 59 out of 220 arti-
cles addressing the integration of strategic decisions (long-term planning) and tactical decisions
concerning inventory, demand, and supply planning. Govindan et al. (2015b) concluded that
strategic decisions, for example, designing and capacity, were successfully integrated with tac-
tical decisions, for instance, network flows; however, operational decisions, such as production
and inventory, remained separate. Both articles pointed out the need for approaches to inte-
grate decisions of different levels into the sustainable SC. Other related integrated SC planning
problems are production-routing problems (Adulyasak et al., 2015) and inventory with trans-
portation issues (Engebrethsen and Dauzère-Pérès, 2018); however, these topics do not include
network decisions and are out of the scope of the present review. The literature reviews in
Table 2.1 show frequent decisions addressed in LNP studies and indicate trends and gaps in the
integrated planning in SC. Nevertheless, these reviews did not particularly address our research
question of how to deal with different planning horizons of decisions in the integration.

2.3 Literature review protocol

We performed an extensive literature review on models and solution methods to address the
integrated planning of logistics networks, ranging from strategic to operational decisions. To
ensure the consistency and quality of the work, we used a systematic research methodology
(Tranfield et al., 2003; Jesson et al., 2011). We observe in Table 2.1 that this methodology
was more used to develop literature revisions in LNP in recent years. The methodology was
structured over three phases: planning, conducting and reporting. Table 2.2 presents a summary
of the research protocol and the methods applied in each of these three phases.

Table 2.2: Research Protocol
Phases Steps Data
Planning Study strategy Definition of constructs, key words, research

strings, database, and period
Conducting Material collection Analysis of inclusion and exclusion criteria

Filter 1: title, abstracts and key-words
assessment
Filter 2: introduction and conclusion assessment
Full reading

Reporting Descriptive analysis W’s analysis (When, Who, What, and Where)
Category selection Classifications in groups
Material evaluation Answer questions, find relevant information and

detect research gaps.
(Adapted from Denyer and Tranfield (2009); Jesson et al. (2011); Tranfield et al. (2003))
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2.3.1 Planning

For the literature review, the constructs established were strategic, tactical, and operational
planning, logistics network, integrated planning, and optimization. We did a survey regarding
the most common words found in articles. A keyword-based bibliometric analysis on the initial
sample was performed to better understand which keywords are usually used in papers addressing
integrated decisions. Figure 2.1 presents a network visualization of the keywords using the
VOSviewer® (van Eck and Waltman, 2010).

Figure 2.1: Keyword bibliometric analysis.

Thereafter, we constructed the search string by combining synonyms of the keywords, as
shown in Table 2.3.
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Table 2.3: Search string
((location* OR “network design” OR “network NEAR/2 configuration”)

AND (integrat* OR join OR simultaneous)
AND (network OR “supply chain*” OR logistics)

AND(decision* OR strategic OR tactical OR operational )
AND (inventory OR transport* OR distribution OR production OR routing OR “fleet

siz*”)
AND (optimiz* OR optimisation OR programming OR model* OR “mathematical

formulation”)).

We studied peer-reviewed articles published since 2000 to 2020 in the context of LNP indexed
in international journals, searching among electronic bibliographical sources including Scopus®

and Web of Science® and using a research string. We considered three criteria for these papers:
(i) the paper should be written in English; (ii) the paper should address strategic decisions, such
as network design or facility location; and (iii) the paper should include other decision variables
related to tactical and operational planning, simultaneously.

2.3.2 Conducting

For the data collection, we applied the search string in the databases on 30 June 2020, cov-
ering the accepted papers (available online) from January 2000 to this date, resulting in 2894
papers (including duplicated papers in the databases). Then, the following filters were applied:
(i) document type, including articles, articles in press, reviews, reiterations, excluding proceed-
ing papers; (ii) areas, including Web of Science® categories: Operations research management
science, Engineering industrial, Engineering manufacturing, Multidisciplinary sciences, Man-
agement, Computer science interdisciplinary applications, Business or computer science infor-
mation systems, Engineering multidisciplinary, Mathematics applied, Computer science artifi-
cial intelligence, Mathematics interdisciplinary applications, Transportation science technology,
Transportation; and Scopus® categories: Engineering, Decision Sciences, Business, Management
and Accounting, Computer Science, Mathematics, Multidisciplinary. The information from the
papers was exported (Bib-Tex) from databases to software StArt® (State of the Art through
Systematic Review). After an initial review, duplicated articles (exported from the databases)
were deleted, resulting in a sample of 778 documents. Afterwards, an article selection step was
carried out, applying inclusion criteria related to alignment and scope. After reading the title,
abstract, keywords, introduction and conclusions, a sample of 190 articles was selected. In the
full reading stage, 131 papers were classified.

2.3.3 Reporting and disseminating results

To extract information from the papers, three steps were followed as shown in the stage reporting
in Table 2.2, i.e., (i) a descriptive analysis, (ii) a category selection and (iii) a material evaluation.
A descriptive analysis was made to obtain an understanding of integrated problems in LNP,
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a category selection was made using groups of similar articles in terms of decisions, model
structure, integration approaches and solution methods. The following questions were used as
motivation:

1. When were the articles published? From which countries are the authors’ affiliations? What are
the most used keywords?

2. What are the main decisions, assumptions, model structures and objectives functions?

3. How the time structure of decisions at different hierarchical levels has been addressed?

4. What are the modeling approaches used to integrate decisions at different levels?

5. What are the solution methods used?

The following sections present discussions to cope the aforementioned questions and a con-
ceptual framework that helps to visualize the main results of our literature review.

2.4 Description of selected sample

This section presents some statistics from the obtained sample applying our research protocol.
Figure 2.2(a) shows the top 10 journals that published the articles. The distribution of these
reference papers in terms of their publication date is shown in Figure 2.2(b). The number of
articles exploring the integration of the decision levels has grown over the past 20 years, reaching
its peak in 2016. Nevertheless, we found that more than 50% of these papers were published
over a five-year period from 2015 to 2020. As this research was carried out in June 2020, it is
expected that in 2020 the actual number of articles will be greater. The countries with more
authors’ affiliations are Iran, United States, China, United Arab Emirates, and Canada.
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Figure 2.2: Statistics of the reference papers

2.5 Detailed analysis of the literature

In this section, a detailed analysis of the methodologies to integrate decisions, the main decisions
and the main features of the integrated LNP are presented aiming to understand which decisions
have been integrated and how the research community has been integrating these decisions.

2.5.1 Model structures to integrate decisions

An important issue in LNP concerns timing decisions, i.e., the coincidence of decisions with
proper time horizons (Badri et al., 2013). The impact of strategic level decisions spans over a
greater period than tactical level decisions, which could be even years as they deal with decisions
that cannot change easily. Tactical decisions have time horizons of months and operational
decisions are typically made on a daily basis (Hiassat et al., 2017). The timing among these
decisions, as well as the distinct time-horizon granularity, should be taken into account when
modeling integrated problems. Amiri-Aref et al. (2018) present a timing structure illustrated in
Figure 2.3.

The lower layer of Figure 2.3 corresponds to the operational level, composed of a set of
discrete periods where managers make daily or weekly decisions. At this level, information such
as demands, lead-times, prices, capacities, costs and sourcing availability are less uncertain.
The short-term operational decisions can be revised in each working period. The tactical level
corresponds to the multi-period horizon illustrated by the intermediate layer. The granularity of
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Figure 2.3: Decision-time hierarchy in the LNP (Amiri-Aref et al. (2018)).

the planning periods requires the aggregation of working periods and the operational decisions.
These medium-term decisions are addressed from monthly to annual periods. At the upper layer,
long-term decisions are made, which are generally decisions related to network design regarding
yearly to multi-annual periods. The elapsed time between the network design and usage period
implies that these decisions are made with partial information (Amiri-Aref et al., 2018).

We analyzed the techniques or strategies for integrating decisions in the mathematical mod-
eling of the reference papers. Four groups were identified, namely: (i) single-level mono-period
models, (ii) single-level multi-period models, (iii) multi-timescale models, and (iv) multi-level
models. Figure 2.4 summarizes the time-horizon granularity for the strategic, tactical and op-
erational levels, in agreement with different horizons: long-term (design) horizon, mid-term
(planning) horizon and short-term (control) horizon, shown in Figure 2.3.

Single-level models integrate decisions at different planning levels through a mathematical
model that incorporates all decisions simultaneously. These models can be mono or multi-period.
Single-level mono-period models make decisions by aggregation of different problem parameters
for the entire planning horizon, as shown in Figure 2.4. Govindan et al. (2019) develop a model
to design a sustainable supply chain integrating location decisions of industrial plants and DCs
with decisions of vehicle routing using a single-level mono-period model. Ahmadi-Javid and
Azad (2010) propose a model that integrates location, inventory, and routing decisions using
the same strategy. Generally, integrating decisions using a single-level mono-period model allow
for making long-term decisions without the concern of variability in the mid and short-term
decision making.

Single-level multi-period models take into account dynamic decisions according to problem
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parameters that vary among periods. Network design decisions, such as location, are gener-
ally defined for the entire planning horizon and the tactical and/or operational decisions (e.g.
production, inventory, and transportation) are addressed for each period, which enables us to
differentiate decisions from strategic and tactical/operational levels. Rafie-Majd et al. (2018)
consider this time granularity to address the inventory-location-routing problem, while Darvish
and Coelho (2018) consider the DC location used for a specific number of periods joint with
production, inventory, and transportation decisions. This approach also maintains the idea
that location decision is valid for a longer period if compared to other decisions. Periodic deci-
sions require detailed information about the parameters. Single-level multi-period models allow
for making more accurate decisions by period; however, it takes more computational effort if
compared to single period models.

In multi-timescale models, the planning horizon is divided into macro-periods in which strate-
gic and/or tactical decisions are made. Each macro-period is divided into micro-periods, where
tactical and/or operational decisions are regarded. Timescale models are also single-level models
and have similar characteristics to multi-period models, since parameters and decisions are de-
fined for distinct periods. However, this approach can be more advantageous when the decisions
to be integrated differ in terms of periodicity and frequency over the planning horizon, enabling
us to properly consider the timing of each decision. For instance, Salema et al. (2009, 2010)
address location decisions for the entire horizon; demand allocation decisions in macro-period;
and production, inventory, and product flow in micro-periods. Some articles consider lead time
in operations, in particular, in production, transportation and supply activities. Authors have
defined time operators for these activities that can locate the macro and micro periods at which
each operation begins and ends, taking into account their lead time (Badri et al., 2013; Bashiri
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et al., 2012; Salema et al., 2009, 2010; Fattahi et al., 2016; Amiri-Aref et al., 2018). We note that
timescale models present a time structure similar to the GLSP (General Lotsizing and Schedul-
ing Problem) model proposed by Fleischmann and Meyr (1997), which integrates mid-term
decisions (lot-sizing) and short-term decisions (sequencing).

Multi-level models consider two and three levels to integrate decisions of distinct hierarchical
levels. At the first level, a model is solved and new information becomes available for the
decision-maker. This solution is used as input parameters for the next level model. In the case
of three-level models, for instance (Manzini et al., 2014), the solution of the second model feeds
into the third model, that is, the multi-level models are solved hierarchically. Generally, the
strategic decisions are addressed at the first level and then, tactical and operational decisions
are considered. Thus, the solutions of some lower level models provide feedbacks to the upper
level models, including information from the last solved models and, iteratively and interactively,
searches for a better solution. This approach is obviously with loss of optimality. Commonly,
the first level deals with location decisions in a single period, while the second and third levels
(if there are any) deal with detailed decisions in multiple periods, for instance (Manzini et al.,
2014). This enables us to differentiate the planning horizon for the different decision levels and,
at the same time, reduce the computational effort by the model decomposition in two or three
models.

Table 2.4 presents the approaches for integrating decisions in the mathematical modeling of
the reference papers. Most of the papers (88%) integrate decisions at different levels through
a single-level mathematical model. Notably, 53% of the reference papers consider single-level
and mono-period models (i); 30% consider single-level and multi-period models (ii); and 5% use
multi-timescale models (iii) to address different decision levels. Moreover, 12% of the papers are
multi-level models with two and three levels, and almost 75% of the multi-level models address
a multi-period context.
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Table 2.4: Approaches for integrating decisions in the mathematical modeling of the reference
papers

Mono period models Multi-period models

4; 7; 6; 3; 5; 9; 14; 18; 20; 21; 22; 44; 46; 57; 227; 68; 80; 86;
88; 90; 95; 96; 98; 103; 104; 107; 118; 120; 122; 123; 126; 129;
131; 130; 134; 147; 149; 148; 151; 166; 167; 168; 170; 171; 177;
195; 178; 189; 190; 194; 197; 199; 200; 201; 203; 206; 208; 214;
215; 216; 217; 218; 219; 221; 222; 223; 226; 229; 232; 241.

2; 8; 15; 23; 39; 41; 47; 48; 59;
58; 67; 64; 65; 66; 73; 78; 84;
85; 93; 94; 97; 102; 121; 124;
132; 141; 150; 157; 158; 159;
172; 179; 188; 180; 209; 231;
236; 235; 238.

Multi-level models Multi-timescale models

60; 91; 92; 110; 125; 137; 135; 136; 138; 160; 161; 184; 187;
207; 239.

17; 24; 28; 79; 193; 192.

See the author-date citation in Table A.1 in Appendix A.

Based on our review, single-level mono-period models can be effective to integrate strate-
gic and tactical decisions in static situations where the data aggregation does not impact the
tactical decisions. When data variability is significant, parameters can be described by a proba-
bility distribution function, as we will discuss this further. Single-level multi-period models are
indicated when there is variability in parameters among periods affecting the periodical deci-
sions (and the data aggregation is not recommended). Thus, more accurate decisions need to
be made by the period which is usually related to tactical and operational ones. Timescales
models can introduce more details by incorporating macro-periods and micro-periods, and ad-
dressing distinct decisions according to their timing. This integration approach corroborates the
assumption that LNP decisions have different time-horizon length and granularity, according to
Figure 2.3 proposed by Amiri-Aref et al. (2018). Thus, timescale models aim to optimize deci-
sions from distinct hierarchical levels simultaneously. Multi-level models are also based on the
same assumption. However, different from timescale strategies, multi-level models are optimized
sequentially and, even using looping techniques to improve the solutions, it is more difficult to
find an optimal solution. In either case, multi-level models can be very useful in many practical
contexts when an optimal solution does not mean a substantial impact in LNP decisions that
are not simultaneously made.

2.5.2 Main integrated decisions

LNP decisions addressed by the papers can be classified into four categories, namely, (i) loca-
tion, (ii) inventory, (iii) production and (iv) transportation. As mentioned before, these decisions
are typically established in different scopes of the planning horizons but they are interrelated.
Several authors have addressed some interactions among these decisions, originating traditional
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problems in the literature that integrate different planning levels. Table 2.5 presents the inte-
gration of decisions in the reference papers: Location-Inventory (LI), Location-Transportation
(LT), Location-Production (LP), Location-Inventory-Transportation (LIT), Location-Inventory-
Production (LIP) and Location-Inventory-Production-Transportation (LIPT). A single article
considered the intersection of location-transportation-production (LTP) (Govindan et al., 2019),
as shown in Figure 2.5.

Table 2.5: Integration of decisions in reference papers
Location-transportation Location-inventory Location-production

3; 20; 22; 73; 86; 121; 125; 160;
167; 168; 197; 207; 208; 218.

2; 6; 5; 17; 21; 23; 44; 46; 47;
57; 227; 68; 67; 64; 65; 66; 80;
88; 118; 122; 123; 124; 126; 129;
131; 130; 132; 134; 147; 148; 159;
166; 170; 171; 195; 184; 189; 195;
199; 200; 203; 209; 215; 216; 217;
221; 223; 226; 229; 239.

45; 95; 222.

4; 7; 14; 18; 39; 58; 84; 90; 93; 98; 102; 103; 110; 120; 141; 149; 150;
161; 172; 177; 178; 179; 180; 190; 194; 214; 232; 236; 238; 241.

8; 9; 24; 28; 48; 59; 60; 79; 78; 85; 91; 92; 107; 137; 138; 158;
187; 193; 192; 206; 231; 235.

15; 41; 94; 97; 135; 136; 151; 157; 188; 201; 219.
See the author-date citation in Table A.1 in Appendix A.

Figure 2.5 presents an overview in terms of the number of articles that address decisions of
each category and the integration among them. All articles consider location decisions. The
most frequent integration is location and inventory management, with 113 articles. In turn, 41 of
these articles consider transportation decisions, and 11 of these articles also consider production
decisions.

Table 2.6 presents more details about the decisions in each category, the number of articles
considering each decision, the percentage in the sample, and their classification in static vs.
dynamic and deterministic vs. stochastic. In this study, the classification of papers in static and
dynamic refers to the consideration of the parameters and decisions in a single-period or multi-
period horizon, respectively. On the other hand, the classification of papers in deterministic and
stochastic refers to the consideration of known or uncertain parameters, respectively.
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Figure 2.5: Number of publications covering the different decision categories in SC.

Table 2.6: Decisions and classification in static vs. dynamic and deterministic vs. stochastic
Time Uncertainty

Decisions Number % Static(%) Dynamic(%) Deterministic(%) Stochastic(%)

Location DC location 131 100 56 44 51 49
Plant location 34 26 41 59 47 53
Demand allocation 95 73 73 27 49 51
Capacity selection 37 28 32 68 54 46
Supplier selection 9 7 78 22 67 33
Technology selection 9 7 44 56 67 33

Inventory Inventory level 84 63 45 55 48 52
Order quantity 52 40 69 31 46 54
Order point 26 20 77 23 54 46
Safety stock 19 15 89 11 0 100

Production Production quantity 37 28 30 70 65 35
Production allocation 7 5 14 86 71 29
Processes selection 6 5 17 83 83 17

Transportation Routing 38 29 55 45 58 42
Mode selection 20 15 45 55 70 30

According to Table 2.6, all the articles consider the location of intermediate facilities (e.g.,
DCs, hubs and collection centers) and 26% of them also consider the location of production/re-
manufacturing facilities. Despite the dynamic business environment and frequent changes (po-
litical, tributary, and social) that may arise over time, only a few articles cope with the network
redesign, allowing for opening and closing facilities or allowing for expanding capacity on the
planning horizon. Several articles take into account the location of collection facilities for pro-
cessing post-consumer products, which lead to properly disposing of waste or integrating waste
as raw materials in a circular economy (Barbosa-Póvoa et al., 2018). Other strategic decisions
associated with facility location are defining, selecting or adding capacity to facilities (28%).
Less explored decisions are supplier selection, fleet sizing, vehicle allocation, and pricing. Ac-
cording to Table 2.6, the decision concerning the location of intermediate facilities did not tend

18



to be static or dynamic, deterministic or stochastic. However, some network design decisions,
such as supplier selection, are made mainly in a static and also deterministic context. Other
decisions, such as technology selection and capacity selection, are made mainly in a dynamic
and deterministic context.

Concerning inventory management, some models deal with inventory decisions in several
layers: plants, warehouses, and retailers. According to Table 2.6, a frequently integrated decision
in LNP is the inventory level definition (63%). Other inventory decisions are order quantity
(40%), replacement point (20%), and safety stock (15%), and these decisions are made mainly
in a static way, according to Table 2.6. Moreover, 23% of articles that include inventory decisions
consider lost sales, back order, or early delivery. Figure 2.6 presents the number of articles that
address the three most frequent inventory decisions of Figure 2.5 and the intersections among
them. Observe that 18 articles address only order quantity and 2 address only order point, but
most decisions are combined.
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Production decisions, in turn, include the amount to be produced (28%), allocation of pro-
duction to facilities (5%), and selection of production processes or technologies (5%). According
to Table 2.5, in LNP, production decisions are frequently integrated with inventory decisions,
particularly the inventory level. In Table 2.6, the production category excels at making decisions
in a dynamic and deterministic context. The 37 articles that consider the decision of production
quantity definition are integrated with the different decision categories as shown in Figure 2.5.

The transportation decisions refer to the selection of transportation alternatives (modes) and
vehicle routing. Only 15% of the studies incorporate the selection of transportation alternatives
and 29% consider routing. Within vehicle routing problems, there are decisions associated with
the definition of routes and the selection of predefined routes. Studies address both homogeneous
and homogeneous vehicle fleets. According to Table 2.6, transportation decisions are made
mainly in a deterministic context, i.e. mode selection (70%) and routing (58%).

A less addressed decision in LNP is to allow lost sales (14%) or even not fulfilled demand at
the specified deadline, as well as backlogs/delays (11%) or advances (1%), considering penalties
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in both cases. These decisions appear in the reference papers which address location-inventory
decisions.

Figure 2.7 presents the relations between the integrating approaches and the main integrated
decisions in the reference papers. The strategy of a single-level model dominates in all types
of integration, particularly LI integration. In these models, different decisions are made simul-
taneously considering aggregated data or average data (e.g., demand, capacity, costs). Some
authors consider uncertainty in modeling, aiming to reduce the impact of this assumption over
the decision-making process.
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Figure 2.7: Relations between integrating strategies and main integration in reference papers.

2.5.3 Features of the integrated problems

This subsection presents a description of the main characteristics of the integrated problems
related to data aggregation, data uncertainty and performance measures.

Data aggregation

As mentioned before, many articles (49.6%) deal with decisions in the same period, without
taking into account the differences in nature and frequency of decision levels. This fact can lead
to sub-optimal and even impractical decision making.

The most frequent decision addressed in the multi-period context is the DC location, how-
ever in most reference papers, this decision is made for the entire planning horizon. Production
quantity is regarded predominantly for multi-period horizons represented by continuous vari-
ables, which are more treatable for solving integrated problems. Incorporating multiple periods
usually increases the number of integer decision variables and constraints of the problem. Conse-
quently, it increases the size of the problem and the time to solve it. To deal with this complexity,
authors in the literature have devised different exact and heuristic solution methods. In this
context, it is common to find sequential heuristics based on Lagrangian relaxation, Benders
decomposition approaches, and metaheuristics.

In real contexts, the portfolio of a company often consists of different products with different
physical characteristics, demand patterns, costs, among others. Despite this, only 42% (55
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articles) of the articles propose models that consider multiple products. Depending on the
context of the logistics network, different alternatives are available for transporting products:
modal (railways, roadways, airways, waterways and pipelines), freight type (truckload and less-
than-truckload) and different vehicle sizes. However, only 15% of the articles (19 articles)
consider multiple transportation mode. Moreover, only 8 articles cope with a multi-period, multi-
product and multi-modal context (Alshamsi and Diabat, 2018; Manzini et al., 2008; Manzini
and Gebennini, 2008; Martins et al., 2017; Mota et al., 2018; Govindan et al., 2016; Sadeghi Rad
and Nahavandi, 2018; Zeballos et al., 2014).

Figure 2.8 shows a relationship between the most frequent decisions in the sample and the
data aggregation in periods, products and transportation modes. As expected, models with
two categories of decision (LI, LP, LT) present more aggregated data, while models with more
integrated decisions (LIPT) consider less aggregated data.
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Figure 2.8: Time aggregation in the most frequent decisions of the sample

Logistics networks consist of different entities, such as suppliers, factories, warehouses, re-
tailers and final consumers. The reference papers addressed networks mainly with three and two
entities, i.e., with two echelons (60%, 78 articles) and one echelon (39%, 51 articles), respectively.

Data uncertainty

The input parameters of models in the reference papers are deterministic, stochastic, possibilistic
and fuzzy. The terms fuzzy and possibilistic are often used in an equivalent way in the reference
articles. 43% of the articles take into account variability and uncertainties in the parameters.
The main uncertain parameter addressed is demand. LIP models also consider uncertainties
in capacities, supply lead times and costs, while LIT models also consider uncertain costs and
transportation times. LIPT models address uncertainty in facility opening and transportation
costs, capacities and recovered products fraction in reverse logistics contexts.

According to Rabbani et al. (2019), uncertainty should be acknowledged to ensure reliabil-
ity in the decision-making process. Uncertainties are addressed through different techniques.
According to Rafie-Majd et al. (2018), there are three different and widely-used methods for
dealing with uncertainty in modeling and optimizing the SC: (i) distribution-based approaches,
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(ii) scenario-based approaches and (iii) fuzzy programming approaches.
In distribution-based approaches, probability distribution functions are used to model the

uncertain parameters. Thus, several authors incorporate the parameters of the distribution
function in the mathematical modeling. The Normal distribution is widely used to model un-
certain demand as in (Alavi et al., 2016; Aryanezhad et al., 2010; Das and Sengupta, 2009; Liao
et al., 2011b; Monteiro et al., 2010; Nakhjirkan and Rafiei, 2017; Nasiri et al., 2010; Puga and
Tancrez, 2017; Rafie-Majd et al., 2018; Schuster Puga et al., 2019a; Shahabi et al., 2013; You
and Grossmann, 2008), as well as lead-time (Alavi et al., 2016) and transportation time (Das
and Sengupta, 2009). The Poisson distribution is also used to model uncertain parameters of
demand and lead time (Gholamian and Heydari, 2017; Jeet and Kutanoglu, 2018). Sadjady
and Davoudpour (2012) addressed uncertain demand and lead-time, which follow Poisson and
Exponential distributions, respectively. They applied a queuing approach to obtain the annual
quantities of ordering, purchase and shortage, and also the mean inventory in the steady-state
condition.

In scenario-based approaches, some discrete scenarios with relevant levels of probability are
used to describe the expected occurrence of specific results (Rafie-Majd et al., 2018). Some stud-
ies are framed in stochastic optimization methods, two-stochastic programming and multi-stage
stochastic programming. Most authors addressed the uncertainty with two-stage scenario-based
stochastic programming, separating the decision variables into two stages. First stage variables
are decided upon before the realization of the stochastic parameters. Once the uncertain events
have taken place, further adjustments can be made through the second-stage variables. Often,
two-stage stochastic programming models assume that the stochastic parameters can be repre-
sented as random variables with a known probability distribution, or well approximated using
a finite number of possible realizations, called scenarios. The number of scenarios should be
appropriate to ensure both, the representativeness of the random variables and the computa-
tional tractability of the stochastic models. The objective is to identify decision variables at the
first stage that seems to be balanced, with respect to all the possible scenarios of the stochastic
parameters. This approach is used in several articles (Amiri-Aref et al., 2018; Angazi, 2016;
Fattahi and Govindan, 2017; Ghaderi and Burdett, 2019; Khatami et al., 2015; Ghezavati et al.,
2009; Shu et al., 2010; Tsiakis et al., 2001; Zeballos et al., 2014, 2018). There is a lack papers
addressing the uncertainty using multi-stage stochastic optimization (for instance, Zeballos et al.
(2013)), due to the complexity to solve the models.

In fuzzy-based approaches, parameters are regarded as fuzzy numbers with membership
functions. Fuzzy programming can be applied when situations are not clearly defined and thus
are uncertainty, or an exact value is not critical to the problem. Ahmadi et al. (2016) considered
possibilistic demand and capacity, Dai et al. (2018) considered capacity and carbon emissions,
Shavandi and Bozorgi (2012) and Govindan et al. (2020) considered demand, Zhalechian et al.
(2016) consider demand, cost, distance, created job opportunities and regional development,
and Sherafati and Bashiri (2016) proposed a fuzzy approach with all fuzzy parameters.

Robust optimization is another approach to deal with uncertain parameters in optimization
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problems. It constructs a solution that is feasible for any realization of the uncertainty in a given
set. Akbari and Karimi (2015) used robust optimization and solved the models using general
purpose optimization solvers.

It should be noted that, whereas stochastic programming approaches assume that there is
a probabilistic description of the uncertainty, robust optimization works with a deterministic,
set-based description of the uncertainty. In two-stage stochastic programming models, there is a
challenge to define properly the number of scenarios in order to be appropriate to ensure both,
the representativeness of the random variables and the computational tractability of the stochas-
tic models. The difficulty of solving the robust optimization models does not rise compared with
the stochastic models (Bertsimas and Sim, 2004). Regarding distribution-based approaches, the
parameter of the distribution function can be used in modeling, but sufficient information about
the parameters is needed to define an appropriate probability distribution function. Despite
this, it is possible that the data does not adjust itself to any probability distribution function.
On the other hand, the results of fuzzy-based approaches depend on choosing an appropri-
ate membership function and basic rules, which is one of the most challenging aspects in this
approach.

Table 2.7 shows the distribution of reference articles among deterministic and the different
approaches to address uncertainty. It is remarkable that most articles use single-level models to
integrate different decisions (LI, LT, LIP, LIT, LIPT) and these models are mainly deterministic.

However, some of these integrations consider uncertainty through distribution-based, fuzzy-
based, and robust optimization approaches. Multi-level models which integrate all decision
categories (LIPT) are mainly deterministic models. In the same way, multi-timescale models
to LIP are deterministic, but the different timescales address decisions in periods with less
uncertainty.
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Table 2.7: Modeling approaches to face data uncertainty
Single-level Single-level Multi-level Timescale

Approach mono-period multi-period models models
Deterministic 12 7

LI Distribution-based 20 0 2
Fuzzy-based 2 1
Scenario-based 2 3 1

LP Deterministic 1 0 1
Scenario-based 2 0

Deterministic 7 2 2
LT Distribution-based 2 0

Scenario-based 1 1

Deterministic 1 5 2 4
LIP Distribution-based 1 0 2

Scenario-based 2 1 1
Robust optimization 0 1 1

Deterministic 6 6 1
LIT Distribution-based 7 3 1

Fuzzy-based 1 1
Scenario-based 2 1

Deterministic 1 7 2
LIPT Distribution-based 1

Fuzzy-based 1

Total 70 39 16 6

Performance measures

We analyze the types of performance measures used in the integrated problems. Figure 2.9
depicts different objective functions that measure performances.
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Figure 2.9: Performance measures in integrated problems

Most articles have a single and economic objective, mainly minimizing total cost or maxi-
mizing profit. The minimization objective predominates with 69% of the studies (90 articles)
minimizing the total cost, as shown in Figure 2.9(a), expressed through the sum of several
cost components that depend on the modeled decisions. Some cost components are: facility
opening, transportation, storage, routing and vehicle or technology acquisition. Some objective
functions minimize total investment derived from a decision, for instance, investment in opening
warehouses (Nasiri and Davoudpour, 2012). On the other hand, profit maximization objectives
receive less attention, only 14% (18 articles) of the articles. Under profit maximization, it is
not always attractive for a company to meet all demands of all customers. This occurs when
serving certain customers generates additional costs higher than the corresponding revenues.
Thus, some models include decisions such as delivery delays and lost sales, under penalties in
the objective function.

Some papers propose models with multiple and conflicting objectives. This approach is
especially useful for situations where objectives cannot be added because they have different units
(Brunaud and Grossmann, 2017). Increasing environmental, legislative, and social concerns are
forcing companies to take into account the impact of their operations on the environment and
society. Thus, in addition to economic factors, objectives related to customer responsiveness
and social and environmental impacts are taken into account in mathematical models. Among
the articles studied, 17% (22 articles) are found in this category. All the multi-objective models
have at least one economic objective. The pie-chart 2.9(b) is a sub-chart of 2.9(a) and out of
the 17% of papers that consider multiple measures, 41% consider environmental measures in
combination with economic measures, 36% consider service-level measures in combination with
economic measures, and 23% consider environmental and social measures in combination with
economic measures. Most multi-objective models integrate decisions through a single-model
(91%). Multi-level models also address several objectives (9%). The main integration in multi-
objective models is LIT with objectives related to environmental impacts, demand fulfillment,
and delivery times (Biuki et al., 2020; Forouzanfar et al., 2018; Govindan et al., 2020; Mogale
et al., 2019; Nekooghadirli et al., 2014; Qazvini et al., 2016; Rabbani et al., 2019; Zhalechian
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et al., 2016). Multi-objective LI models also concern objectives such as demand responses and
delivery times (Ahmadi et al., 2016; Liao et al., 2011b,a; Naimi Sadigh et al., 2013; Nasiri
and Davoudpour, 2012). LT and LIPT models consider environmental objectives, for instance,
minimizing pollutant gas emissions (Govindan et al., 2014, 2016; Sadeghi Rad and Nahavandi,
2018; Govindan et al., 2019; Soleimani et al., 2018) and minimizing the environmental impacts
through the life cycle analysis methodology (Mota et al., 2018).

Social objectives are more difficult to measure compared to economic objectives, therefore,
they are more difficult to define and use. A social objective aims to maximize the social ben-
efit measured through indicators. The main social indicator is creating job opportunities with
different definitions, for instance, the number of jobs created by the SC in countries with less
economic development (Mota et al., 2018). The maximization of job creation is also used by
Biuki et al. (2020); Zhalechian et al. (2016). Govindan et al. (2016) proposed other social objec-
tives in terms of economic welfare and growth, responsibilities towards stakeholders, extended
producer responsibilities and employment practices. Govindan et al. (2019) presented several
social indicators: variable and fixed job opportunities; equity between customers in terms of
their access (distance); potential damage that may occur in the process of establishing facilities,
shipment of products, manufacturing and handling; level of customer satisfaction in terms of
time delivery; the equity of workers in terms of the standard deviation of distances passed by
vehicles and the standard deviation of work-load in facilities; and the work damage during the
manufacturing process. According to Farahani et al. (2014), the response time to the customer
can be considered as a social objective, as the customer needs are primarily regarded despite
the cost that the service may represent for the company. Some social and environmental ob-
jectives are used as constraints in other articles. Demand fulfillment policies derive constraints
related to service levels, stock levels and safety stocks. Frequently, the consideration of service
levels and safety stocks involve non-linear expressions. Most of the mathematical models in the
sample show some non-linearity (89%), of which very few articles present strategies to linearize
the non-linear models (9%).

A comparison of the performance measures between our analysis and the review presented
by Melo et al. (2009) shows an increase in models considering multiple measures, particularly
including environmental and social ones. This result seems to corroborate a tendency in the
literature to incorporate sustainable issues in a multiple perspective of performance measures.

Applications

Regarding applications in the industrial sector, most applications of the proposed models and
methods were made in European countries, including electronic, glass, pharmaceutical, consumer
goods, and copier re-manufacturer companies. Moreover, there were applications in Iran in
different companies, such as bread, filters, light automobile parts, and household goods. In
Pakistan, an application was in a lube oil company. There is also a case in an Indian plastic
manufacturer and other applications in cell phones, packaged gases, automotive timing belts,
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and steel pipe products. We also note that there are several applications in service parts logistics.
The applications in industrial sectors represent only 30% of the reference articles. These articles
present integrated problems based on case studies and also use real data or generated instances
based on real data.

Most articles present axiomatic research assuming idealized problems, i.e., they are interested
in developing approaches to improve addressed problems in the literature, to find better solutions
to newly defined problems, or to compare various methods to solve a specific problem (Bertrand
and Fransoo, 2002). These works consider generated data sets. We note that the mathematical
formulations of these articles are inspired by other pieces of research that might have been
originally motivated by real problems. However, the discussion about the model assumptions
and data structure in practical contexts is frequently neglected in the revised papers. Most
authors focus only on describing the main research contribution, which is often based on idealized
problems. The lack of analysis about the fundamentals and premises to formulate LNP models
can be a primary obstacle to the practitioners.

2.6 Solution methods for integrated problems in LNP

The methods used to solve the integrated LNP optimization models can be classified into exact
and non-exact methods. Exact solution methods include techniques able to find optimal solu-
tions: Benders decomposition (BD) (Benders, 1962), column generation (Ford and Fulkerson,
1958) branch-and-cut (B&C), branch-and-price (B&P) (Barnhart et al., 1998), and decompo-
sition methods with exact solutions. Non-exact solution methods include heuristics and meta-
heuristics. Taking into account that the integration of decisions suggests addressing problems
simultaneously, an idea for solving the models is the decomposition of the integrated problem
into sub-problems that are easier to solve with exact or heuristic methods, for instance, Ben-
ders decomposition based heuristics. Some heuristic methods explore features of mathematical
programming with exact, heuristics, and meta-heuristics methods, called matheuristics. Table
2.8 presents the solution methods used in the articles of the sample.

2.6.1 Exact methods

About 35% of referenced articles use exact approaches to solve models for integrated problems,
mainly BD and B&C as shown in Table 2.8. A well-known approach used in some revised papers
is the BD method, a technique for partitioning variables aiming to solve large-scale problems with
complicating variables. Alshamsi and Diabat (2018) proposed an accelerated BD algorithm to a
large-scale reverse SC network design with production, inventory and transportation decisions.
Azizi and Hu (2020) applied a BD algorithm for pickup and delivery SC design with LR and direct
shipment. Wheatley et al. (2015) presented an exact solution methodology using logic-based BD
for an LI problem with service constraints. Khatami et al. (2015) applied Benders’ decomposition
to solve a stochastic mixed integer programming model for the concurrent redesign of a forward
and closed-loop SC network with demand and return uncertainties. Tapia-Ubeda et al. (2020)
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Table 2.8: Solution methods found in the reference articles
Methods Authors

Ex
ac
t

BD 15; 22; 227; 124; 183; 216; 217; 241
B&B 58
B&P 3
Column generation 203
General purpose solvers (B&C) 2; 8; 22; 23; 28; 41; 48; 46; 60; 79; 85; 91;

92; 97; 98; 102; 107; 120; 135; 137; 138;
136; 141; 157; 158; 161; 169; 195; 178; 188;
187; 193; 192; 189; 199; 201; 209; 208; 222;
231; 236; 235

N
on

-e
xa

ct

H
eu

ris
tic

s

Specific/sequential heuristics 64; 149; 160; 177; 184; 197; 206; 214; 221;
223; 239

LR based heuristics 6; 5; 14; 24; 47; 68; 67; 65; 73; 147; 148;
170; 180; 190; 229

BD based heuristics 207
Outer approximation method 18; 118; 151
Sample average approximation 17; 86

M
et
a-
he

ur
ist

ic
s

Evolutionary algorithms 44; 45; 104; 131; 130; 132; 171; 218; 219;
226

Genetic algorithm 20; 21; 66; 80; 84; 88; 110; 150; 166; 167;
168; 172; 179; 200; 215

Imperialist competitive algo 9; 172
Simulated annealing 78; 123; 172; 194
Tabu search 125; 232
Particle swarm algo 84; 94; 159; 150
VNS 121
Hybrid meta-heuristics 4; 39; 57; 93; 95; 96; 129; 134; 90; 103; 122;

238
Matheuristics 7; 59; 126

Number and authors of articles are in Table A.1 in Appendix A.

proposed a generalized BD to spare parts SC network design problems and Zheng et al. (2019a)
applied it to solve a location-inventory-routing problem.

Generally, in integrated models solved with BD, location and customer assignment decisions
are temporarily fixed, while tactical and operational decisions are yielded in a sub-problem.
Ramezani and Kimiagari (2016) fixed variables representing financial decisions to solve itera-
tively subproblems with logistics decisions (location, allocation, distribution) and other financial
decisions in a closed-loop SC network. Darvish et al. (2019) proposed an exact method based on
the interplay between two branch-and-bound algorithms that run in parallel called the enhanced
parallel exact method.

Shu et al. (2010) developed a column generation method to solve the LI problem under
uncertainty in the long life-cycles of warehouses. The authors explicitly model the possible
combinations of retailers that can be served, and they solve the problem by initially considering
only a subset of combinations and adding others iteratively, until the best allocation is found.

Ahmadi-Javid et al. (2018) addressed a location-routing-pricing problem, aiming at maxi-
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mizing profit. The problem is reformulated to a set-packing master problem and elementary
shortest path subproblems, by using the Dantzig-Wolfe decomposition. A branch-and-price al-
gorithm is used as the solution method after reformulating the model. A location problem is
addressed in the master problem with a subset of routes and new routes are added iteratively
to this master problem using heuristic and exact label-setting algorithms.

Some articles solve problems using general purpose optimization solvers, such as CPLEX,
GUROBI, LINGO and XPRESS, which are also considered here in the exact category, because
an exact method is usually incorporated into these solvers, often a general-purpose B&C method.
The main decisions integrated in these articles are location-allocation, flows and inventory levels.

2.6.2 Non-exact methods

Non-exact methods include algorithms that return a feasible solution in finite computational
time with absent accuracy of such solution quality, i.e., without a certificate of optimality of the
solution. Most of the articles studied (about 64%) present non-exact solution approaches, which
is expected since location problems are difficult to solve (NP-hard). When location problems are
combined with other problems, its resulting integrated mathematical model involves a greater
number of constraints and complicating variables, and consequently it is also difficult to solve.
In this case, authors often resort to heuristic methods that can find feasible solutions within
acceptable run times to the integrated problems.

BD is an attractive methodology to develop heuristics because it can take advantage of
problem structures Rahmaniani et al. (2017). Other sequential algorithms consist of separating
decisions and solving parts of the problem sequentially (Diabat, 2016; Miranda et al., 2009;
Rappold and Roo, 2009; Singh et al., 2015; Tsao et al., 2012; Zhang and Xu, 2014). Guerrero
et al. (2015) proposed a relax-and-price heuristic for the location-inventory-routing problem, a
hybridization between column generation, Lagrangian relaxation, and local search. Lagrangian
relaxation (LR) is usually used as a decomposing strategy. This leads to relaxing some con-
straints of the problem, called coupling constraints, and are penalized (dualized) in the objective
function and, generally, the resulting problem can be decomposed into independent problems.
Heuristics based on Lagrangian relaxation are widely used in the sample, as shown in Table 2.8.

Some authors have also proposed algorithms inspired by metaheuristics, namely simulated
annealing (Fattahi and Govindan, 2017; Keskin and Üster, 2012; Nekooghadirli et al., 2014;
Saragih et al., 2019), tabu search (Kim and Lee, 2015; Yuchi et al., 2016), particle swarm
optimization (Forouzanfar et al., 2018; Govindan et al., 2014; Mousavi et al., 2017; Mogale
et al., 2019), and metaheuristics based on evolutionary algorithms (Cabrera et al., 2016; Calvete
et al., 2014; Liao et al., 2011b,a; Lin et al., 2009; Nasiri et al., 2015; Tiwari et al., 2010; Wang
et al., 2013). An evolutionary algorithm frequently used is the well-known genetic algorithm
(Arabzad et al., 2014; Aryanezhad et al., 2010; Diabat and Deskoores, 2016; Firoozi et al., 2014;
Ghezavati et al., 2009; Hiassat et al., 2017; Naimi Sadigh et al., 2013; Nakhjirkan and Rafiei,
2017; Shavandi and Bozorgi, 2012; Tang and Yang, 2008). Authors have also proposed hybrid
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metaheuristics, in particular, simulated annealing with tabu search (Ahmadi-Javid and Azad,
2010) and simulated annealing with genetic algorithm (Gholamian and Heydari, 2017; Guo
et al., 2018). Some articles combine several meta-heuristics, such as simulated annealing, tabu
search and genetic algorithm with variable neighborhood search (VNS) (Kaya and Urek, 2016).
Some heuristic methods explore features of mathematical programming with exact, heuristics
and meta-heuristics methods, called matheuristics. For instance, a hybrid Lagrangian relaxation
and an ant colony optimization algorithm to solve a logistics network design problem (Lagos
et al., 2015).

An idea for solving the integrated models is the decomposition into sub-problems that are
easier to solve. Ahmadi-Javid and Seddighi (2012) presented a heuristic method in three phases:
location, routing-1 and routing-2. After determining a suitable initial solution, a simulated
annealing algorithm and a hybrid ant colony optimization algorithm are implemented to improve
the solution in the first two phases and in the third phase, respectively. Darvish and Coelho
(2018) proposed a matheuristic based on a hybrid of variable neighborhood search and exact
methods. The problem is divided into two subproblems that are then solved in an iterative
manner. In the first level, the authors apply a heuristic in order to decide location and production
allocation. In the second level, transportation, inventory allocation at plants and rented DCs are
determined exactly by solving an integer linear programming subproblem. Finally, they improve
the obtained solution by solving the model presented with exact methods for a very short-time
period.

Some optimization models have multiple objectives and are solved with methods that do not
guarantee optimal solutions for each objective. This is the case when multiple objectives are
transformed into a single objective by a weighted sum of each criterion (Naimi Sadigh et al., 2013)
or by goal programming (Arabzad et al., 2014). Some authors also use an evolutionary approach
(non-dominated sorting genetic algorithm) to deal with multiple objectives (Forouzanfar et al.,
2018; Liao et al., 2011b; Mogale et al., 2019; Naimi Sadigh et al., 2013; Nekooghadirli et al.,
2014). Govindan et al. (2014) proposed a hybrid metaheuristic, combining a particle swarm
algorithm and an adapted multi-objective variable neighborhood search algorithm.

2.6.3 Analysis of solution methods for each type of integration

There is a predominance of non-exact methods over exact methods to solve LNP problems. In
order to determine if there is some trend in the solution methods according to the decisions
involved in the model and the integration strategies used, Figure 2.10 shows the participation
of each category of method that involves these decisions.

Studies on LI, LT, and LIT are addressed mainly by heuristics and metaheuristics. This is
because models with decisions represented by integer variables and associated with nonlinear
expressions in mathematical programming are difficult to approach with exact methods. In
particular, models with decisions such as inventory policy definition, order point, and order
number were mainly addressed through heuristics and meta-heuristics. Moreover, models with
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Figure 2.10: Participation of each category of method that involves these decisions

decisions represented by integer variables, such as demand allocation and vehicle routing, are
largely addressed through heuristics and meta-heuristics. The LIP integration, that generally
addressed inventory levels and production quantity decisions using continuous variables, is often
solved by exact methods, predominantly by general purpose solvers. Models that additionally
integrate transportation decisions, LIPT, are addressed more diversified solution methods, 64%
by exact methods and 36% by non-exact methods.

The integration of decisions may increase the difficulty to solve the models. A strategy of
a single-model is preponderant. To solve these models, heuristic methods are commonly used,
customized heuristics, Lagrangian relaxation based heuristics, as well as meta-heuristics based
on evolutionary algorithms, particularly genetic algorithm. Only 28% of the articles that use
this strategy are solved with exact methods, predominantly solvers of general purpose (25%).
Multi-level models use heuristic and exact solution approaches. Models with interconnected
timescales use general purpose solvers.

2.7 Discussions about research gaps and opportunities

Researchers and practitioners of operations management and operations research communities
often classify decisions into strategic, tactical, and operational, based on the time horizon of
impact, therefore these decisions are dealt separately. When the members of the logistics network
try to optimize their relative performance, the performance across the network might not be
optimal. This is true also when each level is optimized regardless of the others, hence, this leads
to a sub-optimality of decisions and excessive costs. Recently, many studies showed significant
savings when regarding integration of decision levels (Hiassat et al., 2017).

In this context, the present study used a systematic literature review to better understand
how this integration is developed in optimization models; what the main integrated decisions
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involved are; what types of problems are treated and what their main features are; how the
data is addressed; which solution methods are used to solve the integrated problems; and what
research gaps and opportunities are identified. Figure 2.11 summarizes the challenges and bene-
fits of integrated planning, and also the main findings of the literature review, allowing a better
overview of what has been done on this topic.

The integration of decisions levels in the network planning implies taking (some of) strategic,
tactical and operational decisions simultaneously. Consequently, benefits can be obtained, as
shown in Figure 2.11. The integration eliminates conflict and incompatibility among decisions
and goals of different departments in a company. It also helps to react more quickly to the
dynamic conditions of the environment. Moreover, the integrated planning reduces the logistics
network costs and more information is exploited. Nevertheless, this integration presents chal-
lenges in modeling and solving problems, as pointed out in Figure 2.11. Integrated planning
implies dealing with different decision timing (scope, periodicity, and frequency), as well as tak-
ing into account several logistics components and dealing with the variability and uncertainty of
important problem parameters (Monteiro et al., 2010). Integrated planning also implies mathe-
matical models with a greater number of variables (continuous and integer). It can increase the
difficulty of solving the models, it is expressed in longer execution times. The requirements for
large amounts of complex and hard to obtain data are other challenges (Miranda et al., 2009).

The reference papers of our review address the integration of: Location-Inventory (LI),
Location-Transportation (LT), Location-Production (LP), Location-Inventory-Transportation
(LIT), Location- Inventory-Production (LIP), location-transportation-production (LTP), and
Location-Inventory-Production-Transportation (LIPT). Figure 2.11 presents the main decisions
by hierarchical level. The studies have focused mainly on handling strategic and tactical deci-
sions for the entire planning horizon. The main decisions addressed at the strategic level are
facility location, network design, and demand allocation, generally defined for the entire plan-
ning horizon. Tactical and operational decisions are associated with production, inventory and
transportation management. The main decisions in inventory management refer to inventory lev-
els, order quantities and replacement points. Production decisions, in turn, include production
quantities and production allocation which are typical master production planning (mid-term).
In transportation management, the decisions considered are vehicle routing and transportation
alternatives selection. Very few studies incorporate the selection of transportation alternatives,
notwithstanding it is a common characteristic in real contexts.
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Regarding our main research question, the approaches to integrate decision levels can be
classified into: (i) single-level and mono-period models; (ii) single-level and multi-period models;
(iii) multi-level models; (iv) multi-time-scales models, as shown in Figure 2.11. Single-level,
mono-period, and deterministic models integrate decisions of different hierarchical levels without
taking into account the variability or uncertainties from the lower levels. These models can be
effective when these variability and uncertainties are not significant for the planning results. To
include these issues, some authors formulate similar models considering stochastic, possibilistic
and fuzzy parameters.

The consideration of multiple periods when dealing with tactical decisions is the most com-
mon strategy identified. It allows re-evaluating the shorter-period decisions during the planning
horizon, while strategic decisions are evaluated for the entire horizon or the macro-periods in
the case of multi-scale models. This approach requires more computational effort to solve the
problems. Other approaches are multi-level models that allow the consideration of further de-
tails and decisions. Some of these models used a feedback mechanism to pass information from
the bottom to the top level.

Most articles have a considerably simplified data aggregation, as pointed out in Figure 2.11,
which could means sub-optimal solutions of the models and in decision-making. Most companies
have multiple products, however most studies aggregated them into a single product. Critical
analysis about modeling assumptions and data generation aligned with practical problems could
provide more interesting managerial insights. For models considering some inventory decisions
(safety, replacement point, order point) historical data could be used to estimate the demand
through probability distributions. However, this may not be effective if demand is seasonal,
therefore these assumptions need to be carefully evaluated. In this same sense, in the practice of
transport activities, different alternatives related to modal, freight type and vehicle capacity are
available, however they are overlooked as they are considered a single mode of transportation. A
possible reason is that taking into account multiple periods in modeling increases the difficulty of
solving problems. Particularly, defining an appropriate transportation cost structure for different
decision levels is very difficult. In a practical context, there are issues such as quantity discounts,
which are established by the carriers to encourage organizations to transport larger quantities
in order to reduce their fixed costs. These issues were neglected in the reference papers. Thus,
a research opportunity is to incorporate these cost structures in the integrated models.

An important issue in LNP is the location problem that is NP-hard, and is integrated with
other problems that can result in a mathematical model with greater number of constraints
and complicating variables, consequently more difficult to solve. Most of the articles studied
present non-exact solution approaches, as is presented in Figure 2.11. Many studies which use
the single-level models, use decomposition strategies for solving them. In fact, most heuristics
methods in the sample were based on the decomposition idea, thus several papers proposed
customized sequential heuristics and Lagrangian relaxation based heuristics.

Regarding the relation between the integration strategies and the types of solution methods,
to solve these single models were used non-exact methods; while multi-level models were solved
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with both exact and non-exact methods; and models with interconnected timescales were solved
with general purpose solvers. Regarding the relation between the decisions and the type of
solution methods, models with product flow, inventory levels and production quantity are often
solved by purpose general solvers. However, models with decisions like inventory policies and
routing decisions, are addressed mainly through meta-heuristics.

In the current business environment affected by uncertainties, LNP is a complex decision-
making process. There are different sources of uncertainties as environmental changes (social,
politics, economics, fiscal, etc.) and disruptions in supply chain operations. Thus, important
information for decision-making such as customer demand, lead-times, sales prices, availability,
and capacities are uncertain and could vary considerably along the planning horizon (Amiri-Aref
et al., 2018). A few articles cope with stochastic/uncertain parameters through techniques such
as representative scenarios, stochastic programming, robust optimization, and fuzzy program-
ming.

Most articles have a single economic objective mainly minimizing total cost or maximiz-
ing profit. Few papers propose multi-objective models, considering environmental and social
objectives. The environmental objectives aim to reduce the impacts of the decisions on the
environment, and are measured through indicators such as gas emission. The social objectives
aim to maximize the social benefit measured through indicators like the number of jobs created,
and they are more difficult to measure, define and use.

Thereby, there are research gaps in the integrated planning of the logistics network, as
pointed out in Figure 2.11. First, there is a gap in the consideration of some characteristics of
the integrated problems, mainly parameter uncertainty. Thus, studies that propose appropriate
techniques to address uncertainties in the problem parameters, as well as approaches to solving
these problems can be interesting and promising. Other practical characteristics that could
be regarded in the problem modeling would be multiple products and multiple transportation
alternatives. Depending on the practical context, it would be interesting to look at environmental
and social objectives, in addition to economic objectives. According to the product type, and
responding to government legislation and social pressure, reverse logistics for the proper disposal
or the re-manufacturing of used products should be also considered. Thus, there are important
issues that decision-makers in LNP have to manage in the practice, which are neglected in the
literature. At the same time, the studies presented elaborated models and solution methods.
However, few studies applied the mathematical models in real cases. Thus, the questions raised
by Bertrand and Fransoo in 2002 about the “gaps” between theory and practice in operations
research remain as a gap in the literature.

Regarding the integration, there are gaps in the integration of relevant decisions, in partic-
ular the transportation mode selection. Moreover, there are opportunities to properly develop
integration strategies for aggregate decisions, as well as propose representative mathematical
models considering adequate time structure for decisions. It is also interesting to compare dif-
ferent strategies to address the integration of decisions. Most solution approaches of the articles
are heuristic, thus there is an opportunity to develop efficient solution methods exploring the
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characteristics of the models and the integration of decisions.
The academic community on operations research is also called upon to go further, addressing

diverse, practical, and relevant issues for the different supply chain networks and operations and
proposing solutions for the last mile. There are research gaps in topics such as facility disruptions,
e.g., power outages, poor weather conditions, natural disasters (Cheng et al., 2021); issues that
affect transportation operations due to increases the time and costs, e.g., traffic congestion for
commercial and humanitarian logistics (De Camargo and Miranda, 2012; Bayram and Yaman,
2018), disrupted road infrastructure (Moreno et al., 2020), security measures related to traffic
accidents and cargo theft (Jalal et al., 2022b); and another disruptions and outbreaks in the
supply chain as a consequence of social issues, e.g., pandemics, terrorism, and war.

2.8 Final remarks

Managers and researchers of the operations management/operations research community have
noticed the importance of integration in logistics network design and planning, mainly because
of the potential benefits obtained when addressing different decision levels. This chapter used a
systematic literature review to better understand how decision level integration was developed
in the optimization models of the literature. A set of articles on integrated planning of logistics
networks published from 2000 to 2020 was reviewed. The growing number of publications in
recent years indicates an increasing trend of research activities on this topic.

Based on this literature survey, we present a conceptual framework to highlight the chal-
lenges and benefits of integrated planning, and also the main characteristics of the reference
papers regarding the integrated decisions, integrating strategies, and solution methods. We also
discuss some research gaps in the literature. There are some interesting opportunities for future
research in different directions, such as the development of integrated decision levels, develop-
ment of integrating approaches, processing and aggregation data, incorporation of parameter
uncertainties, development of exact solution methods, as well as applications to industrial and
service settings.

Despite the growing literature in LNP integrated decisions, many studies do not differentiate
the timing of the decisions. There is a predominance of simple data aggregation in the problem
modeling, considering only a single period in the planning horizon with all decisions aggregated.
Thus, a promising line of research would be to develop models for LNP carefully defining proper
planning horizons, the time structure and the frequency in which decisions should be made or
revised. Modeling assumptions should include the dynamism and variability presented in the
current business contexts.

These research opportunities encourage collaboration and partnership between academia
and organizations, particularly the industry. It can help to propose better problem descrip-
tions and formulations, and better optimization approaches and tools, to effectively support
decision-making in LNP. These tools can be useful in practice, contributing to the development
of collaborative research. In SC networks, organizations should cooperate with each other to
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improve the performance of the whole SC, and this type of integration could be addressed in
future studies.
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Chapter 3

Integrated logistical planning: model
formulation and solution method

In this chapter, we analyze an integrated location-inventory-transportation problem under de-
mand uncertainty. We propose a generic modeling approach to integrate facility location with
inventory planning decisions, made under a periodic inventory review policy, and transportation
decisions considering volume-based costs. The model determines the DC locations to rent; the
selection of the capacity level at the distribution centers (DCs); the assignment of retailers to
DCs; the cycle, safety stock, and anticipation inventory levels at DCs; the selection of the cor-
rect discount segment for transportation, aiming to minimize the total cost composed of rental
expenses, inventory costs, and transportation costs. Since this integrated problem is non-linear
due to the presence of safety stock constraints, we leverage an enhanced Logic-based Benders
decomposition (LBBD) with an initial solution derived from the problem structure, a piecewise
linear lower bound function, and valid multiple cuts. Using the instances derived from the real
data, we demonstrate the value of the integrated model in terms of feasible solutions and cost
savings.

* A working paper based on the contents of this chapter is:
Aura Jalal, Yossiri Adulyasak, Raf Jans, Reinaldo Morabito, and Eli Toso (2021): Inte-

grated planning of logistics network under demand uncertainty, Technical Report, HEC Mon-
treal, Canada.
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3.1 Introduction

Logistics network planning concerns several decisions, mainly related to location, production,
inventory, and transportation management. Due to its complexity, these decisions are often
made in a sequential fashion. Nevertheless, such a sequential approach can result in sub-optimal
performance of the network (Üster et al., 2008; Bouchard et al., 2017; Darvish and Coelho, 2018).
The integration of decisions in logistics network planning eliminates conflicts among decisions,
helps to react more quickly to the changes in the environment, and reduces logistics network
costs, as pointed out in the literature review of Chapter 2.

The main challenge of the integration network design and inventory management in the sup-
ply chain is its complexity and scalability issues (Farahani et al., 2014). Inventory management
is an important part of supply chain performance, but most studies in the literature consider
inventory management separately from the supply chain design. At the same time, most studies
in network design do not consider inventory decisions or consider a simplistic form of inven-
tory decisions rather than an explicit inventory policy. Furthermore, the safety stock level is
not optimized and may lead to sub-optimal solutions (Chen et al., 2011; Sadjady and Davoud-
pour, 2012; Shavandi and Bozorgi, 2012). There are some studies (e.g., Üster et al. (2008);
Ahmadi-Javid and Hoseinpour (2015a); Wheatley et al. (2015); Jeet and Kutanoglu (2018);
Candas and Kutanoglu (2020)) that consider an integrated approach to supply chain network
design and inventory management but most of them focus on a single-echelon network (You
and Grossmann, 2010). The integration of transportation decisions is also an important issue in
the problem. Most studies in the literature consider linear unit transportation costs, although
realistic transportation costs typically comprise different structures and quantity discounts. Par-
ticularly, piecewise linear costs, which are frequently in transportation planning, are neglected
in most of the related literature (Croxton et al., 2003; Engebrethsen and Dauzère-Pérès, 2018;
Brunaud et al., 2018).

In this chapter, we address the integrated logistics planning of a network addressing real
features. At the beginning of the year, it is necessary to decide in advance and simultaneously
about the network design, inventory management, and transportation planning, to negotiate
contracts with a third-party logistics partner. We assume that in the Enterprise Resource
Planning system is used the periodic review (T, S) inventory policy to manage inventory at
DCs, where the parameter T represents the review interval and the parameter S represents
the target inventory level within the review interval. The period review interval T is an input
parameter, but the target inventory level S is a decision, which can be different for each of the
DCs and which can also vary over time since the average demand at the retailers can vary over
time. As retailer demand is uncertain, safety stocks need to be maintained at DCs to provide
an appropriate service level and to protect against short-term variations in retailer demand. We
also consider anticipation inventory to address the seasonal expected demands. The company
has a full coordination system, where all the DCs have the same review interval T .

We develop a mathematical model to determine the DC locations and capacity levels, ship-
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ment sizes from plants to DCs, assignment of retailers to DCs, and the target inventory, safety
stock, and anticipation inventory levels at DCs by minimizing the facility location, transporta-
tion, and inventory holding costs. The model is formulated as a nonlinear mixed-integer pro-
gramming problem. This is a single-level and multi-period model within the classification of
integrated models in logistics network planning proposed in Chapter 2. Given that both the
location/allocation and inventory problems are difficult to solve separately, it is not surprising
that an integrated model that handles these problems simultaneously is hard to solve to optimal-
ity. Therefore, we propose an exact solution method using logic-based Benders decomposition
and we address instances based on real data from the case of a pharmaceutical company. To
the best of our knowledge, no previous work has jointly dealt with the same features present in
our study.

This is normative axiomatic research since this is an idealized model proposed to contribute
to the literature in different gaps identified in the literature review of Chapter 2. We integrate
decisions related to network design, inventory management, and transportation planning, using
multiple periods to address the decisions according to their timing, i.e., frequency and periodicity.
This model addresses the variability of demand by a distribution-based approach.

The chapter is organized as follows: Section 3.2 presents the literature review. Section 3.3
details the problem description, model formulation, and linearization procedure. Section 3.4
presents the BD. Section 3.5 presents computational results and discussion. Finally, section 3.6
concludes with some directions for future research.

3.2 Literature review

Location and inventory decisions are related since inventory decisions depend on the location
of the facilities (plants, DCs, and retailers) and the assignments of retailers to DCs and of DCs
to plants. However, location and inventory management decisions have been commonly dealt
with separately. We review studies that put forward this integration. Table 3.1 presents some
characteristics of the relevant studies. Similarly, in Table 3.2 we present the review of the main
decisions that are related to the context of our study (i.e., location-allocation, capacity selection,
safety stock, anticipation inventory, and transportation decisions), as well as the data source of
instances, model type, and solution method.

Since the firm must ensure sufficient inventory and safety stocks to deal with demand uncer-
tainty, it is necessary to define the location with minimum costs, and also to define the inventory
management decisions and inventory control policies based on a predefined service level. Under
uncertain retailer demands, risk-pooling is a strategy to manage such demand uncertainty by
consolidating inventory at DCs for achieving an appropriate service level. The transportation
time from the pants to the DCs (lead time) is a relevant factor in the determination of the safety
stock level under random retailer demands.

Lead times depend on several factors, such as the physical distance and transportation
mode, as well as the product type, the production technologies, etc. Nevertheless, papers in the
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literature incorporating the risk-pooling strategy have not considered DC-to-plants dependent
lead times in the network design problems. Most papers consider a single plant or supplier or
source from which the DCs are supplied (Berman et al., 2012; Gzara et al., 2014; Zhang and
Unnikrishnan, 2016; Amiri-Aref et al., 2018; Escalona et al., 2018; Schuster Puga et al., 2019b;
Zheng et al., 2019b; Tapia-Ubeda et al., 2020). In this case, the lead time depends only on the
DC location. Other works consider multiple plants but consider that the lead time is an average
for all plant-DC pairs (Vidyarthi et al., 2007; You and Grossmann, 2008). In contrast, Park
et al. (2010) and Yao et al. (2010) are the only studies that consider lead times from multiple
plants to DCs, this consideration results in a problem more difficult to solve, but still solvable.
Park et al. (2010) propose a two-phase heuristic solution algorithm based on the Lagrangian
relaxation approach and Yao et al. (2010) develop an iterative heuristic method, both heuristics
methods provide good solutions for the addressed problems.

Single-product (or single-commodity) problems cannot represent the cases when products
have different characteristics (size, weight, price, demand patterns) and requirements (envi-
ronmental conditions as temperature ranges). Moreover, considering multiple products allows
considering by-products sourcing from plants and DCs as in Yao et al. (2010). Depending on the
product, the lead times of production or transportation can be different and such characteristics
should be considered jointly with the decisions of product assignments and inventory policies
at different locations. Most papers in Table 3.1 consider an infinite planning horizon or single
period planning that does not represent the contexts, when the demand varies over different
periods in the planning horizon. These considerations of a single product and period can result
in sub-optimal solutions (Jalal et al., 2022b).

Note that in Table 3.1 most papers do not consider capacity constraints. However, the
capacity constraint of DCs and plants are a real feature. Without this consideration, solutions
can be infeasible. The anticipation inventory is a decision to respond to capacity constraints.
In this sense, the capacity selection decision is an important issue that helps to implement the
solutions, by defining sizes for the different DCs. The DCs can assume different sizes according
to the demand assignment. Addressing real transportation structures can reduce the overall
costs of the network, but not many papers consider it.

The consideration of safety stocks made the problem non-linear and much more difficult
to solve. To solve this complex problem, most articles present heuristics methods to solve the
problems, such as heuristics based on Lagrangian relaxation (Vidyarthi et al., 2007; Park et al.,
2010; You and Grossmann, 2010; Berman et al., 2012), Benders decomposition based on heuris-
tics (Tapia-Ubeda et al., 2020), and approximation algorithms (Yao et al., 2010; Zhang and
Unnikrishnan, 2016; Amiri-Aref et al., 2018). Few papers propose exact methods. Wheatley
et al. (2015) present an exact solution method using logic-based Benders decomposition and
Zheng et al. (2019b) propose an exact algorithm based on the Generalized Benders Decompo-
sition method. However such methods are applied to tackle simpler problems compared to the
application considered in our case which includes a multi-plant network and capacitated DCs in
a multi-period problem.

41



Table 3.1 also presents the inventory policies used by the studies. A commonly used police in
practice is the periodic review and order-up-to-level (T,S) inventory policy, where the product
is replenished up to S whereas the ordering decision can be made periodically every T review
interval. In the (r,Q) policy, when the inventory position falls below a reorder level r, a replen-
ishment order for Q units is placed. In the minimum/maximum (s,S) inventory policy, when
the inventory on-hand falls below a certain minimum s, a request for a replenishment order that
will restore the on-hand inventory to a maximum number, S. The one-for-one (S-1,S) inven-
tory policy, i.e., if one product is shipped, one is ordered to replenish, it is often advocated for
controlling the stock levels of expensive, slow-moving items. The consideration of these policies
implies the consideration of safety stock to deal with the uncertain demand.

Table 3.1: Literature review: problem characteristics
Article Demand Capacity Inventory

#Layers #Plants Lead times Sourcing #Products #Periods Constraints Policy

Vidyarthi et al. (2007) +Two Multiple Average Single Multiple Single Cap
Park et al. (2010) +Two Multiple Location based Single Single Single Cap (r,Q)
Yao et al. (2010) +Two Multiple Location based R/C Multiple Single Uncap (T,S)
You and Grossmann (2010) +Two Multiple Average Single Single Single Uncap (T,S)
Berman et al. (2012) +Two Single Location based Single Single Single Uncap (T,S)
Gzara et al. (2014) +Two Single Location based Single Multiple Single Uncap (S-1,S)
Wheatley et al. (2015) Two None Average R/C Multiple Single Uncap (S-1,S)
Zhang and Unnikrishnan (2016) +Two Single Location based Single Single Single Cap (T,S)
Amiri-Aref et al. (2018) +Two Single Location based Multiple Single Multiple Cap (s,S)
Escalona et al. (2018) +Two Single Location based Single Single Single Uncap (r,Q)
Schuster Puga et al. (2019b) +Two Single Location based Single Single Single Uncap
Zheng et al. (2019b) +Two Single Location based Single Single Single Uncap (T,S)
Tapia-Ubeda et al. (2020) +Two Single Location based Single Single Single Uncap (r,Q)(T,s,S)(S-1,S)
Our article +Two Multiple Location based R/C Multiple Multiple Cap (T,S)

R/C: Retailer per commodity

Table 3.2: Literature review: decisions, model type, and solution method
Article Decisions Data Model Method

Loc-alloc Cap sel Safety Stock Ant inv Transp

Vidyarthi et al. (2007) X X X Random data MINLP Heuristics
Park et al. (2010) X X Random data MINLP Heuristics
Yao et al. (2010) X X Random data MINLP Heuristics
You and Grossmann (2010) X X Real data based MINLP Heuristics
Berman et al. (2012) X X Random data MINLP Heuristics
Gzara et al. (2014) X X Random data MINLP Solver
Wheatley et al. (2015) X X Real data based MINLP Exact
Zhang and Unnikrishnan (2016) X X Literature CQMIP Heuristics
Amiri-Aref et al. (2018) X X X Generated data MINLP Heuristics
Escalona et al. (2018) X X Random data CQMIP Solver
Schuster Puga et al. (2019b) X X Literature CQMIP Solver
Zheng et al. (2019b) X X X Real data based CQMIP Exact
Tapia-Ubeda et al. (2020) X X Real data based MINLP Heuristics
Our article X X X X X Real data MINLP Exact

All papers in Tables 3.1 and 3.2 and most of the studies on inventory planning simplify the
transportation costs by considering linear unit transportation costs, although realistic trans-
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portation costs typically comprise different structures and discount schedules (Engebrethsen
and Dauzère-Pérès, 2018). Particularly, piecewise linear costs, which are frequently in trans-
portation planning (Croxton et al., 2003; Brunaud et al., 2018), are neglected in most of the
related literature.

Our contribution is fourfold. First, we integrate important decisions in logistics network
planning regarding network design, inventory management, and transportation planning. Sec-
ond, we integrate features and characteristics of the real-world application in our problem, such
as location-based lead times, storage capacity constraints in DCs, multi-period, multi-product,
and single-sourcing per retailer and commodity. The safety stock is a function of the demand
at each open DC and its lead time from plants. Hence, safety stock calculations must be si-
multaneously determined with the assignment and the location decisions. The inventory control
decisions are made with a period review inventory policy, defining the amount of cycle inven-
tory, safety stock, and anticipation inventory at open DCs. This work also addresses piecewise
linear costs which are a real feature not often regarded in the literature. Third, since this
integrated location-inventory-transportation model is highly complex, we propose an exact so-
lution method using logic-based Benders decomposition. Fourth, we generate instances based
on real data from the case of an international pharmaceutical company and carry out extensive
computational experiments to analyze the performance of the decomposition framework.

3.3 Problem description and modeling

3.3.1 Problem definition

This study addresses logistics network planning at the tactical level. We study a network
composed of plants, DCs, and retailers. The DCs are intermediate facilities between the plants
and the retailers and facilitate the shipment of products between the two echelons, as shown
in Figure 3.1. We consider the problem of defining which DCs of a third-party logistics (3PL)
provider should be selected to distribute multiple products to a set of retailers. Moreover, the
problem includes selecting the capacity level for the opened DCs. The capacity levels are defined
in terms of volume. Hence, the DC location costs comprise contractual fixed costs (e.g., rental
space/volume in DCs). The selected DCs must remain in operation until the end of the planning
horizon. Plants also have limited capacity, but this is not a decision variable within the model.

Figure 3.1: Logistics network

As in Zheng et al. (2019b), the retailers’ demands are assumed to be independent, uncertain,
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and follow a normal distribution. Also, the expected demand per retailer can vary from period
to period to represent seasonal demand. The inventory management at the DCs is executed by
using a periodic review policy (T, S) that is presented in Figure 3.2. In the periodic review policy
or reorder cycle policy, the stock level is kept under observation periodically. The parameter
T represents the review interval and the parameter S is the target inventory level within the
review interval, referred to as the order-up-to-level. At each time instant when the inventory
is reviewed, the order quantity (from the plant to the DC) is determined based on this order-
up-to level S and the available inventory I ′, Q = S − I ′. The parameter S is determined as
S = µ(T + `) + Φασ

√
(T + `), where µ is the demand mean, σ is the standard deviation, and

` is the lead time, and Φα is the number of standard deviations related to the service level α
such that P (Z ≤ Φα) = α. With this definition of S, the probability that there is a stockout
is up to (1 − α). The difference between S and the average demand in T + ` makes up the
safety stock SS = Φασ

√
(T + `). The periodic review policy involves a higher level of safety

stock than a continuous policy. However, such a policy does not require continuous monitoring
of the inventory level (Ghiani et al., 2005). In terms of coordinating the replenishment of the
items, the (T, S) policy is highly preferred to the order points policies. This coordination can
result in significant savings in ordering and transportation costs. Additionally, the (T, S) policy
regularly provides the chance to update the order-up-to-level, a desirable property in context
with demand variability (Berman et al., 2012).
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Figure 3.2: Periodic review policy (T, S)

In this work, we assume the consolidation of the cycle, safety stock, and anticipation inven-
tory at DCs. We assume several review intervals T within the period t (e.g., if t is a month, T
can be weekly or biweekly period) and retailer demands vary among periods, this can represent
for example seasonal demand. We also assume the length of the review intervals T is known,
thus the problem consists in determining the target inventory level or the order-up-to level S,
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depending on which retailers are assigned to a DC. The target level consists of both cycle in-
ventory and safety stock. The cycle inventory is the stock expected to be used to meet normal
demand during a review interval, while safety stock is extra stock to meet excess demand, to
protect against uncertainty. We also consider the anticipation inventory that is built up to an-
ticipate increased future retailer demands, due to the limited capacity in plants (Olhager et al.,
2001). The anticipation inventory for every period is determined based on the total quantity
ordered by DC to plants, the total demand allocated to the DC in the period, and the balance of
safety stock. The total anticipation inventory is computed across several periods as ∑t

It−1+It

2 ,
as shown in Figure 3.3. Finally, the total inventory cost is the sum of the costs of the target
level, composed of the cycle and the safety stock, and the anticipation inventory.
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Figure 3.3: Anticipation inventory by period

The transportation costs depend on several factors such as transportation mode, distance,
quantity (or weight), and commodity class. Most of the carriers usually offer shipment services
depending on the shipment quantity. Less-than-truckload (LTL) freight rates are expressed as
cost per shipping unit, however a real cost structure for LTL freight typically includes break-
points, where the unit cost decreases for greater shipping quantities, and a minimum shipment
cost is imposed to discourage small shipments (Engebrethsen and Dauzère-Pérès, 2018). In this
problem, the transportation costs consist in applying different rates/values for different trans-
port volumes, once a breakpoint bs is reached. These breakpoints define different ranges or
segments (in this work we use the term segments). Every segment has an associated fixed cost
gs and a variable cost cs, this problem can be modeled as a Multiple Choice Model (Croxton
et al., 2003). Figure 3.4 illustrates the transportation cost for different quantities of products:
the x-axis is the load weight, thus the breakpoints are based on the weights, and the y-axis is the
total transportation cost. Figure 3.4 also shows the impact of discounts among the segments.
This transportation cost structure is applied for the transportation from the plants to DCs and
from DCs to the retailers.
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Figure 3.4: Discrete transportation costs

The carrier is responsible for the preservation of the goods from pick up to delivery. Thus,
any damage that impairs the integrity of the cargo must be covered by the carrier. Ad Valorem
is used to offset part of these costs. It is a component of the freight cost, charged to cover
cargo security costs. It is a rate calculated on the value of the goods and in its composition
can be considered all the measures that are taken to preserve the transported cargo, such as
various insurances, investments for vehicle safety (including tracking and monitoring systems),
operational costs, and security services. The Ad Valorem cost is explicitly modeled as part of
the transportation cost in our model.

The problem is to minimize the total cost composed of DC location costs, transportation
costs, and inventory costs.

3.3.2 Mathematical formulation

The notation used in the formulation is presented below.
Sets
i, j, k ∈ I = If ∪ Iw ∪ Ic Facilities: plants, potential DCs, and retailers
l ∈ L Capacity levels at DCs
p ∈ P Products
s ∈ S Cost segments for transportation
t, t′ ∈ Θ Time periods
Afw = {(i, j) : (i ∈ If ∧ j ∈ Iw)} Available flows from plants
Awc = {(i, j) : (i ∈ Iw ∧ j ∈ Ic)} Available flows from DCs
A = Afw ∪ Awc Available network flows
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Parameters
bs Breakpoint at segment s for the transportation cost
capip Production capacity of product p at plant i
cijs Variable cost of the segment s to transport cargo from entity i to entity j

(per unit of weight)
c′ij Variable security cost to transport cargo from entity i to entity j (per unit

of value)
fjl Fixed cost for opening DC j at capacity level l
gijs Fixed cost of the segment s to transport cargo from entity i to entity j
hpj Unitary inventory holding cost of product p in DC j (per period)
`ij Lead time from entity i to entity j (in days)
ql Storage capacity at level l
Tjp Prespecified review period at the DC j for the product p (in days)
ηkt Number of working days at retailer k in period t
µpkt Mean daily demand of product p at retailer k in period t
σ2
pkt Variance of daily demand of product p at retailer k in period t

Parameters
ρp Price of product p
υp Volume of product p
ωp Weight of product p
Φα Number of standard deviations related to the service level α such that

P (Z ≤ Φα) = α

Continuous variables
Ijpt Anticipation inventory of product p at DC j at the end of the period t
Qijpt Total order quantity of product p from plant i to DC j in period t
Sjpt Target inventory of product p at DC j in each review period within period t
SSjpt Safety stock of product p at DC j in each review period within period t
Zijst Auxiliary variable for cargo weight transported from entity i to entity j in period

t in the segment s
Integer variables
Yjl 1, if DC j is open at capacity level l; 0, otherwise
Wijst 1, if the segment s is used to transport cargo between the entities i and j in period t;

0, otherwise.
Xjkp 1, if a demand of product p at retailer k is served from DC j;

0, otherwise
X ′ijp 1, if the product p at DC j is served from plant i; 0, otherwise
Uijkp Binary auxiliary variable for the model linearization for product p from plant i

to DC j and then to retailer k

The multi-echelon network design and inventory management and transportation planning
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model can be formulated as a mixed-integer nonlinear program (MINLP).
The objective function (3.1) consists in minimizing the total cost, given by the sum of

opening costs, inventory holding costs, and transportation costs. The first term comprises the
costs related to the selection of DC location and capacity levels. The second to fourth terms
correspond to the safety stock, anticipation inventory, and cycle inventory costs, respectively.
The total anticipation inventory is computed across several periods as ∑t

It−1+It

2 , which implies
that it is computed as the average of the inventory positions at the beginning and the end of
each period as shown in Figure 3.3. In a periodic review system, the average order quantity is
equal to the daily demand multiplied by the number of days in the review period. The cycle
inventory level is half of this average order quantity. On the other hand, the transportation
costs have two components, a variable cost associated with the cargo weight and a fixed cost
associated with the segment cost corresponding to that weight as shown in Figure 3.3. The fifth
and sixth terms represent the variable transportation costs, while fixed transportation costs
are represented by the seventh and eighth terms, to both echelons, i.e., from plants to DCs,
and from DCs to retailers. Finally, the last two terms of the objective function represent the
transportation security costs to both echelons, these costs depend on the product price.

min Ψ = min

∑
j∈Iw

∑
l∈L

fjlYjl +
∑
j∈Iw

∑
p∈P

∑
t∈Θ

hpj
(
SSjpt + Ijpt−1 + Ijpt

2 + 1
2Tjp

∑
k∈Ic

ηktµpktXjkp

)
+
∑
j∈Iw

∑
s∈S

∑
t∈Θ

( ∑
i∈If

cijsZijst +
∑
k∈Ic

cjksZjkst
)

+
∑
j∈Iw

∑
s∈S

∑
t∈Θ

( ∑
i∈If

gijsWijst +
∑
k∈Ic

gjksWjkst

)

+
∑
j∈Iw

∑
p∈P

∑
t∈Θ

( ∑
i∈If

c′ijρpQijpt +
∑
k∈Ic

c′jkρpηktµpktXjkp

)
(3.1)

Constraints (3.2) to (3.4) define the network structure. Constraints (3.2) guarantee that the
demand of the product p at retailer k in period t is served by one DC. Constraints (3.3) set
the relation among the two echelons, plants to DCs, and DCs to retailers. We guarantee single
sourcing from plant to DC by constraints (3.4): if DC j is installed, it should be served by only
one plant i, else if the DC is not installed, it is not assigned to any plant.

∑
j∈Iw

Xjkp = 1, ∀k ∈ Ic, p ∈ P. (3.2)

∑
i∈If

X ′ijp ≥ Xjkp, ∀j ∈ Iw, k ∈ Ic, p ∈ P. (3.3)

∑
i∈If

X ′ijp ≤
∑
l∈L

Yjl, ∀j ∈ Iw, p ∈ P. (3.4)

We consider multiple plants in the network. As a result, it will become more difficult
to model and solve the inventory management problem. Using the periodic review policy
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(T, S), the target inventory level and the safety stock for product p at DC j in each re-
view period within period t are defined by ∑i∈If

∑
k∈Ic

(Tjp + `ij)µpktX ′ijpXjkp + SSjpt and
SSjpt = Φα

√∑
i∈If

∑
k∈Ic

(Tjp + `ij)σ2
pktX

′
ijpXjkp, respectively. These equations are non-linear

because of the product of two binary variables and the square root of the safety stock equation.
To linearize the X ′ijpXjkp term, let Uijkp = X ′ijpXjkp. Notice Uijkp can only be non-zero if both
terms in the multiplication are equal to one. Thus X ′ijp = 0 and/or Xjkp = 0 implies that Uijkp
must equal zero. This is guaranteed by constraints (3.5) and (3.6). Otherwise, Uijkp = 1 if
X ′ijpXjkp = 1, which only happens if both terms in the multiplication are equal to one. This is
imposed by constraints (3.7).

∑
i∈If

Uijkp ≤ Xjkp, ∀j ∈ Iw, k ∈ Ic, p ∈ P. (3.5)

Uijkp ≤ X ′ijp, ∀i ∈ If , j ∈ Iw, k ∈ Ic, p ∈ P. (3.6)∑
i∈If

Uijkp ≥
∑
i∈If

X ′ijp +Xjkp − 1, ∀j ∈ Iw, k ∈ Ic, p ∈ P. (3.7)

The target inventory level and the safety stock for product p at DC j in each review period
within period t are defined by constraints (3.8) and (3.9), respectively. Sjpt and SSjpt are defined
according to the review intervals Tjp within the periods t.

Sjpt =
∑
i∈If

∑
k∈Ic

(Tjp + `ij)µpktUijkp + SSjpt, ∀j ∈ Iw, p ∈ P, t ∈ Θ. (3.8)

SSjpt = Φα

√∑
i∈If

∑
k∈Ic

(Tjp + `ij)σ2
pktUijkp, ∀j ∈ Iw, p ∈ P, t ∈ Θ. (3.9)

Constraints (3.10) is the inventory balance for every product p, at every DC j in every period
t. They define the order quantity and anticipation inventory for product p at DC j in period t.
The anticipation inventory is determined based on the total quantity ordered by the DC from
the plants, the total demand allocated to the DC in the period, and the balance of safety stock.
Constraints (3.11) define the plant capacity constraints for product p at plant i in period t.

∑
i∈If

Qijpt =
∑
k∈Ic

ηktµpktXjkp + Ijpt − Ijpt−1 + SSjpt − SSjp,t−1, ∀j ∈ Iw, p ∈ P, t ∈ Θ. (3.10)

∑
j∈Iw

Qijpt ≤ capip, ∀i ∈ If , p ∈ P, t ∈ Θ. (3.11)

Constraints (3.12) represent the DC capacity constraint in period t, if the DC j is chosen
to be opened at level l, considering the target inventory of the periodic review policy and the
anticipation inventory. This constraint puts a limit on the maximum volume in a DC. Constraints
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(3.13) ensure that only one level of capacity is selected for the DC j.

∑
p∈P

υp(Sjpt + Ijpt) ≤
∑
l∈L

qlYjl, ∀j ∈ Iw, t ∈ Θ. (3.12)

∑
l∈L

Yjl ≤ 1, ∀j ∈ Iw. (3.13)

Constraints (3.14) and (3.15) define the total cargo weight transported between the echelons
(plant to DC, and DC to retailer) in every period. Constraints (3.16) guarantee that the cargo
shipped between echelons corresponds to one of the segments s defined by the breakpoints bs−1

and bs in period t. Constraints (3.17) guarantee that only one segment s is chosen in each period
t between the echelons.

∑
p∈P

ωpQijpt =
∑
s∈S

Zijst, ∀i ∈ If , j ∈ Iw, t ∈ Θ. (3.14)

∑
p∈P

ωpηktµpktXjkp =
∑
s∈S

Zjkst, ∀j ∈ Iw, k ∈ Ic, t ∈ Θ. (3.15)

bs−1Wijst ≤ Zijst ≤ bsWijst, ∀(i, j) ∈ A, s ∈ S, t ∈ Θ. (3.16)∑
s∈S

Wijst ≤ 1, ∀(i, j) ∈ A, t ∈ Θ. (3.17)

Finally, constraints (3.18) to (3.27) are integrality and nonnegativity constraints.

Yjl ∈ {0, 1}, j ∈ Iw, l ∈ L. (3.18)

Xjkp ∈ {0, 1}, ∀j ∈ Iw, k ∈ Ic, p ∈ P. (3.19)

X ′ijp ∈ {0, 1}, ∀i ∈ If , j ∈ Iw, p ∈ P. (3.20)

Uijkp ∈ {0, 1}, ∀i ∈ If , j ∈ Iw, k ∈ Ic, p ∈ P. (3.21)

Qijpt ≥ 0, ∀i ∈ If , j ∈ Iw, p ∈ P, t ∈ Θ. (3.22)

Zijst ≥ 0, ∀(i, j) ∈ A, s ∈ S, t ∈ Θ. (3.23)

Wijst ∈ {0, 1}, ∀(i, j) ∈ A, s ∈ S, t ∈ Θ. (3.24)

Ijpt ≥ 0, j ∈ Iw, p ∈ P, t ∈ Θ. (3.25)

Sjpt ≥ 0, j ∈ Iw, p ∈ P, t ∈ Θ. (3.26)

SSjpt ≥ 0, j ∈ Iw, p ∈ P, t ∈ Θ. (3.27)

If the network has a single plant or there is a pre-assignment of DCs to one plant for the
planning horizon, the mathematical formulation is reduced to:

min Ψ = min (3.1) (3.28)

s.t. Constraints : (3.2), (3.10)− (3.19), (3.22)− (3.27). (3.29)
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Sjpt =
∑
i∈If

∑
k∈Ic

(Tjp + `ij)uijpµpktXjkp + SSjpt, ∀j ∈ Iw, p ∈ P, t ∈ Θ. (3.30)

SSjpt = Φα

√∑
i∈If

∑
k∈Ic

(Tjp + `ij)uijpσ2
pktXjkp, ∀j ∈ Iw, p ∈ P, t ∈ Θ. (3.31)

where uijp is a parameter indicating if DC j obtains product p from plant i.

Moreover, for modeling single sourcing from plants and/or DCs, we can drop the product
index on the allocation variables, i.e. Xij , X

′
jk.

Both versions of the problem are easier to solve compared with the addressed problem.

3.4 Solution method based on Benders decomposition

A well-known approach is the Benders decomposition (BD) method, a technique for solving
large-scale problems with complicating variables. Instead of coping with all decision variables
simultaneously, in the BD method, we decompose the problem into a relaxed master problem and
smaller sub-problems that are easy to solve (Benders, 1962). Solving the problem by considering
part of the decisions (e.g., location) and then fixing these decisions and solving smaller sub-
problems (e.g., transportation) can help to solve the integrated model more efficiently than
solving a single large model. The reader is referred to Rahmaniani et al. (2017) for a survey on
the BD algorithm. BD method is limited to a variables partition that leads to linear subproblems.
Several studies have been proposed strategies to deal with integer subproblems (Laporte and
Louveaux, 1993; Sherali and Fraticelli, 2002; Angulo et al., 2016; Fakhri et al., 2017).

Logic-based Benders decomposition (LBBD) is an extension of the BD method, where the
generation of the Benders cuts is not limited to solve the dual linear programs of the subproblems
(Hooker and Ottosson, 2003). LBBD is a versatile decomposition technique applied successfully
to a wide variety of mixed-integer problems. Similar to classical BD, LBBD assigns values to
the complicating variables in the master problem and finds the best solution consistent with
these values. Instead of solving the dual of the subproblems that remain when the complicating
variables take fixed values, LBBD solves an inference dual, where proof of optimality within an
appropriated logical formalism is derived based on the fixed values of some of the variables and
the constraints of the original problem. Logic-based Benders decomposition provides no standard
scheme to generate Benders cuts so they must be devised specifically for each problem class.
There are two common implementations of the LBBD: the original LBBD implementation, which
can be seen as a cutting plane approach, and the branch–and–check implementation (B&Ch),
where the cuts are generated and added during the branch–and–bound process (Roshanaei et al.,
2017; Martínez et al., 2019; Martínez et al., 2022).

3.4.1 Standard LBBD

We decompose the problem into a master problem (MP) and a subproblem (SP). In this
framework, we identified as complicating variables the location Yjl and allocation decisions,
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Xjkp, X
′
ijp, Uijkp, to be defined in an MP with the estimation of the other continuous variables

(Ijpt, Qijpt) in the constraints. The SP considers the other variables (SSjpt, Sjpt, Ijpt, Qijpt, Zijst,Wijst).
After decomposing the problem, we obtain an MP and an SP with integer variables and linear
constraints. The MP provides a lower bound for the problem. In this standard LBBD, the
master problem (MPS) is modeled as follows:

min ΨMPS = min

∑
j∈Iw

∑
l∈L

fjlYjl +
∑
j∈Iw

∑
p∈P

∑
t∈Θ

hpj
(1

2Tjp
∑
k∈Ic

ηktµpktXjkp

)

+
∑
j∈Iw

∑
p∈P

∑
t∈Θ

∑
k∈Ic

c′jkρpηktµpktXjkp + ∆

 (3.32)

s.t. Constraints : (3.2)− (3.7), (3.11), (3.13), (3.18)− (3.22), (3.25). (3.33)∑
i∈If

Qijpt =
∑
k∈Ic

ηktµpktXjkp + Ijpt − Ijpt−1, ∀j ∈ Iw, p ∈ P, t ∈ Θ. (3.34)

∑
p∈P

υp
( ∑
i∈If

∑
k∈Ic

(Tjp + `ij)µpktUijkp + Ijpt
)
≤
∑
l∈L

qlYjl, ∀j ∈ Iw, t ∈ Θ. (3.35)

∆ ≥ 0. (3.36)

Notice that we drop the safety stock and transportation costs from the MPS and consider
them only in the subproblem. To retrieve such costs to the MPS, we use the variable ∆. Initially,
the lower bound for the ∆ variable is zero in the MPS and is updated as optimality cuts are
added to the problem. Thus, mathematical model (3.32) - (3.36) still lacks the feasibility and
optimality cuts to be defined.

Then, the variables Ȳjl, X̄jkp, Ūijkp are temporarily fixed in the SP to determine the target
inventory Sjpt, safety stock SSjpt, anticipation inventory Ijpt, order quantity Qijpt, and segment
selection Zijst,Wijst. Notice that standard SP (SPS) is also a mixed-integer-linear model because
Ūijkp is fixed.

min ΨSPS = min

∑
j∈Iw

∑
p∈P

∑
t∈Θ

hpj
(
SSjpt + Ijpt−1 + Ijpt

2
)

+
∑
j∈Iw

∑
s∈S

∑
t∈Θ

( ∑
i∈If

cijsZijst +
∑
k∈Ic

cjksZjkst
)

+
∑
j∈Iw

∑
s∈S

∑
t∈Θ

( ∑
i∈If

gijsWijst +
∑
k∈Ic

gjksWjkst

)

+
∑
j∈Iw

∑
p∈P

∑
t∈Θ

( ∑
i∈If

c′ijρpQijpt
)

(3.37)
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s.t. Constraints : (3.11), (3.14), (3.16), (3.17), (3.22)− (3.27). (3.38)

Sjpt =
∑
i∈If

∑
k∈Ic

(Tjp + `ij)uijpµpktŪijkp + SSjpt, ∀j ∈ Iw, p ∈ P, t ∈ Θ. (3.39)

SSjpt = Φα

√∑
i∈If

∑
k∈Ic

(Tjp + `ij)σ2
pktŪijkp, ∀j ∈ Iw, p ∈ P, t ∈ Θ. (3.40)

∑
i∈If

Qijpt =
∑
k∈Ic

ηktµpktX̄jkp + Ijpt − Ijpt−1 + SSjpt − SSjp,t−1, ∀j ∈ Iw, p ∈ P, t ∈ Θ.

(3.41)∑
p∈P

υp(Sjpt + Ijpt) ≤
∑
l∈L

qlȲjl, ∀j ∈ Iw, t ∈ Θ. (3.42)

∑
p∈P

ωpηktµpktX̄jkp ≤
∑
s∈S

Zjkst, ∀j ∈ Iw, k ∈ Ic, t ∈ Θ. (3.43)

After solving the SPS, cuts are added to the MPS to update the cost of the location-allocation
decisions in the MPS or to cut off the infeasible location-allocation solutions.

Feasibility and optimality cuts

Let β̄ = (Ȳ , X̄) be a location-allocation solution for the MPS. Let

Πβ̄ =
∑
j∈Iw

∑
k∈Ic

∑
p∈P:
X̄jkp=1

(Xjkp − 1) +
∑
j∈Iw

∑
l∈L:
Ȳjl=1

(Yjl − 1)−
∑
j∈Iw

∑
k∈Ic

∑
p∈P:
X̄jkp=0

Xjkp −
∑
j∈Iw

∑
l∈L:
Ȳjl=0

Yjl (3.44)

Note that for solution β̄, Πβ̄ = 0. Moreover, note that if the solution β̄ changes, i.e., if at
least one variable with value 1 changes to 0 or one variable with value 0 changes to 1, Πβ̄ < 0.
Consequently, if the solution β̄ is infeasible in the SPS, valid feasibility cut to be added in the
MPS to cut off this solution is:

Πβ̄ ≤ −1 (3.45)

Similarly, a valid optimality cut to be added to the MPS is:

∆ ≥ Ψ̄SP + Ψ̄SPΠβ̄ (3.46)

Note that in this case, for solution β̄, ∆ ≥ Ψ̄SPS∗ (Πβ̄ = 0), updating the cost of the solution
β̄ in the MPS according to the real cost of the solution in the subproblem SPS∗. If at least
one variable with value 1 changes to 0 or one variable with value 0 changes to 1, Πβ̄ < 0 and
consequently Ψ̄SPS + Ψ̄SPS Πβ̄ ≤ 0.

3.4.2 Enhanced LBBD

Due to the MPS losses a lot of variables and information in the decomposition, an infeasible
or very bad solution can be frequently obtained. Since the safety stock level is not present
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in the master problem, the obtained location and allocation decisions may not be feasible for
the original model. In this section, we present a piecewise linear lower bound function of safety
stock, to enhance the master problem. Thus, we propose a second version of the master problem,
that involves location, allocation, as well as order quantity based on demand and a piecewise
linear lower bound function of safety stock.

Piecewise linear lower bound function of safety stock

The piecewise linear lower bound function of safety stock consists in estimating the curve of
safety stock and describing the relationship between the x-axis and y-axis by a series of linear
segments. Its accuracy is proportional to the number of segments used, and the number of
segments used strongly influences the complexity of the problem. Since the segments are always
under the curve to be approximated, the piecewise linear function underestimates the real values
(Hamer-Lavoie and Cordeau, 2006).

We define a set M which contains all the points marking any bound for a segment. Con-
sequently, there is a total of |M| points and |M| − 1 segments. Every segment has an upper
bound with variance value αm and its corresponding real safety stock values f(αm), as shown
in Figure 3.5. We define the continuous variables λm and binary variables γm. Variables λm
associated with every point m ∈ M represent the weight that the value of the variance of this
point will have in the linear approximation of the segment m bounded by the points m and
m+ 1. The binary variables γm is associated to every segment m in the set {0, 1, ..., |M| − 1},
taking the value 1 if the segment m is chosen for the linear approximation. A single γm, desig-
nating a segment, as well as two bounds λm and λm+1 designating points must take a strictly
positive value. In order to include the information concerning the DC, product, and period
under consideration, the variables λjptm and γjptm+ 1 are defined.

Aproximate 
linear function 

Nonlinear 
function 

Slope λjpm  

m 

𝛼𝑚−1 𝛼𝑚 𝛼𝑀 

𝑓(𝛼𝑚) 

  (𝑇𝑗𝑝 + ℓ𝑖𝑗)𝜎𝑝𝑘𝑡
2  𝑈𝑖𝑗𝑘𝑝

𝑘 ∈ 𝐼𝑐𝑖 ∈ 𝐼𝑓

 

SSjpt 

𝑓(𝛼𝑚−1) 

𝛾jpm  

Figure 3.5: Piecewise linear lower bound function of safety stock

The piecewise linear lower bound function of safety stock can be expressed using the following
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set of constraints:

∑
i∈If

∑
k∈Ic

(Tjp + `ij)σ2
pktUijkp −

∑
m∈M

αmλjptm = 0, ∀j ∈ Iw, p ∈ P, t ∈ Θ. (3.47)

∑
l∈L

Yjl ≥
∑
m∈M

λjptm, ∀j ∈ Iw, p ∈ P, t ∈ Θ. (3.48)

Xjkp ≤
∑
m∈M

λjptm, ∀j ∈ Iw, k ∈ Ic, p ∈ P, t ∈ Θ. (3.49)

∑
l∈L

Yjl ≥
∑
m∈M

γjptm, ∀j ∈ Iw, p ∈ P, t ∈ Θ. (3.50)

Xjkp ≤
∑
m∈M

γjptm, ∀j ∈ Iw, k ∈ Ic, p ∈ P, t ∈ Θ. (3.51)

λjpt1 ≤ γjpt1, ∀j ∈ Iw, p ∈ P, t ∈ Θ. (3.52)

λjptm ≤ γjptm−1 + γjptm, ∀j ∈ Iw, p ∈ P, t ∈ Θ,m ∈M \ {0, |M|}. (3.53)

λjpt|M| ≤ γjpt(|M|−1), ∀j ∈ Iw, p ∈ P, t ∈ Θ. (3.54)

λjptm ∈ [0, 1], ∀j ∈ Iw, p ∈ P, t ∈ Θ,m ∈M. (3.55)

γjptm ∈ {0, 1}, ∀j ∈ Iw, p ∈ P, t ∈ Θ,m ∈M \ {|M|}. (3.56)

A linear constraint used to calculate the approximate safety stock is:

SSproxjpt = Φα

∑
m∈M

λjptmf(αm), ∀j ∈ Iw, p ∈ P, t ∈ Θ. (3.57)

Constraints (3.47) to (3.49) determine the value of variables λjptm corresponding to the
obtained demand variance of product p in DC j. Constraints (3.48) and (3.50) state that
the variables λjptm and γjptm, respectively, are equal to zero if the warehouse j is not open.
Constraints (3.49) and (3.51) force the sum of λjptm and the sum of γjptm, respectively, to
be one if at least one retailer demand of product p is allocated to a warehouse j in period t.
Constraints (3.52) to (3.54) link the variables γjptm and λjptm. They ensure that λjptm are
strictly positive only if at least one of the adjacent segments described by variables γjptm or/and
γjptm−1 is active. Finally, constraints (3.55) to (3.56) represent the domain of the variables.

Enhanced master problem (MPE)

The enhanced master problem MPE involves a piecewise linear lower bound function of safety
stock, where the complicating nonlinear constraints are replaced by linear constraints (3.47)
to (3.57). The variables of γjptm are relaxed in their integrality. Also, some variables of the
subproblem are included in the MPE, auxiliary linear variables for calculating cargo weight Zijst
and the cost/weight segment selection variables Wijst. The MPE is formulated as follows:

min ΨMPE = min

∑
j∈Iw

∑
l∈L

fjlYjl +
∑
j∈Iw

∑
p∈P

hpj
(1

2Tjp
∑
k∈Ic

ηktµpktXjkp

)
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+
∑
j∈Iw

∑
k∈Ic

∑
p∈P

∑
t∈Θ

c′jkρpηktµpktXjkp + ∆

 (3.58)

s.t. Constraints : (3.2)− (3.7), (3.11), (3.13)− (3.26), (3.47)− (3.57). (3.59)∑
j∈Iw

∑
p∈P

∑
t∈Θ

hpj
(
ßprox

jpt + Ijpt−1 + Ijpt
2

)
+
∑
j∈Iw

∑
s∈S

∑
t∈Θ

( ∑
i∈If

cijsZijst +
∑
k∈Ic

cijsZijst
)

+
∑
j∈Iw

∑
s∈S

∑
t∈Θ

( ∑
i∈If

gijsWijst +
∑
k∈Ic

gijsWjkst

)
+
∑
i∈If

∑
j∈Iw

∑
p∈P

∑
t∈Θ

c′ijρpQijpt ≤ ∆ (3.60)

Sjpt =
∑
k∈Ic

(Tjp + `ij)µpktUijkp + SSproxjpt , ∀j ∈ Iw, p ∈ P, t ∈ Θ. (3.61)

∑
i∈If

Qijpt =
∑
k∈Ic

ηktµpktXjkp + Ijpt − Ijpt−1 + SSproxjpt − SS
prox
jpt−1, ∀j ∈ Iw, p ∈ P, t ∈ Θ.

(3.62)∑
p∈P

υp
( ∑
k∈Ic

(Tjp + `ij)µpktUijkp + ∆SSjpt + Ijpt
)
≤
∑
l∈L

qlYjl, ∀j ∈ Iw, t ∈ Θ. (3.63)

SSproxjpt ≥ 0, j ∈ Iw, p ∈ P, t ∈ Θ. (3.64)

∆ ≥ 0. (3.65)

where ∆ is a variable to update the real cost given the decisions considered in the subproblem,
as indicated by constraints (3.60). Variable ∆ is initially zero in the MPE and is updated as
optimality cuts are added to the problem.

Enhanced subproblem (SPE)

One strategy to reduce the number of variables in the SP is to compute a priori the value
of some variables. After solving the MPE, we can obtain the value of variables before solv-
ing the SP as follows. First, let S̄Sjpt and S̄jpt be the value of the variables SSjpt and
Sjpt, respectively, for the location-allocation defined by the MPE. We can calculate S̄Sjpt =
Φα

√∑
i∈If

∑
k∈Ic

(Tjp + `ij)σ2
pktŪijkp and sequentially S̄jpt = ∑

i∈If

∑
k∈Ic

(Tjp + `ij)µpktŪijkp +
S̄Sjpt, ∀j ∈ Iw, p ∈ P, t ∈ Θ. Second, we can also calculate the value of variables Zjkst and
Wjkst. Let Z̄jkst and W̄jkst be the value of the variables Zjkst and Wjkst, respectively, for the
location-allocation solution defined by the MPE. We compute the Z̄jkst and W̄jkst as follows:

Z̄jkst =

 κjkt, s ∈ S ∧ [bs−1 ≤ κjkt ≤ bs],∀j ∈ Iw, k ∈ Ic, t ∈ Θ.
0, otherwise.

W̄jkst =

 1, s ∈ S ∧ [bs−1 ≤ κjkt ≤ bs],∀j ∈ Iw, k ∈ Ic, t ∈ Θ.
0, otherwise.
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where κjkt is the total weight transported from j to k, defined as follows:

κjkt =
∑
p∈P

ωpηktµpktX̄jkp, ∀j ∈ Iw, k ∈ Ic, t ∈ Θ.

In addition, given the single sourcing assumption from plants to DCs, we can express variable
Xjkp in terms of variable Uijkp, i.e.,

∑
i∈If

Uijkp = Xjkp, ∀j ∈ Iw, k ∈ Ic, p ∈ P. Thus, we only
need the value of the variables Yjl and Uijkp in the subproblem. The enhanced SP is modeled
as follows:

min ΨSPE = min

∑
j∈Iw

∑
p∈P

∑
t∈Θ

hpj
(
S̄Sjpt + Ijpt−1 + Ijpt

2
)

+
∑
j∈Iw

∑
s∈S

∑
t∈Θ

( ∑
i∈If

cijsZijst +
∑
k∈Ic

cjksZ̄jkst
)

+
∑
j∈Iw

∑
s∈S

∑
t∈Θ

( ∑
i∈If

gijsWijst +
∑
k∈Ic

gjksW̄jkst

)

+
∑
i∈If

∑
j∈Iw

∑
p∈P

∑
t∈Θ

(
c′ijρpQijpt

)
(3.66)

s.t. Constraints : (3.11), (3.14), (3.16)− (3.17), (3.22)− (3.25). (3.67)

Ijpt − Ijpt−1 =
∑
i∈If

Qijpt −

( ∑
i∈If

∑
k∈Ic

ηktµpktŪijkp + S̄Sjpt − S̄Sjp,t−1
) , ∀j ∈ Iw, p ∈ P, t ∈ Θ.

(3.68)∑
p∈P

υp(S̄jpt + Ijpt) ≤
∑
l∈L

qlȲjl, ∀j ∈ Iw, t ∈ Θ. (3.69)

Modified combinatorial cuts

The single-sourcing assumption from plants to DCs,∑i∈If
Uijkp = Xjkp, ∀j ∈ Iw, k ∈ Ic, p ∈ P,

allows to define the SP in terms of Ȳjl, Ūijkp. Thus it is possible to define combinatorial cuts
using these variables.

Let β̄′ = (Ȳ , Ū) be a location-allocation solution for the MPE and let

Πβ̄′ =
∑
i∈If

∑
j∈Iw

∑
k∈Ic

∑
p∈P:

Ūijkp=1

(Uijkp − 1) +
∑
j∈Iw

∑
l∈L:
Ȳjl=1

(Yjl − 1)−
∑
i∈If

∑
j∈Iw

∑
k∈Ic

∑
p∈P:

Ūijkp=0

Uijkp −
∑
j∈Iw

∑
l∈L:
Ȳjl=0

Yjl

(3.70)

If the solution β̄′ is infeasible in the subproblem, a valid feasibility cut to be added in the
master problem to cut off this solution is:

Πβ̄′ ≤ −1 (3.71)

Similarly, a valid optimality cut to be added to the master problem is:
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∆ ≥ Ψ̄SP + Ψ̄SPΠβ̄′ (3.72)

Logic-based cuts

Cuts (3.71) and (3.72) are enough to update the real cost of the solution and to cut off infeasible
solutions. However, we also introduce additional logic–based inequalities to strengthen the
bounds in MP. Let Z̄jkst and W̄jkst be the value of the variables Zjkst and Wjkst, respectively,
for a given solution. The additional cuts are formulated as follows:

Zjkst ≥ Z̄jkst − Z̄jkst
(∑
p∈P:
X̄jkp=1

(1−Xjkp)−
∑
p∈P:
X̄jkp=0

Xjkp

)
, ∀j ∈ Iw, k ∈ Ic, s ∈ S, t ∈ Θ. (3.73)

Wjkst ≥ W̄jkst − W̄jkst

(∑
p∈P

X̄jkp=1

(1−Xjkp)−
∑
p∈P:
X̄jkp=0

Xjkp

)
, ∀j ∈ Iw, k ∈ Ic, s ∈ S, t ∈ Θ. (3.74)

Unlike cuts (3.71) and (3.72), that apply to only one solution in the MPE, the multiple cuts
(3.73) and (3.74) apply to every DC, retailer, cost segment, and period. In cut (3.73), the second
term of the right-hand side is equal to zero for the current solution. In this case, the cut forces
the Zjkst variable in the MPE to take its real cost. If at least one of the allocation decisions
changes, the right-hand side is less or equal to zero. In that case, cuts (3.73) do not eliminate
any feasible solutions to the original problem. Similarly, we add cuts (3.74) to strengthen the
estimation ofWjkst based on the allocation decisions. These cuts are based only on the allocation
variables Xjkp due to this information is enough to define the real safety stock levels at DCs.

B&Ch algorithm and LBBD implementation

The B&Ch algorithm is implemented using the branch–and–bound callbacks of a MIP solver as
follows. At each node, we solve the linear relaxation of the current MP. If it is infeasible or the
objective value solution is higher than or equal to the objective value of the incumbent solution,
then node is pruned. Otherwise, integrality constraints are checked, and if the solution is not
integer feasible, then branching is performed. If the solution is integer feasible, we solve the
subproblem SP to verify the violation of constraints (3.71) and (3.72). Constraint (3.71) is vio-
lated if the subproblem SP is infeasible. If no constraint is violated, then the solution is feasible
for the original LBBD and is set as the new incumbent solution. Constraints (3.73) - (3.74) are
used to strengthen the bounds of the MP. Otherwise, the MPE is modified by the addition of
Benders cuts, the linear relaxation of the current MP is resolved, and the described steps are
applied again. General-purpose optimization software may additionally rely on automated cuts.
Algorithm 1 presents a pseudo-code for the B&Ch algorithm.
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Algorithm 1: B&Ch algorithm
1 Initialization: Initial solution; set UB = inf , LB = 0, gap = inf , ε = 10−4 ;
2 Solve the linear relaxation of MPE and obtain LB = the best overall lower bound of

the problem MPE ;
3 Calculate gap = (UB − LB)/UB ;
4 if gap ≥ ε & an integer solution β̄ is found then
5 Go to step 9 ;
6 else
7 Go to step 15 ;
8 end
9 if the solution β̄ violate feasibility or optimality cuts then

10 Generate and add feasibility or optimality cuts ;
11 Go to step 2 ;
12 else
13 Update UB ;
14 end
15 if gap ≤ ε then
16 Stop ;
17 end
18 The algorithm is repeated in the next node selected by the Branch-and-bound ;

3.4.3 Initial solution approach

In addition, we initialized the method with part of an initial solution: the location and capacity
selection provided by a part of the model. The reduced relaxed model is as follows:

min Ψ = min

∑
j∈Iw

∑
l∈L

fjlYjl +
∑
j∈Iw

∑
p∈P

∑
t∈Θ

hpj
(Ijpt−1 + Ijpt

2 + 1
2Tjp

∑
k∈Ic

ηktµpktXjkp

)
+
∑
j∈Iw

∑
s∈S

∑
t∈Θ

( ∑
i∈If

cijsZijst +
∑
k∈Ic

cjksZjkst
)

+
∑
j∈Iw

∑
s∈S

∑
t∈Θ

( ∑
i∈If

gijsWijst +
∑
k∈Ic

gjksWjkst

)

+
∑
j∈Iw

∑
p∈P

∑
t∈Θ

( ∑
i∈If

c′ijρpQijpt +
∑
k∈Ic

c′jkρpηktµpktXjkp

)
(3.75)

s.t.Constraints(3.2)− (3.7), (3.11), (3.13)− (3.25). (3.76)∑
i∈If

Qijpt =
∑
k∈Ic

ηktµpktXjkp + Ijpt − Ijpt−1, ∀j ∈ Iw, p ∈ P, t ∈ Θ. (3.77)

∑
p∈P

υp(
∑
i∈If

∑
k∈Ic

(Tjp + `ij)µpktUijkp + Ijpt) ≤
∑
l∈L

qlYjl, ∀j ∈ Iw, t ∈ Θ. (3.78)

The solution given by this model is verified, calculating the safety stock and verifying DC
capacity. If the DC capacity is not sufficient, the problem is solved again by imposing a safety
stock based on the previous solution and the maximum safety stock. This is done progressively
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until reaches 100% of the maximum safety stock which always is a feasible solution. The maxi-
mum safety stock is computed as the maximum safety stock (for every DC, product, and period),
considering the DC has to attend to the demand of all retailers and it is supplied from the plant
with the largest lead time.

3.4.4 Linearized model APXM

We also test a mathematical model using the piecewise linear lower bound function of safety
stock. This model can be initialized with part of an initial solution, the location and capacity
selection, provided by the relaxed model, as presented in Section 3.4.3. APXM is solved directly
using CPLEX, without any tailored algorithm.

min Ψ = min

∑
j∈Iw

∑
l∈L

fjlYjl +
∑
j∈Iw

∑
p∈P

∑
t∈Θ

hpj
(
SSproxjpt + Ijpt−1 + Ijpt

2 + 1
2Tjp

∑
k∈Ic

ηktµpktXjkp

)
+
∑
j∈Iw

∑
s∈S

∑
t∈Θ

( ∑
i∈If

cijsZijst +
∑
k∈Ic

cjksZjkst
)

+
∑
j∈Iw

∑
s∈S

∑
t∈Θ

( ∑
i∈If

gijsWijst +
∑
k∈Ic

gjksWjkst

)

+
∑
j∈Iw

∑
p∈P

∑
t∈Θ

( ∑
i∈If

c′ijρpQijpt +
∑
k∈Ic

c′jkρpηktµpktXjkp

)
(3.79)

s.t.Constraints(3.2)− (3.7), (3.11)− (3.25), (3.47)− (3.57). (3.80)

Sjpt =
∑
i∈If

∑
k∈Ic

(Tjp + `ij)µpktUijkp + SSproxjpt , ∀j ∈ Iw, p ∈ P, t ∈ Θ. (3.81)

∑
i∈If

Qijpt =
∑
k∈Ic

ηktµpktXjkp + Ijpt − Ijpt−1 + SSproxjpt − SS
prox
jp,t−1, ∀j ∈ Iw, p ∈ P, t ∈ Θ.

(3.82)

SSproxjpt ≥ 0, j ∈ Iw, p ∈ P, t ∈ Θ. (3.83)

3.4.5 Sequential approach SQAP

The problem can be solved sequentially, first the location problem and then the inventory man-
agement and transportation planning. The upper level or location problem has information
about the original problem such as cycle inventory, anticipation inventory, variable transporta-
tion costs, and capacity constraints to select the location and capacity levels of DCs. The second
level fixes these decisions and defines the allocation, order quantity, anticipation inventory, the
cargo weight. Finally, the bottom level defines the safety stock and the target inventory level.
Because the upper level does not consider all the problem constraints, the upper decisions can
be infeasible at the bottom levels.
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Upper level

min Ψ = min

∑
j∈Iw

∑
l∈L

fjlYjl +
∑
j∈Iw

∑
p∈P

∑
t∈Θ

hpj
(Ijpt−1 + Ijpt

2 + 1
2Tjp

∑
k∈Ic

ηktµpktXjkp

)
+
∑
j∈Iw

∑
s∈S

∑
t∈Θ

( ∑
i∈If

cijsZijst +
∑
k∈Ic

cjksZjkst
)

+
∑
j∈Iw

∑
s∈S

∑
t∈Θ

( ∑
i∈If

gijsWijst +
∑
k∈Ic

gjksWjkst

)

+
∑
j∈Iw

∑
p∈P

∑
t∈Θ

( ∑
i∈If

c′ijρpQijpt +
∑
k∈Ic

c′jkρpηktµpktXjkp

)
(3.84)

s.t.Constraints(3.2)− (3.7), (3.11)− (3.25), (3.47)− (3.57). (3.85)∑
i∈If

Qijpt =
∑
k∈Ic

ηktµpktXjkp + Ijpt − Ijpt−1, ∀j ∈ Iw, p ∈ P, t ∈ Θ. (3.86)

Bottom level: Mathematical model (3.66) - (3.69).

3.5 Computational results

In this section, we report the computational performance of the proposed solution method. The
aim is to calculate the efficiency of the tailored solution methods in providing good-quality
solutions within a plausible running time.

The models were coded in C++ programming language and solved using the general-purpose
optimization software IBM CPLEX version 20.10, with its default configuration. A Linux PC
with a CPU Intel Core i7 3.4 GHz and 16.0 GB of memory was used to run the experiments. The
stopping criterion was due to either the elapsed time exceeding the time limit of 3600 seconds
or the optimality gap becoming smaller than 10−4.

3.5.1 Data description

This section presents the instances derived from the real-world data obtained from the pharma-
ceutical company. The company produces part of its commercialized products in a plant. Other
products are imported from foreign plants and packed in the plant. From this plant, products
are sent to DCs managed by logistics operators, from which the company fulfills the demand of
retailers all over the country. The company groups the retailers according to demand areas, it
can be the capital and countryside of each state. Table 3.3 presents the cardinality of the sets.
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Table 3.3: Data set
Data set Cardinality

Number of plants |If | = 1, 2
Number of potential DCs |Iw| = 3
Number of retailers |Ic| = 5, 10, 15, 30
Number of capacity levels at DCs |L| = 3
Number of cost segments |S| = 5
Number of products |P| = 7, 10, 20, 30, 40
Number of time periods |Θ| = 12 months

We assume that a one-year planning horizon is appropriate to evaluate the DC location since
DC rental agreements are made annually. Hence, we consider 12 periods to address tactical
decisions of inventory management and transportation planning.

We consider the review intervals Tjp at all DCs to be 10 days. The lead-time `ij was calculated
considering the distance and the mean velocity of trucks on roads. The portfolio of the company
is composed of a large number of products, but we built instances with up to 40 products. The
products cost ρp was assumed to be 40% of the product’s price. The mean and variance of the
daily demand, µpkt and σ2

pkt, were defined according to the data provided by the company. We
assume the same number of selling days at each retailer ηkt = 30 days.

The storage capacity levels ql were estimated based on the total demand volume, and the
opening costs fjl were estimated based on the fixed and operational costs of the installed DCs,
i.e. inventory insurance and rental space/volume in DCs that depend on selected capacity level.
The holding costs were calculated based on the cost of $53.45 per month to store a pallet
(120x100x25 cm3) at room temperature. From this information, the unit cost of inventory per
product (hpj) was calculated. Without loss of generality, the initial stocks were considered null
at the beginning of the planning horizon. We assume a service level of 95%, this corresponds to
Φα = 1.64. The fixed and variable costs of transportation gijs and cijs respectively, as well as
the breakpoints bs were defined based on the transportation tables from carriers.

Finally, for the piecewise linear function of safety stock, we define the number of segments,
as well as the values of αm based on the variance from retailer demand, and f(αm) values are the
square root of αm values. Because the different products do not have the same scale of demand
and variance, we define αm ∀j ∈ Iw, p ∈ P, t ∈ Θ, which results in the parameters αjptm and
fjptm. With this definition, it is possible to reduce the number of segments, which impacts the
solution time, we test 5 and 10 segments.

Table 3.4 presents the instance names; the number of binary and continuous variables; and
the number of constraints.
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Table 3.4: Instances
Decision variables

Name Binary Continuous Constraints

i1-j3-k5-p7 2,580 3,348 7,151
i1-j3-k5-p10 3,219 4,320 9,551
i1-j3-k10-p10 4,419 5,220 15,061
i1-j3-k10-p20 6,849 8,460 27,311
i1-j3-k15-p10 5,619 6,120 20,571
i1-j3-k15-p20 8,349 9,360 37,071
i1-j3-k30-p20 12,849 12,060 66,351
i1-j3-k30-p30 16,479 15,300 95,601
i1-j3-k30-p40 20,109 18,540 124,851
i2-j3-k5-p7 2,886 3,780 7,592
i2-j3-k5-p10 3,579 4,860 10,073
i2-j3-k10-p10 4,929 5,760 15,733
i2-j3-k10-p20 7,689 9,360 28,403
i2-j3-k15-p10 6,279 6,660 21,393
i2-j3-k15-p20 9,489 10,260 38,463
i2-j3-k30-p20 14,889 12,960 68,643
i2-j3-k30-p30 19,449 16,560 98,913
i2-j3-k30-p40 24,009 20,160 129,183

3.5.2 Performance of the solutions approaches

In this section, we present and discuss the numerical results obtained, in terms of the performance
of the proposed algorithms. The list of the different approaches compared in this section is
presented in Table 3.5. IloPieceLinear method from CPLEX creates and returns a numeric
expression representing a piecewise linear function.

Table 3.5: Solution approaches
SLBBD Standard decomposition method of Section 3.4.1.
ELBBD Enhanced LBBD method of Section 3.4.2.
ELBBDi ELBBD + initial solution described in Section 3.4.3
ELBBDi+IPLf ELBBDi + IloPieceLinear method from CPLEX.
APXM Approximated-safety stock model of Section 3.4.4.
APXMi APXM + initial solution described in Section 3.4.3.
APXMi+IPLf APXMi + IloPieceLinear method from CPLEX.
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Performance of the decomposition approaches

Table 3.7 presents the upper bound (UB), lower bound (LB), the optimality gap computed as
Gap = 100UB−LBUB , the time and number of iterations (#iter) for the SLBBD, the ELBBD, and
ELBBDi. Table 3.6 summarizes the performance of methods presenting the best UB among the
three methods and the gaps computed as %LB = 100Best UB−LBBest UB .

Table 3.6: Performance of the decomposition methods
Instance Best UB SLBBD LB(%) ELBBD LB(%) ELBBDi LB(%)
i1-j3-k5-p7 17,709,700 55.27 7.59 0.87
i1-j3-k5-p10 20,586,850 52.67 17.04 3.08
i1-j3-k10-p10 25,710,285 46.23 13.97 1.73
i1-j3-k10-p20 27,498,682 37.10 5.22 2.28
i1-j3-k15-p10 29,943,327 35.61 18.84 1.53
i1-j3-k15-p20 32,778,192 46.11 5.59 3.28
i1-j3-k30-p20 48,471,115 38.81 5.43 8.15
i1-j3-k30-p30 61,927,334 48.26 8.14 8.10
i1-j3-k30-p40 73,245,412 53.46 4.49 5.29
i2-j3-k5-p7 17,357,831 55.13 41.23 5.34
i2-j3-k5-p10 17,709,700 46.70 0.87 3.53
i2-j3-k10-p10 24,269,853 50.02 9.00 9.14
i2-j3-k10-p20 28,659,565 55.37 22.06 27.85
i2-j3-k15-p10 28,291,455 48.42 8.89 8.91
i2-j3-k15-p20 31,305,383 50.35 10.31 20.65
i2-j3-k30-p20 45,869,986 39.05 21.61 13.40
i2-j3-k30-p30 60,920,789 51.95 25.96 20.77
i2-j3-k30-p40 65,702,679 52.56 10.51 11.82
Average 36,553,230 47.9 13.2 8.7
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Note in Table 3.7 that the ELBBDi outperforms the other methods in the number of feasible
solutions and quality of the solutions. It can solve all solutions, while SLBBD fails in solving
one instance and ELBBD fails in solving two instances. Moreover, the average LB of ELBBDi is
better compared with SLBBD and ELBBD, 42.4% and 3.2% higher than these methods. Table
3.6 shows that ELBBDi provides on average best LBs for the problem. Note that for some
instances, ELBBD finds solutions with better UB compared with the ELBBDi method, due
to for these instances the ELBBDi method does not improve significantly the provided initial
solutions.

We develop additional experiments with ELBBDi using a different number of segments for the
piecewise linear function of safety stock, 5 and 10 segments as shown in Table B.1 in Appendix.
The average gap of solutions considering 5 segments is higher than considering 10 segments
since the UB and the LB are better. It can explain because, with 5 segments, there are fewer
variables and constraints, and consequently it is easier to be solved. Solutions for 5 and 10
segments with lower gaps have similar bounds, so 5 segments is a good choice for the number
of segments. These results were expected because the piecewise linear function of safety stock
is considered only in the master problem to approximate the safety stock costs, then the safety
stock is properly defined in the subproblem. Thus, it is not necessary for a larger number
of segments to approximate the safety stock and obtain a good solution using LBBDi. We
also develop computational experiments with the method ELBBDi changing the computational
times, i.e., half-hour, one hour, and 2 hours, as shown in Table B.3 in Appendix. The results
show that with half-hour the performance is worse, and with 2 hours the performance does not
improve concerning the results with one hour. Thus, one hour is a reasonable time to solve
the problem. Furthermore, we develop experiments using the Special Order Sets (SOS1) from
CPLEX for the variables W and Y aiming to improve the solutions. However, the incorporation
of the CPLEX function of SOS1 does not improve them, as shown in Table B.2 in Appendix.

Table 3.8 presents the results of using the IloPieceLienear method from CPLEX, instead
of using the explicit constraints of the piecewise linear lower bound function of safety stock in
the master problem, and the comparison with the ELBBDi. The positive ratios of improvement
indicate a larger value of the ELBBDi+IPLf. Notice that the incorporation of the IloPieceLienear
method can reduce the average gap slightly (1%), despite the UB is higher since it provides an
average LB that is 2.8% higher than the LB of the ELBBDi.
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Table 3.8: Results of the impact of IloPieceLinear method from CPLEX in ELBBDi
ELBBDi + IPLf Ratio of improvement1

Instance UB LB Gap(%)2 Time #iter UB LB Diff(%)3 Time #iter

i1-j3-k5-p7 17,709,700 17,703,574 0.03 3,600 9,601 0.00 0.84 -0.83 0.00 7.94

i1-j3-k5-p10 20,586,850 20,569,984 0.1 3,600 4,047 0.00 3.10 -3.00 0.00 -59.46

i1-j3-k10-p10 25,627,116 25,580,095 0.2 3,600 4,676 -0.32 1.25 -1.55 0.00 -40.75

i1-j3-k10-p20 28,038,725 26,945,655 3.9 3,600 31 1.96 0.28 1.62 0.00 -98.61

i1-j3-k15-p10 30,124,060 29,863,365 0.9 3,600 398 0.60 1.28 -0.66 0.00 -94.13

i1-j3-k15-p20 32,778,192 31,943,106 2.6 3,600 27 0.00 0.76 -0.73 0.00 -95.52

i1-j3-k30-p20 48,471,115 46,332,449 4.4 3,600 12 0.00 4.07 -3.74 0.00 -99.06

i1-j3-k30-p30 61,886,915 56,991,268 7.9 3,600 23 -0.20 0.15 -0.32 0.00 -97.64

i1-j3-k30-p40 77,543,101 69,369,383 10.5 3,600 7 0.00 -0.01 0.00 0.00 40.00

i2-j3-k5-p7 17,357,831 17,333,804 0.1 3,600 11,759 0.00 5.49 -5.20 0.00 14.49

i2-j3-k5-p10 19,262,305 19,180,885 0.4 3,600 7,573 0.00 12.27 -10.89 0.00 -7.17

i2-j3-k10-p10 24,444,672 23,723,312 3.0 3,600 613 0.14 7.58 -6.71 0.00 -88.77

i2-j3-k10-p20 32,858,210 23,150,651 29.5 3,600 62 7.28 11.96 -2.94 0.00 -97.76

i2-j3-k15-p10 28,793,683 26,155,413 9.2 3,600 166 1.78 1.49 0.25 -0.03 -97.25

i2-j3-k15-p20 32,135,264 25,716,594 20.0 3,600 120 2.65 3.52 -0.67 0.00 -90.50

i2-j3-k30-p20 47,650,414 38,621,200 19.0 3,600 79 3.88 -2.77 5.54 0.00 -92.37

i2-j3-k30-p30 65,443,042 48,319,570 26.2 3,600 24 -0.30 0.10 -0.30 0.00 -95.53

i2-j3-k30-p40 75,699,849 57,372,623 24.2 3,600 13 15.22 -0.98 12.39 -0.03 -58.06

Average 38,133,947 33,604,052 9.0 3,600 2,180 1.82 2.80 -0.99 0.00 -63.90

1 Ratio =100×ELBBDi+IPLf − ELBBDi
ELBBDi

2 Gap=100×UB−LB
UB

3 Diff=ELBBDi+IPLf gap− ELBBDi gap

Performance based on APXM approaches

Table 3.9 presents the impact of the initial solution on APXM method. The warm-up of the
APXM method with an initial solution has a positive impact on the performance of the method.
APXMi provides a solution for all instances, in fact, it provides a lower average gap and higher
LB compared with the ELBBDi+IPLf, despite the bigger instances having a larger gap.
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Table 3.9: Initial solution effect in APXM
APXM APXMi

Instance UB O.F. value LB Gap(%)1 Time UB O.F. value LB Gap(%)1 Time

i1-j3-k5-p7 17,709,670 17,703,574 17,703,419 0.0 5 17,709,700 17,703,574 17,701,843 0.0 7

i1-j3-k5-p10 20,586,790 20,569,984 20,569,781 0.1 127 20,586,790 20,569,984 20,568,393 0.1 183

i1-j3-k10-p10 25,626,858 25,580,095 25,576,342 0.2 529 25,626,858 25,580,095 25,577,849 0.2 446

i1-j3-k10-p20 NA NA 25,395,173 NA 3,601 27,481,953 27,465,998 27,191,636 1.1 3,600

i1-j3-k15-p10 29,943,068 29,894,106 29,891,189 0.2 1,242 29,943,068 29,894,106 29,891,151 0.2 416

i1-j3-k15-p20 NA NA 29,602,291 NA 3,600 32,758,543 32,719,279 32,020,394 2.3 3,600

i1-j3-k30-p20 NA NA 44,041,835 NA 3,600 48,470,734 48,411,047 46,489,952 4.1 3,600

i1-j3-k30-p30 NA NA 57,067,853 NA 3,600 62,302,971 62,227,646 58,641,971 5.9 3,605

i1-j3-k30-p40 NA NA 69,393,180 NA 3,600 77,539,557 77,251,502 69,413,298 10.5 3,600

i2-j3-k5-p7 17,357,472 17,334,589 17,331,778 0.1 51 17,357,472 17,334,589 17,332,871 0.1 31

i2-j3-k5-p10 19,263,172 19,230,560 19,223,703 0.2 3,600 19,263,172 19,230,560 19,224,995 0.2 3,600

i2-j3-k10-p10 24,312,322 24,218,590 24,163,274 0.6 413 24,269,633 24,175,299 24,172,882 0.4 2,258

i2-j3-k10-p20 27,482,784 27,453,407 23,359,880 15.0 3,600 26,569,533 26,461,043 23,982,511 9.7 3,600

i2-j3-k15-p10 28,855,278 28,742,816 26,505,978 8.1 3,600 28,290,714 28,176,103 26,422,314 6.6 3,600

i2-j3-k15-p20 NA NA 25,010,964 NA 3,600 31,155,957 31,120,739 27,912,331 10.4 3,600

i2-j3-k30-p20 43,477,716 43,295,632 38,397,414 11.7 3,600 53,204,602 52,987,354 38,890,302 26.9 3,602

i2-j3-k30-p30 NA NA 56,978,753 NA 3,600 65,549,584 65,387,747 48,162,989 26.5 3,600

i2-j3-k30-p40 NA NA 59,360,422 NA 3,601 75,566,261 75,330,735 57,048,611 24.5 3,600

Average 33,865,179 37,980,395 37,890,411 33,924,794 7.2

1 Gap=100×UB−LB
UB

* NA: No solution provided.

Performance of ELBBDi+ILPf and APXMi

In this section, we present the bests versions of the methods in the two previous sections, the
ELBBDi+IPLf and the APXMi. The APXMi offers solutions with a piecewise linear lower
bound function of safety stock. Consequently, in the APXMi, the safety stock costs are an
approximation of the real safety stock costs and the objective function value is an approximation
of the total cost. Thus, after solving the APXMi, we compute the real safety stock costs by
using the allocation of the optimal (or last incumbent) solution provided by the solver, i.e., Ūijkp
as SSjpk = ∑

j∈Iw

∑
p∈P

∑
t∈Θ hpj(Φα

√∑
i∈If

∑
k∈Ic

(Tjp + `ij)σ2
pktŪijkp). Finally, we compute

the real total costs that we call as upper bound by updating the safety stock costs. Table 3.10
presents the upper bound “UB", lower bound “LB", the “Gap" computed as Gap = 100UB−LBUB ,
and the “Time" for the methods. Also, the number of iterations “#iter" to the ELBBDi+ILPf
and the objective function value “O.F. value" to the APXMi. Table 3.10 also presents the best
(or lowest) UB and the best (or highest) LB for each instance provided by the methods, the
ELBBD+ILPf or the APXMi, and the gap computed with these bounds.

Notice in Table 3.10 that the proposed methods can provide good solutions to the addressed
problem in a computational time of one hour, with an average gap of 6.7%. Most instances with
one plant have good solutions with gaps until 5.2%, just one instance (biggest instance with one
plant with 30 retailers and 40 products) presents a gap of 10.5%. Instances with high gaps (i.e.,
≥ 18%) have two plants, 30 retailers, and at least 20 products.
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3.5.3 Comparison between the integrated and the sequential model

We carry out computational experiments to study the impact of integrating inventory decisions
with the network design problem. We compare the sequential and integrated approaches in terms
of cost and computational time. Table 3.11 presents, for three approaches: ELBBDi, SQAP,
and SQAP∗, the costs of location, inventory, transportation, and total costs, as well as the
computational time and the ratio between the total costs of the approaches that are computed
as ratio = 100SQAP−ELBBDiELBBDi . ELBBDi represents the integrated approach, SQAP represents
the sequential approach, in which the location decision is fixed in the inventory-transportation
problem as described in Section 3.4.5. SQAP∗ represents the sequential approach, in which
the location decision is fixed in the inventory-transportation problem, however, is possible to
open other DCs if it is necessary. In the sequential approaches, the location decision results in
an infeasible solution (INF) for some instances, and for others, the solver does not provide a
solution (NA) within one hour of the time limit. Table 3.12 shows the average results of the
feasible solutions for the approaches SQAP* and ELBBDi.

Notice in Table 3.11 that the integrated approach decreases the total solution cost by an
average between 0.4% and 15.7% even if the instances were not solved optimally by the ELBBDi.
Notice in Table 3.11 that big instances can be solved with SQAP∗ compared with SQAP. Ac-
cording to Table 3.12, the average costs are lower in the integrated problem. However, the
integrated model is slightly difficult to solve, because all instances report a computational time
of one hour, while SQAP∗ has an average time of 2,038 seconds.
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Table 3.12: Average of costs and time for sequential SQAP and integrated approach ELBBDi
for feasible solutions

Approach Location Inv+Transp Total costs Time Ratio

ELBBDI 12,812,083 12,644,725 25,456,808 3,600
SQAP∗ 13,313,333 12,793,278 26,334,366 2,038 3.4%

3.5.4 Sensitivity analysis

In this section, we present a sensitivity analysis to observe the impact of variations in some pa-
rameters (coefficient of variation, opening, inventory, and transportation costs) over the network
structure , i.e., on the number of facilities and their location, and other planning decisions. In
this context, we perform sensitivity analysis over the coefficient of variation and for the decision
costs. For the sensitivity analysis, we present the average optimality gap, the average objective
function costs, the average inventory levels, Key Performance Indicators (KPI) for inventory
and location decisions, and some statistics about transportation decisions. The inventory KPIs
are turnover and days in inventory. The turnover is calculated as the number of units sold over
the average number of units stocked, and the days in inventory are calculated as 365 over the
turnover.

Coefficient of variation

This analysis is related to the parameter coefficient of variation, i.e. the ratio of the standard
deviation to the mean demand. Table 3.13 presents the average gap and costs, KPIs, and
statistics for different values of the coefficient of variation.
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Table 3.13: Variation on the coefficient of variation
Coefficient of variation

20% 50% 80% 100% 150%

Optimality gap 4% 8% 14% 17% 22%

Location costs 14,198,056 14,089,583 13,499,861 13,557,222 13,364,444

Objective Inventory costs 9,385,262 10,222,213 11,350,525 11,957,753 13,667,098

function Transportation costs 10,192,781 10,064,407 9,986,370 9,942,510 9,698,388

costs Security costs 3,110,502 3,092,524 3,085,067 3,061,364 3,013,060

Total costs 36,886,601 37,468,726 37,921,823 38,518,848 39,742,991

Safety stock costs 746,167 1,646,922 2,746,145 3,346,773 5,077,640

Inventory costs Anticipation inv costs 56,368 23,825 9,319 5,783 3,821

Cycle inv costs 8,582,727 8,551,467 8,595,061 8,605,197 8,585,637

Safety stock units 31,700 75,493 121,270 151,041 223,973

Inventory levels Anticipation inv units 1,263 523 222 172 51

Cycle inv units 412,976 412,976 412,976 412,976 412,976

Total units 445,939 488,992 534,467 564,189 637,000

Inventory KPIs Turnover 71 37 25 21 16

Days in inventory 5 10 14 17 23

Location KPIs Total Opened DCs 45 43 39 39 38

% Used capacity 63% 60% 61% 61% 59%

Avg weight plant-DC 9,015,031 9,028,566 9,043,192 9,052,237 9,075,324

Max weight plant-DC 6,299,624 5,714,120 5,768,223 5,541,415 5,056,923

Transportation Min weight plant-DC 888,214 1,535,870 1,608,854 1,922,310 3,826,892

statistics Avg weight DC-retailer 9,004,880 9,004,880 9,004,880 9,004,880 9,004,880

Max weight DC-retailer 476,237 475,966 476,237 476,237 476,237

Min weight DC-retailer 102,496 157,934 153,537 241,002 253,205

Notice in Table 3.13 that the coefficient of variation increases the average optimality gap,
thus the problem seems to be more difficult to solve. The total objective cost also increases
considering a higher coefficient of variation. This increase in the total cost is observed because
of an increment in the inventory cost, while we have a reduction in location and transportation
costs.

As expected, the safety stock units increase and consequently the safety stock costs increase.
On the other hand, the anticipation inventory costs decrease. However, the anticipation inven-
tory represents only a very small portion of the total inventory. The turnover decreases due
to more units being stocked, and consequently, the days in inventory increase. Notice in Table
3.13 that opening costs decrease because fewer DCs are opened, however, the percentage of used
capacity decreases slightly from 63% to 59%, which indicates that the total installed capacity
increases to keep the growing safety inventory with the coefficient of variation.

Table 3.13 also shows that the average and minimum weight among plants and DCs increase,
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which suggests the use of transportation segments with higher capacity, taking advantage of scale
economies. It can explain the reduction in transportation costs. Although the retailer demand
does not change, the average minimum weight among DCs and retailers increases. It can be
explained due to the location decisions change, fewer DCs are opened, so the transported cargo
weight among arcs increases.

Opening costs variation

This analysis is related to the parameter of opening costs. The model is tested for this parameter
on +/- 50% of its initial value. Table 3.14 presents the average gap and costs, KPIs, and statistics
for different values of opening costs.

As expected, the variation of opening costs affects directly the total opening costs, increasing
and changing the location decisions. With higher opening costs, fewer DCs are opened, in turn, it
also generates changes in inventory levels and costs. However, turnover and days in inventory are
not significantly affected. Transportation decisions also are affected and the total transportation
costs decrease.

Inventory costs variation

This analysis is related to the parameter of inventory costs. The model is tested for this param-
eter on +50% and +100% of its initial value. Table 3.15 presents the average gap and costs,
KPIs, and statistics for different values of inventory costs. The variation of inventory costs
affects directly the total inventory costs and also affects slightly the location costs that increase
and the transportation costs that decrease.
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Table 3.14: Variation on Opening costs
Variation of opening costs

50% 100% 150%

Optimality gap 14% 14% 15%

Location costs 6,895,515 13,499,861 20,386,875

Objective Inventory costs 11,945,449 11,350,525 11,385,789

function Transportation costs 10,175,723 9,986,370 9,740,650

costs Security costs 3,201,717 3,085,067 3,072,762

Total costs 36,886,601 37,468,726 44,586,076

Safety stock costs 2,945,089 2,746,145 2,773,902

Inventory costs Anticipation inv costs 8,597 9,319 5,122

Cycle inv costs 8,991,763 8,595,061 8,606,766

Safety stock units 126,627 121,270 123,594

Inventory levels Anticipation inv units 70 222 73

Cycle inv units 414,043 412,976 412,976

Total units 540,740 534,467 536,642

Inventory KPIs Turnover 25 25 25

Days in inventory 15 15 15

Location KPIs Total Opened DCs 54 39 39

% Used capacity 57% 61% 62%

Avg weight plant-DC 9,532,588 9,043,192 9,043,892

Max weight plant-DC 5,406,369 5,768,223 5,647,928

Transportation Min weight plant-DC 2,649,236 1,608,854 1,979,132

statistics Avg weight DC-retailer 9,490,925 9,004,880 9,004,880

Max weight DC-retailer 494,602 476,237 476,237

Min weight DC-retailer 234,780 153,537 188,994
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Table 3.15: Sensitivity analysis: variation on inventory costs
Variation of inventory costs

100% 150% 200%

Optimality gap 14% 16% 17%

Location costs 13,499,861 13,553,333 13,694,861

Objective Inventory costs 11,350,525 16,696,443 22,444,492

function Transportation costs 9,986,370 9,935,971 9,893,070

costs Security costs 3,085,067 3,090,424 3,073,465

Total costs 36,886,601 37,468,726 49,105,888

Safety stock costs 121,270 122,151 123,306

Inventory costs Anticipation inv costs 222 126 43

Cycle inv costs 412,976 412,976 412,976

Safety stock units 126,627 121,270 123,594

Inventory levels Anticipation inv units 70 222 73

Cycle inv units 414,043 412,976 412,976

Total units 534,467 535,253 536,324

Inventory KPIs Turnover 25 25 25

Days in inventory 15 15 15

Location KPIs Total Opened DCs 39 39 39

% Used capacity 61% 59% 57%

Avg weight plant-DC 9,043,192 9,043,513 9,043,610

Max weight plant-DC 5,768,223 5,568,788 5,474,688

Transportation Min weight plant-DC 1,608,854 1,851,617 2,054,622

statistics Avg weight DC-retailer 9,004,880 9,004,880 9,004,880

Max weight DC-retailer 476,237 475,832 476,237

Min weight DC-retailer 153,537 251,415 221,551

76



Transportation costs variation

This analysis is related to the parameter of transportation costs. The model is tested for this
parameter from 0% to 200% of its initial value by increments of 50%. Table 3.16 presents the
average gap and costs, KPIs, and statistics for different values of transportation costs. The
variation of transportation costs affects directly the total transportation costs. It also affects
directly other decisions, such as the total inventory units which increase. It can explain because
the total installed capacities increase even if the number of DCs does not increase.

Table 3.16: Sensitivity analysis: variation on transportation costs
Variation of transportation costs

0% 50% 100% 150% 200%

Optimality gap 15% 21% 14% 13% 11%

Location costs 13,382,500 13,494,445 13,646,528 13,755,000 13,948,750

Objective Inventory costs 11,058,594 11,670,048 11,434,477 11,488,870 11,449,809

function Transportation costs 0 5,201,176 9,936,835 14,509,316 19,169,481

costs Security costs 3,002,966 3,202,805 3,061,952 3,034,954 3,028,631

Total costs 27,444,060 33,568,474 38,079,792 42,788,140 47,596,671

Safety stock costs 105,760 124,807 123,925 125,994 127,675

Inventory costs Anticipation inv costs 105 56 170 76 43

Cycle inv costs 414,043 427003 412976 412976 412976

Safety stock units 31,700 75,493 121,270 151,041 223,973

Inventory levels Anticipation inv units 1,263 523 222 172 51

Cycle inv units 412,976 412,976 412,976 412,976 412,976

Total units 445,939 488,992 534,467 564,189 637,000

Inventory KPI Turnover 28 25 25 25 25

Days in inventory 13 15 15 15 15

Location KPI Total Opened DCs 39 39 39 39 39

% Used capacity 64% 67% 60% 57% 54%

Avg weight plant-DC 9,062,155 9,332,215 9,044,076 9,044,697 9,045,197

Max weight plant-DC 6,109,022 5,581,178 5,780,324 5,025,569 5,023,278

Transportation Min weight plant-DC 1,405,570 2,149,665 1,922,754 2,602,967 2,854,274

statistics Avg weight DC-retailer 9,028,603 9,293,049 9,004,880 9,004,880 9,004,880

Max weight DC-retailer 455,284 477,738 476,237 476,237 476,237

Min weight DC-retailer 32,676 214,700 151,958 197,160 261,931
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3.6 Conclusions

In this study, we addressed some decisions of logistics network planning under demand uncer-
tainty. We have presented an MINLP model that determines the optimal network structure,
transportation, and inventory levels of a multi-echelon supply chain. Real data from a pharma-
ceutical supply chain was used to illustrate the applicability of the proposed model. The model
determines the plant and DC locations, shipments from plants to the DCs, and the assignment of
retailers to DCs. The model considers the periodic review policy (T, S) to control the inventory
at the DCs. The objective is to minimize the location costs, transportation costs, and safety
stock costs.

To solve the problem, we present an LBBD by exploiting the structure of the problem
and obtaining subproblems that preserved the characteristics of the original problem. We also
enhanced the master problem including information about the subproblems and use a multi-
cut to accelerate the convergence of the method. We also propose a model with a piecewise
linear lower bound function of safety stock. To validate the proposed approaches, real data was
examined and used to construct realistic instances. The method provides good solutions for
most instances.

We compare the integrated model with a sequential approach, the results evidence the im-
portance of having an integrated approach. We also perform a sensitivity analysis aiming to
understand how each parameter influences the supply chain design and planning problem. We
find that the network design is sensitive to the coefficient of variation and the opening costs.

Therefore, we focus on several research opportunities pointed out in Chapter 2, i.e., consid-
ering the decision timing in the integration, addressing the uncertainty in problem parameters,
considering discrete transportation costs, and proposing efficient solution methods.

For future work, it is interesting to analyze the impact of considering different length of the
review interval in the periodic review policy (T, S) over the inventory decisions. Additionally, it
is interesting to consider other inventory policies in the model, and compare the implications of
different policies on logistics network planning. Also, to address capacity planning in networking
by decisions of closing and opening DCs or expanding or reducing capacity DCs.
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Chapter 4

A location-transportation problem
under demand uncertainty for a
pharmaceutical network in Brazil

Logistics Network Planning (LNP) concerns facility location and transportation decisions, among
others. Traditionally these decisions are handled separately and hierarchically. However, the
integration of these decisions has been receiving attention from academics and practitioners in
the last years aiming to achieve an adequate service level, efficient performance in terms of
costs of the network logistics and competitive advantages. In this work, we study the inte-
grated location-transportation problem under demand uncertainty. We address the case of a
pharmaceutical logistics network in Brazil and propose mathematical modeling for location and
transportation planning with practical features, such as fleet sizing, safety measures in cargo
transportation, and tax issues. We propose a mathematical model with multi-time scales for the
addressed decisions. Moreover, we address demand uncertainty for decision-making by propos-
ing a robust counterpart. We also investigate solution methods exploring specific characteristics
of the problem. We explicitly propose a Fix-and-Optimize heuristics. We develop computational
experiments using real data from a partner company and evaluate the impact of the uncertainty
over the problem. The heuristics method performs the MIP model by reducing the average costs
by 40%. The results showed that demand uncertainty and variability affect the problem deci-
sions significantly. The robust model reduces the expected solution costs. Thus, these models
and solution methods can support the decision-making process on location-transportation prob-
lems in Logistics Network Planning (LNP), particularly in the context of the pharmaceutical
industry in Brazil.

* A working paper based on the contents of this chapter is:
Aura Jalal, Reinaldo Morabito, and Eli Toso (2021): Optimization approach for the inte-

grated planning of logistics network, Technical Report, Federal University of Sao Carlos, Brazil.
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4.1 Introduction

The pharmaceutical industry faces several challenges, one of which is that its supply chains are
usually large and complex with sites in several locations, forcing companies to deal with different
regional policies and tax structures. Adding to this already complex network, there should be
coordination with the other actors of the network, including third-party logistics providers.
The literature on supply chain problems to the pharmaceutical industry addresses different
decision levels; however, it is poor at addressing the interaction between levels. Additional,
the pharmaceutical sector is exposed to different sources of uncertainties that can be grouped
into strategic (changes in the socio-political context and disruptions) and operational (changes
in supply chain operations) uncertainties. Moreover, uncertainty and modeling approaches in
global supply chain operations should be better exploited (Marques et al., 2020). Jalal et al.
(2022b) address some of these issues, however, this study does not consider demand uncertainty.
Therefore, in this study, we analyze the case study of the pharmaceutical logistics network in
Brazil, taking into account demand uncertainty.

At the beginning of the year, the company decision-makers have to decide in advance and si-
multaneously about the network design, inventory management, and transportation planning, to
negotiate contracts with a third-party logistics provider. Thus, a relevant issue for planning the
network refers to the outsourcing of warehousing activities, such as storage, handling, and ship-
ping of products. The logistics operators that carry out these activities have warehouses already
established in different locations that can be shared among several companies, offering a reduc-
tion in fixed installation costs and greater flexibility for the planning of logistics networks. Thus,
DC location decisions can become more dynamic and re-evaluated more frequently, emphasizing
the importance of evaluating location decisions and transportation decisions simultaneously. In
the pharmaceutical sector, this is common practice, which allows companies to focus on their
core business.

Another important aspect of distribution planning for the company is security. Shipments of
high-added-value products, such as medicines, are a frequent target for theft in some countries.
Thus, it is necessary to take out insurance for product transportation. Insurance companies
impose limits on the value of cargo that can be transported without using of escort vehicles and
maximum limits on the value of the cargo, even using security services. Particularly in Brazil,
distribution planning poses additional challenges, as the distribution of goods is subject to the
Circulation Tax on Goods and Services, ICMS. According to (Shah, 2004), tax implications
frequently take precedence over logistics issues, resulting in cost-effective but complicated net-
works. This is the case of ICMS, which depends on the origin-destination of the transportation
and, therefore, decisions on the location and choice of DCs, as well as the definition of product
flows, significantly impacting the amount to be paid for this tax.

Most of the existing papers on pharmaceutical distribution planning focus on supply chain
planning in a broader scope (Sousa et al., 2011; Susarla and Karimi, 2012; Uthayakumar and
Priyan, 2013). Sousa et al. (2011) addressed a global supply chain for a pharmaceutical com-
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pany and proposed a model to decide where to produce and how to distribute it to maximize the
net profit value. Susarla and Karimi (2012) developed a MIP model integrating procurement,
production, distribution, and several other real-life issues adopting a multi-period approach and
a global perspective. In a more specific context, Uthayakumar and Priyan (2013) approached
an inventory problem integrating production and distribution considering multiple products for
a pharmaceutical company and a hospital supply chain; and Amaro and Póvoa (2008) focused
on an integrated production planning and scheduling problem, considering reverse flows. Liu
and Papageorgiou (2013) proposed a multiobjective mixed-integer linear programming approach
for production, distribution, and capacity planning of global supply chains. On the other hand,
few studies specifically addressed the network design. Sousa et al. (2008) address the loca-
tion, production, and distribution problem by solving the integrated decisions in two stages
for a pharmaceutical and agro-chemical industry. Jalal et al. (2022b) propose a multi-product,
multi-period, and multi-modal mathematical model integrating network design and distribution
planning decisions, such as product flow, transportation modes, type of freight shipping, fleet
sizing, and security services for high-value cargo. Moreover, the mathematical formulation takes
into consideration realistic features such as value-added tax, whose rate varies among locations.

Uncertainty is inherent in the planning process. Much relevant information to decision-
making is not available or may vary over the time horizon, such as retailer demand. Demand
uncertainty is an unavoidable issue for most pharmaceutical products because of the uncertain-
ties associated with healthcare providers’ decisions, competitor actions, impacts of the entry
of a new product, and the launching of a generic version of a product (Laínez et al., 2012).
Therefore, a particular problem faced by the pharmaceutical industry in logistics network plan-
ning is to balance a capacity network with a demand under such significant uncertainty (Shah,
2004). In most cases, it is reasonable to consider retailer demand uncertain within the planning
horizon (of one year, for instance), as it can be known only when the retailer places the order,
and at which time the products must be available in the DC to meet the demand. Disregarding
uncertainties can result in impractical solutions, or solutions that deteriorate the service level,
or solutions with high logistics costs and tax. Thus, it is important to deal with uncertainties
in the planning parameters through methodologies that provide robust solutions that are little
impacted by changes in the macroeconomic scenario.

Two-stage stochastic programming is an approach that assumes the probability distributions
of uncertain data that must be known or considers a set of discrete scenarios to represent the
possible realizations of the random variable. The resulting mathematical model increases with
the number of scenarios, making it more difficult to solve the problem (Ben-Tal et al., 2009).
Robust optimization is a mathematical programming technique to address uncertainties in opti-
mization problems, which bypasses the difficulties involved in stochastic programming (Ben-Tal
et al., 2015; Bertsimas and Goyal, 2012; Bertsimas et al., 2015). In robust optimization, random
parameters are represented as limited and symmetric random variables, whose possible realiza-
tions are contained in a set that, in general, is called an uncertainty set (Bertsimas and Sim,
2003). The objective is to find feasible solutions for all possible realizations of the data within
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the uncertainty set. Robust optimization has been applied to other problems in the supply chain
such as hub network design (Martins de Sá et al., 2018a,b), vehicle routing (De La Vega et al.,
2017; Munari et al., 2019), production planning (Alem and Morabito, 2012, 2013, 2015; de Paiva
and Morabito, 2011; Munhoz and Morabito, 2012, 2014; Jalal et al., 2022a) and humanitarian
logistics (Moreno, 2020; Caunhye et al., 2020).

Particularly, in pharmaceutical network planning, Mousazadeh et al. (2015) considered the
pharmaceutical supply chain network design with tactical decisions of production, inventory,
and material flows over a mid-term to minimize the total costs and unmet demand. The pa-
rameter of demand, manufacturing and transportation cost parameter and safety stock were
considered uncertain. A robust possibilistic programming approach is used to handle uncertain
parameters. The model was tested on a real case study in the Islamic Republic of Iran, which
regards the supply chain network design of amoxicillin. The same methodology, robust possi-
bilistic programming, was used by Zahiri et al. (2018) to propose a mathematical model for the
network design of a pharmaceutical supply chain, addressing uncertainties in costs and demand.
The authors performed a case study of Rebif supply chain, that is a medicine used to treat
patients with recurrent multiple sclerosis. Zahiri et al. (2017) proposed a sustainable-resilient
mixed-integer linear programming model for designing a pharmaceutical supply chain network
under uncertainty. To cope with the uncertainty in logistics costs, purchasing and selling price
of carbon credit, and environmental impact of shipping, a fuzzy possibilistic-stochastic program-
ming approach is developed. The authors presented a case study of the HIV medicines supply
chain in France.

In this chapter, we present a mathematical model that addresses the described character-
istics and challenges faced by the pharmaceutical distribution planning in Brazil. The model
evaluates decisions for the location of DCs, selecting locations of existing DCs of a logistics
operator to be rented, taking into account installation costs, inventory decentralization costs,
and tax issues associated with ICMS. Simultaneously, flow decisions of multiple products (with
different characteristics of weight, volume, price, and temperature condition) between facili-
ties are addressed considering the generation of ICMS, and the cost of transportation through
various transportation alternatives that are differentiated by the type of freight, temperature
conditioning, and vehicle capacity. In transportation, decisions on the use of escort vehicles for
cargo with a monetary value above the established limit are also considered. The objective is to
meet the demand of geographically dispersed retailers with minimal logistical costs and minimal
tax generation while respecting existing logistical constraints. This is a mathematical model
with multi-time scales for the addressed decisions, according to the classification of integrated
models presented in Chapter 2. Moreover, we address demand uncertainty for decision-making
planning by proposing a robust counterpart for the deterministic model. We also investigate
solution methods exploring specific characteristics of the problem such as decomposition-based
approaches, Fix-and-Optimize heuristics method using partition criteria by periods and/or arcs
is proposed. We develop computational experiments using real data from a partner company
and evaluate the impact of the uncertainty on the problem. From this data, we also generate
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random instances considering different variabilities of the demand in time and quantity. In ad-
dition, we compare the integrated model with a sequential approach in terms of total cost and
network structures. We also analyze some scenarios with different ICMS rates to understand
the sensitivity of solutions to this parameter.

The logistical cost plays an important role in the value of medicines, and the inefficiency in
the medicines distribution is reflected in the quality and cost of the products. Therefore, the
proposal of using tools to improve the performance of the pharmaceutical logistics network can
contribute to reducing the cost of products and, consequently, increasing access to medicines.

We aim to contribute to the literature in different gaps identified in the literature review
of Chapter 2. Thus, we address the real problem of a pharmaceutical company. We integrate
decisions related to location and transportation using multi-timescales. This model addresses
the uncertainty of demand by robust optimization technique. This research has elements of
empirical-normative research because the modeling process considers the real characteristics of
a problem.

The rest of this chapter is structured as follows: Section 4.2 presents the pharmaceutical
sector in Brazil and worldwide. Section 4.3 details the problem description and case study.
Section 4.4 presents the model formulation. Section 4.5 presents the heuristics approach. Section
4.6 presents computational results and discussion. Finally, section 4.7 draws the conclusions with
some remarks.

4.2 Pharmaceutical sector in Brazil and worldwide

The pharmaceutical industry’s supply chain involves several companies, from suppliers in the
chemical and packaging industry to retailers that sell the products. The logistics networks
are characterized by being comprehensive, comprising industrial plants, warehouses, distribu-
tors, and wholesalers (pharmacies, hospitals, purchasing centers of government entities), and
geographically dispersed. This spatial distribution is intensified by company acquisition and
merger processes, which are very frequent in the pharmaceutical sector.

The pharmaceutical industry’s global sales are expected to reach US$1.5 trillion in 2021
(INTERFARMA, 2018). Brazil stands out on the world stage, as it occupies the 8th position in
the world ranking of medicine sales and it continues to grow. Regarding job creation, estimates
are that the Brazilian pharmaceutical industry in 2015 offered more than 680,000 direct and
indirect jobs (SINDUSFARMA, 2017). It is estimated that the Brazilian pharmaceutical indus-
try groups around 600 companies, including suppliers, laboratories, importers, and distributors,
and more than 70,000 pharmacies. It is higher than the recommendation of the Worldwide
Health Organization, and Brazil is the country with the highest rate of pharmacies per inhabi-
tant in the world (Graciani and Ferreira, 2014). The Brazilian hospital network comprises more
than 11,000 establishments distributed in 6,422 hospitals, 774 emergency care units, and 4,346
polyclinics (Hiratuka et al., 2013). This universe of entities, added to the country’s territorial
extension, means that the medicine supply chain in Brazil has broad capillarity and, in turn,
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high complexity.
In the characterization of the pharmaceutical chain in Brazil, there is an increasing trend in

the outsourcing activities such as storage, shipping, and marketing. Thus, logistics operators
gain importance. These have structures for DCs that can be shared among several companies,
offering reduced logistics costs and flexibility in planning logistics networks.

The main mode used to transport medicines in Brazil is by road. The general condition of the
roads is poor, and leads to high operating costs for transportation services, given the frequent
maintenance of vehicles and increased fuel consumption (Confederação Nacional do Transporte,
2016a). The distribution of medicines requires even more attention, as the products are sensitive
to mechanical shock and environmental conditions. Depending on their composition, medicines
must be kept at different temperature intervals specified by the manufacturers. Maintaining
controlled temperature or refrigeration throughout the entire chain generates high costs for
energy and fuel consumption (Saif and Elhedhli, 2016).

As mentioned, another factor that deserves attention refers to the fact that vehicles are
exposed to frequent theft. The southeast of Brazil concentrates 85.7% of theft cases. The
state of Sao Paulo leads the list, accounting for 44.1% of the occurrences. Pharmaceutical
products are among those most targeted, in fact, they are the fourth most stolen cargo in Brazil
(Confederação Nacional do Transporte, 2016b). Due to this, companies are investing in systems
for hiring security services of pilot/escort companies, services provided by insurance companies,
and risk managers, to preserve the physical integrity of drivers, vehicles, and transported cargo,
which implies even higher transportation costs (Corrêa and Aguiar, 2012). The value of insurance
reaches about 15% of the cost of the product.

Another aspect to highlight is the Brazilian tax context. There are several taxes levied on
the pharmaceutical sector at federal, state, and municipal levels, therefore the taxes correspond
on average to 31.3% of the price of medicines for humans, one of the highest averages in the
world (SINDUSFARMA, 2017). In fact, a survey on health policies analyzed the tax burden
on medicines in 38 countries, finding that in Brazil it is three times higher than the average
of the other countries analyzed (INTERFARMA, 2018). Due to its incidence in all phases of
the chain, ICMS is one of the taxes that has the greatest impact on the pharmaceutical chain
(Hiratuka et al., 2013). ICMS consists of intrastate and interstate tax rates applied to the value
of the goods when leaving the establishment of origin. Thus, when transporting goods between
facilities of the same company (for example, from the plant to the DC), the rates are applied to
the cost of the goods; and in sales operations (for example, from the DC to the retailer), the rates
are applied to the sale price of the merchandise. ICMS rates are defined by state governments,
therefore, they vary among different Brazilian states. Thus, moving the same cargo to the
same destination state from different origin states implies different amounts of ICMS payable.
Consequently, in addition to the costs associated with installation and operation, in location
decisions, it is important to consider tax issues that affect the supply chain logistics. For more
details on ICMS, see Appendix B.

In this context, the distribution of medicines in Brazil needs to be carefully planned, to de-
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liver quality products to the retailer, within the established deadlines, that is, with high service
levels and with the lowest logistics and tax costs to facilitate medicine access for the population.
Shortage or inadequate procedures in the medicines distribution can lead to irreparable conse-
quences for final consumers, especially for medicines used in the treatment of serious illnesses.
Moreover, any type of failure can negatively affect the image of companies in the market.

4.3 Problem description and case study

This research is motivated by a real problem of one of the largest pharmaceutical companies in
the world, which is present in more than 100 countries, and Brazil is one of them. For reasons of
confidentiality of the information provided, the company is not identified (Jalal et al., 2022b).

In Brazil, the studied company has industrial plants where a part of its products is produced.
Most of the products are imported from foreign plants. The products are imported in bulk, and
are packaged in national plants. After that, the medicines are taken to storage in a DC, as the
industrial plants do not store the products.

Storage and distribution operations are outsourced, and are performed by a highly special-
ized logistics operator, who has national and international experience in the logistics of the
pharmaceutical sector. The logistics operator already has facilities in many cities around the
country and offers shared warehousing services under annual contracts. The logistics operator
receives products at the DC, stores, dispatches, and transports the products to retailers, en-
suring the conditions required by the products and the requirements of the sector’s regulatory
entities. Currently, the company centralizes its warehousing and distribution operations in DCs
located close to the factories. Since the storage is outsourced, locating new DCs does not entail
incurring construction and equipment purchase costs. The company must only assume contrac-
tual commitments with the logistics operator, cost of rental of the DC, storage of products,
and insurance for the stock. Therefore, DC location decisions may be reassessed from time to
time to take advantage of changes or opportunities in the environment. On the other hand,
industrial plant location decisions involve high costs and complexity, due to the high investment
in technology, and adjustment to the broad and rigorous applicable legislation, among other
factors, and are not of interest in this study.

The company’s retail portfolio is made up of public and private institutions: pharmaceutical
chains, independent pharmacies, health centers, hospitals, and clinics, spread across all the states
of the country.

The company’s product portfolio is quite broad, offering more than 250 different items,
ranging from over-the-counter medications without medical indication, such as antipyretic pills,
to highly specialized medications for rare diseases. Medicines have different characteristics of
weight, volume, price, demand, and temperature conditions required for product conservation,
that is, room temperature or cold chain. These characteristics interfere in the planning of
logistical operations because issues such as temperature conditions in storage and transport,
selection of transportation alternatives, and the maximum quantity of products transported
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in one shipment, among others, depend on them. Figure 4.1 shows a representation of the
logistics network, showing the echelons and the storage and transportation of products at room
temperature and cold chain.

Figure 4.1: Logistics network

The cost of stocking products on the DCs depends on the conditions under which the drugs
must be stored, room temperature or cold room, and the quantity of products stored.

The transportation cost is defined by previously negotiated price lists for the different avail-
able alternatives. According to Hiratuka et al. (2013), transportation costs vary mainly as a
result of the conditions of the network, the average age of the truck fleet, and the high lev-
els of vehicle traffic in large urban centers. In the case of the studied company, the cost of
transportation alternatives varies depending on the following factors:

• Types of freight: complete/dedicated or fractional;

• Vehicle load capacity;

• Cargo conditioning: handling dry or cold cargo;

• Other factors such as access, state, and security of highways or airports.

Regarding the type of cargo, the company considers the alternative of sending a full load
(Full truckload-FTL), which can use vehicles of different capacity in volume, and the alternative
of fractional loading (Less Than Truckload-LTL), for smaller volume shipments, sharing the
freight with products from other companies. Transporting smaller quantities leads to reduced
costs associated with retailers’ inventories, but requires additional freight costs.

The cost of fractional cargo depends on the weight of the goods, and it is only possible to
ship products at room temperature. The full load cost, on the other hand, depends on the
capacity of the vehicle used, which can be in weight or volume, depending on the characteristics
of the products. Through these aspects, the logistics operator defines a price structure for the
company, by cargo weight ranges, in the case of fractional alternatives, and by type of vehicle
used, in the case of dedicated transportation alternatives. The number of dedicated vehicles to
be hired must be adequately defined by the company. If it is underestimated, the company will
pay a high price on the spot market (out of contract) for a dedicated vehicle. However, if the
number of vehicles is overestimated, part of the rented vehicles will remain idle.
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Due to the high rates of cargo theft and accidents during transport, there are restrictions on
the flow of products associated with the monetary value of the cargo. That is, insurance compa-
nies establish limits for the total value of the transported cargo, after which they do not provide
coverage for eventualities such as accidents, losses, or theft; therefore, cargo transportation with
a value above the limit is undesirable. In addition, there is a monetary value limit for the cargo,
above which vehicles must be escorted by a pilot/escort car during the journey, incurring extra
costs for transportation because medicines are high added-value products and the Ad Valorem
rates are not enough to cover the safety costs.

Products in addition to being stocked on DCs can be placed in stock at retailers as consign-
ment inventory to meet the demand for future periods. It means the products are sold by the
retailers, but ownership is retained by the company until the products have been sold, and un-
sold products can be returned from retailer to company. Thus, a large inventory at the retailer
is undesirable due to the uncertainty in demand, risks of expiration and damage of products,
and limited space at retailers. Consequently, the inventory at the retailer is highly penalized
with a unitary early delivery cost proportional to the product price. These products can also
be delivered late at the cost of delayed delivery proportional to the product price. Backlogging
is also undesirable because it affects the service level, which is a priority for the company.

In the operational planning of distribution, as the company receives orders from retailers, it
assesses the feasibility of meeting delivery terms and conditions, considering the transportation
alternatives previously negotiated. Thus, both the physical structure of the network, more
specifically the location of the DC, as well as the planned transportation structure, affect the
entire dynamics of the operation. In other words, tactical planning decisions are determining
factors for good performance at the operational level. In this context, the challenges for planning
the logistics network observed in the company involve integrating decisions at the tactical level.
Figure 4.2 presents the proposed decision timing of the location-transportation problem.

Flows, inventory, backlogging, early delivery, and number of travels decisions 

 Location decisions 

Vehicle allocation decisions 

Macro 

periods 

Micro 

periods 

Planning 

Horizon 

Figure 4.2: Proposed decision timing of the location-transportation problem

87



4.4 Mathematical formulation

The notation used in the formulation is presented below.
Sets
i ∈ I Industrial plants
j ∈ J Potential locations for DCs
k ∈ K Retailers
l ∈ L Transportation alternatives
LDV ⊂ L Dedicated vehicles
LLTL ⊂ L LTL transportation alternatives
p ∈ P Products
t ∈ T Time periods
θ ∈ Θ Macro time periods
T (θ) ⊆ T Subset of the periods within macro period θ.
Parameters
dpkt Demand of product p in retailer k in period t
cijl, c

′
jkl Transportation cost (per unit of weight) from plant i to DC j and from DC

j to retailer k using transportation l ∈ LLTL
fijl, f

′
jkl Transportation cost from plant i to DC j and from DC j to retailer k using

transportation l ∈ LDV
gl Fixed cost of hiring dedicated vehicle l ∈ LDV
hpj Unitary inventory cost of product p in DC j

oj Opening cost of DC j

Parameters
ql Volume capacity of transportation alternative l ∈ LDV
rApk Unitary early delivery cost of product p at retailer k
rBpk Unitary backlogging cost of product p at retailer k
αij , α

′
jk ICMS tax from plant i to DC j and from DC j to the retailer k

εij , ε
′
jk Cargo security cost for shipping from plant i to DC j and from DC j to

retailer k
λij , λ′jk Distance from plant i to DC j and from DC j to retailer k.
Λmaxl Limit for distance traveled for each vehicle l ∈ LDV in one period
γl Limit on the monetary value of the load per truck in alternatives l ∈ LDV
σ Limit on the monetary value of the load per truck in alternatives l ∈ LDV

without pilot/escort vehicle
πp Production cost of product p
ρp Price of product p
υp Volume of product p
ωp Weight of product p
M Large number
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Continuous variables
Apkt Inventory of product p at the retailer k in period t
Bpkt Amount of product p backlogging to the retailer k in period t
Ipjt Inventory of product p at DC j in period t
Qj ICMS payable by DC j

Xpijlt, X
′
pjklt Flow of product p from plant i to DC j and from DC j to retailer k

using transportation alternative l ∈ L in period t

Integer variables
Yj 1, if DC j is open; 0, otherwise
Wjlθ Number of dedicated vehicle l ∈ LDV hired and allocated to DC j in macro

period θ
Zijlt, Z

′
jklt Trips from plant i to DC j and from DC j to retailer k

using alternatives l ∈ LDV in period t
Eijlt, E

′
jklt Trips with pilot/escort vehicles from plant i to DC j and from DC j to retailer

k

using alternative l ∈ LDV in t; 0, otherwise

4.4.1 Deterministic mathematical model

The location and transportation problem can be formulated as a mixed-integer linear program-
ming model. Jalal et al. (2022b) address the same case study, however in this formulation the
escort vehicle trips are modeled in a more realistic and understandable way, and ICMS is also
calculated in a comprehensible fashion, as follows:

min Ψ2 = min

∑
j∈J

ojYj +
∑
t∈T

∑
j∈J

∑
p∈P

hpjIpjt

+
∑
θ∈Θ

∑
l∈LDV

∑
j∈J

glWjlθ +
∑
t∈T

∑
p∈P

∑
l∈LLT L

∑
j∈J

(∑
i∈I

cijlωpXpijlt +
∑
k∈K

c′jklωpX
′
pjklt

)
+
∑
t∈T

∑
j∈J

∑
l∈LDV

(∑
i∈I

fijlZijlt +
∑
k∈K

f ′jklZ
′
jklt

)
+
∑
t∈T

∑
j∈J

∑
l∈LDV

(∑
i∈I

εijEijlt +
∑
k∈K

εjkE
′
jklt

)

+
∑
j∈J

Qj +
∑
t∈T

∑
k∈K

∑
p∈P

(
rApkApkt + rBpkBpkt

)
(4.1)

Subject to:

∑
j∈J

∑
l∈L

X ′pjklt +Apkt−1 −Apkt −Bpkt−1 +Bpkt = dpkt, ∀p ∈ P, k ∈ K, t ∈ T . (4.2)
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∑
i∈I

∑
l∈L

Xpijlt + Ipj(t−1) =
∑
k∈K

∑
l∈L

X ′pjklt + Ipjt, ∀j ∈ J , p ∈ P, t ∈ T . (4.3)

∑
i∈I

∑
p∈P

∑
l∈LDV

∑
t∈T

Xpijlt ≤MYj , ∀j ∈ J (4.4)

∑
l∈L

∑
θ∈Θ

Wjlθ ≤M ′Yj , ∀j ∈ J (4.5)

∑
p∈Pl

υpXpijlt ≤ qlZijlt, ∀i ∈ I, j ∈ J , l ∈ LDV , t ∈ T . (4.6)

∑
p∈Pl

υpX
′
pjklt ≤ qlZ ′jklt, ∀j ∈ J , k ∈ K, l ∈ LDV , t ∈ T . (4.7)

∑
p∈Pl

ρpXpijlt ≤ γlZijlt, ∀i ∈ I, j ∈ J , l ∈ LDV , t ∈ T . (4.8)

∑
p∈Pl

ρpX
′
pjklt ≤ γlZ ′jklt, ∀j ∈ J , k ∈ K, l ∈ LDV , t ∈ T . (4.9)

∑
p∈Pl

ρpXpijlt − σZijlt ≤ (γl − σ)Eijlt, ∀i ∈ I, j ∈ J , l ∈ LDV , t ∈ T . (4.10)

∑
p∈Pl

ρpX
′
pjklt − σZ ′jklt ≤ (γl − σ)E′jklt, ∀j ∈ J , k ∈ K, l ∈ LDV , t ∈ T . (4.11)

∑
i∈I

∑
t∈T (θ)

λijZijlt +
∑
k∈K

∑
t∈T (θ)

λ′jkZ
′
jklt ≤ Λmaxl Wjlθ, ∀j ∈ J , l ∈ LDV , θ ∈ Θ. (4.12)

∑
t∈T

∑
l∈L

∑
p∈P

∑
i∈I

αijπpXpijlt ≤ Qj , ∀j ∈ J . (4.13)

∑
t∈T

∑
l∈L

∑
p∈P

∑
k∈K

α
′
jkρpX

′
pjklt ≤ Qj , ∀j ∈ J . (4.14)

Yj ∈ {0, 1}, j ∈ J . (4.15)

Wjlθ ∈ {0, 1}, j ∈ J , l ∈ L, θ ∈ Θ. (4.16)

Zijlt, Z
′
jklt, Eijlt, E

′
jklt ∈ {0, 1}, ∀i ∈ I, j ∈ J , k ∈ K, l ∈ LDV , t ∈ T . (4.17)

Xpijlt, X
′
pjklt, Apkt, Bpkt, Ijpt, Qj ≥ 0, ∀i ∈ I, j ∈ J , k ∈ K, p ∈ P, l ∈ L, t ∈ T . (4.18)

The objective function (4.1) minimizes the distribution costs, early delivery, and backlogging
costs. The first term comprises DC opening costs and the second term represents the inventory
costs. The allocation costs of the vehicles to opened DCs among the macro periods are repre-
sented by the third term. Shipment costs for LTL freights are represented by the fourth and
fifth terms. Note that the costs of LTL alternatives depend on product weight and the flow of
products. Shipment costs for TL freights are represented by the sixth and seventh terms that
depend on the number of trips. The eighth and ninth terms represent the security costs for TL
freight with escort/pilot vehicles, these costs depend on the number of trips for which the cargo
value exceeds the limit imposed by insurance companies. Finally, the tax costs are represented
by the tenth term, and the eleventh and twelfth costs represent the penalties for early delivery
and backlogging at retailers.

The balance constraints (4.2) are required to guarantee demand satisfaction. For each period,
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product and retailer, if the amount delivered (i.e., transportation from DCs plus early delivery
in t−1) is less than the products demand to the actual period, there is backlogging, Bpkt > 0. If
the amount delivered is more than the demand for the actual period, there is an early delivery,
Apkt > 0. Constraints (4.3) ensure the flow balance of products in each DC considering Ipj0 = 0.
Constraints (4.4) ensure a flow of products only to open DCs, and the parameterM is estimated
as the total demand required by the retailers in the planning horizon. Constraints (4.5) ensure
that vehicles are allocated only to open DCs, and the parameter M ′ is estimated based on
the total demand, the volume of products, and the capacity of vehicles, ensuring that this
parameter is slack. Constraints (4.6) and (4.7) relate the flow of products and the number
of trips required for each TL shipping alternative, respecting the capacity of vehicles (ql). In
addition, to determine the number of required trips, there are also limits to the load value,
according to the insurance values agreed upon by the carrier. Constraints (4.8) and (4.9) ensure
that the value of load does not exceed the value covered by the insurance. For LTL transportation
alternatives, the costs of insurance and cargo security services are embedded in transportation
costs. Moreover, due to the high value of the pharmaceutical cargo, security services are used
when the value of the cargo exceeds the prescriptive limit σ. For load values above the limit
σ, constraints (4.10) and (4.11) make it mandatory to use escort vehicles. Constraints (4.12)
ensure the maximum distance allowed to vehicles. Constraints (4.13) and (4.14) calculate the
ICMS payable by the DCs. Lastly, constraints (4.15)–(4.18) are domain variables.

4.4.2 Uncertainty set

This section presents a robust counterpart of the proposed mathematical model. We assume that
the demand dpkt is uncertain. The uncertain parameters are modeled as independent, limited
and symmetric random variables that assume values in the intervals d̃pkt ∈ [dpkt−d̂pkt, dpkt+d̂pkt]
for demand. Here, dpkt represents the expected (nominal) value, and d̂pkt represents the maxi-
mum deviation of the random variable allowed from its corresponding nominal value. To deal
with these uncertainties, we propose a robust optimization model assuming that the uncer-
tain demands belong to the convex uncertainty set Udpkt. The aim is to find the best solution
that satisfies every realization of the uncertain parameter that belongs to Udpkt. We consider
the budgeted uncertainty set proposed by Bertsimas and Sim (2004). This set provides robust
counterparts as tractable as their original deterministic formulations (Bertsimas and Sim, 2003).
Let d̃pkt be rewritten as d̃pkt = dpkt + d̂pktξpkt, where ξpkt is a random variable that assumes
values in the interval [−1, 1]. The uncertainty set Udpkt is defined as follows for all product p,
retailer k, and period t:

Udpkt =
{
ξ ∈ R|P||K||T | :

t∑
τ=1
|ξpkτ | ≤ Γdpkt ∧ −1 ≤ ξpkτ ≤ 1, ∀τ = 1, . . . , t

}
(4.19)

where the cumulative uncertainty of the random variables is bound by their budget of uncertainty
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Γdpkt.

4.4.3 Deterministic reformulation

Note that the uncertain demand is only considered in constraints (4.2) of the deterministic
model, i.e., there is only one demand parameter in these constraints. It means that the equality
constraints (4.2) are not appropriate for implementing static robust optimization (RO) method-
ology, which requires that the model must continue to be feasible for all realizations of the
uncertainty set because the inventory variables are not realization-dependent. To obtain a ro-
bust counterpart formulation for the problem, we must introduce constraints that can be met
for all realizations of uncertain parameters within the uncertainty set, i.e., it is necessary to
reformulate the deterministic counterpart. To do that, an aggregate formulation is required to
express the cumulative demand over time in the same constraint (Alem and Morabito, 2012;
Alem et al., 2018; Jalal et al., 2022a). In the reformulation, we rewrite Equation (4.2) in terms
of the difference between the inventory and the backlogging at retailer k in period t, as shown
in Equation (4.20).

Apkt −Bpkt = Apkt−1 −Bpkt−1 +
∑
j∈J

∑
l∈L

X ′pjklt − dpkt ∀p ∈ P, k ∈ K, t ∈ T . (4.20)

Then, we obtain the aggregate form in terms only of the initial inventory/backlogging at
retailers, as follows:

Apkt −Bpkt = Apk0 −Bpk0 +
t∑

τ=1

∑
j∈J

∑
l∈L

X ′pjklt −
t∑

τ=1
dpkt ∀p ∈ P, k ∈ K, t ∈ T . (4.21)

Let Spkt = Apkt − Bpkt be the net inventory, an unrestricted variable able to represent
inventory or backlogging at the retailer. Then, we have:

Spkt = Spk0 +
t∑

τ=1

∑
j∈J

∑
l∈L

X ′pjklt −
t∑

τ=1
dpkt ∀p ∈ P, k ∈ K, t ∈ T . (4.22)

We consider a convex and piecewise linear inventory/backlogging cost function of the form:

Rpkt = max{rApk Spkt,−rBpk Spkt} ∀p ∈ P, k ∈ K, t ∈ T . (4.23)

Finally, based on the piecewise linearity and convexity of the inventory/backlogging cost
function, and assuming that initial inventory and backlogging quantities are zero without loss
of generality, we have the following pair of inequalities that replace equality (4.2):

Rpkt ≥ rApk Spkt = rApk

(
t∑

τ=1

(∑
j∈J

∑
l∈L

X
′
pjklτ − dpkτ

))
, ∀p ∈ P, k ∈ K, t ∈ T (4.24)

Rpkt ≥ rBpk (−Spkt) = rBpk

(
−

t∑
τ=1

(∑
j∈J

∑
l∈L

X
′
pjklτ − dpkτ

))
, ∀p ∈ P, k ∈ K, t ∈ T (4.25)
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In this case, we have obtained a deterministic equivalent reformulation with the cumulative
demand over time in constraints (4.24) and (4.25). Considering the demand uncertainty, these
constraints can be expressed, as follows:

Rpkt ≥ rApk Spkt = rApk

(
t∑

τ=1

(∑
j∈J

∑
l∈L

X
′
pjklτ − d̃pkτ

))
, ∀p ∈ P, k ∈ K, t ∈ T (4.26)

Rpkt ≥ rBpk (−Spkt) = rBpk

(
−

t∑
τ=1

(∑
j∈J

∑
l∈L

X
′
pjklτ − d̃pkτ

))
, ∀p ∈ P, k ∈ K, t ∈ T (4.27)

Then,

Rpkt ≥ rApk Spkt = rApk

(
t∑

τ=1

(∑
j∈J

∑
l∈L

X
′
pjklτ − dpkτ − d̂pkτξpkτ

))
, ∀p ∈ P, k ∈ K, t ∈ T

(4.28)

Rpkt ≥ rBpk (−Spkt) = rBpk

(
−

t∑
τ=1

(∑
j∈J

∑
l∈L

X
′
pjklτ − dpkτ − d̂pkτξpkτ

))
, ∀p ∈ P, k ∈ K, t ∈ T

(4.29)

4.4.4 Robust optimization counterpart

We now develop a robust optimization counterpart for the deterministic reformulation, i.e., the
objective function (4.1) presented below subject to constraints (4.3) to (4.18) and (4.28) to
(4.29). Considering the uncertainty budget Γdpkt ∈ [0, t] and the variable ξpkτ , we apply the
robust optimization technique developed in Bertsimas and Sim (2003). We have to maximize
the right-hand side of constraints (4.28) and (4.29) over the set of all admissible realizations
of the uncertain demands. As robust optimization is based on an optimization of worst-case
perspective, the auxiliary problem results in minimizing ∑t

τ=1 d̂pkτξpkτ in constraint (4.28) and
maximizing ∑t

τ=1 d̂pkτξpkτ in constraint (4.29), as follows:

Rpkt ≥ rApk

(
t∑

τ=1

(∑
j∈J

∑
l∈L

X
′
pjklτ − dpkτ

)
−min

t∑
τ=1

d̂pkτξpkτ

)
, ∀p ∈ P, k ∈ K, t ∈ T (4.30)

Rpkt ≥ rBpk

(
−

t∑
τ=1

(∑
j∈J

∑
l∈L

X
′
pjklτ − dpkτ

)
+ max

t∑
τ=1

d̂pkτξpkτ

)
, ∀p ∈ P, k ∈ K, t ∈ T (4.31)

that is equivalent to:

Rpkt ≥ rApk

(
t∑

τ=1

(∑
j∈J

∑
l∈L

X
′
pjklτ − dpkτ

)
+ max

t∑
τ=1

d̂pkτξpkτ

)
, ∀p ∈ P, k ∈ K, t ∈ T (4.32)

Rpkt ≥ rBpk

(
−

t∑
τ=1

(∑
j∈J

∑
l∈L

X
′
pjklτ − dpkτ

)
+ max

t∑
τ=1

d̂pkτξpkτ

)
, ∀p ∈ P, k ∈ K, t ∈ T (4.33)

Then, for a given p, k and t, we have to solve the following auxiliary problem:

max
t∑

τ=1
d̂pkτξpkτ (4.34)
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s.t.
t∑

τ=1
ξpkτ ≤ Γdpkt, (4.35)

0 ≤ ξpkτ ≤ 1, ∀τ ≤ t. (4.36)

Using the duality technique, we have the dual problem of the primal problem (4.34) - (4.36).
For each p, k and t:

min (Γdpktλdpkt +
t∑

τ=1
µdpktτ ) (4.37)

s.t. λdpkt + µdpktτ ≥ d̂pkτ , ∀τ ≤ t, (4.38)

λdpkt ≥ 0, (4.39)

µdpktτ ≥ 0, ∀τ ≤ t. (4.40)

Now, we have:

Rpkt ≥ rApk

(
t∑

τ=1

(∑
j∈J

∑
l∈L

X
′
pjklτ − dpkτ

)
+ min

(
Γdpktλdpkt +

t∑
τ=1

µdpktτ

))
, ∀p ∈ P, k ∈ K, t ∈ T

(4.41)

Rpkt ≥ rBpk

(
−

t∑
τ=1

(∑
j∈J

∑
l∈L

X
′
pjklτ − dpkτ

)
+ min

(
Γdpktλdpkt +

t∑
τ=1

µdpktτ

))
,∀p ∈ P, k ∈ K, t ∈ T

(4.42)

Since the objective function aims to minimize Rpkt, the inner problem of minimizing in the
constraints can be removed, and we obtain the following robust model for the addressed problem
under uncertainty:

min Ψ2 = min

∑
j∈J

ojYj +
∑
t∈T

∑
j∈J

∑
p∈P

hpjIpjt

+
∑
θ∈Θ

∑
l∈LDV

∑
j∈J

glWjlθ +
∑
t∈T

∑
p∈P

∑
l∈LLT L

∑
j∈J

(∑
i∈I

cijlωpXpijlt +
∑
k∈K

c′
jklωpX

′
pjklt

)
+
∑
t∈T

∑
j∈J

∑
l∈LDV

(∑
i∈I

fijlZijlt +
∑
k∈K

f ′
jklZ

′
jklt

)
+
∑
t∈T

∑
j∈J

∑
l∈LDV

(∑
i∈I

εijEijlt +
∑
k∈K

εjkE
′
jklt

)

+
∑
j∈J

Qj +
∑
t∈T

∑
k∈K

∑
p∈P

Rpkt

) (4.43)

Subject to (4.3) to (4.18)

Rpkt ≥ rApk

(
t∑

τ=1

(∑
j∈J

∑
l∈L

X
′
pjklτ − dpkτ

)
+ Γdpktλdpkt +

t∑
τ=1

µdpktτ

)
, ∀p ∈ P, k ∈ K, t ∈ T (4.44)
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Rpkt ≥ rBpk

(
−

t∑
τ=1

(∑
j∈J

∑
l∈L

X
′
pjklτ − dpkτ

)
+ Γdpktλdpkt +

t∑
τ=1

µdpktτ

)
, ∀p ∈ P, k ∈ K, t ∈ T

(4.45)

λdpkt + µdpktτ ≥ d̂pkτ , ∀p ∈ P, k ∈ k, t ∈ T , τ ≤ t, (4.46)

µdpktτ , λ
d
pkt ≥ 0, ∀p ∈ P, k ∈ K, t ∈ T , τ ≤ t, (4.47)

where λdpkt, µdpkt are the dual variables associated with the constraints of the primal problem
(4.34) - (4.36).

4.5 Solution methods

Facility location problems are NP-hard, and as they are integrated with other decisions (such as
vehicle allocation, and mode selection) can result in a mathematical model with a greater number
of constraints and variables, and consequently, it can be more difficult to solve. The uncertainty
in input data of this location problem may reduce the importance of attempting to find the best
solution in real and large problems when multiple high-quality solutions can be found (Guazzelli
and Cunha, 2018). Mixed-integer programming heuristics, based on decomposition schemes and
taking advantage of the model’s structure that involves multiple periods, have been proposed in
the literature in an attempt to obtain good solutions by solving smaller and easier subproblems.
Relax-and-Fix and Fix-and-Optimize heuristics have been successfully used in location and
transportation problems (Moreno et al., 2016, 2018), Location and routing problem (Rieck
et al., 2014), location and network design problem (Rahmaniani and Ghaderi, 2013; Ghaderi
and Jabalameli, 2013), and hub location (He et al., 2015; Etemadnia et al., 2015). We developed
Relax-and-Fix and Fix-and-Optimize heuristics and carried out preliminary experiments, and
the Fix-and-Optimize heuristics was the most promising method. Thus, in this section, we
present a Fix-and-Optimize heuristics for the addressed problem.

Fix-and-Optimize heuristics (F&O) starts with an initial feasible solution and tries to im-
prove it iteratively by solving the subproblems generated by the partition criteria that we defined
in Table 4.1. A pseudo-code for the F&O algorithm based on dividing the problem by periods
and arcs is outlined in Algorithm 1. The basic idea is to compare the current solution to the
incumbent one as the subproblems are successively solved. If the current solution is better than
the incumbent, we need to update the former according to the new MIP solution. Otherwise,
the current solution is equal to the incumbent one.

To obtain an initial feasible solution, a relaxed problem considering the variables associated
with the number of trips as continuous variables is solved. Then, the solution obtained from the
first step is adapted to be feasible in the original integrated model by simply approximating the
number of trips to the nearest higher integer value.
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Table 4.1: Summary of the proposed strategies.
Partition criteria Variable fixing criteria Strategy name

By period Zijlt, Z
′
jklt F&O1

Zijlt, Z
′
jklt > 0 F&O2

By period and arc Zijlt, Z
′
jklt F&O3

Zijlt, Z
′
jklt > 0 F&O4

By period (two periods) Zijlt, Z
′
jklt F&O5

Zijlt, Z
′
jklt > 0 F&O6

By period and arc (two periods) Zijlt, Z
′
jklt F&O7

Zijlt, Z
′
jklt, > 0 F&O8

In Table 4.1, strategies F&O1 to F&O4 consider subproblems of one period, while strategies
F&O5 to F&O8 consider subproblems of two periods. On the other hand, strategies F&O1,
F&O3, F&O5, F&O7, after solving the subproblems, fix all variables, while the other strategies
fix only the variables with values larger than zero.

Algorithm 2: Fix-and-Optimize - F&O4
1 Initialization: Initial solution. ;
2 Fix the variables larger than zero in their current values ;
3 Incumbent solution := initial solution, OF_incumbent := objective function of the

initial solution, OF_MIP := objective function of the subproblem ;
4 for t = 1 to |T | do
5 Unfix the discrete variables Zijlt ;
6 Solve the resulting subproblem ;
7 if OF_MIP < OF_incumbent then
8 Incumbent solution := MIP solution ;
9 OF_incumbent:= OF_MIP ;

10 Fix variables larger than zero according to the incumbent solution.
11 end
12 Unfix the discrete variables Z ′jklt ;
13 Solve the resulting subproblem ;
14 if OF_MIP < OF_incumbent then
15 Incumbent solution := MIP solution ;
16 OF_incumbent:= OF_MIP ;
17 Fix variables larger than zero according to the incumbent solution.
18 end
19 end

4.6 Computational experiments and discussion

This section presents the results of the computational experiments carried out according to the
proposed mathematical models, deterministic model (4.1) to (4.18) and robust model (4.43) -
(4.47), and solution method, F&O, of previous section. The purpose is to evaluate our approach
to modeling and solving the integrated location-transportation problem. Thus, we organize this
section as follows: Subsection 4.6.1 presents the data and instances description. Subsection
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4.6.2 compares the results achieved by F&O with those obtained by the solver CPLEX (IBM,
2019), when solving the deterministic and robust models. In Subsection 4.6.3, we carried out
tests to study the impact of integrating decisions into the problem. Subsection 4.6.4 presents
some cases with different ICMS contexts to be analyzed. Subsection 4.6.5 analyzes the impact of
the uncertainties and the quality of the robust solutions, obtained by solving the robust model
(4.43) - (4.47) and applying the F&O heuristics.

The models were coded in C++ programming language and solved using the general-purpose
optimization software IBM CPLEX version 20.10, with its default configuration. A Linux PC
with a CPU Intel Core i7 3.4 GHz and 16.0 GB of memory was used to run the experiments. The
stopping criterion was due to either the elapsed time exceeding the time limit of 3600 seconds
or the optimality gap becoming smaller than 10−4.

4.6.1 Case study and instances generation

The data set used in the computational test is based on the current operations of a pharmaceu-
tical company with operations in Brazil. The logistics network comprises three entities: plants,
DCs, and retailers. Due to the tactical nature of the study, retailers are grouped into 54 clus-
ters and assigned to the capital and countryside of each Brazilian state. This company has a
plant and a DC operating in Sao Paulo. From the plant, products are sent to DC managed by
logistics operators, from which the company meets the demand of retailers all over the country.
The management board has decided to open new DCs, and five cities were chosen as candidates:
Sao Paulo, Goiania, Vitoria, Recife e Salvador. Figure 4.3 presents maps based on the Brazil-
ian political and administrative division: Figure 4.3(a) shows a heat map with client demands
whereas Figure 4.3(b) shows retailer groups and DC candidates.

(a) Demand distribution

5 

4 

3 
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2 

    Customer cluster 

    DCs candidates 
1. Recife-PE 

2. Salvador-BA 

3. Vitória-ES 

4. Goiânia-GO 

5. São Paulo-SP 

(b) Candidate locals

Figure 4.3: Heat map of client demands and candidate locations for DCs (Jalal et al., 2022b)
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Simultaneously, managers have to make transportation decisions regarding demand fulfill-
ment and transportation mode selection, considering the insurance measures and restrictions.
The carriers offer transportation alternatives that differ in freight type and temperature con-
ditions. Thus, there are four transportation options: less-than-truckload alternative, truckload
with tree vehicle types, i.e., mid-size truck, large truck, and large-and-refrigerated truck.

Due to the tactical nature of the problem, we aggregated the wide portfolio of the company
into product families, based on similar characteristics. We employed the K-Means method to
group products into 30 product families. The K-Means method aims to divide M points in N
dimensions into K clusters so that the within-cluster sum of squares is minimized (Hartigan and
Wong, 1979). We consider the dimensions or attributes of temperature conditions, size, weight,
price, and demand patterns of products to cluster the products. Since DC rental agreements
are made annually, we assume a one-year planning horizon to evaluate the DC location, but
transportation decisions should be considered in shorter periods. We divided the planning
horizon into 12 periods and 4 macro-periods.

The product costs ρp were assumed as 40% of the product price. The early delivery costs rApk
were estimated as 25% of the product price. As the company’s service policy is geared towards
maintaining a high service level, delivery delays rBpk are not desirable and are penalized with
very high values, 5 times the product price, respectively. Regarding ICMS, the current tax rates
were considered, αij and α

′
jk vary among 7%, 12%, 17%, and 18%.

We consider different variabilities of the demand in time and quantity to generate instances.
Smooth demand has low variability both in time and magnitude; intermittent demand has
demand magnitude relatively constant, but there are large and irregular gaps between non-
zero demand values; erratic demand does not have a lot of gaps on time, but the magnitudes
vary significantly and irregularly; finally, lumpy demand is both intermittent and erratic, with
irregular gaps and sharp changes in the magnitude (Syntetos et al., 2005). Thus, we consider
instances where all products present the same variability, i.e. smooth, intermittent, erratic, and
lumpy demand, and an instance with regular demand, based on the real data of the company
with products with different demand variabilities at the same time. Table 4.2 presents the
number of binary and continuous variables; and the number of constraints, of model (4.43) -
(4.47). Note that the size of the MIP model is huge, with thousands of variables and constraints.

Table 4.2: Instances
Decision variables

Model Instance Binary Continuous Constraints

Deterministic Each instance 19,865 436,685 51,020
Robust Each instance 19,865 1,953,005 1,586,780

To incorporate uncertainty into the instances, we define the deviations of the demand d̂pkt
as β ∈ {0.1, 0.2, 0.3}. The robust model was solved using combinations of 6 different values
for the parameters of the budget of uncertainty Γdpkt. The Γdpkt values were generated based on
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preliminary computational experiments and related works in the literature (Alem et al., 2018),
the values are 0.1t+ 0.5, 0.25t+ 0.5, 0.5t+ 0.5, 0.75t+ 0.5, and t. These budgets of uncertainty
represent different attitudes towards risk. For instance, Γdpkt = 0 represents the deterministic case
while Γdpkt = t represents a robust approach where all the uncertain parameters are allowed to
assume their worst-case values. A total of 640 experiment settings were obtained from combining
the five instances with the six different Γdpkt and three deviation values β, considering that the
deterministic case (i.e., Γdpkt = 0) is not combined with the different deviation values β.

4.6.2 Computational performance of the proposed heuristics

Table 4.3 summarizes for all instances the performance of the Fix-and-Optimize heuristics.
Columns in Table 4.3 refer to the F&O strategies, the percentage of instances for which the
strategies provide the best solution (% Best UB), and the percentage of instances for which the
strategies provide a solution with a cost no higher than 1% and 5% of the best cost (%Best+1%
and %Best+5%), the average upper bound (UB), the average gap (UB F&O−LB MIP

UB F&O , similar to
CPLEX gap calculation), and the average elapsed time. The gap values for the different solution
strategies (including MIP) were calculated using the same lower bound value (LB MIP), that is,
the one obtained by CPLEX when solving the original (deterministic and robust) models within
3,600 seconds.

Table 4.3: Average results of the different solution strategies for the all test with the five in-
stances.

F&O strategy %Best UB %Best+1% UB %Best UB +5% Avg. UB 1Avg. Gap(%) 2Avg. UB ratio(%) Avg. Time
MIP 3.75 23.75 56.25 1,848,071,830 14.32 438.36 3,601
1 0.00 13.75 55.00 797,939,324 7.17 8.55 3,561
2 15.00 93.75 98.75 770,753,943 2.40 8.47 3,598
3 8.75 52.50 85.00 774,743,223 3.43 3.71 2,716
4 23.75 100.00 100.00 760,955,056 1.27 1.31 3,486
5 0.00 35.00 81.25 780,344,457 5.19 8.66 3,598
6 16.25 92.50 97.50 766,668,399 2.39 5.13 3,601
7 8.75 48.75 90.00 771,838,558 2.93 3.10 3,530
8 23.75 97.50 100.00 761,335,088 1.32 1.35 3,544

1 Gap=100×UB F&O−LB MIP
UB F&O

2 UB ratio=100×UB F&O−LB MIP
LB MIP

Note that F&O4 and F&O8 present the best performance compared with the other strategies.
These strategies have a partition by period and arc and partially fix the variables, those larger
than zero. Both of them find the %Best UB for 23.75% of instances; in the worst case, the
obtained UB is 5% of the best solution. The F&O4 provides the lower average gap and UB and
F&O3 provides the lower average elapsed time. Note that the F&O4 provides an average gap of
1.27% and an average UB ratio of 1.31%, while the MIP scales from an average gap of 14.32%
to an average ratio of more than 400%. F&O4 outperforms the heuristics with respect to UBs
and gap.

Table 4.4 shows the average results of the robust optimization counterpart with instances
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according to the type of demand for MIP and F&O4 heuristics. Columns in Table 4.4 refer to:
method type, instances, the average UB, the average gap (UB F&O−LB MIP

UB F&O ), and the average
elapsed time. The gap values for the different instances solved with MIP and F&O4 were
calculated using the same lower bound value (LB MIP) obtained by CPLEX for the different
instances with the original models within 3,600 seconds. Table 4.4 also shows the Ratio, the
relative difference between the solutions (in terms of average UB, gap, and elapsed time) of MIP
and F&O4, computed as 100×MIP−F&O4

MIP . A relative difference larger than zero indicates that
F&O4 obtained a value lower than the upper bound of the MIP (UB MIP), whereas a relative
difference lower than zero indicates that F&O4 obtained a value larger than the MIP upper
bound.

Table 4.4: Average results of F&O4 strategy and MIP
Instance Avg. UB Avg. Gap(%) 1Avg. UB ratio(%) Avg. Time (sec)

Regular 4,478,493,225 12.03 1,349.53 3,601
Smooth 1,763,932,763 25.10 693.36 3,600

MIP Erratic 914,207,684 13.42 65.10 3,601
Intermittent 1,185,125,363 17.30 79.74 3,601
Lumpy 898,600,115 3.74 4.09 3,600
Avg 1,848,071,830 14.32 438.36 3,601

Regular 725,084,301 1.36 1.39 3,502
Smooth 651,258,590 1.54 1.58 3,518

F&O4 Erratic 717,009,596 1.47 1.51 3,520
Intermittent 839,099,970 0.98 0.99 3,457
Lumpy 872,322,822 1.02 1.04 3,434
Avg 760,955,056 1.27 1.31 3,486

Regular 83.81 88.70 99.90 2.75
Smooth 63.08 93.86 99.77 2.29

Ratio(%)2 Erratic 21.57 89.06 97.68 2.24
Intermittent 29.20 94.35 98.75 4.00
Lumpy 2.92 72.62 74.47 4.61
Avg 40.12 87.72 99.70 3.18

1 UB ratio=100×UB F&O−LB MIP
LB MIP

2 Ratio=100×MIP−F&O4
MIP

Notice that the best improvement for the Avg. UB was obtained for the Regular instance
with a ratio of 83.81% in average UB. The instance with less variability, smooth, has a high
ratio, and the instance with more variability, lumpy, has a lower ratio, 3%. It is clear that
F&O4 improves the quality of the solution and elapsed times for all instances. The average UB
decreased from 1,848,071,830 to 760,955,056 , from MIP to F&O4. The strategy F&O4 reduced
the average cost, the average optimality gap, and the average UB ratio of the solutions by
40.12%, 87.72%, and 99.70% respectively, when compared to MIP. It is worth highlighting that
in almost all instance classes, F&O4 outperformed MIP regarding the UB and computational
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elapsed times.

4.6.3 Integrated approach vs Sequential approach

The studied problem integrates location and transportation decisions, which are commonly
addressed hierarchically by practitioners in companies. Thus, another approach to dealing with
these decisions is to solve the problem sequentially. Therefore, we solve a relaxed version of the
original problem, ignoring decisions concerning the number of trips as we are interested in the
location decisions in the first stage problem. Since the security costs also directly depend on
the number of trips, these decisions are also not considered in this first stage problem. Then, in
the second stage, we fix the location decisions to address the transportation planning decisions,
regarding the transportation alternatives selection, the number of trips, and the number of trips
with escort vehicles.

We compare the integrated model with this Sequential approach (SEQ) in terms of total
cost and network structures. Both methods spent one hour of elapsed time. Table 4.5 presents
the results for the sequential and integrated (F&O4) solutions for different instances, in terms
of number of DCs (#DCs) and allocated vehicles (Veh), percentage of participation of LTL
and TL freight on total transported units (ULTL(%) and UTL(%), respectively), percentage of
participation in transportation costs of LTL and TL freight (CLTL(%) and CTL(%), respectively),
the UB, and backlogging/delivery costs. Table 4.5 also shows the relative difference between the
solutions (UB, backlogging and delivery costs, number of DCs and allocated vehicles) of MIP
and F&O4, computed as 100×SEQ−F&O4

SEQ .

Table 4.5: Comparison between the sequential and integrated solutions
Back/Early

Instance #DCs Veh ULT L(%) UT L(%) CLT L(%) CT L(%) UB delivery costs

Regular 4 143 9.74 90.26 8.63 91.37 140,090,849 1,355,578
Smooth 5 246 20.33 79.67 51.90 48.10 217,730,057 58,384,416

SEQ Erratic 4 145 15.82 84.18 51.90 48.10 215,924,809 69,389,213
Intermtt 4 141 8.96 91.04 9.88 90.12 144,744,603 6,400,140
Lumpy 4 62 24.83 75.17 90.24 9.76 2,790,927,873 2,634,288,695

Regular 2 166 9.01 90.99 4.79 95.21 139,029,082 422,666
Smooth 2 193 8.53 91.47 2.68 97.32 139,666,461 289,069

F&O4 Erratic 2 197 8.46 91.54 2.42 97.58 139,929,994 195,455
Intermtt 2 166 8.69 91.31 4.32 95.68 137,798,352 448,347
Lumpy 3 170 8.56 91.44 4.35 95.65 138,816,594 365,179

Regular 50 -16.08 7.50 -0.81 44.45 -4.20 0.76 68.82
Smooth 60 21.54 58.06 -14.82 94.84 -102.32 35.85 99.5

Ratio(%)* Erratic 50 -35.86 46.52 -8.75 95.34 -102.86 35.2 99.72
Intermtt 50 -17.73 2.97 -0.29 56.25 -6.16 4.8 92.99
Lumpy 25 -174.19 65.54 -21.65 95.18 -880.21 95.03 99.99

* Ratio =100×SEQ−F&O4
SEQ

The decisions of location and allocation vehicle to open DCs change significantly, in the inte-
grated model the number of DCs decreases from 25% to 60%, and the allocated vehicle number
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increases for most instances from 16% to 174%. It happens because the first level of the sequen-
tial approach considers only opening decisions in terms of ICMS and unitary transportation
costs, i.e. LTL freight. Since the unitary transportation costs by LTL freight are higher than
TL costs, this approach opens more DCs to reduce the total transportation costs for retailers.
With this configuration, the sequential approach has higher participation of LTL freight than
the TL freight compared with the integrated approach. Nevertheless, the total transportation
costs in the sequential approach are lower than in the integrated one. However, the difference
is compensated in the integrated approach by the location costs.

Note that the freight selection decisions of the integrated approach are robust for different
demand variabilities because the participation of the freight type in terms of the number of
transported units and cost is similar among the instance. While the sequential approach changes
with the demand variabilities. The integrated model reduces the UB for all instances in the same
elapsed time as the sequential model. The high value of lumpy instances for the sequential model
is because of the high Backlogging/Early delivery cost. The Backlogging/Early delivery cost is
lower in the integrated approach for all instances.

4.6.4 Analysis of ICMS impact over decisions

ICMS can have a large impact on the location and product flow definition. In some cases, ICMS
can be passed to the retailer, and it is not a relevant issue for companies. Nevertheless, fiscal
incentives and negotiations should be evaluated in the long term, with caution regarding the
well-known “Tax War” among the federal states. Thus, the use of the model makes it possible to
evaluate different scenarios to support decisions related to the physical structure of the logistics
network (Jalal et al., 2022b). Aiming to understand how ICMS influences the presented network
design and planning problem, four cases with different ICMS values are studied:

• Case A: corresponds to the context without ICMS.

• Case B: corresponds to the current context of ICMS.

• Case C: corresponds to the context with the same rates of ICMS 12%.

• Case D: corresponds to the context with the same rates of ICMS 7%.

Table 4.6 presents the UB, total costs, ICMS, distribution costs, Number of DCs, and allo-
cated vehicles for the different cases. For case A, ICMS is calculated after solving the problem
based on the flow decisions. It is important to mention that there is a credit of ICMS for the
importation of the products and raw materials, which is not countable in this problem because
we do not have information about the added value of the product at plants.

For the cases with different ICMS contexts, the network structure changes with different
numbers of DCs and allocated vehicles. Note that, for the same ICMS context, instances with
regular, smooth, and erratic demand present the same number of opened DCs; while, the in-
stances of intermittent and lumpy demand present changes in the network structure. Both
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instances present variability in demand timing, and that characteristic can explain the change
in the network structure. Thus, the network configuration is also sensitive to the demand vari-
ability.

Table 4.6: Impact of ICMS over costs and decisions
Instance Case UB Total costs ICMS Distr. costs #DCs #Vehicles

A 15,919,771 171,525,931 155,770,148 15,755,782 5 140
Regular B 139,029,082 138,606,416 122,243,968 16,362,448 2 166

C 220,756,360 191,578,974 165,869,886 25,709,088 5 206
D 173,545,941 123,280,418 96,757,434 26,522,984 5 198

A 16,407,192 174,272,399 157,990,354 16,282,045 5 144
Smooth B 139,666,461 139,377,391 121,856,659 17,520,733 2 193

C 183,789,116 183,749,953 165,872,206 17,877,747 5 174
D 177,343,556 123,658,371 96,758,787 26,899,584 5 207

A 54,113,164 196,604,534 170,603,767 26,000,767 5 219
Erratic B 139,929,994 139,734,539 121,783,551 17,950,988 2 197

C 325,908,891 192,479,997 165,549,679 26,930,318 5 176
D 114,197,798 114,061,496 96,754,345 17,307,151 5 167

A 2,178,984,335 178,940,420 143,766,390 35,174,030 3 132
Intermittent B 137,798,352 137,350,005 121,800,415 15,549,590 2 166

C 180,091,569 179,873,909 165,872,297 14,001,612 3 130
D 112,144,422 111,910,984 96,758,840 15,152,144 5 129

A 83,325,636 198,301,984 172,694,242 25,607,742 5 195
Lumpy B 138,816,594 138,451,415 121,909,096 16,542,319 3 170

C 180,593,145 180,341,910 165,866,313 14,475,597 5 117
D 112,195,985 111,983,998 96,754,842 15,229,156 4 140

Case A is similar to Cases B and D, considering that all rates are 0%. Notice that for these
cases, regular, smooth, and erratic demand presents the same number of opened DCs, i.e., five
DCs. Since there are no advantages of the DCs in terms of ICMS rates, the decision is to open all
DCs and optimize the product flow in terms of logistics (opening, inventory, and transportation)
costs. Notice that, although the network does not change in these cases, the number of vehicles
does. It implies that there are still changes in the alternative transportation selection and flow
definition.

Nevertheless, for case B, which considers the current tax structure with different rates ac-
cording to the definition of state governments, only two DCs are opened. It is because the model
selects the DCs considering both logistics costs and tax. The ICMS participation in total costs is
higher than logistics costs, therefore the model selects the DCs with lower origin-destination tax
rates to take advantage of these differences in the definition of product flows. For the considered
data, it implies in opening just two DCs. We confirm that the taxation consideration can easily
dominate the network configuration as set by Shah (2004). Comparing cases A and B, notice
that for all instances the ICMS costs (calculated in post-process) are higher in case A than case
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B, i.e. when they are ignored. These results show that this model represents a tool to support
the decision-making process with different scenarios of ICMS and demand variability.

4.6.5 Robustness analysis

We designed a robustness analysis based on a Monte Carlo simulation to evaluate the quality of
solutions resulting from our robust optimization counterpart. The simulation was performed by
generating 1000 random uniform realizations for demands in the interval [dpkt− d̂pkt, dpkt+ d̂pkt]
for all p ∈ P, k ∈ K, t ∈ T , respectively. In the simulation, the solution to the robust problem,
and the decisions were fixed (except backlogging and early delivery) and the performance of the
solution is evaluated with the random demand generated by the instances with different demand
variabilities.

We analyze the behavior of the robust solutions when the Γdpkt values increase. Figure 4.4
shows, for different Γdpkt, the average relative difference of the cost components of all the robust
solutions with respect to the deterministic solution.
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Figure 4.4: Cost increases (%) for different Γ values in costs

As expected, the total costs increase for different values of deviation and budget of uncer-
tainty. It can be observed that ICMS, transportation, security, and vehicle allocation costs tend
to increase in similar proportion along with Γdpkt. While the location and inventory cost present
an erratic behavior compared with the deterministic case (i.e., with Γdpkt = 0). Intuitively, one
way to protect the solutions against demand uncertainty is to increase the inventory levels of
the items.

Table 4.7 presents, for different Γdpkt values, the average values of total costs, distribution
costs, backlogging/early delivery, number of opened DCs, and allocated vehicles.
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Table 4.7: Average results of the robust solutions for different Γ values
Backlogging/

Γ Avg. UB %* Distr. costs %* Early delivery %* #DCs #Vehicles
0 195,851,244 0.00 142,503,086 0.00 53,348,158 0.00 3 173
0.1t+0.5 460,085,261 134.92 150,035,464 5.29 310,049,797 481.18 2 178
0.25t+0.5 673,981,156 244.13 156,174,491 9.59 517,806,665 870.62 2 181
0.5t+0.5 880,438,298 349.54 162,110,289 13.76 718,328,008 1,246.49 2 183
0.75t+0.5 985,681,145 403.28 165,402,402 16.07 820,278,742 1,437.60 2 187
t 1,031,375,360 426.61 166,863,933 17.09 864,511,427 1,520.51 2 187

* Increase of the value respect to the deterministic solution.

Note in Figure 4.4 that some terms in the objective function (inventory cost) increase until
70%. Intuitively, a way to protect the solutions against demand uncertainty is to increase the
inventory levels of the items. Nevertheless, the total distribution cost increases just until 17%
with respect to the deterministic solution, as shown in Table 4.7. Backlogging/early delivery
costs increase as high as 1520% with Γdpkt = t. Thus, a higher impact on uncertainty is noticed
in these Backlogging/early delivery costs. If the demand is lower than expected, products are
stored (anticipated) at retailers, thus leading to high early delivery costs. On the other hand,
if the demand is higher than expected, items are backlogged, thus leading to high backlogging
costs. Both, backlogging and surplus of products significantly affect the cost of robust solutions.
The decision on DC location was not significantly affected by the uncertainty. Nevertheless, the
allocation of vehicles to the opened DCs was affected. In this case, more vehicles are allocated
to DCs as higher values of Γdpkt are considered.

Though robust solutions present high backlogging/delivery costs when these solutions are
evaluated in the simulation (with demand generated in the interval [dpkt − d̂pkt, dpkt + d̂pkt]), it
can observe that the expected backlogging/delivery costs decrease when Γdpkt values increase, as
shown in Table 4.8. This result indicates that as higher Γdpkt values are considered, the solutions
are more robust to the different realization of the demand, i.e., they are more protected against
uncertainties.

Table 4.8: Average distribution, backlogging/early delivery costs over the 1000 runs of the
simulation for different Γ values

Backlogging/
Γ Distr. Cost %* Early delivery cost Backlogging cost Early costs
0 142,503,086 - 1,079,648,065 0.00 1,027,676,288 0.00 51,971,777 -94.94
0.1t+0.5 150,035,464 5.29 316,905,492 -70.65 161,163,511 -84.32 155,741,981 -84.85
0.25t+0.5 156,174,491 9.59 276,793,159 -74.36 28,785,290 -97.20 248,007,870 -75.87
0.5t+0.5 162,110,289 13.76 344,088,941 -68.13 2,339,869 -99.77 341,749,072 -66.75
0.75t+0.5 165,402,402 16.07 391,033,853 -63.78 924,460 -99.91 390,109,393 -62.04
t 166,863,933 17.09 411,931,627 -61.85 893,708 -99.91 411,037,919 -60.00
* Increase of the value with respect to the deterministic solution.
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Figure 4.5 presents the robust solution costs (distribution), as well as the backlogging and
early delivery costs over the 1000 runs of the simulation for different Γpkt values.
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Figure 4.5: Backlogging and early delivery costs over the 1000 runs of the simulation for different
Γ values.

Figure 4.5 shows that the average backlogging cost decreases significantly when the Γpkt
values grow, while early delivery costs increase to protect the solutions against demand uncer-
tainty, increasing the early delivery to retailers. The distribution costs of the robust solutions
(ICMS, location, transportation, etc.) increase in a smaller proportion than the reduction in
the expected backlogging costs. Figure 4.5 indicates that at some point when Γpkt is increased,
it found a minimum value for the sum of backlogging/early delivery costs, presenting a lower
total cost, e.g., Γpkt = 0.25t+ 0.5.

4.7 Remarks

We addressed the integrated location-transportation problem of a pharmaceutical company us-
ing robust optimization to deal with the demand uncertainty. First, we presented a deterministic
mixed-integer linear programming model that integrates network design and distribution plan-
ning decisions. Practical features of the logistics context of the pharmaceutical industry are
considered. We also proposed a robust counterpart of the mathematical model, a mixed-integer
linear programming model, for handling the inherent uncertainty of input data in logistics net-
work planning. Instances of the deterministic formulation and its robust counterpart cannot
be solved optimally by general-purpose software, such as CPLEX, i.e. high-quality solutions
cannot be found within reasonable elapsed times using this software. Thus, we proposed a
Fix-and-Optimize heuristic, using partition criteria by periods and/or arcs, to solve the models.

We developed computational experiments using real data from a partner company and eval-
uated the impact of the uncertainty on the problem. The proposed heuristics method is able
to obtain solutions near optimality, outperforming the MIP model. The costs of the solutions
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provided by the MIP model are at least two times higher than the ones provided by the heuris-
tics strategies. Comparing the MIP model and the best heuristics strategy, the average costs
decrease by more than 40%.

To assess the robustness of the solutions obtained by the robust optimization counterpart,
they were compared to those generated by the deterministic model. Therefore, we proposed
solution methods to solve the deterministic and robust models. We designed and proposed
a robustness analysis based on a Monte Carlo simulation to evaluate the quality of solutions
resulting from our RO model. The simulation was performed by generating random uniform
realizations for demands in the interval [dpkt − d̂pkt, dpkt + d̂pkt] for all p ∈ P, k ∈ K, t ∈ T ,
respectively. Because the aim of the robust optimization models is to find solutions that are
immunized against uncertainty, the corresponding decisions reduce the expected costs of back-
logging and early delivery. As expected, the total costs increase for different values of deviation
and budget of uncertainty. The ICMS, transportation, security, and vehicle allocation costs tend
to increase in a similar proportion along with the uncertainty budget, while the DC inventory
cost also increases significantly. Moreover, the backlogging/early delivery costs increase more
than 1500% for the worst case. Intuitively, one way to protect the solutions against demand
uncertainty is to increase the inventory levels of the items. Regarding the network structure,
the number of opened DCs was not significantly affected by the uncertainty. Nevertheless, the
allocation of vehicles to the opened DCs was affected, more vehicles are allocated to DCs with
higher values of deviation and uncertainty budget.

In addition, we compared the integrated model with a Sequential approach in terms of total
cost and network structures. We found that the integrated model reduces the total costs, reduces
the number of DCs, and increases the number of allocated vehicles. We also analyzed some
scenarios with different ICMS rates to understand the sensitivity of solutions to this parameter.
ICMS influences the presented network design and planning problem, changing the number of
DCs and allocated vehicles. It is interesting that, for the same ICMS context, the instances of
intermittent and lumpy demand present changes in the network structure, and both instances
present variability in demand timing.

Therefore, we fill several research gaps pointed out in Chapter 2, i.e., considering the deci-
sion timing in the integration, addressing practical features of a real case, taking into account
the uncertainty in problem parameters, and proposing efficient solution methods to solve the
problem.

Future research could address other methodologies to consider the uncertainties in this prob-
lem such as stochastic programming or adjustable robust optimization. Other solution methods
could be developed to solve instances of the problem, such as methods based on Benders decom-
position. Also, it is interesting the proposition of a solution method using ICMS as generator of
solutions since ICMS can dominate the location and flow decisions.
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Chapter 5

Remarks and future steps

5.1 Remarks

In the previous chapters, we have studied the integration of decisions in the context of LNP and
presented different formulations and methods to solve them. In this section, we summarize the
major findings and contributions of each chapter of this thesis. The final section of this chapter
concludes with the identification of possible interesting directions for this research.

In Chapter 2, a detailed literature review of the LNP was provided to identify the main
decisions, their scope, integration approaches, and solution approaches. Integrating decisions is
a trend in the literature because of its advantages. It eliminates conflict and incompatibility
among decisions and goals of different departments in a company; enables faster response to
dynamic environmental conditions, reduces logistics network costs and further information is
explored. Integrated planning implies managing different scopes, periodicity, and frequency, as
well as considering several logistics components and dealing with the variability and uncertainty
of important parameters of the problem. In addition, data aggregation is an important aspect
as well. Nevertheless, most studies consider integration decisions within a single time frame and
consider a single commodity and transportation mode. Also, studies neglected the uncertainty
in several parameters of the decision-making process. Furthermore, many models and method-
ologies are sophisticated, but few case studies are taken into account. As a result, there are
important issues that LNP decision-makers must deal with in practice and that are overlooked
in the literature. Building on this, in this thesis we approached the integration of the main
decisions on LNP through a generic framework and a case-based mathematical formulation in
Chapter 3 and Chapter 4, respectively.

In Chapter 3, we presented the integration of three important decisions on the logistics net-
work, i.e., location, inventory, and transportation. We proposed a generic modeling approaching
location-allocation decisions; inventory planning decisions, made under a periodic review (T, S)
policy, defining the amount of cycle inventory, safety stock, and anticipation inventory at open
DCs; and transportation decision from the cost segment selection. We addressed features such as
location-based lead times, storage capacity constraints in DCs, multi-period and multi-product
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context, and single sourcing per retailer and commodity. The objective is to minimize the total
cost composed of rental costs, inventory costs, and transportation costs. To solve the problem,
we proposed two methods, an exact method and an approximated method. First, we developed
a Logic-based Benders decomposition by exploiting the structure of the problem and obtained
subproblems that preserved the characteristics of the original problem. To approximate safety
stock in the master problem, we used a piecewise linear lower bound function of safety stock.
We also enhanced the master problem including information about the subproblems and used
a multi-cut to accelerate the convergence of the method. Second, we presented a MIP model
with the same idea of a piecewise linear lower bound function of safety stock. Both methods
provide good solutions for most instances. We compared the integrated model with a sequen-
tial approach, and the results confirm the importance of having an integrated approach that
integrates decisions at the various levels of the supply chain. We also performed a sensitivity
analysis aiming to understand how each parameter influences the supply chain design and plan-
ning problem. We found that the network design is sensitive to the coefficient of variation and
the opening costs.

In Chapter 4, we addressed the integration of location and transportation decisions on a
pharmaceutical network in Brazil. We outlined practical features of the pharmaceutical indus-
try’s logistics environment in Brazil. Thus, we proposed a mathematical model that assesses
DC’s location and transportation decisions by considering rental costs, inventory decentraliza-
tion costs, transportation costs, and ICMS tax issues. The flow of products (with different
characteristics of weight, volume, price, and temperature condition) was addressed with several
transportation alternatives, which were differentiated by the type of freight, the temperature
conditioning, and the capacity of the vehicles. Also, the use of escort vehicles for freight whose
monetary value exceeds the established limit was considered. In addition, we addressed vari-
ability and uncertainty in demand for decision-making in planning. Thus, a robust optimization
counterpart considering demand uncertainty was proposed. To solve the problem, we developed
Fix-and-Optimize heuristics method that solves the instances near the optimality. We performed
computation experiments using data from a pharmaceutical company. Results show that ICMS
has a significant influence over the location and product flow definition. This finding under-
scores the importance of taking into account the fiscal structure in the issue of DC location in
global supply chains, particularly for the distribution of high-value products in countries with
similar tax systems. The advantage of the integration over the sequential approach has been
confirmed. Finally, the robustness analysis evidenced that the deterministic approach fails in
protecting against uncertainty for the considered instances. Based on the research results, some
relevant problems in LNP, especially those related to the Brazilian pharmaceutical industry, can
be solved by these models and solution methods.
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5.2 Future research

There are several possible future research directions for the continuity of this study, some of
them are described as follows:

• Uncertainty and variability in other parameters of the problem. Other parameters such
as lead time could preset variability. Moreover, retailer demand can be correlated. These
issues can have a significant impact on the decisions of the problem. Hence, an interesting
topic of research is to consider them and extend the proposed mathematical formulation
and solution methods of Chapter 3 to deal with them.

• Uncertainty methodologies. Robust static optimization has a high level of conservatism.
Studying strategies to reduce this conservatism of the static approach is an interesting
prospect for future research. Other methodologies such as Adjustable Robust Optimization
or Distributionally Robust Optimization are alternative and promising methodologies that
can be also explored for the analysis of the mathematical model of Chapter 4.

• Solution methods. Alternative decomposition methods of the problem could be explored.
For the location-transportation problem of Chapter 4, it is interesting to consider Benders
decomposition. Also, heuristics can be explored for the location-inventory-transportation
problem of Chapter 3.

• Explore other integration and modeling strategies such as multi-level models.

• Use the generic approach of Chapter 3 to address and compare tax structures of different
counties, e.g., Brazil, Canada, United States, China, and countries of the European Union.

• Other features. Considering other inventory policies in the model of Chapter 3, and
compare the implications of different policies on the logistics network planning. Addressing
capacity planning in networking by decisions of closing and opening DCs or expanding or
reducing capacity of the DCs.

• Application in a real case. Applying the proposed approaches in a real case study, to
better analyze the benefits of these approaches in the practice of a company.
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Appendix A

Sample articles
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Table A.1: Sample articles
No. Authors No. Authors

2 Ahmadi et al. (2016). 131 Liao et al. (2011b).
4 Ahmadi-Javid and Azad (2010). 130 Liao et al. (2011a).
7 Ahmadi-Javid and Seddighi (2012). 132 Lin et al. (2009).
6 Ahmadi-Javid and Hoseinpour (2015b). 134 Liu et al. (2020).
3 Ahmadi-Javid et al. (2018). 137 Manzini et al. (2008).
5 Ahmadi-Javid and Hoseinpour (2015a). 135 Manzini (2012).
8 Akbari and Karimi (2015). 136 Manzini et al. (2014).
9 Alavi et al. (2016). 138 Manzini and Gebennini (2008).
14 Alenezi and Darwish (2014). 141 Martins et al. (2017).
15 Alshamsi and Diabat (2018). 147 Miranda and Garrido (2004).
17 Amiri-Aref et al. (2018). 149 Miranda et al. (2009).
18 Angazi (2016). 148 Miranda and Garrido (2006).
20 Arabzad et al. (2014). 150 Mogale et al. (2019).
21 Aryanezhad et al. (2010). 151 Monteiro et al. (2010).
22 Azizi and Hu (2020). 157 Mota et al. (2018).
23 Azizi et al. (2020). 158 Motaghedi-Larijani et al. (2012).
24 Badri et al. (2013). 160 Mousavi et al. (2013).
28 Bashiri et al. (2012). 161 Mousavi et al. (2014).
39 Biuki et al. (2020). 159 Mousavi et al. (2017).
41 Brahimi and Khan (2014). 166 Naimi Sadigh et al. (2013).
44 Cabrera et al. (2016). 167 Nakhjirkan and Rafiei (2017).
45 Calvete et al. (2014). 168 Nakhjirkan et al. (2019).
46 Candas and Kutanoglu (2007). 170 Nasiri et al. (2010).
47 Candas and Kutanoglu (2020). 171 Nasiri et al. (2015).
48 Cardoso et al. (2013). 172 Nekooghadirli et al. (2014).
57 Dai et al. (2018). 177 Puga and Tancrez (2017).
59 Darvish and Coelho (2018). 195 Schuster Puga et al. (2019a).
58 Darvish et al. (2019). 178 Qazvini et al. (2016).
60 Das and Sengupta (2009). 179 Rabbani et al. (2019).
227 Wheatley et al. (2015). 188 Sadeghi Rad and Nahavandi (2018).
68 Diabat et al. (2013). 180 Rafie-Majd et al. (2018).
67 Diabat and Richard (2015). 184 Rappold and Roo (2009).
64 Diabat (2016). 187 Sabri and Beamon (2000).
65 Diabat et al. (2015). 189 Sadjadi et al. (2016).
66 Diabat and Deskoores (2016). 190 Sadjady and Davoudpour (2012).
73 Etebari (2019). 193 Salema et al. (2009).
79 Fattahi et al. (2016). 192 Salema et al. (2010).
78 Fattahi and Govindan (2017). 194 Saragih et al. (2019).
80 Firoozi et al. (2014). 197 Schwardt and Dethloff (2005).
84 Forouzanfar et al. (2018). 199 Shahabi et al. (2013).
85 Gebennini et al. (2009). 200 Shavandi and Bozorgi (2012).
86 Ghaderi and Burdett (2019). 201 Sherafati and Bashiri (2016).
88 Ghezavati et al. (2009). 203 Shu et al. (2010).
90 Gholamian and Heydari (2017). 206 Singh et al. (2015).
91 Ghomi-Avili et al. (2018). 207 Solak et al. (2014).
92 Ghomi-Avili et al. (2020). 209 Soleimani et al. (2016).
93 Ghorbani and Akbari Jokar (2016). 208 Soleimani et al. (2018).
94 Govindan et al. (2014). 214 Tancrez et al. (2012).
95 Govindan et al. (2015a). 215 Tang and Yang (2008).
97 Govindan et al. (2016). 216 Tapia-Ubeda et al. (2018).
96 Govindan et al. (2019). 217 Tapia-Ubeda et al. (2020).
98 Govindan et al. (2020). 218 Tavakkoli-Moghaddam et al. (2010)
102 Guerrero et al. (2015). 219 Tiwari et al. (2010)
103 Guo et al. (2018). 221 Tsao et al. (2012).
104 Guo et al. (2019) 222 Tsiakis et al. (2001)
107 Hammami et al. (2017). 223 Üster et al. (2008).
110 Hiassat et al. (2017). 226 Wang et al. (2013).
118 Jeet and Kutanoglu (2018). 229 You and Grossmann (2008).
120 Kabadurmus and Erdogan (2020). 231 Yu et al. (2015).
121 Karakostas et al. (2019). 232 Yuchi et al. (2016).
122 Kaya and Urek (2016). 236 Zeballos et al. (2014).
123 Keskin and Üster (2012). 235 Zeballos et al. (2018)
124 Khatami et al. (2015). 238 Zhalechian et al. (2016).
125 Kim and Lee (2015). 239 Zhang and Xu (2014).
126 Lagos et al. (2015). 241 Zheng et al. (2019a)
129 Li et al. (2013).
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Appendix B

Additional computational results

Table B.1 presents a comparison of results for the different number of segments for the piecewise
linear lower bound function of safety stock. The average gap of solutions considering 5 segments
is higher than considering 10 segments since the UB and the LB are better. It can explain
because the instances have less number of variables and constraints, and consequently are easier
to be solved. Solutions for 5 and 10 segments with lower gaps have similar bounds, so 5 segments
is a good choice for the number of segments.

Table B.1: Impact of number of segments: ELBBDi with 5 and 10 segments
5 segments 10 segments

Instance UB LB Gap(%)1 Time #iter UB LB Gap(%)1 Time #iter

i1-j3-k5-p7 17,709,700 17,555,735 0.9 3,600 8,895 17,709,700 17,555,735 0.9 3,601 8,874

i1-j3-k5-p10 20,586,850 19,951,829 3.1 3,600 9,983 20,586,850 19,951,829 3.1 3,600 8,808

i1-j3-k10-p10 25,710,285 25,265,418 1.7 3,600 7,892 25,722,883 25,262,375 1.8 3,600 7,093

i1-j3-k10-p20 27,498,682 26,871,608 2.3 3,600 2,229 27,720,327 25,796,396 6.9 3,600 2,373

i1-j3-k15-p10 29,943,327 29,485,518 1.5 3,600 6,775 29,943,327 29,485,518 1.5 3,600 5,645

i1-j3-k15-p20 32,778,192 31,702,931 3.3 3,600 603 32,778,192 30,931,814 5.6 3,600 2,644

i1-j3-k30-p20 48,471,115 44,518,778 8.2 3,600 1,283 48,471,115 46,116,865 4.9 3,600 62

i1-j3-k30-p30 62,013,797 56,908,278 8.2 3,600 976 61,811,610 58,375,540 5.6 3,600 72

i1-j3-k30-p40 77,543,104 69,373,241 10.5 3,600 5 77,543,104 69,346,518 10.6 3,600 4

i2-j3-k5-p7 17,357,831 16,431,242 5.3 3,600 10,271 17,821,710 16,393,989 8.0 3,601 8,366

i2-j3-k5-p10 19,262,305 17,084,040 11.3 3,600 8,158 20,085,796 17,066,704 15.0 3,600 6,162

i2-j3-k10-p10 24,410,516 22,052,432 9.7 3,600 5,460 31,000,062 21,145,732 31.8 3,600 5,300

i2-j3-k10-p20 30,627,173 20,677,853 32.5 3,600 2,765 32,140,709 21,416,983 33.4 3,601 2,124

i2-j3-k15-p10 28,291,455 25,771,093 8.9 3,601 6,028 28,295,011 25,236,038 10.8 3,601 7,038

i2-j3-k15-p20 31,305,383 24,842,381 20.6 3,600 1,263 31,380,410 24,653,323 21.4 3,601 2,144

i2-j3-k30-p20 45,869,986 39,721,452 13.4 3,600 1,036 44,844,759 38,816,302 13.4 3,600 559

i2-j3-k30-p30 65,639,098 48,269,258 26.5 3,600 537 59,036,992 48,291,288 18.2 3,600 263

i2-j3-k30-p40 65,702,679 57,938,974 11.8 3,601 31 65,767,492 57,252,388 12.9 3,600 10

Average 37,262,304 33,023,448 10.0 37,370,003 32,949,741 11.4

1 Gap=100×UB−LB
UB
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Table B.3 presents the results of the ELBBD warm started with an initial solution for different
computational times: half-hour, one hour, and 2 hours.

Table B.2 presents the results of using the Special Order Sets (SOS1) of CPLEX for the vari-
ables W and Y . The incorporation of the CPLEX function of SOS1 does not affect significantly
the solutions.

Table B.2: SOS1 function effect
ELBBDi +SOS1 for variables W and Y Ratio of improvement1

Instance UB LB Gap(%)2 Time #iter UB LB Diff(%)3 Time #iter

i1-j3-k5-p7 17,709,700 17,555,735 0.87 3,600 11,877 0.00 0.00 0.00 0.00 33.52

i1-j3-k5-p10 20,586,850 19,951,829 3.08 3,600 9,756 0.00 0.00 0.00 0.00 -2.27

i1-j3-k10-p10 25,627,484 25,265,418 1.41 3,600 6,135 -0.32 0.00 -0.32 0.00 -22.26

i1-j3-k10-p20 28,038,725 25,686,574 8.39 3,600 3,330 1.96 -4.41 6.11 0.00 49.39

i1-j3-k15-p10 29,943,327 29,485,518 1.53 3,600 5,428 0.00 0.00 0.00 0.00 -19.88

i1-j3-k15-p20 32,388,205 31,768,272 1.91 3,600 1,835 -1.19 0.21 -1.37 0.00 204.31

i1-j3-k30-p20 48,471,115 46,185,066 4.72 3,601 271 0.00 3.74 -3.44 0.03 -78.88

i1-j3-k30-p30 62,303,729 57,036,520 8.45 3,600 797 0.47 0.23 0.22 0.00 -18.34

i1-j3-k30-p40 73,897,676 69,509,393 5.94 3,600 17 -4.70 0.20 -4.60 0.00 240.00

i2-j3-k5-p7 17,357,831 16,400,831 5.51 3,600 13,941 0.00 -0.19 0.18 0.00 35.73

i2-j3-k5-p10 19,320,134 17,042,538 11.79 3,600 9,476 0.30 -0.24 0.48 0.00 16.16

i2-j3-k10-p10 24,269,853 22,037,121 9.20 3,601 7,257 -0.58 -0.07 -0.46 0.03 32.91

i2-j3-k10-p20 31,284,413 21,806,677 30.30 3,600 3,444 2.15 5.46 -2.19 0.00 24.56

i2-j3-k15-p10 29,663,714 24,722,117 16.66 3,600 6,330 4.85 -4.07 7.75 -0.03 5.01

i2-j3-k15-p20 33,807,758 27,326,714 19.17 3,600 2,341 7.99 10.00 -1.47 0.00 85.35

i2-j3-k30-p20 46,091,230 40,186,378 12.81 3,600 1,128 0.48 1.17 -0.59 0.00 8.88

i2-j3-k30-p30 65,588,883 48,983,964 25.32 3,600 432 -0.08 1.48 -1.15 0.00 -19.55

i2-j3-k30-p40 75,573,770 57,274,504 24.21 3,603 134 15.02 -1.15 12.40 0.06 332.26

Average 37,884,689 33,234,732 10.63 3,600 4,663 1.46 0.69 0.64 0.00 50.38

1 Ratio =100×ELBBDi+SOS1 − ELBBDi
ELBBDi

2 Gap=100×UB−LB
UB

3 Diff=ELBBDi+SOS1 gap− ELBBDi gap
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Table B.4 presents the results of using the IloPieceLinear method from CPLEX on APXMi.
The incorporation of the CPLEX function, IloPieceLienear, deteriorates the average gap slightly
(1%), different from ELBBDi which is improved by IloPieceLinear method from CPLEX.

Table B.4: Results of the impact of IloPieceLinear method from CPLEX in APXMi
APXMi+IPLf Ratio of improvement 1

Instance UB O.F. value LB Gap(%)2 Time UB O.F. value LB Diff(%)3 Time

i1-j3-k5-p7 17,709,670 17,703,574 17,702,293 0.1 6 0.00 0.00 0.00 0.00 -14.29

i1-j3-k5-p10 20,586,790 20,569,984 20,569,099 0.1 85 0.00 0.00 0.00 0.00 -53.55

i1-j3-k10-p10 25,626,858 25,580,095 25,577,734 0.2 184 0.00 0.00 0.00 0.00 -58.74

i1-j3-k10-p20 27,484,378 27,431,992 27,207,578 1.0 3,600 0.01 -0.12 0.06 -0.05 0.00

i1-j3-k15-p10 29,943,068 29,894,106 29,891,126 0.2 706 0.00 0.00 0.00 0.00 69.71

i1-j3-k15-p20 32,777,931 32,719,280 32,112,406 2.0 3,600 0.06 0.00 0.29 -0.22 0.00

i1-j3-k30-p20 48,470,734 48,411,047 47,092,078 2.8 3,600 0.00 0.00 1.30 -1.24 0.00

i1-j3-k30-p30 61,876,652 61,800,380 57,170,825 7.6 3,600 -0.68 -0.69 -2.51 1.73 -0.14

i1-j3-k30-p40 77,169,092 77,060,061 69,595,137 9.8 3,600 -0.48 -0.25 0.26 -0.67 0.00

i2-j3-k5-p7 17,357,472 17,334,589 17,332,893 0.1 10 0.00 0.00 0.00 0.00 -67.74

i2-j3-k5-p10 19,263,172 19,230,560 19,228,638 0.2 344 0.00 0.00 0.02 -0.02 -90.44

i2-j3-k10-p10 24,269,633 24,175,299 24,172,883 0.4 451 0.00 0.00 0.00 0.00 -80.03

i2-j3-k10-p20 34,641,330 34,529,757 22,967,988 33.7 3,600 30.38 30.49 -4.23 23.96 0.00

i2-j3-k15-p10 28,473,899 28,346,642 26,769,029 6.0 3,600 0.65 0.61 1.31 -0.62 0.00

i2-j3-k15-p20 36,961,536 36,739,858 25,586,829 30.8 3,600 18.63 18.06 -8.33 20.36 0.00

i2-j3-k30-p20 43,618,154 43,351,166 41,803,335 4.2 3,600 -18.02 -18.19 7.49 -22.74 -0.06

i2-j3-k30-p30 65,534,732 65,372,907 48,849,413 25.5 3,600 -0.02 -0.02 1.43 -1.06 0.00

i2-j3-k30-p40 75,305,997 75,098,511 57,743,686 23.3 3,600 -0.34 -0.31 1.22 -1.18 0.00

Average 38,170,617 38,074,989 33,965,165 8.2 1.68 1.64 -0.09 1.01

1 Ratio =100×APXMi+IPLf − APXMi
APXMi

2 Gap=100×UB−LB
UB

3 Diff=APXMi+IPLf gap−APXMi gap
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Appendix C

ICMS in logistics network planning
in Brazil

In addition to the costs associated with installation and operation, in location decisions, it is
important to consider tax issues that affect the supply chain logistics. The movement of goods in
Brazil is taxed by ICMS, which together with the Tax on Industrialized Products - IPI, represents
in Brazil the equivalent of the Value Added Tax (VAT) in other countries. Most pharmaceutical
products are exempt from the IPI. However, ICMS is the tax that most influences medicine
costs, given its incidence in all stages of the supply chain, and is therefore addressed in this
study as a tactical cost element.

ICMS consists of intrastate and interstate tax rates applied to the value of the goods when
leaving the establishment of origin. Thus, when transporting goods between facilities of the
same company (for example, from the plant to the DC), the rates are applied on the cost of the
goods; and in sales operations (for example, from the DC to the retailer), the rates are applied
to the sale price of the merchandise.

Thus, ICMS is levied on the entire supply chain, but it has a debit and credit structure
that allows the payment of tax from previous stages to be discounted in subsequent stages of
the logistics network. Figure C.1 illustrates the structure of ICMS. The DC tax balance can be
calculated by Equation (C.1). Another simple way to calculate ICMS is the multiplication of
cargo value times ICMS rate.

DC tax balance = debit− credit
=
(
product price
1−tax rate − product price

)
−
(
product cost
1−tax rate − product cost

) (C.1)

In each transaction, the balance of ICMS is paid. However, if the balance is negative,
no amount must be paid, is called ’dead credit’ because it is not returned by the State, that
is, it cannot be recovered by the company, which implies that the ICMS credit for previous
transactions does not was taken advantage of.

ICMS rates are defined by state governments, therefore, they vary among different Brazilian
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Plants  Clients DCs 

ICMS rate ICMS rate 

Product cost Product price 

DC ICMS balance = 

debit - credit 

Transfer  operation Sale  operation 

   Flow of products 

ICMS generation 
Analysis boundary 

Suppliers 

ICMS credit ICMS debit 

Figure C.1: Tax calculation (Jalal et al., 2022b)

states. Thus, moving the same cargo to the same destination state from different origin states
implies different amounts of ICMS payable. To attract investment, some state governments offer
low ICMS rates or offer tax benefits that allow companies to reduce their tax burden, such as
the presumed ICMS credit, through which the state grants a reduction in the amount of ICMS
to pay in transactions made from the state.

To understand the impact of taxation on logistics planning, consider that a company with a
plant in the state of Sergipe (SE) is planning to open a new DC to serve its retailers in the state
of Espirito Santo. Possible locations for the DC are the states of Espirito Santo (ES), Bahia
(BA) and Minas Gerais (MG). Figure C.2 illustrates the differences between flows and rates for
the three candidates.

Figure C.2: ICMS flow and rates for candidate locations of the example of Silva (2007)

Suppose a retailer in ES has a demand for goods with a cost of $100 and a sale price of $150.
In the transfer of goods from the plant in SE to the DCs (ES, BA, or MG), the ICMS rates
coincide at 12%, generating an ICMS amount of $13.64 in the three cases, as shown in Table
C.1. In the sale operation from the DC-ES, a rate of 17% is levied, generating an amount of
$30.72, while the service from the DC-BA generates an amount of $20.45, since the rate is 12%.
However, suppose that the state of Bahia offers a presumed ICMS credit of 3%, and the amount
is reduced by $4.64, so the final amount is $15.82. Finally, in the sale operation from DC-MG,

118



an ICMS rate of 7% is levied, generating a debit of $11.29. These three values represent the
ICMS debit, from which the credit for the transfer operation (between the plant and the DC)
is subtracted ($13.64), obtaining the balance or balance payable of $17.08, $2.18 and -$2.35 for
DC-ES, DC-BA and DC-MG, respectively. The operation in DC-MG generated dead credit, as
the amount paid in the transfer to the DC ($13.64) is greater than the amount due in the sale
operation ($11.29). The ICMS amounts paid for each option are shown in Table C.1.

Table C.1: ICMS payable by the candidates in each echelon
DC-ES DC-BA DC-MG

Credit: Plant > DC $13,64 $13,64 $13,64
Debit: DC > Retailer $30,72 $15,82 $11,29
Balance at DC $17,08 $2,18 -$2,35
ICMS payable on the network $30,72 $15,82 $13,64

Note that DC-MG generates a lower amount of ICMS payable by the network, followed by
DC-BA. The location of a DC in the State of ES to serve retailers in ES is attractive from the
perspective of transportation costs, but it is the least attractive location in terms of ICMS tax
costs.

Now, suppose a logistics network for any product (for example, medicines) with a plant and
a DC in the State of Sao Paulo (SP) in different municipalities and another DC in the State of
Goias (GO). Also suppose the demand for several products of a retailer located in the State of
SP, which consolidated represents a load with a weight of 10 kg, a cost of $100, and a sale price
of $200. The service can be done through one of the DCs, generating ICMS and transport costs,
the latter being calculated based on the weight and distance covered. The State of GO offers a
presumed ICMS credit of 5.6% on the movement of products. Transportation cost, considering a
unit cost of $0.05/kg.km; and ICMS amount, considering the applicable origin-destination rates
and the tax benefits offered.

The total cost to meet the demand from the GO and SP DC is $803.4 and $190.9, respectively,
as shown in Table C.2. Therefore, the demand is allocated to the SP DC. Assume increases
in the total value of the retailer’s order (Table C.2). The allocation of demand to the DC
corresponds to a trade-off between transportation cost and ICMS payable. When the ICMS
value is considerably high, it pays to pay a higher transportation cost and reduce the amount
of ICMS generated, taking advantage of presumed credit rates, or lower ICMS rates.
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Table C.2: sensitivity of demand allocation to variation in the cargo value
Variation of cargo costs/prices

$100 - $200 $1.000 - $2.000 $10.000 - $20.000 $100.000 - $200.000

DCs GO SP GO SP GO SP GO SP

ICMS Transfer ($) 7,5 22,0 75,3 219,5 752,7 2.195,1 7.526,9 21.951,2
ICMS Sales ($) 15,4 43,9 154,1 439,0 1.540,8 4.390,2 15.408,3 43.902,4
ICMS Balance ($) 7,9 22,0 78,8 219,5 788,1 2.195,1 7.881,4 21.951,2
ICMS PAyable ($) 15,4 43,9 154,1 439,0 1.540,8 4.390,2 15.408,3 43.902,4

Transp. in transfer ($) 453,5 21,0 453,5 21,0 453,5 21,0 453,5 21,0
Transp. in sell ($) 334,5 126,0 334,5 126,0 334,5 126,0 334,5 126,0
Transp. Total ($) 788,0 147,0 788,0 147,0 788,0 147,0 788,0 147,0

ICMS + Transportation ($) 803,4 190,9 942,1 586,0 2.328,8 4.537,2 16.196,3 44.049,4

Selection de DC X X X X
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