Teses e dissertações: Recent submissions
Now showing items 21-40 of 174
-
Reliability analysis of repairable systems considering unobserved heterogeneity and competing risks
(Universidade Federal de São Carlos, UFSCar, Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs, Câmpus São Carlos, 09/10/2023)In repairable systems, the failure process defined by the failure intensity function can be impacted by three crucial characteristics: the type of repair performed after the failures occur, the underlying cause of the ... -
Uma abordagem bayesiana para avaliação de concordância entre dispositivos de medição de uma variável funcional
(Universidade Federal de São Carlos, UFSCar, Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs, Câmpus São Carlos, 15/09/2023)It is common in the industrial and clinical context to seek more precision, accurate, accessible and cheaper equipments. Therefore, it is important for these fields to have a way to compare the agreement of new devices ... -
New families of linear and partially linear quantile regression models under reparameterized Marshall-Olkin distributions
(Universidade Federal de São Carlos, UFSCar, Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs, Câmpus São Carlos, 31/07/2023)In this dissertation, we propose families of linear and partially linear quantile regression models, where the response variable follows a reparameterized Marshall-Olkin distribution with support on the real line. This ... -
Modelos estocásticos de transmissão para análises genéticas de características epidemiológicas
(Universidade Federal de São Carlos, UFSCar, Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs, Câmpus São Carlos, 01/08/2023)Epidemics can significantly affect animal production and generate large economic impacts. Furthermore, current practices for treating and controlling infectious diseases in farmed animals do not always show the desired ... -
Modelos alternativos para classificação em dados desbalanceados
(Universidade Federal de São Carlos, UFSCar, Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs, Câmpus São Carlos, 11/08/2023)In binary classification, the most used method is logistic regression model. However, several authors indicate that this model is not suitable when the data are imbalanced; for this, different asymmetric link functions as ... -
Modelos de fração de cura com fragilidade inflacionado de zero sob diferentes esquemas de ativação
(Universidade Federal de São Carlos, UFSCar, Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs, Câmpus São Carlos, 22/08/2023)In this doctoral thesis, the proposed methodology is based on zero-inflated survival data to deal with situations where there is a fraction of inflated (or adjusted) zeros and cured cases considering different activation ... -
Métodos Bayesianos para seleção de modelos de mistura de distribuições normais e t de Student assimétricas
(Universidade Federal de São Carlos, UFSCar, Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs, Câmpus São Carlos, 28/06/2023)In this work, we consider mixture models whose components of the mixture are modeled by the skew normal and skew t distributions. For the estimation of these skew mixtures models, we used a Bayesian approach, via Markov ... -
Bayesian spatial process models for activation patterns in transcranial magnetic stimulation mapping
(Universidade Federal de São Carlos, UFSCar, Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs, Câmpus São Carlos, 07/07/2023)In recent years, Spatial statistical models have been gaining rapid attention for solving problems in biological systems due to the improvement in spatial data collection. It has proven extremely important in unveiling ... -
Modelos Lomax assimétricos: uma nova abordagem para a classificação de dados binários desbalanceados
(Universidade Federal de São Carlos, UFSCar, Programa de Pós-Graduação em Estatística - PPGEs, Câmpus São Carlos, 17/05/2023)Imbalanced data refers to a dataset where one class has significantly fewer observations than the other class. This can lead to poor performance of both machine learning algorithms and statistical models, since most of ... -
Modelo de regressão chances de sobrevivência proporcionais para dados discretos com presença de censura
(Universidade Federal de São Carlos, UFSCar, Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs, Câmpus São Carlos, 25/04/2023)Survival models, in their majority, consider continuous survival times. However, in several studies these times are discrete, and in some occasions, it is not advisable to use a continuous model to analyze discrete data. ... -
Inferência em redes aleatórias com pesos discretos
(Universidade Federal de São Carlos, UFSCar, Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs, Câmpus São Carlos, 04/04/2023)Random networks have been widely used to describe interactions between objects, including interpersonal relationships between individuals. One of the most important features of networks is the presence of communities, which ... -
Small and time-efficient distribution-free predictive regions
(Universidade Federal de São Carlos, UFSCar, Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs, Câmpus São Carlos, 02/05/2023)Predicting a target variable (response) is often the main objective of many studies and investigations. In such scenarios, there are usually other variables, known as covariates, that are more readily available and can ... -
Propagação de rumor em uma população cética em N
(Universidade Federal de São Carlos, UFSCar, Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs, Câmpus São Carlos, 30/03/2023)We consider two models for information propagation in N. In both models, the individuals (one per site of N) have random, independent, and equally distributed radius. At the beginning only the individual at 0 has the ... -
Using VAE for incomplete educational data
(Universidade Federal de São Carlos, UFSCar, Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs, Câmpus São Carlos, 13/03/0023)In Psychometrics, especially in educational assessments, incomplete databases are common. An individual may leave items unanswered in an assessment due to lack of time, forgetting the content involved, nervousness, or ... -
Teoremas limite para variáveis aleatórias de Bernoulli dependentes
(Universidade Federal de São Carlos, UFSCar, Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs, Câmpus São Carlos, 22/03/2023)In this work, we consider a sequence of correlated Bernoulli variables whose probability of success for the current trial depends conditionally on previous trials. This conditional probability is given as a linear function ... -
Bayesian estimation of dynamic mixture models by wavelets
(Universidade Federal de São Carlos, UFSCar, Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs, Câmpus São Carlos, 20/04/2023)Gaussian mixture models are used successfully in various statistical learning applications. The good results provided by these models encourage several generalizations of them. Among possible adaptations, one can assume a ... -
Inferência Bayesiana para modelos de volatilidade estocástica baseados em mistura de escala da distribuição normal assimétrica
(Universidade Federal de São Carlos, UFSCar, Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs, Câmpus São Carlos, 28/02/2023)This dissertation aims to evaluate and compare the performance of the No-U-Turn Sampler (NUTS) algorithm, implemented in the Stan software, in estimating the parameters of stochastic volatility models with leverage based ... -
Seleção de covariância para o modelo grafo gaussiano via reversible jump
(Universidade Federal de São Carlos, UFSCar, Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs, Câmpus São Carlos, 24/02/2023)The purpose of the Graphical Gaussian model is to find the covariance structure that represents the relationship between random variables, whose joint distribution is a multivariate normal. This is a tool used to modeling ... -
Scalable and interpretable kernel methods based on random Fourier features
(Universidade Federal de São Carlos, UFSCar, Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs, Câmpus São Carlos, 29/03/2023)Kernel methods are a class of statistical machine learning models based on positive semidefinite kernels, which serve as a measure of similarity between data features. Examples of kernel methods include kernel ridge ... -
Estimação do número de comunidades no modelo estocástico de blocos com correção de grau
(Universidade Federal de São Carlos, UFSCar, Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs, Câmpus São Carlos, 14/12/2022)The stochastic block model (SBM) is a random graph model that splits the set of vertices into blocks, and the probability connection between each pair of vertices depends on the blocks to which the vertices belong. The ...