UNIVERSIDADE FEDERAL DE SÃO CARLOS CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA

Resultados de Existência para as Equações Críticas de Klein-Gordon-Maxwell

Patrícia Leal da Cunha

São Carlos Fevereiro/2011

UNIVERSIDADE FEDERAL DE SÃO CARLOS CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA

Resultados de Existência para as Equações Críticas de Klein-Gordon-Maxwell

Patrícia Leal da Cunha

Tese apresentada ao Programa de Pós-Graduação em Matemática da Universidade Federal de São Carlos, como parte dos requisitos para obtenção do Título de Doutor em Matemática.

Orientação: Olímpio Hiroshi Miyagaki

São Carlos Fevereiro/2011

Ficha catalográfica elaborada pelo DePT da Biblioteca Comunitária/UFSCar

C972re

Cunha, Patrícia Leal da.

Resultados de existência para as equações críticas de Klein-Gordon-Maxwell / Patrícia Leal da Cunha. -- São Carlos: UFSCar, 2011.

71 f.

Tese (Doutorado) -- Universidade Federal de São Carlos, 2011.

1. Equações diferenciais parciais. 2. Equações de Klein-Gordon-Maxwell. 3. Soluções ground states. 4. Soluções radialmente simétricas. 5. Expoente crítico de Sobolev. I. Título.

CDD: 515.353 (20^a)

Banca Examinadora:

Prof. Dr. Olimpio Hiroshi Miyagaki DMA - UFJF

> Prof. Dr. Cezar Issao Kondo DM - UFSCar

Profa. Dra. Claudia Buttarello Gentile

DM - UFSCar

Prof. Dr. Claudianor Oliveira Soares

DME - UFCG

Prof. Dr. Sérgio Henrique Monari Soares

ICMC - USP

Agradecimentos

Primeiramente aos meus pais que sempre incentivaram e apoiaram minhas escolhas. Mesmo longe nesses últimos anos, sempre estiveram presentes nos momentos mais importantes. Agradeço por terem me resgatado depois que fugi de casa aos 5 anos de idade querendo ir pra escola.

Ao professor Olímpio Hiroshi Miyagaki pela orientação e por conduzir com segurança e determinação este trabalho.

Aos professores Cezar Kondo, Claudia Gentile, Claudianor Alves e Sérgio Monari por aceitarem compor a banca examinadora e pelas correções e sugestões para a finalização deste trabalho.

Ao professor Paulo César Carrião por me acolher na UFMG, pelos divertidos e frutíferos seminários e por contribuir de forma decisiva para minha formação. Aos colegas de seminário Narciso e Reginaldo pela troca de ideias e a tantos outros amigos que fiz enquanto estive na UFMG: Adrianinha, Danilo, Danúbia, Erica, Flávio, Gilberto, Godines, Heleno, Josué, Leandro, Maurício, Wesley, bem como Marly e Cátia, ...

Aos amigos da UFSCar: Érika, Francisco, João, Nazira e Rafael pelo inestimável companheirismo na época do exame de qualificação. E claro, eu não poderia esquecer dos amigos Alessandra, Marciano, Rodrigo, Sandra, Wescley, ... A todos eles agradeço pela convivência agradável e pela valiosa troca de experiências. Em especial à minha querida amiga Isabela cuja convivência diária por um ano foi suficiente para fazer uma amizade pelo resto da vida!

Aos casal de amigos Lais e Richard pela amizade e apoio quando cheguei em São Paulo. E claro, também pelas várias horas de video-game e truco os quais, contrariada, eu sempre dava o prazer da vitória a eles.

À minha amigona Jaque, pela nossa amizade de mais de uma década e por representar pra mim um exemplo de superação e força. "Quem estuda vence", esse é nosso lema!

À CAPES pelo apoio financeiro.

Por último, e mais importante, agradeço ao Pito, não "somente" por ser um dedicado e carinhoso esposo, mas pelas inúmeras e valiosas trocas de informações, comentários e sugestões a este trabalho, por sempre me estimular a crescer científica e pessoalmente e por ser para mim um modelo de matemático dedicado, responsável e competente. Acima de tudo, agradeço por estar sempre ao meu lado, por ser o brilho da minha vida!

Resumo

Neste trabalho analisamos a existência de soluções radialmente simétricas, soluções positivas, bem como a existência de soluções ground state para uma classe de equações do tipo Klein-Gordon-Maxwell quando a não-linearidade exibe comportamento crítico. Para as soluções positivas e do tipo ground state provamos resultados de existência quando um potencial V é introduzido. A fim de obtermos tais resultados, usamos métodos variacionais.

Palavras-Chave: Equações de Klein-Gordon-Maxwell, soluções ground state, soluções radialmente simétricas, expoente crítico de Sobolev.

Abstract

In this work we analyze the existence of radially symmetric solutions, positive solutions as well as the existence of ground state solutions for a class of Klein-Gordon-Maxwell equations when the nonlinearity exhibits critical behavior. For the positive and ground state solutions we prove existence results when a potential V is introduced. In order to obtain such results, we use variational methods.

Keywords: Klein-Gordon-Maxwell equations, ground state solutions, radially symmetric solutions, critical Sobolev exponent.

Lista de Símbolos

 $\langle \; , \; \rangle$

 B_R

 $B_R(x)$

$$p^* = \frac{Np}{N-p}$$

 $(PS)_c$

$$H^1(\mathbb{R}^N)$$

$$H^1_r(\mathbb{R}^N)$$

E

$$\mathcal{D}^{1,2}(\mathbb{R}^N)$$

$$L^s(\mathbb{R}^N)$$

 X^*

$$u_n \to u$$

$$u_n \rightharpoonup u$$

$$||u|| = \left[\int_{\mathbb{R}^N} (|\nabla u|^2 + u^2) dx \right]^{1/2}$$

$$||u||_E = \left[\int_{\mathbb{R}^3} (|\nabla u|^2 + V(x)u^2) dx \right]^{1/2}$$

$$||u||_{\mathcal{D}^{1,2}} = \left[\int_{\mathbb{R}^N} |\nabla u|^2 dx \right]^{1/2}$$

$$||u||_s = \left[\int_{\mathbb{R}^N} |u|^s dx \right]^{1/s}$$

produto de dualidade

bola aberta centrada em zero e com raio R

bola aberta centrada em x e com raio R

expoente crítico de Sobolev

condição de Palais-Smale ao nível \boldsymbol{c}

espaço de Sobolev $W^{1,2}(\mathbb{R}^N)$ com norma $\|\cdot\|$

$$\{u \in H^1(\mathbb{R}^N) : u(x) = u(|x|)\}$$

espaço de Sobolev munido com norma $\|\cdot\|_E$

completamento de $\mathcal{C}_0^\infty(\mathbb{R}^N)$ na norma $\|\cdot\|_{\mathcal{D}^{1,2}}$

espaço de Lebesgue com norma $\|\cdot\|_s$

espaço dual do espaço X

convergência forte (em norma)

convergência fraca

norma do espaço $H^1(\mathbb{R}^N)$

norma do espaço ${\cal E}$

norma do espaço $\mathcal{D}^{1,2}(\mathbb{R}^N)$

norma do espaço $L^s(\mathbb{R}^N)$

Sumário

1	Intr	odução	1
2	Existência de soluções radialmente simétricas		
	2.1	Introdução	7
	2.2	Resultados preliminares	8
	2.3	Prova do Teorema 1.1	15
3	Exis	tência de soluções ground states	29
	3.1	Introdução	29
	3.2	Formulação Variacional	30
	3.3	Lemas Auxiliares	30
	3.4	Prova do Teorema 1.2	42
4	Exis	tência de soluções positivas	45
	4.1	Introdução	45
	4.2	Potencial periódico	46
		4.2.1 Formulação Variacional	46
		4.2.2 Prova do Teorema 1.3	47
	4.3	Potencial não-periódico	51
		4.3.1 Formulação variacional	51
		4.3.2 Lemas auxiliares	52
		4.3.3 Prova do Teorema 1.4	56
A	Apê	ndice	59
	A.1	As equações de Klein-Gordon acopladas com Maxwell	59
	A.2	O funcional de Euler-Lagrange associado ao sistema (\mathcal{KGM})	61
	A.3	Lema de Stampacchia	65
	A.4	Teorema de Hewitt-Stromberg	65
	A 5	Princípio da Criticalidade de Palais	65

Bibliografia		
A.7	Princípio Variacional de Ekeland	67
A.6	Teorema do Passo da Montanha sem a condição $(PS)_c$	66

Capítulo

1

Introdução

Neste trabalho estamos interessados em usar técnicas variacionais para tratar a existência de soluções das equações de Klein-Gordon-Maxwell (\mathcal{KGM}) em \mathbb{R}^N com expoente crítico de Sobolev:

$$\begin{cases}
-\Delta u + [m_0^2 - (\omega + \phi)^2]u = \mu |u|^{q-2}u + |u|^{2^*-2}u & \text{em} \quad \mathbb{R}^N \\
\Delta \phi = (\omega + \phi)u^2 & \text{em} \quad \mathbb{R}^N
\end{cases} (\mathcal{KGM})$$

onde $2 < q < 2^* = 2N/(N-2)$, $\mu > 0$, $m_0 > 0$ e $\omega \neq 0$ são constantes reais e $u, \phi : \mathbb{R}^N \to \mathbb{R}$ são funções incógnitas.

Este sistema foi primeiramente introduzido por Benci e Fortunato [9] como um modelo que descreve os campos de Klein-Gordon não-lineares em \mathbb{R}^3 interagindo com o campo eletromagnético. Em [10], eles provam a existência de ondas solitárias para este acoplamento quando a não-linearidade tem comportamento subcrítico, ou seja, quando o expoente p do sistema

$$\begin{cases}
-\Delta u + [m_0^2 - (\omega + \phi)^2]u = |u|^{p-2}u & \text{em} \quad \mathbb{R}^3 \\
\Delta \phi = (\omega + \phi)u^2 & \text{em} \quad \mathbb{R}^3
\end{cases}$$
(1.1)

é menor do que o expoente crítico de Sobolev $2^*=2N/(N-2)$ ou, mais precisamente, quando 4 .

Alguns trabalhos recentes abordaram este problema e citaremos alguns deles.

D'Aprile and Mugnai [21] estabeleceram a existência de infinitas soluções radialmente simétricas para o sistema (1.1) em \mathbb{R}^3 . Eles estenderam o intervalo de definição da potência da não-linearidade exibida por Benci e Fortunato [10], ou seja, cobriram o caso 2 .

Após o trabalho pioneiro de Benci e Fortunato [10], vários pesquisadores obtiveram resultados de não-existência e trataram o sistema subcrítico (1.1) em domínios limitados, dentre os quais citamos D'Aprile e Mugnai [22] e d'Avenia, Pisani e Siciliano [24, 25].

Utilizando argumentos do tipo Pohožaev, em [17] Cassani prova que o problema crítico

$$\begin{cases}
-\Delta u + [m_0^2 - (\omega + \phi)^2]u = |u|^{2^* - 2}u & \text{em} \quad \mathbb{R}^3 \\
\Delta \phi = (\omega + \phi)u^2 & \text{em} \quad \mathbb{R}^3
\end{cases}$$
(1.2)

não possui soluções radialmente simétricas. Além disso, como no trabalho de Berestycki e Lions [11], o autor obtém uma identidade variacional a fim de provar a não-existência de qualquer solução fraca para o sistema acima.

No celebrado artigo [15] Brezis e Nirenberg abordaram um problema similar. Eles usaram a bem conhecida técnica de Pohožaev para provar que o seguinte problema elíptico no domínio limitado $\Omega \subset \mathbb{R}^N$ com $N \geq 3$,

$$\left\{ \begin{array}{cccc} -\Delta u = u^{N+2/(N-2)} & \text{em} & \Omega \\ \\ u > 0 & \text{em} & \Omega \\ \\ u = 0 & \text{em} & \partial \Omega, \end{array} \right.$$

não tem solução alguma, e mostraram que esta situação pode ser revertida se for adicionado um termo com potência de ordem mais baixa à da crítica. Muitos autores trabalharam estendendo ou complementando estes resultados. Para maiores detalhes veja Willem [49] e suas referências.

Assim, no mesmo espírito de Brezis e Nirenberg [15], Cassani adiciona ao sistema (1.2) uma perturbação de ordem mais baixa dando origem ao sistema (\mathcal{KGM})

$$\begin{cases}
-\Delta u + [m_0^2 - (\omega + \phi)^2]u = \mu |u|^{q-2}u + |u|^{2^*-2}u & \text{em} \quad \mathbb{R}^3 \\
\Delta \phi = (\omega + \phi)u^2 & \text{em} \quad \mathbb{R}^3
\end{cases}$$
(KGM)

De fato, o autor prova que, ao adicionar esta perturbação, o sistema (\mathcal{KGM}) possui soluções radialmente simétricas em \mathbb{R}^3 com $4 < q < 2^* = 6$ e $\mu > 0$ e com q = 4 e μ suficientemente grande.

No segundo capítulo deste trabalho complementamos o Teorema 1.2 de Cassani através do aumento do intervalo de definição da potência da não-linearidade, ou seja, cobrimos o caso não abordado 2 < q < 4. Para provar esse fato impomos a seguinte condição entre as constantes m_0 e ω :

$$|m_0|\sqrt{q-2} > |\omega|\sqrt{2}.$$

Ainda neste capítulo provaremos que o sistema (\mathcal{KGM}) também possui soluções radialmente simétricas se aumentarmos a dimensão do problema para N=4. Além da necessidade de outros argumentos para este caso, vale ressaltar que, diferentemente do caso

N=3, não foi necessária a subdivisão da potência q para a obtenção destas soluções.

Mais precisamente provaremos o seguinte teorema:

Teorema 1.1. Considere
$$|m_0| > |\omega|$$
 e $4 \le q < 2^*$ ou $|m_0|\sqrt{q-2} > |\omega|\sqrt{2}$ e $2 < q < 4$.

Então o sistema (\mathcal{KGM}) tem pelo menos uma solução (não-trivial) radialmente simétrica $(u,\phi)\in H^1(\mathbb{R}^N)\times \mathcal{D}^{1,2}(\mathbb{R}^N)$ desde que

i)
$$N=3$$
 com $4 < q < 2^*=6$ ($\mu > 0$) ou $2 < q \le 4$ (μ suficientemente grande);

ii)
$$N = 4 \text{ com } 2 < q < 2^* = 4 (\mu > 0).$$

De modo a obter este resultado utilizamos a técnica de Brezis e Nirenberg e algumas de suas variantes. Veja, por exemplo, Miyagaki [44].

Nos capítulos 3 e 4, abordaremos o caso N=3 e introduziremos um potencial V ao sistema (\mathcal{KGM}), ou seja, consideraremos o seguinte problema

$$\begin{cases}
-\Delta u + V(x)u - (2\omega + \phi)\phi u = \mu u^{q-1} + u^{2^*-1} & \text{em} \quad \mathbb{R}^3 \\
\Delta \phi = (\omega + \phi)u^2 & \text{em} \quad \mathbb{R}^3
\end{cases}$$
(KGM_V)

onde μ e ω são constantes reais positivas, $2 < q < 2^* = 6$ e também $u, \phi : \mathbb{R}^3 \to \mathbb{R}$. Além disso, assumiremos as seguintes propriedades da função contínua V:

(V1)
$$V(x+p) = V(x), \quad x \in \mathbb{R}^3, p \in \mathbb{Z}^3$$

(V2) Existe
$$V_0 > 0$$
 tal que $V(x) \ge V_0 > 0$, $x \in \mathbb{R}^3$, onde $V_0 > \frac{2(4-q)}{q-2}\omega^2$ se $2 < q < 4$.

Esta nova classe de sistemas (\mathcal{KGM}) com potencial está relacionada a uma série de outros trabalhos. De fato, o potencial V(x) munido com as propriedades (V1)-(V2) também satisfaz o caso constante $m_0^2 - \omega^2$, o qual tem sido extensivamente estudado. Veja, por exemplo, Azzollini, Pisani e Pomponio [4], Azzollini e Pomponio [5], Benci e Fortunato [10], Cassani [17], D'Aprile e Mugnai [21, 22].

Georgiev e Visciglia [33] também introduziram uma classe de sistemas (\mathcal{KGM}) com potenciais. No entanto, em tal análise eles utilizaram um pequeno potencial de Coulomb.

No capítulo 3 investigaremos a existência de soluções *ground states*. Soluções ground states são pares (u, ϕ) que resolvem o sistema (\mathcal{KGM}) e minimizam a ação do funcional energia associado dentre todas as possíveis soluções não-triviais.

A análise de soluções ground states tem sido considerada por muito autores em diversos problemas. Veja, por exemplo, Azzollini e Pomponio [5, 6], Berestycki e Lions [11], Li, Wang e Zeng [37] e Zhao-Zhao [50], dentre outros.

Em [5], os autores Azzollini e Pomponio estabeleceram resultados de existência o sistema (1.1). Eles mostraram que tal sistema admite pelo menos uma solução ground state com expoente subcrítico de Sobolev q no intervalo 2 < q < 6.

Em vista disso, neste capítulo mostraremos que adicionando ao sistema (\mathcal{KGM}_V) uma não-linearidade envolvendo o expoente crítico de Sobolev, é também possível estabelecer a existência de pelo menos uma solução ground state. É importante notar que, neste caso, a fim de provar uma propriedade de compacidade para sequências minimizantes, precisaremos mostrar um lema técnico relacionado à melhor constante de Sobolev e também mostrar a limitação das sequências de Palais-Smale.

Assim, obtemos o

Teorema 1.2. Considere as condições (V1) e (V2), então o sistema (\mathcal{KGM}_V) tem pelo menos uma solução ground state para μ suficientemente grande.

Por fim, no capítulo 4, e no mesmo espírito do trabalho de Alves, Carrião e Miyagaki [2], estudaremos a existência de soluções positivas para o sistema (\mathcal{KGM}_V). Nesse caso, estabelecemos o seguinte resultado:

Teorema 1.3. Considere as condições (V1) e (V2). Então o sistema (\mathcal{KGM}_V) tem pelo menos uma solução positiva $u \in H^1(\mathbb{R}^3)$ com $\phi \in \mathcal{D}^{1,2}(\mathbb{R}^3)$ para cada $\mu > 0$ se 4 < q < 6 e para μ suficientemente grande se $2 < q \le 4$.

Usando o Teorema 1.3, provaremos que para um potencial V_{\sharp} não-periódico, o problema

$$\begin{cases}
-\Delta u + V_{\sharp}(x)u - (2\omega + \phi)\phi u = \mu u^{q-1} + u^{2^*-1} & \text{em} \quad \mathbb{R}^3 \\
\Delta \phi = (\omega + \phi)u^2 & \text{em} \quad \mathbb{R}^3
\end{cases}$$
(KGM_{\(\psi\)})

também possui solução positiva ao considerarmos V_{\sharp} uma pequena perturbação da função periódica V; mais precisamente, V_{\sharp} satisfaz a seguinte condição:

(V3) Existe
$$W_0 > 0$$
 tal que $V_{\sharp}(x) = V(x) - W(x) \ge W_0$, onde $W(x) \ge 0$, $x \in \mathbb{R}^3$.

onde a última desigualdade é estrita em subconjuntos de medida positiva em \mathbb{R}^3 .

Finalmente, temos o

Teorema 1.4. Considere $W \in L^{3/2}(\mathbb{R}^3)$, (VI), (V2) e (V3). Então o sistema (\mathcal{KGM}_{\sharp}) tem pelo menos uma solução positiva $u \in H^1(\mathbb{R}^3)$ com $\phi \in \mathcal{D}^{1,2}(\mathbb{R}^3)$ para cada $\mu > 0$ se 4 < q < 6 e para μ suficientemente grande se $2 < q \le 4$.

A principais dificuldades encontradas para as classes de problemas abordadas neste trabalho foram as seguintes:

- Os sistemas envolvem um termo não-local;
- O funcional de Euler-Lagrange associado aos sistemas é fortemente indefinido e
- Existem duas perdas de compacidade devido às imersões de Sobolev.

Capítulo

2

Existência de soluções radialmente simétricas

2.1 Introdução

Neste capítulo provaremos a existência de soluções radialmente simétricas do sistema:

$$\begin{cases}
-\Delta u + [m_0^2 - (\omega + \phi)^2]u = \mu |u|^{q-2}u + |u|^{2^*-2}u & \text{em} \quad \mathbb{R}^N \\
\Delta \phi = (\omega + \phi)u^2 & \text{em} \quad \mathbb{R}^N
\end{cases}$$
(KGM)

para as dimensões N=3 e N=4, onde $2< q< 2^*=2N/(N-2), \, \mu>0$, $m_0>0$ e $\omega\neq 0$ são constantes reais e também $u,\phi:\mathbb{R}^N\to\mathbb{R}$.

A fim de demonstrar a existência de soluções, vamos estudar os pontos críticos do funcional de Euler-Lagrange associado a este sistema. Na Seção 2.2 mostraremos que este funcional é fortemente indefinido, sendo assim, exploraremos propriedades da função ϕ e usaremos o Método da Redução (descrito por Benci, Fortunato, Masiello e Pisani [7]) para definir um novo funcional associado, sendo este mais adequado para tal estudo. Por fim, restringiremos a análise no espaço das funções radialmente simétricas e, usando o Princípio da Criticalidade de Palais, provaremos que os pontos críticos deste funcional associado serão soluções fracas do sistema (\mathcal{KGM}).

Tecnicamente, existem duas grandes dificuldades para se demonstrar a existência de soluções. Precisaremos enfrentar dois tipos de falta de compacidade: o primeiro devido à presença de um termo que envolve o expoente crítico de Sobolev no sistema (\mathcal{KGM}) e o segundo devido à invariância do funcional de Euler-Lagrange com respeito às translações, pois o domínio em questão é todo o \mathbb{R}^N . Uma forma padrão de contornar este segundo tipo de falta de compacidade é procurarmos os pontos críticos do funcional energia restrito ao subespaço das funções radialmente simétricas

$$H_r^1(\mathbb{R}^N) = \{ u \in H^1(\mathbb{R}^N) : u(x) = u(|x|) \}$$

compactamente imerso em $L_r^p(\mathbb{R}^N)$, $2 , onde <math>L_r^p(\mathbb{R}^N) = \{u \in L^p(\mathbb{R}^N) : u(x) = u(|x|)\}$ (veja Strauss [46]). No entanto, é bem conhecido o fato de que quando $p = 2^*$ (p = 6 em \mathbb{R}^3 e p = 4 em \mathbb{R}^4) esta imersão não é mais compacta. Isto ocasiona, por sua vez, que as sequências de Palais-Smale (veja definição em (2.13)), em geral, não possuem subsequências convergentes. Se toda sequência de Palais-Smale para o funcional de Euler-Lagrange num certo nível c possui subsequência convergente, dizemos que este funcional satisfaz a condição de Palais-Smale $(PS)_c$. A ausência de compacidade significa que não podemos garantir que este funcional satisfaz a condição $(PS)_c$ sem hipóteses adicionais.

Na Seção 2.3, usaremos uma variante do Teorema do Passo da Montanha de Ambrosetti-Rabinowitz [3] a fim de provar a existência de soluções e, em seguida, exploraremos uma técnica devida à Brezis e Nirenberg [15] para demonstrar que esta solução é não-trivial.

Desse modo, obteremos o:

Teorema 1.1. Considere
$$|m_0| > |\omega|$$
 e $4 \le q < 2^*$ ou $|m_0|\sqrt{q-2} > |\omega|\sqrt{2}$ e $2 < q < 4$.

Então o sistema (KGM) tem pelo menos uma solução (não-trivial) radialmente simétrica (u,ϕ) com $u\in H^1(\mathbb{R}^N)$ e $\phi\in\mathcal{D}^{1,2}(\mathbb{R}^N)$ desde que

i)
$$N = 3 \text{ com } 4 < q < 2^* = 6 \ (\mu > 0) \text{ ou } 2 < q \le 4 \ (\mu \text{ suficientemente grande});$$

ii)
$$N = 4 com 2 < q < 2^* = 4 (\mu > 0)$$
.

Por fim, vale ressaltar

2.2 Resultados preliminares

O objetivo deste capítulo é provar a existência de soluções $(u, \phi) \in H^1(\mathbb{R}^N) \times \mathcal{D}^{1,2}(\mathbb{R}^N)$, onde $H^1(\mathbb{R}^N)$ é o espaço de Sobolev (veja, por exemplo, [41]) munido da norma

$$||u|| = \left[\int_{\mathbb{R}^N} (|\nabla u|^2 + u^2) dx\right]^{1/2}$$

e $\mathcal{D}^{1,2}(\mathbb{R}^N)$ é o completamento de $\mathcal{C}_0^\infty(\mathbb{R}^N)$ na norma

$$||u||_{\mathcal{D}^{1,2}} = \left[\int_{\mathbb{R}^N} |\nabla u|^2 dx\right]^{1/2}$$

Ao longo deste trabalho, C e C_i denotarão constantes positivas que poderão mudar de valor de uma linha para outra.

O funcional energia $F: H^1(\mathbb{R}^N) \times \mathcal{D}^{1,2}(\mathbb{R}^N) \to \mathbb{R}$ associado ao sistema (\mathcal{KGM}) (veja Apêndice A.2) é dado por:

$$F(u,\phi) = \frac{1}{2} \int_{\mathbb{R}^N} (|\nabla u|^2 - |\nabla \phi|^2 + [m_0^2 - (\omega + \phi)^2] u^2) dx + \frac{\mu}{q} \int_{\mathbb{R}^N} |u|^q dx - \frac{1}{2^*} \int_{\mathbb{R}^N} |u|^{2^*} dx.$$
(2.1)

F é de classe $C^1(H^1(\mathbb{R}^N) \times \mathcal{D}^{1,2}(\mathbb{R}^N), \mathbb{R})$ (veja Apêndice A.2) e sua derivada de Fréchet é dada por

$$\langle F'(u,\phi), (v,\psi) \rangle = \int_{\mathbb{R}^N} \left(\langle \nabla u, \nabla v \rangle + [m_0^2 - (\omega + \phi)^2] uv \right) dx +$$

$$-\mu \int_{\mathbb{R}^N} |u|^{q-2} uv \, dx - \int_{\mathbb{R}^N} |u|^{2^*-2} uv \, dx$$

O funcional F é fortemente indefinido, ou seja, é ilimitado por cima e por baixo. Assim, para contornar esta dificuldade, reduzimos o estudo do funcional (2.1) para o estudo de um funcional de uma única variável u. Esta técnica é chamada de Método da Redução e tem sido utilizada pelos autores mencionados na abordagem deste sistema.

A fim de provar o Teorema 1.1, precisaremos de alguns resultados técnicos que serão apresentados a seguir.

Proposição 2.1. Para cada $u \in H^1(\mathbb{R}^N)$, N = 3, 4 existe um único $\phi = \phi_u \in \mathcal{D}^{1,2}(\mathbb{R}^N)$ que resolve

$$\Delta \phi = (\omega + \phi)u^2 \tag{2.2}$$

Além disso, no conjunto $\{x|u(x)\neq 0\}$ temos $-\omega\leq\phi_u\leq0$ se $\omega>0$ e $0\leq\phi_u\leq-\omega$ se $\omega<0$.

Demonstração. Fixe $u \in H^1(\mathbb{R}^N)$ e considere a forma bilinear $a: \mathcal{D}^{1,2}(\mathbb{R}^N) \times \mathcal{D}^{1,2}(\mathbb{R}^N) \to \mathbb{R}$

$$a(\phi, \psi) = \int_{\mathbb{R}^N} \langle \nabla \phi, \nabla \psi \rangle \, dx$$

definida pelo produto interno em $\mathcal{D}^{1,2}(\mathbb{R}^N)$.

Note agora que como $H^1(\mathbb{R}^N) \hookrightarrow L^{2^*}(\mathbb{R}^N)$, então (veja, por exemplo, Fonseca e Leoni [32])

$$u^2 \in L^1(\mathbb{R}^N) \cap L^{\frac{2^*}{2}}(\mathbb{R}^N)$$

e, usando a desigualdade de Interpolação (veja Folland [31, Proposição 6.10, pág. 177]),

obtemos

$$u^2 \in L^{\frac{2^*}{2^*-2}}(\mathbb{R}^N).$$

Observe que as aplicações

$$\psi \in \mathcal{D}^{1,2}(\mathbb{R}^N) \longrightarrow \int_{\mathbb{R}^N} u^2 \psi \, dx \quad e \quad \psi \in \mathcal{D}^{1,2}(\mathbb{R}^N) \longrightarrow \int_{\mathbb{R}^N} u^2 \phi \psi \, dx$$

são contínuas, pois como $H^1(\mathbb{R}^N) \hookrightarrow L^{\frac{2 \cdot 2^*}{2^*-1}}(\mathbb{R}^N)$ com N=3,4, temos

$$\left| \int_{\mathbb{R}^{N}} u^{2} \psi \, dx \right| \leq \|u^{2}\|_{\frac{2^{*}}{2^{*}-1}} \|\psi\|_{2^{*}} = \|u\|_{\frac{2 \cdot 2^{*}}{2^{*}-1}}^{2} \|\psi\|_{2^{*}} \leq C \|u\|_{\frac{2 \cdot 2^{*}}{2^{*}-1}}^{2} \|\psi\|_{\mathcal{D}^{1,2}}$$

$$\left| \int_{\mathbb{R}^{N}} u^{2} \phi \psi \, dx \right| \leq \|u^{2}\|_{\frac{2^{*}}{2^{*}-2}} \|\phi\|_{2^{*}} \|\psi\|_{2^{*}} \leq C \|u\|_{\frac{2 \cdot 2^{*}}{2^{*}-2}}^{2} \|\phi\|_{2^{*}} \|\psi\|_{\mathcal{D}^{1,2}}$$

Assim, pelo Teorema de Lax-Milgram (veja, por exemplo, Attouch, Buttazzo e Michaille [16]), obtemos a existência de única $\phi = \phi_u \in \mathcal{D}^{1,2}(\mathbb{R}^N)$ tal que

$$\int_{\mathbb{R}^N} \langle \nabla \phi, \nabla \psi \rangle \, dx = -\int_{\mathbb{R}^N} u^2 \phi \psi \, dx - \omega \int_{\mathbb{R}^N} u^2 \psi \, dx, \quad \forall \, \psi \in \mathcal{D}^{1,2}(\mathbb{R}^N),$$

ou seja, ϕ_u é única solução de (2.2).

Fixe $u \in H^1(\mathbb{R}^N)$ e considere $\omega > 0$. Note que $(\omega + \phi_u)^- = -\min\{\omega + \phi_u, 0\} \in \mathcal{D}^{1,2}(\mathbb{R}^N)$. De fato, observe que

$$(\omega + \phi_u)^- = \begin{cases} -(\omega + \phi_u), & \text{em} \quad \{x : \phi_u(x) < -\omega\} \\ 0, & \text{caso contrário} \end{cases}$$

Como $\phi_u \in \mathcal{D}^{1,2}(\mathbb{R}^N)$, então ϕ_u é integrável em $L^{2^*}(\mathbb{R}^N)$. Assim, a medida de Lebesgue μ do conjunto $\{x: |\phi_u(x)|^{2^*} \geq \omega^{2^*}\}$ é finita, ou seja, $\mu\Big(\{x: |\phi_u(x)| \geq \omega\}\Big) < \infty$. Mas

$$\{x : |\phi_u(x)| \ge \omega\} = \{x : \phi_u(x) \le -\omega\} \cup \{x : \phi_u(x) \ge \omega\}.$$

Assim, em particular,

$$\mu\Big(\{x:\omega+\phi_u(x)\leq 0\}\Big)<\infty.$$

Note que

$$\|(\omega + \phi_{u})^{-}\|_{L^{2^{*}}(\mathbb{R}^{N})} = \int_{\mathbb{R}^{N}} |(\omega + \phi_{u})^{-}|^{2^{*}} dx$$

$$= \int_{\{\omega + \phi_{u} \leq 0\}} |(\omega + \phi_{u})^{-}|^{2^{*}} dx + \int_{\{\omega + \phi_{u} > 0\}} |(\omega + \phi_{u})^{-}|^{2^{*}} dx$$

$$= \int_{\{\omega + \phi_{u} \leq 0\}} |\omega + \phi_{u}|^{2^{*}} dx$$

$$\leq \int_{\{\omega + \phi_{u} \leq 0\}} (|\omega|^{2^{*}} + |\phi_{u}|^{2^{*}}) dx$$

$$= \int_{\{\omega + \phi_{u} \leq 0\}} |\omega|^{2^{*}} dx + \int_{\{\omega + \phi_{u} \leq 0\}} |\phi_{u}|^{2^{*}} dx$$

$$= |\omega|^{2^{*}} \mu (\{\omega + \phi_{u} \leq 0\}) + \int_{\{\omega + \phi_{u} \leq 0\}} |\phi_{u}|^{2^{*}} dx$$

$$\leq |\omega|^{2^{*}} \mu (\{\omega + \phi_{u} \leq 0\}) + \int_{\mathbb{R}^{N}} |\phi_{u}|^{2^{*}} dx$$

Logo, como $\mu\Big(\{x:\omega+\phi_u(x)\leq 0\}\Big)<\infty$ e $\phi_u\in\mathcal{D}^{1,2}(\mathbb{R}^N)$, temos que $(\omega+\phi_u)^-\in L^{2^*}(\mathbb{R}^N)$. Resta provar que $\nabla\Big((\omega+\phi_u)^-\Big)\in L^2(\mathbb{R}^N)$, mas isto é claro, pois,

$$\int_{\mathbb{R}^{N}} \left| \nabla \left((\omega + \phi_{u})^{-} \right) \right|^{2} dx = \int_{\{\omega + \phi_{u} \leq 0\}} \left| \nabla (\omega + \phi_{u}) \right|^{2} dx + \int_{\{\omega + \phi_{u} > 0\}} \left| \nabla (\omega + \phi_{u}) \right|^{2} dx$$

$$= \int_{\{\omega + \phi_{u} \leq 0\}} \left| \nabla \omega + \nabla \phi_{u} \right|^{2} dx$$

$$= \int_{\{\omega + \phi_{u} \leq 0\}} \left| \nabla \phi_{u} \right|^{2} dx \leq \int_{\mathbb{R}^{N}} \left| \nabla \phi_{u} \right|^{2} dx$$

Por fim, concluímos que $(\omega + \phi_u)^- \in \mathcal{D}^{1,2}(\mathbb{R}^N)$ e, analogamente, $(\omega + \phi_u)^+ \in \mathcal{D}^{1,2}(\mathbb{R}^N)$. Se multiplicarmos a equação (2.2) por $(\omega + \phi_u)^-$, obtemos

$$\int_{\mathbb{R}^N} \Delta \phi_u (\omega + \phi_u)^- dx = \int_{\mathbb{R}^N} (\omega + \phi_u) u^2 (\omega + \phi_u)^- dx$$

Restringindo o domínio,

$$\int_{\{\omega + \phi_u < 0\}} \Delta \phi_u(\omega + \phi_u) dx = \int_{\{\omega + \phi_u < 0\}} u^2 (\omega + \phi_u)^2 dx$$

Usando integração por partes,

$$\int_{\{\omega + \phi_u = 0\}} |\nabla \phi_u| (\omega + \phi_u) \, dx - \int_{\{\omega + \phi_u < 0\}} |\nabla \phi_u|^2 \, dx = \int_{\{\omega + \phi_u < 0\}} u^2 (\omega + \phi_u)^2 \, dx$$

Logo,

$$-\int_{\{\omega+\phi_u<0\}} |\nabla\phi_u|^2 - \int_{\{\omega+\phi_u<0\}} (\omega+\phi_u)^2 u^2 = 0$$

o que implicaria $\phi_u = u = 0$. Desse modo, deveremos ter $\phi_u \ge -\omega$ onde $u \ne 0$.

No caso $\omega < 0$, ao multiplicarmos (2.2) por $(\omega + \phi_u)^+ = \max\{\omega + \phi_u, 0\}$ e repetindo o mesmo argumento, obteremos $\phi_u \leq -\omega$ para $u \neq 0$.

Finalmente, observamos que, pelo Lema de Stampacchia (veja Apêndice A.3), ϕ realiza o mínimo

$$\inf_{\varphi \in \mathcal{D}^{1,2}} \int_{\mathbb{R}^N} \left(\frac{1}{2} \left(|\nabla \varphi|^2 + u^2 |\varphi|^2 \right) + \omega u^2 \varphi \right) dx$$
$$= \int_{\mathbb{R}^N} \left(\frac{1}{2} \left(|\nabla \phi_u|^2 + u^2 |\phi_u|^2 \right) + \omega u^2 \phi_u \right) dx.$$

No entanto, se $\omega>0$, então $-|\phi_u|$ também realiza este mínimo; assim, por unicidade, $\phi_u=-|\phi_u|\leq 0$. Pelo mesmo argumento, se $\omega<0$, então $\phi_u\geq 0$.

Em vista da Proposição 2.1, podemos definir o funcional

$$\Phi: H^1(\mathbb{R}^N) \to \mathcal{D}^{1,2}(\mathbb{R}^N)$$

que aplica cada $u \in H^1(\mathbb{R}^N)$ na única solução ϕ_u de (2.2). Assim,

$$-\Delta\phi_u + u^2\phi_u = -\omega u^2. \tag{2.3}$$

Lema 2.1. A aplicação $\Phi: u \in H^1(\mathbb{R}^N) \to \phi_u \in \mathcal{D}^{1,2}(\mathbb{R}^N)$ é de classe C^1 . Além disso, para cada $u, v \in H^1(\mathbb{R}^N)$,

$$\langle \Phi'(u), v \rangle = 2(\Delta - u^2)^{-1} [(\omega + \phi_u)uv]. \tag{2.4}$$

Demonstração. Considere a aplicação $T:H^1(\mathbb{R}^N)\times \mathcal{D}^1(\mathbb{R}^N) o \mathcal{D}^{1,2}(\mathbb{R}^N)$ de classe C^1 :

$$T(u,\phi) = \Delta^{-1}[(\omega + \phi)u^2] - \phi$$

Note que T está bem definida, pois $u^2, u^2\phi \in L^{\frac{2^*}{2^*-1}}(\mathbb{R}^N) \hookrightarrow (\mathcal{D}^{1,2}(\mathbb{R}^N))^*$ e observe que u, ϕ resolve (2.2) se, e somente se, $T(u, \phi) = 0$.

Para cada $(u, \phi) \in H^1(\mathbb{R}^N) \times \mathcal{D}^{1,2}(\mathbb{R}^N)$, temos

$$\frac{\partial T}{\partial \phi}(u,\phi): \mathcal{D}^{1,2}(\mathbb{R}^N) \to \mathcal{D}^{1,2}(\mathbb{R}^N), \quad \psi \rightarrowtail \Delta^{-1}[u^2\psi] - \psi$$
$$\frac{\partial T}{\partial u}(u,\phi): H^1(\mathbb{R}^N) \to \mathcal{D}^{1,2}(\mathbb{R}^N), \quad v \rightarrowtail 2\Delta^{-1}[(\omega+\phi)uv].$$

Segue que $\frac{\partial T}{\partial \phi}(u,\phi)$ é inversível para cada $(u,\phi)\in H^1(\mathbb{R}^N)\times \mathcal{D}^{1,2}(\mathbb{R}^N)$ e

$$\left(\frac{\partial T}{\partial \phi}(u,\phi)\right)^{-1} = (u^2 - \Delta)^{-1} \circ \Delta.$$

Assim, a regularidade C^1 da aplicação Φ segue do Teorema da Função Implícita e, para cada $u \in H^1(\mathbb{R}^N)$, $\Phi'(u): H^1(\mathbb{R}^N) \to \mathcal{D}^{1,2}(\mathbb{R}^N)$ é dada por (2.4).

Pela definição de ϕ , temos

$$F'_{\phi}(u,\phi_u) = 0, \quad \forall u \in H^1(\mathbb{R}^N). \tag{2.5}$$

Considere agora o funcional

$$J: H^1(\mathbb{R}^N) \to \mathbb{R}, \quad J(u) := F(u, \phi_u)$$
 (2.6)

logo, pela Proposição A.1 e pelo Lema 2.1, $J \in C^1(H^1(\mathbb{R}^N), \mathbb{R}^N)$. Além disso, por (2.5), temos

$$J'(u) = F'(u, \phi_u).$$

Multiplicando ambos os membros de (2.3) por ϕ_u e integrando por partes, obtemos

$$\int_{\mathbb{R}^N} |\nabla \phi_u|^2 dx = -\int_{\mathbb{R}^N} \omega u^2 \phi_u dx - \int_{\mathbb{R}^N} u^2 \phi_u^2 dx.$$
 (2.7)

Usando (2.1), temos

$$\begin{split} J(u) &= \frac{1}{2} \int_{\mathbb{R}^N} \Big(|\nabla u|^2 - |\nabla \phi_u|^2 + \big[m_0^2 - (\omega + \phi_u)^2 \big] u^2 \Big) dx \, + \\ &\quad - \frac{\mu}{q} \int_{\mathbb{R}^N} |u|^q dx - \frac{1}{2^*} \int_{\mathbb{R}^N} |u|^{2^*} dx \\ &= \frac{1}{2} \int_{\mathbb{R}^N} \Big(|\nabla u|^2 - |\nabla \phi_u|^2 + \big[m_0^2 - \omega^2 \big] u^2 - \phi_u^2 u^2 \Big) dx - \int_{\mathbb{R}^N} \omega \phi_u u^2 dx \, + \\ &\quad - \frac{\mu}{q} \int_{\mathbb{R}^N} |u|^q dx - \frac{1}{2^*} \int_{\mathbb{R}^N} |u|^{2^*} dx \end{split}$$

Por fim, aplicando (2.7),

$$J(u) = \frac{1}{2} \int_{\mathbb{R}^N} \left(|\nabla u|^2 + (m_0^2 - \omega^2) u^2 + |\nabla \phi_u|^2 + \phi_u^2 u^2 \right) dx$$
$$-\frac{\mu}{q} \int_{\mathbb{R}^N} |u|^q dx - \frac{1}{2^*} \int_{\mathbb{R}^N} |u|^{2^*} dx, \tag{2.8}$$

enquanto que para J' temos, $\forall v \in H^1(\mathbb{R}^N)$,

$$\langle J'(u), v \rangle = \int_{\mathbb{R}^N} \left(\langle \nabla u, \nabla v \rangle + [m_0^2 - (\omega + \phi_u)^2] uv - \mu |u|^{q-2} uv - |u|^{2^*-2} uv \right) dx \qquad (2.9)$$

A próxima proposição estabelece a natureza variacional do sistema (\mathcal{KGM}).

Proposição 2.2. As seguintes sentenças são equivalentes:

a)
$$(u, \phi) \in H^1(\mathbb{R}^N) \times \mathcal{D}^{1,2}(\mathbb{R}^N)$$
 é um ponto crítico de F ;

b)
$$u \in H^1(\mathbb{R}^N)$$
 é um ponto crítico de J e $\phi = \phi_u$.

Demonstração. Usando (2.5), (2.6) e o Lema 2.1, temos

(b)
$$\Leftrightarrow$$
 $(F'_u(u,\phi) + F'_\phi(u,\phi)\phi'[u]) = 0$ e $\phi = \phi_u$
 \Leftrightarrow $F'_u(u,\phi) = 0$ e $F'_\phi(u,\phi) = 0$
 \Leftrightarrow (a)

Portanto, a fim de obter soluções do sistema (\mathcal{KGM}), procuraremos pontos críticos do funcional J.

Observe que esta "redução" quebra a não-limitação original do funcional F. De fato, o funcional J é agora limitado inferiormente a menos de perturbações não-compactas.

2.3 Prova do Teorema 1.1

De forma a contornar a falta de compacidade devido à invariância sobre o grupo de translações de J, vamos considerar a classe de funções radiais. Mais precisamente, vamos considerar o funcional J no subespaço

$$H_r^1(\mathbb{R}^N) = \{ u \in H^1(\mathbb{R}^N) : u(x) = u(|x|) \}$$

compactamente imerso em $L_r^p(\mathbb{R}^N)$, $2 , onde <math>L_r^p(\mathbb{R}^N) = \{u \in L^p : u(x) = u(|x|)\}$ (veja Ebihara e Schonbek [27] e Strauss [46]).

 $H^1_r(\mathbb{R}^N)$ é uma restrição natural para o funcional J, isto é, vale o seguinte lema

Lema 2.2. Todo ponto crítico $u \in H^1_r(\mathbb{R}^N)$ do funcional $J|_{H^1_r(\mathbb{R}^N)}$ é também um ponto crítico de J.

Demonstração. Considere a ação T_g sobre o grupo ortogonal O(N) em $H^1(\mathbb{R}^N)$ definida por

$$T_q(u)(x) = u(g(x)), \quad g \in O(N), \ u \in H^1(\mathbb{R}^N)$$

e note que, claramente, $H^1_r(\mathbb{R}^N)$ é o conjunto dos pontos fixos para esta ação, a saber,

$$H_r^1(\mathbb{R}^N) = \{ u \in H^1(\mathbb{R}^N) \, | \, u = T_g(u), \, \forall g \in O(N) \}$$

O funcional J é invariante sob a ação T_g , isto é,

$$J(T_g(u)) = J(u), \quad \forall u \in H^1(\mathbb{R}^N), g \in O(N).$$

De fato, dado $u\in H^1(\mathbb{R}^N)$, ϕ_u é única solução de $\Delta\phi_u=(\omega+\phi_u)u^2$. Assim, se $g\in O(N)$, temos

$$T_g(-\Delta\phi_u + u^2\phi_u) = T_g(-\omega u^2)$$

e então

$$-\Delta(T_g(\phi_u)) + (T_g(u))^2 T_g(\phi_u) = -\omega(T_g(u))^2.$$
 (2.10)

Mas dada $T_g(u)$, sabemos que $\phi_{T_g u}$ é única solução para (2.10). Portanto,

$$T_q(\phi_u) = \phi_{T_q u}. (2.11)$$

Portanto, usando (2.11) e a invariância de T_g nas normas $H^1(\mathbb{R}^N)$, $\mathcal{D}^{1,2}(\mathbb{R}^N)$ e $L^p(\mathbb{R}^N)$, deduzimos que para qualquer $u \in H^1(\mathbb{R}^N)$, $g \in O(N)$, $J(T_g(u)) = J(u)$.

Finalmente, a conclusão segue pelo Princípio da criticalidade de Palais (veja Apêndice A.5).

Agora mostraremos que o funcional J tem a geometria do Passo da Montanha, isto é, J satisfaz o

Lema 2.3. O funcional J satisfaz

- (i) Existem constantes positivas α , ρ tais que $J(u) \ge \alpha$ para $||u|| = \rho$.
- (ii) Existe $u_1 \in H^1_r(\mathbb{R}^N)$ com $||u_1|| > \rho$ tal que $J(u_1) < 0$.

Demonstração. Usando as imersões de Sobolev, temos

$$J(u) \ge C_1 ||u||^2 - C_2 ||u||^q - C_3 ||u||^{2^*},$$

onde $C_1,\ C_2$ e C_3 são constantes positivas. Como q>2, existem $\alpha,\rho>0$ tais que $\inf_{\|u\|=\rho}J(u)>\alpha, \text{provando }(i).$

Seja $u \in H^1_r(\mathbb{R}^N)$, então para $t \geq 0$

$$J(tu) = \frac{t^2}{2} \int_{\mathbb{R}^N} \left(|\nabla u|^2 + (m_0^2 - \omega^2) u^2 \right) dx + \frac{1}{2} \int_{\mathbb{R}^N} \left(|\nabla \phi_{tu}|^2 + \phi_{tu}^2(tu)^2 \right) dx + \frac{\mu}{q} \int_{\mathbb{R}^N} |u|^q dx - \frac{t^{2^*}}{2^*} \int_{\mathbb{R}^N} |u|^{2^*} dx.$$
(2.12)

Pela Proposição (2.1) obtemos as estimativas

$$-\int_{\mathbb{R}^N} \omega u^2 \phi_u dx \le \int_{\mathbb{R}^N} \omega^2 u^2 dx,$$

Aplicando (2.7) e a última desigualdade em (2.8), temos

$$J(tu) \le C_4 t^2 ||u||^2 + \frac{\omega^2}{2} t^2 ||u||_2^2 - \frac{\mu}{q} t^q ||u||_q^q - \frac{1}{2^*} t^{2^*} ||u||_{2^*}^{2^*}.$$

Como q>2, existe $u_1\in H^1_r(\mathbb{R}^N)$, $u_1:=tu$ com t suficientemente grande tal que $\|u_1\|>\rho$ e $J(u_1)<0$, provando (ii).

Denominamos por sequência de Palais-Smale para o funcional J no nível $c \in \mathbb{R}$ (ou simplesmente sequência de Palais-Smale) a uma sequência $(u_n) \subset H^1_r(\mathbb{R}^N)$ tal que

$$\lim_{n \to \infty} J(u_n) = c \quad e \quad \lim_{n \to \infty} \|J'(u_n)\|_{(H^1_r(\mathbb{R}^N))^*} = 0.$$
 (2.13)

Aplicando o Teorema do Passo da Montanha sem a condição de Palais-Smale $(PS)_c$ (veja Teorema A.6), obtemos uma sequência $(PS)_c$ $(u_n) \subset H^1_r(\mathbb{R}^N)$ onde

$$c:=\inf_{\gamma\in\Gamma}\max_{0\leq t\leq 1}J(\gamma(t)),\ c\geq\alpha \tag{2.14}$$

e

$$\Gamma = \{ \gamma \in \mathcal{C}([0,1], H_r^1(\mathbb{R}^N)) | \gamma(0) = 0, \gamma(1) = u_1 \}.$$
(2.15)

Uma importante ferramenta neste estudo será o seguinte lema:

Lema 2.4. A sequência $(PS)_c$ (u_n) é limitada em $H^1_r(\mathbb{R}^N)$.

Demonstração. Por hipótese, seja $(u_n) \subset H^1_r(\mathbb{R}^N)$ tal que $-\langle J'(u), v \rangle \leq o(1) ||u_n|| e |J(u_n)| \leq M$, para alguma constante positiva M. Então, por (2.8) e (2.9),

$$qM + o(1)||u_n|| \ge qJ(u_n) - \langle J'(u_n), u_n \rangle \ge \left(\frac{q-2}{2}\right) \int_{\mathbb{R}^N} \left(|\nabla u_n|^2 + [m_0^2 - \omega^2]u_n^2\right) dx - \omega\left(\frac{q-4}{2}\right) \int_{\mathbb{R}^N} \phi_{u_n} u_n^2 dx.$$
 (2.16)

Existem dois casos a serem considerados: 2 < q < 4 e $4 \le q < 2^*$.

Se $4 \le q < 2^*$, então pela Proposição 2.1 e pela desigualdade (2.16):

$$qM + o(1)||u_n|| \ge C||u_n||^2 + \omega\left(\frac{q-4}{2}\right) \int_{\mathbb{R}^N} (-\phi_{u_n})u_n^2 dx$$

 $\ge C||u_n||^2$

donde deduzimos que (u_n) é limitada em $H^1_r(\mathbb{R}^N)$.

No entanto, se 2 < q < 4, usando novamente (2.16) e a Proposição 2.1 obtemos

$$qM + o(1)||u_n|| \ge \left(\frac{q-2}{2}\right) \int_{\mathbb{R}^N} |\nabla u_n|^2 dx + \left(\frac{(q-2)m_0^2 - 2\omega^2}{2}\right) \int_{\mathbb{R}^N} |u_n^2| dx$$

$$\ge C||u_n||^2,$$

onde $(q-2)m_0^2-2\omega^2>0$ por hipótese, implicando que (u_n) é novamente uma sequência limitada em $H_r^1(\mathbb{R}^N)$.

Em vista do lema anterior temos que (ϕ_{u_n}) é limitada em $\mathcal{D}^{1,2}_r(\mathbb{R}^N)$ pois

$$\|\phi_{u_n}\|_{\mathcal{D}_r^{1,2}}^2 \le \int_{\mathbb{R}^N} |\nabla \phi_{u_n}|^2 dx + \int_{\mathbb{R}^N} |\phi_{u_n}^2 u_n^2| dx$$

$$= -\omega \int_{\mathbb{R}^N} |\phi_{u_n} u_n^2| dx \le C\omega \|\phi_{u_n}\|_{\mathcal{D}_r^{1,2}} \|u_n\|_{2\cdot 2^*/(2^*-1)}^2.$$

Assim, ao $n \to \infty$ e passando a subsequência se necessário, podemos assumir (veja de Oliveira [26, Teorema 16.5, pág. 93])

$$u_n \rightharpoonup u$$
 fracamente em $H^1_r(\mathbb{R}^N)$,

$$u_n \to u$$
 fortemente em $L_r^s(\mathbb{R}^N)$ para $2 < s < 2^*$, (2.17)

$$\phi_{u_n} \rightharpoonup \varphi$$
 fracamente em $\mathcal{D}_r^{1,2}(\mathbb{R}^N)$. (2.18)

Lema 2.5. $\varphi = \phi_u \ e \ \phi_{u_n} \to \phi_u \ fortemente \ em \ \mathcal{D}^{1,2}(\mathbb{R}^N) \ ao \ n \to \infty \ para \ N=3 \ e \ N=4.$

Demonstração. A fim de provar que $\varphi = \phi_u$, mostraremos que φ satisfaz $\Delta \varphi = (\omega + \varphi)u^2$ e a conclusão seguirá por unicidade.

Dado $v \in \mathcal{D}^{1,2}(\mathbb{R}^N)$, note que ϕ_u e ϕ_{u_n} satisfazem

$$\int_{\mathbb{R}^N} \nabla \phi_u \nabla v \, dx + \int_{\mathbb{R}^N} \phi_u u^2 v \, dx = -\omega \int_{\mathbb{R}^N} u^2 v \, dx \tag{2.19}$$

e

$$\int_{\mathbb{R}^N} \nabla \phi_{u_n} \nabla v \, dx + \int_{\mathbb{R}^N} \phi_{u_n} u_n^2 v \, dx = -\omega \int_{\mathbb{R}^N} u_n^2 v \, dx, \tag{2.20}$$

respectivamente. Fazendo a diferença entre (2.19) e (2.20) obtemos

$$\int_{\mathbb{R}^N} \nabla (\phi_{u_n} - \phi_u) \nabla v \, dx + \int_{\mathbb{R}^N} (\phi_{u_n} u_n^2 - \phi_u u^2) v \, dx = -\omega \int_{\mathbb{R}^N} (u_n^2 - u^2) v \, dx$$

Assim, para que φ satisfaça $\Delta \varphi = (\omega + \varphi)u^2$ basta mostrar que

$$\int_{\mathbb{R}^N} (\phi_{u_n} u_n^2 - \varphi u^2) v \, dx \xrightarrow{n \to \infty} 0 \quad \mathbf{e} \quad \int_{\mathbb{R}^N} (u_n^2 - u^2) v \, dx \xrightarrow{n \to \infty} 0 \tag{2.21}$$

Considere $w \in C_0^{\infty}(\mathbb{R}^N)$. Então,

$$\left| \int_{\mathbb{R}^{N}} (u_{n}^{2} \phi_{u_{n}} - u^{2} \varphi) w \, dx \right| = \left| \int_{\mathbb{R}^{N}} (u_{n}^{2} \phi_{u_{n}} - u^{2} \phi_{u_{n}} + u^{2} \phi_{u_{n}} - u^{2} \varphi) w \, dx \right|$$

$$\leq \int_{\mathbb{R}^{N}} \left| (u_{n}^{2} - u^{2}) \phi_{u_{n}} w \right| \, dx + \int_{\mathbb{R}^{N}} \left| (\phi_{u_{n}} - \varphi) u^{2} w \right| \, dx$$

$$\leq \left\| (u_{n}^{2} - u^{2}) w \right\|_{\frac{2^{*}}{2^{*}-1}} \left\| \phi_{u_{n}} \right\|_{2^{*}} + \int_{\mathbb{R}^{N}} \left| (\phi_{u_{n}} - \varphi) u^{2} w \right| \, dx$$

$$\leq \left\| (u_{n}^{2} - u^{2})^{\frac{2^{*}}{2^{*}-1}} \right\|_{1} \left\| w \right\|_{\infty} \left\| \phi_{u_{n}} \right\|_{2^{*}} + \int_{\mathbb{R}^{N}} \left| (\phi_{u_{n}} - \varphi) u^{2} w \right| \, dx$$

$$= \left\| u_{n}^{2} - u^{2} \right\|_{\frac{2^{*}}{2^{*}-1}}^{\frac{2^{*}}{2^{*}-1}} \left\| w \right\|_{\infty} \left\| \phi_{u_{n}} \right\|_{2^{*}} + \int_{\mathbb{R}^{N}} \left| (\phi_{u_{n}} - \varphi) u^{2} w \right| \, dx$$

$$\leq C \left\| u_{n} - u \right\|_{\frac{2^{*}}{2^{*}-1}}^{\frac{(2^{*})^{2}}{2^{*}-1}} \left\| w \right\|_{\infty} \left\| \phi_{u_{n}} \right\|_{2^{*}} + \int_{\mathbb{R}^{N}} \left| (\phi_{u_{n}} - \varphi) u^{2} w \right| \, dx \qquad (2.22)$$

O último termo na desigualdade (2.22) converge a zero, ao $n \to \infty$, devido à (2.18) e à imersão $(L^{2^*}(\mathbb{R}^N))^* \hookrightarrow (\mathcal{D}^{1,2}(\mathbb{R}^N))^*$, uma vez que $u^2w \in L^{2^*/(2^*-1)}(\mathbb{R}^N)$. Já o primeiro termo converge a zero devido à (2.17).

Fixando $v \in \mathcal{D}^{1,2}(\mathbb{R}^N)$ e tomando $w \in C_0^{\infty}(\mathbb{R}^N)$ suficientemente próximo de v na norma $\mathcal{D}^{1,2}(\mathbb{R}^N)$, temos

$$\left| \int_{\mathbb{R}^{N}} (u_{n}^{2} \phi_{u_{n}} - u^{2} \varphi) v \, dx \right| = \left| \int_{\mathbb{R}^{N}} (u_{n}^{2} \phi_{u_{n}} - u^{2} \varphi) (v - w + w) \, dx \right|$$

$$\leq \| (u_{n}^{2} \phi_{u_{n}} - u^{2} \varphi) \|_{\frac{2^{*}}{2^{*} - 1}} \| v - w \|_{2^{*}} + \left| \int_{\mathbb{R}^{N}} (u_{n}^{2} \phi_{u_{n}} - u^{2} \varphi) w \, dx \right|$$

$$\leq C \| (u_{n}^{2} \phi_{u_{n}} - u^{2} \varphi) \|_{\frac{2^{*}}{2^{*} - 1}} \| v - w \|_{\mathcal{D}^{1,2}} + \left| \int_{\mathbb{R}^{N}} (u_{n}^{2} \phi_{u_{n}} - u^{2} \varphi) w \, dx \right|$$

Logo, como $(u_n^2 \phi_{u_n})$ é limitada em $L^{\frac{2^*}{2^*-1}}(\mathbb{R}^N)$, por densidade, a primeira convergência de (2.21) é satisfeita.

Note agora que

$$\int_{\mathbb{R}^{N}} |u_{n}^{2} - u^{2}| |v| dx \leq \|u_{n}^{2} - u^{2}\|_{\frac{2^{*}}{2^{*}-1}} \|v\|_{2^{*}}
= \int_{\mathbb{R}^{N}} \left(|u_{n} - u|^{\frac{2^{*}}{2^{*}-1}} |u_{n} + u|^{\frac{2^{*}}{2^{*}-1}} \right) dx \|v\|_{2^{*}}
\leq \|(u_{n} - u)^{\frac{2^{*}}{2^{*}-1}} \|_{2} \|(u_{n} + u)^{\frac{2^{*}}{2^{*}-1}} \|_{2} \|v\|_{2^{*}}
\leq \|u_{n} - u\|^{\frac{2^{*}}{2^{*}-1}} \|u_{n} + u\|^{\frac{2^{*}}{2^{*}-1}} \|v\|_{2^{*}}$$

Assim, a segunda convergência em (2.21) também é satisfeita pois v pertence a $L^{2^*}(\mathbb{R}^N)$ e, em $L^{\frac{2\cdot 2^*}{2^*-1}}(\mathbb{R}^N)$, temos que u_n+u é limitada e $u_n\to u$ fortemente ao $n\to\infty$.

Usando unicidade e convergência fraca concluímos que $\varphi = \phi_u$.

Provaremos agora que (ϕ_{u_n}) converge forte em $\mathcal{D}^{1,2}(\mathbb{R}^N)$. Considere a diferença entre a equação (2.20) e a correspondente equação para ϕ_u , ou seja,

$$\int_{\mathbb{R}^N} \left(\nabla (\phi_{u_n} - \phi_u) \nabla v + u_n^2 (\phi_{u_n} - \phi_u) v + (u_n^2 - u^2) \phi_u v \right) dx$$
$$= -\omega \int_{\mathbb{R}^N} (u_n^2 - u^2) v \, dx, \quad v \in \mathcal{D}^{1,2}(\mathbb{R}^N).$$

Fazendo $v = \phi_{u_n} - \phi_u$, obtemos

$$\int_{\mathbb{R}^N} |\nabla (\phi_{u_n} - \phi_u)|^2 dx + \int_{\mathbb{R}^N} u_n^2 (\phi_{u_n} - \phi_u)^2 dx + \int_{\mathbb{R}^N} (u_n^2 - u^2) (\phi_{u_n} - \phi_u) \phi_u dx$$

$$= -\omega \int_{\mathbb{R}^N} (u_n^2 - u^2) (\phi_{u_n} - \phi_u) dx.$$

Logo,

$$\begin{aligned} \|\phi_{u_n} - \phi_u\|_{\mathcal{D}^{1,2}}^2 &\leq \|\phi_{u_n} - \phi_u\|_{\mathcal{D}^{1,2}}^2 + \int_{\mathbb{R}^N} u_n^2 (\phi_{u_n} - \phi_u)^2 dx \\ &= -\int_{\mathbb{R}^N} (u_n^2 - u^2) (\phi_{u_n} - \phi_u) \phi_u dx - \omega \int_{\mathbb{R}^N} (u_n^2 - u^2) (\phi_{u_n} - \phi_u) dx \\ &\leq \|(u_n^2 - u^2) \phi_u\|_{\frac{2^*}{2^* - 1}} \|\phi_{u_n} - \phi_u\|_{2^*} + |\omega| \|u_n^2 - u^2\|_{\frac{2^*}{2^* - 1}} \|\phi_{u_n} - \phi_u\|_{2^*} \\ &\leq C_1 \|(u_n^2 - u^2) \phi_u\|_{\frac{2^*}{2^* - 1}} \|\phi_{u_n} - \phi_u\|_{\mathcal{D}^{1,2}} + C_2 \|u_n^2 - u^2\|_{\frac{2^*}{2^* - 1}} \|\phi_{u_n} - \phi_u\|_{\mathcal{D}^{1,2}} \end{aligned}$$

e portanto,

$$\|\phi_{u_n} - \phi_u\|_{\mathcal{D}^{1,2}} \leq C_1 \|(u_n^2 - u^2)\phi_u\|_{\frac{2^*}{2^*-1}} + C_2 \|u_n^2 - u^2\|_{\frac{2^*}{2^*-1}}$$

$$\leq C_1 \|(u_n^2 - u^2)\phi_u\|_{\frac{2^*}{2^*-1}} + C_2 \|u_n - u\|_{\frac{2 \cdot 2^*}{2^*-1}}^2.$$

Em virtude de (2.17), a fim de provar que $\phi_{u_n} \to \phi_u$ fortemente em $\mathcal{D}^{1,2}(\mathbb{R}^N)$, basta provar agora que

$$\|(u_n^2 - u^2)\phi_u\|_{\frac{2^*}{2^*-1}} \stackrel{n\to\infty}{\longrightarrow} 0.$$

Analogamente ao que foi feito em (2.22), tome $\psi \in C_0^\infty(\mathbb{R}^N)$ suficientemente próxima de ϕ_u na norma de $\mathcal{D}^{1,2}(\mathbb{R}^N)$. Temos que, $\|(u_n^2-u^2)\psi\|_{\frac{2^*}{2^*-1}}\to 0$ ao $n\to\infty$.

Logo,

$$\begin{split} \|(u_n^2 - u^2)\phi_u\|_{\frac{2^*}{2^*-1}}^{\frac{2^*}{2^*-1}} &= \|(u_n^2 - u^2)(\phi_u - \psi + \psi)\|_{\frac{2^*}{2^*-1}}^{\frac{2^*}{2^*-1}} \\ &= \int_{\mathbb{R}^N} |(u_n^2 - u^2)(\phi - \psi) + (u_n^2 - u^2)\psi|_{\frac{2^*}{2^*-1}}^{\frac{2^*}{2^*-1}} dx \\ &\leq C \int_{\mathbb{R}^N} |(u_n^2 - u^2)(\phi - \psi)|_{\frac{2^*}{2^*-1}}^{\frac{2^*}{2^*-1}} dx + C \int_{\mathbb{R}^N} |(u_n^2 - u^2)\psi|_{\frac{2^*}{2^*-1}}^{\frac{2^*}{2^*-1}} dx \\ &\leq C \|u_n^2 - u^2\|_{\frac{2^*}{2^*-2}} \|\phi - \psi\|_{2^*} + C \int_{\mathbb{R}^N} |(u_n^2 - u^2)\psi|_{\frac{2^*}{2^*-1}}^{\frac{2^*}{2^*-1}} dx \end{split}$$

Por fim, como (u_n^2) é limitada em $L^{\frac{2^*}{2^*-2}}(\mathbb{R}^N)$, a conclusão segue por densidade. \square

Observação 2.1. Vale ressaltar que a técnica aplicada na Proposição 2.1 e no Lema 2.5 não se aplica nos casos $N \geq 5$.

Agora mostraremos que o par (u, ϕ_u) satisfaz o sistema (\mathcal{KGM}) no sentido fraco. De fato, como $J'(u_n) \to 0$ ao $n \to \infty$, temos $\forall v \in H^1_r(\mathbb{R}^N)$,

$$\int_{\mathbb{R}^{N}} \left(\nabla u_{n} \nabla v + (m_{0}^{2} - \omega^{2}) u_{n} v \right) dx = \int_{\mathbb{R}^{N}} u_{n} \phi_{u_{n}}^{2} v \, dx + 2\omega \int_{\mathbb{R}^{N}} \phi_{u_{n}} u_{n} v \, dx
+ \mu \int_{\mathbb{R}^{N}} |u_{n}|^{q-2} u_{n} v \, dx + \int_{\mathbb{R}^{N}} |u_{n}|^{2^{*}-2} u_{n} v \, dx + o(1)$$
(2.23)

Provaremos que, $\forall v \in H_r^1(\mathbb{R}^N)$,

$$\int_{\mathbb{R}^N} u_n \phi_{u_n}^2 v \, dx + 2\omega \int_{\mathbb{R}^N} \phi_{u_n} u_n v \, dx \quad \stackrel{n \to \infty}{\longrightarrow} \quad \int_{\mathbb{R}^N} u \phi_u^2 v \, dx + 2\omega \int_{\mathbb{R}^N} \phi_u u v \, dx \quad (2.24)$$

$$\int_{\mathbb{R}^N} |u_n|^{q-2} u_n v \, dx \quad \stackrel{n \to \infty}{\longrightarrow} \quad \int_{\mathbb{R}^N} |u|^{q-2} u v \, dx \tag{2.25}$$

$$\int_{\mathbb{R}^N} |u_n|^{2^*-2} u_n v dx \stackrel{n \to \infty}{\longrightarrow} \int_{\mathbb{R}^N} |u|^{2^*-2} u v dx \tag{2.26}$$

Verificação de (2.24).

Fixe $v \in H^1_r(\mathbb{R}^N)$ e considere a sequência $(\phi_{u_n}v)$ a qual é limitada em $L^{2\cdot 2^*/(2^*+2)}_r(\mathbb{R}^N)$, pois

$$\|\phi_{u_n}v\|_{\frac{2\cdot 2^*}{2^*+2}} \le \|\phi_n\|_{2^*}\|v\|_{2^*}$$

Além disso, $\phi_{u_n}v \to \varphi v$ q.t.p. em \mathbb{R}^N pois $\phi_{u_n} \rightharpoonup \varphi$ em $\mathcal{D}^{1,2}_r(\mathbb{R}^N)$ (veja Alves [1, Lema A.1]).

Como

$$\frac{2 \cdot 2^*}{2^* + 2} \in (1, +\infty)$$

usando o Teorema de Hewitt-Stromberg (Apêndice A.4), obtemos

$$\phi_{u_n} v \rightharpoonup \phi_u v$$
 fracamente em $L^{\frac{2 \cdot 2^*}{2^* + 2}}(\mathbb{R}^N)$ (2.27)

pois pelo Lema 2.5, $\varphi = \phi_u$.

Assim,

$$\int_{\mathbb{R}^{N}} |\phi_{u}u - \phi_{u_{n}}u_{n}||v| dx = \int_{\mathbb{R}^{N}} |\phi_{u}u - \phi_{u_{n}}u + \phi_{u_{n}}u - \phi_{u_{n}}u_{n}||v| dx
\leq \int_{\mathbb{R}^{N}} |\phi_{u}v - \phi_{u_{n}}v||u| dx + \int_{\mathbb{R}^{N}} |(u - u_{n})v||\phi_{u_{n}}| dx
\leq \int_{\mathbb{R}^{N}} |\phi_{u}v - \phi_{u_{n}}v||u| dx + ||(u - u_{n})v||_{2^{*}/(2^{*}-1)} ||\phi_{u_{n}}||_{2^{*}}
\leq \int_{\mathbb{R}^{N}} |\phi_{u}v - \phi_{u_{n}}v||u| dx + ||u_{n} - u||_{3} ||v||_{\frac{3 \cdot 2^{*}}{2 \cdot 2^{*}-3}} ||\phi_{u_{n}}||_{2^{*}}$$

Portanto, por (2.17) e (2.27), segue que

$$\int_{\mathbb{R}^N} \phi_{u_n} u_n v \, dx \xrightarrow{n \to \infty} \int_{\mathbb{R}^N} \phi_u uv \, dx, \quad \forall v \in H^1_r(\mathbb{R}^N)$$

Usando a desigualdade generalizada de Hölder, observe que, $\forall v \in C_0^{\infty}(\mathbb{R}^N)$

$$\int_{\mathbb{R}^{N}} |u\phi_{u}^{2} - u_{n}\phi_{u_{n}}^{2}||v|dx = \int_{\mathbb{R}^{N}} |u\phi_{u}^{2} - u\phi_{u_{n}}^{2} + u\phi_{u_{n}}^{2} - u_{n}\phi_{u_{n}}^{2}||v|dx
\leq \int_{\mathbb{R}^{N}} |u||\phi_{u}^{2} - \phi_{u_{n}}^{2}||v|dx + \int_{\mathbb{R}^{N}} |\phi_{u_{n}}^{2}||u_{n} - u||v|dx
\leq \|\phi_{u}^{2} - \phi_{u_{n}}^{2}\|_{\frac{2^{*}}{2}} \|uv\|_{\frac{2^{*}}{2^{*}-2}} + \|\phi_{u_{n}}^{2}\|_{\frac{2^{*}}{2}} \|(u_{n} - u)v\|_{\frac{2^{*}}{2^{*}-2}}
\leq \|\phi_{u} - \phi_{u_{n}}\|_{2^{*}}^{2} \|u\|_{\frac{2^{*}}{2^{*}-2}} \|v\|_{\infty} + \|\phi_{u_{n}}\|_{2^{*}}^{2} \|u_{n} - u\|_{\frac{2^{*}}{2^{*}-2}} \|v\|_{\infty}$$

Então, aplicando o Lema 2.5 e usando a convergência forte $u_n \to u$ em $L^{\frac{2^*}{2^*-2}}$ restrito ao suporte de v, por densidade, concluímos que

$$\int_{\mathbb{R}^N} u_n \phi_{u_n}^2 v \, dx \stackrel{n \to \infty}{\longrightarrow} \int_{\mathbb{R}^N} u \phi_u^2 v \, dx, \quad \forall v \in H_r^1(\mathbb{R}^N).$$

Verificação de (2.25)

Note que como $(u_n) \in H^1_r(\mathbb{R}^N)$, então $(u_n) \in L^q_r(\mathbb{R}^N)$. Assim, $|u_n|^{q-2}u_n \in L^p_r(\mathbb{R}^N) =$

 $\left(L^q_r(\mathbb{R}^N)\right)^*$, pois

$$|||u_n|^{q-2}u_n||_p^p = \int_{\mathbb{R}^N} ||u_n|^{q-2}u_n|^p dx = \int_{\mathbb{R}^N} ||u_n|^{q-2}u_n|^{\frac{q}{q-1}} dx$$
$$= \int_{\mathbb{R}^N} |u_n|^{\frac{q(q-2)}{q-1}} |u_n|^{\frac{q}{q-1}} dx = \int_{\mathbb{R}^N} |u_n|^q dx = ||u_n||_q^q$$

onde p é o expoente conjugado de q. Como a imersão $H^1_r(\mathbb{R}^N) \hookrightarrow L^q_r(\mathbb{R}^N)$ é compacta e $|u_n|^{q-2}u_n$ pertence a $H^1_r(\mathbb{R}^N)$, segue que existe subsequência $|u_n|^{q-2}u_n$ (denotada da mesma forma) tal que $|u_n|^{q-2}u_n \to |u|^{q-2}u$ fortemente em $L^p_r(\mathbb{R}^N)$.

Assim,

$$\left| \int_{\mathbb{R}^N} (|u_n|^{q-2} u_n - |u|^{q-2} u) v \, dx \right| \le \int_{\mathbb{R}^N} ||u_n|^{q-2} u_n - |u|^{q-2} u| \, |v| \, dx$$
$$\le ||u_n|^{q-2} u_n - |u|^{q-2} u||_p ||v||_q$$

E, portanto,

$$\int_{\mathbb{R}^N} |u_n|^{q-2} u_n v \, dx \quad \xrightarrow{n \to \infty} \quad \int_{\mathbb{R}^N} |u|^{q-2} uv \, dx, \quad \forall v \in H^1_r(\mathbb{R}^N).$$

Verificação de (2.26).

Como (u_n) é limitada em $L_r^{2^*}(\mathbb{R}^N)$, segue que $|u_n|^{2^*-2}u_n$ é limitada em $L_r^{\frac{2^*}{2^*-1}}(\mathbb{R}^N)$. De fato,

$$|||u_n|^{2^*-2}u_n||_{\frac{2^*}{2^*-1}} = \left(\int_{\mathbb{R}^N} |u_n|^{2^*}\right)^{\frac{2^*-1}{2^*}} = ||u_n||_{2^*}^{2^*-1}.$$

Logo, existe subsequência ($|u_n|^{2^*-2}u_n$) tal que $|u_n|^{2^*-2}u_n \rightharpoonup |u|^{2^*-2}u$ em $L_r^{\frac{2^*}{2^*-1}}(\mathbb{R}^N)$ e assim,

$$\int_{\mathbb{R}^N} (|u_n|^{2^*-2} u_n - |u|^{2^*-2} u) v \, dx \stackrel{n \to \infty}{\longrightarrow} 0, \quad \forall v \in H_r^1(\mathbb{R}^N).$$

Finalmente, por (2.24), (2.25) e (2.26) juntamente com (2.23), concluímos que (u, ϕ_u) é uma solução fraca para o sistema (\mathcal{KGM}) .

Todavia, devido à falta de compacidade, devemos ainda mostrar que u de fato não é nula.

Lema 2.6. O valor c definido em (2.14) satisfaz

$$0 < c < \frac{1}{N} S^{N/2}, \tag{2.28}$$

onde S é a melhor constante de Sobolev, a saber,

$$S := \inf_{\substack{u \in \mathcal{D}^{1,2}(\mathbb{R}^N) \\ u \neq 0}} \frac{\int |\nabla u|^2 dx}{\left(\int |u|^{2^*} dx\right)^{2/2^*}}.$$
 (2.29)

Considerando, por um momento o Lema 2.6 verdadeiro, provaremos que $u \neq 0$. Seja $u \equiv 0$. Como $J'(u_n) \to 0$ e $u_n \to 0$ em $L^q_r(\mathbb{R}^N)$ ao $n \to \infty$, podemos assumir

$$\int_{\mathbb{R}^N} \left(|\nabla u_n|^2 + (m_0^2 - \omega^2) u_n^2 \right) dx \stackrel{n \to \infty}{\longrightarrow} \ell$$

e

$$\int_{\mathbb{R}^N} |u_n|^{2^*} dx \stackrel{n \to \infty}{\longrightarrow} \ell, \quad \ell \ge 0.$$

Consequentemente,

$$J(u_n) \stackrel{n \to \infty}{\longrightarrow} \left(\frac{1}{2} - \frac{1}{2^*}\right) \ell$$

onde agora $\ell > 0$, pois c > 0.

Pela definição de S,

$$S \leq \frac{\int_{\mathbb{R}^N} \left(|\nabla u_n|^2 + (m_0^2 - \omega^2) u_n^2 \right) dx}{\left(\int |u|^{2^*} dx \right)^{2/2^*}} \xrightarrow{n \to \infty} \ell^{2/N},$$

donde concluímos que

$$c = \left(\frac{1}{2} - \frac{1}{2^*}\right)\ell \ge \frac{1}{N}S^{N/2}$$

contradizendo o Lema 2.6.

Prova do Lema 2.6. Esta demonstração utiliza a técnica de Brezis e Nirenberg [15] (veja também Struwe [47]) e algumas de suas variantes.

A fim de provar o Lema 2.6, é suficiente mostrar que

$$\sup_{t \ge 0} J(tv_0) < \frac{1}{N} S^{\frac{N}{2}} \tag{2.30}$$

para algum $v_0 \in H^1_r(\mathbb{R}^N), v_0 \neq 0$. De fato, observando que $J(tv_0) \to -\infty$ ao $t \to \infty$ e tomando $\gamma \in \Gamma$ temos

$$J(\gamma(t)) \le \sup_{t>0} J(tv_0), \quad 0 \le t \le 1$$
 (2.31)

de modo que

$$c \le \sup_{t>0} J(tv_0) < \frac{1}{N} S^{\frac{N}{2}}.$$

Com o intuito de provar (2.31) considere R>0 fixo e uma função corte $\varphi\in C_0^\infty$ tal que

$$\varphi|B_R=1, \quad 0 \le \varphi \le 1 \text{ em } B_{2R} \quad \text{e} \quad \text{supp } \varphi \subset B_{2R}.$$

Seja $\varepsilon > 0$ e defina $w_{\varepsilon} := u_{\varepsilon} \varphi$ onde $u_{\varepsilon} \in \mathcal{D}^{1,2}(\mathbb{R}^N)$ é a conhecida função de Talenti [48]

$$u_{\varepsilon}(x) = \frac{\left[N(N-2)\varepsilon\right]^{\frac{N-2}{4}}}{\left(\varepsilon + |x|^2\right)^{\frac{N-2}{2}}}, \quad x \in \mathbb{R}^N, \varepsilon > 0$$

e também considere $v_{\varepsilon} \in C_0^{\infty}(\mathbb{R}^N)$ dada por

$$v_{\varepsilon} := \frac{w_{\varepsilon}}{\|w_{\varepsilon}\|_{L^{2^*}(B_{2R})}}.$$
(2.32)

Pelas estimativas de Brezis e Nirenberg [15] temos, ao $\varepsilon \to 0$,

$$X_{\varepsilon} := \|\nabla v_{\varepsilon}\|_{2}^{2} \le S + O(\varepsilon^{\delta}), \text{ onde } \delta = \frac{N-2}{2}.$$
 (2.33)

Como $\lim_{t\to\infty}J(tv_\varepsilon)=-\infty\ \forall \varepsilon,$ existe $t_\varepsilon\geq 0$ tal que $\sup_{t\geq 0}J(tv_\varepsilon)=J(t_\varepsilon v_\varepsilon)$ e podemos assumir sem perda de generalidade que $t_\varepsilon\geq C_0>0$.

Afirmação 1. A seguinte estimativa é verdadeira

$$t_{\varepsilon} \le \left(\int_{B_{2R}} |\nabla v_{\varepsilon}|^2 dx + \int_{B_{2R}} m_0^2 v_{\varepsilon}^2 dx \right)^{1/(2^* - 2)} := r_{\varepsilon}. \tag{2.34}$$

De fato, considerando $\gamma(t):=J(tv_{\varepsilon})$ temos, para $t>r_{\varepsilon},$

$$\gamma'(t) = J'(tv_{\varepsilon})(v_{\varepsilon})$$

$$= tr_{\varepsilon}^{2^{*}-2} - t^{2^{*}-1} - t \int_{B_{2R}} (\omega + \phi[tv_{\varepsilon}])^{2} v_{\varepsilon}^{2} dx - \mu t^{q-1} \int_{B_{2R}} |v_{\varepsilon}|^{q} dx$$

$$< 0.$$

Agora, a seguinte função de t:

$$\frac{t^2}{2}r_{\varepsilon}^{2^*-2} - \frac{t^{2^*}}{2^*}$$

é crescente em $[0, r_{\varepsilon})$, assim, usando (2.33) concluímos que

$$J(t_{\varepsilon}v_{\varepsilon}) \leq \frac{1}{N} \left(S + O(\varepsilon^{\delta}) + \int_{B_{2R}} m_0^2 v_{\varepsilon}^2 dx \right)^{N/2} - \frac{t_{\varepsilon}^2}{2} \int_{B_{2R}} \omega^2 v_{\varepsilon}^2 dx$$
$$+ Ct_{\varepsilon}^4 \|v_{\varepsilon}\|_{2\cdot 2^*/(2^*-1)}^4 - \frac{\mu}{q} t_{\varepsilon}^q \int_{B_{2R}} |v_{\varepsilon}|^q dx.$$

Lembrando que

$$(a+b)^{\alpha} \le a^{\alpha} + \alpha(a+b)^{\alpha-1}b,$$

a qual é válida para $a,b\geq 0,\,\alpha\geq 1,$ obtemos

$$J(t_{\varepsilon}v_{\varepsilon}) \leq \frac{1}{N}S^{N/2} + O(\varepsilon^{\delta}) + K_1 \int_{B_{2R}} m_0^2 v_{\varepsilon}^2 dx + \\ - K_2 \int_{B_{2R}} \omega^2 v_{\varepsilon}^2 dx - \mu K_3 \int_{B_{2R}} |v_{\varepsilon}|^q dx + K_4 ||v_{\varepsilon}||_{2 \cdot 2^*/(2^* - 1)}^4,$$

onde $K_i(\varepsilon) \geq K_0 > 0$.

Afirmação 2.

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon^{\delta}} \left(\int_{B_{2R}} (v_{\varepsilon}^2 - \mu v_{\varepsilon}^q) dx + \|v_{\varepsilon}\|_{2 \cdot 2^*/(2^* - 1)}^4 \right) = -\infty.$$
 (2.35)

Assumindo (2.35) verdadeira teremos

$$J(t_{\varepsilon}v_{\varepsilon})<rac{1}{N}S^{N/2}, \quad arepsilon ext{ small}$$

o que prova (2.30) e, portanto, o Lema 2.6.

Prova da Afirmação 2

Como em Brezis e Nirenberg [15], obtemos

$$\int_{B_{2R}} |w_{\varepsilon}|^{2^*} dx = (N(N-2))^{N/2} \int_{\mathbb{R}^N} \frac{1}{(1+|x|^2)^N} dx + O(\varepsilon^{N/2})$$
 (2.36)

assim, em vista de (2.32), é suficiente calcular (2.35) com w_{ε} em vez de v_{ε} . Para provar (2.35) devemos mostrar que

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon^{\delta}} \left[\int_{B_R} (w_{\varepsilon}^2 - \mu w_{\varepsilon}^q) dx + \left(\int_{B_R} |w_{\varepsilon}|^{\frac{4N}{N+2}} dx \right)^{\frac{N+2}{N}} \right] = -\infty$$
 (2.37)

e também que

$$\frac{1}{\varepsilon^{\delta}} \left[\int_{B_{2R} \setminus B_R} (v_{\varepsilon}^2 - \mu v_{\varepsilon}^q) dx + \left(\int_{B_{2R} \setminus B_R} |v_{\varepsilon}|^{\frac{4N}{N+2}} dx \right)^{\frac{N+2}{N}} \right]$$
 (2.38)

é limitada.

Verificação de (2.37). Seja

$$I_{\varepsilon} := \frac{1}{\varepsilon^{\delta}} \left[\int_{B_R} (w_{\varepsilon}^2 - \mu w_{\varepsilon}^q) dx + \left(\int_{B_R} |w_{\varepsilon}|^{\frac{4N}{N+2}} dx \right)^{\frac{N+2}{N}} \right]$$

Fazendo uma mudança de variáveis e usando a Fórmula da co-área [29], temos

$$I_{\varepsilon} \leq \varepsilon^{1-\delta} \left[C_{1} \int_{0}^{\frac{R}{\sqrt{\varepsilon}}} \frac{r^{N-1}}{(1+r^{2})^{N-2}} dr -\mu C_{2} \varepsilon^{-\frac{(N-2)}{4}q + \frac{N}{2} - 1} \int_{0}^{\frac{R}{\sqrt{\varepsilon}}} \frac{r^{N-1}}{(1+r^{2})^{(N-2)q/2}} dr + C_{3} \varepsilon^{\frac{4-N}{2}} \left(\int_{0}^{\frac{R}{\sqrt{\varepsilon}}} \frac{r^{N-1}}{(1+r^{2})^{\frac{2N(N-2)}{N+2}}} dr \right)^{\frac{N+2}{N}} \right]$$

$$(2.39)$$

onde C_i depende apenas de N.

Agora temos que considerar os seguintes casos N=3 e N=4 separadamente:

Caso 1. N = 4

Usando o fato de que $q < 2^* = 4$ e calculando

$$\int_0^{\frac{R}{\sqrt{\varepsilon}}} \frac{r^3}{(1+r^2)^2} dr = \frac{1}{2} \left(\log(1 + \frac{R^2}{\varepsilon}) + \frac{\varepsilon}{\varepsilon + R^2} - 1 \right)$$

e

$$\int_0^{\frac{R}{\sqrt{\varepsilon}}} \frac{r^3}{(1+r^2)^4} dr = \frac{1}{12} - \frac{\varepsilon^2(\varepsilon + 3R^2)}{12(\varepsilon + R^2)^3}$$

obtemos

$$I_{\varepsilon} \leq \frac{C_{1}}{2} \left(\log(1 + \frac{R^{2}}{\varepsilon}) + \frac{\varepsilon}{\varepsilon + R^{2}} - 1 \right) - \mu C_{2} \varepsilon^{\frac{2-q}{2}} \left(\frac{1}{12} - \frac{\varepsilon^{2}(\varepsilon + 3R^{2})}{12(\varepsilon + R^{2})^{3}} \right) + C_{3} \left(\int_{0}^{\frac{R}{\sqrt{\varepsilon}}} \frac{r^{3}}{(1 + r^{2})^{8/3}} \right)^{3/2}$$

Mas como

$$\lim_{\varepsilon \to 0} \frac{\varepsilon^{\frac{2-q}{2}}}{\log(1 + \frac{R^2}{\varepsilon})} = +\infty$$

concluímos que $I_{\varepsilon} \to -\infty$ ao $\varepsilon \to 0$.

Caso 2. N = 3

Através de cálculos simples, temos

$$\int_0^{\frac{R}{\sqrt{\varepsilon}}} \frac{r^2}{1+r^2} dr = \frac{R}{\sqrt{\varepsilon}} - \arctan(\frac{R}{\sqrt{\varepsilon}})$$

então, como na prova do caso N=4,

$$I_{\varepsilon} \leq C_{1}R - C_{1}\varepsilon^{1/2}\arctan(\frac{R}{\sqrt{\varepsilon}}) - \mu C_{2}\varepsilon^{\frac{4-q}{4}} \int_{0}^{\frac{R}{\sqrt{\varepsilon}}} \frac{r^{2}}{(1+r^{2})^{q/2}} dr + C_{3}\varepsilon \left(\int_{0}^{\frac{R}{\sqrt{\varepsilon}}} \frac{r^{2}}{(1+r^{2})^{6/5}} dr\right)^{5/3} \leq C_{1}R - \mu C_{2}\varepsilon^{\frac{4-q}{4}} \int_{0}^{\frac{R}{\sqrt{\varepsilon}}} \frac{r^{2}}{(1+r^{2})^{q/2}} dr + C_{3}R^{5/3}\varepsilon^{1/6}$$

Precisamos analisar agora dois casos: $2 < q \le 4$ e $4 < q < 2^*$.

O caso $4 < q < 2^*$ foi provado por Cassani [17]. No entanto, podemos também mostrar (2.37) usando a última desigualdade, pois a integral $\int_0^\infty \frac{r^2}{(1+r^2)^{q/2}} dr$ é convergente.

Se $2 < q \leq 4$ e notando que $\int_0^\infty \frac{r^2}{(1+r^2)^{q/2}} dr \geq \frac{\pi}{4}$ concluímos

$$I_{\varepsilon} \le C_4 - \frac{\pi}{4} \mu C_2 \varepsilon^{\frac{4-q}{4}}$$

Finalmente, fazendo $\mu = \varepsilon^{-\frac{1}{2}}$, temos que $I_{\varepsilon} \to -\infty$ ao $\varepsilon \to 0$.

Portanto, isto prova (2.37).

Verificação de (2.38). Temos

$$\begin{split} &\frac{1}{\varepsilon^{\delta}} \Big[\int_{B_{2R} \backslash B_R} (v_{\varepsilon}^2 dx - \mu v_{\varepsilon}^q) dx + \Big(\int_{B_{2R} \backslash B_R} |v_{\varepsilon}|^{2 \cdot 2^* / (2^* - 1)} dx \Big)^{2 \cdot (2^* - 1) / 2^*} \Big] \\ & \leq \frac{C_1}{\varepsilon^{\delta}} \int_{B_{2R} \backslash B_R} \varphi^2 u_{\varepsilon}^2 dx + \frac{C_3}{\varepsilon^{\delta}} \Big(\int_{B_{2R} \backslash B_R} \varphi^{2 \cdot 2^* / (2^* - 1)} |u_{\varepsilon}|^{2 \cdot 2^* / (2^* - 1)} dx \Big)^{2 \cdot (2^* - 1) / 2^*} \\ & \leq C_1 \varepsilon \|\varphi\|_{H^1(B_{2R} \backslash B_R)}^2 + C_2 \varepsilon^{2 + \delta} \|\varphi^{2^* / (2^* - 1)}\|_{H^1(B_{2R} \backslash B_R)}^{2 \cdot (2^* - 1) / 2^*} \end{split}$$

onde escolhemos R grande de modo que $u_{\varepsilon}^2 \leq \varepsilon^{1+\delta}$, $\forall |x| \geq \delta$. E assim, a sentença (2.38) é limitada. Isto conclui a prova da Afirmação 2.

Por fim, isto completa a prova do Lema 2.6.

Capítulo

3

Existência de soluções ground states

3.1 Introdução

Neste capítulo, provaremos a existência de soluções ground states para o sistema (\mathcal{KGM}_V) , ou seja,

$$\begin{cases}
-\Delta u + V(x)u - (2\omega + \phi)\phi u = \mu|u|^{q-2}u + |u|^{2^*-2}u & \text{em} \quad \mathbb{R}^3 \\
\Delta \phi = (\omega + \phi)u^2 & \text{em} \quad \mathbb{R}^3
\end{cases}$$
(KGM_V)

onde μ e ω são constantes reais positivas, $2 < q < 2^* = 6$ e $u, \phi: \mathbb{R}^3 \to \mathbb{R}$ são funções incógnitas. Além disso, neste capítulo, $V: \mathbb{R} \to \mathbb{R}$ é um potencial satisfazendo as condições

(V1)
$$V(x+p) = V(x), \quad x \in \mathbb{R}^3, p \in \mathbb{Z}^3$$

(V2) Existe
$$V_0 > 0$$
 tal que $V(x) \ge V_0 > 0$, $x \in \mathbb{R}^3$, onde $V_0 > \frac{2(4-q)}{q-2}\omega^2$ se $2 < q < 4$.

Observamos que, sem perda de generalidade, podemos considerar $\omega > 0$, porque se (u, ϕ) é uma solução do sistema (\mathcal{KGM}) , então $(u, -\phi)$ será uma solução correspondente a $-\omega$. Portanto, o sinal de ω não é de fato essencial para o tratamento da existência de soluções.

De forma semelhante ao Capítulo 2, o funcional de Euler-Lagrange associado ao sistema (\mathcal{KGM}_V) é fortemente indefinido e este problema é contornado usando-se o Método da Redução.

A fim de demonstrar o Teorema 1.2 (re-enunciado a seguir) usaremos a variedade de Nehari \mathcal{N} , uma vez que \mathcal{N} contém todos os pontos críticos não-triviais do funcional energia associado ao sistema.

Na Seção 3.2 definiremos o espaço das soluções para o sistema (\mathcal{KGM}_V) bem como o funcional de energia associado. Já na Seção 3.3 provaremos algumas propriedades relacionadas às variedade de Nehari.

Por fim, na Seção 3.4 provaremos o

Teorema 1.2. Considere as condições (V1) e (V2), então o sistema (\mathcal{KGM}_V) tem pelo menos uma solução ground state para μ suficientemente grande.

3.2 Formulação Variacional

Consideraremos o espaço de Sobolev E com norma

$$||u||_E^2 = \int_{\mathbb{R}^3} (|\nabla u|^2 + V(x)u^2) dx \tag{3.1}$$

a qual é equivalente à norma usual de Sobolev em $H^1(\mathbb{R}^3)$.

De forma totalmente análoga ao caso estudado no capítulo anterior, $(u, \phi) \in E \times \mathcal{D}^{1,2}(\mathbb{R}^3)$ será uma solução de (\mathcal{KGM}_V) se, e somente se, u é ponto crítico do funcional

$$I(u) := \mathcal{F}(u, \phi)$$

onde $\phi = \phi_u$ e \mathcal{F} é como em (2.1) ao tomarmos $m_0^2 - \omega^2 = V(x)$.

Assim, usando a mesma técnica do capítulo anterior obtemos $I: E \to \mathbb{R}$ definido por

$$I(u) = \frac{1}{2} \int_{\mathbb{R}^3} (|\nabla u|^2 + V(x)u^2 - \omega \phi_u u^2) \, dx - \frac{\mu}{q} \int_{\mathbb{R}^3} |u|^q \, dx - \frac{1}{6} \int_{\mathbb{R}^3} |u|^6 \, dx$$
 (3.2)

enquanto que para I' temos, $\forall v \in E$,

$$\langle I'(u), v \rangle =$$

$$= \int_{\mathbb{R}^3} \left(\langle \nabla u, \nabla v \rangle + V(x)uv - (2\omega + \phi_u)\phi_u uv - \mu |u|^{q-2}uv - |u|^4 uv \right) dx. \tag{3.3}$$

3.3 Lemas Auxiliares

Pretendemos obter pontos críticos do funcional I, então consideraremos a correspondente variedade de Nehari

$$\mathcal{N} = \{ u \in E \setminus \{0\} \mid G(u) = \langle I'(u), u \rangle = 0 \}$$
(3.4)

onde

$$G(u) = \int_{\mathbb{R}^3} \left(|\nabla u|^2 + V(x)u^2 - (2\omega + \phi_u)\phi_u u^2 - \mu |u|^q - |u|^6 \right) dx.$$

O seguinte lema será útil na demonstração de que \mathcal{N} é uma variedade de classe C^1 .

Lema 3.1. Seja $u \in E$ e $2\psi_u = \Phi'(u) \in \mathcal{D}^{1,2}(\mathbb{R}^3)$. Então, ψ_u é solução da equação integral

$$\int_{\mathbb{R}^3} \omega \psi_u u^2 \, dx = \int_{\mathbb{R}^3} (\omega + \phi_u) \phi_u u^2 \, dx$$

e como consequência, $\psi_u \leq 0$.

Demonstração. Por (2.4), temos que

$$2(\Delta - u^2)^{-1}[(\omega + \phi_u)u^2] = 2\psi_u$$

Assim,

$$\Delta \psi_u - u^2 \psi_u = (\omega + \phi_u) u^2.$$

Multiplicando esta última equação por ϕ e integrando por partes, concluímos que

$$\int_{\mathbb{R}^3} \omega \psi_u u^2 \, dx = \int_{\mathbb{R}^3} (\omega + \phi_u) \phi_u u^2 \, dx$$

$$com \ \psi_u \leq 0.$$

Analisaremos agora alguns resultados a respeito da variedade de Nehari.

Lema 3.2. Existe constante C > 0 tal que $||u||_E \ge C$, para todo $u \in \mathcal{N}$.

Demonstração. Seja $u \in \mathcal{N}$. Usando a Desigualdade de Hölder

$$0 = \|u\|_{E}^{2} - 2 \int_{\mathbb{R}^{3}} \omega \phi_{u} u^{2} dx - \int_{\mathbb{R}^{3}} \phi_{u}^{2} u^{2} dx - \mu \|u\|_{q}^{q} - \|u\|_{6}^{6}$$

$$\geq \|u\|_{E}^{2} - \mu C_{1} \|u\|_{E}^{q} - C_{2} \|u\|_{E}^{6}$$

logo, existe C > 0 tal que $||u||_E \ge C$.

Lema 3.3. \mathcal{N} é uma variedade de classe C^1 .

Demonstração. Considere

$$2I(u) = ||u||_E^2 - \int_{\mathbb{R}^3} \omega \phi_u u^2 \, dx - \frac{2\mu}{q} \int_{\mathbb{R}^3} |u|^q \, dx - \frac{2}{6} \int_{\mathbb{R}^3} |u|^6 \, dx$$

então, para todo $u \in E$,

$$G(u) = 2I(u) - \int_{\mathbb{R}^3} \omega \phi_u u^2 \, dx - \int_{\mathbb{R}^3} \phi_u^2 u^2 \, dx + \frac{(2-q)\mu}{q} \int_{\mathbb{R}^3} |u|^q \, dx - \frac{2}{3} \int_{\mathbb{R}^3} |u|^6 \, dx.$$

Provaremos que existe C>0 tal que $\langle G'(u),u\rangle\leq -C$, para todo $u\in\mathcal{N}.$ G é um funcional de classe C^1 então, usando o Lema 3.1, temos

$$\langle G'(u), u \rangle = \langle 2I'(u), u \rangle + (2 - q)\mu \int_{\mathbb{R}^3} |u|^q dx - 4 \int_{\mathbb{R}^3} |u|^6 dx +$$

$$-4 \int_{\mathbb{R}^3} (\omega + \phi_u + \psi_u) \phi_u u^2 dx$$

$$= (2 - q) ||u||_E^2 - (2 - q) \int_{\mathbb{R}^3} (2\omega + \phi_u) \phi_u u^2 dx - (2 - q) \int_{\mathbb{R}^3} |u|^6 dx +$$

$$-4 \int_{\mathbb{R}^3} |u|^6 dx - 4 \int_{\mathbb{R}^3} (\omega + \phi_u + \psi_u) \phi_u u^2 dx$$

$$\leq (2 - q) ||u||_E^2 - \int_{\mathbb{R}^3} [(2 - q)(2\omega + \phi_u) + 4(\omega + \phi_u + \psi_u)] \phi_u u^2 dx.$$

Consideraremos dois casos:

Caso 1: $4 \le q < 6$

Neste caso, precisamos verificar apenas que

$$(2 - q)(2\omega + \phi_u) + 4(\omega + \phi_u + \psi_u) < 0.$$

De fato, pela Proposição 2.1

$$(2-q)(2\omega + \phi_u) + 4(\omega + \phi_u + \psi_u) = [2(2-q) + 4]\omega + (2-q+4)\phi_u + 4\psi_u$$
$$= 2(4-q)\omega + (6-q)\phi_u + 4\psi_u$$
$$< 0.$$

Assim, $\langle G'(u), u \rangle \leq -C$ pelo Lema 3.2.

Caso 2: 2 < q < 4

Usando o Lema 3.2, a condição (V2) e novamente a Proposição 2.1, obtemos:

$$\begin{split} \langle G'(u), u \rangle & \leq (2-q) \|u\|_E^2 - \int_{\mathbb{R}^3} [(2-q)(2\omega + \phi_u) + 4(\omega + \phi_u + \psi_u)] \phi_u u^2 \, dx \\ & = (2-q) \|u\|_E^2 - \int_{\mathbb{R}^3} [2(4-q)\omega + (6-q)\phi_u + 4\psi_u] \phi_u u^2 \, dx \\ & = (2-q) \int_{\mathbb{R}^3} |\nabla u|^2 \, dx + (2-q) \int_{\mathbb{R}^3} V(x) u^2 \, dx + \\ & -2(4-q) \int_{\mathbb{R}^3} \omega \phi_u u^2 \, dx - (6-q) \int_{\mathbb{R}^3} \phi_u^2 u^2 \, dx - 4 \int_{\mathbb{R}^3} \psi_u \phi_u u^2 \, dx \end{split}$$

Assim,

$$\langle G'(u), u \rangle \leq (2-q) \int_{\mathbb{R}^3} |\nabla u|^2 dx + (2-q) \int_{\mathbb{R}^3} V_0 u^2 dx - 2(4-q) \int_{\mathbb{R}^3} \omega \phi_u u^2 dx$$

$$= (2-q) \int_{\mathbb{R}^3} |\nabla u|^2 dx + \int_{\mathbb{R}^3} [(2-q)V_0 - 2(4-q)\omega \phi_u] u^2 dx$$

$$\leq (2-q) \int_{\mathbb{R}^3} |\nabla u|^2 dx + \int_{\mathbb{R}^3} [(2-q)V_0 + 2(4-q)\omega^2] u^2 dx$$

$$\leq -C.$$

onde C é constante positiva.

Lema 3.4. Existe constante C > 0 tal que $I(u) \ge C$, $\forall u \in \mathcal{N}$.

Demonstração. Para qualquer $u \in \mathcal{N}$,

$$I|_{\mathcal{N}}(u) = \frac{q-2}{2q} ||u||_{E}^{2} + \frac{4-q}{2q} \int_{\mathbb{R}^{3}} \omega \phi_{u} u^{2} dx + \frac{1}{q} \int_{\mathbb{R}^{3}} \phi_{u}^{2} u^{2} dx + \frac{6-q}{6q} \int_{\mathbb{R}^{3}} |u|^{6} dx.$$
 (3.5)

Precisamos distinguir dois casos: 2 < q < 4 e $4 \le q < 6$. Se $4 \le q < 6$, então cada termo em (3.5) é positivo e obtemos

$$I|_{\mathcal{N}}(u) \ge \frac{q-2}{2q} ||u||_E^2.$$

Do contrário, se 2 < q < 4, usamos a Proposição 2.1 e a condição (V2) para obter

$$I|_{\mathcal{N}}(u) \geq \frac{q-2}{2q} \int_{\mathbb{R}^{3}} |\nabla u|^{2} dx + \frac{q-2}{2q} \int_{\mathbb{R}^{3}} V(x)u^{2} dx - \frac{4-q}{2q} \int_{\mathbb{R}^{3}} \omega^{2} u^{2} dx$$

$$\geq \frac{q-2}{2q} \int_{\mathbb{R}^{3}} |\nabla u|^{2} dx + \frac{1}{2q} \int_{\mathbb{R}^{3}} [(q-2)V_{0} - (4-q)\omega^{2}]u^{2} dx$$

$$\geq C||u||_{E}^{2}.$$

A conclusão segue do Lema 3.2.

Pelo Princípio Variacional de Ekeland (veja Apêndice A.7), existe uma sequência $(u_n) \subset \mathcal{N}$ de Palais-Smale ao nível, ou seja,

$$I(u_n) \to c \quad \text{e} \quad I'(u_n) \to 0, \quad \text{ao } n \to \infty$$
 (3.6)

onde c é caracterizado por

$$c := \inf_{\gamma \in \Gamma} \max_{0 < t < 1} I(\gamma(t)) \tag{3.7}$$

e

$$\Gamma = \{ \gamma \in \mathcal{C}([0,1], E) \mid I(\gamma(0)) = 0, I(\gamma(1)) < 0 \}.$$

Lema 3.5. O valor c dado em (3.7) satisfaz

$$0 < c < \frac{1}{3}S^{3/2},\tag{3.8}$$

onde S é a melhor constante de Sobolev como em (2.29).

Demonstração. Assim, como na prova do Lema 2.6, usaremos a técnica de Brezis e Nirenberg. É suficiente mostrar que

$$\sup_{t>0} I(tv_0) < \frac{1}{3}S^{\frac{3}{2}} \tag{3.9}$$

para algum $v_0 \in E, v_0 \neq 0$. De fato, observando que $I(tv_0) \to -\infty$ ao $t \to \infty$ e fazendo $\gamma \in \Gamma$ temos

$$I(\gamma(t)) \le \sup_{t>0} I(tv_0), \quad 0 \le t \le 1$$
 (3.10)

de modo que

$$c \le \sup_{t \ge 0} I(tv_0) < \frac{1}{3} S^{\frac{3}{2}}.$$

Analogamente como na demonstração do Lema 2.6, para provar (3.10) considere R>0 fixo e uma função corte $\varphi\in C_0^\infty(\mathbb{R}^3)$ tal que

$$\varphi|B_R=1, \quad 0 \leq \varphi \leq 1 \text{ in } B_{2R} \quad \text{e} \quad \text{supp } \varphi \subset B_{2R}.$$

Seja $\varepsilon>0$ e defina $w_\varepsilon:=u_\varepsilon\varphi$ onde $u_\varepsilon\in\mathcal{D}^{1,2}(\mathbb{R}^3)$ é a função de Talenti

$$u_{\varepsilon}(x) = \frac{C\varepsilon^{\frac{1}{4}}}{\left(\varepsilon + |x|^2\right)^{\frac{1}{2}}}, \quad x \in \mathbb{R}^3, \ \varepsilon > 0$$

e também considere $v_{\varepsilon} \in C_0^{\infty}$ dada por

$$v_{\varepsilon} := \frac{w_{\varepsilon}}{\|w_{\varepsilon}\|_{L^{6}(B_{2R})}}.$$
(3.11)

Através de estimativas de Brezis e Nirenberg [15] temos, ao $\varepsilon \to 0$,

$$X_{\varepsilon} := \|\nabla v_{\varepsilon}\|_{2}^{2} \le S + O(\varepsilon^{\delta}), \text{ where } \delta = \frac{1}{2}.$$
 (3.12)

Desde que $\lim_{t\to\infty}I(tv_\varepsilon)=-\infty\ \forall \varepsilon$, existe $t_\varepsilon\geq 0$ tal que $\sup_{t\geq 0}I(tv_\varepsilon)=I(t_\varepsilon v_\varepsilon)$ e poderemos assumir sem perda de generalidade que $t_\varepsilon\geq C_0>0$.

Afirmação 3. As seguintes estimativas são verdadeiras

$$t_{\varepsilon} \le \left(\int_{B_{2R}} |\nabla v_{\varepsilon}|^2 dx + \int_{B_{2R}} V(x) v_{\varepsilon}^2 dx - \int_{B_{2R}} 2\omega \phi_{v_{\varepsilon}} v_{\varepsilon}^2 dx \right)^{1/4} := r_{\varepsilon} > 0.$$
 (3.13)

Prova da Afirmação 3:

Fazendo $\gamma(t) := J(tv_\varepsilon)$ obtemos, para $t > r_\varepsilon,$

$$\gamma'(t) = tr_{\varepsilon}^4 - t^5 - t \int_{B_{2R}} \phi_{v_{\varepsilon}}^2 v_{\varepsilon}^2 dx - \mu t^{q-1} \int_{B_{2R}} |v_{\varepsilon}|^q dx < 0.$$

donde seque a Afirmação 3.

De (2.2), temos $\forall n \geq 1$,

$$\|\phi_{u_n}\|_{\mathcal{D}^{1,2}}^2 = -\int_{\mathbb{R}^3} \omega \phi_{u_n} u_n^2 dx - \int_{\mathbb{R}^3} \phi_{u_n}^2 u_n^2 dx$$

$$\leq -\int_{\mathbb{R}^3} \omega \phi_{u_n} u_n^2 dx \leq C \|\phi_{u_n}\|_{\mathcal{D}^{1,2}} \|u_n\|_{\frac{12}{5}}^2$$
(3.14)

A seguinte função de t: $\frac{t^2}{2}r_{\varepsilon}^4 - \frac{t^6}{6}$ é crescente no intervalo $[0, r_{\varepsilon})$ logo, usando (3.12), a desigualdade de Hölder e a desigualdade (3.14) concluímos que

$$\begin{split} I(t_{\varepsilon}v_{\varepsilon}) & \leq & \frac{1}{3}\Big(S + O(\varepsilon^{\delta}) + \int_{B_{2R}} V(x)v_{\varepsilon}^2 \, dx - \int_{B_{2R}} 2\omega \phi_{v_{\varepsilon}}^2 v_{\varepsilon}^2 \, dx\Big)^{3/2} + \\ & + Ct_{\varepsilon}^4 \|v_{\varepsilon}\|_{\frac{12}{5}}^4 - \frac{\mu}{q} t_{\varepsilon}^q \int_{B_{2R}} |v_{\varepsilon}|^q \, dx. \end{split}$$

Aplicando a desigualdade

$$(a+b)^{\alpha} \le a^{\alpha} + \alpha(a+b)^{\alpha-1}b$$

que é válida para $a,b\geq 0,\,\alpha\geq 1$ e usando a Proposição 2.1 obtemos

$$I(t_{\varepsilon}v_{\varepsilon}) \leq \frac{1}{3}S^{3/2} + O(\varepsilon^{\delta}) + C_{1} \int_{B_{2R}} (V(x) + 2\omega^{2})v_{\varepsilon}^{2} dx + C_{2}C_{\varepsilon}^{4/q} ||v_{\varepsilon}||_{\frac{12}{5}}^{4} - \mu C_{\varepsilon} \int_{B_{2R}} |v_{\varepsilon}|^{q} dx,$$

onde $C_{\varepsilon} = t_{\varepsilon}^q/q \ge C_0^q/q > 0$.

Afirmação 4.

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon^{\delta}} \left(\int_{B_{2R}} ([V(x) + 2\omega^2] v_{\varepsilon}^2 - \mu v_{\varepsilon}^q) dx + \|v_{\varepsilon}\|_{\frac{12}{5}}^4 \right) = -\infty.$$
 (3.15)

Supondo (3.15) verdadeira, temos

$$J(t_{\varepsilon}v_{\varepsilon})<rac{1}{3}S^{3/2}, \quad arepsilon ext{ pequeno}$$

mostrando (3.9) e portanto, provando o Lemma 3.5.

Prova da Afirmação 4:

Como em Brezis e Nirenberg [15], obtemos

$$\int_{B_{2R}} |w_{\varepsilon}|^6 dx = C \int_{\mathbb{R}^3} \frac{1}{(1+|x|^2)^3} dx + O(\varepsilon^{3/2})$$
 (3.16)

assim, em virtude de (3.11), é suficiente calcular (3.15) com w_{ε} em vez de v_{ε} . Para provar (3.15) devemos mostrar que

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon^{\delta}} \left[\int_{B_R} ((V(x) + 2\omega^2) w_{\varepsilon}^2 - \mu w_{\varepsilon}^q) \, dx + \left(\int_{B_R} |w_{\varepsilon}|^{\frac{12}{5}} \, dx \right)^{\frac{5}{3}} \right] = -\infty \tag{3.17}$$

e também que

$$\frac{1}{\varepsilon^{\delta}} \left[\int_{B_{2R} \setminus B_R} ((V(x) + 2\omega^2) v_{\varepsilon}^2 - \mu v_{\varepsilon}^q) \, dx + \left(\int_{B_{2R} \setminus B_R} |v_{\varepsilon}|^{\frac{12}{5}} \, dx \right)^{\frac{5}{3}} \right] \tag{3.18}$$

é limitada.

Verificação de (3.17). Seja

$$I_{\varepsilon} := \frac{1}{\varepsilon^{\delta}} \Big[\int_{B_R} ((V(x) + 2\omega^2) w_{\varepsilon}^2 - \mu w_{\varepsilon}^q) \, dx + \Big(\int_{B_R} |w_{\varepsilon}|^{\frac{12}{5}} dx \Big)^{\frac{5}{3}} \Big].$$

Usando o fato de que V(x) is contínua e logo, $V \in L^{\infty}_{loc}(\mathbb{R}^3)$, obtemos

$$I_{\varepsilon} \leq \frac{1}{\varepsilon^{\delta}} \Big[C \|V\|_{L^{\infty}(B_R)} \int_{B_R} (w_{\varepsilon}^2 - \mu w_{\varepsilon}^q) \, dx + \Big(\int_{B_R} |w_{\varepsilon}|^{\frac{12}{5}} \, dx \Big)^{\frac{5}{3}} \Big].$$

Agora, fazendo mudança de variáveis, em B_R , temos

$$I_{\varepsilon} \leq \varepsilon^{1-\delta} \Big[C_{1} \int_{0}^{\frac{R}{\sqrt{\varepsilon}}} \frac{r^{2}}{1+r^{2}} dr - \mu C_{2} \varepsilon^{-\frac{1}{4}q + \frac{3}{2} - 1} \int_{0}^{\frac{R}{\sqrt{\varepsilon}}} \frac{r^{2}}{(1+r^{2})^{(1)q/2}} dr + C_{3} \varepsilon^{-\frac{1}{2}} \Big(\int_{0}^{\frac{R}{\sqrt{\varepsilon}}} \frac{r^{2}}{(1+r^{2})^{\frac{12}{5}}} dr \Big)^{\frac{5}{3}} \Big],$$

$$(3.19)$$

onde C_i são constantes positivas independentes de ε , $\forall i$.

Deste ponto em diante a prova segue análoga à demonstração do caso N=3 na Afirmação 2 do Lema 2.6 no Capítulo 2.

Verificação de (3.18). Temos que

$$\frac{1}{\varepsilon^{\delta}} \left[\int_{B_{2R} \backslash B_R} ((V(x) + 2\omega^2) v_{\varepsilon}^2 dx - \mu v_{\varepsilon}^q) dx + \left(\int_{B_{2R} \backslash B_R} |v_{\varepsilon}|^{12/5} dx \right)^{\frac{5}{3}} \right]$$

$$\leq \frac{C_1}{\varepsilon^{\delta}} \int_{B_{2R} \backslash B_R} \varphi^2 u_{\varepsilon}^2 dx + \frac{C_2}{\varepsilon^{\delta}} \left(\int_{B_{2R} \backslash B_R} \varphi^{12/5} |u_{\varepsilon}|^{12/5} dx \right)^{\frac{5}{3}}$$

$$\leq C_1 \varepsilon \|\varphi\|_{H^1(B_{2R} \backslash B_R)}^2 + C_2 \varepsilon^{2+\delta} \|\varphi^{6/5}\|_{H^1(B_{2R} \backslash B_R)}^{\frac{5/3}{3}}$$

onde escolhemos R grande o suficiente tal que $u_{\varepsilon}^2 \leq \varepsilon^{1+\delta}$, $\forall |x| \geq R$. Assim, concluímos que a expressão em (3.18) é limitada.

Consequentemente, isto conclui a prova da Afirmação 4, e por fim, conclui também a prova do Lema 3.5.

Mostraremos agora uma propriedade de compacidade do funcional I, a saber, a limitação das sequências de Palais-Smale.

Lema 3.6. A sequência $(PS)_c(u_n)$ é limitada em E.

Demonstração. Seja $(u_n) \subset E$ tal que $-\langle I'(u), v \rangle \leq o_n(1) \|u_n\|_E$ e $|I(u_n)| \leq M$, para alguma

constante positiva M. Então, das expressões (3.2) e (3.3),

$$qM + o_{n}(1) \|u_{n}\|_{E} \geq qJ(u_{n}) - \langle J'(u_{n}), u_{n} \rangle =$$

$$= \left(\frac{q}{2} - 1\right) \int_{\mathbb{R}^{3}} \left(|\nabla u_{n}|^{2} + V(x)u_{n}^{2} \right) dx + \left(2 - \frac{q}{2}\right) \int_{\mathbb{R}^{3}} \omega \phi_{u_{n}} u_{n}^{2} dx +$$

$$+ \int_{\mathbb{R}^{3}} \phi_{u_{n}}^{2} u_{n}^{2} dx + \left(1 - \frac{q}{6}\right) \int_{\mathbb{R}^{3}} |u_{n}|^{6} dx$$

$$\geq \left(\frac{q - 2}{2}\right) \int_{\mathbb{R}^{3}} \left(|\nabla u_{n}|^{2} + V(x)u_{n}^{2} \right) dx - \omega \left(\frac{q - 4}{2}\right) \int_{\mathbb{R}^{3}} \phi_{u_{n}} u_{n}^{2} dx.$$
(3.20)

Como no Lema 3.4, existem dois casos a serem considerados: 2 < q < 4 e $4 \le q < 6$. Se $4 \le q < 6$, então pela Proposição 2.1 e a desigualdade (3.20)

$$qM + o_n(1) \|u_n\|_E \ge C \|u_n\|_E^2 - \omega \left(\frac{q-4}{2}\right) \int_{\mathbb{R}^3} \phi_{u_n} u_n^2 dx$$

 $\ge C \|u_n\|_E^2$

donde deduzimos que a sequência de Palais-Smale (u_n) é limitada em E.

Para o caso 2 < q < 4, usando (3.20), a Proposição 2.1 e a condição (V2), deduzimos que

$$qM + o_n(1)||u_n||_E \ge \left(\frac{q-2}{2}\right) \int_{\mathbb{R}^3} |\nabla u_n|^2 dx + \left(\frac{(q-2)V_0 + (q-4)\omega^2}{2}\right) \int_{\mathbb{R}^3} u_n^2 dx \ge C||u_n||_E^2,$$

implicando novamente que (u_n) é limitada em E.

Lema 3.7. Existem constantes C > 0, r > 0 $e \xi \in \mathbb{R}^3$ tal que

$$\int_{B_r(\xi)} u_n^2 \, dx \ge C,$$

onde $(u_n) \subset \mathcal{N}$ é uma sequência minimizante.

Demonstração. Seja (u_n) uma sequência minimizante em \mathcal{N} . Suponha por absurdo que $\bar{r}>0$ tal que

$$\limsup_{n \to \infty} \int_{B_{\bar{r}}(\xi)} u_n^2 \, dx = 0.$$

Usando Lions [38, Lema I.1] e também o lema anterior, seque que para 2 < q < 6,

$$\int_{\mathbb{R}^3} |u_n|^q dx \stackrel{n \to \infty}{\longrightarrow} 0.$$

Note agora que

$$||u_n||_E^2 = \int_{\mathbb{R}^3} |u_n|^6 dx + o_n(1).$$
 (3.21)

De fato, observe que

$$\langle I'(u_n), u_n \rangle = \|u_n\|_E^2 - \int_{\mathbb{R}^3} (2\omega + \phi_{u_n}) \phi_{u_n} u_n^2 dx - \mu \int_{\mathbb{R}^3} |u_n|^q - \int_{\mathbb{R}^3} |u_n|^6 dx$$

e por (2.7), temos

$$-\int_{\mathbb{R}^{3}} (2\omega + \phi_{u_{n}}) \phi_{u_{n}} u_{n}^{2} dx \leq -\int_{\mathbb{R}^{3}} \omega \phi_{u_{n}} u_{n}^{2} dx + \int_{\mathbb{R}^{3}} |\nabla u_{n}|^{2} dx + \int_{\mathbb{R}^{3}} \phi_{u_{n}}^{2} u_{n}^{2} dx$$

$$= -2 \int_{\mathbb{R}^{3}} \omega \phi_{u_{n}} u_{n}^{2} dx$$

$$\leq 2\omega \|\phi_{u_{n}}\|_{\mathcal{D}^{1,2}} \|u_{n}\|_{\frac{12}{5}}$$

$$\xrightarrow{n \to \infty} 0.$$

Assim, (3.21) é satisfeita.

Assuma que $||u_n||_E^2 \to \ell > 0$, ao $n \to \infty$. Como $I(u_n) \to c$,

$$\frac{1}{2}||u_n||_E^2 - \frac{1}{6} \int_{\mathbb{R}^3} |u_n|^6 dx \xrightarrow{n \to \infty} c$$

logo, $c = \frac{1}{3}\ell$.

Por outro lado, pela definição de S, temos

$$\ell > S\ell^{1/3} \Rightarrow \ell > S^{3/2}.$$

Logo chegamos num absurdo pois $c=\frac{1}{3}\ell\geq\frac{1}{3}S^{3/2}$. Portanto, $\|u_n\|_E^2\to 0$. No entanto, isto está em contradição com o Lema 3.2. Sendo assim, (u_n) não se anula e o Lema 3.7 é satisfeito.

A aplicação ϕ é contínua para a topologia fraca no sentido do seguinte Lema

Lema 3.8. Se $u_n \rightharpoonup u_0$ fracamente em E então, passando a subsequência se necessário, $\phi_{u_n} \rightharpoonup \phi_{u_0}$ fracamente em $D^{1,2}(\mathbb{R}^3)$. Consequentemente, $I'(u_n) \to I'(u_0)$, ao $n \to \infty$.

Demonstração. Sejam $(u_n), u_0 \in E$ e $u_n \rightharpoonup u_0$ em E. Assim, temos

$$u_n \rightharpoonup u_0 \quad \text{em } L^s(\mathbb{R}^3), \quad 2 \le s \le 6$$

e como a imersão $E \hookrightarrow L^s$ é compacta em domínios limitados, também temos

$$u_n \to u_0 \quad \text{em } L^s_{loc}(\mathbb{R}^3), \quad 2 \le s < 6.$$
 (3.22)

Usando (3.14) obtemos o importante fato de que (ϕ_{u_n}) é limitada em $\mathcal{D}^{1,2}(\mathbb{R}^3)$. Como $\mathcal{D}^{1,2}(\mathbb{R}^3)$ é espaço de Hilbert (reflexivo), então existe $\phi_0 \in \mathcal{D}^{1,2}(\mathbb{R}^3)$ tal que $\phi_{u_n} \rightharpoonup \phi_0$ em $\mathcal{D}^{1,2}(\mathbb{R}^3)$ de modo que

$$\phi_{u_n} \rightharpoonup \phi_0 \quad \text{em } L^6(\mathbb{R}^3)$$

e

$$\phi_{u_n} \to \phi_0 \quad \text{em } L^s_{loc}(\mathbb{R}^3), \quad 1 \le s < 6.$$
 (3.23)

Basta agora provar que $\phi_{u_0}=\phi_0$. Pela unicidade de solução da equação (2.2), é suficiente mostrar que

$$\Delta\phi_0 = (\omega + \phi_0)u_0^2$$

no sentido das distribuições.

Seja $\varphi \in C_0^\infty(\mathbb{R}^3)$ função teste. Uma vez que

$$\Delta \phi_{u_n} = (\omega + \phi_{u_n}) u_n^2$$

então temos

$$-\int_{\mathbb{D}^3} \langle \nabla \phi_{u_n}, \nabla \varphi \rangle \, dx = \int_{\mathbb{D}^3} \omega \varphi u_n^2 \, dx + \int_{\mathbb{D}^3} \phi_{u_n} \varphi u_n^2$$

Assim, é suficiente verificar que

$$\int_{\mathbb{R}^{3}} \langle \nabla \phi_{u_{n}}, \nabla \varphi \rangle dx \xrightarrow{n \to \infty} \int_{\mathbb{R}^{3}} \langle \nabla \phi_{0}, \nabla \varphi \rangle dx$$

$$\int_{\mathbb{R}^{3}} \phi_{u_{n}} u_{n}^{2} \varphi dx \xrightarrow{n \to \infty} \int_{\mathbb{R}^{3}} \phi_{0} u_{0}^{2} \varphi dx$$

$$\int_{\mathbb{R}^{3}} u_{n}^{2} \varphi dx \xrightarrow{n \to \infty} \int_{\mathbb{R}^{3}} u_{0}^{2} \varphi dx$$
(3.24)

A primeira convergência segue de uma simples aplicação da definição de convergência fraca. Já a segunda e a terceira seguem de (3.22). De fato, a respeito da segunda convergência

temos

$$\int_{\mathbb{R}^{3}} (u_{n}^{2} \phi_{u_{n}} - u_{0}^{2} \phi_{0}) \varphi \, dx = \int_{\mathbb{R}^{3}} (u_{n}^{2} - u_{0}^{2}) \phi_{u_{n}} \varphi \, dx + \int_{\mathbb{R}^{3}} (\phi_{u_{n}} - \phi_{0}) u_{0}^{2} \varphi \, dx
\leq C \|\phi_{u_{n}}\|_{\mathcal{D}^{1,2}} \Big(\int_{\mathbb{R}^{3}} |u_{n}^{2} - u_{0}^{2}|^{\frac{6}{5}} |\varphi|^{\frac{6}{5}} \, dx \Big)^{\frac{5}{6}} +
+ \int_{\mathbb{R}^{3}} (\phi_{u_{n}} - \phi_{0}) u_{0}^{2} \varphi \, dx$$

E portanto, (3.24) segue de (3.22), (3.23) e da limitação de (ϕ_{u_n}) .

Vamos agora demonstrar a segunda parte do Lema. Todas as convergências a seguir devem ser vistas passando à subsequência se necessário. Seja $v \in C_0^{\infty}(\mathbb{R}^3)$ uma função teste.

Note que

$$\langle I'(u_n), v \rangle = \int_{\mathbb{R}^3} \left(\langle \nabla u_n, \nabla v \rangle + V(x) u_n v - (2\omega + \phi_{u_n}) \phi_{u_n} u_n v - \mu |u_n|^{q-1} v - |u_n|^5 v \right) dx$$

$$\langle I'(u_0), v \rangle = \int_{\mathbb{R}^3} \left(\langle \nabla u_0, \nabla v \rangle + V(x) u_0 v - (2\omega + \phi_0) \phi_0 u_0 v - \mu |u_0|^{q-1} v - |u_0|^5 v \right) dx$$

e observe que

$$\int_{\mathbb{R}^{3}} (\phi_{u_{n}} u_{n} - \phi_{0} u_{0}) v \, dx = \int_{\mathbb{R}^{3}} \phi_{u_{n}} (u_{n} - u_{0}) v \, dx + \int_{\mathbb{R}^{3}} u_{0} (\phi_{u_{n}} - \phi_{0}) v \, dx
\leq C \|\phi_{u_{n}}\|_{\mathcal{D}^{1,2}} \Big(\int_{\mathbb{R}^{3}} |u_{n} - u_{0}|^{\frac{6}{5}} |v|^{\frac{6}{5}} \, dx \Big)^{\frac{5}{6}} +
+ \int_{\mathbb{R}^{3}} (\phi_{u_{n}} - \phi_{0}) u_{0} v \, dx
\xrightarrow{n \to \infty} 0$$

usando a limitação de (ϕ_{u_n}) , (3.22) e (3.23).

Além disso, também temos

$$\int_{\mathbb{R}^{3}} (\phi_{u_{n}}^{2} u_{n} - \phi_{0}^{2} u_{0}) v \, dx = \int_{\mathbb{R}^{3}} \phi_{u_{n}}^{2} (u_{n} - u_{0}) v \, dx + \int_{\mathbb{R}^{3}} u_{0} (\phi_{u_{n}}^{2} - \phi_{0}^{2}) v \, dx
\leq C \|\phi_{u_{n}}\|_{\mathcal{D}^{1,2}} \Big(\int_{\mathbb{R}^{3}} |u_{n} - u_{0}|^{\frac{3}{2}} |v|^{\frac{3}{2}} \, dx \Big)^{\frac{2}{3}} +
+ \int_{\mathbb{R}^{3}} (\phi_{u_{n}}^{2} - \phi_{0}^{2}) u_{0} v \, dx
\xrightarrow{n \to \infty} 0$$

novamente pela limitação de (ϕ_{u_n}) , (3.22) e (3.23).

Como (u_n) é limitada em $L^6(\mathbb{R}^3)$, segue que

$$|u_n|^5 \rightharpoonup |u_0|^5$$
 fracamente em E .

Portanto, por densidade concluímos que, $\forall v \in E$,

$$\int_{\mathbb{R}^3} \left(\langle \nabla u_n, \nabla v \rangle + V(x) u_n v \right) dx \quad \stackrel{n \to \infty}{\longrightarrow} \quad \int_{\mathbb{R}^3} \left(\langle \nabla u_0, \nabla v \rangle + V(x) u_n v \right) dx$$

$$\int_{\mathbb{R}^3} (2\omega + \phi_{u_n}) \phi_{u_n} u_n v \, dx \quad \stackrel{n \to \infty}{\longrightarrow} \quad \int_{\mathbb{R}^3} (2\omega + \phi_0) \phi_0 u_0 v \, dx$$

$$\int_{\mathbb{R}^3} |u_n|^{q-1} v \, dx \quad \stackrel{n \to \infty}{\longrightarrow} \quad \int_{\mathbb{R}^3} |u_0|^{q-1} v \, dx$$

$$\int_{\mathbb{R}^3} |u_n|^5 v \, dx \quad \stackrel{n \to \infty}{\longrightarrow} \quad \int_{\mathbb{R}^3} |u_0|^5 v \, dx$$

e assim $\langle I'(u_n), v \rangle \longrightarrow \langle I'(u_0), v \rangle$ ao $n \to \infty$.

3.4 Prova do Teorema 1.2

Considere

$$\alpha = \inf_{u \in \mathcal{N}} I(u). \tag{3.25}$$

A fim de provarmos o Teorema 1.2, mostraremos que existe $u_0 \in \mathcal{N}$ tal que $I(u_0) = \alpha$, ou seja, (u_0, ϕ_{u_0}) é uma solução ground state para o sistema (\mathcal{KGM}) .

Seja $u_n \in \mathcal{N}$ tal que $I(u_n) \to \alpha$, ao $n \to \infty$.

Pelo Lema 3.7, existem constantes C>0, r>0 e sequência $(\xi_n)_n\subset\mathbb{R}^3$ de modo que

$$\int_{B_r(\xi_n)} u_n^2 \, dx \ge C.$$

Defina $v_n(x) := u_n(x - \xi_n), \forall x \in \mathbb{R}^3.$ Como V é 1-periódica e

$$\phi_{u_n}(x - \xi_n) = \phi_{v_n}(x), \tag{3.26}$$

então

$$||v_n||_E = ||u_n||_E, \quad \int_{B_r(\xi_n)} v_n^2 dx \ge C, \ \forall n \in I(v_n) \stackrel{n \to \infty}{\longrightarrow} \alpha.$$

Verificação de (3.26).

Como ϕ_u é solução de (2.2), então ϕ_u satisfaz $\Delta \phi_u(x) = (\omega + \phi_u(x))u^2(x), \ \forall x \in \mathbb{R}^3$. Considere a seguinte translação

$$\Delta \phi_{u_n}(x - \xi_n) = (\omega + \phi_{u_n}(x - \xi_n)) u_n^2(x - \xi_n), \quad \forall x \in \mathbb{R}^3 \, \mathbf{e} \, (\xi_n) \subset \mathbb{R}^3.$$

Visto que $u_n(x-\xi_n)=v_n(x), \ \forall x\in\mathbb{R}^3$, então

$$\Delta \phi_{u_n}(x - \xi_n) = (\omega + \phi_{u_n}(x - \xi_n))v_n^2(x), \quad \forall x \in \mathbb{R}^3 \, \mathbf{e}(\xi_n) \subset \mathbb{R}^3.$$
 (3.27)

No entanto, dado $v \in E$, existe única solução $\phi_{v_n}(x) \in \mathcal{D}^{1,2}(\mathbb{R}^3)$ solução da equação (3.27). Portanto, necessariamente, $\phi_{v_n}(x) = \phi_{u_n}(x - \xi_n), \ \forall x \in \mathbb{R}^3 \, \mathrm{e}(\xi_n) \subset \mathbb{R}^3$.

Através da limitação de (u_n) em E, temos que (v_n) é também limitada, donde concluímos que

Em virtude do Lema 3.8, $\phi_{u_n} \rightharpoonup \phi_0$ em $\mathcal{D}^{1,2}(\mathbb{R}^3)$, e assim

$$\phi_{u_n} \to \phi_0 \quad \text{em } L^s_{loc}(\mathbb{R}^3), \ 1 \le s < 6,$$

$$\phi_{u_n} \to \phi_0 \quad \text{q.t.p. em } \mathbb{R}^3.$$
 (3.29)

Sem perda de generalidade, podemos assumir que (v_n) é uma sequência de Palais-Smale para o funcional $I|_{\mathcal{N}}$, em particular,

$$I(v_n)n \xrightarrow{n \to \infty} \alpha,$$

$$(I|_{\mathcal{N}})'(v_n) \xrightarrow{n \to \infty} 0.$$
(3.30)

Usando multiplicadores de Lagrange λ_n , obtemos

$$o_n(1) = \langle (I|_{\mathcal{N}})'(v_n), v_n \rangle = \langle I'(v_n), v_n \rangle + \lambda_n \langle G'(v_n), v_n \rangle = \lambda_n \langle G'(v_n), v_n \rangle.$$

Através do Lema 3.3, deduzimos que $\lambda_n = o_n(1)$ e, por (3.30),

$$I'(v_n) \stackrel{n \to \infty}{\longrightarrow} 0.$$

Usando o Lema 3.8 e esta última sentença obtemos $I'(v_0) = 0$, onde $v_0 \neq 0$.

Precisaremos provar agora que, de fato, $I(v_0)=\alpha$. No entanto, como $I(v_n)\to \alpha$, é suficiente mostrar que $I(v_n)\to I(v_0)$ ao $n\to\infty$.

Uma vez que $v_n \in \mathcal{N}$, temos

$$I(v_n) = \frac{q-2}{2q} \|v_n\|_E^2 + \frac{4-q}{2q} \int_{\mathbb{R}^3} \omega \phi_{u_n} v_n^2 dx + \frac{1}{q} \int_{\mathbb{R}^3} \phi_{u_n}^2 v_n^2 dx + \frac{6-q}{6q} \int_{\mathbb{R}^3} |v_n|^6 dx.$$

Considere os casos 2 < q < 4 e $4 \le q < 6$.

Se $4 \le q < 6$, então usando a semi-continuidade inferior fraca da norma E, (3.28), (3.29) e o Lema de Fatou, obtemos

$$\alpha = \liminf_{n \to \infty} I(v_n)$$

$$\geq \frac{q-2}{2q} \|v_0\|_E^2 + \frac{4-q}{2q} \int_{\mathbb{R}^3} \omega \phi_0 v_0^2 dx + \frac{1}{q} \int_{\mathbb{R}^3} \phi_0^2 v_0^2 dx + \frac{6-q}{6q} \int_{\mathbb{R}^3} |v_0|^6 dx$$

$$= I(v_0)$$

ou seja, $I(v_0) \leq \alpha$.

Por outro lado, se 2 < q < 4, usando a Proposição 2.1 e a condição (V2), note que

$$\frac{q-2}{2q}V(x)v_n^2 + \frac{4-q}{2q}\omega\phi_{u_n}v_n^2 = \frac{1}{2q}\Big[(q-2)V(x) + (4-q)\omega\phi_{u_n}\Big]v_n^2
\geq \frac{1}{2q}\Big[(q-2)V_0 - (4-q)\omega^2\Big]v_n^2
\geq 0$$

e argumentando agora exatamente como no caso anterior, concluímos que $I(v_0) \leq \alpha$.

Finalmente, como $\alpha = \inf_{v \in \mathcal{N}} I(v)$, então $I(v_0) = \alpha$. Sendo assim, (v_0, ϕ_0) é uma solução ground state para o sistema (\mathcal{KGM}).

Capítulo

4

Existência de soluções positivas

4.1 Introdução

O objetivo deste capítulo é estudar a existência de soluções positivas do sistema

$$\begin{cases}
-\Delta u + V(x)u - (2\omega + \phi)\phi u = \mu u^{q-1} + u^{2^*-1} & \text{em} \quad \mathbb{R}^3 \\
\Delta \phi = (\omega + \phi)u^2 & \text{em} \quad \mathbb{R}^3
\end{cases}$$
(KGM_V)

e

$$\begin{cases}
-\Delta u + V_{\sharp}(x)u - (2\omega + \phi)\phi u = \mu u^{q-1} + u^{2^*-1} & \text{em} \quad \mathbb{R}^3 \\
\Delta \phi = (\omega + \phi)u^2 & \text{em} \quad \mathbb{R}^3
\end{cases}$$
(KGM_{\psi})}

onde μ e ω são constantes reais positivas, $2 < q < 2^* = 6$ e $u, \phi: \mathbb{R}^3 \to \mathbb{R}$ são funções incógnitas.

Lembre que as condições para o potencial V são

(V1)
$$V(x+p) = V(x), \quad x \in \mathbb{R}^3, p \in \mathbb{Z}^3.$$

(V2) Existe
$$V_0>0$$
 tal que $V(x)\geq V_0>0, x\in\mathbb{R}^3,$ onde $V_0>\frac{2(4-q)}{q-2}\omega^2$ se $2< q< 4$

(V3) Existe
$$W_0 > 0$$
 tal que $V_{\sharp}(x) = V(x) - W(x) \ge W_0$, onde $W(x) \ge 0$, $x \in \mathbb{R}^3$.

Alves, Carrião e Miyagaki [2] mostraram que existe solução positiva para a seguinte equação elíptica semilinear

$$\begin{cases} -\Delta u + V(x)u = \lambda u^q + u^p & \text{em} \quad \mathbb{R}^N \\ u \in H^1(\mathbb{R}^N), \ u > 0, \ N \ge 3 \end{cases}$$

onde $\lambda>0$ é constante real, $1< q< p=2^*-1$ e $V:\mathbb{R}^N\to\mathbb{R}$ é uma função contínua positiva

satisfazendo a condição (V1) e a condição

Existe
$$V_0 > 0$$
 tal que
$$V \in C^1(\mathbb{R}^N) \text{ e } V(x) \geq V_0 > 0, \ x \in \mathbb{R}^N$$

Além disso, também provaram a existência de solução positiva para esta equação ao introduzir uma pequena perturbação do potencial V satisfazendo a condição (V3).

Isso motiva a seguinte questão: Será que a técnica utilizada por Alves, Carrião e Miyagaki pode ser aplicada para encontrar soluções positivas do sistema (\mathcal{KGM}_V)? De fato, veremos que a resposta é sim.

Analisaremos duas situações diferentes. Primeiro vamos assumir que o potencial V é periódico e depois usaremos este fato para abordar o caso em que V é não-periódico.

Este capítulo está organizado da seguinte forma: nas Seções 4.2 e 4.3 abordaremos os sistemas (\mathcal{KGM}_V) e (\mathcal{KGM}_{\sharp}) com potencial periódico e não-periódico, respectivamente. Já nas Subseções 4.2.2 e 4.3.3 provaremos os seguintes resultados obtidos, respectivamente,

Teorema 1.3. Considere as condições (V1) e (V2). Então o sistema (\mathcal{KGM}_V) tem pelo menos uma solução positiva $u \in H^1(\mathbb{R}^3)$ com $\phi \in \mathcal{D}^{1,2}(\mathbb{R}^3)$ para cada $\mu > 0$ se 4 < q < 6 e para μ suficientemente grande se $2 < q \le 4$.

Teorema 1.4. Considere $W \in L^{3/2}(\mathbb{R}^3)$, (V1), (V2) e (V3). Então o sistema (\mathcal{KGM}_{\sharp}) tem pelo menos uma solução positiva $u \in H^1(\mathbb{R}^3)$ com $\phi \in \mathcal{D}^{1,2}(\mathbb{R}^3)$ para cada $\mu > 0$ se 4 < q < 6 e para μ suficientemente grande se $2 < q \le 4$.

4.2 Potencial periódico

4.2.1 Formulação Variacional

No Capítulo 3, consideramos o sistema (\mathcal{KGM}_V) com um potencial satisfazendo a condição (V2). Nesta seção admitiremos que o potencial V satisfaz as condições (V1) e (V2). Nesse sentido, a estrutura variacional será a mesma daquela descrita na Seção 3.2, a qual exibiremos brevemente agora.

Consideraremos o espaço de Sobolev E com norma

$$||u||_E^2 = \int_{\mathbb{R}^3} (|\nabla u|^2 + V(x)u^2) dx \tag{4.1}$$

a qual é equivalente à norma usual de Sobolev em $H^1(\mathbb{R}^3)$.

Estudaremos soluções positivas do sistema (\mathcal{KGM}_V) com o auxílio do funcional de Euler-Lagrange

$$I:E\to\mathbb{R}$$

dado por

$$I(u) = \frac{1}{2} \left(\int_{\mathbb{R}^3} [|\nabla u|^2 + V(x)u^2 - \omega \phi_u u_+^2] \, dx \right) - \frac{\mu}{q} \int_{\mathbb{R}^3} u_+^q \, dx - \frac{1}{6} \int_{\mathbb{R}^3} u_+^6 \, dx \tag{4.2}$$

o qual, conforme exposto na Seção 2.2, está bem definido e é de classe C^1 , com derivada de Fréchet dada por

$$\langle I'(u), v \rangle = \int_{\mathbb{R}^3} \left(\langle \nabla u, \nabla v \rangle + V(x)uv - (2\omega + \phi_u)\phi_u u_+ v - \mu u_+^{q-1}v - u_+^5 v \right) dx, \quad (4.3)$$

 $\forall v \in E$, onde $u_+ = \max\{u, 0\}$.

4.2.2 Prova do Teorema 1.3

Iniciaremos este estudo mostrando que o funcional I satisfaz o Teorema do Passo da Montanha e a seguir analisaremos o comportamento das sequências de Palais-Smale.

Lema 4.1. O funcional I satisfaz as seguintes condições:

- (i) Existem constantes positivas β , ρ tais que $I(u) \geq \beta$ para $||u||_E = \rho$.
- (ii) Existe $u_1 \in E \text{ com } ||u_1||_E > \rho \text{ tal que } I(u_1) < 0.$

Demonstração. Usando as imersões de Sobolev, temos

$$I(u) \ge C_1 ||u||_E^2 - C_2 ||u||_E^q - C_3 ||u||_E^6,$$

Como q>2, existem $\beta, \rho>0$ tais que $\inf_{\|u\|=\rho}J(u)>\beta$, provando (i). Seja $u\in E$ então, para $t\geq 0$ e pela Proposição 2.1 concluímos que

$$I(tu) \le C_4 t^2 ||u||_E^2 + \frac{\omega^2}{2} t^2 ||u||_2^2 - \frac{\mu}{q} t^q ||u||_q^q - \frac{1}{6} t^6 ||u||_6^6.$$

Como q>2, existe $u_1\in E,\,u_1:=tu$ com t suficientemente grande tal que $\|u_1\|_E>\rho$ e $I(u_1)<0$, provando (ii).

Pelo Lema acima e usando o Teorema do Passo da Montanha de Ambrosetti-Rabinowitz sem a condição $(PS)_c$ (Apêndice A.6), segue que existe uma sequência de Palais-Smale $(u_n) \subset E$ como em (3.6), ou seja,

$$I(u_n) \stackrel{n \to \infty}{\longrightarrow} c$$
 e $I'(u_n) \stackrel{n \to \infty}{\longrightarrow} 0$

onde c é dado por

$$c := \inf_{\gamma \in \Gamma} \max_{0 < t \le 1} I(\gamma(t))$$

e

$$\Gamma = \{ \gamma \in \mathcal{C}([0,1], E) \mid I(\gamma(0)) = 0, I(\gamma(1)) < 0 \}.$$

Como o Lema 3.5 continua válido para este caso, através do Lema 3.6 e da expressão (3.14) temos que (ϕ_{u_n}) é limitada em $\mathcal{D}^{1,2}(\mathbb{R}^3)$. Assim, passando a subsequência se necessário, podemos assumir, ao $n \to \infty$,

$$u_n \rightharpoonup u$$
, fracamente em E

$$\phi_{u_n} \rightharpoonup \varphi$$
, fracamente em $\mathcal{D}^{1,2}(\mathbb{R}^3)$

Lema 4.2. $\varphi = \phi_u \ e \ \phi_{u_n} \to \phi_u \ fortemente \ em \ \mathcal{D}^{1,2}(\mathbb{R}^3) \ ao \ n \to \infty.$

Demonstração. Veja a prova do Lema 2.5.

Lema 4.3. Seja $(u_n, \phi_{u_n}) \rightharpoonup (u, \phi_u)$ fracamente em $E \times \mathcal{D}^{1,2}(\mathbb{R}^3)$ ao $n \to \infty$ com $u \neq 0$. Então (u, ϕ_u) é solução fraca do sistema (KGM).

Demonstração. Seja $u_n \rightharpoonup u \neq 0$ em E. Então, $u_n \rightharpoonup u$ em $E|_B$, onde $B \subset \mathbb{R}^3$ é aberto e limitado. Assim, $u_n \to u$ em $L^s(B)$, $2 \leq s \leq 6$ e, ou seja,

$$\lim_{n \to \infty} ||u_n - u||_{L^s(B)}^s = 0.$$

Aplicando um resultado devido a Brezis-Lieb (veja Brezis e Lieb [14] ou Kavian [36]) obtemos

$$\int_{B} u_{n+}^{s} dx = \int_{B} u_{+}^{s} dx + o(1)$$
(4.4)

E assim,

$$\int_{\text{supp}(v)} u_{n+}^s v \, dx = \int_{\text{supp}(v)} u_+^s v \, dx + o(1), \quad \forall \, v \in C_0^{\infty}(\mathbb{R}^3)$$
 (4.5)

Como $C_0^{\infty}(\mathbb{R}^3)$ é denso em E, segue que

$$\int_{\mathbb{R}^3} u_{n+}^s v \, dx = \int_{\mathbb{R}^3} u_+^s v \, dx + o(1), \quad \forall \, v \in E$$
 (4.6)

onde escolhemos s = q - 1 ou s = 5.

Uma vez que $I'(u_n) \to 0$ ao $n \to \infty$ temos, $\forall v \in E$,

$$\int_{\mathbb{R}^{3}} (\langle \nabla u_{n}, \nabla v \rangle + V(x)u_{n+}v) dx = 2 \int_{\mathbb{R}^{3}} \omega \phi_{u_{n}} u_{n+}v dx + \int_{\mathbb{R}^{3}} \phi_{u_{n}}^{2} u_{n+}v dx + + \mu \int_{\mathbb{R}^{3}} u_{n+}^{q-1}v dx + \int_{\mathbb{R}^{3}} u_{n+}^{5}v dx + o_{n}(1)$$
(4.7)

Provaremos que

$$2\int_{\mathbb{R}^3} \omega \phi_{u_n} u_{n+} v \, dx + \int_{\mathbb{R}^3} \phi_{u_n}^2 u_{n+} v \, dx \stackrel{n \to \infty}{\longrightarrow} 2\int_{\mathbb{R}^3} \omega \phi_u u_+ v \, dx + \int_{\mathbb{R}^3} \phi_u^2 u_+ v \, dx \tag{4.8}$$

$$\int_{\mathbb{R}^3} u_{n+}^{q-1} v \, dx \stackrel{n \to \infty}{\longrightarrow} \int_{\mathbb{R}^3} u_+^{q-1} v \, dx \tag{4.9}$$

e

$$\int_{\mathbb{D}^3} u_{n+}^5 v \xrightarrow{n \to \infty} \int_{\mathbb{D}^3} u_+^5 v. \tag{4.10}$$

Verificação de (4.8).

A convergência em (4.8) segue da convergência de (2.24) no Capítulo 2 considerando N=3 e $(u_n)=(u_{n+})$.

Verificação de (4.9)-(4.10).

As convergências em (4.9) e (4.10) seguem de (4.6).

Portanto, concluímos que

$$\langle I'(u), v \rangle = 0, \quad \forall v \in E.$$
 (4.11)

Considerando $v=u_-$ em (4.11) temos $\|u_-\|_E=0$ e, assim, $u\geq 0$. Supõe que existe

 $x_0 \in \mathbb{R}^3$ tal que $u(x_0) = 0$. Pela desigualdade de Harnack (veja Gilbarg e Trudinger [34, Teorema 8.20, pág. 199]), temos

$$\sup_{\mathbb{R}^3} u \le C \inf_{\mathbb{R}^3} u = 0$$

implicando que u é identicamente nula, uma contradição. Portanto u > 0.

Assim, por (4.8), (4.9) e (4.10) juntamente com (4.7), concluímos que (u, ϕ_u) é solução fraca para o sistema (\mathcal{KGM}), onde u é solução positiva.

Em vista da falta de compacidade, devemos provar que u não é de fato identicamente nulo. Para isto, precisaremos de alguma propriedade de compacidade na sequência (u_n) , sendo esta caracterizada pelo seguinte Lema devido a Montecchiari [42]

Lema 4.4. Seja (u_n) uma sequência $(PS)_c$ tal que $u_n \rightharpoonup 0$ fracamente em E, ao $n \rightarrow \infty$. Então,

(A) $u_n \stackrel{n \to \infty}{\longrightarrow} 0$ fortemente em E

ou

(B) Existem
$$\rho, \eta > 0$$
, $(y_n) \in \mathbb{R}^3$ tais que $\limsup_{n \to \infty} \int_{B_{\rho}(y_n)} u_{n+}^2 dx \ge \eta$.

Demonstração. Suponha que (B) não ocorre, isto é, existe $\bar{r} > 0$ tal que

$$\limsup_{n \to \infty} \int_{B_{\bar{r}}(y_n)} u_{n+}^2 dx = 0.$$

Assim, por Lions [38], obtemos que $u_{n+} \to 0$ em $L^s(\mathbb{R}^3)$ ao $n \to \infty$, 2 < s < 6. Como $\langle I'(u_n), u_n \rangle \to 0$ ao $n \to \infty$ e

$$-2\int_{\mathbb{R}^3} \omega \phi_{u_n} u_n^2 dx - \int_{\mathbb{R}^3} \phi_{u_n} u_n^2 dx \le \omega \|\phi_{u_n}\|_6 \|u_n\|_{12/5}^2,$$

concluímos que

$$||u_n||^2 = \int_{\mathbb{R}^3} u_n^6 + o_n(1), \quad n \to \infty.$$

Argumentando como na prova do Lema 3.7, concluímos que $c \geq \frac{1}{3}S^{3/2}$, uma contradição. Assim, (A) é satisfeita e termina a prova do Lema 4.4.

Se $u \neq 0$, então pelo Lema 4.3, (u, ϕ_u) é solução fraca do sistema (\mathcal{KGM}_V) .

No entanto, se u=0, pelo Lema 4.4 existem $\rho, \eta > 0$, $(y_n) \subset \mathbb{R}^3$ tal que

$$\lim_{n \to \infty} \sup_{B_{\rho+1}(y_n)} u_{n+}^2 \, dx \ge \eta > 0. \tag{4.12}$$

Defina $v_n(x):=u_n(x-y_n),\ \forall x\in\mathbb{R}^3.$ Como V é 1-periódica e $\phi_{u_n}(x-y_n)=\phi_{v_n}(x)$, então

$$||v_n||_E = ||u_n||_E$$
, $I(v_n) = I(u_n)$ e $I'(v_n) \stackrel{n \to \infty}{\longrightarrow} 0$.

Logo, temos que $I(v_n) \to c$ e $I'(v_n) \to 0$ ao $n \to \infty$. E assim, também deduzimos que (v_n) é uma sequência limitada em E e ϕ_{v_n} é limitada em $\mathcal{D}^{1,2}(\mathbb{R}^3)$. Segue que existe $(v,\phi_0) \in E \times \mathcal{D}^{1,2}(\mathbb{R}^3)$ tal que

$$v_n \rightharpoonup v$$
, fracamente em $E, n \to \infty$,

$$\phi_{v_n} \rightharpoonup \phi_0$$
, fracamente em $\mathcal{D}^{1,2}(\mathbb{R}^3)$, $n \to \infty$.

Além disso, note que $v \neq 0$. De fato, usando (4.12), temos

$$0 < \eta \le ||v_n||_{L^2(B_{\rho+1})}$$

$$\le ||v_n - v||_{L^2(B_{\rho+1})} + ||v||_{L^2(B_{\rho+1})}$$

Logo, como $v_n \rightharpoonup v$ em E, obtemos $v \neq 0$.

Finalmente, aplicando Lemas 4.2 e 4.3, concluímos que (v, ϕ_v) é solução fraca para o sistema (\mathcal{KGM}_V) com v positivo.

4.3 Potencial não-periódico

4.3.1 Formulação variacional

O espaço de Sobolev que utilizaremos é

$$E_W = \{ u \in E : \int_{\mathbb{R}^3} \left(|\nabla u|^2 + (V - W)u^2 \right) dx < \infty \}.$$

onde E_W está munido da norma usual em $H^1(\mathbb{R}^3)$ dada por

$$||u||_W^2 = ||u||_E^2 - \int_{\mathbb{R}^3} Wu^2 dx$$

Considere o funcional

$$I_W: E_W \to \mathbb{R}$$

associado ao sistema (\mathcal{KGM}_{\sharp}) e definido por

$$I_W(u) = \frac{1}{2} \int_{\mathbb{R}^3} (|\nabla u|^2 + V_{\sharp} u^2) \, dx - \frac{1}{2} \int_{\mathbb{R}^3} \omega \phi_u u^2 \, dx - \frac{\mu}{q} \int_{\mathbb{R}^3} u_+^q \, dx - \frac{1}{6} \int_{\mathbb{R}^3} u^6 \, dx \quad (4.13)$$

onde $V_{\sharp} = V - W$ e, além disso,

$$I_0 = I$$
, $\|\cdot\|_0 = \|\cdot\|_E$, e $E_0 = E$ para $W = 0$.

Defina α como em (3.25), ou seja,

$$\alpha = \inf_{u \in \mathcal{N}} I(u),$$

onde

$$\mathcal{N} = \{ u \in E \setminus \{0\} \mid \langle I'(u), u \rangle = 0 \}$$

o qual não é vazio pelo Teorema 1.3.

4.3.2 Lemas auxiliares

O seguinte Lema é um resultado crucial para a demonstração do Teorema 1.4.

Lema 4.5. *i*) $\alpha > 0$.

ii) Existe $u \in \mathcal{N}$ tal que $I(u) = \alpha$.

Demonstração. Verificação de (i). Suponha por absurdo que $\alpha=0$. Então, existe $u_n\in\mathcal{N}$ tal que $I(u_n)\to \inf_{u\in\mathcal{N}}I(u)=\alpha=0$ ao $n\to\infty$, e daí $\langle I'(u_n),u_n\rangle=0,\ \forall n.$

Consequentemente,

$$q o_{n}(1) = qI(u_{n}) - \langle I'(u_{n}), u_{n} \rangle$$

$$= \left(\frac{q}{2} - 1\right) \|u_{n}\|^{2} + \left(2 - \frac{q}{2}\right) \int_{\mathbb{R}^{3}} \omega \phi_{u_{n}} u_{n}^{2} dx + \int_{\mathbb{R}^{3}} \phi_{u_{n}}^{2} u_{n}^{2} dx + \left(1 - \frac{q}{6}\right) \|u_{n}\|_{6}^{6}$$

$$\geq \|u_{n}\|^{2} + \frac{4 - q}{2} \int_{\mathbb{R}^{3}} \omega \phi_{u_{n}} u_{n}^{2} dx$$

Como no Lema 3.6, existem dois casos a serem considerados: 2 < q < 4 e $4 \le q < 6$. No caso $4 \le q < 6$, concluímos que $||u_n|| \to 0$ usando a Proposição 2.1. Se 2 < q < 4, pela condição (V2) e pela Proposição 2.1 concluímos novamente que $||u_n|| \to 0$ ao $n \to \infty$.

Em ambos os casos chega-se a um absurdo, provando (i).

Verificação de (ii). A prova será feita em diversas etapas:

Passo 1. $\alpha \geq c$

Primeiramente, devemos provar que a função $\psi(t):=I(tu),\ t\geq 0$ tem único ponto crítico que corresponde ao seu máximo atingido em t=1.

Observação 4.1. Note que $\phi_{tu}=t^2\phi_u$. De fato, como o operador linear L definido por $L(\psi):=\Delta\psi-u^2\psi=\omega u^2$ é injetivo, pela Proposição 2.1 temos $\phi_{tu}=t^2\phi_u$, uma vez que $L(\phi_{tu})=L(t^2\phi_u)$.

Seja $u \in \mathcal{N}$ e defina

$$a = \frac{1}{2} \|u\|^2$$
 $b = -\frac{1}{2} \int_{\mathbb{R}^3} \omega \phi_u u^2 dx$ $c = \frac{1}{q} \int_{\mathbb{R}^3} u^q dx$ $d = \frac{1}{6} \int_{\mathbb{R}^3} u^6 dx$

então, considerando a observação feita acima,

$$\psi(t) = at^2 + bt^4 - ct^q - dt^6$$

onde a, b, c e d são constantes positivas.

É fácil ver que ψ tem um ponto de máximo para q > 2. Usando semelhante ideia usada por Ruiz [45], basta concluir que este é o único ponto crítico de ψ .

Considere algumas derivadas de ψ :

$$\psi'(t) = 2at + 4bt^3 - qct^{q-1} - 6dt^5$$

$$\psi''(t) = 2a + 12bt^2 - q(q-1)ct^{q-2} - 30dt^4$$

Claramente, $\psi''(t)$ é positivo para t suficientemente pequeno e estritamente decrescente para t suficientemente grande. Além disso, $\lim_{t\to +\infty} \psi''(t) = -\infty$. Assim, existe $t_2>0$ tal que $\psi''(t_2)=0$ e $\psi''(t_2-t)>0$ para $t< t_2$.

Como $\psi'(t)$ é crescente para $t < t_2$ e $\psi'(0) = 0$, então $\psi'(t)$ assume valores positivos pelo menos em $t \in (0, t_2)$. Para $t > t_2$, $\psi'(t)$ decresce tendendo a $-\infty$.

Portanto, existe único $t_1 > t_2$ tal que $\psi'(t_1) = 0$.

Finalmente, como $u \in \mathcal{N}$, concluímos que

$$\max_{t>0} I(tu) = I(u). \tag{4.14}$$

Considere $t_0 \in \mathbb{R}$ e $\bar{u} = t_0 u$ tal que $I(\bar{u}) < 0$. Assim $\gamma(t) = t\bar{u} \in \Gamma$ e por (4.14) segue que

$$I(u) = \max_{t>0} I(tu) \ge c.$$

Consequentemente, $\inf_{u \in \mathcal{N}} I(u) \geq c$.

Passo 2. $\alpha \leq c$

Seja $(u_n)_n\subset E$ uma sequência de Palais Smale como em (3.6), então (u_n) é limitada e $I'(u_n)u_n\to 0$ ao $n\to\infty$. Portanto, para cada n existe único $(t_n)\in\mathbb{R}^+$ tal que $I'(t_nu_n)t_nu_n=0, \forall n$ e por isso, $(t_nu_n)_n\subset\mathcal{N}$.

Mostraremos agora que (t_n) é uma sequência limitada.

Como $I'(t_n u_n)t_n u_n = 0, \forall n$, então

$$t_n^2 \|u_n\|^2 = t_n^4 \int_{\mathbb{R}^3} 2\omega \phi_{u_n} u_n^2 dx + t_n^6 \int_{\mathbb{R}^3} \phi_{u_n}^2 u_n^2 dx + \mu t_n^q \int_{\mathbb{R}^3} u_{n+}^q dx + t_n^6 \int_{\mathbb{R}^3} u_n^6 dx$$

e portanto,

$$||u_n||^2 = t_n^2 \int_{\mathbb{R}^3} 2\omega \phi_{u_n} u_n^2 dx + t_n^4 \int_{\mathbb{R}^3} \phi_{u_n}^2 u_n^2 dx + \mu t_n^{q-2} \int_{\mathbb{R}^3} u_{n+1}^q dx + t_n^4 \int_{\mathbb{R}^3} u_n^6 dx. \quad (4.15)$$

Note que (t_n) não converge a zero ao $n \to \infty$, pois daí teríamos $I(u_n) \to 0$, o que entraria em contradição com (3.6). Além disso, (t_n) não converge a $+\infty$, ao $n \to \infty$. De fato, dividindo (4.15) por t_n^4 , obtemos

$$\frac{1}{t_n^4} \|u_n\|^2 = \frac{1}{t_n^2} \int_{\mathbb{R}^3} 2\omega \phi_{u_n} u_n^2 dx + \int_{\mathbb{R}^3} \phi_{u_n}^2 u_n^2 dx + \frac{\mu}{t_n^{6-q}} \int_{\mathbb{R}^3} u_{n+}^q dx + \int_{\mathbb{R}^3} u_n^6 dx.$$

Assuma que $t_n \to +\infty$ ao $n \to \infty$, então

$$\int_{\mathbb{R}^3} \phi_{u_n}^2 u_n^2 \, dx = \int_{\mathbb{R}^3} u_n^6 \, dx = o_n(1)$$

e pela desigualdade de interpolação,

$$\int_{\mathbb{R}^3} u_{n+}^q \, dx \stackrel{n \to \infty}{\longrightarrow} 0$$

donde concluímos que $||u_n|| \to 0$ ao $n \to \infty$, contradizendo o fato de que c > 0.

Portanto, a sequência (t_n) é limitada, isto é, existe $t_0 \in (0, \infty)$ tal que $t_n \to t_0$ (passando a subsequência se necessário). Provaremos que $t_0 = 1$.

Como $I'(u_n)u_n \to 0$, ao $n \to \infty$, temos

$$||u_n||^2 = \int_{\mathbb{R}^3} 2\omega \phi_{u_n} u_n^2 dx + \int_{\mathbb{R}^3} \phi_{u_n}^2 u_n^2 dx + \mu \int_{\mathbb{R}^3} u_{n+}^q dx + \int_{\mathbb{R}^3} u_n^6 dx + o_n(1).$$
 (4.16)

Multiplicando (4.16) por $-t_n^2$ e adicionando à equação (4.15), obtemos

$$(1-t_n^2)\|u_n\|^2 = (t_n^4 - t_n^2) \int_{\mathbb{R}^3} \phi_{u_n}^2 u_n^2 dx + \mu(t_n^{q-2} - t_n^2) \int_{\mathbb{R}^3} u_{n+1}^q dx + (t_n^4 - t_n^2) \int_{\mathbb{R}^3} u_n^6 dx.$$

Fazendo $n \to \infty$,

$$0 = (t_0^2 - 1)\ell_1 + t_0^2(t_0^2 - 1)\ell_2 + \mu t_0^2(t_0^{q-4} - 1)\ell_3 + t_0^2(t_0^2 - 1)\ell_4,$$

onde

$$\ell_1 = ||u_n||^2 \quad \ell_2 = \int_{\mathbb{R}^3} \phi_{u_n}^2 u_n^2 dx \quad \ell_3 = \int_{\mathbb{R}^3} u_{n+}^q dx \quad \ell_4 = \int_{\mathbb{R}^3} u_n^6 dx$$

e $\ell_i \ge 0$ para todo i = 1, 2, 3, 4.

Se 4 < q < 6, então $t_0 = 1$ para cada $\mu > 0$ e se $2 < q \le 4$ então também teremos $t_0 = 1$ ao escolher μ suficientemente grande.

Considere

$$\inf_{u \in \mathcal{N}} I(u) \leq I(t_n u_n)
= t_n^2 \Big[I(u_n) + \frac{1}{2} (1 - t_n^2) \int_{\mathbb{R}^3} \omega \phi_{u_n} u_n^2 dx + \frac{\mu}{q} (1 - t_n^{q-2}) \int_{\mathbb{R}^3} u_{n+}^q dx + \frac{1}{6} (1 - t_n^4) \int_{\mathbb{R}^3} u_n^6 dx \Big]
= (t_n^2 - 1) I(u_n) + I(u_n) + o_n(1).$$

Tomando o limite ao $n \to \infty$, obtemos

$$\alpha \leq c$$
,

o que implica $\alpha = c$, pelo Passo 1.

Passo 3.
$$I(u) = \alpha$$

Uma vez que u é uma solução positiva do problema (\mathcal{KGM}_V), ou seja, $u \in \mathcal{N}$, então

 $I(u) \ge \alpha$.

Por outro lado, como $\langle I'(u_n), u_n \rangle \to 0$ ao $n \to \infty$, temos

$$\alpha = c = I(u_n) + o_n(1)$$

$$= I(u_n) - \frac{1}{q} \langle I'(u_n), u_n \rangle + o_n(1)$$

$$= \frac{q-2}{2q} ||u_n||^2 + \frac{4-q}{2q} \int_{\mathbb{R}^3} \omega \phi_{u_n} u_n^2 dx + \frac{1}{q} \int_{\mathbb{R}^3} \phi_{u_n}^2 u_n^2 dx + \frac{6-q}{6q} \int_{\mathbb{R}^3} u_n^6 dx + o_n(1).$$

Se $4 \leq q < 6$, através do Lema de Fatou juntamente com a Proposição 2.1 obtemos, ao $n \to \infty$,

$$\alpha \geq \frac{q-2}{2q} \|u\|^2 + \frac{4-q}{2q} \int_{\mathbb{R}^3} \omega \phi_u u^2 dx + \frac{1}{q} \int_{\mathbb{R}^3} \phi_u^2 u^2 dx + \frac{6-q}{6q} \int_{\mathbb{R}^3} u^6 dx$$

$$= I(u) - \frac{1}{q} \langle I'(u), u \rangle$$

$$= I(u).$$

Para o caso 2 < q < 4, teremos

$$\alpha \geq \frac{q-2}{2q} \int_{\mathbb{R}^3} |\nabla u_n|^2 dx + \frac{1}{2q} \int_{\mathbb{R}^3} [(q-2)V_0 - (4-q)\omega^2] u_n^2 dx + \frac{1}{q} \int_{\mathbb{R}^3} \phi_{u_n}^2 u_n^2 dx + \frac{6-q}{6q} \int_{\mathbb{R}^3} u_n^6 dx + o_n(1).$$

donde, aplicando novamente o Lema de Fatou e usando a condição (V2), concluímos também que $\alpha \geq I(u)$, o que finaliza o Passo 3 e, portanto, a prova do Lema 4.5.

4.3.3 Prova do Teorema 1.4

Utilizando a prova do Lema 4.5, podemos escolher $u \in \mathcal{N}$ tal que

$$\alpha = I(u)$$
 e $I'(u)\varphi = 0, \forall \varphi \in E.$

Note que assim como o funcional I, I_W também satisfaz a geometria do passo da montanha, então existe sequência $(PS)_{c_W}$ $(u_n) \subset E_W$ tal que

$$I_W(u_n) \xrightarrow{n \to \infty} c_W \quad \mathbf{e} \quad I'_W(u_n) \xrightarrow{n \to \infty} 0$$

onde $c_W := \inf_{\gamma \in \Gamma_W} \max_{0 \le t \le 1} J(\gamma(t))$ e

$$\Gamma_W = \{ \gamma \in \mathcal{C}([0, 1], E_W) | I(\gamma(0)) = 0, I(\gamma(1)) < 0 \}. \tag{4.17}$$

Escolha $t^* \in \mathbb{R}$ tal que

$$c_W \le \sup_{t>0} I_W(tu) = I_W(t^*u)$$

então, pela condição (V3) e $0 < u \in \mathcal{M}$, temos

$$c_W < I(t^*u) \le \sup_{t \ge 0} I(tu) = I(u) = \alpha.$$

Logo, $c_W < \frac{1}{3}S^{3/2}$, pois $c_W < \alpha = c$.

Analogamente ao Lema 3.6, a sequência (u_n) é limitada E_W e também (ϕ_{u_n}) é limitada em $\mathcal{D}^{1,2}(\mathbb{R}^3)$. Assim, ao $n \to \infty$ e passando a subsequência se necessário,

$$u_n \rightharpoonup \bar{u}$$
 fracamente em E_W $\phi_{u_n} \rightharpoonup \bar{\phi}_u$ fracamente em $\mathcal{D}^{1,2}(\mathbb{R}^3)$

Afirmação 5. $\bar{u} \neq 0$

Prova da Afirmação 5:

Supõe por absurdo que $\bar{u}=0$, isto é, $u_n\rightharpoonup 0$ fracamente em E_W ao $n\to\infty$. Como $W\in L^{3/2}(\mathbb{R}^3)$,

$$\int_{\mathbb{R}^3} W u_n^2 \, dx \longrightarrow 0, \quad \text{ao } n \to \infty.$$
 (4.18)

Observando que $W(x) \ge 0$ e fazendo $v \in E \subset E_W$ tal que $||v|| \le 1$, obtemos

$$|(I'(u_n) - I'_W(u_n))v| = \left| \int_{\mathbb{R}^3} W u_{n+} v \, dx \right| = \left| \int_{\mathbb{R}^3} W^{\frac{1}{2}} u_{n+} W^{\frac{1}{2}} v \, dx \right|$$

$$\leq \left(\int_{\mathbb{R}^3} |W| |u_n|^2 \, dx \right)^{\frac{1}{2}} \left(\int_{\mathbb{R}^3} |W| |v|^2 \, dx \right)^{\frac{1}{2}}$$

$$\leq C \left(\int_{\mathbb{R}^3} |W| |u_n|^2 \, dx \right)^{\frac{1}{2}},$$

para alguma constante C>0. Além disso, ao $n\to\infty$, temos

$$\left| I(u_n) - I_W(u_n) \right| = \left| \int_{\mathbb{R}^3} W u_n^2 \, dx \right| = o_n(1).$$

Assim, por (4.18),

$$I'(u_n) \stackrel{n \to \infty}{\longrightarrow} 0,$$

e

$$I(u_n) \stackrel{n \to \infty}{\longrightarrow} c_W < \alpha.$$

Analogamente como na prova do Lema 4.5, existe sequência $(t_n)\subset\mathbb{R}$ satisfazendo

$$t_n \stackrel{n \to \infty}{\longrightarrow} 1$$
, e $\langle I'(t_n u_n), t_n u_n \rangle = 0$, $\forall n$

donde

$$c_W \ge \alpha$$
,

o que é uma contradição e, portanto, $\bar{u} \neq 0.$

Argumentando como na prova do Lema 4.3, $(\bar{u}, \bar{\phi_u})$ é uma solução fraca para o sistema (\mathcal{KGM}_V) e a prova do Teorema 1.4 é concluída.

Apêndice

 ${\mathcal A}$

Apêndice

A.1 As equações de Klein-Gordon acopladas com Maxwell

A fim de deduzir as equações Klein-Gordon-Maxwell consideraremos, por simplicidade, apenas o caso \mathbb{R}^3 .

As equações não-lineares do tipo Klein-Gordon são da forma

$$\frac{\partial^2 \psi}{\partial t^2} - \Delta \psi + m_0^2 \psi - |\psi|^{p-2} \psi = 0 \quad \text{em } \mathbb{R}^3$$
 (A.1)

onde $\psi = \psi(x,t) \in C(x \in \mathbb{R}^3, t \in \mathbb{R}), m_0 \in \mathbb{R}$ constante e p > 2.

Recentemente muitos trabalhos foram devotados a buscar soluções na forma de ondas viajantes da equação (A.1), ou seja, soluções da forma:

$$\psi(x,t) = e^{i\omega t}u(x), \quad \omega \in \mathbb{R}$$

Nesse sentido, as equações não-lineares de Klein-Gordon serão reduzidas a uma equação semilinear elíptica onde resultados de existência já foram estabelecidos

Pretendemos aqui construir um modelo que descreve os campos não-lineares de Klein-Gordon interagindo com o campo eletromagnético **E-H**. Seguindo ideias já introduzidas por Benci e Fortunato [8, 10], Benci, Fortunato, Masiello e Pisani [7], Coclite [18], Coclite e Georgiev [19], d' Avenia e Pisani [23] e Esteben, Georgiev e Sere [28], vamos estudar um sistema de equações cujas variáveis são a função $\psi = \psi(x,t)$ e os potenciais \mathbf{A}, Φ

$$\mathbf{A}: \mathbb{R}^3 \times \mathbb{R} \to \mathbb{R}^3, \quad \Phi: \mathbb{R}^3 \times \mathbb{R} \to \mathbb{R}$$
 (A.2)

que estão relacionadas a E-H pelas equações de Maxwell

$$\mathbf{E} = -\left(\nabla\Phi + \frac{\partial\mathbf{A}}{\partial t}\right)$$

$$\mathbf{H} = \nabla \times \mathbf{A}$$
(A.3)

Considere a equação (A.1). A densidade Lagrangeana relacionada à (A.1) é dada por

$$\mathcal{L}_{KG} = \frac{1}{2} \left[\left| \frac{\partial \psi}{\partial t} \right|^2 - |\nabla \psi|^2 - m_0^2 |\psi|^2 \right] + \frac{1}{p} |\psi|^p. \tag{A.4}$$

A interação de ψ com o campo eletromagnético é normalmente descrito (veja Felsager [30]) substituindo em (A.4) as derivadas usuais $\frac{\partial}{\partial t}$, ∇ com as derivadas covariantes

$$\frac{\partial}{\partial t} + ie\phi, \quad \nabla - ie\mathbf{A}.$$

onde e é o campo elétrico.

E assim, resulta a seguinte densidade Lagrangeana

$$\mathcal{L}_{KGM} = \frac{1}{2} \left[\left| \frac{\partial \psi}{\partial t} + ie\phi\psi \right|^2 - |\nabla\psi - ie\mathbf{A}\psi|^2 - m_0^2 |\psi|^2 \right] + \frac{1}{p} |\psi|^p.$$

Escolhendo

$$\psi(x,t) = u(x,t)e^{iS(x,t)},$$

onde $u,S:\mathbb{R}^3\times\mathbb{R}\to\mathbb{R}$, a densidade Lagrangeana se transforma em

$$\mathcal{L}_{KGM} = \frac{1}{2} \left\{ u_t^2 - |\nabla u|^2 - \left[|\nabla S - e\mathbf{A}|^2 - (S_t + e\phi)^2 + m_0^2 \right] u^2 \right\} + \frac{1}{p} |u|^p.$$

Considere agora a densidade Lagrangeana do campo eletromagnético E-H

$$\mathcal{L}_0 = \frac{1}{2}(|\mathbf{E}|^2 - |\mathbf{H}|^2) = \frac{1}{2}|\mathbf{A}_t + \nabla\phi|^2 - \frac{1}{2}|\nabla\times\mathbf{A}|^2.$$

Portanto, a ação total é dada por

$$S = \iint \mathcal{L}_{KGM} + \mathcal{L}_{KGM}.$$

Fazendo agora a variação de S com respeito a u, S, ϕ e A, respectivamente, obtemos

$$u_{tt} - \Delta u + \left[|\nabla S - e\mathbf{A}|^2 - (S_t + e\phi)^2 + m_0^2 \right] u - |u|^{p-2} u = 0,$$

$$\operatorname{div}(\mathbf{A}_t + \nabla \phi) = e(S_t + e\phi) u^2,$$

$$\frac{\partial}{\partial t} \left[(S_t + e\phi) u^2 \right] - \operatorname{div}[(\nabla S - e\mathbf{A}) u^2] = 0,$$

$$\nabla \times (\nabla \times \mathbf{A}) + \frac{\partial}{\partial t} (\mathbf{A}_t + \nabla \phi) = e(\nabla S - e\mathbf{A}) u^2$$
(A.5)

Estamos interessados em encontrar soluções do tipo ondas viajantes para as equações em (A.5), ou seja, soluções na forma

$$u = u(x), \quad S = \omega t, \quad \mathbf{A} = 0, \quad \phi = \phi(x), \quad \omega \in \mathbb{R}.$$

Assim, enquanto as duas últimas equações de (A.5) são identicamente satisfeitas, as duas primeiras equações se transformam em

$$\begin{cases} -\Delta u + [m_0^2 - (\omega + e\phi)^2]u - |u|^{p-2}u = 0 & \text{em} \quad \mathbb{R}^3 \\ \Delta \phi = e(\omega + e\phi)u^2 & \text{em} \quad \mathbb{R}^3 \end{cases}$$

Uma vez que $e^2=1$, podemos escolher e=1 donde finalmente concluímos que

$$\begin{cases} -\Delta u + [m_0^2 - (\omega + \phi)^2]u - |u|^{p-2}u = 0 & \text{em} \quad \mathbb{R}^3 \\ \Delta \phi = (\omega + e\phi)u^2 & \text{em} \quad \mathbb{R}^3 \end{cases}$$

REFERÊNCIA: Benci e Fortunato [9].

A.2 O funcional de Euler-Lagrange associado ao sistema (\mathcal{KGM})

Para N=3 e N=4 considere o sistema de Klein-Gordon-Maxwell

$$\begin{cases} -\Delta u + [m_0^2 - (\omega + \phi)^2]u = \mu |u|^{q-2}u + |u|^{2^*-2}u & \text{em} \quad \mathbb{R}^N \\ \Delta \phi = (\omega + \phi)u^2 & \text{em} \quad \mathbb{R}^N \end{cases}$$

onde $2 < q < 2^* = 2N/(N-2)$, $\mu > 0$, $m_0 > 0$ e $\omega \neq 0$ são constantes reais e $u, \phi : \mathbb{R}^N \to \mathbb{R}$ são funções incógnitas.

Multiplicando a primeira equação em (\mathcal{KGM}) por uma função $v \in C_0^{\infty}(\mathbb{R})$ e integrando

por partes, obtemos

$$\int_{\mathbb{R}^N} \left(\langle \nabla u, \nabla v \rangle \, dx + [m_0^2 - (\omega + \phi)^2] uv \right) dx = \int_{\mathbb{R}^N} \left(\mu |u|^{q-2} uv + |u|^{2^*-2} uv \right) dx \quad (A.6)$$

Como o espaço das funções $C_0^{\infty}(\mathbb{R})$ é denso em $H^1(\mathbb{R}^N)$, a igualdade (A.6) é válida para todo $v \in H^1(\mathbb{R}^N)$.

Definição A.1. Dizemos que o par $(u, \phi) \in H^1(\mathbb{R}^N) \times \mathcal{D}^{1,2}(\mathbb{R}^N)$ é uma solução fraca para o sistema (KGM) se (u, ϕ) satisfaz a igualdade (A.6).

Proposição A.1. O funcional F definido em (2.1) é de classe C^1 em $H^1(\mathbb{R}^N) \times \mathcal{D}^{1,2}(\mathbb{R}^N)$ e seus pontos críticos são soluções fracas do sistema (\mathcal{KGM}) .

Demonstração. Defina o funcional energia $F:H^1(\mathbb{R}^N)\times \mathcal{D}^{1,2}(\mathbb{R}^N)\to \mathbb{R}$ por

$$F(u,\phi) = \underbrace{\frac{1}{2} \int_{\mathbb{R}^{N}} |\nabla u|^{2} dx}_{F_{1}} \underbrace{-\frac{1}{2} \int_{\mathbb{R}^{N}} |\nabla \phi|^{2} dx}_{F_{2}} \underbrace{+\frac{1}{2} \int_{\mathbb{R}^{N}} [m_{0}^{2} - \omega^{2}] u^{2} dx}_{F_{3}} + \underbrace{-\int_{\mathbb{R}^{N}} \omega \phi u^{2} dx}_{F_{4}} \underbrace{-\frac{1}{2} \int_{\mathbb{R}^{N}} \phi^{2} u^{2} dx}_{F_{5}} \underbrace{-\frac{\mu}{q} \int_{\mathbb{R}^{N}} |u|^{q} dx}_{F_{6}} \underbrace{-\frac{1}{2^{*}} \int_{\mathbb{R}^{N}} |u|^{2^{*}} dx}_{F_{7}}$$
(A.7)

onde
$$F_i: H^1(\mathbb{R}^N) \times \mathcal{D}^{1,2}(\mathbb{R}^N) \to \mathbb{R}, i = 1, ..., 7.$$

Para mostrar a existência da derivada de Fréchet do funcional F, usaremos o Teorema da Convergência Dominada de Lebesgue. A existência da derivada de Fréchet dos termos F_6 e F_7 são provados por Willem [49] enquanto que os termos F_1 e F_2 podem ser provados de forma análoga. Provaremos a existência da derivada de Fréchet apenas para o quarto termo do funcional F, ou seja, F_4 . A prova para F_5 segue de forma semelhante.

Considere a função $p_i: \mathbb{R} \to \mathbb{R}$, $p_i(t) = F_i(u + tv, \phi) + F_i(u, \phi + t\psi)$, i = 1, ..., 7, $u, v \in H^1(\mathbb{R}^N)$ e $\phi, \psi \in \mathcal{D}^{1,2}(\mathbb{R}^N)$.

Note que $p_i(0)=2F_i(u,\phi),$ $p_i'(t)=F_i'(u+tv,\phi)\cdot(v,\psi)+F_i'(u,\phi+t\psi)\cdot(v,\psi).$ Além disso,

$$F'_{i}(u,\phi)\cdot(v,\psi) = p'_{i}(0) = \lim_{t\to 0} \frac{1}{t} \Big[F_{i}(u+tv,\phi) - F_{i}(u,\phi) + F_{i}(u,\phi+t\psi) - F_{i}(u,\phi) \Big].$$

Provaremos que

$$F_4'(u,\phi)\cdot(v,\psi) = -2\int_{\mathbb{R}^N} \omega\phi uv \, dx - \int_{\mathbb{R}^N} \omega\psi u^2 \, dx \tag{A.8}$$

Dado $x \in \mathbb{R}^N$ e 0 < t < 1, pelo Teorema do Valor Médio, existe $0 < \lambda < 1$ tal que

$$\frac{1}{t} \Big[\phi(u+tv)^2 + (\phi+t\psi)u^2 - 2\phi u^2 \Big] = 2\phi v(u+\lambda tv) + \psi u^2
\leq 2|\phi|(|u|+|v|)|v| + |\psi|u^2$$

Usando as imersões de Sobolev $H^1(\mathbb{R}^N) \hookrightarrow L^s(\mathbb{R}^N)$, $2 \leq s \leq 2^*$ e $\mathcal{D}^{1,2}(\mathbb{R}^N) \hookrightarrow L^{2^*}(\mathbb{R}^N)$ juntamente com a desigualdade de Hölder, obtemos

$$2|\phi||v|(|u|+|v|) + |\psi|u^2 \in L^1(\mathbb{R}^N).$$

De fato,

$$\int_{\mathbb{R}^{N}} |\phi||v||u| dx \leq \|\phi\|_{2^{*}} \|u\|_{2^{*}/(2^{*}-2)} \|v\|_{2^{*}/(2^{*}-2)}
\int_{\mathbb{R}^{N}} |\phi|v^{2} dx \leq \|\phi\|_{2^{*}} \|v^{2}\|_{2^{*}/(2^{*}-1)} = \|\phi\|_{2^{*}} \|v\|_{2\cdot 2^{*}/(2^{*}-1)}^{2}
\int_{\mathbb{R}^{N}} |\psi|u^{2} dx \leq \|\psi\|_{2^{*}} \|u^{2}\|_{2^{*}/(2^{*}-1)} = \|\psi\|_{2^{*}} \|u\|_{2\cdot 2^{*}/(2^{*}-1)}^{2}$$

Deste modo, podemos aplicar o Teorema da Convergência Dominada e obtermos

$$\lim_{t \to 0} \frac{1}{t} \Big[F_4(u + tv, \phi) + F_4(u, \phi + t\psi) - 2F_4(u, \phi) \Big] =$$

$$= \lim_{t \to 0} \frac{1}{t} \Big[\int_{\mathbb{R}^N} \Big(-2\omega t\phi uv - \omega t^2 \phi v^2 - \omega t\psi u^2 \Big) dx \Big]$$

$$= -2 \int_{\mathbb{R}^N} \omega \phi uv dx - \int_{\mathbb{R}^N} \omega \psi u^2 dx$$

provando (A.8).

Argumentos similares mostram que

$$F'_1(u,\phi) \cdot (v,\psi) = \int_{\mathbb{R}^N} \langle \nabla u, \nabla v \rangle \, dx$$

$$F'_2(u,\phi) \cdot (v,\psi) = -\int_{\mathbb{R}^N} \langle \nabla \phi, \nabla \psi \rangle \, dx$$

$$F'_3(u,\phi) \cdot (v,\psi) = \int_{\mathbb{R}^N} [m_0^2 - \omega^2] uv \, dx$$

$$F'_5(u,\phi) \cdot (v,\psi) = -\int_{\mathbb{R}^N} \phi^2 uv - \int_{\mathbb{R}^N} \phi \psi u^2 \, dx$$

$$F'_6(u,\phi) \cdot (v,\psi) = -\mu \int_{\mathbb{R}^N} |u|^{q-1} v \, dx$$

$$F'_7(u,\phi) \cdot (v,\psi) = -\int_{\mathbb{R}^N} |u|^{2^*-1} v \, dx$$

Portanto,

$$F'(u,\phi) \cdot (v,\psi) = \int_{\mathbb{R}^N} \langle \nabla u, \nabla v \rangle \, dx - \int_{\mathbb{R}^N} \langle \nabla \phi, \nabla \psi \rangle \, dx + \int_{\mathbb{R}^N} [m_0^2 - \omega^2] uv \, dx$$
$$-2 \int_{\mathbb{R}^N} \omega \phi uv \, dx - \int_{\mathbb{R}^N} \omega \psi u^2 \, dx - \int_{\mathbb{R}^N} \phi^2 uv - \int_{\mathbb{R}^N} \phi \psi u^2 \, dx$$
$$-\mu \int_{\mathbb{R}^N} |u|^{q-2} uv \, dx - \int_{\mathbb{R}^N} |u|^{2^*-2} uv \, dx \tag{A.9}$$

Multiplicando a equação (2.2) por ψ , temos

$$-\int_{\mathbb{R}^N} \langle \nabla \phi, \nabla \psi \rangle \, dx = \int_{\mathbb{R}^N} \omega \psi u^2 \, dx + \int_{\mathbb{R}^N} \phi \psi u^2 \, dx \tag{A.10}$$

Substituindo (A.10) na expressão (A.9), finalmente obtemos

$$F'(u,\phi) \cdot (v,\psi) = \int_{\mathbb{R}^N} \langle \nabla u, \nabla v \rangle \, dx + \int_{\mathbb{R}^N} [m_0^2 - \omega^2] uv \, dx - 2 \int_{\mathbb{R}^N} \omega \phi uv \, dx$$
$$- \int_{\mathbb{R}^N} \phi^2 uv - \mu \int_{\mathbb{R}^N} |u|^{q-2} uv \, dx - \int_{\mathbb{R}^N} |u|^{2^*-2} uv \, dx$$
$$= \int_{\mathbb{R}^N} \langle \nabla u, \nabla v \rangle \, dx + \int_{\mathbb{R}^N} [m_0^2 - (\omega + \phi)^2] uv \, dx$$
$$- \mu \int_{\mathbb{R}^N} |u|^{q-2} uv \, dx - \int_{\mathbb{R}^N} |u|^{2^*-2} uv \, dx$$

provando que os pontos críticos de F são soluções fracas do sistema (\mathcal{KGM}).

Agora provaremos que o funcional energia F é de classe C^1 em $H^1(\mathbb{R}^N) \times \mathcal{D}^{1,2}(\mathbb{R}^N)$.

Sejam $F'_u(u,\phi)$, $F'_\phi(u,\phi)$ as derivadas parciais de F em $(u,\phi) \in H^1(\mathbb{R}^N) \times \mathcal{D}^{1,2}(\mathbb{R}^N)$, ou seja,

$$F'_{u}(u,\phi) \cdot v = \int_{\mathbb{R}^{N}} \left(\langle \nabla u, \nabla v \rangle + [m_{0}^{2} - (\omega + \phi)^{2}]uv - \mu |u|^{q-2}uv - |u|^{2^{*}-2}uv \right) dx$$

$$F'_{\phi}(u,\phi) \cdot \psi = -\int_{\mathbb{R}^{N}} \left(\langle \nabla \phi, \nabla \psi \rangle + (\omega + \phi)u^{2}\psi \right) dx.$$
(A.11)

O termo $-\int_{\mathbb{R}^N} 2\omega\phi uv\,dx$ da derivada $F_u'(u,\phi)\cdot v$ é contínuo. De fato, se $u_n\to u$ em $H^1(\mathbb{R}^N)$, então $u_n\to u$ em $L^s(\mathbb{R}^N)$, $2\leq s\leq 2^*$. Assim, pela desigualdade de Hölder,

$$\left| \int_{\mathbb{R}^N} \phi(u_n - u) v \, dx \right| \le \|\phi\|_{2^*} \|u_n - u\|_{2^*/(2^* - 2)} \|v\|_{2^*/(2^* - 2)} \stackrel{n \to \infty}{\longrightarrow} 0$$

De forma semelhante, os outros termos de $F'_u(u,\phi)\cdot v$, $F'_\phi(u,\phi)\cdot \psi$ também são contínuos. Segue que F'_u e F'_ϕ são aplicações contínuas de $H^1(\mathbb{R}^N)\times \mathcal{D}^{1,2}(\mathbb{R}^N)$ em $H^{-1}(\mathbb{R}^N)$ e $(\mathcal{D}^{1,2})^*(\mathbb{R}^N)$, respectivamente.

A.3 Lema de Stampacchia

Teorema A.1. Seja H um espaço de Hilbert real e $K \subset H$ subconjunto convexo e fechado. Considere $a: H \times H \to \mathbb{R}$ forma bilinear contínua e coerciva e $\lambda: H \to \mathbb{R}$ um funcional linear contínuo. Então, existe único $u \in K$ tal que

$$a(u, v - u) > \lambda(v - u) \quad \forall v \in K$$

Além disso, se a é simétrica, então u é solução do problema

$$\frac{1}{2}a(u,u) - \lambda(u) = \inf_{v \in K} \left(\frac{1}{2}a(v,v) - \lambda(v)\right).$$

REFERÊNCIA: Brézis [13, Teorema V.6, pág. 83].

A.4 Teorema de Hewitt-Stromberg

Teorema A.2. Suponha que $1 e que a sequencia <math>(f_n)$ seja limitada em $L^p(\mathbb{R}^N)$. Se $f_n \to f$ q.t.p. em \mathbb{R}^N , então

$$f_n \rightharpoonup f$$
 fracamente em $L^p(\mathbb{R}^N)$,

ou seja,

$$\lim_{n\to\infty} \int_{\mathbb{R}^N} f_n g \, dx = \int_{\mathbb{R}^N} f g \, dx, \quad \forall g \in L^q(\mathbb{R}^N), \quad \frac{1}{p} + \frac{1}{q} = 1.$$

REFERÊNCIA: Hewitt e Stromberg [35, Teorema 13.44, pág. 207].

A.5 Princípio da Criticalidade de Palais

Definição A.2. A ação de um grupo topológico G em um espaço normado X é uma aplicação contínua

$$G\times X\to X:[g,u]\to gu$$

tal que

$$1 \cdot u = u,$$

 $(gh)u = g(hu),$
 $u \mapsto qu \text{ \'e linear}.$

 $e \ \acute{e} \ isom\acute{e}trica \ se \ \|gu\| = \|u\|.$

Definição A.3. Defina o espaço dos pontos invariantes por

$$Fix(G) := \{ u \in X \mid gu = u, \, \forall g \in G \}.$$

Definição A.4. Um conjunto $A \subset X$ é invariante se gA = A, para todo $g \in G$. Além disso, dizemos que que uma função $\varphi : X \to \mathbb{R}$ é invariante se $\varphi \circ g = \varphi$, para todo $g \in G$.

De posse destas definições, podemos enunciar o

Teorema A.3. Considere uma ação isométrica do grupo topológico G no espaço de Hilbert X. Se $\varphi \in C^1(X, \mathbb{R})$ é invariante e se u é um ponto crítico de φ restrito a Fix(G), então u é ponto crítico de φ .

REFERÊNCIA: Willem [49, Teorema 1.28, pág. 18].

A.6 Teorema do Passo da Montanha sem a condição $(PS)_c$

Seja E um espaço de Banach e $\Phi:E\to\mathbb{R}$ função de classe C^1 . Suponhamos que existam uma vizinhança U da origem em E e constante $\rho\in\mathbb{R}$ tais que $\Phi(u)\geq\rho$ para todo $u\in\partial U$,

$$\Phi(0) < \rho$$
 e $\Phi(v) < \rho$, para algum $v \notin U$.

Definimos

$$c = \inf_{P \in \mathcal{P}} \max_{\omega \in P} \Phi(\omega) \ge \rho,$$

em que \mathcal{P} denota a classe de caminhos contínuos em E unindo a origem à $v \notin U$. Então, existe sequência $(u_n) \in E$ tal que

$$\Phi(u_n) \to c$$
 e $\Phi'(u_n) \to 0$ em E^* .

REFERÊNCIA: Brézis e Nirenberg [15, Teorema 2.2]. Veja também Mawhin e Willem [40] ou ainda Zelati [52].

A.7 Princípio Variacional de Ekeland

Teorema A.4. Seja (\mathcal{M}, d) um espaço métrico completo e J um funcional semi-contínuo inferiormente limitado inferiormente sobre \mathcal{M} . Se $c = \inf_{u \in \mathcal{M}} J(u)$, para cada $\epsilon > 0$, então existe $u_{\epsilon} \in \mathcal{M}$ tal que

$$c \le J(u_{\epsilon}) \le c + \epsilon$$

e

$$J(u) - J(u_{\epsilon}) + \epsilon d(u, u_{\epsilon}) \ge 0, \ \forall u \in \mathcal{M}, \ u \ne u_{\epsilon}$$

REFERÊNCIA: Kavian [36, Lema 1.6.8, pág. 162].

Referências Bibliográficas

- [1] C. O. Alves, Existência de Solução Positiva de Equações Elípticas Não-Lineares Variacionais em \mathbb{R}^N , Tese de doutorado, Universidade de Brasília, 1996.
- [2] C. O. Alves, P. C. Carrião, O. H. Miyagaki, *Nonlinear perturbations of a periodic elliptic problem with critical growth*, J. Math. Anal. Appl., **260** (2001), 133-146.
- [3] A. Ambrosetti, P. Rabinowitz, *Dual variational methods in critical point theory and aplications*, J. Functional Analysis, **14** (1973), 349-381.
- [4] A. Azzollini, L. Pisani, A. Pomponio, *Improved estimates ans a limit case for the electrostatic Klein-Gordon-Maxwell system*, preprint arXiv:0911.5591v1 [math.AP].
- [5] A. Azzollini, A. Pomponio, *Ground state solutions for the nonlinear Klein-Gordon-Maxwell equations*, Topol. Methods Nonlinear Anal., **35** (2010), 33-42.
- [6] A. Azzollini, A. Pomponio, *Ground state solutions for the nonlinear Schrödinger-Maxwell equations*, J. Math. Anal. Appl, **345** (2008), 90-108.
- [7] V. Benci, D. Fortunato, A. Masiello, L. Pisani, *Solitons and the electromagnetic field*, Math. A., **232** (1999), 73-102.
- [8] V. Benci, D. Fortunato, *An eigenvalue problem for the Schrödinger-Maxwell equations*, Top. Meth. Nonlinear Anal, **11**, (1998), 283-293.
- [9] V. Benci, D. Fortunato, *The nonlinear Klein-Gordon equation coupled with the Maxwell equations*, Nonlinear Anal., **47** (2001), 6065-6072.
- [10] V. Benci, D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations, Rev. Math. Phys., **14** (2002), 409-420.
- [11] H. Berestycki, P. Lions, *Nonlinear scalar field equations. I. Existence of a ground state*, Arch. Rational Mech. Anal., **82** (1983), 313-345.

- [12] H. Berestycki, P. Lions, *Nonlinear scalar field equations. II. Existence of infinitely many solutions*, Arch. Rational Mech. Anal., **82** (1983), 347-375.
- [13] H. Brezis, Analyse Functionnelle: Théorie et Applications, Masson, Paris, 1983.
- [14] H. Brezis, E. H. Lieb, A Relation between Pointwise Convergence of Functions and Convergence of Functionals, Proc. Amer. Math. Soc, 88 (1983), no. 3, 486-490.
- [15] H. Brezis, L. Nirenberg, *Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents*, Comm. Pure Appl. Math., **36** (1983), 437-477.
- [16] H. Attouch, G. Buttazzo, G. Michaille, *Analysis in Sobolev and BV Spaces*, MPS-SIAM Series on Optimization, Philadelphia, 2006.
- [17] D. Cassani, Existence and non-existence of solitary waves for the critical Klein-Gordon equation coupled with Maxwell's equations, Nonlinear Anal., **58** (2004), 733-747.
- [18] G. M. Coclite, A Multiplicity Result for the Nonlinear Schrödinger-Maxwell Equations, Commun. Appl. Anal., 7 (2003) no. 2-3, 417-423.
- [19] G. M. Coclite, V. Georgiev, Solitary Waves for Maxwell-Schrödinger Equations, Eletron.J. Diff. Eqns., 2004 (2004) no. 94, 1-31.
- [20] P. Carrião, P. Cunha, O. Miyagaki, Existence results for the Klein-Gordon-Maxwell equations in higher dimensions with critical exponents, Comm. Pure Appl. Anal., to appear.
- [21] T. D'Aprile, D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, **134** (2004), 893-906.
- [22] T. D'Aprile, D. Mugnai, *Non-existence results for the coupled Klein-Gordon-Maxwell equations*, Adv. Nonlinear Stud., **4** (2004), 307-322.
- [23] P. d'Avenia, L. Pisani, *Nonlinear Klein-Gordon equations coupled with Born-Infeld type equations*, Elect. J. Diff. Eqns, **2002** (2002), no. 26, 1-13.
- [24] P. d'Avenia, L. Pisani, G. Siciliano, *Dirichlet and Neumann problems for Klein-Gordon-Maxwell systems*, Nonlinear Anal., **71** (2009), 1985-1995.
- [25] P. d'Avenia, L. Pisani, G. Siciliano, *Klein-Gordon-Maxwell systems in a bounded domain*, Discrete Contin. Dyn. Syst., **26** (2010), 135-149.

- [26] C. R. de Oliveira, *Introdução à Análise Funcional*, 2 ed., IMPA, Rio de Janeiro, 2006.
- [27] Y. Ebihara, T. P. Schonbek, *On the (non)compactness of the radial sobolev spaces*, Hiroshima Math. J., **16** (1986), 665-669.
- [28] M. J. Esteban, V. Georgiev, E. Sere, Stationary waves of the Maxwell-Dirac and the Klein-Gordon-Dirac equations, Calc. Var., 4 (1996), 265-281.
- [29] L. C. Evans, *Partial Differential Equations*, American Mathematical Society, Graduate Studies in Mathematics, **19**, Providence, 1998.
- [30] B. Felsager, Geometry, Particle and fields Odense University Press, 1981.
- [31] G. B. Folland, *Real Analysis. Modern techniques and their applications*, Pure and Applied Mathematics (New York). A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1984.
- [32] I. Fonseca, G. Leoni, *Modern Methods in the Calculus of Variations: L^p Spaces*, 1 ed., Springer, 2007.
- [33] V. Georgiev, N. Visciglia, *Solitary waves for Klein-Gordon-Maxwell system with external Coulomb potential*, J. Math. Pures Appl., **84** (2005), 957-983.
- [34] D. Gilbarg, N. S. Trudinger, *Elliptic Partial Differential Equations of Second Order, Second edition*. Grundlehrem der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], (224). Springer-Verlag, Berlin, 1983.
- [35] E. Hewitt, K. Stromberg, *Real and abstract analysis* Springer-Verlag, Berlin, Heidelberg, 1955.
- [36] O. Kavian, Introduction á la théorie des points critiques at applications aux problèmes elliptíques Springer-Verlag, Heidelberg, 1993.
- [37] Y. Li, Z.-Q. Wang, J. Zeng, Ground states of nonlinear Schrödinger equations withpotentials, Ann. I. H. Poincaré, 23 (2006), 829-837.
- [38] P. Lions, *The concentration-compactness principle in the calculus of variations. The locally compact case I*, I. Ann. Inst. H. Poincaré Anal. Non Linéaire, **1** (1984), 109-145.
- [39] P. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283.

- [40] J. Mawhin, M. Willem, *Critical Point Theory and Hamiltonian Systems*, Springer Verlag, New York/Berlin, 1989.
- [41] L. A. Medeiros, M. M. Miranda, Espaços de Sobolev. Iniciação aos Problemas Elípticos não Homogêneos, UFRJ, IM, Rio de Janeiro, 2000.
- [42] P. Montecchiari, Multiplicity reslts for a class of semilinear elliptic equations on \mathbb{R}^m , Rend. Sem. Mat. Univ. Padova, **95** (1996), 217-252.
- [43] D. Mugnai, Coupled Klein-Gordon and Born-Infeld-type equations: looking for solitary waves, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., **460** (2004), 1519-1527.
- [44] O. Miyagaki, On a class of semilinear elliptic problems in \mathbb{R}^N with critical growth, Nonlinear Anal., **29** (1997), 773-781.
- [45] D. Ruiz, *The Schrödinger-Poisson equation under the effect of a nonlinear local term*, J. Funct. Analysis, **237** (2006), 655-674.
- [46] W. A. Strauss, *Existence of solitary waves in higher dimensions*, Comm. Math. Phys., **55** (1977), 149-162.
- [47] M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Third Edition, 34, Springer-Verlag, Berlin, 2000.
- [48] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353-372.
- [49] M. Willem, *Minimax theorems*, Birkhäuser, Boston, 1996.
- [50] L. Zhao, F. Zhao, On the existence of solutions for the Schrödinger-Poisson equations, J. Math. Anal. Appl., **346** (2008), 155-169.
- [51] X.P. Zhu, J. Yang, On the existence of nontrivial solution of a quasilinear elliptic boundary value problem for unbounded domains, Acta Math. Sci., 7 (1987), 341-359.
- [52] V. C. Zelati, *Introduction to critical point theory* em School on Nonlinear Differential Equations, ICTP-Trieste, SMR 1777/4, 2006.