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Abstract

Recently a quantum memory for a coherent pulse was accomplished using an atom trapped

inside a high finesse cavity, where an efficiency of 9.3% was achieved for a storage time of

2µs and an average fidelity of 93% for a storage time of 180µs. We theoretically studied

this system using the master equation approach, exhausting all the possible ways one could

improve the efficiency, defined here as the ratio between the mean number of photons retrieved

after the memory process and the mean number of photons that enters the empty cavity,

η = 〈a†a〉out/〈a†a〉in, which proved to have an upper bound of 25%. Since protocols relying

on phase-matching conditions for single photon input states were already developed, using a

model by H. Carmichael, a comparison between storage of coherent and single photon states

was made, which did not gave rise any observable difference. Finally a more detailed study

about the differences between an input-output and a master equation approach was done. It was

concluded that the experimental setup suitable for observing cavity electromagnetically induced

transparency (EIT) is not the ideal one for a quantum memory experiment. No modifications

to the master equation theory were necessary, and a simple relation between the cavity and

output fields was derived.



Resumo

Recentemente uma memória quântica para um pulso coerente foi realizada utilizando um átomo

aprisionado em uma cavidade de alta finesse, onde uma eficiência de 9.3% foi alcançada para

um tempo de armazenamento de 2µs e uma fidelidade média de 93% para um tempo de ar-

mazenamento de 180µs. Esse sistema foi estudado teoricamente utilizando a abordagem da

equação mestra, exaustando todos os posśıveis métodos para melhorar a eficiência, definida

aqui como a razão entre o número médio de fótons recuperados depois do processo da memória

e o número médio de fótons que entra na cavidade vazia, η = 〈a†a〉out/〈a†a〉in, que mostrou ter

um limite superior de 25%. Uma vez que protocolos baseados em condições de casamento de

fase para estados de entrada de um fóton já haviam sido desenvolvidos, utilizando um modelo

feito por H. Carmichael, uma comparação entre o armazenamento de estados coerente e de

um fóton foi feita, a qual não levantou nenhuma diferença observável. Finalmente um estudo

mais detalhado sobre as diferenças entre uma teoria de input-output e equação mestra foi feito.

Concluiu-se que o arranjo experimental utilizado para observar transparência eletromagnetica-

mente induzida (electromagnetically induced transparency - EIT ) em cavidades não é adequado

para um experimento de memória quântica. Nenhuma modificação à teoria de equação mestra

foi necessária, e uma simples relação entre os campos na cavidade e fora dela foi derivada.
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Chapter 1

Introduction

With the growing improvement of computer’s processing power, Gordon Moore, Intel’s co-

founder, made a prediction: the computing power will double, maintaining a constant price,

approximately every two years. This means that every couple of years the number of transistors

in a processor will double, which implies in reducing the size of a transistor so that it is possible

to fit twice as many of them in the same space as before. This prediction became known as

Moore’s Law.

Transistors are inherently quantum, i.e., their behavior can only be explained with the laws

of quantum mechanics, although in a classical circuit they only work as a valve. Nevertheless,

Moore’s Law establishes a limit for how small a transistor can be. Thus, it is necessary to seek

another way to increase computing power, that is not by increasing the number of transistors.

At this point enters quantum computation.

In the 1980s, the research field of quantum computation starts to take shape. Analogously

to the Turing machine, in 1985 David Deutsch proposes an universal quantum computer, a

model in which the operations and the algorithms’ logic are based on the principles of quantum

mechanics [1].

In classical computation the information is coded in a binary system. The smallest unit

of information is the bit, and it can take two values: 0 or 1. Hence, in a system with n bits,

n pieces of information are required to determine a certain state: if each one of the n bits is

either on (1) or off (0). In quantum computation, in addition to the states that are encountered

in classical computation, the quantum bits, or qubits, can assume any superposition between

the classical states, so that for a system with n qubits, 2n pieces of information are required to

completely describe a state [1]. For n = 500, 2500 is greater than the estimated number of atoms

in the universe. The goal of quantum computation is to use this amount of information that

quantum systems are able to manipulate, to create faster and more efficient algorithms than

their classical analogues, or even perform tasks that before were impossible, such as simulate

more complex quantum systems [2].

11
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An essential element for quantum computation is a quantum memory [3]. This device can

be defined as a system capable of storing quantum states to perform a certain task. Quantum

memories can be applied not only in quantum computation but also in quantum repeaters,

metrology, detection and emission of single photons, and as a system to study fundamental

aspects of quantum mechanics [4]. Among the physical systems used to its implementation are

solid state atomic ensembles, nitrogen vacancy centers, quantum dots, systems with a single

atom, quantum gases and optical phonons in diamond [5].

Here a system composed of a single atom trapped in an optical cavity stores an input state

in the atom’s electronic levels by means of the electromagnetically induced transparency (EIT).

Recently a quantum memory was accomplished using this system, where an efficiency of 9.3%

was achieved for a storage time of 2µs and an average fidelity of 93% for a storage time of

180µs [6]. It is interesting to optimize the storage efficiency of this system for applications such

as quantum repeaters, which may require the efficiency to be greater than 90% [4], and linear

optical quantum computation, which may require an efficiency above 99% [4].

Two approaches were used in this work. First a master equation formalism [7], a traditional

method to include dissipation in open quantum systems. Later, an input-output theory [8] was

explored as a way to investigate details that might have been overlooked in the master equation

approach.



Chapter 2

Electromagnetically induced

transparency

In this chapter we will briefly present the theoretical background needed for understanding

cavity EIT. We begin with the Jaynes-Cummings model, that describes a coherent energy

exchange between atom and field. Afterwards we present the basics aspects of EIT in free

space. Finally, EIT in optical cavities is introduced and briefly discussed.

2.1 Jaynes-Cummings model

The Jaynes-Cummings Hamiltonian, that describes a coherent energy exchange between atom

and field is, in the Schrödinger picture, given by [9]

HJC = ~ω0σee + ~ωa†a+ ~g(aσeg + a†σge). (2.1)

In this Hamiltonian ω0 and ω are respectively the atomic transition and the cavity mode

frequencies; g is the atom-field coupling (vacuum’s Rabi frequency); a (a†) is the annihilation

(creation) operator of the field; and σij = |i〉〈j|, i, j = e, g, where |g〉 is the atom’s ground state

and |e〉 is its excited state.

It is important to remember that two approximations were made to reach this model:

the dipole approximation, valid when the wave length of the impinging radiation is large in

comparison with the atomic radius, and the rotating wave approximation, that discards rapid

oscillating terms that have a negligible contribution to the system’s dynamics, valid in the limit

when the atom-field coupling is small in comparison to the characteristics frequencies of the

system.

13
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Figure 2.1: Diagram of levels involved in an usual EIT process.

2.2 EIT in free space

In this section we analyze the problem of an atomic sample that consists of 3 level atoms

interacting with two classical fields. Levels |1〉 and |2〉 are the ground states, and there is no

dipole transition between them. Level |3〉 is the excited state, and it can decay both to level |2〉
as well as to |1〉. Interacting with the transition |1〉 ↔ |3〉 is a probe field with Rabi frequency

ΩP and frequency ωP , and interacting with the transition |2〉 ↔ |3〉 there is a control field with

Rabi frequency ΩC and frequency ωC . There is a detuning ∆1 between the frequencies of the

probe field and the transition |1〉 ↔ |3〉, ω31, and a detuning ∆2 between the frequencies of

the control field and the transition |2〉 ↔ |3〉, ω32. The polarization decay rate related to the

|1〉 ↔ |3〉 transition is Γ31 and the polarization decay rate related to the |2〉 ↔ |3〉 is Γ32. Such

setup is called Λ configuration and is illustrated in Figure 2.1.

Adopting |1〉 as our zero energy, the system’s Hamiltonian H = H0 +Hint is given by

H = ω3σ33 + ω2σ22 + {ΩP (t)σ31e
−iωP t + ΩC(t)σ32e

−iωCt + h.c.}, (2.2)

where

H0 = ω3σ33 + ω2σ22,

and

Hint = {ΩP (t)σ31e
−iωP t + ΩC(t)σ32e

−iωCt + h.c.}.

Here h.c. stands for hermitian conjugate, and σij = |i〉〈j| (i, j = 1, 2, 3) are the atomic

operators that describe the level populations (i = j), and the transitions between them (i 6= j).

It is worth reminding that from this point on we use ~ = 1 to simplify the notation.

Going to the interaction picture, through a unitary transformation U = e−iH0t, we have

that the interaction Hamiltonian H̃I , that describes the dynamics of two classical fields acting

on a atomic sample, is given by

H̃I = {ΩP (t)σ31e
i∆1t + ΩC(t)σ32e

i∆2t + h.c.}, (2.3)
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with ∆1 = ω31 − ωp (ω31 = ω3) and ∆2 = ω32 − ωc (ω32 = ω3 − ω2). Removing the time

dependency, through a unitary transformation, U = ei(∆1σ33−(∆2−∆1)σ22)t, the new Hamiltonian

is given by

HI = ∆1σ33 + (∆1 −∆2)σ22 + (ΩPσ31 + ΩCσ32 + h.c.). (2.4)

Equation 2.4 has three eigenenergies and eigenstates. One of them is a dark state with a

zero eigenenergy, λ0 = 0, which is given by

|D〉 = cosθ|1〉 − sinθ|2〉, (2.5)

where

tan(θ) =
ΩP

ΩC

.

To visualize the effects of the field on the atomic medium one must calculate the electric

susceptibility of the medium. The polarization of a material medium is given by

~P = χe ~E,

where χe is the medium’s linear susceptibility, with

Re(χe)→ medium’s dispersion,

Im(χe)→ medium’s absorption.

The polarization can also be written as

~P =
∑
i

〈~µi〉
V

=
N

V
Tr(ρ~µ),

where N is the total number of atoms in the volume V and ρ is the density matrix of the

system. Here we are working on the limit of low atomic densities, with non-interacting atoms.

For a 3 level atom the most general density operator (in Schrödinger picture) can be written as

ρ = ρ11|1〉〈1|+ ρ22|2〉〈2|+ ρ33|3〉〈3|+ (ρ21e
−iω21t|2〉〈1|+ ρ31e

−iω31t|3〉〈1|+ ρ32e
−iω32t|3〉〈2|+ h.c.),

and the dipole moment operator is given by

~µ = ~µ13|1〉〈3|+ ~µ23|2〉〈3|+ h.c. .

Thus
~P =

N

V
(~µ13ρ31e

−iω31t + ~µ23ρ32e
−iω32t + h.c.).
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The terms ρ31 and ρ32 and their complex conjugates may be obtained through the master

equation for this system [7]

dρ

dt
=− i[HI , ρ] + Γ31(2σ13ρσ31 − σ33ρ− ρσ33) + Γ32(2σ23ρσ32 − σ33ρ− ρσ33)

+ γ2(2σ22ρσ22 − σ22ρ− ρσ22) + γ3(2σ33ρσ33 − σ33ρ− ρσ33),
(2.6)

where γ2 and γ3 are the dephasing rates of the levels 2 and 3.

Here HI is given by Equation 2.4. However it is important to remember that with the

Hamiltonian HI we are at the rotating frame and, once the solution is obtained, one must go

back to the Schrödinger picture.

Knowing that

〈i|ρ|j〉 ≡ ρij and 〈i|ρ̇|j〉 ≡ ρ̇ij,

taking the asymptotic limit, i.e., ρ̇ij = 0, and the limit in which |ΩP | � |ΩC |, that implies

ρ11 ' 1, ρ22 ' 0 and ρ33 ' 0, it is possible to obtain the elements of ρ. In the interaction

picture [10]

ρ31 =
2iΩP [2γ21 + 2i(∆1 −∆2)]

(2γ31 + 2i∆1)[2γ21 + 2i(∆1 −∆2)] + 4Ω2
C

ei∆1t

and

ρ32 =
−i8Ω2

PΩCe
i∆2t

(2γ32 + 2i∆2){(2γ31 − 2i∆1)[2γ21 − 2i(∆1 −∆2)] + 4Ω2
C}

,

where γ31 = Γ31 +Γ32 +γ3, γ32 = Γ31 +Γ32 +γ3 +γ2 and γ12 = γ2. Recalling that ∆1 = ω31−ωP
e ∆2 = ω32 − ωC , and defining ∆ ≡ ∆1 and δ ≡ ∆1 −∆2

~P =
N

V
{~µ13

2iΩP [2γ21 + 2iδ]

(2γ31 + 2i∆)[2γ21 + 2iδ] + 4Ω2
C

e−iωP t + c.c

−~µ23
−8iΩ2

PΩCe
−iωCt

(2γ32 + 2i(∆− δ)){(2γ31 − 2i∆)[2γ21 − 2iδ] + 4Ω2
C}

+ c.c},

with c.c. meaning the complex conjugate. On the other hand, ~P = χe ~E and ~E = ~EP e
−iωP t +

~ECe
−iωCt + c.c. Since we are interested in the medium’s response to the probe field, we take

the term with e−iωP t and its complex conjugate. Therefore

χ(1)(−ωP , ωP ) =
N

V
|~µ13|2ΩP

i[2γ21 + 2iδ]

(2γ31 + 2i∆)[2γ21 + 2iδ] + 4Ω2
C

, (2.7)

whose real part is given by

Re(χ(1)) =
N

V
|~µ13|2ΩP

2γ21[4γ31(∆− δ) + 4γ21∆] + δ[8∆δ − 8Ω2
C ]

|(2γ31 + 2i∆)[2γ21 + 2iδ] + 4Ω2
C |2

, (2.8)
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Figure 2.2: Electromagnetically induced transparency characteristic curves. In the blue solid
curve the control field is on, while in the red dashed curve the control field is off. a) Real part
of ρ31, which is proportional to the atomic medium’s dispersion. b) Imaginary part of ρ31, that
is proportional to the medium’s absorption. The values used here were: γ31 = 1MHz, γ21 = 0,
δ = 0, Ωp = 0.1γ31, and Ωc = γ31 in the blue solid curve and Ωc = 0 in the red dashed curve.

and its imaginary part by

Im(χ1) =
N

V
|~µ13|2ΩP

2γ31(4γ2
21 + 4δ2) + 8γ21Ω2

C

|(2γ31 + 2i∆)[2γ21 + 2iδ] + 4Ω2
C |2

. (2.9)

Figure 2.2 shows the real and imaginary parts of ρ31, for Ωc = 0 and Ωc 6= 0. The Equations

2.8 and 2.9 are proportional to the real and imaginary parts of ρ31, respectively.

We can see in Figure 2.2 a) the real part of ρ31, which is proportional to the medium’s

dispersion. When the control field is turned on, solid blue curve, one can see a rapid variation

in the medium’s dispersion for a small change in the detuning. This will lead to the phenomenon

of slow light, since the light’s velocity in a medium is inversely proportional to the derivative of

the medium’s dispersion. Figure 2.2 b) shows the imaginary part of ρ31, which is proportional

to the medium’s absorption. In the solid blue curve, which depicts the situation when the

control field is on, one can see the effect of turning the control field on: it creates a minimum in

the absorption when the detuning is null, i.e., the medium is now transparent to the probe field

when the control field is on. This is the basic principle of EIT, making a medium transparent

to a certain wavelength by shining it with light of a different wavelength.

2.3 EIT in optical cavities

In this section a system consisting of a 3 level atom in the Λ configuration inside a high finesse

cavity will be analyzed. The cavity mode, of frequency ω, interacts with the transition |1〉 ↔ |3〉
with a coupling rate g (Rabi frequency). Interacting with transition |2〉 ↔ |3〉 there is a control

field with Rabi frequency ΩC and frequency ωC . There is also a pumping in the cavity (probe

field) given by ε(ωp, t) = εaeiωpt + ε∗a†e−iωpt. The experimental setup is assembled in such
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Figure 2.3: Electromagnetically induced transparency inside an optical cavity.

a way that an intense probe field impinges on the left cavity mirror, which has a very high

reflectivity. Only a small portion of light is transmitted, and we calculate the interaction of it

with the atom inside the cavity. The right mirror has a smaller reflectivity than the left one,

so that light leaves the cavity preferably through the right side of it, where a detector is placed

to make transmission measurements. This system is illustrated in Figure 2.3.

Setting |1〉 as zero energy, the system’s Hamiltonian is given by

H = ω3σ33 + ω2σ22 + ωa†a+ (gaσ31 + ΩCσ32e
−iωCt + εaeiωpt + h.c.), (2.10)

where

H0 = ω3σ33 + ω2σ22 + ωa†a,

Hint = (gaσ31 + ΩCσ32e
−iωCt + εaeiωpt + h.c.).

In the interaction picture, obtained through the unitary transformation U0 = e−iH0t, we

have

HI = (gaσ31e
i∆1t + ΩCσ32e

i∆2t + εaei∆t + h.c.) , (2.11)

where

∆1 = ω3 − ω: detuning between atom and cavity,

∆2 = (ω3 − ω2)− ωC : detuning between atom and control field,

∆ = ωp − ω: detuning between probe field and cavity.

Taking the time dependency through U1 = e−i[∆a
†a−∆1σ33−(∆1−∆2)σ22−∆σ11]t, we get the Hamil-

tonian [11]

HI = ∆1σ33 + (∆1 −∆2)σ22 + ∆σ11 −∆a†a+ (εa+ gaσ31 + ΩCσ32 + h.c.). (2.12)
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Figure 2.4: Normalized transmission (〈a†a〉/|ε/κ|2) as a function of the detuning between cavity
and probe field. The parameters used here were κ = 1MHz, g = 5κ, ΩC = 3κ in the red dashed
curve and ΩC = 0 in the blue solid curve, Γ31 = 1κ, Γ32 = 0 , γ2 = 0, γ3 = 0, ∆1 = ∆2 = 0,
ε =
√

0.01κ.

The master equation for this system is given by

dρ

dt
= −i[HI , ρ] + κ(2aρa† − a†aρ− ρa†a)

+Γ31(2σ13ρσ31 − σ33ρ− ρσ33) + Γ32(2σ23ρσ32 − σ33ρ− ρσ33)

+γ2(2σ22ρσ22 − σ22ρ− ρσ22) + γ3(2σ33ρσ33 − σ33ρ− ρσ33)

(2.13)

where κ is the cavity field decay rate, Γ32 and Γ31 are the polarization decay rates related to

the |2〉 ↔ |3〉 and to the |1〉 ↔ |3〉 transitions, respectively, and γ2 and γ3 are the dephasing

rates of the levels 2 and 3, respectively. Figure 2.4 shows the normalized transmission from

the cavity, obtained through the master equation, when the control field is off and on, clearly

showing the transparency window provided by the EIT. It is important to remember that the

condition Γ32 = 0 used in this graph is a bit artificial. In reality Γ32 never is exactly null for a

three level atom, and graphs of this kind, for when the control field is off (red dashed curve),

are only obtained by making measurements in a time when the system did not reach the full

stationary state, and the atom can be considered as a two level system, i.e., Γ32 ' 0.

The main advantage of using cavity EIT instead of EIT in free space, is the significant rise

in the atom-field coupling provided by the cavity. With a higher coupling, the transference of

the field states to the atom happen in a more coherent way, being less susceptible to dissipative

effects and decoherence.



Chapter 3

Quantum memory

In this chapter we are going to explain the basic principles of a quantum memory and see the

methods we are going to use to study it. It should be clear to the reader that, although here

we are using a simpler version of the quantum memory, where the qubits are 0 and 1 photons,

in the experiment [6] the qubits were implemented using polarization states, σ+ and σ−. Our

simplification should not affect the results, since the system used for the polarization states can

be seen as two three level systems, as it can be seen in Figure 3.1. It should also be clear the

difference we are making between single sided and two sided cavities. In a single sided cavity,

we probe it through the less reflective mirror and measure the outcome through the same side.

In a two sided cavity, we probe the cavity through the more reflective mirror and measure the

outcome through the less reflective one. Cavity EIT is done with a two sided cavity, and since

we are studying a memory based on cavity EIT, our model will also consist of a two sided

cavity.

|1-⟩ |1+⟩

|2+⟩|2-⟩

|0⟩

σ+σ-π π

mf = -1 mf = 0 mf = +1

Figure 3.1: 5 level atom diagram. Here we have three ground states, | − 1〉, |0〉 and |+ 1〉, and
two excited states, | − 2〉 and | + 2〉. The control field, with linear polarized light, couples the
transitions |−1〉 ↔ |−2〉 and |+1〉 ↔ |+2〉. The cavity, with circularly polarized light couples
the transitions |0〉 ↔ |+ 2〉 and |0〉 ↔ | − 2〉. This structure is symmetric, and can be seen as
two three level atoms.

20
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3.1 Basic principles

The main objective of this work was to study the storage and recovery process in an optical

quantum memory based on cavity EIT, as accomplished in [6], so that the efficiency of the

device be optimized, within the available experimental conditions. The efficiency is defined as

the ratio between the mean number of photons retrieved after the memory process and the

mean number of photons that enters the empty cavity, i.e., η = 〈a†a〉out/〈a†a〉in.

The principle behind EIT based quantum memories is to use the transparency window

generated by the phenomenon. For an ensemble of atoms, first one must prepare them in the

ground state |1〉 which, in the limit where Ωc � Ωp, is a dark-state of the system. If instead of

a probe field, a pulse with one photon is sent, with frequency spectrum within the transparency

window, with the control field on this pulse is not absorbed. However, if one adiabatically turns

off the control field, keeping the system in the dark-state, the pulse is now absorbed and the

dark-state is now |2〉.
Similarly, if the efficiency of the process is high enough, one can send a pulse with a superpo-

sition of 0 and 1 photon. Adiabatically turning off the control field will store this superposition

in the atomic levels.

For a single atom in a cavity, when the field has at most one excitation, the dark-state is,

according to Equation 2.12, given by [12]

|D〉 = −iΩc|1〉atom|1〉field − g|2〉atom|0〉field√
Ω2
c + g2

.

If Ωc � g⇒ |D〉 ' |1〉atom|1〉field. If Ωc � g⇒ |D〉 ' |2〉atom|0〉field. Therefore, if the initial

state is |ψ(0)〉 = |1〉atom|1〉field, and Ωc � g, turning off the control field adiabatically, according

to the adiabatic theorem [13], the system will remain in the dark state which eventually will

be |ψ(tfinal)〉 = |2〉atom|0〉field
Below we have an example of how this would work. Consider an initial state for the light

given by

|ψ〉 = α|0〉field + β|1〉field.

So now we have

(α|0〉field + β|1〉field)|1〉atom = α|0〉field|1〉atom + β|1〉field|1〉atom.

Adiabatically turning off the control field, the atom can absorb one excitation of the field, thus

α|0〉field|1〉atom + β|1〉field|1〉atom
(Ωc→0)−→

ideal
α|0〉field|1〉atom + β|0〉field|2〉atom.
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Figure 3.2: Scheme of a quantum memory based on cavity EIT. a) Input pulse with a state that
is a superposition of 0 and 1 photon impinges the cavity, which is coupled to the |3〉 ←→ |1〉
transition. The atom is initially in the state |1〉 and has a control field coupling the transition
|3〉 ←→ |2〉. b) When the pulse enters the cavity, the control field is turned off so that the
transparency window closes. c) With the control field off, the atom absorbs the field excitation,
transferring its superposition to the atomic ground states. d) To recover the stored state, the
control field is turned back on, the atom coherently emits the light, maintaining its initial
superposition if none logical operation is performed in the atom during the storage period.

Finally

|ψfinal〉 = α|0〉field|1〉atom + β|0〉field|2〉atom = |0〉field(α|1〉atom + β|2〉atom).

That is, the initial state of light, a superposition of 0 and 1 photon, is transferred to an

atomic state, a superposition of the ground states of the atom |1〉 e |2〉.
Once the state is stored in the atom, one can recover it after a storage time, simply by

adiabatically turning the control field back on. The storage time is limited by decoherence

effects [6], however, it should be clear that here we are not taking this into account. The

storage time can be limited by the dephasing of the electronic states, γ2 and γ3, but here we

consider them null in such a way that the efficiency is does not become lower for a longer storage

time, i.e., the storage time does not play a role in the efficiency in our simulations, although

including these effects is trivial.

The main advantage in using cavity EIT instead of EIT in free space is the significantly

increase of the atom-field coupling provided by the cavity. With a higher coupling, the stor-

age process occurs in a more coherent way, being less susceptible to dissipative effects and

decoherence. Figure 3.2 shows how the storage process happens with cavity EIT.
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3.2 Master equation description

The master equation formalism is the same introduced when the electromagnetically induced

transparency was discussed. As it was shown before, the dynamics of a single three-level atom

in the Λ configuration trapped in an optical cavity is governed by the master equation 2.13.

Here, however, we are going to work with all the detunings being null. So, finally, we have

this simple form of the Hamiltonian

HI = (εa+ ε∗a†) + (gaσ31 + ga†σ13) + [ΩCσ32 + Ω∗Cσ23]. (3.1)

Now, if we want to use this model to describe a quantum memory made up of this system,

we have to make a few alterations in our Hamiltonian. First, the pump field is no longer an

always turned on field, instead we are going to give it a Gaussian dependency in time

ε(t) = Eme
− 1

2
(t−t0)

2

α2 . (3.2)

This probe field is what we are interested in storing in the atom. To do so, we also must

turn off the control field, making the atom absorb the probe, and we also have to turn the

control field back on so we can restore the probe field stored in the atom. We do this by giving

a time dependency to the control field of the form

ΩC(t) = ΩMAX
C

1

2
{[1− tanh(ζ1(t− t1))] + [1 + tanh(ζ2(t− t2))]}, (3.3)

where ζ1 controls the rate at which we turn off the control field and ζ2 controls the rate at

which we turn on the control field. This time dependency was not picked for any particular

reason, it is just a way to smoothly turn off and on the control field.
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Results

In this chapter we show and discuss our results for a quantum memory based on cavity EIT.

First, we simulate the experiment done by H. P. Specht et al. [6]. Once that is done, we begin

our optimization of the efficiency. For this end, we select one parameter to vary and lock all

other parameters. We begin with the maximum amplitude of the control field ΩMAX
C . Next, we

investigate ζ, that controls the velocity by which we turn off and on the control field. In the

following, we study the dependency of the efficiency on t1, the time chosen to turn off the control

field. This is done by fixing a value for the time t0 when the input pulse has its maximum,

and varying t1. Afterwards, the dependency of the efficiency on the atom-field coupling g is

investigated. In this part are shown curves for the efficiency as a function of g, for selected

values of the full width at half maximum (FWHM) of the input pulse, as well as different values

of its amplitude ε, which has to be sufficiently small so that the probability of two or more

photons inside the cavity is null. Lastly, the efficiency as a function of the number of atoms

is investigated. After the optimization, a discussion on reflection and transmission losses is

made, and seen as the main reason for the limitation of the efficiency in our current model.

Next, using an approach developed by H. Carmichael [14], a quantum memory is simulated for

a single photon input, and through a small modification we also simulate for a weak coherent

pulse input. Due to the results obtained, we turn our attention to an input-output theory and

revisit the relation between the field inside and outside the cavity. A small discussion on the

role of phase-matching conditions on the memory efficiency is made, followed by a discussion

on the right choice of the experimental setup. It’s worth mentioning that all the figures in this

document were obtained with simulations using the Quantum Toolbox in Python (QuTiP) [15].

4.1 Simulating the Experiment

Our first step, now that we have our model ready, is to try and reproduce the experiment of

the single atom quantum memory [6] with ours simulations.

24
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Figure 4.1: Single atom quantum memory scheme. The control field ΩC , black dotted curve,
is initially at its maximum value. Then we send in the input pulse ε, red dashed curve, at
which point we slowly turn off the control field. The solid blue curve shows the mean number
of photons in the cavity, and as the control field is turned off, the photons are absorbed by
the atom. Later on, when we want to recover the pulse, we simply turn the control field back
on. The parameters used here were: κ/2π = 2.5MHz, g = 2.0κ in the left and g = 1.09κ in
the right, ΩMAX

C = 2g/3, EM =
√

10−4κ, ζ1 = ζ2 = ζ = 1.5MHz, and FWHM = 1.0µs. We
obtained an efficiency of 17.49%

In Figure 4.1 a) we try to use the same parameters mentioned in the reference [6]. The

result is that we obtained an efficiency of 17.49%, which is almost twice as much as the 9.3%

value of the experiment.

So, what’s wrong with our model? The first thing we can point out is that we don’t take

into account oscillations of the atom in the cavity, i.e., we don’t consider any deviations in the

value of the coupling constant g. In real experiments the atom moves inside the cavity, leading

to a time dependent atom-field coupling, which is sometimes close to its maximum value, but

also occasionally close to its minimum one. Another effect of the motion of the atom in the

cavity is that it experiences different stark shifts in the dipole trap. Due to this, an exact value

of the atomic resonance is not possible to be known.

Figure 4.1 b) show us the result if consider an effective coupling g = 1.09κ. The efficiency

is remarkably close to the value obtained in the experiment, 9.35%. As we said before, we

considered an effective coupling constant to take into account the motion of the atom in the

cavity. This was the same approach used in a previous experiment using the same system [16]

to fit the experimental data to the theoretical curves.
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Figure 4.2: Efficiency in function of ΩMAX
C . The parameters used here were: κ/2π = 2.5MHz,

Γ31 = Γ32 = 0.6κ, ζ1 = ζ2 = 1.9MHz, EM =
√

10−4κ, FWHM = 1.0µs and g = 1κ in the blue
curve, g = 2κ in the green curve, g = 5κ in the red curve and g = 15κ in the black curve.

4.2 Optimizing the efficiency

4.2.1 Optimizing the efficiency as a function of ΩC

Here we investigate what’s the dependency of the efficiency on the maximum value of the

control field ΩMAX
C , for different values of g. It is important to stress that throughout the

optimizations made, unless said otherwise, an input pulse with a fixed intensity and full width

at half maximum was used.

In Figure 4.2 we see that for all values of g, we have a peak in the efficiency around

ΩMAX
C = 0.6g and ΩMAX

C = 0.7g. The behavior exhibited in this graph is due to the fact that

the width of the frequency window in the EIT transmission spectrum for this system depends

both on ΩC and g. So, from now on, we are going to fix the value of ΩMAX
C at 2g/3.

4.2.2 Optimizing the efficiency as a function of ζ

Other parameters that could have an import role in the efficiency are ζ1 and ζ2, that determine

how fast we turn off and on the control field.

First we are going to say that ζ1 = ζ2 = ζ, and we investigate how the overall efficiency

depends on this parameter. Figure 4.3 show us that we have a peak in the efficiency for

ζ = 1.75MHz.
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Figure 4.3: Efficiency as a function of ζ1 = ζ2 = ζ. The parameters used here were: κ/2π =
2.5MHz, Γ31 = Γ32 = 0.6κ, ΩMAX

C = 2g/3, EM =
√

10−4κ, FWHM = 1.0µs and g = 1κ in
the blue curve, g = 2κ in the green curve, g = 5κ in the red curve and g = 15κ in the black
curve.

Now we are going to look how ζ1 and ζ2 separately affect the efficiency. First we see the

dependency of the efficiency on ζ1.

Figure 4.4 a) show us a very similar dependency of the efficiency on ζ1 to the dependency

of the overall efficiency on ζ. Moreover the peak is in the same point, ζ1 = 1.75MHz.

In Figure 4.4 b) we plot the dependency of the efficiency on the parameter ζ2. Unlike ζ1, ζ2

shows little effect on the efficiency for sufficiently large ζ2, and for the greater the value of the

coupling constant, smaller is the impact of ζ2 on the efficiency.

From now on we fix the values of ζ1 and ζ2 at 1.75MHz.

4.2.3 Optimizing the efficiency as a function of t1

Another parameter that could influence the efficiency is the time we choose to turn off the

control field relatively to the time the pulse enters the cavity.

Figure 4.5 show us indeed that when the difference between the center of the probe field

pulse, t0, and the time we choose to turn off the control field, t1, is null, we have the best

efficiency. One should also notice that if the parameter ζ = ζ1 = ζ2 is changed, the best value

for t1 − t0 also changes, but the maximum efficiency is lower.
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Figure 4.4: Efficiency in function of ζ1 on the left and as a function of ζ2 on the right. The
parameters used here were: κ/2π = 2.5MHz, Γ31 = Γ32 = 0.6κ, ΩMAX

C = 2g/3, EM =
√

10−4κ,
FWHM = 1.0µs and g = 1κ in the blue curve, g = 2κ in the green curve, g = 5κ in the red
curve and g = 15κ in the black curve.
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Figure 4.5: Efficiency as a function of t1−t0. The parameters used here were: κ/2π = 2.5MHz,
Γ31 = Γ32 = 0.6κ, ΩMAX

C = 2g/3, EM =
√

10−4κ, FWHM = 1.0µs, ζ = 1.25MHz (red dotted
curve), ζ = 1.75MHz (blue solid curve), ζ = 2.25MHz (green dashed curve) and g = 20κ.



CHAPTER 4. RESULTS 29

0 5 10 15 20

g/κ

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

ov
er

y
E

ffi
ci

en
cy

Figure 4.6: Recovery efficiency as a function of g (left) and single photon generation efficiency
from the reference [17] (right). The parameters used on the left figure were: κ/2π = 2.5MHz,
Γ31 = Γ32 = 0.6κ, ΩMAX

C = 2g/3, EM =
√

10−4κ, FWHM = 1.0µs and ζ = 1.75MHz.

4.2.4 Optimizing the efficiency as a function of g

Finally, we now investigate how the efficiency is affected by the coupling constant g.

First, lets look at how the coupling g affects the recovering efficiency. We define the recov-

ering efficiency as the ratio between what the atom emits divided by what the atom absorbs.

Figure 4.6 a) show us that for sufficiently large g, the recovering efficiency tends to 100%.

It is clear that for a sufficiently high coupling the recovery efficiency reaches 100%. A similar

situation is shown in figure 4.6 b), taken from reference [17], where the single photon generation

efficiency is studied. In the former case, the single photon generation efficiency also reaches

values close to 100% for sufficiently high atom-field coupling. In both cases what is being

studied is the ability of transferring the atom excitation to the field mode, and, as expected,

both cases show similar results.

Now, lets look at the dependency of the efficiency, what the atom emits divided by what

we sent to the cavity, on the coupling g.

Figure 4.7 show us that for this set of parameters, the efficiency saturates at about 25%, no

matter how large g is.

However, as we said, this is the case for this set of parameters. What would happen if we

changed things a little? Perhaps there is some parameter that is limiting the efficiency.

For different values of ε

Here we plot the same graph of efficiency against coupling g, but now for different values of the

amplitude of the probe field. This amplitude must be small enough so that the probability of

more than one photon in the cavity is null.
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Figure 4.7: Efficiency as a function of g. The parameters used here were: κ/2π = 2.5MHz,
Γ31 = Γ32 = 0.6κ, ΩMAX

C = 2g/3, EM =
√

10−4κ, FWHM = 1.0µs and ζ = 1.75MHz.

Figure 4.8 show us that if we raise the amplitude of the probe field the efficiency actually is

decreased. Lowering further more the amplitude of the probe field makes no difference, as the

efficiency saturates at the same value.

For ΩC varying with g, ΩC = 0.66g, and ΩC fixed

Before we continue, one thing important to point out is that the efficiency only saturates at

25% because we are letting ΩMAX
C change with g. If we let ΩC fixed in a particular value,

making g larger would only decrease the efficiency, as we see in Figure 4.9.

The explanation to this is simple. By letting ΩMAX
C vary with g, we are fixing the size

of the dark-state window. By making ΩMAX
C constant, as we raise the value of the coupling,

the dark-state window gets smaller and smaller, to the point that our probe pulse is no longer

inside that window of frequencies. So perhaps what’s limiting our efficiency is that our probe

pulse is not totally inside the window of frequencies provided by the dark-state.

For different values of FWHM

At this point we turn our investigation to how the full width at half maximum (FWHM) of the

probe pulse affects the efficiency. Here the FWHM of the probe pulse is in the time domain,

so a small value of FWHM in time, results in a pulse with a large number of frequencies.

Conversely, a large value of FWHM in time gives a pulse with a small variation in frequencies.
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Figure 4.8: Efficiency as a function of g for different values of EM . The parameters used here
were: κ/2π = 2.5MHz, Γ31 = Γ32 = 0.6κ, ΩMAX

C = 2g/3, FWHM = 1.0µs, ζ = 1.75MHz
and EM =

√
10−1κ in the green curve, EM =

√
10−3κ in the blue curve, EM =

√
10−4κ in the

black curve and EM =
√

10−5κ in the dashed and dotted red curve.
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Figure 4.9: Efficiency in function of g for ΩMAX
C varying with g, ΩMAX

C = 0.66g in the blue
curve and ΩC fixed at 0.66 × 5κ in the green curve. The other parameters used here were:
κ/2π = 2.5MHz, Γ31 = Γ32 = 0.6κ, ζ = 1.75MHz, FWHM = 1.0µs and EM =

√
10−4κ.
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Figure 4.10: Efficiency as a function of g for different values of the FWHM. The parameters
used here were: κ/2π = 2.5MHz, ΩMAX

C = 2g/3, Γ31 = Γ32 = 0.6κ, ζ = 1.75MHz, EM =√
10−4κ and FWHM = 1.3µs in the green curve, FWHM = 1.0µs in the blue curve and

FWHM = 0.7µs in the red curve.

Figure 4.10 show us the dependency of the efficiency on g, for FWHM = 0.7µs, FWHM =

1.0µs and FWHM = 1.3µs. Surprisingly, raising the value of FWHM, i.e., making the pulse

fit better in the dark-state window, actually lowers the efficiency.

If we take the Fourier transform of our probe field pulse and plot it against the transmission

spectrum of a cavity EIT process with the parameters we are using, the result is shown in

Figure 4.11. We see that for FWHM = 1.0µs, the probe pulse is already inside the dark-state

window. However this does not explain why making the pulse smaller in the frequency domain

would lower the efficiency of the process.

Perhaps, what happens here is that increasing the FWHM of the pulse, i.e., making it

longer in time, prevents the system from absorbing it, since here we are maintaining ΩMAX
C

and ζ constant. If we recall the dynamics of this experiment, we slowly turn off the control

field ΩC as the pulse enters the cavity so the atom can absorb it. In this situation, without

adjusting ΩMAX
C and ζ properly, a longer pulse wouldn’t completely enter the cavity in time

to be absorbed by the atom, having a portion of itself still outside the cavity, and thus being

reflected.
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Figure 4.11: Cavity EIT transmission spectrum, i.e., the normalized mean number of photons
inside the cavity versus the detuning ∆ between the probe and cavity frequencies, blue curve,
and our incident pulse’s Fourier transform, green curve. It’s clear that the pulse is within the
dark-state range of allowed frequencies.

4.2.5 Optimizing the efficiency as a function of the number of atoms

One final parameter that can be investigated is the number of atoms. It may be that the

efficiency is saturating at 25% because we don’t have enough receivers to absorb the incoming

pulse. So, here we see how the efficiency varies with the control field ΩMAX
C , with ζ and with

the coupling constant g for two, three and N = 10000 atoms.

Efficiency as a function of the control field

Here, as we can see in Figure 4.12 a), we studied de dependency of the efficiency as a function

of the control field, for two atoms.

For two atoms, the best value of the amplitude of the control field is ΩMAX
C = 0.8g. Next,

in Figure 4.12 b) the same graph, now for three atoms.

In a system with three atoms, the best value for the control field amplitude is ΩMAX
C = 1.15g.

Finally, we investigate the same scenario for N = 10000 atoms. For this end, a semi-

classical model was solved, i.e., starting from the master equation 2.13, we derived equations of

motion for the operators. A full quantum model would lead to a infinite set of linear differential

equations. To overcome this, we make the approximation 〈aσ〉 = 〈a〉〈σ〉.With this, one goes

from a infinite set of linear differential equations to a finite set of nonlinear differential equations

[11]. The results achieved are shown in Figure 4.12 c).
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Figure 4.12: Efficiency of the system as a function of the control field for two atoms (up),
three atoms (middle) and N atoms (down). The parameters used here were: κ/2π = 2.5MHz,
Γ31 = Γ32 = 0.6κ, ζ = 1.75MHz, FWHM = 1.0µs, EM =

√
10−4κ and g = 5κ in the blue

curve and g = 15κ in the green curve for the left and middle graphs and g = 5κ for the right
graph.
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Figure 4.13: Efficiency as a function of ζ1 = ζ2 = ζ for two atoms. The parameters used here
were: κ/2π = 2.5MHz, Γ31 = Γ32 = 0.6κ, FWHM = 1.0µs, EM =

√
10−4κ and g = 2κ in the

red curve, g = 5κ in the blue curve and g = 15κ in the green curve.

Now, with N = 10000 atoms in the cavity, we see that the optimum value for the control

field amplitude is ΩMAX
C = 2g

√
N/3.

Efficiency as a function of ζ

Here, we investigate how the efficiency varies with ζ for two and three atoms in the cavity.

In Figure 4.13 a) we can see that, as it was for one atom, the best value is ζ = 1.75MHz.

Figure 4.13 b) show us the same situation, optimum ζ at 1.75MHz, showing that the number

of atoms has none or little effect on the parameter ζ.

Efficiency as a function of the coupling constant

Once established the best value of the control field for each of the configurations of the system,

with two, three or N = 10000 atoms, we investigate the efficiency of the system in function of

the coupling constant, for each of the system’s configurations.

Figure 4.14 a) show us the same behavior that we encountered for one atom. Moreover, the

efficiency saturates at the same value, 25%.

In Figure 4.14 b), we see again the same behavior encountered for one and two atoms, and

with the efficiency still saturating at 25%.

Finally, in Figure 4.14 c), we plot the efficiency in function of the coupling constant g for a

cavity with N = 10000 atoms. Here the efficiency saturates much faster than before, but still

at 25%.

From our results, it becomes clear that, as expected, increasing the number of atoms has

the same effect as having only one ”super atom” with cooperativity
√
NC, where C is the
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Figure 4.14: Efficiency as a function of the coupling constant g for two atoms (up), three
atoms (middle) and N atoms (down). The parameters used here were: κ/2π = 2.5MHz,
Γ31 = Γ32 = 0.6κ, FWHM = 1.0µs, EM =

√
10−4κ and ΩMAX

C = g (left), ΩMAX
C = 1.15g

(middle) and ΩMAX
C = 2g

√
N/3 (right). It is clear that the efficiency saturates at 25%.
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Figure 4.15: Reflection and transmission losses. Upon impinging the left mirror, which is highly
reflective, part of the light is reflected from the cavity, disregarding the light that would be
reflected even without the presence of the atom, we have our reflection losses Rloss. Part of the
light that enters the cavity is absorbed by the atom and stored as a population of the level 2,
which is the Absatom part. Finally, there’s some portion of light that exits the cavity without
interacting with the atom, our transmission losses, which is the Tloss in the figure.

cooperativity for a single atom.

4.3 Reflection and transmission losses

As it is shown in Figure 4.7 we can see that the efficiency saturates at 25%. But why is that?

To understand why this happen we must look at the relation between the transparency window

of the EIT, which is proportional to
∣∣ΩMAX

C

∣∣2 /g2 [16], and the frequency width ∆ωp of the

probe pulse. To put the pulse inside the cavity its ∆ωp must be smaller than the transparency

window of the EIT, which requires a strong ΩMAX
C and/or weak atom-field coupling g. But

doing so, we have a strong transmission so that we lose energy/information by the transmission

of the system. To avoid this high transmission we must decrease the Rabi frequency of the

control field (and/or increase the atom-field coupling g). But in this case we will end up with

a transparency window of the EIT narrower than ∆ωp, implying a high reflectivity for the

probe pulse (see inset of Figure 4.16). So, the explanation for the low memory efficiency is that

the light is either reflected before entering the cavity or that it is transmitted before it could

interact with the atom. This situation is illustrated in Figure 4.15.

To quantify the losses, for a experimental setup as illustrated in Figure 2.3, one knows that

the cavity transmission is given by [18]

Tloss = 2κ〈a†a〉, (4.1)

which evaluated when the input pulse is interacting with the atom represents the portion of

light that is not absorbed and is lost by transmission. The light absorbed by the atom is simply

given by

Absatom = 〈σ22〉. (4.2)
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Finally, from energy conservation, one can extrapolate that the portion of light that is reflected

upon impinging the cavity is the light that would enter and then leave an empty cavity minus

the transmission loss and the part absorbed by the atom, i.e.,

Rloss = 〈n〉emptycavity − Tloss − Absatom. (4.3)

Normalizing these quantities to the mean number of photons that enters an empty cavity,

〈n〉emptycavity = 2κ〈a†a〉emptycavity, we have that

Rloss + Tloss + Absatom = 1. (4.4)

Something important to remember is that there is another possible source of energy loss,

which is incoherent emission from the excited level |3〉, given by 2(Γ31 + Γ32)〈σ33〉. However,

in all of our simulations the process are made in an adiabatic manner, in such a way that the

excited level |3〉 is almost never populated and therefore losses due to its incoherent emission

are negligible.

Figure 4.16 shows us the reflected part of the input coherent pulse, the part that is trans-

mitted without interacting with the atom and the efficiency of the memory as function of the

control pulse amplitude ΩMAX
C .

In Figure 4.16 we see that at first we have a significant percentage of the incoming pulse

being reflected, for small values of ΩMAX
C . So, in order to let the pulse enter the cavity, we

increase the control field amplitude ΩMAX
C , so that the transparency window increases. However,

by doing that we raise the percentage of light that is transmitted without interacting with the

atom. This happens since with a large ΩMAX
C the atom is transparent, so that now the incoming

pulse passes right through, without interacting with the atom.

4.4 Single photon input

Here we explore how a single photon wave packet as the input state affects the memory’s

efficiency. To generate the single photon we use an auxiliary system, an approach described

in [14]. This auxiliary system is composed of a three level single atom in the Λ configuration

trapped inside a high finesse cavity, as our main system, and we use the protocol described in

[19] to generate a single photon, as it is shown in Figure 4.17.

The master equation for this system is given by
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Figure 4.16: Transmission (red dotted curve) and reflection (dashed green) from cavity and
efficiency of the memory (solid blue). The parameters used were: κ/2π = 2.5MHz, Γ31 =
Γ32 = 0.6κ, g = 5κ, EM =

√
10−4κ, FWHM = 1.0µs and ζ = 1.75MHz. Inset : The blue solid

curve is the EIT transparency window for a value of the control field ΩC1 , the green dashed
curve is our input pulse and the red dotted curve is the EIT transparency window for a value
of the control field ΩC2 < ΩC1 . For the first value of the control field, ΩC1 , the input pulse is
completely inside the transparency window. However, this also means that the transmission
of the system is very high and we can’t turn off the control field fast enough so the atom
can absorb it, so a big part of th input pulse is lost due to transmission. Conversely, for the
second value of the control field, ΩC2 , the input pulse is not completely inside the transparency
window, and from the start a portion of the pulse (gray shadowed area) is immediately lost by
reflection.

Figure 4.17: Scheme of the single photon input proposed by H. Carmichael [14]. In the first
cavity a single photon pulse is generated, which is then sent to the second one, where the
memory process occurs.
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dρ

dt
=− i[Hi, ρ] + κ(2CρC† − C†Cρ− ρC†C)

+
∑
α=A,B

Γ31α(2σ13αρσ31α − σ33αρ− ρσ33α)

+
∑
α=A,B

Γ32α(2σ23αρσ32α − σ33αρ− ρσ33α)

(4.5)

where

C =
√
κAa+

√
κBb

and

Hi =gA(aσ32A + a†σ23A) + gB(bσ31B + b†σ13B)

+ ΩCA(σ31A + σ13A) + ΩCB(σ32B + σ23B)

+ i
√
κAκB(a†b− ab†).

(4.6)

The collapse operator C is defined in that way to take into account the indistinguishability

of the source of photons impinging on the detector. This becomes more clear if one imagine

a system composed of an arbitrary source of photons, a two level atom, and a detector, as is

illustrated in Figure 4.18. If the atom is initially in the ground state, the photon emitted from

the single photon source is first absorbed by the atom, which is promoted to the excited state,

and goes back to the ground state emitting a photon which is then detected. If however the

atom is initially in the excited state, the photon emitted by the single photon source can’t be

absorbed by the atom, so it goes directly to the detector. The detector can’t distinguish the

source of the photons, and the collapse operator C is defined in such a way to take that into

account. This is the same situation as the one encountered with a single sided cavity system.

Both the light reflected in the mirror and the one transmitted after entering the cavity go

through the same path, making them indistinguishable to a detector. Therefore, the second

cavity presented here in the H. Carmichael model is a single sided one. Nevertheless, the

generalization to the second cavity being two sided should be straightforward.

In Figure 4.19 we can see how the efficiency changes with the coupling constant. It is clear

that for a single photon wave packet input state, for a sufficiently large coupling constant, a

near 100% efficiency is possible.

This is so because of the auxiliary cavity. In free space the portion of an incoming pulse

that is not immediately absorbed by the system would get reflected. However, in our case, the

incoming pulse is in another system, and is slowly transferred to our system of interest, making
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Figure 4.18: System composed of a single photon source, a two level atom and a detector. a)
The atom is initially in the ground state |g〉. When a photon is emitted by the single photon
source, the atom is promoted to the excited state |e〉 and it stays there for a certain amount
of time. After this, the atom goes back to the ground state, emitting a photon in the process,
which is then detected. b) Here the atom is initially in the excited state |e〉. When the single
photon source emits a photon, it can’t be absorbed by the atom, since it is already in the
excited state, so the photon goes directly to the detector, where it is detected. In this two
situations, the detector can’t tell what is the origin of the photon: if is a photon emitted by the
atom or if it was emitted by the single photon source. The detector can’t distinguish photons
from the atom and from the source, and that is the role the collapse operator C plays in the
master equation, it accounts for the photons’ indistinguishability in the detector.
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Figure 4.19: Efficiency as a function of the coupling constant g for the single photon input
(left) and for the coherent pulse input (right). The parameters used on the left were: κA/2π =
1.5MHz, κB/2π = 2.5MHz, Γ31A = 10κA/9, Γ32A = 8κA/9, Γ31B = Γ32B = 0.6κB, gA = 15κ,
ΩMAX
CA = 2gA, ΩMAX

CB = 2g/3, ζ = 2MHz. The parameters used on the right were: κA/2π =
2.5MHz , κB = κA, Γ31 = Γ32 = 0.6κA, ΩMAX

C = 2g/3, EM =
√

10−4κA, FWHM = 1.0µs and
ζ = 1.75MHz
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it possible to be completely absorbed.

In order to bypass the efficiency limitation of the system, inspired by the work of H.

Carmichael [14], we came up with a way to use the regime where the transmission is low

(see Figure 4.16) and prevent the light from being reflected. To do this we added another

cavity, identical to our original one, to our first model. In this scenario, the pulse first enters

an empty cavity, that transmits this light to the second one which contains the atom. In this

way, instead of coming at once to the cavity and inevitably being reflected, the pulse is slowly

transmitted to the place of interest. The experimental setup is basically the same one illus-

trated in Figure 4.17 a), except that the first cavity is empty and a coherent input pulse is sent

through it. It is important to stress that in our model we only consider the part of the pulse

that enters the cavity. Experimentally, to put an entire single photon pulse inside a cavity, one

has to use a time dependency for the pulse which is the time reverse of the cavity decay [20].

The master equation for this system is given by

dρ

dt
=− i[Hi, ρ] + (2CρC† − C†Cρ− ρC†C)

+
∑
i=1,2

Γ3i(2σi3ρσ3i − σ3iσi3ρ− ρσ3iσi3)
(4.7)

where

C =
√
κAa+

√
κBb

and

Hi = ε(t)(a+ a†) + gB(bσ31B + b†σ13B) + ΩC(t)(σ32B + σ23B) + i
√
κAκB(a†b− ab†), (4.8)

and ε(t) is given by Equation 3.2 and ΩC(t) by Equation 3.3.

As it is shown in Figure 4.19 b), with this scheme we are able to obtain an efficiency greater

than 98%.

4.5 Input-output theory with phase-matching condition

So far we’ve got two main results. First we’ve seen that for a coherent input pulse, the efficiency

can’t go any higher than 25%. On the other hand, using a scheme with two cavities, as proposed

by H. Carmichael [14], both for a single photon and a coherent input pulse, an efficiency close

to 100% was achieved, which shows that there should not be any considerable difference in the

results if the input pulse is in a single photon Fock state or in a coherent state. However, in
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Figure 4.20: Scheme of a single sided cavity with its internal mode, a, the input mode ain and
the output mode aout. The left mirror is perfectly reflective, while the right one is partially
reflective, in such a way that the field can only enter and exit the cavity by one side.

the past years phase-matching conditions derived from an input-output theory were developed,

ensuring, for a system with a single cavity, efficiencies near 100%. These phase-matching

conditions generally rely on the destructive interference of the field immediately reflected as

the input pulse impinges the cavity mirror (φr), and the field that enters the cavity and then is

transmitted to the outside again after one round trip (φt). If φr and φt completely destroy each

other, then the input pulse can only be inside the cavity, where it is absorbed by the atom. The

ramification of imposing that φr and φt completely annihilate each other is an expression for

the time dependency of the control field ΩC(t) depending on the temporal shape of the input

pulse φ(t), such that ΩC(t) = ΩC(t, φ(t)). More recently, using this approach, J. Dilley et al.

[21] showed that for a sufficiently high cooperativity C = g2/κγ, one can obtain an efficiency

arbitrarily close to 100%. Nonetheless, this result disagrees with our first conclusion that the

efficiency must be limited to 25% for a single cavity system. To solve this apparent conundrum

we must investigate further how both models reach theirs results.

4.6 Revisiting the relation between the field inside and

outside the cavity

The input-output theory gives a simple relation between the cavity mode and the external

modes. For a single sided cavity, the input mode ain, the cavity mode a, and the output mode

aout, are connected through a differential equation given by [8]

ȧ(t) = −i[a(t), Hs]− κa(t) +
√

2κain(t),

where κ is the cavity field decay rate, Hs is the system’s Hamiltonian and a, ain and aout satisfy

the relation [8]

ain(t) + aout(t) =
√

2κa(t).

The scheme described by these equations is illustrated in Figure 4.20.
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Figure 4.21: Scheme of a two sided cavity. On the left we have the input mode ain and the
output mode aout of the left mirror, which have a cavity field decay rate κA. Analogously, on
the right side of the cavity we have the modes bin and bout, and a mirror with a cavity field
decay rate κB. Finally, we have the internal mode a of the cavity.

The extension to a two sided cavity is straightforward, so that we have [8]

ȧ(t) = −i[a(t), Hs]− (κA + κB)a(t) +
√

2κAain(t) +
√

2κBbin(t), (4.9)

with the relations

ain(t) + aout(t) =
√

2κAa(t), (4.10)

and

bin(t) + bout(t) =
√

2κBa(t). (4.11)

As it can be observed, here we have two input modes, ain and bin, two output modes, aout and

bout, and two decay rates, κA and κB, for each side of the cavity, as it is shown in Figure 4.21.

This is the most general setup possible. Most often one would send an input through only

one side of the cavity, say the left side for instance, so in this situation we can safely consider

bin = 0 for all times, which would leave us with

ȧ(t) = −i[a(t), Hs]− (κA + κB)a(t) +
√

2κAain(t), (4.12)

and

aout(t) =
√

2κAa(t)− ain(t),

bout(t) =
√

2κBa(t).
(4.13)

With this we have our first two important results: if one is sending an input through one

side of a cavity and wishes to know what comes out of the other side, the output is related to

the field inside the cavity through bout(t) =
√

2κBa(t). However, if the desired measurement is

at the same side as the input is being sent, then the output field relates with the field inside

the cavity through aout(t) =
√

2κAa(t) − ain(t). What this expression tell us is that there’s

an interference process occurring between the field transmitted and the one reflected by the
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mirror. It is important to remember that no assumptions were made other than that the input

occurs only through one side of the cavity.

Finally, for our system of interest, an atom inside the cavity, after some minor manipulation

Equation 4.12 yields

ȧ(t) = −igσ13 − (κA + κB)a(t) +
√

2κAain(t). (4.14)

With that in mind, lets return for a moment to the master equation approach. Although it is

a very powerful method to calculate the dynamics inside the cavity, it can be rather cumbersome

to derive relations for the fields inside and outside the cavity directly from this approach, as it

can be seen in [18]. That being said, it would be very useful to show an equivalence between the

two models, even if limited to certain conditions. From Equation 2.13, with the Hamiltonian

given by Equation 3.1, knowing that 〈O〉 = Tr(ρO), 〈Ȯ〉 = Tr(ρ̇O), and [a, a†] = 1, it is easy

to show that

〈ȧ〉 = −ig〈σ13〉 − κ〈a〉 − iε. (4.15)

Equations 4.14 and 4.15 are very similar, nevertheless, Equation 4.15 is in the limit where one

of the mirrors is perfectly reflective, so that there are no losses through that mirror. Performing

the same approximations in Equation 4.14 we have

ȧ(t) = −igσ13 − κAa(t) +
√

2κAain(t). (4.16)

Equations 4.16 and 4.15 are identical, with −iε =
√

2κAain and κ = κA. Since both

equations of motion for the field operator inside the cavity are equal, it implies that one can

use the relations 4.13 derived from the input-output theory to calculate the field outside the

cavity in the master equation approach.

So finally, we get to the root of the problem that limits the efficiency to 25%. The more

easily and straightforward attainable relation with the master equation approach for the field

inside the cavity and the output field is given by [18]

〈a†outaout〉 = 2κ〈a†a〉. (4.17)

Nonetheless, as we’ve seen previously and as it is stressed in [18], this relation is only valid

if the input field is null during the time interval in which the output field is being evaluated.

During this work it was always considered the usual experimental setup used to measure cavity

EIT, i.e., a two sided cavity. Since there is no interference process occurring between the

reflected and transmitted fields that forces a high intracavity field, reflection and transmission

losses are too substantial, so that in this setup the efficiency is limited to 25%. However,

it is easy to fix our model to consider a one sided cavity. For that purpose one only has
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Figure 4.22: Efficiency as a function of the coupling rate g. Here the only modification to
previous simulations with one cavity was the expression for the output field. The parameters
used here were: κ/2π = 2.5MHz, Γ31 = Γ32 = 0.6κ, ΩC = 2g/3, EM =

√
10−4κ, FWHM =

1.0µs and ζ = 1.75MHz.

to use the relation aout(t) =
√

2κa(t) − ain(t) to calculate the field outside the cavity, since

the master equation approach calculates the dynamics inside the cavity independently of the

mirrors configuration, the only caution necessary is to know exactly which kind of setup one

wishes to simulate so that after the master equation is solved, the output field can be obtained

in the proper manner. This can be seen in Figure 4.22, in which the only modification to our

model was the expression for the output field and now, as expected, for a sufficiently high value

of the coupling constant g, efficiencies over 98% are acquired.

4.7 The role of the phase-matching condition in the mem-

ory efficiency

As it was shown in the previous sections, we were able to achieve an efficiency of over 98% for

a quantum memory simply by choosing the best parameters for the system and adiabatically

turning off and on the control field ΩC . No phase-matching conditions were applied in our

simulations, so one may wonder if they are of any use in real life applications. First of all,

it is important to remember that the master equation theory used in this work is a very well

established method for describing the dynamics of open quantum systems [7]. To include dissi-

pation and different kinds of reservoirs is a trivial task, which is derived from first principles, in
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Figure 4.23: Cavity being probed through the higher reflective mirror (up) and through the
lesser one (down). a) the input is made through the left mirror, which is highly reflective while
the right one has a higher transmission rate in such a way that light leaves the cavity preferably
through the right side, where a detector is placed. b) once again the input is made through the
left mirror, which now has lower reflectivity than the right one in such a way that light leaves
the cavity through the left side, where a detector is placed.

contrast with the input-output theory, in which dissipations are added ad hoc [8]. Nevertheless,

despite the afore mentioned issues, the input-output theory does provide highly effective tools

for treating cavity systems in a intuitive manner. For applications such as quantum repeaters,

the results obtained in this work meet the requirements, but applications like linear optical

quantum computing demand higher efficiencies, and that is where a more accurate control of

the system efficiency, provided by phase-matching conditions for instance, might be needed.

4.8 Choosing the adequate setup

In Figure 4.23 we illustrate the two different experimental setups approached in this work. In

setup a) we have a cavity where the left mirror is almost perfectly reflective and the right one

has a considerable transmission. The input is made through the left side of the cavity and a

detector is placed at the right side of it, so it can measure the transmitted light. In setup b)

we have a cavity where the right mirror is almost completely reflective and the left one has a

higher transmission. The input in this case is also made through the left side of the cavity,

although, since the right mirror has a very low transmission rate in comparison with the left

one, almost no light would pass through it and making transmission measurements through

that side of the cavity extremely tardy, so a detector is placed at the left side of the cavity. It

will detect both light that impinges the cavity and it is immediately reflected, and light that

enters the cavity and them is transmitted back outside, as well as any interference that may

arise from these sources.
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Figure 4.24: Normalized cavity transmission for cavity EIT with a single sided cavity (setup
b)). In the blue solid curve the control field ΩC = 0, and in the green dashed curve the control
field ΩC 6= 0. It is clear that these are not the desired curves and this experimental setup is
not suitable for this kind of measurement.

It was already shown here that setup a), although the one used to measure cavity EIT, is

unsuitable for a quantum memory experiment based on this phenomenon. Conversely, one can

also show that setup b), albeit fit for a quantum memory experiment based on cavity EIT, it

is absolutely inapt for the measurement of the phenomenon in which this quantum memory is

based on.

In Figure 4.24 we have the theoretical curves for a cavity EIT experiment made with a single

sided cavity (setup b) from Figure 4.23). In the solid blue curve, when the control field is off,

the light is immediately reflected from the cavity when the detuning is null, for in this situation

the probe is not in resonance with the system. The two minimums in the transmission are the

resonances of the system. In the dashed green curve, when the control field is off, one can see a

similar curve. Here, the light enters the cavity, but since now the system is transparent to the

probe when the detuning is null, the light reflects back inside the cavity and is then transmitted

outside to be detected. It is clear that these are not the desired curves, the phenomenon can’t

be observed properly, and another kind of experimental setup is needed.

It is also important to notice that the experiment [6] was realized in a limit where the

transmission losses are almost negligible in comparison to the reflection ones, as it can be seen

in Figure 4.16. So, although the model used in the result’s first part of this work showed itself

to be the wrong one for a quantum memory experiment, we still were capable of obtaining

similar results to the ones obtained by H. Specht et al. [6].
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Conclusions

We have investigated the efficiency of a quantum memory based on EIT in optical cavities.

When assuming an incoming weak coherent pulse and a single cavity we were able to show

that there is a maximum efficiency of 25%, independently of the chosen values of parameters

when there is no back reflection in the first mirror. In this case the efficiency is limited either

by a high reflection or high transmission of the system. Adjusting the parameters to avoid a

high reflection implies in a high transmission. On the other hand, adjusting the parameters to

minimize the transmission implies in a high reflection. In both cases the atom can absorb a

small part of the incoming pulse, limited to 25%. We were able to quantify the losses through

reflection and transmission and established that for the efficiency to increase, the experimental

setup must be changed.

We’ve also shown, following a model developed by H. Carmichael [14], that the nature of the

input pulse, either being a single photon or a coherent state pulse, does not affect the efficiency

obtained, which is nearly the same. This was necessary since in the past years works relying on

input-output theory and phase-matching conditions, e.g., as it was done by Dilley et al. [21],

with a single photon input pulse were developed, obtaining efficiencies arbitrarily close to 100%

under certain conditions. With this the input pulse nature was discarded as a possible cause

for the efficiency saturation at 25%, so that we were able to safely investigate other possible

causes without disregarding an eventual major detail.

Since the phase-matching conditions were developed with an input-output theory, we de-

cided to investigate it further and distinguish its main differences with the master equation

approach. We successfully established an one to one correspondence between the two models,

and identified their discrepancy that gives rise to such different results for the maximum ef-

ficiency. While the models developed using the input-output theory relied on a single sided

cavity, our model was developed using the conventional setup used for cavity EIT experiments,

i.e., a two sided cavity. This scheme, although ideal for observing the afore mentioned phe-

nomenon, is far from suitable for a quantum memory experiment. In order to the input pulse to
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be completely absorbed by the atom, an interference process between the reflected and trans-

mitted portions of the input field must occur so that all light enters the cavity and remains

there until is absorbed. A conventional cavity EIT setup doesn’t allow this to happen, for

reflected and transmitted light go through different paths. Nevertheless, we were able to show

that the master equation approach does not have to be abandoned, since it perfectly calculates

the dynamic inside the cavity, and the only modification needed appears when calculating the

output field. We provided simple expressions for it, derived directly from the input-output

theory, which, as mentioned before, proved equivalent to the master equation approach under

the conditions we are working with.

Future developments might be in providing a more general correspondence between the

two models under broader assumptions. Also, since the system here studied was a simple

but reliable approximation of the real experimental situation, and it was shown that it can

indeed achieve high efficiencies, it is interesting to investigate a more complete description of

the system, e.g., to consider five or even eleven atomic levels instead of only three, as it is

encountered in Rubidium atoms which are used in the experiments performed at MPQ [6, 16],

investigate the possibility of efficiently store polarization states [6], implement quantum logic

gates [22] and quantum error correction protocols [23], among other things.
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