Universidade Federal de São Carlos Centro de Ciências Biológicas e da Saúde Programa de Pós Graduação em Genética Evolutiva e Biologia Molecular

Dissertação de Mestrado

Anotação genômica e caracterização de locos microssatélites em sequências expressas do genoma do camarão marinho *Litopenaeus vannamei*

Mestranda: Camilla Alves Santos

Orientador (a): Prof. Dra. Patrícia Domingues de Freitas

São Carlos

Universidade Federal de São Carlos

Centro de Ciências Biológicas e da Saúde

Programa de Pós Graduação em Genética Evolutiva e Biologia Molecular

Dissertação de Mestrado

Anotação genômica e caracterização de locos microssatélites em sequências expressas do genoma do camarão marinho *Litopenaeus vannamei*

Mestranda: Camilla Alves Santos

Orientador (a): Prof. Dra. Patrícia Domingues de Freitas

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular do Centro de Ciências Biológicas e da Saúde da Universidade Federal de São Carlos, como parte dos requisitos para obtenção do título de mestre em Genética Evolutiva e Biologia Molecular

São Carlos

Ficha catalográfica elaborada pelo DePT da Biblioteca Comunitária da UFSCar

S237ag

Santos, Camilla Alves.

Anotação genômica e caracterização de locos microssatélites em sequências expressas do genoma do camarão marinho *Litopenaeus vannamei* / Camilla Alves Santos. -- São Carlos : UFSCar, 2011. 134 f.

Dissertação (Mestrado) -- Universidade Federal de São Carlos, 2011.

1. Genoma. 2. Sequenciamento. 3. Enzimas. 4. Xenobiotica - metabolismo. I. Título.

CDD: 575.10724 (20^a)

UNIVERSIDADE FEDERAL DE SÃO CARLOS CENTRO DE CIÊNCIAS BIOLÓGICAS E DA SAÚDE PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA EVOLUTIVA E BIOLOGIA MOLECULAR

Anotação genômica e caracterização de locos microssatélites em sequências expressas do genoma do camarão marinho Litopenaeus vannamei

Dissertação de Mestrado de CAMILLA ALVES SANTOS

Banca Examinadora

Profa. Dra. Patrícia Domingues de Freitas

Prof. Dr. Marco Antonio Del Lama

Prof. Dr. Luis Fernando Fernandes Marins

"Aprender é a única coisa de que a mente nunca se cansa, nunca tem medo e nunca se arrepende."

(Leonardo da Vinci)

"O pessimista reclama do vento, o otimista espera que ele mude, o realista ajusta as velas."

(Provérbio chinês)

Agradecimentos

Agradeço primeiramente a Deus por tornar possível a realização deste trabalho.

À minha família, que apesar da distância sempre estiveram próximos de mim me ajudando de todas as maneiras possíveis. Agradeço por todo investimento e confiança depositados em mim.

À minha orientadora, Patrícia, por toda paciência e ensinamentos a mim dedicados. Trabalhar com você tem sido um grande prazer, principalmente pela relação de amizade que temos.

Ao Prof. Dr. Pedro Galetti por fornecer meios para que este trabalho pudesse ser realizado.

Aos amigos, poucos, mas verdadeiros. Agradeço pelas conversas, passeios, apoio, idéias que contribuíram com este trabalho e tudo mais que me confortam aqui longe de casa. Vocês são uma segunda família para mim.

Ao pessoal do Laboratório de Genômica e Expressão da Unicamp (LGE) por todo o auxílio durante a anotação das sequências. Mesmo sem conhecê-los, a participação deles neste trabalho foi de fundamental importância.

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pelo apoio financeiro prestado nestes dois anos de mestrado.

A todos que não foram citados aqui, mas que de alguma forma contribuíram para este trabalho.

Muito obrigada!

SUMÁRIO

Resumo	1	
Abstract	3	
1. Introdução	5	
1.1 A espécie <i>Litopenaeus vannamei</i>	5	
1.2 A carcinicultura	7	
1.3. Os marcadores microssatélites	10	
1.4 As reações de amplificação heteróloga		
1.5 O Projeto ShEST		
1.6 Anotação genômica	14	
2. Objetivos	19	
3. Justificativa	20	
4. Metodologia	21	
4.1 Obtenção das Amostras	21	
4.2 Validação dos locos SSRs-ESTs	22	
4.3 Anotação genômica	24	
4.4 Estabelecimento das vias metabólicas	26	
5. Resultados e Discussão	27	
5.1 Capítulo 1	27	
5.1.1 Reações de PCR utilizando o <i>primer</i> M13	27	
5.1.2 Análises estatísticas	31	
5.1.3 Transferabilidade dos locos heterólogos	33	
5.2 Capítulo 2	39	
5.2.1 Anotação genômica das marcas ESTs e SSR-ESTs	38	
5.2.2 Estabelecimento das vias metabólicas	48	
6. Conclusões	65	
7. Referências	67	
8.1 Anexos – Tabelas	72	
8.2 Anexos – Figuras		

Lista de Figuras e Tabelas

а

.50 a 250pb.
e 150pb.
mentos de 100
.00 pb.

Página 47

Página 122

Figura 17: Glicólise

Figura 18: Ciclo do ácido cítrico (Krebs)

Página 123

Figura 19: Via das pentoses

Página 124

Figura 20: Metabolismo de frutose e manose

Página 124

Figura 21: Metabolismo de amino e nucleotídeos glicanos

Página 125

Figura 22: Metabolismo de purina

Página 126

Figura 23: Metabolismo de pirimidina

Página 126

Figura 24: Metabolismo de triptofano

Página 125

Figura 25: Metabolismo de glutationa

Página 128

Figura 26: Metabolismo de metano

Página 129

Figura 27: Metabolismo de xenobióticos pelo citocromo P450

Página 130

Figura 28: Metabolismo de drogas pelo citocromo P450

Página 131

Figura 29: Fosforilação oxidativa

Página 132

Figura 30: Biossíntese de alcalóides derivados de ornitina, lisina e nicotinato

Página 133

Figura 31: Esquematização de um conjunto de networks enzimáticas, destacando a integração entre as vias. Cada cor representa vias responsáveis pelo metabolismo de determinado substrato

Página 134

Tabela 1: Ciclo padrão nos testes de *touchdown* de temperatura e nas validações no termociclador *MJ Research* com o *primer* M13.

Página 23

Tabela 2: Detalhamento sobre os 32 locos SSRs-ESTs utilizados. Seqüências *forward* e *reverse*, *motif*, temperatura de *anelling* e padrão de amplificação obtido.

Página 29

Tabela 3: Detalhamento sobre os locos polimórficos: *motif*, número de alelos (Na), heterozigozidade esperada (He), heterozigozidade observada (Ho), valores de *Polymorphism Information Content* (PIC) e os respectivos produtos protéicos dos locos.

Página 33

Tabela 4: Resultado das reações de amplificação heteróloga. Espécies e locos utilizados além dos tamanhos dos fragmentos obtidos (pb).

Página 34

Tabela 5: Detalhamento dos nove locos SSR-ESTs polimórficos e suas respectivas informações do banco de dados do *Gene Ontology*

Página 48

Tabela 6: Relação das 35 enzimas envolvidas nas principais vias metabólicas elucidadas. Destaque para o *EC number*, função molecular, processo biológico e respectiva rota participante.

Página 72

Tabela 7: Listagem dos contigs anotados. Maior detalhamento sobre o produto gênico, TC number, componente celular, função molecular, processo biológico, símbolo do gene, função, domínio e organismo homólogo.

Página 74

Tabela 8: Detalhes sobre os locos ESTs enzimáticos como o produto protéico, EC number, componente celular, função molecular, processo biológico, símbolo do gene, função, domínio e organismo homólogo.

Página 95

Tabela 9: Detalhes sobre os locos SSR-ESTs enzimáticos como o produto protéico, EC number, componente celular, função molecular, processo biológico, símbolo do gene, função, domínio e organismo homólogo.

Página 111

RESUMO

Litopenaeus vannamei é conhecido como camarão branco do Pacífico e é a principal espécie de peneídeo comercializada no mundo. Sua distribuição geográfica compreende a costa do Oceano Pacífico, indo desde o México até o Peru. Devido a sua relevante importância econômica, esta espécie passou a ser cultivada, adaptando-se bem às condições de cativeiro, tendo sido introduzida em diversos países, incluindo o Brasil. Entretanto, apesar de toda preocupação em manejar adequadamente as populações de cultivo, muitos países não têm tido renovação de seus estoques reprodutores ou plantéis, devido ao risco de introdução de patógenos exógenos, o que tem aumentado o grau de endogamia desses estoques e diminuição dos níveis de diversidade genética. Para monitorar esta perda de variabilidade genética, marcadores microssatélites ou SSRs (Simple Sequence Repeats), oriundos de regiões arbitrárias e expressas do genoma desta espécie, vêm sendo utilizados. No caso específico de SSRs presentes em regiões expressas do genoma (ESTs, Expressed Sequence Tags) ou SSRs-ESTs, além destes permitirem acessar a variabilidade genética das populações, as ESTs desprovidas de SSRs podem estar relacionadas a genes de interesse, podendo auxiliar o desenvolvimento de programas de melhoramento genético baseados na Seleção Assistida por Marcadores (MAS). Além disso, locos SSRs-ESTs podem apresentar uma excelente taxa de transferabilidade em espécies taxonomicamente relacionadas, uma vez que se encontram em regiões mais conservadas do genoma. Dentro deste contexto, este trabalho teve como objetivos (i) a validação populacional de locos SSRs-ESTs, isolados via dataming no banco de dados de ESTs de L. vannamei (www.shrimp.ufscar.br); (ii) a anotação genômica de marcas ESTs e locos SSRs-ESTs (iii) e a determinação dos EC numbers (códigos enzimáticos), visando, respectivamente, (i) a caracterização de marcadores polimórficos, (ii) a descrição de genes e seus respectivos produtos protéicos e (iii) o estabelecimento de informações para descrever as possíveis vias metabólicas para o grupo de peneídeos. Para tanto foram testados 32 locos SSRs-ESTs em reações de PCR. Após estabelecimento do melhor perfil de reação e posterior genotipagem dos locos, nove SSRs-ESTs mostraram-se polimórficos, com número de alelos variando de 4 a 20, níveis de heterozigozidade observada de 0,32 a 0,86 e valores médios de PIC (Polymorphism Information Content) de 0,78. Nenhum loco apresentou-se em desequilíbrio de ligação. Entretanto, após correção de Bonferroni, constatou-se que um deles apresentou déficit significativo de heterozigotos. Os nove locos polimórficos para L. vannamei apresentaram amplificação satisfatória em pelo menos uma das sete espécies nativas testadas: as marinhas Xiphopenaeus kroyeri,

Farfantepenaeus brasiliensis, Farfantepenaeus paulensis, Rimapenaeus constrictus e Litopenaeus schmitti e as de água doce Macrobrachium amazonicum e Macrobrachium jeskii podendo se constituir em marcas úteis para os estudos genéticos também dessas espécies. A anotação genômica realizada via acesso à página de anotação do Projeto ShEST (Projeto Genoma EST de Litopenaeus vannamei) demonstrou que apenas três dos nove locos polimórficos têm o seu gene e produto protéico já descritos. Os demais locos não apresentaram blasts positivos com nenhuma outra base de dados genômicos disponíveis para pesquisa. No caso das sequências anotadas, o produto gênico pôde ser elucidado para 99% destas, sendo possível estabelecer 209 EC numbers, destacando-se enzimas responsáveis pela degradação de xenobióticos, imunidade, produção de energia, reprodução, estresse oxidativo, dentre outras. Estes códigos enzimáticos foram utilizados para determinação de algumas vias metabólicas presentes no grupo dos peneídeos, contribuindo assim para a construção de uma ampla base de dados do genoma deste importante grupo animal, podendo ser utilizada em estudos de conservação, programas de melhoramento genético e em análises de expressão gênica, como PCR em tempo real e microarrays.

Palavras-chave: microssatélites, ESTs, peneídeos, EC numbers, vias metabólicas

ABSTRACT

Litopenaeus vannamei is known as Pacific white shrimp and is the main species marketed worldwide. Its geographical distribution includes the Pacific coast, ranging from Mexico to Peru. Due to its outstanding economic importance, this species has been farmed and showing great adapting levels to captivity, having been introduced in several countries, including Brazil. However, despite all the concern to properly manage the farming populations, many countries have not had a renewal of their breeding herds because of the risk of introduction of exogenous pathogens, which has increased the degree of inbreeding of these stocks and decreased levels of genetic diversity. To monitor this loss, microsatellite markers or SSRs (Simple Sequence Repeats), from genome arbitrary and expressed regions have been used. In the specific case of SSRs present in expressed regions of the genome (ESTs, Expressed Sequence Tags) or SSRs-ESTs, they allow the access to the genetic variability of populations, and the ESTs markers devoid of SSRs may be related to genes of interest, subsidizing the development of breeding programs based on Marker Assisted Selection (MAS). Moreover, EST-SSRs loci may show an excellent rate of transferability in taxonomically related species, since they are in more conserved regions of the genome. Within this context, this study aimed (i) the validation population of EST-SSR loci isolated through dataming from L. vannamei ESTs database (www.shrimp.ufscar.br), (ii) the genomic annotation of ESTs and EST-SSRs markers (iii) the determination of EC numbers (Enzyme Codes), aiming respectively, (i) the characterization of polymorphic markers (ii) the description of genes and their protein products and (iii) the establishment of information to describe the possible pathways for the penaeid group. Therefore, we tested 32 EST-SSRs loci in PCR reactions. After establishing the best pattern of reaction and subsequent loci genotyping, nine SSRs-ESTs were polymorphic, with allele number ranging from two to 20, levels of observed heterozygosity from 0.32 to 0.86 and average PIC (Polymorphism Information Content) of 0.78. No pair of loci presented in linkage disequilibrium. However, after Bonferroni correction, we found that one of these showed a significant deficit of heterozygotes. The nine polymorphic loci from L.vannamei showed satisfactory amplification in at least one of the seven native species tested: the marine ones Xiphopenaeus kroyeri, Farfantepenaeus brasiliensis, Farfantepenaeus paulensis, Rimapenaeus constrictus and Litopenaeus schmitti and the freshwater ones Macrobrachium amazonicum and Macrobrachium jeskii, being useful also for genetic studies of these species. The genome annotation performed by access in ShEST website (Litopenaeus vannamei EST Genome Project) showed that only three of nine loci have the gene and its protein product described. The other loci showed no matches with any other genomic database available for research. In this work, gene product could be elucidated for 99% of ESTs, being possible to establish 209 EC numbers, highlighting enzymes responsible for xenobiotics metabolism, immunity, energy production, reproduction, oxidative stress, among others. These codes were used for construction of some metabolic pathways present in the penaeid group, contributing for building a wide database of the genome of this important animal group. These data may be applied in genetic improvement programs as well as gene expression studies, such as real-time PCR and microarrays.

Keywords: microsatellites, ESTs, penaeid, EC numbers, metabolic pathways

1. Introdução

1.1 A espécie Litopenaeus vannamei

Os camarões peneídeos são globalmente distribuídos em águas rasas e profundas e ocupam diferentes nichos nas cadeias alimentares. Neste grupo estão incluídas espécies de enorme valor comercial, sendo estas responsáveis por um terço de toda pesca mundial de crustáceos anual (Ma et al., 2009).

O camarão branco do Pacífico, conhecido como *Litopenaeus vannamei* representa a principal espécie de camarão mundialmente comercializada. Seu habitat natural vai desde a costa oriental do oceano Pacífico nas proximidades do México até o Peru. No entanto, a degradação dos mares tornou impossível suprir a demanda mundial através apenas da pesca extrativista de camarões (Perez-Henriquez *et al.*, 2009). Dessa forma, esta espécie foi introduzida em cativeiro em diversos países, incluindo o Brasil, no qual apresentou uma excelente adaptabilidade (Tamayo, 2006).

A espécie *Litopenaeus vannamei* (Figura 1) está classificada taxonomicamente da seguinte forma:

Filo *Arthopoda*

Sub-filo *Crustacea*

Classe Malacostraca

Ordem Decapoda

Família Penaeidae

Gênero Litopenaeus

Espécie Litopenaeus vannamei (Boone, 1932)

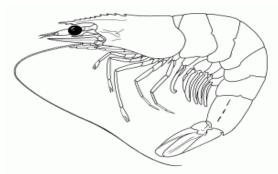


Figura 1: O camarão Litopenaeus vannamei

Os peneídeos apresentam o corpo alongado, segmentado e dividido em três regiões distintas: a cabeça, o tórax e o abdômen, sendo que a cabeça e o tórax estão fundidos na região anterior do corpo e recebem o nome de cefalotórax. Os cinco últimos pares de apêndices do cefalotórax são os responsáveis pela denominação da ordem *Decapoda*. Já os últimos apêndices do abdômen são utilizados para nadar e recebem o nome de pleiópodos (Barbieri & Ostrensky, 2001).

Esta espécie quando em seu ambiente natural realiza o acasalamento e a desova em mar aberto, em regiões de grande profundidade. Os ovos são colocados durante o período noturno e a fecundação é externa, caracterizando um grupo de camarões na qual as fêmeas possuem o télico aberto. Cerca de 12 horas após a fecundação, os náuplios eclodem e utilizam apenas o seu vitelo para sua nutrição. Estas larvas são facilmente atraídas pela luz à superfície do mar, onde se localiza uma grande quantidade de alimento que será importante para a próxima fase larval denominada protozoéa. Após esse estágio, estas se transformam em mísis, fase na qual todo o tórax já é coberto pela carapaça. Posteriormente, surge a pós-larva, fase em que já se encontram todos os apêndices presentes em um camarão adulto. Na natureza, ovos e larvas desta espécie são planctônicos e o animal juvenil é bentônico e vive nas regiões costeiras. Quando adultos, migram para mar aberto para iniciar o ciclo de reprodução que ocorre quando o camarão atinge cerca de 35 gramas, próximo aos 10 meses de vida (Barbieri & Ostrensky, 2001).

A principal diferença dentre os decápodas está na forma em como ocorre a fecundação, se em télico aberto ou fechado. O télico é a estrutura reprodutiva externa das fêmeas e a sua morfologia determina o quanto eficiente será a reprodução. Quando a espécie possui télico fechado, a fecundação apenas pode ocorrer logo após a muda que é a época em que o exoesqueleto ainda não está completamente formado. Quando se trata de um télico aberto, o acasalamento acontece pouco antes da muda (Maggioni *et al.*, 2001). Estudos taxonômicos costumavam utilizar o tipo de abertura de télico como critério de classificação para o grupo dos peneídeos. Hoje já se sabe que este critério está em desuso devido ao fato destas características não serem suficientemente esclarecedoras para distinguir as diversas espécies desta família (Baldwin *et al.*, 1998).

1.2. A carcinicultura

Em meados dos anos 80, a atividade de cultivo de crustáceos (carcinicultura), mas especificamente de camarões marinhos, atingiu um crescimento exponencial, se tornando uma das atividades mais rentáveis na história moderna da aqüicultura (Tu et al., 2010). O sucesso de cultivo da espécie *L. vannamei* em particular, se deveu ao fato desta suportar altas densidades populacionais, diversos níveis de salinidade e baixas concentrações de oxigênio, além de ser de fácil reprodução em cativeiro (Freitas et al., 2007a). Um excelente exemplo que demonstra esta expansão no cultivo de *L. vannamei* é a produção no México, que alcançou cerca de 100.000 toneladas entre os anos de 2006 e 2009 (Perez-Henriquez et. al, 2009).

No Brasil, o ápice do cultivo desta espécie se deu em 2003 quando o país atingiu as maiores taxas de produtividade mundial, produzindo cerca de 90.000 toneladas/ano. Apesar de sucessivas quedas na produção de camarão em 2004, esta permaneceu estável de 2005 a 2009, com um

aumento significativo em 2010, alcançando 80.000 toneladas/ano de camarões produzidos no Brasil. As exportações brasileiras de camarão vem decrescendo ao longo dos anos, sendo uma justificativa plausível para isso o fato de quase a totalidade (98% no ano de 2010) do camarão cultivado no Brasil ser destinado ao mercado interno, o que reforça a idéia da necessidade de mais investimentos nesse setor a fim de suprir a demanda dos próximos anos. Outro fator responsável pela queda nas exportações deve-se ainda a existência de patógenos na carcinicultura brasileira e a insegurança por parte dos países importadores referente aos aspectos sanitários (ABCC, 2010).

No cativeiro, o cultivo de peneídeos é composto basicamente por três etapas: a fase de engorda em que os animais são armazenados em tanques de três a quatro meses ou até que atinjam 16 gramas, sendo alimentados exclusivamente com ração; a fase intermediária cujo principal objetivo é o crescimento do camarão, devendo-se diminuir a densidade de camarões/m² para tal fim, até que atinjam cerca de 25 gramas após três meses; e a fase final que é caracterizada pela última etapa de crescimento dos melhores reprodutores, com a densidade dos estoques ainda menor e os animais permanecendo nesta fase até atingirem cerca de 35 gramas e alcançarem a maturidade sexual. Dessa forma, os melhores reprodutores são escolhidos baseando-se nas antenas (devem estar intactas), nas ampolas espermáticas dos machos, no hepatopâncreas e na musculatura abdominal que deve apresentar-se translúcida (Barbieri & Ostrensky, 2001).

A diminuição da densidade dos plantéis é realizada apenas em cultivos extensivos ou semiintensivos, embora os tipos de cultivo para *L. vannamei* possam atingir até a categoria de superintensivo. Neste método, cerca de 300 a 450 camarões juvenis com 0,5 a 2 gramas juvenis por m²
são estocados em estufas, sem haver troca de água, apenas a reposição da porção que evapora. As
taxas de sobrevivência nesta fase podem chegar a 91%, caracterizando a grande flexibilidade desta
espécie nas condições de cativeiro (FAO, 2011).

O cultivo intensivo é caracterizado por altas densidades populacionais, estocando de 25 -40 camarões/m² em tanques pequenos e relativamente fundos (2000 a 5000 m² e profundidade de 1,2 a 1,5 m), com troca de água e oxigenação da mesma por bombas e utilização de rações artificiais (Tu et al., 2008).

Embora a espécie apresente uma excelente adaptabilidade, o gradiente de temperatura ideal para *L. vannamei* é em torno de 20 a 30°C, uma vez que desvios deste intervalo confortável tornam a fisiologia do camarão mais sensível, como por exemplo, sob temperaturas menores que 20°C e baixas salinidades a sobrevivência do animal torna-se inviável (Zhang *et al.*, 2009). Outra questão diz respeito à utilização de drogas e produtos químicos aplicados nos tanques durante o cultivo, como antibióticos, pesticidas, desinfetantes que além de exigirem um maior gasto energético do animal para metabolizar esses compostos ainda podem ser nocivos ao seu crescimento (Tu *et al.*, 2010). Hoje já se que tais fatores afetam o mecanismo de imunidade dos crustáceos, tornando-os mais susceptíveis aos patógenos (Hu *et al.*, 2008). Praticamente todos esses compostos são metabolizados pelo complexo do citocromo P450 (CYP) das células basicamente do hepatopâncreas dos decápodas, uma vez que este órgão análogo aos rins e fígado dos vertebrados é o responsável pela desintoxicação desse grupo (Rewitz *et al.*, 2006; Baldwin *et al.*, 2009).

O complexo do CYP é o principal agente no metabolismo de xenobióticos lipofílicos como drogas, pesticidas e hidrocarbonetos policíclicos aromáticos em geral, além da produção de hormônios esteróides, moléculas sinalizadoras e feromônios. A palavra xenobiótico deriva-se do grego *xenos* que significa estranho, tratando-se de compostos externos que normalmente não são produzidos ou encontrados em determinado organismo, como pesticidas. As enzimas deste complexo catalisam uma variedade de reações como hidroxilações e oxidações, sendo caracterizadas pela sua atividade principal de monooxigenases, incorporando um átomo de

dioxigênio (O_2) aos substratos. Estas enzimas podem estar presentes nas mitocôndrias (classe I) ou na membrana do retículo endoplasmático (classe II) (Rewitz *et al.*, 2006).

Outro aspecto relevante relativo às técnicas de manejo utilizadas em cativeiro é a preocupação constante para evitar a perda de variabilidade genética dos plantéis, decorrente do cruzamento entre estoques reprodutores mantidos em sua maioria sem a introdução regular de novos indivíduos selvagens (Freitas *et al.*, 2007b; Wang *et al.*, 2005). Para monitorar os níveis de diversidade genética dos plantéis e das populações comerciais, muitos estudos vêm utilizando diversos tipos de marcadores moleculares (Freitas *et al.*, 2002, Freitas *et al.*, 2007a; Freitas *et al.*, 2007b), os quais em alguns casos, também estão sendo empregados com sucesso em programas de mapeamento e cruzamentos controlados de camarões peneídeos (Liu *et al.*, 2004).

1.3 Os marcadores microssatélites e as ESTs (Expressed Sequence Tags)

As sequências microssatélites ou SSRs (*Simple Sequence Repeats*) consistem em sequências de um a seis pares de bases que se repetem em *tandem* no genoma de uma espécie (Thiel *et al.*, 2003). São co-dominantes e encontram-se amplamente distribuídas no genoma de eucariotos, possuindo o mais elevado PIC (*Polymorphism Information Content*) dentre os marcadores moleculares conhecidos. O PIC avalia quanto um marcador molecular pode detectar polimorfismo em uma população e sabe-se que quanto maior o número de alelos e mais equivalente for a distribuição das freqüências desses alelos, maior será o PIC (Liu *et al.*, 2004). Locos microssatélites são muito utilizados também em estudos populacionais que visam detectar efeitos recentes de deriva e gargalo, devido a sua rápida taxa de evolução, a qual varia de 10⁻⁶ a 10⁻² por loco/ geração (Christiakov *et al.*, 2006).

Estes polimorfismos são decorrentes principalmente de deslizes da DNA polimerase (slippage) durante a replicação do DNA, o que pode acarretar a adição ou subtração de repetições encontradas para os motifs dos microssatélites (Li et al., 2008). SSRs podem estar tanto em regiões arbitrárias do genoma quanto em regiões expressas ou ESTs (Expressed Sequence Tags). Nestes casos são conhecidos como SSR-EST, mostrando-se extremamente eficientes para identificação de polimorfismos gênicos e estudos de metabolismo, genômica comparada, mapeamento genéticos e identificação de QTLs (Quantitative Trait Loci), auxiliando o desenvolvimento de programas de seleção assistida por marcadores ou MAS (Marked Assisted Selection) (Liu et al., 2004; Perez et al., 2005; Cristiakov et al., 2006).

A identificação de SSRs em regiões transcritas pode se dar através do processo de "mineração" de dados (datamining) em bancos de ESTs disponíveis para análise. O desenvolvimento de diversos Projetos Genoma tem possibilitado a caracterização de SSRs-ESTs para diferentes espécies, através da análise in silico de bancos de dados, que são submetidos à pesquisa, utilizando-se diferentes recursos de bioinformática (Kantety et al., 2002). Um exemplo disso é o Projeto Genoma do camarão marinho *L. vannamei* (ShEST), que teve como objetivo seqüenciar ESTs do genoma desta espécie, para que estas servissem de base para a identificação de um conjunto expressivo de marcadores moleculares e genes de interesse que pudessem auxiliar estudos genéticos neste grupo animal (http://www.shrimp.ufscar.br). Esta base de dados do Projeto ShEST tem servido para estudos de caracterização de SSRs-ESTs, de diferentes genes existentes e suas respectivas funções. O processo de anotação e validação desses locos tem demonstrado que esta estratégia pode fornecer uma quantidade significativa de locos microssatélites potencialmente úteis para estudos do genoma da espécie em questão e de outras espécies relacionadas (Freitas et al., 2007a).

1.4 As reações de amplificação heteróloga

A amplificação de locos SSRs-ESTs heterólogos tem se tornado cada vez mais comum nos estudos genético-populacionais, uma vez que marcas caracterizadas para uma determinada espécie possuem grande potencial de uso em espécies taxonomicamente próximas (Wang *et al.*, 2005). Em camarões peneídeos, por exemplo, altas taxas de transferabilidade foram observadas para locos SSR-EST desenvolvidos para *L. vannamei*. Perez *et al.* (2005), observaram que cerca de 69% dos locos microssatélites descritos para esta espécie amplificaram em *Litopenaeus stylirostris* e 21% na espécie *Rimapenaeus birdy*, sendo evidenciada maior eficiência para a primeira espécie, provavelmente por esta pertencer ao mesmo gênero. Outro exemplo descrito por Wang *et al.* (2005) mostraram que cinco de nove locos desenvolvidos para *Fenneropenaeus chinensis* amplificaram em espécies relacionadas de camarão.

Esta boa eficiência de reações heterólogas para microssatélites de sequências expressas deve-se ao fato das regiões flanqueadoras aos locos SSRs serem mais conservadas por estarem sob maior pressão de seleção, uma vez que em geral representaram um papel importante na viabilidade do organismo (Bouck et al., 2007). Tal característica faz com que a descrição de locos microssatélites seja simplificada em espécies que possuem uma base de ESTs para pesquisa, uma vez que não é necessária a construção de bibliotecas genômicas de uma espécie alvo para esta finalidade (Freitas et al.,2007b). Análises in silico realizadas em conjuntos de ESTs disponíveis na base de dados do NCBI (National Center for Biotechnology Information) de diferentes grupos taxonômicos, como crocodilos e esponjas, demonstram que locos SSRs de genes nucleares e mitocondriais podem ser encontrados com relativa abundância, sendo possível estabelecer pares de primers flanqueadores para muitos deles (Freitas, comunicação pessoal).

A idéia relatada acima também é valida para estudos que se baseiam no estabelecimento de relações confiáveis de ortologia entre as espécies. Partindo do princípio de que cópias do mesmo gene são encontradas em espécies distintas, podendo apresentar igual ou semelhante função, locos SSRs-ESTs e/ou ESTs podem ter sua função elucidada através da anotação genômica, servindo como base para estudos em espécies relacionadas. O conhecimento de dados gênicos, a filogenia molecular e a ortologia se tornaram componentes essenciais para os estudos de larga escala de genomas, incluindo análises de expressão gênica, vias metabólicas e construção de árvores (Kuzniar et. al, 2008).

1.5. Projeto ShEST

O Projeto Genoma do camarão marinho *L. vannamei* (ShEST), com núcleo na Universidade Federal de São Carlos (UFSCar) foi concluído no início de 2006 e teve como objetivo seqüenciar regiões expressas (*Expressed Sequence Tags*) do genoma de *L. vannamei*, para que estas servissem como base para inúmeros estudos, incluindo a identificação de um conjunto expressivo de marcadores moleculares e de genes de interesse que pudessem auxiliar os estudos genéticos neste importante grupo animal. Desde então, análises *in silico*, realizadas no banco EST do Projeto ShEST vêm sendo realizados, levantando informações úteis para estudos da espécie cultivada *L. vannamei* e para inúmeras outras espécies de peneídeos nativas à costa brasileira. Dentre estes estudos podemos destacar a caracterização de marcas SSRs, SNPs e de diferentes genes existentes, suas proteínas regulatórias e suas funções (http://www.shrimp.ufscar.br).

Dentro deste projeto, centenas de marcas SSR foram identificadas através de análise de mineração de dados (*datamining*), utilizando-se diferentes recursos de bioinformática (Freitas, dados não publicados). O processo de anotação e validação dessas seqüências tem demonstrado

que esta estratégia pode fornecer uma quantidade significativa de locos microssatélites e SNPs potencialmente úteis para inúmeros estudos do genoma da espécie em questão e de outras espécies relacionadas (Freitas et al., submetido à publicação). Além disso, o processo de anotação genômica e a identificação de genes e seus respectivos produtos protéicos, somado ao estabelecimento das prováveis vias metabólicas, podem também fornecer informações valiosas para a melhor compreensão da funcionabilidade do organismo e manutenção deste importante grupo animal, contribuindo não somente com o desenvolvimento de ferramentas que subsidiem os estudos genéticos aplicados à aquicultura de espécies comercialmente exploradas, mas também estudos conservacionistas de espécies nativas de peneídeos sobreexplotadas (http://www.shrimp.ufscar.br; Galetti, comunicação pessoal).

1.6. A anotação genômica

No caso específico da anotação genômica, esta consiste na elucidação do produto protéico de um gene e ocorre em três etapas principais: (i) a de nucleotídeos, que inclui a realização de blasts (Basic Local Alignment Search Tool) entre a sequência de nucleotídeos estudada e aquelas presentes nos bancos de dados (BD); (ii) a de proteínas que procura similaridade entre as sequências analisadas e as de outras espécies possuidoras de proteínas semelhantes já descritas e também disponíveis para pesquisa; e (iii) a anotação funcional que tem o objetivo maior de relacionar a proteína ao seu papel biológico, tendo como principal fonte sequências cuja função já se encontra bem conhecida em outras espécies (Stein, 2001; Louis et al., 2001).

O processo de anotação pode ser divido em quatro dimensões que são caracterizadas brevemente a seguir: identificação de genes e análise de proteínas com função elucidada ou não (primeira); especificação dos componentes celulares e suas interações, sendo que o delineamento

das interações químicas e físicas com a célula possibilita a construção de redes enzimáticas ou *networks* (segunda); elucidação de conhecimentos sobre arranjos cromossômicos, componentes e ciclos celulares (terceira) e finalmente a dimensão que se foca em estudar as mudanças ocorridas nas sequências do genoma durante a adaptação evolutiva (quatro) (Reed *et al.*, 2006). Aqui é dada maior ênfase às primeira e segunda dimensões.

Na anotação de uma dimensão apenas é determinada a função de determinado gene com o auxilio de diversas ferramentas de bioinformática, como as de procura por sequências homólogas tipo BLAST e FASTA. Essa anotação é o primeiro passo para a reconstrução de um genoma, uma vez que fornece diversas enzimas e proteínas de transporte importantes. Já na anotação de duas dimensões são adicionadas informações como componentes celulares e suas interações, como por exemplo, a construção de uma *network* metabólica que une dados genéticos e bioquímicos com o objetivo central de definir as principais transformações químicas que acontecem na célula (Reed *et al*, 2006).

Diversos bancos de dados disponibilizam informações bioquímicas sobre as proteínas, em especial as enzimas, como o ExPASy *Proteomics Server* (expasy.org), o KEGG (*Kyoto Encyclopedia of Genes and Genomes* – http://www.genome.jp/kegg/) e o BRENDA (www.brenda-enzymes.info), fornecendo mais detalhes sobre as atividades enzimáticas. Algumas informações são mais confiáveis do que outras, fornecendo diferentes dados das reações bioquímicas, sendo que as baseadas nas atividades enzimáticas tendem a apresentar maior confiança em relação àquelas baseadas somente em similaridade de sequências (Reed *et al.*, 2006).

Dentre as informações importantes obtidas através da anotação de proteínas em BDs como o *SwissProt* (http://expasy.org/sprot/) estão os códigos enzimáticos das enzimas também conhecidos como *EC numbers (Enzyme Commission*). Estes apresentam um papel essencial na representação computacional das reações enzimáticas em uma *network*, representando basicamente uma

classificação hierárquica de reações. Os três primeiros dígitos de cada *EC number* representam o tipo de reação química realizada pela enzima (oxiredutase, liase, etc.) com mais algumas possíveis moléculas que possam vir a interagir, como co-fatores. O quarto dígito corresponde a um substrato específico ou a um número de série (Barrett *et al.*, 1992 *apud* Yamanishi *et al.*, 2009).

Hoje já se sabe que as similaridades nas sequências não são suficientes para se inferir sobre a similaridade também na estrutura e função de uma proteína ou enzima (Yamanishi *et al.*, 2009), sendo assim, os valores de *score* e *e-value* mostram-se indicadores mais confiáveis de níveis de similaridades estruturais do que o valor de identidade alcançado pela comparação de sequências par a par (Rost, 2002).

Os valores de *score* são caracterizados pela porcentagem de similaridade entre a sequência estudada (*query*) e aquelas presentes nos BD online (*subject*). Logo quanto maior este número mais confiável é o valor de identidade, sendo que esta pode ser definida como o valor em porcentagem do número de acertos (*matchs*) em relação ao tamanho total do alinhamento (identidade). Já o *evalue* é tido como a chance de que o alinhamento gerado tenha sido ao acaso, ou seja, sem significado biológico algum. Desta forma, valores de *e-value* tendendo a zero são os mais confiáveis (Manual de Anotação, http://www.lge.ibi.unicamp.br/manuais/manual_anota_cp.htm). Nota-se que mesmo entre *blasts* que apresentaram valores de *e-value* muito baixos, é improvável que os quatro dígitos dos *EC numbers* das enzimas coincidam devido à grande especificidade destas (Rost, 2002). Dessa forma, embora as sequências descritas possam corresponder à mesma enzima, estas não possuem *EC numbers* idênticos, uma vez que o último dígito difere entre ambas. Este último algarismo corresponde a particularidades da natureza enzimática, como, por exemplo, um substrato específico. Assim, tem-se a mesma enzima com *EC numbers*, especificidades e até mesmo estruturas distintas.

Em muitos BD públicos online os EC numbers são normalmente utilizados como identificadores de enzimas nos mapas de vias metabólicas, o que torna possível relacionar estas às reações químicas nas networks (Kanehida et al., 2008 apud Yamanishi et al., 2009). O primeiro dígito do EC number caracteriza o tipo de atividade enzimática desempenhada, seguindo a seguinte classificação: oxidoredutases (1.-.-), transferases (2.-.-.), hidrolases (3.-.-.), liases (4.-.-.), isomerases (5.-.-.) e ligases (6.-.-.). O segundo dígito especifica o substrato, o grupo transferido e o tipo de ligação. Os terceiros e quartos dígitos correspondem a maiores detalhes sobre especificidades (Rost, 2002; Banco de Dados de Estruturas de Enzimas EC-PDB (http://www.ebi.ac.uk/thornton-srv/databases/enzymes/).

No entanto, apesar da relevante importância dos códigos enzimáticos, enzimas importantes e constituintes de diversas vias não possuem um *EC* estabelecido devido ao princípio de que apenas enzimas com a existência de atividade catalítica confirmada podem receber *EC numbers* (Yamanishi *et al.*, 2009; Rost, 2002). Quando se considera duas enzimas com *EC numbers* idênticos, a sequência destas é muito mais similar do que suas estruturas, uma vez que se sabe que enzimas com estruturas semelhantes geralmente diferem em detalhes de suas funções. Um exemplo disso é o fato de que podem ocorrer discrepâncias na especificidade, substrato e/ou co-fator de enzimas com *EC numbers* idênticos (Aloy *et al.*, 2001; Reed, 2006; Claudel-Renard *et al.*, 2003).

Outro dado importante a ser extraído dos BD é o domínio das proteínas, ou seja, a qual família estas pertencem ou apresentam função semelhante. Essa inferência é baseada na idéia de que genes com sequências semelhantes possuem produtos protéicos também semelhantes decorrentes do princípio de ancestralidade e da hipótese destas linhagens terem divergido ao longo do tempo evolutivo, resultando em especiação e duplicações gênicas (Claudel-Renard *et al.*, 2003).

Porém, com o seqüenciamento de genomas completos e o conhecimento de sequências de um número cada vez maior de espécies, notou-se que o repertório de famílias protéicas é maior do que imaginado anteriormente e este varia significativamente entre os organismos como resultado de diferentes taxas e modos de evolução. Com isso, baseando-se nas similaridades e diferenças das funções protéicas pode-se realizar a inferência sobre proteínas desconhecidas anteriormente (Aloy *et al.*, 2001; Nahum *et al.*, 2009).

Um dos principais BD utilizados atualmente tem sido o KEGG que se caracteriza por unir informações genômicas às de ordem funcional. As informações genômicas são estocadas em uma base de dados de genes (GENES) que é um catálogo sobre todos os genomas parciais e completamente sequenciados até o momento. Já as informações sobre as funções destes genes estão em um banco de dados de vias metabólicas (PATHWAY) que contem as representações gráficas de processos celulares, tais como metabolismo. A união destes dois conjuntos é vista pela forma de *networks* protéicas ou enzimáticas que possuem *EC numbers* conectando-os. Quando os genes são identificados, estes são rearranjados de acordo com a similaridade das sequências, os *EC numbers* são determinados e as vias metabólicas são construídas com o auxílio de ferramentas computacionais, correlacionando genes e enzimas. Para isso, os softwares se baseiam nas relações de ortologia e na maior conservação das sequências enzimáticas, devido à grande pressão de seleção a qual estão submetidas por serem de suma importância para a sobrevivência do indivíduo (Kanehisa & Goto, 2000).

As proteínas cuja função é a de transporte são caracterizadas por possuírem um *TC number* (*Transport Commission*). Este é utilizado para classificar estas proteínas de acordo com suas funções e é constituído de cinco dígitos correspondentes a (i) classe transportadora, como transmembrana ou transporte ativo dentre outros (primeiro dígito); (ii) subclasse de transporte como a energia utilizada no transporte (segundo dígito); (iii) família transportadora (terceiro dígito); (iv) subfamília transportadora (quarto dígito) e (v) o transporte por si só com sua respectiva polaridade, especificidade e mecanismo de ação (quinto dígito). Algarismos nove como últimos

dígitos de *EC* e *TC numbers* significam que há alguma informação não disponível ou incompleta (Saier & Barabote, 2006).

Apesar dos avanços nos estudos de anotação genômica, ainda hoje não está claro se existe alguma relação entre organismos com proteínas semelhantes possuírem capacidades metabólicas semelhantes. Dessa forma, esta relação torna-se possível apenas levando-se em conta as condições filogenéticas que podem auxiliar a conectar a informação genômica à diversidade fenotípica, realçando as características metabólicas dos organismos. Anotações genômicas baseadas em árvores filogenéticas tornam-se mais confiáveis na identificação da função dos *clusters* protéicos, representando a conservação da função da proteína, co-fator e substrato, por exemplo. Essas abordagens garantem maior confiabilidade aos resultados, embora melhorias nesta área ainda sejam necessárias (Nahum *et al.*, 2009).

2. Objetivos

Diante da introdução exposta anteriormente, o presente trabalho teve como objetivos:

- 2.1. Realizar a validação populacional de locos SSRs-ESTs na espécie exótica *Litopenaeus* vannamei e avaliar o potencial de uso dessas marcas nas espécies nativas marinhas *Xiphopenaeus* kroyeri, Farfantepenaeus brasiliensis, Litopenaeus schmitti, Farfantepenaeus paulensis e Rimapenaeus constrictus, disponibilizando um maior número de marcadores microssatélites eficientes para os estudos genético-populacionais destas espécies.
- 2.2. Realizar a anotação genômica em locos SSR-ESTs e ESTs, a partir de pesquisa eletrônica realizada em diferentes bancos de dados, disponíveis na página de anotação do Projeto Genoma EST de *Litopenaeus vannamei*.

2.3 Estabelecer os códigos de identificação das enzimas (*EC numbers*), através da utilização das informações obtidas decorrentes do processo de anotação genômica para determinação de algumas das possíveis vias metabólicas presentes no grupo dos camarões

3. Justificativas

O Projeto Genoma do camarão marinho *L. vannamei* (ShEST), com núcleo na Universidade Federal de São Carlos, teve como objetivo seqüenciar regiões expressas do DNA ou ESTs que sirvam como base para a identificação de marcadores moleculares e caracterização dos diversos genes e proteínas presentes no grupo dos camarões. Cerca de 45 mil sequências expressas foram disponibilizadas para análise, sendo que um estudo prévio de *datamining* caracterizou centenas de locos SSRs-ESTs utilizando diferentes ferramentas computacionais (Freitas *et al.*, dados não publicados). A etapa posterior de anotação e validação populacional destes locos é extremamente importante para a descrição do potencial de uso dessas marcas para estudos que visem à identificação de genes de interesse e o estudo de polimorfismos em espécies de camarões cultivados, mas também caracterizando a estrutura genética de populações naturais de peneídeos. Além disso, o processo de anotação genômica de marcas ESTs que não contenham SSRs em sua composição pode auxiliar ambas as abordagens acima mencionadas, contribuindo efetivamente para descrição de importantes genes e vias metabólicas presentes no grupo dos camarões.

4. Metodologia

4.1. Obtenção das Amostras

As amostras de DNA utilizadas neste trabalho foram obtidas do Banco de DNA do Laboratório de Biodiversidade Molecular e Conservação do Departamento de Genética e Evolução da Universidade Federal de São Carlos (São Carlos, SP). Foram utilizadas 30 amostras de camarões *L. vannamei*, pertencentes a diversas populações cativas de diferentes centros de cultivo do país paa cada loco analisado. Três amostras de cada uma das espécies nativas (*Xiphopenaeus kroyeri, Farfantepenaeus brasiliensis, Litopenaeus schmitti, Farfantepenaeus paulensis, Rimapenaeus constrictus, Macrobrachium amazonicum e Macrobrachium jelskii*) também foram utilizadas para avaliação da taxa de transferabilidade de locos SSR-EST entre espécies relacionadas.

A quantificação das amostras foi realizada em gel de agarose 0,8%, imerso em tampão TBE (1x) (Tris-Base, Ácido Bórico, EDTA), juntamente com brometo de etídeo (0,5μg/ml), sob uma condição de corrida de 1 hora a 100 volts. Como parâmetro da quantificação, foi utilizado o marcador de peso molecular *Low DNA Mass Ladder* (Invitrogen) que evidencia bandas de 200, 120, 80, 40, 20 e 10ng de DNA. Após a corrida, o gel de agarose contendo o DNA impregnado de brometo de etídeo foi levado ao Transluminador e sob luz ultravioleta a intensidade das bandas do marcador e do DNA em questão foi comparada, determinando-se assim a concentração do mesmo. Seguida à quantificação, alíquotas de 50ng foram confeccionadas e estocadas a -20°C para serem utilizadas nas reações de PCR para validação populacional das SSRs-ESTs.

4.2. Validação dos locos SSRs-ESTs

Os marcadores SSR-ESTs utilizados no presente trabalho foram obtidos da biblioteca genômica de cDNA de *L. vannamei*, construídas a partir de amostras de hepatopâncreas, músculo, pedúnculo ocular, larvas e ovos. Os fragmentos clonados foram seqüenciados, clusterizados e analisados através da utilização de um *pipeline* especificamente desenvolvido para descrição de SSRs-ESTs (Freitas, comunicação pessoal). Desta forma, os vetores foram removidos, os microssatélites identificados e os respectivos *primers* desenhados, tornando possível a validação dos ESTs contendo os marcadores SSRs.

Para tal, as amostras de DNA de 50ng foram utilizadas em reações de PCR de touchdown de temperatura, para determinar inicialmente o intervalo de temperatura para a amplificação dos locos, sendo realizadas alterações no ciclo da reação e nas concentrações dos reagentes quando necessário. Os pares de primers utilizados para amplificação dos 32 locos SSRs-ESTs aqui testados foram obtidos do BDde SSRs-ESTs (acesso restrito) do Projeto ShEST (http://www.shrimp.ufscar.br).

Para as reações de PCR foram utilizados 1,25mM de dNTPs, 1x *Taq Buffer*, 50ng de DNA, MgCl₂ (1,5 ou 2mM), *Taq* Polimerase (1U ou 2U) e 2 pmoles do *primer* contendo a cauda M13 (TGT AAA ACG ACG GCC AGT) em sua extremidade 5′, 8 pmoles do *primer* sem a cauda e 8 pmoles do *primer* M13 em um volume final de 10μl de reação. Para determinar o padrão de amplificação ideal foram realizados testes de *touchdown* de temperatura (48 a 56°C) em ciclos que se constituíram das fases de desnaturação, anelamento e extensão de acordo com a tabela 1.

Tabela 1: Ciclo padrão nos testes de *touchdown* de temperatura e nas validações no termociclador *MJ Research* com o *primer* M13.

Steps	Ciclo da Reação
Step 1	5 minutos à 95°C
Step 2	3 ciclos de
Step 3	30 Segundos à 94°C
Step 4	45 segundos a cada TM média (48 a 56°C)
Step 5	45 Segundos à 72°C
()	()
Step30	20 ciclos de
Step31	30 Segundos à 94°C
Step32	45 segundos à TM do <i>primer</i> M13 (53°C)
Step33	45 Segundos à 72°C
Step34	15 minutos a 72°C
Step35	24h a 4°C

Os locos que amplificaram foram novamente submetidos a reações de PCR utilizando o oligonucleotídeo (*primer forward* ou *reverse*) que continha em sua extremidade 5' a sequência de 18 pares de bases complementar a sequência universal M13, o oligonucleotídeo sem a cauda e o *primer* M13, agora marcado com um fluoróforo (FAM, NED, HEX ou TET *Applied Biosystems Inc.*), seguindo protocolo descrito por Schuelke (2000).

A visualização dos fragmentos gerados pelas reações de PCR nos testes de validação populacional utilizando-se o *primer* M13 foi realizada em gel de agarose 2% nas mesmas condições de corrida já descritas. Para se estimar o tamanho aproximado dos fragmentos observados, foi utilizado o marcador de peso molecular 1kb *Plus* da *Invitrogen* que evidencia bandas de 100 a 1200 pb com o intervalo de 100 pb entre elas. Os locos supostamente polimórficos foram submetidos à genotipagem em seqüenciador *MegaBACE 1000 DNA Analysis System* de 96 capilares (*Amersham Biosciences*) e analisados no *software Fragment Profiler* versão 1.2 de mesmo fabricante.

As análises estatísticas para os locos que confirmaram o polimorfismo foram realizadas utilizando-se o *software Genepop*, versão 4.0, disponível na *website* http://wbiomed.curtin.edu.au/genepop. Foram determinadas as freqüências alélicas e genotípicas,

além do número de heterozigotos e homozigotos esperados e observados. Os níveis de heterozigozidade foram determinados através da relação entre número de heterozigotos e o número total de indivíduos.

A existência de equilíbrio de Hardy-Weinberg (EHW) foi calculada através do Teste Exato (Raymond & Rousset, 1995) e a presença de desequilíbrio de ligação também foi estimada com o auxilio da correção següencial de Bonferroni (Rice, 1989), realizada para avaliar a significância dos resultados encontrados. As análises estatísticas para evidenciar stutters e/ou a presença de alelos nulos foram realizadas com o auxílio do algoritmo Brookfield do software Micro-Checker al.. disponível (Oosterhout et 2004), versão 2.2.3, na website http://www.microchecker.hull.ac.uk/DownloadMC.jsp. O PIC (Polymorphism Information Content) dos locos polimórficos foi calculado baseando-se na equação de Thiel et al. (2003), na qual k é o número total de alelos detectados para o respectivo loco microssatélite e Pi é a freqüência encontrada para os alelos.

$$PIC = 1 - \sum_{i=1}^{k} P_i^2$$

4.3. Anotação Genômica

A anotação genômica foi realizada na página de anotação do Projeto ShEST, desenvolvida pelo Laboratório de Genômica e Expressão da Unicamp (http://www.lge.ibi.unicamp.br/camarao). Todas as sequências a serem anotadas foram disponibilizadas em formato FASTA e submetidas automaticamente a *blasts* que compararam nucleotídeos contra banco de dados de nucleotídeos (*blast* N) e *blasts* que compararam as seis fases de leitura da sequência de nucleotídeos (*query*) contra BD de proteínas (*blast* X).

Na determinação do produto gênico foram levados em consideração valores de *e-value* menores que 10⁻⁵ e altos valores de *score* de todos os *blasts* automáticos, além de símbolo e função gênicos, frame de leitura, dentre outros. Com estes valores estabelecidos, acessou-se o BD do *CD-SEARCH* (http://www.expasy.ch/sprot/) com a finalidade de se obter o domínio do gene, baseando-se nos melhores valores de *e-value* e *score*. O próximo passo foi acessar o BD do *Swissprot* (http://www.expasy.ch/sprot/), BD de proteínas curado, que apresenta alto nível de anotação, mínimo de redundância e alto grau de integração com outros BD (Manual de Anotação, http://www.lge.ibi.unicamp.br/manuais/manual_anota_cp.htm). Informações relativas aos produtos derivados dos consensos desse *blast* e dos realizados anteriormente nos BD dos *blasts* X assim como *EC numbers* (enzimas), *TC number* (proteínas de transporte), função, símbolo do gene e organismo homólogo foram anotadas nesta etapa.

Através do *Swissprot* foi acessado o BD GO (*Gene Ontology*, http://www.geneontology.org/), no qual foram obtidas informações como componente celular, função molecular e processo biológico. Ao final, os resultados dos *blasts N*, X, *Swissprot* e *CD-SEARCH* foram comparados entre si, a fim de verificar a compatibilidade dos dados obtidos, antes de elucidar o produto gênico e finalizar a anotação genômica. Quando os dados não foram suficientemente esclarecedores, *blasts* em outros BD, como *NCBI-gen* (www.ncbi.nlm.nih.gov) e *KEGG* (*Kyoto Encyclopedia of Genes and Genomes* - http://www.genome.jp/kegg/pathway.html), foram realizados. Em casos em que não foi possível certificar-se sobre o produto codificado pelo gene, este foi definido como proteína expressa, a qual provavelmente corresponde a um produto protéico de um gene ainda não descrito e/ou sem função conhecida.

4.4. Estabelecimento das vias metabólicas

Após a etapa de anotação e determinação dos *EC numbers* de cada produto gênico enzimático, todas as enzimas que possuíram códigos confiáveis, foram submetidas à análise nos bancos de dados *BOCD* (*BioCyc Open Chemical Database*, http://biocyc.org/open-compounds.shtml) e *KEGG*. Esta análise foi realizada com o auxílio do software de visualização rápida de rotas metabólicas PAICE versão 2.80, disponível em ambiente *WEB* sob licença pública GPL v3 no sítio http://sourceforge.net/projects/paice/.

Através dos códigos de identificação enzimáticos obtidos no processo de anotação genômica o software PAICE realizou *blasts* no BD do KEGG e identificou as respectivas vias metabólicas aos quais estes *EC numbers* pertencem. Assim, diversas rotas apareceram repetidas vezes no processo de busca, toda vez que possuíam *EC numbers* em comum. Ao final da análise, no entanto, o número de vias metabólicas únicas foi fornecido e as representações gráficas dessas vias juntamente com os seus códigos enzimáticos explicitados foram geradas.

Para disponibilização das imagens gráficas obtidas foi utilizada uma tabela de *input*, contendo informações relativas à *EC numbers* e dados controle de experimentos baseados em valores de expressão gênica descritos para outros organismos (disponível pelo software), uma vez que no presente trabalho, dados experimentais de expressão gênica não foram produzidos.

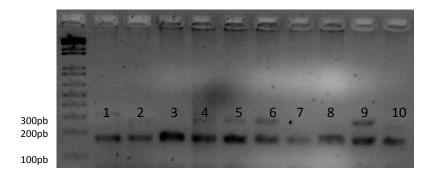
O *output* dos dados gerou imagens das vias com *EC numbers* diferenciados por cores, como por exemplo, verde para indução e vermelho para supressão de um gene em uma determinada via. Apenas as vias relevantes e/ou representadas por um mínimo de *EC numbers* ressaltados com cores foram selecionados.

As respectivas enzimas foram classificadas de acordo com o primeiro dígito de seu *EC* number (variável de 1 a 6), baseando-se no BD de Estrutura de Enzimas (*Enzyme Structures*

Database) ou EC→PDB disponível em WEB com acesso em http://www.ebi.ac.uk/thornton-srv/databases/enzymes/. Nesta análise, foram obtidas informações relativas à função, substrato enzimático, reação catalisada, entre outras.

5. Resultados e Discussão

5.1. Capitulo 1


5. 1. 1. Reações de PCR utilizando o primer M13

Amostras de DNA pertencentes a 100 indivíduos de diferentes populações cativas de *Litopenaeus vannamei* foram quantificadas e utilizadas nos testes de validação populacional. Inicialmente, para verificar o padrão de amplificação dos locos SSRs-ESTs selecionados, foram realizados testes de *touchdown* de temperatura utilizando amostras de DNA de *L. vannamei* a 50ng.

Do total de 32 locos testados nas reações de PCR (Tabela 2), 10 locos (CL272 NM Contig1, CL315 NM Contig1, Contig 2061, Contig 1309, Contig 2075, Contig 2114, Contig 2533, Contig 871, Contig 2087 e CL320 Contig1) amplificaram apresentando fragmentos de 100 a 300pb, 13 locos (CL1 SH Contig7, CL1 SH Contig 33, CL12 SH Contig 2, Contig 188, Contig 498(b), Contig 81, Contig 162, Contig 182, Contig 1227, Contig 1539, CL 378 Contig1, CL1 Contig 35 e CL1 Contig 24) não amplificaram em nenhuma das temperaturas testadas e nove locos (CL12 SH Contig 3, CL5 RP Contig 1, CL30 RP Contig 1, Contig 67, Contig 1812, Contig 585, CL304 Contig 1, CL1 Contig 13 e CL12 Contig 2) mostraram amplificação em tamanhos divergentes do esperado ou presença de bandas espúrias, sendo eliminados das análises posteriores. Somente os 10 locos que apresentaram padrão de amplificação satisfatório foram submetidos a novas reações de PCR em maior número amostral (20 - 30 indivíduos) para a determinação do grau de polimorfismo.

Após as novas reações de PCR com o *primer* M13 marcado com fluoróforo (FAM, HEX, NED ou TET) para validação populacional e genotipagem dos locos constatou-se que nove destes são polimórficos. São eles: CL272 NM Contig1, CL315 NM Contig1, Contig 2061, Contig 1309, Contig 2075, Contig 2533, Contig 871, Contig 2087 e CL320 Contig1. O loco Contig 2114 foi classificado como monomórfico após genotipagem.

O loco CL272 NM Contig1 (AG)₆ obteve amplificação em 18 indivíduos com fragmentos variando de 100 a 174 pb. O marcador CL315 NM Contig1 (AAG)₅ apresentou bom padrão de amplificação para 25 indivíduos, com tamanho dos fragmentos obtidos variando de 96 a 186 pb. Já Contig 2061 (CT)₁₇ amplificou em 21 indivíduos com alelos variando de 244 a 260 pb e o Contig 1309 (AC)₈...(AC)₆ em 25 amostras, com tamanho de alelos de 155 a 271 pb (Figura 2).

Figura 2: Amplificação do loco Contig 1309 em dez dos 25 indivíduos testados. Fragmentos variam de 150 a 250pb.

Tabela 2: Detalhamento sobre os 32 locos SSRs-ESTs utilizados. Seqüências *forward* e *reverse, motif,* temperatura de *anelling* e padrão de amplificação obtido.

Loci	Primers (5'-3')	Motif	T (°C)	Padrão de amplificação
CL1 SH Contig 7	F: CATGTTCACTTACCTACTGG R: CCTGATTGAAGAACAGAAG	(CAG)6	-	Ausente
CL1 SH Contig 33	F: CTTCTCTGGCTTCTTCTC R: GTTGTATCTGAACTTGAAGG	(CCA)5	-	Ausente
CL272 NM Contig1	F: TCACCTATTCACTCTCAAAC R:AGTGAGTGAGTTAGTGTGTTG	(AC)6	51/53	Presente
CL12 SH Contig2	F:CTCATTATGTCCTTCTTGTC R: TAGAGGAGAGGTGTCTACTG	(TG)6	-	Ausente
CL12 SH Contig3	F: CATTATGTCCTTCTTGTCC R: ATCATTCAGTGGTCACTTC	(TG)6	49-54	Bandas expúrias
CL5 RP Contig1	F: CACACACACATACACATCC R: CCATGTTCACTTACCTACTG	(AG)15(ACAA)11(AC)7	49-54	Bandas expúrias
CL30 RP Contig1	F: AGTAGCAGTAAGGTTAGTTAGC R: CTTACCTCTACGCTCAGAC	(CAG)23(AGC)11	49-54	Bandas expúrias
CL315 NM Contig1	F:CAACACTAAAGGAACACACAC R: CGTTTCTTGTTTTTCTCTGTG	(AAG)5	49-54	Presente
Contig2061	F: TAGTGTTCACAGATTCCG R: GAAGTATCAAACAGAACAGC	(CT)17		Presente
Contig 188	F: TGTTGTCCTTACTGATGG R: ATCATCCTCATCATCCTC	(TGA)5(GAT)6 (GAT)5 (GAC)7	-	Ausente
Contig 498 (b)	F: GGAACCTGTCATCTGAAC R: CTCTCTCATCGATTTTGTC	(TA)6	-	Ausente
Contig1309	F: TCTGCATCTATATTCACACC R: AGTGAGTGAGTCTGTTTGTG	(AC)8(AC)6	49-54	Presente
Contig2075	F: AGAACTGAACTTTGACCTTG R: CATACAATTCCAAGACCG	(TTC)5	49-54	Presente
Contig81	F: AGAATAGAAGGTTCTCGAAG R: ATAGTATGCAGCCTCAAAG	(TC)12(TC)6	-	Ausente
Contig162	F: AAGAAGAGGAAGAAGAG R: TTTCTAGGACAGTTATACGG	(GAG)5	-	Ausente
Contig2114	F: TCCCGAAGAAATAGTCTC R: GAAAGTCCATGACAATCTC	(GT)6	49-54	Presente
Contig182	F: CCTGTTACTTCACCATAAAG R: ACAGGAGAGAACATCTTTG	(AT)6	-	Ausente
Contig67	F: TAACTCGCATTCTATCTCC R: CATACTACTGGTGTTTGAGC	(TC)18(TG)6	49-54	Bandas expúrias
Contig1227	F: CCCAGATTAATGGCTATAC R: ACATGCAGTTTCTTCTCTC	(GAA)5	-	Ausente
Contig1812	F: AACTTGTGTGTTCCATGC R: CGGATGATCTAGAAAGCTC	(TA)6	49-54	Bandas expúrias
Contig2533	F: GATGTGCAGGTGATACTG R: CTGTCAAGTGAGGTAAAGAG	(ATT)5	49-54	Presente
Contig871	F: TCTGAATCTCCTCAGTCAG R: ATTCAGCTAGAGAAAGAAGG	(CT)10(CT)7(CT)8	49-54	Presente
Contig585	F: AGGTTCATACGCCATTAC R: CTTCAGAGCATGTTTCTTC	(GAG)5	49-54	Bandas expúrias
Contig1539	F: CACAGACAGTACATTAGTTCC R: TGTGGATGAGAGTAAACG	(TG)6	-	Ausente
Contig2087	F: TACAACCGCAAGTAGATG R: ATAGAAGAGTATAGGTAGGCG	(CA)6	49-54	Presente
CL378 Contig1	F: CCGTTCTTGTGATTTCTC R:AACTATCTCAAGAGGCAGAG	(TTA)5(CT)6	-	Ausente
CL1Contig35	F:GTGGTTAAGGTACTGAAGG R:TGGTTTAGAGACTTTCTGAG	(GCT)6	-	Ausente
CL320 Contig1	F: ATCACACTAAGCAGGATATG R:ATCACACTAAGCAGGATATG	(TG)10	49-54	Presente
CL1Contig24	F:CAAGAAAGTCGTATCTGAAC Contig24 (TGG)5		-	Ausente
_	R:AGGATTCTAATCCAAGAGAC F:TATCGTCCTCCTCAAAAG		40.54	Daniela ()
CL304Contig1	R: TCATCTAAGTCATCATCGTC	(GAC)5	49-54	Bandas expúrias
CL1Contig13	F: TGTCATAATCCGACTCTTC R:AGTAGGTGTTGATTGTGATG	(CCA)5	49-54	Bandas expúrias
CL12Contig2	F: CTCATTATGTCCTTCTTGTC R: TAGAGGAGAGGTGTCTACTG	(TG)6	49-54	Bandas expúrias

Após o processo de genotipagem do loco Contig 2075 (TTC)₅ foi evidenciada variação alélica de 118 a 292 pb em 21 indivíduos amostrados (Figura 3). Para o Contig 2533 (ATT)₅ obteve-se amplificação em 27 indivíduos com o tamanho dos alelos variando de 117 a 216 pb (Figura 4). O Contig 871 (CT)₁₀...(CT)₇...(CT)₈ amplificou em 25 indivíduos, revelando alelos de 170 a 260 pb de tamanho (Figura 5). O marcador Contig 2087 (CA)₆ demonstrou polimorfismo alélico variando de 154 a 298 pb em 26 indivíduos amostrados e o CL320 Contig1 (TG)₁₀ amplificou fragmentos em 22 indivíduos com alelos variando de 92 a 142 pb (Figura 6). Para todos os locos testados, o gradiente de temperatura utilizado nas reações de *touchdown* foi de 49 a 56° C. Todas as informações descritas aqui encontram-se sumarizadas na tabela 3.

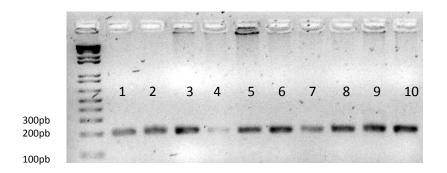


Figura 3: Amplificação do loco Contig 2075 para 21 das 10 amostras testadas. Fragmentos de 200pb.

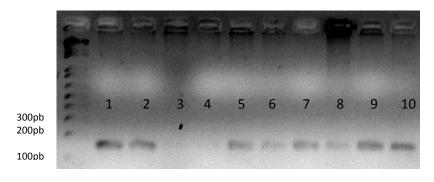


Figura 4: Amplificação do loco Contig 2533 em oito dos 27 indivíduos testados. Fragmentos de 150pb.

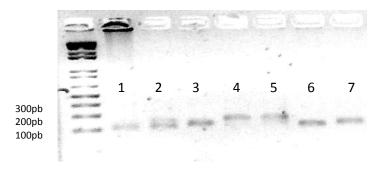


Figura 5: Amplificação de sete dos 25 indivíduos testados para o loco Contig 871. Fragmentos de 100 a 200pb.

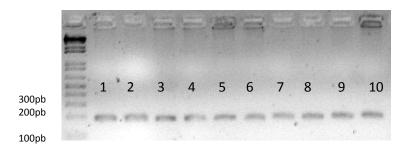


Figura 6: Amplificação do loco Contig 2087 para 10 das 26 amostras testadas. Fragmentos de 200 pb.

5.1.2. Análises estatísticas

Após a etapa de genotipagem, foram realizadas as análises estatísticas nos nove locos polimórficos utilizando-se o *software Genepop*, sendo estimados o número de homozigotos e heterozigotos esperados e observados e os níveis de heterozigozidade, estimados através da relação entre o número de heterozigotos e o número total de indivíduos analisados.

Para o loco CL272 NM Contig1 obteve-se um total de 18 alelos e heterozigozidade observada de 0,84. O mesmo valor de heterozigozidade observada foi visto também para os marcadores CL 315 NM Contig 1 e Contig 1309, cuja diversidade alélica foi de 13 e 15 alelos, respectivamente. Ambos os marcadores Contig 2061 e Contig 2533 apresentaram oito alelos e heterozigozidades observadas de 0,86 e 0,55, respectivamente. Em relação aos locos Contig 2075 e Contig 2087, cada um mostrou 13 alelos e níveis de heterozigozidades observadas de 0,45 e 0,80

respectivamente. Para os locos Contig 871 e CL320 Contig1 o número de alelos e a heterozigozidade observada foram respectivamente, 20 alelos e 0,76 e quatro alelos e 0,32.

Considerando-se o total de locos polimórficos validados neste trabalho, obteve-se uma diversidade alélica variando de 4 a 20 alelos e níveis de heterozigozidade observada de 0,32 a 0,86. Nenhum loco mostrou-se em desequilíbrio de ligação, sendo que o loco Contig 2075 não se apresentou em equilíbrio de Hardy-Weinberg (após o Teste Exato de Raymond e Rousset, 1995), evidenciando déficit significativo de heterozigotos mesmo após correção de Bonferroni. A análise no *software Micro-Ckecker* para verificação de alelos nulos mostrou que há a evidência destes no loco Contig 2075, provavelmente devido a modificações nas regiões flanqueadoras dos *primers* desenhados para o loco microssatélite isolado, impossibilitando, assim que estes se anelem à fita molde de DNA com o consequente impedimento da replicação (Callen *et al.*, 1993).

Os locos que apresentaram os maiores valores de PIC (*Polymorphism Information Content*) foram o Contig 871 e CL 272 NM Contig 1, sendo que estes valores variaram de 0,76 a 0,92, com apenas um único loco evidenciando baixo conteúdo de polimorfismo (CL 320 Contig 1, PIC = 0,34). A anotação genômica realizada nesses locos mostrou que somente os locos Contig 2061, Contig 2087 e Contig 2075 apresentam similaridade suficiente com genes já descritos nos bancos de dados consultados, evidenciando, respectivamente, relação com a síntese de fatores de transcrição, proteínas ligantes de ácidos graxos e inibidores de serina protease (Tabela 3).

Tabela 3: Detalhamento sobre os locos polimórficos: *motif*, número de alelos (Na), heterozigozidade esperada (He), heterozigozidade observada (Ho), valores de *Polymorphism Information Content* (PIC) e os respectivos produtos protéicos dos locos.

Loco	Motif	Tamanho populacional (N)	Alelos	He	Но	Na	PIC	P value	Proteína
CL272 NM Contig1	(AC) ₆	18	100-174	0,93	0,84	18	0,90	0.1890	Proteína expressa
CL315 NM Contig1	(AAG) ₅	25	96-186	0,83	0,84	13	0,82	0.6690	Proteína expressa
Contig 2061	(CT) ₁₇	21	244-260	0,81	0,86	8	0,89	0.8070	Fator de transcrição
Contig 1309	$(AC)_8(AC)_6$	25	155-271	0,83	0,84	15	0,81	0.7778	Proteína expressa
Contig 2075	(TTC)₅	21	118-292	0,83	0,45*	13	0,81	0	Inibidor I/II da serina protease
Contig 2533	(ATT)₅	27	117-216	0,78	0,55	8	0,81	0.0390	Proteína expressa
Contig 871	$(CT)_{10}(CT)_{7}(CT)_{8}$	25	170-260	0,94	0,76	20	0,92	0,0027	Proteína expressa
Contig 2087	(CA) ₆	26	154-298	0,77	0,80	13	0,76	0.1675	Proteína ligante de ácido graxo
CL320 Contig1	(TG) ₁₀	22	92-142	0,32	0,32	4	0,34	0.5106	Proteína expressa

^{*} loco com déficit de heterozigotos

5.1.3. Transferabilidade dos locos heterólogos

Foi testada a amplificação dos nove locos polimórficos em cinco espécies nativas de camarão marinho. Após a utilização de três amostras de cada uma das espécies, obteve-se a amplificação em pelo menos uma das espécies testadas para cada marcador. O loco CL272 NM Contig1 amplificou nas espécies *X. kroyeri, F. brasiliensis* e *L. schmitti* com fragmentos de 200 pb para as primeiras espécies e 300 pb para a última. A amplificação do loco CL315 NM Contig1 só foi possível para as espécies *F. brasiliensis* (400 pb) e *L. schmitti* (200 pb), enquanto Contig 2061 mostrou amplificação de 300 pb para *X. kroyeri, L. schmitti, F. paulensis* e de 250 pb para *R. constrictus*.

Para o Contig 1309 a amplificação só foi observada para *L. schmitti* (200 pb). O Contig 2075 e Contig 2533 mostraram êxito em suas reações para *X. kroyeri* e *F. brasiliensis* (150 pb e 200 pb, respectivamente) e para *L. schmitti* (250 pb e 200 pb, respectivamente). O Contig 871 demonstrou amplificação apenas para *X. kroyeri* (150 pb) enquanto o Contig 2087 amplificou fragmentos de 300 pb em *F. brasiliensis* e 200 pb nas demais espécies analisadas e o marcador CL320 NM Contig 1 obteve fragmentos de 200 pb para *X. kroyeri, F. brasiliensis* e *L. schmitti*. Embora as reações de

amplificação heteróloga tenham obtido grande sucesso, adaptações na reação e no ciclo se fazem necessárias, uma vez que para a maioria dos locos foi observada a amplificação também de bandas inespecíficas com tamanho superior ao esperado.

Foi testada também a amplificação dos nove locos polimórficos nas espécies nativas de camarão de água doce *Macrobrachium amazonicum* e *Macrobrachium jelskii*. Os locos CL 272 NM Contig 1, CL 315 NM Contig1 e Contig 2075 mostraram amplificação somente para a espécie *M. amazonicum* (300 pb). Já os marcadores Contig 1309 e Contig 871 amplificaram para ambas as espécies com fragmentos de 300 pb para *M. amazonicum* e 150 pb para *M. jelskii*. O Contig 2533 demonstrou sucesso apenas para *M. amazonicum* (350 pb) e o Contig 2087 amplificou fragmentos de 200 pb para *M. jelskii*. Os locos Contig 2061 e CL 320 Contig 1 não apresentaram amplificação (Tabela 4).

Tabela 4: Resultado das reações de amplificação heteróloga. Espécies e locos utilizados além dos tamanhos dos fragmentos obtidos (pb).

			Espécies				
Loco	Xiphopenaeus kroyeri	Farfantepenaeus brasiliensis	Litopenaeus schmitti	Farfantepenaeus paulensis	Rimapenaeus constrictus	Macrobrachium amazonicum	Macrobrachium jelskii
CL 272 NM Contig 1	200	200	300	-	-	300	-
CL315 NM Contig1	-	400	200	-	-	300	-
Contig 2061	300	-	300	300	250	-	-
Contig 1309	-	-	200	-	-	300	150
Contig 2075	150	200	250	-	-	300	-
Contig 2533	150	200	200	-	-	350	-
Contig 871	150	-	-	-	-	300	150
Contig 2087	200	300	200	200	200	-	200
CL320 Contig1	200	200	200	-	-	-	-
	78%	66%	88%	22%	22%	66%	33%

De acordo com as análises realizadas para os nove locos polimórficos obtidos na espécie *L. vannamei*, observou-se um número de alelos variando de 4 a 20, valores de heterozigozidade observada entre 0,32 a 0,86 e valores de PIC variando entre 0,34 e 0,92. O alto número de alelos

observado para seis dos nove locos aqui analisados contrasta com a maioria dos trabalhos relatados na literatura, que mencionam que locos SSRs localizados em regiões expressas apresentam menores taxas de polimorfismo quando comparadas com as de locos obtidos de regiões arbitrárias do genoma. Estudos realizados por Duff *et al.* (2004) por exemplo, demonstraram variação alélica para SSRs-ESTs entre 2 e 7 para os 13 locos analisados, sendo que os valores de heterozigozidade observada variaram de 0 a 0,37, considerados relativamente baixos. Segundo Thiel *et al.* (2005), valores de PIC encontrados para SSRs de regiões arbitrárias do genoma (0,58 ± 0,03) também foram maiores que aqueles observados para locos SSRs-ESTs (0,45 ± 0,03), confirmando mais uma vez um menor polimorfismo para locos de sequências codantes.

Dados semelhantes foram encontrados por Pérez *et al.* (2005) na espécie *L. vannamei*, sendo que dos 40 locos SSRs-ESTs testados, 18 amplificaram e destes apenas sete eram polimórficos, com números de alelos variando entre 2 e 6. Os valores de heterozigozidade encontrados ficaram entre 0,15 e 0,56, com déficit de heterozigotos para três dos sete locos.

Déficits significativos de heterozigotos costumam ser freqüentes em estudos de validação populacional. No presente trabalho, no entanto, este foi observado para apenas um loco (Contig 2075), o qual apontou a presença de alelos nulos após a análise realizada no *Micro-Checker*. Os alelos nulos ocorrem devido a mutações nas regiões flanqueadoras dos *primers*. Nestas situações, não ocorre à amplificação de um dos alelos do heterozigoto e este indivíduo é caracterizado como um homozigoto, devido ao fato de apresentar apenas um pico lido pelo seqüenciador no processo de genotipagem (Valles-Jimenez *et al.*, 2005).

Outro fenômeno que pode estar associado a essa possível deficiência de heterozigotos observada para o loco em questão é o efeito de Wahlund, no qual diferentes *pool* gênicos misturados podem resultar na não amostragem de todos os possíveis genótipos heterozigotos (Chu

et al., 2007). Problemas de amplificação durante a reação de PCR, como os stutters, também podem ser responsáveis pelo baixo número de heterozigotos observado devido à falta de amplificação para ambos os alelos do loco (Valles-Jimenez et al., 2005). Isso ocorre porque a DNA polimerase 'escorrega' durante a replicação do microssatélite, principalmente mono e dinucleotídeos, na reação de PCR, gerando fragmentos de vários tamanhos, caracterizados como bandas expúrias, que dificultam que estes sirvam de molde para a geração de novos fragmentos (Li et al., 2008). Dessa forma, o processo de genotipagem é prejudicado pelo surgimento de interferências. As bandas de stutters são ainda mais intensificadas se for utilizado DNA degradado que já se apresenta fragmentado, tornando necessário que a extração de material genético seja a mais eficiente possível através do uso de protocolos específicos (Schmerer, 2001). Entretanto, no presente trabalho não foi verificada a ocorrência de stutters para nenhum dos locos analisados através de análises no programa Micro-Checker.

Em relação à taxa de transferabilidade para os locos SSRs-ESTs heterólogos analisados, foi observada uma alta eficiência de transferabilidade (de até 88% para a *L. schmitti*), uma vez que os nove marcadores polimórficos apresentaram amplificação em pelo menos uma das sete espécies nativas de camarão testadas. Embora ainda seja necessário melhorias nas reações para eliminação de bandas inespecíficas de tamanhos muito maiores do que o esperado, estas não inviabilizam a análise dos genótipos obtidos, uma vez que é possível determinar os alelos esperados para os respectivos locos. Além de permitir esta maior eficiência de reações de amplificação heteróloga, uma vez que as regiões flanqueadoras aos microssatélites são bem conservadas, possibilitando assim o anelamento dos *primers* heterólogos e reações bem sucedidas (Christiakov *et al.*, 2006), essa alta conservação observada nas regiões das ESTs, no qual as SSRs se encontram (Wang, *et al.* 2005; Bouck *et al.* 2007), facilita as inferências de ortologia entre essas espécies, podendo-se

realizar este tipo de estratégia com maior confiabilidade, incluindo também análises de transcriptomas, mapas de ligação e melhoramento genético (Kuzniar *et al.*, 2008).

Tratando-se de locos heterólogos, espera-se um maior sucesso nas reações de transferabilidade entre espécies relacionadas. Sendo assim as espécies dos gêneros Farfantepenaeus e Litopenaeus, as quais consistem em dois grupos monofiléticos, segundo análises moleculares realizadas por Baldwin et al. (1998) e Maggioni et al. (2001), apresentariam um maior sucesso de transferabilidade. Por outro lado, F. paulensis parece ter se originado posteriormente à F. brasiliensis, devido ao nível dos mares da costa brasileira estar mais baixo por conta das glaciações do quaternário e conseqüentemente barreiras geográficas foram impostas às espécies existentes, resultando em especiação. Assim, F. paulensis é adaptado a águas mais frias e com menores concentrações de sal (Perez-Farfante, 1969 apud Maggioni et al., 2001), enquanto F. brasiliensis aparece em águas mais quentes e menos salobras, sendo mais próxima à L. vannamei.

Em relação ao alto polimorfismo encontrado para alguns locos SSR-EST aqui analisados, este pode estar relacionado a uma possível variação de seus produtos protéicos, com manutenção de seu papel funcional. Segundo Ellegren (2004) variações trinucleotídicas ou múltiplas de três, por exemplo, teriam um menor impacto no produto protéico que as demais repetições por conservar o frame de leitura e consequentemente os mesmos aminoácidos, assumindo assim um menor comprometimento com a funcionabilidade da protéina expressa. Por outro lado, a variação no número de repetições de outros tipos de motifs presentes na região codante, poderia eventualmente produzir proteínas diferenciadas, que eventualmente poderiam manter sua funcionabilidade, mas também apresentar maior ou menor eficiência e/ou especificidade. Assim, dependendo do tipo de motif e de sua conseqüente sequência de aminoácidos na cadeia polipeptídica da proteína, esta variação pode ser maior ou menor em tais locos.

Dentre os locos polimórficos validados, foi possível elucidar o produto gênico do Contig 2061 (8 alelos) e dos Contigs 2087 e 2075 (13 alelos cada um), que possuem *motifs* dinucleotídeos perfeitos (CT)₁₇ e (CA)₆ e trinucleotídeo perfeito (TTC)₅, respectivamente. Uma possível explicação para justificar esta alta diversidade alélica encontrada para os locos Contig 2061, Contig 2087 e Contig 2075 pode se basear no produto gênico obtido para eles.

No primeiro caso, o gene codifica um fator de transcrição caracterizado por ter um efeito negativo na expressão de alguns genes transcritos pela RNA polimerase II, influenciando de maneira significativa a viabilidade do indivíduo (Tu et al., 2010). Neste contexto, apesar de, a priori, não ser esperado nenhum grande polimorfismo nesta proteína talvez, uma leve variação na sua sequência de aminoácidos (aqui indicada pela pequena variação encontrada no tamanho dos fragmentos obtidos: 244 a 260 pb), possa não ter um efeito limitante em sua função, podendo inclusive estar associado com alguma especificidade de reconhecimento do tipo de gene com o qual irá interagir. O loco Contig 2087, que apresentou 13 formas alélicas distintas, codifica uma proteína de transporte intracelular de lipídeos que se liga a ácidos graxos. Neste caso, diante desta alta variabilidade observada neste gene, podemos supor que, provavelmente, toda esta variação não interfira na função protéica, e se interferir, não apresente grande especificidade de substrato, uma vez que há pelo menos 13 formas alélicas distintas para esse produto. O loco Contig 2075 também apresentou 13 formas alélicas e codifica uma proteína inibidora da serina protease, ou seja, responsável pela interrupção do funcionamento desta enzima quando esta não é mais necessária. Esta enzima primariamente auxilia a digestão de alguns invertebrados ingeridos pelos crustáceos, embora também possa atuar no sistema imune destes organismos (Yu et al., 2011).

Nestes três casos o polimorfismo desses locos não interfereria na determinação dos aminoácidos das respectivas proteínas codificadas, limitando-se apenas a adições ou deleções no número de aminoácidos presentes em suas respectivas cadeias polipeptídicas. Para o marcador

Contig 2061, o *motif* CT, repetido n vezes, possibilita o reconhecimento de dois tipos de aminoácidos: o Glutamato (CTC) e a Arginina (TCT), os quais fazem parte da estrutura primária da protéina em questão. Por outro lado, para o Contig 2087, a repetição (CA)_n, indica a presença de Valina (CAC) e de Cisteína (ACA), os quais também compõem a sequência de aminoácidos da proteína em questão.

Para o Contig 2075, de *motif* (TTC)₅ não ocorre alteração no *frame* de leitura, por se tratar de um trinucleotídeo perfeito. Logo, o aminoácido codificado por esta trinca, a Lisina (TTC) ou (AAG), permanece o mesmo com variações apenas no número de repetições do *motif* o que poderia ser utilizado como justificativa para a grande diversidade alélica encontrada para este loco, a qual aparentemente parece não comprometer o papel funcional da respectiva proteína (Ellegren, 2004).

Apesar destes tipos de variação potencialmente posibilitarem algum tipo de alteração na conformação da proteína e, conseqüentemente, em sua funcionabilidade, análises realizadas no BD do *Swissprot* de localização do *motif* e simulação das estruturas secundárias, terciárias ou quaternárias nas respectivas proteínas mostraram que em nenhum dos casos a região repetitiva está localizada em locais de domínio, sítios ativos ou regiões sinalizadoras dos genes estudados. Assim, o alto polimorfismo encontrado para estes marcadores parece não interferir na conformação e/ou função das proteínas relacionadas aos respectivos locos.

5.2. Capítulo 2

5.2.1. Anotação genômica das marcas ESTs e SSR-ESTs

Através do processo de anotação genômica foi possível descrever as estruturas moleculares das proteínas, as interações entre elas, bem como destas com as demais moléculas biológicas, além

de poder inferir sobre relações entre importantes vias metabólicas. Além disso, a identificação de genes e seus respectivos produtos protéicos forneceram informações valiosas para melhor compreensão da funcionabilidade do organismo, podendo contribuir não somente com o desenvolvimento de ferramentas que subsidiam os programas genéticos aplicados ao manejo de espécies comercialmente exploradas, mas também para estudos que incluam aspectos relacionados à evolução e conservação destas e outras espécies de peneídeos.

Foi realizada a anotação genômica de 400 ESTs e 80 SSR-ESTs pertencentes ao banco de dados de anotação do Projeto ShEST (acesso restrito). Deste total de 480 sequências, 477 apresentaram *blasts* automáticos positivos nos BD do NCBI e *Swissprot*, sendo possível elucidar o produto gênico das mesmas. Sete sequências apresentaram contaminação por vetores de clonagem, como *Escherichia coli* e *Shigella*, sendo eliminadas das análises posteriores. Em todas as sequências que apresentaram *blasts* automáticos positivos, os possíveis produtos protéicos foram avaliados através da anotação manual. Nesta etapa, todos os campos possíveis para a identificação do gene foram preenchidos, tais como função e nome do gene, organismo homologo, *EC Number*, *TC Number* e domínio (Anexo-Tabelas 7, 8 e 9). Para a decisão sobre o produto gênico final levou-se em consideração os resultados que evidenciaram os melhores valores de *score* e *e-value*.

Foram elucidadas 260 ESTs não enzimáticas (Anexo – Tabela 7), cujos principais produtos estabelecidos foram proteínas musculares (miosina e actina); relacionadas a pigmentos respiratórios (hemocianina); de controle traducional e ribossomais (biossíntese e montagem) (Figura 7).

Proteínas Musculares Pigmento respiratório Tradução Ribossomais Contaminação Outros

Figura 7: Distribuição das proteínas encontradas em 260 ESTs

Os *blasts* contra o GO (*Gene Ontology*) permitiram estabelecer o componente celular, a função molecular e o processo biológico ao qual cada sequência encontra-se associada. Os principais locais onde as proteínas anotadas atuam foram: citoesqueleto, extracelularmente, citoplasma e núcleo. Várias outras localidades foram encontradas, mas em menor quantidade, caracterizando outros componentes celulares como membrana e filamento de miosina (Figura 8).

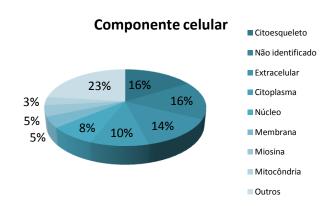


Figura 8: Distribuição dos componentes celulares encontrados

Em relação aos papéis desempenhados pelas moléculas encontraram-se proteínas ligantes (ATP, RNA, DNA, íons); estruturais (músculo e ribossomo); transportadoras de pigmento respiratório e oxigênio e responsáveis pelo controle da tradução. Cerca de 8% das ESTs não-enzimáticas apresentaram funções moleculares diversas (Figura 9).

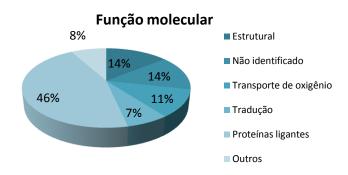


Figura 9: Distribuição das funções moleculares encontradas

No presente trabalho, os produtos gênicos elucidados para o grupo de camarões estão relacionados a diversos processos celulares importantes, interagindo em vários mecanismos relevantes para o metabolismo dos tecidos. A maior parte das ESTs com processo biológico elucidado está envolvida nas etapas celulares de transporte, tradução e contração muscular. Para aproximadamente 32% das sequências não foi possível o estabelecimento do processo biológico (Figura 10).

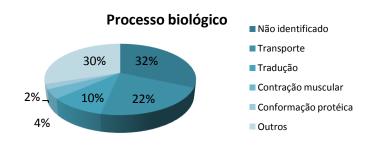


Figura 10: Distribuição dos processos biológicos encontrados

Distribuição das bibliotecas genômicas

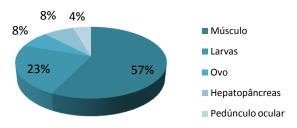


Figura 11: Distribuição das 260 ESTs nas principais bibliotecas genômicas utilizadas

A figura 11 apresenta a distribuição das 260 ESTs encontradas nos processo de anotação nos diferentes tecidos utilizados para a construção da biblioteca genômica de *L. vannamei*. Como demonstrado, nota-se que a maior parte das sequências analisadas foi obtida de músculo (57%) o que justifica a grande quantidade de proteínas musculares encontradas, como miosina, actina e troposina. Isso reforça também as idéias contidas nas figuras 7, 8 e 9 em que cerca de 22% das proteínas encontradas são musculares, 16% dos locais de atuação das enzimas é o citoesqueleto que é composto de proteínas musculares e 14% das funções das ESTs é estrutural, respectivamente.

Em seguida tem-se as proteínas que atuam no estágio larval do camarão, como nas fases de míssis e náuplio, merecendo destaque aqui as hemocianinas, responsáveis pelo transporte de oxigênio por possuir o pigmento respiratório, presente na hemolinfa dos crustáceos. Isso é visto em cerca de 14% do total de ESTs encontradas (Figura 7), em 11% das funções moleculares que são caracterizadas pelo transporte de oxigênio (Figura 9) e em 30% dos processos biológicos elucidados aqui. Posteriormente encontram-se as ESTs distribuídas nos ovos e no hepatopâncreas dos camarões com 8% cada um. O hepatopâncreas possui grande importância para a homeostase do indivíduo, uma vez que é o responsável pela produção de hormônios importantes, degradação de xenobióticos, imunidade, entre outros, acreditando-se que as proteínas que atuam neste local

estejam distribuídas entre traducionais, conformacionais e ligantes. Finalmente temos as proteínas isoladas do pedúnculo ocular dos camarões representadas por 4% do total de proteínas aqui elucidadas (Figura 11).

Do total de 480 sequências analisadas, 220 foram caracterizadas como enzimas, sendo 140 ESTs e 80 SSR-ESTs. Foram obtidos 209 *EC numbers*, sendo que deste total, 86 correspondem a enzimas únicas que foram classificadas em seis grupos distintos (Figura 12) de acordo com o primeiro algarismo do *EC number*, considerando a nomenclatura para classificação enzimática do banco de dados de Estruturas de Enzimas EC-PDB (http://www.ebi.ac.uk/thornton-srv/databases/enzymes/).

As classes enzimáticas são: oxidoredutases ou desidrogenases responsáveis por reações de oxido-redução, cujo composto oxidado é considerado como doador de elétrons (1.-.-.-); transferases, cuja função é a transferência de um grupo (metil ou glicosil) de um doador para outro composto receptor (2.-.-.-); as hidrolases que catalisam a hidrólise de pontes C-C, C-N e C-O (3.-.-.-); liases responsáveis pela quebra de ligações C-C, C-N e C-O, resultando em ligações duplas ou anéis (4.-.-.-); isomerases que catalisam alterações geométricas ou estruturais em uma molécula (5.-.-.-) e ligases com o papel de unir duas moléculas com consumo de energia (6.-.-.-).

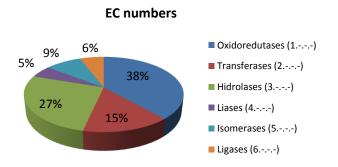


Figura 12: Distribuição das seis classes enzimáticas nos locos analisadas

De acordo com a figura 12, a subclasse mais abundante nas análises foi a das oxidoredutases com a subclasse 1.6.-.- em maioria, caracterizando que neste caso o doador de elétrons é NADH ou NADPH. Em seguida, apareceu a classe das hidrolases, destacando-se as subclasses 3.4.-.- (quebra de ligações peptídicas) e 3.6.-.- (quebra de ligações de ácidos anidros com transporte transmembrana). A próxima classe com maior freqüência foi a das transferases com as subclasses 2.6.-.- (grupos nitrogenados) e 2.7.-.- (grupos fosfatados), seguida pelas isomerases da subclasse 5.3.-.- (açúcares isômeros), ligases e por último as liases.

As enzimas com componente celular estabelecido atuam principalmente nas mitocôndrias, seguidas pelo citoplasma e núcleo. Cerca de um quinto das enzimas não puderam ter seu local de expressão na célula identificado e 13% dos resultados corresponderam a outros locais celulares (Figura 13). Em relação às funções das moléculas, estas se mostraram bem diversificadas com muitas funções variadas, totalizando 67% dos resultados. Outros papéis enzimáticos que se destacaram foram as desidrogenases e as hidrolases (Figura 14).

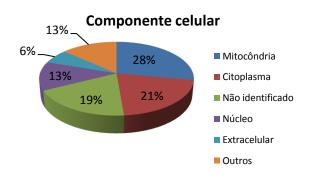


Figura 13: Distribuição dos componentes celulares encontrados nas enzimas

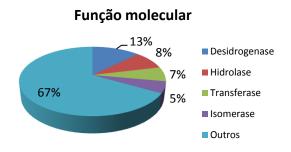


Figura 14: Distribuição das funções moleculares das enzimas

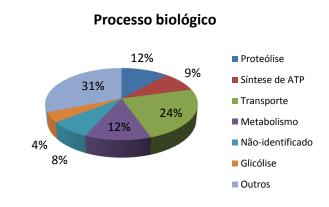


Figura 15: Distribuição dos processos biológicos das enzimas

Os principais mecanismos celulares descritos para as enzimas aqui analisadas estão relacionados a transporte (prótons, elétrons, proteínas etc.); proteólise; metabolismo (lipídeos, açúcares) e síntese de ATP. A maior parte das sequências não pôde ter seu processo biológico elucidado (Figura 15). Dentre o grupo de organismos homólogos estabelecidos para os 480 locos anotados destacaram-se, em ordem de freqüência, as espécies: *Litopenaeus vannamei, Penaeus monodon, Drosophila melanogaster, Tribolium castaneum e Marsupenaeus sp,* sendo todos estes, pertencentes ao filo dos Artrópodes. As demais sequências apresentaram *blasts* automáticos com diversas outras espécies (Figura 16).

Outros 69% Penaeus monodon Litopenaeus vannamei Drosophila melanogaster Tribolium castaneum Marsupenaeus sp. Outros

Figura 16: Distribuição dos organismos homólogos em 480 locos anotados

As nove SSRs-ESTs polimórficas anotadas permitiram estabelecer informações para apenas três destas, sendo descritos o produto gênico e dados do GO (componente celular, função molecular e processo biológico). Os locos CL 272 NM Contig 1, CL 315 NM Contig 1, Contig 1309, Contig 2533, Contig 871, CL 320 Contig 1 não puderam ter a caracterização de seu produto protéico e conseqüentemente dados do GO também não foram encontrados. O marcador Contig 2075 está relacionado a um precursor inibitório da serina protease, expressando-se principalmente extracelularmente e atuando como inibidor de uma serina endopeptidase. Já o loco 2061 transcreve trechos de um fator de transcrição presente no núcleo, desempenhando o papel de ligante de proteína e atuando na regulação da transcrição. O Contig 2087 é responsável por um fragmento de uma proteína ligante de ácido graxo, atuando principalmente no citoplasma celular, e funcionando como uma proteína ligante de lipídeo que participa do transporte de ácidos graxos na célula. Nenhum dos locos citados anteriormente se caracteriza como enzima, não sendo, portanto, descritos *EC numbers* para estes casos (Tabela 5).

Tabela 5: Produtos protéicos juntamente aos componentes celularers, funções moleculares e processos biológicos dos nove locos polimórficos.

Loco	Proteína	Componente celular	Função molecular	Processo biológico
CL 272 NM Contig 1	Proteína expressa	N/A	N/A	N/A
CL 315 NM Contig 1	Proteína expressa	N/A	N/A	N/A
Contig 2061	Fator de transcrição BTF3	Núcleo	Ligante de proteína	Regulação da transcrição
Contig 1309	Proteína expressa	N/A	N/A	N/A
Contig 2075	Precursor inibitório I/II da serina	Região extracellular	Inibidor da serina	N/A
	protease		endopeptidase	
Contig 2533	Proteína expressa	N/A	N/A	N/A
Contig 871	Proteína expressa	N/A	N/A	N/A
Contig 2087	Ligante de ácido graxo	Citoplasma	Ligante de lipídeo	Transporte
CL 320 Contig 1	Proteína expressa	N/A	N/A	N/A

No caso dos seis locos que não obtiveram *blasts* positivos, estes foram caracterizados apenas como proteínas expressas. Como estas sequências não apresentaram similaridade suficiente com nenhuma outra depositada nos bancos de dados disponíveis *on line*, sua caracterização gênica não pôde ser concluída. Tais resultados podem ser decorrentes do fato destas sequências ainda não terem sido estudadas, descritas e/ou depositadas nos bancos de dados.

5.2.2. Estabelecimento das vias metabólicas

Os 209 *EC numbers* obtidos foram submetidos a análises no software PAICE para estabelecimento das possíveis vias metabólicas dos grupos dos peneídeos. Os códigos de identificação enzimáticos foram comparados automaticamente contra o banco de dados do KEGG para reconhecimento das respectivas enzimas e vias metabólicas participantes. Do total de *EC numbers*, 132 foram localizadas no KEGG e 77 não puderam ter sua respectiva enzima relacionada. Destes *EC numbers*, cerca de 86 correspondem a enzimas únicas, uma vez que algumas enzimas foram encontradas mais de uma vez e em várias vias. Foi observada a correspondência destas em algumas das 94 rotas metabólicas únicas e *networks* enzimáticas fornecidas pelo software PAICE.

A seguir estão destacadas algumas vias metabólicas com etapas dessas rotas parcialmente bem elucidadas. Estes dados foram obtidos através da cobertura de enzimas encontradas nos *blasts* do *Swissprot* que foram reconhecidas pelo software PAICE quando comparados contra o BD do KEGG. Os códigos de identificação enzimáticos (*EC numbers*) apresentam-se em parênteses.

Dentre as vias mais completas obtidas está a glicólise (Anexo - Figura 17), na qual foram encontradas as enzimas glicose-6-fosfato isomerase (5.3.1.9) e frutose-1,6-bifosfatase 1 (3.1.3.11) responsáveis pela liberação de energia através da quebra de ligações fosfato e também a frutose bifosfato aldolase (4.1.2.13) que quebra frutose-1,6-bifosfato em dois outros compostos durante a glicólise além da enolase ou fosfopiruvato desidratase (4.2.1.11), que converte fosfoglicerato em compostos de piruvato nas etapas finais dessa via, uma vez que este é convertido em acetil CoA para sua introdução no ciclo de Krebs.

No ciclo do citrato, ácido cítrico ou de Krebs (Anexo – Figura 18), que ocorre nas mitocôndrias, tem-se a participação de inúmeros compostos que ao ter suas ligações rompidas liberam energia para o metabolismo celular com a conversão de NAD⁺ em NADH, com armazenamento de energia sob a forma de ATP. Um exemplo é o oxaloacetato que é convertido a fosfoenol-piruvato através da enzima fosfoenolpiruvato carboxiquinase (4.1.1.32) para ser introduzido na glicólise juntamente ao oxaloacetato que provém do metabolismo da enzima malato desidrogenase (1.1.1.37). Esta última por sua vez é responsável pela conversão reversível de malato em oxaloacetato. As enzimas isocitrato desidrogenase (1.1.1.42) e succinato desidrogenase (1.3.5.1) são oxiredutases, sendo que a primeira atua reduzindo ou oxidando os compostos de acordo com a necessidade energética do organismo e a segunda atua na transferência de elétrons do succinato à ubiquinona (coenzima Q).

Como uma alternativa a glicólise tem-se a via das pentoses (Anexo – Figura 19) que ocorre no citoplasma e também oxida a glicose 6-fosfato. Nesta via, no entanto, a energia produzida é

armazenada sob a forma de NADPH e não ATP. A via das pentoses apresenta prioridade quando a relação ATP/ADP é alta e ácidos graxos gordos são produzidos e estocados nos tecidos adiposos e hepáticos. Dentre as enzimas encontradas para esta via está a frutose bifosfato aldolase (4.1.2.13) uma liase responsável pela quebra de gliceraldeído 3-fosfato e consequente surgimento da frutose 1,6 bifosfato. Esta, através da frutose-1,6-bifosfatase (3.1.3.11), cuja função neste caso é a liberação de um grupo fosfato da frutose 1,6 bifosfato, é transformada em β -frutose 6-fosfato e com o auxílio da glicose-6-fosfato isomerase (5.3.1.9) realiza a interconversão entre as formas α e β da glicose 6-fosfato advindas da glicólise. A enzima ribulose-fosfato 3-epimerase (5.1.3.1) que converte xilulose ao seu isômero ribulose que posteriormente poderá participar do metabolismo de aminoácidos também foi encontrada para o grupo dos camarões.

Dentre as vias relacionadas com o metabolismo de açúcares, que pode ocorrer tanto no citoplasma quanto nas mitocôndrias e é responsável pela produção de energia celular, através da quebra de dois monossacarídeos tem-se a frutose e a manose (Anexo – Figura 20), encontramos as enzimas frutose bifosfato aldolase (4.1.2.13), degradando a frutose em dois compostos que em uma próxima etapa serão metabolizados e inseridos na glicólise; a triosefosfato isomerase (5.3.1.1), alternando moléculas entre as formas isômeras de aldeído e cetona; a GDP-L-fucose sintetase (1.1.1.271) e a frutose 6-fosfatase (3.1.3.11), transformando frutose 1,6 bifosfatase em frutose 6-fosfatase para que esta possa ser degradada.

Vias para o metabolismo de amino e nucleotídeoglicanos (Anexo – Figura 21) ou açúcares que contenham grupos amino também foram descritas. Estas acontecem no espaço extracelular e participam enzimas como a endoquitinase (3.2.1.14), responsável pela hidrólise de ligações glicosídicas que são importantes para o catabolismo de quitina e a β -N-acetilglicosaminidase (3.2.1.52), que também atua na degradação de quitina nos artrópodes. Na via de degradação do

aminobenzoato, enzimas relacionadas ao citocromo P450 (1.14.-.-) que funcionam como oxidoredutases degradando os compostos aromáticos merecem destaque.

Em relação ao metabolismo de ácido araquidônico, destaca-se novamente a enzima citocromo P450 6k1 (1.14.14.1) na oxi-redução de compostos que participam da produção de ácido linoléico e a glutationa peroxidase (1.11.1.9), oxidando compostos ao liberar peróxido de hidrogênio (H₂O₂), que por sua vez se apresenta altamente instável, se decompondo em oxigênio nascente e água. A oxidoredutase citocromo P450 6k1 (1.14.14.1) apareceu também na rota de degradação do bisfenol, oxidando os compostos resultantes até transformá-los em benzeno e moléculas cloradas.

Quanto à degradação de compostos clorados encontramos a via de degradação de cloroalcanos e alquenos, com a ação principalmente da enzima álcool desidrogenase (1.1.1.1) que no caso, atua no citoplasma oxidando as moléculas de *cis* e *trans* dicloropropeno até a sua transformação em acetaldeído, utilizado no metabolismo do piruvato.

O metabolismo de bases nitrogenadas que ocorre no citoplasma e núcleo celulares, aqui foi descrito com base no metabolismo específico das purinas (Anexo – Figura 22), onde foram encontradas as enzimas nucleosídeo difosfato quinase (2.7.4.6), uma fosfotransferase que utiliza um grupo fosfato como aceptor, convertendo moléculas de trifosfato de adenosina em difosfato de adenosina (ATP \rightarrow ADP); a piruvato quinase (2.7.1.40), que possui papel semelhante ao da nucleosídeo difosfato quinase, apenas com a diferença de utilizar um grupo álcool como aceptor; e a adenilato quinase (2.7.4.3), que transforma uma molécula de ATP e outra de AMP em duas de ADP.

No metabolismo das pirimidinas (Anexo – Figura 23) a enzima nucleosídeo difosfato quinase (2.7.4.6) apareceu mais uma vez juntamente a enzima UMP-CMP quinase (2.7.4.14), catalisando a transferência de um grupo fosfato de uma molécula de ATP para outra de cistidina monofosfato

(CMP). Para o metabolismo dos aminoácidos destacaram-se aqui cinco vias, sendo que primeiramente temos a cisteína e a metionina, uma vez que a segunda pode dar origem a primeira. A principal enzima elucidada nesta via foi a aspartato aminotransferase mitocondrial (2.6.1.1), responsável pela troca de grupos amino entre mitocôndria e citoplasma celular. No metabolismo de fenilalanina, tirosina e triptofano as enzimas elucidadas foram fenilalanina 4-monooxigenase (1.14.16.1), atuando na conversão de fenilalanina em tirosina e novamente em aspartato e a aminotransferase mitocondrial (2.6.1.1), atuando na transferência de grupos amino. Na catálise de triptofano (Anexo – Figura 24) pode-se elucidar as enzimas triptofano 5-monooxigenase (1.14.16.4) que faz a oxidação deste aminoácido; uma metiltransferase (2.1.1-) que cataliza a serotonina, um dos metabólitos do triptofano; e a oxidoredutase citocromo P450 6k1 (1.14.14.1) que oxida mais um composto resultante do triptofano, a melatonina.

A via de metabolismo da glutationa (Anexo – Figura 25) também foi encontrada no grupo dos camarões. A glutationa é um antioxidante hidrossolúvel composto por três aminoácidos, sendo um deles a cistéina que, por sua vez, contém o sítio ativo responsável pelas propriedades bioquímicas desta molécula. Nesta rota realizada no citoplasma, as enzimas que merecem destaque são a isocitrato desidrogenase (1.1.1.42), reduzindo o isocitrato e produzindo NADPH; a glutationa peroxidase (1.11.1.9) através da oxidação da glutationa e a enzima glutationa transferase (2.5.1.18) com a transferência de grupos diversos à glutationa.

Enzimas relacionadas à biossíntese de alcalóides isoquinílicos também foram encontradas, destacando-se as enzimas metiltransferase (2.1.1.-), que realiza a transferência de grupos metil; e a aspartato aminotransferase mitocondrial (2.6.1.1) que possui um papel importante no metabolismo de aminoácidos e na troca de metabólitos entre a mitocôndria e o citoplasma.

Quanto aos hidrocarbonetos, encontramos vias relacionadas com o metabolismo de metano (Anexo – Figura 26). Estas vias apresentam relevância para os organismos aquáticos, uma vez que este gás pode ser produzido através do metabolismo de algumas bactérias e assim sofrer acúmulo no ambiente. Nesta rotas foram elucidadas a enzima fosfoglicerato mutase (5.4.2.1), que converte 3-fosfo glicerato em 2-fosfo glicerato; uma liase chamada neste caso de enolase (4.2.1.11); a malato desidrogenase (1.1.1.37), que é responsável pela conversão de oxaloacetato em malato; a frutose-bisfosfato aldolase (4.1.2.13), que participa do metabolismo de açúcares; a frutose-1,6-bifosfatase (3.1.3.11) que degrada a frutose 1,6 bifosfato em frutose 6-fosfato; a S- formil glutationa hidrolase citoplasmática (3.1.12.12) e a peroxidase (1.11.1.7), que atua extracelularmente oxidando alcoóis a aldeídos.

Na via de hidrocarbonetos, encontramos o aromático naftaleno, resultante do metabolismo do benzeno. Nesta via apenas a enzima citoplasmática álcool desidrogenase (1.1.1.1) pôde ser elucidada. Esta é responsável pela conversão de alcoóis em cetonas ou aldeídos, obtendo como subproduto NADH. Alguns desses hidrocarbonetos aromáticos podem ser policíclicos e muitas vezes estes são compostos tóxicos para a fauna.

Na biossíntese de hormônios esteróides, dentre as enzimas participantes encontradas está a citocromo P450 6k1 ou monooxigenase inespecífica (1.14.14.1) que se mostra eficiente nas últimas etapas desta via na oxidação de compostos. Foi encontrada também a rota da biossíntese de ubiquinona, relacionada à produção de ATP nas mitocôndrias, cuja principal enzima é uma metiltransferase (2.1.1.-), que se caracteriza pela desmetilação de compostos no final desta via.

Outra via bastante completa foi a de metabolismo de xenobióticos, onde destaca-se o citocromo P450 (CYP) (Anexo – Figura 27). Geralmente, citocromos estão presentes nas mitocôndrias e as principais enzimas que constam nesta rota são a glutationa S-transferase Mu 3 (2.5.1.18), que participa oxidando os compostos que contêm glutationa, e a citocromo P450 6k1

(1.14.14.1), que pode oxidar ou reduzir os xenobióticos introduzidos nesta via, metabolizando-os. Nesta via pode ser observado como o organismo metaboliza drogas externas de outros organismos ou quimicamente produzidas. A via do metabolismo de drogas (xenobióticos) realizado pelo citocromo P450 (Anexo – Figura 28), pôde ser explicitada melhor com destaque para a degradação de diversos compostos tóxicos ao organismo como lidocaína, morfina e metadona. O citocromo P450 faz parte de uma superfamília de citocromos que contem inúmeras enzimas responsáveis pelo metabolismo e bioativação de drogas.

Também foram apontados pelo programa PAICE algumas interações entre diversas vias corelacionadas como a fosforilação oxidativa (Anexo – Figura 29) que é realizada nas mitocôndrias. Nesta foram encontrados cinco componentes e suas respectivas enzimas: complexo I, com as enzimas oxidoredutases NADH-ubiquinona oxidoredutase (1.6.5.3), responsáveis pelo transporte de elétrons e a NADH desidrogenase (1.6.99.3), que fornece NADH para a ubiquinona na membrana mitocondrial; complexo II, no qual está a enzima succinato desidrogenase (1.3.5.1) presente na membrana interna da mitocôndria; complexo III que apresenta a enzima do complexo do citocromo b-c1 (1.10.2.2); complexo IV com a citocromo c oxidase (1.9.3.1) (até aqui todas as enzimas descritas são oxidoredutases e desempenham basicamente o papel de transporte de elétrons na mitocôndria) e complexo V, no qual a enzima ATPase V (3.6.3.14) participa intimamente da etapa de síntese de ATP.

Finalmente pode-se destacar um conjunto de várias *networks* enzimáticas e as inúmeras ligações entre suas vias, chamado aqui de biossíntese de metabólitos secundários (Anexo – Figura 30). Essas *networks* enzimáticas estão separadas por distintas cores, como por exemplo, a cor azul e laranja as quais representam, respectivamente, o metabolismo de açúcares e de aminoácidos. Merece destaque aqui um conjunto de diversas networks enzimáticas (Anexo – Figura 31) com as diversas cores representando networks com funções semelhantes. As vias não citadas não foram

suficientemente esclarecedoras por conterem um número insuficiente de enzimas elucidadas e/ou por estas rotas serem características apenas de organismos procariotos ou vegetais, tornando desta forma, a correspondência entre estes resultados e as vias esperadas para o grupo dos peneídeos inviável.

As principais enzimas com correspondência nas rotas metabólicas evidenciadas aqui foram distribuídas de acordo com a tabela 6 (Anexos – Tabelas). Nota-se que a maior parte das enzimas encontradas pertence à classe das oxidoredutases (1.-.-.-) e as suas respectivas vias localizam-se geralmente no citoplasma e nas mitocôndrias, oxidando ou reduzindo compostos. Com base nestes dados de anotação algumas considerações importantes podem ser feitas para o grupo dos camarões.

Praticamente todos os processos do ciclo de vida de um crustáceo são controlados pelo sistema endócrino, como reprodução, desenvolvimento e crescimento. Assim, vista a enorme importância dos hormônios para os decápodas, observa-se que alterações nas concentrações destes são responsáveis por mudanças na ecdise desses animais, como mudas fora de época e/ou imperfeitas, levando a mortes por ausência de exoesqueleto, além de prejudicar o desenvolvimento normal de embriões e diminuir as taxas de reprodução (Tatarazaco & Oda, 2007). Desta forma, tanto o crescimento quanto a freqüência das mudas constituem biomarcadores significativos para inferir sobre os níveis de pesticidas no ambiente aquático (Tatarazaco & Oda, 2007). A fim de monitorar os níveis destes poluentes são utilizados alguns biomarcadores como a capacidade de osmoregulação (OCap), taxa respiratória, o conteúdo de ácidos nucléicos celular, a atividade das enzimas ATPase, dentre outros. Estes podem ser úteis como ferramentas que alertem adversidades significativas no ambiente (Tu *et al.*, 2010).

Os principais pesticidas utilizados na aqüicultura são os organoclorados (OCs), organobromados (OBs), organofosfatados (OPs), carbamatos (CBs) e os piretróides (PYR), sendo

metabolizados no citocromo P450 das células do hetatopâncreas além de poderem sofrer acúmulo nos organismos aquáticos por muitos anos (Tu *et al.*, 2010).

Os pesticidas são utilizados na aqüicultura nos tanques de cultivos ou injetados diretamente no animal e sua principal função é a de controlar parasitas que possam comprometer as taxas de produção. Mas a administração desses pesticidas é delicada, pois normalmente, os mecanismos de ação destes no hospedeiro e no patógeno são semelhantes. Quando não aplicados corretamente podem ser tóxicos aos camarões em todos os seus estágios de vida, além de consequentemente prejudicar a saúde do homem (Tu *et al.*, 2010).

Um exemplo disso são os dados encontrados para a capacidade de osmoregulação caracterizada pela diferença entre a pressão osmótica da hemolinfa e o meio externo a uma dada salinidade. Indivíduos de *L. vannamei* expostos a vários OPs e OCs sob diferentes salinidades mostraram que na maior salinidade testada (50 ppt) os compostos organoclorados reduziram a OCap do camarão, enquanto os organofosfatos aumentaram essa capacidade. Já a 10 ppt todos os pesticidas reduziram a sua capacidade de osmoregulação e a 30 ppt uma relação clara não pôde ser estabelecida (Galindo-Reyes *et al.,* 2000 *apud* Tu *et al.,* 2010). Isso pode estar relacionado ao maior gasto energético despendido pelos animais em menores salinidades para manter sua OCap. O estudo realizado por Zhang *et al.* (2009) demonstra que a sobrevivência do camarão *L. vannamei* é reduzida a menos de 15% em baixas salinidades mesmo em águas livres de pesticidas.

Em Lushchak (2011) foi demonstrado que ao se submeter o camarão branco a mudanças de salinidade por 24 horas as atividades das enzimas superóxido dismutase (SOD) (1.15.1.1) e glutationa peroxidase (1.11.1.9) aumentaram em resposta ao estresse oxidativo causado. Estas, juntamente com a glutationa transferase (2.5.1.18) são as principais enzimas responsáveis pela proteção dada às células contra os danos oxidativos (Tu *et al.*, 2008; Zhou *et al.*, 2010), dentre as elucidadas aqui através do processo de anotação genômica.

A taxa de respiração no camarão branco exposto por 48 horas a determinadas concentrações de organofosfatos caiu, mas quando exposto a doses de organoclorados teve sua taxa respiratória elevada. Dependendo da concentração em que estes animais são expostos esta taxa pode aumentar ou diminuir e esse consumo de oxigênio está intimamente relacionado à velocidade de crescimento do peneídeo (Tu *et al.*, 2010).

O uso de ácidos nucléicos como RNA e DNA tem sido sugerido como estimadores instantâneos do crescimento e das taxas nutricionais dos organismos aquáticos. Essa relação é baseada no fato do conteúdo de RNA celular ser variável de acordo com o crescimento do animal por ser utilizado tanto como molde e como organizador da síntese protéica. Já o conteúdo de DNA celular é constante nas células somáticas dos organismos não sendo alterado por escassez de alimento ou estresse. Logo, uma queda nos níveis de RNA celular influencia na síntese protéica e conseqüentemente limita o crescimento (Tu *et al.*, 2010). Aqui, algumas enzimas que podem estar relacionadas a esse crescimento são as RNA sintetase e RNA polimerase II.

Estudos demonstram que o conteúdo de ácido ribonucléico de *L. vannamei* quando exposto a compostos organoclorados decresceram (Galindo- Reyes et. al., 2002 *apud* Tu *et al*, 2010). Dessa forma, torna-se clara a importância da mensuração do conteúdo de RNA celular como estimativa das taxas de crescimento nos organismos, sendo as várias mudas passadas pelos artrópodes umas de suas únicas limitações (Tu *et al.*, 2010).

Outra importante influência dos pesticidas é em relação às ATPases dos peneídeos e dos animais de maneira geral. Estas enzimas normalmente são utilizadas como indicadores do nível de toxidade de metais pesados, no entanto há evidências de que pesticidas como organoclorados possam alterar a atividade de ATPases. Um exemplo disso são as que apresentaram sua atividade aumentada quando na presença de tratamentos com pesticidas, devido ao fato da provável

elevação no gasto energético do organismo sob o estresse de metabolizar estes compostos exógenos (Tu *et al.*, 2010).

A quebra desses compostos é realizada no hepatopâncreas do animal, responsável por todo o metabolismo, excreção e acúmulo destas substâncias, sendo que esta última etapa também pode ocorrer na carapaça. Além disso, este órgão análogo aos rins e fígado dos vertebrados, também funciona como principal local onde os nutrientes são absorvidos e ainda participa da digestão. O papel do hetatopâncreas no metabolismo dos peneídeos ainda inclui a manutenção da homeostase do animal em condições de saúde ou nocivas, recebendo a hemolinfa vinda do trato gastrointestinal, estando constantemente exposto as toxinas absorvidas pelo intestino (Lesser, 2006).

Dessa forma, esta capacidade de absorção deste órgão reforça a idéia de que os peneídeos muitas vezes apresentem em seus tecidos concentrações de organoclorados, como DDT, muito maiores do que aquelas encontradas na água em que estão presentes. É importante realçar que algumas perturbações hormonais naturais aos artrópodes, como a ecdise, podem tornar o organismo mais vulnerável aos xenobióticos, devido à grande energia requerida pelo hepatopâncreas na produção de hormônios e quebra de compostos tóxicos, embora isso varie de acordo com as respostas advindas dos complexos enzimáticos individuais (Tu *et al.*, 2010; Rewitz *et al.*, 2006). Apesar disso, os decápodas são considerados os biotransformadores de xenobióticos mais eficientes dentre os invertebrados marinhos (Livingstone, 1998 *apud* Rewitz *at al.*, 2006).

Hoje já se conhece com maior detalhamento o fato de que são as enzimas do complexo do citocromo P450 presentes nas mitocôndrias das células do hepatopâncreas dos crustáceos as responsáveis pelo metabolismo de uma variedade de xenobióticos, como drogas e pesticidas aplicados na aqüicultura, resultando desta degradação compostos lipofílicos que muitas vezes são substâncias de maior toxidade ou cancerígenos. São também as enzimas deste complexo que

atuam na produção e ativação dos hormônios esteróides, como o metil farnesoato e os ecdisteróides, podendo-se destacar o órgão-Y nos decápodas como o principal produtor do hormônio da muda localizado no segmento das maxilas ou nas antenas (Rewitz *et al.*, 2006).

No entanto, ao se analisar os resultados obtidos nos peneídeos para todos os biomarcadores aqui citados devem ser consideradas as várias outras variáveis fisiológicas e do ambiente aos quais estes animais estão submetidos. Podem-se destacar assim as diversas mudas sofridas pelos camarões ao se estudar o biomarcador conteúdo de ácidos nucléicos celular, sendo que este já varia naturalmente nestes indivíduos apenas pelo estresse gerado pela ecdise. Assim, o ideal é que se utilizem estes biomarcadores aliados as variáveis fisiológicas e bioquímicas (Tu *et al.*, 2010).

Perturbações como variações de temperatura, taxa respiratória, salinidade e exposição continuada aos xenobióticos acaba por desencadear um estresse fisiológico e também oxidativo nos animais com a produção de radicais livres derivados do oxigênio que resultam em dano celular (Tu *et al.*, 2008). Entende-se por radical livre átomos, moléculas ou íons com elétrons nãopareados, sendo importante a distinção destes em relação aos compostos reativos de oxigênio (ROS), como oxigênio molecular e livre. O estresse oxidativo acontece quando os níveis de ROS estão elevados, alterando o metabolismo celular a danificando os constituintes celulares (Lesser, 2006; Lushchak, 2011).

Acredita-se que a coenzima Q (ubiquinona) seja o principal local da cadeia de elétrons da mitocôndria no qual estes escapam e entram em contato com o O₂ para gerar os compostos reativos de oxigênio, resultantes da ação de oxidases e peroxidases. Os xenobióticos ao serem degradados na presença do O₂ do ambiente ou sob a luz ultravioleta produzem diversos ROS, levando a doenças (Lushchak, 2011). A produção de ROS pode causar inúmeras lesões no DNA como deleções, mutações e outros efeitos genéticos letais. Além de causar um estresse oxidativo

para as células e problemas como necrose, danos a replicação e ciclo celular, levando-as a dar início ao processo de apoptose (Lesser, 2006).

A glutationa pode funcionar como um co-fator para enzimas antioxidantes como a glutationa peroxidase e a glutationa transferase, sendo esta última a mais eficaz na proteção contra a oxidação nos casos de mudanças de temperatura do meio (choque térmico), como demonstrado em Zhou *et al.* (2010) com amostras de *L. vannamei* expostas ao choque térmico de 28° para 15°C durante 6 horas. No entanto, outras enzimas não dependentes de glutationa também atuam protegendo as células dos ROS, como a superóxido dismutase e todas estas enzimas antioxidantes podem ser utilizadas como eficientes biomarcadores para os peneídeos sob estresse oxidativo causado por variações de temperatura (Lushchak, 2011).

A principal justificativa ao se fazer uso dos pesticidas é combater vírus e bactérias que possam vir a perturbar a homeostase dos organismos aquáticos, como a síndrome do vírus da mancha branca (WSSV) o mais destrutivo patógeno viral para os camarões. Dessa forma, quando o peneídeo *Fenneropenaeus chinensis* é exposto a este cenário nota-se um aumento na expressão do gene responsável pela enzima anidrase carbônica (4.2.1.1) provavelmente como resultado do aumento do estresse oxidativo do animal, uma vez que a transcrição deste gene é regulada pela condição redox das células (Wang *et al.*, 2008).

Após uma injeção de bactéria *Vibrio alginolyticus* em indivíduos de *L. vannamei* a atividade das enzimas superóxido dismutase e glutationa peroxidadase aumentaram significativamente a fim de proteger as células contra o dano oxidativo da oxidação. Um componente crucial da defesa antioxidante é composto da glutationa peroxidase que converte o peróxido de hidrogênio em água antes que radicais hidroxilas sejam produzidos (Liu *et al.*, 2007).

Os hormônios da muda conhecidos também como ecdisteróides juntamente com os hormônios juvenis ou sexuais são as principais classes de hormônios presentes nos crustáceos

decápodas (Rewitz *et al.*, 2006). Hoje já se sabe que a reprodução nos artrópodes é controlada principalmente pelo sesquiterpenóide metil farnesoato (Contig 1750) (Hui *et al.*, 2010; Köhler *et al.*, 2007). Alguns pesticidas como o bisfenol, liberado por produtos que contenham plástico em sua composição, podem atuar como mimetizadores desses hormônios, influenciando nos processos de muda e maturação sexual (Tatarazaco & Oda, 2007). Estudos sugerem que o bisfenol tem efeito acumulativo na cadeia alimentar aquática, além de permanecer mais tempo sem degradação na água do mar em comparação à água doce (Ying & Kookana, 2003; Kang & Kondo, 2005 *apud* Kang *et al.*, 2007).

Quando microcrustáceos da espécie *Daphnia magna* são expostos ao composto bisfenol é observada uma considerável queda na taxa de reprodução dos machos. Acredita-se que este fato seja causado não pelo estresse químico ocasionado pelo contato com o pesticida, mas sim pelo efeito endócrino perturbador causado pela mimetização de hormônios juvenis no organismo desses animais, uma vez que estes esteróides são os principais responsáveis pela produção da prole nos crustáceos (Tatarazaco & Oda, 2007; Hui *et al.*, 2010; Köhler *et al.*, 2007). Estes hormônios esteróides são todos derivados do colesterol nos animais e participam de inúmeros processos que regulam a homeostase (Lafont & Mathieu, 2007).

A quitina é o principal componente do exoesqueleto dos crustáceos, fornecendo proteção ao corpo do animal sob condições ambientais adversas. Este polissacarídeo é o responsável pelo processo de muda nos crustáceos e para digerir-lo são necessárias as enzimas quitinase (3.2.1.14) que degrada a quitina a chitooligosacarídeos e então a β-N-acetilhexosaminidase (3.2.1.52) que hidrolisa os sacarídeos a monômeros. Logo, estas enzimas são essenciais aos crustáceos, não apenas pela ecdise, mas também na digestão de alimentos quitinosos e defesa de patógenos que contenham quitina em sua composição (Proespratwong *et al.*, 2010).

Os principais hormônios esteróides que ativam a digestão da quitina constituinte do exoesqueleto dos artrópodes são os ecdisteróides, sendo produzidos por um par de glândulas situadas no órgão Y dos crustáceos. Esse processo é auxiliado por mais um hormônio lipídico, o metil farnesoato, produzido por glândulas na região mandibular dos artrópodes. Além da muda, os ecdisteróides também apresentam outras funções nas fêmeas dos crustáceos, como por exemplo, auxiliar no desenvolvimento embrionário e estimular a produção de vitelo nos ovos, além de os ecdisteróides liberados pela urina na água pelas fêmeas ainda atuaram como feromônios atraindo os machos. Nestes, as funções sexuais desses hormônios são de natureza desconhecida (Lafont & Mathieu, 2007).

O controle dos níveis de glicose é um processo fundamental nos crustáceos, uma vez que a concentração desta na hemolinfa dos decápodas assume concentrações definidas durante diferentes períodos do dia, embora tolerem um intervalo relativamente bom. Durante o dia este nível é baixo e estável e durante a noite sobe até atingir um pico algumas horas após o anoitecer (Sathyanandam *et al.*, 2008). A queda das concentrações de glicose e lactato no plasma dos crustáceos indicam a troca da produção de energia aeróbica por uma anaeróbica, como a glicólise (Soñanes-Organis *et al.*, 2009).

Em Mathew *et al.* (2007) foram estudados indivíduos de *Penaeus monodon* infectados por WSSV e foram analisadas as atividades das seguintes enzimas importantes para a produção de energia a partir da glicose sob o estresse ocorrido pelo patógeno: aldolase (4.2.1.13), glicose-6-fosfatase (5.3.1.9) e frutose-1,6-difosfatase (1.1.1.37). Embora estas enzimas estejam diretamente relacionadas à economia de energia nos crustáceos, é conhecido hoje que estes animais não necessitam de concentrações constantes de glicose no organismo, pois toleram um largo gradiente deste monossacarídeo na hemolinfa (Cuzon *et al.*, 2000 *apud* Mathew *et al.*, 2007).

Passadas 24 horas após a infecção, os níveis de glicose na hemolinfa dos camarões caíram em 33% devido ao estresse. Não houve alteração na ação da enzima aldolase, indicando que mesmo com os animais em estágio morimbundo a produção de energia não foi afetada e a glicólise progrediu normalmente. A quantidade de alimento ingerida pelos indivíduos de *P. monodon* diminuiu e a atividade das enzimas frutose-1,6-difosfatase e glicose-6-fosfatase decresceu muito durante a infecção o que resultou em uma crise energética nos animais, uma vez que estes animais neste caso, apenas consigam obter energia através da glicólise. Isso ocorre pelo fato da gliconeogênese (produção de glicose a partir de fontes que não contenham carboidratos) estar muito inibida pela queda na atividade dessas duas enzimas o que pode resultar na morte de parte dos camarões. Dessa forma, estas enzimas podem ser utilizadas como biomarcadores para que se conheça com mais detalhes o grau de infecção ao qual o plantel está sendo submetido (Mathew *et al.*, 2007).

Logo, dentre os genes que podem ser destacados aqui e que podem ser úteis para estudos em populações naturais ou cativas estão:

- a) os que codificam as enzimas superóxido dismutase e glutationa peroxidase. Estas enzimas estão intimamente relacionadas às condições de estresse nos indivíduos degradando diversos compostos reativos de oxigênio que surgem deste estresse oxidativo e que podem causar danos à estrutura celular. Para ambos os tipos de populações, quando submetidas a perturbações como altas densidades populacionais, mudanças bruscas de temperatura, escassez de alimento, dentre outras, os níveis destas enzimas devem aumentar consideravelmente devido ao aumento de compostos oxigenados reativos na célula, servindo como um bioindicador de que a homeostase do indivíduo foi ameaçada
- b) os que codificam alguns hormônios esteróides relacionados ao metabolismo e reprodução dos crustáceos, como o Contig 1750, cuja sequência pertence ao gene que codifica o

hormônio sesquiterpenóide metilfanesoato responsável pelo controle da reprodução dos crustáceos. Logo, sob estresse ou perturbações ocasionadas por xenobióticos, a taxa de expressão deste gene pode ser alterada, influenciando no tempo necessário para que o indivíduo atinja a maturação sexual ou no número de ovos ou prole deixados por este. Outro fator que pode interferir nas características sexuais dos crustáceos é a presença de bisfenol na água, uma vez que este mimetiza vários dos hormônios sexuais. Logo, conhecer a sua via atuante e algumas das enzimas responsáveis pela sua degradação como a oxidoredutase citocromo P450 6k1 facilita a identificação, no caso deste estar presente no meio, além de haver um maior controle da degradação deste pelo camarões.

C) relacionados com a síntese de enzimas da glicólise com algum tipo de estresse sofrido pelo animal. Um exemplo disso pode ocorrer quando determinadas situações como mudanças de temperatura e infecção por um patógeno específico podem desencadear tamanha perturbação na homeostase do indivíduo ao passo deste parar de se alimentar, dificultando a produção de ATP. Em alguns casos, o consumo de oxigênio também pode cair muito, até o animal atingir um estágio morimbundo. Dessa forma, o animal não se a alimenta e a produção de energia através de outras fontes que não carboidratos fica inibida devido à queda na produção das enzimas frutose-1,6-difosfatase e glicose-6-fosfatase, podendo ocasionar a morte de parte do plantel. Assim, com o conhecimento das enzimas da via glicolítica, pode-se realizar a inferência das que se expressam mais ou menos sob estas condições, com estas atuando como biomarcadores, fornecendo um melhor detalhamento das condições as quais o plantel está submetido, além de um maior esclarecimento do que de fato ocorre no organismo dos peneídeos sob contaminações de vírus ou bactérias específicos.

Estes e outros marcadores, aliados aos conhecimentos sobre as funções destes podem ser também aplicados em estudos de expressão gênica. O grande volume de dados gerado pela anotação genômica possibilita a elucidação dos papéis de muitos marcadores, possibilitando os estudos de *microarrays* e PCR em tempo real, medindo com precisão o quanto determinado gene se expressa em um organismo sob condições ambientais específicas. Esta interação entre genes e adversidades ambientais pode subsidiar estudos de transcriptomas, proteomas e metabolomas. Os primeiros são baseados nos *microarrays* de DNA que permitem a expressão de centenas a milhares de genes que podem ser monitorados simultaneamente, fornecendo um cenário mais amplo de como os organismos respondem ao meio ambiente. Já os proteomas caracterizam-se pela expressão diferenciada de proteínas perante toxicidades específicas, conectando-se aos metabolomas através da degradação dos compostos exógenos pelo metabolismo do indivíduo e as diferentes respostas observadas (Tu *et al*, 2010).

6. Conclusões

1. A validação dos locos SSRs-ESTs aqui realizada em cerca de 30 indivíduos de *L. vannamei* demonstrou alto polimorfismo nesta espécie e excelente taxa de transferabilidade nas espécies testadas, podendo ser utilizadas para estudos genético-populacionais de diferentes espécies de camarões marinhos e de água doce. A anotação genômica destas marcas confirmou o produto gênico para três dos nove locos validados, os quais evidenciaram um alto número de alelos, sendo que para estes locos, o *motif* repetitivo não se mostrou presente em regiões de domínio ou sítio ativo das respectivas proteínas codificadas.

2. A elucidação dos produtos protéicos das marcas ESTs, identificação das enzimas com seus respectivos códigos enzimáticos e conseqüente estabelecimento das possíveis vias metabólicas presentes nos camarões peneideos tornou possível um melhor conhecimento sobre aspectos relacionados à fisiologia e metabolismo deste importante grupo animal. Estes dados poderão ser utilizados para estudos aplicados tanto à aquicultura quanto à conservação.

7. Referências bibliográficas

- Associação Brasileira de Criadores de Camarão (ABCC) (2010). Estatísticas do setor pesqueiro e da Carcinicultura brasileira.

 Disponível em http://www.abccam.com.br/abcc/images/stories/estatisticas/Estatstica_DO_SETOR_PESQUEIRO.pdf. Acesso em 10 de abril de 2011.
- Aloy P., Querol E., Aviles F. X., Sternberg M. J. (2001). Automated structure-based prediction of functional sites in proteins: applications to assessing the validity of inheriting protein function from homology in genome annotation and to protein docking. Journal of molecular biology, 311(2), 395-408. doi: 10.1006/jmbi.2001.4870.
- Baldwin J. D., Bass A. L., Bowen B. W., Clark W. H. (1998). Molecular phylogeny and biogeography of the marine shrimp Penaeus. *Molecular phylogenetics and evolution*, *10*(3), 399-407. doi: 10.1006/mpev.1998.0537.
- Baldwin W. S., Marko P. B., Nelson D. R. (2009). The cytochrome P450 (CYP) gene superfamily in *Daphnia pulex*. *BMC genomics*, 10, 169. doi: 10.1186/1471-2164-10-169.
- Barbieri Jr, R. C. & Ostrensky Neto, A. (2001). Camarões marinhos: Reprodução, Maturação e Larvicultura. Volume 1. Aprenda fácil Editora.
- Bouck A. & Vision T. (2007). The molecular ecologist 's guide to expressed sequence tags. *Molecular Ecology*, 907-924. doi: 10.1111/j.1365-294X.2006.03195.x.
- Callen D. F., Thompson D., Shen, Y., Phillips H. A, Richards R. I., Mulley J. C. (1993). Incidence and origin of "null" alleles in the (AC)n microsatellite markers. *American journal of human genetics*, *52*(5), 922-7.
- Chistiakov D. A., Hellemans B., Volckaert F. A. M. (2006). Microsatellites and their genomic distribution, evolution, function and applications: A review with special reference to fish genetics. *Aquaculture*, *255*, 1 29. doi: 10.1016/j.aquaculture.2005.11.031
- Chu K. H., Tsol K. H., Chan T. Y. (2007). Molecular population structure of the kuruma shrimp *Penaeus japonicus* species complex in western Pacific. *Marine Biology*, *1888*, 1345-1364. doi: 10.1007/s00227-006-0426-x.
- Claudel-Renard C., Chevalet C., Faraut T., Kahn D. (2003). Enzyme-specific profiles for genome annotation: PRIAM. Nucleic Acids Research, 31(22), 6633-6639. doi: 10.1093/nar/gkg847.
- Duff R. J., Hoeh W. R., Cook D., Weeks S. C. (2004). Isolation and characterization of 13 polymorphic microsatellite loci from the clam shrimp *Eulimnadia texana* (Crustacea: Spinicaudata). *Molecular Ecology Notes*, *4*(3), 397-399. doi: 10.1111/j.1471-8286.2004.00664.x.
- Ellegren, H. (2004). Microsatellites: simple sequences with complex evolution. *Nature reviews. Genetics*, *5*(6), 435-45.

 Enzyme Structures Database (EC-PDB) (2011). Disponível em http://www.ebi.ac.uk/thornton-srv/databases/enzymes/. Acesso em 15 de abril de 2011.
- Freitas P. D., Galetti Junior, P. M. (2002). PCR-based VNTR core sequence analysis for inferring genetic diversity in the shrimp *Litopenaeus vannamei*. *Genetics and Molecular Biology*, *25*(4), 431-434. doi: 10.1590/S1415-47572002000400012.
- Freitas P.D., Galetti Junior P. M. (2007a). Isolation and characterization of new microsatellite loci in the Pacific white shrimp *Litopenaeus vannamei* and cross-species amplification in other penaeid species. *Molecular Ecology Notes*, 324- 326. doi: 10.1111/j.1471-8286.2006.01595.x.

- Freitas P. D., Calgaro M. R., Galetti Jr, P. M. (2007b). Genetic diversity within and between broodstocks of the white shrimp *Litopenaeus vannamei* (Boone, 1931) (Decapoda, Penaeidae) and its implication for the gene pool conservation. *Brazilian journal of biology*, 939-43.
- Food and Agriculture Organization of the United Nations (FAO) (2011). Disponível em http://www.fao.org/fishery/culturedspecies/Litopenaeus vannamei/en. Acesso em 10 de abril de 2011.
- Hu F., Pan L., Jing F. (2008). Effects of hypoxia on dopamine concentration and the immune response of White Shrimp (*Litopenaeus vannamei*). *Journal of Ocean University of China*, 8(1), 77-82. doi: 10.1007/s11802-009-0077-x.
- Hui J., Hayward A., Bendena W. G., Takahashi T., Tobe S. S. (2010). Evolution and functional divergence of enzymes involved in sesquiterpenoid hormone biosynthesis in crustaceans and insects. *Peptides*, *31*(3), 451-5. Elsevier Inc. doi: 10.1016/j.peptides.2009.10.003.
- Kanehisa M & Goto S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research, 28(1), 27-30.
- Kang J.-hun, Aasi D., Katayama Y. (2007). Bisphenol A in the Aquatic Environment and Its Endocrine-Disruptive Effects on Aquatic Organisms, 607-625. doi: 10.1080/10408440701493103.
- Kantety R. V., La Rota M., Matthews D. E., Sorrells M. E. (2002). Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. *Plant molecular biology*, 48(5-6), 501-10.
- Kuzniar A., Leunissen J. A. M., Ham R. C. H. J. (2008). The quest for orthologs: finding the corresponding gene across genomes. *Trends in genetics*, (September), 539-551. doi: 10.1016/j.tig.2008.08.009.
- Köhler Heinz.-R., Kloas W., Schirling M., Lutz I., Reye A. L., Langen Jan.-S. (2007). Sex steroid receptor evolution and signalling in aquatic invertebrates. *Ecotoxicology (London, England)*, *16*(1), 131-43. doi: 10.1007/s10646-006-0111-3.
- Lafont R. & Mathieu M. (2007). Steroids in aquatic invertebrates. *Ecotoxicology (London, England)*, 16(1), 109-30. doi: 10.1007/s10646-006-0113-1.
- Lesser M. P. (2006). Oxidative stress in marine environments: biochemistry and physiological ecology. *Annual review of physiology*, *68*(3), 253-78. doi:10.1146/annurev.physiol. 68.040104.110001.
- Li K., Brownley A., Stockwell T. B., Beeson K., Mcintosh T. C., Busam D. (2008). Novel computational methods for increasing PCR primer design effectiveness in directed sequencing. *BMC Bioinformatics*, *12*, 1-12. doi: 10.1186/1471-2105-9-191.
- Liu Z. J. & Cordes J. F. (2004). DNA marker technologies and their applications in aquaculture genetics. *Review, Aquaculture, 238,* 1-37.
- Liu Chun.-H., Tseng Mei-C., Cheng W. (2007). Identification and cloning of the antioxidant enzyme, glutathione peroxidase, of white shrimp, *Litopenaeus vannamei*, and its expression following *Vibrio alginolyticus* infection. *Fish & shellfish immunology*, *23*(1), 34-45. doi: 10.1016/j.fsi.2006.09.002.
- Louis A., Ollivier E., Aude J., Risler J., Ge, L. (2001). Massive Sequence Comparisons as a Help in Annotating Genomic Sequences Massive Sequences. *Genome Research*, 1296-1303. doi: 10.1101/gr.177601.
- Lushchak V. I. (2011). Environmentally induced oxidative stress in aquatic animals. *Aquatic toxicology (Amsterdam, Netherlands)*, 101(1), 13-30. Elsevier B.V. doi: 10.1016/j.aquatox.2010.10.006.
- Ma K. Y., Chan T.-Y., Chu K. H. (2009). Phylogeny of penaeoid shrimps (Decapoda: Penaeoidea) inferred from nuclear protein-coding genes. *Molecular phylogenetics and evolution*, *53*(1), 45-55. doi: 10.1016/j.ympev.2009.05.019.

- Maggioni R., Rogers A. D., Maclean N., Incao F. D. (2001). Molecular Phylogeny of Western Atlantic *Farfantepenaeus* and *Litopenaeus* Shrimp Based on Mitochondrial 16S Partial Sequences. *Molecular Phylogenetics and Evolution*, 18(1), 66 -73. doi: 10.1006/mpev.2000.0866.
- Manual de Anotação. Disponível em http://www.lge.ibi.unicamp.br/manuais/manual_anota_cp.htm. (Acesso restrito).

 Acesso em 15 de abril de 2011.
- Mathew S., Kumar A., Nair K., Anandan R., Gopalan P., Nair N. V. (2007). Biochemical studies on changes associated with enzymes of glucose metabolism in white spot syndrome virus (WSSV) infected with *Penaeus monodon* (Fabricius). *Journal of Biotechnology*, *6*(August), 1944-1948.
- Nahum L. A., Goswami S., Serres M. H. (2009). Protein families reflect the metabolic diversity of organisms and provide support for functional prediction. *Physiological genomics*, *38*(3), 250-60. doi: 10.1152/physiolgenomics.90244.2008.
- O' Leary N. A., Trent H. F., Robalino J., Peck M. E., Mckillen D. J., Gross P. S. (2006). Analysis of multiple tissue-specific cDNA libraries from the Pacific whiteleg shrimp, *Litopenaeus vannamei*. *Comparative and General Pharmacology*, 46(6), 931-939. doi: 10.1093/icb/icl006.
- Oosterhout C. V., Huchinson W. F., Wills D. P. M., SHIPLEY P. (2004). MICRO- CHECKER: software for identifying and correcting genotyping errors in microsatellite data. *Molecular Ecology Notes*, 535- 538. doi: 10.1111/j.1471-8286.2004.00684.x.
- Perez F., Ortiz J., Zhinaula M., Gonzabay C., Caldero J., Pe F. (2005). Development of EST-SSR Markers by Data Mining in Three Species of Shrimp: *Litopenaeus vannamei, Litopenaeus stylirostris* and *Trachypenaeus birdy, 7*, 554-569. doi: 10.1007/s10126-004-5099-1.
- Perez-Henriquez R., Hernández-martínez F., Cruz P. (2009). Genetic diversity status of White shrimp *Penaeus* (*Litopenaeus*) vannamei broodstock in Mexico. *Aquaculture*, 297(1-4), 44-50. Elsevier B.V. doi: 10.1016/j.aquaculture.2009.08.038.
- Proespraiwong P., Tassanakajon A., Rimphanitchayakit V. (2010). Chitinases from the black tiger shrimp *Penaeus monodon*: phylogenetics, expression and activities. *Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology*, *156*(2), 86-96. Elsevier Inc. doi: 10.1016/j.cbpb.2010.02.007.
- Raymond M & Rousset F. (1995). Evolution, (49), 1280-1283.
- Reed J. L., Famili I., Thiele I., Palsson B. O. (2006). Towards multidimensional genome annotation. *Nature reviews. Genetics*, 7(2), 130-41. doi: 10.1038/nrg1769.
- Rewitz K. F., Styrishave B., Løbner-olesen A., Andersen O. (2006). Marine invertebrate cytochrome P450: Emerging insights from vertebrate and insect analogies. *Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, 143*(C), 363 381. doi: 10.1016/j.cbpc.2006.04.001.
- Rice W. R. (1989). Evolution, (1), 223-225.
- Rost B. (2002). Enzyme function less conserved than anticipated. *Journal of molecular biology*, *318*(2), 595-608. doi: 10.1016/S0022-2836(02)00016-5.
- Saier M. H., Tran C. V., Barabote R. D. (2006). TCDB: the Transporter Classification Database for membrane transport protein analyses and information. *Nucleic acids research*, *34* (Database issue), D181-6. doi: 10.1093/nar/gkj001.

- Sathyanandam S., Vasudevan S., Natesan M. (2008). Serotonin modulation of hemolymph glucose and crustacean hyperglycemic hormone titers in *Fenneropenaeus indicus*. *Aquaculture*, *281*(1-4), 106-112. doi: 10.1016/j.aquaculture.2008.06.003.
- Schmerer W. M. (2000). PCR Optimizing Strategies: Reduction of the accumulation of stutter bands. *Nucleic Acids Research*, *2*(1994), 1998-1998.
- Schuelke M. (2000). An economic method for the fluorescent labeling of PCR fragments. *Nature America Inc.*, 18(February), 1-2.
- Soñanez-Organis J. G., Peregrino-Uriarte A. B., Gómez-Jiménez S., López-Zavala A., Forman H. J., Yepiz-Plascencia G. (2009). Molecular characterization of hypoxia inducible factor-1 (HIF-1) from the white shrimp *Litopenaeus vannamei* and tissue-specific expression under hypoxia. *Comparative biochemistry and physiology. Toxicology & pharmacology: CBP*, 150(3), 395-405. Elsevier Inc. doi: 10.1016/j.cbpc.2009.06.005.
- Stein L. (2001). Review genome annotation: from sequence to biology. *Genetics*, 2(July).
- Tamayo R. J. M. (2006). Assessment of genetic variability in two lots of white shrimp, *Litopenaeus vannamei* (Boone, 1931) introduced to Cuba.
- Tatarazako N. & Oda S. (2007). The water flea *Daphnia magna* (Crustacea, Cladocera) as a test species for screening and evaluation of chemicals with endocrine disrupting effects on crustaceans. *Ecotoxicology (London, England)*, *16*(1), 197-203. doi: 10.1007/s10646-006-0120-2.
- Thiel T., Michalek W., Varshney R. K., Graner A. (2003). Exploring EST databases for the development and characterization of gene-derived SSR-markers in barley (*Hordeum vulgare L. Theor. Appl. Genet.*, 106, 411-422.
- Tu H., Silvestre F., Bernard A., Douny C., Phuong N., Tao C. (2008). Oxidative stress response of black tiger shrimp (*Penaeus monodon*) to enrofloxacin and to culture system. *Aquaculture*, *285*(1-4), 244-248. Elsevier B.V. doi: 10.1016/j.aquaculture.2008.08.032.
- Tu H. T., Silvestre F., Phuong N. T., Kestemont P. (2010). Effects of pesticides and antibiotics on penaeid shrimp with special emphases on behavioral and biomarker responses. *Environmental toxicology and chemistry / SETAC*, 29(4), 929-38. doi: 10.1002/etc.99.
- Valles-Jimenez R., Cruz P., Perez-Enriquez R. (2005). Population Genetic Structure of Pacific White Shrimp (*Litopenaeus vannamei*) from Mexico to Panama: Microsatellite DNA Variation. *Marine biotechnology (New York, N.Y.)*, 6, 475-484. doi: 10.1007/s10126-004-3138-6.
- Wang, H., Li F, Xiang, J. (2005). Polymorphic EST–SSR markers and their mode of inheritance in *Fenneropenaeus chinensis*. *Aquaculture*, 249(1-4), 107-114. doi: 10.1016/j.aquaculture.2005.03.041.
- Wang B., Li Fuhua, Luan W., Xie Y., Zhang C., Luo Z. (2008). Comparison of gene expression profiles of *Fenneropenaeus* chinensis challenged with WSSV and *Vibrio*. *Marine biotechnology (New York, N.Y.)*, 10(6), 664-75. doi: 10.1007/s10126-008-9105-x.
- Yamanishi Y., Hattori M., Kotera M., Goto Susumu, Kanehisa Minoru. (2009). E-zyme: predicting potential EC numbers from the chemical transformation pattern of substrate-product pairs. *Bioinformatics (Oxford, England)*, *25*(12), i179-86. doi: 10.1093/bioinformatics/btp223.
- Ying G.-G. & Kookana R. S. (2003). Degradation of Five Selected Endocrine-Disrupting Chemicals in Seawater and Marine Sediment. *Environmental Science & Technology*, *37*(7), 1256-1260. doi: 10.1021/es0262232.

- Yu H., He Y., Wang X., Zhang Q., Bao Z., Guo X. (2011). Polymorphism in a serine protease inhibitor gene and its association with disease resistance in the eastern oyster (*Crassostrea virginica*) Gmelin). Fish & shellfish immunology, 30(3), 757-62. Elsevier Ltd. doi: 10.1016/j.fsi.2010.12.015.
- Zhang P., Zhang X., Li J., Gao T. (2009). Effect of salinity on survival, growth, oxygen consumption and ammonia-N excretion of juvenile whiteleg shrimp, *Litopenaeus vannamei*. *Aquaculture Research*, *40*(12), 1419-1427. doi: 10.1111/j.1365-2109.2009.02240.x.
- Zhou J., Wang L., Xin Y., Wang W., He W., Wang, A. (2010). Effect of temperature on antioxidant enzyme gene expression and stress protein response in white shrimp, *Litopenaeus vannamei*. *Journal of Thermal Biology*, *35*(6), 284-289. Elsevier. doi: 10.1016/j.jtherbio.2010.06.004.

8.1 Anexos – Tabelas

Tabela 6: Relação das 35 enzimas envolvidas nas principais vias metabólicas elucidadas. Destaque para o *EC number*, função molecular, processo biológico e respectiva rota participante.

Enzima	EC number	Função molecular	Componente celular	Via metabólica
Álcool desidrogenase	1.1.1.1	Oxidação do etanol	Citoplasma	Degradação de cloroalcanos e cloroalquenos/ Degradação de naftaleno
GDP L-fucose sintetase	1.1.1.271	Metabolismo celular	N/A	Metabolismo de frutose e manose
S- formilglutationa hidrolase	1.1.1.284	Carboxilesterase	Citoplasma	Metabolismo de metano
Frutose-1,6-bifosfatase 1	1.1.1.37	Atividade de glicose bifosfatase	N/A	Ciclo do citrato (Krebs)/ metabolismo do metano
Isocitrato desidrogenase (NADP)	1.1.1.42	Redução/Oxidação	Mitocôndria	Ciclo do citrato (Krebs)/ metabolismo da glutationa
Complexo do citocromo b-c1	1.10.2.2	Citocromo C redutase	Mitocôndria	Fosforilação oxidativa
Peroxidase	1.11.1.7	Peroxidase	Região extracelular	Metabolismo do metano/ Metabolismo de fenilalanina
Glutationa peroxidase 2	1.11.1.9	Glutationa peroxidase	N/A	Metabolismo de ácido araquidônico/ Metabolismo da glutationa
Oxiredutase	1.14	Oxidoredutase	N/A	Degradação de aminobenzoato/ Degradação de bisfenol/ Degradação de cloroalcanos e cloroalquenos/ Degradação de hidrocarbonetos aromáticos policíclicos
Citocromo P450 6k1	1.14.14.1	N/A	N/A	Metabolismo de xenobióticos pelo citocromo P450/ Metabolismo de ácido araquidônico/ Biossíntese de hormônio esteróide
Fenilalanina 4-monooxigenase	1.14.16.1	Ligante de proteína	N/A	Metabolismo de fenilalanina
Succinato desidrogenase flavoproteína	1.3.5.1	Succinato desidrogenase	Membrana interna da mitocôndria	Fosforilação oxidativa
Complexo NADH desidrogenase (ubiquinina) 1 beta, subunidade 5	1.6.99.3	NADH desidrogenase	Complexo da cadeia respiratória	Fosforilação oxidativa
Citocromo c oxidase	1.9.3.1	Ferro/cobre ligante e atividade de citocromo-c	Membrana interna da mitocôndria	Fosforilação oxidativa
Transferase	2.1.1	Metiltransferase	N/A	Biossíntese de alcalóides isoquinolinados/ Degradação de hidrocarbonetos aromáticos policíclicos/ Metabolismo de triptofano/ Biossíntese de ubiquinona
Exostosina-2	2.4.1.225	Transferase de grupos glicosil	Membrana do Golgi	Biossíntese de glicosaminoglicanos e sulfato de heparina
Glutationa S-transferase	2.5.1.18	Glutationa transferase	Citoplasma	Metabolismo de xenobióticos pelo citocromo P450/ Metabolismo de glutationa

Aspartato aminotransferase	2.6.1.1	Transferase e ligante de piridoxal fosfato	Mitocôndria	Metabolismo de metionina e cisteína/ Biossíntese de alcalídes isoquinolinados/ Metabolismo de fenilalanina	
Piruvato quinase	2.7.1.40	Piruvato quinase e ligante de íons magnésio e potássio	Citoplasma	Metabolismo de purina	
JMP-CMP quinase/ Adenilato quinase	2.7.4.14/2.7.4.3	Quinase e transferase	Citoplasma e núcleo	Metabolismo de pirimidina e purina	
Nucleosídeo difosfato quinase B	2.7.4.6	N/A	Citoplasma	Metabolsimo de purina/ Metabolismo de pirimidina	
S- formilglutationa hidrolase 3.1.12.12		Carboxilesterase	Citoplasma	Metabolismo de metano	
Hidrolase	3.1.3	Hidrolase	N/A	Metabolismo de frutose e manose	
Frutose-1,6-bifosfatase 1	3.1.3.11	Frutose 1,6-bifosfato 1-fosfatase	N/A	Glicólise/ Metabolismo de metano/ Vias das pentoses	
Endoquitinase	3.2.1.14	Atividades de hidrolase e quitinase	Região extracelular	Metabolismo de amino e nucleotídeo glicanos	
Quito-oligo-sacaridolítico beta-N- acetilglicosaminidase	3.2.1.52	Acetilhexosaminidase	N/A	Degradação de glicosaminoglicanos	
ATP sintetase	3.6.3.14	Transporte de prótons para síntese de ATP	Transporte de elétrons em dois setores do complexo da ATPase	Fosforilação oxidativa	
Fosfoenolpiruvato carboxiquinase	4.1.1.32	Carboxil-liase	Mitocôndria	Ciclo do citrato (Krebs)	
Frutose-bifosfato aldolase	4.1.2.13	Frutose bifosfato aldolase	N/A	Glicólise/ Metabolismo defrutose e manose/ Vias das pentoses	
Enolase	4.2.1.11	N/A	N/A	Glicólise/ Metabolismo de metano/ Vias das pentoses	
Ribulose-fosfato 3-epimerase	5.1.3.1	Ribulose-fosfato 3-epimerase	N/A	Via das pentoses	
Glicose-6-fosfato isomerase	5.3.1.9	Atividade de glicose-6-fosfatase	Citoplasma	Glicólise/ Via das pentoses	
Fosfoglicerato mutase	5.4.2.1	Transferase intramolecular	N/A	Metabolsimo de metano	
Ligase 6.3.2		Ligase	N/A	Metabolismo de triptofano	

Tabela 7: Listagem dos contigs anotados. Maior detalhamento sobre o produto gênico, TC number, componente celular, função molecular, processo biológico, símbolo do gene, função, domínio e organismo homólogo.

Contig	Produto	TC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 10	Proteína ligante de RNA	N/A	núcleo	Nucleotídeo ligante	Processamento de RNA	tsu	Controle de qualidade do mRNA	N/A	Drosophila melanogaster
Contig 1000	Actina	N/A	Citoesqueleto	ATP ligante	N/A	ACT	Motilidade celular		Penaeus monodon
Contig 1001	Contaminação por Shigella	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Contig 1003	Cutícula	N/A	N/A	Estrutural da cutícula	N/A	cp1158	Cutícula	N/A	Cancer pagurus
Contig 1015	Actina	N/A	Citoesqueleto	ATP ligante	N/A	act	Motilidade celular	N/A	Fenneropenaeus chinensis
Contig 1009	Actina	N/A	Citoesqueleto	ATP ligante	N/A	acta	Motilidade celular	N/A	Penaeus monodon
Contig 1027	Miosina reguladora da cadeia leve 2	N/A	N/A	Ligante de íon cálcio	N/A	Mlc2	Hexâmero de 2 cadeias pesadas e 4 leves	N/A	Drosophila melanogaster
Contig 1039	Fator de início da tradução eucariótico 3	N/A	N/A	Fator de inicio da tradução	N/A	Trip1	eIF-3 dissocia ribossomos e promove iniciador Met-tRNA	N/A	Bombyx mori
Contig 1045	Cadeia de miosina pesada	N/A	Filamento estriado de musculatura lisa	Atividade motora	Contração de músculo estriado	Mhc	Contração muscular	N/A	Farfantepenaeus paulensis
Contig 1046	Troponina C	N/A	Flagelo	Ligante de íon cálcio	Motilidade de cílios ou flagelo	N/A	Proteína central de regulação de contração do músculo estriado	N/A	Pontastacus Ieptodactylus
Contig 1063	Actina	N/A	Citoesqueleto	Estrutural, ligante de ATP	N/A	act	Motilidade celular	N/A	Penaeus monodon
Contig 1065	Cadeia de miosina pesada	N/A	Miosina	Atividade motora, ligante de actina	Contração de músculo estriado	Mhc	Contração muscular	N/A	Drosophila melanogaster
Contig 1079	Actina	N/A	Citoesqueleto	Ligante de ATP	N/A	act	Motilidade celular	PF0022	Penaeus monodon
Contig 1087	Actina	N/A	Citoesqueleto	Ligante de ATP	N/A	act	Motilidade celular	PF0022	Penaeus monodon
Contig 1094	Cadeia de miosina pesada	N/A	Miosina	Atividade motora e estrutural do músculo	Contração de músculo estriado	Mhc	Contração muscular	N/A	Farfantepenaeus paulensis
Contig 1025	Sub-família ligante de ATP E member 1	N/A	Mitocôndria	ATPase, ATP ligante e ligante de ferro- enxofre	Transporte de elétrons	Abce1	Inibe a atividade de endoribonuclease de oligodenilatos. Papel central na performance do mRNA	N/A	Tribolium castaneum
Contig 1037	Ânion seletivo dependente de voltagem	N/A	Membrana externa da mitocôndria	Canal dependente de voltagem íon seletivo	Transporte de íons	vdac2	Forma um canal através da membrana mitocondrial externa que permite a difusão de pequenas moléculas hidrofílicas. O canal adota uma conformação aberta em baixo ou zero potencial de membrana e uma conformação fechada em potenciais acima de 30-40 mV	N/A	Tribolium castaneum

Contig	Produto	TC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 1055	Receptor do ácido gama-aminobutírico, proteína associada	N/A	Citoesqueleto	Ligante de proteína	Transporte de proteína	Gabarap	Podem desempenhar um papel no transporte intracelular de receptores GABA (A) e sua interação com o citoesqueleto	N/A	Nematostella vectensis
Contig 1062	Proteína nuclear ligante de GTP	N/A	Núcleo	GTPase	Transporte intracelular protéico	ran	Transporte nucleocitoplasmático. Necessário para a importação de proteínas para o núcleo e também para exportação do RNA. Envolvidos na condensação da cromatina e controle do ciclo celular	N/A	Marsupenaeus japonicus
Contig 108	Fator de início da tradução eucariótico subunidade 3	N/A	Núcleo	Fator de inicio da tradução	Iniciação da tradução	Eif3e	Componente do fator de início de tradução eucariótico 3 (eIF-3) complexo, que é necessário para vários passos na iniciação da síntese protéica	N/A	Nematostella vectensis
Contig 1085	Fator de início da tradução eucariótico subunidade 3	N/A	Iniciação da transcrição eucariótica	Fator de inicio da tradução	Tradução	Trip1	Componente do fator de início de tradução eucariótico 3 (eIF-3) complexo, que está envolvida na síntese de proteínas e, juntamente com outros fatores de iniciação, estimula a ligação do mRNA e metionil-tRNAi ao ribossomo 40S	N/A	Drosophila melanogaster
Contig 1104	Actina	N/A	Citoesqueleto	Ligante de ATP, estrutural	N/A	N/A	Motilidade celular e expressão dependente de ATP em todas as células	pfam0022	Penaeus monodon
Contig 1106	Actina-3, músculo específica	N/A	Citoesqueleto	Estrutural e ligante de ATP	N/A	ACT3	Motilidade celular	pfam0022	Penaeus monodon
Contig 1107	Fator de elongação 1- gamma	N/A	Fator de elongação da tradução	Elongação da tradução	Elongação	N/A	Ancorar o complexo de elongação a outros complexos	Pfam00647	Artemia salina
Contig 1109	Fator anti- lipopolisacarpideo	N/A	N/A	N/A	Resposta de defesa a bactérias	N/A	Liga-se firmemente ao LPS, inibindo a ativação do LPS mediada pela coagulação da hemolinfa. Forte efeito antibacteriano, especialmente sobre o crescimento de bactérias gram-negativas.	N/A	Penaeus monodon
Contig 1114	Actina-3, músculo específica	N/A	Citoesqueleto	Estrutural e ligante de ATP	N/A	N/A	Motilidade muscular	PF00022	Penaeus monodon
Contig 1118	Troponina C, isoforma 2A	N/A	N/A	Ligante de íon cálcio	N/A	N/A	proteína central de regulação de contração do músculo estriado. Tn consiste em três componentes: Tn-I, que é o inibidor da ATPase actomyosin, TN-T, que contém o sítio de ligação para tropomiosina e TN-C. A ligação do cálcio a TN-C suprime a ação inibitória da Tn em filamentos de actina.	PF00036	Homarus americanus
Contig 1123	Cadeia de miosina pesada, músculo	N/A	Filamento estriado de musculatura lisa	ATP Ligante e motora	Contração de músculo estriado	Mhc	Contração muscular	PF00063	Drosophila melanogaster

Contig	Produto	TC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 1131	Miosina de cadeia pesada	N/A	Complexo da miosina	ATP ligante	N/A	Mhc	Contração muscular	N/A	Tribolium castaneum
Contig 1138	Actina	N/A	Citoesqueleto	ATP ligante e molécula estrutural	N/A	N/A	Motilidade celular	N/A	Penaeus monodon
Contig 1141	Contaminação por Escherichia coli	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Contig 1145	Cadeia leve de dineína tipo Tctex 1	N/A	Microtúbulos	Atividade motora	Divisão celular	Dynlt1	Consiste em pelo menos duas cadeias pesadas e uma série de cadeias de intermediários leves.	N/A	Nematostella vectensis
Contig1149	Contaminação por Shigella	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Contig 1156	Actina	N/A	Citoesqueleto	ATP ligante e estrutural	N/A	N/A	Motilidade celular	N/A	Penaeus monodon
Contig 1172	Fator de ADP- ribosilação 1	N/A	Intracelular	Ligante de GTP	GTPase mediadora do sinal da tradução	ARF1	Proteína ligante de GTP que funciona como um ativador alostérico da subunidade toxina da cólera, uma ADP-ribosiltransferase	N/A	Apis mellifera
Contig 119	Proteína 1 NHP2	N/A	Complexo de ribonucleoproteína	Splicing RNA	Síntese e montagem de ribossomo	Nhp2l1	Papel no estágio final de montagem do spliceosomo. A proteína sofre uma mudança conformacional quando ligada a RNA	N/A	Nasonia vitripennis
Contig 1201	Proteína expressa	N/A	Complexo da oligossacaril transferase	Atividade de glicotransferase	Aminoácido N-ligado a glicosilação via asparagina	N/A	N/A	N/A	Culex pipiens
Contig 1220	Miosina de cadeia pesada	N/A	Complexo da miosina	Atividade motora	Contração muscular	Mhc	Contração muscular	N/A	Drosophila melanogaster
Contig 1240	Actina, músculo esquelético	N/A	Citoesqueleto	Estrutural e ligante de ATP	N/A	N/A	Motilidade celular	N/A	Penaeus monodon
Contig 1244	Complexo sarcoplasmático ligante de cálcio, cadeia beta	N/A	N/A	Ligante de íon cálcio	N/A	N/A	Mais frquente em músculos de contração rápida, embora não possa ser estabelecida uma relação.	N/A	Penaeus sp
Contig 1245	Actina, músculo esquelético	N/A	Citoesqueleto	Estrutural e ligante de ATP	N/A	Acta1	Motilidade celular	N/A	Farfantepenaeus chinensis
Contig 1249	Contaminação Escherichia coli	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Contig 1250	Proteína transportadora de ADP, ATP	N/A	Membrana interna da mitocôndria	Ligante	Transporte	AGAP006782	Cataliza a mudança de ADP e ATP através da menbrana interna da mitocôndria	N/A	Marsupenaeus japonicus
Contig 1257	Sistema de clivagem proteína H da glicina	N/A	Complexo de clivagem da glicina	Ligante de ácido lipóico	Processo catabólico da glicina	GCSH	Quebra da glicina	N/A	Aedis aegypti
Contig 1258	Actina, musculatura lisa da aorta	N/A	Citoesqueleto	Estrutural e ligante de ATP	Contração muscular	Acta2	Motilidade celular	N/A	Penaeus monodon
Contig 1260	Actina	N/A	Citoesqueleto	Estrutural e ligante de ATP	Contração muscular	N/A	Motilidade celular	N/A	Nannochloris bacillaris
Contig 1262	Miosina de cadeia pesada	N/A	Complexo da miosina	Atividade motora e ATP ligante	Contração muscular	Mhc	Contração muscular	N/A	Tribolium castaneum
Contig 1270	Contaminação Escherichia coli	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Contig	Produto	TC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 1271	Contaminação Escherichia coli	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Contig 1278	Fator 3 de iniciação da tradução eucariótica, subunidade H	N/A	Citoesqueleto	Fator de início da tradução	Iniciação da tradução	EIF3H	Componente do fator de início de tradução eucariótico 3 (eIF-3) complexo, que é necessário para vários passos na iniciação da síntese protéica. O eIF-3 se associa com o complexo ribossomo 40S e facilita o recrutamento de eIF-1, eIF-1A, eIF-2 para formar o complexo de préiniciação	N/A	Bombyx mori
Contig 1285	Maquinaria de tradução associada a proteína 20	N/A	Citoplasma	Ligante de RNA	Tradução	TMA20	Envolvido na tradução	N/A	Apis mellifera
Contig 1305	Cadeia C da hemocianina	N/A	Espaço extracelular	Transporte de oxigênio	Transporte	HCC	Transporte de oxigênio nos artrópodos com o auxílio do cobre	cd00446	Marsupenaeus japonicus
Contig 1307	Actina 3, citoplasmática	N/A	Citoesqueleto	Estrutural e ligante de ATP	N/A	actbc	Motilidade celular	N/A	Litopenaeus vannamei
Contig 1316	Crustacianina, subunidade A1	N/A	Região extracelular	Transporte de oxigênio	Transporte	N/A	Liga-se ao carotenóide astaxantin (AXT), fornecendo a coloração azul para a carapaça da lagosta	N/A	Homarus gammarus
Contig 1317	Actina	N/A	Citoesqueleto	Estrutural e ligante de ATP	N/A	N/A	Motilidade celular	N/A	Litopenaeus vannamei
Contig 1334	Actina	N/A	Citoesqueleto	Estrutural e ligante de ATP	N/A	N/A	Motilidade celular	N/A	Litopenaeus vannamei
Contig 1338	Troponina T, músculo esquelético	N/A	Filamento estriado de musculatura lisa	Ligante de íon cálcio	Homeostase celular do íon cálcio e organização do sarcômero	ир	Sensível ao cálcio para a atividade muscular estriada	N/A	Drosophila melanogaster
Contig 1357	Peptídeo putativo antimicrobiano	N/A	Região extracelular	Inibidor da atividade de protease	N/A	N/A	N/A	N/A	Litopenaeus vannamei
Contig 1368	Coatomer subunidade gamma-2	N/A	Vesícula associada ao Golgi	Ligante de proteína	Transporte celular intracelular	Copg2	O complexo influencia na integridade estrutural de Golgi, bem como o processamento, a atividade, e reciclagem de endocítica receptores de LDL	N/A	Nematostella vectensis
Contig 1384	Complexo AP-2, subunidade sigma	N/A	Película da membrana	Transporte de proteína	Transporte de proteína intracelular	Ap2s1	Adaptador no transporte de proteínas através de vesículas de transporte nas vias de tráfego diferentes da membrana.	N/A	Tribolium castaneum
Contig 1397	Pseudohemocianina-2	N/A	N/A	Transporte de oxigênio	Transporte	phc-2	Não funciona como hemocianina	N/A	Penaeus monodon
Contig 140	Complexo proteico ribonucléico H/ACA, subunidade 2	N/A	Nucléolo	Ligante de RNA	Processamento de RNA	Nhp2l1	Necessário para biogênese do ribossomo	cl10858	Drosophila melanogaster
Contig 1405	Cadeia C da hemocianina	N/A	Espaço extracelular	Transporte de oxigênio	Transporte de oxigênio	N/A	Transporte de íons oxigênio com o auxílio de cobre dissolvido na hemolinfa dos moluscos	N/A	Litopenaeus vannamei
Contig 1414	Actina	N/A	Citoesqueleto	Estrutural e ligante de ATP	N/A	N/A	Motilidade celular	N/A	Litopenaeus vannamei

Contig	Produto	TC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 1421	Unidade C1 da crustacianina	N/A	Espaço extracelular	Transporte de pigmento respiratório	Transporte	N/A	Ligante do carotenóide astaxantina, fornecendo a coloração azul a carapaça da lagosta	N/A	Homarus gammarus
Contig 1425	Tioredoxina-2	N/A	N/A	Transporte de elétrons	Homeostase redox	Trx-2	Participa em várias reações redox através da oxidação reversível de ditiol a um dissulfeto	N/A	Litopenaeus vannamei
Contig 1432	Crustacianina, subunidade A2	N/A	Região extracelular	Transporte de pigmento respiratório	Transporte	N/A	Liga-se ao carotenóide astaxantin (AXT), fornecendo a coloração azul para a carapaça da lagosta	N/A	Homarus gammarus
Contig 1449	Crustacianina subunidade-A2	N/A	Região extracelular	Transporte de pigmento respiratório	Transporte	N/A	Liga-se ao carotenóide astaxantin (AXT), fornecendo a coloração azul para a carapaça da lagosta	N/A	Homarus gammarus
Contig 1460	Crustacianina, subunidade A2	N/A	Região extracelular	Transporte de pigmento respiratório	Transporte	N/A	Liga-se ao carotenóide astaxantin (AXT), fornecendo a coloração azul para a carapaça da lagosta	N/A	Homarus gammarus
Contig 1469	Proteína de tumor controlada por tradução	N/A	Citoplasma	N/A	N/A	Tctp	Relacionado a ligação di cálcio e estabilização dos microtúbulos	N/A	Litopenaeus vannamei
Contig 1474	Actina	N/A	Citoesqueleto	Ligante de ATP e estrutural	N/A	N/A	Motilidade celular	N/A	Penaeus monodon
Contig148	Regulador da transcrição 1	N/A	Núcleo	Fator de transcrição da RNA polimerase II	Promotor da RNA polimerase II. Controle da transcrição	TCERG1	Fator de transcrição que se liga RNA polimerase II e inibe o alongamento das transcrições dos promotores alvo. Regulamenta o alongamento da transcrição de uma forma TATA box- dependente.	N/A	Tribolium castaneum
Contig 1489	Septina 2	N/A	Citoplasma	Ligante de GTP	Citocinese	Sep2	Envolvido na citocinese	N/A	Drosophila melanogaster
Contig 1495	Actina, citoplasmática 1	N/A	Citoesqueleto	Estrutural e ligante de ATP	N/A	actb	Motilidade celular	N/A	Litopenaeus vannamei
Contig 1514	Cadeia C da hemocianina	N/A	Região extracelular	Transporte de oxigênio	Transporte	НСС	Hemocianina contém pigmento respiratório transportador de oxigênio distribuído livremente pela hemolinfa dos artródopos	cd00435	Marsupenaeus japonicus
Contig 1517	Cadeia pesada da miosina	N/A	Complexo da miosina	Motor e ligante de ATP	Contração muscular	Mhc	Contração muscular	N/A	Drosophila melanogaster
Contig 1518	Citocromo b	N/A	Cadeia respiratória mitocondrial	Atividade de oxidoredutase	Cadeia respiratória de transporte de elétrons	mt: Cyt-b	Cadeia respiratória componente do complexo citocromo-redutase ubiquinol. Gera um potencial eletroquímico acoplado à síntese de ATP	N/A	Litopenaeus vannamei
Contig 152	Fator de iniciação da tradução eucariótico 6	N/A	Citoplasma	Ribossomo ligante	Montagem do ribossomo maduro e via sinalizadora mediada por integrina	Eif6	Vincula-se à subunidade 60S ribossomal e impede sua associação com a subunidade ribossômica 40S para formar o complexo de iniciação 80S	N/A	Xenopus tropicalis
Contig 1522	Crustacianina, subunidade C1	N/A	Região extracelular	Ligante de pigmento respiratório	Transporte	N/A	Liga-se ao carotenóide astaxantin (AXT), fornecendo a coloração azul para a carapaça da lagosta	N/A	Homarus gammarus

Contig	Produto	TC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 1529	Proteína L6 ribossomal 60S	N/A	Ribossomo	Estrutural constituinte do ribossomo	Tradução	RPL6	N/A	N/A	Carabus granulatus
Contig 1534	Crustacianina, subunidade-A2	N/A	Região extracelular	Transporte e ligante de pigmento respiratório	Transporte	N/A	Liga-se ao carotenóide astaxantin (AXT), fornecendo a coloração azul para a carapaça da lagosta	N/A	Homarus gammarus
Contig 1535	Cadeia C da hemocianina	N/A	Região extracelular	Transporte de oxigênio	Transporte de oxigênio	HCC	Hemocianina contém pigmento respiratório transportador de oxigênio distribuído livremente pela hemolinfa dos artródopos	N/A	Penaeus monodon
Contig 1539	Actina alfa, músculo esquelético	N/A	Citoesqueleto	Estrutural e ligante de ATP	N/A	acta1	Motilidade celular	N/A	Penaeus monodon
Contig 155	Fator de iniciação da tradução eucariótico 2, subunidade 1	N/A	Fator de início da tradução 2	Início da tradução e ligante de RNA	Tradução	Eif-2alpha	eIF-2 funciona nas etapas iniciais da síntese de proteínas, formando um complexo ternário com GTP e tRNA iniciador. Reconhecimento de um códon de iniciação	N/A	Drosophila melanogaster
Contig 1572	Tioredoxina proteína 4A	N/A	Núcleo	N/A	Mitose e splicing de RNA	Txnl4a	Papel essencial no splicing so pré mRNA	N/A	Mus musculus
Contig 1578	Mediador de transcrição de RNA polimerase II, subunidade 10	N/A	Núcleo	Mediador de RNA polimerase II	Regulação da transcrição DNA- dependente	mdt-10	Componente do complexo mediador, um coactivator envolvidos na transcrição, regula quase todos os genes RNA polimerase II- dependentes. Funções de mediador, como ponte para transmitir informação gene específico das proteínas reguladoras da RNA polimerase II para a maquinaria de transcrição basal. Necessário para o desenvolvimento das células germinativas	cl06834	Nasonia vitripennis
Contig 158	Complexo THO subunidade 3	N/A	Núcleo	Ligante de RNA	Transporte	THOC3	Componente do subcomplexo THO do complexo TREX. O complexo TREX especificamente liga-se a RNAs pós splicing e não pré-RNAs	N/A	Tribolium castaneum
Contig 1586	Subunidade 3 de pré- conformação	N/A	Citoplasma	Ligante de proteína pré-conformação	Conformação protéica	VBP1	Liga-se a chaperones citoplasmáticos e a cadeia de polipeptídeos nascente e promove a conformação em um ambiente com muitas possibilidades possíveis para proteínas inativas	N/A	Nasonia vitripennis
Contig 1602	Hemocianina, subunidade 2	N/A	Celular extracelular	Transporte de oxigênio	Transporte	N/A	Transporte de oxigênio nos artrópodos com o auxílio do cobre	N/A	Marsupenaeus japonicus
Contig 1619	Crustacianina C1, subunidade	N/A	Região extracelular	Transporte de pigmento respiratório	Transporte	N/A	Liga-se ao carotenóide astaxantin (AXT), fornecendo a coloração azul para a carapaça da lagosta	N/A	Homarus gammarus
Contig 1629	Cadeia pesada da miosina, músculo	N/A	Complexo da miosina	Atividade motora	Contração muscular	Mhc	Contração muscular	N/A	Farfantepenaeus paulensis

Contig	Produto	TC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 1630	Fator 5A de iniciação da tradução eucariótica	N/A	Citoplasma	Fator de elongação da tradução	Início da tradução	Eif-5A	Envolvida no alongamento da tradução e na resposta ao estresse e manutenção da integridade da parede celular. Funciona como um regulador da apoptose.	N/A	Penaeus monodon
Contig 1636	Proteína transmembrana 50A	N/A	Membrana	N/A	N/A	Tmem50a	N/A	N/A	Mus musculus
Contig 1670	Cadeia pesada da miosina, músculo	N/A	Complexo da miosina	Estrutural do músculo	Comtração muscular	Mhc	Contração muscular	N/A	Farfantepenaeus paulensis
Contig 1689	Proteína V do centrômero	N/A	Unidade da citocinese	Carbono-enxofre liase	Divisão celular	Cenpv	Exigidos para a distribuição de heterocromatina pericentromérica de núcleos interfásicos e para a formação do centrômero e organização, alinhamento de cromossomos e citocinese	N/A	Gallus gallus
Contig 1711	Homólogo da proteína tradução-controladora de tumor	N/A	Citoplasma	N/A	N/A	Tctp	Ligação ao íon cálcio e estabilização dos microtúbulos	N/A	Litopenaeus vannamei
Contig 1718	UPF0139 proteína de membrana pMsmaA27	N/A	Membrana	N/A	N/A	N/A	N/A	N/A	Nasonia vitripennis
Contig 172	Homólogo da proteína de biogênese do ribossomo NSA2	N/A	Núcleo	N/A	Processamento de rRNA	Tinp1	Envolvido na biogênese da subunidade ribossômica 60S. Podem desempenhar um papel no controle de qualidade das partículas pré-60S	N/A	Bombyx mori
Contig 1723	Actina, músculo esquelético alfa	N/A	Citoesqueleto	Estrutural e ligante de ATP	Desenvolvimento da fibra muscular esquelética	Acta 1	Motilidade celular	N/A	Penaeus monodon
Contig 1730	Tubulina, cadeia beta-2	N/A	Microtúbulos	Atividade GTPase	Movimento baseado em microtúbulos	N/A	Une duas moléculas de GTP, uma em um sítio intercambiável e outra em um não-intercambiável na cadeia alfa	N/A	Homarus americanus
Contig 1731	Tubulina, cadeia alfa-1	N/A	Microtúbulos	Atividade GTPase	Movimento baseado em microtúbulos	N/A	Une duas moléculas de GTP, uma em um sítio intercambiável e outra em um não-intercambiável na cadeia alfa	N/A	Homarus americanus
Contig 1732	Complexo COP9/ Signalosome e Eif3, subunidade 1	N/A	Citosol	N/A	Organização e biogênese do Golgi	cif-1	Componente do fator de início de tradução eucariótico 3 (eIF-3) complexo, que está envolvida na síntese de proteínas e, juntamente com outros fatores de iniciação, estimula a ligação do mRNA e metionil-tRNAi ao ribossomo 40S. Componente do complexo COP9 signalosome (CSN), um complexo envolvido em vários processos celulares e de desenvolvimento	N/A	Anopheles gambiae
Contig 1736	Proteína L13a ribossomal 60S	N/A	Ribossomo	Estrutural do ribossomo	Tradução	RpL 13A	N/A	N/A	Spodoptera frugiperda
Contig 1739	Proteína 1, abundante nos locos	N/A	Mitocôndria	Citocromo-c oxidase	N/A	Surf1	Provável envolvimento na biogênese do complexo COX	N/A	Tribolium castaneum

Contig	Produto	TC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólog
Contig 1749	Calmodulina	N/A	N/A	Ligante de íon cálcio	N/A	N/A	Calmodulina media o controle de um grande número de enzimas e outras proteínas por Ca ^{2+,} dentre elas uma série de quinases e fosfatases	N/A	Drosophila melanogaster
Contig 1754	Homólogo 2 do pumilio	N/A	Citoplasma	Ligante de RNA	Regulação da tradução	Pum2	Seqüência específica de proteína RNA-obrigatória que regula a estabilidade e tradução do mRNA, ligando o 3'-UTR do mRNA alvo. Suas interações e especificidade de tecidos sugerem que ele pode apoiar a proliferação e auto-renovação das células-tronco através da regulação da tradução de transcritos chave	N/A	Onclorhynchus myki
Contig 176	Fator de elongação 1- alfa 2	N/A	Citoplasma	Elongação da tradução e atividade GTPásica	Elongação da tradução	Ef1alfa10	Esta proteína promove que proteínas GTP dependentes do amimoaminoacil-tRNA liguem-se aos ribossomos durante a biossíntese de proteínas	N/A	Drosophila melanogaster
Contig 1766	Proteína 28S ribossomal S15, mitocondrial	N/A	Subunidade pequena ribossomal da mitocôndria	Estrutural do ribossomo	Tradução	bonsai	Essencial para a atividade das mitocôndrias do intestino. Pode estar envolvido na produção de um fator de crescimento tecido-espeífico	N/A	Drosophila melanogaster
Contig 1769	Actina, músculo	N/A	Citoesqueleto	Estrutural e ligante de ATP	N/A	N/A	Motilidade celular	N/A	Penaeus monodoi
Contig 1781	Histona H2A	N/A	Núcleo	Ligante de DNA	Montagem do nucleossomo	His2A	Histones podem desempenhar um papel central na regulação da transcrição, reparo e replicação do DNA e da estabilidade cromossômica. A acessibilidade ao DNA é regulada através de um complexo conjunto de modificações pós-traducionais de histonas	N/A	Litopenaeus vannamei
Contig 1782	Antígeno nuclear de proliferação celular	N/A	Núcleo	Fator de processividade da DNA polimerase	Regulação da replicação de DNA	mus209	É uma proteína auxiliar da DNA polimerase delta e está envolvida no controle da replicação do DNA eucariótico, aumentando a capacidade de processamento da polimerase durante o alongamento do eixo principal.	N/A	Marsupenaeus japonicus
Contig 1784	Mielina P2	N/A	N/A	Ligante de lipídeo	Transporte	PMP2	Transporte de lipídeos nas células de Schwann	N/A	Penaeus monodor
Contig 1795	Subunidade beta transferidora de elétrons da flavoproteína	N/A	Transferência de elétrons da flavoproteína, mitocondrial	Carregador de elétrons	Fosforilação oxidativa	ETFB	Transfere os elétrons para a cadeia mitocondrial, principal via respiratória oxidorredutase ETF- ubiquinona. Funciona como aceptor de elétrons para vários tipos de desidrogenases	N/A	Nasonia vitripenni:

Contig	Produto	TC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 181	Proteína de corpos multivesiculares carregada 1b	N/A	Citoplasma	N/A	Transporte de protéina	CHMP1B	Corpos multivesiculares (MVBs) contem vesículas intraluminais (ILVs) que são gerados por invaginação e cisão da membrana limitante do endossomo e na maior parte são	N/A	Nasonia vitripennis
							entregues aos lisossomos permitindo		
							a degradação de proteínas da		
							membrana como receptores do fator		
							de estímulo ao crescimento, as		
							enzimas lisossômicas e os lipídios		
Contig 1810	Ubiquitina	N/A	Ribossomo	Estrutural do	Tradução	A2I5Y0_POR	Anexo às proteínas como um	N/A	Portunus pelagicus
				ribossomo			monômero ou como uma alternativa		
							de polímero não leva a degradação		
							proteossómica e pode ser necessária		
							para numerosas funções, incluindo a		
							manutenção da estrutura da cromatina, regulação da expressão		
							gênica, resposta ao estresse, a		
							biogênese do ribossomo e reparo de		
							DNA		
Contig 1815	Proteína 40S ribossomal S2	N/A	Ribossomo	Ligante de RNA	Tradução	RPS2	N/A	N/A	Urechis caupo
Contig 1820	Proteína 1 do	N/A	Citoplasma	Ligante de ATP	Conformação e	Cct8	Chaperone molecular. Complexo	N/A	Bombyx mori
	complexo-T,				metabolismo protéico		pode auxiliar o dobramento de		
	subunidade teta						proteínas sobre a hidrólise de ATP.		
							Envolvido na regulação ciliogenesis		
							transporte de vesículas, para os cílios.		
							Conhecida por desempenhar um		
							papel, in vitro, na dobradura de		
							actina e tubulina		
Contig 1832	Proteína de choque	N/A	Mitocôndria	Ligante de ATP e	Metabolismo protéico	HSPD1	Envolvido na importação de proteína	N/A	Nematostella
	térmico 60 kDa,			conformação protéica			mitocondrial e montagem		vectensis
	mitocondrial						macromolecular. Pode facilitar o		
							dobramento correto de proteínas		
							importadas. Também pode impedir		
							uma conforamação incorreta e promover o conjunto e renaturação		
							adequada dos polipeptídeos gerados		
							sob condições de estresse na matriz		
							mitocondrial		
Contig 1837	Provável fator de	N/A	Fator de elongação da	Elongação da	Elongação da	eEF1delta	EF-1-beta e EF-1-delta estimulam a	N/A	Aedis aegypti
	elongação 1-delta	•	tradução eucariótica	tradução	tradução		troca do GDP vinculado a EF-1 alfa- GTP	,	
Contig 1850	Sptzle 2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Lepeophththeirus salmonis

Contig	Produto	TC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 1852	Ubiquitina	N/A	Citoplasma	Ligante de protéina	Modificação protéica	N/A	Anexo às proteínas como um monômero ou como uma alternativa de polímero não leva a degradação proteossómica e pode ser necessária para numerosas funções, incluindo a manutenção da estrutura da cromatina, regulação da expressão gênica, resposta ao estresse, a biogênese do ribossomo e reparo de DNA	N/A	Xenopus laevis
Contig 1861	Fator SPF27 de pré- mRNA-splicing	N/A	Núcleo	N/A	Processamento de mRNA	bcas2	Envolvido no spliciing de mRNA	N/A	Tribolium castaneum
Contig 1862	Crustacianina-C1, subunidade	N/A	Região extracelular	Transporte de pigmento respiratório	Transporte	N/A	Liga-se ao carotenóide astaxantin (AXT), fornecendo a coloração azul para a carapaça da lagosta	N/A	Homarus gammarus
Contig 1900	Cadeia leve de miosina alkali	N/A	Complexo muscular da miosina	Ligante de íon cálcio	N/A	Mlc1	N/A	N/A	Drosophila virilis
Contig 1907	Proteína ligante de guanina, subunidade beta-2 tipo 1	N/A	N/A	Quinase	N/A	gnb2l1	N/A	N/A	Oreochoromis niloticus
Contig 1908	Crustacianina-A2, subunidade	N/A	Região extracelular	Ligante de pigmento respiratório	Transporte	N/A	Liga-se ao carotenóide astaxantin (AXT), fornecendo a coloração azul para a carapaça da lagosta	N/A	Homarus gammarus
Contig 195	Proteína de transporte Sec61, subunidade alfa	N/A	Retículo endoplasmático	Hidrólise da ligação P- P drigida por proteína transmembrana	Secreção e transporte intracelular de protéina	sec61a	É necessário para a montagem de proteínas da membrana e secretórias. Encontrado para ser fortemente associado com ribossomos ligados à membrana, diretamente ou através de proteínas adaptadoras	N/A	Harpagifer antarcticus
Contig 1976	Protease 26S regulatória, subunidade 7	N/A	Núcleo e citoplasma	Ligante de ATP e hidrólise	Catabolismo protéico	psmc2	A protease 26S está envolvida na degradação do ATP-dependente de proteínas ubiquitinadas. O complexo (ou ATPase) regulamentar confere dependência ATP e substrato especificidade ao complexo 26S	N/A	Nematostella vectensis
Contig 202	Histona H3.3	N/A	Nucleossomo	Ligante de DNA	Montagem de nucleossomo	TGas113e22	Histonas podem desempenhar um papel central na regulação da transcrição, reparo e replicação do DNA e da estabilidade cromossômica. A acessibilidade ao DNA é regulada através de um complexo conjunto de modificações pós-traducionais de histonas	N/A	Nasonia vitripennis
Contig 2027	Domínio contendo proteína enrolada-coil 25	N/A	N/A	N/A	N/A	ccdc25	N/A	N/A	Culex pipiens
Contig 2040	Pequena ribonucleoproteína nucleolar U3 IMP3	N/A	Nucléolo	Ligante de rRNA	Processamento de rRNA	Imp3	Necessário para as clivagens iniciais no pré-processamento do RNA ribossomal 18S	N/A	Nasonia vitripennis

Contig	Produto	TC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 2045	Domínio contendo proteína HD YGL101W	N/A	N/A	Atividade catalítica	N/A	YGL101W	N/A	N/A	Nasonia vitripennis
Contig 2097	Proteina ribossomal 60S L12	N/A	Ribossomo	Estrutural do ribossomo	Tradução	Rpl12	Liga-se diretamente ao rRNA 26S	N/A	Bombyx mori
Contig 2102	Proteína <i>slowmo</i>	N/A	Mitocôndria	Ligante de proteína	Peristaltismo, espermatogênese e comportamento da locomoção larval	slmo	Requirido para regulação do peristaltismo e também para a produção de gametas em machos e fêmeas	N/A	Drosophila melanogaster
Contig 2106	Proteína 2 queratinócito-associada	N/A	Membrana	N/A	N/A	KRTCAP2	Componente do complexo da oligosacariltransferase (OST) complexa.	N/A	Litopenaeus vannamei
Contig 2109	Histona-ligante proteína RBBP4-B	N/A	Núcleo	ATPase dependente de DNA	Transcrição e replicação do DNA	rbbp4-B	Subunidades-histona de ligação que podem ser destinadas a fatores de montagem da cromatina, fatores de remodelamento da cromatina e histonas desacetilases de modo que estes são controlados pelo DNA nucleosomal	N/A	Xenopus laevis
Contig 2123	Proteína <i>dodo</i>	N/A	Núcleo	Peptidil-prolil cis- trans isomerase	Conformação protéica	dod	N/A	N/A	Drosophila melanogaster
Contig 2131	Proteína <i>SeIT</i>	N/A	N/A	Ligante de selênio	Homeostase	N/A	N/A	N/A	Drosophila melanogaster
Contig 2140	Actina	N/A	Citoesqueleto	Ligante de ATP	Montagem do filamento fino do músculo esquelético	Acta1	Motilidade celular	N/A	Litopenaeus vannamei
Contig2162	Proteína RLP24 da biossíntese do ribossomo	N/A	Ribossomo	Constituinte do ribossomo	Tradução	Rsl24d1	Envolvidos na biogênese da subunida deribossômica 60S. Garante o encaixe deGTPBP4/NOG1 a partículas pré- 60S	N/A	Mus musculus
Contig2170	Proteína S18 ribossomal 40S	N/A	Ribossomo	Ligante de rRNA e constituinte do ribossomo	Tradução	RpS18	Localizado no topo da subunidade 40S, liga muitas cadeias de rRNA 18S	N/A	Spodoptera frugiperda

Contig	Produto	TC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 2172	Proteína 3 de manutenção dos cromossomos	N/A	Cromossomo	ATPase	Divisão celular e reparo do DNA	Smc3	Envolvido na coesão dos cromossomos durante o ciclo celular e na reparação do DNA. Componente central do complexo coesina. O compl exo coesina é necessário para a junção das cromátides irmãs após a replicação do DNA. O complexo coesina aparentemente for ma um grande anel proteico dentro do qual as cromátides irmãs podem ser presas. Na anáfaseo complexo é clivado e se dissocia da cromatina, permitindo que as cromátides irmãs segreguem. O comp lexo coesina também podem desempenhar um papel na montagem do pólo do	N/A	Tribolium castaneum
Contig 2180	Tubulina cadeia beta-2	N/A	Microtúbulos	Estrutural e ligante de GTP	Movimento basal dos microtúbulos	N/A	fuso durante a mitose Tubulina é um dos principais constituintes dos microtúbulos. Ela liga duas moléculas de GTP, uma a um site de troca na cadeia beta e outra em um	N/A	Homarus americanus
Contig 2183	Actina	N/A	Citoesqueleto	Molécula estrutural e ligante de proteína	N/A	N/A	local não trocável na corrente alfa Motilidade celular	N/A	Litopenaeus vannamei
Contig 2189	Fator cofilina/actina- despolimerizador	N/A	Intracelular	Ligante de actina	Organização dos filamentos de actina	tsr	N/A	N/A	Drosophila melanogaster
Contig 2197	Subunidade eta do T- complexo	N/A	Citoplasma	Ligante de ATP	Conformação e metabolismo protéicos	ССТ7	Chaperone; auxiliar no dobramento d e proteínas através da hidrólise de ATP. Conhecida por desempenhar um papel, in vitro, na dobradura de actina e tubulina	N/A	Gallus gallus
Contig 2201	Fator da replicação de DNA mcm5	N/A	Núcleo	Ligante de DNA e ATP	Replicação do DNA	mcm5	Atua como um fator que permite que o DNA se submeta a um único ciclo de replicação por ciclo celular. O complexo tem mcm7 MCM 2-ATPase que é dispensável para a montagem do complexo préreplicativo em cromatina, mas é necessário para o desenrolamento do DNA	N/A	Xenopus tropicalis
Contig 2214	Fator 3 de início da tradução eucariótica, subunidade D	N/A	Citoplasma	Fator de início da tradução	Iniciação da tradução	Eif3d	Componente do fator de início de tradução eucariótico 3 (eIF-3) que é necessário para vários passos na iniciação da síntese protéica. Evita a prematura união das subunidades 40S e 60S ribossômicas	N/A	Apis mellifera

Contig	Produto	TC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 2222	Profilina	N/A	Citoesqueleto	Ligante de actina	Organização e biogênese do citoesqueleto	chic	Liga-se a actina e afeta a estrutura do citoesqueleto. Em altas concentrações impede a polimerizaçã o de actina, enquanto que a aumenta em baixas concentrações	N/A	Litopenaeus vannamei
Contig 2248	Actina-1	N/A	Citoesqueleto	Ligante de ATP	N/A	ACT1	Motilidade celular	N/A	Penaeus monodon
Contig 2258	Proteína da cutícula AMP1A	N/A	N/A	Estrutural da cutícula	N/A	N/A	N/A	N/A	Marsupenaeus japonicus
Contig 2274	Crustacianina-A2, subunidade	N/A	Região extracelular	Transporte de pigmento respiratório	Transporte	N/A	Liga-se ao carotenóide astaxantin (AXT), fornecendo a coloração azul para a carapaça da lagosta	N/A	Homarus gammarus
Contig 2283	Crustacianina-A2, subunidade	N/A	Região extracelular	Transporte de pigmento respiratório	Transporte	CRA2_HOMGA	Liga-se ao carotenóide astaxantin (AXT), fornecendo a coloração azul para a carapaça da lagosta	N/A	Homarus gammarus
Contig 2286	Actina-3, músculo específica	N/A	Citoesqueleto	Ligante de ATP	N/A	N/A	Motilidade celular	N/A	Penaeus monodon
Contig 231	Proteína do complexo- T, subunidade alfa	N/A	Citoplasma	Ligante de ATP	Conformação protéica	T-cp1	Chaperone molecular; auxiliar o dobr amento de proteínas sobre a hidrólise de ATP. Conhecida por desempenhar um papel, in vitro, na dobradura de actina e tubulina	N/A	Drosophila melanogaster
Contig 2339	Proteína RBBP7 histona ligante	N/A	Núcleo	DNA ligante	Regulação da transcrição, DNA- dependente	rbbp7	Remodelamento da cromatina, histonas acetiltransferases e histonas desacetilases. Regulada pelo DNA nucleosomal	N/A	Danio rerio
Contig 2348	Crustacianina-C1, subunidade	N/A	Região extracelular	Ligante de pigmento respiratório	Transporte	N/A	Liga-se ao carotenóide astaxantin (AXT), fornecendo a coloração azul para a carapaça da lagosta	N/A	Homarus gammarus
Contig 2349	Cadeia pesada da miosina, músculo	N/A	Complexo da miosina	Atividade motora	Contração muscular	Mhc	Contração muscular	N/A	Farfantepenaeus paulensis
Contig 2351	Actina	N/A	Citoesqueleto	Ligante de ATP	N/A	N/A	Motilidade celular	N/A	Penaeus monodon
Contig 2382	Crustacianina-A2, subunidade	N/A	Região extracelular	Transporte de pigmento respiratório	Transporte	N/A	Liga-se ao carotenóide astaxantin (AXT), fornecendo a coloração azul para a carapaça da lagosta	N/A	Homarus gammarus
Contig 2412	Fator anti- lipopolisacarpideo	N/A	N/A	N/A	Resposta de defesa a bactérias	N/A	Tem um forte efeito antibacteriano, especialmente sobre o crescimento de bactérias gram-negativas	N/A	Penaeus monodon
Contig 243	Proteína L15 ribossomal 60S	N/A	Ribossomo	Ligante de rRNA	Tradução	RPL5A	Ligante de proteína 5S de RNA	N/A	Carabus granulatus
Contig 247	Fator de início da tradução eucariótica, fator 3 subunidade K	N/A	Núcleo	Início da tradução	Início da tradução	Q20ASO_PEN	Componente do fator de início de tradução eucariótico 3 (eIF- 3) que é necessário para vários passos na iniciação da síntese protéica. Evita a prematura união das subunidades 40S e 60S ribossômicas	N/A	Litopenaeus vannamei
Contig 2457	Actina, músculo	N/A	Citoesqueleto	Ligante de ATP	N/A	N/A	Motilidade celular	N/A	Fenneropenaeus chinensis

Contig	Produto	TC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 2486	Actina	N/A	Citoesqueleto	Ligante de ATP	N/A	N/A	Motilidade celular	N/A	Penaeus monodon
Contig 2508	Crustacianina-A1, subunidade	N/A	Região extracelular	Transporte de pigmento respiratório	Transporte	N/A	Liga-se ao carotenóide astaxantin (AXT), fornecendo a coloração azul para a carapaça da lagosta	N/A	Homarus gammarus
Contig 2519	Fator de anti- lipopolisacarídeo	N/A	N/A	N/A	Resposta de defesa a bactérias	N/A	Liga-se firmemente ao LPS e inibe especificamente a ativação LPS- mediadada da coagulação de hemolinfa. Tem um forte efeito antibacteriano, especialmente sobre o crescimento de bactérias gram- negativas	N/A	Penaeus monodon
Contig 2536	Fator de anti- lipopolisacarídeo	N/A	N/A	N/A	Resposta de defesa a bactérias	N/A	Liga-se firmemente ao LPS e inibe especificamente a ativação LPS- mediadada da coagulação de hemolinfa. Tem um forte efeito antibacteriano, especialmente sobre o crescimento de bactérias gram- negativas	N/A	Penaeus monodon
Contig 2539	Fator de elongação 1- alfa 2	N/A	Citoplasma	GTPase	Elongação da tradução	eef1a	Esta proteína promove a GTP depend ência da ligação do aminoacil- tRNA ao local de um dos ribossomos durante a biossíntese de proteínas	N/A	Upogebia major
Contig 2544	Flavoproteína de transferência de elétrons, subunidade beta	N/A	Matriz mitocondrial	Transporte de elétrons	Transporte de elétrons	ETFB	A flavoproteína de transferência eletrônica serve como um aceptor eletrônico específico para vár ias desidrogenases, incluindo cinco acil-CoAdesidrogenases, glutaril-CoA desidrogenase. Ela transfere os elétrons para a cadeia mitocondrial, a principal via respiratória	pfam08140	Bombyx mori
Contig 2547	Rodopsina	N/A	Membrana	Receptor de proteína- G e rodopsina	Percepção visual e fototransdução	RHO	Pigmentos visuais são as moléculas que absorvem a luz e que medeiam a visão. Eles consistem de uma apoproteína opsin a,covalentemente ligado a cis-retinal	N/A	Litopenaeus vannamei
Contig 2548	Fator de anti- lipopolisacarídeo	N/A	N/A	N/A	Resposta de defesa a bactérias	N/A	Liga-se firmemente ao LPS e inibe especificamente a ativação LPS- mediadada da coagulação de hemolinfa. Tem um forte efeito antibacteriano, especialmente sobre o crescimento de bactérias gram- negativas	N/A	Penaeus monodon
Contig 2556	Crustacianina-A2, subunidade	N/A	Região extracelular	Ligante de pigmento respiratório	Transporte	N/A	Liga-se ao carotenóide astaxantin (AXT), fornecendo a coloração azul para a carapaça da lagosta	N/A	Penaeus monodon

Contig	Produto	TC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 2571	Fator de elongação 1- alfa	N/A	Citoplasma	Ligante de GTP, atividade GTPase e elongação da tradução	Elongação da tradução	TEF1	Esta proteína promove a GTP depend ência da ligação do aminoacil- tRNA ao local de um dos ribossomos durante a biossíntese de proteínas	N/A	Penaeus monodon
Contig 2580	Crustacianina-A2, subunidade	N/A	Região extracelular	Transporte de pigmento respiratório	Transporte	N/A	Liga-se ao carotenóide astaxantin (AXT), fornecendo a coloração azul para a carapaça da lagosta	N/A	Homarus gammarus
Contig 2596	Cutícula AMP1A	N/A	N/A	Estrutural da cutícula	N/A	N/A	N/A	N/A	Marsupenaeus japonicus
Contig 2601	Cadeia essencial da miosina leve 2	N/A	Complexo da miosina	Ligante de cálcio	N/A	Mlc-c	N/A	N/A	Drosophila melanogaster
Contig 2604	Fator de início da tradução eucariótica, subunidade L	N/A	Complexo de iniciação da tradução eucariótica	Início da tradução	Início da tradução	EIF3L	Componente do fator de início de tradução eucariótico 3 (eIF- 3) que é necessário para vários passos na iniciação da síntese protéica. Evita a prematura união das subunidades 40S e 60S ribossômicas	N/A	Tetraodon nigroviridis
Contig 2605	Actina-57B	N/A	Citoesqueleto	Ligante de ATP	Citocinese	Act57B	Motilidade celular	N/A	Penaeus monodon
Contig 265	Homólogo DnaJ, subfamília C membro 8	N/A	N/A	Protéina de choque térmico	N/A	Dnajc8	N/A	N/A	Tribolium castaneum
Contig 2679	Profilina	N/A	Citoesqueleto da actina	Ligante de actina	Organização e biogênese do citoesqueleto	N/A	Se liga a actina e afeta a estrutura do citoesqueleto. Em altas concentrações, profilina impede a polimerização de actina, enquanto que em baixas concentrações aumenta a produção da mesma	N/A	Penaeus monodon
Contig 2680	Crustacianina-A1, subunidade	N/A	Região extracelular	Transporte	Ligação proteína- cromatóforo	N/A	Liga-se ao carotenóide astaxantin (AXT), fornecendo a coloração azul para a carapaça da lagosta	N/A	Homarus gammarus
Contig 269	Citospina-A-A	N/A	Núcleo	Ligante de DNA	Divisão celular	cytsaa	N/A	N/A	Tribolium castaneum
Contig 2695	Complexo AP-2, subunidade sigma	N/A	Membrana	Transporte	Transporte intracelular protéico	Ap2s1	Adaptador no transporte de proteínas através de vesículas de transporte nas vias de tráfego diferentes da membrana.	N/A	Drosophila melanogaster
Contig 275	Coatomer, subunidade epsolon	N/A	Revestimento da vesícula COPI	Ligante de protéina	Transporte reverso mediado pela vesícula, Golgi	COPE	O complexo influencia na integridade estrutural de Golgi, bem como o processamento, a atividade, e reciclagem de endocítica receptores de LDL	N/A	Homo sapiens
Contig 2751	Cutícula AMP1A	N/A	N/A	Estrutural da cutícula	N/A	N/A	N/A	N/A	Marsupenaeus japonicus

Contig	Produto	TC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 2766	Cadeia de tubulina, beta-1	N/A	Microtúbulo	GTPase	Processo basal dos microtúbulos e polimerização protéica	N/A	Tubulina é um dos principais constituintes dos microtúbulos. Ela liga duas moléculas de GTP, uma a um site de troca na cadeia e outro a um beta em um local não-trocável na alfa- corrente	N/A	Homarus americanus
Contig 2776	Co-repressor interativo com RBPJ 1	N/A	Núcleo	Ligante de histonas desacetiladas	Splicing de RNA e processamento de mRNA	Cir1	Regula a transcrição e atua como corepressor para RBPJ	N/A	Aedis aegypti
Contig 2781	Proteína associada- transloco, subunidade alfa	N/A	Membrana do retículo endoplasmático	Ligante de íon cálcio	N/A	Ssr1	Proteínas TRAP são parte de um complexo, cuja função é a de cálcio ligante juntamente à membrana do ER, regulando a retenção de proteí nas residentes no ER. Podem estar envolvidos na reciclagem dos aparelhos após a conclusão do processo de translocação ou pode funcionar como um adesivo a membrana a fim de facilitar o dobramento de proteínas translocadas	N/A	Tribolium castaneum
Contig 2797	Rodopsina	N/A	Integral a membrana	Receptor de rodopsina	Percepção visual e receptor acoplado a proteína-G	RHO	Pigmentos visuais são as moléculas que absorvem a luz e que medeiam a visão. Eles consistem de uma apoproteína opsin a,covalentemente ligado a cis-retinal	N/A	Litopenaeus vannamei
Contig 2814	Domínio contendo tioredoxina, proteína 9	N/A	N/A	N/A	Homeostase redox celular	TXNDC9	Diminui significativamente a atividade da ATPase do chaperone do complexo TCP1, afetando negativamente a dobradura de proteína, incluindo actina e tubulina	N/A	Xenopus tropicalis
Contig 284	Proteína 9 transmembrana emp24	N/A	Integral a membrana	N/A	Transporte	TMED9	N/A	CD02440	Aedis aegypti
Contig 302	Fator de splicing 3A, subunidade 3	N/A	Splicing do RNA	Ligante de íon zinco	Complexo do spliceossomo	Sf3a3	Subunidade do fator de splicing SF3 necessárias para a montagem do complexo "A" formado pela associação estável de snRNP U2 com a seqüência de ramificação (BPS) no pré-mRNA	N/A	Nasonia vitripennis
Contig 325	Proteína sarcoplasmática cálcio ligante, cadeias alfa-B e A	N/A	N/A	Ligante de íon cálcio	N/A	N/A	Parece ser mais comum em músculos de contração muscular rápida, mas nenhuma relação pode ser estabelecida através disso	N/A	Penaeus sp. (Penoeid shrimp)
Contig 331	Actina alfa, músculo esquelético	N/A	Citoesqueleto	Ligante de ATP	N/A	acta1	Motilidade celular	N/A	Litopenaeus vannamei
Contig 339	Fator de elongação 1- beta	N/A	Fator de elongação da tradução eucariótica	Fator de elongação da tradução	Elongação da tradução	eef1b	EF-1-beta e EF-1-delta estimulam a troca do PIB vinculado a EF-1 alfa- GTP	N/A	Ornithodoros parkeri

Contig	Produto	TC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 369	Proteína ribossomal 40S S3a	N/A	Ribossomo	Estrutural do ribossomo	Biossíntese de proteína	RpS3A	Papel fundamental na oogênese	N/A	Anopheles gambiae
Contig 372	UPF0549 proteína C20orf43	N/A	N/A	N/A	N/A	C20orf43	N/A	N/A	Apis mellifera
Contig 374	Proteína S18 ribossomal 40S	N/A	Ribossomo	Ligante de RNA e estrutural do ribossomo	Biossíntese de proteína	RpS18	Localizado no topo da cabeça da subunidade 40S, entra em contato com várias hélices do rRNA18S	N/A	Spodoptera frugiperda
Contig 375	Calmodulina	N/A	N/A	Ligante de íon cálcio	N/A	CALM1	Calmodulina media o controle de um grande número de enzimas e outras proteínas por Ca2 +.Entre as enzimas que devem ser estimuladas pelo Ca2 + calmodulina estão uma série de proteínas quinases e fosfatases	N/A	Apis mellifera
Contig 381	Proteína receptora do lúmen do RE	N/A	Integral a membrana	Receptor de proteínas do RE	Retenção e transporte de proteínas do RE	KdelR	Necessário para a retenção de proteínas luminais do retículo endoplasmático. Determina a especificidade do sistema de retenção luminal ER de proteína. Também necessária para o tráfego vesicular normal através do Golgi	N/A	Drosophila melanogaster
Contig384	Contaminação por <i>E.</i> coli	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Contig 444	Fator de iniciação da tradução eucariótica fator 3, subunidade B	N/A	Citoplasma	Fator de início da tradução	Iniciação da tradução	Eif3b	Componente do fator de início de tradução eucariótico 3 (eIF- 3) que é necessário para vários passos na iniciação da síntese protéica. Evita a prematura união das subunidades 405 e 605 ribossómicas	N/A	Bombyx mori
Contig 447	Proteína Rab-18 relacionada a <i>Ras</i>	N/A	Intracelular	Ligante de GTP	Transporte de proteína e GTPase	Rab18	Desempenha um papel importante na endocitose/ reciclagem. Podem estar implicadas no trânsito entre a membrana plasmática e o endossomo precoce	N/A	Danio rerio
Contig 455	Proteína PHD contendo domínio de proteína 5A	N/A	Spliciossomo	Fator de transcrição	Splicing de mRNA nuclear	Phf5a	Atua como um regulador de transcrição e no splicing do pré- mRNA	N/A	Strongylocentrotus purpuratus
Contig 456	Subfamília MAGUK p55, membro 5	N/A	Junção celular	Ligante de proteína	N/A	MPP5	Podem desempenhar um papel na biogênese e no estabelecimento da polaridade celular em células epiteliais e na remodelação dinâmica do citoesqueleto apical	N/A	Apis mellifera
Contig 476	Bomba vacuolar de prótons 21 kDa, unidade proteolítica	N/A	Vacúolo	Transporte de prótons transmembrana	Síntese de ATP acoplada ao transporte de prótons	Atp6v0b	Condutora de prótons. V-ATPase é responsável pela acidificação de uma variedade de compartimentos intracelulares em células eucarióticas	N/A	Anopheles gambiae str. PEST

Contig	Produto	TC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 480	Proteína do ramo do pre-mRNA p14	N/A	Núcleo	Ligante de RNA	Splicing de RNA	CG13298	Necessário para o splicing de pré- mRNA	N/A	Aedis aegypti
Contig 485	Actina-3, músculo específica	N/A	Citoesqueleto	Ligante de ATP	N/A	N/A	Motilidade celular	N/A	Penaeus monodon
Contig 493	Dineína citoplasmática 1 leve intermediária da cadeia 2	N/A	Microtúbulo	Ligante de ATP	N/A	DYNC1LI2	Podem desempenhar um papel na regulação da interação da dineína	pfam 09409	Apis mellifera
Contig 502	Fator de iniciação da tradução eucariótica 5A-2	N/A	Citoplasma	Início da tradução e Iigante de RNA	Início e regulação da tradução	tif51b	Envolvidos na dinâmica da actina e progressão do ciclo celular e provavelmente em uma via envolvida na resposta ao estresse e manutenção da integridade da parede celular. Funciona como um regulador da apoptose	N/A	Penaeus monodon
Contig 508	Miosina reguladora da cadeia leve sqh	N/A	Complexo da miosina e sulco de clivagem celular	Ligante de íon cálcio e ligante de miosina	Citocinese e regulação e organização do citoesqueleto de actina	sqh	Requirido para a citocinese	N/A	Drosophila melanogaster
Contig 509	Zinc finger, proteína 2	N/A	Intracelular	Ligante de íon zinco e ácido nucleico	N/A	N/A	N/A	N/A	Mus musculus
Contig 510	Proteína homóloga mago nashi relacionada	N/A	Núcleo	Ligante de RNA	Splicing de RNA	Magoh-rs1	Envolvido no spliciing de mRNA	N/A	Apis mellifera
Contig 516	Miotrofina	N/A	Citoplasma	Ligante de protéina	Diferenciação celular de grânulos do cerebelo	Mtpn	Possível papel na morfogênese do cerebelo.Pode funcionar na diferenci ação de neurônios do cerebelo, particularmente de células granulares.Parece estar associado com a hipertrofia cardíaca	N/A	Apis mellifera
Contig 518	Fator 3 de iniciação da tradução eucariótica, subunidade F	N/A	Início da tradução	Início da tradução	Biossíntese de proteína	EIF3F	Componente do fator de início de tradução eucariótico 3 (eIF- 3) que é necessário para vários passos na iniciação da síntese protéica. Evita a prematura união das subunidades 40S e 60S ribossômicas	N/A	Homo sapiens
Contig 523	Protéina associada <i>translocon</i> subunidade gamma	N/A	Membrana do retículo endoplasmático	N/A	Protéina co- traducional	Ssr3	Proteínas TRAP são parte de um complexo, cuja função é a de cálcio- ligante à membrana do ER e assim, regulam a retenção de proteín as residentes no ER	N/A	Culex pipiens

Contig	Produto	TC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 531	Protéina de transporte Sec61, subunidade alfa	N/A	Retículo endoplasmático	Translocase	Secreção e transporte de proteína	sec61al1	Parece desempenhar um papel crucial na inserção de polipeptídeos secretores e na membrana do ER. É necessário para a montagem de proteínas da membrana e secretoras. Encontrado para ser fortemente associado com	N/A	Tribolium castaneum
							ribossomos ligados à membrana, diretamente ou através de proteínas adaptadoras		
Contig 542	Cadeia C da hemocianina	N/A	Região extracelular	Transporte de oxigênio	Transporte de oxigênio	N/A	Pigmentos respiratórios que contém cobre e transportam oxigênio no corpo dos molucos e artrópodos	N/A	Litopenaeus vannamei
Contig 544	Cadeia B da hemocianina	N/A	Região extracelular	Transporte de oxigênio	Transporte de oxigênio	N/A	Pigmentos respiratórios que contém cobre e transportam oxigênio no corpo dos molucos e artrópodos	N/A	Penaeus monodon
Contig 546	Lectina tipo-C	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Litopenaeus vannamei
Contig 557	Cadeia B da hemocianina	N/A	Região extracelular	Transporte de oxigênio	Transporte de oxigênio	N/A	Pigmentos respiratórios que contém cobre e transportam oxigênio no corpo dos molucos e artrópodos	N/A	Penaeus monodon
Contig 573	Cadeia C da hemocianina	N/A	Região extracelular	Transporte de oxigênio	Transporte de oxigênio	N/A	Pigmentos respiratórios que contém cobre e transportam oxigênio no corpo dos molucos e artrópodos	N/A	Litopenaeus vannamei
Contig 587	Cadeia C da hemocianina	N/A	Região extracelular	Transporte de oxigênio	Transporte de oxigênio	N/A	Pigmentos respiratórios que contém cobre e transportam oxigênio no corpo dos molucos e artrópodos	N/A	Litopenaeus vannamei
Contig 588	Cadeia C da hemocianina	N/A	Região extracelular	Transporte de oxigênio	Transporte de oxigênio	N/A	Pigmentos respiratórios que contém cobre e transportam oxigênio no corpo dos molucos e artrópodos	N/A	Litopenaeus vannamei
Contig 590	Selenoproteína M	N/A	Região perinuclear do citoplasma	Ligante de selênio	N/A	SELM	Pode funcionar como uma oxido- redutase tiol-dissulfeto que participa de formação da ligação dissulfeto	N/A	Litopenaeus vannamei
Contig 600	Proteína ligante de ácido graxo, cérebro	N/A	Citoplasma	Transporte de ligante de lipídeos	Transporte	FABP7	Transporte intracelular de ácidos graxos de cadeia longa e seus ésteres acil-CoA	N/A	Pacifastacus Ieniusculus
Contig 601	Fator de elongação 2	N/A	Citoplasma	GTP ligante e fator de elongação da tradução	Tradução	eft-2	Esta proteína promove a translocação GTP-dependente da cadeia de proteína nascente do site A para o sítio P do ribossomo	N/A	Penaeus monodon
Contig 618	Proteína ribossomal 60S L7	N/A	Subunidade grande de ribossomo	Estrutural do ribossomo e regulador na transcrição	Síntese de proteína	rpl-7	Liga-se a estruturas ricas em G do rRNA 28S. Desempenha um papel regulador no aparelho de tradução, inibe a tradução livre de células de mRNAs	N/A	Litopenaeus vannamei
Contig 625	Actina-5C	N/A	Citoesqueleto	Ligante de ATP	N/A	Act5C	Motilidade celular	N/A	Litopenaeus vannamei
Contig 626	Actina citoplásmática 1	N/A	Citoesqueleto	Ligante de ATP	N/A	actb	Motilidade celular	N/A	Litopenaeus vannamei

Contig	Produto	TC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 627	Flavoproteína de transferência de elétrons, subunidade alfa, mitocondrial	N/A	Matriz mitocondrial	Transferência de elétrons	Cadeia respiratória de transporte de elétrons	ETFA	A flavoproteína de transferência eletrônica serve como um aceptor eletrônico específico para vár ias desidrogenases, incluindo cinco acil-CoAdesidrogenases, glutaril-CoA desidrogenase. Ela transfere os elétrons para a cadeia mitocondrial, a principal via respiratória	N/A	Danio rerio
Contig 633	Cadeia C da hemocianina	N/A	Região extracelular	Transporte de oxigênio	Transporte de oxigênio	N/A	Pigmentos respiratórios que contém cobre e transportam oxigênio no corpo dos molucos e artrópodos	N/A	Litopenaeus vannamei
Contig 637	Lectina tipo-C	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Litopenaeus vannamei
Contig 677	Proteína 40S ribossomal S3a	N/A	Ribossomo	Estrutural do ribossomo	Biossíntese de proteína	rps3a	N/A	N/A	Tribolium castaneum
Contig 679	Crustacianina-C1, subunidade	N/A	Região extracelular	Transporte de pigmento respiratório	Transporte	N/A	Liga-se ao carotenóide astaxantin (AXT), fornecendo a coloração azul para a carapaça da lagosta	N/A	Homarus gammarus
Contig 695	Proteína alcalina de reparo de DNA alkB, momólogo 7	N/A	N/A	N/A	N/A	ALKBH7	N/A	N/A	Bos taurus
Contig 736	Crustacianina-C1, subunidade	N/A	Região extracelular	Transporte de pigmento respiratório	Transporte	N/A	Liga-se ao carotenóide astaxantin (AXT), fornecendo a coloração azul para a carapaça da lagosta	N/A	European lobster
Contig 806	PMAV	N/A	n/A	Ligante de açúcar	N/A	N/A	N/A	N/A	Penaeus monodon
Contig 831	Proteina carregadora de fosfato, mitocondrial	2.A.29.4.2	Membrana interna da mitocôndria	Ligante	Transporte	N/A	Transporte de grupos de fosfatos do citosol para a matriz mitocondrial	N/A	Choristoneura fumiferana
Contig 867	Proteína expressa	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Contig 873	Actina, citoplasmática 3	N/A	Citoesqueleto	Ligante de ATP	N/A	actbc	Motilidade celular	N/A	Marsupenaeus japonicus
Contig 877	Proteína 16kDa ecdise- esteróide reguladora	N/A	Região extracelular	N/A	N/A	ESR16	N/A	N/A	Litopenaeus vannamei
Contig 896	Prefoldina, subunidade 5	N/A	Complexo da prefoldina	Ligante de protéina não ativas	Ligante de protéina	PFDN5	Se liga especificamente a chaperonina citosólica e transfere proteínas para lá. Liga-se a cadeia polipeptídica nascente e promove o dobramento em um ambiente no qual existem muitos caminhos para as proteínas concorrentes não ativas	N/A	Nasonia vitripennis
Contig 906	Cadeia C da hemocianina	N/A	Região extracelular	Transporte de oxigênio	Transporte de oxigênio	N/A	Pigmentos respiratórios que contém cobre e transportam oxigênio no corpo dos molucos e artrópodos	N/A	Litopenaeus vannamei

Contig	Produto	TC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 913	Calreticulina	N/A	Lúmem do retículo endoplasmático	Ligante íon cálcio e proteínas não ativas	Conformação protéica e desenvolvimento do sistema nervoso central	Crc	Esta lectina pode interagir transitoriamente com quase todas as glicoproteínas monoglicosiladas que são sintetizadas no RE	N/A	Drosophila melanogaster
Contig 919	Proteína expressa	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Contig 92	Proteína subunidade nu cleotídica de ligação da guanina	N/A	Citoplasma	Quinase	Cutícula e desenvolvimento embrionário	Rack1	Expressão mais alta nas linhagens meso e endodérmicas	N/A	Drosophila melanogaster
Contig 924	Pseudohemocianina-2	N/A	N/A	Transporte de oxigênio	Transporte	phc-2	Não funciona como hemocianina	pfam 01217	Penaeus monodon
Contig 956	26S proteossomo não- ATPase regulatporio subunidade 3	N/A	Complexo do proteossomo	Regulação enzimática	Regulação do catabolismo de proteínas	Psmd3	Atua como uma subunidade reguladora do proteassoma 26 que está envolvida na degradação ATP-dependente de proteínas ubiquinadas	N/A	Danio rerio
Contig 959	Complexo COP9 subunidade 1	N/A	Signalossomo	N/A	N/A	csn1	Componente essencial do complexo C OP9 signalosome (CSN), um complexo env olvido em vários processos celulares e de desenvolvimento	cl00229, SUI1_eIF1, The SUI1/eIF1	Xenopus laevis
Contig 977	Receptor de reforço da expressão	N/A	Membrana	Ligante de proteína	N/A	REEP5	Pode promover a expressão funcional de células da superfície olfatória	N/A	Tetraodon nigroviridis
Contig 98	Proteína NEP1 de provável biogênese de ribossomo	N/A	Nucléolo	N/A	Processamento de rRNA	CG3527	Envolvidos na biogênese da subunidade ribossômica 40S. Parece ter um papel de uma reação de metilação no processamento do pré- Rrna	N/A	Drosophila melanogaster
Contig 980	Proteína S10 ribossomal 40S	N/A	Complexo ribonucleoprotéico	N/A	N/A	rps10	N/A	N/A	Ictalurus punctatus
Contig 988	Actina, alfa músculo cardíaco 1	N/A	Citoesqueleto	Ligante de ATP	Montagem do filamento fino do músculo esquelético, morfogênese do músculo cardíaco	Actc1	Motilidade celular	N/A	Penaeus monodon
Contig 998	Protepina S24 ribossomal 40S	N/A	Ribossomo	Estrutural do ribossomo	Tradução	rps24	Ribonucleoproteína	N/A	Danio rerio

Tabela 8: Detalhes sobre os locos ESTs enzimáticos como o produto protéico, EC number, componente celular, função molecular, processo biológico, símbolo do gene, função, domínio e organismo homólogo.

Contig	Produto	EC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 1006	Peroxiredoxin-5	1.11.1.15	N/A	Atividade de peroxidade	N/A	PRDX5	Redução do peróxido de hidrogênio. Sinalização intracelular de redox	N/A	Bos taurus
Contig 1021	Fosfoglicerato mutase	5.4.2.1	N/A	Transferase intramolecular	Glicólise	PGAM2	Interconversão de 3- e 2- fosfoglicerato com 2,3-bifosfato como o primer da reação.	N/A	Homo sapiens
Contig 1076	Enolase	4.2.1.11	N/A	N/A	N/A	N/A	N/A	N/A	Homarus gammarus
Contig 1064	Mediador da RNA polimerase II, subunidade de transcrição 8	N/A	Complexo mediador	Atividade de transcrição da RNA polimerase	Promotor de início da transcrição	MED8	Um coactivator envolvido na transcrição, reguladando quase todos os genes RNA polimerase II- dependente. Funções de mediador	N/A	Nasonia vitripennis
Contig 11	Anidrase carbônica 1	4.2.1.1	Citoplasma	Desidratase carbônica	Metabolismo de compostos de um carbono	Ca1	Hidratação reversível do CO ₂	N/A	Penaeus monodon
Contig 1103	ATP sintetase subunidade alfa, mitocondrial	N/A	N/A	Ligante de ATP	Síntese de ATP acoplado ao transporte de prótons	blw	Produz ATP a partir de ADP na presença de um gradiente de prótons através da membrana, que é gerada por complexos de transporte de elétrons da cadeia respiratória.	N/A	Drosofila melanogaster
Contig 112	NADH-ubiquinona oxidoredutase, cadeia 2	1.6.5.3	Mitocôndria	NADH desidrogenase	Síntese de ATP acoplada ao transporte de elétrons	mt:ND2	Cadeia respiratória mitocondrial NADH desidrogenase Complexo I nas funções de transferência de elétrons do NADH para a cadeia respiratória. Intermediário é a ubiquinona.	N/A	Litopenaeus vannamei
Contig 1124	Fator de iniciação eucariótica 4A-II	3.6.1	Tradução	Helicase dependente de ATP	N/A	Eif4a2	Necessária para a ligação do mRNA ao ribossomo. Ligação da subunidade ribossomal, e posterior percepção para o códon iniciador.	N/A	Callinectes sapidus
Contig 1143	Arginina quinase	2.7.3.3	n/A	Transferase	N/A	N/A	N/A	N/A	Litopenaeus vannamei
Contig 1150	Piruvato quinase	2.7.1.40	Citoplasma	Ligante de íon magnésio	Glicólise	РуК	N/A	N/A	Litopenaeus vannamei
Contig 1165	Isocitrato desidrogenase (NADP), mitocondrial	1.1.1.42	Mitocôndria	Isocitrato desidrogenase (NAD+)	Redução/oxidação	IDH2	Papel no metabolismo intermediário e na produção de energia. Relacionado ao complexo da piruvato desidrogenase	N/A	Tribolium castaneum

Contig	Produto	EC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 1170	NADH-ubiquinona oxidoredutase, cadeia 4	1.6.5.3	Mitocôndria	NADH desidrogenase	Transporte de elétrons da mitocôndria	mt:ND4	Complexo I nas funções de transferência de elétrons do NADH para a cadeia respiratória (ubiquinona)	n/A	Litopenaeus vannamei
Contig 1184	26S proteasomo não regulatório da ATPase subunidade 14	3.1.2.15	Complexo do proteossomo	Hidrolase	Proteólise	Rpn11	O proteassoma 26S é envolvido na degradação do ATP- dependente de proteínas ubiquitinadas	N/A	Drosofila melanogaster
Contig 12	GDP-L-fucose sintetase	1.1.1.271	N/A	Ligante de co-enzima	Metabolismo celular	Tsta3	Dois passos NADP dependentes na conversão de GDP-4-deidro-6- D-manose para GDP-fucose, envolvendo uma epimerase e uma redução	cl00539	Xenopus laevis
Contig 1209	Frutose-1,6-bifosfatase 1	1.1.1.37	N/A	Atividade de glicose bifosfatase	gliconeogênese	FBP1	N/A	N/A	Oryctolagus cuniculus
Contig 1225	26S protease regulatória subunidade 8	N/A	Citoplasma	Atividade de hidrolase e ATP ligante	Proteólise	Pros45	Envolvida na degradação de proteínas ubiquinadas dependentes de ATP. Específica ao complexo 26S.	N/A	Drosofila melanogaster
Contig 1238	Gliceraldeído-3-fosfato desidrogenase	1.2.1.12	Citoplasma	Gliceraldeído-3- fosfato desidrogenase	Glicólise	Q7YT60_PRO	N/A	N/A	Panulirus versicolor
Contig 1242	Frutose bifosfato aldolase	4.1.2.13	N/A	Frutose bifosfato aldolase	Glicólise	Ald	Tecido ou estágio de desenvolvimento específico ao metabolismo de açúcar -fosfato. Atua sobre 1,6-bifosfato e frutose1-fosfato	cl02554	Drosofila melanogaster
Contig 1259	NADH-ubiquinona oxidoredutase, cadeia 1	1.6.5.3	Mitocôndria	NADH desidrogenase	Transporte de elétrons	mt: ND1	Transferência de elétrons do NADH para a cadeia respiratória	N/A	Litopenaeus vannamei
Contig 1272	Citocromo C oxidade, subunidade 1	1.9.3.1	Cadeia respiratória da mitocôndria	Citocromo C oxidase	Transporte de elétrons	mt:Col	Citocromo C oxidase é o componente da cadeia respiratória que catalisa a redução do oxigênio a água. Subunidades 1-3 formam o núcleo funcional do complexo enzimático	N/A	Litopenaeus vannamei
Contig 1284	NADH desidrogenase, beta subcomplexo da subunidade 10 (ubiquinona)	1.6.99.3	Cadeia respiratória da mitocôndria	NADH desidrogenase	transporte de elétrons mitocondrial. NADH para a ubiquinona)	NDUFB10	Subunidade da cadeia respiratória mitocondrial NADH desidrogenase (complexo I), que acredita-se não estar envolvida na catálise.Complexo I nas funções de transferência de elétrons do NADH para a cadeia respiratória	N/A	Culex pipiens
Contig 1293	Fator de iniciação eucariótica 4A-II	3.6.1	Núcleo	Helicase dependente de ATP	Transporte de mRNA	Eif4a3	Parte do complexo central EJC que contém CASC3, EIF4A3, MAGOH e RBM8A	N/A	Culex pipiens
Contig 1311	S- formilglutationa hidrolase	3.1.12.12/ 1.1.1.284	Citoplasma	Carboxilesterase	N/A	ESD	Serina hidrolase envolvida na desintoxicação do formaldeído	N/A	Sus scrofa

Contig	Produto	EC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 1295	ATPase próton tipo V, subunidade F	3.6.3.14	Transporte de elétrons em dois setores do complexo da ATPase	Transporte de prótons pata síntese de ATP	Síntese de ATP acoplada ao transporte de elétrons	VHA14	A ATPase vacuolar é responsável pela acidificação de uma variedade de compartimentos intracelulares em células eucarióticas. V-ATPase é responsável pela energização de potássio, gerando uma tensão transmembrana de mais de 200mV	N/A	Manduca sexta
Contig 1320	Superóxido dismutase [Mn]	1.15.1.1	N/A	N/A	N/A	sodA	N/A	N/A	Litopenaeus vannamei
Contig 1348	NADH desidrogenase, proteína 2 de ferro-enxofre 2 (mitocondrial)	1.6.5.3	Oxiredutase	Oxidoredutase atuando sobre NADH ou NADPH	Mitocôndria	NDUFS2	Complexo I nas funções de transferência de elétrons do NADH para a cadeia respiratória	N/A	Tribolium castaneum
Contig 1380	Fator de iniciação eucariótica 4A-II	3.6.1	N/A	Helicase dependente de ATP	Tradução	EIF4A2	N/A	N/A	Gallus gallus
Contig 1440	Endoquitinase	3.2.1.14	Região extracelular	Atividades de hidrolase e quitinase	Metabolismo da quitina	N/A	Digere a quitina do exoesqueleto durante o período de muda	N/A	Marsupenaeus japonicus
Contig 1443	NADH desidrogenase 1, subunidade do subcomplexo beta	1.6.99.3	Complexo da cadeia respiratória	NADH desidrogenase	Transporte de elétrons da mitocôndria	Ndufb9	Transferência de elétrons do NADH para a cadeia respiratória	N/A	Aedis aegypti
Contig 1453	Glicose-6-fosfato isomerase	5.3.1.9	Citoplasma	Atividade de glicose- 6-fosfatase	Gliconeogênese e glicólise	GPI	Além de seu papel como uma enzima glicolítica, GPI de mamíferos pode funcionar como uma citocina secretada por tumor e um fator angiogênico (FMA), que estimula a motilidade das células endoteliais. GPI também é um fator neurotrófico (Neuroleukin) para neurônios espinhais e sensoriais	N/A	Boiga kraepelini
Contig 1454	Protease, subunidade alfa tipo 7	3.4.25.1	Citoplasma e núcleo	Treonina endopeptidase	Quebra de proteína dependente de ubiquitina	psma7	O proteassoma é um complexo proteinase multicatalítica que é caracterizada pela sua capacidade de unir aminoácidos como Arg, Phe, Tyr, Leu, Glu, deixando o pH neutro ou ligeiramente alcalino. O proteassoma tem uma atividade proteolítica ATP-dependente	N/A	Carassius auratus
Contig 1496	Catepsina L	3.4.22.15	Lisossomo	Endopeptidase tipo cisteína	Proteólise	Cp1	Importante para a degradação geral das proteínas nos lisossomas. Essencial para a fertilidade masculina e feminina adulta. Podem desempenhar um papel na digestão	N/A	Penaeus monodon
Contig 1502	12 kDa FK506 proteína ligante	5.2.1.8	Citoplasma	Peptidil-prolil cis- trans isomerase	Conformação protéica	FK506-bp2	PPlases acelerarm o dobramento de proteínas. A ligação é inibitório para as vias de sinalização da família TGF-beta ligantes	N/A	Drosofila melanogaster

Contig	Produto	EC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 1504	Isocorismatase, proteína 2 mitocondrial	N/A	Mitocôndria	Atividade catalítica	Processo metabólico	isoc2	N/A	N/A	Strongylocentrotus purpuratus
Contig 1508	Superóxido dismutase [Mn]	1.15.1.1	Mitocôndria	Superóxido dismutase	Redução/oxidação	N/A	Destrói radicais que são normalmente produzidos pelas células e são tóxicos aos sistemas biológicos	N/A	Farfantepenaeus chinensis
Contig 154	Oligoribonuclease, mitocondrial	3.1	Mitocôndria	Exonuclease	Processo metabólico de nucleobase, nucleosídeo, nucleotídeo e aminoácido	Rexo2	3'-para-5 ' exoribonuclease específica para oligorribonucleotídeos pequenos.	N/A	Xenopus tropicalis
Contig 1545	Proteossomo, subunidade alfa tipo 6	3.4.25.1	Citoplasma e núcleo	Endopeptidase treonina	Quebra protéica dependente de ubiquitina	Psma6	O proteassoma é um complexo proteinase multicatalítica que é caracterizada pela sua capacidade de unir aminoácidos como Arg, Phe, Tyr, Leu, Glu, deixando o pH neutro ou ligeiramente alcalino. O proteassoma tem uma atividade proteolítica ATP-dependente	N/A	Gallus gallus
Contig 1546	NADH desidrogenase flavoproteína 2, mitocondrial	1.6.5.3	Mitocôndria	Oxidoredutase atuando sobre NADH ou NADPH	Transporte de elétrons	NDUFV2	Núcleo da subunidade da cadeia respiratória mitocondrial NADH desidrogenase (complexo I) que se acredita pertencer ao conjunto mínimo necessário para a catálise. Complexo I nas funções de transferência de elétrons do NADH para a cadeia respiratória	cl10444	Gallus gallus
Contig 1562	Aspartato aminotransferase, mitocondrial	2.6.1.1	Mitocôndria	Transferase e ligante de piridoxal fosfato	Metabolismo de aminoácido	Got2	Desempenha um papel fundamental no metabolismo de aminoácidos. Importante para a troca de metabólitos entre as mitocôndrias e o citoplasma. Facilita a absorção celular de ácidos graxos livres de cadeia longa	N/A	Tribolium castaneum
Contig 1598	ATP sintetase subunidade O, mitocondrial	3.6.3.14	Mitocôndria	Transporte de prótons pata síntese de ATP	Síntese de ATP acoplada ao transporte de prótons	Oscp	Produz ATP a partir de ADP na presença de um gradiente de prótons através da membrana, que é gerada por complexos de transporte de elétrons da cadeia respiratória.	N/A	Drosofila melanogaster
Contig 160	Subunidade beta tipo-2 do complexo do proteossomo	3.4.25.1	Citoplasma	Endopeptidase treonina	Processo catabólico dependente de ubiquinona	PSMB2	Cliva peptídeos de Arginina, Fenilalamina, Tirosina, Leucina e Glutamato, transformando o pH em neutro ou básico. APT- dependente.	N/A	Apis mellifera
Contig 162	Domínio RING finger e CHY zinc finger contendo proteína 1	6.3.2	Núcleo	Ligante de íon zinco	Ubiquinação de proteínas	Rchy1	Media ubiquitinação E3- dependentes e degradação proteossómica de proteínas-alvo, incluindo TP53, HDAC1 e CDKN1B.	N/A	Tribolium castaneum

Contig	Produto	EC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 1633	NADH-ubiquinona oxidoredutase, cadeia 5	1.6.5.3	Mitocôndria	NADH desidrogenase	Síntese de ATP acoplada ao transporte de eletrons	mt:ND5	Transferência de elétrons do NADH para a cadeia respiratória	N/A	Litopenaeus vannamei
Contig 1640	Ribonuclease UK114	3.1	Superfície celular	Endonuclease	N/A	Hrsp12	Endoribonuclease responsáveis pela inibição da tradução pela clivagem do mRNA. Cliva ligações fosfodiéster em fitas simples de RNA	N/A	Nematostella vectensis
Contig 168	NADH-ubiquinona oxidoredutase, cadeia 5	1.6.5.3	Mitocôndria	NADH desidrogenase	Síntese de ATP acoplado ao transporte de elétrons	ND5	Transferência de elétrons do NADH para a cadeia respiratória	N/A	Litopenaeus vannamei
Contig 1710	Subunidade alfa tipo-2 do complexo do proteossomo	3.4.25.1	Citosol	Treonina endopeptidase	Catabolismo de proteína ubiquinona- dependente	Pros25	Cliva peptídeos de Arginina, Fenilalamina, Tirosina, Leucina e Glutamato, transformando o pH em neutro ou básico. APT- dependente.	N/A	Drosofila melanogaster
Contig 1720	Fosfatase serina/treonina proteína PP1-gamma, subunidade catalítica A	3.1.3.16	Citoplasma	Hidrolase, fosfoproteína fosfatase e ligante e íon ferro	Mitose	ppp1cc-A	Essencial para a divisão celular e participa na regulação do metabolismo do glicogênio, contração muscular e síntese de proteínas	N/A	Tribolium castaneum
Contig 1725	Protease lisossomal aspártica	3.4.23	Lisossomo	Endopeptidase tipo aspártica	Proteólise	AAEL006169	Pode degradar organelas envolvidas na biogênese e secreção do vitelogênio	N/A	Penaeus monodon
Contig 1728	NADH-ubiquinona oxidoredutase, cadeia 6	1.6.5.3	Mitocôndria	NADH desidrogenase	Transporte de elétrons na mitocôndria	mt: ND6	Transferência de elétrons do NADH para a cadeia respiratória	N/A	Litopenaeus vannamei
Contig 1747	ATP sintetase, subunidade d mitocondrial	3.6.3.14	Mitocondria acoplado a síntese de ATP e transporte de prótons	Exportador de prótons pela atividade ATPásica, macanismo fosforilativo	Transporte	ATPsyn-d	ATP sintase produz ATP a partir de ADP na presença de um gradiente de prótons através da membrana, que é gerada por complexos de transporte de elétrons da cadeia respiratória	N/A	Drosofila melanogaster
Contig 1750	Farnesoic acid O- metiltransferase	2.1.1	N/A	Metiltransferase	N/A	A0PGI8_PEN	N/A	N/A	Litopenaeus vannamei
Contig 1752	Exostosina-2	2.4.1.224/ 2.4.1.225	Membrana do Golgi	Transferase de grupos glicosil	Síntese de proteoglicanos sulfatados de heparina	Ext2	Glicosiltransferase necessária para a biossíntese de sulfato de heparina. O complexo possui atividade EXT1/EXT2 glicosiltransferase substancialmente superior a EXT1 ou EXT2 sozinho. Parece ser um supressor de tumor	N/A	Xenopus laevis
Contig 1763	Provável arginil-tRNA sintetase, citoplasmática	6.1.1.19	Citoplasma	Aminoacil e arginina- tRNA ligase e ligante de ATP	RNA aminoacilação de proteínas na tradução	rrt-1	N/A	N/A	Caenorhabditis elegans
Contig 1764	Subunidade regulatória do proteassomo 26S, não- ATPásico	N/A	Citoplasma	Ligante	Regulação do processo catabólico de proteínas	Psmd2	Atua como uma subunidade reguladora do proteassoma 26, que está envolvida na degradação de proteínas ubiquinadas ATP- dependentes	N/A	Tribolium castaneum

Contig	Produto	EC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 1771	Enzima conjugada a ubiquitina E2 N	6.3.2.19	Núcleo	Ligase	Modificação protéica pós traducional e ciclo da ubiquitina	UBE2N	Desempenha um papel no controle do progresso do ciclo celular e diferenciação e reparo de erros no DNA, contribuindo para a sobrevivência de células após a danos no DNA	N/A	Tribolium castaneum
Contig 1792	Subunidade alfa tipo-3 do proteossomo	3.4.25.1	Citoplasma	Treonina endopeptidadse	Catabolismo de proteína ubiquinona- dependente	Psma3	O proteassoma é um complexo proteinase multicatalítica que é caracterizada pela sua capacidade de unir aminoácidos como Arg, Phe, Tyr, Leu, Glu, deixando o pH neutro ou ligeiramente alcalino. O proteassoma tem uma atividade proteolítica ATP-dependente	N/A	Strongylocentrotus purpuratus
Contig 1804	Subunidade beta da ATP sintetase, mitocondrial	3.6.3.14	Membrana interna da mitocôndria	Fosforilação, ATPásica e ligante de ATP	Transporte e síntese de ATP	ATPsyn-bet	ATP sintase produz ATP a partir de ADP na presença de um gradiente de prótons através da membrana que é gerada por complexos de transporte de elétrons da cadeia respiratória	N/A	Pacifastacus leniusculus
Contig 1849	NADH desidrogenase 1 alfa, subunidade 12	1.6.5.3	Membrana	NADH desidrogenase	Transporte de elétrons	NDUFA12	Transferência de elétrons do NADH para a cadeia respiratória	N/A	Aedis aegypti
Contig 1859	Subunidade beta tipo-7 do proteossomo	3.4.25.1	Núcleo do proteossoma	Treonina endopeptidase	Catabolismo de proteína ubiquinona- dependente	PSMB7	Cliva peptídeos de Arginina, Fenilalamina, Tirosina, Leucina e Glutamato, transformando o pH em neutro ou básico. APT- dependente.	N/A	Nematostella vectensis
Contig 186	Provável dissulfito-isomerase ER-60	5.3.4.1	Retículo endoplasmático	Dissulfito isomerase	Homeostase redox celular	A0SHR2_9AC	N/A	cd00922	Scylla paramamosain
Contig 1934	Glutationa S-transferase Mu 3	2.5.1.18	Citoplasma	Glutationa transferase	Estabelecimento da barreira hematoencefálica	GSTM3	Conjugação de glutationa reduzida a um grande número de eletrólitos exógenos e endógenos hidrofóbicos. Podem governar a captação e desintoxicação de ambos os compostos endógenos e xenobióticos no testículo e barreiras de sangue do cérebro	N/A	Cyprinus carpio
Contig 1949	NADH desidrogenase - letal (2) 35Di	1.6.99.3	Complexo da cadeia respiratória, mitocôndria	NADH desidrogenase	Transporte de elétrons na mitocôndria	I(2)35Di	N/A	N/A	Tribolium castaneum
Contig 1955	Tríade de histidina nucleotídeo ligante proteína 2, mitocondrial	3	Mitocôndria	Hidrólise	Apoptose	HINT2	Provavelmente envolvidas na biossíntese de esteróides. Podem desempenhar um papel na apoptose. Tem atividade adenosina phosphoramidase	N/A	Tetraodon nigroviridis
Contig 2041	NADH desidrogenase ferro- enxofre proteína 7, mitocondrial	1.6.99.3	Mitocôndria	Oxidoredutase atuando sobre NADH ou NADPH	Transporte de elétrons	NDUFS7	Transferência de elétrons do NADH para a cadeia respiratória	N/A	Apis mellifera

Contig	Produto	EC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 2070	Nucleosídeo difosfato quinase	2.7.4.6	Citoplasma	Ligante de ATP e íon magnésio. Atividade quinásica	Produção de GTP, UTP e CTP	N/A	Síntese de nucleosídeos trifosfatados diferentes ATP. O fosfato de gama ATP é transferido para o fosfato beta NDP através de um mecanismo de ping-pong, usando um fósforo ativo no local intermediário	PRK10811	Litopenaeus vannamei
Contig 2081	SUMO- enzima conjugada UBC9	6.3.2	Núcleo	Ligase	Modificação pós- tradução e ciclo celular	ube2i	Essencial para a arquitetura nuclear e na segregação cromossômica	N/A	Nasonia vitripennis
Contig 2088	UMP-CMP quinase/ Adenilato quinase	2.7.4.14/ 2.7.4.3	Citoplasma e núcleo	Quinase e transferase	Metabolismo de nucleosídeos, nucleotídeos e aminoácidos	СМРК1	Catalisa a transferência específica fosforil do ATP para a UMP	N/A	Tribolium castaneum
Contig 209	Enzima conjugada a ubiquitina E2 L3	6.3.2.19	N/A	ATP ligante	Modificação protéica pós traducional e ciclo da ubiquitina	Ube2l3	Desempenha um papel no controle do progresso do ciclo celular e diferenciação e reparo de erros no DNA, contribuindo para a sobrevivência de células após a danos no DNA	cl05783	Litopenaeus vannamei
Contig 2100	Quinase 3 de divisão celular	2.7.11.22	N/A	ATP ligante e atividade de transferase	Fosforilação de aminoácidos	CDK3	Provavelmente envolvidos no controle do ciclo celular. Interage com um tipo ainda desconhecido de ciclina. Pode fosforilar histona H1.	N/A	Gallus gallus
Contig 2101	Citocromo C oxidade, subunidade 1	1.9.3.1	Cadeia respiratória da mitocôndria	Ferro ligante e atividade de citocromo-c	Transporte de elétrons	mt:Col	Citocromo C oxidase é o componente da cadeia respiratória que catalisa a redução do oxigênio a água. Subunidades 1-3 formam o núcleo funcional do complexo enzimático	N/A	Litopenaeus vannamei
Contig 211	Serina/treonina	2.7.11.1	N/A	Serina/treonina atividade de quinase	Fosforilação de aminoácidos	Riok2	N/A	N/A	Tribolium castaneum
Contig 2112	Dissulfato-isomerase	5.3.4.1	Retículo endoplasmático	Isomerase	Homeostase redox celular	Pdi	Conformação de proteínas com ligações dissulfeto	N/A	Drosofila melanogaster
Contig 2144	Subunidade alfa-1 de ATPase transportadora de sódio/potássio	3.6.3.9	Membrana	ATPase e transporte de íon sódio/potássio	Biossíntese de ATP e transporte de cálcio	atp1a1	Este é o componente catalítico da enzima ativa,que catalisa a hidrólise de ATP associada com atroca de íons de sódio e potássio através da membrana plasmática. Esta ação cria o gradienteeletroquímico de íons de sódio e potássio,fornecendo a energia para transporte ativo	N/A	Penaeus monodon

Contig	Produto	EC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 2159	Subunidade catalítica PP1- beta da fosfatase serina/treonina	3.1.3.16	Núcleo	Fosfatase	Ciclo celular	Ppp1cb	A proteína fosfatase (PP1) é essencial para a divisão celular, participa na regulação dometabolismo do glicogênio, contração muscular es íntese de proteínas.	N/A	Litopenaeus vannamei
Contig 2171	Fator de iniciação eucariótica 4A-III	3.6.1	Núcleo	Helicase dependente de ATP	Splicing	EIF4A3	Envolvido em realce traducional de mRNAs emendados após a formação do complexo 80S dos ribossomos. Vincula splicing de mRNA. Mostra maior afinidade com o RNA de fita simples	N/A	Nasonia vitripennis
Contig 2195	Subunidade beta da ATP sintetase, mitocondrial	3.6.3.14	Transporte de prótons no complexo da ATP sintetase	Mecanismo de fosforilação	Transporte e biossíntese de ATP	atp5b	ATP sintase produz ATP a partir de ADP na presença de um gradiente de prótons através da membrana que é gerada por complexos de transporte de elétrons da cadeia respiratória	COG5150	Pacifastacus leniusculus
Contig 220	Enzima ubiquitina-conjugada E2-17kDa	6.3.2.19	N/A	Ligase	Regulação do processo catabólico de proteínas	eff	Catalisa a ligação covalente da ubiquitina a outras proteínas. Media a degradação seletiva de proteínas de vida curta e anormais. Necessária para o comportamento dos telômeros adequado durante as divisões celulares e possivelmente, para ubiquitinação de proteínas envolvidas nos estágios pósmeióticos da espermatogênese. Letais em homozigose	N/A	Litopenaeus vannamei
Contig 2238	Subunidade b da ATP sintetase, mitocondrial	N/A	Membrana interna da mitocôndria	Transporte de prótons pata síntese de ATP	Síntese de ATP acoplado a transporte de prótons	ATPsyn-b	Membrana mitocondrial ATP sint ase produz ATP a partir de ADP na presença de um gradiente de prótons através da membrana que é gerada por complexos de transporte de elétrons da cadeia respiratória	N/A	Drosofila melanogaster
Contig 227	Peroxiredoxin-6	1.11.1.15	Citoplasma	Oxidoredutase	Oxidação-redução	PRDX6	Envolvidos na regulação redox da célula. Pod e reduzir a cadeia de peróxido de hidrogênio, outros peróxidos e ácidos graxos.Podem desempenhar um papel na regulação do metabolismo de fosfolipídios, bem como na proteção contra danos oxidativos	N/A	Nematostella vectensis

Contig	Produto	EC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 230	Peptidil-prolil cis-trans isomerase G	5.2.1.8	Núcleo	Isomerase	Conformação protéica	Ppig	Acelera o dobramento de proteínas. Catalisa a isomeriza ção cis-trans de proteínas .Podem estar implicados na dobradura, transporte e montagem das proteínas. Pode desempenhar um papel importante na regulação do splicing de pré-mRNA.	N/A	Rattus norvegicus
Contig 2314	Peptidil-prolil cis-trans isomerase 5	5.2.1.8	Citoplasma	Isomerase	Conformação protéica	cyn-5	Acelera o dobramento de proteínas. Catalisa a isomeriza ção cis-trans de proteínas .Podem estar implicados na dobradura, transporte e montagem das proteínas. Pode desempenhar um papel importante na regulação do splici ng de pré-mRNA	N/A	Farfantepenaeus paulensis
Contig 2373	Peptidase processadora mitocondrial, subunidade beta	3.4.24.64	Matriz mitocondrial	Peptidase de processamento mitocondrial	Proteólise	РМРСВ	Cliva peptídeos das proteínas precursoras mitocondriais	N/A	Drosofila melanogaster
Contig 239	Enzima ubiquitina-conjugada E2-17kDa	6.3.2.19	Núcleo	Atividade de ligase	Reparo do DNA e modificação pós traducional	UbcD6	Catalisa a ligação covalente da ubi quitina a outras proteínas. Necessárias para a reparação do DNA	N/A	Drosofila melanogaster
Contig 2396	Fosfoenolpiruvato carboxiquinase (GTP), mitocondrial	4.1.1.32	Mitocôndria	Carboxil-liase	Gliconeogênese	PCK2	Catalisa a conversão de oxaloacetato (OAA) a fosfoenolpiruvato (PEP), o passo li mitante na via metabólica que produz glicose a partir de precursores de lactato e outros derivados do cicl o do ácido cítrico	N/A	Litopenaeus vannamei
Contig 2414	Peroxidase redutase tioredoxina-dependente, mitocondrial	1.11.1.15	Mitocôndria	Oxidoredutase	Resposta ao stress oxidativo e homeostase redox	Prdx3	Envolvidos na regulação redox da célula. Prot ege enzimas radical-sensíveis dos danos oxidativos por um sistema gerador de radicais	N/A	Xenopus tropicalis
Contig 245	Protease regulatória 26S, subunidade 8	N/A	Citoplasma	Ligante de ATP	Catabolismo de proteína ubiquinona- dependente	N/A	A protease 26S está envolvida na degradação ATP- dependente de proteínas ubiquiti nadas. O complexo (ou ATPase) confere dependência de ATP e substrato- especificidade ao complexo 26S	N/A	Manduca sexta

Contig	Produto	EC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 2490	Citocromo C oxidade, subunidade 2	1.9.3.1	Mitocôndria	Ligante de íon cobre e citocromo-c oxidase	Transporte de elétrons na cadeia respiratória	mt:Coll	Citocromo c oxidase é o componente da cadeia respiratória que catalisa a redução do oxigênio na água. Subunidades 1-3 formam o núcleo funcional do complexo enzimático. Subunidade 2 transfe re os elétrons do citocromo c através de seus dois nuúcleos de cobre de um centro para o centro da subunidade catalítica 1	N/A	Litopenaeus vannamei
Contig 2500	Nucleosídeo difosfato quinase B	2.7.4.6	Citoplasma	Ligante de íon metal	Biossíntese de GTP, UTP e CTP	Nme2	Papel na síntese de nucleosídeos t rifosfatos diferentes de ATP	N/A	Rattus norvegicus
Contig 255	rRNA 2' metiltransferase fibrilarina	2.1.1	Núcleo	Metiltransferase e ligante de RNA	Processamento de rRNA	Fib	Pré-processamento de rRNA	cd03064	Drosofila melanogaster
Contig 256	Mps-ligante quinase, ativador 3	N/A	Citoplasma	Ligante de íon zinco	Transporte	MOBKL3	Pode desempenhar um papel no transito transmembrana	N/A	Tribolium castaneum
Contig 2619	Xaa-Pro aminopeptidase 1	3.4.11.9	Citoplasma	Ligante de íon magnésio e metalexopeptidase	Proteólise e processo metabólico da bradiquinina	Xpnpep1	Contribui para a degradação da bradicinina. Catalisa a remoção de um resíduo prolil do N-terminal dos peptídeos tais comoArg-Pro-Pro	N/A	Apis mellifera
Contig 2757	Deoxiridina 5'-trifosfato nucleotidohidrolase, mitocondrial	3.6.1.23	Núcleo	Hidrolase e Dutp difosfatase	Metabolismo de dUTP e replicação de DNA	DUT	Esta enzima está envolvida no metabolismo d e nucleotídeos: produz dUMP, o precursor imediato de nucleotídeos timidina e diminu i a concentração intracelular de dUTP de modo que a uracil não pode ser incorporada ao DNA	N/A	Apis mellifera
Contig 2782	Frutose-bifosfato aldolase	4.1.2.13	N/A	Frutose bifosfato aldolase	Glicólise	Ald	Podem participar no estágio de desenvolvimento específico ou tecido específico no metabolismo de açúcar-fosfato. A proteína atua sobre dois substratos frutose 1,6- bisfosfato e frutose1-fosfato	N/A	Drosofila melanogaster
Contig 2789	Complexo NADH desidrogenase (ubiquinona) 1 alfa, subunidade 8	1.6.5.3	Complexo respiratório da cadeia respiratória	NADH desidrogenase	Transporte de elétrons	NDUA8	Acessório subunidade da cadeia respiratória mitocondrial NADH desidrogenas e (complexo I),que acreditase não estar envolvida na catálise.Complexo I nas funções de transferência de elétrons do NADH para a cadeia respiratória	N/A	Anopheles gambiae str. PEST

Contig	Produto	EC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 2792	GMP redutase 2	1.7.1.7	N/A	GMP redutase e ligante de íon potássio	Metabolismo de nucleosídeos e oxidação-redução	GMPR2	Catalisa a desaminação irreversív el NADPH- dependente do GMP a IMP. Ele fu nciona na conversão de nucleosídeos, nucleobases e derivados de nucleotídeos de G a A e na manutenção do equilíbrio intracelular de nucleotídeos A e G. Desempenha um papel na modulação da diferenciação celular	N/A	Tribolium castaneum
Contig 2793	Piruvato quinase	2.7.1.40	Citoplasma	Piruvato quinase e ligante de íons magnésio e potássio	Glicólise	РуК	N/A	N/A	Litopenaeus vannamei
Contig 2794	Ribulose-fosfato 3-epimerase	5.1.3.1	Citoplasma	Ribulose-fosfato 3- epimerase	Metabolismo de carboidratos	RPE	N/A	N/A	Strongylocentrotus purpuratus
Contig 3	Ferritina	1.16.3.1	Citoplasma	Oxiredutase	Homeostase do íon ferro	N/A	Deposita ferro em forma solúvel, não tóxica,facilmente disponível. Importante para a homeostase de ferro. Atividade ferroxidase.O ferro é absorvido na forma de ferro e hidróxidos de ferro depositados após a oxidação	N/A	Litopenaeus vannamei
Contig 310	DNA topoisomerase 2-beta	5.99.1.3	Nucleoplasma	DNA topoisomerase	Mudança topológica do DNA	TOP2B	Controle dos estados topológicos do DNA por quebra transitória e posterior jun ção das fitas de DNA. Topoisomerase II faz quebra s da cadeia dupla de DNA	N/A	Gallus gallus
Contig 440	Complexo NADH desidrogenase (ubiquinina) 1 beta, subunidade 5, mitocondrial	1.6.99.3	Cadeia respiratória da mitocôndria	NADH desidrogenase	Transporte de elétrons na mitocôndria	NDUFB5	Subunidade da cadeia respiratória mitocondrial NADH desidrogenas e (complexo I),que acredita- se não estar envolvida na catálise.Complexo I transfere de elétrons do NADH para a cadeia respiratória	N/A	Anopheles gambiae
Contig 450	NADH desidrogenase (ubiquinona) flavoproteína 1, mitocondrial	1.6.5.3	Membrana interna da mitocôndria e cadeia respiratória	Oxiredutase	Transporte de elétrons mitocondrial	NDUFV1	Acessório subunidade da cadeia respiratória mitocondrial NADH desidrogenas e (complexo I),que acredita- se não estar envolvida na catálise.Complexo I nas funções de transferência de elétrons do NADH para a cadeia respiratória	N/A	Drosophila pseudoobscura

Contig	Produto	EC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 487	Subunidade beta do proteossomo, tipo 3	3.4.25.1	Núcleo e proteossomo	Hidrolase e treonina endopeptidase	Metabolismo de proteína	psmb3	O proteassoma é um complexo proteinase multicatalítica que é caracterizada pela sua capacidade de unir peptídeos com Arg, Phe, Tyr,Leu e Glu deixando o pHneutro ou ligei ramente alcalino. O proteassoma tem uma atividade proteolítica ATP- dependente	N/A	Bombyx mori
Contig 52	NADH-ubiquinona oxidoredutase, cadeia 1	1.6.5.3	Cadeia respiratória da mitocôndria	NADH desidrogenase	Transporte de elétrons	mt: ND1	Acessório subunidade da cadeia respiratória mitocondrial NADH desidrogenas e (complexo I),que acredita- se não estar envolvida na catálise.Complexo I nas funções de transferência de elétrons do NADH para a cadeia respiratória	N/A	Litopenaeus vannamei
Contig 528	2,4-dienol-CoA redutase, mitocondrial	1.3.1.34	Mitocôndria	2,4-dienol-CoA redutase	Beta-oxidação de ácidos graxos	DECR1	Auxiliar da enzima beta- oxidação. Ela participa do metabolismo de ésteres graxos insaturados enoil- CoA tendo ligações duplas nas posições pares e ímpares	N/A	Homo sapiens
Contig 534	Lipídeo de transferência não- específico	2.3.1.176	Peroxissomo	Oxiredutase e transferase	Metabolismo e transporte de lipídeos	SCP2	Responsável pela transferência de todos os fosfolipídios, colesterol e gangliosídios entre as membranas. Podem desempenhar um papel na regulação da síntese de esteróides	N/A	Culex pipiens
Contig 2373	Lipídeo de transferência não- específico	2.3.1.176	Peroxissomo	Oxiredutase e transferase	Metabolismo e transporte de lipídeos	Scp2	Responsável pela transferência de todos os fosfolipídios, colesterol e gangliosídios entre as membranas. Podem desempenhar um papel na regulação da síntese de esteróides	N/A	Litopenaeus vannamei

Contig	Produto	EC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 545	NADH desidrogenase (ubiquinona) proteína 4 ferro-enxofre, mitocondrial	1.6.5.3	Cadeia respiratória da mitocôndria	NADH desidrogenase	Transporte de elétrons mitocondrial	Ndufs4	Acessório subunidade da cadeia respiratória mitocondrial NADH desidrogenas e (complexo I),que acreditase não estar envolvida na catálise.Complexo I nas funções de transferência de elétrons do NADH para a cadeia respiratória	N/A	Tribolium castaneum
Contig 560	Proteinase precursora de zinco	3.4.24.21	N/A	Hidrolase e ligante de zinco	Proteólise	Q9U918_AST	Esta protease prefere se apegar à frente de pequenos resíduos alifáticos	N/A	Astacus fluviatilis
Contig 574	Putative ATP sintetase subunidade f, mitocondrial	3.6.3.14	Membrana mitocondrial	ATPase e transporte de íon sódio/potássio	Biossíntese de ATP	N/A	ATP sintetase da membrana mitocondrial (F1F0 AT P sintase ou V Complex) que produz ATP a partir de ADP na presença de um gradiente de prótons através da membrana. Gerada por complexos de transporte de elétrons da cadeia respiratória	N/A	Drosophila melanosgaster
Contig 557	Zinco proteinase Mpc1	3.4.24.21	N/A	Hidrolase e ligante de zinco	Proteólise	Q20AS7_PEN	Liga-se a pequenos resíduos alifáticos	N/A	Litopenaeus vannamei
Contig 597	ATP sintetase subunidade gamma, mitocondrial	N/A	Transporte de prótons no complexo da ATP sintetase	Transporte de prótons pata síntese de ATP	Síntese de ATP acoplada ao transporte de elétrons	ATPsyn-gam	ATP sintetase da membrana mitocondrial (F1F0 AT P sintase ou V Complex) que produz ATP a partir de ADP na presença de um gradiente de prótons através da membrana. Gerada por complexos de transporte de elétrons da cadeia respiratória	cl09925, PKc_like, Protein Kinases, catalytic domain	Drosophila melanosgaster
Contig 683	Destabilase	3.2.1.17	N/A	N/A	N/A	N/A	N/A	N/A	Litopenaeus vannamei
Contig 713	Dipeptidil-peptidase 1 (Catepsina C)	3.4.14.1	Lisossomo	Hidrolase e endopeptidase	Proteólise	CTSC	Tem atividade dipeptidylpeptidas e.Pode agir como um exopeptidase e endopeptidase. Pode degradar o glucagon.Desempenha um papel na geração de função efetora citotóxica de linfócitos	N/A	Marsupenaeus japonicus
Contig 721	Catepsina	3.4.22	N/A	Hidrolase e endopeptidase	Proteólise	LCP2	N/A	N/A	Litopenaeus vannamei
Contig 751	Glutationa peroxidase 2	1.11.1.9	N/A	Glutationa peroxidase	Resposta ao stress oxidativo	GPX2	N/A	N/A	Litopenaeus vannamei
Contig 756	Carboxipeptidase B	3.4.17.2	Região extracelular	Carboxipeptidase e ligante de íon zinco	Proteólise	N/A	N/A	N/A	Litopenaeus vannamei
Contig 757	Precursor da quitinase	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Litopenaeus vannamei

Contig	Produto	EC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 761	ATP sintetase subunidade a	3.6.3.14	Membrana interna da mitcôndria	Transporte de prótons	Síntese de ATP	mt:ATPase6	ATP sintetase da membrana mitocondrial (F1F0 AT P sintase ou V Complex) que produz ATP a partir de ADP na presença de um gradiente de prótons através da membrana. Gerada por complexos de transporte de elétrons da cadeia respiratória	N/A	Litopenaeus vannamei
Contig 777	Precursor da zinco proteinase	3.4.24.21	N/A	Ligante de íon zinco e metal-peptidase	N/A	N/A	N/A	N/A	Astacus astacus
Contig 805	Fator de início eucariótico 4A-II	3.6.1	N/A	Helicase dependente de ATP e iniciador da tradução	Tradução	Eif4a2	Envolvidos no reconhecimento de cap e é necessária para a ligação do mRNA ao ribossomo. Permite a ligação eficiente da pequena subunidade ribossomal e posterior digitalização para o códon iniciador	N/A	Marsupenaeus japonicus
Contig 826	Proteína 1 quinase-associada fase-S	N/A	N/A	Ligase	Catabolismo de proteína ubiquinona- dependente	skp1	Media a ubiquitinação de proteínas envolvidas na progressão do ciclo celular, transdução de sinal e transcrição	N/A	lxodes scapularis
Contig 851	3-hidroxibutirato desidrogenase tipo 2	1.1.1.30	Citoplasma	Oxidoredutase	Beta-oxidação de ácidos graxos	Bdh2	N/A	N/A	Mus musculus
Contig 853	Xaa-Pro aminopeptidase 1	3.4.11.9	Citoplasma	Aminopeptidase	Proteólise	Xpnpep1	N/A	N/A	Rattus norvegicus
Contig 879	Ferritina	1.16.3.1	Citoplasma	Oxidoredurase	Homeostase de íon ferro	N/A	Deposita ferro em forma solúvel, não tóxica,facilmente disponível. Importante para a homeostase de ferro. Tem atividade ferroxidase. O ferro é absorvido na forma de ferro e hidróxidos de ferro depositados após a oxidação	N/A	Litopenaeus vannamei
Contig 890	Alfa-amilase 1	3.2.1.1	Região extracelular	Ligante de íon cálcio e amilase	Metabolismo de carboidrato	Amy1	N/A	Pfam0012 8	Litopenaeus vannamei
Contig 892	Subcomplexo NADH desidrogenase (uniquinona) 1 alfa, subunudade 6	1.6.5.7	Cadeia respiratória da mitocôndria	NADH desidrogenase	Resposta ao stress oxidativo e transporte de elétrons	NDUFA6	Acessório subunidade da cadeia respiratória mitocondrial NADH desidrogenas e (complexo I),que acreditase não estar envolvida na catálise.Complexo I nas funções de transferência de elétrons do NADH para a cadeia respiratória	N/A	Aedis aegypti

Contig	Produto	EC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 898	Dolicil difosfo- oligosacarídeo, subunidade da proteína glicosiltransferase D AD1	2.4.1.119	Membrana	Dolicil difosfo- oligosacarídeo glicotransferase	Apoptose	CG13393	Componente da enzima N-oligo- sacariltransferase que catalisa a transferência de um oligossacarídeo manose a um resíduo de asparagina. Apoptose	N/A	Penaeus monodon
Contig 901	NADH desidrogenase (ubiquinona) ferro-enxifre, mitocondrial	1.6.5.3	Cadeia respiratória da mitocôndria	NADH desidrogenase	Metabolismo do oxigênio e transporte de elétrons	N/A	Acessório subunidade da cadeia respiratória mitocondrial NADH desidrogenas e (complexo I),que acreditase não estar envolvida na catálise.Complexo I nas funções de transferência de elétrons do NADH para a cadeia respiratória	N/A	Drosophila pseudoobscura
Contig 927	Citocromo c oxidase , subunidade 3	1.9.3.1	Membrana interna da mitocôndria	Citocromo C oxidase	Transporte de elétrons	mt:Colll	Subunidades I, II e III, formam o núcleo funcional do complexo enzimático	N/A	Litopenaeus vannamei
Contig 936	Citocromo c oxidase subunidade 4 isoforma 2, mitocondrial	1.9.3.1	Membrana interna da mitocôndria	Citocromo C oxidase	Redox celular	N/A	Esta proteína é uma das cadeias polipeptídicas nucleares codificados através da oxidase do citocromo c ou oxidase terminal de transporte de elétrons mitocondrial	N/A	Bombyx mori
Contig 965	Metiltransferase de RNA ribossomal NOP2	2.1.1/ 2.1.1.114	Nucléolo	Ligante de RNA	Regulação da proliferação celular e processamento de rRNA	NOP2	Podem desempenhar um papel na regulação do ciclo celular e aumento da atividade nucleolar que está associado com a proliferação celular. Pode agir como metiltransferase RNA ri bossomal	N/A	Nasonia vitripennis
Contig 972	Adenosilhomocisteinase	3.3.1.1	Melanossomo	Ligante de íon cobre	Catabolismo de S- adenosilhomocisteína	АНСҮ	Pode desempenhar um papel fundamental no controle das metilações através da regulação da concentração intracelular de adenosilhomocisteína	N/A	Bos taurus
Contig 978	Glutationa S-transferase	2.5.1.18	Citoplasma	Glutationa transferase	Percepção de cheiro e metabolismo de glutationa	Gstm1	Conjugação de glutationa reduzida a um grande número de eletrólitos exógenos e endógenos hidrofóbicos. A GST olfativa pode ser crucial para a acuidade do processo olfativo	N/A	Litopenaeus vannamei
Contig 984	Quimotripsina BII	3.4.21.1	Região extracelular	Serina/treonina atividade de hidrolase	Metabolismo de colágeno	N/A	Serina protease com atividades d e tripsina e colagenolítica	N/A	Litopenaeus vannamei

Contig	Produto	EC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 99	NADH-ubiquinona oxidoredutase cadeia 3	1.6.5.3	Membrana da mitocôndria	Oxidoredutase	Transporte de elétrons na mitocôndria	ND3	Acessório subunidade da cadeia respiratória mitocondrial NADH desidrogenas e (complexo I),que acredita- se não estar envolvida na catálise.Complexo I nas funções de transferência de elétrons do NADH para a cadeia respiratória	N/A	Litopenaeus vannamei
Contig 996	tRNA (guanina-N(7) -) metiltransferase	2.1.1.33	Núcleo	Metiltransferase	Desenvolvimento embrionário	W02B12.10	Catalisa a formação de N (7) metilguanina em tRNA	N/A	Caenorhabditis elegans
Contig 999	Dipeptidase não-específica citosólica	3.4.13.18	N/A	Carboxidase, metal- peptidase e ligante de íon zinco	Proteólise	CNDP2	N/A	PF01546	Homo sapiens

Tabela 9: Detalhes sobre os locos SSR-ESTs enzimáticos como o produto protéico, EC number, componente celular, função molecular, processo biológico, símbolo do gene, função, domínio e organismo homólogo

Contig	Produto	EC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 1007	Aminopeptidase P	3.4.11.9	N/A	Hidrolase	Proteólise	Арер	Composição de uma proteína com a destruição da configuração nativa ativa, co m a hidrólise de ligações peptídicas.	N/A	Drosophila melanogaster
Contig 1035	ATP sintetase subunidade O, mitocondrial	3.6.3.14	Mitocôndria	Transporte de prótons na síntese de ATP	Síntese de ATP acoplada ao transporte de prótons	Oscp	Produz ATP a partir de ADP na presença de um gradiente de prótons através da membrana, que é gerada por complexos de transporte de elétrons da cadeia respiratória.	N/A	Drosophila melanogaster
Contig 1040	3-hidroxi-isobutirato desidrogenase, mitocondrial	1.1.1.31	Mitocôndria	Hidroxi-isobutirato desidrogenase	Redução-Oxidação	Hibadh	N/A	pfam03446	Mus musculus
Contig 1046	Helicase brm ATP- dependente	3.6.4.12	Núcleo	Helicase e ligante de ATP	Regulação da transcrição	brm	Remodela a cromatina, catalisando uma alteração ATP- dependente na estrutura do DNAnucleosomal. Este complexo pode tanto servir como um coactivator transcrici onal ou corepressor, dependendo do co ntexto	pfam00176	Drosophila melanogaster
Contig 1066	RNA helicase DDX17 ATP- dependente	3.6.4.13	Núcleo	Helicase ATP- dependente	N/A	Ddx17	Atividade de ATPase RNA- dependente	cl12029	Mus musculus
Contig 1067	Endoquitinase	3.2.1.14	Região extracelular	Hidrolase	Metabolismo da quitina	N/A	Digere o exoesqueleto de quitina durante o processo de muda	pfam00704	Marsupenaeus japonicus
Contig 1069	NADH desidrogenase (ubiquinona) 1 beta, subunidade 7	1.6.5.3	Cadeia respiratória	NADH desidrogenase	Transporte na cadeia respiratória	cl05311	Acessório subunidade da cadeia respiratória mitocondrial NADH desidrogen ase (complexo I),que acredita- se não estar envolvida na catálise.Complexo I nas funções de transferência de elétrons do NADH para a cadeia respiratória	cl05311	Anopheles gambiae

Contig	Produto	EC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 1079	Co-fator molibidenium para síntese de proteína cinnamon	2.7.7.n5	N/A	Nucleotidiltransferase	Co-fator de molibidenium	pfam 03453	Catalisa duas etapas na biossíntese do cofator demolibdênio. Na primeira etapa, é molibdopterina adenilada. Posteriormente molibdato é inserido molibdopterina adenilada e AMP é liberado.	pfam03453	Drosophila melanogaster
Contig 1093	E3 ubiquitina ligase RNF13	6.3.2	Núcleo	Ligase	Autobiquitinação de proteína	Rnf13	Ligase proteína- ubiquitina E3 que podemdesem penhar um papel no controle da proliferação celular	cd2123	Mus musculus
Contig 1104	Putativa ATP sintetase subunidade f, mitocondrial	3.6.3.14	Mitocôndria	Ligante de proteína	Biossíntese de ATP	CG4692	Membrana mitocondrial ATP si ntase que produz ATP a partir de ADP na presença de um gradiente de prótons através da membrana, que é gerada por complexos de transporte de elétrons da cadeia respiratória	cl10896	Drosophila melanogaster
Contig 1176	Proteossomo subunidade beta tipo-6	3.4.25.1	Núcleo do proteassomo	Treonina endopeptidase	Ciclo mitótico celular	PSMB6	O proteassoma é um complexo proteinase multicatalítica que é caracterizada pela capacidade de unir peptídeos com Arg, Phe, Tyr,Leu e Glu, deixando a pHneutro ou ligeiramente alcalino. O proteassoma tem uma atividade proteolítica ATP-dependente	N/A	Xenopus laevis
Contig 1186	Oligoribonuclease, mitocondrial	3.1	Mitocôndria	Exonuclease	Metabolismo de ácidos graxos	Rexo2	Pode ter um papel para reciclagem de nucleotídeos celular por semelhança	N/A	Rattus norvegicus
Contig 1191	DNA topisomerase 2-beta	5.99.1.3	Núcleo	DNA topoisomerase	Regulação da transcrição	TOP2B	Controle dos estados topológicos do DNA Por quebra transitória e posterior r ejuntamento das fitas de DNA. Topoisomerase II faz queb ras da cadeia dupla de DNA	N/A	Gallus gallus
Contig 1194	RING finger and CHY zinc finger domain-containing protein 1	6.3.2	Núcleos	Ligante de íon zinco e ligase	Regulação positiva da ubiquinação	Rchy1	Contribui para a regulação daCDKN1B e o s níveis de TP53, e assim contribui para a regulação da progressão do ciclo celular	N/A	Apis mellifera

Contig	Produto	EC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 1196	Peptidil-prolil isomerase CWC27	5.2.1.8	Núcleos	Peptidil-prolil cis- trans isomerase	Processamento de mRNA	CWC27	PPlases aceleraram o dobramento de proteínas. Ela catalisa a isomerização cis- trans de prolina. Envolvido no splicing do pré-mRNA	N/A	Gallus gallus
Contig 1199	Subunidade alfa do proteossomo tipo-6	3.4.25.1	Núcleo	Treonina endopeptidase	Proteólise	Psma6	O proteassoma é um complexo proteinase multicatalítica que é caracterizada pela capacidade de unir peptídeos com Arg, Phe, Tyr,Leu e Glu, deixando a pHneutro ou ligeiramente alcalino. O proteassoma tem uma atividade proteolítica ATP-dependente	N/A	Gallus gallus
Contig 12	NADH desidrogenase (ubiquinona) ferro-enxofre proteína 3, mitocondrial	1.6.5.3	Mitocôndria C	NADH desidrogenase	Transporte na cadeia respiratória	NDUFS3	Acessório subunidade da cadeia respiratória mitocondrial NADH desidrogen ase (complexo I),que acredita- se não estar envolvida na catálise.Complexo I nas funções de transferência de elétrons do NADH para a cadeia respiratória	N/A	Drosophila pseudoobscura
Contig 1209	Provável dissulfato- isomerase ER-60	5.3.4.1	Retículo endoplasmático	Isomerase	Homeostase redox	N/A	N/A	N/A	Anopheles gambiae
Contig 1217	46kDa FK506 proteína ligante nuclear	5.2.1.8	Núcleo	Peptil-prolil cis-trans isomerase	Conformação de proteína	FKBP46	PPlases aceleraram o dobramen to de proteínas. Elas catalisam a isomerização cis- trans de ligações peptídicas em oligopeptídeos	N/A	Spodoptera frugiperda
Contig 1241	Xaa-Pro aminopeptidase 1	3.4.11.9	Citoplasma	Ligante de íon magnésio	Catabolismo de bradicinina	Xpnpep1	Contribui para a degradação da bradicinina	N/A	Apis mellifera
Contig 1246	Enzima conjugada de ubiquitina E2-17 kDa	6.3.2.19	Microtúbulos	Ligase de proteína	Mitose e meiose	eff	Catalisa a ligação covalente da ubiquitina a outras proteínas. Medeia a degradação seletiva de proteínas de vida curta e anormais. Necessário para o comportamento dos telômeros adequadamente durante as divisões celulares e possivelmentepara ubiquitinaçã o de proteínas envolvidas nos estágios pósmeióticos de espermatogênese. Mutações são letais em homozi gose	N/A	Drosophila melanogaster

Contig	Produto	EC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 125	Adenosina quinase	2.7.1.20	N/A	Adenosina quinase	Purina ribonucleosídeo	ADK	ATP dependente de fosforilação da adenosina e outros análogos de nucleosídeos relacionados para o monofosfato de derivados	N/A	Strongylocentrotus purpuratus
Contig 1265	Enzima conjugada de ubiquitina E2-17 kDa	6.3.2.19	Núcleo	Ligase	Reparo de DNA	UbcD6	Catalisa a ligação covalente da ubiquitina a outras proteínas. Medeia a degradação seletiva de proteínas de vida curta e anormais. Necessário para o comportamento dos telômeros adequadamente durante as divisões celulares e possivelmentepara ubiquitinaçã o de proteínas envolvidas nos estágios pósmeióticos de espermatogênese. Mutações são letais em homozi gose	N/A	Drosophila melanogaster
Contig 1268	Superkiller viralicidic activity 2-like 2	3.6.4.13	Núcleo	ATP ligante	Splicing de RNA	SKIV2L2	Pode estar envolvido no splicing de pré-mRNA	N/A	Homo sapiens
Contig 1270	Proteína domínio cromo- helicase-DNA-ligante Mi-2	3.6.4.12	Núcleo	ATP e zinco ligante	Regulação da transcrição	Mi-2	Papel vital no desenvolvimento. Fundamental para a repressão dos genes do complexo de BXC	N/A	Drosophila melanogaster
Contig1272	Histona desacetilase 3	3.5.1.98	Núcleo	DNA ligante	Transcrição	Hdac3	Responsável pela desacetilação de resíduos de lisina na parte Nterminal das histonas do núcleo. Desacetilação da histona fornece uma etiqueta para controle epigenético e desempenha um papel importante na regulação da transcrição, progressão do ciclo celular e eventos de desenvolvimento	N/A	Drosophila melanogaster
Contig 128	ATP sintetase ligante de lipídio, mitocondrial	3.6.4.14	Mitocôndria	Transporte de íons transmembrana	Síntese de ATP acoplada ao transporte de prótons	N/A	Produz ATP a partir de ADP na presença de um gradiente de prótons através da membrana, que é gerada por complexos de transporte de elétrons da cadeia respiratória.	N/A	Marsupenaeus japonicus
Contig 1280	Lisozima	3.2.1.17	N/A	Lisozima	N/A	N/A	N/A	N/A	Asterias rubens
Contig 1288	Astacina metalo endo peptida se	3.4.24.21	Região extracelular	Metal peptidase	Proteólise	Astl	Zinco proteinase pertence à família de metaloendopeptidases que têm muitas funções biológicas diferentes	pfam 01400	Paralithodes camtschaticus

Contig	Produto	EC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 129	Alfa-aspartil dipeptidase	3.4.13.2	N/A	Serina peptidase	Proteólise	dpepe	Hidrolisa dipeptídeos contendo um N-terminal de resíduos de aspartato	cd3146	Drosophila melanogaster
Contig 1292	CNDP dipeptidase 2 (Família metalopeptidase M20)	3.4.13.18	Citoplasma	Hidrolase	Proteólise	CNDP2	Pode ter um papel como supressor tumoral no carcinoma hepatocelular	COG0624	Anopheles gambiae
Contig 1306	Carboxipeptidase B	3.4.17.2	Região extracelular	Carboxipeptidase e ligante de íon zinco	Proteólise	CPB1	Carboxipeptidase é uma enzima protease que hidrolisa a ligação peptídica de um resíduo de aminoácido na extremidade carboxi-terminal. Atua em diversas funções que vão desde catabolismo a maturação protéico	pfam02244	Homo sapiens
Contig 1314	Quitinase	3.2.1.14	Região extracelular	Hidrolase e ligante de quitina	Metabolismo de carboidrato e quitina	chitinase	Digere as ligações glicosídicas na quitina	cd00325	Marsupenaeus japonicus
Contig 132	ATPase de cálcio do retículo endoplasmático liso	3.6.3.8	Membrana do retículo endoplasmático	Catabolismo	Transporte de íons	Atp2a2	ATPase de cálcio que transfere de cálcio do citosol da célula para o lúmen do retículo sarcoplasmático em detrimento da hidrólise de ATP durante o relaxamento muscular	pfam00122	Mus musculus
Contig 1332	Proteína x carregadora de esterol	2.3.1.17	Peroxissimo e citoplasma	Carreira de esteróides	Metabolismo e fosfolipídeos	ScpX	Carregador de esteróides pequenos e proteína de transferência que participa no transporte de intracelular de esteróides e outros lipídeos	cd00829	Drosophila melanogaster
Contig 1345	Endo-beta-1,4- glicanase	3.2.1.4	Região extracelular	Celulase e hidrolase	Metabolismo de carboidrato	N/A	Possui atividade de endoglicanase em substratos contendo pontes glicosílicas beta-1,4 como beta glicanos. Envolvidos na degradação de substratos celulósicos	cl02959	Oryza sativa
Contig 135	Gliceraldeído-3-fosfato desidrogenase	1.2.1.12	Mitocôndria e núcleo	Oxidoredutase	Glicólise	Gapdh	Catalisa a conversão de D- gloceraldeído 3-fosfato, fosfato e NAD+ a fosfo-D-glicerol e NADH. Pode contribuir para a apoptose	pfam 02800	Rattus norvegicus
Contig 1357	ATP sintetase, transporte de H+ no complexo F1 mitocondrial, subunidade beta	3.6.3.14	Mitocôndria	Transporte de prótons na síntese de ATP	Síntese de ATP acoplada ao transporte de prótons	Atp5b	Produz ATP a partir de ADP na presença de um gradiente de prótons através da membrana, que é gerada por complexos de transporte de elétrons da cadeia respiratória.	pfam00306	Mus musculus

Contig	Produto	EC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 1361	Subunidade alfa do proteossomo tipo-2	3.4.25.1	Complexo protéico	Endopeptidadse	Catabolismo de proteína	psma2	O proteassoma é um complexo proteinase multicatalítica que é caracterizada pela sua capacidade de unir peptídeos com Arg, Phe, Tyr,Leu e Glu, tornando o pHneutro ou l igeiramente alcalino. O proteassoma tem uma atividade proteolítica ATP-dependente	cd3750	Danio rerio
Contig 1407	Alfa amilase	3.2.1.1	N/A	Alfa amilase	Metabolismo de carboidratos	Amy	Enzima que hidrolisa as pontes alfa de grandes alfa- polissacarídeos como o amido e o glicogênio, resultando em glicose e maltose	cl07893	Drosophila melanogaster
Contig 1410	Precursor da astacina metaloendopeptidase	3.4.24.21	N/A	Metal peptidase	Proteólise	Astl	N/A	pfam01400	Astacus astacus
Contig 1415	X-Pro aminopeptidase 1	3.4.11.9	Citoplasma	Metal peptidase	Proteólise	Xpnpep1	Contribui para a degradação da bradicinina	pfam01321	Mus musculus
Contig 143	Malato desidrogenase, mitocondrial	1.1.1.37	Mitocôndria	Malato desidrogenase	Metabolismo do malato	Mdh2	Catalisa a oxidação reversível do malato e m oxaloacetato, utilizando o NAD / NADH como co-fator no ciclo do ácido cítrico	cd01337	Danio rerio
Contig 1430	X-Pro dipeptidase (Peptidase D)	3.4.13.9	N/A	Peptidase	Proteólise	Pepd	A proteína forma um homodím ero que hidrolisadipeptídeos ou tripeptídeos com C-terminal deresíduos de prolina e hidroxiprolina.	pfam 05195	Strongylocentrotus purpuratus
Contig 1459	NADH-ubiquinona oxidoreductase	1.6.5.3	Membrana interna da mitocôndria	Oxidoredutase	Transporte de elétrons	ndufs1	Acessório subunidade da cadeia respiratória mitocondrial NADH desidrogen ase (complexo I),que acredita- se não estar envolvida na catálise.Complexo I nas funções de transferência de elétrons do NADH para a cadeia respiratória	pfam10588	Ixodes ricinus
Contig 1460	Isocitrato desidrogenase 2 (NADP+), mitocondrial	1.1.1.42	Mitocôndria	Oxidoredutase	Metabolismo	ldh2	Desempenha um papel no metabolismo intermediário da produção de energia. Pode estar fortemente associada ou interagir com o complexo da piruvato desidrogenase	cl00445	Crassostrea gigas

Contig	Produto	EC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 1474	Complexo do citocromo b- c1 subunidade Rieske, mitocondrial	1.10.2.2	Mitocôndria	Citocromo-c redutase	Oxidação/Redução	NCU06606	Componente do complexo citocromo- redutase ubiquinol c (complexo III e citocromo b-c1 complexo) que é uma cadeia respiratória	N/A	Anopheles gambiae
							que gera um potencial eletroquímic o acoplado à síntese de ATP		
Contig 1475	Peroxidase	1.11.1.7	Região extracelular	Peroxidase	Oxidação-redução	Pxd	Envolvida no enrijecimento do cório, mediado pela formação de di e tri pontes de tirosina	N/A	Penaeus monodon
Contig 1485	26S proteassomo regulatório não-ATPase, subunidade 14	3.4.19	Complexo do proteossomo	Peptidase	N/A	Psmd14	Metaloprotease componente d o proteassoma 26S que cliva especificamente cadeias poli-ubiquitinadas	N/A	Mus musculus
Contig 1489	Citocromo c oxidase, subunidade 1	1.9.3.1	Membrana interna da mitocôndria	Ligante heme	Oxidação/Redução	mt:Col	Citocromo c oxidase é o componente da cadeia respiratória que catalisa a redução do oxigênio a água. Subunidades 1-3 formam o núcleo funcional do complexo enzimático. CO I é a subunidade catalítica da enzima	N/A	Farfantepenaeus notialis
Contig 1502	Frutose-1,6-bifosfatase 1	3.1.3.11	N/A	Frutose 1,6-bifosfato 1-fosfatase	Gliconeogênese	FBP1	N/A	N/A	Oryctolagus coniculus
Contig 1512	Citocromo c oxidase subunidade 3	1.9.3.1	Mitocôndria	Citocromo-c oxidase	Transporte de elétrons na mitocôndria	mt-co3	Subunidades I, II e III formam o núcleo funcional do complexo da enzima	N/A	Farfantepenaeus notialis
Contig 1532	Proteossomo, subunidade alfa tipo-7	3.4.25.1	Citoplasma e núcleo	Treonina endopeptidase	Proteólise	psma7	O proteassoma é um complexo proteinase multicatalítica que é caracterizada pela capacidade de unir peptídeos com Arg, Phe, Tyr,Leu e Glu, deixando a pHneutro ou l igeiramente alcalino. O proteassoma tem uma atividade proteolítica ATP-dependente	N/A	Carassius auratus
Contig 1551	14 kDa fosfohistidina fosfatase	3.1.3	Citoplasma	Fosfatase	N/A	PHPT1	Atividade de fosfohistidina fosfatase. Pode ter um papel significante na sinalização neuronal	N/A	Bos taurus
Contig 1555	Superóxido dismutase	1.15.1.1	Mitocôndria	Superóxido dismutase	Metabolismo de superóxido	N/A	Destrói radicais que são normalmente produzidos pelas células e que são tóxicos aos sistemas biológicos	N/A	Charybdis feriatus

Contig	Produto	EC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 1558	Subcomplexo NADH desidrogenase 1 alfa, subunidade 10 mitocondrial	1.6.5.3	Mitocôndria	Ligante de ATP	Cadeia transportadora de elétrons	ND42	Acessório subunidade da cadeia respiratória mitocondrial NADH desidrogen ase (complexo I),que acredita- se não estar envolvida na catálise.Complexo I nas funções de transferência de elétrons do NADH para a cadeia respiratória	N/A	Drosophila pseudoobscura
Contig 1566	Subcomplexo NADH desidrogenase 1 alfa, subunidade 11 mitocondrial	1.6.5.3	Membrana interna da mitocôndria	Transporte de proteína	Cadeia transportadora de elétrons	NDUFA11	Acessório subunidade da cadeia respiratória mitocondrial NADH desidrogen ase (complexo I), que acredita- se não estar envolvida na catálise.Complexo I nas funções de transferência de elétrons do NADH para a cadeia respiratória	N/A	Drosophila pseudoobscura
Contig 1568	C-1 tetrahidrofolato sintase, citoplasmática	1.5.1.5	Citoplasma	Ligase	Metabolismo de compostos com um carbono	MTHFD1	N/A	N/A	Homo sapiens
Contig 1581	Aspartato aminotransferase, mitocondrial	2.6.1.1	Membrana interna da mitocôndria	Aminotransferase	Metabolismo de aspartato e transporte	Got2	Desempenha um papel fundamental no metabolismo de aminoácidos. Importante para a troca de metabólitos entre as mitocôndrias e o citoplasma. Facilita a absorção celular de cadeia longa de ácidos graxos livres	N/A	Danio rerio
Contig 1595	Proteína henna	1.14.16.1/1.14.16 .4	N/A	Ligante de proteína	Oxidação/Redução	Hn	N/A	N/A	Drosophila melanogaster
Contig 1603	Peptidil-prolil cis-trans isomerase 3	5.2.1.8	N/A	Peptidil-prolil cis- trans isomerase	Conformação de proteína	PPIL3	PPlases aceleraram o dobramen to de proteínas. Ela catalisa a isomerização cis- trans de prolinas	N/A	Apis mellifera
Contig 1605	ATPase V subunidade G	3.6.3.14	Membrana	Hidrolase	Transporte	N/A	V-ATPase é responsável pela acidificação de uma variedade de compartimentos intracelular es em células eucarióticas	N/A	Manduca sexta
Contig 161	Frutose-bisfosfato aldolase	4.1.2.13	N/A	N/A	Glicólise	Ald	Podem participar no estágio de desenvolvimento específico ou metabolismo tecido específico de açúcar- fosfato. A proteína atua sobre dois substratos frutose 1,6- bisfosfato e frutose1-phosphate	N/A	Drosophila melanogaster

Contig	Produto	EC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 1612	Nucleosídeo difosfato quinase B	2.7.4.6	Citoplasma	N/A	Biossíntese de CTP e UTP	Nme2	Maior papel na síntese de nucleosídeos trifosfatos diferente ATP	N/A	Rattus norvegicus
Contig 1622	Quito-oligo-sacaridolítico beta-N- acetilglicosaminidase	3.2.1.52	N/A	Acetilhexosaminidase	Metabolismo de quitina	N/A	Age durante a metamorfose para a degradação da quitina	N/A	Bombyx mori
Contig 1626	NADH desidrogenase 1 beta, subunidade 4	1.6.5.3	Mitocôndria	NADH desidrogenase	Transporte de elétrons	Ndufb4	Acessório subunidade da cadeia respiratória mitocondrial NADH desidrogen ase (complexo I),que acredita- se não estar envolvida na catálise.Complexo I nas funções de transferência de elétrons do NADH para a cadeia respiratória	N/A	Drosophila yakuba
Contig 163	Dipeptidil peptidase 3	3.4.14.4	Citoplasma	Aminopeptidase	Proteólise	Dpp3	Cliva Arg- Arg-beta-naftilamida	N/A	Xenopus laevis
Contig 1653	ATP sintetase subunidade beta, mitocondrial	3.6.3.14	Mitocôndria	Hidrolase	Síntese de ATP acoplada ao transporte de prótons	atp-2	Produz ATP a partir de ADP na presença de um gradiente de prótons através da membrana, que é gerada por complexos de transporte de elétrons da cadeia respiratória.	N/A	Caenorhabditis elegans
Contig 1655	Ribonuclease UK114	3.1	Superfície celular	Endonuclease	N/A	HRSP12	Endoribonuclease responsáveis pela inibição da tradução pela clivagem do mRNA. Cliva apenas RNAs de fita simples	N/A	Canis familiaris
Contig 166	Nucleosídeo difosfato quinase A	2.7.4.6	Citoplasma	Ligante de ATP	Biossíntese de CTP, UTP e GTP	Nme1	Maior papel na síntese de nucle osídeos trifosfatos diferente ATP	N/A	Rattus norvegicus
Contig 168	Enolase	4.2.1.11	Citoplasma	Fosfopiruvato hidratase e ligante de íon magnésio	Glicólise	N/A	N/A	N/A	Penaeus monodon
Contig 1682	Serina protease HTRA1	3.4.21	Região extracelular	Serina peptidase	Proteólise	Htra1	Protease que regula a disponibil idade de fatores de crescimento nsulin (IGFs) pela clivagem de proteínas	N/A	Mus musculus
Contig 1700	Álcool desidrogenase	1.1.1.1	Citoplasma	Álcool desidrogenase	Oxidação do etanol	N/A	Classe III ADH é notavelmente i neficaz na oxidação do etanol, mas prontamente catali sa a oxidação de cadeia longa, álcoois primários e da oxidação da S-glutationa	N/A	Myxine glutinosa
Contig 1713	Tripsina-1	3.4.21.4	Região extracelular	Serina endopeptidase	Digestão	N/A	N/A	N/A	Litopenaeus vannamei

Contig	Produto	EC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 1720	Citocromo c oxidase subunidade 2	1.9.3.1	Mitocôndria	Ligante de pion cobre e citocromo-c oxidase	Cadeia transportadora de elétrons	mt:Coll	Citocromo c oxidase é o componente da cadeia respiratória que catalisa a redução do oxigênio n a água. Subunidades 1- 3 formam o núcleo funcional do complexo enzimático. CO I é a subunidade catalítica da enzima	N/A	Marsupenaeus japonicus
Contig 173	NADH-ubiquinona oxidoreductase, cadeia 4	1.6.5.3	Mitocôndria	NADH desidrogenase	Síntese de ATP acoplada ao transporte de prótons	mt:ND4	Acessório subunidade da cadeia respiratória mitocondrial NADH desidrogen ase (complexo I),que acredita- se não estar envolvida na catálise.Complexo I nas funções de transferência de elétrons do NADH para a cadeia respiratória	N/A	Marsupenaeus japonicus
Contig 1731	NADH-ubiquinona oxidoredutase cadeia 6	1.6.5.3	Mitocôndria	NADH desidrogenase	Síntese de ATP acoplada ao transporte de prótons	mt:ND6	Acessório subunidade da cadeia respiratória mitocondrial NADH desidrogen ase (complexo I),que acredita- se não estar envolvida na catálise.Complexo I nas funções de transferência de elétrons do NADH para a cadeia respiratória	N/A	Penaeus monodon
Contig 1737	Citocromo P450 6k1	1.14.14.1	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Contig 1742	Carboxipeptidase B	3.4.17.2	Região extracelular	Carboxipeptidase e ligante de íon zinco	Proteólise	N/A	N/A	N/A	Astacus fluviatilis
Contig 1745	Glucosaminafrutose-6 fosfato aminotransferase 2	2.6.1.16	Citoplasma	Glutamina-frutose-6- fosfato transaminase	Biossíntese de carboidrato	Gfp2	Controla o fluxo de glicose na vi a hexosamina	N/A	Aedis aegypti
Contig 1759	Succinato desidrogenase flavoproteína, mitocondrial	1.3.5.1	Membrana interna da mitocôndria	Succinato desidrogenase	Cadeia transportadora de elétrons	SDHA	Subunidade flavoproteína (FP) d a succinato desidrogenase (SDH), que está envolvida no complexo Il da cadeia mitocondrial de transporte de elétrons e é responsável pela transferência de elétrons do succinato a ubiquin ona (coenzima Q)	N/A	Apis mellifera
Contig 1764	Deoxirribose-fosfato aldolase	4.1.2.4	Citoplasma	Deoxirribose fosfato	Catabolismo de deoxirribonucleicos	DERA	N/A	N/A	Xenopus tropicalis

Contig	Produto	EC number	Componente celular	Função molecular	Processo biológico	Símbolo do gene	Função	Domínio	Organismo homólogo
Contig 1774	NADH desidrogenase ferro-enxofre proteína 2, mitocondrial	1.6.5.3	Cadeia respiratória	NADH desidrogenase	Transporte de elétrons	NDUFS2	Acessório subunidade da cadeia respiratória mitocondrial NADH desidrogen ase (complexo I), que acredita- se não estar envolvida na catálise.Complexo I nas funções de transferência de elétrons do NADH para a cadeia respiratória	N/A	Drosophila melanogaster
Contig 1775	Provável quitinase 3	3.2.1.14	Região extracelular	Hidrolase	Metabolismo da quitina	Cht3	N/A	N/A	Marsupenaeus japonicus
Contig 1782	Desidrogenase/redutase (Família SDR) membro 6	1.1.1.30	Citoplasma	Oxidoredutase	Metabolismo	Bdh2	Oxida um substrato por transferência de um ou mais hidretos (H-) para um receptor, geralmente NAD + / NADP +	cl09931	Rattus norvegicus
Contig 2667	Fitanoil-CoA dioxigenase	1.14.11.18	N/A	N/A	N/A	N/A	N/A	pfam05721	Strongylocentrotus purpuratus
Contig 908	Triosefosfato isomerase	5.3.1.1	N/A	Isomerase	N/A	TPI1	Catálise das alterações geométricas ou estruturais dentro de uma molécula. Isomerase é o nome sistemático para qualquer enzima da classe 5 de EC numbers	pfam00121	Archaeopotamobius sibiriensis

8.2 Anexos - Figuras

Legenda das figuras de 17 a 28: Via metabólica e suas respectivas enzimas. Os *EC numbers* coloridos foram os identificados pelo software PAICE.

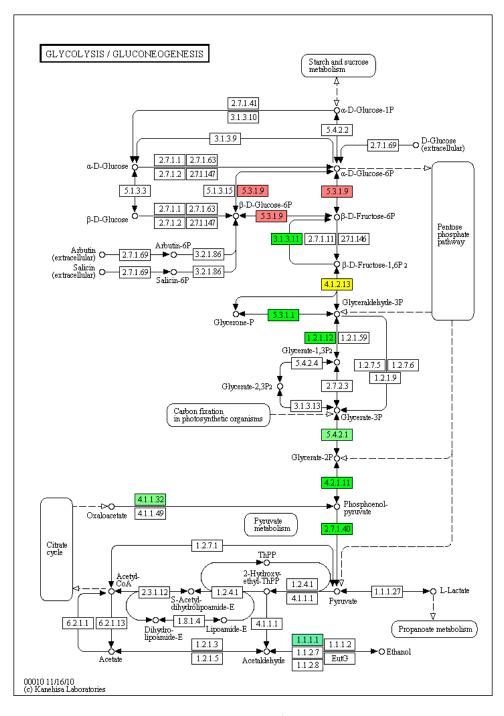


Figura 17: Glicólise

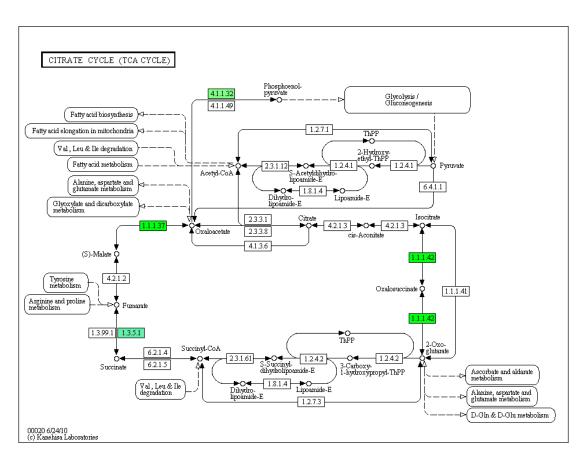


Figura 18: Ciclo do ácido cítrico (Krebs)

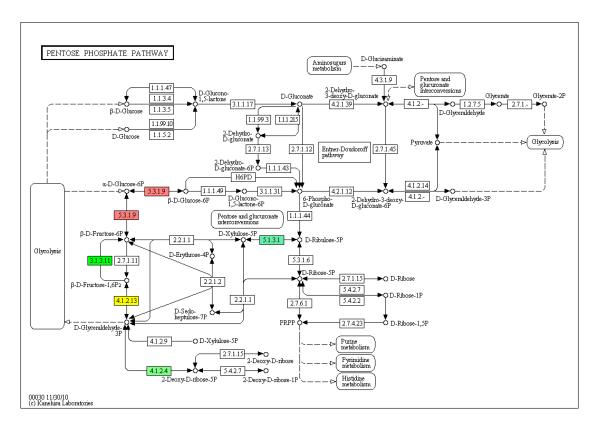


Figura 19: Via das pentoses

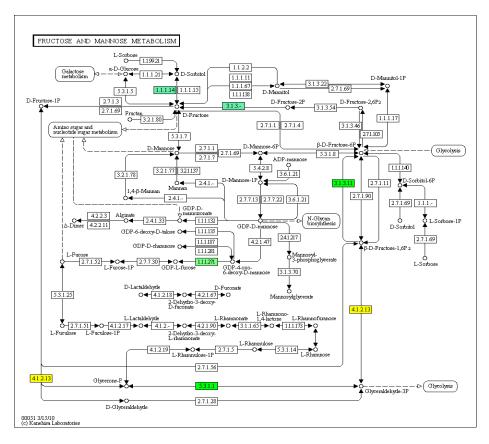


Figura 20: Metabolismo de frutose e manose

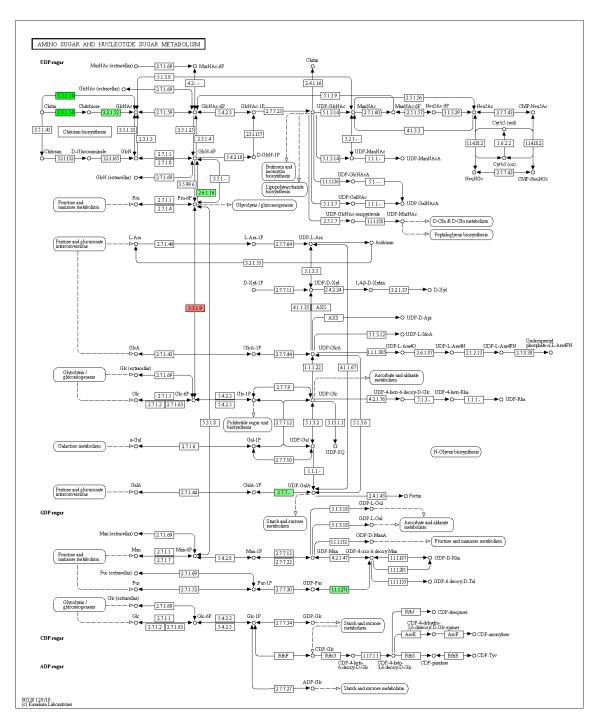


Figura 21: Metabolismo de amino e nucleotídeos glicanos

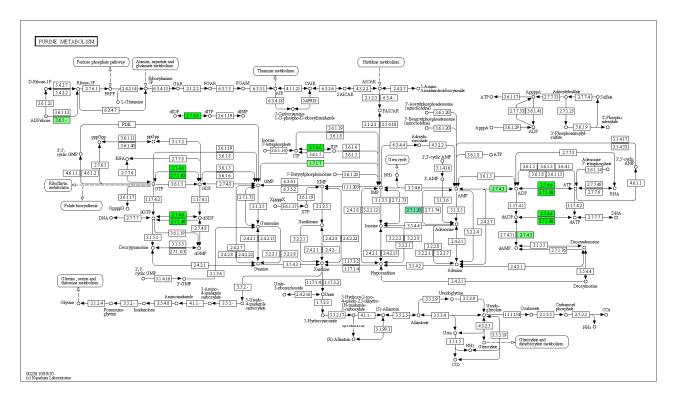


Figura 22: Metabolismo de purina

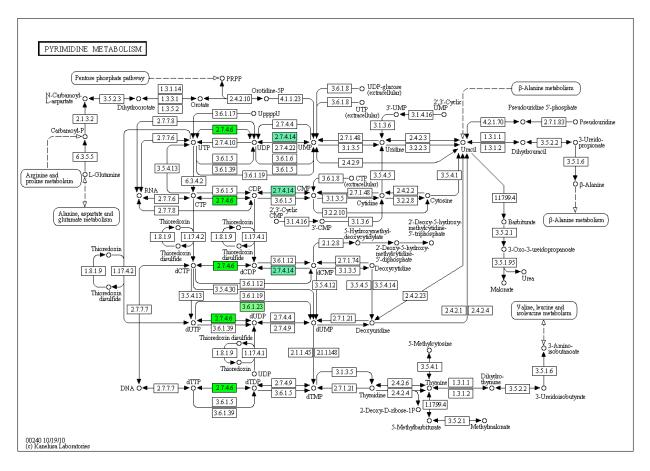


Figura 23: Metabolismo de pirimidina

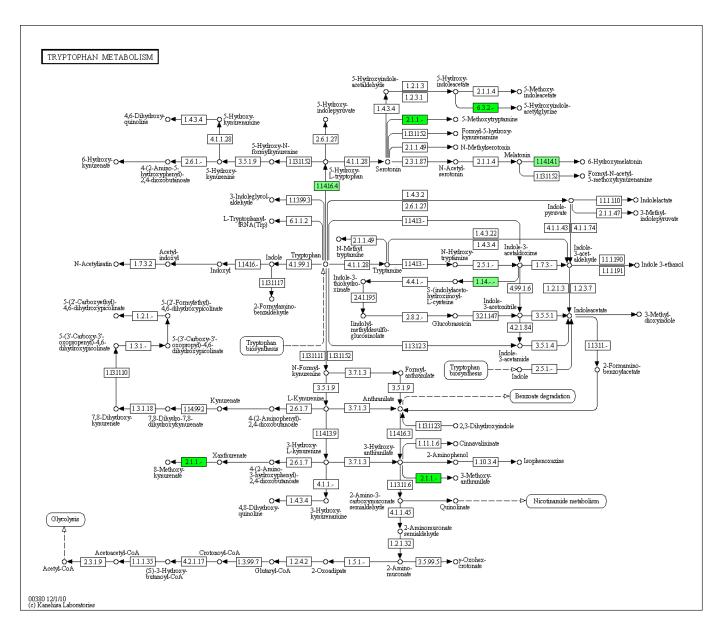


Figura 24: Metabolismo de triptofano

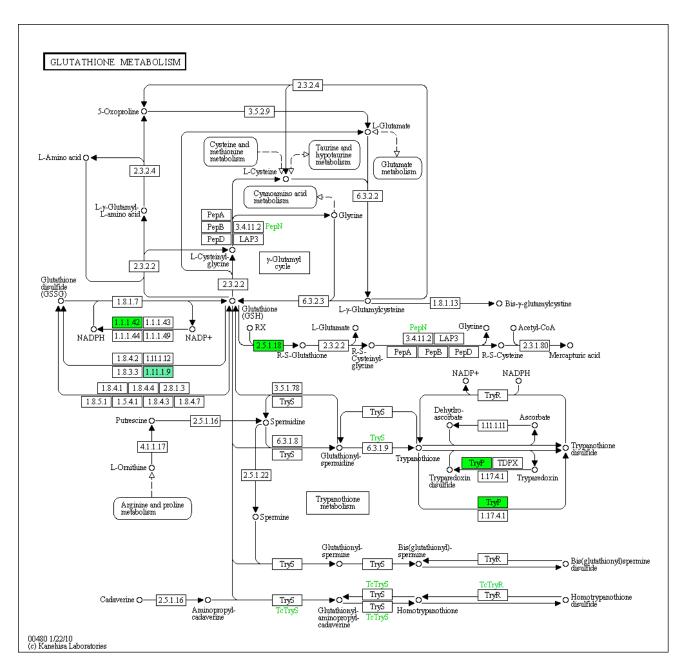


Figura 25: Metabolismo de glutationa

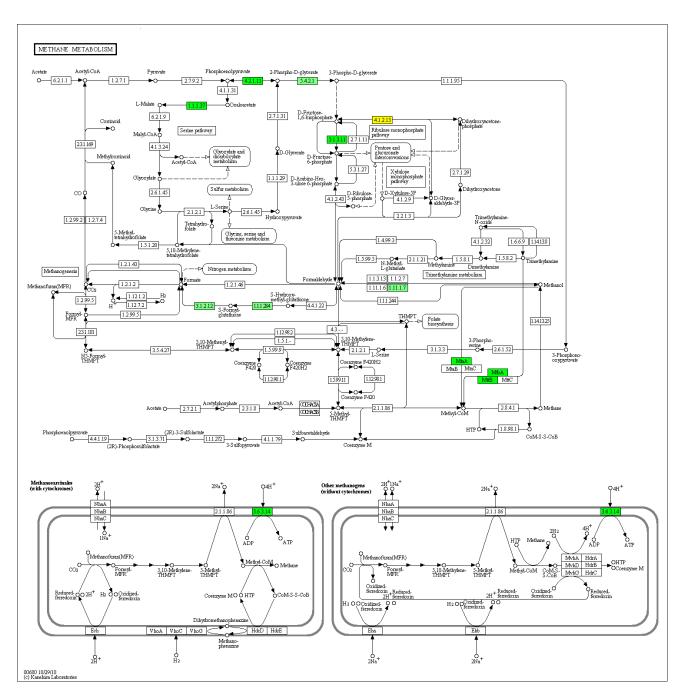


Figura 26: Metabolismo de metano

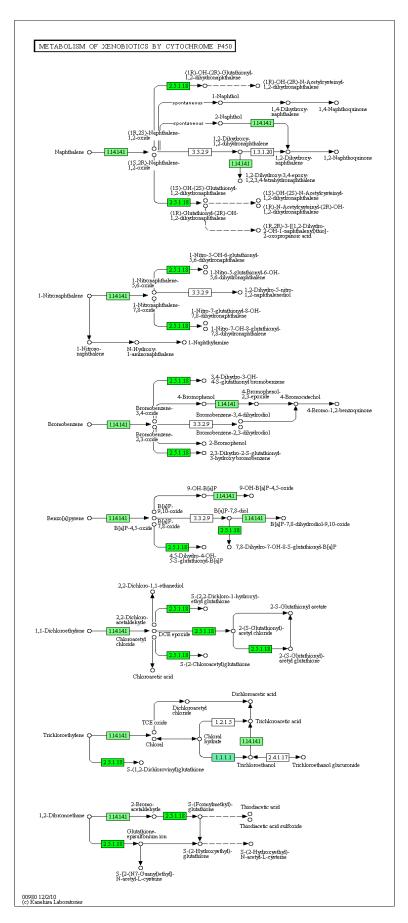


Figura 27: Metabolismo de xenobióticos pelo citocromo P450

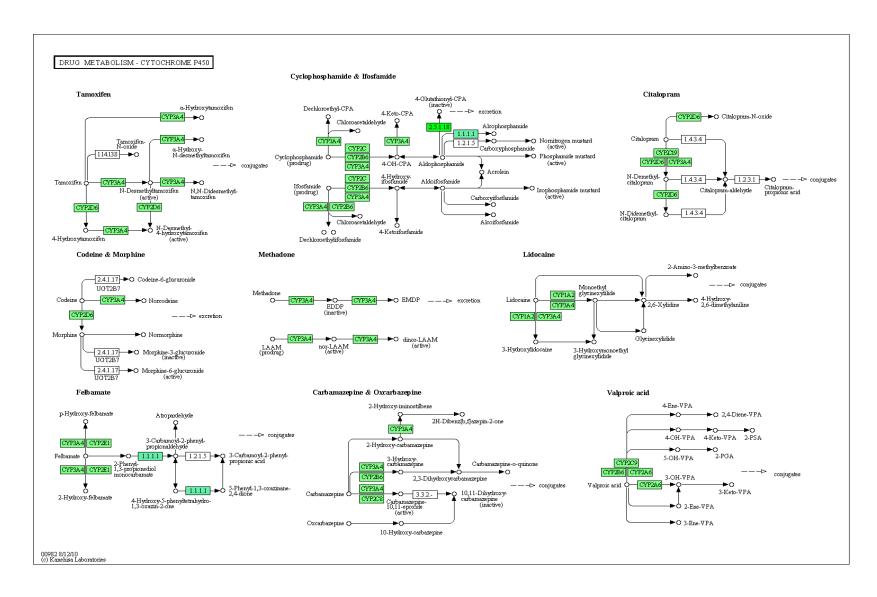


Figura 28: Metabolismo de drogas pelo citocromo P450

Legenda para as figuras 29 e 30: Esquema de networks enzimáticas. Os EC numbers coloridos foram identificados pelo software PAICE.

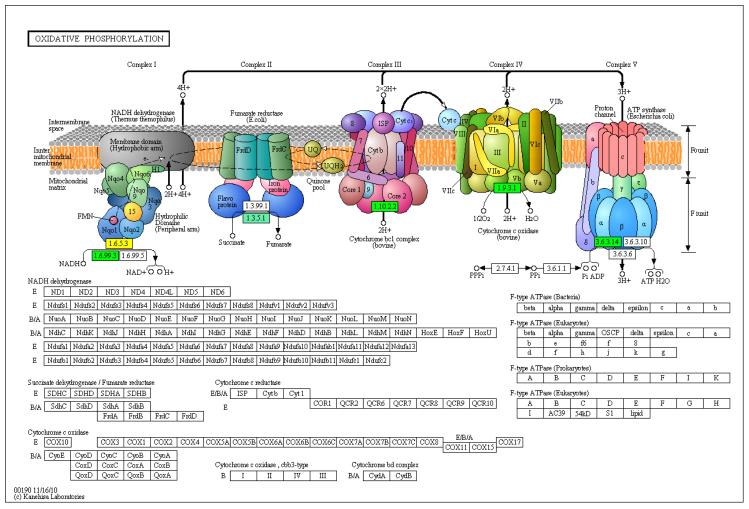


Figura 29: Fosforilação oxidativa

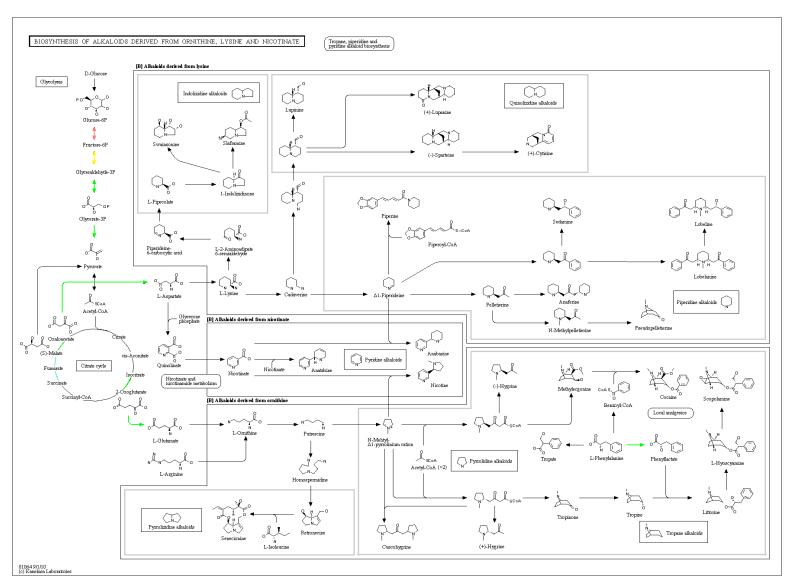
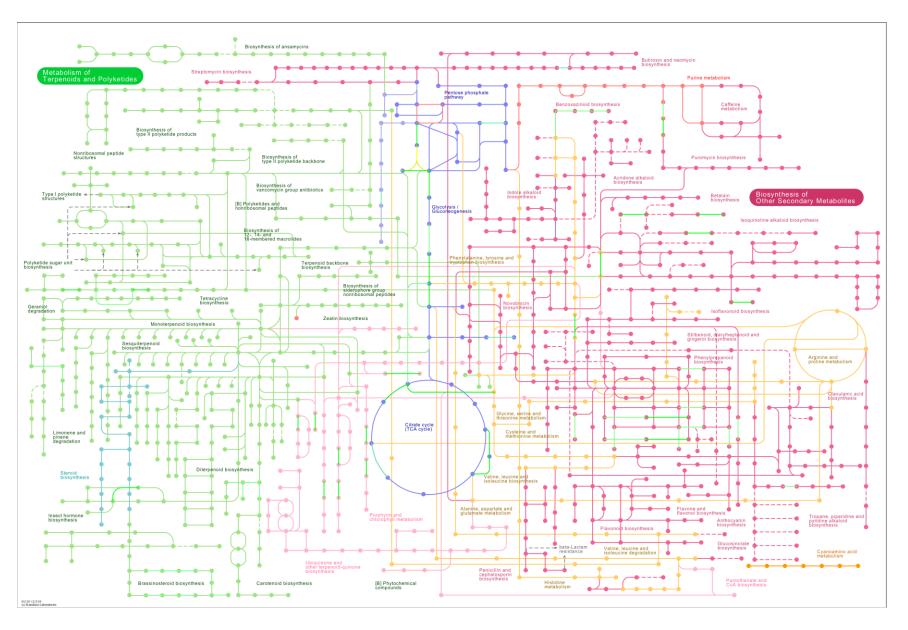



Figura 30: Biossíntese de alcalóides derivados de ornitina, lisina e nicotinato

Figura 31: Esquematização de um conjunto de networks enzimáticas, destacando a integração entre as vias. Cada cor representa vias responsáveis pelo metabolismo de determinado substrato