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When I find myself in times of trouble, Mother Mary comes to me

Speaking words of wisdom, let it be

And in my hour of darkness she is standing right in front of me

Speaking words of wisdom, let it be

Let it be, let it be, let it be, let it be

Whisper words of wisdom, let it be

And when the broken hearted people living in the world agree

There will be an answer, let it be

For though they may be parted, there is still a chance that they will see

There will be an answer, let it be

Let it be, let it be, let it be, let it be

There will be an answer, let it be

Let it be, let it be, let it be, let it be

Whisper words of wisdom, let it be

Let it be, let it be, let it be, let it be

Whisper words of wisdom, let it be

And when the night is cloudy there is still a light that shines on me

Shine until tomorrow, let it be

I wake up to the sound of music, Mother Mary comes to me

Speaking words of wisdom, let it be

Let it be, let it be, let it be, yeah, let it be

There will be an answer, let it be

Let it be, let it be, let it be, yeah, let it be

Whisper words of wisdom, let it be

Composers: John Lennon / Paul Mccartney



Abstract

In this thesis, we introduce a methodology based on zero-inflated survival data for the

purposes of dealing with propensity to default (credit risk) in bank loan portfolios. Our

approach enables us to accommodate three different types of borrowers: (i) individual

with event at the starting time, i.e., default on a loan at the beginning; (ii) non-susceptible

for the event of default, or (iii) susceptible for the event. The information from borrowers

in a given portfolio is exploited through the joint modeling of their survival time, with

a multinomial logistic link for the three classes. An advantage of our approach is to

accommodate zero-inflated times, which is not possible in the standard cure rate model

introduced by Berkson & Gage (1952). The new model proposed is called zero-inflated

cure rate model. We also extend the promotion cure rate model studied in Yakovlev &

Tsodikov (1996) and Chen et al. (1999), by incorporating excess of zeros in the modelling.

Despite allowing to relate covariates to the fraction of cure, the current approach does

not enable to relate covariates to the fraction of zeros. The new model proposed is called

zero-inflated promotion cure rate model. The second part of this thesis aims at proposing

a regression version of the inflated mixture model presented by Calabrese (2014) to deal

with multimodality in loss given default data. The novel methodology is applied in four

retail portfolios of a large Brazilian commercial bank.
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Resumo

Nesta tese de doutorado, introduzimos uma metodologia baseada em dados de sobre-

vivência inflacionados em zero com o objetivo de lidar com propensão à inadimplencia (ou

seja, risco de crédito) em carteiras de empréstimos bancários. Nossa abordagem permite

acomodar (extrair informações de) três tipos diferentes de clientes bancários: (i) indivíduo

com empréstimo inadimplente logo no início; (ii) cliente não suscetível ao evento de inadim-

plência, ou (iii) cliente suscetível ao evento de inadimplir. A informação dos empréstimos

em um determinado portfólio é explorada através da modelagem conjunta do seu tempo de

sobrevivência, com uma ligação logística multinomial para as três classes. Uma vantagem

da nossa abordagem é acomodar tempos inflados em zero, o que não é possível no modelo

de fração de cura padrão introduzido por Berkson & Gage (1952). Também estendemos o

modelo com fração de cura estudado por Yakovlev & Tsodikov (1996) e Chen et al. (1999),

incorporando excesso de zeros na modelagem. Apesar de permitir relacionar covariáveis à

fração de cura do modelo, a abordagem padrão não permite relacionar covariáveis com

a proporção de zeros dos dados. A segunda parte desta tese visa propor uma versão de

regressão do modelo de mistura inflada apresentada por Calabrese (2014), visando extrair

informações referentes a multimodalidade apresentada em dados relacionados à perda dado

a inadimplência (LGD). A nova metodologia é aplicada em quatro carteiras de empréstimo

de varejo de um grande banco comercial brasileiro.
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Chapter 1

Introduction

More often than not, banks and financial institutions completely lose contact with

customers as soon as their loans are granted and, therefore, all amount lent is lost. This

group of borrowers, arguably, is the most costly for the bank. Here, they are the primary

concern, so we particularly defined them as straight-to-default customers, or STD customers

for short. The term “default”, used throughout this doctoral dissertation, means the event

of interest in credit risk analysis. It happens when borrowers lose the creditworthiness to

meet their commitments with loans. The default criterion may vary from bank to bank by

conservative reasons. Generally, a bank declare a default condition if a customer has not

been paying any instalments for more than three consecutive months. Henceforward, it is

the definition that we assume in order to declare that a customer has defaulted on a loan.

There is also another group of problematic customers, the usual ones. Those no longer

can afford their loan instalments, but, unlike STD customers, they manage keep up to

date with their debts for a while. Mostly of the time, by private financial reasons, they

cannot afford anymore their debts with the bank and default on their loans. Fortunately,

to ensure the survival of bankers, there are good customers, actually, most of them. Those

who always keep up to date with their obligations and, therefore, there will not be records

of events of default. Therefore, for the survival of bankers and mainly for the maximization

of profits, they must seek to maintain high rate of non-defaulting loans, while the rates of

STD and defaulted customers must be very low.

Also in accordance with regulations already established by international supervisory

bodies, such as the Basel Committee on Banking Supervision, (BCBS, 2006), we have

maintained in this doctoral dissertation that the event of default of a loan happens when it

has three consecutive months without any repayment. Therefore, the default rate, or the

1
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non-performing loan (NPL) rate, is computed as the ratio of loans past due in excess of 90

days (three months) relative to the total outstanding within a corresponding category of

loan. For example, if a financial institution has a student loan portfolio of 1.000 loans and

100 of those have delinquent payments greater than three months, then the default rate

(also known as delinquency rate) of the student loan portfolio is 10%.

Figure 1.1 illustrates the historical default rates of the two largest Brazilian private

banks, respectively, Itaú Unibanco S.A and Banco Bradesco S.A. These historical data sets

are available once both companies have shares listed on stock exchanges. Their balance

sheets are also quarterly reported to the public in general. Following, we illustrate the

NPL historical rates from these public data, which were followed for eight quarters in

addition to be segregated by type of borrower, i.e., loans to individuals, small and medium

enterprises (SME), corporate, and finally, the total portfolio (without any segregation).

Figure 1.1: Percent of Loans Delinquent with 90+ days past due (Quarterly Data)

All banking customers described initially, STD’s, defaulters and non-defaulter custom-

ers, and their credit risk behavior, motivate the models we first propose in this doctor

dissertation. Thereby, the dataset analysis comprises customers who, in one way or another,

have not honoured their contractual obligations with the bank, either by willingness to do

not pay even from the beginning (by STD customers), or by the loss of creditworthiness

over time (by usual defaulters), along with good customers, who have always honoured their

obligations and, therefore, have never experienced the event of default (non-defaulters).

Such data analysis must be addressed to make a holistic risk management of the
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banking loan portfolio, that is, dealing with control of default and ensuring the customer

loyalty growth within the group of customers non-susceptible to default. As we see in the

next Figure 1.2, these considerations delimit the data we will cover first in this dissertation:

a set of zeros, positives and unrecorded banking loan survival times.

Figure 1.2: Loan survival time data.

In the daily routine of banks, borrowers and loans are monitored from their granting

date, but, especially, the first three months are essential for marking as straight-to-default

customers. Generally, the follow-up period ranging from 12, 24, 36 months, or even more,

depending on the loan portfolio terms. As to register the event of interest, i.e., the event

of default, it takes at least three months of follow-up, because one needs at least three

months without payments, so, it would have to occur from t = 3. In order to introduce

the methodology based in zero-inflated data, we brought all the data to t − 3. So, the

origin point in the chart above (t = 0) takes place from the third month after the loans

have been granted. Therefore, in Figure 1.2, the (c) survival time equal to zero comes

from STD customer, those who went through the first three months without any payment;

positive default times as in (a) are from usual defaulters, those who defaulted during the

normal loan repayment term. In (d), the absence of registration is due early repayment,

while in (b) the loan is still under payment at the end of the follow-up period.

Thus, this doctoral dissertation firstly aims at proposing a model that jointly accom-

modate three types of time-to-default data present in banking loan portfolios. It leads to

a new framework that overcomes the standard cure rate model, introduced by Berkson &

Gage (1952), with regard to the accommodation of zero-inflated data in survival analysis

modeling.

The second kind of data analysed in this dissertation is associated with losses incurred

by the bank due to the realization of a event of default. The term used in the literature for
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this random variable is loss given default, shortly referred as LGD. LGD (%) is the ratio

between the net amount of lost funds, that is lost by a bank when a borrower defaults on

a loan, and the overdue debt at the exact moment of the default. Its distribution ranges

in the closed real interval [0, 1].

To illustrate the concepts involved in implementing a LGD methodology, consider the

following example: the customer has defaulted on a collateralized loan with an outstanding

debt of £10, 000. If the bank is able to sell the collateral for a net price of £6, 000,

including all costs related to the repossession process, then £4, 000, or 40% of the value

exposed at the moment of default are lost, and thus the LGD is 40%. From the banking

practice, it is known that some loans have strong guarantees and are easier to repossess,

as mortgage loans for instance. In these cases, in the LGD dataset, there will be a large

concentration of zeros in the LGD distribution. This excess of zeros is result of a successful

recovery process of all amounts that were overdue. On the other hand, unfortunately by

the bank side, might appear excess of ones in the database, which comes from the complete

failure in the recovery process.

Therefore, it is very important manage overall factors that lead into a successful

recovery process within defaulted loan portfolios. For example, figuring out borrower

features, loan characteristics and details of the entire collection process that triggers a

smaller monetary loss to the bank. According to the datasets available for study in this

dissertation, the LGD distribution may present a bimodality within the (0, 1) interval, due,

mainly, to the concentration in partial recovery peaks. For this reason, the LGD approach

proposed in this dissertation is concerned with loss given default modeling in the presence

of bimodality in the (0, 1) interval and along with the aforementioned presence of zeros

and ones excess.

This subject is developed in the fourth chapter of the dissertation, where we present

a zero-and-one inflated mixture model to deal with it. In the next section, we present

the data sets that motivated the two main objectives of this dissertation, i.e., survival

data inflated with zeros from bank loan portfolios, and bimodal LGD data inflated with

excess of zeros and ones from defaulted bank loan portfolios. Following to the dataset

presentations, we proceed a literature review on the related topics and, finally, we present

our objectives regarding to the gaps in the literature we propose fill in with this doctoral

dissertation.
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1.1 Real data sets

This section presents the databases made available by a major Brazilian bank. It is

important to note that the presented datasets, amounts, rates and levels of the available

covariates, do not necessarily represent the actual condition of the financial institution’s

portfolio. That is, despite being a real database, the bank may have sampled the data in

order to change the current status of its loan portfolio.

1.1.1 Loan survival time data

The first analysed portfolio was collected from customers who have taken a personal loan

over a 60-month period, between the years 2010 and 2015. Table 1.1 shows the customer’s

quantitative frequencies of the loan portfolio provided by the bank. It is composed of 5733

time-to-default (in months), with an approximate 80% rate of censored data, that is, a

high rate of non-default loans. Our objective is to assess if customer characteristics are

associated with consumer propensity of being STD, defaulter or non-defaulter customers.

Number of Number of Number of Number of
customers STD (T = 0) defaulters (T>0) censored (T>0)

Total 5733 321 (5.60%) 810 (14.13%) 4602 (80.27%)

Table 1.1: Frequency and percentage of the bank loan lifetime data.

The segmentations of customers of the bank was made a priori by the bank. For

example, the age group 1 means that customers have been grouped by age from a specified

range (determined by the bank). Moreover, the classification of the type of residence and

type of employment has not been supplied to our study by confidentiality issues. Table

1.2 shows the quantitative frequency according to the available covariates.

Figure 1.3 presents a graphical summary of the survival behavior present in the available

covariates: age group, type of residence and type of employment. The histogram shows

only the distribution of the observed data, while the censored data is better observed

through the KM curves. Notwithstanding, we can see the presence of zero-inflated data

in both. We can see from the stratified Kaplan-Meier survival curves that the age group

identified as 4 presents lower presence of zero-inflated time (STD borrowers) compared to

the others. The group with type of residence 4 shows a higher presence of zero-inflated

time (STD borrowers) compared to the borrowers with other type of residence. Type of
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employment 2 shows clearly a high non-default rate, besides that, it also presents a lower

rate of zero-inflated times.

Covariate Quantity
of customers

Age group 1 503
Age group 2 3088
Age group 3 1220
Age group 4 922
Type of residence 1 629
Type of residence 2 4056
Type of residence 3 998
Type of residence 4 50
Type of employment 1 956
Type of employment 2 4777

Table 1.2: Quantity of the available covariates.
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Figure 1.3: Brazilian bank loan portfolio data. Top panel, shows a histogram for the
observed time-to-default variable of interest (left) and Kaplan-Meier survival curves
stratified by age group (right). Bottom panel, Kaplan-Meier survival curves stratified by
type of residence (left) and Kaplan-Meier survival curves stratified by type of employment
(right).
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1.1.2 Loss given default data

To motivate the LGD modeling proposed in the sixth and seventh chapters of this

dissertation, we analyse four retail portfolios of defaulted loans made available by a

large Brazilian commercial bank. Each portfolio is grouped according to the type of

guarantees offered in the loan, or even the complete lack thereof. Of course, loan contract

characteristics affect directly the presented shapes of the LGD distributions. For data

confidentiality reasons, we do not explain the features of each loan making up each portfolio,

we can only mention these are retail exposures, as defined in BCBS (2006), paragraph 231.

The all data set comprises 41.677 defaulted retail loans, as summarized separately in the

Table 1.3.

Portfolio Quantity Mean Median SD Number Number
of 0’s of 1’s

1 15.295 0.52195 0.7272 0.4746 5.722 6.634
2 22.951 0.59814 0.9093 0.4596 8.349 8.398
3 440 0.32945 0.7466 0.4004 232 44
4 2.991 0.72060 0.9175 0.3810 510 265

Table 1.3: Summary of observed LGD data.

Its whole LGD distribution, that is, considering all 41.677 defaulted loans together, is

presented in Figure 1.4, where it shows a five-modal distribution.

Figure 1.4: Multimodal LGD distribution.

In the following figures, are shown separately the four portfolios, each one of them

presenting quite different shape of bimodality. Note that in these next figures, for clarity
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in data visualization, the zeros and ones are excluded, however, they are accounted in the

proposed parameter estimation procedure. The zero and ones amounts (#) were presented

in the right columns of the Table 1.3.

Figure 1.5: Portfolio 1: Loss given default distribution.

Figure 1.6: Portfolio 2: Loss given default distribution.

Figure 1.7: Portfolio 3: Loss given default distribution.
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Figure 1.8: Portfolio 4: Loss given default distribution.

Next, we present a review of literature for the first topic of this dissertation, i.e., about

the zero-inflated survival models applied to credit risk analysis, which will be developed in

the next chapters. Following the survival analysis review, we present some concepts and a

review of literature for the second studied subject, i.e., the loss given default modeling in

the presence of zeros and ones excess, which will be developed in the last chapters of this

dissertation.

1.2 Literature review

To use survival analysis techniques in credit risk settings, we must consider the modeling

outcome of interest (event of interest) as the survival time after the loan approval, also

mentioned here as customer or loan survival time. It is represented by the time until the

occurrence of the event of default. Consequently, as already mentioned, we can say that

bankers expect it to be rarely recorded within loan portfolios. In order to deal with this

type of survival data, it is generally modeled by a continuous probability distribution,

with support on the real non-negative interval [0,+∞). Such approach has been applied

in different papers, through the application of different survival frameworks.

Banasik et al. (1999) list a series of advantages of using survival analysis in credit risk

modeling. The main is due it is concerned with estimating over time the probability of

default, allowing banks to re-evaluate provision against expected losses during the maturity

of their portfolios. The authors raised that survival analysis can also bring more accurate

information on the portfolio profitability over time, thus providing information on how

profitable loans are according with different portfolio terms. The authors also envisioned
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the possibility of being incorporated macroeconomic variables in the modeling.

In Abad et al. (2009), analysing a portfolio of 25000 consumer loans from a Spanish

bank, the authors applied a semi-parametric approach, a Cox’s proportional hazard

model, to compare its performance among other models. The second approach used was

generalized linear models under censoring and the third one was based on non-parametric

kernel estimation. According to the authors, a reasonable improvement in the results

could be achieved when using the survival analysis to modeling credit quality in terms

of “lifetime of loans”. Stepanova & Thomas (2002), and Bellotti & Crook (2009) more

recently, also applied survival analysis based on Cox’s proportional hazard models. The

latter, built model for time-to-default on a large UK portfolio of credit cards, taking

into account the presence of time-varying covariates. The authors found survival analysis

competitive in comparison with the standard logistic regression as a credit scoring method

for prediction, and, the most important part, the inclusion of macroeconomic variables

may gives a statistically significant improvement in its predictive performance.

Abreu (2004) and Tong et al. (2012) presented different frameworks to deal with

modeling time to default on loan portfolios. While Abreu (2004) dealt with simulated

data, the latter authors modeled time to default on a real UK personal loan portfolio. In

these works, the authors estimated mixture cure models and compared its performance

to the Cox proportional hazards method and to the standard logistic regression. They

all found the three approaches were competitive regarding discrimination performance,

furthermore, they showed the mixture cure models can offer additional insights. Mainly

due to the possibility of estimating the parameters that determine susceptibility to default,

in addition to parameters that influence time to default of a borrower. Such conclusion

is base on the mixture cure model’s ability to distinguish between two sub-populations,

according with its susceptibility to default on a loan or not. However, in the newer mixture

cure approach presented in Tong et al. (2012), it was required a proportional hazard

structure, once the latency model component is based on a proportional hazard survival

model.

In Louzada et al. (2014), the authors considered a parametric Weibull mixture cure

model for time to default on a Brazilian personal loan portfolio. In that data set, taking

into account presence of covariates, it was evident the presence of disproportionate hazard

rate among covariate levels. Such an approach, as appeared previously in Abreu (2004),

can be seen as a complement approach to the modeling framework presented in Tong
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et al. (2012), which requires a proportional hazard structure. Louzada et al. (2014) found

that their proposed mixture cure models were more appropriate for non proportional

scenarios, which by the way has not been claimed in recent articles that brings proportional

hazard survival approaches for credit scoring purposes. According to the authors, such

misspecification may lead to erroneous measurements, as under or overestimated expected

losses, which is financially damaging to the bank.

The application of cure rate models in credit risk, alongside other modeling techniques,

is that it can accommodate censored data. The analysis of such information is not supported

in credit scoring techniques purely based on good and bad customer classification. Thus,

more information can be gathered when building a survival model, see for instance Abreu

(2004), Hand & Henley (1997) and Lessmann et al. (2015). In the credit risk context,

censoring occurs when a loan is still under repayment at the moment of data collection,

i.e., still being a good loan. The lack of default information in credit risk setting also

happens when the borrowers anticipate paying the debt before the end of the follow-up

period, known as early repayment. If the default has not occurred or the loan term has

been anticipated, thus, we cannot conclude on whether the customer is a good or a bad

customer at the end of the follow-up period.

In other areas, as in medicine for instance, censoring happens when there is no

information about the event of interest, such as the patient has not experienced the

recurrence of a disease or is still alive at the end of the treatment. From these cases

based on clinical studies, models that accommodate cure fractions of the data events,

known as cure rate models, were introduced in the literature. The first cure rate model

was introduced by Berkson & Gage (1952). In Barriga et al. (2015), the authors used a

different terminology in order to clarify its use in a credit scoring setting. They denoted

cure by non-default, leading to what they called by non-default rate models.

The use of positive continuous distributions in the cure rate framework is already con-

sidered an usual modeling practice, as it can well accommodate time-to-event occurrences,

which primarily contains non-negative (or censored data), see for instance Cordeiro et al.

(2010) and Ortega et al. (2009). However, it cannot fit excess of zeros that may make

up time-to-default data set of loan portfolios, for example. Unlike survival data analysis,

in other areas we can observe most commonly the existence of non-negative data with

presence of zeros, sometimes with excess.

Usually, the excess of zeros occurs in count data studies, as analysed in Lambert
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(1992), Barry & Welsh (2002), Lord et al. (2005), Conceição et al. (2013). In Vieira

et al. (2000) and Ospina & Ferrari (2012), the authors dealt with zero-inflated proportion

data models. Therefore, it is already a commonplace the expression “zero-inflated data”.

In Liu et al. (2015), the occurrence of zeros excess is exploited within two longitudinal

medical follow-ups. In the first one, a SIDA study, the zero data comes from records of

non-recurrence of opportunistic diseases, while in the second study, zero data are recorded

as the number of non-recurrent tumours in a soft tissue sarcoma study. Zero-inflated data

also appears in the context of left censored data. In Blackwood (1991), for example, left

censored data are generate in experiments related to the presence of toxic products in the

environment. Due to the inaccuracy of the tools used for measurement, it is not always

possible to fully observe some results and only a lower limit is recorded.

Also dealing with the presence of left censored data, Braekers & Grouwels (2016)

reviewed a laboratory experiment with mice conducted by Markel et al. (1995), where the

outcome of interest is the induced sleeping time, measured after ingestion of a dose of

ethanol. As some mice present immunity for the administered dose of ethanol, the analysed

data set contains a proportion of sleeping time equal to zero. In the statistical approach

proposed to re-analyse the data obtained in the earlier conducted experiment, i.e., in order

to reinvestigate the influence of covariates on the outcome of interest, Braekers & Grouwels

(2016) proposed a logistic regression model for the probability of a zero outcome value and

the Cox regression model for the non-zero outcomes.

Perhaps it is unhelpful, or cruelly insensitive, if we aim at considering human survival

times equal to zero in clinical trials or medical studies. That is, seeing that clinical trials

may lead to the event of interest at the starting time (zero time), it will mean that there

are instantaneous deaths of patients undergoing such an experimental procedure. Hence,

it might be why, to the best of our knowledge, we have not found study that is willing to

account for zero-inflated data in the medical specialized literature which aims to analyse

the survival of human patients under disease treatment. However, the same sense of

respect expected in clinical trials, in some way, does not seem to be required when dealing

with credit risk events. On the contrary, information about zero-inflated time should be

taken into account in credit risk analysis, and must be useful for identifying customers

who apply for loans only for the purpose of defrauding the bank by, since the beginning,

not honouring its obligations under the granted credits.

Thus, the first objective of this doctoral dissertation is to propose a way to accom-
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modate zero-inflated survival date in a credit risk setting, in a way that has not yet

been incorporated into the statistical literature. For that, we extend the standard cure

rate model introduced by Berkson & Gage (1952), by incorporating excess of zeros in

the modeling through the inclusion of a multinomial logistic link for the three classes

of available loan survival times: the zero-inflated ones due to straight-to-default loans;

the positive time-to-default due to defaulted loans; and finally, the class of censored

observations due to the high non-default rate shown in the data.

Next, we present some concepts and a review of literature for the second topic of this

dissertation, i.e., the loss given default modeling in the presence of zeros and ones excess,

which will be developed in the last chapters.

The development of new statistical methodologies for credit risk analysis was pushed

by the recommendations of the Basel Committee on Banking Supervision, strongly fa-

vouring the development of new models. Since the Basel II publications in the mid-2000s,

recommending central banks to allow banks to use internal data to calculate credit risk

measures of their portfolios, much has been proposed in the literature on probability of

default, loss given default and exposure at default. See, for example, Valvonis (2008),

Engelmann & Rauhmeier (2011), Loterman et al. (2012), Yashkir & Yashkir (2013), Leow

& Crook (2014) , Leow & Crook (2016) and Tong et al. (2016). The importance is justified

as these parameters comprise the main ingredients of regulatory capital calculation, that

is, what banks must set aside to cope with unexpected losses from credit loan portfolios.

According to Basel II rules for corporate, sovereign and bank exposures, see BCBS

(2006) in the paragraphs 286 and 297, the loss given default (LGD) is measured as the

proportion of unrecovered debt, compared to total counterparty overdue debt. That is,

given that default has occurred and the process of recovery has been finalized, the fraction

of all debit past due which is not recovered by the bank, in relation to the total amount

of the overdue debt at moment of the default, is defined as loss given default. Thus, the

support of LGD distribution lies in the [0, 1] real closed interval.

Despite the simplicity in setting it, according to Schuermann (2004), there are dis-

tinctions about the treatment that should be given to different types of portfolios. For

instance, in case of the aforementioned portfolios, corporate, sovereign and bank exposures,

banks must provide an individual estimate of LGD for each exposure and, for that reason,

a different approach that has been applied to loan retail portfolios. In fact, as retail

exposures typically represent majority of loan portfolios of commercial banks, it would be
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impossible to give an individualized treatment for each exposure. That is why, even before

Basel II recommendations, bank risk managers relied on automated scoring models. This

means that, mostly, modeling credit risk involves estimating parametric statistical models,

see for example Thomas et al. (2002), Crook et al. (2007), Porath (2011) and Lessmann

et al. (2015).

However, as expected, an exaggerated dependence on complex statistical models may

lead to new sources of risks, in this case, the model risk. In other words, the risk of not

choosing the best model in the light of the available data. An attempt to draw attention

to model risk and encourage mitigation of this source of risk has already been addressed

by the Basel Committee, as stated in BCBS (2015), p. 2, ”Supervisors should be cautious

against over-reliance on internal models for credit risk management and regulatory capital.

Where appropriate, simple measures could be evaluated in conjunction with sophisticated

modeling to provide a more complete picture”.

Regarding the modeling of LGD, Basel II also recommends that its calculation must

consider all relevant factors that impact in the loss triggered by the event of default.

According its paragraph 460, BCBS (2006) strongly recommends the calculation must

include all material discount effects and all material direct and indirect costs associated

with collection process on the defaulted loan portfolio. Since it is known that LGD has

considerable impact on the regulatory capital amount, according to Gürtler & Hibbeln

(2013) and Yao et al. (2015), small differences can lead to major distortions in its calculation.

For this reason, when dealing with large retail portfolios without sufficient evidence of the

impact of each direct and indirect recovery cost, in order to proceed an reliable estimate,

we must opt for models that bring a extra dose of conservatism.

Another challenge in modeling LGD lies in the fact that there are an excesses of

zeros and ones in the data. These excesses are expected, since LGD equal to zero means

that the default event has not incurred any loss given its realization, i.e., the bank was

able to recover the overdue amounts. For example, appropriating the assets given as

collateral, see for example Leow & Mues (2012), Loterman et al. (2012) and Oliveira &

Louzada (2014b), or by some other action, such as renegotiation of the debt under the

national bankruptcy protection law. On the other hand, excess of LGD equal to 1 has

very unfavourable meaning for the bank, since it means that 100% of the overdue debts of

defaulting borrowers have not been recovered and, therefore, the bank fully assumes the

loss with the defaulted loan.
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When dealing with mortgage loans, it is very common the property be subsequently

repossessed after the customer incur in default and the sold price fully covered the loan

balance at default. In such cases, obviously, the LGD data will contain zero excesses due

to the total recoveries. In Tong et al. (2013), the authors proposed a model based on

a zero-adjusted gamma distribution for a mortgage loss given default data, in order to

account for the presence of high excesses of zeros. But, rather than fitting the rate of loss

given default, the authors accounted for the lost values in GBP resulting in the occurrence

of a mortgage default.

In addition to the excess of zeros and ones, LGD data sets may present another type

of bimodality, now referring to data included between the extremes of the interval [0, 1].

As presented in the section 1.1.2, the LGD data sets studied in this dissertation, presents

a LGD concentration both close to zero as close to one, hence, presenting a multimodality

which is inherent to the behavior of the data made available by the Bank for studying,

mainly due to the concentration of partial recovery peaks, in addition to peaks at 100% and

0% recovery. In the foregoing context, i.e., concerning to the loss given default modeling

in the presence of zeros and ones excess and the mentioned bimodality within the interval

(0, 1), we contribute to the literature by extending the established framework already

proposed by Calabrese (2014), where we propose a regression version of the zero-and-one

inflated mixture beta model presented by that author to accommodate such multimodality

in the LGD distribution.

Although Calabrese (2014) has dealt with excess of zeros and ones in a real LGD

data on Italian bank loans, the author has not presented real situations of multimodality.

Instead, it was assumed an arbitrary mixture of two betas to encourage the forecasting of

two distinct periods, one with higher and another with lower LGD average. Furthermore,

the author is not intended to study the relation between covariates and the outcome of

interest. In this sense, we complement the work made in Calabrese (2014) by applying our

methodology in a variety of real bank loan portfolios within a regression model version. In

addition, we perform a simulation study to assess estimation performance of the inflated

mixture regression model proposed, which was not carried out in that referred paper. We

also complement the work done by Hlawatsch & Ostrowski (2011), which, despite dealing

with simulated bimodality, do not address the occurrence of zeros and ones excesses in its

bimodal LGD data.
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1.3 Objectives

The first objective of this dissertation is supported by a need to accommodate zero-

inflated survival date in a credit risk setting. For that, we extend the standard cure rate

model introduced by Berkson & Gage (1952) and the promotion cure rate model studied

in Yakovlev & Tsodikov (1996) and Chen et al. (1999), by incorporating excess of zeros in

the modeling of survival data with cure rate. To exemplify the application of the proposed

approach, we analyse a portfolio of personal loans made available by a large Brazilian

commercial bank. Our goal is to assess whether a borrower is more likely to go straight

to default, i.e., presetting a survival time zero. The jointly modeling also allow get the

information if she or he will (or will not) become a defaulter within a survival analysis

context, i.e., analysing the probability of being a non-default customer. This is why we

propose a methodology based on augmented cure rate survival model, for the purposes of

dealing with the problem of assessing the propensity to default at the begging in bank

loan data, with excess of zeros and with a high rate of censored data.

Furthermore, notwithstanding the bimodality and zeros and ones excess has been

partially accounted for in the recent literature, as in Hlawatsch & Ostrowski (2011),

Tong et al. (2013) and Calabrese (2014), to the best of our knowledge, the full regression

configuration of the aforestated LGD model has not been wholly incorporated into any

framework. Hence, in the second part of this dissertation we fill a gap in the literature

by introducing a simple statistical tool for credit risk managers deal, as effectively as

possible, with loss given default in multi-shape data. Thereby, is presented in the last

chapters of this dissertation an inflated mixture regression model by assuming a mixed of

degenerate distributions to handle all zeros and ones excess, together with a mixture of

distributions to account for bimodal losses. Along with the already mentioned variety of

real applications, we carried out Monte Carlo simulation studies to check the finite sample

performance of the all regression estimation procedures proposed.

1.4 Overview

This doctoral dissertation is organized as follows. In chapter 2, we present a methodo-

logy based on zero-inflated survival modeling to account for zero inflated data in bank

loan portfolios, where we extend the standard cure rate model introduced by Berkson &

Gage (1952). A study based on Monte Carlo simulations with a variety of parameters
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is presented in section 2.4. An application to a real data set of a Brazilian bank loan

portfolio is presented in section 2.5. Conclusions are presented in the section 2.6.

In chapter 3, we formulate the zero-inflated promotion cure rate, which is proposed

to extend the model studied in Yakovlev & Tsodikov (1996) and Chen et al. (1999), by

incorporating excess of zeros in its modeling. A Monte Carlo simulation studies with a

variety of parameters is presented in section 3.3. An application to a real data set of a

Brazilian bank loan portfolio is presented in section 3.4 and the results are compared with

the obtained in the chapter 2. Conclusions are presented in the section 3.5.

In chapter 4, we formulate the inflated mixture model based on the model introduced

by Calabrese (2014). Section 4.3 we present a maximum likelihood estimation procedure.

A simulation study with different vector parameters is presented in section 4.4. An

application to a real variety of retail portfolios of a large Brazilian bank is presented in

section 4.5. Conclusions are presented in the section 4.6.

In chapter 5, we present the final conclusions and proposals for future work. Note that,

to allow the chapters be read (almost) independently of one another, some concepts may

appear repeatedly in some parts of the text.



Chapter 2

The Zero-inflated Non-default Rate

Model

In this chapter, we propose a new non-default rate model for taking into account three

different types of individuals: (i) individual with event at the starting time (zero time);

(ii) non-susceptible for the event, or (iii) susceptible for the event. With respect to the

survival analysis framework, this approach accommodate zero-inflated times, which is

not possible in the standard cure rate model introduced by Berkson & Gage (1952). To

illustrate the proposed method, a real dataset of loan survival times is fitted by the

zero-inflated Weibull non-default rate model. The parameter estimation is reached by

maximum likelihood estimation and Monte Carlo simulations are carried out to assess its

finite sample performance.

2.1 Introduction

In survival analysis, the random variable T of interest is the time elapsed until the

occurrence of an expected event, i.e., the event of interest. Depending on the context in

which it appears, T might be called lifetime or failure time. In industry it is customarily

associated with the time up to failure of a machine. In the medical area, for example,

it can be associated with the time until to recurrence of a disease under treatment, or

even the death of a patient. The focus of interest in credit risk setting is the failure time

related to the time up to the occurrence of a loan default. Obviously, in all cases T is

18
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non-negative and, generally, is treated as a continuous random variable.

According to Colosimo & Giolo (2006), there are several functions which completely

specify the distribution of a random variable in survival analysis, since they are mathemat-

ically equivalent functions. They are the probability density function (PDF), cumulative

distribution function (CDF), complementary cumulative distribution function (CCDF),

the hazard function, the cumulative hazard funciton and, finally, the mean residual life

function. Within a survival analysis context, the complementary cumulative distribution

function (CCDF) is known as survival function and is commonly denoted by S(·).

The downside of considering the standard survival analysis in credit risk is the mathe-

matical fact that the survival function is a proper survival function, i.e., goes to zero as

time progresses indefinitely. In that way, it cannot properly accommodate the proportion

of customer who are not susceptible to default on a loan given its approval. This follows to

the fact that the survival function, S(t) = P (T > t), satisfies lim
t→∞

S(t) = 0. Unlike what

happens in many real situations, in this standard framework the presence of immunity to

the effects that lead to the occurrence of the concerned event is not contemplated. For

instance, returning to examples in the medical field, there are patients suffering from

disease who, once submitted to treatment, recover completely. They are known as cured

or long-term survivors. Similarly, in credit risk studies on loan portfolios of financial

institutions, most customers never experience the condition of being in default. In this

financial context, they are also known as non-defaulting clients or long-term clients. There-

fore, when it is needed to consider the presence of cure or long-term data, the traditional

survival analysis is not at all suitable for modelling failure time. In those cases, where

there are immunity to the occurrence of failures, new statistical tools have been proposed.

To handle the aforementioned challenge, Berkson & Gage (1952) proposed a simple

way that added the fraction of cured (p > 0) into the survival function. The authors have

introduced the following survival expression based on two sub-populations of individuals,

the susceptible group and the non-susceptible group to the occurrence of the event of

interest:

S(t) = p+ (1− p)S0(t), t ≥ 0, (2.1)

where S0 is the survival baseline function of the individuals susceptible to failure and

p > 0 is the proportion of the individuals immune to failure (cured). This model is called

standard cure rate model or long-term survival model. Unlike S0, S is an improper survival
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function, since it satisfies lim
t→∞

S(t) = p > 0.

Another attribute of the standard cure rate model, according to Othus et al. (2012),

among others authors, is that it can bring to light more informations about the event in

study since it allows associate covariates in both parts of the model. Indeed, it allows

covariates to have different influence on cured patients, linking covariates with p, and

on patients who are not cured, i.e., susceptible to the event, linking covariates with the

parameters of the proper survival function S0.

2.1.1 Proposal

To the best of our knowledge, there is no credit risk literature considering a cure rate

model that accounts for the excess of individuals who have already experimented the event

of interest (default on a loan) at the beginning of the considered study, i.e., with survival

time equal to zero. As aforementioned, we used a different terminology in order to clarify

its use in a credit scoring setting. So, from now on, we denote cure by non-default, leading

to what we call by non-default rate models. In this sense, and focusing on the portfolio

credit risk context, we define the following proportions to be accommodated in our new

proposed model

• p0: the proportion of zero-inflated times, i.e., related to straight-to-default borrowers;

• p1: the proportion of immune to default, i.e., related to non-defaulters.

Thus, we propose the following expression for the improper survival function of all

possible loan survival times:

S(t) = p1 + (1− p0 − p1)S0(t), t ≥ 0, (2.2)

where S0 is the baseline survival function related to the (1−p0−p1) proportion of subjects

susceptible to default, p1 is the proportion of subjects immune to default and finally,

p0 is the proportion of straight-to-default (STD) individuals. This model in (2.2) is

called zero-inflated non-default rate model. The fact that differentiates the zero-inflated

non-default rate version from the standard non-default rate approach in (2.1), since they

share the fact that both are based on improper survival functions, is expressed in the

second of the following satisfied properties: lim
t→∞

S(t) = p1 > 0, and S(0) = 1− p0 < 1.
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The above properties can be viewed in the plot of the proposed survival function

expression. Note that, if p0 = 0, i.e., without the excess of zeros, we have the non-default

rate model of Berkson & Gage (1952).

Figure 2.1: The (improper) survival function of the zero-inflated survival model.

Justification

In this dissertation, we justify the need for the zero-inflated non-default rate model

based on a credit risk setting. The purpose is to deal with assessing the propensity to

immediately default on a loan, in terms of estimating the rate of zero-inflated data. To

reach this goal, we propose a jointly modelling of zero-inflated time in loan survival data

with non-default rate. To exemplify the application of the proposed approach, we analyse

a portfolio of loans made available by a large Brazilian commercial bank.

Organization

The chapter is organized as follows. In Section 2.2, we formulate the model and present

the approach for parameter estimation. A study based on Monte Carlo simulations with

a variety of parameters is presented in Section 2.4. An application to a real data set of

a Brazilian bank loan portfolio is presented in Section 2.5. Some general remarks are

presented in Section 2.6.



22

2.2 Model specification

In what follows, we consider the zero-inflated non-default rate model as defined in

(2.2), with baseline function f0(t|φ), indexed by a vector of parameters φ of size k, to be

freely chosen according with the data analysed. The associated (improper) cumulative

distribution function (CDF) and probability density function (PDF) are given by

F (t|p0, p1,φ) = p0 + (1− p0 − p1)F0(t|φ), t ≥ 0 (2.3)

and

f(t|p0, p1,φ) =

 p0, if t = 0,

(1− p0 − p1)f0(t|φ), if 0 < t,
(2.4)

where the parameters p0 and p1 are as defined in Section 2.1.1. F0 and f0 are, respectively,

the cumulative distribution function and probability density function underpinning the

(1− p0 − p1) proportion of subject susceptible to failure.

Figure 2.2: The (improper) cumulative distribution function (CDF) of the zero-inflated
survival model.

Note that, the improper CDF of the zero-inflated non-default rate model, F (t|p0, p1,φ),

has the property of accommodating the excess of zeros, p0, since it satisfies: F (0|p0, p1,φ) =

p0. Moreover, it accounts for the fraction of non-defaulters, p1, since it also satisfies:

lim
t→∞

F (t|p0, p1,φ) = 1− p1.
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2.2.1 Likelihood function

The zero-inflated non-default rate model proposes to distinguish between three sub-

populations of banking borrowers: (i) a segment of those who will not honour any instalment

of the loan, i.e., STD borrowers with failure time zero; (ii) a segment of those are susceptible

to default; and (iii) a segment of those who are not susceptible to default. Consequently,

as in the standard non-default rate modeling, there are two possibilities for the customer

who is not an STD customer: information about the default time (event of interest) is

fully observed, that is, the borrower has defaulted during the monitoring of the loan; or

information about the default time is right censored, that is, either the customer will

probably become a defaulter if given enough time, or she is really a good payer and will

never default, regardless of the monitoring period term.

So, for the likelihood contribution of a survival time ti of a customer i, we should

pay attention to the fact that there are different sub-group of customers. Therefore,

the likelihood contribution of each time-to-default ti, obtained from Section 2.2 and all

considerations we have done above, must assume three different values:


p0, if the i-th subject is an STD,

(1− p0 − p1)f0(ti|φ), if the i-th subject is not censored,

p1 + (1− p0 − p1)S0(ti|φ), if the i-th subject is censored.

(2.5)

Let the data take the form D = {ti, δi}, where δi = 1 if ti is an observable time to

default, and δi = 0 if it is right censored, for i = 1, 2, · · ·n. Let φ denote the parameter

vector associated with the f0 baseline distribution and, finally, (p0, p1) be the parameters

associated, respectively, with the proportion of STD (inflation of zeros) and the proportion

of non-default. The likelihood function of the zero-inflated non-default rate model, with a

vector of parameters ϑ = (p0, p1,φ), is based on a sample of n independent and identically

distributed observations, D = {ti, δi}, hence, following Klein & Moeschberger (2003), we

write the likelihood function L(ϑ;D) under non-informative censoring as:

L(ϑ;D) =
∏

i: ti=0
p0

∏
i: ti>0

{
[(1− p0 − p1)f0(ti|φ)]δi [p1 + (1− p0 − p1)S0(ti|φ)]1−δi

}
. (2.6)
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2.2.2 Classic parameter estimation

Parameter estimation can be performed by straightforward use of maximum likelihood

estimation (MLE), where, as we will see, its simple application is supported by our

simulation studies. Hence, the maximum likelihood estimator ϑ̂, regarding to the parameter

vector ϑ, are obtained through maximization of L(ϑ;D) or `(ϑ;D) = log{L(ϑ;D)}. The

MLE is, then, obtained through solving the non-linear system of equations U(ϑ) = ∂l(ϑ)
∂ϑ

=

0. We use the free software R to solve them numerically by means of iterative techniques.

There are various routines available to approximate the parameter estimate. We choose

the method “BFGS”, see details in R Core Team (2015).

Following Migon et al. (2014, p. 176), the asymptotic distribution of the maximum

likelihood estimator, ϑ̂, is a multivariate normal with mean vector ϑ and covariance

matrix I−1(ϑ), where I(ϑ) = −E[∂U(ϑ)/∂ϑ] is the Fisher information. Since it is not

possible to compute the Fisher information matrix, due to the censored observations,

instead of it, according with Migon et al. (2014, p. 178), is possible to use the observed

information matrix J(ϑ) = {−∂2`(ϑ)/∂ϑ∂ϑT}, i.e., is the negative of the second derivative

(the Hessian matrix) of the logarithm of the likelihood function, to make large sample

inference about ϑ̂. Thereafter, let J ii be the ith diagonal element of the inverse of

J, evaluated in ϑ̂. An approximate 100(1 − α)% confidence interval for ϑ̂i, is given by(
ϑ̂i − zα/2

√
J ii, ϑ̂i + zα/2

√
J ii
)
, where zα denotes the 100(1−α) percentile of the standard

normal random variable. In the application section we set α = 0.05, where we get a 95%

confidence interval for each ML estimation.

In the application section, we compare the proposed model configured with different

covariates. The comparison of the models was realized through by the criteria for models

selection: Akaike Information Criterion (AIC), proposed by Akaike (1974). The criterion

is defined by AIC = −2log(L) + 2k, where k is the number of estimated parameters and

L is the maximised value of the likelihood function. The model with the smallest value

is chosen as the preferred for describing a given dataset among all models considered.

Another criterion, as the Bayesian information criterion (BIC = −2log(L)+klog(n), where

n is the sample size), is also a criterion for model selection among a finite set of models.

Due it is closely related to the Akaike information criterion (AIC), we decided to use only

the AIC as the selection model criterion, although the BIC is also calculated in some cases

in this thesis.
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2.2.3 Bayesian parameter estimation

The Bayesian approach has some advantages over classical inference, because it does

not depend on the asymptotic theory and codes are easy to be implemented, for instance,

through the use of free software as openBUGS or winBUGS. Therefore, in this thesis, in

addition to the MLE approach for model parameter estimation, i.e., via classical approach,

we also proceed parameter estimation via Monte Carlo Markov Chains (MCMC) algorithms,

through use of the software openBUGS. The results obtained from both classical approach

and Bayesian approach are compared within the simulation studies and, finally, in the

application sections of this thesis.

Considering a Bayesian approach, the parameters are treated as random variable.

Hence, a prior distribution π(p0, p1,φ) for p0, p1,φ must be assigned. The joint posterior

distribution for p0, p1 and φ is given by

π(p0, p1,φ|D) ∝ π(p0, p1,φ)
n∏

i: ti=0
p0

n∏
i: ti>0

[(1− p0 − p1)f0(ti|φ)]δi×

×
n∏

i: ti>0
[p1 + (1− p0 − p1)S0(ti|φ)]1−δi .

(2.7)

The selection of π(·) is not an easy task. In the absence of prior information, we will be

interested in specify a prior distribution in which the dominant information in the posterior

distribution is provided by the data, such priors are known as non-informative prior. A

well-known non-informative prior was introduced by Jeffreys (1939) and can be obtained

through the Fisher information matrix. Another important non-informative reference prior

was introduced by Bernardo (1979), with further developments by Berger & Bernardo

(1989), Berger & Bernardo (1992). However, such priors depend on the Fisher information

matrix and even considering common baseline PDF. such as Weibull, Gamma and log-

normal, the Fisher information matrix does not have closed form. Therefore, a simple

form for the joint prior distribution could be given as π(p0, p1,φ) = π(p1|p0)π(p0)π(φ),

where p0 and p1 are independent of φ. For instance, we could consider an independent

Jeffreys prior for p0 ∝ 1√
p0(1−p0)

.

Since p1 ∈ (0, 1− p0), one prior distribution for p1 could be an Uniform(0, 1− p0). The

prior distribution for φ must be selected depending on the parametric space of f(t|φ).

Moreover, conjugate priors should be used when it is possible.
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2.2.4 The zero-inflated Weibull non-default rate model

In this section, we associate the Weibull distribution as the probability density function

for the subjects susceptible to failure. We choose the Weibull function since it has been

widely used to model survival data, and also has served as motivation for the proposal

of various types of generalizations, see for example, Cooner et al. (2007), Rinne (2008),

Rodrigues et al. (2009), Ortega et al. (2012) and Cancho et al. (2013). Then, let the

Weibull distribution represents the survival behavior of the non-negative random variable

T0. The CDF of the Weibull distribution is given by F0(t) = 1 − e−( tθ )
α

, t ≥ 0, where

α > 0 and θ > 0 are, respectively, shape and scale parameters. The PDF of the Weibull

distribution is obtained as f0(t) = d
dt
F0(t) = α

θ

(
t
θ

)α−1
e(−

t
θ )
α

, t ≥ 0.

The log-likelihood function log{L(ϑ;D)}, corresponding to the observed data, and the

score function U(ϑ) = U(p0, p1, α, θ) =
(
∂l(ϑ)
∂p0

, ∂l(ϑ)
∂p1

, ∂l(ϑ)
∂α

, ∂l(ϑ)
∂θ

)
, are given as follows:

log{L(ϑ;D)} =
∑

i: ti=0
log (p0) +

∑
i: ti>0

log
{

[(1− p0 − p1)f0(ti)]δi
}

+
∑

i: ti>0
log

{
[p1 + (1− p0 − p1)S∗(ti)]1−δi

}
=

∑
i: ti=0

log (p0) +
∑

i: ti>0
δi log (1− p0 − p1)

+
∑

i: ti>0
δi log [f0(ti)] +

∑
i: ti>0

(1− δi) log [p1 + (1− p0 − p1)S∗(ti)]

=
∑

i: ti=0
log (p0) +

∑
i: ti>0

δi log (1− p0 − p1)

+
∑

i: ti>0
δi log

[
α

θ

(
ti
θ

)α−1
e(−

ti
θ )α

]

+
∑

i: ti>0
(1− δi) log [p1 + (1− p0 − p1)e−( tiθ )α ]
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∂l(ϑ)
∂p0

= n0

p0
−

∑
i: ti>0

δi

(1− p0 − p1) −
∑

i: ti>0

(1− δi)e−( tiθ )α

p1 + (1− p0 − p1)e−( tiθ )α

∂l(ϑ)
∂p1

= −

∑
i: ti>0

δi

(1− p0 − p1) +
∑

i: ti>0

(1− δi)(1− e−( tiθ )α)
p1 + (1− p0 − p1)e−( tiθ )α

∂l(ϑ)
∂α

=
∑

i: ti>0
δi

[ 1
α

+
(
−ti
θ

)α
log

(
−ti
θ

)
+
(
ti
θ

)]

−
∑

i: ti>0
(1− δi)

(1− p0 − p1)
(
ti
θ

)α
log

(
ti
θ

)
1− p0 − p1 + p1e

( tiθ )α

∂l(ϑ)
∂θ

=
∑

i: ti>0
δi

−α
θ
−
α
(
− ti

θ

)α
θ



+
∑

i: ti>0
(1− δi)

 α(1− p0 − p1)
(
ti
θ

)α
θ
(

1− p0 − p1 + p1e
( tiθ )α

)


2.3 The Zero-inflated Non-default Regression Rate

Model

Here, we link covariates with the parameters set in the general zero-inflated cure rate

model. This allows us to determine the effect of available covariates on the zero-inflated

times, on the cure rate and on the observable events. Therefore, we propose to relate the set

parameters {p0, p1,φ}, respectively, proportion of zeros, proportion of cure, the parameters

of the baseline hazard distribution, with a set of vectors {x1, x2, x3, . . . ,xk+2}. These

covariate vectors, as occurs in practice, may be the same, i.e., x1 = x2 = x3 = . . . ,xk+2.

The regression version of the zero-inflated cure rate regression model are defined by

2.2 up to 2.6, and by the following systematic components:

 H(p0i, p1i) = (ζ0i, ζ1i),

gj(φj,i) = ηji, for j = 1, . . . , k
(2.8)

where ζ0i = x>1iβ1, ζ1i = x>2iβ2 and ηji = x>(j+2)iβj+2, j = 1, . . . , k are linear predictors, and

βj’s are j+2 vectors of unknown regression coefficients to be estimated. The link function
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H and gj provide the relationship between the linear predictor and the parameters of the

distribution function. Following the setting made in Pereira et al. (2013), H is set as the

multinomial logistic regression (Hosmer & Lemeshow, 2000, p. 261), that is,

H(p0i, p1i) =
(

log
(

p0i

1− p0i − p1i

)
, log

(
p1i

1− p0i − p1i

))
.

Different link functions can be used depending on the support of distribution (McCullagh

& Nelder, 1989). For instance, considering the most common lifetime distributions, such

as Weibull, Gamma and lognormal the parameters are φ1 > 0 and φ2 > 0 and the g1 and

g2 link functions can be chosen as g1(φ1i) = log(φ1i) and g2(φ2i) = log(φ2i). Therefore,

φ1i = ex
>
3iβ3 and φ2i = ex

>
4iβ4 . These are the most convenient links because g1(·) and g2(·)

are link functions strictly monotonic and twice differentiable that map R+ into R.

Note that, as required, the component link function H ensures that 0 < γ0i < 1,

0 < γ1i < 1 and 0 < 1 − γ0i − γ1i < 1 hold. Indeed, it is always satisfied since

(p0i, p1i) =
(

ex
>
1iβ1

1+ex
>
1iβ1 +ex

>
2iβ2

, ex
>
2iβ2

1+ex
>
1iβ1 +ex

>
2iβ2

)
. In addition, H is a bijective link function

and twice differentiable that maps C into R2, where C is a subspace of R2 defined as

C = {(p0i, p1i)|0 < p0i < 1, 0 < p1i < 1− p0i} (Pereira et al., 2013, p. 128).

Following Migon et al. (2014), as aforementioned, approximate (1−α) 100% confidence

intervals for the regression vector parameters, β = {βj, j = 1, . . . , k + 2}, presented in the

simulation studies and in the application section, are given by β̂j ± ξα/2

√
V ar(β̂j), where

ξα/2 is the upper α/2 percentile of standard Normal distribution and j = 1, . . . , k + 2.

In the Bayesian estimation context, with these above assumptions, we can rewrite the

posterior distribution expression, (2.7), as

π(β|D,x) ∝ π(β)
n∏

i: ti=0

ex
>
1iβ1

1 + ex
>
1iβ1 + ex

>
2iβ2

n∏
i: ti>0

(
f0(ti|η(β),x)

1 + ex
>
1iβ1 + ex

>
2iβ2

)δi
×

×
n∏

i: ti>0

(
ex

>
1iβ1 + S0(ti|η(β),x)
1 + ex

>
1iβ1 + ex

>
2iβ2

)1−δi

.

(2.9)

The prior distribution adopted for the parameters is

π(β) ∝ π(β1)π(β2) . . . π(βk+2),

βj ∼ N(0, bj), for j = 1, . . . , k + 2
(2.10)

where bj are larger values that control the variance to produce flat priori.
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2.4 Simulation studies

We proceed a parameter estimation based on both classical and Bayesian approach.

The estimation via maximum likelihood principle is carried out with the use of the method

of maximization ”BFGS” of the R routine optim(). In order to assess the behavior of

the asymptotic theory for increasing sample size, we performed simulations to examine

the coverage probabilities of the 95% confidence intervals for the MLEs. The simulation

study also provides the results for bias and root mean square errors for the estimated

parameters, to ensure that they decrease with increasing sample size as expected.

Regarding to the application of Bayesian approach for parameter estimation, the

confidence intervals, with a 95% confidence, were obtained trough the empirical quantiles

of the marginal posterior distributions, obtained via straightforward use of algorithms

MCMC, with the openBUGS software.

The simulation study is based on 1000 sample replications, where the sample size

increases according to the nature of the real data sets in which the model has been applied

in this dissertation. So, we perform Monte Carlo simulations where the sample size varies

as n = 100, 250, 500, 750 and 1000. Three simulation studies are performed for the

proposed zero-inflated Weibull non-default rate regression model. For the purpose of

simulation, we let x be a random variable that represents a consumer characteristic. The

description of sample generation, i.e., all details of the simulated survival time distribution,

and results obtained regarding to the proposed estimation method are described in the

next sections.

2.4.1 Parameter scenarios

The model parameters are linked on a single covariate x, according to the following

expressions: p0i = eβ10+xiβ11
1+eβ10+xiβ11 +eβ20+xiβ21 , p1i = eβ20+xiβ21

1+eβ10+xiβ11 +eβ20+xiβ21 , αi = eβ30+xiβ31 , θi =

eβ40+xiβ41 . Considering the parameters established in the regression model defined above,

we set three different scenarios of parameters for the simulation studies performed here.

Playing the role of covariate, we assume x as a binary covariate with values drawn from a

Bernoulli distribution with parameter 0.5.

For scenario 1, β10 assumes -3 and β11 assumes 1. β20 assumes -2 and β21 assumes 0.75.

Given that the assumed values of x are 0 and 1, we have that p0 assumes, respectively,

4.20% and 9.51%, while p1 assumes 11.41% and 20.15%. Compared to the other scenarios
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2 and 3, scenario 1 has the characteristic of having a low rate of STD and non-default.

Regarding to the Weibull parameters, β30 assumes 0.5, β31 assumes 0.5, β40 assumes 1.5

and β41 assumes 2. This implies that the Weibull parameter α can assume 1.64 or 2.71

values, while θ assumes 4.48 or 33.11.

For scenario 2, β10 assumes -2 and β11 assumes 1.5. β20 assumes -1.25 and β21 assumes

1. Given that the assumed values of x are 0 and 1, we have that p0 assumes, respectively,

9.51% and 25.42%, while p1 assumes 20.15% and 32.64%. Compared to the other scenarios

1 and 3, scenario 2 has the characteristic of having a moderate rate of STD and

non-default. Regarding to the Weibull parameters, β30 assumes -0.5, β31 assumes 1.5, β40

assumes -0.75 and β41 assumes 3. This implies that the Weibull parameter α can assume

0.60 or 2.71 values, while θ assumes 0.47 or 9.48.

For scenario 3, β10 assumes -1 and β11 assumes 1. β20 assumes -1 and β21 assumes 1.

Given that the assumed values of x are 0 and 1, we have that p0 assumes, respectively,

21.20% and 33.33%, while p1 assumes 20.20% and 33.33%. Compared to the other scenarios

1 and 2, scenario 3 has the characteristic of having a high rate of STD and non-default.

Regarding to the Weibull parameters, β30 assumes -0.75, β31 assumes 1, β40 assumes 1.25

and β41 assumes 1. This implies that the Weibull parameter α can assume 0.42 or 1.28

values, while θ assumes 3.49 or 9.48.

The following Kaplan-Meier plots show the survival distinction between the three

scenarios set for the regression parameters, trying to simulate, not at all, a range of

scenarios consistent with a probable current condition of a real loan portfolio.
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Figure 2.3: Kaplan-Meier (K-M) survival curves of the simulated survival data according
to the parameter scenario 1.
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Figure 2.4: Kaplan-Meier (K-M) survival curves of the simulated survival data according
to the parameter scenario 2.
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Figure 2.5: Kaplan-Meier (K-M) survival curves of the simulated survival data according
to the parameter scenario 3.

The following histograms show the data distribution of the three scenarios set for the

regression parameters.
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Figure 2.6: Histogram of simulated loan survival data according with the parameter
scenario 1.
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Figure 2.7: Histogram of simulated loan survival data according with the parameter
scenario 2.
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Figure 2.8: Histogram of simulated loan survival data according with the parameter
scenario 3.

The description of sample generation, i.e., all details of the simulated survival time

distribution, and results obtained regarding to the proposed estimation methods for the

model parameters are described in the next sections.

2.4.2 Simulation algorithm

Suppose that the time of occurrence of an event of interest has the improper cumulative

distribution function F (t) given by 2.3, i.e.:
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F (t) = p0 + (1− p0 − p1)F0(t), t ≥ 0.

We aim to simulate random samples of size n posing as loan survival times, where each

sample comprises a proportion p0 of zero-inflated times, a non-default fraction of p1 and

with a proportion (1− p0 − p1) of failure times drawn from a Weibull distribution with α

and θ parameters.

The following step-by-step algorithm is proposed for this purpose, which is based on the

link functions 2.8, with an x covariate drawn from a Bernoulli distribution with parameter

0.5, representing a consumer characteristic.

1. Set β10 and β11 related to the value of the desired proportion of zero-inflated times,

p0, along with β20 and β21 related to the value of the desired non-default fraction,

p1; finally, set the Weibull parameters β30 and β31 related to α, as well as, β40 and

β41 related to θ;

2. Drawn xi from x ∼ Bernoulli(0.5) and calculate p0i, p1i, αi and θi;

3. Generate ui from a uniform distribution U(0,1);

4. If ui ≤ p0i, set si = 0;

5. If ui > 1− p1i, set si =∞;

6. If p0i < ui ≤ 1− p1i, generate vi from a uniform distribution U(p0i, 1− p1i) and take

si as the root of F (t)− vi = 0, where F (t) is given as in 2.3;

7. Generate wi from a uniform U(0,max(si)), considering only finites si;

8. Calculate ti = min(si, wi), if ti < wi, set δi = 1, otherwise, set δi = 0.

9. Repeat as necessary from step 2 until you get the desired amount of sample (ti, δi).

Note that the censoring distribution chosen is a uniform distribution with limited range

in order to keep the censoring rates reasonable, see Rocha et al. (2015), p.12.

2.4.3 Results of Monte Carlo simulations

The followings figures describe the simulation results for the three simulated scenarios

of parameters, where the sample size varies as n = 100, 250, 500, 750 and 1000, and
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considering both the classical (Figures 2.9, 2.10 and 2.11) and the Bayesian estimation

approach (Figures 2.12, 4.7 and 4.8). For the purpose of simulation, we let x be a random

variable that represents a consumer characteristic. Hence, the link configuration of the

eight parameters (β10, β11, β20, β21, β30, β31, β40, β41) to be estimated is given by the

following expressions:

γ0i = eβ10+xiβ11
1+eβ10+xiβ11 +eβ20+xiβ21 ,

γ1i = eβ20+xiβ21
1+eβ10+xiβ11 +eβ20+xiβ21 ,

αi = eβ30+xiβ31 ,

θi = eβ40+xiβ41 .

(2.11)

The parameter values are selected in order to assess the ML estimation performance

under different shape and scale parameters (β30, β31, β40 and β41, related to the Weibull

time-to-default distribution), and also under a composition of different proportions of

zero-inflated data (β10 and β11) and non-defaulters rates (β20 and β21 related to censored

data). It can be seen from the Figures 2.9 to 4.8, that:

1. in general, the maximum likelihood estimation on average, MLEA, is close to the

parameters set in the simulated parameter scenarios, see Figure 2.11. However, in

scenarios 1 and 2, the parameters β̂11 and β̂21 need a larger sample size (from at

least n=500 for β21) to achieve convergence.

2. in general, according to Figures 2.10 and 2.11, biases and root mean square errors

decrease as sample size increases; we also observe that, in general, the coverage

probability, i.e., the proportion of the time that the interval contains the true value

of interest, is close to 95%, as expected;

3. in the scenarios with the greatest presence of non-default and zeros, i.e., scenario 2

(Moderate) and 3 (High), the MLEA, and the measures of RMSE, Bias and CP of

the estimated regression parameters related to p0 and p1, performs better compared

to scenario 1 (Low), due, of course, to greater presence of zeros and censored data;

4. on the other hand, in the scenario with the fewer presence of zeros and non-default

and , i.e., scenario 1 (Low), the MLEA, and the measures of RMSE, Bias and CP of

the estimated regression parameters related to α and θ, performs better compared

to others scenario, due to greater presence of observed time-to-default data;
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Figure 2.9: Bias, square root of mean squared error and coverage probability (CP) of
the maximum likelihood estimation (β̂10, β̂11, β̂20, β̂21) of zero-inflated Weibull non-
default rate regression model for simulated data under the three scenarios of parameters,
obtained from Monte Carlo simulations with 1000 replications and increasing sample size
(n).
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Figure 2.10: Bias, square root of mean squared error and coverage probability (CP) of
the maximum likelihood estimation (β̂30, β̂31, β̂40, β̂41) of zero-inflated Weibull non-
default rate regression model for simulated data under the three scenarios of parameters,
obtained from Monte Carlo simulations with 1000 replications and increasing sample size
(n).
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Figure 2.11: MLEA, maximum likelihood estimation on average of the parameters
(β̂10, β̂11, β̂20, β̂21, β̂30, β̂31, β̂40), β̂41 of zero-inflated Weibull non-default rate regression
model for simulated data under the three scenarios of parameters, obtained from Monte
Carlo simulations with 1000 replications and increasing sample size (n).



39

1

1
1 1 1

200 600 1000

−
0

.2
0

.2
0

.6

B
IA

S
 (

 β^
1

0
)

2
2 2 2 2

3
3 3 3 3

1

1
1

1 1

200 600 1000

0
.0

0
.2

0
.4

0
.6

0
.8

R
M

S
E

 (
 β^

1
0

)

2

2
2

2 2

3

3
3

3 3

1 1

1 1
1

200 600 1000

0
.8

0
0

.9
0

1
.0

0

C
P

(β^
1

0
) 2

2 2
2

23
3

3
3

3

1

1

1 1 1

200 600 1000

−
1

.0
−

0
.6

−
0

.2
0

.2

B
IA

S
 (

 β^
1

1
)

2

2
2

2 2

3

3 3 3 3 1

1

1
1 1

200 600 1000

0
.0

0
.4

0
.8

R
M

S
E

 (
 β^

1
1

)

2

2

2
2 2

3

3
3

3 3

1 1

1 1
1

200 600 1000

0
.8

0
0

.9
0

1
.0

0

C
P

(β^
1

1
)

2

2

2

2
2

3
3 3 3

3

1
1 1 1 1

200 600 1000

−
0

.2
0

.0
0

.2
0

.4

B
IA

S
 (

 β^
2

0
)

2 2 2 2 2

3

3 3 3 3

1

1
1 1

1

200 600 1000

0
.0

0
.2

0
.4

0
.6

R
M

S
E

 (
 β^

2
0

)

2

2

2 2 2

3

3

3 3 3

1
1

1

1

1

200 600 1000

0
.8

0
0

.9
0

1
.0

0

C
P

(β^
2

0
)

2

2

2

2

2
3 3 3

3
3

1

1

1
1

1

200 600 1000

−
0

.8
−

0
.4

0
.0

B
IA

S
 (

 β^
2

1
)

2

2

2
2 2

3

3
3 3 3 1

1

1

1
1

200 600 1000

0
.0

0
.4

0
.8

R
M

S
E

 (
 β^

2
1

) 2

2

2

2
2

3

3
3 3 3

1
1

1 1
1

200 600 1000

0
.8

0
0

.9
0

1
.0

0

C
P

(β^
2

1
)

2

2 2 2 2
3

3
3

3
3

Figure 2.12: Bias, square root of mean squared error and coverage probability (CP) of
the Bayesian parameter estimations (β̂10, β̂11, β̂20, β̂21) of zero-inflated Weibull non-
default rate regression model for simulated data under the three scenarios of parameters,
obtained from Monte Carlo simulations with 1000 replications and increasing sample size
(n).
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Figure 2.13: Bias, square root of mean squared error and coverage probability (CP) of
the Bayesian parameter estimations (β̂30, β̂31, β̂40, β̂41) of zero-inflated Weibull non-
default rate regression model for simulated data under the three scenarios of parameters,
obtained from Monte Carlo simulations with 1000 replications and increasing sample size
(n).
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Figure 2.14: The Bayesian parameter estimations on average of the parameters (β̂10,
β̂11, β̂20, β̂21, β̂30, β̂31, β̂40, β̂41) of zero-inflated Weibull non-default rate regression model
for simulated data under the three scenarios of parameters, obtained from Monte Carlo
simulations with 1000 replications and increasing sample size (n).

2.5 Application: Brazilian bank loan portfolio

In this section we present an application of the proposed model in a database made

available by one of the largest Brazilian bank. Our objective is to assess if customer

characteristics are associated with consumer propensity of being STD, defaulter or non-

defaulter customers. It is important to note once more that the presented data set,

amounts, rates and levels of the available covariates, do not necessarily represent the actual

condition of the financial institution’s customer database. That is, despite being a real

database, the bank may have sampled the data in order to change the current status of its

loan portfolio.

As described in the section 1.1.1, the portfolio was collected from customers who have
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taken a personal loan over a 60-month period, between the years 2010 and 2015. It is

composed of 5733 time-to-default (in months), with an approximate 80% rate of censored

data, that is, a high rate of non-default loans. In order to proceed the model fit, we have

considered dummy covariates for all levels of the available covariates. So, including all

the intercepts, we might have up to thirty two (32=4x4x2) regression parameters to be

estimated.

Henceforth, we are concerned whether the use of covariates explains better the distribu-

tion of the time-to-default than assuming that the observations are identically distributed.

The fitted model without any covariate has AIC of 12768.71 (and BIC of 12795.33,

l{p̂0, p̂1, α̂, θ̂} = −6380.355, p = 4) and the model with all the dummy covariates has AIC

of 12809.21 (and BIC of 13022.14, l{p̂0, p̂1, α̂, θ̂} = −6372.604, p = 32). To reach the final

model, variables were selected in a backward way using the p-values of the Wald test and

AIC. The final model is summarized in Table 2.1, which has AIC of 12602.52 (and BIC of

12669.06, l{β̂10, β̂11, β̂12, β̂13, β̂20, β̂21, β̂22, β̂30, β̂40, β̂41} = −6291.259, p = 10).

Parameter Dummy covariate (param(1)) Estimate S.E.(2) P-value Exp.(3)
p0 Intercept (β10) -0.6724 0.1208 0.0000 0.5105

Age group =4 (β11) -0.8207 0.2284 0.0003 0.4401
Type of residence =4 (β12) 0.8722 0.4751 0.0664 2.3922
Type of employment=2 (β13) -0.6356 0.1431 0.0000 0.5296

p1 Intercept (β20) 0.9155 0.0972 0.0000 2.4980
Type of residence =1 (β21) -0.2810 0.1056 0.0078 0.7550
Type of employment=2 (β22) 0.6402 0.0998 0.0000 1.8969

α Intercept (β30) 0.1507 0.0374 0.0001 1.1626
θ Intercept (β40) 3.0967 0.0628 0.0000 22.1248

Age group =4 (β41) 0.7039 0.1446 0.0000 2.0216

Table 2.1: The Zero-Inflated Non-default Regression Model for time-do-default on a
Brazilian Bank Loan Portfolio. Notes: (1) Related regression parameter to be estimated;
(2) Standard error; (3) Exp(estimated parameter).

Based on the last column of Table 2.1, estimates of the relationship among covariates

and the time-to-default event of interest, already presented in the graphical analysis (see

the K-M survival curves in Figure 1.3), can again be ratified. For example, the odds

of a customer within the age group 4 be an STD borrower, decreases by 56%, with all

other independent covariates held constant. On the order hand, as expected, the group of

customers with type of employment 2 shows a 89% higher odds to be non-default customer

on a loan. Two dummy covariates related to the covariate type of residence showed to be

significant. Type of residence 1 decreases by 22,5% the odds of non-default on the loan,
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while the group within type of residence 4 increases by 139% the odds of being an STD

customer, with all other independent covariates held constant.

The selected dummy covariates (Table 2.1) allowed us to split the portfolio within twelve

(12) different group of borrowers (segmentations). Next, we present the estimated survival

curves for the most representative group of borrowers (5544 out of 5733), considering the

following segmentation: the segmentation 1 comprises 777 borrowers with the following

set of attributes: age group equal to 4, type of residence equal to 2 or 3 and type of

employment equal to 2; the segmentation 2 comprises 470 borrowers with the following

set of attributes: age group not equal to 4, type of residence equal to 1 and type of

employment equal to 2; the segmentation 3 comprises 108 borrowers with the following

set of attributes: age group not equal to 4, type of residence equal to 1 and type of

employment equal to 1; the segmentation 4 comprises 3444 borrowers with the following

set of attributes: age group not equal to 4, type of residence equal to 2 or 3 and type of

employment equal to 2; and, finally, the segmentation 5 comprises 745 borrowers with

the following set of attributes: age group not equal to 4, type of residence equal to 2 or 3

and type of employment equal to 1.
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Figure 2.15: Brazilian bank loan portfolio. Kaplan-Meier survival curves stratified through
the covariate selection given by the final model presented in the Table 2.1.

For the Bayesian parameter estimation, were adopted the priori distributions as

denoted in (2.3). Hence, βj ∼ N(0, bj), for j = 1, . . . , 10. Using the openBUGS, has

been generated a chain of size 2400, with the first 800 discarded as burn-in iterations, and
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considered n.this set as 60. Follow, we present the 95% credible interval for each estimation

along with the punctual estimation, which was set as the mode of the posterior generated

samples. Appendix A presents the convergence plots for the estimated parameters, i.e.,

the trace for the estimated parameters via MCMC algorithm, the approximate marginal

density a posteriori and, finally, the autocorrelation function plot for each parameter.

The final Bayesian model is summarized in Table 3.2, which has AIC of 12602.65

(l{β̂10, β̂11, β̂12, β̂13, β̂20, β̂21, β̂22, β̂30, β̂40, β̂41} = −6291.324, p = 10).

Parameter Estimated 95% Credible interval
parameter Lower Upper

β̂10 -0.6769 -0.9216 -0.4212
β̂11 -0.8208 -1.2390 -0.4030
β̂11 0.7411 -0.3084 1.5210
β̂12 -0.6335 -0.9483 -0.3383
β̂20 0.9146 0.7096 1.1170
β̂21 -0.2706 -0.4795 -0.0601
β̂22 0.6370 0.4312 0.8371
β̂30 0.1452 0.0697 0.2177
β̂40 3.0984 2.9849 3.2510
β̂41 0.6974 0.4006 0.9749

Table 2.2: Parameters obtained via Bayesian estimation using the software openBUGS.

We note that the Bayesian estimated parameters are close to the results obtained from

the classical approach, i.e., via maximum likelihood estimation. For this reasons, in this

application section, we have discussed only the practical outcomes obtained by the MLE

approach, since the parameter estimation are quite similar with the Bayesian ones.

2.6 Conclusion

We have presented a methodology in which we modify the standard cure rate model

introduced by Berkson & Gage (1952) to a credit risk setting. It allowed us to estimate

the proportions of the following loan applicants in a given portfolio: straight-to-default

customers, defaulters, and non-defaulters. At the heart of our methodology, the improper

survival function is adapted to account for the excess of zeros, which represents the rate

of borrowers that do not account for even the first instalments and default on the loan

at the beginning. An advantage of our approach is to accommodate zero-inflated times,

which is not possible in the standard cure rate model. In this scenario, information from
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all borrowers can be exploited through the joint modeling of their survival times, even

from who are equal to zero. To illustrate the proposed method, a data comprised for loan

survival times of a Brazilian bank loan portfolio is modeled. The estimation procedure

proposed for the zero-inflated Weibull non-default rate model, and the obtained outcomes

showed satisfactory.

The challenge that we may face using regression models lies in the fact that sometimes

we cannot have a set of factors, or covariables, sufficient to explain the risk of default

of the portfolio at a very granular level of customers. And also not unusual, regression

modeling can be impaired by the small amount of sample available for study. We believe

that in our case, despite the very small number of available covariates, we obtained very

useful results. Nevertheless, we think that if more covariates had been provided by the

bank it could greatly enrich our model application.

Finally, we pointed out the importance of the jointly analysis of zero inflation data

with the fraction of non-default, which is the most common scenario for bank portfolios:

it can provide credit risk analyst information over the most costly applicants, those who

are more likely to miss their payments at the beginning of the relationship with the bank.



Chapter 3

The zero-inflated promotion cure

rate model

In this chapter we extend the promotion cure rate model studied in Yakovlev & Tsodikov

(1996) and Chen et al. (1999), by incorporating excess of zeros in the modeling. Despite

allowing to relate covariates to the fraction of cure, the current approach, which is based

on a biological interpretation of the causes that trigger the event of interest, does not

enable to relate covariates to the fraction of zeros. The presence of zeros in survival data,

unusual in medical studies, can frequently occur in banking loan portfolios, as presented

in the earlier chapter 2, where we dealt with propensity to credit risk in lending loans in

a major Brazilian bank. To illustrate the new cure rate survival method, the same real

dataset analysed in the chapter 2 is again fitted and the results are compared.

3.1 Introduction

The cure rate model has overcome the disadvantage of the standard survival model

using for loan credit risk analysis, where there are individuals who are not susceptible to

the occurrence of the event of interest. This problem was handled in Berkson & Gage

(1952), where the authors proposed a simple model that add the fraction of cured (p > 0)

into the survival analysis, getting the following expressions for the survival and density

46
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functions:

S(t) = p+ (1− p)S0(t), t ≥ 0, (3.1)

f(t) = (1− p)f0(t), t ≥ 0, (3.2)

where S0 is the baseline survival function of the subjects susceptible to failure, f0 is its

density probability function, and p is the proportion of subjects immune to failure (cured).

This model is called cure rate model, or long-term survival model. S is an improper

survival function, unlike S0, since it satisfies: lim
t→∞

S(t) = p > 0.

The advantage of the cure rate model is that it allows to associate covariates in both

parts of the model, i.e., it allows covariates to have different influence on cured patients,

linking them with p, and on patients who are not cured, linking them with parameters of

the proper survival function S0.

To accommodate the presence of zero excess, which is impossible in the cure rate

model, in the earlier chapter 2, we proposed a zero-inflated cure rate model, with survival

function given by:

S(t) = p1 + (1− p0 − p1)S0(t), t ≥ 0, (3.3)

where, S0 is the survival function related to the (1 − p0 − p1) proportion of subject

susceptible to failure, p0 is the proportion of zero-inflated survival times, and p1 is the

proportion of subjects immune to failure (cured or long-term survivors).

Thus, it is now possible to link together the influence of the covariates in the three

parts of the model, i.e., to the proportion of zero-inflated survival times, whose we have

identified in a credit risk context as borrowers who do not pay any instalment after the loan

approval, along with the usual sub-populations of susceptible and non-susceptible to the

event of interest. As we will see in the application section, the event of interest concerned

here is related to the time until the occurrence of default on bank loan portfolios.

The fact that differentiates the zero-inflated cure version from the standard cure

approach is highlighted in the second of the following satisfied properties:

lim
t→∞

S(t) = p1 > 0. (3.4)

S(0) = 1− p0 < 1. (3.5)

Note that, if p0 = 0, i.e., without the excess of zeros, we have the cure rate model of
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Berkson & Gage (1952).

Figure 3.1: Survival function of the zero-inflated cure rate model as presented in Louzada
et al. (2015).

3.1.1 Preliminaries

In this section we shall briefly describe the promotion cure rate model studied in

Yakovlev & Tsodikov (1996) and Chen et al. (1999), further extended by Rodrigues et al.

(2009) among others authors, wherein we follow the same notations. This model also

incorporates the presence of immune individuals to the event of interest, but still has the

disadvantage of not accommodating zero time excess in its framework.

This survival model with fraction of cure, according to Chen et al. (1999), is based on

a biological interpretation of the causes that trigger (promote) a cancer disease relapse. As

described by the authors, the process that leads to formation of a detectable cancer mass

is triggered by a set of N competitive underlying causes, biologically represented by the

number of carcinogenic cells that the individual has left active after the initial treatment.

In their paper, it is assumed that N follows a Poisson distribution with mean θ.

Regarding to the time until the relapse of the cancer under treatment, the authors

Chen et al. (1999) have let Zi be the random time for the ith carcinogenic cells to produce

a detectable cancer mass, i.e., the incubation time for the ith (out of N) carcinogenic cell.

The random variables Zi, i = 1, 2, · · · , are assumed to be iid, with a common distribution

function F (t) = 1− S(t), and are independent of N .

In order to include those individuals who are not susceptible to the event of cancer
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relapse, i.e, the individuals with the initial number of cancer cells, N , equals to 0 and,

theoretically, with infinity survival time, it is assumed that P (Z0 =∞) = 1.

Finally, the time to the relapse of cancer is defined by the random variable T =

min{Zi, 0 ≤ i ≤ N}, and therefore, the survival function of T , for the entire population,

is given by

Sp(t) = P (T > t,N ≥ 0)

= P (N = 0) + P (Z1 > t, · · · , ZN > t,N ≥ 1)

= exp(−θ) +
∞∑
k=1

S(t)k θ
k

k! exp(−θ)

= exp(−θ + θS(t)) = exp(−θF (t)). (3.6)

The density function corresponding to 3.6 is given by

fp(t) = − d

dt
Sp(t) = θf(t) exp(−θF (t)), (3.7)

We notice that, Sp and fp are not, properly, survival function and density function,

respectively. In fact, note that, P (Z0 =∞) = 1, leads to the cure proportion

lim
t→∞

Sp(t) ≡ Sp(∞) ≡ P (N = 0) = exp(−θ) > 0,

which comes from the population of individuals who are not susceptible to the occurrence

of cancer relapse (cured). Moreover, the fraction of cure is very flexible, i.e., it has the

property to accommodate a wide variety of cases, since as θ →∞, the proportion of cured

tends to 0, whereas as θ → 0, the proportion of cured tends to 1.

In the situation where we consider the model formulation taking into account only

susceptible individuals, that is, when it is present in all individuals a number of initial

cancer cells greater than zero, N ≥ 1, we have a slightly modified expression for the

survival function:

S∗p(t) = P (T > t,N ≥ 1) = exp(−θF (t))− exp(−θ)
1− exp(−θ) . (3.8)

According to this formulation, we figure out now that S∗p(t) is a proper survival function,

since the following conditions are satisfied: S∗p(0) = 1 and S∗p(∞) = 0. Still following the

model presentation as done by Chen et al. (1999), we come to the probability density
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function of individuals who are susceptible to recurrence of the considered event:

f ∗p (t) = − d

dt
S∗(t) =

(
exp(−θF (t))
1− exp(−θ)

)
θf(t). (3.9)

Finally, we come to the mathematical relation between the cure rate model, as presented

by Berkson & Gage (1952), see expression (3.1), and the biological based model studied

by Chen et al. (1999), among others, in the expression (3.6):

Sp(t) = exp(−θ) + (1− exp(−θ))S∗p(t), t ≥ 0, (3.10)

fp(t) = (1− exp(−θ))f ∗p (t), t ≥ 0, (3.11)

where, S∗p and f ∗p are the proper survival function and the proper density function as given

in 3.8 and 3.9, respectively. Thus, we see that Chen et al. (1999) model can be rewritten

as a cure rate model, with cure rate equal to p = exp(−θ).

Although the promotion model be formulated within a biological context, it has also

been applied in other areas, such as credit risk analysis of bank loan portfolios. In these

new developments, the number N is related to the number of risks that compete to the

occurrence of a particular financial event of interest, i.e., default or non-performing of

loans. Therefore, the formulation admits generalizations in various ways, such as done

in Barriga et al. (2015), where the authors studied the time until the event of default

on a Brazilian personal loan portfolio, and where the authors let N follows a geometric

distribution, and F (t) be a cumulative density function of the inverse Weibull distribution.

Also in the area of credit risk modeling, in Oliveira & Louzada (2014b) the authors

applied the model given by (3.6) to study the time until the full recovery of non-performing

loans in a portfolio of personal loans.

In Oliveira & Louzada (2014a) the authors compare the parameters θ obtained from

two follow-up studies of a set of non-performing loans. The first follow-up is related to the

time until the default occurrence, while the second one is related to the time until the full

recovery of the related loan. The authors found a significant relationship between default

and recovery processes. The paper suggests that in times of higher risk of default, it is

also likely to have a decrease in the recovery rates of non-performing loans.

Identifiability issues of the cure rate model in (3.1) and the promotion cure model (3.6)

are discussed in Li et al. (2001). According to Mateluna (2014), the authors concluded
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that in both cases, it is necessary to include covariates in the cure fractions to make them

identifiable. From Peng & Zhang (2008), it can be ensured identifiability for the promotion

cure model when covariates are included on both parameters related to the fraction of

susceptible and the fraction of cured individuals, see (Mateluna, 2014, p. 28).

Although we have included one more parameter in both models mentioned above,

identifiability issues will not be discussed in this thesis. This important subject is intended

to be addressed in future research.

3.1.2 Proposal

To accommodate zero excess in a survival analysis of loan portfolios, in the earlier

chapter 2 we have proposed a modification in the survival function of the cure rate model,

which has led to the improper survival function given in 3.3, also labelled as zero-inflated

cure rate model. In this scenario, information from credit risk in loan applications is

exploited through the joint modeling of the zero survival times, along with the survival

times of the remaining group of borrowers.

The purpose of this chapter 3 is to propose a way of incorporating the fraction of zeros

into the biological based promotion cure model. Such an approach leads the credit risk

management to a complete overview of the risk factors involved in lending, that is, dealing

with likelihood to default on a loan since the loan approval, the non-performing loan

control and ensure customer loyalty among long-term survival customers. To exemplify the

application of the proposed approach, we re-analyse the portfolio of loans made available

by a large Brazilian commercial bank that had been studied in the earlier chapter.

This chapter is organized as follows. In Section 3.2, we formulate the new model named

zero-inflated promotion cure rate, where we present the approach for parameter estimation.

Simulation studies are presented in the Section 3.3. An application to a real data set is

presented in Section 3.4. Some general remarks are presented in Section 3.5.

3.2 Model specification

In what follows, we consider the promotion cure rate model as defined in expression

(3.10). Hence, we propose a new (improper) survival function as follows:

Sp(t) = p1 + (1− p0 − p1)S∗p(t), t ≥ 0, (3.12)
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where S∗p is given by 3.8, and the parameters p0 and p1 are defined as follows: p0 = exp(−κ)

and p1 = exp(−θ), with κ > 0 and θ > 0.

To ensure that p0, p1, and (1 − p0 − p1) ∈ (0, 1), we propose to link two vector of

covariates, x1 and x2, into the parameters related to zero inflation and cure rate, respectively,

as follows: κi = − log
(

ex
>
1iβ1

1 + ex
>
1iβ1 + ex

>
2iβ2

)
, and θi = − log

(
ex

>
2iβ2

1 + ex
>
1iβ1 + ex

>
2iβ2

)
, where

β1, is a vector of regression coefficients to be estimated, that relates the influence of the

covariates into the excess of zeros, while β2, is a vector of regression coefficients that relates

the influence of the covariates into the fraction of cured.

To complete the configuration of the model, i.e., to determine the parametric form

of S∗p , we let f(t) and F (t) be, respectively, the density probability function and the

cumulative probability function of the Weibull distribution. The Weibull distribution is a

continuous probability distribution, commonly applied in survival analysis and reliability.

It has two parameters, α1 > 0 and α2 > 0, respectively, the shape and scale parameters.

Therefore, we link the Weibull parameters as follows: α1i = ex
>
3iβ3 and α2i = ex

>
4iβ4 . These

are the most convenient links, as mentioned in the section 2.3, for non-negative parameters.

Finally, we present the following framework for the zero inflated promotion cure rate

model:
Sp(t) = exp(−θ) + (1− exp(−κ)− exp(−θ))S∗p(t),

S∗p(t) = exp(−θF (t))−exp(−θ)
1−exp(−θ) ,

f ∗p (t) =
(

exp(−θF (t))
1−exp(−θ)

)
θf(t),

F (t) = 1− e−( tθ )
α

and

f(t) = α
θ

(
t
θ

)α−1
e(−

t
θ )
α

.

(3.13)

3.2.1 Likelihood function

The construction of the likelihood function follows the same logic presented in the

previous chapter 2. Thus, regarding to the likelihood contribution of each customer for

the likelihood function, we must note that there are different sub-group of customers: (i)

individual with event at the starting time (zero time); (ii) non-susceptible for the event, or

(iii) susceptible for the event. The expression (3.14) presents the likelihood contribution of

each time-to-default ti:

p0i, if ti = 0,

(1− p0i − p1i)f ∗p (ti), if ti is fully observed

p1i + (1− p0i − p1i)S∗p(ti), if ti is right censored.

(3.14)
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Let the data take the form D = {ti, δi, x = {x1i, x2i, x3i, x4i}}, where δi = 1 if ti is an

observable time to default, δi = 0 if it is right censored, for i = 1, 2, · · ·n, and x is vector

of covariates associated with a consumer i. As we shall see in the application section,

the covariate vectors can be the same, i.e., x1 = x3 = x2 = x4. Let (α1, α2) denote the

parameter vector of the Weibull distribution and, finally, let (βκ, βθ) be the regression

parameters associated, respectively, with the proportion of inflation of zeros and the

proportion of long-term survivors (cure rate).

The likelihood function of the proposed new zero-adjusted cure rate survival model,

with a parameter vector, ϑ = (α1, α2, βκ, βθ), to be estimated via MLE approach or

Bayesian approach, likewise we have proceeded as in sections 2.2.2 and section 2.2.3, is

based on a sample of n observations, D = {ti, δi, x}. Finally, we write the likelihood

function, under non-informative censoring, as

L(ϑ;D) ∝
∏
ti=0
{p0}

∏
ti>0

{[
(1− p0 − p1)f ∗p (ti)

]δi[
p1 + (1− p0 − p1)S∗p(ti)

]1−δi} (3.15)

3.3 Simulation studies

We proceed a parameter estimation in the same way it was made in the section 2.4 of

the previous chapter 2, i.e., based on both classical and Bayesian approach. Thus, the

estimation via maximum likelihood principle is carried out with the use of the method of

maximization ”BFGS” of the R routine optim(). In order to assess the behavior of the

asymptotic theory for increasing sample size, in the same way, we performed simulations

to examine the coverage probabilities of the 95% confidence intervals for the MLEs. The

simulation study also provides the results for bias and root mean square errors for the

estimated parameters, to ensure that they decrease with increasing sample size as expected.

Regarding to the application of Bayesian approach for parameter estimation, the

confidence intervals, with a 95% confidence, were obtained trough the empirical quantiles

of the marginal posterior distributions, obtained via straightforward use of algorithms

MCMC, with the openBUGS software.

The simulation study is based on 1000 sample replications, where the sample size

increases according to the nature of the real data sets in which the model has been applied

in this dissertation. So, we perform Monte Carlo simulations where the sample size varies

as n = 100, 250, 500, 750 and 1000. Three simulation studies are performed for the
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proposed zero-inflated Weibull non-default rate regression model. For the purpose of

simulation, we let x be a random variable that represents a consumer characteristic. The

description of sample generation, i.e., all details of the simulated survival time distribution,

and results obtained regarding to the proposed estimation method are described in the

next sections.

The parameter scenarios are based in the same framework as done in the section 2.4.1,

which description we refer the reader to consult the aforementioned section.

3.3.1 Results of Monte Carlo simulations

The followings figures describe the simulation results for the three simulated scenarios

of parameters, where the sample size varies as n = 100, 250, 500, 750 and 1000, and

considering both the classical (Figures 3.2, 3.3 and 3.4) and the Bayesian estimation

approach (Figures 3.5, 3.6 and 3.7). For the purpose of simulation, we let x be a random

variable that represents a consumer characteristic. Hence, the link configuration of the

eight parameters (β10, β11, β20, β21, β30, β31, β40, β41) to be estimated is given by the

following expressions:

κi = − log
(

eβ10+xiβ11
1+eβ10+xiβ11 +eβ20+xiβ21

)
,

θ1i = − log
(

eβ20+xiβ21
1+eβ10+xiβ11 +eβ20+xiβ21

)
,

α1i = eβ30+xiβ31 ,

α2i = eβ40+xiβ41 .

(3.16)

The parameter values are selected in order to assess the ML estimation performance

under different shape and scale parameters (β30, β31, β40 and β41, related to the Weibull

time-to-default distribution), and also under a composition of different proportions of

zero-inflated data (β10 and β11) and non-defaulters rates (β20 and β21 related to censored

data). Similarly to the conclusions reached in section 2.4.3, it can be seen from the Figures

3.2 to 3.7, that:

1. in general, the maximum likelihood estimation on average, MLEA, is close to the

parameters set in the simulated parameter scenarios, see Figure 3.4. However, in

scenarios 1 and 2, the parameters β̂11 and β̂21 need a larger sample size (from at

least n=500 for β21) to achieve convergence.

2. in general, according to Figures 3.3 and 3.4, biases and root mean square errors
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decrease as sample size increases; we also observe that, in general, the coverage

probability, i.e., the proportion of the time that the interval contains the true value

of interest, is close to 95%, as expected;

3. in the scenarios with the greatest presence of non-default and zeros, i.e., scenario

2 (Moderate) and 3 (High), the MLEA, and the measures of RMSE, Bias and CP

of the estimated regression parameters related to p0 = exp(−κ) and p1 = exp(−θ),

performs better compared to scenario 1 (Low), due, of course, to greater presence of

zeros and censored data;

4. on the other hand, in the scenario with the fewer presence of zeros and non-default

and , i.e., scenario 1 (Low), the MLEA, and the measures of RMSE, Bias and CP of

the estimated regression parameters related to α1 and α2, performs better compared

to others scenario, due to greater presence of observed time-to-default data;
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Figure 3.2: Bias, square root of mean squared error and coverage probability (CP) of the
maximum likelihood estimation (β̂10, β̂11, β̂20, β̂21) of zero-inflated Promotion Cure
rate regression model for simulated data under the three scenarios of parameters, obtained
from Monte Carlo simulations with 1000 replications and increasing sample size (n).
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Figure 3.3: Bias, square root of mean squared error and coverage probability (CP) of the
maximum likelihood estimation (β̂30, β̂31, β̂40, β̂41) of zero-inflated Promotion Cure
rate regression model for simulated data under the three scenarios of parameters, obtained
from Monte Carlo simulations with 1000 replications and increasing sample size (n).
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Figure 3.4: MLEA, maximum likelihood estimation on average of the parameters
(β̂10, β̂11, β̂20, β̂21, β̂30, β̂31, β̂40), β̂41 of zero-inflated Promotion Cure rate regression model
for simulated data under the three scenarios of parameters, obtained from Monte Carlo
simulations with 1000 replications and increasing sample size (n).
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Figure 3.5: Bias, square root of mean squared error and coverage probability (CP) of the
Bayesian parameter estimations (β̂10, β̂11, β̂20, β̂21) of zero-inflated Promotion Cure
rate regression model for simulated data under the three scenarios of parameters, obtained
from Monte Carlo simulations with 1000 replications and increasing sample size (n).
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Figure 3.6: Bias, square root of mean squared error and coverage probability (CP) of the
Bayesian parameter estimations (β̂30, β̂31, β̂40, β̂41) of zero-inflated Promotion Cure
rate regression model for simulated data under the three scenarios of parameters, obtained
from Monte Carlo simulations with 1000 replications and increasing sample size (n).
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Figure 3.7: The Bayesian parameter estimations on average of the parameters (β̂10,
β̂11, β̂20, β̂21, β̂30, β̂31, β̂40, β̂41) of zero-inflated Promotion Cure rate regression model
for simulated data under the three scenarios of parameters, obtained from Monte Carlo
simulations with 1000 replications and increasing sample size (n).

3.4 Application: Brazilian bank loan portfolio

In this section we present the application of the zero-inflated promotion cure rate

regression model introduced in Section 3.2. For that, the same real dataset analysed in

the chapter 2 is again fitted and the results are compared. Therefore, we fit the model

with the same selected dummy covariates showed in Table 2.1.

Table 3.1 summarizes the estimated parameters via MLE approach for the regression

parameters of the zero-inflated promotion cure rate regression model. The final model

has AIC of 12596.26 (and BIC of 12662.8, l{β̂10, β̂11, β̂12, β̂13, β̂20, β̂21, β̂22, β̂30, β̂40, β̂41} =

−6288.128, p = 10). The Bayesian model is summarized in Table 3.2, which has AIC

of 12596.38 (l{β̂10, β̂11, β̂12, β̂13, β̂20, β̂21, β̂22, β̂30, β̂40, β̂41} = −6288.189, p = 10). We see
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that the model estimated by MLE approach is slightly better than its Bayesian version in

terms of AIC selection criteria.

Parameter Dummy covariate (param(1)) Estimate S.E.(2) P-value Exp.(3)
p0 Intercept (β10) -0.6690 0.1213 0.0000 0.5122

Age group =4 (β11) -0.8187 0.2231 0.0002 0.4409
Type of residence =4 (β12) 0.8653 0.4736 0.0677 2.3757
Type of employment=2 (β13) -0.6473 0.1434 0.0000 0.5234

p1 Intercept (β20) 0.9123 0.0957 0.0000 2.4901
Type of residence =1 (β21) -0.2905 0.1028 0.0047 0.7478
Type of employment=2 (β22) 0.6331 0.0970 0.0000 1.8834

α Intercept (β30) 0.1730 0.0376 0.0000 1.1889
θ Intercept (β40) 3.1855 0.0697 0.0000 24.1817

Age group =4 (β41) 0.6895 0.1435 0.0000 1.9927

Table 3.1: The Zero-Inflated Promotion Cure Regression Model for time-do-default on a
Brazilian Bank Loan Portfolio. Notes: (1) Related regression parameter to be estimated;
(2) Standard error; (3) Exp(estimated parameter).

Parameter Estimated 95% Credible interval
parameter Lower Upper

β̂10 -0.6681 -0.9044 -0.4387
β̂11 -0.8202 -1.2500 -0.4011
β̂11 0.7264 -0.2316 1.4920
β̂12 -0.6589 -0.9354 -0.3803
β̂20 0.9105 0.7162 1.0940
β̂21 -0.2883 -0.4925 -0.0867
β̂22 0.6347 0.4451 0.8180
β̂30 0.1684 0.0967 0.2385
β̂40 3.1840 3.0630 3.3440
β̂41 0.6844 0.4025 0.9666

Table 3.2: Parameters obtained via Bayesian estimation using the software openBUGS.

Figure 3.8 shows the adjusted survival curves according to the parameters obtained

via classical approach. We can see that they are very similar to the curves obtained in the

previous section 2.5, see K-M curves in 2.15.
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Figure 3.8: Brazilian bank loan portfolio. Kaplan-Meier survival curves stratified through
the covariate selection given by the final promotion cure rate regression model presented
in the Table 3.2.

The parameters obtained in this section are consistent with the parameters obtained in

chapter 2, that is, have the same order of magnitude and signs. We can thus, as already

discussed in the previous section 2.5, ratify risk behaviors presented in the initial graphical

analysis given by the K-M curves in 1.3.

3.5 Concluding remarks

We introduced a methodology based on a zero-inflated survival data that extends the

model studied in Yakovlev & Tsodikov (1996) and Chen et al. (1999). In this sense, an

advantage of our approach is to accommodate zero-inflated times, which is not possible in

the standard cure rate model. To illustrate the methodology presented here, we re-analysed

a bank loan survival data, in order to assess the propensity to default in loan applications.

In this scenario, informations from borrowers are exploited through the joint modeling

of the zero survival time, along with the survival times of the remaining portfolio. The

results showed the new model performed very well.

Despite the new zero-inflated promotion cure model presenting slightly better results

in terms of AIC, 12596.26 compared with AIC of 12602.52 of the zero-inflated cure rate

model presented in the chapter 2, it is important to note that the actual performance of
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novel models will be measured through its daily use by the bank and with the use of a

wider variety of available covariates, since the model allows the use of as many covariates

as needed, whether continuous or categorical.



Chapter 4

An inflated mixture of beta models

with applications to Loss Given

Default

In this chapter, we propose an inflated mixture model to deal with multimodality in loss

given default data. We propose a mixed of degenerate distributions, to handle zeros and

ones excess, with a mixture of beta distributions for non-zeros and non-ones proportions.

By applying the methodology in four retail portfolios of a large Brazilian commercial bank,

we show that the inflated mixture of beta distributions plays better role minimizing model

risk in fitting an inadequate model, in comparison with others considered competitive

models. We explore the use of maximum likelihood estimation procedure. Monte Carlo

simulations are carried out in order to check its finite sample performance.

4.1 Introduction

Since the Basel II publications in the mid-2000s, recommending central banks to allow

banks to use internal data to calculate credit risk measures of their portfolios, much has

been proposed in the literature on probability of default, loss given default and exposure

at default. See for example Engelmann & Rauhmeier (2011), Loterman et al. (2012), and

Yashkir & Yashkir (2013). The importance is justified as these parameters comprise the

main ingredients of regulatory capital calculation, what banks must set aside to cope with

65
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unexpected losses from credit portfolios.

According to Basel II rules for corporate, sovereign and bank exposures (see BCBS

(2006), paragraphs 286 and 297), loss given default (LGD) is measured as the proportion

of unrecovered debt, compared to total counterparty overdue debt. However, despite the

simplicity in setting it, there are distinctions about the treatment that should be given

to different types of portfolios (see Schuermann (2004)). For instance, in case of the

aforementioned portfolios, corporate, sovereign and bank exposures, banks must provide

an individual estimate of LGD for each exposure and, for that reason, a different approach

that has been applied to retail portfolios.

In fact, as retail exposures typically represent majority of loan portfolios of commercial

banks, it would be impossible to give an individualized treatment for each exposure. That is

why, even before Basel recommendations, bank risk managers relied on automated scoring

models. This means that, mostly, modeling credit risk involves estimating parametric

statistical models, see (Porath, 2011). However, as expected, an exaggerated dependence

on complex statistical models may lead to new sources of risks. In this case, the model

risk, in other words, the risk of not choosing the best model in the light of the available

data.

An attempt to draw attention to model risk, and encourage mitigation of this source

of risk, has already been addressed by the Basel Committee, as stated in (BCBS, 2015),

p. 2, ”Supervisors should be cautious against over-reliance on internal models for credit

risk management and regulatory capital. Where appropriate, simple measures could be

evaluated in conjunction with sophisticated modeling to provide a more complete picture”.

Regarding to the modeling of LGD, BCBS (2006) also recommends that its calculation

must consider all relevant factors that impact in the loss triggered by the event of default.

Strictly following the paragraph 460, the calculation must include all material discount

effects and all material direct and indirect costs associated with collecting on the defaulted

loan.

Since it is known that LGD has considerable impact on the regulatory capital amount,

small differences can lead to major distortions in its calculation. For this reason, when

dealing with large retail portfolios without sufficient evidence of the impact of each direct

and indirect recovery cost, in order to proceed an reliable estimate, we must opt for models

that bring a extra dose of conservatism.

In the foregoing context, i.e., concerning to the loss given default modeling, in this
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chapter we aim to extend the established framework already proposed to accommodate

multimodality in LGD data. Therefore, basically, we attempt to minimize model risk in

fitting an inadequate distribution to LGD data. For that, we complement the work done

by Hlawatsch & Ostrowski (2011), which, despite dealing with simulated bimodality, do

not address the occurrence of zeros and ones excesses in bimodal LGD data.

Here, beyond to accommodate multimodality of LGD, we also account for the high

evidence of excesses of zeros and one, as shown in Figure 4.1.

Figure 4.1: Multimodal LGD.

4.1.1 Brazilian bank non-performing retail data

To illustrate the LGD modeling proposed in this chapter, we analyse four retail

portfolios of non-performed loans from a large Brazilian commercial bank. The whole data

set comprises 41,677 retail loans, as summarized separately in the Table 4.1. Its whole

LGD distribution is presented in Figure 4.1, where it shows a five-modal distribution. In

Figures 4.12, 4.13, 4.14 and 4.15 are shown separately the 4 portfolios, all presenting quite

different forms of four-modality. Note that in these figures, for clarity in data visualization,

the zeros and ones are excluded, however, they are counted in the parameter estimation.

Their zero and ones amounts are also presented in the Table 4.1.

Each portfolio is grouped according to the type of guarantees offered, or even the

complete lack thereof. Of course, contract characteristics affect directly the presented

shapes. For data confidentiality reasons, we do not explain the features of each loan

making up each portfolio, we can only mention these are retail exposures, as defined in

(BCBS, 2006), paragraph 231.
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Portfolio Qtd Mean Median SD #0 #1
1 15,295 0.52195 0.7272 0.4746 5722 6634
2 22,951 0.59814 0.9093 0.4596 8349 8398
3 440 0.32945 0.7466 0.4004 232 44
4 2,991 0.72060 0.9175 0.3810 510 265

Table 4.1: Summary of observed LGD data.

Although Calabrese (2014) has dealt with excess of zeros and ones in a real LGD

data on Italian bank loans, the author has not presented real situations of multimodality

(without considering the excess of zeros and ones), assuming an arbitrary mixture of two

beta distributions to encourage the forecasting of two distinct periods, one with higher and

another with lower mean intensity for the variable LGD. In this sense, we complement the

work made in Calabrese (2014) by applying our methodology in a variety of real bank loan

portfolios. In addition, we perform a simulation study to assess estimation performance of

the inflated mixture model, what was not carried out in that referred paper.

Notwithstanding the bimodality and zeros and ones excess has been partially accounted

for in recent literature, (Hlawatsch & Ostrowski, 2011; Tong et al., 2013; Calabrese,

2014), to the best of our knowledge, the full configuration of the aforestated data has not

been wholly incorporated into any model. Thereby, by assuming a mixed of degenerate

distributions to handle all zeros and ones excess, together with a mixture of distributions to

account for multimodal losses, along with the already mentioned variety of real applications

and simulation studies, here, we fill this gap by introducing a simple statistical tool for

risk managers deal, as effectively as possible, with loss given default multi-shape data.

Summing up, the first novelty of this chapter is to present an application of the inflated

mixture models on a wide range of multimodality shapes, accompanied by a simulation

study, which, at our knowledge, has not been presented in the literature. The second

novelty is the presentation of the model considering the influence of a set of covariates,

i.e., presenting a regression model version, thus, allowing to measure how customer and

loan features impact on LGD results.

The chapter is organized as follows. In Section 4.2, we formulate the inflated mixture

model and its regression version. Section 4.3 introduces maximum likelihood estimation.

A simulation study with different vector parameters (with and without covariates) is

presented in Section 4.4. An application to a real variety of retail portfolios of a large

Brazilian bank is presented in Section 4.5. General remarks are presented in Section 4.6.
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4.2 Model specification

Here, we propose an inflated mixture model to handle multimodality in the loss given

default framework. To present in a more didactic way, without compromising general

understanding of ideas, we only deal with beta distributions and consider the sum of

two distributions in the mixture model. Other mixtures beyond the number of two,

and the use of others bounded distributions that appear in the application section, i.e.,

Kumaraswamy, truncated normal and logit-normal distributions, can be easily implemented

computationally, since there are a lot of statistical packages available in R and, also, a

comprehensive amount of academic materials about them in the statistical literature.

4.2.1 The Inflated mixture of beta distributions

Inflated models are a way to incorporate degenerate points that do not belong to

original distribution, assign to them probability to occur. Thereby, we firstly define what

is mixture of two beta distributions, and consequently, it leads us naturally to our main

definition, the inflated mixture of beta distributions. The well-known beta distribution, as

appears in Ferrari & Cribari-Neto (2004), has mean parameter µ ∈ (0, 1), and precision

parameter φ > 0. Defined only for y ∈ (0, 1), beta distribution has density function as

follows:

f(y;µ, φ) = Γ(φ)
Γ(µφ)Γ((1− µ)φ)y

(µφ−1)(1− y)(1−µ)φ−1, (4.1)

where Γ(.) is gamma function.

Given f1(. ;µ1, φ1) and f2(. ;µ2, φ2), beta distributions, we set a mixture of two beta

distributions, with a 5-parameter density function given by fm2b = πf1 + (1− π)f2. The

parameter π is commonly known as mixing proportion. Roughly, this means for the

probability of y ∈ (0, 1) be more suitable accommodate by f1, while 1− π stands for the

probability of y ∈ (0, 1) be more accommodate by f2. Now, let Y be a random variable

with support in {0, 1} ∪ (0, 1). The Y distribution is said to be a inflated (in zeros and

ones) mixture of two beta distributions, with a 7-parameter ϑ = (δ0, δ1, π, µ1, φ1, µ2, φ2), if

its density function is given by:

fim2b(y;ϑ) =


δ0, if y = 0

(1− δ0 − δ1)fm2b, if 0 < y < 1

δ1, if y = 1,

(4.2)
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where fm2b follows a mixture of two beta distributions. Note that α = δ0 + δ1 is a

mixing proportion and, mathematically, the parameters, δ0, δ1 and (1− α), account for,

respectively, P [y = 0], P [y = 1] and P [y ∈ (0, 1)].

As we will see in the application section, the average estimate is an important decision-

making criterion for the best LGD model. In fact, according to the Basel II agreement, it

is advised to avoid a non-conservative estimate given practical circumstances of lack of

informations (see (BCBS, 2006), paragraph 460). What is our case, once the Bank has made

available a database records of accounting losses rather than economic losses. For that, we

present the first moment (mean) of Y, given by E[Y ] = (1− δ0− δ1)(πµ1 + (1− π)µ2) + δ1

(Bussab & Morettin, 2005, p. 208)

4.2.2 The inflated mixture of beta regression model

Here, we introduce an approach to accommodate covariates in a regression setting.

In the application section, we discuss the model application to a real retail portfolios.

Therefore, we propose to connect the set of seven parameters, ϑ = (δ0, δ1, π, µ1, φ1, µ2, φ2),

with a set of 7-covariate vectors, x = (x1, x2, x3, x4, x5, x6, x7).These covariate vectors,

as occurs in practice, may be the same, i.e., x1 = x2 = x3 = x4 = x5 = x6 = x7. Following

Pereira et al. (2013), the regression version of the inflated mixture of beta distributions is

defined by 4.2, and by the following components, also known as link functions:

(δ0i, δ1i) =
(

ex
>
1iβ1

1+ex
>
1iβ1 +ex

>
2iβ2

, ex
>
2iβ2

1+ex
>
1iβ1 +ex

>
2iβ2

)
,

πi = ex
>
3iβ3

1+ex
>
3iβ3

,

µ1i = ex
>
4iβ4

1+ex
>
4iβ4

,

φ1i = ex
>
5iβ5 ,

µ2i = ex
>
6iβ6

1+ex
>
6iβ6

and

φ2i = ex
>
7iβ7 ,

(4.3)

where the βj’s are seven vectors of regression coefficients to be estimated. Note that the

inflated mixture of beta regression model can be viewed as an extension of the inflated

beta regression model introduced by Martínez (2008) and Ospina & Ferrari (2012).
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4.3 Parameter estimation

Parameter estimation is performed by straightforward use of maximum likelihood

estimation (MLE) approach. Despite the existence of different computational strategies,

see for example expectation-maximization (EM) algorithm in Ji et al. (2005) and Calabrese

(2014, p. 274), our simulation studies support the simple application of the MLE approach

regarding to the asymptotic behavior of the error measures as Biases and MSE’s.

The likelihood function of the inflated mixture model fim2b, with a vector of 7-parameter

ϑ = (δ0, δ1, π, µ1, φ1, µ2, φ2), linked with a covariate vector x, is based on a sample of n

observations, D = {yi;x}:

L(ϑ;D) ∝
∏
yi

fim2b(yi; δ0i, δ1i, πi, µ1i, φ1i, µ2i, φ2i).

The maximum likelihood estimation ϑ̂, of the parameter vector ϑ, is obtained through

maximization of L(ϑ;D) or `(ϑ;D) = log{L(ϑ;D)}. According to Migon et al. (2014, p.

176), the asymptotic distribution of the maximum likelihood estimates (MLEs), ϑ̂, is a

multivariate normal with mean vector ϑ and covariance matrix, which can be estimated

by {−∂2`(ϑ)/∂ϑ∂ϑT}−1, evaluated at ϑ = ϑ̂, where the required second derivatives are

computed numerically. There are many software and routines available for numerical

maximization. We use the software R and the method "BFGS" for maximizing the

log-likelihood function.

Different models can be compared by using the Akaike information criterion. The

model with the smallest value of AIC is commonly chosen as the preferred for describing a

given dataset. In the application section, we compare the proposed model configured with

four different density functions and, through the application in four different real portfolios,

the combination of the best results of AIC, along with the most conservative estimates of

LGD, will decide which model better meet the Basel II conservative recommendations.

4.4 Simulation Studies

We proceed a parameter estimation based on a maximum likelihood principle and

use the R routine optim() for that. In order to assess the performance of the max-

imum likelihood estimation with respect to sample size, we perform Monte Carlo sim-

ulations, where each sample is replicate 1000 times and the sample size varies as n =
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250, 500, 750, 1000, 1250, 1500, 1750, 2000, 2500, 3000. Three simulation studies for the

regression version introduced by the link functions in 4.3.

We define the following sets of parameters B1, B2 and B3 to perform the study

simulations:

1. B1 = (−3, 1,−2.5, 0.3,−0.8, 0.5,−0.8, 0.5, 0.5, 2, 1, 0.6, 1, 3),

2. B2 = (−1.75, 0.1,−1.5, 0.05,−0.9, 0.6,−0.8, 0.5, 1, 3, 1, 0.6, 2, 2) and

3. B3 = (−1, 0.5,−1.5, 1,−0.7, 0.4,−0.8, 0.5,−1, 3, 1, 0.6, 1, 1).

The parameters were chosen so as to have different proportions of ones and zeros in

the three scenarios of LGD. The following histograms show the data distribution of the

three scenarios set for the regression parameters.
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Figure 4.2: Histogram of simulated loss given default data: Left panel, lgd distribution
according with the parameter scenario 1. Central panel, lgd distribution according with
the parameter scenario 2. Right panel, lgd distribution according with the parameter
scenario 3.

Finally, we present the estimates of bias, root mean square error (RMSE) and the

average parameter estimation of the inflated mixture of beta regression model, obtained

from Monte Carlo simulations, with 1000 replications and increasing sample size. For

covariate simulation, we consider an intercept covariate x1 = 1, and we assume x2 as a

binary covariate with values drawn from a Bernoulli distribution with parameter 0.5.

The following graphs 4.3 to 4.6 show the decrease to zero of the biases and RMSE

for the three different parameter settings, each with around 10%, 25% and 50% of excess

of zeros and ones. These settings are chosen as representing the reality of available data

regarding to the amount of excess zeros and ones.
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As expected, we can observe, in general, that the biases and root mean square errors

of all parameters decrease as sample size increases. In particular, the biases and root

mean square errors of the parameters β̂10, β̂11, β̂20, β̂21 decrease faster in the scenario 3 as

sample size increases due to greater presence of zeros and ones.
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Figure 4.3: Bias, square root of mean squared error and coverage probability (CP) of
the maximum likelihood estimation (β̂10, β̂11, β̂20, β̂21) of inflated mixture of beta
regression model for simulated data under the three scenarios of parameters, obtained
from Monte Carlo simulations with 1000 replications and increasing sample size.
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Figure 4.4: Bias, square root of mean squared error and coverage probability (CP) of
the maximum likelihood estimation (β̂30, β̂31, β̂40, β̂41) of inflated mixture of beta
regression model for simulated data under the three scenarios of parameters, obtained
from Monte Carlo simulations with 1000 replications and increasing sample size.
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Figure 4.5: Bias, square root of mean squared error and coverage probability (CP) of
the maximum likelihood estimation (β̂50, β̂51, β̂60, β̂61) of inflated mixture of beta
regression model for simulated data under the three scenarios of parameters, obtained
from Monte Carlo simulations with 1000 replications and increasing sample size.
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Figure 4.6: Bias, square root of mean squared error and coverage probability (CP) of
the maximum likelihood estimation (β̂70, β̂71) of inflated mixture of beta regression
model for simulated data under the three scenarios of parameters, obtained from Monte
Carlo simulations with 1000 replications and increasing sample size.
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Figure 4.7: MLEA, maximum likelihood estimation on average of the parameters
(β̂10, β̂11, β̂20, β̂21) of inflated mixture of beta regression model for simulated data under
the three scenarios of parameters, obtained from Monte Carlo simulations with 1000
replications and increasing sample size.
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Figure 4.8: MLEA, maximum likelihood estimation on average of the parameters
(β̂30, β̂31, β̂40, β̂41) of inflated mixture of beta regression model for simulated data under
the three scenarios of parameters, obtained from Monte Carlo simulations with 1000
replications and increasing sample size.
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Figure 4.9: MLEA, maximum likelihood estimation on average of the parameters
(β̂50, β̂51, β̂60, β̂61) of inflated mixture of beta regression model for simulated data under
the three scenarios of parameters, obtained from Monte Carlo simulations with 1000
replications and increasing sample size.
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Figure 4.10: MLEA, maximum likelihood estimation on average of the parameters
(β̂70, β̂71) of inflated mixture of beta regression model for simulated data under the three
scenarios of parameters, obtained from Monte Carlo simulations with 1000 replications
and increasing sample size.

4.5 Application

In this section we illustrate one application of the model presented in this chapter,

i.e., the inflated mixture model as defined in (4.3). First, we compare the fit of four

competitive inflated mixture models: The inflated mixture of beta distributions (Beckman

& Tiet jen, 1978; Gupta & Nadarajah, 2004; Ospina & Ferrari, 2010), the inflated mixture

of Kumaraswamy distributions (Kumaraswamy, 1980; Jones, 2009), the inflated mixture

of (0, 1)−truncated normal distributions (Johnson et al., 1994; Damien & Walker, 2001)

and, finally, the inflated mixture of logit-normal distributions (Atchison & Shen, 1980;

Frederic & Lad, 2008). These distributions have been chosen for comparison because are

limited to the same support.

As mentioned, we opt to use the values of the AIC (Akaike information criterion) for

model selection criterion, along with the choice of the most conservative estimates for LGD,

in order to decide which model better meet the Basel II conservative recommendations. A

goal for future research would be to propose measures of predictive power for the regression

models here introduced.
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4.5.1 Inflated mixture of beta models

Here, we consider the four portfolios described in the introduction section 4.1.1. As our

goal is to select the best modeling LGD portfolio, so we present first the results obtained

for the average estimated for each model, without covariates, which we compared with the

average appearing in the table 4.1, along with the AIC obtained in adjusting the model to

the data.

Given that the relative differences between the mean values estimated with the observed

values of LGD, see Table 4.2, the model considering the beta distribution has a slight

advantage due to have been presented the most conservative measure.

Portfolio Expected lgd
beta Kumaraswamy Truncated normal Logit-normal

1 0.52205 0.52173 0.52187 0.52272
2 0.59810 0.59817 0.59814 0.59789
3 0.33187 0.33129 0.32993 0.33088
4 0.72072 0.72021 0.72060 0.71841

Relative
difference % 0.1912% 0.1167% 0.0330% 0.0590%

Table 4.2: Expected mean LGD by portfolio and by model.

Regarding to the measure of AIC, we must define a criterion for choosing the best

model taking into account the adjustment of the four scenarios/portfolios. Thus, although

the beta model, individually, has not the lowest AIC value acoordint Table 4.3, we see,

with the graph 4.11 helps, that the beta model overall performance is better than the

other models.

Model Beta Kumaraswamy Truncated normal Logit-normal
Portfolio 1 27999.30 28147.77 27350.50 28332.28
Portfolio 2 36870.90 36765.73 36903.02 37074.51
Portfolio 3 612.13 613.06 624.38 609.52
Portfolio 4 -1840.22 -1804.26 -1946.01 -1388.19

Table 4.3: AIC values for the fitted distributions.
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Figure 4.11: AIC values for model selection criterion.

For illustration, following, we present the graphs of the LGD shapes, and their respective

adjustments of the each considered model.
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Figure 4.12: Fitted distributions for portfolio 1

Figure 4.13: Fitted distributions for portfolio 2
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Figure 4.14: Fitted distributions for portfolio 3

Figure 4.15: Fitted distributions for portfolio 4
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4.5.2 Inflated mixture of beta regression models

In this section we illustrate the regression model taking in consideration two covariates

made available by the bank. For this purpose, a sample of the portfolio 1, with two

covariates and containing 5000 retail loans is considered for modeling purposes.

Let (x1, x2, x3) be the vector of covariates, where x1 stands for the interceptor parameter,

i.e., x1 = 1, and two others are real covariates. Both real covariates are categorized into

two classes. The first, x2 represents two customer groups according to the behavioral risk

presented. The bank has its behavior score model and has segregated their customers into

two groups, roughly, x2 = 0 to customers with poor credit risk and x2 = 1 with better

credit risk. The second covariate is related to the loan characteristics. The loan classified

as x3 = 0, represents a group of loans with term relatively shorter than the group with

x3 = 1.

After an extensive search of the most significant parameters, through the AIC criterion,

only four model parameters were selected to be linked with the covariates in question, δ0,

δ1, µ1 and µ2. Thus, we have the following setting of link functions and parameters to be

estimated:
δ0i = e(β11x1i+β12x2i+β13x3i)

1+e(β11x1i+β12x2i+β13x3i)+e(β21x1i+β22x2i+β23x3i),

δ1i = e(β21x1i+β22x2i+β23x3i)

1+e(β11x1i+β12x2i+β13x3i)+e(β21x1i+β22x2i+β23x3i),

µ1i = e(β31x1i+β32x2i+β33x3i)

1+e(β31x1i+β32x2i+β33x3i),

µ2i = e(β41x1i+β42x2i+β43x3i)

1+e(β41x1i+β42x2i+β43x3i),

(4.4)

Portfolio 1 Subgroups Quantity Observed Estimated
x2 = 0 x3 = 0 1266 0.6325 0.6383

mean lgd x3 = 1 1269 0.6324 0.6255
(0.5216) x2 = 1 x3 = 0 1234 0.4262 0.4265

x3 = 1 1231 0.3890 0.4101

Table 4.4: Summary of average LGD estimated by the inflated mixture of two beta
regression model.
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Parameter Estimate (est) Standard error (se) |est|/ se Exp(est)
β̂11 0.1890 0.0707 2.6731 1.2080
β̂12 0.8122 0.0809 10.0333 2.2528
β̂13 0.0851 0.0802 1.0599 1.0888
β̂21 0.9171 0.0641 14.3059 2.5020
β̂22 -0.2448 0.0786 3.1132 0.7828
β̂23 0.0013 0.0777 0.0173 1.0013
π̂ 0.5784 0.0828 6.9789 1.7831
β̂31 -0.7320 0.1005 7.2790 0.4809
β̂32 -0.2577 0.1086 2.3727 0.7728
β̂33 0.0728 0.1079 0.6750 1.0755
φ̂1 1.1757 0.0538 21.8377 3.2404
β̂41 1.1076 0.0293 37.7084 3.0270
β̂42 -0.1125 0.0349 3.2177 0.8935
β̂43 -0.0508 0.0351 1.4478 0.9504
φ̂2 62.8578 0.1110 566.0437 1.98e+27

Table 4.5: Maximum likelihood estimation results for the inflated mixture of two beta
regression models.

The results summarized in Table 4.4 corroborate the following findings that loans held

by lower credit risk customers have a much lower loss given default that the remaining

group. Indeed, the last column shows, from β12 and β22, respectively, that better credit

scores increases by 125.28% the odds of loss given default be equal to zero while decreases

by 21.72% the odd of total losses (LGD = 1).

The bimodality showed in the Figure 1.5 comes from some intrinsic aspect of the

collection system used by the bank, together with collateral loan characteristics. Thus, we

see that partial recoveries accumulate in two peaks, distances from one another, which

are modeled by a mixture of two beta distributions. So we have a mixture of two beta

distribution, one with average closer to zero while the other is closer to one. From β̂32

and β̂42, we see that better credit scored borrowers decrease, respectively, by 22.72% and

10.65%, the average LGD associated with each of the two beta distributions. On the other

hand, from β̂33 and β̂43, although not statistically significant in the fitted regression model,

we can see that longer loan term increases the average LGB by 7.55% in higher recovery

scenario, while decreases by 4.96 % in the worst recovery scenario.
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4.6 Concluding remarks

We have proposed two novelties in this chapter. The first is present the inflated of zeros

and ones mixture models fitting four different real databases, made available by a large

Brazilian commercial bank. We also present a simulation study to evaluate the asymptotic

performance of the estimation method proposed, that is, the behavior of estimations

regarding to the increased sample size.

The second novelty presented is the version regression of the model introduced by

Calabrese (2014), where we propose a simple and easy to apply methodology. Our

simulation studies and application in a real database show how the model can be useful

for application in modeling LGD data sets. A future research aims at proposing measures

of predictive power for the regression models here introduced.



Chapter 5

Conclusions

5.1 Concluding remarks

In this doctoral thesis we have proposed models to analyse financial data, mainly

related to model portfolio of bank loans and the credit risk involved in granting them.

First, we presented a methodology in which we modify the standard cure rate model

introduced by Berkson & Gage (1952) to a credit risk setting. It allowed us to estimate

the proportions of three sub-populations of borrowers that make up a banking portfolio:

straight-to-default customers, defaulters, and non-defaulters. For that, is modified the

improper survival function to account for the excess of zeros, which represents the rate of

borrowers that do not account for even the first instalments and default on the loan at the

beginning, which we called by straight-to-default customers

We also extend the promotion time cure rate model studied in Yakovlev & Tsodikov

(1996) and Chen et al. (1999), by incorporating excess of zeros in the modeling. The

presentation of this new model has enabled an alternative looking for models that consider

fraction of cured, opening the possibility for new generalizations, for example, in the same

formulation that the model framework has been presented in Rodrigues et al. (2009).

Thus, we contributed to the statistical literature regarding to the analysis of zero

inflations, which had not been incorporated into the survival analysis that aims at dealing

with the risk of default in credit risk setting.

Finally, we have dealt in this thesis with the modeling of inflated data in loss given

default datasets, which was made available by a large Brazilian commercial bank. The

novelty presented is the regression version of the model introduced by Calabrese (2014),

where we propose a simple and easy to implement parameters estimation via maximum

86
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likelihood approach. Our simulation studies and application in a real database show how

the model can be useful for application in modeling LGD data sets.

5.2 Further researches

For the zero-inflation extensions of the models with cure fraction, we have considered

the Weibull distribution for time-to-default, but different baseline density functions could

be considered for that. Thus, further analysis can be conducted in order to propose new

zero-inflated mixtures models, with different density functions to accommodate the time

to event data.

In the modeling based in biological formulation, as in the promotion time cure rate

model, a parametric form for N can be proposed to accommodate presence of survival time

equal to zero at the beginning of the study. For instance, Barreto-Souza (2015) proposed

a overdispersed distribution for N, in order to have more flexibility in modeling of the

cure rate through covariates, however, to the best of our knowledge, there is no literature

proposing modification of the N distribution to accommodate event time at the beginning

of the study, i.e., zero-inflated data.

Defective distributions also can be proposed as a alternative framework to accommodate

zero inflated date. In Rocha et al. (2015, 2016), the authors proposed a way to accommodate

cured rate through defective distributions, but likewise, it could be useful investigating if

such kind of distributions are also able to account for zero-inflated data into the modeling.

Regarding to the loss given default model framework, there are few works considering

mixture model to deal with the distribution of LGD. As we have considered Beta distri-

bution to model the loss given default data, different baseline density functions could be

considered for such task. Can be proposed new computational strategies, as reversible

jump for instance, to better fit the quantity of mixture components. However, from a

practical point of view, as we have considered here, the outcomes and estimated parameters

of the mixture model of only two Beta distributions can be easier to be analysed and

interpreted. Finally, future research can also aims at proposing measures of predictive

power for the regression models here introduced for loss given default data.



Appendix A

MCMC simulation graphics for the

model applied to the loan survival

time dataset.

The Zero-inflated Non-default Rate Model
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Figure A.1: Checking convergence plots for the estimated parameter β̂10: Left panel, the
trace for the estimated parameters via MCMC algorithm. Central panel, the approximate
marginal density a posteriori of the parameter. Right panel, the autocorrelation function
plot for the parameter.
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Figure A.2: Checking convergence plots for the estimated parameter β̂11: Left panel, the
trace for the estimated parameters via MCMC algorithm. Central panel, the approximate
marginal density a posteriori of the parameter. Right panel, the autocorrelation function
plot for the parameter.
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Figure A.3: Checking convergence plots for the estimated parameter β̂12: Left panel, the
trace for the estimated parameters via MCMC algorithm. Central panel, the approximate
marginal density a posteriori of the parameter. Right panel, the autocorrelation function
plot for the parameter.
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Figure A.4: Checking convergence plots for the estimated parameter β̂13: Left panel, the
trace for the estimated parameters via MCMC algorithm. Central panel, the approximate
marginal density a posteriori of the parameter. Right panel, the autocorrelation function
plot for the parameter.
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Figure A.5: Checking convergence plots for the estimated parameter β̂20: Left panel, the
trace for the estimated parameters via MCMC algorithm. Central panel, the approximate
marginal density a posteriori of the parameter. Right panel, the autocorrelation function
plot for the parameter.
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Figure A.6: Checking convergence plots for the estimated parameter β̂21: Left panel, the
trace for the estimated parameters via MCMC algorithm. Central panel, the approximate
marginal density a posteriori of the parameter. Right panel, the autocorrelation function
plot for the parameter.
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Figure A.7: Checking convergence plots for the estimated parameter β̂22: Left panel, the
trace for the estimated parameters via MCMC algorithm. Central panel, the approximate
marginal density a posteriori of the parameter. Right panel, the autocorrelation function
plot for the parameter.



91

β^
3
0

0 500 1000 1500

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5

β^
3

0

0.00 0.05 0.10 0.15 0.20 0.25

0
2

4
6

8
1

0
1

2

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

A
C

F

Figure A.8: Checking convergence plots for the estimated parameter β̂30: Left panel, the
trace for the estimated parameters via MCMC algorithm. Central panel, the approximate
marginal density a posteriori of the parameter. Right panel, the autocorrelation function
plot for the parameter.
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Figure A.9: Checking convergence plots for the estimated parameter β̂40: Left panel, the
trace for the estimated parameters via MCMC algorithm. Central panel, the approximate
marginal density a posteriori of the parameter. Right panel, the autocorrelation function
plot for the parameter.
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Figure A.10: Checking convergence plots for the estimated parameter β̂41: Left panel, the
trace for the estimated parameters via MCMC algorithm. Central panel, the approximate
marginal density a posteriori of the parameter. Right panel, the autocorrelation function
plot for the parameter.
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Figure A.11: Checking convergence plots for the estimated parameter β̂10: Left panel, the
trace for the estimated parameters via MCMC algorithm. Central panel, the approximate
marginal density a posteriori of the parameter. Right panel, the autocorrelation function
plot for the parameter.
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Figure A.12: Checking convergence plots for the estimated parameter β̂11: Left panel, the
trace for the estimated parameters via MCMC algorithm. Central panel, the approximate
marginal density a posteriori of the parameter. Right panel, the autocorrelation function
plot for the parameter.
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Figure A.13: Checking convergence plots for the estimated parameter β̂12: Left panel, the
trace for the estimated parameters via MCMC algorithm. Central panel, the approximate
marginal density a posteriori of the parameter. Right panel, the autocorrelation function
plot for the parameter.
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Figure A.14: Checking convergence plots for the estimated parameter β̂13: Left panel, the
trace for the estimated parameters via MCMC algorithm. Central panel, the approximate
marginal density a posteriori of the parameter. Right panel, the autocorrelation function
plot for the parameter.
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Figure A.15: Checking convergence plots for the estimated parameter β̂20: Left panel, the
trace for the estimated parameters via MCMC algorithm. Central panel, the approximate
marginal density a posteriori of the parameter. Right panel, the autocorrelation function
plot for the parameter.
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Figure A.16: Checking convergence plots for the estimated parameter β̂21: Left panel, the
trace for the estimated parameters via MCMC algorithm. Central panel, the approximate
marginal density a posteriori of the parameter. Right panel, the autocorrelation function
plot for the parameter.
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Figure A.17: Checking convergence plots for the estimated parameter β̂22: Left panel, the
trace for the estimated parameters via MCMC algorithm. Central panel, the approximate
marginal density a posteriori of the parameter. Right panel, the autocorrelation function
plot for the parameter.

β^
3
0

0 500 1000 1500

0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0

β^
3

0

0.05 0.10 0.15 0.20 0.25 0.30

0
2

4
6

8
1
0

1
2

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

A
C

F

Figure A.18: Checking convergence plots for the estimated parameter β̂30: Left panel, the
trace for the estimated parameters via MCMC algorithm. Central panel, the approximate
marginal density a posteriori of the parameter. Right panel, the autocorrelation function
plot for the parameter.
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Figure A.19: Checking convergence plots for the estimated parameter β̂40: Left panel, the
trace for the estimated parameters via MCMC algorithm. Central panel, the approximate
marginal density a posteriori of the parameter. Right panel, the autocorrelation function
plot for the parameter.
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Figure A.20: Checking convergence plots for the estimated parameter β̂41: Left panel, the
trace for the estimated parameters via MCMC algorithm. Central panel, the approximate
marginal density a posteriori of the parameter. Right panel, the autocorrelation function
plot for the parameter.
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