Show simple item record

dc.contributor.authorSonego, Jorge Luiz Silveira
dc.date.accessioned2018-07-11T14:37:43Z
dc.date.available2018-07-11T14:37:43Z
dc.date.issued2016-04-18
dc.identifier.citationSONEGO, Jorge Luiz Silveira. Estudo da produção de etanol de sacarose por fermentação extrativa utilizando arraste com dióxido de carbono. 2016. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/10273.*
dc.identifier.urihttps://repositorio.ufscar.br/handle/ufscar/10273
dc.description.abstractThe ethanol accumulated in the broth during fermentation is the main component toxic to yeast, causing slower yeast growth and decreased ethanol production. One way of overcoming this inhibition effect is to use extractive fermentation, where the ethanol is removed from the broth during the fermentation process. The present work evaluated sucrose ethanol production using extractive fermentation using CO2 as stripping gas. Firstly, it was made investigation of the influence of specific CO2 flow rate, initial ethanol concentration and solution temperature on ethanol stripping by CO2. At this stage the modeling of the of ethanol and water removal was achieved by CO2 stripping according to a first order model. In sequence, it was studied the production of ethanol by extractive fermentation in batch and fed-batch modes, employing in a 5 L bubble column bioreactor and temperature of 34.0 °C. The kinetic parameters of the hybrid Andrews-Levenspiel model were estimated by modeling of conventional batch and fed-batch fermentations (without stripping) with CS0 of 180 g.L-1. Mathematical modeling of extractive in batch and fed-batch ethanol fermentation was developed considering the removal of ethanol and water, due to the CO2 stripping, according to a first order model. Later it was optimized the production of ethanol by extractive fed-batch fermentation. A genetic algorithm was used to simultaneous optimization the substrate feed rate (F) and the ethanol concentration (CE0) to start CO2 stripping in extractive fed-batch fermentation, so as to obtain the maximum ethanol productivity. The ethanol removal by stripping with carbon dioxide can be modeled as a first order model. The hybrid model of Andrews-Levenspiel was adequate to describe the kinetics of batch and fed batch ethanol fermentation. The proposed model for extractive ethanol fermentation with CO2 was adequate to describe the behavior of extractive fermentation in batch and fed batch modes. In the extractive ethanol fermentation with CO2 stripping an increase in substrate uptake rate (rS=−dCs/dt) after the beginning of ethanol stripping and the total consumption of the substrate occurred before the extractive fermentation compared to the conventional process. The extractive batch fermentation with CS0=180 g.L-1 and CO2 stripping initiated after 3 h of fermentation at an ethanol concentration of 43.3 g.L-1, resulted in an ethanol productivity (in g.L-1.h-1) about 25% higher than conventional batch fermentation. For fed-batch fermentation, vat filling time (Ft) of 5 h and start of ethanol stripping at 3 h of fermentation substantially reduced the inhibitory effects of the substrate and ethanol on the yeast cells. This condition enabled the extractive fed-batch ethanol fermentation to be performed using substrate concentrations of up to 240 g.L−1 in the feed. The total ethanol concentration reached 110.3 g.L−1 (14 °GL) (wine + entrained). The use of the optimization tool enabled using substrate concentrations of up to 300 g.L-1 generating a total concentration of ethanol of 17.2 °GL (wine + entrained), which means an increase of 65% compared to the concentration final ethanol obtained in conventional fermentation without stripping.eng
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)por
dc.language.isoporpor
dc.publisherUniversidade Federal de São Carlospor
dc.rights.uriAcesso abertopor
dc.subjectArraste de etanol por CO2por
dc.subjectFermentação extrativapor
dc.subjectFermentação alcoólica em batelada e batelada alimentadapor
dc.subjectOtimização da fermentação extrativapor
dc.subjectEthanol stripping by CO2eng
dc.subjectExtractive fermentationeng
dc.subjectEthanol fermentation in batch and fed-batcheng
dc.subjectOptimization of extractive ethanol fermentationeng
dc.titleEstudo da produção de etanol de sacarose por fermentação extrativa utilizando arraste com dióxido de carbonopor
dc.typeTesepor
dc.contributor.advisor1Badino Júnior, Alberto Colli
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6244428434217018por
dc.contributor.advisor-co1Cruz, Antonio José Gonçalves
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/1812806190521028por
dc.description.resumoO etanol acumulado no caldo durante a fermentação é o principal componente tóxico para levedura, afetando o crescimento celular e produção de etanol. Uma forma de contornar esse efeito de inibição é a utilização de fermentação extrativa, onde o etanol é removido a partir do caldo de fermentação durante o processo. No presente trabalho foi realizado o estudo da produção de etanol de sacarose empregando fermentação extrativa com arraste de etanol por dióxido de carbono. Inicialmente foi avaliada a influência da vazão específica de CO2, da concentração inicial de etanol na solução e da temperatura da solução no arraste de etanol com dióxido de carbono. Nesta etapa foi realizada a modelagem da remoção de etanol e da água por arraste com CO2 segundo um modelo de primeira ordem. Na sequência foi estudada a produção de etanol por fermentação extrativa em batelada e batelada alimentada, empregando um biorreator tipo coluna de bolhas com volume útil de 5 L e temperatura de 34°C. Foi desenvolvida a modelagem cinética da fermentação alcoólica convencional (sem extração) em batelada e batelada alimentada. Os parâmetros do modelo cinético hibrido de Andrews-Levenspiel foram estimados para as fermentações convencionais com CS0 de 180 g.L-1. Na sequência foi proposta a modelagem matemática da fermentação extrativa em batelada e batelada alimentada, considerando a remoção de etanol e água, devido ao arraste por CO2, segundo um modelo de primeira ordem. Posteriormente foi realizada a otimização da produção de etanol por fermentação extrativa em batelada alimentada. Um algoritmo genético foi empregado para otimizar simultaneamente a vazão de alimentação de substrato (F) e a concentração de etanol para dar início o arraste por CO2 durante as fermentações extrativas em batelada alimentada (CE0), de modo a obter a máxima produtividade em etanol. A remoção de etanol por arraste com dióxido de carbono pode ser modelada como um modelo de primeira ordem. O modelo híbrido de Andrews-Levenspiel foi adequado para descrever a cinética das fermentações alcoólicas em batelada e batelada alimentada. A modelagem proposta para a fermentação extrativa por arraste com CO2 foi adequada para descrever o comportamento das fermentações extrativas em batelada e batelada alimentada. Nas fermentações extrativas com arraste de etanol por CO2, houve um aumento na velocidade de consumo do substrato e consequentemente o consumo total do substrato ocorreu antes nas fermentações extrativas em comparação com as convencionais. A fermentação extrativa em batelada com CS0=180 g.L-1 e o arraste por CO2 iniciado com 3 h de fermentação, quando a concentração de etanol no caldo de fermentação era 43,3 g.L-1, resultou em uma produtividade de etanol (em g.L-1.h-1) cerca de 25% superior a fermentação convencional. As fermentações extrativas em batelada alimentada com tempo de enchimento da dorna te=5 h e o início do arraste de etanol por CO2 com 3 h de fermentação resultou em significativa redução do efeito inibição relacionado ao substrato e ao etanol. Esta condição experimental tornou possível realizar fermentações extrativas em batelada alimentada com concentração de substrato na alimentação de até 240 g.L-1, com consumo total do substrato e concentração final total de etanol de 110,3 g.L-1 (14 °GL) (vinho + arrastado). O emprego da ferramenta de otimização possibilitou o uso de mosto com concentração de até 300 g.L-1 gerando uma concentração total de etanol de 17,2 °GL (vinho + arrastado), o que significa um aumento de 65% comparado à concentração final de etanol obtida na fermentação convencional sem arraste.por
dc.publisher.initialsUFSCarpor
dc.publisher.programPrograma de Pós-Graduação em Engenharia Química - PPGEQpor
dc.subject.cnpqENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICApor
dc.ufscar.embargoOnlinepor
dc.publisher.addressCâmpus São Carlospor
dc.contributor.authorlatteshttp://lattes.cnpq.br/9618572624201461por


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record