Mostrar registro simples

dc.contributor.authorVaz, Afonso Fernandes
dc.date.accessioned2018-07-18T17:28:34Z
dc.date.available2018-07-18T17:28:34Z
dc.date.issued2018-05-17
dc.identifier.citationVAZ, Afonso Fernandes. Quantificação em problemas com mudança de domínio. 2018. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/10300.*
dc.identifier.urihttps://repositorio.ufscar.br/handle/ufscar/10300
dc.description.abstractSeveral machine learning applications use classifiers as a way of quantifying the prevalence of positive class labels in a target dataset, a task named quantification. For instance, a naive way of determining what proportion of positive reviews about given product in the Facebook with no labeled reviews is to (i) train a classifier based on Google Shopping reviews to predict whether a user likes a product given its review, and then (ii) apply this classifier to Facebook posts about that product. Unfortunately, it is well known that such a two-step approach, named Classify and Count, fails because of data set shift, and thus several improvements have been recently proposed under an assumption named prior shift. However, these methods only explore the relationship between the covariates and the response via classifiers and none of them take advantage of the fact that one often has access to a few labeled samples in the target set. Moreover, the literature lacks in approaches that can handle a target population that varies with another covariate; for instance: How to accurately estimate how the proportion of new posts or new webpages in favor of a political candidate varies in time? We propose novel methods that fill these important gaps and compare them using both real and artificial datasets. Finally, we provide a theoretical analysis of the methods.eng
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)por
dc.language.isoengeng
dc.publisherUniversidade Federal de São Carlospor
dc.rights.uriAcesso abertopor
dc.subjectQuantificaçãopor
dc.subjectMudança de domíniopor
dc.subjectAprendizado de máquinapor
dc.subjectQuantificationeng
dc.subjectDataset shifteng
dc.subjectPrior shifteng
dc.subjectMachine Learningeng
dc.titleQuantificação em problemas com mudança de domíniopor
dc.title.alternativeImproved quantification under dataset shifteng
dc.typeDissertaçãopor
dc.contributor.advisor1Izbicki, Rafael
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/9991192137633896por
dc.description.resumoMuitas aplicações de aprendizado de máquina usam classificadores para determinar a prevalência da classe positiva em um conjunto de dados de interesse, uma tarefa denominada quantificação. Por exemplo, uma maneira ingênua de determinar qual a proporção de postagens positivas sobre um determinado protuto no Facebook sem ter resenhas rotuladas é (i) treinar um classificador baseado em resenhas do Google Shopping para prever se um usuário gosta de um produto qualquer, e então (ii) aplicar esse classificador às postagens do Facebook relacionados ao produtos de interesse. Infelizmente, é sabido que essa técnica de dois passos, denominada classificar e contar, falha por não levar em conta a mudança de domínio. Assim, várias melhorias vêm sendo feitas recentemente sob uma suposição denominada prior shift. Entretanto, estes métodos exploram a relação entre as covariáveis apenas via classificadores e nenhum deles aproveitam o fato de que, em algumas situações, podemos rotular algumas amostras do conjunto de dados de interesse. Além disso, a literatura carece de abordagens que possam lidar com uma população-alvo que varia com outra covariável; por exemplo: Como estimar precisamente como a proporção de novas postagens ou páginas web a favor de um candidato político varia com o tempo? Nós propomos novos métodos que preenchem essas lacunas importantes e os comparamos utilizando conjuntos de dados reais e similados. Finalmente, nós fornecemos uma análise teórica dos métodos propostos.por
dc.publisher.initialsUFSCarpor
dc.publisher.programPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEspor
dc.subject.cnpqCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICApor
dc.ufscar.embargoOnlinepor
dc.publisher.addressCâmpus São Carlospor
dc.contributor.authorlatteshttp://lattes.cnpq.br/5022046007587066por


Arquivos deste item

Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples