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ABSTRACT

RAMOS, P. L. Bayesian and classical inference for the generalized gamma distribution and
related models. 2018. 141 p. Tese (Doutorado em Estatística – Programa Interinstitucional
de Pós-Graduação em Estatística) – Instituto de Ciências Matemáticas e de Computação, Universi-
dade de São Paulo, São Carlos – SP, 2018.

The generalized gamma (GG) distribution is an important model that has proven to be very
flexible in practice for modeling data from several areas. This model has important sub-models,
such as the Weibull, gamma, lognormal, Nakagami-m distributions, among others. In this work,
our main objective is to develop different estimation procedures for the unknown parameters of
the generalized gamma distribution and related models (Nakagami-m and gamma), considering
both classical and Bayesian approaches. Under the Bayesian approach, we provide in a simple
way necessary and sufficient conditions to check whether or not objective priors lead proper
posterior distributions for the Nakagami, gamma, and GG distributions. As a result, one can
easily check if the obtained posterior is proper or improper directly looking at the behavior of
the improper prior. These theorems are applied to different objective priors such as Jeffreys’s
rule, Jeffreys prior, maximal data information prior and reference priors. Simulation studies
were conducted to investigate the performance of the Bayes estimators. Moreover, maximum
a posteriori (MAP) estimators for the Nakagami and gamma distribution that have simple
closed-form expressions are proposed Numerical results demonstrate that the MAP estimators
outperform the existing estimation procedures and produce almost unbiased estimates for the
fading parameter even for a small sample size. Finally, a new lifetime distribution that is
expressed as a two-component mixture of the GG distribution is presented.

Keywords: Generalized gamma distribution, Nakagami-m distribution, gamma distribution,
Bayesian methods.





RESUMO

RAMOS, P. L. Análise clássica e Bayesiana para a distribuição gama generalizada e mode-
los relacionados. 2018. 141 p. Tese (Doutorado em Estatística – Programa Interinstitucional
de Pós-Graduação em Estatística) – Instituto de Ciências Matemáticas e de Computação, Universi-
dade de São Paulo, São Carlos – SP, 2018.

A distribuição gama Generalizada (GG) possui um papel fundamental para modelar dados
em diversas áreas. Tal distribuição possui como casos particulares importantes distribuições,
tais como, Weibull, Gama, lognormal, Nakagami-m, dentre outras. Nesta tese, tem-se como
objetivo principal, considerando as abordagens clássica e Bayesiana, desenvolver diferentes
procedimentos de estimação para os parâmetros da distribuição gama generalizada e de alguns
dos seus casos particulares dentre eles as distribuições Nakagami-m e Gama. Do ponto de vista
Bayesiano, iremos propor de forma simples, condições suficientes e necessárias para verificar se
diferentes distribuições a priori não-informativas impróprias conduzem a distribuições posteriori
próprias. Tais resultados são apresentados para as distribuições Nakagami-m, gama e gama
generalizada. Assim, com a criação de novas prioris não-informativas, para tais modelos,
futuros pesquisadores poderão utilizar nossos resultados para verificar se as distribuições a
posteriori obtidas são impróprias ou não. Aplicações dos teoremas propostos são apresentados
em diferentes prioris objetivas, tais como, a regra de Jeffreys, priori Jeffreys, priori maximal data
information e prioris de referência. Iremos também realizar estudos de simulação para investigar
a influência destas prioris nas estimativas a posteriori. Além disso, são propostos estimadores de
máxima a posteriori em forma fechada para as distribuições Nakagami-m e Gama. Por meio de
estudos de simulação verificamos que tais estimadores superam os procedimentos de estimação
existentes e produzem estimativas quase não-viciadas para os parâmetros de interesse. Por fim,
apresentamos uma nova distribuição obtida considerando um modelo de mistura de distribuições
gama generalizada.

Palavras-chave: Distribuição Gama Generalizada, Distribuição Nakagami-m, Distribuição
Gama, Métodos Bayesianos.
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CHAPTER

1
INTRODUCTION

In recent years, several new extensions of the exponential distribution have been proposed
in the literature for describing real problems. Introduced by Stacy (1962), the generalized gamma
(GG) distribution is an important distribution that has proven to be very flexible in practice
for modeling data from several areas, such as climatology, meteorology, medicine, reliability
and image processing data, among others. The GG distribution is a distribution which has
several particular cases, such as the exponential, Weibull, gamma, Log-normal, Nakagami-m,
Half-normal, Rayleigh, Maxwell-Boltzmann and chi distributions.

Marani, Lavagnini and Buttazzoni (1986) used this distribution to analyze data relating to
air quality in Venice, Italy. Tahai and Meyer (1999) proposed new methods for analyzing citations
in recent publications to find journals with greater influence using the GG distribution. Aalo,
Piboongungon and Iskander (2005) used this distribution to analyze the performance degradation
of wireless communication systems. Li et al. (2011) used the GG distribution to obtain different
techniques for processing SAR (Synthetic aperture radar) images. Other applications of the GG
distribution can be seen in Noortwijk (2001), Dadpay, Soofi and Soyer (2007), Balakrishnan and
Peng (2006), Raju and Srinivasan (2002) and Ahsanullah, Maswadah and Ali (2013).

The sub-models related to the GG distribution has been widely used in the literature.
For instance, considering the Google scholarship, a search with the words Weibull distribution,
gamma distribution, Log-normal distribution and Nakagami-m distribution, on March 2016,
found respectively 217.000, 2.920.000, 535.000 and 28.600 research papers.

Different estimation procedures have been discussed in the literature considering both
classical and Bayesian analysis. However, much work still has to be done, in this thesis under
the Bayesian approach, we considered different objective priors for the Nakagami-m, gamma
and generalized gamma models, such as the Jeffreys Rule (BOX; TIAO, 1973), Jeffreys prior
(JEFFREYS, 1946), maximal data information (MDI) prior (ZELLNER, 1977; ZELLNER,
1984) and reference priors (BERNARDO, 1979; BERGER; BERNARDO, 1989; BERGER;
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BERNARDO, 1992a; BERGER; BERNARDO, 1992b; BERGER; BERNARDO et al., 1992;
BERGER et al., 2015).

These objective priors are usually improper and could lead to improper posteriors. For
instance, Noortwijk (2001) considered the non-informative Jeffreys prior to estimating the
quartiles of the flood of a given river using the GG distribution. Such prior has the important
one-to-one invariant property. However, we proved that such prior leads to an improper posterior
and should not be used. Providing a proof that a posterior distribution is proper or improper
is not an easy task. Northrop and Attalides (2016) argued that “. . . there is no general theory
providing simple conditions under which improper priors yields proper posteriors for a particular
model, so this must be investigated case-by-case". In this study, we overcome this problem by
providing in a simple way necessary and sufficient conditions to check whether or not these
objective priors lead to proper posteriors distributions for the chosen models. In this way, one
can easily check if the obtained posterior is proper or improper considering directly the behavior
of the improper prior.

For the Nakagami distribution the main theorem is applied in different objective priors
such as Jeffreys’s rule, Jeffreys prior, the MDI prior and reference priors. The Jeffreys-rule prior
and Jeffreys prior gave proper posterior distribution respectively for n ≥ 1 and n ≥ 0, whereas
they are matching priors only for one of the parameters. The MDI prior provided improper
posterior for any sample sizes and should not be used in Bayesian analysis. The overall reference
prior yielded a proper posterior distribution if and only if n ≥ 1. This prior is the one-at-a-time
reference prior for any chosen parameter of interest and any ordering of the nuisance parameters.
It is also the only prior that is a matching prior for both parameters. An extensive simulation
study showed that the proposed overall reference posterior distribution returns more accurate
results, as well as better theoretical properties such as the invariance property under one-to-one
transformations of the parameters, consistency under marginalization and consistent sampling
properties. The proposed methodology is fully illustrated using two real lifetime data sets,
demonstrating that the NK distribution can be used to describe lifetime data.

For the Gamma distribution we investigated the same problem related to the posterior
distribution. We proved that among the priors considered in this study the MDI prior was the
only that yield an improper posterior for any sample sizes. An extensive simulation study showed
that the posterior distribution obtained under Tibshirani prior provided more accurate results in
terms of mean relative errors (MREs), mean square errors (MSEs) and coverage probabilities
and should be used to obtain inference for this distribution.

Considering the GG distribution, we proved that the uniform prior, the prior obtained
from Jeffreys’ first rule and the MDI prior lead to improper posteriors. Further, the impropriety
of the posterior using the Jeffreys’ priors (NOORTWIJK, 2001) led us to consider the scenario
where the Jeffreys prior has an independent structure (FONSECA; FERREIRA; MIGON, 2008).
However, the four possible objective priors also returned improper posteriors. An alternative
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was to consider reference priors. Since these priors are sensitive to the ordering of the unknown
parameters, from Proposition 2.3.1 we obtained six reference priors, two of them were similar to
other reference priors. Among the four distinct reference priors, we proved that only one returned
a proper posterior distribution. The obtained posterior has excellent theoretical properties such
as invariance property under one-to-one transformations of the parameters, consistency under
marginalization and consistent sampling properties and should be used to make inference in the
parameters of the GG distribution.

However, under the proposed approaches discussed so far, numerical integration must
be used to obtain the posterior estimates and to perform the classical inference. Despite the
enormous evolution of computational methods during the last decades, these methods still carry
the disadvantage of high computational cost in many applications. Particularly in the case where
the parameter estimators need to be obtained in real time, often within devices with embedded
technology Song (2008). To overcome this problem we propose a class of maximum a posteriori
(MAP) estimators for the parameters of the Nakagami and gamma distributions. They have
simple closed-form expressions and can be rewritten as a bias-corrected maximum likelihood
estimators (MLEs). Numerical results have shown that the MAP estimation scheme outperforms
the existing estimation procedures and produces almost unbiased estimates for the parameters
even for small sample size.

Finally, a new lifetime distribution that is expressed as a two-component mixture of
the generalized gamma distribution is proposed. This generalization accommodates increasing,
decreasing, decreasing-increasing-decreasing, bathtub, or unimodal hazard shapes, making such
distribution a flexible model for reliability data. A significant account of mathematical properties
of the new distribution is presented as well as two data sets are analyzed for illustrative purposes,
proving that the mixture model outperforms several usual three parameters lifetime distributions.

1.1 Objectives and Overview

The main objective of this thesis is to improve the estimation procedures for the GG
distribution and some of its related models. In order to achieved that we will:

1. Provide sufficient conditions to check whether or not objective priors lead to proper
posteriors distributions for the Nakagami, gamma and GG distributions.

2. Derive different objective priors for the distributions cited above and apply the theorems
to check if the obtained priors lead to proper posteriors.

3. Select among the priors that lead to proper posteriors the best ones that return better
estimates in terms of MREs, MSEs and coverage probabilities.
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4. Propose for the Nakagami and gamma distributions MAP estimators that have simple
closed-form expressions for the parameters and can be rewritten as bias-corrected maxi-
mum likelihood estimators.

5. Introduce and discuss the properties of a new lifetime distribution that is expressed as a
two-component mixture of the generalized gamma distribution.

The remainder of this work is organized as follows. In Chapter 2, we present a literature
review of some important topics that will be covered in this work. In Chapter 3, we present a
Bayesian inference for the unknown parameters of the Nakagami-m distribution. In Chapter 4,
we consider the same approach for the parameters of the gamma distribution. In Chapter 5, we
extended the results to the generalized gamma distribution. In Chapter 5, MAP estimators that
have simple closed-form expressions for the Nakagami-m and gamma distribution are proposed.
In Chapter 6, we proposed a new lifetime distribution expressed as a two-component mixture of
the generalized gamma distribution. Finally, in Chapter 7 we present some general comments
and possible extensions of this current work.
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CHAPTER

2
PRELIMINARIES

In this section, we present a literature review of some important topics that are covered
throughout this thesis.

2.1 Survival Analysis

In survival analysis, the responses are usually characterized by the failure times and the
occurrence of censorship. These responses are usually measured over time until the occurrence of
the event of interest. Therefore, a random variable (RV) T will have only non-negative values and
can be expressed by different mathematical functions, such as the probability density function
(PDF) f (t), the cumulative distribution function (CDF) F(t), the survival function S(t), the
hazard function h(t), among others.

The probability density function of a non-negative RV T , is given by

f (t) = lim
∆t→0

P(t ≤ T ≤ t +∆t)
∆t

, f (t)≥ 0. (2.1)

The survival function with probability of an observation does not fail until the time t is

S(t) = P[T > t] = 1−P[T ≤ t] = 1−
∫ t

0
f (t)d(t) = 1−F(t), 0 < S(t)< 1,

where F(t) is cumulative distribution function.

The hazard function quantify the instantaneous risk of failure at a given time t and is
given by

h(t) = lim
∆t→0

P(t ≤ T ≤+t∆t|T ≥ t)
∆t

=
f (t)
S(t)

, h(t)≥ 0. (2.2)

The Figure 1 presents shapes that the hazard function can assume such as constant,
decreasing, increasing, unimodal, bathtub shape, among others.
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Figure 1 – Different shapes for the hazard function.

Some useful relationships can be obtained from these functions, such as:

f (t) = h(t)S(t), h(t) =
S′(t)
S(t)

=
∂

∂ t
log(S(t)), S(t) = exp

[
−
∫ t

0
h(t)dt

]
.

Glaser (1980) provided a helpful Lemma to study the behavior of the hazard function
that is given as follow.

Lemma 2.1.1. Glaser (1980). Let T be a non-negative continuous random variable with twice
differentiable PDF, f (t|θ). Then for η(t|θ) =− d

dt log f (t|θ), we have the following results:

1. If η(t|θ) has a decreasing (increasing) shape, then h(t|θ) has an increasing (decreasing)
shape.

2. If η(t|θ) is bathtub (unimodal) shaped, then h(t|θ) is bathtub (unimodal) shaped.

2.1.1 TTT-plot

The TTT-plot (total time on test) is considered in order to verify the behavior of the
empirical hazard function (BARLOW; CAMPO, 1975). The TTT-plot is obtained from the plot
of [r/n,G(r/n)] where

G(r/n) =

(
r

∑
i=1

ti +(n− r)t(r)

)
/

n

∑
i=1

ti,

r = 1, . . . ,n, i = 1, . . . ,n and t(r) is the order statistics. If the curve is concave (convex), the hazard
function has an increasing (decreasing) shape. If it starts convex and then becomes concave,
or begins as concave and then becomes convex, then the hazard function is bathtub shaped, or
inverse bathtub shaped, respectively. For more details see Figure 2.



2.2. Frequentist inference 29

Figure 2 – TTT-plot shapes, retrieved from Ramos, Moala and Achcar (2014).

2.2 Frequentist inference
In a frequentist approach the unknown parameter vector θ = (θ1, . . . ,θk) is considered

as having fixed but unknown values. Different classical inferential procedures are available in
the literature, such as the maximum likelihood estimators, method of moments, L-moments,
ordinary and weighted least-squares, percentile, maximum product of spacings, the maximum
goodness-of-fit estimators, among others (LOUZADA; RAMOS; PERDONÁ, 2016; BAKOUCH
et al., 2017; DEY et al., 2017; RODRIGUES; LOUZADA; RAMOS, 2018). In this work, the
maximum likelihood are considered to obtain the point and interval estimates under the classical
approach.

2.2.1 Maximum Likelihood Estimation

The MLEs were chosen due to their good asymptotic properties. These estimators are
obtained from maximizing the likelihood function (CASELLA; BERGER, 2002). The likelihood
function of θ given t, is

L(θ , t) =
n

∏
i=1

f (ti|θ). (2.3)

For a model with k parameters, if the likelihood function is differentiable at θi, the
likelihood equations are obtained by solving the equations

∂

∂θi
log(L(θ , t)) = 0, i = 1,2, . . . ,k. (2.4)

Under mild conditions the solutions of (2.4) provide the maximum likelihood estimators.
In many cases, numerical methods such as Newton-Raphson are required to find the solution
of the nonlinear system. For large samples and under mild conditions they are consistent and
efficient with an asymptotically multivariate normal distribution given by

θ̂ ∼ Nk[θ , I−1(θ)] as n → ∞, (2.5)
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where I(θ) is the Fisher information matrix, k× k and Ii j(θ) is the Fisher information element
of θ in i and j given by

Ii j(θ) = E
[
− ∂ 2

∂θi∂θ j
log(L(θ , t))2

]
, i, j = 1,2, . . . ,k. (2.6)

For large samples, approximated confidence intervals can be constructed for the indi-
viduals parameters θi, i = 1, . . . ,k, with confidence coefficient 100(1− γ)%, through marginal
distributions given by

θ̂i ∼ N[θi, I−1
ii (θ)] para n → ∞. (2.7)

2.3 Bayesian Inference

So far, we have presented the estimation procedures using the frequentist approach.
Bayesian analysis is an attractive framework in practical problems and became very popular in
recent years. Here, we assume that the reader has a basic knowledge about Bayesian procedures.
For an overview of Bayesian techniques, the reader is referred to Migon, Gamerman and Louzada
(2014).

As the parameters are treated as random variables the distribution associated with such
variables are known as prior distribution. The prior distribution is a key part of the Bayesian
inference and there are different types of priors distribution available in the literature. Priors can
be created using different procedures. For example, a prior distribution could be elicited from
the assessment of an experienced expert (O’Hagan et al. (2006)). On the other hand, we could
be interested in specifying a prior distribution, where the dominant information in the posterior
distribution is provided by the data, such priors are known as noninformative prior. In this work,
we considered different non-informative priors, such as the Jeffreys Rule (BOX; TIAO, 1973),
Jeffreys prior (JEFFREYS, 1946), Maximal Data Information (MDI) prior (ZELLNER, 1977;
ZELLNER, 1984) and Reference prior (BERNARDO, 1979). These priors are usually improper
and could lead to improper posteriors. Therefore, we investigated if whether these priors lead to
proper posterior distributions for the chosen models.

2.3.1 Non-informative priors

Jeffreys considered different scenarios for constructing non-informative priors. He con-
sidered the cases in which the parameter space was a bounded interval, (−∞,∞), or (0,∞)

(KASS; WASSERMAN, 1996). For these two cases, Jeffreys suggested using a constant prior.
For (0,∞), he used the prior π(θ) = 1

θ
. His main justification for this choice was its invariance

under power transformations of the parameters. Therefore, if θ ∈ (0,∞)k, then the Jeffreys rule
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prior is given by

π(θ) ∝

k

∏
i=1

1
θi
. (2.8)

In a further study, Jeffreys (1946) proposed his “general rule” in which the non-informative
prior is obtained from the square root of the determinant of the Fisher information matrix I(θ)

and θ is the vector of parameters. This prior has been widely used due to its invariance prop-
erty under one-to-one transformations of parameters. For example, for any one-to-one function
Φ = Φ(θ), the posterior p(Φ|t) obtained from the reparametrized distribution f (t|Φ) must be
coherent with the posterior p(θ |t) obtained from the original distribution f (t|θ), in the sense
that, p(Φ|t) = p(θ |t)| dθ

dΦ
|.

The Jeffreys prior is obtained through the square root of the determinant of the Fisher
information matrix I(θ) given by

π(θ) ∝
√

det I(θ). (2.9)

Zellner (1977) introduced another procedure to derive a noninformative prior π(θ) in
which the gain in the information supplied by the data is the largest as possible relative to the prior
information, maximizing the information provided by the data. The resulting noninformative
prior distribution is known as Maximal Data Information (MDI) prior and is defined as

π (θ) ∝ exp(Q(θ)) , (2.10)

where Q(θ) is the negative Shanon Entropy of f (t |θ) given by

Q(θ) =
∫

f (t |θ) log f (t |θ)dt, (2.11)

i.e, one measure of the information of f (t |θ). The MDI prior has invariant limitations, in this
case, is only invariant for linear transformations of T or θ .

Another important noninformative prior was introduced by Bernardo (1979) with further
developments (BERGER; BERNARDO, 1989; BERGER; BERNARDO, 1992a; BERGER;
BERNARDO, 1992b; BERGER; BERNARDO et al., 1992; BERGER et al., 2015). The proposed
reference prior is minimally informative in a precise information-theoretic sense. Moreover, the
information provided by the data dominate the prior information, reflecting the vague nature of
the prior knowledge. To achieve such prior the authors maximize the expected Kullback-Leibler
divergence between the posterior distribution and the prior. The obtained reference prior provides
a posterior distribution with interesting properties, such as:

∙ Consistent marginalization: For all data t, if the posterior p1(θ |t) obtained from origi-
nal model f (t|θ ,λ ) is of the form p1(θ |t) = p1(θ |x) for some statistic x = x(t) whose
sampling distribution p(x|θ ,λ ) = p(x|θ) only depends on θ , then the posterior p2(θ |x)
obtained from the marginal distribution f (x|θ) must be the same as the posterior p1(θ |x)
obtained from f (t|θ ,λ ).
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∙ Consistent sampling properties: The properties under repeated sampling of the posterior
distribution must be consistent with the model f (t|θ) (COX; HINKLEY, 1979).

∙ Invariant under one-to-one transformations: The same properties presented in the Jeffreys
prior section.

Bernardo (2005) presented different procedures to derive reference priors in the presence
of nuisance parameters. The following propositions are useful to obtain the reference priors for
the chosen models.

Proposition 2.3.1. Let f (x|θ ,λ ) be a parametric model, where θ is the parameter of interest,
λ = (λ1, . . . ,λm) is a vector of nuisance parameters and I(θ ,λ ) Fisher’s information matrix
(m+ 1)× (m+ 1). It is assumed that the joint distribution of (θ ,λ ) is asymptotically normal
with mean and covariance matrix S(θ̂ , λ̂ ) = I−1(θ̂ , λ̂ ), where (θ̂ , λ̂ ) correspondents of MLEs.
Moreover, S j is a j× j upper left submatrix of S and ιi, j(θ ,λ ) is an element of I j. If the nuisance
parameter spaces ∧i(θ ,λ1, . . . ,λ j−1) = ∧i are independent of θ and λi’s and the functions
ιi,i, . . . , ιm,m, i = 1, . . . ,m factorize in the form

s
− 1

2
1,1 (θ ,λ ) = f0(θ)g0(λ ) and ι

1
2
i+1,i+1(θ ,λ ) = fi(λi)gi(θ ,λ−i).

where λ−i = (λ1, . . . ,λi−1,λi+1, . . . ,λm). Then

π(θ) ∝ f0(θ), π(λi|θ ,λ−i) ∝ fi(λi), i = 1, . . . ,m, (2.12)

and the reference prior when θ is the parameter of interest and λ is the vector of nuisance
parameters is given by πθ (θ ,λ ) = f0(θ)∏

m
i=1 f j(λi).

Proposition 2.3.2. (BERGER et al., 2015, p.196) Consider the unknown vector of parameters
θ = (θ1, . . . ,θm) and the posterior distribution p(θ |t) with asymptotically normal distribution
and dispersion matrix S(θ) = I−1(θ). If I(θ) is of the form

I(θ) = diag( f1(θ1)g1(θ−1), . . . , fm(θm)gm(θ−m)),

where fi(·) and gi(·) are positive functions of θi for i = 1, . . . ,m, then the one-at-a-time reference
prior, for any chosen parameter of interest and any ordering of the nuisance parameters in the
derivation, hereafter, the overall reference prior is given by

π(θ) =
√

f1(θ1) . . . fm(θm) . (2.13)

Tibshirani (1989) proposes an alternative method to derive a class of non-informative
priors π(θ1,θ2) where θ1 is the parameter of interest so that the credible interval for θ1 has a
coverage error O(n−1) in the frequentist sense, i.e.,

P
[
θ1 ≤ θ

1−α

1 (π;X)|(θ1,θ2)
]
= 1−α −O(n−1), (2.14)
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where θ
1−α

1 (π;X)|(θ1,θ2) denote the (1−α)th quantile of the posterior distribution of θ1. The
class of priors satisfying (2.14) are known as matching priors.

To achieve this, Tibshirani (1989) proposed to reparametrize the model in terms of
the orthogonal parameters (δ ,λ ) in the sense discussed by Cox and Reid (1987). That is,
Iδ ,λ (δ ,λ ) = 0 for all (δ ,λ ), where δ is the parameter of interest and λ is the orthogonal
nuisance parameter. Thus, the matching priors are all priors of the form

π(δ ,λ ) = g(λ )
√

Iδδ (δ ,λ ), (2.15)

where g(λ )> 0 is an arbitrary function and Iδδ (δ , λ ) is the δ entry of the Fisher information
matrix. Further, Mukerjee and Dey (1993) discussed sufficiency and necessary conditions for a
class of Tibshirani priors be matching prior up to o(n−1).

2.4 Discrimination criterion methods
In situations that involve uncertainty measures, discrimination criterion methods are

of great importance in statistical analysis as a goodness of fit for model selection. Let k be
the number of parameters to be fitted and θ̂ is the estimate of θ some discrimination criterion
methods based on log-likelihood function are given by

∙ Akaike information criterion: AIC =−2log(L(θ̂ ; t))+2k .

∙ Corrected Akaike information criterion: AICC = AIC+ 2k (k+1)
(n−k−1) .

∙ Bayesian information criterion: BIC =−2log(L(θ̂ ; t))+ k log(n) .

Given observed data and a set of candidate models the best model is the one which
provides the minimum values. These procedures includes penalty discourages overfitting, i.e, in-
creasing the number of parameters with poor predictive results. For an overview of discrimination
criterion methods, the reader is referred to Burnham and Anderson (2004).

2.5 Some Useful Mathematical Results
In this section, we present some useful propositions that are used to prove some posterior

properties.

Let R+ denote the strictly positive real numbers.

Definition 2.5.1. Let g : U → R+ and h : U → R+, where U ⊂ R, and let a ∈ R. We can say
that g(x) ∝

x→a
h(x) if

liminf
x→a

g(x)
h(x)

> 0 and limsup
x→a

g(x)
h(x)

< ∞ .

We define the meaning of the relations g(x) ∝
x→a+

h(x) and g(x) ∝
x→a−

h(x) for a ∈ R analogously.
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The following propositions and definitions are useful to prove the results related to the
posterior distribution.

We denoted by R = R∪{−∞,∞} the extended real number line with its usual order
(≤), while R+ denotes the strictly positive real numbers, R+ = R+∪{∞} and R+

0 denotes the
non-negative real numbers.

Definition 2.5.2. Let g : U →R+ and h : U →R+, where U ⊂R. We will say that g(x) ∝ h(x)
if there is c0 ∈ R+ and c1 ∈ R+ such that c0 h(x)≤ g(x)≤ c1 h(x) for every x ∈ U .

Note that if for some c ∈R+ we have limx→a
g(x)
h(x) = c, then g(x) ∝

x→a
h(x). The following

proposition relates Definition 2.5.2 and Definition 2.5.1 for U = (a,b).

Proposition 2.5.3. Let g : (a,b)→R+ and h : (a,b)→R+ be continuous functions on (a,b)⊂R,
where a ∈ R and b ∈ R. Then g(x) ∝ h(x) if and only if g(x) ∝

x→a
h(x) and g(x) ∝

x→b
h(x).

Proof. Suppose g(x) ∝
x→a

h(x) and g(x) ∝
x→b

h(x). Then, by Definition 2.5.1, liminfx→a
g(x)
h(x)

=w1

and limsupx→a
g(x)
h(x)

= w2 for some w1 and w2 both in (0,∞). Therefore, from the definition

of liminf and limsup there is some a′ ∈ (a,b) such that
w1

2
≤ g(x)

h(x)
≤ 3w2

2
for every x ∈ (a,a′].

Analogously, there is some v1 and v2, both in (0,∞), and b′ ∈ (0,∞) such that
v1

2
≤ g(x)

h(x)
≤ 3v2

2

for every v ∈ [b′,b). On the other hand, since
g(x)
h(x)

is continuous in [a′,b′], the Weierstrass

extreme value Theorem (RUDIN et al., 1964) states that there is some x0 and x1 ∈ [a′,b′] such that
g(x1)

h(x1)
≤ g(x)

h(x)
≤ g(x2)

h(x2)
for every x ∈ [a′,b′]. Finally, choosing m = min

(
w1

2
,
v1

2
,
g(x1)

h(x1)

)
> 0 and

M = max
(

3w2

2
,
3v2

2
,
g(x2)

h(x2)

)
< ∞, it follows from the above considerations that m ≤ g(x)

h(x)
≤ M

for every x ∈ (a,b), which by Definition 2.5.2 means that g(x) ∝ h(x).

Suppose g(x) ∝ h(x). By Definition 2.5.2, there are some m > 0 and M < 0 such that

m ≤ g(x)
h(x)

≤ M for every x ∈ (a,b). This implies that

liminf
x→a

g(x)
h(x)

≥ m > 0 and limsup
x→a

g(x)
h(x)

≤ M < ∞,

which by Definition 2.5.1 means that g(x) ∝
x→a

h(x). The proof that g(x) ∝
x→b

h(x) is analogous to
the previous case.

As a direct consequence of Proposition 2.5.3, we have the following Proposition. This is
the main proposition that will be used in the next subsection.
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Proposition 2.5.4. Let g : (a,b)→R+ and h : (a,b)→R+ be continuous functions in (a,b)⊂R,
where a ∈ R and b ∈ R, and let c ∈ (a,b). Then if g(x) ∝

x→a
h(x) or g(x) ∝

x→b
h(x) we have

∫ c

a
g(t) dt ∝

∫ c

a
h(t) dt or

∫ b

c
g(t) dt ∝

∫ b

c
h(t) dt .

Proof. Suppose g(x) ∝
x→a

h(x). By continuity and non-nullity of g(x) and h(x) in c we have
g(x) ∝

x→c
h(x). Therefore, by Proposition 2.5.3, we have that g(x) ∝ h(x) in (a,c). This implies

that ∫ c

a
g(t) dt ∝

∫ c

a
h(t) dt .

The proof of the case g(x) ∝
x→b

h(x) is analogous.

The following propositions are useful to prove the results related to the posterior distribu-
tion. Let R+ denote the positive real numbers and R+

0 denote the positive real numbers including
0.

Definition 2.5.5. Let g : U → R+
0 and h : U → R+

0 , where U ⊂ R. We say that g(x) . h(x)
if there exist M ∈ R+ such that g(x)≤ M h(x) for every x ∈ U . If g(x). h(x) and h(x). g(x)
then we say that g(x) ∝ h(x).

Definition 2.5.6. Let a ∈R, g : U →R+ and h : U →R+, where U ⊂R. We say that g(x) .
x→a

h(x) if limsupx→a
g(x)
h(x)

< ∞ . If g(x) .
x→a

h(x) and h(x) .
x→a

g(x) then we say that g(x) ∝
x→a

h(x).

The meaning of the relations g(x) .
x→a+

h(x) and g(x) .
x→a−

h(x) for a ∈ R are defined

analogously.

Note that, if for some c∈R+ we have limx→a
g(x)
h(x)

= c, then g(x) ∝
x→a

h(x). The following

proposition is a direct consequence of the above definition.

Proposition 2.5.7. For a ∈ R and r ∈ R+ , let f1(x) .
x→a

f2(x) and g1(x) .
x→a

g2(x) then the

following hold

f1(x)g1(x) .
x→a

f2(x)g2(x) and f1(x)r .
x→a

f2(x)r.

The following proposition relates Definition 2.5.5 and Definition 2.5.6.

Proposition 2.5.8. Let g : (a,b)→R+ and h : (a,b)→R+ be continuous functions on (a,b)⊂R,
where a ∈ R and b ∈ R. Then g(x). h(x) if and only if g(x) .

x→a
h(x) and g(x) .

x→b
h(x).

Proof. Suppose that g(x) .
x→a

h(x) and g(x) .
x→b

h(x). Then, by Definition 2.5.6,

limsupx→a
g(x)
h(x)

= w for some w ∈ R+. Therefore, from the definition of limsup there exist
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some a′ ∈ (a,b) such that
g(x)
h(x)

≤ 3w
2

for every x ∈ (a,a′]. Proceeding analogously, there must

exist some v ∈ R+ and b′ ∈ (a′,b) such that
g(x)
h(x)

≤ 3v
2

for every x ∈ [b′,b). On the other hand,

since
g(x)
h(x)

is continuous in [a′,b′], the Weierstrass Extreme Value Theorem states that there

exist some x1 ∈ [a′,b′] such that
g(x)
h(x)

≤ g(x1)

h(x1)
for every x ∈ [a′,b′]. Finally, choosing M =

max
(

3w
2
,
3v
2
,
g(x1)

h(x1)

)
< ∞, it follows that

g(x)
h(x)

≤ M for every x ∈ (a,b), which by Definition

2.5.5 means that g(x). h(x).

Now suppose g(x). h(x). By Definition 2.5.5, there exist some M < 0 such that
g(x)
h(x)

≤

M for every x ∈ (a,b). This implies that limsupx→a
g(x)
h(x) ≤ M < ∞ which by Definition 2.5.6

means that g(x) .
x→a

h(x). The proof that g(x) .
x→b

h(x) must also be satisfied is analogous to the

previous case. Therefore the theorem is proved.

Note that if g : (a,b)→ R+ and h : (a,b)→ R+ are continuous functions on (a,b)⊂ R,

then by continuity it follows directly that limx→c
g(x)
h(x)

=
g(c)
h(c)

> 0 and therefore g(x) ∝
x→c

h(x)

for every c ∈ (a,b). This fact and the Proposition 2.5.8 imply directly the following.

Proposition 2.5.9. Let g : (a,b)→R+ and h : (a,b)→R+ be continuous functions in (a,b)⊂R,
where a ∈ R and b ∈ R, and let c ∈ (a,b). Then if g(x) .

x→a
h(x) (or g(x) .

x→b
h(x)) we have that∫ c

a g(t) dt .
∫ c

a h(t) dt (respectively
∫ b

c g(t) dt .
∫ b

c h(t) dt ).
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CHAPTER

3
NAKAGAMI-M DISTRIBUTION

3.1 Introduction

The Nakagami-m (NK) distribution is a powerful statistical tool for modeling fading
radio signals. Proposed by Nakagami (1960), this model has received considerable attention due
to its flexibility to describe a wide range of communication engineering problems. For instance,
considering the IEEE Xplore digital Library, a search carried out using the word ”Nakagami” on
April 2017 found 3,660 research papers.

The NK distribution has been used successfully in other fields such as medical imaging
processing (SHANKAR et al., 2001; TSUI; HUANG; WANG, 2006), hydrologic engineering
(SARKAR; GOEL; MATHUR, 2009; SARKAR; GOEL; MATHUR, 2010), seismological
analysis (CARCOLE; SATO, 2009; NAKAHARA; CARCOLÉ, 2010) and traffic modeling of
multimedia data (KIM; LATCHMAN, 2009). However, there are no comprehensive references
in the literature which consider the NK distribution as a reliability model. In this chapter, we
present the reliability properties for this model and also prove that its hazard rate (mean residual
life) function presents increasing (decreasing) or bathtub (unimodal) shapes.

The parameter estimations of the NK distribution were discussed earlier. An unbiased
estimator for parameter Ω is easily obtained using the method of moments (NAKAGAMI,
1960). However, considerable effort has been made to derive efficient estimators for the fading
parameter. Cheng and Beaulieu (2001) considered the maximum likelihood (ML) method.
Cheng and Beaulieu (2002) further suggested an estimator based on generalized moments (GM).
Zhang (2002) numerically compared the accuracy of various estimators and suggested using
an approximation to the ML estimators. Gaeddert and Annamalai (2004) developed estimators
based on approximations of transcendental equations that arose when computing the ML and
GM estimators. However, these estimators are approximations to the natural procedures and
are motivated by fast computation, avoiding solving nonlinear equations. Wang, Song and
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Cheng (2012) proposed a closed-form estimator for the fading parameter obtained as a limiting
procedure of the traditional GM estimators. However, these estimators depend on the asymptotic
properties to construct the confidence intervals.

Considering a Bayesian approach, Son and Oh (2007) discussed Bayes estimation using
independent gamma prior distributions for the parameters of the NK distribution. However,
Bernardo (2005) argued that using simple proper priors, presumed to be non-informative, often
hides important unwarranted assumptions which may easily dominate, or even invalidate, the
statistical analysis and should be strongly discouraged. Beaulieu and Chen (2007) discussed
MAP estimators using informative priors. However, in applications, it is difficult to obtain prior
information for the unknown parameters. To overcome this problem, a Bayesian analysis can be
performed with non-informative priors, i.e., priors constructed by formal rules.

In this chapter, different objective priors for the NK distribution are presented such as
Jeffreys’s rule, Jeffreys prior, the MDI prior and the reference prior. These priors are improper and
could lead to improper posteriors. We propose a theorem that provides sufficient and necessary
conditions for a general class of posterior to be proper posterior distributions. The proposed
theorem is used to investigate if these priors lead to proper or improper posterior distributions.
Later, a posterior distribution based on the reference prior is obtained. This proper posterior
returns better numerical results and also excellent theoretical properties such as invariance
property under one-to-one transformations of the parameters, consistency under marginalization
and consistent sampling properties. The proposed posterior distribution also satisfies the matching
prior properties for both Ω and µ . Finally, our methodology is illustrated using two real lifetime
data sets, proving that the NK distribution can be used to describe lifetime data.

The remainder of this chapter is organized as follows. Section 2 presents mathematical
properties for the NK and reviews two common classical approaches. Section 3 presents the main
theorem that provides sufficient and necessary conditions for a general class of posterior to be
proper with applications in non-informative priors. In Section 4, a simulation study is presented
in order to identify the most efficient estimation procedure. Section 5 presents an analysis of two
lifetime data sets. Finally, Section 6 summarizes the study.

3.2 Nakagami-m distribution

Let T be a random variable with NK distribution, the PDF is given by

f (t|θ) = 2
Γ(µ)

(
µ

Ω

)µ

t2µ−1 exp
(
−µ

Ω
t2
)
, (3.1)

for all t > 0, where θ = (µ,Ω), µ ≥ 0.5 and Ω > 0 are, respectively, the shape (also known as a
fading parameter) and scale parameters and Γ(φ) =

∫
∞

0 e−xxφ−1dx is the gamma function. We
use Ω and µ to represent the parameters since they are commonly used in signal processing.



3.2. Nakagami-m distribution 39

Important probability distributions can be obtained from the NK distribution such as the
Rayleigh distribution (µ = 1) and the half-normal distribution (µ = 0.5). Moreover, this model
is also related to the gamma distribution. For instance, if Y ∼ Gamma(a,b), then T =

√
Y has a

NK distribution with µ = a and Ω = ab. Due to this relationship, the µ parameter can also take
on values between 0 < µ < 0.5.

Let T be a continuous lifetime (non-negative) random variable with NK distribution. The
raw moments are given as

E(T r) =
Γ(µ + r/2)

Γ(µ)

(
Ω

µ

)r/2

, (3.2)

for r ∈ N. After some algebraic manipulation, the mean and variance of (3.1) are respectively
given by

E(T ) =
Γ(µ +1/2)

Γ(µ)

(
Ω

µ

) 1
2

and (3.3)

Var(T ) = Ω

(
1−
(

Γ(µ +1/2)
Γ(µ)

)2
)
. (3.4)

The median and the mode of the NK distribution are

Med(T ) =
√

Ω and Mode(T |θ) =
√

2
2

(
(2µ −1)Ω

µ

) 1
2

.

The reliability function that represents the probability that an observation does not fail
until t is

S(t|θ) = 1
Γ(µ)

Γ

(
µ,

µ

Ω
t2
)
,

where Γ(y,x) =
∫

∞

x wy−1e−wdw is the upper incomplete gamma function. For the NK distribution,
the hazard function is given by

h(t|θ) = 2
(

µ

Ω

)µ

t2µ−1 exp
(
−µ

Ω
t2
)

Γ

(
µ,

µ

Ω
t2
)−1

. (3.5)

Theorem 3.2.1. The hazard rate function h(t|θ) of the NK distribution is bathtub (increasing)
shaped for 0 < µ < 0.5 (µ ≥ 0.5), for all Ω > 0.

Proof. Firstly

η(t|θ) =− d
dt

log f (t|θ) =−(2µ −1)
t

− 2µ t
Ω

. (3.6)

Following Lemma 2.1.1, for µ ≥ 0.5 and Ω > 0, η(t|θ) has a decreasing shape, i.e.,
h(t|θ) has an increasing shape. For 0 < µ < 0.5 and Ω > 0, η(t|θ) is bathtub shaped with a
global minimum at t* =

√
Ω− Ω

2µ
. Therefore, h(t|θ) is also bathtub shaped.
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The behavior of the hazard function (3.5) when t → 0 and t → ∞ is given by

h(0|θ) =


∞, if µ < 0.5√

2
Ω
, if µ = 0.5

0, if µ > 0.5

and h(∞|θ) = ∞.

Figure 3 presents examples for the shapes of the hazard function for different values of
µ and Ω.
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Figure 3 – Hazard function shapes for NK distribution considering different values of µ and Ω.

The mean residual life (MRL) represents the expected additional lifetime given that a
component has survived until time t.

Proposition 3.2.2. The mean residual life function r(t|θ) of the NK distribution is given by

r(t|θ) = 1
S(t|θ)

∫
∞

t
y f (y|θ))dy− t =

√
Ω

µ

(
Γ
(
µ + 1

2 ,
µ

Ω
t2)

Γ
(
µ, µ

Ω
t2
) )

− t. (3.7)

The behaviors of the MRL function (3.5) when t → 0 and t → ∞ are, respectively

r(0|θ) =

√
Ω

µ

(
Γ
(
µ + 1

2

)
Γ(µ)

)
and r(∞|θ) = 1

h(∞|θ)
= 0.

The following Lemma is useful to obtain the shapes of the MRL function.

Lemma 3.2.3. Let T be a continuous lifetime random variable with hazard function h(t|θ) and
mean residual life function r(t|θ).
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1. If h(t|θ) has a decreasing (increasing) shape, then r(t|θ) has an increasing (decreasing)
shape (BRYSON; SIDDIQUI, 1969) .

2. If h(t|θ) is bathtub shaped and h(0)r(0) > 1, then r(t|θ) is unimodal shaped (OLCAY,
1995).

Theorem 3.2.4. The mean residual life function r(t|θ) of the NK distribution has a unimodal
(decreasing) shape for 0 < µ < 0.5(µ ≥ 0.5), for all Ω > 0.

Proof. For µ ≥ 0.5 and Ω > 0, h(t|θ) has an increasing shape. Then, by Lemma 3.2.3, r(t|θ)
has a decreasing shape. For Ω > 0 and 0 < µ < 0.5, h(t|θ) has a bathtub shape and h(0)r(0)> 1.
Therefore, based on Lemma 3.2.3, r(t|θ) has a unimodal shape.

Figure 4 presents examples of the shapes of the mean residual life function for different
values of µ and Ω.
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Figure 4 – Mean residual life function shapes for NK distribution considering different values of µ and Ω.

3.3 Classical Inference

3.3.1 Moment Estimators

The method of moments (MM) is one of the oldest methods used for estimating pa-
rameters in statistical models. Nakagami (1960) proposed the following moment estimators

µ̂ =

(
∑

n
i=1 t2

i
)2(

n∑
n
i=1 t4

i
)
−
(
∑

n
i=1 t2

i
)2 and Ω̂ =

1
n

n

∑
i=1

t2
i . (3.8)
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Note that the second moment of the NK distribution is Ω. Therefore, Ω̂ = ∑
n
i=1 t2

i /n is
an unbiased estimator for Ω.

3.3.2 Maximum Likelihood Estimation

Let T1, . . . ,Tn be a random sample such that T ∼ NK(Ω,µ). The likelihood function
from (3.1) is given by

L(θ |t) = 2n

Γ(µ)n

(
µ

Ω

)nµ

{
n

∏
i=1

t2µ−1
i

}
exp

(
−µ

Ω

n

∑
i=1

t2
i

)
. (3.9)

The log-likelihood function is

logL(θ |t) =n log(2)−n log(Γ(µ))+nµ log
(

µ

Ω

)
+(2µ −1)

n

∑
i=1

log(ti)−
µ

Ω

n

∑
i=1

t2
i . (3.10)

The estimates are obtained by maximizing the likelihood function. From the expressions
∂

∂Ω
logL(θ |t) = 0, ∂

∂ µ
logL(θ |t) = 0, the likelihood equations are given as

n
(

1+ log
(

µ

Ω

))
−nψ(µ)+2

n

∑
i=1

log(ti) =
1
Ω

n

∑
i=1

t2
i (3.11)

and

−nµ

Ω
+

µ

Ω2

n

∑
i=1

t2
i = 0, (3.12)

where ψ(k) = ∂

∂k logΓ(k) = Γ′(k)
Γ(k) is the digamma function. The MLE for Ω̂ is

Ω̂ =
1
n

n

∑
i=1

t2
i . (3.13)

Substituting Ω̂ in (3.11), the estimate for µ̂ can be obtained solving

log(µ)−ψ(µ) = log

(
1
n

n

∑
i=1

t2
i

)
− 2

n

n

∑
i=1

log(ti) . (3.14)

Under mild conditions, the MLE are asymptotically normally distributed with a joint
bivariate normal distribution given by

(µ̂MLE ,Ω̂MLE)∼ N2[(µ,Ω), I−1(µ,Ω))] for n → ∞,

where I(µ,Ω) is the Fisher information matrix

I(µ,Ω) = n

(µψ ′(µ)−1)
µ

0

0
µ

Ω2

 , (3.15)

and ψ ′(k) = ∂

∂k ψ(k) is the trigamma function. These results are useful to construct asymptotic
confidence intervals for the parameters of the NK distribution.
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3.4 Bayesian Analysis
In this section, sufficient and necessary conditions are presented for a general class of

posterior to obtain proper posterior distributions. Our proposed methodology is illustrated in
different non-informative priors for parameters µ and Ω of the NK distribution.

3.4.1 Proper Posterior

The joint posterior distribution for θ is equal to the product of the likelihood function
(3.9) and the joint prior distribution π(θ) divided by a normalizing constant d(t), resulting in

p(θ |t) = 1
d(t)

π(θ)

Γ(µ)n

(
µ

Ω

)nµ

{
n

∏
i=1

t2µ−1
i

}
exp

(
−µ

Ω

n

∑
i=1

t2
i

)
, (3.16)

where

d(t) =
∫
A

π(θ)

Γ(µ)n

(
µ

Ω

)nµ

{
n

∏
i=1

t2µ−1
i

}
exp

(
−µ

Ω

n

∑
i=1

t2
i

)
dθ , (3.17)

and A = {(0,∞)× (0,∞)} is the parameter space of θ . For any prior distribution in the form
π (θ) ∝ π(µ)π(Ω), our purpose is to find sufficient and necessary conditions for the posterior to
be proper, i.e., d(t)< ∞.

Theorem 3.4.1. Suppose the behavior of π(Ω) is given by π(Ω) ∝ Ωk, for k ∈ R with k >−1
and π(µ) is strictly positive. Then, the posterior distribution (3.16) is improper. On the other
hand, suppose that the behavior of π(Ω) and π(µ) is given by

π(Ω) ∝ Ω
k, π(µ) ∝

µ→0+
µ

r0 and π(µ) ∝
µ→∞

µ
r∞,

for k ∈ R with k ≤ −1, r0 ∈ R and r∞ ∈ R. Then, the posterior distribution (3.17) is proper if
and only if n >−r0 in case k =−1, and is proper if and only if n >−r0 − k−2 in case k <−1.

Proof. Let B = {(0,∞)× (0,∞)} and consider the change of coordinates through the transfor-
mation θ : B → A

θ(φ ,λ ) = (µ(φ ,λ ),Ω(φ ,λ )) =

(
φ ,

φ

λ

)
. (3.18)

Note that A = θ(B). Since |det(Dθ(φ ,λ ))|= φλ−2 (where Dθ(φ ,λ ) is the Jacobian
matrix of the function θ(φ ,λ )), denoting Θ = (φ ,λ ) and applying the Theorem of Change of
Variables on the Lebesgue integral (FOLLAND, 1999), we have that

d(t) ∝

∫
A

Ωkπ(µ)

Γ(µ)n

(
µ

Ω

)nµ

{
n

∏
i=1

t2µ

i

}
exp

(
−µ

Ω

n

∑
i=1

t2
i

)
dθ

=
∫
B

φ k+1π(φ)λ nφ−k−2

Γ(φ)n

{
n

∏
i=1

t2φ

i

}
exp

(
−λ

n

∑
i=1

t2
i

)
dΘ.
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Since φ k+1π(φ)λ nφ−k−2(Γ(φ)n)−1
∏

n
i=1 t2φ

i exp
(
−λ ∑

n
i=1 t2

i
)
≥ 0, by the Fubini-Tonelli

Theorem (FOLLAND, 1999), we have

d(t) ∝

∫
B

φ k+1π(φ)λ nφ−k−2

Γ(φ)n

{
n

∏
i=1

t2φ

i

}
exp

{
−λ

n

∑
i=1

t2
i

}
dΘ

=

∞∫
0

φ k+1π(φ)

Γ(φ)n

{
n

∏
i=1

t2φ

i

} ∞∫
0

λ
nφ−k−2 exp

{
−λ

n

∑
i=1

t2
i

}
dλdφ .

(3.19)

The rest of the proof is divided into two cases:

∙ Case k >−1.

Since e−bx ∝
x→0+

e0 = 1, by Proposition 2.5.4 we have
∫

∞

0 xa−1e−bx dx = ∞ for any a ≤ 0

and b ∈ R. Moreover, for 0 < φ < k+1
n , we have nφ − k−2 < n (k+1)

n − k−2 =−1 and

d(t) ∝

∞∫
0

φ k+1π(φ)

Γ(φ)n

{
n

∏
i=1

t2φ

i

} ∞∫
0

λ
nφ−k−2 exp

{
−λ

n

∑
i=1

t2
i

}
dλdφ

≥

1+k
n∫

0

φ k+1π(φ)

Γ(φ)n

{
n

∏
i=1

t2φ

i

} ∞∫
0

λ
nφ−k−2 exp

{
−λ

n

∑
i=1

t2
i

}
dλdφ

=

1+k
n∫

0

φ k+1π(φ)

Γ(φ)n

{
n

∏
i=1

t2φ

i

}
×∞ dφ =

1+k
n∫

0

∞ dφ = ∞ .

∙ Case k ≤−1.

Let v(φ) =
φ k+1π(φ)Γ(nφ − k−1)

Γ(φ)n . By equation (3.19),

d(t) ∝

∞∫
0

φ k+1π(φ)

Γ(φ)n

{
n

∏
i=1

t2φ

i

} ∞∫
0

λ
nφ−k−2 exp

{
−λ

n

∑
i=1

t2
i

}
dλdφ

=

∞∫
0

v(φ)

(
∏

n
i=1 t2φ

i

)
(
∑

n
i=1 t2

i
)nφ−k−1 dφ ∝

∞∫
0

v(φ)n−nφ

(
n
√

∏
n
i=1 t2

i

)nφ

(1
n ∑

n
i=1 t2

i
)nφ

dφ

=

∞∫
0

v(φ)n−nφ e−nq(t)φ dφ =

1∫
0

v(φ)n−nφ e−nq(t)φ dφ +

∞∫
1

v(φ)n−nφ e−nq(t)φ dφ

= s1 + s2,

where q(t) = log

 1
n ∑

n
i=1 t2

i

n
√

∏
n
i=1 t2

i

 > 0 by the inequality of the arithmetic and geometric means.

Therefore d(t)< ∞ if and only if s1 < ∞ and s2 < ∞.
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Using the Stirling approximation of gamma function (ABRAMOWITZ; STEGUN, 1972),
we have

Γ(z) ∝
z→∞

zz− 1
2 e−z.

It is also valid that Γ(z+a) ∝
z→∞

Γ(z)za for a ≥ 0 and z ∈ R (ABRAMOWITZ; STEGUN, 1972).

Therefore Γ(nφ − k−1) ∝
φ→∞

Γ(nφ)(nφ)−k−1 and

v(φ) =
φ k+1π(φ)Γ(nφ − k−1)

Γ(φ)n ∝
φ→∞

φ k+1φ r∞(nφ)nφ− 1
2 e−nφ (nφ)−k−1

φ nφ− n
2 e−nφ

∝
φ r∞(nφ)nφ− 1

2

φ nφ− n
2

∝ φ
r∞+

n−1
2 nnφ .

Therefore, by Proposition 2.5.4

s2 =

∞∫
1

v(φ)n−nφ e−nq(t)φ dφ ∝

∞∫
1

φ
r∞+

n−1
2 e−nq(t)φ dφ =

Γ(r∞ + n−1
2 ,nq(t))

(nq(t))r∞+
n−1

2
< ∞ .

Suppose k = −1. Given that Γ(z) ∝
z→0+

1
z

(ABRAMOWITZ; STEGUN, 1972) and

n−nφ e−nqφ ∝
φ→0+

n0e0 = 1, we have

s1 =

1∫
0

π(φ)Γ(nφ)

Γ(φ)n n−nφ e−nqφ dφ ∝

1∫
0

φ r0 1
nφ

1
φ n

×1 dφ ∝

1∫
0

φ
r0+n−1dφ

which implies s1 < ∞ if and only if n >−r0.

On the other hand, if suppose k <−1, we have −k−1 > 0, which implies Γ(nφ − k−
1) ∝

φ→0+
Γ(0− k−1) ∝ 1. Then

s1 =

1∫
0

φ k+1π(φ)Γ(nφ − k−1)
Γ(φ)n n−nφ e−nqφ dφ ∝

1∫
0

φ k+1φ r0

1
φ n

×1 dφ =

1∫
0

φ
r0+n+k+1dφ

which implies s1 < ∞ if and only if n >−r0 − k−2 and the proof is completed.

3.4.2 Jeffreys’s rule

As the parameters of the NK distribution are included in the interval (0,∞), the prior
distribution using Jeffreys’s rule is given by

π1 (µ,Ω) ∝
1

µΩ
. (3.20)
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The joint posterior distribution for µ and Ω, produced by the Jeffreys’s rule, is propor-
tional to the product of the likelihood function (3.9) and the prior (3.20) resulting in

p1(µ,Ω|t) ∝
µnµ−1

Ωnµ+1Γ(µ)n

{
n

∏
i=1

t2µ−1
i

}
exp

(
−µ

Ω

n

∑
i=1

t2
i

)
. (3.21)

Theorem 3.4.2. The posterior density (PD) (3.21) is proper if and only if n ≥ 1.

Proof. Here we have π(Ω) = Ω−1 and π(µ) = µ−1, then k =−1 and r0 = r∞ =−1. Therefore,
the result follows directly from Theorem 3.4.1.

The marginal posterior distribution for µ is given by

p1(µ|t) ∝
µnµ−1

Γ(µ)n

∞∫
0

Ω
−nµ−1

n

∏
i=1

t2µ

i exp

(
−µ

Ω

n

∑
i=1

t2
i

)
dΩ ∝

Γ(nµ)

µΓ(µ)n

(
∏

n
i=1 t2

i
)µ(

∑
n
i=1 t2

i
)nµ . (3.22)

The conditional posterior distribution for Ω is

p1(Ω|µ, t)∼ IG

(
nµ,µ

n

∑
i=1

t2
i

)
, (3.23)

where IG(·) is an inverse gamma distribution with PDF given by f (x,a,b)= ba x−a−1 exp(−bx−1)/Γ(a).

3.4.3 Jeffreys prior

For the NK distribution, calculating the square root of the determinant of I(µ,Ω) given
in (3.15), we have

π2 (µ,Ω) ∝

√
µψ ′(µ)−1

Ω
. (3.24)

The joint posterior distribution for µ and Ω, produced by the Jeffreys prior, is proportional
to the product of the likelihood function (3.9) and the prior (3.24) resulting in,

p2(µ,Ω|t) ∝
µnµ

√
µψ ′(µ)−1

Ωnµ+1Γ(µ)n

{
n

∏
i=1

t2µ−1
i

}
exp

(
−µ

Ω

n

∑
i=1

t2
i

)
. (3.25)

Theorem 3.4.3. The PD (3.25) is proper if and only if n ≥ 0.

Proof. Here we have π(Ω) = Ω−1. Given that limz→0+
ψ ′(z)
z−2 = 1 (ABRAMOWITZ; STEGUN,

1972), it follows that

lim
z→0+

√
zψ ′(z)−1

z−
1
2

= lim
z→0+

√
ψ ′(z)
z−2 − z = 1,

which implies √
zψ ′(z)−1 ∝

z→0+
z−

1
2 . (3.26)
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Moreover, following Abramowitz and Stegun (1972), we obtain

ψ
′(z) =

1
z
+

1
2z2 +o

(
1
z3

)
.

Then

zψ ′(z)−1
z−1 =

1
2
+o
(

1
z

)
⇒ lim

z→∞

√
zψ ′(z)−1

z−
1
2

=
1√
2
,

which implies √
zψ ′(z)−1 ∝

z→∞
z−

1
2 . (3.27)

Therefore k =−1 and r0 = r∞ =−1
2 , which, by Theorem 3.4.1 implies that the posterior

is proper for n ≥ 0.

The marginal posterior distribution for µ is given by

p2(µ|t) ∝

√
µψ ′(µ)−1Γ(nµ)

Γ(µ)n

(
∏

n
i=1 t2

i
)µ(

∑
n
i=1 t2

i
)nµ . (3.28)

The conditional posterior distribution for Ω is given by

p2(Ω|µ, t)∼ IG

(
nµ,µ

n

∑
i=1

t2
i

)
. (3.29)

3.4.4 Reference prior

As the Fisher information I(µ,Ω) has a special form, considering Proposition 2.3.2 the
overall reference prior for the NK distribution is given by

π3 (µ,Ω) ∝
1
Ω

√
µψ ′(µ)−1

µ
. (3.30)

The joint posterior distribution for µ and Ω, produced by the overall reference prior
is proportional to the product of the likelihood function (3.9) and the prior distribution (3.30),
resulting in

p3(µ,Ω|t) ∝

√
µψ ′(µ)−1

µ
1
2 ΩΓ(µ)n

(
µ

Ω

)nµ

{
n

∏
i=1

t2µ−1
i

}
exp

(
−µ

Ω

n

∑
i=1

t2
i

)
. (3.31)

Theorem 3.4.4. The PD (3.31) is proper if and only if n ≥ 1.

Proof. We have proved that
√

µψ ′(µ)−1 ∝
z→0

µ− 1
2 and that

√
µψ ′(µ)−1 ∝

z→∞
µ− 1

2 . From that,

it follows that
√

µψ ′(µ)−1
µ

∝
z→0

µ−1 and
√

µψ ′(µ)−1
µ

∝
z→∞

µ−1. Therefore k =−1 and r0 = r∞ =

−1, therefore the result follows directly from Theorem 3.4.1.



48 Chapter 3. Nakagami-m distribution

The marginal posterior distribution for µ is given by

p3(µ|t) ∝

√
µψ ′(µ)−1

µ

Γ(nµ)

Γ(µ)n
(∏n

i=1 ti)
2µ−1(

∑
n
i=1 t2

i
)nµ . (3.32)

The conditional posterior distribution for Ω is given by

p3(Ω|µ, t)∼ IG

(
nµ,µ

n

∑
i=1

t2
i

)
. (3.33)

3.4.5 Maximal Data Information prior

For the NK distribution, H(µ,Ω) can be written as

H(µ,Ω) = log
(

2
Γ(µ)

)
+µψ(µ)+ log

(
µ

Ω

1
2
)
− ψ(µ)

2
−µ.

Therefore, the MDI prior (2.10) for the NK distribution (3.1) is given by

πZ (µ,Ω) ∝
1

Γ(µ)

(
µ

Ω

) 1
2

exp
{

ψ(µ)

(
µ − 1

2

)
−µ

}
. (3.34)

The joint posterior distribution for µ and Ω, produced by the MDI prior, is proportional
to the product of the likelihood function (3.9) and the prior distribution (3.34), resulting in

pZ(µ,Ω|t) ∝
1

Γ(µ)n+1

(
µ

Ω

)nµ+ 1
2

n

∏
i=1

t2µ

i exp

(
−µ

Ω

n

∑
i=1

t2
i +ψ(µ)

(
µ − 1

2

)
−µ

)
. (3.35)

Theorem 3.4.5. The joint PD (3.35) is improper for any n ∈ N.

Proof. Since π(Ω) = Ω
− 1

2 , we have k =−1
2 and the result follows from Theorem 3.4.1.

3.4.6 Matching priors

Proposition 3.4.6. The overall reference prior (3.30) is a matching prior when µ is the parameter
of interest and Ω is the orthogonal nuisance parameter and also when Ω is the parameter of
interest and µ is the orthogonal nuisance parameter.

Proof. Note that IΩ,µ(Ω,µ) = 0 for all (Ω,µ). Since IΩ,Ω(Ω,µ) =
µ

Ω2 , if g(µ) =
√

µψ ′(µ)−1
µ

then the overall reference prior (3.30) can be written in the form (2.15).

On the other hand, Iµ,µ(µ,Ω) = (µψ ′(µ)−1)
µ

, if g(Ω) = 1
Ω

then the overall reference prior
(3.30) can be written in the form (2.15) and the proof is complete.

Proposition 3.4.7. The Jeffreys prior (3.24) is a matching prior when Ω is the parameter of
interest and µ is the orthogonal nuisance parameter.
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Proof. Firstly, IΩ,µ(Ω,µ) = 0 for all (Ω,µ). Since IΩ,Ω(Ω,µ) =
µ

Ω2 , if g(µ) =
√

µψ ′(µ)−1
µ

then
the Jeffreys prior (3.24) can be written in the form (2.15).

Proposition 3.4.8. The Jeffreys rule prior (3.20) is a matching prior when Ω is the parameter of
interest and µ is the orthogonal nuisance parameter.

Proof. Firstly, IΩ,µ(Ω,µ) = 0 for all (Ω,µ). Since IΩ,Ω(Ω,µ) =
µ

Ω2 , if g(µ) = µ− 3
2 then the

Jeffreys-rule prior (3.20) can be written in the form (2.15).

These results showed that for both Ω and µ , only the overall reference prior is a matching
prior.

3.4.7 Numerical integration

Since the marginal distributions of µ do not belong to any known parametric family,
we have to resort to numerical integration. To obtain the posterior mode of µ and its respective
credibility intervals, the following procedure was adopted:

1. Find the value that maximizes the marginal distributions of µ given in (3.22), (3.28) or
(3.32).

2. Compute the normalizing constant

di(t) =
∫

∞

0
pi(µ|t)dµ for i = 1,2,3.

3. For i = 1,2,3 find the values of credibility intervals

1
di(t)

∫
µLi

0
pi(µ|t)dµ =

α

2
and

1
di(t)

∫
∞

µSi

pi(µ|t)dµ =
α

2
,

where µLi is the α/2 posterior quantile for µ and µSi is the 1−α/2 posterior quantile.
Then (µLi,µSi) is the credibility interval for µ .

Note that the Metropolis-Hastings algorithm (see Gamerman and Lopes (2006) for a
detailed discussion) could be considered in order to generate samples from marginal posteriors.
However, direct integration is faster and avoids the need for initial values, as well as convergence
for the Markov chain Monte Carlo methods. Considering the conditional posterior distribution
(3.29), two Bayes estimators can be obtained in closed-form using the posterior mean and the
posterior mode. These estimators are given by

Ω̂Mean =
µ ∑

n
i=1 t2

i
nµ −1

and Ω̂Mode =
µ ∑

n
i=1 t2

i
nµ +1

. (3.36)
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On the other hand, for sample small sizes, these estimators are biased specially when µ

is small. Note that
µ ∑

n
i=1 t2

i
nµ +1

≤ ∑
n
i=1 t2

i
n

≤ µ ∑
n
i=1 t2

i
nµ −1

. (3.37)

This implies that for n → ∞, Ω̂Mean ≈ Ω̂Mode ≈ ∑
n
i=1 t2

i /n, i.e., the posterior mean and mode of Ω

are asymptotically unbiased. Therefore, as a Bayes estimator, we choose the unbiased estimator
Ω̂Bayes = ∑

n
i=1 t2

i /n.

It is noteworthy that only Ω̂Bayes does not depend on µ . However, the credibility interval
must be evaluated considering the quantile function of the IG

(
nµ,µ ∑

n
i=1 t2

i
)

to satisfy the
matching prior properties.

3.5 Simulation Study

In this section, a simulation study via Monte Carlo methods is used to compare the
influence of different non-informative priors in the posterior distributions to find the most
efficient estimation method by computing the mean relative errors (MRE) and the mean square
errors (MSE), given by

MREµ =
1
N

N

∑
i=1

µ̂i

µ
and MSEµ =

N

∑
i=1

(µ̂i −µ)2

N
, (3.38)

where N = 10,000,000 is the number of estimates obtained through the posterior mode of µ .
The MRE and the MSE of the Ω were not presented as they are the same for all methods and
also ΩBayes is an unbiased estimator. The 95% coverage probability (CP95%) of the credibility
intervals (CI) and the asymptotic confidence intervals for Ω and µ are evaluated. Considering
this approach, the best estimators will show MRE closer to one and MSE closer to zero. In
addition, for a large number of experiments considering a 95% confidence level, the frequencies
of intervals that covered the true values of θ should be closer to 95%.

The results were computed using the software R (R Core Development Team). The seed
used to generate the pseudo-random samples from the NK distribution was 2017. Considering
n = (20, . . . ,120), the results were presented only for θ = ((4,2),(0.5,5)) due to the lack of
space. However, the obtained results are similar for other choices of µ and Ω. For each simulated
sample, we computed the posterior modes for µ , Ω and the credibility (confidence) intervals for
both parameters. Tables 1 and 2 present the MREs, MSEs and CP95% from different estimators
of µ and the CP95% from Ω.

From these results, we observe that

1. The MRE (MSE) for all estimators of the parameters tend to one (zero) for large n, i.e.,
the estimators are asymptotically unbiased for the parameters.
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Table 1 – The MRE(MSE) from the estimates of µ considering different values of n with N = 10,000,000
simulated samples using the estimation methods: 1 - MM, 2 - MLE, 3- Jeffreys’s rule, 4 -
Jeffreys prior, 5 - Overall reference prior.

θ n MM MLE Jeffreys’s rule Jeffreys Prior Reference Prior
20 1.16733(2.74804) 1.13136(2.12334) 0.97383(1.34895) 1.02236(1.50408) 0.96993(1.34994)
30 1.12631(1.91607) 1.10068(1.50871) 0.99855(1.09233) 1.03007(1.18738) 0.99606(1.09138)
40 1.09602(1.35709) 1.07609(1.06296) 1.00127(0.83116) 1.02436(0.88519) 0.99944(0.83050)
50 1.07651(1.02625) 1.06020(0.79743) 1.00126(0.65397) 1.01945(0.68752) 0.99982(0.65355)

µ = 4, 60 1.06368(0.82170) 1.04989(0.63405) 1.00127(0.53671) 1.01628(0.55951) 1.00008(0.53641)
70 1.05435(0.68307) 1.04236(0.52448) 1.00101(0.45449) 1.01377(0.47088) 0.99999(0.45428)

Ω = 2 80 1.04747(0.58415) 1.03693(0.44672) 1.00094(0.39386) 1.01205(0.40624) 1.00005(0.39370)
90 1.04212(0.50990) 1.03267(0.38857) 1.00082(0.34733) 1.01065(0.35698) 1.00003(0.34720)

100 1.03780(0.45237) 1.02925(0.34414) 1.00068(0.31107) 1.00950(0.31881) 0.99998(0.31097)
110 1.03448(0.40707) 1.02663(0.30870) 1.00073(0.28148) 1.00872(0.28786) 1.00009(0.28139)
120 1.03152(0.36939) 1.02431(0.27967) 1.00062(0.25698) 1.00793(0.26229) 1.00004(0.25691)
20 1.36875(0.11215) 1.12627(0.03256) 1.00804(0.02185) 1.03982(0.02395) 1.00096(0.02144)
30 1.25173(0.06330) 1.07985(0.01740) 1.00498(0.01330) 1.02517(0.01410) 1.00045(0.01314)
40 1.19214(0.04367) 1.05813(0.01169) 1.00336(0.00955) 1.01815(0.00996) 1.00002(0.00946)
50 1.15631(0.03331) 1.04588(0.00878) 1.00269(0.00746) 1.01437(0.00772) 1.00005(0.00741)

µ = 0.5, 60 1.13211(0.02690) 1.03800(0.00701) 1.00234(0.00612) 1.01199(0.00629) 1.00015(0.00608)
70 1.11433(0.02255) 1.03226(0.00583) 1.00190(0.00518) 1.01012(0.00531) 1.00004(0.00516)

Ω = 5 80 1.10097(0.01944) 1.02803(0.00498) 1.00160(0.00450) 1.00876(0.00459) 0.99998(0.00448)
90 1.09045(0.01711) 1.02486(0.00436) 1.00146(0.00398) 1.00780(0.00405) 1.00002(0.00396)

100 1.08193(0.01525) 1.02233(0.00386) 1.00133(0.00356) 1.00702(0.00362) 1.00004(0.00355)
110 1.07493(0.01378) 1.02020(0.00347) 1.00116(0.00322) 1.00632(0.00327) 0.99999(0.00321)
120 1.06895(0.01256) 1.01853(0.00316) 1.00111(0.00295) 1.00584(0.00299) 1.00004(0.00294)

2. For Ω, the same MREs and MSEs were obtained from both approaches. However, con-
sidering the Bayesian approach, we obtain accurate coverage probability through the CIs,
specially for n < 100.

3. In the case of µ , the posterior mode using the Jeffreys’s rule and the overall reference prior
returns nearly an unbiased estimator for µ , which indicates a better performance than the
classical approaches. The better performance of this approach is also confirmed through
the coverage probability obtained from the CIs.

Combining all the numerical results, both posterior distributions with the Jeffreys’s
rule and the overall reference prior produced better results. However, the overall reference
posterior distribution has better theoretical properties such as invariance property under one-to-
one transformations of the parameters, consistency under marginalization, consistent sampling
properties and the fact that it is a matching prior for both Ω and µ . Therefore, we conclude that
the overall reference posterior distribution should be used to make an inference on the unknown
parameters of the NK distribution.

3.6 Applications in Reliability

In this section, our proposed methodology is adopted in two data sets. The NK distribution
is compared with other usual two parameter lifetime distributions. The following lifetime
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Table 2 – The CP95% from the estimates of µ and Ω considering different values of n with N = 10,000,000
simulated samples using the estimation methods: 1 - MM, 2 - MLE, 3- Jeffreys’s rule, 4 - Jeffreys
prior, 5 - Overall reference prior.

θ n MLE Jeffreys’s rule Jeffreys Prior Reference Prior
µ θ µ θ µ θ µ θ

µ = 4, Ω = 2

20 0.9710 0.9280 0.9730 0.9510 0.9680 0.9460 0.9730 0.9520
30 0.9610 0.9340 0.9520 0.9490 0.9490 0.9450 0.9520 0.9490
40 0.9560 0.9380 0.9510 0.9490 0.9480 0.9460 0.9510 0.9490
50 0.9550 0.9400 0.9510 0.9490 0.9490 0.9470 0.9510 0.9490
60 0.9540 0.9420 0.9500 0.9490 0.9480 0.9480 0.9500 0.9490
70 0.9530 0.9430 0.9490 0.9490 0.9470 0.9480 0.9490 0.9500
80 0.9530 0.9440 0.9490 0.9490 0.9470 0.9480 0.9490 0.9490
90 0.9530 0.9440 0.9480 0.9490 0.9470 0.9480 0.9480 0.9500

100 0.9520 0.9450 0.9480 0.9500 0.9470 0.9490 0.9480 0.9500
110 0.9520 0.9450 0.9490 0.9500 0.9480 0.9490 0.9490 0.9500
120 0.9520 0.9460 0.9500 0.9500 0.9490 0.9490 0.9500 0.9500

µ = 0.5, Ω = 5

20 0.9610 0.8930 0.9490 0.9470 0.9450 0.9440 0.9500 0.9480
30 0.9570 0.9100 0.9500 0.9480 0.9470 0.9460 0.9500 0.9490
40 0.9550 0.9200 0.9500 0.9490 0.9480 0.9470 0.9500 0.9490
50 0.9540 0.9250 0.9500 0.9490 0.9480 0.9480 0.9500 0.9490
60 0.9540 0.9290 0.9500 0.9490 0.9490 0.9480 0.9500 0.9490
70 0.9530 0.9320 0.9500 0.9490 0.9490 0.9480 0.9500 0.9500
80 0.9530 0.9340 0.9500 0.9490 0.9490 0.9490 0.9500 0.9500
90 0.9520 0.9360 0.9500 0.9490 0.9500 0.9490 0.9500 0.9500

100 0.9520 0.9370 0.9500 0.9490 0.9500 0.9490 0.9510 0.9500
110 0.9520 0.9390 0.9500 0.9500 0.9500 0.9490 0.9500 0.9500
120 0.9520 0.9390 0.9500 0.9500 0.9500 0.9490 0.9500 0.9500

distributions were considered. Let β > 0 and α > 0, the Weibull distribution with PDF given by

fW (t|β ,α) =
α

β

(
α

β

)α−1

e−
(

α

β

)α

.

The lognormal distribution with PDF given by

fL(t|β ,α) =
1

α
√

2π
e−

(lnx−β )2

2α2 .

The gamma distribution with PDF given by

fG(t|β ,α) =
β α

Γ(β )
tα−1e−β t .

The model selection was carried out by considering the negative log-likelihood value.
The best model is the one which provides the minimum value.

3.6.1 Breaking stress of carbon fibers

The following data set (see Table 3) was extracted from Pal, Ali and Woo (2006), which
is related to the lifetime of one hundred observations on breaking stress of carbon fibers (in Gba).
These carbon fibers are used to construct fibrous composite materials. Table 4 presents the MLEs
for the parameters of the Weibull, gamma and lognormal distribution. The posterior summaries
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Table 3 – Data set related to the lifetime of one hundred observations on breaking stress of carbon fibers

3.70 2.74 2.73 2.50 3.60 3.11 3.27 2.87
1.47 3.11 4.42 2.41 3.19 3.22 1.69 3.28
3.09 1.87 3.15 4.90 3.75 2.43 2.95 2.97
3.39 2.96 2.53 2.67 2.93 3.22 3.39 2.81
4.20 3.33 2.55 3.31 3.31 2.85 2.56 3.56
3.15 2.35 2.55 2.59 2.38 2.81 2.77 2.17
2.83 1.92 1.41 3.68 2.97 1.36 0.98 2.76
4.91 3.68 1.84 1.59 3.19 1.57 0.81 5.56
1.73 1.59 2.00 1.22 1.12 1.71 2.17 1.17
5.08 2.48 1.18 3.51 2.17 1.69 1.25 4.38
1.84 0.39 3.68 2.48 0.85 1.61 2.79 4.70
2.03 1.80 1.57 1.08 2.03 1.61 2.12 1.89
2.88 2.82 2.05 3.65

Table 4 – The MLEs (Standard Errors) obtained for different distributions considering the lifetime of one
hundred observations on breaking stress of carbon fibers.

θ̂ Weibull Gamma Lognormal
α̂ 2.7928(0.2141) 5.9526(0.8193) 0.4439(0.0314)
β̂ 2.9436(0.1111) 2.2708(0.3261) 0.8773(0.0443)

Table 5 – Posterior mode and 95% credibility intervals for µ and Ω obtained from the data set related to
the lifetime of one hundred observations on breaking stress of carbon fibers.

θ̂ Mode CI95%(θ)
µ̂ 1.7104 (1.3269; 2.2176)
Ω̂ 7.8894 (6.8300; 9.2174)

Table 6 – Results of AIC, AICc and BIC criteria for different probability distributions considering the
data set related to the life time of one hundred observations on breaking stress of carbon fibers.

Criteria Nakagami Weibull Gamma Lognormal
AIC 286.92 287.06 290.47 300.84
AICc 283.04 283.18 286.59 296.96
HQIC 289.02 289.17 292.58 302.95
BIC 292.13 292.27 295.68 306.05

are given in Table 5. Table 6 presents the AIC, AICc and BIC values for different probability
distributions considering the proposed data set.

We conclude that from the results of Table 6, the NK distribution has the best fit among
the chosen models for describing the proposed data set. The quality of the fit can also be observed
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in Figure 5 by the reliability function fitted, considering different probability distributions and
the empirical reliability function. Moreover, based on the TTT-plot, there is an indication that the
hazard function has an increasing shape. This result is confirmed by the posterior estimates since
µ̂ = 1.7148 (increasing shape when µ ≥ 0.5). Therefore, considering our proposed methodology,
the data related to the lifetime of the electrical devices can be described by the NK distribution.
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Figure 5 – TTT-plot, empirical reliability function and reliability function of different fitted probability
distributions considering the data set related to the time of failure of 18 electronic devices and
the cumulative hazard function.

3.6.2 Cycles up to the failure for electrical appliances

We reanalyzed the data extracted from (LAWLESS, 2011, p.112) which consists of a
number of cycles divided by 1000 up to the failure for 60 electrical appliances in a life test
(available in Table 7).

Table 7 – Data set related to the lifetime of 60 (in cycles) electrical devices.

0.014 0.034 0.059 0.061 0.069 0.080 0.123 0.142
0.165 0.210 0.381 0.464 0.479 0.556 0.574 0.839
0.917 0.969 0.991 1.064 1.088 1.091 1.174 1.270
1.275 1.355 1.397 1.477 1.578 1.649 1.702 1.893
1.932 2.001 2.161 2.292 2.326 2.337 2.628 2.785
2.811 2.886 2.993 3.122 3.248 3.715 3.790 3.857
3.912 4.100 4.106 4.116 4.315 4.510 4.580 5.267
5.299 5.583 6.065 9.701

Based on the TTT-plot (see Figure 6), there is an indication that the hazard function is
bathtub shaped. Therefore, one reviewer suggested extending the analysis by adding further
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competing models appropriate for bathtub shapes. The lifetime distributions considered with this
property are the weighted Lindley distribution (GHITANY et al., 2011a) with PDF given by

fWL(t|β ,α) =
β α+1

(β +α)Γ(α)
tα−1(1+ t)e−β t ,

and the Chen distribution (CHEN, 2000) with PDF given by

fC(t|β ,α) = αβ tβ−1etβ

eα(1−etβ ),

where β > 0 and α > 0.

Table 8 presents the MLEs for the parameters of the Weibull, gamma, lognormal,
weighted Lindley and Chen distribution. Table 9 displays the posterior estimates and the 95%
CIs for µ and Ω using the overall reference prior. Table 10 presents the AIC, AICc and BIC
values for different probability distribution considering the proposed data set.

Table 8 – The MLEs obtained for different distributions considering the lifetime data set of 60 (in cycles)
electrical devices.

θ̂ Weibull Gamma Lognormal W. Lindley Chen
α̂ 1.0008(0.1066) 0.9307(0.4244) 0.1597(0.1858) 0.7332(0.1362) 0.2453(0.0443)
β̂ 2.1937(0.2961) 0.1486(0.08843) 1.4392(0.1313) 0.5874(0.0927) 0.5317(0.0392)

Table 9 – Posterior mode and 95% CIs for µ and Ω obtained from the data set related to 1000s cycles of
failure for 60 electrical appliances.

θ̂ Mode CI95%(θ)
µ̂ 0.35539 (0.2672 0.4768)
Ω̂ 8.43430 (5.6862; 13.8043)

Table 10 – Results of AIC, AICc and BIC criteria for different probability distributions considering the
data set related to 1000 cycles of failure for 60 electrical appliances.

Criteria NK Weibull Gamma
AIC 214.32 218.22 218.02
AICc 214.53 218.43 218.23
BIC 218.50 222.41 222.21

Criteria Lognormal W. Lindley Chen
AIC 237.12 215.54 214.84
AICc 237.33 215.75 215.05
BIC 241.31 219.73 219.03
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From the results of Table 10, it can be concluded that among the chosen models, the NK
distribution has the best fit for describing the number of 1000s cycles per failure for 60 electrical
appliances.
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Figure 6 – TTT-plot, empirical reliability function and reliability function of different fitted probability
distributions for the data set related to the number of 1000s cycles for failure for 60 electrical
appliances and the cumulative hazard function.

In Figure 6, the goodness of fit can be observed by the reliability function fitted by the
different probability distributions and the empirical reliability function. The bathtub shape in
the hazard function is confirmed by the posterior estimates since µ̂ = 0.33365 (bathtub shaped
when 0 < µ < 0.5). Therefore, considering our proposed methodology, the data related to the
lifetime of the electrical devices can be described by the NK distribution.

3.7 Discussion
We presented a theorem that provides sufficient and necessary conditions for a general

class of posterior distribution to be proper. An interesting aspect of our findings is that it can
be observed that the posterior is proper or improper considering the behavior of the proposed
objective prior. The main theorem is applied in different objective priors for the NK distribution
such as Jeffreys’s rule, Jeffreys prior, the MDI prior and reference priors. The Jeffreys-rule prior
and Jeffreys prior gave proper posterior distribution respectively for n ≥ 1 and n ≥ 0, whereas
they are matching priors only for Ω. The MDI prior provided improper posterior for any sample
sizes and should not be used in Bayesian analysis.

The overall reference prior yielded a proper posterior distribution if and only if n≥ 1. This
prior is the one-at-a-time reference prior for any chosen parameter of interest and any ordering
of the nuisance parameters. It is also the only prior that is a matching prior for both Ω and µ .



3.7. Discussion 57

An extensive simulation study showed that the proposed overall reference posterior distribution
returns more accurate results, as well as better theoretical properties such as the invariance
property under one-to-one transformations of the parameters, consistency under marginalization
and consistent sampling properties. Therefore, the overall reference posterior distribution should
be used to make inference in the unknown parameters of the NK distribution. Finally, our
proposed methodology is fully illustrated using two real lifetime data sets, demonstrating that
the NK distribution can be used to describe lifetime data.
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CHAPTER

4
GAMMA DISTRIBUTION

4.1 Introduction
The gamma distribution is one of the most well-known distributions used in statisti-

cal analysis. Such distribution arises naturally in many areas such as environmental analysis,
reliability analysis, clinical trials, signal processing and other physical situations. Let X be a
non-negative random variable with the gamma distribution given by

f (x |φ ,µ) = µφ

Γ(φ)
xφ−1e−µx, (4.1)

where φ > 0 and µ > 0 are unknown shape and scale parameters, respectively, and Γ(φ) =∫
∞

0 e−xxφ−1dx is the gamma function.

Commonly-used frequentist methods of inference for gamma distribution are standard in
the statistical literature. Considering the Bayesian approach, where a prior distribution must be
assigned, different objective priors for the gamma distribution have been discussed earlier by
Miller (1980), Sun and Ye (1996) and Berger et al. (2015). Although these priors are constructed
by formal rules, they are improper, i.e., do not correspond to proper probability distribution and
could lead to improper posteriors, which is undesirable. Northrop and Attalides (2016) argued
that “. . . there is no general theory providing simple conditions under which an improper prior
yields a proper posterior for a particular model, so this must be investigated case-by-case". In
this study, we overcome this problem by providing in a simple way necessary and sufficient
conditions to check whether or not these objective priors lead proper posterior distributions.
Even if the posterior distribution is proper the posterior moments for the parameters can be
infinite. Further, we also provided sufficient conditions to verify if the posterior moments are
finite. Therefore, one can easily check if the obtained posterior is proper or improper and also
if its posterior moments are finite considering directly the behavior of the improper prior. Our
proposed methodology is fully illustrated in more than ten objective priors such as independent
uniform priors, Jeffreys’ rule, Jeffreys’ prior, MDI prior, reference priors and matching priors,
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to list a few. Finally, the effect of these priors in the posterior distribution are compared via
numerical simulation.

The remainder of this chapter is organized as follows. Section 2 presents a theorem that
provides necessary and sufficient conditions for the posterior distributions to be proper and
also sufficient conditions to check if the posterior moments of the parameters are finite. Section
3 presents the applications of our main theorem in different objective priors. In Section 4, a
simulation study is conducted in order to identify the most efficient estimation procedure. Finally,
Section 5 summarizes the study.

4.2 Classical Inference
The MLEs for the gamma distribution are obtained by maximizing the likelihood function,

given by

L(µ,φ ; t) =
µnφ

Γ(φ)n

{
n

∏
i=1

tφ−1
i

}
exp

(
−µ

n

∑
i=1

ti

)
· (4.2)

The log-likelihood function is

`(µ,φ ; t) =−n logΓ(φ)+nφ log(µ)+(φ −1)
n

∑
i=1

log(ti)−µ

n

∑
i=1

ti. (4.3)

The estimates are obtained from maximizing the likelihood function. From the expres-
sions ∂

∂φ
`(µ,φ ; t) = 0, ∂

∂ µ
`(µ,φ ; t) = 0, the likelihood equations are given as

−nψ(φ)+n log(µ)+
n

∑
i=1

log(ti) = 0 (4.4)

and

−nφ

µ
+

n

∑
i=1

ti = 0, (4.5)

where ψ(k) = ∂

∂k logΓ(k) = Γ′(k)
Γ(k) is the digamma function. After some algebraic manipulations

the MLE for µ̂ is given by

µ̂ =
nφ

∑
n
i=1 ti

. (4.6)

Note that, substituting µ̂MLE in (4.4), the estimate for φ̂MLE can be obtained solving

log(φ)−ψ(φ) = log

(
1
n

n

∑
i=1

ti

)
− 1

n

n

∑
i=1

log(ti) . (4.7)

The MLE estimates are asymptotically normally distributed with a joint bivariate normal
distribution given by

(φ̂MLE , µ̂MLE)∼ N2[(φ ,µ), I−1(φ ,µ))] for n → ∞,
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where I(φ ,µ) is the Fisher information matrix

I(φ ,µ) = n

ψ ′(φ) − 1
µ

− 1
µ

φ

µ2

 , (4.8)

and ψ ′(k) = ∂

∂k ψ(k) is the trigamma function.

4.3 Proper Posterior

The joint posterior distribution for θ = (φ ,µ) is given by the product of the likelihood
function and the prior distribution π(θ) divided by a normalizing constant d(x), resulting in

p(θ |x) = π(θ)

d(x)
µnφ

Γ(φ)n

{
n

∏
i=1

xφ

i

}
exp

{
−µ

n

∑
i=1

xi

}
, (4.9)

where

d(x) =
∫
A

π(θ)µnφ

Γ(φ)n

{
n

∏
i=1

xφ

i

}
exp

{
−µ

n

∑
i=1

xi

}
dθ (4.10)

and A = {(0,∞)× (0,∞)} is the parameter space of θ . For any prior distribution in the form:
π (θ) ∝ π1(µ)π2(φ), our purpose is to find necessary and sufficient conditions for these class of
posterior be proper, i.e., d(x)< ∞. The following propositions are useful.

Theorem 4.3.1. Let the behavior of π(µ) be given by π(µ) ∝ µc, for c ∈ R. Then

i) If c <−1, then the posterior distribution (4.10) is improper.

ii) If c ≥ −1 and limφ→0+ π(φ)φ s = ∞ ∀s ∈ N then the posterior distribution (4.10) is im-
proper.

iii) If c ≥−1 and the behavior of π(φ) is given by

π(φ) ∝
φ→0+

φ
s0 and π(φ) ∝

φ→∞
φ

s∞ ,

where s0 ∈ R and s∞ ∈ R, then the posterior distribution (4.10) is proper if and only if
n >−s0 in case c =−1, and is proper if and only if n >−s0 −1 in case c >−1.

Proof. Let

d(x) ∝

∫
B

π(φ)µnφ+c

Γ(φ)n

{
n

∏
i=1

xφ

i

}
exp

{
−µ

n

∑
i=1

xi

}
dΘ (4.11)
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Since π(φ)µnφ+cΓ(φ)−n
∏

n
i=1 xφ

i exp(−µ ∑
n
i=1 xi)≥ 0, by the Fubini-Tonelli Theorem

we have

d(x) ∝

∫
B

π(φ)µnφ+c

Γ(φ)n

{
n

∏
i=1

xφ

i

}
exp

{
−µ

n

∑
i=1

xi

}
dΘ

=

∞∫
0

π(φ)

Γ(φ)n

{
n

∏
i=1

xφ

i

} ∞∫
0

µ
nφ+c exp

{
−µ

n

∑
i=1

xi

}
dµdφ .

(4.12)

The rest of the proof is divided in three items which are given bellow:

Case i): Suppose c < −1. Notice that
∫

∞

0 xk−1e−hx dx = ∞ for any k ≤ 0 and h ∈ R. Then, for
0 < φ < −c−1

n we have nφ + c < n (−c−1)
n + c =−1, and it follows that

d(x) ∝

∞∫
0

π(φ)

Γ(φ)n

{
n

∏
i=1

xφ

i

} ∞∫
0

µ
nφ+c exp

{
−µ

n

∑
i=1

xi

}
dµdφ

≥

−c−1
n∫

0

π(φ)

Γ(φ)n

{
n

∏
i=1

xφ

i

} ∞∫
0

µ
nφ+c exp

{
−µ

n

∑
i=1

xi

}
dµdφ

=

−c−1
n∫

0

π(φ)

Γ(φ)n

{
n

∏
i=1

xφ

i

}
×∞ dφ =

−c−1
n∫

0

∞ dφ = ∞

and the case i) is proved.

Now suppose c ≥−1. Denoting

v(φ) =
π(φ)Γ(nφ + c+1)

Γ(φ)n and q(x) = log

(
1
n ∑

n
i=1 xi

n
√

∏
n
i=1 xi

)
> 0,

we have that q(x)> 0 by the inequality of the arithmetic and geometric means, and

d(x) =
∞∫

0

v(φ)
(∏n

i=1 xi)
φ

(∑n
i=1 xi)

nφ+c+1 dφ ∝

∞∫
0

v(φ)
1

nnφ

(
n
√

∏
n
i=1 xi

)nφ(1
n ∑

n
i=1 xi

)nφ
dφ =

∞∫
0

v(φ)n−nφ e−nq(x)φ dφ

=

1∫
0

v(φ)n−nφ e−nq(x)φ dφ +

∞∫
1

v(φ)n−nφ e−nq(x)φ dφ = d0(x)+d∞(x),

where d0(x) =
1∫
0

v(φ)n−nφ e−nq(x)φ dφ and d∞(x) =
∞∫
1

v(φ)n−nφ e−nq(x)φ dφ .

Then d(x)< ∞ if and only if d0(x)< ∞ and d∞(x)< ∞. These results lead us to the two
remaining cases.
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Case ii): Suppose c ≥ −1 and limφ→0+ π(φ)φ s = ∞ ∀s ∈ N. From Abramowitz and Stegun

(1972), we have Γ(z) ∝
z→0+

1
z

. Then, if c =−1

d0(x) =
1∫

0

π(φ)Γ(nφ)

Γ(φ)n n−nφ e−nq(x)φ dφ ∝

1∫
0

π(φ) 1
nφ

1
φ n

×1×1 dφ

∝

1∫
0

π(φ)φ n−1dφ =

∞∫
1

π
(
u−1)u−n−1du = ∞,

where the last equality comes from the fact that

lim
u→∞

π
(
u−1)u−n−1 = lim

φ→0+
π(φ)φ n+1 = ∞.

Therefore, d(x) = ∞ if c = −1. On the other hand, if c > −1 then nφ + c+ 1 > 0 for
φ > 0, which implies Γ(nφ + c+1) ∝

φ→0+
1 and

d0(x) =
1∫

0

π(φ)Γ(nφ + c+1)
Γ(φ)n n−nφ e−nqφ dφ ∝

1∫
0

π(φ)
1

φ n

×1×1dφ

=

1∫
0

π(φ)φ ndφ =

∞∫
1

π
(
u−1)u−n−2du = ∞.

Therefore, d(x) = ∞ if c >−1 and the case ii) is proved.

Case iii): Suppose that c ≥−1 and the behavior of π(φ) is given by

π(φ) ∝
φ→0+

φ
s0 and π(φ) ∝

φ→∞
φ

s∞ ,

where s0 ∈ R and s∞ ∈ R. Following Abramowitz and Stegun (1972), we obtain that Γ(z) ∝
z→∞

zz− 1
2 e−z and Γ(z+a) ∝

z→∞
Γ(z)za for a ∈ R+. Then Γ(nφ + c+1) ∝

φ→∞
Γ(nφ)(nφ)c+1 and

v(φ) =
π(φ)Γ(nφ + c+1)

Γ(φ)n ∝
φ→∞

φ s∞(nφ)nφ− 1
2 e−nφ (nφ)c+1

φ nφ− n
2 e−nφ

∝
φ s∞+c+1(nφ)nφ− 1

2

φ nφ− n
2

∝ φ
s∞+c+ n+1

2 nnφ .

Therefore

d∞(x) =
∞∫

1

v(φ)n−nφ e−nq(x)φ dφ ∝

∞∫
1

φ
s∞+c+ n+1

2 e−nq(x)φ dφ

=
Γ(s∞ + c+ n+1

2 ,nq(x))

(nq(x))s∞+c+ n+1
2

< ∞ ,
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i.e., d∞(x)< ∞ for all s∞ ∈ R. Therefore d(x)< ∞ ⇔ d0(x)< ∞.

Now, following the same from case ii), if c =−1 we have

d0(x) =
1∫

0

π(φ)Γ(nφ)

Γ(φ)n n−nφ e−nqφ dφ ∝

1∫
0

φ s0 1
nφ

1
φ n

dφ ∝

1∫
0

φ
s0+n−1dφ ,

i.e., d(x)< ∞ if and only if n >−s0 when c =−1. On the other hand, if c >−1

d0(x) =
1∫

0

π(φ)Γ(nφ + c+1)
Γ(φ)n n−nφ e−nqφ dφ ∝

1∫
0

φ s0

1
φ n

dφ =

1∫
0

φ
s0+ndφ ,

i.e., d(x)< ∞ if and only if n >−s0 −1 when c >−1 and the proof is completed.

Theorem 4.3.2. Let π(φ ,µ) = π(φ)π(µ) and the behavior of π(µ), π(φ) be given by

π(µ) ∝ µ
c, π(φ) ∝

µ→0+
φ

s0 and π(φ) ∝
φ→∞

φ
s∞,

for c ∈ R where s0 ∈ R and s∞ ∈ R. If the posterior of π(φ ,µ) is proper then the posterior mean
of φ and µ are finite for this prior, as well as all moments.

Proof. Since the posterior is proper, by Theorem 4.3.1 we have that c ≥ −1, n > −s0 − 1 if
c >−1 and n >−s0 if c >−1.

Let π*(φ ,µ) = φπ(φ ,µ). Then π*(φ ,µ) = π*(φ)π*(µ), where π*(φ) = φπ(φ) and
π*(µ) = π(µ), and we have

π
*(µ) ∝ µ

c, π
*(φ) ∝

µ→0+
φ

s0+1 and π
*(φ) ∝

φ→∞
φ

s∞+1.

Since c≥−1, n>−s0−1>−(s0+1)−1 if c>−1 and n>−s0 >−(s0+1) if c>−1,
it follows from Theorem 4.3.1 that the posterior

π
*(φ ,µ)

µnφ

Γ(φ)n

{
n

∏
i=1

xφ

i

}
exp

{
−µ

n

∑
i=1

xi

}

relative to the prior π*(φ ,µ) is proper. Therefore

E[φ |x] =
∫

∞

0

∫
∞

0
φπ(φ ,µ)

µnφ

Γ(φ)n

{
n

∏
i=1

xφ

i

}
exp

{
−µ

n

∑
i=1

xi

}
dµdφ < ∞.

Analogously one can prove that

E[µ|x] =
∫

∞

0

∫
∞

0
µπ(φ ,µ)

µnφ

Γ(φ)n

{
n

∏
i=1

xφ

i

}
exp

{
−µ

n

∑
i=1

xi

}
dµdφ < ∞.
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Therefore we have proved that if a prior π(φ ,µ) satisfying the assumptions of the
theorem leads to a proper posterior, then the priors φπ(φ ,µ) and µπ(φ ,µ) also leads to proper
posteriors, and it follows by induction that φ rµsπ(φ ,µ) also leads to proper posteriors for any r

and s in N, which concludes the proof.

Proposition 4.3.3. Suppose πi(φ ,µ), i = 1, · · · ,m lead to proper posteriors for n ∈ N, and
consider the constants ki ≥ 0, i = 1, · · · ,m. Then

i) ∑
m
i=1 kiπi(φ ,µ) leads to a proper posterior

ii) ∏
m
i=1 πi(φ ,µ)

ki leads to a proper posterior if ∑
m
i=1 ki = 1.

Proof. The item i) is a direct of consequence of the linearity of the Lebesgue integral while ii) is
a direct consequence of the Holder’s inequality.

4.4 Objective priors
In this section, we applied the proposed theorems in different objective priors.

4.4.1 Uniform Prior

A simple noninformative prior can be obtained considering uniform priors contained in
the interval (0,∞). This prior usually is not attractive due its lack of invariance to reparameterisa-
tion. The uniform prior is given by π1 (φ ,µ) ∝ 1. The joint posterior distribution for φ and µ ,
produced by the uniform prior is

π1(φ ,µ|x) ∝
µnφ

Γ(φ)n

{
n

∏
i=1

xφ

i

}
exp

{
−µ

n

∑
i=1

xi

}
. (4.13)

Theorem 4.4.1. The posterior distribution (4.13) is proper if and only if n ≥ 0, in which case
the posterior moments for φ and µ are finite.

Proof. Since π(µ) = µ0 and π(φ) = φ 0, then c = 0 and s0 = s∞ = 0. Therefore, the result
follows directly from the Theorem 4.3.1 and by Theorem 4.3.2.

The marginal posterior distribution for φ is

π1(φ |x) ∝
1

Γ(φ)n

{
n

∏
i=1

xφ

i

} ∞∫
0

µ
nφ exp

{
−µ

n

∑
i=1

xi

}
dµ ∝

φΓ(nφ)

Γ(φ)n

(
n
√

∏
n
i=1 xi

∑
n
i=1 xi

)nφ

.

The conditional posterior distribution for µ is given by

π1(µ|φ ,x)∼ Gamma

(
nφ +1,

n

∑
i=1

xi

)
. (4.14)
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4.4.2 Jeffreys Rule

Since the parameters of the gamma distribution are contained in the interval (0,∞), the
prior using the Jeffreys rule (MILLER, 1980) is

π2 (φ ,µ) ∝
1

φ µ
. (4.15)

The joint posterior distribution for φ and µ produced by the Jeffreys rule prior is given
by

π2(φ ,µ|x) ∝
µnφ−1

φΓ(φ)n

{
n

∏
i=1

xφ

i

}
exp

{
−µ

n

∑
i=1

xi

}
. (4.16)

Theorem 4.4.2. The posterior density (4.16) is proper if and only if n ≥ 2, in which case the
posterior moments for φ and µ are finite.

Proof. Since π(µ) = µ−1 and π(φ) = φ−1, then c =−1 and s0 = s∞ =−1. Therefore the result
follows directly from the Theorem 4.3.1 and Theorem 4.3.2.

The marginal posterior distribution for φ is given by

π2(φ |x) ∝
Γ(nφ)

φΓ(φ)n

(
n
√

∏
n
i=1 xi

∑
n
i=1 xi

)nφ

.

The conditional posterior distribution for µ is

π2(µ|φ ,x)∼ Gamma

(
nφ ,

n

∑
i=1

xi

)
. (4.17)

4.4.3 Jeffreys prior

For the gamma distribution, the Jeffreys prior (MILLER, 1980) is given by

π3 (φ ,µ) ∝

√
φψ ′(φ)−1

µ
. (4.18)

The joint posterior distribution for φ and µ produced by the Jeffreys prior is

π3(φ ,µ|x) ∝
µnφ−1

√
φψ ′(φ)−1

Γ(φ)n

{
n

∏
i=1

xφ

i

}
exp

{
−µ

n

∑
i=1

xi

}
. (4.19)

Theorem 4.4.3. The posterior density (4.19) is proper if and only if n ≥ 1, in which case the
posterior moments for φ and µ are finite.
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Proof. Here, we have π(µ) = µ−1. Following Abramowitz and Stegun (1972) it can easily prove

that limz→0+
ψ ′(z)
z−2 = 1, then

lim
φ→0+

√
φψ ′(φ)−1

φ− 1
2

= lim
φ→0+

√
ψ ′(φ)

φ−2 −φ = 1,

which implies √
φψ ′(φ)−1 ∝

φ→0+
φ
− 1

2 .

Moreover, following Abramowitz and Stegun (1972), we also obtain that ψ ′(z) =
1
z
+

1
2z2 +

o
(

1
z3

)
, then

φψ ′(φ)−1
φ−1 =

1
2
+o
(

1
φ

)
⇒ lim

φ→∞

√
φψ ′(φ)−1

φ− 1
2

=
1√
2
,

which implies √
φψ ′(φ)−1 ∝

φ→∞
φ
− 1

2 .

Therefore, c =−1 and s0 = s∞ =−1
2 , using the Theorem 4.3.1, the posterior is proper if

and only if n ≥ 1 and the posterior moments are finite using Theorem 4.3.2.

The conditional posterior distribution for µ is (4.17). The marginal posterior distribution
for φ is given by

π3(φ |x) ∝
Γ(nφ)

√
φψ ′(φ)−1

Γ(φ)n

(
n
√

∏
n
i=1 xi

∑
n
i=1 xi

)nφ

.

4.4.4 Miller prior

Miller (1980) discussed three objective priors for the parameters of the gamma distribu-
tion, where the first two were the Jeffreys Rule and the Jeffreys prior. However, the author chose
a prior using the justification that such approach involves less computational subroutines. This
prior is given by

π4 (φ ,µ) ∝
1
µ
· (4.20)

Note that much progress has been made in computational analysis and many of these com-
putational limitations have been overcome specially after Gelfand and Smith (1990) successfully
applied the Gibbs sampling in Bayesian Analysis.

The joint posterior distribution for φ and µ produced by the Miller’s prior is

π4(φ ,µ|x) ∝
µnφ−1

Γ(φ)n

{
n

∏
i=1

xφ

i

}
exp

{
−µ

n

∑
i=1

xi

}
. (4.21)
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Theorem 4.4.4. The posterior density (4.21) is proper if and only if n ≥ 1, in which case the
posterior moments for φ and µ are finite.

Proof. Since π(µ) = µ−1 and π(φ) = φ 0, then c =−1 and s0 = s∞ = 0. Therefore, the result
follows directly from the Theorem 4.3.1 and Theorem 4.3.2.

The conditional posterior distribution for µ is (4.17). The marginal posterior distribution
for φ is given by

π4(φ |x) ∝
Γ(nφ)

Γ(φ)n

(
n
√

∏
n
i=1 xi

∑
n
i=1 xi

)nφ

.

4.4.5 Reference prior

4.4.5.1 Reference prior when φ is the parameter of interest

From Proposition 2.3.1 the reference prior when φ is the parameter of interest and µ is
the nuisance parameter is given by

π5 (φ ,µ) ∝
1
µ

√
φψ ′(φ)−1

φ
. (4.22)

The joint posterior distribution for φ and µ , produced by the reference prior (4.22) is
given by

π5(φ ,µ|x) ∝

√
φψ ′(φ)−1

φ

µnφ−1

Γ(φ)n

{
n

∏
i=1

xφ

i

}
exp

{
−µ

n

∑
i=1

xi

}
. (4.23)

Theorem 4.4.5. The posterior density (4.23) is proper if and only if n ≥ 2, in which case the
posterior moments for φ and µ are finite.

Proof. We proved in Theorem 4.4.3 that
√

φψ ′(φ)−1 ∝
φ→0+

φ− 1
2 and

√
φψ ′(φ)−1 ∝

φ→∞
φ− 1

2 .

It follows that √
φψ ′(φ)−1

φ
∝

φ→0+
φ
−1 and

√
φψ ′(φ)−1

φ
∝

φ→∞
φ
−1.

Then c =−1 and s0 = s∞ =−1, therefore the result follows directly from the Theorem 4.3.1 and
Theorem 4.3.2.

The conditional posterior distribution for µ is (4.17). The marginal posterior distribution
for φ is given by

π5(φ |x) ∝

√
φψ ′(φ)−1

φ

Γ(nφ)

Γ(φ)n

(
n
√

∏
n
i=1 xi

∑
n
i=1 xi

)nφ

.



4.4. Objective priors 69

4.4.5.2 Reference prior when µ is the parameter of interest

The reference prior when µ is the parameter of interest and φ is the nuisance parameter
is given by

π6 (φ ,µ) ∝

√
ψ ′(φ)

µ
. (4.24)

The joint posterior distribution for φ and µ , produced by the reference prior (4.24) is
given by

π6(φ ,µ|x) ∝ µ
nφ−1

√
ψ ′(φ)

Γ(φ)n

{
n

∏
i=1

xφ

i

}
exp

{
−µ

n

∑
i=1

xi

}
. (4.25)

Theorem 4.4.6. The posterior density (4.25) is proper if and only if n ≥ 2, in which case the
posterior moments for φ and µ are finite.

Proof. Following Abramowitz and Stegun (1972), limφ→0+
ψ ′(φ)

φ−2 = 1 and limφ→∞

ψ ′(φ)

φ−1 = 1.

Then,
√

ψ ′(φ) ∝
φ→0+

φ−1 and
√

ψ ′(φ) ∝
φ→∞

φ− 1
2 . Thus, c=−1, s0 =−1 and s∞ =−1

2 . Therefore,

the result follows from the Theorem 4.3.1 and Theorem 4.3.2.

The conditional posterior distribution for µ is (4.17). The marginal posterior distribution
for φ is given by

π6(φ |x) ∝
√

ψ ′(φ)
Γ(nφ)

Γ(φ)n

(
n
√

∏
n
i=1 xi

∑
n
i=1 xi

)nφ

.

There are different ways to derive the same reference priors in the presence of nuisance
parameters, e.g, Liseo (1993), Sun and Ye (1996) and Moala, Ramos and Achcar (2013).

4.4.5.3 Overall Reference prior

The reference priors presented so far consider the presence of nuisance parameters.
However, in many situation we are simultaneously interested in all parameters of the model.
Sun and Ye (1996) considered the Bar-Lev and Reiser (1982) two parameter exponential family
and presented a straightforward procedure to derive overall reference priors. Since the gamma
distribution can be expressed as Bar-Lev and Reiser’s two parameter exponential distribution,
the overall reference (BERGER et al., 2015) is given by

π7 (φ ,µ) ∝
1
µ

√
φψ ′(φ)−1

φ
(4.26)

which is the same as the reference prior when φ is the parameter of interest and µ is the nuisance
parameter.
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4.4.6 Maximal Data Information prior

The MDI prior for the gamma distribution (4.1) is given by

π8(φ ,µ) ∝
µ

Γ(φ)
exp{(φ −1)ψ(φ)−φ} . (4.27)

The joint posterior distribution for φ and µ , produced by the MDI prior, is

π8(φ ,µ|x) ∝
µnφ+1

Γ(φ)n+1

{
n

∏
i=1

xφ

i

}
exp

{
−µ

n

∑
i=1

xi +(φ −1)ψ(φ)−φ

}
. (4.28)

Moala, Ramos and Achcar (2013) argued that the posterior distribution (4.28) is improper.
However, the authors did not present a proof of such result. The following theorem present a
formally rigorous proof in which confirmed such conjecture.

Theorem 4.4.7. The joint posterior density (4.28) is improper for any n ∈ N.

Proof. Following Abramowitz and Stegun (1972), limφ→0+
Γ(φ)

φ−1 = 1 and limφ→0+
ψ(φ)

φ−1 =−1.

Thus,

lim
φ→0+

π(φ)

φ s0
= lim

φ→0+

1
Γ(φ)e

(φ−1)ψ(φ)−φ

φ s0
= lim

φ→0+

φ−1

Γ(φ)

e(φ−1)ψ(φ)−φ

eφ−1

eφ−1

φ s0−1

= lim
φ→0+

1× eφψ(φ)−φ e−ψ(φ)−φ−1 eφ−1

φ s0−1 = lim
φ→0+

e
ψ(φ)

φ−1 −φ
e−ψ(φ+1) eφ−1

φ s0−1

= e−1e−ψ(1) lim
φ→0+

eφ−1

φ s0−1 = e−1e−ψ(1) lim
u→∞

eu

u−s0+1 = ∞ .

(4.29)

Since c = −1 and limφ→0+
π(φ)

φ s0
= ∞ ∀s0 ∈ N, the result follows from the Theorem

4.3.1.

4.4.6.1 Modified MDI prior

Moala et al. (2013) introduces a modified maximal data information (MMDI) prior given
by

π9(φ ,µ) ∝
µ

Γ(φ)
exp
{
(φ −1)

ψ(φ)

Γ(φ)
−φ

}
. (4.30)

The joint posterior distribution for φ and µ , produced by the MMDI prior, is

π9(φ ,µ|x) ∝
µnφ+1

Γ(φ)n+1

{
n

∏
i=1

xφ

i

}
exp

{
−µ

n

∑
i=1

xi +(φ −1)
ψ(φ)

Γ(φ)
−φ

}
. (4.31)

Theorem 4.4.8. The posterior density (4.31) is proper for every n∈N, in which case the posterior
moments for φ and µ are finite.
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Proof. From, limφ→0+
Γ(φ)

φ−1 = 1 and limφ→0+
ψ(φ)

φ−1 =−1. Thus limφ→0+
ψ(φ)

Γ(φ)
=−1 and

lim
φ→0+

π9(φ)

φ
= lim

φ→0+

1
Γ(φ)e

(φ−1)ψ(φ)
Γ(φ)

−φ

φ
= lim

φ→0+

φ−1

Γ(φ)
e(φ−1)ψ(φ)

Γ(φ)
−φ

= 1× e(−1)(−1)−0 = e > 0.

(4.32)

On the other hand, limφ→∞
ψ(φ)

log(φ) = 1 and by the Stirling approximation Abramowitz and

Stegun (1972) we have limφ→0+
Γ(φ)

φ
φ− 1

2 e−φ

=
√

2π and limφ→∞
Γ(φ)
φ 2 = ∞. Then

lim
φ→∞

π9(φ)

φ
1
2−φ

= lim
φ→0+

1
Γ(φ)e

(φ−1)ψ(φ)
Γ(φ)

−φ

φ
1
2−φ

= lim
φ→0+

φ φ− 1
2 e−φ

Γ(φ)
e(φ−1)ψ(φ)

Γ(φ)

=
1√
2π

lim
φ→0+

e
(

1− 1
φ

)
ψ(φ)

log(φ)
log(φ)

φ

φ2
Γ(φ) =

1√
2π

e1×1×0×0 =
1√
2π

> 0.

(4.33)

Now, define

π
*
9 (φ) =

φ , if φ ≤ 1

φ
1
2−φ if φ > 1

and χ(φ) =

φ , if φ ≤ 1

φ− 1
2 if φ > 1.

(4.34)

Then, from (4.32) and (4.33) we have π9(φ) ∝
φ→0+

π*
9 (φ) and π9(φ) ∝

φ→∞
π*

9 (φ), which

implies that π9(φ) ∝ π*
9 (φ) from Proposition 2.5.3. However, π*

9 (φ) ≤ χ(φ) and the prior
π9(µ)χ(φ) = µχ(φ) leads to a proper posterior as well as posterior moments for every n ∈N by
Theorem 4.3.1 and Theorem 4.3.2. Therefore φ rµsπ9(φ ,µ)∝ φ rµsπ9(µ)π

*
9 (φ)≤ φ rµsπ9(µ)χ(φ)

also leads to a proper posterior for every n ∈ N, s ∈ N and r ∈ N which proves the result.

The marginal posterior distribution for φ is given by

π9(φ |x) ∝
(φψ ′(φ)−1)√

φ

Γ(nφ +2)
Γ(φ)n exp

{
(φ −1)

ψ(φ)

Γ(φ)
−φ

}( n
√

∏
n
i=1 xi

∑
n
i=1 xi

)nφ

.

The conditional posterior distribution for µ is given by

π9(µ|φ ,x)∼ Gamma

(
nφ +2,

n

∑
i=1

xi

)
.

4.4.7 Matching priors

Sun and Ye (1996) prove that the reference prior (4.22) is also a Tibshirani prior when φ

is the parameter of interest and µ is the nuisance parameter and the Tibshirani prior when µ is
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the parameter of interest and φ is the nuisance parameter with order O(n−1). They also proved
that when φ is the parameter of interest, there is no matching prior up to order o(n−1). Finally,
they present a Tibshirani prior when µ is the parameter of interest that is matching prior up to
order o(n−1), such prior is given as follows

π10 (φ ,µ) ∝
φψ ′(φ)−1

µ
√

φ
. (4.35)

The joint posterior distribution for φ and µ , produced by the Tibshirani prior (4.35) is
given by

π10(φ ,µ|x) ∝
(φψ ′(φ)−1)√

φ

µnφ−1

Γ(φ)n

{
n

∏
i=1

xφ

i

}
exp

{
−µ

n

∑
i=1

xi

}
. (4.36)

Theorem 4.4.9. The posterior density (4.36) is proper if and only if n ≥ 2, in which case the
posterior moments for φ and µ are finite.

Proof. We proved in Theorem 4.4.3 that
√

φψ ′(φ)−1 ∝
φ→0+

φ− 1
2 and that

√
φψ ′(φ)−1 ∝

φ→∞

φ− 1
2 . From that, it follows that

φψ ′(φ)−1√
φ

∝
φ→0+

φ−1

φ
1
2
= φ

− 3
2 and

φψ ′(φ)−1√
φ

∝
φ→∞

φ−1

φ
1
2
= φ

− 3
2 .

Thus c =−1 and s0 = s∞ =−3
2 , therefore the result follows directly from the Theorem

4.3.1 and Theorem 4.3.2.

The conditional posterior distribution for µ is (4.17). The marginal posterior distribution
for φ is given by

π10(φ |x) ∝
(φψ ′(φ)−1)√

φ

Γ(nφ)

Γ(φ)n

(
n
√

∏
n
i=1 xi

∑
n
i=1 xi

)nφ

.

4.4.8 Consensus Prior

A rather natural approach to find an objective prior is to start with a collection of objective
priors and take its average. Berger et al. (2015) discussed this prior averaging approach under
the two most natural averages, the geometric mean and the arithmetic mean.

4.4.8.1 Geometric mean

Let πi(φ ,µ), i = 3,5,6,7,10 be a collection of objective priors. Such priors were selected
conveniently due its invariance property under one-to-one transformations. Then, our geometric
mean (GM) prior is given by

π11 (φ ,µ) ∝
1
µ

5

√√√√(φψ ′(φ)−1)
5
2 ψ ′(φ)

1
2

φ
3
2

∝
1
µ

√
φψ ′(φ)−1 10

√
ψ ′(φ)

φ
3

10
. (4.37)
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Note that, since our prior was constructed as a geometric mean of one-to-one invariant
priors then such prior has also invariance property under one-to-one transformations.

The joint posterior distribution for φ and µ , produced by the consensus prior, is

π11(φ ,µ|x) ∝
ψ ′(φ)

1
10
√

φψ ′(φ)−1

φ
3

10

µnφ−1

Γ(φ)n

{
n

∏
i=1

xφ

i

}
exp

{
−µ

n

∑
i=1

xi

}
. (4.38)

Theorem 4.4.10. The posterior density (4.38) is proper if and only if n ≥ 2, in which case the
posterior moments for φ and µ are finite.

Proof. The result follows directly from the Theorem 4.3.3 and by Theorem 4.3.2.

The conditional posterior distribution for µ is (4.17). The marginal posterior distribution
for φ is given by

π11(φ |x) ∝
ψ ′(φ)

1
10
√

φψ ′(φ)−1

φ
3

10

Γ(nφ)

Γ(φ)n

(
n
√

∏
n
i=1 xi

∑
n
i=1 xi

)nφ

.

4.4.8.2 Arithmetic mean

Let πi(φ ,µ), i = 3,5,6,7,10 be a collection of objective priors. Then, our arithmetic
mean (AM) prior is given by

π12 (φ ,µ) ∝
π12(φ)

µ

where

π12(φ) =

(
2
√

φψ ′(φ)−1+
√

φψ ′(φ)+
√

φ 2ψ ′(φ)−φ +φψ ′(φ)−1√
φ

)
.

The joint posterior distribution for φ and µ , produced by the consensus prior, is

π12(φ ,µ|x) ∝ π12(φ)
µnφ−1

Γ(φ)n

{
n

∏
i=1

xφ

i

}
exp

{
−µ

n

∑
i=1

xi

}
. (4.39)

Theorem 4.4.11. The posterior density (4.39) is proper if and only if n ≥ 2, in which case the
posterior moments for φ and µ are finite.

Proof. The result follows directly from the Theorem 4.3.3 and by Theorem 4.3.2.

The conditional posterior distribution for µ is (4.17). The marginal posterior distribution
for φ is given by

π12(φ |x) ∝ π12(φ)
Γ(nφ)

Γ(φ)n

(
n
√

∏
n
i=1 xi

∑
n
i=1 xi

)nφ

.
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4.5 Numerical evaluation

A simulation study is presented to compare the influence of different objective priors in
the posterior distributions and find the most efficient estimation method by computing the mean
relative errors (MRE) and the mean square errors (MSE), given by

MREi
1
N

N

∑
j=1

θ̂i, j

θi
and MSEi =

N

∑
j=1

(θ̂i, j −θi)
2

N
, i = 1,2

where θ = (φ ,µ) and N = 10,000 is the number of estimates obtained through the posterior
means of φ and µ . The 95% coverage probability (CP95%) of the credibility intervals for φ and
µ are evaluated. Considering this approach, the best estimators will show MRE closer to one and
MSE closer to zero. In addition, for a large number of experiments considering a 95% confidence
level, the frequencies of intervals that covered the true values of θ should be closer to 95%.

The results were computed using the software R. Considering n = (10,20, . . . ,120) the
results were presented only for θ = ((4,2),(0.5,5)) for reasons of space. However, the following
results were similar for other choices of φ and µ .

The Markov chain Monte Carlo (MCMC) algorithm is considered in order to generate
samples from marginal posteriors. Since the marginal posterior of φ do not belong to any known
parametric family and the marginal posterior of µ has a gamma distribution. Then, we considered
the Metropolis-Hastings with Gibbs Sampling. The gamma distribution was used as transition
kernel q

(
φ ( j)|φ (*),b

)
for sampling values of φ , in this case b is fixed value that control the rate

of acceptance. While we choose b to be equal to one, other higher values can also be considered.
Moreover, to increase the time of convergence of the algorithm, we consider the method of
moments as a good initial value for φ and µ given by

φ
(1) =

x̄2

s2 and µ
(1) =

x̄
s2 . (4.40)

The Metropolis-Hastings algorithm operates as follows:

1. Start with an initial value φ (1) and set the iteration counter j = 1;

2. Generate a random value φ (*) from the proposal Gamma(φ ( j),1);

3. Evaluate the acceptance probability

λ

(
φ
( j),φ (*)

)
= min

1,
p
(

φ (*)|x
)

p
(
φ ( j)|x

) q
(

φ ( j),φ (*),1
)

q
(
φ (*),φ ( j),1

)
 ,

where p(·) is one of the marginal posterior distributions.

4. Generate a random value u from an independent uniform in (0,1);



4.5. Numerical evaluation 75

5. If λ

(
φ ( j),φ (*)

)
≥ u(0,1) then φ ( j+1) = φ (*). Otherwise, φ ( j+1) = φ ( j);

6. Generate a random value φ ( j+1) from the conditional posterior Gamma( · , ·) related with
the marginal posterior distribution chosen in the step 3;

7. Change the counter from j to j+1 and return to step 2 until convergence is reached.

Using the MCMC methods, we computed the posterior mean for φ , µ and the credibility
(confidence) intervals for both parameters. Tables 13 and 12 present the MREs, MSEs and CP95%

from the different estimators of φ and µ .

Table 11 – The MRE(MSE) for for the estimates of φ and µ considering different sample sizes.

θ n MLE Uniform Jeffreys’ Rule Jeffreys’ Prior Miller Reference φ

10 1.398(3.356) 1.336(1.305) 1.130(0.655) 1.175(0.768) 1.232(0.928) 1.124(0.646)
20 1.161(0.733) 1.209(0.598) 1.080(0.354) 1.109(0.397) 1.144(0.457) 1.076(0.351)
30 1.101(0.384) 1.153(0.360) 1.059(0.234) 1.080(0.256) 1.106(0.288) 1.056(0.232)
40 1.073(0.248) 1.122(0.256) 1.048(0.177) 1.064(0.191) 1.084(0.211) 1.045(0.176)

φ = 2 50 1.058(0.184) 1.100(0.195) 1.039(0.142) 1.053(0.151) 1.070(0.164) 1.038(0.141)
60 1.048(0.145) 1.084(0.157) 1.032(0.120) 1.044(0.126) 1.058(0.136) 1.031(0.119)
70 1.040(0.117) 1.071(0.127) 1.026(0.100) 1.036(0.105) 1.049(0.111) 1.025(0.099)
80 1.034(0.101) 1.067(0.110) 1.027(0.088) 1.036(0.092) 1.047(0.097) 1.026(0.087)
90 1.031(0.089) 1.057(0.094) 1.022(0.077) 1.030(0.080) 1.040(0.084) 1.021(0.077)
100 1.028(0.079) 1.055(0.086) 1.022(0.071) 1.030(0.074) 1.039(0.078) 1.021(0.071)
110 1.025(0.072) 1.047(0.074) 1.018(0.063) 1.024(0.065) 1.033(0.068) 1.017(0.062)
120 1.024(0.064) 1.045(0.069) 1.018(0.059) 1.024(0.060) 1.031(0.063) 1.017(0.058)
10 1.467(0.276) 1.395(0.107) 1.157(0.053) 1.204(0.062) 1.262(0.074) 1.151(0.053)
20 1.188(0.059) 1.246(0.049) 1.098(0.029) 1.127(0.032) 1.163(0.037) 1.094(0.028)
30 1.117(0.031) 1.181(0.030) 1.073(0.019) 1.094(0.021) 1.121(0.023) 1.070(0.019)
40 1.084(0.020) 1.143(0.022) 1.059(0.015) 1.075(0.016) 1.096(0.018) 1.056(0.015)

µ = 0.5 50 1.067(0.015) 1.118(0.016) 1.048(0.011) 1.061(0.012) 1.079(0.013) 1.046(0.011)
60 1.056(0.012) 1.100(0.013) 1.041(0.010) 1.052(0.010) 1.067(0.011) 1.039(0.010)
70 1.046(0.010) 1.085(0.011) 1.034(0.008) 1.044(0.009) 1.056(0.009) 1.032(0.008)
80 1.040(0.008) 1.080(0.009) 1.034(0.007) 1.043(0.008) 1.054(0.008) 1.033(0.007)
90 1.036(0.007) 1.068(0.008) 1.027(0.006) 1.035(0.007) 1.045(0.007) 1.026(0.006)
100 1.032(0.006) 1.064(0.007) 1.027(0.006) 1.034(0.006) 1.043(0.006) 1.026(0.006)
110 1.029(0.006) 1.055(0.006) 1.022(0.005) 1.028(0.005) 1.036(0.005) 1.021(0.005)
120 1.027(0.005) 1.053(0.006) 1.022(0.005) 1.028(0.005) 1.036(0.005) 1.021(0.005)
10 1.398(12.062) 1.348(5.558) 1.128(2.743) 1.179(3.256) 1.238(3.930) 1.124(2.724)
20 1.174(3.233) 1.217(2.522) 1.079(1.467) 1.111(1.659) 1.148(1.909) 1.077(1.458)
30 1.108(1.619) 1.159(1.535) 1.059(0.986) 1.082(1.084) 1.109(1.217) 1.057(0.982)
40 1.078(1.049) 1.127(1.136) 1.048(0.787) 1.067(0.850) 1.088(0.934) 1.047(0.784)
50 1.062(0.774) 1.105(0.832) 1.040(0.601) 1.055(0.642) 1.072(0.698) 1.039(0.599)

φ = 4 60 1.051(0.613) 1.088(0.673) 1.033(0.508) 1.045(0.537) 1.060(0.577) 1.032(0.506)
70 1.044(0.506) 1.077(0.562) 1.029(0.436) 1.040(0.459) 1.053(0.489) 1.028(0.435)
80 1.038(0.435) 1.069(0.475) 1.027(0.376) 1.037(0.394) 1.048(0.418) 1.026(0.375)
90 1.033(0.377) 1.061(0.410) 1.023(0.333) 1.031(0.346) 1.041(0.365) 1.022(0.332)
100 1.031(0.336) 1.053(0.350) 1.018(0.290) 1.027(0.301) 1.036(0.315) 1.018(0.290)
110 1.027(0.299) 1.049(0.320) 1.018(0.269) 1.025(0.278) 1.034(0.291) 1.017(0.268)
120 1.025(0.273) 1.046(0.292) 1.017(0.247) 1.024(0.256) 1.032(0.267) 1.017(0.247)
10 1.429(3.440) 1.377(1.616) 1.142(0.798) 1.194(0.942) 1.253(1.130) 1.138(0.793)
20 1.187(0.907) 1.235(0.728) 1.088(0.423) 1.120(0.476) 1.157(0.545) 1.086(0.420)
30 1.115(0.455) 1.174(0.446) 1.066(0.286) 1.090(0.313) 1.117(0.350) 1.064(0.285)
40 1.084(0.299) 1.138(0.327) 1.053(0.226) 1.072(0.243) 1.093(0.266) 1.052(0.225)
50 1.067(0.223) 1.115(0.240) 1.045(0.172) 1.060(0.184) 1.078(0.200) 1.044(0.172)

µ = 2 60 1.055(0.175) 1.096(0.193) 1.037(0.145) 1.050(0.153) 1.065(0.164) 1.036(0.145)
70 1.047(0.145) 1.083(0.160) 1.032(0.124) 1.043(0.130) 1.056(0.138) 1.031(0.123)
80 1.041(0.123) 1.076(0.136) 1.030(0.108) 1.040(0.113) 1.051(0.119) 1.029(0.107)
90 1.036(0.108) 1.067(0.116) 1.026(0.094) 1.035(0.098) 1.045(0.103) 1.025(0.094)
100 1.033(0.095) 1.058(0.100) 1.021(0.083) 1.029(0.086) 1.038(0.090) 1.020(0.083)
110 1.029(0.086) 1.053(0.091) 1.020(0.076) 1.027(0.079) 1.035(0.082) 1.019(0.076)
120 1.027(0.078) 1.051(0.085) 1.020(0.071) 1.026(0.074) 1.034(0.077) 1.019(0.071)
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Table 12 – The MRE(MSE) for for the estimates of φ and µ considering different sample sizes.

θ n Reference µ MDIP Tibshirani Consensus GM Consensus AM
10 1.169(0.762) 1.082(0.304) 1.067(0.542) 1.131(0.664) 1.252(1.014)
20 1.105(0.394) 1.070(0.230) 1.041(0.312) 1.081(0.358) 1.156(0.487)
30 1.077(0.254) 1.061(0.179) 1.030(0.211) 1.060(0.236) 1.114(0.302)
40 1.061(0.190) 1.054(0.149) 1.025(0.164) 1.048(0.179) 1.091(0.220)

φ = 2 50 1.051(0.151) 1.049(0.124) 1.021(0.133) 1.040(0.143) 1.075(0.170)
60 1.042(0.125) 1.042(0.109) 1.016(0.113) 1.032(0.120) 1.062(0.140)
70 1.034(0.104) 1.036(0.093) 1.012(0.095) 1.026(0.100) 1.052(0.114)
80 1.035(0.092) 1.038(0.083) 1.015(0.083) 1.028(0.088) 1.050(0.100)
90 1.029(0.080) 1.032(0.074) 1.011(0.074) 1.022(0.077) 1.043(0.086)

100 1.028(0.074) 1.032(0.069) 1.012(0.068) 1.023(0.071) 1.041(0.079)
110 1.023(0.065) 1.027(0.061) 1.009(0.061) 1.018(0.063) 1.035(0.069)
120 1.023(0.060) 1.027(0.058) 1.009(0.057) 1.018(0.059) 1.033(0.064)
10 1.198(0.062) 1.160(0.033) 1.093(0.044) 1.159(0.054) 1.283(0.081)
20 1.123(0.032) 1.121(0.023) 1.058(0.025) 1.099(0.029) 1.175(0.039)
30 1.091(0.021) 1.101(0.017) 1.044(0.018) 1.074(0.020) 1.129(0.025)
40 1.072(0.016) 1.085(0.014) 1.035(0.014) 1.059(0.015) 1.102(0.018)

µ = 0.5 50 1.059(0.012) 1.074(0.011) 1.029(0.011) 1.048(0.012) 1.084(0.014)
60 1.050(0.010) 1.065(0.010) 1.025(0.009) 1.041(0.010) 1.071(0.011)
70 1.042(0.009) 1.057(0.008) 1.020(0.008) 1.034(0.008) 1.060(0.009)
80 1.042(0.008) 1.055(0.007) 1.021(0.007) 1.034(0.007) 1.057(0.008)
90 1.034(0.007) 1.047(0.006) 1.016(0.006) 1.027(0.006) 1.048(0.007)

100 1.033(0.006) 1.046(0.006) 1.017(0.006) 1.027(0.006) 1.046(0.006)
110 1.027(0.005) 1.039(0.005) 1.012(0.005) 1.022(0.005) 1.039(0.006)
120 1.027(0.005) 1.039(0.005) 1.014(0.005) 1.022(0.005) 1.038(0.005)
10 1.177(3.243) 0.841(0.779) 1.066(2.290) 1.134(2.810) 1.270(4.420)
20 1.109(1.651) 0.879(0.616) 1.040(1.302) 1.083(1.493) 1.167(2.086)
30 1.081(1.081) 0.902(0.507) 1.030(0.897) 1.062(1.000) 1.123(1.308)
40 1.066(0.849) 0.919(0.452) 1.026(0.730) 1.050(0.796) 1.099(0.993)
50 1.054(0.642) 0.929(0.380) 1.021(0.563) 1.042(0.606) 1.081(0.736)

φ = 4 60 1.045(0.536) 0.936(0.346) 1.017(0.480) 1.034(0.511) 1.068(0.603)
70 1.040(0.458) 0.943(0.311) 1.015(0.416) 1.030(0.440) 1.060(0.510)
80 1.036(0.393) 0.949(0.277) 1.015(0.359) 1.028(0.379) 1.054(0.433)
90 1.031(0.345) 0.952(0.255) 1.011(0.319) 1.023(0.334) 1.047(0.377)

100 1.026(0.300) 0.954(0.232) 1.009(0.280) 1.019(0.291) 1.040(0.325)
110 1.025(0.278) 0.958(0.218) 1.009(0.261) 1.019(0.270) 1.038(0.299)
120 1.023(0.255) 0.962(0.203) 1.009(0.240) 1.018(0.249) 1.035(0.273)
10 1.191(0.939) 0.877(0.198) 1.079(0.667) 1.148(0.817) 1.285(1.265)
20 1.118(0.474) 0.903(0.164) 1.049(0.375) 1.092(0.430) 1.177(0.593)
30 1.088(0.313) 0.921(0.138) 1.037(0.260) 1.069(0.290) 1.131(0.375)
40 1.071(0.243) 0.933(0.124) 1.030(0.210) 1.055(0.228) 1.104(0.282)
50 1.059(0.184) 0.942(0.104) 1.026(0.161) 1.047(0.174) 1.087(0.210)

µ = 2 60 1.049(0.153) 0.947(0.095) 1.021(0.137) 1.038(0.146) 1.072(0.171)
70 1.042(0.130) 0.952(0.086) 1.018(0.118) 1.033(0.125) 1.063(0.144)
80 1.039(0.112) 0.958(0.077) 1.018(0.103) 1.031(0.108) 1.057(0.123)
90 1.034(0.098) 0.961(0.070) 1.015(0.090) 1.027(0.094) 1.050(0.106)

100 1.028(0.086) 0.961(0.064) 1.011(0.080) 1.022(0.083) 1.043(0.092)
110 1.027(0.079) 0.964(0.060) 1.011(0.074) 1.020(0.077) 1.040(0.084)
120 1.026(0.074) 0.968(0.057) 1.011(0.069) 1.020(0.072) 1.038(0.079)
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Table 13 – The CP95% from the estimates of µ and Ω considering different values of n with N = 10,000
simulated samples.

θ n MLE Uniform Jeffreys’ Rule Jeffreys’ Prior Miller Reference φ

µ θ µ θ µ θ µ θ µ θ µ θ

10 0.973 0.975 0.892 0.891 0.950 0.953 0.942 0.948 0.928 0.936 0.948 0.953
20 0.964 0.966 0.907 0.908 0.946 0.949 0.941 0.945 0.938 0.937 0.944 0.949

φ = 2 30 0.958 0.959 0.918 0.916 0.948 0.950 0.944 0.945 0.937 0.939 0.948 0.951
40 0.957 0.956 0.923 0.921 0.948 0.946 0.944 0.944 0.938 0.942 0.947 0.947
50 0.955 0.955 0.929 0.928 0.950 0.950 0.948 0.947 0.942 0.944 0.951 0.949
60 0.955 0.955 0.929 0.928 0.947 0.946 0.943 0.944 0.941 0.940 0.944 0.946

µ = 0.5 70 0.955 0.957 0.934 0.931 0.946 0.948 0.943 0.947 0.942 0.943 0.946 0.948
80 0.953 0.953 0.934 0.934 0.948 0.947 0.947 0.948 0.943 0.944 0.946 0.949
90 0.954 0.955 0.938 0.936 0.949 0.949 0.948 0.948 0.944 0.943 0.948 0.948

100 0.955 0.952 0.938 0.933 0.945 0.945 0.945 0.944 0.943 0.940 0.944 0.944
110 0.949 0.953 0.941 0.939 0.948 0.951 0.950 0.950 0.945 0.945 0.946 0.948
120 0.953 0.953 0.942 0.943 0.950 0.951 0.949 0.950 0.948 0.950 0.948 0.953
10 0.974 0.972 0.886 0.885 0.948 0.951 0.942 0.942 0.928 0.931 0.949 0.952

φ = 4 20 0.963 0.965 0.907 0.905 0.947 0.946 0.942 0.941 0.935 0.933 0.947 0.944
30 0.962 0.961 0.917 0.914 0.952 0.950 0.948 0.947 0.939 0.939 0.952 0.949
40 0.958 0.962 0.923 0.920 0.947 0.946 0.946 0.943 0.939 0.939 0.947 0.948
50 0.961 0.959 0.924 0.926 0.947 0.947 0.944 0.945 0.939 0.940 0.945 0.947
60 0.956 0.957 0.932 0.930 0.950 0.950 0.948 0.946 0.942 0.943 0.951 0.949
70 0.959 0.961 0.929 0.929 0.945 0.946 0.945 0.944 0.940 0.938 0.946 0.946

µ = 2 80 0.955 0.956 0.936 0.936 0.950 0.952 0.949 0.949 0.944 0.946 0.950 0.951
90 0.956 0.956 0.934 0.938 0.946 0.948 0.945 0.948 0.941 0.945 0.944 0.949

100 0.955 0.956 0.941 0.939 0.949 0.952 0.949 0.949 0.947 0.948 0.951 0.951
110 0.956 0.954 0.940 0.939 0.949 0.949 0.949 0.949 0.947 0.947 0.949 0.950
120 0.953 0.953 0.940 0.937 0.949 0.945 0.947 0.944 0.944 0.943 0.947 0.945

Table 14 – The CP95% from the estimates of µ and Ω considering different values of n with N = 10,000
simulated samples.

θ
Reference µ MDIP Tibshirani Consensus GM Consensus AM
µ θ µ θ µ θ µ θ µ θ

10 0.943 0.948 0.969 0.964 0.950 0.957 0.949 0.953 0.922 0.928
20 0.942 0.946 0.960 0.956 0.947 0.951 0.945 0.949 0.931 0.932

φ = 2 30 0.946 0.946 0.958 0.949 0.950 0.950 0.949 0.949 0.933 0.936
40 0.943 0.944 0.953 0.948 0.949 0.948 0.948 0.947 0.937 0.938
50 0.948 0.948 0.955 0.948 0.950 0.951 0.949 0.949 0.941 0.941
60 0.944 0.943 0.948 0.945 0.945 0.946 0.946 0.946 0.938 0.938

µ = 0.5 70 0.944 0.947 0.948 0.948 0.944 0.948 0.946 0.947 0.938 0.938
80 0.946 0.945 0.948 0.946 0.949 0.948 0.946 0.948 0.940 0.942
90 0.948 0.947 0.950 0.945 0.948 0.949 0.949 0.947 0.944 0.943

100 0.944 0.943 0.946 0.942 0.946 0.945 0.944 0.944 0.943 0.941
110 0.947 0.950 0.949 0.948 0.948 0.948 0.948 0.947 0.944 0.944
120 0.948 0.950 0.950 0.950 0.950 0.952 0.949 0.951 0.946 0.947
10 0.942 0.942 0.920 0.942 0.951 0.954 0.949 0.949 0.918 0.920

φ = 4 20 0.943 0.940 0.923 0.940 0.950 0.946 0.947 0.944 0.928 0.928
30 0.949 0.947 0.921 0.938 0.950 0.949 0.951 0.948 0.934 0.933
40 0.945 0.944 0.925 0.939 0.946 0.948 0.948 0.947 0.935 0.935
50 0.946 0.944 0.929 0.943 0.948 0.946 0.945 0.947 0.936 0.937
60 0.947 0.947 0.933 0.940 0.952 0.950 0.950 0.948 0.940 0.941
70 0.943 0.946 0.931 0.939 0.946 0.947 0.945 0.944 0.938 0.938

µ = 2 80 0.949 0.949 0.937 0.942 0.950 0.952 0.948 0.951 0.943 0.945
90 0.945 0.947 0.931 0.943 0.944 0.949 0.944 0.948 0.940 0.943

100 0.951 0.951 0.936 0.942 0.949 0.950 0.950 0.952 0.946 0.945
110 0.947 0.948 0.937 0.943 0.949 0.950 0.950 0.951 0.944 0.946
120 0.947 0.944 0.936 0.941 0.946 0.947 0.947 0.945 0.944 0.942

From these results, we observed that the MREs (MSEs) for all estimators of the pa-
rameters tend to one (zero) for large n, i.e., the estimators are asymptotically unbiased for the
parameters. Moreover, for both parameters the posterior mean using the Tibshirani prior indicates
better performance than the obtained with other priors and the MLE. The better performance of
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this approach is also confirmed through the coverage probability obtained from the credibility
intervals. Therefore, we conclude that the posterior distribution obtained with Tibshirani prior
should be used to make inference on the parameters of the gamma distribution.

4.6 Discussion
In this study, we presented a theorem that provides simple conditions under which

an improper prior yields a proper posterior for the gamma distribution. Further, we provided
sufficient conditions to verify if the posterior moments of the parameters are finite. An interesting
aspect of our findings is that one can check if the posterior is proper or improper and also if its
posterior moments are finite looking directly the behavior of the proposed improper prior.

The proposed methodology is applied in different objective priors. The MDI prior was
the only that yield an improper posterior for any sample sizes. An extensive simulation study
showed that the posterior distribution obtained under Tibshirani prior provided more accurate
results in terms of MRE, MSE and coverage probabilities. Therefore, this posterior distribution
should be used to make inference in the unknown parameters of the gamma distribution. This
study can be easily extended for other distributions such as Weibull, generalized gamma and
the generalized extreme value distribution providing simple conditions to check under which an
improper prior yields a proper posterior.
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CHAPTER

5
GENERALIZED GAMMA DISTRIBUTION

5.1 Introduction
The generalized gamma (GG) distribution plays an important role in statistics and has

proven to be very flexible in practice for modeling data from several areas, such as climatology,
meteorology medicine, reliability and image processing data, among others. Introduced by Stacy
and Mihram (1965) the GG distribution unify many important models such as the exponential,
Weibull, gamma, lognormal, generalized normal, Nakagami-m, half-normal, Rayleigh, Maxwell-
Boltzmann and chi distribution, to list a few. A random variable X follows a GG distribution if
its probability density function (PDF) is given by

f (x|θ) = α

Γ(φ)
µ

αφ xαφ−1 exp(−(µx)α) , x > 0 (5.1)

where Γ(φ) =
∫

∞

0 e−xxφ−1dx is the gamma function, θ = (φ ,µ,α), α > 0 and φ > 0 are the
shape parameters and µ > 0 is a scale parameter.

The parameter estimators for the GG distribution have been discussed earlier considering
the maximum likelihood (ML) method (STACY; MIHRAM, 1965). However, the ML estimators
are not well-behaved (HAGER; BAIN, 1970) and its asymptotic properties may not be achieved
even for samples greater than 400 (PRENTICE, 1974). From a Bayesian point of view, a
subjective analysis can be considered where the prior distribution supplies information from
an expert (O’HAGAN et al., 2006). On the other hand, in many situations, we are interested in
obtaining a prior distribution which guarantees that the information provided by the data will not
be overshadowed by subjective information. In this case, an objective analysis is recommended
by considering non-informative priors that are derived by formal rules (BERNARDO, 2005).
Although several studies have considered weakly informative priors (flat priors) as presumed
non-informative priors, Bernardo (2005) argued that using simple proper priors presumed to be
non-informative, often hides important unwarranted assumptions which may easily dominate, or
even invalidate the statistical analysis and should be strongly discouraged.
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Objective priors have been discussed for the generalized gamma distribution (NOORTWIJK,
2001). The obtained priors are constructed by formal rules (KASS; WASSERMAN, 1996) and
are usually improper, i.e., do not correspond to proper probability distribution and could lead to
improper posteriors, which is undesirable. According to Northrop and Attalides (2016), there are
no simple conditions that can be used to prove that an improper prior yields a proper posterior for
a particular distribution, therefore a case-by-case investigation is needed to check the propriety
of posterior distribution. This study overcomes this problem by providing in a simple way
necessary and sufficient conditions to check whether or not objective priors lead proper posterior
distributions for the generalized gamma distribution. As a result, one can easily check if the
obtained posterior is proper or improper directly looking at the behavior of the improper prior.

The proposed methodology is fully illustrated in twelve improper priors such as indepen-
dent uniform priors, Jeffreys’ rule (KASS; WASSERMAN, 1996), Jeffreys’ prior (JEFFREYS,
1946), maximal data information (MDI) prior (ZELLNER, 1977; ZELLNER, 1984), reference
priors (BERNARDO, 1979; BERNARDO, 2005; BERGER et al., 2015), to list a few. We proved
that among the priors considered only one reference prior returned a proper posterior distribution.
The proper reference posterior has excellent theoretical properties such as invariance property
under one-to-one transformations of the parameters, consistency under marginalization and
consistent sampling properties. Despite the fact that the posterior distribution may be proper the
posterior moments can be infinite. Therefore, we also provided sufficient conditions to verify if
the posterior moments are finite.

The remainder of this chapter is organized as follows. Section 2 presents a theorem that
provides necessary and sufficient conditions for the posterior distributions to be proper and also
sufficient conditions to check if the posterior moments of the parameters are finite. Section 3
presents the applications of our main theorem in different objective priors. Finally, Section 4
summarizes the study.

5.2 Maximum likelihood estimators

Among the classical statistical inference methods, the ML method is usually preferred
due to its better asymptotic properties. The ML estimators are obtained by maximizing the
likelihood function. Let T1, . . . ,Tn be a random sample where T ∼ GG(α,µ,φ), the likelihood
function for the parameter vector θ = (α,µ,φ) is given by

L(θ ; t) =
αn

Γ(φ)n µ
nαφ

{
n

∏
i=1

tαφ−1
i

}
exp

{
−µ

α
n

∑
i=1

tα
i

}
. (5.2)

The maximum likelihood estimates of the parameters are obtained by solving the likeli-
hood equations ∂

∂α
log(L(θ ; t)) = 0, ∂

∂ µ
log(L(θ ; t)) = 0, ∂

∂φ
log(L(θ ; t)) = 0. Therefore, from
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(5.2), we have

nψ(φ̂) = nα̂ log(µ̂)+ α̂

n

∑
i=1

log(ti), (5.3)

nφ̂ = µ̂
α̂

n

∑
i=1

tα̂
i , (5.4)

n
α̂
+nφ̂ log(µ)+φ

n

∑
i=1

log(ti) = µ̂
α̂

n

∑
i=1

tα̂
i log(µ̂ti), (5.5)

where ψ(k) = ∂

∂k logΓ(k) = Γ′(k)
Γ(k) is the digamma function. The solutions of (5.3-5.5) provide the

maximum likelihood estimators (STACY; MIHRAM, 1965; HAGER; BAIN, 1970). Numerical
methods such as Newton-Rapshon are required to find the solution of the nonlinear system.

Under mild conditions that in some cases are not fulfill (PRENTICE, 1974), the MLE
estimates are asymptotically normal distributed with a trivariate normal distribution given by,

θ̂ ∼ N3[θ , I−1(θ)] for n → ∞, (5.6)

where I(θ) is the Fisher information matrix given by,

I(α,µ,φ) =


1+2ψ(φ)+φψ ′(φ)+φψ(φ)2

α2 −1+φψ(φ)

µ
−ψ(φ)

α

−1+φψ(φ)

µ

φα2

µ2
α

µ

−ψ(φ)

α

α

µ
ψ ′(φ)

 . (5.7)

5.3 Bayesian Analysis
The joint posterior distribution for θ is given by the product of the likelihood function

and the prior distribution π(θ) divided by a normalizing constant d(x), resulting in

p(θ |x) = π(θ)

d(x)
αn

Γ(φ)n

{
n

∏
i=1

xαφ−1
i

}
µ

nαφ exp

{
−µ

α
n

∑
i=1

xα
i

}
, (5.8)

where

d(x) =
∫
A

π(θ)
αn

Γ(φ)n

{
n

∏
i=1

xαφ−1
i

}
µ

nαφ exp

{
−µ

α
n

∑
i=1

xα
i

}
dθ (5.9)

and A = {(0,∞)× (0,∞)× (0,∞)} is the parameter space of θ . Consider any prior in the form
π (θ) ∝ π(µ)π(α)π(φ), the main aim is to find necessary and sufficient conditions for this class
of posterior to be proper, i.e., d(x)< ∞.

Theorem 5.3.1. Suppose that π(α,β ,µ)< ∞ for all (α,β ,µ) ∈ R3
+, that n ∈ N+, and suppose

that π(µ,α,φ) = π(µ)π(α)π(µ) where

π(µ) .
µ→0+

µ
k0, π(µ) .

α→∞

µ
k∞ , π(α) .

α→0+
α

q0,
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π(α) .
α→∞

α
q∞ , π(φ) .

φ→0+
φ

r0 and π(φ) .
φ→∞

φ
r∞,

such that k0 ≥−1, k∞ ≤−1, q∞ < r0, 2r∞ +1 < q0 and n >−q0, then p(θ |x) is proper.

Proof. Since π(α)αn π(φ)
Γ(φ)n ∏

n
i=1 xαφ

i π(µ)µnαφ−1 exp(−µα
∑

n
i=1 xα

i ) ≥ 0 always, by Tonelli’s
theorem we have:

d(x) =
∫
A

π(α)αn π(φ)

Γ(φ)n

{
n

∏
i=1

xαφ−1
i

}
π(µ)µnαφ exp

{
−µ

α
n

∑
i=1

xα
i

}
dθ

=

∞∫
0

∞∫
0

∞∫
0

π(α)αn π(φ)

Γ(φ)n

{
n

∏
i=1

xαφ−1
i

}
π(µ)µnαφ exp

{
−µ

α
n

∑
i=1

xα
i

}
dµ dφ dα.

Now, since k0 ≥−1 and k∞ ≤−1 by hypothesis we have that π(µ) .
µ→0+

µ−1, π(µ) .
µ→∞

µ−1 and therefore π(µ). µ−1, then

d(x).
∞∫

0

∞∫
0

∞∫
0

π(α)αn π(φ)

Γ(φ)n

(
n

∏
i=1

xα
i

)φ

µ
nαφ−1 exp

{
−µ

α
n

∑
i=1

xα
i

}
dµ dφ dα

=

∞∫
0

∞∫
0

π(α)αn−1 π(φ)

Γ(φ)n

(
n

∏
i=1

xα
i

)φ

Γ(nφ)(
∑

n
i=1 xα

i
)nφ

dφ dα

=

∞∫
0

∞∫
0

π(α)αn−1
π(φ)

Γ(nφ)

Γ(φ)n e−nq(α)φ dφ dα

where q(α) is given in Proposition A.0.4. Therefore, from the proportionalities in Appendix A it
follows that

d(x).
∞∫

0

∞∫
0

π(α)αn−1
π(φ)

Γ(nφ)

Γ(φ)n e−nq(α)φ dφ dα

∝

1∫
0

1∫
0

f (α,φ)dφ dα +

∞∫
1

1∫
0

f (α,φ)dφ dα +

1∫
0

∞∫
1

g(α,φ)dφ dα +

∞∫
1

∞∫
1

g(α,φ)dφ dα

= s1 + s2 + s3 + s4,
(5.10)

where f (α,φ) = π(α)αn−1π(φ)φ n−1e−nq(α)φ , g(α,φ) = π(α)αn−1π(φ)φ
n−1

2 e−np(α)φ and s1,
s2, s3 and s4 denote the respective four real numbers in the sum that precedes it. It follows that
d(x)< ∞, if and only if s1 < ∞, s2 < ∞, s3 < ∞ and s4 < ∞. Now, it follows that

s1 .

1∫
0

α
q0+n−1

1∫
0

φ
n+r0−1e−nq(α)φ dφ dα

=

1∫
0

α
q0+n−1 γ(n+ r0,nq(α))

(nq(α))n+r0
dα ∝

1∫
0

α
q0+n−1 dα < ∞,
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s2 .

∞∫
1

α
q∞+n−1

1∫
0

φ
n+r0−1e−nq(α)φ dφ dα

=

∞∫
1

α
q∞+n−1 γ(n+ r0,nq(α))

(nq(α))n+r0
dα ∝

∞∫
1

α
q∞−r0−1 dα < ∞,

s3 .

1∫
0

α
q0+n−1

∞∫
1

φ
n+1+2r∞

2 −1e−np(α)φ dφ dα

=

1∫
0

α
q0+n−1 Γ(n+1+2r∞

2 ,np(α))

(np(α))
n+1+2r∞

2
dα ∝

1∫
0

α
(q0−2r∞−1)−1 dα < ∞, and

s4 .

∞∫
1

α
q∞+n−1

∞∫
1

φ
n+1+2r∞

2 −1e−np(α)φ dφ dα

=

∞∫
1

α
q∞+n−1 Γ(n+1+2r∞

2 ,np(α))

(np(α))
n+1+2r∞

2
dα ∝

∞∫
1

α
q∞+n−2e−nkα dα < ∞,

where in the last line k ∈ R+ is given in Proposition A.0.6. Therefore, from si < ∞, i = 1, . . . ,4,
we have that d = s1 + s2 + s3 + s4 < ∞.

Theorem 5.3.2. Suppose that π(α,β ,µ)> 0 ∀(α,β ,µ) ∈R3
+ and that n ∈N+, then the follow-

ing items are valid

i) π(µ,α,β )& π(µ)π(α)π(β ) for all β ∈ [b0,b1] where 0 ≤ b0 < b1 and one of the follow-
ing hold

- π(µ) &
µ→0+

µk0 where k0 <−1, or

- π(µ) &
µ→∞

µk∞ and π(α) &
α→0+

αq0 , where k∞ >−1 and q0 ∈ R,

then p(θ |x) is improper.

ii) π(µ,α,β )& π(µ)π(α)π(β ) in which

π(µ) &
µ→0+

µ
k0 and π(µ) &

µ→∞

µ
k∞,

where k0 ≥−1 and k∞ ≤−1, and one of the following occur

- π(φ) &
φ→0+

φ r0 and π(α) &
α→∞

αq∞ where q∞ ≥ r0, or

- π(α) &
α→0+

αq0 and π(φ) &
φ→∞

φ r∞ where 2r∞ +1 ≥ q0, or n ≤−q0,

then p(θ |x) is improper.
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Proof. Suppose that hypothesis of item i) hold.

First suppose that π(µ) &
µ→0+

µk∞ with k0 <−1. For h =
√

−k0−1
2n > 0, fixing 0 < α ≤ h

and 0< φ ≤ h we have that nαφ +(k0+1)−1≤ nh2+(k0+1)−1= (k0+1)
2 −1<−1. Moreover,

for every α > 0 fixed we have that exp
{
−µα

∑
n
i=1 xα

i
}

∝
µ→0+

1, hence, from Proposition 2.5.9

we have that

∞∫
0

π(µ)µnαφ exp

{
−µ

α
n

∑
i=1

xα
i

}
dµ &

1∫
0

µ
nαφ+(k0+1)−1 = ∞,

for all α ∈ (0,h] and φ ∈ (0,h]. Therefore

d(x)&
h∫

h/2

h∫
h/2

π(α)αn π(φ)

Γ(φ)n

(
n

∏
i=1

xα
i

)φ ∞∫
0

µ
nαφ+(k+1)−1 exp

{
−µ

α
n

∑
i=1

xα
i

}
dµ dφ dα

∝

h∫
h/2

h∫
h/2

∞ dφ dα = ∞,

that is, d(x) = ∞. Now suppose that π(µ) &
µ→∞

µk∞ and π(α) &
α→0+

αq0 , where k∞ > −1 and

q0 ∈ R. Then, from the proportionalities in Appendix A we have that

d(x) ∝

∫
A

π(α)αn π(φ)

Γ(φ)n

{
n

∏
i=1

xαφ−1
i

}
π(µ)µnαφ exp

{
−µ

α
n

∑
i=1

xα
i

}
dθ

=

∞∫
0

∞∫
0

∞∫
0

π(α)αn π(φ)

Γ(φ)n

{
n

∏
i=1

xαφ−1
i

}
π(µ)µnαφ exp

{
−µ

α
n

∑
i=1

xα
i

}
dµ dφ dα

&

∞∫
0

∞∫
0

∞∫
1

α
n+q0

π(φ)

Γ(φ)n

(
n

∏
i=1

xα
i

)φ

µ
nαφ+(k∞+1)−1 exp

{
−µ

α
n

∑
i=1

xα
i

}
dµ dφ dα

=

∞∫
0

∞∫
0

∞∫
∑

n
i=1 xα

i

α
n+q0

π(φ)

Γ(φ)n
(∏n

i=1 xα
i )

φ(
∑

n
i=1 xα

i
)nφ+ k∞+1

α

unφ+ k∞+1
α

−1e−u dudφ dα

≥
∞∫

0

∞∫
1

π(φ)

Γ(φ)n n−nφ unφ−1e−u
∞∫

0

α
n+q0e−p(α)(nφ+ k∞+1

α )+(logu−logn) k+1
α dα dudφ

where in the above we used the change of variables u = µα
∑

n
i=1 xα

i in the integral, in the last
inequality we used the fact that ∑

n
i=1 xα

i ≥ 1 for α ≥ 0, and p(α) is given as in Proposition A.0.3.
Now, since p(α) ∝

α→0+
α2 from Proposition A.0.3 it follows due to the Proposition 2.5.8 that

p(α)∝ α2 for α ∈ [0,1] and therefore limα→0+ e−p(α)(nφ+ k∞+1
α ) = limα→0+ e−

p(α)

α2 (nφα+k∞+1)α
=

e0 = 1. Thus, since n ≥ 1 and logu− logn > 0 for u ≥ 3n > e ·n, and since
∫ 1

0 αHe
L
α = ∞ for

every H ∈ R and L ∈ R+ (which can be easily checked via the change of variable β = 1
α

in the
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integral), it follows that

d(x)&
∞∫

0

∞∫
3n

π(φ)
1

Γ(φ)n n−nφ unφ−1e−u
1∫

0

α
n+q0e(logu−logn) k+1

α dα dudφ

=

∞∫
0

∞∫
3n

∞dudφ = ∞,

and therefore d(x) = ∞.

Now suppose the hypothesys of ii) hold. First suppose that

π(φ) &
φ→0+

φ
r0 and π(α) &

α→∞

α
q∞

where q∞ ≥ r0. Then, following the same steps that resulted in (5.10) and the same expressions
for si, where i = 1, · · · ,4, we have that d(x)& s1 + s2 + s3 + s4 where

s2 &

∞∫
1

α
q∞+n−1

1∫
0

φ
n+r0−1e−nq(α)φ dφ dα

=

∞∫
1

α
q∞+n−1 γ(n+ r0,nq(α))

(nq(α))n+r0
dα ∝

∞∫
1

α
q∞−r0−1 dα = ∞

and therefore d(x) = ∞.

Now suppose that

π(α) &
α→0+

α
q0 and π(φ) &

φ→∞

φ
r∞

where 2r∞ +1 ≥ q0 or n ≤−q0. Then, following the same steps that resulted in (5.10) and the
same expressions for si, where i = 1, . . . ,4, we have that d(x)& s1 + s2 + s3 + s4 where

s3 &

1∫
0

α
q0+n−1

∞∫
1

φ
n+1+2r∞

2 −1e−np(α)φ dφ dα

=

1∫
0

α
q0+n−1 Γ(n+1+2r∞

2 ,np(α))

(np(α))
n+1+2r∞

2
dα ∝

1∫
0

α
(q0−2r∞−1)−1 dα = ∞

which implies d(x) = ∞.

Theorem 5.3.3. Suppose that 0 < π(α,β ,µ) < ∞ for all (α,β ,µ) ∈ R3
+, and suppose that

π(µ,α,φ) = π(µ)π(α)π(φ) where

π(µ) ∝
µ→0+

µ
k0, π(µ) ∝

α→∞
µ

k∞ , π(α) ∝
α→0+

α
q0,

π(α) ∝
α→∞

α
q∞, π(φ) ∝

φ→0+
φ

r0 and π(φ) ∝
φ→∞

φ
r∞ ,

then αqφ rµkπ(α,φ ,µ) leads to a proper posterior if and only if −1− k0 ≤ k ≤−1− k∞, 2r+

(2r∞ +1−q0)< q < r+(r0 −q∞) and n ≥−q0.
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Proof. By Theorems 5.3.2 and 5.3.3 we have that αqβ rµkπ(α,β ,µ) leads to a proper posterior
if and only if k + k0 ≤ −1, k + k∞ ≥ −1, q+ q∞ < r + r0, 2(r + r∞) ≤ q+ q0 and n > −q0.
Combining theses inequalities the proof is completed.

5.4 Objective Priors

5.4.1 Some common objective priors

A naive approach to obtain objective priors is to consider uniform priors contained in the
interval (0,∞). However, uniform priors are usually not attractive due to its lack of invariance
over reparametrizations. The uniform prior for GG distribution is given by π1 (φ ,µ,α) ∝ 1.

Corollary 5.4.1. The posterior distribution obtained using a joint uniform prior is improper for
all n ∈ N+.

Proof. Since π1(φ ,µ,α) = µ0α0φ 0 we apply Theorem 5.3.2 ii) with k0 = k∞ = q∞ = r0 = 0
and since q∞ ≥ r0 we have that π(α,β ,µ) leads to an improper posterior for all n ∈ N+.

Another common approach was suggested by Jeffreys’ that considered different proce-
dures for constructing objective priors. As the parameters of the GG distribution are contained in
the interval (0,∞), the prior using Jeffreys’ rule is π2 (φ ,µ,α) ∝ (φ µα)−1.

Corollary 5.4.2. The posterior distribution obtained using Jeffreys’ rule is improper for all
n ∈ N+.

Proof. Since π1(φ ,µ,α) = µ−1α−1φ−1 we can apply Theorem 5.3.2 ii) with k0 = k∞ = q∞ =

r0 =−1, where q∞ ≥ r0, and therefore we have that π(α,β ,µ) leads to an improper posterior
for all n ∈ N+.

Zellner (1984) discussed another procedure to obtain an objective prior, the MDI prior
for the GG distribution is given by

π3 (θ) ∝
αµ

Γ(φ)
exp
{

ψ(φ)

(
φ − 1

α

)
−φ

}
. (5.11)

Corollary 5.4.3. The joint posterior density using the MDI prior (5.11) is improper for any
n ∈ N+.

Proof. Since ψ(φ)< 0 for all φ ∈ (0,1] Abramowitz and Stegun (1972), we have that exp
(
−ψ(φ)

1
α

)
≥

1 for all φ ∈ [0.5,1] and therefore

π3(θ)& αµ
exp(ψ(φ)φ −φ)

Γ(φ)
.
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in the interval [0.5,1]. It follows that the hypothesis in Theorem 5.3.2 i) is satisfied with b0 = 0.5,
b1 = 1, k∞ = 1 >−1 and q0 = 1, and therefore we have that π3(θ) leads to an improper posterior
for all n ∈ N+.

5.4.2 Priors based on the Fisher information matrix

One important objective prior is based on Jeffreys’ general rule (JEFFREYS, 1946) and
known as Jeffreys’ prior. Noortwijk (2001) provided the Jeffreys prior for the GG distribution,
which is given by

π4 (θ) ∝

√
φ 2ψ

′
(φ)2 −ψ

′
(φ)−1

µ
. (5.12)

Corollary 5.4.4. The posterior distribution using the Jeffreys prior (5.12) is improper for all
n ∈ N+.

Proof. From Proposition A.0.1, we have that√
φ 2ψ

′
(φ)2 −ψ

′
(φ)−1 ∝

φ→0+
1 and

√
φ 2ψ

′
(φ)2 −ψ

′
(φ)−1 ∝

φ→∞

1
φ
. (5.13)

Since π4 (φ) ∝
√

φ 2ψ
′
(φ)2 −ψ

′
(φ)−1 ∝

φ→0+
1, the hypotheses of Theorem 5.3.2 ii) hold with

k0 = k∞ =−1 and r0 = q∞ = 0, where q∞ ≥ r0, and therefore π4(θ) leads to an improper posterior
for all n ∈ N+.

Fonseca, Ferreira and Migon (2008) considered the scenario where the Jeffreys prior has
an independent structure, i.e., the prior has the form πJ2 (θ) ∝

√
|diag I(θ)|, where diag I(·) is

the diagonal matrix of I(·). For the GG distribution the prior is given by

π5 (θ) ∝

√
φψ

′
(φ)
(
1+2ψ(φ)+φψ

′
(φ)+φψ(φ)2

)
µ

. (5.14)

Corollary 5.4.5. The posterior distribution using the independent Jeffreys’ prior (5.14) is im-
proper for all n ∈ N+.

Proof. By Abramowitz and Stegun (1972), we have the recurrence relations

ψ(φ) =− 1
φ
+ψ(φ +1) and ψ

′(φ) =
1

φ 2 +ψ
′(φ +1). (5.15)

It follows that

2ψ(φ)+φψ
′(φ)+φψ(φ)2 +1 =

2
(
− 1

φ
+ψ(φ +1)

)
+φ

(
1

φ 2 +ψ
′(φ +1)

)
+φ

(
1

φ 2 −
2
φ

ψ(φ +1)+ψ(φ +1)2
)
+1 =

1+φ
(
ψ(φ +1)2 +ψ

′(φ +1)
)
.
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Hence, 2ψ(φ)+φψ ′(φ)+φψ(φ)2 +1 ∝
φ→0+

1, which implies that

π5 (φ) ∝

√
φψ

′
(φ)
(
1+2ψ(φ)+φψ

′
(φ)+φψ(φ)2

)
∝

φ→0+

1√
φ
, (5.16)

then, Theorem 5.3.2 ii) can be applied with k0 = k∞ =−1, r0 =−1
2 and q∞ = 0 where q∞ ≥ r0

and therefore π5(θ) leads to an improper posterior.

This approach can be further extended considering that only one parameter is independent.
For instance, let (θ1,θ2) be dependent parameters and θ3 be independent then under the partition
the ((θ1,θ2),θ3)-Jeffreys prior is given by

π (θ) ∝

√(
I11(θ)I22(θ)− I2

12(θ)
)

I33(θ). (5.17)

For the GG distribution the partition ((φ ,µ),α)-Jeffreys’ prior is given by

π6 (θ) ∝

√
(φψ

′
(φ)−1)

(
1+2ψ(φ)+φψ

′
(φ)+φψ(φ)2

)
µ

. (5.18)

Corollary 5.4.6. The posterior distribution using the ((φ ,µ),α)-Jeffreys’ prior is improper for
all n ∈ N+.

Proof. From the recurrence relations (5.15) we have that

φψ
′
(φ)−1 =

1
φ
+φψ

′
(φ +1)−1 ⇒ φψ

′
(φ)−1 ∝

φ→0+

1
φ
. (5.19)

Together with the relation (5.16) this implies that

π6 (φ) ∝

√
(φψ

′
(φ)−1)

(
1+2ψ(φ)+φψ

′
(φ)+φψ(φ)2

)
∝

φ→0+

1√
φ
. (5.20)

Therefore, Theorem 5.3.2 ii) can be applied with k0 = k∞ = −1, r0 = −1
2 and q∞ = 0 where

q∞ ≥ r0 and therefore π6(θ) leads to an improper posterior.

On the other hand, the ((φ ,α),µ)-Jeffreys prior is given by

π7 (θ) ∝

√
φψ

′
(φ)
(
1+2ψ(φ)+φψ

′
(φ)+φψ(φ)2

)
−φψ(φ)2

µ
. (5.21)

Corollary 5.4.7. The posterior distribution using the independent Jeffreys’ prior (5.21) is im-
proper for all n ∈ N+.
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Proof. From (5.15) we have that

π
1
2
7 (φ) ∝ φψ

′
(φ)
(

1+2ψ(φ)+φψ
′
(φ)+φψ(φ)2

)
−φψ(φ)2

=
(
φ
−1 +φψ

′(φ +1)
)(

1+φ
(
ψ(φ +1)2 +ψ

′(φ +1)
))

−φ
(
−φ

−1 +ψ(φ +1)
)2

= φ
(
ψ

′(φ +1)−ψ(φ +1)2 +φψ
′(φ +1)(ψ(φ +1)2 +ψ

′(φ +1))
)
+ψ(φ +1)2

+2ψ(φ +1)+ψ
′(φ +1)

∝ φψ
′
(φ)
(

1+2ψ(φ)+φψ
′
(φ)+φψ(φ)2

)
−φψ(φ)2

∝
φ→0+

ψ(1)2 +2ψ(1)+ψ
′(1) = γ

2 −2γ +
π

6
> 0,

then, Theorem 5.3.2 ii) can be applied with k0 = k∞ =−1, r0 = 0 and q∞ = 0 where q∞ ≥ r0 and
therefore π7(θ) leads to an improper posterior.

Finally, the ((α,µ),φ)-Jeffreys prior is

π8 (θ) ∝

√
ψ

′
(φ)(φ 2ψ

′
(φ)+φ −1)

µ
. (5.22)

Corollary 5.4.8. The posterior distribution using the independent Jeffreys’ prior (5.22) is im-
proper for all n ∈ N+.

Proof. From the recurrence relations (5.15) we have that

φ
2
ψ

′
(φ)+φ −1 = φ

(
1+φψ

′
(φ +1)

)
⇒ φ

2
ψ

′
(φ)+φ −1 ∝

φ→0+
φ (5.23)

as ψ ′(φ) ∝
1

φ 2 it follows that

π8 (φ) ∝

√
ψ

′
(φ)(φ 2ψ

′
(φ)+φ −1) ∝

φ→0+

1√
φ
,

and Theorem 5.3.2 ii) can be applied with k0 = k∞ =−1, r0 =−1
2 and q∞ = 0 where q∞ ≥ r0.

Therefore π8(θ) leads to an improper posterior.

5.4.3 Reference priors

Let (α,φ ,µ) be the ordered parameters of interest, then conditional priors of the
(α,φ ,µ)-reference prior are given by

π(α) ∝
1
α
, π(φ |α) ∝

√
φψ ′(φ)−1

φ
, π(µ|α,φ) ∝

1
µ
·

Therefore, (α,φ ,µ)-reference prior is given by

π9(θ) ∝
1

αµ

√
φψ ′(φ)−1

φ
·
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Corollary 5.4.9. The posterior density using the (α,φ ,µ)-reference prior is improper for all
n ∈ N+.

Proof. By equation (5.19) we have that

π9(φ) ∝

√
φψ ′(φ)−1

φ
∝

φ→0+

1
φ
,

therefore, item (ii) of Theorem 5.3.2 can be applied with k0 = k∞ = r0 = q∞ =−1 where q∞ ≥ r0

which implies that π9(θ) leads to an improper posterior.

On the other hand, if (α,µ,φ) are the ordered parameters, then the conditional reference
priors are

π(α) ∝
1
α
, π(µ|α) ∝

1
µ
, π(φ |α,µ) ∝

√
ψ ′(φ),

and the (α,µ,φ)-reference prior is

π10(θ) ∝

√
ψ ′(φ)

µα
.

Corollary 5.4.10. The posterior density using the (α,µ,φ)-reference prior is improper for all
n ∈ N+.

Proof. By the equation (5.15) we have that
√

ψ ′(φ) ∝
φ→0+

1
φ

. Thus, as in Corollary 5.4.9 we

have that π10(θ) leads to an improper posterior for all n ∈ N+.

In the case of (µ,φ ,α) be the vector of ordered parameters, we have that the conditional
priors are

π(µ) ∝
1
µ
, π(φ |µ) ∝

√
ψ ′(φ)− ψ(φ)2

2ψ(φ)+φψ ′(φ)+φψ(φ 2)+1
, π(α|φ ,µ) ∝

1
α
·

and the (µ,φ ,α)-reference prior is given by

π11(θ) ∝
1

µα

√
ψ ′(φ)− ψ(φ)2

2ψ(φ)+φψ ′(φ)+φψ(φ 2)+1
·

Corollary 5.4.11. The posterior density using the (µ,φ ,α)-reference prior is improper for all
n ∈ N+.

Proof. From Abramowitz and Stegun (1972), we have

ψ(φ) = log(φ)− 1
2φ

− 1
12φ 2 +o

(
1

φ 2

)
and ψ

′(φ) =
1
φ
+

1
2φ 2 +o

(
1

φ 2

)
, (5.24)
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where it follows directly that

ψ(φ)2 = log(φ)2 − log(φ)
φ

+o
(

1
φ

)
.

Therefore 2ψ(φ)+φψ ′(φ)+φψ(φ)2 +1 = φ log(φ)2 + log(φ)+2+o(1) and

π11(φ) ∝

√
ψ ′(φ)− ψ(φ)2

2ψ(φ)+φψ ′(φ)+φψ(φ)2 +1

=

√√√√( 1
φ
+ 1

2φ 2 +o
(

1
φ 2

))
(φ log(φ)2 + log(φ)+2+o(1))− log(φ)2 + log(φ)

φ
+o
(

1
φ

)
φ log(φ)2 + log(φ)+2+o(1)

=

√
1
φ
(log(φ)2 +o(log(φ)2))

φ (log(φ)2 +o(log(φ)2))
=

1
φ

√
1+o(1)
1+o(1)

.

Thus

π11(φ) ∝

√
ψ ′(φ)− ψ(φ)2

2ψ(φ)+φψ ′(φ)+φψ(φ)2 +1
∝

φ→0+

1
φ
,

and therefore Theorem 5.3.2 ii) can be applied with k0 = k∞ = q0 = r∞ =−1 where 2r∞+1 ≥ q0.
Therefore π11(θ) leads to an improper posterior.

If (µ,α,φ) are the ordered parameters then the conditional priors are given by

π(µ) ∝
1
µ
, π(α|µ) ∝

1
α
, π(φ |α,µ) ∝

√
ψ ′(φ)

and the joint (µ,α,φ)-reference prior has the same form of π10(θ) and its posterior is improper
from Corollary 5.4.10.

Finally, let (φ ,α,µ) be the ordered parameters, then the conditional priors are

π(φ) ∝

√
φ 2ψ ′(φ)2 −ψ ′(φ)−1

φ 2ψ ′(φ)+φ −1
, π(α|φ) ∝

1
α
, π(µ|α,φ) ∝

1
µ

and the (φ ,α,µ)-reference prior is given by

π12(θ) ∝
1

µα

√
φ 2ψ ′(φ)2 −ψ ′(φ)−1

φ 2ψ ′(φ)+φ −1
. (5.25)

It is important to point out that (φ ,µ,α)-reference prior is the same as the (φ ,α,µ)-
reference prior, which completes all possible reference priors obtained from Proposition 2.3.1.

Corollary 5.4.12. The posterior distribution using the (φ ,α,µ)-reference prior (5.25) is proper
for n ≥ 2 and its higher moments are improper for all n ∈ N+.
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Proof. From (5.13) and by the asymptotic relations (5.24) we have that

φ
2
ψ

′
(φ)+φ −1 = 2φ − 1

2
+o(1) ∝

φ→∞
φ

which together with equation (5.23) implies that√
φ 2ψ

′
(φ)+φ −1 ∝

φ→0+

√
φ and

√
φ 2ψ

′
(φ)+φ −1 ∝

φ→∞

√
φ .

Hence, from the above proportionalities we have that√
φ 2ψ ′(φ)2 −ψ ′(φ)−1

φ 2ψ ′(φ)+φ −1
∝

φ→0+

1√
φ

and

√
φ 2ψ ′(φ)2 −ψ ′(φ)−1

φ 2ψ ′(φ)+φ −1
∝

φ→∞

1√
φ 3

.

Therefore, Theorem 5.3.1 can be applied with k0 = k∞ = q0 = q∞ =−1, r0 =−1
2 and r∞ =−3

2

where k0 ≥ −1, k∞ ≤ −1, q∞ < r0 and 2r∞ + 1 < q0, and therefore π12(θ) leads to an proper
posterior for every n >−q0 = 1.

In order to prove that the higher moments are improper suppose αqφ rµkπ(θ) leads to a
proper posterior for r ∈N, q∈N and r ∈N. By Theorem 5.3.3 we have k+k0 ≤−1, k+k∞ ≥−1,
q+q∞ < r+r0, 2(r+r∞)≤ q+q0 and n≥−q0, i.e., k = 0 and 2r−1< q< r+ 1

2 . The inequality
2r− 1 < r+ 1

2 leads to r < 3
2 , i.e., r = 0 or r = 1. By the previous inequality, the case where

r = 0 leads to −1 < q < 1
2 , that is, q = 0. Now, for r = 1 we have the inequality 1 < q < 3

2 which
do not have integer solution. Therefore, the only possible solution is q = r = k = 0 which implies
that the higher moments are improper.

Due to the consistent marginalization property of the reference prior the reference
marginal posterior distribution of φ and α is

p12(φ ,α|x) ∝ α
n−2 Γ(nφ)

Γ(φ)n

√
φ 2ψ ′(φ)2 −ψ ′(φ)−1

φ 2ψ ′(φ)+φ −1

(
n
√

∏
n
i=1 tα

i

∑
n
i=1 tα

i

)nφ

,

while the conditional posterior distributions for µ given φ and α is given by

p12(µ|φ ,α,x)∼ GG

nφ ,

(
n

∑
i=1

tα
i

) 1
α

,α

 .

These results are useful to obtain posterior estimates using Markov chain Monte Carlo
methods. Since we proved that the posterior mean for the parameter does not return finite values,
the posterior median or mode can be an alternatives as a posterior estimate.

5.5 Simulation Analysis
In this section, a simulation study using Monte Carlo methods is presented to compare

the efficiency of ML method with our proposed Bayesian approach by computing the Bias and
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the root-mean-square error (RMSE), given by

Biasi =
N

∑
j=1

θ̂i, j

N
−θi , RMSEi =

√√√√ N

∑
j=1

(θ̂i, j −θi)2

N
, for i = 1,2,3 (5.26)

where N = 10,000 is the number of estimates obtained throughout the MLE and the posterior
modes. The 95% coverage probability of the asymptotic confidence intervals and the Credible
Intervals (CI95%) were also evaluated. Considering this approach, the best estimators will show
both Bias and RMSE closer to zero. In addition, for a large number of experiments considering a
95% confidence level, the frequencies of intervals that covered the true values of θ should be
closer to 95%.

To find the ML estimators, the Newton-Raphson method was adopted. In this case, the
initial values to start the iterative procedure must be assigned. To ensure a fair comparison, both
procedures were under the same conditions (same initial values and samples). The initial values
considered were the same values used to generate the samples.

Clearly, the normalizing constant for the marginal posterior densities require two-
dimensional integration. Therefore, the MCMC method was considered to obtain the poste-
rior estimates. Since the conditional distributions of α and φ were not easily identified, the
Metropolis-Hastings algorithm (GAMERMAN; LOPES, 2006) was considered to simulate the
posterior quantities. For each simulated data set, 15,500 iterations were performed using MCMC
methods. As a burn-in, the first 1,000 initial values were discarded, the considered thin was 30
to reduce the correlation among the chains. The Geweke criterion (GEWEKE et al., 1991) was
used to check the convergence of the obtained chains under a 95% confidence level. These values
were used to compute the posterior mode estimates, yielding 10,000 estimates for φ ,µ and α .

The chosen values to perform this procedure were θ = ((0.5,0.5,3),(2,1,0.5),(4,2,2),
(0.4,1.5,5)) and n = (50,100,200). The seed used to generate the random values in the R
software was 2016. Table 15 presents the Bias and the RMSE of the estimates obtained through
the MLE and the Bayes estimators for 10,000 simulated samples under different values of θ and
n. Table 16 shows the coverage probability with a 95% confidence level.

The Bayes estimators returned estimates with smaller Bias and RMSE than the MLEs,
specially for small and moderate sample sizes. For large samples, both estimators returned similar
values, i.e., as there is an increase in n, both methodologies behave similarly. Both bias and
RMSE have shown to be consistent and asymptotically unbiased for the parameters. However, the
CIs of the MLEs using the asymptotic method does not have good coverage probabilities. These
results correlate with Prentice (1974), i.e., even for large sample sizes, the approximate normal
distribution for the parameters using the ML theory could not be achieved. On the other hand,
the credible interval based on the Bayes estimators provided excellent coverage probabilities
even for small sample sizes. For these reasons, our Bayes estimators should be considered to
achieve the parameter estimators of GG distribution.
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Table 15 – Bias (RMSE) of the ML estimates and the Bayes estimators (posterior mode) for 10,000
samples of sizes n = (50,100,200) and different values of θ .

Classical Inference Bayesian Inference
θ n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

φ = 0.5 0.179(0.73) 0.046(0.26) 0.024(0.18) -0.015(0.23) 0.001(0.19) 0.014(0.16)
µ = 0.5 0.156(0.91) 0.026(0.11) 0.014(0.07) -0.002(0.08) 0.001(0.07) 0.006(0.05)
α = 3 0.487(1.81) 0.240(1.04) 0.145(0.74) -0.403(0.97) -0.248(0.79) -0.209(0.63)
φ = 2 -0.329(1.08) -0.102(0.93) -0.115(0.77) -0.508(0.62) -0.385(0.53) 0.037(0.63)
µ = 1 0.870(3.71) 1.166(3.85) 0.705(2.96) -0.431(0.47) -0.117(0.27) 0.818(2.64)

α = 0.5 0.255(0.68) 0.096(0.22) 0.064(0.15) 0.220(0.27) 0.129(0.16) 0.105(0.15)
φ = 4 1.616(4.92) 1.115(4.03) 0.335(2.95) -1.811(2.07) -1.621(1.94) -0.755(1.46)
µ = 2 1.890(4.34) 1.282(3.34) 0.557(2.23) -0.791(0.86) -0.562(0.75) -0.114(0.76)
α = 2 0.531(1.64) 0.306(1.08) 0.279(0.79) 0.993(1.33) 0.648(0.96) 0.496(0.75)

φ = 0.4 0.234(0.68) 0.128(0.25) 0.035(0.14) 0.042(0.21) 0.078(0.17) 0.026(0.13)
µ = 1.5 0.249(0.98) 0.105(0.21) 0.032(0.11) 0.031(0.17) 0.055(0.14) 0.022(0.10)
α = 5 -0.013(2.07) -0.468(1.12) 0.088(1.13) 0.502(1.89) -0.317(1.04) 0.050(1.12)

Table 16 – Coverage probability with a 95% confidence level equals the ML estimates and the Bayes esti-
mators (posterior mode) considering 10,000 samples of sizes n = (50,100,200) and different
values of θ .

Classical Inference Bayesian Inference
θ n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

φ = 0.5 89.30% 92.36% 92.39% 98.68% 97.91% 95.81%
µ = 0.5 90.03% 92.31% 92.53% 99.34% 98.95% 97.61%
α = 3 93.89% 96.01% 95.44% 98.64% 97.74% 95.62%
φ = 2 75.62% 84.34% 85.74% 92.78% 94.02% 89.66%
µ = 1 61.48% 71.16% 72.63% 81.16% 87.55% 89.38%

α = 0.5 100.00% 99.01% 97.92% 91.97% 93.21% 89.35%
φ = 4 80.92% 82.53% 81.37% 92.25% 92.60% 87.87%
µ = 2 77.12% 78.90% 77.65% 91.79% 92.37% 88.04%
α = 2 100.00% 98.82% 97.02% 92.06% 92.38% 87.86%

φ = 0.4 97.66% 99.97% 95.76% 97.40% 95.72% 95.66%
µ = 1.5 97.27% 99.83% 96.09% 98.50% 97.98% 97.85%
α = 5 90.11% 91.88% 94.76% 97.45% 95.94% 95.82%

5.6 Real data application

As the Bayesian analysis was used improperly by Noortwijk (2001), the data set related
to the annual maximum discharges of the river Rhine at Lobith, Netherlands from 1901 to 1998
was reanalyzed. The results presented by (NOORTWIJK, 2001, table 1, pg 6) can be seen in
Table 17.

From the credibility intervals of φ and α available in Table 17, there is a good indication
that the numerical techniques did not provide good results. These large credibility intervals were
probably influenced due to the improper posterior distribution obtained from the Jeffreys prior. In
this study, considering a proper posterior distribution, the GG distribution can be used to analyze
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Table 17 – Posterior mean and 95% credibility intervals for φ and α from the data set related to the annual
maximum discharges of the river Rhine at Lobith during 1901-1998.

θ Mean CI95%(θ)
φ 1.380 (0.01; 6.00)

1/µ 4936 (· · · ; · · · )
α 2.310 (0.01; 6.00)

· · · Not presented

this data under the same assumptions as Section 4. The posterior summaries obtained using the
MCMC methods and the reference prior (5.25 are given in Table 18.

Table 18 – Posterior mode, standard deviations and 95% credible intervals for φ ,µ and α from the data
set related to the annual maximum discharges of the river Rhine at Lobith during 1901-1998.

θ Mode SD CI95%(θ)
φ 3.5449 1.8416 (1.0681; 7.6216)

1/µ 2,041.4 2,118.5 (1,029.1; 8,325.6)
α 1.6593 0.5730 (1.0745; 3.2432)

Note that the CI95%(θ), are very closer to α = 1 or φ = 1, i.e., the GG distribution may
reduce to gamma or the Weibull distribution. The obtained results were compared with the
sub-models such as Weibull, gamma and lognormal distributions using the AIC, CAIC and BIC.

Table 19 – Results of AIC, AICc and BIC criteria for different probability distributions considering
the data set related to the annual maximum discharges of the river Rhine at Lobith during
1901-1998.

Criteria G. Gamma Weibull Gamma Lognormal
AIC 428.20 430.11 426.52 429.81
AICc 428.45 430.23 426.65 429.93
BIC 435.95 435.28 431.69 434.98

Considering any criteria, it can be concluded from the results in Table 19 that among the
chosen models, the gamma distribution fit best considering the annual maximum discharges of
the river Rhine at Lobith from 1901 to 1998. Moreover, to verify the goodness of fit, Figure 7
shows the survival function adjusted for different distributions of overlapping probability in the
empirical function.

Noortwijk (2001) argued that ”. . . the Dutch river dikes have to withstand water levels
and discharges with an average return period of up to 1250 years, where a downstream water level
can be determined on the basis of the upstream discharge by using a river flow simulation model”.
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Figure 7 – Survival function fitted by the empirical and by different probability distributions considering
the data set related to the annual maximum discharges of the river Rhine at Lobith during
1901-1998 and the hazard function fitted by a GG distribution.

The main aim was to find the annual maximum river discharge in which the probability of
exceedance is 1/1250 per year. Table 20 presents the discharge with a probability of exceedance
of 1/1250 and the 90% uncertainty interval for the GG distribution (Van Noortwijk, our results
and the classical inference) and the two-parameter gamma distribution. To evaluate the Bayes
estimators (v) of the two-parameter gamma distribution, we considered a posterior distribution
obtained with the Tibshirani prior.

Table 20 – Posterior mode, MLE, Posterior mean and 90% credibility intervals for φ and α from the data
set related to the annual maximum discharges of the river Rhine at Lobith during 1901-1998.

Distribution River discharge CI90%
G. gamma (Van Noortwijk) 15,150 (12,950; 16,950)
G. gamma (Our Approach) 15,515 (10,561; 22,212)
G. gamma (Classical Inference) 14,780 (12,699; 16,542)
Two-parameter gamma 15,690 (14,342; 17,538)

The improper posterior produced an underestimated annual maximum discharge. The
difference between the Van Noortwijk estimate and ours was 365 m3/s. Hence, the Dutch river
dikes will have to withstand water levels and discharges of up to 15,690 m3/s. The ML estimators
of the GG distribution also returned an underestimated value for the River maximum discharge.
On the other hand, the results obtained from the gamma distribution are similar to those obtained
from the GG distribution in our approach. Our results clearly showed that the gamma distribution
should be used to estimate the annual maximum discharges of the river Rhine at Lobith.



5.7. Discussion 97

5.7 Discussion
We have provided in a simple way necessary and sufficient conditions to check whether

or not improper priors lead to proper posterior distributions for the GG distribution. In this
case, one can easily check if the obtained posterior is proper or improper directly looking at the
behavior of the improper prior. From the main theorem, we proved that the uniform prior, the
prior obtained from Jeffreys’ first rule and the MDI prior lead to improper posteriors.

The impropriety of the posterior using the Jeffreys’ priors (NOORTWIJK, 2001) led
us to consider the scenario where the Jeffreys prior has an independent structure (FONSECA;
FERREIRA; MIGON, 2008). However, the four possible objective priors also returned improper
posteriors. An alternative was to consider the reference priors. Since these priors are sensitive to
the ordering of the unknown parameters, from Proposition 2.3.1 we obtained six reference priors,
two of them were similar to other reference priors. Among the four distinct reference priors,
we proved that only one leads to a proper posterior distribution without the need of compact
approximations or truncate possible values of the parameters. The proper reference posterior has
excellent theoretical properties such as invariance property under one-to-one transformations of
the parameters, consistency under marginalization and consistent sampling properties and should
be used to make inference in the parameters of the GG distribution.
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CHAPTER

6
CLOSED-FORM ESTIMATORS FOR

NAKAGAMI-M AND GAMMA
DISTRIBUTIONS

6.1 Introduction

Despite the enormous evolution of computational methods during the last decades, the
methods discussed up to here still carry the disadvantage of high computational cost in many
applications. Particularly in the case where the parameter estimators need to be obtained in real
time, often within devices with embedded technology (SONG, 2008). To overcome this problem
closed-form estimators are preferred.

For Nakagami-m distribution an unbiased closed-form estimator for the scale parameter
can be easily obtained through the method of moments Nakagami (1960). However, considerable
effort has been made to derive efficient estimators for the fading parameter. The maximum likeli-
hood (ML) estimators have been discussed earlier Cheng and Beaulieu (2001). The accuracy of
different procedures have been compared numerically and the use of a closed-form approxima-
tion to the ML estimator has been suggested Zhang (2002). A generalized moments estimator
has been presented Cheng and Beaulieu (2002). Some estimators based on approximations of
the transcendental equations that arise in the computation of ML and the generalized moment
(GM) estimators have been discussed Gaeddert and Annamalai (2004). However, such estimators
are only approximations to the natural methods motivated by fast computation avoiding solving
nonlinear equations. A closed-form estimator for the fading parameter obtained as a limiting
procedure of the traditional GM estimators have been proposed Wang, Song and Cheng (2012).
For gamma distribution the estimation procedure based on the method of moments produce
closed-form estimator. Hwang and Huang (2002) presented a more efficient moment estimator
based on its characterization that outperforms the MLE for some cases. However, for both models
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the estimators presented so far have considerable bias, specially for small samples sizes.

In this chapter, we discuss maximum likelihood estimators that have closed-form expres-
sions based on the (GG) distribution. Using the same idea we propose a class of maximum a
posteriori (MAP) estimators for the parameters of the Nakagami-m and gamma distributions.
They have simple closed-form expressions and can be rewritten as a bias corrected MLEs. Fi-
nally, numerical results have shown that the MAP estimation scheme outperforms the existing
estimation procedures and produces almost unbiased estimates for the parameters even for small
sample size.

The remainder of this chapter is organized as follows: Section 3 presents the new
estimators based on the GG distribution. Section 4 displays the proposed approach on the
Nakagami-m distribution. Section 5 presents the same methodology on the gamma distribution.
Finally, Section 6 summarizes the study.

6.2 Closed-form estimators based on the generalized gamma
distribution

Let T be a random variable the generalized gamma (GG) distribution with a PDF given
by (5.1). Here, we considered a simple reparametrization where µα = φ

λ
, i.e., the PDF is

f (t|θ) = α

Γ(φ)

(
φ

λ

)φ

tαφ−1 exp
(

φ

λ
tα

)
. (6.1)

Although a non common parametrization is considered, when α is known and α ∈ N the
obtained models have orthogonal parameters (φ ,λ ) in the sense of Cox and Reid (1987). The
likelihood function from (6.1) is given by

L(θ ; t) =
αn

Γ(φ)n

(
φ

λ

)nφ
{

n

∏
i=1

tαφ−1
i

}
exp

(
−φ

λ

n

∑
i=1

tα
i

)
. (6.2)

The maximum likelihood estimates of the parameters are obtained by solving the follow-
ing likelihood equations

φ̂ =
n(

1
λ̂

∑
n
i=1 tα

i log
(
tα
i
)
−∑

n
i=1 log

(
tα
i
)) , (6.3)

λ̂ =
1
n

n

∑
i=1

tα̂
i (6.4)

and the MLE for α is obtained solving the non-linear equation

log(φ̂)−ψ
(0)(φ̂) = log(λ̂ )− 1

n

n

∑
i=1

log
(

tα̂
i

)
. (6.5)
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Considering that α is know we can remove equation (6.5) and focus on the first two
equations to obtain closed-form estimators for different distributions such as Nakagami, gamma,
to list a few. The applications of this idea are discussed in the following sections.

6.3 Nakagami-m

In this section, we discuss closed-form estimators for Nakagami-m parameters. Firstly,
we review an estimator based on the generalized moments, then we discuss the new method.

6.3.1 Generalized moment estimators

A useful estimation procedure for the fading parameter of the NK distribution was
proposed earlier (CHENG; BEAULIEU, 2002) and is given through the fractional moment
estimator

µ̂1/p =
m̂1/pm̂2

2p
(
m̂2+1/p − m̂1/pm̂2

) , (6.6)

where the kth-order moment is given by

mk =
Γ(µ + k/2)

Γ(µ)

(
Ω

µ

)k/2

and p is a positive real number. Further, the limiting estimator, µ̂0, that combined with the
fractional moment estimator (WANG; SONG; CHENG, 2012), is given by

µ̂k =


m̂1/pm̂2

2p
(
m̂2+1/p − m̂1/pm̂2

) , k > 0

m̂2(1
n ∑

n
i=1 t2

i log
(
t2
i
)
− 1

nm̂2 ∑
n
i=1 log

(
t2
i
)) , k = 0.

(6.7)

The authors showed that in the limiting case, µ̂0 is expected to achieve the best per-
formance among this fractional moment-based estimator family. Hence, we considered only
the case when k = 0, namely µ̂GME . It was also presented for k = 0 the asymptotic variance,
Var(µMAP), given by

Var(µGME) = µ
2 +µ

3
ψ

(1)(µ +1) . (6.8)

6.3.2 Modified maximum likelihood estimators

Consider the maximum likelihood estimators (6.3) and (6.4). By substituting µ = φ ,
Ω = λ and α = 2 we have the following modified maximum likelihood estimators

µ̂MMLE =
n(

1
Ω̂

∑
n
i=1 t2

i log
(
t2
i
)
−∑

n
i=1 log

(
t2
i
)) and Ω̂MMLE =

1
n

n

∑
i=1

t2
i , (6.9)
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which is the same of (6.7) when k = 0. Hereafter, we are going to call the MMLEs as GMEs
since they have the same structure of the estimators presented by Wang, Song and Cheng (2012).
The derivation of the variance of the MMLEs for Ω can be easily obtained considering

Var(ΩMMLE) =
1
n

(
E[X4]−E[X2]2

)
=

Ω2

nµ

while the variance of µ is the same as (6.8).

6.3.3 Maximum a Posteriori estimator

In this section, we consider the Bayesian inference to derive Bayes estimators with
smaller bias. Under this approach, the most common objective priors were considered such as
Jeffreys Prior, Reference Prior, MDI prior (see Chapter 5 for more details). However, such priors
depend on polygamma function which did not allow to obtain MAP estimators in closed form.
The chosen objective prior for the parameters is given by

π (θ) ∝
1

Ωc1 µc2αc3
(6.10)

where θ = (Ω,µ,α) and ci ≥ 0, i = 1,2,3 are known hyperparameteres. From the product of the
likelihood function (6.2) and the prior distribution (6.10), the joint posterior distribution for θ is
given by

π(θ |t) = 1
d(t)

αn−c3

µc2Ωc1Γ(µ)n

(
µ

Ω

)nµ

{
n

∏
i=1

tαµ−1
i

}
exp

(
−µ

Ω

n

∑
i=1

tα
i

)
, (6.11)

where

d(t) =
∫
A

αn−c3

µc2Ωc1Γ(µ)n

(
µ

Ω

)nµ

{
n

∏
i=1

tαµ−1
i

}
exp

(
−µ

Ω

n

∑
i=1

tα
i

)
dθ

and A = {(0,∞)× (0.5,∞)× (ε,M)} is the parameter space of θ , where 0 < ε < 2 is a small
constant and M > 2 is a large constant. We chose (ε,M) for the interval of α since the only
interest is in the case where α = 2. Therefore, any interval (ε,M) containing α = 2 will be
satisfactory for our purposes.

The MAP of θ is computed through θ̂ MAP = argmax
θ

log(π(θ |t)). After some algebraic

manipulation we have

Ω̂ =
µ ∑

n
i=1 tα̂

i
nµ + c1

. (6.12)

It is important to point out that (6.12) will be equal (6.4), if and only if c1 = 0, i.e, Ω

is unbiased when α = 2. Therefore, we consider only that c1 = 0. To obtain reliable inference
results, we have to check if (6.11) is a proper posterior distribution, i.e, d(t)< ∞.

Theorem 6.3.1. The posterior distribution (6.11) is proper.
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Proof. Let B = {(ε,M)× [0.5,∞)× (0,∞)} and consider the change in the coordinates through
the transformation θ : B → A , where (α,µ,Ω) = θ(β ,φ ,λ ) =

(
β ,φ , φ

λ

)
and A = θ(B)

Noticing that |det(Dθ(φ ,λ ))|= φλ−2, denoting Θ = (β ,φ ,λ ) and applying the change
of variables on the Lebesgue integral and the Fubini-Tonelli Theorem (FOLLAND, 1999) we
have that

d(t) ∝

∫
A

αn−c3

µc2Γ(µ)n

(
µ

Ω

)nµ

{
n

∏
i=1

tαµ

i

}
exp

(
−µ

Ω

n

∑
i=1

tα
i

)
dθ

=
∫
B

β n−c3λ nφ−2

φ c2−1Γ(φ)n

{
n

∏
i=1

tβφ

i

}
exp

(
−λ

n

∑
i=1

tβ

i

)
dΘ

∝

M∫
ε

∞∫
0.5

∞∫
0

β n−c3

φ c2−1Γ(φ)n

{
n

∏
i=1

tβφ

i

}
λ

nφ−2e−λ ∑
n
i=1 tβ

i dλdφdβ

=

M∫
ε

β
n−c3

∞∫
0.5

Γ(nφ −1)
φ c2−1Γ(φ)n

(
∏

n
i=1 tβ

i

)φ

(
∑

n
i=1 tβ

i

)nφ−1 dφdβ

∝

M∫
ε

β
n−c3

n

∑
i=1

tβ

i

∞∫
0.5

φ
n−1−2c2

2 enp(β )φ dφdβ

∝

M∫
ε

β
n−c3

n

∑
i=1

tβ

i
Γ(n+1−2c2

2 ,0.5np(β ))

(np(β ))
n+1−2c2

2

dβ < ∞

where p(β ) =
(

n
√

∏
n
i=1 tβ

i

)(
1
n ∑

n
i=1 tβ

i

)−1
> 0 by the inequality of the arithmetic and geometric

mean.

The other MAP estimators are given by

µ̂ =
(n− c3)(

1
Ω̂

∑
n
i=1 tα

i log
(
tα
i
)
−∑

n
i=1 log

(
tα
i
)) , (6.13)

and the MAP for α is obtained by solving the non-linear equation

log(µ̂)−ψ
(0)(µ̂) = log

(
Ω̂
)
− 1

n

n

∑
i=1

log(tα̂
i )+

c2

nµ̂
.

Therefore, for α = 2, a hybrid MAP estimator of Ω is given by Ω̂MAP = 1
n ∑

n
i=1 t2

i and
the Nakagami-m fading parameter can be estimated by

µ̂MAP =
(n− c3)

1
n ∑

n
i=1 t2

i(
∑

n
i=1 t2

i log
(
t2
i
)
− 1

n ∑
n
i=1 t2

i ∑
n
i=1 log

(
t2
i
)). (6.14)

Theorem 6.3.2. Let µ̂MAP be an estimator of µ , and let t = (t1, . . . , tn), with tn ≥ . . .≥ t1, not
all equal, then for n > c3 we have:

µ̂MAP =
(n− c3)

1
n ∑

n
i=1 t2

i

∑
n−1
k=1 k

(1
n ∑

n
i=1 t2

i −
1
k ∑

k
i=1 t2

i
)

log(t2
k+1/t2

k )
> 0 .
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Proof. We have that

µ̂ =
(n− c3)

1
n ∑

n
i=1 t2

i

∑
n
k=1
(
t2
k −

1
n ∑

n
i=1 t2

i
)

log(t2
k )

=
(n− c3)

1
n ∑

n
i=1 t2

i

∑
n
k=1

(
(k−1)

n ∑
n
i=1 t2

i −∑
k−1
i=1 t2

i −
k
n ∑

n
i=1 t2

i +∑
k
i=1 t2

i

)
log(t2

k )

=
(n− c3)

1
n ∑

n
i=1 t2

i

∑
n−1
k=1 k

(1
n ∑

n
i=1 t2

i −
1
k ∑

k
i=1 t2

i
)

log(t2
k+1/t2

k )
.

Now, since tn ≥ tn−1 ≥ ·· · ≥ t1 > 0, we have that log(t2
k+1/t2

k ) ≥ 0 and 1
n ∑

n
i=1 t2

i >
1
k ∑

k
i=1 t2

i for every 1≤ k< n. Moreover, since t1, · · · , tn are not all equal, we have that log(t2
j+1/t2

j )>

0 for some 0 ≤ j < n. Then ∑
n−1
k=1 k

(1
n ∑

n
i=1 t2

i − 1
k ∑

k
i=1 t2

i
)

log(t2
k+1/t2

k ) > 0 which, for n > c3,
implies that µ̂ > 0.

Note that the MAP estimator does not depend on c2. Moreover, the µ̂MAP can be rewritten
as a bias corrected generalized moment estimator

µ̂MAP =
(n− c3)

n
µ̂GME. (6.15)

Due to this relationship, the asymptotic variance, Var(µMAP), can be obtained by

Var(µMAP) =Var
(
(n− c3)

n
µ̂GME

)
=

(n− c3)
2

n2

(
µ

2 +µ
3
ψ

(1)(µ +1)
)
.

6.3.4 Results

In this section, we present Monte Carlo simulation studies to compare the efficiency of
our proposed estimation method. The comparison between such procedures is carried out by
computing the mean relative error (MRE) and the root-mean-square error (RMSE), given by

MREθi =
1
N

N

∑
j=1

θ̂i, j

θi
and RMSEθi =

√√√√ N

∑
j=1

(θ̂i, j −θ j)2

N
,

for i = 1,2, where N = 1,000,000 is the number of estimates obtained through the ME, ML, GM
and MAP estimators. The MRE and the RMSE of the Ω are the same for the different estimation
procedures.

Considering this approach, we expect that the most efficient estimators would yield the
MREs closer to one with smaller RMSEs. These results were computed using the software R (R
Core Development Team). The seed used to generate the pseudo-random samples from the NK
distribution was 2016.
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The MAP estimator depends on c3. Therefore, we have to find a value for c3 in which the
MRE is closer to one. Figure 8 presents the MREs for µMAP considering different values of c3,
for µ = 20, Ω = 2, n = 20 and µ = 20, Ω = 2, n = 20. We omitted the results of the simulation
study for different values of µ,Ω and n since they are similar to the one presented here.
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Figure 8 – MREs for µ considering c3 = (2,2.1, · · · ,4), µ = 6, Ω = 10, n = 120 (left panel) µ = 20,

Ω = 2, n = 20 (right panel) and for N = 1,000,000 simulated samples and n = 50.

From the Figure 8, we observed that a good choice is c3 = 3. Therefore, we considered
that c3 = 3 in (6.14). Figures 9-12 show the MREs, RMSEs from the estimates of µ obtained
using the MC method. Figure 9 also presents the MREs, RMSEs from the estimates of Ω, we
omitted the other graphics since they were similar. The horizontal lines in the figures correspond
to MREs and RMSEs being one and zero respectively.
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Figure 9 – MREs, RMSEs for µ and Ω considering µ = 4,Ω = 2 for N = 1,000,000 simulated samples
and n = (10,15, . . . ,140).

From the Figures 9 and 10, we observed that the estimates of the fading parameter are
asymptotically unbiased, i.e., the MREs tend to one when n increases and the RMSEs decrease
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Figure 10 – MREs, RMSEs for µ considering µ = 4, Ω = 80 for N = 1,000,000 simulated samples and
n = (10,15, . . . ,140).
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Figure 11 – MREs, RMSEs for different values of µ = (0.5,1.0, . . . ,20) considering Ω = 2 for N =
1,000,000 simulated samples and n = 50.
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Figure 12 – MREs, RMSEs for different values of µ = (0.5,1.0,1.5, . . . ,20) considering Ω = 80 for
N = 1,000,000 simulated samples and n = 50.
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to zero. Moreover, the MAP estimators present extremely efficient estimates for µ even for small
sample sizes, for instance, considering n = 15, the errors related to the MAP are of the order
10−3 while for the GME are 10−1, i.e, the MAP estimator is almost unbiased for small samples.
From Figures 11 and 12, we obtained similar results considering different values of µ . Taking
into account the results of the simulation studies, the MAP estimators should be considered for
estimating the fading parameter of the NK distribution.

6.4 Gamma distribution

The same approach can be considered for the gamma distribution. Let X be a non negative
random variable with a gamma PDF given by

f (t|φ ,µ) = µφ

Γ(φ)
tφ−1 exp(−µt) ,

where φ > 0 and µ > 0 are the shape and scale parameters. Considering α = 1 in (6.3) and (6.4)
the hybrid maximum likelihood estimators for the gamma distribution are given by

φ̂YC =
n∑

n
i=1 ti

(n∑
n
i=1 ti log(ti)−∑

n
i=1 ti ∑

n
i=1 log(ti))

(6.16)

and

µ̂YC =
1
n2

(
n

n

∑
i=1

ti log(ti)−
n

∑
i=1

ti
n

∑
i=1

log(ti)

)
. (6.17)

For gamma distribution, the proposed estimators were firstly presented by Ye and Chen
(2017). Further, the authors also discussed a bias corrective approach that is presented as follow.

6.4.1 Bias corrected estimators

A useful bias corrections for (6.16) and (6.17) were presented by Ye and Chen (2017).
The modified maximum likelihood estimators for φ and µ are given by

φ̂BC1 =
(n−1)
(n+2)

n∑
n
i=1 ti

(n∑
n
i=1 ti log(ti)−∑

n
i=1 ti ∑

n
i=1 log(ti))

(6.18)

and

µ̂BC1 =
1

n(n−1)

(
n

n

∑
i=1

ti log(ti)−
n

∑
i=1

ti
n

∑
i=1

log(ti)

)
, (6.19)

hereafter, BC1 estimators. Although µ̂BC1 is an unbiased estimators for µ , the φ̂BC1 has a system-
atic bias as it shall be shown in the next section. Therefore, our effort is to present improved bias
corrected estimators for φ .
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6.4.2 Bias Expression

Cox and Reid (1987) presented elegant expressions to derive the bias for the parameters
of parametric models. However, to derive the bias correction for (6.16) we would have to
calculate the bias of the generalized gamma distribution parameter and use the delta method.
Unfortunately, these bias are very complex to be calculated. On the order hand, Ye and Chen
(2017) showed that both, the MLE and the closed form estimator of φ returned similar results.
Therefore, we may consider the bias correction presented by Cox and Reid (1987) for the MLE
of φ that after tedious calculations is given by

Bias(φ̂) =
φ̂ψ(1)(φ̂)− φ̂ 2ψ(2)(φ̂)−2

2n
(
φ̂ψ(1)(φ̂)−1

)2 +O(n−2). (6.20)

It follows that
φ̂BC2 = φ̂YC −Bias(φ̂YC), (6.21)

hereafter, BC2 estimator. This expression is easily obtained by using the orthogonal reparametriza-
tion of the gamma distribution and considering the same steps as described by Schwartz, Godwin
and Giles (2013). However, the solution of this estimator involves the computation of transcen-
dental functions, increasing considerably the computational time. In the following, we describe a
different approach.

6.4.3 Maximum a Posteriori estimator

Note that from (6.13) and considering the parametrization given in taking φ

φ̂MAP =
(n− c)∑

n
i=1 tα

i(
n∑

n
i=1 tα

i log
(

tφ

i

)
−∑

n
i=1 tα

i ∑
n
i=1 log

(
tα
i
)) ,

where α is the parameter that select the chosen distribution and c is a constant that calibrates the
estimator in order to decrease the bias. For c = 0 and α = 1 we have (6.16). As the value of c is
unknown, we performed a similar study considering α = 1 and obtained c = 2.9 as the optimal
value. This study is available in the next section. Therefore, we have

φ̂BC3 =
(n−2.9)∑

n
i=1 ti

(n∑
n
i=1 ti log(ti)−∑

n
i=1 ti ∑

n
i=1 log(ti))

, (6.22)

hereafter, BC3 estimator. The asymptotic variance of (9) is given by

Var(φ̂BC3) =Var
(
(n−2.9)

n
φ̂YC

)
=

(n−2.9)2

n2 φ
2
(

1+φψ
(1)(φ +1)

)
.

6.4.4 Simulation and Discussion

Since the MAP estimator depends on c3. We have to find a value for c3 in which the
MRE is closer to one. Figure 8 presents the MREs for φMAP considering different values of c3,
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Figure 13 – MREs for φ considering c3 = (2,2.1, · · · ,4), φ = 3, λ = 4 and n = 20 (left panel) φ = 10,
λ = 4 and n = 20 (right panel) for N = 500,000 simulated samples.

for φ = (3,10), λ = 4 and n = 20. We omitted the results of the simulation study for different
values of φ ,λ and n once they are similar to the one presented here.

From the Figure 13, we observed that a good choice is c3 = 2.9. Therefore, we considered
that c3 = 2.9 in (6.22) and n ≥ 3. A simulation is performed in order to compare the performance
of the proposed estimators. We follow Ye and Chen (2017) and consider β = 1. The mean relative
error (MRE) and the root-mean-square error (RMSE) are considered as comparative measures
based on 50,000,000 simulated samples. Therefore, we expect that the most efficient estimators
would yield MREs closer to one with smaller RMSEs. The results are shown in Figures 14-15.
We observe that both BC2 and BC3 provided much smallest bias than BC1, with preference to
BC3, which is straightforwardly obtained.
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Figure 14 – MREs and RMSEs for different values of φ = (0.5,1.0, . . . ,20) for sample size of 8 elements.
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Figure 15 – MREs and RMSEs for φ for samples sizes of 6,7,8, . . . ,20 elements. Upper panels: consider-
ing φ = 4, lower panels: considering φ = 10.

6.5 Discussion
In this work, we have introduced MAP estimators for the Nakagami-m and gamma

distribution. Some mathematical properties for this new estimator are presented. We show that
such estimator can be rewritten as a bias corrected modified maximum likelihood estimators.
Numerical results have shown that the MAP estimators outperforms the existing estimator
procedures for the parameters of both distribution. In addition, we conclude that the MAP
estimators present almost unbiased estimates for the parameter even for small sample sizes.
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CHAPTER

7
MIXTURE OF GENERALIZED GAMMA

DISTRIBUTION

7.1 Introduction
In recent years, several new extensions of the exponential distribution have been in-

troduced in the literature for describing real problems. Ghitany, Atieh and Nadarajah (2008)
investigated different properties of the Lindley distribution and outlined that in many cases the
Lindley distribution is a better model than one based on the exponential distribution. Since
then, many generalizations of the Lindley distribution have been introduced, such as generalized
Lindley (ZAKERZADEH; DOLATI, 2009), weighted Lindley (GHITANY et al., 2011b), ex-
tended Lindley (BAKOUCH et al., 2012), exponential Poisson Lindley (BARRETO-SOUZA;
BAKOUCH, 2013), Power Lindley (GHITANY et al., 2013) distribution, among others.

Here, a new lifetime distribution family is proposed by considering a PDF expressed as a
two-component mixture

f (t|φ ,λ ,α) = p f1(t|φ ,λ ,α)+(1− p) f2(t|φ ,λ ,α)

where p = λ/(λ +φ) and Tj ∼ GG(φ + j−1,λ ,α), for j = 1,2, i.e, f j(t|λ ,φ) has generalized
gamma distribution. The PDF is given by

f (t|φ ,λ ,α) =
αλ αφ

(λ +φ)Γ(φ)
tαφ−1(λ +(λ t)α)e−(λ t)α

, (7.1)

for all t > 0, φ > 0,λ > 0 and α > 0. The proposed distribution can be referred as generalized
weighted Lindley (GWL) distribution. Important probability distributions can be obtained from
the GWL distribution as the weighted Lindley distribution (α = 1) , Power Lindley distribution
(φ = 1) and the Lindley distribution (φ = 1 and α = 1). Due to this relationship, such model
could also be named as weighted power Lindley or generalized power Lindley distribution. The
proposed model has different forms of the hazard function, such as: increasing, decreasing,
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bathtub, unimodal or decreasing-increasing-decreasing shape, making the GWL distribution a
flexible model for reliability data. Moreover, a significant account of mathematical properties of
the new distribution is provided.

The inferential procedures of the parameters of the GLW distribution are presented
considering the maximum likelihood estimators (MLE). Finally, we analyze two data sets
for illustrative purposes, proving that the GWL outperform several usual three parameters
lifetime distributions such as the generalized gamma distribution, the generalized Weibull (GW)
distribution (MUDHOLKAR; SRIVASTAVA; KOLLIA, 1996), the generalized exponential-
Poisson (GEP) distribution (BARRETO-SOUZA; CRIBARI-NETO, 2009) and the exponentiated
Weibull (EP) distribution (MUDHOLKAR; SRIVASTAVA; FREIMER, 1995).

The chapter is organized as follows. In Section 2, we provide a significant account of
mathematical properties of the new distribution. In Section 3, we present the maximum likelihood
estimators. In Section 4 a simulation study is presented in order to verify the effiency of the
MLES. In Section 5 the methodology is illustrated in two real data sets. Some final comments
are presented in Section 6.

7.2 Generalized Weighted Lindley distribution

The cumulative distribution function from the GWL distribution is given by

F(t|φ ,λ ,α) =
γ [φ ,(λ t)α ] (λ +φ)− (λ t)αφ e−(λ t)α

(λ +φ)Γ(φ)
, (7.2)

The behaviors of the PDF (7.1) when t → 0 and t → ∞ are, respectively, given by

f (0) =


∞, if αφ < 1

αλ 2

(λ +φ)Γ(φ)
, if αφ = 1

0, if αφ > 1

, f (∞) = 0.

Figure 16 gives examples of the shapes of the density function for different values of
φ ,λ and α .

7.2.1 Moments

Many important features and properties related to a distribution can be obtained through
its moments, such as mean, variance, kurtosis and skewness. In this section, we present some
important moments, such as the moment generating function, r-th moment, r-th central moment
among others.
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Figure 16 – Density function shapes for GWL distribution considering different values of φ ,λ and α .

Theorem 7.2.1. For the random variable T with GWL distribution, the moment generating
function is given by

MX(t) =
∞

∑
r=0

tr

λ rr!

( r
α
+φ +λ

)
Γ( r

α
+φ)

(λ +φ)Γ(φ)
. (7.3)

Proof. Note that, the moment generating function from GG distribution is given by

MX , j(t) =
∞

∑
r=0

tr

r!
Γ( r

α
+φ + j−1)

λ rΓ(φ + j−1)
.

Therefore, as the GWL (7.1) distribution can be expressed as a two-component mixture,
we have

MX(t) = E
[
etX]= ∫ ∞

0
etx f (x|φ ,λ ,α)dx = pMX ,1(t)+(1− p)MX ,2(t)

=
λ

(λ +φ)

∞

∑
r=0

tr

r!
Γ( r

α
+φ)

λ rΓ(φ)
+

φ

(λ +φ)

∞

∑
r=0

tr

r!
Γ( r

α
+φ +1)

λ rΓ(φ +1)

=
1

(λ +φ)

∞

∑
r=0

tr

r!
λΓ( r

α
+φ)

λ rΓ(φ)
+

1
(λ +φ)

∞

∑
r=0

tr

r!

( r
α
+φ
)

Γ( r
α
+φ)

λ rΓ(φ)

=
∞

∑
r=0

tr

λ rr!

( r
α
+φ +λ

)
Γ( r

α
+φ)

(λ +φ)Γ(φ)
.

Corollary 7.2.2. For the random variable T with GWL distribution, the r-th moment is given by

µr = E[T r] =

( r
α
+φ +λ

)
Γ( r

α
+φ)

(λ +φ)λ rΓ(φ)
. (7.4)

Proof. From the literature, µr = M(r)
X (0) = dnMX (0)

dtn and the result follows.
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Corollary 7.2.3. For the random variable T with GWL distribution, the r-th central moment is
given by

Mr = E[T −µ]r =
r

∑
i=0

(
r
i

)
(−µ)r−iE[T i]

=
r

∑
i=0

(
r
i

)(
−
( 1

α
+φ +λ

)
Γ
( 1

α
+φ
)

λ (λ +φ)Γ(φ)

)r−i ( i
α
+φ +λ

)
Γ( i

α
+φ)

(λ +φ)λ iΓ(φ)
.

(7.5)

Corollary 7.2.4. A random variable T with GWL distribution, has the mean and variance given
by

µ =

( 1
α
+φ +λ

)
Γ
( 1

α
+φ
)

λ (λ +φ)Γ(φ)
, (7.6)

σ
2 =

λ (λ +φ)
( 2

α
+φ +λ

)
Γ
( 2

α
+φ
)
−
( 1

α
+φ +λ

)2
Γ
( 1

α
+φ
)2

λ 2(λ +φ)2Γ(φ)2 . (7.7)

Proof. From (7.4) and considering r = 1 follows µ1 = µ . The second result follows from (7.5)
considering r = 2 and with some algebra follow the results.

Different type of moments can be easily achieved for GWL distribution, one in particular,
that has play a important role in information theory is given by

E[log(T )] =

(
ψ(φ)−α logλ +(λ +φ)−1)

α
. (7.8)

7.2.2 Survival Properties

In this section, we present the survival, the hazard and mean residual life function for
the GWL distribution. The survival function of T ∼ GWL(φ ,λ ,α) with the probability of an
observation does not fail until a specified time t is

S(t|φ ,λ ,α) =
Γ [φ ,(λ t)α ] (λ +φ)+(λ t)αφ e−(λ t)α

(λ +φ)Γ(φ)
· (7.9)

The hazard function is given by

h(t|φ ,λ ,α) =
f (t|φ ,λ ,α)

S(t|φ ,λ ,α)
=

αλ αφ tαφ−1(λ +(λ t)α)e−(λ t)α

Γ [φ ,(λ t)α ] (λ +φ)+(λ t)αφ e−(λ t)α
. (7.10)

The behaviors of the hazard function (7.10) when t → 0 and t → ∞are

h(0) =


∞, if αφ < 1

αλ 2

(λ +φ)Γ(φ)
, if αφ = 1

0, if αφ > 1

and h(∞) =


0, if αφ < 1

λ , if αφ = 1

∞, if αφ > 1.
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Theorem 7.2.5. The hazard rate function h(t) of the generalized weighted Lindley distribution
has increasing, decreasing, bathtub, unimodal or decreasing-increasing-decreasing shape.

Proof. It is not simple to apply the Glaser’s theorem in the GLW distribution. As the hazard rate
function (7.10) is complex, we consider the following cases:

1. Let α = 1, then GWL distribution reduces to the WL distribution. In this case, Ghitany
et al. (2008) proved that the hazard function has bathtub (increasing) shape if 0 < φ < 1
(φ > 0), for all λ > 0.

2. Let φ = 1, then GWL distribution reduces to the PL distribution. In this case, considering
β = λ α , Ghitany et al. (2013) proved that the hazard function is

∙ increasing if {0 < α ≥ 1,β > 0};

∙ decreasing if
{

0 < α ≤ 1
2 ,β > 0

}
or
{

1
2 < α < 1,β ≥ (2α −1)2(4α(1−α))−1

}
;

∙ decreasing-increasing-decreasing if
{

1
2 < α < 1,0 < β < (2α −1)2(4α(1−α))−1

}
.

3. Let α = 2 and λ = 1, from Glaser’s theorem, the hazard rate function has decreasing
(unimodal) shape if 0 < φ < 1 (φ > 1).

These properties make the GWL distribution a flexible model for reliability data. Figure
17 gives examples from the shapes of the hazard function for different values of φ ,λ and α .
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Figure 17 – Hazard function shapes for GWL distribution and considering different values of φ ,λ and α

The mean residual life (MRL) has been used widely in survival analysis and represents
the expected additional lifetime given that a component has survived until time t, the following
result presents the MRL function of the GWL distribution
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Proposition 7.2.6. The mean residual life function r(t|φ ,λ ,α) of the GWL distribution is given
by

r(t|φ ,λ ,α) =

(
φ + 1

α
+λ

)
Γ
(
φ + 1

α
,(λ t)α

)
−λ t(λ +φ)Γ

(
φ ,(λ t)α

)
λ [(λ +φ)Γ(φ ,(λ t)α)+(λ t)αφ e−(λ t)α

]
. (7.11)

Proof. Note that

r(t|φ ,λ ,α) =
1

S(t)

∫
∞

t
y f (y|λ ,φ)dy− t

=
1

S(t)

[
p
∫

∞

t
y f1(y|λ ,φ)dy+(1− p)

∫
∞

x
y f2(y|λ ,φ)dy

]
− t

=

(
φ + 1

α
+λ

)
Γ
(
φ + 1

α
,(λ t)α

)
−λ t(λ +φ)Γ

(
φ ,(λ t)α

)
λ [(λ +φ)Γ(φ ,(λ t)α)+(λ t)αφ e−(λ t)α

]
.

The behaviors of the mean residual life function when t → 0 and t → ∞, respectively, are
given by

r(0) =
1

λ ((λ +φ)Γ(φ))
and r(∞)


∞, if α < 1
1
λ
, if α = 1

0, if α > 1

.

7.2.3 Entropy

In information theory, entropy has played a central role as a measure of the uncertainty
associated with a random variable. Proposed by Shannon (2001), Shannon’s entropy is one of
the most important metrics in information theory. Shannon’s entropy for the GWL distribution
can be obtained by solving the following equation

HS(φ ,λ ,α) =−
∫

∞

0
log

(
αλ αφ tαφ−1(λ +(λ t)α)e−(λ t)α

(λ +φ)Γ(φ)

)
f (t|φ ,λ ,α)dt. (7.12)

Proposition 7.2.7. A random variable T with GWL distribution, has Shannon’s Entropy given
by

HS(φ ,λ ,α) = log(λ +φ)+ logΓ(φ)− logα − logλ − φ(1+φ +λ )

(λ +φ)

− ψ(φ)(αφ −1)
α

− (αφ −1)
α(λ +φ)

− η(φ ,λ )

(λ +φ)Γ(φ)
.

(7.13)

where

η(φ ,λ ) =
∫

∞

0
(λ + y) log(λ + y)yφ−1e−ydy =

∫ 1

0
(λ − logu) log(λ − logu)(− logu)φ−1du.
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Proof. From the equation (7.12) we have

HS(φ ,λ ,α) = − logα −αφ logλ + log(λ +φ)+ log(Γ(φ))+λ
αE[T α ]

− (αφ −1)E[logT ]−E [log(λ +(λT )α)]
(7.14)

Note that

E [log(λ +(λT )α)] =
∫

∞

0
log(λ +(λT )α αλ αφ tαφ−1(λ +(λ t)α)e−(λ t)α

(λ +φ)Γ(φ)
dt,

using the change of variable y = (λ t)α and after some algebra

E [log(λ +(λT )α)] =
1

(λ +φ)Γ(φ)

∫
∞

0
(λ + y) log(λ + y)yφ−1e−ydy

=
η(φ ,λ )

(λ +φ)Γ(φ)
.

From equations (7.4) and (7.8), we can easily find the solution of E[T α ] and E[logT ]

and the result follows.

Other popular entropy measure is proposed by Renyi (1961). Some recent applications
of the Renyi entropy can be seen in Popescu and Aiordachioaie (2013). If T has the probability
density function (1) then Renyi entropy is defined by

1
1−ρ

log
∫

∞

0
f ρ(x)dx. (7.15)

Proposition 7.2.8. A random variable T with GWL distribution, has the Renyi entropy given by

HR(ρ) =
(ρ −1)(logα + logλ )−ρ (log(λ +φ)+ logΓ(φ))− log(δ (ρ,φ ,λ ,α))

1−ρ
(7.16)

where δ (ρ,φ ,λ ,α) =
∫

∞

0 y
ρφ−ρ+1−α

α (λ + y)ρe−ρydy.

Proof. The Renyi entropy is given by

HR(ρ) =
1

1−ρ
log
(

αρλ ρ

(λ +φ)ρΓ(φ)ρ

∫
∞

0
(λ t)αρ

(
φ− 1

α

)
(λ +(λ t)α)ρ e−ρ(λ t)α

dt
)

=
1

1−ρ
log
(

αρλ ρ

(λ +φ)ρΓ(φ)ρ

∫
∞

0
y

ρφ−ρ+1−α

α (λ + y)ρe−ρydy
)

=
1

1−ρ
log
(

αρλ ρ

(λ +φ)ρΓ(φ)ρ
δ (ρ,φ ,λ ,α)

)
and with some algebra the proof is completed.
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7.2.4 Lorenz curves

The Lorenz curve (LORENZ, 1905) is a well-known measure used in reliability, income
inequality, life testing and renewal theory. The Lorenz curve for a non-negative T random variable
is given by the consecutive plot of

L(F(t)) =
∫ t

0 x f (x)dx∫
∞

0 x f (x)dx
=

1
µ

∫ t

0
x f (x)dx.

The Lorenz curve of the GWL distribution is

L(p) =

( 1
α
+φ +λ

)
γ

(
φ + 1

α
,
(
λF−1(p)

)α
)
−
(
λF−1(p)

)αφ−1 e−(λF−1(p))
α

( 1
α
+φ +λ

)
Γ
[ 1

α
+φ
]

where F−1(p) = tp.

7.3 Maximum likelihood estimators
Among the statistical inference methods, the maximum likelihood method is widely

used due its better asymptotic properties. Let T1, . . . ,Tn be a random sample such that T ∼
GWL(φ ,λ ,α). In this case, the likelihood function from (7.1) is given by,

L(φ ,λ ,α; t) =
αnλ nαφ

(λ +φ)Γ(φ)n

{
n

∏
i=1

tαφ−1
i

}
n

∏
i=1

(λ +(λ ti)α)exp

{
−λ

α
n

∑
i=1

tα
i

}
. (7.17)

The log-likelihood function l(φ ,λ ,α; t) = logL(φ ,λ ,α; t) is given by,

l(φ ,λ ,α; t) = n logα +nαφ logλ −n log(λ +φ)−n logΓ(φ)+(αφ −1)
n

∑
i=1

log(ti)

+
n

∑
i=1

log(λ +(λ ti)α)−λ
α

n

∑
i=1

tα
i .

(7.18)

From the expressions ∂

∂φ
l(φ ,λ ,α; t) = 0, ∂

∂λ
l(φ ,λ ,α; t) = 0, ∂

∂α
l(φ ,λ ,α; t) = 0, we

get the likelihood equations

nα̂ log(λ̂ )+ α̂

n

∑
i=1

log(ti) =
n

λ̂ + φ̂
+nψ(φ̂) (7.19)

nα̂φ̂

λ̂
+

n

∑
i=1

1+ α̂λ̂ α̂−1tα̂
i

λ̂ +(ti)α̂
= α̂λ̂

α̂−1
n

∑
i=1

tα̂
i +

n

λ̂ + φ̂
(7.20)

n
α̂
+nφ̂ log(λ̂ )+ φ̂

n

∑
i=1

log(ti)+
n

∑
i=1

(λ̂ ti)α̂ log(λ̂ ti)

λ̂ + (̂̂λ ti)α̂
= λ̂

α̂
n

∑
i=1

tiα̂ log(λ̂ ti). (7.21)
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The solutions of such non-linear system provide the maximum likelihood estimates. Numerical
methods such as Newton-Rapshon are required to find the solution of the nonlinear system. Note
that from (7.19) and (7.21) and after some algebra we have

α̂ =
1(

n log(λ̂ )+∑
n
i=1 log(ti)

) ( n

λ̂ + φ̂
+nψ(φ̂)

)
(7.22)

φ̂ =

(
λ̂ α̂

∑
n
i=1 tiα̂ log(λ̂ ti)−∑

n
i=1

(λ̂ ti)α̂ log(λ̂ ti)
λ̂+(̂̂λ ti)α̂

− n
α̂

)
(

n log(λ̂ )+∑
n
i=1 log(ti)

) . (7.23)

Under mild conditions, for large sample sizes, the obtained estimators are not biased and
they are asymptotically efficient with an asymptotically joint multivariate normal distribution
given by

(φ̂ , λ̂ , α̂)∼ N3[(φ ,λ ,α), I−1(φ ,λ ,α)] for n → ∞, (7.24)

where I(φ ,λ ,α) is the Fisher information matrix given by,

I(φ ,λ ,α) =

Iφ ,φ (φ ,λ ,α) Iφ ,λ (φ ,λ ,α) Iφ ,α(φ ,λ ,α)

Iφ ,λ (φ ,λ ,α) Iλ ,λ (φ ,λ ,α) Iλ ,α(φ ,λ ,α)

Iφ ,α(φ ,λ ,α) Iλ ,α(φ ,λ ,α) Iα,α(φ ,λ ,α)

 , (7.25)

where the elements of the matrix are given by

Iφ ,φ (φ ,λ ,α) =−E
[

∂ l(θ ; t)
∂φ 2

]
=− 1

(λ +φ)2 +ψ
′(θ)

Iφ ,λ (φ ,λ ,α) =−E
[

∂ l(θ ; t)
∂φ∂λ

]
=−α

λ
+

1
(λ +φ)2

Iφ ,α(φ ,λ ,α) =−E
[

∂ l(θ ; t)
∂φ∂α

]
=

−α log(λ )−ψ(φ)+α log(λ )− (λ +φ)−1

α

Iλ ,λ (φ ,λ ,α) =−E
[

∂ l(θ ; t)
∂λ 2

]
=

αφ

λ 2 +(α −1)λ α−2(ψ(φ)−α log(λ )+(λ +φ)−1)

+E
[

αT αλ α−2 ((α −2)λ − (λT )α)

(λ +(λT )α)

]
− 1

(λ +φ)2

Iα,α(φ ,λ ,α) =−E
[

∂ l(θ ; t)
∂α2

]
=

φ(λ +φ +1)
(
ψ(φ)2 +ψ(φ)

)
α2(λ +φ)

+
1

α2

+
2(λ +2φ +1)ψ(φ)+2

α2(λ +φ)
−E

[
λ (λT )α log(λT )2

(λ +(λT )α)

]
Iα,λ (φ ,λ ,α) =−E

[
∂ l(θ ; t)
∂α∂λ

]
=−φ

λ
+

λ (1+φψ(φ))+φ (1+(φ +1)ψ(φ +1))
λ (λ +φ)

−E

[(
1+αλ α−1T α

)
(λT )α log(λT )

(λ +(λT )α)2

]
+

(
φ +λ +1− 1

α

)
Γ
(
φ +1− 1

α

)
(λ +φ)Γ(φ)

−E

[(
αλ α−1T α log(λT )+(λT )α−1)

(λ +(λT )α)

]
.
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7.4 Simulation Study

In this section, we present an intensive simulation study to compare the efficiency of our
estimation procedure. The mean relative estimates (MRE) and the mean square errors (MSE)
were computed in which are given by

1
N

N

∑
j=1

θ̂i, j

θi
,

1
N

N

∑
j=1

(θ̂i, j −θi)
2, for i = 1,2,3.

The results were computed using the software R using the seed 2015 to generate the
pseudo-random values. The chosen values to perform this procedure were N = 10,000 and
n = (50,60, . . . ,300). We presented the results only for θ = (2,0.5,0.1) for reasons of space.
However, the following results were similar for other choices of θ .

Figures 18 presents MREs, MSEs from the estimates of φ ,λ and α obtained using the
MLE for N simulated samples and considering different values of θ = (2,0.5,0.1) and n. The
horizontal lines in both figures corresponds to MREs and MSEs being respectively one and zero.

Based on these results, we observe that the MSE of the MLEs tend to zero for large
n and also, as expected, the values of MREs tend to one, i.e. the estimates are consistent
and asymptotically unbiased for the parameters. Therefore, the MLEs can be easily used for
estimating the parameters of the GWL distribution.

7.5 Application

In this section, we compare the GWL distribution fit with several usual three param-
eters lifetime distributions considering two data sets one with bathtub hazard rate and one
with the increasing hazard function. For sake of comparison the following lifetime distri-
butions were considered, the generalized gamma (GG) distribution, the generalized Weibull

(GW) distribution with PDF given by f (t) = (αφ)−1(t/φ)1/α−1(1−λ (t/φ)1/α)
1/λ−1

, where
λ ∈ R the generalized exponential-Poisson (GEP) distribution with PDF given by f (t) =(

αβφ/(1− e−φ )
α
)

e−φ−β t+φ exp(−β t)
(

1− e−φ+φ exp(−β t)
)α−1

and the exponentiated Weibull

(EW) distribution with PDF f (t) = αφ(t/β )α−1 exp
(
−(t/β )α

)(
1− exp

(
−(t/β )α

))φ−1
/β .

Firstly, we considered the TTT-plot (total time on test) in order to verify the behavior of
the empirical hazard function. To check the goodness of fit we also considered the Kolmogorov-
Smirnov (KS) test . This procedure is based on the KS statistic Dn = sup |Fn(t)−F(t;φ ,λ ,α)|,
where sup t is the supremum of the set of distances, Fn(t) is the empirical distribution function
and F(t;α,β ,λ ) is c.d.f. In this case, we test the null hypothesis that the data comes from
F(t;α,β ,λ ) with significance level of 5%, the null hypothesis we will be rejected if the returned
p-value is smaller than 0.05.
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Figure 18 – MRE’s, MSE’s related from the estimates of φ = 0.5,λ = 0.7 and α = 1.5 for N simulated
samples, considering different values of n obtained using the following estimation method
1-MLE, 2-MPS, 3-ADE, 4-RTADE.

7.5.1 Lifetimes data

Presented by Aarset (1987) the dataset is related to the lifetime in hours of 50 devices
put on test (see Table 21).

Figure 20 presets (left panel) the TTT-plot, (middle panel) the fitted survival superim-
posed to the empirical survival function and (right panels) the hazard function adjusted by GWL
distribution. Table 22 presents the AIC and AICc criteria and the p-value from the KS test for all
fitted distributions considering the Aarset dataset.
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Table 21 – Lifetimes data (in hours) related to a device put on test.

0.1 0.2 1 1 1 1 1 2 3 6 7 11 12
18 18 18 18 18 21 32 36 40 45 46 47 50
55 60 63 63 67 67 67 67 72 15 79 82 82
83 84 84 84 85 85 85 85 85 86 86
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Figure 19 – (left panel) the TTT-plot, (middle panel) the fitted survival superimposed to the empirical
survival function and (right panels) the hazard function adjusted by GWL distribution

Table 22 – Results of AIC and AICc criteria and the p-value from the KS test for all fitted distributions
considering the Aarset dataset.

Criteria Gen. WL Gen. Gamma Gen. Weibull Exp. Weibull Gen. EP
AIC 415.400 448.294 430.055 463.674 486.255
AICc 409.922 442.816 424.576 458.196 480.777
KS 0.8343 0.0115 0.0453 0.0222 0.0302

Comparing the empirical survival function with the adjusted distributions it can be
observed a better fit for the GWL distribution among the chosen models. These result is confirmed
from AIC and AICC since GWL distribution has the minimum values and the p-values returned
from the KS test are greater than 0.05. It is worth mentioning that, considering a significance
level of 5%, the others models are not able to fit the proposed data.

Table 23 displays the MLE estimates, standard errors and the confidence intervals for
φ ,λ and α of the GWL distribution.
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Table 23 – MLE estimates, Standard-error and 95% confidence intervals (CI) for φ ,λ and α

θ θ̂ MLE S.E(θ̂ ) CI95%(θ)
φ 0.0050 5.69145e-07 ( 0.005046; 0.005048)
λ 0.0118 1.13547e-09 (0.011762; 0.011762)
α 102.0427 5.97761 (90.326; 113.758)

7.5.2 Average flows data

The study of average flows has been proved of high importance to protect and maintain
aquatic resources in streams and rivers (Reiser et al., 1989). In this section, we consider a real
data set related to the average flows (m3/s) of the Cantareira system during January at São Paulo
city in Brazil. Its worth mentioning that the Cantareira system provides water to 9 million people
in the São Paulo metropolitan area. The data set available in Table 24 was obtained from the
website of the National Water Agency including a period from 1930 to 2012.

Table 24 – January average flows (m3/s) of the Cantareira system.

82.0 80.9 102.5 65.3 65.5 47.1 53.0 139.4 82.4 80.2 92.5
50.0 50.4 50.2 36.2 35.9 100.0 94.2 78.1 54.8 86.9 80.1
60.3 26.9 48.5 51.0 51.1 84.5 76.9 69.4 77.3 109.2 55.3
106.3 30.5 94.2 87.3 115.0 70.0 31.3 87.1 35.9 67.7 55.1
89.9 50.1 52.6 82.0 54.1 44.3 69.2 94.4 83.4 122.7 88.1
73.3 35.9 82.4 64.9 90.8 80.4 55.3 31.4 45.7 43.6 45.8
96.8 85.8 43.6 122.3 66.5 41.0 75.4 79.4 34.8 78.8 52.4
77.1 47.0 67.4 132.8 144.9 64.1

Figure 20 shows (left panel) the TTT-plot, (middle panel) the fitted survival superimposed
to the empirical survival function and (right panels) the hazard function adjusted by GWL
distribution. Table 25 presents the AIC and AICc criteria and the p-value from the KS test for
all fitted distributions considering the data set related to the January average flows (m3/s) of the
Cantareira system.

Table 25 – Results of AIC and AICc criteria and the p-value from the KS test for all fitted distributions
considering the data set related to the january average flows (m3/s) of the Cantareira system.

Criteria Gen. WL Gen. Gamma Gen. Weibull Exp. Weibull Gen. EP
AIC 775.431 775.461 777.280 780.304 778.873
AICc 769.735 769.765 771.584 774.608 773.176
KS 0.4683 0.4223 0.3935 0.1654 0.4599

Comparing the empirical survival function with the adjusted distributions it can be
observed a better fit for the GWL distribution among the chosen models. This result is confirmed
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Figure 20 – (left panel) the TTT-plot, (middle panel) the fitted survival superimposed to the empirical
survival function and (right panels) the hazard function adjusted by GWL distribution

from AIC and AICC since GWL distribution has the minimum values and also the p-values
returned from the KS test are greater than 0.05. Table 26 displays the ML estimates, standard
errors and the confidence intervals for φ ,λ and α of the GWL distribution.

Table 26 – ML estimates, Standard-error and 95% confidence intervals (CI) for φ ,λ and α

θ θ̂ MLE S.E(θ̂ ) CI95%(θ)
φ 7.0485 1.5425 (2.3847; 11.7124)
λ 0.1244 0.0557 (0.1183; 0.1305)
α 0.9579 0.1173 (0.9310; 0.9849)

7.6 Concluding remarks

In this chapter, we proposed a lifetime distribution that can be written as two-mixture
generalized gamma distribution. The new model named as GLW distribution is a simple gen-
eralization of the weighted Lindley distribution proposed by Ghitany et al. (2011b), which
accommodates increasing, decreasing, decreasing-increasing-decreasing, bathtub, or unimodal
hazard functions, making the GWL distribution a flexible model for reliability data. The mathe-
matical properties and the estimation procedure of the new distribution are discussed. Finally, we
analyze two data sets for illustrative purposes, proving that the GWL outperform several usual
three parameters lifetime distributions.
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CHAPTER

8
COMMENTS AND FURTHER

DEVELOPMENT

8.1 Comments

In this monograph, considering the Nakagami, gamma and generalized gamma distribu-
tions we presented main theorems that provide sufficient and necessary conditions for a wide
class of posterior distribution to be proper. An interesting aspect of our findings is that one
can easily check that a posterior is improper from the behavior of the proposed prior. For the
NK distribution, we derived various objective priors such as Jeffreys Rule, Jeffreys prior, MDI
prior and reference priors. We presented an overall reference prior that yields a proper posterior
distribution if and only if n ≥ 1. The proposed overall reference posterior distribution returned
more accurate results as well as better theoretical properties such as invariance property under
one-to-one transformations of the parameters, consistency under marginalization, consistent
sampling properties.

For the gamma distribution we applied our proposed methodology in twelve objective
priors, we observed that the MDI prior was the only prior that returned an improper posterior.
An extensive simulation study showed that the posterior distribution obtained under Tibshirani
prior provided more accurate results in terms of MRE, MSE and coverage probabilities.

Considering the generalized gamma distribution, we applied the proposed theorem in
twelve different objective priors for the unknown parameters. We proved that only the (φ ,α,µ)-
reference prior leaded to a proper posterior distribution, such reference prior finally enable the
use of the GG distribution in practice from the Bayesian point of view, in a methodologically
correct way, with a objective prior that is one-to-one invariant, consistent marginalization and
with consistent sampling properties, breaking with the problem of estimating the parameters of
this important distribution.
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Further, we proposed a new class of maximum a posteriori estimators for the parame-
ters of the Nakagami-m and gamma distributions. These estimators have simple closed-form
expressions and were rewritten as a bias corrected modified maximum likelihood estimators.
Simulation studies were carried out to compare different estimation procedures. Numerical
results revels that our new estimation schemes outperforms the existing closed-form estimators
for the proposed distributions and produces extremely efficient estimates for both parameters,
even for small sample sizes.

Finally, a new lifetime distribution that is expressed as a two-component mixture of the
GG distribution is presented. The GLW distribution is a simple generalization of the weighted
Lindley distribution proposed by Ghitany et al. (2011b), which accommodates increasing,
decreasing, decreasing-increasing-decreasing, bathtub, or unimodal hazard functions, making
the GWL distribution a flexible model for reliability data. The mathematical properties and the
estimation procedure of the new distribution were discussed. Two data sets were analyzed for
illustrative purposes, proving that the GWL outperform several usual three parameters lifetime
distributions.

This thesis is based on nine papers developed during my doctoral. Five papers have
been already published (RAMOS; LOUZADA, 2016; RAMOS; LOUZADA; RAMOS, 2016;
RAMOS et al., 2017; RAMOS; LOUZADA; RAMOS, 2018; LOUZADA; RAMOS, 2018a),
and four are under review (RAMOS et al., 2018; RAMOS et al., 2018; RAMOS; LOUZADA,
2018; LOUZADA; RAMOS, 2018b)

8.2 Further development

There are a large number of possible extensions of this current work. We would like to
present main theorems that will provide sufficient and necessary conditions for a wide class of
posterior distribution be proper for the Weibull and Lognormal distributions. Another extension
could be to follow Roy and Dey Roy and Dey (2014) that considered an objective Bayesian
analysis for the generalized extreme value regression distribution. The proposed results can be
further extended for the proposed models.

Reliability analysis is as much about accurately representing the past, as it is about
perfectly modeling the future. We can consider the Bayes prediction for the proposed models.
For instance for the Nakagami-m distribution using the observed order statistics. The Bayesian
approach can be considered due to its facility in obtaining the predictive density of the future
observation. The notation and the steps assumed follows Kundu and Raqab (2012). Let x(m)

denote the m-th order statistic, X(1) < .. . < X(m) be the observed sample and X(m+1) < .. . < X(n)

be the unobserved future sample.
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From the Markov property of the conditional order statistics, we have

fXm+k(y|x) = fXm+k|Xm(y|x) =
(n−m)!

(k−1)!(n−m− k)!

× f (y)(F(y)−F(xm))
k−1 (1−F(y))n−m−k

(1−F(xm))n−m

(8.1)

for y > x(m). After some algebra we have

fXm+k(y|x) =
2(n−m)!

(k−1)!(n−m− k)!
y−2µ−1

(
µ

Ω

)µ

exp
(

µ

Ω
y2
)

×
(
γ
(
µ, µ

Ω
y2)− γ

(
µ, µ

Ω
x2

m
))k−1 (

Γ
(
µ, µ

Ω
y2))n−m−k(

Γ

(
µ, µ

Ω
x2
(m)

))n−m .
(8.2)

The posterior predictive density of Xm+k given x is

pXm+k(y|x) =
∫

∞

0

∫
∞

0
fXm+k(y|x)π(Ω,µ|x)dΩdµ.

Therefore, the predictive density of X(m+k) under the assumption of y > x(m) is

f *Xm+k
(y|x) =

∫
∞

0

∫
∞

0
fXm+k|Xm(y|x)π(Ω,µ|x)dΩdµ. (8.3)

Simulation studies can be considered for the proposed predictive distribution. We will
also explore such approach for different probability density functions.
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CHAPTER

A
USEFUL PROPORTIONALITIES

The following proportionalities are also useful to prove results related to the posterior
distribution.

Proposition A.0.1. The following results hold√
φ 2ψ

′
(φ)2 −ψ

′
(φ)−1 ∝

φ→0+
1 and

√
φ 2ψ

′
(φ)2 −ψ

′
(φ)−1 ∝
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1
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.

Proof. Let us present the proof for the first case. Considering the recurrence relation ψ
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(φ) =

1
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(φ +1), we have

√
φ 2ψ

′
(φ)2 −ψ

′
(φ)−1 =

√
1

φ 2 +2ψ
′
(φ +1)+φ 2ψ

′
(φ +1)2 − 1

φ 2 −ψ
′
(φ)−1

=
√

ψ
′
(φ +1)−1+φ 2ψ

′
(φ +1)2.

Therefore

lim
φ→0+

√
φ 2ψ

′
(φ)2 −ψ

′
(φ)−1 =

√
ψ

′
(1)−1 =

√
π2

6
−1 > 0. (A.1)

For the second case, note that (see Abramowitz (ABRAMOWITZ; STEGUN, 1972), pg
260)
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′(φ) =

1
φ
+

1
2φ 2 +

1
6φ 3 +o

(
1

φ 3

)
.

Hence, it follows that

φ
2
(

1
φ
+

1
2φ 2 +

1
6φ 3 +o

(
1

φ 3

))2

− 1
φ
− 1

2φ 2 −
1

6φ 3 −o
(

1
φ 3

)
−1 =

φ
2
(

1
φ 2 +

1
φ 3 +

7
12φ 4 +o

(
1

φ 4

))
− 1

φ
− 1

2φ 2 +o
(

1
φ 2

)
−1 =

1+
1
φ
+

7
12φ 2 +o

(
1

φ 2

)
− 1

φ
− 1

2φ 2 +o
(

1
φ 2

)
−1 =

1
12φ 2 +o

(
1

φ 2

)
.



138 Appendix A. Useful Proportionalities

Therefore,

lim
φ→∞
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′
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12
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Proposition A.0.2. The following results hold
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Proof. Considering the recurrence relation Γ(z) = 1
z Γ(z+ 1) it follows that limz→0+

Γ(z)
1
z
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Γ(1) = 1. Therefore
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and (A.2)
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Now, considering Stirling’s approximation for gamma function

lim
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Then, by Proposition ?? we have
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Proposition A.0.3. Let p(α) = log
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i
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i=1 tα

i

)
, for t1, t2, . . . , tn positive and not all equal,

then p(α)> 0 and the following hold
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Proof. Note that
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> 1 ⇒ p(α)> 0 by the arithmetic-geometric inequality.

Now, let ui =
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Moreover, 1 ≤ ∑
n
i=1 (ui/um)

α ≤ n, then 1 ≤
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) 1
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1
α , which implies
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which proves the first result.
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̸= 0 since, otherwise, we would have log(ui) = 0 ⇔ ui = 1, ∀i and

would imply that ti are all equal, which contradicts the hypothesis. Hence p(α) ∝
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α2 which

proves the second result.

Proposition A.0.4. Let q(α) = log
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> n ⇒ q(α) > 0 by the arithmetic-geometric inequality. Since

q(α) = log(n)+ p(α) and by Proposition A.0.3 limα→0+ p(α) = 0 it follows that

lim
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q(α) = log(n)> 0. (A.5)

which proves the first proportionality.

Analogously, from q(α) = log(n)+ p(α) and Proposition A.0.3 it follows that q(α) ∝
α→∞

α , hence the second proportionality is proved.

Proposition A.0.5. Let q(α) be the same defined in Proposition A.0.4, then the following results
are valid for k ∈ R+ and r ∈ R+.

γ (k,r q(α)) ∝
α→0+

1 and γ (k,r q(α)) ∝
α→∞

1. (A.6)
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Proof. From (A.5) and the continuity of incomplete gamma function in R+×R+ we have

lim
α→0+

γ (k,r q(α)) = γ (k,r log(n))⇒ γ (k,r q(α)) ∝
α→0+

1. (A.7)

Now, from the definition of lower incomplete gamma function, it follows directly that
limx→∞ γ (y,x) = Γ(y) for y > 0. But, since q(α) ∝
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α , we have limα→∞ q(α) = ∞. Therefore
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Proposition A.0.6. Let p(α) be the same defined in Proposition A.0.3 and let tm =max{t1, . . . , tn}.
Then the following results are valid for k ∈ R+ and r ∈ R+,
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where Γ(y,x) =
∫

∞

x wy−1e−wdw is the upper incomplete gamma function.

Proof. From the definition of upper incomplete gamma function, it follows directly that limx→0+ Γ(y,x)=

Γ(y) for y > 0. However, as p(α) ∝
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α2, we have limα→0+ p(α) = 0. Therefore
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Now, by L’hospital rule and the definition of upper incomplete gamma function,
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This implies that p(α)k−1e−r p(α) ∝
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