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Abstract

Modeling of a cure fraction, also known as long-term survivors, is a part of survival

analysis. It studies cases where supposedly there are observations not susceptible to the

event of interest. Such cases require special theoretical treatment, in a way that the

modeling assumes the existence of such observations. We need to use some strategy to

make the survival function converge to a value p ∈ (0, 1), representing the cure rate. A way

to model cure rates is to use defective distributions. These distributions are characterized

by having probability density functions which integrate to values less than one when the

domain of some of their parameters is different from that usually defined. There is not

so much literature about these distributions. There are at least two distributions in the

literature that can be used for defective modeling: the Gompertz and inverse Gaussian

distribution. The defective models have the advantage of not need the assumption of the

presence of immune individuals in the data set. In order to use the defective distributions

theory in a competitive way, we need a larger variety of these distributions. Therefore, the

main objective of this work is to increase the number of defective distributions that can be

used in the cure rate modeling. We investigate how to extend baseline models using some

family of distributions. In addition, we derive a property of the Marshall-Olkin family of

distributions that allows one to generate new defective models.

Keywords: Cure fraction, Defective models, Inverse Gaussian distribution, Gompertz

distribution, Kumaraswamy family, Long-term survivors, Marshall-Olkin family, Survival

analysis.

i



Resumo

A modelagem da fração de cura é uma parte importante da análise de sobrevivência.

Essa área estuda os casos em que, supostamente, existem observações não suscept́ıveis

ao evento de interesse. Tais casos requerem um tratamento teórico especial, de forma

que a modelagem pressuponha a existência de tais observações. É necessário usar alguma

estratégia para tornar a função de sobrevivência convergente para um valor p ∈ (0, 1), que

represente a taxa de cura. Uma forma de modelar tais frações é por meio de distribuições

defeituosas. Essas distribuições são caracterizadas por possúırem funções de densidade

de probabilidade que integram em valores inferiores a um quando o domı́nio de alguns

dos seus parâmetros é diferente daquele em que é usualmente definido. Existem, pelo

menos, duas distribuições defeituosas na literatura: a Gompertz e a inversa Gaussiana.

Os modelos defeituosos têm a vantagem de não precisar pressupor a presença de indiv́ıduos

imunes no conjunto de dados. Para utilizar a teoria de distribuições defeituosas de forma

competitiva é necessário uma maior variedade dessas distribuições. Portanto, o principal

objetivo deste trabalho é aumentar o número de distribuições defeituosas que podem ser

utilizadas na modelagem de frações de curas. Nós investigamos como estender os modelos

defeituosos básicos utilizando certas famı́lias de distribuições. Além disso, derivamos uma

propriedade da famı́lia Marshall-Olkin de distribuições que permite gerar uma nova classe

de modelos defeituosos.

Palavras-Chave: Análise de sobrevivência, Distribuição inversa Gaussiana, Distribuição

Gompertz, Famı́lia Kumaraswamy, Famı́lia Marshall-Olkin, Fração de cura, Modelos de

longa duração, Modelos defeituosos.
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â, b̂, p̂

)
versus n

for simulated data from the inverse Gaussian distribution with (a, b, p) =
(−1, 1, 0.8646). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.8 Fitted survival curves of the Gompertz and inverse Gaussian distributions
in the leukemia data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

vi



vii

2.9 Fitted survival curves of the Gompertz and inverse Gaussian distributions
in the melanoma data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.10 Fitted survival curves of the Gompertz and inverse Gaussian distributions
in the second birth data set . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.11 Fitted survival curves of the Gompertz and inverse Gaussian distributions
in the divorce data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Density, survival and hazard functions of the defective Marshall-Olkin
Gompertz distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Density, survival and hazard functions of the defective Marshall-Olkin in-
verse Gaussian distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Mean squared errors, biases, coverage probabilities and coverage lengths of(
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Chapter 1

Preliminaries

1.1 Introduction

Modeling of a cure fraction, also known as long-term survivors, is a part of survival

analysis. It studies cases where supposedly there are observations not susceptible to the

event of interest. Such cases require special theoretical treatment, in a way that the

modeling assumes the existence of such observations. In the standard theory of survival

analysis the survival function S(t) tends to zero as time increases. We need to use some

strategy to make the survival function converge to a value p ∈ (0, 1), representing the

cure rate.

The method most commonly used is the standard mixture model, initially proposed by

Boag (1949) and Berkson & Gage (1952). The model is described by S(t) = p+(1−p)S0(t),

where S0(t) is a proper survival function. Common choices for S0(t) are the Weibull,

Gompertz and lognormal distributions, according to Ibrahim et al. (2005). Tsodikov

et al. (2003) proposed a non-mixture model defined in terms of a cumulative hazard rate

function. Its survival function has the form S(t) = pF0(t), where F0(t) represents a proper

distribution function. More about this method can be found in Martinez et al. (2013).

Many other methods are known for cure rate modeling, see, for example, Cooner et al.

(2007), Rodrigues et al. (2009a), Nieto-Barajas & Yin (2008) and the book Maller & Zhou

(1996).

1
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The literature regarding to cure rate models are very large and have lots of different

approaches on how estimate the quantities of interest. In Chen et al. (1999) is pro-

posed some Bayesian models to estimate cure fractions. In Sy & Taylor (2000) is dis-

cussed maximum likelihood techniques in an Cox proportional hazards structure of cure

model. In Rodrigues et al. (2009b), its used the Conway-Maxwell Poisson as the distri-

bution of competing causes, as proposed in Rodrigues et al. (2009a). In Yin & Ibrahim

(2005) an unified approach is presented based in the Box-Cox transformation. In Peng

& Xu (2012) an extension of the model presented in Yin & Ibrahim (2005) are done and

some model selection criteria are discussed. In Balakrishnan & Pal (2012) is proposed

an expectation-maximization algorithm to do estimation in the model proposed in Ro-

drigues et al. (2009b), where the time-to-event is assumed exponential. In Balakrishnan

& Pal (2013a), Balakrishnan & Pal (2013b) and Balakrishnan & Pal (2015), the authors

keeps developing the EM algorithm but with Weibull, lognormal and generalized gamma

distributions to the time-to-event.

Another way to model cure rates is to use defective distributions, as explored in this thesis.

Defective distributions are characterized by having probability density functions which

integrate to values less than 1 when the domain of some of their parameters is different

from that usually defined. There is not so much literature about these distributions. There

are at least two distributions in the literature that can be used for defective modeling:

the Gompertz and inverse Gaussian distributions. The use of these defective distributions

became more appealing after the works of Balka et al. (2009) and Balka et al. (2011),

although some previous papers have used the same idea. In Whitmore (1979), the term

defective was used to refer to the inverse Gaussian distribution that allows one of its

parameters to be negative.

The Gompertz distribution becomes defective when its shape parameter is negative. It

first appeared in Haybittle (1959), where it was used to model a breast cancer data set.

Cantor & Shuster (1992) applied a modified version of this distribution to a pediatric

cancer data set. Gieser et al. (1998) extended the distribution to include covariates.

More recently, Rocha et al. (2014) performed Bayesian estimation of this distribution. In

Marshall & Olkin (2015), a bivariate version of the Gompertz distributions is proposed.
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In that work, the authors called the gompertz distributions that allows the parameters

outside their usual domain of negative Gompertz.

The inverse Gaussian distribution was first proposed in Schrödinger (1915) for calculating

the first time passage probability of a one-dimensional Brownian motion (Wiener process).

More details were studied in Tweedie (1945) and Whitmore (1979). Defective versions

were investigated in Balka et al. (2009) and Balka et al. (2011), with classical and Bayesian

approaches. Having only two distributions is not enough to provide sufficient flexibility.

So, the main goal of this thesis is to provide more distributions with the defective property.

In the next section we present all the basic theoretical components needed to understand

and interpret the results in the next chapters. Further, we also present the algorithm to

generate artificial data and five real data sets that are used in some chapters of this thesis.

In the end, we discuss the objectives and a general overview of this work.

1.2 Theoretical Background

Here we show the first definitions in the survival analysis area, since its basic relations

until the unified theory for cure modeling, and it estimation by maximum likelihood.

1.2.1 Survival Analysis

Survival analysis, or reliability analysis, is the branch of statistics that study data normally

associated to the duration of time until the occurrence of an event of interest. The time

can be from the duration of an electronic component or the lifetime of patients with serious

diseases. It does not have to be necessarily an time to event kind of data. For example, we

can check how many kilometers can a tire work properly without replacement. The main

areas of interest are: medicine, biology, engineering, statistics, economics, social sciences,

among others.

What makes the survival analysis a particular area is their specific characteristic to take

into account incomplete observations, or also called, censored information. With the
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presence of censoring, it is impossible to apply standard statistical for analyzing such

data. There are some kinds of censoring, described in the following.

According to Colosimo & Giolo (2006), the type I censorship or right-censorship, occurs

when the time to the end of the study is pre-established. Thus, some individuals fail

to experience the event of interest in the end of this study, and their lifetimes are right

censored. An example of this type of censorship is when a bank want to check the

time until the customers of a particular portfolio become a bad payer. It is studied

this portfolio for a predetermined amount of time by the institution and at end, some

elements will not experience the event of interest (and therefore are not considered bad

payers). This censoring also occurs when, for some reason, the subject in study is not

available anymore. That could be, for example, someone that quits a drug trial for lack

of motivation, or because the event of interest cannot be observed after some point.

The type II censorship occurs when the study is finished after a certain number n of

individuals experience the event of interest, that is, after a number n of the research trials

is completed and the individuals who have left to experience the event of interest will be

considered censored.

The random censorship, unlike the others, is a kind of censorship that is beyond the control

of the researcher. It usually occurs when a person leave a given experiment without having

experienced the event of interest. The random censorship is a more common case, with

the particular case censorship Type I, for example, if the patient die for a different reason

of the one considered in the study.

In this work, we represent the data and the censoring by the following: each subject is

observed and denoted by (ti,δi), in which ti is the time until the fail or censoring and δi

is the variable that indicates if that observation was as fail or a censoring. If δi = 1, then

the fail was observed. If δi = 0, a censoring occurred.

Suppose now that the random variable T , T ≥ 0, have density function denoted by f(t).

As in Colosimo & Giolo (2006), we can write the density function as the limit of the
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probability of a subject fails in the interval of time [t, t+ ∆t]:

f(t) = lim
∆t−→0

P (t ≤ T < t+ ∆t)

∆t
.

Its cumulative function is given by:

F (t) = P (T ≤ t) =

∫ t

0

f(u)du.

To estimate the probability of an individual survive at least until the time t is one of the

major interests of the survival analysis. So, it is defined the survival function, given by:

S(t) = P (T > t) =

∫ ∞
t

f(u)du = 1− F (t).

Of course, the properties of this function are quite similar to the cumulative function:

S(t) is not increasing; S(0) = 1 and limt→∞ S(t) = 0.

Other function of huge importance is the hazard function, also called hazard rate function,

that provides the instant rate of fail, that is, knowing that a subject survived until the

time t, this function represents the chance of this subject will fail in the time t+ ∆t, with

∆t→ 0. The hazard function is defined by:

h(t) = lim
∆t→0

P (t ≤ T < t+ ∆t|T ≥ t)

∆t
.

Graphically, the hazard function can have several forms. The cases most studied is where

the hazard function is increasing, decreasing, constant, unimodal and bathtub shaped.

Checking the hazard behavior is important when someone have to choose between para-

metric models. The cumulative hazard function is defined by:

H(t) =

∫ t

0

h(u)du. (1.1)

These equation have a major interest in the survival analysis. Some useful relations
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between them are:

h(t) =
f(t)

S(t)
= − d

dt
log[S(t)],

H(t) = − log[S(t)],

S(t) = exp[−H(t)].

1.2.2 Kaplan-Meier Estimator

In the survival analysis literature can be found some estimators of a survival function

obtained through non-parametric techniques. We can refer, for instance, the Nelson-Aalen

estimator, proposed by Nelson (1972) and then reviewed by Aalen (1978), and the one

proposed by Kaplan & Meier (1958). This last one is the most important non-parametric

estimator and is described next. For that, consider the following:

• t(1) < t(2) < . . . < t(k), j = 1, . . . , k, the k ordered distinct fail times;

• dj the number of fails in t(j), j = 1, . . . , k;

• nj the number of individuals at risk in t(j), that is, the individuals that not failed

or got censored until the moment instantly previous to t(j).

This way, Kaplan-Meier (KM) estimator is defined by:

Ŝ(t) =
∏
j:tj<t

(
nj − dj
nj

)
=
∏
j:tj<t

(
1− dj

nj

)
.

This expression leads to a ladder function with steps in the observed fail times. In

the paper where it is proposed, the authors justify the expression by showing that this

estimator is the maximum likelihood estimation for S(t). Because of this, one of the

most usual ways to check the fit of an proposed parametric model is to compare it to the

Kaplan-Meier curve. The better the KM captures the fitted model, the better the model

is.
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1.2.3 Cure Rate Models

The survival theory has been widely explored by many researchers in various areas, with a

major focus on analysis of clinical data. Generally the survival function S(t) = P (T > t)

is the function used to represent the random behavior of T . A property of S(t) is that

it goes to zero as the time pass, which characterizes an event of interest that eventually

always occur.

However, there are situations in which a portion of the population is considered cured

and cannot fail. For example, there are cases when it is considered the recurrence of

a cancer. Some people can have the recurrence, however, there may be some others

that is completely cured from that cancer and, therefore, it would never recur. To solve

such problems, Berkson & Gage (1952), based on the work of Boag (1949), proposed the

standard mixture model for cured fraction. The survival function is set to

S(t) = p+ (1− p)S0(t),

in a way that S0(t) is a proper survival function. Thus, it follows that S(t) converges to

p as the time increases. In Berkson & Gage (1952) is made an analysis in patients with

stomach cancer, and from there, several other studies of cure rate have been proposed

in the literature, focusing on that model standard mixture. The most common choices

common to S0(t) are the Weibull, log-logistic and log-normal distributions. Recently,

different models have been proposed for this purpose, as in Yakovlev & Tsodikov (1996),

Chen et al. (1999) and Ibrahim et al. (2005).

In addition to this approach, we have a unified long-term theory, proposed by Rodrigues

et al. (2009a) that generalizes, among others, the mixture model. Let N be a random

variable that represents the number of causes of risk, for a particular event of interest,

with probability distribution of

pn = P [N = n],

in which n = 0, 1, 2, . . .. In this case, N is a latent random variable. Given N = n, let Zv,



8

v = 1, . . . , n, be independent, non-negative random variables, with distribution function

F (t) = 1−S(t). Consider also that N is independent of Zv, where Zv represents the time

until the occurrence of an particular event of interest, because of the v-th cause of risk.

The time of occurrence of the event of interest is defined as:

T = min {Z1, Z2 . . . , ZN} , (1.2)

in which P [Z0 = ∞] = 1, leads to a proportion p0 of the non-susceptible subjects to the

event of interest. The variables Zv are latent and T is an observable random variable or

censoring. The survival function of the random variable T is given by: Spop(t) = P [T > t].

Let {an} be a sequence of real numbers and s ∈ [0, 1]. Consider then the following:

A(s) = a0 + a1s+ a2s
2 + · · · .

According to Feller (1968), if A(s) converges, then A(s) é defined as the generating func-

tion of the sequence {an}. Given a proper survival function S(t), the survival function of

the random variable T , as in (1.2), is given by

Spop(t) = A[S(t)] =
∞∑
n=0

pn [S(t)]n . (1.3)

The proof is in Rodrigues et al. (2009a). This implies that lim
t→∞

Spop = P [N = 0] = p0,

with p0 denoting the cured fraction.

The survival function Spop(t) obtained in (1.3) is not proper. The associated density and

hazard function are given, respectively, by:

fpop(t) = f(t)
d

ds
A[S(t)],

hpop(t) =
fpop(t)

Spop(t)
=

f(t)

Spop(t)

d

ds
A[S(t)].

Some examples of generating function can be obtained by using the distributions: Bernoulli,

binomial, negative binomial, Poisson, geometric, power series, among others. If we assume
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the distribution for N is Bernoulli, then Spop is the same proposed in Berkson & Gage

(1952). In Feller (1968) we can check that the generating function for the Bernoulli(θ)

distribution is A(u) = θ + (1− θ)u. Thus, we have the mixture model

Spop(t) = A[S(t)] = θ + (1− θ)S(t).

If we assume the distribution for N is Poisson, then Spop is the same proposed in Chen

et al. (1999), the promotion time cure model.

1.2.4 Maximum Likelihood Estimation

In survival analysis, one of the concerns is to fit parametric models to the observed data,

because they have a more natural interpretation and can calculate the needed probabilities

more adequately.

Based on results obtained from samples, the maximum likelihood estimator selects the

best set of parameters for the alleged distribution of the data. The maximum likelihood

method is able to incorporate censorship and has excellent properties for large samples

(asymptotic results), and is, therefore, the most widely used method for survival analysis.

As censored data bring us important information, we cannot leave it aside. Its contribution

to L(θ) is given by the survival function S(t). Thus, the observations of the random

sample can be divided into two sets, the censored and uncensored.

Suppose that the data are independently and identically distributed and come from a dis-

tribution with density and survival functions specified by f (·,θ) and S (·,θ), respectively,

where θ = (θ1, . . . , θk)
′ denotes a vector of parameters. Consider a data set D = (t, δ),

where t = (t1, . . . , tn)′ are the observed failure times and δ = (δ1, . . . , δn)′ are the censored

failure times. The δi is equal to 1 if a failure is observed and 0 otherwise.

The likelihood function of θ can be written as (see Klein & Moeschberger (2003))

L (θ; D) ∝
n∏
i=1

[
f (ti;θ)δi S (ti;θ)1−δi

]
.
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The corresponding log-likelihood function is

logL (θ,D) = const +
n∑
i=1

δi log f (ti,θ) +
n∑
i=1

(1− δi) logS (ti,θ) .

This expression is valid for censoring type I, type II, random and when the censor mech-

anism is not informative. The maximum likelihood estimator is the value of θ that maxi-

mizes L(θ), or, equivalently, its log-likelihood function, l(θ) = log(L(θ)). The estimators

are found by solving the system of equations

U(θ) =
∂`(θ)

∂θj
= 0,

for j = 1, ...k.

Normally, the maximum likelihood estimator does not have a closed expression. That is

due to the complexity that the equations can get depending on the assumed parametric

model for the data in question. So, usually it is necessary to use computational methods

to calculate the maximum likelihood estimates numerically. There are various routines

available for numerical maximization. We used the routine optim in the R software (R

Core Team, 2013). The maximization algorithm used was the BFGS, for more information

on this method, please see Liu & Nocedal (1989). All estimation procedures by maximum

likelihoods done in this thesis was done in R, using optim with BFGS.

Confidence intervals for the parameters were based on asymptotic normality. If θ̂ denotes

the maximum likelihood estimator of θ then it is well known that the distribution of θ̂−θ

can be approximated by a k-variate normal distribution (where k denotes the length of

the vector θ as defined above) with zero mean and covariance matrix I
(
θ̂
)

, where I (θ)
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denotes the observed information matrix defined by

I (θ) = −



∂2 logL

∂θ2
1

∂2 logL

∂θ1∂θ2

· · · ∂2 logL

∂θ1∂θk
∂2 logL

∂θ2∂θ1

∂2 logL

∂θ2
2

· · · ∂2 logL

∂θ2∂θk
...

...
. . .

...

∂2 logL

∂θk∂θ1

∂2 logL

∂θk∂θ2

· · · ∂2 logL

∂θ2
k


.

So, an approximate 100(1 − α) percent confidence interval for θi is(
θ̂i − zα/2

√
I ii, θ̂i + zα/2

√
I ii
)

, where I ii denotes the ith diagonal element of the inverse

of I and za denotes the 100(1− a) percentile of a standard normal random variable.

In the defective distributions theory, the cured fraction p is calculated as a function of the

estimated parameters. To estimate the variance of p is used the delta method with a first

order Taylor’s approximation. For more on the delta method, please see Oehlert (1992).

We will also consider some measures to check the relative quality of a fitted model: the

AIC (Akaike Information Criterion), BIC (Bayesian Information Criterion) and CAIC

(Consisten Akaike Information Criterion). They are not a measure of quality by itself,

but is useful to compare between fitted models. Therefore, these measures provides a way

of model selection. The definitions are:

AIC = 2k − 2 log(L),

BIC = k log(n)− 2 log(L),

CAIC = k[log(n) + 1]− 2 log(L),

where k is the number of parameters in the model, n is the sample size and L is the

likelihood value in the estimated parameters. The better fit is the one with the lowest

AIC, BIC or CAIC. For more, see Bozdogan (1987).
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1.3 Artificial Data Generation Algorithm

Here we describe the data generation used in order to assess the performance of the

maximum likelihood estimates with respect to sample size and to show, among other

things, that the usual asymptotes of maximum likelihood estimators still hold for defective

distributions. The assessment is based on simulations. In all chapters, the simulation

studies are based in this setup. The description of the data generation is given below.

Suppose that the time of occurrence of an event of interest has cumulative distribution

function F (t). We want to simulate a random sample of size n containing real times,

censored times and a cure fraction of p. An algorithm for this purpose is:

• Determine the desired parameter values, as well as the value of the cure fraction p;

• Generate Mi ∼ Bernoulli(1− p);

• If Mi = 0 set t′i = ∞. If Mi = 1 take t′i as the root of F (t) = u, where u ∼

uniform(0, 1− p);

• Generate u′i ∼ uniform(0,max (ti)), considering only the finite ti;

• Calculate ti = min (t′i, u
′
i). If ti < u′i set δi = 1, otherwise set δi = 0.

Note that the range of F (t) has been changed and some adjustments made. Instead of

(0, 1), we have used (0, 1 − p). Therefore, in the third step of the algorithm, the root

of F (t) − u = 0 must be for u ∼ uniform(0, 1 − p). In the fourth step, the censoring

distribution chosen is a uniform(0,max (ti)). The limit max (ti) was taken in order to

control the censoring regardless of the initial parameter choices. In this way, the censoring

rates were kept reasonable, as described above.

In the simulations, we always have to choose the values of the parameters in the distri-

bution that we want to analyze. Also, we always choose the value of S = 1000 simulation

per sample size. In each sample size, we calculate the bias, mean square error, coverage

probability and coverage lengths for each parameter. θ̂ is the average of θi, for i = 1, ..., S.
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The following equations were used:

Var(θ̂) =
1

S

S∑
i=1

(
θ̂i − θ

)2

,

Bias(θ̂) = θ̂ − θ,

MSE(θ̂) = Var(θ̂) + Bias2(θ̂).

The coverage probability is the frequency in which the real parameter value stays in the

confidence region, for each simulation. According to Calsavara (2011), if we consider the

S simulations results done as a result of a binomial experiment with parameter 0.95 (the

significance level), a test to check proportions equivalence can be performed. This way, we

have n1 and n2 such that P (n1 ≤ p ≤ n2) = 0.95. That is, given a number of simulations

S, we can expect that the coverage probability will stay between n1 and n2 about 95% of

the time. When S = 1000, we have n1 = 0.936 and n2 = 0.964. The coverage length is

the difference between the upper and lower confidence bounds.

1.4 Data Sets

Here we described the five data sets used in the following chapters. They were chosen to

represent a variety of sample sizes, survival and hazard curves. Three of them is of the

clinical area and the other two are related to social sciences studies.

1.4.1 Leukemia

This data set relates to a study of recurrence of leukemia in patients who were submitted

to a certain kind of transplantation. Leukemia is a type of cancer that affects the white

blood cells produced by the bone marrow and can take several forms. The data set

has forty four observations with 20.45 percent censoring (nine in total). The maximum

observation time was approximately five years. For details of this data set, see Kersey

et al. (1987). Figure 1.1 shows the Kaplan-Meier and the cumulative hazard curves. The

cumulative hazard is calculated by equation (1.1).
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Figure 1.1: Kaplan-Meier and estimated cumulative hazard curves for the leukemia data
set.

1.4.2 Melanoma

This data set collected in the period 1991-1998 is related to a clinical study in which

patients were observed for recurrence after a removal of a malignant melanoma. Melanoma

is a type of cancer that develops in melanocytes, responsible for skin pigmentation. It is a

potentially serious malignant tumor that may arise in the skin, mucous membranes, eyes

and central nervous system, with a great risk of producing metastases and high mortality

rates in the later stages. There are 417 observed times, of which 232 were censored (55.63

percent). For details of this data, see Ibrahim et al. (2001).

This data set has covariates information, which is used to illustrate regression models when

it is needed. One of the covariate taken represents the nodule category (n1 = 82, n2 =

87, n3 = 137, n4 = 111). Another covariate present is the age of the individuals. The

Kaplan-Meier estimates suggest that the survival rate increases with the nodule category.

Figure 1.2 shows the Kaplan-Meier and the cumulative hazard curves.
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Figure 1.2: Kaplan-Meier and estimated cumulative hazard curves for the melanoma data
set.

1.4.3 Colon

This data set arises from one of the first successful trials of adjuvant chemotherapy for

colon cancer. The event of interest here is the recurrence or death for the individual under

the proposed treatment. The data set has 1858 observations and 50.58 percent censoring

(938 in total). The data set is available in R in the survival package. Details of this

data set can be found in Laurie et al. (1989). Figure 1.3 shows the Kaplan-Meier and the

cumulative hazard curves.

1.4.4 Divorce

This data set collected in the USA describes married couples and the event of interest is

the divorce. Of course, that event may never occur, there is a high censoring in this data

set. The cure elements are those couples who will never divorce. There are 3371 observed

times, of which 2339 were censored (69.38 percent). The maximum observed time was

73.07 years and the average observed time was 18.41 years. For details of this data, see

Lillard & Panis (2000). The Kaplan-Meier curve for this data stabilizes at 0.5566. It

appears quite safe to say that this value is an asymptote of the curve. Almost no failures
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Figure 1.3: Kaplan-Meier and estimated cumulative hazard curves for the colon data set.

were observed in the second half of the period of study. So, we can expect a real cure

fraction quite close to the Kaplan-Meier estimate. Figure 1.4 shows the Kaplan-Meier

and the cumulative hazard curves.

1.4.5 Second Birth

This data set relates to the time of birth of a second child for a couple and is based on

medical records of births in Norway in 1997. The observed time is the gap between the

birth of the first child and the birth of the second child for the same couple. The data set

consists of 53543 women who had their first child between 1983 and 1997. The censoring

indicates whether the woman had a second child, the event of interest, or if she did not

before the end of the study. The data set was previously analyzed by Aalen et al. (2008).

For illustrative purposes, we took a random sample accounting for 2 percent of the data

set, totalling 1071 observations with 69.74 percent censoring (747 in total). Figure 1.5

shows the Kaplan-Meier and the cumulative hazard curves for this data.
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Figure 1.4: Kaplan-Meier and estimated cumulative hazard curves for the divorce data
set.
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Figure 1.5: Kaplan-Meier and estimated cumulative hazard curves for the birth data set.
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1.5 Objectives and Overview

The defective models have the advantage of not need the assumption of the presence of

immune individuals in the data set. Because of that, it has one less parameter than the

same model in the mixture model approach. The literature provides only two distribu-

tions with the defective property. In order to use the defective distributions theory in a

competitive way, we need a larger variety of these distributions. Therefore, the main ob-

jectives of this work is to increase the number of defective distributions that can be used

in the cure rate modeling. We will investigate how to extend baseline models through

some family of distributions. In addition, we derive a property of the Marshall-Olkin

family of distributions that allows one to generate new defective models.

The overview of this work is as following. In Chapter 2 we investigate the Gompertz and

inverse Gaussian distribution as basic defective models and how suitable they are in some

scenarios. In Chapter 3 we propose two new defective distributions using the Marshall-

Olkin family of distributions. We apply the proposed models in some real data sets in

order to reach a improved model in relation to the baseline distributions. In Chapter

4 we propose two more new defective distributions using the Kumaraswamy family of

distributions. We apply the proposed models in some real data sets in order to reach a

improved model in relation to the baseline distributions. In Chapter 5 we propose a general

result that allows one to extend an defective model using any family of distributions. We

use eight new families to generate sixteen more new defective distribution, as examples. In

Chapter 6 we propose a property of the Marshall-Olkin family that allow one to generate

defective distributions without using the Gompertz or the inverse Gaussian as the baseline.

We exemplify the result by proposing ten new defective distributions. Finally, in Chapter 7

we discuss the conclusions of this thesis and some proposals for future work. We published

the papers Rocha et al. (2014), Rocha et al. (2015a), Rocha et al. (2015c) and submitted

Rocha et al. (2015b), which is based on the Chapters 2, 3, 4 and 6, respectively. The

results in Chapter 5 are about to be submitted.



Chapter 2

Defective Cure Rate Models

2.1 Introduction

The aim of this chapter is to introduce the basic defective distributions found in the

literature: the Gompertz and inverse Gaussian. First, we properly define and discuss

the defective models. Then, we check the validity of the maximum likelihood estimates

through some simulation scenarios. In the application section, we use four different data

sets to exemplify the performance of the proposed models.

2.2 Methodology

Here we define what a defective model is and present the known defective distributions

present in the literature.

2.2.1 Defective Models

Definition 2.1. A distribution is called defective if the integral of its density function

does not result in 1, but in a value p ∈ (0, 1), when the domain of the parameters are

changed.

19
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Figure 2.1: Example of a cumulative function of a defective distribution.

A defective model is a model with a defective distribution. In a defective model, it

is possible to estimate a cure rate with the use of a naturally improper distribution.

Instead of estimating the proportion p directly as a mixture model, we use a distribution

by changing the domain of its parameters. And that leads to a model with long-term

duration.

In a defective distribution, the cumulative function no longer approaches to 1, but to

p and, therefore, the survival function approaches to 1 − p. Figure 2.1 illustrates the

cumulative function of a defective distribution.

Obviously, the defective distribution is not proper. When used as a model for cure fraction,

the proportion of the population that is immune is obtained by calculating the limit of the

survival function using the estimated parameters. In the literature, there are two known

distributions that can be used for this purpose: the inverse Gaussian and Gompertz

distribution. Both distribution have two positive parameters. For negative values of the

shape parameter, the distribution becomes defective. The parameters that change their

domains are called defective parameters.



21

A great advantage of these distributions is that the cured fraction is always estimated

using a model with one parameter less than the standard mixture model, which brings

plenty of benefits in terms of estimation. And it is easy to calculate because it is a simple

function of the estimated parameters.

Other great advantage is that it is not necessary to assume the existence of a cure fraction

in your model. Once you have a defective model, it will lead to a cure fraction when

the estimation procedure presents a value out of the usual range of parameters. The

significance can be tested based on the significance of the defective parameters.

One of the drawbacks is that the model may lose some of its flexibility when we have

less parameters. Also, since the cure fraction depends on others parameters, the interval

estimation of it is not directly, and need to be approximated using other techniques, for

example, the delta method.

In the next section we show the Gompertz and inverse Gaussian models in their defective

forms. In Section 2.3 we have some simulation setups in order to verify the properties of

the maximum likelihood estimator. In Section 2.4 we show some applications in real data

sets.

2.2.2 The Defective Gompertz Distribution

The Gompertz distribution is used for modeling survival data in various areas of knowledge

(Gieser et al., 1998), especially where there is a suspicion of exponential hazard. The

Gompertz density function is

f(t) = beate−
b
a(eat−1) (2.1)

for a > 0, b > 0 and t > 0. In this parameterization, a is the shape parameter and b is

the location parameter. The survival function is

S(t) = e−
b
a(eat−1). (2.2)
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The defective Gompertz distribution is the one that allows for negative values for the

parameter a. The proportion of immunity in the population is calculated as the limit of

the survival function when a < 0:

p = lim
t→∞

S(t) = lim
t→∞

e−
b
a(eat−1) = e

b
a ∈ (0, 1).
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Figure 2.2: Density, survival and hazard functions of the defective Gompertz distribution.

Once the parameter values are estimated, one can easily compute the fraction of cure p.

Figure 2.2 illustrates various scenarios for the density, survival and hazard functions of

the Gompertz distribution.

2.2.3 The Defective Inverse Gaussian Distribution

The inverse Gaussian distribution arises as the first passage time of a Wiener process

(Balka et al., 2009). Lee & Whitmore (2006) noted its potential as models for cure rate.

Its density function is

f(t) =
1√

2bπt3
exp

{
− 1

2bt
(1− at)2

}
(2.3)

for a > 0, b > 0 and t > 0. The inverse Gaussian distribution has survival function given

by

S(t) = 1−
[
Φ

(
−1 + at√

bt

)
+ e2a/bΦ

(
−1− at√

bt

)]
, (2.4)
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where Φ(·) denotes the cumulative distribution function of a standard normal random

variable.

The inverse Gaussian distribution can be defective when a < 0. The fraction of cure, or

the survival function limit, is

p = lim
t→∞

S(t) = lim
t→∞

1−
[
Φ

(
−1 + at√

bt

)
+ e2a/bΦ

(
−1− at√

bt

)]
= 1− e2a/b ∈ (0, 1).
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Figure 2.3: Density, survival and hazard functions of the defective inverse Gaussian dis-
tribution.

We estimate the cure fraction using the estimated parameters a and b. Figure 2.3 il-

lustrates various scenarios for the density, survival and hazard functions of the inverse

Gaussian distribution.

We have been able to find only these two distributions (Gompertz and inverse Gaussian)

that can be adapted to being defective. This does not mean there are not others.

2.2.4 Inference

Consider a data set D = (t, δ), where t = (t1, . . . , tn)′ are the observed failure times and

δ = (δ1, . . . , δn)′ are the censored failure times. Suppose that the data are independently

and identically distributed and come from a distribution with density and survival func-

tions specified by f (·,θ) and S (·,θ), respectively, where θ = (θ1, . . . , θq)
′ denotes a vector
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of parameters. The log-likelihood function of θ can be written as

logL (θ,D) = const +
n∑
i=1

δi log f (ti,θ) +
n∑
i=1

(1− δi) logS (ti,θ) .

For the Gompertz distribution given by (2.1) and (2.2),

logL (θ,D) = const + ln(b)
n∑
i=i

δi + a

n∑
i=i

δiti −
b

a

n∑
i=i

(eati − 1). (2.5)

For the inverse Gaussian distribution given by (2.3) and (2.4),

logL (θ,D) = const +
n∑
i=1

δi log

(
1√

2bπt3
exp

{
− 1

2bt
(1− at)2

})
+

n∑
i=1

(1− δi) log

(
1−

[
Φ

(
−1 + at√

bt

)
+ e2a/bΦ

(
−1− at√

bt

)])
, (2.6)

where θ = (a, b)′.

The log-likelihood functions, (2.5) and (2.6), can be maximized numerically to obtain

the maximum likelihood estimates. There are various routines available for numerical

maximization.

Confidence intervals for the parameters were based on asymptotic normality. We have

supposed the usual asymptotes of the maximum likelihood estimates hold. However, de-

fective distributions like the mixture model are not proper distributions. The checking of

regularity conditions for the asymptotes by analytical means is not easy. Such conditions

have not been checked even for the standard mixture model.

In the next section, we perform a simulation study to check the asymptotes of the max-

imum likelihood estimates. Simulations have been used in many papers to assess the

behavior of maximum likelihood estimates, especially when an analytical investigation is

intractable.
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Figure 2.4: Mean squared errors, biases and coverage probabilities of
(
â, b̂, p̂

)
versus n

for simulated data from the Gompertz distribution with (a, b, p) = (−1, 1, 0.3678).

2.3 Simulation Studies

In this section we propose four simulation scenarios in order to check the maximum

likelihood estimates when the sample size increases. We generate data from the Gompertz

and inverse Gaussian distribution according to Section 1.3.

In the first scenario, we simulated one thousand random samples each of size n =

100, 200, ..., 2000. Random samples were taken to come from the defective Gompertz

distribution with (a, b, p) = (−1, 1, 0.3678). We computed the maximum likelihood esti-

mates, â, b̂ and p̂, and their standard errors for each sample. These were used to compute

the bias, the mean squared error and the coverage probability for each parameter. To

calculate the standard deviation of the cure fraction, the delta method was used.

The second scenario was simulated from the same distribution, but with parameters
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Figure 2.5: Mean squared errors, biases and coverage probabilities of
(
â, b̂, p̂

)
versus n

for simulated data from the Gompertz distribution with (a, b, p) = (−2, 1, 0.6065).

(a, b, p) = (−2, 1, 0.6065). Figure 2.4 and 2.5 show the obtained results.

In third and fourth scenarios we use the defective inverse Gaussian distribution. The

random samples are taken from the distribution with parameters (a, b, p) = (−1, 5, 0.3296)

and (a, b, p) = (−1, 1, 0.8646), respectively. Figures 2.6 and 2.7 illustrates the results.

The choice of these parameters was taken in order to exemplify cases where we have low

and high cure fraction rates (and, therefore, low and high censoring rates).

All four scenarios presented similar results. We can notice the following from them: i) the

mean square error decreases very smoothly as the sample size increases and its value is

small for any n, specially the parameter p; ii) the biases are very small for all parameters;

iii) the coverage probabilities stays around 95% even for the smallest value of n, for all

parameters. This suggests that the delta method provides a good approximation to the
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Figure 2.6: Mean squared errors, biases and coverage probabilities of
(
â, b̂, p̂

)
versus n

for simulated data from the inverse Gaussian distribution with (a, b, p) = (−1, 5, 0.3296).

standard deviation of the cure fraction.

Therefore, we can see that these models can give a good point and interval estimation

with no need of lots of data. The same results can be observed with different parameter

choices.

2.4 Applications

In this section we present the implementation of the defective Gompertz and inverse

Gaussian distributions. We fit these distributions in the leukemia, melanoma, second

birth and divorce data sets.
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Figure 2.7: Mean squared errors, biases and coverage probabilities of
(
â, b̂, p̂

)
versus n

for simulated data from the inverse Gaussian distribution with (a, b, p) = (−1, 1, 0.8646).

This data sets were taken in order to show how the proposed models perform in different

kinds of curves given by the Kaplan-Meier estimator.

2.4.1 Leukemia data

Table 2.1: Maximum likelihood estimates of the Gompertz and inverse Gaussian distri-
butions in the leukemia data set.
Distribution Parameters Estimate Std. Dev. Lower 95% CI Upper 95% CI AIC
Gompertz a -1.5103 0.3696 -2.2347 -0.7859 52.58

b 2.3767 0.5171 1.3633 3.3901
p 0.2073 0.0562 0.0971 0.3175

Inverse a 0.2261 0.3436 -0.4474 0.8996 50.98
Gaussian b 3.1391 0.7378 1.6930 4.5852

p - - - -

The maximum likelihood estimates for the leukemia data set are shown in Table 2.1.
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The fitted survival curves are presented in Figure 2.8. We can see that the Gompertz

distribution estimate the parameter a in −1.51, and its confidence interval fully belongs in

the negative side of the line. This implies that the Gompertz model suggests a significance

of the existance of a cure fraction in this data set. However, this is not confirmed by the

inverse Gaussian model. Actually, the last model doesn’t capture the presence of a cure

fraction at all.
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Figure 2.8: Fitted survival curves of the Gompertz and inverse Gaussian distributions in
the leukemia data set.

The fitted survival curves confirms the poor fit of the proposed models in this data set.

Both model fails to capture the behavior of the Kaplan-Meier curve. The inverse Gaus-

sian distribution shows a small advantage when considering the AIC measure. Probably

because of the better fit in the points with small event times.

2.4.2 Melanoma data

In the melanoma data set, we have a similar case to the leukemia one. The maximum

likelihood estimates are shown in Table 2.2. The fitted survival curves are presented in
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Table 2.2: Maximum likelihood estimates of the Gompertz and inverse Gaussian distri-
butions in the melanoma data set
Distribution Parameters Estimate Std. Dev. Lower 95% CI Upper 95% CI AIC
Gompertz a -0.1313 0.0540 -0.2373 -0.0254 1096.47

b 0.1792 0.0217 0.1367 0.2217
p 0.2555 0.7673 -1.2483 1.7594

Inverse a -0.0357 0.0319 -0.0981 0.0268 1062.96
Gaussian b 0.4740 0.0427 0.3902 0.5578

p 0.1397 0.0000 0.1397 0.1398

Figure 2.9. We can see that the Gompertz distribution estimate the parameter a in −0.13,

and yet it confidence interval is fully negative. This implies that the Gompertz model

suggests a significance of the existence of a cure fraction in this data set. However, this is

not confirmed by the inverse Gaussian model. Here, the last model capture the presence

of a cure fraction, but with no significance.
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Figure 2.9: Fitted survival curves of the Gompertz and inverse Gaussian distributions in
the melanoma data set

The fitted survival curves shows that both model do not capture the behavior of the

Kaplan-Meier curve as well as one could expect. The inverse Gaussian distribution shows

an advantage when considering the AIC measure. It makes sense when considering the

fitted curves.
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We also notice that the estimated cure fraction by the Gompertz distribution is 0.25,

although, its standard deviation is highly estimated by the delta-method. This doesn’t

match with the results found in the simulation section, and is one more evidence that this

distribution is not appropriate for this kind of data .

2.4.3 Second Birth data

Table 2.3: Maximum likelihood estimates of the Gompertz and inverse Gaussian distri-
butions in the second birth data set
Distribution Parameters Estimate Std. Dev. Lower 95% CI Upper 95% CI AIC
Gompertz a 1.8924 0.4128 1.0833 2.7014 206.78

b 0.9402 0.1136 0.7175 1.1628
p - - - -

Inverse a 1.9184 0.1635 1.5980 2.2388 81.37
Gaussian b 1.3080 0.1248 1.0635 1.5525

p - - - -

In the second birth, we have a case when both models indicate no presence of cure fraction.

The maximum likelihood estimates are shown in Table 2.3. The fitted survival curves are

presented in Figure 2.10. The proposed distributions estimate the parameter a in the

positive range. So, the model suggest no existence of cured elements in this data set. Of

course, this is clearly not true.

The fitted survival curves shows that both model fails completely to capture the behav-

ior of the Kaplan-Meier curve. The AIC have a huge difference, but with no practical

meaning.

2.4.4 Divorce data

Table 2.4: Maximum likelihood estimates of the Gompertz and inverse Gaussian distri-
butions in the divorce data set
Distribution Parameters Estimate Std. Dev. Lower 95% CI Upper 95% CI AIC
Gompertz a -2.5645 0.2294 -3.0140 -2.1149 1517.14

b 1.9050 0.0875 1.7335 2.0765
p 0.4758 0.0119 0.4523 0.4992

Inverse a -3.1800 0.2049 -3.5817 -2.7784 1734.44
Gaussian b 8.9877 0.2913 8.4169 9.5586

p 0.5072 0.0047 0.4980 0.5164
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Figure 2.10: Fitted survival curves of the Gompertz and inverse Gaussian distributions
in the second birth data set

In the divorce data, we have a case in which both models indicates the presence of cure

fraction and gives fairly good models. The maximum likelihood estimates are shown in

Table 2.4. The fitted survival curves are presented in Figure 2.11. Both of the proposed

distribution estimate the parameter a in the negative range, with confidence interval yet

in the negative range. So, the models suggests the existence of cured elements in this

data set. The cure fraction is estimated in 0.47 and 0.50 by the Gompertz and inverse

Gaussian distributions, respectively.

The fitted survival curves shows that both models do capture the behavior of the Kaplan-

Meier curve. The Gompertz distribution captures it better. The inverse Gaussian is

better for longer observed times, but for short times, where the massive amount of data

is, the Gompertz model capture more closely. This is also evident in terms of AIC.
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Figure 2.11: Fitted survival curves of the Gompertz and inverse Gaussian distributions
in the divorce data set

2.5 Conclusions

In this chapter, we took the two defective models found in literature and performed an

simulation study in order to check the validity of its maximum likelihood properties. We

noticed that the proposed models can perform well even with very small sample sizes.

The cure fraction is estimated precisely, with virtually no bias.

However, the models works only when the data comes from a distribution very close to

the proposed ones. We have shown using four data sets, that only these two defective

distribution is not enough to deal with cure rate problems. In some cases, the models can

get a reasonably fit, at the best. In others, it is completely not appropriated.

This chapter states clearly that if someone wants to use the defective approach to address

problems with cured elements, it is necessary to have more distributions to work with.

Only the Gompertz and inverse Gaussian defective distributions are not enough. The next

chapter introduces two new defective models based on an extension under the Marshall-
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Olkin family.



Chapter 3

Marshall-Olkin Family of Defective

Models

3.1 Introduction

The aim of this chapter is to propose two new defective distributions based on the

Marshall-Olkin family of distributions (Marshall & Olkin, 1997). This family is obtained

by adding an extra parameter to a known baseline distribution.

Suppose S(t) is a known survival function. Then, the extended survival function by the

Marshall-Olkin family, S∗(t), is

S∗(t) =
rS(t)

1− (1− r)S(t)

for r > 0 and t ∈ R. Simple algebraic manipulations determine the density function of

the extended distribution:

f ∗(t) =
rf(t)

[1− (1− r)S(t)]2
. (3.1)

Particular Marshall Olkin G distributions studied in the literature include the Marshall-

Olkin asymmetric Laplace distribution (Krishna & Jose, 2011), the Marshall-Olkin beta

35
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distribution (Jose et al., 2009b), the Marshall-Olkin Birnbaum-Saunders distribution

(Lemonte, 2013), the Marshall-Olkin Burr type XII distribution (Al-Saiari et al., 2014),

the Marshall-Olkin discrete uniform distribution (Sandhya & Prasanth, 2014), the Marshall-

Olkin Frechet distribution (Krishna et al., 2013), the Marshall-Olkin gamma distribution

(Ristic et al., 2007), the Marshall-Olkin Laplace distribution (George & George, 2013), the

Marshall-Olkin Lindley distribution (Zakerzadeh & Mahmoudi, 2012), the Marshall-Olkin

log-logistic distribution (Gui, 2013a), the Marshall-Olkin Lomax distribution (Ghitany

et al., 2007), the Marshall-Olkin Morgenstern Weibull distribution (Jose & Sebastian,

2013), the Marshall-Olkin q-Weibull distribution (Jose et al., 2010), the Marshall-Olkin

Weibull distribution (Ghitany et al., 2005), the Marshall-Olkin uniform distribution (Jose

& Krishna, 2011a) and the Marshall-Olkin Zipf distribution (Perez-Casany & Casellas,

2014).

Marshall Olkin G distributions have been used to model: daily ozone measurements in

New York (Jose et al., 2009b); daily weighted discharge of Neyyar river in Kerala (Jose

et al., 2010); frequency of occurrence of words in the novel Moby Dick by Herman Melville

(Perez-Casany & Casellas, 2014); length of time until a breakdown is recorded in electrical

insulating (Al-Saiari et al., 2014); number of connections of a total of 225409 electronic

mail addresses (Perez-Casany & Casellas, 2014); number of days students attended a class

for the whole year (Sandhya & Prasanth, 2014); number of miles to first and succeeding

major motor failures of buses operated by a large city bus company (Gui, 2013b); number

of times that a given paper is cited in a given database (Perez-Casany & Casellas, 2014);

permeability values from horizons of the Dominquez field of Southern California (Jose

et al., 2009b); remission times of a random sample of bladder cancer patients (Ghitany

et al., 2005, 2007); survival times of guinea pigs injected with different doses of tubercle

bacilli (Krishna et al., 2013); vinyl chloride data obtained from clean up gradient monitor-

ing wells (Zakerzadeh & Mahmoudi, 2012); waiting times before service of bank customers

(Zakerzadeh & Mahmoudi, 2012).

The main purpose of this chapter is to propose two new defective distributions, extending

the Gompertz and inverse Gaussian distributions through the Marshall-Olkin family. The

details of these extensions including maximum likelihood estimation and the fact that S∗
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is defective if S is defective are shown in the next section. Section 3.3 is a simulation study

to assess the performance of the maximum likelihood estimators. Section 3.4 illustrates

the proposed distributions using real data sets.

3.2 Methodology

In order to construct defective distributions, we propose the use of the Marshall-Olkin

class to generalize a given distribution by adding an extra parameter.

The main result of this chapter is that if a given distribution is defective, then its extension

under the Marshall-Olkin family will be defective as well.

Theorem 3.1. If S(t) is defective then S∗(t) is also defective.

Proof: Suppose the limit of S(t) is equal to p0 ∈ (0, 1). Then

lim
t→∞

S∗(t) = lim
t→∞

rS(t)

1− (1− r)S(t)
=

rp0

1− (1− r)p0

=
rp0

rp0 + 1− p0

. (3.2)

Since 1− p0 is positive, it is easy to see that the last expression in (3.2) takes a value in

(0, 1). The proof is complete. �

We propose now two new defective distributions: the Marshall-Olkin Gompertz and

Marshall-Olkin inverse Gaussian distributions.

3.2.1 The Marshall-Olkin Gompertz distribution

Using (3.1) with density function in (2.1) and survival function in (2.2), we obtain the

Marshall-Olkin Gompertz density function

f(t) =

b · r · exp

(
b− b exp(at)

a
+ at

)
[
r − (r − 1) exp

(
b− b exp(at)

a

)]2 (3.3)



38

for a > 0, b > 0, r > 0 and t > 0. The corresponding survival function is

S(t) =

r exp

[
− b
a

(exp(at)− 1)

]
1− (1− r) exp

[
− b
a

(exp(at)− 1)

] . (3.4)

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

Marshall−Olkin Gompertz Density Function

t

f(
t)

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

Marshall−Olkin Gompertz Density Function

t

f(
t)

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

Marshall−Olkin Gompertz Density Function

t

f(
t)

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

Marshall−Olkin Gompertz Density Function

t

f(
t)

a = 1, b = 1, r = 1
a = 1, b = 1, r = 2
a = 1, b = 2, r = 1
a = 2, b = 2, r = 2

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Marshall−Olkin Gompertz Survival Function

t

S
(t

)

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Marshall−Olkin Gompertz Survival Function

t

S
(t

)

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Marshall−Olkin Gompertz Survival Function

t

S
(t

)

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Marshall−Olkin Gompertz Survival Function

t

S
(t

)

a = 1, b = 1, r = 1
a = 1, b = 1, r = 2
a = − 1, b = 2, r = 1
a = − 2, b = 2, r = 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Marshall−Olkin Gompertz Hazard Function

t

h(
t)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Marshall−Olkin Gompertz Hazard Function

t

h(
t)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Marshall−Olkin Gompertz Hazard Function

t

h(
t)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Marshall−Olkin Gompertz Hazard Function

t

h(
t)

a = − 1, b = 1, r = 1
a = − 1, b = 1, r = 2
a = − 1, b = 2, r = 1
a = − 2, b = 2, r = 2

Figure 3.1: Density, survival and hazard functions of the defective Marshall-Olkin Gom-
pertz distribution.

Figure 3.1 illustrates various scenarios for the density, survival and hazard functions of

the Marshall-Olkin Gompertz distribution. As in the Gompertz distribution, if a < 0

then the Marshall-Olkin Gompertz distribution is defective. Its cure fraction is

lim
t→∞

S(t) = lim
t→∞

1− 1

re
b(eat−1)

a − r + 1

=
rp0

1− (1− r)p0

=
rp0

rp0 + 1− p0

= p,

where p0 is the cure fraction of the defective Gompertz distribution.

3.2.2 The Marshall-Olkin inverse Gaussian distribution

Using (3.1) with density and survival functions of the inverse Gaussian distribution given

by (2.3) and (2.4), respectively, we obtain the density function of the Marshall-Olkin

inverse Gaussian distribution as

f(t) =

r exp

(
−(at− 1)2

2bt

)
√

2π
√
bt3
[
(r − 1)Φ

(
at− 1√

bt

)
+ (r − 1)e

2a
b Φ

(
−at+ 1√

bt

)
− r
]2 (3.5)
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for a > 0, b > 0 and r > 0. The corresponding survival function is

S(t) =

r

[
1− Φ

(
−1 + at√

bt

)
− e2a/bΦ

(
−1− at√

bt

)]
1− (1− r)

[
1− Φ

(
−1 + at√

bt

)
− e2a/bΦ

(
−1− at√

bt

)] . (3.6)
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Figure 3.2: Density, survival and hazard functions of the defective Marshall-Olkin inverse
Gaussian distribution.

Figure 3.2 illustrates various scenarios for the density, survival and hazard functions of

the Marshall-Olkin inverse Gaussian distribution. As in the inverse Gaussian distribution,

if a < 0 then the Marshall-Olkin inverse Gaussian distribution is also defective. Its cure

fraction is

lim
t→∞

S(t) =
rp0

rp0 + 1− p0

= p,

where p0 is the cure fraction of the defective inverse Gaussian distribution.

3.2.3 Inference

Consider a data set D = (t, δ), where t = (t1, . . . , tn)′ are the observed failure times and

δ = (δ1, . . . , δn)′ are the censored failure times. Suppose that the data are independently

and identically distributed and come from a distribution with density and survival func-

tions specified by f (·,θ) and S (·,θ), respectively, where θ = (θ1, . . . , θq)
′ denotes a vector

of parameters. According to Section 1.2.4, the log-likelihood function of θ can be written
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as

logL (θ,D) = const +
n∑
i=1

δi log f (ti,θ) +
n∑
i=1

(1− δi) logS (ti,θ) .

For the Marshall-Olkin Gompertz distribution given by (3.3) and (3.4),

logL (θ,D) = const +
n∑
i=1

δi

[
log

(
br exp

(
b− b exp(at)

a
+ at

))]

−
n∑
i=1

δi

[
log

([
r − (r − 1) exp

(
b− b exp(at)

a

)]2
)]

+
n∑
i=1

(1− δi)
[
log

(
r exp

[
− b
a

(exp(at)− 1)

])]
−

n∑
i=1

(1− δi)
[
log

(
1− (1− r) exp

[
− b
a

(
eat − 1

)])]
. (3.7)

For the Marshall-Olkin inverse Gaussian distribution given by (3.5) and (3.6),

logL (θ,D) = const +
n∑
i=1

δi log

(
r exp

(
−(at− 1)2

2bt

))
−

n∑
i=1

δi log

(√
bt3
[
(r − 1)Φ

(
at− 1√

bt

)

+(r − 1)e
2a
b Φ

(
−at+ 1√

bt

)
− r
]2
)

+
n∑
i=1

(1− δi) log

(
r

[
Φ

(
at− 1√

bt

)
+ e

2a
b Φ

(
−at+ 1√

bt

)
− 1

])
−

n∑
i=1

(1− δi) log

(
−(r − 1)Φ

(
at− 1√

bt

)
+(r − 1)e

2a
b

(
Φ

(
at+ 1√

bt

)
+ 1

)
− 1

)
. (3.8)

The log likelihoods, (3.7) and (3.8), can be maximized numerically to obtain the maximum

likelihood estimates. There are various routines available for numerical maximization. In

the simulations and real data applications presented in Sections 3.3 and 3.4, the rou-

tine optim converged all the time, giving unique maximum likelihood estimates. In all

cases considered, optim did not take more than five seconds for convergence. Confidence
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intervals for the parameters were based on asymptotic normality.

We have supposed the usual asymptotes of the maximum likelihood estimates hold. How-

ever, defective distributions like the mixture model are not proper distributions. The

checking of regularity conditions for the asymptotes by analytical means is not easy. Such

conditions have not been checked even for the standard mixture model.

In the next section, we perform an extensive simulation study partly to check the asymp-

totes of the maximum likelihood estimates. Simulations have been used in many works

to assess the behavior of maximum likelihood estimates.

3.3 Simulation Studies

Here, we perform three simulation experiments. The first one is to assess the performance

of the maximum likelihood estimates with respect to sample size. The second one is a

comparison of defective and mixture models in terms of AIC and cure rate estimates

when the data were generated from a defective model. The third one is the same as

the second one, but the data were generated from a mixture model. The algorithm to

generate according to Section 1.3.

In this first experiment, we simulated one thousand random samples each of size n =

20, 40, . . . , 1000. The random samples were taken to come from i) the Marshall-Olkin

Gompertz distribution with (a, b, r, p) = (−3, 4, 2, 0.4172); ii) the Marshall-Olkin inverse

Gaussian distribution with (a, b, r, p) = (−2, 10, 2, 0.4958). We computed the maximum

likelihood estimates, â, b̂, r̂ and p̂, and their standard errors for each sample. These

were used to compute the bias, the mean squared error, the coverage probability and the

coverage length of â, b̂, r̂ and p̂ for each n.

Figures 3.3 and 3.4 show the plots of the mean squared errors, the biases, the coverage

probabilities and the coverage lengths of
(
â, b̂, r̂, p̂

)
versus n for simulated data from the

Marshall-Olkin Gompertz and Marshall-Olkin inverse Gaussian distributions.

We can observe the following from the figures: i) the mean squared errors for all pa-
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Figure 3.3: Mean squared errors, biases, coverage probabilities and coverage lengths of(
â, b̂, r̂, p̂

)
versus n for simulated data from the Marshall-Olkin Gompertz distribution

with (a, b, r, p) = (−3, 4, 2, 0.4172).

rameters generally decrease to zero with increasing n; ii) the mean squared errors for all

parameters appear reasonably close to zero for all n ≥ 600; iii) the mean squared errors

appear smallest for the parameter, p; iv) the mean squared errors appear largest for the

parameters, b and r; v) the biases for all parameters generally approach zero with increas-

ing n; vi) the biases for all parameters appear reasonably close to zero for all n ≥ 600;

vii) the biases appear generally negative for the parameter, a; viii) the biases appear gen-

erally positive for the parameter, r; ix) the biases appear smallest for the parameter, p;

x) the coverage probabilities for all parameters generally approach the nominal level with

increasing n; xi) the coverage probabilities for all parameters appear reasonably close to

the nominal level for all n ≥ 800; xii) the coverage probabilities appear furthest from the

nominal level for the parameter, r; xiii) the coverage lengths for all parameters generally
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Figure 3.4: Mean squared errors, biases, coverage probabilities and coverage lengths of(
â, b̂, r̂, p̂

)
versus n for simulated data from the Marshall-Olkin inverse Gaussian distri-

bution with (a, b, r, p) = (−2, 10, 2, 0.4958).

decrease with increasing n; xiv) the coverage lengths appear smallest for the parameter,

p; xv) the coverage lengths appear largest for the parameters, b and r.

These observations are for the Marshall-Olkin Gompertz distribution with (a, b, r, p) =

(−3, 4, 2, 0.4172) and for the Marshall-Olkin inverse Gaussian distribution with (a, b, r, p) =

(−2, 10, 2, 0.4958). But many of the observations were the same when the simulations were

repeated for a wide range other values of (a, b, r, p) for both the Marshall-Olkin Gompertz

and Marshall-Olkin inverse Gaussian distributions.

We also noted that the decrease in coverage lengths with increasing n was slow. Indeed,

some of the coverage lengths in Figures 3.3 and 3.4 do appear large even for a sample

of size 200. Some of the confidence intervals reported in Section 3.4 appear large too.
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This suggests a very large sample size may be needed in order to have reliable interval

estimates. It is comforting however two of the three real data sets considered in Section

3.4 have sizes over one thousand.
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Figure 3.5: In the left, the plotted line represents the difference between the AIC values
obtained under the Marshall-Olkin Gompertz mixture and defective models, respectively,
when the data were generated from a defective model. In the right, the corresponding
estimates of p.
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Figure 3.6: In the left, the plotted line represents the difference between the AIC val-
ues obtained under the Marshall-Olkin inverse Gaussian mixture and defective models,
respectively, when the data were generated from a defective model. In the right, the
corresponding estimates of p.
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The second experiment is to compare the performance of the defective models versus their

respective mixture models when the data were generated from defective models. The

Marshall-Olkin Gompertz and Marshall-Olkin inverse Gaussian defective distributions

were simulated using (a, b, r, p) = (−3, 4, 2, 0.4172) and (a, b, r, p) = (−2, 10, 2, 0.4958),

respectively. They were compared to the corresponding mixture versions. Figures 3.5

and 3.6 (left) provide a comparison in terms of the AIC. The black line represents the

difference between the AIC of the mixture model and that of the defective model. The

difference is positive for all samples sizes, meaning that the AIC of the defective model

is always smaller. On average, the AIC of the defective model is 1.7704 smaller than the

AIC of the mixture model for the Marshall-Olkin Gompertz distribution. On average,

the AIC of the defective model is 1.0865 smaller for the Marshall-Olkin inverse Gaussian

distribution.

Figures 3.5 and 3.6 (right) compare the cure rate estimates for mixture and defective

models. We have not compared other parameters since they do not directly relate to

the proposed distributions. The estimates of p under both models appear good for the

Marshall-Olkin Gompertz distribution, see Figure 3.5. The quadratic error sum for the

defective model is 0.00130 and that for the mixture model is 0.00049. This gives a slight

advantage for the mixture model. The estimates of p under the defective and mixture

models appear good also for the Marshall-Olkin inverse Gaussian distribution, see Figure

3.6. The quadratic error sum for the defective model is 0.00256 and that for the mixture

model is 0.00727. Again a small difference but now in favour of the defective model.

The third and the last experiment is to compare the performance of the defective mod-

els versus their respective mixture models when the data were generated from mix-

ture models. Mixture versions of the Marshall-Olkin Gompertz and Marshall-Olkin

inverse Gaussian distributions were simulated using (a, b, r, p) = (0.2, 0.2, 0.2, 0.5) and

(a, b, r, p) = (2, 2, 0.5, 0.5), respectively. They were compared to the corresponding defec-

tive versions. Figures 3.7 and 3.8 (left) compare the models in terms of the AIC. The

black line again represents the difference between the AIC of the mixture model and that

of the defective model. The differences decrease as n increases for the Marshall-Olkin

Gompertz distribution and become less than zero only when n > 960, see Figure 3.7. The
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Figure 3.7: In the left, the plotted line represents the difference between the AIC values
obtained under the Marshall-Olkin Gompertz mixture and defective models, respectively,
when the data were generated from a mixture model. In the right, the corresponding
estimates of p.
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Figure 3.8: In the left, the plotted line represents the difference between the AIC val-
ues obtained under the Marshall-Olkin inverse Gaussian mixture and defective models,
respectively, when the data were generated from a mixture model. In the right, the
corresponding estimates of p.

differences appear positive for all sample sizes for the Marshall-Olkin inverse Gaussian

distribution, see Figure 3.8. On average, the AIC of the defective model is 0.8196 smaller

than the AIC of the mixture model for the Marshall-Olkin Gompertz distribution. On
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average, the AIC of the defective model is 0.7511 smaller for the Marshall-Olkin inverse

Gaussian distribution.

Figures 3.7 and 3.8 (right) compare the cure rate estimates for mixture and defective mod-

els. The estimates of p under both models appear good for both Marshall-Olkin Gompertz

and Marshall-Olkin inverse Gaussian distributions. The quadratic error sums for the de-

fective and mixture models are 0.00715 and 0.00782, respectively, for the Marshall-Olkin

Gompertz distribution. The quadratic error sums for the defective and mixture models are

0.00288 and 0.00302, respectively, for the Marshall-Olkin inverse Gaussian distribution.

The differences found in the second and third experiments are small, but they show clearly

that the defective model is better. The results remained the same for a wide range of other

parameter choices. That is, the AIC values and the quadratic error sums were smaller for

the defective model most of the time for a wide range of parameter choices and for the

two distributions. Hence, the defective model can be considered a viable alternative for

the mixture model.

Section 3.4 presents three real data applications. The sample size for the first data set

is forty four. The sample size for the second data set is over one thousand. The sample

size for the third data set is over one thousand eight hundred. Hence, the given point as

well as interval estimates for the second and third data sets can be considered accurate

enough. But those for the first data set must be treated conservatively.

3.4 Applications

To illustrate the distributions presented we are going to use three data sets: the leukemia,

second birth and colon. The three data sets represent three different real scenarios (see

Figures 1.1, 1.3 and 1.5). They were chosen carefully to test the flexibility of the proposed

distributions under different conditions.

The first and third data sets are about the recurrence of a type of cancer. For these data

sets, it is fair to assume that there are individuals who will never have the cancer again,



48

implying a cure rate. For the second data set, the presence of a cure rate is even more

obvious: the immune elements are simply those couples who do not plan to have a second

child.

The Gompertz, the Marshall-Olkin Gompertz, the inverse Gaussian and the Marshall-

Olkin inverse Gaussian distributions were fitted to the data set via maximum likelihood.

The variance of the cure fraction was estimated by using the delta method. The summary

of the fitted Gompertz and Marshall-Olkin Gompertz distributions are shown in Tables

3.1, 3.2 and 3.3. The summary of the fitted inverse Gaussian and Marshall-Olkin inverse

Gaussian distributions are shown in Tables 3.4, 3.5 and 3.6.

The fitted survival curves of the proposed distributions for the leukemia data set are

shown in Figure 3.9. Those for the second birth data set are shown in Figure 3.10. Those

for the colon data set are shown in Figure 3.11. Table 3.7 presents the AIC values for

all four of the fitted distributions. Figure 3.12 plots the Kaplan-Meier estimates of the

survival function versus the predicted values from the proposed distributions. There is a

diagonal line in each plot. The closer the points to this line the better the fit.
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Figure 3.9: Survival curves for the fitted Gompertz, Marshall-Olkin Gompertz, inverse
Gaussian and Marshall-Olkin inverse Gaussian distributions for the leukemia data set.

The Marshall-Olkin Gompertz distribution is a clear improvement over the Gompertz

distribution for all three data sets. The fitted survival curve for the former captures the
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Figure 3.10: Survival curves for the fitted Gompertz, Marshall-Olkin Gompertz, inverse
Gaussian and Marshall-Olkin inverse Gaussian distributions for the second birth data set.
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Figure 3.11: Survival curves for the fitted Gompertz, Marshall-Olkin Gompertz, inverse
Gaussian and Marshall-Olkin inverse Gaussian distributions for the colon data set.

Kaplan-Meier curve much better, see Figures 3.9, 3.10, 3.11 and 3.12. For all data sets,

the Marshall-Olkin Gompertz distribution estimates a by a negative value with a nega-

tive confidence interval. The Gompertz distribution gives a negative interval for a for the

leukemia and colon data sets but estimates a by a positive value for the second birth data

set. So, the second birth data set is an example, where the baseline distribution does not

yield a defective model, while the Marshall-Olkin extension gives a much better fit as a
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Figure 3.12: Plots of the Kaplan-Meier estimates of the survival function versus the
predicted values from the proposed distributions. The top four plots are for the second
birth data set. The middle four plots are for the leukemia data set. The bottom four
plots are for the colon data set.

defective model. All but the Marshall-Olkin inverse Gaussian distribution appear to esti-

mate the cure fraction in the expected range in relation to the Kaplan-Meier curve. The

Marshall-Olkin inverse Gaussian distribution appears to underestimate the cure fraction

for the second birth and colon data sets.

The Marshall-Olkin inverse Gaussian distribution is a clear improvement over the inverse

Gaussian distribution for all data sets, especially for the leukemia data set. The fitted

survival curve for the former captures the Kaplan-Meier curve much better. For the

second birth data set, both distributions appear to perform equally well at first, but

as time increases the tail of the inverse Gaussian distribution gets distanced from the

Kaplan-Meier curve while that of the Marshall-Olkin inverse Gaussian distribution keeps

close. For the leukemia data set, the inverse Gaussian distribution estimates a by a very

small negative value, giving a very small estimate of the cure fraction not significantly

different from zero. For the leukemia and second birth data sets, the Marshall-Olkin

inverse Gaussian distribution estimates a by a negative value with a negative confidence
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Table 3.1: MLEs for the fits of the Gompertz and Marshall-Olkin Gompertz distributions
for the leukemia data set.

Distribution Parameter Point estimate Std. dev. Low 95% CI Upper 95% CI
a -1.5103 0.3696 -2.4399 -0.9349

Gompertz b 2.3767 0.5171 1.5517 3.6405
p 0.2073 0.0611 0.0875 0.3271

a -4.0973 0.7898 -5.9783 -2.8082
Marshall-Olkin b 25.6059 9.1558 12.7051 51.6061

Gompertz r 121.9638 150.2286 10.9085 1363.6302
p 0.191 0.0593 0.0748 0.3071

Table 3.2: MLEs for the fits of the Gompertz and Marshall-Olkin Gompertz distributions
for the second birth data set.

Distribution Parameter Point estimate Std. dev. Low 95% CI Upper 95% CI
a 2.4401 0.3178 1.8172 3.063

Gompertz b 1.0025 0.0865 0.8329 1.172
p - - - -

a -8.6164 0.6121 -9.9036 -7.4965
Marshall-Olkin b 84.5282 11.5758 64.6298 110.5529

Gompertz r 9449.995 7210.3028 2118.2085 42159.4024
p 0.3416 0.0145 0.3132 0.37

interval. The estimate of a for the colon data set is close to zero, leading to a very small

cure fraction.

The estimate of r for Marshall-Olkin distributions is significantly different from 1, meaning

that those distributions provide better fits. This can also be checked in Figure 3.12. The

Marshall-Olkin distributions have points closer to the diagonal line than the baseline

distributions.

Table 3.7 shows there is a big reduction in AIC values when the Marshall-Olkin Gompertz

and Gompertz distributions are compared and when the Marshall-Olkin inverse Gaussian

and inverse Gaussian distributions are compared.

For the leukemia and second birth data sets, the best fitting defective model is the

Marshall-Olkin inverse Gaussian distribution, the second best fitting model is the Marshall-

Olkin Gompertz distribution, the third best fitting model is the inverse Gaussian distribu-

tion and the worst fitting model is the Gompertz distribution. For the colon data set, the

best fitting defective model is the Marshall-Olkin Gompertz distribution, the second best
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Table 3.3: MLEs for the fits of the Gompertz and Marshall-Olkin Gompertz distributions
for the colon data set.

Distribution Parameter Point estimate Std. dev. Low 95% CI Upper 95% CI
a -2.3372 0.1772 -2.7117 -2.0145

Gompertz b 2.0014 0.1025 1.8103 2.2127
p 0.4247 0.0115 0.4022 0.4472

a -4.6989 0.3527 -5.4436 -4.0560
Marshall-Olkin b 11.1570 1.7778 8.1642 15.2469

Gompertz r 8.7515 2.2139 5.3304 14.3685
p 0.4732 0.0116 0.4505 0.4959

Table 3.4: MLEs for the fit of the Marshall-Olkin inverse Gaussian distribution for the
leukemia data set.

Distribution Parameter Point estimate Std. dev. Low 95% CI Upper 95% CI
a -0.0003 0.0141 -0.0279 0.0273

Inverse Gaussian b 3.3612 0.7169 2.2128 5.1057
p 0.0002 0.0021 0.0000 0.0044

a -1.3387 0.4147 -2.4567 -0.7294
Marshall-Olkin b 1.0507 0.2182 0.6993 1.5786

inverse Gaussian r 0.0226 0.0247 0.0027 0.1918
p 0.2107 0.0615 0.0902 0.3312

fitting model is the Gompertz distribution, the third best fitting model is the Marshall-

Olkin inverse Gaussian distribution and the worst fitting model is the inverse Gaussian

distribution.

Table 3.7 also compares the AIC values between the defective and mixture models based

on the Gompertz, Marshall-Olkin Gompertz, inverse Gaussian and Marshall-Olkin inverse

Gaussian distributions. The bold value represents the smaller value in the comparison.

The defective model performs better for the leukemia data set when based on the Marshall-

Olkin Gompertz and Marshall-Olkin inverse Gaussian distributions. The defective model

is better for the second birth data set when based on all but the Gompertz distribution.

The defective model is better for the colon data set when based on all but the Marshall-

Olkin Gompertz distribution.
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Table 3.5: MLEs for the fit of the Marshall-Olkin inverse Gaussian distribution for the
second birth data set.

Distribution Parameter Point estimate Std. dev. Low 95% CI Upper 95% CI
a 2.1169 0.1277 1.8666 2.3673

Inverse Gaussian b 1.5312 0.101 1.3332 1.7293
p - - - -

a -1.5842 0.6094 -3.3668 -0.7454
Marshall-Olkin b 1.063 0.09 0.9004 1.2549

inverse Gaussian r 0.0161 0.017 0.002 0.1274
p 0.2318 0.0129 0.2065 0.2571

Table 3.6: MLEs for the fit of the Marshall-Olkin inverse Gaussian distribution for the
colon data set.

Distribution Parameter Point estimate Std. dev. Low 95% CI Upper 95% CI
a -1.6688 0.1568 -2.0063 -1.3881

Inverse Gaussian b 7.3406 0.2901 6.7936 7.9317
p 0.3653 0.0112 0.3435 0.3872

a -0.0012 0.0160 -0.0326 0.0302
Marshall-Olkin b 12.3160 1.0183 10.4734 14.4827

inverse Gaussian r 2.8375 0.2190 2.4392 3.3009
p 0.0005 0.0005 -0.0005 0.0016

Table 3.7: AIC values for the fitted defective distributions compared with their respective
mixture models.

Distribution Leukemia Birth Colon
Defective Mixture Defective Mixture Defective Mixture

Gompertz 52.58 50.74 321.74 197.17 1518.02 1520.02
MO Gompertz 37.16 37.88 80.56 136.75 1488.64 1484.79
Inv. Gaussian 51.38 36.43 99.94 114.36 1597.47 1668.36

MO Inv. Gaussian 35.35 38.34 72.54 109.73 1529.34 1601.22

3.5 Conclusions

We have proposed two new distributions by using an idea due to Marshall and Olkin.

These distributions can assume a defective form. In this way, the cure rate can be esti-

mated by models having one less parameter than the usual standard mixture models.

Three real data applications have shown that Marshall-Olkin distributions perform much

better than known defection distributions in terms of likelihood values, proximity to the

Kaplan-Meier curve and AIC values. Further investigations are needed to verify the

potential of such distributions as cure fraction models.



Chapter 4

Kumaraswamy Family of Defective

Models

4.1 Introduction

Here we use the Kumaraswamy family of distributions proposed by Cordeiro & de Castro

(2011) as a means for developing distributions that can be defective. Similarly to the

Marshall-Olkin family, this family adds two parameters to a baseline distribution, making

it more flexible.

The aims of this chapter are to show that if a distribution is defective, then its exten-

sion under the Kumaraswamy family of distributions is also defective. Based on that, we

propose two new defective distributions by extending the Gompertz and inverse Gaussian

distribution under the Kumaraswamy family. In the next section we discuss the Ku-

maraswamy family of distributions and the two distributions, the Kumaraswamy Gom-

pertz and Kumaraswamy inverse Gaussian distributions, generated based on the family.

Maximum likelihood estimation and a regression model are also discussed. Section 4.3 as-

sesses the finite sample performance and checks the asymptotes of the maximum likelihood

estimators. Section 4.4 illustrates the usefulness of these two distributions as defective

models in three real cancer data sets. The fit of these two distributions is compared to

54



55

those of the Gompertz and inverse Gaussian distributions, the baseline distributions, and

the standard mixture model.

4.2 Methodology

4.2.1 The Kumaraswamy family of distributions

The Kumaraswamy distribution due to Kumaraswamy (1980) has the probability density

and cumulative distribution functions specified by

f(x) = ruxr−1 (1− xr)u−1 ,

F (x) = 1− (1− xr)u

for r > 0, u > 0 and 0 < x < 1. Here, both r and u are shape parameters. This

distribution is closely related to the beta distribution, but it is simpler. Its hazard function

can be unimodal, uniantimodal, increasing, decreasing and constant. This shows that the

Kumaraswamy distribution can model a wide variety of data sets.

Cordeiro & de Castro (2011) proposed the Kumaraswamy family of distributions: given

a baseline cumulative distribution function G(x) with g(x) = dG(x)/dx and S(x) =

1−G(x), they define the Kumaraswamy-G distribution as the one having the probability

density, cumulative distribution, survival and hazard rate functions specified by

g∗(x) = urg(x)G(x)r−1 [1−G(x)r]u−1 , (4.1)

G∗(x) = 1− [1−G(x)r]u , (4.2)

S∗(x) = [1−G(x)r]u = {1− [1− S(x)]r}u , (4.3)

h∗(x) = g∗(x)/S∗(x). (4.4)

For every given G, this defines a family of distributions. Clearly, the Kumaraswamy-G

distribution for r = u = 1 is the baseline distribution.
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Particular KumaraswamyG distributions studied in the literature include the Kumaraswamy

Birnbaum-Saunders distribution (Saulo et al., 2012), the Kumaraswamy Burr XII dis-

tribution (Paranaiba et al., 2013), the Kumaraswamy exponentiated Pareto distribu-

tion (Elbatal, 2013a), the Kumaraswamy generalized exponentiated Pareto distribution

(Shams, 2013a), the Kumaraswamy generalized gamma distribution (de Pascoa et al.,

2011), the Kumaraswamy generalized half normal distribution (Cordeiro et al., 2012d),

the Kumaraswamy generalized linear failure rate distribution (Elbatal, 2013b), the Ku-

maraswamy generalized Lomax distribution (Shams, 2013b), the Kumaraswamy gener-

alized Pareto Distribution (Nadarajah & Eljabri, 2013), the Kumaraswamy generalized

Rayleigh distribution (Gomes et al., 2014), the Kumaraswamy geometric distribution

(Akinsete et al., 2014), the Kumaraswamy Gumbel distribution (Cordeiro et al., 2012a),

the Kumaraswamy half-Cauchy distribution (Ghosh, 2014), the Kumaraswamy inverse

exponential distribution (Oguntunde et al., 2014), the Kumaraswamy inverse Rayleigh

distribution (Roges et al., 2014), the Kumaraswamy inverse Weibull distribution (Shah-

baz et al., 2012), the Kumaraswamy Kumaraswamy distribution (El-Sherpieny & Ahmed,

2014), the Kumaraswamy Lindley distribution (Cakmakyapan & Kadilar, 2014), the Ku-

maraswamy log-logistic distribution (de Santana et al., 2012), the Kumaraswamy modified

inverse Weibull distribution (Aryal & Elbata, 2015), the Kumaraswamy modified Weibull

distribution (Cordeiro et al., 2014b), the Kumaraswamy Pareto distribution (Bourguignon

et al., 2013), the Kumaraswamy quasi Lindley distribution (Elbatal & Elgarhy, 2013) and

the Kumaraswamy Weibull distribution (Cordeiro et al., 2010).

Kumaraswamy G distributions have been used to model: breaking strengths of glass fibers

(Paranaiba et al., 2013); breaking strengths of polyster/viscose yarns (Aryal & Elbata,

2015); breaking stress of carbon fibers (Shams, 2013a,b); carbon monoxide levels from

several cigarette brands (Gomes et al., 2014); exceedances by the river Nidd at Hunsin-

gore Weir (Nadarajah & Eljabri, 2013); exceedances of flood peaks of the Wheaton river

near Carcross in Yukon Territory, Canada (Bourguignon et al., 2013); failure times for

epoxy insulation specimens (Gomes et al., 2014); failure times of mechanical components

(Cordeiro et al., 2012d); flood data for the Floyd river located in James, Iowa, USA

(Cordeiro et al., 2012d); flood discharge of at least seven consecutive days and return
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period of 10 years in the Brazilian Pantanal (Cordeiro et al., 2012a); frequencies of the

purchases of a brand X breakfast cereals (Akinsete et al., 2014); lifetimes of industrial de-

vices put on life test at time zero (Cordeiro et al., 2014b; de Pascoa et al., 2011); number of

absences among shift-workers in a steel industry (Akinsete et al., 2014); stress-rupture life

of kevlar epoxy strands subjected to constant sustained pressure (Paranaiba et al., 2013);

survival times of cutaneous melanoma (a type of malignant cancer) patients (de Santana

et al., 2012); survival times of guinea pigs injected with different doses of tubercle bacilli

(Cordeiro et al., 2012d); survival times of patients given radiation therapy and radiation

plus chemotherapy (Cordeiro et al., 2014b); the number of millions revolutions reached

by ball bearings before fatigue failure (Ghosh, 2014); times of failure and running times

of devices from a field-tracking study of a larger system (Cordeiro et al., 2010); times

to serum reversal of children exposed to HIV by vertical transmission (de Pascoa et al.,

2011; de Santana et al., 2012; Paranaiba et al., 2013); times until bulls reach the weight

of 160kg since birth (Roges et al., 2014).

We now state and prove the result that if G is defective then G∗ is also defective.

Theorem 4.1. If S(t) is a survival function of a defective distribution, then S∗(t) is also

a survival function of a defective distribution.

Proof: Suppose the limit of S(t) is equal to p0 ∈ (0, 1). Then

lim
t→∞

S∗(t) = lim
t→∞
{1− [1− S(t)]r}u

=
{

1−
[
1− lim

t→∞
S(t)

]r}u
= {1− [1− p0]r}u = p ∈ (0, 1).

Since 0 < 1 − p0 < 1, it is easy to see that the last expression in (4.5) takes a value in

(0, 1). The proof is complete. �

Now we propose two new defective distributions: the Kumaraswamy Gompertz and Ku-

maraswamy inverse Gaussian distributions.
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4.2.2 The Kumaraswamy Gompertz distribution

Substituting (2.1) and (2.2) into (4.1), (4.3) and (4.4), we obtain the Kumaraswamy

Gompertz distribution specified by

g∗(t) = urbeat
(
e
b−beat
a

) [
1−

(
e
b−beat
a

)]r−1 [
1−

{
1−

(
e
b−beat
a

)}r]u−1

,

S∗(t) =
{

1−
[
1−

(
e
b−beat
a

)]r}u
and

h∗(t) = urbeat
(
e
b−beat
a

) [
1−

(
e
b−beat
a

)]r−1 [
1−

{
1−

(
e
b−beat
a

)}r]−1

for a > 0, b > 0, r > 0, u > 0 and t > 0. Figure 4.1 illustrates possible shapes of these

functions.
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Figure 4.1: Probability density, survival and hazard functions of the defective Ku-
maraswamy Gompertz distribution.

The Kumaraswamy Gompertz distribution is defective if a < 0. According to Theorem

2.1, its cure fraction is

lim
t→∞

S∗(t) = {1− [1− p0]r}u = p,

where p0 is the cure fraction of the defective Gompertz distribution.
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4.2.3 The Kumaraswamy inverse Gaussian distribution

Substituting (2.3) and (2.4) into (4.1), (4.3) and (4.4), we obtain the Kumaraswamy

inverse Gaussian distribution specified by

g∗(t) =

(
ur√
2bπt3

exp

{
−(1− at)2

2bt

})[
Φ

(
−1 + at√

bt

)
+ e

2a
b Φ

(
−1− at√

bt

)]r−1

×
{

1−
[
Φ

(
−1 + at√

bt

)
+ e

2a
b Φ

(
−1− at√

bt

)]r}u−1

,

S∗(t) =

{
1−

[
Φ

(
−1 + at√

bt

)
+ e2a/bΦ

(
−1− at√

bt

)]r}u

and

h∗(t) =

(
ur√
2bπt3

exp

{
−(1− at)2

2bt

})[
Φ

(
−1 + at√

bt

)
+ e

2a
b Φ

(
−1− at√

bt

)]r−1

×
{

1−
[
Φ

(
−1 + at√

bt

)
+ e

2a
b Φ

(
−1− at√

bt

)]r}−1

for a > 0, b > 0, r > 0, u > 0 and t > 0. Figure 4.2 illustrates possible shapes of these

functions.
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Figure 4.2: Probability density, survival and hazard functions of the defective Ku-
maraswamy inverse Gaussian distribution.

The Kumaraswamy inverse Gaussian distribution is defective if a < 0. According to
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Theorem 2.1, its cure fraction is

lim
t→∞

S∗(t) = {1− [1− p0]r}u = p,

where p0 is the cure fraction of the defective inverse Gaussian distribution.

Therefore, now we have two new distributions that can assume a defective form. They

have a lot more flexibility and capacity to model different kinds of data sets, at the cost

of having two extra parameters.

4.2.4 Inference

Here, we discuss estimation issues. Consider a data set D = (t, δ), where t = (t1, . . . , tn)′

are the observed failure times and δ = (δ1, . . . , δn)′ are the censored failure times.

Suppose that the data are independently and identically distributed and come from a

distribution with probability density and cumulative distribution functions specified by

f (·,θ) and F (·,θ), respectively, where θ = (θ1, . . . , θq)
′ denotes a vector of parameters.

The log-likelihood function of θ is

logL (θ,D) = const +
n∑
i=1

δi log f (ti,θ) +
n∑
i=1

(1− δi) log [1− F (ti,θ)] .

For the Kumaraswamy Gompertz distribution,
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The log-likelihoods functions can be maximized numerically to obtain the maximum

likelihood estimates. There are various routines available for numerical maximization.

Confidence intervals for the parameters were based on asymptotic normality.

4.2.5 The Kumaraswamy-G regression model

Here, we briefly discuss a possible approach to use the Kumaraswamy family with covariate

information. Suppose that x′ = (1, x1, . . . , xp) is a vector of covariates from a data set

and S(t) is the survival function of a baseline distribution. Then, the Kumaraswamy-G

regression model is given by

S∗ (t|x) = {S∗(t)}exp (β′x) = {1− [1− S(t)]r}u exp (β′x)

for t > 0, r > 0, u > 0 and β′ = (β0, β1, . . . , βp) a vector of regression coefficients.

This approach has a simple interpretation when the Kumaraswamy-G distribution is used

as a defective model. Suppose that p is the cure fraction of a Kumaraswamy-G defective

model, then the limit of the survival function is

lim
t→∞

S∗ (t|x) = pexp (β′x).

It is easy to check that the cured proportion increases when β′x < 0 (exp (β′x) < 1) and

decreases when β′x > 0 (exp (β′x) > 1). Therefore, negative coefficients in β contribute

to increase the cure fraction and positive coefficients contribute to decrease it.

The survival function of the Kumaraswamy Gompertz regression model is given by

S∗ (t|x) =
{

1−
[
1−

(
e
b−beat
a

)]r}u exp (β′x)

.

The survival function of the Kumaraswamy inverse Gaussian regression model is given by

S∗ (t|x) =

{
1−

[
Φ

(
−1 + at√

bt

)
+ e2a/bΦ

(
−1− at√

bt

)]r}u exp (β′x)

.
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An application of these models to a melanoma data set is described in Section 4.4.1.

4.3 Simulation Studies

Here, we assess the performance of the maximum likelihood estimates with respect to

sample size to show, among other things, that the usual asymptotes of maximum likelihood

estimators still hold for defective distributions. The assessment is based on simulations.

The description of data generation is in Section 1.3.

Table 4.1: Simulation of the maximum likelihood estimates for mean and standard devi-
ation of the Kumaraswamy Gompertz distribution.

Sample sizes Mean estimates Standard deviation estimates
(Censoring rates) â b̂ r̂ û p̂ â b̂ r̂ û p̂
(a, b, r, u, p) = (−1, 5, 5, 0.5, 0.1823)

100 (35.80%) -0.9887 7.0934 8.3434 0.7775 0.1697 0.444 6.1046 7.3722 2.5008 0.2493
250 (33.28%) -1.0001 6.0915 6.761 0.8496 0.1787 0.2449 3.6785 3.8297 1.6763 0.186
500 (31.36%) -0.9994 5.6122 5.8102 0.7077 0.1809 0.1571 2.4126 2.0546 0.8084 0.1499
1000 (29.89%) -1.0076 5.1474 5.2758 0.636 0.1819 0.1045 1.5693 1.1801 0.43 0.1234
2000 (28.92%) -1.0037 5.101 5.1547 0.5495 0.1824 0.0703 1.0868 0.7892 0.2142 0.1023
5000 (27.65%) -1.0009 5.0181 5.042 0.5195 0.1822 0.0419 0.6662 0.4727 0.1153 0.0799

(a, b, r, u, p) = (−2, 2, 2, 2, 0.3605)
100 (50.68%) -1.9845 6.4412 3.1071 1.6974 0.3506 1.0041 13.1274 2.3258 13.5832 0.2808
250 (48.40%) -1.8958 6.6877 2.8202 1.3912 0.356 0.5 8.3259 1.2862 6.1321 0.2035
500 (47.21%) -1.8916 5.2443 2.4304 1.5544 0.3579 0.3246 5.4028 0.6895 4.5243 0.1663
1000 (46.16%) -1.9455 3.7424 2.2102 2.2102 0.3597 0.2323 3.4466 0.4052 5.0514 0.1361
2000 (45.11%) -1.9719 2.7868 2.0903 2.374 0.3598 0.148 2.0106 0.2358 3.4315 0.1122
5000 (44.16%) -1.9881 2.3317 2.0379 2.3209 0.3604 0.0943 1.264 0.1468 2.1978 0.0879

(a, b, r, u, p) = (−3, 11, 2, 0.2, 0.5503)
100 (66.01%) -2.9369 24.1308 3.9845 0.156 0.5254 1.572 58.2769 5.3884 0.9326 0.2893
250 (64.09%) -3.0368 20.6565 2.99 0.2086 0.5457 0.8143 26.4515 1.7769 0.7126 0.2031
500 (62.89%) -2.9784 19.0204 2.5784 0.209 0.5479 0.5328 19.116 1.246 0.5011 0.1667
1000 (62.29%) -2.9769 16.7299 2.3478 0.2251 0.5502 0.3483 12.936 0.6584 0.399 0.1363
2000 (61.46%) -2.9955 13.4688 2.1343 0.2534 0.5504 0.237 8.4298 0.3923 0.3186 0.1128
5000 (60.71%) -3.0013 11.6581 2.0375 0.2321 0.5502 0.1463 5.0363 0.2252 0.166 0.0889

Tables 4.3 and 4.3 describe the results for three different parameters values. The param-

eter values were selected in order to show the simulation results for small, medium and

large cure rates. We took the sample size as n = 100, 250, 500, 1000, 2000, 5000. Each

sample was replicated 1000 times. In each replication, we computed the maximum like-

lihood estimates of the parameters, maximum likelihood estimate of the cure fraction,

and the standard deviation of the cure fraction (obtained using the delta method). The

averages of these estimates over the 1000 replications are reported in Tables 4.3 and 4.3.

The tables also report the censoring rates in addition to the sample size. Note that cen-

soring rates decrease as sample size increases, but they are still in an appropriate range
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Table 4.2: Simulation of the maximum likelihood estimates for mean and standard devi-
ation of the Kumaraswamy inverse Gaussian distribution.

Sample sizes Mean estimates Standard deviation estimates
(Censoring rates) â b̂ r̂ û p̂ â b̂ r̂ û p̂
(a, b, r, u, p) = (−1, 3, 1, 1, 0.2834)

100 (34.38%) -0.491 4.1373 1.0232 0.9545 0.2771 1.033 13.598 2.6446 1.0137 0.2759
250 (32.53%) -0.647 6.4553 1.4828 1.055 0.2811 0.8367 13.587 2.3245 0.6701 0.193
500 (31.48%) -0.632 6.1289 1.4636 1.0436 0.2819 0.5705 9.1473 1.6305 0.4533 0.1514
1000 (31.01%) -0.555 4.3093 1.1954 1.0104 0.2835 0.3652 4.602 1.0116 0.3298 0.1245
2000 (30.48%) -0.534 3.7087 1.1205 1.0092 0.2832 0.2406 2.733 0.6694 0.2239 0.1034
5000 (30.10%) -0.504 3.1797 1.022 0.9942 0.2836 0.139 1.4721 0.3886 0.133 0.0815

(a, b, r, u, p) = (−0.25, 1, 2, 2, 0.3996)
100 (47.56%) -0.233 1.4029 1.9374 2.3161 0.3897 0.5344 5.4392 5.6379 4.9044 0.2851
250 (45.71%) -0.289 1.9843 2.5624 2.3638 0.3983 0.4737 6.0378 5.2413 2.9732 0.1967
500 (44.60%) -0.315 2.2856 2.8774 2.2603 0.3985 0.3737 5.2263 4.2558 1.8689 0.1585
1000 (43.67%) -0.293 1.8463 2.5862 2.1577 0.3981 0.2275 2.6732 2.5578 1.2013 0.1304
2000 (43.19%) -0.282 1.5384 2.4238 2.1246 0.3991 0.1508 1.5268 1.6917 0.8215 0.1084
5000 (42.66%) -0.264 1.1796 2.1783 2.0629 0.3994 0.0831 0.6675 0.9237 0.4833 0.0854

(a, b, r, u, p) = (−1, 10, 2, 0.5, 0.5741)
100 (62.00%) -0.629 5.6421 1.0865 0.4459 0.5608 1.7284 24.336 3.6897 0.6395 0.3045
250 (60.97%) -0.744 8.4841 1.4547 0.4219 0.5694 1.217 22.068 2.8561 0.3205 0.2099
500 (59.86%) -0.975 12.473 2.0029 0.4701 0.5718 1.075 23.028 2.6607 0.228 0.158
1000 (59.51%) -1.095 14.577 2.2936 0.4948 0.5735 0.851 19.398 2.1499 0.1635 0.1296
2000 (59.18%) -1.077 13.452 2.2451 0.4961 0.5744 0.5836 12.844 1.5027 0.1097 0.1077
5000 (58.87%) -1.044 11.539 2.1227 0.5002 0.5747 0.3412 6.7388 0.8807 0.0657 0.085

considering the cure fraction (not too low when the cure fraction is small and not too

high when the cure fraction is large).

The following can be observed from the tables: i) the biases and standard deviations

generally decrease as sample size increases; ii) large sample sizes are needed for the biases

of a, b, r, u to become smaller than 10−2, the biases of b and r do not become smaller than

10−2 even for n = 5000; iii) the biases of p become smaller than 10−3 for much smaller

sample sizes; iv) although the standard deviations decrease as n increases, their values are

not so small even for n as large as 5000. Sample sizes larger than 5000 are not realistic

in practical survival analysis.

These observations are for specific parameter values and n = 100, 250, 500, 1000, 2000, 5000.

But the same observations held for a wide range of other parameter values and a wide

range of the values of n < 5000.
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4.4 Applications

We illustrate the distributions in Section 2 using three real cancer data sets. The data

sets have different sample sizes and exhibit distinct Kaplan-Meier curves.

The following distributions were fitted to each of the data sets: the Gompertz distribu-

tion, the inverse Gaussian distribution, the Kumaraswamy Gompertz distribution and the

Kumaraswamy inverse Gaussian distribution. This allows use to see if the Kumaraswamy

Gompertz distribution provides a better fit than the Gompertz distribution or if the Ku-

maraswamy inverse Gaussian distribution provides a better fit than the inverse Gaussian

distribution.

For each fitted distribution, we provide the maximum likelihood estimates, their standard

errors (in parenthesis), the values of the AIC (Akaike Information Criterion), the values of

the BIC (Bayesian Information Criterion) and the values of the CAIC (Consistent Akaike

Information Criterion). As discussed in the methodology section, the point estimate of

p was obtained using the estimates of the other parameters. The standard deviation

of the estimator of p was calculated using the delta method with a first-order Taylor’s

approximation.

An estimate of the survival times was also obtained using the Kaplan-Meier estimator.

As an experiment comes to an end, some of the observed elements do not fail. However,

it is not known if these elements would fail at some given point, after the end of the

observed period. Depending on what is being analyzed, there are two possibilities; that

the elements will never fail, or will fail at some point in the future if given enough time.

The end of a Kaplan-Meier curve is an estimate of the cure fraction, with the assumption

that elements in the study which did not fail, will never fail at all at any point in the

future, after the end of the study. It should be noted that this is a difficult assumption

to make.

We also compared the parametric curves with the Kaplan-Meyer curve. Closer they are

to each other, the better the fit.
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4.4.1 Melanoma data
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Figure 4.3: Survival curves for the fitted distributions for the melanoma data set.

Table 4.3: MLEs for the fitted distributions for the melanoma data set.
Model â b̂ r̂ û p̂ AIC BIC CAIC

Gompertz -0.1314 0.1793 1 1 0.2556 1096.467 1104.534 1096.496
(0.0540) (0.0217) - - (0.3359)

Kumaraswamy -0.5929 0.6040 2.8708 2.2039 0.4901 1057.318 1073.45 1057.415
Gompertz (0.1441) (0.9382) (0.7902) (6.6481) (0.1872)

Inverse Gaussian -0.0357 0.4740 1 1 0.1398 1062.956 1071.022 1062.985
(0.0319) (0.0427) - - (0.1084)

Kumaraswamy -2.5544 32.6713 22.0545 27.2590 0.4146 1061.043 1077.175 1061.14
inverse Gaussian (0.8850) (18.6450) (7.5425) (18.2056) (0.0475)

Here we consider the melanoma data set. The survival curves of the fitted distributions in

the melanoma data set are shown in Figure 4.3. The corresponding maximum likelihood

estimates are given in Table 6.5.

The estimated value of a is negative for all of the distributions, so all of the fitted distri-

butions are defective. The cure fraction estimates for the Gompertz and inverse Gaussian

distributions are 25.56 and 13.98 percents, respectively. These estimates are smaller than

the end of the Kaplan-Meier curve, which stabilizes at 48.04 percent. The cure fraction

estimates for the Kumaraswamy Gompertz and Kumaraswamy inverse Gaussian distri-

butions are 49.01 and 41.46 percents, respectively.

The survival curves of the fitted Kumaraswamy distributions capture the Kaplan-Meier
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curve more accurately than the survival curves of the fitted baseline distributions. This

is especially the case for the fitted Kumaraswamy Gompertz distribution.

We can also see that the AIC and CAIC values are smaller for the Kumaraswamy dis-

tributions than for the baseline distributions. The AIC and CAIC values for the inverse

Gaussian distribution are a little larger than those for the Kumaraswamy inverse Gaus-

sian distribution. Both these distributions outperform the Gompertz distribution, but

do not perform as well as the Kumaraswamy Gompertz distribution. In terms of BIC,

the best fit is given by the inverse Gaussian distribution, followed by the Kumaraswamy

Gompertz distribution, then the Kumaraswamy inverse Gaussian distribution and then

the Gompertz distribution.

Now we present an application of the regression model described in Section 4.2.5. We

are going to consider a covariate that represents the age of the individuals in the data

set. For a simple illustrative example, we categorize this variable into two classes. The

variable was classified as zero when the age was below the average of all individuals and

as one otherwise.

Table 4.4: MLEs for the fitted regression models for the melanoma data set.
Model â b̂ r̂ û β̂0 β̂1 p̂0 p̂1

Gompertz -0.8988 0.0264 - - 3.7657 0.1893 0.2812 0.2158
(0.3799) (0.0388) - - (1.4764) (0.1472) (0.3480) (0.3380)

Kumaraswamy -4.3401 2.6954 2.7143 0.6281 2.0631 0.1719 0.5215 0.4616
Gompertz (0.8070) (3.4839) (0.5119) (1.3449) (3.4039) (0.1472) (0.2017) (0.2075)

Inverse Gaussian -0.6542 3.1659 - - 0.1386 0.1789 0.2881 0.2258
(1.0402) (0.4712) - - (0.6018) (0.1472) (0.4972) (0.4832)

Kumaraswamy -0.8113 2.3698 0.8062 3.3050 -0.9812 0.1753 0.3456 0.2819
inverse Gaussian (1.8714) (4.2916) (1.3570) (7.1690) (2.5830) (0.1473) (0.4744) (0.4697)

Table 4.4 reports the maximum likelihood estimates of the proposed regression models.

We can see that the Gompertz and inverse Gaussian distributions estimate the cure frac-

tion of both groups very closely. The cure fraction for the group with age below the

average is around 0.28. That for the group with age above the average is 0.22. The

Kumaraswamy inverse Gaussian distribution gives higher estimates, 0.34 and 0.28. The

Kumaraswamy Gompertz distribution also gives higher estimates, 0.52 and 0.46.

Figures 4.4 and 4.5 show the fitted survival curves of the baseline and Kumaraswamy
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Figure 4.4: In the left, the fitted Gompertz regression model, in the right, the inverse
Gaussian model.
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Figure 4.5: In the left, the fitted Kumaraswamy Gompertz regression model, in the right,
the Kumaraswamy inverse Gaussian model.

distributions together with Kaplan-Meyer curves, plotted in the same color. The dashed

lines represent the estimated cure fractions. As we can see, the baseline distributions

do not capture the Kaplan-Meyer curve as well as the Kumaraswamy distributions do.

Kumaraswamy distributions fit the end of the curve better, leading to higher cure fraction

estimates. The baseline distributions give more conservative estimates.

In all fits, the group consisting of younger individuals has a survival probability higher
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than the group consisting of older individuals. That makes sense and it is fair to expect

this behaviour in all data sets of the kind.

4.4.2 Colon data

The second data considered here is the colon data set.
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Figure 4.6: Survival curves for the fitted distributions for the colon data set.

Table 4.5: MLEs for the fitted distributions for the colon data set.
Model â b̂ r̂ û p̂ AIC BIC CAIC

Gompertz -2.3375 2.0018 1 1 0.4247 1518.022 1529.076 1518.028
(0.1772) (0.1025) - - (0.1339)

Kumaraswamy -3.3598 17.3085 2.0508 0.1757 0.4586 1452.173 1474.282 1452.195
Gompertz (0.2727) (6.4465) (0.2476) (0.0803) (0.1215)

Inverse -1.6688 7.3406 1 1 0.3653 1597.472 1608.527 1597.479
Gaussian (0.1568) (0.2901) - - (0.0219)

Kumaraswamy -1.3366 91.5128 5.6371 0.9717 0.1602 1511.714 1533.823 1511.735
inverse Gaussian (2.861) (29.5785) (1.3563) (0.3392) (0.2075)

The survival curves of the fitted distributions are shown in Figure 4.6. The corresponding

maximum likelihood estimates are given in Table 4.5.

Again, the estimated value of a is negative for all of the distributions, and so all of the

fitted distributions are defective. The cure fraction estimates for the Gompertz and in-

verse Gaussian distributions are 42.47 and 36.53 percents, respectively. The cure fraction
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estimates for the Kumaraswamy Gompertz and Kumaraswamy inverse Gaussian distri-

butions are 45.86 and 16.02 percents, respectively. The cure fraction estimates for the

inverse Gaussian and Kumaraswamy inverse Gaussian distributions are smaller than the

end of the Kaplan-Meier curve, which stabilizes at 46.51 percent. The cure fraction es-

timates for the Gompertz and Kumaraswamy Gompertz distributions are a lot closer to

the end of the Kaplan-Meier curve.

The survival curves of the fitted Kumaraswamy distributions capture the Kaplan-Meier

curve more accurately than the survival curves of the fitted baseline distributions. How-

ever, it must be said that all four distributions provide reasonable fits.

The AIC and CAIC values show that the Kumaraswamy Gompertz distribution gives the

best fit by far. The second smallest values for AIC and CAIC are for the Kumaraswamy

inverse Gaussian distribution. The third smallest values (little larger than the second

smallest values) for AIC and CAIC are for the Gompertz distribution. The largest values

(lot larger than the third smallest values) for AIC and CAIC are for the inverse Gaus-

sian distribution. The BIC values show that the Kumaraswamy Gompertz distribution

gives the best fit, followed by the Gompertz distribution, then the Kumaraswamy inverse

Gaussian distribution and then the inverse Gaussian distribution.

4.4.3 Leukemia data

The third data considered here is the leukemia data set.

Table 4.6: MLEs for the fitted distributions for the leukemia data set.
Model â b̂ r̂ û p̂ AIC BIC CAIC

Gompertz -1.5103 2.3767 1 1 0.2073 52.5763 56.1447 52.869
(0.3696) (0.5171) - - (0.2557)

Kumaraswamy -2.9825 12.1742 7.1974 0.7541 0.1961 36.4139 43.5507 37.4396
Gompertz (0.9399) (11.5263) (6.0582) (1.3356) (0.2448)

Inverse 0.2261 3.1393 1 1 0 50.9801 54.5485 51.2728
Gaussian (0.3436) (0.7379) - - -

Kumaraswamy -1.6449 0.8895 0.7226 22.3123 0.2025 36.5291 43.6659 37.5548
inverse Gaussian (1.2734) (1.6488) (1.2366) (42.1862) (0.0612)

The survival curves of the fitted distributions are shown in Figure 4.7. The corresponding

maximum likelihood estimates are given in Table 4.6.
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Figure 4.7: Survival curves for the fitted distributions for the leukemia data set.

Not all of the fitted distributions estimate a by a negative value. The inverse Gaussian

distribution is not estimated as being defective, leading to an estimated cure rate of 0.

The cure fraction estimate for the Gompertz distribution is 20.73 percent. The cure

fraction estimates for the Kumaraswamy Gompertz and Kumaraswamy inverse Gaussian

distributions are 19.61 and 20.25 percents, respectively. The cure fraction estimates for the

Gompertz, Kumaraswamy Gompertz and Kumaraswamy inverse Gaussian distributions

are close to the end of Kaplan-Meier curve, which stabilizes at 19.88 percent.

The survival curves of the fitted Kumaraswamy distributions capture the Kaplan-Meier

curve more accurately than the survival curves of the fitted baseline distributions. How-

ever, it must be said that the Gompertz distribution provides a reasonable fit as well.

The inverse Gaussian distribution does not fit well.

The AIC, BIC and CAIC values show that the Kumaraswamy Gompertz distribution

gives the best fit. Gompertz distribution gives the largest values for AIC, BIC, CAIC

in spite of its good fit to the Kaplan-Meier curve. This appears a little strange. But

closeness of the fitted survival curves to the Kaplan-Meier curve is only a “measure” just

like the AIC, BIC and CAIC. It just happens that the inverse Gaussian distribution does

not perform so well with respect to this measure but the Gompertz distribution does so.
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4.4.4 Discussion
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Figure 4.8: Probability plots for the fit of the four distributions to the three data sets.

Figure 4.8 plots the observed probabilities versus the expected probabilities for the fit-

ted Gompertz, inverse Gaussian, Kumaraswamy Gompertz and Kumaraswamy inverse

Gaussian distributions for the three data sets. We see that the Kumaraswamy Gompertz

and Kumaraswamy inverse Gaussian distributions have the points closer to the diagonal

line for each of the data sets (especially when the Kumaraswamy Gompertz and Gom-

pertz distributions are compared for the melanoma and leukemia data sets and when the

Kumaraswamy inverse Gaussian and inverse Gaussian distributions are compared for the

colon and leukemia data sets), showing their better fits.

Table 4.7 reports the statistic and p-value of the log-likelihood ratio test. The test com-

pares the baseline distribution with the corresponding Kumaraswamy distribution. The

p-values are very small except for the Kumaraswamy inverse Gaussian distribution with

a p-value of 0.052. These are compatible with the visual assessment of the survival curves

in Figure 4.8.

Table 4.8 reports the 95 percent asymptotic confidence intervals for the parameter a.
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The objective here is to see if the cure rate p is different from zero. If the parameter a is

significantly negative, we can say that p is significantly different from zero, This is because

a is free to take any value on the real line, while the other parameters are positive by

definition. The Gompertz and Kumaraswamy Gompertz distributions have fully negative

intervals for all data sets. The inverse Gaussian distribution has a fully negative interval

for only the colon data set. The Kumaraswamy inverse Gaussian distribution has a

fully negative interval for only the melanoma data set. Therefore, the cure fraction is

significantly different from zero in most cases. For every data set, there are at least two

distributions indicating that the cure fraction p is significantly different from zero.

Table 4.7: Log-likelihood ratio test for the proposed models and data sets.
Data set Model LR test statistic p-value
Melanoma Gompertz/Kum-Gompertz 43.149 < 0.0001

Inverse Gaussian/Kum-inverse Gaussian 5.913 0.052

Colon Gompertz/Kum-Gompertz 69.849 < 0.0001
Inverse Gaussian/Kum-inverse Gaussian 89.758 < 0.0001

Leukemia Gompertz/Kum-Gompertz 20.1624 < 0.0001
Inverse Gaussian/Kum-inverse Gaussian 18.451 0.0001

Table 4.8: 95 percent asymptotic confidence intervals for the parameter a for the proposed
models and data sets.

Model Melanoma Colon Leukemia
Gompertz (-0.2372; -0.0256) (-2.6848; -1.9902) (-2.2347; -0.7859)

Kumaraswamy Gompertz (-0.8753; -0.3105) (-3.8943; -2.8253) (-4.8247; -1.1403)
Inverse Gaussian (-0.0982; 0.0268) (-1.9761; -1.3615) (-0.4474; 0.8996)

Kumaraswamy inverse Gaussian (-4.2890; -0.8198) (-6.9442; 4.2710) (-4.1408; 0.8510)

Table 4.9: AIC values for the fitted distributions and for the standard mixture model.
The smaller AIC values are bolded.

Model Melanoma Colon Leukemia
Defective Mixture Defective Mixture Defective Mixture

Gompertz 1096.467 1085.459 1518.022 1520.023 52.5763 50.741
Kumaraswamy Gompertz 1057.318 1058.741 1452.173 1451.823 36.4139 36.432

Inverse Gaussian 1062.956 1063.200 1597.472 1668.362 50.9801 37.139
Kumaraswamy inverse Gaussian 1061.043 1058.741 1511.714 1496.993 36.5291 37.473

The AIC values for the fitted distributions and those for the standard mixture model

are compared in Table 4.9. The defective model was compared with its own version as a

standard mixture model. In this way, the mixture model has always one extra parameter

than the defective one. As noted before, we can see that the Kumaraswamy distributions

have generally smaller AIC values, in the defective form or in the mixture model form.
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For the melanoma data set, all but the Gompertz and Kumaraswamy inverse Gaussian

distributions have smaller AIC values. For the colon data set, the baseline distributions

perform better under the defective strategy while the mixture models have better values

in the Kumaraswamy forms. For the leukemia data set, the baseline distributions perform

better under the mixture models strategy while the Kumaraswamy distributions are better

under the defective strategy.

We have presented three different examples on defective models. The examples show that

there are cases where the baseline distributions perform well and some cases where they

do not. The examples also show that the Kumaraswamy distributions lead to better fits

in most cases. We also see that there are cases, where the defective models outperform

the mixture models.

4.5 Conclusions

We have proposed two new defective distributions: the Kumaraswamy Gompertz and

Kumaraswamy inverse Gaussian distributions. Each of these distributions has one less

parameter than its version under the standard mixture approach. We have assessed the

finite sample performance of their maximum likelihood estimators. We have illustrated

the use of the new distributions to three real cancer data sets containing cure fractions.

We have shown that the new distributions perform better than the baseline distributions

(the Gompertz and inverse Gaussian distributions) in terms of the AIC, BIC, CAIC and

proximity to the Kaplan-Meier curves. In some cases, they outperform the standard

mixture model in terms of AIC. We have also illustrated the use of regression models

based on the new distributions to one of the three data sets.



Chapter 5

Generalized Extended Class of

Defective Models

5.1 Introduction

In this chapter, we generalize the results obtained in Chapter 3 and 4. We propose a

theorem that guarantee that an extended distribution under a family is also defective, if

the baseline distribution is also defective. In literature, obtain new classes to generate

new distributions in the form G∗(t) = f [G(t)] have been the focus for many researcher,

with a high increase in the number of these families lately.

The first approach proposed in recent years was that due to Marshall & Olkin (1997).

Since that, many other approaches have been proposed. For example: exponentiated

G distributions due to Gupta et al. (1998), beta G distributions due to Eugene et al.

(2002), gamma G distributions due to Zografos & Balakrishnan (2009), Kumaraswamy

G distributions due to Cordeiro & de Castro (2011), generalized beta G distributions

due to Alexander et al. (2012), beta extended G distributions due to Cordeiro et al.

(2012c), gamma G distributions due to Ristić & Balakrishnan (2012), gamma uniform

G distributions due to Torabi & Montazeri (2012), beta exponential G distributions due

to Alzaatreh et al. (2013b), Weibull G distributions also due to Alzaatreh et al. (2013b),

74
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log gamma G I distributions due to Amini et al. (2014), log gamma G II distributions

also due to Amini et al. (2014), exponentiated generalized G distributions due to Cordeiro

et al. (2013d), exponentiated Kumaraswamy G distributions due to Lemonte et al. (2013),

geometric exponential Poisson G distributions due to Nadarajah et al. (2013a), truncated-

exponential skew-symmetric G distributions due to Nadarajah et al. (2013b), modified

beta G distributions due to Nadarajah et al. (2013c), and exponentiated exponential

Poisson G distributions due to Ristić & Nadarajah (2013).

We will take the Gamma, Gamma uniform, exponentiated, truncated-exponential skew-

symmetric, Beta, exponentiated exponential, exponentiated generalized and Weibull fam-

ilies to exemplify the proposed theorem.

The main purposes of this chapter are: i) introduce the results that can generate new

defective distributions, given an extended family of distributions; ii) explore a variety of

these families to show that they can properly be used to fit different kinds of data sets.

iii) provide a full literature review regarding to the considered families.

The next section contains the methodology details. In Section 5.3 we provide simulations

for four different scenarios. In Section 5.4 we apply the proposed models in the leukemia

and melanoma data set, considering the Gompertz and inverse Gaussian as the defective

baseline distribution.

5.2 Distribution Families

In Chapter 3, we proposed two new defective distributions using the Marshall-Olkin fam-

ily. Similarly, in Chapter 4, we proposed two new defective distributions using the Ku-

maraswamy family. However, it is easy to see that the only specific characteristic needed

in a family is to be continuous in relation to the baseline distribution. Therefore, we

enunciate:

Theorem 5.1. If S(t) is a survival function of a defective model and the extension func-

tion S∗(t) is continuous in relation to S(t), then S∗(t) is also a defective model.
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Proof: Let S∗(t) = g(v, S(t)), where g is the extension function and v is the extra vector

of parameter from the extension. Consider also that lim
t→∞

S(t) = p0. If g is a continuous

function then lim
t→∞

S∗(t) = lim
t→∞

g(v, S(t)) = g(v, lim
t→∞

S(t)) = g(v, p0). We know that a

function that extends a survival model must keep its basic properties. So, for any value

of S(t) in the interval (0, 1), S∗(t) must also return a value in this interval. Therefore,

g(v, p0) = p ∈ (0, 1), showing that g comes from a defective distribution. The proof is

complete. �

This theorem now extend the basics defective models to a full new variety of distributions.

For each family, it is possible to generate two new distributions when considering the

directly application of the baseline into the extended family. We choose eight families to

illustrate the theorem, as following.

5.2.1 Gamma G

The Gamma G family was introduced by Zografos & Balakrishnan (2009). The density

and cumulative functions of the extended distribution are

g∗(x) = Γ(a)−1g(x) {− log [1−G(x)]}a−1 ,

G∗(x) = Q (a,− log [1−G(x)]) ,

for x in the range of g and a > 0, the shape parameter, where Q(a, x) =
∫ x

0
ta−1 exp(−t)

dt / Γ(a) denotes the regularized incomplete gamma function, Γ(a) =
∫∞

0
ta−1 exp(−t)

dt denotes the gamma function.

These distributions were constructed as the distribution of the ath upper record value for

a random sample from the cumulative distribution function G.

Particular gamma G I distributions studied in the literature include the gamma Dagum

distribution (Oluyede et al., 2014), the gamma exponentiated Weibull distribution (Castel-

lares & Lemonte, 2014), the gamma extended Frechet distribution (da Silva et al., 2013),

the gamma half normal distribution (Alzaatreh & Knight, 2013), the gamma inverse
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Weibull distribution (Pararai et al., 2014), the gamma linear failure rate distribution

(Cordeiro et al., 2014a), the gamma log-logistic distribution (Ramos et al., 2013), the

gamma logistic distribution (Castellares et al., 2015), the gamma Lomax distribution

(Cordeiro et al., 2015) and the gamma normal distribution (Alzaatreh et al., 2014).

Gamma G distributions have been used to model: breaking stress of carbon fibers (Alza-

atreh et al., 2014; Cordeiro et al., 2014a); flood levels for the Susquehanna river at Har-

risburg, PA (Alzaatreh & Knight, 2013); gene expression levels on human cancer cells

(Castellares et al., 2015); number of million of revolutions before failure of ball bearings

in a life testing experiment (Pararai et al., 2014); number of successive failures for the

air conditioning system of each member in a fleet of Boeing 720 jet airplanes (Oluyede

et al., 2014); remission times of a random sample of bladder cancer patients (Castellares

& Lemonte, 2014; Cordeiro et al., 2015; Oluyede et al., 2014); salaries of professional

baseball players (Oluyede et al., 2014); strengths of glass fibers (Alzaatreh et al., 2014);

survival times of breast cancer patients (Ramos et al., 2013); survival times of cutaneous

melanoma (a type of malignant cancer) patients (Cordeiro et al., 2014a); survival times

of guinea pigs injected with different doses of tubercle bacilli (Pararai et al., 2014); tensile

strength for single-carbon fibers (Alzaatreh & Knight, 2013); the cDNA microarray data

of the NC160 cancer cell lines (Castellares et al., 2015); waiting times between consecutive

eruptions of the Kiama Blowhole (da Silva et al., 2013).

5.2.2 Gamma Uniform G

The Gamma uniform G distributions was recently introduced by Torabi & Montazeri

(2012). The density and cumulative functions of the extended distribution are

g∗(x) =
1

Γ(a)

g(x)

[1−G(x)]2

[
G(x)

1−G(x)

]a−1

exp

[
− G(x)

1−G(x)

]
,

G∗(x) = Q

(
a,

G(x)

1−G(x)

)
,

for x in the range of g and a > 0, the shape parameter.
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These distributions were constructed by considering the distribution of G−1 (W/(1 +W )),

where W is a gamma random variable. These distributions have been used to model

survival times of leukemia patients Torabi & Montazeri (2012).

5.2.3 Exponentiated G

The Exponentiated G family was introduced by Gupta et al. (1998). The density and

cumulative functions of the extended distribution are

g∗(x) = ag(x)Ga−1(x),

G∗(x) = Ga(x),

for x in the range of g and a > 0, the shape parameter.

These distributions were motivated to model the failure of time of a system having a

units functioning in parallel the failure times of which are assumed to be independent and

identical with cumulative distribution function G.

Particular exponentiated G distributions studied in the literature include the exponenti-

ated Frechet distribution (Nadarajah & Kotz, 2003), the exponentiated gamma distribu-

tion (Nadarajah & Gupta, 2007), the exponentiated generalized inverse Weibull distribu-

tion (Elbatal & Muhammed, 2014), the exponentiated Gumbel distribution (Nadarajah,

2006), the exponentiated Lomax distribution (Abdul-Moniem & Abdel-Hameed, 2012;

Salem, 2014), the exponentiated Pareto distribution (Shawky & Abu-Zinadah, 2009) and

the exponentiated transmuted Weibull distribution (Hady & Ebraheim, 2014).

Exponentiated G distributions have been used to model: annual maximum daily rainfall

from Orlando, Florida (Nadarajah, 2006); drought data from Nebraska (Nadarajah &

Gupta, 2007); remission times of a random sample of bladder cancer patients (Elbatal &

Muhammed, 2014).
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5.2.4 Truncated-Exponential Skew-Symmetric G

The Truncated-exponential skew-symmetricG (TESS-G)family was introduced by Nadara-

jah et al. (2013b). The density and cumulative functions of the extended distribution are

g∗(x) =
λ

1− exp(−λ)
g(x) exp {−λG(x)} ,

G∗(x) =
1− exp {−λG(x)}

1− exp(−λ)
,

for x in the range of g, and −∞ < λ <∞, the skewness parameter.

These distributions were constructed as modifications of the skew-symmetric distributions

proposed in Azzalini (1985). They have been used to model annual maximum daily

rainfall data for 14 locations in west central Florida: Clermont, Brooksville, Orlando,

Bartow, Avon Park, Arcadia, Kissimmee, Inverness, Plant City, Tarpon Springs, Tampa

International Airport, St Leo, Gainesville and Ocala (Nadarajah et al., 2013b).

5.2.5 Beta G

The Beta G family was introduced by Eugene et al. (2002). The density and cumulative

functions of the extended distribution are

g∗(x) =
1

B(a, b)
g(x) [G(x)]a−1 [1−G(x)]b−1 ,

G∗(x) = IG(x)(a, b),

for x in the range of g, a > 0, the first shape parameter, and b > 0, the second shape

parameter. Ix(a, b) =
∫ x

0
ta−1(1 − t)b−1dt/B(a, b) denotes the incomplete beta function

ratio, B(a, b) =
∫ 1

0
ta−1(1− t)b−1dt denotes the beta function.

These distributions were motivated to model the failure time of a a-out-of-a+b−1 system

when the failure times of the components are independent and identical random variables

with cumulative distribution function G.

Particular beta G distributions studied in the literature include the beta Birnbaum-
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Saunders distribution (Cordeiro & Lemonte, 2011a), the beta Burr III distribution (Gomes

et al., 2013), the beta Burr XII distribution (Parainaba et al., 2011), the beta Cauchy dis-

tribution (Alshawarbeh et al., 2014), the beta Dagum distribution (Domma & Condino,

2013), the beta exponential distribution (Nadarajah & Kotz, 2006), the beta exponen-

tial geometric distribution (Bidram, 2012; Nassar & Nada, 2012), the beta exponenti-

ated Pareto distribution (Zea et al., 2012), the beta exponentiated Weibull distribution

(Cordeiro et al., 2013c), the beta Frechet distribution (Barreto-Souza et al., 2011), the

beta gamma distribution (Kong et al., 2007), the beta generalized exponential distribution

(Barreto-Souza et al., 2010), the beta generalized gamma distribution (Cordeiro et al.,

2013a), the beta generalized half normal geometric distribution (Ramires et al., 2013),

the beta generalized Lindley distribution (Oluyede & Yang, 2014), the beta generalized

logistic distribution (Morais et al., 2013), the beta generalized normal distribution (Cintra

et al., 2014), the beta generalized Pareto distribution (Mahmoudi, 2011; Nassar & Nada,

2011), the beta generalized Rayleigh distribution (Cordeiro et al., 2013b), the beta gen-

eralized Weibull distribution (Singla et al., 2012), the beta Gompertz distribution (Jafari

et al., 2014), the beta Gumbel distribution (Nadarajah & Kotz, 2004), the beta half-

Cauchy distribution (Cordeiro & Lemonte, 2011b), the beta inverse Rayleigh distribution

(Leao et al., 2013), the beta inverse Weibull distribution (Hanook et al., 2013), the beta

linear failure rate distribution (Jafari & Mahmoudi, 2014), the beta Laplace distribution

(Cordeiro & Lemonte, 2011c; Kozubowski & Nadarajah, 2008), the beta Lindley distribu-

tion (Merovci & Sharma, 2014), the beta lognormal distribution (Montenegro & Cordeiro,

2013), the beta Lomax distribution (Rajab et al., 2013), the beta modified Weibull distri-

bution (Silva et al., 2010), the beta Moyal distribution (Cordeiro et al., 2012b), the beta

Nakagami distribution (Shittu & Adepoju, 2013), the beta normal distribution (Eugene

et al., 2002), the beta Pareto distribution (Akinsete et al., 2008), the beta power distri-

bution (Cordeiro & Brito, 2012), the beta power exponential distribution (Adepoju et al.,

2014), the beta skew normal distribution (Mameli & Musio, 2013), the beta transmuted

Weibull distribution (Pal & Tiensuwan, 2014), the beta truncated Pareto distribution

(Lourenzutti et al., 2014), the beta Weibull geometric distribution (Bidram et al., 2013;

Cordeiro et al., 2013e), the beta Weibull Poisson distribution (Percontini et al., 2013) and
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the beta weighted Weibull distribution (Badmus & Bamiduro, 2014; Idowu & Ikegwu,

2013).

Beta G distributions have been used to model: adult numbers for Tribolium Castaneum

and Tribolium Confusum (Eugene et al., 2002; Kong et al., 2007); breaking strength of

glass fibers (Adepoju et al., 2014; Alshawarbeh et al., 2014; Barreto-Souza et al., 2010,

2011; Cordeiro & Lemonte, 2011a; Cordeiro et al., 2013a; Domma & Condino, 2013);

breaking stress of carbon fibers (Alshawarbeh et al., 2014; Barreto-Souza et al., 2011;

Cordeiro & Lemonte, 2011a; Leao et al., 2013; Oluyede & Yang, 2014); carbon monoxide

measurements in several brands of cigarettes (Cordeiro et al., 2013c); daily ozone level

measurements in New York (Cordeiro et al., 2013e); exceedances of flood peaks of the

Wheaton river in Yukon Territory, Canada (Akinsete et al., 2008; Alshawarbeh et al.,

2014; Cordeiro et al., 2012b; Mahmoudi, 2011); failure times of a polyster/viscose yarn

in a textile experiment (Pal & Tiensuwan, 2014); failure times of motorettes with a new

insulation (Cordeiro et al., 2013c; Pal & Tiensuwan, 2014); failure times of turbocharger

of one type of engine (Singla et al., 2012); fatigue life of 6061-T6 aluminum coupons cut

parallel with the direction of rolling (Bidram, 2012; Bidram et al., 2013; Mahmoudi, 2011);

fatigue life of bearings of a certain type (Montenegro & Cordeiro, 2013); flood data for

the Floyd river located in James, Iowa, USA (Akinsete et al., 2008); household income

and consumption in Italy (Domma & Condino, 2013); lifetimes of mechanical components

(Badmus & Bamiduro, 2014; Jafari et al., 2014; Silva et al., 2010); maximum values of

monthly flood rates of the Castelo river, Brazil (Lourenzutti et al., 2014); monthly actual

taxes revenue in Egypt (Nassar & Nada, 2011); national index of consumer prices of

Brazil corresponding to health and personal care (Cordeiro & Lemonte, 2011c); number of

successive failures of the air-conditioning system of each number of a fleet of Boeing 720 jet

airplanes (Bidram et al., 2013; Nassar & Nada, 2012); remission times of a random sample

of bladder cancer patients (Merovci & Sharma, 2014; Oluyede & Yang, 2014; Zea et al.,

2012); repair times for an airborne communication transceiver Cordeiro et al. (2012b,

2013b); Percontini et al. (2013); SAR image processing (Cintra et al., 2014); short-term

and long-term outcomes of constraint induced movement therapy after stroke (Nassar

& Nada, 2012); strength of ball bearings (Nassar & Nada, 2012); stress-rupture life of
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kevlar epoxy strands subjected to constant sustained pressure (Cordeiro et al., 2013b);

survival times of cutaneous melanoma (a type of malignant cancer) patients (Parainaba

et al., 2011); survival times of guinea pigs injected with different doses of tubercle bacilli

(Cordeiro & Lemonte, 2011b; Merovci & Sharma, 2014); survival times of myelogenous

leukemia patients (Mahmoudi, 2011); times to first failure of devices (Jafari & Mahmoudi,

2014).

5.2.6 Exponentiated Exponential Poisson G

The Exponentiated exponential Poisson G (EEP-G) family was introduced by Ristić &

Nadarajah (2013). The density and cumulative functions of the extended distribution are

g∗(x) = aλ {1− exp(−λ)}−1 g(x)Ga−1(x) exp [−λGa(x)] ,

G∗(x) = {1− exp(−λ)}−1 {1− exp [−λGa(x)]} ,

for x in the range of g, λ > 0, the scale parameter, and a > 0, the shape parameter.

These distributions were motivated to model the time to failure of the first out of a Poisson

number of systems functioning independently where each system has a fixed number of

parallel units and their failure times are independent and identical random variables with

cumulative distribution function G. These distributions have been used to model the

daily average air temperature (F) in Cairo (Ristić & Nadarajah, 2013).

5.2.7 Exponentiated Generalized G

The Exponentiated generalized G (EG-G) family was introduced by Cordeiro et al.

(2013d). The density and cumulative functions of the extended distribution are

g∗(x) = abg(x) [1−G(x)]a−1 {1− [1−G(x)]a}b−1
,

G∗(x) = {1− [1−G(x)]a}b ,
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for x in the range of g, a > 0, the first shape parameter, and b > 0, the second shape

parameter.

These distributions were motivated to model the failure of time of a system having b units

functioning in parallel and each of these units have a subunits functioning in series. The

failure times of the subunits are assumed to be independent and identical with cumulative

distribution function G.

Particular exponentiated generalized G distributions studied in the literature include the

exponentiated generalized Birnbaum-Saunders distribution (Cordeiro & Lemonte, 2014).

Exponentiated generalized G distributions have been used to model: breaking stress of

carbon fibers (Cordeiro et al., 2013d); effects of mechanical damage on banana fruits

(Cordeiro et al., 2013d); exceedances of flood peaks of the Wheaton river near Carcross

in Yukon Territory, Canada (Cordeiro & Lemonte, 2014; Cordeiro et al., 2013d); lifetimes

for industrial devices put on life test at time zero (Cordeiro & Lemonte, 2014); stress-

rupture life of kevlar epoxy strands subjected to constant sustained pressure (Cordeiro

et al., 2013d).

5.2.8 Weibull-G

The Weibull G family was introduced by Alzaatreh et al. (2013b). The density and

cumulative functions of the extended distribution are

g∗(x) =
c

βc
g(x)

1−G(x)

{
− log [1−G(x)]

β

}c−1

exp

{
−
[
− log [1−G(x)]

β

]c}
,

G∗(x) = 1− exp

{[
− log [1−G(x)]

β

]c}
,

for x in the range of g, β > 0, the scale parameter, and c > 0, the shape parameter.

Particular Weibull G distributions studied in the literature include the Weibull exponen-

tiated exponential distribution (Salem & Selim, 2014) and the Weibull Pareto distribution

(Alzaatreh et al., 2013a).
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Weibull G distributions have been used to model: adult numbers for Tribolium Confusum

and Tribolium Castaneum cultured at 24C and Tribolium Confusum strain (Alzaatreh

et al., 2013a); breaking stress of carbon fibers (Salem & Selim, 2014).

5.3 Simulation Studies

Here, we assess the performance of the maximum likelihood estimates with respect to

sample size to show, among other things, that the usual asymptotes of maximum likelihood

estimators still hold for defective distributions. The assessment is based on simulations.

The description of data generation is in Section 1.3.
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Figure 5.1: Mean squared errors, biases, coverage probabilities and coverage lengths of
the estimators of a, b, r and p versus n for the Exponentiated Gompertz distribution with
(a, b, r, p) = (−1, 2, 2, 0.2523).

We took the sample size to vary from 100 to 2000 in steps of 100. Each sample was
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replicated 1000 times. We chose only four of our proposed distributions: the Exponenti-

ated Gompertz distribution with (a, b, r, p) = (−1, 2, 2, 0.2523), the simulation results for

which are shown in Figure 5.1; the Weibull Gompertz distribution with (a, b, r, u, p) =

(−1, 2, 2, 2, 0.3678), the simulation results for which are shown in Figure 5.3; the TESS in-

verse Gaussian distribution with (a, b, r, p) = (−2, 2, 2, 0.7257), the simulation results for

which are shown in Figure 5.2; the EEP inverse Gaussian distribution with (a, b, r, u, p) =

(−1, 2, 1, 2, 0.3976), the simulation results for which are shown in Figure 5.4. The param-

eter was chosen to represent a very simple set of parameters which have small and larges

cured rates.
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Figure 5.2: Mean squared errors, biases, coverage probabilities and coverage lengths of
the estimators of a, b, r and p versus n for the TESS inverse Gaussian distribution with
(a, b, r, p) = (−2, 2, 2, 0.7257).

From Figures 5.1 and 5.2, we can notice: i) the mean square error decreases smoothly,

reaching reasonable small values for n > 500; ii) for the parameters a, b and r, the biases
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are very small for almost every n, for p, the bias is virtually non existent; iii) the coverage

probabilities stays in the proper confidence region for every n, for a, b and r, however,

the parameter p doesn’t stay, being estimated in 1 for every n. iiii) the coverage lengths

decrease smoothly with the increase of the sample sizes, but present large values for the

parameter p.

It seems that the delta method over estimates the standard deviation of the cure fraction

in these models. Besides that, every thing looks adequate, with reasonable results in small

sample sizes. Nevertheless, the models gives a very precise point estimate for p, but the

interval estimation is not so good.

From Figures 5.3 and 5.4, we can notice: i) the mean square error decreases smoothly for

the Weibull Gompertz, but not so much for the EEP inverse Gaussian. In both cases, the

values seem to be too large for the parameters b and u; ii) biases are small, but doesn’t

show a behavior around the mean for all parameters. Besides that, the bias of the cure

rate is very small; iii) the coverage probabilities stays in the proper confidence region only

for a and r, b, u and p, however, stays out of the confidence region. iiii) the coverage

lengths are higher for the b and u parameters and do not show a decreasing behavior, as

expected.

When considering the models with two extra parameters (other than the baseline ones),

it gets more complex in terms of estimation. Looks like 2000 samples are not enough to

reach the maximum likelihood estimator properties. Another conclusion here is that the

delta method seems to over estimate the deviation of the cure fraction. However, the

point estimate is quite good.

5.4 Applications

Here we apply the models proposed in the methodology section in the leukemia and

melanoma data sets. One represents a small sample data and the other a large sample.

They both have Kaplan-Meier curves completely distinct, so they represents quite dis-

tinguished scenarios. We present the point estimation by maximum likelihood and their
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Figure 5.3: Mean squared errors, biases, coverage probabilities and coverage lengths of
the estimators of a, b, r, u and p versus n for the Weibull Gompertz distribution with
(a, b, r, u, p) = (−1, 2, 2, 2, 0.3678).

respective AIC.

We will also consider the Marshall-Olkin Gompertz, Marshall-Olkin inverse Gaussian,

Kumaraswamy Gompertz and Kumaraswamy inverse Gaussian distributions, as stated in

Chapter 3 and 4, respectively. In total, we are analyzing 20 different defective models.
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Figure 5.4: Mean squared errors, biases, coverage probabilities and coverage lengths of
the estimators of a, b, r, u and p versus n for the EEP inverse Gaussian distribution with
(a, b, r, u, p) = (−1, 2, 1, 2, 0.3976).

5.4.1 Leukemia data

The fitted results for the distributions with Gompertz as baseline are presented in Table

5.1. Figure 5.5 illustrate the respective survival curves. Every single models were lead to

be defective. The parameter a is estimated negative for all distributions. The cure fraction

was estimated 0.2073 by the Gompertz model, which is known to be a bad fit. The other

models estimated the cure fraction between 0.1905 and 0.1953. We can see also that all

models captures the Kaplan-Meier curve very well and very similarly, with just some little
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Table 5.1: Maximum likelihood estimates in the leukemia data set of the proposed models
when the baseline distribution is Gompertz.

Distribution â b̂ r̂ û p̂ AIC
Gompertz -7.6348 12.0135 - - 0.2073 -60.85

Gamma Gompertz -15.2425 94.3266 4.5005 - 0.1930 -78.50
Gamma uniform Gompertz -20.4555 33.7584 2.9104 - 0.1946 -77.47
Exponentiated Gompertz -15.6102 53.2379 6.4700 - 0.1953 -78.99

TESS Gompertz -16.8292 64.5223 -9.9434 - 0.1935 -78.93
Marshall-Olkin Gompertz -18.2322 96.1874 46.7848 - 0.1939 -75.58

Beta Gompertz -16.7286 13.6681 5.4789 7.0361 0.1945 -76.79
EEP Gompertz -15.0173 33.428 5.1822 2.4156 0.1905 -77.19
EG Gompertz -15.6302 7.3042 7.3042 6.4897 0.1953 -76.99

Weibull Gompertz -19.6219 7.6312 3.1278 0.3322 0.1944 -75.65
Kumaraswamy Gompertz -16.9566 28.1259 4.5168 3.3681 0.1943 -76.65

differences. We can conclude that all extended models can give an reasonable fit for this

data and with this baseline distributions. The Exponentiated Gompertz, however, have

the smallest AIC between them. It is quite clear that all of the extended distributions

outperforms the Gompertz baseline distribution.

Table 5.2: Maximum likelihood estimates in the leukemia data set of the proposed models
when the baseline distribution is inverse Gaussian.

Distribution â b̂ r̂ û p̂ AIC
Inverse Gaussian 1.1426 15.8676 - - - -62.44

Gamma inv. Gaussian -1.4757 1.4910 0.1332 - 0.1875 -68.18
Gamma uniform inv. Gaussian -1.3740 0.0693 0.0069 - 0.2377 -71.46
Exponentiated inv. Gaussian -1.3219 0.0720 0.0072 - 0.2331 -71.38

TESS inv. Gaussian -9.6568 6.3184 34.0854 - 0.2012 -78.95
Marshall-Olkin inv. Gaussian -6.7423 5.3253 0.0230 - 0.2104 -78.08

Beta inv. Gaussian -9.2717 5.7933 0.8741 34.0850 0.2013 -76.98
EEP inv. Gaussian -7.2200 3.4363 0.5596 16.7902 0.2021 -76.84
EG inv. Gaussian -9.3250 6.0378 32.7396 0.9103 0.1999 -76.96

Weibull inv. Gaussian -15.2314 15.7859 2.1717 0.1258 0.1989 -77.16
Kumaraswamy inv. Gaussian -7.0169 3.1174 0.5037 14.6852 0.2008 -76.83

The fitted results for the distributions with inverse Gaussian as baseline are presented in

Table 5.2. Figure 5.6 illustrate the respective survival curves. Every single models were

lead to be defective, but the baseline one. The parameter a is estimated negative for all

distributions but in the inverse Gaussian in positive, leading to a proper model. Here we

have a wider range for the cure fraction, the models estimated the cure fraction between

0.1875 and 0.2331. The Gamma uniform inverse Gaussian and Exponentiated inverse

Gaussian estimates the cure around 0.23, but their AIC shows that their are far from the

best ones and their survival curves failed to complete capture the Kaplan-Meier curve.

We can say that the best model here is the TESS inverse Gaussian, because it have the
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Figure 5.5: Fitted survival curves of the proposed models when the baseline distribution
is Gompertz, in the leukemia data set.

smallest AIC between those whose capture the Kaplan-Meier curve properly.

Again, it is quite clear that all of the extended distributions outperforms the inverse

Gaussian baseline distribution.
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Figure 5.6: Fitted survival curves of the proposed models when the baseline distribution
is inverse Gaussian, in the leukemia data set.

5.4.2 Melanoma data

The fitted results for the distributions with Gompertz as baseline are presented in Table

5.3. Figure 5.7 illustrate the respective survival curves. Here all models were lead to be

defective. The parameter a is estimated negative for all distributions. The cure fraction

was estimated 0.2555 by the Gompertz model and 0.2277 by the TESS Gompertz. These
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Table 5.3: Maximum likelihood estimates in the melanoma data set of the proposed
models when the baseline distribution is the Gompertz

Distribution â b̂ r̂ û p̂ AIC
Gompertz -0.9209 1.2566 - - 0.2555 375.87

Gamma Gompertz -4.0571 11.0445 3.0008 - 0.4884 334.76
Gamma uniform Gompertz -5.0514 5.5032 2.3005 - 0.5013 335.29
Exponentiated Gompertz -3.8982 6.3941 3.0864 - 0.4859 334.78

TESS Gompertz -0.7624 0.1594 7.8367 - 0.2277 378.12
Marshall-Olkin Gompertz -5.6831 24.7232 78.6506 - 0.5069 340.19

Beta Gompertz -4.0316 2.5272 3.0144 3.4883 0.4880 336.76
EEP Gompertz -3.9707 3.6496 2.8226 2.7426 0.4880 336.61
EG Gompertz -3.8982 2.5286 2.5286 3.0864 0.4859 336.78

Weibull Gompertz -4.7873 2.8033 2.4541 0.6785 0.4983 337.01
Kumaraswamy Gompertz -4.1656 4.1641 2.8638 2.2782 0.4902 336.72

two have the worst fit, they failed to capture the Kaplan-Meier curve and have the highest

AIC values. The other models estimated the cure fraction between 0.4859 and 0.5069,

which makes way more sense. Their survival curves properly models the inflections point

that came up with this data. The Gamma Gompertz have the smallest AIC between

them.

Table 5.4: Maximum likelihood estimates in the melanoma data set of the proposed
models when the baseline distribution is the inverse Gaussian

Distribution â b̂ r̂ û p̂ AIC
Inverse Gaussian -0.2498 3.3231 - - 0.1396 342.35

Gamma inv. Gaussian -0.1934 3.5422 1.0477 - 0.1121 344.35
Gamma uniform inv. Gaussian -1.6541 10.1062 1.8089 - 0.2261 343.43
Exponentiated inv. Gaussian 0.0195 6.4939 1.6730 - - 344.15

TESS inv. Gaussian -0.2907 3.2899 0.0675 - 0.1575 344.35
Marshall-Olkin inv. Gaussian -0.2804 3.2981 0.9751 - 0.1531 344.35

Beta inv. Gaussian -2.7494 32.5666 6.8146 2.2961 0.2738 344.39
EEP inv. Gaussian -9.4365 70.3245 10.8933 16.4963 0.4120 341.43
EG inv. Gaussian -1.3819 25.8939 1.4396 5.7427 0.1946 345.11

Weibull inv. Gaussian -9.0216 43.6478 5.4965 1.1178 0.4316 339.34
Kumaraswamy inv. Gaussian -6.9996 43.3280 7.8071 10.7587 0.4065 341.97

The fitted results for the distributions with inverse Gaussian as baseline are presented

in Table 5.4. Figure 5.8 illustrate the respective survival curves. In this case, it looks

like none of the proposed models fits the data very closely. They all have some spots

in the survival curve that stays quite distant than expected. It seems that is hard for

the proposed models to fit the data when its Kaplan-Meier curve changes the curvature

too fast. That happens because the baseline distribution does not provide the needed

mathematical properties to get the extended families more flexible, in this case. This

shows that the extended models have its limitations.
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Figure 5.7: Fitted survival curves of the proposed models when the baseline distribution
is Gompertz, in the melanoma data set.

The Weibull inverse Gaussian have the smallest AIC. But is a little far from the one

obtained with Gompertz as the baseline distribution.

Here, the extended distributions does not outperforms the inverse Gaussian baseline dis-

tribution, as in the other cases.
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Figure 5.8: Fitted survival curves of the proposed models when the baseline distribution
is inverse Gaussian, in the melanoma data set.

5.5 Conclusions

In this chapter we generalized the results obtained in Chapters 3 and 4. This result can

lead to an series of new defective models. We present here 16 more extended distributions,

besides those 4 already presented in the previous chapters. We did some simulations

scenarios to check how the maximum likelihood estimator performs regarding to finite
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sample sizes.

We have illustrated the proposed models in two real data sets and showed that the ex-

tended defective distributions can be very effective when dealing with cure rate problems,

outperforming the baseline distributions. And more important, now with these new de-

fective distributions we can fill the emptiness that was to have only two distributions to

work with. Now we have a lot of different models that can properly fit almost any kind

of data.



Chapter 6

A Special Class of Defective Models

Based on the Marshall-Olkin Family

6.1 Introduction

In this chapter, we derive a useful property of the Marshall Olkin family of distributions

which allows one to generate new defective distributions. The details are given in Sec-

tion 2, including estimation by the method of maximum likelihood and an approach to

include covariate information. Simulation studies are performed in Section 6.3 in order to

check the usual asymptotic properties of maximum likelihood estimators and to assess the

quality of maximum likelihood estimators. Four real data applications of the proposed

methodology are illustrated in Section 6.4. Some concluding remarks are given in the last

section.

In short, the contributions of this chapter to the literature are: i) derive a new property of

the Marshall Olkin family of distributions which allows for the construction of numerous

defective distributions; ii) propose ten new defective distributions in order to exemplify the

derived property; iii) illustrate the performance of such distributions through simulations

and applications to real data sets.

96
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6.2 Methodology

In this section, we present details about the Marshall Olkin family of distributions and

derive a new property of this family that can be very useful for cure rate modeling. We also

discuss the extended Weibull family of distributions, which together with the Marshall

Olkin family can generate a whole set of new distributions for cure fraction estimation.

Furthermore, we discuss details of maximum likelihood estimation and an approach to

use the proposed distributions as regression models.

6.2.1 The Marshall Olkin family

Let f(t), S(t) and λ(t) denote, respectively, the density, survival and hazard rate functions

associated with a baseline distribution. The Marshall Olkin (MO) family, proposed in

Marshall & Olkin (1997), extends the baseline distribution by adding an extra shape

parameter, leading to a more flexible distribution often capable of providing better fits.

The density, survival and hazard rate functions of the Marshall Olkin family are

fMO(t; r) =
rf(t)

[1− (1− r)S(t)]2
, (6.1)

SMO(t; r) =
rS(t)

1− (1− r)S(t)
, (6.2)

λMO(t; r) =
λ(t)

1− (1− r)S(t)
(6.3)

for t > 0 and r > 0.

There has been much work on the Marshall Olkin family of distributions. Many authors

have derived details for particular Marshall Olkin distributions. For some examples, see

Jose & Krishna (2011b) for the Marshall Olkin-uniform distribution, Ghitany (2005) for

the Marshall Olkin-Pareto distribution, Ghitany et al. (2005) for the Marshall Olkin-

Weibull distribution, Ristic et al. (2007) for the Marshall Olkin-gamma distribution and

Jose et al. (2009a) for the Marshall Olkin-beta distribution.

Theorem 2.1 derives a new property of the Marshall Olkin family that relates to the theory
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of defective distributions. This new property allows one to generate of new defective

distributions.

Theorem 6.1. Suppose S(t) is an improper survival function satisfying lim
t→∞

S(t) = ∞.

Then the Marshall Olkin distribution given by (6.1) and (6.2) for r < 0 is a defective

distribution.

Proof: If lim
t→∞

S(t) =∞ then

lim
t→∞

SMO(t; r) = lim
t→∞

rS(t)

1− (1− r)S(t)

L′H
=

rS ′(t)

(r − 1)S ′(t)

=
r

r − 1
,

where L′H indicates the use of the L’Hôpital rule. If r < 0 then r
r−1
∈ (0, 1), so the proof

is complete. �

For example, the exponential distribution has survival function S(t) = exp(−at), a > 0.

If a < 0, then lim
t→∞

S(t) =∞ which satisfies the condition of Theorem 2.1. Therefore, the

Marshall Olkin-exponential distribution is a defective distribution when a < 0 and r < 0.

Theorem 2.1 still holds if lim
t→∞

S(t) = −∞. If lim
t→∞

S(t) = M < ∞ and M ∈ (−∞, 0) ∪

(1,∞) then Theorem 2.1 still holds for r < 0. The limiting cure rate in this case will be

rM/(rM + 1 −M). If lim
t→∞

S(t) = M < ∞ and M ∈ (0, 1) then Theorem 2.1 still holds

for r > 0. In this case, the distribution becomes a defective by definition. If M = 0 then

S(t) is a proper survival function and therefore there is no cure rate. M = 1 corresponds

to a degenerate distribution with the cure rate of 1 (no one would be susceptible to the

event of interest).

Section 6.2.2 shows that a known family of extended Weibull distributions can give ideal

choices for S(t).
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6.2.2 The extended Weibull distribution

The extended Weibull (EW) distribution, firstly proposed in Gurvich et al. (1997), gen-

eralizes the Weibull distribution by means of a non-negative monotonically increasing

function H(t,γ), where γ is a vector of k parameters. Its density, survival and hazard

rate functions are

fEW (t; v,γ) = v h(t,γ) exp [−vH(t,γ)] , (6.4)

SEW (t; v,γ) = exp [−vH(t,γ)] , (6.5)

λEW (t; v,γ) = v h(t,γ) (6.6)

for t > 0, v > 0 and h(t,γ) = dH (t,γ) /dt.

Different choices for H(t,γ) lead to different extended Weibull distributions. Table 6.1

lists ten extended Weibull distributions which will be used to illustrate Theorem 6.1.

They were selected from Santos-Neto et al. (2014).

Table 6.1: Some particular cases of the extended Weibull distribution.
Distribution H(t,γ) Parameters in γ
Exponential t ∅

Rayleigh t2 ∅
Lomax log(1 + t) ∅
Weibull ta a > 0

Gompertz [exp(at)− 1] /a a > 0
Burr XII log (1 + ta) a > 0

Chen exp (ta)− 1 a > 0
Modified Weibull ta exp(bt) a ≥ 0, b > 0
Weibull extension a

{
exp

[
(t/a)b

]
− 1
}

a > 0, b > 0
Traditional Weibull tb [exp (atc)− 1] a ≥ 0, b ≥ 0, c > 0

Some more distributions for positive data can be obtained from the extended Weibull

family: the Pareto distribution for H(t,γ) = log(t/a), t ≥ a; the log-logistic distribution

for H(t,γ) = log (1 + ta); the Fréchet distribution for H(t,γ) = t−a; the exponential

power distribution for H(t,γ) = exp
[
(at)b

]
− 1; the Pham distribution for H(t,γ) =

(at)
b − 1, among others. For more details, see Santos-Neto et al. (2014).

Note that some distributions in Table 6.1 are generalizations of others: the exponential
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Figure 6.1: From the left to the right, from the top to the bottom, the density and
survival functions of the proposed distributions, in the same order presented in Ta-
ble 6.1. The parameter values used are u = (−0.2,−0.5,−1,−0.2,−0.5,−1), v =
(−0.5,−0.5,−0.5,−2,−2,−2), a = (0.5, 0.5, 1, 1, 2, 2), b = (1, 1, 2, 2, 0.5, 0.5) and c =
(2, 2, 0.5, 0.5, 1, 1). The colors are (black, red, green, blue, light blue, pink).
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and Rayleigh distributions are particular cases of the Weibull distribution for a = 1

and a = 2, respectively; the Lomax distribution is the particular case of the Burr XII

distribution for a = 1; the Weibull distribution is the particular case of the modified

Weibull distribution for b = 0; the Chen and Gompertz distributions are particular cases

of the Weibull extension distribution for a = 1 and a′ = a−1, b = 1, respectively; the

Weibull distribution is the particular case of the Chen distribution for a = 1, b = 0.

If v < 0 then lim
t→∞

SEW (t; v,γ) = ∞ provided that H (t,γ) is non-negative and mono-

tonically increasing. So, any member of the extended Weibull family that uses v as a

parameter can be used to generate a defective distribution.

The Marshall Olkin-extended Weibull (MOeW) distributions are obtained by combining

(6.4), (6.5), (6.6) and (6.1), (6.2), (6.3), i.e., by using the extended Weibull distribution

as a baseline distribution for the Marshall Olkin family. The resulting density, survival

and hazard rate functions are

fMOeW (t; r, v,γ) =
r v h (t,γ) exp [−vH (t,γ)]

{1− (1− r) exp [−vH (t,γ)]}2 , (6.7)

SMOeW (t; r, v,γ) =
r exp [−vH (t,γ)]

1− (1− r) exp [−vH (t,γ)]
, (6.8)

λMOeW (t; r, v,γ) =
v h (t,γ)

1− (1− r) exp [−vH (t,γ)]
.

The ten different functions in Table 6.1 lead to ten different defective distributions. Figure

6.1 plots the density and survival functions of all distributions proposed in Table 6.1. This

collection of distributions can be very flexible. The black and blue curves in the figure

have the same cure rate of −0.2/(−0.2 − 1) = 1/6. The red and light blue curves have

the curve rate of −0.5/(−0.5 − 1) = 1/3. The green and pink curves have the cure rate

of −1/(−1− 1) = 1/2.

We have used the extended Weibull family to generate defective distributions. The gen-

erated distributions give good fits to the data considered in this chapter. But other

distributions could have been used to generate defective versions via Theorem 6.1. As

an example, consider the Maxwell-Boltzmann distribution specified by the density and
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survival functions

fMB(t; a) = a−3t2 exp

(
− t2

2a2

)√
2π−1,

SMB(t; a) = 1− erf

(
t√
2a

)
+
t exp

(
− t2

2a2

)√
2π−1

a

for t > 0, where a > 0 is a scale parameter and erf(t) = 2π−
1
2

∫ t

0

e−x
2

dx denotes the error

function. The error function approaches 1 as t → ∞ and approaches −1 as t → −∞. If

a < 0 we have

lim
t→∞

SMB(t; a) = 1− (−1) + 0 = 2.

So, this distribution under the Marshall Olkin family is defective when a < 0 and r < 0.

Its cure rate is 2r/(2r + 1− 2) = r/(r − 0.5).

6.2.3 Inference

Here, we present a procedure to obtain maximum likelihood estimates for the MOeW

distribution, when considering data with right-censored information. Let D = (t, δ),

where t = (t1, . . . , tn)′ are the observed failure times and δ = (δ1, . . . , δn)′ are the right-

censored times. The δi is equal to 1 if a failure is observed and 0 otherwise. Suppose

that the data are independently and identically distributed and come from a distribution

with density and survival functions specified by f (·,θ) and S (·,θ), respectively, where

θ = (r, v,γ)′ denotes a vector of k + 2 parameters. The log-likelihood function of θ can

be written as

l (θ,D) = logL (θ,D) = const +
n∑
i=1

δi log f (ti,θ) + (1− δi) logS (ti,θ) . (6.9)
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By (6.7) and (6.8), the log-likelihood function for the MOeW distribution is

l (θ,D) = const + n log(r)− v
n∑
i=1

H (ti,γ)

−
n∑
i=1

(1 + δi) log {1− (1− r) exp [−vH (ti,γ)]}+
n∑
i=1

δi log [vh (ti,γ)] .

The maximum likelihood estimates are the simultaneous solutions of ∂l(θ,D)
∂r

= 0, ∂l(θ,D)
∂v

=

0 and ∂l(θ,D)
∂γj

= 0. Asymptotic normality of the maximum likelihood estimates holds only

under certain regularity conditions. These conditions are not easy to check analytically

for our models. Section 6.3 performs a simulation study to see if the usual asymptotes

of the maximum likelihood estimates hold. Simulations have been used in many papers

to check the asymptotic behavior of maximum likelihood estimates, especially when an

analytical investigation is not trivial.

6.2.4 Defective Marshall Olkin-G regression model

The use of covariate information is essential when analysing survival data. Here, we

discuss an approach on how to include covariate information to the proposed models.

The approach has a simple interpretation as we shall see.

Suppose x′ = (1, x1, . . . , xp) is a vector of covariates from a data set and β′ = (β0, β1, . . . , βp)

a vector of regression coefficients. We are going to set r(x) = − exp(β′x) to link the cure

rate to the covariates. In this way, the Marshall Olkin-G regression model is given by

S (t|x) =
r(x)S(t)

1− [1− r(x)]S(t)
=

exp(β′x)S(t)

[1 + exp(β′x)]S(t)− 1
,

for t > 0. If S(t) has a cure rate of p then that of S (t|x) is

p = lim
t→∞

S (t|x) =
r(x)

r(x)− 1
=

exp(β′x)

1 + exp(β′x)
. (6.10)

In this way, the cure fraction is easily calculate throw the logit function. This approach is
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Figure 6.2: Mean squared errors, biases, coverage probabilities and coverage lengths of
the estimators of r, v and p versus n for the Marshall Olkin-Lomax distribution with
(r, v) = (−1,−10).

attractive because of the way the cure rate depends on the regression coefficients, making

it very easy to interpret. If β′x increases it value, so does the cure rate (towards 1). If

β′x decreases it value, so does the cure rate (towards 0).

The MOeW regression model is given by

S(t|x) =
r(x) exp [−vH (t,γ)]

1− [1− r(x)] exp [−vH (t,γ)]
=

exp(β′x) exp [−vH (t,γ)]

[1 + exp(β′x)] exp [−vH (t,γ)]− 1
.

An application is presented in Section 6.4.4.

6.3 Simulation studies

Here, we assess the performance of the maximum likelihood estimates with respect to

sample size to show, among other things, that the usual asymptotes of maximum likelihood

estimators still hold for defective distributions. The assessment is based on simulations.
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Figure 6.3: Mean squared errors, biases, coverage probabilities and coverage lengths of
the estimators of r, v, a and p versus n for the Marshall Olkin-Weibull distribution with
(r, v, a) = (−1,−2, 3).
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Figure 6.4: Mean squared errors, biases, coverage probabilities and coverage lengths of
the estimators of r, v, a and p versus n for the Marshall Olkin-Chen distribution with
(r, v, a) = (−1,−2, 2).
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Figure 6.5: Mean squared errors, biases, coverage probabilities and coverage lengths of
the estimators of r, v, a and p versus n for the Marshall Olkin-Burr XII distribution with
(r, v, a) = (−1,−2, 2).
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We took the sample size to vary from 50 to 1000 in steps of 50. Each sample was replicated

1000 times. The variance of the cure rate p was estimated using the delta method with

first order Taylor’s approximation. We chose only four of our proposed distributions: the

Marshall Olkin-Lomax distribution with (r, v) = (−1,−10), the simulation results for

which are shown in Figure 6.2; the Marshall Olkin-Weibull distribution with (r, v, a) =

(−1,−2, 3), the simulation results for which are shown in Figure 6.3; the Marshall Olkin-

Chen distribution with (r, v, a) = (−1,−2, 2), the simulation results for which are shown

in Figure 6.4; the Marshall Olkin-Burr XII distribution with (r, v, a) = (−1,−2, 2), the

simulation results for which are shown in Figure 6.5. For the purpose of comparison, we

have fixed r = −1 for all simulations, which leads to a cure rate of 0.5.

We can observe the following from the figures: the biases for each parameter approach

zero as sample size increases; the biases for each parameter appear small enough for

all n ≥ 600; the mean squared errors for each parameter decrease to zero as sample size

increases; the mean squared errors for each parameter appear small enough for all n ≥ 600;

the coverage probabilities for each parameter stay mostly in the interval (0.936, 0.964);

the coverage lengths for each parameter decrease fast to zero as sample size increases; the

coverage lengths for each parameter appear small enough for all n ≥ 600.

Similar observations held when the simulations were repeated for other defective distri-

butions and for a wide range of parameter values under the Marshall Olkin family. In

particular, the biases always approached zero as sample size increased, the biases for each

parameter always appeared small enough for all n ≥ 600, the mean squared errors always

approached zero as sample size increased, the mean squared errors for each parameter

always appeared small enough for all n ≥ 600, the coverage probabilities always stayed

mostly in the interval (0.936, 0.964), the coverage lengths always decreased fast to zero as

sample size increased and the coverage lengths for each parameter always appeared small

enough for all n ≥ 600.
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6.4 Real data applications

Here, we present applications to four real data sets. In the first three data sets, we

are only considering the event times and censoring information, with no covariates. The

fourth data set contains covariate information and is used to illustrate the model proposed

in Section 6.2.4. The ten defective distributions discussed in Section 6.2.2 are fitted to

each data set. The following are used to distinguish between the fitted distributions: the

Akaike information criterion (AIC), the Bayesian information criterion (BIC), the con-

sistent Akaike information criterion (CAIC) and visual comparison of the fitted survival

curves and the Kaplan-Meier curve. For computational stability, the observed times in

each data set were divided by their maximum value. The parameters r and v were set

free to take any value on the real line. Negative estimates of r and v correspond to a

defective model. Positive estimates of r and v correspond to a proper survival model.

The four data sets were chosen to show a variety of survival curves and sample sizes. Each

data set is supposed to contain observations not susceptible to the event of interest. In

practice, it is unknown if the event of interest could be observed if enough time was given.

An evidence of existence of cured individuals is when the Kaplan-Meier curve reaches a

plateau between zero and one. In some cases that is more clear than others, as one can see

in our examples. We can assume that some of the censored observations at the end of the

study belong to the cured group. If everyone censored at the end are indeed cured, then

the plateau reached by the Kaplan-Meier curve is a good estimate of the cure fraction.

In general, a lower value of this plateau or a value close to it is an acceptable estimate.

6.4.1 Leukemia data

Here we consider the leukemia data. The fitted results are summarized in Table 6.2 and

Figure 6.6. Every distribution is estimated as a defective distribution. The cure rate

estimates are around 0.02 lower than the value suggest by the Kaplan-Meier curve. The

Marshall Olkin-Rayleigh distribution gives the smallest values for AIC, BIC and CAIC,

suggesting it fits better than the others. Its estimate of the cure fraction is furthest from
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Figure 6.6: Fitted distributions for the leukemia data set.
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Table 6.2: MLEs for the fitted distributions and some measures for the leukemia data set.
MO-Distribution r̂ v̂ â b̂ ĉ p̂ AIC BIC CAIC

Exponential -0.2798 -3.5807 - - - 0.2186 -54.86 -51.29 -54.57
Rayleigh -0.1932 -37.6941 - - - 0.1619 -75.39 -71.82 -75.10
Lomax -0.2296 -2.9506 - - - 0.1867 -54.03 -50.46 -53.74
Weibull -0.2064 -33.0993 1.9246 - - 0.1711 -73.50 -68.15 -72.90

Gompertz -0.2557 -2.5202 6.3571 - - 0.2036 -58.31 -52.96 -57.71
Burr XII -0.2103 -35.3517 1.9384 - - 0.1738 -73.93 -68.58 -73.33

Chen -0.2015 -30.8096 1.9111 - - 0.1677 -73.00 -67.65 -72.40
Modified Weibull -0.2064 -33.224 1.9259 0.0002 - 0.1711 -71.50 -64.37 -70.48
Weibull extension -0.2053 -56.4223 1.935 1.9045 - 0.1703 -71.36 -64.22 -70.33

Traditional Weibull -0.2057 -1.6413 3.1087 1.5997 0.1237 0.1706 -69.09 -60.17 -67.51

the one suggested by the Kaplan-Meier curve, 0.1619, but still an acceptable estimate.

The Marshall Olkin-Weibull, Marshall Olkin-Burr XII, Marshall Olkin-Chen and Marshall

Olkin-Modified Weibull distributions also provide reasonable fits. All other distributions

perform poorly. Visual comparison of the fitted survival curves and the Kaplan-Meier

curve shows that the Marshall Olkin-Exponential, Marshall Olkin-Lomax, Marshall Olkin-

Gompertz and Marshall Olkin-Weibull extension distributions provide the worst fits.

6.4.2 Colon data

Table 6.3: MLEs for the fitted distributions and some measures for the colon data set.
MO-Distribution r̂ v̂ â b̂ ĉ p̂ AIC BIC CAIC

Exponential -0.5871 -1.2272 - - - 0.3699 1531.10 1542.15 1531.10
Rayleigh -0.8655 -8.6495 - - - 0.464 1668.31 1679.36 1668.32
Lomax -0.2282 -0.4812 - - - 0.1858 1537.00 1548.06 1537.01
Weibull -0.8805 -3.6376 1.367 - - 0.4682 1462.36 1478.94 1462.38

Gompertz -0.9101 -1.6598 1.9054 - - 0.4765 1516.68 1533.27 1516.70
Burr XII -0.8381 -3.9545 1.4167 - - 0.456 1456.53 1473.11 1456.54

Chen -0.9114 -3.0808 1.2918 - - 0.4768 1474.74 1491.32 1474.75
Modified Weibull -0.8809 -3.6404 1.3672 0.0014 - 0.4683 1464.39 1486.50 1464.41
Weibull extension -0.8805 -14.1338 40.9902 1.366 - 0.4682 1464.42 1486.52 1464.44

Traditional Weibull -0.8805 -1.3754 1.2936 1.355 0.0068 0.4682 1466.37 1494.00 1466.40

Here we consider the colon data set. The fitted results are summarized in Table 6.3 and

Figure 6.7. All of the fitted distributions are estimated to being defective. The Marshall

Olkin-Lomax distribution estimates the cure fraction as 0.1858, far lower than the Kaplan-

Meier plateau. The Marshall Olkin-Exponential distribution gives the estimate 0.3699 and

the Marshall Olkin-Weibull distribution gives the estimate 0.4198. All others give a value

very close to the Kaplan-Meier estimate. The Marshall Olkin-Burr XII distribution has

the smallest values for AIC, BIC and CAIC. This distribution gives a cure rate of 0.456,

slightly lower than the Kaplan-Meier estimate and is probably the best for this data.

Note that the Marshall Olkin-Weibull, Marshall Olkin-Modified Weibull, Marshall Olkin-

Weibull extension and Marshall Olkin-Traditional Weibull distributions give practically
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Figure 6.7: Fitted distributions for the colon data set.
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the same cure rate estimate of 0.4682, very close to the Kaplan-Meier estimate.

Visual comparison of the fitted survival curves and the Kaplan-Meier curve shows that

the Marshall Olkin-Rayleigh distribution gives the worst fit (and the worst measures for

AIC, BIC and CAIC too). The Marshall Olkin-Exponential and Marshall Olkin-Lomax

distributions provide a better comparison, but their fits are worst than all others (also in

agreement with the AIC, BIC and CAIC values). The remaining distributions seem to fit

the Kaplan-Meier curve well. The cure rate asymptotes for the Marshall Olkin-Modified

Weibull, Marshall Olkin-Exponential and Marshall Olkin-Lomax distributions are after

the end of the study.

6.4.3 Divorce data

Table 6.4: MLEs for the fitted distributions and some measures for the divorce data set.
MO-Distribution r̂ v̂ â b̂ ĉ p̂ AIC BIC CAIC

Exponential -0.7037 -1.3674 - - - 0.4130 1532.16 1544.41 1532.17
Rayleigh -1.2283 -16.5389 - - - 0.5512 1633.88 1646.13 1633.89
Lomax -0.2604 -0.5045 - - - 0.2066 1538.82 1551.07 1538.83
Weibull -1.2215 -5.8018 1.4083 - - 0.5499 1435.90 1454.27 1435.90

Gompertz -1.2622 -1.9082 3.9220 - - 0.5579 1471.46 1489.82 1471.46
Burr XII -1.1819 -6.1051 1.4355 - - 0.5417 1437.27 1455.64 1437.28

Chen -1.2498 -5.2752 1.3694 - - 0.5555 1435.01 1453.38 1435.02
Modified Weibull -1.2350 -5.3745 1.3820 0.2300 - 0.5526 1437.73 1462.22 1437.74
Weibull extension -1.2497 -5.2844 1.0033 1.3696 - 0.5555 1437.01 1461.51 1437.03

Traditional Weibull -1.2499 -5.2052 1.0112 0.0036 1.3651 0.5555 1439.02 1469.64 1439.04

Here we consider the divorce data set. The fitted results are summarized in Table 6.4 and

Figure 6.8. The Marshall Olkin-Chen distribution has the smallest values for AIC, BIC

and CAIC. Its cure estimate is 0.5555, the closest to the Kaplan-Meier estimate. Its fit

captures the Kaplan-Meier curve very well. Therefore, we can consider Marshall Olkin-

Chen distribution as giving the most adequate fit. The Marshall Olkin-Modified Weibull,

Marshall Olkin-Weibull extension and Marshall Olkin-Traditional Weibull distributions

also give very close fits as the Marshall Olkin-Chen distribution. Their measures differ

basically because of the difference in the number of parameters. The simplest Marshall

Olkin-Exponential, Marshall Olkin-Rayleigh and Marshall Olkin-Lomax distributions all

give poor fits. The remaining distributions provide reasonably good fits with respect to

AIC, BIC and CAIC measures as well as visual comparison to the Kaplan-Meier curve.

Their cure rate estimates are quite close to the value suggested by the Kaplan-Meier

curve.
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Figure 6.8: Fitted distributions for the divorce data set.
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Figure 6.9: From the left to the right, top to bottom, the fitted regression models for the
melanoma data set, in the same order as in Table 6.1. The colors black, red, green and
blue represents the nodule categories 1, 2, 3 and 4, respectively.

6.4.4 Melanoma data

Here we consider the melanoma data. There are 417 observed times, of which 232 were

censored (55.63 percent). This data set has covariate information. The covariate taken

represents the nodule category (n1 = 82, n2 = 87, n3 = 137, n4 = 111). The Kaplan-Meier

estimates suggest that the survival rate increases with the nodule category.

Table 6.5: MLEs for the fitted regression models and the AIC measure for the melanoma
data set.

MO-Distribution v̂ â b̂ ĉ β̂0 β̂1 p̂1 p̂2 p̂3 p̂4 AIC
Exponential -0.03 - - - -2.84 -0.43 0.0365 0.0240 0.0156 0.0102 354.12

Rayleigh -5.99 - - - 1.22 -0.51 0.6697 0.5485 0.4213 0.3036 306.38
Lomax -0.02 - - - -3.34 -0.41 0.0230 0.0154 0.0102 0.0068 363.34
Weibull -5.16 1.89 - - 1.19 -0.50 0.6647 0.5455 0.4209 0.3056 307.57

Gompertz -0.85 3.74 - - 1.12 -0.47 0.6560 0.5434 0.4263 0.3169 338.02
Burr XII -5.82 1.96 - - 1.17 -0.50 0.6609 0.5413 0.4167 0.3019 305.87

Chen -4.26 1.79 - - 1.19 -0.50 0.6665 0.5474 0.4227 0.3071 310.96
Modified Weibull -5.16 1.89 0.00 - 1.18 -0.50 0.6645 0.5454 0.4209 0.3058 309.58
Weibull Extension -31.25 7.66 1.89 - 1.19 -0.50 0.6645 0.5450 0.4201 0.3047 309.63
Traditional Weibull -73.10 0.10 0.98 1.11 1.37 -0.51 0.7034 0.5875 0.4610 0.3393 335.90

The fitted results are summarized in Table 6.5 and Figure 6.9. The estimated cure rates
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p̂1, p̂2, p̂3 and p̂4 for groups 1, 2, 3 and 4, respectively, are calculated by (6.10). The

Marshall Olkin-Lomax and Marshall-Olkin Exponential distribution gives cure rates very

close to zero and they have the worst AIC. Better AIC values are given by the Marshall

Olkin-Rayleigh, Marshall Olkin-Weibull, Marshall Olkin-Burr XII, Marshall Olkin-Chen,

Marshall Olkin-Modified Weibull and Marshall Olkin-Modified Weibull Extension distri-

butions. The lowest AIC found was in the Marshall-Olkin Chen distribution, with 305.87.

The distributions giving the best AIC values capture the Kaplan-Meier curve relatively

well, but not so well for nodule category 1 and nodule category 3 near the tails.

The estimates of β0 and β1 are in agreement in all models. For β0, the value lies around

1.20 by most of models (except for Marshall Olkin-Lomax and Marshall-Olkin Exponen-

tial) and for β1, the value is around -0.50. That means that the cure rate decreases when

the nodule category increases.

The estimated cure rates for the nodule category 1 is around 0.66. In the nodule category

2 is around 0.54. In the nodule category 3 is 0.42. In the nodule category 4 is 0.30. The

standard deviaton of these cure rates can be estimated using the standard deviation of

β0 e β1 by the delta method. In the Marshall-Olkin Chen model, we have the standard

deviation of p1, p2, p3 e p4 given by 0.0379, 0.0305, 0.0319 and 0.0395, respectively.

Taking the asymptotic 95% confidence region, those values leads to the intervals (0.59,

0.74), (0.48,0.60), (0.36,0.48) and (0.23,0.38), respectively. This indicates a significant

difference between nodules categories 1 and 3, 1 and 4 and 2 and 4. Similar results can

be found in the other models that performed well. This results agrees with the results

founded in Rodrigues et al. (2009b), Balakrishnan & Pal (2013a) e Balakrishnan & Pal

(2013b).

6.4.5 Discussion

Here, we discuss some of the results in Sections 6.4.1, 6.4.2, 6.4.3, 6.4.4, a non-zero cure

rate testing approach and compare the fitted distributions with their respective mixture

model versions.
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Table 6.6 compares the results in Tables 6.3, 6.4, 6.5 to the standard mixture model

given by Smix = p + (1 − p)S(t), where S(t) is the same baseline distribution as in the

Marshall Olkin defective distributions. The distributions were compared in terms of the

AIC and have the same number of parameters. The bold numbers represent the smaller

AIC value. In all data sets, the defective approach performs better in seven out the ten

cases. The baseline distributions performing better under a chosen approach are the same,

regardless of the data analysed. The following distributions performed better under the

defective approach for each of the three data sets: the Marshall Olkin-Rayleigh, Marshall

Olkin-Weibull, Marshall Olkin-Burr XII, Marshall Olkin-Chen, Marshall Olkin-Modified

Weibull, Marshall Olkin-Weibull extension and Marshall Olkin-Traditional distributions.

The remaining performed better under the standard mixture approach. We can conclude

that the defective distributions are good competitors for modelling cure rates. They

provide better fits more often than the mixture model.

Table 6.7 gives 95 percent asymptotic confidence intervals for r based on the normal

approximation. We check this table to see r is significantly lower than zero. Since the

cure rate p only depends on r, the cure rate is significantly greater than zero, implying the

existence of cure fraction, if r is significantly lower than zero. Almost all of the confidence

intervals in Table 6.7 are in the negative side of the real line. The only exception is that

for the Marshall Olkin-Lomax distribution fitted to the leukemia and divorce data sets.

Even this confidence interval is almost all negative. We can conclude therefore that the

leukemia, colon and divorce data sets have non-zero cure rates.

Table 6.6: Comparison of the AIC value of the mixture and defective models.
Baseline Leukemia data Colon data Divorce data

distribution Mixture Defective Mixture Defective Mixture Defective
Exponential -64.41 -54.86 1509.62 1531.10 1503.66 1532.16

Rayleigh -55.71 -75.39 1879.82 1668.31 1770.51 1633.88
Lomax -63.77 -54.03 1518.33 1537.00 1518.61 1538.82
Weibull -68.54 -73.50 1481.29 1462.36 1439.79 1435.90

Gompertz -62.20 -58.31 1512.46 1516.68 1469.76 1471.46
Burr XII -69.58 -73.93 1470.14 1456.53 1439.09 1437.27

Chen -67.18 -73.00 1503.11 1474.74 1442.66 1435.01
Modified Weibull -63.19 -71.50 1464.69 1464.39 1441.13 1437.73
Weibull extension -66.50 -71.36 1483.39 1464.42 1456.22 1437.01

Traditional Weibull -64.54 -69.09 1485.29 1466.37 1443.79 1439.02

All of the examples provided here show that the newly introduced defective distributions

can be used to provide adequate fits to several different kinds of data sets. The Marshall
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Table 6.7: Asymptotic 95 percent confidence intervals for r.
Marshall Olkin Leukemia data Colon data Divorce data

distribution Lower CI Upper CI Lower CI Upper CI Lower CI Upper CI
Exponential -0.5486 -0.0109 -0.7249 -0.4493 -0.9083 -0.499

Rayleigh -0.3302 -0.0562 -0.9467 -0.7844 -1.3366 -1.1199
Lomax -0.5359 0.0767 -0.4271 -0.0294 -0.5376 0.0167
Weibull -0.3702 -0.0426 -0.9776 -0.7834 -1.3542 -1.0889

Gompertz -0.4619 -0.0495 -1.0096 -0.8107 -1.3825 -1.1419
Burr XII -0.3767 -0.0440 -0.9445 -0.7318 -1.3252 -1.0385

Chen -0.3620 -0.0409 -1.0032 -0.8197 -1.3752 -1.1244
Modified Weibull -0.3702 -0.0426 -0.978 -0.7838 -1.3744 -1.0956
Weibull extension -0.3679 -0.0397 -0.9777 -0.7833 -1.3797 -1.1197

Traditional Weibull -0.3652 -0.0418 -0.9776 -0.7834 -1.3796 -1.1203

Olkin-Rayleigh distribution gives the best fit for the leukemia data set, but it does not

perform so well for the colon data set. The Marshall Olkin-Burr XII distribution gives

the best fit for the colon data set, while the Marshall Olkin-Chen distribution gives the

most adequate fit for the divorce data set and melanoma data set, as a regression model.

This shows how competitive the newly proposed distributions can be, even when com-

peting with the standard mixture models. More investigations are needed for these new

distributions, but we hope we have provided strong evidence of the competitiveness of the

proposed distributions.

6.5 Conclusions

The theory on defective distributions has been quite limited. In this chapter, we have

derived a new property of the Marshall Olkin family of distributions, allowing one to

generate many new defective distributions as possible models for a wide variety of data

sets. We have constructed ten new defective distributions based on the new property.

The usual asymptotes of the maximum likelihood estimators for these distributions have

been checked by simulation. An approach to include covariate information has been

proposed and illustrated in one of the applications. In total, applications to four real

data sets have been illustrated. We have presented sufficient evidence of the relevance

and competitiveness of the proposed distributions, covering a range of different scenarios

and showing that they can provide adequate fits. We have also shown that the proposed

distributions can perform better than the standard mixture models.



Chapter 7

Final Remarks

7.1 Conclusions

In this thesis, we worked in a way to explore the distributions that can be used to model

survival data with presence of a cured rate. At the beginning of this thesis, the only

two defective distributions known was the Gompertz and inverse Gaussian. There was

only a few references about it with no further efforts to increase the numbers of defective

distributions. Now, at the end of this thesis, we have developed two different ways to

generate defective distribution, as stated in Chapters 5 and 6.

We started in Chapter 2 defining the Gompertz and inverse Gaussian defective distribu-

tion. In none of the previous works were evidenced or proved the suitability of maximum

likelihood estimators for defective models. We presented, for the first time, a simulation

work where it is possible to check the validity of the maximum likelihood estimators and

analyze its needs regarding to sample sizes. We also pointed out how limited the two

defective distributions are to fit several kinds of data.

With that in mind, we proved in Chapter 3 that if a baseline distribution is defective,

then the respective distribution extended by the Marshall-Olkin family is also defective.

This was the starting point in the generation of the new defective distributions. The

Marshall-Olkin family increases the flexibility of a baseline distribution by adding a new

119
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shape parameter to it. We checked the estimation procedure through some simulations

and evidenced using real data sets how better the extended family is comparing to the

baseline distributions. We finished showing that those two new three parameter defec-

tive distributions can be properly used to fit more data sets with cured fraction and its

competitiveness in relation to the mixture models.

We went further and extended the basic defective distributions using the Kumaraswamy

family, in Chapter 4. The Kumaraswamy family increases the flexibility of a baseline

distribution by adding two new shape parameter to it. The new distributions are even

more flexible than the ones presented in the previous chapter. We also propose a regression

approach in order to incorporate covariates into the modeling. Therefore, two extra new

four parameter defective distribution to model cure rate problems with a background for

covariates modeling.

In Chapter 5, we generalized the results obtained in Chapters 3 and 4. We showed that

any family of extended distributions provides defective ones if the baseline is also defec-

tive, since the extension is continuous in relation to the baseline distribution. There, we

presented a full literature review regarding to families of distributions and chose another

8 to exemplify the results. We showed that the new distributions can improve the base-

line ones in most cases, and in each scenario, there is a better distribution that fits the

data. With the result of this chapter, we state the first method to generate new defective

distributions.

In Chapter 6, we took another turn and propose a way that generates defective distribution

based in a peculiar property of the Marshall-Olkin family. We show that, if a distribution

have it survival function going to the infinity when some of its parameters domains is

changed, then the Marshall-Olkin extension of this distribution can assume a defective

form. This result leads to several different defective distributions, without the Gompertz

or inverse Gaussian as the baseline. We used the extended Weibull to exemplify our

result, taking 10 especial model as sub-cases. A regression approach is also proposed and

exemplified.

Summarizing, this thesis is a work related to the cure rate modeling in survival studies,
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using the defective distributions approach. At first, we had only two of these distribution

to work with, now we have two different methods to generate defective distributions. We

showed 20 new distributions in Chapter 5 and 11 in Chapter 6, but many more can be

generated. We also showed that this variety of models can properly fit very different kinds

of data sets and, often enough, outperform the standard mixture model.

This thesis is based in five papers developed im my doctoral period. Three of it are

already published (Rocha et al. (2014), Rocha et al. (2015a) and Rocha et al. (2015c)),

one is being reviewed Rocha et al. (2015b) and a last one is almost ready for submission.

7.2 Future Works

From this point, we see some paths to continue to develop the defective distributions

theory. One of them is to work with these models in a Bayesian point a view. Changing

the estimation method may lead to a better result regarding to the interval estimation os

these models. Also, we can incorporate informative prioris for the first time using defective

distributions. Will be interesting to compare with the work of Balka et al. (2011) and the

ones proposed in here.

Another way to go is develop models with a frailty term, to estimate the influence of the

non-observed covariates. In Price & Manatunga (2001) it is considered models with cured

fraction, frailty term, and cured fraction with frailty term. They show that the frailty

models are useful the model cure rate data. So, the idea here is to properly incorpo-

rate a frailty term into the defective models and check estimators properties, simulations

scenarios and real data cases.

Since all the computation done here was in R. One of our future works is to create a new R

package to provide functions to help with the modeling with defective distributions. These

functions can generate random samples of defective distributions and calculate density,

cumulative and quantiles values for a given defective distribution. These function may

also cover some post-modeling issues, like probability calculating, plot of figures, analysis

of the influent data points, among others functionalities.
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This package will be essential to spread the methodology proposed in this work. As a

means of dissemination, we intend to create an educational material with examples and

guides for applications in R by following the functions listed in the developed package. The

aim would be to write a book to publish in accordance with the new partnership between

the Brazilian Statistical Association (ABE) and the international publisher Springer. The

SpringerBriefs in Statistics is a series created especially for this partnership and aims

to internationally publicize studies conducted by brazilian researchers and other Latin

American countries, in various fields of statistics. Such series consists of short texts,

around 120 pages, in which it is treated the latest topics in a particular area.

7.3 Acknowledgements

We thank the Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico (CNPq/Brazil)

for financial support during the course of this doctorate. All R codes used in this thesis

are available with the author.



Bibliography

Aalen, O. (1978). Nonparametric estimation of partial transition probabilities in multiple

decrement models. The Annals of Statistics , pages 534–545.

Aalen, O., Borgan, O. & Gjessing, H. (2008). Survival and Event History Analysis: A

Process Point of View . Springer Verlag, New York.

Abdul-Moniem, I. & Abdel-Hameed, H. (2012). On Exponentiated Lomax Distribution.

International Journal of Mathematical Archive, 3, 2144–2150.

Adepoju, K., Chukwu, A. & Wang, M. (2014). The Beta Power Exponential Distribution.

Journal of Statistical Science and Application, 2, 37–46.

Akinsete, A., Famoye, F. & Lee, C. (2008). The Beta Pareto Distribution. Statistics , 42,

547–563.

Akinsete, A., Famoye, F. & Lee, C. (2014). The Kumaraswamy-Geometric Distribution.

Al-Saiari, A., Baharith, L. & Mousa, S. (2014). Marshall-Olkin Extended Burr Type XII

Distribution. International Journal of Statistics and Probability , 3.

Alexander, C., Cordeiro, G., Ortega, E. & Sarabia, J. (2012). Generalized Beta-Generated

Distributions. Computational Statistics and Data Analysis , 56, 1880–1897.

Alshawarbeh, E., Famoye, F. & Lee, C. (2014). Beta-Cauchy Distribution: Some Prop-

erties and Applications.

Alzaatreh, A. & Knight, K. (2013). On the Gamma-Half Normal Distribution and Its

Applications. Journal of Modern Applied Statistical Methods , 12, 103–119.

123



124

Alzaatreh, A., Famoye, F. & Lee, C. (2013a). Weibull-Pareto Distribution and Its Appli-

cations. Communications in Statistics—Theory and Methods , 42, 1673–1691.

Alzaatreh, A., Lee, C. & Famoye, F. (2013b). A New Method for Generating Families of

Continuous Distributions. Metron, 71, 63–79.

Alzaatreh, A., Famoye, F. & Lee, C. (2014). The Gamma-Normal Distribution: Properties

and Applications. Computational Statistics and Data Analysis , 69, 67–80.

Amini, M., MirMostafaee, S. & Ahmadi, J. (2014). Log-gamma-generated families of

distributions. Statistics , 48(4), 913–932.

Aryal, G. & Elbata, I. (2015). Kumaraswamy Modified Inverse Weibull Distribution:

Theory and Application. Applied Mathematics and Information Sciences , 9, 651–660.

Azzalini, A. (1985). A Class of Distributions which Includes the Normal Ones. Scandi-

navian Journal of Statistics , 12, 171–178.

Badmus, N. & Bamiduro, T. (2014). Life Length of Components Estimates with Beta-

Weighted Weibull Distribution. Journal of Statistics: Advances in Theory and Appli-

cations , 11, 91–107.

Balakrishnan, N. & Pal, S. (2012). Em algorithm-based likelihood estimation for some

cure rate models. Journal of Statistical Theory and Practice, 6(4), 698–724.

Balakrishnan, N. & Pal, S. (2013a). Lognormal lifetimes and likelihood-based inference

for flexible cure rate models based on com-poisson family. Computational Statistics &

Data Analysis , 67, 41–67.

Balakrishnan, N. & Pal, S. (2013b). Expectation maximization-based likelihood infer-

ence for flexible cure rate models with weibull lifetimes. Statistical methods in medical

research. doi: 0962280213491641.

Balakrishnan, N. & Pal, S. (2015). An em algorithm for the estimation of exible cure rate

model parameters with generalized gamma lifetime and model discrimination using

likelihood- and information-based methods. Computational Statistics , 30, 151–189.



125

Balka, J., Desmond, A. F. & McNicholas, P. D. (2009). Review and implementation of

cure models based on first hitting times for wiener processes. Lifetime data analysis ,

15(2), 147–176.

Balka, J., Desmond, A. F. & McNicholas, P. D. (2011). Bayesian and likelihood inference

for cure rates based on defective inverse gaussian regression models. Journal of Applied

Statistics , 38(1), 127–144.

Barreto-Souza, W., Santos, A. & Cordeiro, G. (2010). The Beta Generalized Exponential

Distribution. Journal of Statistical Computation and Simulation, 80, 159–172.

Barreto-Souza, W., Cordeiro, G. & Simas, A. (2011). Some Results for Beta Frechet

Distribution. Communications in Statistics—Theory and Methods , 40, 798–811.

Berkson, J. & Gage, R. P. (1952). Survival curve for cancer patients following treatment.

Journal of the American Statistical Association, 47(259), 501–515.

Bidram, H. (2012). The Beta Exponential-Geometric Distribution. Communications in

Statistics—Theory and Methods , 41, 1606–1622.

Bidram, H., Behboodian, J. & Towhidi, M. (2013). The Beta Weibull Geometric Distri-

bution. Journal of Statistical Computation and Simulation, 83, 52–67.

Boag, J. W. (1949). Maximum likelihood estimates of the proportion of patients cured

by cancer therapy. Journal of the Royal Statistical Society. Series B (Methodological),

11(1), 15–53.

Bourguignon, M., Silva, R., Zea, L. & Cordeiro, G. (2013). The Kumaraswamy Pareto

Distribution. Journal of Statistical Theory and Applications , 12, 129–144.

Bozdogan, H. (1987). Model selection and akaike’s information criterion (aic): The general

theory and its analytical extensions. Psychometrika, 52(3), 345–370.

Cakmakyapan, S. & Kadilar, G. (2014). A New Customer Lifetime Duration Distribution:

The Kumaraswamy Lindley Distribution. International Journal of Trade, Economics

and Finance, 5.



126

Calsavara, V. F. (2011). Modelos de sobrevivencia com fracao de cura usando um termo

de fragilidade e tempo de vida weibull modificada generalizada. Master Thesis.

Cantor, A. B. & Shuster, J. J. (1992). Parametric versus non-parametric methods for

estimating cure rates based on censored survival data. Statistics in Medicine, 11(7),

931–937.

Castellares, F. & Lemonte, A. (2014). A New Generalized Weibull Distribution Generated

by Gamma Random Variables. Journal of the Egyptian Mathematical Society .

Castellares, F., Santos, M., Montenegro, L. & Cordeiro, G. (2015). A Gamma-Generated

Logistic Distribution: Properties and Inference. American Journal of Mathematical and

Management Sciences , 34, 14–39.

Chen, M.-H., Ibrahim, J. G. & Sinha, D. (1999). A new bayesian model for survival data

with a surviving fraction. Journal of the American Statistical Association, 94(447),

909–919.

Cintra, R., Rego, L., Cordeiro, G. & Nascimento, A. (2014). Beta Generalized Normal

Distribution with An Application for SAR Image Processing. Statistics , 48, 279–294.

Colosimo, E. A. & Giolo, S. R. (2006). Analise de sobrevivencia aplicada. Edgard Blucher.

Cooner, F., Banerjee, S., Carlin, B. P. & Sinha, D. (2007). Flexible cure rate model-

ing under latent activation schemes. Journal of the American Statistical Association,

102(478).

Cordeiro, G. & Brito, R. (2012). The Beta Power Distribution. Brazilian Journal of

Probability and Statistics , 26, 88–112.

Cordeiro, G. & Lemonte, A. (2011a). The Beta Birnbaum-Saunders Distribution: An

Improved Distribution for Fatigue Life Modeling. Computational Statistics and Data

Analysis , 55, 1445–1461.

Cordeiro, G. & Lemonte, A. (2011b). The Beta-Half-Cauchy Distribution. Journal of

Probability and Statistics , 2011.



127

Cordeiro, G. & Lemonte, A. (2011c). The Beta Laplace Distribution. Statistics and

Probability Letters , 81, 973–982.

Cordeiro, G. & Lemonte, A. (2014). The Exponentiated Generalized Birnbaum-Saunders

Distribution. Applied Mathematics and Computation, 247, 762–779.

Cordeiro, G., Ortega, E. & Nadarajah, S. (2010). The Kumaraswamy Weibull Distribution

with Application to Failure Data. Journal of the Franklin Institute, 347, 1399–1429.

Cordeiro, G., Nadarajah, S. & Ortega, E. (2012a). The Kumaraswamy Gumbel Distribu-

tion. Statistical Methods and Applications , 21, 139–168.

Cordeiro, G., Nobre, J., Pescim, R. & Ortega, E. (2012b). The Beta Moyal: A Useful

Skew Distribution. Int. Journal Res. Rev. Appl. Sci., 10, 171–192.

Cordeiro, G., Ortega, E. & Silva, G. (2012c). The Beta Extended Weibull Family. Journal

of Probability and Statistical Science, 10, 15–40.

Cordeiro, G., Pescim, R. & Ortega, E. (2012d). The Kumaraswamy Generalized Half-

Normal Distribution for Skewed Positive Data. Journal of Data Science, 10, 195–224.

Cordeiro, G., Castellares, F., Montenegro, L. & de Castro, M. (2013a). The Beta Gener-

alized Gamma Distribution. Statistics , 47, 888–900.

Cordeiro, G., Cristino, C., Hashimoto, E. & Ortega, E. (2013b). The Beta Generalized

Rayleigh Distribution. Statistical Papers , 54, 133–161.

Cordeiro, G., Gomes, A., da Silva, C. & Ortega, E. (2013c). The Beta Exponentiated

Weibull Distribution. Journal of Statistical Computation and Simulation, 83, 114–138.

Cordeiro, G., Ortega, E. & da Cunha, D. (2013d). The Exponentiated Generalized Class

of Distributions. Journal of Data Science, 11, 1–27.

Cordeiro, G., Silva, G. & Ortega, E. (2013e). The Beta Weibull Geometric Distribution.

Statistics , 47, 817–834.



128

Cordeiro, G., Ortega, E. & Popovic, B. (2014a). The Gamma-Linear Failure Rate Distri-

bution: Theory and Applications. Journal of Statistical Computation and Simulation,

84, 2408–2426.

Cordeiro, G., Ortega, E. & Silva, G. (2014b). The Kumaraswamy Modified Weibull Distri-

bution: Theory and Applications. Journal of Statistical Computation and Simulation,

84, 1387–1411.

Cordeiro, G., Ortega, E. & Popovic, B. (2015). The Gamma-Lomax Distribution. Journal

of Statistical Computation and Simulation, 85, 305–319.

Cordeiro, G. M. & de Castro, M. (2011). A new family of generalized distributions.

Journal of Statistical Computation and Simulation, 81(7), 883–898.

da Silva, R., de Andrade, T., Maciel, D., Campos, R. & Cordeiro, G. (2013). A New

Lifetime Model: The Gamma Extended Frechet Distribution. Journal of Statistical

Theory and Applications , 12, 39–54.

de Pascoa, M., Ortega, E. & Cordeiro, G. (2011). The Kumaraswamy Generalized Gamma

Distribution with Application in Survival Analysis. Statistical Methodology , 8, 411–433.

de Santana, T., Ortega, E., Cordeiro, G. & Silva, G. (2012). The Kumaraswamy-Log-

Logistic Distribution. Journal of Statistical Theory and Applications , 11, 265–291.

Domma, F. & Condino, F. (2013). The Beta-Dagum Distribution: Definition and Prop-

erties. Communications in Statistics—Theory and Methods , 42, 4070–4090.

El-Sherpieny, E. & Ahmed, M. (2014). On the Kumaraswamy Kumaraswamy Distribu-

tion. International Journal of Basic and Applied Sciences , 3, 372–381.

Elbatal, I. (2013a). The Kumaraswamy Exponentiated Pareto Distribution. Economic

Quality Control , 28, 1–8.

Elbatal, I. (2013b). Kumaraswamy Generalized Linear Failure Rate Distribution. Indian

Journal of Computational and Applied Mathematics , 1, 61–78.



129

Elbatal, I. & Elgarhy, M. (2013). Statistical Properties of Kumaraswamy Quasi Lindley

Distribution. International Journal of Mathematics Trends and Technology , 4, 237–246.

Elbatal, I. & Muhammed, H. (2014). Exponentiated Generalized Inverse Weibull Distri-

bution. Applied Mathematical Sciences , 8, 3997–4012.

Eugene, N., Lee, C. & Famoye, F. (2002). Beta-Normal Distribution and Its Applications.

Communications in Statistics—Theory and Methods , 31, 497–512.

Feller, W. (1968). An Introduction to Probability Theory, vol. I, vol. II . John Wiley, New

York.

George, D. & George, S. (2013). Marshall-Olkin Esscher Transformed Laplace Distribution

and Processes. Brazilian Journal of Probability and Statistics , 27, 162–184.

Ghitany, M. (2005). Marshall-olkin extended pareto distribution and its application.

International Journal of Applied Mathematics , 18(1), 17.

Ghitany, M., Al-Hussaini, E. & Al-Jarallah, R. (2005). Marshall-olkin extended weibull

distribution and its application to censored data. Journal of applied Statistics , 32(10),

1025–1034.

Ghitany, M., Al-Awadhi, F. & Alkhalfan, L. (2007). Marshall-Olkin Extended Lomax

Distribution and Its Application to Censored Data. Communications in Statistics—

Theory and Methods , 36, 1855–1866.

Ghosh, I. (2014). The Kumaraswamy Half-Cauchy Distribution: Properties and Applica-

tions. Journal of Statistical Theory and Applications , 13, 122–134.

Gieser, P. W., Chang, M. N., Rao, P., Shuster, J. J. & Pullen, J. (1998). Modelling

cure rates using the gompertz model with covariate information. Statistics in medicine,

17(8), 831–839.

Gomes, A., da Silva, C., Cordeiro, G. & Ortega, E. (2013). The Beta Burr III Model for

Lifetime Data. Brazilian Journal of Probability and Statistics , 27, 502–543.



130

Gomes, A., da Silva, C., Cordeiro, G. & Ortega, E. (2014). A New Lifetime Model: The

Kumaraswamy Generalized Rayleigh Distribution. Journal of Statistical Computation

and Simulation, 84, 290–309.

Gui, W. (2013a). Marshall-Olkin Extended Log-Logistic Distribution and Its Application

in Minification Processes. Applied Mathematical Sciences , 7, 3947–3961.

Gui, W. (2013b). A Marshall-Olkin Power Log-Normal Distribution and Its Applications

to Survival Data. International Journal of Statistics and Probability , 2.

Gupta, R., Gupta, P. & Gupta, R. (1998). Modeling Failure Time Data by Lehman

Alternatives. Communications in Statistics—Theory and Methods , 27, 887–904.

Gurvich, M., Dibenedetto, A. & Ranade, S. (1997). A new statistical distribution for

characterizing the random strength of brittle materials. Journal of Materials Science,

32(10), 2559–2564.

Hady, A. & Ebraheim, N. (2014). Exponentiated Transmuted Weibull Distribution: A

Generalization of the Weibull Distribution. International Journal of Mathematical,

Computational, Physical and Quantum Engineering , 8.

Hanook, S., Shahbaz, M., Mohsin, M. & Golam Kibria, B. (2013). A Note on Beta

Inverse-Weibull Distribution. Communications in Statistics—Theory and Methods , 42,

320–335.

Haybittle, J. (1959). The estimation of the proportion of patients cured after treatment

for cancer of the breast. The British journal of radiology , 32(383), 725–733.

Ibrahim, J. G., Chen, M.-H. & Sinha, D. (2001). Bayesian semiparametric models for

survival data with a cure fraction. Biometrics , 57(2), 383–388.

Ibrahim, J. G., Chen, M.-H. & Sinha, D. (2005). Bayesian survival analysis . Wiley Online

Library.

Idowu, B. & Ikegwu, E. (2013). The Beta Weighted Weibull Distribution: Some Proper-

ties and Application to Bladder Cancer Data. Journal of Applied and Computational

Mathematics , 2.



131

Jafari, A. & Mahmoudi, E. (2014). Beta Linear Failure Rate Distribution and Its Appli-

cations. arXiv preprint 1212.5615 .

Jafari, A., Tahmasebi, S. & Alizadeh, M. (2014). The Beta Gompertz Distribution.

Revista Colombiana de EstadÃstica, 37, 139–156.
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