
Modeling based on a reparameterized Birnbaum-
Saunders distribution for survival data

Jeremias da Silva Leão





UNIVERSIDADE FEDERAL DE SÃO CARLOS 
CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA

PROGRAMA INTERINSTITUCIONAL DE PÓS-GRADUAÇÃO EM
ESTATÍSTICA UFSCar – USP

Jeremias da Silva Leão

 

Modeling based on a reparameterized Birnbaum-
Saunders distribution for analysis of survival data

Doctoral  dissertation  submitted  to  the  Departamento  de
Estatística  –  Des/UFSCar  and  to  Instituto  de  Ciências
Matemáticas  e  de  Computação  –  ICMC-USP, in  partial
fulfillmente  of  the  requirements  for  the  degree  of  the
Doctorate  in  Statistics  –  Programa  Interinstitucional  de
Pós-Graduação em Estatística UFSCar – USP. 

Advisor: Prof. Dra. Vera Lucia Damasceno Tomazella

Co-advisor: Prof. Dr. Victor Eliseo Leiva Sanchez

São Carlos
January 2017



UNIVERSIDADE FEDERAL DE SÃO CARLOS 
CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA

PROGRAMA INTERINSTITUCIONAL DE PÓS-GRADUAÇÃO EM
ESTATÍSTICA UFSCar – USP

Jeremias da Silva Leão

Modelagem baseada na distribuição Birnbaum-
Saunders reparametrizada para análise de dados de

sobrevivência

Tese  apresentada  ao  Departamento  de  Estatística  –
Des/UFSCar e ao Instituto de Ciências Matemáticas e de
Computação – ICMC – USP, como parte dos requisitos
para  obtenção  do  título  de  Mestre  ou  Doutor  em
Estatística  –  Programa  Interinstitucional  de  Pós-
Graduação em Estatística UFSCar – USP. 

Orientador: Prof. Dra. Vera Lucia Damasceno Tomazella

Co-orientador: Prof. Dr. Victor Eliseo Leiva Sanchez

São Carlos
Janeiro de 2017



Ficha catalográfica elaborada pelo DePT da Biblioteca Comunitária UFSCar 
 Processamento Técnico 

com os dados fornecidos pelo(a) autor(a)

L437m
Leão, Jeremias da Silva
   Modeling based on a reparameterized Birnbaum-
Saunders distribution for analysis of survival data
/ Jeremias da Silva Leão. -- São Carlos : UFSCar,
2017.
   117 p.

   Tese (Doutorado) -- Universidade Federal de São
Carlos, 2017.

   1. Birnbaum-Saunders distribution. 2. Cure rate
model. 3. Diagnostic analysis. 4. Frailty model. 5.
Likelihood estimation. I. Título.







To my parents





ACKNOWLEDGEMENTS

This work could never have been completed without ample guidance, assistance and
encouragement. In this respect, I would like to thank the following persons:

My supervisors Prof. Vera Tomazella and Prof. Victor Leiva for their patience, encour-
agement and guidance. I am indeed fortunate to learn from scholars of your calibre.

A special word of thanks to Helton Saulo for all the contribution during the development
of the thesis.

The Departament of Statistics at UFSCar and USP.

The UFSCar/USP community, Isabel, Victor, Gláucia, Humberto and unknown servants,
for support.

My UFSCar/USP friends, especially Edgar, José Clelto, Roberta, Daiane, Mauro, Pedro
Ramos, Rafael Paixão, David and Andrey.

My professors Francisco Cysneiros, Leandro Rêgo, Maurício Motta, Luis Ernesto,
Galvão, Vicente and Rafael Stern, for sharing some of your knowledge.

My UFPI friends, Máx, Valmária, Fernando, Cleide and Roney for the support when I
left the institution.

My UFAM friends, Cardoso, James, Amazoneida, Joceli, José Raimundo and others for
their support in my release to complete the doctorate degree.

My old friends, Hemílio, Josimar, Lutemberg, Marcelo, Manoel and William Marciano
for unceasing friendship.

I would like to express my sincere thanks and gratitude to my parents, Antonia and Pedro,
for all effort you put in my education. Thank you for your love and support. Also to my brother
Paulo and my sister Miria as well as to my niece Ingrid and my sister-in-law Elizandra.

My wife, Themis and my daughters Lívia and Laís. Thank you for your love and
companionship.

The committee members, my profound thanks.

Special thanks to all who contributed directly and indirectly to this achievement.





“ A vida é o dever que nós trouxemos para fazer em casa.

Quando se vê, já são seis horas!

Quando de vê, já é sexta-feira!

Quando se vê, já é natal...

Quando se vê, já terminou o ano...

Quando se vê perdemos o amor da nossa vida.

Quando se vê passaram 50 anos!

Agora é tarde demais para ser reprovado...

Se me fosse dado um dia, outra oportunidade, eu nem olhava o relógio.

Seguiria sempre em frente e iria jogando pelo caminho a casca dourada e inútil das horas...

Seguraria o amor que está a minha frente e diria que eu o amo...

E tem mais: não deixe de fazer algo de que gosta devido à falta de tempo.

Não deixe de ter pessoas ao seu lado por puro medo de ser feliz.

A única falta que terá será a desse tempo que, infelizmente, nunca mais voltará. ”

(Mário Quintana)





RESUMO

LEÃO, J. S.. Modeling based on a reparameterized Birnbaum-Saunders distribution for
analysis of survival data. 2017. 117 f. Doctoral dissertation (Doctorate Candidate joint
Graduate Program in Statistics DEs-UFSCar/ICMC-USP) – Instituto de Ciências Matemáticas e
de Computação (ICMC/USP), São Carlos – SP.

Nesta tese propomos modelos baseados na distribuição Birnbaum-Saunders reparametrizada
introduzida por Santos-Neto et al. (2012) e Santos-Neto et al. (2014), para análise dados de
sobrevivência. Incialmente propomos o modelo de fragilidade Birnbaum-Saunders sem e com
covariáveis observáveis. O modelo de fragilidade é caracterizado pela utilização de um efeito
aleatório, ou seja, de uma variável aleatória não observável, que representa as informações que
não podem ou não foram observadas tais como fatores ambientais ou genéticos, como também,
informações que, por algum motivo, não foram consideradas no planejamento do estudo. O
efeito aleatório (a “fragilidade”) é introduzido na função de risco de base para controlar a
heterogeneidade não observável. Usamos o método de máxima verossimilhança para estimar os
parâmetros do modelo. Avaliamos o desempenho dos estimadores sob diferentes percentuais
de censura via estudo de simulações de Monte Carlo. Considerando variáveis regressoras,
derivamos medidas de diagnóstico de influência. Os métodos de diagnóstico têm sido ferramentas
importantes na análise de regressão para detectar anomalias, tais como quebra das pressuposições
nos erros, presença de outliers e observações influentes. Em seguida propomos o modelo de
fração de cura com fragilidade Birnbaum-Saunders. Os modelos para dados de sobrevivência
com proporção de curados (também conhecidos como modelos de taxa de cura ou modelos de
sobrevivência com longa duração) têm sido amplamente estudados. Uma vantagem importante
do modelo proposto é a possibilidade de considerar conjuntamente a heterogeneidade entre
os pacientes por suas fragilidades e a presença de uma fração curada. As estimativas dos
parâmetros do modelo foram obtidas via máxima verossimilhança, medidas de influência e
diagnóstico foram desenvolvidas para o modelo proposto. Por fim, avaliamos a distribuição
bivariada Birnbaum-Saunders baseada na média, como também introduzimos um modelo de
regressão para o modelo proposto. Utilizamos os métodos de máxima verossimilhança e método
dos momentos modificados, para estimar os parâmetros do modelo. Avaliamos o desempenho
dos estimadores via estudo de simulações de Monte Carlo. Aplicações a conjuntos de dados
reais ilustram as potencialidades dos modelos abordados.

Palavras-chave: Análise de diagnóstico, Distribuição Birnbaum-Saunders, Estimação de má-
xima verossimilhança, Modelos de fragilidade, Modelos de fração de cura.





ABSTRACT

LEÃO, J. S.. Modeling based on a reparameterized Birnbaum-Saunders distribution for
analysis of survival data. 2017. 117 f. Doctoral dissertation (Doctorate Candidate joint
Graduate Program in Statistics DEs-UFSCar/ICMC-USP) – Instituto de Ciências Matemáticas e
de Computação (ICMC/USP), São Carlos – SP.

In this thesis we propose models based on a reparameterized Birnbaum-Saunder (BS) distribution
introduced by Santos-Neto et al. (2012) and Santos-Neto et al. (2014), to analyze survival data.
Initially we introduce the Birnbaum-Saunders frailty model where we analyze the cases (i) with
(ii) without covariates. Survival models with frailty are used when further information is non-
available to explain the occurrence time of a medical event. The random effect is the “frailty”,
which is introduced on the baseline hazard rate to control the unobservable heterogeneity of
the patients. We use the maximum likelihood method to estimate the model parameters. We
evaluate the performance of the estimators under different percentage of censured observations
by a Monte Carlo study. Furthermore, we introduce a Birnbaum-Saunders regression frailty
model where the maximum likelihood estimation of the model parameters with censored data
as well as influence diagnostics for the new regression model are investigated. In the following
we propose a cure rate Birnbaum-Saunders frailty model. An important advantage of this
proposed model is the possibility to jointly consider the heterogeneity among patients by their
frailties and the presence of a cured fraction of them. We consider likelihood-based methods to
estimate the model parameters and to derive influence diagnostics for the model. In addition,
we introduce a bivariate Birnbaum-Saunders distribution based on a parameterization of the
Birnbaum-Saunders which has the mean as one of its parameters. We discuss the maximum
likelihood estimation of the model parameters and show that these estimators can be obtained
by solving non-linear equations. We then derive a regression model based on the proposed
bivariate Birnbaum-Saunders distribution, which permits us to model data in their original
scale. A simulation study is carried out to evaluate the performance of the maximum likelihood
estimators. Finally, examples with real-data are performed to illustrate all the models proposed
here.

Keywords: Birnbaum-Saunders distribution, Cure rate model, Diagnostic analysis, Frailty
model, Likelihood estimation.
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CHAPTER

1
INTRODUCTION

1.1 Introduction and bibliographical review

Analysis of lifetime data plays an important role in several fields of knowledge such
as economics, biology, medicine, epidemiology, engineering, demography, among others. This
area has been widely studied by many researchers, with works having been published in various
areas of knowledge. In this sense we can make some questions like: What distinguishes survival
analysis from other areas of statistics? Why do survival data need a special statistical theory?
The reason is that we are observing something that develops dynamically over time. Thus we
can highlight two points related to this development. The first, survival times are usually a
mixture of discrete and continuous data that lend themselves to a different type of analysis than
in the traditional discrete or continuous case. The mixture is the result of censoring and has an
important effect on data analysis. To put it plainly, a censored observation contains only partial
information about the random variable (RV) of interest. The Kaplan-Meier estimator, proposed
by Kaplan and Meier (1958), of the survival function (SF) is a major step in the development
of suitable models for such kind of data. The second is because most of the evaluations are
made conditionally on what is known at the time of the analysis, and this changes over time.
Frequently, as the population under study is changing, we only consider the individual risk to die
for those who are still alive, but this means that many standard statistical approaches cannot be
applied.

Cox (1972) proposed the proportional hazards model and since then this model has been
widely used in survival analysis. One of the main reasons for this is because of the ease with
which technical difficulties such as censoring and truncation are handled. This is due to the
appealing interpretation of the hazard rate (HR) as a risk that changes over time. Naturally, the
concept allows for the entering of covariates in order to describe their influence and to model
different levels of risk for different subgroups which can be considered in modeling. However,
in general, it is impossible to include all relevant risk factors, perhaps because we have no
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information on individual values, which is often the case in demography. Furthermore, we may
not know all relevant risk factors or it is impossible to measure them without great financial costs,
something that is common in medical and biological studies. The neglect of covariates leads to
(unobserved) heterogeneity. That is, the population consists of individuals with different risks.
Another important regression model proposed in survival analysis was the accelerated failure
time (AFT) model, see details in Lawless (2011). The Cox’s model and its various generalizations
are mainly used in medical and biostatistical fields, while the AFT model is primarily applied in
reliability theory and industrial experiments.

In this thesis we focus on frailty and cure rate frailty models as well as on a bivariate
model, where all these models are based on the reparameterized Birnbaum-Saunders distribution
proposed by Santos-Neto et al. (2012). In the context of frailty modeling the frailty indicates that
apparently similar patients can have different risks. Thus, different patients can possess distinct
frailties and then frailer patients tend to experience the event of interest earlier than those who
are less frail. Therefore, frailty models have been introduced into the statistical literature in an
attempt to account for the existence of heterogeneity in a population under study. In essence this
concept goes back to the work of Greenwood and Yule (1920) on “accident proneness”. The
RV “frailty” may be incorporated in the baseline HR additively or multiplicatively. The term
frailty itself was introduced by Vaupel et al. (1979) in univariate frailty model. Several authors
have studied these models, which represent a generalization of the Cox model; see Cox (1972)
and Stare and O’Quigley (2004). The interested reader in frailty models is referred to Hougaard
(2000), Duchateau and Janssen (2008) and Wienke (2011).

Some other studies about frailty models are the following. Aalen and Tretli (1999) studied
incidence of testicular cancer with frailty models. Fan and Li (2002) considered variable selection
in frailty models. Tomazella (2003) studied the problem as homogeneous and heterogeneous
Poisson process with a frailty term. Androulakis et al. (2012) extended the gamma (GA) frailty
model methodology proposed by Fan and Li (2002) to the uniform frailty model. Mallick and
Ravishanker (2006) studied an additive stable frailty model for multivariate times to event data.
Mallick et al. (2008) introduced bivariate positive stable considering dependent multivariate
times-to-events with a Weibull baseline hazard. Barker and Henderson (2005) adapted the
standard expectation maximization algorithm and analyzed its behavior in the univariate GA
frailty model. As the frailty component of the model is random, a distribution can be assumed for
it. Yu (2008) introduced a frailty into the mixture cure model to study recurrent event data with
a cured fraction. Cai (2010) studied Bayesian semi-parametric frailty selection in multivariate
event time data. Martinussen et al. (2011) describe an innovative approach to estimation in the
Aalen additive GA frailty hazards model. Mazroui et al. (2013) proposed a multivariate frailty
model that jointly analyzes two types of recurrent events with a dependent terminal event. Liu et
al. (2014) proposed an accelerated intensity frailty model for recurrent events data and derived
a test for the frailty variance. Enki et al. (2014) studied a new parametric time-varying shared
frailty model to represent changes over time in population heterogeneity, for use with bivariate
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current status data. Chan (2014) introduced a flexible individual frailty model for clustered
right-censored data, in which covariate effects can be marginally interpreted as log failure
odds ratios. Zhou et al. (2015) motivated by breast cancer data proposed a covariate-adjusted
proportional hazards frailty model for the analysis of clustered right-censored data. Inspired by
frailty-contagion approaches used in finance and insurance, Koch and Naveau (2015) proposed
a multi-site precipitation simulator that, given appropriate regional atmospheric variables, can
simultaneously handle dry events and heavy rainfall periods.

In general the methods in survival analysis implicitly assume that populations are ho-
mogeneous, meaning all individuals have the same risk of death, but as mentioned above, it is
often important to consider the population as heterogeneous, i.e. a mixture of individuals with
different hazards, for example. The frailty model is a random effects model for time-to-event
data, where the frailty has a multiplicative effect on the baseline hazard function. It can be used
for univariate (independent) lifetimes, i.e. to describe the influence of unobserved covariates
in a proportional hazards model (heterogeneity). The variability of duration data is split into
one part that depends on risk factors and is thus theoretically predictable, and one part that is
initially unpredictable, even knowing all relevant information at that time. There are advantages
in separating these sources of variability: heterogeneity can explain some unexpected results
or give an alternative interpretation, for example crossing-over or levelling-off effects of HR.
The introduction of a common random effect “the frailty” is a natural way of modeling the
dependence of event times. The random effect explains the dependence in the sense that had
we known the frailty, the events would have been independent. In other words, the lifetimes
are conditionally independent given the frailty. This approach can be used for survival times of
related individuals such as twins or family members, where independence cannot be assumed, or
for recurrent events in the same individual or for times to several events for the same individual,
such as onset of different diseases, relapse or death (competing risks).

Due to the randomness of the frailty term of a model, it is necessary to assume a
distribution for it, called frailty distribution. Due to the way how the frailty term acts on the HR,
natural candidates to the frailty distribution are the GA, inverse Gaussian (IG), lognormal (LN)
and Weibull models; see Hougaard (1995). Particularly, since the seminal work presented by
Vaupel et al. (1979), the GA frailty distribution has been used in most applications published
up to date; see Balakrishnan and Peng (2006). However, compared with standard random effect
models, frailty models pose additional difficulties in developing inferential methods, caused by
incompleteness of data due to censoring and truncation and by the requirement for a specification
of a baseline hazard (or a non-parametric baseline hazard). A good alternative to the GA
distribution is the BS distribution. It has been widely considered in the literature due to its
physical arguments, its attractive properties and its relationship with the normal distribution. The
BS model was proposed by Birnbaum and Saunders (1969) and has been extensively applied for
modeling failure times in engineering, although some novel applications have been considered
in biological, environmental and financial sciences; see, for example, Desmond (1985), Kotz
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et al. (2010a), Saulo et al. (2013) and Leiva et al. (2014b), Leiva et al. (2014c), Leiva et al.
(2015), Leiva et al. (2015), Leiva et al. (2017). Some details about genesis and justification of
the BS distribution for medical data are given in Chapter 2. Santos-Neto et al. (2012) introduced
several parameterizations of the BS distribution. Specially, one of them is established in terms of
the distribution mean, whereas its variance is a quadratic function of this mean. Thus, such a
parameterization allows us to mimic a property of the GA frailty distribution early proposed by
Vaupel et al. (1979), doing the BS frailty distribution to be a new alternative to frailty modeling.

Another important area of suvival analysis is related to cure rate models (or long-term
survival models). The first work in this context was proposed by Boag (1949), Berkson and
Gage (1952) and refers to the mixture cure model. In this case, the population is classified into
the following two subpopulations: (a) individuals who are cured with certain probability and
(b) individuals exposed to risk characterized by the complementary probability, which can be
estimated by using a probability distribution, for instance, exponential, Gompertz or Weibull;
see Kuk and Chen (1992), Koti (2003) and Shao and Zhou (2004). A new approach for this
model was presented by Yakovlev and Tsodikov (1996) and Chen et al. (1999) and refers to the
non-mixture cure model, which has its structure based on the assumption that the cumulative
hazard function is bounded because of the existence of cured individuals.

Rodrigues et al. (2009) proposed an unified approach to long-term survival models.
Several authors have been proposed cure models using this methodology. Some works are the
following. Castro et al. (2009) studied a cure rate model where the number of competing causes
of the event of interest follows the negative binomial distribution in a bayesian framework. Castro
et al. (2010) applied the generalized additive models for location, scale, and shape (GAMLSS)
framework to the fitting of long-term survival model. Cancho et al. (2012) proposed a cure
rate survival model by assuming the number of competing causes to be Geometric distributed
and the time to event of interest following a BS distribution. Cancho et al. (2011) presented a
flexible cure rate model in a Bayesian approach. Eudes et al. (2013) studied the mixture model
assuming the modified Weibull distribution. Louzada et al. (2014) introduce a Bayesian partition
modeling for lifetime data in the presence of a cure fraction by considering a local structure
generated by a tessellation. This modeling is based on a promotion time cure model structure but
assuming that the number of competing causes follows a geometric distribution. Rodrigues et
al. (2015) introduced a relaxed cure rate model as a natural and less restrictive extension of the
popular Poisson cure rate model at the cost of an additional parameter. Cordeiro et al. (2016)
proposed a cure rate survival model by assuming that the number of competing causes of the
event of interest follows the negative binomial distribution and the time to the event of interest
has the Birnbaum-Saunders distribution. Suzuki et al. (2016) studied a new survival model,
called Poisson Inverse-Gaussian regression cure rate model, which enables different underlying
activation mechanisms that lead to the event of interest. Yiqi et al. (2016) developed a Bayesian
approach for the Weibull-Negative-Binomial regression model with cure rate under latent failure
causes and presence of randomized activation mechanisms.
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Cure rate models allow us to estimate separate covariate effects that may influence the
cured fraction and the hazard of the at-risk population. If a cured fraction is not present, the
analysis reduces to the standard considerations of survival data. Further details and examples of
cure models and their utility are provided in Maller and Zhou (1996), Ibrahim et al. (2005) and
Aalen et al. (2008). Cure models assume that the individuals experiencing the event of interest are
homogeneous. However, this assumption may not be valid as unobserved heterogeneity among
individuals may be present. In this sense, cure data can be analyzed utilizing statistical models
that account for heterogeneity among individuals. A portion of the heterogeneity is explainable
in terms of observed covariates. However, there remains a degree of heterogeneity induced by
unobservable risk factors. Failing to account for this latter form of heterogeneity may lead to
distorted results.

Several authors studied extensions of frailty models to account for a cured component.
Longini and Halloran (1996) derived a statistical model for estimating vaccine efficacy that ex-
presses the often unmeasured heterogeneous host response. Price and Manatunga (2001) studied
survival data with cure frailty model, where the authors consider the GA frailty mixture and
compound Poisson distribution. Yin (2005) proposed a Bayesian approach to model correlated
or clustered failure time data incorporating a surviving fraction, considering two forms of cure
rate frailty models. Wienke et al. (2006) analyzed three correlated frailty models for bivariate
time-to-event data, where is assumed GA, lognormal and compound Poisson distributions. Yu
(2008) studied the inclusion of frailty into the mixture cure model to model recurrent event
data with a cure fraction. Peng and Zhang (2008b) proposed a mixture cure frailty model that
generalizes the general mixture cure model by adding a frailty term in the latency distribution
and investigated the identifiability of the mixture cure model and the frailty model. Rahimzadeh
et al. (2011) develope a Bayesian approach for the estimation of two cure correlated frailty
models that have been extended to the cure frailty models introduced by Yin (2005). Rondeau et
al. (2013) studied a cure frailty models for survival data with recurrences for breast cancer and
colorectal cancer. Gonzales et al. (2013) introduced the GA frailty mixture regression model.
Calsavara et al. (2016) proposed a flexible cure rate model which is an extension of Cancho et al.
(2011) model by incorporating a power variance function (PVF) frailty term in latent risk.
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The use of bivariate distributions plays a fundamental role in many areas of knowledge,
for example, in survival analysis and reliability. Here, we studied a bivariate Birnbaum-Saunders
distribution parameterized by its means. The bivariate BS distribution was proposed by Kundu
et al. (2010), where some other author have been extended this model as well as evaluate some
properties of the model, for example Khosravi et al. (2015), Kundu et al. (2010), Kocherlakota
(1986), Kundu et al. (2013), Díaz-Garcia and Leiva (2005), Vilca et al. (2014a), Vilca et al.
(2014b),

1.2 Objectives of the thesis

The BS distribution has been receiving considerable attention due to its good properties.
Santos-Neto et al. (2012) introduced several parameterizations for the BS distribution, where
one of these reparameterizations indexes the BS distribution by its mean. Santos-Neto et al.
(2014) present some mathematical properties and estimates by the maximum likelihood method,
Moments and Modified moments method of the parameters from this new version of the BS
distribution. According to this new BS model our gerenal objective is to study the BS frailty
model. However, we can list some specific objetives

∙ to propose a new BS frailty model, which can be a good alternative to frailty modeling.

∙ to introduce a BS frailty regression model and its inference based on maximum likelihood
(ML) method, and to derive influence diagnostics tools for this model. In addition, we want
to apply the BS frailty regression model and its diagnostics to medical data to illustrate its
potential applications and compare it with classical frailty models.

∙ to propose a cure rate Birnbaum-Saunders frailty model, where an important advantage of
the proposed model is the possibility to jointly consider the heterogeneity among patients
by their frailties and the presence of a cured fraction of them.

∙ to introduce a bivariate Birnbaum-Saunders distribution based on a parameterization given
by Santos-Neto et al. (2012) and Santos-Neto et al. (2014) which has the mean as one of
its parameters.

1.3 Organization of the chapters

The whole thesis is written with independent chapters and each chapter has new research
contribution. The chapters are related in the sense that they talk about related areas involving
frailty models and the Birnbaum-Saunders distribution. Chapter 2 presents briefly some concepts
related to the genesis of the Birnbaum-Saunders distribution and the reparameterized version
used in this work, as well as some features of the frailty and cure rate models. In Chapter 3, we
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introduce the BS frailty model, which can be a good alternative to frailty modeling. We employ
the Laplace transform to find the BS unconditional SF on the individual frailty. We use the ML
method for estimating the model parameters. We investigate the asymptotic properties of the
ML estimators and evaluate their performance by a Monte Carlo (MC) study. We illustrate the
proposed model with uncensored and censored data. In Chapter 4, we present the BS frailty
regression model and its inference based on ML methods, and to derive influence diagnostics
tools for this model. In addition, we want to apply the BS frailty regression model and its
diagnostics to medical data to illustrate its potential applications and compare it with classical
frailty models. In Chapter 5, we propose a cure rate frailty model based on the Birnbaum-
Saunders distribution as an alternative approach to modeling such data. An important advantage
of the proposed cure rate frailty model is the possibility to jointly consider the heterogeneity
among individuals and the presence of a cured component. We consider the ML method to
estimate the model parameters and to derive influence tools. We assess local influence on the
parameter estimates under different perturbation schemes. Numerical evaluation of the proposed
model is considered by means of MC simulation studies and an application to a real medical
data set from the medical area. In Chapter 6, we introduce a bivariate Birnbaum-Saunders
distribution based on a parameterization of the Birnbaum-Saunders which has the mean as one
of its parameters. We discuss the ML estimation of the model parameters and show that these
estimators can be obtained by solving non-linear equations. We also discuss modified moment
(MM) estimation for the unknown parameters which are easy to compute and can therefore
be used as initial values to calculate the ML estimates. We derive the asymptotic distributions
of these estimators and carry out a simulation study to evaluate the performance of all these
estimators. The probability coverages of confidence intervals are also discussed. We then derive
a regression model based on the proposed bivariate Birnbaum-Saunders distribution, which
permits us to model data in their original scale. In addition, two examples are performed to
illustrate the proposed methods here. Finally, we present a discussion, conclusions and future
research in Chapter 7.

1.4 Products of the thesis

This thesis allowed the following products to be obtained:

∙ Leao, J., Leiva, V., Tomazella, V., Saulo H. (2017) Birnbaum-Saunders frailty regression
models: Diagnostics and application to medical data. Biometrical Journal (in press);

∙ Leao, J., Leiva, V., Tomazella, V., Saulo H. (2016) A Birnbaum-Saunders frailty model for
survival data (under review for Brazilian Journal of Probability and Statistics).

∙ Leao, J., Leiva, V., Tomazella, V., Saulo H. (2016) A cure rate frailty model based on the
reparameterized Birnbaum-Saunders distribution (submitted).
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∙ Saulo, H., Leao, J., Leiva, V., Tomazella, V. (2016) On a bivariate Birnbaum-Saunders
distribution parameterized by its means (submitted).

∙ Leao, J., Leiva, V., Tomazella, V., Saulo H. (2015) Birnbaum-Saunders frailty regression
models: Diagnostics and application to medical data. Awarded as outstanding presentation
for postgraduate students, Univesidad Adolfo Ibáñez - Second International Workshop on
“Statistical Models for Business, Engineering and Sciences”.
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CHAPTER

2
BACKGROUND

2.1 Introduction

In this chapter, we present some features of the BS distribution beginning with its
genesis. Then, we justify the use of the BS model in medical data. We also describe briefly the
parameterization used in the course of this thesis. We describe breifly the bivariate BS distribution
in its original form. The interested reader in BS distribution is referred to Leiva (2016) and
references therein. We present the frailty model, discuss how to obtain the unconditional HR and
SF. Moreover, we discuss unified cure rate model and present some of its features; see Rodrigues
et al. (2009).

2.2 Birnbaum-Saunders distribution

The Birnbaum-Saunders distribution is right-skewed (asymmetrical), continuous and
unimodal. It is also known as the fatigue life distribution and has received considerable attention
due to its theoretical arguments, its attractive properties and its relation with the normal distribu-
tion; see the seminal paper by Birnbaum and Saunders (1969). As justification the authors used
a physical argument originated from renewal theory, via idealization of the number of cycles
necessary to force a fatigue crack to grow past a critical value; see, for example, Mann et al.
(1974).

As a fatigue life distribution, the BS model considers a material specimen that is exposed
to a sequence of m cyclic loads, {li, i = 1,2, . . . ,m,m ∈ N}; for more details about this type of
load; see Saunders (2007). The loading scheme can be depicted as follows:

l1, . . . , lm︸ ︷︷ ︸
Cycle 1

lm+1, . . . , l2m︸ ︷︷ ︸
Cycle 2

. . . l jm+1, . . . , l jm+m︸ ︷︷ ︸
Cycle (j+1)

,
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where l jm+i = lkm+i, for j ̸= k. Birnbaum and Saunders (1969) considered that the loading is
continuous (see more details in Section 2.1), which implies that the load function, say li(·),
evaluated at the unit interval gives the amount of stress imposed on the specimen, that is,

li−1(0) = li(1) = li+1(0), i = 1, . . . ,m, m ∈ N.

Thus, at the imposition of each load, li, the crack is extended by a random amount. Crack
extensions by cycle cannot be observed in practice and we only know the instant when the failure
occurs. Having explained the physical framework of the genesis of the Birnbaum-Saunders
distributions it is now necessary to make the statistical assumptions. Birnbaum and Saunders
(1969) used the knowledge of certain type of materials failure due to fatigue to develop their
model. The fatigue process that they used was based on the following:

(D1) A material specimen is subjected to cyclic loads or repetitive shocks, which produce a
crack or wear-out in this specimen;

(D2) The failure occurs when the size of the crack in the material specimen exceeds certain
level of resistance (threshold), denoted by ω ,

(D3) The sequence of loads imposed in the material specimen is the same from a cycle to
another one;

(D4) The incremental crack extension due to a load li, say Xi, during the jth cycle is a RV whose
distribution is governed by all the loads l j, for j < i, and by the actual crack extensions
that have preceded it in cycle alone;

(D5) The total size of the crack due to the jth cycle, say Yi, is a RV that follows a statistical
distribution of mean µ0 and variance σ2

0 , and

(D6) The sizes of cracks in different cycles are mutually independent. Note that the total crack
extension due to the ( j+1)th cycle of load is

Yj+1 = X jm+1 +X jm+2 + · · ·+X jm+m; j,m = 0,1,2, . . . .

As mentioned by Mann et al. (1974), assumption (D4) is rather restrictive and may not
be valid for certain applications. This assumption ensures that, regardless of the dependence
among the successive random extensions due to the loads in a particular cycle, the total random
crack extensions are independent from cycle to cycle. The plausibility of this assumption in
aeronautical fatigue studies is briefly stated by Birnbaum and Saunders (1969).

The BS model looks for the distribution of the smallest n, say n*, such that the sum

Sn =
n

∑
j=1

Yj, (2.1)
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of n positive RV exceeds the given threshold ω , that is,

n* = inf{n ∈ N;Sn =
n

∑
j=1

Yj > ω}.

In the simplest case, the BS distribution is derived by supposing that the Yj are indepen-
dent and identically distributed RV, then applying the central limit theorem and then by regarding
n* as a continuous RV T .

Specifically, based on the central limit theorem, Equation (2.1), and the assumptions
(D5) and (D6) made by Birnbaum and Saunders (1969), as n → ∞, it is possible to establish that

Sn
·∼ N(nµ0,nσ

2
0 ). (2.2)

Let N be the number of required cycles until the failure. Given that Yj > 0 for all j ≥ 1,
the damage is irreversible and so by complementarity, we have {N > n} ≡ {Sn ≤ ω} and we
have {N ≤ n}≡ {Sn > ω}. Then, from assumption (D5) and and (2.1), we have that E(Sn) = nµ0

and Var(Sn) = nσ2
0 . Therefore, by standardizing (2.2), we get

P(N ≤ n) ≈ P
(

Sn −nµ0

σ0
√

n
>

ω −nµ0

σ0
√

n

)
= P

(
Sn −nµ0

σ0
√

n
≤ nµ0 −ω

σ0
√

n

)
= Φ

(
nµ0 −ω

σ0
√

n

)
= Φ

(√
ωµ0

σ0

[
n

ω/µ0
− ω/µ0

n

])
. (2.3)

Birnbaum and Saunders (1969) used Equation (2.3) to define a continuous life distribu-
tion, idealizing the discrete variate N through a continuous variate T and the discrete argument n

by means of the continuous t, that is, the number of cycles until the failure, N , is replaced by the
total time until that the failure occurs, T , and nth cycle by the time t. Thus, taking

α =
σ0√
ωµ0

and β =
ω

µ0
,

and

at(α,β ) = at =
1
α

√ t
β
−
√

β

t

 , (2.4)

we obtain that

FT (t) = Φ(at(α,β )) , t > 0,α > 0,β > 0,
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which is the cumulative distribution function (CDF) of the BS distribution with shape and
scale parameters, α and β , respectively. This means that we are admitting as definition that a
random variable T follows the BS distribution with shape and scale parameters α > 0 and β > 0,
respectively, if it can be written as

T = β

[
α

2
Z +

√(
α

2
Z
)2

+1

]
, (2.5)

where Z is a random variable following the standard normal distribution, such that

Z =
1
α

√T
β
−
√

β

T

∼ N(0,1) (2.6)

The derivation of Birnbaum and Saunders (1969) supposes some aspects about the
growth of a crack that are questionable. Desmond (1985) gave a more general derivation for this
distribution as well as derived the BS distribution using a biological model discussed by Cramér
(1947). In the next subsection we present some of these arguments presented in Desmond (1985)
that justify the use of the BS model in medical data.

2.3 Justifying the BS distribution for medical data
Assuming a BS distribution to model medical data based on an empirical fitting can be

a reasonable argument. However, the argument may be strengthened if we justify why the BS
distribution might be suitable for such a modeling. Cramér’s biological model, linked to the
proportionate-effect model, allows us to justify the BS distribution within a medical setting.

Consider a RV related to the size of a human organ. The size may be considered as the
joint effect of a large number of independent causes. The causes act sequentially through the time
of organ growth. If the effects of causes are summed and assumed as RVs, then the sum follows
an asymptotic normal distribution due to the central limit theorem. However, the causes do not
seem to jointly operate by simple addition. It seems more natural to assume that each cause
provides an impulse. Thus, the effect depends on both the impulse strength and the organ size
attained at the instant when the impulse is working. Specifically, let Y1, . . . ,Yn be independent
RVs corresponding to the magnitude of n impulses, which act sequentially according to their
sub-indices. In addition, let X j be the size of an organ, which is produced by the impulses.
Assume that X j+1 increases proportionally to the ( j+1)th impulse Yj+1 and to some function
g(X j) of the organ size as

X j+1 = X j +Yj+1 g(X j), j = 0,1, . . . . (2.7)

Therefore, X j+1 is the accumulated size of the organ after application of the impulse Yj+1.
From (2.7), the LN distribution can be obtained when g(X) = X , whereas the BS distribution
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can be obtained when g(X) = 1. Relationship defined in (2.7) has been proposed in biological
and fatigue contexts; see Desmond (1985). The BS distribution was built to model fatigue life
of material specimens subject to cyclic stress. It provokes a damage that is accumulated over
time by a sum of numerous small damages. When the damage exceeds a rupture threshold of the
specimen, it fails; see Birnbaum and Saunders (1969). Table 1 provides a conceptual analogy
between fatigue and medical settings.

Table 1 – Conceptual analogy between material fatigue and organ growth.
XXXXXXXXXXXXProcess

Concept
Specimen Cause Threshold Effect RV

Fatigue Material Damage Rupture Failure Fatigue life
Growth Organ Impulse To die Death Time of death

We put Frost & Dugdale’s model, often used in engineering; see Frost and Dugdale
(1958), in a medical setting by

da
dn

=
S3 a

c
= c1 f (∆K), (2.8)

where a is the organ size, n the number of impulses, S the strength applied in each impulse, c a
constant, ∆K the range of a strength intensity factor, f (·) an empirically determined function
and c1 an experimental constant. One can relate ∆K in (2.8) to the organ size a by means of

∆K = b∆Sa1/2, (2.9)

where b is a geometrically related parameter and ∆S the strength amplitude applied in each
impulse. Based on (2.8) and (2.9), and approximating f (·) by f (b∆Sa1/2)≈ c0 + c2g(a), with
g(·) being a function of the organ size, we have

da
dn

≈ c0 + c3 g(a), (2.10)

where c3 contains constants c1,c2, and c0 is the initial organ size, with c0, a and c3 being
considered as RVs to make it closer to reality.

Note the similarity between differential-equation model (2.10) and proportionate-effect
model (2.7). Retake (2.7), apply the central limit theorem and consider the increment ∆X j =

X j+1 −X j in the ( j+1)th impulse gives a small contribution to the organ growth. Then, summa-
tion can be changed by integration. Thus, we get

n

∑
j=1

Yj =
n

∑
j=1

∆X j

g(X j)
≈
∫ Xn

X0

dx
g(x)

= log(g(Xn))− log(g(X0)),

follows approximately a normal distribution, where X0 is the initial organ size and Xn its final
size.
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To obtain the BS distribution in this setting, suppose that the mean of X j is η and its
variance ρ2. This generalizes Assumption 2 of Birnbaum and Saunders (1969) and conducts to

I(X(t)) =
∫ X(t)

X0

1
g(x)

dx ∼ N(tη , tρ2), (2.11)

where X(t) is the organ size at time t. Assume now that Xc > X0 is a critical organ size at which
death occurs. Then, T = inf{t: X(t)> Xc} is the time of death. Therefore, from (2.11) and using
the equivalent events {T ≤ t} and {X(t)> Xc}, it follows that the CDF of T is

FT (t) = Φ((tη − I(Xc))/
√

tρ), (2.12)

where Φ is the CDF of the standard normal distribution. From (2.12), note that choice of the
function g(X) in the model given in (2.7) determines the dependence of the organ size on the
previous size. A power function for g(X) could be a reasonable choice depending on the type of
organ. Suppose that g(X) = Xδ , where δ could be a parameter related to the type of organ. In
this case, from (2.11), note that X(t)1−δ ∼ N(X1−δ

0 +[1−δ ]tη , [1−δ ]2tρ2) and then the CDF
of T is

FT (t) =


Φ

(
X1−δ

c −X1−δ

0 +[δ−1]tη
[δ−1]

√
tρ

)
, if δ > 1;

Φ

(
X1−δ

0 −X1−δ
c +[1−δ ]tη

[1−δ ]
√

tρ

)
, if δ < 1.

(2.13)

Therefore, the LN distribution is obtained from (2.13) by letting δ → 1, whereas the BS distribu-
tion results for δ = 0. However, although the case δ = 1 corresponds to the proportionate-effect
model, the life distribution itself is of the BS type and not of LN type, see Desmond (1985).

2.4 Parametrizations of the BS distribution
Santos-Neto et al. (2012) proposed several parameterizations of the BS distribution,

which allow diverse features of data modeling to be considered. One of such parameterizations
is indexed by the parameters µ = β (1+α2/2) and δ = 2/α2, where α > 0 and β > 0 are the
original BS parameters; see Birnbaum and Saunders (1969), µ > 0 is a scale parameter and
the mean of the distribution, whereas δ > 0 is a shape and precision parameter. The notation
U ∼ BS(µ,δ ) is used when the RV U follows such a distribution. This parameterization of
the BS distribution permits us to mimic a property of the GA distribution, which was the first
distribution used in a frailty model Vaupel et al. (1979) as follows. The mean and variance of
U ∼ BS(µ,δ ) are E[U ] = µ and Var[U ] = µ2/φ , respectively, where φ = (δ +1)2/(2δ +5).
Then, as mentioned, δ can be interpreted as a precision parameter, that is, for fixed values of µ ,
when δ → ∞, the variance of T tends to zero. Also, for fixed µ , if δ → 0, then Var[U ]→ 5µ2.
Note that Var[U ] = µ2/φ is similar to the variance function of the GA distribution, which has a
quadratic relation with its mean. Therefore, a frailty model based on the BS distribution, in its
reparameterized form, can be a good alternative to the GA frailty model.
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If U ∼ BS(µ,δ ), then its probability density function (PDF) is

fU(u; µ,δ ) =
exp(δ/2)

√
δ +1

4u
3
2
√

πµ

(
u+

δ µ

δ +1

)
exp
(
−δ

4

(
u(δ +1)

δ µ
+

δ µ

u(δ +1)

))
, u > 0.

(2.14)
It is possible to show that kU ∼ BS(k µ,δ ), with k > 0, and 1/U ∼ BS(µ*,δ ), where µ* =

(δ +1)/(δ µ), that is, the BS distribution, in its original and reparameterized forms, is closed
under scaling and reciprocation. From (2.14), the SF and HR of U are, respectively,

SU(u; µ,δ ) =
1
2

Φ(u+δ (u−µ)/(2
√

u(1+δ )µ)), u > 0,

hU(u; µ,δ ) =
exp(−(−δ µ +δu+u)2/(4(δ +1)µu))(δ µ +δu+u)

(πµ(δ +1))
1
2 2µ

1
2 u

3
2 Φ((u+δ (u−µ))/(2

√
u(1+δ )µ))

, u > 0,

where Φ is the CDF of the N(0, 1) distribution. Figure 1 displays some shapes for the PDF, SF
and HR of U ∼ BS(µ = 1,δ ). Note that a unimodal behavior is detected for the PDF, as well
as different degrees of asymmetry and kurtosis, whereas the HR has increasing and decreasing
shapes, such as the GA distribution, but also an inverse bathtub shape.
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Figure 1 – Plots of PDF, SF and HR of the BS distribution for µ = 1 and different values of δ .

The use of the BS distribution has the following appealing advantages:

∙ Based on its genesis, it is possible to make an analogy in the modeling of medical data;
see, for example, Desmond (1985).

∙ Its parameterization based on the mean (µ), such as in (2.14), allows us to analyze data
in their original scale, avoiding, for instance, problems of interpretation in models which
employ a logarithmic transformation of the data; see Leiva et al. (2014a) and Santos-Neto
et al. (2014).

∙ In the context of frailty models, it can be very competitive in terms of fitting.

∙ It belongs to the class of log-symmetric distributions, such as the case of the generalized
BS, LN, log-logistic, log-Laplace, log-Student-t, log-power-exponential, log-slash and
F distributions; see Vanegas and Paula (2016a) and Vanegas and Paula (2016b). The
log-symmetric class of distributions arises when an RV has the same distribution as its
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reciprocal or as ordinary symmetry of the distribution of the logged RV; see Jones (2008).
One can obtain the BS, LN and log-logistic frailty models as particular cases of log-
symmetric frailty models. However, besides the BS frailty model which is proposed in
this thesis, the only other popular log-symmetric frailty model that belongs to this class
is the LN one. But unlike the BS frailty model, the LN model does not have an explicit
Laplace transform; see Wienke (2011). This explicit form is useful to obtain the PDF and
the unconditional SF and HR.

∙ It is flexible in terms of bimodality when the logarithm of a BS RV is taken into account.
Note that:

(i) If U ∼ BS(1,δ ), Y = log(U) ∼ log-BS(
√

2/δ , log(δ/(δ + 1))); see Rieck and
Nedelman (1991);

(ii) If U ∼ LN(1,σ2), Y = log(U)∼ N(1,σ2); see Crow and Shimizu (1988);

(iii) If U ∼ IG(1,σ2), Y = log(U)∼ log-IG(σ2,0); see Kotz et al. (2010b);

(iv) If U ∼ GA(1/ζ ,1/ζ ), Y = log(U)∼ log-GA(1/ζ ,1/ζ ); see Johnson et al. (1995).

Some properties of the log-BS distribution are as follows. If Y ∼ log-BS(
√

2/δ , log(δ µ/(δ +

1))), then: (a) U = exp(Y )∼BS(µ,δ ); (b) E(Y ) = log(δ µ/(δ +1)); (c) there is no closed
form for the variance of Y , but based upon an asymptotic approximation for the log-BS
moment generating function, it follows that, as δ → ∞, Var(Y ) = 2/δ −1/δ 2, whereas
that, in contrast, as δ → 0, Var(Y ) = 4(log2(2/

√
δ )+2−2log(2/

√
δ )); and (d) the dis-

tribution of Y is symmetric around µ , unimodal for δ ≥ 0.5 and bimodal for δ < 0.5; see
Rieck and Nedelman (1991) and Leiva (2016). Figure 2 shows some shapes for the PDF
of Y = log(U) in each aforementioned distribution. Note that the bimodality property is
only found in the log-BS case.
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Figure 2 – PDF plots of the log-BS(
√

2/δ , log(δ/(δ +1))), N(1,σ2), log-IG(σ2,0) and log-GA(1/ζ ,1/ζ ) distri-
butions.

2.5 Bivariate Birnbaum-Saunders distribution
Kundu et al. (2010) introduced the bivariate Birnbaum-Saunders (BBS) distribution,

where the authors discussed maximum likelihood estimation and modified moment estimation of
the model parameters. Recently, Khosravi et al. (2015) observed that the bivariate BS proposed
in Kundu et al. (2010) can be written as the weighted mixture of bivariate inverse Gaussian
distribution and its reciprocals; see Kocherlakota (1986). They also introduced a mixture of two
bivariate BS distributions and discussed its various properties. Kundu et al. (2013) extended
to the multivariate case, the generalized BS distribution introduced by Díaz-Garcia and Leiva
(2005). Other bivariate and multivariate distributions related to the BS model can be found in
Vilca et al. (2014a), Vilca et al. (2014b), Kundu et al. (2015), Kundu (2015) and Jamalizadeh
and Kundu (2015).

If the random vector TTT = (T1,T2)
⊤ is BBS distributed with parameter vectors ααα =

(α1,α2)
⊤ and βββ = (β1,β2)

⊤, and correlation coefficient ρ , denoted by TTT ∼ BBS(ααα,βββ ,ρ), then
its joint CDF and PDF are given by
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FBBS(ttt;ααα,βββ ,ρ) = Φ2

 1
α1

√ t1
β1

−

√
β1

t1

 ,
1

α2

√ t2
β2

−

√
β2

t2

 ;ρ,gc

 , ttt > 000, (2.15)

fBBS(ttt;ααα,βββ ,ρ) = φ2

 1
α1

√ t1
β1

−

√
β1

t1

 ,
1

α2

√ t2
β2

−

√
β2

t2

 ;ρ

 (2.16)

× 1
2α1

{(
β1

t1

) 1
2

+

(
β1

t1

) 3
2
}

1
2α2

{(
β2

t2

) 1
2

+

(
β2

t2

) 3
2
}
, ttt > 000,

where αk > 0 and βk > 0 for k = 1,2, −1 < ρ < 1, and φ2(·, ·;ρ) is a normal joint PDF given by

φ2(u,v;ρ) =
1

2π
√

1−ρ2
exp
{

1
(1−ρ2)

(u2 + v2 −2ρuv)
}
.

Kundu et al. (2010) present some properties of the BBS distribution, for example

Proposition 1 If TTT = (T1,T2)
⊤ ∼ BBS(ααα,βββ ,ρ), then

a) TTT−1 = (T−1
1 ,T−1

2 )⊤ ∼ BBS(α1,1/β1,α2,1/β2,ρ);
b) TTT−1

1 = (T−1
1 ,T2)

⊤ ∼ BBS(α1,1/β1,α2,β2,−ρ);
c) TTT−1

2 = (T1,T−1
2 )⊤ ∼ BBS(α1,β1,α2,1/β2,−ρ);

Proposition 2 If TTT = (T1,T2)
⊤ ∼ BBS(ααα,βββ ,ρ), then

a) The conditional PDF of T1, given T2 = t2 is given by

fT1|T2=t2(t1) =
1

α1β1
√

2π(1−ρ2)

[(
β1

t1

)1/2

+

(
β1

t1

)3/2
]

× exp

− 1
2(1−ρ2)

 1
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β1

−

√
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− ρ
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√ t2
β2

−

√
β2

t2

2


b) The conditional CDF of T1, given T2 = t2 is given by

P[T1 ≤ t1|T2 = t2] = Φ


1

α1

(√
t1
β1
−
√

β1
t1

)
− ρ

α2

(√
t2
β2
−
√

β2
t2

)
√

1−ρ2


2.6 Frailty models

Consider an unobserved source of heterogeneity that is not readily captured by a covariate
in a univariate frailty model. This extends the Cox model, such that the HR of a patient depends
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on an unobservable RV U , which acts multiplicatively on the baseline HR. Therefore, the
conditional HR of the lifetime T , given U = ui for the patient i at time t, is

hT |U=ui(t;ξξξ 1,ξξξ 2) = uih0(t;ξξξ 1), i = 1, . . . ,n, t > 0, (2.17)

where ui is the frailty of the patient i and h0 is a baseline HR, that is, we consider the case
with a proportional HR. In (2.17), note that ξξξ 1 and ξξξ 2 are vectors of the model parameters
related to the lifetime and frailty distributions, respectively, of the patient i. In addition, observe
that (2.17) is known as the Clayton model; see Clayton (1991). From (2.17), a patient i is
called “standard” if his/her frailty is ui = 1; “twice as likely to die” if his/her frailty is ui = 2,
at any particular time and in relation to the standard patient; and “one-half as likely to die” if
his/her frailty is ui = 1/2; see Vaupel et al. (1979). The corresponding conditional SF of T is
ST |U=ui(t;ξξξ 1,ξξξ 2) = (S0(t;ξξξ 1))

ui , for i = 1, . . . ,n and t > 0, which represents the probability of
the patient i to be alive at time t given the random effect Ui = ui.

If values of covariates in the model given in (2.17) are introduced similarly to the Cox
model, we have

hT |U=ui(t;xxx,ξξξ ) = uih0(t;ξξξ 1)exp(xxxi
⊤

ϕϕϕ), i = 1, . . . ,n, t > 0, (2.18)

where xxx⊤i = (1,x1i, . . . ,xpi) is a vector containing the values of p covariates for the patient i, ϕϕϕ =

(ϕ0,ϕ1, . . . ,ϕp)
⊤ is the vector of regression coefficients to be estimated, and ξξξ = (ξξξ

⊤
1 ,ξξξ

⊤
2 ,ϕϕϕ

⊤)⊤.
Therefore, the frailty model given in (2.18) is a generalization of the proportional hazard
model, which is obtained when the frailty distribution degenerates at U = 1 for all patients. The
corresponding conditional SF can be obtained from (2.18) as

ST |U=ui(t;xxx,ξξξ ) = exp(−uiH0(t;ξξξ 1)exp(xxx⊤ϕϕϕ)), i = 1, . . . ,n, t > 0, (2.19)

where H0(t;ξξξ 1) =
∫ t

0 h0(s;ξξξ 1)ds is the baseline cumulative hazard rate (CHR).

Suppose that the lifetime is not completely observed and may be subject to right censoring.
Let vi denote the censoring time, yi the time to event of interest and ui the frailty for the patient i,
respectively. We observe ti = min{yi,vi}, that is, if the censoring indicator ςi = 1, ti = yi is the
lifetime of the patient i; otherwise, if ςi = 0, ti = vi is the right censoring time of the patient i; for
i = 1, . . . ,n. Then, from (2.18) and (2.19), the corresponding likelihood function is

L(ξξξ ; ttt,ςςς ,xxx,uuu) = L(ξξξ ) =
n

∏
i=1

(
uih0(t;ξξξ 1)exp(xxx⊤ϕϕϕ)

)ςi
exp
(
−uiH0(t;ξξξ 1)exp(xxx⊤ϕϕϕ)

)
, (2.20)

where ξξξ is defined in (2.18), ttt = (t1, . . . , tn)⊤ are the lifetimes of the patients, ςςς = (ς1, . . . ,ςn)
⊤

is the vector of their censoring indicators, and uuu = (u1, . . . ,un)
⊤ is the vector of their frailties.

Now, conditional on the unobserved frailties uuu, the likelihood function given in (2.20) forms
the basis for the parameter estimation. The frailties uuu must be integrated out (in closed form or
by numerical or stochastic integration, depending on the frailty distribution) to get a likelihood
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function (not depending on unobserved quantities) of the type

L(ξξξ ; ttt,ςςς ,xxx) = L(ξξξ ) =
n

∏
i=1

(hT (ti;xxx,ξξξ ))ςiST (ti;xxx,ξξξ ), (2.21)

where hT and ST are the unconditional HR and SF, respectively, defined next.

2.6.1 Unconditional hazard and survival functions

The unconditional (population) SF of T can be obtained by integrating ST |U=ui(t;xxx)

given in (2.19) on the frailty U . It may be viewed as the (unconditional) SF of patients randomly
drawn from the population under study; see Klein and Moeschberger (2003), Aalen et al. (2008)
and Wienke (2011). Unconditional HF and SF can be obtained with the Laplace transform; see
Hougaard (1984). Then, when seeking distributions for the frailty RV U , it is natural to use
frailty distributions with an explicit Laplace transform, because it facilitates the use of standard
ML methods for parameter estimation. To get the unconditional SF, we need to integrate out the
frailty component as

ST (t;xxx,ξξξ ) =
∫

∞

0
ST |U=u(t;xxx,ξξξ ) fU(u;ξξξ 2)du, (2.22)

where ξξξ is defined in (2.18), ST |U=u(t;xxx,ξξξ ) = exp(−uH0(t;ξξξ 1)exp(xxx⊤ϕϕϕ)) is the conditional
SF as given in (2.19) and fU is the corresponding frailty PDF. The Laplace transform of real
argument s of a function f is

Q(s) =
∫

∞

0
exp(−sx) f (x)dx. (2.23)

Let f = fU be the frailty PDF and s = H0(t;ξξξ 1)exp(xxx⊤ϕϕϕ). Then, according to (2.23), we obtain
the Laplace transform of the unconditional SF of T as

ST (t;xxx,ξξξ ) =
∫

∞

0
exp(−uH0(t;ξξξ 1)exp(xxx⊤ϕϕϕ)) fU(u;ξξξ 2)du = Q(H0(t;ξξξ 1)exp(xxx⊤ϕϕϕ)). (2.24)

Note that (2.24) conducts to the same form as the unconditional SF given in (2.22); see Vaupel
et al. (1979) and Wienke (2011). The frailty RVs Ui are usually assumed to be independent with
identical frailty distribution. As mentioned, the frailty distribution can be GA, IG, LN or Weibull.
We consider a reparameterized version of the BS distribution introduced by Santos-Neto et al.
(2012), Santos-Neto et al. (2014), because it allows us to mimic a property of the GA distribution,
traditionally used in frailty models.
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2.7 Cure rate models
The unified long-term survival model has its formulation based on a biological context as

in Yakovlev and Tsodikov (1996) and Chen et al. (1999); further details can be seen in Rodrigues
et al. (2009). For a subject in the population, we represent by N the number of competing causes
related to the occurrence of an event of interest. Given N = n the promotion time for the jth
competing cause is denoted by Z j, j = 1, . . . ,n. We assume that, conditional on N, the Z j’s
are independent and identically distributed (IID). We suppose also that N is independent of
(Z1, . . . ,Zn). The observable time to event is defined as T = min{Z1,Z2, . . . ,ZN} for N ≥ 1, and
T = ∞ if N = 0, which leads to a cure fraction p0. According to Rodrigues et al. (2009), the
long-term survival function of the RV T is given by

Sp(t) =P(T ≥ t) = P(N = 0)+
∞

∑
n=1

P(Z1 > t, . . . ,ZN > t|N = n)P(N = n)

=
∞

∑
n=0

P(N = n)[S*T (t)]
n = AN [S*T (t)], (2.25)

where S*T (·) denotes the common survival function of the unobserved lifetimes and AN [·] is the
probability generating function of the RV N, which converges when u = S*T (t) ∈ [0,1]. Thus,
various results can be obtained for each choice of the generating function of the distribution of N

and S*T (t). More details about this model can be found in Rodrigues et al. (2009).

In this work, we assume that the unobserved latent variable N has a negative binomial
distribution Piegorsch (1990), Saha and Paul (2005) with probability mass function given by

P(N = n) =
Γ(n+φ−1)

n!Γ(φ−1)

(
φθ

1+φθ

)n

(1+φθ)−1/φ , (2.26)

with n = 0,1, . . ., θ > 0, φ ≥−1 and 1+φθ > 0, so that E(N) = θ and Var(N) = θ +φθ 2.

As discussed by Tournoud and Ecochard (2007), the parameters of the negative binomial
distribution have biological interpretations. The mean of the number of competing causes is
represented by θ , whereas φ is the dispersion parameter. The variance of the number of initiated
cells is flexible: there is under-dispersion in the Poisson model when −1/θ < φ < 0, whereas
for φ > 0 over-dispersion is present. The negative binomial model comprises some well-known
models when the parameter φ is fixed. For instance, if φ → 0 the probability function of the
Poisson distribution is obtained, when φ = −1 the Bernoulli distribution and if φ = 1 the
geometric distribution. Therefore, considering the number of competing causes to be negative
binomial distributed and S*T (·) a proper SF, we have that the long-term SF of the RV T is given
by

Sp(t) = {1+φθ(1−S*T (t))}−1/φ , (2.27)

where p0 = limt→∞ Sp(t) = (1+φθ)−1/φ > 0, p0 represents the proportion of cured or immune
individuals in the population. From (2.25) we can obtain the PDF associated with the long-term
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SF which is given by

fp(t) = f *T (t)
(

dA(u)
du

|u=S*T (t)

)
, (2.28)

and the long-term hazard function is defined as

hp(t) =
fp(t)
Sp(t)

= f *T (t)
dA(u)

du |u=S*T (t)

Sp(t)
. (2.29)

From (2.28) and (2.29) the corresponding PDF and HR become

fp(t) = θ f *T (t){1+φθ [1−S*T (t)]}−1/φ−1, (2.30)

and

hp(t) = θ f *T (t){1+φθ [1−S*T (t)]}−1. (2.31)

Notice that fp(t) and hp(t) are improper functions, since fp(t) is not a proper SF.
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CHAPTER

3
A BIRNBAUM-SAUNDERS FRAILTY MODEL

FOR SURVIVAL DATA

3.1 Introduction
In this chapter, we introduce the BS frailty model, discuss aspects of model identifiability,

estimate its parameters, introduce two residuals, conduct a simulation study to evaluate the
behavior of the parameter estimators and illustrate the potentiality of the proposed model with
two real-world data sets. Here, we consider BS frailty model without observed covariates, but
they will be explicitly considered in the next chapter.

3.2 Birnbaum-Saunders frailty model
In this section, we discuss some model identifiability issues and how to estimate the

model parameters via the ML method and to infer about these parameters.

3.2.1 Model identifiability and features

In univariate frailty models, an important aspect is its identifiability. In the context of
proportional hazard models, when working with frailty, it is necessary that the random effect
distribution has finite mean for the model to be identifiable; see Elbers and Ridder (1982). Thus,
in order to keep the identifiability of the model, it is convenient to take the distribution with
mean equal to one. We assume that the frailty U has a BS distribution with parameters µ = 1
and δ , where E[U ] = 1 and Var[U ] = (2δ +5)/(δ +1)2. The variance quantifies the amount of
heterogeneity among patients.

From (2.22), the Laplace transform for the BS distribution with parameters µ = 1 and δ

is given by
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Q(s) =
exp
(

δ

2

(
1−

√
δ +4s+1/

√
δ +1

))(√
δ +4s+1+

√
δ +1

)
2
√

δ +4s+1
. (3.1)

From (2.22) and evaluating (3.1) at s = H0(t), we obtain the unconditional SF under the
BS frailty as

ST (t) =
exp(δ

2 (1−
√

δ +4H0(t)+1/
√

δ +1))(
√

δ +4H0(t)+1+
√

δ +1)

2
√

δ +4H0(t)+1
. (3.2)

Then, from (3.1), the corresponding unconditional HR is given by

hT (t) = h0(t)

(
δ (δ +

√
δ +1

√
δ +4H0(t)+1+4H0(t)+3)+2

(δ +4H0(t)+1)(δ +
√

δ +1
√

δ +4H0(t)+1+1)

)
. (3.3)

We assume that the baseline HR h0(t) is specified up to a few unknown parameters,
which are related to a distribution assumed for the baseline hazard. For example, we can suppose
an exponential, LN or Weibull distribution. However, assuming a parametric distribution is not
always desirable, because such a assumption is often difficult to verify. Note that the exponential
distribution has been extensively used to model the baseline HR due to its simplicity or when the
HR must be constant for each patient; see Lawless (2011). Therefore, we use the exponential
distribution as baseline hazard, which has h0(t) = γ and H0(t) = γt, for t > 0. Thus, from (3.3),
the unconditional HR under BS frailty reduces to

hT (t) =
γ(δ (δ +

√
δ +1

√
δ +4γt +1+4γt +3)+2)

(δ +4γt +1)(δ +
√

δ +1
√

δ +4γt +1+1)
, (3.4)

where γ is the average HR of each patient. From (3.2), the unconditional SF under BS frailty is

ST (t) =
exp
(

1
2δ

(
1−
√

δ +4γt +1/
√

δ +1
))(√

δ +1+
√

δ +4γt +1
)

2
√

δ +4γt +1
. (3.5)

Note that (3.2) and (3.3) can be easily applied to different baselines other than the
exponential one. In fact, in Section 3.4 we also consider a Weibull baseline.

3.3 Estimation of parameters

Assuming that the time to the event of interest is not completely observed and it may be
subject to right censoring. Let ξξξ = (δ ,γ)⊤ denote the parameter vector of the BS frailty model
of the time to event in (3.5). From n pairs of times and censoring indicators (t1,ς1), . . . ,(tn,ςn),
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the corresponding likelihood function under uninformative censoring can be expressed as

L(ξξξ) =
n

∏
i=1

γ(δ
(

δ +
√

δ +1
√

δ +4γti +1+4γti +3
)
+2)

(δ +4γti +1)
(

δ +
√

δ +1
√

δ +4γti +1+1
)
ςi

×

exp(1
2δ (1−

√
δ+4γti+1√

δ+1
)(
√

δ +1+
√

δ +4γti +1)

2
√

δ +4γti +1

 . (3.6)

Therefore, the log-likelihood function for the BS frailty model obtained from (3.6) is
given by

`(ξξξ ) =
nδ

2
− δ

2
√

δ +1

n

∑
i=1

√
δ +4γti +1−

n

∑
i=1

ςi log(δ +4γti +1)

−
n

∑
i=1

log(2
√

δ +4γti +1)+
n

∑
i=1

log(
√

δ +1+
√

δ +4γti +1)

+
n

∑
i=1

ςi log(γ(δ (δ +
√

(δ +1)(δ +4γti +1)+4γti +3)+2))

−
n

∑
i=1

ςi log(δ +
√
(δ +1)(δ +4γti +1)+1). (3.7)

Then, the first derivatives of the log-likelihood function with respect to the two parameters
can be obtained; see Appendix A. The ML equations for δ and γ must be solved with an iterative
method for non-linear optimization problems. Specifically, the ML estimates of the BS frailty
model parameters can be obtained by using the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
quasi-Newton non-linear optimization algorithm with numeric derivatives; see Nocedal and
Wright (2006) and Lange (2010). The BFGS method is implemented in the R software by the
functions optim and optimx; see <www.R-project.org> and R Core Team (2016).

Standard regularity conditions; see for example Cox and Hinkley (1979), Serfling (1980),
Lehmann and Casella (2006), Migon et al. (2014), are fulfilled for the proposed model, when-
ever the parameters are within the parameter space. It is well known the ML estimators are
asymptotically normally distributed. Thus, for the BS frailty model, we have

ξ̂ξξ
D→ N2(ξξξ ,ΣΣΣξ ),

where ΣΣΣξ is the asymptotic variance-covariance matrix of ξ̂ξξ and D→ denotes convergence in
distribution. Therefore, an approximate 100× (1−ϖ)% confidence interval (CI) for ξξξ is

R = {ξξξ ∈ R2 : |ξ̂ξξ −ξξξ |⊤Σ̂ΣΣ
−1
ξξξ |ξ̂ξξ −ξξξ | ≤ χ

2
2;1−ϖ}, 0 < ϖ < 1, (3.8)

where χ2
2;1−ϖ

denotes the 100× (1−ϖ)th quantile of the chi-squared distribution with two
degrees of freedom and Σ̂ΣΣξ is an estimate of ΣΣΣξ . Confidence bands for the BS frailty model

www.R-project.org
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parameters can be obtained by means of the region provided in (3.8). The observed information
matrix for the BS frailty model is given in Appendix A, which is useful for computing Σ̂ΣΣξ .

The goodness-of-fit of the BS frailty model is assessed by two residuals. The first is a
generalized Cox-Snell (GCS) residual given by

rGCS
i =− log(ŜT (ti)), i = 1, . . . ,n, (3.9)

where ŜT (ti) is the fitted survival function of the ith lifetime. The GCS has a unit exponential
(EXP(1)) distribution when the frailty model is correctly specified, regardless of the frailty
model specification. The second type is the randomized quantile (RQ), which is usually used in
GAMLSS models; see Dunn and Smyth (1996). The RQ is given by

rRQ
i = Φ

−1(ŜT (ti)), i = 1, . . . ,n, (3.10)

where Φ−1(·) is the standard normal CDF and ŜT (ti) is as in (3.9). The RQ residual defined in
(3.10) has a standard normal distribution if the frailty model is correctly specified for any frailty
model specification.

3.3.1 A simulation study

We here carry out a simulation study to evaluate the performance of the ML estimators
of the BS frailty model parameters with exponential baseline HR. The simulation scenario
considered the following: sample sizes n ∈ {30,150,400,600}, values of the true parameter
δ ∈ {0.25,0.50,1.50,2.50}, 5000 MC replications, and without loss of generality, we assume
γ = 1.0 in all cases. The percentage of censored observations were {0,10,25,40}.

Note that, based on the probability integral transform, the BS frailty CDF follows a
U(0,1) distribution. Then, the BS frailty SF is U(0,1) distributed as well. Simulation studies to
evaluate the performance of the ML estimators can be carried out by generating random numbers
from the BS frailty model from Algorithm 1.

Algorithm 1 – Generator of random numbers from the BS frailty model.

1: Obtain a random number mi from M ∼ U(0,1).
2: Fix values of δ and γ .
3: Equate mi to the SF and obtain the lifetime yi by solving numerically the equation

exp(1
2δ (1−

√
δ +4γyi +1/

√
δ +1))(

√
δ +1+

√
δ +4γyi +1)

2
√

δ +4γyi +1
= mi.

4: Obtain the censored time ci from C ∼ U(a,b), where a,b > 0.
5: Obtain ti = min{yi,ci}.
6: If yi < ci then ςi = 1, otherwise ςi = 0.
7: Repeat Steps 1 to 6 until the required number of data has been generated.
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In Step #3, we use the function uniroot of the R software to obtain the root of the
equation; see Brent (2013). For each value of the parameter, sample size and percentage of
censored observations, we report the empirical values for the bias (B) and mean squared error
(MSE) of the ML estimators in Table 2. From this table, note that, as the sample size increases,
the ML estimators become more efficient, as expected. We can also note that, as the percentage
of censored observations increases, the performance of the estimator of δ , the shape parameter,
deteriorates, especially for n = 30. From Figures 3-4 we notice that the estimators of parameter
δ tend to be unbiased and consistent. Generally, all of these results show the good performance
of the proposed model.

Table 2 – empirical bias (with MSEs in parentheses) of the ML estimators of δ and γ from the BS frailty model
under different censoring proportions.

BS frailty model
n 0% 10 %

δ B(δ̂ ) B(γ̂) B(δ̂ ) B(γ̂)

30 0.25 0.0180 (0.0474) 0.1243 (0.2448) −0.0201 (0.0501) −0.1300 (0.2488)
0.50 0.0287 (0.0887) 0.1129 (0.2317) −0.0431 (0.1004) −0.1108 (0.2217)
1.50 0.2515 (0.3429) 0.0538 (0.1522) −0.2842 (0.3788) −0.0530 (0.1651)
2.50 0.5139 (0.6520) 0.0652 (0.1484) −0.5949 (0.7340) −0.0667 (0.1540)

150 0.25 0.0076 (0.0281) 0.0198 (0.1422) −0.0054 (0.0300) −0.0295 (0.1418)
0.50 0.0173 (0.0583) 0.0186 (0.1326) −0.0081 (0.0632) −0.0171 (0.1299)
1.50 0.1292 (0.2013) 0.0528 (0.1122) −0.1501 (0.2262) −0.0514 (0.1070)
2.50 0.3081 (0.4130) 0.0603 (0.1096) −0.3475 (0.4552) −0.0600 (0.1071)

400 0.25 0.0056 (0.0241) 0.0088 (0.1109) −0.0035 (0.0240) −0.0016 (0.1080)
0.50 0.0142 (0.0485) 0.0008 (0.1043) −0.0075 (0.0507) −0.0064 (0.1067)
1.50 0.0793 (0.1428) 0.0361 (0.0958) −0.0998 (0.1652) −0.0407 (0.0974)
2.50 0.2050 (0.2933) 0.0548 (0.0968) −0.2460 (0.3399) −0.0491 (0.0993)

600 0.25 0.0048 (0.0221) 0.0039 (0.1050) −0.0048 (0.0222) −0.0001 (0.1039)
0.50 0.0120 (0.0463) 0.0120 (0.0988) −0.0065 (0.0470) −0.0104 (0.0954)
1.50 0.0586 (0.1225) 0.0259 (0.0906) −0.0745 (0.1390) −0.0302 (0.0879)
2.50 0.1601 (0.2406) 0.0166 (0.0888) −0.2071 (0.2941) −0.0259 (0.0906)

BS frailty model
n 25% 40 %

δ B(δ̂ ) B(γ̂) B(δ̂ ) B(γ̂)

30 0.25 −0.0322 (0.0625) −0.1496 (0.2632) −0.0524 (0.0853) −0.1550 (0.2654)
0.50 −0.0618 (0.1211) −0.1121 (0.2298) −0.1007 (0.1635) −0.1300 (0.2465)
1.50 −0.3342 (0.4377) −0.0549 (0.1776) −0.4296 (0.5395) −0.0683 (0.1888)
2.50 −0.7106 (0.8647) −0.0651 (0.1605) −0.8870 (1.0495) −0.0606 (0.1744)

150 0.25 −0.0081 (0.0361) −0.0385 (0.1483) −0.0147 (0.0432) −0.0405 (0.1501)
0.50 −0.0163 (0.0718) −0.0139 (0.1322) −0.0316 (0.0866) −0.0293 (0.1332)
1.50 −0.2016 (0.2779) −0.0554 (0.1152) −0.2488 (0.3380) −0.0498 (0.1118)
2.50 −0.4300 (0.5518) −0.0612 (0.1121) −0.5518 (0.6830) −0.0598 (0.1118)

400 0.25 −0.0017 (0.0273) −0.0042 (0.1139) −0.0028 (0.0315) −0.0039 (0.1131)
0.50 −0.0032 (0.0563) −0.0068 (0.1068) −0.0075 (0.0661) −0.0191 (0.1068)
1.50 −0.1292 (0.1974) −0.0507 (0.0986) −0.1692 (0.2431) −0.0562 (0.0994)
2.50 −0.3097 (0.4059) −0.0497 (0.0984) −0.3984 (0.5129) −0.0486 (0.0998)

600 0.25 −0.0011 (0.0248) −0.0087 (0.1011) −0.0027 (0.0285) −0.0157 (0.1054)
0.50 −0.0019 (0.0539) −0.0060 (0.0969) −0.0017 (0.0591) −0.0149 (0.0946)
1.50 −0.1041 (0.1700) −0.0372 (0.0921) −0.1561 (0.2256) −0.0267 (0.0936)
2.50 −0.2681 (0.3623) −0.0265 (0.0931) −0.3406 (0.4450) −0.0426 (0.0946)
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Figure 3 – Bias from different values of δ and sample sizes.
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Figure 4 – MSE from different values of δ and sample sizes.
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3.4 Applications to real data

In this section, we illustrate the proposed methodology for modeling unobserved frailty
by applying it to two real-world medical data sets. The first (uncesored) of them from a leukemia
cancer study introduced by Feigl and Zelen (1965), whereas the second (censored) from a lung
cancer trial studied in Kalbfleisch and Prentice (2011). Given the frailty component, the times
of death are independent and follow a proportional hazard model. We compare the proposed
BS frailty model, with the Weibull model without frailty, GA frailty model and IG model with
all of them having a Weibull baseline. We assess the impact of the frailty model on the frailty
variance. Then, we find the model that provides an adequate fit to the data. To make sure that
the GA and IG models are identifiable, we consider U ∼ GA(1/ζ ,1/ζ ) and U ∼ IG(1,σ2); see
Wienke (2011).

3.4.1 First case study: leukemia cancer data

The data set corresponds to the survival times of 33 patients who died from acute
myelogenous leukemia. Also, their measures of white blood cell count at the time of diagnosis
were recorded. The patients were divided into 2 groups, according to the presence or absence of a
morphological characteristic of white blood cells. Patients termed as AG positive were identified
by the presence of significant granulation of the leukemic cells in the bone marrow at the time of
diagnosis. Besides the covariates white blood cell count and groups positive/negative AG, other
factors related to leukemia lifetime correspond to certain chemical agents and genetic factors,
which were not measured. It motivates the use of the frailty models to capture the influence of
such factors.

Exploratory data analysis

Table 3 provides a descriptive summary of the observed lifetime (in weeks) that includes
median (MD), mean (t), standard deviation (SD), coefficient of variation (CV), coefficient of
skewness (CS), coefficient of kurtosis (CK), and minimum (t(1)) and maximum (t(n)) values.
From this table, we observe the positively skewed nature and moderate kurtosis level of the data
distribution. The skewed nature is confirmed by the histogram of Figure 5(left).

The shape of a HR is an important point to decide whether a particular distribution is
suitable or not for a data set. A manner to characterize the shape of a HR is by means of the scaled
total time on test (TTT) function. We can detect the type of HR that the data have and then choose
a suitable distribution. Let h(t) = f (t)/[1−F(t)] be the HR of a RV T , where f (·) and F(·) are
the PDF and CDF of T . Then, the TTT function is given by W (u) =H−1(u)/H−1(1), for 0≤ u≤
1, where H−1(u) =

∫ F−1(u)
0 [1−F(z)]dz, with F−1(·) denoting the inverse CDF of T . A plot of

the points [k/n,Wn(k/n)] can approximate W (·), with Wn(k/n) = [∑k
i=1 t(i)+{n−k}tk]/∑

n
i=1 t(i),

for k = 1, . . . ,n, and t(i) denoting the ith observed order statistic; see, for example, Figure 1 in
Azevedo et al. (2012) for different theoretical shapes for the scaled TTT curves. Figure 5(center)
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suggests a decreasing HR for the observed lifetime. Therefore, the Weibull distribution is a good
choice as a baseline function, since it allows us to model constant, increasing and decreasing HR.
Moreover, this distribution is one of the most used models in survival and reliability analysis due
to its good properties and flexibility in data modeling.

Figure 5(right) presents the usual and adjusted boxplots. The latter is important in
cases where the data follow a skewed distribution, since a significant number of observations
can be classified as atypical when they are not; see Hubert and Vandervieren (2008). From
Figure 5(right), we note that potential outliers considered by the usual boxplot are not outliers
when we consider the adjusted boxplot.

Table 3 – Descriptive statistics for the observed lifetime.

t(1) MD t SD CV CS CK t(n) n
1.00 22.00 40.88 46.70 1.14 1.16 3.12 156 33
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Figure 5 – Histogram, TTT plot and boxplots for the leukemia cancer data

Estimation and model selection

Table 4 reports the ML estimates of the BS frailty model from leukemia cancer data. The
results of the Weibull model without frailty, the GA and IG frailty model are given as well. In this
table, values for Akaike (AIC) and Bayesian (BIC) information criteria, are provided. Table 4
indicates that the BS frailty model with Weibull baseline provides the best overall fit in terms
of AIC and BIC. The estimated variance of the BS, GA and IG frailty models are, respectively,
given by

V̂ar(U) =
2δ̂ +5

(δ̂ +1)2
, V̂ar(U) = ζ̂ and V̂ar(U) = σ̂

2. (3.11)
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Table 4 – ML estimates (with –SEs– in parentheses) and model selection measures for the fit to leukemia data.

Parameter Weibull BS frailty GA frailty IG frailty
γ 0.2804 (0.2370) 0.2289 (0.0547) 0.0285 (0.0542) 0.1215 (0.0429)
κ 1.2878 (0.1380) 2.8283 (0.5312) 0.7888 (0.6958) 1.3909 (0.1804)
δ - 0.0184 (0.0175) - -
ζ - - 0.0176 (2.1091) -
σ2 - - - 12.1083 (5.1661)
log-likelihood −153.6000 −149.2648 −153.6221 −152.8119
AIC 311.1737 304.5297 313.2455 311.6238
BIC 318.6628 309.0192 317.7350 316.1133

Based on Table 4 and Equation (3.11), the estimated frailty variances from the BS, GA
and IG frailty models are 4.8564, 0.0176 and 12.1083, respectively. Notice that overall models
capture the unobserved heterogeneity and from Table 4 the BS model provides a better fit
compared to the GA and IG models.

In Figure 6, we present the fitted SF by Kaplan-Meier (KM). It allows us to compare the
empirical SF of the data for the BS, GA and IG frailty models. It is important to highlight that
the overall results suggest that the BS frailty model is better than the GA and IG frailty models,
indicating the potential of the new model in describing frailty data.
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Figure 6 – Fitted SFs by KM method and BS, GA and IG frailty models for the leukemia cancer data.

Figure 7 shows the QQ plots with simulated envelope for the GCS and QS residuals.
These plots allow us to check graphically whether the GCS and QS residuals follow the EXP(1)
and standard normal distributions or not, respectively. From Figure 7, we note that these residuals
present a good agreement with their corresponding target distributions, respectively.



56 Chapter 3. A Birnbaum-Saunders frailty model for survival data

0

0

0

0

0

0

0

0 1111

2

2

2

2

2

2

2

2 3333

4

4

4

4

4

4

4

4

6666
8888

em
p
ir

ic
al

q
u
an

ti
le

theoretical quantile

−
3

−
3

−
3

−
3

−
2

−2

−
2

−2

−
2

−2

−
2

−2

−
1

−1

−
1

−1

−
1

−1

−
1

−1

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

3333
em

p
ir

ic
al

q
u
an

ti
le

theoretical quantile

0

0

0

0

0

0

0

0 1111

2

2

2

2

2

2

2

2 3333

4

4

4

4

4

4

4

4

6666
em

p
ir

ic
al

q
u
an

ti
le

theoretical quantile

−
3

−
3

−
3

−
3

−
2

−2

−
2

−2

−
2

−2

−
2

−2

−
1

−1

−
1

−1

−
1

−1

−
1

−1

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

3333
em

p
ir

ic
al

q
u
an

ti
le

theoretical quantile

0

0

0

0

0

0

0

0 1111

2

2

2

2

2

2

2

2 3333

4

4

4

4

4

4

4

4

6666
8888

em
p
ir

ic
al

q
u
an

ti
le

theoretical quantile

−
3

−
3

−
3

−
3

−
2

−2

−
2

−2

−
2

−2

−
2

−2

−
1

−1

−
1

−1

−
1

−1

−
1

−1

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

3333
em

p
ir

ic
al

q
u
an

ti
le

theoretical quantile

Figure 7 – QQ plot with envelope for GCS and RQ residuals for the BS, GA and IG frailty models, respectively, for
leukemia cancer data

3.4.2 Second case study: lung cancer data

The data set corresponds to the survival times on 137 advanced lung cancer patients
from the Veterans’ Administration lung cancer trial; see Kalbfleisch and Prentice (2011). The
explanatory variables recorded when the patient is taken on study include: performance status;
a measure of general medical status; age (years); time in months from diagnosis to starting on
study; and previous therapy. The percentage of censored observations was 6.57%.

Exploratory data analysis

Table 5 reports the descriptive statistics of the observed lifetime (in days) from the lung
cancer trial. The CK and CS indicate the positively skewed nature and high kurtosis level of the
data distribution.
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Table 5 – Descriptive statistics for the observed lifetime.

MD t SD CV CS CK t(1) t(n) n
80.00 121.60 157.82 1.40 3.13 15.55 1.00 999.00 137

Figure 8 shows the TTT plot, histogram and boxplots for the lung cancer data. Note that
the skewed nature is confirmed by the histogram of Figure 8(left). The TTT plot displayed in
Figure 8(center) suggests a decreasing HR for the observed lifetime, which justifies the use of
the Weibull distribution as a baseline function. From Figure 8(center), we note that potential
outliers considered by the usual boxplot are not outliers when we consider the adjusted boxplot.
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Figure 8 – Histogram, TTT plot and boxplots for the lung cancer data

Estimation and model selection

The estimates of the model parameters (with SEs in parentheses), AICs and BICs are
summarized in Table 6. Comparing the information criteria, we notice that the BS frailty model
has the smallest AIC and BIC values, suggesting that it is a good fit for this data.

Table 6 – ML estimates (with estimated asymptotic standard errors –SEs– in parentheses) and model selection
measures for the fit to lung cancer data.

Parameter Weibull BS frailty GA frailty IG frailty
γ 0.2087 (0.1078) 0.0136 (0.0059) 0.0100 (0.0018) 0.0232 (0.0071)
κ 1.1735 (0.0669) 1.1468 (0.2782) 0.9749 (0.1193) 1.4177 (0.1524)
δ - 2.0174 (2.7096) - -
ζ - - 0.2405 (0.2139) -
σ2 - - - 4.9577 (3.7818)
log-likelihood −748.1000 −746.8067 −747.1860 −790.0269
AIC 1500.2000 1499.6130 1500.3720 1586.0540
BIC 1506.0400 1508.3730 1509.1320 1594.8140

The QQ plots with simulated envelope for the GCS and QS residuals are displayed in
Figure 9. These graphical plots show the notorious superiority, in terms of fitting to the data, of
the BS frailty model with Weibull baseline over all other models.
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Figure 9 – QQ plot with envelope for GCS and RQ residuals for the BS, GA and IG frailty models, respectively,
with lung cancer data.

The estimated frailty variances from BS, GA and IG frailty models are 0.9970, 0.2405
and 4.9577, respectively. The IG frailty model gives larger variance compared to the BS and GA
frailty model, but overall the estimated frailty variances are different from zero indicating the
models capture unobserved heterogeneity. However from Table 6 the BS model provides a better
fit compared with GA and IG models.

Figure 10 shows the fitted SF by KM. The fitted SFs presented in Figures 10 these
graphical plots show the notorious agreement, in terms of fitting to the data, of the BS frailty
model.
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Figure 10 – Fitted SFs by KM method and BS, GA and IG frailty models for the lung cancer data.

3.5 Concluding remarks
In this chapter we have introduced a new frailty model based on reparameterized

Birnbaum-Saunders distribution. The Birnbaum-Saunders distribution is employed to describe
the unobserved frailty. Due to its genesis, justification, properties and features, the new model
can be a good alternative in frailty modeling. A Monte Carlo simulation study has shown that
the maximum likelihood estimators tend to their true values of the model parameters and their
distributions to normality, when the sample size increased, as expected. We have proposed two
types of residuals to assess the goodness-of-fit. Also, we have derived analytically the observed
information matrix, which facilitates the direct computation of the corresponding estimated
asymptotic standard errors. We have applied the proposed model to two real-world data sets,
corresponding to the survival times of patients who died from acute myelogenous leukemia,
and the survival times on advanced lung cancer patients, respecitvely. The applications have
shown the potentiality of the new model. The precision parameter of the Birnbaum-Saunders
distribution, which measures the effect of the time in the Birnbaum-Saunders frailty model, has
shown to be significant and positive. Then, we have the effect of increasing the individual hazard
rate, anticipating the occurrence of death, which does not happen in the model without frailty.
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CHAPTER

4
BIRNBAUM-SAUNDERS FRAILTY

REGRESSION MODELS: DIAGNOSTICS AND
APPLICATION TO MEDICAL DATA

4.1 Introduction

The objectives of this chapter are: (i) to introduce a BS frailty regression model and its
inference based on ML methods; and (ii) to derive influence diagnostics tools for this model.
Diagnostic analysis is an efficient way to detect influential cases and evaluate their effect on
the model inference. To the best of our knowledge, influence diagnostic tools have not been
considered in frailty models. The natural method to assess the effect of an observation on the
estimation is the case deletion, which is considered as a global influence method. However, it
excludes all information from a case and can be hard to known whether that case has some
influence on a specific aspect of the model. To overcome this problem, one can use the local
influence method; see Cook (1987). This method allows us to detect locally influential cases and
provides a sensitivity measure under perturbations on the data or the model. The local influence
method has been extended to various regression models; see Osorio et al. (2007), Espinheira et
al. (2008), Paula et al. (2009) and Leiva et al. (2014).

4.2 Birnbaum-Saunders frailty regression model

By taking (2.24) and the Laplace transform of the BS distribution, given in (3.1), with
parameters (1,δ ) and evaluated at s = H0(t)exp(η), where η = xxx⊤ϕϕϕ is the linear predictor,
ϕϕϕ = (ϕ1, . . . ,ϕp)

⊤ is a vector of regression parameters and H0(t) indicates the baseline CHR,
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we obtain the unconditional SF under the BS frailty with values xxx for its covariates as

ST (t;xxx,ξξξ ) =
exp
(

δ

2

(
1−

√
δ+4H0(t;ξξξ 1)exp(η)+1√

δ+1

))(√
δ +4H0(t;ξξξ 1)exp(η)+1+

√
δ +1

)
2
√

δ +4H0(t;ξξξ 1)exp(η)+1
.

(4.1)

Then, from (3.1) and (4.1), the corresponding unconditional HR of T is

hT (t;xxx,ξξξ ) = h0(t;ξξξ 1)exp(η)× (4.2)

δ (δ +
√

δ +1
√

δ +4H0(t;ξξξ 1)exp(η)+1+4H0(t;ξξξ 1)exp(η)+3)+2

(δ +4H0(t;ξξξ 1)exp(η)+1)(δ +
√

δ +1
√

δ +4H0(t;ξξξ 1)exp(η)+1+1)
.

We assume that h0 is specified up to a few unknown parameters, which are related
to a distribution assumed for the baseline HR. For example, we can suppose an exponential,
LN or Weibull distribution, among others. However, assuming a parametric distribution is
not always desirable, because such an assumption is often difficult to verify. Note that the
Weibull distribution has been extensively used to model the baseline HR due to its flexibility or
when the HR must be constant, increasing or decreasing for each patient; see Lawless (2011).
Therefore, we use the Weibull distribution as baseline hazard, which has h0(t;γ,κ) = γκtκ−1 and
H0(t;γ,κ) = γtκ , for t > 0, where κ > 0 and γ > 0 are shape and scale parameters, respectively.
Note that the baseline HR h0: (i) increases if κ > 1; (ii) is constant (exponential model) if κ = 1;
and (iii) decreases if κ < 1. This parameterization is commonly used in statistical models for
medicine; see Collett (2015). Thus, from (4.1)-(4.2) and for ξξξ = (γ,κ,δ ,η)⊤, the unconditional
HR and SF of T under BS frailty reduce to

hT (t;xxx,ξξξ ) =
γκtκ−1 exp(η)(δ (δ +∆(t;ξξξ )+4γtκ exp(η)+3)+2)

∆2(t;ξξξ )(δ +∆(t;ξξξ )+1)
,

ST (t;xxx,ξξξ ) =
exp((δ/2)(1−∆*(t;ξξξ )/

√
δ +1))(∆*(t;ξξξ )+

√
δ +1)

2∆*(t;ξξξ )
, (4.3)

where ∆(t;ξξξ ) =
√

(δ +1)(δ +4γtκ exp(η)+1) and ∆*(t;ξξξ ) =
√

δ +4γtκ exp(η)+1.

4.2.1 Estimation of parameters

Suppose that the lifetime is not completely observed and may be subject to right censoring.
Then, from n patients with pairs of lifetimes and censoring indicators (t1,ς1), . . . ,(tn,ςn), the
corresponding log-likelihood function under uninformative censoring, taken from (2.21), can be
expressed as

`(ξξξ ) = log(L(ξξξ )) =
n

∑
i=1

`i(ξξξ ), (4.4)
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where

`i(ξξξ ) = ςi(log(κ)+ log(γ)+(κ −1) log(ti)+η)+(δ/2)(1− (∆*(ti;ξξξ ))/
√

δ +1)

+ log(∆*(ti;ξξξ )+
√

δ +1)− log(2∆
*(ti;ξξξ )) (4.5)

+ςi log(δ (δ +∆(ti;ξξξ )+4γtκ
i exp(η)+3)+2)−2ςi log(∆*(ti;ξξξ )(δ +∆(ti;ξξξ )+1)),(4.6)

with ςi and ti being the elements of the vectors ςςς and ttt, respectively, with the latter defined in
(2.20), ξξξ = (γ,κ,δ ,ϕϕϕ⊤)⊤ denoting here the parameter vector of the BS frailty regression model
given in (4.3), and η = xxx⊤ϕϕϕ defined in (2.20). The parameter vector ξξξ may be estimated by
numerical maximization of the log-likelihood function ` given in (4.4) using the R software by
its functions optim and optimx; see <www.R-project.org> and R Core Team (2016).

It can be verified that standard regularity conditions; see for example Cox and Hinkley
(1974) are fulfilled for the proposed model, whenever the parameters are within the parameter
space. Then, the ML estimator ξ̂ξξ is consistent and follows a normal asymptotic joint distribution
with asymptotic mean ξξξ , and an asymptotic covariance matrix ΣΣΣ(ξ̂ξξ ) that can be obtained from
the corresponding expected Fisher information matrix. Thus, recalling that ξξξ = (γ,κ,δ ,ϕϕϕ⊤)⊤,
we have, as n → ∞,

√
n(ξ̂ξξ −ξξξ )

D→ Np+4(000(p+4)×1,ΣΣΣ(ξ̂ξξ ) = J (ξξξ )−1), (4.7)

where 000(p+4)×1 is a (p+4)×1 vector of zeros, J (ξξξ ) = limn→∞(1/n)I (ξξξ ), with I (ξξξ ) being
the corresponding expected Fisher information matrix. Note that Î (ξξξ )−1 is a consistent estimator
of the variance-covariance matrix of ξ̂ξξ , ΣΣΣ(ξ̂ξξ ) namely. In practice, one may approximate the
expected Fisher information matrix by its observed version, whereas the diagonal elements of its
inverse matrix can be used to approximate the corresponding standard errors (SEs); see Efron
and Hinkley (1978) for the use of observed versus expected Fisher information matrices. Besides
estimation, hypothesis testing is another important topic to be addressed. Let ξξξ

* be a proper
disjoint subset of ξξξ . We aim to test H0: ξξξ

*
= ξξξ

*
0 versus H1: ξξξ

* ̸= ξξξ
*
0. Also, let ξ̂ξξ

*
0 maximize

`(ξξξ
*
) given in (4.4) constrained to H0. Then, the corresponding likelihood ratio (LR) statistic is

LR = 2log(`(ξ̂ξξ
*
)/`(ξ̂ξξ

*
0). Under H0 and some regularity conditions, that is, conditions needed

for the asymptotic theory of ML estimators to hold Serfling (1980), the distribution of the LR
statistic converges to the χ2(ϖ) distribution, with ϖ = dim(ξξξ

*
) being the dimension of the

vector ξξξ
*.

4.2.2 A simulation study

In this subsection we conduct a simulation study to assess the performance of the ML
estimators of the proposed model. Moreover, we evaluate the cost of estimating ϕ . In the
simulation study, we consider four different simple sizes n ∈ {50,100,200,400}, 5000 MC
replications, values of true parameter δ ∈ {0.25,0.50,1.00}, and without of loss of generality
we assume κ = 0.5 and γ = 1.00 in all cases. The random numbers of the covariate are generated

www.R-project.org
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from the Binomial distribution with p = 0.5, and the regression coefficient is ϕ = log(2). In this
case, the percentage of censored observations were fixed at 30%. The random numbers from the
BS frailty regression model can be obtained by Algorithm 2.

Algorithm 2 – Generator of random numbers from the BS frailty regression model.

1: Obtain a random number xi from X ∼ Bernoulli(1,0.5).
2: Set a value for ξξξ = (γ,κ,δ ,ϕ⊤)⊤.
3: Calculate ηi = xiϕ and determine expressions for ∆*(yi;ξξξ ) and ∆(yi;ξξξ ) as a function of yi

based on the formulas given in (4.3).
4: Generate a random number mi from M ∼ U(0,1).
5: Equate mi to the SF defined in (4.3) and get the time to event of interest yi by solving

numerically the equation

mi =
exp
(

δ

2

(
1−∆*(yi;ξξξ )/

√
δ +1

))(
∆*(yi;ξξξ )+

√
δ +1

)
2∆*(yi;ξξξ )

.

6: Establish the censoring time vi from V ∼ U(a,b), for a > 0 and b > 0 fixed.
7: Find a random number ti = min{yi,vi}, that is,

7.1: If yi < vi, then ςi = 1 and ti = yi;
7.2: Else, ςi = 0 and ti = vi.

8: Repeat Steps 1 to 7 until the amount of n random numbers to be completed.

In Table 7 we report the empirical bias and MSE of the ML estimators. From this table
we note that, as the sample size increases, the bias decreases, indicating that the ML estimators
become more efficient. From this table we can also note that, increases in the values of δ tend to
increase the bias of δ̂ , B(δ̂ ). A similar behavior from the original parameterization of the BS
distribution occurs; see for example Lemonte et al. (2007).

Estimation cost ϕ

When frailty models are considered, a question that may arise is the estimation cost of
certain parameters with the inclusion of random effect, namely, considering the frailty BS model,
one may want to know what is the cost (variance inflation) to estimate the covariate coefficient ϕ .
Several authors have been studied the estimation cost of an additional parameter; see for example
Bickel and Doksum (1981), Siqueira and Taylor (1999), Calsavara et al. (2016). To conduct
this simulation study we consider n ∈ {50,100,200,400}, 5000 MC replications, values of true
parameter δ ∈ {0.25,0.50,0.75,1.00}, and without of loss of generality we assume κ = 0.5 and
γ = 1.00 in all cases. The random numbers of the covariate from Binomial distribution with
p = 0.5, with regression coefficient ϕ1 = log(2). Let ξξξ = (δ ,κ,γ,ϕϕϕ⊤)⊤ parameters vector of the
BS frailty regression model and the ML estimates ξ̂ξξ = (δ̂ , κ̂, γ̂, ϕ̂ϕϕ

⊤
)⊤ with observed information

matrix denoted by Ĵ (ξ̂ξξ ). Let ξ̂ξξ
*
= (κ̂*, γ̂*, ϕ̂*)⊤ the ML estimates with δ known (or fixed), the

observed matrix is denoted by Ĵ*(ξ̂ξξ
*
). Thus, we can obtain the estimation cost ϕ̂ in presence

of δ , which represents the increase (or decrease) variance of ϕ when δ is present in the model.
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Table 7 – Empirical bias (with MSEs in parentheses) of the ML estimators of γ , κ , δ and ϕ1 from the BS frailty
regression model.

BS frailty regression (ξξξ )

n δ B(δ̂ ) B(κ̂) B(γ̂) B(β̂1)

50 0.25 0.0093 (0.0036) 0.0201 (0.0023) −0.0854 (0.0430) −0.1425 (0.0607)
0.50 0.0207 (0.0145) 0.0177 (0.0024) −0.0724 (0.0369) −0.1322 (0.0565)
1.00 −0.0852 (0.0411) 0.0242 (0.0026) 0.0421 (0.0223) −0.1224 (0.0521)

100 0.25 0.0060 (0.0032) 0.0151 (0.0018) −0.0521 (0.0304) −0.1152 (0.0501)
0.50 0.0202 (0.0123) 0.0138 (0.0018) −0.0362 (0.0243) −0.1020 (0.0424)
1.00 −0.0608 (0.0329) 0.0201 (0.0018) 0.0331 (0.0181) −0.0757 (0.0322)

200 0.25 0.0026 (0.0028) 0.0107 (0.0013) −0.0107 (0.0190) −0.0935 (0.0372)
0.50 0.0124 (0.0111) 0.0070 (0.0012) 0.0063 (0.0157) −0.0774 (0.0303)
1.00 −0.0562 (0.0302) 0.0181 (0.0014) −0.0188 (0.0128) −0.0467 (0.0217)

400 0.25 −0.0008 (0.0024) 0.0039 (0.0008) −0.0017 (0.0158) −0.0462 (0.0206)
0.50 0.0121 (0.0102) 0.0045 (0.0009) 0.0016 (0.0139) −0.0427 (0.0191)
1.00 −0.0487 (0.0253) 0.0140 (0.0009) 0.0041 (0.0115) −0.0172 (0.0141)

A measure of this cost is given by

VR(ϕ̂) =
Ĵ −1

44 (ξ̂ξξ )

Ĵ −1
*33(ξ̂ξξ

*
)
,

where VR is the variance ratio, Jii is the ith diagonal element of the observed information
matrix J , evaluated at ξ̂ξξ and J*ii is the ith diagonal element of the observed information
matrix J evaluated in ξ̂ξξ

*
. Table 8 provides the empirical mean of the VR. From this table, we

note that the estimation cost decreases when the sample size increases for all values of δ , as
expected. Another point that we can note is that as the population becomes more homogeneous
(large values of δ ), the VR takes larger values, thus it indicates that there is an estimation cost
associated with ϕ .

Table 8 – Empirical mean of variance ratio.

n

δ 50 100 200 400
0.25 1.135 1.087 1.060 1.052
0.50 1.200 1.164 1.129 1.118
0.75 1.224 1.215 1.189 1.185
1.50 1.249 1.232 1.218 1.198
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4.3 Influence diagnostics and residual analysis

In this section, we introduce global of local influence techniques and two types of
residuals for the BS frailty regression model.

4.3.1 Global influence

Global influence is related to case deletion, that is, it is a technique to study the effect of
dropping a case from the data set. Consider a version for case deletion from the expressions given
in (4.3), with the subscript “(i)” meaning the set of patients has the case i deleted. Consequently,
the corresponding log-likelihood function defined in (4.4) is now denoted by `(i). Let ξ̂ξξ (i) =

(γ̂(i), κ̂(i), δ̂(i), ϕ̂ϕϕ
⊤
(i))

⊤ be the ML estimate of ξξξ from `(i). To assess the influence of the case i

on the ML estimate ξ̂ξξ = (γ̂, κ̂, δ̂ , ϕ̂ϕϕ
⊤
)⊤, the basic idea is to compare the difference between

ξ̂ξξ (i) and ξ̂ξξ in terms of `(i) and `, respectively. If deletion of a case seriously influences the

estimates, more attention should be paid to that case. Hence, if ξ̂ξξ (i) is far from ξ̂ξξ , the case
i is regarded as potentially influential. A first measure of global influence is defined as the
standardized norm of ξ̂ξξ (i) − ξ̂ξξ , known as the generalized Cook distance (GCD), given by

GCDi(ξξξ ) = (ξ̂ξξ (i)− ξ̂ξξ )⊤(Σ̂ΣΣ(ξ̂ξξ ))−1(ξ̂ξξ (i)− ξ̂ξξ ), where Σ̂ΣΣ(ξ̂ξξ ) is an estimate of ΣΣΣ(ξ̂ξξ ) obtained from
(4.7). An alternative way is to assess GCDi(γ), GCDi(κ), GCDi(δ ) and GCDi(ϕϕϕ), whose values
reveal the impact of the case i on the estimates of γ , κ , δ and ϕϕϕ , respectively. Also, ξ̂ξξ (i) and ξ̂ξξ

can be compared by their likelihood distance (LD) defined as LDi(ξξξ ) = 2(`(ξ̂ξξ )− `(ξ̂ξξ (i))), for
i = 1, . . . ,n.

4.3.2 Local influence

Local influence is based on the curvature of the plane of the log-likelihood function.
Consider the BS frailty regression model given in (4.3), recall ξξξ = (γ,κ,δ ,ϕϕϕ⊤)⊤ and let `(ξξξ ;ωωω)

be the log-likelihood function corresponding to this model defined in (4.4) but now perturbed by
ωωω . The vector of perturbations ωωω belongs to a subset Ω ∈ Rn and ωωω0 is a non-perturbed n×1
vector, such that `(ξξξ ;ωωω0) = `(ξξξ ), for all ξξξ . In this case, the LD is LD(ξξξ ) = 2(`(ξ̂ξξ )− `(ξ̂ξξ ω)),
where ξ̂ξξ ω denotes the ML estimate of ξξξ upon the perturbed BS frailty regression model, that
is, ξ̂ξξ ω is obtained from `(ξξξ ;ωωω). Note that `(ξξξ ;ωωω) can be used to assess the influence of the
perturbation on the ML estimate. Cook (1987) showed that the normal curvature for ξ̂ξξ in the
direction ddd, with ||ddd||= 1, is expressed as Cddd(ξ̂ξξ )= 2|ddd⊤

∇∇∇
⊤

ΣΣΣ(ξ̂ξξ )−1∇∇∇ddd|, where ∇∇∇ is a (p+4)×n

matrix of perturbations with elements ∇ ji = ∂ 2`(ξ ;ωωω)/∂ξ j∂ωi, evaluated at ξξξ = ξ̂ξξ and ωωω = ωωω0,
for j = 1, . . . , p+ 4 and i = 1, . . . ,n. A local influence diagnostic is generally based on index
plots. For example, the index graph of the eigenvector dddmax corresponding to the maximum
eigenvalue of BBB(ξξξ ) =−∇∇∇

⊤
ΣΣΣ(ξξξ )−1∇∇∇, say Cdmax(ξξξ ), evaluated at ξξξ = ξ̂ξξ , can detect those cases

that, under small perturbations, exercise a high influence on LD(ξξξ ).
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Another important direction of interest is dddi = eeein, which corresponds to the direction of
the case i, where eeein is an n×1 vector of zeros with a value equal to one at the ith position, that is,
{eeein,1 ≤ i ≤ n} is the canonical basis of Rn. In this case, the normal curvature is Ci(ξξξ ) = 2|bii|,
where bii is the ith diagonal element of BBB(ξξξ ) given above, for i = 1, . . . ,n, evaluated at ξξξ = ξ̂ξξ .
If Ci(ξ̂ξξ )> 2C(ξ̂ξξ ), where C(ξ̂ξξ ) = ∑

n
i=1Ci(ξ̂ξξ )/n, it indicates the case i as potentially influential.

This procedure is called total local influence of the case i and can be carried for ξξξ or for γ , κ , δ

or ϕϕϕ , which are denoted as Ci(ξξξ ), Ci(γ), Ci(κ), Ci(δ ) and Ci(ϕϕϕ), respectively.

We consider the model defined in (4.3) and its log-likelihood function given by (4.4). The
elements ∇(γ), ∇(κ), ∇(δ ), and ∇∇∇(ϕϕϕ⊤) of the matrix ∇∇∇ for each perturbation scheme detailed
below were obtained numerically.

Case-weight perturbation

Under this perturbation scheme, we evaluate whether the contributions of the cases with
different weights affect the ML estimate of ξξξ . The log-likelihood function of the perturbed BS
frailty model is `(ξξξ ;ωωω) = ∑

n
i=1 ωi`i(ξξξ ), where 0 ≤ ωi ≤ 1, ωωω0 = (1, . . . ,1)⊤ and `i(ξξξ ) given in

(4.4).

Response perturbation

We here assume an additive perturbation on the response variable (lifetime) for the case i

such that ti(ωi) = ti +ωisT , where sT = (1/φ̂)1/2 is a scale factor and ωi ∈ R, for i = 1, . . . ,n.
Then, the log-likelihood function is `(ξξξ ;ωωω) = ∑

n
i=1 `i(ξξξ ;ωi), where, for ωωω0 = (0, . . . ,0)⊤, we

have

`i(ξξξ ;ωi) = ςi(log(κ)+ log(γ)+(κ −1) log(ti(ωi))+η)+(1−∆
*(ti(ωi);ξξξ )/

√
δ +1)

+ log(∆*(ti(ωi);ξξξ )+
√

δ +1)− log(2∆
*(ti(ωi);ξξξ ))

+ςi log(δ (δ +∆(ti(ωi);ξξξ )+4γ(ti(ωi))
κ exp(η)+3)+2)

−2ςi log(∆*(ti(ωi);ξξξ )(δ +∆(ti(ωi);ξξξ )+1)).

Covariate perturbation

We consider now an additive perturbation on a specific continuous covariate, Xk say, for
k = 1, . . . , p, by setting xik(ωi) = xik +ωisX , where sX is a scale factor here assumed to be the
standard deviation (SD) of Xk, and ωi ∈ R, for i = 1, . . . ,n. Then, the log-likelihood function is
`(ξξξ ;ωωω) = ∑

n
i=1 `i(ξξξ ;ωi), where, for ωωω0 = (0, . . . ,0)⊤ and ηi(ωi) = xxx⊤i (ωi)ϕϕϕ ,

`i(ξξξ ;ωi) = ςi(log(κ)+ log(γ)+(κ −1) log(ti)+ηi(ωi))+(1−∆
*(ti;γ,κ,δ ,ηi(ωi))/

√
δ +1)

+ log(∆*(ti;γ,κ,δ ,ηi(ωi))+
√

δ +1)− log(2∆
*(ti;γ,κ,δ ,ηi(ωi)))

+ςi log(δ (δ +∆(ti;γ,κ,δ ,ηi(ωi))+4γtκ
i exp(ηi(ωi))+3)+2)

−2ςi log(∆*(ti;γ,κ,δ ,ηi(ωi))(δ +∆(ti;γ,κ,δ ,ηi(ωi))+1)).
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4.3.3 Residual analysis

In order to check the goodness-of-fit of the BS frailty regression model, we propose two
types of residuals for our model. These are the GCS and RQ residuals are given respectively by

rGCS
i = − log(ŜT (ti;xxx,ξξξ )),

(4.8)

rRQ
i = Φ

−1(ŜT (ti;xxx,ξξξ )), i = 1, . . . ,n,

where Φ−1 is the inverse function of the N(0, 1) CDF and ŜT (ti;xxx) is the estimated SF and
evaluated at the lifetime ti, that is,

ŜT (ti;xxx,ξξξ ) =
exp
(

δ̂

2

(
1− ∆̂(ti;ξξξ )

√
δ̂ +1

))(
∆̂(ti;ξξξ )+

√
δ̂ +1

)
(2∆̂(ti;ξξξ ))

,

with
∆̂(ti;ξξξ ) =

√
δ̂ +4γ̂t κ̂

i exp(η̂)+1.

If the frailty model is correctly specified, then the GCS residual has an EXP(1) distribution,
regardless of the frailty model specification, whereas the RQ residual has a N(0, 1) distribution.

4.4 Applications to medical data sets
In this section, we summarize the proposed methodology by an algorithm and then apply

it to two real-world medical data sets. We illustrate the methodology proposed by reanalysing
the two real-world data sets used in Chapter 3, but in this section we will consider the covariates
from these datas. We compare the proposed BS frailty regression model, in terms of model
fitting, with the Weibull regression model and GA and IG frailty regression models, both of them
having a Weibull baseline. To make sure that the GA and IG models are identifiable, we consider
U ∼ Gamma(1/ζ ,1/ζ ) and U ∼ IG(1,σ2); see Wienke (2011).
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4.4.1 Summary of the proposed methodology

The proposed methodology is summarized by Algorithm 3.

Algorithm 3 – Methodology based on a frailty regression model.
1: Collect n data of a response (usually lifetime), t1, . . . , tn say, and the values of p covariates (x1i, . . . ,xpi)

for the patient i associated with this response. Data can be censored or not.
2: Carry out an exploratory data analysis for identifying possible candidate models to be considered.
3: Propose a suitable frailty distribution to capture covariates which cannot be observed or measured.
4: Formulate a frailty regression model to estimate the survival probability of a patient according to the

general model defined in (2.19). The formulated frailty regression model must include the response
and observed covariates under analysis, as well as the frailty term by its corresponding distribution.

5: Estimate the parameters of the frailty regression model defined in Step 4 and assess the statistical
significance of these parameters, as well as the presence of frailty or not by evaluating its variance.

6: Check the frailty regression model estimated in Step 5 by using quantile versus quantile (QQ) plots
and GCS and RQ residuals.

7: Compare the model checking in Step 6 to other models (with frailty or not, with covariates or not,
nested or not) by using the Akaike (AIC) and Bayesian (BIC) information criteria.

8: Select the best model that describes the data among the compared models in Step 7.
9: Conduct global and local diagnostic studies for the best model selected in Step 8 that describes the

data to identify possible influential cases. If no influential cases are detected,
9.1: Then consider as final model to estimate the survival probability of a patient the model selected
in Step 8;
9.2: Else, compute the relative change (RC) in the ML estimates of the model parameters and evaluate
whether inferential changes are produced or not. If no inferential changes are detected,
9.2.1: Then consider as final model to estimate the survival probability of a patient the model selected
in Step 8;
9.2.2: Else, remove the influential cases or propose a robust procedure to estimate the model parame-
ters.

4.4.2 Application 1: leukemia data

The data set corresponds to the survival times of 33 patients, who died from acute
myelogenous leukemia (a kind of cancer that often starts in the bone marrow). The measures of
the patients about white blood cell count at the time of diagnosis were also recorded; see Feigl
and Zelen (1965). The patients were separated into 2 groups depending on the presence or
absence of a morphological characteristic of white blood cells. At the time of diagnosis, those
patients with the presence of significant granulation of the leukemic cells in the bone marrow
were termed as AG positive. The following variables were associated with each studied patient,
for i = 1, . . . ,33: (i) Ti is the time from diagnosis to death (in weeks); (ii) Xi1 is the logarithm
of the white blood cell count at the time of diagnosis; and (iii) Xi2 is the group to which they
belong (1: presence – Group 1 – or 0: absence – Group 2 – of a morphological characteristic).

Estimation and model checking

We consider the BS frailty regression model with the structure: ηi = ϕ0 +ϕ1xi1 +ϕ2xi2.
Table 9 provides the estimation and hypothesis testing results for the BS frailty regression model
analyzing leukemia data. Results of the Weibull regression model without frailty and the GA
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and IG frailty regression models also are detailed in this table, as well as their AIC and BIC
values. It is worth to highlight that, when the models are not nested, such as our case, the AIC
and/or BIC should be used to make a decision for the best-fitting model; see Wienke (2011).
From Table 9, observe that the BS frailty regression model provides a better fit compared to
the other models based on the values of AIC and BIC. Note that, for δ̂ = 0.015 < 0.5, a look
at the log-BS distribution reveals bimodality, a behavior not captured by the others models;
Subsection 2.4. This confirms the flexibility of the proposed model. Figure 11 shows QQ-plots
with simulated envelope for both GCS and RQ residuals defined in (4.8) based on the BS frailty
regression model. Figure 11 indicates that, in general, the GCS and RQ residuals present a good
agreement with the EXP and N(0, 1) distributions, respectively. Moreover, the fitted SFs confirms
graphically the good fit of the BS frailty regression model.

Table 9 – ML estimates (with estimated asymptotic SEs in parentheses) and model selection measures for the fit to
leukemia data with Weibull baseline HR, and respective p-values in brackets.

Parameter Weibull BS frailty GA frailty IG frailty
ϕ0 −1.903 (1.314) −17.269 (3.673) −16.793 (4.711) −10.978 (2.991)
ϕ1 1.158 (0.350) 2.975 (0.775) 3.245 (1.047) 1.945 (0.650)
p-value [<0.0001] [0.0001] [0.0020] [0.0028]
ϕ2 −0.956 (0.316) −1.829 (1.050) −2.108 (0.827) −1.900 (0.680)
p-value [<0.0001] [0.0815] [0.0108] [0.0052]
κ 1.001 (0.139) 3.587 (0.695) 1.743 (0.421) 1.704 (0.292)
δ - 0.015 (0.014) - -
ζ - - 1.392 (0.827) -
σ2 - - - 8.312 (8.438)
log-likelihood −145.100 −142.109 −144.718 −144.373
AIC 298.144 294.219 299.437 298.747
BIC 304.130 301.701 306.920 306.229

Note that the variance in the BS case increases when δ is close to zero, that is, a quite
small value of δ indicates the presence of high unobserved heterogeneity. Based on Table 9
and expressions given in (3.11), we compute the corresponding frailty variances. The estimated
frailty variances for the BS, GA and IG frailty regression models based on the leukemia data are
4.881, 1.392 and 8.312, respectively. This indicates the presence of unobserved heterogeneity.
Thus, according to the estimated frailty variances, we conclude that the frailty models considered
in this study capture the unobserved heterogeneity in the data.

Diagnostic analysis

Next, we carry out our diagnostic analysis based on global and local influence. First,
Figure 12 presents the case-deletion measures GCDi(ξξξ ) and LDi(ξξξ ) discussed in Section 4.3.
From this figure, on the one hand, the GCDi(ξξξ ) statistic indicates that the case #16 (t16 = 5.0,
x16,1 = 4.716, x16,2 = 1.0) is potentially influential. Note that this case corresponds to a patient
with a lifetime of five days (within the lowest values), a logarithm of the number of white
blood cells of 4.716 and that belongs to the Group 1, that is, with presence of morphological
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Figure 11 – QQ plot with envelope for GCS and RQ residuals for the BS, GA and IG frailty models, respectively,

with leukemia data.

characteristics. On the other hand, LDi(ξξξ ) statistic does not suggest any case as potentially
influential.
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Figure 12 – Generalized Cook (left) and likelihood (right) distances for leukemia data.

Index plots of Ci for δ under the case-weight, response and covariate perturbation
schemes are displayed in Figure 13 (plots corresponding to γ , κ and ϕϕϕ look very similar to that
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for δ and then they are omitted here). Note that the cases #14 and #15 are detected as potentially
influential on δ̂ , κ̂ and ϕ̂ϕϕ under both the case-weight and response perturbation schemes. The
cases #14 and #15 correspond to the minimum values of the lifetime of patients (one week in both
cases) and the maxima values of the logarithm of the number of white blood cells (x14,1 = 5.0 and
x15,1 = 5.0). In addition, both of them are in the Group 1, that is, with presence of morphological
characteristics. When the perturbation of the covariate Xi1 is analyzed, observe that the case #17
(t17 = 65.0, x17,1 = 5.0; belonging to the Group 1) and the case #31 (t31 = 30.0, x31,1 = 4.898;
belonging to the Group 2) are detected as potentially influential on δ̂ , κ̂ and ϕ̂ϕϕ . It is important to
stress that t14 = 1.0 and t15 = 1.0 represent the minimum lifetimes of the patients observed in the
study and they also present the maximum values for the logarithm of the number of white blood
cells (x14,1 = x15,1 = 5.0). In addition, the lifetimes t17 = 65.0 and t31 = 30.0 are the maxima
values for the logarithm of the number of white blood cells (x17,1 = 5.000,x31,1 = 4.897).
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Figure 13 – Index plots of Ci for δ under the case-weight (left), response (center) and covariate (right) perturbation
schemes with leukemia data.

In order to check the impact on the model inference of the detected influential cases, we
implement the RC. It is computed by removing influential cases and reestimating the parameters
as well as their corresponding SEs through the expressions

RC(ξ j(i)) =

∣∣∣∣ ξ̂ j−ξ̂ j(i)

ξ̂ j

∣∣∣∣×100%, RC(SE(ξ j(i))) =

∣∣∣∣ ŜE(ξ̂ j)−ŜE(ξ̂ j)(i)

ŜE(ξ̂ j)

∣∣∣∣×100%,

where ξ̂ j(i) and ŜE(ξ̂ j) are the ML estimate of ξ j and its corresponding SE, respectively, after
dropping the case i, for j = 1, . . . ,5 and i = 1, . . . ,33, with ξ1 = δ , ξ2 = κ , ξ3 = ϕ0, ξ4 = ϕ1 and
ξ5 = ϕ2. Table 10 shows the RCs in the parameter estimates and their corresponding estimated
SEs. In addition, p-values are shown for the regression coefficients. From this table, note that the
largest RCs are associated with the cases #14, #15 and #31. Observe also that the significance of
the parameter estimate of β2 is altered after removing the cases #14 and #15 cases.

4.4.3 Application 2: lung cancer data

The data set corresponds to the survival times on 137 advanced lung cancer patients
from a Veterans’ Administration Lung Cancer trial; see Kalbfleisch and Prentice (2011). The
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Table 10 – RCs (in %) in ML estimates and their corresponding SEs for the indicated parameter and dropped cases,
and respective p-values in brackets with leukemia data.

Dropped case δ̂ κ̂ ϕ̂0 ϕ̂1 ϕ̂2

{14} RC(ξ j(i)) 29.16 13.07 0.11 5.71 49.95
RC(SE(ξ j(i))) (28.08) (11.12) (4.31) (3.14) (2.22)
p-value - - [<0.0001] [<0.0001]

{15} RC(ξ j(i)) 29.16 13.07 0.11 5.71 49.95
RC(SE(ξ j(i))) (28.08) (11.12) (4.31) (3.14) (2.22)
p-value - - [<0.0001] [<0.0001]

{17} RC(ξ j(i)) 4.02 2.22 25.43 33.80 20.10
RC(SE(ξ j(i))) (6.62) (2.52) (25.30) (25.38) (6.79)
p-value - - [<0.0001] [<0.0001]

{31} RC(ξ j(i)) 2038.38 41.40 0.49 13.28 57.08
RC(SE(ξ j(i))) (2756.32) (12.01) (37.94) (44.12) (6.13)
p-value - - [0.0604] [0.0093]

{14,15} RC(ξ j(i)) 16.49 3.02 2.06 1.70 1.65
RC(SE(ξ j(i))) (18.16) (0.36) (0.25) (0.11) (0.15)
p-value - - [<0.0001] [0.0085]

{17,31} RC(ξ j(i)) 378.91 3.77 106.86 153.38 110.68
RC(SE(ξ j(i))) (335.89) (14.42) (127.10) (138.62) (18.04)
p-value - - [<0.0001] [0.0002]

{14,15,17,31} RC(ξ j(i)) 12.44 22.59 42.75 49.96 133.95
RC(SE(ξ j(i))) (53.84) (47.18) (75.42) (94.84) (16.00)
p-value - - [0.0045] [0.0005]

percentage of censored observations is 6.57%. The following variables were associated with each
studied patient, for i = 1, . . . ,137: Ti is the lifetime (in days); Xi1 is the Karnofsky performance
score (100 = good); and the factor tumor type, that is, (Xi2) cell type 1 (1 = squamous, 0 = other),
(Xi3) cell type 2 (1 = small, 0 = other), (Xi4) cell type 3 (1 = adeno, 0 = other) and cell type 4 (1
= large, 0 = other).

Estimation and model checking

In this case, the regression structure of the model is

ηi = ϕ0 +ϕ1xi1 +ϕ2xi2 +ϕ3xi3 +ϕ4xi4.

The ML estimates of the model parameters, AICs and BICs are reported in Table 11. The results
of the information criteria indicate that the BS frailty regression model has the smallest AIC and
BIC values, suggesting that it provides the best fit to this data set.
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Table 11 – ML estimates (with estimated asymptotic SEs in parentheses) and model selection measures for the fit to
lung cancer data, and respective p-values.

Parameter Weibull BS frailty gamma frailty IG frailty
ϕ0 −1.329 (0.340) −4.109 (0.616) −3.625 (0.630) −4.066(0.606)
ϕ1 −0.031 (0.005) −0.049 (0.011) −0.057 (0.013) −0.046 (0.009)
p-value [<0.0001] [<0.0001] [<0.0001] [<0.0001]
ϕ2 0.755 (0.246) 1.016 (0.359) 0.613 (0.411) 0.995 (0.340)
p-value [0.0020] [0.0046] [0.1364] [0.0034]
ϕ3 1.182 (0.285) 1.363 (0.416) 1.088 (0.435) 1.353 (0.394)
p-value [<0.0001] [0.0011] [0.0123] [0.0006]
ϕ4 0.343 (0.269) 0.244 (0.405) −0.470 (0.527) 0.275 (0.371)
p-value [0.2010] [0.5476] [ 0.3724] [ 0.4580]
κ 1.066 (0.066) 1.469 (0.228) 1.574 (0.243) 1.406 (0.178)
δ 2.043 (1.643) - -
ζ - 0.886 (0.423) -
σ2 - - 0.936 (0.767)
log-likelihood −716.510 −712.930 −713.744 −713.248
AIC 1445.030 1439.861 1441.489 1440.497
BIC 1462.550 1460.301 1461.929 1460.937

The estimated frailty variances for the indicated model based on lung cancer data are
0.981, 0.886 and 0.936 for the BS, GA and IG frailty regression models, respectively. This
indicates the presence of unobserved heterogeneity. Notice that a slight difference between
estimated frailty variances is detected, being it in the BS model slightly greater than in the GA
and IG models, indicating that the BS model captures the unobserved heterogeneity in the data
in a better way. Figure 14 displays the QQ-plots with simulated envelopes for the GCS and RQ
residuals and the fitted SFs based on the KM estimator, as well as on the BS, GA and IG frailty
models without covariates. These graphical plots show the notorious agreement, in terms of
fitting to the data, of the BS frailty regression model.

We now carry out our diagnostic analysis based on global and local influence. First,
Figure 15 presents the case-deletion measures GCDi(ξξξ ) and LDi(ξξξ ). From this figure, note that
the GCDi(ξξξ ) statistic indicates that the cases #74, #76, #77 and #78 are potentially influential.
All these cases have type-1 cell and their lifetimes are equal to 242, 111, 1 and 587 days,
respectively. Notice that t77 = 1.0 (one day), that is, it corresponds to the minimum lifetime
observed value in the data set. The values of Karnofsky performance score from these cases are
50, 70, 20 and 60, respectively. From Figure 15 and the LDi(ξξξ ) statistic, observe that the cases
#9, #43, #58, #64, #70, #106 and #132 are potentially influential. The cases #9 and #70 have
type-1 cell, whereas the cases #43 and #106 have type-2 cell, and the other cases have type-4
cell. From theses cases, the values of the Karnofsky performance score are 50, 70, 90 and 30,
respectively, where x9,1 = x43,1 = 50, x64,1 = x70,1 = 90 and x106,1 = x132,1 = 30. In addition, the
case #78 (t78 = 587) is the maximum lifetime, whereas the case #77 (t77 = 1) is the minimum
lifetime. The cases #64 as #70 have the largest values related to the Karnofsky performance
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Figure 14 – QQ plot with envelope for GCS and RQ residuals for the BS, GA and IG frailty models, respectively,

with lung cancer data.

score and the cases #77, #106 and #132 have the minimum value of this covariate.

Index plots of Ci for δ under the case-weight, response and covariate perturbation
schemes are displayed in Figure 16 (such as in Application 1, plots corresponding to γ , κ and
ϕϕϕ look very similar to that for δ and then they are omitted here). Observe that the case #44
(t44 = 392, x44,1 = 40, x44,2 = 0, x44,3 = 1, x44,4 = 0) is detected as potentially influential on δ̂ , κ̂

and ϕ̂ϕϕ under the case-weight, response and covariate perturbation schemes. This case corresponds
to a patient with the maximum lifetime (three hundred ninety-two days), with almost half of the
value considered a good Karnofsky score and small tumor. Regarding the response perturbation,
note that the cases #77 (t77 = 1.0, x77,1 = 20, x77,2 = 1, x77,3 = 0, x77,4 = 0) and #95 (t95 = 2.0,
x95,1 = 40, x95,2 = 0, x95,3 = 1, x95,4 = 0) are also detected as potentially influential on δ̂ , κ̂

and ϕ̂ϕϕ . The cases #77 and #95 correspond to patients with the smallest lifetimes and present
squamous and small tumors, respectively. However, the case #77 has a value of Karnofsky score
situated within the smallest ones, whereas the case #95 has a value of Karnofsky score around
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Figure 15 – Generalized Cook (left) and likelihood (right) distances.
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Figure 16 – Index plots of Ci for δ under the case-weight (left), response (center) and covariate (right) perturbation
schemes with lung cancer data.

Table 12 shows the RCs in the parameter estimates and their corresponding estimated
SEs. Also, p-values are shown for the regression coefficients. From this table, note that the
largest RCs are associated with the set of cases {#44,#95} and {#44, #77, #95}. Observe also
that the significance of the parameter ϕ2 is altered after removing those cases.

4.5 Concluding remarks
In this chapter, we introduced a methodology based on a new regression model with

Birnbaum-Saunders distribution for its frailty. In this methodology, a frailty parameter as well as
covariates are included in the model to bring further information that may be useful in practice.
The inclusion of covariates aims to account for differences in risk, whereas the inclusion of
a frailty helps to capture unobserved heterogeneity that covariates may fail to fully account
for. This may be due to a missing covariate in the model that can be explained by the frailty.
The introduced methodology encompassed inference about the model parameters and influence
diagnostics. Also, we proposed two types of residuals for the new frailty regression model. The
methodology was summarized by an algorithm that allows a practitioner to understand it in a
better form. We applied the proposed model to two real-world data sets concerning the survival
times of patients who: (i) died due to acute myelogenous leukemia or (ii) had advanced lung
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Table 12 – RCs (in %) in ML estimates and their corresponding SEs for the indicated parameter and dropped cases,
and respective p-values in brackets with lung cancer data.

Dropped case δ̂ κ̂ ϕ̂0 ϕ̂1 ϕ̂2 ϕ̂3 ϕ̂4

{9} RC(ξ j(i)) 3.85 0.84 2.37 2.22 7.57 5.25 30.94
RC(SE(ξ j(i))) (16.17) (9.41) (2.09) (1.21) (1.18) (3.91) (9.11)
p-value - - [< 0.0001] [< 0.0001] [0.0002] [0.0677]

{43} RC(ξ j(i)) 3.57 0.21 0.42 0.49 0.71 0.21 2.04
RC(SE(ξ j(i))) (0.32) (6.40) (4.87 (3.94) (0.57) (0.33) (4.05)
p-value - - [< 0.0001] [0.0005] [0.0001] [0.0539]

{44} RC(ξ j(i)) 25.17 0.98 2.10 3.11 18.10 3.19 20.06
RC(SE(ξ j(i))) (56.10) (14.09) (56.06) (11.50) (0.59) (2.69) (3.64)
p-value - - [< 0.0001] [< 0.0001] [< 0.0001] [0.0438]

{58 RC(ξ j(i)) 7.96 0.80 0.69 1.74 0.29 0.08 42.12
RC(SE(ξ j(i))) (11.05) (0.49) (0.20) (0.76) (1.24) (1.44) (3.90)
p-value - - [< 0.00001] [0.0004] [0.0001] [0.0374]

{64} RC(ξ j(i)) 1.48 0.36 0.43 1.26 0.20 0.08 12.00
RC(SE(ξ j(i))) (14.53) (14.33) (1.86) (6.42) (1.90) (1.76) (4.24)
p-value - - [< 0.00001] [0.0004] [0.0001] [0.0482]

{70} RC(ξ j(i)) 0.67 0.22 0.39 2.15 4.86 3.97 27.43
RC(SE(ξ j(i))) (20.30) (16.22) (0.60) (12.94) (2.06) (1.25) (2.10)
p-value - - [< 0.0001] [0.0006] [0.0001] [0.0669]

{74} RC(ξ j(i)) 5.52 0.86 1.93 2.04 5.63 3.90 24.10
RC(SE(ξ j(i))) (3.81) (3.63) (0.53) (2.68) (1.52) (0.73) (0.35)
p-value - - [< 0.00001] [0.0007] [0.0001] [0.0649]

{76} RC(ξ j(i)) 3.84 0.91 0.10 0.77 1.67 1.06 10.53
RC(SE(ξ j(i))) (24.43) (16.35) (5.46) (7.74) (0.14) (0.50) (2.53)
p-value - - [< 0.0001] [0.0004] [0.0001] [0.0495]

{77} RC(ξ j(i)) 14.21 5.06 2.56 1.21 12.75 10.39 27.60
RC(SE(ξ j(i))) (15.97) (7.52) (10.10) (1.39) (4.83) (6.43) (3.22)
p-value - - [< 0.0001] [< 0.0001] [< 0.0001] [0.0441]

{78} RC(ξ j(i)) 0.44 0.63 1.82 0.77 9.46 6.75 40.12
RC(SE(ξ j(i))) (10.46) (9.05) (1.94) (4.73) (0.88) (1.23) (0.05)
p-value - - [< 0.0001] [0.0010] [0.0002] [0.0719]

{95} RC(ξ j(i)) 11.53 3.80 3.42 2.93 1.30 3.30 1.00
RC(SE(ξ j(i))) (5.39) (13.08) (4.30) (9.09) (0.07) (1.09) (0.30)
p-value - - [< 0.0001] [< 0.0001] [< 0.0001] [0.0550]

{106} RC(ξ j(i)) 4.13 0.43 1.11 1.89 2.01 0.25 1.16
RC(SE(ξ j(i))) (9.74) (3.80) (1.22) (0.21) (1.65) (1.98) (1.08)
p-value - - [< 0.0001] [0.0004] [0.0001] [0.0548]

{132} RC(ξ j(i)) 2.31 0.08 0.04 0.23 0.04 0.10 9.90
RC(SE(ξ j(i))) (10.44) (7.35) (0.79) (2.17) (1.62) (1.77) (1.63)
p-value - - [< 0.0001] [0.0004] [0.0001] [0.0502]

{44,77} RC(ξ j(i)) 0.04 7.39 1.18 6.49 32.26 14.01 45.48
RC(SE(ξ j(i))) (18.88) (25.19) (20.50) (15.54) (8.09) (5.57) (0.40)
p-value - - [< 0.0001] [< 0.0001] [< 0.0001] [0.0367]

{44,95} RC(ξ j(i)) 7.21 5.25 5.74 6.85 18.01 6.68 18.89
RC(SE(ξ j(i))) (30.76) (20.78) (0.94) (20.13) (1.63) (0.11) (0.70)
p-value - - [< 0.0001] [< 0.0001] [< 0.0001] [0.0471]

{44,77,95} RC(ξ j(i)) 23.38 14.65 16.23 13.05 34.60 20.31 44.09
RC(SE(ξ j(i))) (30.05 (13.88) (12.52) (9.74) (7.91) (8.25) (0.03)
p-value - - [< 0.0001] [< 0.0001] [< 0.0001] [0.0385]
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cancer, considering uncensored and censored data, respectively. We also applied global and local
influence diagnostic tools for the proposed model with both of these data sets.

The two applications illustrated the potential of the introduced methodology based on
the Birnbaum-Saunders frailty regression model. From a medical point of view, it is important to
adequately handle biological variation among individuals. In this sense, good parametric frailty
regression models should be used more frequently in medical survival analysis. As a simple
example of the applicability of the proposed methodology, one can think of medical doctors,
researchers and/or practitioners estimating the survival time of a patient or group of patients in a
clinical study. Moreover, the methodology introduced in this paper may be applied in a medical
context to find surrogate measures (specific scores, for example, concerning the activity of daily
living) or to detect frail individuals; see Wienke (2011). We implemented all functions developed
in this paper in the R software. Then, the use of the introduced methodology becomes easier.
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CHAPTER

5
A CURE RATE FRAILTY MODEL BASED ON

A REPARAMETERIZED
BIRNBAUM-SAUNDERS DISTRIBUTION

5.1 Introduction

In this chapter we introduce a cure rate BS frailty regression model and its inference
based on ML methods, conduct a simulation study to evaluate the behavior of the cure fraction
parameter estimator, derive influence diagnostics tools for this model and illustrate the potentiality
of the proposed model with real-world data sets.

5.2 Cure rate BS frailty model

We introduce here the BS cure rate frailty model based on the cure rate model proposed
by Rodrigues et al. (2009) and the BS frailty model presented in Section 3.2, where in this
case we consider the Weibull distribution as baseline, which has h0(t;γ,κ) = γκtκ−1 and
H0(t;γ,κ) = γtκ , for t > 0, where κ > 0 and γ > 0 are shape and scale parameters, respectively.

Let the number of competing causes N follow a negative binomial distribution with
parameter φ and θ , for θ > 0 and φθ >−1; see Piegorsch (1990). By considering (3.2) in (2.26),
the long term SF of cured individuals is given by

Sp(t) =

1+φθ

1−
exp
(

δ

2

(
1− ∆(t|ξξξ )√

δ+1

))(
∆(t|ξξξ )+

√
δ +1

)
2∆(t|ξξξ )

−1/φ

, (5.1)

where ξξξ = (δ ,κ,γ)⊤ and ∆(t;ξξξ ) =
√

(δ +1)(δ +4γtκ +1). In this model, the BS frailty is
used to quantify the amount of heterogeneity among non-cured individuals. The PDF and HR
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obtained from (5.1) are respectively given by

fp(t) = θhT (t)ST (t){1+φθ [1−ST (t)]}−1/φ−1, (5.2)

and

hp(t) =θhT (t)ST (t)(1+φθ(1−ST (t)))−1, (5.3)

where ST (t) and hT (t) represent the unconditional SF and HR from the BS frailty model which
has the same form given by (3.2) and (3.3). Hence, we name the model defined by (5.1), (5.2)
and (5.3) as the BS cure rate negative binomial frailty (BSCrNBF) model. Particular cases of the
BSCrNBF model are the BS cure rate Poisson frailty (BSCrPoF), BS cure rate Bernoulli frailty
(BSCrBeF), and BS cure rate Geometric frailty (BSCrGeF) models; see Table 13.

Table 13 – survival function Sp(t) and different cure rates for the distribution of hidden causes N.

BS cure rate frailty model Parameter Distribution (N) Sp(t)
BSCrPoF φ → 0 Poisson exp{−θ [1−ST (t)]}
BSCrBeF φ =−1 Bernoulli 1−θ +θST (t)
BSCrGeF φ = 1 Geometric {1+θST (t)}−1

In order to estimate the model parameters, we utilize the ML method. Let us consider
the same situation as in Subsection 2.6 when the time to event is not completely observed
and is subject to right censoring. Let vi denote the censoring time and yi the time to event of
interest. We observe ti = min(yi,vi) and ςi = I(yi ≤ vi), where ςi = 1 if ti = yi is a time to event
and ςi = 0, ti = vi if it is right censored, for i = 1, . . . ,n. From n pairs of times and censoring
indicators (t1,ς1), . . . ,(tn,ςn), the corresponding likelihood function; see Cancho et al. (2011),
under uninformative censoring, can be expressed as

L(ttt;ϑϑϑ) =
n

∏
i=1

[ fp(ti;ϑϑϑ)]ςi[Sp(ti;ϑϑϑ)]1−ςi, (5.4)

where ϑϑϑ = (φ ,θ ,ξξξ )⊤, Sp(ti;ϑϑϑ) and fp(ti;ϑϑϑ) are given in (5.1) and (5.2), respectively. Following
Castro et al. (2009), we consider the Fisher’s parametrization of the NB distribution Ross and
Preece (1985), and for φ ≥ −1, we define θ = (p−φ

0 − 1)/φ , if φ ̸= 0, and θ = − log(p0), if
φ = 0. We incorporate covariates only for the parametric cure rate model (2.27) through the cure
parameter p0. When covariates are included, we have a different cure rate parameter p0i for each
subject, i = 1, . . . ,n. To model the effects of the covariates on cure rate, we can use different
functions connections; see Peng and Zhang (2008a). Defining bbb as the vector of parameters to be
estimated for covariates associated with the fraction healing and logit link function, we have the
logistic regression model

log
(

p0i

1− p0i

)
= zzz⊤i bbb or p0i =

exp(zzz⊤i bbb)

1+ exp(zzz⊤i bbb)
, (5.5)
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for i = 1, . . . ,n, where bbb = (b0,b1, . . . ,bp)
⊤ stands for the vector of regression coefficients. From

the variance in (2.25), we obtain Var(Ni) = E(Mi)p−φ

i0 . Thus, extra variability in the number of
competing causes due to omitted covariates is governed by the dispersion parameter φ . Under
this relation, the improper functions in (2.27) and (2.30) can be expressed as

Sp(ti;ϑϑϑ ,bbb) =

{
[1− (p−φ

0i −1)(1−ST (ti))]−1/φ , if φ ̸= 0;

p1−ST (ti)
0i , if φ = 0.

, (5.6)

and

fp(ti;ϑϑϑ ,bbb) =

 [1− (p−φ

0i −1)(1−ST (ti))]−1/φ−1

(
p−φ

0i −1
φ

)
hT (ti)ST (ti), if φ ̸= 0;

− log(p0i)p1−ST (ti)
0i hT (ti)ST (ti), if φ = 0.

(5.7)

Let T1, . . . ,Tn be a random sample from the BSCrNBF model and t1, . . . , tn its observations (data).
Then, the corresponding likelihood function for n individuals is defined as

L(ΘΘΘ; DDD) =


∏

n
i=1

[(
p−φ

0i −1
φ

)
hT (ti)ST (ti)

]ςi [
1− (p−φ

0i −1)(1−ST (ti))
]−ςi− 1

φ

, if φ ̸= 0;

∏
n
i=1 [− log(p0i)hT (ti)ST (ti)]

ςi p1−ST (ti)
0i , if φ = 0.

(5.8)

where ΘΘΘ = (ϑϑϑ ,bbb)⊤ and DDD = (ttt,ςςς ,ZZZ) and ZZZ = (zzz⊤1 , . . . ,zzz
⊤
n ). The parameter vector ΘΘΘ may be

estimated by numerical maximization of the corresponding log-likelihood function `(ΘΘΘ;DDD) =

log(L(ΘΘΘ;DDD)), where L(ΘΘΘ;DDD) is given in (5.8). The R software by its functions optim and
optimx can be used to proceed with the numerical maximization; see <www.R-project.org> and
R Core Team (2016).

Under some standard regularity conditions; see Cox and Hinkley (1974), the ML esti-
mator Θ̂ΘΘ is consistent and follows a normal joint asymptotic distribution with asymptotic mean
ΘΘΘ, and an asymptotic covariance matrix ΣΣΣ(Θ̂ΘΘ), which can be obtained from the corresponding
expected Fisher information matrix. Thus, as n → ∞, we have

√
n(Θ̂ΘΘ−ΘΘΘ)

D→ Np+5(000(p+5)×1,ΣΣΣ(Θ̂ΘΘ) = J (ΘΘΘ)−1), (5.9)

where 000(p+5)×1 is a (p+5)×1 vector of zeros and J (ΘΘΘ) = limn→∞(1/n)I (ΘΘΘ), with I (ΘΘΘ)

being the corresponding expected Fisher information matrix. In practice, the expected Fisher
information matrix can be approximated by its observed version, and the square root of the
diagonal elements of the inverse of this matrix can be used to approximate the corresponding
standard errors; see Efron and Hinkley (1978).

www.R-project.org
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5.3 Local influence

Important tools to assess the sensitivity of the ML estimators are influence methods. Local
influence is based on the curvature of the plane of the log-likelihood function. Local influence
calculation can be carried out for model (5.1), (5.2) and (5.3). Recall that ΘΘΘ = (ϑϑϑ ,bbb)⊤ and let the
vector of perturbations ωωω belong to a subset Ω∈Rn and ωωω0 be a non-perturbed n-vector, such that
the log-likelihood function corresponding to the model perturbed by ωωω is `(ΘΘΘ;ωωω0) = `(ΘΘΘ), for
all ΘΘΘ. In this case, the likelihood displacement LD is given by LD(ΘΘΘ) = 2(`(Θ̂ΘΘ)−`(Θ̂ΘΘω)), where
Θ̂ΘΘω denotes the ML estimate of ΘΘΘ upon the perturbed model, which can be used to assess the
influence of the perturbation on the ML estimate. Cook (1987) showed that the normal curvature
for Θ̂ΘΘ in the direction ddd, with ||ddd||= 1, is expressed as Cl(Θ̂ΘΘ) = 2|ddd⊤

∇∇∇
⊤

Σ̈(Θ̂ΘΘ)−1∇∇∇ddd|, where ∇∇∇ is
a (3+q)×n matrix of perturbations with elements ∇ ji = ∂ 2`(Θ|ωωω)/∂Θ j∂ωi evaluated at ΘΘΘ= Θ̂ΘΘ

and ωωω = ωωω0, for j = 1, . . . ,(3+ q) and i = 1, . . . ,n. A local influence diagnostic is generally
based on index plots. For example, the index graph of the eigenvector dddmax corresponding to
the maximum eigenvalue of BBB(ΘΘΘ) = −∇∇∇

⊤
ΣΣΣ(ΘΘΘ)−1∇∇∇, say Cdmax(ΘΘΘ), evaluated at ΘΘΘ = Θ̂ΘΘ, can

revel those observations that under small perturbations exercise a great influence on LD(ΘΘΘ).
Another important direction of interest is dddi = eeein, which corresponds to the direction of the ith
observation, where eeein is an n×1 vector of zeros with a value equal to one at the ith position,
that is, {eeein,1 ≤ i ≤ n} is the canonical basis of Rn. In this case, the normal curvature is given
by Ci(ΘΘΘ) = 2|bii|, where bii is the ith diagonal element of BBB(ΘΘΘ) given earlier, for i = 1, . . . ,n,
evaluated at ΘΘΘ = Θ̂ΘΘ. Those cases when Ci(Θ̂ΘΘ) > 2C(Θ̂ΘΘ), where C(Θ̂ΘΘ) = ∑

n
i=1Ci(Θ̂ΘΘ)/n, are

considered as potentially influential. This procedure is called total local influence of the ith case;
see Lesaffre and Verbeke (1998). Thus, the perturbation matrix is

∇∇∇ = (∇∇∇vi)((3+q)×n) =

(
∂ 2`(ΘΘΘ|ωωω)

∂ξv∂ωi

)
((3+q)×n)

,v = 1, . . . ,3+q, i = 1, . . . ,n.

We consider the model defined in (5.1)-(5.3) and its log-likelihood function given by
(5.8). The elements of the matrix ∇∇∇ associated with each perturbation scheme were obtained
numerically.

Case-weight perturbation

Under the case-weight perturbation scheme, we want to evaluate whether the contribu-
tions of the observations with different weights affect the ML estimate of ΘΘΘ. The log-likelihood
function of the perturbed model is

`(ΘΘΘ|ωωω) =


∑

n
i=1 ωiςi log

[(
p−φ

0i −1
φ

)
hT (ti)ST (ti)

]
−∑

n
i=1 ωi(ςi +1/φ) log

[
1− (p−φ

0i −1)(1−ST (ti))
]
, if φ ̸= 0;

∑
n
i=1 ωiςi log [− log(p0i)hT (ti)ST (ti)]+∑

n
i=1 ωi(1−ST (ti)) log(p0i), if φ = 0,



5.4. Numerical evaluation 83

where 0 ≤ ωi ≤ 1 and ωωω0 = (1, . . . ,1)⊤. Then, considering its derivative with respect to ωωω⊤, we
obtain ∇∇∇ = (∇Θ,∇bbb j)

⊤, where the elements of ∇Θ and ∇bbb j are, respectively, given by ∇
(i)
Θ

= d(i)
Θ

,

and ∇
(i)
bbb j

= d(i)
bbb j

, for i = 1, . . . ,n, which must be evaluated numerically at ΘΘΘ = Θ̂ΘΘ.

Response perturbation

We here assume an additive perturbation on the response i such that ti(ωi) = ti +ωis(ti),
where s(ti) = (1/φ̂)1/2 is a scale factor and ωi ∈ R, for i = 1, . . . ,n. Then, the log-likelihood
function is `(ΘΘΘ|ωωω) = ∑

n
i=1 `i(ΘΘΘ|ωi), where

`(ΘΘΘ|ωωω) =



∑
n
i=1 ςi log

[(
p−φ

0i −1
φ

)
hT (ti(ωi))ST (ti(ωi))

]
−∑

n
i=1(ςi +1/φ) log

[
1− (p−φ

0i −1)(1−ST (ti(ωi)))
]
, if φ ̸= 0;

∑
n
i=1 ςi log [− log(p0i)hT (ti(ωi))ST (ti(ωi))] if φ = 0

+∑
n
i=1(1−ST (ti(ωi))) log(p0i) ,

where ωωω0 = (0, . . . ,0)⊤.

Covariate perturbation

We consider now an additive perturbation on a specific continuous covariate, zt say,
for t = 1, . . . , p, by setting zit(ωi) = zit +ωisz, where sz is a scale factor here assumed to be
the standard deviation of zt , and ωi ∈ R, for i = 1, . . . ,n. Then, the log-likelihood function is
`(ΘΘΘ;ωωω) = ∑

n
i=1 `i(ΘΘΘ;ωi), where

`(ΘΘΘ;ωωω) =


∑

n
i=1 ςi log

[(
p*−φ

0i −1
φ

)
hT (ti)ST (ti)

]
−∑

n
i=1(ςi +1/φ) log

[
1− (p*−φ

0i −1)(1−ST (ti))
]
, if φ ̸= 0;

∑
n
i=1 ςi log

[
− log(p*0i)hT (ti)ST (ti)

]
+∑

n
i=1(1−ST (ti)) log(p*0i), if φ = 0,

where p*0i =
exp(zzz*⊤i bbb)

1+ exp(zzz*⊤i bbb)
, zzz*⊤i bbb= b1zi1+ · · ·+bt(zit +ωisz)+ · · ·+bqziq and ωωω0 = (0, . . . ,0)⊤.

5.4 Numerical evaluation

In this section, we present a Monte Carlo simulation study and an application to real
medical data.

5.4.1 Simulation study

We consider the BSCrBeF model, with an exponential baseline, namely, H0(t) = γt and
h0(t) = γ . The simulation scenario considers the following: sample sizes n ∈ {50,100,200,400},
values of the parameters are γ = 1.00 and δ ∈ {0.25,0.50,1.00} and 5,000 MC replications. The
cured fraction is p0i = exp(b0 + b1zi)/(1+ exp(b0 + b1zi)). We consider a binary covariate Z
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with values generated from a Bernoulli distribution with parameter 0.5, b0 = 0.5 and b1 =−1.0,
such that the cured fraction for the two levels of Z are p00 = 0.62 and p01 = 0.38, respectively.
The censoring times were generated from the uniform distribution, U(a,b), where a,b > 0 are
set to control the proportion of censored cases. In our study, the proportion of censored cases is
on the average and approximately equal to 55.6%. Algorithm 4 is used to generate the observed
times and censoring indicators.

Algorithm 4 – Generator of random numbers from the BSCrBeF model.
1: Define the baseline distribution and fix the parameters values.
2: Obtain a random number zi from the covariate Z ∼ Bernoulli(1,1/2).
3: Generate a random number vi from V ∼ U(p0,1).
4: Compute the lifetime yi by solving numerically the equation

p(zi)+(1− p(zi))ST (yi) = vi.

5: Extract a random number ci from the censoring time C ∼ U(a,b), for a,b > 0 fixed.
6: Compute ti = min{yi,ci}.
7: If yi < ci, then ςi = 1, otherwise ςi = 0.
8: Repeat Steps 1 to 7 until a number m of data is completed.

For each value of the parameter and sample size, we report the empirical mean (EM) and
empirical mean squared error (EMSE) of the ML estimators in Table 14. From this table, note
that, as the sample size increases, the ML estimators become more efficient. In general, all of
these results show the good performance of the ML estimators of the proposed model. The R
software by its functions optim and optimx was used to estimate the parameters numerically;
see <www.R-project.org>.

Table 14 – EM and EMSE of the ML estimators of δ and γ and cure fractions for simulated data from the BSCrBeF
model.

50 100 200 400
δ Parameters EM EMSE EM EMSE EM EMSE EM EMSE

p00 0.5476 0.0066 0.5376 0.0077 0.5433 0.0068 0.6099 0.0008
0.25 p01 0.2767 0.0196 0.3083 0.0135 0.4007 0.0069 0.4098 0.0056

γ 0.7730 0.1644 0.8373 0.1129 0.9131 0.0686 0.9707 0.0465
δ 0.3026 0.0238 0.2683 0.0115 0.2452 0.0045 0.2494 0.0026
p00 0.5430 0.0071 0.5359 0.0079 0.5432 0.0068 0.6080 0.0010

0.50 p01 0.2783 0.0189 0.3069 0.0138 0.3998 0.0071 0.4141 0.0057
γ 0.8926 0.1050 0.9217 0.0707 0.9693 0.0506 0.9847 0.0395
δ 0.4326 0.0255 0.4505 0.0180 0.4630 0.0131 0.4768 0.0092
p00 0.5390 0.0075 0.5535 0.0067 0.5530 0.0058 0.6189 0.0008

1.00 p01 0.2792 0.0198 0.2973 0.0151 0.3860 0.0076 0.4044 0.0049
γ 0.9764 0.0830 1.0643 0.0587 0.9815 0.0232 1.0555 0.0140
δ 0.4930 0.2773 0.5511 0.2116 0.5946 0.1710 0.6284 0.1419

www.R-project.org
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5.4.2 Illustrative example

Now, we illustrate the methodology proposed by applying it to a real-world medical data
set, which corresponds to the lifetimes (ranging from 0.0274 to 15.25 years) until the patient’s
death or the censoring time. It contains 205 patients observed after operation for removal of
malignant melanoma between 1962 and 1977. This data set is available in the timereg package in
R. The percentage of censored observations was 72%. The explanatory variables recorded when
the patient is taken on study include: tumor thickness, z1i, (in mm, mean = 2.92 and standard
deviation = 2.96); ulceration, z2i (absent, n = 115; present, n = 90); and sex, z3i (male, n = 79;
female, n = 126).

Exploratory data analysis

Table 15 provides a descriptive summary of the observed times (in years) including MD,
mean (y), SD, CV, CS, CK, and minimum (y(1)) and maximum (y(n)) values. From this table, we
observe the positively skewed nature and moderate kurtosis level of the data distribution. The
skewed nature is confirmed by the histogram of Figure 17(left). Figure 17(center) suggests an
increasing HR for the observed times. Therefore, the Weibull distribution is a good candidate as
a baseline HR, since it allows us to model constant, increasing and decreasing HRs. Also, the
Weibull distribution is one of the most used models in survival and reliability analysis due to its
good properties and flexibility in data modeling.

Table 15 – Descriptive statistics for the observed lifetime.

MD t SD CV CS CK t(1) t(n) n
5.49 5.90 3.07 52.12 0.33 −0.28 0.03 15.25 205
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Figure 17 – Histogram, TTT plot and boxplots for the melanoma data.



86 Chapter 5. A cure rate frailty model based on a reparameterized Birnbaum-Saunders distribution

Estimation and verification of assumptions

From (5.5), we assume the following regression structure

zzz⊤i bbb = b0 +b1z1i +b2z2i +b3z3i, i = 1,2, . . . ,n.

In Table 14, results are given for the BSCrNBF model with Weibull baseline analyzing
melanoma data. For comparison, the results of the BSCrPoF and BSCrBeF models with the same
baseline, as well as the BS negative binomial, BS Poisson and BS Bernoulli models without
frailty are compared as well. Note that the BSCrNBF model nests all the remaining models.
From Table 16, observe that the BSCrNBF model has the smallest values for the Akaike (AIC)
and Bayesian (BIC) information criteria, suggesting that this model provides the best fit to
these data. Moreover, the statistic −2max`(Θ̂ΘΘ) supports this result. The ML estimates (with
estimated asymptotic SEs in parentheses) of the parameters for the BSCrNBF model are reported
in Table 17.

Table 16 – Statistics from the fitted models.

Model Statistics
−2max`(ΘΘΘ) AIC BIC

BS Negative binomial frailty (BSCrNBF) 401.675 415.675 438.936
BS Poisson frailty (BSCrPoF) 412.723 426.723 449.984
BS Bernoulli frailty (BSCrBeF) 417.104 426.723 454.365
BS Negative binomial 413.020 425.020 444.950
BS Poisson 415.070 427.070 447.010
BS Bernoulli 417.020 429.020 448.960

Table 17 – ML estimates of the parameters for the BSCrNBF model.

Parameter Estimates SE p-value
φ 3.3493 1.4692 –
κ 2.6783 0.4686 –
γ 7.0570 2.0131 –
δ 1.3821 2.6103 –
b0 1.6897 0.5502 0.0012
b1 −0.1270 0.0416 0.0022
b2 −1.2909 0.3338 < 0.001
b3 −0.5365 0.2875 0.0588

We now carry out a diagnostic analysis based on local influence. We present the results
for each perturbation scheme.

Case-weight perturbation

Index plots of Ci under the case-weight perturbation are displayed in Figure 18. This
figure detects observations #5, #6, #7 and #10 as potential influential cases.
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Figure 18 – Index plots of Ci for α , ξξξ and bbb under the case-weight perturbation scheme.

Response perturbation

Figure 19 displays index plots of Ci under the response variable perturbation. We note
that the observations #5, #6 and #7 are detected as potential influential cases.
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Figure 19 – Index plots of Ci for φ , ξξξ and bbb under the response perturbation scheme.

Covariate perturbation

The perturbation of the explanatory variable tumor thickness (x1i) is assessed here.
Figure 20 shows index plots of Ci after a perturbation of this explanatory variable. From this
figure, we observe that the case # 8 is detected as a common potential influential case.
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Figure 20 – Index plots of Ci for φ , ξξξ and bbb under the regressor perturbation scheme.
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Similar to the Section 4.4 we check the impact of the detected influential observations
on the model inference where we compute the RC. Table 18 shows the RCs in the parameter
estimates and their corresponding estimated SEs. Also, p-values are shown for the regression
coefficients. From this table, we note that the largest RCs are associated with observations
{#6} and {#7}. Note also that no inferential changes (at the level of 1%) are found; namely,
the diagnostic measures identify potentially influential observations, but these do not alter the
inference of the model.

Table 18 – RCs (in %) in ML estimates and their corresponding SEs for the indicated parameter and dropped cases,
and respective p-values.

Dropped case φ̂ κ̂ γ̂ δ̂ b̂0 b̂1 b̂2 b̂3

{5} RCξ j(i)
12.8 3.16 1.65 6.1 2.74 8.23 1.78 0.68

RCSE(ξ j(i))
(1.75) (2.17) (9.34) (0.53) (8.24) (4.91) (2.82) (0.61)

p-value - - - [0.005] [0.007] [< 0.001] [0.065]
{6} RCξ j(i)

22.1 3.97 2.77 14.94 1.34 5.92 3.03 4.41
RCSE(ξ j(i))

(13.58) (1.11) (0.52) (22.47) (24.63) (4.39) (3.66) (2.23)
p-value - - - [0.015] [0.001] [0.001] [0.056]

{7} RCξ j(i)
25.12 4.98 2.84 16.23 0.96 7.89 2.97 4.46

RCSE(ξ j(i))
(18.08) (2.59) (6.62) (4.71) (21.37) (6.78) (3.34) (2.58)

p-value - - - [0.012] [0.002] [< 0.001] [0.057]
{8} RCξ j(i)

16.73 5.62 1.2 5.51 2.77 6.94 2.76 3.56
RCSE(ξ j(i))

(0.48) (4.79) (5.79) (2.06) (6.58) (4.91) (2.70) (0.81)
p-value - - - [0.005] [0.006] [< 0.001] [0.055]

{10} RCξ j(i)
12.44 1.33 1.55 8.00 2.02 0.78 0.79 22.44

RCSE(ξ j(i))
(14.47) (1.49) (0.14) (6.71) (5.48) (1.54) (0.38) (0.69)

p-value - - - [0.002] [0.002] [< 0.001] [0.021]
{6,7} RCξ j(i)

22.28 0.38 3.78 18.31 0.36 13.33 0.53 7.17
RCSE(ξ j(i))

(17.89) (7.07) (21.43) (4.22) (30.03) (11.10) (4.91) (3.64)
p-value - - - [0.018] [0.001] [< 0.001] [0.094]

{5,10} RCξ j(i)
24.99 3.58 3.27 15.51 0.81 5.34 1.93 18.76

RCSE(ξ j(i))
(13.96) (0.03) (18.64) (5.15) (22.95) (11.21) (4.43) (2.18)

p-value - - - [0.013] [0.009] [< 0.001] [0.030]

5.5 Concluding remarks
In this chapter, we introduced a cure rate frailty model based on a Birnbaum-Saunders

distribution. In this new approach, a frailty parameter is included in the model to bring additional
information that may be useful in practice. The proposed methodology encompassed estimation
and inference about the model parameters and influence diagnostics. We carried out a Monte
Carlo simulation study which showed that the estimates based on the maximum likelihood
estimators of the model parameters tend to their true values, when the sample size increased, as
expected. We applied the proposed methodology to real-world data concerning to the survival
times of patients who died from acute myelogenous leukemia. The results showed the potentiality
of this methodology.
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CHAPTER

6
ON A BIVARIATE BIRNBAUM-SAUNDERS
DISTRIBUTION PARAMETERIZED BY ITS

MEANS

6.1 Introduction
In this chapter we introduce a bivarite reparameterized BS distribution by its mean. We

use the ML and MM methods for estimating the model parameters. We introduce a regression
model and its inference by ML methods, conduct a simulation study to evaluate the behavior of
the parameter estimators and illustrate the proposed model with real data sets.

6.2 Reparameterized bivariate Birnbaum-Saunders distri-
bution

Chapter 2 presented a review of the univariate and bivariate BS distributions in terms of
the orginal parameterization as well as the univariate case of the BS reparameterized by its mean.
Here, from (2.14) we obtain the reparameterized bivariate mean-based Birnbaum-Saunders
(BBSM) distribution. Let TTT = (T1,T2)

⊤ be a bivariate random vector following a bivariate
Birnbaum-Saunders distribution parameterized by its mean with parameters µ1, δ1, µ2, δ2, ρ .
Then, the joint CDF of T1 and T2 can be expressed as

P(T1 ≤ t1,T2 ≤ t2) = Φ2

(√
δ1
2 (a1 −b1) ,

√
δ2
2 (a2 −b2) ;ρ

)
, (6.1)
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where a1 =
√

(δ1+1)t1
δ1µ1

, b1 =
√

δ1µ1
(δ1+1)t1

, a2 =
√

(δ2+1)t2
δ2µ2

, b2 =
√

δ2µ2
(δ2+1)t2

and t1 > 0, t2 > 0,
µ1 > 0, δ1 > 0, µ2 > 0, δ2 > 0, −1 < ρ < 1, and Φ2(u,v;ρ) is the standard bivariate normal
CDF with correlation coefficient ρ . Then, the joint PDF associated with (6.1) is given by

fT1,T2(t1, t2) = φ2

(√
δ1
2 (a1 −b1) ,

√
δ2
2 (a2 −b2) ;ρ

) √
δ1

2
√

2t1
(a1 +b1)

√
δ2

2
√

2t2
(a2 +b2) , (6.2)

where φ2(·, ·;ρ) is a normal joint PDF given by φ2(u,v;ρ)= 1
2π

√
1−ρ2

exp
(

1
(1−ρ2)

(u2 + v2 −2ρuv)
)

.

From now on a bivariate distribution with PDF (6.2) will be denoted by BBSM(ψψψ), where
ψψψ = (µ1,δ1,µ2,δ2,ρ)

⊤ is the vector parameter.

Theorem 1 If TTT = (T1,T2)
⊤ ∼ BBSM(ψψψ), then

a) TTT−1 = (T−1
1 ,T−1

2 )⊤ ∼ BBSM
(
(δ1+1)2

µ1δ 2
1

,δ1,
(δ2+1)2

µ2δ 2
2

,δ2,ρ
)

;

b) TTT−1
1 = (T−1

1 ,T2)
⊤ ∼ BBSM

(
(δ1+1)2

µ1δ 2
1

,δ1,µ2,δ2,−ρ

)
;

c) TTT−1
2 = (T1,T−1

2 )⊤ ∼ BBSM
(

µ1,δ1,
(δ2+1)2

µ2δ 2
2

,δ2,−ρ

)
.

Proof. By using the PDF in (6.2) and making suitable transformations.

6.2.1 Maximum likelihood estimation

Let {(t1i, t2i), i = 1, . . . ,n} be a bivariate random sample of size n from the BBSM(ψψψ)

distribution with PDF as given in (6.2). Then, the log-likelihood function, without the additive
constant, is given by

`(ψψψ) = −n
2

log(1−ρ
2)− 1

4(1−ρ2)

n

∑
i=1

{
−2
√

δ2
√

δ1ρ (a1i −b1i)(a2i −b2i)

+
δ 2

1 µ1

(δ1 +1) t1i
−2δ1a1ib1i +

δ 2
2 µ2

(δ2 +1) t2i
−2δ2a2ib2i +

(δ1 +1) t1i

µ1
+

(δ2 +1) t2i

µ2

}
+

n
2

log(δ1)+
n

∑
i=1

log(a1i +b1i)+
n
2

log(δ2)+
n

∑
i=1

log(a2i +b2i) , (6.3)

where a1i =
√

(δ1+1)t1i
δ1µ1

, b1i =
√

δ1µ1
(δ1+1)t1i

, a2i =
√

(δ2+1)t2i
δ2µ2

and b2i =
√

δ2µ2
(δ2+1)t2i

. Note that{√
δ1
2 [a1 −b1] ,

√
δ2
2 [a2 −b2]

}
is bivariate normal distributed with mean vector (0,0)⊤ and

covariance matrix

(
1 ρ

ρ 1

)
. From this result, we see that, for given µ1, δ1, µ2, δ2, the ML

estimate of ρ is

ρ̂(µ1,δ1,µ2,δ2) =
∑

n
i=1

√
δ1
2 [a1i −b1i]

√
δ2
2 [a2i −b2i]√

∑
n
i=1

{√
δ1
2 [a1i −b1i]

}2
√

∑
n
i=1

{√
δ2
2 [a1i2 −b2i]

}2
. (6.4)
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Therefore, when the parameters µ1, δ1, µ2 and δ2 are unknown, the ML estimates of µ1,
δ1, µ2 and δ2 can be obtained by maximizing the profile log-likelihood function

`p(ηηη) = −n
2

log(1− ρ̂(ηηη)2)− 1
4(1− ρ̂(ηηη)2)

n

∑
i=1

{
−2
√

δ2
√

δ1ρ̂(ηηη)

×(a1i −b1i)(a2i −b2i)+
δ 2

1 µ1

(δ1 +1) t1i
−2δ1a1ib1i +

δ 2
2 µ2

(δ2 +1) t2i

−2δ2a2ib2i +
(δ1 +1) t1i

µ1
+

(δ2 +1) t2i

µ2

}
+

n
2

log(δ1) (6.5)

+
n

∑
i=1

log(a1i +b1i)+
n
2

log(δ2)+
n

∑
i=1

log(a2i +b2i) ,

where ηηη = (µ1,δ1,µ2,δ2)
⊤. In order to maximize function (6.5) with respect to µ1, δ1, µ2, δ2,

one may use the Newton-Raphson algorithm or some other optimization algorithm. Once µ̂1, δ̂1,
µ̂2 and δ̂2 are obtained, the ML estimates of ρ , say ρ̂ , is computed from (6.4). Under some regu-
larity conditions Cox and Hinkley (1974), the asymptotic distribution of ψ̂ψψ = (µ̂1, δ̂1, µ̂2, δ̂2, ρ̂),
as n → ∞, is given by

√
n(ψ̂ψψ −ψψψ)

D−→ N5
(
000,JJJ−1) , (6.6)

where D−→ denotes convergence in distribution and N5
(
000,JJJ−1) denotes a 5-variate normal distri-

bution with mean 000 and covariance matrix JJJ−1. For the sake of space we omit the elements of
the matrix JJJ.

6.2.2 Modified moment estimation

Let {(t1i, t2i), i = 1, . . . ,n} be a bivariate random sample of size n from T ∼ BBSM(ψψψ).
Also, let the sample arithmetic and harmonic means be defined as

sk =
1
n

n

∑
i=1

tki and rk =

[
1
n

n

∑
i=1

t−1
ki

]−1

, k = 1,2,

respectively. Then, the modified moment estimators of µ1, δ1, µ2 and δ2 are obtained by equating
E[T1], E[T−1

1 ], E[T2] and E[T−1
2 ] to the corresponding sample estimates, that is,

E[T1] = s1, E[T−1
1 ] = r−1

1 , E[T2] = s2 and E[T−1
2 ] = r−1

2 . (6.7)

Thus, we have

s1 = µ̃1, r−1
1 =

[δ̃1 +1]2

µ̃1δ̃ 2
1

, s2 = µ̃2 and r−1
2 =

[δ̃2 +1]2

µ̃2δ̃ 2
2

. (6.8)

Solving (6.8) for µ1, δ1, µ2 and δ2, we obtain the modified moment estimators of these
parameters, denoted by µ̃1, δ̃1, µ̃2 and δ̃2, namely,

µ̃1 = s1, δ̃1 =

[√
s1

r1
−1
]−1

, µ̃2 = s2, and δ̃2 =

[√
s2

r2
−1
]−1

. (6.9)
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Theorem 2 The asymptotic distributions of µ̃k and δ̃k, for k = 1,2, are given by

√
n(µ̃k −µk)∼ N

(
0,

µ2
k {2δk +5}
{δk +1}2

)
,

√
n(δ̃k −δk)∼ N

(
0,2δ

2
k
)
. (6.10)

Proof.

Let TTT = (T1,T2)
⊤ follow a BBSM(ψψψ) distribution, then

Var[Tk] =
µ2

k [2δk+5]
[δk+1]2 , Var[T−1

k ] = [2δk+5][δk+1]2

µ2
k δ 4

k
and Cov[Tk] = 1− [δk+1]2

δ 2
k

, k = 1,2.

Now, let {(t1i, t2i), i = 1, . . . ,n} be a bivariate random sample from the BBSM(ψψψ) distri-
bution. Then the MM estimates are given by

µ̃k = sk and δ̃k =

[√
sk

rk
−1
]−1

, k = 1,2.

Consider Sk =
1
n ∑

n
i=1 Tk j and R*

k = R−1
k = ∑

n
i=1

1
Tki

, with k = 1,2, which implies that the
vector (Sk,R−1

k )⊤ is bivariate normal distributed, that is,

√
n

(
Sk −E[Tk]

R*
k −E[T−1

k ]

)
∼ N

[(
0
0

)
,

(
Var[Tk],1−E[Tk]E[T−1

k ]

1−E[Tk]E[T−1
k ],Var[Tk]

)]
.

However, we need to find the asymptotic joint distribution of (µ̃k, δ̃k)
⊤. Consider µ̃k = fk(Sk,R*

k)

and δ̃k = fk(Sk,R*
k), such that fk(x,y) = x and f2(x,y) = [

√
xy−1]−1. By using the delta method,

we readily have

√
n

(
µ̃k −µk

δ̃k −δk

)
∼ N

([
0
0

]
,ΣΣΣk

)
, k = 1,2,

where

ΣΣΣk =

 µ2
k [2δk+5]
[δk+1]2 −2µkδk

δk+1

−2µkδk
δk+1 2δ 2

k

 .

6.3 BBSM regression model
Let TTT = (T1,T2)

⊤ follow a BBSM(ψψψ) distribution. Assume that there are p and q

covariates, say XXX (1) = (x(1)1 ,x(1)2 , . . . ,x(1)p )⊤ and XXX (2) = (x(2)1 ,x(2)2 , . . . ,x(2)q )⊤, associated with the
random variables T1 and T2, respectively. Then, from (6.1) we have

g(µk) = ϕϕϕ
⊤
k XXX (k) = ϕk0 +ϕk1x(k)1 +ϕk2x(k)2 + · · ·+ϕklx

(k)
l , (6.11)

where ϕϕϕk = (ϕ j1,ϕ j2, . . . ,ϕ jl) is a vector of l unknown parameters, for k = 1,2 and l = p,q, and
g is a link function such that µk = g−1(ϕϕϕ⊤

k XXX (k)), with g−1 being the inverse function of g(·). In
this work, g(µk) = log(µk). Then,

µk = exp(ϕϕϕ⊤
k XXX (k)) = exp(ϕk0 +ϕk1x(k)1 +ϕk2x(k)2 + · · ·+ϕklx

(k)
l ). (6.12)
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Note that the precision parameter δk is independent of the covariates XXX (k). In addition, since
Var[Tk] = µk/φk, where φk = [δk +1]2/[2δk +5], is a function of µk and, consequently, of the
covariates, we can analyze situations where a non-constant variance is present by using the
model in (6.12).

6.3.1 Maximum likelihood estimation

Let {(t1i, t2i), i = 1, . . . ,n} be a bivariate random sample of size n with the covariates
corresponding to t1i as XXX (1)

i = (x(1)1i ,x
(1)
2i , . . . ,x

(1)
pi ) and t2i as XXX (2)

i = (x(2)1i ,x
(2)
2i , . . . ,x

(2)
qi ). The

problem of interest is to estimate the unknown parameters δ1,δ2, ϕϕϕ1, ϕϕϕ2 and ρ . The log-
likelihood function, without the additive constant, can be written as follows:

`(ϑϑϑ) = −n
2

log(1−ρ
2)− 1

4(1−ρ2)

n

∑
i=1

{
−2
√

δ2
√

δ1ρ (a1i −b1i)(a2i −b2i)

+
δ 2

1 µ1i

(δ1 +1) t1i
−2δ1a1ib1i +

δ 2
2 µ2i

(δ2 +1) t2i
−2δ2a2ib2i +

(δ1 +1) t1i

µ1i
+

(δ2 +1) t2i

µ2i

}
+

n
2

log(δ1)+
n

∑
i=1

log(a1i +b1i)+
n
2

log(δ2)+
n

∑
i=1

log(a2i +b2i) , (6.13)

where ϑϑϑ = (δ1,δ2,ϕϕϕ
⊤
1 ,ϕϕϕ

⊤
2 ,ρ)

⊤, a1i =
√

(δ1+1)t1i
δ1µ1i

, b1i =
√

δ1µ1i
(δ1+1)t1i

, a2i =
√

(δ2+1)t2i
δ2µ2i

and b2i =√
δ2µ2i

(δ2+1)t2i
, with µ ji = exp(ϕ j0+ϕ j1x(k)1i +ϕ j2x(k)2i + · · ·+ϕ jlx

(k)
li ), for k = 1,2, i = 1,2, . . . ,n and

l = p,q.

Similarly to the no covariate case, it can be seen that for fixed δ1, δ2, ϕϕϕ1 and ϕϕϕ2, the ML
estimates of ρ can be obtained as

ρ̂(δ1,ϕϕϕ1,δ2,ϕϕϕ2) =
∑

n
i=1

√
δ1
2 (a1i −b1i)

√
δ2
2 [a2i −b2i]√

∑
n
i=1

{√
δ1
2 (a1i −b1i)

}2
√

∑
n
i=1

{√
δ2
2 (a1i2 −b2i)

}2
. (6.14)

Therefore, the ML estimates of µ1, ϕϕϕ1, δ2 and ϕϕϕ2 can be obtained by maximizing the
profile log-likelihood function

`p(ζζζ ) = −n
2

log(1− ρ̂(ζζζ )2)− 1
4(1− ρ̂(ζζζ )2)

n

∑
i=1

{
−2
√

δ2
√

δ1ρ̂(ζζζ )

×(a1i −b1i)(a2i −b2i)+
δ 2

1 µ1

(δ1 +1) t1i
−2δ1a1ib1i +

δ 2
2 µ2

(δ2 +1) t2i
−2δ2a2ib2i

+
(δ1 +1) t1i

µ1
+

(δ2 +1) t2i

µ2

}
+

n
2

log(δ1)+
n

∑
i=1

log(a1i +b1i)

+
n
2

log(δ2)+
n

∑
i=1

log(a2i +b2i) , (6.15)
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where ζζζ = (δ1,ϕϕϕ1,δ2,ϕϕϕ2)
⊤. The estimation of the parameters can be performed by using a

numerical optimization method. The asymptotic distribution of ζ̂ζζ = (δ̂1, δ̂2, ϕ̂ϕϕ1, ϕ̂ϕϕ2, ρ̂), as n → ∞,
under some regularity conditions Cox and Hinkley (1974), is given by

√
n(ζ̂ζζ −ζζζ )

D−→ Np+q+5

(
000,RRR−1

p+q+5

)
, (6.16)

where Np+q+5

(
000,RRR−1

p+q+5

)
denotes a (p+q+5)-variate normal distribution with mean 000 and

covariance matrix RRR−1
p+q+5.

Initial values for the regression coefficients can be obtained by the least squares estimator
(LSE) of ϕϕϕk, k = 1,2, that is, by minimizing the sum of squares

S(ϕϕϕk) =
n

∑
i=1

(
log(tki)−ϕ j0 −ϕ j1x(k)1i −ϕ j2x(k)2i + · · ·+ϕ jlx

(k)
li

)
, (6.17)

for k = 1,2, i = 1,2, . . . ,n and l = p,q. Then, the initial value for the ML estimates of ϕϕϕk, based
on the LSE, say ϕϕϕ

(0)
k , is given by

ϕϕϕ
(0)
k =

(
XXX (k)⊤XXX (k)

)−1
XXX (k)⊤ log(tttk), (6.18)

where

XXX (k) =


1 x(k)11 x(k)21 . . . x(k)l1
...

...
... · · · ...

1 x(k)1n x(k)2n . . . x(k)ln

 and log(tttk) =


log(tk1)

...
log(tkn)


.

6.4 Numerical applications
In this section, we carry out a simulation study to evaluate the performance of the ML

estimators of the BBSM model parameters. Then, we illustrate the BBSM distribution and
its corresponding regression model by using two real data sets, respectively. The first data set
corresponds to two different measurements of stiffness, whereas the second data set represents
bone mineral density data with 5 covariates associated with each dependent variable.

6.4.1 A simulation study

The simulation scenario considered the following: the sample sizes n ∈ {10,50,100};
the values of the shape and scale parameters as δk ∈ {0.25,2.0} and µk = 2.0, for k = 1,2,
respectively; the values of ρ are 0.00,0.25,0.50 and 0.95 (the results for negative ρ are quite
similar so are omitted here); and 5,000 MC replications. The values of δk cover low and high
skewness. We also present the 90% and 95% probability coverages of confidence intervals for
the BBSM model.
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6.4.2 BBSM simulation results

Tables 19-20 report the empirical values of the biases and mean square errors of the
ML and MM estimates, for the BBSM distribution. From these tables, we observe that, as n

increases, the bias and MSE of all the estimators decrease, tending to be unbiased, as expected.
In terms of MSE, the performances of the three methods are quite similar. From Tables 19–20, it
is also worth noting that the ML and MM estimates are quite similar in terms of bias and MSE.
Furthermore, we note that, as the values of the shape parameters δk increase, the performances
of the estimators of µk, the scale parameters, deteriorate. In general, the results do not seem to
depend on ρ .

Table 19 – Simulated values of biases and MSEs (within parentheses) of the MM in comparison with those of ML
estimates (δk = 0.25, µk = 2.0, for k = 1,2), for the BBS distribution.

n ML estimates

ρ B(δ̂1) B(δ̂2) B(µ̂1) B(µ̂2) B(ρ̂)

10 0.00 0.0470 (0.0687) 0.0566 (0.0650) −0.0250 (1.4560) −0.0537 (1.3561) −0.0119 (0.1181)
0.25 0.0492 (0.0557) 0.0549 (0.0669) −0.0884 (1.4203) −0.0899 (1.3267) −0.0057 (0.1092)
0.50 0.0487 (0.0653) 0.0507 (0.0587) −0.0430 (1.3532) −0.0218 (1.4600) −0.0082 (0.0680)
0.95 0.0480 (0.0638) 0.0467 (0.0766) −0.0374 (1.2801) −0.0265 (1.2389) −0.0077 (0.0028)

50 0.00 0.0073 (0.0031) 0.0105 (0.0034) −0.0157 (0.2621) −0.0209 (0.2768) −0.0071 (0.0218)
0.25 0.0115 (0.0035) 0.0099 (0.0032) −0.0224 (0.2560) −0.0122 (0.2622) −0.0037 (0.0178)
0.50 0.0093 (0.0035) 0.0100 (0.0035) −0.0178 (0.2748) −0.0100 (0.2743) −0.0015 (0.0118)
0.95 0.0058 (0.0033) 0.0048 (0.0031) −0.0035 (0.2255) −0.0042 (0.2320) −0.0003 (0.0002)

100 0.00 0.0040 (0.0015) 0.0057 (0.0016) −0.0121 (0.1385) −0.0048 (0.1360) −0.0007 (0.0105)
0.25 0.0026 (0.0014) 0.0053 (0.0014) −0.0067 (0.1466) −0.0220 (0.1257) −0.0004 (0.0101)
0.50 0.0053 (0.0014) 0.0016 (0.0014) −0.0159 (0.1256) −0.0100 (0.1297) −0.0019 (0.0059)
0.95 0.0038 (0.0015) 0.0036 (0.0015) −0.0043 (0.1091) −0.0067 (0.1118) −0.0001 (0.0001)

n MM estimates

ρ B(δ̃1) B(δ̃2) B(µ̃1) B(µ̃2) B(ρ̃)

10 0.00 0.0517 (0.0695) 0.0612 (0.0658) −0.0386 (1.3952) −0.0633 (1.3487) −0.0119 (0.1103)
0.25 0.0541 (0.0565) 0.0598 (0.0679) −0.1187 (1.3182) −0.1224 (1.2675) −0.0021 (0.1038)
0.50 0.0554 (0.0670) 0.0575 (0.0597) −0.0435 (1.3913) −0.0602 (1.5602) −0.0228 (0.0669)
0.95 0.0595 (0.0673) 0.0583 (0.0797) −0.0422 (1.3808) −0.0230 (1.3971) −0.0122 (0.0032)

50 0.00 0.0080 (0.0031) 0.0112 (0.0034) −0.0164 (0.2723) −0.0299 (0.2884) −0.0068 (0.0213)
0.25 0.0123 (0.0035) 0.0107 (0.0032) −0.0230 (0.2692) −0.0123 (0.2724) −0.0019 (0.0175)
0.50 0.0104 (0.0035) 0.0111 (0.0035) −0.0130 (0.2971) −0.0077 (0.3001) −0.0052 (0.0118)
0.95 0.0083 (0.0034) 0.0073 (0.0032) −0.0058 (0.2657) −0.0132 (0.2684) −0.0006 (0.0002)

100 0.00 0.0043 (0.0015) 0.0061 (0.0016) −0.0095 (0.1463) −0.0027 (0.1460) −0.0007 (0.0104)
0.25 0.0030 (0.0014) 0.0057 (0.0014) −0.0084 (0.1547) −0.0184 (0.1346) −0.0016 (0.0100)
0.50 0.0059 (0.0014) 0.0022 (0.0014) −0.0205 (0.1415) −0.0027 (0.1439) −0.0038 (0.0059)
0.95 0.0051 (0.0015) 0.0049 (0.0015) −0.0061 (0.1333) −0.0079 (0.1364) −0.0004 (0.0001)
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Table 20 – Simulated values of biases and MSEs (within parentheses) of the ML in comparison with those of MM
estimates (δk = 2.0, µk = 2.0, for k = 1,2), for the BBSM distribution.

n ML estimates

ρ B(δ̂1) B(δ̂2) B(µ̂1) B(µ̂2) B(ρ̂)

10 0.00 0.4288 (4.0119) 0.4007 (3.8598) −0.0241 (0.4009) −0.0393 (0.4058) −0.0037 (0.1058)
0.25 0.3783 (3.0608) 0.3574 (4.2999) −0.0361 (0.4112) −0.0219 (0.3867) −0.0356 (0.1023)
0.50 0.3771 (3.4396) 0.3888 (2.7985) −0.0334 (0.3855) −0.0621 (0.3855) −0.0222 (0.0678)
0.95 0.3996 (4.0946) 0.3819 (4.2157) −0.0383 (0.3981) −0.0334 (0.3869) −0.0064 (0.0025)

50 0.00 0.0726 (0.2149) 0.0605 (0.2057) −0.0064 (0.0763) −0.0101 (0.0767) −0.0030 (0.0196)
0.25 0.0375 (0.1969) 0.0732 (0.2061) −0.0076 (0.0801) −0.0174 (0.0822) −0.0074 (0.0170)
0.50 0.0755 (0.2147) 0.0873 (0.2179) −0.0169 (0.0803) −0.0020 (0.0775) −0.0015 (0.0117)
0.95 0.0548 (0.2031) 0.0623 (0.2043) −0.0021 (0.0782) −0.0026 (0.0797) −0.0007 (0.0002)

100 0.00 0.0316 (0.0847) 0.0382 (0.0940) −0.0131 (0.0369) −0.0065 (0.0383) −0.0069 (0.0106)
0.25 0.0386 (0.0927) 0.0378 (0.0991) −0.0017 (0.0429) −0.0015 (0.0425) −0.0026 (0.0090)
0.50 0.0441 (0.0959) 0.0356 (0.0955) −0.0036 (0.0376) −0.0066 (0.0375) −0.0062 (0.0061)
0.95 0.0293 (0.0837) 0.0344 (0.0824) −0.0014 (0.0372) −0.0028 (0.0366) −0.0003 (0.0001)

n MM estimates

ρ B(δ̃1) B(δ̃2) B(µ̃1) B(µ̃2) B(ρ̃)

10 0.00 0.4310 (4.0159) 0.4030 (3.8628) −0.0244 (0.3965) −0.0387 (0.4119) −0.0038 (0.1046)
0.25 0.3809 (3.0624) 0.3598 (4.3061) −0.0371 (0.4085) −0.0219 (0.3885) −0.0368 (0.1015)
0.50 0.3819 (3.4418) 0.3935 (2.8012) −0.0368 (0.3752) −0.0653 (0.3854) −0.0242 (0.0674)
0.95 0.4124 (4.0979) 0.3946 (4.2191) −0.0382 (0.4099) −0.0319 (0.4012) −0.0070 (0.0025)

50 0.00 0.0728 (0.2149) 0.0607 (0.2057) −0.0055 (0.0768) −0.0003 (0.0763) −0.0030 (0.0195)
0.25 0.0379 (0.1969) 0.0736 (0.2061) −0.0070 (0.0796) −0.0175 (0.0823) −0.0070 (0.0169)
0.50 0.0764 (0.2147) 0.0882 (0.2180) −0.0172 (0.0814) −0.0018 (0.0783) −0.0021 (0.0117)
0.95 0.0573 (0.2032) 0.0648 (0.2044) −0.0001 (0.0797) −0.0048 (0.0818) −0.0008 (0.0002)

100 0.00 0.0317 (0.0847) 0.0382 (0.0940) −0.0129 (0.0370) −0.0065 (0.0385) −0.0069 (0.0105)
0.25 0.0387 (0.0927) 0.0380 (0.0991) −0.0026 (0.0430) −0.0024 (0.0425) −0.0028 (0.0090)
0.50 0.0445 (0.0960) 0.0360 (0.0955) −0.0027 (0.0380) −0.0056 (0.0377) −0.0066 (0.0061)
0.95 0.0305 (0.0838) 0.0356 (0.0824) −0.0001 (0.0380) −0.0030 (0.0376) −0.0003 (0.0001)

6.4.3 Probability coverage simulation results

We compute the 90% and 95% probability coverages of confidence intervals for the
BBSM model using the asymptotic distributions given earlier, with αk = 0.5, βk = 1.0, for
k = 1,2. The 100(1−ϖ)% confidence intervals for θl , l = 1, . . . ,5, based on the ML estimates
can be obtained from [(

ψ̂l +
z ϖ

2√
JJJll(ψ̂ψψ)

)
,

(
ψ̂l +

z1−ϖ

2√
JJJll(ψ̂ψψ)

)]
,

respectively, where ψ̂ψψ = (ψ̂1, ψ̂2, ψ̂3, ψ̂4, ψ̂5)
⊤ = (µ̂1, δ̂1, µ̂2, δ̂2, ρ̂)

⊤ and zr is the 100rth per-
centile of the standard normal distribution. The corresponding 100(1−ϖ)% confidence intervals
for µk and δk, k = 1,2, based on the MM estimates are given byµ̃k

1+ z ϖ

2

√
h(δ̃k)

n

−1

, µ̃k

1+ z1−ϖ

2

√
h(δ̃k)

n

−1
 ,
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and δ̃k

(
1+ z ϖ

2

√
2
n

)−1

, δ̃k

(
1+ z1−ϖ

2

√
2
n

)−1
 ,

where h(x) = 2x+5
[x+1]2 . To obtain 100(1−ϖ)% confidence interval for ρ based on the MM estimator

from ρ̃k we can make use of the Fisher’s z-transformation Fisher (1915) and the generalized
confidence interval proposed by Krishnamoorthy and Xia (2007). The latter method is suggested
by Kazemi and Jafari (2015) as one of the best approaches to construct confidence interval for
the correlation coefficient in a bivariate normal distribution.

First, note that

X1 =

√
δ1

2

(√
(δ1 +1)T1

µ1δ1
−

√
µ1δ1

(δ1 +1)T1

)
∼ N(0,1) and

X2 =

√
δ2

2

(√
(δ2 +1)T2

µ2δ2
−

√
µ2δ2

(δ2 +1)T2

)
∼ N(0,1).

Note also that the we can express ρ̃ as

ρ̃ =
∑

n
i=1 x1ix2i√

∑
n
i=1 x2

1i

√
∑

n
i=1 x2

2i

,

where x1i =
√

δ1
2

(√
(δ1+1)t1i

µ1δ1
−
√

µ1δ1
(δ1+1)t1i

)
and x2i =

√
δ2
2

(√
(δ2+1)t2i

µ2δ2
−
√

µ2δ2
(δ2+1)t2i

)
. The pairs

(x1i,x2i) for i = 1, . . . ,n can be thought of as realizations of the pair (X1,X2). Then, ρ̃ is an
estimator of the correlation coefficient of a standard bivariate normal distribution. Below, we
detail the two methods to compute the confidence interval.

Fisher’s z-transformation (FI)

Based on the Fisher’s z-transformation Fisher (1915), we readily have

z =
1
2

log
(

1+ ρ̃

1− ρ̃

)
= tanh−1(ρ̃),

which has an asymptotic normal distribution with mean 1
2 log

(
1+ρ

1−ρ

)
= tanh−1(ρ) and variance

1/(n−3). Then, we can obtain an approximate 100(1−ϖ)% confidence interval for ρ by[
tanh

(
ρ̃ +

z ϖ

2√
n−3

)
, tanh

(
ρ̃ +

z1−ϖ

2√
n−3

)]
.

Krishnamoorthy and Xia’s method (KX)

Based on Krishnamoorthy and Xia (2007) we can construct an approximate 100(1−ϖ)%
confidence interval for ρ from the following Algorithm 5
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Algorithm 5 – Confidence interval for ρ from KX method

1: Compute ρ = ρ̃√
1−ρ̃2

for a given n and ρ̃ .

2: For i = 1 to m (1,000,000 say), generate U1 ∼ χ2
n−1, U2 ∼ χ2

n−2 and Z0 ∼ N(0,1) and
compute

Qi =
ρ
√

U2 −Z0√
(ρ

√
U2 −Z0)2 +U1

.

The upper and lower limits for ρ are the 100(ϖ)th and 100(1−ϖ)th percentiles of the
Qi’s. Table 21 presents the 90% and 95% probability coverages of confidence intervals. The
results show that the asymptotic confidence intervals do no provide good results for δk and µk

when the sample size is small (n = 10), since the coverage probabilities are much lower than
the corresponding nominal values. The scenario changes when n = 50 and 100 with satisfactory
results for both δk and µk. Overall, the coverages for ρ associated with the MM estimates
have quite good performances, whereas the coverages based on the ML estimates have poor
performances.
Table 21 – Probability coverages of 90% and 95% confidence intervals for the BBSM model (µk = 1.0, δk = 0.5,

for k = 1,2).

ML
n 90% 95%

ρ δ1 δ2 µ1 µ2 ρ δ1 δ2 µ1 µ2 ρ

10 0.00 78.90 79.32 82.74 81.76 76.98 84.24 84.18 88.00 87.96 84.18
0.25 79.52 78.44 81.08 82.12 77.44 84.34 83.96 86.28 87.66 83.16
0.50 78.88 79.68 75.58 75.44 77.42 84.08 83.62 83.30 84.06 83.98
0.95 78.64 78.82 37.58 36.26 79.24 83.63 82.68 41.75 44.40 83.42

50 0.00 87.66 88.58 87.64 89.30 88.56 92.24 92.62 93.32 93.06 93.20
0.25 87.16 88.18 87.14 86.56 87.28 92.44 92.78 93.06 92.18 93.54
0.50 87.34 87.86 83.02 83.08 88.12 93.38 93.18 90.42 90.14 93.54
0.95 88.54 88.26 38.54 37.82 88.28 93.32 92.86 44.20 44.74 93.32

100 0.00 89.00 89.70 89.30 89.10 87.50 94.00 95.10 94.10 94.40 92.90
0.25 89.10 88.90 89.20 88.60 90.00 95.10 92.30 93.60 92.10 93.80
0.50 89.30 89.80 83.90 84.40 90.50 92.60 94.10 90.50 89.80 93.10
0.95 90.10 89.90 38.44 38.44 88.20 93.00 94.30 48.00 48.50 93.80

MM
n 90% 95%

ρ δ1 δ2 µ1 µ2 ρ (FI) ρ (KX) δ1 δ2 µ1 µ2 ρ (FI) ρ (KX)

10 0.00 78.90 79.34 84.94 83.96 90.42 89.46 84.22 84.16 89.82 89.52 94.54 95.78
0.25 79.50 78.48 84.64 84.88 90.08 90.28 84.32 83.96 89.28 90.24 95.48 95.14
0.50 78.78 79.62 83.98 84.06 90.14 89.44 84.04 83.58 89.98 90.00 94.94 95.18
0.95 78.58 78.86 84.64 83.94 90.64 90.28 83.53 82.68 90.81 89.65 95.62 94.61

50 0.00 87.66 88.58 88.14 89.52 90.56 90.60 92.24 92.62 93.58 93.46 95.02 94.82
0.25 87.16 88.16 88.78 88.40 89.96 89.68 92.44 92.74 94.02 93.34 95.16 95.42
0.50 87.32 87.86 89.04 89.38 90.08 90.10 93.40 93.18 94.32 94.46 95.32 95.72
0.95 88.48 88.24 88.24 88.12 90.50 90.46 93.24 92.92 93.64 93.64 95.36 95.14

100 0.00 89.00 89.70 90.00 89.70 90.30 88.30 94.03 95.10 94.20 94.40 94.60 94.20
0.25 89.10 88.90 90.70 89.50 89.30 89.90 95.12 92.30 94.70 93.70 95.60 94.90
0.50 89.40 89.80 89.50 90.40 88.30 90.90 92.65 94.19 95.10 94.60 96.50 94.20
0.95 90.00 89.80 89.90 89.30 90.10 89.80 93.00 94.38 95.00 95.00 95.10 95.30
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6.4.4 Example 1

In this example, the data set corresponds to two different measurements of stiffness,
namely, shock and vibration of each of n = 30 boards. The former concerns the emission of shock
wave down the board, while the latter is obtained during the vibration of the board; see Johnson
and Wichern (2007). We consider probability versus probability (PP) plots with acceptance bands
based on the marginal distributions of T1 and T2 to support the BBSM model; see Figure 21(top).
We also consider the TTT plots in Figure 21(bottom) to have an idea about the shape of the
failure rate of the marginals; see Aarset (1987) and Azevedo et al. (2012). The failure rate of a
random variable X is defined by h(x) = f (x)/[1−F(x)], where f (·) and F(·) are the PDF and
CDF of X , respectively. From Figure 21, we observe that the PP plots support the BBSM model
and the TTT plots suggest that both marginals have unimodal failure rates.
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Figure 21 – PP plots with acceptance bands (top) and scaled TTT plots (bottom) for the two different measurements
of stiffness.

We now fit the BBSM distribution to the stiffness data set. From the observations, we
obtain s1 = 1906.1, r1 = 1857.55, s2 = 1749.53 and r2 = 1699.99. Table 22 presents the ML and
MM estimates along with their corresponding 95% CIs, as well as the log-likelihood values. We
note that across the models the log-likelihood values are quite similar. The Kolmogorov-Smirnov
(KS) distances with the corresponding p-values (within brackets) between the empirical marginals
and the fitted marginals for T1 and T2 are 0.0893(0.9531) and 0.1505(0.505), respectively. These
results support the assumption of a BBSM model.
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Table 22 – Estimates of the parameter for the indicated estimator.

Parameter ML estimates 95% CIs MM estimates 95% CIs
µ1 1906.100 (1885.766,1926.435) 1906.100 (1795.857,2016.343)
δ1 77.030 (69.885,76.279) 77.030 (38.048,108.116)
µ2 1749.533 (1729.819,1769.247) 1749.533 (1642.688,1856.378)
δ2 69.134 (62.720,75.548) 69.134 (34.148,104.121)
ρ 0.908 (0.897,0.920) 0.908 (0.814,0.956)

`(ψψψ) −400.648 −400.648

6.4.5 Example 2

Here, the data set corresponds to the bone mineral density (BMD) measured in g/cm2 for
24 individuals included in a experimental study; see Johnson and Wichern (2007). The objective
of the study was to determine whether exercise or dietary supplements would slow bone loss.
The data represent the BMD of the bone dominant radius (t1 and t2). The explanatory variables
associated are: radius (x(k)1 ), dominant humerus (x(k)2 ), humerus (x(k)3 ), dominant ulna (x(k)4 ) and
ulna (x(k)5 ), for k = 1,2. The PP and TTT plots showed in Figure 22 based on the marginal
distributions of T1 and T2 support the assumed BBSM model and suggest that the marginals have
unimodal hazard rates, respectively. In Table (23), we report the ML estimates, the LSEs utilized
as initial values to determine the ML estimates of the regression coefficients, the corresponding
p-values, and the 95% CIs. The KS distance between the empirical distribution function and the
fitted distribution function and the p-value (within brackets) for T1 and T2 are 0.1541(0.5666)
and 0.1649(0.4812), respectively. Therefore, taking into account the KS distances, the BBSM
distribution is indeed a good model for the BMD data.

Table 23 – Estimates of the parameter for the indicated estimator.

Parameter MLE LSE p-value 95% CIs
δ1 311.358 - (251.676,371.040)
δ2 166.890 - (140.226,193.554)
ϕ10 −1.220 −1.299 <0.001 (−1.273,−1.167)
ϕ11 0.650 1.082 0.014 (0.543,0.756)
ϕ12 0.163 0.482 0.281 (0.102,0.223)
ϕ13 −0.069 −0.509 0.755 (−0.157,0.020)
ϕ14 0.680 0.263 0.005 (0.582,0.778)
ϕ15 −0.197 0.104 0.366 (−0.284,−0.110)
ϕ20 −1.227 −1.196 <0.001 (−1.297,−1.157)
ϕ21 0.533 1.125 0.130 (0.392,0.674)
ϕ22 0.166 0.412 0.268 (0.106,0.227)
ϕ23 0.011 −0.321 0.957 (−0.072,0.094)
ϕ24 0.444 −0.156 0.182 (0.311,0.577)
ϕ25 −0.023 0.041 0.911 (−0.106,0.060)
ρ 0.890 - (0.853,0.926)
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Figure 22 – PP plots with acceptance bands (top) and scaled TTT plots (bottom) for the BMD data.

6.5 Concluding remarks
In this chapter a bivariate Birnbaum-Saunders which is characterized by two mean

parameters is introduced. We have discussed maximum likelihood estimation and modified
moment estimation of the five parameters. We also have proposed a new bivariate Birnbaum-
Saunders regression model, which allows us to describe the means of the bivariate data in their
original scale. A simulation study is carried out to evaluate the performance of the maximum
likelihood estimators. The probability coverages of confidence intervals are also discussed.
Finally, two examples are performed to illustrate all the methods proposed here.
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CHAPTER

7
DISCUSSION, CONCLUSIONS AND FUTURE

RESEARCH

The inclusion of a frailty parameter in the medical data modeling brings additional
information that may be useful in practice. We have considered a source of unobserved hetero-
geneity that is not captured by covariables. This introduced a frailty component in the hazard
rate structure. Then, the effects of omitted covariables can be captured. No measurable biolog-
ical variations among patients are detected, which justifies the presence of heterogeneity. For
instance, some patients may have a genetic disposition with respect to certain disease, having
an increasing risk of developing it compared to others. The heterogeneity therefore affects the
observed survival times.

In this work, we have focused on the use of the reparameterized Birnbaum-Saunders
distribution to propose frailty, regression frailty and cure rate frailty models applied to medical
data. Influence diagnostic tools were derived in the regression case to evaluate the effect of
atypical observations on the model. In addition, we have studied the bivariate Birnbaum-Saunders
distribution based on its mean.

The present study leaves some open topics to be addressed in the future. As part of a future
research, we leave open the following issues. Economou and Caroni (2008) introduced a manner
to construct diagnostic plots and to verify the correct choice of the frailty distribution. This was
conducted in the case of proportional hazard models and for exponential family members, which
include the gamma and inverse Gaussian models. These diagnostic plots are based on the closure
property which holds for the exponential family and says that the distribution among survivors
belongs to the same family of distributions; see Hougaard (1984). The Birnbaum-Saunders
model does not hold this property. However, as mentioned in Subsection 2.4, it is closed under
reciprocation, which allows us to construct a graphical procedure, based on the TTT plot, to
verify the correct choice of the frailty distribution in a proportional hazard model; see Athayde
(2016). The construction of this diagnostic plot is beyond the scope of our study, so that we will
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consider it as part of a future work. In addition, the proposed methodology can be extended into
a model with a nonparametric baseline hazard rate. One can also consider a Bayesian approach
to estimate the model parameters. Furthermore, it might be of interest to consider the likelihood
ratio method for testing homogeneity of the frailty term; see Economou and Stehlik (2015). The
proposed methodology can also be extended to the correlated frailty case, where the nature of
the heterogeneity and the dependence are explicitly specified, and are of main importance; see
Petersen (1998). Finally, the inclusion of multivariate aspects in frailty models, as well as spatial
components, can also be considered; see Garcia-Papani et al. (2016) and Marchant et al. (2016a),
Marchant et al. (2016b). In addition from the bivariate Birnbaum-Saunders it would be of interest
to develop likelihood inferential methods by considering censored data. Also, the extension of
the proposed bivariate regression model to the multivariate case would be of practical relevance.
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APPENDIX

A
MATHEMATICAL RESULTS FOR BS

FRAILTY MODEL

A.1 Score vector
The elements of the score vector are obtained from the first derivatives of the log-

likelihood function given in (3.7) with respect to the two parameters. Throughout this appendix,
for the sake of simplification, we define τi,1 = δ +4γti+1 and τi,2 = δ +

√
(δ +1)τi,1+4γti+3.

Then, elements of the score vector are expressed as
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A.1.1 Observed information matrix
Let T1, . . . ,Tn be a random sample from the BS frailty model and t1, . . . , tn their observa-

tions. From the log-likelihood function given in (3.7), we have that the observed information
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matrix of the BS frailty model is III(ξξξ ) =

(
Iθ1ξ1
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, where Iξiξ j = −∂ 2l(ξξξ )/∂θiθ j, for
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