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Resumo

Revisamos brevemente a construcao classica dos caracteres de Cheeger-Simons, dos grupos de
cohomologia de Deligne e dos grupos de K-teoria diferencial, os quais sao representantes do
refinamento diferencial absoluto das teorias cohomoldgicas correspondentes. Apresentamos
a estrutura axiomatica do refinamento diferencial de uma teoria da cohomologia genérica no
caso absoluto, juntamente com os importantes resultados de existéncia e unicidade desen-
volvidos por Bunke e Schick. Motivados pela introdugao dos caracteres de Cheeger-Simons
relativos, propomos uma estrutura axiomatica adequada para a extensao diferencial rela-
tiva de uma teoria cohomoldgica, construimos uma familia de sequéncias exatas longas que
envolvem os grupos diferenciais e estendemos ao caso relativo os resultados de existéncia e
unicidade. Além disso, generalizamos a noc¢ao de caracter de Cheeger-Simons a qualquer

teoria cohomolodgica e estendemos ao caso relativo a construgao da aplicagao de integracao.

Palavras-chave: Cohomologia diferencial, caracteres de Cheeger-Simons, cohomologia de

Deligne, K-teoria diferencial, mapa de Gysin.



Abstract

We briefly review the classical construction of the Cheeger-Simons characters, the Deligne
cohomology groups and the differential K-theory groups, which are representatives of the
absolute differential refinement of the corresponding cohomology theories. We present the
axiomatic framework for the differential refinement of a generic cohomology theory in the
absolute case, together with the important results of existence and uniqueness developed by
Bunke and Schick. Motivated by the introduction of the relative Cheeger-Simons characters,
we propose a suitable set of axioms for the relative differential extension of a cohomology
theory, we construct a family of long exact sequences involving the differential groups and
we extend to the relative case the results of existence and uniqueness. Furthermore, we
generalize the notion of Cheeger-Simons character to any cohomology theory and we extend

to the relative case the construction of the integration map.

Keywords: Differential cohomology, Cheeger-Simons characters, Deligne cohomology, dif-

ferential K-theory, Gysin map.
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CHAPTER 1

INTRODUCTION

Secondary invariants are the main topic of this thesis.! Intuitively, they represent a re-
finement of homotopical (topological) invariants, usually expressed through (co)homology
classes, enriched with differential information that encodes the geometry of the objects being
considered. The secondary invariants that we will treat in this work are characterized by the
use of connections and their generalizations, in order to produce such enrichments. Hence,
the new invariants will be defined only on smooth categories. The usual name given to these
new objects is “differential cohomology classes”.

One of the first examples of secondary invariants is provided by the Cheeger-Simons
characters, introduced in [13]. The intention behind the definition was to interpret the
Chern-Simons form [14], defined on the total space of a principal bundle with connection, in
terms of a differential form on the base space. In view of this aim the theory was developed,
generalizing to higher dimensions the well known fact that S-bundles with connection can be
represented via their holonomy. The main applications, at least in this initial stage, were the
following. In [13] the authors applied the new invariants to refine the characteristic classes of
Euler, Chern and Pontryagin, obtaining obstructions to conformal immersions of Riemannian
manifolds into the Euclidean space or, more generally, into non-negative space forms. The
authors also used the new invariants to recast the geometric Atiyah-Singer index theorem in
this new context and draw some conclusions in the case of flat line bundles.

The second grand example of secondary invariants comes in the form of Deligne coho-
mology, introduced around 1972. Historically, Deligne cohomology appeared as the natural
generalization of the Kostant [26] and Weil [39] theory, that identifies H*(M;Z) with the
group of line bundles over M. This identification is constructed via a local representation of
a line bundle through transition maps satisfying the cocycle condition, i.e. as cocycles in the
Cech complex. In higher dimensions a similar construction describes abelian p-gerbes, that
have direct interpretations in physics. In Deligne cohomology, the differential refinement is
implemented through the inclusion of the connection, through a modification of the local
data used to represent the bundle. Concretely, the sheaf of local transitions is extended to an
appropriated complex of sheaves, including the local potentials that describe the connection.

Both examples above (Cheeger-Simons characters and Deligne cohomology) give sec-

L The expression “secondary invariant” is not used uniformly in the literature. Here a secondary invariant

is a differential cohomology class; sometimes it is just a flat class or even a flat and topologically trivial
one.
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ondary invariants refining the integral singular cohomology and they turn out to be iso-
morphic. A construction of an explicit isomorphism can be found in [16]. In the same vein, a
more systematic approach towards a theory of differential refinements of singular cohomology
was developed by Simons and Sullivan in [35], where they propose an axiomatic framework
and settle the problem of uniqueness of the extension within this broader context.

Early refinements of a cohomology theory are not exclusive to singular cohomology. Al-
ready in 1987 Karoubi [25], trying to give a model of K-theory with coefficients, introduced
the equivalent of the flat part of the modern version of differential K-theory. Further de-
velopments towards a complete differential refinement of K-theory were achieved by Freed
and Lott in [19], inspired by the work of Hopkins and Singer in [22] and by previous work
of Lott [27, 28] and Freed [17, 18] independently. With the model defined in [19], Freed and
Lott obtain a meaningful generalization of the geometric Atiyah-Singer index theorem [4, 3].
Moreover, in [19], the authors argue that the index theorem in the setting of differential
K-theory has direct applications to string theory, in particular, to prove the Green-Schwarz
mechanism, an anomaly cancellation property. Independently from Freed and Lott, in [10]
Bunke and Schick developed an alternative analytic model for smooth K-theory, extending
the integration map and the Chern character to the differential setting. As in the case of
Freed and Lott, in [10] the authors obtain a differential version of the Atiyah-Singer theo-
rem. Apart from the works cited above, there are alternative models for differential K-theory,
most notably the one in [36], which gives a simple description in terms of vector bundles with
connection. For a more complete survey of the matter see [12].

In the more general setting of differential refinements of arbitrary cohomology theories,
foundational work was laid down in [22] by Hopkins and Singer. There, the authors proposed
a model that produces a differential extension out of a cohomology theory represented by
a spectrum; in particular, they were able to present models for differential bordism and
differential K-theory. Their motivation was based on the extension to higher dimensions of
the construction of quadratic functions a la Riemann, which in turn have applications in
M-theory [40, 41]. Much of the recent development of the theory is based on the model of
Hopkins-Singer.

The existence of various models of differential extensions for singular cohomology and
K-theory, the possibility to produce at will differential extensions for arbitrary cohomology
theories via the Hopkins-Singer model, the various applications to modern physics and the
refinement of classic results, make natural to establish the theory of differential extensions
as an area of study of its own. One of the principal results in this direction was introduced
by Bunke and Schick in [11]. There the authors propose a set of axioms for the differential
extension of a generalized cohomology theory and prove, under rather mild hypothesis, that

the extension of a fixed theory is unique. Later, under this new axiomatic setting, Upmeier
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studied in [38] the introduction of a multiplicative structure into the differential cohomology
groups; the construction uses extensively the properties of the Hopkins-Singer model; in
particular, it extends to the differential case the product in terms of spectra. More recently,
in [34], Ruffino used the axiomatic framework (in particular the differential extension of the
Gysin map) to define a pairing between the flat theory associated to a differential refinement
and the topological theory. Then, the author generalizes the notion of Cheeger-Simons
character to any cohomology theory.

Up to this point we have given a panoramic view of the development of differential coho-
mology in the absolute case, that is, as a contravariant functor from the category of smooth
manifolds to graded abelian groups. It is natural to construct the relative version of these
secondary invariants and of their applications to index theory. Moreover, as we said before,
differential cohomology has useful interpretations in mathematical physics, in particular in
quantum theory. One important instance is that of string and D-brane theory [42], where
the necessity of an extension to the relative case became apparent. Important results in
the relative setting of singular cohomology are present in the paper [7] by Brightwell and
Turner, where they introduce two different models for relative Cheeger-Simons characters.
Such a construction and its main properties are described in detail in the work of Bar and
Becker [5]. In the case of Deligne cohomology, Ruffino proposes in [32] four candidates for the
relative version and he extends to the relative case the formulas for the transgression map,
the integration and the holonomy. The four candidates are generalized to any cohomology
theory in [33], using the Hopkins-Singer model.

In this thesis we propose an axiomatic framework for the relative differential cohomology
groups, generalizing the one developed for the absolute case. One of the salient features
of the proposed framework is the deduction, from the axioms alone, of the existence of a
family of long exact sequences that combine the differential and topological groups. Using
an adaptation of the Hopkins-Singer model, we show the existence of the relative differential
refinement for any cohomology theory. Then we show its uniqueness, using the techniques of
Bunke and Schick plus a homology argument. After that, we develop the integration theory
for the relative differential case, extending the definitions of orientation and Gysin map.
Finally, we generalize the notion of relative Cheeger-Simons character to any cohomology
theory.

The thesis is organized as follows. Chapter 2 provides a brief review of the theory of
differential refinements of a cohomology theory in the absolute case. In section 1 we present
a classical example that motivates the definition of the Cheeger-Simons characters. Then we
proceed to define formally the characters and we prove their principal properties. In section 2
we revisit the example motivating the definition of the characters from a local point of view.

After that, we introduce the language of sheaves, sheaf cohomology and hypercohomology.
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Using such a language, we recast the local description of our motivating example and we
obtain a suitable generalization to higher degrees, defining Deligne cohomology. Then we
prove its principal properties and we state the natural identification between the Deligne
cohomology and the Cheeger-Simons characters. In section 3 we construct a model for
differential K-theory. As in the preceding sections, we exhibit the principal features of
the model, in particular its periodicity. In section 4 we recall the axiomatic framework
for differential refinements in the absolute case and in section 5 we prove their uniqueness.
Chapter 2 ends with the introduction of the Hopkins-Singer model, which solves the problem
of the existence of a differential refinement of a generic cohomology theory.

Chapter 3 introduces the relative Cheeger-Simons characters. The relative characters are
a natural generalization of the characters defined in the absolute case, sharing all the essential
properties of the latter and introducing new phenomena proper of the relative framework.
Chapter 3 also motivates, up to certain point, the axioms for relative differential refinements
to be introduced in the next chapter.

Chapter 4 contains the original part of the work. Section 1 begins with a brief review of
(topological) cohomology theory in the category of maps between spaces and some generalities
about fiber integration over smooth maps. Next, we set forth the axioms that define a
differential refinement of a relative cohomology theory and we show the existence of a family
of long exact sequences involving the differential groups. As a preliminary step, we give
an explicit construction of the Bockstein morphism, that extends to the differential case the
topological one. Then we prove the exactness of the sequences. Next, we extend to the relative
case the theorems of existence and uniqueness of the differential refinement. Section 2 deals
with the problem of orientation. To motivate the theory in the differential case, we begin by
introducing its topological counterpart. With the topological case settled, the generalization
to the differential case becomes in the most part very natural. However, in order to define
the orientation in the relative differential case we have to make some additional adjustments
in order to take into account the geometry of the situation. In section 3 we apply the results
of section 2 to develop further the theory of differential integration, in particular, the case of
maps between manifolds with boundary and integration to the point from manifolds with or
without boundary, the last one being a key ingredient in the construction of the generalized
relative Cheeger-Simons characters, the subject of the next section. In section 4 we extend
to the relative case the geometrical description of the dual homology of a fixed cohomology
theory h®. Then, after refining to the differential case the data of the description of the
dual homology, we define the generalized relative Cheeger-Simons characters. We close the
section with some properties of the generalized characters, in particular, their relation with a
generic differential refinement of h®. In section 5 we define differential integration in the case

of maps from manifolds with boundary to manifolds without boundary. Finally, in section
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6 we show some properties of (topological) relative cohomology theory that do not have a
direct contribution on the development of the differential case, so they were better placed at

the end of the chapter where they do not disrupt the flow of the arguments.
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CHAPTER 2

ABSOLUTE DIFFERENTIAL COHOMOLOGY

In this chapter we present the principal constructions that represent the canon of absolute
differential cohomology. We begin with some classical examples of differential refinements for
two well known cohomology theories: Singular cohomology and K-theory. These examples
pave the way for the introduction of the axiomatic framework that characterizes differential
refinements for an arbitrary cohomology theory in the next section. In the last two sections
we use the axiomatic framework to reproduce the results of existence and uniqueness of

differential refinements.

2.1 Cheeger-Simons Differential Characters

We present the construction of the absolute Cheeger-Simons characters along with their
principal properties, in particular, we show the existence of multiplicative and integration

structures for the characters. Our presentation follows closely the original source [13].

2.1.1 An important example

Let E — M be a smooth principal S*-bundle with connection 6 € Q(E;iR). Denote by © €
QO2(M) its associated curvature form. By standard results, © /2i7 represents the characteristic
class of the bundle and has integral periods. Also the connection yields parallel transport,
thus for a given smooth closed path v we may define its holonomy as a number h(y) € St or
x(7) € R/Z, such that h(y) = e>x),

Observe that any given cycle z € Z;(M) is given as x = v + dy, where y € Cy(M) and
v is a smooth closed path. So the function y defined above can be extended to the group of
all cycles by setting

2im

Clearly yod = ©/2im (here © represents the morphism obtained by integration of the form ©
over smooth 2-chains mod Z). If one defines H 2(M) as the set all S'-bundles with connection
up to isomorphism, the construction above defines a pair of maps I : H2(M) — H2(M;Z)
and R : H*(M) — Q?(M), such that for a S'-bundle E — M with connection we have
R(x) = ©/2m and I(x) = ¢(E), where ¢(F) is the first Chern class of E. Observe that, while
R(x) and I(x) may vanish for a particular x, the map x itself may not be trivial, that is,
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X holds more information than R(x) and I(x) separately. This situation is prototypical for

differential cohomology theories.

2.1.2 Generalization
2.1.2.1 Definition and morphisms

First we fix some notation. Let M be a smooth manifold, we will denote by C,(M) the
group of smooth chains over M, that is, the group generated by the set of continuous maps
o: A" — M that can be extended to smooth ones over a neighborhood of A. Using the
restriction of the boundary operator to smooth chains, we denote by Z,(M) and B, (M)
subgroups of smooth cycles and smooth boundaries, respectively. We also define Q& (M) as
the subgroup of closed forms with integral periods, that is, forms whose integral over smooth

cycles takes integral values.

Definition 2.1.1. Let M be a smooth manifold. We define the degree-k differential charac-
ters of M as the family

H(M) = {f € Hom(Z(M),R/Z) | [od e Qh(M)}.

The notation f o d € Q¥(M) means that there is a form w € QF(M) such that for any
o € Ci(M) it holds

foa(o):/w mod Z,

in particular, it follows that w has integral periods.
The form w is unique. Indeed, if w and W' are different k forms there is a x where

w(z) — w'(z) # 0, so we may choose an appropriated open set U around z such that

for a k—cycle 0 C U. A similar reasoning shows that w is a closed form, for fg dw = |, ge W =
f0%0 =0, for all o € Cjy1(M).

An element f € H¥(M) also determines a class g € H*(M;Z). Indeed, since Z;_1(M) is
a projective module, the quotient map ¢ : R — R/Z and the morphism f : Z;_1(M) — R/Z,
induce a lifting f : Zy_1(M) — R. Then we define

g:Cr(M)—2Z

o (/w) — Fod(o). (21)
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Note that g in fact takes values in Z, since by definition ¢(f 0 d(0)) = fod(0) = [ w,
hence f o J(o) and fo w differ by an integer. The morphism ¢ defines a cohomology class, for

59(c) :5/UM—5(foa(a)):/(%w—foé92a:/gdw20

for all 0 € Cy11(M). The class is well defined, for even if the lifting of f is not unique the
difference between any two liftings takes integral values, hence if f, f’ are two liftings of f
and g, ¢’ are the associated morphisms, we have that g — ¢ = 6(f' — f), so they define the
same cohomology class.

The assignation f — w defines a function R : H¥(M) — QE(M), called the cur-
vature morphism. The assignation f — [w — f o @ defines a function I : H¥(M) —
H*(M; Z) called characteristic class. There is a natural additive operation defined on the
set Hom(Z,(M),R/7Z) making it into a group. With this structure, the functions R and [
defined above become morphisms of groups. Note also that the image in H*(M;R) of the

class f — fgw — fod(o) is just f— faw, for f o d is a real coboundary. Hence for each k

we have the commutative diagram of groups

~

HE (M) —— H*(M;7)

" Jo

We also have morphisms

where f,(0) = [ w mod Z, for all 0 € Z_1(M) and

b: H*"Y(M;R/Z) — H*(M)
[ = [
where f.(0) = ¢(0).
Both morphisms are well defined. Indeed, take w = ' + 7 with n € QF (M) and
0 € Zy_1(M) then we have

fw(U)Z/Uw modZ:/U(w’Jrn) modZ:/aw’—k/Un mod Z
:/aw’ mod Z = f,(0)

A similar argument shows that in the definition of b, the element f, is well defined.
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2.1.2.2 Short exact sequences

More generally, the morphisms defined above fit in the following exact sequences:

0 ; s H*(M) —— H*(M;Z) —— 0

0 —— H"YM;R/Z) —2— H*M) —E— QM) —— 0

In fact,

e for the first sequence, by definition of a it is clear that the form associated to a(w) is

a(w)oa(a):/(%w:/adw.

Hence the composition [ o a is given by

zoa(w)(a):/adw—c@)oaa:/odw—/adw:o.

Conversely, let f € I:[k(M ) be a differential character such that I(f) = 0, that is,
[ w= fod(o), for all ¢ € Cy(M). It follows that w = §f (up to an integer constant)

and by the de Rham isomorphism w is exact and f =1, where dn = w. Hence f = [
mod Z.

given by dw, that is

The morphism I : H*(M) — H*(M;Z) is surjective. In fact, let [g] € H*(M;Z) then
via the inclusion of coefficients i : Z — R, we obtain a morphism i : H*(M;Z) —
H*(M;R); denote [¢'] = i([g]). By the de Rham isomorphism there is a closed form
w € QF(M) such that [w =g +df, where f: Cyp_1(M) — R. We claim that

f = j:|Zk71 mod Z

holds f € H*(M) and I(f) = g. First, note that ¢ only takes values in Z, thus

foaz(/w—g’) modZ:/w.

Also, using f as the lifting of f, it is clear that Jw— fod=¢,but ¢ =iog,soit
represents an integral cohomology class. The fact that a is injective follows directly by
the definition.
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e About the exactness of the second sequence, note that if f € H*1(M) then f o
0 = 0, hence the curvature of b(f) is null, for there are not non-vanishing differential
forms that only take integral values. Conversely, let f € H¥(M) be a differential
character with vanishing curvature. We show that f can be extended to a morphism
f' i Ce1(M) — R/Z such that f" = 0. Indeed, observe that Cy_1(M)/Z;_1(M) =
O(Cx_1(M)/Zy,_1(M)), since the right side is a submodule of a free module, it’s free and
hence projective. Therefore, being Cy_1 (M) — Cy—1(M)/Zx_1(M) an epimorphism, we
have a splitting Cy_1 (M) = Zp_1(M) & Q, where Q is the image of Cy_1(M)/Z—1(M)
in Cy_1(M) under the splitting map. Then we can define f' : Cy_1(M) — R/Z as
f'(o) = flo),if 0 € Zx_1(M), and f'(0) = 0, if 0 € @), and extend it linearly. It is
clear that §f' = 0.

The morphism b is injective. This follows by the universal coefficient theorem and the

fact that Exts(Hy_1(M),R/Z) = 0.

The morphism R is surjective. In fact, let w € QF(M), then via the de Rham iso-
morphism there is a morphism ¢g : Cix(M) — R, not unique in general, such that
glz, = 0, that is, g represents a cohomology class in H*(M;R). By hypothesis the
morphism ¢ takes values in the integers when restricted to cycles, defining a morphism
v Zp(M) — Z; so by the splitting Cy(M) = Zx(M) & @ used above, we may extend
v to a morphism 7y : Cx(M) — Z and via the inclusion Z — R we identify it, abusing
notation, with a morphism v : Cx(M) — R. Note that (¢ — )|z, = 0, then by the
universal coefficient theorem we have that g — v = df’ for some [f'] € H*"1(M) i.e.
g — 7 represents a coboundary. Consider now f: = f’|z |, mod Z, it is clear that

R(f) = w, for

fod=(g—7) modZ=gyg modZ:/w mod Z.

2.1.2.3 Ring structure

In this section we define the product of differential characters following closely the original
source [13]. First we recall a result from Kervaire, relating the wedge product of differential
forms and the cup product of forms thought as cochains via integration; this relation expresses
the infinitesimal behavior of forms via subdivision. Let A : Cy(M) — Cy(M) denote the

subdivision morphism in the cubical theory then

lim A"(wl U LL)Q) = w1 N Wy
n—+00

It is a classical result that subdivision is chain homotopic to the identity, the next lemma

says that this chain homotopy extends inductively.
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Lemma 2.1.2. Let M be a smooth manifold, Cy(M) its group of cubical chains of dimension
k and A : Cy(M) — Ci(M) the subdivision morphism, then for ¢ : Cx(M) — Cjpy1(M) the
canonical chain homotopy between A and the identity, the morphism Y 1A’ defines a
chain homotopy between A" and the identity.

Proof. Indeed, note that Ao d = 0o A, so by direct calculation one has

00 (> YA+ wA) 00 =D YA+ I’
=0 =0 =0 =0

=D (O + DA =) (1—-A)A =1— A", 0
i=0 i=0

Remark 2.1.3. Let w € QFF (M), then the image of the chain homotopy lives in the kernel
of w when interpreted through evaluation of chains via integration, for /(o) € Cy11(M) has
(k 4 1)-dimensional content zero for all o € Cy(M); however, it is not true in general that
w1 Uwg 01 = 0, for two forms wq, wy € Q*(M).

Remark 2.1.4. If one supposes that w; Uws vanish on boundaries, then the previous lemma
says that for all z € Cy (M) it holds that

w1 Uwy(z) — wi Uwy(A™2) = wy U wz((z PA'D)z)

i=0
The result of Kervaire and the last remark make it natural to associate to the difference

w1 Uwy — wi A ws the element

E(wl,WQ) = W1 U CUQ(Z wAZ)

1=0

Lemma 2.1.5. Let M be a manifold and w; € Q" (M), wy € QF2(M) be closed forms then
for any o € C,4,(M) it holds

E (w1, ws)(0) = wy Uwa(o) —wy A ws(o).



Chapter 2. Absolute Differential Cohomology 25

Proof. By direct computation we have

SE(wi,wn)(0) = w1 Uws () A)(9o)

i=0
=w U UJQ(Z YON' o)
i=0
=w Uwy() (1A —d)Ao)
i=0
= li_>m wp U wg(Z(l — A)A’g) — lim w; U WQ(Z O(YA'a))
i=0 =0

= lim w; Uwy((1 — A" )o)
n—oo
=w; Uwsy(o) —wi Aws(o). O
We are ready to define the product of differential characters. Given a differential character

f e H™"(M), we denote by Ty the lifting of f to a morphism C,,_;(M) — R and the induced
morphism of the lifting with values in R/Z, Ty mod Z, is denoted by ﬁ

Definition 2.1.6. Let f € H" (M) and g € H*(M). The product f % g € H" " (M) is
defined as

—~—— e~ e~

frg=TrUw,+ (~1)Pw; UT, — T; UT, — E(wy, w,)
where wy = R(f) and w, = R(g).
Proposition 2.1.7. The product of differential characters has the following properties:

1. Compatibility with curvature. For f € H* (M) and g € H*(M) it holds R(f * g) =
R(f) A R(g)-

2. Compatibility with characteristic classes. For f &€ ﬁkl(M) and g € f]kz(M) it holds
I(fxg) = I(f)UI(g).

3. Associativity. For f € H* (M), g € H*(M) and h € H* (M) it holds (f % g) x h =
[ (gxh).

4. Naturality. For a map of manifolds ¢ : N — M and f € H* (M), g € H**(M) it holds
" (f xg9) = ¢"(f) x " (9)-

5. Graded commutativity. For f € H* (M) and g € H*(M) it holds fxg = (—1)"*2gx f.
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Proof. By relation (2-1), we have that 07y = wy — ¢y and 07, = w, — ¢4, where [¢f] = I(f)
and [c,] = I(g). Then we get

0(fxg) =((wy — cp) Uwy)  + (wy U (wy — )

— ((wy —ep) U(wg —¢g))  — (wr Uwy —wy Aw,y)
oy r iy vl
vl
Hence R(f * g) = wy Aw,. To prove property 2)., note that the formula of the product gives
immediately an expression for the lifting in the definition of I, which we still denote by f *g,
so the calculation above shows that [w; Aw, — §(f * g) = cr Uc,.

About property 3). a long calculation shows that

frg)sh—fx(gxh)=—(—1)"" B (wsw,) UT, — E(wy,wy) Uwp, + E(wys,wy) U dTh+
%y %y fr%g
E(wp,woAwp) + (=1)Mws U E(wg, wr) — E(ws Awyg,wp)

And after applying the coboundary operator one gets

I((f*xg)xh—fx(g*h)) =—0E(wp,wy)UdTy —0E(ws,wy) Uwy, + 0E(wp,wy) U 6TH+
SE(wp,wg Awy) +wr UO0E(wg, wp) — 0E(wy A wg, w)
= —(wrUwy —wr Awg) Uwyp + wy U (wg Awp) —wyp A wy A wp+
wi U (wg Uwp —wg Awp) — (W Awg) Uwp, —wy Awg A wh)
=0

So (f*g)+xh— fx(gxh) is in fact a cocycle. Note that by definition of F(wy,ws), one necessarily
has that lim F(wy,ws)(A"0) = 0 and similarly for terms of the form wy UFE(ws, w3). It follows
that limn(?i:g) xh— f*(g+h)(A"c) = 0, therefore it has integral periods and by the previous
rema?gswit defines the zero character.

About the naturality of the product, observe that by the naturality of the cup product

and the definition of E(wy,w,) we have

P (f*9) = ¢ (T Uwy + (=1)"w; UT, = Ty U ST, — Ewy,w,))

= o*(Ty) Up*(wy) + (1) 10*(wy) U p*(Ty) — @*(Ty) U 9*(6Ty) — ¢*(E(wy, wy))
= Tiprp Uyrg + (—1)k1w¢*f U T prg — Toprp U 0T prg — E(w@*f,w@*g)
= (¢"f) * (¢"g)

The last property follows directly from the properties of the cup product i.e. of U % =
(=1)*B* Ul O
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2.1.2.4 Integration

For differential characters there is also a well defined integration theory for bundles, more

concretely, given an oriented bundle 7 : £ — M with fiber of dimension n there is a morphism

m: H*"(E) — H*(M)
for every k such that:

1. m is compatible with the curvature, characteristic class and topological trivialization

morphisms. Equivalently, the diagram

Qk+n—1 (E) R R/—\

il “y HE(E) —E QF(R) H*n (B 7)
lf ml lf lf
V(M) > HF (M) ——— QF(M) H*(M;7)
zm(d) @’ ’

commutes.

2. m is natural, that is, for any smooth map ¢ : N — M and any n-bundle 7 : £ — M
the diagram
ﬁk+n(E> . ]f[k+n<90*E>

|

H* (M) ——— H*(N)
commutes.

The explicit construction of the integration morphism can be found in [5]. The construc-
tion requires the use of stratifolds, so to give a detailed description here would take us to far
afield from our objectives, the interested reader can consult the cited reference.

Instead, we will give the construction of the simpler case of a trivial S'-bundle, that is,
[ © HMY(S" x M) — H*(M); this case is enough to establish important results such as
the uniqueness of differential extensions. The basic idea is to use the prism construction
to interpret a cycle o € Z,_1(M) as a cycle & € Zy(S' x M). First we recall briefly how
the prism operator is defined. Given the standard n-simplex A", take the space A™ x I and
consider the functions ¢; : A™ — I, defined as ¢;(to, t1, ..., tn) = tiy1+tisa+...+t,. The graph
of each function ¢; defines a (n + 1)-simplex inside A™ x I, such that together they exhaust
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all of A™ x I and the graphs of ¢; and ;1 intersect just in one face. The (n 4 1)-simplex
generated by ¢; will be denoted by [vg, vy, ..., V;, w;, ..., wy], where v; represents a vertex on
the base of A" x I and w, represents a vertex on the top of A" x I. Now, if f, g: M — N
are two homotopic functions, say through W: M x I — N, we define a morphism of chains
P:C,(M)— Cpi1(N) by

P(o) = Z<_1)i‘y 0 (0 X id)fog 01, 05,05, -

%

It can be shown (see [21]) that the relation
OP = f4 — g4 — PO

holds.

In our case, we will use Y = S' x M and X = M, whereas the functions will be the
inclusion M — S x M, defined by z — (1,x) and the homotopy will be (z,t) — (e*™, z);
note that the relation above specializes to 0P = —P9d. With this setup we define the S!-
integration as follows: for a differential character F : Z;(S' x M) — R/Z we set

</SF) () = F o P(o).

(/51 F) (0o)=FoP(0oc)=—Fod(P(0)) = _/P(U)wF
- Z(_l)m/ wr (2-2)

\IIO(O-Xid)‘[vo,vl,...,vi,wi,.”,wn]

WAERAVED

The fifth equality follows from the observation that the orientation induced by the ordering

Observe that

of the vertices makes it so that adjacent simplices have the same orientations, so after mul-

tiplying each simplex by (—1)""! we get compatible orientations. From this it follows that

Ro [o = [sioR.

The S'-integration is also compatible with the characteristic class. Indeed, if F is a real
lifting of F' then the composition F o P defines a lifting of /. g1 F'. Observe that

(JoL) (F)(U):[(FOP)(U):/(T</Slwp>—FOP08(U)

while
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(/Slol) (F)(a):/81 (/wF_ﬁoa) (o)
_ (/WF—Foa)oP(O‘)

:/ wp+ FoPod(o)
P(o)

:—/U</Sle>—|—FoPoa(0)

The last equality follows by 2-2. Hence [, of = — [, ol.

2.2 Deligne Cohomology

In this section we present a second model for a differential refinement of singular cohomology.
The genesis of this model is given again by the set bundles of dimension one endowed with
a connection. In contrast with the Cheeger-Simons characters, this model uses the local
data to represent the topological and differential data, which can be represented in terms of
transition functions and local potentials in relatively simple manner. After the introduction
of the refinement in dimension 2, we present the language of sheaves and sheaf cohomology
in order to obtain an appropriated framework in which the generalization of the refinement
to higher dimensions can be carry out most naturally. The contents of this section are based

on [8], which gives a modern account with more details and applications.

2.2.1 The important example again

We revisit the example considered at the beginning from a different point of view. Consider
a complex line bundle 7’: F — M. Alternatively, instead of describing the map 7’ and the
total space F' explicitly, one may give a local description of the bundle and a way to glue
coherently all the local information. In fact, it is usual to define a vector bundle with fiber
V' through an open covering {U,} of M and set of transition functions gn.g: Uss — GU(V),

such that the transition functions have the cocycle property
® Jaa = 1d7
e for a triple intersection U, N Uz N U, the relation g,.393y = ga, holds.

Intuitively, the cocycle condition amounts to say that on the intersections the local data
patch nicely. To recover the picture of the total space F' and the map «': F' — M, one
defines F' = [ U, x V/ ~, where the relation ~ is defined by: given (x,v) € U, x V and



Chapter 2. Absolute Differential Cohomology 30

(y,u) € Ug x V we have (z,v) ~ (y,u) if z = y and gap(x)v = u. The map 7’ : FF — M is
defined as 7 ([z,v]) = .

For the case of complex line bundles we have V' = C and GI(C) = C*. So the transition
functions are just maps gog: Usp — C*.

Now suppose that the line bundle has a connection. We want to use a local description for
the connection as above. First, we recall that a connection V on a vector bundle 7’: F' — M
is a K-linear' map V: I'(F) — I'(T*M ® F) such that for any map f: M — K and any
section X € I'(F) it holds

V(fF)=df ® F+ fV(F)

Now we give a local description of the connection. For this consider an open set U, on
M where the bundle is trivial. The trivialization induces a set of linearly independent local
sections {e;} representing the standard basis on V', called a moving frame or local gauge. Now
if X is an arbitrary section, when we consider its restriction to U,, we have that X = a’e;,

where the coefficients are maps a' : U, — K. By the properties of the connection it follows
V(X) =da' ® e; +a'Ve;

Let us be more specific. The term Ve; is by definition an element in I'(7T* ® F'), so can

be represented locally as
Ve, = ngdxk ® €

Hence, the local expression for V(X) becomes
V(X)=da' @ e+ a'T, d* @ ¢,

Interpreting I' = (T?,) as a matrix valued 1-form and writing (T,) = d2’ ® T; the relation

above transforms into

V(X)=dX +TX

Now we show what happens when another trivialization is used. Suppose that Ug is an-
other open set where the bundle is trivial such that U, NUs # 0, with transition function g,s.
Take {f;} the local gauge associated to the new trivialization and represent the connection

with respect to this local gauge as
Vi =T da" @ §;.
For every x € U, N Up, we have e;(x) = (gag(:c))f fi(x). From this it follows that

V(e;) = Thda* @ e; = Thda* @ (gap); fi-

1 K being the field of definition of the vector space representing the fibers.
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On the other hand

V(es) = V((9ap)] 1)
(9as)] ® fi + (9ap)] V(£3)
(9ap)t ® fi + (gap)! Thyda"™ & fi.

d
d

This produces the relation

dgas + Tgap = gasl
or equivalently
' = g.4d9as + 9osl Gas.
Interpreting all the preceding discussion in the case of a complex line bundle, we have
that if s, is a non-vanishing local section (local gauge) then Vs, = I's,, where I is simply a

1-form with complex values which we denote by A,. Then A, = (Z—‘Zf‘) and the expression

for the transformation of the connection under two trivializations reduces to
A = g;ﬁldgaﬂ + Ap.

For this local representation of the connection there is an associated local description
of the curvature. Consider a non-vanishing local section s, one may ask: how can s’ be
modified to become horizontal, that is, can we find f: U — C* such that V(fs") = 07. This

is equivalent to ask for a f such that

f s

A necessary condition for f to exists is that d (Vs—f’) = 0. The 2-form d (Vs—‘f') gives a

ﬂ_ Vs

local representation of the curvature of the connection. In general, the curvature form of a
complex line bundle with connection V is defined as the unique 2-form K such that for any
non-vanishing local section s it holds that K = d (%) From the preceding discussion, it is
obvious that K does not depend on the choice of the local section s.

Summing up, given a complex line bundle 7: F — M with connection V, we can give a
local description taking an open cover {U,} of M, a family of transition functions {g.s} and

a family of complex valued 1-forms A, such that
o the family {g.s} has the cocycle condition,

e the family {A,} holds the relation
Aa — Ag = g;gdgaﬁ'

Also the curvature K of the connection holds K = dA,, over each U,,.
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2.2.2 Deligne cohomology

The local data describing a line bundle with connection can be best represented in the
language of sheaves and Cech cohomology. First , we recall the basic elements of sheaf

theory.

2.2.2.1 Sheaf Cohomology and Hypercohomology

In order to give a more transparent treatment of sheaves we introduce the following notation.
Let M be a topological space, the topology of M can be represented through a category which
we denote by 7). Its objects are the open sets of M and the morphisms represent the inclusion
relation, that is, there is a morphism V' — U if V' C U, so for each pair of objects there is at

most one morphism.

Definition 2.2.1. Let M be a topological space. A presheaf of groups over M is a con-

travariant functor §: 73y — Grp.

That is, to every open set U C M we associate a group §(U), the elements of §F(U)
are called sections over U. Given a morphism V' — U in 7y, its image through § is de-
noted PY: F(U) — (V) intuitively it represents the restriction to V of the sections in U.
Finally, the morphisms between presheaves are given by natural transformations between

contravariant functors.

Definition 2.2.2. Let §: 7y — Grp be a presheaf. We say that § is a sheaf of groups, if
for all U € 7y, all coverings {U,} of U and all families {s,}, such that

o s, €5(U,),

. szﬁ(sa) = ngﬁ (sp) there exists a unique s € F(U) such that Pj (s) = s, for all {s,}.

The morphisms of sheaves are the same as those of presheaves. We observe that a mor-
phism of sheaves ¢: § — € determines two presheaves Im(U) = Im{y : F(U) — E(U)} and
Ker(U) = Ker{p : §(U) — €(U)}, which in principle may not be sheaves. In fact, Ker(U)
always is sheaf, which we denote by Ker(yp), whereas Im(U) usually is not. To recover a
sheaf one must apply the sheafification process to the presheaf Im(U) (see [20]). The sheaf
thus obtained is denoted by Im(yp). We note that a similar situation occurs when consider
the quotient of sheaves, that is, the quotient of sheaves is not in general a sheaf but only a

presheaf.



Chapter 2. Absolute Differential Cohomology 33

Definition 2.2.3. Let {§'}.cz be a set of sheaves and d': § — F! a set of morphism of
sheaves. We say that

di+1

, 3 &, Fitl , Fit2 ez
is a complez of sheaves if d*1 od =0, for all i € Z.

To ease the notation, a complex of sheaves as defined above will be denoted simply as
(§°,d) or just by F°*. Also we say that a complex of sheaves §* is bounded below if there is a
k € Z such that §* =0 for i < k.

Definition 2.2.4. Given a complex of sheaves (F*, d) we define the cohomology sheaf H” (F*)
as the sheaf associated to the presheaf Ker(d’)/Im(d’~1).

Definition 2.2.5. A sheaf § of abelian groups over M is said injective if for any pair of
morphisms of sheaves i: § — € and f: § — £ with Ker(i) = 0, there exists a morphism of
sheaves g: € — £ such that goi = f.

Definition 2.2.6. Let § be a sheaf of groups. A resolution of § is a complex of sheaves
(R®, d) together with a morphism i: § — R such that

e i is a monomorphism with image equal to Ker(d°),
e for n > 1, the Ker(d™) = Im(d"™").
A resolution of § for which each R is an injective sheaf is called an injective resolution.

Definition 2.2.7. A double complex J** is a collection of groups JP? with (p,q) € Z x Z

and a collection of morphisms

e vertical differentials d: JP4 — JPatt

e horizontal differentials §: JP¢ — Jrt1a,
such that dod =dodand dod=dod=0.

This definition can be represented by the following commutative diagram, where each

column and each row defines a complex
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In order to associate a cohomology group to this structure, we introduce a complex which

gathers all the information of the double complex into a single structure:

Definition 2.2.8. Let J** be a double complex with horizontal differentials 0 and vertical

differentials d. We define the total complex, J*® associated to J** as the complex with n-

=

ptg=n

component given by

and differentials
D:J"— J

where the differential takes {a?¢} € J", with a®? € JP9 into D({a??}) and the (i,n +1—1)-
term is given by §(a™" b= 4 (—1)id(a’" 7).

The sign in the definition of the differential is necessary to obtain an actual differential,
i,e Do D =0. Now it is a straight matter to define

Definition 2.2.9. Given a double complex J*°*, we define the n-th cohomology group,
H"™(J**), as the n-th cohomology group of the total complex J*® the associated to J*°.

In general to compute cohomology groups of a double complex requires the use of spectral

sequences.

Definition 2.2.10. Let §* be a bounded below complex of sheaves over a space M. A double
complex (I°*,9,d) with 77 = 0 for p < 0, is called an injective resolution of F* if there is a

morphism of complexes u: §* — (I®*,d) such that

e for each g € Z, the complex of sheaves (I*9,) is an injective resolution of FY;
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e for each ¢ € Z, the complex of sheaves d(I*%"!) C I*? is an injective resolution of

d(Fe);

e for each ¢ € Z, the complex of sheaves Ker(d) C I*? is an injective resolution of
Ker(d: 37 — g1t);

e for each g € Z, the complex of sheaves H*(I**) is an injective resolution of H?(§*).

Definition 2.2.11. Let §* be a complex of sheaves bounded below over a space M. We define
the hypercohomology group H™(M,F*) as the n-th cohomology group of the double complex
I'(M, I77), where I*® is an injective resolution of the complex §* and I'(M, [77) = IP9(M),

is the group of global sections on the sheaf 174,

2.2.2.2  Cech Cohomology

We change our point of view and now we define a cohomology group for a sheaf over M by

fixing an open cover of M and considering a combinatorial structure over its sections.

Definition 2.2.12. Given an open cover U = {U, }ie; of M and a sheaf § of abelian groups

over M, we define the Cech complex of M associated to the cover U as:

e set CP(U,F) = Hio,il,iz...ip 8 (Ui ir siz...i,) as the group of cochains of degree p. For o €

CP(U,F), we denote its component in Usy i, iy..i, DY (0 )ig,irin...ip»

e set the boundary morphism
5: CP(U,F) = C* U, T)

defined as

(50’) S _ (_1)kPUi0v11,i2,ik71vik+1~»-ip+1 (O‘- o ] } )
20,21,22---tp41 UiOvilviQ"'ip+1 205215225k — 15 k+15-+-2p+1 /"
k

The morphism § has the standard property of a boundary operators, that is, § o § = 0,

so we obtain the complex

Lt orULF) s oY UL F) —
The cohomology groups obtained from this complex are called the Cech cohomology groups
of the covering U with coefficients in the sheaf § and denoted by H?(U,§). This definition

obviously depends on the cover, however using standard arguments one can come up with a

definition of Cech cohomology independent of the cover taking the colimit
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HI(M,3) == lim H'U, )

over the poset of all covers of M ordered by the refinement relation.

We note that for manifolds, the cohomology groups H?(M,§) are isomorphic to H(U, §)
when U is a good cover.?
Fixing an open cover of M, one can also consider the information of a complex of sheaves

through the apparatus of Cech cohomology. That is, for complex of sheaves

by Fr 0 et 2

and an open cover U of M one obtains the Cech double complex

d d d
0 2 1 2 2 2
C (U:\S‘H ) T> C (U:\Sﬁ ) T> C (L{:\S‘H ) T) c..
d d d

CO(L{,SqH) T> Cl(u,Squl) T> CQ(L{’S(I+1) —_— ...

where the horizontal differentials are the Cech differential and the vertical differentials are

the ones induced from the complex of sheaves.

Definition 2.2.13. Let §* be a bounded below complex of sheaves over M and U an open
cover of M. We define the Cech hypercohomology group of the complex §* with respect to
U, denoted H™(U,F*), as the n-th cohomology group of the total complex associated to the

Cech double complex.

From now on most of the sheaves we will be using are of the form 2°. For a fixed k, the
sheaf QO associates to an open set U the group QF(U ) of all complex valued k-forms over U
and the induced morphisms PY: QF(U) — QF(V) are defined as the restriction of the forms.

The resulting Cech complex is denoted as

2 U is a good cover if it is an open cover such that every non-empty finite intersection Uy, NUq, N+ +N Ua,>

with U,, € U, is contractible.
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OF(U,) —2= QF(U,g) —— ...

It is clear that Cech cohomology is better suited for actual computations when compared
to sheaf cohomology, specially if one has a good cover. The following proposition shows that

in most interesting cases Cech cohomology is all one needs (see [20])

Proposition 2.2.14. Cech cohomology is isomorphic to sheaf cohomology for any sheaf on

a paracompact Hausdorff space.

2.2.2.3 The important example in the language of sheaves

There is an obvious structure that makes 2° into a complex of sheaves. This observation

leads to the definition of the double complex

A A A

0 0 0

QO(UO[[%,) T> Ql(Uaﬁv) T> QZ(UQBW) T> c.

AN N AN

0 0 1

QO(UaIg> T> Ql(Uaﬁ) T> QQ<Ua5) T>

A A A

0 0 0

Q0<Ua) T) Ql(Ua) T) Q2(Ua) T>

where d is the usual differential of forms. It can be shown that d o § = § o d, so d actually
defines a morphism of sheaves.

In order to apply this construction to our situation we make two adjustments. First, we
modify the beginning of the complex and replace the sheaf Q° by the sheaf C* of complex
non-vanishing smooth functions and replace the first differential for dLog. Secondly, our

k-cohomology groups will be taken from the truncated double complex

5 5 5
C* (Ung) 5> V' (Uapy) —5 - — 8 (Unps)
1 1 1
C'(Uap) —ro— QH(Uag) PR PR Q1 (Uap)
1 1 1
C*(U,) iLos LU,) . Q=1(U,)
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So for k — 1 <[, the groups of degree [ on the total complex take the form

E'l(U) — @ QP<Ua0a1...aq)'

p+q=Il,p<k—1
Within this new framework we may now describe more compactly the set of complex line
bundles with connection. Previously we noted that a complex line bundle with connection
V can be described by the local data of an open cover {U,} of M, a family of transition

functions {g,s} and a family of complex valued 1-forms A, such that
o the family {g.s} has the cocycle condition,

e the family {A,} holds the relation
Aﬁ — Aa = g;ﬁldgag.

This is equivalent to demand that the cochain (gas, As) € E'(U) holds the condition
D(gap, As) = 0 on the complex truncated at 1, that is, (gag, Aa) is a representative of a class
in
< Ker(D: EYU) — E*(U))

Im(D: E°U) — EY(U))

In fact, it can be shown that two representatives of the same class determine isomorphic

complex line bundles with connection.

2.2.3 The generalization

As in the case of Cheeger-Simons characters, the preceding situation induces a natural gen-
eralization when we consider higher cohomology groups defined over appropriated truncated
complexes. We denote the complex of sheaves

* N 1 N 2 N N k—1
C o 2 @ — . — 0

truncated at k — 1 by Q°(k), this complex is called the smooth Deligne complex Q°(k).

Definition 2.2.15. Let M be a smooth manifold. The hypercohomology groups H? (M, Q°*(p))
are called smooth Deligne cohomology groups of M and denoted by H %H(M ,°).

We show that there are well defined morphisms
I: HY (M, Q*(k)) - HP(M;Z)  R: H)(M,Q*(k)) — (M)

To define the morphism I, consider the morphism of complexes of sheaves
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Q

AN
dLog d " d

s QF
id l
> 0

d

— |

*

s )2 s QF1
> 0 > 0

Passing to hypercohomology we obtain the induced morphism 7: HP(M,Q*(p)) — HP(M,C").
However, HP(M,C*) = HP™ (M, Z), for p > 0. To see this consider the exponential sequence

(@

\
7 ...

of sheaves

exp

0 s 7, 2 C > C* s 0.

Hence, by the long exact sequence induced in sheaf cohomology and the fact that H?(M,C) =
0%, we obtain the claim. Next, consider the identification HP*'(M,Z) = HP*Y(M;Z),
between sheaf cohomology over the sheaf Z and singular cohomology with integral coef-
ficients. Finally, composition of 7= with the previous identifications defines the morphism
I: HY(M,Q*) — HP(M;Z), for p > 1.

Using a good cover {U,} of M and the fact that sheaf cohomology is isomorphic to Cech

cohomology for paracompact spaces, we may give a more explicit description of the morphism

I. Let (gag,....ap_1 Aéop‘_’%%, ..., AP-1) be a representative of a smooth Deligne class. By def-
inition, we have D(gag,....ap_1 Aégw.’a%Q, ..., A2-1) = 0 and in particular 6(ga,...qa, ,) = 1 on

the Cech complex associated to the sheaf C*. Since we are using a good cover, we may choose

a principal branch of Log(ga,... ) over Uy, ..a, , and by the connecting homomorphism

-Op—1 -1

of the exponential sequence we may define

1 B
favswian = 5 (=Log(gan,...ap) + -+ + (=1)P " Log(gag,...ap_1)) -

This clearly defines a Cech p-cocycle over the sheaf Z. So

I(gao,---yapflv Aivo Qp_23 "t 7AI¢;;1) = [fao,---,ozp]'

-----

Now consider the morphism of complexes of sheaves given by

* N 1 . 02 N . Ok—2 k—1
Q dLOg/ Q d 7 Q d 7 e e d 7 Q T> Q
L] | Lk
0 > 0 > 0 S > 0 > QF

passing to hypercohomology it induces the curvature morphism R: HE(M,Q®) — QF(M).
Again, we can give an explicit description of the morphism R in terms of Cech cohomology.

Fix a good cover {U,} for M and consider a  representative

3 This is consequence of the existence partitions of unity for C, that is, the sheaf C is fine.
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1
(gaow-,%q ) Aao,...,ak_27 -

defining R yields the association

.,A’;gl) of a smooth Deligne class. The morphism of complexes

(gao,...,ak,l,Al .. ,A231> — dAZgl

QQ,.. Q27

By hypothesis, we have that D(gag,...ax s Aag ..., AF-1) = 0 and in particular

SAET = £dAl?

Q,1

it follows that 6dA%~! = d§AE~1 = @ A%~2 = 0. Hence dAF~! defines a Cech O-cocycle, that

@Q,1

is, a globally defined k-form F' € Q% (M).

2.2.3.1 Ring structure

When compared with the Cheeger-Simons characters, the set of Deligne cohomology groups
H$ (M, Q*) have an easily defined ring structure. The multiplicative structure will be induced
by the product U: EP(U) x E1(U) — EPT(U) given by

Ty if deg(x) = 0;
rUy=qzAdy if deg(z) >0 and deg(y) = q— 1;
0 otherwise.

It can be shown that the structure thus obtained is compatible with the morphisms of

characteristic class and curvature, so it defines a morphism of rings.

2.2.3.2 Equivalence with Cheeger-Simons

It is clear that both the Deligne cohomology and the Cheeger-Simons characters yield differ-
ential refinements of singular cohomology, in fact, with minor modifications we may define
the Deligne smooth complex over real valued differential forms instead of complex ones and
a completely parallel argument would produce a differential refinement whose elements have
real curvature. Then a natural question comes up: What is the relation between the Cheeger-

Simons and Deligne differential refinements?

Theorem 2.2.16. The group of differential characters of degree k is canonically isomorphic

to the Deligne cohomology group of degree k.

For a proof of this result see [15] and [16].
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2.3 Differential K-theory

In the preceding sections we saw two different models for a differential extension of singular
cohomology, we also remarked that both models are canonically isomorphic. It is natural to
ask if there are similar extensions for other cohomological theories. An interesting case is
that of K-theory. For K-theory there are various models that yield a differential extension.
In this section we will give a basic review of one of them, namely, the construction via vector
bundles with connection, this model is known as the Freed-Lott model. A similar model
was proposed by Simons-Sullivan (see [36]), nevertheless we choose the Freed-Lott model for
it behaves better with respect to the curvature morphism. For a brief account about other
models for differential K-theory see [12]. Throughout this section we will restrict ourselves

to the category of compact smooth manifolds.

2.3.1 The construction

In order to carry out the construction we recall briefly some properties of the Chern-Simons
class. Fix a complex vector bundle p: E — M and two connections defined over F, say V
and V’'. To each connection we associate its Chern character ch(V) € H®*"(M;R), given
by Tr(exp(§2/2mi)), where §2 is the curvature associated to V. We define the Chern-Simons
class associated to V and V' as the class C'S(V, V') € Q% (M)/Im(d), up to an exact one,
such that

ch(V) — ch(V') =dCS(V, V).

We give a more explicit description of the Chern-Simons class. Consider the projection
map 7: I x M — M and the induced bundle 7*E — I x M. On 7*E we define the connection

V, such that for a section (a, X) € I'(T'(I x M)) and a vector field V' € I'(n*E) we have

Viax)., (V) =tVx, (V) + (1 - t)V’Xp(V) + ad,V (2-3)
then the class C'S(V, V') is given by

1
CS(V,V') = / ch(V) mod I'm(d).
0
The class C'S has the following properties

o CS(V,V') = —CS(V',V);

o CS(V,V')+CS(V', V") = CS(V,V");
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e let E and F be bundles over M, with connections V and V’, respectively, V and V.
Then for the bundle E & F with connections V & V and V' & V' we have C'S (Ve
V. V'aV)=CS(V,V)+CS(V,V);

e if F' and E are vector bundles over M, ® : F — FE is a isomorphism of vector bundles
over M, V and V' are connections over E then CS(®*V,®*V’') = CS(V, V).

We are ready to describe our model for differential K-theory. Our building blocks will be

hermitian complex vector bundles with connection plus a differential information. Explicitly,

Definition 2.3.1. Let M be a smooth manifold. A differential vector bundle over M is a
quadruple (E, h, V,w) such that

e F is a complex vector bundle over M,

h is a hermitian metric on F,
e V is a connection on E compatible with the metric,

e wis a class in Q(M)/Im(d).

As in the classic construction of K-theory, an equivalence relation between differential
vector bundles is defined so that objects representing the “same” information are identified.
We say that two differential vector bundles (F, h, V,w) and (E', k', V' W) are equivalent if
there is an isomorphism of bundles ¢: (E,h) — (E’, h’) such that

w—uw =CS(V,¢*'V),

in particular, the bundles have the same fibrewise dimension.

The relation thus defined is an equivalence relation. Indeed, by properties of the class
CS we have that C'S(V,V) = 0, hence the relation is reflexive. Since, C'S(V,V’) =
—CS(V', V) and CS(®*V,d*V') = CS(V, V') we have that w —w' = CS(V, ¢*V’) is equiv-
alent to W' —w = CS(V, (¢*)"'V), so the relation is symmetric. Finally, if (E,h,V,w) ~
(E', W, V' ) and (E', W,V W) ~ (E" A", V" W"), through isomorphisms ¢: (E,h) —
(E',1) and ¢': (E',h') — (E",1") then

w-—w =w-uw)+ (W —-w")
=CS(V,¢*V')+ CS(V', V")
=CS(V,¢*V') + CS(¢*V', "¢ V")
=CS(V, (¢ 0 ¢)"V"),

thus the relation is transitive.
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The set of differential vector bundles comes with a naturally defined semigroup structure.
In fact, for differential bundles (F, h, V,w) and (E’, K/, V' ,w'), we define their sum as

(E,h,V,w)® (B, K,V )= (E®E h& W, V&V, w+td).

This operation induces a semigroup structure on the set of equivalence classes defined
above. Now, following Grothendieck, we give a construction that produces a group out of a
semigroup. The construction is as follows: given two pairs of equivalence classes of differential
vector bundles ([(E, h, V,w)], [(F, f,A,0)]) and ([(E', K, V'), [(F', f', A, 0")]), we say that
they are equivalent if there is a differential vector bundle class [(G, g,T',n)] such that

(B, b, V,w)] & [(F, [, N, o) & [(G g, T, )] = [(E 1, V', )] & [(F, f,A,0)] & [(G, 9,1, )]

We call the set of equivalence classes of pairs of classes of differential vector bundles
the differential K -theory group of M and denote it by K(M). To ease the notation, the
class of the pair [[(E,h, V,w)], [(F, f, A, o)]] will be denoted by ((E,h,V,w), (F, f,A, o)) or
(E,h,V,w) — (F, f,A,0)*, whenever there is not risk of confusion. Observe that there is a
canonical map of the semigroup of classes of differential vector bundles into K (M) given by
[(E,h,V,w)] — ((E,h,V,w),(0,0,0,0)), again to ease the notation we will denote the latter
simply by (E, h,V,w). With respect to this map we will say that two classes of differential
vector bundles are stably equivalent if they have the same image in K (M), that is, two
classes [(E,h,V,w)] and [(F, f,A,0)] are stably equivalent if there is a differential vector
bundle (G, g,T',n) such that

[(E,h,V,w)] & [(G,g,T,n)] =[(F, f,A,0)] @ [(G,9,T,n)]

As we observed above, K (M) is in fact a group under the induced sum of pairs

((E R,V w), (F, f,A0)) & ((E" 1, V', W), (F, f, N, 0") =
(EaE haoh,VeV wt+o), FeF , fef AeN o+0d)).

Indeed, it is clear that the class ((E, h, V,w), (E, h, V,w)) represents the identity element
of the group for any differential vector bundle (F,h,V,w) , while the inverse of the class
((E,h,V,w),(F, f,\,0)) is given by ((F, f,A,0),(E,h,V,w)).

Let M be a compact space. By a classical result [1, 1.4.14], for a given complex bundle
E over M there is a complex bundle G over M, such that E & G is trivial. Hence, if we
have a differential class (F, h,V,w) — (F, f, A, o) then there is a differential vector bundle
(G,g,T', —0) such that

(F7 f,A,O') D (G797F7_0> ~ (ﬂaf/>A/70)'

This notation comes from the usual construction of the integers using pairs of natural numbers.

4
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Thus an arbitrary element in K (M) can be represented as
(E,h,V,CU) - (ﬂaf?Aa())

where ch(A) is necessarily exact.

As in the case of Cheeger-Simons characters and Deligne cohomology, from every class in
K (M) we may extract cohomological and differential information, thus inducing morphisms
into the respective groups. Using the same notation of the previous cases we define the
morphisms

I: K(M)— K(M)

given by

(E7h7vaw)_(ﬂaf7AaO) HE—Q

The curvature morphism

R: K(M) — Q*"(M)

given by

(E,h,V,w) — (n, f,A,0) — ch(V) — ch(A) — dw.

And the morphism

a: QM) /Im(d) — K (M)

given by

w— (0,0,0, —w).

Before we proceed to establish the principal properties of the morphisms just introduced,
we recall briefly the group K—'(M) and the odd Chern character. The group K (M)
is classically defined as the K-theory group corresponding to SM, the suspension of M.

Alternatively, using the exact sequence of pairs

C—— K(S'x M,M) — K(S'x M) -~ K(M) — ---

and the fact that the projection onto M is a left inverse to the inclusion of M into S* x M,

we obtain a decomposition

K(X)® Ker(i*) = K(S*x M) =2 K(X)® K(S* x M, M) =K(X)® K~Y(M)
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So we identify K~'(M) = Ker(i*). About the odd Chern character, we recall that for a
class E — F € K(S' x M) such that E — F' € Ker(i*), that is, E — F represents an element
in K~1(M), we have

ch™'(E—F) = / (chV — chV'") (2-4)
51

where V and V'’ are connections on E and F, respectively.

Let (F,h,V) be a fixed vector bundle with metric A and compatible connection V, and
denote by Aut(F,h) the family of all isometries of (F,h). For each ¢ € Aut(F,h) we obtain
an element CS(V,¢*V) € Q% (M)/Im(d). It is easy to see that the element C'S(V, ¢*V) is
independent of V, for

CS(V,4*V) =CS(V,V') + CS(V', $*V)
—CS(V, V') + CS(V,¢*V') + CS(¢*V', 6*V)
—CS(V, V') + CS(V',¢*V') + CS(V', V)
—CS(V,V )+ CS(V',¢*V') — CS(V, V')
—CS(V', ¢V

Using the observation above we may define the function
Oy : Aut(F, k) — QM) /Im(d).

Lemma 2.3.2. Let
O: | Aut(F k) — Q*(M)/Im(d)
(F3F)
be the function that assigns to each ¢ € Aut(F, k) the form O (¢). Then

Im(0) = Im(ch™).

Proof. Let CS(V,¢*V) € Im(O), for a given bundle p: F' — M with connection V. Consider
the bundle p': p*F — I x M with connection V given by (2-3); using the isometry ¢ we
may identify p*F|gy«m and p*Fly<a to obtain a space E that in fact defines a bundle
q: E — S' x M. Likewise, the connection V glues naturally to a connection Vg on E, in
fact, for mrg1: [ x M — S' x M the identification map, we have T 1 VE ™ V. Hence by

definition we have

1 1
CS(V,gb*V):/ ch(@):/ 7T;SlchVE:/ chVg.
0 0 st

Now consider a similar construction with ¢ = id. Call the resulting total space by Eiq
and the connection by @id. It is easy to see that @id = i*V, where i: M — S' x M is the
inclusion. It follows that |, 51 ch(@id) = 0 and so by (2-4)

OS(V, ¢*V) = / ChVE = / (ChvE - Chvid) = Ch_l(E — Eid),
St St
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it follows that Im(©) C Im(ch™).

Conversely, consider a class E —n € K~'(M), that is, a class E —n € K(S* x M) such
that i*(E —n) = 0, for i*: K(S* x M) — K(M). In particular, we have that E|y —n = 0 or
equivalently that exists m such that E|y @& m ~ n @ m. Summing m to both terms, we may
as well suppose that the bundles E and n are such that F|y; ~ n. Now consider the bundle
Tl = I x M. By homotopy properties this bundle is of the form 7;G — I x M, for a
bundle G — M and the projection map 7;: [ x M — M. However, by the observations made
above 71‘;51E|{0}><X ~ n, hence 7rj751E ~ n. Let us denote by T: W}k’le — n the isomorphism
relating both bundles, then we have an isomorphism v: n — n defined by restricting T to
the boundaries, that is, T, 0 Yy '. Then identifying boundaries through v we obtain a bundle

n, over S' x M, such that £ ~n, and so E —n =n, — n. It follows that

ch™'(E —n) = ch™(n, —n) = CS(V,0"V)
for any connection V on n. Hence Im(ch™!') C Im(O). O
Proposition 2.3.3. The morphisms /, R and a hold

1. dRo R = ch oI, where dR is the morphism that takes a closed form to its de Rham

class and ch is the Chern character in K-theory;
2. Roa=d;
3. the sequence

B QOddM R
ot (M) “y K(M) —» K(M) —— 0

1s exact.

Proof. 1. Let a = (E,h,V,w) — (n,e,can,0) € K(M). By definition we have R(a) =
ch(V) — dw, so dR o R(a)) = [ch(V)] = ch(E), the last equality being consequence of
de Rham theorem. On the other hand, I(a) = E — n, thus ch o I(a) = ch(E). The

result follows.
2. Take w € Q¥ (M)/Im(d), then a(w) = (0,0,0, —w) and R o a(w) = dw.

3. That I is surjective is clear. To prove the exactness at Q2°%(M)/Im(d), using lemma
2.3.2, it is enough to note that for w € Q°¥(M)/Im(d) we have a(w) = 0 if and only
if w= CS(V,¢*V), for some vector bundle F' with connection V and some isometry
¢: F — F. Let w be such that (0,0,0,w) = (0,0,0,0) in K (M), that is, there is a
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differential vector bundle, that we may as well assume to be of the form (n,g,I', o),

such that (n,g,[w+ o) ~ (n,g,1",0). This is equivalent to
we CS(T, ¢*T)

for an appropriated ¢. On the other direction, if w = C'S(V,¢*V) for a given vector
bundle F' with connection V, then it is clear that (0,0,0,—w) = (0,0,0,0) in f((M)
In fact,

w=CS(V,*V)

implies that
(F,g,V,O') ~ (F,g,V,O'—CL)>

or equivalently

(07 07 07 O) @ (F7g7 v’ U) ~ (07 07 07 _w) @ <F7g7 v? U)'

About the exactness at K (M), it is clear that [ o a = 0. In the other direction, if
I(E,h,V,w) — (n, f,A,0)) = 0, then exists a bundle G such that E® G = n @ G.
This is equivalent to say that there exist trivial bundles p and m such that £ & p = m,
hence the class (E,h,V,w) — (n, f,A,0) is the same as (m,h', V' ,w) — (m, ', V', 0).
From this observation it follows directly that (m,h’, V', w) — (m, k', V',0) = a(—w).

O

Let us denote by T™ the n-torus, that is, the n-fold product of S*, and by 4; the inclusions
ij: T ' x M —T"x M
(tl, ey b, m) — (tl, R ,tjfl, 1,tj, ey b, m)

Also, we will denote by £}, the K-theory ring of the point with real coefficients, that is,
£2n =~ R and €"*! = 0. With these conventions we have Q2"(M;Ep) = Q" (M), whereas
QLM e) = QOW(M).

Now to define the differential groups for all negative degrees we observe that in the

topological case the following relation holds

K(M) 2 (| Ker(ij: K(T" x M) — K(T"" x M)). (2-5)

So its generalization to the differential case takes the form:
Definition 2.3.4. We define K~"(M) as the set of elements o € K(T" x M) such that

o o€, Ker(if: K(T" x M) — K(T"' x M)),
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e exists w € Q7"(M; €y) such that
R(a) =dty N -+ ANdt, AN Thyw, (2-6)
where ;0 T X M — M is the projection.
Using (2-5) we have the obvious extension of the morphism [/
I K™(M) — K~™(M)
(E,h,V,w)—(n, f,T,0) — E —n.

We define the curvature morphism in degree —n as

~

R™: K™"(M)— Q" (M;t})

a— R(«).

']l‘n

Note that by (2-6) this is equivalent to take R~"(a) = w. Finally the generalization of

the morphism a is given as

a™": QY (M e)%/ Im(d) — K(M)
w s (0,0,0, (1) dt, A - Adt, AThw).

As expected, the morphisms thus defined preserve the properties established in proposi-

tion 2.3.3 for the 0-degree case.
Proposition 2.3.5. The morphisms /™", R~ and a™" hold

1. dRo R™™ = ch™™ o I™™ where dR is the morphism that takes a closed form to its de

Rham class and ch™ is the Chern character on degree —n for k-theory;
2. R""oa™™ =d;

3. the sequence

ehn-t QT THMRR) % T

K (M) Tm(d)

1s exact.
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Proof. 1. Take o € K—"(M), by definition R~"(a) = [;., R(

dRol%”@o—i/ndRUﬂ@»

~ [ entita)
:dan/nﬂag

=ch™" o I ().
2. Let w e Q™ 1 (M; ), then a "(w) = (0,0,0, (—=1)""dt; A--- Adt, A Thw). Hence

R™"oa ™(w)=R"™0,0,0,(=1)""dt, A--- Adt, A Thw)

R(0,0,0,(=1)""'dty A -+ Adt, A Thw)

n

D™ty A Adt, A Thw)

n

I
\\\

dty A -+ Ndty, A mydw

n

=dw.

3. Exactness at Q"1 (M;)/Im(d) is clear once we note that a~"(w) = 0 if and only if
a(dty A -~ Adt, AThw) = 0in K(S' x M). By proposition 2.3.3, this happens if and
only if dty A -+ Adt, A Thw € Im(ch™), which is equivalent to w € Im(ch™"!).

It is clear that ™" o a™™ = 0. Conversely, suppose that a € K (M) is such that

I7"(a) = 0, then as a class in K(T" x M) we have that I(a) = 0, so by item 2 of

proposition 2.3.3 it follows that o = a(w). By condition (2-6) and item 1 in proposition

2.3.3, we have that

dw = Roa(w)= R(a) =dty A--- ANdt, Nydp.

Hence w = n+ (=1)"dty A --- A dt, A myp, where dn = 0. Since a € Ker(i}), the

commutativity of a and ¢ implies that a(ifin) = 0. Define /' = n — 7} o i’n, where

m;: T" x M — T x M is the projection of all but the j-th component

i T"x M — T ' x M

(2-7)
(t17 ey b, m) — (tl, c 7tj—1>tj+17 ey tn_, m)

Then setting w' = 7' 4+ (—=1)"dt; A --- A dt, A Ty p, we have that a(w') = a(w) = «

and ¢fn’ = 0, in particular we obtain that ' = dt, A 7} and W' = —dt, A 7'w.

Repeating successively the argument above for ¢; with j =n—1,n—2,...,1, we obtain

aw™ = (=1)"dt; A --- Adt, AN Thp, such that a™(p) = a(w™) = a.
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The morphism [~" is surjective. Indeed, consider a class £ — F' € K(T" x M), such
that £ — F € Ker(i;: K(T" x M) — K(T"' x M)), for j = 1,...,n. By proposition
2.3.3, there is a differential class a € K(T™ x M), such that I(a) = E — F. We
may suppose that « = (E,h,V,0) — (F, f,V’,0), so under the de Rham morphism we
have that [ch(V) — ch(V')] = ch(E — F). From the naturality of ch, it follows that
[ch(i3V) — ch(i3V')] = 0, for each j = 1,...,n. Hence ch(V) — ch(V’) has the form
dw + dty A -+« ANdt, ATy p. We consider the class o = (E,h,V,w) — (F, f,V',0); its

curvature is given by
R(a/) = ch(V) — ch(V") —dw = dt; A -+ Ndt, NTyp,

so it holds the condition (2-6) on the definition of K~"(M). In order to obtain a class
that holds the first condition on K (M), we will add an appropriated class. Since
i*(E — F) = 0, we have that [ o ¢} (a) = 0, hence exists £ such that a(§) = ¢« and
d¢ = 0. Note that for 7,: T" x M — T"! x M, as in (2-7), we have m, 014, = id,
therefore
(o = a(my€)) =ala) — aliym,8)

=a(a) — a(a) (2-8)

=0.
Let us denote o = o — a(w}§). Clearly I(¢/) = (o) = E — F, soi_,0I(a) = 0.

As above we have that exists &', such that a({') = if_,o/, d¢’ = 0 and, since ito/ =

|
0, also i o’ =0, for &, ; : T" 2 x M — T" ! x M given by (t1,...,t,_9,m)
ti, ..., th_o,1,m). We consider o/ = o —a(m*_,&"), where m,_1: T" x M — T 1 x M
n—1

is given by (2-7), with 7,1 0 4,_; = id. A similar calculation as in (2-8) shows that

o =0, on the other hand i/* ;o/ = 0 implies that i} a” = 0. Proceeding successively

» 3k

lp—1
in the same way, we find o™ such that ija"(”) =0, for all j = 1,...,n and such that
I7"a™ = F - F.

O]

2.3.2 Ring Structure

There is a naturally defined product of classes of differential vector bundles. In fact, for

(E,h,V,w) and (E',h', V' W), we define
(E,h, V,w)(E',/,V' W) = (EQE'h@h', VRV wA(chV'—dw")+(chV —dw) A\w' +wAdw")
This product induces a ring structure
K (M) x K(M) — K (M)
(@, 8) = a-p,
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on K(M) Obviously, I(a - f) = I(«)I(B) for classes «, 8 € K(M) Similarly, we have
R(a-8) = R(a)AR(p). Indeed, suppose a = (E, h, V,w)—(F, f,I';0)and g = (E',h/, V', ') —
(F', f',T",0), then
a-B=(EQE ®FF ,VV' &T T, wA (chV' —dw') + (chV — dw) Aw' + w A dw'’)
—~(FEF o FFE ,VI'aT @V wAchl'+ chl Aw').

R(a-8)=ch(VaV' &T @l")—ch(VaTl'eT @ V') —dwA (chV' — dw')
— (chV — dw) A dw' — dw N dw' + dw A chI” + chT’ A duo’
=(chV — chl' — dw) A (chV' — chI” — dw'")
=R(a) A R(P).

From this internal product we can easily define an external product K (M) x K(N) —
K(M x N). In fact, for o € K(M) and 8 € K(N) we define their product as

al f=mi(a) - m(6),

where m: M x N — M and my: M x N — N are the natural projections.
Using the external product we can extend the multiplicative structure to all non-positive

degrees, yielding a family of morphisms
X: K™™(M)x K™(N) = K™""™(M x N)

Explicitly, consider o« € K~™(M) and 8 € K~"(N), then as elements of K (T™ x M) and
K(T™ x N), respectively, we have

aly B e K(T™ x M x T" x N),

where X is the external product as defined above. Set p: T x M x N — T™x M xT"x N,
the natural diffeomorphism, so that ¢*: K(T™ x M x T" x N) — K(T™" x M x N). Then,

we define the external product as
alf=(=1)"¢"(a Xy ).

It is easy to prove that o ¥ 3 holds both conditions on the definition of K~™"(M x N).
The product thus defined is also compatible with the morphism a, that is, for a € K (M)
and w € Q™™ (M; ) the product has the property

a™w) - a=a""wAR"a)
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Indeed,

( (=)™ dty A Ndty, AT W) -

( (=) tm gy A Adty AT w A dby A A dbin AT RTQ)
=(0,0,0, (—1)

( (

ML A At A Thw AT RTQ)

2.3.3 Integration

In order to define S'-integration for all non-positive degrees in K=" (M), we first define it
for degree zero and then extend it to all non-positive degrees using the relation K" (M) C
K(T™ x M). In degree zero the integration map should take a class o € K(S' x M) to a
class [, a € K~'(M) C K(S' x M). Weset [, a = a, if a is already in K~'(M). In order

to define the integral for an arbitrary element we consider

! _ * +k
o = 7T1Z10é

where i1: M — S' x M is the natural inclusion and 7;: S' x M — M is the canonical
projection. Note that o/ € Ker(i}), in particular i o I(a) = 0, therefore its image in the de
Rham cohomology has the form [dt A mjw] and R(a’) = dn + dt A 7jw. Thus we can ensure
that o/ holds the first condition defining K ~*(M). From the relation R(a) = dn + dt A whw
follows that

dii(n) = i;dn =i} (R(a/) — dt ATjw) = R(i;a/) = 0.

Now, to transform o' into a class that holds the second condition we consider o” =
o/ —a(n'), where the form n’ holds ' = n—7fiin. Note that i(n’) = 0, for m; 0i; = id; hence

we have also i}(a”) = 0. The class o also has the second condition, indeed
R(a") = R(a' —a(n)) =dn+ dt Nmijw — dn' = dt N miw + driiin = dt A Tiw.

Thus o € K~'(M). So for an arbitrary class o € K(S* x M) we define

[ a=a=iia—at)+ [ at)
S S1

e Lo
e =) e (L))

where
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We still have to show that this definition is independent of the choice of 7. Let p be

another form such that
Rlo —miijo —a(n + p)) = dt Amiw's (' +p) =0

then d(p) = dt A 7ip and §p = 0. Hence, if S'-integration is to be independent of choice of

7', we should have

o — mtita — a(nf) + /

Sl

) = [ ator=a(anmi( [ 0))

From dp = dt A wjp it follows that, as a de-Rham cohomology class, [dt A 7iu] = 0. Since

a() = a — wfite — a(y’) — alp) + /

i)+ [ alo)

or equivalently

Sl-integration defines an isomorphism, with inverse dt A 7}, between de-Rham cohomology
of M and Ker(ij), we have [u] = 0 and pu = —dr. It follows that dp = d(dt A 7j7) and
p =dt AT + ¢, where ¢ is a closed form.

Observe that
[o=[@nmreo=r+ [ o
s1 st st

dt Ny (/ p) =dt AT+ dt ATy (/ gp).
st st

Since ijp = 0, we have 17 = 0 and dt A 7} (fsl go) =@ +df. Thus

hence

dt Ny (/ p) =dt ANmiT+e+dB=p+dS.
S1

After applying the morphism a to both sides of the last equation and recalling that aod = 0,

o(aonsi ([ 5)) =t

Thus we obtain a well defined morphism on degree 0. In order to extend the definition

we obtain

for all non-positive degrees we consider the generalization

A

/ c K7(SY x M) — K""Y(M),
S1

[ a=a-maizaa-arm+a (danma ([ )
S1 S1

The following proposition says that this definition yields a morphism with natural geo-

given by

metric properties and compatible with the morphisms /7, R and a.
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Proposition 2.3.6. The morphism of S'-integration has the following properties

e the diagram

I*TL
. 1 B /\
Q (.S X M;tg) on N Kv—n(sl x M) R, Q"(S x M) K-"(S' x M)
im(d)
lfsl fsll lfsl lfsl
Q*ﬂ*Z(M’E]IQ) o —n—1 —n—1 . pe —n—1
im(d) e wa .
[-n—1

is commutative;

o [oiomy =0;

o let t: S — S! be the map given by 2™ — e=2™_ Then, for the map ¢t xid: S* x M —

St x M, we have
/o(txid)*:—/.
st st

2.3.4 Periodicity

The differential extension defined above inherits the periodic property of topological K-
theory, that is, K™"(M) = K—""2(M). To see this, recall that for topological K-theory we
take a generator £ — 1 € K(T?) and define

K"(M) =K "2(M)
a—(k—1)Xa.

Thus for the differential case we may lift x — 1 to an appropriated differential class
i—1€e K (T?), so that we also have an isomorphism via exterior multiplication. Such
element is given as the element & — 1 € K (T?) with /(4 —1) = x — 1 and representing a class
in K~2(x) with curvature 1, that is, x — 1 € Ker(i¥) N Ker(i3) and R(i — 1) = dt; A dty. We
claim that multiplication by & — 1 yields an isomorphism K~"(M) = K~""2(M):

o It is surjective. Indeed, given a class 8 € K" 2(M) with I"""2(8) = f € K~""2(M),
the topological periodicity gives a class & € K~"(M) such that (x — 1) K& = . Since
B e K—"2(M), we have that R(8) = dt; A - -+ Adtno AT R"2(3); hence we choose
a lifting o« € K~"(M) of & so that R(a) = dty A --- A dt, A w5, R %(f3), that is,
R™™(a) = R™""%(f3). Observe that
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I (k-1 Xa)=(k—-1)Xa
=
=I"7%(B).
So 8 = (k —1)Xa+a(p). Note also that 3 € Ker(i}), for j = 1,...,n + 2 and by
construction the same holds for (& — 1) X a, it follows that a(p) € Ker(i}), for j =
1,...,n+2. Therefore p = (—=1)"dty ... dtp o AT w+dE and f = (R—1) K (a+a""(p)),

the claim follows.

e It is injective. Suppose that (A — 1) K a = 0. Then after applying "2, we have
(k — 1) X I7(a) = 0, so by the topological Bott isomorphism we have [~"(a) = 0.
By proposition 2.3.5, it follows that @ = a ™ (w). By the multiplicative property of the
curvature, we have

R™™(a)=1-R ()
=R *k—-1)AR™()
=R (k- 1)K a)
=0.

So dw = R™"(«) = 0 and w represents a de-Rham class. Observe that
a " w) =a " (dt; Adty A w)
=k — 1)Ko
=0.

Hence w is in the image of the Chern character and o = a " (w) = 0, by proposition
2.3.5.

As in the topological case, the periodicity morphism on non-positive degrees yields a nat-
ural definition of differential K-theory for positive degrees. Concretely, we set K (M) =
K~"(M), whereas the morphisms I": K*(M) — K*(M), R*: K"(M) — Q*(M;t3) and
am: QVY(M; ) /Im(d) — K™(M) are defined using topological periodicity and the nat-
ural isomorphism Q"(M; ) = Q"(M;¥), respectively. The product and S'-integration
are defined using the identification K™(M) = K~"(M) and appropriated periodicity isomor-
phisms, that is, for ™ € K™(M), we consider the corresponding (unique) o™ € K"(M)

representing o” and take

fSl a® = (B—n-l—l)—l (fsl a—n) : a™ X ﬁ—m — (a—n X ﬁ—m)n-‘,—m,

where B+ K=" (M) — K—""1(M) is the Bott periodicity.
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2.4 Axiomatic Framework

As we saw on the models described in the previous sections, there are a set of common
features that one should expect to be displayed by any differential extension of an arbitrary
cohomology theory. In this section we define an axiomatic framework that represents the
principal features of a differential extension.

We begin by fixing some notation. For a generic cohomology theory E*®; we will denote
the cohomology groups of the point, E*(x), as the Z-graded group €* and its tensor product
with R, €* ®@ R, by E}. We will denote by M the category with objects smooth manifolds
and morphisms the smooth maps between smooth manifolds. Also, we will denote by Az the

category of Z-graded abelian groups and by Ry the category of Z-graded rings.

Definition 2.4.1. Let E*® be a cohomology theory. A differential extension of E® is a

contravariant functor

E.: M — AZ
together with natural transformations

A A

[:E* - E*  R:E*—Qy(—€);  a:Q(—&)/Im(d) — E°
such that

1.
Roa=d, (2-9)

2. for each M € M, the diagram

Qu(M; €) —— Hyp(M; &)

is commutative,

3. for each M € M, the sequence

ch . Q" (M; &) .7 I
Im(d)

B (M) (2-10)

is exact.
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With the notation above, we will denote a given extension as a quadruple (E I, R a),
when there is no risk of confusion.

It is known that most cohomology theories are enriched with a ring structure and the
differential extensions described in the previous sections show that it is in fact possible to
endow a given extension with a multiplicative structure compatible with the base cohomology

theory and with the differential data. These properties make the following definition natural.

Definition 2.4.2. A multiplicative differential extension of FE is a differential extension
(E,I,R,a) such that

e F* takes values in Rz,

the morphism R is multiplicative, that is, for all M € M and all o, § € E"(M) we
have R(« - B) = R(a) A R(B),

the morphism [ is multiplicative, that is, for all M € M and all o, § € E'(M ) we have
I~ B) = I{a) (),

for all v € E*(M) and w € Q*(M; &) /Im(d), the identity

a-a(w) =a(R(a) Aw)
holds true.

In the same vein, the models above show that there is a natural way to characterize an
integration map for a given differential extension. First, we introduce some useful notations.
Let F': M — A be an arbitrary functor. We will denote by SF' the functor that to every
manifold M € M associates F'(SxM) € A and to every smooth map of manifolds f: M — N
associates the morphism F(id x f), where id x f : S' x M — S' x N is the map given by
(s,m) s (s, f(m)). Also, we represent the elements of S! as the points in the complex plain

of the form e™. Finally, we denote by m: S x M — M the usual projection map.

Definition 2.4.3. Let E* be a cohomology theory. A differential extension with integration

of E* is a differential extension (E ,I, R, a) together with a natural transformation
[ispn o e
such that
o [o(t xid)* =— [, with ¢: ST — S* the conjugation map,

o [om* =0,
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e the diagram

1

/\

SQ*(M; €3) —2 SE*1 (M) — SQ%(M; es) SE*+1(M)

I/ i| s I/
E*(M)

~

0 (M €4) —— B*(M) —— 0300 €3)

\/

I
commutes.

Remark 2.4.4. For a cohomology theory the integration map may be described explicitly
in terms of the suspension isomorphism. Consider the embedding i: M < S! x M, where
we take S! with base point 1. Observe that the canonical projection 7: S* x M — M is a
left inverse of 4. The long exact sequence of the pair (S* x M, M) and 7 o7 = id give the

split exact sequence
0 —— E*F(S' x M, M) —L— E*t1(S' x M) —“— E**'(M) — 0
Hence we have a splitting
E*TH S x M) = a* BTN (M) @ Ker(i*).
(i

In particular, the elements of Ker(:*) have the form o — n*i*a. Clearly we have a

canonical isomorphism Ker(i*) = E*t1(S' x M, M) = E*t1(XM,), so we identify Ker(i*)
with E*t1(XM,). Denoting by s: E*(M) — E*t'(XM,) the suspension isomorphism, we

have that integration is defined as:
/; E*T(S' x M) — E*(M)
a— s Ha— 7).

In this way it is easy to see that the integration is a natural transformation, f os is the
identity map on E*(M) and it also holds the properties [or* =0 and [o(t x id)* = — [.

A byproduct of the use of non-homotopical data, i.e. differential information, to enrich a

cohomology theory is the loss of homotopical invariance. Explicitly, we have

Proposition 2.4.5. Let E* be a cohomology theory and (E ,I, R, a) a differential extension.

For a € E*(I x M) we have
1
ija—ija=a (/ R(a)) , (2-11)
0

where i;: M — I x M is defined by m +— (5, m).
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Proof. We have that both 7 o i and 7 o i; coincide with the identity and that ig o 7 is
homotopic to the identity. Define oy = ir. Observe that I(1m*ag) = I(«), for I(m*ay) =
I(m*ifa) = m*i§I(cr). Hence, by the exact sequence (2-10), it follows that there is a w such
that @ = 7" ap + a(w) and, by (2-9), we have R(a) = 7*R(cy) + dw. Taking the difference of
the pullbacks of o we have

iTa —ija =it g + a(ijw) — igm oy — a(igw)

e
—a ( /1 (R(a) - W*R(ao)))
—a ( /I R(a)) | =

2.5 Uniqueness of Differential Extensions

So far we have seen three models of differential extensions for two different cohomology
theories; two out of the three models refine singular cohomology and what’s more important
both refinements are equivalent (proposition 2.2.16). Then it is natural to ask if this situation
also occurs for other cohomology theories. First we need to be precise as to what it means
when we say that two models extending the same cohomology theory are equivalent, then
we can settle the problem of uniqueness of the extension. In this section we follow [11]. The

following definitions deal with the first question.

Definition 2.5.1. Let (E,R,I,a) and (E’,R’,]’,a’) be two differential extensions of E*°.
A natural transformation of differential extensions is a natural transformation of Z-graded

abelian group valued functors ®: E* — E’., such that for every manifold M the diagram

QY(M; €3) — EY(M) — Q(M; €3) E*(M)
lld ‘I’l lid lld
QH(M; €3) —— B (M) —— Qy(M; €3) E*(M)

commutes.

Definition 2.5.2. Let (E, R,1,a) and (E’, R’ I',d’) be two multiplicative differential exten-
sions of E°. A natural transformation of multiplicative differential extensions is a natural

transformation ®: £* — E'° of Z-graded ring valued functors.
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Definition 2.5.3. Let (F, R, I,a, [) and (', R, I, d’, ") be two differential extensions with
integration of E*. A natural transformation of differential extensions with integration is a
natural transformation of differential extensions ®: E* — E’., such that for every manifold
M the diagram

SE (M) —2 SE (M)

commutes.

So we will say that two differential extensions (E ,R,I,a)and (E’ , R, I' a’) are equivalent
if there is a natural transformation of differential extensions ®: E°* — E’., such that ® is a
natural equivalence of functors.

Now we show that differential extensions with integration are essentially unique for topo-
logical cohomology theories holding some mild conditions. First we recall some basic facts
and state some useful results. Given a cohomology theory E°®, we assume that it is repre-
sented by an (2-spectrum {E,,e,, €,}, that is, a family of based topological spaces (E,,e,),

usually C'W spaces, and a family of maps

en: Y By = Enyp,

called structure maps, such that the adjoint maps
4B, — QF, 1

define homeomorphisms and so that for a pointed space X we have E"(X) = [X,E,]. The
idea is to use this generic representation to define a natural transformation between two
extensions of a cohomological theory. As they are, spectra are not suited to work within our

smooth framework, nevertheless we have

Proposition 2.5.4 ([11] Prop. 2.1). Let E be a connected pointed topological space. If E is
simply connected and 7 (E) is finitely generated for all k£ > 2, then there exist a sequence of
compact pointed manifolds with boundary (&;);en together with pointed maps k;: & — &E;41,
z;: £ — E for all 7 € N such that

1. &; is homotopy equivalent to an i-dimensional C'WW-complex,
2. the map z; is i-connected,

3. ki & — &1 is an embedding of a submanifold,



Chapter 2. Absolute Differential Cohomology 61

4. the diagram

o
E; - > i1
x A_l

E
commutes,

5. for all finite dimensional pointed C'W-complexes X the induced map
colim(|X, &]) — [ X, E]
is an isomorphism.

Proposition 2.5.5 ([11] Prop. 2.3). Let E be a topological space with countably many
connected components such that the groups 7, (E, z) are countably generated for all k£ > 1.
Then there exist a sequence of pointed manifolds (&;);cn together with pointed maps k;: & —
Eiv1, ;2 £ — E for all i € N such that

1. &; is homotopy equivalent to an ¢-dimensional C'W-complex,
2. the map z; is i-connected,
3. ki & — &1 is an embedding of a submanifold,

4. the diagram

A%
& > Eivt
x Al
E
commutes,

5. for all finite dimensional pointed C'W-complexes X the induced map
colim([ X, &]) — [ X, E] (2-12)
is an isomorphism.

Thus if we fix an element E,, of the spectrum, we can approximate it through a sequence of
smooth spaces (&;), so that these smooth spaces retain the information about the cohomology

theory E*. We also need a way to represent coherently the invariants of the spectrum.

Proposition 2.5.6 ([11] Prop. 2.5). Let E and (&;) be as in proposition 2.5.5. Then for
u € H*(E; &) there exists a sequence of forms w; € Q(&;, €}), such that dR(w;) = xfu and

Kiwit1 = w; for all i > 0.
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Proposition 2.5.7 ([11] Prop. 2.6). There is a sequence 4; € E*(&;) such that R(i;) = w;,
I(4;) = zfu and K41 = 4; for all i > 0.

We are ready to define a natural transformation for two given differential extensions
(E, R,1,a) and (E’, R',I';a’) of the cohomology theory E*. We fix a Q-spectrum (E;, e;, €;)
representing F°.

Remark 2.5.8. In order to use the previous results we will assume either of the following

conditions:

o E*1(pt) = 7 (Ey) = 0, the abelian groups E™(pt) are finitely generated for all m < k,

and the smooth extensions are defined on the category of compact manifolds, or

e the smooth extensions are defined on the category of all manifolds and the abelian

groups E™(pt) are countably generated for all m < k.

Let us fix an element E, in the spectrum and an approximation through manifolds
(&, xiy Ky), as defined above. Let u € E"™(EE,) be the tautological class represented by the iden-
tity map u: E,, — E,. By propositions 2.5.6 and 2.5.7, there exist sequences w; € Q% (&;, €),
a; € E"(&) and @, € E'" (&), such that

o dR(w;) = ch(z}u),
o R(i;) = w; = R'(4),

o [(4;) =xfu=1'(u}),

(2

PN oA
/{iuiﬂ = U;,

Ryl = U

Observe that for an arbitrary & € E"(M), exists a map f : M — E, such that I(&) =
[f] = f*u, where u is the tautological class as defined above. By (2-12), exists f; € [M, &]
such that f = x; o f;, hence

(&) = fru= fiwju= fiI() = I(f ).
Finally, by (2-10) exists a unique form p € Q" 1(M; &%) /Im(ch), such that
& = fli; + a(p).

Using this representation we define the map
®: (M) —E" (M)

~/

(2-13)
& = fig + d'(p)
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We still have to show that this map is a well defined natural transformation of differential

extensions.
Proposition 2.5.9. The map P is well defined.

Proof. We only need to show that the value of ® is independent of the choice of the function
fi. Suppose there are two functions f;: M — &; and f;: M — &; such that

zjofi=f=uxz0f.

By properties of the colimit (2-12), we have that exists [ > i, j, such that &} o f; = m{ o f;
are homotopic. Hence there is no loss of generality if we consider instead two homotopic
maps fi: M — & and f;: M — & such that z; 0 f; = 2; 0 f; = f. Now by (2-11), we have
that fru; — ﬁ*ﬂz =a (f[ F*w) , where F': [ x M — &; defines a homotopy between f and f,
and [, F*w defines a unique class in Q"' (M; &y)/Im(ch). Suppose then that for a given &

we have

fiti +alp) = & = fia; + a(p).
By the injectivity of a in Q"~1(M; &) /Im(ch), it follows that

ﬁ:p—i—/F*w.
I

Then using the definition of ® in both representations of & we have
(f; +alp)) =f0; + d'(p)
=fr il +d (/l F*w) +d'(p)
=f*il 4+ d'(p)
—d(fris + a(p)). =

Proposition 2.5.10. The map & as the following properties

1. RRo® =R,
2. I'o® =1,
3. Poa=2d,

4. ® is natural.

Proof. About 1. note that
R o ®(&) =R o @(fft; + a(p))
=RI(f{i;+d(p)) = fiwi +dp
=R(f*4; + a(p)) = R(&).
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A similar calculation shows
I'o®(&) =I' o ®(f10; + a(p))
=I'(ft; + a'(p)) = fiui
=I(f*u; +a(p)) = I(&).
For property 3. we have obviously ® o a(n) = d'(n).
Finally, consider a smooth map of manifolds g: M — N and & € E™(N). Suppose that

& = fru; + a(p), then g*& = g* fu; + a(g*p) and ®(g*a) = g* fFu, + a’(g*p). On the other
hand ¢g*®(&) = g*(f; ', + d'(p)), the result follows. O

Remark 2.5.11. The properties above imply that ® is part of a morphism of the exact

sequences (2-10) associated to both extensions. In particular we have that Ker(a) = Ker(a').

So far we have a well defined natural set-map between two differential extensions, however
in order to define a morphism of differential extensions we still need to show that ® defines

a natural transformation between group valued functors. A priori the map ® has the form

~

O(a+ B) = (&) + ©(B) + B(a, B),

where

is a map such that

In particular, ® factors through a map

B: E"(M) x E*(M) — H" (M, €%)/Im(ch). (2-14)

So if we are to get a morphism of groups, the morphism B should vanish identically. To

obtain such a property we impose some mild conditions on the topological theory E*°.

Lemma 2.5.12 ([11] Lemma 3.8). Let X be a CW-complex such that mg;,1(X)®@Q = 0 for
i=0,...,n. Then Hy1(X;Q)=0fori=0,...,n
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Definition 2.5.13. We say that a cohomology theory E* is rationally even if E™(pt)®@Q = 0
for all m € Z odd.

Lemma 2.5.14. Let (Ey, e, €;) be a spectrum representing a rationally even cohomology
theory E* and (&;, x;, ;) a system of manifolds approximating the term E,, of the spectrum.

Then for every ¢ € N and all » > 7 + 1 we have
(R 5 R Y (i X i €) = O,

Proof. By hypothesis the map z;,: &, — E, is 2i+ 1-connected for r > i+ 1 (propositions
2.5.4 and 2.5.5), hence m(E;1,) = mp(E,) = E"*(pt), for all k < 2i. Since E*® is rationally
even, we have that my_1(E4,) ® Q =0 and 791 (&1 X i) @ Q = 0, for 21 — 1 < 2i. Now
using lemma 2.5.12, we obtain H* (&, ® &.,;Q) = 0 for all 21 — 1 < 2i. Finally, since
€%l = 0 it follows that

(/{2—&—7" z+7") H" 1(81—1—7’ « 52—}—7"7 QER) ( i+ IiH_T @ H2l 1 gz—l—r « gz—‘rm an 2l)

21—-1<23

=0 ]

Recall that we are considering a fixed component E,, of the spectrum and a fixed approx-

imation (&;, z;, k;). The map (2 — 14) induces a system of elements
B; € H" (& x &, &%) /Im(ch),
where
B; = B(w{ziu, mixiu).
Taking the inverse limit of this systems yields an element

B e I&HHn_l(gl X gz', Gﬁg)/]m(ch)

Lemma 2.5.15. We have B = 0.
Proof. Consider the family of exact sequences

. Hn—l(gi X (C:i; Gf&)

0 —— ch(E" (& x &)) —— H" (& x &; €) " Ch(E"L(E; X &)

> 0.

Taking the term-wise inverse limit we obtain

H"HE x E; )

: n—1(¢. (ke : v © MR N n—1(¢. )

I%H(H (& x & €))) —— I%Il (Ch(En_l(& > gl))) > 1%1 (ch(E" (& x &))).
(2-15)

Note that ch(E" Y& x &)) C H" (& x &; €%), hence, by lemma 2.5.14, the first and third

terms on the sequence above vanish. The result follows. O
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Remark 2.5.16. From the preceding lemma it follows directly that ® (7} @;+m50;) — (7w u;)—
O (m3i;) = B(ntratu, miziu) = 0. We use this special case to show that B = 0, so that @ is a

morphism of groups.

Proposition 2.5.17. Let n € Z¢'". If E* is a rationally even cohomology theory and one of

the conditions on remark 2.5.8 is satisfied, then the transformation ®: Em — E'™ is additive.

Proof. Let E,, and {&}ien, as in lemma 2.5.14. Consider &, B € E". We can take j big
enough and fa: M — &;, fz: M — &; such that I(&) = fizju and 1(8) = f “u. Fixing
k> jand p: & x & — &, such that p*zju = miaju+ w525u, we define f,, 5 —uO(fa,fB)
Observe that

fa+5$ku (fém fﬁ)*u*xzu
=(fa, [3)" (mizju + moxju)
= ;:p’;u + f;m;‘u =I(a+ B)

Now choose 17 € Q"1 (& x &; €) and wa, wy, w,, 5 € Q"1 (M; €}) such that
p (k) + aln

fiu; + a(wa
u]—l—a(wﬁ

* A
=mu; + 7r2u],

I
[oN

)

7

)
)
)
)

f+5uk+a( G+B +

From this it follows that ®(&) = 34 + a'(wa), ® d(B) = f;@; + d'(w;) and (a + By =
3,50+ (wsyp). Hence
0=(a+p)—a-p
=[5tk +alwayg) — [ty — alwa) — f3i; — alwp)

=a(Wspp — wa —wg) + (far f3) w e — fat; — 30y

=a(wsy 5 — wa — wg) + (fa, f3)" (Wlug + 3ty — a(n))
Jat; — f3i;

=a(Wsip — wa —wg) + fally) + f3(4;) = (fa, f3)"a(n)
fau; — fu,

:a(wd+[§ — Ws — WB) - ( G f@)*@(ﬂ)
:a(wd+,§ — Wa — U.)/g - (f&a f/}>*77)

On the other hand applying the morphism ® we have
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B(a+ B) — B(&) — D(B) =f1 404 + d (wa5) — fal; — ' (wa) — f3i; — d/(wp)
=a'(Wayp — wa —wg) + (fa, f3) W@, — 305 — [
=a'(Way 5 — wa —wz) + (fa, f5)"(

*A/

— fau
:a/(wa+B—W@—wA) (fdafﬁ)
— [z

®(mia; + mou,) — a'(n))

* '\/
(@ (”Tﬁﬁ + ®(myiy) — d'(n))
* A/ * A/
Wayp — Wa — Wﬁ) + fa (u) + f(u;) — (fa, fB)*a’(n)
* A/ f* A/
=a'(Wspp — Wa —wp) — (fa, fa)a(n)
=0 (Way 5 — wa —wy — (far f3)'n).
By remark 2.5.11, it follows that a’(w&w — ws — ws — (fdvfg)*ﬁ) — 0, s0 B4 + ) =
®(a) + 2(3) -
Hence, we have a well defined natural transformation between differential extensions in

even degrees, the next step is to extend the morphism to odd degrees. First we establish a

useful lemma.

Lemma 2.5.18. For & € E*(M), exists a class 3 € E**'(S' x M) such that [3 = a
R(B) = dt Am*R(&) and I(3) = s(I(a)).

Proof. Indeed, by remark 2.4.4, we have that s(I(&)) € E*T(S! x M) and by surjectivity of
I there always exists a lifting of s(I(&)) to a differential class 3 € E*T1(S! x M) such that
I(B) = s(I(a)). Clearly we have f](B) = (&), hence & = a(w) + fﬁ From this, it follows
that

R(&) = dw + / R(B). (2-16)

Observe that [dt A 7 R(&) = R(&), thus [dt A7*R(&) = dw + [ R(f3). Passing to de

Rham cohomology we obtain
/ 7 R(a)) = / RO

however, dt A m*R(&) = d(tn*R(&)), so [[R = 0 and using remark 2.4.4 again, we see
that [R(5)] = [x*n].

On the other hand, by definition of 8 and the axioms for a differential extension we have
[R(B)] = choI(B) = ch(s(I())), it follows that [R(3)] = 0 and R(j3) = dt A7*R(&) + dp, so
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combining with (2-16) we have dw = d [ p and

[r=on

where dn = 0. We define 3 = 3 — a(p — dt A m*n). Clearly we have
R(B') = R(B) — dp = dt AN7*R(&) + dp — dp = dt A" R(&),

and

/3':/<B—a(p—dt/\7r*n)>
:d—a(w)—a(/0)+a(/th7T*77)

=a —a(w) —a(w+n) +a(n)
=a. [l

Theorem 2.5.19 ([11] Thm. 3.10). Let E be a rationally even generalized cohomology
theory which is represented by a spectrum E. Let (E,R, I, [) and (E’,R’,I’,f’) be two
differential extensions with integration. We assume that either the extensions are defined on
the category of all smooth manifolds and the groups E™(pt) are countably generated for all
m € Z, or that E™(pt) = 0 for all m € Z°¥ and E™ is finitely generated for m € Z¢*". Then

there is a unique natural isomorphism
. F— F
of differential extensions with integration.

Proof. Proposition 2.5.17 says that morphism (2-13) is a well defined natural transformation
between differential extensions for all even degrees. Now we extend this morphism to all odd
degrees using integration.

Let & € E?1(M). By lemma 2.5.18 there exists § € E2(S' x M) such that R(f) =
dt AT R(&), [ B = a& and I(B) = s(I(&)). We define

This gives a well defined morphism. Indeed, suppose B’ is another class satisfying the condi-
tions above. In particular we have ' — § = a(w) and [ a(w) = 0. By the additivity of ® for

even degrees it follows

[o@)=[0G+aen= e+ [ @ = [ a0
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About the naturality of ®, let us consider f: N — M a smooth map of manifolds and
f*& € E?1(N). By naturality of integration we have that if 3 € E*T(S* x M) is such that
fB = @&, then [(id x f)*B = f*& and also holds the other properties of lemma 2.5.18. Since

we already have naturality in even degree, we obtain
o(ra) = [ a(idx 15 = [(x o) =1 [ od) - 1o

The morphism thus defined is an isomorphism. To see this it is enough to note that for
even degrees the morphism ®~!(f*4, + ' (w)) = f*4; + a(w) yields the inverse of ® and for
odd degrees the morphism defined by @~ (&) = [ (13*1(6’ ) gives the inverse.

Finally, about uniqueness, we note that if in even degrees there were another morphism
I', compatible with the morphisms R, I and a, then the difference ® —I" would factor through
a morphism

A E*(M) — H*(M; &)/ Im(ch).

Hence by an argument similar to that of lemma 2.5.14, we would get A = 0, thus @ is uniquely
defined in even degrees. The uniqueness on odd degrees follows directly by uniqueness on

even degrees and the construction. O]

The existence of a multiplicative structure on a differential extension also induces an inte-
gration map for the extension, so the uniqueness result extends to multiplicative differential

extensions for suitable cohomology theories.

Proposition 2.5.20 ([11] Cor. 4.3). If (E, R, I,a) is a multiplicative differential extension
of a cohomology theory E* such that E~'(pt) is a torsion group, then there is a canonical

choice of an integration.

Theorem 2.5.21 ([11] Cor. 4.4). Let (E,R,I,a) and (E',R',I’,a’) be two multiplicative
extensions of a rationally even cohomology theory E°®. We assume that either both extensions
are defined on the category of all smooth manifolds and the groups E"(pt) are countably
generated for all n € Z, or they are defined on the category of compact manifolds, E™(pt) = 0
for all n € Z°¥ and E"(pt) is countably generated for all n € Z®". Then there is a
unique natural isomorphism between these differential extensions preserving the canonical

integration.

2.6 Existence

We have already seen models of differential extensions for two different cohomology theories,

namely singular cohomology with integral coefficients and complex K-theory; at this point it
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is natural to ask whether is possible to obtain differential extensions for any given cohomology
theory. In this section we present a model that gives an affirmative answer to this question.
The contents of this section is based essentially on [22].

Let us fix a cohomology theory E*® and a spectrum {E,,e,, €,} representing it (see the

beginning of the previous section). Additionally, we fix a family of fundamental cocycles

Ly € Z™(E,; €%), such that
bp—1 = / € _qln
S1

and such that they represent the Chern character ch : E*(—) — Hj,(—; €}), that is, for a
manifold M and a class [f] € [M,E,] = E™(M), the relation

ch([f]) = f*n
holds.

Definition 2.6.1. Let M be a smooth manifold. A differential function of degree n is a
triple (f, h,w), where

o [ M —E,,
o we Qy(M; &),
o heCh Y (M;eEy)

and such that
Oh =w — f*u,. (2-17)

As they are, relation (2-17) shows that the set of differential functions have redundant

information; in order to cut down this excess we set the following definition:

Definition 2.6.2. Let M be a smooth manifold. Given two differential functions of degree

n (f1,h1,w1) and (fo, ho,wp), we say that they are equivalent, (f1,hy,w1) ~ (fo, ho,wo), if:
® Wy = wi,
e exists a homotopy F': I x M — E,,, such that Fy = fy and F} = fi,
e exists H € C" (I x M, &), such that i} H = hy and it H = h;, and
e (F,H,m*w) is a differential function of degree n over I x M.

Definition 2.6.3. Let M be a smooth manifold. We define the differential cohomology group
of degree n, denoted by E”(M ), as the set of equivalence classes of differential functions of

degree n.
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With this structure in place, the following definitions are rather natural.
Definition 2.6.4. Let M be a smooth manifold. We define the characteristic class morphism
I": E"(M) — E™(M)
[(f, hyw)] = [f].
Definition 2.6.5. Let M be a smooth manifold. We define the curvature morphism
R E"(M) — Qny(M; &)
[(f, h,w)] — w.

Definition 2.6.6. Let M be a smooth manifold. We define the morphism

a’: QVNM; €8 /Im(d) — E™(M)
w > [(const, w, dw)].

It is easy to check that this structure holds the first two axioms for a differential extension
of E* (definition 2.4.1). Indeed, by definition we have

R o a(w) = R([const,w, dw]) = dw.

The second axiom follows directly by condition (2-17) for differential functions and the cal-

culation

[R(Lf, b, w])] = [w]
= [f"tn]
= ch([f])
=cho I([f, h,w]).

For the third axiom the argument is a bit more elaborate, we refer to [38] Theorem. 2.6 for

a complete discussion.
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CHAPTER 3

RELATIVE CHEEGER-SIMONS CHARACTERS

3.1 Definition and Morphisms

The relative framework for differential characters is defined by a natural generalization of
the objects involved in the definition of the absolute case. Our goal is to define a sensible
generalization of the absolute case for the category My of smooth maps between manifolds.
First we review the definition of singular homology and de Rham cohomology in the relative
case.

Let ¢ : A — X be an object in T'ops. The singular relative chain complex associated to

@ is defined as

Cr(p) = Cr(X) @ Cr—1(A),
with differential
0:C — Ch_
k(@) k 1(%0) (3_1)
(0,p) = (90 + ¢.p, —0p).

This complex is also called the mapping cone complex of ¢. When the map ¢ is the
inclusion, the homology groups Hy(p) coincide with the relative groups Hy(X, A;Z), this
follows by the long exact sequence of the pair (X, A), the five lemma and the long exact

sequence induced by the short exact sequence
0 —— Cp(X) —— Ci(p) ——= Cy_1(A) —— 0, (3-2)

where i(0) = (0,0), p(o, p) = p and Ci_1(A) has the differential with opposite sign [29].

In a similar fashion, we define the relative de Rham complex by
QF(p) = QF(X) @ QF1(A).
In the cohomological case the differential is defined as

d: W (p) = ()
(wv 77) = (dw> QO*(,U - d77)

Definition 3.1.1. Let ¢ : A — X be a smooth map of manifolds. The set of relative

Cheeger-Simons characters of ¢ of degree k is defined as

H*(p) = {h € Hom(Z-1(9), R/Z) | hod € Qf(p)}.
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As in the absolute case, the condition hod € QF(¢) means that h restricted to boundaries
is represented by an element of QF(¢), the group of closed relative forms with integral periods.

Explicitly, the condition says that there is a pair of forms (w,n) € Q¥(¢) such that

ho@(a,p):/ (w,n) modZ:(/w+/77) mod Z
(va) o 14
for all (o, p) € Cr(p).

We also define the morphisms

R H*(p) = Qb()
h— (w,n)

and

I: H*p) — H*(p; 2)

hl—)/wn

There are also natural generalizations of the morphisms a and b of the absolute case.

where h is a real lift of h.

They are given by

where h) (0, p) = [, ,(w.n) mod Z, for all (0, p) € Zy_1() and

b: H* (o R/Z) — H*(yp)
[c] — he

where h.(o, p) = c(0o, p), for all (o, p) € Z_1(p).

3.2 Properties of the Relative Characters

Given the construction of the relative characters it is not surprise to see that the key features

of the absolute characters are also present in the relative case.

Proposition 3.2.1. For the group of relative Cheeger-Simons characters holds

e for any ¢ € My, the diagram
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commutes,
e Roa=d,

e for any ¢ € My, the sequences

),
Q5 (o)

s HM(@) —— H*(p;Z) —— 0

0 —— H* (g R/Z) —— H*(p) —"— Qf(p) —— 0

are exact.

Proof. The proof of the first two properties follows a completely analogous argument as the
one given on the absolute case. About the third property, the same ideas of the absolute case

together with the observation that

(/(w,n)) 0 d(a,p) =/ (w,n)
0o+ p,—0p)

e
Oo+pxp dp

e e
o Pxp dp

:/der/go*w—dn
o P

= / (dw, p*w — dn)
(0,0)

= / d(w,n).
(o,p)

yield the result. L

A mayor theoretical and computational tool in cohomology theory is the long exact se-
quence associated to a pair of spaces. Naturally, one would want to have such property on
our model of relative characters. However, even though our model of relative characters is

based on relative singular chains, we do not recover completely the long exact sequence of the
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topological theory; in spite of that, we still obtain a family of long exact sequences relating

the differential and the topological groups.

Proposition 3.2.2. Let ¢ € M,. Then the sequence

o Hi () — o HYNX) o B4

%
~ i* ~ p*och
E—

H*(p) —5— H*(X) HYAZ) —2

is exact, for k > 2.

Proof. As we will see later, it is enough to show that the diagram

H*(p) —— H*X)

Jo |+

QF1(A) —% HF(A)

commutes (see definition 4.1.1). Consider a relative differential character f : Z,_1(¢) — R/Z.
Using the sequence (3-2) and the definition of the relative boundary operator (3-1), we have
that for o € Z,,_1(A) it holds

$0.(0) = (9.,0) = (0, 0)
Hence the character ¢* o i*(f) € H*(A) acts as

gt ot (f)(o) =f(iop.(0))
=fo 8(0,0')
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CHAPTER 4

RELATIVE DIFFERENTIAL EXTENSION

4.1 Axioms for relative differential cohomology

We are going to state the axioms of relative differential cohomology. When we use the
expression “relative cohomology”, we mean that we are considering the cohomology groups
of any map of spaces, not necessarily an embedding. Thus, we start with a brief review of

the axioms of (topological) cohomology for maps.

4.1.1 Relative cohomology

Let C be the category of spaces with the homotopy type of a CW-complex or of a finite CW-
complex. We call C, the category whose objects are the ones of C with a marked point, and
whose morphisms are the continuous functions that respect the marked points. Taking the
quotient of the morphisms of C and C, up to homotopy (relative to the marked point in C, ),
we get the categories HC and HC,. Moreover, we denote by Cy the category of morphism of
C, defined in the following way:

e an object of Cy is a morphism p: A — X of C (i.e. a continuous function between
objects of C);

e given two objects n: B — Y and p: A — X, a morphism from 7 to p is a pair
of continuous functions f: Y — X and g: B — A, making the following diagram

commutative:

B,y
|

A-Ls X

(41)

We set I := [0,1] and we call id;: I — I the identity map. A homotopy between two
morphisms (fo, 90), (f1,91): 7 — pis a morphism (F,G): n x id; — p, such that, for i = 0, 1,
we have (F|xx gy, Glaxgy) = (fi, 9:). Taking the quotient of the morphisms of C, by homotopy

we define the category HC,. There are the following natural embeddings of categories:

e C — Cy and HC — HC,, defined identifying an object X with (X, 00), where X, =
X U {oo};
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e C; — Cy and HC, — HCo, defined identifying the object (X, z) with the morphism
p: pt — X such that p(pt) = x;

e by composition, we get the embeddings C — Cy and HC — HC,; we can also define
these embeddings identifying X with the empty function ) — X, if we consider the

empty set as a manifold.

Finally, there are two natural functors II: C; — C and I1: HCy — HC, defined in the following
way: if p: A — X is an object, then II(p) = A; if n: B — Y is another object and
(f,9): p— n is a morphism, then II(f, g) = g.

We call Ay the category of Z-graded abelian groups. A cohomology theory on Cs is defined
by a functor h*: HCy — Az and a morphism of functors 3°: h® o II — h*"!, satisfying the

following axioms:

1. Long exact sequence: the functor h® and the morphism of functors 5° define a functor
from HC, to the category of long exact sequences of abelian groups, that assigns to an

object p: A — X the sequence:
n L n i n B n
e W (p) = W) = B (A) == B (p)

(7 being the natural morphism from ¢ — X to p: A — X) and to a morphism the

corresponding morphism of exact sequences.
2. FEzcision: if i: Z — A and j: A — X are embeddings such that the closure of j(i(Z))
is contained in the interior of j(A), then the morphism

j/

A\i(2) X\ j(i(2))
1

induces an isomorphism between h®*(j) and h*(j’).

If the objects of C have the homotopy type of a finite CW-complex this is enough, otherwise
we must add the multiplicativity axiom [30].

Such a definition of cohomology theory is equivalent to the usual one on pairs of spaces
or on spaces with a marked point. In fact, starting from a reduced cohomology theory on
‘HC., the cohomology groups of a morphism p: A — X are defined as the reduced ones of
the cone C(p) := X Us CA, and the axioms are satisfied. Vice-versa, if we start from the
axioms on the category HCsy, we can prove that h®(p) is naturally isomorphic to he(C (p)),

hence the theory is the unique possible extension to HCs of a reduced cohomology theory on
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HC,.. In fact, we consider the cylinder Cyl(p) := X 14 Cyl(A) and the following commutative
diagram:
{x}——=C(p) (4-2)
A b
A" Cyl(p)
T
A—L X
The point {*} is the vertex of the cone. The projection 7 shrinks the cylinder of A on

the base and the projection p collapses the upper base of the cylinder to the vertex of
the cone. Finally, the embedding i; sends A to the upper base of the cylinder. Since iy
is a cofibration, the projection p, that collapses A to a point, induces an isomorphism in
relative cohomology h®(iy) ~ h*(C(p)). Moreover, since 7 is a homotopy equivalence, the
pair (m,id) induces, by the five lemma applied to the corresponding long exact sequences,
an isomorphism h*(i;) ~ h*(p). Composing the two isomorphisms we get h*(p) ~ h*(C(p)).
Such an isomorphism is natural. In fact, given two maps p: A - X and n: B — Y and a
morphism (k,h): p — n, from the induced morphism between the two diagrams (4-2) of p

and 7, we see that the following diagram commutes:

h’fy) (1Y h.l(p) (4-3)
h* (C(n) — e ().

In particular, if C'(k,h) is a homotopy equivalence, then (k,h)* is an isomorphism, even if
(k,h) is not a homotopy equivalence in the category C.

In order to introduce products, we call Ry the category of Z-graded commutative rings.
There is a natural forgetful functor Rz — Az, that we apply when needed, without writing it
explicitly. The cohomology theory h® is called multiplicative if it can be refined to a functor
h®: HCy — Rz , in such a way that the product satisfies a suitable compatibility condition
with the morphisms 3°. The isomorphism h*(p) ~ h*(C(p)) is a ring isomorphism, hence
the product in relative cohomology is canonically induced by the one on the corresponding
reduced cohomology theory.

Finally, given a morphism p: A — X, the group h*(p) has a natural right module structure
over h*(X):

- h*(p) @z h*(X) = h*(p) (4-4)

defined as follows. We compute the product h*(p)@h*(X) ~ h*(C(p))@h*(X.) — h*(C(p) A
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X,) ~ h*(C(pxidy)) ~ h*(pxidx). Then we apply the pull-back via the diagonal morphism

A P X
(idA,P)l LAX
Ax X 2% x «x.

We could construct (4-4) directly from the axioms, without passing through the cone of p,
but it would be a little bit longer.

4.1.2 Fibre-wise integration and Stokes theorem

Given a smooth map of manifolds p: A — X, we call 2°(p) the cochain complex Q°(X) &
Q*~1(A) with coboundary d(w, n) = (dw, p*w—dn). We get the following short exact sequence

of chain complexes:
0— (Q._1<A)7 _d._l) S (Q'(p), d.> — (Q.<X)7 d.) —0, (4_5)

where i(x) = (0, x) and 7(w, x) = w. The complex °*(p) has a natural right module structure
over Q°*(X), defined by:

(W) NE = (wAEnApE). (4-6)
We get correctly that d((w,n) A &) = d(w,n) A&+ (=1 (w,n) A dE.
Let us fix the following data:

e a smooth map p: A — X between compact manifolds, possibly with boundary;

e two proper submersions f: Y — X and g: B — A with n-dimensional compact oriented

fibres, possibly with boundary;

e a morphism of fibre bundles p: B — Y covering p and inducing a diffeomorphism in

each fibre;!
e an orientation of the bundle f, inducing an orientation of g.

The map p is not necessarily neat (e.g., it can be the embedding of dX in X). As well,
f and g are not required to be neat (surely they are not when the fibres have non-empty
boundary). This implies that neither p is neat in general, but it is in each fibre, since it is a

diffeomorphism. We get the following diagram:

By (4-7)

|
AL X,

Such a morphism is equivalent to a bundle isomorphism between B and p*Y'.

1
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We define the fibre-wise integration of a relative form (w,n) € Q*(p) in the following way:

/ﬁ/p(w’ "= (/Y/X “ /B/A 77) ‘ (4-8)

If the fibres of f and g have boundary, we call 0f: Y’ — X and dg: B’ — A the fibre bundles
induced by the restrictions of f and g to the union of the boundaries of the fibres (if A and
X have no boundary, then Y/ = 0Y and B’ = 0B); moreover, we call dp: B" — Y the
corresponding restriction of p. We get a diagram analogous to (4-7). The following relative
version of Stokes theorem holds [5, formula (82) p. 165]:?

(~1)d / )= / ) - / ) (4:9)

4.1.3 Differential extension

Let M be the category of smooth manifolds or of smooth compact manifolds (even with
boundary), and let Az be the category of Z-graded abelian groups. We consider a cohomology
theory h®, defined on a category including M. We use the following notation:

h* = h*({pt}) b :==b* ®z R.

We consider the category My of morphisms of M. For any object p: A — X of M, we call
ch: h*(p) — H3g(p; h%) the generalized Chern character [22, sec. 4.8 p. 47]. We follow [11,

sec. 1], adapting the construction to the relative case.

Definition 4.1.1. A relative differential extension of h* is a functor h*: M — Ay, together

with the following natural transformations of Az-valued functors:
o I:h%(p) = h*(p);
e R: ﬁ'(p) — Q2 (p; bY), called curvature;
o a: Q7 (p; bi)/Im(d) = h*(p),

such that:

(A1) Roa=d;

(A2) the following diagram is commutative:

h*(p) ——=1*(p) (4-10)

Rj lch
Qn(p; by) = Hig (03 bh);

In [5] a different convention on signs is used. Here we assume that, if voly is a form on Y, restricting to a
volume form on each fibre of f, then fy/x voly A f*w = w. In [5] they assume that fy/X ffwAvoly =w.

2
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(A3) the following sequence is exact:

B (p) —2e 001 (s b3 /Im(d) — B (p) —= h*(p) —> 0 (4-11)

(A4) calling cov(p) the second component of the curvature R(p) and 7 the natural morphism

from ) — X to p: A — X, the following diagram is commutative:

~

h*(p) —= ()

We also call h® relative differential cohomology theory.

A class & € h"(p) is flat when R(&) = 0. Considering flat classes, we get the functor
iLﬁ: My — Az. Thus, we get the following commutative hexagon:

Q*~1(p; by) /Im(d) Q% (p: by) (4-12)

Hg' (p; b2) \ / Hgr (p; b2)-
\ / \ T

We call 92, (p) the following sub-group of Q2 (p). A closed relative form (w,n) belongs to

Q2,(p) if and only if the cohomology class [(w,n)] € H3z(p; k) lies in the image of the Chern
character ch: h*(p) — H3g(p; bk).

Lemma 4.1.2. The group Q¢ (p) is the image of the curvature functor R, thus we have the

following exact sequence:

0—h3(p) h* (p) =, (p) —0. (4-13)

Proof. Tt immediately follows from diagram (4-10) that the image of R is contained in Qg (p).
Given a form (w,n) € Q. (p), let @ € h*(p) be a class such that ch(a) = [(w,n)]. Because
of the exact sequence (4-11), the morphism [ is surjective, hence there exists & € iz‘(p)
such that I(&) = a. It follows from diagram (4-10) that [R(&)] = [(w,n)], thus there exists
(o, B) € Q*7Y(p) such that R(&) = (w,n) +d(a, B). Then R(& —a(a, 8)) = R(&) —d(a, 8) =
(w, ). O

Lemma 4.1.3. The following long exact sequence holds:

s ——=h*(p) = Hi(ps b)) = hy™ (p) — = h*+(p) —=- -+ . (4-14)
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Proof. 1t easily follows from the axioms (A1) and (A3) of definition 4.1.1. O
We use the following notation: if p: A — X is a map, we set
pr:=id; x p: I x A — T x X. (4-15)

The inclusions ig,i1: X — I x X and jp,j1: A — [ x A induce the following morphisms

between p and p;:

p P

A—Pr

IR T

IxAoTxX Ix AT xX.

We set 1y := (i, jo) and ¢; := (i1,1). Analogously, the projections mx: I x X — X and
ma: I X A — Ainduce the morphism (7wx,ma): pr — p. We set m:= (7x,ma).

Lemma 4.1.4 (Homotopy formula). If & € h*(p;), we have (using the notation of formula

(4-8)):
S6—1a = a ( /p y R(d)) | (4-16)

Proof. Since 1y o w: py — pr is homotopic to the identity of p; in the category My, we
have that I(&) = 7*§I(&). We set dg := (ja&, so that I(&) = 7*1(Gp). It follows that

& = 7*(Gp) + a(w,n), therefore tja = ap + a(tf(w,n)) and ;& = &y + a(t](w,n)). Hence:

i = =t - o) = | mp(mn))

@9, (/m/p d(w,n) + d/m/p(wm)) ~

Applying a to an exact form we get 0, thus the term d fm /p(w,n) can be cut. Moreover,
R(&) = 7" R(do) + d(w,n) and [, 7*R(éy) = 0, hence we get the result. O

Corollary 4.1.5. Let p: A — X and n: B — Y be two objects of My and let us consider
two morphisms (fo, 90), (f1,91): n — p. If (F,G): id; xn — p is a homotopy between ( fo, go)
and (f1, 1), then, for any & € h*(p), we have:

(f1,91)"6 — (fo, 90)"& = a ( /

Proof. The result follows replacing & by (F,G)*& in formula (4-16). O

(F, G)*R(d)) . (4-17)

1/n

Remark 4.1.6. Thanks to the previous corollary, the flat theory is a homotopy-invariant
functor. From the exact sequence (4-14), it is easy to prove that it also satisfies excision and
multiplicativity. In fact, both hold for A* and H3g, since they are cohomology theories, thus

it is enough to apply the five lemma.
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We briefly recall some basic facts about S!-integration. Given a space A and fixing a
marked point on S', we get a natural embedding i;: A — S! x A and a natural projection
m: St x A — A. Since m is a retraction with right inverse i;, we have the following split

exact sequence:

0 h*(i1) —== h*(S" x A) — h*(A) —— 0. (4-18)
3 o

Here 7 is the natural morphism from () — S x A to 4; and &(a) = (7%) 7 Ha — 7fita).

Moreover, we have the following isomorphism:
st h*(iy) ~ h*(S(Ay)) ~ h* 1AL ) ~ h*7H(A). (4-19)
Thanks to this picture, we can define the following integration map:

/51: R*THST x A) — h*(A) (420)

a— soé(a).

We also have the ordinary integration map on differential forms [, : Q**1(S' x A) — Q°*(A).
If we apply it to closed forms, we get a well-defined integration map in de-Rham cohomology;,
coinciding with (4-20).

A similar construction holds in the relative case. Given a morphism p: A — X, we
set Sp = idgn x p: S? x A — S! x X. Fixing a marked point on S!, we get a natural
embedding i, : p — Sp and a natural projection m: Sp — p. We define the groups h®(i;) as
follows: we consider the induced embedding i} : C(p) — C(Sp) and we set h®(iy) := h*(i}) ~
h*(C(Sp)/C(p)). Since the induced map 7 : C'(Sp) — C(p) is a retraction with right inverse

i}, we have the following split exact sequence:

i*

0 ——=h*(i) = h*(Sp) ——h*(p) —=0.
3 i

Here 7: C'(Sp) — C(Sp)/C(p) and &(a) = (7*)"'(a — 7fija). Moreover, we have the

following isomorphism:
s: h%(ir) = h*(C(Sp)/C(p)) = h*(S(C(p)) = h*"H(C(p)) = 1~} (p)-
Thanks to this picture, we can define the following integration map:

/S L BSp) = h ()

a— soé(a).

(4-21)
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We also have the ordinary integration map on differential forms [ : Q**'(Sp) — Q°(p)
defined by fsl (w,n) = (fsl w,fsl 77).3 If we apply it to closed relative forms, we get a
well-defined integration map in de-Rham cohomology, coinciding with the one constructed
as (4-21). Of course (4-20) is a particular case of (4-21).

Notation 4.1.7. Given a functor F: My — C, for any category C, we define the functor
SF: My — C by SF(p) := F(Sp) on objects (Sp being ids1 x p) and SF(f,q) := F(Sf,Sg)
on morphisms. Moreover, given two morphisms p: A — X and ¢: S' — S!, we denote by

wup: Sp — Sp the morphism (¢ x idy, ¢ x ida).

Definition 4.1.8. A relative differential extension with integration of h® is a relative differ-

ential extension (B', I, R, a) together with a natural transformation:

/  Shett o pe

g1

such that:
o [oio(tup)" =— [, where t: S' — St is defined by t(e”) := e™%;
) fsl on; = 0, where m;: Sp — p is the projection;
e the following diagram is commutative:

SR

T

SQ*(psb2) /Im(d) 5= Sh1(p) <SLm Sh*1(p)  SQE(pib)  (422)

L‘fsl lfsl Lfsl Lfsl

0% (p; ) 1 (d) —*—= I (p) ——=1(p) 2(oib).
\/

where the first and last vertical arrows are defined by [ (w,n) == ([s w, [s1n) and
the third one by (4-21).

Let us consider a differential extension with integration (iL.,I . R,a, [ g1)- It has been
shown in [11, pp. 27-32] that, if h*® is rationally even (i.e., hf{”l = 0 for every k € 7Z), b* is
countably generated for every k € Z and M is the category of all smooth manifolds, then
there is an isomorphism of functors iLﬁ( )~ h*7Y(-;R/Z). If M is the category of compact

manifolds, we must require that h?**1 = 0 and h? is finitely generated for every k € Z.

3 Again we use the convention that, if 7;: S' x X — X is the projection, then fsl dt N min = n. This

implies that d [¢, w = — [, dw.
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We will show that the same result holds in the relative case. Under these hypotheses, the

commutative hexagon (4-12) becomes:

Q*~1(p; bg) /Tm(d) Q2 (p; b) (4-23)
Hy ' ( h‘/ \ / \If b),
dR (p; bR (p; bR
(mR

where Bock, in the last line, is the Bockstein map of the long exact sequence induced by the

coefficient sequence 0 - Z — R — R/Z — 0.

Finally, we introduce products, thus we suppose that h® is a multiplicative cohomology
theory.

Definition 4.1.9. A multiplicative relative differential extension of h® is a relative differential
extension (iz‘,[, R,a) such that, for any map p: A — X, there is a natural right iL.(X)-

module structure on 2*(p), in such a way that:
o I(&-B)=1I(a)-I(B), using (4-4) on the r.h.s.;
e R(a-f) = R(&) A R(B), using (4-6) on the r.h.s.;
e &-a(w) = a(R(&) Aw) for every & € h*(p) and w € Q°(X;bh2)/Im(d);

e a(w,n) - &= a((w,n) A R(&)) for every (w,n) € Q°(p; b%)/Im(d) and & € h*(X).

4.1.4 Parallel classes

A class & € h*(p) is called parallel if cov(@) = 0 (we recall that cov is the second component
of the curvature). We denote by hpar( ) the sub-group of h®(p) formed by parallel classes.

Moreover, we use the following notation:
e 8(p) is the sub-group of 2°(X) containing the forms w on X such that p*w = 0;
e 02 (p) is the intersection between Qf(p) and 28 (X);

e Q% o(p) is the subgroup of Qf ;(p) containing the forms w such that the relative coho-

mology class [(w,0)] € Hig(p) belongs to the image of the Chern character.

If (w, 0) is the curvature of a parallel class, then w € Qg ((p). We get the functor hpar MP

Ay, together with the following natural transformations of Az-valued functors:

o [ h;ar( ) — h*(p), which is the restriction of the functor I from h*(p) to h*(p);
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o R 12, (p) = Qaolp; by), which is the first component of the curvature R;

par

o a: Q7 (p:by)/Im(d) — he,.(p), defined by o/ (w) = a(w,0).

par

Parallel classes are well-behaved when p is a closed embedding. In this case they satisfy four

properties analogous to axioms (A1)—(A4) in definition 4.1.1, as the next theorem shows.

Theorem 4.1.10. Let M/ be the full sub-category of My, whose objects are closed em-
beddings. The functor A, : M, — Ay satisfies the statements (A’1)-(A’4), obtained from

par *

axioms (A1)—(A4) in definition 4.1.1, with the following replacements:

) ﬁ'byﬁ‘ ;

par’
e I, Rand a by I', R and d';
e O® and Q2 by Qf and Q::I,O‘

In particular, (A’4) is the statement p* o #* = 0. Moreover, if the functor h® admits S'-

sars With the analogous axioms.

integration or it is multiplicative, the same holds for h

Proof. Tt is easy to show that (A1), (A’2) and (A’4) are just a particular case of axioms (A1),
(A2) and (A4) (actually, they hold even if p is not a closed embedding). We only have to
prove that (A’3) holds. The fact that, in the sequence obtained from (4-11), the composition
of two consecutive morphisms vanishes is again a particular case of the general statement.
Let us fix o € h*(p). Because of the exactness of (4-11), there exists a class &' € h*(p)
such that I(&') = @ and R(&') = (w,n). Since p is a closed embedding, we can extend 7 to
a form 7 on the whole X, thus we set & := & — a(7,0). Therefore I(&) = I(¢/) — 0 = «
and R(&) = (w,n) — (dn,n) = (w — dn,0). It follows that & € fz;ar(p) and I(&) = «, hence
I is surjective. Let us fix & € le’m(p) such that I(&) = 0. Because of the exactness of
(4-11), there exists a form (0,x) € Q*'(p;hg) such that a(f,x) = a&. Since p is a closed
embedding, we can extend x to a form x on the whole X, thus & = a(f, x) — a(d(x,0)) =
a((0,x) — (dx,x)) = a(f@ — dx,0) = a’(6 — dx). Finally, the exactness in the second position
follows from the one of (4-11), since the first group remains unchanged. The axioms of
Slintegration and multiplicativity easily restricts to parallel classes (even without assuming

that p is a closed embedding). O

From the exact sequence (4-13) we can immediately deduce the following one, for every
morphism p:
0 ——= A(p) — hipas(p) == Q0 (p) —0. (4-24)

The next lemma shows that the groups of parallel classes satisfy excision as the topological

ones (see [6, Theorem 3.8] about Cheeger-Simons characters).
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Lemma 4.1.11. Ifi: Z — Aand j: A — X are embeddings such that the closure of j(i(Z))

is contained in the interior of j(A), then the morphism

jl

A\i(Z) X\ j(i(2))
T

induces an isomorphism between iL;ar( j) and ﬁ;ar( Jh.

Proof. The morphism (¢, (') induces the following morphism of exact sequences of the form
(4-24):

0 —=h§(j') — hou (") = Q2 0 (') —= 0.

The left arrow is an isomorphism by the excision property of iLﬁ (remark 4.1.6). We now prove
that the right one is an isomorphism too, hence the result follows from the five lemma. We
identify A with j(A) and Z with both i(Z) and j(i(Z)). The group of closed forms €2, ,(j)
contains the forms w € Qf(X) such that w|4 = 0. Similarly, the group of closed forms
Q2 0(j") contains the forms w € Q% (X \ Z) such that w|4\z = 0. It is clear that the pull-back
(6, )7 Q8 0(4) — Q28,0(j") is an isomorphism, inducing the excision isomorphism in de-Rham
cohomology. We have to show that (¢, ¢')* (€2, o(7)) = 28, 0(j'). This is a consequence of the

commutativity of the following diagram:

he(j) — Hir(j; hi) - Q2007)

L, |

o/ ch ° - ° dR ° -
h*(j') —= Hir(j'; hg) =— ch,o(J/)-
The left and central vertical arrows are isomorphisms too, by excision. O
The following lemma will be useful in the construction of the long exact sequence of he.

Lemma 4.1.12. Using the notation of sequence (4-18), for every & € h*(A) there exists a
unique class 3 € hot!(iy) such that [, 73 = & and R'(B) = dt A 7{R(&).

par

Proof. We set a := I(&) and, applying the isomorphism (4-19), 8 := s~ *(a) € h*"1(i1). It
follows that [, 78 = s o on*(8) = s(8) = a, the integral being defined by (4-20). We

~

choose any parallel differential refinement 3’ € ﬁ'“(z’l) such that I(f") = f3; this is possible

par
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because of property (A’3) of theorem 4.1.10 (in particular, because of the surjectivity of I').
From the commutativity of diagram (4-22), we get that

B = a+a(x) (4-25)
S1

for a suitable form y € Q*'(A;hy). We set R(F') = (w,0) and R(a) = @. It follows from
(4-25) that

/ w=w+dy, (4-26)

Sl

thus, in de-Rham cohomology, s(|w,0]) = [@]. Since also s([dt A mfw,0]) = [@] and s is an

isomorphism, we have that |w, 0] = [dt A 7@, 0], thus there exists v € Q§(i1) such that
w=dt \Tiw+ dv. (4-27)

Joining (4-26) and (4-27) we see that —d [, v = dy, thus
/ V= —x+ A drA=0. (4-28)
S1

We set  := ' — a(r,0) + a(dt A7), 0).% Tt follows that Jon ™6 = & and R(B) = (w,0) —
(dv,0) = (dt A 7@,0), as required. The class 3 is unique: if we choose another class j3;
satisfying the statement, the difference B — ﬂAl is a flat class u € fzﬁ(il) such that |, g1 U =0.
In the topological and de-Rham theories, the map |, g1 07" is the isomorphism (4-19), thus,
because of the five lemma applied to the sequence (4-14), it is an isomorphism also in the
flat theory. It follows that @ = 0, hence 3 = f;. m

4.1.5 Long exact sequences

Let us fix a differential cohomology theory h* with S Lintegration (it can be multiplicative
or not). Considering the flat theory, we have the following exact sequence for every map
pr A= X:

o hi(p) — BR(X) — h§(A) — byt (p) — - (4-29)
The morphisms involved are p*: h3(X) — h3(A) and 7*: hi(p) — he(X), where 7 is the
natural morphism from () — X to p, and the Bockstein map Bock: hg(A) — he™(p), that

we are going to construct in following paragraphs.

Remark 4.1.13. The sequence (4-29), together with remark 4.1.6, shows that, if he is
a relative differential cohomology theory with S!-integration, then the flat theory iLﬁ is a

cohomology theory on M.

4 We recall that there is a minus sign in the left vertical arrow of diagram (4-22).
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Considering the whole groups il', we get long exact sequences of the following form:

o — g (p) — BTN X) — htTN(A)
— h*(p) — h*(X) — h*(A) (4-30)
— b (p) — RTHX) — AT (A) — - -

The first line is a left-infinite part of (4-29), except for the last morphism, which is the
composition between p*: hi™'(X) — h$ ™ (A) and the inclusion h§ ' (A) — h*~1(A). Sim-
ilarly, from h®(A) on we just have a part of the long exact sequence of the topological
theory. The morphism 7*(X) — h*(A) is the composition between p*: h*(X) — h*(A) and
I: h*(A) — h*(A). We will define the Bockstein map Bock: h*~'(A) — h*(p) in the follow-
ing. We remark that (4-30) represents a family of exact sequences, since we are free to decide
at which degree we put the group fl"l(A) instead of the flat one.

Finally, considering parallel classes, if p is a closed embedding we get long exact sequences

of the following form:

o by (p) — BTN (X) — hyT(A)
— B2 (p) — W (X) — h*(A) (4-31)

par

— b (p) — RTTHX) — R*TH(A) — - -

For a generic map p, we have to stop at fz'(A) and cut the third line. The Bockstein map in the
first line is the composition of the one of the flat theory with the embedding h(p) — fz;)ar(p).

The Bockstein map in the second line is the composition of the projection h*(A) — h*(A)

with the Bockstein map of the sequence of h°.

Now we define the Bockstein map of (4-30). We do it in the six following steps.

(S1) Given & € h*~'(A), thanks to lemma 4.1.12 there exists a unique class € B;ar(il)
such that [, 73 = & and R(B) = dt A m{R(&), where m;: S* x A — A is the natural
projection and i;: A < S! x A is the natural embedding, defined marking a point on

St

(S2) Embedding S' in C, we suppose that the marked point is 1. We have a natural
projection p: (I,{0,1}) — (S',{1}), defined by ¢ — €*™  inducing the projection
p=pxidg: (I x A,{0,1} x A) — (S* x A, {1} x A), that can be thought of as a mor-
phism p: i1 — i1 between the embeddings 791: AUA — I x Aand ¢;: A — St x A.
We get the class p*f3 € il;ar(im)-

(S3) We define the following class:

~

4 =p*B — a(t - p*n*R(&),0) € h*(ig,).
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In the previous expression, within a( - ), we denoted by ¢ the coordinate of I and by p

the projection p: I x A — St x A, without the two subspaces.

A

Since R(B) = (dt AN 7{R(&),0) and Roa(t - p*niR(&),0) = (dt A p*niR(&),0 U R(&)),
it follows that
R(y) = (0,001 —R(a)). (4-32)

For e = 0,1, we call j.: A — A x I the embedding with image A x {e}. Moreover, we
call 7 the natural morphism from ) — I x A to ig;. It follows from axiom (A4) and
formula (4-32) that jin*y = 0 and ji7*y = —a(R(&Q)).

Let us consider the following morphism:

AUA—" AxT (4-33)

o |-

AUA— 9 A

where id’ acts as the identity on both components of the domain. Let us call iL(.)( -) the
sub-group of h*(-) formed by classes such that the first component of the curvature
is vanishing. For any map p: B — Y, we denote by Q2,,(p) the group of closed forms
n € Q*(B) such that the class [(0,7)] € H3t'(p) belongs to the image of the Chern

character. From diagram (4-33) we get the following morphism of exact sequences:

0 — hg(in1) —= h(in1) —=> Q2 (ig1) —=0 (4-34)

T(ﬂ,id)* T(W,id)* ‘

0 —— hg(id') — hg(id) <> Q2 (id) — 0.

We start proving that the left arrow is an isomorphism. Note that the vertical maps of
diagram (4-33) are homotopy equivalences, so they induce isomorphisms in the topo-
logical theory h®. Thus, using the long exact sequences associated to the horizontal
maps and applying the five lemma, we see that (m,id)*: h*(id") — h°®(ip1) is an iso-
morphism too. The same holds about the de-Rham theory, hence, applying again the
five lemma to the exact sequence (4-14), we conclude that (m,id)*: h3(id") — hg(ig.) is
an isomorphism. The right arrow of diagram (4-34) is an isomorphism too, since it is
an equality, therefore, applying again the five lemma, we deduce that the also central
arrow is an isomorphism. Thus, we get a unique class o€ ﬁa(id') whose pull-back is
4. By construction R(4) = (0,0 U —R()), thus, if we pull § back to AL A, by axiom
(A4) it vanishes on the first component of A LI A.
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(S5) Let us consider the following morphism:

AuA—d A (4-35)
p,,L Lp
Xxua—" . x

The morphism p’ acts as the identity on the first component of X LI A and as p on the
second. The morphism p” is defined by p”(a; Las) := p(a;) Uas. Let us call h2(id’) the
sub-group of ﬁa(id’ ) formed by classes such that the second component of the curvature
is vanishing on the first component of ALI A. Similarly, let us call fLI(p’ ) the sub-group
of fz(')( p’) formed by classes such that the second component of the curvature is vanishing
on the first component of X LI A. In both cases, we call Q2 ,(A) the group of closed
forms 1 on A such that the class [(0,0Un)] belongs to the image of the Chern character.

We get the following morphism of exact sequences:

0 — hg(id") —= h3(id") —= Q251 (A) ——0 (4-36)

The left arrow is an isomorphism. In fact, let us consider the mapping cones C(id")
and C(p”). The embeddings CA < C(id’) (A being the first component of A LI A)
and CX — C(p') are cofibrations, because their images are a deformation retract of a
neighbourhood. Thus, collapsing CA and CX to a point, we see that both C(id") and
C(p') are homotopically equivalent to the suspension X(A,), i.e., to the double cone of

A with the two vertices identified. We get the following commutative diagram:

C(id') —== C(id') /C A (4-37)
(N ~
C(p") —=C(p)/CX

" an homeomorphism. This implies

where ‘~’ denotes a homotopy equivalence and ‘~
that (p, p”)*: h*(C(p)) — h*(C(id")) is an isomorphism, being the composition of three
isomorphisms, therefore (p, p”)*: h*(p’) — h*(id’) is an isomorphism too. The same
holds for the de-Rham cohomology, thus, applying the five lemma to the exact sequence
(4-14), we see that the left arrow of diagram (4-36) is an isomorphism. The right arrow
of (4-36) is an isomorphism too, since it is an equality, hence, again because of the five
lemma, the central arrow of diagram (4-36) is an isomorphism as well. Therefore, we get

a unique class ¢ € h3(p'), whose pull-back is §. By construction R(¢) = (0,0 —R(&)).
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(S6) Finally, let us consider the following morphism:

A P X
N B}
XUA—" X.

The pull-back of ¢ is a class i € h*(p) and we set Bock® (&) := ji. It follows that
R(f) = (0, —R(a)).

This completes the construction of the sequence (4-30). By construction, we have that:

R o Bock(a) = (0, —R(&)). (4-38)
The next lemma shows the behaviour of the Bockstein map on topologically trivial classes.
Lemma 4.1.14. The following formula holds:

Bock o a(n) = a(0,n). (4-39)
Proof. Let us set & = a(n) is step (S1). It follows that § = —a(dt A win). In step (S3),
setting p; := m o p, we get:
7 = —a(dt A pin, 0) — a(t - pidn, 0) = —a(d(t - pin),0) = a(0,0 Un),

the last equality being due to the fact that 0 = a o d(t - pin,0) = a(d(t - pin),0 LU n). Then
is step (S4) & = a(0,0 U n) and is step (S5) € = (0,0 U 7). Finally, in step (S6) we get
fi = a(0,n). O

Remark 4.1.15. Formulas (4-38) and (4-39) are coherent with the functoriality of the exact
sequence with respect to (4-5), but a minus sign is necessary when a is acting on iL'(A). In

fact, the following diagram commutes:

O 1(A) — = Q% (p) — " Q*(X)
<)
he(A) PR (p) - BT (X)

R(L lR LR

Q% (A) —> Q1 (p) —"= Q*(X)).

Moreover, let us suppose that, in formula (4-39), dn = 0. Then a(n) only depends on the de-
Rham cohomology class [n], hence we can write a[n]. The Bokstein map in the (topological)
exact sequence of de-Rham cohomology is defined by Bockar[n] = [0, 7], coherently with (4-5),
thus formula (4-39) becomes Bock o a[n] = a o Bockgr[n], coherently with the functoriality of
the Bockstein map.
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If we consider the composition h*~(X) — h*"1(A) — h*(p), in general it does not vanish.
In fact, in (4-30) only the flat group ﬁﬁ_l(X ) appears in this segment of the sequence. The

next lemma shows the behaviour of the composition.

Lemma 4.1.16. The following formula holds:

~

Bock o p*(3) = —a(R(f),0). (4-40)

Proof. Let us consider the following morphism p’ := (idx, p): p — idx:

A P X
y o
X x

We get the following diagram:

e (X) 9 o (X) B fe(idy ).
It follows that Bock o p*(3) = p/* o Bock'(8). Since h*(idx) = 0, because of the sequence
(4-11) we have that h®(idx) ~ Q° 1(p; hs)/Im(d), hence every element of h*(idy) is of the
form a(w,n). Moreover, (w,n) — d(n,0) = (w,n) — (dn,n) = (w — dn,0), thus every element
of h*(idx) is of the form a(w,0), therefore:

RoBock'(3) = Roa(w,0) = (dw,w)

)
RoBock'(3) “2” (0, ~R(D)).
Comparing the second components we get w = —R(3), hence Bock'(3) = a(—R(3),0). It
follows that Bock o p*(8) = p/* o Bock'(3) = a(—R(j3),0). O

~

Remark 4.1.17. Let us suppose that, in formula (4-40), 5 = a(f). Then we get Bock o
a(p*0) = —a(dh,0). Because of formula (4-39) we have Bock o a(p*0) = a(0, p*0). The two
results are coherent. In fact, (d6,0) + (0, p*0) = (db, p*8) = d(0,0), hence, since a vanishes
on exact forms, we have that a(df,0) + a(0, p*0) = 0.

The Bockstein map of (4-30) has been defined. The one of (4-29) coincides with the one
of (4-30), applied to flat classes; it follows from formula (4-38) that the image of a flat class
is flat. Finally, in the comments after the sequence (4-31), we have already shown how to

define the corresponding Bockstein maps. It remains to prove the exactness of each sequence.
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4.1.6 Exactness

We start from (4-29).

Eractness in h2(X). The fact that p* o 7* = 0 is an easy consequence of axiom (A4)
in definition 4.1.1. Let us consider a class & € Ker(p*). We set a« = I(&). Since p*a = 0,
because of the exactness of the topological sequence, there exists a class § € h*(p) such
that 7*3 = «. Let § € h*(p) be any differential class such that I(§') = 8. It follows
that 74 = & + a(0), being 0 € Q*~1(X;hy), thus R(7*(') = df, therefore there exists a
closed form n € Q*~'(A;b) such that R(3') = (df,p*d + n). Let us prove that the de-
Rham class [n] belongs to the image of the Chern character. In fact, we have that p*w*ﬁ’ =
pré+ pra(f) = a(p ) and, by axiom (A4), p*n* ' = a(cov(B)) = a(p*0+n) = a(p*0) +a(n).
It follows that a(n) = 0, hence 5 € Q&1 (X; hg). This implies that there exists 4 € h*~'(A)
such that R(3) = n, thus we set  := ' — a(6,0) + Bock(5). Because of the following

~

remark 4.1.18, we have that 7* o Bock = 0, therefore 76 = (& + a(f)) — a(d) — 0 = & and

R(B) = (df, p°0 +n) — (db, p*0) — (0,1) = (0,0). A
Ezactness in hij(A). If 5 € h§(X), by formula (4-40) we have that Bock o p*(5) = 0,
thus Bock o p* = 0. Let us consider a flat class & € Ker(Bock). Setting o := I(&), we have
that Bock(a) = 0, thus there exists § € h*(X) such that a = p*B. If 3’ € h*(X) is any
differential refinement of 3, there exists § € Q*~1(X; h%) such that i a+a(6). Applying
formula (4-39) we get Bock o p*(3') = Bock o a(f) = a(0,6) and applying formula (4-40) we
get Bock o p*(#') = —a(R(/',0)), thus a(R(3'),0) = 0. It follows that (R(3'),0) represents

a class belonging to the image of the Chern character, hence there exists a class 4 € fz‘(p)

A~

such that R(5) = (R(3),0). We set 3 := 3/ — 7*4. We get that R(8) = R(8') — R(3') =0
and p*f = & + a() — a(0) = é.

Exactness in BH( p). It follows from the construction of the Bockstein map that 7*oBock =
0. In fact, if 1 = Bock(&), by the step (S6) we have that i = (id,id)*¢. The pull-back 7*j

coincides with the pull-back of € via the following composition:

0 X
l lid
) ———XUA
l iidup
A : X
idl lid
idup
XUA X.

The last map provides the pull-back from € to ji and the composition of the first two coincides
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with . The composition of the last two morphism coincides with the following:

1) XUA
l lidLIp
XA X,

By axiom (A4), the pull-back of € is equal to a(cov(é)). Since we start from a flat class &,

we have that cov(€) = 0, thus the pull-back vanishes.

Remark 4.1.18. Even if & is not flat, since & € h3(id L p) by construction, it follows that
cov(€) vanishes on X, thus the pull-back to ) — X is 0. This proves that 7* o Bock = 0 in
(4-29) and in (4-30).

Let us consider a flat class i € Ker(n*). It is enough to prove that there exists a flat
class ¢ € hg(id U p) such that (id,id)*¢ = fi. In fact, dealing with flat classes, all of the
steps (S1)-(S5) consist in the application of an isomorphism, thus, starting from £, we get a
class & € ﬁﬁ_l(A) such that Bock(&) = fi. Applying the steps analogous to (S1)-(S5) to the
topological class «, we get the Bockstein map of the topological exact sequence, hence, in
particular, we get a class ¢ € h*(id L p) such that (id,id)*e = p := I(j1). Let &” € h*(id U p)
be any differential class such that I(é”) = e. It follows that there exists a relative form
(6,m) € Q*(p) such that (id,id)*¢” = (i + a(f,n). We set &' := £” — a(h,0 U n), so that
(id,id)*¢’ = (f + a(0,n)) — a(8,n) = fi. Now we have to reach a flat class with the same
pull-back of &’. We have that (id, id)*R(¢") = R(ji1) = 0, thus there exists a form y € Q*~1(X)
such that R(¢") = (0, xU0). Let us show that the de-Rham class [x] belongs to the image of

the Chern character. We consider the pull-back of £’ via the following composition:

The pull-back of & from the last to the third line is /i and the pull-back to the second line
is 7*(f1), that vanishes by hypothesis. Thus, the overall pull-back is 0. On the other side,
the pull-back from the forth to the first line, by the axiom (A4), is a(cov(¢’)) = a(x) U0,
thus a(y) = 0. This shows that x € Q% '(X), thus there exists a class 4 € h*"'(X) such
that R(y) = x. Considering the sequence (4-30) associated to the last line of the previous
diagram, we get the class Bock(30) € h*(idUp) and we set & := & + Bock(5L10). It follows



Chapter 4. Relative differential extension 96

that R(¢) = (0, xU0)+ (0, —R(7U0)) = 0. Moreover, because of the naturality of the Bock-
stein map, (id, id)*Bock(0) = Bock(id*(¥U0)) = Bock(0) = 0, thus (id,id)*¢ = 4 —0 = f.

About (4-30), we must prove the exactness from 23~ (X) to h*(A). Actually, the exactness
in ﬁﬁ_l (X) easily follows from the embedding iLﬁ_l (A) <= h*"1(A) and the exactness of (4-29).
Similarly, the exactness in h*(A) easily follows from the surjectivity of I: h*(X) — h*(X) and
the exactness of the sequence associated to h®. Thus, there are three meaningful positions
left.

Eractness in h"~*(A). The composition Bock o p*, starting from h3(X), coincides with
the one of the flat sequence, hence it vanishes. Given & € h"~'(A), if Bock" (&) = 0 then
R(&) = 0, because of formula (4-38). Therefore the kernel of Bock™ ' is contained in the flat
part ﬁg_l(A), hence the exactness follows from the one of (4-29).

Ezactness in h™(p). We have already proven that 7* o Bock = 0 in remark 4.1.18. Let
us consider ji € h™(p) such that 7% = 0. It follows that R(ji) = (0,7). Moreover, 0 =
p*m* i = a(n), thus n represents a class belonging to the image the Chern character. It
follows that there exists a class & € h"1(A) such that R(&) = —n. Then, because of formula
(4-38), Bock(&) = fi + ji’, with i/ € hZ(p). Since 0 = m*Bock(d) = 7*i/, because of the
exactness of (4-29) there exists a class &' € ﬁg—l(A) such that Bock(a') = ji. It follows that
Bock(& — &) = .

Ezxactness in h"(X). The pull-back to A of a class in h"(p) is topologically trivial because
of the long exact sequence of h* (or because of axiom (A4)). Let us fix a class 7 € A*(X), such
that p*I(0) = 0. Tt follows that p*> = a(n) for a suitable n € Q*"1(A). We set w := R(D).
Then p*w = dn, that is equivalent to d(w,n) = 0. Moreover:

Bock o p*(7) (20 —a(w,0)

Bock o p*(v) = Bock o a(n) “2 a(0,m).

It follows that a(w,n) = 0, thus we can fix a class & € h™(p) such that R(&') = (w,n). It
follows that 7*(&’) = v + ¢/, with 7/ flat. Then:

* A~/

pm (&) = a(n) + p'v
ot (@) Y a0 cov(d@) = a(n).

Thus p*’ = 0 and, by the exactness of the flat sequence, we can find &” such that 7*a" = /.

Setting & := &' — &”, we get that 7*& = b.

About (4-31), we must prove the exactness from h$™'(A) to h*t!(p). Actually, the
exactness in h§ " (A) easily follows from the embedding hf(p) < h%,.(p) and the exact-

par

ness of (4-29). Similarly, the exactness in h**!(p) easily follows from the surjective map
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I: h*(A) — h*(A) and the exactness of the sequence associated to h®. Thus, there are three
meaningful positions left.

FEzactness in ﬁ;ar(p). If a class belongs to the image of the Bockstein map, it follows
from the exact sequence of the flat theory that its pull-back to X vanishes. Vice-versa, let us
consider /i € h*(p)par such that 7*j = 0. It follows that R(jz) = (0,0), thus the class is flat.
By the sequence of the flat theory, we can find a pre-image via the Bockstein morphism.

Ezactness in h*(X). The pull-back to A of a class in ﬁ;ar(p) vanishes because of the
axiom (A4). Vice-versa, let us fix a class € h*(X) such that p*& = 0. Since, in particular,
p*I(D) = 0, by the exactness of (4-30) there exists &' € h*(p) such that 7*a’ = o. We set
(w,n) :== R(&), thus w = R(¥). We have that 0 = p*7*&" = a(n), thus there exists a class
B € h*~1(A) such that R(3) = 1. We set & := &' + Bock(f3). Then, by formula (4-38),
R(&) = (w,n)+(0,—n) = (w,0), thus & is parallel, and, by the exactness of (4-30), 7*& = v.

Eractness in h*(A). If a class & € h*(A) is the pull-back of a class in X, it follows from
the exact sequence of h® that it lies in the kernel of the (topological) Bockstein map. Vice-
versa, if it belongs to the kernel, by the exact sequence of h® we can find a class B € iL”(X )
such that p*I(3) = I(&), hence p*3 = & + a(f) for a suitable form @ € h*~1(A). If p is a
closed embedding, there exists a form € € h*~1(X) such that 0 = p*¢, thus p*(f — a(€)) = a.

4.1.7 Existence and uniqueness

We are going to verify that any cohomology theory admits a relative differential extension,
that is unique under the same hypotheses stated in [11] about the absolute case.

4.1.7.1 Existence

Given a cohomology theory h®, there exists a relative differential extension with S'-integration,
which is multiplicative if A® is. This can be shown using the Hopkins-Singer model [33]. We

briefly recall the construction and verify that it satisfies the axioms.

Definition 4.1.19. If X is a smooth manifold, Y a topological space, V'* a graded real vector
space and k, € C™(Y;V*) a real singular cocycle, a differential function from X to (Y, ky)
is a triple (f, h,w) such that:

e f: X — Y is a continuous function;
e he C" 1 (X;V*®) (‘sm’ means smooth);

o weQLX;V?®)

cl
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satisfying the following condition, where x: Q°*(X;V*) — C*(X;V*) is the natural morphism:

" Th = X" (w) — f*Kn. (4-41)

Moreover, a homotopy between two differential functions ( fo, ho,w) and (f1, hy,w) is a differ-
ential function (F, H,m*w): X x I — (Y, k,), such that F' is a homotopy between f, and f,
Hl|xxqy = h; fori=0,1, and m: X x I — X is the natural projection.

We represent a fixed cohomology theory h® via an Q-spectrum (E,,e,,,), where e, is
the marked point of E, and ¢,: (XE,,¥e,) — (E,11,€n4+1) is the structure map, whose
adjoint &,: E, — €, ., Eny1 is a homeomorphism. We also fix real singular cocycles ¢, €
C"™(En, en, by) representing the Chern character of h®, such that t,_1 = [ €he, [38].

Definition 4.1.20. Given a differential function (f, h,w): X — (E,,ts), a strong topological
trivialization of (f, h,w) is a homotopy (F, H,m*w): X X I — (E,,t,) between (f, h,w) and
a function of the form (e, , x(n),dn), where ¢, is the constant function with value e, and
ne QI (X;hy).

Let us consider a smooth function between manifolds p: A — X. We define the cylinder

Cyl(p) := X U (A x I)/ ~, where (a,0) ~ p(a). We consider the following natural maps:
L4 LCyl(p): Cyl(p) — X X [> T = (.’L‘,O), [(CL?t)] = (p(&)at);
° LCyl(A): Cy1<A) — Cyl(p>7 (a7t) = [(a7t)]7
® 4 A— Cyl(p)> ar— [(CI,, O)]v
o /,: A— Cyl(p), a (a,l);
o T4: [ X A— A (t,a) — a.

In general Cyl(p) is not a manifold, nevertheless we will deal with differential functions
(f,h,w): Cyl(p) = (En,tn), defined in the following way:

e f: Cyl(p) = E, is a continuous function.

o w e QN(X;bhy), and it defines a smooth cocycle x"(w) on Cyl(p) as follows. Let us
consider the pull-back m{w on X x I. A simplex o: A" — Cyl(p) is defined to be

smooth if and only if the composition tcyi(,) 0 0: A" — X x I is. The smooth cochain

X" (w) on Cyl(p) is defined by x™(w)(0) := X" (7xw)(tcyi(p) © 7).
e h e C™ Y (Cyl(p); by) and it satisfies 6" *h = x"(w) — [*in.

Definition 4.1.21. The group h"(p) contains the equivalence classes [(f, h,w,n)], where:
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e (f,h,w): Cyl(p) — (En,tn) is a differential function such that i, 4 (f, h,w) is a
strong topological trivialization of ¢ (f, h,w) verifying the relation (¢/4)*(f,h,w) =

(Cens X(1), dn);

e (f,h,w,n) is equivalent to (g, k,w,n) if the differential functions (f, h,w) and (g, k,w)
are homotopic relatively to the upper base of the cylinder. This means that a homo-
topy (F, H,m*w): Cyl(pr) — (En,t,) between the two functions is required to satisfy
()3 H,m*w) = 74(4)*(f, h,w), where (¢/4); is defined as in formula (4-15).5

We set:

I{(f; hyw)] = [f] RI(f, hw, )] := (w,n), (4-42)
where [f] € [(Cyl(p), A x {1}), (E,,e,)] =~ h"(p). Moreover, we define the map a in the
following way. Given a form w € Q"(X; bg), we set @ := 74 p*w € Q"(Cyl(A); by) and, given
a form n € Q"1(A; bY), we set 77 := 74n € Q" 1(Cyl(A); h%). We define the smooth singular
cochain x"(w,n) € C% (p;hy) as follows. We fix a real number ¢ € (0,1) and we take a
smooth non-decreasing function 6: I — I such that §(t) = 0 for t < e and 6(1) = 1. We fix
the open cover {U, W} of Cyl(p) defined by U := A x (5,1] and W := A x [0, 5) U, X. For
each smooth chain o: A™ — Cyl(p), we take the iterated barycentric subdivision, so that the

image of each sub-chain is contained in U or in W; then, for each small chain o', we set

X"(@—d(6n)) (o) it CU
X" (w)(mx o 0’) if o' C W,

X"(w,n)(0") = {

where mx : W — X is the natural projection defined by [a,t] — p(a) and [z] — z. Note that
the morphism is well defined for o' C U N W, since §(t) = 0 for ¢ < e. Finally, we define

a: Q""Y(p:b)/Im(d) — h"(p)

(4-43)
[(wv 77)] = [(Cen7 anl(w’ 77)7 dwv p*w - dn)]

The cochain x"'(w,n) depends on the choice of the function 6, but the equivalence class
[(Ce,s X" 1w, n), dw, p*w — dn)] does not, since two different functions 6 lead to homotopic
representatives.

Given two maps p: A — X and n: B — Y and a morphism (¢,%): p — 7, there is a
natural induced map (p,v): Cyl(p) — Cyl(n), z — ¢(x), [(a,t)] — [(¢(a),t)]. We define the
pull-back (o, ¥)*[(f, h,w,n)] == [(f o ¢, ¢*h, *w, P n)].

Let us verify that axioms (A1)-(A4) of definition 4.1.1 hold. The first one is a direct
consequence of the definitions (4-43) and (4-42). About axiom (A4), we have that

prl(fhw.n)] = p°[(flx by, w)] = 51 b w)] 2 a(n) = a0 cov(([(f. hw,n)]),

Since I is (locally) compact, I x Cyl(p) is canonically homeomorphic to Cyl(p;). We will apply this
homeomorphism when necessary, without stating it explicitly.

5
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the equality (%) being due to the fact that, by definition, Loy A)( f,h,w) is a homotopy
between % (f, h,w) and a(n) = (ce,,x(n),dn). In order to verify (A2), we observe that a
representative (f, h,w,n) of an element of ﬁ”(p), as defined in 4.1.21, can be described in the

following equivalent way:
e f:(Cyl(p),Ax{1}) = (Ey,,e,) is a map of pairs;
o h € C"H(Cyl(p); bR);

o (w,n) € Qilp;hi);

e " 1(h,0) = (x"(w), X" 1(n)) = (f*tn, 0), the boundary § being the one of the mapping
cone complex C*(Cyl(p)) & C*"1(A) associated to the embedding of the upper base
Uy A— Cyl(p).

The condition 6" (h,0) = (x"(w),x"'(n)) — (f*tn,0) implies that [(w,n)]ar = [f*tn] =
ch[f], where f is a map of pairs. Finally, in order to show that axiom (A3) holds, the proof
is similar to [38, Theorems 2.4 and 2.5], applied to the pair (Cyl(p), A x {1}).

This differential extension has a natural S'-integration, defined integrating each compo-
nent of the differential function (f,h,w,n) as shown in [38, Chapter 3|. Moreover, if h® is
multiplicative, then he is multiplicative too, the product being defined as in [38, Chapter 4].

4.1.7.2 Uniqueness for smooth cofibrations

We are going to show that the uniqueness result of [11] holds even in the relative case, under
the same hypotheses. Our aim consists in extending to the relative case the construction of
the morphism between any two differential extensions of h®, described in [11, Section 3]. It
will easily follow that it induces a morphism between the corresponding long exact sequences
of the form (4-30), therefore it is an isomorphism because of the five lemma.

We use the results of [11, Section 2] about approximation of spectra through manifolds,
assuming the same hypotheses therein. Let h® be a cohomology theory and consider a
spectrum {E,,, e,, €, }nez representing it. For a fixed n € Z, we take a sequence of pointed

manifolds {&;, a;}icz and two sequences of maps
T (&wai) — (En,en) K (&‘,Gi) — (gi+1>ai+1)

such that x; = z;41 o k;. Moreover, for a given class u € h*(E,,e,), we fix a family of
closed forms w; € Q°*(&;, a;; ) such that w; = kfw;41 and, in the reduced cohomology with
marked point a;, we have [w;|qr = ch(zfu). Finally, we fix a family of differential classes
a; € he, (&, a;) such that I'(4;) = x7(u) and R'(i;) = w;.%

par

6 The notation ke, (&, a;) refers to the cohomology of the embedding {a;} < E;.

par
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Let (fz', I, R, a) and (iz", I', R, d’) be two differential extensions of h*. The morphism from
h* to h'* we are looking for is much easier to construct in the case of a closed embedding
p: A — X, since p is a smooth cofibration. In this case, for any v € B”(p), there exists a

morphism in the category Cs
Al X (4-44)
|
en& E,
such that I(?) is represented by the homotopy class [f] € [p, i.,]. It follows that I(0) = f*(u),
where u € h"(i.,) is the tautological class represented by the identity map of (E,,e,). By

the approximation lemmas, there exist a based manifold (&;, a;) and a map

AL X

ol

la;
ai¢> &

such that f = xz; o f;. Note that I(0) = f*(u) = ffaf(u) = fF(I(u;)) = I(fFu;), hence we

7

have
{] = fl*ﬂ—i-a(g,y)

for a unique (¢,v) € Q" (p; by)/Im(ch). Repeating the same construction for 2’*, we define:

O h*(p) = 1" (p)
fz*a + G(C, V) = fz*a; + CL/(C, V)'

In order to show that ® is well defined, we must verify that it is independent of the choice of
the functions f;. Let us fix v € fz"(p) As in the absolute case, we may reduce the problem to
the case of two homotopic functions f;, fi: p — (&, a;) such that I(0) = frat(u) = frar(u);
we consider a homotopy F': p; — (&;,a;). To each f; and j; we associate as above the forms
(¢,v) and (¢, ) and the morphisms ® and @ respectively. We define (a, B) = fpl/p F*(w;,0).
We note that F*(w;,0) = R(F*u;), so by the homotopy formula we obtain

[t — fis = a(a, B) [ = fiul = d(a, B).

Since v = ffu' +d'((,v) = ffu' + d' (¢, V), the homotopy formula also implies that a'({,7) =
a(C,v)+d(a, B), thus:

®(0) = fia; +d (¢ v) = fiag+d'((7) — d(a, B) = d'(C,0) + fia; = D(d).

In order to show that ® induces a morphism of long exact sequences it is enough to show

that ® commutes with the Bockstein map. This easily follows from the naturality of @, since
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it commutes with each of the steps (S1)—(S6). From the five lemma, it follows that it is an
isomorphism.

This implies in particular that, at least on closed embeddings, any differential extension
of h® is naturally isomorphism to the Hopkins-Singer model, summarized in section 4.1.7.1.
Since in such a model the flat theory is isomorphic to h®(p; R/Z), the latter being defined via
the Moore spectrum (see [11, Chapter 5]), it follows that the same isomorphism holds about
he.”

4.1.7.3 Uniqueness for generic maps (sketch)

For a generic smooth map p: A — X, the construction of ® is less trivial, since we cannot
represent any element of h®(p) via a morphism of the form (4-44). We just sketch such a
construction. In order to use the language of spectra in this general context, we must use

cones or cylinders. In particular, we can replace (4-44) by a map of the following form:

AL Cyl(p) (4-45)

|’

e
en——— FE,,

where 4; is the embedding of A in the upper base of the cylinder. Now we should apply
the same idea used above, but of course we must deal with the fact that Cyl(p) is not
a manifold in general. We can extend the groups h* to cylinders following [2]. We start

defining smoothness.

Definition 4.1.22. Given a smooth map p: A — X, we consider the map tcyi(p): Cyl(p) —
X x I,z (z,0) and [(a,t)] — (p(a),t).

e Given a manifold Y and a function f: Y — Cyl(p), the function f is smooth if and
only if tcyipy 0 f: Y — X X I is smooth.

e Given a cylinder Cyl(n) (in particular, it can be a manifold) and a function g: Cyl(p) —
Cyl(n), the function g is smooth if and only if, for any manifold ¥ and any smooth
map f: Y — Cyl(p), the composition go f: Y — Cyl(n) is smooth.

e A singular chain o: A®* — Cyl(p) is smooth if and only if it is smooth as a function from
the manifold A® to Cyl(p). We call C{"(Cyl(p)) the corresponding group. A smooth
real singular cochain is an element of C?, (Cyl(p)) := Hom(C:™(Cyl(p)), R).

7 In [11] the authors gave an independent proof of this result, since the details of the integration map in

the Hopkins-Singer model had not been worked out yet. Now we do not have this problem any more (see
[38]).
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o A differential form on Cyl(p) is a smooth singular cochain ¢ € C?,,(Cyl(p)) such that,
for any manifold Y and any smooth map f:Y — Cyl(p), the pull-back f*¢ is (the
image of) a differential form on Y. We call Q2°(Cyl(p)) the corresponding group.

Now we can show how to extend to cylinders the group h*. Let us consider a smooth
map between cylinders ¢: Cyl(r) — Cyl(§). We define the category C, in the following way.

An object is a diagram of the form

Cyl(v) == Cyl(¢) (4-46)
Il

where p is a smooth map between manifolds and u and v are smooth too. We denote such
an object by (u,v): p — . A morphism from the object (v/,v"): n — ¢ to the object
(u,v): p = p is a diagram of the form (4-1), such that uo f =« and vo g ="'

Definition 4.1.23. An element of the group h*(p), with curvature (w,n) € Q%(y), is a
functor &: C, — Az with the following properties. We set (u,v)'d = &((u,v): p — ¢).

e Given (u,v): p — ¢, we have that (u,v)'@ € h*(p).
e Given a morphism (f,g): n — p, we have that (f, g)*(u,v)'a@ = (uo f,vog)'a

e Given (u,v), (u,v"): p = Cyl(p) and a smooth homotopy (U,V): p; — ¢ between
(u,v) and (u/,v'), we have that (u,v)'@ — (v/,v")'a = a([,(U,V)*(w,n)).

We set R(&) := (w,n). Moreover, given (w',1') € Q*7!(p), we define a(w’,n’) as the class
such that (u,v)'(a(w’, 7)) = a((u,v)* (W', 7).

Given a morphism from ¢ : Cyl(v/) — Cyl(¢’) to ¢: Cyl(v) — Cyl(§), i.e. a pair of smooth
functions h: Cyl(§’) — Cyl(§) and k: Cyl(v') — Cyl(v) such that ¢ o k = h o1, we define
the pull-back (h, k)*: h*(¢) = h*(¥)) by (h, k)*(f,9)"(&) := (f o h, g o k)'(&). In this way we
get the functor h* from the category of smooth maps between cylinders to Az, that can be
easily endowed of the corresponding S!-integration.

Given a smooth map p: A — X between manifolds, we call h8(i1) the subgroup of A* (i)
formed by the classes whose curvature (w,n) € Q°(iy) verifies Loyi(ayw = Tydn. In particular,
we call 2%, (i1) the subgroup of h§(i;) formed by the classes whose curvature (w, 0) € Q°(i1)

verifies Loyiayw = 0. We have the natural isomorphisms:

~

h*(p) = hi(ir) ipas(P) = e i), (4-47)

par
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induced by pull-back from the following diagram:

At Cyl (4-48)

In order to prove that they are isomorphisms, we construct the long exact sequence (4-31)

(truncated at h*(A) in general), replacing hpar( ) by B;M’O(il), and we apply the five lemma.
The morphism hparo('ll) — h*(X) is the pull-back via the inclusion of X in Cyl(p), while
the Bockstein map is defined by (u,v)'(8(Bocka)) := Bock(v*(&)). The sequence is exact

because the kernel of he,. (i) — h*(X) is made by flat classes vanishing on X, hence, by

par,0
the suspension isomorphism in the flat theory, the Bockstein map is an isomorphism from
hg(A) to such a kernel. Now the five lemma implies that the second map of (4-47) is an

isomorphism. Now we consider the sequence (4-24) and the corresponding sequence

0 —— h% o (in) — h (i) —E> Q2 o(p) — 0.

Applying the five lemma again we get the first isomorphism of (4-47).

Now we construct the morphism ® as above. For any o € h"(p), we embed it in h"(i;)
via (4-47), hence there exists a morphism of the form (4-45), such that 1(0) is represented
by the homotopy class [f] € [i1,4.,]. It follows that I(0) = f*(u), where u € h™(i.,) is the
tautological class represented by the identity map of (F,,e,). By the approximation lemmas,

there exist a based manifold (&;, a;) and a map

A Cyl(p)

|

ta;
a,—¢&;

such that f = xz; o f;. Note that I(0) = f*(u) = ffaf(u) = fF(I(u;)) = I(fFu;), hence we
have

U= fz*ﬁ+ G(C,I/)
for a unique (¢, ) € Q" (iy; h%)/Im(ch). Repeating the same construction for A'®, we define:
©: h*(p) = 1" (p)
fia+a(Cv) = fli; + a'(C,v).

Applying the five lemma to the exact sequence (4-30) we get the uniqueness of the rela-
tive extension. In particular, the isomorphism with the Hopkins-Singer model provides the
isomorphism hg(p) =~ h*(p; R/Z).
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4.1.8 Differential cohomology with compact support

We are going to define the compactly-supported version of differential cohomology. This
has been done about ordinary differential cohomology in [6], using the language of Cheeger-
Simons characters. Here we generalize the construction to any cohomology theory, within the
axiomatic setting. Given a smooth manifold X, we denote by Kx the directed set formed by
the compact subsets of X, the partial ordering being given by set inclusion. We think of x
as a category, whose objects are the compact subsets of X and such that the set of morphisms
from K to H contains one element if K C H and is empty otherwise. There is a natural
functor €x: Kx — M5P, assigning to an object K the open embedding if: X \ K — X
and to a morphism K C H the natural morphism igpy: ig — ix defined by the following
diagram:
X\ HM X

|

X\ K2 X

Given a cohomology theory h® and a differential extension he: MP? — Az, the corresponding

compactly-supported differential extension fcht

}AL. oCx: ]Cx—>Azt

par

(X) is the colimit of the composition functor

7 L]
hcpt

(X) := colim( he

par

oCyx: Ky — Az). (4-49)

Since hs,. and €x are both contravariant, the composition is covariant. Concretely, an

element Gy € ﬁ;pt(X ) is an equivalence class depr = [@], represented by a parallel class
&€ ﬁ;ar(X , X \ K), K being a compact subset of X. The colimit is taken over the groups

he (X, X \ K), where, if K C H, the corresponding morphism in the direct system is the

par
pull-back iyt 7o (X, X \ K) — he (X, X\ H).

We have defined the group associated to a manifold X. We can extend this definition
to the category M’ whose objects are smooth manifolds (the same of the category M) and
whose morphisms are open embeddings. In fact, let us fix an open embedding ¢: Y — X. For
any compact subset K C Y, from the embedding of pairs ¢x: (Y, Y\ K) — (X, X\ (K)), we
get the induced morphism ¢}, : B;ar(X, X\ (K)) — ﬁ;ar(K Y \ K). By the excision property
of parallel classes 4.1.11, it follows that ¢}, is an isomorphism. If K C H, the following
diagram commutes:

(t5)~!

hpar (Y, Y\ K)
e

he (VY \ H) —"

par

fipas (X, X\ 1(K)

fipe (X, X\ o(H))

par
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therefore we get an induced morphism between the colimits, i.e., ¢,: ﬁgpt(Y) — fzgpt(X ).

We can define as above the following functors:

he(X) == colim(h® o €x: Kx — Az) Q8 (X) :=colim(Q* o €x: Kx — Az)
Q%) ept(X) = colim( Qo €x: Kx — Az) Qe ept(X) = colim( Qg 0 Cx: Kx — Az)
Q. cpt(X) == colim( Qg 0 €x: Kx — Az ).

A relative form w € Q°(X, X \ K) is defined as a form w € Q°*(X) whose restriction to
X \ K vanishes. Since the pull-back ¢}, : Q*(X, X \ K) — Q*(X, X \ H) is injective, an
element of ¢,
on the complement of a compact subset of X. The same holds for closed forms. In the

(X) is a form w on X whose support is compact, i.e., such that w vanishes

exmm(X ) is a form w on X such that there exist a form

case of exact forms, an element of ()
with compact support n € Q;;tl(X ) satisfying the identity w = dn. Finally, an element of
th,cpt

class [w] € H3z(X, X \ K) belongs to the image of the Chern character. We also recall that
colimit on abelian groups is an exact functor, hence the colimit of a quotient is the quocient

(X)/ 8 cpt (X))

ex,cpt

(X) is a form w on X whose support K is compact and such that the relative de-Rham

of the colimits. For example, Hig ..(X) = Q8 .

We easily get the following natural transformations of Az-valued functors:

o Icpt . ]Al.

cpt

(X) = he

cpt

(X);

b RCPt: tht(X) - Qzl,cpt(X; h];{)v

o agpi: QNX:he) /Im(d) — he

cpt cpt

(X).

These transformations satisfy axioms analogous to (A1l)-(A3) of definition 4.1.1, replacing
the functors and the natural transformations involved with the corresponding compactly-
supported version. The proof of (A1) and (A2) is straightforward and the proof of (A3) is
analogous to [6, Theorem 4.2].

If h* is multiplicative, the module structure stated in definition 4.1.9 induces the following

natural module structure:

~

(X)) x b
(@, [8)) = [a- ).
Here naturality consists in the commutativity of the following diagram for any open embed-
ding ¢: Y — X:

(X) = higg™(X)

cpt

n Im " xid n 7m 7n+m

h (X) X h‘cpt(Y) : h (Y) X hcpt(Y> _>hC;E (Y)
idXL*l lb*

() x By () ().
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Finally, we have the following natural homomorphism, which in general is neither injective

nor surjective:

S:he

cpt

(X) = h*(X)

6] = x4,
where mx: (X,0) — (X, X \ K) is the natural inclusion of pairs and the naturality consists
in the commutativity of the following diagram for any open embedding ¢: Y — X:

he (V) =0 (Y)

he (X)) —5=h*(X).

cpt

4.2 Orientation and integration

Following [9, sec. 4.8-4.10], we briefly recall the topological notions of orientation and inte-
gration and we extend them to the differential case. We will use the expression “compact
manifold” to indicate a compact smooth manifold with corners (in particular, with or with-
out boundary). All of the statements can be easily generalized removing the compactness

hypothesis, but this is the only case we will need.

4.2.1 Topological orientation of a vector bundle

Let X be a compact manifold and 7: £ — X a real vector bundle of rank n. The bundle
E is orientable with respect to a multiplicative cohomology theory h*® if there exists a Thom

(E) [31, p. 253]. We define the Thom isomorphism T: h*(X) — ho™(E),

n
class w € h opt

cpt
a — u -7 a, and we call integration map its inverse fE/X: hei(E) = h*7M(X), u- " a = a.
If the characteristic of h*® is 0, the n-degree component of ch u defines an orientation of £ in

the usual sense, hence it is possible to integrate a compactly-supported form fibre-wise. We
define the Todd class Td(u) := fE/X chu € H3(X;b2). The following formula holds:

/E | chor =T (ch /E . a>. (4-50)

Lemma 4.2.1 (2x3 principle). Given two bundles E, F — X, we call pp: E® F — E and
pr: E® F — F the natural projections. Let (u,v,w) be a triple of Thom classes on E, F'
and E @ F respectively, such that w = ppu - ppv. Two elements of such a triple uniquely

determine the third one.

For the proof see [31, prop. 1.10 p. 307].
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4.2.2 Topological orientation of smooth maps

Definition 4.2.2. A representative of an h®-orientation of a smooth neat map between

compact manifolds f: Y — X is the datum of:
e a neat embedding ¢: Y < X x RV, for any N € N, such that 7x ot = f;
e a Thom class u of the normal bundle NV,y(X x RY);

e a diffeomorphism ¢: N,y)(X x RY) — U, for U a neat tubular neighbourhood of ¢+(Y")
in X x RY.

We now introduce a suitable equivalence relation among representatives of orientations.
Let us consider a representative (J, U, ®) of an h®-orientation of id X f: I x Y — I x X and
a neighbourhood V' C I of {0,1}. We say that the representative is proper on V' if a vector
(2,0)(ty) € Nyvs)(V x X x RY), ) is sent by @ to a point ®((z,v),)) € V x X x RY

whose first component is ¢. This means that the following diagram commutes:

Ny (V x X x RN) 2> U (4-51)

WNl T

LV xY) i I.

In this case, calling fo := idgey x f and fi := idgy X f, we can define the restrictions (J, U, ®)|,
and (J,U, ®)|y,.

Definition 4.2.3. A homotopy between two representatives (¢, u, @) and (//, v, ¢") of an h®-
orientation of f: Y — X is a representative (J, U, ®) of an h®-orientation of id X f: I XY —
I x X, such that:

e (J,U,®) is proper over a neighbourhood V C I of {0, 1};
o (JU®)|s = (t,u, ) and (J,U, ®)|p, = (0, ¢).

On the trivial bundle X x R there is a canonical Thom class, defined in the following way.
On pt x RN, whose compactification is pt x SV, we put the class uy € AV (SN) corresponding

to the suspension of 1 € h°. Then, we put on X x R the class TRy Uo-
Definition 4.2.4. Let us consider a representative (¢, u, @), with ¢ : Y < X x RV,

e For any L € N, we define //: Y — X x RN by /(y) := (¢(y),0). Then N, y)(X X
RN+L> ~ M(y)(X X RN) &P (L(Y) X RL)

e We put the canonical orientation ug on the trivial bundle +(Y) x RY, and the orientation
u' induced by u and ug on N,y (X x RVFE).
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e Finally, for v, € N,y (X x RY) and w € R¥, we define ¢'(vy,w) := (p(v,),w) €
X x RN*+E,

The representative (v, v, ¢') is called equivalent by stabilization to (¢, u, p).

Definition 4.2.5. A h®-orientation on f:Y — X is an equivalence class [t,u, ] of repre-

sentatives, up to the equivalence relation generated by homotopy and stabilization.

Because of the uniqueness up to homotopy and stabilization of the tubular neighbourhood
and of the diffeomorphism with the normal bundle, the class [¢, u, ¢] does not depend on ¢,
hence we denote it by [¢,u]. Moreover, any two embeddings ¢ and ¢ become equivalent by

homotopy and stabilization, therefore the meaningful datum is .

Remark 4.2.6. If X and Y are manifolds with boundary, an orientation on f:Y — X
canonically induces an orientation on df := f|sy: Y — 0X. In fact, fixing a representative
(t,u,p) for f, by neatness ¢ restricts to //: X — 9Y x RY. The normal bundle and the
tubular neighbourhood, being neat, restrict to the boundary too, hence we get a representa-
tive (¢, v, ¢") for df. Any homotopy of representatives, being neat, determines a homotopy
on the boundary, therefore the resulting orientation of df is well-defined. A similar remark
holds when X and Y have corners, but we need to be more careful in defining 9f. We omit

the details, since they are irrelevant for our purposes.

Definition 4.2.7. Let f: Y — X and g: X — W be h®-oriented neat maps, with orienta-
tions [t,u] and [k, v], where t: Y — X x RY and k: X — W x RE. There is a naturally
induced h®-orientation on gof: Y — W, that we denote by [k, v][¢, u], defined in the following

way:
e we choose the embedding £ = (k,idgn) 0 t: Y < W x RETN;

e on the normal bundle Ny (W XRFV) o N3y (X X RY) BN, (x)xre (W XRFFY) | ¢yy
Ny (X x RE) @ (miNo) W x REY)|¢yy, for my: REFY — RY, we put the Thom class
w induced from the ones on N,y)(X x RY) and Nyx)(W x RY).

We set [k, v][t, u] := [€, w].

The following lemma is a consequence of lemma 4.2.1 and of the uniqueness up to homo-

topy and stabilization of the embedding «¢.

Lemma 4.2.8 (2x3 principle). Let f: Y — X and g: X — W be h®-oriented neat maps,
with orientations [¢,u| and [k, v], and let [, w] := [k, v][t,u] be the orientation induced on

go f. Two elements of the triple ([¢,u], [k, v], [, w]) uniquely determine the third one.
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For the proof see [24, theorem 5.24 p. 233]. Finally, let us consider two smooth neat maps
f,g: Y — X, with representatives (¢, u, @) and (¢/,u’, ¢’) respectively. A homotopy between
(t,u, @) and (/,u',¢") is defined as in 4.2.3, replacing id x f with a smooth neat homotopy
F:IxY — Ix X between f and ¢.® The existence of such a homotopy only depends on

the equivalence classes [, u] and [/, v/], therefore we can give the following definition.

Definition 4.2.9. Two smooth neat h®-oriented maps f,g: Y — X are homotopic as h®-
oriented maps if there exists a homotopy between any two representatives of the orientations
of f and g.

Remark 4.2.10. We remark that, since a homotopy must be neat from I x Y to [ x X by
definition, it restricts to the boundary, thus it is a homotopy of maps of pairs f,g: (Y,0Y) —
(X,0X). In particular, it induces a homotopy between df and Jg.

4.2.3 Topological orientation of smooth manifolds

In this subsection we discuss separately the cases of manifolds without boundary, with bound-

ary and (partially) with corners.

Definition 4.2.11. An A®-orientation of a manifold without boundary X is an h®-orientation

of the map py: X — {pt}.

By definition, giving an orientation to pyx means fixing an orientation u on the (stable)
normal bundle of X; when u has been fixed, we set Td(X) := Td(u).

Given a manifold with boundary X, we recall that a defining function for the boundary
is a smooth neat map ®: X — [ such that 90X = ® {0} (by neatness, it follows that
d-1{1} = ().

Definition 4.2.12. An h®-orientation on a smooth manifold with boundary X is a homotopy

class of h*-oriented defining functions for the boundary (see def. 4.2.9).

It easy to verify that any two defining functions are neatly homotopic, therefore the only

meaningful datum is again the Thom class u.

Remark 4.2.13. We set HY := {(z1,...,2x) € RY : a2y > 0} (it is the local model of
an n-dimensional manifold with boundary). Definition 4.2.12 is equivalent to fixing a neat
embedding ¢: X < H", a Thom class on the normal bundle and a difeomorphism with a neat
tubular neighbourhood, up to homotopy and stabilization. In fact, if we fix an h®-orientation
(¢, u, @] of a defining map ®: X — I, following definition 4.2.12, we have that ¢: X < I xRY.

8 A homotopy is usually defined as a function F': I xY — X, but we consider the function F': IxY — IxX,
(t,y) = (&, F'(t,y)).
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Since ®~1{1} = 0, the image of ¢ is contained in [0,1) x RY ~ H¥*!. This confirms that
definition 4.2.12 is natural.

Remark 4.2.14. It follows from remark 4.2.6 that an orientation on a manifold with bound-
ary canonically induces an orientation on the boundary. In particular, let us fix a defining
function ®: X — I and an orientation [¢,u], with t: X < I x RY. We call igx: 0X — X
the natural embedding and we set ¢/ ;= toigx: X — {0} x RY and v/ := ulsx. We get the

orientation [/, u'] of 0X.

Remark 4.2.15. If we apply definition 4.2.12 to a manifold without boundary (which is
a particular case of a manifold with boundary), we get a function ®: X — I whose image
is contained in (0,1), the latter being diffecomorphic to R. A representative (¢, u, ) of an
orientation of ® is constructed from the embedding ¢: X < (0,1) x RY ~ {pt} x RN,
therefore it can be thought of as a representative of an orientation of px: X — {pt}. Any
two such defining functions are homotopic, (0, 1) being contractible, and a homotopy between
them determines a homotopy of representatives of an orientation of py: X — {pt}. This

shows that definition 4.2.11 is (equivalent to) a particular case of definition 4.2.12.

With respect to manifold with corners, we just consider the following case, that will be

useful in order to define the generalized Cheeger-Simons characters.

Definition 4.2.16. A manifold with split boundary is a triple of manifolds (X, M, N) such
that:

e X is a manifold with corners and M and N are manifolds with boundary;

e 0X =MUN, M and N being embedded sub-manifolds (not neat in general) of 90X of

codimension 0;
e OM =0N =MnN N,
e {corners of X} C M N N.

A defining function for the boundary of (X, M, N) is a smooth neat map ®: X — I x [
such that M = @~ 1(Ix{0}) and N = &~({0} xI) (by neatness, it follows that @~ (I x{1}) =
O~1({1} x I) = 0). The definition of h*-orientation is analogous to 4.2.12. Remark 4.2.13
keeps on holding, replacing HY by HY? := {(z,...,2x) € RY : 2y_1, 2y > 0}. Remark
4.2.14 holds in the sense that an orientation of (X, M, N) induces an orientation of M and
one of N, with defining functions (up to homotopy) ®5; := ®|p: M — I x {0} ~ I and
Oy = ®|y: N — {0} x I =~ I respectively. Finally, remark 4.2.15 holds too, in the sense

that, setting N = (), we recover the notion of orientation for a manifold with boundary.
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4.2.4 Topological integration
Let f: Y — X be a neat map. If we fix a representative (¢, u, ¢) of an orientation of f, the

Gysin map fi: h*(Y) — h*7"(X), for n = dimY — dim X, is defined as:

fila) = / ipulu ), (4-52)

i being the natural inclusion of the tubular neighbourhood i: U < X x R¥, inducing a
push-forward in compactly-supported cohomology. The Gysin map f; only depends on the
h®-orientation [¢,u], not on the specific representative ([24, theorem 5.24 p. 233], [9, sec.
4.9]). If Y and X are oriented, because of the 2x3 principle a map f: Y — X inherits an

orientation, hence the Gysin map is well-defined.
Theorem 4.2.17. Let f: Y — X be a neat h®-oriented map of compact manifolds.
e The Gysin map f, only depends on the homotopy class of f as an h®-oriented map.
e The Gysin map is a morphism of h*(X)-modules, i.e., given o € h*(Y) and 5 € h*(X):
fila- f*8) = fiar- 8.
e Given another neat h®-oriented map ¢g: Z — Y and endowing f o g of the naturally
induced orientation (def. 4.2.7), we have (f o g) = fi o g.

For the proof see [24, theorem 5.24 p. 233]. If X and Y are manifolds with boundary,

considering remark 4.2.6, one has, for every a € h*(Y'):

(O h(alay) = (fia)|ox- (4-53)

Such a formula is due to the fact that all the structures involved in the definition of (Jf),
are the restrictions to the boundary of the corresponding structures for f;. A similar result

holds when X and Y have corners.

4.2 5 Differential orientation of a vector bundle

If we consider a differential refinement h* of h®, in order to orient a vector bundle one just

has to refine a Thom class u to a differential Thom class.

Definition 4.2.18. Let h* be a multiplicative differential extension of h®. A differential
Thom class of E is a compactly supported class @ € h (E) such that I(a) € h,(E) is a

cpt cpt
Thom class for A®.
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Using the product 2 (E)®zh*(E) — he

cpt cpt

(E), we define the differential Thom morphism,
which is not surjective any more, as & +— @ - 7*&@. We define the Todd class Td(u) :=

[ R(1) € Q%(X:b2). It follows that I(Td(a)) = Td(I(i)).

Definition 4.2.19. Let 7x: I x X — X be the natural projection and ig,7;: X — [ x X
the natural embeddings. Two differential Thom classes @, @' € h™ (E) are homotopic if there

cpt
exists a Thom class U € he (% ) such that iU =4, iU = @ and Td(U) = 7% Td(a).

Lemma 4.2.20 (2x3 principle). Given two bundles E, F — X, with projections pg: E®F —
E and pp: E® F — F, we consider a triple (@, 0,w) of differential Thom classes on E, F
and E @ F respectively, such that w is homotopic to pju - pi0. Two elements of such a triple

uniquely determine the third one up to homotopy.

Lemma 4.2.21. On the trivial bundle X x R¥ there is a canonical homotopy class of

differential Thom classes, refining the canonical topological one.

For the proofs see [9, prob. 4.187] and [34, cor. 3.19].

4.2.6 Differential orientation of smooth maps

We define a representative of an h*-orientation of f as in definition 4.2.2, but considering a
differential Thom class. Fixing such a representative (¢, @, ), the Gysin map fi: ﬁ'(Y) —
h*="(X) is well-defined via formula (4-52) applied to differential classes. Moreover, we have

the following natural map on differential forms, called curvature map:

Riag: @ (Y5 br) = Q7"(X; bg)
(4-54)
w > s (R(0) A T w).
X xRN /X

The following definition is analogous to 4.2.3, but it takes into account the curvature map.

Definition 4.2.22. A homotopy between two representatives (¢, 4, ) and (¢, @/, ') of an he-
orientation of f: Y — X is a representative (.J, U, ®) of an h*-orientation of id x f: I x Y —
I x X, such that:

e (J,I(U),®) is proper over a neighbourhood V C I of {0,1};
b (J7 Uv (I))|f0 = (L7ﬂ790) € (‘]7 U? (I>)|f1 = (lealasol);

* _ R *
® Tx 0 Riuy) = R(J,U,cp) OTy.

In particular, it follows that R, 4.) = R(/w ). Thanks to lemma 4.2.21, we define the

equivalence of representatives up to stabilization as in the topological framework (def. 4.2.4).
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Definition 4.2.23. An h®-orientation on f: Y — X is an equivalence class [, 0, ] of

representatives, up to the equivalence relation generated by homotopy and stabilization.

Remark 4.2.24. By construction the curvature map (4-54) only depends on the orientation,

not on the specific representative, therefore we will denote it by Ry, 4.

Remark 4.2.6 keeps on holding. Now we need to extend to the differential setting the
fundamental properties of topological orientation, in particular definition 4.2.7 and lemma
4.2.8. This can be done adding the following hypothesis, that will force us to focus on
submersions. Let us consider a vector v, € N,y)(X x RY),,). It is sent by ¢, as defined
in 4.2.2, to a point p(v,) € X x RY. If f is a submersion, we can require that the first

component of ¢(vy) is f(y). This means that the following diagram commutes:

M(Y) (X x RN) —

dimant

(V) ———=X.

(4-55)

Definition 4.2.25. A representative of an h®-orientation of a smooth neat map f: Y — X

is proper if diagram (4-55) commutes.’

Lemma 4.2.26. If (1,4, ) is proper, then:
Ry a0 (W) = / Td(a) A w. (4-56)

Corollary 4.2.27. Let (¢, 4, ¢) and (¢, @, ¢") be two proper representatives of an h*-orientation
of a smooth neat map f:Y — X, such that @ and @' are homotopic as differential Thom

classes. Then the two representatives are homotopic (independently of ¢ and ¢’), thus

1,1, 0] = 1,0, ¢'].

Lemma 4.2.28. Let f: Y — X be a neat submersion. For any neat embedding ¢t: Y —
X x RY and any differential Thom class @ of the normal bundle, there exists a proper

representative (¢, , ) of an h*-orientation of f.

Because of lemma 4.2.28 and corollary 4.2.27, given a neat submersion f: ¥ — X, a neat
embedding ¢: Y < X x RY and any differential Thom class #, the h*-orientation ¢, 0] is well-
defined, extending (¢, %) to any proper representative (i, 1, ).!Y The orientation [¢, 4] only

depends on the homotopy class of 4. Moreover, if f: ¥ — X and g: X — W are h*-oriented

9 The same definition could be given for a representative of an h®-orientation, but it is more relevant in the

differential framework.
10 If we start from a non-proper representative (i,,¢), we do not know if the corresponding orientation
always admits a proper representative.
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neat submersions, there is a naturally induced h*-orientation on go f:Y — W, defined as
in 4.2.7. The following lemma is a consequence of lemma 4.2.20 and of the uniqueness up to

homotopy and stabilization of the embedding ¢.

Lemma 4.2.29 (2x3 principle). Let f: Y — X and g: X — W be h*-oriented neat sub-
mersions, with orientations [¢, @] and [k, 0], and let [£, W] be the orientation induced on go f.

Two elements of the triple ([¢, 4], [k, 7], [§, @]) uniquely determine the third one.

Finally, definition 4.2.9 can be easily adapted to the differential framework, considering
a smooth neat homotopy with a differential orientation. When such a definition holds, two

maps f,g: Y — X are homotopic as h*-oriented maps.

4.2.7 Differential orientation of smooth manifolds

We define the notion of differential orientation of a manifold without boundary as in the
topological case (def. 4.2.11); when the orientation @ of the stable normal bundle has been
fixed, we set Td(X) := Td(a). When X has a boundary, we have to take into account that
a defining map for the boundary is not a submersion in general, therefore we cannot apply
many results cited above. For this reason, we slightly modify the definition of orientation.
Following definition (4-54), the curvature map should be w fIxRN/I s (R(TQ) A m*w), but

we also integrate on [ the result:

R(Lugo Q.<X bR — Q7 n(pt hR)

(4-57)
W / / s (R(0) A T*w).
IxXRN /I

Definition 4.2.30. An h®-orientation on a smooth manifold with boundary X is a homotopy
class of h®-oriented defining functions for the boundary, considering the curvature map (4-57)

in the definition of homotopy.

This means that the curvature map from X to the point must be constant along the
homotopy, not the one from X to I, as would follow from the definition without replacing
the curvature map. The double integral in (4-57) is equivalent to the integral on the whole

I x RY. Considering remark 4.2.13, we are just integrating on H"*!. It follows that:

RO, ) (w) = /N e R(0) Amw = /X ( /N N R(a)) Aw) = /X TA(X) Aw. (4-58)

This result is analogous to formula (4-56), therefore we can state the following corollary,

analogous to 4.2.27.
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Corollary 4.2.31. Let (1,u,¢) e (¢,7,¢") be two representatives of an h*-orientation of
the defining function ®: X — I, such that @ and @' are homotopic as differential Thom

classes. Then the two representatives are homotopic (independently of ¢ and '), thus

1,1, 0] = [v, 0, ¢'].

It follows that an orientation of X only depends on ¢ and 4, therefore an orientation on a
neat submersion f: Y — X and an orientation on X induce an orientation on Y by definition
4.2.7. Because of corollary 4.2.27 and the uniqueness up to homotopy and stabilization of

the embedding ¢, we get the following lemma, analogous to 4.2.29.

Lemma 4.2.32 (2x3 principle). Let f: Y — X be a neat submersions between manifolds
with boundary. Let [¢, 4] be an orientation of f, [k,?] an orientation of X, and let [£, W]
be the orientation induced on Y. Two elements of the triple ([¢, ], [k, 7], [, w]) uniquely

determine the third one.

With this definition of the curvature map, remark 4.2.15 extends to the differential setting,
i.e., an orientation of a manifold without boundary can be thought of as a particular case of
an orientation of a manifold with boundary. This confirms the naturality of the definition. As
well, remark 4.2.15 keeps on holding. Finally, in the case of manifolds with split boundary, we
define a h®-orientation in the same way, the curvature map (4-57) being defined integrating

over I x 1.

4.2.8 Differential integration
The Gysin map fi: h*(Y) — h*="(X), for n = dim Y — dim X, is defined similarly to (4-52),

starting from a representative of an h®-orientation:

fila) = /RN i (U - T Q). (4-59)

The integration map [y : heg™ (X xRY) — h*(X) is defined as follows. The open embedding
j: RN — (SYHY ] defined through the embedding R < R* ~ St in each coordinate, induces
the push-forward (id x j),: b2 (X x RY) = h*(X x (S1)Y), thus we define

cpt

/RNa:: /gl.../ql(idxj)*@. (4-60)

It is easy to prove from the axioms that:

R(fid) = Rag(R(Q)  fa(w) = a(Ruae W),
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thus the following diagram commutes:

QN (Y5 hy) /Im(d) ——h* (V) ——h*(Y) Q% (Y b2) (4-61)

lRu,a,«p) Lf! lfz lRu,a,w)

Q0 (X3 by [Im(d) == B (X) == h2(X) QX bR,

\_/

R

As a consequence of formula (4-16), f; only depends on the h*-orientation of f, not on the
specific representative [9, sec. 4.10]. We now consider a submersion f: Y — X. In this case

the Gysin map provides a good notion of integration.

Theorem 4.2.33. Let f: Y — X be a neat h*-oriented submersion between compact man-
ifolds.

e The Gysin map f; only depends on the homotopy class of f as an h*-oriented map.

e The Gysin map is a morphism of 2*(X)-modules, i.e., given & € h*(Y) and § € h*(X):

e Given another neat h®-oriented map g: Z — Y and endowing f o g of the naturally

induced orientation (def. 4.2.7), we have (f o g) = fio g.

e We have that:

R(fi4) = /Y N Td(a) AR(G)  fi(a(w)) = a( /Y N Td(a) A w) . (4-62)

Equations (4-62) follow from formula (4-56) and the commutativity of diagram (4-61).
Moreover, formula (4-53) keeps on holding.

Remark 4.2.34. Let us consider a submersion f: Y — X between h*-oriented manifolds.
If X and Y have no boundary, since py = px o f, it follows from lemma 4.2.29 that
f inherits a unique orientation from the ones of X and Y. Hence, the integration map
fi: h*(Y) = h*"(X) is well-defined for submersions between compact h®-oriented manifolds

without boundary. If X and Y have boundary, the same result follows from 4.2.32.
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4.2.9 Flat classes

The Gysin map f: iz'(Y) — ﬁ”"(X ), defined in the previous section, depends on the he-
orientation of f, but, if we restrict it to flat classes, it only depends on the topological
h*-orientation. In fact, h%(X) has a natural graded-module structure over h*(X), i.e., the
product h*(X) @z h4(X) — hg(X) is well-defined. This can be easily proven in the two

following steps.

e The product of differential classes h*(X) ® h*(X) — h*(X) restricts to the product
he(X) @ hi(X) — h4(X), since, the curvature being multiplicative, if one of the two
factors has vanishing curvature, also the result has.

e The product & - B, when 3 is flat, only depends on I(&). In fact, if I(&) = 0, then

~ ~

& = a(w). Because of definition 4.1.9, we have a(w) - 8 = a(w A R(8)) = a(0) = 0.

We can show in the same way that also the product ﬁgpt(E) @z h*(E) — iz;pt(E) can be
refined to he (F) ®z hy(E) — ﬁﬁ’cpt(E), therefore, given a real vector bundle 7: £ — X of

rank n with (topological) Thom class u, we define the Thom isomorphism:

Ta: h4(X) — het (E)

fl,cpt

Q- T

From this it easily follows that the Gysin map f;, when applied to a flat class, only depends
on the topological orientation of f. Lemma 4.2.17 keeps on holding, with the same proof (for
any f, not necessarily a submersion). With respect to the commutativity of diagram (4-61)
(that, in the case of a submersion, leads to the last item of theorem 4.2.33), obviously the
behaviour of the curvature is trivial in the flat case. About the map a, the commutativity of
the diagram is equivalent to the following lemma (and, in the case of a submersion, to the
right-hand side of equation (4-62)).

Lemma 4.2.35. Given a h*-oriented smooth neat map f: Y — X and aclass 0 € H3z'(Y;bp),

we have:
fila(0)) = a(fi(Td(u) A 0)).
Equivalently, for any a € h*(X) ®7 R:!!

fila(cha)) = a(ch(fi)). (4-63)

' Tn equation (4-63) we are considering the Chern character as defined on h®(X) ®z R, in which case it
is an isomorphism. If we consider it as defined on h®(X), then a(cha) = 0, and formula (4-63) implies
coherently that fi(a(cha)) = 0.
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Proof. Let us consider a differential Thom class @ of N,y(X x RY) refining the orientation
u induced by the ones of X and Y. We have:

ao) = [ iptiera®) = [ ipar@iaro) o [ ipdauno)
—a (/RN ivpu(ch™u A (Td(u) A 9)) = a(fi(Td(u) A 6)).

Formula (4-63) follows from the Grothendieck-Riemann-Roch theorem. O

Corollary 4.2.36. The Gysin map associated to a h®-oriented smooth map f: Y — X

induces the following morphism of exact sequences of h*-modules:

o B (V) —= (V) @z R —= W (V) —= bt (V) — - -

] ]

(X)) —= h*(X) @z R —= A (X) —= b (X)) — - -

where the map 7*(X) ®z R — hft!(X) is defined by o +— a(cha).

4.3 Relative integration and integration to the point

We are going to show that the Gysin map, both in the topological and in the differential

case, can also be defined for classes relative to the boundary.

4.3.1 Relative Thom (iso)morphism

If 7: E — X is a real vector bundle of rank n and A C X is a topological subspace,
fixing a Thom class u of ¥ we also get the relative version of the Thom isomorphism, i.e.,
T:h*(X,A) = h$i"(E, E|4), & — u-m*«, using the natural module structure of the relative

(E, E|4) is a module over h?,(FE)). When
the bundle is smooth and A is a closed submanifold of X, the same construction holds in
the differential setting, getting the relative Thom morphism 7: h*(X, A) — ﬁ;;}”(E, E|a),

& — G- 7. In this section we will apply such an (iso)morphism to the following particular

cohomology over the absolute one (in this case h

case: m: F — X is a smooth vector bundle, X being a manifold with boundary, and A = 0.X.
It follows that E|4 = OF, therefore we get the Thom (iso)morphism for classes relative to
the boundary, i.e., T: h*(X,0X) — het™(E,0E) and T: h*(X,0X) — h*"(E,OF).

cpt cpt
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4.3.2 Relative topological integration

Let f: Y — X be a smooth neat map and let us fix a representative of an h®-orientation

(¢,u, ). We define the Gysin map on classes relative to the boundary:
fu: R*(Y,0Y) — h*7"(X,0X) (4-64)

where n = dimY — dim X. The definition is analogous to (4-52), but applying the relative
Thom isomorphism on the normal bundle. Even in this case the map fy; only depends on the
orientation [¢,u], not on the specific representative. With the same technique of [24, Prop.

5.24 p. 233] one can prove the following theorem.
Theorem 4.3.1. Let f: Y — X be a neat h*-oriented map of compact manifolds.

e The Gysin map fi only depends on the homotopy class of f as an h®-oriented map (see
remark 4.2.10).

e The Gysin map is a morphism of h*(X,0X)-modules, i.e., given o € h*(Y,0Y) and
g€ h(X,0X):
fula- f*B) = fuar- B.

e Given a € h*(Y) and § € h*(X,0X):
fulao- f*8) = fia- B.

e Given another neat h®-oriented map ¢g: Z — Y and endowing f o g of the naturally
induced orientation (def. 4.2.7), we have (f o g)y = fi o gu.

We remark that, if Lx: h*(X) — h,—e(X,0X) is the Lefschetz duality [37], then f; =
Ly' o f.o Ly. If we consider the duality in the form L'y: h*(X,0X) — h,_.(X), then
fu=ILx""ofioLy.

4.3.3 Relative differential integration

The Gysin map fi: h*(Y,8Y) — h*"(X,0X), for n = dimY — dim X, is defined similarly
to (4-52), starting from a representative of an h*-orientation. As a consequence of formula
(4-16), it only depends on the corresponding orientation. Considering the following version
of diagram (4-7):

OX x RVNe—= X x RV

NXE)XX]RNL lﬂ—x

OX——m—X
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and applying formulas (4-8) and (4-6), we define the relative curvature map:
Rifp: Q°(Y,0Y;b8) — Q7"(X, 0X; by)

(1,0,0)
(va) = Z*@*(‘R(ﬂ) /\71'*((,{)7,0)).
XxRN/X

(4-65)

Calling 0(¢, @, ¢) the representative induced on the boundary by (¢, @, ), it follows that
RTLe{u ©) ( ’p) = (R(L,ﬁ7<p) (w)a R@(L,ﬂ,so) (IO)) . (4_66)
It is easy to prove from the axioms that:

R(fud) = R{7 ) (R(&))  fuaw,p) = a(R5 (@, p)),

thus the following diagram commutes:

R

Q*~1(Y,0Y; by)/Im(d) he(Y,0Y) ! h*(Y,0Y) Q2(Y,0Y; bg) (4-67)
LRailﬁw) Lf!! jf!! lR{fll@,w)
Q*-"1(X,0X;b)/Im(d) —%> h*~"(X,0X) ——= h*~"(X,0X) Q8" (X,0X;b3).
\R/

We now consider a submersion f: Y — X, choosing proper representatives of orientations.

Theorem 4.3.2. Let f: Y — X be a neat h*-oriented submersion between compact mani-
folds.

e The Gysin map fi only depends on the homotopy class of f as an h*-oriented map (see
remark 4.2.10).

e The Gysin map is a morphism of h*(X,dX)-modules, i.e., given & € h*(Y,dY) and
Beh(X,0X):
ful@- f7B) = fud - B.
e Given & € h*(Y) and § € h*(X,0X):

~

fal@ - f7B) = far- .

e Given another neat h®-oriented map g: Z — Y and endowing f o g of the naturally
induced orientation (def. 4.2.7), we have (f o g)n = fu o gu.
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e Considering the following version of diagram (4-7):

Y ——=Y

flayl lf

0X—X
and applying formulas (4-8) and (4-6), we have:

Rif) - [ ) ARG paton =a( [ Ta@nm). @0y

/X

Equations (4-68) follows from formula (4-56) (in the relative setting) and the commuta-
tivity of diagram (4-67).

4.3.4 Flat classes

The relative Gysin map fii: h*(Y,dY) — h* (X, 8X), defined in the previous section, de-
pends on the h*-orientation of f, but, if we restrict it to flat classes, it only depends on
the topological h®-orientation. The reason is the same of section 4.2.9, applying the relative
Thom isomorphism Ty: h8(X,0X) — ﬁﬁ;gt(E ,OF). Lemma 4.3.1 keeps on holding (for any
f, not necessarily a submersion). The relative versions of lemma 4.2.35 (in the case of a
submersion, the right-hand side of equation (4-68)) and corollary 4.2.36 hold with the same

proof.

4.3.5 Integration to the point - Manifolds without boundary

If X is an h®-oriented manifold of dimension n without boundary, the integration
(px)i: h*(X) — b* " is well-defined applying (4-52). The same holds about the differen-
tial extension, defining (px)i: h*(X) — h*" through (4-59). Since px is a submersion,

formula (4-62) becomes the following in this case:

Riph(@) = [

Td(X) A R(&) (pxh(a(w)) = a(/ Td(a) A w). (4-69)
X b's

As a particular case, X can be the boundary of another manifold. Equivalently, we consider
a manifold with non-empty boundary X and the integration to the point (psx ). We start

from the following preliminary lemma, then we will show the behaviour of (pgx):.

Lemma 4.3.3. Let X be a h*-oriented manifold with non-empty boundary and &: X — [
a defining function for the boundary, as a part of the orientation of X (see def. 4.2.12). For
any & € h*(X), we have:

/0 1 R(®4) = /X TA(X) A R(4). (4-70)
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Proof. Let (v,1,¢) be any representative of the orientation of ®. Because of the commuta-
tivity of diagram (4-61), we have that R(®&) = R, a0 (R(4)). It follows from definition
(4-57) that fol R(®6) = R2 . . (R(&)), hence the result follows from formula (4-58). O

(1,8,0)
Theorem 4.3.4. Let X be a h®-oriented manifold with non-empty boundary. For any

a € iL.(X ), considering the induced h*-orientation on dX, we have:

(pox 1(&lax) = —a (/ Td(X) A R(ol)). (4-71)
b
In particular, in the topological framework, (psx)i(alox) = 0.

Proof. Let ® be a defining function for the boundary, as a part of the orientation of X. Since
d~{1} = 0, the map 0®: X — OI can be identified with pyx: 0X — {0}. Thanks to
formula (4-53), one has (pox)i(&lax) = (P:1t)|{0}. Since (®1a)[;y = 0, because (1) = 0,
from the homotopy formula (4-16) we have:

ah(alon) = (@) - @) 2 -a [ R0).

The result follows from formula (4-70). O

4.3.6 Integration to the point - Manifolds with boundary

When X has a boundary, neither of the two Gysin maps (px), and (px)y is well defined,
since px is not neat. Nevertheless, we can define the integration map to the point for classes
relative to the boundary, that we denote anyway by (px)n, in the following way. In the
topological framework, we set:

(px)n: h*(X,0X) — p*"
(4-72)
s [ Bu(a),
Sl
where the map ®: (X,0X) — (I,01) is provided by the orientation of X (see def. 4.2.12)

and the integration over S! is defined as follows. Since
R (1,00) ~ T (1/01,01)01) ~ h*T1 7" (ST %), (4-73)
‘*” being a marked point on S', we apply the suspension isomorphism

/ . h.+1_n(51,*) i> ho—n(sO’ **) ~ ho—n7
g1

“+x” being a marked point on S°.
In order to define the integration map for differential classes, we can apply a formula
analogous to (4-72), but we have to define the integration over S*, since the isomorphism

(4-73) does not apply any more. We do it through the following two lemmas.
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Lemma 4.3.5. We have the following isomorphism:

W h*(1,01) = h2,,(1,01) @ Q*(I; b} (474)
a— (d — Cl(t?h + (1 - t)??o,()), 7o U 771)’

where 19 LI 1, = cov(&).

Proof. The inverse isomorphism is defined by

(B,m0 Umi) = B+ a(tn + (1 — ), 0). O

Remark 4.3.6. The previous lemma can be interpreted in the following way. Let us consider
the following short exact sequence:

0——he, . (I,01) — h*(I,0I) <2~ Q*~1(0I; h3) — 0.

par

The map Q*~YdI; %) — h*(1,0I), no U n — altn + (1 — t)1,0), is a splitting of the

sequence.

We now show how to integrate a parallel class defined on (1, 01). The idea is that, glueing
the two boundary points, we get a class on (S, %) as in the topological case. Nevertheless,
we have to take care of the smoothness condition when glueing the two extrema, hence we
need a class that vanishes not only on 01, but also in an open neighbourhood [0,)U(1—¢, 1].
In order to achieve this condition, we consider a smooth function ¢: (I,01) — (I,0I) such
that &l = 0 and &| .y = 1.2 Given & € h%, (I,01), we consider its pull-back £*a €

par

ﬁ;ar(l ,0I). Thanks to the following lemma, the class £*& induces a well-defined class on

(S, %), that we can integrate, getting a class on the point. Finally, we will have to prove
that the latter is independent of the choice of €.

Notation 4.3.7. We set I’ := [0,¢) U (1 — ¢,1] for a fixed . Moreover, we denote by
m: (I,0I) — (S', %) the natural projection and we set S’ := w(I'). We think of 7 as a map
of pairs w: (I,I') — (S',9").

Lemma 4.3.8. The pull-back 7*: h2, (S*,5") — he, (I, ) is an isomorphism.

par par

Proof. Given & € ﬁ;ar(l, I"), we have to show that there exists a unique class 3 € ﬁ;ar(Sl, S’

~

such that 7*(5) = & We set a := I(&). Since 7* is an isomorphism in (topological)

cohomology, there exists a unique class 8 € h*(S',S’) such that 7*3 = a. We choose any

A

parallel differential refinement 3 € h® (S1,8") of B. Tt follows that 7*3 = & + a(n,0),

par

with 7| = 0. There exists a unique form 77 on (S',5’) such that 7*77 = 7, thus we set

12 Tt is natural to think of ¢ as an increasing function, but we will see that it is not necessary, since in any
case it is smoothly homotopic to the identity of I relatively to OI.



Chapter 4. Relative differential extension 125

8= B’—a(ﬁ, 0) and we get 73 = &. About the uniqueness, let us suppose that 3” is another
parallel class such that 73" = &. Then ﬂ*(ﬁ — B”) = 0, thus, since 7* is an isomorphism
in cohomology, I(B — B”) = 0. It follows that 3 — 8" = a(&,0), with 7*a(¢,0) = 0, thus
[(7*¢,0)] = chu. Since 7* is an isomorphism in cohomology, there exists v such that u = 7*v,
hence 7*[(&,0)] = 7*(chv). Again since 7* is an isomorphism in cohomology, it follows that

[(£,0)] = cho, hence a(€,0) = 0, therefore 3 = (. O
Notation 4.3.9. Considering the statement of lemma 4.3.8, we set 7, := (7*)~".

Summarizing, given a class & € h%,.(I,0I) and a smooth function &: (I,01) — (I,01)

par

such that {|jp) = 0 and {|1_c1) = 1, we get {*a € he (I,1"). Applying lemma 4.3.8, we

par

get m.&*a € ﬁ;ar(Sl, S"). We can think of m,£*& as an absolute class on S!, applying the

pull-back with respect to the natural morphism idg:: (S*,0) — (S, 5’), therefore we can

integrate m,£*& on S'. We get the following integration map:

/ t h%.(1,01) — b*!
! (4-75)

Lemma 4.3.10. The integration map (4-75) is independent of the choice of €.

Proof. Let us fix two maps £ and £, vanishing on [0,e)U(1—¢, 1] and [0,&")U(1—¢’, 1] respec-
tively. We call [, and [; the corresponding integration maps (4-75). Weset J := I = [0,1], in
order to distinguish the two components of I x I = I x J (this notation will make clearer the
fibre-wise integrations). Let us consider a homotopy Z: (I,01) x J — (I,01) between them.
By formula (4-17), thinking of £ and £ as relative maps (£, &|ar), (&',& |or): (1,0I) — (1,01),

we get
kA /*A: RE*A )
f ¢ (5) “ a</1><J/I ( a))

/I,&— /Ia = /S m(&a — (€)a) = /S ma(/lxm R(E*d))
= a(/s T /]XJ/IR(E*OQ)) = a(/]XJE*R(d)).

Since & € h”, (I,I), it follows that R(a) € Q*(I;b%) = QO(I; b2) & Q'(I; h27"). Integrating

par

It follows that:

over [ x J, only the components of degree 2 or more are meaningful, therefore we get 0. This
shows that [, & = [, d. O
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Now we can give the following definition, for an h*-oriented manifold with boundary X

of dimension n:

(px)n: (X, 0X) — §*"
4-76
ar—>/\I/1<I>u ( )

U, being the first component of the isomorphism (4-74). For any representative (¢, 4, ¢) of
an orientation of ®, we call d(¢, 4, ¢) the induced representative on 90X and we define the
following curvature map:
Rpt cQ%(X,0X;b%) — Q" (pt; hY)
(Ly1,0) R ( R (4_77)
( ) = R(Lu <p)( ) + Ra(b’ﬁ#’) (p)

It follows from formulas (4-56) and (4-58) that:

Ry 4 ) (w ,p):/XTd(X)Aw—i—/ Td(0X) A p. (4-78)

0X

Theorem 4.3.11. The following diagram is commutative:?

R

Q*~1(X,0X:b2)/Im(d) —= h*(X,0X) ——= h*(X,0X) Q2(X, 0X;b3) (4-79)
le(Jf,ﬂ,gp) l(?x)!! j(px)u LRI(D;’&’“D)
hﬂ%—n—l a Go—n I ho—n hﬂ%_n
\R/
Proof. The proof is similar to that of 4-61 and 4-67. m

As a particular case, X can be one component of a manifold with split boundary. Equiv-
alently, we consider a manifold with split boundary (X, M, N), with M # (), and the inte-
gration to the point (pys)n. We set again J := I, in order to distinguish the two components
of I x J =1 x1I. In order to achieve a result analogous to formula (4-71) in the relative case,
we consider a defining function for the boundary ®: X — I x J, we call m;: [ x J — J the
projection and we set ® := m;0®: X — J. It follows that ®'{0} = M, hence ®'|,; = pas,
and ® {1} = (. Of course ®’ is not neat, for the same reason why py; is not.

Topologically, we can define the following integration map:

®: h* (X, N) — ")

(4-80)
o (I)H(Oé),
SixJ/J
13 In the diagram, observe that Q" (pt; %) = Q°(pt; hi) ~ hE. Moreover, every form on the point is closed
and only the zero one (in any degree) is exact.
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considering ®: (X, N) — (I x J,0I x J). The map ®y: h*(X,N) — h*~"(I x J,0I x
J) is defined by the same construction of the relative Gysin map (4-64), using the Thom
isomorphism relative to N. The integration over S! is defined observing that h*~"2(I x
J,0I x J) ~ h*"2(S1 x J {x} x J) ~ h*"2(S* A (J.)) and applying the suspension
isomorphism h*~"*2(SY A (J4)) ~ h*"H1(J,) o~ h* ().
In order to define the analogous integration map in the differential framework, we consider
the following isomorphism, analogous to (4-74):
e h*(I % J,01 x J) — h (I x J,0I x J) & Q*~1(0I x J; by (81)
o ((Sé — CL(t'Ih -+ (1 — t)ﬂo,()), Mo LI 771)
Then we consider a smooth function &: (1,01) — (I, 0I) such that £[jp.) = 0 and §|1_-1) = 1,
and we think of it as a function &: (I x J,0I x J) — (I x J,0I x J), constant on J. Since
lemma 4.3.8 keeps on holding, with respect to the pull-back 7*: he (S''x J,8" x J) —

par

he (I x J,I' x J), we get the integration map:

par

par

/ c b, (I x J,0I x J)— h*(J)
IxJ/J

(4-82)
Qa — T a.
Sl
Therefore, we define:
ne hN(X,N) = hTY()

4-83

& — @i(@u(@)), ( )
IxJ/J

U, being the first component of the isomorphism (4-81).

Remark 4.3.12. The construction of @y, that we have shown, is completely analogous to the
one of (px)u, but there is only one difference, concerning the proof of lemma 4.3.10. In order
to show that the integration map is independent of £, let us consider a homotopy =: (1, 9I) X
J'— (1,0I) between ¢ and £, inducing the homotopy Z: (1,01) x J x J" — (I,0I) x J which
is constant along J. With the same proof we get fI/XJ/Jd - fIxJ/Jd = a(fIxeJ’/J =*R(&)).
Now R(&), being defined on I x J, has also a component of degree 2, that could be non-
vanishing after integrating along J’' and I. Nevertheless, such an integral is a 0-form, whose
value at t € J is [}, EfR(&|xqy). The restriction R(G/|rxqy) of the degree-2 component is

a 2-form on [ x {t}, hence it vanishes.

It follows from the construction that

Dy (Q)|g0y = (Par)u(é@l(aron)), (4-84)
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since all the tools and the operations involved in the definition of ®j, restrict on M to the

corresponding ones for (pas)y.

Lemma 4.3.13. Let (X,M,N) be a h®-oriented manifold with split boundary and
®: X — I x J a defining function for the boundary, as a part of the orientation of X.

We call R' and cov the two components of the curvature R. For any & € ﬁ'(X , N), we have:

/JR(@.,Q) /XTd(X) N R'(&) + /N Td(N) A cov(a). (4-85)

Proof. By formulas (4-83) and (4-82) we have that

/JR@.,Q) /JR(/SIW*{*\I/ (®u(a ) //SIW*SR% (Pu(a)))

:/1 Jg*R@l(‘I)!!(@))) [ R (2u(a)). (4-86)

IxJ

In order to prove the equality (x), it is enough to choose £ as a diffeomorphism from (g,1—¢)
0 (0,1). When we apply ¥y, defined in formula (4-83), to @ (&), we have that 7, = 0, thus
no = cov(Py(&)). It follows that

Uy (Pu(a)) = Pu(a) — a((1 — t)cov(Py(a)), 0)
R(\Ifl(q)u(@))) = R/((I)u<d)) + dt A COV(q)!!(@)) — (1 — t)dCOV((I)[!(@))

/MR(%@”(@») :/]XJR’(cbn(d)) +/Jcov(c1>”(@)), (4-87)

The term (1 — t)dcov(®y(&)) vanishes when integrated on I, since there is no dt component.
Joining (4-86) and (4-87) we get:
/R((D”CY) / R/<¢)u(d)) + / COV(@[;(@)). (4—88)
J IxJ J

Let (¢, 1, @) be any representative of the orientation of ®. Because of the commutativity of
diagram (4-67) and formula (4-66), on (I x J,0I x J) we have that

oy (467) o oy (4-66) . .
R(@ya) "2 R (R@) "2 (R (R(@)), Rioaion (cov(@))).
Therefore:
| r@@) = [ Rep@@)® [ Tacoar@)
IxJ IxJ X

(4-57)

/Jcov(@H(éy)) :/]R(L7a7¢)N(cov( &)) R(Luw)m(coV(@)) (4-58) /NTd(N)/\cov(éz).

The equality (#) follows again from formula (4-58), adapted to the case of a manifold with
split boundary. O]
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Theorem 4.3.14. Let (X, M, N) be a h*-oriented manifold with split boundary. For any

a € iL.(X , N), considering the induced h*-orientation on M , we have:

i (@loran) = -a [ Ta) A Rt@)+ [

N

Td(N) A cov(d)) : (4-89)

In particular, in the topological framework, (pas)n(a|ason)) = 0.

Proof. Let ® be a defining function for the boundary, as a part of the orientation of X. The
map P : M — I can be identified with a defining function for the boundary of M. Since
(@1,a)|g1y = 0, because @I x {1}) = 0, from formula (4-84) and the homotopy formula
(4-16) we have:

(par)u(@laronn)) = = (P4 [y — (P4 |50y) 1L _q (/J R(cb{!d)).

The result follows from formula (4-85). O

Finally, we remark that, since the flat theory is a (topological) cohomology theory, we
can integrate a flat class over the point just using (4-72). We get the integration map
(px)n: ﬁﬁ(X, 0X) — 61'{", that only depends on the topological h*-orientation of X.

4.4 Flat pairing and generalized Cheeger-Simons characters

We are going to define the relative version of generalized Cheeger-Simons characters, starting

from flat classes.

4.4.1 Relative homology

We extend to the relative case the geometric model for the dual homology theory h,, described
in [23]. When we say “relative”, we consider the cohomology of any smooth map, not
necessarily the embedding of the boundary as in the previous section. The following definition

generalizes the one given in [34].

Definition 4.4.1. Given a continuous map p : A — X, between spaces having the homotopy

type of a finite CW-complex, we define:

e the group of n-precycles as the free abelian group generated by the quintuples (M, u, a, f, g),
with:

— (M, u) a smooth compact manifold, possibly with boundary, with h®-orientation

u, whose connected components {M;} have dimension n + ¢;, with ¢; arbitrary;
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— a € h*(M), such that a|y, € h%(M);
— f: M — X a continuous function;

— g: OM — A a continuous function such that po g = f|anm;

e the group of n-cycles, denoted by z,(p), as the quotient of the group of n-precycles by

the free subgroup generated by elements of the form:

- (M,U,CY—{—B,f,g)—(M,U,Oé,f,g) _(M,U,ﬂ,f7g);

- (M,U,Oé, f7g)_(M17U‘M17a|M17f|M17g|aM1)_(M27u|M27Oé|M27f‘M27g|3M2)7 for M =
Ml |_|M2,

— (M,u, ¢, f,9) — (N,v,, f o p,g 0 plony) for ¢: N — M a neat submersion,
oriented via the 2x3 principle, and ¢, the Gysin map for absolute classes (« is not

relative to the boundary);

e the group of n-boundaries, denoted by b,(p), as the subgroup of z,(p) generated by
the cycles which are representable by a pre-cycle (M, u,«, f,g) such that there exists
quintuple (W, M, N),U, A, F,G), where (W, M, N) is a manifold with split boundary,
U is an h®-orientation of W and U|y = u, A € h*(W) such that Ay = a, F: W — X
is a smooth map satisfying F|y, = f and G: N — A is a smooth map satisfying
poG = F|x and Gloy = g.

We define h,(p) := z,(p)/bn(p)-
There is a natural map:
€": h"(p) — Homye (hy—e(p), b°)

o= ([M,u,ﬁ,f,g] = (pM)”(B ’ (f,g>*()é>),
where pyr: M — {pt} (see def. (4-76)) and (f, g) is the following morphism:

(4-90)

OM—— M

1

AL X
In order to multiply 5 and (f, g)*«, we used the module structure (4-4), since 3 is an absolute
class on M, while (f, g)*« is relative to the boundary. We verify that (4-90) is well-defined.
If we consider a neat submersion ¢: N — M and two representatives (M, u, v, f,g) and

(N, v, B, fop,gop|lan) of the homology class, we have:

"(@)[N,v.B8, f o, g0 plan] = (pn)u(B - (¢, lon)*(f. 9) @)
= (par)u(, @lan)n(B - (@, vlan)*(f, 9) )
= (pM)"<90'ﬁ : <f7 g>*05> = fn(a)[M,u, ()0!67 f7 g]
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If (M,u,s,f,g)=0(W,M,N),U, B, F,G), then, by theorem 4.3.14, (par)u(B- (f,g)*«) = 0,
thus £"(«) is well-defined on homology classes. Finally, the image of « is a h*-module

homomorphism, since, for v € h':

= (Pan(B- (f.9) @) -y =" (@)[M,u, B, f,g] -7

Tensorizing with R, we get the isomorphism:
& h"(p) ®z R — Homye (hy—a(p), b). (4-91)
Moreover, thanks to the structure of h®-module on h*(-;R/Z), we get the following map:

Eryz: 1" (P R/Z) — Homge (hn-o(p), bi/z)

(4-92)
a = ([Mu, B, .9 = (par)u(B - (f,9) ).

4.4.2 Flat pairing

We define the natural ﬁﬁ—valued pairing for a map p: A — X between fzﬁ and h,, that, in the
case of singular differential cohomology, reduces to the holonomy of a flat relative Deligne

cohomology class. When A8 ~ h*(-;R/Z), such a pairing coincides with formula (4-92).

Definition 4.4.2. For p: A — X a smooth map (not necessarily neat), we have the following

natural pairing:

&+ hij(p) — Homye (h—a(p), BY)

(4-93)
Q= ([Mauaﬂ7fvg] = (pM)”(ﬁ ’ (f?g)*d))
The invariance by h*® is defined by:
i () ([M,u, B, f,9]-7) = &(Q)([M,u, B, f,9]) - . (4-94)

In order to show that (4-93) is well-defined, i.e. that it does not depend on the represen-
tative (M, u, 3, f, g), and that formula (4-94) holds, we apply the same argument used about
(4-90).

Lemma 4.4.3. We have the following morphism of complexes of h*-modules (the lower one
not being exact in general):

T n a in I n T
e () 02 R ——— () R

léﬁ l§g+1 l€n+1
/ ’ / ’

r

o — Homye (hn—o(p), ) ——> Hompe (hnt1-e(p), i) ——= Hompe (hnt1-e(p), h*) —— -
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Proof. We only have to prove the commutativity of the square under the map a. It easily
follows from the fact that, for o € h*(p) @z R and 8 € h*(X):

a(cha) - f = a(ch(ap)).

That’s because, for any differential refinement 3 of 3, we have a(cha) - § = a(cha - R(f)) =
a(cha - chp) = a(ch(ap)). O
We call 7 the image of the Chern character ch: h™ — HJ, (pt; by) =~ bp, which coincides

with o — a ®7 R.

Theorem 4.4.4. If h* has no torsion, the pairing (4-93) is an isomorphism and hg ~

by /b5
Proof. Same of [34, Theorem 5.5]. O

4.4.3 Homology via differential cycles

We can define pre-cycles, cycles and boundaries as in definition 4.4.1, but refining each
orientation and each cohomology class to a differential one. We call 2,(p) and b,(p) the
corresponding groups of cycles and boundaries. It follows that Z,(p) is generated by classes
of the form [(M, @, &, f,g)], and by (p) is generated by cycles with a representative such that
(M, 4,6, f,g) = O(W,M,N),U, A, F,G). We define ,(p) := 2.(p)/bn(p).

Theorem 4.4.5. The natural group morphism:

®: hy(p) = he(p)
(M. 4,6, f,9)] = [(M, 1(a),I(&), f, 9)]

is an isomorphism.

Proof. Tt follows from the same result about absolute classes [34, Theorem 6.2] and the five
lemma applied to the long exact sequence in homology associated to p. Alternatively, one

can adapt to the relative case the same proof of [34, Theorem 6.2]. O

4.4.4 Cheeger-Simons characters

The following definition generalizes to any cohomology theory the one of [7] and [32] (type
I0).

Definition 4.4.6. A Generalized Cheeger-Simons differential h*-character of degree m on

p: A — X is a triple (xpn,wn, n—1), Where:

Xxn € Homg, (Zn—e(p); 6.) (@Wn, Ma-1) € Q"(p; bR) (4-95)
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such that, if (M, @, 3, f,g) = (W, M,N),U, B, F,G), then:
M., B, f.g] = —a ( / TA(W) A R(B) A Frwn + / TA(N) A R(B|w) /\G*nn_l). (4-96)
w N

The 6'—invariance is defined by:

XTL([M7a737f7g]&)ZXTL[MaauﬁAafvg]’7 (4_97)
We denote by ﬁ”(p) the group of characters of degree n.

We briefly comment on formula (4-96). Let us suppose that [M, 4, B, f, gl € Z,_k(p) and
that M is connected. Then dim(M) = n—k+q and 8 € h?(M), hence dim(W) = n—k+q+1
and B € h?(W). Thus, in the r.h.s. of (4-96), we integrate on W a hx-valued form of degree
0+ ¢+ n, hence we get a form on the point of degree g+n—(n—k+qg+1) = k—1. Applying

a, we get a class belonging to 6"“ , as desired.
Theorem 4.4.7. There is a natural graded-group morphism:

Stz b (p) — () o
& (x, R(@)),

where y is defined, for [M,ﬁ,B,f, gl € Z.—k(p), by:

X[M’ ﬁ'vaf» g] = (pM)”(B ’ <f7 g)*d/)

Proof. 1f we consider two representatives (M, u, ¢\, f,g) and (N, v, 3, f o p, g0 ¢|sn) of the

same homology class, we have:

XIN, 0.8, f o 0,90 plon] = (pw)u(B - (0, ¢lon)*(f. 9)" @)
= (pan)u(, elon)n(B - (v, lon)*(f, 9)" @)
= (pa)u(@B - (f.9)76) = x[M, i, 1, . 9.

Let us now suppose that (M,Q,B, fig) = 0((W,M,N), U,B,F, G). From formula (4-89),
replacing X by W and & by 3 - (f,¢)*a, we get formula (4-96). Finally:

=<pM>u<ﬁ <f g>* > @ [M,a,/é,f,gm. O

The proof of the following theorem is straightforward from the previous definition.

Theorem 4.4.8. When & is flat, the value of the associated Cheeger-Simons character over

(M, a, B, f, g| coincides with the value of (4-93) on the corresponding homology class.
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Considering the pairing (4-93), we have the following embedding:

j+ Homye (hn—a(p), b5) = 1" (p).

In fact, a morphism ¢, € Homye (h,_s(p), b)) determines a unique morphism y,: 2,_s(p) —
h* defined by Xn|M, a, B, f, gl = @n[M,](ﬁ),](@),f, g], and we define j(¢,) := (xn,0,0). It
follows from formula (4-96) that the image of j is the subgroup of generalized Cheeger-Simons
characters with vanishing curvature, that we call h%(p). Let us consider the embedding

i hy(p) < h*(p). The following diagram commutes:

&

iy (p) —> Homye (h—o(X), b)

. lf csr 5 JA]
h™(p) — " (p).

Therefore i restricts to the embedding i': Ker(§f) — Ker(CSY), and j restricts to the

embedding j': Im(§g) — Im(CSY). Because of j and j' we can construct a morphism

a: Coker(§g) — Coker(C'SY'). We now show that actually ¢ and a are isomorphisms.

Theorem 4.4.9. The following canonical isomorphisms hold:
Ker(¢g) =~ Ker(C'S}), Coker({g) ~ Coker(C'S}").

Proof. If & € h™(p) is not flat, then CSiH(&) # 0, since CS}(&) = (xn, R(&)) and R(&) # 0.
Hence Ker(C'S}') C Ker(£f) and the equality follows. Moreover, hf(p) N Im(CS}) = Im(&g),
hence a: Coker(§g) — Coker(C'S}') is an embedding. If (Xn,wn,Mn—1) € h"(p), we consider
a class & € h"(p) such that R(&) = (wn, Mp—1), and we call (x,,,wn, Mp—1) := CS;(&). Then
(X' —Xn,0,0) € h(p), and, in Coker(C'S?), one has [(Xn, wn, 7n—1)] = [(X;, — X, 0,0)] € Ima.

Therefore a is also surjective. O
Corollary 4.4.10. If h* has no torsion, (4-98) is an isomorphism.

Proof. 1t immediately follows from theorems 4.4.9 and 4.4.4. [

4.5 Integration relative to the boundary

Let us consider a smooth fibre bundle f: Y — X, such that X is a manifold without boundary
and Y with boundary. It follows that the typical fibre is a manifold with boundary M.
Moreover, the restriction of f to the boundary, that we call 9f: Y — X, is a fibre bundle

too, with typical fibre M. Of course f is not neat, therefore we cannot apply the integration
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map as previously defined, but we can define the following integration map for classes relative
to the boundary:
fu: B*(Y,0Y) = h*™(X), (4-99)

m being the dimension of M. When X is a point, we get (4-76) as a particular case. The
map (4-99) generalizes to any cohomology theory the one described in [32].

4.5.1 Topological integration

Let us start with the notion of orientation. The idea is the following. We choose a neat
embedding ¢: Y < X x HY, such that mx ot = f (restricting ¢ to the boundary, we get
the embedding dc: Y — X x RY~1). This is always possible: for example, we can choose
a neat embedding x: Y < HY and define + := f x k. Then we choose a Thom class on
the normal bundle and a neat tubular neighbourhood, as always. We think of + as a map
to X x RN=! x I through the embedding [0, +00) ~ [0,1) C I. In this way, we can first
integrate on RY~1, getting a class in X x I, relative to X x 9. This is equivalent to getting
a class in X x 8!, therefore we can integrate on S and obtain the result.

Let us define this integration map using the same language of sections 4.2 and 4.3. Given
a fibre bundle f:Y — X, such that 0X = 0, a defining function for the boundary is a
smooth neat map ®: Y — X x I such that 9Y = ®71(X x {0}) (by neatness, it follows that
®~1{1} = (). In particular, the restriction of ® to a fibre Y, := 7~!{z} is a defining function
for the boundary of Y.

Definition 4.5.1. An h®-orientation on f: Y — X is a homotopy class of h®-oriented

defining functions for the boundary.

Remarks analogous to 4.2.13, 4.2.14 and 4.2.15 hold in this case. In particular, the
remark analogous to 4.2.13 shows that the idea we sketched at the beginning of this section

corresponds to definition 4.5.1. We set:

fu: h.(Y, 8Y) — h.im<X)

(4-100)
o = (I)[!(O./),
g1

where the map ®: (Y,0Y) — (X x I, X x 9I) is provided by the orientation of f and
the integration over S! is defined as follows. Since h*™1 (X x I, X x 9I) ~ h*T1~"(X x
S, X x {}) = h*T17™(X . A SY), ‘%’ being a marked point on S*, we apply the suspension
isomorphism A*H1 (X, A S') ~ h*™(X,) ~ h*™(X) and we get the result. The same

construction holds for differential integration of flat classes.
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4.5.2 Differential integration

We generalize the curvature map (4-57) in the following natural way:

R) 0t (X;5h5) — Q™ (Y bY)

(i
. (4-101)
w s (R(T) A Tw)
XXxRN-1xJ1/X
and we define:
RV Q%(X,0X: b)) — QY b8
(L7u7gp) ( R) ( R) (4_102)

(w, p) = R 4 o) (@) + R (p)-

Requiring that the orientation is proper, i.e. that the fibre of the normal bundle of +(Y’) in
t(y) = (z, 1) is sent by ¢ to a subset of {x} x H", it follows from formulas analogous to (4-56)
and (4-58) that:

Ry oy (w,p) = / Td(a) Aw + / Td(d|ay) A p. (4-103)
Y/X oY /X

Definition 4.5.2. An h®-orientation on f:Y — X is a homotopy class of h*-oriented
defining functions for the boundary, considering the curvature map (4-101) (equivalently,
(4-102)) in the definition of homotopy.

Corollary 4.2.31 and lemma 4.2.32 hold with the same proof. The isomorphism (4-74)
keeps on holding, replacing (I,9I) by (X x I, X x 8I), therefore we can integrate on R and
apply the integration map (4-83). This defines (4-99).
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