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RESUMO

Atualmente, não é uma tarefa trivial apontar um exame que possa diagnosticar com precisão

suficiente um paciente com mal de Parkinson, tendo como ponto importante também, após

a constatação da enfermidade, a análise do nível da mesma. Especialistas recomendam a

aplicação de diferentes tipos de exames, muitos deles baseados em sinais e imagens biomé-

dicas, tais como eletroencefalograma, tomografia computadorizada e ressonância magnética

para auxiliar no processo de detecção da doença, já que a faixa etária elevada e sintomas

como cansaço e fraqueza podem ocultar o diagnóstico. Com o intuito de prover informações

mais eficazes propiciando aos médicos um diagnóstico com maior confiança, metodologias

para realizar a fusão entre diferentes modalidades de imagens tem se tornado cada vez mais

populares e promissoras. Recentemente, a utilização de formulários contendo algumas ati-

vidades utilizando como ferramenta para o seu preenchimento uma caneta biométrica com

multi-sensores tem sido aplicada para detecção do mal de Parkinson, efetuando o registro

adquirido para análise da escrita. Entretanto, as informações oriundas da própria imagem

digitalizada do formulário, bem como as mesmas obtidas pela caneta, ainda não foram uti-

lizadas em conjunto para este fim. Desta forma, a presente proposta de tese de doutorado

objetiva a utilização de técnicas de reconhecimento de padrões e processamento de imagens

visando utilizar as diferentes informações provenientes do preenchimento do formulário em

conjunto com dados provenientes da caneta, visando uma possível melhora no processo de

auxílio ao diagnóstico médico do mal de Parkinson. Uma outra contribuição do trabalho é a

criação de uma base de dados multimodal para o auxílio ao diagnóstico do mal de Parkinson.



ABSTRACT

Currently, it is not a trivial task to point out a test that can diagnose accurately enough a pa-

tient with Parkinson’s Disease, as well as it is quit difficult to assess the level of the disease.

Experts recommend the application of different types of tests, many of them based on signs

and biomedical imaging, such as electroencephalogram, computed tomography and magne-

tic resonance to aid the detection of the disease process, since as the age ranges, symptoms

such as fatigue and weakness can hide diagnosis. In order to provide a more effective cli-

nical information to doctors aiming at diagnosis with greater confidence, methodologies to

perform the fusion of different imaging modalities have become increasingly popular and

promising. Recently, the use of forms containing some activities using a biometric pen with

multi-sensors have been applied for the detection of Parkinson’s Disease by means of hand-

writing analysis. However, information derived from the scanned image of the form itself,

and the one obtained by same pen have not been used together for this purpose. Thus, this

proposal aims using pattern recognition techniques and image processing aimed at using the

information from the form together with data from the pen. We believe a possible improve-

ment in the medical diagnosis of Parkinson’s Disease can be archived. Another contribution

of this proposal, is the design of a multimodal database to aid in the diagnosis of Parkinson’s

Disease.
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Capítulo 1
INTRODUÇÃO

Este capítulo discorre sobre o contexto do trabalho, seus objetivos, motivação, e as princi-

pais contribuições, bem como sua organização geral.

1.1 Contextualização

Descrita pela primeira vez pelo médico inglês James Parkinson (PARKINSON, 1817a) e clas-

sificada como uma doença degenerativa, crônica e progressiva, a doença de Parkinson (ou mal

de Parkinson, do inglês Parkinson’s Disease - PD) é uma enfermidade neurológica, que afeta

os movimentos da pessoa, causando tremores, lentidão de movimentos, rigidez muscular e de-

sequilíbrio, além de alterações na fala e escrita (BURKE, 2010a).

Em nosso cérebro, existe uma área do sistema nervoso central conhecida como substância

negra, a qual produz um neurotransmissor conhecido por dopamina (NAVAILLES et al., 2013), que

é responsável pelo controle dos movimentos musculares. O mal de Parkinson ocorre quando as

células nervosas que produzem a dopamina são destruídas, processo este que é realizado lenta-

mente, caracterizando a progressividade dessa enfermidade. Com a ausência de tal substância,

as células nervosas não podem mais enviar mensagens corretamente, ocasionando diversos ou-

tros sintomas, tais como depressão, alterações do sono, diminuição da memória e distúrbios do

sistema nervoso autônomo.

No Brasil, uma a cada quinhentas pessoas desenvolve o quadro da doença, estimando-se

um total de 200 mil pessoas acometidas pelo mal de Parkinson (CORREA, 2016), sendo que uma

a cada cem das pessoas portadoras dessa enfermidade possuem mais de 60 anos de idade. Ela

afeta tanto homens quanto mulheres, não é uma doença fatal e tampouco contagiosa, sendo que

em alguns casos o mal de Parkinson deve-se a causas hereditárias (BURKE, 2010a).
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Recentemente, pesquisas voltadas a encontrar possíveis causas para o surgimento da do-

ença, que ainda continua incurável e progressiva (variável em cada paciente), apontam para a

relação da presença de alumínio na água ingerida com o aumento do processo de inflamação

dos neurônios, o qual está diretamente associado ao mal de Parkinson (BONDY, 2010). Con-

tudo, o estudo não chega a realizar relações de causa e efeito, porém evidencia que o alumínio

pode causar danos aos neurônios. Pesquisadores afirmam que a doença de Parkinson afeta hoje

aproximadamente 5 milhões de pessoas em todo o mundo, é um mal complexo e heterogêneo

que, em 2030, deverá atingir até 10 milhões de indivíduos. Como ainda o diagnóstico depende

dos sintomas para detectar tal doença, geralmente, no momento da avaliação médica, o paciente

já perdeu cerca de 70% dos neurônios dopaminérgicos.

Com o rápido desenvolvimento da tecnologia e o avanço de modernas instrumentações,

técnicas baseadas em aprendizado de máquina e processamento de imagens tornaram-se um

componente vital para um grande número de aplicações médicas. Diversas são as técnicas de

análise e processamento de imagens voltadas à Medicina, tais como a termografia por imagem

infravermelha (Infra-Red - IR), que é utilizada para diagnósticos não invasivos permitindo a

avaliação e quantificação de variações de temperatura na superfície da pele. Já a ressonância

magnética (Magnetic Resonance Imaging - MRI), que também consiste em um exame para di-

agnóstico por imagem, retrata imagens de alta definição dos órgãos através da utilização do

campo magnético dos mesmos. Finalmente, tem-se a tomografia computadorizada (Compu-

terized Tomography - CT), a qual utiliza radiação ionizante (raios-X) e produz imagens que

representam sessões ou “fatias" do corpo (PIELLA, 2003; ZHU; COCHOFF, 2006).

Apesar de contribuírem com informações significativas para auxiliar o diagnóstico, imagens

médicas multimodalidades (imagens oriundas de diferentes técnicas) costumam fornecer infor-

mações complementares e, ocasionalmente, conflitantes. Tome o seguinte exemplo: a imagem

CT pode evidenciar estruturas densas como ossos e implantes com menos distorção, mas não

pode detectar alterações fisiológicas, já MRI, fornece informações de tecidos não rígidos (nor-

mais e patológicos), mas não podem detectar a informação proveniente dos ossos. Assim sendo,

um tipo de imagem pode não ser suficiente para fornecer os requisitos clínicos necessários para

uma boa avaliação médica.

Com o intuito de prover informações clínicas mais eficazes e, consequentemente, propiciar

aos médicos diagnósticos de maior confiança, metodologias para realizar a fusão entre diferen-

tes modalidades de imagens tem se tornado cada vez mais populares e promissoras (ROSS; JAIN,

2003). Barra et al. (BARRA; BOIRE, 2001), por exemplo, apresentam a fusão de imagens anatô-

micas e funcionais do cérebro visando o estudo do mal de Alzheimer e Epilepsia. Já Olszewski



1.1 Contextualização 20

et al. (OLSZEWSKI et al., 2000) propuseram a fusão de imagens de raios-X de angiografia com

imagens de ultra-som intra-vasculares para aplicação de cateteres. Sanches et al. (SANCHES et

al., 2013) aplicaram modelos de imagens tridimensionais combinando informações anatômicas

e funcionais com o intuito de detectar variações de temperatura na superfície do corpo, dado

que essa informação é bastante utilizada na tomada de decisão em diagnósticos médicos.

Recentemente, um avanço entre as tecnologias CT e tomografia por emissão de pósitrons

(Positron Emission Tomographs - PET) tem possibilitado a fusão das imagens anatômicas ge-

radas através da CT às imagens metabólicas do tipo PET. Neste sentido, tem-se a associação

da alta sensibilidade metabólica e resolução de imagens PET à uma correlação anatômica até

então inconcebível, possibilitando, assim, a detecção precoce e a localização precisa de uma le-

são cancerígena (CAMARGO, 2005). Já o laboratório UCLA1 Health (COHEN; GLASPY; PALMER,

2013), uma empresa voltada ao uso dos avanços tecnológicos na saúde, introduziu aperfeiço-

amentos à biopsia de próstata, melhorando consideravelmente a capacidade de distinguir os

homens que devem ter tratamento daqueles que poderiam adiá-lo. Tal avanço pôde ser obtido

por meio da fusão de imagens tridimensionais derivadas da técnica MRI, permitindo, assim,

uma rápida intervenção de forma apropriada.

No contexto da doença de Parkinson, trabalhos voltados a auxiliar o seu diagnóstico tem

apresentado cada vez mais resultados positivos. Spadoto (SPADOTTO et al., 2010b, 2011) pro-

puseram uma aplicação baseada em técnicas evolutivas buscando maximizar a precisão e taxa

de acerto no diagnóstico dessa enfermidade por meio do classificador Floresta de Caminhos

Ótimos (Optimum-Path Forest - OPF) (PAPA; FALCÃO; SUZUKI, 2009; PAPA et al., 2012). Gha-

rehchopogh et al. (GHAREHCHOPOGH; MOHAMMADI, 2013a) utilizaram redes neurais artificiais

(Artificial Neural Networks - ANNs) com perceptron multicamadas (Multi-Layer Perceptron -

MLP) para diagnosticar os efeitos causados pelo mal de Parkinson. Já Panet et al. (PAN et al.,

2012a) analisaram o desempenho de máquinas de vetores de suporte (Support Vector Machi-

nes - SVMs), ANN-MLP e redes neurais de função de base radial para comparar o início do

tremor em pacientes com mal de Parkinson. Estudos realizados por Watters et al. (WATTERS;

PATEL, 1999) por meio de ANNs evidenciaram a degradação das vias dopaminérgicas do cé-

rebro, indicando que o sistema semântico é o que sofre o maior prejuízo, ocasionando, assim,

respostas mais lentas com uma quantidade maior de erros em tarefas de avaliação semântica em

um paciente com mal de Parkinson.

Haller et al. (HALLER et al., 2012) propuseram um sistema de auxílio ao diagnóstico do mal

de Parkinson utilizando SVM e imagens de ressonância magnética por difusão. Esse tipo de

1UCLA - University of California at Los Angeles
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imagem pode fornecer informações importantes sobre o processo de conexão entre diferentes

regiões do cérebro. O trabalho em questão partiu do pressuposto de que pacientes com PD

possuem regiões do cérebro que são afetadas e, consequentemente, podem ser identificadas

visualmente. Já Gadav et al. (YADAV; KUMAR; SAHOO, 2011) apresentaram um modelo para

identificação de pessoas com PD por meio de sinais da fala, dado que o trato vocal também é

atingido por essa doença. Na ocasião, os pesquisadores também fizeram uso do classificador

SVM. Vários outros trabalhos objetivaram a detecção do mal de Parkinson utilizando redes

neurais, tais como Wu et al. (WU et al., 2010), os quais aplicaram redes neurais com função

de base radial na identificação de tremores, e Manap et al. (MANAP; TAHIR; YASSIN, 2011) que

utilizaram redes neurais para identificação de padrões no modo de andar de pessoas saudáveis

e pacientes com PD.

Pesquisas realizadas pelo Prof. Dr. Christian Hook (PEUEKER; SCHARFENBERG; HOOK,

2011) (Departamento de Matemática, Faculdade de Ciências de Regensburg - Alemanha) e sua

equipe resultaram no projeto de uma caneta biométrica inteligente 2 visando a identificação de

pessoas por meio de sua assinatura. Tal dispositivo registra as sutilezas com que um indivíduo

realiza a tarefa de escrita, sendo que a análise computacional desses dados define uma informa-

ção única para cada pessoa. Essa característica somente é possível por meio de seus sensores,

os quais detectam a pressão com a qual uma pessoa segura a caneta, bem como sua inclinação

e possíveis tremores durante o processo de escrita. Posteriormente, os pesquisadores envolvi-

dos notaram que essa caneta poderia auxiliar no diagnóstico do mal de Parkinson devido às

informações extraídas por meio de seus sensores.

Esta constatação deu início a um projeto de pesquisa coordenado pela professora e pesquisa-

dora Dra. Silke Anna Theresa Weber, médica otorrinolaringologista da Faculdade de Medicina

de Botucatu (FMB) da Universidade Estadual Paulista “Júlio de Mesquita Filho", o qual obje-

tivou a viabilidade da utilização da caneta em diagnósticos do mal de Parkinson, dado que tais

diagnósticos hoje em dia são realizados por meio de preenchimento de formulários pelos paci-

entes. Neste caso, é requisitado aos mesmos que executem algumas operações neste formulário

(contornar algumas figuras, por exemplo), o qual será processado posteriormente no intuito de

revelar o nível da doença (EICHHORN et al., 1996a; ÜNLü; BRAUSE; KRAKOW, 2006).

A análise desses formulários é ainda amplamente utilizada por médicos e pesquisadores

para um diagnóstico precoce do mal de Parkinson. Muito embora essa metodologia seja bas-

tante eficaz, a mesma é dependente da interpretação de cada profissional, bem como o grande

número de exames a serem analisados podem levar a diagnósticos cada vez menos precisos,

2Biometric Smart Pen - BiSP®
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principalmente, devido à fadiga causada pelo excesso de trabalho.

Apesar desses formulários serem ainda muito utilizados no processo de detecção do mal

de Parkinson, não se tem evidências sobre a fusão das informações oriundas do formulário

(informações visuais) com as provenientes da caneta. Alguns poucos trabalhos apresentam

a fusão de informações recebidas por diferentes sensores espalhados pelo corpo no contexto

deste trabalho. Bahrepour et al. (BAHREPOUR et al., 2011), por exemplo, utilizam sensores sem

fio anexados ao corpo do paciente com o intuito de monitorar, física e psicologicamente, suas

condições, enviando, assim, os sinais a um receptor encarregado pelo processo de fusão dos

dados dos sensores visando o diagnóstico do mal de Parkinson. Long et al. (LONG et al., 2012)

propuseram um sistema para auxiliar o processo de identificação de pacientes com PD por meio

de imagens obtidas por duas diferentes fontes: imagens de ressonância magnética funcionais

por estado de descanso (Resting state functional MRI - rsfMRI) em conjunto com imagens MRI

convencionais. O processo de classificação foi realizado por meio da técnica SVM.

1.2 Objetivos

Diversas são as técnicas utilizadas na área médica que visam encontrar um diagnóstico pre-

ciso que possa, trazer benefícios ao paciente, ou até mesmo a cura de sua enfermidade. Após

um estudo detalhado sobre a doença de Parkinson e, através dos resultados obtidos por diver-

sas publicações, a seguinte tese apresenta uma nova proposta baseada em análise de resultados

obtidos através do uso de processamento de imagens e sinais, tendo para tal, dois principais

objetivos: (i) a extração de informações baseada em características obtidas através do preen-

chimento de formulários desenvolvidos especialmente para a análise de pacientes com mal de

Parkinson, (ii) a criação de uma base de dados de imagens e sinais obtidos através de uma ca-

neta inteligente, sobre a qual serão aplicadas técnicas de aprendizado de máquina com o intuito

de analisar as informações extraídas auxiliando, assim, no processo de decisão levando a um

possível diagnóstico mais preciso da doença.

1.3 Motivação

Embora a motivação principal dessa pesquisa tivesse seu foco voltado à análise das informa-

ções obtidas através das extrações de características realizadas nas imagens, bem como os sinais

obtidos com a caneta visando um melhor resultado para o diagnóstico do mal de Parkinson, ou-

tra contribuição de grande importância para a comunidade científica será o desenvolvimento de
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uma nova base de dados de imagens e seus respectivos sinais (estes obtidos através da caneta),

estando a mesma já disponível para a comunidade científica.

Dado o contexto apresentado, a presente tese foi motivada em prover um método automático

baseado na utilização de técnicas de reconhecimento de padrões e processamento de imagens,

visando extrair informações visuais através de formulários utilizados para o diagnóstico do mal

de Parkinson. Foram também utilizadas técnicas de mineração de dados para esse processo,

bem como o emprego da metodologia de processamento de sinais utilizando informações pro-

venientes de uma “caneta inteligente"3.

1.4 Principais Contribuições

Geralmente uma pesquisa é dividida em três etapas, sendo: (i) fundamentação da proposta

(revisão da literatura), (ii) desenvolvimento, e por fim, (iii) validação, podendo estas serem con-

duzidas paralelamente. Para essa tese, na etapa (i) que compreende o Capitulo 2, foi efetuado

um levantamento minucioso entre as técnicas adotadas no processo de diagnóstico do mal de

Parkinson, onde uma revisão bibliográfica abordou a utilização de diversas técnicas, tanto na

área médica quanto na área tecnológica, trazendo os principais trabalhos e abordagens aplicados

na atualidade, bem como os resultados obtidos por meio deles.

Já na etapa (ii), contida na seção 3.2 do Capítulo 3, foi realizado o processo de coleta de da-

dos em conjunto com as pessoas portadoras da doença, bem como indivíduos saudáveis, sendo

essa coleta realizada diversas vezes com o intuito de obter uma maior robustez na qualidade dos

dados, o que nos motivou através das características adquiridas com essa coleta, disponibilizar

dois formatos de base de dados para trabalhos futuros. Por fim, na etapa (iii) é apresentado ao

final de todos os Capítulos dessa tese, os resultados obtidos durante o processo de experimentos

realizados por meio das bases de dados desenvolvidas.

1.5 Organização

Esta tese de doutorado está organizada em sete capítulos. Neste capítulo apresentamos o

contexto no qual a proposta da pesquisa está inserida, bem como sua motivação e as principais

contribuições para o tema abordado. No Capítulo 2, é apresentada uma revisão bibliográfica

dos temas que estão relacionados à esta pesquisa, bem como as técnicas utilizadas e seus re-

sultados. Já no Capítulo 3, é apresentada a metodologia utilizada para aquisição dos dados, as

3(Biometric Smart Pen - BiSP®)
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técnicas aplicadas e os resultados obtidos com os experimentos realizados no processamento

das imagens. No Capítulo 4 é realizado um diagnóstico por meio da dinâmica de escrita, e o

Capítulo ?? apresenta um trabalho semelhante ao apresentado no capítulo anterior, porém, apli-

cado agora em sinais e não mais em imagens. No Capítulo 6 são apresentados os resultados da

técnica de Máquinas Restritas de Boltzmann aplicadas em imagens para auxiliar no diagnóstico

do Mal de Parkinson. Finalmente, no Capítulo 7 são apresentadas as conclusões e limitações

de pesquisa, assim como as lições aprendidas e oportunidades futuras. Também neste Capítulo,

são apresentados os trabalhos aceitos para publicação na Seção 7.1, bem como, trabalhos que

se encontram no processo de avaliação na Seção 7.2.



Capítulo 2
REVISÃO BIBLIOGRÁFICA

Este capítulo apresenta uma coletânea de artigos voltados ao assunto abordado nesta tese. O

mesmo foi realizado visando apenas trabalhos recentes (publicados em 2015 e 2016), e teve sua

submissão realizada para a revista Artificial Intelligence in Medicine - (AIIM) 1, onde encontra-

se no aguardo dos pareceres de seus revisores.

2.1 Introduction

Parkinson’s Disease, firstly described by the English and physician James Parkinson (PAR-

KINSON, 1817b) in 1817, is a chronic, progressive and neuron-degenerative illness that affects

people worldwide. Although there is a number of possible symptoms, PD is often related to

progressive bradysinesia, i.e. the slowness of movement, as well as tremors and muscle stiff-

ness, which can worsen over time. Also, PD patients usually feature changes in speech and

writing skills (BURKE, 2010b).

Currently, approximately 60,000 Americans are diagnosed with PD (FUNDATION, ). Howe-

ver, such statistics may be underestimated, since thousands of potential individuals remain un-

covered by exams or any sort of clinical diagnosis. As a matter of fact, around 7 to 10 million

people might be living with PD nowadays, which turns out to be a problem of public health that

deserves a considerable attention.

The main cause of Parkinson’s Disease is related to the degeneration of a small part of the

brain, the so-called substantia nigra. As soon as the cells from this region start to die, the brain

becomes deprived of a chemical substance known as dopamine, which allows the brain cells

to get involved in the control of movement. Therefore, the lower the levels of dopamine, the

1https://www.journals.elsevier.com/artificial-intelligence-in-medicine
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higher the probability of being affected by Parkinson’s Disease (BURKE, 2010b). As such, with

the absence of such substance, the brain cells can no longer send messages properly, causing

depression, sleep disturbances, memory impairment and disorders related to the autonomic ner-

vous system. Additionally, PD also may be triggered by hereditary causes (BURKE, 2010b).

Since it has no cure, several chemical methods have been used to treat Parkinson’s Disease in

its early stages, being the Levodopa (L-dopa) one of the most widely used for such purpose.

In order to better manage such disease and to increase the life quality of PD patients, a

bundle of researchers from different areas have worked together. As such, the literature is rich

in a number of different works, that range from chemical- and behavioral-driven studies to

computer-assisted diagnosis. The main contribution of this work relies on the latter approaches,

which make use of computer tools to help researchers when handling the diagnosis of Parkin-

son’s Disease in a faster and more effective way. In this survey, we tried to compile the most

prominent works related to computer methods to automatic identify PD, as well as to help its

diagnosis.

In order to give you a taste of what is going on concerning this research field, most works

make use of artificial intelligence (i.e. machine learning) to learn the most important featu-

res that can be considered when diagnosing some individual. Spadotto et al. (SPADOTTO et

al., 2010b), for instance, introduced the Optimum-Path Forest (OPF) (PAPA; FALCÃO; SUZUKI,

2009; PAPA et al., 2012) classifier to aid the automatic identification of Parkinson’s Disease, and

later on the same group of authors proposed an evolutionary-based approach to select the most

discriminative set of features that help improving PD recognition rates (SPADOTTO et al., 2011).

The OPF classifier seemed to be a suitable tool, since it is parameterless and easy-to-manage.

Pan et al. (PAN et al., 2012b) analyzed the performance of Support Vector Machines with

Radial Basis Function (SVM-RBF) in order to compare the onset of tremor in patients with

Parkinson’s disease. Gharehchopogh et al. (GHAREHCHOPOGH; MOHAMMADI, 2013b) used Ar-

tificial Neural Networks with Multi-Layer Perceptron to diagnose the effects caused by Parkin-

son’s disease. One year later, Hariharan et al. (HARIHARAN; POLAT; SINDHU, 2014) developed a

new feature weighting method using Gaussian Mixture Models to enrich the discriminative abi-

lity of some dysphonia-based features, thus achieving 100% of classification accuracy. Peker et

al. (PEKER; SEN; DELEN, 2015) used sound-based features and complex-valued neural networks

to aid PD diagnosis as well.

As one can observe, most works that address PD automatic recognition cope with voice-

based data. Procedures to identify voiced and unvoiced (silent) periods have been actively

pursued to analyze continuous speech samples, since most techniques that quantify periodicity
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and regularity in voice signals are applied in the voiced regions only (SHAHBAKHI; FAR; TAHAMI,

2014). Das (DAS, 2010) presented a comparison of multiple classification methods for the

diagnosis of PD, among them Neural Networks, and Regression and Decision Trees. Several

evaluation methods were employed to calculate the performance of that classifiers, being the

experiments conducted in a dataset composed of a range of biomedical voice measurements

from 31 people, in which 23 diagnosed with Parkinson’s disease. The best results were obtained

by Neural Networks (around 92.9% of PD recognition rate). In 2014, Weber et al. (WEBER et

al., 2014) used a biometric pen together with SVMs to learn handwritten dynamics from PD

patients.

Although they are outnumbered when compared to signal-driven applications, image processing-

based approaches have been used to detect Parkinson’s Disease either. Recently, Pereira et

al. (PEREIRA et al., 2015) proposed to extract features from writing exams using visual features

learned from drawings the patients were asked to do. The authors also designed and made avai-

lable a dataset called “HandPD" with all images and features extracted from the handwriting

exams2.

In regard to enabling technologies to aid patients with PD, we have compiled eight revi-

ews. Bhande and Raut (BIND; TIWARI; SAHANI, 2013), in 2013, presented a brief analysis to

illustrate the merits of a number of available research techniques based on neural networks.

More recently, in 2015, Oung et al. (OUNG et al., 2015) carried out a review on technologies

for the assessment of motor disorders in PD, considering, for example, wearable, audio, and

multimodal sensors. In the same year, Bind et al. (BIND; TIWARI; SAHANI, 2015) presented a

comprehensive review concerning the prediction of Parkinson’s Disease by means of machine

learning techniques.

Pasluosta et al. (PASLUOSTA et al., 2015) focused on PD as a representative disease model

by evaluating the Internet-of-Things (IoT) platform in the context of healthcare. The authors

considered the potential of combining wearable technology with the IoT in the healthcare sce-

nario, as well as the engagement of patients in the assessment of symptoms, diagnosis, and

consecutive treatment options. Zhao et al. (ZHAO et al., 2015) also analyzed E-health support in

PD, but now with smart glasses.

Harris et al. (HARRIS et al., 2015) carried out a review about the so-called exergaming (i.e.

the combination of exercising with games) as a viable therapeutic tool to improve static and

dynamic balance. Stamford et al. (STAMFORD; SCHMIDT; FRIEDL, 2015), in 2015, assessed the

use of different engineering technologies in the context of PD diagnosis. Ekker et al. (EKKER et

2http://wwwp.fc.unesp.br/~papa/pub/datasets/Handpd/
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al., 2016) conducted a study about visual rehabilitation by means of wearable devices, making

use of the telemedicine for neurorehabilitation in PD-affected patients.

As aforementioned, we aim at putting together a number of works that attempt to handle the

problem of automatic PD diagnosis, since the literature lacks on a more recent compilation of

related works. We present an extensive comparison about different methodologies to deal with

Parkinson’s Disease using machine learning techniques. The reminder of this paper is organized

as follows. Chapter 2.2 presents the methodology employed to conduct this review, as well as

the different techniques used in the papers referred in this work. Chapter 2.3 presents several

datasets employed in some related works, and Chapter 2.4 discusses the research that have been

conducted to cope with PD. Finally, Chapter 2.5 states conclusions and future tendencies.

2.2 Enabling Technologies

In order to select works within the scope addressed in this systematic review, a relevant

search in Science Direct, IEEEXplore, PubMed, Plos One, Multidisciplinary Digital Publishing

Institute (MDPI), Association for Computing Machinery (ACM), Springer and Hindawi Pu-

blishing Corporation databases was carried out. To this end, only two key words were consi-

dered for searching purposes: (i) “Parkinson’s Disease" and (ii) “Parkinsonian". The main idea

is to make the selection of works fairly tiresome, but quite able to cover a total of 84 recent

works published in between 2015 (76 works) and early 2016 (8 works). Some works published

in 2014 and earlier were briefly discussed in the previous section.

The next sections describe in deeper details the works divided by their main application do-

main, i.e. web application, sensors, virtual and augmented reality, smartphone devices, signals

analysis, image processing and machine learning.

2.2.1 Machine Learning

Machine Learning is a branch of computational intelligence dedicated to the development of

algorithms that enable a computer program to improve its performance based on prior (learned)

information. Since the very beginning of “Perceptron", new mathematical modelings of the

working mechanism of the brain have been pursued daily. Such intense research has motivated

a number of works that aimed at using machine learning-oriented techniques to aid Parkinson’s

Disease recognition.

Drotár et al. (DROTAR et al., 2015), for instance, proposed to study some features based on
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entropy, energy and intrinsic measures of the handwriting skills of an individual. The authors

also considered applying such measures to in-air movements and pressure to exploit the full

potential of the handwriting for the classification of PD over the “Parkinsonian Handwriting"

(PaHaw) database. SVM-RBF kernel was used for classification purposes, achieving around

90% of prediction performance. Connolly et al. (CONNOLLY et al., 2015) applied Support Vector

Machines upon local field potentials sensed from an implanted deep brain stimulation device.

For such analysis, 83 montages were recorded from 15 patients suffering from advanced idio-

pathic PD, thus obtaining an accuracy rate of 91%.

Wahid et al. (WAHID et al., 2015) presented a study with two main contributions: firstly, they

used a multiple regression normalization strategy to identify differences in spatial-temporal

gait features between PD patients and control (healthy) individuals. Secondly, they evaluated

the effectiveness of machine learning strategies in classifying PD gait after multiple regres-

sion normalization. The authors argued the study has important implications for the analysis

of spatial-temporal gait data concerning the diagnosis of PD, as well as the evaluation of its

severity.

Smith et al. (SMITH et al., 2015) employed evolutionary algorithms to provide clinically rele-

vant and objective measures to identify PD both in humans and animal models. Their work used

Cartesian Genetic Programming, thus showing such technique can be successfully applied to the

assessment of movements in humans when distinguishing PD patients from healthy controls, as

well as to classify severity of dyskinesia in patients. Hirschauer et al. (HIRSCHAUER; ADELI;

BUFORD, 2015) presented a comprehensive model for the diagnosis of PD based on motor, non-

motor, and neuroimaging features using Enhanced Probabilistic Neural Networks (AHMADLOU;

ADELI, 2010), a machine learning technique that make use of local decision circles surrounding

training samples to control the spread of the Gaussian kernel. Using the Parkinson’s Progres-

sion Markers Initiative (PPMI)3 dataset, the proposed approach obtained an accuracy of 98.6%

when classifying healthy people from PD patients, and 92.5% of recognition rate when dealing

with data of six clinical exams and functional neuroimaging data for two regions of interest of

the brain.

Segovia et al. (SEGOVIA et al., 2015) demonstrated a new method based on SVMs and Baye-

sian networks to separate idiopathic Parkinson’s Disease from atypical parkinsonian syndro-

mes. Their methodology achieved an accuracy rate over 78%, a reasonable result between

sensitivity and specificity, suggesting the proposed method is suitable to assist the diagnosis of

PD. Cook et al. (COOK; SCHMITTER-EDGECOMBE; DAWADI, 2015) proposed to employ a com-

3http://www.ppmi-info.org/access-data-specimens/download-data/
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bination between smart home and machine learning technologies to observe and quantify the

behavioural changes of PD patients. The main focus is to aid the clinical assessment and a bet-

ter understanding of the differences between healthy older adults (HOA) and older adults with

cognitive and physical impairments, also classified by the authors as mild cognitive impairment

(MCI). The results indicated that smart homes, wearable devices and ubiquitous computing te-

chnologies can be useful for monitoring the activity of PD patients, as well as to pinpoint the

differences between HOAs and older adults with PD or MCI. However, the authors described

some limitations concerning the devices, such as to operate in settings with multiple residents

and interrupted activities.

In 2015, Shamir et al. (SHAMIR et al., 2015) proposed an approach called Clinical Decision

Support Systems (CDSS) to examine the results of the incorporation of patient-specific symp-

toms and medications into three key functions: (i) information retrieval; (ii) visualization of

treatment; and (iii) recommendation on expected effective stimulation and drug dosages. In or-

der to fulfil this purpose, the authors used Naïve Bayes, Support Vector Machines and Random

Forest to predict the treatment outcomes. The combined machine learning algorithms were able

to accurately predict 86% of the motor improvement scores at one year after surgery.

Tucker et al. (TUCKER et al., 2015) proposed a low-cost data mining-driven approach com-

posed of non-wearable multimodal sensors to model and predict a PD patient’s adherence to

medication protocols based on variations in their gait. Using whole-body movement data rea-

dings from the patients, it is possible to discriminate PD patients that are “on" or “off" medica-

tion with an accuracy of 97% for some patients using an individually customized model, and an

accuracy of 78% considering a generalized model containing multiple patient gait data.

Procházka et al. (PROCHáZKA et al., 2015) presented a novel method of Bayesian gait re-

cognition using a Kinect sensor (data acquisition and spatial modelling) combined with signal

processing techniques and Bayesian classifier for gait feature analysis aiming at recognizing

individuals affected by Parkinson’s disease (the authors achieved an accuracy of 94.1% in this

study). Singh and Samavedham (SINGH; SAMAVEDHAM, 2015a) proposed an innovative and

effective approach for monitoring the disease progression and clinical diagnosis, which is based

on the combination of Self-Organizing Maps and Least Squares Support Vector Machines. The

proposed approach can achieve an accuracy of up to 97% concerning the differential diagnosis

of PD using the PPMI dataset. The same group of authors used unsupervised learning techni-

ques to identify reliable biomarkers to aid the diagnosis of neurodegenerative diseases (SINGH;

SAMAVEDHAM, 2015b). The authors obtained a classification accuracy of up to 99% for the

differential diagnosis of PD.
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2.2.2 Image Analysis

Zhang et al. (ZHANG et al., 2015) tested the hypothesis that changes in cortical thinning can

be detected in PD patients without dementia, as well as these changes are correlated with mea-

sured cognitive decline thought its relationships to cognitive impairment using high-resolution

T1 weighted magnetic resonance images (MRI) of the brain. An advanced hierarchical mul-

tivariate Bayesian model to analyze the cortical thickness measurement and thinning pattern

was adopted, with suitable results observed. Szymanski et al. (SZYMANSKI et al., 2015) used

WEKA (HALL et al., 2009) and Rough Set Exploration System data mining methods to analyze

neurological data of PD patients with the local cerebral blood flow (CBF) measured by the

Single-Photon Emission Computed Tomography (SPECT). The results were correlated with

the Unified Parkinson’s Disease Rating Scale, being possible to demonstrate that CBF changes

suggest that a general state of PD is stronger related to the CBF than to only motor symptoms.

Paredes et al. (PAREDES et al., 2015) developed the e-Motion Capture System, which is a

Kinect-based software to calculate motor (cadence, stride and step length) and spatio-temporal

(velocity and acceleration) parameters that affect the quality of life in patients with PD. In order

to assess the reliability of the proposed system as a benchmark reference, a multiple-camera

3D motion capture system to track the gait pattern during a walking test was employed. The

authors stated the e-Motion Capture System was able to measure the motor and spatial-temporal

variables that are sensitive to changes in the timeline of the disease.

Hewavitharanage et al. (HEWAVITHARANAGE et al., 2015) applied a grey-level dependence

matrix in order to segment the rima glottidis4 in 4D laryngeal Computed Tomography (CT)

scans in PD patients in order to identify vocal impairments. The SVM-based segmentation

algorithm showed to be useful in distinguishing the rima glottidis area from the remaining

tissues of the larynx. Bhalchandra et al. (BHALCHANDRA et al., 2015) used image analysis to

segment the high-activity regions of the brain using SPECT images. Such regions correspond

to the concentration of the striatal dopamine transporter, which is in charge of transmitting the

dopamine substance related to the motor control. An accuracy rate of 99.42% was achieved

by means of Discriminant Analysis and Support Vector Machines. In the same year, Wu et

al. (WU et al., 2015) analyzed the application of Auto-Regressive (AR) models to describe the

stochastic process underlying stride series of idiopathic PD patients, which are used as features

to distinguish the PD stride series from the healthy normal cases. The Linear Discriminant

Analysis (LDA) and Support Vector Machines were employed, being SVM better than LDA for

the separation of both healthy and idiopathic PD groups, with relatively high sensitivity (0.72),

4An opening between the true vocal cords and the arytenoid cartilages.
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specificity (0.89), and area under the curve (0.83) values, showing the autoregressive model

parameters could be useful for the classification of stride series.

Rocha et al. (ROCHA et al., 2015) investigated the impact of a recent version of Kinect (ver-

sion 2) in the context of PD clinical assessment when compared against the former Kinect

(version 1) over 3D body data acquired from normal and PD patients treated with deep brain

stimulation. In order to validate the methods, the statistical analysis showed it is possible to

highlight the gait parameters are useful to distinguish between non-PD and PD patients with

96% of accuracy concerning the new version of Kinect, as well as 72% considering the former

Kinect device.

Li et al. (LI et al., 2016) collected data from 10 patients (6 men and 4 women) with Par-

kinson’s Disease acquired by means of sensors implanted with deep brain stimulation devices.

Since the literature points the subthalamic nucleus (STN) as one of the most important regi-

ons of the brain concerning the treatment of PD patients, the authors developed an automated

algorithm for MRI data using the Level Set method for image segmentation in order to aid

neurosurgeons to better place the electrodes in the brain. In short, this algorithm seeks to faci-

litate neurosurgeons in the preoperative process and provides clinical guidance for reducing the

repeated intraoperative adjustments, as well as the risk of bleeding.

Wabnegger et al. (WABNEGGER et al., 2015) investigated the use of facial emotion recog-

nition in PD to compare brain activation during emotion perception between PD patients and

healthy controls. The participants were shown pictures of different facial expressions, while the

brain activity was captured by means of functional Magnetic Resonance Imaging (fMRI). The

study did not conclude whether PD patients and the control group have enough discrepancies in

such context or not. However, other works (CLARK; NEARGARDER; GOLOMB, 2008; SUZUKI et

al., 2006) reported the lack of emotions in some group of patients.

Castellanos et al. (CASTELLANOS et al., 2015) analyzed an automated method to segment

the substantia nigra and locus coeruleus volumes based on Neuromelanin-Sensitive MRI (NM-

MRI) in patients with idiopathic (when the source of the disease is unknown) and monogenic

(genetic inheritance pattern determined by a single gene) PD patients. The authors found evi-

dences that NM-MRI can provide highly accurate diagnosis. Gilat et al. (GILAT et al., 2015) used

a virtual reality paradigm in combination with fMRI to explore the neural correlatation in 17

PD patients with freezing of gait (FoG), and 10 PD patients without FoG while off their dopa-

minergic medication. The results state the PD patients with FoG show alterations in the blood

oxygen level responses across regions that implicate the prospective recruitment of a stopping

network, which may be manifested pathologically as a freeze when the sensorimotor processing
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becomes more complex.

Feis et al. (FEIS et al., 2015) introduced a multimodal approach to model symptom sides at

disease onset in brain morphology based on different aspects of diffusion MR parameters and

multi-kernel support vector classification. They consider these results as a major step in further

predictive clinical models of Parkinson’s Disease by incorporating the many clinical aspects

that determine the progression of the disease.

2.2.3 Signal Analysis

Karamintziou et al. (KARAMINTZIOU et al., 2015) presented a novel approach based on

closed-loop deep brain stimulation system for PD treatment. The proposed work operates ac-

cording to an online real-time algorithm that integrates a sensitive biomarker approach together

with an improved modification of a stochastic dynamical phase model. The approach is va-

lidated as a control parameter, as well as its potential to support on-demand stimulation with

enfolds the dynamics of adaptive stimulation and the minimum-energy desynchronizing control

of neuronal activity.

Villa-Canãs et al. (VILLA-CAÑAS et al., 2015) analyzed the low-frequency components of

continuous speech signals uttered by PD patients using four-time-frequency approaches based

on Wigner-Ville distribution. The idea is to determine whether the features associated to chan-

ges in the spectrum can be used to identify the tremor in speech signals of PD patientsor not.

The spectra are characterized based on energy analysis and spectral centroids, and the automatic

detection is carried out using Support Vector Machines. The authors achieved around 72% of

accuracy when discriminating between PD and healthy speakers.

Restrepo-Agudelo and Roldán-Vasco (RESTREPO-AGUDELO; ROLDáN-VASCO, 2015) deve-

loped a method to simulate the intracranial signals recorded during a deep brain stimulation

surgery of a patient with Parkinson’s Disease. The method, called Auto-Regressive Parametric

Model, allowed the reconstruction of the signal in time-domain with an accuracy nearly to 95%

with respect to the real and simulated signals. Su and Chuang (SU; CHUANG, 2015) adopted

a fuzzy entropy-based dynamic feature selection approach that showed to be effective to re-

move insignificant features concerning speech pattern classification of PD patients. The authors

used Linear Discriminant Analysis to distinguish voice samples between PD patients and health

people, thus obtaining an accuracy rate up to 97.5%.

Handojoseno et al. (HANDOJOSENO et al., 2015) investigated the brain dynamic changes as-

sociated with freezing of gait during turning using (electroencephalogram) EEG signals, which
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were classified via Levenberg Marquardt and Backpropagation Neural Networks. The authors

achieved an accuracy of 71%, showing that gait during turning is associated with significant

alterations in the high beta and theta power spectral densities across the occipital and parietal

areas, being the visual cortex region an optimal reference location for the detection of a turning

freeze. According to the authors, this is the first study that shows cortical dynamic changes

associated with freezing of gait during turning.

Smekal et al. (SMEKAL et al., 2015) carried out an acoustic analysis of hypokinetic dysarthria

in patients with PD to identify vowels in Czech language, introducing a new speech feature

based on empirical mode decomposition that increases global performance when combined

with the sequential forward feature selection technique. The authors observed an accuracy rate

of 94% concerning different vowels identification in PD patients. Mekyska et al. (MEKYSKA et

al., 2015) carried out a complex acoustic analysis of phonation in patients with PD focusing on

the estimation of the disease progress, being able to identify vowels whose analysis provides

best estimation of particular clinical scores used for assessment. The authors introduced a new

concept of PD progress quantification based on acoustic analysis of phonation and Random

Forests, achieving a sensitivity of 92.86% and specificity of 85.71%.

Ruonala et al. (RUONALA et al., 2015) investigated the effects of a commonly used antipar-

kinsonian medication (levodopa) on cardiac autonomic regulation. The functioning of autono-

mic nervous system during levodopa medication was examined in patients with advanced PD.

Resting state electrocardiogram measurements were performed over 11 patients with idiopathic

PD 30 minutes before the administration of levodopa, where the heart rate variability measure-

ments show that parasympathetic nervous system activity is decreased and the sympatho-vagal

balance is shifted towards sympathetic control. Later on, i.e. 60 minutes after the administration

of levedopa, the parasympathetic nervous system activates slightly, thus causing a decrease in

the heart rate.

Arnulfo et al. (ARNULFO et al., 2015) characterized and compared the spiking and bursting

activity in the dorsolateral and ventral subthalamic nucleus sub-regions using intra operative

multi-electrode recordings and highly accurate channel localization techniques in PD patients,

suggesting the existing functional difference among subthalamic nucleus regions possibly ari-

ses from different network connections rather than intrinsic neuronal properties. Dai et al. (DAI

et al., 2015) proposed a novel method based on the empirical mode decomposition to filtered

electromyograms (EMG), which makes use of a flexible number of features for PD detection.

The signals were preprocessed in three stages by means of a novel bandpass filtering techni-

que in order to show the features are linearly separable. Later, the proposed algorithm was
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implemented as a mobile application to be more flexible than the existing methods.

Eftaxias et al. (EFTAXIAS et al., 2015) presented a new hybrid-constrained complex singular

spectrum analysis method for the assessment of Parkinson’s tremor by the separation of real

EMG signals, in which the characteristics of tremor within a subspace of the single channel

surface were measured during the prescribed hand movement (including flexion and extension),

and further decomposed using singular spectrum analysis. The method showed a great potential

for biomedical multichannel signal processing. Mohammed et al. (MOHAMMED et al., 2015)

proposed the use of patient-specific dynamic feature extraction via Local field potential signal

combined with adaptive Support Vector Machines that uses the selected features when detecting

PD or non-PD patients by adjusting its decision boundary until a suitable model is obtained. The

authors achieved a classification accuracy greater than 98%.

Belalcazar-Bolanos et al. (BELALCAZAR-BOLANOS et al., 2015) proposed the estimation of

the different glottal flow features by means of the Iterative and/or Adaptive Inverse Filtering

considering the nonlinear dynamic behavior of the vocal folds (Spanish vowels) to detect PD.

The authors obtained accuracy rates of up to 75.3%, sensitivity of 0.79, and specificity of

0.72 when all vowels are considered in the experiments. Iuppariello et al. (IUPPARIELLO et

al., 2015) defined a new kinematic index to evaluate the smoothness of the movements based

on the minimum-jerk theory. The work aimed at studying the kinematic quality and the mo-

tor composition of visually-guided reaching movements from people with PD by applying a

sub-movement decomposition method based on a mixture of Gaussian pulses.

Alekhya and Chakravarthy (ALEKHYA; CHAKRAVARTHY, 2015) developed a 2D spiking

network to analyze the cognitive aspects of PD during medication and deep brain stimulation.

The authors observed the eletrode’s position and current spread independently lead to a critical

change in performance levels, as well as the work shows that simulated PD “on" medication

performed poorly compared to healthy individuals. Thanawattano et al. (THANAWATTANO et

al., 2015) developed and analyzed the performance of a novel feature based on the hypothe-

sis that PD patients have more temporal fluctuation of tremor while performing resting tasks

than action tasks. The signals were acquired via a gyroscope sensor attached to the subject’s

finger. The tremor fluctuation was defined as the area of 95% of a confidence ellipse cove-

ring the two-dimensional signal considering 32 PD and 20 patients diagnosed with Essential

Tremor (ET). The proposed work was able to discriminate PD from ET patients with 100% of

accuracy. Camara et al. (CAMARA et al., ) developed an automatic real-time system for resting

tremor episode detection in 10 PD patients using fuzzy models. In regard to the classification

step, electrophysiological signals obtained from Local field potential (recorded in the STN) and
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electromyography were adopted, achieving accuracies of 98.7%.

Recent studies have pointed out that besides the freezing of gait, many people with Par-

kinson’s disease also suffer from freezing in the upper limbs (FoUL). In order to investigate

whether upper limb freezing and other abnormalities during writing are provoked by gradual

changes in amplitude sustained in patients with and without freezing of gait or not, Heremans et

al. (HEREMANS et al., 2015) collected signs of 34 patients with PD, being 17 with and 17 without

FoG. The experiments were conducted on a touch-sensitive writing tablet, which confirms the

hypothesis that some patients with FoG also suffer from FoUL.

In another paper, Chomiak et al. (CHOMIAK et al., 2015) analyzed patients with FoG by me-

ans of a 4th generation iPod Touch sensor in order to capture data from hip flexion and step

height. The work examined whether stepping-in-place with a concurrent mental task (e.g., sub-

traction) can be used as a simple method for evaluating cognitive-motor deficits in people with

PD or not. The results indicated that during concurrent tasks, the step height of PD patients with

FoG was significantly worse than PD patients with non-freezing of gate and control individuals.

Defazio et al. (DEFAZIO et al., 2015) analyzed 48 people with Parkinson’s Disease and 37

healthy subjects by means of voice/speech measurements using the Robertson Dysarthria Profile

(RDP), which is a clinical-perceptual method to explore all components potentially involved in

speech difficulties. The approach used in this work observed that patients with early PD would

theoretically express less severe voice/speech symptoms. The conclusions suggested that RDP

may be a useful tool to detect speech/voice disturbances in early PD patients, even when these

disturbances do not carry a significant level of disability.

Lancioni et al. (LANCIONI et al., 2015) evaluated the use of technology-aided leisure and

communication tools (music and videos, verbal statements/requests, reading, text messaging,

telephone calls and prayers) on three participants with advanced PD that possessed minimal or

unreliable motor responses, being unable to operate conventional interface devices. The obtai-

ned results were more promissor and relevant given the limited amount of evidence available on

helping persons affected by PD with leisure and communication. Braatz and Coleman (BRAATZ;

COLEMAN, 2015) proposed a mathematical model based on the biochemical systems theory to

examine the changes that occur over the course of the Parkinson’s Disease, as well as identify

the processes that would be the most effective targets for treatment. The model predicts that

combined tools might be the most effective ones.
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2.2.4 Smartphone Devices

Mobile devices use features of personal computers that can be extended to cope with profi-

les of different users. Also, mobile-oriented applications can make use of a number of sensors

available at tablets and cell phones, which can measure hand tremors and other movements.

Arora et al. (ARORA et al., 2015) evaluated a system based on smartphones in a home and com-

munity setting during 35 days to detect and monitor the symptoms of PD. The system was

able to assess voice, posture, gait, finger tapping, and response time with mean sensitivity and

specificity of 96.2% and 96.9% for the detection of Parkinson’s Disease, respectively.

Recently, Ivkovic et al. (IVKOVIC; FISHER; PALOSKI, 2016) presented a study about the mo-

vement modulation and motor-cognitive integration efectiveness of smartphone-based tactile

cues (TC) from different activities in moderately impaired PD patients and healthy individuals,

who performed seated heel tapping and straight line walking tasks with and without a secon-

dary motor task. The smartphone-driven TC showed to be a promissor tool and user-friendly

movement modulation aid.

Kostikis et al. (KOSTIKIS et al., 2015) proposed a smartphone-based system to accurately

assess upper limb tremor in 25 PD patients using a phone’s accelerometer and gyroscope infor-

mation to compute a set of metrics that can be used to quantify a patient’s tremor symptoms.

The authors used machine learning techniques to correctly classify 82% of the PD patients and

90% of the healthy volunteers, being possible to remotely evaluate the patient’s condition. The

proposed tool has low cost, is platform independent, noninvasive, and requires no expertise to

be used.

Bai et al. (BAI; CHAN; YU, 2015) developed a friendly mobile system using an open-source

platform in smartphones to aid PD patients, which features an interactive interface, a large

font, a big button, an intuitive graphical interface, an important feature enhancement and some

simplified functions, thus being suitable for the elderly people affected by PD. The proposed

application also includes an improved main menu composed of several functions like telephone,

SMS, internet, medication calendar, photo gallery, and emergency button, as well as a scrollable

full screen containing graphical buttons. The application contains a main menu and a reply

message voice button function either.

Kim et al. (KIM et al., 2015) proposed a novel smartphone-based system using inertial sen-

sors to detect FoG symptoms in an unconstrained way. Several motions such as ankle, trouser

pocket, waist and chest pocket, were evaluate. Data obtained and pre-processed via discrimi-

native features extracted from accelerometer and gyroscope motion signals of the smartphone
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were used to classify FoG episodes from normal walking using AdaBoost.M1 classifier with

sensitivity of 86% at the waist, and 84% and 81% in the trouser pocket and at the ankle, respec-

tively.

Ellis et al. (ELLIS et al., 2015) evaluated the performance of smartphone-based gait analysis

using the smartphone built-in tri-axial accelerometer and gyroscope to calculate successive step

times and step lengths, being validated from heel-mounted foot-switch sensors and an instru-

mented pressure-driven sensor. The authors stated the proposed method was able to serve as an

alternative to conventional gait analysis methods.

2.2.5 Virtual and Augmented Reality

Virtual reality is an advanced interface to computer applications, in which users can na-

vigate and interact with a three-dimensional environment generated by computers from multi-

sensory devices. Augmented reality is a mixture of real and virtual worlds at some point of

reality/virtuality continuous that connects real and virtual environments, as well as overlay vir-

tual objects.

Yang et al. (YANG et al., 2016) analyzed a home-based virtual reality environment able to

improve balance, walking, and quality of life in 23 patients with idiopathic PD. The study did

not find any difference between the effects of the home- and the virtual reality-based training,

which highlights VR is able to build realistic environments that can help dealing with PD.

Waechter et al. (WAECHTER et al., 2015) submitted 16 PD patients to navigation through a cus-

tomized virtual reality (VR) corridor by stepping in place on a force plate while EEG data was

recorded. The VR environment was combined with a cognitive, visual two-stimulus-oddball

response task, which was repeated while seated to allow for comparisons to the stepping-in-

place condition. The environment proves to be a very efficient and reliable method to induce

FoG-like symptoms in a controlled fashion in PD participants with FoG, providing a platform

for further experiments on the pathology of freezing of gait. According to the authors, the

study was the first of its kind that investigated event-related potential during locomotion in a

clinical population. FoG participants demonstrated decreased behavioral performance for the

stepping-in-place condition while simultaneously performing a secondary cognitive task.

Khobragade et al. (KHOBRAGADE; GRAUPE; TUNINETTI, 2015) applied a Large-Memory

Storage and Retrieval neural network for the prediction of onset of tremor in PD patients. The

work demonstrated a fully automated deep brain stimulation system that can be applied on-

demand, i.e. only when it is needed, since the usual treatments apply that stimulation continu-

ously. Navarro et al. (NAVARRO; MAGARIÑO; LORENTE, 2015) proposed to employ an augmented
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reality-based approach that has been widely used in the field of rehabilitation to aid PD patients.

The experiment was tested on 7 PD individuals, and showed that VR is a simple and suitable

tool that should be encouraged to be used in PD patients.

Geldenhuys et al. (GELDENHUYS et al., 2015) presented the use of a novel video-based pa-

radigm for analyzing the gait of patients with Parkinson’s disease. The idea was to consider

the locomotor kinematics, which is capable of detecting subtle changes in gait and analyze the

results in a gender-specific manner. In their experiments, a male mice group showed a statisti-

cally significant higher propensity towards gait changes than the female mice, suggesting that

gait deficits in female-treated mice might be subtler.

2.2.6 Sensors

Jellish et al. (JELLISH et al., 2015) examined the ability of persons with PD when using a

real-time feedback (RTFB) system to improve gait and postural impairments, being considered

the hypotheses that the patients with PD are able to utilize RTFB to maintain their step length

compared to their baseline value, and employ RTFB of their back angle to maintain a more

upright posture. As such, it is possible to develop RTFB-based technologies and protocols to

manage gait and posture during daily activities in clinics and/or at home.

Yoneyama et al. (YONEYAMA et al., 2015) proposed an accelerometer-based gait analysis

considering single trunk-mounted accelerometer and an analytical algorithm for the assessment

of gait behavior that may be context-dependent aiming to detect gait peaks from acceleration

data. The study also aimed the analysis of multimodal patterns in the relationship between

gait cycle and vertical gait acceleration. According to the authors, this was the first work that

quantitatively demonstrated that PD patients may make different types of decisions on how to

walk in daily environments.

Tay et al. (TAY et al., 2015) developed a wearable wireless PD monitoring and biofeedback

system to address the above issues. Each one of the wearable device consists of a accelerome-

ter, gyroscope, compass, flex-sensors, among other sensors, and accompanying communication

via bluetooth and wi-fi to transmit data wirelessly to a computer. As such, a wearable gait

monitoring system is able to process real-time captured sensory data and FoG events, and then

trigger audio and vibration biofeedback to prevent or reduce freezing when FoG has occurred.

The system’s adaptive gyroscope-based FoG detection algorithm uses automated temporal gait

analysis by means of wearable wireless sensors. By using this system, PD patients will be more

aware of their risk of falling, and also benefit from the periodic cueing to pace their steps after

a FoG occurrence, hence improving their quality of life. The system is mobile and hands-free,
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which allows the patient to walk freely for long periods of time and distance.

Mazilu et al. (MAZILU; BLANKE; TRöSTER, 2015) investigated the correlation between wrist

movement (arm movements) and FoG in PD during walking, and analyzed the possibility to

detect FoG from wrist-attached wearable sensors. According to the authors, this is the very

first time that wrist movements during walking are correlated with FoG in PD. Beyond this,

they computed new features to describe FoG from wrist from ETHOS Inertial Measurement

Units (IMU) on both wrists (FoG and wrist movement during the rest of walking) of 11 sub-

jects of the CuPiD dataset. Finally, the authors evaluated the feasibility in detecting FoG using

wrist-attached IMU in subject-dependent and -independent evaluation schemes using the FoG

detection methods based on supervised machine learning. The work showed that FoG episodes

can be detected using the wrist movements with a hit-rate of 90% in a subject-dependent evalu-

ation scheme, suggesting that the wrist sensors can be a feasible alternative to the cumbersome

placement on the legs.

Mazilu et al. (MAZILU et al., 2015) proposed the use of new sensor modalities to continuously

monitor the FoG episodes in PD, being possible to be predicted before it happens by means of

physiological data, namely electrocardiography (ECG) and skin-conductance (SC). The authors

analyzed the variations of some specific features extracted from both ECG and SC for periods

of data right before, during, and right after FoG events. Such features were then compared to

normal walking events. Further, the authors deployed an anomaly-based method for predicting

gait-freeze events using SC features and multivariate Gaussians, being able to predict 71.3% of

FoG episodes with an average of 4.2s right before that event has happened.

Lorenzi et al. (LORENZI et al., 2015) proposed a wireless headset sensing system based on

Inertial Measurement Units designed for long-time monitoring of specific movement disorders.

The system is composed of a single inertial sensor to be positioned laterally on the head, close

to the ear. The headset allows emphasizing signals related to oscillations of the trunk, impro-

ving timely detection of the freezing of gait and timely auditory stimulation directly in the ear.

With respect to other positions on the body, the headset has the maximum sensitivity to the

trunk oscillations made by patients when moving, thus increasing dramatically the risk of falls.

The identification of the motion features is performed using an artificial neural network, which

obtained excellent results without the need of large number of samples.

Iuppariello et al. (IUPPARIELLO et al., 2015) tested the hypothesis that muscle vibration of

splenius muscles can improve step initiation performance in patients with PD. According to

the authors, no study has examined the contribution of proprioception to postural control in

PD when a bilateral continue vibration train is applied to neck muscle groups. Thought this
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study, the authors show that a bilateral continue vibration train, applied to neck muscle groups,

reduces postural instability by increasing stepping performance and specific posture related

mechanisms, leading to a reduction in hesitation and increasing self-confidence to start walking.

Reinfelder et al. (REINFELDER et al., 2015) evaluated a robust and automated phase segmen-

tation method of the traditional Timed Up-and-Go (TUG) test, providing phase times for PD

patients. The recordings were conducted with the Embedded Gait Analysis using a intelligent

system consisting of two IMUs placed unobtrusively at the lateral side of each shoe. Also,

the work validated a classification approach using SVM for separating the TUG test into res-

ting (before sit to walk), sit to walk (first torso movement), forward walking (start of walking),

first turn (end of forward walking), backward walking (end of first turn), second turn (end of

backward walking), turn to sit (end of turning), and resting (end of turn to sit), obtaining an

accuracy rate of 81.80%.

Dong et al. (DONG et al., 2015) proposed a wireless body area sensor network as a non-

intrusive device to measure the activity of individuals with PD in order to understand their

spontaneous movement in an un-observed environment. Tiny body sensors attached to lower

limbs collect position and acceleration data in a periodic manner, and transmit them to a pro-

cessing and storage node that can store data and transfer the information to the doctor’s office

via telecom network or wireless local area network. In order to measure the posture changes in

a non-intrusively manner, they used low voltage flex sensors, pressure sensors, accelerometers

and gyroscopes to build a networked sensor device that can be worn by a person to detect pos-

ture and gait changes. Adaptive fractal and frequency domain analysis for cued and spontaneous

movements detection were used either.

Jellich et al. (JELLISH et al., 2015) presented a study about people with Parkinson’s disease

that have difficulty while walking, and showed an increased variability in step time and step

length, which are associated with higher risk of falls. Based on this rationale, the authors deve-

loped a treadmill-based rehabilitation system that has the ability to provide real-time feedback.

Their results suggested that persons with PD can effectively follow feedback of posture via the

presentation of visual feedback of back angle.

Dai et al. (DAI et al., 2015) develop a sensor-based quantitative assessment method to analyze

the features of parkinsonian tremors, where the current possibilities of inertial sensor technology

and motion-tracking algorithms can be used to implement quantitative assessments of these

tremors. The authors adopted a time-frequency signal analysis algorithm to detect tremor states.

Trojaniello et al. (TROJANIELLO et al., 2015) proposed a comparative analysis of selected single

inertial measurement units for estimating gait temporal parameters in different pathological gait
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conditions. The results showed the acceleration signals were filtered before being processed

using the Z-method. The Z-method, including a preliminary filtering of the acceleration signals,

seems to be preferred when analyzing Parkinson’s Disease populations.

Yang et al. (YANG et al., 2016) conducted a study on the correlation of hand tremors using

laser signals, i.e. Laser Line Triangulation Measurement (LLTM). The work considered four

different modes of hand tremors, being the analysis performed off-line. The results showed a

significant correlation among different tremor frequencies. McCandless et al. (MCCANDLESS

et al., 2016,) investigated the effect of three different devices of cueing when applied to 20 PD

patients with freezing of gait. Also, 10 cameras and 4 force platforms were used in the expe-

rimental section. They compared three devices (Laser Cane, sound metronome and vibrating

metronome) against the walking stick and no intervention. In the tests, 12 of 20 patients had

freezing incidents. The study identified patterns among the devices, being the best improvement

obtained by Laser Cane.

Shao et al. (SHAO et al., 2016) introduced a case study of a 77-years old PD patient with

hand contracture. The authors submitted the patient to a therapy using the game “Microsoft

Fligth Simulator X", where the patient reached significant decreasing in the hand contracture.

This work proposed an individualized therapy computer-based either. Volpe et al. (VOLPE et

al., 2016) presented a study about the under water gait therapy. The work used a software that

performs a 3D analysis of the gait. After three weeks of under water gait therapy, the results

showed significant improvement in the gait speed and cadency.

Finally, Qiang and Marra (QIANG; MARRAS, 2015) used the telemedicine to the treatment

of PD patients to reduce cost in the travel, as well as to provide a better therapy and patient

satisfaction. After the initial treatment, the patients answered a satisfaction questionnaire, and

85% preferred continuing with telemedicine, thus showing the importance of the telemedicine

in the patient satisfaction.

2.2.7 Web Applications

Kraepelien et al. (KRAEPELIEN et al., 2016) investigated the feasibility and preliminary ef-

fects of internet-based cognitive behavioral therapy for depression and anxiety on 9 patients

with PD while exploring the effects on non-motor symptoms. Concerns about some PD-specific

health and quality of life, insomnia, plus the participant’s involvement, satisfaction, and sub-

jective evaluation of the treatment were also considered. The patients reported lower values of

hospital anxiety and depression after internet-based cognitive behavioral therapy, but levels of

inactivity were rather high. The participants suggested the treatment can be improved by adding
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more therapist support.

Pasluosta et al. (PASLUOSTA et al., 2015) presented a review about some existing wearable

technologies and the Internet-of-things applied to Parkinson’s disease with an emphasis on how

this technological platform may lead to a shift in the paradigm, being mindful the transition that

is coming along with the technological revolution. In terms of diagnostics and treatment, they

discussed the wearable technologies, their main concepts and applications, as well as the new

possibilities using machine learning and artificial intelligence.

Braatz and Coleman (BRAATZ; COLEMAN, 2015) developed a mathematical model based on

biochemical systems theory to examine the changes that occur over the course of PD, as well as

to identify what processes would be the most effective targets for treatment. The model predicts

that combined tools, initiated as early as possible and targeting a wide range of pathways, are

the most effective ones.

Ferreira et al. (FERREIRA et al., 2015) identified relevant parameters thought assessment to-

ols in six domains (gait, bradykinesia/hypokinesia, tremor, sleep, balance and cognition) using

a system to evaluate people with PD at home. Yang et al. (YANG et al., 2015) evaluated a vir-

tual reality system for balance training at home, which seemed to be more effective than the

conventional home balance to improve walking and quality of life in PD.

2.3 Dataset description

In this section, we introduce some datasets used in the aforementioned works, as well as

how they were designed to cope with Parkinson’s Disease.

2.3.1 HandPD Dataset

The HandPD Dataset was designed by Pereira et al. (PEREIRA et al., 2015), being composed

of images extracted from handwriting exams of 92 individuals divided in two groups: (i) the

first one contains 18 exams of healthy people, named control group, with 6 male subjects and 12

female individuals; (ii) the second group contains 74 exams of people affected with Parkinson’s

disease, named patients group, having 59 male subjects and 15 female ones. The images were

collected at the Faculty of Medicine of Botucatu, São Paulo State University, Brazil.

In order to compose the dataset, each subject is asked to fill a form in order to fulfil some

task, such as drawing circles, spirals and meanders. Figure 2.1 displays an exam of a 56 years-

old male patient, in which we can observe the tremor inherent to Parkinson’s disease. Note the
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patient is required to perform 6 distinct activities (a-f), which consist in the repetition of several

operations in accordance with certain drawings.

Figura 2.1: Handwriting exams filled out by a 56-years old PD patient. Extracted from (PEREIRA
et al., 2015).

After filling the forms out, they are digitized for the further extraction of spirals and mean-

ders. Such step is performed by hand, where each drawing is cropped to is minimum bounding

box (or close to it). Later, the cropped spiral and meander images are numbered as follows:

1,2,3,4 concerning the spirals from left to right, and 5,6,7,8 concerning the meanders from

left to right. Therefore, the entire dataset is composed of 736 images labeled in two groups:

patients (296) and control (72). Also, the dataset comprises 368 images from each drawing, i.e.

spirals and meanders5.

2.3.2 Parkinson’s Progression Markers Initiative Dataset - PPMI

The Michael J. Fox Foundation (MJFF)6 has been an essential driver for the PD biomar-

kers initiative. Such foundation developed a clinical study to verify progression markers in

Parkinson’s disease, the so-called Parkinson’s Progression Markers Initiative Dataset - PPMI,

which emerged as a model for following multiple cohorts of significant interest, and it is being

conducted at a network of clinical sites around the world. The study is designed to establish

a comprehensive set of clinical, imaging and biosampled data to be used to define biomarkers

5http://wwwp.fc.unesp.br/~papa/pub/datasets/Handpd/
6http://www.ppmi-info.org/fundingpartners
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of PD progression. Once these biomarkers are defined, they can be used in therapeutic studies,

which is the ultimate goal of this research work7.

2.3.3 Parkinsonian Disease Handwriting Dataset - PaHaw

The Parkinson’s Disease Handwriting Database - PaHaW8 consists of multiple handwri-

ting samples from 37 parkinsonian patients, being 19 men and 18 women. In regard to the

control group, the dataset contains 38 individuals, being 20 men and 18 women. The database

was acquired in cooperation with the Movement Disorders Center at the First Department of

Neurology9, Masaryk University and St. Anne’s University Hospital in Brno, Czech Republic.

Each individual was asked to fill a form, and the completed template was shown to the

subjects, as well as no restrictions about the number of repetitions of syllables/words in the

tasks or their height were given. Figure 2.2 displays an empty template (containing only printed

lines and a square box specifying the spiral area). A conventional ink pen was held in a normal

fashion, allowing for immediate full visual feedback. The signals were recorded using the

Intuos 4M (Wacom technology) digitizing tablet with 200Hz of sampling frequency.

Figura 2.2: Template used as an example by the PaHaw dataset. The image has been takes from
the home-page of the dataset.

The signals were digitized on-the-fly, since the individual exerts pressure on the writing

surface during the movement. The perpendicular pressure exerted on the tablet surface was also

recorded. The recordings started when the pen touched the surface of the digitizer, and finished

when the task was completed.

7http://www.ppmi-info.org/access-data-specimens/download-data/
8https://www.researchgate.net/publication/289525377_Parkinson’s_Disease_Handwriting_

Database_PaHaW
9http://bdalab.utko.feec.vutbr.cz
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2.3.4 Parkinson Speech Dataset

The Parkinson Speech Dataset database consists of exams performed with 20 PD patients,

being 6 female and 14 male. The healthy individuals comprise 20 people, being 10 female

and 10 male who appealed at the Department of Neurology in Cerrahpasa Faculty of Medicine,

Istanbul University10.

From all subjects, multiple types of sound recordings (26 voice samples including sustained

vowels, numbers, words and short sentences) are taken. The voice samples are selected by a

group of neurologists from a set of speaking exercises that aim at leading to more powerful

sound of PD patients (SAKAR et al., 2013). The recording step was achieved by a Trust MC-

1500 microphone with a frequency range between 50Hz and 13 kHz, as shown by Figure 2.3.

Figura 2.3: Voice sample of a healthy individual (top), and the waveform of a voice sample belon-
ging to a patient (down). Extracted from (SAKAR et al., 2013).

During the collection of data, 28 PD patients were asked to say only the sustained vowels

“a” and “o” three times, which makes a total of 168 recordings. The test group consists of

patients who are suffering from PD for 0 to 13 years, and individual ages vary between 39 and

79.

2.3.5 CuPiD Dataset

The CuPiD dataset contains 24 hours of sensing data collected from Inertial Measurement

Units (MAZILU et al., 2013a) attached on both wrists of 18 subjects with Parkinson’s disease,

which performed different walking protocols in a laboratory setting designed to provoke FoG,

including walking with 360- and 180-degrees turns, walking in straight lines and passing narrow

10http://archive.ics.uci.edu/ml/datasets/Parkinson+Speech+Dataset+with++Multiple+
Types+of+Sound+Recordings
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corridors, or walking across the crowded hospital halls (MAZILU et al., 2013b). The idea was

analyze whether the hand movements during walking correlate with freezing of gait episodes or

not, as shown in Figure 2.4.

Figura 2.4: A subject wearing the system used to design the CuPid dataset, with focus on the IMUs
attached on the wrists. Extracted from (MAZILU; BLANKE; TRöSTER, 2015).

The data collection system contained 9 wearable ETHOS Inertial Measurement Units (HARMS

et al., 2010) attached on different parts of the body, one electrocardiogram sensor, a galvanic skin

response sensor and a near-infrared spectroscopy sensor. The dataset was designed by collecting

data from the IMUs attached on both wrists of the subjects.

2.4 Discussion

Figure 2.5 summarizes the amount of works considered in this review separated by area of

interest. Clearly, the great majority of works focus on signal analysis and processing, followed

by sensor-based studies. Actually, most works are related to speech analysis, which makes

sense to find a number of papers that make use of signal analysis to aid PD recognition. Also, a

lot of works employ sensors for data acquisition, thus making signal analysis even stronger.

Although machine learning-related papers are outnumbered by others, a considerable num-

ber of works related to signal analysis make use of some sort of artificial intelligence either,

thus increasing the number of papers that employ machine learning to aid PD recognition. We

have observed that image-based data for PD identification do not play a big role, since we have

the problem of digitizing the forms for the further application of image processing techniques,

which are strongly dependent on the quality of the input images, and thus more prone to errors.
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Figura 2.5: Summarization of the works considered in this review.

Smartphone devices can contribute to alleviate the errors induced during image acquisi-

tion by using applications that use touch-based sensors, which digitize the exams in real-time.

However, we did not find many works on this subject. The fewer number of papers refers to

virtual and augmented reality. Although such environments are quite suitable, some of them

are expensive to design and maintain. However, in-home devices such as Kinect seem to be a

game-changing.

Recently, the NPJ/Parkinson’s Disease journal 11 pointed out that both sensors- and smartphone

device-based applications to aid PD treatment have grown considerably. With such devices, it

is possible to monitor the amount of severity of the disease at home, as well as some therapeutic

activities and games can be used for the treatment. Nowadays, tablets and smart phones usu-

ally contain a lot of sensors, that can measure tremors and orientation. Trister et al. (TRISTER;

DORSEY; FRIEND, 2016) claimed that such mobile-oriented systems would ideally evaluate all

aspects of the disease through a series of measures captured on activities, thus being able to

consider a more detailed view into the day-to-day variability that patients may describe. Bot et

al. (BOT et al., 2016) used the ResearchKit provided by Apple to collect data from PD patients

using an iPhone. The study interrogated aspects of movement disorders by means of surveys

and sensor-based recordings from healthy and PD individuals. The authors stated that such

works are in the very early beginning.

Actually, some past works have used technology to handle PD treatment either. In 2011,

Nemedi et al. (MEMEDI et al., 2011) presented a web-based system to monitor PD patients remo-

tely. The system was composed of three main parts: (i) a handheld computer to collect data, (ii)

a sever for information storage, and (iii) an interface to visualize and interpret the results. Westin

11http://www.nature.com/articles/npjparkd20166
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et al. (WESTIN et al., 2010) presented a system composed of a touch screen-equipped computer

for assessment of PD patients at home. The proposed approach highlighted the treatment has

been effective in two patients, both in self-assessments, tapping tests and spiral scores.

In 2014, Hariharan et al. (HARIHARAN; POLAT; SINDHU, 2014), presented a study about

PD identification using a hybrid approach composed of Gaussian Mixture Model, Principal

Component Analysis, and several other techniques over University of California-Irvine (UCI)

machine learning datasets. The experiments showed the combination of feature pre-processing,

feature reduction/selection methods and classification leads to an accuracy of 100%.

2.5 Conclusions

In the last years, the amount of people with Parkinson’s Disease has increased considerably,

which turns out to be one of the world’s major health problem up to date. The use of artificial

intelligence and machine learning techniques have presented promising results, thus becoming

a fundamental aid to cope with PD early detection.

In this work, we presented a review concerning Parkinson’s Disease detection and monito-

ring by means of recent technologies. The main contribution of this work is to consider very

recent works dating from 2015 and 2016 mostly. Several approaches based on image and signal

analysis, smartphone devices, virtual and augmented reality, sensors and web-based application

were considered, as well as some datasets widely used in the literature.

We have observed the great majority of works make use of signal analysis, which are often

acquired by on-body sensors, thus making both kind of tools the most used ones in the pa-

pers considered in this review. Also, machine learning-driven works have been widely referred

either, since most works, even using signal- or image-based data, require some sort of decision-

making mechanism supported by artificial intelligence. Similarly, we believe the smartphones

and tablets will begin to play an important role in the future, since e-health research kits are

constantly being developed, and to monitor patients at home seems to be the most promising

direction towards Parkinson’s Disease understanding.



Capítulo 3
UMA NOVA ABORDAGEM BASEADA EM VISÃO

COMPUTACIONAL APLICADA NO DIAGNÓSTICO

DO MAL DE PARKINSON

Este capítulo apresenta uma proposta baseada na extração de informações visuais de ima-

gens de formulários utilizadas para o diagnóstico do mal de Parkinson. O capítulo compreende

os resultados de dois artigos publicados pelo candidato, A Step Towards the Automated Diagno-

sis of Parkinson’s Disease: Analyzing Handwriting Movements (PEREIRA et al., 2015) e A New

Computer Vision-based Approach to aid the Diagnosis of Parkinson’s Disease (PEREIRA et al.,

2016a).

3.1 Introduction

Parkinson’s disease (PD) is a degenerative, chronic and progressive illness that may cause

tremors, slowness of movement, muscle stiffness, and changes in speech and writing skills due

to the neurological disorder (BURKE, 2010b). PD was first described by the English physi-

cian James Parkinson (PARKINSON, 1817b), being its symptoms well-known in the scientific

community. However, it is still unheard-of a trivial test to diagnose Parkinson’s disease with a

reliable recognition rate in its early stages. Moreover, it is not straightforward to establish the

PD level soon after its diagnosis.

The Parkinson’s disease occurs when nerve cells that produce dopamine are destroyed, a

process that is performed slowly, thus characterizing the progression of this disease. With the

absence of such a substance, the nerve cells can no longer send messages properly, causing many

other symptoms such as depression, sleep disturbances, memory impairment and autonomic
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nervous system disorders. In some cases, Parkinson’s disease may be trigged by hereditary

causes (BURKE, 2010b).

In the last decades, some works attempted at designing solutions to aid PD diagnosis.

Expert systems based on machine learning techniques have been employed to this purpose,

showing promising results (SAKAR et al., 2013). Generally, these works are signal analysis-

oriented, which means one can use the patient’s voice to assess the level of the illness (LITTLE

et al., 2009; PEREIRA et al., 2006), since the voice capability is gradually compromised by PD.

Little et al. (LITTLE et al., 2009), for instance, presented a dataset composed of biomedical voice

measurements from 31 male and female subjects, being 23 patients diagnosed with PD and 8

healthy subjects. The authors introduced a new measure of dysphonia called Pitch Period En-

tropy, which seems to be more robust to identify changes in the speech, since approximately

90% of PD patients exhibit some form of vocal impairment (HO et al., 1998; LOGEMANN et al.,

1978).

In the work conducted by Zhao et al. (ZHAO et al., 2014), five patients and seven healthy

individuals were used to recognize Parkinson’s disease by means of the voice analysis. In or-

der to fulfil this purpose, the individuals’ voice were recorded using an Isomax EarSet E60P5L

microphone, being the recording sessions lasting around 25 minutes each, and a total of 50 pre-

recorded prompts consisting of emotional sentences spoken by a professional actress. Tsanas

et al. (TSANAS et al., 2012) evaluated different algorithms based on dysphonia measures aiming

at PD recognition. A total of 132 acoustic features were initially used for further feature selec-

tion, and the authors concluded the dysphonia information together with existing features end

up helping PD recognition. Harel et al. (HAREL; CANNIZZARO; SNYDER, 2004) claimed that PD

symptoms are detectable up to five years prior to clinical diagnosis, and symptoms presented

in speech include reduced loudness, increased vocal tremor, and breathiness. In their work, the

authors used a dataset of the National Center for Voice and Speech, which comprises 263 pho-

nations from 43 subjects (17 females and 26 males, being 10 he althy controls and 33 diagnosed

with PD).

Since one of the first manifestation of Parkinson’s Disease is the deterioration of handwri-

ting, the micrography (a writing exam) is another approach widely used for the diagnosis of

Parkinson’s disease (EICHHORN et al., 1996b). This technique is considered an objective mea-

sure, since a PD patient possibly features the reduction of calligraphy size, as well as the hand

tremors. Nowadays, this procedure is often conducted by filling out some specific forms. Ro-

senblum et al. (ROSENBLUM et al., 2013) suggested that writing exams can be used to distinguish

PD patients from healthy individuals. The authors employed the following methodology to sup-
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port their assumption: 20 PD patients and 20 control individuals were asked to write their names

and addresses in a piece of paper attached to a digital table. Further, for each stroke, the mean

pressure and velocity were measured in order to compute spatial and temporal information. The

authors presented very good recognition rates, being 97.5% of the participants classified correc-

tly (100% of the control individuals, and 95% of PD patients). Later on, Drotár et al. (DROTÁR

et al., 2014) claimed that movement during handwriting of a text consists not only from the on-

surface movements of the hand, but also from the in-air trajectories performed when the hand

moves in the air from one stroke to the next. The authors demonstrated the assessment of in-air

hand movements during sentence handwriting has a higher impact than the pure evaluation of

on surface movements, leading to classification accuracies of 84% and 78%, respectively.

Machine learning-based techniques have also been applied to help the automatic PD re-

cognition. Spadotto et al. (SPADOTTO et al., 2010b), for instance, introduced the Optimum-Path

Forest (OPF) (PAPA; FALCÃO; SUZUKI, 2009; PAPA et al., 2012) classifier to the aforementio-

ned context. Later on, Spadotto et al. (SPADOTTO et al., 2011) proposed an evolutionary-based

approach to select the most discriminative set of features in order to improve PD recognition

rates. Gharehchopogh et al. (GHAREHCHOPOGH; MOHAMMADI, 2013b) used Artificial Neural

Networks with Multi-Layer Perceptron to diagnose the effects caused by Parkinson’s disease.

Pan et al. (PAN et al., 2012b) analyzed the performance of Support Vector Machines with Radial

Basis Function in order to compare the onset of tremor in patients with Parkinson’s disease. Ha-

riharan et al. (HARIHARAN; POLAT; SINDHU, 2014) developed a new feature weighting method

using Model-based clustering (Gaussian mixture model) in order to enrich the discriminative

ability of the dysphonia-based features, thus achieving 100% of classification accuracy. Re-

cently, Peker et al. (PEKER; SEN; DELEN, 2015) used sound-based features and complex-valued

neural networks to aid PD diagnosis as well.

However, although many works deal with voice- and speech-driven information, there is

a large number of writing exams out there that can give us valuable information about the de-

velopment of Parkinson’s Disease, since it is cheaper and easier to acquire such sort of exam.

Moreover, most hospitals and clinics have writing exams by hand only, which means they need

to be digitized prior to information extraction. Usually, the patients are asked to draw spi-

rals and meanders, which are then compared against the templates. Very recently, Pereira et

al. (PEREIRA et al., 2015) proposed to extract features from writing exams using image proces-

sing techniques, achieving around 79% percent of recognition rates, which is considered very

reasonable. The authors also designed and made available a dataset called “HandPD" with all

images and features extracted1. However, they employed “spirals" drawings only.

1http://wwwp.fc.unesp.br/~papa/pub/datasets/Handpd/
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In this paper, we extended the work of Pereira et al. (PEREIRA et al., 2015) by presenting

the following contributions: (i) a deeper analysis and explanation about the feature extraction

process, as well as a tremor-based feature is also analyzed; (ii) we considered both spirals and

meanders for the classification process; and (iii) we also extended “HandPD" dataset with ima-

ges and features from meanders. Since we are committed with science, we also made available

to the readers this new dataset, and we believe it can serve as a basis for future researches re-

garding Parkinson’s Disease diagnosis. The proposed approach is innovative in the sense we

can extract both the template and drawings of each patient automatically, thus having no user

intervention.

The reminder of this paper is organized as follows. Section 3.2 presents the methodology

employed to design the dataset, and Section 3.3 describes the methodology used to extract visual

features from the handwriting exams. Section 6.4 states the experimental results and discussion,

and Section 6.5 states conclusions and future works.

3.2 HandPD Dataset

The HandPD dataset was collected at the Faculty of Medicine of Botucatu, São Paulo State

University, Brazil, being composed of images extracted from handwriting exams of 92 indivi-

duals, being divided in two groups: (i) the first one contains 18 exams of healthy people, named

control group, with 6 male subjects and 12 female individuals; (ii) the second group contains 74

exams of people affected with Parkinson’s disease, named patients group, having 59 male sub-

jects and 15 female ones. Therefore, 80.44% of the dataset is composed of patients, and 19.56%

comprises control individuals. Although the dataset is unbalanced, it is easier to achieve similar

proportions by adding more control individuals than patients.

The control group is composed of 16 right-handed and 2 left-handed individuals, with an

average of 44.22± 16.53 years. In regard to the patients group, we have 69 right-handed and

5 left-handed individuals with an average of 58.75± 7.51 years. Therefore, one can observe

the dataset is not age-biased, which provides an interesting scenario for learning purposes. In

fact, most patients are considerably older than 60 years, since Parkinson’s disease usually gets

worse within this age group. On the other hand, the dataset is heterogeneous enough to contain

a 38-years old male patient as well.

In order to compose the dataset, each subject is asked to fill a form in order to fulfil some

task, such as drawing circles, spirals and meanders. Figure 3.1a displays an exam of a 56 years-

old male patient, in which we can observe the tremor inherent to Parkinson’s disease. Note the
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patient is required to perform 6 distinct activities (a-f), which consist in the repetition of several

operations in accordance with certain drawings. However, the analysis of the images will be

focused on tasks c and d only, which are related to drawing 4 spirals and 4 meanders according

to the template. Figure 3.1b depicts and empty form, in which one can observe the templates

regarding spirals and meanders.

 
No: __ __ __ -- __ __ __ -- __ __ __ -- __ __ __ -- __ __ __ 

 
 
RG: 
 
 
 

Field study:  Unesp 2010 
 

University of Applied Sciences 
Regensburg 

Biometric Smart Pen Project 
 

Universidade Estadual Paulista 
Faculdade de Medicina (FMB), 

Botucatu 
 
Idade:  ________ Mão dominante:   (   ) direita (   ) esquerda         

a, 
b 

Desenhar circulo 12 vezes no mesmo lugar 
sem parar.  

 
 ♫ 

Desenhar circulo no ar 12 vezes no 
mesmo lugar sem parar. 

 ♫ 

c 

Desenhar espiral após sinal sonoro, de dentro para fora. 
 

 ♫   ♫   ♫   ♫  

d 

Desenhar meander após sinal sonoro, de dentro para fora. 
 

 ♫           ♫           ♫           ♫    

e 

Diadococinesia: Mão direita 20 segundos. 
 

 ♫    

f 

Diadococinesia: Mão esquerda 20 segundos. 
 

 ♫    

 

(a) (b)

Figura 3.1: Handwriting exams: (a) filled out by a 56-years old PD patient, and (b) an empty exam
with the templates.

After filling the forms out, they are digitized for the further extraction of spirals and mean-

ders. Such step is performed by hand, where each drawing is cropped to is minimum bounding

box (or close to it). Soon after, the cropped spiral and meander images are numbered a follows:

1,2,3,4 concerning the spirals from left to right, and 5,6,7,8 concerning the meanders from

left to right. Therefore, the entire dataset is composed of 736 images labeled in two groups:

patients (296) and control (72). Also, the dataset comprises 368 images from each drawing, i.e.

spirals and meanders. The reader can refer to the HandPD home-page for more technical details

about organization of the dataset.

3.3 Feature Extraction from Visual Description

In this section, we describe the methodology used to extracted the features and keypoints

from spiral and meander forms. In order to fulfil this task, we split the proposed methodology

in two stages: (i) image preprocessing, and (ii) the feature extraction. In the first stage (Sec-
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tion 3.3.1), we design an approach to automatically separate the handwritten trace (HT) from

the exam template (ET) considering both spiral and meanders, since the images are not regis-

tered to each other. Soon after, in the second stage (Section 3.3.2) we used the HD and ET

extracted from images to compute the visual features.

3.3.1 Handwritten Trace and Exam Template

In order to extract both HT and ET, we merged some classical image processing techniques

such as blurring filters and mathematical morphology, being the process of extracting either

HT and ET contours performed separately. Since the images were digitized, we applied a

preprocessing step to reduce noise and undesirable artefacts by means of a 5× 5 mean filter2.

Later on, we extracted the exam template applying a thresholding in the smoothened image

aiming to obtain a binary mask Mi
ET (I). This step is performed as follows:

Mi
ET (I) =

0 if Ri(I)< 100∧Gi(I)< 100∧Bi(I)< 100

1 otherwise,
(3.1)

where Ri(I), Gi(I) and Bi(I) stand for the value of pixel i of the input image I considering the

channels “Red", “Green" and “Blue", respectively. If Equation 3.1 is satisfied, the foreground

(ET) pixels will be set to 0 (“black" color), and the background pixels will be set to 1 (“white"

color), as displayed in Figure 3.3. Since the ET in the original image is supposed to be black or

near-black (the original - empty - form is colourless), it is reasonable to assume low brightness

values for such pixels when looking for the form itself. Finally, we applied an opening opera-

tion (erosion followed by a dilation) to guarantee a fully connected ET. Figure 3.3 shows the

proposed pipeline for the ET extraction.

Figura 3.2: Image processing steps concerning ET extraction.

In regard to the HT extraction step, we employed a similar methodology to the one used to
2Notice the size of this convolutional kernel was set up empirically.
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extract the ET, but now with some additional steps and a different thresholding method, since

both HT and the background are blue-coloured due to the digitation process. First, we applied

a 5× 5 mean filter followed by a 5× 5 median filter to smooth the image in order to reduce

noise and small artefacts, mainly those around the HT’s borders (once again, both filter sizes

were determined empirically). Further, the filtered image F is thresholded using the following

equation:

Mi
HT (F) =


255 if |Ri(F)−Gi(F)|< 40∧|Ri(F)−Bi(F)|< 40 ∧

∧ |Gi−Bi|< 40

F i otherwise,

(3.2)

where F i represents the brightness of pixel i. The intuitive idea behind this step is to remove

pixels with quasi-similar values for the three channels (i. e., background pixels), and to maintain

pixels with considerable differences between the channels (foreground - HT - pixels). Figure 3.3

shows the proposed pipeline for the ET extraction3.

(a)

(b)

Figura 3.3: Image processing steps concerning HT extraction.

Figure 3.4 illustrates a spiral and a meander image and their corresponding ET and HT

extracted using the proposed methodology. One can observe the quality of both template and

trace extracted from the images.

3Notice the value 255 in Equation 3.2 stands for the triplet (255,255,255), since we have an RGB image as the
result of thresholding operation.
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(a) (b)

Figura 3.4: Spiral and meander images and their corresponding HT and ET extracted using the
proposed methodology for a (a) spiral and a (b) meander.

3.3.2 Feature extraction

The feature extraction step aims at describing both HT and ET, and then to compare them

in order to evaluate the “amount of difference" between both images. In fact, this difference

among images is computed over points sampled at the very same positions considering HT

and ET images. At each point, we extracted a set of features that will represent the whole

template or handwritten trace. First, we need a concise and compact representation of both

HT and ET, which is accomplished here by means of the skeleton of the thresholded images.

Therefore, we extracted the skeleton of HT and ET images based on the Zhang-Suen thinning

algorithm (ZHANG; SUEN, 1984), which consists of two parallel routines: (i) to remove the

south-east boundary points and the north-west corner points, and (ii) to remove the north-west

boundary points and the south-east corner points. Figure 3.5 depicts the thinning result of the

spiral and meander templates, as well as the handwritten trace.

Figura 3.5: Thinning of HT and ET using Zhang-Suen algorithm.

Even after the pre-processing step, the template and handwritten images may contain small

discontinuities (blue lines in Figure 3.6(a)). Therefore, we need to select the sample points

from the template and handwritten spiral/meander very carefully. As such, points in regions that

contains discontinuities should be discarded. This phase is crucial, since it has a considerable

influence in the feature extraction step, which may affect the learning process as well.
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(a) (b)

Figura 3.6: Sampling process: (a) a certain region with discontinuities, and (b) the proposed fair
sampling process.

In regard to the selection of sampled points, we trace 360 rays4 from the center of the spi-

ral/meander to the image borders. For this task, we created two empty lists: (i) template points,

and (ii) handwritten points. The ray tracing process begin from the more extern point of the

spiral or the meander. For each ray, we capture its intersections with the template and the hand-

written trace, and if this ray intercepts only one of the images, this point is discarded; otherwise,

the pair of points is inserted in their respective list of points (template or handwritten). There-

fore, with the aforementioned procedure, we can guarantee a fair sampling by considering only

points presented in both images. Figure 3.6(b) shows a thinned meander with overlapped traces

(template and handwritten), as well as the highlighted sampling points obtained by means of

the proposed fair sampling process.

Further the sampling process, we then extract nine numeric features from each skeleton

(i.e., HT and ET) by measuring the statistical differences between them. However, prior to the

feature description, we introduce to the reader the definition of “radius" of a spiral or meander

point, which is basically the length of the straight line that connects this point to the center

of the spiral or meander, as displayed in Figure 3.7. The “red" point stands for the spiral’s or

meander’s center, being some random (“white") points connected to the thinned spiral (skeleton)

through the arrows with straight lines.

A brief description of each feature is given below:

• f1: Root Mean Square (RMS) of the difference between HT and ET radius. The RMS is

computed as follows:

RMS =

√
1
n

n

∑
i=1

(ri
HT − ri

ET )
2, (3.3)

where n is the number of sample points drawn from each HT and ET skeleton, and ri
HT

and ri
ET denote the HT and ET radius considering the i-th sampled point, respectively.

4the value 360 was obtained empirically, since this amount of sampling points has showed a good trade-off
between efficiency and accuracy.
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Figura 3.7: Some random points and the straight lines representing their connections with the
spiral’s and meander’s center point.

• f2: the maximum difference between HT and ET radius, i.e.:

∆max = argmax
i
{|ri

HT − ri
ET |}; (3.4)

• f3: the minimum difference between HT and ET radius, i.e.;

∆min = argmin
i
{|ri

HT − ri
ET |}; (3.5)

• f4: the standard deviation of the differences between HT and ET radius;

• f5: Mean Relative Tremor (MRT): Pereira et al. (PEREIRA et al., 2015) proposed this

quantitative evaluation to measure the “amount of tremor" of a given individual’s HT,

being defined as the mean difference between the radius of a given sample and its d left-

nearest neighbors. The MRT is computed as follows:

MRT =
1

n−d

n

∑
i=d
|ri

ET − ri−d+1
ET |, (3.6)

where d is the displacement of the sample points used to compute the radius difference5.

The following three features are computed based on the relative tremor |ri
ET − ri−d+1

ET |;

• f6: the maximum ET;

• f7: the minimum ET;

• f8: the standard deviation of ET values;

• f9: the number of times the difference between HT and ET radius changes from negative

to positive, or vice-versa.

5In this work, we used d = {1,3,5,7,10,15,20}, being d = 10 the one that maximized the PD recognition rate.
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Finally, the features were normalized as follows:

f ′i =
fi−µi

σi
, (3.7)

where f ′i denotes the normalized version of feature fi, and µi and σi stand for the average and

standard deviation of feature fi, i = 1,2, . . . ,9.

3.4 Experiments and Results

In this section, we present the experimental results to access the robustness of the proposed

dataset and feature extraction approach6. Also, we evaluate three pattern recognition tech-

niques: Naïve Bayes (NB), Optimum-Path Forest (OPF), and Support Vector Machines with

Radial Basis Function (SVM-RBF). Note the kernel parameters concerning SVM are optimized

through cross-validation. In regard to OPF, we used LibOPF (PAPA; SUZUKI; X, 2014), and with

respect to NB and SVM we used scikit-learn (PEDREGOSA et al., 2011).

In order to evaluate the proposed approach, we performed three different rounds of expe-

riments. The first one (Section 3.4.1) uses 75% of the dataset for training purposes, and the

remaining 25% for the classification phase. However, instead of to partition the dataset ran-

domly, we created four subsets in order to guarantee that each individual will be represented

in the dataset with its 3 spirals/meanders, being the remaining one used for classification pur-

poses. In this experiment, the spiral- and meander-based datasets are used individually. In the

second experiment (Section 3.4.2), we decided to conduct a cross-validation procedure with 20

runnings. Now, we no longer guarantee each individual will be represented in both training

and test sets. In the third round (Section 3.4.3), we conducted some experiments in order to

check whether we can benefit from the learning process over spirals and meanders in one single

approach, i.e. by using them together. Finally, we present a discussion about the experiments,

as well as some insights about this research.

3.4.1 Experiment 1

Since each individual contains four spirals/meanders in the datasets, we employed a cons-

trained hold-out approach to guarantee that each of them will be represented in both training

and testing sets concerning both spiral and meander-based datasets. Tables 3.1 and 3.2 display

the mean recognition rates considering all four configurations of training and test sets for the

6The proposed dataset and the extracted features are available at http://wwwp.fc.unesp.br/~papa/pub/
datasets/Handpd
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spiral- and meander-based datasets, respectively. One can observe NB obtained the best global

results concerning Spiral dataset, while SVM achieved the best results over Meander dataset.

Notice the global accuracy is the one proposed by Papa et al. (PAPA; FALCÃO; SUZUKI, 2009),

which considers unbalanced datasets, while the recognition rates per class (i.e. Control and Pa-

tient group) are computed using the standard approach (the ratio between correct classifications

and the total number of samples for that specific class). The values in bold stand for the most

accurate ones considering the standard deviation only. As aforementioned, in this round of ex-

periments we used a similar approach to a 4-fold cross-validation, but ensuring we have three

drawings for the same individual for training purposes. Therefore, we can guarantee all indi-

viduals are represented in both training and test sets. However, as we have only four accuracy

values to compute the mean recognition rates and their standard deviation, we did not employ

any robust statistical evaluation in this experiment.

OPF NB SVM
Control group 31.94%±5.32 62.50%±5.32 2.78%±5.56
Patient group 76.35%±3.22 69.26%±7.18 99.66%±0.68

Global 54.15%±3.58 65.88%±4.57 51.22%±2.91

Tabela 3.1: Experimental results considering the spiral-based dataset.

Curiously, a different behaviour considering each classifier and both datasets can be ob-

served. Note OPF obtained better results over meander dataset when compared to the spirals

dataset, while NB holds the opposite situation. Such situation motivated us to consider a bag-

of-classifiers in order to check whether a combination among all classifiers will make the results

better or not (Section 3.4.3).

OPF NB SVM
Control group 34.72%±8.33 20.83%±41.67 36.11%±9.62
Patient group 85.81%±4.20 79.73%±33.34 96.62%±2.59

Global 60.27%±4.02 50.28%±4.18 66.37%±4.01

Tabela 3.2: Experimental results considering the meander-based dataset.

3.4.2 Experiment 2

In this section, we consider a cross-validation procedure with 20 runnings to assess the

robustness of the proposed approach under a different scenario. Therefore, we can no longer

guarantee each individual will be represented in both training and test sets, but we can ob-

tain more conclusive results by means of the Wilcoxon signed-rank statistical test (WILCOXON,

1945a). In this work, we used a significance of 0.05. Tables 3.3 and 3.4 present the mean
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recognition rates considering spiral- and meander-based datasets, respectively. Once again, we

can observe results very similar to the ones obtained in the previous section. The values in bold

stand for the most accurate techniques considering the aforementioned statistical evaluation.

OPF NB SVM
Control group 26.39%±9.17 65.56%±11.48 1.67%±4.07
Patient group 78.58%±5.02 62.91%±12.65 98.65%±4.34

Global 52.48%±5.32 64.23%±7.11 50.16%±1.71

Tabela 3.3: Average results considering the spiral-based dataset and a cross-validation with 20
runnings.

Since the dataset is dominated by patients, all classifiers achieved better recognition rates

for that class, except for NB considering spiral and meander datasets. In fact, with respect

to this classifier, the accuracy rates per class were similar to each other considering the spiral

dataset, but considerably distinct with respect to meanders. NB seemed to better manage control

individuals, but we can also observe the highest standard deviations for this classifier as well.

OPF NB SVM
Control group 32.78%±12.08 80.83%±16.37 36.94%±10.71
Patient group 82.30%±3.72 37.57%±22.83 96.49%±2.50

Global 57.54%±6.35 59.20%±4.78 66.72%±5.33

Tabela 3.4: Average results considering the meander-based dataset and a cross-validation with 20
runnings.

3.4.3 Experiment 3

In this section, we conducted an experiment to check whether we can benefit from informa-

tion learned from both drawings. We used a standard majority voting for each classifier, and in

case of ties, we opted to use the classification given by the meanders dataset, since it has been

the most accurate (Section 3.4.2). Table 3.5 presents the mean accurate rates for each class, as

well as the global accuracy. Notice we used the very same sets employed in the first experiment

(Section 3.4.1), since we can guarantee that both spiral and meander analyzed at a given time

step of the classification algorithm come from the same individual.

The results evidenced one may not benefit from the combined information between spirals

and meanders, since the results are now worse than the ones obtained with meanders only. The

main problem is related to the inconsistency among samples from control and patients group.

That means we can not observe that different drawings can help each other since we have

inconsistencies at the very same exam for different patients. In the next section we discuss such

statements in more details.
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OPF NB SVM
Control group 64.96%±16.29 27.30%±37.36 12.50%±25.00
Patient group 60.23%±4.73 70.36%±39.08 96.49%±2.50

Global 55.86%±3.63 45.79%±4.15 58.61%±2.84

Tabela 3.5: Average results considering the combination process between spirals and meanders
using the constrained 4-fold approach.

3.4.4 Discussion

The experiments conducted in this paper may drive us to three main conclusions: (i) first,

to ensure that we have the very same patient in both training and testing sets does not seem to

benefit the final classification rates, since the results obtained in Sections 3.4.1 and 3.4.2 were

very similar to each other; (ii) second, meanders can provide more reliable recognition rates;

and (iii) finally, it seems the combination of information provided by both spirals and meanders

does not benefit the final classification rates.

The main problem related to PD automatic recognition concerns with patients in the initial

stage of the disease, since they often do not present any symptoms related to tremors. Figure 3.8

depicts some examples of spirals from both control and patients group. If we consider Figu-

res 3.8b and 3.8c, for instance, the former belongs to a control individual, and the latter belongs

to a patient. Clearly, the patient exam looks like from someone that is not affected by the di-

sease, i.e. it is very similar to Figure 3.8a. The high variability of the dataset may lead the

classifiers to errors as well. However, the main idea in designing such dataset is to capture such

sort of problems, which are not straightforward to solve. Obviously, Figure 3.8d is easier to

be labeled as patient than Figure 3.8c, but the opposite situation is not true. Actually, the main

problem concerns when Figure 3.8c is represented in the training set, not in the test set. In the

former situation, this exam has a high probability to be an outlier, thus leading the learning pro-

cess to mistakes in the classification phase. The latter situation usually only affects that sample

only, i.e. it will be probably labeled as control. Although it may decrease the overall classifica-

tion rate, the major problem is related to the fact that such exam will be a false negative, thus

postponing the treatment of the disease.

Figure 3.9 displays some meanders from both control and patients group. A similar situa-

tion to the one faced with spirals can also be observed with meanders. The high variability of

the dataset makes the classifiers more prone to errors, thus turning the problem of identifying

PD in the early stages quite complicated. However, the proposed approach obtained ≈ 67% of

recognition rates using meanders, which we consider a very suitable result. As aforementioned,

we have not noticed any particular image-based dataset available in the internet, as well as with
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(a) (b) (c) (d)

Figura 3.8: Spirals from control group (a)-(b), and from the patients group (c)-(d).

the proposed pipeline for feature extraction adopted in this work.

(a) (b) (c) (d)

Figura 3.9: Meanders from control group (a)-(b), and from the patients group (c)-(d).

3.5 Conclusion

In this paper, we dealt with the problem of Parkinson’s Disease recognition by combining

machine learning and computer vision techniques. The main contributions are related to the

design of a new dataset that contains images from both spirals and meanders, which are cropped

out from digitized handwritten exams, as well as we proposed a pipeline that can deal with the

problem of learning from non-registered images. The proposed approach can automatically

extract both the template and handwritten trace from each exam for further feature extraction

and classification.

The experimental results can lead us to conclude that meanders are more informative than

spirals, since the latter pose a greater challenge due to the contours inherent to their shape. Also,

the combination of both approaches did not seem to improve the results. The main problem is

related to the high variability of the dataset, which comprises patients at the very early stages

of the disease, thus being very difficult to be diagnosed. In regard to future works, we intend to

increase the dataset with more samples from the control group, as well as to design new features

that can better distinguish between control individuals and patients.



Capítulo 4
AUXÍLIO AO DIAGNÓSTICO DA DOENÇA DE

PARKINSON UTILIZANDO DINÂMICA DE ESCRITA

E APRENDIZADO EM PROFUNDIDADE

Este capítulo apresenta duas principais contribuições: (i) o uso da técnica de Redes Neurais

por Convolução para classificação das imagens contidas no conjunto de dados HandPD, e (ii)

o uso e disponibilização de um conjunto de dados composto por seis tipos diferentes de sinais

adquiridos com um caneta smart pen baseado em séries temporais. O artigo contido neste

capítulo foi submetido para a revista Computer Methods and Programs in Biomedicine, onde

encontra-se a espera do parecer de seus revisores. O capítulo também compreende os resultados

de um artigo publicado pelo candidato (PEREIRA et al., 2016b).

4.1 Introduction

Parkinson’s Disease (PD) is a chronic, progressive, and neurodegenerative disease caused

by the loss of a neurotransmitter called dopamine (LEES; HARDY; REVESZ, 2009). Usually, PD

is more common in the elderly population, producing alterations in gait and posture that may

increase the risk of falls, the so-called “freezing of gait". PD usually impacts daily activities

and reduces the quality of life concerning patients and their families (MAKI; MCILROY, 2005;

MARCHETTI; WHITNEY, 2005; ZHAO et al., 2008; PRASHANTH et al., 2016).

A number of drugs have been developed to help coping with the disease, but their usage

along the years might hasten neurodegeneration (FAHN et al., 2004). The main problem regarding

PD concerns its detection in early stages, since it is unknown the real situations that trigger

Parkinson’s Disease. Therefore, researchers from different areas aim at pushing together their
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skills and helping each other to better understand such illness. Due to their emerging use in a

number of applications, decision-making techniques based on machine learning might be the

most fruitful ones to deal with PD recognition (SAKAR et al., 2013).

(DAS, 2010), for instance, presented a comparison among some classification techniques

concerning PD diagnosis, achieving around 92.2% of classification accuracy by means of Neu-

ral Networks. (SPADOTTO et al., 2010c) introduced the Optimum-Path Forest (OPF) (PAPA; FAL-

CÃO; SUZUKI, 2009; PAPA et al., 2012) in the context of automatic PD identification, and (GHA-

REHCHOPOGH; MOHAMMADI, 2013b) used Artificial Neural Networks with Multi-Layer Per-

ceptron to diagnose the effects caused by Parkinson’s Disease. (SPADOTTO et al., 2010a) also

considered using a meta-heuristic-driven feature selection aiming at recognizing such illness.

(MEMEDI et al., 2015) measured the disease progression in PD patients, which were asked

to perform some handwritten exams at home. (LONES et al., 2014) employed evolutionary algo-

rithms for combining classifiers aiming at the automatic identification of Parkinson’s Disease.

Other works, such as the one by (PAN et al., 2012b), analyzed the performance of Support Vector

Machines with Radial Basis Function in order to compare the onset of tremor in patients with

PD. Later on, (PEKER; SEN; DELEN, 2015) used sound-based features and complex-valued neu-

ral networks to aid PD diagnosis as well, and (HARIHARAN; POLAT; SINDHU, 2014) developed

a new feature weighting method using Model-based clustering (Gaussian mixture model) in or-

der to enrich the discriminative ability of the dysphonia-based features, thus achieving 100% of

classification accuracy.

However, most works make use of audio-based datasets to cope with PD identification.

Very recently, (PEREIRA et al., 2016) proposed to aid PD diagnosis by means of handwriting mo-

vements. In addition, the very same group of authors made available a dataset with hundreds of

images containing handwriting drawings made by both healthy individuals and patients. Since

the writing ability is affected by Parkinson’s Disease, it is very usual to find such exams in hos-

pitals and clinics, but only a few works have considered them for automatic diagnosis purposes.

Some years ago, a group of German researchers developed a very clever way to assist PD

diagnosis: the so-called Biometric Smart Pen - BiSP® (TEAM REGENSBURG, 2002), which is es-

sentially a pen composed of sensors that measure some information captured during handwritten

exams. Although the pen has been originally designed for biometric purposes, it was further

employed to aid PD diagnosis. Some years ago, (PEUKER; SCHARFENBERG; HOOK, 2011) used

the signals extracted from the pen to perform PD identification, obtaining very suitable results.

However, the authors extracted around 400 hand-crafted features from the signal, which were

obtained by means of a sequential-driven feature selection algorithm, which may be too costly.
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In this work, we proposed to learn pen-based features by means of a Convolutional Neural

Network (CNN) (LECUN et al., 1989), which can process information through a set of layers,

being each one in charge of learning a different and finer representation. Moreover, as far

as we are concerned, we have not noticed any work that deal with automatic PD diagnosis

by means of deep learning techniques, which turns out to be the main contribution of this

work. Another contribution is to make available a dataset composed of the signals extracted

from patients and healthy individuals through the smart pen1. Additionally, we showed how

to improve PD identification by means of an ensemble of CNNs, which were trained over six

different handwritten exams: (i) drawing circles on the paper, (ii) drawing circles in the air, (iii)

spirals, (iv) meanders, (v) left-wrist movements and (vi) right-wrist movements.

The remainder of this paper is organized as follows. Caption 4.2 presents the methodology

employed in this work, as well as the proposed dataset. Caption 4.3 presents the experimental

results, and Caption 4.4 states conclusions and future works.

4.2 Methodology

In this section, we present the methodology used to create the dataset, as well as the propo-

sed approach to analyze the pen-based features (signals) using Convolutional Neural Networks.

4.2.1 HandPD Dataset

The writing of parkinsonian patients is often distorted and smaller (micro-graphing) than

that of healthy individuals due to the tremors, reduced movement amplitudes, slowness and ri-

gidity (GEMMERT; TEULINGS; STELMACH, 2001). Currently, it is not straightforward to pinpoint

a specific exam that can identify a patient in the early stages. Also, PD can be misidentified

with other brain disorders.

Recently, (PEREIRA et al., 2016) made available a dataset concerning images acquired during

handwriting exams, which aim at describing an individual skill when filling a form out, as the

one depicted in Figure 4.1. The idea of the form is to ask a person to perform some specific

tasks that are supposed nontrivial to PD patients, including to trace some geometric forms and

performing the so-called “diadochokinese test", which is basically a test where the individual

holds the pen with straight arms and perform hand-wrist movements.

From Figure 4.1, one can observe the six aforementioned handwritten exams: (i) drawing

1http://wwwp.fc.unesp.br/~papa/pub/datasets/Handpd
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Figura 4.1: Form used to assess the handwritten skills of a given individual.

circles on the paper (exam ‘a’), (ii) drawing circles in the air (exam ‘b’), (iii) drawing spirals

(exam ‘c’), (iv) drawing meanders (exam ‘d’), (v) right-wrist movements (exam ‘e’), and (vi)

left-wrist movements (exam ‘f’). Notice both “spirals" and “meanders" exam are performed

four times, and the individual is asked to draw the circle in the air and on the paper twelve times

each.

The former HandPD dataset was collected at the Faculty of Medicine of Botucatu, São

Paulo State University, Brazil, being composed of images extracted from handwriting exams

of individuals divided into two groups: (i) healthy people and (ii) PD patients. The dataset

comprises 92 individuals, being divided in two groups: (i) the first one contains 18 exams of

healthy people, named control group, with 6 male subjects and 12 female individuals; (ii) the

second group contains 74 exams of people affected with Parkinson’s disease, named patients

group, having 59 male subjects and 15 female ones. The control group is composed of 16

right-handed and 2 left-handed individuals, with an average of 44.22± 16.53 years. In regard

to the patients group, we have 69 right-handed and 5 left-handed individuals with an average of

58.75±7.51 years.

In this work, we proposed to extend the original HandPD dataset with signals extracted

from the smart pen as well, which are generated through six sensors, as described below:
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• CH 1: Microphone;

• CH 2: Fingergrip;

• CH 3: Axial Pressure of ink Refill;

• CH 4: Tilt and Acceleration in “X direction";

• CH 5: Tilt and Acceleration in “Y direction"; and

• CH 6: Tilt and Acceleration “Z direction".

The difference between the exams of healthy individuals and patients are due to a dysfunc-

tion of movement disorders. Some parkinsonian patients, for instance, may present high levels

of tremor during drawing tasks. Since each sensor outputs the whole signal acquired during the

exam2, we can represent such data as a time series, as depicted in Figure 4.2, which represents

the output of an exam from a healthy individual when drawing a spiral (e.g. Figure 4.5a), and

each colored signal stands for a different channel. We can observe the drawing is pretty much

the standard form of the image, while the signal extracted from the patient seems to be too much

noisy, as displayed in Figure 4.3 (e.g. Figure 4.5b). Also, the microphone (i.e., the red channel)

seems to provide little discriminative information between patients and healthy individuals. The

“sounds of writing" produced a slightly different output for both types of individuals, but we

included them as well.
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Figura 4.2: Signals recorded by the pen from a control individual when drawing a spiral.

In order to build the dataset, we used signals extracted from the form tests ‘a’, ‘b’, ‘c’,

‘d’, ‘e’ and ‘f’. The new dataset comprises 34 individuals, being 14 patients (10 males and 4
2The extension of the exam is defined as the time interval between a computer beep (a start call) and the end of

the drawing process.
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Figura 4.3: Signals recorded by the pen from a PD patient when drawing a spiral.

females) and 20 control (healthy) individuals (10 males and 10 females). Each person is asked

to fill the form out using the smart pen. This activity concerns the analysis of the movement

provided by circles, spirals, meanders drawings and diadochokinesis; quantifying the normal

motor activity in a healthy individual, as well as the dysfunction of PD patients.

In order to facilitate the dataset organization, the form tests are divided in six exams, as

follows:

• Exam 1: drawing a circle twelve times in the same place (row ‘a’ in Figure 4.1);

• Exam 2: drawing a circle twelve times in the air (row ‘b’ in Figure 4.1);

• Exam 3: drawing four spiral from inside to outside (row ‘c’ in Figure 4.1);

• Exam 4: drawing four meanders from inside to outside (row ‘d’ in Figure 4.1);

• Exam 5: diadochokinesis test with the right hand (row ‘e’ in Figure 4.1); and

• Exam 6: diadochokinesis test with the left hand (row ‘f’ in Figure 4.1).

4.2.2 Modeling Time Series in CNNs

We propose to model the problem of distinguishing PD and control individuals as an image

recognition task by means of CNNs. Roughly speaking, the signals provided by the smart pen

are transformed into pictures. Each exam is composed of r rows (exam time in milliseconds) and

6 columns, which stand for the aforementioned 6 signal channels (e.g. sensors). Therefore, each

exam needs to be resized to a squared matrix in order to fulfill our purposes (notice the number
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of rows r may differ from each test, since a person may take longer than another to perform the

exam). After rescaling, each exam-based matrix is then normalized in order to be modeled as a

gray-scale image. Figures 4.4 and 4.5 illustrate some drawings and their transformed versions

into time series-based images. One can observe the different patterns among the test images, as

well as different patterns among the same drawings of healthy and PD patients.

(a) (b)

(c) (d)

Figura 4.4: Meander samples from: (a) control and (b) PD patient, and their respective time series-
based images in (c) and (d).

(a) (b)

(c) (d)

Figura 4.5: Spiral samples from: (a) control and (b) PD patient, and their respective time series-
based images in (c) and (d).

Datasets “Exam 1", “Exam 2", “Exam 5"and “Exam 6"contain 76 images each, being 56

from PD patients and 20 from the control group. The datasets “Exam 3" and “Exam 4"contain
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304 images each, being 224 from PD patients and 80 from the control group. The difference in

the number of images concerns the fact spirals and meanders are drawn four times per exam.

Additionally, for each dataset, we created two versions varying the image size: (i) datasets with

images of 64× 64 pixels, and (ii) datasets with images of 128× 128 pixels. The idea is to

evaluate the influence of the image resolution during the experiments.

Figure 4.6 displays the image-based dynamics of a patient and a healthy individual (con-

trol group) concerning the six exams. Clearly, one can realize the difference concerning the

images from the patient (first row) and the healthy individual (second row). Since we modeled

the handwritten dynamics (time series) as images, the problem now becomes to learn texture-

oriented features, since they encode the tremors during the exam. It is important to notice that

our dataset contains patients at the early stages of the disease (they were diagnosed later), which

turns out the process more realistic and useful, since it is not pretty much interesting to diagnose

a patient after the tremors have started.

Additionally, despite the time series depicted in Figure 4.6 showed to be quite important

to distinguish between control individuals and patients, one can observe a considerable diffe-

rence among the exams, which means they are important to capture distinct information, as

further detailed in Section 4.3.3. We showed their combination is a powerful tool to enhance

the automatic diagnosis concerning both the control and patient group.

4.2.3 Assessment Through Convolutional Neural Networks

In this section, we explain the proposed approach to assess the automatic diagnosis of Par-

kinson’s Disease by means of Convolutional Neural Networks. Roughly speaking, we divided

the experiments in two rounds: (i) Single-Assessment and (ii) Combined-Assessment. In the

former experiment, we analyzed the robustness of the features learned through CNNs conside-

ring each exam individually. In regard to the second experiment, we proposed to combine the

output of each CNN (i.e. each one trained over a specific exam) by means of majority voting in

order to obtain the final result. Since we have six different exams, it is quite reasonable to as-

sume each one encodes/captures a different information related to handwriting skills. Figure 4.7

depicts the aforementioned proposed combination step to assess the robustness of CNNs when

modeling the problem of PD recognition by means of time series-based images.
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(a) (b) (c)

(d) (e) (f)

Figura 4.6: Time series-based images pattern considering a patient (first and third row) and a
healthy individual (second and fourth row): (a) “Exam 1" (circle in the paper), (b) “Exam 2"
(circle in the air), (c) “Exam 3" (spiral), (d) “Exam 4" (meander), (e) “Exam 5" (diadochokinesis
with the right hand) and (f) “Exam 6" (diadochokinesis with the left hand).

4.3 Experiments

4.3.1 Experimental Setup

In this work, we used a CNN-based approach to classify the time series-based images drawn

by the control group and PD patients. In order to provide more conclusive results, we also con-

sidered standard classifiers trained over the data to serve as baselines for comparison purposes:

(i) Optimum-Path Forest (OPF) (PAPA; FALCÃO; SUZUKI, 2009; PAPA et al., 2012), (ii) Support

Vector Machines (SVM) (CORTES; VAPNIK, 1995) and (iii) Näive-Bayes (DUDA; STORK, 2000).

The reason for using such classifiers concerns the fact OPF is quite fast and parameterless, SVM
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Figura 4.7: Proposed combination approach to evaluate CNNs in the context of PD identification.

is one of the most used techniques in the literature3, and Näive-Bayes is considered a good al-

ternative to achieve the gold standards. Additionally, CNN parameters were hand-tuned, i.e. the

parameters were empirically chosen.

As one can observe, the images may look discriminative by texture. In order to serve as a

baseline experiment, we used two texture descriptors to feed the supervised techniques addres-

sed in this work: the gray level co-occurrence matrices (GLCM) (HARALICK; SHANMUGAM et

al., 1973), and the local binary patterns (LBP) (OJALA; PIETIKÄINEN; HARWOOD, 1996). GLCM

stands for the distribution of co-occurring pixels values concerning a given offset. For our pur-

pose, we used the energy, entropy, contrast, homogeneity and correlation features computed

over the matrices built upon the angles θ as 0◦, 45◦, 90◦ and 135◦. In regard to LBP, it recaps

the local structure in an image by comparing each pixel with its neighbors. In other words, it

labels the pixels by thresholding the neighborhood of each pixel and transforming them into

binary numbers. Considering our approach, we used the naïve LBP with 8 neighbors and radius

equals to 1.

In order to provide consistent experiments, we partitioned each dataset considering indi-

viduals and not just images. Therefore, when a given individual is selected to compose the

training set, all the twelve images of that individual are used for training purposes in all six

exams. Notice the same methodology is applied for the testing set. We considered using 50%

of the samples to compose the training set, and the remaining 50% to be part of the testing

3Notice SVM parameters have been optimized through a grid-search procedure within the ranges C ∈
[2−5,2−3, . . . ,213,215] and σ ∈ [2−15,2−13, . . . ,21,23], in which C and σ stand for the SVM soft-margin parameter
and the Radial Basis Function (RBF) kernel variance values, respectively.
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phase. Such percentages were empirically chosen, being reasonable to have the same propor-

tion of samples for both sets. Very often, medical-dependent applications suffer from the lack

of data, and it is quite usual to find works that make use of larger training sets to alleviate this

problem. In this work, we decided to keep a fair distribution among the sets in order to evaluate

the proposed approach. In addition, we evaluated the robustness of the experiments over two

versions of the datasets: (i) the first one uses images of 64× 64 pixels, and the second one

(ii) uses images of 128× 128 pixels. Since the original images have a higher resolution (they

were manually cropped from the exams), we decided to evaluate the robustness of the proposed

approach under different scenarios.

Aiming at evaluating the experiments by means of statistical analysis, we randomly gene-

rated 10 different training and testing sets. The statistical evaluation was carried out by means

of the Wilcoxon signed-rank test with significance of 0.05 (WILCOXON, 1945a). As aforemen-

tioned, the experiments were divided into two steps: (i) the first one concerns the single as-

sessment, where CNN, OPF, SVM and Näive-Bayes were evaluated on each exam individually

(Section 4.3.2), and the second step (ii) consists the combined assessment, which considers the

output of each classifier over the individual exam in a majority voting-based schema to produce

the final results (Section 4.3.3).

In regard to the source-code, we used the well-known Caffe library4 (JIA et al., 2014), which

is developed under GPGPU (General-Purpose computing on Graphics Processor Units) plat-

form, thus providing more efficient implementations concerning CNNs. With respect to OPF

and SVM, we used the LibOPF (PAPA; SUZUKI; X, 2014) and libSVM (CHANG; LIN, 2011), res-

pectively, and for Näive-Bayes we used our own implementation. Additionally, we considered

two different CNN architectures to provide a deeper experimental analysis:

1. ImageNet: composed of 5 convolution layers, 5 pooling layers and 2 normalization layers.

It is also constituted by 5 ReLU layers among the convolution ones, 2 inner product layers,

2 dropout layers, 1 softmax loss layer and 1 accuracy layer for testing purposes. The

first convolutional layer uses a kernel size of 11× 11 with stride of 4, and the second

convolutional layer employs a kernel size of 5× 5 with stride of 5 pixels. The next

convolutional layers use kernels of size 3×3 with stride of 1 pixel.

2. Cifar-10: a quick version is used, composed of 3 convolution layers and 3 pooling layers.

It is also constituted by 3 ReLU layers among the convolution ones, 2 inner product

layers, 1 softmax loss layer and 1 accuracy layer for testing intentions. All convolutional

layers employ kernels of size 5×5 with stride of 1.
4http://caffe.berkeleyvision.org
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Since the images used in the experiments are domain-specific, we did not employ transfer lear-

ning, i.e. we opted to train the networks using our own datasets. In addition, we used 10,000

training iterations with mini-batches of size 16 concerning CNN experiments.

4.3.2 Single-Assessment

This section aims at presenting the experimental results concerning the CNN-based Par-

kinson’s Disease identification over the individual exams. As aforementioned in Section 6.3.2,

we compared two distinct CNN architectures and three baseline approaches. Tables I and II

present the average results regarding the single-assessment results. The most accurate results,

according to Wilcoxon signed-rank test, are in bold. Table I presents the overall accuracy, while

Table II presents the recognition rates per class. In regard to the overall recognition rates, we

employed an accuracy measure proposed by Papa et al. (PAPA; FALCÃO; SUZUKI, 2009) that

considers unbalanced datasets, which is often faced in medical diagnosis applications.

One can observe CNN-based features obtained the most accurate results for all experiments,

being SVM similar to CNN-ImageNet concerning “Exam 4" dataset with 128× 128 images.

Roughly speaking, the results over the images with higher resolution were slightly more accu-

rate, but it does not seem to play a big role. The main difference when working with images with

different resolution concerns CNN-Cifar10 architecture, which has been considerably affected

by images with higher resolution. Since we used a “quick version" of Cifar10 architecture,

i.e. a shallower network, images with higher resolution may require more neurons, and thus a

deeper neural network. Therefore, we can conclude the CNN-Cifar10 network has overfitted

the data. Although the images showed in Figure 4.6 seem to be texture-oriented, they do not

reflect the whole dataset, which can explain the results using GLCM and LBP feature extraction

algorithms. Interestingly, the raw data achieved similar results to the texture-based ones, which

means the real problem is the identification of early-stage-affected patients, as discussed later

on Section 4.3.4.

Additionally, “Exam 4" (i.e. meanders) has the better discriminative ability, since it obtai-

ned the best recognition rates concerning the different resolutions and architectures. Actually,

a finer statistical evaluation by means of Wilcoxon test pointed out both “Exam 3" and “Exam

4" are similar to each other concerning 64×64 images, but “Exam 4" is the sole best approach

concerning 128×128 images. However, a closer look at the recognition rates shows us a quite

similar behavior among the different image resolution experiments. Therefore, without loss of

generality, we can assume both “Exam 3" and “Exam 4" are similar to each other when we

consider the overall (global) accuracy.
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Tabela 4.1: Average overall accuracy over the test set considering the six exams, different image
resolutions and classification/feature extractor techniques
.

Classifier
Accuracy(%) - 64x64

Exam 1 Exam 2 Exam 3 Exam 4 Exam 5 Exam 6
CNN-ImageNet 67.75±3.86 68.04±9.02 78.02±2.48 80.15±2.91 72.56±4.72 74.23±5.60
CNN-Cifar10 68.04±4.17 71.62±4.04 73.77±5.20 80.13±2.54 70.93±0.77 66.34±9.98
OPF-Raw 57.26±4.71 59.16±2.31 71.79±1.50 71.67±3.41 61.04±1.71 74.23±5.60
SVM-Raw 58.69±3.76 61.44±2.00 74.61±2.50 77.83±5.34 55.49±8.46 66.34±9.98
Bayes-Raw 54.82±4.15 58.11±1.22 73.45±1.76 73.54±3.53 61.40±4.12 55.64±4.81
OPF-GLCM 50.08±7.62 62.40±8.98 68.76±2.40 74.99±2.98 54.38±5.01 54.96±7.22
SVM-GLCM 53.18±6.61 51.01±4.61 71.70±4.42 76.25±3.80 52.00±5.77 54.57±7.13
Bayes-GLCM 58.00±9.82 51.82±5.75 69.82±4.62 72.63±3.02 58.93±9.89 55.39±6.41
OPF-LBP 56.20±6.94 56.17±8.36 60.61±3.93 58.24±3.12 64.33±4.99 59.43±6.15
SVM-LBP 49.40±0.98 50.28±4.55 64.09±7.10 62.29±6.90 61.98±9.89 59.46±7.65
Bayes-LBP 52.24±6.69 58.04±2.96 64.46±4.80 64.43±3.41 64.58±5.58 69.64±8.04

Classifier
Accuracy(%) - 128x128

Exam 1 Exam 2 Exam 3 Exam 4 Exam 5 Exam 6
CNN-ImageNet 68.04±2.96 73.41±3.66 78.26±1.97 80.75±2.08 73.59±3.57 76.32±5.18
CNN-Cifar10 55.46±3.25 61.98±8.52 52.10±19.09 60.94±14.12 52.05±2.81 50.97±2.17
OPF-Raw 58.09±3.13 61.79±2.50 72.83±2.20 76.28±2.91 59.58±3.96 52.86±4.87
SVM-Raw 58.39±7.40 64.61±2.50 77.17±4.00 80.74±3.22 58.21±8.61 56.86±6.39
Bayes-Raw 57.55±3.69 63.45±1.76 72.11±3.33 74.38±4.80 62.11±3.47 51.79±3.73
OPF-GLCM 46.40±6.47 57.48±7.23 66.59±2.31 75.97±2.34 55.65±4.14 58.64±3.49
SVM-GLCM 57.11±5.23 53.10±4.85 71.07±3.48 79.46±3.50 52.06±6.06 58.79±7.51
Bayes-GLCM 54.42±5.79 53.04±5.30 68.33±3.81 74.15±3.04 56.83±8.66 54.54±6.78
OPF-LBP 54.63±5.95 55.71±5.97 61.49±4.00 66.09±4.18 64.33±9.35 56.68±6.43
SVM-LBP 50.42±3.60 48.65±4.03 60.51±6.96 65.65±5.46 61.54±8.84 63.32±10.60
Bayes-LBP 60.05±5.20 52.13±5.73 63.65±3.50 63.81±4.13 57.01±5.67 68.50±8.11

Table II presents the results per class using the following format x(y), where x and y stand

for the accuracy concerning the patients and the control group, respectively. Since our dataset is

not balanced, it is quite useful to provide the recognition rates per class. In general, the recog-

nition rates are quite good, being the bottleneck of the proposed approach the recognition rates

over control individuals. Although we have more control people than PD patients, a conside-

rable number of healthy individuals were classified as patients, since the dataset comprises PD

patients with exams quite close to the ones performed by healthy individuals. Texture-based and

raw data information achieved reasonable recognition rates concerning the patients group, but

their global accuracy were considerably affected due to the effectiveness over the control group.

As aforementioned, we assume two types of problems: (i) first, the dataset is not balanced (less

control group), and (ii) we have a number of early-stage patients, which means they behave

similarly to healthy individuals. As a matter of fact, we observed a very few control individuals

that have similar drawings to a patient one in his/her advanced state of disease. Probably, the

individual was affected by another disease, he/her was nervous during the exam, or even the

exam was labeled incorrectly.

The best results concerning 64× 64 images were obtained by SVM over “Exam 5" for

patient identification (96.43%), and the more accurate recognition rates considering the control

group were obtained by CNN-Cifar10 over “Exam 4". In regard to 128× 128 images, CNN-
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Cifar10 obtained 99.30% of recognition rate concerning patients, and CNN-ImageNet obtained

70.51% of accuracy considering the control group. Roughly speaking, meanders (“Exam 4")

appear to be the most important test to identify healthy people, and “Exam 5" and “Exam 6"

(right- and left-wrist movements) seemed to be the best ones to recognize PD patients. Although

we can observe pretty much different exams (Figures 4.4 and 4.5) between patients and control

group, the problem gets worse when we have patients at the very early stage of the disease,

which may have quite close exams. However, the left- and right-wrist movements (“Exam 5”

and “Exam 6") seems to detect some subtle disorders in the motor system, thus obtaining better

results.

Tabela 4.2: Average class accuracy over the test set considering the six exams, different image
resolutions and classification/feature extractor techniques
.

Classifier
Accuracy(%) - 64x64

Exam 1 Exam 2 Exam 3 Exam 4 Exam 5 Exam 6
CNN-ImageNet 81.19 (54.31) 83.04 (53.04) 89.23 (67.20) 88.91 (71.38) 94.10 (51.03) 85.57 (62.98)
CNN-Cifar10 83.68 (54.20) 83.12 (60.12) 90.69 (56.86) 85.68 (74.60) 85.44 (56.43) 73.43 (59.24)
OPF-Raw 79.29 (35.24) 80.49 (37.84) 90.39 (53.20) 85.71 (57.62) 85.71 (36.36) 79.29 (32.00)
SVM-Raw 87.76 (29.52) 87.86 (35.02) 91.59 (57.64) 89.46 (66.19) 96.43 (14.55) 83.57 (48.00)
Bayes-Raw 78.21 (31.43) 79.61 (36.63) 89.73 (57.18) 86.61 (60.48) 86.43 (36.36) 85.00 (34.00)
OPF-GLCM 81.06 (19.11) 85.71 (39.10) 82.05 (55.47) 85.43 (64.52) 77.85 (30.94) 73.93 (36.00)
SVM-GLCM 89.99 (16.37) 89.29 (12.74) 89.12 (54.30) 86.07 (66.42) 90.35 (13.65) 92.15 (17.00)
Bayes-GLCM 79.64 (36.38) 79.99 (23.66) 86.06 (53.58) 85.26 (60.01) 87.86 (30.02) 81.79 (29.00)
OPF-LBP 77.86 (34.57) 81.42 (30.93) 83.83 (37.39) 79.10 (37.40) 73.23 (55.44) 87.86 (31.00)
SVM-LBP 96.07 (2.73) 89.64 (10.92) 88.66 (39.53) 88.38 (36.19) 92.14 (31.83) 83.92 (35.00)
Bayes-LBP 73.56 (30.93) 86.07 (30.03) 81.06 (47.85) 81.24 (47.63) 86.44 (42.76) 89.29 (50.00)

Classifier
Accuracy(%) - 128x128

Exam 1 Exam 2 Exam 3 Exam 4 Exam 5 Exam 6
CNN-ImageNet 81.30 (54.78) 82.33 (64.48) 88.19 (68.36) 90.99 (70.51) 94.77 (52.41) 92.52 (60.13)
CNN-Cifar10 89.74 (21.18) 84.65 (39.31) 84.17 (20.03) 72.81 (49.06) 98.60 (5.50) 99.30 (2.64)
OPF-Raw 74.29 (41.90) 82.69 (40.90) 82.32 (63.36) 88.95 (63.62) 86.63 (32.73) 85.71 (20.00)
SVM-Raw 88.21 (28.57) 88.46 (40.81) 91.74 (62.62) 91.46 (69.99) 96.43 (20.00) 95.71 (22.00)
Bayes-Raw 76.07 (39.05) 84.05 (42.87) 87.50 (56.73) 86.49 (62.30) 87.86 (36.36) 83.57 (20.00)
OPF-GLCM 76.44 (16.38) 76.78 (38.21) 84.35 (48.82) 86.69 (65.23) 78.56 (32.75) 79.28 (38.00)
SVM-GLCM 87.86 (26.37) 88.94 (17.29) 89.30 (52.86) 88.94 (69.99) 93.21 (10.92) 88.57 (29.00)
Bayes-GLCM 74.28 (34.56) 76.07 (30.02) 83.56 (53.10) 85.44 (62.84) 88.21 (25.48) 81.06 (28.00)
OPF-LBP 81.08 (28.20) 71.44 (40.02) 83.93 (39.04) 85.27 (46.91) 83.21 (45.47) 80.33 (33.00)
SVM-LBP 93.58 (7.28) 88.20 (9.10) 86.25 (34.76) 84.65 (46.67) 90.36 (32.74) 94.64 (32.00)
Bayes-LBP 74.64 (45.47) 76.09 (28.21) 82.76 (44.53) 79.99 (47.60) 88.58 (25.48) 95.00 (42.00)

4.3.3 Combined-Assessment

In this section, we present the results concerning the proposed approach that considers

the combination among all decisions made by the classifiers trained on each individual exam

(Figure 4.7). Table 4.3 presents the overall (global) accuracy, being the best results in bold

according to Wilcoxon statistical test. Clearly, we can observe the proposed approach improved

the results presented in Table I considerably, confirming our hypothesis that different exams

encode/model different handwritten dynamic properties. Also, CNN-ImageNet obtained the

best results so far, being consistent more accurate than the compared approaches. Notice that
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GLCM-based features obtained results similar to the ones achieved by CNN-ImageNet when

we use the ensemble of classifiers. However, as one can further observe in Table 4.4, CNNs are

more consistent to the different exams, i.e. they have been consistently the best learners for all

exams, which does not happen when dealing with the texture descriptors.

Tabela 4.3: Average overall accuracy over the test set considering the combined-assessment appro-
ach.

Classifier
Accuracy(%) - Voting
64x64 128x128

CNN-ImageNet 93.42±3.17 95.74±1.60
CNN-Cifar10 90.28±6.09 76.96±21.60
OPF-Raw 79.44±2.67 82.44±4.54
SVM-Raw 74.80±9.32 70.56±3,56
Bayes-Raw 85.51±1.98 83.45±3.48
OPF-GLCM 93.01±3.64 95.21±2.13
SVM-GLCM 79.23±8.23 95.21±2.13
Bayes-GLCM 93.05±3.97 93.48±2.78
OPF-LBP 90.21±2.56 91.14±4.56
SVM-LBP 69.98±14.43 75.03±9.57
Bayes-LBP 91.14±2.68 88.17±4.59

Table 4.4 presents the results for each class using the very same format employed in the pre-

vious section, i.e. the number in parenthesis stands for the mean accuracy concerning the control

group. Once again, the ensemble of CNNs provided a considerable enhancement considering

the recognition rates for both patients and control group. Also, the baseline classifiers benefited

from such process, being their accuracies increased for both patients and healthy people recog-

nition. We can conclude the best trade-off between patient and control group recognition was

obtained by means of CNN-ImageNet with 128× 128 images. In this case, higher resolution

images played an important role, despite the individual experiments that highlighted different

image sizes are not so important to the classification process.

4.3.4 Early Stage Detection

The main challenge regarding PD concerns its detection at early stages, where the symp-

toms are almost imperceptible. In order to evaluate the robustness of the proposed approach

when identifying patients with Parkinson’s Disease in its early stage, we have manually se-

lected eight patients with very similar traces to healthy individuals. Figure 4.8 presents some

images of the selected individuals. Notice these patients can perform the tasks nearly to a he-

althy individual.

Figure 4.9 displays some time series extracted from selected exams concerning Figure 4.8.
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Tabela 4.4: Average class accuracy over the test set considering the combined-assessment appro-
ach.

Classifier
Accuracy(%) - Voting

64x64 128x128
CNN-ImageNet 97.84 (89.00) 97.48 (94.01)
CNN-Cifar10 98.56 (82.00) 98.92 (55.00)
OPF-Raw 100.00 (58.87) 100.00 (64.33)
SVM-Raw 100.00 (49.59) 100.00 (41.11)
Bayes-Raw 100.00 (71.01) 100.00 (66.90)
OPF-GLCM 98.02 (88.00) 98.92 (91.50)
SVM-GLCM 94.97 (63.50) 98.92 (91.50)
Bayes-GLCM 99.10 (87.00) 99.46 (87.50)
OPF-LBP 98.92 (81.50) 99.28 (83.00)
SVM-LBP 99.46 (40.50) 98.56 (51.50)
Bayes-LBP 99.28 (83.00) 97.84 (78.50)

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figura 4.8: Examples of meander (first and second row) and spiral (third and fourth row) images
obtained by some patients in the early stages of the disease.

Clearly, one can observe the signals extracted from those exams present a shaky behaviour, i.e.,

the smart pen can really capture subtle movements during the exam, which can not be observed

in the handwritten exams by means of a visual inspection. The time series depicted in Figure 4.9

are pretty much similar to those presented in Figure 4.3, which shows the signals extracted from
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an advanced-stage patient.
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Figura 4.9: Time series concerning the patient group: (a) Figure 4.8a, (b) Figure 4.8c, (c) Fi-
gure 4.8e, (d) Figure 4.8i, (e) Figure 4.8k, and (f) Figure 4.8m.

For each selected patient, we computed the accuracy of both meander and spiral images

considering the very same datasets generated in the previous experiments. Table 4.5 presents

the accuracy concerning these selected images. Clearly, one can draw two main conclusions:

(i) first, CNN-based features (Cifar10 and ImageNet) presented the highest accuracy rates com-

pared to other approaches, and (ii) the proposed approach is robust enough to detect early-stage

PD patients, since they obtained quite good recognition rates (above 94%). The high stan-

dard deviation values concerning raw and texture-based features indicate they are able to either

recognize or miss the majority of early-stages PD patients.
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Tabela 4.5: Average accuracy over the early stage (selected) images.

Accuracy (%) 64x64
Classifier Exam 3 Exam 4
CNN-Cifar10 95.83±7.04 94.01±6.72
CNN-ImageNet 96.35±8.08 94.01±6.23
Bayes-Raw 52.08±46.09 51.04±48.57
OPF-Raw 51.04±46.63 52.20±45.49
SVM-Raw 50.00±47.53 50.00±47.91
Bayes-GLCM 52.08±43.35 51.04±50.28
OPF-GLCM 47.91±44.93 50.00±53.45
SVM-GLCM 53.15±49.17 47.91±49.75
Bayes-LBP 51.04±47.02 55.20±42.47
OPF-LBP 48.95±47.02 54.16±39.08
SVM-LBP 52.08±47.50 51.04±50.48

Accuracy (%) 128x128
Classifier Exam 3 Exam 4
CNN-Cifar10 95.83±7.04 94.01±6.72
CNN-ImageNet 96.35±8.08 94.01±6.23
Bayes-Raw 47.91±44.04 51.04±46.83
OPF-Raw 48.95±48.57 50.00±45.74
SVM-Raw 50.00±51.63 47.91±49.76
Bayes-GLCM 54.16±45.42 52.08±51.31
OPF-GLCM 53.12±48.37 53.12±50.38
SVM-GLCM 52.08±51.51 53.12±47.96
Bayes-LBP 42.70±40.44 45.83±37.26
OPF-LBP 43.74±44.09 43.75±39.27
SVM-LBP 46.85±44.52 51.04±42.82

4.4 Conclusions

In this paper, we cope with the problem of PD identification by means of Convolutional

Neural Networks. Basically, the idea is to model the handwritten dynamics as a time series, and

to use it as an input to a CNN, which will be able to learn features that are used to distinguish

healthy individuals from PD patients. The main contributions of this paper rely on three main

aspects: (i) to employ a deep learning-oriented approach to aid Parkinson’s Disease diagnosis,

(ii) to design a signal-based dataset composed of features related to handwritten dynamics, and

(iii) to propose an ensemble of CNNs to better distinguish PD patients from control group.

The experimental section comprised different CNN architectures, as well as images with

different resolutions and distinct training set sizes. The results obtained by CNNs were com-

pared against the raw data and texture descriptors classified by means of the traditional pattern

recognition techniques. These results shows to be very promising, since CNNs were able to le-

arn important features to differentiate PD patients from healthy individuals, thus obtaining very

good results over the datasets. The ensemble of CNNs depicted to be able to capture different

information from each exam, thus providing considerably better results.
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In regard to future works, we intend to combine the original image obtained through the

exam together with the time series-based version. Also, we plan to apply Auto-encoders right

after CNNs in order to reduce the dimensionality of the feature space.



Capítulo 5
AUXÍLIO AO DIAGNÓSTICO DA DOENÇA DE

PARKINSON UTILIZANDO DINÂMICA DE ESCRITA

E APRENDIZADO EM PROFUNDIDADE

Aceito para publicação na 30th Conference on Graphics, Patterns and Images - (Sibgrapi

2017), é apresentado nesta sessão o artigo Parkinson’s Disease Identification Through Deep

Optimum-Path Forest Clustering, que é voltado à identificação automática de indivíduos porta-

dores do mal de Parkinson através de aprendizagem profunda.

5.1 Introduction

The cure for neurodegenerative diseases has been constantly researched by Medicine, mainly

with respect to Parkinson’s disease (PD), which affects nearly 1 million people only in the Uni-

ted States, and around 7 to 10 million people might be living with PD worldwide. Also, the

number of new cases diagnosed each year ranges between 50,000 to 60,000 individuals ac-

cording to the National Parkinson’s Foundation (FUNDATION, 2017). Parkinson’s disease is

characterized by motor dysfunctions, it is a chronic, progressive and multilesion disease caused

by the loss of a neurotransmitter called Dopamine (LEES; HARDY; REVESZ, 2009). Such illness

is usually diagnosed through a clinical exam by a neurologist with expertise in movement analy-

sis. The PD is considered non-lethal, but people with PD have a shorter life expectancy than the

general population.

More often in the elderly population, PD produces alterations in gait and posture that may

increase the risk of falls and lead to mobility disabilities. As such, it impacts daily activities and

reduces the quality of life concerning patients and their families (MAKI; MCILROY, 2005; MAR-
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CHETTI; WHITNEY, 2005; ZHAO et al., 2008), especially because it does not have cure to date.

Drugs known as dopaminergic medications and therapy are currently used to treat PD symp-

toms, being the Levodopa (L-dopa) the most widely used for such purpose. Another treatment

that has been widely employed is the Deep Brain Stimulation, which is a surgical procedure

that delivers electrical pulses to brain cells in order to reduce the effects of the symptoms.

The science does not measure efforts in order to make the quality of life of PD patients

better. In computer science, for instance, techniques such as image processing, neural networks

and others have been widely applied in the pursuit of better results in both treatment and di-

agnosis. Spadotto et al. (SPADOTTO et al., 2010b), for instance, introduced the Optimum-Path

Forest (OPF) (PAPA; FALCÃO; SUZUKI, 2009; PAPA et al., 2012) classifier to aid the automatic

identification of Parkinson’s disease. Later on, the same group proposed an evolutionary-based

approach to select the most discriminative set of features that helped improving PD recognition

rates (SPADOTTO et al., 2011).

Most works that address automatic PD recognition deal with voice-based data. Procedures

to identify voiced and unvoiced (silent) periods have been actively pursued to analyze conti-

nuous speech samples, since most techniques that quantify periodicity and regularity in voice

signals are applied in the voiced regions only (SHAHBAKHI; FAR; TAHAMI, 2014). Das (DAS,

2010) presented a comparison of multiple classification methods for the diagnosis of PD, such

as neural networks, regression and decision trees. Several evaluation methods were employed

to calculate the performance of the classifiers, being the experiments conducted in a dataset

composed of biomedical voice measurements from 31 people, in which 23 were diagnosed with

Parkinson’s disease. The best results were achieved by neural networks (around 92.9% of PD

recognition rate).

Recently, Pereira et al. (PEREIRA et al., 2015, 2016) proposed to extract features from hand-

written exams using visual features, which are learned from some drawings the patients were

asked to perform, being the data used in the work made available in a dataset called “HandPD"1.

Later on, Pereira et al. (PEREIRA et al., 2016b) drove its approach to a deep learning applica-

tion using the signals (time series) captured by the biometric pen BiSP® (TEAM REGENSBURG,

2002), which were further converted to the image domain with different resolutions and used as

input to a Convolutional Neural Network.

Another interesting methodology to learn discriminative features from data is related to the

well-known Bag-of-words (BoW), though being quite difficult to establish the size of the bag

(dictionary), as well as another open problem is how to choose the words that will compose that

1http://wwwp.fc.unesp.br/~papa/pub/datasets/Handpd/
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bag. Some years ago, Afonso et al. (AFONSO et al., 2012b) proposed to use the unsupervised

OPF (ROCHA; CAPPABIANCO; FALCÃO, 2009) to learn proper dictionaries since it does not re-

quire the number of words beforehand, thus becoming an useful tool for BoW purposes. Later

on, Afonso et al. (AFONSO et al., 2016) presented a deep-hierarchical OPF (dOPF) clustering

algorithm to make it way more efficient, and validated it in the context of seismic-geological

data classification.

Although BoW usage is not new in the context of time series for biomedical purposes (WANG

et al., 2013), to best of our knowledge, it has not been applied for the identification of Parkin-

son’s disease along with graph-based clustering algorithms so far, which turns out to be the main

contribution of this work. Another main contribution is to use dOPF to learn dictionaries in a

hierarchical way, where different layers of knowledge are used to compose the final dictionary.

In short, the main idea of this work is to employ dOPF in the context of BoW applied for Par-

kinson’s disease detection using the time series data from the HandPD dataset. The remainder

of this work is organized as follows: Section 5.2 describes the theoretical background related

to both OPF and dOPF. Our proposed approach is detailed in Section 5.3. The experimental

setup, dataset and results are presented in Section 6.4. Finally, Section 5.5 states conclusions

and future works.

5.2 Optimum-Path Forest Clustering

The main problem in unsupervised learning is to identify clusters in a dataset Z , in which

samples belonging to the same group should share some level of similarity. The Optimum-Path

Forest clustering algorithm handles this problem as a graph partition task, where a competitive

process among prototype samples (a subset from Z ) offers optimum-cost paths to the remaining

samples in order to “conquer" them. The outcome of this competition process is a collection of

trees (forest) rooted at each prototype, in which each tree represents a different cluster.

Given the dataset Z , we can create a graph (Z ,Ak), where Ak is a k-nearest neighbors

adjacency relation, and each sample x ∈Z encodes a graph node in ℜn, i.e., it basically stands

for a feature vector extracted from a dataset sample. Let d(s, t) be the distance between graph

nodes s and t, being the edge connecting such samples (i.e., (s, t)) weighted by that distance.

Also, a given node s is weighted by a probability density function (pdf) ρ(s) defined as follows:

ρ(s) =
1√

2πσ2|A (s)| ∑
∀t∈A (s)

exp
(
−d2(s, t)

2σ2

)
, (5.1)
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in which σ =
d f
3 , and d f is the length of the longest edge in (Z,Ak). The choice of this parameter

considers all nodes for density computation since a Gaussian function covers most samples

within d(s, t) ∈ [0,3σ ]. The Parzen-window method is the most common method to estimate a

probability density function, and is provided by Equation 5.1 based on the isotropic Gaussian

kernel when the arcs are defined by (s, t) ∈Ak if d(s, t)≤ d f .

This approach, however, presents some issues with the differences in scale and sample

concentration, which can be solved by adaptive choices of d f depending on the region of the

feature space (COMANICIU, 2003). By choosing the best value for the k-nearest neighbors within

[1, kmax], for 1 ≤ kmax ≤ |Z |, it is possible to tackle both issues of different concentration and

scale reduction. Rocha et al. (ROCHA; CAPPABIANCO; FALCÃO, 2009) proposed a solution by

considering the minimum graph cut provided by clustering results for k ∈ [1, kmax], according

to a measurement suggested by Shi and Malik based on graph cuts (SHI; MALIK, 2000).

Let πt a path in (Z,Ak) that can be defined as a sequence of adjacent nodes that starts in a

root R(t) and ends at a sample t, being πt = 〈t〉 a trivial path, and πs · 〈s, t〉 the concatenation

of πs and arc (s, t). The main point is to find a path whose lowest density value is maximum

among all possible paths πt with roots on the maxima of the pdf. Thus, each maximum should

define an influence zone (cluster) by selecting samples that are more strongly connected to it

than to any other maximum. Formally, this process can be defined as the maximization of f (πt)

for all t ∈Z , such that

f (〈t〉) =

{
ρ(t) if t ∈S

ρ(t)−δ otherwise

f (〈πs · 〈s, t〉〉) = min{ f (πs),ρ(t)} (5.2)

for δ = min∀(s,t)∈Ak|ρ(t)6=ρ(s) |ρ(t)− ρ(s)| and S being a root set with one element for each

maximum of the pdf. High values of delta reduce the number of maxima. This work sets

δ = 1.0 and scales real numbers ρ(t) ∈ [1,1000]. In summary, the OPF algorithm maximizes

f (πt) such that the optimum paths form an optimum-path forest — a predecessor map P with

no cycles that assigns to each sample t /∈S its predecessor P(t) in the optimum path from S

or a marker nil when t ∈S .

5.2.1 Deep-Hierarchical Optimum-Path Forest

One of the main advantages of OPF concerns its capability in computing the number of

clusters on-the-fly, which means such information is not required beforehand. On the other
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hand, its bottleneck is to set the exact number of clusters when one knows that information.

One possible solution is to consider different values for the parameter kmax in order to reach the

desired number of clusters. However, the larger the dataset, the more costly this process will

become.

In order to overcome the aforementioned issue, Afonso et al. (AFONSO et al., 2016) proposed

a multi-level clustering algorithm based on the OPF approach. Each level (layer) computes

an OPF through the very same process as previously described using the roots (prototypes)

from the OPF computed in the predecessor layer as new inputs. The number of layers is user-

defined and set according to the number of clusters that is supposed to be reached (or close

to) in the last layer. Since the prototypes are located in the highest density regions, they are

very suitable to represent nearby samples, as argued in the works conducted by Castelo and

Calderón-Ruiz (CASTELO-FERNÁNDEZ; CALDERÓN-RUIZ, 2015) and Afonso et al. (AFONSO et

al., 2012a).

Let Si be the set of prototypes at layer Li, i = 1,2, . . . , l, in which l stands for the number of

layers. Since each root will be the maximum of a pdf (Equation 5.1), we have a set of samples

that fall in the same optimum-path tree and are represented by the very same prototype (root

of that tree) in the next layer. In summary, the higher the number of layers, the less prototypes

(clusters) one shall have, i.e., |S1| < |S2| < .. . < |Sl| < .. . ≤ 1. Therefore, at layer l, one

shall find only one cluster when l → ∞. Figure 5.1 displays the OPF-based architecture for

deep-driven feature space representation.

Figura 5.1: Architecture of an lth-layered dOPF.

At layer L1, it is observed four clusters (optimum-path trees), in which the black filled nodes

stand for the set of prototypes at that layer, i.e., S1. Some of these prototypes will become new

prototypes at L2, and others not (we can observe both filled and unfilled nodes at layer 2). This

process is carried out up to the lth layer specified by the user. Notice at the coarsest scale, i.e.,

Ll , we shall find only one cluster. Therefore, the user can halt the process as soon as the number
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Figura 5.2: Proposed approach based on BoW and dOPF for computer-aided PD diagnosis. The
main workflow is indicated by the light blue arrows: local descriptors are extracted and cluste-
red in order to build the dictionary. The dictionary is used for the quantization of both training
and testing signals that is the process of computing the feature vectors (flow indicated by purple
arrows). Similarly to the training phase, testing signals have their descriptors computed and the
signals are quantized (flow indicated by yellow arrows). Finally, a classifier is fed by the resulting
training and testing feature vectors. Notice the two depicted dictionaries are the same.

of desired clusters (or close to it) is met.

5.3 Proposed Approach

This section describes all steps performed in the work to evaluate dOPF and BoW in the

context of Parkinson’s disease identification, as depicted in Figure 5.2.

Data acquisition Individuals were submitted to a series of tasks, in which they were asked to

perform some hand movements and drawings using a biometric pen that contains six sensors in

charge of recording hand movements (Figure 5.3) (TEAM REGENSBURG, 2002). The movements

are represented by six different channels: microphone, finger grip, axial pressure of ink refill,

and tilt and acceleration in the x, y and z directions.

Figure 5.4 depicts an example of an exam containing six tasks that evaluate the hand move-

ments and help to detect any anomalies. In the first task (exam (a) in Figure 5.4), the individual

is asked to draw a circle 12 times in the same place without stopping the movement between

each circle. In the second task (exam (b) in Figure 5.4), the individual performs the same mo-
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tilt & acceleration sensor

refill pressure sensor

writing’s pressure sensor

grip pressure sensor

Figura 5.3: Biometric pen. Extracted from (PEREIRA et al., 2016b).

Figura 5.4: Form used to assess the handwritten skills. Extracted from (PEREIRA et al., 2016b).

vement as in exam (a), but with its hand in the air. The third (exam (c) in Figure 5.4) and fourth

(exam (d) in Figure 5.4) tasks concern drawing the spirals and meanders, respectively, over a

guideline only once from the inner to the outer part. The last two tasks, i.e., exam (e) and exam

(f) in Figure 5.4, stand for the diadochokinese test, which is basically composed of hand-wrist

movements performed with both hands. Each exam results in six different datasets, one for each

task, and each sample from the dataset corresponds to an array of responses captured by each

sensor in the interval of 1 ms.
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Local descriptor extraction Given the recorded signals, the local descriptors are computed

through a sliding window that goes along each of the six signals and computes a single-level

Discrete Wavelet Transform (DWT) in each segment. In fact, since there are six different sig-

nals, we work with six sliding windows, in which the segments of time within each of them

have always the same initial and final times as they shift along the signals. The size of the

sliding window and shifting are both user-defined. The DWT is applied to each segment of

time separately, and the results in each segment are concatenated in order to form the final local

descriptor2.

Dictionary formulation The dictionary formulation aims to find the most representative

“words" (descriptors) among a set of descriptors from the “bag" that are used in a later step

for computing of a new sample representation. This step is usually performed by a clustering

algorithm, in which the number of clusters defines the size of the dictionary, and each centroid

becomes a “word" of the dictionary. It is usual to play with the size of the dictionary in order to

find some trade-off between the computational cost and accuracy rate.

The new representation A signal can be represented by a set of descriptors, which can range

from dozens to thousands. Some of these descriptors may be similar or only represent noisy

information. Thus, in order to obtain a compressed and meaningful representation of the signal,

the descriptors were quantized based on the dictionary computed previously. The quantization

step will provide a histogram for each sample with length equals to the size of the dictionary,

in which each bin will have the frequency of its closest word in the input signal. Then, the final

histogram is further used as an input for machine learning algorithms.

5.4 Experiments and Results

The experimental setup used all data recorded from a total of 66 exams, being 35 control

individuals and 31 patients. The output of the protocol discussed in the previous section results

in six different datasets, one for each task. The dictionary learning step was performed by means

of three different techniques: dOPF, k-means3 and OPF4. The main idea is to evaluate the quality

of clustering of each technique through the accuracy rate obtained in the classification phase.

The architecture used by dOPF is composed of four layers, in which the values of kmax are: 100

2We used sliding windows of size 100 ms with stride of 50 ms, being such values empirically chosen.
3Our own implementation.
4https://github.com/LibOPF/LibOPF
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Tabela 5.1: Number of descriptors extracted from the training set and number of words computed
by each technique.

dataset (task) # descriptors Deep-OPF K-means OPF
Circ-A exam (a) 18,000 5,682 - 2,584 - 228 - 68 68 693
Circ-B exam (b) 11,898 538 - 376 - 43 - 17 17 33
Spiral exam (c) 46,637 12,118 - 3,951 - 370 - 92 92 1,424
Meander exam (d) 41,094 10,865 - 3,937 - 429 - 99 99 1,591
Dia-A exam (e) 14,608 666 - 480 - 95 - 47 47 80
Dia-B exam (f) 13,947 657 - 394 - 78 - 27 27 70

for the first layer, 1% of the number of clusters computed in the previous layer are used as an

input for the second layer, and 10% of the number of clusters computed in their respectively

antecessor layers for the third and fourth layers. The value of k for k-means is always set as

the number of clusters found by the fourth (last) layer of dOPF approach. Regarding the OPF

algorithm, the values for kmax were empirically set as 2,500 for the Spiral and Meander datasets,

and as 1,500 for the remaining datasets. The idea in using the same number of clusters for dOPF

and k-means is to allow a fair comparison between them.

Table 5.1 presents the number of descriptors extracted from the training set of each dataset,

as well as the number of words computed in each case. In the column regarding dOPF, it is

shown the number of words found for each of the four layers, but only the ones computed in the

last layer (bolded) are used for the quantization of both training and testing sets.

The experiments were performed using the hold-out procedure with 15 runs. Both training

and testing sets were partitioned using 50% of the entire dataset each, being randomly generated

in each new run. In this step, there were employed three different classifiers for comparison

purposes: Bayesian Classifier (BC)5, supervised OPF (sOPF)6 and SVM using a Radial Basis

Function (RBF) kernel with parameter optimization (SVM-RBF) (PEDREGOSA et al., 2011).

Tables 5.2a— 5.2f present the mean recognition rates concerning all six exams, being the

accuracy computed according to Papa et al. (PAPA; FALCÃO; SUZUKI, 2009). The best results are

defined according to the Wilcoxon signed-rank (WILCOXON, 1945b) with significance of 0.05,

which pointed out the best ones in bold for each exam. Further, we also considered the best

among all exams as the underlined ones.

Let us first analyze the best results among all. The statistical evaluation pointed out [OPF,

SVM-RBF] and [k-means, BC] as the best pairs of [dictionary learner, classifier] with accura-

cies near to 81% and 83%, respectively. Comparing that recognition rates against some previous

5Our own implementation.
6https://github.com/LibOPF/LibOPF
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works, the proposed approach showed significant gains (from 10% to 30%) against the one pre-

sented by Pereira et al. (PEREIRA et al., 2016). Despite that our results were slightly below those

achieved by a further work of the same authors that makes use of deep learning techniques (PE-

REIRA et al., 2016b), our approach is way more efficient than using deep learning techniques

taking into account a few architectures.

With respect to the best accuracies concerning each exam, dOPF obtained very much suita-

ble results, being more accurate than naïve OPF in most cases. Supervised OPF obtained good

results as well, but SVM-RBF achieved the best recognition rates in a few more situations.

Additionally, we also evaluated the accuracy per class for all situations, as presented in Tables

5.3a— 5.3f, whose best results are also highlighted considering the Wilcoxon signed-rank. The

best results for each class are in bold, and the best among all datasets is underlined. Actually,

the main improvement concerns the accuracy for the identification of healthy individuals, since

Pereira et al. (PEREIRA et al., 2016b) obtained recognition rates nearly 50% over the Meander

and Spirals datasets for the control class. The proposed approach increased not only the global

accuracy with respect to the work by Pereira et al. (PEREIRA et al., 2016b), but also the specifi-

city and sensitivity for most of the cases. Also, Circ-A dataset provided two out of the five best

results, thus showing as a good alternative for the Parkinson’s Disease identification.

Table 5.4 presents the mean computational load required by each technique to learn the

dictionary. Notice the computational burden for dOPF considers the four layers. In this context,

k-means figured as the fastest one due to its simplicity. If one considers dOPF and OPF only,

we can observe the former is about 78 times faster in Circ-B dataset, which is quite effective.

The lowest gains can be observed in both Meander and Spiral datasets. The small differences

come from the fact the value used for kmax in both situations is small, thus justifying the fact the

dictionaries computed in these datasets have very high dimension when compared to others.

5.5 Conclusions

This work introduced a deep-hierarchical version of the unsupervised OPF algorithm for

dictionary learning in the context of computer-aided Parkinson’s disease identification. The

experiments were performed using data from handwriting dynamics, similarly to the work by

Pereira et al. (PEREIRA et al., 2016b), but now handled as signals and not images.

The application of the BoW paradigm can extract more information by computing local

descriptors that can enhance the overall accuracy. Also, dOPF showed satisfactory results in its

first application for BoW-based Parkinson’s Disease identification. Experiments over six data-
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Tabela 5.2: Overall accuracies.

(a) Circ-A dataset.

BC sOPF SVM-RBF
dOPF 82.96±2.88 81.71±5.12 73.87±4.58

k-means 83.38±4.22 82.01±5.11 65.80±12.39
OPF 81.06±4.36 81.90±4.89 76.17±6.92

(b) Circ-B dataset.

BC sOPF SVM-RBF
dOPF 68.75±7.96 69.14±6.95 77.31±4.45

k-means 67.80±7.44 65.58±6.79 74.54±6.39
OPF 70.81±4.62 73.08±8.96 76.69±5.38

(c) Spiral dataset.

BC sOPF SVM-RBF
dOPF 78.30±5.80 76.73±6.83 77.25±3.46

k-means 73.37±5.37 73.11±5.31 78.83±2.20
OPF 75.40±3.09 75.57±3.13 81.03±2.40

(d) Meander dataset.

BC sOPF SVM-RBF
dOPF 73.33±4.97 74.07±2.90 80.45±2.42

k-means 76.07±3.31 76.09±2.77 78.26±3.91
OPF 78.53±3.15 77.21±3.52 81.07±2.60

(e) Dia-A dataset.

BC sOPF SVM-RBF
dOPF 69.86±7.21 70.93±7.29 68.69±7.26

k-means 72.18±7.46 72.43±5.81 73.93±8.66
OPF 70.72±6.60 67.01±7.45 68.69±7.26

(f) Dia-B dataset.

BC sOPF SVM-RBF
dOPF 67.96±8.10 64.86±7.93 61.89±8.49

k-means 72.92±8.51 69.84±9.03 67.24±9.31
OPF 63.77±8.85 67.25±6.80 66.30±7.38
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Tabela 5.3: Average accuracy rate for each class.

(a) Circ-A dataset.
BC sOPF SVM-RBF

dOPF k-means OPF dOPF k-means OPF dOPF k-means OPF
Patient 83.33±5.62 84.17±7.79 79.17±12.19 77.5±10.24 79.58±10.15 80.83±8.34 61.67±15.10 70.42±12.60 75.42±6.87
Control 82.59±8.09 82.59±8.09 82.96±8.52 85.93±6.59 84.44±12.09 82.96±6.79 67.41±11.67 67.04±7.99 71.48±9.82

(b) Circ-B dataset.
BC sOPF SVM-RBF

dOPF k-means OPF dOPF k-means OPF dOPF k-means OPF
Patient 60.83±18.32 61.25±11.68 74.58±13.39 63.75±13.35 63.75±13.35 54.17±13.04 64.58±13.24 68.75±14.43 57.92±10.07
Control 76.67±49.12 77.04±12.48 59.99±9.56 71.85±13.98 67.41±12.32 57.04±17.15 77.04±10.51 77.41±6.24 45.93±7.98

(c) Spiral dataset.
BC sOPF SVM-RBF

dOPF k-means OPF dOPF k-means OPF dOPF k-means OPF
Patient 74.51±10.59 65.49±10.63 72.90±6.90 78.04±12.07 67.06±10.14 71.61±6.27 67.81±2.17 73.59±3.67 74.58±0.82
Control 82.08±8.14 81.25±11.33 77.90±6.95 75.42±11.92 79.17±10.48 79.52±6.20 89.43±1.83 84.85±2.25 86.43±1.09

(d) Meander dataset.
BC sOPF SVM-RBF

dOPF k-means OPF dOPF k-means OPF dOPF k-means OPF
Patient 76.61±4.04 69.46±5.96 76.77±8.44 75.38±4.62 73.23±4.51 77.85±3.93 74.81±2.18 71.06±2.62 74.54±1.37
Control 73.33±4.97 82.67±4.88 80.29±4.68 72.76±5.47 78.95±4.99 76.57±5.47 85.80±0.89 84.43±3.76 87.99±0.72

(e) Dia-A dataset.
BC sOPF SVM-RBF

dOPF k-means OPF dOPF k-means OPF dOPF k-means OPF
Patient 67.50±16.01 66.67±14.01 51.67±17.15 65.83±13.28 70.42±12.59 52.08±11.10 66.25±13.46 66.25±15.61 47.50±12.87
Control 72.22±9.51 75.19±5.69 50.74±9.70 78.52±8.33 74.44±6.97 55.56±12.67 75.19±7.55 67.78±12.37 50.00±13.46

(f) Dia-B dataset.
BC sOPF SVM-RBF

dOPF k-means OPF dOPF k-means OPF dOPF k-means OPF
Patient 63.33±12.88 60.83±11.29 60.00±32.18 72.50±10.89 67.08±13.39 47.92±10.62 71.25±11.81 73.75±11.23 52.08±15.92
Control 72.59±9.62 68.89±9.89 50.37±28.07 73.33±9.56 72.59±10.63 48.52±12.42 56.29±15.56 60.74±11.38 53.70±9.44
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Tabela 5.4: Dictionary learning computational load [s] required by each technique.

dataset (task) dOPF k-means OPF
Circ-A (a) 968.167 37.008 49,087.137
Circ-B (b) 419.498 13.113 32,777.539
Spiral (c) 6,063.205 239.859 6,643.906
Meander (d) 5,003.233 208.443 5,168.819
Dia-A (e) 613.109 19.878 41,189.133
Dia-B (f) 569.053 11.025 39,367.844

sets considered dOPF against the well-known k-means and naïve OPF clustering for dictionary

learning. Further, supervised techniques were used for classification purposes.

Future works will consider learning hierarchical BoWs, i.e., one bag for each layer in the

dOPF formulation. We believe each layer can carry different information about the problem.



Capítulo 6
IDENTIFICAÇÃO DA DOENÇA DE PARKINSON

USANDO MÁQUINAS RESTRITAS DE BOLTZMANN

Neste capítulo, é apresentada a técnica de Máquinas Restritas de Boltzmann e suas aplica-

ções para o aprendizado automático de características de imagens para auxiliar no diagnóstico

do mal de Parkinson. O capítulo compreende os resultados do artigo aceito para publicação do

aluno candidato (PEREIRA et al., 2017).

6.1 Introduction

In the last decades, the number of people with Parkinson’s disease (PD) has increased signi-

ficantly worldwide. Also, research points out that approximately 60,000 Americans are diagno-

sed with PD (FUNDATION, ). The disease was firstly described by the English physician James

Parkinson (PARKINSON, 1817b), being more common in the elderly population and occurs when

nerve cells that produce dopamine are destroyed (LEES; HARDY; REVESZ, 2009). Additionally,

PD is a chronic, progressive and neuron-degenerative illness, which causes many symptoms,

such as slowness of movement, freeze of gait, tremors and muscle stiffness.

One of the main problems related to PD concerns the dopamine, which is a neurotrans-

mitter released by the brain and in charge of various tasks performed by our body, such as the

movement, memory, sleep, learning and others. The absence of such substance in PD-affected

individuals may trigger a number of symptoms, such as depression, sleep disturbances, memory

impairment, and autonomic nervous system disorders. Also, the patient may have its speech and

writing skills affected over time (BURKE, 2010b). Furthermore, despite of not being considered

lethal, people with PD have a shorter life expectancy than the general population.
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Although some research indicates that PD may be trigged by hereditary factors (BURKE,

2010b), the cause of the disease is still unknown. Also, the difficulty to distinguish the dif-

ference from other neurological illness as well as to detect PD in its early stages are the

main barriers related to automatic identification of Parkinson’s Disease. In order to assist

the computer-aided PD diagnosis, systems based on machine learning techniques have been

employed, showing promising results (SAKAR et al., 2013). Spadotto et al. (SPADOTTO et al.,

2010b), for instance, introduced the Optimum-Path Forest (PAPA; FALCÃO; SUZUKI, 2009; PAPA

et al., 2012) classifier to aid the automatic identification of Parkinson’s Disease. The same group

of authors proposed an evolutionary-based approach to select the most discriminative set of

features that help improving PD recognition rates (SPADOTTO et al., 2011). Recently, Pereira

et al. (PEREIRA et al., 2016) proposed to extract features from writing exams using image pro-

cessing techniques, and later on Pereira et al. (PEREIRA et al., 2016c) introduced Convolutional

Neural Networks to learn features from handwriting dynamics in the context of automatic PD

identification.

Another interesting approach that has been extensively used in a number of applications,

mainly in the context of deep learning-oriented applications, concerns the so-called Restricted

Boltzmann Machines (RBMs), which are an undirected generative model that use a layer of

hidden variables to model a distribution over visible units (LAROCHELLE; BENGIO, 2008). The-

refore, given an input set of images, an RBM basically learns how to effectively reconstruct

them based on a learning process that aims at learning the weights that connect the input data

(image) to a hidden layer. The values of the neurons’ activation at that layer can be used as the

features to describe the input data.

In this paper, we introduce Restricted Boltzmann Machines in the context of feature lear-

ning for the automatic identification of Parkinson’s Disease by means of images acquired from

handwritten exams. Further, the features learned are then used as inputs to supervised classifi-

ers. In this work, we considered three state-of-the-art classifiers, say that Optimum-Path Forest

(OPF) (PAPA; FALCÃO; SUZUKI, 2009; PAPA et al., 2012), Naïve Bayes (NB) (DUDA; STORK,

2000) and Support Vector Machines (CORTES; VAPNIK, 1995). The experiments are conducted

over the “HandPD" dataset, which is publicly available at the internet.

The reminder of this paper is organized as follows: Section 6.2 describes the theoretical

background related to RBMs, and Section 6.3 presents the methodology employed in this work.

The experimental results are presented in Section 6.4, conclusions and final remarks are stated

in Section 6.5.
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6.2 Restricted Boltzmann Machines

Restricted Boltzmann Machines are energy-based stochastic neural networks composed of

two layers of neurons (visible and hidden), in which the learning phase is conducted by means

of an unsupervised fashion. A naïve architecture of a Restricted Boltzmann Machine comprises

a visible layer v with m units and a hidden layer h with n units. Additionally, a real-valued

matrix Wm×n models the weights between the visible and hidden neurons, where wi j stands for

the weight between the visible unit vi and the hidden unit h j.

Let us assume both v and h as being binary-valued units. In other words, v ∈ {0,1}m e

h ∈ {0,1}n. The energy function of a Restricted Boltzmann Machine is given by:

E(v,h) =−
m

∑
i=1

aivi−
n

∑
j=1

b jh j−
m

∑
i=1

n

∑
j=1

vih jwi j, (6.1)

where a e b stand for the biases of visible and hidden units, respectively.

The probability of a joint configuration (v,h) is computed as follows:

P(v,h) =
1
Z

e−E(v,h), (6.2)

where Z stands for the so-called partition function, which is basically a normalization factor

computed over all possible configurations involving the visible and hidden units. Similarly, the

marginal probability of a visible (input) vector is given by:

P(v) =
1
Z ∑

h
e−E(v,h). (6.3)

Since the RBM is a bipartite graph, the activations of both visible and hidden units are

mutually independent, thus leading to the following conditional probabilities:

P(v|h) =
m

∏
i=1

P(vi|h), (6.4)

and

P(h|v) =
n

∏
j=1

P(h j|v), (6.5)

where
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P(vi = 1|h) = φ

(
n

∑
j=1

wi jh j +ai

)
, (6.6)

and

P(h j = 1|v) = φ

(
m

∑
i=1

wi jvi +b j

)
. (6.7)

Note that φ(·) stands for the logistic-sigmoid function.

Let θ = (W,a,b) be the set of parameters of an RBM, which can be learned through a

training algorithm that aims at maximizing the product of probabilities given all the available

training data V , as follows:

argmax
Θ

∏
v∈V

P(v). (6.8)

One can solve the aforementioned equation using the following derivatives over the matrix of

weights W, and biases a and b at iteration t as follows:

Wt+1 = Wt +η(P(h|v)vT −P(h̃|ṽ)ṽT )+Φ︸ ︷︷ ︸
=∆Wt

, (6.9)

at+1 = at +η(v− ṽ)+α∆at−1︸ ︷︷ ︸
=∆at

(6.10)

and

bt+1 = bt +η(P(h|v)−P(h̃|ṽ))+α∆bt−1︸ ︷︷ ︸
=∆bt

, (6.11)

where η stands for the learning rate, and λ and α denote the weight decay and the momentum,

respectively. Notice the terms P(h̃|ṽ) and ṽ can be obtained by means of the Contrastive Diver-

gence (HINTON, 2002) technique, which basically ends up performing Gibbs sampling using the

training data as the visible units. Roughly speaking, Equations 6.9, 6.10 and 6.11 employ the

well-known Gradient Descent as the optimization algorithm. The additional term Φ in Equa-

tion 6.9 is used to control the values of matrix W during the convergence process, and it is

formulated as follows:
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Φ =−λWt +α∆Wt−1. (6.12)

6.3 Methodology

In this section, we present the methodology employed to evaluate the proposed approach,

as well as the datasets and the experimental setup.

6.3.1 Dataset

The dataset employed in this work is called “HandPD"1, being firstly presented by Pereira

et al. (PEREIRA et al., 2015). Roughly speaking, the dataset comprises images drawn in a form

with a template for guideline purposes (Figure 6.1), depicting exercises specifically designed to

expose unique characteristics from PD patients. To create the images, the patient is aided with

a digital pen BiSP® (TEAM REGENSBURG, 2002), which is equipped with six sensors capable

of recording the hand movements during the exercises. However, differently from Pereira et

al. (PEREIRA et al., 2016c) that used information from the sensors, we are considering only the

visual features that can be learned from the drawing by means of RBMs.

Figura 6.1: Form used to assess the handwritten skills. Extracted from (PEREIRA et al., 2015).

This work makes use of two kind of images extracted from the forms: Spiral and Meander.

Also, the images are classified into two classes: patients (124 images) and healthy group (56
1available in http://wwwp.fc.unesp.br/~papa/pub/datasets/Handpd/
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images). Furthermore, both datasets are resized in two different ways to evaluate the robustness

of RBM for learning features in this context: 64×64 and 128×128 pixels each.

Since we are considering RBMs with binary-valued inputs, one needs to threshold the gray-

scale images originally available from the dataset. In order to fulfill this task, we applied the

well-known Otsu threshold (OTSU, 1979) to all images, which are finally used to feed the RBMs.

After training, the images are used once more as the inputs, and the activation values at the

hidden layer are used as the features for each image concerning the supervised learning methods

employed in this work, i.e. OPF, SVM and Bayesian classifier.

6.3.2 Experimental Setup

The work employs an RBM architecture where the visible layer stands for the number of

pixels from the input image, i.e. 4,096 (64×64 images) or 16,384 (128×128 images), as well as

the hidden layer stands for the desirable number of features, which assume the values within the

range J ∈ {10,100,500,1,000,2,000,4,000,7,000}2. The remaining parameters used during

the RBM learning step were chosen empirically and fixed as follows: η = 0.1 (learning rate),

number of epochs = 1,000, and mini-batches of size 20. Moreover, the RBM was trained with

the Contrastive Divergence (CD) (HINTON, 2002) algorithm.

Once the RBM learning process is finished, the new datasets composed of features extracted

from the hidden layer units will feed three supervised learning algorithms: SVM, Bayes and the

OPF. In regard to SVM, we used the Radial Basis Function kernel with parameters optimized by

means of a grid search (PEDREGOSA et al., 2011). Finally, to evaluate the techniques considered

in this work, a classification accuracy proposed by Papa et al. (PAPA; FALCÃO; SUZUKI, 2009)

that considers unbalanced datasets has been adopted.

6.4 Experiments

This section presents the experimental results concerning OPF, SVM and the Bayes clas-

sifier to the task of Parkinson’s Disease identification by means of features learned from hand-

written forms. The evaluation is taken upon a training set with size of 50%, as well as the

remaining 50% is employed for testing purposes. Tables 6.1 and 6.2 present the accuracy re-

sults concerning Meander dataset with 64×64 and 128×128, respectively. The most accurate

results according to the Wilcoxon signed-rank test for each number of features are in bold, and

2Notice the range values were empirically chosen
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the best global results are underlined. Notice the experiments consider an average accuracy over

20 runnings.

Number of features OPF Bayes SVM
10 53.72±0.78 53.82±0.18 55.75±1.37
100 58.00±1.42 57.20±0.0 71.94±1.42
500 62.23±4.18 63.21±2.32 74.38±3.02
1,000 67.59±3.26 67.94±1.74 66.26±5.66
2,000 64.10±1.67 64.07±1.30 62.72±8.14
4,000 64.91±4.53 64.58±5.50 69.99±2.67
7,000 62.94±3.05 64.62±3.51 65.34±3.57

Tabela 6.1: Mean accuracy results considering Meander 64×64 dataset.

Considering the smaller-sized Meander dataset (Table 6.1), one can observe RBM can pro-

vide reasonable results with SVM classifier using only 500 features. Since the dataset is compo-

sed of 180 images only, being 90 used for training, it is expected that higher dimensional spaces

(i.e., 7,000 features) will not allow good results, since the mapped space will be shrank to a

lower dimensional one. This same behavior can be observed for SVM considering 128× 128

images (Table 6.2), but with OPF and Bayes obtaining the best results with 7,000 and 4,000

features, respectively.

Number of features OPF Bayes SVM
10 55.26±4.90 50.0±0.0 50.0±0.00
100 64.89±3.69 65.69±3.21 63.57±0.46
500 60.63±2.24 61.36±2.69 62.94±7.13

1,000 60.17±4.18 59.19±4.18 63.83±3.95
2,000 64.23±1.38 66.22±0.70 68.18±1.50
4,000 66.33± 3.15 68.18±4.51 65.05±5.23
7,000 71.05±3.35 69.55±3.86 66.43±8.12

Tabela 6.2: Mean accuracy results considering Meander 128×128 dataset.

In regard to the Spiral drawing, Table 6.3 presents the results with 64×64 images, where the

best results were obtained by SVM with 1,000 features. Also, one can observe the recognition

rates were quite better than using Meanders. We believe that following the “circular" pattern

of Spirals is way more difficult for those with reduced hand mobility, which turns out to be

more discriminative to distinguish patients from the control group. However, the results using

128× 128 images were slightly worse, but with SVM on top of the results once more. One

can observe OPF has its accuracy degraded when the number of features increases, since it

uses the distance among samples for classification purposes, and it can be influenced by higher
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dimensional spaces.

Number of features OPF Bayes SVM
10 53.19±1.39 58.26±0.60 58.85±1.69
100 67.75±1.60 67.39±5.15 73.82±2.26
500 67.26±3.58 68.00±3.49 79.93±0.25
1,000 74.59±2.99 74.94±2.77 83.12±2.55
2,000 69.74±2.68 71.58±3.47 80.71±0.14
4,000 68.76±3.61 71.31±4.55 79.49±3.81
7,000 71.76±3.13 73.30±3.59 75.31±4.04

Tabela 6.3: Mean accuracy results considering Spiral 64×64 dataset.

Number of features OPF Bayes SVM
10 56.00±6.26 64.25±2.74 71.972±2.74
100 62.47±2.33 63.68±3.71 73.87±1.29
500 67.22±1.92 70.43±0.81 80.29±3.19

1,000 70.17±4.25 69.58±2.27 72.69±2.49
2,000 74.44±3.16 75.02±4.41 77.92±3.61
4,000 71.98±3.20 73.32±1.80 79.73±1.19
7,000 67.49±4.03 69.70±3.80 74.91±4.64

Tabela 6.4: Mean accuracy results considering Spiral 128×128 dataset

In order to keep track of the convergence process, we analyzed the mean squared error

(MSE) of the RBM during the learning step. Figure 6.2 depicts the MSE obtained during the

training considering 1,000 epochs. Notice the error falls dramatically before epoch 100, and

then traces a smooth curve that approaches zero as the epochs approximate 1,000 iterations

for models with 500 or more hidden units. Although all approaches (i.e., different number of

features) achieved similar results concerning MSE in the final of the learning step, one can

observe the faster convergence during the first 200 iterations using 7,000 features. Since we

have more latent variables in the hidden units, it is expected they can learn a more complex and

detailed information about the input data.

In order to understand what is going on during the learning procedure of the RBM, we

displayed what the network “sees" when is presented to an input image. Since each visible unit

is connected to all hidden neurons, we can take all connection weights, normalize them and

build an image, that is usually employed to understand what the network is learning. Figure 6.3

depicts some images from the weight matrices when Meanders and Spirals are presented to the

network using 1,000 hidden units. Since all images from each dataset are somehow similar,

most of the neurons are learning the shape of the drawing (i.e., spiral or meander), although
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Figura 6.2: Evolution of the Mean-Squared Error considering: (a) Meander 64×64, (b) Meander
128×128, (c) Spiral 64×64, and (d) Spiral 128×128.

some of them did not get excited by any shape in particular.

6.5 Conclusions

In this work, we dealt with the problem of automatic Parkinson’s Disease identification by

means of features learned from Restricted Boltzmann Machines. We considered two types of

drawings in two different resolutions, which were then used to feed RBM models for further

supervised classification purposes.

We observed the best results were obtained with spirals at lower-resolution images, but

similar results can also be obtained with 128× 128 images. Additionally, we observed that

RBMs with more hidden layers allow a faster convergence during learning, but it does not

necessarily imply in the better results over the test set.

With respect to future works, we aim at considering DBNs and DBMs for classification

purposes, as well as to use Discriminative RBMs as the classification techniques as well.
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(a) (b)

(c) (d)

Figura 6.3: An “RBM’s mind": random weight matrices extracted from (a) Meander 64×64, (b)
Meander 128×128, (c) Spiral 64×64 and (d) Spiral 128×128.



Capítulo 7
CONCLUSÃO

A presente tese de doutorado tem como foco principal auxiliar no diagnóstico da doença

do mal de Parkinson, dado que a mesma não tem cura e possui como forma mais aceitável de

diagnóstico clínico o método de exclusão. Técnicas de diversas áreas da computação como

aprendizado de maquina, visão computacional e inteligência artificial, dentre outras, vêm sendo

aplicadas ao longo dos anos na busca de encontrar uma melhor forma de auxiliar o diagnóstico

do mal de Parkinson. Uma grande dificuldade encontrada para a utilização dessas técnicas pode

ser apontada como a falta de dados, pois adquirir pessoas saudáveis e portadoras da doença

para o desenvolvimento de uma base de dados não é uma tarefa fácil, muito menos o desenvol-

vimento da mesma após a aquisição dos indivíduos.

Com base nessas informações, para este trabalho foram desenvolvidas duas bases de dados

denominadas HandPD e NewHandPD, ambas contendo dados adquiridos através do preenchi-

mento de um formulário por pacientes e pessoas saudáveis em exames realizados na Faculdade

de Medicina da Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP de Botucatu

com uma caneta especial contendo vários sensores. Para a base de dados HandPD, após os

formulários serem digitalizados, suas imagens foram recortadas para o processo de extração de

características e divididas em 2 grupos (pacientes e controle), possuindo então 736 imagens de

92 indivíduos.

Ainda mais robusto e rico em informações, o conjunto de dados NewHandPD apresenta

uma outra forma de aquisição de características, fazendo uso agora de uma caneta biométrica

inteligente desenvolvida pelo Departamento de Matemática da Faculdade de Ciências de Re-

gensburg - Alemanha. Através de sensores acoplados à referida caneta, características de sinais

foram obtidas para a análise contando agora 792 sinais oriundos da caneta de exames realizados

por 66 indivíduos, sendo os mesmos divididos em 420 sinais para pessoas saudáveis, e 372 para

pessoas portadoras do mal de Parkinson.
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Técnicas como classificadores Bayesianos, Floresta de Caminhos Ótimo e Máquinas de

Vetores de Suporte foram utilizadas nos primeiros experimentos realizados, sendo os resultados

obtidos muito satisfatório para este tipo de análise. Um fator importante a ser acrescentado dá-se

ao fato a utilização de técnicas de aprendizado profundo como Redes Neurais por Convolução,

aplicação inovadora para esta finalidade que obteve excelentes resultados sobre a base de dados

aplicada levando em consideração as imagens possuindo diferentes resoluções. Técnicas como

bag-of-words, por exemplo também foram aplicadas em análise dos sinais obtidos através dos

sensores contidos na caneta, apresentando excelentes resultados.

Após, averiguar os resultados obtidos, podemos apontar para uma boa tendência a esse tipo

de análise voltada para o diagnóstico da doença quando comparado aos métodos utilizados atu-

almente, o que nos remete a continuação dos estudos voltados à esta mesma linha de pesquisa,

porém, agora como próximos trabalhos pretendemos estudar as formas e os métodos de fusão de

informações fazendo uso dos dados que já obtemos pois, através da fusão, é possível um maior

aproveitamento das informações contidas na base de dados que são produzidas por diferentes

sensores, ou seja, combinando as características extraídas das imagens dos formulários com os

sinais obtidos através da caneta inteligente.

7.1 Trabalhos Publicados

Essa seção apresenta os trabalhos publicados pelo candidato que são diretamente relacio-

nados à tese de doutorado.

• A Step Towards the Automated Diagnosis of Parkinson’s Disease: Analyzing Handwri-

ting Movements, 28th International Symposium on Computer-Based Medical Systems -

(CBMS 2015) - Qualis B1 - CC;

• Deep Learning-aided Parkinson’s Disease Diagnosis from Handwritten Dynamics, 29th

Conference on Graphics, Patterns and Images - (Sibgrapi 2016) - Qualis B1 - CC;

• A New Computer Vision-based Approach to aid the Diagnosis of Parkinson’s Disease,

Computer Methods and Programs in Biomedicine - Classificação A2 - CC;

• Parkinson’s Disease Identification Through Deep Optimum-Path Forest Clustering, 17th

international Conference on Computer Analysis of Images and Patterns - (CAIP 2017) -

Qualis B1 - CC;
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• Parkinson’s Disease Identification using Restricted Boltzmann Machines, 17th internati-

onal Conference on Computer Analysis of Images and Patterns - (CAIP 2017) - Qualis

B1 - CC;

• Parkinson’s Disease Identification Through Deep Optimum-Path Forest Clustering, 30th

Conference on Graphics, Patterns and Images - (Sibgrapi 2017) - Qualis B1 - CC.

7.2 Trabalhos em Avaliação

Essa seção apresenta os trabalhos que estão submetidos e encontram-se em processo de

avaliação no momento.

• Handwritten Dynamics Assessment Through Convolutional Neural Networks: An Appli-

cation to Parkinson’s Disease Identification, Computer Methods and Programs in Biome-

dicine - Classificação A2 - CC.

• A Survey on Computer-Assisted Parkinson’s Disease Diagnosis, Computer Methods and

Programs in Biomedicine - Classificação A2 - CC.
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