Mostrar registro simples

dc.contributor.authorSilva, Débora Monteiro Teixeira da
dc.date.accessioned2022-02-09T22:01:28Z
dc.date.available2022-02-09T22:01:28Z
dc.date.issued2021-11-17
dc.identifier.citationSILVA, Débora Monteiro Teixeira da. Estudo dos mecanismos da síntese de metanol via reação de hidrogenação do CO2 sobre catalisadores à base de cobre. 2021. Trabalho de Conclusão de Curso (Graduação em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/ufscar/15577.*
dc.identifier.urihttps://repositorio.ufscar.br/handle/ufscar/15577
dc.description.abstractThe use of CO2 as a carbon source in the production of more complex molecules with high added value is a topic that has been gaining ground in academia as the relationship between climate change and the increase in the concentration of CO2 in the atmosphere is confirmed. In this sense, one of the processes widely investigated is the hydrogenation of CO2 via heterogeneous catalysis. One of the most interesting products that can be produced via heterogeneous catalysis is methanol (H3COH). The present work aims to critically review studies that contributed to the development of the field of catalytic hydrogenation of CO2 to methanol on copper-based materials, pointing out the main advances, challenges and promising directions to be followed. It is agreed that the two main mechanisms of methanol synthesis via exclusive hydrogenation of CO2 over copper-based catalysts are (i) the formate route and (ii) the RWGS+CO-hydro route. The development of these routes is strongly related to the interaction between the surface and the intermediate species formed during the synthesis. In the formate route, the first intermediate formed is the formate itself (HCOO*). The formation of this intermediate occurs through the interaction of CO2(g) with a hydride adsorbed to the surface. After this first step, the following hydrogenations are observed: HCOO*→H2COO*→H2COOH→H3CO*→H3COH*→H3COH(g). In the RWGS+CO-hydro route, the first intermediate formed is the carboxyl (COOH*). This species is formed after the hydrogenation of one of the oxygen atoms of the adsorbed CO2. Carboxyl, however, is an unstable species on copper-based catalysts and dissociates quickly, leading to the formation of CO* and OH*. Although the first intermediate in this route is carboxyl, it is a consensus that the key intermediate for methanol production via the RWGS+CO hydro route is CO*. After its formation, CO* can be hydrogenated, leading to methanol synthesis, or desorbed, leading to the formation of CO(g). Pure copper surfaces are excellent RWGS catalysts, however, in these catalysts the CO* formed is easily desorbed, therefore methanol synthesis via RWGS+COhydro is negligible over pure copper. One of the strategies that can be adopted to increase methanol production via the RWGS+CO-hydro route over copper catalysts is the addition of dopants that act to stabilize CO* and the HCO* species, formed in the first hydrogenation of CO*. After the production of CO*, the hydrogenations follow: CO*→HCO*→H2CO→H3CO* → H3COH* → H3COH(g). Recently, studies have shown that the presence of water in small amounts promotes global methanol production. The main results presented in the literature indicate that the water molecule can act as a hydrogen donor species, reducing the activation energy of the processes of formation of O-H bonds and the breaking of the C-O(H) bond. However, in addition to hydrogenating the intermediates of this synthesis, the presence of water in the reaction medium may be related to surface changes, such as increased surface basicity and the formation of oxides.eng
dc.description.sponsorshipNão recebi financiamentopor
dc.language.isoporpor
dc.publisherUniversidade Federal de São Carlospor
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectMetanolpor
dc.subjectCO2por
dc.subjectHidrogenaçãopor
dc.subjectFormiatopor
dc.subjectRWGS+CO-hidropor
dc.subjectMethanoleng
dc.subjectHydrogenationeng
dc.subjectFormateeng
dc.subjectRWGS+CO-hydroeng
dc.titleEstudo dos mecanismos da síntese de metanol via reação de hidrogenação do CO2 sobre catalisadores à base de cobrepor
dc.title.alternativeStudy of the mechanisms of methanol synthesis via CO2 hydrogenation reaction on copper-based catalystseng
dc.typeTCCpor
dc.contributor.advisor1Gomes, Janaina Fernandes
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6718634914051168por
dc.description.resumoO emprego do CO2 como fonte de carbono na produção de moléculas mais complexas e de alto valor agregado é um tema que vem ganhando espaço na academia à medida em que a relação entre mudanças climáticas e o aumento da concentração do CO2 na atmosfera são confirmadas. Nesse sentido, um dos processos amplamente investigados é a hidrogenação do CO2 via catálise heterogênea. Um dos produtos de maior interesse que pode ser produzido via catálise heterogênea é o metanol (H3COH). O presente trabalho tem por objetivo revisar criticamente estudos que contribuíram para o desenvolvimento da área de hidrogenação catalítica do CO2 a metanol sobre materiais à base de cobre, apontar os principais avanços, desafios e direções promissoras a serem seguidas. É consenso que os dois principais mecanismos da síntese de metanol via hidrogenação exclusiva de CO2 sobre catalisadores à base de cobre são (i) a rota do formiato e (ii) a rota RWGS+CO-hidro. O desenvolvimento de uma ou outra rota está fortemente relacionado à interação entre a superfície e as espécies intermediárias formadas ao longo da síntese. Na rota do formiato, o primeiro intermediário formado é o próprio formiato (HCOO*). A formação desse intermediário se dá através da interação do CO2(g) com um hidreto adsorvido à superfície. Após essa primeira etapa seguem-se as hidrogenações: HCOO*→H2COO*→ H2COOH → H3CO* → H3COH* → H3COH(g). Na rota da RWGS+COhidro, o primeiro intermediário formado é a carboxila (COOH*). A carboxila é formada após a hidrogenação de um dos oxigênios do CO2 adsorvido. A carboxila, entretanto, é uma espécie instável sobre catalisadores à base de cobre e se dissocia rapidamente, levando à formação de CO* e OH*. Embora o primeiro intermediário dessa rota seja a carboxila, é consenso que o intermediário chave da produção de metanol via rota RWGS+CO-hidro é o CO*. Após a sua formação, o CO* pode ser hidrogenado, levando à síntese de metanol, ou dessorvido, levando à formação de CO(g). Superfícies de cobre puro são excelentes catalisadores da RWGS, entretanto, nesses catalisadores, o CO* formado é facilmente dessorvido, por isso, a síntese de metanol via RWGS+CO hidro é insignificante sobre cobre puro. Uma das estratégias que podem ser adotadas, visando o aumento da produção de metanol via rota RWGS+CO-hidro sobre catalisadores de cobre, é a adição de dopantes que atuem na estabilização do CO* e da espécie HCO*, formada na primeira hidrogenação do CO*. Após a produção do CO* seguemse as hidrogenações: CO*→HCO*→H2CO→ H3CO* → H3COH* → H3COH(g). Recentemente, estudos têm demonstrado que a presença de água em pequenas quantidades promove a produção global de metanol. Os principais resultados apresentados na literatura indicam que a molécula de água pode atuar como uma espécie doadora de hidrogênio, reduzindo a energia de ativação dos processos de formação de ligações O-H e do rompimento da ligação C-O(H). Entretanto, além de hidrogenar os intermediários dessa síntese, a presença de água no meio reacional pode estar relacionada à modificações superficiais, como o aumento da basicidade da superfície e a formação de óxidos.por
dc.publisher.initialsUFSCarpor
dc.subject.cnpqENGENHARIAS::ENGENHARIA QUIMICA::TECNOLOGIA QUIMICApor
dc.publisher.addressCâmpus São Carlospor
dc.contributor.authorlatteshttp://lattes.cnpq.br/0463179902287965por
dc.publisher.courseEngenharia Química - EQpor


Arquivos deste item

Thumbnail
Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples

Attribution-NonCommercial-NoDerivs 3.0 Brazil
Exceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivs 3.0 Brazil