
Debugger Canvas: Industrial Experience with the Code Bubbles Paradigm

Robert DeLine, Andrew Bragdon, Kael Rowan, Jens Jacobsen

Microsoft Research, Visual Studio Ultimate

Microsoft Corporation

Redmond, WA, USA

{rdeline, anbrag, kaelr, jensj}@microsoft.com

Steven P. Reiss

Department of Computer Science

Brown University

Providence, RI, USA

{spr}@brown.edu

Abstract—At ICSE 2010, the Code Bubbles team from

Brown University and the Code Canvas team from Microsoft

Research presented similar ideas for new user experiences for

an integrated development environment. Since then, the two

teams formed a collaboration, along with the Microsoft Visual

Studio team, to release Debugger Canvas, an industrial ver-

sion of the Code Bubbles paradigm. With Debugger Canvas, a

programmer debugs her code as a collection of code bubbles,

annotated with call paths and variable values, on a two-

dimensional pan-and-zoom surface. In this experience report,

we describe new user interface ideas, describe the rationale

behind our design choices, evaluate the performance overhead

of the new design, and provide user feedback based on lab

participants, post-release usage data, and a user survey and

interviews. We conclude that the code bubbles paradigm does

scale to existing customer code bases, is best implemented as a

mode in the existing user experience rather than a replace-

ment, and is most useful when the user has a long or complex

call paths, a large or unfamiliar code base, or complex control

patterns, like factories or dynamic linking.

Keywords—integrated development environments; user

interfaces; human factors; experience report

I. Introduction

At ICSE 2010, two groups presented novel user experi-

ences for integrated development environments (IDEs),

designed along similar lines. Code Bubbles
*
 [1] [2] from

Brown University and Code Canvas [3] from Microsoft

Research both replace the IDE’s typical set of tabbed doc-

uments and tool windows with a pan-and-zoom surface that

hosts a software project’s code and related artifacts. Both

designs present the code as a collection of individual defini-

tions, called “bubbles” or “fragments”, annotated with rela-

tionship information, like call lines between methods. The

goal of both designs is to gather all the information a pro-

grammer needs to complete a task into a single, spatially

stable display. The main difference between the designs is

that Code Bubbles displays a programmer’s working set of

definitions, for example, the set of definitions visited during

a debugging session; whereas, Code Canvas presents the

complete set of a project’s definitions, using a map meta-

phor.

Given the similarity of the designs, the researchers from

both groups formed a collaboration, along with members of

the Microsoft Visual Studio Ultimate team, to produce an

* Code Bubbles is a trademark of Brown University.

industrial version of this new user experience. Our team of

eight, including three members of the Code Bubbles and

Code Canvas teams, spent nine months designing, building,

testing, and user testing an extension to Visual Studio. In

June 2011, we publically released the result, called Debug-

ger Canvas, which has had over 14,000 downloads and

many daily users. This paper presents an experience report

on the design and implementation decisions behind Debug-

ger Canvas and the lessons learned so far from public adop-

tion.

Our main goal in releasing Debugger Canvas was to

gather public feedback on this new style of user experience.

Our strategy to encourage adoption was to strike a balance

between allowing the user to experience the bubble design

for enough time to form an opinion while also allowing the

user to remain comfortable in the existing user experience

most of the time. We focused on use of the debugger since a

debugging session often lasts for several minutes and is a

separate experience from the rapid edit-compile-run cycle

that many developers are hesitant to change. Debugging is

also the kind of cognitively intense and navigation-heavy

activity that the bubbles design is intended to help.

Figure 1 shows a screen shot of Debugger Canvas. With

Debugger Canvas, when a programmer starts to use the de-

bugger—for example, by hitting a breakpoint—Visual Stu-

dio creates a canvas and displays the executed method in a

bubble on the canvas. As the programmer steps through the

code, Debugger Canvas opens each executed method in its

own bubble and draws arrows to represent method calls.

Each bubble has a pop-up that shows the current value of

the local variables, which can be snapshotted for compari-

son over time. Because the task of debugging also involves

code exploration and trying potential bug fixes, Debugger

Canvas also supports code navigation features, like go-to

definition, and editing with the bubble. Each bubble is a

full-fledged Visual Studio editor, with all the typical fea-

tures like tooltips and code completion.

Our goal of implementing and releasing this product was

to answer several questions:

· Can the code bubbles design be implemented with suffi-

cient robustness and performance to scale up to the pro-

jects of Visual Studio’s customers?

· To what extent would practicing programmers accept the

new user experience? Would they prefer it as a mode

during some tasks or use it most of the time?

978-1-4673-1067-3/12/$31.00 c© 2012 IEEE
ICSE 2012, Zurich, Switzerland
Software Engineering in Practice

1064

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SAO CARLOS. Downloaded on March 25,2021 at 21:13:25 UTC from IEEE Xplore. Restrictions apply.

· Are there particular tasks or programming situations

where practicing programmers would prefer the new de-

sign?

In this paper we report on our experience deploying Debug-

ger Canvas. Our contributions include:

· novel features beyond the previous Code Bubbles and

Code Canvas papers, including support for debugging

concurrent programs and debugging from execution

traces;

· the design rationale behind our decisions when merging

user experiences from Code Bubbles and Code Canvas;

· an evaluation of the performance overhead of the

approach; and

· user feedback on our design from practicing program-

mers, including both adopters and non-adopters.

II. Debugger Canvas’s User Experience

Much of Debugger Canvas’s user experience has been doc-

umented in the previous papers on Code Bubbles and Code

Canvas. Here, we describe a few of the differences and en-

hancements.

To marry the new and existing user experiences, we im-

plemented the canvas as a tool window that docks side by

side with other tabbed documents. The user can create an

arbitrary number of canvases, using a “New Canvas” menu

item. Whenever the debugger is launched, Debugger Can-

vas opens any resulting bubbles on the most recently creat-

ed canvas. This allows the user retain old debugger sessions.

Unlike Code Bubbles, the canvases are not persisted docu-

ments, but are temporary tool windows, whose contents

disappear when the user quits Visual Studio. The canvas

contents, however, can be saved and emailed as an XPS

document.
*

We also added two new features beyond previous pa-

pers, to provide better support for two difficult debugging

situations: debugging based on execution traces and debug-

ging concurrent programs.

A. Debugging Based on Execution Traces

Visual Studio 2010 provides a tracing facility, called Intel-

litrace, which records two kinds of execution events: (1)

relatively infrequent, domain-specific events, including

user interface events, web server requests, and debugger

operations like breakpoints and tracepoints
†
; and (2) all

method entries, normal exits, and exceptional exits. An

execution trace is displayed as a large, demand-loaded

treeview. Debugger Canvas enhances the Intellitrace expe-

rience by allowing a user to drag and drop any method in

the treeview onto a canvas, which causes the subtree rooted

at the dragged method to open as bubbles on the canvas, as

shown in Figure 2. To support large traces, we open bub-

* Microsoft XPS is a document format similar to Adobe PDF.
† A tracepoint is a user-created print statement, inserted in the program
through binary instrumentation rather than source editing.

Figure 1. The user stepping through a parallel ray tracing program using Debugger Canvas. All four threads have their own colored borders. The currently

executing method has a prominent yellow border. Each code bubble has its own Locals pop-up (gray title bar), allowing state comparison.

1065

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SAO CARLOS. Downloaded on March 25,2021 at 21:13:25 UTC from IEEE Xplore. Restrictions apply.

bles asynchronously, which allows the user to work with

existing bubbles as new bubbles continue to open.

This feature is useful for exploring unfamiliar code,

based on execution behavior of interest. For example, say

that a new member of a shopping web site team has been

assigned a bug that happens when a shopper adds an item to

the cart. The programmer knows the relevant behavior, but

not the responsible code. To the find the code, the user turns

on tracing, reproduces the behavior and browses a short list

of web server requests. The user then selects the request that

adds an item to the cart, switches to Calls View, and drags

the resulting call tree into the canvas. This causes Debugger

Canvas to populate the canvas with all the methods that

were executed during that web server request. The user can

then use Intellitrace to do “time travel debugging,” stepping

backwards and forward through the execution in the bub-

bles, using tooltips to inspect the values of parameters.

B. Debugging Concurrent Programs

Breakpoint debuggers are often difficult to use with

concurrent programs, particularly when multiple threads are

simultaneously executing the same method’s code. In this

situation, with a typical debugger, the highlighter bar indi-

cating the currently executing line of code will seem to

jump around at random as thread switches occur, and the

tool windows only allow one thread’s state to be viewed at a

time.

In contrast, Debugger Canvas lays out different threads

in different horizontal bands, using a different colored bub-

ble border for each thread, as shown in Figure 1. When dif-

ferent threads are executing the same method’s code, the

user can see a different copy of the method as a different

bubble for each thread. Each copy has its own pop-up with

local variables and its own highlighter bar for that thread’s

program counter. In addition to each thread’s thin colored

border, there is a thick yellow border that indicates the cur-

rently executing bubble. When a thread switch occurs, the

yellow border switches to the new thread’s currently execut-

ing bubble and that bubble’s highlighter bar advances as the

user steps through that thread’s code. In short, every

thread’s own program counter and local state can be viewed

simultaneously in the same display.

III. Design Rationale

Although there is a lot of overlap between the Code

Bubbles and Code Canvas designs, there are several areas in

which they differ. Combining the designs caused us to re-

visit the rationale and clarify some of the trade-offs. Here

we discuss some of the major design issues that any design

in this space will face.

A. Historical Debugging and Non-Historical Debugging

Code Bubbles employed a historical model of debugging,

in which each new function that the user stepped into

Figure 2. The user viewing a portion of an execution trace for a web site POST request, shown at 25% zoom.

1066

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SAO CARLOS. Downloaded on March 25,2021 at 21:13:25 UTC from IEEE Xplore. Restrictions apply.

opened a new corresponding bubble on the screen – even if

that function was already visible. In addition, hitting a new

breakpoint would also always open a new bubble. This

design has the advantage of simplicity and predictability

for the user, but it has the disadvantage of opening a large

number of bubbles onscreen if the user debugs over an ex-

tended period of time. It also means that if a user debugs

the same code multiple times, they will see a new trace

each time, which is advantageous if the user wishes to

compare two sessions, but is a disadvantage if the user

simply wants to step through the same path again to see the

same values.

With Debugger Canvas, we explored an alternative,

non-historical design in which bubbles are always reused.

In addition, by default we also reuse the same bubbles for a

new run of the program, unless the user explicitly opens a

new canvas. First and foremost, this removes the notion of

historical debugging from the design, as a given configura-

tion of bubbles no longer maps to a single possible execu-

tion/debugging path, and indeed, in practice a given layout

of bubbles in this design is quite ambiguous. It is notable

that this limits the ability for a user to compare two debug

sessions, compare values or execution in a single debug

session, or share a given debug session with another user. It

is also notable that debugging recursive functions with non-

historical debugging is essentially identical to debugging

them with a traditional file-based editor. Despite these limi-

tations, the advantage of this approach is that less screen

space is used, and users who wish to reflexively step

through the same execution path may work from a single set

of bubbles that is reused. This can provide a lightweight

experience for users who need to debug a simple problem

repeatedly, as they make changes to the code or environ-

ment.

In a product implementation, both options could be

made available to the user, perhaps via an easily accessible

dropdown at the top of the canvas, so that the user can use

historical debugging for tasks that require extensive logging

or comparison, and non-historical debugging for tasks that

involve short debugging sessions, or minimal comparisons.

Indeed, in a later version of Debugger Canvas we added an

option to enable historical debugging (turn off non-

historical debugging).

B. Tabs and Channels

Code Bubbles also proposed a channels metaphor, in which

each debug session is visible in its own horizontal space

that can grow as needed, and also be panned as needed as

well, facilitating comparison between debug sessions.

In Debugger Canvas we experimented with a simpler

design that removes channels completely; by default the

same canvas is reused (see above), and the user may create

a new canvas that opens in a separate IDE tab manually.

This has the disadvantage that the user can no longer rely on

being able to always perform a comparison; in Code Bub-

bles the user can perform a comparison at any time. Con-

versely, the advantage of this design is that it is simpler for

novice users to learn, as it does not introduce a new window

management concept, and power users can still drag tabs

onto separate monitors if they choose.

C. Call Stack Bubble

Code Bubbles employed a call stack bubble in the de-

bugger to show the parent methods above the current bubble

in the call stack bubble. In Debugger Canvas we explore an

alternative design in which no call stack is immediately

visible in the canvas; rather, a tool window is visible off to

the side (outside the canvas) indicating the current execu-

tion stack, and the navigation buttons appear above the bub-

ble containing the instruction pointer. These buttons allow

the user to incrementally open additional bubbles from the

stack. This design was based on the observation that many

users wanted to go “up one” in the stack, rather than to a

specific method in the call hierarchy. While the Code Bub-

bles call stack bubble also allows the user to accomplish

this, it takes up more space.

D. Integrating Code Bubbles with Traditional File

Workflow

The Code Bubbles prototype employed a hybrid design,

in which the user was presented with two separate main

windows: the Eclipse IDE workbench window for legacy

scenarios, and the Code Bubbles IDE window. Commands

were added to allow the user to go back and forth between

the two, but fundamentally, they remained separate.

In Debugger Canvas, we instead open the canvas which

hosts bubbles, as another tab within the main IDE window.

This is advantageous in that it is easier for the user to switch

between bubbles and files, and the user need only manage a

single main window, a single set of toolbars, menus and

keyboard shortcuts. However, this incurs several disad-

vantages: all of the users’ tool windows are still visible by

default, consuming valuable screen real estate needed to

benefit from the concurrent visibility of bubbles, while add-

ing visual noise; in addition, prevailing “legacy” modes of

user interaction are now expected to work, making it more

challenging to introduce new, bubble-centric modes of in-

teraction, such as gestures. We considered auto-hiding tool

windows while a Debugger Canvas tab was active, but we

felt this would be too disruptive. In addition, the Debugger

Canvas interactions are designed to be consistent with the

rest of Visual Studio, where possible, for familiarity; how-

ever, this has also limited our ability to incorporate novel

gestures.

IV. Implementation and Performance

The Debugger Canvas team consisted of three full-time

and one part-time developers, two part-time testers, one

part-time user experience designer and one full-time pro-

gram manager. The first release was developed using an

Agile methodology over 12 two-week sprints. After the first

release in June 2011, we gathered user feedback, described

1067

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SAO CARLOS. Downloaded on March 25,2021 at 21:13:25 UTC from IEEE Xplore. Restrictions apply.

in the next section. Based on this feedback, two developers

then spent another 4 two-week sprints preparing a second

release, scheduled for November 2011.

Debugger Canvas is implemented as a Visual Studio ex-

tension reusing as much of Visual Studio’s existing func-

tionality as possible. In addition to using the existing code

editor and debugger, we also reuse the code analysis func-

tionality that is used by the Architecture Explorer in Visual

Studio Ultimate. This functionality transforms the different

languages (such as C# or VB) into a generalized graph-

based code model so that tools like Architecture Explorer

and Debugger Canvas can work with any supported lan-

guage without having to know the specifics of that lan-

guage.

The user interface and canvas use a model-view-view

model (MVVM) architecture with the Windows Presenta-

tion Foundation (WPF). This allowed us to quickly iterate

on UI design without having to write any graphics or com-

position code. It also integrated well with Visual Studio

2010’s new code editor which uses WPF along with sophis-

ticated virtualization techniques. Panning the canvas re-

mains responsive (even over Remote Desktop) when there

are upwards of 100 code fragments on the canvas (which is

normally far too many to fit on a standard display).

The biggest decrease in performance relative to standard

Visual Studio Ultimate without Debugger Canvas installed

is the time it takes to start a debugging session. Debugger

Canvas needs to load the graph-based code model provided

by Architecture Explorer, which results in a scan of the en-

tire solution when starting to debug. On one test this dou-

bled the average start time from 1.5 seconds to 3 seconds.

Note that this measurement is the time after compilation has

completed, so the extra delay is less noticeable compared to

the much slower compilation time. We tested performance

in two conditions: with Debugger Canvas both installed and

active (showing code fragments on the canvas when debug-

ging); and when Debugger Canvas was installed but not

used during debugging. The relative slowdown of three

operations is shown in Figure 3. (As described in the next

section, many users complained about performance after the

initial release. The figures below are from our upcoming

second release, with performance greatly improved.)

Figure 3. Relative slowdown of three operations.

Stepping through code on the canvas generally takes

about 100 ms longer per step regardless of the number of

code fragments on the canvas. However, if there are dupli-

cate copies of the same code fragment being debugged (e.g.

when debugging a highly recursive method with the “Reuse

Bubbles when Content is the Same” option turned off) then

the performance degrades linearly in relation to the number

of duplicate code fragments being shown. On a single core

2.6 GHz Virtual PC this resulted in the debugger taking

over 1 second for each ‘Step Over’ after reaching 70 recur-

sive calls to the same function as seen in Figure 4.

Figure 4. Slowdown in debugger stepping, as the number of bubbles per

method increases.

This slowdown only applies when stepping through du-

plicated code bubbles. When stepping through an unrelated

code fragment then performance returns to normal regard-

less of how many unrelated duplicate fragments are on the

canvas. This is because the slowdown is due to the existing

Visual Studio debugger attempting to update the margin

glyphs and active statement highlighting for every one of

the duplicated code fragments even though only one of

them is active at any given point. The existing Visual Studio

debugger was not written with this scenario in mind. In fact,

the most difficult hurdle during implementation was that

most of Visual Studio’s existing functionality expects that

there is only one code file per tab, whereas Debugger Can-

vas hosts multiple code fragments within a single tab via the

canvas. This ended up breaking several of the existing tool

windows in Visual Studio (e.g. Solution Explorer, Class

View, and Find Results). Separate work was needed for

each individual tool window to fix bugs in Visual Studio or

add workarounds so that they would work properly when

multiple code fragments are hosted on the canvas.

V. User Feedback

We gathered feedback from professional programmers

both before and after the public release. Before release, we

did usability testing in the lab. After release, we tracked

adoption using both download counts and data from the

Microsoft Customer Experience Improvement Program,

which provides anonymous product usage data. Finally, to

understand the adoption trends, be conducted a survey with

99 respondents and 11 semi-structured interviews, among

both Debugger Canvas adopters and non-adopters.

0

1000

2000

3000

4000

Load Solution Start

Debugging

Step Over

M
il

li
se

co
n

d
s

Vanilla VS

DC Installed

DC Active

0

500

1000

1500

10 20 30 40 50 60 70 80 90 100

M
il

li
se

co
n

d
s

p
e

r
S

te
p

Number of duplicate code fragments on the canvas

1068

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SAO CARLOS. Downloaded on March 25,2021 at 21:13:25 UTC from IEEE Xplore. Restrictions apply.

A. Usability Testing during Development

Fourteen weeks before the first release, we used the

Rapid Iterative Testing and Evaluation method [4] to im-

prove the usability of the implementation. Briefly, we asked

10 participants to use Debugger Canvas to complete three

tasks in one-hour sessions. The goal of each session was to

see where the user struggled with the user experience and to

gather feedback. After each user session, we identified any

remaining critical usability problems and fixed them before

the next session. While this method introduces too much

variability between users to take controlled measures, the

method is an efficient way to improve the tool and reduce

overall participant frustration.

The most important usability problem we fixed in this

process was our design decision to create a new canvas au-

tomatically for each debugging session. Our RITE users

consistently debugged in many, short sessions (often fo-

cused on a single method) and therefore found the resulting

canvases to be “clutter.” We updated the design so that de-

bugging sessions all take place in the same canvas, unless

the user explicitly creates a new one.

B. Download and Usage Data

We measured number of downloads for the tool, as well

as number of users per day and per month. In the adoption

numbers we were mostly looking for trends. We expect a

non-useful tool to have bad word of mouth, leading to

downloads going down sharply after the initial launch,

while conversely, a useful tool should have a long tail after

the initial spike, leading to a significant number of down-

loads beyond the first 2-3 weeks. The download curve is

shown in Figure 5.

Figure 5: Number of unique downloads per week, after the initial release

on 13 June 2011.

Download trends show a strong spike the first week, as

would be expected, then settles into a mostly flat pattern.

Downloads from week 3 and out represent 45% of the total.

Given our initial criteria, this represents a positive result. It

seems like Debugger Canvas may have enough usefulness

that a relatively steady stream of users get pointed our way,

despite no marketing activities from us after the initial

launch, up until week 32 when we announced the second

release.

The Microsoft Customer Experience Improvement Pro-

gram (CEIP) provides the ability for customers to upload

product usage data with complete anonymity. To participate

in this program, users opt in to share their data with Mi-

crosoft, meaning that such data represents a self-selected

sample of all users. (The Visual Studio team estimates that

roughly 15% of their customers participate.) This data is

then collated into counts of users who performed this action

per day and per month.

To receive data, a team must instrument the operations

in its product. For Debugger Canvas, we instrumented the

operation of stepping with the debugger inside a code bub-

ble, as well as our menu commands. Table 1 shows the fre-

quency of Debugger Canvas’s operations, relative to step-

ping inside a code bubble (our most frequent instrumented

operation).

Table 1. Relative use of Debugger Canvas's commands.

Command
Use relative to

stepping

Step into bubble 1.0

Create New Canvas .11

Start Debugging Without Debugger Canvas .07

Show Video Tutorial .03

Start Debugging With Debugger Canvas .03

Save As XPS .01

Send Feedback .01

Send As XPS Attachment .01

Figure 6. Users per day who step into a code bubble at least once, as a

percentage of usage on the first day. (The gap is due to missing data.)

Figure 6 shows the number of users per day (in the CEIP

sample) who step into a code bubble, starting in week 10

after release. (The gap is due to a problem with data collec-

tion in December 2011.) The trend of users per day is most-

ly flat and then picks up after the second release in week 32.

When seen in the context of the trickle of new downloads in

Figure 5, the overall curve in Figure 6 suggests that many

users dropped out after initial use, but a large fraction con-

tinue to use it steadily.

0

1,000

2,000

3,000

4,000

5,000

6,000

1 4 7 10 13 16 19 22 25 28 31 34 37 40

0%

20%

40%

60%

80%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

1069

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SAO CARLOS. Downloaded on March 25,2021 at 21:13:25 UTC from IEEE Xplore. Restrictions apply.

The relatively stable usage over time suggests that some

users are finding Debugger Canvas useful. Ideally, we

would like the usage data to trend upwards to match the

download curve. The steady download numbers mean an

increase in potential usage but it is clear from the usage

numbers that this is not translating directly into actual us-

age. This indicates that some users are either abandoning

the tool or using it less frequently over time. Our next ques-

tion is therefore what reasons users had to adopt or abandon

the tool.

C. User Survey

To better understand customer adoption and non-

adoption, we performed a survey of 341 users who had

downloaded the tool internally. We got 99 responses, of

which 72 reported having used the tool; of these, 53 were

still using it and 19 had abandoned it. When asked to list

reasons to abandon the tool, users reported the reasons in

Table 2.

Table 2: Reasons why 19 surveyed users stopped using Debugger Canvas.

Each respondent may report multiple reasons.

Reason to abandon #Respondents Type

Editing not discovered 4 Usability

Bugs 4 Bugs

Performance 4 Bugs

Doesn't support my platform 3 Other

Screen too small 2 Useful

Data tips bug 2 Bugs

Wants features 2 Utility

Concept didn’t work for me 2 Utility

Want to resize bubbles 1 Utility

Instruction pointer update bugs 1 Bugs

Navigation not discovered 1 Usability

On demand not discovered 1 Usability

Sum 27

Of these 12 factors that users reported, 5 were related to

bugs, performance or platform support, seen in a total of 14

responses. Another 3 issues, in 6 responses, were that vari-

ous features were not discovered (i.e. the user complained

about Debugger Canvas lacking a feature that it in fact has).

The remaining 4 issues in 7 responses can be interpreted as

related to utility.

D. User Interviews

To understand the survey results in more depth, we con-

ducted 11 half-hour, semi-structured interviews with users

of Debugger Canvas, during which we probed for specific

situations in their own work when Debugger Canvas was

helpful and not helpful.

1) When Is Debugger Canvas Useful?

Overall, 9 out of 11 users mentioned situations when they

found Debugger Canvas to be particularly useful. A few

themes were mentioned often: deep or complicated call

paths (6 respondents mentioned this); dynamically linked

code (4); large code bases (3); and unfamiliar code bases

(2). We discuss each of these in turn. (In the quotes below,

we use numbers as pseudonyms for the interviewed users.)

The most common situation where users found the can-

vas to be useful was when debugging long and complicated

call paths. 6 out of 11 reported this.

I often have to debug several layers on our side from the

UI, via middle tier to the data layer. It often gets confus-

ing to go into the deeper layer. This is where the canvas

helps, you hit a breakpoint here and can see the stack

trace as you step through the layers. This helps us debug

things much faster. (10)

When call trees get larger, it gets increasingly hard to

remember relevant information about the code that has al-

ready executed. With Debugger canvas, referencing this

code is easier since only relevant code is shown and the

code is laid out to reflect the call paths rather than file or-

ganization.

Visualizing the flow of control through the debugger is a

huge asset. Method calls and their state is visualized and

trivially navigable. The left-to-right, top-to-bottom

spanning of the tree makes intuitive sense. (3)

Large and unknown codebases pose similar problems

for users, and not unexpectedly, 5 out of 11 users mentioned

this as an area where Debugger Canvas was useful.

I was working on a large project for only a week. There

was a huge ramp up, of course, and Debugger Canvas

was invaluable for stepping into the code to see what

was going on. (5)

With a really large code base that you are not familiar

with it is really handy. It helps wrap your head around

other people's code. That kind of visualization really

helps to follow code as it crosses different classes and

projects. Go-to-definition and using Reflector
*
 is just too

cumbersome to navigate through all that code. (6)

A third useful area is debugging code with significant use

of dynamic linking. 4 out of 11 users mentioned this as an

area where they found the canvas useful.

A lot of calls go through factories, very generic. There’s

also lots of circular calls and bad naming. You are never

sure what are you debugging. Debugger Canvas shows

* .NET Reflector is reverse-compiler for .NET bytecode.

1070

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SAO CARLOS. Downloaded on March 25,2021 at 21:13:25 UTC from IEEE Xplore. Restrictions apply.

you the call stack, you can see the picture where you

were before. It helps me decide which branches are im-

portant for the analysis, and which aren't. (4)

We use dependency injection a lot. For someone work-

ing with a lot of dependency injection, this is very handy.

(8)

Factories: You have to use the debugger! What type

does it return? Oh this type! (11)

The canvas also seems to provide benefits beyond helping

individual users understand the code that they are debug-

ging. Two out of 11 users found that using the canvas to

communicate with team members was a major advantage.

Sometimes it is very difficult to show how you fixed the

bug. With the canvas you are able to show how you

made the change, how you got it, what modules were

impacted. (1)

I get the bugs that my team members cannot figure out.

Typically I like to debug together with them. I usually go

to their machine first. If it is 20 minutes in, I go back to

my machine. Now I can also use Debugger Canvas and

send them the image of what I found. That does help the

communication. (10)

2) When Is Debugger Canvas Not Useful?

Given that the advantages of the canvas seem to lie in

debugging complex, unknown often dynamic paths, it is not

surprising that users find it less useful when those factors

are not present.

For a "normal" project it isn't worth the hassle with per-

formance. (5)

I don't always want to get into the canvas. When I’m de-

bugging something small: for example - Did the parame-

ter get here? Then it doesn’t warrant opening up the

canvas.(10)

Familiarity with how code is organized in the file, also

sometimes weighs against using the Canvas.

Code that you've worked on for hours, and you know

that this function is right above this, then it messes with

your mind when it is in the bubbles. (2)

Sometimes what I'd like to do is to "peek ahead" because

I know that the next call is right below it in the module.

(1)

However, this may be at least partially a matter of habit

which will be less important over time.

I just expanded it to two monitors, and it seems a lot

more appealing. It may have a lot to do with the layout,

and the real estate that you need to have to cross the

threshold, you give up familiarity, but it looks great! (2)

I kinda sometimes switch back and forth between the

two of them. I was more used to see everything, but I'm

starting to get more used to seeing the bubbles. (1)

I would probably switch between regular and this if it

was part of VS, but eventually just use this. I'm more

used to the regular debugger. (7)

As far as I'm concerned this is my new debugger! (9)

On the other hand, there may be tasks that Debugger Can-

vas doesn’t support today that force users to go to files.

One such task was to inspect fields of a class, which don’t

show up in the method bubbles.

Sometimes I need to see field definitions. (2)

I stop using it when I need to see definition of classes.

I'm aware of the Go-to-definition feature, but I use Re-

Sharper and lots of tools to navigate, so I find it easier

to go back to the file in those cases (4)

Sometimes the fix that I need to do involves code that is

not in the bubbles, but is in the same files, so I'd like to

be able to get to the rest of the file easily. (10)

I hit a breakpoint check the value of a private field.

That’s when seeing the rest of the file comes in handy.

(10)

E. Updates Based on User Feedback

Based on this user feedback, we spent an additional four

two-week sprints preparing an update implementation,

scheduled to be released in November 2011. Besides fixing

bugs and making the performance improvements mentioned

earlier, we added several small features to improve usabil-

ity.

First, users reported that Debugger Canvas is most use-

ful when call paths are complicated, lengthy or involve dy-

namically loaded code. Unfortunately, a user often does not

know in advance when she will find herself in this situation.

In our first release, the user chooses between using Debug-

ger Canvas and the standard debugger at the start of the

debugging session. In the next release, we have added a

button to the standard debugging toolbar (in yellow)

to allow the user to switch between Debugger Canvas and

the standard debugger at any time during debugging. That

way, the user can use the familiar debugging experience

until finding herself in a debugging situation when the can-

vas would be useful.

1071

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SAO CARLOS. Downloaded on March 25,2021 at 21:13:25 UTC from IEEE Xplore. Restrictions apply.

Second, users had a difficult time discovering navigation

features, particularly the use of the call stack window.

Symptomatic of this is the “lonely bubble” problem: the

user sets a breakpoint, launches the debugger and then sees

a single bubble on the canvas with the method containing

the breakpoint. In this situation, there are no visual hints

about how to get further context. In the next release, we

added small buttons that appear above the bubble that repre-

sents the active call frame:

The buttons open methods above and below the currently

active frame on the call stack, namely (from left to right):

all frames below; the previous frame below; the next frame

above; all frames above. In short, these buttons are designed

to make call stack navigation more accessible and visible.

Finally, the support for concurrent programming men-

tioned before is an addition for the second release.

VI. Related Work

The problems programmers face during development

tasks have been documented using both observation and

logging [5] [6] [7] [8]. These studies show that program-

mers frequently navigate among program definitions, with

locality patterns that cluster the definitions into working

sets. The frequency of navigation can cause disorientation,

making re-finding of relevant code less efficient. This pat-

tern gets worse as programmers are interrupted [7].

One approach to making navigation more efficient is to

track the programmer’s navigation steps and to use the pro-

grammer’s current location to recommend related places in

the code [9] [10] [11]. While these recommendation sys-

tems provide useful shortcuts, this does change the underly-

ing hypertext model of program navigation; the programmer

still has to build up a mental model of the code’s contents as

she navigates. In contrast, Code Bubbles, Code Canvas

(through its filtered canvases), and Debugger Canvas all

present a programmer’s working set of program definitions

(as well as related artifacts) side by side in the same presen-

tation, easing the programmer’s need to remember the rele-

vant code.

Spatial representations of code have a long history, go-

ing back at least to the Self programming environment [12].

In the Self tradition, one use of space is to represent the

entire software system. The challenge is to deal with the

complexity of large system. One strategy is to use the intui-

tive appeal of a cartographic map metaphor, of which Soft-

ware Cartography [13] and Software Cities [14] are recent

examples. Another strategy is to use semantic zoom, in the

style of Shrimp views [15]. Code Canvas uses both of these

strategies. Another use of space is to represent the pro-

grammer’s working set, the approach of both Code Bubbles

and Debugger Canvas. While this avoids the scale problems

needed to represent the entire system, Code Bubbles and

Debugger Canvas nonetheless present more than a screen’s

worth of content and therefore provide panning and geomet-

ric zoom for content management. A recent whiteboard

diagramming study shows that programmers are flexible

and informal in spatial representations of code [16], which

provides the motivation for the flexible layout and annota-

tions that Code Bubbles, Code Canvas, and Debugger Can-

vas all support. Both Self and the recent Gaucho environ-

ment [17] allow code to represented not just as fragments in

space, but also in non-textual ways. Debugger Canvas sticks

to the familiar textual code presentation to help encourage

adoption.

A few recent papers have also explored hosting the de-

velopment environment across multiple devices. Code

Space [19] uses the bubbles paradigm in a meeting room

setting, where the bubbles can be moved among shared

screens and mobile devices. Similarly, CodePad [18]

spreads the development experience across several devices,

to support an individual programmer’s work, particularly

multitasking.

VII. Conclusions

Returning to the questions that originally motivated the

implementation and release of Debugger Canvas, our expe-

rience allows us to draw some initial conclusions.

First, the canvas design can be implemented to scale up

to the customers’ code bases. The initial release had some

performance problems, which have since been identified

and fixed. Even with the performance problems in place,

many users were using Debugger Canvas on a daily basis.

Indeed, in interviews, several users mentioned that large

code bases are where Debugger Canvas is particularly help-

ful.

Second, our experience shows that the canvas idea is

best embodied as a mode within the existing user experi-

ence. While some users found value in the new user experi-

ence, others did not. Even users who were enthusiastic

about the idea mentioned that there are situations where the

overhead of switch representations from tabbed documents

to the canvas is not worth it. One example is rapid-iteration

debugging on a single method.

Finally, there are situations where some users strongly

preferred the canvas design. Our interview participants re-

ported finding the canvas useful with long or complex code

paths, with large code bases with many layers, with unfa-

miliar code bases, and when the code involved dynamically

linked code, factories, or other indirect forms of control

flow.

References

[1] A. Bragdon, S. P. Reiss, R. C. Zeleznik, S. Karumuri, W. Cheung, J.
Kaplan et al., "Code Bubbles: Rethinking the user interface paradigm

of integrated development environments," in International

Conference on Software Engineering, 2010.

[2] A. Bragdon and R. C. Zeleznik, "Code bubbles: a working set-based

interface for code understanding and maintenance," in Computer

Human Interaction - CHI, 2010.

[3] R. DeLine and K. Rowan, "Code Canvas: Zooming towards better

1072

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SAO CARLOS. Downloaded on March 25,2021 at 21:13:25 UTC from IEEE Xplore. Restrictions apply.

development environments," in International Conference on
Software Engineering - ICSE, 2010.

[4] M. C. Medlock, D. Wixon, M. Terrano, R. Romero, and B. Fulton,
"Using the RITE Method to Improve Products: a Definition and a

Case Study," in Usability Professionals Association, 2002.

[5] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, "An

Exploratory Study of How Developers Seek, Relate, and Collect

Relevant Information during Software Maintenance Tasks," IEEE
Transactions on Software Engineering, vol. 32, no. 12, 2006.

[6] G. C. Murphy, M. Kersten, and L. Findlater, "How Are Java

Software Developers Using the Eclipse IDE?," IEEE Software, vol.
23, no. 4, 2006.

[7] C. Parnin and S. Rugaber, "Resumption strategies for interrupted
programming tasks," in International Workshop on Program

Comprehension - IWPC, 2009.

[8] M. P. Robillard, W. Coelho, and G. C. Murphy, "How Effective
Developers Investigate Source Code: An Exploratory Study," IEEE

Transactions on Software Engineering , vol. 30, no. 12, 2004.

[9] R. DeLine, M. Czerwinski, and G. Robertson, "Easing Program

Comprehension by Sharing Navigation Data," in IEEE Symposium

on Visual Languages/Human-Centric Computing Languages -
VL/HCC, 2005.

[10] M. Kersten and G. C. Murphy, "Mylar: a degree-of-interest model

for IDEs," in International conference on Aspect-oriented software
development (AOSD), 2005.

[11] J. Singer, R. Elves, and M.-A. D. Storey, "NavTracks: Supporting
Navigation in Software Maintenance," in International Conference

on Software Maintenance - ICSM, 2005.

[12] D. Ungar and R. B. Smith, "Self: The power of simplicity," in

OOPSLA, 1987.

[13] A. Kuhn, D. Erni, and O. Nierstrasz, "Embedding Spatial Software

Visualization in the IDE: an Exploratory Study," in Software
Visualization - SOFTVIS, 2010.

[14] R. Wettel and M. Lanza, "Visualizing Software Systems as Cities,"
in Visualizing Software for Understanding and Analysis - VISSOFT,

2007.

[15] M.-A. D. Storey, C. Best, J. Michaud, D. Rayside, M. Litoiu, and M.
A. Musen, "SHriMP views: An interactive environment for

information visualization and navigation," in Computer Human

Interaction - CHI, 2002.

[16] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko, "Let's go to the

whiteboard: How and why software developers use drawings," in
Computer Human Interaction - CHI, 2007.

[17] F. Olivero, M. Lanza, M. D'ambros, and R. Robbes, "Enabling

Program Comprehension through a Visual Object-focused
Development Environment," in IEEE Symposium on Visual

Languages and Human-Centered Computing - VL/HCC, 2011.

[18] A. Bragdon, R. DeLine, K. Hinckley, and M. R. Morris, "Code

Space: Combining Touch, Devices, and Skeletal Tracking to Support

Developer Meetings," in ACM International Conference on
Interactive Tabletops and Surfaces, 2011.

[19] C. Parnin, C. Görg, and S. Rugaber, "CodePad: interactive spaces for

maintaining concentration in programming environments," in
Software Visualization - SOFTVIS, 2010.

1073

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SAO CARLOS. Downloaded on March 25,2021 at 21:13:25 UTC from IEEE Xplore. Restrictions apply.

