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Resumo

Inicialmente, usamos os mapas de transmutação quadráticos para compor
um novo modelo de probabilidade: a distribuição log-logística transmutada.
Mapas de transmutação são uma forma conveniente de construção de novas
distribuições, em especial de sobrevivência/con�abilidade, e compreendem a
composição funcional da função de distribuição acumulada e da função de
distribuição acumulada inversa (quantil) de um outro modelo. Uma descrição
detalhada de suas propriedades, tais como, momentos, quantis, estatística de
ordem, dentre outras estatísticas, juntamente com o estudo de sobrevivência
e métodos de estimação clássico e Bayesiano, também fazem parte deste tra-
balho. Focando em análise sobrevivência, incluímos no estudo duas situações
práticas comumente encontradas: a presença de variáveis regressoras, através
do modelo de regressão transmutado log-logístico, e a presença de censura à
direita. Em um segundo momento, buscando um modelo mais �exível que o
transmutado, apresentamos uma generalização para esta classe de modelos, as
distribuições transmutadas de rank cúbico. Usando a metodologia apresentada
nesta primeira generalização, dois modelos foram considerados para compor as
novas distribuições transmutadas cúbica: os modelos log-logístico e Weibull.
Diante de problemas apresentados na classe transmutada de ordens quadrática
e cúbica (tal como o espaço paramétrico restrito do parâmetro de transmu-
tação λ), propomos neste trabalho, uma nova família de distribuição. Esta
família, a qual chamamos e-transmutada ou e-extendida, é tão simples quanto
o modelo transmutado, por incluir um único parâmetro ao modelo base, porém
mais �exível do que a classe de modelos transmutados, sendo esta classe um
caso particular da família proposta. Além disso, apresenta propriedades impor-
tantes, como ortogonalidade entre os parâmetros do modelo base e o parâmetro
de e-transmutação, e espaço paramétrico não restrito para o parâmetro de e-
transmutação ω, que é de�nido em toda reta real. Estudos de simulação e
aplicações a dados reais foram realizados para todos os modelos e generaliza-
ções propostas.

Palavras-Chave: E-extensão, modelo log-logístico, modelo Weibull, transmu-
tação cúbica, transmutação quadrática.
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Abstract

Initially, we use the quadratic transmutation maps to compose a new proba-
bility model: the transmuted log-logistic distribution. Transmutation maps are
a convenient way of constructing new distributions, in particular survival ones.
It comprises the functional composition of the cumulative distribution function
of one distribution with the inverse cumulative distribution (quantil) function
of another. Its comprehensive description of properties, such as moments, quan-
tiles, order statistics etc., along with its survival study and the classical and
Bayesian estimation methods, are also part of this work. Focusing on analysis
of survival, the study included two practical situations commonly found: the
presence of regression variables, through the transmuted log-logistic regression
model, and the presence of right censorship. In a second moment, searching
for a more �exible model than the transmuted, we present its generalization,
the transmuted distributions of cubic rank. Using the methodology presented
in this �rst generalization, two models were considered to compose the new cu-
bic transmuted distributions: the log-logistic and Weibull models. Faced with
problems presented in the transmutated class of quadratic and cubic orders
(such as the restricted parametric space of the transmutation parameter λ), we
propose in this work, a new family of distribution. This family, which we call
e-transmuted or e-extended, is as simple as the transmuted model, because it
includes a single parameter to the base model, but more �exible than the class
of transmuted models, once the transmuted is a particular case of the proposed
family. In addition, the nem family presents important properties such as, or-
thogonality between the baseline model parameters and the e-transmutation
parameter, along with unrestricted parametric space for the ω e-transmutation
parameter, which is de�ned on the real line. Simulation studies and real data
applications were performed for all proposed models and generalizations.

Keywords: E-extension, log-logistic model, Weibull model, cubic transmuta-
tion, quadratic transmutation.
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Chapter 1

Introduction

Survival analysis researchers are usually concerned with the proposition of new survival

probability models. The challenge is to derive statistical survival probability models or

simply survival distributions of real world lifetime phenomena that can represent more

consistently the random behavior of experimental observations.

In this context, the literature on proposing new survival distributions is rich and grow-

ing rapidly. There are many papers extending standard survival distributions designed to

serve as statistical survival models for a wide range of real lifetime phenomena, which do

not follow any of the standard survival distributions. Interested readers can refer to Ghi-

tany (2001), Marshall and Olkin (2007a), and their references, in which they discuss some

common approaches for constructing lifetime distributions.

Generally transmutation maps are a convenient way of constructing new distributions,

in particular, survival ones. According to Shaw and Buckley (2009), transmutation maps

comprise the functional composition of the cumulative distribution function of one distribu-

tion with the inverse cumulative distribution (quantile) function of another. Motivated by

the need for parametric families of rich and yet tractable distributions in �nancial mathe-

matics Shaw and Buckley (2009) used a transmutation map of a non-Gaussian distribution.

After that, some studies involving quadratic rank transmutation map could be observed in

other application areas such as survival analysis and reliability. Aryal and Tsokos (2009)

proposed a generalization of the extreme value distribution by using quadratic rank trans-

mutation maps and applied this new distribution to analyze snow fall data in Midway

Airport in the state of Illinois, USA. Furthermore, Aryal and Tsokos (2011) proposed the

transmuted Weibull distribution as a generalization of the Weibull probability distribution

and its usefulness was illustrated using two published data sets.

In this work, we propose for the �rst time the transmuted log-logistic model, obtained

by considering a quadratic ranking transmutation map. A direct advantage of our modeling

is the fact that the log-logistic distribution has a larger range of choices for the shape of the

hazard function than Weibull or extreme value distributions do (see Ibrahim et al. (2005)

1
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and Bennett (1983)). For instance, the log-logistic distribution can accommodate an uni-

modal hazard function in detriment of its competitors. The log-logistic distribution is the

probability distribution of a random variable whose logarithm has a logistic distribution,

Lawless (2011). It is similar in shape to the log-normal distribution but has heavier tails

and its cumulative distribution function can be written in closed form, unlike that of the

log-normal.

Moreover, we propose to apply the transmuted log-logistic model in a Bayesian context.

In order to �t this new model, the subjective Bayesian analysis was used. To do so, we

used the half-Cauchy prior distribution, cited by various authors (Polson and Scott (2012)

and Gelman (2006)), as an alternative prior to an inverse Gamma distribution. Specially,

Gelman (2006) made use of this particular prior for variance parameters in hierarchical

models, which are our case.

Although several studies involving quadratic rank transmutation maps can be seen

in many areas, such as survival analysis and reliability, they do not provide a regression

approach and do not consider the presence of censorship. In our work, we particularly

consider the presence of right censorship and, in order to �t this new model, we used

pro�le methods, such as pure, adjusted and modi�ed pro�le; see, for example, Barndor�-

Nielsen and McCullagh (1993), Severini (1998) and Ferrari et al. (2007). Note that the

pure likelihood method cannot estimate the parameters in samples with high percentages

of censored points, which is what our application case showed.

A new order of transmuted models was introduced in Chapter 4, the cubic ranking

transmutation map. This new order increases the �exibility of transmuted models and is

able to analyze more complex data, for example, situations with bimodal hazard rates. In

order to exemplify the applicability of a cubic ranking transmutation map, we used two of

the best known distributions in reliability �elds as a base: Weibull and log-logistic. Several

mathematical properties of these new distributions, transmuted Weibull of order 2 and

transmuted log-logistic of order 2, were derived.

Although transmutation maps are a convenient way of constructing new distributions,

the restricted parametric space of the extra parameter λ may be a problem in some sit-

uations. As an alternative to this class of model, we present the regression e-transmuted

family of model (or exponential transmuted), which has the property that the extra pa-

rameter λ can take any real value. Without the restricted parameter space for λ, this new

model continues to present characteristics of a good model: it is simple, more �exible than

the transmuted model and continues being interpretable.

Furthermore, an in�uential analysis was carried out in order to provide an indication

of bad model �tting or in�uential observations; see Ortega et al. (2003) and Fachini et al.

(2008). The bootstrap and Monte Carlo methods were used in order to validate the results

presented. Moreover, two quadratic distance measures of goodness-of-�t: Anderson-Darling

and Cramér-von Mises are used to verify the quality of the adjustment of the e-transmuted
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model.

1.1 Objectives

The main objective of this work was to study the transmuted models wich is a con-

venient way of constructing new distributions. Particularly, we have worked with the log-

logistic distribution, which is a continuous probability distribution for a non-negative ran-

dom variable (it can be used in survival analysis) and presents all functions with closed

forms.

A second goal was to generalize the ranking of transmutation map. Thus, we introduced

the cubic ranking transmutation map model in the last chapter; however, the kth ranking

transmutation map can be seen as a continuation of this work.

Finally, we proposed a new family of distributions to solve the �problem� of the re-

stricted parametric space of λ.

1.2 Organization of chapters

The dissertation was organized as a collection of papers and divided in �ve chapters

besides the Introduction and Conclusion. It should be mentioned that these �ve chapters

were accepted papers for publication, or submitted to specialized journals in the �eld.

Chapter 2 comprises the paper entitled �The Transmuted Log-Logistic Distribution:

Modeling, Inference and Application to a Polled Tabapua Race Time up to First Calving

Data�, published by Communications in Statistics: Theory and Methods in 2014 and the

paper entitled �The transmuted log-logistic regression model: A new model for time up to

�rst calving of cows�, published by Statistical Paper in 2015. In these papers, we proposed

a new lifetime model called Transmuted Log-Logistic, which is a generalization of the well-

known survival log-logistic model. We also presented the main statistical properties as well

as their main functions and characteristics in the area of survival analysis. The usefulness

of the model was exempli�ed by using a real dataset.

The third chapter presents the paper entitled �Hierarchical Transmuted Log-Logistic

Model: A Subjective Bayesian Analysis�, written by us and co-authored by Vera L. D.

Tomazella and the paper entitled �Likelihood Based Inference for the Transmuted Log-

Logistic Model in the Presence of Right Censored Lifetime�, both submitted to specialized

journals. There, we covered the transmuted log-logistic model by the Bayesian point of

view and include censored observations in the transmuted model.

Chapter 4 presents a new order of ranking transmutation map, order 2, which we called

the cubic transmuted model. The study was carried out in partnership with Professor

Narayanaswamy Balakrishnan, a senior lecturer at McMaster University and the paper

entitled �Cubic Rank Transmuted Distributions: Inferential Issues and Applications�.
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Finally, in Chapter 5, we present a new family of distribution called e-transmuted. The

study was carried out in partnership with Professor Karim Anaya Izquierdo, a lecturer

at University of Bath and the paper entitled �Goodness-of-Fit Testing to the Regression

e-Transmuted Family of Distribution� was presented as a result. This study was done in a

sandwich stage, in England.

Finally, in the last section, we present some conclusions and propose further researcher

topics. Thi is followed by the bibliography and appendix sections.



Chapter 2

The transmuted log-logistic model

In this Chapter, we introduce the generalization of the log-logistic model by using a

convenient way of constructing new distributions, i.e, the rank transmutation map method-

ology. Transmutation maps comprise the functional composition of the cumulative distribu-

tion function with the inverse cumulative distribution (quantile) function. The new three

parameters model is called transmuted log-logistic model and its main properties and

statistics are presented in this Chapter as well as the model construction.

2.1 The model

Let X be a nonnegative random variable denoting the lifetime of an individual in some

population. The random variable X is said to be log-logistically distributed, with scale

parameter µ and shape parameter β, if its probability density function (pdf) is given by

g (x) =
eµβxβ−1

(1 + eµxβ)
2 , (2.1)

where β > 0 and −∞ < µ < +∞ (note that the shape parameter β determines the tail

behavior of the distribution). The corresponding cumulative distribution function is given

by

G (x) =
eµxβ

(1 + eµxβ)
. (2.2)

According to Shaw and Buckley (2009), a ranking quadratic transmutation map has

the following simple form:

F (x) = (1 + λ)G(x)− λG2(x), (2.3)

for | λ |≤ 1, where G(x) is the cumulative distribution function of the baseline distribu-

tion. Observe that at λ = 0, we just obtain the baseline cumulative distribution function.

Following this idea, several authors have considered extensions of some common survival

5
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distributions; see Aryal and Tsokos (2009) and Ibrahim et al. (2005).

The construction of the ranking quadratic transmutation map considered here is sim-

ple and intuitive. Let X1 and X2 be independent and identically distributed nonnegative

random variables with distribution G(x). Then, consider{
Y

d
= min(X1, X2), with probability π,

Y
d
= max(X1, X2), with probability 1− π,

where 0 ≤ π ≤ 1. The distribution of Y is evidently

FY (x) = πPr(min(X1, X2) ≤ x) + (1− π)Pr(max(X1, X2) ≤ x).

We know that F(min)(x) = 1 − [1−G(x)]n and F(max)(x) = [G(x)]n; see, for example,

Arnold et al. (1992). Hence,

FY (x) = π
[
1− (1−G(x))2

]
+ (1− π)G2(x)

= 2πG(x) + (1− 2π)G2(x). (2.4)

If we take 2π = λ, the distribution in (2.4) is the well-known ranking quadratic transmu-

tation (or simply the transmuted distribution) as presented in (2.3).

Following this idea, several authors have considered extensions from usual survival

distributions; see for example Aryal and Tsokos (2009) and Ibrahim et al. (2005).

Hence, from (2.2) and (2.3), the cdf of a transmuted generalized log-logistic distribution

is

F (x) =
eµxβ

(1 + eµxβ)
2

(
1 + eµxβ + λ

)
. (2.5)

The corresponding pdf is given by

f (x) =
eµβxβ−1

[(
1 + eµxβ

)
− λ

(
eµxβ − 1

)]
(1 + eµxβ)

3 . (2.6)

Note that the transmuted log-logistic distribution is an extended model to analyze more

complex data and it generalizes some important distributions in reliability analysis. The

log-logistic distribution is clearly a special case for λ = 0. Some of the possible shapes of

the transmuted log-logistic distribution were illustrated by Figure 2.1 for selected values

of parameters λ and β and for µ = 1. The λ is responsible for introducing skewness into

the log-logistic distribution. This is in full agreement with Shaw and Buckley (2009), who

pointed out that the introduction of skewness into a distribution is a direct e�ect of the

transmutation maps.

The following results show that the random variable X has a probability density func-
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Figure 2.1: pdf of transmuted log-logistic distribution for µ = 1 and di�erent values of λ and β.

tion given by (2.6).

Proposition 2.1.1 Let X be a non-negative random variable with log-logistic distribution

and the quadratic transmutation is given, respectively, by Equations (2.1) and (2.3), then

X is distributed according to a transmuted log-logistic with probability function given by

(2.6).

Proof According to Mood et al. (1974), any function f(. ) with domain the real line

and conterdomain [0,∞) is de�ned as a probability density function if and only if

(i) f(x) ≥ 0 for all x and;

(ii)
∫∞
−∞ f(x)dx = 1.

Therefore, the �rst property is satis�ed for all x > 0. The second property is shown

below: ∫ +∞

0
f(x)dx =

∫ +∞

0
eµβxβ−1

[(
1 + eµxβ

)
− λ

(
eµxβ − 1

)]
(1 + eµxβ)

3 dx =∫ +∞

0
eµβxβ−1(1 + eµxβ)−3dx+

∫ +∞

0
e2µβx2β−1(1 + eµxβ)−3dx−∫ +∞

0
λe2µβx2β−1(1 + eµxβ)−3dx+

∫ +∞

0
λeµβxβ−1(1 + eµxβ)−3dx

Replacing y = xβeµ, x = e−µ/βy1/β and dy = eµβxβ−1dx in the equation above, it follows

that ∫ +∞

0
f(x)dx = (λ+ 1)

∫ +∞

0
(1 + y)−3dy + (1− λ)

∫ +∞

0
y(1 + y)−3dy.
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We know that

B(υ, ω) =

∫ +∞

0

zω−1

(1 + z)υ+ω
(2.7)

in terms of Gamma function, we have

B(υ, ω) =
Γ(υ)Γ(ω)

Γ(υ + ω)
=

(υ − 1)!(ω − 1)!

(υ + ω − 1)!
.

Then, the integrate is given by

(λ+ 1)

∫ +∞

0
(1 + y)−3dy =

λ+ 1

2
(2.8)

and

(1− λ)

∫ +∞

0
y(1 + y)−3dy =

1− λ
2

. (2.9)

Finally, adding the result of (2.8) with (2.9), we have

λ+ 1

2
+

1− λ
2

= 1.

Therefore, Equation (2.6) is a density function.

2.2 Properties of the model

2.2.1 Moments and quantiles

In this section, we shall present the moments and quantiles for the transmuted log-

logistic distribution. The rth order moments of a transmuted log-logistic random variable

X is given by

E (Xr) =

∫ +∞

0
xr
eµβxβ−1

[(
1 + eµxβ

)
− λ

(
eµxβ − 1

)]
(1 + eµxβ)

3

= (1 + λ)

∫ +∞

0

eµβxr+β−1

(1 + eµxβ)3
dx+ (1− λ)

∫ +∞

0

e2µβxr+2β−1

(1 + eµxβ)3
dx

= (1 + λ)e
−µr
β

∫ +∞

0

y
r
β

(1 + y)3
dy + (1− λ)e

−µr
β

∫ +∞

0

y
r
β
+1

(1 + y)3
dy.

Then, the rth order moments of a transmuted log-logistic is

E (Xr) =
πr

β2
e
−µr
β (β − rλ) csc

[
πr

β

]
.
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Therefore, the expected value E(X) and variance V ar(X) of a transmuted log-logistic

random variable X are, respectively, given by

E (X) = e
−µ
β
π

β2
(β − λ) csc

[
π

β

]
(2.10)

and

V ar (X) = e
−2µ
β

π

β2

[
2(β − 2λ) csc

(
2π

β

)
− π

β2
(β − λ)2 csc2

(
π

β

)]
. (2.11)

The qth quantile xq of the transmuted log-logistic distribution can be obtained from

(2.5) as

xq =

[√
(1 + λ)2 − 4qλ+ 2q − (1 + λ)

2eµ(1− q)

]1/β
. (2.12)

In particular, the median is given by

x0.5 = e−µ/β
[√

1 + λ2 − λ
]1/β

. (2.13)

2.2.2 Random number generation

According to Ross (2009), we have the following Proposition 2.2.1.

Proposition 2.2.1 Suppose that U is a random variable with a uniform distribution pat-

tern, U ∼ Uniform(0, 1). Therefore, for a distribution function F , the random variable X

de�ned by X = F−1(U) has distribution function F (x).

Proposition 2.2.1 shows that we can generate a continuous random variable X from its

cumulative distribution function. For that, we generate an uniform value (0, 1) and obtain

X = F−1(U). Using this method, we generate random numbers of a transmuted log-logistic

distribution when parameters µ, β and λ are known as follows,

eµxβ

(1 + eµxβ)
2

(
1 + eµxβ + λ

)
= u, (2.14)

where u ∼ U(0, 1). Isolating x in the equation above, we obtain

x =

[√
(1 + λ)2 − 4uλ+ 2u− (1 + λ)

2eµ(1− u)

]1/β
, (2.15)

similar to 2.12.

The histograms of Figures 2.2-a and 2.2-b were generated using Equation (2.15), from

which we observe a full agreement to the theoretical curve with generated values of the

transmuted log-logistic distribution.
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Figure 2.2: Comparing the theoretical curve with generated values of transmuted log-logistic dis-
tribution for µ = 2, β = 5 and: (a) λ = −0.2; (b) λ = 0.2.

2.2.3 Survival analysis

The reliability function R(t), which is the probability of an item not failing prior to some

time t, is de�ned by R(t) = 1− F (t). The reliability function of a transmuted log-logistic

distribution is given by

R(t) =
1 + eµtβ(1− λ)

(1 + eµtβ)2
. (2.16)

The other characteristic of interest of a random variable is the hazard rate function

de�ned by

h(t) =
f(t)

1− F (t)
=
f(t)

R(t)
, (2.17)

which is an important quantity characterizing a life phenomenon. It can be loosely inter-

preted as the conditional probability of failure, given the fact that it has survived to time t;

see Lawless (2011). The hazard rate function for a transmuted log-logistic random variable

is given by

h(t) =
βeµtβ−1

[
1 + eµtβ − λ(eµtβ − 1)

]
(1 + eµtβ)(1 + eµtβ − λeµtβ)

. (2.18)

The hazard function of the transmuted log-logistic distribution has the following prop-

erties:
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(i) If λ = 0, we have the log-logistic hazard as a particular case given by

h(t) =
βeµtβ−1

(1 + eµtβ)
.

It can be easily shown that h(t) is increasing for β ≤ 1 and, for β > 1, the hazard

function initially increases to the maximum Tmax = e−µ/β(β − 1)1/β and tends to

zero for t→∞, Figure 2.3-a.

(ii) If λ = −1, we have

h(t) =
2βe2µt2β−1

(1 + eµtβ)(1 + 2eµtβ)
,

which is increasing for β ≤ 1
2 and unimodal for β > 1

2 with the maximum in Tmax =[
3(β−1)+

√
9β2−2β+1

4eµ

]1/β
, Figure 2.3-b.

(iii) If λ = 1, we have

h(t) =
2βeµtβ−1

1 + eµtβ
,

which is increasing for β ≤ 1 and unimodal for β > 1 with the maximum in Tmax =

exp [(ln(β − 1)− µ) /β], Figure 2.3-c.
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Figure 2.3: Some examples of hazard curves with the maximum points for λ = 0,−1 and 1,
respectively.

Some properties and characterization of the risk of an event occurring at a given point,

conditioned by the fact that the event has not already occurred can be seen in Chechile

(2003). Figure 2.4-a and b illustrate, respectively, the reliability and hazard behavior of a

transmuted log-logistic distribution as the value of the parameter λ ranges from −1 to 1.

In the survival analysis literature, the main relationship between the hazard and the

reliability function is given by the cumulative hazard rate function H(t), that is H(t) =
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Figure 2.4: Survival and hazard curves.

− lnR(t). In our case,

H(t) = 2 ln(1 + eµtβ)− ln(1 + eµtβ − λeµtβ), (2.19)

where H(0) = 0, H(t) is nondecreasing for all t ≥ 0 and limt→∞H(t) =∞.

2.2.4 Order statistics

According to Aryal and Tsokos (2011), suppose that we have a system containing two

components with each of them having independent and identical "base" distribution, for

example, a log-logistic. If the components are connected in series, then the overall system

will have the transmuted baseline distribution with λ = 1 whereas if the components are

parallel, then the overall system will have a transmuted baseline.

It has been observed that a transmuted log-logistic distribution with λ = 1 is the

distribution of min(X1, X2) and a transmuted log-logistic distribution with λ = −1 is

the distribution of the max(X1, X2) where X1 and X2 are independent and identically

distributed 2-parameter log-logistic random variables.

Now, suppose that X(1), X(2), . . . , X(n) denotes the order statistics of a random sample

X1, X2, . . . , Xn from a continuous population with cumulative density function FX(x) and

probability density function fX(x). Therefore, the pdf of X(j) is given by

fX(j)
(x) =

n!

(j − 1)!(n− j)!
fX(x)[FX(x)]j−1[1− FX(x)]n−j , (2.20)

for j = 1, 2, . . . , n.

Then, the pdf of the jth order transmuted log-logistic random variable X(j) is given by
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fX(j)
(x) =

n!

(j − 1)!(n− j)!
eµβxβ−1

(1 + eµxβ)2n+1
(2.21){[

(1 + eµxβ)− λ(eµxβ − 1)
]

[eµxβ(1 + eµxβ + λ)]j−1 ×

[(1 + eµxβ)2 + eµxβ(1 + eµxβ + λ)]n−j
}
.

Using Equation (2.21), the pdf of the nth order transmuted log-logistic statistics X(n)

is given by

fX(n)
(x) =

neµβxβ−1

(1 + eµxβ)2n+1

{[
(1 + eµxβ)− λ(eµxβ − 1)

] [
eµxβ(1 + eµxβ + λ)

]n−1}
,

(2.22)

while the 1st order is given by

fX(1)
(x) =

neµβxβ−1

(1 + eµxβ)2n+1

{[
(1 + eµxβ)− λ(eµxβ − 1)

]
× (2.23)[

(1 + eµxβ)2 + eµxβ(1 + eµxβ + λ)
]n−1}

.

Note that λ = 0 yields the order statistics of the two parameter log-logistic distribution.

2.3 Parameter estimation of the regression model

In order to present the parameter estimation, let us �rst de�ne the transmuted log-

logistic regression model. For that, let Y be a random variable denoting the lifetimes with

pdf (2.6) and µ = γ(x) as a parameter depending on a covariate vector x = (1, x1, . . . , xp)
′

such as

γ(x) = γ0 + γ1x1 + . . .+ γpxp.

Then, the pdf (2.6) may be written as

f (y | γ(x)) =
eγ(x)βyβ−1

[(
1 + eγ(x)yβ

)
− λ

(
eγ(x)yβ − 1

)](
1 + eγ(x)yβ

)3 , (2.24)

where λ > 0, β > 0 and γ(x) is a regression de�ned above.

The maximum likelihood estimation of the parameters that are inherent within the

transmuted log-logistic regression probability distribution function is given by the follow-

ing: Let y1, y2, . . . , yn be a sample of size n from a transmuted log-logistic distribution and

x = (1, x1, x2, . . . , xp)
′ be a vector of covariates. Moreover, consider the following relation-

ship between the vector of covariates and the parameters γ(x) = γ0 + γ1x1 + . . .+ γpxp.
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Hence, the log-likelihood function is given by

l = n lnβ +
n∑
i=1

p∑
j=0

γjxij +
n∑
i=1

ln
[
1 + e

∑p
j=0 γjxijyβi − λ

(
e
∑p
j=0 γjxijyβi − 1

)]
+(β − 1)

n∑
i=1

ln yi − 3

n∑
i=1

ln
(

1 + e
∑p
j=0 γjxijyβi

)
. (2.25)

Therefore, the normal equations are given by

∂l

∂γj
=

n∑
i=1

 (1− λ)yβi xij exp
[∑p

j=0 γjxij

]
1 + exp

[∑p
j=0 γjxij

]
yβi − λ

[
exp

[∑p
j=0 γjxij

]
yβi − 1

]


+
n∑
i=1

xij − 3
n∑
i=1

 xijy
β
i exp

[∑p
j=0 γjxij

]
1 + yβi exp

[∑p
j=0 γjxij

]
 , j = 0, 1, . . . , p

∂l

∂β
=

n

β
+

n∑
i=1

 (1− λ)yβi ln(yi) exp
[∑p

j=0 γjxij

]
1 + yβi exp

[∑p
j=0 γjxij

]
− λ

[
yβi exp

[∑p
j=0 γjxij

]
− 1
]


+
n∑
i=1

ln(yi)− 3 +
n∑
i=1

yβi ln(yi) exp
[∑p

j=0 γjxij

]
1 + yβi exp

[∑p
j=0 γjxij

]
 ,

∂l

∂λ
=

n∑
i=1

1− yβi exp
[∑p

j=0 γjxij

]
1 + yβi exp

[∑p
j=0 γjxij

]
− λ

[
yβi exp

[∑p
j=0 γjxij

]
− 1
] .

The maximum likelihood estimator (MLE) θ̂ = (γ̂0, . . . , γ̂p, β̂, λ̂)′ can be obtained by

solving the above nonlinear system of equations. It is usually more convenient to use

nonlinear optimization algorithms such as quasi-Newton or Newton-Raphson algorithms

to numerically maximize the log-likelihood function given in (2.25).

Following Aryal and Tsokos (2011), in order to compute the standard error and asymp-

totic con�dence interval, we use the usual large sample approximation in which the MLEs

of θ can be treated as being approximately a (p+ 3)-variate normal distribution. Hence as

n→∞, the asymptotic distribution of the MLE (γ̂0, . . . , γ̂p, β̂, λ̂) is given by

γ̂0

γ̂1
...

γ̂p

β̂

λ̂


∼ N





γ̂0

γ̂1
...

γ̂p

β̂

λ̂


,


V̂11 V̂12 . . . V̂1(p+3)

V̂21 V̂22 . . . V̂2(p+3)
...

...
. . .

...

V̂(p+3)1 V̂(p+3)2 . . . V̂(p+3)(p+3)




, (2.26)
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where, V̂ij = Vij |θ=θ̂ is determined by the inverse of the Hessian matrix.

Therefore, the approximate 100(1−α)% two sided con�dence intervals for γj , β and λ

are, respectively, given by

γ̂j ± zα/2
√
V̂(j+1),(j+1), β̂ ± zα/2

√
V̂(p+2),(p+2) and λ̂± zα/2

√
V̂(p+3),(p+3),

where j = 0, . . . , p, zα is the upper αth percentile of the standard normal distribution. The

needed Hessian matrix is shown in Appendix B.

Di�erent models can be compared by penalizing over-�tting by using the Akaike infor-

mation criterion (Akaike, 1973), which intends to minimize the Kullback-Leibler divergence

between the true distribution and the estimate from a candidate model. It is given by AIC

= −2l(θ̂) + 2size(θ), where l(θ̂) denotes the log likelihood function evaluated at the max-

imum and size(θ) is the number of model parameters. The model with the lowest value

of this criterion (among all considered models) is regarded as the preferred model for

describing the given dataset.

2.4 Simulation study

This section presents the results of a Monte Carlo experiment on the �nite sample

behavior of the MLEs. For that, we generated according to a transmuted log-logistic re-

gression distribution in the presence of two covariates. All results were obtained from 1000

Monte Carlo replications and the results are summarized in two tables, presented in Ap-

pendix B. Table B.1 shows the relative di�erence of generated and estimated parameters

and their respective standard errors over the 1000 MLEs, which decreased as the sample

size increased. Table B.2 shows the coverage probability of 95% two sided con�dence in-

tervals for the model parameters, which are close to the nominal coverage for large sample

sizes, though they usually di�er less than 5% from the nominal coverage probability for

the smallest sample size considered. In order to summarize the results of the simulation

study, Figure 2.5 presents the coverage probability for γ1, γ2, β and λ, respectively.

2.5 Application: Tabapua cattle breed data

Economic results related to beef cattle are directly related to their genetic prepotency,

aiming at increasing the production of kilograms of meat per hectare, at a certain time and

at less cost. Therefore, the sexual precocity is an important factor in the choice of cattle

breed. According to the literature, heifers from temperate regions have sexual precocity,

having their �rst calving when they are little more than two years old, half the time
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Figure 2.5: Coverage probability for γ1, γ2, β and λ, respectively, by considering the nominal value
of 95%.

observed in heifers from tropical regions, which have their �rst calving when they are

approximately 4 years old on average (Pereira, 2000).

In this context, a long-term study conducted on the Tabapua cattle breed was held at

EMBRAPA, a Brazilian agricultural research institute, in order to infer the time up to the

�rst calving in polled Tabapua cows. The Tabapua breed is strong, rustic and chunky, with

excellent mothering ability and potential to gain weight. It originated from a crossover

made in the municipality of Tabapua, in the state of São Paulo, Brazil, with crossbred

zebu, which showed characteristics of spontaneous polled cattle coming from European

temperate regions with high genetic potential for meat production and milk (Paro et al.,

2013). The data consist of the time up to �rst calving, in days, of 17026 animals observed

from 1983 to 2007.
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This breed is distinguished by meekness, sexual precocity, high milk production, fer-

tility, good meat quality, and adaptability to various regions and climate. However, it is

mainly bred for meat purposes because it also has very favorable characteristics for this.

It is also widely used in crosses with other breeds, generating hardy animals and good

productivity (Pereira, 2000).

According to the characteristics mentioned and especially its sexual precocity, the polled

Tabapua breed provides an important economic result related to beef cattle since it aims

at increasing production of kilograms of meat per hectare, at a certain time and at less

cost. The resulting heifers from tropical regions have their �rst calving when they are

approximately 4 years old, twice the time of heifers from temperate regions (Paro et al.,

2013; Pereira, 2000).

In this section, we illustrated the usefulness of the transmuted log-logistic distribution

modeling the polled Tabapua breed data. Moreover, we provided a comparison model with

the log-logistic, Weibull, and exponential distributions.

Firstly, a brief descriptive analysis was made. The minimum observed time was 721

days, or approximately 24 months; the maximum observed was 6184 days or 206 months.

The median time for the �rst calving is 1140 days (38 months) and even the �rst and

third quantiles are 1068 and 1365 days, respectively. Figure 2.6-a shows the TTT plot

(for example see Barlow and Campo (1975)), in order to verify the possible shape for the

hazard function. If the TTT plot is concave, convex and then concave again, it indicates

unimodal hazard, which is our case.

The transmuted log-logistic, log-logistic, Weibull and exponential distributions were

�tted to the data. Table 2.1 provides the MLEs, their corresponding standard errors and

95% con�dence intervals. For these models, the computed −2 log likelihood and AIC are

shown in Table 2.2. Both criteria provide evidence in favor of the transmuted log-logistic

distribution. This result is corroborated by the �tted distribution under the data histogram

in Figure 2.6-b and by the �tted survival functions under the Kaplan-Meier estimator,

Figure 2.6-c.

Table 2.1: MLEs for the parameters of the transmuted log-logistic, log-logistic, Weibull and expo-
nential distributions.

Model Parameter Estimate
Standard 95% Con�dence Interval
Error Lower Upper

Transmuted α −17.9079 0.1369 −18.1763 −17.6395
Log-Logistic β 3.0503 0.0220 3.0073 3.0933

λ −0.8139 0.0120 −0.8374 −0.7904

Log-Logistic α −16.7482 0.1003 −16.9448 −16.5516
β 2.5832 0.0160 2.5519 2.6145

Weibull µ 615.7300 3.1161 609.6300 621.8400
β 1.6078 0.0082 1.5916 1.6239

Exponential µ 547.2500 4.1940 539.0300 555.4700
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After selecting the most appropriate model for describing the time up to �rst calv-

ing (the transmuted log-logistic distribution), our interest turned to estimating the most

probable time the �rst calving would occur, de�ned as the Tmax according to (2.18).

The T̂max is equal to 1267 days (42.2 months). Its 95% con�dence interval is given by

IC[Tmax, 95%] = (1182.05; 1370.83) days. Figure 2.6-d shows the hazard estimate curve,

with the T̂max and the Tmax 95% con�dence interval. Furthermore, the median time up to

�rst calving is equal to 1173.42 days. Therefore, half of the cows experiment the event of in-

terest up to approximately 39 months and the mean time is 1259.63 days (or approximately

42 weeks), with a standard deviation of 398.33 days.

Table 2.2: Computed −2 log likelihood and AIC values for the log-logistic, transmuted log-logistic,
Weibull and Exponential distributions.

Model
Criteria

−2 log likelihood AIC

Transmuted 236201 236207
Log-Logistic 237996 238000
Weibull 242588 242592

Exponential 248747 248749

From the practical point of view, the use of a misspeci�cated distribution to represent

the random behavior of the time up to �rst calving would, of course, lead to a misleading

conclusion concerning the parameters of interest. For the sake of argument, by considering

the log-logistic distribution instead of the transmuted log-logistic one, the T̂max is equal to

1501.62 days (approximately 50.0 months); almost 8 months longer than the T̂max obtained

by considering the transmuted log-logistic one. This is another drawback that corroborates

in favor of the proposed distribution.

2.5.1 Including covariates in the model

In this section, we used a random sample of 500 animals observed and two covariates:

the time the calf was born, before or after 2000 (period) and the age the �rst oestrus

occurred (prp), up to or after one year of age.

By using the nonparametric Log-Rank test to compare the survival distributions of two

samples, we observed p-values < 0.0001 and 0.0248, respectively, for covariates prp and

period (see the survival curves in Figure 2.10). These p-values showed us the signi�cance

of these covariates to describe the time of the �rst calf. Another nonparametric test was

carried out (Peto-Peto test; see for example Lawless (2011)), showing almost the same
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Figure 2.6: (a) TTT Plot, (b) histogram, (c) reliability curves and (d) hazard estimate curve,
with the T̂max and the Tmax 95% con�dence interval.

results (p-values < 0.0001 and 0.0006, respectively).

In order to verify the behavior of the hazard function, Figures 2.7 show the TTT plots

according to two covariates: the time the calf was born (after or before 2000) (period) and

the age the �rst oestrus occurred (prp), up to or after one year. Interested readers can refer

to Barlow and Campo (1975) for more information on TTT plotting. Overall, if the TTT

plot is concave, convex and then concave again, it indicates an unimodal hazard, which is

our case.

Then, the transmuted log-logistic and the simple log-logistic distributions were �tted

to the data. Table 2.3 provides the MLEs, their corresponding standard errors and 95%

con�dence intervals, as well as the computed −2 log likelihood (−2l) and the AIC. Both

criteria provide evidence in favor of the transmuted log-logistic regression distribution. Ob-

serve that, as the transmutation map presented skewness and the log-logistic distribution
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Figure 2.7: TTT Plot by considering the covariates: prp (left panel) and period (right panel).

is an asymmetric model, the mode point is higher, which is totally interpreted in our ap-

plication. In general, the crossbreeds are at similar periods, increasing the chance of a �rst

calf around a certain period of time and, thus, increasing the mode point.

Table 2.3: MLEs considering the log-logistic and transmuted log-logistic regression model.

Model Parameter Estimate
Standard IC 95%
Error Lower Upper −2l AIC

γ0 −17.092 0.801 −18.667 −17.860 6925.3 6935.3
Transmuted γ1 −0.364 0.137 −0.632 −0.095

γ2 3.281 0.794 1.722 4.840
β 2.954 0.128 2.703 3.205
λ −0.764 0.084 −0.930 −0.598

γ0 −19.319 0.742 −20.777 −17.860 6936.8 6944.8
Log-Logistic γ1 −0.419 0.154 −0.722 −0.117

γ2 3.213 0.809 1.623 4.804
β 3.208 0.122 2.968 3.448

Furthermore, according to Burnham and Anderson (2002), we veri�ed that if the MLE

values are in�uenced by a speci�c experimental observation, they can be regarded as an out-

lier. We considered the one-leaved-out approach on the basis of a cross validation scheme,

in the sense that the parameters of the transmuted log-logistic regression were re-estimated

500 times. Each time, one speci�c observed time was withdrawn. We also estimated the

standard errors, con�dence intervals and the −2 log likelihood and AIC criteria.

Moreover, the di�erences, ∆i, given by ∆i = AICi − AICmin, were calculated. After,

the Akaike weights given by ωi = exp(−∆i/2) were obtained and plotted as shown on

the left panel of Figure 2.8. The presence of outliers is clear. We decide to remove all the

experimental points with ωi > 0.20, corresponding to observations 15, 143, 231, 242, 289

and 360. The Akaike weights in the sample, without the outliers, are shown on the right



21 TRANSMUTED MODEL

panel of Figure 2.8.
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Figure 2.8: Cross Validation results: Akaike weights for the complete sample (left panel) and
without in�uential points (right panel).

Table 2.4 shows the MLEs for the parameters of the transmuted log-logistic regression

model in the sample without the outliers. There seem to be no important changes in the

MLEs, althought the −2l and AIC values are much smaller than those obtained when the

complete sample is considered.

Table 2.4: MLEs, standard error and the 95% con�dence interval considering the transmuted
log-logistic regression model in the sample without outliers.

Model Parameter Estimate
Standard IC 95%
Error Lower Upper −2l AIC

γ0 −20.611 1.065 −20.704 −18.518 6366.9 6376.9
Transmuted γ1 −0.430 0.145 −0.552 −0.145
without γ2 3.646 0.913 1.851 5.440
outliers β 3.549 0.168 3.218 3.880

λ −0.710 0.118 −0.943 −0.478

Moreover, as a goodness-of-�t procedure, we performed a residual analysis for both

models (transmuted log-logistic and simple log-logistic regression ones) using the Cox-

Snell residuals (Cox and Snell, 1968). The Cox-Snell residuals are de�ned as êi = Λ̂(ti | xi),
where Λ̂(. ) is the cumulative hazard function of the adjusted model. If we consider the

log-logistic and transmuted log-logistic models, the Cox-Snell residuals are, respectively,

given by

êiLL = ln
[
1 + exp(γ(x))tβi

]
(2.27)

and

êiTLL = 2 ln
[
1 + exp(γ(x))tβi

]
− ln

[
1 + exp(γ(x))tβi − λ exp(γ(x))tβi

]
, (2.28)
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where γ(x) = γ0 + γ1x1 + . . .+ γpxp.

Figure 2.9 shows the estimated residuals versus the estimated empirical survival for

the residuals. The criteria provide clear evidence in favor of the transmuted log-logistic

regression model.

Figure 2.10 shows the estimated hazard curve and the estimated most probable time for

the �rst calf (Tmax) according to both covariates. The T̂max is equal to 29.52 months with

a 95% con�dence interval equal to (26.56, 32.49) if the prp occurs before the �rst year. For

calves born until the year 2000, the T̂max is equal to 42.97 months with a 95% con�dence

interval equal to (41.43, 44.50). For calves born after the year 2000 or prp occurring after

the �rst year, the T̂max is equal to 40.77 months with a 95% con�dence interval equal to

(39.35, 42.18).

Considering the period prior to the year 2000, we observed an older age at the �rst

calving, occurring close to 4 years. This time decreased to less than 3.5 years showing that

the current reproductive techniques of livestock are more e�cient than in the previous

period. As the reproductive life begins earlier, cows have an increase number of conceptions

and consequently increased their reproductive life by reducing the number of cull cows.
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Figure 2.9: Estimated residuals versus the estimated empirical survival for the residuals: log-
logistic (left panel), transmuted log-logistic distributions (right panel).
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Figure 2.10: Hazard estimate curve, with the T̂max.



Chapter 3

Bayesian and pro�le analysis for the

transmuted log-logistic model

In this Chapter, we present the transmuted log-logistic model in a Bayesian context. For

that, we used the hierarchical structure using the half-Cauchy prior proposed by Gelman

(2006). Furthermore, we presented the transmuted log-logistic model in the presence of the

censored lifetime and the pro�le method was used in the estimation process.

3.1 Hierarchical transmuted log-logistic model

According to Chen and Ibrahim (2006), one of most common ways of combining several

sources of information is though hierarchical modeling. Thus, the authors show us the

relationship between the power prior and hierarchical models using regression models as

an example.

Moreover, Gelman (2006) points out that several studies using multilevel models are

central to modern Bayesian statistics for both conceptual and practical reasons. The au-

thors suggested the use of half-t family as a prior distribution for variance parameters

such as the half-Cauchy distribution, which is a special conditionally-conjugate folded-non

central-t family case of prior distributions for parameters representing the discrepancy.

Even though several studies use the half-Cauchy prior for scale parameters (see for exam-

ple Polson and Scott (2012)), Gelman (2006) used this prior not for scale, but for variance

parameters and showed serious problems with the inverse-Gamma prior, the most com-

monly used prior for variance component, Daniels (1999).

In this study, we proposed to use the hierarchical models in two levels; to do so,

suppose the hierarchical model is given as [X|µ, β, λ] ∼ f(x|µ, β, λ), µ|σ2 ∼ πµ(µ|σ2),
β|θ ∼ πβ(β|θ), λ ∼ πλ(λ), σ2 ∼ ψσ(σ2) and θ ∼ ψθ(θ). The posterior distribution can be

constructed as follows.

Proposition 3.1.1 Let us suppose that, in the �rst stage, we considered a class Γ of priors

24
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that led to the following

Γ =
{
π(µ, β, λ|σ2, θ) : π(µ, β, λ|σ2, θ) = πµ(µ|σ2)πβ(β|θ)πλ(λ)

∣∣
πµ being N(τ, σ2), (τ, σ2) ∈ R× R+; πβ being HC(θ), θ ∈ R+;

πλ being U(a, b), (a, b) ∈ R× R, a < b} .

Moreover, in the second stage (sometimes called a hyperprior), that would consist of

putting a prior distribution ψk(·) on the hyperparameters σ2 and θ where

Ψ =
{
ψ(σ2, θ) : ψ(σ2, θ) = ψσ2(σ2)ψθ(θ); ψσ2 is Gamma(α, ζ),

(α, ζ) ∈ R+ × R+; ψβ is Gamma(η, ϑ), (η, ϑ) ∈ R+ × R+;

α, ζ, η, ϑ are known and do not depend on any other hyperparameter} .

Thus, the hierarchical log-logistic posterior distribution is written as

π(µ, β, λ|x) ∝ eµβθ

σ

[
xβ+α+η−3

[
(1 + eµxβ)− λ(eµxβ − 1)

]
(1 + eµxβ)3

]
× exp

{
−
(
ζ + ϑ+

x

2σ2

)}
. (3.1)

Proof: The demonstration is direct.

Note that the β parameter is supposed to be a half-Cauchy distribution whose proba-

bility density function is given by

f(x) =
2θ

π (x2 + θ2)
, x > 0, θ > 0, (3.2)

where θ is a scale parameter which has a broad peak at zero and, in limit, θ → ∞ this

becomes a uniform prior density. However, large �nite values for θ represent prior distribu-

tions we call �weakly informative�. For example, Gelman (2006) shows us that, for θ = 25,

the half-Cauchy is nearly �at, although not completely.

3.2 Tabapua cattle breed data

In this section, we showed the usefulness of the hierarchical transmuted log-logistic

model on modeling of the polled Tabapua breed data using Bayesian methods.

The data consist of the time up to �rst calving, in days, of 17026 animals observed

from 1983 to 2007, which was presented in Chapter 2. Figure 3.1-b shows the distribution

of the time when the �rst calving occurred. The median time for the �rst calving was 1140
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days (38 months) and the �rst and third quantiles are 1068 and 1365 days, respectively.
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Figure 3.1: Boxplot of times.

After an initial analysis, the hierarchical transmuted log-logistic was �tted to the data,

as we speci�ed in Section 3.1, The posterior samples were generated by the Metropolis-

Hastings technique. Three chains of the dimension 100, 000 were considered for each pa-

rameter, discarding the �rst 10, 000 iterations in order to eliminate the e�ect of the initial

values and to avoid correlation problems. A lag size 10 was used, resulting in a �nal sample

size of 10, 000. Tables 3.1 and 3.2 show the posterior summaries for the parameters and

the 95% credible intervals considering the mentioned priors.

Table 3.1: Posterior model summary of the hierarchical transmuted log-logistic model parameters.

Parameter Mean
Standard Percentiles
Deviation 25% 50% 75%

α −17.865 0.138 −17.958 −17.871 −17.775
β 3.043 0.022 3.029 3.044 3.058
λ −0.815 0.012 −0.823 −0.815 −0.807
σ2 900.100 822.500 333.800 640.400 1208.100
θ 198.800 195.100 60.171 139.800 273.400

The chain convergence was veri�ed by the Gelman and Rubin's convergence diagnostic

criterion, see for example Gelman and Rubin (1992), which demonstrated that these criteria

are satis�ed (Table 3.3). The convergence can also be seen in Figures 3.2-a to j.

Furthermore, the marginal posterior densities for µ, β and λ, respectively, can be ana-

lyzed in Figures 3.3-a to e.

After estimating and analyzing the model convergence, Figure 3.4-a and b show, re-

spectively, the hazard estimate curve, with the T̂max and the Tmax 95% credible interval;
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Table 3.2: 95% Credible Interval of parameters estimated.

Parameter Equal-Tail Interval HPD Interval

α −18.123 −17.576 −18.118 −17.571
β 2.997 3.085 2.997 3.084
λ −0.838 −0.791 −0.838 −0.790
σ2 96.474 3044.600 37.837 2516.300
θ 5.395 733.800 0.008 594.800

Table 3.3: Gelman and Rubin's criterion to verify the parameters convergence of the hierarchical
transmuted log-logistic distribution.

Parameter Estimate
Upper
Bound

µ 1.0085 1.0060
β 1.0082 1.0057
λ 1.0020 1.0017
σ2 1.0016 1.0019
θ 1.0004 1.0009

the estimated vs empirical survival curves and the histograms allow us to see how well it

�ts a set of observations.

Considering the hierarchical transmuted log-logistic �tting, the T̂max is equal to 1246.77

days (41.56 months) and its 95% credible interval is given by

IC[Tmax, 95%] = (1160.04; 1352.86) days (see Figure 3.4-a). Furthermore, the median time

up to �rst calving is equal to 1152.48 days (or approximately 38.42 months), and the mean

time is 1240.13 days (or approximately 41.34 months), with a standard deviation equal to

13.34 months.
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Figure 3.2: Traceplots and convergence plots, respectively, for: (a,f): µ; (b,g): β; (c,h): λ; (d,i):
σ2 and; (e,j): θ
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Figure 3.3: Marginal posterior densities for: (a) µ, (b) β, (c) λ, (d) σ2 and (e) θ
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Figure 3.4: (a) hazard estimate curve, with the T̂max − 700 and the Tmax − 700 95% credible
interval, (b) survival curves and (c) histogram.
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3.2.1 In�uence analysis

In this section, we will make an analysis of global in�uence for the data set given, using

the transmuted log-logistical model in a Bayesian context.

The �rst tool to assess the sensitivity analysis is measuring the global in�uence. We

started with the case-deletion, in which we study the e�ect of withdrawing the ith ele-

ment sampled. The �rst measure of global in�uence analysis is known as the generalized

Cook's distance, which is de�ned as the standard norm of ζi = (αi, βi, λi, σ
2
i , θi) and

ζ̂ = (α̂, β̂, λ̂, σ̂2, θ̂) and is given by

CDi(ζ) =
[
ζi − ζ̂

]T [
−L̈(ζ)

] [
ζi − ζ̂

]
(3.3)

where L̈(ζ) can be approximated by the estimated covariance and variance matrix. Another

way to measure the global in�uence is by the di�erence in likelihoods given by

LDi(ζ) = 2
{
l(ζ̂)− l(ζi)

}
. (3.4)

Figures 3.5 show the likelihood distances where some possible in�uence points can be

observed.

In order to reveal the impact of these, the relative changes were measured as

RCζj =

∣∣∣∣∣ ζ̂j − ζ̂j(I)ζ̂j

∣∣∣∣∣× 100%, j = 1, . . . , p+ 1

where ζ̂j(I) denotes the MLE of ζj after set I of observations was removed. As suggested

by Lee et al. (2006), we use the total and maximum relative changes and the likelihood

displacement.

To reveal the impact of the detected in�uential observations, we used three measures

as de�ned by Lee et al. (2006),

TRC =

np∑
i=1

∣∣∣∣∣ ζ̂i − ζ̂0iζ̂i

∣∣∣∣∣ , MRC = max
i

∣∣∣∣∣ ζ̂i − ζ̂0iζ̂i

∣∣∣∣∣ and LD(l)(ζ) = 2{l(ζ̂ − l(ζ̂0)}

where TRC is the total relative changes, MRC the maximum relative changes and LD the

likelihood displacement, with np (the number of parameters) and ζ̂0 denoting MLE of ζ

after set I of observations was removed.

In order to analyze these in�uential points, we withdrew the identi�ed points in Figure

3.5. Moreover, a percentage of points (0.01% to 5%) that stood out was also withdrawn.

The results can be seen in Table 3.4.
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Figure 3.5: Likelihood distance.
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Table 3.4: RC (in %) and the corresponding TRC, MRC and LD(I).

Removed Case Parameter RC TRC MRC LD(I)

µ 8.271 86.438 68.336 142

Identify β 5.142

Points λ 68.336

σ2 2.877

θ 1.811

µ 0.844 3.598 1.358 217

β 0.818

0.1% λ 0.123

σ2 0.456

θ 1.358

µ 2.098 8.634 3.219 949

β 2.073

0.5% λ 0.098

σ2 1.144

θ 3.219

µ 3.257 9.782 3.257 1821

β 3.250

1% λ 0.368

σ2 1.700

θ 1.207

µ 5.843 17.064 5.855 3519

β 5.855

2% λ 0.393

σ2 2.911

θ 2.062

µ 8.096 22.086 8.162 5178

β 8.162

3% λ 1.460

σ2 3.111

θ 1.258

µ 10.458 28.558 10.547 6775

β 10.547

4% λ 0.785

σ2 6.566

θ 0.201

µ 12.463 34.232 12.627 8383
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β 12.627

5% λ 2.160

σ2 6.277

θ 0.704

Notice that when we withdrew the 10 most in�uential points, λ parameter was the

most a�ected, RC ' 68%. Then, the hierarchical transmuted log-logistic was re-�tted

to the data. The posterior samples were generated by the Metropolis-Hastings technique

with one chain of the dimension 100000, discarding the �rst 10000 iterations in order to

eliminate the e�ect of the initial values. To avoid the correlation problems, a lag size 10

was used resulting in a �nal sample size of 10000. Tables 3.5 and 3.6 show the posterior

summaries for the parameters and the 95% credible intervals considering the mentioned

priors for all removed cases, respectively.

Table 3.5: Posterior model summary of the hierarchical transmuted log-logistic model parameters.

Removed
Parameter Mean

Standard Percentiles

Case Deviation 25% 50% 75%

α −19.343 1.269 −20.522 −20.327 −17.975

Identify β 3.200 0.130 3.062 3.285 3.319

Points λ −0.258 0.519 −0.813 0.153 0.232

σ2 926.00 840.30 348.70 664.10 1224.00

θ 202.40 204.70 59.08 139.20 282.00

α −18.016 0.129 −18.098 −18.015 −17.933

β 3.068 0.021 3.055 3.068 3.082

0.1% λ −0.814 0.012 −0.822 −0.814 −0.806

σ2 904.20 826.40 334.50 651.90 1207.20

θ 196.10 194.80 56.84 137.20 270.50

α −18.240 0.135 −18.336 −18.238 −18.146

β 3.107 0.022 3.091 3.106 3.122

0.5% λ −0.816 0.012 −0.824 −0.816 −0.808

σ2 910.40 842.80 339.00 643.80 1203.30

θ 205.20 203.70 61.83 142.40 284.10

α −18.447 0.131 −18.536 −18.441 −18.352

β 3.142 0.021 3.127 3.142 3.157

1% λ −0.818 0.012 −0.826 −0.818 −0.810

σ2 915.40 853.70 337.50 647.80 1221.70

θ 196.40 195.20 56.19 136.90 273.10

α −18.909 0.144 −19.007 −18.907 −18.811

β 3.222 0.023 3.206 3.221 3.238



35 BAYESIAN AND PROFILE ANALYSIS

2% λ −0.818 0.013 −0.827 −0.818 −0.810

σ2 926.30 826.60 353.60 667.40 1235.00

θ 202.90 199.40 60.53 143.40 279.70

α −19.312 0.142 −19.410 −19.304 −19.222

β 3.292 0.023 3.277 3.291 3.308

3% λ −0.827 0.012 −0.835 −0.827 −0.819

σ2 928.10 849.10 352.20 668.20 1215.20

θ 196.30 193.30 56.37 139.00 275.50

α −19.734 0.154 −19.834 −19.737 −19.641

β 3.364 0.025 3.350 3.365 3.381

4% λ −0.821 0.013 −0.830 −0.821 −0.813

σ2 959.20 858.50 365.20 698.70 1267.90

θ 198.40 195.60 58.00 137.50 277.00

α −20.092 0.175 −20.221 −20.093 −19.967

β 3.428 0.028 3.407 3.428 3.448

5% λ −0.832 0.013 −0.842 −0.833 −0.824

σ2 956.60 854.00 372.90 704.10 1259.10

θ 200.20 198.30 59.91 141.00 273.20

It could be clearly seen that parameter λ was estimated in the �rst moment −0.838. It

changed abruptly only when the identi�ed points were removed, remaining close to −0.838

in all other cases, see in Tables 3.1 and 3.5.

Furthermore, when we withdrew 0.1% from the sample, i.e., just 17 observations, we

did not lose much information and we improved the �tted model. Figures 3.6-a, b and c

show the �tted model, when using this number of removed cases.

Finally, considering the hierarchical transmuted log-logistic �tting, the T̂max changes

to 1267.71 compared to 1266.77 days (42.22 months) and its 95% credible interval is given

by

CI[Tmax, 95%] = (39.56; 45.47) months. Furthermore, the median time up to the �rst calv-

ing is equal to 1172.41 days (or approximately 39.08 months), and the mean time is 1258.54

days (or approximately 41.95 months), with standard deviation equal to 13.11 months.
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Table 3.6: 95% Credible Interval of parameters estimated.

Removed Case Parameter Equal-Tail Interval HPD Interval

α −20.709 −17.754 −20.713 −17.760
Identify β 3.026 3.351 3.027 3.352
Points λ −0.833 0.293 −0.837 0.284

σ2 104.300 3096.600 43.226 2603.000
θ 5.211 746.000 0.143 601.600

α −18.2762 −17.7678 −18.2845 −17.7776
β 3.0289 3.11 3.0283 3.1093

0.1% λ −0.8365 −0.7896 −0.8372 −0.7906
σ2 94.0797 3151.6 40.6435 2574.8
θ 5.2045 728.6 0.1098 586.3

α −18.4967 −17.9843 −18.4981 −17.9863
β 3.0654 3.1476 3.0664 3.1483

0.5% λ −0.8391 −0.7905 −0.84 −0.7918
σ2 98.81 3143.7 28.4125 2605.9
θ 5.1449 745.1 0.0156 613.7

α −18.7121 −18.205 −18.7066 −18.2029
β 3.103 3.1855 3.1015 3.1829

1% λ −0.8407 −0.793 −0.8421 −0.7948
σ2 102.2 3172.8 34.7775 2578.2
θ 4.6184 727.6 0.0235 591.8

α −19.1832 −18.6319 −19.184 −18.6338
β 3.1769 3.266 3.1779 3.2663

2% λ −0.8415 −0.7927 −0.8428 −0.7944
σ2 106.2 3111.3 39.5096 2606.1
θ 5.4845 729.9 0.0306 600.2

α −19.5917 −19.0343 −19.5817 −19.0259
β 3.247 3.3364 3.2482 3.3373

3% λ −0.8504 −0.8013 −0.851 −0.8023
σ2 107.5 3224.1 30.9968 2597.3
θ 4.8582 710.8 0.0153 578.9

α −20.0252 −19.4068 −20.0321 −19.4161
β 3.312 3.4113 3.3143 3.4124

4% λ −0.8458 −0.7955 −0.8459 −0.7958
σ2 111 3307.1 50.2358 2671.5
θ 5.2325 734.3 0.0631 604.8

α −20.4078 −19.7676 −20.418 −19.7839
β 3.3762 3.4789 3.3778 3.4802

5% λ −0.8572 −0.8055 −0.8581 −0.8066
σ2 119 3273.2 56.2007 2652.8
θ 5.0109 743.8 0.0992 605.8
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Figure 3.6: (a) Hazard estimate curve, with the T̂max−700, (b) survival curves and (c) histogram.
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3.3 Transmuted log-logistic in the presence of censored life-

time

Let us consider the transmuted log-logistic model presented in Chapter 2. Further-

more, consider the n lifetimes observed t1, t2, . . . , tn and the observed censor indicators

c1, c2, . . . , cn, where ci = 1 if ti is exactly observed, or ci = 0 otherwise. For the right

censoring, we are currently considering in this study, we have ci = 1 if ti ≤ t(r), and ci = 0

otherwise. Then, the likelihood function can be written as

Ln(θ|t1, t2, . . . , tn) = k
n∏
i=1

f(ti|θ)ci (1− F (ti|θ))(1−ci) ,

where K is a constant factor not depending on ti, ci or any unknown parameters, see for

example Lawless (2011). By considering the transmuted log-logistic model, the likelihood

function is written as

Ln(µ, β, λ|t1, . . . , tn, c1, . . . , cn) = (βeµ)
∑n
i=1 ci (3.5)

×
n∏
i=1

tci(β−1)i

[
(1 + eµtβi )− λ(eµtβi − 1)

(1 + eµtβi )3

]ci
.

[
1 + eµtβi (1− λ)

(1 + eµtβi )2

]1−ci .

Hence, the log-likelihood function ln(·) = lnLn(·) becomes

ln(µ, β, λ | t1, . . . , tn, c1, . . . , cn) =
n∑
i=1

ci lnβ + µ
n∑
i=1

ci + (β − 1)
n∑
i=1

ci ln ti

+
n∑
i=1

ci ln
[
(1 + eµtβi )− λ(eµtβi − 1)

]
− 3

n∑
i=1

ci ln(1 + eµtβi )

+
n∑
i=1

(1− ci) ln
[
1 + (1− λ)eµtβi

]
− 2

n∑
i=1

(1− ci) ln(1 + eµtβi ).

3.3.1 Pro�le likelihood

Estimating the parameters of a model using the likelihood method can be quite di�cult

in some special cases. In these cases, computational alternatives, such as the pro�le likeli-

hood function, are required. They are used to calculate of classical estimates that allow us

to estimate parameters by eliminating the numerical problems of the classical likelihood

function; see for example Barndorfe-Nielsen and Cox (1994).

Following Venzon and Moolgavkar (1988), suppose there are two sets of parameters, ψ

and φ, where ψ represents the vector of factor loadings and φ represents all the other model

parameters (in some cases, φ is a nuisance parameter or a vector of nuisance parameters).

The pro�le method estimating parameters (ψ, φ) in two stages is given below.
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Let us suppose that X1, X2, . . . , Xn are iid random variables with density f(x;ψ, φ).

As our objective is to estimate ψ and φ, the log-likelihood function is given by

lP (ψ, φ|x1, . . . , xn) =
n∑
i=1

log f(x;ψ, φ). (3.6)

Then, to estimate ψ and φ the following can be used (ψ̂P , φ̂P ) = arg maxψ,φ lP (ψ, φ|x1, . . . , xn)

what can be quite di�cult and can lead to expression which are hard to maximize. Instead

let us consider a di�erent method where suppose for now, ψ is known, then we rewrite the

likelihood as lP (ψ, φ|x1, . . . , xn) = lψ(φ|x1, . . . , xn) (to show that ψ is �xed and φ varies).

To estimate φ, we maximize lψ(φ|x1, . . . , xn) with respect to φ, ie,

φ̂ψ = arg max
φ

lψ(φ|x1, . . . , xn). (3.7)

In reality ψ is unknown, hence for each ψ we have a new curve lψ(φ|x1, . . . , xn) over φ.

Now, to estimate ψ, we evaluate the maximum lψ(φ|x1, . . . , xn), over φ, and choose the ψ,

which is the maximum over all these curves, i.e.,

ψ̂P = arg max
ψ

lψ(φ̂ψ|x1, . . . , xn) = arg max
ψ

lP (ψ, φ̂ψ|x1, . . . , xn), (3.8)

and, logically, ψ̂ and φψ̂P are the maximum likelihood estimators (ψ̂, φ̂) = arg maxψ,φ

lP (ψ, φ|x1, . . . , xn).

For the transmuted log-logistic model, consider the n lifetimes observed (t1, t2, . . . , tn),

with observed right censorship, i.e., δi = 1 if the lifetime is observed or 0 otherwise,

i = 1 . . . , n. Notice that in the presence of a high number of censored lifetimes, it is quite

di�cult to estimate the model parameter using the pure likelihood. In addition, there is

the presence of the nuisance parameter in the model, given by parameter λ, and a vector

of parameters (µ, β). Thus, in our case,

(µ̂P , β̂P ) = arg max
µ,β

lµ,β(λ̂µ,β|x1, . . . , xn) = arg max
µ,β

lP (µ, β, λ̂µ,β|x1, . . . , xn), (3.9)

where

lP (µ, β, λ̂µ,β|t) =



(β − 1)
∑n

i=1 ln ti − 3
∑n

i=1 ln(1 + eµtβi ) + k(lnβ + µ)

+
∑n

i=1 ln
[
(1 + eµtβi )− λ̂µ,β(eµtβi − 1)

]
, if i : δi = 1,

−2
∑n

i=1 ln(1 + eµtβi ) +
∑n

i=1 ln
[
1 + (1− λ̂µ,β)eµtβi

]
,

if i : δi = 0,
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where k is the number of censored lifetimes.

3.3.2 Adjusted pro�le likelihood

We shall now consider a di�erent adjustment to the pro�le likelihood function. Suppose

that the parameters that index the model are orthogonal, i.e., the elements of the score

vector, ∂l/∂µ, ∂l/∂β and ∂l/∂λ , are uncorrelated. As proposed by Cox and Reid (1987),

the adjustment can be applied to the pro�le likelihood function in this setting and it is an

approximation to a conditional probability density function of the observations given, the

maximum likelihood estimator of µ and β and can be written as

LAP (µ, β, λ|x) = LP (µ, β, λ̂µ,β|x)
∣∣∣Jλλ(µ, β, λ̂µ,β)

∣∣∣−1/2 (3.10)

where Jλλ(µ, β, λ̂µ,β) is the (λ, λ) element of the observed Fischer information J(µ, β, λ),

see for example Barndor�-Nielsen and McCullagh (1993). In order to obtain the Jλλ(µ, β, λ)

element, the Hessian matrix is presented in Appendix A. Then, the expected value is given

by

Jλλ(µ, β, λ) =

∫ +∞

0

(
1− eµxβ

1 + eµxβ − λeµxβ + λ

)2

f(x|µ, β, λ)dx

' πe−µ/β

3β2
(β + 1)

[
2(β + 1)2 + 1

]
csc

(
π(β + 1)

β

)
. (3.11)

By considering n lifetimes observed (t1, t2, . . . , tn), with observed right censored, i.e.,

δi = 1 if the lifetime is observed or 0 otherwise, i = 1 . . . , n, the adjusted pro�le log-

likelihood function can be written as

lAP (µ, β, λ|t) =



(β − 1)
∑n

i=1 ln ti − 3
∑n

i=1 ln(1 + eµtβi )+

+k(lnβ + µ) +
∑n

i=1 ln
[
(1 + eµtβi )− λ̂µ,β(eµtβi − 1)

]
+ ζ,

if i : δi = 1,

−2
∑n

i=1 ln(1 + eµtβi ) +
∑n

i=1 ln
[
1 + (1− λ̂µ,β)eµtβi

]
+ ζ,

if i : δi = 0,

(3.12)

where

ζ =
β

e−µ/2β

[
− 3

π [2(β + 1)2 + 1]
sin

(
π(β + 1)

β

)]1/2
.
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3.3.3 Modi�ed pro�le likelihood

The modi�ed pro�le likelihood was proposed by Barndor�-Nielsen (1993) as an im-

provement to the pro�le likelihood and it is de�ned as

LMP = LP (θ,x)
∣∣∣Jφφ(θ, φ̂(θ))

∣∣∣−1/2 ∣∣∣∣∣ ∂φ̂

∂φ̂(θ)

∣∣∣∣∣ . (3.13)

The main di�culty in computing the modi�ed pro�le likelihood function lies in obtain-

ing |∂φ̂/∂φ̂(θ)| and several approximations were proposed in order to simplify its evaluation.

Severini (1998) proposed an approximation based on empirical covariates and LMP can be

rewritten as

LMP = LP (θ,x)

∣∣∣Jφφ(θ, φ̂(θ))
∣∣∣1/2∣∣∣I(θ, φ̂(θ); θ̂, φ̂)
∣∣∣ , (3.14)

and replacing I(θ, φ̂(θ); θ̂, φ̂) by

Ĭ(θ, φ̂(θ); θ̂, φ̂) =

n∑
j=1

`
(j)
θ (θ, φ̂(θ))`

(j)
θ (θ̂, φ̂)T (3.15)

where `
(j)
θ (·) is the score function for the jth observation. This approximation is particularly

useful when the computation of expected values of products of log-likelihood derivatives is

cumbersome.

Thus, for the transmuted log-logistic model,

Ĭ(µ, β, λ̂(µ, β); µ̂, β̂, λ̂) =

n∑
j=1

`
(j)
λ (µ, β, λ̂(µ, β))`

(j)
λ (µ̂, β̂, λ̂)T

and

`
(j)
λ (µ, β, λ) =

(1− eµxβi )(
1 + eµxβi − λ(eµxβi − 1)

) .
3.3.4 Residual analysis

In order to study the presence of atypical observations, or departures from the error

assumptions, we consider two kinds of residuals: martingale-type and deviance. (see for

example McCullagh and Nelder (1989), Barlow and Prentice (1988) and Therneau et al.

(1990)).

The �rst one, martingale-type residual, was introduced by Therneau et al. (1990) and

was �rstly used in a counting process, which is skewed and has a maximum value at

+1 and a minimum value at −∞. By considering the transmuted log-logistic model, the

martingale-type residual can be written as
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rMi =

 1 + log
[
1 + eµtβi (1− λ)

]
− 2 log(1 + eµtβi ), if i : δi = 1,

log
[
1 + eµtβi (1− λ)

]
− 2 log(1 + eµtβi ), if i : δi = 0,

(3.16)

where i = 1, . . . , n.

In addition, the deviance residual can be used, widely used in GLMs (generalized linear

models). This was proposed by the same authors (Therneau et al. (1990)) and it is a trans-

formation of the martingale residual to attenuate the skewness. In our case, the deviance

residuals are given by

rDi =



sign(rMi)
[
−2
[
1 + log(1 + eµtβi (1− λ))− 2 log(1 + eµtβi )

+ log
(
− log(1 + eµtβi (1− λ))

)
+ 2 log(1 + eµtβi )

]1/2]
,

if i : δi = 1,

sign(rMi)
[
−2
[
1 + log(1 + eµtβi (1− λ))− 2 log(1 + eµtβi )

]]
,

if i : δi = 0,

(3.17)

i = 1, . . . , n.

3.3.5 Simulation

In this section, we describe a simulation study designed to assess the frequentist prop-

erties of the model in the presence of right censored observations in order to validate the

results that will be shown in Section 3.3.6. We must observe that transmuted models have

never been built considering the presence of any censor type.

Consider the sample size 148 of patients treated with the drug Linezolid. A bootstrap

study was made considering 6 di�erent sizes of re-samples: 50, 80, 100, 200, 300 and

500 (index 1 to 6 respectively). For each sample size, we obtained 1000 re-sampling. The

transmuted log-logistic model was �tted considering three estimation methods, presented

before: Pro�le (P), Adjusted Pro�le (AP) and Modi�ed Pro�le (MP).

The results of the bootstrap simulations were summarized and are presented in Figures

3.7, 3.8 and 3.9. In the �rst �gure, we present the mean value of estimates of parameters µ,

β and λ. Notice that for µ and β parameters, the three pro�le methods behave similarly.

However, in Figure 3.7 the adjusted pro�le method is better than the other methods for

samples less than 200.

As for the mean square error (MSE, in Figures 3.8) it is clear that the adjusted method

presents smaller values even though the MSEs are close. Furthermore, with respect to the

coverage probability, we expected it to be around 95% in all cases (we can observe that
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Figure 3.7: Mean for the parameters estimated: (a) µ, (b) β and (c) λ, by using × P, M AP and
+ MP methods.

the points are close to the dashed line in Figures 3.9 a, b and c).

3.3.6 Application to real dataset

Linezolid is a synthetic antibiotic developed by a team at the Pharmacia and Upjohn

Company, used to treat of serious infections, Brickner (1996).

Discovered in the 1990s and �rst approved for use in 2000, linezolid was the �rst

commercially available 1, 3-oxazolidinone antibiotic. The main indication of this substance

is the treatment of severe infections caused by Gram-positive bacteria that are resistant

to other antibiotics. In both the popular press and the scienti�c literature, linezolid has

been called a �reserve antibiotic� - one that should be used sparingly so that it will remain

e�ective as a drug of last resort against potentially intractable infections, see Wilson et al.

(2006).

In Brazil, linezolid has been used since 2007 and researchers are concerned about their

indiscriminate use. It is known that its use, for short periods of time, is safe but the e�ects
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Figure 3.8: Mean Square Error (MSE) of the parameters estimated: (a) µ, (b) β and (c) λ, by
using × P, M AP and + MP methods.

of its prolonged use are not known. Given this situation, we conducted a study related to

the time of using this drug in patients at the ICU (Intensive Care Unit) at the University

Hospital in Maringá city, from 2008 and 2012.

Total of 148 patients were treated with the drug, which is only used in extreme cases of

bacterial resistance against other drugs, such as Vancomycin (drug used before linezolid in

those cases). An initial analysis was made, in which we noticed that the mean time was 28.4

days and the median time was 22.5 days. Moreover, Figure 3.10-a show the distribution of

the time and, it can be seen that the �rst and third observed quantiles of time of treatment

was 13.0 and 36.3 days, respectively.

In order to know the behavior of the failure rate, the TTT plot was plotted in Figure

3.10-b. It is possible to see that the hazard is unimodal, since the TTT plot is initially

concave and then convex.

After that, the transmuted log-logistic model was �tted, using the pure likelihood and

the pro�le method. Both results are shown in Table 3.7 below. It can be clearly seen



45 BAYESIAN AND PROFILE ANALYSIS

1 2 3 4 5 6

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

µ

(a)

1 2 3 4 5 6

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

β

(b)

1 2 3 4 5 6

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

λ

(c)

Figure 3.9: Coverage probability for the parameters estimated: (a) µ, (b) β and (c) λ, by using ×
P, M AP and + MP methods.
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Figure 3.10: (a) Boxplot of the observed times and (b) TTT plot.
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that the estimated parameters are very close in both likelihood methods. However, the

pro�le con�dence intervals are shorter when using the pure likelihood. Furthermore, if we

consider the Wald con�dence intervals for the pro�le method, the intervals are even smaller,

as shown in Table 3.8.

Table 3.7: Estmates for the parameters of transmuted log-logistic model estimated by using pro�le
methods, considering right censored lifetimes.

Method Parameter Estimate Error
Con�dence Intervals 95%
Lower Upper

α −4.4446 0.8072 −5.0528 −3.9723
Pro�le β 1.4804 0.2089 1.3526 1.6301

λ −0.9483 0.1685 −1.0000 −0.7928

α −4.5909 0.6548 −5.0649 −4.1828
Adjusted β 1.5415 0.1702 1.4319 1.6614

λ −0.9473 0.1382 −1.0000 −0.8296

α −4.3460 0.8980 −5.0183 −3.8702
Modi�ed β 1.4480 0.2344 1.3142 1.6135

λ −0.9577 0.1796 −1.0000 −0.7888

Table 3.8: Wald con�dence limits by considering 95% of con�dence.

Method Lower Upper

−4.9890 −3.9001
Pro�le 1.3394 1.6213

−1.0000 −0.8346

−5.0649 −4.1828
Adjusted 1.4319 1.6614

−1.0000 −0.8296

−4.9517 −3.7403
Modi�ed 1.2899 1.6060

−1.0000 −0.8366

Figure 3.11-a and b, shows the estimated survival curves versus empirical (by Kaplan-

Meier). It can be clearly observed how close the curves are. Moreover the hazard curve can

also be seen. Notice that the most probable time for patient discharge is 25.44 days, with

95% con�dence interval given by (15.47; 48.69) days.

Furthermore, Figure 3.12 shows the graphics of the Pro�le, Adjusted and Modi�ed

relative log-likelihoods (divided by the maximum absolute value of the log-likelihood). It

can be observed that the Pro�le and Adjusted Pro�le showed a lower decrease (after the

maximum value) than the Modi�ed Pro�le log-likelihoods.
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Figure 3.11: (a) Survival curves: estimated versus empirical; (b) Hazard estimate curve, with the
T̂max.
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Figure 3.12: (P) Pro�le, (A) Adjusted Pro�le and (M) Modi�ed Pro�le relative log-likelihood for
the Linezolid data.

Global and local in�uence

In this section, we will make an analysis of the global and local in�uence for the data

set given, using the transmuted log-logistical model, as presented in Section 3.2.1.
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In order to analyze the local in�uence, here we consider the response variable pertur-

bation, i.e., we will consider that each ti is perturbed as tim = ti + miSt , where St is a

scale factor that may be the estimated standard deviation of T and mi ∈ R. Then, the
perturbed log-likelihood function becomes

ln(µ, β, λ | t, c,m) =

n∑
i=1

ci lnβ + µ

n∑
i=1

ci + (β − 1)

n∑
i=1

ci ln tim

+

n∑
i=1

ci ln
[
(1 + eµtβim)− λ(eµtβim − 1)

]
− 3

n∑
i=1

ci ln(1 + eµtβim)

+

n∑
i=1

(1− ci) ln
[
1 + (1− λ)eµtβim

]
− 2

n∑
i=1

(1− ci) ln(1 + eµtβim).

Figure 3.13-a and b, show, respectively, the Cook's generalized and likelihood distances

and it can be observed that the pertubation causes some disproportionate e�ects.

(a) (b)

Figure 3.13: (a) Cooks's distance and (b) Likelihood distance after response pertubation.

After analyzing Figure 3.13-a and b, we can see the distinction of some observations

in relation to others. Furthermore, we made a residual analysis using the Martingale-type

and deviance presented in Section 3.3.4. Figures 3.14 show the results of these analyses.

To reveal the impact of the detected in�uential observations, we use three measures

de�ned by Lee et al. (2006): TRC, MRC and LD. In our case, we �nd TRC = 22.78,

MRC= 0.0873 and LD(I) = −32.3, for I = {50, 53, 130, 144}. Hence, the results are more

sensitive for the in�uential observation group.

After the in�uence and residual analysis, the possible in�uential observations were

identi�ed: case 50, 53, 130 and 144. Then, we removed each of these points and �tted the

transmuted log-logistic model again for each case. In order to reveal the impact of them,

the relative changes were measured RCθj and all these results are shown in Table 3.9.

As a complementary analysis, the possible in�uential observations were removed. Aided

by the analysis of local in�uence and residual analysis, observations 50, 53, 130 and 144 were
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(a) (b)

Figure 3.14: (a) Martingale residuals; (b) Deviance residuals.

Table 3.9: RC (in %) and the corresponding TRC, MRC and LD(I).

Case removed Parameter RC TRC MRC LD(I)

{50} µ 0.682 7.336 5.452 4.300
β 1.202
λ 5.452

{53} µ 1.442 3.831 4.144 14.300
β 1.513
λ 0.875

{130} µ 4.144 10.704 4.144 13.400
β 3.702
λ 2.858

{144} µ 2.187 5.707 2.187 12.600
β 2.128
λ 1.392

{50; 53; 130; 144} µ 8.734 22.777 8.734 33.300
β 8.127
λ 5.916

then removed. The results can be found in Table 3.10.

The graphics of the Pro�le, Adjusted and Modi�ed relative log-likelihoods (divided

by the maximum absolute value of the log-likelihood) were plotted again and they are

presented in Figure 3.15. It can be observed that the Pro�le and Adjusted Pro�le had a

lower decrease (after the maximum value) than the Modi�ed Pro�le log-likelihoods, as seen

in Figure 3.12 showing some advantage, which are not signi�cative, for this method.
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Table 3.10: Estimates for the parameters of transmuted log-logistic model estimated by using
pro�le methods after removing in�uential observations.

Method Parameter Estimate Error
Con�dence Intervals 95%
Lower Upper

α −4.8327 0.9350 −5.4634 −4.2021
Pro�le β 1.6006 0.2374 1.4405 1.7607

λ −0.8922 0.2139 −1.0000 −0.7479

α −4.8334 0.7183 −5.3179 −4.3489
Adjusted β 1.6248 0.1872 1.4985 1.7511

λ −0.9192 0.1542 −1.0000 −0.8152

α −4.8259 1.0426 −5.5292 −4.1227
Modi�ed β 1.5922 0.2624 1.4153 1.7692

λ −0.8848 0.2419 −1.0000 −0.7216
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Figure 3.15: (P) Pro�le, (A) Adjusted Pro�le and (M) Modi�ed Pro�le relative log-likelihood for
the Linezolid data.



Chapter 4

Cubic ranking transmuted model

This Chapter introduces a new order of transmuted distribution, the cubic rank trans-

mutation map distribution. This new order increases the �exibility of transmuted distri-

butions providing the accommodation of more complex data; for instance, data in the

presence of bimodal hazard rates. In order to exemplify the applicability of the cubic rank

transmutation map, we used two of the best known distributions maps in the reliability

�eld: the Weibull and the log-logistic. Several mathematical properties of these new distri-

butions, namely the transmuted Weibull distribution of order 2 and transmuted log-logistic

distribution of order 2, are derived (either cubic rank transmuted Weibull or cubic rank

transmuted log-logistic). Inference is based on maximum likelihood and applications were

made using real datasets. Analysis of diagnostic and a bootstrap simulation study are part

of this work.

4.1 The cubic ranking transmutation map

In this section we propose a cubic ranking transmutation map, following the transmu-

tation described in Section 2.1, but now considering order 2.

Theorem 4.1.1 Let X1, X2 and X3 be independent and identically random variables with

distribution G(x). Then, the ranking cubic transmutation map is given by

F (x) = λ1G(x) + (λ2 − λ1)G(x) + (1− λ2)G3(x), (4.1)

with λ1 ∈ [0, 1] and λ2 ∈ [−1, 1].

Proof: Let X1, X2 and X3 be independent and identically random variables distributed

with distribution G(x). Now, consider the following order

X1:3 = min(X1, X2, X3), X2:3 and X3:3 = max(X1, X2, X3),

51
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and let 
Y

d
= X1:3, with prob π1,

Y
d
= X2:3, with prob π2,

Y
d
= X3:3, with prob π3,

where
∑3

i=1 πi = 1⇒ π3 = 1− π1 − π2. Evidently, FY (x) is given by

FY (x) = π1Pr(min(X1, X2, X3) ≤ x) + π2Pr(X2:3 ≤ x) + π3Pr(max(X1, X2, X3) ≤ x)

= 3π1G(x) + 3(π2 − π1)G2(x) + (1− π2)G3(x),

and if 3π1 = λ1 and 3π2 = λ2, the cubic ranking transmuted distribution (or transmuted

of order 2) becomes the one given in (4.1). �

De�nition 4.1.1 The density function f(x) of the cubic ranking transmutation distribu-

tion is given by

f(x) = g(x)
[
λ1 + 2(λ2 − λ1)G(x) + 3(1− λ2)G2(x)

]
. (4.2)

�

In what follows, we focus on two particular cases based on the well-known Weibull and

log-logistic lifetime distributions.

4.2 Cubic rank transmuted weibull distribution

The Weibull distribution, originally proposed by Weibull (1951), is being used e�ec-

tively in many applied problems; see for example, Johnson et al. (1996), Nichols and Pad-

gett (2006), Pham and Lai (2007), and Aryal and Tsokos (2011). Let X be a positive

random variable with Weibull distribution, then, the cumulative function is given by

G(x) = 1− exp

[
−
(
x

β

)µ]
, x > 0, (4.3)

where µ > 0 and β > 0 are shape and scale parameters, respectively. It is important to

note that for µ < 1 the failure rate decreases over time (which happens, for instance, in

data where there is signi�cant �infant mortality�), µ = 1 indicates that the failure rate

is constant over time (i.e., it is an exponential distribution as a special case), and µ > 1

possesses the failure rate increasing over time, (Lawless, 2011).

Proposed by Aryal and Tsokos (2011), the transmuted Weibull distribution was for-

mulated as a generalization of the Weibull distribution. The transmuted quadratic rank

Weibull cumulative distribution function has the form

F (x) =

[
1− exp

(
−
(
x

β

)µ)][
1 + λ exp

(
−
(
x

β

)µ)]
,
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where λ ∈ [−1, 1]. The cubic rank transmuted Weibull distribution introduced here has

the following form.

Proposition 4.2.1 Let X have a Weibull distribution with parameters µ and β. Then, the

density function of the cubic rank transmuted Weibull distribution is given by

f(x) =
µ

βµ
xµ−1e−(x/β)

µ
[
(3− λ1 − λ2) + 2(λ1 + 2λ2 − 3)e−(x/β)

µ
+ 3(1− λ2)e−2(x/β)

µ
]
,

(4.4)

for x > 0.

Proof: With X having a Weibull distribution with parameters µ and β, we obtain from

equation (4.1) that

F (x) = λ1G(x) + (λ2 − λ1)G2(x) + (1− λ2)G3(x)

= 1 + (λ1 + λ2 − 3)e−(x/β)
µ

+ (3− λ1 − 2λ2)e
−2(x/β)µ + (λ2 − 1)e−3(x/β)

µ
,

for x > 0. Upon di�erentiating the above expression with respect to x, we obtain the density

function presented in (4.1). �

Note that the cubic rank transmuted Weibull is an extended distribution to analyze

more complex data, generalizing theWeibull distribution (λ1 = λ2 = 1) and the transmuted

Weibull distribution (λ2 = 1). Some of the possible shapes that the cubic rank transmuted

Weibull distribution can take on are illustrated in the upper panels of Figure 4.1 for some

selected values of the parameters. The λ's are responsible for introducing extra skewness

into the Weibull distribution. This is in full agreement with Shaw and Buckley (2009) who

pointed out that the introduction of extra skewness into a distribution is a direct e�ect of

transmutation maps of order 1, or transmuted quadratic rank ones.

Now, let T be a random variable representing the lifetime of an unit. Then, the survival

and hazard functions of T are given, respectively, by

R(t) = (3− λ1 − λ2)ζ(t) + (λ1 + 2λ2 − 3)(ζ(t))2 + (1− λ2)(ζ(t))3, t > 0, (4.5)

and

h(t) =
µ

βµ
tµ−1

[
(3− λ1 − λ2) + 2(λ1 + 2λ2 − 3)ζ(t) + 3(1− λ2)(ζ(t))2

(3− λ1 − λ2) + (λ1 + 2λ2 − 3)ζ(t) + (1− λ2)(ζ(t))2

]
, t > 0, (4.6)

where ζ(t) = e−(t/β)
µ
. Several plots of the above survival and hazard functions are presented

in the lower panels of Figure 4.1.

Moments are essential for inferential proposes. Moreover, they are useful to study some

important features and characteristics of a distribution such as tendency, dispersion, skew-

ness and kurtosis. We derive the rth moment for the cubic rank transmuted Weibull dis-
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Figure 4.1: Upper panels: Density and cumulative distribution functions; Lower panels: Survival,
hazard and cumulative hazard functions, all of which are plotted for di�erent values of model
parameters.

tribution as follows.

The rth moment is given by

E (Xr) =

∫ +∞

0
xr

µ

βµ
xµ−1e−(x/β)

µ
[
(3− λ1 − λ2) + 2(λ1 + 2λ2 − 3)e−(x/β)

µ

+3(1− λ2)e−2(x/β)
µ
]
dx.

With the use of gamma function, we can obtain an expression for the above integral as

E (Xr) =
µ

β1−r
Γ

(
r − 1

µ
+ 2

)[
(3− λ1 − λ2) +

(λ1 + 2λ2 − 3)

2
r−1
µ

+1
+

(1− λ2)

3
r−1
µ

+1

]
,

where Γ(·) denotes a complete gamma function. In particular, the mean and variance are

given, respectively, by

E (X) =
µ

6
(11− 3λ1 − 2λ2) (4.7)

and

V (X) = Γ

(
1

µ
+ 2

)
βµ

[
(3− λ1 − λ2) +

(λ1 + 2λ2 − 3)

2
1
µ
+1

+
(1− λ2)

3
1
µ
+1

]
−µ

2

36
(11− 3λ1 − 2λ2)

2.
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4.3 Cubic rank transmuted log-logistic distribution

Let X be a nonnegative random variable representing the lifetime of an individual in

a population log-logistically distributed as presented in Section 2.1. Then, the cubic rank

transmuted log-logistic distribution can be de�ned as follows.

Proposition 4.3.1 Let X be random variables having a log-logistic distribution with pa-

rameters β and µ. Then, the density function of the cubic rank transmuted log-logistic

distribution is given by

f(x) =
µxµ−1eβ

(1 + eβxµ)4

[
λ1(1− e2βx2µ) + λ2e

βxµ(2− eβxµ) + 3e2βx2µ
]
, x > 0.(4.8)

Proof: Let X be a log-logistic random variable with parameters β and µ. Then, from

equation (4.1), we obtain

F (x) = λ1G(x) + (λ2 − λ1)G2(x) + (1− λ2)G3(x)

=
xβeµ

(1 + eµxβ)

[
λ1 + (λ2 − λ1)

xβeµ

(1 + eµxβ)
+ (1− λ2)

x2βe2µ

(1 + eµxβ)2

]
, x > 0.

Upon di�erentiating the above expression with respect to x, we obtain the density function

as presented in (4.8). �

Note that the cubic rank transmuted log-logistic model is also an extended distribution

that is quite useful for analysing more complex data, as presented for the Weibull model in

Section 4.2. The log-logistic distribution is clearly a special case when λ1 = λ2 = 1. Some

of the possible shapes that the cubic rank transmuted log-logistic distribution can take on

are illustrated in the upper panels of Figure 4.2 for some selected values of the parameters.

The λ's are responsible for introducing extra skewness into the log-logistic distribution.

Furthermore, the reliability and hazard functions of this distribution are given by

R(t) = 1− κ(t)
[
λ1 + (λ2 − λ1)κ(t) + (1− λ2)κ2(t)

]
, t > 0, (4.9)

and

h(t) =
µtµ−1eβ

(1 + eβtµ)3

[
λ1(1− e2βt2µ) + λ2e

βtµ(2− eβtµ) + 3e2βt2µ

1 + tµeβ − tµeβ [λ1 + (λ2 − λ1)κ(t) + (1− λ2)κ2(t)]

]
, (4.10)

t > 0, respectively, where κ(t) = eβtµ

(1+eβtµ)
. Several plots of survival and hazard functions

are presented in the lower panels of Figure 4.2.

The rth moment of the cubic rank transmuted log-logistic distribution is given by

E (Xr) =

∫ +∞

0

µxr+µ−1eβ

(1 + eβxµ)4

[
λ1(1− e2βx2µ) + λ2e

βxµ(2− eβxµ) + 3e2βx2µ
]
dx.
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Figure 4.2: Upper panels: Density and cumulative distribution functions; Lower panels: Survival,
cumulative hazard and hazard functions, all of which are plotted for di�erent values of model
parameters.

Upon using beta function, we obtain an expression for the rth moment as

E (Xr) =
e−βr/µ

6
B

(
1− r

µ
,
r

µ
+ 1

){
r2

µ2
(3− λ2 + 2λ1) + 3

r

µ
(3 + λ2) + 2(2λ1 + λ2 + 3)

}
,

where B(·, ·) denotes the complete beta function. In particular, the mean and variance are

given by

E (X) =
e−β/µ

6µ2
B

(
µ− 1

µ
,
µ+ 1

µ

){
2λ1(1 + 2µ2) + λ2(µ

2 + 3µ− 1) + 7µ2 + 9µ
}

(4.11)

and

V (X) =
e−2β/µ

6µ2

[
B

(
µ− 2

µ
,
µ+ 2

µ

){
4λ1(2 + µ2) + 2λ2(µ

2 + 3µ− 2)

+6(µ2 + 3µ+ 2)
}
−B2

(
µ− 1

µ
,
µ+ 1

µ

){
2λ1(1 + 2µ2) + λ2(µ

2 + 3µ− 1)

+7µ2 + 9µ
}2]

. (4.12)
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4.4 Parameter estimation

Maximum likelihood approach can be used for the estimation of model parameters. Let

X1, . . . , Xn be a random sample of size n so that the likelihood function is given by

L = L(θ|X1, X2, . . . , Xn) =
n∏
i=1

f(Xi|θ),

where θ is the parameter vector. For the cubic rank transmuted Weibull distribution, the

log-likelihood function becomes

lW = n log(µ)− nµ log(β) + (µ− 1)
n∑
i=1

log xi −
n∑
i=1

(
xi
β

)µ
(4.13)

+
n∑
i=1

log
[
(3− λ1 − λ2) + 2(λ1 + 2λ2 − 3)e−(xi/β)

µ
+ 3(1− λ2)e−2(xi/β)

µ
]
.

Therefore, the maximum likelihood estimates (MLEs) of µ, β, λ1 and λ2, which maxi-

mize (4.13), must satisfy the following normal equations:

∂lW
∂µ

=
n

µ
−

n∑
i=1

log xi −
n∑
i=1

(
xi
β

)µ
log

(
xi
β

)

+2
n∑
i=1

(
xi
β

)µ
log

(
xi
β

)
e−(xi/β)

µ

[
λ1 + 2λ2 − 3

ϑi
− 3(1− λ2)e−(xi/β)

µ

]
= 0,

∂lW
∂β

=
2µ

β

n∑
i=1

(
xi
β

)µ
e−(xi/β)

µ

[
λ1 + 2λ2 − 3

ϑi
+ 3(1− λ2)e−(xi/β)

µ

]

−nµ
β

+
µ

β

n∑
i=1

(
xi
β

)µ
= 0,

∂lW
∂λ1

=
n∑
i=1

2e−(xi/β)
µ − 1

ϑi
= 0,

∂lW
∂λ2

=
n∑
i=1

4e−(xi/β)
µ − 1

ϑi
− 3e−2(xi/β)

µ
= 0,

where ϑi = (3 − λ1 − λ2) + 2(λ1 − 2λ2 − 3)e−(xi/β)
µ
. The MLE θ̂ = (µ̂, β̂, λ̂1, λ̂2)

′ is

obtained by solving the above nonlinear system of equations. It is usually more convenient

to use nonlinear optimization algorithms such as quasi-Newton or Newton-Raphson to

numerically maximize the log-likelihood function in (4.13).

Similarly, for the cubic rank transmuted log-logistic distribution, the log-likelihood
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function is given by

lLL = nβ + n logµ− 4
n∑
i=1

log(1 + eβxµi ) + (µ− 1)
n∑
i=1

log xi +

+
n∑
i=1

log(λ1 − λ1e2βx2µi + 2λ2e
βxµi − λ2e

2βx2µi + 3e2βx2µi ). (4.14)

Therefore, the MLE of µ, β, λ1 and λ2 which maximize (4.14) must satisfy the following

normal equations:

∂lLL
∂µ

=
n

µ
− 4

n∑
i=1

ηi log xi
1 + ηi

+
n∑
i=1

log xi

+

n∑
i=1

2ηi log xi

[
3ηi + λ2(1− ηi)− λ1ηi

η2i (3− λ1 − λ2) + 2ηi + λ1

]
= 0,

∂lLL
∂β

= n− 4

n∑
i=1

ηi
1 + ηi

+ 2

n∑
i=1

ηi

[
ηi(3− λ1 − λ2) + λ2

η2i (3− λ1 − λ2) + 2ηi + λ1

]
= 0,

∂lLL
∂λ1

=

n∑
i=1

1− η2i
η2i (3− λ1 − λ2) + 2ηi + λ1

= 0,

∂lLL
∂λ2

=

n∑
i=1

ηi(2− ηi)
η2i (3− λ1 − λ2) + 2ηi + λ1

= 0,

where ηi = eβxµi .

The MLE θ̂ = (µ̂, β̂, λ̂1, λ̂2)
′ is obtained by solving the above nonlinear system of

equations.

In order to compute the asymptotic con�dence intervals, we use the usual large-sample

approximation for the distribution of the maximum likelihood estimator of θ which is four-

variate normal (Migon et al., 2014). Thus, as n → ∞, the asymptotic distribution of the

MLE, for both cubic rank transmuted Weibull and log-logistic distributions is given by,
µ̂

β̂

λ̂1

λ̂2

 ∼ N



µ̂

β̂

λ̂1

λ̂2

 ,


V̂11, V̂12, V̂13, V̂14

V̂21, V̂22, V̂23, V̂24

V̂31, V̂32, V̂33, V̂34

V̂41, V̂42, V̂43, V̂44


 , (4.15)

where V̂ij = Vij |θ=θ̂. The asymptotic variance-covariance matrix V is determined by the

inverse of Hessian matrix; see A for the corresponding details for the cubic rank transmuted

Weibull and log-logistic distributions. Then, approximate 100(1−α)% two-sided con�dence

intervals for µ, β, λ1 and λ2 are, respectively, given by µ̂± zα/2
√
V̂11, β̂ ± zα/2

√
V̂22,

λ̂1± zα/2
√
V̂33 and λ̂2± zα/2

√
V̂44, where zα is the upper α− th percentile of the

standard normal distribution.
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Fits of di�erent distributions can be compared by penalizing over-�tting by using the

Akaike information criterion (Akaike, 1973), which minimizes the Kullback-Leibler diver-

gence between the true distribution and the estimate from a candidate distribution. It is

given by AIC = −2l(θ̂)+2size(θ), where l(θ̂) denotes the log-likelihood function evaluated

at the maximum value and size(θ) is the number of model parameters. The distribution

with the lowest value of this criterion (among all considered distributions) is regarded as

the preferred distribution for describing a given dataset.

4.5 Numerical studies

In this section, we present the results of a simulation study designed to assess the

properties of the proposed estimation procedure. Moreover, we illustrate the usefulness of

the proposed models with two real data sets. An analysis of global and local in�uence is

also carried out.

4.5.1 Simulation study

A simulation study was performed by considering samples of size 50, 80, 100, 150, 300

and 500 from the cubic rank transmuted Weibull and cubic rank transmuted log-logistic

distributions. A total of 1000 random samples were generated for each set up with the

parameters �xed as µ = 2.0, β = 2.5, λ1 = 0.2, and λ2 = 1.0 for the cubic rank transmuted

Weibull distribution, and µ = 3.0, β = −16.0, λ1 = 0.2, and λ2 = −0.9 for the cubic rank

transmuted log-logistic distribution.

Tables 4.1 and 4.2 present the means of the estimates and the mean square errors (MSE)

as well as the coverage probabilities of 95% two-sided con�dence intervals for the model

parameters. The MSE decreases with increasing sample size, showing the consistency of

the estimators. Moreover, the coverage probabilities become closer to the nominal level as

the sample size increases.

4.5.2 Application: Carbon �bers data

In this section, we provide an application of the cubic rank transmuted Weibull distri-

bution. For this purpose, we consider a data set from a study on breaking stress of carbon

�bers (in Gba), taken from Nichols and Padgett (2006). The lifetimes are times until the

break of the �bers. TTT plot of the lifetimes is presented in the upper left panel of Figure

4.3, indicating a possible increasing hazard function.

Also, for the sake of comparison, we have considered six alternative distributions: the

transmuted Weibull distributions of orders 2 and 1, and the prominent Weibull, exponen-

tial, gamma and log-normal distributions.



60 CUBIC RANKING TRANSMUTED MODEL

Table 4.1: Means of estimates of all parameters and mean square errors (MSE), for di�erent
sample sizes.

Distribution Sample Estimate MSE
Size µ β λ1 λ2 µ β λ1 λ2

50 2.226 2.338 0.317 0.492 0.895 0.413 0.821 1.787
Trans 80 2.2 2.35 0.308 0.569 0.714 0.416 0.667 1.376
Weibull 100 2.179 2.346 0.289 0.597 0.63 0.397 0.563 1.258
Order2 150 2.176 2.363 0.29 0.652 0.53 0.374 0.457 1.028

300 2.15 2.364 0.245 0.746 0.402 0.336 0.296 0.771
500 2.142 2.376 0.228 0.807 0.314 0.281 0.23 0.568

50 2.893 −16.138 0.293 −0.822 0.304 4.559 0.120 0.257
Trans 80 2.889 −16.115 0.299 −0.823 0.253 3.507 0.107 0.244

Log-Logistic 100 2.890 −16.122 0.313 −0.838 0.166 1.929 0.080 0.187
Order2 150 2.880 −16.061 0.317 −0.845 0.110 1.083 0.059 0.138

300 2.876 −16.036 0.318 −0.848 0.096 0.915 0.053 0.124
500 2.876 −16.030 0.321 −0.853 0.040 0.309 0.025 0.059

Table 4.2: Coverage probabilities of the con�dence intervals for di�erent sample sizes.

Distribution Sample Coverage Probability
Size µ β λ1 λ2
50 0.577 0.671 0.551 0.732

Transmuted 80 0.662 0.72 0.642 0.781
Cubic Rank 100 0.702 0.734 0.690 0.787
Weibull 150 0.783 0.808 0.777 0.815

300 0.894 0.897 0.903 0.898
500 0.959 0.959 0.956 0.947

50 0.830 0.824 0.864 0.521
Transmuted 80 0.852 0.855 0.887 0.624
Cubic Rank 100 0.879 0.882 0.906 0.749
Log-Logistic 150 0.893 0.898 0.902 0.835

300 0.893 0.894 0.897 0.857
500 0.901 0.904 0.940 0.950

In Table 4.3, we have presented, for all these distributions, seven di�erent compari-

son measures used as selection criteria: −2× log-likelihood (-2log), Akaike's information

criterion (AIC), corrected Akaike's information criterion (AICC), Schwarz's Bayesian in-

formation criterion (BIC), Kolmogorov-Smirnov statistic (KS), Anderson-Darling statistic

(A) and Cramér-von-Mises statistic (W). The calculated values of theses statistics (the

smaller the better) all reveal that the cubic rank transmuted Weibull distribution is the

most appropriate model according to four di�erent criteria and the Weibull distribution

is the most appropriate one according to AIC, AICC and BIC (it must be noted that, in

these criteria, the number of estimated parameters has a huge impact).

Figure 4.4 shows P-P plots that represent the empirical cumulative versus estimated

cumulative functions of the rank transmuted Weibull distributions of orders 2 and 1 and

the Weibull distribution, respectively.

In order to examine the global �t of the distribution, we carried out a residual anal-



61 CUBIC RANKING TRANSMUTED MODEL

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

r/n

f

0 1 2 3

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

x

H
az

ar
d 

R
at

e

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

C
um

ul
at

iv
e 

F
un

ct
io

n

Empirical
Trans Order 2
Trans Order 1
Weibull

tempo

D
en

si
ty

0 1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

Empirical
Trans Order 2
Trans Order 1
Weibull

Figure 4.3: Upper panels: TTT plot and hazard curves empirical and estimated by cubic rank
transmuted Weibull distribution; Lower panels: Cuimulative and density functions estimated by
transmuted Weibull and Weibull distributions.

Table 4.3: Selection criteria estimated for six di�erent lifetime distributions.

Distribution −2 log AIC AICC BIC KS A∗ W∗

Cubic rank transmuted 282.694 290.694 291.115 301.115 0.647 0.371 0.064
Transmuted quadratic rank 282.702 288.702 288.952 296.518 0.688 0.372 0.074

Weibull 283.059 287.059 287.182 292.269 0.651 0.390 0.068
Exponential 392.742 394.742 394.783 397.347 3.225 17.076 3.392
Gamma 286.467 290.467 290.591 295.678 1.027 0.695 0.147

Log-Normal 296.840 300.840 300.963 306.050 1.313 1.380 0.267
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Figure 4.4: P-P plot estimated for transmuted cubic and quadratic rank Weibull and Weibull
distributions.
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yses by using the Martingale-type residual and the deviance residual; see, for example,

McCullagh and Nelder (1989), Barlow and Prentice (1988) and Therneau et al. (1990) for

pertinent details. The �rst one, the martingale-type residual, was introduced by Therneau

et al. (1990) and is based on a counting process. For the cubic rank transmuted Weibull

distribution, the martingale-type residual can be expressed as

rMi = (3− λ1 − λ2)ζ(ti) + (λ1 + 2λ2 − 3)(ζ(ti))
2 + (1− λ2)(ζ(ti))

3, ti > 0, (4.16)

where ζ(ti) = e−(ti/β)
µ
, i = 1, . . . , n.

In addition, it is possible to use the deviance residual that has been widely used in

generalized linear models. This was also proposed by the same authors (Therneau et al.

(1990)) and it is a transformation of the martingale residual to attenuate the skewness. In

our case, the deviance residuals are given by

rDi = sign(r̂Mi) [−2 (r̂Mi + log (1− r̂Mi))] (4.17)

for i = 1, . . . , n.

Figure 4.5 shows the Martingale and deviance residuals.
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Figure 4.5: (a) Martingale residuals; (b) Deviance residuals.

Global and local in�uence

In this section, we perform global and local in�uence analyses by considering the cubic

rank transmuted Weibull distribution as presented in Section 3.2.1.

For analysing the local in�uence, we consider the response variable perturbation, i.e.,

we consider that each ti is peturbed as tim = ti+miVt , where Vt is a scale factor that may

be the estimated standard deviation of T and mi ∈ R. Then, the perturbed log-likelihood
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function can be expressed as

` (ψ|t,m) = n log(µ)− nµ log(β) + (µ− 1)
n∑
i=1

log tim −
n∑
i=1

(
tim
β

)µ
(4.18)

+
n∑
i=1

log
[
(3− λ1 − λ2) + 2(λ1 + 2λ2 − 3)e−(tim/β)

µ
+ 3(1− λ2)e−2(tim/β)

µ
]
.

We can see possible presence of in�uential points in panels a and b of Figure 4.6, which

show the generalized Cook's and likelihood distances.
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Figure 4.6: (a) Cook's distance; (b) Likelihood distance.

Note that observation 25 appears to be a discrepant point under both the residual

analysis of adjusted distribution and Cook's and likelihood distances for perturbed and

non-perturbed data. To assess the impact of the detected in�uential observations, the

RCθj was calculated and the impact was measured by using the total and maximum

relative changes and the likelihood displacement given by TRC =
∑np

i=1

∣∣RCθj ∣∣ = 4.18,

MRC = maxj
∣∣RCθj ∣∣ = 3.65 and LD(I)(θ) = 2{l(θ̂− l(θ̂I)} = 9.79, with np = 4 (the num-

ber of parameters). In fact, we consider this point as an outlier and the cubic rank trans-

muted Weibull distribution was re-�tted. The MLEs of the parameters and their respective

standard deviations (in brackets) are found to be µ̂ = 2.702 (1.119), β̂ = 2.731 (1.161),

λ̂1 = 0.721 (1.289), and λ̂2 = 0.968 (1.617). The re-�tted distribution can be seen in Figure

4.7. Also, the estimated mean of breaking stress to the carbon �bres turns out to be 3.110

and the corresponding standard error to be 1.025.
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Figure 4.7: Cumulative curves: empirical vs estimated for cubic rank transmuted Weibull distri-
bution.

4.5.3 Application: Cattle sexual precocity data

In order to illustrate the usefulness of the cubic rank transmuted log-logistic distribu-

tion for modelling, in this section we consider a data set concerned with a study on the

economic results concerning beef cattle which are directly related to their genetic prepo-

tency, presented in Section 2.5.

The transmuted quadratic and cubic rank log-logistic distributions and the log-logistic

distribution were �tted to these data. Table 4.4 provides the MLEs, their corresponding

standard errors and 95% con�dence intervals for the model parameters. For these distri-

butions, the computed −2 log -likelihood and AIC values are presented in Table 4.5.

Table 4.4: MLEs of the parameters of the transmuted quadratic and cubic ranks log-logistic and
log-logistic distributions.

Distribution Parameter Estimate
Standard 95% Con�dence Interval
Error Lower Upper

µ 2.8758 0.0208 2.8351 2.9165
Transmuted β −16.0305 0.1263 −16.2781 −15.7829
Cubic Rank λ1 0.3201 0.0131 0.2942 0.3457

λ2 −0.8505 0.0304 −0.9101 −0.7908

Transmuted µ 3.0503 0.0220 3.0073 3.0933
Quadratic Rank β −17.9079 0.1369 −18.1763 −17.6395

λ −0.8139 0.0120 −0.8374 −0.7904

Log-Logistic µ 2.5832 0.0160 2.5519 2.6145
β −16.7482 0.1003 −16.9448 −16.5516

Both criteria provide evidence in favor of the cubic rank transmuted log-logistic dis-

tribution. This result is corroborated further by the �tted distribution over the histogram

of the data presented in the upper right panel of Figure 4.8, and by the �tted survival

functions under the Kaplan-Meier estimator on the lower left panel of Figure 4.8. In order

to examine the global �t of the distribution, the P-P plot is presented in Figure 4.9.
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Table 4.5: Computed −2 log likelihood and AIC values for the log-logistic and transmuted log-
logistic of orders 1 and 2 distributions.

Distribution −2 log AIC AICC BIC A∗ W ∗

Transmuted cubic 235160 235168 235168 235199 94.15 19.30
Transmuted quadratic 236201 236207 236207 236230 142.53 26.63

Log-Logistic 236745 236749 236749 236764 3113.52 662.43

time (days)

D
en

si
ty

0 500 1000 1500 2000 2500 3000

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20
0.

00
25

0.
00

30

Transmuted 2
Transmuted 1
Log−Logistic

0 500 1000 1500 2000 2500 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time (days)

S
ur

vi
va

l

Kaplan−Meier
Transmuted 2
Transmuted 1
Log−Logistic

0 1000 2000 3000 4000 5000

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

time (days)

h(
t)

Figure 4.8: Upper Panels: histogram and survival curves; Lower Panel: hazard estimate curve.
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Figure 4.9: P-P plot estimated for transmuted cubic and quadratic rank log-logistic and log-logistic
distributions, respectively.
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Upon using the most appropriate distribution for describing the time up to �rst calving,

viz., the cubic rank transmuted log-logistic distribution, we turn our attention to estimating

the mean time for the �rst calf to occur and it is determined to be 1252.54 days (or

approximately 41.75 months), with a standard error of 308.32 days. Also, the hazard curve

possesses two modes: the �rst one occuring at 814.5 days and the second one occuring at

1205 days.



Chapter 5

e-Transmuted family of distribution

Although transmutation maps are a convenient way to construct new distributions, the

restricted parametric space of the extra parameter λ may be a problem in some situations.

As an alternative to this class of model, in this Chapter we present the regression e-

Transmuted family of model (or Exponential Transmuted), which has the property that

the extra parameter λ can take any real value.

5.1 Formulation of the model

Let Y be a continuous and positive random variable that represents the lifetime of

an individual in some population of interest. Consider the parametric family of cumula-

tive distribution functions G = {G(y|θ) : θ ∈ Θ} where θ contains a set of k unknown

parameters with Θ ⊆ Rk. The �rst objective of this work is to construct a larger family of

distributions that contains the baseline family G. More speci�cally, we would like to �nd a

family of distributions F (y|θ, ω) where ω ∈ R that satis�es

F (y|θ, ω = 0) = G(y|θ) , for all y , θ ∈ Θ . (5.1)

In this sense, the new family FG = {F (·|θ, ω) : θ ∈ Θ , ω ∈ R} not only generalizes G but is
also �centred� around G in the scale de�ned by the parameter ω. The proposed generalized

family is de�ned next.

De�nition 5.1.1 Given a parametric family of distributions G, the cumulative distribution
functions in the extended family FG are de�ned as follows:

F (y|θ, ω) =
1− e−ωG(y|θ)

1− e−ω
, ω ∈ R ,θ ∈ Θ. (5.2)

We will call the generated family FG, the exponential extension (or e-extension) of the

baseline family G and we will use the notation Y ∼ e-extension(ω,G(·|θ)).

67
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It is trivial to see that F (y|θ, ω) is in fact, a cumulative distribution function. In order

to graphically see that the e-extended family is centred at G, we can take, for example, G to

be an exponential distribution with unit mean, that is G(y|θ) = 1− exp(−y). Cumulative

distribution functions in FG have been plotted in Figure 5.1 where we can clearly see

that the functions are centred around the baseline distribution G either above or below,

depending on the sign of ω.
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Figure 5.1: The e�ect of ω in the cdf curves of the e-extended family with G(y) exponentially
distributed.

In more generality, that is, for any distributionG(y|θ), a simple application of L'Hospital's

rule shows that F (y|θ, ω = 0) = G(y|θ) since

lim
ω→0

F (y|θ, ω) = lim
ω→0

∂/∂ω
[
ωe−ωG(y|θ)]

∂/∂ω [ 1− e−ω]
= G(y|θ) for all y,θ

In this Chapter, we focus on distributions de�ned on the positive real line but clearly our

construction is valid for any support of the random variable Y . Also, we will assume from

now on that the functional form of the distributions in G is known. Now, the probability

density functions in an e-extended family can be written as:

f(y|θ, ω) =
ωg(y|θ)e−ωG(y|θ)

1− e−ω
, θ ∈ Θ , ω ∈ R, (5.3)

where g(y|θ) is the density corresponding to G(y|θ). Applying L'Hospital rule again, shows

that f(y|θ, ω = 0) = g(y|θ).

The following result, provides a simple probabilistic interpretation of our construction

(5.2) and (5.3). More explicitly, a random variable Y that follows an e-extension of a given

G can be constructed via a truncated (to lie in the unit interval (0, 1)) and then transformed
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(by the quantile function G−1) exponential random variable.

Result 1 Let Z be an exponential random variable with rate ω which has been truncated

to lie in the unit interval (0, 1). Then Y = G−1(Z|θ) ∼e-Transmuted(ω,G).

We clearly have that

P (Z ≤ z) =
1− exp(−ω z)
1− exp(−ω)

for any z ∈ (0, 1) so that for any y > 0 we have

P (Y ≤ y) = P (G−1(Z|θ) ≤ y) = P (Z ≤ G(y|θ)) =
1− exp(−ωG(y|θ))

1− exp(−ω)
.

This result can be seen as a particular case of the construction of extended parametric

models presented by Verdinelli et al. (1998). Clearly, the result also provides a simple

method to generate random samples from an e-extended family. In particular, the lower

qth quantile of e-extended model is given by

yq = G−1(zq(ω)|θ)

where

zq(ω) = − log [1− q(1− e−ω)]

ω

that is, the composition of two quantiles, �rst for the truncated exponential (zq(ω)) and

then the quantile G−1(·|θ) of the baseline family G . Generation a random samples from

an e-extended family is then trivial by using the inverse method.

5.2 Hazard and related functions

Given that we are interested in distributions with positive support we develop here ex-

pressions for survival and hazard functions. The survival function, which is the probability

of the survival time Y being larger than or equal to some time y, has a simple expression

in terms of the baseline survival function S(y|θ) = 1−G(y|θ), namely

S(y|θ, ω) =
eω S(y|θ) − 1

eω − 1
, (5.4)

so that clearly S(y|θ, ω = 0) = S(y|θ). The other function of interest is the hazard rate

function, which for an e-extended model can be written as

h(y|θ, ω) =
ω h(y|θ)S(y|θ)

1− e−ωS(y|θ)
, (5.5)

where h(y|θ) = g(y|θ)/S(y|θ) is the baseline hazard function. Figure 5.2 shows the be-

haviour of the hazard rate functions for di�erent values of ω when the baseline distribution
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is exponential with mean one.

y

h

ω > 0
ω = 0
ω < 0

Figure 5.2: The e�ect of ω in the hazard curves with G(y) exponential.

We can see from the plot that the hazard rate curves are all asymptote to the constant

baseline when y is large. This result can be generalized as follows.

Proposition 5.2.1 For all θ and ω, we have that h(y|ω,θ) ∼ h(y|θ) when y →∞.

Proof: The hazard rate function (5.5) can be written as

h(y|θ, ω) = h(y|θ)×R(y,θ) where R(y,θ) =
ωS(y|θ)

1− e−ωS(y|θ)
.

For any θ ∈ Θ and ω ∈ R, we have that S(y|θ) ∼ 0 and 1− exp(−ω S(y|θ)) ∼ 0 when y is

large, so an application of L'Hospital rule shows that R(y,θ) ∼ 1, which proves the result.

�

5.2.1 Related distributions

The modi�ed negative Gompertz distribution (see Marshall and Olkin (2007b) page

390 and Dahiya and Hossain (1996)) can be obtained from the construction (5.2) in the

particular case where G is the exponential distribution family with rate θ, that is, when

G(y|θ) = 1−exp(−θ y). It is interesting to note that we naturally allow the shape parameter

ω to be negative but this does not seem to be acknowledged in the work of Marshall and

Olkin (2007b) and Dahiya and Hossain (1996). The corresponding density can be written

as

f(y|ω, θ) =
sign(ω)e−ω

σ(θ)(1− e−ω)
exp

{
−y − κ(ω, θ)

σ(θ)
+ sign(ω) exp

(
−y − κ(ω, θ)

σ(θ)

)}
, (5.6)
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with ω ∈ R, κ(ω, θ) = log |ω|/θ and σ(ω) = 1/θ. Therefore, if ω < 0, expression (5.6)

shows that the e-extended model corresponds to a subset of truncated (to the positive real

line) Gumbel distribution.

For a given value of θ ∈ Θ, the densities (5.3) form an exponential family with natural

parameter ω and su�cient statistic G(y|θ). This will clearly have important implications

for making inference on the family F , namely, for maximum likelihood. In fact, our con-

struction can be seen as a particular case of a more general construction of the form

F (y|ω,θ) = g(y|θ) exp (ωR(y|θ)− ψ(ω,θ))

(see, for example, Rayner et al. (2009)), where our construction corresponds to the choice

R(y|θ) = −G(y|θ) and as a consequence of that choice, the function ψ(ω,θ) = log((1 −
e−ω)/ω) does not depend on θ.

Another related construction is the so-called rank transmutation mapping introduced

by Shaw and Buckley (2009). The authors de�ne a rank transmutation map, in the con-

tinuous case, as T (u) = F (G−1(u)) where F and G are continuous cumulative distribution

functions with the same support and varying in di�erent parametric families. The authors

use this, and other related mappings, with copula-base simulation in mind, which we do

not pursue here, but we can think of their construction as similar to ours in the following

sense. Assume, for illustration purposes, that the functions F and G vary in parametric

families so that the mapping T can be indexed by a parameter ω so that we have T (u|ω).

If the identity mapping is included into consideration, that is, T (u|ω = 0) = u then clearly

T (G(y|θ)|ω) will generate a family that includes G as a particular case when ω = 0. The

simplest example is the quadratic transmutation

T (u|ω) = u+
ω

2
u(1− u).

Then we can construct a larger family via

F (y|θ, ω) := T (G(y|θ)|ω) = G(y|θ) +
ω

2
G(y|θ)S(y|θ), (5.7)

with the only di�erence that this instance requires that ω ∈ [−2, 2] since any cumulative

distribution function is bounded between 0 and 1. There is a simple heuristic relationship

between the two approaches which helps to understand the parametrizations used. We can

write the densities corresponding to (5.7) as:

f(y|θ, ω) = f(y|θ)

[
1 + ω

(
1

2
−G(y|θ)

)]
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For small values of ω(1−G(y|θ)) we have that

1 + ω

(
1

2
−G(y|θ)

)
≈ exp(1/2−G(y|θ))

and a renormalization (in order to integrate to one) will arrive at the same expression as

(5.3), hence the use of the same parameter ω in both (5.2) and (5.7).

There also is a relationship with the so-called local mixture models of Anaya-Izquierdo

and Marriott (2007). In this case the extension of the densities is as follows

f(y|θ, ω) = f(y|θ) [1 + ωR(y,θ)] ,

where the function R(y,θ) requires that the expectation with respect to f(y|θ) is zero. In

this case the choice R(y,θ) = 1/2−G(y|θ) gives clearly the same distribution as (5.7).

Our construction has some advantages over the alternative construction in the sense

of having a wider range of behaviours. Figure 5.3 shows the comparison between the e-

extended and the quadratic rank transmuted model, respectively, by assuming that G(y|θ)

is exponentially distributed. We can observe that the e-extended model has a wider range

of shapes when the parameter |ω| ≥ 2 and a similar behaviour to the rank transmuted one

when the parameter |ω| < 2.

e−extended

y

f

− 2 < ω < 0
ω = 0
0 < ω < 2

transmuted

y

f

− 2 < ω < 0
ω = 0
0 < ω < 2

e−extended

y

f

ω ≤ − 2
ω = 0
ω ≥ 2

Figure 5.3: The e�ect of ω in the density curves of the e-extended and transmuted families, with
G(y|θ) exponential.

5.3 E-extended Weibull

Given its central place in survival analysis, we focus here on e-extensions of the Weibull

distribution. If Y is a positive random variable following a Weibull distribution then the
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probability density and cumulative distribution functions are given by

g(y|φ, β) =
β

φβ
yβ−1e−(y/φ)

β
, G(y|φ, β) = 1− e−(y/φ)β , (5.8)

where φ > 0 and β > 0 are scale and shape parameters, respectively, so in this case we

have that θ = (φ, β). The shape parameter β is linked to the hazard behavior: if β ∈ [0, 1)

the hazard is decreasing; if β > 1 the hazard is increasing and; the exponential distribution

is a particular case if β = 1 and the hazard is constant. By using the expressions above

the Weibull e-extended model density can be written as:

f(y|φ, β, ω) =
ωβe−ω

(1− e−ω)φβ
yβ−1 exp

{
−
(
y

φ

)β
+ ω exp

[
−
(
y

φ

)β]}
, (5.9)

with ω ∈ R and (φ, β) ∈ R2
+. Figure 5.4 shows some examples of probability density Weibull

e-extended curves for di�erent values of parameters β and ω, with �xed φ = 0.7.
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Figure 5.4: Probability density and cumulative distribution function Weibull e-transmuted model,
respectively, for di�erent values of ω and φ = 0.7.

The corresponding hazard rate function is given by

h(y|ω, φ, β) =
ωβyβ−1e−(y/φ)

β

eφβ
[
e−γ(y)e

−(y/φ)β − 1
] . (5.10)

There are three di�erent behaviours of the hazard rate function, which are described next:

Case I: if the baseline model is Weibull with parameter β > 1, i.e., the base distribution
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hazard is increasing, see for example Figure 5.5-(a).

• For ω ≤ 0 the hazard curves continue being increasing but they are dominated

by the Weibull baseline model;

• For ω > 0 the hazard curves present two in�exion points, i.e., initially increase

until the point t1 when start to decrease up to t2 and increase again for times greater

than t2 (the changes of curves behavior are evident for greater values of ω).

Case II: if the baseline model is Weibull with parameter β < 1, i.e. the baseline distribu-

tion hazard is decreasing, then the behavior of the Weibull e-extended hazard is the

same for all ω, see for example Figure 5.5-(b).

Case III: if the baseline model is Weibull with parameter β = 1, i.e the baseline distri-

bution is exponential and the hazard is constant, see for example Figure 5.5-(c).

• For ω > 0 the hazard of Weibull e-extended model is decreasing;

• For ω < 0 the hazard increasing.

Note that in all cases, as explained by Proposition 5.2.1, the e-extended hazard

converges to the baseline hazard for large values of y.
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Figure 5.5: The e�ect of ω in the hazard curves with G(y) Weibull(µ, β): (a) β > 1; (b) β < 1;
and (c) β = 1.

5.4 Parameter estimation

5.4.1 Underlying exponential family structure

One of the advantages of this choice is that we can found easily expressions for entries

of the expected Fisher information.
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This particular choice of R (R(y|θ) = −G(y|θ)), presented in Section 5.2.1 will give

orthogonality between the parameters θ and ω at the underlying base model G. Note that,

−∂
2 log f(y|θ, ω)

∂θ ∂ω
=

∂

∂θ
G(y|θ).

Assuming the standard regularity conditions on the parametric family G we can di�eren-

tiate under the integral sign so that

E

[
−∂

2 log f(Y |θ, ω)

∂θ ∂ω

]
= E

[
∂

∂θ
G(Y |θ)

]
=

∂

∂θ
E [G(Y |θ)] ,

where the expectation is taken with respect to f(y|θ, ω). At the baseline model (ω = 0) we

have that f(y|θ, ω) = f(y|θ) so that clearly E[G(y|θ)] = 1/2 since, in that case, G(Y |θ)

follows a uniform distribution on the unit interval. Therefore it follows that

∂

∂θ
E [G(Y |θ)] = 0.

The above result implies that maximum likelihood can proceed iteratively and also

using the so-called pro�le likelihood. Fixing a value of θ the MLE of ω is easily found since

the resultant family is of exponential form.

Let y1, . . . , yn be a random sample of size n from an e-extended distribution. We will

allow for unknown parameters in the baseline distribution G, namely G(yi|θ).

Given the exponential family structure de�ned above, if we �x the values of θ then we

can �nd the corresponding maximum value of ω trivially by solving the non-linear equation

k(ω) =

∑n
i=1G(yi|θ)

n
:= Ḡ(θ). (5.11)

Now, suppose X = (X1, · · · , Xp)
′ a vector of covariates and consider the following

relationship between the vector of covariates and the parameters γ(x) = γ1x1 + . . .+γpxp.

Then the likelihood function is given by

L(ω,θ|y) =
n∏
i=1

p∏
j=1

γjxij
(1− e−γjxij )

g(yi|θ)e−γjxijG(yi|θ). (5.12)

Hence, the log-likelihood function becomes

l = logL(ω,θ|y) =
n∑
i=1

p∑
j=1

log

(
γjxij

1− e−γjxij

)
+ p

n∑
i=1

log g(yi|θ)

−
n∑
i=1

p∑
j=1

γjxijG(yi|θ). (5.13)
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Therefore, the maximum likelihood estimates of γ and the vector of parameters θ, inher-

ent to the baseline distribution, which maximize (5.13) must satisfy the following normal

equations

∂l

∂γj
=

n∑
i=1

x∗i

p∑
j=1

(1− e−γjxij − γjxije−γjxij )
γjxij (1− e−γjxij )

−
n∑
i=1

x∗iG(yi|θ) = 0,

∂l

∂θj
= p

n∑
i=1

g′θj (yi|θ)

g(yi|θ)
−

n∑
i=1

p∑
j=1

γjxij

n∑
i=1

G′θj (yi|θ) = 0,

with x∗i the values of xi �xed at the point j. Note that, the maximum likelihood estimator

(γ̂, θ̂) is obtained by solving the above nonlinear system of equations. Furthermore, the

observed Fisher Information matrix is given in Appendix A.4.

In order to compute the standard error and asymptotic con�dence interval we use the

usual large sample approximation in which the maximum likelihood estimators of γ,θ can

be treated as being approximately (p + k)−variate normal, p is the number of covariates

and k the number of parameters of the baseline distribution. For example, as n→∞ the

asymptotic distribution of the MLE (γ̂p, θ̂k), for p = k = 1, is given by,(
γ̂

θ̂

)
∼ N

[(
γ̂

θ̂

)
,

(
V̂11, V̂12

V̂21, V̂22

)]
, (5.14)

with, V̂ij = Vij |θ=θ̂ and it is determined by the inverse of Fisher information matrix.

Thereby, an approximate 100(1 − α)% two sided con�dence intervals for γ and θ are,

respectively, given by

γ̂ ± zα/2
√
V̂11 and θ̂ ± zα/2

√
V̂22 ,

where zα is the upper α− th percentile of the standard normal distribution.

5.5 Weibull e-extended Model

5.5.1 Parameter estimation

The maximum likelihood estimates, MLEs, of the parameters of the Weibull regression

e-transmuted probability distribution function are given by the following: Let Y1, . . . , Yn

be a sample of size n from a Weibull e-transmuted distribution and x = (x1, . . . , xp)
′ the

vector of covariates with γ(x) = γ1x1 + . . . + γpxp. Then the likelihood function of the

Weibull regression e-transmuted model is given by
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L(ω, φ, β|y) =
βnp

φnpβ

n∏
i=1

p∏
j=1

{(
γjxij

1− e−γjxij

)
e−γjxijyβ−1i

× exp

{
−
(
yi
φ

)β
+ γjxij exp

[
−
(
yi
φ

)β]}}
. (5.15)

Hence, the log-likelihood function becomes

l = logL(ω, φ, β|y) = np log β − npβ log φ+
n∑
i=1

p∑
j=1

log

(
γjxij

1− e−γjxij

)
−

n∑
i=1

p∑
j=1

γjxij

+(β − 1)p

n∑
i=1

log yi −
n∑
i=1

p∑
j=1

[(
yi
φ

)β
− γjxije−(yi/φ)

β

]
. (5.16)

Therefore, the maximum likelihood estimates of γj , φ and β which maximize (5.16)

must satisfy the following normal equations:

∂l

∂γj
=

n∑
i=1

x∗i

p∑
j=1

(1− e−γjxij − γjxije−γjxij )
γjxij (1− e−γjxij )

−
n∑
i=1

x∗i + p

n∑
i=1

x∗i e
−(yi/φ)β = 0,

∂l

∂φ
=

npβ

φ
+
p

φ

n∑
i=1

ϕi +

n∑
i=1

p∑
j=1

γjxij
φ

ϕie
−ϕi = 0,

∂l

∂β
=

np

β
− npφ+ p

n∑
i=1

log yi −
n∑
i=1

p∑
j=1

ϕi log

(
yi
φ

)
−

n∑
i=1

p∑
j=1

γjxijϕi log

(
yi
φ

)
e−ϕi = 0,

with ϕi =
(
yi
φ

)β
and x∗i the values of the covariate xi �xed at the point j.

We denote, the maximum likelihood estimator (γ̂j , φ̂, β̂) and the observed Fisher Infor-

mation is indicated in Appendix A.4.

In order to compute the standard error and asymptotic con�dence intervals we use the

usual large sample approximation in which the maximum likelihood estimators of γj , φ, β

can be treated as being approximately (p + 2)−variate normal. For example, hence as

n→∞, �xing j = 1, the asymptotic distribution of the MLE (γ̂1, φ̂, β̂), are given by, γ̂1

φ̂

β̂

 ∼ N

 γ1

φ

β


 V11 V12 V13

V21 V22 V23

V31 V32 V33


 , (5.17)

with V̂ij = Vij |θ=θ̂ and it is determined by the inverse of observed Fisher information
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matrix.

Therefore, an approximate 100(1− α)% two sided con�dence intervals for γ1, φ and θ

are, respectively, given by

γ̂1 ± zα/2
√
V̂11, φ̂± zα/2

√
V̂22 and β̂ ± zα/2

√
V̂33,

where zα is the upper α− th percentile of the standard normal distribution.

5.5.2 Numerical experiments for the Weibull e-transmuted model

This section presents the results of a Monte Carlo experiment to investigate the �nite

sample behavior of the MLEs. First of all, we consider the Weibull e-transmuted model

without covariates and all results were obtained from 5000 Monte Carlo replications. The

sample sizes n range from 50 to 1000, generated according to a Weibull e-transmuted

distribution as presented in Section 5.3. For that, since φ is a location parameter the

results of the Monte Carlo experiment are una�ected by the choice of φ. We �xed the value

of parameter φ = 2 and we consider di�erent combinations of ω and β parameters values.

We consider a wide range of hazard behaviors, namely β = 0.5, 1.0 and 1.5 (decreasing,

constant and increasing ones, respectively). Also, we considered positive and negative ω's.

In order to check the coverage probability of the con�dence intervals a boostrap study

was made. For that, we generated 200 samples with sample sizes ranging from 50 to 500,

generated according to a Weibull e-transmuted distribution, without covariates, and con-

sidering several values of parameters. We �xed the value of parameter φ = 2 and considered

di�erent combinations of ω and β. For each of the 200 samples, we resampled B = 1000

and constructed the intervals by using the p-boostrap method; Gentle (2009). The coverage

probability of these intervals is presented in Figure 5.6, for the parameters ω, µ and β, left,

middle and right panels respectively, where we can see the closeness to the nominal value,

95%, in all simulated situations.
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Figure 5.6: Coverage probability of intervals for ω, µ and β parameters, respectively, generated
by using the p-bootstrap method for φ = 2 �xed and di�erent values of ω and β.

Now, we consider the Weibull regression e-transmuted model in the presence of two

continuous covariates and all results were obtained from 5000 Monte Carlo replications.
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Table 5.1: Results of a Monte Carlo experiment for the Weibull e-transmuted model with φ = 2
and di�erent combinations of ω and β values. The estimated values presented are the median values
of the 5000 generated samples. Within each horizontal block, the generated samples were subsampled
from the larger one which was generated by using the inverse CDF method.

Generated Sample Estimated Standard Error MSE
(ω;β) Size ω φ β −2 log ω φ β ω φ β

(−0.5; 0.5) 50 −0.409 2.047 0.513 338.2 1.900 1.057 0.104 3.556 1.696 0.116
80 −0.451 2.027 0.506 542.3 1.624 0.923 0.088 3.029 1.461 0.098
100 −0.444 2.033 0.507 679.5 1.516 0.858 0.082 2.785 1.338 0.091
200 −0.467 2.016 0.502 1359.2 1.180 0.680 0.066 2.057 1.010 0.072
500 −0.468 2.014 0.502 3404.0 0.832 0.483 0.049 1.311 0.661 0.052
1000 −0.490 2.002 0.501 6803.6 0.629 0.368 0.038 0.904 0.472 0.040

(0.5; 0.5) 50 0.390 1.917 0.501 280.2 1.911 1.131 0.090 3.599 1.770 0.100
80 0.420 1.948 0.498 447.2 1.659 0.988 0.075 2.985 1.500 0.083
100 0.468 1.961 0.499 559.4 1.540 0.925 0.070 2.710 1.380 0.076
200 0.465 1.979 0.498 1121.7 1.185 0.711 0.054 1.970 1.003 0.057
500 0.491 1.992 0.500 2805.6 0.800 0.479 0.037 1.125 0.609 0.038
1000 0.477 1.987 0.499 5612.0 0.575 0.344 0.027 0.756 0.414 0.028

(−2; 1) 50 −1.577 2.103 1.074 334.6 1.994 0.481 0.253 4.574 0.683 0.327
80 −1.699 2.076 1.048 536.6 1.719 0.421 0.218 3.678 0.586 0.275
100 −1.778 2.062 1.040 671.6 1.603 0.397 0.202 3.356 0.552 0.254
200 −1.845 2.038 1.029 1346.2 1.258 0.317 0.162 2.493 0.434 0.196
500 −1.904 2.024 1.015 3369.9 0.891 0.230 0.119 1.576 0.298 0.138
1000 −1.953 2.012 1.009 6744.2 0.682 0.179 0.093 1.061 0.220 0.103

(2; 1) 50 1.554 1.843 0.975 240.3 2.011 0.612 0.143 3.912 0.810 0.163
80 1.671 1.887 0.978 385.2 1.748 0.533 0.115 3.328 0.693 0.126
100 1.708 1.905 0.977 482.4 1.628 0.495 0.102 2.977 0.637 0.112
200 1.854 1.946 0.985 966.8 1.274 0.386 0.073 2.128 0.478 0.077
500 1.904 1.973 0.992 2422.8 0.865 0.262 0.046 1.266 0.305 0.048
1000 1.943 1.984 0.996 4849.0 0.627 0.188 0.032 0.827 0.211 0.033

(−0.5; 1.5) 50 −0.367 2.022 1.546 282.1 1.881 0.349 0.309 3.477 0.430 0.403
80 −0.393 2.025 1.535 452.9 1.614 0.303 0.266 2.984 0.373 0.343
100 −0.391 2.020 1.528 566.9 1.496 0.284 0.246 2.785 0.347 0.316
200 −0.429 2.011 1.515 1136.4 1.185 0.227 0.199 2.095 0.273 0.248
500 −0.461 2.005 1.504 2845.3 0.840 0.162 0.147 1.341 0.187 0.173
1000 −0.486 2.001 1.499 5692.9 0.633 0.124 0.115 0.909 0.138 0.129

(0.5; 1.5) 50 0.355 1.970 1.489 269.1 1.908 0.379 0.269 3.538 0.458 0.335
80 0.406 1.978 1.489 431.5 1.645 0.329 0.227 3.033 0.395 0.271
100 0.429 1.983 1.491 540.2 1.523 0.305 0.208 2.678 0.360 0.246
200 0.452 1.988 1.493 1082.4 1.173 0.236 0.162 1.886 0.272 0.182
500 0.480 1.995 1.498 2709.7 0.794 0.159 0.112 1.129 0.176 0.120
1000 0.493 1.999 1.501 5424.6 0.570 0.114 0.081 0.739 0.123 0.085

Similar to the �rst numerical example, the sample sizes n range from 50 to 1000, generated

according to a Weibull regression e-transmuted distribution as presented in Section 5.3.

Again, we �xed the value of parameter φ = 2 and we consider di�erent combinations of γ1,

γ2 (the regressors) and β parameters values. We consider a wide range of hazard behaviors,

namely β = 0.5, 1.0 and 1.5 (decreasing, constant and increasing ones, respectively).

We checked the coverage probability of the con�dence intervals for sample sizes ranging

from 50 to 2000, generated according to a Weibull e-transmuted distribution, in the pres-

ence of two covariates, and considering several values of parameters as presented in Table

5.2. Similar to which was made in the �rst simulation study, we �xed the value of parame-
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ter φ = 2 and considered di�erent combinations of γ1, γ2 and β. The coverage probability

of these intervals is presented in Figure 5.7, for the parameters γ1 and γ2 (upper panels),

µ and β (lower panels), respectively, where we can see the closeness to the nominal value,

95%, in all simulated situations.
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Figure 5.7: Coverage probability of intervals for γ1, γ2, µ and β parameters, respectively, based
on Monte Carlo experiment for φ = 2 �xed and di�erent values of γ1, γ2 and β.

5.5.3 Goodness-of-�t to the Weibull regression e-transmuted model

One of the most complex problems in parametric statistical methods is the identi�cation

of the distribution that can best �t the data. In general words, the goodness-of-�t of a

statistical model describes how well it �ts into a set of observations. The goodness-of-�t

indices summarize the discrepancy between the observed values and the values expected

under a statistical model.

Also, the goodness-of-�t statistics are usually obtained using asymptotic methods, that

are used in statistical hypothesis testing. As large sample approximations may behave

poorly in small samples, a great deal of research using simulation studies has been devoted

to investigate under which conditions the asymptotic p-values of goodness-of-�t statistics

are accurate (i.e., how large the sample size must be for models of di�erent sizes), Tollenaar

and Mooijaart (2003).

Some general indices and statistics can be used in goodness-of-�t tests like Akaike in-

formation criteria, bayesian factor, Anderson-Darling, Cramér-von Mises, among others.
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Table 5.2: Results of a Monte Carlo experiment for the Weibull regression e-transmuted model with
φ = 2 and di�erent combinations of γ1, γ2 and β values. The estimated values presented are the
median values of the 5000 generated samples. Within each horizontal block, the generated samples
were subsampled from the larger one which was generated by using the inverse CDF method.

Generated Sample Estimated Estimated Error MSE

(γ1; γ2;β) Size γ1 γ2 φ β γ1 γ2 φ β γ1 γ2 φ β

(0.5, 2, 0.5) 50 0.524 2.018 1.924 0.509 1.169 0.972 1.579 0.055 1.969 3.346 2.450 0.056

80 0.513 2.026 1.987 0.505 0.882 0.799 1.347 0.043 1.301 3.164 1.968 0.043

100 0.505 2.018 1.986 0.505 0.772 0.721 1.224 0.038 1.085 3.061 1.747 0.039

500 0.505 1.994 1.990 0.501 0.330 0.329 0.574 0.017 0.383 2.558 0.695 0.017

1000 0.500 1.995 1.993 0.500 0.231 0.233 0.408 0.012 0.257 2.470 0.474 0.012

(2, 0.5, 0.5) 50 2.207 0.508 2.047 0.514 1.354 0.450 1.284 0.060 2.089 2.726 1.833 0.062

80 2.095 0.512 2.059 0.509 1.035 0.349 1.048 0.047 1.490 2.573 1.386 0.048

100 2.078 0.505 2.035 0.507 0.914 0.309 0.923 0.042 1.270 2.548 1.215 0.043

500 2.009 0.499 2.000 0.501 0.398 0.136 0.409 0.018 0.470 2.389 0.478 0.019

1000 2.001 0.502 1.997 0.501 0.280 0.096 0.291 0.013 0.315 2.340 0.324 0.013

(0.5, 2, 1) 50 0.525 2.020 1.963 1.018 1.106 0.908 0.764 0.109 1.971 3.350 1.170 0.115

80 0.514 2.027 1.994 1.011 0.866 0.773 0.667 0.086 1.301 3.165 0.906 0.089

100 0.505 2.018 1.993 1.010 0.762 0.707 0.608 0.076 1.084 3.061 0.801 0.079

500 0.505 1.994 1.995 1.002 0.330 0.329 0.288 0.034 0.383 2.558 0.324 0.034

1000 0.500 1.995 1.997 1.001 0.231 0.233 0.204 0.024 0.257 2.470 0.223 0.024

(2, 0.5, 1) 50 2.207 0.508 2.023 1.029 1.344 0.447 0.638 0.120 2.089 2.726 0.836 0.127

80 2.095 0.512 2.029 1.018 1.033 0.349 0.513 0.094 1.490 2.573 0.630 0.098

100 2.078 0.505 2.017 1.014 0.914 0.309 0.457 0.084 1.270 2.548 0.553 0.087

500 2.009 0.499 2.000 1.001 0.398 0.136 0.205 0.037 0.470 2.389 0.225 0.038

1000 2.001 0.502 1.999 1.002 0.280 0.096 0.145 0.026 0.315 2.340 0.155 0.026

(0.5, 2, 1.5) 50 0.527 2.019 1.975 1.527 1.109 0.911 0.528 0.164 1.970 3.348 0.738 0.176

80 0.514 2.027 1.996 1.516 0.864 0.775 0.449 0.128 1.299 3.165 0.572 0.136

100 0.505 2.018 1.995 1.515 0.764 0.708 0.409 0.114 1.084 3.061 0.509 0.120

500 0.505 1.994 1.997 1.502 0.330 0.329 0.192 0.050 0.383 2.558 0.210 0.052

1000 0.500 1.995 1.998 1.501 0.231 0.233 0.136 0.035 0.257 2.470 0.145 0.036

(2, 0.5, 1.5) 50 2.207 0.508 2.015 1.543 1.345 0.448 0.426 0.179 2.089 2.726 0.528 0.196

80 2.095 0.512 2.020 1.527 1.034 0.349 0.341 0.140 1.490 2.573 0.402 0.150

100 2.078 0.505 2.011 1.521 0.914 0.309 0.306 0.125 1.270 2.548 0.352 0.133

500 2.009 0.499 2.000 1.502 0.398 0.136 0.137 0.055 0.470 2.389 0.147 0.057

1000 2.001 0.502 1.999 1.502 0.280 0.096 0.097 0.039 0.315 2.340 0.102 0.040

Another ones are graphical based, for example the probability-probability and QQ plots;

or quantify a distance between the empirical distribution function of the sample and the

cumulative distribution function of the reference distribution, for example, the widely used

Kolmogorov-Smirnov test. In this section, we will focused in two quadratic distance meth-

ods: Anderson-Darling and Cramér-von Mises and consider the following description of the

test.

First, let Y1, . . . , Yn be random variables from a family of distribution and F (·) the

cumulative distribution function. Then, consider the following hypothesis:
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{
H0 : F (y|θ) ∈ F =

{
F (·|ω,θ) : ω ∈ R,θ ∈ Θk

}
H1 : F (y|θ) /∈ F =

{
F (·|ω,θ) : ω ∈ R,θ ∈ Θk

} . (5.18)

It is equivalent to test the alternative hypothesis as being H1 : F (y) 6= F (x|θ),∀θ ∈ Θ.

Let ψ(Y ) be a test statistic, in this particular case two that belong to the quadratic

class of empirical distribution function statistics, Anderson-Darling and Cramér-von Mises

statistics (see, for example, Anderson (1962) and Duchesne et al. (1997)). This class of

statistics is based on the squared di�erence (Fn(y)− F0(y))2 and have the following general

form:

ψ(Y ) = n

∫ +∞

−∞

(
Fn(y)− F(y|θ̂)

)2
κ(y)dF (y)

where κ(·) weights the squared di�erence and Fn(·) is the empirical distribution function

and F0(·) is the cumulative distribution function under H0. The Anderson-Darling and the

Cramér-von Mises statistics are de�ned, respectively, by

ψAD(Y ) = n

∫ +∞

−∞

(
Fn(y)− F(y|θ̂)

)2 [
F(y|θ̂)

(
1− F(y|θ̂)

)]
dF (y) (5.19)

and

ψCvM (Y ) = n

∫ +∞

−∞

(
Fn(y)− F(y|θ̂)

)2
dF (y). (5.20)

The �rst interest is to investigate the type I error, which is the incorrect rejection of

a true null hypothesis, i.e. P (Reject H0|H0 is true) = α1. For that, we need the sampling

distribution of ψAD(Y ) and ψCvM (Y ) under the null hypothesis F (x|θ) for some θ ∈ Θ.

Note that, the sampling distribution of ψAD(Y ) and ψCvM (Y ) depending on θ. In this

case, we use the θ̂0 and use the sampling distribution of ψAD(Y ) and ψCvM (Y ) when

θ = θ̂0. Then, we simulated from F (y|θ̂), i.e., from the Weibull e-transmuted model and

the quantile 100(1 − α1)% of the Anderson-Darling and the Cramér-von misses statistics

were calculated and given by ψ1−α1
AD (Y ) and ψ1−α1

CvM (Y ), respectively.

Then, the initial Monte Carlo experiment with 1000 samples was used to set the corre-

sponding nominal values when α1 = 5% and 10% for di�erent combinations of the param-

eters. In order to check the rejection rate behaviors, we use the non-parametric bootstrap

method to resample B = 1000 times from Monte Carlo samples and the rejection rates are

showed in the Figure 5.8. Note that, we analysed for di�erent situations: decreasing and

increasing hazards (β = 0.5 and 1.5, respectively) and ω parameter being negative and

positive. From Figure 5.8, it is clear that in all situations the rejection rates are close to

the nominal values.

Also, extensions to the theory of hypothesis testing include the study of the power

of tests. Then, let's de�ne the type II error as the probability of failure to reject a false

null hypothesis, i.e., when the null hypothesis is false but erroneously fails to be rejected,
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Figure 5.8: Probability of error type I by using Anderson-Darling and Cramér-von-Mises statistics
for di�erent combinations of the parameters β and ω and �xed φ = 2 by considering α1 = 5% and
10% .

P(Not reject H0|H0 is false) = 1− α2. Then the probability of correctly rejecting the null

hypothesis given that it is false is the complement of the false negative rate, α2.

In order to check the power of the test, initially, let's assume a more general test, pre-
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sented in the composite hypothesis (5.18). As described before, a Monte Carlo experiment

with 1000 samples was used to verify the sampling distribution of the tests statistics, for dif-

ferent combinations of the parameters. After, we used the parametric bootstrap method to

resample B = 1000 times from Monte Carlo samples and the critical regions were de�ned.

Now, we simulated by using the Monte Carlo method from the log-logistic distribution

with location parameter φ = φ̂, the MLE under the null hypothesis and β = β∗ varying as

shown in Figure 5.9. Finally, 1000 ψAD(Y ) and ψCvM (Y ) were calculated for each β∗ and

the rejection rate was used to compute the power of the test as presented in Figure 5.9.
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Figure 5.9: Power of the tests Anderson-Darling and Cramér-von Misses for n = 100 and di�erent
values of β.
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Figure 5.10: Cumulative distribution curves for the log-logistic and Weibull e-Transmuted models
when β = 0.1 and 1.5, respectively; ω and φ were set in the same values then estimated in power
of the test experiment.

In Figure 5.10 we show the cumulative distribution curves for the models log-logistic

and Weibull e-transmuted. It is important to note that the left panel, when β is close to

zero, the curves are close which explain the low Anderson-Darling and Cramér-von Mises
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power of tests. However, when β is more then 1, in left panel we set β = 1.3, the curves

start having di�erent shapes, which is consistent with the observed test power, close to 1.

Furthermore, a second study of power of the test was carried out. For this study, we

consider the following directional simple hypothesis:{
H0 : Y ∼Weibull(φ, β)

H1 : Y ∼ e-Transmuted Weibull(ω, φ, β)

⇒
{
H0 : ω = 0

H1 : ω 6= 0

In order to test these hypothesis, a Monte Carlo experiment with 1000 samples with

size n = 100 was used to check the sampling distribution of the statistics Anderson-Darling

and Cramér-von Mises, i.e. to obtain the points ψ1−α1
AD (Y ) and ψ1−α1

CvM (Y ). Then, for each

sample, we used the bootstrap non-parametric method resampling B = 1000 times and, by

using this estimates, we calculated the quadratic distances presented in equations (5.20)

and (5.19). The results of this experiment are showed in Figure 5.11.

0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ω

P
ow

er
 o

f T
es

t

Anderson Darling
Cramér−von Misses

β = 0.5

−4 −2 0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ω

P
ow

er
 o

f T
es

t

Anderson Darling
Cramér−von Misses

β = 1.5

Figure 5.11: Power of the tests Anderson-Darling and Cramér-von Mises with sample size n = 100
and for di�erent combinations of the parameters β and ω and �xed φ = 2 when Y ∼Weibull(φ, β).

It is important to note that, when the parameter ω is close to zero, the power of the

test is about 5%. The power of the test increases when ω moves away from zero positively

or negatively. Also, note that the test is more sensible for negative ω's than for positive

ones since the curves are asymmetric.



Chapter 6

Conclusions and perspectives

In this research, we propose a new generalization of the log-logistic, the transmuted

log-logistic distribution. The proposed distribution is constructed by using a quadratic

rank transmutation map and taking the log-logistic distribution with two parameters as

the baseline distribution. We also propose the use of a new generalization of the log-logistic

distribution, the transmuted log-logistic distribution, in a Bayesian context and using a

regression approach.

We have provided closed expressions for several probabilistic measures including the

probability density function, function hazard, moments, quantile function, mean, variance,

and median.

For each presented model, a simulation study was performed, from which we learned

that the maximum likelihood estimate bias and the standard error decrease when the

sample size is increased. On the other hand, the coverage probability of 95% two sided

con�dence intervals for the model parameters becomes closer to the nominal ones as the

sample size increases.

Furthermore, we proposed to analyze the behavior of the transmuted log-logistic model

in the presence of censored observations. Note that this is the �rst time that this class of

model (transmuted) was applied in the presence of censored data.

In order to �t the parameters of the model, pro�le methods were used and compared

to each other: Pure, Adjusted and Modi�ed pro�le. All pro�le methods can be used to �t

this class of model in the presence of censors, but the Adjusted Pro�le was better when

compared to others.

The applicability of the model was shown using three real datasets. The �rst one refers

to a long term study involving 17026 cows of Tabapua breed studied by EMBRAPA. This

dataset was used in order to show the usefulness of the proposed log-logistic transmuted

model in a classical and Bayesian context, in the presence of covariates (regression ap-

proach) and by considering the cubic log-logistic model.

The second one refers to 148 patients treated with the drug Linezolid. This drug is
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used to treat serious infections, therefore, all patients were treated with Linezolid at an

ICU (Intensive Care Unit), in the city of Maringá. Furthermore, an analysis of in�uential

points, residuals and a bootstrap study were made in order to improve the �tting quality of

the model and validate our results. This dataset was used in order to show the usefulness

of the model in the presence of right censor times.

The last one corresponds to an uncensored study on the breaking stress of carbon

�bers (in Gba), from Nichols and Padgett (2006) and was used to provide an example of

applicability of the cubic Weibull transmuted model.

In all of these applications, we observed that the most probable time of the event of

interest to occur could not be �tted by an usual model in survival analysis. This happens

because the risk function has a high peak at its point of mode, which does not occur with

any usual model.

In addition, to solve the problem of the restricted parametric space of λ parameter,

we proposed a new family of distribution called e-transmuted or exponential transmuted

family of models. Goodness-of-�t by using two quadratic distance measures were presented

to validate the results to the e-transmuted regression Weibull model.

In order to continue this research, we are interested in studying the mixture transmuted

models and its behavior in the presence of a latent variable. In parallel, we are interested

in generalizing the ranking of transmutation maps proposing, for example, the kth order

of a ranking transmutation map.



Appendix A

Hessian matrix

A.1 The hessian matrix of transmuted log-logistic model of

order 1

The Hessian matrix is given by

A =

 A11, A12, A13

A21, A22, A23

A31, A32, A33


where

 V̂11, V̂12, V̂13

V̂21, V̂22, V̂23

V̂31, V̂32, V̂33

 =

 A11, A12, A13

A21, A22, A23

A31, A32, A33


−1

and

A11 = − ∂
2l

∂µ2
= −

n∑
i=1

(
eµxβi − λeµx

β
i

1 + eµxβi − λeµx
β
i + λ

)(
1−

eµxβi − λeµx
β
i

1 + eµxβi − λeµx
β
i + λ

)

+3

n∑
i=1

(
eµxβi

1 + eµxβi

)(
1−

eµxβi

1 + eµxβi

)
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A12 = A21 = − ∂2l

∂µ∂β

= −
n∑
i=1

eµxβi lnxi − λeµxβi lnxi

1 + eµxβi − λeµx
β
i + λ

(
eµxβi lnxi − λeµxβi lnxi

)(
eµxβi − λeµx

β
i

)
(

1 + eµxβi − λeµx
β
i + λ

)2


+3

n∑
i=1

eµxβi lnxi

1 + eµxβi

(
1−

eµxβi

1 + eµxβi

)

A13 = A31 = − ∂2l

∂µ∂λ

=

n∑
i=1

(
eµxβi

1 + eµxβi − λeµx
β
i + λ

)(
1 +

(1− λ)(1− eµxβi )

1 + eµxβi − λeµx
β
i + λ

)

A22 = − ∂
2l

∂β2
=

n

β2
−

n∑
i=1

eµxβi lnx2i − λeµx
β
i lnx2i

1 + eµxβi − λeµx
β
i + λ

−

(
eµxβi lnxi − λeµxβi lnxi

1 + eµxβi − λeµx
β
i + λ

)2


+3

n∑
i=1

eµxβi lnx2i

1 + eµxβi

(
1−

eµxβi

1 + eµxβi

)

A23 = A32 = − ∂2l

∂β∂λ

=
n∑
i=1

(
eµxβi lnxi

1 + eµxβi − λeµx
β
i + λ

+
(1− eµxβi )(eµxβi lnxi − λeµxβi lnxi)

(1 + eµxβi − λeµx
β
i + λ)2

)

A33 = − ∂
2l

∂λ2
= x

n∑
i=1

(
1− eµxβi

1 + eµxβi − λeµx
β
i + λ

)2

A.2 The hessian matrix of transmuted Weibull of order 2

The Hessian matrix is given by

A =


A11, A12, A13, A14

A21, A22, A23, A24

A31, A32, A33, A34

A41, A42, A43, A44
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where


V̂11, V̂12, V̂13, V̂14

V̂21, V̂22, V̂23, V̂24

V̂31, V̂32, V̂33, V̂34

V̂41, V̂42, V̂43, V̂44

 =


A11, A12, A13, A14

A21, A22, A23, A24

A31, A32, A33, A34

A41, A42, A43, A44


−1

and

A11 = − n

µ2
+ 2(λ1 + 2λ2 − 3)

n∑
i=1

ki
ωi

[Sµi logSi − logSi − 2(λ1 + 2λ2 − 3)ki] +

−6(1− λ2)
n∑
i=1

ki [Zµi logSi + 2ki]

A12 = A21 = −n
β

+
1

β

n∑
i=1

[µSµi logSi + Sµi ] +

+
2(λ1 + 2λ2 − 3)

β

n∑
i=1

[
ki
ωi

(µ− µSµi + Sµi Zi) + Sµi Zi

]
+

6(1− λ2)
β

n∑
i=1

Sµi Zi [1 + µZi logSi − 2µSµi Zi logSi]

A13 = A31 = 2

n∑
i=1

ki
ωi

[
(λ1 + 2λ2 − 3)

(2Zi − 1)

ωi
− 1

]

A14 = A41 = 2
n∑
i=1

ki
Si

[
(λ1 + 2λ2 − 3)

(4Zi − 1)

ωi
− 2

]
+ 6

n∑
i=1

kiZi

A22 =
nµ

β2
+ 2µβ2(λ1 + 2λ2 − 3)

Sµi Zi
ωi

[
µSµi − 2(λ1 + 2λ2 − 3)

Sµi Zi
ωi
− µ− 1

]
+

+6(1− λ2)
µ

β

n∑
i=1

Sµi Z
2
i [2µSµi − µ− 1]− µ(µ+ 1)

n∑
i=1

Sµi
β2

A23 = A32 = 2
µ

β

n∑
i=1

Sµi Zi
ωi

[
1− 2(λ1 + 2λ2 − 3)

(2Zi − 1)

ωi

]



91 HESSIAN MATRIX

A24 = A42 = 2
µ

β

n∑
i=1

Sµi Zi
ωi

[
1− 2(λ1 + 2λ2 − 3)

(4Zi − 1)

ωi

]
− 6

µ

β
Sµi Z

2
i

A33 = −
n∑
i=1

(2Zi − 1)2

ω2
i

A34 = A43 = −
n∑
i=1

(2Zi − 1)(1 + 4Zi)

ω2
i

A44 = −
n∑
i=1

(4Zi − 1)2

ω2
i

where Zi = e−(xi/β)
µ
, Si = xi

β and ki =
(
xi
β

)µ
log
(
xi
β

)
e−(xi/β)

µ
.

A.3 The hessian matrix of transmuted log-logistic of order 2

The Hessian matrix is given by

A =


A11, A12, A13, A14

A21, A22, A23, A24

A31, A32, A33, A34

A41, A42, A43, A44


where


V̂11, V̂12, V̂13, V̂14

V̂21, V̂22, V̂23, V̂24

V̂31, V̂32, V̂33, V̂34

V̂41, V̂42, V̂43, V̂44

 =


A11, A12, A13, A14

A21, A22, A23, A24

A31, A32, A33, A34

A41, A42, A43, A44


−1

and
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A11 = 4
n∑
i=1

ηi
(1 + ηi)

[
ηi

(1 + ηi)− 1

]
+ 2

n∑
i=1

ηi

{
λ2 + ηi(6− 2λ2 − 2λ1)

η2i (3− λ1 − λ2) + 2ηi + λ1
+

− (λ2 + ηi(3− λ2 − λ1))2[
η2i (3− λ1 − λ2) + 2ηi + λ1

]2
}

A12 = A21 = 4
n∑
i=1

log xi
ηi

(1 + ηi)

[
ηi

(1 + ηi)− 1

]
+

+2
n∑
i=1

ηi log xi

[
λ2 + ηi(6− 2λ2 − 2λ1)

η2i (3− λ1 − λ2) + 2ηi + λ1

]
+

−
n∑
i=1

ηi
(λ2 + ηi(3− λ2 − λ1))(1 + log xi)[
η2i (3− λ1 − λ2) + 2ηi + λ1

]2

A13 = A31 =

n∑
i=1

[
ηi(λ2 + ηi(3− λ2 − λ1))(ηi − 1)[
η2i (3− λ1 − λ2) + 2ηi + λ1

]2 − 2η2i
η2i (3− λ1 − λ2) + 2ηi + λ1

]

A14 = A41 =

n∑
i=1

[
η2i (λ2 + ηi(3− λ2 − λ1))(ηi − 2)[
η2i (3− λ1 − λ2) + 2ηi + λ1

]2 − 2η2i (1− ηi)
η2i (3− λ1 − λ2) + 2ηi + λ1

]

A22 = 4
n∑
i=1

(log xi)
2 ηi
(1 + ηi)

[
ηi

(1 + ηi)− 1

]
− n

β
+

+2
n∑
i=1

ηi

{
(log xi)

2 [λ2 + ηi(6− 2λ2 − 2λ1)]

η2i (3− λ1 − λ2) + 2ηi + λ1
+

− log xi(λ2 + ηi(3− λ2 − λ1))2[
η2i (3− λ1 − λ2) + 2ηi + λ1

]2
}

A23 = A32 = −
n∑
i=1

{
2ηi log xi(λ2 − λ1ηi − λ2ηi + 3ηi)(1− η2i )[

η2i (3− λ1 − λ2) + 2ηi + λ1
]2 +

+
2η2i log xi

η2i (3− λ1 − λ2) + 2ηi + λ1

}
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A24 = A42 = −
n∑
i=1

{
2ηi log xi(λ2 − λ1ηi − λ2ηi + 3ηi)[ηi(2− ηi)]2[

η2i (3− λ1 − λ2) + 2ηi + λ1
]2 +

− 2ηi log xi(1− ηi)
η2i (3− λ1 − λ2) + 2ηi + λ1

}

A33 = −
n∑
i=1

(1− η2i )2[
η2i (3− λ1 − λ2) + 2ηi + λ1

]2

A34 = A43 = −
n∑
i=1

(1− η2i )(ηi(2− ηi))2[
η2i (3− λ1 − λ2) + 2ηi + λ1

]2

A44 = −
n∑
i=1

(ηi(2− ηi))2[
η2i (3− λ1 − λ2) + 2ηi + λ1

]2
where ηi = eµxβi .

A.4 Hessian matrix of e-transmuted model

In order to present the hessian matrix, we consider the model e-transmuted without

covariates as follows: 
I11 . . . I1(p+k)

. . .
...

I(p+k)(p+k)


(p+k)×(p+k)

(A.1)

with p the number of covariates and k the number of parameters of base distribution and

the elements I as follow:

I11 =
∂2l

∂ω2
=
n
[
ω2e−ω − e−2ω + 2e−ω − 1

]
ω2 (1− e−ω)2

I1j =
∂2l

∂ω∂θj
= −

n∑
i=1

G′θj (yi|θ)

Ikj =
∂2l

∂θj∂θk
= −

n∑
i=1

g′′θjθk(yi|θ)g(yi|θ)− g′θj (yi|θ)g′θk(yi|θ)

g2(yi|θ)
− ω

n∑
i=1

G′′θjθk(yi|θ)
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Ijj =
∂2l

∂θ2j
= −

n∑
i=1

[
g′θj (yi|θ)

]2
g2(yi|θ)

+

n∑
i=1

g′′θj (yi|θ)

g(yi|θ)
+ ω

n∑
i=1

G′′θj (yi|θ).



Appendix B

Tables

Table B.1: MLEs for the original sample generated with di�erent parameter values and sample
sizes.

Parameters Sample Estimated Estimated

Generated Size Relative Di�erence(%) Standard Error

(γ1, γ2, β, λ) n γ1 γ2 β λ γ1 γ2 β λ

(−2,−1, 0.5,−0.8) 50 11.136 20.499 3.644 12.094 0.707 0.634 0.070 0.527

100 7.479 14.098 2.158 7.631 0.518 0.463 0.053 0.372

150 6.029 10.908 1.175 5.175 0.431 0.379 0.044 0.291

300 4.068 6.587 0.747 3.721 0.320 0.278 0.034 0.197

500 2.430 3.919 0.270 1.781 0.248 0.213 0.027 0.142

1000 1.244 2.397 0.228 0.987 0.173 0.149 0.019 0.096

(−2,−0.5, 1.5,−0.5) 50 6.667 29.552 0.051 15.737 0.727 0.643 0.210 0.598

100 4.237 21.604 0.860 2.789 0.535 0.466 0.155 0.437

150 4.479 19.244 0.609 4.435 0.465 0.400 0.134 0.386

300 3.155 10.868 0.466 1.911 0.347 0.294 0.098 0.291

500 2.710 8.546 0.202 4.239 0.282 0.237 0.079 0.240

1000 1.516 5.446 0.133 3.468 0.204 0.169 0.057 0.173

(−2, 0.5, 1,−0.5) 50 6.570 27.020 0.015 14.991 0.724 0.623 0.140 0.595

100 4.188 21.382 0.880 3.046 0.534 0.447 0.103 0.438

150 4.341 18.216 0.657 3.862 0.464 0.377 0.089 0.386

300 3.155 10.491 0.466 1.911 0.347 0.274 0.065 0.291

500 2.710 7.654 0.202 4.239 0.282 0.217 0.053 0.240

1000 1.516 4.722 0.133 3.468 0.204 0.152 0.038 0.173

(−3,−1, 0.5, 0.8) 50 2.204 0.718 3.115 20.596 0.677 0.592 0.069 0.491

100 1.009 0.442 1.984 14.506 0.471 0.416 0.052 0.364

150 1.031 0.397 1.570 10.668 0.378 0.333 0.046 0.294

300 0.829 0.079 0.646 6.547 0.263 0.231 0.033 0.197

500 0.730 0.094 0.284 4.466 0.201 0.176 0.026 0.147

1000 0.423 0.430 0.087 2.725 0.141 0.123 0.019 0.098

(−2,−0.5, 1.5, 0.5) 50 2.453 1.889 0.544 27.549 0.653 0.618 0.207 0.538

100 2.413 1.101 0.610 30.890 0.473 0.455 0.156 0.454

150 1.615 2.003 0.328 29.270 0.386 0.379 0.134 0.403

300 1.139 2.257 0.479 19.601 0.272 0.273 0.098 0.310

95
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500 0.300 1.557 0.330 13.072 0.207 0.213 0.080 0.248

1000 0.056 0.477 0.181 7.248 0.144 0.152 0.058 0.179

(−3, 0.5, 1, 0.5) 50 3.048 0.123 0.512 28.512 0.713 0.631 0.138 0.536

100 1.663 1.233 0.596 31.439 0.514 0.471 0.104 0.455

150 1.112 1.809 0.349 29.053 0.417 0.400 0.089 0.403

300 0.645 0.515 0.479 19.601 0.292 0.293 0.066 0.310

500 0.137 0.336 0.342 12.917 0.220 0.233 0.053 0.248

1000 0.015 0.247 0.181 7.248 0.152 0.168 0.039 0.179

Table B.2: Probability of coverage by considering 95% of con�dence.

Generated Sample Coverage

Parameters Size Probability

(γ1, γ2, β, λ) n γ1 γ2 β λ

(−2,−1, 0.5,−0.8) 50 0.916 0.914 0.941 0.498

100 0.923 0.927 0.934 0.640

150 0.911 0.925 0.911 0.721

300 0.925 0.944 0.915 0.849

500 0.938 0.940 0.930 0.888

1000 0.951 0.947 0.954 0.930

(−2,−0.5, 1.5,−0.5) 50 0.914 0.909 0.937 0.634

100 0.920 0.908 0.919 0.716

150 0.900 0.913 0.922 0.792

300 0.899 0.931 0.924 0.838

500 0.916 0.937 0.932 0.889

1000 0.940 0.952 0.930 0.921

(−2, 0.5, 1,−0.5) 50 0.913 0.919 0.932 0.626

100 0.921 0.918 0.916 0.715

150 0.902 0.922 0.920 0.790

300 0.899 0.939 0.924 0.838

500 0.916 0.950 0.932 0.889

1000 0.940 0.955 0.930 0.921

(−3,−1, 0.5, 0.8) 50 0.933 0.934 0.933 0.494

100 0.952 0.942 0.924 0.674

150 0.945 0.959 0.925 0.763

300 0.952 0.956 0.923 0.841

500 0.940 0.950 0.925 0.894

1000 0.947 0.957 0.930 0.916

(−2,−0.5, 1.5, 0.5) 50 0.918 0.915 0.918 0.625

100 0.931 0.917 0.935 0.742

150 0.932 0.927 0.934 0.788
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300 0.955 0.937 0.925 0.843

500 0.952 0.941 0.929 0.894

1000 0.944 0.951 0.932 0.929

(−3, 0.5, 1, 0.5) 50 0.917 0.922 0.919 0.625

100 0.937 0.919 0.934 0.743

150 0.938 0.915 0.933 0.786

300 0.953 0.913 0.925 0.843

500 0.948 0.933 0.929 0.894

1000 0.947 0.955 0.932 0.929



References

Akaike, H. (1973). Information theory and the maximum likelihood principle. International
Simposium on Information Theory, eds. V. Petrov and F. 15, 59

Anaya-Izquierdo, K. and Marriott, P. (2007). Local mixture models of exponential families.
Bernoulli , pages 623�640. 72

Anderson, T. W. (1962). On the distribution of the two-sample cramer-von mises criterion.
The Annals of Mathematical Statistics, pages 1148�1159. 82

Arnold, B. C., Balakrishnan, N., and Nagaraja, H. N. (1992). A �rst course in order

statistics, volume 54. Siam. 6

Aryal, G. R. and Tsokos, C. P. (2009). On the transmuted extreme value distribution with
application. Nonlinear Analysis: Theory, Methods & Applications, 71(12), e1401�e1407.
1, 6

Aryal, G. R. and Tsokos, C. P. (2011). Transmuted weibull distribution: A generalization of
theweibull probability distribution. European Journal of Pure and Applied Mathematics,
4(2), 89�102. 1, 12, 14, 52

Barlow, R. E. and Campo, R. A. (1975). Total time on test processes and applications to
failure data analysis. Technical report, DTIC Document. 17, 19

Barlow, W. E. and Prentice, R. L. (1988). Residuals for relative risk regression. Biometrika,
75(1), 65�74. 41, 62

Barndorfe-Nielsen, O. E. and Cox, D. R. (1994). Inference and asymptotics. Chapman &
Hall. 38

Barndor�-Nielsen, O. E. (1993). On a formula for the distribution of the maximum likeli-
hood estimator. Biometrika. 41

Barndor�-Nielsen, O. E. and McCullagh, P. (1993). A note on the relation between modi�ed
pro�le likelihood and the cox-reid adjusted pro�le likelihood. Biometrika, 80(2), 321�
328. 2, 40

Bennett, S. (1983). Log-logistic regression models for survival data. Applied Statistics,
pages 165�171. 2

Brickner, S. J. (1996). Oxazolidinone antibacterial agents. Current Pharmaceutical Design
2 , 2, 175�194. 43

98



99 REFERENCES

Burnham, K. P. and Anderson, D. R. (2002). Model selection and multimodel inference: a

practical information- theoretic approach, Second Edition. Springer Series in Statistics.
20

Chechile, R. A. (2003). Mathematical tools for hazard function analysis. Journal of Math-

ematical Psychology , 47, 478�494. 11

Chen, M. h. and Ibrahim, J. G. (2006). The relationship between the power prior and
hierarchical models. Bayesian Anal., 1(3), 551�574. 24

Cox, D. and Reid, N. (1987). Parameter orthogonality and approximate conditional infer-
ence. Journal of the Royal Statistical Society B . 40

Cox, D. R. and Snell, E. J. (1968). A general de�nition of residuals. Journal of the Royal
Statistical Society , 30, 248�275. 21

Dahiya, R. C. and Hossain, S. A. (1996). A modi�cation of goel-okumoto model. pages
77�84. 70

Daniels, M. J. (1999). A prior for the variance in hierarchical models. 24

Duchesne, T., Rioux, J., and Luong, A. (1997). Minimum cramér-von mises distance meth-
ods for complete and grouped data. Communications in statistics-theory and methods,
26(2), 401�420. 82

Fachini, B. J., Ortega, E. M. M., and Louzada, F. (2008). In�uence diagnostics for poly-
hazard models in the presence of covariates. Stat Meth Appl , 17, 413�433. 2

Ferrari, S. L. P., Silva, M. F., and Cribari-Neto, F. (2007). Adjusted pro�le likelihoods for
the Weibull shape parameter. Journal of Statistical Computation and Simulation. 2

Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models.
Communications in Statistics. Theory and Methods, 1(3), 515�533. 2, 24, 25

Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple
sequences. Statistical Science, (7), 457�511. 26

Gentle, J. (2009). Computational Statistics. Statistics and Computing. Springer New York.
78

Ghitany, M. E. (2001). A compound rayleigh survival model and its application to randomly
censored data. Statistical Paper, Springer , 42, 437�450. 1

Ibrahim, J. G., Chen, M.-H., and Sinha, D. (2005). Bayesian survival analysis. Wiley
Online Library. 1, 6

Johnson, N. L., Kotz, S., and Balakrishnan, N. (1996). Continuous univariate distributions,
volume 2. Wiley New York. 52

Lawless, J. F. (2011). Statistical models and methods for lifetime data, volume 362. John
Wiley & Sons. 2, 10, 18, 38, 52



100 REFERENCES

Lee, S. Y., Lu, B., and Song, X. Y. (2006). Assessing local in�uence for nonlinear structural
equation models with ignorable missing data. Computational Statistics & Data Analysis.
31, 48

Marshall, A. and Olkin, I. (2007a). Life distributions: structure of nonparametric, semi-

parametric and parametric families. Springer, New York. 1

Marshall, A. and Olkin, I. (2007b). Life Distributions: Structure of Nonparametric, Semi-
parametric, and Parametric Families. Springer Series in Statistics. Springer New York.
70

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models. McGraw Hill, London.
41, 62

Migon, H. S., Gamerman, D., and Louzada, F. (2014). Statistical inference: an integrated

approach. CRC press. 58

Mood, A. M., Graybill, F. A., and Boes, D. C. (1974). Introduction to the Theory of

Statistics. McGraw Hill, 3 edition. 7

Nichols, M. and Padgett, W. (2006). A Bootstrap control chart for Weibull percentiles.
Quality and Reliability Engineering International , 22, 141�151. 52, 59, 87

Ortega, E. M., Bolfarine, H., and Paula, G. A. (2003). In�uence diagnostics in generalized
log-gamma regression models. Computational Statistics and Data Analysis, 42, 165�186.
2

Paro, P. a. Z., Santos, A. L. Q., Maximiniano-Neto, A., Paro, J. L. N., Rodrigues, D. C.,
Cruz, G. C., Malta, T. S., Ribeiro, F. M., and Andrade, M. A. (2013). Anatomic study
of the vascular casts of the testicular arteries in bovines of Tabapua race. Bioscience

Journal , 19(1), 123�132. 16, 17

Pereira, J. C. C. (2000). Contribuição genética do Zebu na pecuária bovina do Brasil.
Informe Agropecuário, 21, 30�38. 16, 17

Pham, H. and Lai, C.-D. (2007). On Recent Generalizations of the Weibull Distribution.
IEEE Transactions on RELIABILITY , 56(3), 454�458. 52

Polson, N. G. and Scott, J. G. (2012). On the half-Cauchy prior for a global scale parameter.
Bayesian Anal., 7(4), 887�902. 2, 24

Rayner, J. C., Thas, O., and Best, D. J. (2009). Smooth tests of goodness of �t: using R.
John Wiley & Sons. 71

Ross, S. M. (2009). A First Course in Probability . Prentice Hall. 9

Severini, T. (1998). An approximation to the modi�ed pro�le likelihood function.
Biometrika. 2, 41

Shaw, W. T. and Buckley, I. R. C. (2009). The alchemy of probability distributions:
beyond gram-charlier expansions, and a skew-kurtotic-normal distribution from a rank
transmutation map. arXiv preprint arXiv:0901.0434 . 1, 5, 6, 53, 71



101 REFERENCES

Therneau, T. M., Grambsch, P. M., and Fleming, T. R. (1990). Martingale-based residuals
for survival models. Biometrika. 41, 42, 62

Tollenaar, N. and Mooijaart, A. (2003). Type i errors and power of the parametric bootstrap
goodness-of-�t test: Full and limited information. British Journal of Mathematical and

Statistical Psychology , 56(2), 271�288. 80

Venzon, D. J. and Moolgavkar, S. H. (1988). A Method for Computing Pro�le-Likelihood
Based Con�dence Intervals. Applied Statistics. 38

Verdinelli, I., Wasserman, L., et al. (1998). Bayesian goodness-of-�t testing using in�nite-
dimensional exponential families. The Annals of Statistics, 26(4), 1215�1241. 69

Wilson, A. P. R., Cepeda, J. A., Hayman, S., Whitehouse, T., Singer, M., and Bellingan,
G. (2006). In vitro susceptibility of Gram-positive pathogens to linezolid and teicoplanin
and e�ect on outcome in critically ill patients. Journal of Antimicrobial Chemotherapy .
43


	List of Figures
	List of Tables
	Introduction
	Objectives
	Organization of chapters

	Transmuted model
	The model
	Properties of the model
	Moments and quantiles
	Random number generation
	Survival analysis
	Order statistics

	Parameter estimation of the regression model
	Simulation study
	Application: Tabapua cattle breed data
	Including covariates in the model


	Bayesian and profile analysis
	Hierarchical transmuted log-logistic model
	Tabapua cattle breed data
	Influence analysis

	Transmuted log-logistic in the presence of censored lifetime
	Profile likelihood
	Adjusted profile likelihood
	Modified profile likelihood
	Residual analysis
	Simulation
	Application to real dataset


	Cubic ranking transmuted model
	The cubic ranking transmutation map
	Cubic rank transmuted weibull distribution
	Cubic rank transmuted log-logistic distribution
	Parameter estimation
	Numerical studies
	Simulation study
	Application: Carbon fibers data
	Application: Cattle sexual precocity data


	e-Transmuted family of distribution
	Formulation of the model
	Hazard and related functions
	Related distributions

	E-extended Weibull
	Parameter estimation
	Underlying exponential family structure

	Weibull e-extended Model
	Parameter estimation
	Numerical experiments for the Weibull e-transmuted model
	Goodness-of-fit to the Weibull regression e-transmuted model


	Conclusions and perspectives
	Hessian matrix
	The hessian matrix of transmuted log-logistic model of order 1
	The hessian matrix of transmuted Weibull of order 2
	The hessian matrix of transmuted log-logistic of order 2
	Hessian matrix of e-transmuted model

	Tables
	References



