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ABSTRACT

DANILEVICZ,  I.  M.  Detecting  influential  observations  in  spatial  models  using  Bregman
divergence. 2018. 80 p. Dissertation (Master in Statistics) – Centro de Ciências Exatas e Tecnologia,
Universidade Federal de São Carlos, São Carlos – SP, 2018.

How to evaluate if a spatial model is well ajusted to a problem? How to know if it is the best model
between the class of conditional autoregressive (CAR) and simultaneous autoregressive (SAR) models,
including homoscedasticity and heteroscedasticity cases? To answer these questions inside Bayesian
framework, we propose new ways to apply Bregman divergence, as well as recent information criteria
as widely applicable information criterion (WAIC) and leave-one-out cross-validation (LOO).

The  functional  Bregman divergence  is  a  generalized  form of  the  well  known Kullback-Leiber  (KL)
divergence. There is many special cases of it which might be used to identify influential points. All the
posterior  distributions  displayed  in  this  text  were  estimate  by  Hamiltonian  Monte  Carlo  (HMC),  a
optimized  version  of  Metropolis-Hasting  algorithm.  All  ideas  showed  here  were  evaluate  by  both:
simulation and real data.

Keywords:  Bayesian  inference,  Bregman  divergence,  Hamiltonian  Monte  Carlo,  influential  points,
spatial models, heteroscedasticity.



RESUMO

DANILEVICZ, I. M. Detecção de observações influentes em modelos espaciais usando divergência de
Bregman.  2018.  80 p.  Dissertação  (Mestrado  em  Estatística)  –  Centro  de  Ciências  Exatas  e
Tecnologia, Universidade Federal de São Carlos, São Carlos – SP, 2018.

Como avaliar  se um modelo  espacial  está  bem ajustado? Como escolher  o melhor  modelo  entre
muitos  da  classe  autorregressivo  condicional  (CAR)  e  autorregressivo  simultâneo  (SAR),
homoscedásticos  e  heteroscedásticos?  Para  responder  essas  perguntas  dentro  do  paradigma
bayesiano, propomos novas formas de aplicar a divergência de Bregman, assim como critérios de
informação bastante recentes na literatura, são eles o widely applicable information criterion (WAIC) e
validação cruzada leave-one-out (LOO).

 

O funcional de Bregman é uma generalização da famosa divergência de Kullback-Leiber (KL).  Há
diversos casos particulares dela que podem ser usados para identificar pontos influentes. Todas as
distribuições  a  posteriori  apresentadas  nesta  dissertação  foram  estimadas  usando  Monte  Carlo
Hamiltoniano  (HMC),  uma  versão  otimizada  do  algoritmo  Metropolis-Hastings.  Todas  as  ideias
apresentadas neste texto foram submetidas a simulações e aplicadas em dados reais. 

Palavras-chave: Inferência Bayesiana, divergência de Bregman, Monte Carlo Hamiltoniano, pontos
influentes, modelos espaciais, heteroscedasticidade.
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1 INTRODUCTION

Time series and spatial models share the same restriction compared to traditional
regression models, their data are dependent. The absence of the assumption of independence
implies into theoretical and practical consequences to fit models and to proceed with
residual diagnostics, even more in a Bayesian environment. To proceed the analysis of
diagnostics, we must detect influential points, which could be defined as a set of observations
which modify the parameter estimation. There is a previous literature which proposed to
use the Bregman divergence to detect influential observation if they are independent and
identically distributed, (GOH; DEY, 2014). We extend their ideas to dependent samples.
Furthermore, we suggest to resize the Bregman divergence to a scale between zero and
one.

There is a vast literature of temporal and spatial models to study, but to illustrate
this procedure, we choose the simultaneous autoregressive (SAR) and conditional autore-
gressive (CAR) models to analyze. SAR is a model where a spatial structure is inserted
within the mean. On the other hand, CAR inserts the spatial pattern in the variance.
Both models are largely used in applied statistics as economics, social and environmental
analysis. They could be developed to homoscedastic or heteroscedastic cases. SAR and
CAR models can be estimated by both schools: classical and Bayesian. We choose the
second theoretical framework to follow and, consequently, we must simulated the posterior
distribution, because there is no closed analytical form. So it is necessary to resort to
Markov chain Monte Carlo (MCMC), Gibbs Sampling or Hamiltonian Monte Carlo (HMC),
we adopt the last option and encourage its use.

There are many ways to compare models in a Bayesian framework from Bayes factor
to reversible jump MCMC. Even though the information criteria class grew up and there
are new and interesting criteria available as widely applicable information criterion (WAIC)
and leave-one-out information criterion (LOO). Both criteria generalize the well known
deviance information criterion (DIC). Even before model selection, we must define the
prior of the models. We also used the LOO as tool to proceed with analysis of sensitivity
as well as the traditional way to study bias and variance of each parameter.

The remainder of the dissertation is structured as follows. In chapter 2, we describe
the spatial models which we shall use: their likelihood, priors and posteriors. Though, a
briefly discussion about HMC, its advantages and computational costs. In the chapter 3
we keep with a theoretical discussion. We present some recent information criteria and
introduce the functional Bregman divergence, mainly to realize how to take advantage of it
to proceed with Bayesian analysis of diagnostics. This divergence has some difficulties which
require simulation to be applicable. All the above propositions were study using simulated
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and real data. Chapter 5 is dedicated to test models and techniques by simulation study.
Analysis of sensitivity, evaluate models and diagnostics were first check in artificial and
controlled data. Only in chapter 6 we try or methods in real application. The applied data
correspond to Indexes of Sustainable Development in Brazil and social surveys realized in
European Union. We close the discussion in Chapter 6 and there is an appendix, where
the reader might check the model posteriors step by step.
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2 MODELS AND METHODS

In this chapter we shall present two canonical spatial models: CAR and SAR. Their
parameters, likelihood, prior and posterior distributions. The first section is dedicated to
discuss about CAR model, which is more frequently applied by statisticians. The second
section is reserved to SAR model, which is more commonly used by economists. Neither
of these models have a posterior in closed form, consequently, simulation might be use
to find an approached parameter distribution. So, the last section is dedicated to discuss
about the Hamiltonian Monte Carlo (HMC), a simulation method which we elected to
solve our posterior distributions.

Table 1: Brazil 2013, Indexes of Sustainable Development

State Agrotoxic1 GDP per capta council2 legislation3

AC 2.6 14.733 45.5 81.8
AL 2.8 11.277 10.8 40.2
AP 1.9 17.363 75.0 100.0
AM 0.7 21.874 54.8 72.6
BA 5.9 13.578 55.6 68.6

1 Measured in kg per cultivated hectare.
2 % of counties with environmental council.
3 % of counties with environmental legislation.

Before examining CAR and SAR, let us look at a motivator example. Table 1
displays a sample of Brazilian States and some Indexes of Sustainable Development (ISD).
Whether we wish to estimate the level of agrotoxic per cultivated area in a missing State,
we can proceed with a linear regression with three predictor variables: GDP per capta,
council and legislation. However, if there is spatial information available, i.e., if we know
which States sharing boundary then we might build a graph, where neighbor States are
connected points, and incorporate this information into analysis. Both CAR and SAR
used this graph in their likelihoods as we shall see later.

2.1 The CAR Model

The conditional autoregressive (CAR) model, introduced by (BESAG, 1974), have
received the major attention from statistician than SAR, by the reason it is more malleable.
CAR model with independent covariates is frequently expressed as in expression 2.1
(OLIVEIRA, 2012):

yi|y(i) ∼ N

(
x′iβ +

n∑
j=1

φaij(yj − x′jβ), σ2
i

)
, (2.1)
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where y′(i) = (y1, . . . , yi−1, yi+1, . . . , yn) is the response variable, x′ = (x1, . . . , xk) is the
vector of k covariates and the respectively linear coefficients β′ = (β1, . . . , βk). The
covariance structure is contemplated by φaij ≥ 0 and σ2

i ≥ 0,∀i. The φ is the spatial
correlation parameter and aij shall be explained at Definition 1.

The model could be vector represent as in expression 2.2.

y ∼ N
(
Xβ, (In − φA)−1M

)
, (2.2)

where M is a diagonal matrix responsible by the pure variance. The square matrix A is
the adjacent matrix, which summarize the spatial connections between the observations,
i.e., it describes the graph suggested in the motivator example. Here we used the terms
"adjacent", "neighbor" or "near" to indicate two observations share some spatial connection,
which depends of the research context.

Definition 1 A symmetric matrix A is called an adjacent matrix if each element aij = 1
if positions i and j are spatial connected and aij = 0 otherwise. The diagonal is define as
zero, aii = 0 ∀ i,

An×n =


0 a1,2 . . . a1,n

a2,1 0 . . . a2,n
... ... . . . ...
an,1 an,2 . . . 0

 . (2.3)

There are two restrictions to φA and M as discussed by (CRESSIE, 1993) and
(RUE; HELD, 2005):

1. φM−1A must be symmetric;

2. M−1(In − φA) must be positive defined.

The CAR could be homoscedastic as well as heteroscedastic. These conditions
depend of the matrix M , which could be as the next two items, as previously showed by
(CRESSIE; PERRIN; THOMAS-AGNAN, 2005) and (OLIVEIRA, 2012):

1. Whether M = σ2In, the CAR model owns homoscedasticity;

2. On the other hand, if M = (σ2
1, . . . , σ

2
n)′In, it presents heteroscedasticity.
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Thus, if we assume M = σ2In and θ = {β, φ, σ2}, CAR has a likelihood as in
equation 2.4.

f(y|θ) = (2πσ2)−n/2|In − φA|1/2 exp
{
− 1

2σ2 (y −Xβ)′(In − φA)(y −Xβ)
}
, (2.4)

although, a more complex frame comes with M = (σ2
1, . . . , σ

2
n)′In. For simplicity, we shall

referee (σ2
1, . . . , σ

2
n)′In as Σ and θ = {β, φ,Σ}. So it owns a heteroscedastic likelihood as

in equation 2.5,

f(y|θ) = (2π)−n/2|In − φA|1/2|Σ|−1/2 exp
{
−1

2(y −Xβ)′(In − φA)Σ−1(y −Xβ)
}
.

(2.5)

2.1.1 Choice of Priors for homoscedastic CAR

First, we shall solve a homoscedastic problem and so extended it to heteroscedastic
case. We assigned the following prior distributions for the parameters and assume that
they are independent.

φ ∼ Uniform(0, 1)
β ∼ N(0, ηIk)

σ2 ∼ IG(a, b),
(2.6)

where Ik is the identity matrix of dimension k×k, so for a large η, this is a poor informative
prior. Although a Beta prior for φ was suggest by (BANERJEE; CARLIN; GELFAND,
2015), we follow (OLIVEIRA, 2012) who defends there is no reason to increase the
complexity in this parameter. Finally the prior of σ2 as an inverse Gamma is interesting
for pragmatical purpose. However, a good elicitation of the hyperparameters a, shape, and
b, scale, might be not so simple. If the hyperparameter a > 2, we might guarantee that
the prior π(σ2) is proper and, consequently, the posterior is proper too. However, even if
0 < a ≤ 2, there is low possibility that the posterior is improper, (OLIVEIRA, 2012).

Using Bayes’s theorem and independence of priors, we have the joint posterior
density,

p(φ,β, σ2|y) ∝ (σ2)−(a+1+n/2) exp
{
− 1

2σ2 (y −Xβ)′(In − φA)(y −Xβ)− 1
2ηβ

′β − 2b
2σ2

}
.

(2.7)
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The solution step by step of all posterior distributions showed in this work are
available in Appendix. Equation 2.7 has no closed form, but can be solve by Hamiltonian
Monte Carlo (HMC). We also can derive the conditional posterior distribution of each
specific parameter. To begin with β as in expression 2.8, which gives a multivariate Normal,

β|y ∼ Nk(0, ησ2 [ηX ′(In − φA)X + σ2In
]−1). (2.8)

In the same way, we may derive the conditional posterior of φ, which is a truncate
Exponential distribution between zero and one as in 2.9,

φ|y ∼ Exp

(
1

2σ2 (y′Ay + (Xβ)′AXβ)
)
Iφ∈[0,1]. (2.9)

Finally, we might derive the conditional posterior of σ2, which correspond to a inverse
Gamma with hyperparameter a and b as exhibit in expression 2.10,

σ2|y ∼ IG

(
a+ n

2 ,
1
2(y −Xβ)′(In − φA)(y −Xβ) + b

)
. (2.10)

2.1.2 Choice of Priors for heteroscedastic CAR

Whether we cannot assume homoscedasticy, we must alter the variance’s prior from
an inverse Gamma distribution to a product of inverse Gammas as in 2.11.

σ2
i ∼ IG(ai, bi) ∀i ∈ {1, . . . , n}. (2.11)

Consequently, the posterior might be changed as in equation 2.12,

p(φ,β,Σ|y) ∝ |Σ|−1/2
n∏
i=1

(
(σ2

i )−(ai+1)) exp
{
−1

2(y −Xβ)′(In − φA)Σ−1(y −Xβ)− 1
2ηβ

′β −
n∑
i=1

bi
σ2
i

}
,

(2.12)

where Σ = (σ2
1, . . . , σ

2
n)′In is a diagonal heteroscedastic variance matrix. Again, we discuss

each one of the conditional posteriors. First, the referent to β in 2.13,

β|y ∼ Nk

(
0, η[ηX ′(In − φA)Σ−1X + In]−1) , (2.13)
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which is clearly a k multivariate Normal, because X ′ has dimension k × n. The spatial
parameter φ is checked in expression 2.14, a truncate Exponential distribution,

φ|y ∼ Exp

(
1
2(y′AΣ−1y + (Xβ)′AΣ−1(Xβ))

)
Iφ∈[0,1]. (2.14)

For the conditional distribution of variance we must used some different strategy
because working with matrix operation would be quite hard in this case. We remind that
σ2
i and σ2

j are independent for all i 6= j. So, without loss of generality consider any σ2
i and

its respective prior ai and bi as we developed in expression 2.15,

σ2
i |y ∼ IG

(
ai + 1/2, 1

2[(y −Xβ)′(In − φA)(y −Xβ) + 2bi]
)
, (2.15)

where all σ2
j , aj and bj for all j 6= i are constants.

2.2 The SAR Model

The simultaneous autoregressive (SAR) models have become widely used by
economists (WANG; LUNG-FEI, 2013), and they present a relevant characteristic: additive
errors, this implies in easier simulation and estimation. SAR is simpler than CAR and
consequently it is more parsimonious, an important quality if or data set is not abundant.

A SAR model with independent covariates could be expressed as in equation 2.16.

y = φWy +Xβ + ε, (2.16)

where y = (y1 y2 . . . yn)′ is a n vector of the outcomes, X denotes an n × k matrix of
covariates, i.e., known constants, β = (β1 β2 . . . βk)′ is a k vector of linear regression
coefficients, ε = (ε1 ε2 . . . εn)′ is a n vector of errors, φ is the coefficient of spatial effects
on y, and W represents a spatial weight matrix as clarified by Definition 2.

Definition 2 A square matrix W is called a weight matrix if it is the result of an adjacent
matrix A, where each row is divided by the row sum, ri, i.e., ri =

∑n
j=1 Ai,j. Then

wij = aij/ri.

Wn×n =


0 a1,2/r1 . . . a1,n/r1

a2,1/r2 0 . . . a2,n/r2
... ... . . . ...

an,1/rn an,2/rn . . . 0

 , (2.17)

therefore it is guaranteed that
∑n

j=1 Wi,j = 1 ∀ i.
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The errors are initially assumed to be independently and normally distributed with
mean zero and common variance σ2. This is the homoscedastic case where ε ∼ N(0, σ2In)
and In is the identity matrix of dimension n. By using the properties of the multivariate
normal distribution, it follows that the likelihood function is given by equation 2.18,

f(y|θ) = (2πσ2)−n/2 exp
{
− 1

2σ2 (y −Xβ − φWy)′(y −Xβ − φWy)
}
, (2.18)

where θ = {β, φ, σ2}. We could generalized the model to heteroscedastic context, where
ε ∼ N(0,Σ). Consequently, the likelihood would be as equation 2.19,

f(y|θ) = (2π)−n/2|Σ|−1/2 exp
{
−1

2(y −Xβ − φWy)′Σ−1(y −Xβ − φWy)
}
, (2.19)

where Σ = (σ2
1, . . . , σ

2
n)In.

2.2.1 Choice of Priors for homoscedastic SAR

The SAR model has similar parameters with CAR, so is not extraordinary we
decide for resembling prior,

φ ∼ Uniform(0, 1)
β ∼ N(0, ηIk)

σ2 ∼ IG(a, b).
(2.20)

Using Bayes’s theorem and independence of priors, we have the joint posterior
density,

p(φ,β, σ2|y) ∝ 1
(σ2)(a+1)+n/2 exp

{
− 1

2σ2 (y −Xβ − φWy)′(y −Xβ − φWy)− 1
2ηβ

′β − 2b
2σ2

}
.

(2.21)

Expression 2.21 has no close form, but could be adjusted by HMC. We also can
derive the conditional posterior distribution of each specific parameter, just begin with β
as in expression 2.22,

β|y ∼ Nk((y′X − φy′WX)(ηX ′X + σ2Ik)−1, σ2η(ηX ′X + σ2Ik)−1). (2.22)
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In the same way, we may derive the conditional posterior of φ as in 2.23,

φ|y ∼ N

(
y′Wy

(Wy)′(Wy) −
(Xβ)′Wy

(Wy)′(Wy) ,
σ2

(Wy)′(Wy)

)
Iφ∈[0,1]. (2.23)

Where Iφ∈[0,1] is the indicator of truncation for φ inside the real interval from zero to
one, which result into a truncate Normal distribution for φ. Finally, we might derive the
conditional posterior of σ2 as in 2.24. The variance follows an inverse Gamma, a similar
result with the CAR model,

σ2|y ∼ IG

(
a+ n

2 ,
1
2(y −Xβ − φWy)′(y −Xβ − φWy) + b

)
. (2.24)

2.2.2 Choice of Priors for heteroscedastic SAR

When we cannot assume homoscedasticy, we must alter the variance’s prior from
an inverse Gamma distribution to a product of inverse Gammas as in 2.25.

σ2
i ∼ IG(ai, bi), ∀i ∈ {1, . . . , n}. (2.25)

Consequently, the posterior might be changed as in 2.26,

p(φ,β,Σ|y) ∝ |Σ|−1/2
n∏
i=1

(
(σ2

i )−(ai+1))
exp

{
−1

2(y −Xβ − φWy)′Σ−1(y −Xβ − φWy)− 1
2ηβ

′β −
n∑
i=1

bi
σ2
i

}
.

(2.26)

Equation 2.26 has no closed form. Although, the conditional posteriors display a
more treatable shape, β|y follows a multivariate Normal as described in 2.27.

β|y ∼ Nk

(
[y′Σ−1X + φ(Wy)′Σ−1X][X ′Σ−1X + η−1Ik]−1, [X ′Σ−1X + η−1Ik]−1) .

(2.27)

So the conditional of φ|y still a truncate Normal between zero and one. See
expression 2.28,

φ|y ∼ N

(
y′Σ−1Wy

(Wy)′Σ−1Wy
− (Wy)′Σ−1Xβ

2(Wy)′Σ−1Wy
, ((Wy)′Σ−1Wy)−1

)
Iφ∈[0,1]. (2.28)
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For the conditional distribution of variance we must used the same strategy applied
in the heteroscedastic CAR model. We remind that σ2

i and σ2
j are independent for all

i 6= j. So, without loss of generality consider any σ2
i and its respective prior ai and bi as

we developed in expression 2.29,

σ2
i |y ∼ IG

(
ai + 1

2 ,
1
2[(y −Xβ − φWy)′(y −Xβ − φWy) + 2bi]

)
. (2.29)

where all σ2
j , aj and bj for all j 6= i are constants.

2.3 Hamiltonian Monte Carlo

In the last section we define the posterior distribution of SAR and CAR models.
Though we must to adjusted them, because there are no closed form to them. The most
obvious strategy is to simulate by random walk Gibbs sampling, since all the conditional
posteriors are already defined. However, the elevated rate of intrinsic autocorrelation
within Markov chains implies into a high tax of sampling discard to fix the dependence
between each iteration. Consequently, this methodology demands a waste of time and
computational effort.

A representative mixing of the parametric space Θ is indispensable for all ensuing
Bayesian analysis. This epistemological reason and the respect to computational time
justify the seeking for efficient methods of simulation. The Hamiltonian Monte Carlo
(HMC) comes as a recent and powerful simulation technique whether all the parameters of
interest are continuous. What is exactly our case in both models: SAR and CAR. The
HMC could be seem as a kind of Metropolis-Hastings, (NEAL, 2011), which is much more
known and used. We show the symmetric Metropolis-Hastings algorithm, (GELMAN et
al., 2003), and its three basic steps:

1. Draw a starting point θ0, sample a proposal θ∗ vector for the parameter at the time
t;

2. determine the ratio r between densities,

r = p(θ∗|y)
p(θt−1|y) ; (2.30)

3. set

θt =
{
θ∗ , with probability min(r,1)
θt−1 , otherwise

}
. (2.31)
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HMC consist of take advantage of the gradient of the posterior instead of a naive
random walk at the time of roam the parametric space Θ, i.e., at the first step we propose
a smart θ∗. Using the gradient of the log probability function to increase convergence time
and to find the stationary distribution, (NEAL, 2011).

The trick of HMC is to develop a Metropolis algorithm where the invariant dis-
tribution is not the posterior, p(θ|y), but a Hamiltonian density, p(H(θ,ϕ)), which is a
mix of the log posterior, U(θ), and an artificial, K(ϕ), distribution. The density of H(·)
is associate with an energy equation and could be simplify to

p(H(θ,ϕ)) = 1
c

exp(−H(θ,ϕ)), (2.32)

where c is just a normalization constant. We may decompose the Hamiltonian density
into two independent pieces, i.e., H(θ,ϕ) = U(θ) +K(ϕ), where θ = {θ1, . . . , θd} are the
"position" or "kinetic" variables and ϕ = {ϕ1, . . . , ϕd} are the "momentum" or "potential"
variables in physics literature.

Let us consider the "kinetic" variables as minus log prior and likelihood, U(θ) =
− log(π(θ)f(y|θ)), and the "potential" variables as artificial random variables, commonly,
log of a multivariate normal without correlation and zero mean, (NEAL, 2011).

K(ϕ) =
d∑
i=1

ϕ2
i

2vi
, (2.33)

where vi is a variance hyperparameter. Until this point, we just increase the complexity of
the problem without give any advantage, we shall proceed with the leapfrog technique to
finally understand the point. One leapfrog iteration consist of:

ϕ(t) ∼ Nd(0, V ) (2.34a)

ϕ(t+ε/2) = ϕ(t) − ε

2∇U(θ(t)) (2.34b)

θ(t+ε) = θ(t) + ε(ϕ(t+ε/2)V −1) (2.34c)

ϕ(t+ε) = ϕ(t+ε/2) − ε

2∇U(θ(t+ε)), (2.34d)

where t indicates the time, V = diag(v1, . . . , vd) is the diagonal matrix of variance, ε is
a constant called step size which define the time discretization. ∇U(θ) is the gradient
of minus logarithm prior times likelihood. As the multivariate normal in 2.34a fills all
the domain and is symmetric, we could see the leapfrog as a valid propose to Metropolis
algorithm, (METROPOLIS et al., 1953) and (HASTINGS, 1970), which consist of a sum
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of random and deterministic components. Though, the step 2 is subtly different, i.e., r
would be update to

r = p(H(θ(t+ε),ϕ(t+ε))
p(H(θ(t),ϕ(t)) , (2.35)

where t is the current time and θ(t+ε),ϕ(t+ε) are the new propose. The probability of
acceptance a new propose is again equal to min(r, 1). Furthermore, instead of run just one
leapfrog we might do L steps before proceed with judgment of acceptance. Consequently,
we may run a time length of L× ε. For example, if L is equal to 2, the algorithm in 2.34
well be replicated at steps 2.34b and 2.34c.

In our discussion it should be evident that Hamiltonian Monte Carlo involves
three tuning arguments or, in Bayesian words, three hyperparameters. They are the L
number of leapfrogs by iteration, the ε step size length and the initial distribution of
the "momentum" variable ϕ. To choice an appropriated number of L, which associated
with ε will not produce a constant periodicity may be done using the No-U-Turn (NUTS)
sampler, (HOFFMAN; GELMAN, 2014).

NUTS is an algorithm created to avoid the need to hand-tune L and ε. During the
warmup the algorithm will test different values of leapfrogs and step size and automatically
judges the best range to sample.

The basic strategy is to double L until increase the leapfrog will no more enlarge the
distance between initial value of θ and a proposed value θ∗. The criterion is the derivative
with respect to time of half the squared distance between the θ and θ∗, as in equation 2.36,

∂

∂t

[
(θ∗ − θ) · (θ∗ − θ)

2

]
= (θ∗ − θ) ∂

∂t
(θ∗ − θ) = (θ∗ − θ) · ϕ, (2.36)

where ϕ is the momentum variable. To guarantee the reversibility of the process we must
create an auxiliary variable z, which follows an Uniform distribution. This variable is
responsible for backward and forward the Hamiltonian trajectory.

To define an efficient value to ε is even more simple. During the warmup NUTS
would constantly check if the acceptance probability is sufficiently high, i.e., at least
greater than half. If it is not, the algorithm just shorten the step size at next iteration
(NESTEROV, 2009) and (HOFFMAN; GELMAN, 2014).

Three obvious limitations of this technique are that a stationary distribution must
exist, we must be capable to write the prior and likelihood and the gradient might be
declared. The Stan programming language provides the numerical gradient, what solves
the third requirement. Finally, the distribution of ϕ could be a multivariate normal with
a diagonal variance or a full covariance matrix structure. The former used to be elected
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because precision increase is almost irrelevant compare with the computational memory
costs, (Stan Development Team, 2016).
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3 MODEL SELECTION AND DIAGNOSTIC ANALYSIS

Model Selection and Diagnostic Analysis are two topics with many challenges to
solve if we adopted a Bayesian perspective. The main reason is the difficulty to evaluate
a model which already has incorporated subjective judgments as prior. How would be
possible to an analyst to judge her or his own beliefs?

As an unconsolidated field, there is a lot of propositions to model checking and
selection. We briefly remind some canonical approaches as posterior predictive (RUBIN,
1981), Bayes factor (KASS; RAFTERY, 1995), cross-validation (STONE, 1974), reversible
jump Markov chain Monte Carlo (GREEN, 1995) and (HASTIE; GREEN, 2012), and all
the vast family of information criteria. The later is the subject of our next section.

The frame of diagnostic analysis depends of the selected model and its theoretical
assumption. However, influential points are a constant concern to any analyst. By this
reason, our second section is dedicated to influential points, an important aspect of model
diagnostic.

3.1 Information Criteria

An objective way to choice models is an indispensable tool for any statistician.
Here we present three recent information criteria: DIC, WAIC and LOO.

One of the best articles to understand the hide discussion about information criteria
is presented by (GELMAN; HWANG; VEHTARI, 2013). Where the authors define two
seminal quantities: the expected log predictive density for a new data point (ELPD) and
the expected log pointwise predictive density for a new dataset (ELPPD). Where DIC
is a way to estimate the first and WAIC is a path to estimate the second. It follows the
respective equations:

elpd = Ef (log ppost(ỹi)) =
∫

(log ppost(ỹi))f(ỹi)dỹ. (3.1)

elppd =
n∑
i=1

Ef (log ppost(ỹi)) =
n∑
i=1

∫
(log ppost(ỹi))f(ỹi)dỹi. (3.2)

3.1.1 DIC

The deviance information criterion (DIC) is the first authentic Bayesian criteria
(SPIEGELHALTER et al., 2002) and (LINDE, 2005), which generalized the frequentist
idea of AIC, (AKAIKE, 1973), to Bayesian framework. The core of DIC is just the elpdDIC ,
a Bayesian version of AIC with two relevant changes, replacing the maximum likelihood
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estimate θ̂ with the posterior mean θ̂Bayes = E(θ|y) and replacing k with a data-based
bias correction. The new measure of predictive accuracy is,

êlpdDIC = log f(y|θ̂Bayes)− pDIC , (3.3)

where pDIC is the effective number of parameters, defined as,

pDIC = 2 log f(y|θ̂Bayes)− Epost(log f(y|θ)), (3.4)

where the expectation in the second term is an average of θ over its posterior distribution.
DIC core is multiplicated by minus two to displays an AIC similar format as in equation
3.5.

DIC = −2 log f(y|θ̂Bayes) + 2pDIC . (3.5)

3.1.2 WAIC

To explain the WAIC we must expend one more intermediate step. In practice, we do
not know the parameter θ, so we cannot know the log predictive density log p(y|θ). By this
reason we would work with the posterior distribution, ppost(θ) = p(θ|y), and summarize
the predictive accuracy of the fitted model to data by the log pointwise predictive density
(LPPD).

lppd = log
n∏
i=1

p(yi) =
n∑
i=1

∫
f(yi|θ)ppost(θ)dθ, calculated as

n∑
i=1

log
(

1
S

S∑
s=1

f(yi|θs)
)
,

(3.6)

where θs are the sampled parameters and S is the number of iterations of the Markov
chain. WAIC is consider a fully Bayesian approach because it takes into account all the
posterior distribution instead of a single point estimation as DIC, which uses an average
of θ over its posterior distribution, (WATANABE, 2010). The core of WAIC is like,

êlppdWAIC = lppd− pWAIC . (3.7)

where lppd was define in equation 3.6 and pWAIC is the correspondent bias correction for
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effective number of parameters to avoid overfitting,

pWAIC =
n∑
i=1

log(Epostf(yi|θ))− Epost log(f(yi|θ)), calculated as

2
n∑
i=1

(
log
(

1
S

S∑
s=1

f(yi|θs)
)
− 1
S

S∑
s=1

log f(yi|θs)
)
.

(3.8)

We define WAIC as -2 times the expression 3.7 to be analogous with DIC.

3.1.3 LOO

In Bayesian cross-validation, the data are split into a training ytrain and a test set
ytest, after the model is fit to ytrain we check the fitting quality with the outstanding test
data. The main idea of LOO is to repeat n times the cross-validation procedure each time
with n − 1 observations into the training set (GELMAN; HWANG; VEHTARI, 2013).
This cross-validation strategy allows us to solve a log pointwise predictive density (LPPD)
by LOO, i.e.,

lppdLOO =
n∑
i=1

log ppost(−i)(yi) =
n∑
i=1

log
∫
ppred(yi|θ)ppost(θ)dθ,

calculated as
n∑
i=1

log
(

1
S

S∑
s=1

f(yi|θi,s)
)
,

(3.9)

where ppred correspond to the predictive distribution. Each prediction is conditioned on
n−1 data points, which causes an underestimation of lppdLOO. (BURMAN, 1989) proposed
a first order bias correction, he argued that the bias is equivalent to b = lppd− lppd, where

lppd−i = 1
n

n∑
i=1

n∑
j=1

log ppost(−i)(yj), calculated as 1
n

n∑
i=1

n∑
j=1

log
(

1
S

S∑
s=1

f(yj|θi,s)
)
.

(3.10)

Consequently, the bias-corrected lppd LOO is equivalent to lppdLOOc = lppdLOO + b.
Differently from the previous criteria, LOO does not require a model dimension penalization,
but an effective number of parameters can be approximated by pLOO = lppd− lppdLOO.

The LOO is the most computational costly, but it is considered the most precise
too. Because it is the asymptotic convergence of WAIC. An obvious LOO disadvantage is
it requires sample to be divided into disjoint, ideally conditionally independent, pieces.
However, strictly talking both previous criteria have the same restriction. This is a clear
limitation to structured models, as our SAR and CAR. Although, our simulation study
reveals some empirical hope that these criteria seems to still applicable to spatial models.
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3.1.4 Standard errors

To improve computational speed of WAIC and LOO, they must be estimate by
Pareto importance sampling. This technique requires to declare a log pointwise predictive
inside the HMC code.

This strategy implies in violate an important assumption: the dependence structure
of the likelihood. However, if we proceed despite of this obstruction, we can defineWAIC(−i)

as the WAIC of a subsample y(−i) = {y1, . . . , yi−1, yi+1, . . . , yn}, which could be estimated
by Pareto importance sampling as ŴAIC(−i) (VEHTARI; GELMAN; GABRY, 2016).

A second advantage of applying Pareto importance sampling consist of do a "sample"
of n WAIC(−i). Then we can obtain the standard error of our estimated WAIC,

SE(ŴAIC) =
√
V arni=1ŴAIC(−i)/n. (3.11)

A similar result might be construct to LOO criterion. By Pareto importance sampling we
can estimate LOO(−i) and its standard error,

SE(L̂OO) =
√
V arni=1L̂OO(−i)/n. (3.12)

The availability of standard errors could help us at the time of interpret if a
difference between two or many criteria is or is not relevant. Once information criteria
are not a statistical test and there is no significance inference associated at them, any
graphical tool is useful.

3.2 Bayesian model diagnostics

A main procedure in analysis of diagnostics consist of be able to identify if any
observation may strongly influence the model parameter estimation and prediction. In
other words, what would be changed if a single observation could be removed or displays
a quite different value?

3.2.1 Influential points

An influential point consist of some observation which strongly changes parameter
estimations. The classical example is a point which drastically alters the slope parameter
in a linear regression. In Bayesian inference, our focus lies into all posterior distribution
instead of a single parameter estimating.

The reason of a point to be or not to be an influential observation consist in a
complex issue. Many times, outliers could be responsible for strongly influence in the model.
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However, outliers and influential points are two different concepts. An outlier consist of a
large lack between observation value, yi, and its prediction, ŷi (COOK; WEISBERG, 1982).
On the other hand, an influential point is an observation which if it would be remove from
the data it would cause a drastic modification in the posterior distribution.

In linear regression background an influential observation used to be called as a
point of leverage. Furthermore, it is easy to separate outliers from influential points in
that context. Pearson error measures the lack of fit in each observation and the Cook’s
distance measures the influence (COOK; WEISBERG, 1982). Although these concepts
were proposed to independent data, they were generalized to dependent models, see (FOX,
1972).

Influential observations role a main place in any model diagnostic. Because all
the conclusions are directly affect if the estimation of parameters has problems. However,
complex models require a different approach. Seeking for leverage effect in all parameters
which we must estimate in a complex model seems unfeasible.

Further, dependent models have an additional obstacle, which consist of an impos-
sibility of split the sample. An intuitive way to check about the stability of estimations is
to divide the sample and separately estimate the parameters. If each partition produces
a similar estimation we have arguments to accept the hypothesis of low influence. This
appealing idea is hard to extend to dependent data for a reason, how to split data without
crashing the characteristics of likelihood?

Fortunately, Bayesian inference should produce a posterior distribution. So, if
there is a function which measures the distance between two probability densities we can
measure distance between two posterior distributions or between a Bayesian model and its
perturbed version.

We can use a well know function as Kullback-Leiber to estimate the divergence
between two posterior distributions. The following subsections are dedicated to present
functional Bregman divergence, a generalization of Kullback-Leiber and how to measure
perturbed models.

3.2.2 Functional Bregman divergence

The functional Bregman measures a divergence between functions, which could be
probability densities. We do not used to describe Bregman as a distance because there is
no symmetry. We define (Ω, X, ν) as a finite measure space and f1(x) and f2(x) as two
non-negative functions, (GOH; DEY, 2014).

Definition 3 Let us consider ψ : (0,∞) → R be a strictly convex and differentiable
function on R. Then the functional Bregman divergence Dψ is defined under the marginal
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density ν(x) as

Dψ(f1, f2) =
∫
ψ(f1(x))− ψ(f2(x))− ψ′(f2(x))[f1(x)− f2(x)]dν(x), (3.13)

where ψ′ represents the derivative of ψ.

This divergence has some already proofed proprieties, which used to be present in
the following sequence:

1. (Nonnegativity) Dψ(f1, f2) ≥ 0 for any non-negative measurable functions and
equality holds if and only if f1 = f2;

2. (Convexity) Dψ(f1, f2) is convex with respect to f1, but not necessarily with respect
to f2;

3. (Linearity) Dc1ψ∗+c2ψ∗∗(f1, f2) = c1Dψ∗(f1, f2) + c2Dψ∗∗(f1, f2) for any positive c1

and c2 as well as for any ψ∗ and ψ∗∗ which respect the Definition 3;

4. (Equivalent classes) Whether ψ(f1) = ψ∗(f1) + bf1 + c, where b, c ∈ R, thus
Dψ(f1, f2) = Dψ∗(f1, f2). Therefore, the set of strictly convex functions, ψ, might be
partitioned into equivalent classes such that [ψ∗] = {ψ|Dψ(f1, f2) = Dψ∗(f1, f2)};

5. (Linear separation) The geometric place of the non-negative measurable function f
which has the same distance from two fixed functions f1 and f2 is a hyperplane;

6. (Dual divergence) Let us consider ψ as a Legendre function and ψ? as its conjugate,
thus Dψ(f1, f2) = Dψ?(f ?1 , f ?2 ), where f1 and f2 are respectively related to f ?1 and f ?2
by Legendre transformation;

7. (Generalized Pythagorean inequality) For any non-negative measurable functions
f1, f2 and f3 the functional Bregman divergence satisfies the equation: Dψ(f1, f3) =
Dψ(f1, f2) +Dψ(f2, f3) +

∫
ψ′(f2)− ψ′(f3)[f1 − f2]dν.

All the above proprieties were debate by (FRIGYIK; SRIVASTAVA; GUPTA,
2008a) in context of functional divergences, and they were already proofed in a technical
report of the same authors, see (FRIGYIK; SRIVASTAVA; GUPTA, 2008b).

Let us discuss about the limit of a strictly convex function to a convex one, i.e.,
what happens if we elected the identity as our ψ? Then ψ(f(x)) = f(x) ∀f(x) and
ψ′(f(x)) = 1 ∀f(x). Consequently, the functional Bregman would be zero to any f1(x)
and f2(x).



41

strictly convex

identity

Figure 1: Example of strictly convex and identity functions

Whether we choose a strictly convex ψ as illustrated in Figure 1, then Bregman
divergence would be always greater than zero, except for trivial case where f1(x) = f2(x).
Furthermore, ψ works as a tuning parameter and if we increase its distance from the
identity we might have Dψ(f1, f2) so big as we could desire, it does not matter the functions
f1(x) and f2(x).

The choice of the convex function ψ presents some degree of freedom. Here we
follow the suggestion of (GOH; DEY, 2014) and restricted to the class of convex functions
defined by (EGUCHI; KANO, 2001), i.e., ψα(x), where α ∈ R.

ψα(x) =


x log x− x+ 1, α = 1
− log x+ x− 1, α = 0
(xα − αx+ α− 1)/(α2 − α), otherwise.

(3.14)

Even though the choice of α has infinity degree of freedom, different values reserves
distinct qualities, as we shall discuss later. Three of the possible choices of α are more
studied and already known as specific divergences. If α = 0 reduces to Itakura-Saito
distance, α = 1 becomes Kullback-Leibler divergence, α = 2 is the squared Euclidean
distance or L2/2.

3.2.3 Perturbation on dependent models

Here we extend the ideas from (GOH; DEY, 2014), who define some perturbation
for models which fitting independent and identically distributed observations to dependent
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models. Let {f(y|θ, X)|θ ∈ Θ} be a class of statistical models, (GOH; DEY, 2014) define
a general perturbation as follows:

δ(θ,y, X) = fδ(y|θ, X)πδ(θ)
f(y|θ, X)π(θ) , (3.15)

where δ indicates that likelihood or prior suffers some perturbation. In the outlier detection
context, the perturbation may be restricted just inside the likelihood, or even in the y
variable, once the prior was unaltered. To avoid misinterpretation, the authors define a
specific perturbation, δ1, restricted to likelihood.

δ1(θ,y, X) =
f(y(i)|θ, X)π(θ)
f(y|θ, X)π(θ) =

f(y(i)|θ, X)
f(y|θ, X) , (3.16)

where y(i) was consider by the authors as y vector without the i-th case . We cannot
proceed as them, because we can not exclude an observation without modify A orW matrix
and consequently the likelihood is not comparable. Even more, as (WANG; LUNG-FEI,
2013) highlighted the worst way to work with model estimation on dependence framework
is case deletion. Instead, they obtained much better results by data imputation.

For all these reasons, we propose a different way to express y(i). Instead of remove
an observation, we inputted an observation with its prediction, y(i) = (y1, . . . , ŷi, . . . , yn)′,
what means yi case suffers an imputation which does not depend of it. The specific point
yi to be inputted in the vector y(i) is define as in equation 3.17 for the SAR case.

ŷi = x′iβ̂ + ρ̂Wy, (3.17)

where ρ̂ is a previous estimation of ρ, as well as β̂ from β. Again, yi was not required to
estimate ŷi, because wi,j = 0 when i = j. And for the CAR, we suggest the procedure in
equation 3.18.

ŷi = x′iβ̂ +
n∑
j=1

φ̂aij(yj − x′jβ̂), (3.18)

where φ̂ and β̂ are the previous estimation of φ and β, respectively. In both cases, SAR
and CAR, ŷi just depend of i-th observation in the covariates, x′i. In this way, we have
a technique to judge the local influence of i-th point, which consist of proceed with a
divergence between the likelihood and its inputted analogous as in 3.19,

dψ,i = Dψ(f(y(i)|θ, X), f(y|θ, X)). (3.19)

Another motivator objective is to proceed with an analysis of sensitivity, which
means in Bayesian inference to understand the weight between select different priors. To
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solve this problem, some authors like (GOH; DEY, 2014), (DEY; BIRMIWAL, 1994) and
(MCCULLOCH, 1989) follow the scheme displayed in equation 3.20. However, it is hard to
conclude something, because a divergence between two priors always will compare a prior
with another prior, and there is no way to judge the better one if there is no previous
information available.

δ2(θ,y, X) = f(y|θ, X)πξ(θ)
f(y|θ, X)π(θ) = πξ(θ)

π(θ) , (3.20)

where π(θ) is a default prior and πξ(θ) is the same prior with an additional noise. This is
an interesting argument, but if we do not have a default prior just becomes useless. For
this reason, we propose to follow another strategy as to use information criteria.

This last idea consist of concentrate all model information in a single value, which
could be the DIC as used by (RODRIGUES; ASSUNÇÃO, 2012), but might easily be
generalized to WAIC or even LOO. If these criteria still around the same values with
different priors we may conclude that these priors are not so informative.

3.2.4 Posterior comparison using Bregman divergence

Our main objective is to proceed with a direct comparison between two posteriors
p(θ|y) and pδ(θ|y) using functional Bregman divergence. However, equation 3.13 has not a
general closed form. There are two techniques to obtain D̂ψ. First a Gaussian approximation
and later a particular importance sampling, the importance weighted marginal density
estimation (IWMDE). The first method is easier to implement, but is not accurate for
hierarchical models, and spatial models belong to them. So, for lack of alternatives we
continue with IWMDE, (GOH; DEY, 2014).

We are working with many operations which involve posteriors, so it is convenient
to define the normalizing constant for p(θ|y) as

m−1(y) =
∫

ω(θ)
f(y|θ)π(θ)

p(θ|y)dθ, (3.21)

where m(y) is the marginal density
∫
f(θ|y)π(θ) and ω(.) is any probability density

function, do not confuse with a particular wi,j element of our W matrix. Let {θs}Ss=1 be
samples from the posterior distribution p(θ|y) , where the samples could be generated by
HMC. We can sample the inverse of the constant 3.21 using the simulated θs and choosing
an appropriate ω.

m̃IW (y) =
[

1
S

S∑
s=1

ω(θs)
f(y|θs)π(θs)

]−1

. (3.22)
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By this way we might define the posterior distribution p̃IW (θ|y) as the result of
the IWMDE processes,

p̃IW (θ|y) = f(y|θ)π(θ)
m̃IW (y) . (3.23)

From equation 3.15, the estimate of perturbed posterior is given by

p̃IWδ (θ|y) = p̃IW (θ|y)δ(θ,y, X)
1
S

∑S
s=1 δ(θs,y, X)

, (3.24)

where p̃IW (θ|y) = f(y|θ)π(θ)/m̃IW (y). Consequently, we can approximate the functional
Bregman divergence between p(θ|y) and pδ(θ|y) by

D̂IW
ψ = 1

S

S∑
s=1

{ψ(p̃IW (θs|y))− ψ(p̃IWδ (θs|y))− (p̃IW (θs|y)− p̃IWδ (θs|y)ψ′(p̃IWδ (θs|y))
p̃IW (θs|y)

}
.

(3.25)

Whether the convex function ψ = ψα(x) as viewed at 3.14, we could simplify the
above equation 3.25.

D̂IW
ψα = 1

S

S∑
s=1

{1− α{δ(θs,y, X)/δ̄}α−1 + (α− 1){δ(θs,y, X)/δ̄}α
α(α− 1){p̃IW (θs|y)}1−α

}
, (3.26)

where δ̄ = 1
S

∑S
s=1 δ(θs,y, X). Furthermore, if we restrict α = 1, we simplify a lot the

above expression and might not care about the ω weights choice.

D̂IW
ψα = 1

S

S∑
s=1

{
− log{δ(θs,y, X)/δ̄}

}
, if α = 1. (3.27)

3.2.5 Normalizing Bregman divergence

Any result from a functional Bregman divergence belongs to positive real domain,
dψ,i ∈ [0,∞) and mdψ ∈ [0,∞). A scale where it is hard to have some intuition about what
is a high or a low value. To facilitate this comparison, (MCCULLOCH, 1989) proposed a
calibration of Kulllback-Leiber, which compresses the scale between 0.5 and 1. Naturally,
his results could be extend to Bregman divergence.

He made an analogy with two Bernoulli distribution. Considering dkl as any
Kullback-Leiber divergence of interest like KL(P,Q) = dkl. The main idea is to compare
dkl with a known density like a Bernoulli with probability of success equal to half. Though
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the KL between two probability distribution of Bernoulli is known and is easily expressed
as in equation 3.28,

KL(B(0.5), B(q)) = −1
2 log(4q(1− q)), (3.28)

where q = c(dkl). After this, he just inverted the equation to isolate c(dkl) like showed in
Proposition 1.

Proposition 1 Given dkl a Kullback-Leiber divergence of interest,

c(dkl) = 1 +
√

1− exp(−2dkl)
2 , (3.29)

c(·) is the McCulloch’s calibration.

The McCulloch’s idea is a good start point, but it has a weak theoretical element.
Because it requires compare any probability distribution with a Bernoulli what do not
make sense in several contexts.

We also suggest another way to compare the Bregman divergence between two
densities, which consist of normalizing Bregman divergence. Suppose we have a full density
probability f0 and we wish to compare it with each likelihood without i-th element as
f1, . . . , fn to check local influence. We already know that the sum of all divergences belongs
to positive real domain,

n∑
i=1

dψ(f0, fi) = k, (3.30)

where k is a positive constant. The value of k could be zero if and only if ψ is the identity,
but also could be arbitrarily high conform ψ becomes more and more convex, in particular
k may be one.

By generalized Pythagorean inequality (FRIGYIK; SRIVASTAVA; GUPTA, 2008b),
it is natural to suppose the order maintenance as dψ∗(f1, f2) > dψ∗(f1, f3) =⇒ dψ∗∗(f1, f2) >
dψ∗∗(f1, f3) to any ψ∗ and ψ∗∗ under the restriction of strictly convexity. If the above order
relation is maintained then we can guarantee that all Bregman divergence with any ψ
consisting of the same divergence just with a different location scale.

Now, we are gathering these two arguments: a finite sum of divergences is finite
and ψ just tuning the scale but not the order of Bregman. So there is a special case of ψ,
let us call it as ψχ, which the sum of a set of n fi results in one, and this divergence dψχ
is equal to any normalizing Bregman divergence B(dψ). Because all Bregman divergence
contains the same information about the order.
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Proposition 2 Given dψ(f0, fq) any Bregman divergence of interest in a set of n diver-
gences,

B(dψ(f0, fq)) = dψχ(f0, fq) = dψ(f0, fq)∑n
i=1 dψ(f0, fi)

, (3.31)

where B(·) is normalizing Bregman.

Any normalizing Bregman divergence belongs to range between zero and one,
0 ≤ dψχ(f0, fq) ≤ 1, ∀q ∈ {1, . . . , n}. Consequently, there is no other divergence so
intuitive to work like the normalizing Bregman. For example, an output of 0.9 has a large
possibility to be an influential point. However, what it is a high and low result it still a
hard task, because this scale depends of the sample size.

Under the null hypothesis that there is no influential observation in the sample, a
reasonable expected normalizing Bregman would be 1/n.

E(dψχ(f0, fi)) = 1
n
∀i ∈ {1, . . . , n},

i.e., we expected each observation would present the same divergence. Therefore, this
bound becomes our start point to identify influential observation. If any observation returns
a higher normalizing Bregman value than 1/n, then it is a natural candidate to be an
influential point, which we must investigate.

However, a better cutter point than 1/n still as a open problem to future researches.
Yet we have an useful graphical and visual tool to seek for influence, but not a theoretical
constant which can segregate influential from not influential cases.
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4 SIMULATION

This chapter is dedicated to check how well our theoretical assumptions work in
many different computational simulated settings. The first section is developed to attend
analysis of sensitivity, because it is reasonable to advance with the best possible prior to
each model. We proposed sixteen settings, which consist in the combination of two models
(CAR and SAR), two variance patterns (homoscedastic and heteroscedastic), two spatial
coefficients (φ = 0.7 and φ = 0.9) and two priors. We replicate five hundred times each
simulation setting.

We wish to test how well our information criteria select the models. To proceed
with this challenge we create artificial SAR and CAR vectors and evaluate them with the
correct and incorrect models to check if WAIC and LOO catch misspecification. Then we
have two settings (CAR and SAR) each one with five models. The adjusted models to
SAR data were: I the corrected, II with a wrong covariate, III a heteroscedastic SAR, IV
a CAR, V a linear model. The adjusted models to CAR data were quite similar.

We realize the Bregman divergence behavior for sixteen settings of disturbed
likelihoods. They consist in the combination of two models (CAR and SAR), two variance
patterns (homoscedastic and heteroscedastic) and four sets of perturbation (absent, one
point, another point and two points).

All models which have run at this chapter were tuning with two chains and ten
thousand of samples with burn in of five thousand. Both criteria of convergence, Geweke
(GEWEKE, 1992) and Gelman (GELMAN; RUBIN, 1992) were satisfied, as well as the
graphical analysis.

4.1 Analysis of Sensitivity

A traditional analysis of sensitivity consist of to fit a model with many different
priors and to evaluate their impact in the parameters. We proceed with the study of two
meaningful priors: an extremely flat prior and another with more concentrated probability
density. This choice was motivated by the reason of a divergence between authors about
which of the priors is the most appropriated, (Stan Development Team, 2016). The prior
1, the flat, has the following hyperparameters: α = 0.01, β = 0.01, η = 100. The prior 2,
the concentrated, has the following hyperparameters: α = 2.01, β = 1.01, η = 100.

The first model which we are studying is the homoscedastic SAR with the follow
parameters: φ = 0.7, β0 = 0.2, β1 = −0.3, σ2 = 1 and another very similar model with a
different φ = 0.9. We may observe in Table 2 that both priors return almost the same
results for any parameter. Consequently, the SAR seems robust to these priors choice.
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Table 2: Analysis of Sensitivity to 500 simulated homoscedastic SAR models with φ ∈
{0.7, 0.9}

prior 1 = {α = 0.01, β = 0.01, η = 100}
φ = 0.7 β0 = 0.2 β1 = −0.3 σ = 1 φ = 0.9 β0 = 0.2 β1 = −0.3 σ = 1

mean 0.752 0.154 -0.295 0.992 0.891 0.224 -0.307 1.016
bias 0.052 -0.046 0.005 -0.008 -0.009 0.024 -0.007 0.016
var 0.018 0.041 0.029 0.022 0.006 0.092 0.037 0.021
mse 0.021 0.044 0.029 0.022 0.006 0.092 0.037 0.022

prior 2 = {α = 2.01, β = 1.01, η = 100}
φ = 0.7 β0 = 0.2 β1 = −0.3 σ = 1 φ = 0.9 β0 = 0.2 β1 = −0.3 σ = 1

mean 0.752 0.153 -0.295 0.991 0.894 0.219 -0.306 0.993
bias 0.052 -0.047 0.005 -0.009 -0.006 0.019 -0.006 -0.007
var 0.018 0.040 0.029 0.021 0.006 0.088 0.037 0.020
mse 0.021 0.043 0.029 0.021 0.006 0.088 0.037 0.020

The next model which we are studying is the heteroscedastic SAR with the follow
parameters φ = 0.7, β0 = 0.2, β1 = −0.3, σ1 = 1, σ2 = 4, σ3 = 1, . . . , σ26 = 1, σ27 = 4 and
another very similar model with a different φ = 0.9. We proposed the same two priors.
To save space, we just display the main parameters, i.e., the spatial parameter and four
dispersion, just for illustrate the general pattern. We might observe in Table 3 that the
priors have a strong impact in parameter estimation. With the first prior almost all mean
values of σi are greater than 7, even close to 40. However with the second prior we observe
that σ1 and σ27 are softly greater than 3 and all the others are between 0.9 and 1.5.

Consequently, we might not put any prior in a heteroscedastic SAR model. This kind
of model has too much parameters and we must put some restriction on their estimation,
a proper prior with mean equal to one could be an interesting way, as the inverse Gamma
with α = 2.01, β = 1.01 would fit it.

Table 3: Analysis of Sensitivity to 500 simulated heteroscedastic SAR models with φ ∈
{0.7, 0.9}

prior 1 = {α = 0.01, β = 0.01, η = 100}
φ = 0.7 σ1 = 1 σ2 = 4 σ26 = 1 σ27 = 4 φ = 0.9 σ1 = 1 σ2 = 4 σ26 = 1 σ27 = 4

mean 0.708 13.637 35.013 16.269 32.874 0.859 9.960 39.313 7.285 31.201
bias 0.008 12.637 31.013 15.269 28.874 -0.041 8.960 35.313 6.285 27.201
var 0.038 22665.6 11126.6 28080.3 11221.4 0.015 5869.6 45436.5 277.8 3541.7
mse 0.039 22825.3 12088.4 28313.5 12055.1 0.017 5949.8 46683.5 317.3 4281.5

prior 2 = {α = 2.01, β = 1.01, η = 100}
φ = 0.7 σ1 = 1 σ2 = 4 σ26 = 1 σ27 = 4 φ = 0.9 σ1 = 1 σ2 = 4 σ26 = 1 σ27 = 4

mean 0.728 1.390 3.068 1.390 3.197 0.898 0.955 2.670 0.971 2.959
bias 0.028 0.390 -0.932 0.390 -0.803 -0.002 -0.045 -1.330 -0.029 -1.041
var 0.019 0.149 3.234 0.134 3.415 0.008 0.192 3.269 0.203 4.110
mse 0.019 0.301 4.102 0.286 4.060 0.008 0.194 5.038 0.203 5.195
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We keep our study with the homoscedastic CAR with the follow parameters:
φ = 0.7, β0 = 0.2, β1 = −0.3, σ = 1 and another very similar just with a different φ = 0.9.
We proposed the same two priors already discussed for SAR to both cases. We may observe
in Table 4 that both priors return almost the same results for any parameter. Consequently,
the CAR seems robust to these priors choice. However, there is a underestimation of φ in
all the cases, this phenomenon was already warned, (BANERJEE; CARLIN; GELFAND,
2015). We tried to fix this point by the following schemes: we increase the number of
iterations from 20,000 to 100,000, we have reparameterized the model, we add a new
hierarchical level with the inclusion a hyperprior. None of these proposes have success, even
change the Uniform prior of φ to a Beta one had no effect if this prior was not extremely
informative. This ultimate appeal is not useful, because a so strong prior would estimate
φ as a fixed value.

Table 4: Analysis of Sensitivity to 500 simulated homoscedastic CAR models with φ ∈
{0.7, 0.9}

prior 1 = {α = 0.01, β = 0.01, η = 100}
φ = 0.7 β0 = 0.2 β1 = −0.3 σ = 1 φ = 0.9 β0 = 0.2 β1 = −0.3 σ = 1

mean 0.294 0.200 -0.302 0.792 0.201 0.197 -0.298 0.974
bias -0.406 0.000 -0.002 -0.208 -0.699 -0.003 0.002 -0.026
var 0.026 0.001 0.006 0.047 0.020 0.004 0.009 0.092
mse 0.191 0.002 0.006 0.090 0.509 0.004 0.009 0.093

prior 2 = {α = 2.01, β = 1.01, η = 100}
φ = 0.7 β0 = 0.2 β1 = −0.3 σ = 1 φ = 0.9 β0 = 0.2 β1 = −0.3 σ = 1

mean 0.293 0.199 -0.302 0.780 0.199 0.196 -0.297 0.954
bias -0.407 -0.001 -0.002 -0.220 -0.701 -0.004 0.003 -0.046
var 0.026 0.002 0.006 0.043 0.021 0.004 0.010 0.085
mse 0.192 0.002 0.006 0.092 0.512 0.004 0.010 0.087

We have build a heteroscedastic CAR with the same structure as heteroscedastic
SAR, i.e., Θ = {φ = 0.7, β0 = 0.2, β1 = −0.3, σ1 = 1, σ2 = 4, σ3 = 1, . . . , σ26 = 1, σ27 = 4}
and another very similar just with a different φ = 0.9. Unsurprising, this model presents
similar problems as the heteroscedastic SAR. We may see in Table 5 that the first prior
almost all mean values of σi are greater than 5. Although in the second prior we observe
that all σi are around 1 when φ = 0.7. What is a problem, because we expected to see
greater values for σ1 and σ27. However when φ = 0.9 the bias of prior 2 to σi is lower.

Another way to proceed with analysis of sensitivity consist of reduces all model
information in a single measure and evaluate it. This is not a so traditional technique,
but it was already applied by researchers as (RODRIGUES; ASSUNÇÃO, 2012). They
observed the DIC, if its value does not change too much to each prior then they would
conclude that model does not strongly depend of priors. Here we used the LOO instead
of the DIC, because LOO owns some advantages, but the argument is similar to the
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Table 5: Analysis of Sensitivity to 500 simulated heteroscedastic CAR models with
φ ∈ {0.7, 0.9}

prior 1 = {α = 0.01, β = 0.01, η = 100}
φ = 0.7 σ1 = 1 σ2 = 4 σ26 = 1 σ27 = 4 φ = 0.9 σ1 = 1 σ2 = 4 σ26 = 1 σ27 = 4

mean 0.296 21.963 7.608 9.705 10.265 0.179 13.613 43.234 9.445 213.487
bias -0.404 20.963 3.608 8.705 6.265 -0.721 12.613 39.234 8.445 209.487
var 0.032 2.1× 104 138.1 291.1 329.3 0.023 530.3 3.2× 104 178.8 3.3× 106

mse 0.195 2.1× 104 151.1 366.9 368.5 0.543 689.3 3.4× 104 250.1 3.3× 106

prior 2 = {α = 2.01, β = 1.01, η = 100}
φ = 0.7 σ1 = 1 σ2 = 4 σ26 = 1 σ27 = 4 φ = 0.9 σ1 = 1 σ2 = 4 σ26 = 1 σ27 = 4

mean 0.253 1.102 1.008 0.981 1.037 0.136 1.249 2.499 1.098 1.841
bias -0.447 0.102 -2.992 -0.019 -2.963 -0.764 0.249 -1.501 0.098 -2.159
var 0.022 0.378 0.270 0.180 0.337 0.015 0.388 2.805 0.316 1.203
mse 0.222 0.388 9.224 0.181 9.115 0.598 0.450 5.058 0.325 5.865

previous authors. In the Table 6 we summarize all models and priors which we already
have discussed above, but just with the mean value of LOO and its standard deviation.

Table 6: LOO mean and (standard deviation) to 500 simulated cases of each model,
variance type, prior and value of φ ∈ {0.7, 0.9}

φ = 0.7 φ = 0.9
model prior 1 prior 2 prior 1 prior 2
Homoscedastic SAR 78.65 (8.36) 78.60 (8.38) 79.86 (8.02) 79.78 (8.03)
Heteroscedastic SAR 128.64 (13.31) 86.99 (10.08) 130.02 (13.69) 86.90 (10.00)
Homoscedastic CAR 65.37 (15.25) 65.34 (15.27) 75.66 (17.21) 75.58 (17.21)
Heteroscedastic CAR 122.01 (17.31) 73.53 (15.64) 136.48 (19.12) 89.22 (19.51)

We might see in Table 6 that the homoscedastic SAR displays similar mean values
of LOO to the both prior and likely values of standard deviation. So, we have a robust
model as well as the homoscedastic CAR, which present similar results. Remark, we just
compare row results and with the same φ parameter in Table 6, other parallels do not
make sense because they involve distinct data.

The heteroscedastic SAR and CAR have very distinct mean values of LOO conform
we change the priors. Consequently, we can not fit that models without a rigorous balance.
The conclusions after to analysis Table 6 are not so different from the previous tables. But
it is quite simple to analysis just the LOO despite of all parameters.

4.2 Model selection and misspecification

In the last section, the LOO criterion was used to compare priors and proceed with
analysis of sensitivity. However it is mainly and originally applied to model selection as we
shall develop in this section.
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Figure 2: Model comparation by WAIC and LOO; at the left the true model is a ho-
moscedastic SAR and the proposed models are: I the corrected, II with a wrong covariate,
III a heteroscedastic SAR, IV a CAR, V a linear model; at the right the true model is
a homoscedastic CAR and the proposed models are: I the corrected, II with a wrong
covariate, III a heteroscedastic CAR, IV a SAR, V a linear model.

First we create a vector of constants as covariate to an artificial homoscedastic
SAR vector. The parameters were Θ = {φ = 0.8, β0 = 0.4, β1 = −0.3, σ2 = 1}. Then we
proposed five models to this simulated data set and compare which better fit it by WAIC
and LOO. The fitted models were respectively: I the correct, II another homoscedastic
SAR with a wrong covariate, III a heteroscedastic SAR with the corrected covariate, IV a
homoscedastic CAR with the true covariate, V a simple linear regression with the correct
predictor variable.

We might see in Figure 2 (left) that the corrected model presents the lower values
of both WAIC and LOO, 91.5 and 91.7, respectively. The same model with the wrong
covariate displays the worst result with WAIC of 98.3 and LOO of 98.6. The heteroscedastic
SAR is the unique were there is some disagreement between WAIC 89.4 and LOO 96.4,
the WAIC is even lower than the true model, but LOO is more trustworthy as we shall see
by Kullback-Leiber. The CAR was not bad with 92.0 and 92.3 WAIC and LOO. Finally,
no spatial regression was the worst model.

Figure 3 displays the point divergence of each model. We used the Kullback-Leiber
instead of the normalizing Bregman, because we want to compare all models with the
same scale. For example, a model were all observations have a bad fitting could display a
constant result to each point and consequently small values of normalizing Bregman.

Figure 3 (left) shows that regression, pink down triangle, has the worst fit in
position 22. But the heteroscedastic SAR, green up triangle, was bad in observations
22 and 27. Remind that homoscedastic SAR was worst than heteroscedastic SAR with
respect to WAIC. Though plot 3 (left) helps us to decide if we must trust in WAIC or
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Figure 3: Kullback-Leiber divergence for simulated data, at the left the true model is
a homoscedastic SAR and the proposed models are: I the corrected in black square, II
with a wrong covariate in red circle, III a heteroscedastic SAR in green up triangle, IV a
CAR in blue rhombus, V a LM in pink down triangle; at the right the true model is a
homoscedastic CAR and the proposed models are: I the corrected in black square, II with
a wrong covariate in red circle, III a heteroscedastic CAR in green up triangle, IV a SAR
in blue rhombus, V a LM in pink down triangle.

LOO, because homoscedastic SAR, black square, just shows two influential observations
by KL: 1 and 22. However both were lower than the concurrent model.

We also create a vector of constants as covariate to an artificial homoscedastic
CAR vector. The parameters were the same used to SAR model. Then we proposed many
models to this simulated exercise. The fitted models were respectively: I the correct, II
another homoscedastic CAR with a wrong covariate, III a heteroscedastic CAR with the
correct covariate, IV a homoscedastic SAR with the true covariate, V a simple linear
regression with the correct predictor variable.

In Figure 2 (right) the model evaluation is clear with exception of model I, the
corrected with 91.8 and 92.1, and IV, a SAR with 91.4 and 91.5, WAIC and LOO. So the
SAR looks subtly better than the true model: a CAR. Shortly, the Figure 3 (right) just
confirm what we already know, the linear regression has strongly problems of fitting and
compare with it all the other models are quite good.

4.3 Perturbation of Likelihood and Bregman divergence

To check if Bregman divergence is a valid way to seek influential observations we
must test it by simulation. We create a homoscedastic SAR vector from the following
parameters φ = 0.8, β0 = 0.2, β1 = −0.3, σ2 = 1. Then we proceed with the four tuning
operations: I, a SAR vector without any alteration; II, a SAR model with an addition
noise in a single observation; III, an equivalent to previous one, but putting a noise in a
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Figure 4: Normalizing Bregman divergence for simulated homoscedastic SAR data

different observation; IV a SAR vector with two perturbations at the same time.

We use the same contamination intensity that (GOH; DEY, 2014) suggest, i.e., to
add in the process a quantity q, where q is 1− 10−8 quantile of a standard normal. This
quantity is roughly the same as suggest by (HAO; LIN, 2016), as well as by (CHO et al.,
2009). We choose the position 13 to set II, observation 21 to III and the points 13 and 21
to IV. The adjacent matrix is the Brazilian map, which has 27 states.

Figure 4 shows each set in a respective graph. In the subfigure (b) we see the
perturbed observation 13 in red color, what indicates it is an influential point candidate.
It is followed by 7, which is not a real influential one, but it is affected by 13, because
they are neighbors. This is an advantage of see information by net. In subfigure (c) we
see observation 21 in red, what is coherent with its real status, again it is followed by its
neighbor the observation 25 in purple. In subfigure (c) 21 is red and 25, which is its border
connection is purple. Although 13 presents blue color scale, we observe it is a big circle. In
subfigure (a) the observation 9 is red although there is no influential point, this is a false
positive. In next figure we will fix this misperception.

Figure 5(a) shows the four sets at the same plot, we lose the net perception, but
we gain scale precision. It becomes clear that any candidate to influential point must be
greater than the dotted line, 1/n. The observation 13 was higher than 1/n, dotted line,
when there are two noise points and greater than 0.3, dashed line, when it is alone. On
the other hand observation 21 was higher than 0.3 and higher than 0.5, respectively. 7
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Figure 5: Normalizing Bregman divergence for simulated SAR data, where black rhombus
is no perturbation set, red circle is Perturbation II, green triangle is III, blue square is IV.
Solid colors were used to indicate true influential point.

appears as a misunderstood of the metrics, with a single value higher than 0.3.

An important remark is that the choice of this lines in Figure 5 and 8 are simple
exposure feature to better describe the plots around the text.

Now we must progress with a more complex model, which is the heteroscedastic SAR.
We create a heteroscedastic SAR vector with one covariate with the known parameters:
β0 = 0.2, β1 = −0.3, φ = 0.8, and each σ2

i = 1 for all i, except for σ2
4 = 16. The scheme of

perturbation still the same, even the same observations 13 and 21.

The Figure 5(b) displays observations 2, 13 and 21 as the stronger candidates to be
influential points in any set. Unfortunately, 2 is the most outstanding though it is a false
positive. At least 13 and 21 are always higher than 1/n and around 0.3. Observe that the
square and triangle of 21 are so close they seems a single point which it hides the triangle.

Figure 6 reminds us the point positions in the net. However, there is no directly
connection between observation 4, which it was infected, and 2. So, the explanation
could not be build by this way. Just the increase of model complexity turn the Bregman
divergence a not so precise metric to analyze influence.

We wish to check the same patterns for CAR model. Thus, we simulated a similar
set to it. We created a homoscedastic CAR vector with the same SAR parameters. The
infection scheme is analogous, i.e., we select the same observations and intensity to put an
additional noise.

In Figure 7 we can see all the four sets separately, in topleft we observe the
observation 7 in red, topright the 13, bottomleft the 21, bottomright the 13 and the 21 in
purple. What is exactly the corrected infected positions except for 7, which belongs to a
set without perturbation.
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Figure 6: Normalizing Bregman divergence for simulated heteroscedastic SAR data
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Figure 7: Normalizing Bregman divergence for simulated homoscedastic CAR data
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Figure 8: Normalizing Bregman divergence for simulated CAR data, where black rhombus
is no perturbation set, red circle is Perturbation II, green triangle is III, blue square is IV.
Solid colors were used to indicate true influential point.
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Figure 9: Normalizing Bregman divergence for simulated heteroscedastic CAR data

By Figure 8(a) we realize that position 7, the greatest in no perturbation set, is
subtly greater than 0.3, the dashed line, while in Perturbation IV set both observations
are around 0.3 level. Furthermore, when there is only one perturbation, 13 is between 0.3
and 0.5 despite 21 shows a greater estimation than 0.5. Though, position 25 also appears
as a false positive in a single set.

In Figure 9 we can observe all the four sets for heteroscedastic CAR, in topleft we
might note the observation 2 in red, topright the 13, bottomleft the 2 and in bottomright just
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the 13. Consequently, we may temporarily conclude that we can identify the perturbation
in 13, but not in 21 point.

As in heteroscedastic SAR, the CAR with complex variability presents a strong
false positive, which is the observation 2. Figure 8(b) displays clearly point 2 as a dominant
position in Bregman divergence. However, the true infected observations 13 and 21 are the
following high positions. Both around the bound of 0.3 in any set.
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5 APPLICATION

In this chapter we illustrated our methods with two real data sets, a Brazilian and
an European examples. To each data set we seek for covariates, they are: GPD per capta,
and two legislation covariates to Brazilian study and GPD per capta and educational
gender gap to European study. To each different covariate we proposed five models, they
are a homoscedastic SAR, heteroscedastic SAR, homoscedastic CAR, heteroscedastic CAR
and a linear model. To all twenty five models, we use the same procedure, which consist of
two chains, each one with 20,000 iterations; half of then were destine to warmup, given a
total post-warmup of 20,000 draws. All models have converged as the R̂ = 1 indicates,
see (GELMAN; RUBIN, 1992), as well as by graphical analysis which we omitted to save
space.

5.1 Indexes of Sustainable Development in Brazil

The second United Nations Conference on Environment and Development (UNCED)
was held in Rio de Janeiro in 1992. One of its products was the Agenda 21, which propose
new ideas about development and encourages governments to produce policy and data
according to sustainable paradigm, (SMARDON, 2008).

The Instituto Brasileiro de Geografia e Estatística (IBGE) coordinates an effort to
produce more than 20 indexes each year after 2009. The sustainable development indexes
enlarge the dichotomy frame which split economic developing and social environmental
maintenance. The objective is to produce data with which is possible to do new scientific
questions. The prescriptive mark of 2001 wrote by the Sustainable Development Commis-
sion (SDC) from UN was a starting point to define the body from the research, which
shows four dimensions: environmental, social, economic and institutional (IBGE, 2015).

Between all these indexes there are some already canonical as child mortality, gross
domestic product (GDP) per capita and literacy. Despite the importance of these famous
indexes, we choose as target variable something newer as the use of pesticides in cultivated
fields. This variable is measured in kilogram per hectare and is related with people’s health,
development of agricultural techniques and market, see (CAPOBIANGO; CARDEAL,
2005) and (PINGALI, 1995). Figure 10 displays a Brazilian map with the target variable.
Where regions like Midwest and South present higher levels of agrotoxics use.

From all available covariates we elected the following to build our models. First a
canonical covariate as GDP per capta (in thousands of Reais), a new SDI as percent of
counties with environmental council, and another similar SDI as percent of counties with
environmental legislation. To each covariate we propose five models: I. a homoscedastic
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Figure 10: Brazil 2013, pesticide per cultivated area in kg/hectare
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Figure 11: Brazil 2013, comparison of models, where I is a homoscedastic SAR, II is a
heteroscedastic SAR, III is a homoscedastic CAR, IV is a heteroscedastic CAR, V is a
linear regression.

SAR, II. a heteroscedastic SAR, III. a homoscedastic CAR, IV. a heteroscedastic CAR, V.
a linear regression.

The GDP per capta completely dominate the set and displays better fit in any
situation. Consequently we show in Figure 11 the results only for GPD. We might observe
that the SAR and CAR, both homoscedastic, are the best candidates.

By Figures 12 and 13 we remark that both models are quite similar about their
influential points. The difference is minimal. SAR has Amazonas, Roraima and Distrito
Federal as influential points candidates as well as CAR presents Amazonas and São Paulo.
However, neither have big values of divergence, so possible both models are appropriate to
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Figure 12: Brazil 2013, Kullback-Leiber and normalizing Bregman, where black square is
a homoscedastic SAR, green triangle is a homoscedastic CAR.
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Figure 13: Brazil 2013, Normalizing Bregman divergence.

fit Brazilian agricultural practices.

In Table 7 we present the main parameters of the better models: CAR and SAR
homoscedastic. Both present weak spatial estimation, φ around 0.18 and 0.5. And an even
worst estimation of predictor coefficient, which is 0.05 to both, but the 95% posterior
probability interval flows between -0.03 and 0.13. These results do not give us a directly
and strongly conclusion about the variables relationship.

However, there is a hide point: Brazilian GPD also has a strong spatial pattern.
Consequently, an analysis which include this variable already inputs an indirect geographical
structure. Furthermore, the signal of β̂1 was positive in the linear regression, so if there is
a "collinearity" between φ and β1 it do not invert the relationship between agrotoxic and
GPD. After these appointments, we may say that pesticide use follows spatial proximity
and that wealthy states tend to more intensively use it.
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Table 7: Brazil 2013, parameter estimation by model

model parameter mean SD 2.5% 25% 50% 75% 97.5% ESS R̂
CAR β0 2.71 1.27 0.29 1.85 2.67 3.51 5.32 7558 1

β1 0.05 0.04 -0.03 0.02 0.05 0.08 0.13 6796 1
φ 0.18 0.06 0.04 0.14 0.18 0.22 0.30 7311 1
σ 1.94 0.28 1.49 1.74 1.91 2.10 2.57 9738 1

SAR β0 0.96 1.00 -0.97 0.30 0.96 1.63 2.91 10786 1
β1 0.05 0.04 -0.03 0.03 0.05 0.08 0.13 10441 1
φ 0.50 0.24 0.05 0.32 0.50 0.68 0.94 9650 1
σ 1.95 0.28 1.49 1.75 1.92 2.12 2.60 11666 1
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Figure 14: Europe 2014, average weekly hours of work.

Finally, we conclude that local environmental council and legislation do not have
already effect the Brazilian pesticide policy. Even a simple SAR without covariates produces
a better WAIC and LOO than a linear regression with that variables.

5.2 Working conditions in Europe Union

The average weekly hours of work does not available all the complexity of working
conditions, but it may roughly indicate labor dignity and quality of life. Because, less
time of work means more time to enjoy the family, culture and friendship (BURGOON;
BAXANDALL, 2004).

In this section we investigate the work conditions in the Europe context. Though
we used data provenient from Eurostats, the statistical bureau of the Euro Commission.
However, to build an adjacent matrix we must to known what is Europe or European
Union. Which countries should be include in our analysis and how to objectively build
their connections?
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Figure 15: Europe 2014, comparison of models, where I is a homoscedastic SAR, II is a
heteroscedastic SAR, III is a homoscedastic CAR, IV is a heteroscedastic CAR, V is a
linear regression.

Currently, European Union has 28 associate countries, but it makes sense to exclude
of a spatial analysis some countries like Switzerland, which is located in the hearth of the
continent? Or Turkey, which is a important partner and member of NATO for so many
years?

Furthermore, the connections between these countries are not so objective as in
Brazilian example. Now we have to make some arbitrary judgments as link Ireland and
United Kingdom, Cyprus with Turkey and Greece, Denmark with Sweden and United
Kingdom with France. Some times there is a sea between this places, but also there are
bridges between them.

To choice which covariates to include in our study we seek for authors who previously
discuss this theme as (BURGOON; BAXANDALL, 2004). They summarize the previous
literature as a long relationship between time of work and struggle of the unions, gender
equality and main political ideology. They indicate that the unions participation is
ambiguous and poorly effective. Ideological view is something that is hard to precisely
extend to each European country.

We choose as covariates some gender indicators and GDP per capita in PPS1,
which is a classical economic variable. We also include a educational variable: percent of
population which has highest ISCED (International Standard Classification of Education).
About gender equality, we investigate the gender overall earnings gap and the ratio between
male and female percent of population which has highest ISCED.

From all above listed covariates, the better results in terms of LOO information

1 Purchasing Power Standards (PPS) is expressed in relation to the European Union (Euro 28)
average set to equal 100
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Figure 16: Europe 2014, comparison of models, where black square is a heteroscedastic
CAR with GPD, red circle is a homoscedastic CAR with study gender ratio green triangle
is a heteroscedastic SAR with GPD.

come from GPD per capta and gender educational attainment level ratio. We just plot
the results of this two covariates in Figure 15 at left and right, respectively. When the
covariate is the GPD per capta the best models are clearly the heteroscedastic form of
SAR and CAR. When the covariate is the gender educational attainment level ratio the
best model is the homoscedastic CAR.

Before decide what is the most appropriate model, we check the influential points.
In Figure 16 we observe these three models through Kullback-Leiber and normalizing
Bregman divergence. The heteroscedastic CAR for GPD per capta shows the following
countries as the most influential: 19, Luxembourg, 31, Turkey, and 21, Netherlands. The
heteroscedastic SAR displays the exactly same countries in the first positions. On the
other hand, homoscedastic CAR with a gender equality has a different order: 31, Turkey,
21, Netherlands, and 12, Greece.

The Kullback-Leiber, a between model comparable scale, in Figure 16, shows gender
equality as the covariate with lower local influence. So, despite the better results of LOO
for the GPD covariate, the equality gender variable presents lower KL than the GPD per
capta. For these reasons, the three models are competitive and fair choices.

Figure 17 shows the same normalizing Bregman results already presented in Figure
16 (b), but in the map. Where we can identify some patterns in the normalizing Bregman.
A north cluster of Netherlands, Denmark and Luxembourg. A southeast group of Turkey,
Greece and Bulgaria. And an isolated island like Iceland.

Table 8 summarize the parameter estimation of the three main models. The
heteroscedastic models present lower average values of φ because the complex variance
structure explain almost all the variability. Both models where the covariate is the GPD
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Figure 17: Europe 2014, Normalizing Bregman.

Table 8: Europe 2014, parameter estimation by model

model parameter mean SD 2.5% 25% 50% 75% 97.5% ESS R̂
CAR β0 43.10 0.39 42.37 42.84 43.08 43.35 43.90 19861 1
(GPD) β1 -0.05 0.00 -0.06 -0.06 -0.05 -0.05 -0.05 21620 1

φ 0.01 0.01 0.00 0.00 0.01 0.02 0.05 40000 1
σ1 0.77 0.66 0.23 0.42 0.60 0.89 2.31 25640 1

CAR β0 24.96 3.87 17.21 22.39 25.02 27.55 32.43 15023 1
(gender) β1 11.33 3.51 4.54 8.99 11.26 13.65 18.36 14861 1

φ 0.28 0.06 0.15 0.24 0.28 0.32 0.41 21177 1
σ 2.23 0.29 1.74 2.02 2.20 2.40 2.89 21298 1

SAR β0 41.36 1.79 37.00 40.62 42.06 42.62 43.31 13104 1
(GPD) β1 -0.05 0.00 -0.06 -0.05 -0.05 -0.05 -0.04 12006 1

φ 0.04 0.04 0.00 0.01 0.02 0.06 0.14 19871 1
σ1 0.69 0.62 0.21 0.38 0.54 0.79 2.22 19231 1
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per capta, the β1 estimation is negative what indicates people from wealthy countries
used to work fewer hours per week. When the covariate is gender educational attainment
level ratio the estimation of β1 is positive what means places where men have more study
opportunity than women the population used to work more hours per week.
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6 CONCLUSION

SAR and CAR models can be estimated by HMC and are useful techniques to
predicted spatial observations. Where Stan platform plays an important role to implement
HMC. WAIC and LOO are information criteria which were proposed to independent and
identically distributed variables, but they well worked in our spatial dependent models.
Also, functional Bregman divergence were originally proposed to compare perturbed and
unperturbed likelihoods when they are iid. However, our strategy of data imputation has
well worked.

From our sensitivity study we recommend to use a concentrated prior like a =
2.01 and b = 1.01 as the hyperparameter to σ and σi in both models: SAR and CAR.
Furthermore, the heteroscedastic case requires an informative prior, because the model
already is poorly identifiable. This prior is more conservative and stable than other more
flat priors. About model selection: WAIC and LOO tend to agree, but in more complex
models as heteroscedastic cases LOO tends to judge better than WAIC. The standard
error of information criteria require iid assumption, but in practice it was not required.
Although it was a great way to evaluate if the mean estimation of WAIC and LOO were
relevant or not. Our suggestion is to select models with near LOO and proceed with the
final election after observing the Bregman divergence. Where points higher than 1/n and
0.3 are weak and strong candidates to be influential observations, respectively.

We checked our techniques in empirical data from two different continents. Spatial
models present better results than linear models for information criteria and Bregman
divergence in both data set. We realize the connection between agrotoxic and GPD as well
as hours of work and GPD and gender educational ratio despite the spatial pattern from
Brazil and Europe.

Our main contribution is to extend a recent theoretical proposal from iid context to
dependent models. We observe that Bregman divergence works quite well in our Bayesian
spatial models, then we suggest its use for analysis of diagnostics.
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APPENDIX A – CONDITIONAL POSTERIOR DISTRIBUTIONS

Here we show all the conditional posterior distributions present at the text step by
step. First the homoscedastic SAR model, where θ = {ρ,β, σ2}.

p(ρ,β, σ2|y) ∝ π(β, ρ, σ2)f(y|θ)

= 1
2

1
(2πη)k/2 exp

{
− 1

2η (β)′(β)
}

ba

Γ(a)(σ2)−(a+1) exp
{
−b/σ2}

1
(2πσ2)n/2 exp

{
− 1

2σ2 (y −Xβ − ρWy)′(y −Xβ − ρWy)
}

∝ exp
{
− 1

2η (β)′(β)
}

(σ2)−(a+1) exp
{
−b/σ2}

1
(σ2)n/2 exp

{
− 1

2σ2 (y −Xβ − ρWy)′(y −Xβ − ρWy)
}

∝ 1
(σ2)(a+1)+n/2 exp

{
− 1

2σ2 (y −Xβ − ρWy)′(y −Xβ − ρWy)− 1
2ηβ

′β − 2b
2σ2

}
.

(A.1)

p(β|y) =
∫ ∫

p(β, ρ, σ2|y)dσ2dρ

∝ exp
{
− 1

2σ2 (y −Xβ − ρWy)′(y −Xβ − ρWy)− 1
2ηβ

′β

}
∝ exp

{
− 1

2σ2 (−2y′Xβ + (Xβ)′(Xβ) + 2ρ(Xβ)′Wy)− 1
2ηβ

′β

}
= exp

{
− 1

2σ2 (−2y′Xβ + β′X ′Xβ + 2ρy′WXβ)− 1
2ηβ

′β

}
= exp

{
−β

′X ′Xβ

2σ2 − β
′β

2η −
1

2σ2 (−2y′Xβ + 2ρy′WXβ)
}

= exp
{
− 1

2σ2η
β′(ηX ′X + σ2Ik)β −

2
2σ2η

(−y′X + ρy′WX)β
}

= exp
{
− 1

2σ2η

[
β′(ηX ′X + σ2Ik)β − 2(y′X − ρy′WX)β

]}
= exp

{
− 1

2σ2η

[
β′(ηX ′X + σ2Ik)β − 2(y′X − ρy′WX)(ηX ′X + σ2Ik)(ηX ′X + σ2Ik)−1β

]}
∴ β|y ∼ Nk((y′X − ρy′WX)(ηX ′X + σ2Ik)−1, σ2η(ηX ′X + σ2Ik)−1).

(A.2)
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p(ρ|y) =
∫ ∫

p(β, ρ, σ2|y)dβdσ2

∝ exp
{
− 1

2σ2 (y −Xβ − ρWy)′(y −Xβ − ρWy)
}
Iρ∈[−1,1]

∝ exp
{
− 1

2σ2

[
−2ρy′Wy + 2ρ(Xβ)′Wy + ρ2(Wy)′(Wy)

]}
Iρ∈[−1,1]

= exp
{
−(Wy)′(Wy)

2σ2

[
− 2ρy′Wy

(Wy)′(Wy) + 2ρ(Xβ)′Wy
(Wy)′(Wy) + ρ2

]}
Iρ∈[−1,1]

= exp
{
−(Wy)′(Wy)

2σ2

[
ρ2 − 2ρ( y′Wy

(Wy)′(Wy) −
(Xβ)′Wy

(Wy)′(Wy))
]}

Iρ∈[−1,1]

∴ ρ|y ∼ N

(
y′Wy

(Wy)′(Wy) −
(Xβ)′Wy

(Wy)′(Wy) ,
σ2

(Wy)′(Wy)

)
Iρ∈[−1,1].

(A.3)

p(σ2|y) =
∫ ∫

p(β, ρ, σ2|y)dβdρ

∝ (σ2)−(a+1+n/2) exp
{
− 1

2σ2 (y −Xβ − ρWy)′(y −Xβ − ρWy)− 2b
2σ2

}
= (σ2)−(a+1+n/2) exp

{
− 1
σ2

[
1
2(y −Xβ − ρWy)′(y −Xβ − ρWy) + b

]}
∴ σ2|y ∼ IG

(
a+ n

2 ,
1
2(y −Xβ − ρWy)′(y −Xβ − ρWy) + b

)
.

(A.4)

Since equation A.5, we observe the heteroscedastic SAR model, where θ = {ρ,β,Σ}.

p(ρ,β,Σ|y) ∝ π(β, ρ, σ2
i )f(y|θ)

= 1
2

1
(2πη)k/2 exp

{
− 1

2η (β)′(β)
} n∏

i=1

(
baii

Γ(ai)
(σ2

i )−(ai+1) exp{−bi/σ2
i }
)

(2π)−n/2|Σ|−1/2 exp
{
−1

2(y −Xβ − ρWy)′Σ−1(y −Xβ − ρWy)
}

∝ exp
{
− 1

2η (β)′(β)
} n∏

i=1

(
(σ2

i )−(ai+1) exp{−bi/σ2
i }
)

|Σ|−1/2 exp
{
−1

2(y −Xβ − ρWy)′Σ−1(y −Xβ − ρWy)
}

∝ |Σ|−1/2
n∏
i=1

(
(σ2

i )−(ai+1)) exp
{
−1

2(y −Xβ − ρWy)′Σ−1(y −Xβ − ρWy)− 1
2ηβ

′β −
n∑
i=1

bi
σ2
i

}
.

(A.5)
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p(β|y) =
∫ ∫

p(β, ρ,Σ|y)dΣdρ

∝ exp
{
−1

2(y −Xβ − ρWy)′Σ−1(y −Xβ − ρWy)− 1
2ηβ

′β

}
∝ exp

{
−1

2
(
(Xβ)′Σ−1Xβ + η−1β′β − 2y′Σ−1Xβ − 2ρ(Wy)′Σ−1Xβ

)}
= exp

{
−1

2
(
β′[X ′Σ−1X + η−1Ik]β − 2[y′Σ−1X + ρ(Wy)′Σ−1X]β

)}
∴ β|y ∼ Nk

(
[y′Σ−1X + ρ(Wy)′Σ−1X][X ′Σ−1X + η−1Ik]−1, [X ′Σ−1X + η−1Ik]−1) .

(A.6)

p(ρ|y) =
∫ ∫

p(β, ρ,Σ|y)dβdΣ
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−1
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)}
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2

(
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)}
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2(Wy)′Σ−1Wy
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Iρ∈[−1,1].

(A.7)

p(σ2
v |y) =

∫ ∫
p(β, ρ,Σ|y)dβdρ

∝ |Σ|−1/2
n∏
i=1
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(σ2

i )−(ai+1)) exp
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2(y −Xβ − ρWy)′Σ−1(y −Xβ − ρWy)−
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i=1

bi
σ2
i

}

∝ (σ2
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v)−(av+1) exp
{
− 1

2σ2
v

(y −Xβ − ρWy)′(y −Xβ − ρWy)− bv
σ2
v

}
∝ (σ2

v)−(av+3/2) exp
{
− 1

2σ2
v

[(y −Xβ − ρWy)′(y −Xβ − ρWy) + 2bv]
}

∴ σ2
v |y ∼ IG

(
av + 1

2 ,
1
2[(y −Xβ − ρWy)′(y −Xβ − ρWy) + 2bv]

)
.

(A.8)

Since equation A.9, we observe the homoscedastic CAR model, where θ = {ρ,β, σ2}.
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p(ρ,β, σ2|y) ∝ π(β, ρ, σ2)f(y|θ)

= 1
2

1
(2πη)k/2 exp

{
− 1

2η (β)′(β)
}

ba

Γ(a)(σ2)−(a+1) exp
{
−b/σ2}

(2πσ2)−n/2|In − ρA|1/2 exp
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2η (β)′(β)
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2σ2 (y −Xβ)′(In − ρA)(y −Xβ)− 1
2ηβ

′β − 2b
2σ2

}
.

(A.9)

p(β|y) =
∫ ∫

p(β, ρ, σ2|y)dσ2dρ

∝ exp
{
− 1

2σ2 (y −Xβ)′(In − ρA)(y −Xβ)− 1
2ηβ

′β

}
∝ exp

{
− η

2ησ2 (Xβ)′(In − ρA)(Xβ)− σ2

2ησ2β
′β

}
= exp

{
− 1

2ησ2

(
β′
[
ηX ′(In − ρA)X + σ2In

]
β
)}

∴ β|y ∼ Nk(0, ησ2 [ηX ′(In − ρA)X + σ2In
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(A.10)

p(ρ|y) =
∫ ∫

p(β, ρ, σ2|y)dβdσ2

∝ exp
{
− 1

2σ2 (y −Xβ)′(In − ρA)(y −Xβ)
}
Iρ∈[−1,1]

∝ exp
{
− 1

2σ2 (y′(In − ρA)y + (Xβ)′(In − ρA)(Xβ))
}
Iρ∈[−1,1]

∝ exp
{
− 1

2σ2 (y′(−ρA)y − (Xβ)′(ρA)(Xβ))
}
Iρ∈[−1,1]

= exp
{ ρ

2σ2 (y′Ay + (Xβ)′AXβ)
}
Iρ∈[−1,1]

∴ ρ|y ∼ Exp

(
1

2σ2 (y′Ay + (Xβ)′AXβ)
)
Iρ∈[0,1].

(A.11)
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p(σ2|y) =
∫ ∫

p(β, ρ, σ2|y)dβdρ

∝ (σ2)−(a+1+n/2) exp
{
− 1

2σ2 (y −Xβ)′(In − ρA)(y −Xβ)− 2b
2σ2

}
= (σ2)−(a+1+n/2) exp

{
− 1
σ2

[
1
2(y −Xβ)′(In − ρA)(y −Xβ) + b

]}
∴ σ2|y ∼ IG

(
a+ n

2 ,
1
2(y −Xβ)′(In − ρA)(y −Xβ) + b

)
.

(A.12)

Since equation A.13, we observe the heteroscedastic CAR model, where θ =
{ρ,β,Σ}.

p(ρ,β,Σ|y) ∝ π(β, ρ, σ2
i )f(y|θ)

= 1
2

1
(2πη)k/2 exp

{
− 1

2η (β)′(β)
} n∏

i=1

(
baii

Γ(ai)
(σ2

i )−(ai+1) exp{−bi/σ2
i }
)

(2π)−n/2|In − ρA|1/2|Σ|−1/2 exp
{
−1

2(y −Xβ)′(In − ρA)Σ−1(y −Xβ)
}

∝ exp
{
− 1

2η (β)′(β)
} n∏

i=1

(
(σ2

i )−(ai+1) exp{−bi/σ2
i }
)

|In − ρA|1/2|Σ|−1/2 exp
{
−1

2(y −Xβ)′(In − ρA)Σ−1(y −Xβ)
}

∝ |Σ|−1/2
n∏
i=1

(
(σ2

i )−(ai+1)) exp
{
−1

2(y −Xβ)′(In − ρA)Σ−1(y −Xβ)− 1
2ηβ

′β −
n∑
i=1

bi
σ2
i

}
.

(A.13)

p(β|y) =
∫ ∫

p(β, ρ,Σ|y)dΣdρ

∝ exp
{
−1

2(y −Xβ)′(In − ρA)Σ−1(y −Xβ)− 1
2ηβ

′β

}
∝ exp

{
−1

2(Xβ)′(In − ρA)Σ−1(Xβ)− 1
2ηβ

′β

}
= exp

{
− 1

2η (β′
[
ηX ′(In − ρA)Σ−1X + In

]
β)
}

∴ β|y ∼ Nk

(
0, η[ηX ′(In − ρA)Σ−1X + In]−1) .

(A.14)
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p(ρ|y) =
∫ ∫

p(β, ρ,Σ|y)dβdΣ

∝ exp
{
−1

2(y −Xβ)′(In − ρA)Σ−1(y −Xβ)
}
Iρ∈[−1,1]

∝ exp
{
−1

2(y′(In − ρA)Σ−1y + (Xβ)′(In − ρA)Σ−1(Xβ))
}
Iρ∈[−1,1]

∝ exp
{
−ρ2(−y′AΣ−1y − (Xβ)′AΣ−1(Xβ))

}
Iρ∈[−1,1]

∴ ρ|y ∼ Exp

(
1
2(y′AΣ−1y + (Xβ)′AΣ−1(Xβ))

)
Iρ∈[0,1].

(A.15)

p(σ2
v |y) =

∫ ∫
p(β, ρ,Σ|y)dβdρ

∝ |Σ|−1/2
n∏
i=1

(
(σ2

i )−(ai+1)) exp
{
−1

2(y −Xβ)′(In − ρA)Σ−1(y −Xβ)−
n∑
i=1

bi
σ2
i

}

∝ (σ2
v)−1/2(σ2

v)−(av+1) exp
{
− 1

2σ2
v

(y −Xβ)′(In − ρA)(y −Xβ)− bv
σ2
v

}
∝ (σ2

v)−(av+3/2) exp
{
− 1

2σ2
v

[(y −Xβ)′(In − ρA)(y −Xβ) + 2bv]
}

∴ σ2
v |y ∼ IG

(
av + 1/2, 1

2[(y −Xβ)′(In − ρA).(y −Xβ) + 2bv]
)
(A.16)
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