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Resumo

Nesta tese caracterizamos a continuidade de operadores de Calderón–Zygmund fortemente singulares

do tipo σ em espaços de Hardy, espaços de Hardy com peso e espaços de Hardy–Morrey no contexto

do resultado apresentado por Coifman e Meyer em [64, Capítulo 7, Proposição 4] para operadores

clássicos de Calderón–Zygmund. Em particular, consideramos condições integrais do tipo Hörmander

sobre o núcleo associado a tais operadores. Exemplos de operadores dessa natureza incluem operadores

pseudo-diferenciais OpS m
σ,νpR

nq e operadores associados a δ-núcleos do tipo σ, introduzidos por Álvarez

e Milman em [5].

O método para a obtenção das propriedades de continuidade remete a decomposição atômica e

molecular de tais espaços. Em particular, para os espaços de Hardy locais hppRnq no qual 0 ă p ď 1,

apresentamos uma nova definição para átomos e moléculas assumindo condições de cancelamento mais

fracas e apropriadas, estendendo e unificando trabalhos anteriores apresentados em [19, 22, 23, 50].

Como aplicação, provamos também uma versão não-homogênea da desigualdade de Hardy em hppRnq

e condições necessárias e suficientes para a continuidade de operadores do tipo Calderón-Zygmund

não-homogêneo nestes espaços.

Palavras-chave: Espaços de Hardy, espaços de Hardy locais, pesos na classe de Muckenhoupt,

decomposição molecular, operadores de Calderón–Zygmund, operadores pseudo-diferenciais.
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Abstract

In this thesis, we characterize the continuity of strongly singular Calderón-Zygmund operators of type

σ in Hardy spaces, weighted Hardy spaces and Hardy–Morrey spaces in the spirit of Coifman-Meyer’s

result [64, Chapter 7, Proposition 4]. In particular, we consider weaker integral Hörmander-type

conditions on the kernel. Calderón–Zygmund operators of this type include appropriate classes of

pseudodifferential operators OpS m
σ,νpR

nq and operators associated to standard δ-kernels of type σ

introduced by Álvarez and Milman in [5].

The method to obtain the boundedness properties refers to the atomic and molecular decomposition of

such spaces. In particular, in order to obtain it for local Hardy spaces hppRnq for 0 ă p ď 1, we present a

new approach to atoms and molecules assuming weaker cancellation conditions, extending and unifying

previous results presented in [19, 22, 23, 50]. As applications, we prove a non-homogeneous version

of Hardy’s inequality in hppRnq and improved necessary and sufficient conditions for the continuity of

inhomogeneous Calderón-Zygmund type operators on these spaces.

Keywords: Hardy spaces, local Hardy spaces, Muckenhoupt weights, molecular decomposition,

Calderón–Zygmund operators, pseudodifferential operators.
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Introduction

The theory of Hardy spaces were introduced by Hardy [39] in the setting of analytic functions in

the unitary disc. With the development of the Calderón–Zygmund theory (see [12]), C. Fefferman and

Stein in [32] extended the classical theory of Hardy spaces in the complex plane to the Euclidean space

Rn, providing a definition for HppRnq in terms of several maximal representations. To be precise, given

0 ă p ă 8, the space HppRnq is defined as the set of tempered distributions f such thatMφ f P LppRnq,

where Mφ denotes a special type of maximal function, equipped with the “norm” } f }Hp :“ }Mφ f }Lp

(it will be a quasi-norm when 0 ă p ă 1 and a norm otherwise). This characterization has led to deep

interesting consequences and applications. The first one is that when p ą 1 the spaces HppRnq “ LppRnq

with equivalent norms, H1pRnq ⊊ L1pRnq with continuous embedding and when 0 ă p ď 1, the spaces

HppRnq represents a richer functional space when compared to LppRnq due to the existence of non-trivial

dual, since

pHp
pRn

qq
˚

“

#

9Λnp 1
p ´1qpRnq if 0 ă p ă 1,

BMOpRnq if p “ 1,

where 9ΛαpRnq denotes the homogeneous Lipschitz/Zygmund space (depending if np1{p ´ 1q is integer or

not) and BMOpRnq is the space of bounded mean oscillation functions, introduced by John and Niremberg

in [49]. Moreover, in several settings the space H1pRnq represents a good subspace for L1pRnq. For

instance, some singular integral operators, such as Riesz transform, fails to be bounded in L1pRnq but

have nice continuity properties in H1pRnq.

An important tool in the study of Hardy spaces for 0 ă p ď 1, specially when dealing with the

difficulties of working with the Hp norm, is the atomic decomposition. It allows one to express a tempered

1



Introduction 2

distribution f P HppRnq in terms of compactly supported L8 functions as

f “

8
ÿ

j“1

λ j a j, in Hp norm and consequently in S1, with } f }Hp « inf

#

ˆ 8
ÿ

j“1

|λ j|
p

˙1{p
+

,

where tλ ju j P ℓppCq, the infimum is taken over all such representations and each a j satisfies some size

conditions depending on p and the support, and vanishing moment conditions
ş

a jpxqxαdx “ 0 for all

|α| ď Np :“ tnp1{p ´ 1qu. This decomposition was first presented for H1pRnq in [32], to deal with the

duality problem and it was extended for p ă 1 and n “ 1 by Coifman in [15]. The generalization for the

n´dimensional case was proved by Latter in [53]. This decomposition has been extensively used over

the years to simplify the proof of several properties of HppRnq and provides an important method to prove

the boundedness of linear operators acting on them. For instance, to show that a linear and continuous

operator T : S1pRnq Ñ S1pRnq can be extended to a bounded operator in HppRnq, it suffices to show that

Ta is uniformly bounded on Hp norm.

Unfortunately, it is unreasonable to believe, in general, that the image of an operator by an atom is

also an atom, since it may not preserve the compact support. This lead to consider rough atoms, called

molecules, which satisfy equivalent properties of an atom, like the uniform control of its Hp norm, but

the compact support is not required. These functions are more general than atoms and a decomposition

of HppRnq in terms of it still holds. The molecular theory on Hardy spaces was first studied by Coifman

[14] in order to characterize the Fourier transform of distributions on HppRq, by Coifman, Taibleson and

Weiss in the subsequent works [16, 75] and has also been extensively explored in more general setting

(see for instance [76] for the molecular approach in Triebel-Lizorkin spaces). One of the fundamental

applications of molecules, is that they provide another simple method to prove boundedness of operators

in Hardy spaces, just by showing that T maps atoms into molecules.

Even though the Hardy spaces HppRnq represents, in certain aspects, a good substitute for LppRnq

when 0 ă p ď 1, there are still some unsatisfactory points about them. For instance, the spaces HppRnq

are not closed under multiplication by test functions, since it may not preserve the global vanishing

moment condition. Moreover, they do not contain, in general, functions in the Schwartz space and they
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are not well defined in manifolds. For this reason, Goldberg in [37] introduced a local version of Hardy

spaces, denoted by hppRnq and called in the literature as localized or inhomogeneous Hardy spaces. These

spaces are equivalent to LppRnq when p ą 1 and HppRnq are embedded in hppRnq. Moreover, they satisfy

the desired property: if φ P C8
c pRnq and f P hppRnq then φ f P hppRnq. From a comparison lemma

between HppRnq and hppRnq (see [37, Lemma 4]), an analogous atomic decomposition was naturally

established. These atoms are called Goldberg’s atoms and vanishing moment conditions are only required

for atoms supported in small balls (the size condition is analogous). In [19, Appendix B], Dafni showed

that this local vanish moments conditions can be replaced by an approximate one, given in terms of a

positive power of the radius in which the support of the atom is contained, that is, there exists a universal

constant C ą 0 such that
ˇ

ˇ

ˇ

ˇ

ż

Bpx0,rq

apxqpx ´ x0q
αdx

ˇ

ˇ

ˇ

ˇ

ď C rη (1)

for all |α| ď Np and some η ą 0, where supp paq Ă Bpx0, rq. In a subsequent work, Dafni and Hue [23]

improved this estimate for p “ 1, requiring in this case

ˇ

ˇ

ˇ

ˇ

ż

Bpx0,rq

apxqdx
ˇ

ˇ

ˇ

ˇ

ď

„

log
ˆ

1 `
C
r

˙ȷ´1

. (2)

The study of singular integrals operators started back in the 50’s in the works of Calderón and

Zygmund (see for instance [12]). These operators arises naturally when studying some partial differential

equations and were extensively studied over the past years. In its initial formulation, also refereed as first

generation of Caderón–Zygmund operators, they were represented as translation invariant convolution

operators and the generalization to the non-convolution setting is due to Coifman and Meyer [63, 64], and

are refereed as standard Calderón–Zygmund operatos. Motivated by the study of multipliers operators

associated to symbol of the type ei|ξ|σ{|ξ|β, studied in the works [40, 78], and weakly strongly singular

convolution operators introduced by C. Fefferman in [31], Álvarez and Milman in [5] introduced

strongly singular non-convolution Calderón–Zygmund operators, extending classical standard Calderón–

Zygmund operators. These operators are more singular near the diagonal, in comparison to standard

Calderón–Zygmund operators, and the real variables methods developed by Calderón and Zygmund
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cannot be applied directly in this context. Moreover, besides the L2pRnq boundedness, the continuity

from LqpRnq to L2pRnq in which

1
q

“
1
2

`
β

n
for some p1 ´ σq

n
2

ď β ă
n
2

is also required. In the mentioned work, Alvarez and Milman showed that strongly singular Calderón–

Zygmund operators whose kernel satisfies the Hölder type regularity

|Kpx, yq ´ Kpx, zq| ` |Kpy, xq ´ Kpz, xq| ď C
|y ´ z|δ

|x ´ z|n` δ
σ

for all |x ´ z| ě 2|y ´ z|σ, some 0 ă σ ď 1 and 0 ă δ ď 1, are bounded on HppRnq to itself for every

n
n`1 ă p0 ă p ď 1, where p0 depends on the parameters of the operator, under the cancellation condition

T ˚p1q “ 0, which essentially means that the image of an atom by the operator has integral zero. This

condition is also necessary (see for instance [64] for the standard case) and it is related to the cancellation

property required in HppRnq. In a subsequent work [6], the authors proved Lp inequalities for 1 ď p ă 8

under the σ´Hörmander condition on the kernel, a natural extension to the strongly singular case of the

well known Hörmander condition, given by

sup
|y´z| ď 1

z PRn

ż

|x´z|ě2|y´z|σ
|Kpx, yq ´ Kpx, zq| ` |Kpy, xq ´ Kpz, xq|dx ď C

and

sup
|y´z| ą 1

z PRn

ż

|x´z|ě2|y´z|

|Kpx, yq ´ Kpx, zq| ` |Kpy, xq ´ Kpz, xq|dx ď C.

Even though this condition is strong enough to show Lp inequalities for p ě 1, the question for Hardy

spaces when 0 ă p ď 1 is more delicate and remains open even for standard operators (see [81] for some

progress in H1pRnq).

In this thesis we continue the program of Álvarez and Milman investigating continuity properties

of strongly singular Calderón–Zygmund type operators in Hardy spaces. In particular, we provide a

characterization of the continuity of such operators for all 0 ă p ď 1, replacing the Hölder regularity of
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the kernel by an appropriate integral conditions on annulus and cancellation conditions.

Starting with HppRnq, in [67], we have shown that the continuity in HppRnq remains true under an

intermediate Ls´Hörmander type condition on annulus, called Ds condition, and given by

sup
r ą 1
z PRn

sup
|y´z|ăr

ˆ
ż

C jpz,rq

|Kpx, yq ´ Kpx, zq|
s

` |Kpy, xq ´ Kpz, xq|
sdx

˙1{s

≲ |C jpz, rq|
1
s ´1 2´ jδ

and

sup
0 ă r ă 1

z PRn

sup
|y´z| ă r

ˆ
ż

C jpz,r ρq

|Kpx, yq ´ Kpx, zq|
s

` |Kpy, xq ´ Kpz, xq|
sdx

˙1{s

≲ |C jpz, r ρq|
1
s ´1` δ

n p 1
ρ´ 1

σq2´
jδ
ρ ,

for 0 ă ρ ď σ ď 1 ď s ă 8 and δ ą 0. In particular, we have obtained the following continuity result:

Theorem A. Let T : SpRnq Ñ S1pRnq be a linear and continuous operator such that:

(i) T extends to a continuous operator from L2pRnq to itself;

(ii) There exists 1 ď s1 ă 8 such that T is associated to a kernel satisfying Ds1 condition;

(iii) T extends to a continuous operator from LqpRnq to Ls2pRnq, for some 1 ă s2 ă 8 and

1
q

“
1
s2

`
β

n
, where np1 ´ σq

ˆ

1 ´
1
s2

˙

ď β ă n
ˆ

1 ´
1
s2

˙

.

Under such conditions, if T ˚pxαq “ 0 for all α P Zn
` such that |α| ď tδu, p ă s1 and s1 ď s2, then T can

be extended to a bounded operator from HppRnq to itself for every p0 ă p ď 1, where

1
p0

:“
1
s2

`

β

„

δ

σ
` n

ˆ

1 ´
1
s2

˙ȷ

n
ˆ

δ

σ
´ δ ` β

˙ .

Conversely, if T is a bounded operator from HppRnq to itself for every p0 ă p ď 1, then T ˚pxαq “ 0 for

every |α| ď Np0 .

In the previous theorem, small values of p can be reached assuming big values of δ, which means more

decay on the integral conditions of the kernel. This decay can also be expressed in terms of regularity of
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the kernel, assuming it satisfies the derivative Ds condition with decay δ, given by

sup
|y´z| ă r

r ą 1

˜

ż

C jpz,rq

|B
γ
y Kpx, yq ´ B

γ
y Kpx, zq|

s
` |B

γ
y Kpy, xq ´ B

γ
y Kpz, xq|

sdx

¸1{s

≲ r´tδu
|C jpz, rq|

1
s ´1 2´ jδ

and

sup
|y´z| ă r
0 ă r ă 1

˜

ż

C jpz,r ρq

|B
γ
y Kpx, yq ´ B

γ
y Kpx, zq|

s
` |B

γ
y Kpy, xq ´ B

γ
y Kpz, xq|

sdx

¸1{s

≲ r´tδu
|C jpz, r ρq|

1
s ´1` δ

n p 1
ρ´ 1

σq2´
jδ
ρ

for every |γ| “ tδu.

We have also investigate the following extensions of Theorem A:

• In Theorem 2.4, we consider kernels satisfying Ds condition with decay δ;

• In Theorem 2.5, we extend it for kernels with θ´modulus of continuity, inspired by the work of

Yabuta in [79];

• In Theorem 2.10, we consider the continuity in the weighted Hardy spaces Hp
wpRnq, when w is an

appropriate Muckenhoupt weight;

• In Theorem 4.4, we prove the continuity in Hardy-Morrey spaces HMλ
qpRnq, considered in the

work [26].

Examples of operators satisfying Ds conditions for 1 ă s ď 2 have been considered in Proposition

2.3, where we show that the kernel of OpS m
σ,νpR

nq with 0 ă σ ď 1, 0 ď ν ă 1, ν ď σ and m ď

´np1 ´ σq{2 satisfies the Ds condition with derivatives for 1 ă s ď 2, extending the classical case with

s “ 1, proved by Álvarez and Hounie in [4]. Our method to prove Theorem A and its extensions is based

in the molecular theory of these spaces.

Inhomogeneous versions of standard Caderón–Zygmund operators have been considered by Ding,

Han and Zhu in [29], where for some µ ą 0 the following strong decay on the kernel at the infinity is
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assumed

|Kpx, yq| ď C min
"

1
|x ´ y|n

,
1

|x ´ y|n`µ

*

, for every x , y.

Necessary and sufficient conditions for the boundedness of such operators in hppRnq have been established

in [29, Theorem 1.1] for n
n`1 ă pδ, µ ă p ă 1 under a similar T ˚ condition of the homogeneous case.

As expected, the full cancellation is not necessary, so the sufficient condition for the boundedness is that

T ˚p1q P 9Λnp1{p´1q, which follows by a molecular approach of hppRnq given by Komori in [50]. The

necessity is that T ˚p1q P Λnp1{p´1q and follows by duality argument. In order to investigate extensions of

the previous continuity result for 0 ă p ď 1, the first step is to extend the molecular theory of Komori,

which holds only for n{pn ` 1q ă p ă 1.

In contrast to HppRnq, the molecular theory of hppRnq for 0 ă p ď 1 was still not completely

well established. Some initial formulation can be found in [7, Definition 2.4] for the setting of Chébli-

Trimèche hypergroups, in which the vanish moment condition for molecules concentrated on small balls

have been replaced by one like (1). Later, as mentioned before, Komori in [50] defined molecules for

n{pn ` 1q ă p ă 1 replacing the vanishing moment condition by an uniform control of its size

ˇ

ˇ

ˇ

ˇ

ż

Rn
Mpxqdx

ˇ

ˇ

ˇ

ˇ

ď C, (3)

which is weaker then a power of its radius. However, estimate (3) holds trivially for the case p “ 1. More

recently, Dafni and Liflyand [22] studied molecules for h1pRq, requiring a cancellation condition of the

type (2).

Motivated by the previous works, in [21], we have established a new atomic and molecular

characterization of hppRnq for all 0 ă p ď 1 in which the vanish moments of atoms and molecules

for small balls are not required and are replaced by controls like (2) and (3), depending on the values

of p. The key is to introduce inhomogeneous cancellation conditions on both atoms and molecules, by

giving different cancellation properties when p “ n{pn`kq for k P Z` and n{pn`k`1q ă p ă n{pn`kq.

Our cancellation is the following: suppose that supp paq Ă Bpx0, rq, it satisfies the standard size condition
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and

ˇ

ˇ

ˇ

ˇ

ż

apxqpx ´ x0q
αdx

ˇ

ˇ

ˇ

ˇ

ď

$

’

’

’

’

&

’

’

’

’

%

ω, if |α| ă np1{p ´ 1q,

„

log
ˆ

1 `
1
ωr

˙ȷ´ 1
p

, if |α| “ Np “ np1{p ´ 1q.

for some ω ě 0 (for ω “ 0 the size is 0 and corresponds to the homogeneous case). Note that if

n{pn ` k ` 1q ă p ă n{pn ` kq, then Np ă np1{p ´ 1q and hence an uniform bound on the size of

the moment condition of the atom is enough. This is not the case when p “ n{pn ` kq, where the log

control is assumed for the moment of the order Np. For molecules M concentrated in Bpx0, rq, the same

estimate is imposed. This extend Komori’s molecular approach for 0 ă p ď n{pn ` 1q and p “ 1, giving

appropriate bounds when p “ n{pn ` kq for k P Z`. Moreover, we use this molecular approach to prove

the following inhomogeneous version of Hardy’s inequality for any 0 ă p ď 1, i.e. if f P hppRnq, there

exists a constant C ą 0 such that

ż

Rn

| pf pξq|p

p1 ` |ξ|qnp2´pq
dξ ď C} f }

p
hp

(see Theorem 1.3).

Using the molecular theory without cancellation developed in [21], we have obtained in the mentioned

work and [20] the following characterization result for such operators:

Theorem B. Let 0 ă p ď 1 and T be a strongly singular inhomogeneous Calderón–Zygmund operator

associated to a kernel satisfying the integral condition

sup
0 ă r ă 1

z PRn

sup
|y´z| ă r

ˆ
ż

C jpz,r ρq

|Kpx, yq ´ Kpx, zq|
s

` |Kpy, xq ´ Kpz, xq|
sdx

˙1{s

≲ |C jpz, r ρq|
1
s ´1` δ

n p 1
ρ´ 1

σq2´
jδ
ρ ,

for some δ ą 0 and 1 ď s ď s2 with p ă s. Then, T can be extended to a bounded operator from hppRnq

to itself for max
!

n
n`µ

, p0

)

ă p ď 1, if, and only if there exists a constant C ą 0 such that

f “ T ˚
rp¨ ´ x0q

α
s satisfies

ˆ?
B

| f pxq ´ P Np

B p f qpxq|
2dx

˙1{2

ď CΨp,αprq, (4)

for every ball B “ Bpx0, rq Ă Rn such that r ă 1 and α P Zn
` with |α| ď Np, where P Np

B p f q is the
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polynomial of degree ď Np that has the same moments as f over B up to order Np and

Ψp,αptq :“

$

’

&

’

%

t np 1
p ´1q if |α| ă n p1{p ´ 1q ,

t np 1
p ´1q

„

log
ˆ

1 `
1
t

˙ȷ´ 1
p

if |α| “ n p1{p ´ 1q “ Np.

In particular, the local condition (4) can also be replaced by the stronger one

$

’

’

&

’

’

%

T ˚
rpx ´ x0q

α
s P 9Λnp 1

p ´1qpRn
q if |α| ă n p1{p ´ 1q

.

T ˚
rpx ´ x0q

α
s P L2,Ψp

Np
pRn

q if |α| “ n p1{p ´ 1q “ Np,

where L2,Ψp

Np
pRnq denotes the Ψ´Campanato space. Moreover, the necessity part of the previous theorem

can be extended for more general operators T having the property that it maps atoms supported in B Ă Rn

into what we call pseudo-molecules, which are tempered distributions M that can be decomposed as

M “ g ` h, in which g P hppRnq with supp pgq Ă B and h P HppRnq. Molecules are typical examples of

pseudo-molecules. We have obtained the following result in [20]:

Theorem C. Let 0 ă p ď 1 and T to be a linear and bounded operator on hppRnq that maps each php, 2q

atom in hppRnq into a pseudo-molecule centered in the same ball as the support of the atom. Then, the

local Campanato-cancellation condition (4) must hold.

The organization of this thesis is as follows. In Chapter 1, we describe all the results related to Hardy

spaces. In particular, in Section 1.1 we prove a molecular decomposition for HppRnq for 0 ă p ď 1 based

on the size conditions presented in [5]. In Section 1.2 we prove an approximate atomic and molecular

decomposition for hppRnq and the inhomogeneous Hardy’s inequality. In Section 1.3 we describe results

for the weighted Hardy space Hp
wpRnq, in particular a molecular decomposition analogous as the one did

in Section 1.1. Chapter 2 is devoted to present and prove the continuity results for strongly singular

Calderón–Zygmund operators. In particular, in Section 2.1 we describe the tools to prove Theorem A,

which will be proved in the Subsection 2.1.1, and describe its extensions in the subsequent Subsections

2.1.2 and 2.1.3. In Section 2.4 we present the proof of the continuity from L8pRnq to BMOpRnq, under

the same conditions of Theorem A. In Chapter 3, we prove the necessity and sufficiency of Theorem B
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and provide the proof of Theorem C in Section 3.2. In Chapter 4, we provide the definition and basic

properties of Hardy–Morrey spaces and we prove the analogous version of Theorem A into this setting.



Chapter

1
A new approach to atoms and molecules in Hardy

spaces

The goal of this chapter is to present new tools that will be used during this work, regarding Hardy

spaces defined in the Euclidean space Rn, denoted by HppRnq, and its non-homogeneous version hppRnq.

Given 0 ă p ă 8, the real Hardy spaces HppRnq were introduced by C. Fefferman and Stein in [32]

and are characterized in terms of smooth maximal functions as follows: Given φ P SpRnq and f P S1pRnq,

we define the maximal operator by

Mφ f pxq :“ sup
t ą 0

| f ˚ φtpxq| “ sup
t ą 0

|x f , φtp¨ ´ xqy|,

where φtpxq “ t´nφpx{tq.

Definition 1.1. Let 0 ă p ă 8. We say that a tempered distribution f P S1pRnq belongs to HppRnq if

there exists φ P SpRnq with
ş

φ , 0 such thatMφ f P LppRnq.

We endowed HppRnq with the functional } f }Hp :“ }Mφ f }Lp , which defines a quasi-norm for 0 ă

p ă 1 and a norm for p ě 1 (for simplicity we always refer to it as a norm for 0 ă p ă 8). It is well

known that HppRnq “ LppRnq when p ą 1, with equivalent norms, and H1pRnq ⊊ L1pRnq with continuous

inclusion. Moreover, HppRnq is a complete metric space with the distance dp f , gq “ } f ´ g}
p
Hp for any

11
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f , g P HppRnq and 0 ă p ď 1. Even though we state the definition of Hardy spaces for a particular

choice of φ, it can be also defined using any φ P SpRnq satisfying
ş

φ , 0, resulting on equivalent

norms. Elements of HppRnq also satisfy a cancellation property depending on p. This cancellation

can be elucidated in the following sense: If f P HppRnq X L1pRnq, then
ş

Rn f pxqxα “ 0 whenever

|α| ď np1{p ´ 1q. For the proof of these properties and other general details on Hardy spaces see

[35, 41, 73, 77].

An important class of examples of functions in Hardy spaces was introduced in [32] for H1pRnq and

are called atoms. These functions allows one, for 0 ă p ď 1, to express every tempered distribution in

HppRnq in terms of it. The 1-dimensional case was proved in [15] and the n-dimensional case generalized

in [53].

Definition 1.2. Let 0 ă p ď 1 and 1 ď s ď 8 with p ă s. We say that a measurable function a is a

pp, sq atom in Hp if there exist a ball B :“ Bpx0, rq Ă Rn such that

piq supp paq Ă B; piiq }a}Ls ď |B|
1
s ´ 1

p ; piiiq
ż

apxqxαdx “ 0 for all |α| ď Np,

where Np :“ tnp1{p ´ 1qu. For the limit case s “ 8, the condition (ii) is understood by }a}L8 ď |B|´1{p.

It can be shown that pp, sq atoms are elements of HppRnq and moreover there exists a constant C “

Cpn, p, sq ą 0, independently of the atom, such that }a}Hp ď C (see [35, Chapter III, Corollary 4.5]).

In the works [15, 53], the atomic decomposition for HppRnq has been stated in terms of pp,8q atoms,

however, since the atomic spaces generated by such atoms are equivalent for any 1 ď s ď 8 (see the

proof of [35, Chapter III, Theorem 4.10 p. 283]), one can choose the most convenient one.

Theorem 1.1 ([35, Theorem 4.10 p. 283]). Let 0 ă p ď 1 ď s ď 8 with p ă s. If f P HppRnq, then

there exist a sequence ta ju j of pp, sq atoms in Hp and tλ ju j P ℓppCq such that

f “

8
ÿ

j“1

λ j a j with
ˆ 8
ÿ

j“1

|λ j|
p

˙1{p

≲ } f }Hp ,

where the convergence is given in Hp norm. Conversely, if f P S1pRnq is such that f “
ř8

j“1 λ j a j, in the

sense of distributions, with ta ju j a sequence of pp, sq atoms in Hp and tλ ju j P ℓppCq, then f P HppRnq
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and } f }Hp ≲

ˆ 8
ÿ

j“1

|λ j|
p

˙1{p

. In particular } f }Hp « inf

˜

8
ÿ

j“1

|λ j|
p

¸1{p

, where the infimum is taken over

all such atomic representations.

The previous theorem turned out to be very convenient since several properties and applications of

Hardy spaces can be reduced in some sense of showing it for atoms. For instance, if T : S1pRnq Ñ S1pRnq

is a linear and continuous operator, its extension and continuity in HppRnq can be established by just

verifying that }Ta}Hp ď C uniformly whenever a is a pp, sq atom in Hp. Bownik in [10] showed this

is not always true by exhibiting an example of a linear operator that maps p1,8q atoms uniformly, i.e.

}Ta}H1 ď C independently of a, but has not bounded extension in H1pRnq. This example is in some sense

pathological, see for instance the works [62, 70, 80] where this question was addressed with more details.

1.1 Molecular decomposition

In this section we describe the molecular theory of HppRnq, which originates from the works [14, 16,

75]. As formulated in [75], given 0 ă p ď 1 ď s ă 8 with p ă s, let

ε ą max
"

Np

n
,

1
p

´ 1
*

, a “ 1 ´
1
p

` ε, and b “ 1 ´
1
s

` ε. (1.1)

A measurable function M is called a pp, s, εq molecule in Hp centered at x0 P Rn if M and M | ¨ ´x0|nb

belong to LspRnq,

}M}
a{b
Ls }M | ¨ ´x0|

nb
}

1´a{b
Ls ă 8 and

ż

Rn
Mpxqxαdx “ 0 for all |α| ď Np. (1.2)

The molecules we will present in the next definition follow the formulation presented in [5, Definition

1.1] for n{pn ` 1q ă p ď 1, where a particular size of the Ls norm of the molecule is given, and it is a

particular case of the one described above.

Definition 1.3. Let 0 ă p ď 1 ď s ă 8 with p ă s and λ ą n
´

s
p ´ 1

¯

. A measurable function M is a

pp, s, λq molecule in Hp if there exist a ball B “ Bpx0, rq Ă Rn and a universal constant C ą 0 such that

M1. }M}LspBq ď C |B|
1
s ´ 1

p ;
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M2. }M | ¨ ´x0|
λ
s }LspBcq ď C |B|

λ
ns ` 1

s ´ 1
p ;

M3.
ż

Mpxqxαdx “ 0 for all |α| ď Np.

Considering λ “ nps ´ 1 ` εsq, we can see that the lower bound imposed on ε in (1.1) implies

λ ą nps{p ´ 1q. Morevover, the size condition imposed on (M1) and (M2) implies the uniform estimate

(1.2).

If a is a pp, sq atom supported in B Ă Rn, then it is a pp, s, λq molecule centered in the same ball.

Remark 1.1. .

(i) We may equivalently replace (M1) and (M2) simultaneously by global estimates, namely, for a

universal constant C ą 0

M1’.
ż

Rn
|Mpxq|

sdx ď C |B|
1´ s

p and M2’.
ż

Rn
|Mpxq|

s
|x ´ x0|

λdx ď C |B|
λ
n `1´ s

p

or integrating in any dilation of B, that is, (M1) in LspBpx0, crqq and (M2) in LspBpx0, crqcq for

some c ą 1.

(ii) If (M2) holds for a given λ, then the analogous estimate holds for any λ1 ă λwith the same constant

C ą 0. In fact, for B “ Bpx0, rq

ż

Bc
|Mpxq|

s
|x ´ x0|

λ1

dx ď rλ
1´λ

ż

Bc
|Mpxq|

s
|x ´ x0|

λdx ď C rλ
1`np1´ s

p q.

Combining with (M1), we also have the corresponding global bound on }M | ¨ ´x0|
λ1

s }LspRnq.

Next, we show that condition (M3) is well defined when M satisfies (M1) and (M2). This is the

analogous result of [5, Lemma 1.1] for n{pn ` 1q ă p ď 1.

Proposition 1.1. Let M to be a function satisfying (M1) and (M2). Then, Mpxqxα is an absolutely

integrable function for every |α| ď Np.

Proof. Suppose M satisfies (M1) and (M2) with respect to the ball B “ Bpx0, rq. Split

ż

Rn
|Mpxq xα|dx “

ż

B
|Mpxq xα|dx `

ż

Bc
|Mpxq xα|dx.
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For the first integral, from Hölder inequality and (M1) we get

ż

B
|Mpxq xα|dx ď }xα}L8pBq |B|

1´ 1
s }M}LspBq ≲ pr ` |x0|q

|α| rnp1´ 1
p q ă 8.

For the second,

ż

Bc
|Mpxq xα|dx ď

ÿ

|γ|ď|α|

Cα,γ |x0|
|α|´|γ|

ż

Bc
|Mpxq| |x ´ x0|

λ
s `p|γ|´ λ

s qdx

ď }M | ¨ ´x0|
λ
s }Ls

ÿ

|γ|ď|α|

Cα,γ,x0

ˆ
ż

Bc
|x ´ x0|p

|γ|´ λ
s q

s
s´1

˙1´ 1
s

≲
ÿ

|γ|ď|α|

Cα,γ,x0 r|γ|`np1´ 1
p q ă 8

where the integrability of |x ´ x0|p
|γ|´ λ

s q
s

s´1 on Bc follows by λ ą n ps{p ´ 1q and |γ| ď |α| ď np1{p ´ 1q.

In order to provide a molecular decomposition for distributions in HppRnq, it suffices to show that

it can be decomposed into atoms. This fact is covered by the next result, whose proof is standard and

follows the same ideas as in [75, Theorem 2.9] (or [35, Theorem 7.16]). We present a detailed proof since

its ideas are going to be used in subsequent sections.

Proposition 1.2. Let M to be a pp, s, λq molecule in Hp. Then, there exists a sequence ta ju j of pp, sq

atoms in Hp and tγ ju j P ℓppCq such that

M “

8
ÿ

j“1

γ j a j in S1
pRn

q.

In particular, there exists a constant C ą 0, independent of M, such that }M}Hp ď C.

Proof. Suppose M is a pp, s, λq molecule in Hp associated to a ball B “ Bpx0, rq Ă Rn and define for any

j P Z` the sets B j “ Bpx0, 2 jrq, E0 “ B, E j “ B jzB j´1 if j ě 1, and the function M jpxq “ Mpxq χE jpxq.

We may assume without loss of generality that x0 “ 0. For a given α P Zn
` such that |α| ď Np,

let PNp denote the finite dimensional vector space of polynomials in Rn with degree at most Np and

PNp, j its restriction on the set E j. By the Gram-Schmidt orthogonalization process on the Hilbert space
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H “ L2pE j, |E j|
´1dxq (considering PNp, j as a subspace of H with respect to the base txβu|β|ďNp), there

exist polynomials ϕ j
γ P PNp, j uniquely determined such that

1
|E j|

ż

E j

ϕ j
γpxq x βdx “ δγ, β “

#

1, if γ “ β

0, if γ , β.
(1.3)

In addition, these polynomials satisfy the estimate p2 jrq|γ||ϕ
j
γpxq| ď C uniformly on j for every x P E j

(see [75, p. 77]). Let

Mγ
j “

1
|E j|

ż

E j

Mpxqx γdx, P jpxq “
ÿ

|γ|ďNp

Mγ
j ϕ

j
γpxq,

and split

M “

8
ÿ

j“0

M j “

8
ÿ

j“0

pM j ´ P jq `

8
ÿ

j“0

P j in Ls
pRn

q.

We will show that for each j P Z`, pM j ´ P jq is a multiple of a pp, sq atom in Hp and P j can be written

as a finite linear combination of pp,8q atoms.

Starting with pM j ´ P jq, since M j and P j are both supported in E j Ă B j, then supp pM j ´ P jq Ă B j

and also for all |α| ď Np it has the right cancellation property since

ż

Rn
rM jpxq ´ P jpxqs xαdx “

ż

E j

„

M jpxq ´
ÿ

|γ|ďNp

Mγ
j ϕ

j
γpxq

ȷ

xαdx

“

ż

E j

Mpxqxαdx ´
ÿ

|γ|ďNp

ˆ
ż

E j

Mpyqyγdy
˙?

E j

ϕ j
γpxqxαdx “ 0.

In order to estimate the Ls norm of M j ´ P j, we do it separately. From condition (M1) and (M2), we get

for M j that

}M j}Ls ď p2 j´1rq
´ λ

s

ˆ
ż

E j

|Mpxq|
s
|x ´ x0|

λdx
˙1{s

≲ |B j|
1
s ´ 1

p p2 j
q

´ λ
s `np 1

p ´ 1
s q. (1.4)
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For P j, using that p2 jrq|γ||ϕ
j
γpxq| ď C we can bound its size by

|P jpxq| ď
ÿ

|γ|ďNp

|ϕ j
γpxq|

?
E j

|Mpyq| |y|
|γ| dy

≲

ˆ

ÿ

|γ|ďNp

p2 jrq
|γ|

|ϕ j
γpxq|

˙?
E j

|Mpyq|dy

≲

?
E j

|M jpyq|dy ď |E j|
´ 1

s }M j}Ls ,

which implies that }P j}Ls ≲ }M j}Ls . From this and (1.4) we obtain

}M j ´ P j}Ls ≲ }M j}Ls ≲ |B j|
1
s ´ 1

p p2 j
q

´ λ
s `np 1

p ´ 1
s q.

Finally, we write pM j ´ P jqpxq “ d j a jpxq where

a jpxq “
M jpxq ´ P jpxq

}M j ´ P j}Ls
|B j|

1
s ´ 1

p and d j “ }M j ´ P j}Ls |B j|
1
p ´ 1

s .

By the previous considerations, each a j is a pp, sq atom in Hp supported on B j and the scalars td ju j P

ℓppRq, since λ ą n ps{p ´ 1q yields

8
ÿ

j“0

|d j|
p

“

8
ÿ

j“0

}M j ´ P j}
p
Ls |B j|

1´
p
s ď

8
ÿ

j“0

”

|B j|
1
s ´ 1

p p2 j
q

´ λ
s `np 1

p ´ 1
s q
ıp

|B j|
1´

p
s

»

8
ÿ

j“0

p2 j
q

´
λp
s `np1´

p
s q ă 8.

We show now that P j is a finite linear combination of pp,8q atoms. Define for each j P Z` and

|γ| ď Np

N j
γ :“ |Ek|

8
ÿ

k“ j

Mγ
k “

8
ÿ

k“ j

ż

Ek

Mpxqxγdx and ψ j
γpxq :“ N j`1

γ

“

|E j`1|
´1ϕ j`1

γ pxq ´ |E j|
´1ϕ j

γpxq
‰

.



1.1 Molecular decomposition 18

Then, we can rewrite P j as

8
ÿ

j“0

P jpxq “

8
ÿ

j“0

ÿ

|γ|ďNp

pMγ
j |E j|q p|E j|

´1ϕ j
γpxqq “

8
ÿ

j“0

ÿ

|γ|ďNp

pN j
γ ´ N j`1

γ qp|E j|
´1ϕ j

γpxqq

“

8
ÿ

j“0

ÿ

|γ|ďNp

“

N j
γ|E j|

´1ϕ j
γpxq ´ N j`1

γ |E j|
´1ϕ j

γpxq
‰

“
ÿ

|γ|ďNp

8
ÿ

j“0

ψ j
γpxq `

ÿ

|γ|ďNp

8
ÿ

j“0

“

N j
γ|E j|

´1ϕ j
γpxq ´ N j`1

γ |E j`1|
´1ϕ j`1

γ pxq
‰

(1.5)

“

8
ÿ

j“0

ÿ

|γ|ďNp

ψ j
γpxq,

since noticing that N0
γ “

ż

Mpxqxγdx “ 0,

8
ÿ

j“0

“

N j
γ|E j|

´1ϕ j
γpxq ´ N j`1

γ |E j`1|
´1ϕ j`1

γ pxq
‰

“ N0
γ |E0|

´1ϕ0
γpxq “ 0 (1.6)

for all |γ| ď Np. We show that ψ j
γ is a multiple of a pp,8q atom in Hp. By definition supp pψ

j
γq Ă E j Ă

B j`1 and moreover

ż

Rn
ψ j
γpxqx βdx “ N j`1

γ

ˆ?
E j`1

ϕ j`1
γ pxqx βdx ´

?
E j

ϕ j
γpxqx βdx

˙

“ 0 (1.7)

for all |β| ď Np. In order to estimate }ψ
j
γ}L8 , by Hölder inequality and (1.4) we have

|N j`1
γ | “

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“ j`1

ż

Ek

Mpxqxγdx

ˇ

ˇ

ˇ

ˇ

ˇ

ď

8
ÿ

k“ j`1

p2krq
|γ|

ż

Ek

|Mkpxq|dx

ď

8
ÿ

k“ j`1

p2krq
|γ|

}Mk}Ls |Ek|
1´ 1

s

≲ r|γ|`np1´ 1
p qp2 j`1

q
|γ|´ λ

s `np1´ 1
s q

8
ÿ

k“0

p2k
q

|γ|´ λ
s `np1´ 1

s q

≲ r|γ|`np1´ 1
p qp2 j`1

q
|γ|´ λ

s `np1´ 1
s q

» |B j`1|
1´ 1

p p2 j`1rq
|γ|

p2 j`1
q

´ λ
s `np 1

p ´ 1
s q

since |γ| ď n p1{p ´ 1q and λ ą n ps{p ´ 1q. From the uniform estimate p2 jrq|γ||ϕ
j
γpxq| ď C and the
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previous control it follows

|N j
γ|E j|

´1ϕ j
γpxq| ≲ |B j|

´ 1
p p2 j

q
´ λ

s `np 1
p ´ 1

s q.

Denote ψ j
γpxq “ h j b jγpxq, where

h j “ p2 j
q

´ λ
s `np 1

p ´ 1
s q and b jγpxq “ p2 j

q
λ
s ´np 1

p ´ 1
s q ψ j

γpxq.

It is clear that b jγ is a multiple of a pp,8q atom since supp pb jγq Ă B j, }b jγpxq}L8 ≲ |B j|
´ 1

p and the

moment condition follows immediately from (1.7). Finally, note that th ju j P ℓppRq since

8
ÿ

j“0

|h j|
p

“

8
ÿ

j“0

p2 j
q

´
λp
s `np1´

p
s q ă 8.

Summarizing, we have shown that M “

8
ÿ

j“0

γ j a j in LspRnq, where ta ju j are pp, sq atoms in Hp and

tγ ju j P ℓppRq (with constant independent of M). Moreover, the series converges in HppRnq. Indeed,

given ε ą 0 there exist N1,N2 P N with N1 ă N2 such that

›

›

›

›

›

N2
ÿ

j“0

γ j a j ´

N1
ÿ

j“0

γ j a j

›

›

›

›

›

p

Hp

ď

N2
ÿ

j“N1

}γ j a j}
p
Hp ≲

N2
ÿ

j“N1

|γ j|
p

ă ε.

Thus, the sequence of partial sums is Cauchy in HppRnq and the convergence follows by the completeness

of HppRnq. Since convergence in HppRnq implies in S1pRnq, by the uniqueness of the limit, S N “
N
ÿ

j“1

γ j a j Ñ M in HppRnq as N Ñ 8. Therefore

}M}Hp “

›

›

›

›

›

M ´

N
ÿ

j“0

γ j a j `

N
ÿ

j“0

γ j a j

›

›

›

›

›

Hp

ď

›

›

›

›

›

M ´

N
ÿ

j“0

γ j a j

›

›

›

›

›

Hp

`

›

›

›

›

›

N
ÿ

j“0

γ j a j

›

›

›

›

›

Hp

ď ϵ `

˜

8
ÿ

j“0

|γ j|
p

¸1{p

ă ε ` C,

which implies }M}Hp ď C taking ε Ñ 0.

As a consequence, we have the following molecular decomposition of HppRnq:
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Corollary 1.1. Let 0 ă p ď 1 ď s ă 8 with p ă s. Then, f P HppRnq if and only if there exists

a sequence tM ju j of pp, s, λq molecules and tγ ju j P ℓppCq such that f “

8
ÿ

j“1

γ j M j in Hp norm (and

consequently in S1), and moreover

} f }Hp « inf
ˆ 8
ÿ

j“1

|γ j|
p

˙1{p

,

where the infimum is taken over all such representations.

As an application, if T : S1pRnq Ñ S1pRnq is a linear and continuous operator that takes pp, sq atoms

in Hp into pp, s1, λq molecules, then T is bounded in HppRnq. In fact, let f P HppRnq and from the atomic

decomposition (Theorem 1.1) we write

f “

8
ÿ

j“1

λ j a j in Hp and S1.

Since T is also continuous in S1pRnq, we can show that

T
ˆ N
ÿ

j“1

λ j a j

˙

Ñ T f as N Ñ 8 in Hp.

From the hypothesis that Ta j is a pp, s1, λq molecule from each j, we get from from Proposition 1.2 that

for N sufficiently large and an arbitrary ε ą 0

}T f }Hp ď

›

›

›

›

T f ´ T
ˆ N
ÿ

j“1

λ j a j

˙
›

›

›

›

Hp

`

›

›

›

›

T
ˆ N
ÿ

j“1

λ j a j

˙
›

›

›

›

Hp

ď ε `

N
ÿ

j“1

|λ j| }Ta j}Hp

ď ε ` C
ˆ N
ÿ

j“1

|λ j|
p

˙1{p

ď ε ` C} f }Hp .
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1.2 Local Hardy spaces

The local Hardy spaces, denoted by hppRnq were introduced by Goldberg in [37] as an alternative

to deal with some localization problems in HppRnq. For instance, such spaces are not closed under

multiplication by test functions, since this localization may not satisfy global vanishing moment

conditions; it does not containSpRnq, are not well defined in manifolds, and in general, pseudodifferential

operators are not bounded on HppRnq without a strong hypothesis on the cancellation.

As it is for the homogeneous case, the spaces hppRnq for p ą 0 can be described by maximal

functions.

Definition 1.4 ([37, Theorem 1]). Let 0 ă p ă 8 and φ P SpRnq such that
ş

φ , 0. We say that

f P S1pRnq belongs to hppRnq if mφ f P LppRnq, in which

mφ f pxq :“ sup
0ătă1

| f ˚ φtpxq|

denotes the local maximal function. We denote its norm by } f }hp :“ }mφ f }Lp .

For p ě 1, the functional } ¨ }hp defines a norm and for 0 ă p ă 1 a quasi-norm. As before, we refer to it

always as a norm for simplicity. The local Hardy spaces is also a complete Banach space with the distance

dp f , gq “ } f ´ g}
p
hp and when p ą 1 it is equal to LppRnq with equivalent norms. We have the continuous

embedding SpRnq Ă h1pRnq ⊊ L1pRnq and so the latter containment is dense. The homogeneous Hardy

space HppRnq is strictly contained in hppRnq, since for instance C8
c pRnq Ă hppRnq. The supremum over

0 ă t ă 1 in the previous definition can also be replaced by 0 ă t ă T for any constant T ą 0, resulting

on equivalent norms.

In [37, Lemma 4], Goldberg showed that HppRnq and hppRnq are related in the following way: If φ

is a Schwartz function with integral one satisfying vanishing moments and f P hppRnq, then f ´ φ ˚

f P HppRnq. This yields to hppRnq a similar atomic decomposition to homogeneous case, except that

vanishing moment conditions are required only for small atoms. Next we present the definition of an Ls

atoms for hppRnq (see [37, p. 36-37] for the case s “ 8).
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Definition 1.5. Let 0 ă p ď 1 ď s ď 8 with p ă s. A measurable function a is called a pp, sq atom in

hp if there exists a ball B “ Bpx0, rq Ă Rn such that

piq supppaq Ă B; piiq }a}Ls ď |B|
1
s ´ 1

p ; piiiq if r ă 1,
ż

apxqxαdx “ 0 for all |α| ď Np .

The next theorem states the atomic decomposition for hppRnq.

Theorem 1.2 ([37, Lemma 5]). Let f P hppRnq. Then, there exists a sequence ta ju j of pp, sq atoms in hp

and tλ ju j P ℓppCq such that

f “

8
ÿ

j“1

λ j a j in S1 and hp, and } f }hp « inf
ˆ 8
ÿ

j“1

|λ j|
p

˙1{p

,

where the infimum is taken over all such atomic representations.

1.2.1 Atoms and molecules

Conditions (i) and (ii) in Definition 1.5 alone show the size of the moment condition can be bounded

by
ˇ

ˇ

ˇ

ˇ

ż

B
apxqpx ´ x0q

αdx
ˇ

ˇ

ˇ

ˇ

ď r|α|
}a}Ls |B|

1´ 1
s ≲ r|α|´np 1

p ´1q. (1.8)

This implies that, for any pp, sq atom in hp supported in a ball B with radius r ě 1, the α-th moment is

bounded by a constant depending only on p, s and n, for every |α| ď Np. Note that when considering

vanishing moments, there is no need to incorporate the center of the ball in the polynomial.

Inhomogeneous cancellation conditions for hppRnq atoms, like (1.8), were previously introduced by

Dafni in [19, Appendix B], where Goldberg’s vanishing moment conditions on atoms supported in balls

B “ Bpx0, rq with r ă 1 were relaxed to the condition

ˇ

ˇ

ˇ

ˇ

ż

apxqpx ´ x0q
αdx

ˇ

ˇ

ˇ

ˇ

≲ r η for all |α| ď Np and some η ą 0

for every 0 ă p ď 1. For the case p “ 1 and in the setting of metric measure spaces, it was shown by

Dafni and Yue [23, Definition 7.3] that the previous r-power condition can be weakened to a log-type
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one, i.e., there exists C ą 0 such that

ˇ

ˇ

ˇ

ˇ

ż

apxqdx
ˇ

ˇ

ˇ

ˇ

ď

„

log
ˆ

1 `
C
r

˙ȷ´1

. (1.9)

This type of cancellation condition was further used by Dafni and Liflyand [22] to give a molecular

decomposition and prove Goldberg’s version of Hardy’s inequality for h1pRq, in dimension one. Similar

approximate moments conditions using powers of the radius have also been considered recently in [11,

61].

In the next definition we provide a notion of atoms which, in the same spirit as before, also does

not distinguish between the size of the radius of the ball that contain its support, and vanishing moment

conditions are not required. Instead, the cancellation condition imposed is related to p in the following

way: if p , n{pn ` kq for every k P Z`, which in other words means that Np ă np1{p ´ 1q, it suffices to

bound the size of the moments up to order |α| ď Np by a constant; on the other hand, if p “ n{pn ` kq, a

log-type control like (1.9) is needed for the α´th moment such that |α| “ Np “ np1{p ´ 1q.

Definition 1.6. Let 0 ă p ď 1 ď s ď 8 with p ă s, ω ě 0, and define φp : p0,8q Ñ p0,8q by

φpptq :“
„

log
ˆ

1 `
1
ωt

˙ȷ´1{p

,

where φpptq “ 0 in the limiting case ω “ 0. We say that a measurable function a is a pp, s, ωq atom in

hp if there exists a ball B “ Bpx0, rq Ă Rn such that the standard support and size condition are satisfied

((i) and (ii) in Definition 1.5) and moreover

piiiq1

ˇ

ˇ

ˇ

ˇ

ż

B
apxqpx ´ x0q

αdx
ˇ

ˇ

ˇ

ˇ

ď

$

’

’

&

’

’

%

ω, if |α| ă np1{p ´ 1q,

φpprq, if |α| “ Np “ np1{p ´ 1q.

The previous definition covers the one in [23, Definition 7.3] for the case p “ 1, the one in [50,

Lemma 3] for the case n{pn`1q ă p ă 1, and whenω “ 0 we have the pp, sq atoms for the homogeneous

Hardy space HppRnq.
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Remark 1.2. Combining (1.8) for r ě 1 with the fact that φpprq ď rlogp1 `ω´1qs´1{p “ Cp, ω for r ă 1,

we have that for any r ą 0 the moments satisfy

ˇ

ˇ

ˇ

ˇ

ż

B
apxqpx ´ x0q

αdx
ˇ

ˇ

ˇ

ˇ

ď Cp,ω for |α| ď Np.

Next we show the space hppRnq can also be characterized in terms of pp, s, ωq atoms. Let hp
at, ωpRnq to

be the atomic space generated by pp, s, ωq atoms, that is, f P hp
at, ωpRnq if there exists a sequence ta ju j of

pp, s, ωq atoms in hp and tλ ju j P ℓppCq such that

f “

8
ÿ

j“1

λ j a j, in S1
pRn

q, equipped with the norm } f }hp
at, ω

:“ inf
ˆ 8
ÿ

j“1

|λ j|
p

˙1{p

,

where the infimum is taken over all such representations. We want to show that this atomic space

generates hppRnq for 0 ă p ď 1. Consider first the following lemma:

Lemma 1.1. If a is a pp, s, ωq atom in hp, then }a}hp ď C, where the constant C ą 0 depends only on

p, s and ω.

Proof. Let a be a pp, s, ωq atom supported in B “ Bpx0, rq. Split

}mϕ a}
p
Lp “

ż

2B
|mϕ apxq|

pdx `

ż

p2Bqc
|mϕ apxq|

pdx.

To estimate the first integral, we recall the pointwise control of the local maximal function by the Hardy-

Littlewood Maximal function mϕ apxq ďMϕ apxq ď Cϕ Mapxq. Then, since M bounded from LspRnq to

itself for 1 ă s ď 8, it follows that

ż

2B
|mϕ apxq|

pdx ď Cϕ|2B|
1´

p
s }Ma}

p
Ls ď Cϕ,p |2B|

1´
p
s }a}

p
Ls ď Cϕ,s,p,n rnp1´

p
s qrnp

p
s ´1q “ Cϕ,s,p,n.

Note the last estimate holds for all 0 ă p ď 1. For s “ 1 and p ă 1 we use that M satisfies weak p1, 1q
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type inequality to estimate

ż

2B
|mϕ a|

pdx ≲
ż

2B
|Mapxq|

pdx

“ p

#

ż r´ n
p

0
λp´1 |tx P 2B : |Mapxq| ą λu| dλ `

ż 8

r´ n
p
λp´1 |tx P 2B : |Mapxq| ą λu| dλ

+

≲ p |2B|

ż r´ n
p

0
λp´1dλ ` p }a}L1

ż 8

r´ n
p
λp´2dλ » p.

Now we deal with the estimate on p2Bqc. Note first that since ϕ P SpRnq, for any N ą 0, that will be

chosen conveniently, and α P Zn
` we have

|B
αϕpxq| ď Cα,N |x|

´N . (1.10)

From Taylor expansion of the function y ÞÑ ϕtpx ´ yq up to the order Np, we write for some c P p0, 1q

|ϕt˚apxq| “

ˇ

ˇ

ˇ

ˇ

ż

ÿ

|α|ďNp´1

Cα B
αϕtpx´x0q px0´yq

αapyqdy`

ż

ÿ

|α|“Np

Cα B
αϕtpx´x0`cpx0´yqq px0´yq

αapyqdy
ˇ

ˇ

ˇ

ˇ

.

Using (1.10) in the previous estimate we get

|ϕt ˚ apxq| ď
ÿ

|α|ďNp´1

Cα|B
αϕtpx ´ x0q|

ˇ

ˇ

ˇ

ˇ

ż

Rn
apyqpx0 ´ yq

αdy
ˇ

ˇ

ˇ

ˇ

`
ÿ

|α|“Np

Cα

ˇ

ˇ

ˇ

ˇ

ż

Rn
|B
αϕtpx ´ x0 ` cpx0 ´ yqq| apyqpx0 ´ yq

αdy
ˇ

ˇ

ˇ

ˇ

ď
ÿ

|α|ďNp´1

Cα t´n´|α|

ˇ

ˇ

ˇ

x ´ x0

t

ˇ

ˇ

ˇ

´N
ˇ

ˇ

ˇ

ˇ

ż

Rn
apyqpx0 ´ yq

αdy
ˇ

ˇ

ˇ

ˇ

`
ÿ

|α|“Np

Cα

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Rn
t´n´|α|

ˇ

ˇ

ˇ

ˇ

x ´ x0 ` cpx0 ´ yq

t

ˇ

ˇ

ˇ

ˇ

´N

apyqpx0 ´ yq
αdy

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

|α|ďNp

Cα t´n´|α|`N
|x ´ x0|

´N

ˇ

ˇ

ˇ

ˇ

ż

Rn
apyqpx0 ´ yq

αdy
ˇ

ˇ

ˇ

ˇ

(1.11)
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since as |x ´ x0| ě 2r and |y ´ x0| ď r, we have |x ´ x0 ` cpx0 ´ yq| ě |x ´ x0|{2. Let

ż

p2Bqc
|mϕ apxq|

pdx “

ż

2ră|x´x0|ď2
|mϕ apxq|

pdx `

ż

|x´x0|ě2
|mϕ apxq|

pdx “ I1 ` I2.

Estimate of I1. In this case we may assume 0 ă r ă 1 since otherwise the region of integration is empty.

By (1.11) with N “ n ` |α|

ż

2ră|x´x0|ď2
|mϕ apxq|

pdx ≲
ÿ

|α|ďNp

ˇ

ˇ

ˇ

ˇ

ż

Rn
apyqpy ´ x0q

αdy
ˇ

ˇ

ˇ

ˇ

p ż

2ră|x´x0|ď2
|x ´ x0|

´np´|α|pdx.

In the case where p , n{pn ` kq for any k P Z`, that is Np ă np1{p ´ 1q, we have that ´np ´ |α|p ą ´n

for all |α| ď Np and therefore the integral over |x ´ x0| ď 2 is convergent and uniformly bounded. This

together with (iii)’ gives a bound which is a constant multiple of ω. The same bound also works when

p “ n{pn ` kq for some k P Z` and |α| ă Np. When |α| “ Np “ np1{p ´ 1q, we have ´np ´ |α|p “ ´n

and therefore
ż

2ră|x´x0|ď2
|x ´ x0|

´np´|α|pdx “ log
ˆ

1
r

˙

.

Using condition (iii)’ again, this time with the log bound on the moments, we get since 0 ă r ď 1

ż

2ră|x´x0|ď2
|mϕ apxq|

pdx ≲ log
ˆ

1
r

˙

log
ˆ

1 `
1
ωr

˙

≲ log
ˆ

1 `
1
r

˙

log
ˆ

1 `
1
ωr

˙

“ C.

Estimate of I2. In this case we consider N “ n ` Np ` 1. Since the supremum is taken over t P p0, 1q, we

have t´|α|`Np`1 ď 1 for all |α| ď Np. Thus, using Remark 1.2 to bound uniformly the moment condition

of the atom and the fact that ppn ` Np ` 1q ą n to get the integrability over |x ´ x0| ě 2 we get

ż

|x´x0|ě2
|mϕ apxq|

pdx ≲
ż

|x´x0|ě2

ˆ

sup
0ătă1

ÿ

|α|ďNp

Cα t´n´|α|

ˇ

ˇ

ˇ

ˇ

x ´ x0

t

ˇ

ˇ

ˇ

ˇ

´n´Np´1ˇ
ˇ

ˇ

ˇ

ż

Rn
apyqpy ´ x0q

αdy
ˇ

ˇ

ˇ

ˇ

˙p

dx

≲
ÿ

|α|ďNp

ˇ

ˇ

ˇ

ˇ

ż

Rn
apyqpy ´ x0q

αdy
ˇ

ˇ

ˇ

ˇ

p ż

|x´x0|ě2
|x ´ x0|

´ppn`Np`1qdx ď Cn,p,w.
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Remark 1.3. An inspection of the previous proof shows that we could have chosen any function φp such

that φpptq ď C rlogp1{tqs1{p.

Proposition 1.3. For any 0 ă p ď 1 we have hppRnq “ hp
at, ωpRnq with equivalent norms.

Proof. Using Goldberg’s atomic decomposition it follows that hppRnq Ă hp
at, ωpRnq continuously, since

pp, sq atoms in hp supported in small balls are automatically pp, s, ωq atoms. Moreover, if ω ą 0, by (1.8)

it follows that pp, sq atoms supported in large balls (without vanishing moment) are pp, s, ωq atoms up to

multiplication by a constant depending on ω, n, p and s. Indeed, since r ą 1

„

log
ˆ

1 `
1

rω

˙ȷ´1{p

ą

„

log
ˆ

1 `
1
ω

˙ȷ´1{p

.

This implies

ˇ

ˇ

ˇ

ˇ

ż

apxqpx ´ x0q
αdx

ˇ

ˇ

ˇ

ˇ

ď r|α|´np 1
p ´1q ď 1

“

„

log
ˆ

1 `
1
ω

˙ȷ´1{p „

log
ˆ

1 `
1
ω

˙ȷ1{p

ď Cn,p,ω

„

log
ˆ

1 `
1

rω

˙ȷ´1{p

.

On the other direction, to show that hp
at, ωpRnq Ă hppRnq, that is, every infinite linear combination of

php, s, ωq atoms lies in hppRnq with norm bounded by a constant times }tλ ju jPN}ℓp it suffices to use the

sub-linearity of the local maximal function and the convergence in S1pRnq together with Lemma 1.1.

From the proof of Lemma 1.1 and Remark 1.3, we see the sufficiency of the log-decay on the last

α´th moment of the atom when p “ n
n`k for k P Z` and moreover, the proof does not work assuming an

uniform estimate on its size. Next we show that assuming the support and size conditions (i) and (ii) in

Definition 1.6, we cannot replace (iii)’ by a uniform bound on the moments when p “ n{pn`kq for some

k P Z`. That is, a strong decay on the highest order of the moments is necessary for this case. It is still

an open question if this log-decay is optimal. The construction of the next counterexample is inspired by

[42, Lemma 3.1].
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Example 1.1. Let n “ 1 and p “ 1{pk ` 1q for some k P Z` (hence Np “ k). Take φ : R` ÞÑ R` to be

any bounded function with }φ}L8 ď 1. For any 0 ă r ă 2´k, we will construct a function a, depending

on r, satisfying the support and size conditions (i) and (ii) of a pp,8q atom supported in the interval

Ik “ r´2k´1r, 2k´1rs. Moreover, we will show

ż

aptq tℓdt “ 0 for all 0 ď ℓ ď k ´ 1 and
ż

aptq tkdt “ Ckφprq (1.12)

for a positive constant Ck independent of r. Finally, we will see that }a}hp ≳ φprq| log r|. As a result,

letting r tend to 0, we conclude that the norm of a can remain bounded only if φprq “ Op1{| log r|q.

We start by defining the even function

a0ptq “
`

2kr
˘´k´1

φprqχr´ r
2 ,

r
2 sptq.

Now we construct a1 by translating the previous function a0 by r{2 units to the right half-line and then

extending it to r´r, 0s in such a way that the resulting function is odd. We define a2 proceeding in the

same way, translating a1 by r units to the right and extending it to r´2r, 0s as an even function. In general,

we construct am by translating am´1 pm ´ 1q units to the right and then extending it to r´mr, 0s in an even

way if m is even and oddly otherwise (see Figure 1.1). Inductively, we describe this process writing

am`1ptq “

#

ampt ´ 2m´1rq ´ amp´t ´ 2m´1rq, if m is even;

ampt ´ 2m´1rq ` amp´t ´ 2m´1rq, if m is odd.

Observe that am is an even function if m is even and it is an odd function if m is odd. In addition,

supp pamq Ă r´2m´1r, 2m´1rs and }am}L8 ď p2krq
´k´1

}φ}L8 ď
ˇ

ˇr´2k´1r, 2k´1rs
ˇ

ˇ

´k´1
.

When m “ k, this shows that the function a “ ak satisfies conditions (i) and (ii) of Definition 1.6.

We want to show that (1.12) holds for a “ ak. The first identity in (1.12) follows from [42, Lemma

3.1]. For the sake of completeness, we show both by proving the following identities for any m:

ż

amptq tℓdt “ 0 for all 0 ď ℓ ď m ´ 1 and
ż

amptq tmdt “ Cm,k rm´k φprq, (1.13)
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Figure 1.1: Construction of a0, a1, a2 and a3 respectively.

where Cm,k ą 0 is a constant independent of r. We proceed to prove the first identity by induction on

m, starting with m “ 1. By the oddness of a1, we immediately get
ş

a1ptqdt “ 0. Now assuming the

vanishing moments for am for every 0 ď ℓ ď m ´ 1, we show it for am`1 for every 0 ď ℓ ď m. Suppose

without loss of generality that m is odd (the same argument works if m is even). By construction, am`1

is even and the vanishing moments will immediately hold for every odd ℓ and 1 ď ℓ ď m. Suppose ℓ is

even. Using the definition of am`1 and the fact that amp´t ´ 2m´1rq “ 0 when t P r0, 2mrs we get

ż

am`1ptqtℓdt “ 2
ż 2mr

0
am`1ptqtℓdt “ 2

ż 2mr

0

“

ampt ´ 2m´1rq ` amp´t ´ 2m´1rq
‰

tℓdt

“ 2
ż 2mr

0
ampt ´ 2m´1rqtℓdt “ 2

ż 2m´1r

´2m´1r
amptqpt ` 2m´1rq

ℓdt

“
ÿ

γďℓ´1ăm

Cℓ,γ,r,m

ż 2m´1r

´2m´1r
amptq tγdt “ 0.

In the last two steps we have used the fact that amptqtℓ is odd to eliminate the integral of the highest order

term in the binomial expansion, followed by the induction hypothesis.

For the second identity in (1.13), we will follow the same procedure. Starting from m “ 0, it holds
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with C0,k “ 2´kpk`1q. Indeed

ż

a0ptqdt “
`

2kr
˘´k´1

φprqr “ 2´kpk`1qφprqr´k
“ C0,k φprqr´k.

Assuming that
ż

amptq tmdt “ Cm,k φprq rm´k for some Cm,k ą 0 independent of r, we write, as above

ż

am`1ptqtm`1dt “ 2
ż 2mr

0
am`1ptqtm`1dt “ 2

ż 2m´1r

´2m´1r
amptqpt ` 2m´1rq

m`1dt

“ 2
ż 2m´1r

´2m´1r
amptqpm ` 1qtm 2m´1r dt “ pm ` 1q2mr

ż

amptqtmdt

“ pm ` 1q2m Cm,k φprq rm`1´k.

Here again we have used the fact that amptqtm`1 is odd to eliminate the integral of the highest order term

in the binomial expansion, as well as the vanishing moments of am of order ℓ for all ℓ ă m, followed by

the induction hypothesis. This proves the induction step with Cm`1,k “ pm ` 1q2m Cm,k.

We have shown so far that a “ ak satisfies the conditions of Definition 1.6 for a pp,8q atom with the

bound on the highest-order moment in (iii)’ replaced by Ck φprq. We want now to estimate its hp norm.

We will do this by testing against an element f of the dual space phppRqq˚ “ ΛkpRq if 0 ă p ă 1 and

ph1pRqq˚ “ bmopRq. Fix a cutoff function η P C8pRq with supp pηq Ă p´1, 1q which is equal to 1 on

r´1{2, 1{2s, and let f be given by f ptq “ tk logp|t|q ηptq. Recall that we are assuming r ă 2´k, so that

η “ 1 on the support of a, and we have, by (1.12),

ˇ

ˇ

ˇ

ˇ

ż

aptq f ptqdt ´ Ckφprq logprq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

aptq tk rlogp|t|q ´ logprqs dt
ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

2
ż 2k´1r

0
aptq tk log

´ t
r

¯

dt

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

2rk`1
ż 2k´1

0
apurquk logpuqdu

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2rk`1
}a}L8

ż 2k´1

0
uk

| logpuq|dt

ď rCk,

where rCk is independent of r. This shows

φprq| logprq| ď C´1
k

ˆ

rCk `

ˇ

ˇ

ˇ

ˇ

ż

aptq f ptqdt
ˇ

ˇ

ˇ

ˇ

˙

≲ 1 ` } f }phpq˚}a}hp ≲ 1 ` }a}hp
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with constants depending on k but independent of r.

□

Now we turn our attention to present a new class of molecules satisfying analogous cancellation

conditions of pp, s, ωq atoms and a molecular decomposition of hppRnq for the full range 0 ă p ď 1 in

terms of such molecules.

Definition 1.7. Let 0 ă p ď 1 ď s ă 8 with p ă s and λ ą n ps{p ´ 1q. Suppose ω and φp be as

in Definition 1.6. We say that a measurable function M is a pp, s, λ, ωq molecule in hp if there exists a

ball B “ Bpx0, rq Ă Rn such that the size conditions (M1) and (M2) of Definition 1.3 are satisfied and

moreover

M3.
ˇ

ˇ

ˇ

ˇ

ż

Rn
Mpxqpx ´ x0q

αdx
ˇ

ˇ

ˇ

ˇ

ď

$

’

’

&

’

’

%

ω, if |α| ă np1{p ´ 1q,

φpprq, if |α| “ Np “ np1{p ´ 1q.

We call the molecule “normalized" if the constant appearing in (M1) and (M2) is C “ 1.

Choosing s “ 1, the previous definition covers the molecules introduced by Komori in [50, Definition

4.4] for n{pn ` 1q ă p ă 1. In particular, our definition not only extends it for 0 ă p ď n
n`1 and p “ 1,

but also provides an appropriate bound for the size of the moment condition when p “ n{pn ` kq for

k P Z`.

Remark 1.4. As in (1.8), assuming only conditions (M1) and (M2), we can derive the same estimate on

the moments of M. In fact, for any j P Z` let C j “ tx P Rn : 2 jr ď |x ´ x0| ă 2 j`1ru. Then, since

|α| ď np1{p ´ 1q and λ ą nps{p ´ 1q we have

ˇ

ˇ

ˇ

ˇ

ż

Mpxqpx ´ x0q
αdx

ˇ

ˇ

ˇ

ˇ

≲ r|α|
|B|

1´ 1
s }M}LspBq `

8
ÿ

j“0

p2 jrq
|α|´ λ

s |C j|
1´ 1

s }M | ¨ ´x0|
λ
s }LspBcq

≲ r|α|´np 1
p ´1q ` r|α|´np 1

p ´1q
8
ÿ

j“0

p2 j
q

|α|´ λ
s `np1´ 1

s q

≲ r|α|´np 1
p ´1q.

This shows that (M3) holds automatically, with some constant Cn,s,ω in place ω, for all balls with r ě 1.
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Next we show that we can decompose a pp, s, λ, ωq molecule in terms of pp, s, ωq atoms in hp with

uniformly bounded norm in hppRnq.

Proposition 1.4. If M is a normalized pp, s, λ, ωq molecule in hp, then }M}hp ≲ 1, with the constant

depending on the parameters p, n, s, λ, ω but not on M, i.e., independent of M.

Proof. Following the proof of Proposition 1.2, we can decompose M as follows (see in particular (1.5)

and (1.6))

M “

8
ÿ

j“0

pM j ´ P jq `

8
ÿ

j“0

ÿ

|γ|ďNp

ψ j
γ `

ÿ

|γ|ďNp

N0
γ |E0|

´1
γ ϕ0

γ

“

8
ÿ

j“0

d j a j `

8
ÿ

j“0

ÿ

|γ|ďNp

h j b jγ `
ÿ

|γ|ďNp

N0
γ |E0|

´1
γ ϕ0

γ,

in which a j and b jγ are pp, sq and pp,8q atoms in Hp (and hence pp, s, ωq atoms in hp) with coefficients

belonging to ℓppCq. It remains to deal with the third sum (which is zero in the homogeneous case). Let

aωpxq “
ÿ

|γ|ďNp

N0
γ |E0|

´1 ϕ0
γpxq.

We have that supp paωq Ă E0 “ B and, proceeding as in Remark 1.4, conditions (M1) and (M2) give

|N0
γ | “

ˇ

ˇ

ˇ

ˇ

ż

Rn
Mpxqpx ´ x0q

γdx
ˇ

ˇ

ˇ

ˇ

≲ r|γ|`np1´ 1
p q.

Using the previous estimate and the fact that r|γ||ϕ0
γpxq| ď C, we get the desired size condition:

›

›

›

›

ÿ

|γ|ďNp

N0
γ |E0|

´1 ϕ0
γ

›

›

›

›

Ls

ď
ÿ

|γ|ďNp

|N0
γ | |E0|

´1

ˆ
ż

E0

|ϕ0
γpxq|

sdx
˙1{s

ď
ÿ

|γ|ďNp

|N0
γ | |E0|

1
s ´1 r´|γ| ≲ r np 1

s ´ 1
p q.

It remains to show the estimate on the moment conditions of aω, which are the same as those of M and
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hence follows immediately from (M3). Indeed, for any |α| ď Np,

ż

aωpxq px ´ x0q
αdx “

ÿ

|γ|ďNp

N0
γ

ˆ

|E0|
´1

ż

E0

ϕ0
γpxqpx ´ x0q

αdx
˙

“ N0
α “

ż

Rn
Mpxqpx ´ x0q

αdx.

Thus, aω is a multiple of a pp, s, ωq atom.

Remark 1.5. From the previous proof we see that the condition on the moments required on the

molecules are automatically the same as the one imposed on the atoms. In this sense, from the

approximate atoms developed in [19, Appendix B] we could also define molecules with the cancellation

condition
ˇ

ˇ

ˇ

ˇ

ż

Mpxqpx ´ x0q
αdx

ˇ

ˇ

ˇ

ˇ

≲ r η for all |α| ď Np and some η ą 0

for every 0 ă p ď 1. This observation covers the molecules defined recently in [11, Definition 2.2].

Since pp, sq atoms in hp are automatically pp, s, λ, ωq molecules for any choice of λ and ω in

Definition 1.7, we can combine the atomic decomposition in Theorem 1.2 with Proposition 1.4 (see

also the remarks preceding Proposition 1.1) to get:

Corollary 1.2. Let 0 ă p ď 1. Then, f P hppRnq if and only if there exists a sequence tM ju jPN

of pp, s, λ, ωq molecules in hp and a sequence td ju jPN P ℓppCq such that f “

8
ÿ

j“1

d j M j in the sense

of distributions and in hp norm, and } f }hp is comparable to the infimum of }td ju jPN}ℓp over all such

representations.

1.2.2 Application: Inhomogeneous Hardy’s inequality

It is well known that if 0 ă p ď 1 and f P HppRnq, then its Fourier transform is a continuous function

and satisfies the pointwise inequality

| pf pξq| ď C |ξ|np 1
p ´1q } f }Hp (1.14)



1.2 Local Hardy spaces 34

(see [35, Corollary 7.21 p. 339]). Moreover, a weaker integral estimate, known as Hardy’s inequality

also holds for this setting, given by

ż

Rn

| pf pξq|p

|ξ|np2´pq
dξ ď C} f }

p
Hp (1.15)

(see [35, Corollary 7.23 p. 342]).

For local Hardy spaces, the inhomogeneous version of inequality (1.14) has been proved by Hounie

and Kapp in [45, Proposition 5.1]. On the other hand, for the Hardy’s inequality (1.15), it was

originally stated without proof by Goldberg in [36, Theorem 2’]. When p “ n “ 1, the corresponding

inequality was proved by Dafni and Liflyand [22, Theorem 1] using the approximate molecules and the

characterization of h1pRq in terms of the local Hilbert transform.

In this section, we apply the molecular theory without cancellation developed in the previous section

to extend [22, Theorem 1] and prove a inhomogeneous version of Hardy’s inequality on hppRnq for

0 ă p ď 1 and any dimension. Our main theorem is the following:

Theorem 1.3. For any 0 ă p ď 1, there exists a constant C ą 0 such that for every f P hppRnq

ż

Rn

| pf pξq|p

p1 ` |ξ|qnp2´pq
dξ ď C} f }

p
hp .

The main ingredient to extend this result for 0 ă p ď 1 and any dimension is a pointwise control

of the Fourier transform of pp, s, λ, ωq molecules on hppRnq, as proved in Lemma 1.2 below. This result

resembles the decay of the Fourier transform for standard atoms on HppRnq (see for instance [35, Theorem

7.20 p. 337]), but we need to take into consideration the non-vanishing moments. Moreover, due to the

weaker decay at infinity of the molecules, namely condition (M2) compared to compact support of an

atom, we cannot get unlimited smoothness of the Fourier transform. The parameter λ is what determines

this limitation.

Lemma 1.2. Let 0 ă p ď 1 ď s ă 8 with p ă s and λ ą n ps{p ´ 1q. Suppose M satisfies conditions
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(M1) and (M2) with respect to the ball B “ Bpx0, rq Ă Rn. Then, the Fourier transform of M satisfies

| pMpξq| ≲ |ξ|γ rγ´np 1
p ´1q `

ÿ

|α|ďN

|ξ||α|

ˇ

ˇ

ˇ

ˇ

ż

Rn
Mpxqpx ´ x0q

αdx
ˇ

ˇ

ˇ

ˇ

(1.16)

for any γ P

´

n
´

1
p ´ 1

¯

, λs ´ n
s1

¯

and N P Z` satisfying N ă γ ď N ` 1.

Proof. Since the absolute value of the Fourier transform is preserved under translation of the function,

we may assume for simplicity x0 “ 0. For ξ “ 0, we see that equality (1.16) holds by considering α “ 0

term in the sum on the right-hand-side, so we may assume ξ , 0.

Suppose first that γ “ N ` 1 ă λ{s ´ n{s1. Denoting φpxq “ e´2πix¨ξ, we write

PN,φ,0pxq “
ÿ

|α|ďN

Cα pB
αφqp0qxα

its Taylor polynomial of order N centered at 0. Using the formula for the remainder, we get for t P p0, 1q,

| pMpξq| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Rn
Mpxq rφpxq ´ PN,φ,0pxqs dx `

ÿ

|α|ďN

Cα pB
αφqp0q

ż

Rn
Mpxqxαdx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Rn
Mpxq

ÿ

|α|“N`1

Cα pB
αφqptxqxαdx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`
ÿ

|α|ďN

Cα |2πξ||α|

ˇ

ˇ

ˇ

ˇ

ż

Rn
Mpxqxαdx

ˇ

ˇ

ˇ

ˇ

≲ |ξ|N`1
ż

Rn
|Mpxq| |x|

N`1dx `
ÿ

|α|ďN

|ξ||α|

ˇ

ˇ

ˇ

ˇ

ż

Rn
Mpxqxαdx

ˇ

ˇ

ˇ

ˇ

. (1.17)

Similarly to Remark 1.4, from conditions (M1) and (M2) of the molecule and Hölder’s inequality, one

has

ż

Rn
|Mpxq| |x|

N`1dx ď r
n
s1 `N`1

}M}LspBq ` }M | ¨ |
λ
s }LspBcq } | ¨ |

´ λ
s `N`1

}Ls1
pBcq

“ r
n
s1 `N`1

}M}LspBq ` r´ λ
s `N`1` n

s1 }M | ¨ |
λ
s }LspBcq

≲ rN`1´np 1
p ´1q,

where the convergence of the integral follows from the assumption that N ` 1 ă λ{s ´ n{s1. This gives

the result in the case γ “ N ` 1.
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Now suppose γ ă N ` 1. Recalling that ξ , 0, we write

pMpξq “

ż

|x|ě|ξ|´1
e´2πix¨ξMpxqdx `

ż

|x|ď|ξ|´1
e´2πix¨ξMpxqdx :“ I1 ` I2.

We estimate the first integral using Hölder’s inequality, together with the global (M2) condition for

Mpxq|x|λ
1{s with λ1 “ spγ ` n{s1q ă λ (see Remark 1.1 (ii)), as follows:

|I1| ď

ż

|x|ě|ξ|´1
|Mpxq|dx ď }M | ¨ |

λ1

s }LspRnq } | ¨ |
´ λ1

s }Ls1
p|x|ě|ξ|´1q ď rγ´np 1

p ´1q|ξ|γ.

For the second integral, we again proceed via the Taylor expansion of φpxq “ e´2πix¨ξ, to get, as in (1.17)

|I2| ≲ |ξ|N`1
ż

|x|ď|ξ|´1
|Mpxq| |x|

N`1dx `
ÿ

|α|ďN

|ξ||α|

ˇ

ˇ

ˇ

ˇ

ż

|x|ď|ξ|´1
Mpxqxαdx

ˇ

ˇ

ˇ

ˇ

“ |ξ|N`1
ż

|x|ď|ξ|´1
|Mpxq| |x|

λ1

s |x|
N`1´ λ1

s dx `
ÿ

|α|ďN

|ξ||α|

ˇ

ˇ

ˇ

ˇ

ż

Rn
Mpxqxαdx ´

ż

|x|ě|ξ|´1
Mpxqxαdx

ˇ

ˇ

ˇ

ˇ

ď |ξ|N`1
}M | ¨ |

λ1

s }LspRnq } | ¨ |
N`1´ λ1

s }Ls1
p|x|ď|ξ|´1q

`
ÿ

|α|ďN

|ξ||α|

ż

|x|ě|ξ|´1
|Mpxq||x|

αdx `
ÿ

|α|ďN

|ξ||α|

ˇ

ˇ

ˇ

ˇ

ż

Rn
Mpxqxαdx

ˇ

ˇ

ˇ

ˇ

≲ |ξ|N`1r
λ1

s ´ n
s1 ´np 1

p ´1q|ξ|´pN`1´ λ1

s ` n
s1 q `

ÿ

|α|ďN

|ξ||α|
}M | ¨ |

λ1

s }LspRnq } | ¨ |
|α|´ λ1

s }Ls1
p|x|ě|ξ|´1q

`
ÿ

|α|ďN

|ξ||α|

ˇ

ˇ

ˇ

ˇ

ż

Rn
Mpxqxαdx

ˇ

ˇ

ˇ

ˇ

≲ rγ´np 1
p ´1q|ξ|γ `

ÿ

|α|ďN

|ξ||α|

ˇ

ˇ

ˇ

ˇ

ż

Rn
Mpxqxαdx

ˇ

ˇ

ˇ

ˇ

.

Here we have used that γ “ λ1{s ´ n{s1 ă N ` 1 for the local integrability and that |α| ď N ă γ “

λ1{s ´ n{s1 implies s1p|α| ´ λ1{sq ă ´n. This concludes the case γ ă N ` 1.

For a molecule, the above estimate on the Fourier transform and the control on the moments allow us

to prove the following refined version of Hardy’s inequality:
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Lemma 1.3. Let 1 ď s ď 2 with p ă s and M is a pp, s, λ, ωq molecule in hp associated to the ball

B “ Bpx0, rq. Then, for any a ą 0,

ż

Rn

| pMpξq|p

paω ` |ξ|qnp2´pq
dξ ď Ca,ω,p. (1.18)

In the homogeneous case, that is ω “ 0, we recover Hardy’s inequality for HppRnq given in (1.15).

For ω ą 0, choosing a “ ω´1 we see that Goldberg’s Hardy inequality holds uniformly for molecules

with a constant depending on ω and p.

Proof. To show (1.18) we split the integral in the following way:

ż

Rn

| pMpξq|p

paω ` |ξ|qnp2´pq
dξ “

ż

|ξ|ăr´1
`

ż

|ξ|ąr´1
:“ I1 ` I2.

Estimate of I2. Applying Hölder and Hausdorff-Young inequalities, one gets

ż

|ξ|ąr´1

| pMpξq|p

paω ` |ξ|qnp2´pq
dξ ď } pM}

p
Ls1

pRnq

ˆ
ż

|ξ|ąr´1
|ξ|

´
np2´pq

1´p{s1 dξ
˙1´

p
s1

≲ }M}
p
LspRnq

rnp2´pq´np1´
p
s1 q

ˆ
ż

|ξ|ą1
|ξ|

´
np2´pq

1´p{s1 dξ
˙1´

p
s1

» C.

Here we have used condition (M1), and the integrability of the second term follows since

1 ą p
ˆ

1 ´
1
s1

˙

ô ´
np2 ´ pq

1 ´ p{s1
ă ´n.

Estimate of I1. Taking N “ Np and γ P

´

n
´

1
p ´ 1

¯

, λs ´ n
s1

¯

X pNp,Np ` 1 s in Lemma 1.2, one has

I1 ≲ rprγ´np 1
p ´1qs

ż

|ξ|ăr´1
|ξ|pγ

paω ` |ξ|qnpp´2qdξ

`
ÿ

|α|ďNp

ˇ

ˇ

ˇ

ˇ

ż

Rn
Mpxqpx ´ x0q

αdx
ˇ

ˇ

ˇ

ˇ

p ż

|ξ|ăr´1
|ξ||α|p

paω ` |ξ|qnpp´2qdξ :“ I3 ` I4.
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For I3, using that paω ` |ξ|qnpp´2q ď |ξ|npp´2q we get

|I3| ď rprγ´np 1
p ´1qs

ż

|ξ|ăr´1
|ξ|npp´2q`pγdξ

» r pγ`npp´1q r´pγ´npp´2q´n
“ 1,

where the integrability follows from γ ą np1{p ´ 1q.

For I4, using the approximate moment conditions (M3) of the molecule when ω ą 0, we get

ÿ

|α|ďNp

ˇ

ˇ

ˇ

ˇ

ż

Rn
Mpxqpx ´ x0q

αdx
ˇ

ˇ

ˇ

ˇ

p ż

|ξ|ăr´1
|ξ||α|p

paω ` |ξ|qnpp´2qdξ

“
ÿ

|α|ďNp

ˇ

ˇ

ˇ

ˇ

ż

Rn
Mpxqpx ´ x0q

αdx
ˇ

ˇ

ˇ

ˇ

p

paωq
np´n`|α|p

ż

|ξ|ăpaωrq´1
|ξ||α|p

p1 ` |ξ|qnpp´2qdξ

ď
ÿ

|α|ďNp

ˇ

ˇ

ˇ

ˇ

ż

Rn
Mpxqpx ´ x0q

αdx
ˇ

ˇ

ˇ

ˇ

p

paωq
np´n`|α|p

ż 1`paωrq´1

1
tp|α|`np´n´1dt

ď
ÿ

|α|ănp 1
p ´1q

ωp
paωq

pr|α|´np 1
p ´1qs

ż 8

1
tpr|α|´np 1

p ´1qs´1dt

`
ÿ

|α|“np 1
p ´1q

np 1
p ´1qPZ

„

log
ˆ

1 `
1
ωr

˙ȷ´1 ż 1`paωrq´1

1
t´1dt

ď Ca,ω,p `

„

log
ˆ

1 `
1
ωr

˙ȷ´1

log
ˆ

1 `
1

aωr

˙

» Ca,ω,p.

We now proceed to the proof of Theorem 1.3.

Proof. Let f P hppRnq. Since the molecular decomposition of f presented in Corollary 1.2 converges in

S1pRnq, and moreover the Fourier transform is continuous in S1pRnq it follows that

pf “

8
ÿ

j“1

d jxM j.
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Noticing that
8
ÿ

j“1

|d j| ď

˜

8
ÿ

j“1

|d j|
p

¸1{p

ď C } f }hp ,

we get the desired result after aplying Lemma 1.3.

1.3 Weighted Hardy spaces

In this section we introduce weights in the Muckenhoupt class and the weighted Hardy spaces

associated to it. In particular, we are interested in proving a molecular decomposition of such spaces.

A non-negative measurable function w belongs to the Muckenhoupt class At for 1 ă t ă 8 if

rwsAt :“ sup
B ĂRn

1
|B|

ż

B
wpxqdx

ˆ

1
|B|

ż

B
w

1
1´t pxqdx

˙t´1

ă 8,

where the supremum is taking over all balls in Rn. We say w P A1 if

rwsA1 :“ sup
B ĂRn

1
wpxqχBpxq

1
|B|

ż

B
wpyqdy ă 8. (1.19)

We set A8 “
ď

t ě 1

At. It is known that At1 Ă At2 with rwsAt2
ď rwsAt1

for t1 ă t2 and if w P At for some

1 ă t ă 8, there exists 1 ă s ă t such that w P As. Then, we define the critical index for the weight w

to be tw :“ inf tt : w P Atu.

We say the weight w satisfies the reverse Hölder inequality with index 1 ă r ă 8, denoted by

w P RHr, if there exists a constant C ą 0 such that for any B Ă Rn

ˆ

1
|B|

ż

B
w r

pxqdx
˙1{r

ď
C
|B|

ż

B
wpxqdx.

A simple Hölder inequality shows that if w P RHr then w P RHs for all 1 ă s ă r and hence we define

the critical index for the Hölder reverse inequality to be rw “ sup tr : w P RHru. If rw “ 8, it means

that w P RHr for all 1 ă r ă 8. We also denote by wpAq :“
ż

A
w for any subset A Ă Rn. The following

lemma relates Muchenhoupt weights with the Lebesgue measure of a set.

Lemma 1.4 ([35, Chapter IV.2 - Theorem 2.1]). If w P At X RHr for some t ě 1 and r ą 1, then there
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exists constants C1, C2 ą 0 such that

C1

ˆ

|A|

|B|

˙t

ď
wpAq

wpBq
ď C2

ˆ

|A|

|B|

˙1´ 1
r

for any subsets A Ă B of Rn.

Moreover, if we denote by kB “ Bpx0, krq the k´th dilation of the ball B, then wpkBq satisfies

Lemma 1.5 ([35, Chapter IV.2 - Lemma 2.2]). If w P At for some t ě 1, then there exists a constant

C ą 0 such that for any ball B “ Bpx0, rq Ă Rn it follows that wpkBq ď C knt wpBq.

For any 0 ă p ă 8 and w P A8, we define the weighted Lebesgue space, denoted by Lp
wpRnq :“

LppRn,wpxqdxq, as the set of all measurable functions such that

} f }Lp
w

:“
ˆ
ż

| f pxq|
pwpxqdx

˙1{p

ă 8.

Then, we can define the weighted Hardy spaces analogous as before.

Definition 1.8. Let 0 ă p ă 8 and w P A8. We say that f P S1pRnq belongs to the weighted Hardy

space, denote by Hp
wpRnq, if there exists φ P SpRnq satisfying

ş

φ , 0 such thatMφ f P Lp
wpRnq.

For the characterization in terms of several maximal characterizations, see [74, Chapter VI]. We set

the Hp
w norm as } f }Hp

w
:“ }Mφ f }Lp

w
. In contrast to the non-weighted theory, given w P A8 we may

have Hp
wpRnq , Lp

wpRnq when p ą 1, since the Hardy space associated to a general weight may contain

measures and distributions. However, if w P Ap, then Hp
wpRnq “ Lp

wpRnq ( [74, Theorem 1 p. 86]). We

refer to [34, 74] for further details and properties of weighted Hardy spaces.

The atomic theory for the weighted Hardy spaces where first developed in [34] for 0 ă p ď 1,

dimension n “ 1 and weights w P Aq for q ą p. The n-dimensional case, including also 0 ă p ă 8 and

general weight classes can be consulted in [74, Chapter VIII]. See also [71, Section 2.2.1], where atoms

with a slightly different size conditions were considered. Here we deal only with the case 0 ă p ď 1.
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Definition 1.9. Let 0 ă p ď 1 ď s ď 8 with p ă s and w P A8. A measurable function a is a pp,w, sq

atom in Hp
w if there exist a ball B “ Bpx0, rq Ă Rn such that

piq supp paq Ă B, piiq }a}Ls ď wpBq
1
s ´ 1

p piiiq
ż

apxqxαdx “ 0

for all α P Zn
` such that |α| ď Nw,p :“

Z

n
ˆ

tw

p
´ 1

˙^

.

We have the following atomic decomposition theorem for Hp
wpRnq:

Theorem 1.4. Let 0 ă p ď 1 ď s ď 8 with p ă s and w P A8. If f P Hp
wpRnq, then there exist

tλ ju j P ℓppCq and ta ju j a sequence of pp,w,8q atoms in Hp
w such that

f “

8
ÿ

j“1

λ j a j in Hp
w norm and

ˆ 8
ÿ

j“1

|λ j|
p

˙1{p

≲ } f }Hp
w
.

Conversely, if ta ju j is a sequence of pp,w,8q atoms and tλ ju j P ℓppCq, then f “

8
ÿ

j“1

λ j a j belongs to

Hp
wpRnq and } f }Hp

w
≲

ˆ 8
ÿ

j“1

|λ j|
p

˙1{p

. Moreover,

} f }Hp
w

« inf
"ˆ 8

ÿ

j“1

|λ j|
p

˙1{p*

,

where the infimum is taken over all atomic representations of f .

The molecular structure of weighted Hardy spaces were first studied in [57] for w P A1 and later

in [54] for more general Muckenhoupt classes. In both works, the notion of molecules is a weighted

analogous version of the original work of Taibleson and Weiss, discussed earlier in this chapter. Other

notion where the integral estimates were replaced by a pointwise one can be found in [71]. We present

now a definition based on the same estimates given in Definition 1.3.

Definition 1.10. Let 0 ă p ď 1 ď s ă 8 with p ă s and w P At for some 1 ď t ă 8. We say that a

measurable function M is a pp,w, s, λq molecule in Hp
w for t ď s and

λ ą max
"

n
ˆ

s
p

´ 1
˙

, s pNw,p ` nq
rw

rw ´ 1
´ n

*

, (1.20)
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if there exists a ball B “ Bpx0, rq Ă Rn and a constant C ą 0 such that:

M1. }M}Ls
wpBq ď C wpBq

1
s ´ 1

p ;

M2.
›

›

›
M w

`

B|¨ ´x0|

˘
λ
sn

›

›

›

Ls
wpBcq

ď C wpBq
λ
sn ` 1

s ´ 1
p , where B|x´x0| denotes the ball Bpx0, |x ´ x0|q;

M3.
ż

Mpxqxαdx “ 0 for all |α| ď Nw,p.

Remark 1.6. Let us provide a few comments about the lower bound of λ in (1.20). Since Nw,p ď

nptw{p ´ 1q, we always have

s pNw,p ` nq
rw

rw ´ 1
´ n ď n

ˆ

s
p

tw rw

rw ´ 1
´ 1

˙

and n
ˆ

s
p

´ 1
˙

ă n
ˆ

s
p

tw rw

rw ´ 1
´ 1

˙

.

Thus, we could replace the lower bound in (1.20) by the stronger one

λ ą n
ˆ

s
p

tw rw

rw ´ 1
´ 1

˙

. (1.21)

Note that this is stronger only when p is such that Np,w ă nptw{p ´ 1q. Indeed, for Np,w “ nptw{p ´ 1q,

condition (1.21) is the right one.

This notion allows us to recover the non-weighted molecules (Definition 1.3) considering w ” 1 P A1.

Also, just as in Remark 1.1 (i), condition (M1) on B and (M2) on Bc can both be replaced simultaneously

by global ones.

The next proposition is the weighted counterpart of Proposition 1.2.

Proposition 1.5. Suppose M is a pp,w, s, λq molecule. Then }M}Hp
w

ď C uniformly.

Proof. This proof follows [54, Theorem 1] and Proposition 1.2. We keep the same notation and point out

here only the differences. Split

M “

8
ÿ

j“0

M j “

8
ÿ

j“0

pM j ´ P jq `

8
ÿ

j“0

P j

in Ls
wpRnq. We show here that pM j ´P jq is a multiple of a pp,w, sq atom and P j a finite linear combination

of pp,w,8q atoms for each j.
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We focus on estimating the Ls
w norm of M j. For M0, condition (M1) immediately gives }M0}Ls

w ď

wpB0q
1
s ´ 1

p . Consider the continuous and strictly decreasing function

gpzq “ n
ˆ

s
p

¨
tw z

z ´ 1
´ 1

˙

for z ą 1.

Since by hypothesis λ ą gprwq, there exists 1 ă δ ă rw such that w P RHδ and λ ą gpδq ą gprwq.

Consider now j P Z` and x P E j. Since B|x´x0| Ă B j, Lemma 1.4 implies

«

w
`

B|x´x0|

˘

w pB jq

ff´ λ
n

ď C
ˆ

|B j|

|B|x´x0||

˙
tλ
n

ď Ct,n,λ

where the constant does not depend on r nor j. Then,

ż

E j

|Mpxq|
swpxqdx “

ż

E j

|Mpxq|
s

«

w
`

B|x´x0|

˘

w pB jq

ff
λ
n
«

w
`

B|x´x0|

˘

w pB jq

ff´ λ
n

wpxqdx ≲ wpB jq
´ λ

n wpBq
λ
n `1´ s

p .

Hence, again by Lemma 1.4

}M j}Ls
w ≲ wpB jq

´ λ
sn wpBq

λ
sn ` 1

s ´ 1
p “ wpB jq

1
s ´ 1

p

„

wpBq

wpB jq

ȷ
λ
sn ` 1

s ´ 1
p

≲ wpB jq
1
s ´ 1

p
`

2 j
˘´np1´ 1

δqp λ
sn ` 1

s ´ 1
p q
. (1.22)

On the other hand, since t ď s, in particular w P As and

|P jpxq| ď

ˆ

ÿ

|γ|ďd

p2 jrq
|γ|

|ϕ j
γpxq|

˙

1
|E j|

ż

E j

|Mpyq|w
1
s pyqw´ 1

s pyqdy

≲ |E j|
1
s1 ´1

}M j}Ls
w

ˆ

1
|B j|

ż

B j

w´ s1

s pyqdy
˙

1
s1

≲ }M j}Ls
w wpB jq

´ 1
s . (1.23)

From (1.22) and (1.23) we obtain

}M j ´ P j}Ls
w ď 2}M j}Ls

w ≲ wpB jq
1
s ´ 1

p
`

2 j
˘´np1´ 1

δqp λ
sn ` 1

s ´ 1
p q
.
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From these estimates, writing pM j ´ P jqpxq “ d j a jpxq where d j “ }M j ´ P j}Ls
w wpB jq

1
p ´ 1

s and

a jpxq “
M jpxq ´ P jpxq

}M j ´ P j}Ls
w

wpB jq
1
t ´ 1

p ,

we get that a j is a pp,w, sq atom and

8
ÿ

j“0

|d j|
p

“

8
ÿ

j“0

}M j ´ P j}
p
Ls

w
wpB jq

1´
p
s ≲

8
ÿ

j“0

p2 j
q

´npp1´ 1
δqp λ

sn ` 1
s ´ 1

p q ă 8 (1.24)

provided that λ ą n ps{p ´ 1q.

We show now the claim for P j. By Hölder inequality and (1.22) we have

|N j`1
γ | “

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“ j`1

ż

Ek

Mpxqxγdx

ˇ

ˇ

ˇ

ˇ

ˇ

≲
8
ÿ

k“ j`1

p2krq
|γ|

ż

Ek

|Mkpxq|dx

ď

8
ÿ

k“ j`1

p2krq
|γ|

}Mk}Ls
w |Bk| wpBkq

´ 1
s

≲
8
ÿ

k“ j`1

p2krq
|γ|`nwpBkq

´ 1
p p2k

q
´np1´ 1

δqp λ
sn ` 1

s ´ 1
p q

“ p2 jrq
|γ|`n

p2 j
q

´np1´ 1
δqp λ

sn ` 1
s ´ 1

p q
8
ÿ

k“0

wpBk` j`1q
´ 1

p p2k
q

|γ|`n´np1´ 1
δqp λ

sn ` 1
s ´ 1

p q.

Using Lemma 1.4 we obtain

wpBk` j`1q
´ 1

p “

„

wpB j`1q

wpBk` j`1q

ȷ
1
p

wpB j`1q
´ 1

p ≲ p2k
q

´ n
p p1´ 1

δq wpB j`1q
´ 1

p

and hence since λ ą gpδq, for all |γ| ď Nw,p one has

|N j`1
γ | ≲ p2 jrq

|γ|`n
p2 j

q
´np1´ 1

δqp λ
sn ` 1

s ´ 1
p qwpB j`1q

´ 1
p

8
ÿ

k“0

p2k
q

|γ|`n´np1´ 1
δqp λ

sn ` 1
s q

≲ p2 jrq
|γ|`n

p2 j
q

´np1´ 1
δqp λ

sn ` 1
s ´ 1

p qwpB j`1q
´ 1

p .

Using that p2 jrq|γ||ϕ
j
γpxq| ď C uniformly and the previous control it follows

|N j
γ|E j|

´1ϕ j
γpxq| ≲ wpB jq

´ 1
p p2 j

q
´np1´ 1

δqp λ
sn ` 1

s ´ 1
p q.
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Denote by ψ
j
γpxq “ h j b jγpxq where h j “ p2 jq

´np1´ 1
δqp λ

sn ` 1
s ´ 1

p q and b jγpxq “ k j ψ
j
γpxq for k j “

p2 jq
np1´ 1

δqp λ
sn ` 1

s ´ 1
p q. It is clear that b jγ is a multiple of a pp,w,8q atom since supp pB jγq Ă B j,

}b jγ}L8 ≲ wpB jq
´ 1

p and the moment condition follows immediately from (1.7). In addition, just as in

(1.24) one has
8
ÿ

j“0

|h j|
p

ă 8.



Chapter

2
Strongly Singular Calderón–Zygmund operators

We start defining Calderón–Zygmund operators within a more general framework, which were first

considered by Coifman and Meyer in [17, Chapter IV], in connection with pseudodifferential operators.

Let T : SpRnq Ñ S1pRnq to be a linear and continuous operator. From the Schwartz Kernel Theorem

(see for instance in [43, Theorem 5.2.1 p. 128]), it is guaranteed the existence of a tempered distribution

W P S1pR2nq, called distributional kernel of T , satisfying

xT pφq, ϕy “ xW, φ b ψy, for all φ, ψ P SpRn
q, (2.1)

in which φ b ψpx, yq “ φpxqψpyq. We are interested in operators T as described before in which its

distributional kernel coincides with a locally integrable function K defined on Rn ˆ Rnz∆, where ∆ “

tpx, yq P Rn ˆ Rn : x “ yu, satisfying certain regularity conditions described in the next definition.

Definition 2.1. We say that a locally integrable function K defined on Rn ˆ Rnz∆ is a standard kernel if

there exists constants C1, C2 ą 0 and 0 ă δ ď 1 such that

|Kpx, yq| ď
C1

|x ´ y|n
for all x , y (2.2)

and

|Kpx, yq ´ Kpx, zq| ` |Kpy, xq ´ Kpz, xq| ď C2
|y ´ z|δ

|x ´ z|n`δ
, for all |x ´ z| ě 2|y ´ z|. (2.3)

46
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When this is the case, the representation of T in the distributional sense (2.1) can be written in terms of

an absolute convergent integral given by

xT pφq, ψy “

ż

Rn

ż

Rn
Kpx, yqφpxqψpyqdxdy, whenever supp pφq X supp pψq “ H.

Under the additional assumption that T extends to a bounded operator on L2pRnq, one can show [38,

Proposition 4.1.9] that T can also be represented as

T f pxq “

ż

Rn
Kpx, yq f pyqdy, for all f P L8

c pRn
q and x < supp p f q,

where L8
c pRnq denotes the set of bounded functions with compact support.

Definition 2.2. Let T : SpRnq Ñ S1pRnq to be a linear and continuous operator associated to a standard

kernel K. We say that T is a standard Calderón–Zygmund operator if it can be extended to a bounded

operator from L2pRnq to itself.

In the convolution setting, the L2 continuity assumed in the previous definition can be derived by

assuming |pKpξq| ď C. Necessary and sufficient conditions for the L2 boundedness of non-convolution

Calderón–Zygmund operators were studied by David and Journé in the celebrated T p1q´Theorem [24].

Classical examples of standard Calderón–Zygmund operators are pseudodifferential operators of

order zero in the Hörmander class OpS 0
1,0pRnq [17, Theorem 19 p. 87], the Cauchy integral and Calderón

commutators [30, p. 99]. For more examples see [3, Section 3].

The classical methods developed by Calderón and Zygmund to obtain Lp inequalities for singular

integrals easily apply to Calderón–Zygmund operators, yielding the following well known result:

Theorem 2.1 ([17, Theorem 20 p. 89]). Let T to be a standard Calderón–Zygmund operator. Then, T

extends to a bounded operator from LppRnq to itself when 1 ă p ă 8 and satisfies weak p1, 1q inequality.

The proof of the previous theorem relies on the following steps. First, applying the Calderón–Zygmund

decomposition [30, Theorem 2.11] and the conditions on the kernel it is possible to show that T satisfies

weak p1, 1q inequality. This fact together with the boundedness on L2pRnq, one gets from Marcinkiewicz
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Interpolation Theorem [30, Theorem 2.4] that T is bounded on LppRnq for every 1 ă p ď 2. Since the

adjoint T ˚ of T is also a Calderón–Zygmund operator (associated to the kernel rKpx, yq “ Kpy, xq) we get

the continuity for p ą 2 by duality. For a detailed proof see [30, Chapter 5].

When considering Hardy spaces HppRnq for 0 ă p ď 1, Álvarez and Milman showed the following:

Theorem 2.2 ([5, Theorem 1.2]). If T is a standard Calderón–Zygmund operator satisfying T ˚p1q “ 0,

then T extended to a bounded operator from HppRnq to itself provided that
n

n ` 1
ă

n
n ` δ

ă p ď 1.

The precise definition of T ˚p1q “ 0 will be provided in Section 2.1. Given m P N, the range
n

n ` m ` 1
ă p ď

n
n ` m

can be reached under more cancellation on the operator, namely T ˚pxαq “ 0,

and imposing more regularity on the kernel, that is, assuming that

|B
α
y Kpx, yq| ď C |x ´ y|

´n´|α|, for all |α| ď m ` 1.

Strongly singular Calderón–Zygmund operators were first motivated by the following multiplier

operator. Let 0 ă σ ă 1, 0 ă β ď nσ{2 and ψ P C8pRnq such that ψ ” 0 in a neighborhood of

the origin and ψ ” 1 outside a bounded set and consider

pTσ, β f q
p

pξq “
ei|ξ|σ

|ξ|β
ψpξq pf pξq, if f P C8

c pRn
q.

These operators are not Mihlin-Hörmander type multipliers and provides examples of pseudodifferential

operators in the Hörmander class OpS ´β
σ, νpR

nq with 0 ă σ ă 1, 0 ď ν ă 1 and ν ď σ. The Lp

boundedness were established by Hirschman and Wainger in [40, 78], where they showed that if

ˇ

ˇ

ˇ

ˇ

1
2

´
1
p

ˇ

ˇ

ˇ

ˇ

ă
β

n

»

—

—

–

n
2

`

nσ
2 ´ β

1 ´ σ

β `

nσ
2 ´ β

1 ´ σ

fi

ffi

ffi

fl

:“ pn, β, σ,

then Tσ, β is bounded on LppRnq and it is unbounded if |1{2 ´ 1{p| ą pn, β, σ. In order to further investigate

the endpoint case, C. Fefferman in [31] showed that if 1{2 ´ 1{p “ pn, β, σ, a weaker result holds: Tσ, β

maps LppRnq into the Lorentz space Lp,p1

pRnq. The proof relies on showing the weak p1, 1q inequality and

then it follows by an interpolation argument. Note the case p “ 1 occurs when β “ nσ{2. Based on this



49

special case, he defined a class of convolution operators namely weakly-strongly singular integrals, given

by kernels that will be presented in Definition 2.3. These operators include the particular case Tσ, nσ
2

and

are expressed in terms of kernels that are, as expected, more singular at the diagonal but still nice enough

to obtain good continuity properties.

Definition 2.3. Let K P L1
locpR

nzt0uq and 0 ă σ ď 1. We say K is a weakly-strongly singular kernel if

there exists C ą 0 such that for all x P Rn and |y| ă 1 one has

piq |pKpxq| ď Cp1 ` |x|q
´

np1´σq

2 ; piiq
ż

|x|ą2|y|σ
|Kpxq ´ Kpx ´ yq|dx ď C.

It has been shown in [31, Theorem 2’] that if K is a weakly strongly singular kernel, then the convolution

operator associated to it satisfies the weak p1, 1q inequality. The endpoint case L8pRnq to BMOpRnq were

considered in [32, Theorem 1] by C. Fefferman and Stein and weighted inequalities in [13].

Motivated by convolution weakly strongly singular Calderón–Zygmund operators, Álvarez and

Milman in [5] introduced its non-convolution version (see Definition 2.4 bellow) and showed that it

falls into the scope of more general classes of pseudodifferential operators in the Hörmander class.

Remind that for standard convolution operators, condition |pKpξq| ď C implies the L2 continuity.

Replacing this uniform control on the Fourier transform of the kernel by condition (i) of Definition 2.3,

what type of strong inequality it would imply? Write

zK ˚ f pξq “ p1 ` |ξ|q´β
pKpξq pf pξqp1 ` |ξ|qβ

and consider a function g such that pgpξq “ pKpξq pf pξqp1 ` |ξ|qβ. Applying the Bessel Potential Gβ on g

and calculating its Fourier transform we get

rGβpgqsppξq “ p1 ` |ξ|qβ pgpξq “ zK ˚ f pξq,

which implies that Gβpgqpxq “ K ˚ f pxq. From [38, Corollary 1.2.6 (b)] we have

}T ˚ f }Lq1 “ }Gβpgq}Lq1 ≲ }g}L2 “ }pg}L2 ≲ }pKpξq pf pξqp1 ` |ξ|qβ}L2 ≲ } pf }L2 “ } f }L2
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in which
1
q1

“
1
2

´
β

n
. This imply by duality that T is bounded from LqpRnq to L2pRnq for

1
q

“
1
2

`
β

n
.

Thus, roughly speaking, this stronger decay at the Fourier transform of the kernel can be interpreted as

a suitable correction of the L2 continuity due to action of kernels that are more singular at the diagonal.

Therefore we have the following natural extension in the non-convolution setting of weakly-strongly

singular integrals.

Definition 2.4 ([5, Definition 2.1]). We say that a continuous function K defined on Rn ˆ Rnz∆ is a

δ-kernel of type σ for 0 ă δ ď 1 and 0 ă σ ď 1 if there exists a constant C ą 0 such that

|Kpx, yq ´ Kpx, zq| ` |Kpy, xq ´ Kpz, xq| ď C
|y ´ z|δ

|x ´ z|n` δ
σ

(2.4)

for all |x ´ z| ě 2|y ´ z|σ. A linear and continuous operator T : SpRnq Ñ S1pRnq is called a strongly

singular Calderón–Zygmund operator if its distributional kernel restricted away of the diagonal is a

δ-kernel of type σ, in the sense

xT f , gy “

ż ż

Kpx, yq f pyqgpxqdydx, for all f , g P SpRn
q with disjoint supports,

and satisfies the following boundedness properties:

(i) T has bounded extension from L2pRnq to itself;

(ii) T and T ˚ extend to continuous operators from LqpRnq to L2pRnq, in which

1
q

“
1
2

`
β

n
for some p1 ´ σq

n
2

ď β ă
n
2
.

These non-convolution operators recover the classical Calderón–Zygmund operators as a limit caseσ “ 1

and β “ 0. Examples will be discussed in Section 2.3.

A natural question arises on investigating the boundedness properties of these operators in a wide

range of functional spaces and the relation between these properties and the condition imposed on the

kernel. This is the question we are going to consider in the following sections.
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2.1 Continuity in HppRnq

The boundedness of standard Calderón–Zygmund operators (i.e. σ “ 1) on LppRnq for 1 ă p ă 8

can be actually shown under a more general integral condition on the kernel, known as Hörmander

condition and given by

sup
z PRn

ż

|x´z|ě2|y´z|

|Kpx, yq ´ Kpx, zq| ` |Kpy, xq ´ Kpz, xq|dx ď C

(see [30, Theorem 5.10]). It is a simple calculation to verify that (2.3) implies Hörmander condition.

The question of whether or not this condition is sufficient to guarantee the boundedness in Hardy spaces

is more delicate and still not completely known; only the case H1pRnq has been investigated so far and

a negative answer was provided in [81, Theorem 2], where the authors constructed a kernel satisfying

Hörmander condition in which the linear operator associated to it is bounded on L2pRnq, but is not

bounded in H1pRnq.

In [6], the authors considered an integral Hörmander-type condition of kernels in the strongly singular

setting. We say that a kernel Kpx, yq satisfies the σ´Hörmander condition if

sup
|y´z| ď 1

z PRn

ż

|x´z|ě2|y´z|σ
|Kpx, yq ´ Kpx, zq| ` |Kpy, xq ´ Kpz, xq|dx ď C (2.5)

and

sup
|y´z| ą 1

z PRn

ż

|x´z|ě2|y´z|

|Kpx, yq ´ Kpx, zq| ` |Kpy, xq ´ Kpz, xq|dx ď C. (2.6)

It is a simple calculation to see that δ´kernels of type σ satisfy (2.5) and (2.6). In this case, we say

that a strongly singular Calderón–Zygmund operator is associated to a kernel satisfying σ´Hörmander

condition if it is an operator in the sense of Definition 3.2 where condition (2.4) is replaced by (2.5) and

(2.6).

Moreover, the authors also improved the continuity results for LppRnq when 1 ď p ă 8 assuming the

σ´Hörmander condition. Using analogous ideas of C. Fefferman in [31, Theorem 2’], they were able to

show that:
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Theorem 2.3 ([6, Theorem 4.1]). If T is a strongly singular Calderón–Zygmund operator associated to

a kernel satisfying σ´Hörmander condition, then T satisfies weak p1, 1q type inequality.

Using interpolation between the weak p1, 1q inequality and the L2pRnq continuity one can get the

bondedness in LppRnq for all 1 ă p ă 8. It is also straight forward to verify that we can further

obtain the boundedness from H1pRnq to L1pRnq using this condition, as shown in the next proposition.

Proposition 2.1. Let T be a strongly singular Calderón–Zygmund operator associated to a kernel

satisfying σ´Hörmander condition. Then, T is bounded from H1pRnq to L1pRnq.

Proof. Let a to be a p1, 2q atom in H1 supported on B “ Bpx0, rq Ă Rn. If r ď 1 we split

ż

Rn
|Tapxq|dx “

ż

2Bσ
|Tapxq|dx `

ż

p2Bσqc
|Tapxq|dx :“ I1 ` I2. (2.7)

To control I1, we use the continuity from LqpRnq to L2pRnq to obtain

ż

2Bσ
|Tapxq|dx ď |2Bσ

|
1
2 }Ta}L2 ≲ r

σn
2 }a}Lq ≲ rnr 1

q ´p1´σ
2 qs ≲ 1

since 1{q ą 1 ´ σ{2 and 0 ă r ď 1. To estimate I2, since a has vanish integral one can write

|Tapxq| “

ˇ

ˇ

ˇ

ˇ

ż

B
rKpx, yq ´ Kpx, x0qs apyqdy

ˇ

ˇ

ˇ

ˇ

ď r´n
ż

B
|Kpx, yq ´ Kpx, x0q| dy.

Hence, by Fubini Theorem and (2.5)

ż

p2Bσqc
|Tapxq|dx ≲ r´n

ż

B

ż

p2Bσqc
|Kpx, yq ´ Kpx, x0q|dxdy ≲ 1.

The case r ą 1 is analogous splitting the integral (2.7) over 2B and p2Bqc and using the L2 continuity

together with (2.6).

Remark 2.1. If T is a strongly singular Calderón–Zygmund operator of convolution type, the continuity

from H1pRnq to itself follows from the previous proposition. In fact, since T is a convolution operator,
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R jpT q “ T pR jq for every 1 ď j ď n. Hence, using characterization of H1pRnq in terms of Riesz

Transforms (see [32, p. 123]), the previous proposition and the fact that R j is a bounded opertor on

H1pRnq for every j “ 1, ¨ ¨ ¨ , n, it follows

}T f }H1 “ }T f }L1 `

n
ÿ

j“1

}R jpT f q}L1 “ }T f }L1 `

n
ÿ

j“1

}T pR j f q}L1 ≲ } f }H1 `

n
ÿ

j“1

}R j f }H1 ≲ } f }H1 .

Unfortunately, it is still an open question if σ´Hörmander condition is sufficient to guarantee the

bondedness of strongly singular Calderón–Zygmund operators for HppRnq when 0 ă p ď 1. However,

some progress can be made assuming an Ls integral condition on annulus, which we call in this work Ds

condition, weaker then (2.4) but stronger then σ´Hörmander condition.

Definition 2.5. Let 0 ă ρ ď σ ď 1 ď s ă 8 and δ ą 0. We say the kernel Kpx, yq associated to T

satisfies the Ds condition if

sup
r ą 1
z PRn

sup
|y´z|ăr

ˆ
ż

C jpz,rq

|Kpx, yq ´ Kpx, zq|
s

` |Kpy, xq ´ Kpz, xq|
sdx

˙1{s

≲ |C jpz, rq|
1
s ´1 2´ jδ (2.8)

and

sup
0 ă r ă 1

z PRn

sup
|y´z| ă r

ˆ
ż

C jpz,r ρq

|Kpx, yq ´ Kpx, zq|
s

` |Kpy, xq ´ Kpz, xq|
sdx

˙1{s

≲ |C jpz, r ρq|
1
s ´1` δ

n p 1
ρ´ 1

σq2´
jδ
ρ ,

(2.9)

where C jpz, r̃q “ tx P Rn : 2 jr̃ ă |x ´ z| ď 2 j`1r̃u.

It is easy to verify that Ds1 condition is stronger than Ds2 if s1 ą s2. In that sense, D1 is more

general and closest of σ´Hörmander condition. A standard calculation also shows that for every ρ ď σ,

δ´kernels of type σ satisfy Ds conditions for every 1 ď s ă 8. By simplicity, we use the nomenclature

Ds condition omitting the dependence of σ, ρ, and δ. If necessary to emphasize the decay δ, we write Ds

condition with decay δ (see for instance Proposition 2.3).

Estimates of this type are slightly different of Ds,α conditions considered in [27, Definition 1.1 p.12]

and they are naturally related to kernels associated to pseudodifferential operators in the Hörmander class
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OpS m
σ, νpR

nq with 0 ă σ ď 1 and 0 ď ν ă 1. In particular, it has been shown in [4, Theorem 5.1] that if

ν ď σ and m ď ´np1 ´σq{2, the kernel Kpx, yq associated to T P OpS m
σ, νpR

nq satisfies the D1 condition

with δ “ 1, that is

sup
r ą 1
z PRn

sup
|y´z|ăr

ż

C jpz,rq

|Kpx, yq ´ Kpx, zq| ` |Kpy, xq ´ Kpz, xq|dx ≲ 2´ jδ, (2.10)

and

sup
0 ă r ă 1

z PRn

sup
|y´z| ă r

ż

C jpz,r ρq

|Kpx, yq ´ Kpx, zq| ` |Kpy, xq ´ Kpz, xq|dx ≲ |C jpz, r ρq|
δ
n p 1

ρ´ 1
σq 2´

jδ
ρ . (2.11)

The D1 condition have already been explored in [2, Theorem 5.2] and [6, Theorem 3.9] to deal with

continuity from HppRnq to LppRnq for 0 ă p ď 1.

Lets turn our attention to the continuity of strongly singular Calderón–Zygmund operators from

HppRnq to itself for 0 ă p ď 1 considering Ds conditions. As it is well known from standard operators,

the continuity in this case can be expressed in terms of the so called T ˚ condition, which dictates

the amount of cancellation needed at the image of the operator. For instance, Álvarez and Milman

have shown in [5, Theorems 1.1 and 2.2] that a sufficient condition for the continuity in HppRnq, for

n{pn ` 1q ă p ď 1, is T ˚p1q “ 0, which means that

ż

Rn
T f pxqdx “ 0, whenever f is an L2 function supported on a ball with vanish integral.

In the convolution setting, such condition is immediately true, since

ż

Rn
T f pxqdx “ xT f p0q “ zK ˚ f p0q “ pKp0q ¨ pf p0q “ 0.

To deal with the range 0 ă p ď n{pn ` 1q, more vanishing moments conditions are required on the

image of the operator, which leads us to the definition of T ˚pxαq, for α depending on p.
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Definition 2.6 ([64, p. 23]). Let m P Z` and

L2
c,mpRn

q “

"

g P L2
pRn

q : g has compact support and
ż

xαgpxqdx “ 0 for all |α| ď m
*

.

We say that an operator T satisfies T ˚pxαq “ 0 for |α| ď m if

ż

xαT f pxqdx “ 0, for all f P L2
c,mpRn

q. (2.12)

Remark 2.2. If a is a pp, sq atom in Hp for 2 ď s ď 8, then a P L2
c,Np

pRnq. Moreover, given f P

L2
c,Np

pRnq, a “
|B|

1
2 ´ 1

p f
} f }L2

is a pp, 2q atom, that is, f is a multiple of an atom.

Next we show that T ˚pxαq is well defined for operators whose kernel satisfies D1 condition, and

consequently for every kernel satisfying the Ds condition for 1 ă s ă 8.

Proposition 2.2. Let T be a linear and bounded operator on L2pRnq whose kernel associated to it satisfies

the D1 condition. Then xαT f P L1pRnq for all f P L2
c,mpRnq with m “ tδu.

Proof. Suppose without loss of generality that supp p f q Ă Bp0, rq. If r ě 1, write

ż

Rn
|xαT f pxq|dx “

ż

Bp0,2rq

|xαT f pxq|dx `

ż

RnzBp0,2rq

|xαT f pxq|dx.

From Hölder inequality and the L2 boundedness of T we get

ż

Bp0,2rq

|xαT f pxq|dx ď }xα}L8pBp0,2rqq |Bp0, 2rq|
1
2 }T f }L2 ≲ r|α|` n

2 } f }L2 ă 8.

For the second integral, since f P L2
c,mpRnq we may estimate

|T f pxq| “

ˇ

ˇ

ˇ

ˇ

ż

Bp0,rq

rKpx, yq ´ Kpx, 0qs f pyqdy
ˇ

ˇ

ˇ

ˇ

ď

ż

Bp0,rq

|Kpx, yq ´ Kpx, 0q|| f pyq|dy.
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Then,

ż

RnzBp0,2rq

|xαT f pxq|dx ď

ż

Bp0,rq

| f pyq|

ż

RnzBp0,2rq

|x|
|α|

|Kpx, yq ´ Kpx, 0q|dxdy

ď

8
ÿ

j“0

p2 jrq
|α|

ż

Bp0,rq

| f pyq|

ż

C jp0,rq

|Kpx, yq ´ Kpx, 0q|dxdy

≲
8
ÿ

j“0

p2 jrq
|α|

} f }L2 |Bp0, rq|
1
2 2´ jδ

ď r|α|` n
2 } f }L2

8
ÿ

j“0

p2 j
q

|α|´δ
ă 8

since |α| ă δ. For r ă 1 we write

ż

Rn
|xαT f pxq|dx “

ż

Bp0,2r ρq

|xαT f pxq|dx `

ż

RnzBp0,2r ρq

|xαT f pxq|dx,

for some 0 ă ρ ď σ ă 1. The estimate of the first integral is the same as the previous case and for the

second

ż

RnzBp0,2r ρq

|xαT f pxq|dx ď

8
ÿ

j“0

p2 jr ρq|α|

ż

Bp0,rq

| f pyq|

ż

C jp0,r ρq

|Kpx, yq ´ Kpx, 0q|dxdy

≲ r|α|ρ` n
2 `δ´

ρδ
σ } f }L2

8
ÿ

j“0

p2 j
q

|α|´ δ
σ ă 8

since |α| ă δ implies |α| ă δ{σ.

In order to provide a complete understanding on how the parameters in the next continuity result

are related to the hypothesis assumed on the kernel and on the operator, we state it in a more general

framework, although with a more complicated notation. The result is the following:

Theorem A. Let T : SpRnq Ñ S1pRnq be a linear and continuous operator such that:

(i) T extends to a continuous operator from L2pRnq to itself;

(ii) There exists 1 ď s1 ă 8 such that T is associated to a kernel satisfying Ds1 condition;
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(iii) T extends to a continuous operator from LqpRnq to Ls2pRnq, for some 1 ă s2 ă 8 and

1
q

“
1
s2

`
β

n
, where np1 ´ σq

ˆ

1 ´
1
s2

˙

ď β ă n
ˆ

1 ´
1
s2

˙

.

Under such conditions, if T ˚pxαq “ 0 for all α P Zn
` such that |α| ď tδu, p ă s1 and s1 ď s2, then T can

be extended to a bounded operator from HppRnq to itself for every p0 ă p ď 1, where

1
p0

:“
1
s2

`

β

„

δ

σ
` n

ˆ

1 ´
1
s2

˙ȷ

n
ˆ

δ

σ
´ δ ` β

˙ . (2.13)

Conversely, if T is a bounded operator from HppRnq to itself for every p0 ă p ď 1, then T ˚pxαq “ 0 for

every |α| ď Np0 .

This result extends [5, Theorem 2.2] with additional advantage of considering kernels associated to

weaker integral conditions. In addition, our approach enables us to include the D1 condition only for

p ă 1, which represents the closest of Hörmander condition we are able to provide a satisfactory answer

to continuity results in Hardy spaces.

In contrast to condition (2.4), although any upper bound on δ is assumed on the Ds condition,

examples of operators whose associated kernel satisfies it with δ ą 1 will be considered in Section

2.3 with a suitable refinement of Ds conditions, assuming control of derivatives (see (2.20) and (2.21)).

The conclusion of Theorem A for p “ p0 is still not known, however, if s2 “ 2 and under D1

condition, [6, Theorem 3.9] asserts that T can be extended to a bounded operator from HppRnq to LppRnq

for p0 ď p ď 1. The inclusion of p0 in this case is a quite interesting result since it is known that if T is

a standard Calderón–Zygmund operator (σ “ 1), then there exists f P H
n

n`δ pRq such that T f < L
n

n`δ pRq

(see [2, Theorem 1.2]). Restricting ourselves to the case where T is a convolution operator, the continuity

from Hp0pRnq to itself holds (see [5, Theorem 2.3]).
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2.1.1 Proof of Theorem A

Let t ą max ts1, qu and a a pp, tq atom in Hp supported on B “ Bpx0, rq Ă Rn. In particular, a is

pp, s1q and pp, qq atoms. From Lemma 1.2, it suffices to show that Ta is an pp, λ, s1q molecule in Hp for

an appropriate range of λ. Suppose first r ą 1. Since T is bounded from LtpRnq to itself we have

ż

2B
|Tapxq|

s1dx ď |2B|
1´

s1
t }Ta}

s1
Lt ≲ |2B|

1´
s1
t }a}

s1
Lt ≲ rnp1´

s1
p q, (2.14)

which proves (M1a). Note the previous estimate also covers the case s1 “ 1. To estimate (M2a), the

moment condition of the atom allow us to write

ż

p2Bqc
|Tapxq|

s1 |x ´ x0|
λdx “

8
ÿ

j“0

ż

C j

ˇ

ˇ

ˇ

ˇ

ż

B
rKpx, yq ´ Kpx, x0qsapyqdy

ˇ

ˇ

ˇ

ˇ

s1

|x ´ x0|
λdx,

where C j “ C jpx0, rq. Then, applying Minkowski inequality for integrals, Hölder’s inequality and Ds1

condition we can control the previous sum as

8
ÿ

j“0

$

&

%

«

ż

C j

ˆ
ż

B
|Kpx, yq ´ Kpx, x0q| |apyq| |x ´ x0|

λ
s1 dy

˙s1

dx

ff
1
s1

,

.

-

s1

ď

8
ÿ

j“0

$

&

%

ż

B
|apyq|

«

ż

C j

|Kpx, yq ´ Kpx, x0q|
s1 |x ´ x0|

λdx

ff
1
s1

dy

,

.

-

s1

ď

8
ÿ

j“0

p2 jrq
λ

$

&

%

ż

B
|apyq|

«

ż

C j

|Kpx, yq ´ Kpx, x0q|
s1dx

ff
1
s1

dy

,

.

-

s1

≲
8
ÿ

j“0

p2 jrq
λ

p2 jrq
´nps1´1q 2´ js1δ }a}

s1
L1

≲
8
ÿ

j“0

p2 jrq
λ

p2 jrq
´nps1´1q 2´ js1δ rs1np1´ 1

p q

» rλ`np1´
s1
p q

8
ÿ

j“0

2 jrλ´nps1´1q´s1δs » rλ`np1´
s1
p q (2.15)

assuming λ ă nps1 ´ 1q ` s1δ.

Now, we move on to the case r ď 1. The estimate of 2B will be the same since it does not depend on
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the kernel. For the one outside the double ball, we will do it for Rn. Let 0 ă ρ ď σ ď 1 a parameter to be

determined precisely later and to simplify the notation consider 2Bρ :“ Bpx0, 2r ρq and C ρ
j :“ C jpx0, r ρq.

We will split the global integral into

ż

Rn
|Tapxq|

s1 |x ´ x0|
λdx “

ż

2B ρ

|Tapxq|
s1 |x ´ x0|

λdx `

ż

p2B ρqc
|Tapxq|

s1 |x ´ x0|
λdx.

For the first one, since s1 ď s2 and T is bounded from LqpRnq to Ls2pRnq we have

ż

2B ρ

|Tapxq|
s1 |x ´ x0|

λdx ≲ rλρ
ż

2B ρ

|Tapxq|
s1dx ≲ r λρ`nρ

´

1´
s1
s2

¯

}Ta}
s1
Ls2

≲ rλρ`nρ
´

1´
s1
s2

¯

}a}
s1
Lq

≲ rλ`np1´
s1
p q r´λp1´ρq`n

”

ρ
´

1´
s1
s2

¯

`
s1
q ´1

ı

≲ rλ`np1´
s1
p q, (2.16)

assuming

λ ď n
ˆ

s1

s2
´ 1

˙

`
s1 β

1 ´ ρ
.

For the second integral, using the same argument as before and Ds1 condition we get

ż

p2B ρqc
|Tapxq|

s1 |x ´ z|
λdx ď

8
ÿ

j“0

p2 jr ρqλ

$

&

%

ż

B
|apyq|

«

ż

C ρ
j

|Kpx, yq ´ Kpx, x0q|
s1dx

ff
1
s1

dy

,

.

-

s1

≲
8
ÿ

j“0

p2 jr ρqλ
´

|C ρ
j |

1
s1

´1` δ
n p 1

ρ´ 1
σq 2´

jδ
ρ

¯s1

}a}
s1
L1

≲ rλ`p1´
s1
p q r´λp1´ρq`n

”

s1`
s1δ
n ´s1ρ

´

1´ 1
s1

` δ
nσ

¯

´1
ı 8
ÿ

j“0

2 jrλ´nps1´1q´
s1δ
σ s

≲ rλ`p1´
s1
p q, (2.17)

assuming λ ă nps1 ´ 1q ` s1δ{σ and choosing ρ to be such that

´λp1 ´ ρq`n
„

s1 `
s1δ

n
´ s1 ρ

ˆ

1 ´
1
s1

`
δ

nσ

˙

´ 1
ȷ

“ ´λp1 ´ ρq ` n
„

ρ

ˆ

1 ´
s1

s2

˙

`
s1

q
´ 1

ȷ

,
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that is,

s1 `
s1δ

n
´ ρ

ˆ

s1 ´ 1 `
s1δ

nσ

˙

“ ρ

ˆ

1 ´
s1

s2

˙

`
s1

q
ô ρ “

n
´

1 ´ 1
q

¯

` δ

n
´

1 ´ 1
s2

¯

` δ
σ

. (2.18)

As pointed out in Definition 2.5, it is also important to show that ρ ď σ. In fact,

β ě np1 ´ σq

ˆ

1 ´
1
s2

˙

ô 1 ´
1
q

ď σ

ˆ

1 ´
1
s2

˙

ô n
ˆ

1 ´
1
q

˙

` δ ď nσ
ˆ

1 ´
1
s2

˙

` δ

ô ρ “

n
´

1 ´ 1
q

¯

` δ

n
´

1 ´ 1
s2

¯

` δ
σ

ď σ.

Summing up, to obtain the desired estimates, we have imposed the following conditions on λ:

(a) λ ą n
´

s1
p ´ 1

¯

(b) λ ă nps1 ´ 1q `
s1δ
σ

(c) λ ă nps1 ´ 1q ` s1δ (d) λ ď n
´

s1
s2

´ 1
¯

`
s1β

1´ρ
.

Since 0 ă σ ď 1, it immediately follows that (c) ñ (b). We also have (d) ñ (c) since

β ă n
ˆ

1 ´
1
s2

˙

ô β ă

δ
`

1
σ

´ 1
˘

”

n
´

1 ´ 1
s2

¯

` δ
ı

δ
`

1
σ

´ 1
˘

ô s2 β δ

ˆ

1
σ

´ 1
˙

ă δ

ˆ

1
σ

´ 1
˙

rps2 ´ 1qn ` s2 δs

ô β

„

nps2 ´ 1q `
s2 δ

σ

ȷ

´ β rps2 ´ 1qn ` s2 δs ă δ

ˆ

1
σ

´ 1
˙

rps2 ´ 1qn ` s2 δs

ô β

„

nps2 ´ 1q `
s2 δ

σ

ȷ

ă rps2 ´ 1qn ` s2 δs

ˆ

β `
δ

σ
´ δ

˙

ô

s2 β
”

n
´

1 ´ 1
s2

¯

` δ
σ

ı

β ` δ
σ

´ δ
ă ps2 ´ 1qn ` s2 δ

ô
s2 β

1 ´ ρ
ă ps2 ´ 1qn ` s2 δ

and this implies

n
ˆ

s1

s2
´ 1

˙

`
s1 β

p1 ´ ρq
ă nps1 ´ 1q ` s1δ.
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Therefore, the lower and upper bound for λ is given by (a) and (d) respectively. This implies a lower

bound for p given by

n
ˆ

s1

p
´ 1

˙

ă n
ˆ

s1

s2
´ 1

˙

`
s1 β

1 ´ ρ
ô

1
p

ă
1
s2

`

β
”

δ
σ

` n
´

1 ´ 1
s2

¯ı

n
`

δ
σ

´ δ ` β
˘ “

1
p0
.

Note that n{pn ` δq ă p0 ă p ď 1, thus np1{p ´ 1q ă δ. Since T ˚pxαq “ 0 for |α| ď tδu, then (M3)

holds for every |α| ď Np.

For the converse, suppose that T maps continuously HppRnq into itself for all p0 ă p ď 1 and let

f P L2
c,Np0

pRnq. Using only the conditions on the kernel and the L2 continuity of the operator we can

follow the proof of Proposition 2.2 and get that T f P L1pRnq. Moreover, by the boundedness hypothesis

T f P L1pRnq X HppRnq. Hence, by [73, Sec. 5.4 (c) p.128 ] it follows that

ż

Rn
T f pxqxαdx “ 0, for all |α| ď Np and p0 ă p ď 1.

Therefore it will also holds for Np0 since p Œ p0 and consequently Np “ Np0 for p sufficiently close to

p0.

Remark 2.3. The authors in [5] used a refined version of the molecular decomposition to prove the

analogous continuity result for n
n`1 ă p ď 1 assuming Hölder regularity (see [5, Lemma 2.1]). As we

have seen before, it is not needed and we can prove it using the standard molecular decomposition.

Remark 2.4. In the proof of Theorem A we have shown that when a is an atom, Ta is a molecule and

hence }Ta}Hp ď C uniformly. This suggests that T extends to a bounded operator from HppRnq to itself,

however since the atomic decomposition may not be unique, an additional argument is needed. This

can be done using an approximation argument of the operator T . For a precise description on how to

extend continuously a Calderón–Zygmund operator T : SpRnq Ñ S1pRnq bounded in L2pRnq to the space

HppRnq see [9, Chapter 1.9] and also [64]. The proof has been done for σ “ 1 but the same arguments

can be adapted when 0 ă σ ă 1.
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2.1.2 Extensions of Theorem A

It is also natural to ask the validity of Theorem A if one want to investigate the continuity from

Hp1pRnq to Hp2pRnq. Under the same assumptions (i)-(iii), for p1 ď p2, it is enough to show that T maps

pp1, tq atoms in Hp1 into pp2, λ, s1q molecules in Hp2 . For r ě 1, conditions (M1) and (M2) can be verified

using the L2pRnq continuity, the fact that p1 ď p2 and the condition on the kernel. On the other hand, if

0 ă r ă 1, condition (M1) can be proved using the continuity from LqpRnq to Ls2pRnq and

1
p2

ą
1
p1

´
β

n
.

For (M2), using the same choice of ρ as in the proof of Theorem A we get that

λ ď n
ˆ

s1

s2
´ 1

˙

`
ns1

p1 ´ ρq

ˆ

β

n
`

1
p2

´
1
p1

˙

.

This bound together with the lower bound from the molecular decomposition one gets

1
p2

ă
1
s2

`

”

β ` n
´

1
p2

´ 1
p1

¯ı ”

δ
σ

` n
´

1 ´ 1
s2

¯ı

n
`

δ
σ

´ δ ` β
˘ ,

that can be rewritten as

1
p2

ą
β ` δ

`

1
σ

´ 1
˘

s2pβ ´ n ´ δq ` n
`

´

β

n ´ 1
p1

¯ ”

n
´

1 ´ 1
s2

¯

` δ
σ

ı

β ´ δ ´ n
´

1 ´ 1
s2

¯ .

Therefore, under the assumptions (i) to (iii), p1 ă s1 ď s2 and the same cancellation condition, T maps

Hp1pRnq into Hp2pRnq continuously for every 0 ă p1 ď p2 ď 1 such that

1
p2

ą max

$

&

%

1
p1

´
β

n
,

β ` δ
`

1
σ

´ 1
˘

s2pβ ´ n ´ δq ` n
`

´

β

n ´ 1
p1

¯ ”

n
´

1 ´ 1
s2

¯

` δ
σ

ı

β ´ δ ´ n
´

1 ´ 1
s2

¯

,

.

-

.

Now we consider strongly singular Calderón–Zygmund operators of type σ associated kernels

satisfying derivative conditions and we show an analogous version of Theorem A under such conditions.
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Let δ ą 0 and K P CtδupRn ˆ Rnztpx, xq : x P Rnuq satisfying

|B
α
y Kpx, yq ´ B

α
y Kpx, zq| ` |B

α
y Kpy, xq ´ B

α
y Kpz, xq| ď C

|y ´ z|δ´tδu

|x ´ z|n` δ
σ

, (2.19)

for α P Zn
` with |α| “ tδu, |x ´ z| ě 2|y ´ z|σ and 0 ă σ ď 1. The condition (2.19) is a natural

generalization of derivative conditions usually assumed on standard δ´kernels (see [35, p. 320] and [73,

p. 117]).

In the same way, we may incorporate derivatives of the kernel in the integral Ds condition (2.8) and

(2.9). We say that a kernel satisfies the derivative Ds condition with decay δ, if for every |γ| “ tδu it

follows that

sup
|y´z| ă r

r ą 1

˜

ż

C jpz,rq

|B
γ
y Kpx, yq ´ B

γ
y Kpx, zq|

s
` |B

γ
y Kpy, xq ´ B

γ
y Kpz, xq|

sdx

¸1{s

≲ r´tδu
|C jpz, rq|

1
s ´1 2´ jδ

(2.20)

and

sup
|y´z| ă r
0 ă r ă 1

˜

ż

C jpz,r ρq

|B
γ
y Kpx, yq ´ B

γ
y Kpx, zq|

s
` |B

γ
y Kpy, xq ´ B

γ
y Kpz, xq|

sdx

¸1{s

≲ r´tδu
|C jpz, r ρq|

1
s ´1` δ

n p 1
ρ´ 1

σq2´
jδ
ρ . (2.21)

We announce the following self-improvement of Theorem A:

Theorem 2.4. Let T : SpRnq Ñ S1pRnq be a linear and continuous operator satisfying assumptions (i)

and (iii) from Theorem A and

(ii)’ For some 1 ď s1 ă 8, T is associated to a kernel satisfying the derivative Ds1 condition with

decay δ ą 0.

If T ˚pxαq “ 0 for all |α| ď tδu, p ă s1 and s1 ď s2, then T is bounded from HppRnq to itself for p0 ă

p ď 1, where p0 is given by (2.13). Conversely, if T is bounded from HppRnq to itself for p0 ă p ď 1,

then T ˚pxαq “ 0 for every |α| ď Np0 .
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The proof of the previous theorem is analogous of Theorem A since Taylor’s formula allows us to write

Tapxq “

ż

Bpx0,rq

Rpx, yqapyqdy in which Rpx, yq “
ÿ

|γ|“M

py ´ x0qγ

γ!

“

B
γ
y Kpx, ξyq ´ B

γ
y Kpx, zq

‰

for some ξy in the line segment between y and x0. Examples of operators satisfying such kernel conditions

will be discussed in Section 2.3.

2.1.3 Dini-type conditions

Yabuta considered in [79, Definition 2.1] a generalization of standard Calderón–Zygmund operators

introducing a θ-modulus of continuity on the kernel. Instead of kernels satisfying the pointwise estimate

(2.3), it was considered

|Kpx, yq ´ Kpx, zq| ` |Kpy, xq ´ Kpz, xq| ≲ θ

ˆ

|y ´ z|

|x ´ z|

˙

|y ´ z|
´n, for all |x ´ z| ě 2|y ´ z|,

where θ is a non-negative and non-decreasing function satisfying the Dini condition
ż 1

0
θptqt´1dt ă 8.

Moreover, it has been shown that this Dini condition imposed on the function θ is sufficient to show

standard Lp and BMO boundedness properties (see [79, Theorem 2.4]). These kernels are related to

general classes of pseudodifferential operators beyond Hörmander class, see for instance [79, Theorems

3.1 and 3.2].

Inspired by this work, in this section we introduce a generalization of strongly singular Calderón–

Zygmund operators of type σ assuming an analogous θ-modulus of continuity of the kernel. This has its

own interests and can lead to new paths in connection to pseudodifferential operators associated to rough

symbols.

Definition 2.7. Let θ : p0,8q Ñ p0,8q be an increasing function and 0 ă σ ď 1. We say that a

continuous function Kpx, yq defined on R2n away the diagonal is a θ´kernel of type σ if

|Kpx, yq| ≲
1

|x ´ y|n
for all x , y
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and

|Kpx, yq ´ Kpx, zq| ` |Kpy, xq ´ Kpz, xq| ≲ θ

˜

|y ´ z|

|x ´ z|
1
σ

¸

|y ´ z|
´n (2.22)

for all |x ´ z| ě 2|y ´ z|σ. A linear and continuous operator T : SpRnq Ñ S1pRnq is called a strongly

singular θ-Calderón–Zygmund operator if it is associated to a θ´kernel of type σ and satisfies the

boundedness properties (i) and (iii) of Theorem A.

Remark 2.5. Considering θptq “ t δ for some 0 ă δ ď 1, we recover condition (2.4) on the kernel.

In the next theorem, we investigate the continuity of such operators in HppRnq.

Theorem 2.5. Let 0 ă p ď 1 and T a strongly singular θ´Calderón–Zygmund operator. Suppose that

for some δ ą 0 and 1 ď s1 ă 8 with p ă s1 the function θ satisfies

ż 1

0

rθptqs
s1

t1`δs1
dt ă 8 (2.23)

and T ˚pxαq “ 0 for every |α| ď tδu. Then T is a bounded operator on HppRnq to itself for every

p0 ă p ď 1, where p0 is as in (2.13). Conversely, if T is bounded from HppRnq to itself for p0 ă p ď 1,

then T ˚pxαq “ 0 for every |α| ď Np0 .

Conditions like (2.23) have already been considered in the literature to obtain boundedness of

standard θ´Calderón–Zygmund operators. For instance, in [51, Theorem 1.2], the same condition with

s1 “ 1 has been used in the setting of weighted Hardy spaces (see also [68, Theorems 8 and 9] for similar

ones in weak-Hardy spaces). Conditions like
ż 1

0

rθptqs
a

t
dt ă 8 for a ą 0 have also been considered in

the literature (see [59] and their cited papers) and is usually referred as a´Dini condition.

Every increasing function θ such that θptq ≲ rlogp1 ` tqs
1
s1 t δ satisfies condition (2.23), since

ż 1

0

logp1 ` tq
t

dt “ ´
π

6
ă 8.

Next we present the proof of Theorem 2.5.

Proof. Let a be a pp,8q atom in Hp supported on B “ Bpx0, rq Ă Rn and we show that Ta is a pp, λ, s1q

molecule. Since conditions (M1) and (M3) rely only on the continuity and cancellation properties of T ,
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the proofs will be the same. We show (M2) and suppose first r ą 1. Since θ is increasing, by (2.22) it

follows that

|Tapxq| ď

ż

B
|Kpx, yq ´ Kpx, x0q| |apyq|dy ≲ r np1´ 1

p qθ

ˆ

r

|x ´ x0|
1
σ

˙

|x ´ x0|
´n.

Therefore

ż

p2Bqc
|Tapxq|

s1 |x ´ x0|
λdx ď r s1np1´ 1

p q
ż

p2Bqc

„

θ

ˆ

p2rq
1
σ

|x ´ x0|
1
σ

˙ȷs1

|x ´ x0|
λ´s1ndx

“ r λ`np1´
s1
p q
ż

|w|ą1

”

θ
´

|w|
´ 1

σ

¯ıs1

|w|
λ´s1ndw

“ r λ`np1´
s1
p q
ż 8

1

”

θ
´

u´ 1
σ

¯ıs1

u λ´nps1´1q´1du

≲ r λ`np1´ 2
p q
ż 1

0

rθptqs
s1

t1`δs1
t´σλ`σnps1´1q`δs1dt

≲ r λ`np1´
s1
p q,

since λ ă nps1 ´ 1q `
δs1
σ

. For r ă 1, with similar arguments

ż

p2B ρqc
|Tapxq|

s1 |x ´ x0|
λdx ≲ r s1np1´ 1

p q
ż

p2B ρqc

„

θ

ˆ

r

|x ´ x0|
1
σ

˙ȷs1

|x ´ x0|
λ´s1ndx

“ r s1np1´ 1
p q`ρrλ´nps1´1qs

ż

|w|ą1

«

θ

˜

r 1´
ρ
σ

|w|
1
σ

¸ffs1

|w|
λ´s1ndw

“ r s1np1´ 1
p q`σpλ´ns1`nq`ρ´1

ż r1´
ρ
σ

0

rθptqs
s1

t1`δs1
t´σλ`σnps1´1q`δs1dt

≲ r ρλ`n
”

ρ
´

1´
s1
s2

¯

`s1p 1
q ´ 1

p q
ı

,

where in the last integral we estimate t ď r1´
ρ
σ and we choose ρ as in (2.18).

Remark 2.6. Condition (2.23) can be refined for one related to (2.8) and (2.9). Let I “ p2´ 1
σ , 1q,

I ρj “ r1´
ρ
σ 2´

j
σ ˆ I and I j “ r1´ 1

σ 2´
j
σ ˆ I. If θ satisfies

˜

ż

I ρj

rθptqss1

t
dt

¸
1
s1

≲ |I ρj |
δ if r ă 1 and

˜

ż

I j

rθptqss1

t
dt

¸
1
s1

≲ p2 j
q

´δ if r ą 1,
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then θ-kernels of type σ satisfy the Ds1 condition.

2.2 Continuity in Hp
wpRnq

In this section, we investigate the continuity of strongly singular Calderón–Zygmund operators in

weighted Hardy spaces Hp
wpRnq when w belongs to some Muckenhoupt classes. In particular, we provide

an analogous version of Theorem A for this setting.

When T is a convolution operator associated to standard kernels, the following result was proved by

Lee and Lin in [54] when w P A1 (see (1.19))

Theorem 2.6 ([54, Theorem 4]). Let w P A1 and K P L1
locpR

nzt0uq such that

|Kpx ´ yq ´ Kpxq| ď C
|y|δ

|x|n`δ
, for all |x| ě C|y| and some 0 ă δ ď 1.

Assume also that the convolution operator associated to K (denoted by T) is bounded on L2
wpRnq. If the

reverse Hölder exponent satisfies rw ą n`δ
δ

, then T is bounded on Hp
wpRnq to itself for every n

n`δ
ă p ď 1.

Later on, using discrete Littlewood-Paley decomposition methods, the authors in [60, Theorem 1.1]

extended the previous theorem for w P A8 and 0 ă p ă 8 assuming regularity conditions on the

kernel.

In the non-convolution setting, Hart and Oliveira in [66] obtained the following continuity result for

a limited range of Muckenhoupt weight classes, depending on p and the regularity of the kernel.

Theorem 2.7 ([66, Theorem 2.10]). Let T be a standard Calderón–Zygmund operator associated to a

kernel satisfying

(i)
ˇ

ˇB
α
x B

β
y Kpx, yq

ˇ

ˇ ď C |x ´ y|
´n´|α|´|β| for all x , y and |α|, |β| ď L;

(ii)
ˇ

ˇB
α
x B

β
y Kpx, yq ´ B

α
x B

β
y Kpx, zq

ˇ

ˇ ď C
|y ´ z|δ

|x ´ y|n`|α|`L`δ
for all |x ´ y| ą 2|y ´ z| and |α| ď |β| “ L;

(iii)
ˇ

ˇB
α
x B

β
y Kpx, yq ´ B

α
x B

β
y Kpz, yq

ˇ

ˇ ď C
|x ´ z|δ

|x ´ y|n`|β|`L`δ
for all |x ´ y| ą 2|x ´ z| and |β| ď |α| “ L.
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If T ˚pyαq “ 0 for every |α| ă tL{2u, then T extends to a bounded operator from Hp
wpRnq to itself provided

that
n

n ` tL{2u ` L{2 ` δ{2
ă p ă 8 and w P A

p
´

n`tL{2u`L{2`δ{2
n

¯.

More recently, using a different approach, Cruz-Uribe, Moen and Nguyen [18] established the

following result for weights in A8.

Theorem 2.8 ([18, Theorem 1.9]). Let T be a standard Calderón–Zygmund operator associated to a

kernel satisfying
ˇ

ˇB
β
y Kpx, zq ´ B

β
y Kpx, yq

ˇ

ˇ ď C
|y ´ z|δ

|x ´ z|n`L`1`δ

for all |x ´ z| ě 2|y ´ z|, some 0 ă δ ď 1 and |β| “ L ` 1, and suppose T ˚px βq “ 0 in the sense that
ż

x βTapxqdx “ 0, for all pp,w,8q atoms with vanishing moments up the order L ` 1 and |β| ď L. If

w P A8 then T maps continuously Hp
wpRnq into itself for

L “ Nw,p :“
Z

n
ˆ

tw

p
´ 1

˙^

. (2.24)

From (2.24) we get that
n tw

n ` L ` 1
ă p ď

n tw

n ` L
. So in the previous theorem there exists an implicit

relation between p and the Muckenhoupt class the weight belongs, just as in Theorem 2.7. Moreover, a

careful inspection in the proof of previous theorem, to be precise [18, Lemma 7.2], shows the assumption

L ` 1 “ 0 can not be assumed. Hence, both Theorems 2.7 and 2.8 does not cover standard Calderón–

Zygmund operators associated to δ´kernels and even more generally, kernels satisfying integral-type

conditions.

Our first result in this setting is to show that strongly singular Calderón–Zygmund operators are

bounded from Hp
wpRnq to Lp

wpRnq, where w belongs to a special class of Muckenhoupt weight.

Theorem 2.9. Let 0 ă p ď 1 ď t ă 8, 1 ă s1 ă 8 and T a strongly singular Calderón–Zygmund

operator whose kernel satisfies a Ds1 condition and the boundedness properties (i) and (iii) of Theorem

A. If

w P At X RHd with t ď
1
p0

and d “ max
"

s1

pps1 ´ 1q
,

2
2 ´ p

,
s2

s2 ´ p

*

,
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then T maps continuously Hp
wpRnq into Lp

wpRnq for every p0 t ď p ď 1 in which p0 is given by (2.13).

Remark 2.7. The previous theorem does not cover the case s1 “ 1. We also observe that when

considering condition (2.4) on the kernel, assumption w P RH s1
pps1´1q

can be dropped.

In particular, the previous result cover and extend [55, Theorem 2] due to Li and Lu, proved for the

case w P A1, s2 “ 2 and kernels satisfying (2.4). Moreover, restricting ourselves in the unweighted

setting we recover [2, Theorem 5.1]. Indeed, with the same notation of the reference, it suffices to

consider s
1

0 “ q and q
1

0 “ s2. We point out that for the unweighted case, inspection of the previous proof

shows that condition D1 is sufficient.

Proof. Let a to be a pp,w,8q atom in Hp
w supported in B “ Bpx0, rq. We will show that Ta is uniformly

bounded in Lp
w norm. Let 2B “ Bpx0, 2rq and C j “ C jpx0, rq. Suppose first r ą 1 and split

}Ta}
p
Lp

w
“

ż

2B
|Tapxq|

pwpxqdx `

8
ÿ

j“1

ż

C j

|Tapxq|
pwpxqdx.

The first integral can be uniformly estimated from Hölder inequality with exponent 2{p, the L2 continuity

and w P RH 2
2´p

. In fact,

ż

2B
|Tapxq|

pwpxqdx ď

ˆ
ż

Rn
|Tapxq|

2dx
˙

p
2
ˆ

1
|2B|

ż

2B
w

2
2´p pxqdx

˙1´
p
2

|2B|
1´

p
2

≲ }a}
p
L2 wp2Bq |2B|

´
p
2 ≲

wp2Bq

wpBq
|B|

p
2 |2B|

´
p
2

≲
|2B|

|B|
|B|

p
2 |2B|

´
p
2 ≲ 1.
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Before estimating the second integral, note that since w P RH s1
pps1´1q

it follows

ż

C j

|Kpx, yq ´ Kpx, x0q|w
1
p pxqdx ď

˜

ż

C j

|Kpx, yq ´ Kpx, x0q|
s1dx

¸
1
s1
˜

ż

B j`1

w
s1

pps1´1q pxqdx

¸1´ 1
s1

≲ |C j|
1
s1

´1 2´ jδ
|B j`1|

1´ 1
s1

˜

1
|B j`1|

ż

B j`1

w
s1

pps1´1q pxqdx

¸1´ 1
s1

≲ 2´ jδ

ˆ

|B j`1|

|C j|

˙1´ 1
s1

|B j`1|
´ 1

p wpB j`1q
1
p . (2.25)

Then,

8
ÿ

j“1

ż

C j

|Tapxq|
pwpxqdx ď

8
ÿ

j“1

ż

C j

ˆ
ż

B
|Kpx, yq ´ Kpx, x0q| |apyq|dy

˙p

wpxqdx

ď

8
ÿ

j“1

wpBq
´1

˜

ż

C j

ż

B
|Kpx, yq ´ Kpx, x0q| w

1
p pxqdydx

¸p

|C j|
1´p

“

8
ÿ

j“1

wpBq
´1

˜

ż

B

«

ż

C j

|Kpx, yq ´ Kpx, x0q| w
1
p pxqdx

ff

dy

¸p

|C j|
1´p

≲
8
ÿ

j“1

„

wpBq

wpB j`1q

ȷ´1

|C j|
1´p

|B|
p

ˆ

|B j`1|

|C j|

˙pp1´ 1
s q

|B j`1|
´1 2´ jpδ

≲
8
ÿ

j“1

|C j|
1´p´pp1´ 1

s q |B|
p´t

|B j`1|
t´1`pp1´ 1

s q2´ jpδ

≲
8
ÿ

j“1

2 jrnt´ppn`δqs ≲ 1

since p ą nt{pn ` δq. Lets consider now the case 0 ă r ď 1. In the same way, we split

}Ta}
p
Lp

w
“

ż

2B ρ

|Tapxq|
pwpxqdx `

8
ÿ

j“1

ż

C ρ
j

|Tapxq|
pwpxqdx

where 2Bρ “ Bpx0, 2r ρq, C ρ
j “ C jpx0, r ρq and 0 ă ρ ď σ ď 1 will be chosen conveniently later. For the

first integral we use Hölder inequality with exponent s2{p, the continuity of T from LqpRnq to Ls2pRnq
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and w P RH s2
s2´p

to get

ż

2B ρ

|Tapxq|
pwpxqdx ď }Ta}

p
Ls2

ˆ

1
|2Bρ|

ż

2B ρ

w
s2

s2´p pxqdx
˙1´

p
s2

|2Bρ
|
1´

p
s2

≲
wp2Bρq

wpBq
|B|

p
q |2Bρ

|
´

p
s2 ≲ |B|

p
q ´t

|2Bρ
|
t´ p

s2

≲ rn
”

p
q ´t`ρ

´

t´ p
s2

¯ı

≲ 1

for ρ ě ρ1 :“
t´p

´

1
s2

`
β
n

¯

t´ p
s2

.

For the second integral, proceeding just like in (2.25), it follows from w P RH s1
pps1´1q

and the Ds1

condition that

ż

C ρ
j

|Kpx, yq ´ Kpx, x0q|w
1
p pxqdx ≲ |C ρ

j |
1
s1

´1` δ
n p 1

ρ´ 1
σq

|Bρ
j`1|

1´ 1
s1

´ 1
p wpBρ

j`1q
1
p 2´ j δρ .

Then,

8
ÿ

j“1

ż

C ρ
j

|Tapxq|
pwpxqdx ≲

8
ÿ

j“1

«

wpBq

wpBρ
j`1q

ff´1

|B|
p

|C ρ
j |

p
s1

`1´2p`
pδ
n p 1

ρ´ 1
σq

|Bρ
j`1|

p´
p
s1

´12´ j pδ
ρ

≲
8
ÿ

j“0

|B|
p´t

|C ρ
j |

1´2p`
p
s1

`
pδ
n p 1

ρ´ 1
σq

|Bρ
j`1|

p
´

1´ 1
s1

¯

´1`t 2´ j pδ
ρ

≲ r´ρrnpp´tq`
pδ
σ s`pδ`npp´tq

8
ÿ

j“1

2 jrnt´ppn` δ
σqs ≲ 1

in which ρ ď ρ2 :“ ppn`δq´nt

ppn` δ
σq´nt

ď σ. The restriction ρ1 ď ρ2 implies that uniform estimate holds for every

p ě pw. Hence, given f P Hp
wpRnq, by standard arguments one has

}T f }
p
Lp

w
ď
ÿ

jPN

|λ j|
p
}Ta}

p
Lp

w
≲ } f }

p
Hp

w
,

which concludes the proof.

Remark 2.8. .

(i) If s1 ď s2, then w P RH s1
pps1´1q

implies that w P RH s2
s2´p

and the reverse Hölder exponent in this case
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is d “ max
!

s1
pps1´1q

, 2
2´p

)

. In fact,

1
s2

´
1
s1

ă
1
p

´ 1 ô 1 ´
1
s1

ă
1
p

´
1
s2

ô p
ˆ

1 ´
1
s1

˙

ă
1
p

´
1
s2

ô
s1

pps1 ´ 1q
ą

s2

s2 ´ p
.

(ii) If one assumes that T is continuous on L2
wpRnq, restriction w P RH 2

2´p
can be dropped. In fact, from

Hölder inequality with exponent 2{p one was

ż

2B
|Tapxq|

pwpxqdx ď

ˆ
ż

Rn
|Tapxq|

2wpxqdx
˙

p
2
ˆ
ż

2B
wpxqdx

˙1´
p
2

≲ }a}
p
L2

w
wpBq

1´
p
2 ≲ 1.

Replacing the target space for Hp
wpRnq, we can use the molecular decomposition of weighted Hardy

spaces presented in Section 1.3, to extend the previous result and obtain a generation of Theorem 2.6.

Theorem 2.10. Let 0 ă p ď 1 and T a strongly singular Calderón–Zygmund operator associated to a

kernel satisfying a Ds1 condition and the continuity hypothesis (i) and (iii) of Theorem A. If w P At X RHd

for

1 ď t ă min
"

s1, s2,
1
p0

¨
1
tw

ˆ

1 ´
1
rw

˙*

and d “ max
"

s2

s2 ´ t
,

s1

s1 ´ t

*

,

and T ˚pxαq “ 0 for all |α| ď Nw,p , then T extends to a bounded operator from Hp
wpRnq to itself provided

that

p0 ¨ t ¨
tw rw

rw ´ 1
ă p ď 1. (2.26)

Proof. Let a be a pp,w,8q atom supported on B “ Bpx0, rq Ă Rn. Under the hypothesis on the weight

w, we show that Ta is an pp,w, t, λq molecule in Hp
w for any

n
ˆ

t
p

¨
tw rw

rw ´ 1
´ 1

˙

ă λ ď n
ˆ

1
s2

´ 1
˙

`
β

1 ´ ρ
. (2.27)

Condition (M1) follows using the fact that the operator is in particular bounded from Ls2pRnq to itself,

1 ď t ă s2 and w P RH s2
s2´t

. In fact,

ż

2B
|Tapxq|

twpxqdx ď }Ta}
t
Ls2

ˆ

1
|2B|

ż

2B
w

s2
s2´t pxqdx

˙1´ t
s2

|2B|
1´ t

s2 ≲ }a}
t
Ls2 |2B|

´ t
s2 wpBq ≲ wpBq

1´ t
p

(2.28)
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For (M2) we will consider two cases. Suppose first 0 ă r ă 1 and let 0 ă ρ ď σ. Split

ż

Rn
|Tapxq|

twpB|x´x0|q
λ
n wpxqdx “

ż

2B ρ

|Tapxq|
twpB|x´x0|q

λ
n wpxqdx `

ż

p2B ρqc
|Tapxq|

twpB|x´x0|q
λ
n wpxqdx.

For the estimate on 2Bρ, first note that for any |x ´ x0| ď 2r ρ, Lemma 1.4 guarantee that

„

wpB|x´x0|q

wp2Bρq

ȷ

λ
n

ď

ˆ

|x ´ x0|

r ρ

˙
λ t
n

ď Cn,λ,t.

Hence, proceeding like in (2.28), but now using the continuity from LqpRnq to Ls2pRnq we have

ż

2B ρ

|Tapxq|
twpB|x´x0|q

λ
n wpxqdx “

ż

2B ρ

|Tapxq|
t

„

wpB|x´x0|q

wp2Bρq

ȷ

λ
n

wp2Bρ
q
λ
n wpxqdx

≲ wp2Bρ
q
λ
n

ż

2B ρ

|Tapxq|
twpxqdx

≲ wp2Bρ
q
λ
n `1 wpBq

´ t
p rnt

´

1
q ´

ρ
s2

¯

≲ wpBq
λ
n `1´ t

p

„

wpBq

wp2Bρq

ȷ´ λ
n ´1

rnt
´

1
q ´

ρ
s2

¯

≲ wpBq
λ
n `1´ t

p r´λtp1´ρq`nt
”

1
q ´1`ρ

´

1´ 1
s2

¯ı

(2.29)

≲ wpBq
λ
n `1´ t

p

since

λ ď n
ˆ

1
s2

´ 1
˙

`
β

1 ´ ρ
and 0 ă r ă 1.

We estimate now the integral on p2Bρqc. Since t ă s1, we apply Hölder inequality, w P RH s1
s1´t

and the

Ds1 condition to obtain

ż

C ρ
j

|Kpx, yq ´ Kpx, x0q|
twpxqdx ď

˜

ż

C ρ
j

|Kpx, yq ´ Kpx, x0q|
s1dx

¸
t

s1
ˆ
ż

2 j`1B ρ

w
s1

s1´t pxqdx
˙1´ t

s1

≲ wp2 j`1Bρ
q |C ρ

j |
t

s1
´t` tδ

n p 1
ρ´ 1

σq 2´
jtδ
ρ |2 j`1Bρ

|
´ t

s1

» wp2 j`1Bρ
q r´ρnt`tδp1´

ρ
σq p2 j

q
´nt´ tδ

σ . (2.30)
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By Lemmata 1.5 and 1.4 we get

wp2Bρ
q
λ
n wp2 j`1Bρ

qwpBq
´ λ

n ´1 ≲ p2 j
q

nt

„

wpBq

wp2Bρq

ȷ´ λ
n ´1

≲ p2 j
q

nt r´ntp1´ρqp λ
n ´1q. (2.31)

Hence, from (2.30) and (2.31)

ż

C ρ
j

|Kpx, yq ´ Kpx, x0q|
t wpB|x´x0|q

λ
n wpxqdx

“ wp2Bρ
q
λ
n

ż

C ρ
j

|Kpx, yq ´ Kpx, x0q|
t

„

wp2Bρq

wpB|x´x0|q

ȷ´ λ
n

wpxqdx

≲ wp2Bρ
q
λ
n p2 j

q
λt
ż

C ρ
j

|Kpx, yq ´ Kpx, x0q|
twpxqdx

≲ wp2Bρ
q
λ
n wp2 j`1Bρ

q r´ρnt`tδp1´
ρ
σq p2 j

q
λt´nt´ tδ

σ

≲ wpBq
λ
n `1 r´λtp1´ρq´nt`tδp1´

ρ
σq p2 j

q
λt´ tδ

σ .

Therefore

ż

p2B ρqc
|Tapxq|

twpB|x´x0|q
λ
n wpxqdx

ď

8
ÿ

j“0

$

&

%

ż

B
|apyq|

«

ż

C ρ
j

|Kpx, yq ´ Kpx, x0q|
t wpB|x´x0|q

λ
n wpxqdx

ff
1
t

dy

,

.

-

t

≲ wpBq
λ
n `1´ t

p r´λtp1´ρq`tδp1´
ρ
σq

8
ÿ

j“0

p2 j
q
λt´ tδ

σ

≲ wpBq
λ
n `1´ t

p

assuming λ ă δ
σ

and choosing ρ to be such that

´λtp1 ´ ρq ` nt
„

1
q

´ 1 ` ρ

ˆ

1 ´
1
s2

˙ȷ

“ ´λtp1 ´ ρq ` tδ
´

1 ´
ρ

σ

¯

,

which gives us the same choice of ρ as in (2.18). Then, the estimate follows proceeding like in (2.29).

Now, we sketch the proof of (M2) for the case r ě 1. Under the same hypothesis of the previous case
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we get

ż

C j

|Kpx, yq ´ Kpx, x0q|
twpxqdx ≲ wp2 j`1Bq |C j|

t
s1

´t 2´ jtδ
|2 j`1B|

´ t
s1 ≲ wpBq r´nt

p2 j
q

´tδ.

Then, using this estimate one can show

ż

C j

|Kpx, yq ´ Kpx, x0q|
t wpB|x´x0|q

λ
n wpxqdx ≲ wpBq

λ
n `1 r´nt

p2 j
q
λt´tδ

and this implies

ż

p2Bqc
|Tapxq|

twpB|x´x0|q
λ
n wpxqdx ≲ wpBq

λ
n `1´ t

p

8
ÿ

j“0

p2 j
q
λt´tδ ≲ wpBq

λ
n `1´ t

p

since λ ă δ.

Therefore, from (2.27) the continuity will holds for every p such that

1
p

ă

»

–

1
s2

`

β
”

n
´

1 ´ 1
s2

¯

` δ
σ

ı

n
`

δ
σ

´ δ ` β
˘

fi

fl ˆ
1

t tw

ˆ

1 ´
1
rw

˙

.

Remark 2.9. .

(i) Restriction t ă 1
p0

¨ 1
tw

´

1 ´ 1
rw

¯

is necessary to guarantee that the critical index (2.26) is less than 1.

Even though this restriction depends on tw, rw and the parameters of the operator, assuming δ ą 0

large enough will be sufficient to give more flexibility on the class of weights considered. Note that

the same phenomenon occurs in Theorem 2.7.

(ii) The previous theorem does not cover operators associated to kernels satisfying condition D1. One

way to include this, is to consider kernels satisfying the following weighted inequality

sup
|y´z|ďr

rě1

˜

ż

C j

|Kpx, yq ´ Kpx, zq|
swpxqdx

¸1{s

≲ wpC jq
1
s |C j|

´1
p2 j

q
´δ



2.3 Pseudodifferential operators and Ds conditions 76

and

sup
|y´z|ăr
0ără1

˜

ż

C ρ
j

|Kpx, yq ´ Kpx, zq|
swpxqdx

¸1{s

≲ wpC ρ
j q

1
s |C ρ

j |
´1` δ

n p 1
ρ´ 1

σq 2´
jδ
ρ .

Under such hypothesis we can also drop restrictions t ă s1 and RH s1
s1´t

. When w “ 1, these are the

classical Ds condition.

2.3 Pseudodifferential operators and Ds conditions

It is well understood that pseudodifferential operators OpS ´np1´σq
σ,ν pRnq for 0 ă σ ď 1 and 0 ď ν ă 1

have distributional kernels satisfying the pointwise estimate (2.4) with δ “ 1 (see for instance [4, Remark

(d) p. 4]). On the other hand, integral estimates are more suitable when dealing with this type of operators

and using them we have the advantage of finding a wider set of examples. In [5, Section 3], even

though the main theorem relies on the pointwise estimate (2.4) of the kernel, the authors have shown

that OpS ´m
σ,ν pRnq for 0 ă ν ď σ ă 1 and np1 ´ σq{2 ď m ă n{2 satisfy the following Hörmander-type

condition:

ż

|x|ě2rσ
|Kpx ` z, x ´ yq ´ Kpx ` z, xq|dx `

ż

|x|ě2rσ
|Kpx ´ y, x ` zq ´ Kpx, x ` zq|dx ď C

for all z P Rn, |y| ď r and r ą 0. This represents a weaker condition, but as mentioned before, the

continuity on HppRnq for 0 ă p ď 1 assuming it is still not known.

In this section, we present classes of pseudodifferential operators satisfying the hypothesis of

Theorem A. We start showing the derivative Ds condition for 1 ď s ď 2, extending the case s “ 1

and |γ| “ 0 proved in [4, Theorem 2.1].

Proposition 2.3. Let δ ą 0 and T P OpS m
σ,νpR

nq with 0 ă σ ď 1, 0 ď ν ă 1, ν ď σ and m ď

´np1 ´σq{2. If 1 ď s ď 2, then T satisfies the derivative Ds condition with decay tδu ` 1. In particular,

when 0 ă δ ă 1 it satisfies integral conditions (2.9) and (2.8) with decay 1.

It follows from [4, Theorem 3.5] that T maps continuously LqpRnq into Ls2pRnq where
1
q

“
1
s2

`
β

n
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and np1 ´ σq

ˆ

1 ´
1
s2

˙

ď β ă n
ˆ

1 ´
1
s2

˙

since:

(i) m ď ´β ´ np1 ´ σq

ˆ

1
s2

´
1
2

˙

if 1 ă q ď s2 ď 2;

(ii) m ď ´β if 1 ă q ď 2 ď s2;

(iii) m ď ´
n
2

p1 ´ σq if 2 ď q ď s2.

Note that m ď ´np1 ´ σq{2 in all the cases and since 0 ď ν ď σ ă 1 we have that T P OpS m
σ,νpR

nq

is bounded from L2pRnq to itself. For the T ˚pxαq “ 0 condition for pseudodifferential operators see for

instance [76, p. 154]

Before presenting the proof of Proposition 2.3, consider the following lemma concerning the L2

continuity of pseudodifferential operators.

Lemma 2.1 ([44, Theorem 1]). Let m ď ´n maxt0, pν ´ σq{2u and a P S m
σ, νpR

nq such that

ˇ

ˇ

ˇ
B
α
x B

β
ξ apx, ξq

ˇ

ˇ

ˇ
ď C p1 ` |ξ|qm´σ|β|`|α|ν

for all |α|, |β| ď tn{2u ` 1. Then, the pseudodifferential operator associated to the symbol apx, ξq is

bounded on L2pRnq with norm proportional to the constant C.

We proceed now to the proof of Proposition 2.3.

Proof. Let T P OpS m
σ,νpR

nq and K its distributional kernel. We denote by rKpx, yq “ B
γ
y Kpx, yq for

|γ| “ tδu. In order to obtain the derivative Ds condition for 1 ď s ă 2, it suffices to prove it for s “ 2

and then it follows by Hölder inequality. We claim that under the restriction m ď ´nrp1 ´ σq{2 ` λs in

which λ “ maxt0, pν ´ σq{2u it follows for C j “ C jpz, rq that

sup
|y´z| ď r

r ě 1

˜

ż

C j

|rKpx, yq ´ rKpx, zq|
2dx

¸1{2

≲ r´tδu
|C j|

´ 1
2 2´ jptδu`1q,
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and C ρ
j “ C jpz, r ρq

sup
|y´z| ď r
0ără1

˜

ż

C ρ
j

|rKpx, yq ´ rKpx, zq|
2dx

¸1{2

≲ r´tδu
|C ρ

j |
´ 1

2 `
tδu`1

n p 1
ρ´ 1

σq 2´
j
ρ ptδu`1q

The analogous estimate for the adjoint rKpy, xq will be treated in the end assuming m ď ´np1 ´ σq{2.

The proof consists an adaptation of [4, Theorem 2.1], for the case s “ 1 and tδu “ 0. Assume without

loss of generality that the symbol ppx, ξq associated to T vanishes for |ξ| ď 1 and consider ψ P C8
c pRq a

non-negative function such that supp pψq Ă r1{2, 1s and

ż 8

0
ψ

ˆ

1
t

˙

1
t

dt “

ż 2

1
ψ

ˆ

1
t

˙

1
t

dt “ 1. (2.32)

Define Kpx, y, tq “ p2πq
´n

ż

eipx´yq ξppx, ξqψ
ˆ

|ξ|

t

˙

dξ and consequently

rKpx, y, tq “ p´iqtδu
p2πq

´n
ż

eipx´yq ξppx, ξqψ
ˆ

|ξ|

t

˙

ξγdξ.

By the standard representation of the kernel of a pseudodifferential operator we get that

rKpx, yq “ p´iqtδu
p2πq

´n
ż

eipx´yq ξξγppx, ξqdξ,

and from (2.32) we may write it as

rKpx, yq “

ż 8

0

rKpx, y, tq
dt
t

“

ż 8

1

rKpx, y, tq
dt
t
. (2.33)

In fact,

ż 8

0

rKpx, y, tq
dt
t

“ p´iqtδu
p2πq

´n
ż 8

0

ż

|ξ|ą1
eipx´yq¨ξ ξγ ppx, ξqψ

ˆ

|ξ|

t

˙

dξ dt{t

“ p´iqtδu
p2πq

´n
ż

|ξ|ą1
eipx´yq¨ξ ξγ ppx, ξq

ˆ
ż 8

0
ψ

ˆ

|ξ|

t

˙

1
t

dt
˙

dξ

“ p´iqtδu
p2πq

´n
ż

|ξ|ą1
eipx´yq¨ξ ξγ ppx, ξqdξ “ rKpx, yq.
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Consider first 0 ă r ă 1. From Minkowski inequality for integrals

ż

C ρ
j

|rKpx, yq´rKpx, yq|
2dx ď

ż

C ρ
j

ˆ
ż 8

1
|rKpx, y, tq ´ rKpx, z, tq|

dt
t

˙2

dx

“

$

&

%

«

ż

C ρ
j

ˆ
ż 8

1
|rKpx, y, tq ´ rKpx, z, tq|

dt
t

˙2

dx

ff
1
2

,

.

-

2

ď

$

&

%

ż 8

1

˜

ż

C ρ
j

|rKpx, y, tq ´ rKpx, z, tq|
2dx

¸
1
2 dt

t

,

.

-

2

.

Let Γptq “ }rKp¨, y, tq ´ rKp¨, z, tq}L2pC ρ
j q and from the previous estimate

˜

ż

C ρ
j

|rKpx, yq ´ rKpx, zq|
2dx

¸1{2

ď

ż r´1

1
Γptq

dt
t

`

ż 8

r´1
Γptq

dt
t

“ I1 ` I2. (2.34)

Lets deal first with I1, in which the estimate relies on the assumption tr ă 1. Throughout this proof, let

N P Z` to be a constant that will be chosen conveniently later. Note that

Γptq ď

ˆ
ż

|rKpx, y, tq ´ rKpx, z, tq|
2
p1 ` t2σ

|x ´ z|
2
q

Ndx
˙1{2

sup
x P C ρ

j

p1 ` t2σ
|x ´ z|

2
q

´ N
2 .

We claim that for m ď ´nrp1 ´ σq{2 ` λs

ˆ
ż

Rn
|rKpx, y, tq ´ rKpx, z, tq|

2
p1 ` t2σ

|x ´ z|
2
q

Ndx
˙1{2

≲ ptrqt
σn
2 `tδu for tr ď 1 (2.35)

and

sup
x P C ρ

j

p1 ` t2σ
|x ´ z|

2
q

´ N
2 ď

“

1 ` t2σ
p2 jr ρq2

‰´ N
2 .
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Using these estimates and the change of variables ω “ tσ2 jr ρ we obtain

ż r´1

1
Γptq

dt
t
≲

ż r´1

1
r t

σn
2 `tδu

“

1 ` t2σ
p2 jr ρq2

‰´ N
2 dt

≲ r1´
ρn
2 ´

ρ
σ p1`tδuq

p2 j
q

´ n
2 ´

1`tδu
σ

ż 2 jr ρ´σ

2 jr ρ

ω
n
2 ´1`

1`tδu
σ

p1 ` ω2q
N
2

dω

≲ |C ρ
j |

´ 1
2 ` 1

n p 1
ρ´ 1

σq 2´
j
ρ

ż 8

0

ω
n
2 ` 1

σ´1

p1 ` ω2q
N
2

dω

≲ r´tδu
|C ρ

j |
´ 1

2 `
tδu`1

n p 1
ρ´ 1

σq 2´
j
ρ ptδu`1q, (2.36)

since
ż 8

0

ω
n
2 ´1`

1`tδu
σ

p1 ` ω2q
N
2

dω ă 8 for N ą
n
2

`
1 ` tδu

σ
.

Lets us give an idea of the proof of (2.35). Using integration by parts, for α P Zn
` such that |α| ď N we

can write

tσ|α|
px ´ zq

α
rrKpx, y, tq ´ rKpy, z, tqs

“
ÿ

|β|ď|α|

Cα,β tσ|α|`tδu

ż

eipx´zq¨ξ
|ξ|np1´σq{2`σ|β|

B
β
ξ

“

peipz´yq¨ξ
´ 1qppx, ξq

‰

ˆ |ξ|´np1´σq{2´σ|β|
B
α´β
ξ

„

ψ

ˆ

|ξ|

t

˙ˆ

ξ

t

˙γ ȷ

dξ. (2.37)

Since |eipz´yq¨ξ ´ 1| ď tr and |B
β
ξeipz´yq¨ξ| ≲ |ξ|´|β| ptrq|β| one can show that if χ P C8

c pR`q is a function

such that χ “ ψ on the support of ψ, then

"

|ξ|np1´σq{2`σ|β|
B
β
ξ

“

peipz´yq¨ξ
´ 1qppx ` z, ξq

‰

χ

ˆ

|ξ|

t

˙

: |y ´ z| ă r, z P Rn

*

is a bounded subset of S m`np1´σq{2
σ,µ pRnq with bounds being less than or equal to Ctr. Therefore, since

m ď ´nλ, by Lemma 2.1 the family of symbols above defines pseudodifferential operators bounded on



2.3 Pseudodifferential operators and Ds conditions 81

L2pRnq with norm proportional to Ctr. Therefore, from this consideration and (2.37) we get

ˆ
ż

Rn
|rKpx, y, tq ´ rKpx, z, tq|

2
p1 ` t2σ

|x ´ z|
2
q

Ndx
˙1{2

≲ tr
ÿ

|α|ďN

ÿ

|β|ď|α|

Cα

›

›

›

›

tσ|α|`tδu
|ξ|´np1´σq{2´σ|β|

B
α´β
ξ

„

ψ

ˆ

|ξ|

t

˙ˆ

ξ

t

˙γ ȷ›
›

›

›

L2

≲ ptrqt
σn
2 `tδu.

On the other hand, to control I2 we use Minkowski inequality to estimate

Γptq ď }rKp¨, y, tq}L2pC ρ
j q ` }rKp¨, z, tq}L2pC ρ

j q.

If x P C ρ
j and |y ´ z| ă r ă 1, then |x ´ y| ě |x ´ z| ´ |y ´ z| ě 2 j´1r ρ and

}rKp¨, y, tq}L2pC ρ
j q ď

ˆ
ż

Rn
|rKpx, y, tq|

2
pt2σ

|x ´ y|
2
q

Ndx
˙1{2

sup
|x´y|ą2 j´1r ρ

pt2σ
|x ´ y|

2
q

´ N
2 .

We claim that

ˆ
ż

Rn
|rKpx, y, tq|

2
pt2σ

|x ´ y|
2
q

Ndx
˙1{2

≲ t
σn
2 `tδu (2.38)

and the second term can be estimated by ptσ2 j´1r ρq´N . Thus

}rKp¨, y, tq}L2pC ρ
j q ≲ t

σn
2 `tδu

ptσ2 j´1r ρq´N .

Analogously }rKp¨, z, tq}L2pC ρ
j q ≲ tσn{2`tδuptσ2 j´1r ρq´N . Using these estimates and assuming N ą

n
2

`

tδu ` 1
σ

we obtain

ż 8

r´1
Γptq

dt
t
≲

ż 8

r´1
t
σn
2 `tδu´σN´1

p2 jrρq´Ndt ≲ p2 jrρq´ n
2 ´

1`tδu
σ r

“ r1´
ρ
σ´

ρn
2 ´

ρtδu
σ p2 j

q
´ n

2 ´
1`tδu
σ

≲ r´tδu
|C ρ

j |
´ 1

2 `
tδu`1

n p 1
ρ´ 1

σq 2´
j
ρ ptδu`1q. (2.39)
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It just remains to show now (2.38). In the same spirit as previously, taking |α| “ N we may write

tσ|α|
px ´ yqrKpx, y, tq »

ÿ

|β|ď|α|

tσ|α|`tδu

ż

eipx´yq¨ξ
B
β
ξ ppx, ξqB

α´β
ξ

„

ψ

ˆ

|ξ|

t

˙ˆ

ξ

t

˙γ ȷ

dξ.

Since the class of symbols
!

|ξ|np1´σq{2`σ|β|B
β
ξ ppx ` y, ξq : y P Rn

)

are a bounded subset of

S m`np1´σq{2
σ, µ pRnq, it follows directly that the family of pseudodifferential associated to it is uniformly

bounded on L2pRnq. Therefore

ˆ
ż

Rn
|rKpx, y, tq|

2
pt2σ

|x ´ y|
2
q

Ndx
˙1{2

≲
ÿ

|β|ď|α|

tσ|α|`tδu

›

›

›

›

|ξ|´
np1´σq

2 ´σ|β|
B
α´β
ξ

„

ψ

ˆ

|ξ|

t

˙ˆ

ξ

t

˙γ ȷ›
›

›

›

L2

≲ t
σn
2 `tδu.

Now we consider the case r ą 1. Since we can estimate }rKp¨, y, tq}L2pC jq and }rKp¨, z, tq}L2pC jq in the

same way as before, we obtain for N ą max
"

n
2

`
tδu

σ
,

n
2

` tδu ` 1
*

,

˜

ż

C j

|rKpx, yq ´ rKpx, zq|
2dx

¸1{2

ď

ż 8

1

´

}rKp¨, y, tq}L2pC jq ` }rKp¨, z, tq}L2pC jq

¯ dt
t

≲ p2 jrq
´N

ż 8

r´1
t
σn
2 `tδu´σN´1dt

≲ r´ n
2 ´tδu´p1´σq´tδup1´σq

p2 j
q

´ n
2 ´tδu´1

≲ r´tδu
|C jpz, rq|

´ 1
2 2´ jp1`tδuq. (2.40)

Now we deal with estimates of the adjoint. Suppose first 0 ă r ă 1 and write

p´iq´|γ|
p2πq

n
rrKpy, x, tq ´ rKpz, x, tqs “

ż

e´ipx´yq¨ξ
rppy, ξq ´ ppz, ξqsψ

ˆ

|ξ|

t

˙

ξγ dξ

`

ż

eix¨ξ
peiyξ

´ eiz¨ξ
qppz, ξqψ

ˆ

|ξ|

t

˙

ξγdξ

:“ f px ´ y, y, z, tq ` gpx, y, z, tq.

Then

˜

ż

C ρ
j

|rKpy, x, tq ´ rKpz, x, tq|
2dx

¸1{2

≲ }gp¨, y, z, tq}L2pC ρ
j q ` } f p¨ ´ y, y, z, tq}L2pC ρ

j q
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and we will obtain analogous estimates for the L2 norm as presented before. Suppose first tr ă 1 and

note that

|gpx, y, z, tq|
2
p1 ` t2σ

|x|
2
q

N
“

ÿ

|α|ďN

“

|gpx, y, z, tq| ptσ|x|q
|α|
‰2
. (2.41)

Considering Gpξ, y, z, tq “ peiy¨ξ ´ eiz¨ξqppz, ξqψ p|ξ|{tq ξγ and taking the Fourier transform in the first

variable we have the identity pGpx, y, z, tq “ p2πq´ngpx, y, z, tq. In addition, from mean value inequality it

follows for |y ´ z| ď r and tr ă 1 that

ˇ

ˇB
β
ξ rpeiy¨ξ

´ eiz¨ξ
qppz, ξqs

ˇ

ˇ ≲ ptrqtm´σ|β|. (2.42)

Then, from (2.41) and (2.42)

ˆ
ż

Rn
|gpx, y, z, tq|

2
p1 ` t2σ

|x|
2
q

Ndx
˙1{2

≲
ÿ

|α|ďN

tσ|α|
} pGp¨, y, z, tq|x|

|α|
}L2

≲
ÿ

|α|ďN

tσ|α|
}yBαξGp¨, y, z, tq}L2

ď
ÿ

|α|ďN

ÿ

|β|ď|α|

tσ|α|`tδu

›

›

›

›

B
β
ξ rpeiy¨ξ

´ eiz¨ξ
qppz, ξqs B

α´β
ξ

„

ψ

ˆ

|ξ|

t

˙ ˆ

ξ

t

˙γ ȷ›
›

›

›

L2

ď
ÿ

|α|ďN

ÿ

|β|ď|α|

tσ|α|`tδu
ptrq tm´σ|β| t|β|´|α| t

n
2

≲ ptrqt
σn
2 `tδu

since m ď ´np1 ´ σq{2. The estimate for f follows by the same steeps as the one presented for g. We

proceed as before replacing G by G1pξ, y, z, tq “ rppy, ξq ´ ppz, ξqsψ p|ξ|{tq ξγ and using the estimate

ˇ

ˇB
α
ξ rppy, ξq ´ ppz, ξqs

ˇ

ˇ ď ptrq tm´σ|α|.

Thus, the conclusion follows in the same way as did in (2.36). If we drop the assumption tr ă 1 we
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proceed as follows. First, write

gpx, y, z, tq “

ż

e´ipx´yq¨ξppz, ξqψ
ˆ

|ξ|

t

˙

ξγdξ ´

ż

e´ipx´zq¨ξppz, ξqψ
ˆ

|ξ|

t

˙

ξγdξ

:“ g1px, y, z, tq ´ g2px, y, z, tq.

We will obtain the L2 estimate for g1 and g2. In the same way as before

}g2p¨, y, z, tq}L2pC ρ
j q ď

ˆ
ż

|g2px, y, z, tq|
2

rpx ´ zq
2t2σ

s
Ndx

˙1{2

sup
x P C ρ

j

rpx ´ zqtσs
´N

and consider α P Zn
` such that |α| “ N. Integration by parts gives us

g2px, y, z, tq px ´ zq
αtσ|α|

“ C tσ|α|
yBαξGpx ´ z, y, z, tq,

where Gpξ, y, z, tq “ ppz, ξqψ p|ξ|{tq ξγ. Using that

ˇ

ˇB
α
ξGpξ, y, z, tq

ˇ

ˇ ď ttδu
ÿ

|β|ď|α|

ˇ

ˇ

ˇ
B
β
ξ ppz, ξq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

B
α´β
ξ

„

ψ

ˆ

|ξ|

t

˙ˆ

ξ

t

˙γ ȷˇ
ˇ

ˇ

ˇ

ď
ÿ

|β|ď|α|

|ξ|m´σ|β| t|β|´|α|`tδu

ď
ÿ

|β|ď|α|

tm´σ|α|`tδu tp1´σqp|β|´|α|q ≲ tm´σ|α|`tδu

we get

}g2p¨, y, z, tq px ´ zq
αtσ|α|

}L2pC ρ
j q ď }tσ|α|

yBαξGp¨ ´ z, y, z, tq}L2

“ }tσ|α|
B
α
ξGp¨ ´ z, y, z, tq}L2

≲ tσ|α| tm´σ|α|` n
2 `tδu ≲ t

σn
2 `tδu

since m ď ´p1 ´ σqn{2. On the other hand, the same estimate for g1 is valid. Indeed

}g1p¨, y, z, tq}L2pC ρ
j q ď

ˆ
ż

|g1px, y, z, tq|
2

rpx ´ yq
2t2σ

s
Ndx

˙1{2

sup
x P C ρ

j

rpx ´ yqtσs
´N .

The control of the integral is analogous as in the previous case and for supremum term note that since
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r ă 1, x P C ρ
j and |y ´ z| ă r we get |x ´ y| ą 2 j´1r ρ and thus

sup
x P C ρ

j

rpx ´ yqtσs
´N

ď p2 j´1r ρtσq
´N .

From that point we proceed as in (2.39) and obtain the desired estimates for g. The same argument

applies to f if we split

f px ´ y, y, z, tq “

ż

e´ipx´yq¨ξppy, ξqψ
ˆ

|ξ|

t

˙

ξγ dξ ´

ż

e´ipx´yq¨ξppz, ξqψ
ˆ

|ξ|

t

˙

ξγ dξ

and estimate exactly in the same way as did for g.

The case r ě 1 is analogous as the previous and we obtain that

}gp¨, y, z, tq}L2pC jq ≲ t
σn
2 `tδu

p2 jrtσq
´N and } f p¨ ´ y, y, z, tq}L2pC jq ≲ t

σn
2 `tδu

p2 jrtσq
´N .

Thus, the desired estimate follows as in (2.40).

In [28, Theorem 2], the authors have shown the boundedness of OpS m
σ,δpR

nq, for 0 ă σ ď 1, 0 ď ν ă

1 and σn ´ pn ` 1q ă m ď ´pn ` 1qp1 ´ σq in H1
wpRnq for

w P At with t P

„

1,
1 ` n ` m

nσ

˙

Ă r1, 2q,

under the assumption T ˚p1q “ 0. In view of Proposition 2.3 and Theorem 2.10, we obtain the continuity

of OpS m
σ,δpR

nq in H1
wpRnq for every m ď ´n

2p1 ´ σq and w P At X RH 2
2´t

with 1 ă t ă 2 (in this case, we

use the kernel of T satisfies D2 condition).

2.4 L8pRnq ´ BMOpRnq boundedness

In section section, we point out other related result for the sake of completeness. The boundedness

from L8pRnq to BMOpRnq was proved in [5, Theorem 2.1] for the case s2 “ 2 and kernels satisfying

(2.4) with the aditional assumption that T ˚ also satisfies condition (i). Further, the authors showed in [6,

Corollary 3.3] that the same result, in the vector valued setting, remains true under the following general
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hypothesis: the kernel of T satisfies D1 condition and for some 1 ă p ă q ď 8 and p{q ď σ ď 1, T

satisfies

|Bpz, rq|
´ 1

q }T f }LqrBpz,rqs ď C |Bpz, rσq|
´ 1

p } f }LppRnq if r ă 1

and

}T f }LppRnq ď C } f }LppRnq if r ą 1.

We show the following:

Theorem 2.11. Let T be a strongly singular Calderón–Zygmund operator satisfying (i) and (iii) of

Theorem A and D1 condition. Assume also that (iii) holds for T ˚. Then T is continuous from L8pRnq to

BMOpRnq.

Proof. The proof is classical we only outline the main ideas. Given f P L8pRnq, we show that for any

ball B Ă Rn there exist a constant aB (may depend on B) such that

sup
B

?
B

|T f pxq ´ aB|dx ≲ } f }L8

with implicit constant independent of B “ Bpx0, rq Ă Rn. Suppose r ď 1 and let 2Bσ “ Bpx0, 2rσq. Split

f into

f “ fχ2Bσ ` fχ
p2Bσqc :“ f1 ` f2.

Since T ˚ : LqpRnq Ñ Ls2pRnq is bounded, then T : Ls1
2pRnq Ñ Lq1

pRnq will also be bounded for
1
s1

2
“

1 ´
1
s2

and
1
q1

“
1
s1

2
´
β

n
. In particular, since f1 P Ls1

2pRnq then T f1 is well defined, belongs to Lq1

pRnq and

ż

B
|T f1pxq|dx ď |B|

1
q }T f1}Lq1 ≲ |B|

1
q } f1}Ls21 ≲ |B|

1
q ` σ

s21 } f }L8 .

Since 1{q ` σ{s1
2 ´ 1 ě 0 and r ď 1 we have |B|

1
q ` σ

s1
2

´1
≲ 1. Then

?
B

|T f1pxq|dx ď C } f }L8 . (2.43)
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For f2 we use condition (2.9) to show

ż

Rn
|Kpx, yq ´ Kpz, yq| | f2pyq|dy ď } f }L8

ż

|y´z|ą2rσ
|Kpx, yq ´ Kpz, yq|dy

“ } f }L8

8
ÿ

j“0

ż

C σ
j

|Kpx, yq ´ Kpz, yq|dy

ď } f }L8

8
ÿ

j“0

2´
jδ
σ ≲ } f }L8 ,

and from the previous estimate

?
B

|T f2pxq ´ T f2pzq|dx ď C } f }L8 . (2.44)

Hence, we choose aQ :“ T f2pzq and from (2.43) and (2.44) we conclude

?
B

|T f pxq ´ T f2pzq|dx ď

?
B

|T f1pxq| ` |T f2pxq ´ T f2pzq|dx ď C } f }L8 .

The proof for r ą 1 is analogous if we split f in 2B and p2Bqc and use the L2 boundedness of T together

with (2.8).

Remark 2.10. The hypothesis on T ˚ on the previous theorem may be weakened to the condition

|Bpz, rq|
´ 1

q

ż

Bpz,rq

|T f pxq|dx ď C } f }Ls2
1

that is, T maps continuously Ls2
1

pRnq intoM1
λpR

nq where 1{λ “ 1{s1
2 ´ β{n and

M1
λpR

n
q “

"

f P L1
locpR

n
q : sup

0ărď1
|Bpz, rq|

1
λ´1

ż

Bpz,rq

| f pxq|dx ă 8

*

denotes the local Morrey-space with λ ą 1.



Chapter

3
Inhomogeneous Calderón–Zygmund operators

In this chapter we consider a non-homogeneous version of Calderón–Zygmund operators, imposing

a strong decay on the size of kernel at infinity. We follow the terminology of Ding, Han and Zhu in [29]

for the standard case.

Definition 3.1. We say that a locally integrable function K defined on Rn ˆ Rnz∆ is called a pµ, δ, σq

inhomogeneous kernel for µ ą 0, 0 ă δ ď 1 and 0 ă σ ď 1 if there exists C ą 0 such that

|Kpx, yq| ď C min
"

1
|x ´ y|n

,
1

|x ´ y|n`µ

*

, for every x , y, (3.1)

and

|Kpx, yq ´ Kpx, zq| ` |Kpy, xq ´ Kpz, xq| ď C
|y ´ z|δ

|x ´ z|n` δ
σ

for all |x ´ z| ě 2|y ´ z|σ. When σ “ 1, we simply call it a pµ, δq standard inhomogeneous kernel.

In comparison with the kernels studied in the previous chapter, we assume in (3.1) an extra decay of

the kernel at the infinity. Such condition is natural when considering pseudodifferential operators in the

Hörmander class OpS m
σ,νpR

nq with 0 ă σ ď 1 and 0 ď ν ă 1. For instance, it has been shown in [4,

Theorem 1.1 (a)] that the kernel associated to this class of operators satisfies the pseudo local property:

there exist N0 P Z` such that |Kpx, yq| ≲ |x ´ y|´N for every N ě N0 and x , y. Then, (3.1) follows

88
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immediately. Moreover, condition (3.1) has already been explored in earlier works for non-homogeneous

spaces (see for instance [76, Theorem 3.2.49] for non-homogeneous Triebel–Lizorkin spaces).

Definition 3.2. We say that a linear and continuous operator T : SpRnq Ñ S1pRnq is a strongly singular

inhomogeneous Calderón–Zygmund operator if the following properties are satisfied:

(i) T extends to a continuous operator from L2pRnq to itself;

(ii) T extends to a continuous operator from LqpRnq to Ls2pRnq, for some 1 ă s2 ă 8 and

1
q

“
1
s2

`
β

n
, where np1 ´ σq

ˆ

1 ´
1
s2

˙

ď β ă n
ˆ

1 ´
1
s2

˙

.

(iii) T is associated to a pµ, δ, σq inhomogeneous kernel and it is given (formally) by

xT f , gy “

ż ż

Kpx, yq f pyqgpxqdydx, for all f , g P SpRn
q with disjoint supports.

When σ “ 1, we call it standard inhomogeneous Calderón–Zygmund operator and condition (ii) can be

dropped, that is, only the continuity on L2pRnq is required.

In the same spirit of the previous chapter, we assume an integral weaker condition on the kernel. With

the same parameters and notation introduced earlier in Definition 2.5, we say the kernel K satisfies a local

Ds condition if (2.9) holds for 0 ă r ă 1, that is

sup
|y´z|ăr
0ără1

˜

ż

C jpz,r ρq

|Kpx, yq ´ Kpx, zq|
s

` |Kpy, xq ´ Kpz, xq|
sdx

¸1{s

≲ |C jpz, r ρq|
1
s ´1` δ

n p 1
ρ´ 1

σq2´
jδ
ρ

for any 0 ă ρ ď σ ď 1 together with the inhomogeneous size control (3.1).

Regarding the Lp continuity of such operators, in Theorem 2.3 we pointed out that strongly

singular Calderón–Zygmund operators satisfy weak p1, 1q-type inequality when the kernel satisfies a

σ´Hörmander condition (2.5) and (2.6), which is weaker than D1. For the inhomogeneous case, we can
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see that the size condition (3.1) implies

sup
rą1

ż

|x´z|ąCr
|Kpx, yq ´ Kpx, zq|dx ď 2pCrq

´µ
ď 2C´µ.

This means that assuming (3.1) and (2.5) (local σ´Hörmander condition), one can shows that strongly

singular inhomogeneos Calderón–Zygmund operators satisfy weak p1, 1q-type inequality. This, together

with the L2 continuity and interpolation we conclude the bondedness on LppRnq for every 1 ă p ă 8.

The same conclusion holds for standard inhomogeneous Calderón–Zygmund operators.

The continuity of pseudodifferential operators in local Hardy spaces have been considered for instance

in [37, 42, 45] among others. For standard inhomogeneous Calderón–Zygmund operators, necessary and

sufficient conditions for the continuity on hppRnq have been considered in [29] when n
n`1 ă p ă 1. In the

mentioned work, the authors obtained the following result:

Theorem 3.1 ([29, Theorem 1.1]). If T is a standard inhomogeneous Calderón–Zygmund operator such

that T ˚p1q P 9Λnp 1
p ´1qpRnq, then T is bounded on hppRnq provided that max

!

n
n`µ

, n
n`δ

)

ă p ă 1.

Conversely, if T is bounded on hppRnq for n
n`1 ă p ă 1, then T ˚p1q P Λnp 1

p ´1qpRnq.

For the sufficiency part, they used Komori’s molecular approach [50, Definition 4.4] for n{pn ` 1q ă p ă

1. The necessity follows by the estimate

ˇ

ˇ

ˇ

ˇ

ż

f pxqdx
ˇ

ˇ

ˇ

ˇ

≲ } f }hp , for every f P L2
pRn

q X hp
pRn

q, (3.2)

together with a duality argument.

The goal of this chapter is to extend the previous theorem for 0 ă p ď 1 and both standard

and strongly singular inhomogeneous operators. In particular, we will assume an appropriate T ˚

inhomogeneous cancellation condition expressed in terms of the Campanato-type spaces, that we describe

in the sequence. Given k P Z`, 1 ď s ă 8, ψ : p0,8q Ñ p0,8q and B “ Bpx0, rq Ă Rn, we define the
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ψ-generalized Campanato spaces as

Ls,ψ
k pRn

q :“
"

f P Ls
c,kpR

n
q : there exists C ą 0 such that for all B Ă Rn,

ˆ?
B

| f pyq ´ pP k
B f qpyq|

sdy
˙1{s

ď C ψprq

+

,

where P k
B f pyq is the unique polynomial of degree less than or equal to k that has the same moments as f

over B up to order k. We equip it with the functional

} f }Ls,ψ
k

:“ sup
BĂRn

1
ψprq

ˆ?
B

| f pyq ´ pP k
B f qpyq|

sdy
˙1{s

.

The space Ls,ψ
k pRnq is considered as a quotient space of the above classes of functions modulo all

polynomials of degree less than or equal to k. There are several identifications of ψ-generalized

Campanato spaces with other well known fuctions spaces in Harmonic Analysis. For instance, if k “ 0,

1 ď s ă 8 and ψ ” 1, then Ls,ψ
0 pRnq � BMOpRnq, and if ψptq “ tγ, then Ls,ψ

tγu
pRnq � 9ΛγpR

nq. In addition,

following the proof of John-Nirenberg inequality (see [73] for instance) or the one for Morrey-Campanato

spaces in [56], we can see that if ψ is an increasing function and k P Z`, then for all 1 ď s ă 8 we

have Ls,ψ
k pRnq � L1,ψ

k pRnq. We refer to [35, Chapter III Section 5] for a detailed discussion on the relation

between Campanato, Lipschitz and Zygmund spaces, and also to [69] for an exposition of Campanato

spaces on different domains and their generalizations.

We will make use of the same T ˚ notation previously introduced in Definition 2.6 for the

homogeneous case.

Definition 3.3. Let m P Z` and L2
c,mpRnq as in Definition 2.6. For every α P Zn

` such that |α| ď m and

x0 P Rn, define T ˚ ppx ´ x0qαq in the distributional sense by

xT ˚ ppx ´ x0q
αq , gy “ xpx ´ x0q

α,Tgy “

ż

Rn
px ´ x0q

αTgpxqdx, for all g P L2
c,mpRn

q. (3.3)

We have proved in Proposition 2.2 the well definition of (3.3) for standard and strongly singular

Calderón–Zygmund operators (see also [64, p. 23]). The next proposition extends it to the
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inhomogeneous case considered in this chapter.

Proposition 3.1. Let T be a linear and bounded operator on L2pRnq whose associated kernel satisfies the

local D1 condition, that is (2.9) and (3.1) with s “ 1. Then px ´ x0qαTgpxq P L1pRnq for all g P L2
c,mpRnq

provided that m “ mintµ, δu.

Proof. Let g P L2
c,mpRnq, fix a ball B “ Bpx0, rq such that supp pgq Ă B, and write

ż

Rn
|px ´ x0q

αTgpxq|dx “

ż

2B
|px ´ x0q

αTgpxq|dx `

ż

p2Bqc
|px ´ x0q

αTgpxq|dx.

From the boundedness of T on L2pRnq we get

ż

2B
|px ´ x0q

αTgpxq|dx ď }p¨ ´ x0q
α
}L8p2Bq |2B|

1
2 }Tg}L2 ≲ r|α|` n

2 }g}L2 ă 8.

For the second integral, suppose first r ě 1. Splitting the integral on p2Bqc into an appropriate annulus

decomposition C j “ C jpx0, rq, the estimation follows by (3.1), Hölder inequality and the fact that x P C j

and y P B implies |x ´ y| ě |x ´ x0|{2:

ż

p2Bqc
|x ´ x0|

|α|
|Tgpxq|dx ď

ÿ

jPN

p2 j`1rq
|α|

ż

C j

ż

B
|Kpx, yq| |gpyq|dydx

≲ }g}L2 r|α|` n
2

ÿ

jPN

p2 j
q

|α|

ż

C j

|x ´ x0|
´n´µdx

≲ }g}L2 r|α|` n
2 ´µ

ÿ

jPN

p2 j
q

|α|´µ
ă 8

since |α| ă µ. For r ă 1, we use condition (2.9) and proceed like in the proof of Proposition 2.2.

Remark 3.1. Note that the hypotheses on T together with the proof of the previous proposition imply

that for every ball B, the dual pairing (3.3) defines f “ T ˚ pp¨ ´ x0qαq as an element of
´

L2
Np

pBq

¯˚

, which

can be identified with the quotient space of L2pBq by the polynomials of degree up to Np.

In our main result, we extend both necessary and sufficient part of Theorem 3.1 for the full range

0 ă p ď 1 and for both standard and strongly singular inhomogeneous Calderón-Zygmund operators. In
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particular, it conciliate the Lipschitz-type cancellation condition when p , n{pn ` kq for any k P Z` and

introduce a local Campanato-type condition when p “ n{pn ` kq for some k P Z`.

Theorem B. Let 0 ă p ď 1 and T be a strongly singular inhomogeneous Calderón–Zygmund operator

associated to a kernel satisfying the local integral integral condition (2.9) for some δ ą 0 and 1 ď s ď s2

with p ă s. Then, T can be extended to a bounded operator from hppRnq to itself for max
!

n
n`µ

, p0

)

ă

p ď 1, where p0 is given by (2.13), if, and only if there exists a constant C ą 0 such that

f “ T ˚
rp¨ ´ x0q

α
s satisfies

ˆ?
B

| f pxq ´ P Np

B p f qpxq|
2dx

˙1{2

ď CΨp,αprq, (3.4)

for every ball B “ Bpx0, rq Ă Rn such that r ă 1 and α P Zn
` with |α| ď Np, where P Np

B p f q is the

polynomial of degree ď Np that has the same moments as f over B up to order Np and

Ψp,αptq :“

$

’

&

’

%

t np 1
p ´1q if |α| ă n p1{p ´ 1q ,

t np 1
p ´1q

„

log
ˆ

1 `
1
t

˙ȷ´ 1
p

if |α| “ n p1{p ´ 1q “ Np.

Remark 3.2. Note that f “ T ˚rp¨ ´ x0qαs is required to satisfy the Campanato-type condition (3.4) only

for balls B such that |B| ă 1, but the condition makes sense for any ball due to Remark 3.1. Thus, one

can replace (3.4) by the stronger condition: for every x0 P Rn

$

’

’

&

’

’

%

T ˚
rpx ´ x0q

α
s P 9Λnp 1

p ´1qpRn
q if |α| ă n p1{p ´ 1q

.

T ˚
rpx ´ x0q

α
s P L2,Ψp

Np
pRn

q if |α| “ n p1{p ´ 1q “ Np.

When p “ 1, condition (3.4) is

ˆ?
B

| f pxq ´ fB|
2dx

˙1{2

ď C
„

log
ˆ

1 `
1
r

˙ȷ´1

.

The function space characterized by the above condition is known in the literature as LMOpRnq and is

connected with h1pRnq in the following sense: in [52], the authors have shown that b P LMOpRnq is a

necessary and sufficient condition for the commutator rb,OpS m
σ,νs to be bounded on h1pRnq to itself for

0 ă σ ď 1, 0 ď ν ă 1, δ ď σ and ´pn ` 1q ă m ď ´pn ` 1qp1 ´ σq. For other results relating
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LMOpRnq-type spaces and both H1pRnq and h1pRnq, we refer to [72].

3.1 Proof of Theorem B

3.1.1 Sufficiency

To prove the sufficiency part of Theorem B, we are going to use the molecular decomposition of

hppRnq presented in Section 1.2.1. Let a to be a pp, 2q atom in hp (as in Definition 1.5) supported in

B :“ Bpx0, rq. We will show that Ta is a pp, s, λ, ωq molecule for λ satisfying

n
ˆ

s
p

´ 1
˙

ă λ ă min

$

&

%

sµ ` nps ´ 1q, n
ˆ

s
s2

´ 1
˙

` sβ

»

–

n
´

1 ´ 1
s2

¯

δ
σ

β ` δ
σ

´ δ

fi

fl

,

.

-

.

Given 1 ď s ă 8, we choose t ą s and condition (M1) will follow from the LtpRnq continuity, as in

(2.14). To show (M2) we split it in two cases, depending on the size of the radius of the ball. If r ě 1,

from condition (3.1), it follows that for |x ´ x0| ą 2r and |y ´ x0| ă r we have |Kpx, yq| ≲ |x ´ x0|´n´µ.

Then

|Tapxq| ď

ż

B
|Kpx, yq| |apyq|dy ≲ }a}L2 |B|

1
2 |x ´ x0|

´n´µ ≲ r´np 1
p ´1q|x ´ x0|

´n´µ.

Since λ{s ´ n{s1 ă µ, we have λ ´ spn ` µq ă ´n and therefore

ż

p2Bqc
|Tapxq|

s
|x ´ x0|

λdx ≲ r´snp 1
p ´1q

ż

p2Bqc
|x ´ x0|

λ´spn`µqdx ≲ r λ`np1´ s
p q r´sµ ≲ r λ`np1´ s

p q.

Condition (M3) follows from Remark 1.4 for this case. Suppose now that r ă 1. To show the global

estimate (M2), we will recall the same idea and notation used on the proof of Theorem A. Consider

0 ă ρ ď σ ď 1, where ρ is given by (2.18). Splitting the integral of Rn in 2Bρ and p2Bρqc, we follow the

same estimates as (2.16) and (2.17) since

λ ď n
ˆ

s
s2

´ 1
˙

`
sβ

1 ´ ρ
.

Finally, in order to verify that (M3) holds, note that for r ă 1 the function a is in particular a pp, 2q atom
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in Hp and has vanishing moments up to the order Np. From condition (3.4), setting f “ T ˚rp¨ ´ x0qαs,

we have, by (3.3),

ˇ

ˇ

ˇ

ˇ

ż

Tapxqpx ´ x0q
αdx

ˇ

ˇ

ˇ

ˇ

“ |xTa, p¨ ´ x0q
α
y| “ |xT ˚ rp¨ ´ x0q

αs , ay|

ď

ż

B
| f pxq ´ P Np

B p f qpxq| |apxq|dx

ď

ˆ
ż

B
| f pxq ´ P Np

B p f qpxq|
2dy

˙1{2

}a}L2pBq

≲ Ψp,αprq |B|
1
2 }a}L2pBq

≲ Ψp,αprq r´np 1
p ´1q

ď

#

Cn,p if α ă np1{p ´ 1q,

φpprq if |α| “ np1{p ´ 1q “ Np.

Therefore, Ta is a pp, s, λ, ωq molecule provided that max
"

n
n ` µ

, p0

*

ă p ď 1.

Remark 3.3. In the spirit of Theorem 2.4, we can also consider in the previous theorem the local

derivative Ds condition (2.21).

3.1.2 Necessity

In order to show that condition (3.4) is necessary for the boundedness of inhomogeneous Calderón–

Zygmund-type operators, it will be more convenient to use a characterization of hppRnq in terms of the

grand maximal function (see for instance [8, Section 2]), and also replace the restriction 0 ă t ă 1 in the

definition of the maximal function by 0 ă t ă T for some T ă 8, which yields equivalent norms. Given

0 ă T ă 8 and x P Rn, consider the family

F
T, x

k “
␣

ϕ P C8
pRn

q : supp pϕq Ă Bpx, tq, 0 ă t ă T and }B
αϕ}L8 ď t´n´|α| for all |α| ď k

(

.

We define the local grand maximal function associated to the family F T, x
k by

mFkp f qpxq “ sup
ϕPF

T,x
k

|x f , ϕy| ,

where by x , y we mean the pairing in the distributional sense.
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Lemma 3.1. Let f P L1
locpR

nq. If k P N is such that n
n`k ă p ď n

n`k´1 (i.e. k “ Np ` 1), then

}mFkp f q}Lp ď Cn,p,T } f }hp , (3.5)

where Cn,1,T ≲ 1 ` log` T and Cn,p,T ≲ maxt1, T np1{p´1qu for p ă 1.

Proof. Since the atomic decomposition (1.2) converges in the sense of distributions and mFk is sub-linear,

it suffices to prove that if a is a pp,8q atom in hp, then }mFkpaq}Lp ď C. Indeed, writing f “

8
ÿ

j“1

λ j a j,

this gives

}mFkp f q}Lp ď

ˆ 8
ÿ

j“1

|λ|
p

}mFkpaq}
p
Lp

˙1{p

ď C
ˆ 8
ÿ

j“1

|λ|
p

˙1{p

ď C } f }hp .

Fix a pp,8q atom a supported on B “ Bpx0, rq Ă Rn and split

}mFkpaq}
p
Lp “

ż

2B
rmFkpaqpxqs

pdx `

ż

p2Bqc
rmFkpaqpxqs

pdx.

To deal with the first integral, note that for any ϕ P F
T, x

k one has

ˇ

ˇ

ˇ

ˇ

ż

apyqϕpyqdy
ˇ

ˇ

ˇ

ˇ

ď }a}L8 }ϕ}L8 |Bpx0, rq X Bpx, tq| ď Cn r´ n
p .

Then,

ż

2B
rmFkpaqpxqs

pdx ď Cn,p r´n
|2B| » Cn,p.

When x < 2B, note that
ż

apyqϕpyqdy vanishes unless Bpx, tq X Bpx0, rq , H and this implies t ą r and

moreover

|x ´ x0| ď t ` r ď t `
|x ´ x0|

2
ñ

|x ´ x0|

2
ď t.

Hence r ď
|x´x0|

2 ď t ă T . Thus, if r ě 1 we have

ˇ

ˇ

ˇ

ˇ

ż

apyqϕpyqdy
ˇ

ˇ

ˇ

ˇ

ď }a}L1}ϕ}L8 ď Cn rnp1´ 1
p qt´n

ď Cn|x ´ x0|
´n,
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and therefore

ż

p2Bqc
rmFkpaqpxqs

pdx ≲
ż

2ră|x´x0|ă2T
|x ´ x0|

´npdx ≲
ż

2ă|x´x0|ă2T
|x ´ x0|

´npdx ă 8.

Note that the integral on the right has order log T when p “ 1 and T np1´pq when p ă 1. For 0 ă r ă 1,

we have the standard HppRnq argument. Using the moment conditions of a up to the order Np “ k ´ 1

and the Taylor expansion of ϕ P F
T, x

k to write

ˇ

ˇ

ˇ

ˇ

ż

apyqϕpyqdy
ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż
„

ϕpyq ´
ÿ

|α|ďk´1

Cα B
αϕpx ´ x0qpy ´ x0q

α

ȷ

apyqdy
ˇ

ˇ

ˇ

ˇ

ď
ÿ

|α|“k

Cα }B
αϕ}L8 r|α|`n

}a}L8

ď Cn t´n´k rk`np1´ 1
p q.

Then,

ż

p2Bqc
rmFkpaqpxqs

pdx ď Cn,p r kp`np´n
ż

|x´x0|ą2r
|x ´ x0|

pp´k´nqdx ă 8,

since p ą n{pn ` kq.

Remark 3.4. Since mφ f ď C mFk f , it is also possible to show the other direction of (3.5) and therefore

we have a characterization.

The next result is a strengthening of (3.2) for f P hppRnq supported in small balls and when a higher

amount of moments are considered. In particular, a more appropriate logarithmic bound, depending on

the support, is provided when p “ n
n`k for some k P Z`, that is n

´

1
p ´ 1

¯

P Z`.

Proposition 3.2. Let g P hppRnq be supported in Bpx0, rq for some x0 P Rn and 0 ă r ă 1. Then for

α P Zn
`, the moments xg, p¨ ´ x0qαy are well-defined and satisfy

|xg, p¨ ´ x0q
α
y| ď

$

’

&

’

%

Cα,p }g}hp if |α| ă np1{p ´ 1q;

Cα,p }g}hp

„

log
ˆ

1 `
1
r

˙ȷ´1{p

if |α| “ np1{p ´ 1q “ Np.
(3.6)
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Remark 3.5. Note that condition (3.6) for |α| “ np1{p ´ 1q “ Np gets stronger as r Ñ 0.

Proof. Since g is a compactly supported tempered distribution, it acts on C8pRnq and therefore we can

define xg, p¨ ´ x0qαy unambiguously for any multi-index α P Zn
`, and xg, p¨ ´ x0qαy “ xg, ϕy for all

ϕ P C8pRnq such that ϕpyq “ py ´ x0qα on the support of g.

By a translation argument we may assume that x0 “ 0. For each unit vector on v P Sn´1 and α P Zn
`

such that |γ| ď Np, we choose ϕv,γ
0 to be a fixed function satisfying the following conditions:

(i) ϕv,γ
0 P C8

c pRnq with support in B
`

v
2 , 2

˘

and }Bβ ϕ
v,γ
0 }L8 ď 2|β|´2n for all |β| ď Np ` 1;

(ii) ϕv,γ
0 pyq “ Cα yγ for all |y| ă 1 for some constant Cα depending only on n and α;

(iii)
ż

ϕ
v,γ
0 pyqdy , 0.

Let x P Rn such that |x| ą
r
2

and define

ϕx,γ
pyq “

1
|x|n

ϕ
x

|x|
,γ

0

ˆ

y
2|x|

˙

.

We claim ϕx,γ P F
T, x

k for T “ 2 and k ď Np ` 1. Indeed, note first that supp pϕx,γq Ă Bpx, tq for t “ 4|x|

since if |y ´ x| ą t we have
ˇ

ˇ

ˇ

ˇ

y
2|x|

´
x

2|x|

ˇ

ˇ

ˇ

ˇ

“
|y ´ x|

2|x|
ą

t
2|x|

“ 2

and then ϕ
x

|x|
,γ

0 py{2|x|q “ 0. Moreover, for |β| ď Np ` 1, by assumption (i),

›

›B
β ϕx,γ

›

›

L8 “ 2´|β|
|x|

´n´|β|

›

›

›
B
β ϕ

x
|x|
,γ

0

›

›

›

L8
ď t´n´|β|.

On the support of g, |y| ă r and |x| ą
r
2

, so
|y|

2|x|
ă 1 and by assumption (ii), ϕx,α

pyq “
Cα yα

|x|n`|α|
. Hence

mFkpgqpxq “ sup
ϕPF

T,x
k

|xg, ϕy| ě |xg, ϕx,α
y| “ Cα|x|

´n´|α| |xg, p¨ ´ x0q
α
y| .
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When |α| “ np1{p ´ 1q “ Np, this gives

}g}
p
hp ě

ż

r
2 ă|x|ă

r`1
2

rmFkpgqpxqs
pdx

ě Cα |xg, p¨ ´ x0q
α
y|

p
ż

r
2 ă|x|ď

r`1
2

|x|
´ppn`|α|qdx

ě Cα |xg, p¨ ´ x0q
α
y|

p log
ˆ

1 `
1
r

˙

.

For |α| ă np1{p ´ 1q, we consider 1 ă |x| ă 3{2. Since in particular |x| ą r{2, the same calculations as

above give

}g}
p
hp ě

ż

1ă|x|ă 3
2

rmFkpgqpxqs
pdx ě Cα |xg, p¨ ´ x0q

α
y|

p
ż

1ă|x|ď 3
2

|x|
´ppn`|α|qdx “ Cn,α,p |xg, p¨ ´ x0q

α
y|

p
.

We will now show that the above result can be extended to a class of hp distributions called

pre-molecules, which satisfies the size conditions of a molecule, but without any assumption on the

cancellation.

Definition 3.4. Let 0 ă p ď 1 ď s ă 8 with p ă s, λ ą n ps{p ´ 1q, and C ą 0. We say that a

measurable function M is a pp, s, λ,Cq pre-molecule in hp if there exist a ball B “ Bpx0, rq Ă Rn and a

constant C ą 0 such that:

M1. }M}LspBq ď C |B|
1
s ´ 1

p ;

M2. }M | ¨ ´x0|
λ
s }LspBcq ď C |B|

λ
ns ` 1

s ´ 1
p .

From the previous proposition, we have the following control on the moments of a pre-molecule

associated to small balls:

Proposition 3.3. Let 0 ă p ď 1 and M a pre-molecule in hp associated to the ball B “ Bpx0, rq with
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0 ă r ă 1. Then for α P Zn
` and |α| ď Np

ˇ

ˇ

ˇ

ˇ

ż

Mpxq px ´ x0q
αdx

ˇ

ˇ

ˇ

ˇ

≲

$

’

’

’

’

&

’

’

’

’

%

}M}hp ` Cn,p,λ if |α| ă np1{p ´ 1q;

. .

}M}hp ` Cn,p,λ
“

log
`

1
r

˘‰1{p
if |α| “ np1{p ´ 1q “ Np.

(3.7)

Proof. From the proof of the molecular decomposition (Proposition 1.4), we see that we can decompose

the pre-molecule as

M “

8
ÿ

j“1

c j a j ` aB,

where ta ju are pp, 2q atoms in Hp (i.e., have full cancellation) supported in Bpx0, 2 jrq,
ř

|c j|
p ď Cn,p,λ,

and aB P L2pBq. Hence, by Proposition 3.2,

ˇ

ˇ

ˇ

ˇ

ż

Mpxq px ´ x0q
αdx

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż
ˆ 8
ÿ

j“0

d j a jpxq ` aBpxq

˙

px ´ x0q
αdx

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

8
ÿ

j“0

d j

ż

a jpxq px ´ x0q
αdx `

ż

aBpxq px ´ x0q
αdx

ˇ

ˇ

ˇ

ˇ

(3.8)

“

ˇ

ˇ

ˇ

ˇ

ż

aBpxq px ´ x0q
αdx

ˇ

ˇ

ˇ

ˇ

≲

$

’

&

’

%

}aB}hp if |α| ă np1{p ´ 1q;

}aB}hp

„

log
ˆ

1 `
1
r

˙ȷ´1{p

if |α| “ np1{p ´ 1q “ Np,

where (3.8) follows since
8
ÿ

j“1

ż

d j a jpxqpx ´ x0q
αdx converges absolutely. In fact, recall that supp pa jq Ă

Bpx0, 2 jrq and |α| “ Np “ np1{p ´ 1q. Then

ż

|a jpxq||x ´ x0|
Npdx ď Cn p2 jrq

Np p2 jrq
np1´ 1

p q “ Cn,p

where the implicit constant is independent of j and r. Using this estimate we get

8
ÿ

j“1

ż

|d j||a jpxq||x ´ x0|
Npdx ď Cn,p

8
ÿ

j“1

|d j| ď Cn,p

ˆ 8
ÿ

j“1

|d j|
p

˙1{p

ă 8.

Moreover, from triangle inequality we can also derive the following relation between the hp norm of
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aB and M:

}aB}hp “

›

›

›

›

M ´

8
ÿ

j“0

d j a jpxq

›

›

›

›

hp

ď }M}hp `

ˆ 8
ÿ

j“0

|d j|
p

˙1{p

}a j}hp ď }M}hp ` Cn,p,λ.

Therefore,

ˇ

ˇ

ˇ

ˇ

ż

Mpxq px ´ x0q
αdx

ˇ

ˇ

ˇ

ˇ

≲

$

’

’

’

’

&

’

’

’

’

%

}M}hp ` Cn,p,λ if |α| ă np1{p ´ 1q;

. .

}M}hp ` Cn,p,λ
“

log
`

1
r

˘‰1{p
if |α| “ np1{p ´ 1q “ Np.

Now we go to the proof of the necessity part of Theorem B.

Proof. From the proof presented in Section 3.1.1, only the conditions imposed on the kernel and the

boundedness assumptions on the operator implies that Ta is a pre-molecule when a is an atom.

Given a ball B “ Bpx0, rq Ă Rn with 0 ă r ă 1 and g P L2
Np

pBq with }g}L2pBq ď 1, let f pxq “

T ˚ rpx ´ x0qαs and agpxq “ gpxq |B|
1
2 ´ 1

p . Note that ag is a pp, 2q atom in Hp supported on B and Tag P

hppRnq X L2pRnq from the boundedness assumptions. Since Tag is a pre-molecule, using estimate (3.7)
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and the boundedness assumption

ˆ?
B

| f pyq ´ PNpp f qpyq|
2dy

˙1{2

“ |B|
´ 1

2

ˆ
ż

B
| f pyq ´ PNpp f qpyq|

2dy
˙1{2

“ |B|
´ 1

2 sup
gPL2

Np
pBq

}g}L2pBq
ď1

ˇ

ˇ

ˇ

ˇ

ż

f pyqgpyqdy
ˇ

ˇ

ˇ

ˇ

“ |B|
1
p ´1 sup

gPL2
Np

pBq

}g}L2pBq
ď1

ˇ

ˇ

ˇ

ˇ

ż

f pyqagpyqdy
ˇ

ˇ

ˇ

ˇ

“ |B|
1
p ´1 sup

gPL2
Np

pBq

}g}L2pBq
ď1

|xT ˚
rpx ´ x0q

α
s, agy|

“ |B|
1
p ´1 sup

gPL2
Np

pBq

}g}L2pBq
ď1

|xpx ´ x0q
α, T pagqy|

“ |B|
1
p ´1 sup

gPL2
Np

pBq

}g}L2pBq
ď1

ˇ

ˇ

ˇ

ˇ

ż

Rn
Tagpxq px ´ x0q

αdx
ˇ

ˇ

ˇ

ˇ

ď

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

|B|
1
p ´1 sup

gPL2
Np

pBq

}g}L2pBq
ď1

}Tag}hp if |α| ă np1{p ´ 1q;

. .

|B|
1
p ´1 sup

gPL2
Np

pBq

}g}L2pBq
ď1

}Tag}hp

“

log
`

1 ` 1
r

˘‰1{p
if |α| “ np1{p ´ 1q “ Np.

ď

$

’

&

’

%

Cn,p r np 1
p ´1q if |α| ă np1{p ´ 1q,

Cn,p r np 1
p ´1q

„

log
ˆ

1 ` 1
r

˙ȷ´1{p

if |α| “ np1{p ´ 1q “ Np.

“ Cn,p Ψp,αprq. (3.9)
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3.2 Necessary condition for the boundedness of linear operators in

hppRnq

As we have seen before, a necessary condition for the boundedness of inhomogeneous Calderón–

Zygmund operators is based on the fact that such operators maps atoms into what we called pre-

molecules. As pointed out, this property comes from the conditions assumed on the kernel, without

any further assumption. This relation means that the size conditions on the molecules are motivated by

the behavior of the kernel associated to the operator. Conversely, for homogeneous Triebel–Lizorkin

spaces 9Fα
p,qpRnq, where 1 ă p, q ă 8 and α ą 0, the authors in [33, Theorem 1.16] showed that if a

continuous operator maps smooth atoms into smooth molecules, then the kernel of this operator satisfies

Calderón–Zygmund estimates. In [76, Theorems 3.2.34 and 3.2.35], the author includes the case p “ 1

and α “ 0, which covers 9F0
1,2pRnq “ H1pRnq, however no explicit proof is presented.

In this section we describe how the necessary condition from the boundedness presented on Theorem

B can be stated for more general operators. This can be achieved once the operator has the property of

mapping atoms into objects called pseudo-molecules, that we present in the sequel.

Definition 3.5. Fix some constant C ą 0. We say thatM P S1pRnq is a pseudo-molecule in hp associated

to the ball B Ă Rn if M “ g ` h in S1pRnq, where g P hppRnq is such that supp pgq Ă B, h P HppRnq, and

}g}hp ` }h}Hp ď C.

Next, we prove that pseudo-molecules satisfies the analogous moment estimates of Proposition 3.3.

Proposition 3.4. Let 0 ă p ď 1 andM a pseudo-molecule in hp associated to the ball B “ Bpx0, rq with

0 ă r ă 1. Then for α P Zn
`, |α| ď Np, the moments xM, p¨ ´ x0qαy are well-defined and satisfy

|xM, p¨ ´ x0q
αy| ≲

$

’

’

’

&

’

’

’

%

Cα,p C if |α| ă np1{p ´ 1q;

. .

Cα,p C

„

log
ˆ

1 `
1
r

˙ȷ´1{p

if |α| “ np1{p ´ 1q “ Np.

(3.10)
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Proof. Write M “ g ` h, as in Definition 3.5. Since h P HppRnq satisfies vanishing moment conditions

up the order Np, we have xh, p¨ ´ x0qαy “ 0 (where the pairing here is the one between HppRnq and its

dual space 9Λnp1{p´1qpR
nq). For g P hppRnq such that supp pgq Ă B, the moments xg, p¨ ´ x0qαy can be

defined as in Proposition 3.2. Thus we can set

xM, p¨ ´ x0q
α
y :“ xg, p¨ ´ x0q

α
y ` xh, p¨ ´ x0q

α
y “ xg, p¨ ´ x0q

α
y.

If M has an alternative decomposition g1 ` h1 satisfying the conditions of Definition 3.5, then we must

have that g ´ g1 P HppRnq and therefore the moments of g1 are the same as those of g. Therefore, the

estimates (3.10) follow immediately from (3.6).

We obtain the following theorem:

Theorem C. Let 0 ă p ď 1 and T to be a linear and bounded operator on hppRnq that maps each pp, 2q

atom in hp into a pseudo-molecule centered in the same ball as the support of the atom. Then, the local

Campanato-cancellation condition (3.4) must hold.

As pointed out before, since pre-molecules are in particular pseudo-molecules, we obtain as a

corollary the following result:

Corollary 3.1. Let 0 ă p ď 1 and T : S1pRnq Ñ S1pRnq a linear and continuous operator that maps

each pp, 2q atom in hp supported on B Ă Rn into a pre-molecule centered also in B. Then, T is bounded

on hppRnq to itself if, and only if, the local Companato-cancellation condition (3.4) holds.

Proof. The necessity of the local Campanato-cancellation condition for the continuity in hppRnq follows

by Theorem C. For the sufficiency, we will show that T maps pp, 2q atoms into a pp, 2, ωq molecule. Since

by hypothesis T maps pp, 2q atoms into a pp, s, λ,Cq pre-molecule, we have that the size conditions (M1)

and (M2) of a pp, 2, ωq molecule are satisfied, so it remains to show that the cancellation condition (M3)

holds. For this, we can proceed as in the estimate (3.9) did in the proof the necessity of Theorem B (see

moreover the next proof, where we show that T ˚rp¨ ´ x0qαs are well defined in this setting).



3.2 Necessary condition for the boundedness of linear operators in hppRnq 105

In Remark 3.1, to justify the well-definition of the local T ˚ Campanato-condition (3.4) when T is an

inhomogeneous Calderón–Zygmund operator, we strongly rely on the kernel estimates of these operators.

Since in the previous theorem we are no longer requiring that T is an inhomogeneous Calderón–Zygmund

operator, we will specify in the beginning of the next proof how to make sense of condition (3.4) in this

more general framework.

Proof. We show first that the local Campanato condition is well defined in this context. Fix α P Zn
` with

|α| ď Np and a ball B “ Bpx0, rq Ă Rn with r ă 1. We want to show that T ˚ rp¨ ´ x0qαs is well defined

locally and can be identified with f in pL2
Np

pBqq˚, the quotient space of L2pBq by the subspace PNp . We

then have

} f }pL2
Np

pBqq˚ :“ sup
ψPL2

Np
pBq

}ψ}L2pBq
ď1

|x f , ψy| “ inf
PPPNp

} f ´ P}L2pBq “ } f ´ PNp

B p f q}L2pBq. (3.11)

Given a ψ P L2
Np

pBq with }ψ}L2pBq ď 1, let

apxq “ ψpxq |B|
1
2 ´ 1

p .

Note that a is a pp, 2q atom in Hp supported on B. By the boundedness assumptions on T we have that

}Ta}hp ≲ }a}hp ď C independent of a andM “ Ta is a pseudo-molecule, where the choice of the constant

C in Definition 3.5 should be consistent with the norm of T . Thus by (3.10),

|xT ˚
rp¨ ´ x0q

α
s, ay| :“ |xp¨ ´ x0q

α, Tay|

ď

$

’

&

’

%

Cα,p C if |α| ă np1{p ´ 1q,

Cα,p C

„

log
ˆ

1 ` 1
r

˙ȷ´1{p

if |α| “ np1{p ´ 1q “ Np.

Replacing a by ψ, we see that the left-hand-side defines a bounded linear functional f P pL2
Np

pBqq˚ with

|x f , ψy| “ |B|
1
p ´ 1

2 |xT ˚
rp¨ ´ x0q

α
s, ay| ď

$

’

&

’

%

Cα,p|B|
1
p ´ 1

2 C if |α| ă np1{p ´ 1q,

Cα,p|B|
1
p ´ 1

2 C

„

log
ˆ

1 ` 1
r

˙ȷ´1{p

if |α| “ np1{p ´ 1q “ Np.
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Thus by (3.11), we have

ˆ?
B

| f ´ PNpp f q|
2

˙1{2

“ |B|
´ 1

2

ˆ
ż

B
| f ´ PNpp f q|

2

˙1{2

“ |B|
´ 1

2 sup
ψPL2

Np
pBq

}ψ}L2pBq
ď1

|x f , ψy|

ď

$

’

&

’

%

Cn,p rnp 1
p ´1q if |α| ă np1{p ´ 1q,

Cn,p rnp 1
p ´1q

„

log
ˆ

1 ` 1
r

˙ȷ´1{p

if |α| “ np1{p ´ 1q “ Np.

“ Cn,p Ψp,αprq.



Chapter

4
Boundedness of Calderón-Zygmund-type

operators on Hardy-Morrey spaces

The goal of this chapter is to provide elementary facts about Hardy-Morrey spaces and extend the

continuity results of Chapter 2 to this setting. Even though many of the results regarding the space are

not entirely new, we write down the detailed proofs of the statements that were claimed somewhere in

the literature with no rigorous proof.

The theory of Morrey spaces was developed in [65] to deal with some problems in elliptic partial

differential equations. These spaces describe the local regularity of locally integrable functions by

considering particular averages on cubes (or equivalently on balls) and represent a refinement, for local

scales, of the classical Lebesgue spaces. For a reference in this subject, we refer to [1].

Given 1 ă q ď λ ă 8 and J Ă Rn a (dyadic) cube, the Morrey spaceMλ
qpRnq are defined as the set

of all f P Lq
locpR

nq such that

} f }Mλ
q

:“ sup
J ĂRn

|J|
1
λ´ 1

q

ˆ
ż

J
| f pxq|

qdx
˙1{q

ă 8,

where the supremum is taken over all cubes J Ă Rn. As indicated, we denote the right-hand side of the

previous identity as the norm in the Morrey spaces. If q “ λ, then Mq
qpRnq “ LqpRnq, but it defers if

q ă λ (see [82, p. 587] for an example).

107
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Motivated by the maximal characterization of real Hardy spaces, in [47] and [48] the authors defined a

natural extension of Morrey spaces when 0 ă q ď 1, called Hardy-Morrey spaces. Among the features of

these spaces, the authors pointed out that a natural atomic and molecular decomposition can be provided

with the same amount of cancellation inherit from the Hardy spaces theory. This provides better estimates

when dealing with some partial differential equations estimates, see for instance [48].

Definition 4.1. Let 0 ă q ď λ ă 8 and φ P SpRnq with
ş

φ , 0. We say that f P S1pRnq belongs to

Hardy-Morrey space, denoted byHMλ
qpRnq, if

} f }HMλ
q

:“ }Mφ f }Mλ
q

ă 8,

where Mφ stands for the standard maximal function (previously denoted byMφ).

The functional } f }HMλ
q

defines a quasi-norm as 0 ă q ă 1 and a norm if q ě 1. As in the Hardy

space case, different choices of φ will yield equivalent norms up to a constant depending on φ.

These spaces also have equivalent maximal characterizations that were established by Jia and Wang

in [47, Section 2] and we describe here. For a given N P Z`, consider the finite collection of semi-norms

FN “

"

}φ}α, β “ sup
x PRn

ˇ

ˇxαB
βφpxq

ˇ

ˇ such that |α|, |β| ď N
*

and set

SF :“
"

φ P SpRn
q : }φ}α, β “ sup

x PRn

ˇ

ˇxαB
βφpxq

ˇ

ˇ ď 1, for all } ¨ }α, β P FN

*

.

We denote the grand maximal function and the non-tangential maximal function by

MF f “ sup
φPSF

Mφ f and M˚
φ f pxq “ sup

|x´y| ă t
|φt ˚ f pyq|

respectively. Then, the following characterization of HMλ
qpRnq in terms of maximal functions was

established:

Theorem 4.1 ([47, Setion 2]). Let 0 ă q ď 1, q ď λ ă 8 and f P S1pRnq. The following are equivalents:

(i) There exists φ P SpRnq with
ş

φ “ 1 such that Mφ f PMλ
qpRnq;
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(ii) There exist a collection FN so that MF f PMλ
qpRnq;

(iii) f is bounded distribution and M˚
φ f PMλ

qpRnq.

Moreover,

}MF f }Mλ
q
≲ }M˚

φ f }Mλ
q
≲ }Mφ f }Mλ

q
≲ }MF f }Mλ

q
.

In [46, Proposition 1.11], the authors considered the analogous equivalence between (i) and (ii) of the

previous theorem but now allowing 0 ă q ď λ ă 8. Moreover, they also showed in [46, Proposition 1.5]

that if 1 ă q ď λ ă 8, then HMλ
qpRnq “ Mλ

qpRnq. For the case q “ 1, an argument presented in [58,

Remark 2.1 (i)] shows that HMλ
1pRnq Ă Mλ

1pRnq continuously for 1 ă λ ă 8. Another proof of these

facts using an approximate of identity in the predual of Morrey spaces can be found in [25, Proposition

2.7].

4.1 Atomic and molecular decomposition

In this section, we recall the atomic decomposition that has been proved in [47, Theorem 2.3] for L8

atoms. Moreover, we show that the atomic spaces generated by Lr´ atoms with 1 ď r ă 8 and the one

by L8 atoms are equivalent. This result is well known for the classical Hardy spaces and allow ones to

consider the most convenient size for atoms. This will prove the assertion made by the authors in [48,

Remark 2.4 (1)].

Definition 4.2 ([48, Definiton 2.2]). . Let 0 ă q ď 1 ď r ď 8 with q ă r and q ď λ ă 8. A measurable

function aQ is called a pλ, q, rq atom inHMλ
q if there exists a cube Q “ QpxQ, ℓQq Ă Rn such that:

piq supp paQq Ă Q piiq }aQ}Lr ď |Q|
1
r ´ 1

λ piiiq
ż

aQ xαpxqdx “ 0

for all α P Zn
` such that |α| ď Nq :“ tn p1{q ´ 1qu.

To provide a better understanding of the necessity of moment conditions on Hardy-Morrey spaces,

the following lemma is an extension of [25, Proposition 2.5], proved for bounded functions, and the

analogous corresponding result for Hardy spaces.
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Proposition 4.1. Let 0 ă q ď 1 ď r ď 8 with q ă r and q ď λ ă 8 with λ ď r. If f is a compactly

supported function in LrpRnq satisfying the moment condition

ż

Rn
xα f pxqdx “ 0 for all |α| ď Nq, (4.1)

then it belongs to HMλ
qpRnq and moreover } f }HMλ

q
≲ } f }Lr |Q|

1
λ´ 1

r for all cubes Q Ě supp p f q. In

particular, if f “ aQ, then }aQ}HMλ
q
≲ 1 uniformly.

Proof. Let J Ă Rn be an arbitrary cube, Q “ QpxQ, ℓq any cube such that supp p f q Ď Q and denote by

Q˚ “ QpxQ, 2ℓq. Split

ż

J
|Mφ f pxq|

qdx “

ż

JXQ˚

|Mφ f pxq|
qdx `

ż

JzQ˚

|Mφ f pxq|
qdx.

For the first integral consider the case where 1 ă r ď 8. We use Hölder with the boundedness of Mφ

on LrpRnq to obtain

ż

JXQ˚

|Mφ f pxq|
qdx ď }Mφ f }

q
Lr |J X Q˚

|
1´

q
r ≲ } f }

q
Lr |J X Q˚

|
1´

q
r .

If r “ 1 and 0 ă q ă 1, setting R “ } f }L1 |J X Q˚|´1 and using that Mφ satisfies weak p1, 1q inequality

ż

JXQ˚

|Mφ f pxq|
qdx »

ż 8

0
ωq´1 |tx P J X Q˚ : |Mφ f pxq| ą ωu| dω

≲ |J X Q˚
|

ż R

0
ωq´1dω ` } f }L1

ż 8

R
ωq´2dω

≲ } f }
q
L1 |J X Q˚

|
1´q. (4.2)

To obtain the desired estimate, suppose first that |Q| ă |J|. For all 1 ď r ă 8, since

q
λ

´ 1 ď 0 and 1 ´
q
r

ą 0

it follows that |J|
q
λ´1|J X Q˚|1´

q
r ď |Q|

q
λ´

q
r . On the other hand, if |J| ă |Q|, using that λ ď r it follows

|J|
q
λ´1

|J X Q˚
|
1´

q
r “ |J|

q
λ´

q
r

ˆ

|J X Q˚|

|J|

˙1´
q
r

ď |Q|
q
λ´

q
r .
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Hence,

|J|
q
λ´1

ż

JXQ˚

|Mφ f pxq|
qdx ≲ } f }

q
Lr |Q|

qp 1
λ´ 1

r q.

To estimate the integral on JzQ˚, using the moment condition (4.1) we write

φt ˚ f pxq “

ż

f pyq pφtpx ´ yq ´ Pφtpyqq dy,

where Pφtpyq “
ÿ

|α|ďNq

Bαφtpxq

α!
p´yq

α denotes the Taylor polynomial of degree Nq of the function y ÞÑ

φtpx ´ yq. The standard estimate of the remainder term (see [73, p. 106]) yields

|φtpx ´ yq ´ Pφtpyq| ≲ |y ´ xQ|
Nq`1

|x ´ xQ|
´pn`Nq`1q

and since supp p f q Ď Q, we get the following pointwise control:

|Mφ f pxq| ≲
ℓNq`1

|x ´ xQ|n`Nq`1

ż

Q
| f pyq|dy ≲

ℓNq`1

|x ´ xQ|n`Nq`1 } f }Lr |Q|
1´ 1

r .

If |Q| ă |J|, since Nq ` 1 ą n p1{q ´ 1q, we estimate as follows

|J|
q
λ´1

ż

JzQ˚

|Mφ f pxq|
qdx ≲ } f }

q
Lr |Q|

q
´

1
λ´ 1

r `
Nq
n ` 1

n `1
¯

´1
ż

pQ˚qc
|x ´ xQ|

´qpn`Nq`1qdx

≲ } f }
q
Lr |Q|

q
λ´

q
r .

Finally, if |J| ă |Q|

|J|
q
λ´1

ż

JzQ˚

|Mφ f pxq|
qdx ≲ } f }

q
Lr |J|

q
λ´1

|Q|
q´

q
r ℓ

´nq
Q |JzQ˚

| ≲ } f }
q
Lr |Q|

qp 1
λ´ 1

r q,

which concludes the proof.

Given 1 ď r ď 8, we denote the atomic space atHMλ,r
q pRnq by the collection of f P S1pRnq such

that f “
ÿ

j

sQ j aQ j in S1
pRn

q, where taQ ju j are pλ, q, rq atoms in HMλ
q and tsQ ju j is a sequence of
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complex scalars satisfying

}tsQ ju j}λ,q :“ sup
J

$

&

%

˜

|J|
q
λ´1

ÿ

Q jĎJ

´

|Q j|
1
q ´ 1

λ |sQ j |

¯q
¸

1
q

,

.

-

ă 8.

The functional

} f }atHMλ,r
q

:“ inf

#

}tsQ ju j}λ,q : f “
ÿ

j

sQ j aQ j

+

,

where the infimum is taken over all such atomic representations, defines a quasi-norm in atHMλ,r
q pRnq.

If 1 ď r1 ă r2 ď 8, then atHMλ,r2
q pRnq is continuously embedded in atHMλ,r1

q pRnq. The converse is

the content of the next result and shows the desired equivalence between the atomic spaces.

Lemma 4.1. Let 0 ă q ď 1 ď r with q ă r and q ď λ ă 8. Then atHMλ,r
q pRnq “ atHMλ,8

q pRnq with

comparable quasi-norms.

Proof. The proof is based on the analogous theorem for Hardy spaces (see [35, Theorem 4.10]). It suffices

to show that for every given pλ, q, rq atom in HMλ
q, denoted by aQ, can be decomposed as

ř

j sQ jaQ j ,

where taQ ju j are pλ, q,8q atoms and }tsQ ju j}q,λ ď C independent of the atom. Consider bQ “ |Q|1{λ aQ

and since
ż

Q
|bQpxq|

rdx ď |Q|,

from Calderón–Zygmund decomposition applied for |bQ|r P L1pQq at level αr ą 0, there exists a sequence

tQ ju j of disjoint dyadic cubes (subcubes of Q) such that:

(i) |bQpxq| ď α, for all x <
Ť

j Q j;

(ii) αr
ď

?
Q j

|bQpxq|
rdx ď 2nαr;

(iii)
ˇ

ˇ

ď

j

Q j

ˇ

ˇ ď
1
αr

ż

Q
|bQpxq|

rdx ď
|Q|

αr .

Let PNq be the space of polynomials in Rn with degree at most Nq, PNq, j its restriction to Q j and denote

by PQ jb P PNq, j such that

ż

Q j

rbQpxq ´ PQ jpbqpxqsx βdx “ 0 for all |β| ď Nq.
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Now we write bQ “ g0 `
ř

j h j, where

g0pxq “

#

bQpxq for x <
Ť

j Q j

PQ jpbqpxq for x P Q j

and h jpxq “ rbQpxq ´ PQ jpbqpxqs χQ jpxq. We also have the following:

(i) g0 is bounded and |g0pxq| ď cα a.e. (see [73, Remark 2.1.4 p. 104]);

(ii) Each function h j is supported in the cube Q j and satisfies

ż

Rn
h jpxqx βdx “ 0 and

?
Q j

|h jpxq|
rdx ď cαr for all |β| ď Nq;

(iii)
8
ÿ

j“1

|Q j| ď |tx P Rn : Mp|bQ|
r
qpxq ą αr

u| ď
c
αr |Q| .

These remarks implies

˜?
Q j

|h jpxq|
rdx

¸1{r

ď

˜?
Q j

|bQpxq|
rdx

¸1{r

`

˜?
Q j

|g0pxq|
rdx

¸1{r

ď cα.

For each j0 P N, let b j0pxq :“ pcαq´1h j0pxq and write

bQpxq “ g0pxq ` pcαq
ÿ

j0

b j0pxq in which
ż

Q j0

|b j0pxq|
rdx ď |Q j0 |.

Now, applying the previous argument for each b j0 individually we obtain the identity

bQ “ g0 ` pcαq
ÿ

j0

b j0 “ g0 ` cα
ÿ

j0

g j0 ` pcαq
2
ÿ

j0, j1

b j0, j1 ,

where
ż

Q j0 , j1

|b j0, j1pxq|
rdx ď |Q j0, j1 |

and tQ j0, j1u j1 is a sequence of disjoint dyadic cubes (subcubes of Q j0) such that |g j0pxq| ď cα a.e.,

αr
ď

?
Q j0 , j1

|b j0pxq|
rdx ď 2nαr and

ˇ

ˇ

ď

j1

Q j0, j1

ˇ

ˇ ď
c
αr

ż

Q j0

|b j0pxq|
rdx ď c

|Q j0 |

αr .
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Applying an induction argument, we can find a family tQik´1, ju j :“ tQ j0,¨¨¨ , jk´1, ju j of disjoint dyadic

subcubes of Qik´1 :“ Q j0,¨¨¨ , jk´1 for k “ 1, 2, ¨ ¨ ¨ with ik´1 “ t j0, j1, ¨ ¨ ¨ , jk´1u such that

bQ “ g0 ` pcαq
ÿ

j0

b j0

“ g0 ` cα
ÿ

j0

g j0 ` pcαq
2
ÿ

j0, j1

b j0, j1

“ gi0 ` cα
ÿ

i1

gi1 ` pcαq
2
ÿ

i2

gi2 ` ¨ ¨ ¨ ` pcαq
k´1

ÿ

ik´1

gik´1 ` pcαq
k
ÿ

ik

hik , (4.3)

where gik´1pxq and hikpxq for ik “ p j0, j1, ¨ ¨ ¨ , jk´1, jq satisfies |gik´1pxq| ď cα a.e. x P Rn,

αr
ď

1
|Qik´1, j|

ż

Qik´1 , j

|hikpxq|
rdx ď 2nαr and

ˇ

ˇ

ď

j

Qik´1, j

ˇ

ˇ ď c
|Qik´1 |

αr .

The sum at (4.3) is interpreted as
ř

ik´1
gik´1 :“

ř

j0PN ¨ ¨ ¨
ř

jk´1PN g j0,¨¨¨ , jk´1 (analogously to
ř

ik hik). We

claim that the reminder term pcαqk ř

ik hik in (4.3) goes to zero in L1pRnq as k Ñ 8. Indeed, writing

Qik :“ Qik´1, j for some fixed j we have

ż

Rn
|hikpxq|dx “

ż

Qik

|hikpxq|dx

ď

´

ż

Qik

|hikpxq|
rdx

¯
1
r

|Qik |
1´ 1

r

“

˜

1
|Qik |

ż

Qik

|hikpxq|
rdx

¸
1
r

|Qik | ď cα|Qik |

and iterating pk ` 1q-times the previous argument one has

ÿ

ik

|Qik | ď

´ c
αr

¯k`1
|Q|. (4.4)
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It follows from dominated convergence theorem that

ż

Rn

ˇ

ˇ

ˇ
pcαq

k
ÿ

ik

hikpxq

ˇ

ˇ

ˇ
dx ď

ÿ

ik

pcαq
k
ż

Rn
|hikpxq|dx

ď pcαq
k`1

ÿ

ik

|Qik | ≲
αk`1

αr

ÿ

ik´1

|Qik´1 |

¨ ¨ ¨

≲
αk`1

αkr

ÿ

i0

|Qi0 | ď pc2α1´r
q

pk`1q
|Q| Ñ 0 as k Ñ 8,

that is, pcαqk ř

ik hikpxq Ñ 0 in L1pRnq as k Ñ 8, provided that c2α1´r ă 1. Therefore,

bQ “ gi0 ` cα
ÿ

i1

gi1 ` pcαq
2
ÿ

i2

gi2 ` ¨ ¨ ¨ ` pcαq
k´1

ÿ

ik´1

gik´1 ` pcαq
k
ÿ

ik

gik ` ¨ ¨ ¨

in L1pRnq, where |gikpxq| ď cα a.e. and for all |β| ď Nq we have

ż

Rn
x βgikpxqdx “

ż

Rn
x βbikpxqdx `

ÿ

j

ż

Qik´1 , j

x βPQik , j
bpxqdx “

ż

Rn
x βbikpxqdx “ 0.

It is clear now that ai0 :“ pcαq´1 |Q|´1{λ gi0 and aik :“ pcαq´1 |Qik |
´1{λ gik are pλ, q,8q atoms in HMλ

q,

for all k “ 1, 2, ¨ ¨ ¨ . Moreover, we can write

aQ “ |Q|
´ 1

λ

!

g0 ` cα
ÿ

i0

gi0 ` pcαq
2
ÿ

i1

gi1 ` ¨ ¨ ¨ ` pcαq
k
ÿ

ik´1

gik´1 ` ¨ ¨ ¨

)

“ si0ai0 `
ÿ

i1

si1ai1 `
ÿ

i2

si2ai2 ` ¨ ¨ ¨ `
ÿ

ik

sikaik ` ¨ ¨ ¨ (4.5)

where each coefficient tsikuk is defined by sik “ pcαqk`1|Q|´1{λ|Qik |
1{λ. It remains to show that

}tsikuk}λ,q ď C, uniformly. Fixed J Ă Rn a dyadic cube, we may estimate using (4.4)

|J|
q
λ´1

8
ÿ

k“0

ÿ

Qik ĎJ

|sik |
q
|Qik |

1´
q
λ “ |J|

q
λ´1

|Q|
´

q
λ

8
ÿ

k“0

pcαq
qpk`1q

´

ÿ

Qik ĎJ

|Qik |

¯

≲ |J|
q
λ´1

|Q|
´

q
λ |J X Q|

8
ÿ

k“0

pcαq
qpk`1q

´ c
αr

¯k`1
ď C

provided cq`1αq´r ă 1 (weaker than the previous one) and q ď λ. Note that here we have used a



4.1 Atomic and molecular decomposition 116

refinement of (4.4) given by
ÿ

ik : Qik ĎJ

|Qik | ≲
´ c
αr

¯k`1
|J X Q|

and the uniform control |J|q{λ´1|Q|´q{λ|J X Q| ≲ 1.

The previous lemma allow us to study HMλ
qpRnq with any of the atomic spaces atHMλ,r

q pRnq for

1 ď r ď 8 provided q ă r. In addition, we announce an atomic decomposition in terms of pλ, q, rq

atoms in HMλ
q, which is a direct consequence of the one proved in [47, p. 100] for pλ, q,8q atoms and

Lemma 4.1, since they are in particular pλ, q, rq atoms.

Theorem 4.2. Let 0 ă q ď 1 ď r ď 8 with q ă r and q ă λ ă 8. Then, f P HM
λ
qpRnq if and only

if there exists a collection of pλ, q, rq atoms taQ ju j and a sequence of complex numbers tsQ ju j such that

f “
ÿ

j

sQ j aQ j in S1pRnq and } f }atHMλ
q

« } f }HMλ
q
.

The proof is a direct consequence of the Atomic Decomposition Theorem proved in [47, p. 100] for

pλ, q,8q atoms, since they are in particular pλ, q, rq atoms, together with Lemma 4.1.

Remark 4.1. There is also another atomic characterization ofHMλ
qpRnq that holds for 0 ă q ď λ ă 8.

For further details see [46, Theorem 1.3].

The L2 molecular structure of HMλ
qpRnq have been first defined in [48, Definition 2.5 and Theorem

2.6]. In what follows we define Lr molecules as in Chapter 1.

Definition 4.3. Let 0 ă q ď 1 ď r ă 8 with q ă r, q ď λ ă 8, and s ą n pr{q ´ 1q. A function M is

called a pλ, q, s, rq molecule inHMλ
q if there exist a cube Q “ QpxQ, ℓq such that:

M1. }M}LrpQq ≲ |Q|
1
r ´ 1

λ ;

M2. }M | ¨ ´xQ|
s
r }LrpQcq ≲ |Q|

s
nr ` 1

r ´ 1
λ ;

M3.
ż

Rn
Mpxqxαdx “ 0 for all |α| ď Nq.
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Lemma 4.2. Let M to be a pλ, q, s, rq molecule inHMλ
q centered in Q “ QpxQ, ℓQq. Then

M “

8
ÿ

j“0

dQ j aQ j `

8
ÿ

j“0

tQ j bQ j in Lr
pRn

q,

where each taQ ju j and tbQ ju j are pλ, q, rq and pλ, q,8q atoms respectively. Moreover, the sequences of

scalars satisfy
8
ÿ

j“0

|dQ j |
q
|Q j|

1´
q
λ ≲ |Q|

1´
q
λ and

8
ÿ

j“0

|tQ j |
q
|Q j|

1´
q
λ ≲ |Q|

1´
q
λ ,

where Q j “ QpxQ, 2 jℓQq.

Proof. The proof will follow by the same ideas of the corresponding result for Hardy spaces, as in

Proposition 1.2, and we will only outline the differences. Let M to be a pλ, q, s, rq molecule centered in

Q “ QpxQ, ℓQq. For each j P Z`, let Q j be a cube centered at xQ with sidelength ℓ j “ 2 jℓQ. Consider the

collection of annulus tE ju jPZ`
given by E0 “ Q and E j “ Q jzQ j´1 for j ě 1. Let M jpxq :“ Mpxq χE jpxq,

M j
γ “
>

E j
M jpxqxγdx and consider P jpxq “

ÿ

|γ|ďNq

M j
γ ϕ

j
γpxq. Write

M “

8
ÿ

j“0

pM j ´ P jq `

8
ÿ

j“0

P j.

For every j P Z`, write

pM j ´ P jqpxq “ dQ j aQ jpxq for dQ j “ }M j ´ P j}Lr |Q j|
1
λ´ 1

r and aQ j “
M j ´ P j

}M j ´ P j}Lr
|Q j|

1
r ´ 1

λ .

Furthermore, from (M1) and (M2) we have

}M j ´ P j}Lr ≲ }M j}Lr ≲ |Q j|
1
r ´ 1

λ p2 j
q

´ s
r `np 1

λ´ 1
r q.

By this, we get that taQ ju j is a sequence of pλ, q, rq atoms supported on Q j. Moreover, since s ą

n pr{q ´ 1q it follows

8
ÿ

j“0

|dQ j |
q
|Q j|

1´
q
λ ≲ |Q|

1´
q
λ

8
ÿ

j“0

p2 j
q

qr´ s
r `np 1

q ´ 1
r qs ≲ |Q|

1´
q
λ .
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For the second sum, let ψ j
γpxq :“ N j`1

γ

”

|E j`1|´1ϕ
j`1
γ pxq ´ |E j|

´1ϕ
j
γpxq

ı

, where

N j
γ “

8
ÿ

k“ j

mk
γ|Ek| “

8
ÿ

k“ j

ż

Ek

Mpxqxγdx.

Then, we can represent P j (using the vanish moments (M3)) as

8
ÿ

j“0

P jpxq “

8
ÿ

j“0

ÿ

|γ|ďNq

ψ j
γpxq.

Since |γ| ď n p1{λ ´ 1q and s ą n pr{q ´ 1q we have

|N j`1
γ | ď |Q j|

1´ 1
λ p2 jℓQq

|γ|
p2 j

q
´ s

r `np 1
λ´ 1

r q and then
ˇ

ˇN j`1
γ |E j|

´1ϕ j
γpxq

ˇ

ˇ ď C|Q j|
´ 1

λ p2 j
q

´ s
r `np 1

λ´ 1
r q.

Letting

ψ j
γ “ tQ j b j

γ where tQ j “ p2 j
q

´ s
r `np 1

λ´ 1
r q and b j

γpxq “ p2 j
q

s
r ´np 1

λ´ 1
r q ψ j

γpxq,

we can write
8
ÿ

j“0

P jpxq “

8
ÿ

j“0

ÿ

|γ|ďNq

tQ j b j
γpxq and for each j P Z` the function b j

γpxq is a pλ, q,8q atom.

Moreover from s ą n pr{q ´ 1q one has

8
ÿ

j“0

|tQ j |
q
|Q j|

1´
q
λ “ |Q|

1´
q
λ

8
ÿ

j“0

p2 j
q

qp´ s
r `np 1

q ´ 1
r qq ≲ |Q|

1´
q
λ .

Now we ready to announce our main theorem of molecule decomposition in Hardy-Morrey spaces.

Theorem 4.3. Consider 0 ă q ď 1 ď r ă 8 and q ď λ. Let
␣

MQ j

(

j to be a collection of pλ, q, s, rq

molecules and
␣

sQ j

(

j a sequence of complex numbers such that }tsQ ju j}λ,q ă 8. If the series f “

ÿ

j

sQ j MQ j converges in S1pRnq, q ă r and λ ă r, then f P HM
λ
qpRnq and moreover, } f }HMλ

q
≲

}tsQ ju j}λ,q with implicit constant independent of f .

Remark 4.2. The previous theorem covers [48, Theorem 2.6], where the case r “ 2 was considered.

The natural restriction λ ă r was omitted in the previous reference, since only a decomposition like in
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Lemma 4.2 was proved. This restriction is was necessary in Proposition 4.1 to show that atoms inHMλ
q

are uniformly bounded.

Proof. Suppose f “
ÿ

j

sQ j MQ j in S1pRnq and }tsQ ju j}λ,q ă 8. Since 0 ă q ď 1, for a fixed dyadic cube

J Ă Rn we have

ż

J
|Mφ f pxq|

qdx ď
ÿ

Q jĎJ

|sQ j |
q
ż

J
|Mφ pMQ jqpxq|

qdx `
ÿ

JĂQ j

|sQ j |
q
ż

J
|Mφ pMQ jqpxq|

qdx “ I1 ` I2.

Estimate of I1. From Lemma 4.2, for each j P Z`, there exists sequences
␣

aQ j,i

(

i and
␣

dQ j,i

(

i of pλ, q, rq

atoms and scalars respectively such that

MQ j “
ÿ

i

dQ j,i aQ j,i and
ÿ

i

|dQ j,i |
q

|Q j,i|
1´

q
λ ≲ |Q j|

1´
q
λ .

It follows from this decomposition and analogous estimates as in Proposition 4.1 that

ÿ

Q jĎJ

|sQ j |
q
ż

J
|Mφ pMQ jqpxq|

qdx ≲
ÿ

Q jĎJ

|sQ j |
q
ÿ

i

|dQ j,i |
q
ż

J
|MφpaQ j,iqpxq|

qdx

≲
ÿ

Q jĎJ

|sQ j |
q
ÿ

i

|dQ j,i |
q

|Q j,i|
1´

q
λ

≲
ÿ

Q jĎJ

|sQ j |
q
|Q j|

1´
q
λ

≲ |J|
1´

q
λ }tsQ ju j}

q
λ,q.

Estimate of I2. For 1 ă r ă 8, using thatMφ is bounded on LrpRnq to itself, it follows for each j P Z`
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and E j,0 “ Q j and E j,i “ QpxQ j , 2
iℓQ jqzQpxQ j , 2

i´1ℓQ jq that

|J|
q
λ´1

ż

J
|MφpMQ jqpxq|

qdx ď |J|
qp 1

λ´ 1
r q

ˆ
ż

Rn
|MφpMQ jqpxq|

rdx
˙

q
r

ď |J|
qp 1

λ´ 1
r q

˜

ÿ

i

ż

E j,i

|MQ jpxq|
rdx

¸

q
r

ď |J|
qp 1

λ´ 1
r q

˜

ÿ

i

p2iℓQ jq
´s
ż

E j,i

|MQ jpxq|
r
|x ´ xQ j |

sdx

¸

q
r

≲ |J|
qp 1

λ´ 1
r q |Q j|

qp 1
r ´ 1

λq

˜

ÿ

i

2´is

¸

q
r

»

ˆ

|J|

|Q j|

˙qp 1
λ´ 1

r q

.

If r “ 1 and 0 ă q ă 1, we proceed as in (4.2) with A “ |Q j|
1´ 1

λ |J|´1 to obtain

|J|
q
λ´1

ż

J
|MφpMQ jqpxq|

qdx ≲ |J|
q
λ´1

„

|J|

ż A

0
ωq´1dω ` |Q j|

´1` 1
λ

ż 8

A
ωq´2dω

ȷ

≲

ˆ

|J|

|Q j|

˙qp 1
λ´1q

.

For a fixed a dyadic cube J, there exists a subset N Ď N such that each cube J Ă Q j is uniquely

determined by a dyadic cube Qk,J P
␣

Q dyadic : J Ă Q j and ℓQ “ 2kℓJ
(

with k P N. Hence, we can

write
ÿ

JĂQ j

|sQ j |
q

ˆ

|J|

|Q j|

˙γq

“
ÿ

kPN

|sQk,J |
q 2´knγq with γ :“ 1{λ ´ 1{r ą 0.

Then,

|J|
q
λ´1

ÿ

JĂQ j

|sQ j |
q
|MφpMQ jq|

q
LqpJq
≲
ÿ

kPN

´

|sQk,J |
q
|Qk,J|

1´
q
λ

¯

|Qk,J|
q
λ´12´knγq

ď
ÿ

kPN

˜

ÿ

Q jĎQk,J

|sQ j |
q
|Q j|

1´
q
λ

¸

|Qk,J|
q
λ´12´knγq

≲ }
␣

sQ j

(

j }
q
λ,q

ÿ

kPN

2´knγ ≲ }
␣

sQ j

(

j }
q
λ,q.
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4.2 Continuity in Hardy-Morrey spaces

Using the atomic and molecular theory presented in the previous section, we have the following

extension of Theorem A for Hardy-Morrey spaces:

Theorem 4.4. Let 0 ă q ď 1 ď r ă 8, q ď λ ă 8 and T a strongly singular Calderón–Zygmund

operator whose associated kernel satisfies a Dr condition for some δ ą 0. Under the assumptions that

T ˚pxαq “ 0 for every |α| ď tδu, 1 ď r ď 2 with q ă r and λ ă r, T can be extended to a bounded

operator from HMλ
qpRnq to itself for q0 ă q ď 1, where q0 is given by (2.26). The case r “ 1 holds for

the range q0 ă q ă 1.

As an immediate corollary, we also obtain the continuity of classical non-convolution Calderón–

Zygmund operators (σ “ 1) associated to kernels satisfying integral conditions, or in particular standard

δ´kernels (2.4) with σ “ 1. The same result in the convolution setting for kernels satisfying derivative

conditions can be found in [48, Section 2.2].

Corollary 4.1. Under the same hypothesis of the previous theorem, if T is a standard Calderón–Zygmund

operator, then it is bounded fromHMλ
qpRnq to itself provided that n{pn ` δq ă q ď 1.

Proof. Let a be a pλ, q, rq atom supported in the cube Q. From Theorem 4.3, it suffices to show that Ta is

a pλ, q, s, rq molecule associated to Q. Suppose first that ℓQ ě 1. Since T is bounded in L2pRnq to itself

and 1 ď r ď 2, condition pM1q follows by

ż

2Q
|Tapxq|

rdx ď |2Q|
1´ r

2 }Ta}
r
L2 ≲ |Q|

1´ r
2 }a}

r
L2 ≲ |Q|

1´ r
λ » ℓ

np1´ r
λq

Q . (4.6)
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For pM2q using the moment condition of the atom, Minkowski inequality and Dr we get

ż

2Qc
|Tapxq|

r
|x ´ xQ|

sdx ď

8
ÿ

j“1

ż

C jpxQ,ℓQq

ˇ

ˇ

ˇ

ˇ

ż

Q
rKpx, yq ´ Kpx, xQqsapyqdy

ˇ

ˇ

ˇ

ˇ

r

|x ´ xQ|
sdx

ď

8
ÿ

j“1

p2 jℓQq
s

$

&

%

ż

Q
|apyq|

«

ż

C jpxQ,ℓQq

|Kpx, yq ´ Kpx, xQq|
rdx

ff
1
r

dy

,

.

-

r

≲
8
ÿ

j“1

p2 jℓQq
s´npr´1q 2´ jrδ ℓ

rnp1´ 1
λq

Q » ℓ
r`np1´ r

p q
Q

8
ÿ

j“1

2 jrs´npr´1q´rδs
» ℓ

s`np1´ r
p q

Q ,

since s ă npr ´ 1q ` rδ. We remark that for the case r “ 1, one needs to consider pλ, q, s, 1q molecules

inHMλ
q and hence 0 ă q ă 1. Suppose now that ℓQ ă 1. Since T is a bounded operator from LppRnq to

L2pRnq and 1 ă r ď 2, condition (M1) follows by

ż

2Q
|Tapxq|

rdx ď |2Q|
1´ r

2 }Ta}
r
L2 ≲ |Q|

1´ r
2 }a}

r
Lp ≲ |Q|

1´ r
λ`rp 1

p ´ 1
2 q ≲ |Q|

1´ r
λ .

To estimate the global (M2) condition, we consider 0 ă ρ ď σ ď 1 a parameter that will be chosen

conveniently later, denote by 2Qρ :“ QpxQ, 2ℓ
ρ
Qq and split the integral over Rn into 2Qρ and p2Qρqc. For

2Qρ we use the boundedness from LppRnq to L2pRnq again and obtain

ż

2Qρ

|Tapxq|
r
|x ´ xQ|

sdx ≲ ℓ sρ
Q |4Qρ

|
1´ r

2 }Ta}
r
L2 ≲ ℓ

ρs`nρp1´ r
2 q

Q }a}
r
Lp

≲ ℓ
ρs`nrρ´

rρ
2 `rp 1

p ´ 1
λqs

Q ≲ ℓ
s`np1´ r

λq
Q ,

assuming s ď ´n
`

1 ´ r
2

˘

` nr
1´ρ

´

1
p ´ 1

2

¯

. For p2Qρqc, we use (2.9) to obtain

ż

p2Qρqc
|Tapxq|

r
|x ´ xQ|

sdx ≲
8
ÿ

j“1

p2 jℓ
ρ
Qq

s

$

&

%

ż

Q
|apyq|

«

ż

C jpxQ,ℓ
ρ
Qq

|Kpx, yq ´ Kpx, xQq|
rdx

ff
1
r

dy

,

.

-

r

≲
8
ÿ

j“1

p2 jℓ
ρ
Qq

s
´

|C jpxQ, ℓ
ρ
Qq|

1
r ´1` δ

n p 1
ρ´ 1

σq 2´
jδ
ρ

¯r
ℓ

rnp1´ 1
λq

Q

» ℓ
ρs`nrr` rδ

n ´rρp1´ 1
r ` δ

nσq´ r
λs

Q

8
ÿ

j“1

2 jrs´npr´1q´ rδ
σ s

≲ ℓ
ρs`nrρp1´ r

2 q`rp 1
p ´ 1

λqs
Q ď ℓ

s`np1´ r
λq

Q ,
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where the convergence follows assuming s ă npr ´ 1q ` rδ
σ

and we choose ρ to be such that

r `
rδ
n

´ ρ

ˆ

r ´ 1 `
rδ
nσ

˙

“ ρ
´

1 ´
r
2

¯

`
r
p

ô ρ :“
n
´

1 ´ 1
p

¯

` δ

n
2 ` δ

σ

. By the choice of ρ we have

´n
´

1 ´
r
2

¯

`
nr

1 ´ ρ

ˆ

1
p

´
1
2

˙

ă npr ´ 1q ` rδ ă npr ´ 1q `
rδ
σ
.

In particular, collecting the restrictions on s we get

n
ˆ

r
q

´ 1
˙

ă s ď ´n
´

1 ´
r
2

¯

`
nr

1 ´ ρ

ˆ

1
p

´
1
2

˙

ñ
1
q

ă
1
2

`
β
`

δ
σ

` n
2

˘

n
`

δ
σ

´ δ ` β
˘ :“

1
q0
.

We point out that when σ “ 1, only condition s ă npr ´ 1q ` rδ is imposed to verify pM1q and pM2q.

Condition pM3q follows as before by T ˚pxαq “ 0.

Remark 4.3. It could also be possible to extend Theorem B for local Hardy-Morrey spaces hMλ
qpRnq.
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