Crescimento anódico e caracterização de óxidos coloridos de titânio em eletrólitos alternativos
Resumo
A Studies on the anodic growth of oxides that passivate the biomaterial titanium, and their electrochemical, morphological and structural parameters were carried out in this work. The oxides were obtained galvanostatically at 9.7 mA cm-2, in the acetic acid (HAc) and sodium bicarbonate (NaBic) green electrolytes at room temperature, at different concentrations and final anodization potential (Efinal). Besides that, the formation of a spectrum of colors on the anodized Ti cp was investigated, and a correlation between these colors and the anodizing conditions was proposed. The open circuit potential (Eca) measurements indicated that the higher thermodynamic tendency for the Ti passivity occurred in the 0.1 and 0.5 mol L-1 HAc solutions (~ 0.18 V vs. SCE). On the other hand, the cyclic voltammograms presented the typical valve metal profiles, without evidences of localized corrosion even in a chloride-containing electrolyte (Ringer solution). Moreover, the Ti anodization rates in the different electrolytes were also estimated, with values ranging from 1.8 to 2.7 nm V 1. Both RXD and micro-Raman spectroscopy data allowed to infer that TiO2 is the predominant oxide, partially crystalline and presenting the anatase phase. Finally, SEM analyses indicated rough and porous oxide films for all the anodization conditions. Therefore, the green electrolytes HAc and NaBic, proposed for the Ti anodization process, seem to be promising for producing thick oxides which present good electrochemical and physical properties to be applied as implantable materials.