Processos de decisões de Markov
Resumen
This study explores Sequential Markov Decision Models, or Markov Decision Processes (MDPs), which are used for sequential decision-making in stochastic environments. With practical applications in areas like marketing and inventory management, MDPs help optimize adaptive decisions, such as advertising campaigns and inventory restocking, reducing costs and enhancing customer experience. The research is structured into chapters that provide a gradual approach to the topic. The first chapter introduces a probability foundation, essential for understanding Markov Processes. The second chapter focuses on Markov Chains, fundamental to comprehending MDPs. Subsequent chapters delve into non-homogeneous aspects of Markov Processes, detailing temporal variations and variable rewards, enabling the modeling of diverse phenomena. The work includes theoretical and practical examples to illustrate concepts and explores topics such as absorbing states and stopping problems in MDPs, making theory application more accessible and enhancing reader comprehension.
Colecciones
El ítem tiene asociados los siguientes ficheros de licencia:
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivs 3.0 Brazil
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Família Weibull de razão de chances na presença de covariáveis
Gomes, André Yoshizumi (Universidade Federal de São Carlos, UFSCar, Programa de Pós-Graduação em Estatística - PPGEs, , 18/03/2009)The Weibull distribuition is a common initial choice for modeling data with monotone hazard rates. However, such distribution fails to provide a reasonable parametric _t when the hazard function is unimodal or bathtub-shaped. ... -
Melquiades: um programa de Monte Carlo para a simulação de sistemas multicomponentes utilizando modelos de potenciais arbitrários
Blanco, Asdrubal Lozada (Universidade Federal de São Carlos, UFSCar, Programa de Pós-Graduação em Química - PPGQ, Câmpus São Carlos, 23/02/2017)It was developed a general purpose Metropolis Monte Carlo program, which allows to use arbitrary mathematical functions as potential functions for interaction energy calculation, in order to simulate multicomponent system, ... -
Algoritmos de estimação para modelos Markovianos não-homogêneos
Sabillón, Gustavo Alexis (Universidade Federal de São Carlos, UFSCar, Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs, Câmpus São Carlos, 27/02/2020)Hidden Markov models are a statistical paradigm which can be used to mode stochastic processeswhere the observable values are directly dependent on a sequence of hidden random variables.In the context of the hidden Markov ...