Mostrar registro simples

dc.contributor.authorMedeiros, Klaus André de Sousa
dc.date.accessioned2023-04-05T18:27:59Z
dc.date.available2023-04-05T18:27:59Z
dc.date.issued2023-03-09
dc.identifier.citationMEDEIROS, Klaus André de Sousa. Paredes de contraventamento de alvenaria grauteadas e armadas nas extremidades: comportamento, capacidade, desempenho sísmico e modelos simplificados de projeto. 2023. Tese (Doutorado em Engenharia Civil) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/ufscar/17617.*
dc.identifier.urihttps://repositorio.ufscar.br/handle/ufscar/17617
dc.description.abstractPartially grouted masonry structures are widely used worldwide, preferably in regions with low and mid-intensity wind and seismic loads. Thus, this thesis focuses on partially grouted masonry walls (PGMW), especially those with grout and reinforcement placed at their ends. The objectives were to evaluate the in-plane behavior, capacity, and seismic performance of multi-story coupled masonry walls, and to assess simplified design models. The thesis is divided into four parts. In the first part, finite element (FE) models were developed to assess the influence of several parameters on the load capacity, deflection, and initial stiffness of multi-story PGMW with openings. The base model was validated with experimental data from three walls tested previously by the research group. The analyses indicated that the load capacity of masonry walls was sensitive to the ungrouted and grouted masonry strengths, mortar shear strength, vertical reinforcement ratio, aspect ratio, and axial stress; and almost insensitive to the opening size, reinforcement spacing, and horizontal reinforcement ratio. The deflection of the walls had well-defined correlations with the masonry strength, vertical reinforcement, axial stress, and aspect ratio. The initial stiffness was especially sensitive to the axial stress and the aspect ratio, but weakly correlated with the opening size, and the spacing and size of the reinforcement. In the second part, relevant existing shear equations, including the equations of the TMS 402/602 (2016) and the CSA S304 (2014), were evaluated, and a new equation was proposed. Also, different approaches were examined to determine the most consistent method of predicting the shear load capacity (SLC) of single and multi-story PGMW with openings. The database used in this study comprises ninety-six masonry walls created using the previously developed FE model, which was adjusted and recalibrated, and fifty-nine experimental masonry walls reported in the literature. The statistical analysis showed that the new proposed equation performed more precisely than the other shear equations and highlighted the need of updating the expressions in TMS 402/602 (2016) and the CSA S304 (2014) since those equations made the most inaccurate predictions of those assessed. The results confirm that is unsafe to calculate the SLC of a wall ignoring the openings. The most accurate predictions for the perforated walls were obtained using the proposed equation considering the strength of the wall as the sum of the strength of the wall piers with dimensions defined by the openings of the same story. The third part focused on evaluating the in-plane behavior and seismic performance of multi-story perforated PGMW with grout and reinforcement placed at the ends. The FE model was further validated against more specific data from the previous experimental tests. Besides two traditional bilinear idealizations for the actual wall response, a trilinear approach was presented with deduced equations for the seismic performance factors (SPFs). Results demonstrated that the reinforced masonry beam over the openings effectively coupled the wall piers yielding a frame-type behavior. Also, the results suggest that the walls behaved as a continuous frame, with the grouted parts acting like columns and the ungrouted parts acting like confined masonry. The loss of ductility evidenced in the backbone curves and the decrease of the SPFs confirmed that a high vertical pre-compression led the walls to a brittle response while also increasing the lateral load capacity. Concentrating the grouting and reinforcement at the wall pier ends showed a similar detailing design efficiency compared to distributing them along the wall piers. The stiffness degradation was more intense when the walls were subjected to a lower pre-compression level. Furthermore, the stiffness degradation curves were best fitted with power and logarithmic functions for walls with the lower and higher axial load, respectively. In the fourth part, linear and non-linear frame models were assessed in simulating the in-plane load-displacement response of multi-story, perforated PGMW. Different configurations of linear frame models were assessed for replicating the initial lateral stiffness of the walls: additional involvement of SPFs and ultimate top drift limits enabled assessment of prediction of an idealized load-displacement response. Also, a new non-linear frame model approach was evaluated to simulate the actual load-displacement response of the walls. Results indicated that including rigid offsets on the horizontal and vertical elements of the portal frame model resulted in an initial lateral stiffness close to that of experimental walls. It was possible to reproduce the idealized lateral response of the walls using the initial lateral stiffness of the linear models associated with adequate SPFs and ultimate top drifts. The idealized curves better matched the actual response when the lateral stiffness of the linear models was closer to that of the reference walls. An imposed ultimate drift higher than the actual amplified the estimation of the lateral load capacity and vice-versa, using all the approaches assessed. Values of 0.4% and 0.2% for the ultimate top drifts proved to be reasonable options for the cases in which the walls were submitted to a pre-compression of 0.04fm' and 0.2fm', respectively. Furthermore, the proposed non-linear braced frame model could predict the envelope curves of the experimental walls up to the peak load but did not present the expected strength degradation in the post-peak stage.eng
dc.description.sponsorshipNão recebi financiamentopor
dc.language.isoengeng
dc.publisherUniversidade Federal de São Carlospor
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectAlvenaria estruturalpor
dc.subjectParedes de contraventamentopor
dc.subjectCapacidade de cargapor
dc.subjectDesempenho sísmicopor
dc.subjectModelos simplificadospor
dc.subjectStructural masonryeng
dc.subjectShear wallseng
dc.subjectLoad capacityeng
dc.subjectSimplified modelseng
dc.subjectSeismic performanceeng
dc.titleParedes de contraventamento de alvenaria grauteadas e armadas nas extremidades: comportamento, capacidade, desempenho sísmico e modelos simplificados de projetopor
dc.title.alternativeMasonry shear walls grouted and reinforced at their ends: behavior, capacity, seismic performance, and simplified design modelseng
dc.typeTesepor
dc.contributor.advisor1Parsekian, Guilherme Aris
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7798651726059215por
dc.contributor.advisor-co1Shrive, Nigel Graham
dc.description.resumoEstruturas de alvenaria parcialmente grauteadas são amplamente utilizadas em todo o mundo, preferencialmente em regiões com ventos e sismos de baixa e média intensidade. Assim, esta tese acerta sobre paredes de alvenaria parcialmente grauteadas (PAPG), especialmente aquelas com graute e armadura concentrados em suas extremidades. Os objetivos foram avaliar o comportamento no plano, capacidade, desempenho sísmico e modelos simplificados de projeto de paredes de alvenaria acopladas de vários andares. A tese está dividida em quatro partes. Na primeira parte, modelos de elementos finitos (EF) foram desenvolvidos para avaliar a influência de vários parâmetros na capacidade de carga, deslocamento lateral e rigidez inicial de PAPG de vários andares e com aberturas. O modelo base foi validado com dados experimentais de três paredes testadas previamente pelo grupo de pesquisa. As análises indicaram que a capacidade de carga das paredes foi sensível às resistências da alvenaria não grauteada e grauteada, resistência ao cisalhamento da argamassa, taxa de armadura vertical, relação de aspecto e tensão axial; e quase insensível ao tamanho da abertura, espaçamento das armaduras e taxa da armadura horizontal. O deslocamento lateral das paredes teve correlações bem definidas com a resistência da alvenaria, armadura vertical, tensão axial e relação de aspecto. A rigidez inicial foi especialmente sensível à tensão axial e à relação de aspecto, mas fracamente correlacionada com o tamanho da abertura, espaçamento e taxa da armadura. Na segunda parte, relevantes equações de cisalhamento existentes, incluindo as equações da TMS 402/602 (2016) e da CSA S304 (2014), foram avaliadas e uma nova equação foi proposta. Ademais, diferentes abordagens foram examinadas para determinar o método mais consistente de prever a capacidade de carga de cisalhamento (CCC) de PAPG de um e vários andares com aberturas. A base de dados utilizada neste estudo é composta por noventa e seis paredes de alvenaria criadas com o modelo EF previamente desenvolvido, que foi ajustado e recalibrado, e cinquenta e nove paredes de alvenaria experimentais relatadas na literatura. A análise estatística mostrou que a nova equação proposta teve um desempenho mais preciso do que as outras equações de cisalhamento e destacou a necessidade de atualizar as expressões na TMS 402/602 (2016) e na CSA S304 (2014), uma vez que essas equações fizeram as previsões mais imprecisas dentre todas avaliadas. Os resultados confirmam que não é seguro calcular a CCC de uma parede ignorando as aberturas. As previsões mais precisas para as paredes com aberturas foram obtidas usando a equação proposta considerando a resistência da parede como a soma da resistência dos nembos da parede com dimensões definidas pelas aberturas do mesmo andar. A terceira parte concentrou-se na avaliação do comportamento no plano e do desempenho sísmico de PAPG com aberturas, vários andares e com graute e armadura concentrados nas extremidades. O modelo EF foi suplementarmente validado contra dados mais específicos dos testes experimentais prévios. Além de duas idealizações bilineares tradicionais para a resposta real da parede, uma abordagem trilinear foi apresentada com equações deduzidas para os coeficientes de desempenho sísmico (CDS). Os resultados demonstraram que a viga de alvenaria armada sobre as aberturas acoplou efetivamente os nembos da parede, gerando um comportamento do tipo pórtico. Outrossim, os resultados sugerem que as paredes se comportaram como um pórtico contínuo, com as partes grauteadas atuando como pilares e as partes não grauteadas atuando como alvenaria confinada. A perda de ductilidade evidenciada nas envoltórias e a diminuição dos CDS confirmaram que uma elevada pré-compressão vertical induziu as paredes a uma resposta frágil ao mesmo tempo que aumentou a capacidade de carga lateral. Concentrar o graute e a armadura nas extremidades dos nembos da parede gerou uma eficiência de detalhamento de projeto semelhante com a distribuição ao longo dos nembos da parede. A degradação da rigidez foi mais intensa quando as paredes foram submetidas a um menor nível de pré-compressão. Além disso, as curvas de degradação de rigidez foram melhor ajustadas com as funções de potência e logarítmica para paredes com carga axial menor e maior, respectivamente. Na quarta parte, modelos lineares e não lineares de pórtico foram estudados na simulação da resposta força-deslocamento no plano de PAPG com aberturas e de vários andares. Diferentes configurações de modelos de pórticos lineares foram avaliadas para replicar a rigidez lateral inicial das paredes; envolvimento adicional destes com CDS e com drifts limites de topo permitiram a uma previsão de uma resposta força-deslocamento idealizada. Além disso, uma nova abordagem de modelo não linear de pórtico foi analisada para simular a resposta real força-deslocamento das paredes. Os resultados indicaram que a inclusão de trechos rígidos nos elementos horizontais e verticais do modelo de pórtico simples resultou em uma rigidez lateral inicial próxima à das paredes experimentais. Foi possível reproduzir a resposta lateral idealizada das paredes usando a rigidez lateral inicial dos modelos lineares associados a CDS adequados e drifts limites de topo. As curvas idealizadas corresponderam melhor à resposta real quando a rigidez lateral dos modelos lineares estava mais próxima daquela das paredes de referência. Um drift imposto maior que o real ampliou a estimativa da capacidade de carga lateral e vice-versa, usando todas as abordagens avaliadas. Valores de 0,4% e 0,2% para os drifts de topo mostraram-se opções razoáveis para os casos em que as paredes foram submetidas a uma pré-compressão de 0,04fm' e 0,2fm', respectivamente. Ademais, o modelo de pórtico não linear proposto conseguiu prever as curvas de envoltória das paredes experimentais até o pico de carga, mas não apresentou a degradação de resistência esperada no estágio pós-pico.por
dc.publisher.initialsUFSCarpor
dc.publisher.programPrograma de Pós-Graduação em Engenharia Civil - PPGECivpor
dc.subject.cnpqENGENHARIAS::ENGENHARIA CIVIL::ESTRUTURASpor
dc.publisher.addressCâmpus São Carlospor
dc.contributor.authorlatteshttp://lattes.cnpq.br/4914700601756642por


Arquivos deste item

Thumbnail
Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples

Attribution-NonCommercial-NoDerivs 3.0 Brazil
Exceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivs 3.0 Brazil