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Resumo

Em agricultura de precisao, detectar e delinear talhoes produtivos ¢ uma pratica essencial
que permite ao agricultor avaliar o desempenho operacional separadamente e comparar
diversas variedades de sementes, defensivos e fertilizantes. Entretanto, a identificacao
manual de talhoes produtivos é frequentemente demorada, cara e subjetiva. Estudos
anteriores exploraram diferentes métodos de deteccao de talhdes utilizando algoritmos
avancados de aprendizado de maquina para dar suporte as decisoes de especialistas,
entretanto, eles frequentemente enfrentam limitagoes devido a baixa disponibilidade de
dados rotulados de alta qualidade. Neste contexto, é proposto um sistema de deteccao
de talhoes produtivos baseados em um conjunto de dados de alta qualidade gerado a
partir da combinacao de dados operacionais de maquinas agricolas com imagens de satélite
Sentinel-2 extraidos ao longo do tempo. No melhor do nosso conhecimento, este é o
primeiro trabalho cientifico que supera os desafios impostos pela segmentacao de campos
produtivos utilizando esta combinacao de técnicas. Em seguida, sao apresentados trés
métodos, utilizando como base o estado da arte em métodos supervisionados e auto-
supervisionados, selecionados de acordo com as caracteristicas da base, para a deteccao
automatica de talhoes produtivos. Adicionalmente, sdo reportados resultados com alta
acuracia utilizando o aprendizado com exemplos positivos e nao rotulados, o qual se
encaixa perfeitamente neste cenario, onde temos alta confianga nos dados positivos. Por
fim, melhores desempenhos foram obtidos com o Aprendizado Contrastivo considerando
sua caracteristica de aumento de dados que permite o treinamento com uma quantidade

maior de amostras mesmo que artificialmente geradas.

Palavras-chaves: Agricultura de Precisao, deteccao de talhoes, aprendizado contrastivo.






Abstract

In precision agriculture, detecting productive crop fields is an essential practice that
allows the farmer to evaluate operating performance separately and compare different
seed varieties, pesticides, and fertilizers. However, manually identifying productive fields is
often time-consuming, costly, and subjective. Previous studies explore different methods to
detect crop fields using advanced machine learning algorithms to support the specialists’
decisions, but they often lack good quality labeled data. In this context, we propose a
framework for productive crop field detection based on high-quality dataset generated by
machine operation combined with Sentinel-2 images tracked over time. As far as we know,
it is the first one to overcome the lack of labeled samples by using this combination of
techniques. In sequence, we present three methods, based on state-of-the-art supervised
and self-supervised methods, selected according to the dataset characteristics, to detect
productive crop fields. Finally, we demonstrate high accuracy results in Positive Unlabeled
learning, which perfectly fits the problem where we have high confidence in the positive
samples. Finally, best performances have been found with Contrastive Learning, given its
ability to augment data, allowing the model to be trained with a larger dataset considering

the artificially created samples.

Keywords: Precision Agriculture, crop field detection, contrastive learning.
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1 Introduction

Food production needs to grow by 70% to meet the demands of the expected world
population by 2050 (NELSON et al., 2010). Motivated by this challenge, agriculture has
adopted technologies to improve and optimize input returns while preserving natural
resources. Integrating these technologies promotes a farming management concept known
as precision agriculture (ZHANG; WANG; WANG, 2002). The main goal of precision
agriculture is to provide tools for allowing the farmer to observe, measure, and respond
to field variability in crops, facilitating faster and better decisions. In addition, these
techniques are generic enough to be applied to various crops, including but not limited
to corn, soy, coffee, sugarcane, beans, and even pastures (MULLA, 2013; BHAKTA;
PHADIKAR; MAJUMDER, 2019).

To efficiently organize and manage large crops, farmers leverage remote sensing to
divide their land into smaller observation units that this work will refer to as agricultural
or crop fields. Figure 1 highlights two samples of crop fields overlaid on a satellite image.
A field shape is designed based on topography and mechanization planning. For example,
fields are built around contour farming and the ideal length to fill the wagon capacity in a
sugarcane crop. The same logic is followed for grains in the Brazilian South and Southeast.
Nonetheless, the most important variable is the harvester capacity in the Midwest, where
the topography is often plain (SPEKKEN; MOLIN; ROMANELLI, 2015; GRIFFEL et al.,
2019; BOLFE et al., 2020). A productive crop field is an area consistently used for the
cycle of growth and harvest of a crop, typically yearly but more often in some regions with

favorable soil and weather.

Figure 1 — Two crop fields highlighted in a satellite image. Source: own authorship.

Thanks to the availability of a massive amount of labeled data, the development of
artificial intelligence (Al), particularly machine learning (ML) and deep learning (DL),

has allowed for acceleration and improvement in many areas of agriculture (GARCIA-
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PEDRERO et al., 2019; PERSELLO et al., 2019; MASOUD; PERSELLO; TOLPEKIN,
2020; WALDNER; DIAKOGIANNIS, 2020; WALDNER et al., 2021). Despite all the
advances, having an adequate amount of labeled data to train such methods can be costly

and not always affordable for precision farming.

Usually, farmers rely on experts to build the field boundaries using dedicated
Geographic Information Systems (GIS) software. Despite the expert’s ability and knowledge,
finding crop fields and drawing their boundaries has been a major, expensive, and time-
consuming challenge (WAGNER; OPPELT, 2020b). The larger the customer’s land is,
the more significant the number of fields to be created. For instance, there are farms in
Brazil with more than eighteen thousand fields that require regular updates to reflect their
accurate states. Finding productive fields is even more challenging because it requires

previous knowledge of these areas or the analysis of satellite images over time.

Aiming to overcome these challenges, we introduce a new framework to auto-
matically detect productive crop fields. This framework relies on agricultural machines’
operational data, i.e., the information produced by the sensors installed in these machines,
to determine if the operation corresponds to a productive crop field activity. These sensors,
connected to embedded controllers, can accurately inform the system if the machine is
in a tillage, seeding, or harvesting process. This data is combined with Sentinel-2 images
collected to build the dataset. In addition, we provide three different methods specially
selected and tailored for this dataset and its particularities. The complete framework is

demonstrated in Figure 2.

CROP FIELD : CLOUD
Data Processing Training
GNSS i 1| Sentinel-2 Provider
: —>  PU Learning o
Y Y
. h i ’ Parquet . . L . . i
Agriculture Machine ——I10T——> Server Labeling files Processing Sampl ——> Triplet Loss Siamese | | !

A

Y

i
Contrastive Learning | | |
Sensors

Figure 2 — End-to-end diagram of the proposed framework. Source: own authorship.

The proposed framework offers innovative approaches that differentiate it from
other studies in this field.

Firstly, this information is aggregated in geospatial .12 hexagons, establishing a

common ground for employing different satellite sources with different resolutions. This
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means that we can easily integrate Sentinel-2 with Landsat or even aerial images with

minimal effort, no source code changes or method adaptations.

Secondly, typical farmers are usually interested in monitoring productive areas
rather than all possible fields since many are not fertile or suitable for any crop. For this
purpose, the proposed dataset contains highly accurate positive samples (i.e., productive
crop fields) and inferred negative ones, making it well-suited for positive and unlabeled
learning (DENIS; GILLERON; LETOUZEY, 2005).

Finally, we offer modified versions of state-of-the-art machine learning and deep
learning methods, with the respective benchmark results for further comparison . The
employed methods comprehend different training strategies (i.e., supervised learning,
semi-supervised, and self-supervised learning classification of unlabeled data). The latter,
specifically included since recent advances suggest that self-supervised methods (e.g.,

contrastive learning) may also provide a promising alternative even for cases where labeled
samples are scarce (GULDENRING; NALPANTIDIS, 2021).

1.1 Objectives and contributions

The main objective of this dissertation is to introduce a new framework for
automatic productive crop field detection, enabling the segmentation of crop fields in
satellite imagery and delineating their boundaries. This work presents the following key

contributions:

e Development of a mechanism to build datasets containing pertinent information that

can be employed to train machine learning models.

o Publication of the generated dataset to the scientific community to foster further

studies and advancements in the area.

o Introduction of a new satellite image segmentation method tailored towards produc-

tive crop fields rather than generic ones.

o Adaptation of state-of-the-art machine learning methods, originally designed for

other applications, to be applied to the proposed dataset.

o Presentation of the performance of benchmark machine learning methods that closely

align with the application and the proposed dataset.

o All steps of the proposed pipeline were carefully designed to address the challenge in

a pragmatic and extendable way to ease future work.
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1.2 Organization

This dissertation is organized as follows:

. In Chapter 1.2, we explore the fundamentals of image segmentation, particularly

emphasizing its application in remote sensing. Additionally, we present tools and
methodologies commonly associated with this field. The foundation established in

this chapter is an important support for the subsequent sections.

. In Chapter 3, we conduct a comprehensive literature review of prior research fo-

cused on crop field detection and boundary delineation across various applications.
Throughout this review, we analyze the strengths and weaknesses of each study,
comparing the most important points with the present dissertation and emphasizing

the contributions to this domain.

. In Chapter 4, we describe the dataset proposed within the scope of this study,

detailing its development and the subsequent processing steps essential for its
employment as input for machine learning methods. Concluding this chapter, we
present the experimental protocol, which will serve as a foundational framework for

the subsequent section.

. In Chapter 5, we present the results obtained by applying the selected methods.

We bring the merit and limitations of each approach, providing insight into their
respective performance metrics to provide a clear understanding of where each

method excelled and where improvements could be made.

. Finally, this dissertation concludes by presenting a summary of findings, a final

analysis, and forward-looking guidelines for future research in this domain.
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2 Theoretical Foundations

In remote sensing, image segmentation takes center stage, serving as a bridge
between raw data and meaningful insights encompassing tasks like land cover and land-use
classification, demanding increasingly advanced image processing algorithms. Traditional
digital image processing methods predominantly investigate remote sensing data pixel-
by-pixel. Nevertheless, these techniques frequently encounter challenges in extracting the
desired information, particularly from high-spatial resolution remote sensor data (WANG;
JENSEN; IM, 2010). In connection with this matter, this chapter details some basic
concepts of geospatial imagery, detailing the nuances of image representation, exploring
diverse segmentation methodologies, and concluding with the machine learning methods

with potential application to this area.

2.1 Geospatial image representation

In spatial analysis, using point or polygonal grids is a prevalent practice for sampling,
indexing, or partitioning geographic areas (SAHR, 2011). This approach proves particularly
valuable in diverse scenarios, such as overlaying a study area with a grid of points as part
of a systematic spatial sampling strategy, segmenting large regions into manageable units
for indexing, as exemplified by UTM grid zones, or subdividing a study area into subunits
to summarize spatial variables. In the latter case, a widely adopted methodology involves
employing a raster format, wherein a grid comprising uniform cells is associated with the
study area. Each cell within this grid is then assigned a value corresponding to the spatial
variables of interest. In fields like ecology and conservation, these variables may include,
for example, counts of individuals of a threatened species per grid cell, elevation, mean
annual rainfall, or land use classifications. The most commonly used grids are square,

triangular and hexagonal.

This section briefly describes these representations, detailing the merits and limita-

tions associated with each.

2.1.1 Square

The prevalent use of square grids finds its most common applications in raster
datasets, geohashes (SUWARDI et al., 2015) and quadkeys. To start, the pixels of a satellite
image in raster format can be recognized as the finest version of a square grid system. On a
more practical approach, a square grid system can be implemented by utilizing geohashes.
A geohash represents a hierarchical data structure that converts 2D spatial points, defined

by latitude and longitude, into concise alphanumeric strings. Operating on a global scale,
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geohashes intricately divide the world into a grid comprising 32 cells, organized into 4

rows and 8 columns, as shown in the Figure 3.
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Figure 3 — Geohash grid system and leveling. Source: Geospatial World website!.

The intuition of geohashes lies in their recursive nature; each cell within the grid
can be subdivided into an additional grid of 32 cells. Consequently, the length of the
geohash string directly correlates with the level of spatial accuracy achieved. Consequently,
the hierarchical structure facilitates the identification of spatial proximity: geohashes
sharing a common prefix indicate spatial closeness. Therefore, the longer the common
prefix, the closer the associated locations. The main usages for geohashes are providing a

unique identifier for the associated regions and representing a point in a database.

As a noteworthy alternative, Microsoft developed a square grid indexing system
concept that composed the Bing Maps Tile System?, most commonly known by quadkeys.
The term quadkey is an abbreviation for quadtree key. These keys encode square regions
within the latitude and longitude space, organized according to different detail levels. At
the initial level, the Earth’s entire surface divides into four quadkeys, similar to a map’s
zoom level that provides a panoramic view of the entire world. Each quadkey is associated
with a single-digit code ranging from zero to three. Upon zooming into the next level, the
original four quadkeys are divided into four, with an additional digit appended to the code.

The visual representation in the Figure 4 illustrates this progressive refinement process.

As previously exemplified, implementing a square grid system can be applied
through different alternatives. However, while recognized as a straightforward method, it

has several drawbacks. Firstly, it introduces substantial size distortion, leading to significant

L Polygeohasher: an optimized way to create geohashes is available at <https://www.geospatialworld.

net/blogs/polygeohasher-an-optimized-way-to-create-geohashes/>. Access on December 10, 2023.
Bing Maps Tile System is available at <https://learn.microsoft.com/en-us/bingmaps/articles/
bing-maps-tile-system>. Access on December 10, 2023.
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Figure 4 — Quadkey codes according to location and detail level. Source: Microsoft Bing
website.

variations in the areas of different cells along the globe. Additionally, square grids present
challenges, demanding multiple sets of coefficients for analytical purposes. This challenge
arises from squares having two distinct types of neighbors: one type sharing an edge in the
four cardinal directions, and another sharing a vertex in four diagonal directions (SAHR,
2011). In the next sections, we explore alternative grid systems utilizing different shape

formats, aiming to minimize the limitations exposed here.

2.1.2 Triangular

Triangular grids, sometimes associated in pairs to achieve diamond shapes, remain
relatively uncommon in practical applications. This rarity can be attributed to a combina-

tion of factors, including their unfamiliarity and specific geometric properties that pose

challenges for seamless integration on maps (KIMERLING KEVIN SAHR; SONG, 1999).

One key obstacle lies in the inherent geometric characteristics of triangles, specif-
ically their tendency to have a larger perimeter relative to their enclosed area. This
unfavorable ratio makes assembling triangular grids cohesively on a map more challenging,

contributing to their infrequent use in spatial representations.

Additionally, the limited connectivity of triangular grids imposes an additional
obstacle. Each triangle is linked to only three adjacent triangles, constraining movement
options and connections. This constrained connectivity contrasts with the more versatile
arrangements facilitated by square and hexagonal grids, limiting the adaptability of

triangular grids in diverse mapping scenarios.

Furthermore, the asymmetry inherent in triangular grids further complicates their
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Figure 5 — Overlapping of radio-based systems using a triangular grid system. Source: Ku-
mari e Singh (2012).

adoption. Unlike hexagons and squares, where two faces are parallel, triangles introduce
two directions along which lines are both centered from the axis of movement. This lack
of symmetry adds a layer of complexity to the interpretation and utilization of triangular

grids in spatial contexts.

Nevertheless, even with all these considerations, there are still scenarios where a
triangular grid system excels, for example, in applications involving the planning of radio
communication systems. In this case, the radiofrequency overlapping is reduced using this
specific system, as demonstrated in Figure 5 (KUMARI; SINGH, 2012), making it an

appropriate choice for a grid system.

2.1.3 Hexagonal

Beyond their aesthetic appeal, hexagons offer a high degree of symmetry, surpass-
ing the symmetry of geohashes and closely resembling circles in shape, enabling more
accurate spatial sampling. This geometric advantage has encouraged widespread adoption,
notably by companies such as Uber, recognizing the efficacy of hexagons in various spatial
applications (YUE et al., 2021).

An insight into hexagons reveals their similarity with triangular grids, a geometric
relationship where placing a dot in the center of each hexagon and connecting them
to adjacent ones results in a triangular grid, as shown in the Figure 6 (NAGY, 2022).
This characteristic highlights the versatility of hexagons, particularly in comparison to
triangular and square grids. (HERRMANN; KAMPHANS; LANGETEPE, 2010).

The choice between hexagons and geohashes depends on specific use cases, each

necessitating trade-offs. Analyzing parameters such as distance from the nearest cells,
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hexagons exhibit an advantageous property. They are equidistant to their neighbors,
simplifying analysis and rendering them preferable for tasks involving connectivity or
movement. Furthermore, hexagons emerge as the optimal choice for fitting on curved
surfaces, offering a dense tessellation that minimizes edge effects and accommodates the
curvature of the Earth more effectively than squares or triangles. And that is the primary
reason why most recent geospatial applications have adopted hexagonal grids (YUE et al.,
2021).
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Figure 6 — The square, hexagonal and triangular grids with their symmetric coordinate
systems. Source: Nagy (2022).

Hexagons also excel in revealing explicit patterns in data, especially when compared
to linear figures like squares and rectangles. The inherent shape of hexagons allows for the
easy and explicit display of curvature in data patterns, avoiding the visual impediment
posed by straight, unbroken lines inherent to square and rectangular shapes. This versatility
and efficiency in addressing various spatial considerations establish hexagons as a powerful
visualization and spatial analysis tool. The methods explored in the following sections can

perform the latter individually or in agglomerates.

2.2 Computer vision-based methods

In this section, we introduce the fundamentals of classical computer vision methods
for image segmentation. These techniques have played a crucial role in resolving the
complexities inherent in visual data analysis. Our investigation extends to an examination
of classical approaches, covering region-based, edge-based, and hybrid methodologies as

well as their strengths and limitations.

2.2.1 Region-based

Region-based segmentation is a crucial technique in computer vision that involves
partitioning an image into regions or segments based on certain criteria such as color,
texture, or intensity. Unlike pixel-based methods, which classify individual pixels inde-

pendently, region-based segmentation groups pixels with similar properties into coherent
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regions. This approach aims to capture higher-level information and structures within an

image, facilitating more meaningful interpretation and analysis.

One well-known region-based segmentation method is the watershed algorithm
(BEUCHER; MEYER, 1993). The watershed algorithm treats an image as a topographical
surface, where basins represent regions, and the flooding of these basins corresponds to
the segmentation process. This process is demonstrated in the Figure 7. By leveraging
morphological operations, the watershed algorithm is particularly effective in segmenting

images with varying intensities and gradients.

Watershed
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Label 1

Label 3 Watershed
—_—
transform

Figure 7 — The segmentation process of the watershed algorithm. Source: Zheng et al.
(2021).

Another influential region-based segmentation technique is the GrabCut algo-
rithm (ROTHER; KOLMOGOROV; BLAKE, 2004). GrabCut formulates segmentation
as an energy minimization problem and utilizes graph cuts for interactive foreground ex-
traction. By iteratively updating the segmentation based on user input, GrabCut achieves
accurate and interactive segmentation, making it valuable for applications such as image

editing and object extraction.

Segmentation result

Background
terminal

Foreground
terminal

Graph

Figure 8 — Simplified example of a GrabCut segmentation process. Source: Xiao et al.
(2017).

In the Figure 8, this process is demonstrated in a segmentation for a simple 3 x 3

image. The pixel labeled “F” is a hard constraint, and the image feature term defines the
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weights of the n-links (yellow edges), while the change feature term defines the weights of
the t-links (red and blue edges). Each edge’s weight, or cost, is reflected by its thickness.

These region-based segmentation methods, among many others using classical
computer vision, still find usage in many applications, including medical imaging and

object recognition, especially where there are computational capability constraints.

2.2.2 Edge-based

Edge-based computer vision segmentation is another classical approach that relies
on detecting and emphasizing boundaries, or edges, within an image to distinguish between
different regions. The primary idea is that abrupt changes in intensity or color often
correspond to object boundaries, making edges a key feature for segmentation. Edge-based
methods are foundational in computer vision and widely used in applications such as

object recognition, image analysis, and medical imaging (CANNY, 1986).

One of the fundamental techniques in edge-based segmentation is the Canny edge
detector (CANNY, 1986). The Canny edge detector identifies edges by locating points
where the gradient of the image intensity undergoes a significant change. This method is
characterized by its ability to detect edges accurately while suppressing noise and providing

thin and well-connected contours.

The edge detection process often involves the computation of gradients, typically
using convolution with gradient masks and subsequent application of a threshold to identify
significant edges. The Canny edge detector can be mathematically represented as in the
Equation 2.1. In the Canny edge detection algorithm, the value of o affects the scale of
the smoothing operation, and the choice of o depends on the characteristics of the image
and the desired level of smoothing. Commonly, ¢ is chosen based on experimentation and

the specific requirements of the application.

Gla,y) = 1)/ (20%) @.1)
2o
Another widely used edge detection operator is the Sobel operator, which approxi-
mates image gradients using convolution with Sobel kernels (NAGENDRA et al., 1993).
The Sobel operator is computationally efficient and is often employed as a preprocessing

step in edge-based segmentation methods.

Edge-based segmentation can be refined by incorporating additional techniques
such as edge linking and contour extraction. The extraction of contours helps in delineating

object boundaries more precisely.

To conclude, computational efficiency and robustness to illumination changes

contribute to edge detection effectiveness in scenarios where clear borders delineate objects.
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However, these methods may struggle in the presence of noise and can be less discriminative
in cases where objects share similar colors or textures. On the other hand, region-based
segmentation techniques, such as the aforementioned graph-cut methods, focus on grouping
pixels based on overall similarity, emphasizing homogeneity within segments. This makes
them more versatile, particularly in handling images with gradual intensity changes or
complex textures. As an advancement, hybrid methods combining the best of these two

approaches were introduced.

2.2.3 Hybrid

Hybrid segmentation methods integrate both region-based and edge-based tech-
niques to exploit the complementary strengths of each approach, aiming to achieve more
accurate and robust segmentation results. These methods acknowledge that edge informa-
tion provides crucial boundary details, while region-based methods offer a more global
context for segmentation. Combining these strategies, hybrid segmentation methods aim

to overcome limitations inherent in individual approaches.

One common strategy in hybrid segmentation is to use edge information as a
feature or constraint within region-based methods. For instance, incorporating edge data
into graph-cut segmentation can enhance the precision of object boundaries. The edges
serve as additional cues, guiding the segmentation process to align with the more detailed
information provided by the boundary emphasis of edge-based techniques. Mathematically,
based on the theory explored in the previous sections, this integration can be expressed as
an extended energy function, where the data term considers both region homogeneity and
edge information (RYDBERG; BORGEFORS, 2001).

2.3 Machine learning-based methods

Machine learning is a subfield of artificial intelligence (AI) that focuses on developing
algorithms and models capable of learning from data to make predictions or decisions
without explicit programming. The fundamental idea behind machine learning is to enable
computers to automatically learn and improve their performance on a specific task through
experience (or training) without being explicitly programmed for that task. This paradigm
shift from traditional if-based programming to data-driven learning has enabled machines to
perform complex tasks such as image and speech recognition, natural language processing,
and autonomous decision-making (BISHOP, 2006).

One of the foundational concepts in machine learning is the use of training data
to train models, where algorithms learn patterns and relationships from the data to
generalize and make predictions on new, unforeseen data. The field encompasses a variety

of techniques, including supervised learning, unsupervised learning, and reinforcement
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learning, each serving different purposes in solving diverse problems. Machine learning has
witnessed rapid advancements in recent years, fueled by the availability of large datasets,
improved computational power, and innovative algorithms (GOODFELLOW; BENGIO;
COURVILLE, 2016).

Machine learning has undergone a transformative evolution with the advances of
neural networks, a subfield that draws inspiration from the architecture of the human
brain (NIELSEN, 2015). Neural networks, also called artificial neural networks (ANNs),
have emerged as a powerful framework within machine learning, particularly in solving
complex problems. These networks consist of interconnected layers of nodes, known as
neurons, where each connection has an associated weight that is adjusted during the
training process. Through a series of forward and backward passes, neural networks can
learn intricate patterns and representations from data, making them well-suited for tasks

ranging from image and speech recognition to natural language processing.

Neural networks operate through a series of interconnected layers of artificial
neurons, and their learning process involves two key phases: forward propagation and

backpropagation.

In forward propagation, represented in Figure 9, the process begins with the input
layer, where the neural network receives the initial data or features. Each neuron in
the subsequent layers computes a weighted sum of its inputs, incorporating the weights

assigned to the connections. This sum is then passed through an activation function,
introducing non-linearity to the network (LECUN; BENGIO; HINTON;, 2015).

Input units .

Figure 9 — Neural network basic forward propagation. Source: LeCun, Bengio e Hinton
(2015).

The final layer produces the network’s output, representing the predicted values or
classifications. The forward propagation step can be mathematically expressed as in the

Equation 2.2.
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b =g, (W(” a4 b(l)) (2.2)

In sequence, in backpropagation, the process starts with the output of the forward
propagation being compared to the actual target values, and a loss is calculated. The

backpropagation process is shown in Figure 10.

Compare outputs with correct
answer to get error derivatives

Figure 10 — Neural network backpropagation. Source: LeCun, Bengio e Hinton (2015).

The loss function quantifies the disparity between the predicted and actual values.
Backpropagation involves propagating this loss backward through the network to update

the weights and biases, represented in the Equations 2.3 and 2.4, respectively.

l l
oL
l l

This is achieved through the chain rule of calculus, calculating the gradients of the
loss with respect to the weights and biases. The gradients are then used to update the
weights and biases in the network, iteratively minimizing the loss. This step is usually
performed using optimization algorithms like stochastic gradient descent (SGD) or its

variants (LECUN; BENGIO; HINTON;, 2015). Mathematically, the backpropagation step

oL oL
ow ob

The weights and biases are then updated using these gradients.

involves computing the and gradients for each layer, where L is the loss function.

The iterative execution of forward and backward propagation during training allows

the neural network to learn to optimize weights and biases that minimize the prediction
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error on the training data. This adaptive learning process enables neural networks to

generalize well to unseen data and perform effectively in various tasks.

A distinctive feature of neural networks is their ability to learn hierarchical rep-
resentations of data, allowing them to capture intricate features and relationships. This

characteristic has paved the way for developing deep neural networks, which are neural
networks with multiple layers (LECUN; BENGIO; HINTON, 2015).

2.3.1 Positive Unlabeled (PU)

It is a semi-supervised classification approach of unlabeled data, particularly
suitable for the current study, given the availability of accurate positive data, the lack of
negative ones, and the ease of obtaining unlabeled data. PU learning (DENIS; GILLERON;
LETOUZEY, 2005) relies on supervised methods, and we selected Support Vector Machines
(SVM) for this evaluation as well as Random Forests (RF) and Multilayer Perceptron
(MLP) networks.

PU learning differs from One-Class learning (KHAN; MADDEN, 2010) by having,
besides positive labeled samples, a group of samples whose label is unknown. In the
One-Class classification, different from our scenario, the model would be trained only with

positive samples, for example, and be exposed to other classes only during classification.

Original Data

Random
Dl Dz Dt-l Dt Sample
G G, Ca G "

Classifier

Combine
Classifier

Figure 11 — Parallel bagging used in PU learning. Source: Denis, Gilleron e Letouzey
(2005).

The approach relies on bootstrap aggregating (bagging) methods (BREIMAN,
1996), wherein the algorithm systematically trains a series of classifiers to distinguish
known positive instances from randomly selected subsamples of the unlabeled dataset. It

then averages their predictions into only one classifier, as demonstrated in Figure 11.
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2.3.2 Deep learning

Deep learning has demonstrated remarkable success in various applications, such as
computer vision, natural language processing, and speech recognition (GOODFELLOW;
BENGIO; COURVILLE, 2016).

As neural networks evolve, researchers and practitioners explore innovative archi-
tectures and methodologies. Convolutional Neural Networks (CNNs) (LECUN; BENGIO;
HINTON, 2015) excel in image-related tasks, Recurrent Neural Networks (RNNs) (SALE-
HINEJAD et al., 2017) are effective for sequential data, and Transformers (LIN et al.,
2022) have shown unparalleled success in natural language processing. The versatility of
neural networks, coupled with advancements in hardware and the availability of large

datasets, underscores their importance in shaping the future of machine learning.

2.3.2.1 Convolutional neural networks

A Convolutional Neural Network (CNN) is a feedforward neural network designed to
automatically extract features from data using convolutional structures. Unlike traditional
feature extraction methods, CNNs eliminate the need for manual feature extraction.
Inspired by visual perception, the architecture of CNNs mirrors biological neurons, with
artificial neurons corresponding to their biological counterparts. CNN kernels are receptors
responsive to various features, while activation functions simulate the neural transmission
threshold. Loss functions and optimizers are integral components that guide the CNN in
learning desired patterns (LECUN et al., 1998).

CNNss offer several advantages over traditional artificial neural networks. Firstly,
they employ local connections, where each neuron is connected to a few neurons in the
previous layer, effectively reducing parameters and accelerating convergence. Secondly,
weight sharing allows a group of connections to share the same weights, further minimizing
parameters. Thirdly, down-sampling through pooling layers leverages local image correlation
principles, reducing data volume while preserving crucial information and eliminating
trivial features. These characteristics establish CNNs as representative algorithms in deep
learning (LI et al., 2022b).

Four essential components are typically employed to construct a CNN model.
Convolution, a crucial step for feature extraction, generates feature maps. Padding is
introduced to address information loss at the border, which is achieved by expanding
the input with zero values. Stride controls the convolution density, with a larger stride
resulting in lower density. Finally, pooling, such as max and average pooling, mitigates
redundancy and potential overfitting issues in feature maps. These steps are demonstrated

in Figure 12.

The convolution operation can be mathematically represented as in the Equation 2.5.
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Figure 12 — Steps of a 2D Convolutional Neural Networks. Source: Li et al. (2022b).

In the equation, [ is the input image, K is the convolutional kernel, and S is the output

feature map. This operation is crucial for capturing spatial hierarchies in data.

S(i,9) = (T % K)(i,5) = X " I(m,n) - K(i = m, j — n) (2.5)

Dilated convolution was introduced to address the challenge of perceiving larger
areas. Deformable convolution addresses irregular shapes in real-world objects by allowing
focused attention on specific regions. This adaptability enhances the representativeness of

feature maps.

To conclude, various advanced convolutional techniques contribute to the versatility
and effectiveness of CNNs across diverse applications. Different architectures to address

different applications will be discussed in the next sections.

2.3.2.2 Triplet loss siamese networks

Triplet Loss Siamese Networks, a popular approach in deep learning, are designed for
face recognition, image retrieval, and similarity learning (SCHROFF; KALENICHENKO;
PHILBIN, 2015). These networks are particularly effective in learning embeddings that
map input instances into a high-dimensional space, where the distance between embeddings
reflects the similarity or dissimilarity between the instances. A key advantage of Triplet
Loss Siamese Networks lies in their ability to learn discriminative features by training on
triplets of examples: an anchor instance, a positive instance (similar to the anchor), and a

negative instance (dissimilar to the anchor). This basic concept is shown in the Figure 13.
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Figure 13 — Triplet loss learning process. Source: Schroff, Kalenichenko e Philbin (2015).
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The fundamental idea behind Triplet Loss Siamese Networks is to minimize the
distance between the anchor and positive instances, while maximizing the distance between
the anchor and negative instances. This is achieved by using a triplet loss function, typically
defined as in the Equation 2.6, where d(z, y) represents the distance between instances and

« is a margin that enforces a minimum separation between positive and negative pairs.

Ltriplet = IIlaX(O, d(a7 Il) - d(aa p) + at) (26)

One pioneering work in Triplet Loss Siamese Networks is the FaceNet (SCHROFF;
KALENICHENKO; PHILBIN, 2015), which introduced the use of triplets to learn discrimi-
native embeddings for face recognition. Since then, various modifications and improvements
have been proposed, adapting the triplet loss for different applications and addressing

challenges such as data imbalance and selecting informative triplets.

The Triplet Loss Siamese Network architecture has proven to be a robust and
effective approach for learning embeddings that capture intricate relationships between

instances. It is a valuable tool in similarity learning and feature representation.

2.3.2.3 Contrastive learning

Contrastive learning has emerged as a robust technique, enabling models to harness
extensive amounts of unlabeled data and enhance performance even when labeled data
is scarce. The core of contrastive learning directs to incentivizing the mapping of similar
instances closer together in a learned embedding space while pushing dissimilar instances
further apart. By executing the learning process as a discrimination task, contrastive
learning enables models to distinguish features and similarities in the data (LE-KHAC;
HEALY; SMEATON, 2020).

The journey of contrastive learning typically begins with data augmentation, a
process involving the application of various transformations or perturbations to unlabeled
data to generate diverse instances or augmented views. Techniques such as cropping,
flipping, rotation, random cropping, and color transformations inject variability into the
data, exposing the model to different perspectives of the same instance, as shown in the
Figure 14. This diversity ensures that the model learns to capture relevant information
independent of variations in the input data (CHEN et al., 2020).

Following data augmentation, the next phase involves training an encoder network.
This network takes the augmented instances as input and maps them to a latent rep-
resentation space where meaningful features and similarities are captured. The encoder
network, often a deep neural network architecture like a CNN for image data, extracts and
encodes high-level representations from the augmented instances, facilitating discrimination

between similar and dissimilar instances in subsequent steps.
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Figure 14 — Data augmentation examples applied to an image. Source: Le-Khac, Healy e
Smeaton (2020).

A projection network is employed to refine the learned representations. This network
takes the output of the encoder network and projects it onto a lower-dimensional space,
known as the projection or embedding space. This additional projection step enhances the
discriminative power of the learned representations by reducing complexity and redundancy

in the data, aiding in better separation between similar and dissimilar instances.

The contrastive learning objective comes once the augmented instances are encoded
and projected into the embedding space. The goal is to maximize agreement between
positive pairs (i.e., instances from the same sample) and minimize agreement between
negative pairs (i.e., instances from different samples). This encourages the model to bring
similar instances closer together while pushing dissimilar instances apart, with similarity
measured by a distance metric like Euclidean distance or cosine similarity. The model
is trained to minimize the distance between positive pairs and maximize the distance

between negative pairs in the embedding space.

Contrastive learning employs various loss functions to define the learning objectives,
crucial for guiding the model to capture meaningful representations and differentiate
between similar and dissimilar instances. The choice of the appropriate loss function
depends on task requirements and data characteristics, with each loss function aiming to
facilitate the learning of representations that effectively capture meaningful similarities
and differences within the data. One popular example is the InfoNCE, demonstrated in
the Equation 2.7.

o exp(s(zi,2;5)/7)
fxon = —log (zK exp(s(zi,zm/r)) (27)



44 Chapter 2. Theoretical Foundations

Once the loss function is defined, the model undergoes training on a large unlabeled
dataset. The iterative optimization process involves updating the model’s parameters to
minimize the loss function, typically using optimization algorithms. Batch-wise updates,
where a subset of augmented instances is processed simultaneously, are commonly used

during this training process.

While training, the model learns to capture relevant features and similarities in
the data. The iterative optimization process gradually refines the learned representations,

improving discrimination and separation between similar and dissimilar instances.

Finally, a common approach is to connect a final step at the end of the network,
a process usually called fine-tuning, to allow the final architecture to produce results as

expected by the specified application.

2.4 Segmentation

Image segmentation is a crucial aspect of various visual representation systems,
involving dividing images or video frames into distinct regions or objects. Its significance
expands across diverse applications, including medical image analysis, autonomous vehicles,
video surveillance, and augmented reality (MINAEE et al., 2021).

Numerous image segmentation algorithms have been developed, ranging from early
techniques like watershed to more advanced methods like graph cuts. In recent years,
deep learning models have introduced a new era of image segmentation with impressive
performance improvements. These models often achieve the highest accuracy rates on
popular benchmarks, leading to a paradigm shift in the field (CHEN et al., 2018).

Figure 15 — Segmentation results on sample images. Source: Minaee et al. (2021).

As illustrated in Figure 15, the outputs of a widely used deep learning model
exemplify the advancements in image segmentation. The task of image segmentation can

be approached as a classification problem, either labeling pixels with semantic categories
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(semantic segmentation), partitioning individual objects (instance segmentation), or com-
bining the two approaches to get the best of the two worlds (panoptic segmentation). In

the following sections, each of these approaches will be detailed.

2.4.1 Semantic segmentation

Semantic segmentation is a fundamental task in computer vision, aiming to classify
each pixel in an image into categories. Unlike image classification, which assigns a single
label to the entire image, semantic segmentation provides a detailed understanding of the
spatial distribution of objects within a scene, enabling machines to perceive and interpret
visual information at a pixel level (SHELHAMER; LONG; DARRELL, 2015). Figure 16

demonstrates a remote sensing image and the respective semantic segmentation result.

Figure 16 — Semantic segmentation sample with the original image on the left and
segmented output on the right. Source: Carvalho et al. (2021).

One of the initial works in semantic segmentation is the Fully Convolutional
Network (FCN) introduced by Shelhamer, Long e Darrell (2015). FCN employs end-to-end
convolutional neural networks to process images at the pixel level, enabling real-time
semantic segmentation. This marked a significant departure from traditional methods,

demonstrating the efficacy of deep learning in this domain.

Benchmark datasets, such as Pascal VOC?, have been crucial in advancing semantic
segmentation research. These datasets provide large-scale, annotated images for training

and evaluation, allowing researchers to develop and compare models effectively.

Additionally, the U-Net architecture, proposed by Ronneberger, Fischer e Brox
(2015), further contributed to the field of semantic segmentation. U-Net’s unique archi-
tecture, featuring a contracting and expansive path, facilitates the precise localization of
objects in medical images and beyond, demonstrating the versatility of semantic segmen-

tation applications.

3 Pascal Visual Object Classes is available at <http://host.robots.ox.ac.uk/pascal/VOC/>. Access on
December 11, 2023.


http://host.robots.ox.ac.uk/pascal/VOC/
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Semantic segmentation finds application in various domains, including medical
image analysis, autonomous vehicles, and scene understanding in robotics (CHEN et al.,
2018). As technology advances, semantic segmentation models are continually refined,

enhancing their accuracy and applicability in real-world scenarios.

2.4.2 Instance segmentation

Instance segmentation is an advancement in computer vision, surpassing traditional
semantic segmentation methods by not only categorizing pixels into classes but also
identifying and delineating individual instances of objects within an image. This task is
crucial in applications where a detailed understanding of the distinct entities in a scene is
required (HAFIZ; BHAT, 2020). Figure 17 shows a satellite image and the corresponding

instance segmentation.

Figure 17 — Instance segmentation sample with original image on the left and segmented
output on the right. Source: Carvalho et al. (2021).

One of the pioneering approaches to instance segmentation is Mask R-CNN (Region-
based Convolutional Neural Network), introduced by He et al. (2017) in 2017. Mask R-CNN
builds upon the success of Faster R-CNN (REN et al., 2015), incorporating an additional
branch to generate segmentation masks for each detected object. This architecture has
become a cornerstone for many subsequent developments in instance segmentation due to

its ability to provide pixel-level accuracy.

The COCO dataset* has been important in advancing instance segmentation
research. With pixel-level annotations for over 200,000 images across 80 object categories,
COCO provides a diverse and challenging benchmark for evaluating the performance
of instance segmentation models. The dataset has fueled the development of algorithms

capable of handling complex scenes with overlapping and closely packed objects.

4 Common Objects in Context is available at <https://cocodataset.org/>. Access on December 11,
2023.


https://cocodataset.org/
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In conclusion, instance segmentation is crucial to some specific applications, enabling
precise identification and delineation of individual objects within an image. The continual
evolution of models and datasets, such as Mask R-CNN and COCOQO, highlights the
importance of instance segmentation in advancing our ability to comprehend and interact

with visual information.

2.4.3 Panoptic segmentation

Panoptic segmentation represents a significant advance in the segmentation field,
combining the strengths of semantic and instance segmentation to provide a comprehensive
understanding of visual scenes. Unlike traditional segmentation methods, panoptic segmen-
tation aims to label every pixel in an image with a semantic class or identify individual
instances of objects, offering a unified approach to scene understanding Chuang, Zhang e
Zhao (2023). Figure 18 demonstrates a satellite image and the corresponding panoptic

segmentation.

The Panoptic Segmentation task was introduced by Kirillov et al. (2019), defining
a framework that, as previously mentioned, unifies semantic and instance segmentation
tasks. In panoptic segmentation, each pixel is assigned a semantic label for non-countable
entities like sky or road or is associated with an instance label for countable objects like
people or cars. This approach has become a benchmark in assessing the capabilities of

computer vision models Chuang, Zhang e Zhao (2023).

Figure 18 — Panoptic segmentation example. The original image is on the left, and the
segmented output is on the right. Source: Carvalho et al. (2021).

Efforts to advance panoptic segmentation have also led to the creation of benchmark
datasets, with the Mapillary Vistas® dataset being one notable example. Mapillary Vistas

provides a diverse collection of street-level images with pixel-level annotations for semantic

®  Mapillary Vistas Dataset is available at <https://www.mapillary.com/>. Access on December 11,

2023.


https://www.mapillary.com/
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and instance segmentation, fostering the development of algorithms capable of handling

complex urban scenes.

Recent research has explored panoptic segmentation’s applications in real-world
scenarios, ranging from urban planning and autonomous navigation to remote sens-
ing (CARVALHO et al., 2021). The versatility of panoptic segmentation lies in its ability
to simultaneously provide a high-level understanding of scene semantics and precise

identification of individual objects.

Finally, panoptic segmentation represents a pivotal step towards a more compre-
hensive understanding of visual scenes. The framework introduced by Kirillov et al. (2019)
and the availability of datasets like Mapillary Vistas have catalyzed research, resulting
in the development of models capable of seamlessly integrating semantic and instance

segmentation tasks.

2.5 Performance measurements

Assessing the efficacy of image segmentation methods depends on employing robust
performance measurement metrics that provide insights into their accuracy and reliability.
Precision, recall, F1 score, and Matthews correlation coefficient (MCC) are key indicators.
Collectively, these metrics offer a comprehensive evaluation of a segmentation algorithm’s

performance by evaluating its ability to achieve accurate and balanced results.

Accuracy, a fundamental metric shown in Equation 2.8, gauges the overall cor-
rectness of a segmentation method by measuring the ratio of correctly predicted pixels
to the total number of pixels. While accuracy provides a broad overview, it may not be
sufficient in scenarios where imbalanced datasets or specific misclassification types are

critical considerations.

TP + TN
Ace — 2.8
“T TPYTNL+FP+FN (2.8)

In sequence, the F1 Score, a harmonic mean of precision and recall, emerges as a
pivotal metric that balances false positives and false negatives. Its equation is shown in
Equation 2.9. It comprehensively captures both the positive predictive value and sensitivity,
making it particularly valuable when achieving a harmonious mix of precision and recall is

important.

Pl 2 x Precision x Recall B 2x TP
"~ Precision + Recall ~ 2x TP+ FP+ FN

(2.9)

To overcome the challenges posed by some applications, Matthews Correlation

Coefficient (MCC), demonstrated in Equation 2.10, assesses the correlation between
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predicted and true positive instances while accounting for potential imbalances in the
dataset. MCC ranges from -1 to 1, providing a robust measure of a segmentation method’s

ability to handle both positive and negative instances.

TP x TN — FP x FN
MCC = . . (2.10)

/(TP + FP)(TP + FN)(IN + FP)(TN + FN)

In image segmentation, where accurately delineating objects or structures is crucial,
these metrics play an important role. By prioritizing the combined assessment of precision,
recall, F1 score, and MCC, researchers and practitioners gain a more nuanced understanding
of the performance of segmentation methods. This approach ensures the evaluation
process is thorough, insightful, and reflective of the complexities inherent in diverse image

segmentation tasks.






o1

3 Crop fields detection

This section covers the history of crop field detection and the studies developed
by diverse research groups to address this challenge. In sequence, we present the progress
in this domain and detail how our research contributes to this context. Finally, we also
present a table summarizing the most important research in this area, highlighting the
important factors that supported the choices of this dissertation, such as the satellite
imagery used, the machine learning models applied, and the metrics employed to assess

the performance of different approaches.

3.1 Classical computer vision

Evans et al. (2002) used classical computer vision to introduce the canonically-
guided region growing (CGRG) procedure for automated segmentation of multispectral
Landsat TM images of farmland in Western Australia. This method assumes that each crop
field has a single ground cover type and a known minimum width. The CGRG procedure
employs a seeded region growing algorithm with internal field markers generated from a
multiband, local canonical eigenvalue image. The eigenvalues discriminate between areas
inside a field and at a field boundary. Comparisons with other segmentation methods
indicate that CGRG generally provides more accurate results regarding field boundary
position and degree of over-segmentation and under-segmentation. A sample result is

demonstrated in Figure 19.

Figure 19 — Comparison between the ideal segmentation and one generated by the CGRG
method. Source: Evans et al. (2002).

Nevertheless, it was applied to a very small and manually annotated set of images,

requiring further investigation in a more broad collection of samples. A more contemporary
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work led by North, Pairman e Belliss (2019) used classical computer vision techniques
to detect the boundaries of farm fields in New Zealand. Their method identified field
boundaries based on step edges or linear features in regions of low variability across
the time series. The approach emphasized edge linearity over spectral differences and
successfully segmented parcels with different crops and pastures, separated by features
like roads and hedgerows. The method was applied to a 4,000 km2 agricultural study site,
demonstrating favorable results compared to existing segmentation methods regarding
quantitative quality metrics and suitability for land-use classification. However, their
technique still resulted in only 59% accuracy, which is insufficient for most applications.
Moreover, their strategy is highly impacted by variations caused by the season in the

images extracted.

3.2 Machine learning

Since classical computer vision techniques alone are often insufficient to achieve
good results, further research evaluated ML models to detect crop boundaries. For in-
stance, Garcia-Pedrero, Gonzalo-Martin e Lillo-Saavedra (2017) applied machine-learning
algorithms to delineate agricultural parcels automatically. This method combined super-
pixels and supervised learning (SL) to determine which adjacent superpixels should be
merged, turning the segmentation problem into a machine learning task. The diagram of

the employed method is shown in Figure 20.
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Figure 20 — Segmentation by grouping super pixels and machine learning classification.
Source: Garcia-Pedrero, Gonzalo-Martin e Lillo-Saavedra (2017).

A visual evaluation of the methodology applied to a high-resolution satellite image
of a fragmented agricultural landscape indicated good results, suggesting the potential
effectiveness of machine-learning algorithms for automated parcel delineation. This work
achieved an accuracy of 92% using an ensemble algorithm called RUSBoost (SEIFFERT et
al., 2010) to merge superpixels and group blocks of the image, which were part of the same

field. This study demonstrated how ML is a promising alternative and a precursor to further
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development using DL (GARCIA-PEDRERO; GONZALO-MARTIN; LILLO-SAAVEDRA,
2017).

In the same year, Kussul et al. (2017) applied DL to segment and classify crop
types. The architecture employed by their work included an unsupervised neural network
for optical imagery segmentation and missing data restoration, along with an ensemble of
supervised neural networks. The supervised networks included traditional fully connected
multilayer perceptron (MLP) and random forest, which were compared with convolutional
neural networks (CNNs). Experiments were conducted in a Ukrainian test site using
Landsat-8 and Sentinel-1A satellite data, showing that the ensemble of CNNs outperforms
MLPs, achieving accuracies exceeding 85% for major crops (wheat, maize, sunflower,
soybeans, and sugar beet). The same architecture effectively discriminates summer crop
types, particularly maize and soybeans. Later, Garcia-Pedrero et al. (2019) presented a
study using open data from the Land Parcel Identification System (LPIS) in the Chartered
Community of Navarre, Spain, to train a CNN model. The outlined agricultural plot
boundaries generated by the CNN model were compared to those obtained using the
gPb-UCM methodology used by Crommelinck et al. (2019), and the evaluation using the
boundary displacement error index (BDE) indicates that the CNN model outperforms the
gPb-UCM method. The results suggested that CNN models trained with LPIS data can be
a valuable and efficient tool, reducing the need for intensive manual labor in delineating crop
fields (Figure 21) (GARCIA-PEDRERO et al., 2019; GARCIA-PEDRERO; GONZALO-
MARTIN; LILLO-SAAVEDRA, 2017; GARCIA-PEDRERO et al., 2018).

gPb-UCM CNN

Figure 21 — Visual comparison between the segmentation results obtained with CNN and
gPb-UCM. Source: Garcia-Pedrero, Gonzalo-Martin e Lillo-Saavedra (2017).

The latter described studies, and the good results associated with them opened a
new path in this domain, where DL started to be the majority of the methods applied to
address this challenge.

3.3 Deep learning

Concurrently with Garcia-Pedrero et al. (2019), Persello et al. (2019) pursued the

challenge of accurately delineating agricultural fields in smallholder farms using Very
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High Resolution (VHR) satellite images. These fields’ irregular shape, small size, and
mixed-cropping systems made automated detection challenging. The proposed strategy
introduced a fully convolutional network with a globalization and grouping algorithm.
The convolutional network learned complex spatial-contextual features and accurately
detected sparse field contours. A hierarchical segmentation using oriented watershed
transform was applied, and field segments were obtained through a combinatorial grouping
algorithm. Experimental analysis in Nigeria and Mali using WorldView-2/3 images showed
promising results, with the proposed strategy outperforming alternative techniques in
automatically detecting and delineating field boundaries with F1-scores higher than 0.7
and 0.6 in the two test areas, respectively. In this work, however, some significant mistakes
were generally associated with poor-quality training data (PERSELLO et al., 2019). The
same authors extended their work to medium-resolution images from Sentinel-2. Still,
they observed a severe limitation during training since the employed methods comprised
many convolutional layers, resulting in a time-consuming task (PERSELLO et al., 2019;
MASOUD; PERSELLO; TOLPEKIN, 2020).

Wagner e Oppelt (2020b) designed a modified version of the growing snakes active
contour model based on graph theory concepts (WAGNER; OPPELT, 2020b). In sequence,
Wagner e Oppelt (2020a) integrated a DL approach into their already proven graph-based
model. The method achieved high results in rural areas but required further investigation
of the missed boundaries, especially in areas closer to the cities (WAGNER; OPPELT,
2020a; WAGNER; OPPELT, 2020b).

Waldner e Diakogiannis (2020) formulated the task as a multi-task semantic
segmentation problem using ResUNet-a, a deep convolutional neural network. The model
was designed to identify the extent of fields, field boundaries, and the distance to the
closest boundary simultaneously. By reconstructing three correlated outputs, the model’s
performance and generalization improved significantly. The approach accurately mapped
field extent and boundaries using monthly composite images from Sentinel-2. The model
also generalized well across different resolutions, sensors, space, and time. The convolutional
neural network effectively learned complex contextual features, outperforming conventional
edge filters based on classical computer vision. Moreover, they compared DL methods,
extending to an improved method named Fractal-ResUNet, a network designed for semantic
segmentation of agricultural images (WALDNER; DIAKOGIANNIS, 2020; WALDNER et
al., 2021). The results obtained by the developed method are shown in Figure 22.

In the same year, Zhang et al. (2021) applied a very similar method, a deep semantic
segmentation network named Recurrent Residual U-Net (R2U-Net), to mine low-level
and deep semantic features. Additionally, a boundary connecting method was applied to
integrate fragmented boundaries and generate the agricultural field boundary. The approach

was tested in Heilongjiang province, China, using Sentinel-2 imagery. It outperformed
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Figure 22 — Segmentation results obtained by Fractal-ResUNet method. Source: Waldner
et al. (2021).

other methods such as U-Net, ResU-Net, traditional object-based image analysis (OBIA),
and an existing global land cover map. The proposed method demonstrates improved
overall accuracy (89.28%) and Kappa (0.85), suggesting great potential in agricultural field
detection. Among the aforementioned techniques, R2U-Net and Fractal-ResUNet achieved
the best accuracies with Sentinel-2 images. However, both depend on a large amount
of training data with high-quality labeling to achieve consistent results. Moreover, they
cannot distinguish a random crop field from a productive crop field, a common requirement

for most agricultural applications.

One year later, to overcome the frequent need for high-quality large amounts of
labeled data, other methods became the object of study, including the one led by Li et
al. (2022a). This work recognizes the challenges of obtaining labeled samples for remote
sensing image (RSI) semantic segmentation and introduces a new learning paradigm called
self-supervised learning (SSL) (CHEN et al., 2020). The proposed method, Global Style and
Local Matching Contrastive Learning Network (GLCNet), employs contrastive learning for
semantic segmentation in RSIs. The GLCNet comprises a global style contrastive learning
module to enhance image-level representation and a local feature matching contrastive
learning module for pixel-level discrimination. The experimental results on four RSI
semantic segmentation datasets demonstrate that GLCNet outperforms state-of-the-art
SSL methods and the ImageNet pre-training method. Notably, with only 1% annotation
from the original dataset, GLCNet improves Kappa by 6% on the ISPRS Potsdam dataset
relative to the existing baseline. The study promoted the development of self-supervised
learning in RSI semantic segmentation, highlighting its significance for tasks like global
mapping. In the same year, Wang, Waldner e Lobell (2022) proposed a solution using
transfer learning and weak supervision (WANG et al., 2020), demonstrating its success in
India, where 10,000 new field labels were efficiently classified. The best model, utilizing a
dataset with 1.5m resolution Airbus SPOT imagery, achieved excellent results in India.
The approach involves pre-training a neural network on France field boundaries and
fine-tuning on India labels. The findings suggest a scalable method for delineating crop
fields in regions lacking field boundary datasets. Both results did not reach the same

accuracy as previous supervised techniques; however, they addressed the limitations around
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high-quality datasets. Another successful work towards the solution of limitations regarding
high-quality datasets was proposed by Nascimento et al. (2023), leveraging data from
machines equipped with sensors to identify whether the position captured by GNSS was a
productive field. The generated dataset differed from others by focusing on productive and
not generic crop fields. It was applied to modified versions of machine learning and deep
learning methods derived from the state-of-the-art in their fields to demonstrate viability
of the framework given important performance results with accuracies and MCC close to
97% and 0.94, respectively. Another point about this work is the employment of hexes
instead of pixels to achieve the optimal balance between precision and performance. Given
the promising results, this work was applied to a limited number of fields and encourages

its extension to broader areas of the globe.

Finally, a recent work on the supervised learning domain applied a new technique
named Multi-Swin Mask Transformer, a method based on Mask2Former (CHENG et al.,
2022), an end-to-end instance segmentation framework (ZHONG et al., 2023). The method
incorporates a multiscale idea into a Transformer based on Mask2Former. The study used
the iFLYTEK Challenge 2021 Cultivated Land Extraction competition dataset for evalua-
tion and compared results with Mask R-CNN, HTC, and Mask2Former, among others,
that achieved relevant segmentation performances. Experimental results, demonstrated in
Figure 23, indicate that MSMTransformer performs excellently, achieving high scores in

segmentation accuracy.

Mask2Former Multi-Swin Mask Transformer

Image

Figure 23 — Multi-Swin Mask Transformer comparison results. Source: Zhong et al. (2023).

As it has been observed, the latest studies continue to evolve both supervised and
self-supervised approaches, where the dataset availability drives the trade-off. While a
wide variety of datasets and metrics has been observed, the methods continue to converge
to the deep learning domain, demonstrating a scenario where the results continue to be

improved as the computational processing power is no longer a limitation.

3.4 Final considerations

Most existing studies are devised for detecting or segmenting all possible fields,

regardless of whether they are productive. Only a few consider productive fields under
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the continuous process of planting and harvesting, but even these disregard their eventual
changes over time. In addition, a good-quality dataset has been observed to be a recurrent
limitation. This work proposes a sustainable strategy that addresses both matters. This
dissertation explores the limitations that have continuously obstructed the delivery of
high-quality results by offering a solution for these limitations and employing state-of-
the-art methods that match both the application and the proposed dataset. To the best
of our knowledge, we are the first to propose the automatic detection of productive crop
fields, taking into account the continuous agricultural cycles of planting and harvesting,
employing a dataset supported by machine data and combining with timeseries of satellite
images, specifically for segmentation of productive crop fields. While other studies apply
timeseries to maximize the number of samples and reduce the negative effects of cloudy
instances, we focus on the vegetation patterns to ensure it is a productive field. Finally,
we share the results, including the dataset created to foster future research that plans to

reuse the same base methodology.

3.5 Related work summary

In Table 1 we offer a different visualization of the reviewed related work, which
guided this study.

Paper Dataset Model Type | Year |Metrics

Nascimento et al. (2023) Sentinel-2 combined with | PU Learning, Triplet|SL, 2023 Accuracy, F1-
machine’s operational data | Loss  Siamese, Con-| SSL Score, MCC

trastive Learning
Zhong et al. (2023) iFLYTEK Challenge Multi-Swin Mask Trans-| SL 2023 Accuracy
former

Wang, Waldner e Lobell | Airbus SPOT SPOT-6/7 | FracTAL-ResUNet, SL 2022 Accuracy, F1-

(2022) (1.5m resolution), Planet | ResUNet-a, U-Net Score and MCC
Scope (4.8m resolution)

Wang et al. (2022) CNES/Airbus Pléiades | U-Net, ResNet34-based | SL 2022 Accuracy and IoU
satellite (0.5m) Timeseries | U-Net, SeresNet34-based
Sentinel 1 (10m) U-Net

Li et al. (2022a) ISPRS Potsdam (5cm),| SimCLR MoCo GLCNet | SSL 2022 Accuracy and
DGLC (0.5m), Hubei (2m) Kappa
Xiangtan

Zhang et al. (2021) Sentinel 2 Images (10 m, 20 | ResU-Net, R2U-Net SL 2021 Accuracy
m and 60 m)

Waldner et al. (2021) Sentinel 2 Images (10 m, 20 | FracTAL ResUNet SL 2021 Accuracy and
m and 60 m) MCC

Taravat et al. (2021) Sentinel 2 Images (10 m, 20 | ResU-Net SL 2021 F1-Score, Jaccard
m and 60 m) Coefficient

Fetai, Racic¢ e Lisec (2021) | UAV images (5 cm) U-Net ENVINet5 SL 2021 Accuracy, F1-

Score, Precision
and Recall
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Paper Dataset Model ‘ Type ‘ Year ‘ Metrics
Carvalho et al. (2021) Aerial Images from govern-| Panoptic-FPN SL 2021 Accuracy and IoU
ment (0.24m resolution)
Yang et al. (2020) WorldView-3 satellite im-| U-Net, SegNet, | SL 2020 F1-Score, Preci-
age (0.3m resolution) DenseNet sion and Recall
Wang et al. (2020) Time  series  Landsat,| Pixel- and phenology-|SL 2020 Accuracy
Sentinel-1 and Sentinel-2 | based algorithms
data
Waldner e Diakogiannis | Sentinel 2 Images (10 m, 20 | ResUNet-a SL 2020 Accuracy, F1-
(2020) m and 60 m) Score and MCC
Wagner e Oppelt (2020a) | Sentinel 2 Images (10 m, 20 | FC MLP-NNs SL 2020 Accuracy, F1-
m and 60 m) Score, Precision
and Recall
Wagner e Oppelt (2020b) | Sentinel 2 Images (10 m, 20 | Super-Pixel (CV) SL 2020 ROI
m and 60 m)
Meyer, Lemarchand e | Sentinel 2 Images (10 m, 20 | Mask R-CNN SL 2020 Accuracy
Sidiropoulos (2020) m and 60 m)
Watkins e Niekerk (2019) | Sentinel 2 Images (10 m, 20 | CV/RF SL 2019 Overall accuracy,
m and 60 m) Kappa index, com-
mission error and
omission error.
Persello et al. (2019) WorldView-3 satellite im-| FCN SL 2019 Accuracy, Preci-
age (0.5m resolution) sion and Recall
North, Pairman e Belliss | Landsat-5,7, SPOT-4,5,| CV SL 2019 Accuracy
(2019) Sentinel-2A and Sentinel-
2B
Garcia-Pedrero et al. (2019) | SIGPAC (25cm resolution) | U-Net SL 2019 BDE Index
Ma et al. (2019) FangChengGang (2m) CGAN SL 2019 Accuracy, Preci-
sion, F1-Score,
Kappa Coeficient
Crommelinck et al. (2019) | Aerial image (25cm) RF/CNN SL 2019 Accuracy, Overlap,
Precision
Xia et al. (2018) GF-2 (0.8m resolution) RCF/U-Net SL 2018 ToU, Recall
Garcia-Pedrero et al. (2018) | Pleiades-1 satellite images | CV SL 2018 BDE Index
(2m)
Graesser e Ramankutty | CV Landsat (30m) SL 2017 Accuracy, F1-score
(2017)
Garcia-Pedrero, Gonzalo-| WorldView-2 (4 bands) | RUSBoost SL 2017 Accuracy
Martin e Lillo-Saavedra | (2.4m resolution)
(2017)

Table 1 — Related work summary containing most important points of each study.

3.6 Challenges

Automatically detecting productive crop fields is a challenge that intersects mul-
tiple areas, and its solution could fill important gaps in agriculture management and
environment control (BOLFE et al., 2020). Despite the proven benefits of fully automated
crop field detection and the research already accomplished, it is still considered an open
problem with significant innovation opportunities, especially when sufficient training data
is unavailable (WALDNER et al., 2021; YANG et al., 2020). In almost all studies, the
availability of high-quality datasets has been highlighted as one of the most hindering
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limitations. Following the scarcity of datasets, no framework provides an efficient technique
to combine different sources of satellite images to help addressing this limitation. Moreover,
most reviewed studies focus on the segmentations of generic fields based solely on their
visual shapes, not giving appropriate attention to agricultural applications that require

the detection of productive fields.
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4 Productive crop fields dataset

This work makes a significant contribution by developing a novel framework
supported by automatically generated operational data of agricultural machines. In contrast
to prior studies, the dataset employed by this framework utilizes hexagons instead of pixels,
providing a well-calibrated balance between the precision necessary for this application and
a reliable pixel grouping method that enhances the training algorithm’s speed, particularly
for extensive regions. Moreover, adopting a unique indexing system allows the quick
combination of different imagery sources with minimal modifications to the pipeline.

Further details of this technique will be provided in the subsequent sections.

4.1 Dataset

The dataset is stored in tabular format, where each row corresponds to a hexagon,

along with a timestamp, satellite band values, and the label.

The hexagon format was used for geo-analysis since it facilitates storing and
modeling spatio-temporal data from multiple disparate sources while avoiding using
rasters. It is a geospatial indexing system where, unlike others, all neighbors are equidistant.
Moreover, it is beneficial to the pipeline since hexagons provide a uniform representation
regardless of the position on the globe. Finally, by utilizing hexes as a common indexing
system, we provide flexibility to the framework, allowing quick combination of other
imagery sources to the pipeline, such as Landsat or even aerial images. This approach also
eliminates the need to adjust the pipeline to different imagery precisions, enriching its

architecture with scalability and maintainability.

We used the H3 Python library! to create such hexagons with an L12 level. At this
level, each hexagon has edges of approximately 10 meters, resulting in a hexagonal area
that covers 307 square meters, slightly bigger than three Sentinel-2 pixels. This resolution
offers a balanced trade-off between granularity and computational efficiency while training
the models. Moreover, hexagons of this size can capture fine-grained variations in satellite

data within a manageable dataset size, enabling efficient processing and analysis.

In the dataset, each hexagon is associated with a timestamp. The timestamps
are associated with the date and time the Sentinel-2 images were captured, providing
temporal information. A time series analysis is particularly important to detect productive
crop fields, given the specific patterns that distinguish a productive crop field from a

non-productive one. In Figure 24, there is a sample of each of these patterns. In Figure 24a,

L The H3 Python library is available at <https://pypi.org/project/h3/>. Access on November 25, 2023.


https://pypi.org/project/h3/
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Sentinel-2 L2A - 3_NDVI
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(a) Productive field NDVI patterns (b) River NDVI patterns

Figure 24 — NDVI patterns comparison between a productive and a non-productive area.
Source: own authorship.

a productive field pattern with variations and peaks of Normalized Difference Vegetation
Index (NDVI), whereas in Figure 24b, lower average levels of NDVI resulting in a different
pattern that sometimes can be challenging to be distinguished by the human eye, however,
can be learned by an algorithm through appropriate training. The NDVI, as a combination
of specific spectral bands, although not calculated, is intrinsically contained in the values

included in the dataset.

In this dataset, there are images from 2018-10-29 17:04:21 to 2019-08-15 16:59:01.
The twelve band values correspond to the pixel median values in the area covered by that
particular H3 hexagon. With this, we can summarize the satellite data for each hexagon
in a compact and interpretable format, facilitating downstream ML analyses. Figure 25

illustrates how we create the samples used as the input for the learning models.

b1..b12
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date 1
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Median of pixel . .va\ues in each
band values in Hex images collected image captured

the hex in the period

Figure 25 — Sequence to build a sample based upon the hexagon time series. Source: own
authorship.

Lastly, we determine whether the hexagon in question is part of a productive
field by inferring that if a machine executed agricultural operations, such as planting or

harvesting, at a specific position (hexagon), it undoubtedly indicates a productive crop field.
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This inference is made possible through the recent advancements in Precision Agriculture
and the sophisticated technology embedded in these machines. Machines equipped with
GNSS devices store position-related data in their internal controllers. Subsequently, this
information is transmitted to a cloud server using GSM communication, commonly called
the Internet of Things (IoT) (MIRAZ et al., 2015). This enables collecting geospatial
data associated with machine information, finally providing the label for the hexagon in

question. This process is demonstrated in the Figure 26.

Hex ID, Field ID, Operation

If the operation is planting,
harvesting, etc, it implies that the
position is connected to a

productive field.

N

Figure 26 — Automatic labeling of hexagons based on agricultural machines operation.
Source: own authorship.

The aggregation of the aforementioned information results in the provided dataset.
Table 2 summarizes the dataset and its fields. The dataset includes 17 productive corn
crop fields in the US within the same geographical area. These fields are geographically

represented in Figure 27.

The dataset has 106,735 rows, each representing a hexagon captured on a specific
date and time, followed by the 12 Sentinel-2 band values. From these, 75,990 rows are
labeled as positive (i.e., productive crop fields hexagons tracked over the period) and
30,745 as negative (i.e., non-productive crop fields hexagons tracked over the period).
The number of positive hexagons representing geolocations is 5,066, while the number
of negative hexagons is 2,050, resulting in a slightly unbalanced dataset. The number of
images for each hexagon collected on different dates varies from 15 to 38, and the averages

for each field are represented in the last column.

Each hexagon has a variety of captured images associated with it. This means
that, for some hexagons, we have more samples over time than others. The reason for
this disparity comes from the acquisition process and satellite tiles across the globe. This
difference does not interfere with the proposed method; on the contrary, it provides a
larger variety of samples over time for better generalization. The distribution of the images

captured at a specific time for this dataset is demonstrated in Figure 28.
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Figure 27 — Map view of the crop fields employed in this study. Source: own authorship.

15 20 25 30 35

Figure 28 — Distribution of the number of samples by satellite image date. Source: own
authorship.

We have labeled each hexagon as positive or negative based on the productive
agriculture machine operations, such as planting or harvesting. Specifically, hexagons
containing evidence of these operations were labeled positive, while neighboring hexagons
within a three-layer radius were labeled as negative, as shown in Figure 29. Labeling
neighboring samples as negative is particularly interesting because they are often the

hardest for prediction models to classify.

One noteworthy aspect of the proposed method is its ability to distinguish non-
productive fields that share the same shape as productive ones. Even a highly skilled
individual would struggle to make this distinction. The key reason behind this lies in
the trained model’s ability to recognize patterns of band values over time from non-

productive areas as distinctly different than productive cropped areas. This approach leads
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Fields: 17
Hexes (samples) Hex images collected in the period

Field positive negative positive negative average
FO1 558 210 9,860 3,539 17.67 +£0.48
F02 734 151 14,242 2,863 19.40 4+0.74
F03 59 85 1,075 1,528 18.22 +0.65
F04 350 150 8,326 3,518 23.79 £0.48
F05 75 134 1,815 3,001 24.20 £0.90
F06 288 60 4,999 1,044 17.36 +0.68
FO7 418 140 9,409 2,950 22.51 £0.70
FO8 425 154 8,584 3,084 20.20 £0.82
F09 147 127 2,993 2,563 20.36 £0.71
F10 369 176 6,973 3,194 18.90 4+0.40
F11 228 57 4,813 1,172 21.11 +0.59
F12 91 96 1,701 1,738 18.69 +0.53
F13 151 86 3,271 1,840 21.66 +£0.49
F14 275 216 4,871 3,825 17.71 £0.46
F15 370 198 7,369 3,913 19.92 +0.66
F16 271 25 5,030 413 18.56 +0.69
F17 281 17 5,099 297 18.15 +£0.97

Table 2 — Productive Fields Dataset Description.
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Figure 29 — Productive crop field filled with positively labeled hexagons in green sur-
rounded by a three hexagons layer of inferred negative samples. Source: own
authorship.
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to significantly more accurate results. Figure 30 shows an example of a non-productive
field correctly identified.

Figure 30 — A non-productive field properly classified with red hexagons. Source: own
authorship.

Some false negatives may occur where productive fields are not detected due to
the absence of agriculture machines equipped with satellite receptors or, for many reasons,
when data are not shared. However, the dataset was manually curated to minimize the
number of false negatives, specifically targeting the hexagonal regions between crop and
non-crop fields. Despite these efforts, some false negatives may still be present. Even so,
the proposed dataset is a valuable resource for future remote sensing research since, to our

knowledge, it is the first to offer high-quality labeled productive crop fields.

4.2 Data processing

As the last step of the pipeline before training, we processed and grouped the
data to construct bidimensional time series samples. Each comprises 16 randomly selected
image dates, as shown in Figure 31. A total of 8,342 grouped multitemporal time series
samples resulted. Selecting sparse dates throughout the year is the best strategy for a

comprehensive collection comprising different weather seasons and crop stages.

We found during experimentation that the best results are achieved when selecting
sparse dates along the year to have a comprehensive collection comprising different weather
seasons and crop stages. We conducted two different approaches during the experiments.
The first randomly distributes image dates to compose the sample, and the second
distributes equally the seasons across the sample. These two approaches are demonstrated
in the Figure 32.

In Figure 32a, the band values are presented without consideration for the extraction

dates from Sentinel-2. In contrast, Figure 32b exhibits a structured arrangement: the first
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Sample: 8c48b3c737b2dff
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Figure 31 — Multitemporal time series sample visualization with 16 rows (i.e., each row
corresponding to a unique date a satellite image was captured of the hexagon
location) and 12 columns (i.e., satellite band values). Source: own authorship.

1 1
2 2

3 3

4 AUGUST (8) 4

5 AUGUST (8) 5 APRIL (4)

6 6 JUNE (6)

7 APRIL (4) 7 APRIL (4)

8 MARCH (3) 8 MAY (5)

9 OCTOBER (10) 9 ULY (7)

10 MAY (5) 10 AUGUST (8)
11 MAY (5) 11 AUGUST (8)
12 MAY (5) 12 1ULY (7)

13 APRIL (4) 13 OCTOBER (10)
14 AUGUST (8) 14 NOVEMBER (11)
15 15

16 16 NOVEMBER (11)

(a) Sample with rows randomly distributed ~ (b) Sample with rows distributed by season

Figure 32 — Methods to build samples based on months’ distribution. Source: own author-
ship.

four rows encompass band values from the initial three months of the year, the subsequent
four rows encapsulate values from the following three months, and so forth. This approach
enhances the learning process of the algorithm by providing a systematically organized
sample. However, a potential drawback arises when an insufficient number of months is

available, an unlikely scenario given the extensive availability of Sentinel-2 images.

The original dataset was split into 80% training, 10% test, and 10% validation data,
keeping the balance between positive and negative labeled data. To prevent training data
leakage, we split data keeping crop fields separate into training, testing and validation.
In other words, by following this practice, we avoid training the algorithm using Field 1

samples and classifying using Field 1 samples again, even if from different hexagons. The
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result allows us to obtain a more robust algorithm able to classify samples from unforeseen
fields.

Finally, to avoid a biased evaluation of the method’s performance, we used leave-
one-out cross-validation. In this context, all fields were used for training, testing and

validation at least once during the experiments.
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5 Benchmark results

This section opens with a description of how the selected state-of-the-art machine
learning (ML) and deep learning (DL) methods, previously introduced in Chapter 1.2, were
applied to accomplish our goal. Subsequently, we present the benchmark results, including
the metrics that we have identified as important based on a review of the literature. All
results in this section represent the averages of values obtained as a result of leave-one-out
cross-validation. Both the dataset and implementation notebooks are publicly available at

https://github.com/egnascimento/productivefieldsdetection.

5.1 Experimental protocol

This section describes the experimental protocol employed within the context of
this dissertation. Based on the dataset’s characteristics and training strategies, three
state-of-the-art methods on ML and DL, detailed in the next sections, were selected. A
brief description of the architectures and the hyperparameters utilized are also included to

provide sufficient information regarding the experiments.

5.1.1 Positive Unlabeled (PU) Learning

The dataset proposed in this study comprises highly accurate positive samples and
inferred negative samples. Our confidence in the accuracy of positive samples is grounded
in the fact that they originated from agricultural machines reporting their current state
in the assigned locations. As for negative samples, we deduced them by considering the
observation that the surrounding areas of productive crop fields typically consist of non-
productive zones, such as roads, forests, and rivers, unless indicated otherwise by the
reporting of neighboring productive fields by the same or other machines. This particular

scenario aligns effectively with PU learning.

In executing the experiments, we applied the architecture illustrated in Figure 33.
For each configuration, the data underwent processing and was subsequently fed into
this architecture, in a total of 17 iterations, with each iteration utilizing a different field
as the test set. This application of cross-validation was crucial to prevent biased results
originating from a simplistic or challenging setup. The varied testing fields ensured a

robust evaluation, contributing to the reliability and generalizability of our findings.
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Figure 33 — PU Learning architecture employed in the benchmark testing. Source: own
authorship.

5.1.2 Triplet Loss Siamese Network

Triplet Loss Siamese Networks have demonstrated success in applications related
to image processing. Similarly, even though our dataset is stored in tabular format, the
processed data yields a 2D matrix that resembles an image structure. This characteristic

allowed us to leverage the embedding process inherent in this method.

The Triplet Loss Siamese Network architecture employed to our dataset is shown
in Figure 34. In the demonstrated pipeline, a crucial component is the encoder, respon-
sible for generating the embeddings that will subsequently be utilized in the following
sections. While Schroff, Kalenichenko e Philbin (2015) employed complex neural network
architectures for this step, we opted for a simpler approach, considering the relatively
smaller complexity of our data compared to portraits. Accordingly, we implemented four
convolutional layers in this step. The selection of a kernel size of 3 and a stride value of 1

was also guided by the characteristics of our processed data.

The downstream task, consisting of a fully connected neural network, was connected
to the trained network to convert the results into binary classification. This facilitated the
determination of whether the hexagon in question was part of a productive crop field or

not.

During the experiments, it proved advantageous when dealing with datasets char-
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Figure 34 — Triplet Loss Siamese Networks architectures employed in the benchmark
testing. Source: own authorship.

acterized by complex relationships and diverse patterns once encoded to vectors of smaller

sizes, as will be further seen in the results section.

5.1.3 Contrastive Learning

As a self-supervised method, it is especially recommended in scenarios of limited
data availability (e.g., regions with precision agriculture limited or nonexistent). Contrastive
learning (JAISWAL et al., 2021) methods are employed to address the shortage of samples
by employing data augmentation. Even though we have generated a comprehensive dataset,
contrastive learning was selected to maximize the performance by augmenting our data,

improving the generalization of the automatic crop field detection method.

The contrastive learning architecture employed in our experiments is demonstrated
in Figure 35. Among the available implementations, we have selected the well-known
SimCLR (CHEN et al., 2020) given its popularity and good performance. As Contrastive
Learning is highly dependent on good data augmentation, a random jitter of up to £10%
was applied to all bands to create augmented samples. In this experiment, we pretrained
an encoder with contrastive learning on a portion of our dataset using no labels and then
fine-tuned it using only its labeled subset. As a result of this approach, we implemented a
semi-supervised method that still leveraged the presence of a partial amount of labeled

samples.

In contrast to the approach taken by Chen et al. (2020), who employed ResNet-
50 (HE et al., 2016) for the encoder step, we opted for a more straightforward strategy.

In our design, we utilized only four convolutional layers. This decision originated from
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Figure 35 — Contrastive Learning architectures employed in the benchmark testing. Source:
own authorship.

the relatively straightforward characteristics of our processed samples, in contrast to the
complexity often present in images. In this convolutional neural network layer, the kernel

size of 3 and stride of 1 were also selected based on the characteristics of our samples.

The downstream task selected, responsible for the binary classification, was a fully
connected neural network. As a result, we concluded with a similar architecture to the
Triplet Loss Siamese Network, allowing us to evaluate the method more than the employed

configuration.

5.1.4 Metrics

To assess and compare our results with prior studies, we adopted widely accepted
metrics for this application: Accuracy and F1-Score. Recognizing the inherent challenge of
dealing with unbalanced datasets in this particular problem, we extended our evaluation
by incorporating Matthew’s correlation coefficient (MCC). Past research has noted various
metrics, often influenced by the methodology and dataset specifics. Nonetheless, the
consistent use of Accuracy, F1-Score, and MCC across various studies facilitates meaningful
comparisons, enabling us to contextualize and benchmark our results against the broader
collection of research in this field. Moreover, we applied cross-validation techniques to
present metrics, ensuring unbiased results not influenced by specific test fields that may
pose varying levels of difficulty or simplicity for the algorithm. To enhance method
evaluation and results comprehension, we have provided a detailed representation of each

leave-one-out iteration in a table, illustrated in Figure 36.

This platform incorporates a toolset, empowering researchers to identify optimal
and suboptimal performance scenarios. The toolset includes features such as text filtering
for efficient search, sorting by clicking on column headers, and zooming in on specific
mapped areas of actual and predicted hexagons. For instance, users can examine the
predominance overlay of a hexagon, offering a detailed exploration of the algorithm’s

performance. This platform is also openly available on the same GitHub’s website where
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Figure 36 — Leave One Out iteration report. Source: own authorship.

this dissertation is stored.

5.2 Results

In this section, we present the results achieved by each benchmark method, detailing

the approach and observations. Finally, we summarize the top results, including metrics
suitable for evaluating this problem (ZHANG; LIU; WANG, 2018).

5.2.1 PU Learning

Firstly, when applying PU Learning, we evaluated three different underlying ma-
chine learning methods: Multi-Layer Perceptrons (MLP), Random Forests (RF) and
Support Vector Machines (SVM), where the latter has been more extensively used in
the literature (DENIS; GILLERON; LETOUZEY, 2005). We have also applied these
combinations to two different strategies when building a sample: the first one is named
“Shuffle”, where we randomly added rows to our matrix, and the second is named “Season”,
where, out of the 16 rows of our matrix, we grouped each 4 rows by season. The obtained

results are demonstrated in Table 3.

The best results were achieved with SVM, while better accuracies were observed
in other methods due to the unbalanced nature of the dataset. This scenario highlights
the importance of selecting the appropriate metrics, in this case, the MCC. In addition,
the results proved that the best strategy to create samples was by Season when combined
with PU Learning.

The standard deviation observed is relatively high in many cases. The reason
there is an important difference between the most and least successful interactions is the

algorithm’s consistency when classifying certain areas. In other words, if the method is
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Model Method Sampling Accuracy F1-Score MCC

% o % o o
PU SVM Shuffle  93.17 7.4 93.14 754 0.83 0.15
PU SVM Season 95.74 273 9584 253 0.89 0.08
PU RF Shufle 92.86 6.97 92,50 741 0.81 0.16
PU RF Season 96.24 2.83 96.40 2.59 0.88 0.11
PU MLP Shuffle 94.12 6.65 94.18 6.71 0.84 0.16
PU MLP Season 93.53 7.24 9432 562 0.84 0.18

Table 3 — Results achieved by the PU Learning model.

mistaken about one hexagon, it will consistently apply the same mistake to other hexagons
connected to the same area, thereby the same satellite band values patterns. This effect

can be observed in Figure 37.

Predicted

Figure 37 — Method consistency when classifying crop fields. Source: own authorship.

While poor performance may occur due to these scenarios, it highlights the impor-
tance of adopting a cross-validation approach when assessing these methods. Additionally,
errors of this nature clarify the problem’s analysis, indicating potential directions to inade-
quate algorithm training, for example, not including enough sample diversity. For example,
insufficient inclusion of time series data into a very short period or within non-optimal
intervals that do not include enough agricultural cycles can be misleading to the method

to think it is a non-productive area.

The employed technique demonstrated competitive or superior performance com-
pared to contemporary DL methods, especially in scenarios with a scarcity of positive
examples and a low proportion of negatives within the unlabeled instances. Moreover, the
proposed method exhibited significantly fast execution, particularly in cases where the
unlabeled dataset is extensive, which can be the case depending on the satellite tile and

crop field shapes.
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5.2.2 Triplet Loss Siamese Networks

Secondly, we evaluated Triplet Loss Siamese Networks, converting the samples into
vectors projected into the space, bringing samples of the same class together. As a deep
learning method based on vector encoding, specific hyperparameters were identified to be

evaluated, in this case, the vector length, computed by Cosine distance.

Other hyperparameters were also tested, but the results and overall performance
were not significantly improved. The results obtained while evaluating Triplet Loss Siamese

Networks are shown in Table 4.

Model Loss Vector Sampling Accuracy F1-Score MCC

% o % o o
TLS Cosine 45 Shuffle 95.36 5.28 9543 530 0.86 0.14
TLS Cosine 45 Season 94.95 5.86 9548 4.79 0.86 0.17
TLS Cosine 30 Shuffle 95.27 5.52 9536 5.52 0.86 0.14
TLS Cosine 30 Season 95.56 4.16 95.90 3.49 0.87 0.14
TLS  Euclidean 30 Season  94.57 6.57 95.12 556 0.85 0.18
TLS Cosine 15 Shuffle 95.15 5.18 95.21 5.19 0.86 0.14
TLS Cosine 15 Season 94.39 6.79 94.89 6.03 0.85 0.18

Table 4 — Results achieved by Triplet Loss Siamese model.

As indicated, employing a more structured approach when building samples, the
strategy previously referenced as “sampling by Season” performed better when associated
with Triplet Loss Siamese Networks. A structured sample creation distributing the band
values into aggregated rows keeping seasons together, consistently improved the accuracy
to values close to 1%. Interestingly, regarding the encoded embedding length, also referred
to as vector size, the optimal value found was 30, an intermediary number among those
evaluated for this method, suggesting a length range where we contribute to the point
similarity while not losing information during the encoding process. However, we observed
small variations when varying the vector size. Finally, employing a different distance
measurement than the one proposed by Schroff, Kalenichenko e Philbin (2015), in this
case, the cosine distance, was beneficial to the method’s performance, resulting in accuracy

improved by approximately 1%.

5.2.3 Contrastive Learning

Thirdly, a self-supervised method was evaluated, in this case, Contrastive Learning
using SimCLR. It is important to highlight that, during this experiment, we did not use any
labels to perform training, following the self-supervised approach. In other words, in the

pipeline, we first trained the algorithm to bring similar crop field areas close together while
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keeping dissimilar crop field areas apart. Finally, to evaluate the methods, we connected a

simple classifier to the output of this network.

Similarly to the previous deep learning evaluation based on vector encoding, we
varied the length of the vectors as well as the method of building samples. The data
augmentation was performed by inserting a small jittering to the real data. We applied
random jittering within the range of 30% when augmenting data for training. In contrast,
we applied jittering within the range of only 10% during classification. The reasons we

found to pursue this technique are:

e During training, the goal is to learn robust and generalized representations. Therefore,
higher levels of data augmentation were applied to expose the model to diverse
variations of the same satellite band values, making it more invariant to changes in

the seasons and crop variety.

o Augmenting a higher percentage of data during training helped the model become
more robust by learning to recognize essential features irrespective of variations in

the input.

o If the jittering percentage applied to augmentation during training is too low, the
model might become overly specialized in recognizing a particular set of samples.
This can lead to overfitting and reduced generalization on new, unseen data during

classification.

The optimal augmentation strategy was one of the biggest challenges when applying
this method. In the literature and previous studies, it is usually applied to actual images,
where augmentation can be performed by mirroring or changing the image brightness.

However, we still found our approach beneficial, producing good results.

Model  Vector Sampling Accuracy F1-Score MCC
% o % o o

SimCLR 45 Shufle 97.90 4.52 97.89 4.55 0.95 0.1
SimCLR 45 Season 98.69 1.74 98.69 1.78 0.96 0.06
SimCLR 30 Shuffle 97.80 4.70 97.78 4.74 0.94 0.11
SimCLR 30 Season 98.51  2.11 9851 2.12 0.96 0.05
SimCLR 15 Shuffle 97.28  5.07 9724 513 0.93 0.11
SimCLR 15 Season 98.24 243 98.23 245 0.95 0.07

Table 5 — Results achieved by SimCLR model.

In the Table 5, we show the results obtained by applying the aforementioned

strategy. The best results were achieved again with sampling by Season. However, unlike
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Triplet Loss Siamese Networks, the best accuracies were found using a vector size of 45.

Nevertheless, the MCC was the same as a vector size of 30, suggesting a similar result.

5.2.4 Overall results

Finally, we compared the best results obtained while evaluating the proposed
benchmark methods. As demonstrated in Figure 6, the accuracies of PU Learning, Triplet
Loss Siamese Networks and Contrastive Learning were 95.74%, 95.56%, and 98.69%,
respectively. Most importantly, when looking at the MCC values, we found in the same
sequence 0.89, 0.87 and 0.96.

PU learning achieved accuracies similar to DL methods, a remarkable performance
that can still be significantly improved by changing the underlying method to a DL
neural network. The F1 score reinforced the observations of the accuracy results. Finally,
the analysis of the Matthews correlation coefficient (MCC), appropriate to imbalanced
datasets, supported the conclusion that the Contrastive Learning method achieved the
best overall results, given the ability to duplicate the number of samples, improving the

training, once the appropriate data augmentation method is applied.

Model Vector Sampling Accuracy F1-Score MCC
% o % o o
PU SVM - Season 95.74 273 9584 253  0.89 0.08
TLS Cosine 30 Season 95.56 4.16 9590 349 0.87 0.14
SimCLR 45 Season 98.69 1.74 98.69 1.78 0.96 0.06

Table 6 — Results achieved by the outcome prediction models.

Analyzing the results, we have observed that all models missed, in most cases, the
prediction of samples located between field and non-field areas, as presented in Figure 38.
These mistakes, however, should not be relevant when performing classification at the

pixel level.

Additionally, the standard deviation remained relatively high across all benchmark
methods evaluated, demonstrating consistency again while making mistakes predicting a
hexagon and expanding these mistakes to the whole field. Nevertheless, this effect decreased
with selecting the best method among those evaluated in this study. Moreover, we believe
that by increasing the number of fields in the training step, we should make it more robust

to these systemic misclassifications.
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Figure 38 — Blue hexagons represent prediction mistakes, usually found between productive
and non-field areas.
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6 Conclusions

Precision Agriculture has experienced important advancements in recent years,
marked by the continuous development of several tools and techniques. An integral aspect
of precision agriculture involves the accurate segmentation of crop fields in satellite
images, a task predominantly executed manually, resulting in significant expenses and
time investments. Despite numerous studies to automate this intensive labor process, we
acknowledged it is still a challenge to be solved. In addition, we observed the scarcity of

freely available and reliable datasets aligned with this specific objective.

To contextualize our work, we introduced the fundamental aspects of machine
learning and image segmentation, highlighting their interconnection and potential to
provide feasible solutions in real-world scenarios. In exploring the evolution of segmentation,
we traced its historical trajectory, from its origins grounded in classical computer vision
techniques to its current state, where machine learning plays a crucial role. Our exploration
of segmentation’s historical journey highlights the shift from traditional computer vision
approaches to contemporary studies, where machine learning, particularly deep learning,
has emerged as a revolutionary advance in the field. Deep learning, notably, stands as
the best technology in the segmentation domain, consistently delivering superior results.
Today, it represents the cutting edge in image processing and segmentation, illustrating

the state-of-the-art methodologies in this dynamic and rapidly advancing field.

After a thorough literature review, we identified gaps in the existing research
field. We recognized that acquiring a high-quality dataset is a significant opportunity for
advancement. Diverging from prior approaches vulnerable to manual errors, we strate-
gically harnessed precision agriculture and machine-generated data to build a dataset
autonomously with enhanced reliability. Having successfully curated this dataset, we
applied data processing techniques to extract optimal insights. Two approaches were
adopted, one randomly distributing time series images within a sample to optimize variety
to the learning process and the second providing a well-structured format to the samples,
aggregating the time series in a sample by season. In sequence, by adopting state-of-the-art
deep learning methodologies, we aimed to harness the full potential of our dataset, ensuring

its compatibility with contemporary standards and benchmarks within the field.

Lastly, we presented the results derived from applying the aforementioned methods.
We have incorporated metrics widely acknowledged in prior studies to facilitate meaningful
comparisons. This inclusion not only enhances the interpretability of our findings but also

provides a foundation for benchmarking against existing research in the field.

The dataset proposed in this paper represents an important alternative to training
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highly accurate prediction models that automatically detect productive crop fields. The
main advantage is that it does not rely on manual work, which ensures, although not
perfect, high-quality labeled samples in large volumes since they are continuously produced
by machines equipped with precision agriculture devices. To amplify our contribution,
we evaluated three different and complementary state-of-the-art ML and DL algorithms
well-suited to the problem of detecting productive crop fields. The benchmark results
present a performance high enough for most real applications involving detecting and

delineating productive crop fields.

Future work

As our research progressed, we consistently found opportunities to refine and
provide state-of-the-art solutions. While we have made significant advances, it is essential
to acknowledge the prospects for future exploration that naturally emerge from the current

study. Subsequently, we list these potential areas for further investigation:

« Expand this work to broader areas. In this study, we compiled a dataset utilizing
machine-generated data, including 17 productive fields within a limited region of
the United States. While this accelerated the initial phase of our research, providing
quick results and offering instant insights, we acknowledge that having validated
the pipeline, the logical progression is to extend the validation to a more expansive
region, embracing a significantly greater number of fields. Within this broader scope,
it becomes imperative to incorporate diverse crops and various geographic areas
exposed to various weather conditions. Ideally, extending to other continents to
maximize the diversity. This expansion is crucial to provide the algorithm with more
comprehensive training, including different crops and various environmental factors,

enhancing the adaptability and robustness of the algorithm.

« Exploration of additional techniques. In the provided context, to extend the
training and help the generalization of the algorithm, additional techniques can
be applied and evaluated to improve the presented benchmark results. Transfer
learning (QUATTONI; COLLINS; DARRELL, 2008) and domain adaptation (LONG
et al., 2015) have been successfully applied in other fields and can similarly benefit

this framework.

« Analyze this approach employing multiple satellite sources. Our primary
emphasis was on harnessing data generated by Sentinel-2 imagery. However, it is
crucial to highlight that our decision to employ hexagonal grids was driven by the
intrinsic ability to seamlessly integrate data from diverse image sources with multiple

resolutions. Considering this, we propose extending our approach to incorporate
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additional sources, such as Landsat, to enrich our dataset further. Additionally, even
high-resolution imagery could be added again to provide additional diversity. This
strategic integration should enhance the overall quality and richness of the dataset,

allowing a more comprehensive analysis and possibly even better performances.

« Explore additional data augmentation strategies. Data augmentation, a
mandatory component in contrastive learning methods, is typically straightforward
when applied to conventional images. However, this study exemplifies that its
implementation becomes more challenging when extended to alternative data sources
in a tabular format. While we successfully optimized results by introducing controlled
jittering into our data, we acknowledge an opportunity for exploring additional

techniques that closely mimic the real-world diversity inherent in satellite imagery.

o Experiment with additional contrastive learning implementations. Con-
trastive learning emerged as the most successful method among those investigated
in this study. Leveraging the widely adopted SimCLR implementation, which has
demonstrated efficacy across various practical applications, contributed to our favor-
able outcomes. Nevertheless, we recognize the dynamic nature of contrastive learning,
with new implementations continually emerging. Considering this, we recommend
the replication of our established pipeline, substituting the SImCLR segment with
alternative implementations such as MoCo or SwAV. This proactive approach en-
sures that our methodology remains at the forefront of advancements in contrastive

learning, adapting to the evolving landscape of innovative techniques in the field.

« Investigate further segmentation methods. We introduced a segmentation
methodology centered on classifying hexagonal grids within a designated region to de-
tect productive crop fields in the same area. While this strategy simplified our study’s
segmentation aspect, we acknowledge opportunities for refinement. One promising
opportunity for enhancement involves connecting the output of the contrastive learn-
ing network to the interconnection of hexagons. In this proposed approach, similar to
graph-based segmentation, the edges connecting adjacent hexagons would represent
the probability of them belonging to the same class. Potentially, this method could
eliminate the need for labels, falling into the domain of fully self-supervised tech-
niques. Exploring this approach promises important contributions for comparison

with the findings presented in the current study.

Publications

The following publication is the result of this work:
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o E. Nascimento, J. Just, J. Almeida and T. Almeida, “Productive Crop Field Detection:
A New Dataset and Deep-Learning Benchmark Results” in IEEE Geoscience
and Remote Sensing Letters, vol. 20, pp. 1-5, 2023, Art no. 5002005, doi:
10.1109/LGRS.2023.3296064.
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APPENDIX A - Cross validation iterations

In this chapter, we present a more detailed representation of each benchmark
method iteration, integral to the previously discussed results. The tables presented herein
offer a granular view of each method and their various combinations, playing a crucial role
in refining strategies and hyperparameters. These reports are also accessible on the website
<https://egnascimento.github.io/fieldboundarydetection /report /index.html>, enabling
researchers to easily sort and filter results. Moreover, the platform allows for a closer
examination of images, facilitating an in-depth understanding of both successful and

unsuccessful instances in each iteration.


https://egnascimento.github.io/fieldboundarydetection/report/index.html
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