UNIVERSIDADE FEDERAL DE SÃO CARLOS CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA DEPARTAMENTO DE QUÍMICA PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

"SÍNTESE, CARACTERIZAÇÃO DE COCRISTAIS E SAIS-COCRISTAIS DE INGREDIENTES FARMACÊUTICOS ATIVOS"

Felix Nicolai Delling*

Tese apresentada como parte dos requisitos para obtenção do título de DOUTOR EM CIÊNCIAS, área de concentração: QUÍMICA INORGÂNICA.

Orientador: Julio Zukerman-Schpector

*Bolsista CNPq e PDSE-Capes

São Carlos - SP 2016

Ficha catalográfica elaborada pelo DePT da Biblioteca Comunitária UFSCar Processamento Técnico

com os dados fornecidos pelo(a) autor(a)

Delling, Felix Nicolai Síntese, caracterização de cocristais e sais-cocristais de ingredientes farmacêuticos ativos / Felix Nicolai Delling. -- São Carlos : UFSCar, 2016. D357s 271 p.

> Tese (Doutorado) -- Universidade Federal de São Carlos, 2016.

1. Cocristais. 2. Ingrediente farmacêutico ativo. 3. Síntese. 4. Mecanismo reacional. 5. Química supramolecular. I. Título.

UNIVERSIDADE FEDERAL DE SÃO CARLOS

Centro de Ciências Exatas e de Tecnologia Programa de Pós-Graduação em Química

Folha de Aprovação

Assinaturas dos membros da comissão examinadora que avaliou e aprovou a Defesa de Tese de Doutorado do candidato Felix Nicolai Delling, realizada em 29/02/2016:

Prof. Dr. Julio Zukerman Schpector UFSCar

Prof. Dr. Carlos de Oliveira Paiva Santos UNESP

Profa. Dra. Regina Helena de Almeida Santos IQSC/USP

> Prof. Dr. Márcio Weber Paixão UFSCar

Prof. Dr. Marco Antonio Barbosa Ferreira UFSCar

Aos meus pais, Ilsomar e Sueli, e meu irmão, Alex, pelo constante amor, companheirismo, apoio e incentivo para meu crescimento pessoal e profissional.

Agradecimentos

Agradeço primeiramente ao Prof. Dr. Julio Zukerman-Schpector e à Prof.ª Dr.ª Ignez Caracelli pela constante orientação, paciência e amizade nestes 5 anos.

Ao Prof. Dr. Juan José Novoa Vide pela coorientação e amizade.

Aos professores e secretárias da PPG-Química da UFSCar pela ajuda em minha formação.

Aos professores Dr. Emerson Rodrigues de Camargo (LIEC – UFSCar) e Dr^a Luciana Rebelo Guilherme (UnUCET – UEG) por permitirem o uso de seus equipamentos e laboratórios.

Aos meus queridos amigos do LaCrEMM e BioMat, que para evitar injustiças não vou citar nomes.

Aos meus amigos da Universidade de Barcelona, com quem dividi um ano desta jornada.

A todos os amigos com quem eu dividi as contas de aluguel, comida, água e luz.

Ao CNPQ e Capes pela bolsa concedida.

A todos meus amigos de Maripá, Toledo e São Carlos que me ajudaram de alguma maneira na realização deste trabalho.

ABREVIATURAS

ΔH – Variação de entalpia

AAD - Ácido adípico

ABZ – Ácido benzoico

ACN - Acetonitrila

AFU - Ácido fumárico

AHBZ – Ácido 4-hidroxibenzoico

AIT - Ácido itacônico

Ala – Alanina

AME – Ácido maleico

AMI – Ácido málico

AMO - Ácido malônico

AOX – Ácido oxálico

Asn - Asparagina

ASO - Ácido sórbico

ASU - Ácido succínico

ATR - Refletância total atenuada

CBZ - Carbamazepina

CBZ_{hid} – Carbamazepina hidratada

CCD - Charge-Coupled Device

CSD - Cambridge Structural Database

cts - Contagens

DFT - Teoria do funcional da densidade

DNA - Ácido desoxirribonucleico

DPP - Dropropizina

DPP_{hid} – Dropropizina hidratada

DRXP - Difração de raio X de pó

DSC - Calorimetria diferencial de varredura

DTGS – Detector de sulfato de triglicina deuterado

E_a – Energia de ativação

 E_r – Energia relativa

ESI – Ionização por *Eletrospray*

ESI/MS-TOF – Espectrometria de massa por tempo de voo com ionização por eletrospray

Glu – Ácido glutâmico

Gly - Glicina

HIV - Vírus da imunodeficiência humana

IFA - Ingrediente Farmacêutico Ativo

lle - Isoleucina

Leu - Leucina

MEV - Microscopia eletrônica de varredura

Phe - Fenilalanina

RMSD – Root-mean-square deviation

Ser - Serina

SIDA – Síndrome da imunodeficiência adquirida (AIDS)

SMZ – Sulfametoxazol

TOF - Tempo de voo

Trp - Triptofano

Tyr - Tirosina

Val - Valina

SEP – Superfície de energia potencial

LISTA DE TABELAS

TABELA 3.1 – Parâmetros utilizados para os cálculos de single point	34
TABELA 3.2 – Parâmetros utilizados para os cálculos de SEP	34
TABELA 4.1 – Resumo das reações que apresentam formação de compostos	
de dropropizina para as metodologias de moagem no estado sólido, moagem no	
estado sólido com solvente e moagem no estado sólido com solvente e	
aquecimento	35
TABELA 4.2 – Dados cristalográficos e de refinamento do composto 3	60
TABELA 4.3 – Distâncias e ângulos de ligação para os grupos ácido e básico	
do composto 3	61
TABELA 4.4 – Dados cristalográficos e de refinamento do sulfametoxazol	
hemihidratado	128
TABELA 4.5 – Ângulos de torsão do plano formado em volta da molécula de	
água	131
TABELA 4.6 – Especificações de cada parâmetro para o mecanismo direto	175
TABELA 4.7 – Especificações de cada parâmetro para o mecanismo induzido	175
TABELA 4.8 – Energias absolutas (<i>hartree</i>) e relativas (kcal/mol)	180
TABELA 4.9 – Distâncias em Å, entre os átomos envolvidos na transferência	
dos prótons	180

LISTA DE FIGURAS

FIGURA 1.1 – Diferentes fases cristalinas a partir do mesmo bloco de construção	2
FIGURA 1.2 – Duas projeções de um composto de inclusão	4
FIGURA 1.3 – Os três tipos de interações π-π A) face-a-face, B) paralela com	
deslocamento e C) tipo T	5
FIGURA 1.4 – Parâmetros geométricos para a ligação de hidrogênio	6
FIGURA 1.5 – Principais ligações de hidrogênio fortes	7
FIGURA 1.6 – Principais ligações de hidrogênio médias	7
FIGURA 1.7 – Principais ligações de hidrogênio fracas	8
FIGURA 1.8 – Principais ligações de hidrogênio com sistemas π	8
FIGURA 1.9 – Representação de a) e b) homossíntons e c) heterossínton	9
FIGURA 1.10 – Organização do homosínton em a) dímero e b), c) e d) cadeias	10
FIGURA 1.11 – Ilustração da atuação das diferentes interações (forças)	
intermoleculares	11
FIGURA 1.12 – Níveis de organização estrutural no processo de produção de	
cocristais e seus polimorfos	13
FIGURA 1.13 – Número de trabalhos publicados na <i>Web of Science</i> ™, nos	
últimos 20 anos, que apresentam o termo (a) cocristal e (b) cocristal farmacêutico	14
FIGURA 1.14 – Diferença entre a) cocristal e b) sal-cocristal	16
FIGURA 1.15 – Representação da forma racêmica da DPP	18
FIGURA 1.16 – Representação da molécula de SMZ	19
FIGURA 1.17 – Representação da molécula da CBZ	20
FIGURA 4.1 – Padrões de difração de raio X de pó para DPP (preto), ABZ	
(vermelho) e composto 1 (azul)	37
FIGURA 4.2 – Padrões de difração de raio X de pó para ABZ (preto), mistura	
física da DPP com ABZ proporção molar 1:2 (vermelho) e composto 1 (azul)	37
FIGURA 4.3 – Padrões de difração de raio X de pó para ABZ (preto), mistura	
física da DPP com ABZ proporção molar 2:1 (vermelho) e composto 1 (azul)	38
FIGURA 4.4 – Curvas de DSC para DPP (preto), ABZ (vermelho) e composto 1	
(azul)	39
FIGURA 4.5 – Espectros de infravermelho para DPP (preto), ABZ (vermelho) e	
composto 1 (azul) na região de 4000-2000 cm ⁻¹	40
FIGURA 4.6 – Espectros de infravermelho para DPP (preto), ABZ (vermelho) e	
composto 1 (azul) na região de 2000-700 cm ⁻¹	41
FIGURA 4.7 – Espectro de massa no positivo para o composto 1	42
FIGURA 4.8 – Espectro de massa no negativo para o composto 1	43
FIGURA 4.9 – Padrões de difração de raio X de pó para DPP _{hid} (preto), ABZ	
(vermelho) e composto 2 (azul)	44
FIGURA 4.10 – Padrões de difração de raio X de pó para composto 2 (preto),	
mistura da DPP _{hid} com ABZ proporção molar 1:2 (vermelho), mistura da DPP _{hid}	
com ABZ proporção molar 2:1 (azul). DPP _{bid} (verde) e ABZ (rosa)	44

FIGURA 4.11 – Padrões de difração de raio X de pó para composto 1 (preto) e	
composto 2 (vermelho). A) Ângulo 2 Theta variando de 5 a 60°. B) Ângulo 2	
Theta variando de 5 a 30°	45
FIGURA 4.12 – Curvas de DSC para DPP _{hid} (preto), ABZ (vermelho) e composto	
2 (azul)	46
FIGURA 4.13 – Espectros de infravermelho para DPP _{hid} (preto), ABZ (vermelho)	
e composto 2 (azul) na região de 4000-2000 cm ⁻¹	47
FIGURA 4.14 – Espectros de infravermelho para DPP _{hid} (preto), ABZ (vermelho)	
e composto 2 (azul) na região de 2000-700 cm ⁻¹	48
FIGURA 4.15 – Espectros de infravermelho para composto 1 (preto) e composto	
2 (vermelho) na região de 4000-1800 cm ⁻¹	49
FIGURA 4.16 – Espectros de infravermelho para composto 1 (preto) e composto	
2 (vermelho) na região de 1800-700 cm ⁻¹	50
FIGURA 4.17 – Espectro de massa no positivo para o composto 2	51
FIGURA 4.18 – Espectro de massa no negativo para o composto 2	51
FIGURA 4.19 – Padrões de difração de raio X de pó para DPP _{hid} (preto), AHBZ	
(vermelho) e composto 3 (azul)	53
FIGURA 4.20 – Padrões de difração de raio X de pó para DPP _{hid} (preto), mistura	
da DPP _{hid} com AHBZ proporção molar 1:2 (vermelho) e composto 3 (azul)	53
FIGURA 4.21 – Padrões de difração de raio X de pó para AHBZ (preto), mistura	- 4
da DPP _{hid} com AHBZ proporção molar 2:1 (vermelho) e composto 3 (azul)	54
FIGURA 4.22 – Curvas de DSC para DPP _{hid} (preto), ABZ (vermelho) e composto	
3 (azul)	55
FIGURA 4.23 – Espectros de infravermelho para DPP _{hid} (preto), AHBZ (vermelho)	
e composto 3 (azul) na região de 4000-2000 cm ⁻¹	56
FIGURA 4.24 – Espectros de infravermelho para DPP _{hid} (preto), AHBZ (vermelho)	57
e composto 3 (azul) na região de 2000-700 cm ⁻¹ FIGURA 4.25 – Espectro de massa no positivo para o composto 3	5 <i>1</i>
FIGURA 4.26 – Espectro de massa no negativo para o composto 3	59
FIGURA 4.27 – Esquema do composto 3	59 59
FIGURA 4.27 – Esquerna do composto 3, mostrando elipsoides de 50% de	59
probabilidade e os átomos de hidrogênio em uma escala arbitrária	61
FIGURA 4.29 – Interação entre o grupo ácido (O5) e o grupo básico (N2)	62
FIGURA 4.30 – Ligações de hidrogênio responsáveis pela formação do dímero	62
FIGURA 4.31 – Interação π · · · π responsável pela interação entre os dímeros	63
FIGURA 4.32 – Representação dos dímeros e cadeias do cátion de DPP	63
FIGURA 4.33 – Ligações de hidrogênio responsáveis pela formação da camada	64
FIGURA 4.34 – Representação das interações nos planos <i>a, b</i> e <i>c</i> da camada de	0-1
cátions de DPP, com as interações responsáveis pela formação do dímero	
(vermelho), formação da cadeia (verde) e formação da camada (azul)	64
FIGURA 4.35 – Ligações de hidrogênio responsáveis pela interação entre os	J 1
ânions carboxilato e uma molécula de água	65
FIGURA 4.36 – Representação da cadeia de ânions carboxilato	65
	50

FIGURA 4.37 – Ligações de hidrogênio feitas pela molécula de água responsável	
pela junção das cadeias de ânions carboxilato	66
FIGURA 4.38 – Representação da camada de ânions carboxilato formada com o	
auxílio da molécula de água	66
FIGURA 4.39 – Alinhamento em zigue-zague das moléculas de água	67
FIGURA 4.40 – Representação das interações nos planos a, b e c da camada de	
ânions carboxilato, com as interações responsáveis pela formação da cadeia	
(vermelho) e formação da camada (azul)	68
FIGURA 4.41 – Ligação de hidrogênio do cátion de DPP com o ânion carboxilato	
e a molécula de água	69
FIGURA 4.42 – Representação das camadas de cátions de DPP (verde) e ânions	
carboxilato (rosa) onde os íons apresentam o alinhamento perpendicular	69
FIGURA 4.43 – Representação das interações nos planos <i>a, b</i> e <i>c</i> do	00
empacotamento cristalino com as ligações de hidrogênio responsáveis pelo	
crescimento no eixo c (azul)	70
FIGURA 4.44 – Comparação entre o padrão cristalino do composto 3, simulado	70
. , , , , , , , , , , , , , , , , , , ,	71
(A) e experimental (B)	71
FIGURA 4.45 – Padrões de difração de raio X de pó para DPP (preto), AME	70
(vermelho) e composto 4 (azul)	72
FIGURA 4.46 – Padrões de difração de raio X de pó para DPP _{hid} (preto), mistura	
da DPP _{hid} com AME proporção molar 2:1 (vermelho) e composto 4 (azul)	73
FIGURA 4.47 – Curvas de DSC para DPP (preto), AME (vermelho) e composto 4	
(azul)	74
FIGURA 4.48 – Espectros de infravermelho para DPP (preto), AME (vermelho) e	
composto 4 (azul) na região de 4000-2000 cm ⁻¹	75
FIGURA 4.49 – Espectros de infravermelho para DPP (preto), AME (vermelho) e	
composto 4 (azul) na região de 2000-700 cm ⁻¹	76
FIGURA 4.50 – Espectro de massa no positivo para o composto 4	78
FIGURA 4.51 – Espectro de massa no negativo para o composto 4	78
FIGURA 4.52 – Padrões de difração de raio X de pó para DPP (preto), ASO	
(vermelho) e composto 5 (azul)	80
FIGURA 4.53 – Padrões de difração de raio X de pó para DPP _{hid} (preto), mistura	
	81
FIGURA 4.54 – Padrões de difração de raio X de pó para ASO (preto), mistura da	
DPP _{hid} com ASO proporção molar 2:1 (vermelho) e composto 5 (azul)	81
FIGURA 4.55 – Curvas de DSC para DPP (preto), ASO (vermelho) e composto 5	•
(azul)	82
FIGURA 4.56 – Espectros de infravermelho para DPP (preto), ASO (vermelho) e	02
composto 5 (azul) na região de 4000-2000 cm ⁻¹	83
	os
FIGURA 4.57 – Espectros de infravermelho para DPP (preto), ASO (vermelho) e	0.4
composto 5 (azul) na região de 2000-700 cm ⁻¹	84
FIGURA 4.58 – Espectro de massa no positivo para o composto 5	86
FIGURA 4.59 – Espectro de massa no negativo para o composto 5	86

FIGURA 4.60 – Padrões de difração de raio X de pó para DPP _{hid} (preto), mistura	
da DPP _{hid} com ASO proporção molar 2:1 à 25 °C (vermelho), mistura da DPP _{hid}	
com ASO proporção molar 2:1 à 40 °C (azul) e composto 5 (verde)	87
FIGURA 4.61 – Padrão de difração de raio X de pó mistura na proporção molar	
2:1 à 40 °C com a representação dos picos do composto 6 (triângulo azul),	
composto 5 (circulo verde) e DPP _{hid} (quadrado preto)	88
FIGURA 4.62 – Espectros de infravermelho para DPP _{hid} (preto), composto 5	
(vermelho) e composto 6 (azul) na região de 4000-2000 cm ⁻¹	89
FIGURA 4.63 – Espectros de infravermelho para DPP _{hid} (preto), composto 5	
(vermelho) e composto 6 (azul) na região de 2000-700 cm ⁻¹	90
FIGURA 4.64 – Padrões de difração de raio X de pó para DPP (preto), AOX	
(vermelho) e mistura 1:1 (azul)	91
FIGURA 4.65 – Padrões de difração de raio X de pó para DPP _{hid} (preto), AOX	
(vermelho) e composto 7 (azul)	92
FIGURA 4.66 – Padrões de difração de raio X de pó para mistura 1:1 utilizando a	l.
metodologia de moagem no estado sólido (preto) e composto 7 (vermelho)	93
FIGURA 4.67 - Curvas de DSC para DPPhid (preto), AOX (vermelho) e composto	ı
7 (azul)	94
FIGURA 4.68 – Espectros de infravermelho para DPP _{hid} (preto), AOX (vermelho)	
e composto 7 (azul) na região de 4000-2000 cm ⁻¹	95
FIGURA 4.69 – Espectros de infravermelho para DPP _{hid} (preto), AOX (vermelho)	
e composto 7 (azul) na região de 2000-700 cm ⁻¹	96
FIGURA 4.70 – Espectro de massa no positivo para o composto 7	97
FIGURA 4.71 – Espectro de massa no negativo para o composto 7	98
FIGURA 4.72 – Padrões de difração de raio X de pó para DPP _{hid} (preto), AOX	
(vermelho) e composto 8 (azul)	99
FIGURA 4.73 – Padrões de difração de raio X de pó para mistura 1:1 moagem no	
estado sólido (preto), composto 7 (vermelho) e composto 8 (azul)	99
FIGURA 4.74 – Curvas de DSC para DPP _{hid} (preto), AOX (vermelho) e composto	
8 (azul)	100
FIGURA 4.75 – Curvas de DSC para o composto 7 (preto) e composto 8	
(vermelho)	101
FIGURA 4.76 – Espectros de infravermelho para DPP _{hid} (preto), AOX (vermelho)	
e composto 8 (azul) na região de 4000-2000 cm ⁻¹	102
FIGURA 4.77 – Espectros de infravermelho para DPP _{hid} (preto), AOX (vermelho)	.02
e composto 8 (azul) na região de 2000-700 cm ⁻¹	103
FIGURA 4.78 – Comparação dos espectros de infravermelho para o composto 7	100
(preto) e o composto 8 (vermelho) na região de 4000-2000 cm ⁻¹	103
FIGURA 4.79 – Comparação dos espectros de infravermelho para o composto 7	100
(preto) e o composto 8 (vermelho) na região de 2000-700 cm ⁻¹	104
FIGURA 4.80 – Espectro de massa no positivo para o composto 8	104
FIGURA 4.81 – Espectro de massa no negativo para o composto 8	105
,	103
FIGURA 4.82 – Padrões de difração de raio X de pó para DPP _{hid} (preto), AFU	107
(vermelho) e composto 9 (azul)	107

FIGURA 4.83 – Padrões de difração de raio X de pó para DPP _{hid} (preto), mistura	
da DPP _{hid} com AFU proporção molar 1:2 (vermelho) e composto 9 (azul)	108
FIGURA 4.84 – Curvas de DSC para DPP _{hid} (preto), AFU (vermelho) e composto	
9 (azul)	109
FIGURA 4.85 – Espectros de infravermelho para DPP _{hid} (preto), AFU (vermelho)	
e composto 9 (azul) na região de 4000-2000 cm ⁻¹	110
FIGURA 4.86 – Espectros de infravermelho para DPP _{hid} (preto), AFU (vermelho)	
	111
	112
·	113
FIGURA 4.89 – Padrões de difração de raio X de pó para DPP _{hid} (preto), AFU	
(vermelho) e composto 10 (azul)	114
FIGURA 4.90 – Padrões de difração de raio X de pó para composto 9 (preto) e	
	115
FIGURA 4.91 – Curvas de DSC para DPP _{hid} (preto), AFU (vermelho) e composto	
	116
FIGURA 4.92 – Curvas de DSC para composto 9 (preto) e composto 10	
	116
FIGURA 4.93 – Espectros de infravermelho para DPP _{hid} (preto), AFU (vermelho)	
	117
FIGURA 4.94 – Espectros de infravermelho para DPP _{hid} (preto), AFU (vermelho)	
	118
FIGURA 4.95 – Espectros de infravermelho para composto 9 (preto) e composto	
	119
FIGURA 4.96 – Espectros de infravermelho para composto 9 (preto) e composto	
	120
, , , , , , , , , , , , , , , , , , , ,	121
FIGURA 4.98 – Espectro de massa no negativo para o composto 10	121
FIGURA 4.99 – Padrões de difração de raio X de pó para DPP _{hid} (preto), AFU	
(vermelho) e mistura na proporção molar 2:1 à 40 °C (azul)	122
FIGURA 4.100 – Padrões de difração de raio X de pó para composto 9 (preto),	
	123
FIGURA 4.101 – Padrão de difração de raio X de pó para mistura na proporção	
molar 2:1 à 40 °C com a representação dos picos do composto 11 (triângulo	
	124
FIGURA 4.102 – Curvas de DSC para DPP _{hid} (preto), AFU (vermelho) e	
	125
FIGURA 4.103 – Curvas de DSC para composto 9 (azul), composto 10	
	125
FIGURA 4.104 – Espectros de infravermelho para composto 10 (preto) e	
	126
FIGURA 4.105 – Espectros de infravermelho para composto 10 (preto) e	
	127
	128

FIGURA 4.107 – Estrutura do SMZ hemihidratado, mostrando elipsoides de 50%	
de probabilidade e os átomos de hidrogênio em uma escala arbitrária	129
FIGURA 4.108 – Sobreposição das moléculas do SMZ alinhados pelos átomos	
C01-S02-N02 coincidindo com C11-S01-N05, ilustrando que existe uma	
rotação ao redor da ligação N–C	129
FIGURA 4.109 – Ligações de hidrogênio responsáveis pela formação do anel	130
FIGURA 4.110 – Ligações de hidrogênio da molécula de água, responsáveis	
pela interação entre os anéis de rotâmetros	131
FIGURA 4.111 – Dois pontos de vista do plano formado em volta da molécula de	
água	132
•	132
FIGURA 4.113 – Representação das interações nos planos a, b e c da cadeia de	
rotâmeros, com as interações responsáveis pela formação dos blocos (azul) e	
formação da cadeia (vermelho)	133
FIGURA 4.114 – Interações responsáveis pela formação da camada	133
FIGURA 4.115 – Representação dos anéis e cadeias de rotâmetros na camada	134
FIGURA 4.116 – Representação das interações nos planos <i>a</i> , <i>b</i> e <i>c</i> da camada	
de rotâmeros, com as interações responsáveis pela formação dos blocos (azul),	
formação da cadeia (vermelho) e formação da camada (verde)	135
FIGURA 4.117 – Interações responsáveis pela formação do cristal	136
FIGURA 4.118 – Representação da organização das camadas no cristal	136
FIGURA 4.119 – Representação das interações nos planos <i>a, b</i> e <i>c</i> do cristal,	100
com as interações responsáveis pela formação dos blocos (azul), formação da	
cadeia (vermelho), formação da camada (verde) e formação do cristal (rosa)	137
FIGURA 4.120 – Padrões de difração de raio X de pó para CBZ _{hid} (preto), AFU	101
(vermelho) e composto de canal 1 (azul)	139
FIGURA 4.121 – Padrões de difração de raio X de pó para CBZ _{hid} (preto), AME	100
(vermelho) e composto de canal 2 (azul)	139
FIGURA 4.122 – Padrões de difração de raio X de pó para CBZ _{hid} (preto), AMI	100
(vermelho) e composto de canal 3 (azul)	140
FIGURA 4.123 – Padrões de difração de raio X de pó para CBZ em acetonitrila	170
(preto), AOX (vermelho) e composto de canal 4 (azul)	141
FIGURA 4.124 – Padrões de difração de raio X de pó para CBZ _{hid} (preto), ASU	171
(vermelho) e composto de canal 5 (azul)	141
FIGURA 4.125 – Padrões de difração de raio X de pó para CBZ _{hid} (preto), AMO	171
(vermelho) e composto de canal 6 (azul)	142
FIGURA 4.126 – Padrões de difração de raio X de pó para CBZ _{hid} (preto), AIT	174
	143
FIGURA 4.127 – Padrões de difração de raio X de pó para CBZ _{hid} (preto), ASO	170
(vermelho) e composto de canal 8 (azul)	143
FIGURA 4.128 – Padrões de difração de raio X de pó para CBZ _{hid} (preto), AHBZ	173
(vermelho) e composto 12 (azul)	144
FIGURA 4.129 – Comparação dos padrões de difração de raio X de pó dos	ı - 7 - 1
compostos de canal e do possível cocristal	145
oompostoo ao aanaro ao poodron aaanar	. 70

FIGURA 4.130 – Acompanhamento da reação do composto 1 por DRXP com	
ângulo de varredura entre 5,0 e 30,0° durante 375 minutos	146
FIGURA 4.131 – Padrões de difração de raio X de pó para reagentes DPP + ABZ	-
(preto), tempo de reação de 105 min (vermelho) e composto 1 (azul)	147
FIGURA 4.132 – Acompanhamento da reação do composto 1 por DRXP com	
ângulo de varredura entre 5,0 e 16,6° durante 375 minutos	147
FIGURA 4.133 – Acompanhamento da reação do composto 1 por DRXP com	
ângulo de varredura entre 16,6 e 30,0° durante 375 minutos	148
FIGURA 4.134 – Acompanhamento da reação do composto 1 por IR com	
número de onda entre 4000 e 700 cm ⁻¹ durante 210 minutos	149
FIGURA 4.135 – Acompanhamento da reação do composto 1 por IR com	
número de onda entre 4000 e 2400 cm ⁻¹ durante 210 minutos	150
FIGURA 4.136 – Acompanhamento da reação do composto 1 por IR com	
	151
FIGURA 4.137 – Acompanhamento da reação do composto 1 por IR com	
número de onda entre 1430 e 1150 cm ⁻¹ durante 210 minutos	152
FIGURA 4.138 – Acompanhamento da reação do composto 1 por IR com	
número de onda entre 1430 e 1330 cm ⁻¹ durante 210 minutos	153
FIGURA 4.139 – Acompanhamento da reação do composto 1 por IR com	
número de onda entre 1150 e 700 cm ⁻¹ durante 210 minutos	154
FIGURA 4.140 – Acompanhamento da reação do composto 4 por DRXP com	
ângulo de varredura entre 5,0 e 30,0° durante 20190 minutos	156
FIGURA 4.141 – Padrões de difração de raio X de pó para reagentes (preto),	
tempo de 0 min (azul), tempo de 15 min (vermelho) e composto 4 (ciano escuro)	157
FIGURA 4.142 – Acompanhamento da reação do composto 4 por DRXP com	
ângulo de varredura entre 5,0 e 30,0° durante 180 minutos	158
FIGURA 4.143 – Acompanhamento da reação da mistura 1:1 (DPP + AOX) por	
	160
FIGURA 4.144 – Acompanhamento da reação da mistura 1:1 (DPP + AOX) por	
DRXP com ângulo de varredura entre 5,0 e 30,0° durante 152 horas	160
FIGURA 4.145 – Acompanhamento da reação da mistura 1:1 (DPP + AOX) por	
DRXP com ângulo de varredura entre 5,0 e 30,0° entre 618 e 1098 horas	162
FIGURA 4.146 – Padrões de DRXP para tempo de 0 hora (preto), tempo de 40	
horas (vermelho), tempo de 618 horas (azul) e tempo de 1098 horas (ciano	
escuro)	162
FIGURA 4.147 – Acompanhamento da reação do composto 3 por IR com	
número de onda entre 4000 e 700 cm ⁻¹ durante 121 segundos	165
FIGURA 4.148 – Acompanhamento da reação do composto 3 por IR com	
	166
FIGURA 4.149 – Espectros de IR para tempo de reação de 1,3 segundos (preto),	
tempo de reação de 27,1 segundos (vermelho), tempo de reação de 121,1	
segundos (azul) e composto 3 (ciano escuro) na regiao de 4000-2000 cm ⁻¹	166
FIGURA 4.150 – Acompanhamento da reação do composto 3 por IR com	
número de onda entre 2000 e 1176 cm ⁻¹ durante 121 segundos	167

FIGURA 4.151 – Acompanhamento da reação do composto 3 por IR com	
número de onda entre 1176 e 700 cm ⁻¹ durante 121 segundos	167
FIGURA 4.152 – Espectros de IR para tempo de reação de 1,3 segundos (preto),	ı
tempo de reação de 27,1 segundos (vermelho), tempo de reação de 121,1	
segundos (azul) e composto 3 (ciano escuro) na região de 2000-700 cm ⁻¹	168
FIGURA 4.153 – Bandas do composto 3 em função do tempo	169
FIGURA 4.154 – Acompanhamento da reação do composto 3 por DRXP com	
ângulo de varredura entre 5,0 e 40,0° durante 60 minutos	170
FIGURA 4.155 – Partículas de DPP _{hid} com AHBZ após a primeira etapa,	
A) ×100; B) ×200; C) ×900 e D) ×2500	171
FIGURA 4.156 – Partículas de DPP _{hid} com AHBZ após a primeira etapa,	
A) antes de aproximar B) depois de aproximar	172
FIGURA 4.157 – Partículas do produto após a segunda etapa, A) ×200; B) ×900;	
C) ×2500; D) ×5000; E) ×8000; F) ×16000; G) ×30000 e H) ×50000	173
FIGURA 4.158 – Micro cristais do composto 3 formados por um pequeno	
excesso de água durante o processo de síntese	174
FIGURA 4.159 – Estrutura cristalográfica destacando os átomos envolvidos nas	
transferências dos prótons	175
FIGURA 4.160 – Curva de energia para transferência dos prótons por	
mecanismo direto	176
FIGURA 4.161 – Gráfico da SEP da etapa 1, com parâmetro 1 (SC2), parâmetro	
2 (SC1) e a energia (E), que é dada em <i>hartrees</i>	177
FIGURA 4.162 – Gráfico da SEP da etapa 2, com parâmetro 2 (SC2), parâmetro	
3 (SC1) e a energia (E), que é dada em <i>hartrees</i>	177
FIGURA 4.163 – Gráfico da SEP da etapa 3, com parâmetro 3 (SC1), parâmetro	
4 (SC2) e a energia (E), que é dada em <i>hartrees</i>	178
FIGURA 4.164 – Curva de energia, relativa ao cocristal, para transferência dos	
prótons por mecanismo induzido	178
FIGURA 4.165 – Esquema representando o mecanismo induzido para a	
transferência do próton	179
FIGURA 4.166 – Duas projeções da estrutura otimizada do cocristal	181
FIGURA 4.167 – Duas projeções da estrutura otimizada do sal-cocristal	182
FIGURA 4.168 – Comparação entre duas projeções da estrutura cristalográfica	
(verde) e otimizada (azul), sem os átomos de hidrogênio	183

Resumo

SÍNTESE, CARACTERIZAÇÃO DE COCRISTAIS E SAIS-COCRISTAIS DE INGREDIENTES FARMACÊUTICOS ATIVOS

Utilizando técnicas/procedimentos de química sustentável (moagem no estado sólido, moagem com gotas de solvente e moagem com gotas de solvente e aquecimento), foram sintetizados onze compostos com dropropizina (antitussígeno) sendo dois cocristais e nove sais-cocristais, nove compostos de carbamazepina (anticonvulsivo e estabilizador do humor) sendo oito compostos de canal e um possível cocristal. O sulfametoxazol (bactericida) mostrou não ter sido uma boa escolha nas condições reacionais utilizadas em todos os experimentos, somente pode ser obtido o hemihidrato. Os compostos foram caracterizados utilizando os métodos de difração de raio X de pó, espectroscopia de infravermelho, calorimetria diferencial de varredura, espectrometria de massa, microscopia eletrônica de varredura e difração de raio X de monocristal. Utilizando espectroscopia de infravermelho foram identificados quatro modos vibracionais característicos dos saiscocristais, sendo dois modos vibracionais relacionados com a espécie COO (~1540 e ~1358 cm⁻¹) e outros dois relacionados com a espécie N⁺-H (~1385 e ~1258 cm⁻¹). No caso dos cocristais, o estiramento característico dos ácidos carboxílicos, em ~1700 cm⁻¹, não desaparecem. Por difração de raio X de monocristal foram determinadas as estruturas cristalinas e moleculares de dois compostos (do sulfametoxazol hemihidratado e do sal-cocristal de dropropizina com ácido 4hidroxibenzoico). Para as sínteses utilizando moagem no estado sólido e moagem com gotas de solvente foram propostos mecanismos reacionais. Finalmente, num caso de moagem com gotas de solvente no qual se forma um sal-cocristal, propomos um mecanismo para a transferência de prótons.

Abstract

SYNTHESIS, CHARACTERIZATION OF CO-CRYSTALS AND SALTS OF ACTIVE PHARMACEUTICAL INGREDIENTS

Using techniques/procedures of green chemistry, solid state grinding, solvent drop grinding and solvent drop grinding with heating, twenty compounds were synthesized. Eleven compounds of dropropizine (antitussive): two co-crystals and nine co-crystal salts, nine compounds of carbamazepine (anticonvulsant and mood stabilizer) were synthesized: eigth channel compounds and a possible co-crystal. The sulfamethoxazole (bactericidal) showed not to be a good choice as no new compounds could be synthesized in the reaction conditions used for all experiments, only its hemihydrate could be obtained. The compounds were characterized by powder X-ray diffraction, infrared spectroscopy, differential scanning calorimetry, mass spectrometry and single crystal X-ray diffraction methods. Using infrared spectroscopy it was possible to identify four characteristic vibrational modes for the salts, i.e. two vibrational modes of the COO species (~1540 and ~1358 cm⁻¹) and two of the N⁺-H species (~1385 and ~1258 cm⁻¹). For the co-crystals the characteristic stretch of the carboxylic acids, at ~1700cm⁻¹, did not disappear. The crystal, molecular and packing structures of two compounds, i.e. of the sulfamethoxazole hemihydrate and of the salt of dropropizine with 4-hydroxybenzoic acid, were determined by single crystal X-ray diffraction. Mechanisms were proposed for the solid state grinding and solvent drop grinding with heating reactions. Finally, a proton transfer mechanism was proposed for the solid state grinding and solvent drop grinding with heating to synthesize a salt.

SUMÁRIO

1.	Introduç	ão	1
1	.1. Polir	morfismo	1
1	.2. Inter	ações intermoleculares	3
	1.2.1.	Interações de van der waals	4
	1.2.2.	Interações envolvendo sistemas π	5
	1.2.3.	Ligações de hidrogênio	6
	1.2.3.	1. Ligações de hidrogênio clássicas	7
	1.2.3.2	2. Ligações de hidrogênio não clássicas	8
	1.2.4.	Síntons	9
1	.3. Coc	ristais	11
	1.3.1.	Cocristais farmacêuticos	14
	1.3.2.	Sais-cocristais	15
1	.4. Sínt	ese "verde"	16
1	.5. Quír	nica computacional	17
1	.6. Ingr	edientes farmacêuticos ativos	18
	1.6.1.	Dropropizina	18
	1.6.2.	Sulfametoxazol	18
	1.6.3.	Carbamazepina	19
	1.6.4.	Problemas	20
2.	Objetivo	s	23
3.	Materiai	s e métodos	25
3	.1. Mate	eriais	25
	3.1.1.	Equipamentos utilizados	25
	3.1.2.	Reagentes utilizados	25
	3.1.2.	1. Ingredientes farmacêuticos ativos	25
	3.1.2.2	2. Sais	25
	3.1.2.3	3. Aminoácidos	26
	3.1.2.4	4. Ácidos carboxílicos	26
	3.1.2.	5. Solventes	27
3	.2. Méto	odos	27
	3.2.1.	Síntese	27

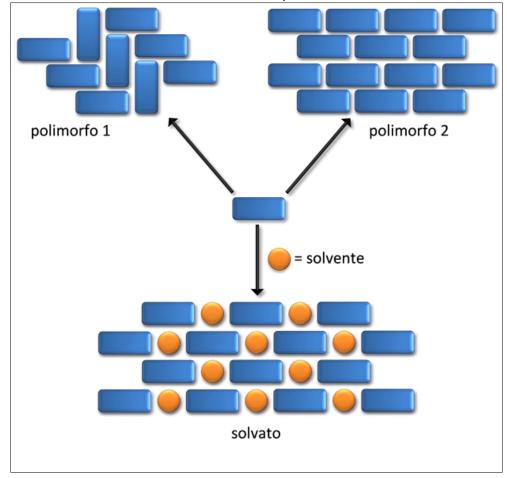
3.2.1.1. Moagem no estado sólido	27
3.2.1.2. Moagem com gotas de solvente	27
3.2.1.3. Moagem com gotas de solvente e aquecimento	28
3.2.1.4. Crescimento dos cristais	28
3.2.2. Caracterizações	29
3.2.2.1. Difração de raio x de pó	29
3.2.2.2. Espectroscopia de infravermelho	30
3.2.2.3. Calorimetria diferencial de varredura	31
3.2.2.4. Difração de raio x de monocristal	31
3.2.2.5. Microscopia eletrônica de varredura	32
3.2.2.6. Espectrometria de massa por tempo de voo com ionização por eletrospray	33
3.2.3. Cálculos teóricos	
4. Resultados e discussão	
4.1. Síntese e caracterização	
4.1.1. Dropropizina	
4.1.1.1. Ácido benzoico	36
4.1.1.1. Dropropizina + ácido benzoico (1:1) anidro	36
4.1.1.1.2. Dropropizina + ácido benzoico (1:1) h2o	43
4.1.1.2. Ácido 4-hidroxibenzoico	52
4.1.1.2.1. Dropropizina + ácido 4-hidroxibenzoico (1:1) h ₂ o	52
4.1.1.3. Ácido maleico	71
4.1.1.3.1. Dropropizina + ácido maleico (1:1) anidro	72
4.1.1.4. Ácido sórbico	79
4.1.1.4.1. Dropropizina + ácido sórbico (1:1) anidro	79
4.1.1.4.2. Dropropizina + ácido sórbico (2:1) h2o e aquecimento	87
4.1.1.5. Ácido oxálico	90
4.1.1.5.1. Dropropizina + ácido oxálico (1:1) h ₂ o	91
4.1.1.5.2. Dropropizina + ácido oxálico (1:2) h ₂ o	98
4.1.1.6. Ácido fumárico	106
4.1.1.6.1. Dropropizina + ácido fumárico (1:1) h ₂ o	106
4.1.1.6.2. Dropropizina + ácido fumárico (2:1) h ₂ o	113
4.1.1.6.3. Dropropizina + ácido fumárico (2:1) h2o e aquecimento	122
4.1.2. Sulfametoxazol	127

4.1.2.1. Determinação estrutural	127
4.1.3. Carbamazepina	138
4.1.3.1. Difração de raio x de pó	138
4.2. Mecanismos de reação	145
4.2.1. Moagem no estado sólido	145
4.2.1.1. Mecanismo 1 – via fase eutética	145
4.2.1.2. Mecanismo 2 – difusão molecular	156
4.2.1.3. Mecanismo 3 – via fase amorfa	159
4.2.2. Moagem com gotas de solvente	164
4.2.2.1. Mecanismo 4 – líquido como meio para difusão molecular	164
4.2.2.1.1. Mecanismo de transferência de próton	174
5. Conclusões e perspectivas	185
6. Referências bibliográficas	187
APÊNDICE 1	197
APÊNDICE 2	215
APÊNDICE 3	225
APÊNDICE 4	241
APÊNDICE 5	243

1. INTRODUÇÃO

1.1. POLIMORFISMO

Os materiais, tradicionalmente, são classificados em três estados diferentes: gases, líquidos e sólidos, de acordo com suas propriedades.


Com relação ao estado sólido, as características que o definem são forma e volume definidos e podem, por sua vez, ser classificados em três diferentes classes: os amorfos, que não possuem ordem nem periodicidade; os quasicristais, que possuem ordem, mas não apresentam periodicidade; e os cristais, que possuem ordem e periodicidade.¹

Mais ainda, os sólidos podem apresentar um fenômeno muito importante que ocorre durante ou depois da formação das estruturas cristalinas: o polimorfismo. A palavra polimorfismo é derivada do Grego e significa "muitas" (poli, π ολ \dot{u}) "formas" (morphos, μ ορ ϕ $\dot{\eta}$).

Polimorfismo pode ser definido como a habilidade que um composto tem para cristalizar em duas ou mais formas cristalinas, com diferentes arranjos e/ou conformações das moléculas na rede cristalina.² O polimorfismo tem uma história conturbada e interessante desde a identificação dos primeiros polimorfos, que de acordo com BERNSTEIN³ foi feita por Klaproth ou Mitscherlich, por volta de 1788, quando foram identificados polimorfos de carbonato de cálcio (calcita, vaterita e aragonita). O primeiro polimorfo orgânico, a benzamida, que segundo CRUZ-CABEZA et al.⁴ foi identificado e estudado por Liebig e Wohler em 1832, e teve as estruturas determinadas por Penfold e White em 1959.⁵ Atualmente se conhecem formas lábeis e metaestáveis da benzamida.^{6,7}

A capacidade que um composto tem de cristalizar de diferentes formas, polimorfos (FIGURA 1.1, adaptado de BRAGA e GREPIONI⁸), é o que torna estes materiais interessantes, porque diferentes propriedades, particularmente as físicas e biológicas, estão diretamente relacionadas com a forma cristalina adotada pelo material.

FIGURA 1.1 – Diferentes fases cristalinas a partir do mesmo bloco de construção

As principais propriedades químicas e físicas que variam de acordo com a forma cristalina são: densidade; condutividade térmica e elétrica; higroscopicidade; ponto de fusão; capacidade calorífica; solubilidade; taxa de dissolução; estabilidade; área superficial; dureza; compressão; reatividade química e fotoquímica. Isso impacta em várias áreas da química, envolvidas na produção e comercialização de moléculas, como medicamentos, pigmentos, aditivos alimentícios, explosivos, etc. Assim, é importante saber não apenas a natureza exata do material, mas também a estabilidade, a variabilidade das propriedades químicas e físicas, em função da forma cristalina.³

Entender e prever como os compostos cristalizam e assim possibilitar a melhora das propriedades química e físicas conduziu a criação de um ramo da ciência chamado de Engenharia de Cristais. Segundo DESIRAJU⁹ a Engenharia de Cristais pode ser definida como:

"a compreensão das interações intermoleculares no contexto do empacotamento cristalino e na utilização de tal conhecimento no design de novos sólidos com propriedades físicas e químicas desejadas",

o termo foi utilizado primeiramente por Pepinsky,¹⁰ mas foi introduzido e popularizado por Schmidt.¹¹

1.2. INTERAÇÕES INTERMOLECULARES

A Engenharia de Cristais possui uma espinha dorsal, que é responsável pelo estudo das interações que regem a formação dos cristais, a Química Supramolecular. 12,13

Segundo STEED et al.¹⁴ os conceitos e trabalhos envolvendo a Química Supramolecular começaram a ser desenvolvidos em 1756, ainda que sem esse nome, e vêm evoluindo deste então. Hoje, os conhecimentos advindos da Química Supramolecular são aplicados em diversos ramos da ciência, como a Química, Física, Biologia, Engenharia de Materiais, entre outros.

A Química Supramolecular foi definida por LEHN¹⁵ como a "química além das moléculas", isto é, o estudo de sistemas altamente complexos que resultam da associação de duas ou mais espécies químicas que se mantêm unidas por forças intermoleculares. Estas forças intermoleculares dizem respeito às interações não covalentes entre moléculas.

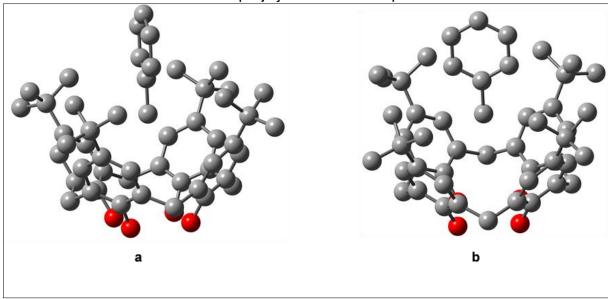
As primeiras interações intermoleculares a serem descritas como responsáveis pela formação dos sólidos foram as interações de van der Waals e as ligações de hidrogênio. Hoje, isto tem mudado bastante com o reconhecimento da existência de um grande número de "novas" interações, como as que incluem sistemas π e as interações entre halogênios.¹⁶

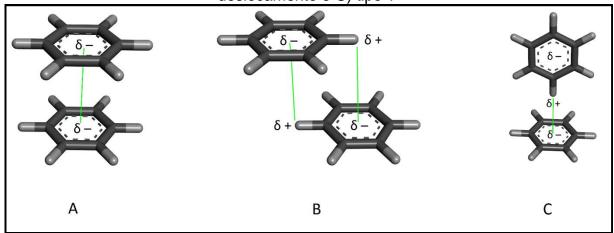
1.2.1. INTERAÇÕES DE VAN DER WAALS

As interações de van der Waals são devidas à deformação da nuvem eletrônica decorrente da oscilação dos átomos criando assim um dipolo instantâneo e induzindo outro dipolo em um átomo vizinho, resultando em uma atração eletrostática fraca. Essas interações são particularmente importantes no caso de espécies neutras e que sejam facilmente polarizáveis. Na realidade, o que se conhece por forças de van der Waals ou forças de dispersão inclui uma variedade de interações como as forças de Keeson e as forças de London entre outras, e que têm em comum o fato de diminuírem com d⁶. ¹⁶

As forças de Keeson, com energias de 50-500 kJ/mol são devidas a interações DIPOLO _{permanente} – DIPOLO _{permanente}, as forças de London, com energias <5 kJ/mol são devidas a interações DIPOLO _{induzido} – DIPOLO _{induzido}, e ainda tem-se as interações DIPOLO _{permanente} – DIPOLO _{induzido}, com energias < 5 kJ/mol. ¹⁷

Além do mais, as interações de van der Waals são muito importantes para explicar a formação de compostos de inclusão, situação em que pequenas moléculas são introduzidas em vacâncias cristalinas ou cavidades moleculares (FIGURA 1.2 adaptado de ANDREETTI et al. 18).



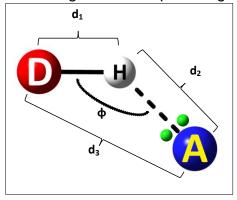

FIGURA 1.2 – Duas projeções de um composto de inclusão

1.2.2. INTERAÇÕES ENVOLVENDO SISTEMAS π

Nos últimos anos, as interações envolvendo sistemas π têm despertado atenção e grande interesse constituindo-se, desde a publicação do trabalho seminal de ZUKERMAN-SCHPECTOR e HAIDUC¹⁹ numa das linhas de pesquisa centrais do LaCrEMM e que têm resultado numa série de trabalhos relevantes que envolvem interações π com metais (Au, Te, Sn, Pb), 20,21,22 e que teve como culminação a publicação do livro *The importance of Pi-Interactions in Crystal Engineering: Frontiers in Crystal Engineering*. Em geral, as interações de sistemas π podem ser divididas em cátion- π ; ânion- π ; π - π ; CH- π (quelato); e M(par de elétrons isolados)- π (aril). 24,25,26

As interações π há mais tempo conhecidas são as que envolvem anéis aromáticos e foram descritas aquando da determinação da estrutura cristalográfica do benzeno em 1958 por COX^{27} . Este tipo de interação pode ocorrer de três maneiras, (A) face-a-face, (B) paralela com deslocamento e (C) a chamada forma T, 17,28 todas com energias de 5-80 kJ/mol e representadas na FIGURA 1.3.

FIGURA 1.3 – Os três tipos de interações π-π A) face-a-face, B) paralela com deslocamento e C) tipo T


Até o momento da redação desta tese, as interações do tipo A (com deslocamento de 0°) só foram encontradas em sistemas biológicos, sendo que as interações do tipo B e C são comumente encontradas tanto em pequenas moléculas como em proteínas e ácido desoxirribonucleico (DNA).

1.2.3. LIGAÇÕES DE HIDROGÊNIO

As ligações de hidrogênio são interações com forte caráter direcional, que ocorrem entre o átomo de hidrogênio e átomos eletronegativos (ex.: N,O,F) de forma que o hidrogênio serve de "elo". Devido à importância que estas interações têm, deve-se ter cuidado com a definição adotada para não criar barreiras entre os campos da ciência, assim STEINER²⁹ propôs uma definição maleável em que uma interação D–H · · · A pode ser chamada de ligação de hidrogênio se, 1) constitui uma ligação local, e 2) D–H atua como um doador de próton para A.

Um aspecto importante na descrição de uma ligação de hidrogênio, diz respeito aos parâmetros geométricos que a caracterizam: as distâncias D–H (d_1), H · · · A (d_2), D · · · A (d_3) e o ângulo D–H · · · A (ϕ) (FIGURA 1.4). Onde a distância d_3 deve ser menor que a soma dos raios de van der Waals dos átomos doador (D) e aceptor (A) + 15% da soma. E o ângulo ϕ , deve ficar no intervalo de 100 a 180°.

FIGURA 1.4 – Parâmetros geométricos para a ligação de hidrogênio

As ligações de hidrogênio podem ser separadas em dois grupos, as chamadas "clássicas" que incluem O–H · · · O, O–H · · · N, N–H · · · N, N–H · · · O, O–H · · · O, N+–H · · · · N e N+–H · · · · O, e as chamadas "não clássicas" que incluem C–H · · · O, C–H · · · N, S–H · · · · S, C–H · · · π e O–H · · · π . 30,31 Hoje, devido a profusão de estruturas que apresentam interações do tipo C–H · · · O sugere-se que estas sejam classificadas como "clássicas".

1.2.3.1. LIGAÇÕES DE HIDROGÊNIO CLÁSSICAS

As ligações de hidrogênio clássicas ainda podem ser dividias em dois grupos, o primeiro, em que D ou A são grupos carregados, e o segundo, quando D e A são átomos neutros de alta eletronegatividade.

No primeiro grupo, D ou A possuem uma carga, positiva ou negativa. Estas recebem o nome de ligações de hidrogênio fortes e possuem energias na faixa de 60 até 170 kJ/mol. 29,32,33 e cujas principais características geométricas são: d₂ entre 1,2 e 1,5 Å; d₂ \approx d₁; e ϕ próximo de 180°. 34 As principais interações que pertencem a esta categoria são apresentadas na FIGURA 1.5.

FIGURA 1.5 – Principais ligações de hidrogênio fortes

$$X \longrightarrow H \longrightarrow X$$
 $RO \longrightarrow H \longrightarrow OR$
 $RO \longrightarrow H \longrightarrow RO$
 RO

O segundo grupo é formado por átomos com elevada eletronegatividade como F, O, N e que são neutros. Estas recebem o nome de ligações de hidrogênio médias e possuem energias na faixa de 16 até 60 kJ/mol. 29,32,33 e cujas principais características geométricas são: d_2 entre 1,5 e 3,0 Å; $d_2 > d_1$; e ϕ entre 140 e 180°. 34 As principais interações que pertencem a este tipo são apresentadas na FIGURA 1.6.

FIGURA 1.6 – Principais ligações de hidrogênio médias

1.2.3.2. LIGAÇÕES DE HIDROGÊNIO NÃO CLÁSSICAS

Como as clássicas, as ligações de hidrogênio não clássicas também podem ser divididas em dois grupos, o primeiro, em que D e/ou A, são átomos de baixa eletronegatividade, e o segundo quando A é um sistema π .

O primeiro grupo em que D e/ou A possuem baixa eletronegatividade recebe o nome de ligações de hidrogênio fracas e possuem energias na faixa de <1 até $16 \text{ kJ/mol}^{29,32,33}$ e cujas principais características geométricas são: d_2 entre 1,5 e 3,5 Å; $d_2 > d_1$; e ϕ entre 120 e 180° . As principais interações deste grupo são apresentadas na FIGURA 1.7.

FIGURA 1.7 – Principais ligações de hidrogênio fracas

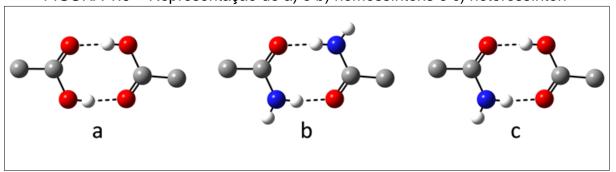
FIGURA 1.8 – Principais ligações de hidrogênio com sistemas π

$$F \longrightarrow \begin{array}{c} CR \\ RC \longrightarrow \begin{array}{c} CR \\ RC \longrightarrow \begin{array}{c} RC \longrightarrow \begin{array}{c} RC \longrightarrow \begin{array}{c} CR \\ RC \longrightarrow \end{array} \end{array}$$

$$R = \text{substituinte (s)}$$

O segundo grupo é formado por ligações nas quais o aceptor é um sistema π , que pode ser ligações duplas, ligações triplas, e sistemas ressonantes ou

aromáticos. Possuem energias na faixa de <1 até 13 kJ/mol 33,35 e as principais características geométricas são: d₃ entre 3,3 e 4,1 Å e ϕ entre 120 e 180°. Alguns exemplos de este grupo estão apresentados na FIGURA 1.8.


1.2.4. SÍNTONS

Em geral, um conhecimento detalhado dos grupos funcionais das moléculas envolvidas em uma síntese supramolecular é um pré-requisito para o desenho racional de uma estrutura cristalina.

Como as interações mais frequentes que levam à formação de um cristal são as ligações de hidrogênio intermoleculares, estas dão origem às unidades estruturais que são os blocos de construção que levam à formação de um cristal, e que são chamadas de síntons supramoleculares.³¹

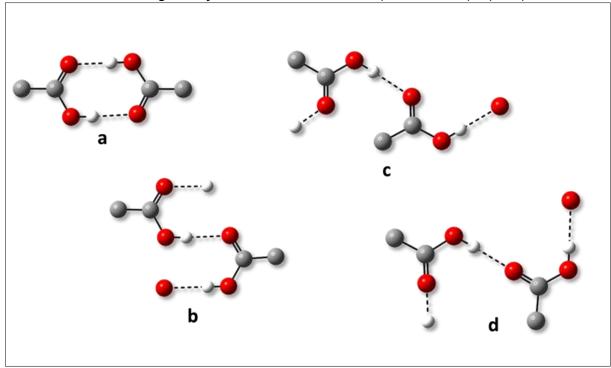
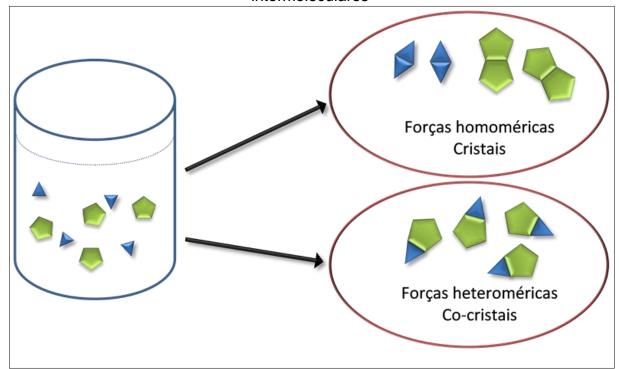

Os síntons são divididos em duas classes, os homossíntons, formados por interações homoméricas e os heterossíntons formados por interações heteroméricas, ³⁶ dependendo da natureza dos grupos funcionais, como ilustrado na FIGURA 1.9.

FIGURA 1.9 – Representação de a) e b) homossíntons e c) heterossínton

A FIGURA 1.10 mostra a variabilidade que pode existir na formação de homossíntons, como os dímeros (a) ou cadeias "catemers" (b, c, d), sendo que ALLEN et al.³⁷ mostraram que os dímeros ocorrem em 95% das estruturas com ácidos monocarboxílicos e em 85% das estruturas com ácidos dicarboxílicos, quando não existe nas moléculas outro grupo que possa fazer ligações de hidrogênio.


FIGURA 1.10 – Organização do homosínton em a) dímero e b), c) e d) cadeias

Muito se sabe sobre as interações homoméricas que há décadas vêm sendo estudadas, especialmente nos ácidos carboxílicos.³⁸ As interações heteroméricas vêm ganhando destaque mais recentemente devido ao crescente interesse na engenharia de cristais no campo farmacêutico.³⁹

Considerando uma solução composta por dois solutos e um solvente (FIGURA 1.11), e se supormos que as interações homoméricas entre os solutos são mais fortes que as interações heteroméricas entre solutos diferentes, cristais de um componente tendem a se formar. Por outro lado, se as interações heteroméricas dominarem, cristais multicomponentes tais como os cocristais podem se formar. As interações heteroméricas prevalecem sobre as homoméricas para a formação de um cocristal, embora hajam casos de cocristais que se formaram com interações homoméricas. Interações

FIGURA 1.11 – Ilustração da atuação das diferentes interações (forças) intermoleculares

De uma maneira geral pode-se assumir que as interações homoméricas regem a formação dos cristais e as interações heteroméricas regem a formação dos cocristais.

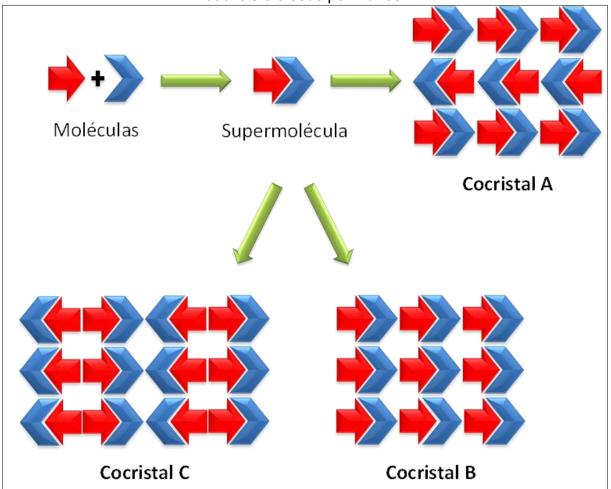
1.3. COCRISTAIS

Com o grande aumento da utilização do termo cocristal nos últimos anos em diversos campos da ciência, alguns cientistas têm expressado opiniões diversas sobre o que são cocristais, como eles podem ser definidos e onde o termo pode ou está sendo utilizado. 42,43,44 Mas até o momento não há um consenso na comunidade científica.

ETTER e PANUNTO⁴⁵ revelam claramente sua preferência pela utilização do termo complexo molecular, para descrever os cristais de 2 ou mais componentes onde se têm interações não covalentes específicas entre moléculas diferentes e criticam, por exemplo, a utilização do termo cocristal, para descrever o composto 1,3-bis(*m*-nitrofenil)urea. Segundo HERBSTEIN⁴⁶ a utilização correta do

termo cocristal seria para descrever um cristal compósito que é formado pela aglomeração ordenada de cristais do mesmo tipo ou diferente, ou seja, dois cristais diferentes unidos a nível molecular.

Para DESIRAJU⁴⁷ a utilização do termo cocristal em lugar de complexo molecular está equivocada, pois as pessoas têm dificuldade para explicar novos conceitos com nomes velhos. Em resposta a esta opinião, DUNITZ⁴⁸ se manifestou favorável à utilização do termo co-cristal (com a utilização do hífen), e contrário a utilização do termo complexo molecular, pois este pode ser utilizado para sistemas sólidos, líquidos ou gasosos.


Ainda com relação à utilização do termo cocristal, recentemente algumas publicações na área de bioquímica e biofísica estrutural chamaram a nossa atenção e constatamos que os autores estão utilizando o termo cocristal para descrever a cristalização de complexos enzima+substrato. 49,50,51,52

Consideramos que a definição de cocristal de AAKERÖY e SALMON⁴¹ baseada nos seguintes três pontos, é a mais adequada:

- Os reativos são espécies moleculares neutras;
- Os reativos são sólidos em condições ambientais;
- Apresentarem estrutura cristalina homogênea, que contêm dois ou mais blocos de construção com proporções estequiométricas definidas.

Na FIGURA 1.12 podem-se ver os processos envolvidos na formação de um cocristal baseado na síntese supramolecular, em que são mostrados os três níveis de organização estrutural: a estrutura primária, átomos conectados covalentemente formando moléculas; a estrutura secundária, arranjo supramolecular baseado em conexões intermoleculares não covalentes; e a estrutura terciária, empacotamento cristalino das supermoléculas.¹³

FIGURA 1.12 – Níveis de organização estrutural no processo de produção de cocristais e seus polimorfos

A importância na utilização dos cocristais está na habilidade de poder modificar as propriedades dos materiais, como visto anteriormente, que estão relacionadas com a sua forma cristalina. Assim, é possível alterar as propriedades com a formação do cocristal ou, ainda, com a formação de polimorfos deste cocristal.

Alguns exemplos das propriedades alteradas com a utilização destes cocristais são a fotoluminescência, ⁵³ estabilidade, ⁵⁴ taxa de dissolução, ⁵⁵ propriedades mecânicas, ⁵⁶ solubilidade, ⁵⁷ entre outras. ^{58,59} O desenvolvimento dos cocristais farmacêuticos têm como intuito alterar algumas destas propriedades, em particular melhorar a biodisponibilidade, a estabilidade e o tempo de prateleira. ^{60,61}

Realizando uma busca rápida na *Web of Science*TM (acessado em 07/12/15),⁶² com a palavra cocristal (*cocrystal* ou *co-crystal*) foram encontrados um total de 6323 *hits*, sendo que mais da metade foram publicados nos últimos sete anos (FIGURA 1.13a). Ao restringir a busca para cocristais farmacêuticos (*pharmaceutical cocrystal* ou *pharmaceutical co-crystal*) foram encontrados um total de 1060 *hits*, sendo que mais da metade dos trabalhos foram publicados nos últimos quatro anos (FIGURA 1.13b).

b 1.20

FIGURA 1.13 – Número de trabalhos publicados na *Web of Science*TM, nos últimos 20 anos, que apresentam o termo (a) cocristal e (b) cocristal farmacêutico

1.3.1. COCRISTAIS FARMACÊUTICOS

Um dos grandes desafios na indústria farmacêutica é o controle da cristalização dos ingredientes farmacêuticos ativos (IFA's).⁶³ Diversos problemas com relação as propriedades dos polimorfos de IFA's têm sido reportados,^{64,65} e isso é esperado, pelo fato de existirem estimativas feitas já em 1997 de que mais de 50% das moléculas de IFA's possuem polimorfos.⁶⁶

A busca em melhorar as propriedades físico-químicas dos IFA's, tais como a biodisponibilidade, a solubilidade, a estabilidade, etc., é uma área de pesquisa emergente e em franco desenvolvimento. Assim, os cocristais farmacêuticos têm surgido como uma forma de melhorar as propriedades no estado sólido sem alterar o comportamento terapêutico e representam uma classe de compostos relativamente inexplorada, mas muito ampla e variada.⁶⁰

A possibilidade de controlar/direcionar a formação de um polimorfo específico ou a possibilidade de melhorar as propriedades físico-químicas de um IFA por meio da formação de cocristais e assim tornar um IFA, que era insolúvel em água, solúvel, é de grande interesse para a engenharia de cristais e fundamentalmente para a indústria farmacêutica. 67,68

As novas formas de cocristais que estão sendo desenvolvidas têm gerado discussões sobre a possibilidade de obtenção de novas patentes e sobre propriedade intelectual, 69 a exemplo do que ocorreu com polimorfos do Zantac® (hidrocloridrato de ranitidina) 70 e Cefdinir®71. A ideia de usar cocristais como IFA's é relativamente nova e grande parte das indústrias farmacêuticas estão ativas nesta área. Isso se reflete no aumento do número de pedidos de patentes de cocristais nos últimos anos. 63

1.3.2. SAIS-COCRISTAIS

Muitas vezes, em lugar de serem obtidos cocristais nos quais os componentes continuam neutros, podem ser obtidos sais-cocristais nos quais há transferência de um ou mais prótons entre os componentes. A diferença básica entre cocristais e sais-cocristais está na posição do próton. No último caso, o próton está completamente transferido (FIGURA 1.14).⁷² Deve ser salientado que ambos têm igual interesse para a indústria farmacêutica.⁷³

A utilização de termos para descrever compostos nem sempre é correta, adequada ou auto explanatória. Assim, nós decidimos utilizar o termo salcocristal para descrever os compostos que são descritos simplesmente com o termo "sal" (salt) na literatura, por entendermos que o termo sal é muito abrangente, sendo possível a sua utilização em uma vasta gama de materiais.

Uma questão importante sobre a formação do sal-cocristal está relacionada com a possibilidade de predizer a sua formação. Assim, MOLČANOV e $KOJIĆ-PRODIĆ^{74}$ e LEMMERER et al. Propõem a utilização dos valores de p K_a para fazer esta predição, fazendo o cálculo da variação dos p K_a : $\Delta pK_a = pK_a$ (ácido) - pK_a (base). Se a variação fica abaixo de 0, será formado um cocristal, se ficar acima

de 3, será formado um sal-cocristal. O problema está nos compostos que apresentam $\Delta p K_a$ entre 0 e 3, já que neste caso não é possível fazer esta predição.

a b

FIGURA 1.14 - Diferença entre a) cocristal e b) sal-cocristal

1.4. SÍNTESE "VERDE"

É cada vez mais comum nos depararmos com palavras, conceitos, práticas, etc., no nosso cotidiano, que nos remetem à preservação, à sustentabilidade, às práticas ambientalmente corretas, redução de resíduos, etc., nos mais variados ramos da ciência.

Na química isso não é diferente, tanto que, em diversos países, práticas de química sustentável começaram a ser implementadas a partir da década de 1990. A química sustentável, "green chemistry", apresenta-se como um novo direcionamento na questão da redução do impacto da atividade química no ambiente.^{76,77}

Metodologias alternativas estão sendo desenvolvidas e usadas, no que diz respeito à utilização de solvente na síntese, no processamento e nas separações. Para a síntese de cocristais, metodologias ambientalmente amigáveis vêm sendo adotadas, entre elas a moagem no estado sólido (*solid-state grinding*) e moagem com gotas de solvente (*solvent-drop grinding*). Deve ser destacado que tem-se obtido certo sucesso na síntese de diversos cocristais utilizando estas metodologias. 79,80,81,82

O conhecimento dos mecanismos de formação dos cocristais ainda é modesto comparado com o rápido crescimento da aplicação dos cocristais e o desenvolvimento e os avanços na síntese dos cocristais.^{83,84}

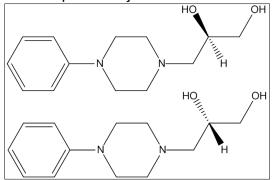
1.5. QUÍMICA COMPUTACIONAL

A ponte entre a química teórica e a química experimental é a química computacional. Visa à solução de problemas químicos, bioquímicos, tecnológicos e industriais mediante o desenvolvimento e uso de novos modelos e sua implementação em programas "softwares" apropriados.

A aplicação da química computacional tem auxiliado na resolução de problemas no contexto de moléculas individuais, conjunto de moléculas e reações moleculares. Permite o cálculo de propriedades de moléculas reais ou ainda não sintetizadas, como exemplo: o cálculo de estruturas eletrônicas e conformações; a previsão/simulação de espectros de ressonância magnética nuclear, infravermelho, massa, etc.; determinação de sequências genéticas; modelagem da orientação preferencial de uma molécula com relação a uma segunda; associações entre moléculas biológicas.^{85,86,87}

O Gaussian é um programa utilizado em química computacional para realizar cálculos de fdestados de energia, estruturas moleculares, frequências vibracionais de sistemas atômicos e moleculares, e propriedades moleculares.⁸⁸

O desenvolvimento tecnológico na melhora dos computadores e seus componentes, assim como o barateamento e o aparecimento de programas melhores e mais completos, permitiram e permitem a resolução de problemas cada vez mais complexos, que necessitam cada vez mais de maior poder de cálculo e tempos de uso de máquina.


1.6. INGREDIENTES FARMACÊUTICOS ATIVOS

1.6.1. DROPROPIZINA

A Dropropizina (DPP) há muito tempo que vem sendo utilizada na terapia humana como agente antitussígeno não opióide. Bloqueia os receptores da tosse a nível periférico e, ao contrário das drogas da família da codeína, antitussígenos opióides, não provoca tolerância ou vício. ^{89,90} A droga é administrada de forma oral (xarope) utilizando doses de 60 mg/dia para crianças e 120mg/dia em adultos e é absorvida pelo trato gastrointestinal ⁹¹ e é comercializada no Brasil com os nomes de Atossion[®], Eritos[®], Neotoss[®], Vibral[®] e Dropropizina (genérico).

A DPP é sintetizada na forma de mistura racêmica, (*R,S*)-3-(4-fenil-1-piperanina)-1,2-propanodiol (FIGURA 1.15). Seu enantiômero puro, comercializado com o nome de Levodropropizina, (S)-3-(4-fenil-1-piperazina)-1,2-propanodiol, também é utilizado como agente antitussígeno, mas ao contrário da mistura racêmica, não apresenta efeitos adversos ao sistema nervoso central, entretanto pode causar alergias.⁹² Uma pesquisa no *Cambridge Structural Database* (CSD) mostrou que existe apenas uma estrutura da DPP depositada sob o código EMOWIM.⁹³

FIGURA 1.15 – Representação da forma racêmica da DPP

1.6.2. SULFAMETOXAZOL

O sulfametoxazol (SMZ) é comercializado no Brasil com o nome de Bactrim[®], Bacteracin[®] e Sulfametoxazol + Trimetoprima (genérico). É utilizado junto com a trimetoprima devido à ação sinérgica que existe entre os dois, sendo que o

SMZ é um antibiótico utilizado para tratar infecções bacterianas e age se ligando à enzima dihidropteroato sintetase inibindo a conversão do ácido *p*-aminobenzoico e o dihidropteroato difosfatado em ácido dihidrofólico ou dihidrofolato. A droga é administrada de forma oral como suspensão ou comprimidos utilizando doses de 800 mg/dia para crianças e 1600 mg/dia em adultos e é metabolizada no fígado. 96

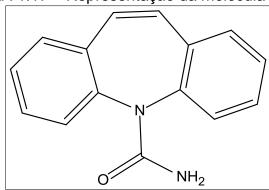

O SMZ, 4-amino-N-(5-metilisoxazol-3-il)-benzenossulfonamida (FIGURA 1.16), ocorre em dois polimorfos, I e II, que apresentam as formas E e Z, respectivamente, e existe uma terceira estrutura, um hidrato, que apresenta ambas as formas, a busca no CSD mostrou que existe apenas uma estrutura depositada. 97

FIGURA 1.16 – Representação da molécula de SMZ

1.6.3. CARBAMAZEPINA

A Carbamazepina (CBZ) é comercializada no Brasil com o nome de Carmazin[®], Tegretard[®], Tegretol[®], Tegrezin[®], Tegrex[®], Uni Carbamaz[®] e Carbamazepina (genérico). Seu principal uso é para o tratamento de epilepsia, doenças neurológicas, dores crônicas e distúrbio bipolar, agindo na inibição dos canais de sódio dependentes da voltagem reduzindo a atividade dos neurónios que apresentam uma maior frequência de disparo.⁹⁸ A droga é administrada de forma oral como suspensão, cápsula ou comprimidos utilizando doses de 35 mg/kg/dia para crianças menores de seis anos, 1000 mg/dia em crianças maiores de seis anos e 1600 mg/dia em adultos e é metabolizada no fígado.⁹⁹

FIGURA 1.17 – Representação da molécula da CBZ

A pesquisa do CSD mostrou que a 5H-dibenzo[b,f]azepina-5-carboxamida (FIGURA 1.17), ocorre em cinco polimorfos anidros (I; II; III; IV e V), 100,101,102,103,104 um hidrato 105 e um solvato. 106 Estas várias formas apresentam diferentes solubilidades 107 e podem ocasionar muitos efeitos secundários. 108

1.6.4. PROBLEMAS

O fato dos três IFA's aqui estudados, assim como muitos outros, apresentarem baixa solubilidade em água, tem como consequência uma baixa absorção do fármaco e, consequentemente, baixa atividade. Para serem facilmente absorvidos, os fármacos devem ser solúveis no meio onde ocorrerá a sua absorção. Formas farmacêuticas sólidas devem, portanto, se desintegrarem e dispersarem e o princípio ativo deve ser solúvel no meio, constituído principalmente de água, íons, enzimas e outros componentes, dependendo da porção do trato gastrointestinal onde se encontram.⁵²

Ainda, podem ocorrer problemas com os IFA's, em decorrência da existência de polimorfos que têm bioequivalência/biodisponibilidade diferentes. Um exemplo muito conhecido é o ritonavir (comercializado pelo *Abbott Laboratories* como Novir[®], ¹⁰⁹ ou em associação com outro antirretroviral, como Kaletra^{®110}), que é utilizado para tratar infecções pelo vírus da imunodeficiência humana (HIV) e síndrome da imunodeficiência adquirida (SIDA ou AIDS). Lançado em 1996, sua formulação era composta por apenas um polimorfo e em 1998, passou a apresentar graves problemas de solubilidade devido ao aparecimento de um segundo polimorfo

produzido utilizando o mesmo processo de síntese. Foi necessário retirar o medicamento do mercado até que foi encontrada uma nova maneira de produzir apenas o primeiro polimorfo.¹¹¹

Assim, poder controlar/direcionar a formação de um polimorfo específico ou a possibilidade de melhorar as propriedades físico-químicas dos medicamentos são problemas da maior importância e objeto de um grande número de pesquisas.

Com relação aos cocristais de IFA's, o conhecimento limitado sobre as interações envolvidas na sua formação, a influência destas na forma cristalina e consequentemente nas suas propriedades têm sido objeto de um número apreciável de estudos. Entretanto, ainda há pouco conhecimento acerca dos mecanismos de formação dos cocristais.¹¹²

2. OBJETIVOS

Os objetivos fundamentais deste trabalho foram a síntese no estado sólido de compostos com ingredientes farmacêuticos ativos, utilizar a técnica de difração de raio X de pó como metodologia principal na caracterização e identificação dos compostos obtidos. Avaliar e aperfeiçoar as condições para a obtenção de cada composto e eventualmente de seus polimorfos. Estudar os arranjos supramoleculares para fornecer um melhor entendimento da essência e das consequências das diferentes forças intermoleculares não covalentes que determinam a química supramolecular. Propor mecanismos de reação no estado sólido para os compostos obtidos e finalmente utilizar a química computacional para propor mecanismos de transferência de prótons na formação de um sal-cocristal.

3. MATERIAIS E MÉTODOS

3.1. MATERIAIS

3.1.1. EQUIPAMENTOS UTILIZADOS

- DSC 204 Phoenix Calorímetro Diferencial de Varredura NETZSCH;
- D2 PHASER Difratômetro de raio X de pó Bruker;
- Frontier Optica Espectrômetro FT-IR PerkinElmer;
- JSM-7100F Microscópio Eletrônico de Varredura com Emissão de Campo JEOL;
- Kappa APEXII Difratômetro de raio X de monocristal Bruker;
- LabX XRD-6000 Difratômetro de raio X de pó Shimadzu;
- Nicolet iZ10 Espectrômetro FT-IR Thermo Scientific;
- G6210A LC/MSD TOF Espectrômetro de massas Agilent.

3.1.2. REAGENTES UTILIZADOS

Todos os reagentes foram usados sem a necessidade de purificação. Os sais, aminoácidos e ácidos carboxílicos foram fornecidos pelos laboratórios LQBO (Laboratório de Química Bio-Orgânica), LSPN (Laboratório de Síntese de Produto Naturais) da Universidade Federal de São Carlos (UFSCar), pelo professor Dr. Helio A. Stefani da Universidade de São Paulo (USP), e os IFA's foram fornecidos pela PRATI, DONADUZI & CIA LTDA.

3.1.2.1. INGREDIENTES FARMACÊUTICOS ATIVOS

- Dropropizina (DPP);
- Sulfametoxazol (SMZ);
- Carbamazepina (CBZ).

3.1.2.2. SAIS

- Cloreto de Cobre I (CuCl);
- Cloreto de Cobre II (CuCl₂);

- Cloreto de Cobalto II hexahidratado (CoCl₂ · 6H₂O);
- Cloreto de Manganês II tetrahidratado (MnCl₂ · 4H₂O);
- Cloreto de Níquel II hexahidratado (NiCl₂ · 6H₂O);
- Sulfato de Lítio monohidratado (Li₂SO₄ · H₂O);
- Sulfato de Sódio (Na₂SO₄);
- Sulfato Férrico pentahidratado (Fe₂SO₄ · 5H₂O).

3.1.2.3. AMINOÁCIDOS

- Ácido Glutâmico (Glu);
- Alanina (Ala);
- Asparagina (Asn);
- Fenilalanina (Phe);
- Glicina (Gly);
- Isoleucina (Ile);
- Leucina (Leu);
- Serina (Ser);
- Tirosina (Tyr);
- Triptofano (Trp);
- Valina (Val).

3.1.2.4. ÁCIDOS CARBOXÍLICOS

- Ácido 4-hidroxibenzoico (AHBZ);
- Ácido adípico (AAD);
- Ácido benzoico (ABZ);
- Ácido fumárico (AFU);
- Ácido itacônico (AIT);
- Ácido maleico (AME);
- Ácido málico (AMI);
- Ácido malônico (AMO);
- Ácido oxálico (AOX);

- Ácido sórbico (ASO);
- Ácido succínico (ASU).

3.1.2.5. SOLVENTES

- Água;
- Acetona;
- Acetonitrila (ACN);
- Etanol;
- Metanol;
- N-Butanol;

3.2. MÉTODOS

3.2.1. SÍNTESE

3.2.1.1. MOAGEM NO ESTADO SÓLIDO

Utilizando um pistilo e um almofariz de ágata de 30 mL, o agente coformador (aminoácido, ácido carboxílico, sal) foi misturado ao IFA em diferentes proporções molares 2:1, 1:1 e 1:2, sendo que a massa média de IFA utilizada para cada síntese é de 0,12 g, e em seguida foram moídos juntos a seco por aproximadamente 30 minutos nas condições ambientais.

Para a determinação do mecanismo de reação, foi utilizando um pistilo e um almofariz de ágata de 30 mL, o agente co-formador (ABZ, AME e AOX) foi misturado ao IFA em proporções molares 1:1, sendo que a massa média de IFA utilizada para cada síntese é de 0,12 g, e em seguida foram moídos juntos a seco por aproximadamente 1 minuto nas condições ambientais.

3.2.1.2. MOAGEM COM GOTAS DE SOLVENTE

Utilizando um pistilo e um almofariz de ágata de 30 mL, o agente coformador (aminoácido, ácido carboxílico, sal) foi misturado ao IFA em diferentes proporções molares 2:1, 1:1 e 1:2, sendo que a massa média de IFA utilizada para cada síntese é de 0,12 g, e em seguida foram moídos com a adição de algumas gotas de solvente (água, etanol, metanol) por aproximadamente 30 minutos nas condições ambientais. Após a moagem, o material foi seco em vidros de relógio nas condições ambientais.

Para a determinação do mecanismo de reação, foi utilizando um pistilo e um almofariz de ágata de 30 mL, o agente co-formador (AHBZ) foi misturado ao IFA em proporções molares 1:1, sendo que a massa média de IFA utilizada para cada síntese é de 0,12 g, e em seguida foram moídos com a adição de algumas gotas de solvente (água) por aproximadamente 1 minuto nas condições ambientais.

3.2.1.3. MOAGEM COM GOTAS DE SOLVENTE E AQUECIMENTO

Utilizando um pistilo e um almofariz de ágata de 30 mL, o agente coformador (aminoácido, ácido carboxílico, sal) foi misturado ao IFA em diferentes proporções molares 2:1, 1:1 e 1:2, sendo que a massa média de IFA utilizada para cada síntese é de 0,12 g, e em seguida foram moídos com a adição de algumas gotas de solvente (água, etanol, metanol) por aproximadamente 30 minutos nas condições ambientais. Após a moagem, o material foi seco em vidros de relógio utilizando uma estufa a 40 °C.

3.2.1.4. CRESCIMENTO DOS CRISTAIS

A técnica utilizada para a cristalização dos compostos foi a de evaporação lenta do solvente, na qual uma pequena massa dos compostos foi solubilizada em diferentes solventes e evaporada em diferentes recipientes, que permitem a formação dos germes e posteriormente dos cristais, à temperatura ambiente.

3.2.2. CARACTERIZAÇÕES 3.2.2.1. DIFRAÇÃO DE RAIO X DE PÓ

Foram utilizados dois difratômetros para a obtenção dos dados da difração de raio X de pó (DRXP), um Shimatzu, modelo LabX CRD-6100, e um Bruker, modelo D2 Phaser.

O LabX XRD-6100 utiliza fonte de radiação de Cu K_{α} com uma tensão de 30 kV e intensidade de corrente de 30 mA, com fenda de divergência com 1,0°, fenda de recepção de 0,3 mm, fenda antiespalhamento 1,0°, goniômetro vertical Bragg-Brentano (θ /2 θ) de raio 185 mm e detector contador de cintilação. A coleta dos dados foi realizada com intervalo angular de varredura (2 θ) de 5–60°, passo de varredura de 0,0200° e com velocidade de varredura de 6 °/min. Todas as coletas de dados foram feitas a 20 °C. As análises foram realizadas no Laboratório Interdisciplinar de Eletroquímica e Cerâmica (LIEC), no Departamento de Química da UFSCar.

O D2 Phaser utiliza fonte de radiação de Cu $K_{\alpha 1,2}$ (1,54184 Å) com uma tensão de 30 kV e intensidade de corrente de 10 mA, com fenda de divergência de 0,6 mm, fenda Soller primária e secundária 2,5°, fenda antiespalhamento de 3 mm, goniômetro rotacional horizontal Bragg-Brentano (θ /2 θ) de raio 141,4 mm e detector linear sensível LynxEYe com abertura angular de 5,84°. Todas as coletas de dados foram feitas a 20 °C. As análises foram realizadas no Laboratório de Cristalografia, Estereodinâmica e Modelagem Molecular (LaCrEMM), no Departamento de Química da UFSCar.

A coleta dos dados foi realizada de duas maneiras:

- Com velocidade de rotação da amostra de 15 rpm, com intervalo angular de varredura (2θ) de 5–60°, passo de varredura de 0,0202815° e com velocidade de varredura de 1 °/min. Esta configuração foi utilizada para as coletas dos dados gerais.
- 2. Com velocidade de rotação da amostra de 15 rpm, com intervalo angular de varredura (2θ) de 5–30°, passo de varredura de 0,1202815° e com velocidade de varredura de 25 °/min. Esta configuração foi utilizada para coleta dos dados do acompanhamento das reações.

Os dados obtidos com os difratômetros foram processados com o programa OriginPro 8.¹¹³ Alguns dados obtidos com o D2 Phaser, foram processados com o programa EVA 2.¹¹⁴

3.2.2.2. ESPECTROSCOPIA DE INFRAVERMELHO

Foram utilizados dois equipamentos para a obtenção dos dados de espectroscopia de infravermelho (IR), um PerkinElmer, modelo Frontier Optica, e um Thermo Scientific, modelo Nicolet iZ10.

O Frontier Optica utiliza o acessório de refletância total atenuada (ATR) PIKE MIRacle que utiliza cristal de seleneto de zinco e ângulo de incidência de 45° e detector de sulfato de triglicina deuterado (DTGS). Todas as coletas de dados foram feitas a 20 °C. Os espectros foram coletados em porcentagem de transmitância com uma média de 10 varreduras no intervalo de número de onda entre 4000 até 700 cm⁻¹ e resolução de 4 cm⁻¹. O espectro do branco foi feito em ar. As bandas foram analisadas sem correções dos dados. As análises foram realizadas no laboratório de química da Unidade Universitária da Universidade Estadual de Goiás de Ciências Exatas e Tecnológicas de Anápolis (UnUCET) na Universidade Estadual de Goiás (UEG).

O Nicolet iZ10 utiliza o acessório de ATR Smart iTR que utiliza cristal de diamante e ângulo de incidência de 45° e DTGS. Todas as coletas de dados foram feitas a 20 °C. As análises foram realizadas no Centro Científico e Tecnológico da Universidade de Barcelona (CCiTUB), na Universidade de Barcelona (UB).

A coleta dos dados foi realizada de duas maneiras:

1. Os espectros foram coletados em unidade de absorbância com uma média de 32 varreduras no intervalo de número de onda entre 4000 até 700 cm⁻¹ e resolução de 4 cm⁻¹ com correção do ATR. O espectro do branco foi feito em ar. As bandas foram analisadas sem correções dos dados. Esta configuração foi utilizada para coleta dos dados gerais. 2. Os espectros foram coletados em unidade de absorbância com 1 varredura no intervalo de número de onda entre 4000 até 700 cm⁻¹ e resolução de 4 cm⁻¹ com correção do ATR. O espectro do branco foi feito em ar. As bandas foram analisadas sem correções dos dados. Esta configuração foi utilizada para coleta dos dados do acompanhamento das reações.

Os dados obtidos com os espectrômetros foram processados com o programa OriginPro 8.¹¹³ Alguns dados obtidos com o Nicolet iZ10, foram processados com o programa TQ Analyst 9.¹¹⁵

3.2.2.3. CALORIMETRIA DIFERENCIAL DE VARREDURA

Para a obtenção das curvas de calorimetria diferencial de varredura (DSC), foi utilizado um calorímetro NETZSCH, modelo DSC 204 Phoenix. Foi usada a massa aproximada de 2 mg em porta amostra de alumínio selado e perfurado antes da análise, atmosfera de N₂ 50 mL/min e taxa de aquecimento de 2 °C/min com μ-sensor. As curvas foram realizadas com diferentes intervalos de temperatura, algumas de 20 até 200 °C e outras de 20 até 300 °C, dependendo das características de cada material. Um cadinho de alumínio foi utilizado como referência. As análises foram realizadas no LIEC, no Departamento de Química da UFSCar.

3.2.2.4. DIFRAÇÃO DE RAIO X DE MONOCRISTAL

Foi utilizado um difratômetro Bruker, modelo Kappa APEX II com detector *Charge-Coupled Device* (CCD) de 62 mm, com gerador de alta frequência K780 utilizando Molibdênio (Mo) como fonte de radiação e monocromador de grafite (λ = 0,710730 Å). As intensidades dos feixes difratados foram medidas, usando a técnica de varredura θ -2 θ , em um goniômetro com geometria kappa e coletadas utilizando o programa APEX2.¹¹⁶ Para o refinamento da cela e a redução dos dados foi utilizado o programa SAINT.¹¹⁷

As estruturas dos compostos foram resolvidas por Métodos Diretos com SIR¹¹⁸ e refinadas por mínimos quadrados com matriz completa de F² usando SHELXL.¹¹⁹ Os átomos de hidrogênio ligados aos átomos de carbono foram colocados em posições geometricamente calculadas (C–H = 0,93–0,98 Å) e refinados com parâmetro de deslocamento fixo, [*U*iso (H) = 1,2–1,5 *U*eq (C)]. Os átomos de hidrogênio ligados aos átomos de oxigênio foram idealizados e com parâmetro de deslocamento fixo, *U*iso (H) = 1,2 *U*eq (O). Os átomos de hidrogênio ligados aos átomos de nitrogênio foram localizados no mapa de densidade eletrônica e sua posição foi fixada com parâmetro de deslocamento fixo, *U*iso (H) = 1,2 *U*eq (N). As posições dos átomos de hidrogênio da molécula de água foram calculadas com o programa ATOMCHAR¹²⁰ e fixadas com parâmetro de deslocamento fixo, *U*iso (H) = 1,2 *U*eq (O). Todos os átomos que não os de hidrogênio foram refinados anisotropicamente.

Os desenhos das moléculas foram realizados com ORTEP3¹²¹ e Diamond. Os cálculos de parâmetros geométricos e das interações intra e intermoleculares foram feitas com PLATON. Alguns destes programas formam parte do sistema WinGX.

As coletas dos dados foram realizadas no Instituto de Química de São Carlos da Universidade de São Paulo (IQSC-USP), na USP.

3.2.2.5. MICROSCOPIA ELETRÔNICA DE VARREDURA

Para a obtenção das imagens de microscopia eletrônica de varredura (MEV), foi utilizado um microscópio eletrônico de varredura JEOL, modelo JSM-7100F, com uma voltagem de aceleração de elétrons de 20 kV. Para a preparação da amostra, uma pequena quantidade de pó foi colocada com uma espátula sobre o suporte do microscópio com a ajuda de um disco adesivo condutor de dupla face. Depois, as amostras foram cobertas com grafite para melhorar a condutividade eléctrica. As análises foram realizadas no CCiTUB, na UB.

3.2.2.6. ESPECTROMETRIA DE MASSA POR TEMPO DE VOO COM IONIZAÇÃO POR *ELETROSPRAY*

Para a obtenção da massa, por espectrometria de massa por tempo de voo com ionização por *eletrospray* (ESI/MS-TOF), foi utilizado um espectrômetro de massas Agilent modelo G6210A LC/MSD TOF, equipado com uma interface de ionização por *eletrospray* (ESI) utilizando nitrogênio como gás de nebulização com pressão de 15 psi, com fluxo de gás secante (nitrogênio) de 7,0 L/min e temperatura do gás de 325 °C, operando em modo positivo, com voltagem capilar de 4000 V e voltagem do fragmentador de 175 V, e em modo negativo, com voltagem capilar de 3500 V e voltagem do fragmentador de 125 V. Possui analisador do tipo tempo de voo (TOF).

As amostras foram dissolvidas em água e aplicadas por injeção direta, sendo que o volume varia de 0,2 à 1,0 μ L de acordo com a amostra, utilizando um sistema de bombeamento HPLC Agilent 1100 a um fluxo de 200 μ L/min de $H_2O:CH_3CN$ (1:1). As análises foram realizadas no CCiTUB, na UB.

3.2.3. CÁLCULOS TEÓRICOS

Foi utilizado o programa de estrutura eletrônica Gaussian 09⁸⁸ para a realização dos cálculos: *single point*, otimizações geométricas e superfície de energia potencial (SEP). As visualizações e desenhos das estruturas foram realizados com o programa GaussView 5.¹²⁴

Foi empregado o método da Teoria do Funcional da Densidade (DFT) com funcional híbrido PBEPBE, ¹²⁵ com o conjunto de base 6-31+G(d)^{126,127} e utilizando dispersão empírica GD2. ¹²⁸ Sendo que a dispersão empírica não foi utilizada para os cálculos de *single point* e da superfície de energia potencial.

Utilizando a estrutura do cocristal como base, construído a partir dos dados cristalográficos do sal-cocristal, foram calculadas as curvas de transferência de próton.

Para o mecanismo de transferência direta foram variadas simultaneamente as quatro distâncias de ligação (parâmetros 1 a 4) mostradas na TABELA 3.1, em 22 passos.

TABELA 3.1 – Parâmetros utilizados para os cálculos de single point

Ligação	Distância inicial (Å)	Incremento (Å)	Parâmetro
$O_{1W} \cdot \cdot \cdot H_{1WB}$	1,90354	- 0,0430	1
$O_{2W} \cdot \cdot \cdot H_{2WA}$	1,87454	- 0,0420	2
$O_2 \cdot \cdot \cdot H_{22}$	1,7043	- 0,0335	3
$N_2 \cdot \cdot \cdot H_{2N}$	2,0294	- 0,0455	4

Para a transferência pelo mecanismo induzido, foram feitos cálculos de SEP rígido, onde o caminho reacional foi dividido em 3 etapas. Na etapa 1, foram variados os parâmetros 1 e 2, na etapa 2, os parâmetros 2 e 3, e na etapa 3 os parâmetros 3 e 4. A distância inicial, o incremento e o número de passos para cada parâmetro é apresentado na TABELA 3.2.

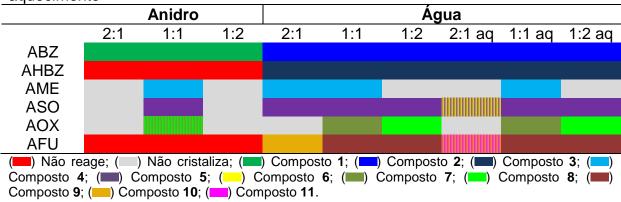
TABELA 3.2 – Parâmetros utilizados para os cálculos de SEP

Ligação	Distância inicial (Å)	Incremento (Å)	Número de passos	Parâmetro
$O_{1W} \cdot \cdot \cdot H_{1WB}$	1,00054	0,0430	24	1
$O_{2W} \cdot \cdot \cdot H_{2WA}$	0,99254	0,0420	20	2
$O_2 \cdot \cdot \cdot H_{22}$	1,0008	0,0335	20	3
$N_2 \cdot \cdot \cdot H_{2N}$	0,8919	0,0455	24	4

Para os cálculos de otimização do empacotamento molecular, foram utilizados como ponto de partida os dois mínimos de energia obtidos na curva de energia da transferência de próton.

4. RESULTADOS E DISCUSSÃO

4.1. SÍNTESE E CARACTERIZAÇÃO


Ao todo foram realizadas e estudadas, utilizando quando possível, a técnica de difração de raio X de pó, 1164 reações sendo possível identificar onze compostos obtidos a partir da dropropizina (DPP), nove compostos de carbamazepina (CBZ), entretanto o sulfametoxazol (SMZ) não apresentou formação de compostos.

Para facilitar a comparação, os difratogramas de raio X de pó e espectros de infravermelho foram normalizados de 0 a 1, e os dados originais para cada material encontram-se no APÊNDICE 1 (difratogramas) e APÊNDICE 2 (espectros IR).

4.1.1. DROPROPIZINA

Foram realizadas 624 reações com a DPP e são apresentadas na TABELA A3.1, TABELA A3.2, TABELA A3.3 e TABELA A3.4 no APÊNDICE 3. Um resumo das reações que apresentaram formação de compostos, incluindo as condições utilizadas, é apresentado na sequência, na TABELA 4.1.

TABELA 4.1 – Resumo das reações que apresentam formação de compostos de dropropizina para as metodologias de moagem no estado sólido, moagem no estado sólido com gota de água e moagem no estado sólido com gota de água e aquecimento

4.1.1.1. ÁCIDO BENZOICO

O ABZ foi cocristalizado junto com a DPP utilizando a moagem no estado sólido e também com gota de água em diferentes proporções molares, 1:1, 2:1 e 1:2. Uma relação completa dos diferentes ensaios pode ser encontrada na TABELA A3.1, TABELA A3.2, TABELA A3.3 e TABELA A3.4 no APÊNDICE 3.

Foram sintetizados com sucesso dois sais-cocristais de DPP com ABZ, ambos na proporção molar 1:1. O DPP + ABZ (1:1) anidro (composto 1) foi obtido utilizando a metodologia de moagem no estado sólido e apresentou coloração laranja claro, e o DPP + ABZ (1:1) H₂O (composto 2) foi obtido utilizando a metodologia de moagem com gotas de água e apresentou coloração vermelho claro. As análises dos resultados são apresentadas na sequência.

4.1.1.1. Dropropizina + Ácido Benzoico (1:1) anidro a) DRXP

Comparando os padrões de difração do composto **1** com o da DPP ou do ABZ, observaram-se padrões completamente distintos para cada material (FIGURA 4.1). Mesmo apresentando padrões distintos existe três picos do composto **1** que coincidem com a DPP, região de 11,088; 17,683 e 22,304°, e seis com o ABZ, região de 8,043; 16,178; 25,690; 27,570; 30,049; 32,725°.

Pelo fato de serem poucos picos coincidentes, já poderia ser descartada a hipótese do composto **1** ser uma mistura física dos reagentes. E isso fica comprovado quando se observam os padrões de difração com proporções molares 1:2 (FIGURA 4.2) e 2:1 (FIGURA 4.3).

Analisando a FIGURA 4.2, é possível identificar a presença dos picos coincidentes do composto 1 e da DPP (11,088; 17,683 e 22,304°) na mistura 1:2, com isso, pode-se concluir que os picos que aparecem no composto 1 da FIGURA 4.1 não pertencem a DPP, pois ao deixar o ABZ em excesso faz-se com que toda a DPP reaja e não apareçam picos referentes ao seu padrão de difração, e como resultando, tem-se um difratograma com uma mistura do composto 1 e ABZ.

FIGURA 4.1 – Padrões de difração de raio X de pó para DPP (preto), ABZ (vermelho) e composto **1** (azul)

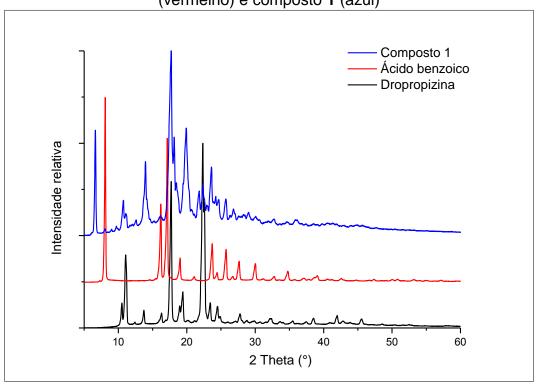


FIGURA 4.2 – Padrões de difração de raio X de pó para ABZ (preto), mistura física da DPP com ABZ proporção molar 1:2 (vermelho) e composto **1** (azul)

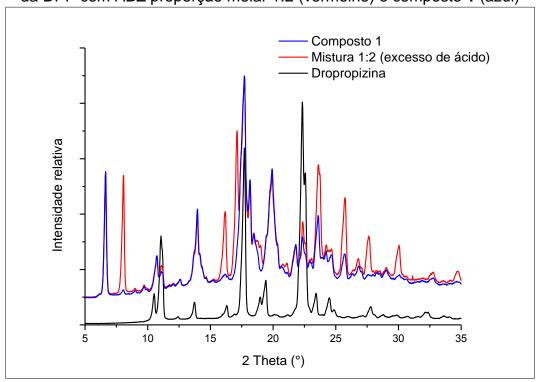
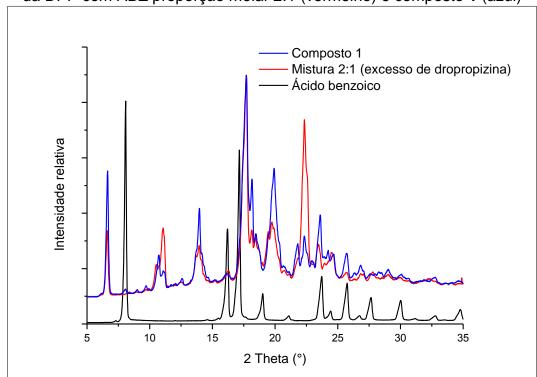
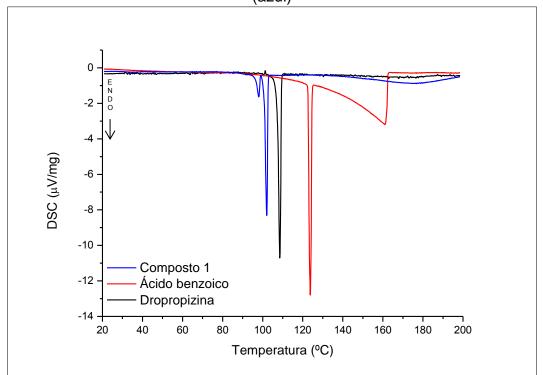



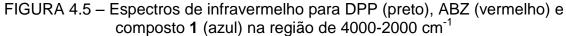
FIGURA 4.3 – Padrões de difração de raio X de pó para ABZ (preto), mistura física da DPP com ABZ proporção molar 2:1 (vermelho) e composto **1** (azul)


Como aconteceu com o caso anterior, na FIGURA 4.3 também se pode identificar alguns picos nas mesmas posições dos picos coincidentes do composto 1 e ABZ (16,178; 25,690; 27,570; 30,049; 32,725°), com exceção do pico na posição 8,043°. Ao deixar a DPP em excesso faz-se com que todo o ABZ reaja e não apareçam picos referentes ao seu padrão de difração, e como resultando, tem-se um difratograma com uma mistura do composto 1 e DPP. O não aparecimento do pico na posição 8,043° pode estar relacionada, primeiro, com uma pequena quantidade de ABZ que não reagiu na reação com proporções molares 1:1, segundo, a sua baixa intensidade na FIGURA 4.3 ou, terceiro, a questões de orientação preferencial que pode ocorrer nas amostras.

b) DSC

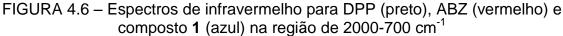
As curvas de DSC para DPP, ABZ e composto 1 são mostradas na FIGURA 4.4, onde a curva da DPP demonstra um evento endotérmico, na faixa de temperatura de 102,3 a 110,4 °C, e apresenta uma temperatura de fusão de 108,5

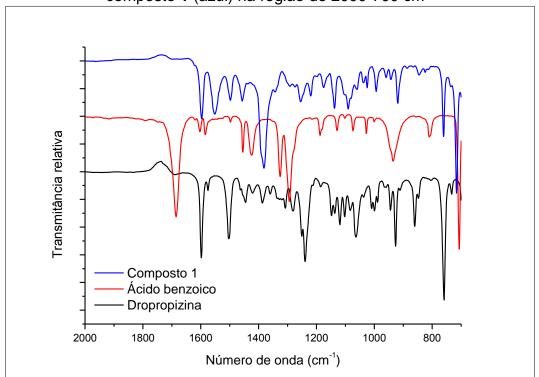
°C, valores muito próximo dos reportados na literatura (106,5–109 °C), ^{129,130} com uma entalpia de fusão de ~16,45776 kJ/mol. A curva do ABZ apresenta um evento endotérmico, na faixa de temperatura de 122,1 a 125,4 °C, e apresenta uma temperatura de fusão de 123,8 °C com uma entalpia de fusão de ~17,4622 kJ/mol, valores muito próximo dos reportados na literatura (115–124 °C e 16,0-17,5 kJ/mol), ^{131,132,133} sendo que inicia a sublimação em ~100 °C.


A curva do composto **1** apresenta dois eventos endotérmicos, o primeiro na faixa de 94,6 a 99,1 °C e o segundo na faixa de 99,1 a 104,1 °C, com temperaturas de fusão de 98 e 102 °C, e entalpias de fusão de ~1,92834 e ~10,29028 kJ/mol, respectivamente.


O que está claro é que o composto 1 apresenta uma ou duas fases cristalinas distintas das fases dos reagentes de partida, indicando assim, a presença de um novo material. A questão levantada com esta curva de DSC é se estes dois eventos endotérmicos pertencem a uma fase ou uma mistura de fases, caracterizando assim uma mistura de polimorfos de cocristais. Outro fator que pode estar influenciando no aparecimento de dois picos é a taxa de aquecimento.

c) IR


Na TABELA A3.5, no APÊNDICE 3, encontram-se as atribuições das bandas.


Devido à sobreposição e acoplamentos, é difícil fazer uma atribuição específica para todas as frequências presentes na FIGURA 4.5, mas verificou-se o desaparecimento de algumas bandas características de estiramentos O–H das ligações de hidrogênio da DPP, em 3440 cm⁻¹ e do ABZ, ~3400-2400 cm⁻¹, e o aparecimento de duas banda largas entre 3300 e 3100 cm⁻¹, que são atribuídas às ligações de hidrogênio responsáveis pela formação do composto **1**.

Na região de impressão digital, FIGURA 4.6, devido à grande quantidade de bandas, é difícil atribuir corretamente todas, assim foram analisadas as principais. Para os modos vibracionais C–C e C–H são observadas poucas perturbações nas frequências, indicando que o movimento do esqueleto é efetivamente o mesmo que o dos materiais de partida.

A primeira grande mudança está relacionada com a banda característica dos ácidos carboxílicos, o estiramento C=O. O ácido apresenta uma banda larga e intensa em 1685 cm⁻¹, e o composto 1 não apresenta bandas nesta região. Isso ocorre também com outras bandas características, deformação no plano do O-H em 1424 cm⁻¹; estiramento C-O em 1294 cm⁻¹; estiramento C-C-O em 1129 cm⁻¹ e deformação fora do plano do O-H em 933 cm⁻¹. Além do desaparecimento, ocorre o deslocamento do estiramento e da deformação do anel, de 1326 para 1342 e 811 para 824 cm⁻¹. O desaparecimento e deslocamento destas bandas, junto com o aparecimento das bandas em 1551 e 1381 cm⁻¹, atribuídas à estiramentos característicos dos carboxilatos (COO⁻), e em 1390 cm⁻¹, atribuída à deformação N⁺-H, indicam a formação de um sal-cocristal.

Algumas bandas da DPP também desaparecem, na região de 1421 e 1308 cm⁻¹, todas atribuídas a deformações dos grupos álcoois (primário e secundário), e outras que sofrem deslocamento, nas regiões de 1212 para 1219 cm⁻¹ e 1120 para 1090 cm⁻¹, a primeira atribuída a uma deformação C–H do esqueleto e a segunda atribuída ao estiramento C–OH. O desaparecimento de algumas bandas

pode estar relacionado à sobreposição com outras ou devido à mudança das interações intermoleculares.

d) ESI/MS-TOF

Utilizando a técnica de ESI/MS-TOF foi possível determinar a massa dos precursores do composto 1, e assim mostrar que estes compostos estão unidos por interações não covalentes.

A FIGURA 4.7 mostra o ESI(+)-MS do composto 1, onde pode-se notar a presença do pico do íon m/z 237,1608, referente a massa molar da DPP + H⁺.

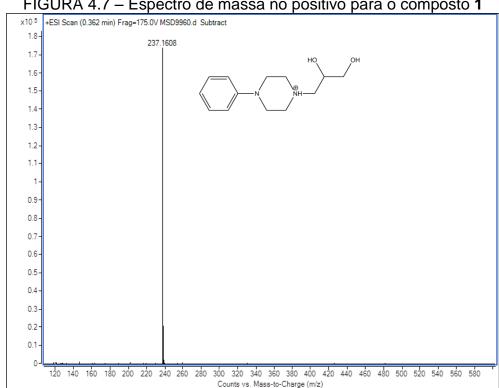
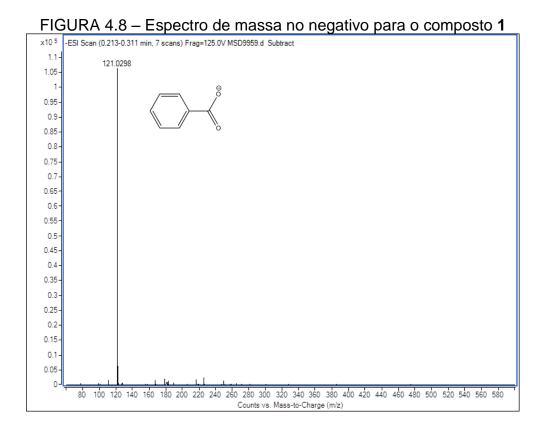



FIGURA 4.7 – Espectro de massa no positivo para o composto 1

A FIGURA 4.8 mostra o ESI(-)-MS do composto 1, onde pode-se notar a presença do pico do íon m/z 121,0298, referente a massa molar da ABZ - H⁺.

4.1.1.1.2. Dropropizina + Ácido Benzoico (1:1) H2O a) DRXP

Comparando os padrões de difração do composto 2 com o da DPP e do ABZ, observaram-se padrões completamente distintos para cada material (FIGURA 4.9), e como não foi possível identificar nenhum pico do composto 2 coincidente com os da DPP ou ABZ, fato que nos faz concluir que o composto 2 não é uma mistura física dos reagentes.

Na FIGURA 4.10 comparou-se o composto 2 com as misturas em excessos e os reagentes. Como o composto 2 não apresenta nenhum pico coincidente ao dos reagentes fica fácil fazer a comparação. Tanto para a mistura com excesso de DPP como a com excesso de ABZ é possível observar os picos do composto 2 bem definidos e com boa intensidade.

FIGURA 4.9 – Padrões de difração de raio X de pó para DPP_{hid} (preto), ABZ (vermelho) e composto **2** (azul)

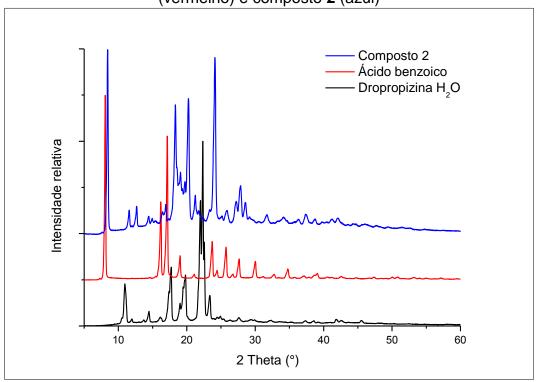
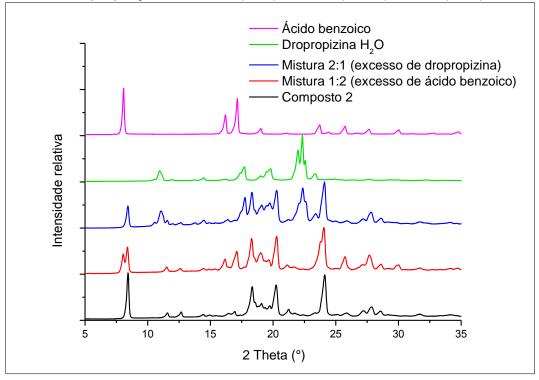
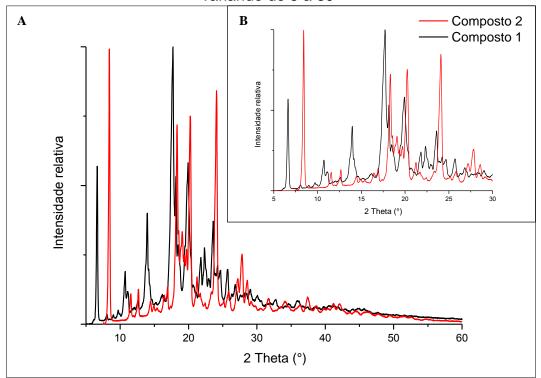
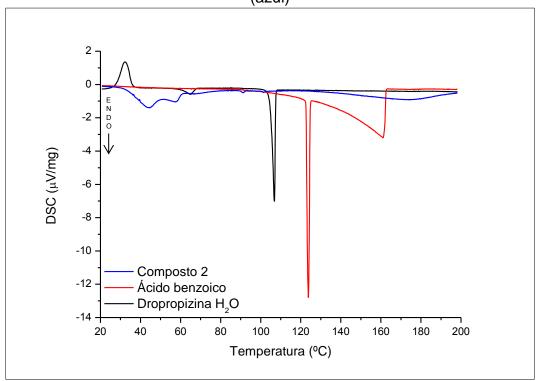




FIGURA 4.10 – Padrões de difração de raio X de pó para composto **2** (preto), mistura da DPP_{hid} com ABZ proporção molar 1:2 (vermelho), mistura da DPP_{hid} com ABZ proporção molar 2:1 (azul), DPP_{hid} (verde) e ABZ (rosa)

Para comprovar que o composto 2 é um novo material, comparou-se os padrões de difração dos compostos 1 e 2, na FIGURA 4.11 fica claro se tratar de dois compostos já que somente há um pico coincidente em 34,139°. Por terem sido sintetizados nas mesmas proporções molares (1:1) e sendo a única diferença o uso de gotas de água durante o processo de síntese do composto 2, é possível que estes dois compostos sejam polimorfos, já que no espectro de IR do composto 2, não aparecem as bandas de deformações de hidratos.

FIGURA 4.11 – Padrões de difração de raio X de pó para composto **1** (preto) e composto **2** (vermelho). A) Ângulo 2 Theta variando de 5 a 60°. B) Ângulo 2 Theta variando de 5 a 30°


b) DSC

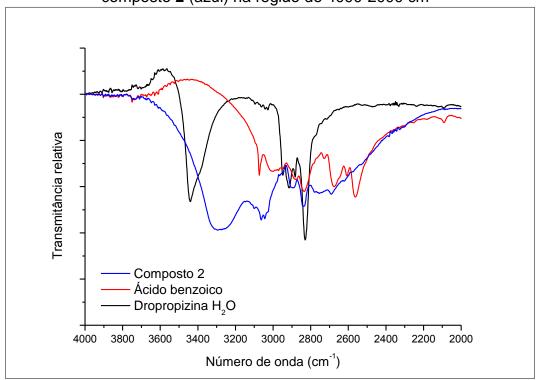
As curvas de DSC para DPP_{hid}, ABZ e composto **2** são mostradas na FIGURA 4.12.

A curva do ABZ foi discutida na seção 4.1.1.1.1.b). A curva da DPP_{hid} mostra um evento exotérmico, na faixa de temperatura de 26,4 a 39,2 °C, com uma entalpia de cristalização de ~9,02654 kJ/mol e apresenta um pico de 33,2 °C. E dois eventos endotérmicos, o primeiro, na faixa de temperatura de 60,6 a 68,9 °C, com

uma entalpia de desidratação de ~1,00233 kJ/mol e apresenta um pico em 65,4 °C, e o segundo, na faixa de temperatura de 101,8 a 109,1 °C, com uma entalpia de fusão de ~11,91718 kJ/mol e apresenta uma temperatura de fusão de 107,5 °C.

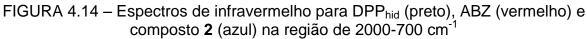
FIGURA 4.12 – Curvas de DSC para DPP_{hid} (preto), ABZ (vermelho) e composto **2** (azul)

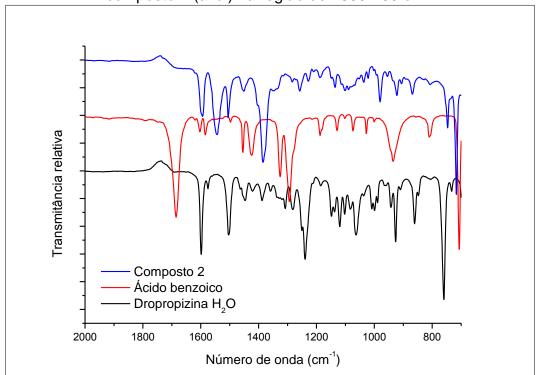



A curva do composto **2** apresenta vários eventos endotérmicos, com picos nas temperaturas 44,4; 57,2; 67,5; 91,1; 101,3 e 172,4 °C, e entalpias de 14,8213; 6,73681; 3,16432; 0,24971; 0,16169 e 16,80779 kJ/mol respectivamente.

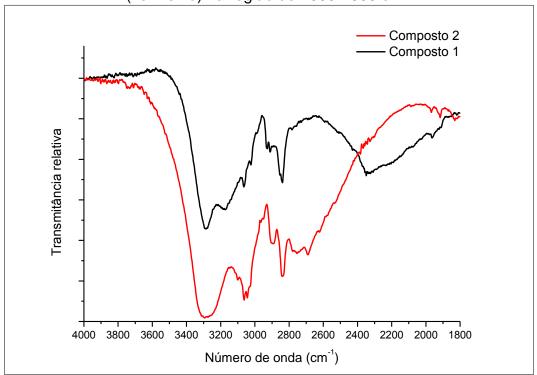
c) IR

As atribuições das bandas encontram-se na TABELA A3.6 no APÊNDICE 3.


Na FIGURA 4.13, verificou-se o desaparecimento de algumas bandas características de estiramentos O–H de ligações de hidrogênio na DPP, em 3440 cm⁻¹ e do ABZ, ~3400-2400 cm⁻¹, e o aparecimento de uma banda larga em 3290 cm⁻¹, que podem ser atribuídas às ligações de hidrogênio responsáveis pela formação do composto **2**.



Na região de impressão digital, FIGURA 4.14, devido à grande quantidade de bandas, é difícil fazer a atribuição correta de todas, assim concentramos nossa atenção nas principais. Para os modos vibracionais C–C e C–H são observadas poucas perturbações nas frequências, indicando que o movimento do esqueleto é efetivamente o mesmo dos materiais de partida.


Assim como ocorre com o composto 1, a primeira grande mudança está relacionada com a banda característica dos ácidos carboxílicos, o estiramento C=O. O ácido apresenta uma banda larga e intensa em 1685 cm⁻¹, e o composto 2 não apresenta bandas nesta região. Isso ocorre também com outras bandas características, deformação no plano do O–H em 1424 cm⁻¹; estiramento C–O em 1294 cm⁻¹; estiramento C–C em 1129 cm⁻¹ e deformação fora do plano do O–H em 933 cm⁻¹. Além do desaparecimento, ocorre o deslocamento do estiramento e da deformação do anel, de 1326 para 1334 e 811 para 807 cm⁻¹. O desaparecimento e deslocamento destas bandas, junto com o aparecimento das bandas em 1544 e 1385 cm⁻¹, atribuídas a estiramentos característicos dos carboxilatos (COO⁻), e em 1404 cm⁻¹, atribuída à deformação N⁺–H, indicam a formação de um sal-cocristal.

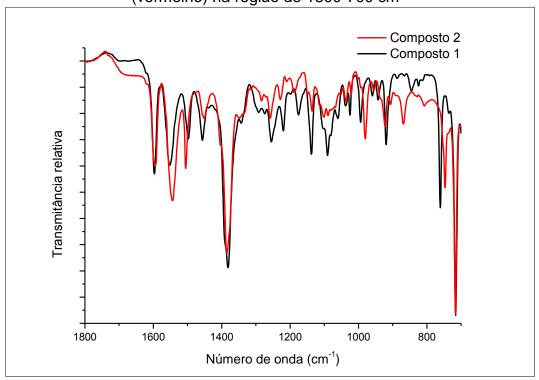
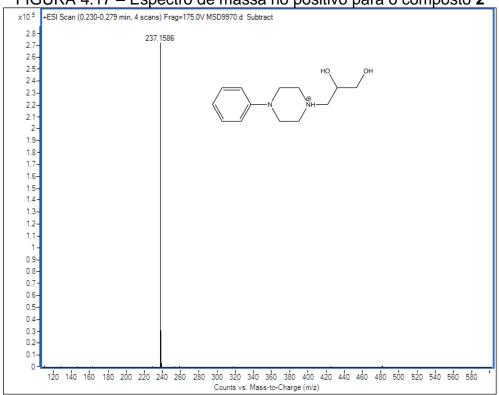

Algumas bandas da DPP também desaparecem, na região de 1421 e 1308 cm⁻¹, todas atribuídas a deformações dos grupos álcoois (primário e secundário), e outras que sofrem deslocamento, nas regiões de 1212 para 1229 cm⁻¹ e 1120 para 1089 cm⁻¹, a primeira atribuída a uma deformação C–H do esqueleto e a segunda atribuída ao estiramento C–OH. O desaparecimento de algumas bandas pode estar relacionado à sobreposição com outras ou devido à mudança das interações intermoleculares.

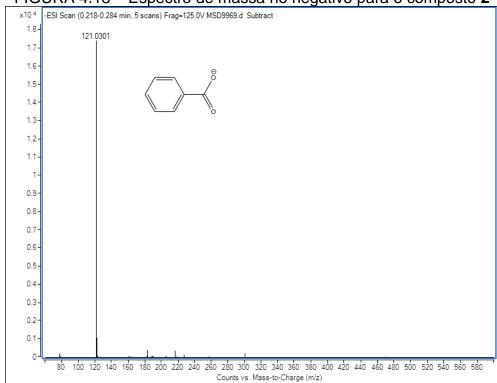
FIGURA 4.15 – Espectros de infravermelho para composto **1** (preto) e composto **2** (vermelho) na região de 4000-1800 cm⁻¹

As principais diferenças dos espectros de IR entre os compostos **1** e **2** estão relacionadas aos deslocamentos das bandas resultantes dos estiramentos O– H em 3173 cm⁻¹, na FIGURA 4.15. Outros deslocamentos significativos ocorrem com os modos vibracionais entre 1315 e 1215 cm⁻¹, relacionados à molécula de DPP e indicando que adotam um posicionamento parecido, mas não igual, por exemplo, alterando o ângulo de interação entre os dímeros. Os deslocamentos dos modos vibracionais dos anéis, em 1175 (1188); 993 (980); 845 (869); 824 (807) e 760 (747) cm⁻¹ também contribuem para a hipótese que a interação entre as moléculas de DPP (ou dímeros de DPP) ocorre por meio dos anéis. Algumas bandas de deformação O–H, em 1291 (1283); 943 (936); 919 (922) cm⁻¹, dos grupos álcoois primário e secundário também sofrem deslocamento e indicam ângulos ou interações distintas (FIGURA 4.16).

FIGURA 4.16 – Espectros de infravermelho para composto **1** (preto) e composto **2** (vermelho) na região de 1800-700 cm⁻¹


d) ESI/MS-TOF

Utilizando a técnica de ESI/MS-TOF foi possível determinar a massa dos precursores do composto **2**, e assim mostrar que estes compostos estão unidos por interações não covalentes.


A FIGURA 4.17 mostra o ESI(+)-MS do composto $\bf 2$, onde pode-se notar a presença do pico do íon m/z 237,1586, referente a massa molar da DPP + $\bf H^+$.

A FIGURA 4.18 mostra o ESI(-)-MS do composto $\mathbf{2}$, onde pode-se notar a presença do pico do íon m/z 121,0301, referente a massa molar da ABZ - H⁺.

FIGURA 4.17 – Espectro de massa no positivo para o composto 2

4.1.1.2. ÁCIDO 4-HIDROXIBENZOICO

O AHBZ foi cocristalizado junto com a DPP utilizando a moagem com gotas de água em diferentes proporções molares, 1:1, 2:1 e 1:2. Uma relação completa dos diferentes ensaios pode ser encontrada na TABELA A3.1, TABELA A3.2, TABELA A3.3 e TABELA A3.4 no APÊNDICE 3.

Foi sintetizado com sucesso um sal-cocristal de DPP com AHBZ com proporção molar 1:1. O composto 3, DPP + AHBZ (1:1) H₂O, foi obtido utilizando a metodologia de moagem com gotas de água e apresentou coloração branca. Os resultados são apresentados e analisados a seguir.

4.1.1.2.1. Dropropizina + Ácido 4-hidroxibenzoico (1:1) H₂O

a) DRXP

Comparando os padrões de difração do composto **3** com o da DPP ou do AHBZ, observaram-se padrões completamente distintos para cada material (FIGURA 4.19).

Pelo fato de serem poucos os picos coincidentes nos padrões de difração, já poderia ser descartada a hipótese do composto **3** ser uma mistura física dos reagentes. E isso fica comprovado quando se observa os padrões de difração com proporções molares 1:2 (FIGURA 4.20) e 2:1 (FIGURA 4.21).

FIGURA 4.19 – Padrões de difração de raio X de pó para DPP_{hid} (preto), AHBZ (vermelho) e composto **3** (azul)

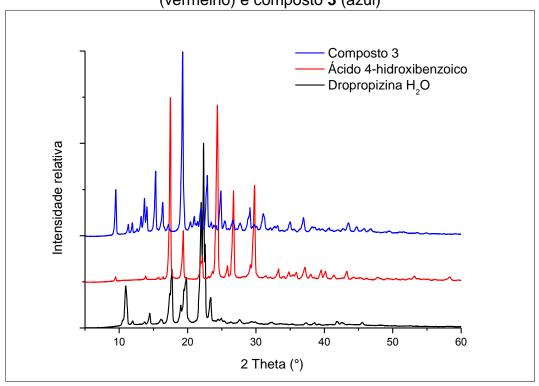
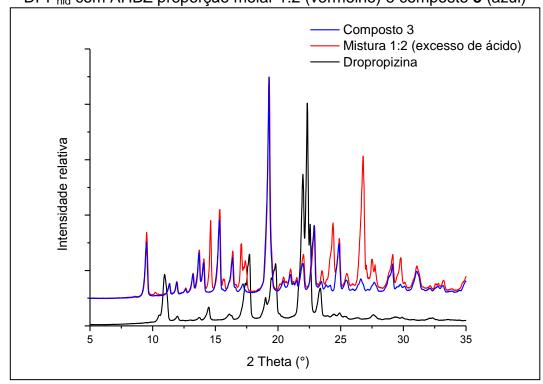
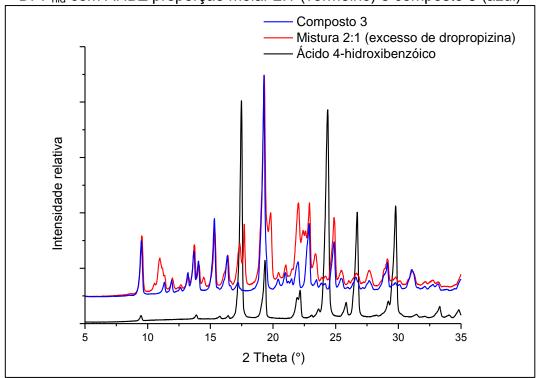
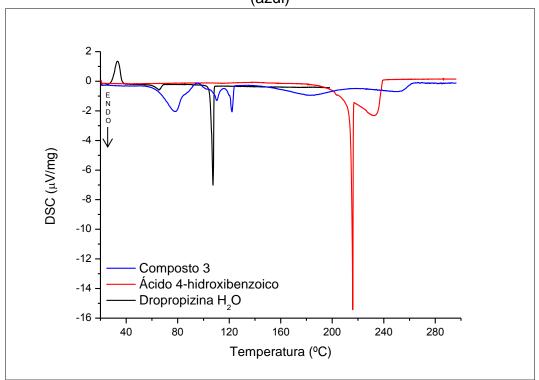




FIGURA 4.20 – Padrões de difração de raio X de pó para DPP_{hid} (preto), mistura da DPP_{hid} com AHBZ proporção molar 1:2 (vermelho) e composto **3** (azul)

Na FIGURA 4.21 também pode-se identificar alguns picos nas mesmas posições dos picos coincidentes do composto **3** e AHBZ (9,488; 29,752 e 32,112°), e assim, concluímos que os picos que aparecem no composto **3** da FIGURA 4.19 não pertencem ao AHBZ, pois ao deixar a DPP_{hid} em excesso faz-se com que todo o AHBZ reaja e não apareçam picos referentes ao seu padrão de difração, e como resultando, tem-se um difratograma com uma mistura do composto **3** e DPP_{hid}.

FIGURA 4.21 – Padrões de difração de raio X de pó para AHBZ (preto), mistura da DPP_{hid} com AHBZ proporção molar 2:1 (vermelho) e composto **3** (azul)



b) DSC

As curvas de DSC para DPP_{hid}, AHBZ e composto **3** são mostradas na FIGURA 4.22, a curva da DPP_{hid} é discutida na seção 4.1.1.1.b). A curva do AHBZ apresenta um evento endotérmico, na faixa de temperatura de 202,6 a 204,1 °C, e apresenta uma temperatura de fusão de 203,6 °C com uma entalpia de fusão de ~1,33168 kJ/mol, sendo que este evento pode estar relacionado com uma pequena quantidade da forma hidratada do ácido presente, e outro evento endotérmico, na faixa de temperatura de 211,3 a 217,2 °C, e apresenta uma temperatura de fusão de 216,1 °C com uma entalpia de fusão de ~27,29242 kJ/mol, com valores muito

próximos aos reportados na literatura (213,5-215,7 °C e 30,74 kJ/mol), ^{134,135,136} sendo que inicia a sublimação em ~180 °C.

FIGURA 4.22 – Curvas de DSC para DPP_{hid} (preto), ABZ (vermelho) e composto **3** (azul)

Na busca nas bases de dados, nos deparamos com um artigo com valores incoerentes para as curvas de DSC, deixando em dúvida a confiabilidade deste artigo. 137

A curva do composto **3** apresenta vários eventos endotérmicos, com picos de temperatura em 78,0; 110,3; 122,1; 182,8 e 248,8 °C. O primeiro, na faixa de temperatura de 54,46 a 95,47 °C, com uma entalpia de ~33,39909 kJ/mol. O segundo, na faixa de temperatura de 95,47 a 115,42 °C, com uma entalpia de ~9,58128 kJ/mol. O terceiro, na faixa de temperatura de 115,42 a 124,92 °C, com uma entalpia de ~7,28141 kJ/mol. O quarto, na faixa de temperatura de 134,39 a 218,90 °C, com uma entalpia de ~42,25323 kJ/mol. O quinto, na faixa de temperatura de 218,90 a 264,54 °C, com uma entalpia de ~19,63737 kJ/mol. Estes eventos são muito distintos dos precursores, evidenciando assim que pertencem a um composto distinto.

c) IR

As atribuições das bandas são mostradas na TABELA A3.7 no APÊNDICE 3.

Na FIGURA 4.23, verificou-se o desaparecimento de algumas bandas características do estiramento O–H para ligações de hidrogênio da DPP, em 3440 cm⁻¹, e para o AHBZ algumas bandas características do estiramento O–H para ligações de hidrogênio do grupo álcool, em 3387 cm⁻¹, e bandas características do estiramento O–H para ligações de hidrogênio do grupo carboxílico, em 2667 e 2550 cm⁻¹. Para o composto 3 verifica-se o aparecimento de duas bandas, uma fina e intensa em 3561 cm⁻¹ e outra, larga e intensa em 3215 cm⁻¹. A primeira pode ser atribuída ao estiramento O–H de uma molécula de água que interage com o oxigênio do grupo álcool do ácido. Esta banda só ocorre neste comprimento de onda devido ao ângulo de interação e por causa do empacotamento. A segunda está relacionada ao estiramento O–H dos outros grupos, devido à banda ser muito larga ocorre a sobreposição dos vários grupos O–H com outras bandas características dos estiramentos C–H.

FIGURA 4.23 – Espectros de infravermelho para DPP_{hid} (preto), AHBZ (vermelho) e composto **3** (azul) na região de 4000-2000 cm⁻¹

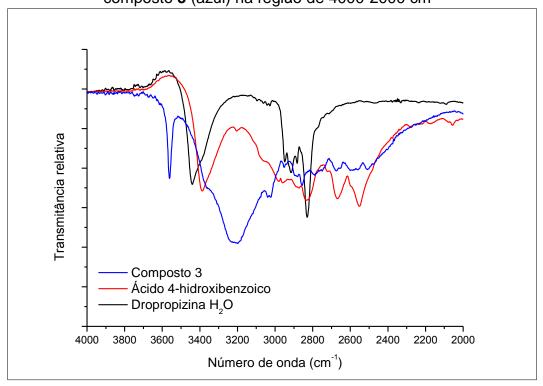
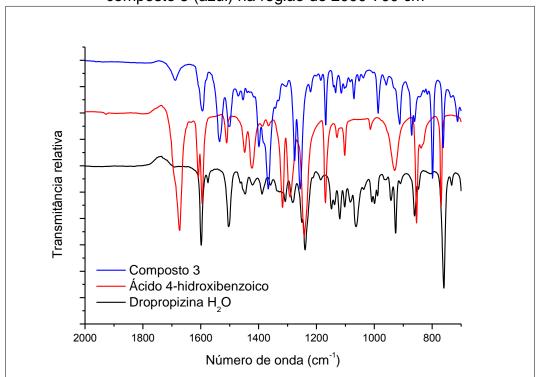



FIGURA 4.24 – Espectros de infravermelho para DPP_{hid} (preto), AHBZ (vermelho) e composto **3** (azul) na região de 2000-700 cm⁻¹

Na região de impressão digital, FIGURA 4.24, devido à grande quantidade de bandas a atribuição correta para todas se torna muito difícil, assim concentramos nossa atenção nas principais. Para os modos vibracionais C–C e C–H são observadas poucas perturbações nas frequências, indicando que o movimento do esqueleto é efetivamente o mesmo dos materiais de partida.

Para o AHBZ, ocorre o desaparecimento de algumas bandas características dos ácidos carboxílicos, o estiramento C=O, em 1673 cm⁻¹, o estiramento C=O, em 1243 cm⁻¹, e as deformações O=H, em 1423; 1292 e 930 cm⁻¹ (no plano, dímero no plano e fora do plano, respectivamente). No composto **3** aparecem bandas características dos carboxilatos, o estiramento COO⁻, em 1535 e 1367 cm⁻¹. Outra banda, deformação fora do plano O=C=O, é deslocada de 769 cm⁻¹ (carboxílica) para 799 cm⁻¹ (carboxilato). As bandas da DPP associada ao átomo de nitrogênio, envolvido na formação do sal-cocristal, apresentam um pequeno deslocamento. A banda do estiramento C=N é deslocada de 1250 para 1275 cm⁻¹ devido ao aumento da distância de ligação provocado pela formação do cátion amônio quaternário. Além disso, aparecem novas bandas em 1399 e 1282 cm⁻¹, a primeira, atribuída à deformação N⁺=H e a segunda, atribuída a uma banda

combinatória da deformação do esqueleto (C-H) com N⁺-H, indicando a formação de um sal-cocristal.

Algumas bandas relacionadas com as deformações O–H não foram identificadas no composto **3**. Isso ocorre por causa da mudança do empacotamento, que afeta as ligações de hidrogênio, no intervalo de 1317 cm⁻¹ para o AHBZ e em 1421; 1308 e 1282 cm⁻¹ para a DPP. Algumas destas bandas podem estar sobrepostas, pelo fato de serem relativamente pequenas e assim, torna difícil a identificação.

d) ESI/MS-TOF

Utilizando a técnica de ESI/MS-TOF foi possível determinar a massa dos precursores do composto 3, e assim mostrar que estes compostos estão unidos por interações não covalentes.

A FIGURA 4.25 mostra o ESI(+)-MS do composto $\bf 3$, onde pode-se notar a presença do pico do íon m/z 237,1584, referente a massa molar da DPP + $\bf H^+$.

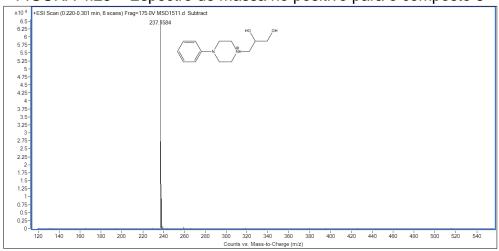
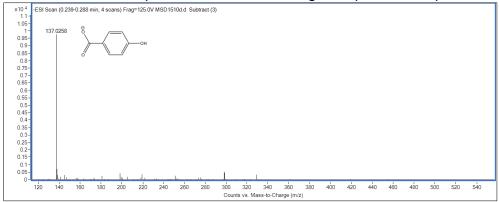



FIGURA 4.25 – Espectro de massa no positivo para o composto 3

A FIGURA 4.26 mostra o ESI(-)-MS do composto $\bf 3$, onde pode-se notar a presença do pico do íon m/z 137,0258, referente a massa molar da AHBZ - $\bf H^+$.

FIGURA 4.26 – Espectro de massa no negativo para o composto 3

e) DETERMINAÇÃO ESTRUTURAL

O esquema do composto **3** é mostrado na FIGURA 4.27 e os seus respectivos dados cristalográficos e de refinamento estão apresentados na TABELA 4.2. As interações presentes na estrutura são apresentadas na TABELA A4.2, e outras tabelas cristalográficas encontram-se no APÊNDICE 4.

FIGURA 4.27 - Esquema do composto 3

A difração de raio X de monocristal mostrou que o composto **3** é formado pela razão molar 1:1 da DPP e do AHBZ com a presença de duas moléculas de água. O composto **3** cristaliza no grupo espacial centrossimétrico Pbca, com quatro moléculas na unidade assimétrica (FIGURA 4.28), sendo um ânion, um cátion e duas águas.

TABELA 4.2 – Dados cristalográficos e de refinamento do composto 3

Sal de (R,S)-1(2,3-dihidroxipropil)-4-fenilpiperazin-1-ion 4-hidroxibenzoato dihidratado

Fórmula química	C ₂₀ H ₃₀ N ₂ O ₇
M_r	410.46
Sistema cristalino, grupo espacial	Ortorrômbico, Pbca
Temperatura (K)	296
a, b, c (Å)	14,7213(11); 15,4758(13); 18,319(2)
$V(Å^3)$	4173,5(7)
Z	8
Radiação	Μο Κα
μ (mm ⁻¹)	0,099
Tamanho do cristal (mm)	0,44 x 0,32 x 0,13
Difratômetro da coleta de	Bruker APEXII CCD
dados	
$T_{min},\ T_{max}$	0,9578; 0,9873
Reflexões coletadas, únicas e observadas [I > 2(I)]	17488; 4284; 3085
R_{int}	0,056
Refinamento	0,078; 0,170; 1,038
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	
Reflexões	4284
Parâmetros	265
Restrições	0
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} \text{ (e Å}^{-3})$	0,612; -0,239

A posição do átomo de hidrogênio ligado ao N(2), envolvido no processo de transferência do próton, foi determinada em um mapa de Fourier diferença, os demais foram colocados em posições idealizadas. As distâncias e ângulos para o composto **3** são apresentados na TABELA 4.3.¹³⁸

FIGURA 4.28 – Estrutura do composto **3**, mostrando elipsoides de 50% de probabilidade e os átomos de hidrogênio em uma escala arbitrária

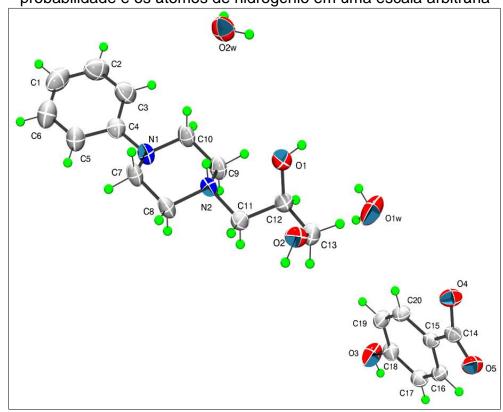


TABELA 4.3 – Distâncias e ângulos de ligação para os grupos ácido e básico do composto 3

ligação	distância (Å)	ângulo (°)
O4 – C14	1,262(3)	
C14 – O5	1,258(3)	
O4 – C14 – O5		123,68(19)
N2 – C8	1,495(3)	
N2 – C9	1,491(3)	
N2 – C11	1,498(3)	
C8 – N2 – C9		108,23(16)
C8 – N2 – C11		109,86(16)
C9 – N2 – C11		112,04(17)

Na TABELA 4.3, observou-se que as distâncias das duas ligações, C—O, do grupo ácido são iguais, dentro do erro experimental, isso indica que o grupo está na forma de ânion carboxilato (COO-). Quando se observam as distâncias de ligação C—N do grupo básico, vê-se que são maiores no composto 3 do que na DPP, que apresenta distâncias de 1,462(3); 1,473(3) e 1,472(3) Å,93 e indicam que o átomo de nitrogênio, no composto 3, está fazendo quatro ligações.

Devido à geometria adotada no cristal, a interação entre o grupo ácido (COOH) e o grupo básico (NC₃) é mediada por duas moléculas de água, e um grupo álcool de outro cátion de DPP, O5 · · · O1w · · · O2w · · · · O2 · · · · N2 (FIGURA 4.29).

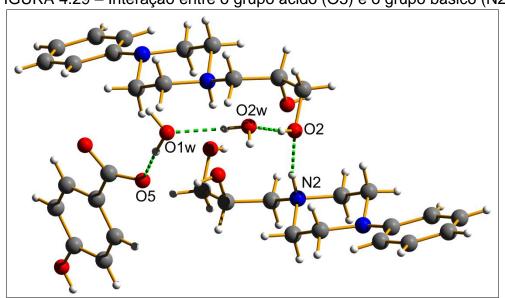


FIGURA 4.29 – Interação entre o grupo ácido (O5) e o grupo básico (N2)

Os dois cátions de DPP interagem entre si para formar um dímero, no qual a interação ocorre por meio de quatro ligações de hidrogênio, sendo duas N2– $H2N\cdots O2$ e duas C7– $H7a\cdots O2$ (FIGURA 4.30). Este dímero interage com outro dímero por meio de interações $\pi \cdots \pi$, entre os anéis aromáticos (C1-C2-C3-C4-C5-C6) das formas R e S, que promovem a formação da cadeia de cátions de DPP's ao longo do eixo a, ou crescimento 1D (FIGURA 4.31).

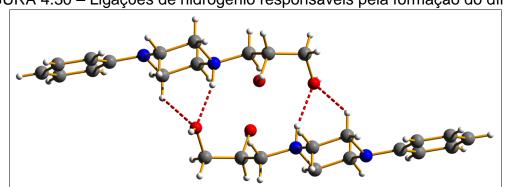
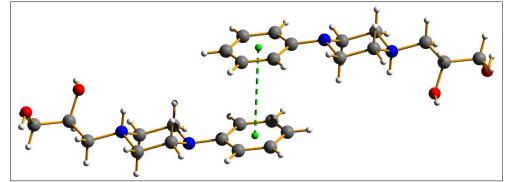



FIGURA 4.30 – Ligações de hidrogênio responsáveis pela formação do dímero

FIGURA 4.31 – Interação $\pi \cdots \pi$ responsável pela interação entre os dímeros

Na FIGURA 4.32 observou-se que as cadeias formadas pelos dímeros, representados na cor verde e na cor rosa, apresentam sentidos contrários e são unidas pela interação $\pi \cdot \cdot \cdot \pi$, representada na cor laranja. A cadeia interage com outra cadeia para formar uma camada de cátions de DPP, ou seja, promove o crescimento das cadeias no eixo b (2D), por meio de uma ligação de hidrogênio C11–H11b $\cdot \cdot \cdot \pi$ (distância H $\cdot \cdot \cdot \pi$ = 2,66 Å; ângulo C–H $\cdot \cdot \cdot \pi$ = 166°), como mostrado na FIGURA 4.33.

FIGURA 4.32 – Representação dos dímeros e cadeias do cátion de DPP

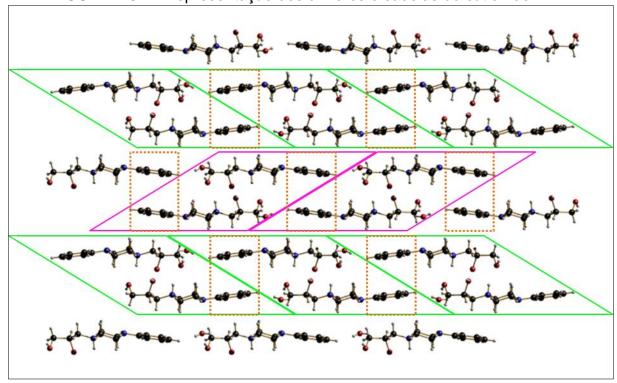
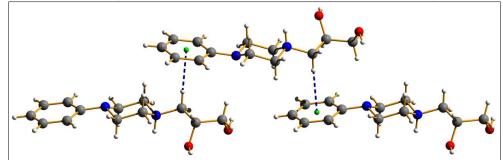
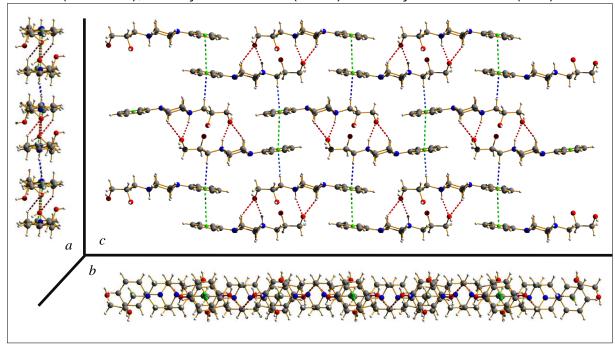




FIGURA 4.33 – Ligações de hidrogênio responsáveis pela formação da camada

Uma representação, nos três eixos, da organização da camada é apresentada na FIGURA 4.34, onde estão representadas todas as interações. Em vermelho, as responsáveis pela formação do dímero; em verde as responsáveis pela formação da cadeia; e em azul, as responsáveis pela formação da camada.

FIGURA 4.34 – Representação das interações nos planos *a, b* e *c* da camada de cátions de DPP, com as interações responsáveis pela formação do dímero (vermelho), formação da cadeia (verde) e formação da camada (azul)

Para os ânions carboxilato ocorrem situações similares às encontradas para os cátions de DPP. A interação entre os ânions ocorre por meio de uma ligação de hidrogênio entre o grupo álcool e o grupo carboxilato, O3–H23 · · · O4, sendo que existe uma molécula de água que atua como uma "cola" entre os dois ânions, realizando duas ligações de hidrogênio, O1w–H1wa · · · O3 (O · · · O = 2,826 Å; O–

 $H \cdot \cdot \cdot O = 150^{\circ}$) e O1w-H1wb $\cdot \cdot \cdot O5$ (O $\cdot \cdot \cdot O = 2,775$ Å; O-H $\cdot \cdot \cdot O = 164^{\circ}$) (FIGURA 4.35), formando uma cadeia (FIGURA 4.36) ao longo do eixo b (1D).

FIGURA 4.35 – Ligações de hidrogênio responsáveis pela interação entre os ânions carboxilato e uma molécula de água

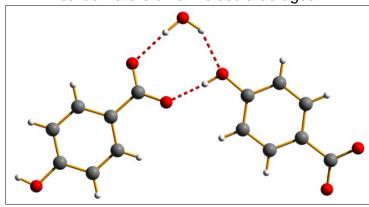
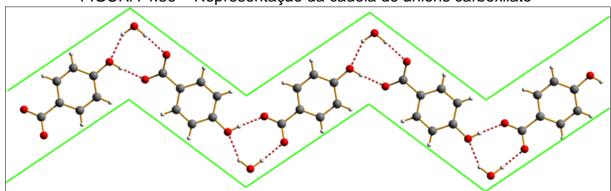



FIGURA 4.36 – Representação da cadeia de ânions carboxilato

Esta cadeia de ânions carboxilato interage com outra cadeia por meio de duas ligações de hidrogênio feitas por outra molécula de água, O2w–H2wa · · · O1W e O2w–H2wb · · · O4 (FIGURA 4.37). A molécula de água atua como uma cola para as cadeias, sendo a responsável pela formação da camada de ânions carboxilato e moléculas de água (FIGURA 4.38), ou seja, responsável pelo crescimento da camada no eixo *a* (2D).

FIGURA 4.37 – Ligações de hidrogênio feitas pela molécula de água responsável pela junção das cadeias de ânions carboxilato

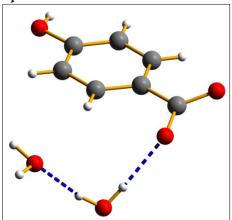
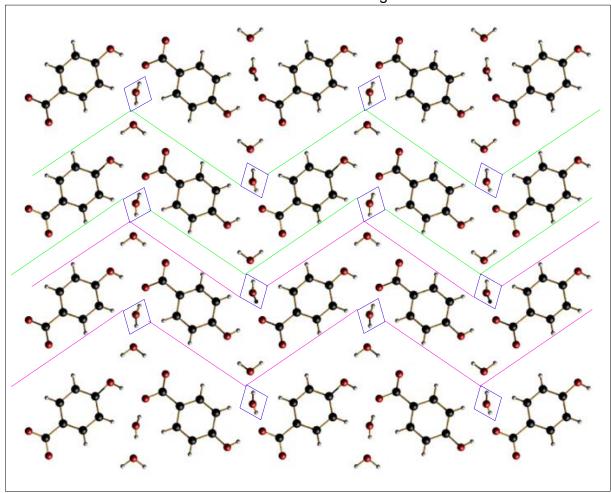



FIGURA 4.38 – Representação da camada de ânions carboxilato formada com o auxílio da molécula de água

As moléculas de água, responsáveis pela formação da cadeia e da camada, adotam um alinhamento em zigue-zague entre os ânions carboxilato ao

longo do eixo *a* (FIGURA 4.39). Este alinhamento é muito parecido com o encontrado nas cadeias de ânions carboxilato, apresentado na FIGURA 4.36.

FIGURA 4.39 – Alinhamento em zigue-zague das moléculas de água

Uma representação, nos três planos, da organização da camada é apresentada na FIGURA 4.40, onde estão representadas todas as interações. Em vermelho, interações responsáveis pela formação da cadeia e em azul, as responsáveis pela formação da camada.

Os cátions de DPP interagem com os ânions carboxilato por meio de uma ligação de hidrogênio, O1–H21 · · · O5, e com as moléculas de água, também por uma ligação de hidrogênio, O2–H22 · · · O2w (FIGURA 4.41). Sendo que estas duas interações são as responsáveis pelo crescimento na direção do eixo c, no qual as camadas de cátions de DPP (verde) ficam paralelas às camadas de ânions carboxilato (rosa), mas os cátions de DPP estão posicionados perpendicularmente aos ânions carboxilato, este posicionamento está representados em azul na FIGURA 4.42.

FIGURA 4.40 – Representação das interações nos planos a, b e c da camada de ânions carboxilato, com as interações responsáveis pela formação da cadeia (vermelho) e formação da camada (azul)

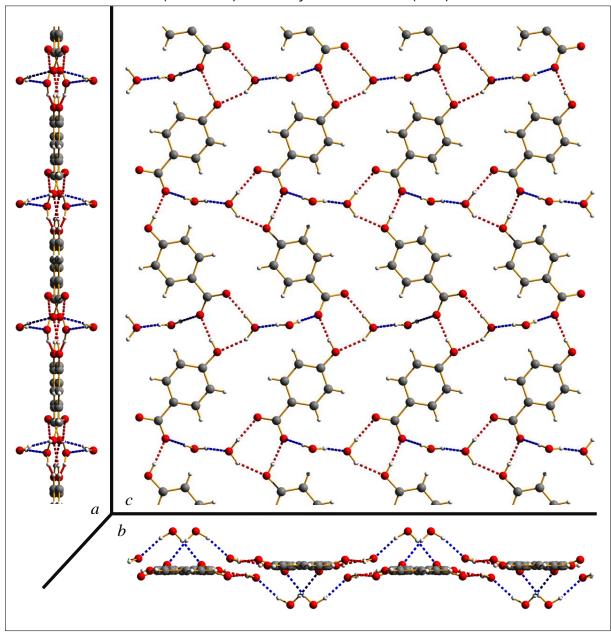


FIGURA 4.41 – Ligação de hidrogênio do cátion de DPP com o ânion carboxilato e a molécula de água

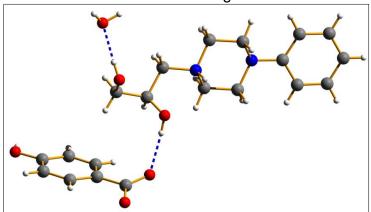
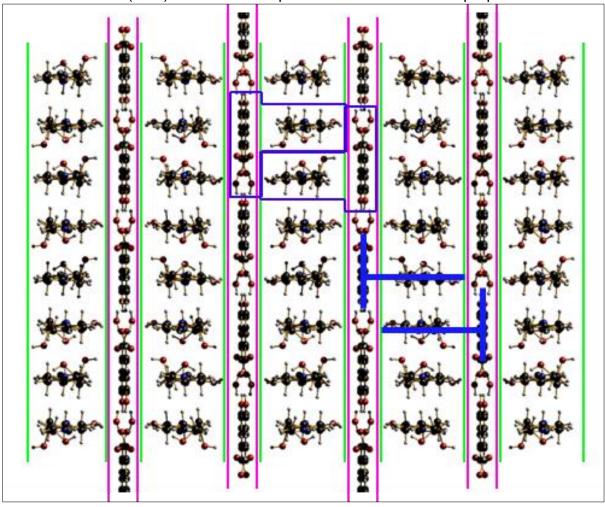
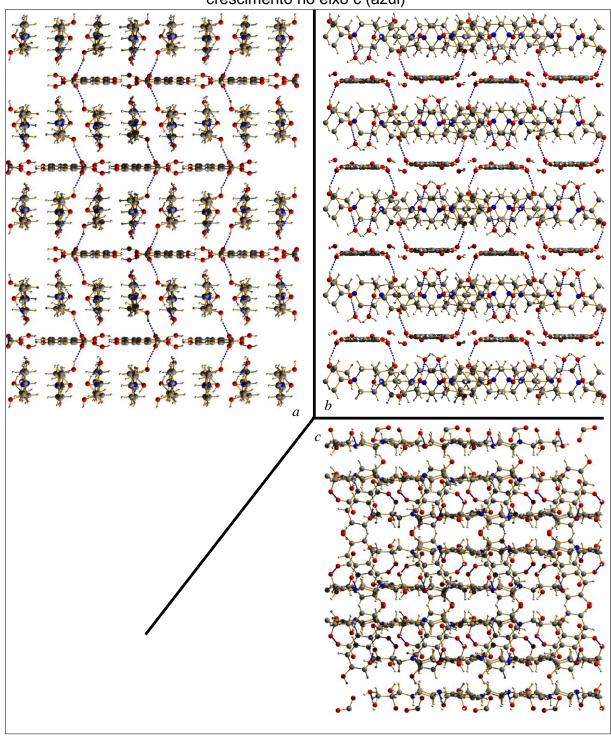




FIGURA 4.42 – Representação das camadas de cátions de DPP (verde) e ânions carboxilato (rosa) onde os íons apresentam o alinhamento perpendicular

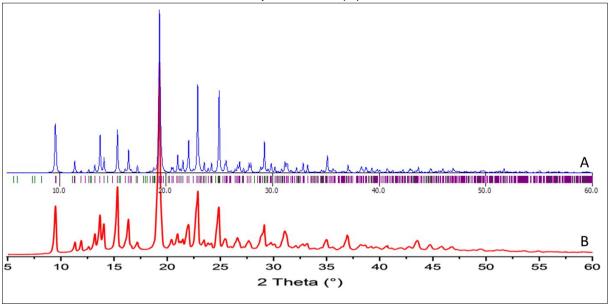
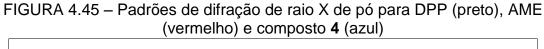

Uma representação, nos três planos, da organização do empacotamento é apresentada na FIGURA 4.43, onde estão representadas as duas interações em azul.

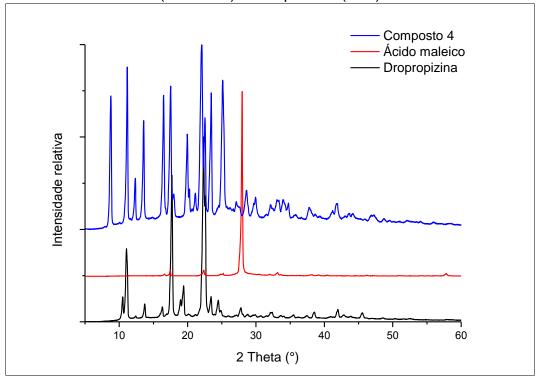
FIGURA 4.43 – Representação das interações nos planos *a, b* e *c* do empacotamento cristalino com as ligações de hidrogênio responsáveis pelo crescimento no eixo c (azul)

A comparação entre o difratograma simulado e o experimental (FIGURA 4.44) permitiu confirmar que o composto **3**, obtido com a metodologia de moagem com gotas de água, é o mesmo da estrutura cristalina.

FIGURA 4.44 – Comparação entre o padrão cristalino do composto **3**, simulado (A) e experimental (B)

4.1.1.3. ÁCIDO MALEICO

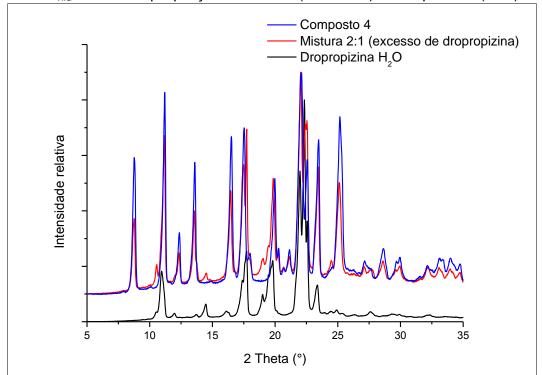

O AME foi cocristalizado junto com a DPP utilizando a moagem no estado sólido em diferentes proporções molares, 1:1, 2:1 e 1:2. Uma relação completa dos diferentes ensaios pode ser encontrada na TABELA A3.1, TABELA A3.2, TABELA A3.3 e TABELA A3.4 no APÊNDICE 3.


Foi sintetizado com sucesso um sal-cocristal de DPP com AME, com proporção molar 1:1. A DPP + AME (1:1) anidro (composto **4**) foi obtido utilizando a metodologia de moagem no estado sólido e apresentou coloração branca. Os resultados são apresentados na sequência.

4.1.1.3.1. Dropropizina + Ácido Maleico (1:1) anidro a) DRXP

Comparando os padrões de difração do composto **4** com o da DPP ou do AME, observaram-se padrões completamente distintos para cada material (FIGURA 4.45), com apenas dois picos do composto **4** que coincidem com dois da DPP.

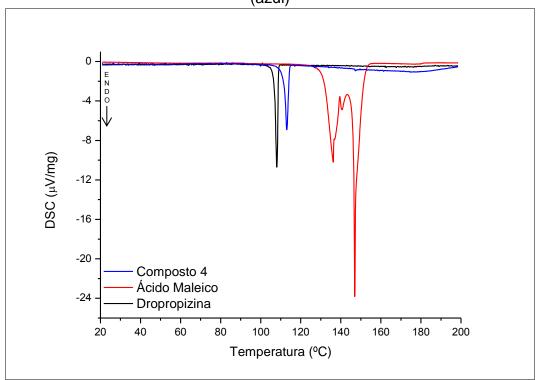
Pelo fato de serem poucos picos coincidentes, já poderia ser descartada a hipótese do composto 4 ser uma mistura física dos reagentes. Mas nos deparamos com um problema quando trocamos as proporções molares para observar os picos resultantes de uma mistura com excesso de algum dos reagentes, tanto na proporção molar 1:2 como 2:1, não foi possível obter um sólido, pois os resultados das reações são materiais coloidais que não puderam ser identificados.



Entretanto, quando se realizou a síntese com a metodologia de moagem com gotas de água, conseguimos o mesmo composto gerado com a metodologia de moagem no estado sólido (proporção molar 1:1), mas desta vez foi

possível obter um sólido na proporção molar 2:1, sendo que quando utilizada a proporção molar 1:2 voltou-se novamente a obter um coloide. Os padrões de difração de raio X de pó para a mistura 2:1 (com excesso de DPP), o composto **4** e a DPP_{hid} são apresentados na FIGURA 4.46.

FIGURA 4.46 – Padrões de difração de raio X de pó para DPP_{hid} (preto), mistura da DPP_{hid} com AME proporção molar 2:1 (vermelho) e composto **4** (azul)

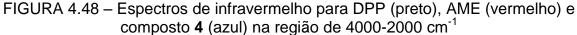


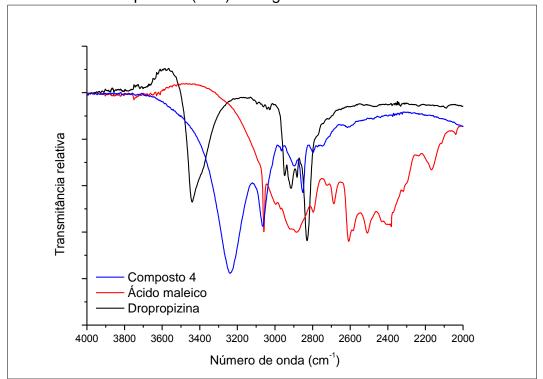
b) DSC

As curvas de DSC para DPP, AME e composto **4** são mostradas na FIGURA 4.47, a curva da DPP é discutida na seção 4.1.1.1.1.b). A curva do AME apresenta um evento endotérmico, na faixa de temperatura de 129,6 a 139,7 °C, e apresenta uma temperatura de fusão de 136,3 °C com uma entalpia de fusão de ~28,79956 kJ/mol, com valores muito próximos aos reportados na literatura (135-140 °C e 26,9 kJ/mol), ^{139,140,141} sendo que ainda apresenta outros dois eventos endotérmicos que só são vistos devido à taxa de aquecimento utilizada, nas faixas de temperatura de 139,7 a 143,4 °C e 143,4 a 154,7 °C, com picos em 140,7 e 147,1 °C, este último pode ser relacionado com a evaporação do material.

A curva do composto **4** apresenta dois eventos endotérmicos, o primeiro na faixa de 104,6 a 115,0 °C, com temperatura de fusão de 113,1 °C e entalpia de fusão de ~13,9548 kJ/mol, e o segundo na faixa de 117,1 a 198,0 °C, com pico de temperatura de 174,9 °C e entalpia de ~24,69194 kJ/mol, sendo que este pode ser relacionado com a degradação do material. Fica clara a diferença dos perfis térmicos para cada material, evidenciando que o perfil do composto **4** pertencem a um composto distinto.

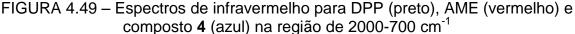
FIGURA 4.47 – Curvas de DSC para DPP (preto), AME (vermelho) e composto **4** (azul)

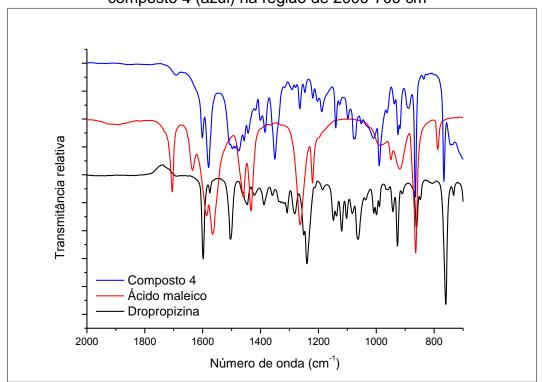



c) IR

As atribuições das bandas encontram-se na TABELA A3.8 no APÊNDICE 3.

Na FIGURA 4.48, verificou-se o desaparecimento de algumas bandas características do estiramento O–H para ligações de hidrogênio da DPP, em 3440 cm⁻¹. No caso do AME, bandas características do estiramento O–H em 3250-2750 cm⁻¹ e 2570-2250 cm⁻¹, entre estas várias bandas que desaparecem entre 2570 e 2250 cm⁻¹, estão bandas características dos dímeros carboxílicos, em 2608 e 2509


cm⁻¹. Para o composto **4** verifica-se o aparecimento de uma bandas larga e intensa em 3239 cm⁻¹, que é atribuída aos estiramentos O–H do grupo álcool da DPP e do AME, devido à banda ser muito larga ocorre a sobreposição dos vários grupos O–H.



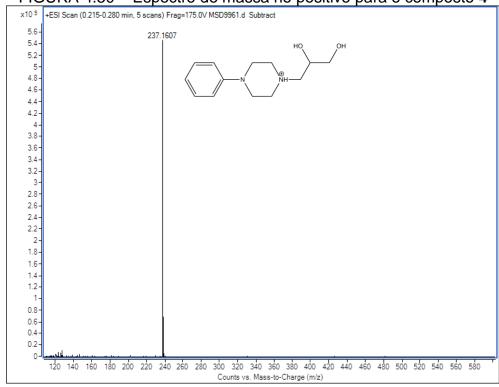
Na região de impressão digital, FIGURA 4.49, devido à grande quantidade de bandas a atribuição correta para todas se torna muito difícil, assim concentramos nossa atenção nas principais. Para os modos vibracionais C–C e C–H são observadas poucas perturbações nas frequências, indicando que o movimento do esqueleto é efetivamente o mesmo dos materiais de partida.

Para o AME, ocorre o desaparecimento de algumas bandas, algumas são características dos ácidos carboxílicos. Os dois modos vibracionais do estiramento C=O, em 1705 e 1635 cm⁻¹, desaparecem e em seu lugar aparece uma banda muito pequena, em 1691 cm⁻¹, que é característica dos maleatos. As bandas em 1586 e 1566 cm⁻¹, características do estiramento C=C (configuração *cis*), também desaparecem, pois no maleato este modo vibracional é inativo no infravermelho. As deformações intermoleculares no plano e fora do plano, respectivamente em 990 e 919 cm⁻¹, também desaparecem.

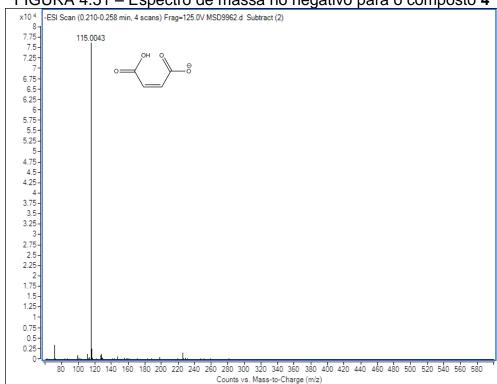
Algumas bandas sofrem deslocamento decorrente da alteração dos grupos funcionais ou interações, além do estiramento C=O, já citado, a deformação O-H no plano intramolecular é deslocada de 1460 para 1579 cm⁻¹, devido à presença de densidade eletrônica dos grupos carboxilato e da pequena alteração na geometria. Isso acaba influenciando outros modos vibracionais, a banda da deformação C-H (*rocking*) sofre um deslocamento de 1433 para 1401 cm⁻¹, o estiramento C-C e da deformação C-C=C, também são deslocadas de 949 para 963 cm⁻¹ e de 788 para 742 cm⁻¹, respectivamente. Todas estas bandas que desaparecem ou são deslocadas estão envolvidas com a transformação do grupo carboxílico (COOH) em grupo carboxilato (COOT). Isso provoca o aparecimento da deformação O-H fora do plano intramolecular, que antes estava sobreposta com o estiramento C-O, em 1188 cm⁻¹.

No composto **4** aparecem bandas características dos carboxilatos, o estiramento COO⁻, em 1498 e 1351 cm⁻¹. As bandas da DPP associada ao átomo de nitrogênio, envolvido na formação do sal-cocristal, apresenta um pequeno deslocamento. A banda do estiramento C–N é deslocada de 1250 para 1279 cm⁻¹,

devido ao aumento da distância de ligação provocado pela formação do cátion amônio quaternário. Além disso, aparecem novas bandas em 1385 e 1290 cm⁻¹, a primeira, atribuída à deformação N⁺–H e a segunda, atribuída a uma banda combinatória da deformação do esqueleto (C–H) com N⁺–H, indicando a formação de um sal-cocristal. Duas novas bandas de deformação O–H aparecem em 925 e 889 cm⁻¹, ambas relacionadas com interações intermoleculares.


Algumas bandas da DPP também desaparecem, na região de 1308 e 1282 cm⁻¹, atribuídas a deformações dos grupos álcoois (primário e secundário), e outras que sofrem deslocamento, nas regiões de 1120 para 1078 cm⁻¹, atribuída ao estiramento C–OH. O desaparecimento de algumas bandas pode estar relacionado com a sobreposição com outras ou a mudança das interações intermoleculares.

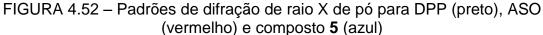
d) ESI/MS-TOF

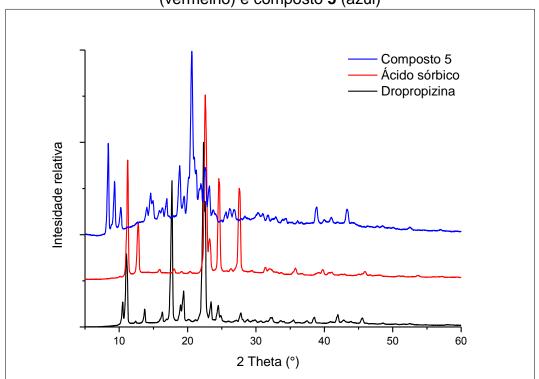

Utilizando a técnica de ESI/MS-TOF foi possível determinar a massa dos precursores do composto **4**, e assim mostrar que estes compostos estão unidos por interações não covalentes.

A FIGURA 4.50 mostra o ESI(+)-MS do composto **4**, onde pode-se notar a presença do pico do íon m/z 237,1607, referente a massa molar da DPP + H⁺. E a FIGURA 4.51 mostra o ESI(-)-MS, onde pode-se notar a presença do pico do íon m/z 115,0043, referente a massa molar da AME - H⁺.

FIGURA 4.50 – Espectro de massa no positivo para o composto 4

4.1.1.4. ÁCIDO SÓRBICO


O ASO foi cocristalizado junto com a DPP utilizando a moagem no estado sólido e também com gota de água e aquecimento em diferentes proporções molares, 1:1, 2:1 e 1:2. Uma relação completa dos diferentes ensaios pode ser encontrada na TABELA A3.1, TABELA A3.2, TABELA A3.3 e TABELA A3.4 no APÊNDICE 3.


Foram sintetizados com sucesso dois sais-cocristais de DPP com ASO, um com proporção molar 1:1 e outro com proporção molar 2:1. A DPP + ASO (1:1) anidro (composto **5**) foi obtido utilizando a metodologia de moagem no estado sólido e apresentou coloração amarela claro, e a DPP + ASO (2:1) H₂O com aquecimento (composto **6**) utilizando a metodologia de moagem com gotas de água e aquecimento em estufa a 40 °C, apresentou coloração amarela claro. Os resultados são apresentados na sequência.

4.1.1.4.1. Dropropizina + Ácido Sórbico (1:1) anidro a) DRXP

Comparando os padrões de difração do composto **5** com o da DPP ou do ASO, observaram-se padrões completamente distintos para cada material (FIGURA 4.52). Mesmo apresentando padrões distintos existem quatro picos do composto **5** que coincidem com a DPP, região de 16,316; 16,916; 20,136 e 22,554°, e três com o ASO, região de 15,882; 22,562 e 23,183°.

Pelo fato de serem poucos picos coincidentes, já poderia ser descartada a hipótese do composto **5** ser uma mistura física dos reagentes. Mas assim como ocorre com o AME, não foi possível obter um sólido e sim coloides, com as outras proporções molares, 2:1 e 1:2.

Com a metodologia de moagem com gotas de água foi possível obter sólidos nas três proporções molares, o que permitiu a comparação dos padrões difração com o do composto 5. Vale ressaltar que o composto 5 foi sintetizado com o uso das duas metodologias, moagem no estado sólido e moagem com gotas de água. Os padrões de difração das misturas com proporções molares 1:2 e 2:1 são apresentadas na FIGURA 4.53 e FIGURA 4.54, respectivamente.

Na FIGURA 4.53 é possível identificar a presença dos picos coincidentes do composto **5** e da DPP na mistura 1:2 (16,316; 16,916; 20,136 e 22,554°), então pode-se concluir que os picos que aparecem no difratograma do composto **5** da FIGURA 4.52 não pertencem a DPP, pois ao deixar o ASO em excesso faz-se com que toda a DPP reaja e não apareçam picos referentes ao seu padrão de difração, e como resultando, tem-se um difratograma com uma mistura do composto **5** e ASO.

FIGURA 4.53 – Padrões de difração de raio X de pó para DPP_{hid} (preto), mistura da DPP_{hid} com ASO proporção molar 1:2 (vermelho) e composto **5** (azul)

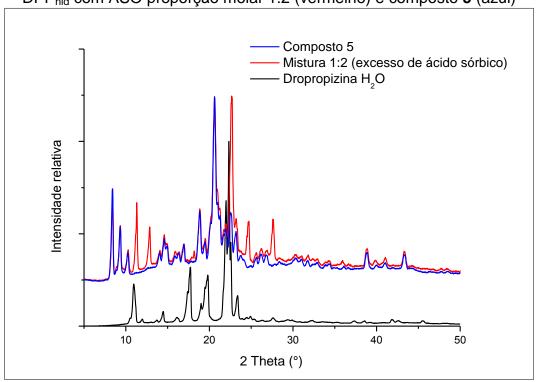
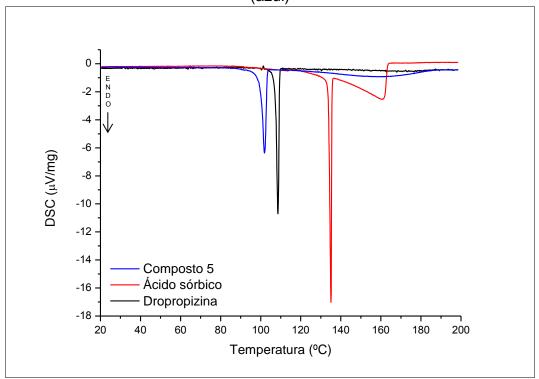


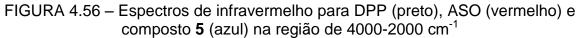
FIGURA 4.54 – Padrões de difração de raio X de pó para ASO (preto), mistura da DPP_{hid} com ASO proporção molar 2:1 (vermelho) e composto **5** (azul)

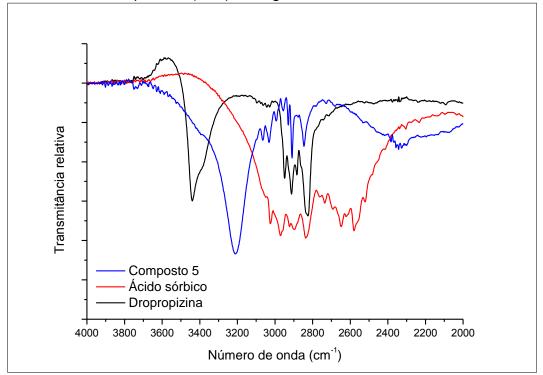


Na FIGURA 4.54 onde existe excesso de DPP_{hid}, pode-se identificar os picos do composto **5** que coincidem com os do ASO, nas posições 15,882; 22,562 e 23,183°, e assim eliminar a hipótese de estes pertencerem ao ASO.

b) DSC

As curvas de DSC para DPP, ASO e composto **5** são mostradas na FIGURA 4.55, onde a curva da DPP foi discutida na seção 4.1.1.1.1.b). A curva do ASO apresenta um evento endotérmico, na faixa de temperatura de 130,0 a 136,4 °C, e apresenta uma temperatura de fusão de 135,0 °C com uma entalpia de fusão de ~17,64429 kJ/mol, com valores muito próximos aos reportados na literatura (132-140 °C e 26,9 kJ/mol), 142,143,144 sendo que a sublimação se inicia em ~120 °C.

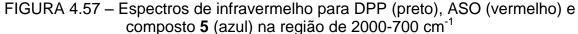


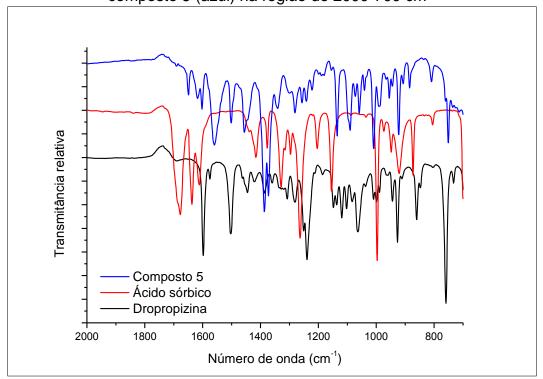

A curva de DSC do composto **5** apresenta dois eventos endotérmicos, o primeiro na faixa de 93,0 a 104,7 °C com temperatura de fusão de 101,9 °C e entalpia de fusão de ~15,06264 kJ/mol, e o segundo na faixa de 104,7 a 187,0 °C com pico de temperatura de 157,7 °C e entalpia de degradação de ~19,4605 kJ/mol.

Fica clara a diferença dos perfis térmicos para cada composto, de forma que se pode afirmar que o composto 5 apresenta uma fase cristalina diferente da dos reagentes.

c) IR

As atribuições das bandas encontram-se na TABELA A3.9 no APÊNDICE 3.





Na FIGURA 4.56, verifica-se o desaparecimento de algumas bandas características do estiramento O–H das ligações de hidrogênio da DPP, em 3440 cm⁻¹, já para o ASO, ocorre o desaparecimento de bandas características dos grupos carboxílicos, o estiramento O–H para ligações de hidrogênio do grupo carboxílico, em ~3300-2750 cm⁻¹, e estiramento O–H da formação de dímeros carboxílicos, em 2648 e 2580 cm⁻¹.

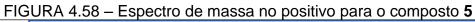
Foi identificado no composto **5** o aparecimento de uma banda, larga e intensa em ~3240 cm⁻¹, que é atribuída ao estiramento O–H dos grupos álcoois da DPP, que sofre este deslocamento por causa da alteração nas ligações de hidrogênio.

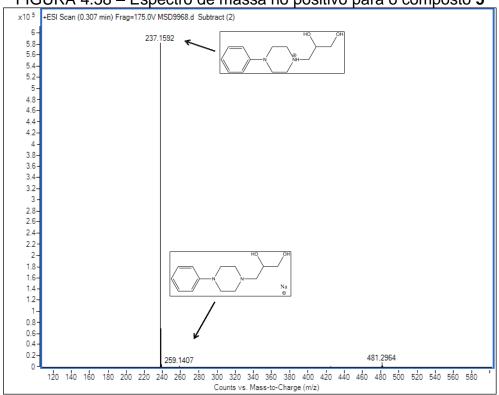
Na região de impressão digital, FIGURA 4.57, devido à grande quantidade de bandas, a atribuição correta para todas se torna muito difícil, assim concentramos nossa atenção nas principais. Para os modos vibracionais C–C e C–H são observadas poucas perturbações nas frequências, indicando que o movimento do esqueleto é efetivamente o mesmo dos materiais de partida.

Para o ASO, as grandes mudanças estão relacionadas com as bandas características dos ácidos carboxílicos, o estiramento C=O, em 1677 cm⁻¹, desaparece, assim como as bandas de deformação O-H no plano e fora do plano, em 1416 e 999 cm⁻¹, respectivamente. Outras duas bandas importantes que desaparecem estão relacionadas com o estiramento C-O, uma é o próprio estiramento C-O, em 1263 cm⁻¹, e a outra é uma banda de combinação com a deformação C-O-H, em 1329 cm⁻¹.

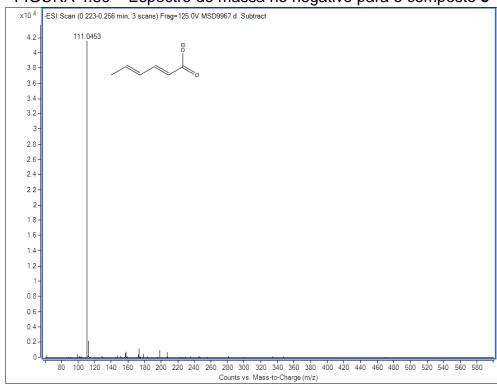
Alguns estiramentos sofrem deslocamento provocado pela alteração do grupo carboxílico. As duas bandas do estiramento C=C são deslocadas de 1637 e 1612 para 1649 e 1618 cm⁻¹, assim como as deformações C–H e CH₃, que são deslocadas de 974, 948, 921 e 873 para 966, 955, 906 e 885 cm⁻¹, respectivamente. Sendo que a banda em 974 cm⁻¹ é uma banda de combinação com o estiramento C–C do grupo carboxílico.

No composto **5** aparecem algumas bandas características dos grupos carboxilato que são atribuídas ao estiramento assimétrico e simétrico do O–C–O, em 1559 e 1341 cm⁻¹, respectivamente. Também aparecem outras que estão relacionadas à formação do cátion de DPP, as principais em 1387 e 1257 cm⁻¹. A primeira é atribuída à deformação N⁺–H e a segunda é uma banda de combinação da deformação N⁺–H com a deformação do esqueleto.


Na DPP, ocorrem mudanças nas ligações de hidrogênio dos grupos álcoois, ocasionando o aparecimento de duas bandas na região de 1008 e 989 cm⁻¹, que são atribuídas às deformações O–H. Outras deformações O–H acabam por sofrer algum deslocamento passando de 1421, 1308 e 1282 para 1456, ~1302 e 1222 cm⁻¹. A banda do estiramento C–N sofre um pequeno deslocamento devido à formação do cátion, passando de 1250 para 1281 cm⁻¹.

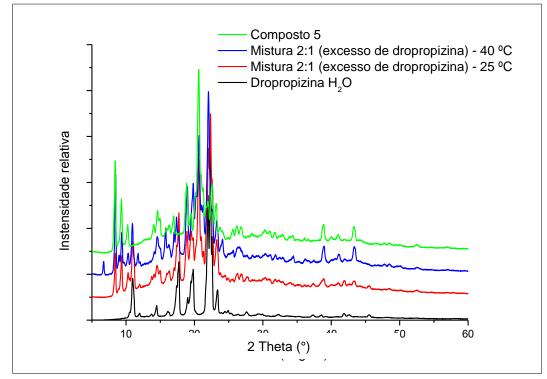

O aparecimento e desaparecimento de bandas características dos grupos carboxilato e carboxílicos, assim como o aparecimento de bandas características do grupo N⁺-H indicam a formação de um sal-cocristal para o composto **5**.

d) ESI/MS-TOF


Utilizando a técnica de ESI/MS-TOF foi possível determinar a massa dos precursores do composto 5, e assim mostrar que estes compostos estão unidos por interações não covalentes.

A FIGURA 4.58 mostra o ESI(+)-MS do composto **5**, onde são destacados três picos, um com m/z 237,1592, referente a massa molar da DPP + H⁺ e outro com m/z 259,1407, referente a massa molar da DPP com íon sódio (Na⁺).

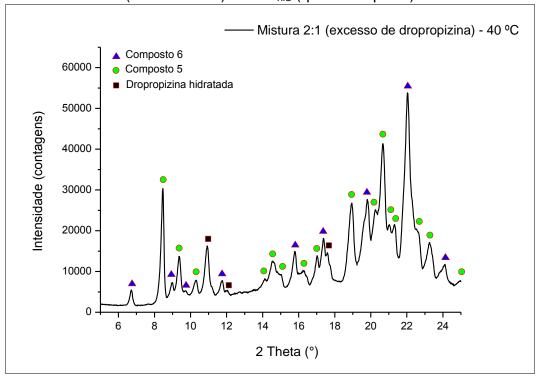
FIGURA 4.59 – Espectro de massa no negativo para o composto 5


A FIGURA 4.59 mostra o ESI(-)-MS do composto $\bf 5$, onde pode-se notar a presença do pico do íon m/z 111,0453, referente a massa molar da ASO - $\bf H^+$.

4.1.1.4.2. Dropropizina + Ácido Sórbico (2:1) H2O e Aquecimento

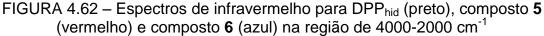
a) DRXP

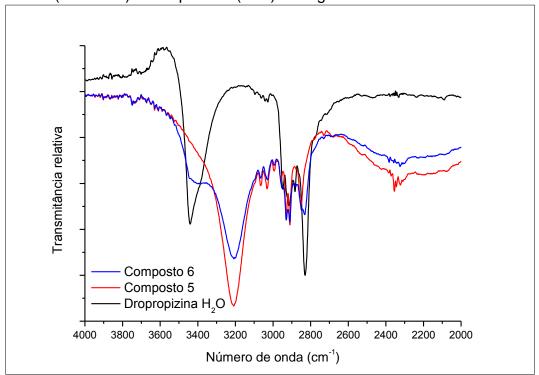
Na FIGURA 4.60 encontram-se os padrões de difração das misturas com proporções molares 2:1 (excesso de DPP_{hid}), sintetizados utilizando moagem com gotas de água com e sem aquecimento, junto com os do composto **5** e da DPP_{hid}. É possível observar certa similaridade entre os difratogramas das misturas 2:1 com o do composto **5**.


FIGURA 4.60 – Padrões de difração de raio X de pó para DPPhid (preto), mistura da DPPhid com ASO proporção molar 2:1 à 25 °C (vermelho), mistura da DPPhid com ASO proporção molar 2:1 à 40 °C (azul) e composto **5** (verde)

Mesmo apresentando padrões similares, quando se comparou o da mistura 2:1 feita a 25 °C, que é uma mistura física da DPP_{hid} com o composto **5**, com o da mistura 2:1 aquecida a 40 °C é possível identificar picos de difração únicos nas posições 6,721; 8,993; 9,723; 11,751; 15,787; 17,369; 19,803; 22,034; 24,123°. O conjunto destes picos pode representar uma nova fase cristalina, a qual chamou-se de composto **6**.

Sabendo que pode haver picos que pertencem a mais de uma fase cristalina, ou seja, picos do composto **5** sobrepostos com a DPP_{hid} ou o composto **6**, concluímos que a mistura na proporção molar 2:1 com água a 40 °C é composta por DPP_{hid}, composto **5** e composto **6**, sendo que os picos de cada fase estão destacados na FIGURA 4.61.


FIGURA 4.61 – Padrão de difração de raio X de pó mistura na proporção molar 2:1 à 40 °C com a representação dos picos do composto **6** (triângulo azul), composto **5** (circulo verde) e DPP_{hid} (quadrado preto)



b) IR

O composto **6** apresenta um espectro muito parecido com o do composto **5**, sendo que as únicas diferenças estão nas posições das bandas da DPP_{hid} (FIGURA 4.62 e FIGURA 4.63). O aparecimento das bandas de DPP_{hid} no

composto **6** já era esperado por haver DPP_{hid} em excesso, mas o fato de que as outras bandas coincidam com as do composto **5** não era esperado, sendo que é esperado que surja alguma alteração nas bandas.

O que pode estar influenciando no não aparecimento das bandas do composto **6** é a quantidade de material presente nessa mistura, se é muito pequena, acaba por ser mascarada pelo composto **5**. Isso impossibilita a atribuição das bandas características do composto **6**.

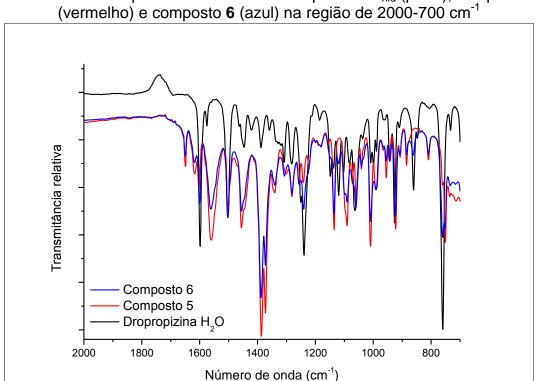
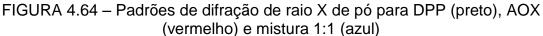
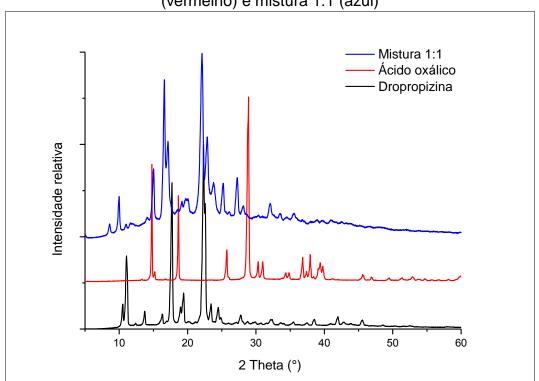


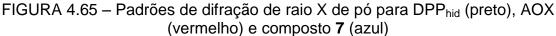
FIGURA 4.63 – Espectros de infravermelho para DPP_{hid} (preto), composto 5

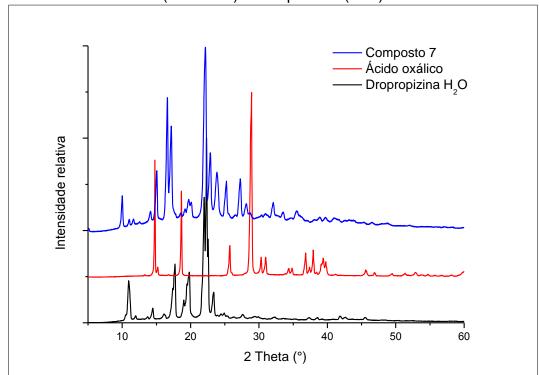

4.1.1.5. ÁCIDO OXÁLICO


O AOX foi cocristalizado junto com a DPP utilizando a moagem no estado sólido e também com gota de água em diferentes proporções molares, 1:1, 2:1 e 1:2. Uma relação completa dos diferentes ensaios pode ser encontrada na TABELA A3.1, TABELA A3.2, TABELA A3.3 e TABELA A3.4 no APÊNDICE 3.

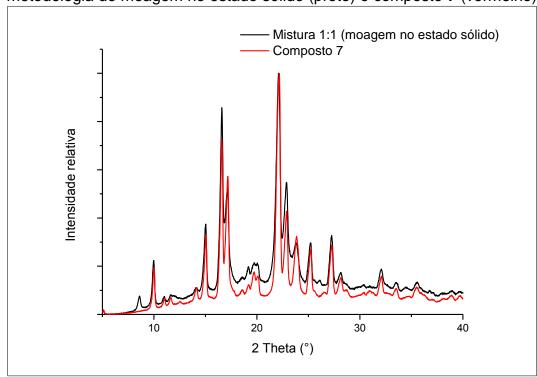
Foram obtidos com sucesso dois possíveis cocristais de DPP com AOX, ambos utilizando a metodologia de moagem com gotas de solvente. A DPP + AOX (1:1) H2O (composto 7) de coloração branca, e a DPP + AOX (1:2) H2O (composto 8) também de coloração branca. Deve ser destacado que quando feita a moagem no estado sólido sem solvente é obtida uma mistura dos dois possíveis cocristais. Os resultados são apresentados a seguir.

4.1.1.5.1. Dropropizina + Ácido Oxálico (1:1) H₂Oa) DRXP

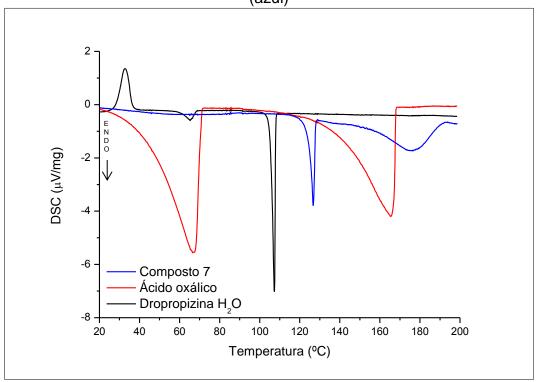

Na FIGURA 4.64 são apresentados os difratogramas da DPP e o AOX junto com o resultado da mistura na proporção molar 1:1, utilizando a metodologia de moagem no estado sólido, que apresenta um padrão de difração completamente diferente aos dos reagentes. Com esta metodologia não foi possível obter uma fase sólida para as reações com concentrações molares diferentes (1:2 e 2:1), pois são formados coloides.



Quando se comparou os padrões de difração dos resultados da moagem no estado sólido sem solvente (FIGURA 4.64) com o resultado utilizando gota de água (FIGURA 4.65) notou-se a inexistência de alguns picos, que como veremos, mas na frente, na seção 4.1.1.5.2, pertencem a outro composto que se formará de forma exclusiva quando a proporção molar DPP:AOX seja 1:2. Desta forma o padrão de difração na FIGURA 4.64 pertence ao que se chamou de composto 7. Como o que se chamou de composto 8 formar-se-á em outras proporções a sua quantidade formada no experimento sem solvente é muito


pequena, se comparada com a do composto **7**, isto fica mais claro na FIGURA 4.66. Assim com a utilização do método de moagem com gotas de solvente e na proporção DDP:AOX 1:1 foi possível à síntese de apenas um composto.

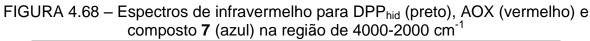
Não é possível comparar o composto **7** com a mistura na proporção molar 2:1, pois como ocorre com outros casos, o composto formado é um coloide. Já para a proporção molar 1:2 será discutido a seguir, pois se trata do outro composto formado.

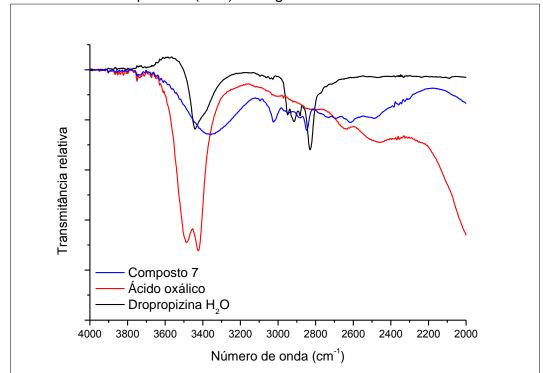

FIGURA 4.66 – Padrões de difração de raio X de pó para mistura 1:1 utilizando a metodologia de moagem no estado sólido (preto) e composto **7** (vermelho)

b) DSC

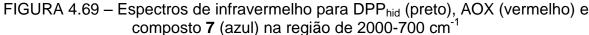
As curvas de DSC para DPP_{hid}, AOX e composto **7** são mostradas na FIGURA 4.67, onde a curva da DPP_{hid} é discutida na seção 4.1.1.1.1.b). A curva do AOX apresenta dois eventos endotérmicos, o primeiro na faixa de temperatura de 39,7 a 71,5 °C, e apresenta uma temperatura de desidratação de 67,3 °C com uma entalpia de desidratação de ~77,58365 kJ/mol, e outro evento endotérmico, sendo que inicia a sublimação em ~120 °C, valores próximo dos reportados na literatura (55,9-80 °C e 77-81 kJ/mol). 145,146,147

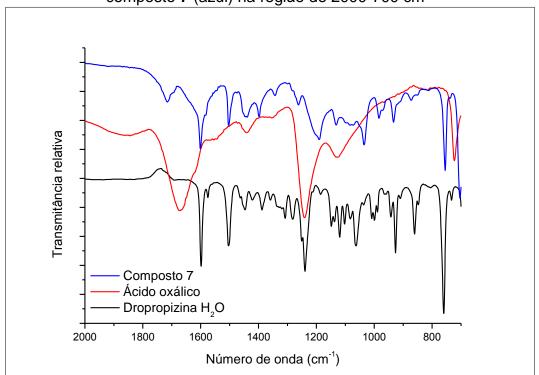
FIGURA 4.67 – Curvas de DSC para DPPhid (preto), AOX (vermelho) e composto **7** (azul)


A curva de DSC do composto **7** apresenta um evento endotérmico, na faixa de 117,8 a 128,6 °C com temperatura de fusão de 126,6 °C e entalpia de fusão de ~8,07675 kJ/mol e outro evento endotérmico, na faixa de 155,6 a 191,4 °C referente a degradação do material. Devido a diferença dos perfis térmicos, dos reagentes e do composto **7**, mostramos que o composto **7** apresenta uma fase cristalina diferente da dos reagentes.

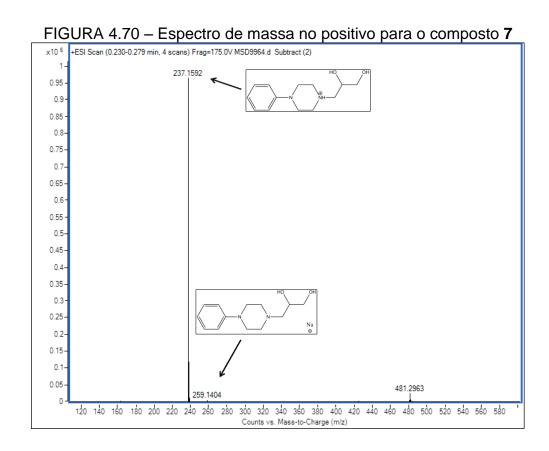

c) IR

As atribuições das bandas encontram-se na TABELA A3.10 no APÊNDICE 3.


Em algumas regiões do espectro ocorre uma grande sobreposição de bandas, o que torna difícil a atribuição específica para todas, mas é possível identificar a maior parte. Na FIGURA 4.68 verificou-se o desaparecimento de algumas bandas características de estiramentos O–H das ligações de hidrogênio da DPP_{hid}, em 3440 cm⁻¹ e do AOX, 3488 e 3424 cm⁻¹, e o aparecimento de três


bandas, uma larga em 3356 cm⁻¹, e outras duas menores em 3025 e 2613 cm⁻¹, atribuídas aos estiramentos O–H das ligações de hidrogênio responsáveis pela formação do composto **7**.

Na região de impressão digital, FIGURA 4.69, observa-se a diminuição da intensidade e um pequeno deslocamento de algumas bandas do AOX, o estiramento C=O (1671 para 1716 cm⁻¹), o estiramento C=O (1241 para 1190 cm⁻¹), deformação C=O=H (1127 para 1083 cm⁻¹).


No caso da DPP, as bandas que sofrem o maior deslocamento são atribuídas ao estiramento C–O (1240 para 1190 cm⁻¹), e aos modos deformacionais do anel (1138 para 1098 cm⁻¹, e outras na região de 1000 cm⁻¹). Algumas bandas desaparecem ou estão sobrepostas, como é o caso das deformações O–H (1421, 1308 e 926 cm⁻¹).

Como o composto 7 não apresenta as bandas características dos carboxilatos, como ocorre com os outros compostos, e apresenta apenas deslocamentos e alterações de intensidades com relação aos reagentes, pode-se concluir que o composto 7 é um cocristal.

d) ESI/MS-TOF

Utilizando a técnica de ESI/MS-TOF foi possível determinar a massa dos precursores do composto **7**, e assim mostrar que estes compostos estão unidos por interações não covalentes.

A FIGURA 4.70 mostra o ESI(+)-MS do composto **7**, onde são destacados três picos, um com m/z 237,1592, referente a massa molar da DPP + H⁺ e outro com m/z 259,1404, referente a massa molar da DPP com íon sódio (Na⁺).

A FIGURA 4.71 mostra o ESI(-)-MS do composto **7**, onde são destacados cinco picos, o primeiro, com m/z 88,9883, referente a massa molar do AOX - H⁺; o segundo, com m/z 110,9697, referente a massa molar do AOX - 2H⁺ com íon sódio (Na⁺); o terceiro, com m/z 200,9651, referente a massa molar de dois AOX - H⁺ com íon sódio (Na⁺); o quarto, com m/z 235,1442, referente a massa molar da DPP - H⁺; e o quinto, com m/z 471,2911, referente a massa molar de duas DPP - H⁺.

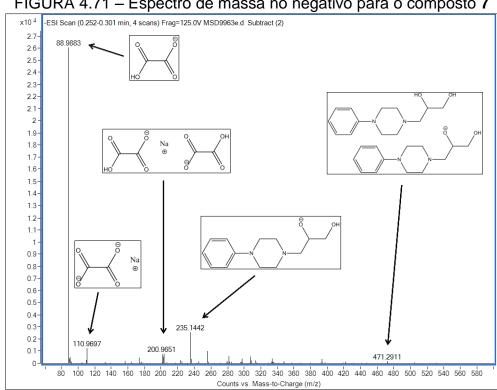


FIGURA 4.71 – Espectro de massa no negativo para o composto 7

4.1.1.5.2. Dropropizina + Ácido Oxálico (1:2) H₂O a) **DRXP**

Comparando os padrões de difração do composto 8 com o da DPP_{hid} ou do AOX, observaram-se padrões completamente distintos para cada material (FIGURA 4.72). Assim, como não foi possível identificar nenhum pico do composto 8 que coincide com a DPPhid ou com o AOX descartou-se a hipótese do composto 8 ser uma mistura física dos reagentes.

FIGURA 4.72 – Padrões de difração de raio X de pó para DPP_{hid} (preto), AOX (vermelho) e composto **8** (azul)

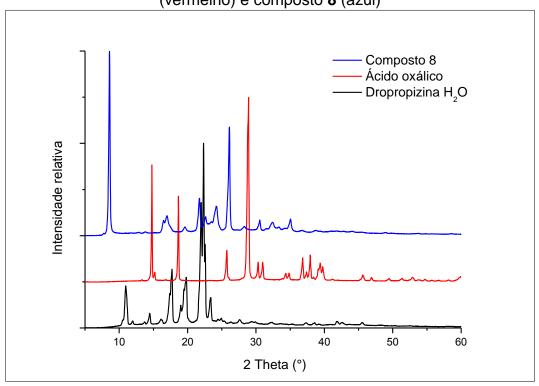
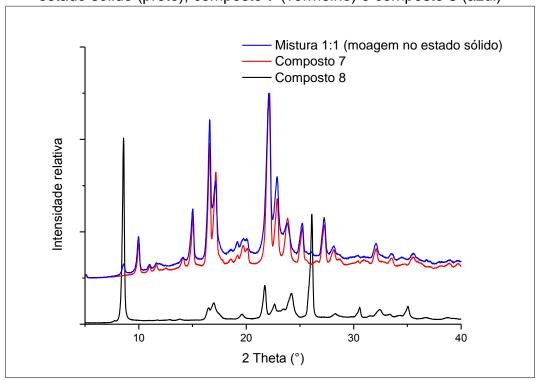
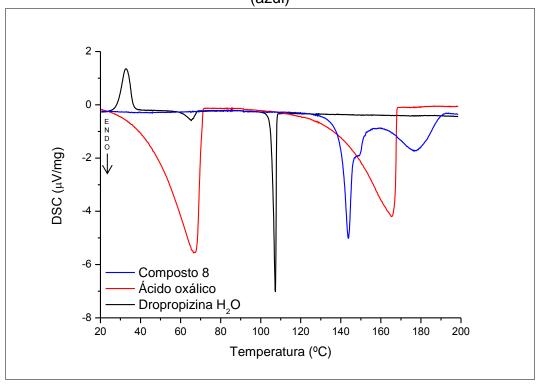



FIGURA 4.73 – Padrões de difração de raio X de pó para mistura 1:1 moagem no estado sólido (preto), composto **7** (vermelho) e composto **8** (azul)



Comparando os difratogramas da mistura 1:1 (moagem no estado sólido) com o composto 8 e o composto 7 (FIGURA 4.73) vê-se claramente que os dois picos que aparecem no difratograma da mistura 1:1, regiões de 8,601 e 26,107°, pertence ao composto 8, indicando assim que se trata de uma mistura do composto 7 e 8. Quando se comparou os difratogramas do composto 7 e 8 observou-se a grande diferença entre os padrões e verificou-se que não existe nenhum pico na mesma posição, confirmando que são compostos diferentes. Por serem sintetizados em concentrações molares diferentes (1:1 e 1:2) são cocristais diferentes.

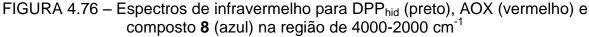
b) DSC

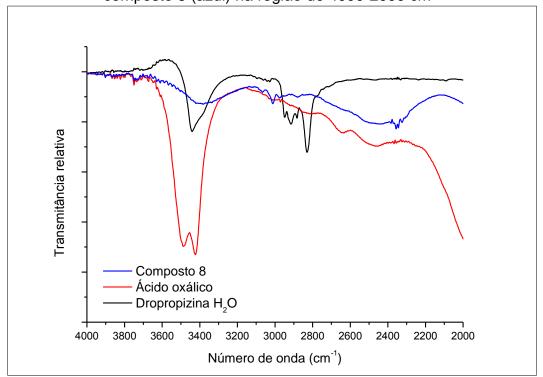
As curvas de DSC para DPP_{hid}, ASO e composto **8** são mostradas na FIGURA 4.74, sendo que as curvas da DPP_{hid} e do AOX foram discutidas nas seções 4.1.1.1.b) e 4.1.1.5.1.b), respectivamente.

FIGURA 4.74 – Curvas de DSC para DPP_{hid} (preto), AOX (vermelho) e composto **8** (azul)

A curva de DSC do composto **8** apresenta um evento endotérmico, na faixa de 129,1 a 158,6 °C com temperatura de fusão de ~143,8 °C e entalpia de fusão de ~36,0665 kJ/mol e outro evento endotérmico, na faixa de 159,6 a 191,2 °C e muito similar ao que ocorre com o composto **7**, referente a decomposição do material. Devido a diferença dos perfis térmicos, dos reagentes e do composto **8**, comprovamos que o composto **8** apresenta uma fase cristalina diferente da dos reagentes, e distinta também do composto **7** em que a fusão ocorre a uma temperatura mais baixa (FIGURA 4.75).

0 -1 -3 -4 Composto 7 -5 Composto 8 100 120 60 80 140 160 180 200 40 Temperatura (°C)


FIGURA 4.75 – Curvas de DSC para o composto **7** (preto) e composto **8** (vermelho)


c) IR

As atribuições das bandas encontram-se na TABELA A3.11 no APÊNDICE 3.

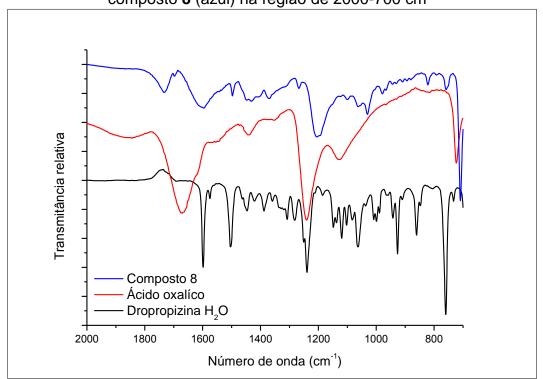
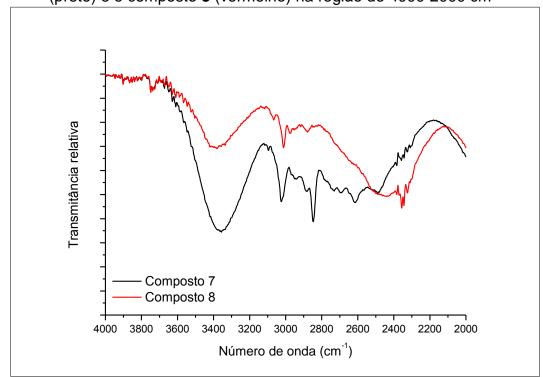
Em várias regiões do espectro ocorre uma grande sobreposição de bandas, e com um perfil muito parecido com o do composto **7**. Na FIGURA 4.76 verifica-se o desaparecimento de algumas bandas características de estiramentos O–H para ligações de hidrogênio no caso da DPP em 3440 cm⁻¹ e no caso do AOX em 3488 e 3424 cm⁻¹, e o aparecimento de duas bandas, uma larga em 3382 cm⁻¹, e

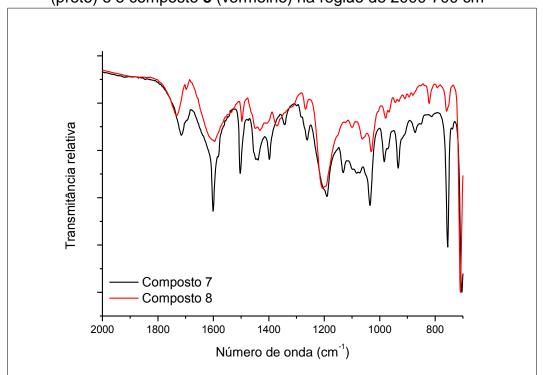
outra menor em 3012 cm⁻¹, atribuídas aos estiramentos O–H das ligações de hidrogênio responsáveis pela formação do composto **8**. Sendo que as bandas características dos estiramentos C–H (anel, CH, CH2) são pouco intensas.

Na região de impressão digital, FIGURA 4.77, observa-se a diminuição da intensidade e um pequeno deslocamento de algumas bandas do AOX, o estiramento C=O (1671 para 1734 cm⁻¹), o estiramento C=O (1241 para 1205 cm⁻¹), deformação C=O=H (1127 para 1098 cm⁻¹).

No caso da DPP, ocorre uma sobreposição de sinais nas regiões de ~1600, 1400 e 1050 cm⁻¹, e também ocorrem pequenos deslocamentos das outras bandas sendo que as que sofrem o maior deslocamento são o estiramento C–O (1240 para 1205 cm⁻¹), o estiramento C–C–O (1063 para 1031 cm⁻¹), a deformação C–H (861 para 822 cm⁻¹). Algumas bandas desaparecem ou estão sobrepostas, como é o caso das deformações O–H (1421, 1308, 1282, 942 e 926 cm⁻¹).

FIGURA 4.77 – Espectros de infravermelho para DPP_{hid} (preto), AOX (vermelho) e composto **8** (azul) na região de 2000-700 cm⁻¹


FIGURA 4.78 – Comparação dos espectros de infravermelho para o composto **7** (preto) e o composto **8** (vermelho) na região de 4000-2000 cm⁻¹

A grande sobreposição e alteração do espectro na região de 900 cm⁻¹ indicam que o composto **8** apresenta fortes interações com uma ou mais moléculas de água, e como o composto **8** não apresenta bandas características para os carboxilatos, pode-se concluir que o composto **8** é um cocristal.

Comparando os compostos **7** e **8** (FIGURA 4.78 e FIGURA 4.79) vê-se que as principais diferenças estão nas regiões atribuídas as ligações de hidrogênio, em 2600, 1100 e 900 cm⁻¹, assim confirmando as diferentes interações que cada composto faz.

FIGURA 4.79 – Comparação dos espectros de infravermelho para o composto **7** (preto) e o composto **8** (vermelho) na região de 2000-700 cm⁻¹

d) ESI/MS-TOF

Utilizando a técnica de ESI/MS-TOF foi possível determinar a massa exata do composto 8

A FIGURA 4.80 mostra o ESI(+)-MS do composto **8**, onde são destacados três picos, um com m/z 237,1587, referente a massa molar da DPP + H⁺ e outro com m/z 259,1418, referente a massa molar da DPP com íon sódio (Na⁺).

FIGURA 4.80 – Espectro de massa no positivo para o composto 8

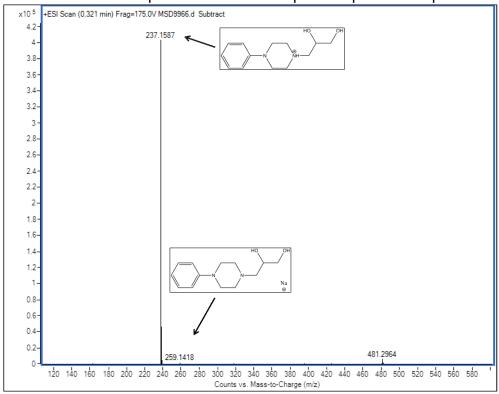
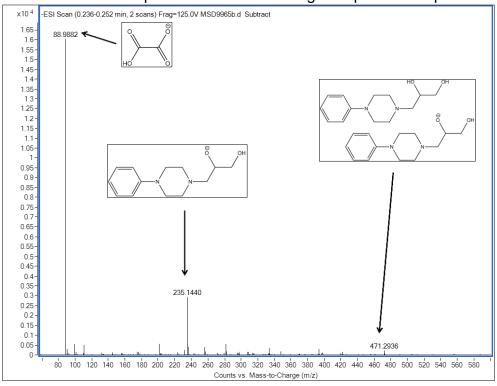
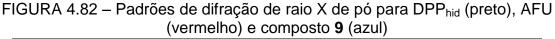



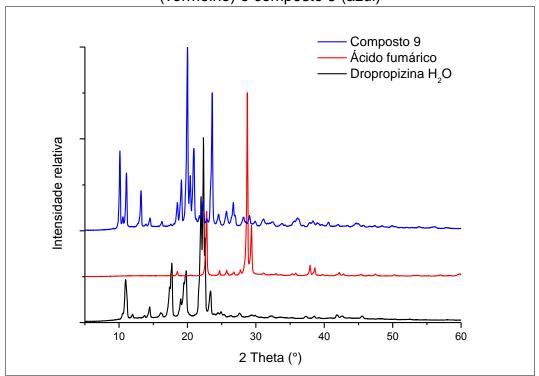
FIGURA 4.81 – Espectro de massa no negativo para o composto 8

O ESI(-)-MS do composto **8** (FIGURA 4.81) são destacados três picos, o primeiro, com m/z 88,9882, referente a massa molar do AOX - H⁺; o segundo, com m/z 235,1440, referente a massa molar da DPP - H⁺; e o terceiro, com m/z 471,2936, referente a massa molar de duas DPP - H⁺.

4.1.1.6. ÁCIDO FUMÁRICO

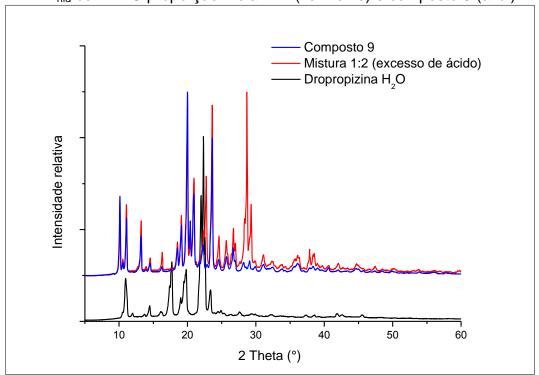
O AFU foi cocristalizado junto com a DPP utilizando a moagem com gotas de água e também moagem com gotas de água e aquecimento em diferentes proporções molares, 1:1, 2:1 e 1:2. Uma relação completa dos diferentes ensaios pode ser encontrada na TABELA A3.1, TABELA A3.2, TABELA A3.3 e TABELA A3.4 no APÊNDICE 3.


Foram sintetizados com sucesso três possíveis sais-cocristais de DPP com AFU, um com proporção molar 1:1 e dois com proporção molar 2:1. Dois foram obtidos utilizando a metodologia de moagem com gotas de solvente e um, com a metodologia de moagem com gotas de solvente e aquecimento, sendo que nos três casos foi utilizada a água como solvente e apresentaram coloração branca, a DPP + AFU (1:1) H₂O (composto **9**), a DPP + AFU (2:1) H₂O (composto **10**) e a DPP + AFU (2:1) H₂O com aquecimento (composto **11**). Os resultados são apresentados na sequência.


4.1.1.6.1. Dropropizina + Ácido Fumárico (1:1) H₂Oa) DRXP

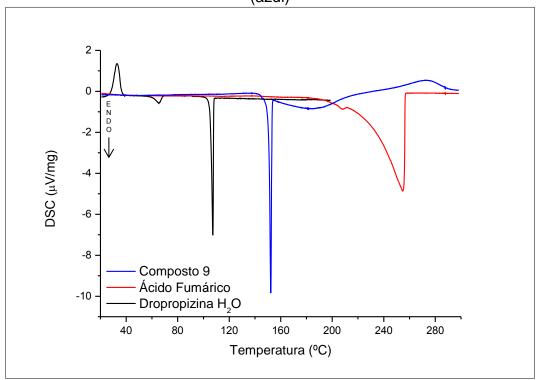
Comparando os padrões de difração do composto **9** com o da DPP_{hid} ou do AFU, observaram-se padrões completamente distintos para cada material (FIGURA 4.82). Mesmo apresentando padrões distintos há três picos do composto **9** que coincidem com a DPP_{hid}, região de 10,550; 22,284 e 29,894°, e três com o AFU, região de 18,525; 25,694 e 31,119°.

Pelo fato de serem poucos picos coincidentes, já poderia ser descartada a hipótese do composto 9 ser uma mistura física dos reagentes. E isso


fica comprovado quando se observa os padrões de difração com concentração molar 1:2 (FIGURA 4.83).

Analisando a FIGURA 4.83, é possível identificar a presença dos picos coincidentes do composto **9** e da DPP_{hid} (10,550; 22,284 e 29,894°) na mistura 1:2, assim, pode-se concluir que os picos que aparecem no composto **9** não pertencem à DPP_{hid}, pois ao deixar o AFU em excesso faz-se com que toda a DPP_{hid} reaja e não apareçam picos referentes ao seu padrão de difração, e como resultando, tem-se um difratograma com uma mistura do composto **9** e AFU.

FIGURA 4.83 – Padrões de difração de raio X de pó para DPP_{hid} (preto), mistura da DPP_{hid} com AFU proporção molar 1:2 (vermelho) e composto **9** (azul)

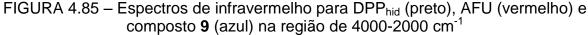


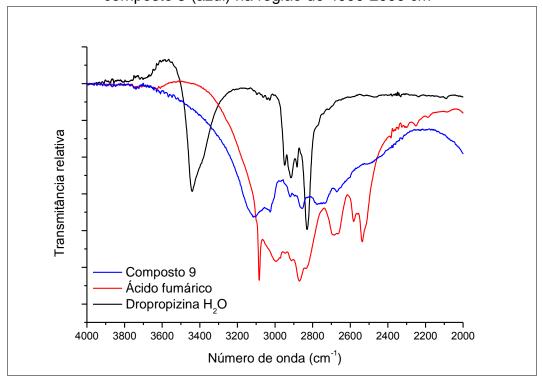
Não foi possível fazer o mesmo com a proporção molar 2:1, para mostrar que os picos do composto **9** que coincidem com os do AFU não são resultado de uma simples mistura física, pois nesta concentração molar forma-se um composto diferente, que será apresentado na sequência.

b) DSC

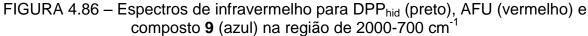
As curvas de DSC para DPP_{hid}, AFU e composto **9** são mostradas na FIGURA 4.84, onde a curva da DPP_{hid} foi discutida na seção 4.1.1.1.1.b). A curva do AFU apresenta um evento endotérmico, na faixa de temperatura de 204,7 a 211,3 °C, e apresenta uma temperatura de pico de ~207,9 °C com uma entalpia de ~0,38584 kJ/mol, e outro evento endotérmico, na faixa de temperatura de 211,5 a 257,2 °C, e apresenta uma temperatura de fusão/sublimação de ~254,8 °C com uma entalpia de fusão/sublimação de ~84,91097 kJ/mol. O primeiro evento endotérmico não é discutido na literatura e o segundo apresenta valores muito próximos aos da literatura (190 a 280 °C). 148,149,150

FIGURA 4.84 – Curvas de DSC para DPP_{hid} (preto), AFU (vermelho) e composto **9** (azul)


A curva do composto **9** apresenta dois eventos endotérmicos, o primeiro na faixa de 144,2 a 154,0 °C, e apresenta uma temperatura de fusão de 152,3 °C com uma entalpia de fusão de ~16,96143 kJ/mol, e o segundo na faixa de 154,15 a 220,5 °C, e apresenta o pico de temperaturas em 181,7 °C com uma entalpia de ~20,74194 kJ/mol. E um evento exotérmico, na faixa de 238,3 a 296,1 °C, apresenta uma temperatura de pico de 271,7 °C com uma entalpia de ~13,50883 kJ/mol. Comparando os dados do composto **9** com os dos reagentes, fica clara a diferença entre as temperaturas de fusão e isto sugere a presença de uma fase cristalina distinta.


c) IR

As atribuições das bandas encontram-se na TABELA A3.12 no APÊNDICE 3.


Na FIGURA 4.85 verifica-se o desaparecimento de algumas frequências características de estiramentos O-H das ligações de hidrogênio da


DPP, 3440 cm⁻¹ e do AFU, ~3300-2500 cm⁻¹, e algumas frequências características da formação de dímeros de ácidos carboxílicos, 2663 e 2582 cm⁻¹. Para o composto **9** ocorre o aparecimento de uma banda larga, com frequência de ~3107 cm⁻¹, que se atribui ao estiramentos O–H de ligações de hidrogênio responsáveis pela formação deste composto.

Na região de impressão digital, FIGURA 4.86, devido à grande quantidade de bandas e sobreposições é difícil fazer a atribuição correta para todas, assim concentramos nossa atenção nas principais. A primeira grande mudança está relacionada com a banda característica dos ácidos carboxílicos, o estiramento C=O. O ácido apresenta uma banda larga e intensa em 1663 cm⁻¹, e o composto 9 apresenta duas bandas de baixa intensidade em 1697 e 1678 cm⁻¹, a primeira atribuída à deformação O–H da água e a segunda ao estiramento C=O. A presença de uma banda do estiramento C=O indica que ainda existem grupos carboxílicos e não apenas grupos carboxilato.

Existem duas bandas do AFU que desaparecem, em 1425 e 895 cm⁻¹, atribuídas a deformações O–H, algumas sofrem um pequeno deslocamento como as bandas das deformações C–H, de 1320 e 1009 para 1335 e 989 cm⁻¹, e as bandas da deformação C–O–H, de 1231 e 1215 para 1211 e 1199 cm⁻¹.

No composto **9** aparecem bandas características dos carboxilatos, o estiramento COO-, em ~1550 e 1348 cm-1. Outra banda, deformação fora do plano O-C-O, que não aparecia na forma carboxílica, agora aparece em 802 cm-1 (carboxilato). A banda de estiramento C-N, associada ao átomo de nitrogênio da DPP envolvido na formação do sal-cocristal apresenta um pequeno deslocamento, 1250 para 1259 cm-1, devido ao aumento da distância de ligação provocado pela formação do cátion amônio quaternário. Além disso, aparecem novas bandas em 1364 e 1301 cm-1, a primeira, atribuída à deformação N+-H e a segunda, atribuída a uma banda combinatória da deformação do esqueleto (C-H) com N+-H, indicando a formação de um sal-cocristal. A presença das bandas relacionadas com a molécula de água, em 1697 e 1085 cm-1, indicam a sua presença no composto **9**.

Algumas bandas relacionadas com as deformações O-H não foram identificadas no composto 9. Isso ocorre por causa da mudança do empacotamento, que afeta as ligações de hidrogênio, em 1308 e 1282 cm⁻¹ para a DPP. Algumas destas bandas podem estar sobrepostas, pelo fato de serem relativamente pequenas tornando difícil a identificação.

d) ESI/MS-TOF

Utilizando a técnica de ESI/MS-TOF foi possível determinar a massa exata do composto 9.

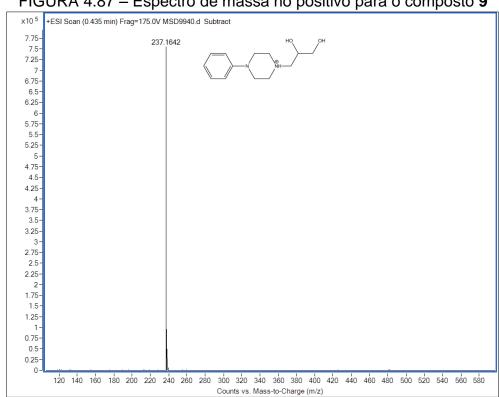


FIGURA 4.87 – Espectro de massa no positivo para o composto 9

A FIGURA 4.87 mostra o ESI(+)-MS do composto 9, onde pode-se notar a presença do pico do íon m/z 237,1642, referente a massa molar da DPP + H⁺.

No ESI(-)-MS do composto 9 (FIGURA 4.88) são destacados quatro picos, o primeiro, com m/z 71,0197, referente a massa molar de um fragmento do

AFU - H⁺.; o segundo, com m/z 115,0102, referente a massa molar do AFU - H⁺.; o terceiro, com m/z 231,0222, referente a massa molar do AFU - H+ com AFU; e o quarto, com m/z 471,3068, referente a massa molar de duas DPP - H⁺.

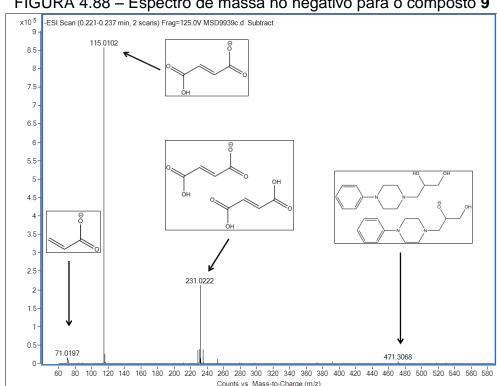
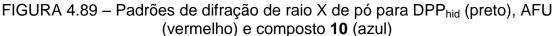
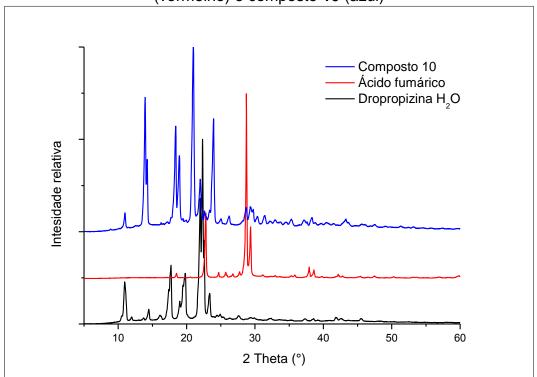
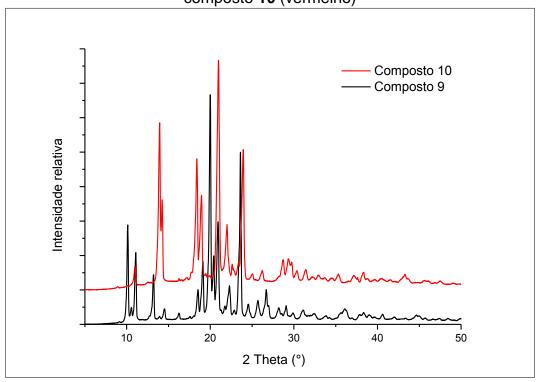




FIGURA 4.88 – Espectro de massa no negativo para o composto 9

4.1.1.6.2. Dropropizina + Ácido Fumárico (2:1) H₂O **DRXP** a)

Comparando os padrões de difração do composto 10 com o da DPPhid ou do AFU, observaram-se padrões completamente distintos para cada material (FIGURA 4.89). Entretanto, identificamos três picos do composto 10 que coincidem com a DPP_{hid}, região de 10,981; 21,989 e 23,377°, e cinco com o AFU, região de 28,702; 29,352; 32,929; 35,320 e 53,163°.



Apesar do composto **10** apresentar cinco picos que coincidem com o AFU, logo se descartou a hipótese de este apresentar uma mistura com este reagente, pois este composto é preparado com uma concentração molar 2:1. Outro ponto que deve ser destacado é que caso o ácido não tenha reagido por completo, deveriam aparecer picos do composto **9** e isso não ocorre.

Na FIGURA 4.90 são mostrados os padrões de difração de raio X de pó dos compostos **9** e **10**, onde vê-se que são compostos diferentes.

FIGURA 4.90 – Padrões de difração de raio X de pó para composto **9** (preto) e composto **10** (vermelho)

b) DSC

As curvas de DSC para DPP_{hid}, AFU e composto **10** são mostradas na FIGURA 4.91, as curvas da DPP_{hid} e do AFU foram discutidas nas seções 4.1.1.1.b) e 4.1.1.6.1.b), respectivamente.

A curva do composto **10** apresenta três eventos endotérmicos, o primeiro na faixa de 105,1 a 108,3 °C, o segundo na faixa de 148,1 a 157,8 °C e o terceiro na faixa de 157,8 a 219,8 °C, com picos de temperatura de 107,3; 155,5 e ~188,2 °C, e entalpias de ~0,10905; ~15,90821 e ~11,14839 kJ/mol, respectivamente. E um evento exotérmico, na faixa de 244,8 a 283,7 °C com um pico de temperatura de 262,8 °C com uma entalpia de ~3,45816 kJ/mol. O primeiro evento térmico é referente a uma pequena quantidade de DPP_{hid} e os outros pertencem ao composto **10**.

FIGURA 4.91 – Curvas de DSC para DPP_{hid} (preto), AFU (vermelho) e composto **10** (azul)

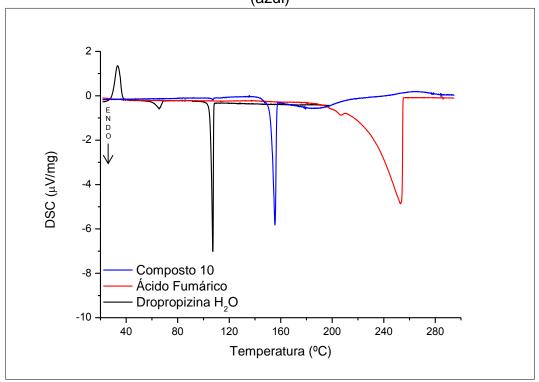
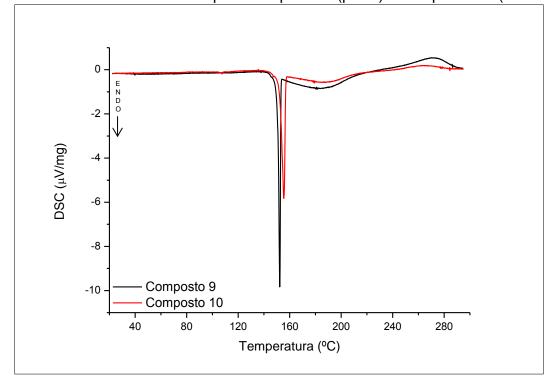
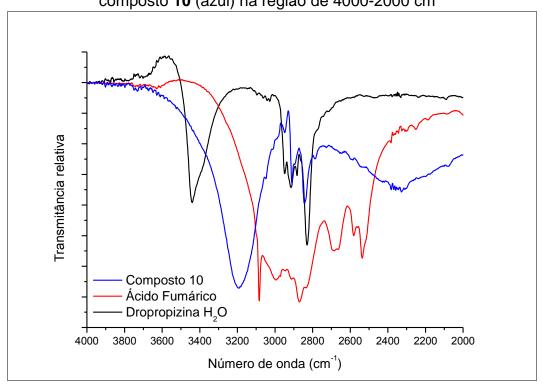
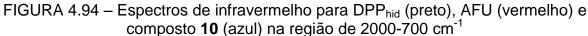



FIGURA 4.92 – Curvas de DSC para composto 9 (preto) e composto 10 (vermelho)


Quando se comparou os resultados obtidos para os compostos **9** e **10**, vê-se que ambos têm um comportamento térmico muito parecido, com pontos de fusão próximos, 152,3 e 155,5 °C, respectivamente (FIGURA 4.92).

c) IR


As atribuições das bandas encontram-se na TABELA A3.13 no APÊNDICE 3.

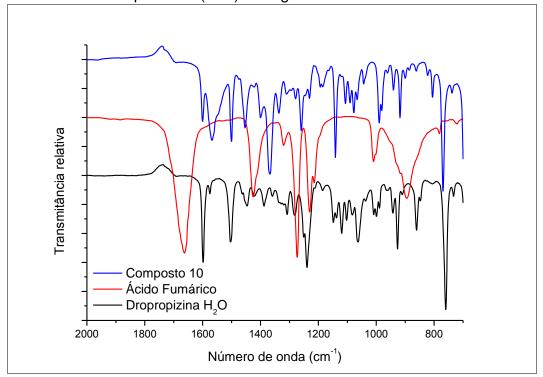
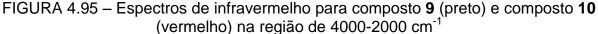
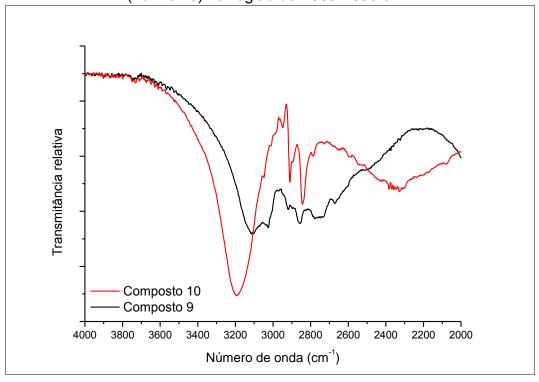

Na FIGURA 4.93 verifica-se o desaparecimento de algumas frequências características de estiramentos O–H das ligações de hidrogênio da DPP, 3440 cm⁻¹ e do AFU, ~3300-2500 cm⁻¹, e algumas frequências características da formação de dímeros de ácidos carboxílicos, 2663 e 2582 cm⁻¹. Para o composto **10** há o aparecimento de uma banda larga, com frequência de ~3192 cm⁻¹, que se atribui ao estiramentos O–H das ligações de hidrogênio responsáveis pela formação deste composto.

FIGURA 4.93 – Espectros de infravermelho para DPP_{hid} (preto), AFU (vermelho) e composto **10** (azul) na região de 4000-2000 cm⁻¹

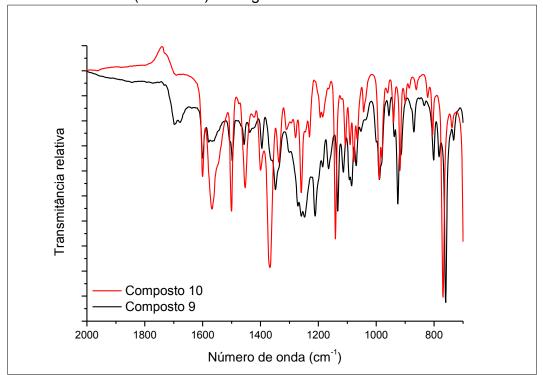
Na região de impressão digital, FIGURA 4.94, é difícil fazer a atribuição correta para todas as bandas devido a quantidade e sobreposição, assim concentramos nossa atenção nas principais. A primeira grande mudança está relacionada com a banda característica dos ácidos carboxílicos, o estiramento C=O. O ácido apresenta uma banda larga e intensa em 1663 cm⁻¹, e o composto **10** não apresenta bandas nesta região. Existem outras duas bandas do AFU que desaparecem, em 1425 e 895 cm⁻¹, atribuídas a deformações O–H. Algumas bandas sofrem um pequeno deslocamento, as bandas das deformações C–H, de 1320 e 1009 para 1310 e 990 cm⁻¹, e as bandas da deformação C–O–H, de 1231 e 1215 para 1231 cm⁻¹.




No composto **10** aparecem bandas características do estiramento COO dos carboxilatos em 1567 e 1336 cm⁻¹. A banda de deformação fora do plano O-C-O, que não aparecia na forma carboxílica, agora aparece em 806 cm⁻¹ (carboxilato). As bandas da DPP associada ao átomo de nitrogênio, envolvido na formação do sal-cocristal, apresenta um pequeno deslocamento. A banda do estiramento C-N é deslocada de 1250 para 1278 cm⁻¹. Devido ao aumento da distância de ligação provocado pela formação do cátion amônio quaternário. Além

disso, aparecem novas bandas em 1367 e 1293 cm⁻¹, a primeira atribuída à deformação N⁺–H e a segunda, atribuída a uma banda combinatória da deformação do esqueleto (C–H) com N⁺–H, indicando a formação de um sal-cocristal.

Algumas bandas relacionadas com as deformações O–H da DPP não foram identificadas no composto **10**. Isso ocorre por causa da mudança do empacotamento, que afeta as ligações de hidrogênio, em 1308 e 1282 cm⁻¹ para a DPP. Algumas destas bandas podem estar sobrepostas, pelo fato de serem relativamente pequenas e assim, torna difícil a identificação.


Quando se comparou os espectros dos compostos **9** e **10** (FIGURA 4.95 e FIGURA 4.96), notou-se duas regiões com muita diferença, a primeira de 3300 a 3000 cm⁻¹, relacionada aos estiramentos O–H, indicando que os compostos apresentam diferentes ligações de hidrogênio. A segunda está na região de 1300 a 1000 cm⁻¹, onde estão muitos estiramentos e deformações C–H, C–O e do esqueleto, isso ocorre pela possibilidade da DPP adotar posicionamentos diferentes nos dois compostos.

Apesar dos compostos **9** e **10** possuírem pontos de fusão muito próximos, eles possuem padrões de difração de pó distintos e infravermelhos com variações na intensidade e posicionamento das bandas.

FIGURA 4.96 – Espectros de infravermelho para composto **9** (preto) e composto **10** (vermelho) na região de 2000-700 cm⁻¹

d) ESI/MS-TOF

Utilizando a técnica de ESI/MS-TOF foi possível determinar a massa dos precursores do composto **10**, e assim mostrar que estes compostos estão unidos por interações não covalentes.

A FIGURA 4.97 mostra o ESI(+)-MS do composto ${\bf 10}$, onde pode-se notar a presença do pico do íon m/z 237,1634, referente a massa molar da DPP + ${\bf H}^+$.

FIGURA 4.97 – Espectro de massa no positivo para o composto 10

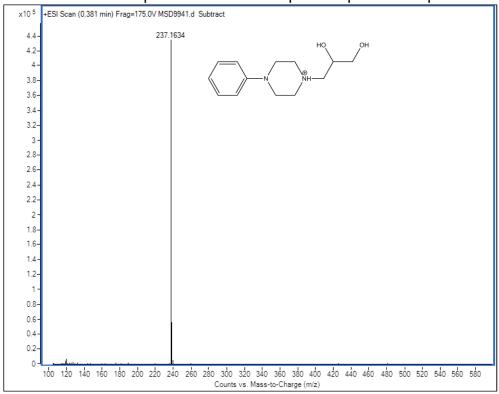
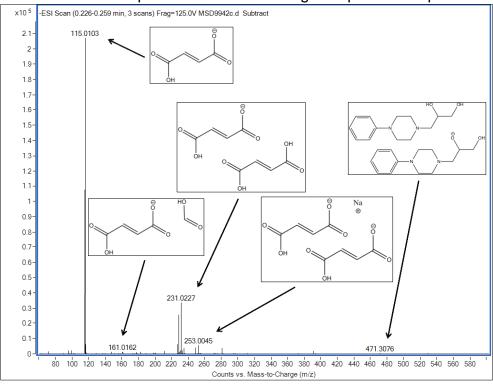



FIGURA 4.98 – Espectro de massa no negativo para o composto 10

A FIGURA 4.98 mostra o ESI(-)-MS do composto 10, onde são destacados cinco picos, o primeiro, com m/z 115,0103, a massa molar do íon AFU - H^{+} ; o segundo, com m/z 161,0162, referente a massa molar do íon AFU - H^{+} com um fragmento do AFU; o terceiro, com m/z 231,0227, referente a massa molar do AFU - H^{+} com AFU; o quarto, com m/z 253,0045, referente a massa molar de dois íons AFU - H⁺ com um íon sódio (Na⁺); e o quinto, com m/z 471,3076, referente a massa molar de duas DPP - H+.

4.1.1.6.3. Dropropizina + Ácido Fumárico (2:1) H2O e Aquecimento

DRXP a)

Comparando os padrões de difração da mistura 2:1 com o da DPPhid ou do AFU, observaram-se padrões completamente distintos para cada material (FIGURA 4.99). Entretanto, identificamos três picos da mistura 2:1 que coincidem com a DPP_{hid}, região de 10,981; 21,989 e 23,377°, e cinco com o AFU, região de 28,702; 29,352; 32,929; 35,320 e 53,163°.

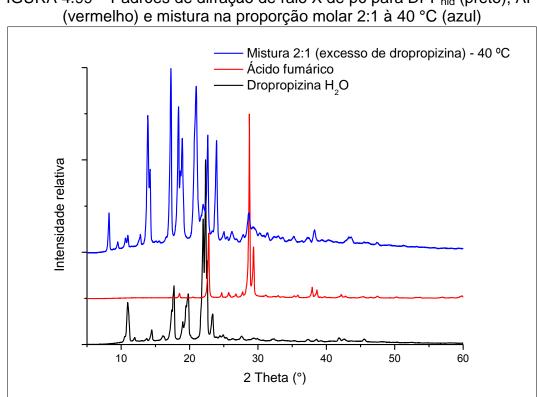
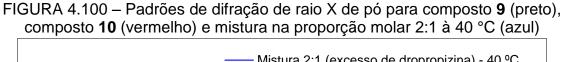
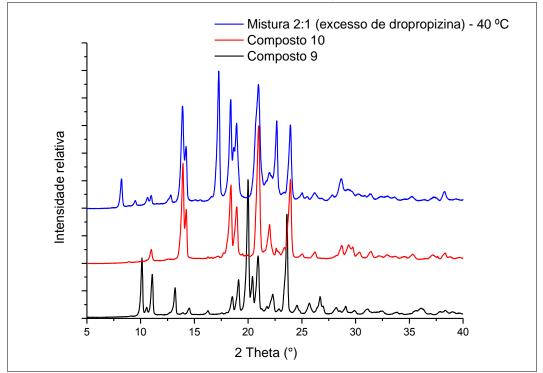
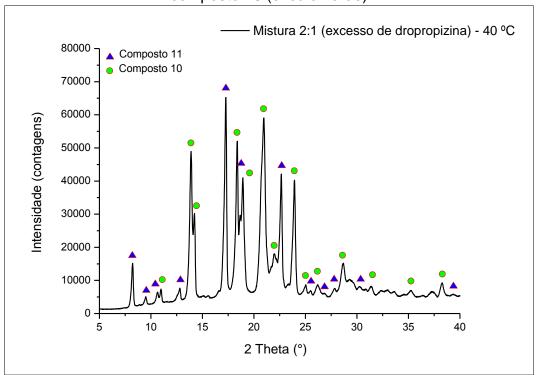




FIGURA 4.99 – Padrões de difração de raio X de pó para DPP_{hid} (preto), AFU


Como os picos coincidentes são os mesmos do composto **10**, pode haver a mistura de fases neste caso. Assim, comparando os difratogramas dos três compostos sintetizados notou-se a grande similaridade entre o composto **10** e a mistura 2:1, sendo que o composto **9** apresenta grande diferença com os outros dois (FIGURA 4.100).

Observou-se que todos os picos do composto **10** aparecem no difratograma da mistura 2:1, mesmo assim existem muitos picos que não pertencem a nenhum dos compostos e reagentes, nas regiões de 8,216; 9,500; 10,645; 12,796; 17,259; 18,660; 22,661; 25,506; 26,821; 27,835; 30,867; e 39,338°. Estes picos podem ser atribuídos a uma fase cristalina diferente do composto **10**, sendo que se pode concluir que este difratograma apresenta uma mistura de dois compostos **10** e **11** (FIGURA 4.101).

FIGURA 4.101 – Padrão de difração de raio X de pó para mistura na proporção molar 2:1 à 40 °C com a representação dos picos do composto **11** (triângulo azul) e composto **10** (circulo verde)

b) DSC

As curvas de DSC para DPP_{hid} , AFU e composto **11** são mostradas na FIGURA 4.102, as curvas da DPP_{hid} e do AFU foram discutidas nas seções 4.1.1.1.b) e 4.1.1.6.1.b), respectivamente.

A curva do composto **11** apresenta três eventos endotérmicos, o primeiro na faixa de 149,1 a 155,4 °C, o segundo na faixa de 155,4 a 159,9 °C e o terceiro na faixa de 160,1 a 217,2 °C, com picos de temperatura de 153,9; 157,2 e 188,4 °C, e entalpias de ~6,05189; ~3,55369 e ~6,44266 kJ/mol, respectivamente.

FIGURA 4.102 – Curvas de DSC para DPP_{hid} (preto), AFU (vermelho) e composto **11** (azul)

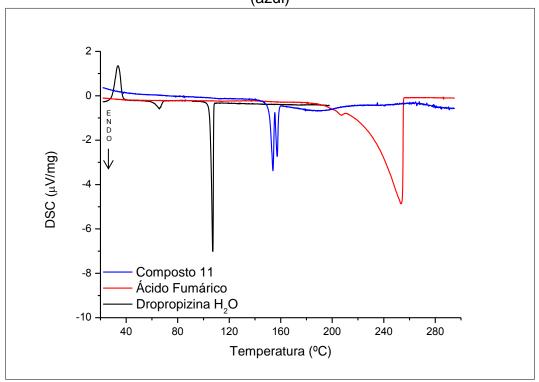
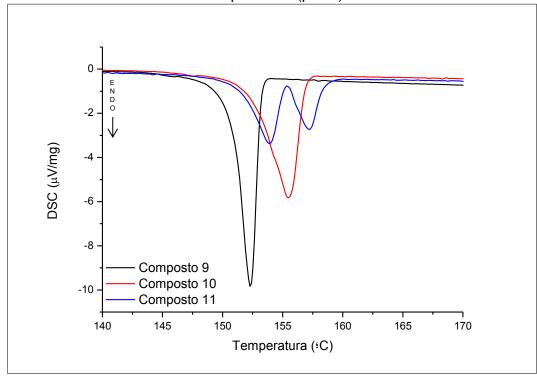



FIGURA 4.103 – Curvas de DSC para composto **9** (azul), composto **10** (vermelho) e composto **11** (preto)

Comparando os dados do composto 11 com os dos reagentes, fica clara a diferença dos perfis térmicos mostrando que este composto apresenta duas fases cristalinas distintas às dos reagentes. Quando se comparou o perfil térmico dos compostos 10 e 11 (FIGURA 4.103), notou-se alguma semelhança nas temperaturas de *onset* do primeiro evento endotérmico, pode-se então concluir que este pico corresponde ao evento de fusão do composto 10. O segundo, pertence ao evento de fusão do composto 11.

c) IR

Comparando os espectros de infravermelho dos compostos **10** e **11** não se observa nenhuma diferença com relação às bandas, apenas uma mudança na intensidade (FIGURA 4.104 e FIGURA 4.105). Devido à similaridade dos espectros é impossível atribuir bandas específicas do composto **11**.

FIGURA 4.104 – Espectros de infravermelho para composto **10** (preto) e composto **11** (vermelho) na região de 4000-2000 cm⁻¹

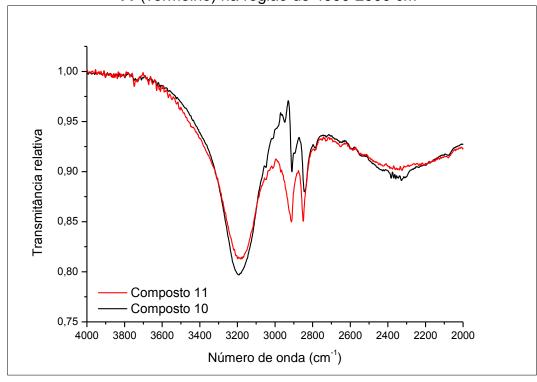
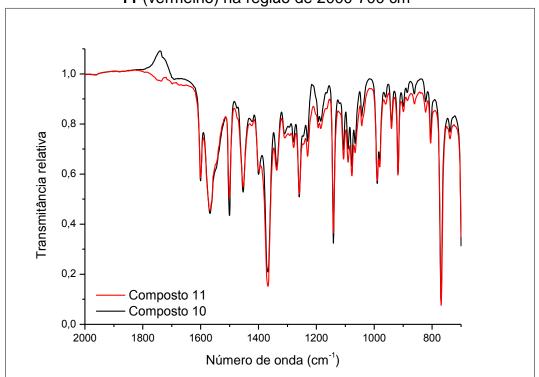



FIGURA 4.105 – Espectros de infravermelho para composto **10** (preto) e composto **11** (vermelho) na região de 2000-700 cm⁻¹

4.1.2. SULFAMETOXAZOL

Foram realizadas 360 reações para o sulfametoxazol (SMZ) que são apresentadas na TABELA A3.14 e TABELA A3.15, no APÊNDICE 3. Infelizmente nas condições em que foram realizadas as reações não foi possível sintetizar nenhum composto.

4.1.2.1. DETERMINAÇÃO ESTRUTURAL

A busca por estruturas cristalográficas da SMZ no CSD revelou que existem doze estruturas depositadas, sendo cinco polimorfos, I;¹⁵¹ II;¹⁵² III-IV¹⁵³ e V, ¹⁵⁴ um cocristal,¹⁵⁵ dois sais,^{156,157} e um hidrato.¹⁵⁸ O hidrato está depositado com código GUSHAD mas sem as coordenadas cristalográficas.

O esquema do SMZ hemihidratado é mostrado na FIGURA 4.106 e os seus respectivos dados cristalográficos e de refinamento estão na TABELA 4.4. As outras tabelas cristalográficas encontram-se no APÊNDICE 4.

FIGURA 4.106 – Esquema do SMZ hemihidratado

TABELA 4.4 – Dados cristalográficos e de refinamento do sulfametoxazol hemihidratado

neminidratado		
4-amino-N-(5-metilisoxazol-3-il)-benzenossulfonamida hemihidratado		
Fórmula química	C ₂₀ H ₂₄ N ₆ O ₇ S ₂	
M_r	524.6	
Sistema cristalino, grupo espacial	Monoclínico, P 2 ₁	
Temperatura (K)	293	
a, b, c (Å)	8,3750(3); 15,1402(6); 9,7402(4)	
α, β, γ (°)	90; 101,692(1); 90	
$V(Å^3)$	1209,42(3)	
Z	2	
Radiação	Mo <i>Kα</i>	
μ (mm ⁻¹)	0,274	
Tamanho do cristal (mm)	0,49 x 0,28 x 0,28	
Difratômetro da coleta de dados	Bruker APEXII CCD	
T_{\min} , T_{\max}	0,7017; 0,7454	
Reflexões coletadas, únicas e observadas [I > 2(I)]	13999; 4964; 4822	
R_{int}	0,022	
Refinamento $R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0,028; 0,074; 1,073	
Reflexões	4964	
Parâmetros	319	
Restrições	1	
Δho_{max} , Δho_{min} (e Å ⁻³)	0,231; -0,257	

A difração de raio X de monocristal mostrou que o SMZ cristaliza na razão molar 2:1 de SMZ e água, e no grupo espacial não centrossimétrico P2₁ (FIGURA 4.107).

FIGURA 4.107 – Estrutura do SMZ hemihidratado, mostrando elipsoides de 50% de probabilidade e os átomos de hidrogênio em uma escala arbitrária

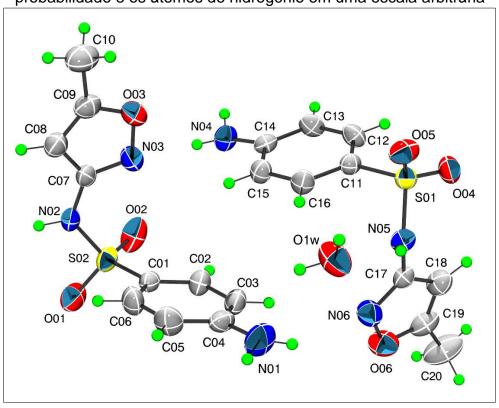
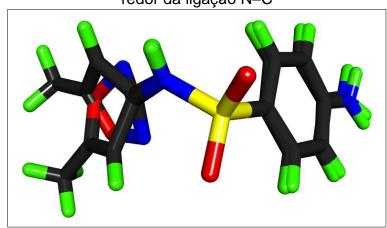



FIGURA 4.108 – Sobreposição das moléculas do SMZ alinhados pelos átomos C01–S02–N02 coincidindo com C11–S01–N05, ilustrando que existe uma rotação ao redor da ligação N–C

As duas moléculas de SMZ presentes na unidade assimétrica adotam configurações diferentes, pois ocorre uma rotação ao redor da ligação N–C (N02–C07 e N05–C17), com os ângulos de torção S–N02–C07–N = 12,24° e S–N05–C17–N = -131,14°. A sobreposição das moléculas de SMZ pode ser vista na FIGURA 4.108.

Na TABELA A4.9, no APÊNDICE 4, são apresentadas as interações responsáveis pela formação do cristal, que compreendem dez ligações de hidrogênio do tipo clássica (O $-H \cdots O$, O $-H \cdots N$, N $-H \cdots N$ e C $-H \cdots O$), uma ligação de hidrogênio do tipo não clássica (C $-H \cdots \pi$) e uma interação $\pi \cdots \pi$.

Os dois rotâmetros na unidade assimétrica estão ligados por duas ligações de hidrogênio, N04–H1N4 · · · N03 e N01–H1N1 · · · N06, formando um anel que pode ser visto na FIGURA 4.109.

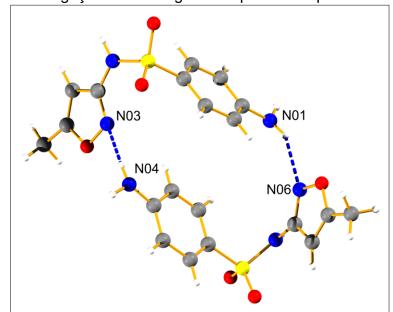
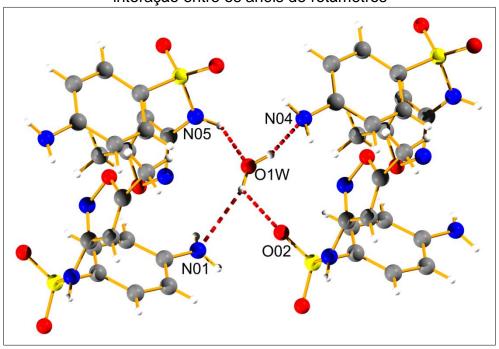



FIGURA 4.109 – Ligações de hidrogênio responsáveis pela formação do anel

A configuração adotada por estes dois rotâmetros é estabilizada por várias interações, das quais são destacadas as ligações de hidrogênio envolvendo a molécula de água, O1W–H1W···N01; N05–H1N5···O1W; O1W–H2W···N04 e O1W–H1W···O02. Esta molécula de água exerce um papel fundamental não só na estabilização dos rotâmetros, mas também na interação entre os anéis dos rotâmetros (FIGURA 4.110).

FIGURA 4.110 – Ligações de hidrogênio da molécula de água, responsáveis pela interação entre os anéis de rotâmetros

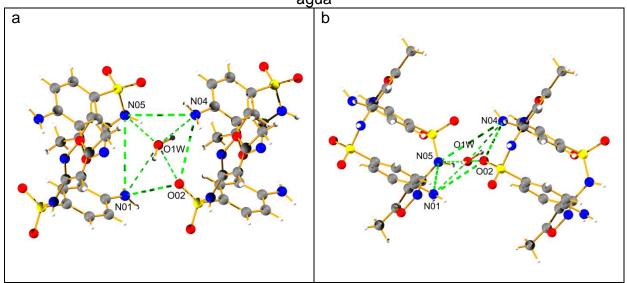

A molécula de água fica posicionada em um plano distorcido, formado pelos átomos N05-N01-O02-N04 (FIGURA 4.111), com ângulos de torsão apresentados na TABELA 4.5.

TABELA 4.5 – Ângulos de torsão^a do plano formado em volta da molécula de água

Sequência	Ângulo de torsão (°)
(N05-N01-O02-N04)	3,27
(N01-O02-N04-N05)	-3,07
(O02-N04-N05-N01)	2,34
(N04-N05-N01-O02)	-2,49

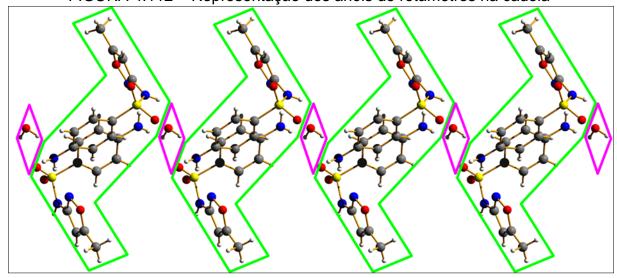

^a calculados com DS Visualizer 3.5. 159

FIGURA 4.111 – Dois pontos de vista do plano formado em volta da molécula de água

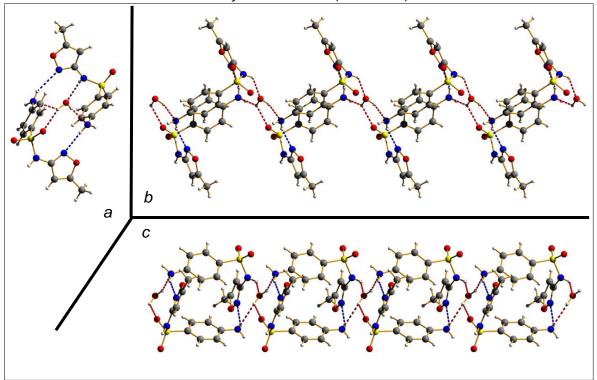

Estas interações também são responsáveis pelo crescimento da cadeia de rotâmetros ao longo do eixo *a* (1D), em que a molécula de água atua como uma "cola" entre os anéis, mostrada na FIGURA 4.112.

FIGURA 4.112 – Representação dos anéis de rotâmetros na cadeia

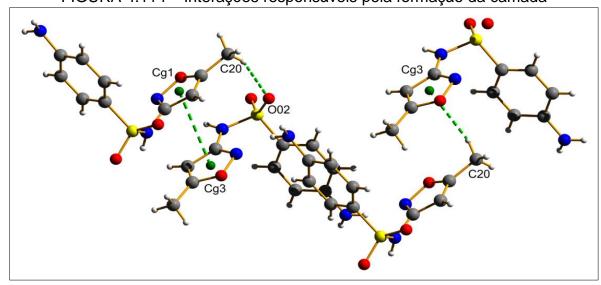

Uma representação, nos três eixos, da organização da cadeia é apresentada na FIGURA 4.113, onde estão representadas em azul as interações responsáveis pela formação dos anéis de rotâmetros e, em vermelho, as responsáveis pela formação da cadeia.

FIGURA 4.113 – Representação das interações nos planos a, b e c da cadeia de rotâmeros, com as interações responsáveis pela formação dos blocos (azul) e formação da cadeia (vermelho)

Estas cadeias de rotâmetros interagem com outra cadeia por meio de três interações (FIGURA 4.114), uma ligação de hidrogênio clássica, C(20)–H(20C) · · · O(02), uma ligação de hidrogênio não clássica, C(20)–H(20B) · · · π , e uma interação π · · · π , Cg1 · · · Cg3.

FIGURA 4.114 - Interações responsáveis pela formação da camada

Estas interações promovem o crescimento das cadeias ao longo do eixo *c*, formando uma camada *ac* (2D), em que as cadeias são organizadas em uma geometria chave-fechadura, representada na FIGURA 4.115.

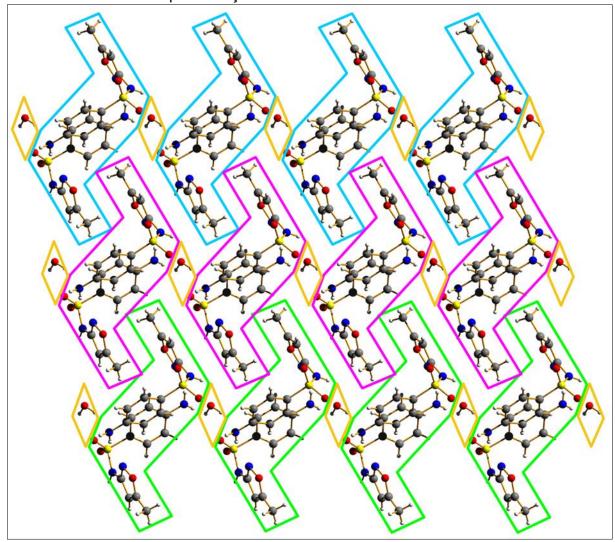
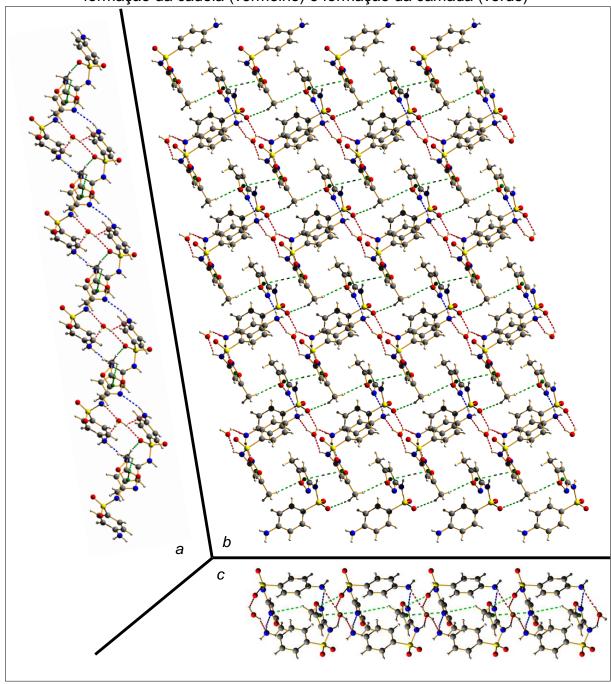
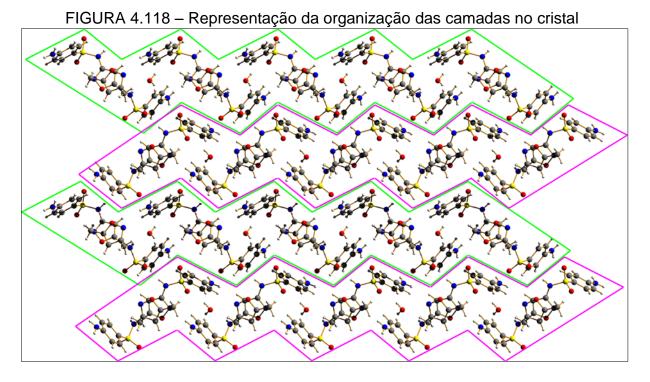



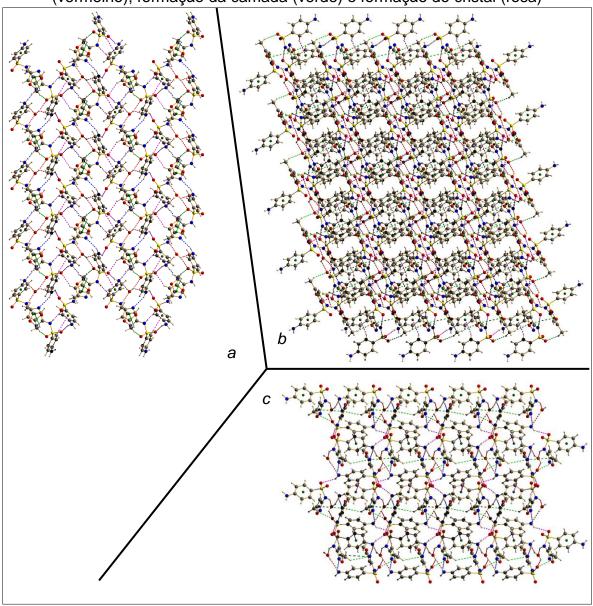
FIGURA 4.115 – Representação dos anéis e cadeias de rotâmetros na camada

Uma representação, nos três eixos, da organização da camada é apresentada na FIGURA 4.116, onde estão representadas em azul as interações, as responsáveis pela formação dos blocos de rotâmetros, em vermelho, as responsáveis pela formação da cadeia e em verde, as responsáveis pela formação da camada.


FIGURA 4.116 – Representação das interações nos planos *a*, *b* e *c* da camada de rotâmeros, com as interações responsáveis pela formação dos blocos (azul), formação da cadeia (vermelho) e formação da camada (verde)

Estas camadas de rotâmetros interagem com outra camada por meio de cinco interações (FIGURA 4.117), quatro ligações de hidrogênio clássicas, N(01)– $H(2N1) \cdot \cdot \cdot O(04)$; N(02)– $H(1N2) \cdot \cdot \cdot O(05)$; N(04)– $H(2N4) \cdot \cdot \cdot O(01)$; C(18)– $H(18) \cdot \cdot \cdot O(01)$, e uma ligação de hidrogênio não clássica, C(06)– $H(06) \cdot \cdot \cdot Cg2$.

FIGURA 4.117 – Interações responsáveis pela formação do cristal


Estas interações promovem o crescimento das camadas ao longo do eixo b, formando o cristal (3D), em que as camadas são organizadas em uma geometria chave-fechadura, mas com sentidos opostos, como mostrado na FIGURA 4.118.

136

Uma representação, nos três eixos, da organização do cristal é mostrada na FIGURA 4.119, onde estão representadas em azul as interações responsáveis pela formação dos anéis de rotâmetros, em vermelho, as responsáveis pela formação da cadeia, em verde, as responsáveis pela formação da camada e em rosa, as responsáveis pela formação do cristal.

FIGURA 4.119 – Representação das interações nos planos *a, b* e *c* do cristal, com as interações responsáveis pela formação dos blocos (azul), formação da cadeia (vermelho), formação da camada (verde) e formação do cristal (rosa)

4.1.3. CARBAMAZEPINA

Para a carbamazepina (CBZ) foram testadas 180 reações que estão detalhadas na TABELA A3.16 no APÊNDICE 3. Devido à falta de tempo hábil para um estudo completo, foram realizadas apenas as análises por DRXP nas relações molares 1:1.

4.1.3.1. DIFRAÇÃO DE RAIO X DE PÓ

A metodologia de moagem no estado sólido não apresentou resultados positivos na tentativa de sintetizar novos compostos. Assim, todos os resultados apresentados correspondem à metodologia de moagem com gotas de solvente utilizando água. A única síntese que não utiliza água, mas utiliza acetonitrila (ACN) é a com AOX.

Foram sintetizados com sucesso oito possíveis compostos de canal com os ácidos AFU (canal 1); AME (canal 2); AMI (canal 3); AOX (canal 4); ASU (canal 5); AMO (canal 6); AIT (canal 7) e ASO (canal 8), e um possível cocristal com AHBZ (composto 12). Os resultados são apresentados a seguir.

Comparando os padrões de difração do composto de canal 1 com o da CBZ_{hid} ou do AFU, observa-se certa semelhança (FIGURA 4.120). O difratograma do composto de canal 1 apresenta todos os picos do AFU, mas com perfil diferente para a CBZ_{hid}.

Comparando os padrões de difração do composto de canal **2** com o da CBZ_{hid} ou do AME, observa-se certa semelhança (FIGURA 4.121). O difratograma do composto de canal **2** apresenta todos os picos do AFU, mas com perfil diferente para a CBZ_{hid}.

FIGURA 4.120 – Padrões de difração de raio X de pó para CBZ_{hid} (preto), AFU (vermelho) e composto de canal **1** (azul)

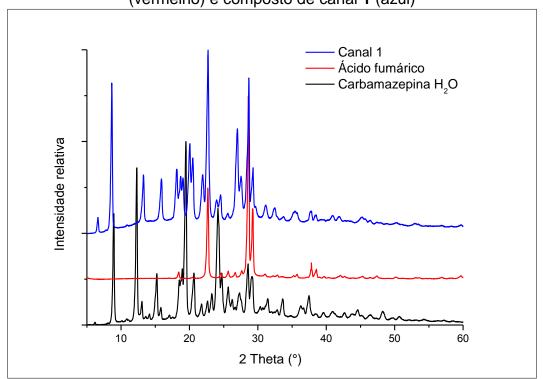
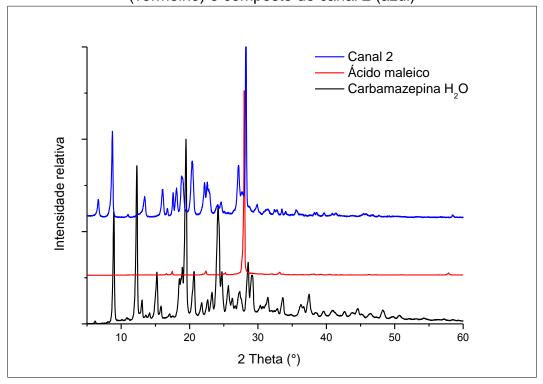



FIGURA 4.121 – Padrões de difração de raio X de pó para CBZ_{hid} (preto), AME (vermelho) e composto de canal **2** (azul)

Comparando os padrões de difração do composto de canal 3 com o da CBZ_{hid} ou do AFU, observa-se certa semelhança (FIGURA 4.122). O difratograma do composto de canal 3 apresenta todos os picos do AMI, mas com perfil diferente para a CBZ_{hid}.



FIGURA 4.122 – Padrões de difração de raio X de pó para CBZ_{hid} (preto), AMI

Comparando os padrões de difração do composto de canal 4 com o da CBZ em acetonitrila ou do AOX, observa-se certa semelhança (FIGURA 4.123). O difratograma do composto de canal 4 apresenta todos os picos do AOX, mas com perfil diferente para a CBZ_{hid}.

Os quatro compostos de canal, 1; 2; 3 e 4, apresentam o mesmo perfil de canal, isso quer dizer que o interstício principal é muito similar. 160

Comparando os padrões de difração do composto de canal 5 com o da CBZ_{hid} ou do ASU, observa-se padrões distintos (FIGURA 4.124). Mas o difratograma do composto de canal 5 apresenta um perfil diferente da CBZ_{hid}, mas apresenta todos os picos do ASU.

FIGURA 4.123 – Padrões de difração de raio X de pó para CBZ em acetonitrila (preto), AOX (vermelho) e composto de canal **4** (azul)

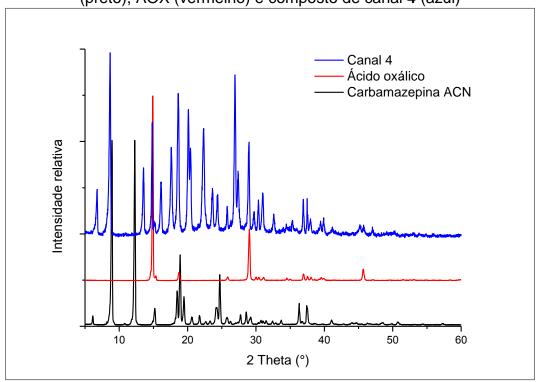
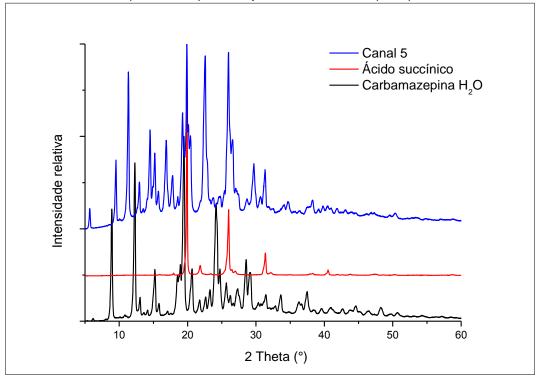



FIGURA 4.124 – Padrões de difração de raio X de pó para CBZ_{hid} (preto), ASU (vermelho) e composto de canal **5** (azul)

Comparando os padrões de difração do composto de canal **6** com o da CBZ_{hid} ou do AMO, observa-se certa semelhança (FIGURA 4.125). O difratograma do composto de canal **6** apresenta todos os picos do AMO, mas com perfil diferente para a CBZ_{hid}.

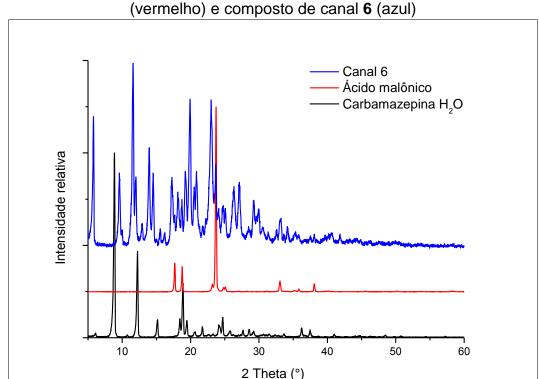


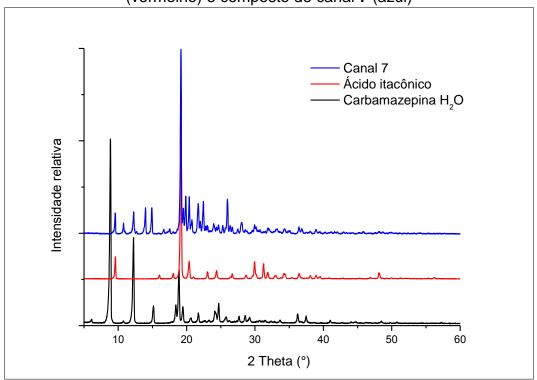
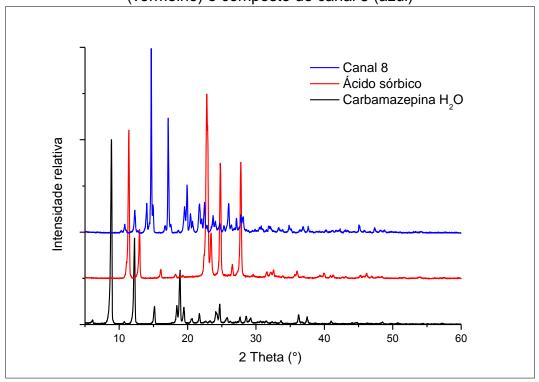
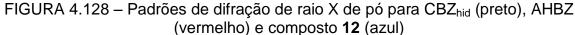
FIGURA 4.125 – Padrões de difração de raio X de pó para CBZ_{hid} (preto), AMO (vermelho) e composto de canal **6** (azul)

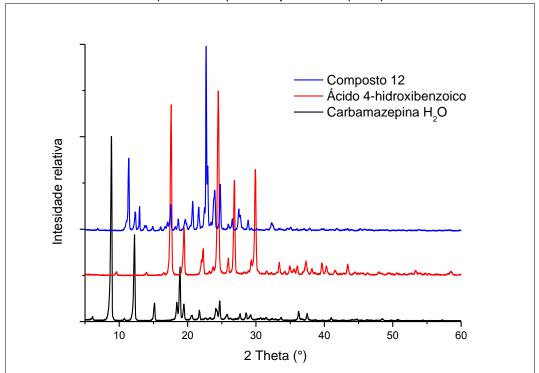
Estes dois compostos de canal, **5** e **6**, também apresentam o mesmo perfil de canal, assim, têm o interstício principal muito similar.

Comparando os padrões de difração do composto de canal $\mathbf{7}$ com o da CBZ_{hid} ou do AIT, observa-se certa semelhança com o do ácido (FIGURA 4.126). O difratograma do composto de canal $\mathbf{7}$ apresenta todos os picos do AIT, mas com perfil diferente para a CBZ_{hid}.

Comparando os padrões de difração do composto de canal **8** com o da CBZ_{hid} ou do ASO, observa-se perfis distintos (FIGURA 4.127). Analisando o difratograma do composto de canal **8**, verificou-se a presença de vários picos do ASO, mas com perfil diferente do da CBZ_{hid}.

FIGURA 4.126 – Padrões de difração de raio X de pó para CBZ_{hid} (preto), AIT (vermelho) e composto de canal **7** (azul)


FIGURA 4.127 – Padrões de difração de raio X de pó para CBZ_{hid} (preto), ASO (vermelho) e composto de canal **8** (azul)

Os compostos de canal **7** e **8** apresentam perfis similares, mas diferentes dos outros compostos de canal apresentados. Assim temos três perfis de compostos de canal.

Comparando os padrões de difração do composto **12** com o da CBZ_{hid} ou do AHBZ, observa-se perfis distintos (FIGURA 4.128). Analisando o difratograma do composto **12**, verificou-se a presença de apenas três picos coincidentes. Um pico com o AHBZ, em 17,52°, e dois com a CBZ_{hid}, em 27,70 e 32,25°.

O composto **12** pode ser considerado um cocristal devido às ausências dos picos do ácido, sendo que esta é uma das características dos compostos de canal. Assim poderíamos estar frente à forma D do cocristal de CBZ e AHBZ. ¹⁶⁰

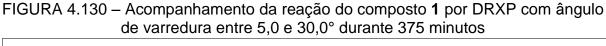
A FIGURA 4.129 apresenta uma comparação de todos os compostos de canal e o possível cocristal de CBZ, onde se pode comprovar a similaridade dentro de cada um dos três grupos de compostos de canal, e a diferença para o possível cocristal.

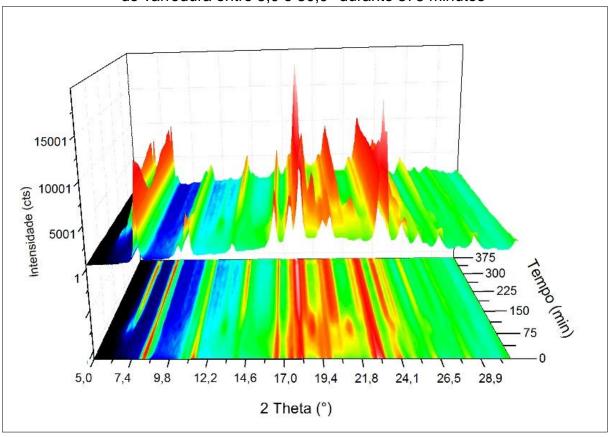
compostos de canal e do possível cocristal Canal 1 Canal 2 5 Canal 3 Canal 4 Canal 5 Canal 6 Canal 7 Intensidade relativa Canal 8 Composto 12 20 30 35 40 2 Theta (°)

FIGURA 4.129 – Comparação dos padrões de difração de raio X de pó dos compostos de canal e do possível cocristal

4.2. MECANISMOS DE REAÇÃO

4.2.1. MOAGEM NO ESTADO SÓLIDO


Durante os processos de síntese dos compostos, foi possível identificar três mecanismos distintos. Os mecanismos foram caracterizados por difração de raio X de pó e são apresentados na sequência. No caso do mecanismo do composto 1, também foi utilizada a técnica de espectroscopia de infravermelho.


4.2.1.1. MECANISMO 1 - via FASE EUTÉTICA

No processo de formação do composto 1, o mecanismo envolvido passa por uma fase eutética, pois foi possível identificar um padrão cristalino intermediário, diferente dos reagentes e do produto.

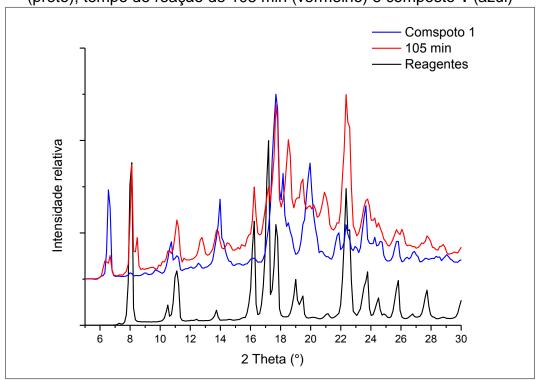
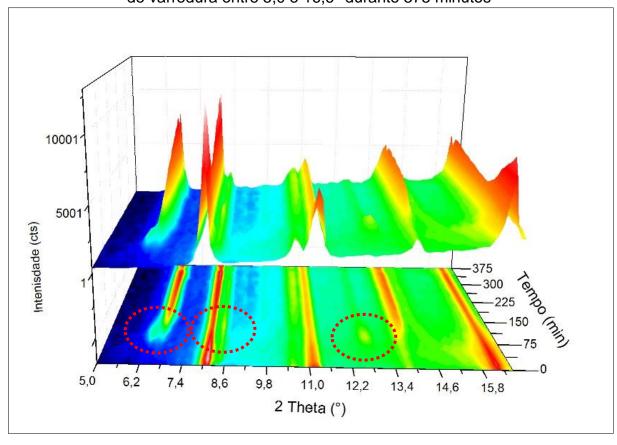
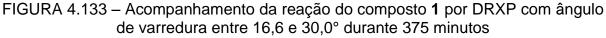
A FIGURA 4.130 mostra o gráfico de superfície do acompanhamento reacional com DRXP para a formação do composto 1, onde há picos que aparecem

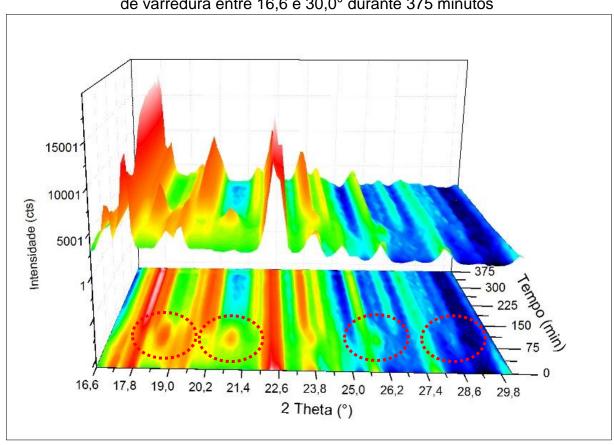
e desaparecem com o tempo. O pico máximo desta fase cristalina, que aparece e desaparece, ocorre com tempo aproximado de 105 min.

Quando se comparou os padrões dos reagentes e do produto com a fase cristalina intermediaria (FIGURA 4.131), observa-se picos únicos para o tempo de 105 min em 6,31; 8,46; 11,57; 12,77; 14,45; 15,40; 15,88; 18,51; 20,19; 20,91; 26,05; 27,37; e 28,81°.

Para facilitar a visualização dos picos, o gráfico de superfície da reação foi dividido em duas partes, a primeira, entre 5,0 e 16,6° (FIGURA 4.132), e a segunda, entre 16,6 e 30,0° (FIGURA 4.133).

FIGURA 4.131 – Padrões de difração de raio X de pó para reagentes DPP + ABZ (preto), tempo de reação de 105 min (vermelho) e composto **1** (azul)


FIGURA 4.132 – Acompanhamento da reação do composto **1** por DRXP com ângulo de varredura entre 5,0 e 16,6° durante 375 minutos

Na FIGURA 4.132 são destacados os picos em 6,31; 8,46; e 12,77°, linhas pontilhadas em vermelho, correspondentes ao intermediário. Em um primeiro momento antes do aparecimento dos picos do intermediário, ocorre uma drástica redução na intensidade dos picos dos reagentes, e somente após aparecimento dos picos do intermediário ocorre o aparecimento dos picos do produto.

Na FIGURA 4.133 são destacados os picos em 18,51; 20,91; 26,05; e 28,81°, em vermelho, correspondentes ao intermediário. Da mesma maneira como ocorre na figura anterior, em um primeiro momento há uma drástica redução na intensidade dos picos dos reagentes, e somente após aparecimento dos picos do intermediário aparecem os picos do produto.

Mesmo após o final do acompanhamento, com o tempo de 375 min, ainda é possível observar picos dos reagentes. Isso é um fato normal, considerando que o acompanhamento da reação ocorre em uma condição diferente da metodologia utilizada para a síntese, como descrito na seção 3.2.1.1.

A FIGURA 4.134 mostra o gráfico de superfície do acompanhamento reacional com IR para a formação do composto **1**. A análise deste gráfico de superfície não é trivial, assim, foram analisadas regiões específicas, discutidas na seção 4.1.1.1.c).

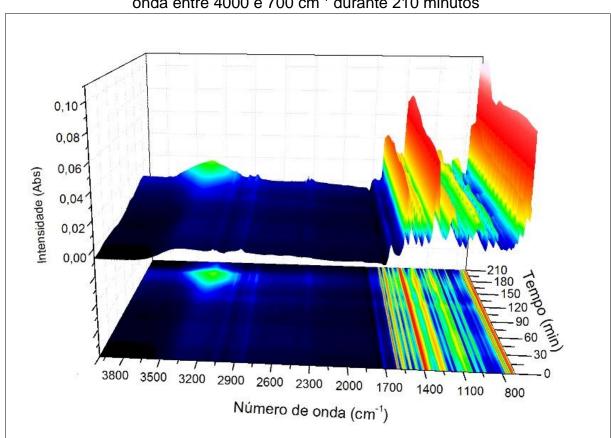
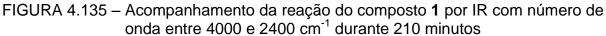
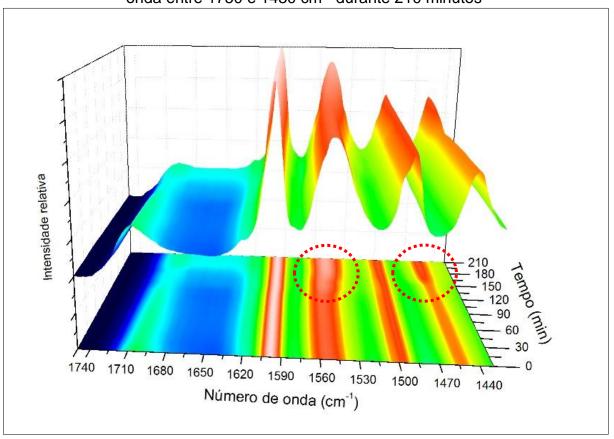




FIGURA 4.134 – Acompanhamento da reação do composto **1** por IR com número de onda entre 4000 e 700 cm⁻¹ durante 210 minutos

As intensidades máximas do intermediário ocorrem com tempo de 135 min, e os sinais característicos do composto 1 começam a aparecer a partir dos 150 min. Os espectros, originalmente adquiridos em transmitância, foram convertidos em absorbância e normalizados, para poder observar a presença do intermediário.

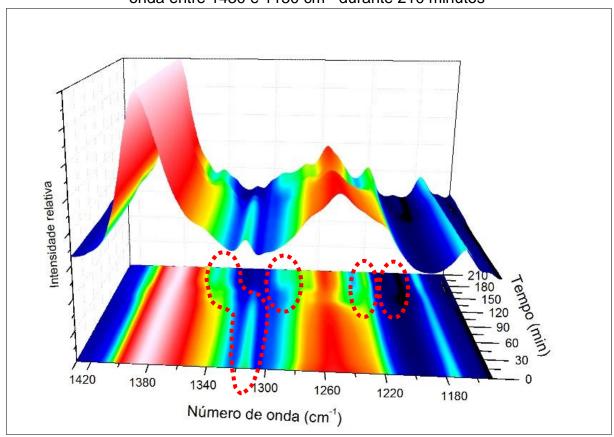
Na região de 4000 a 2400 cm⁻¹ (FIGURA 4.135), não se verificam muitas alterações dos sinais, exceto pelo deslocamento do estiramento O–H que ocorre na região de 3300 cm⁻¹ e a alteração da intensidade de outros sinais a partir do tempo de 120 min.



Na região de 1750 a 1430 cm⁻¹ (FIGURA 4.136) observou-se a existência do estiramento característico do ânion carboxilato, em 1560 cm⁻¹. Isso mostra que após o início da moagem, a primeira etapa que ocorre é a desprotonação do ácido carboxílico, pois esta banda está presente desde a primeira varredura.

Nesta região não é possível observar a formação do intermediário, mas é possível observar dois deslocamentos de bandas a partir do tempo de 135 min. Estes deslocamentos são ocasionados pela formação do composto **1**. O primeiro deslocamento, está relacionado com o estiramento do ânion carboxilato, na região de ~1551 cm⁻¹, e outro, está relacionado com a banda do estiramento do anel, na região de ~1456 cm⁻¹, destacados com linhas pontilhadas em vermelho.

FIGURA 4.136 – Acompanhamento da reação do composto **1** por IR com número de onda entre 1750 e 1430 cm⁻¹ durante 210 minutos


Na região de 1430 a 1150 cm⁻¹ (FIGURA 4.137) observou-se a existência de outro estiramento característico do ânion carboxilato, em ~1384 cm⁻¹, sendo que duas bandas do ácido carboxílico não estão presentes, uma relacionada com a deformação O–H, em 1424 cm⁻¹, e outra, relacionada com o estiramento C–O, em 1294 cm⁻¹.

Nesta região não é possível observar a formação do intermediário, mas é possível observar o deslocamento de uma banda, e o aparecimento de outras três, que estão relacionadas ao composto 1.

Na FIGURA 4.137, pode ser observado que partir dos 120 min ocorre o deslocamento de algumas bandas e a partir de 150 min o aparecimento de novas bandas. A banda deslocada, esta relacionada com o estiramento do anel aromático em 1314 cm⁻¹, para os reagentes, e 1342 cm⁻¹, para o produto. Duas, das três bandas que aparecem, estão relacionadas com os modos vibracionais atribuídos ao composto **1**, em que a primeira, em ~1291 cm⁻¹, corresponde à deformação O–H, e

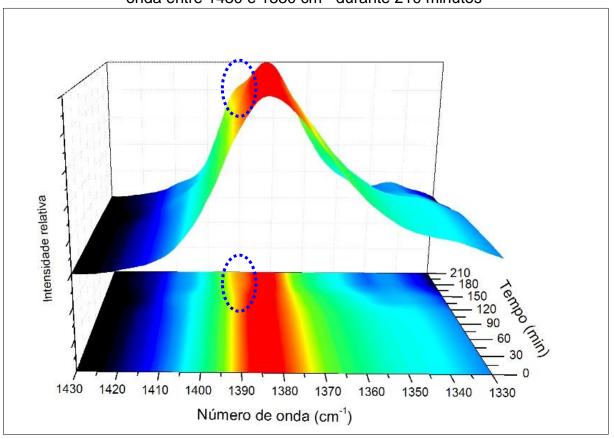

a segunda, em ~1219 cm⁻¹, à deformação sinérgica do esqueleto com N⁺–H. Todos destacados com traços pontilhados em vermelho.

FIGURA 4.137 – Acompanhamento da reação do composto **1** por IR com número de onda entre 1430 e 1150 cm⁻¹ durante 210 minutos

Olhando com atenção para a região da banda do estiramento do ânion carboxilato em ~1384 cm⁻¹ (FIGURA 4.138), foi observado um pequeno deslocamento da banda principal para 1381 cm⁻¹, e o aparecimento da banda relacionada a deformação N⁺–H, em 1390 cm⁻¹, destacada com traços pontilhados em azul. Ambos os eventos ocorrem com tempos de aproximadamente 150 min.

FIGURA 4.138 – Acompanhamento da reação do composto **1** por IR com número de onda entre 1430 e 1330 cm⁻¹ durante 210 minutos

Na região de 1150 a 700 cm⁻¹ (FIGURA 4.139) observou-se a existência de muitos eventos interessantes, como o desaparecimento, o aparecimento e o deslocamento de bandas. As bandas relacionadas com o estiramento C–C–O, em 1129 cm⁻¹, e a deformação O–H, em 933 cm⁻¹, do ácido carboxílico não aparecem, indicando que o ácido já estava desprotonado quando foi realizada a primeira varredura.

É possível observar o deslocamento das bandas a partir do tempo de 120 min, e o surgimento das bandas do composto **1** a partir do tempo de 150 min. As bandas que foram deslocadas, destacadas com linhas pontilhadas na cor azul, estão relacionadas com o estiramento C–OH da DPP na região de ~1100 cm⁻¹, com a deformação O–H da DPP na região de ~930 cm⁻¹, e com a deformação do anel do ácido carboxílico na região de ~720 cm⁻¹. As bandas que aparecem, destacadas com linhas pontilhadas na cor laranja, estão relacionadas com o composto **1**, sendo

que não foi possível fazer a atribuição da primeira em 959 cm⁻¹, e a segunda, em 943 cm⁻¹, foi atribuída à deformação O–H de um grupo álcool.

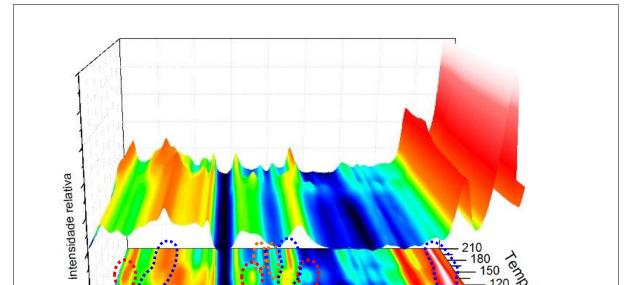


FIGURA 4.139 – Acompanhamento da reação do composto **1** por IR com número de onda entre 1150 e 700 cm⁻¹ durante 210 minutos

Três bandas estão relacionadas com o intermediário, em 1141; 971 e 898 cm⁻¹ e estão destacas com linhas pontilhadas na cor vermelha. Estas ocorrem com tempos entre 105 e 165 min, com um máximo de transmitância em 135 min. A primeira pode ser relacionada à deformação do anel aromático, e as outras duas podem ser relacionadas às deformações O–H, por estarem em regiões onde estas são as bandas predominantes.

Número de onda (cm⁻¹)

Considerando os resultados das duas técnicas pode-se concluir que esta reação deve proceder *via* formação de uma fase eutética. O mecanismo é descrito a seguir:

Primeira etapa: Difusão sólida (etapa mecânica – lenta)

Os reagentes são moídos juntos causando a diminuição do tamanho da partícula, aumentando a área superficial e facilitando a interpenetração. Esta etapa é equivalente à difusão no estado sólido,

$$A_A + B_B \rightarrow AB_{AB} + A_A + B_B$$

onde A é uma partícula de DPP; B é uma partícula de ABZ; e AB são partículas de DPP e ABZ juntas. Como é utilizado um pistilo e um almofariz, a eficiência da moagem está relacionada com o tempo de moagem.

Segunda etapa: Desprotonação do ABZ (etapa química – rápida)

De acordo com os dados de IR, após o contato, entre as partículas, ocorre a desprotonação do ABZ,

$$AB \rightarrow (A^{-})(B^{+})$$

onde A representa o carboxilato do ABZ, e B representa a espécie protonada da DPP. Pelo fato das bandas atribuídas a espécie N -H não estarem presentes nesta etapa da reação, é provável que o próton seja transferido para um dos grupos álcoois da DPP.

Terceira etapa: Difusão molecular (etapa física – lenta)

Na etapa de formação do intermediário, o empacotamento cristalino dos reagentes é desfeito para a formação do intermediário. Esta etapa é regida pela difusão molecular,

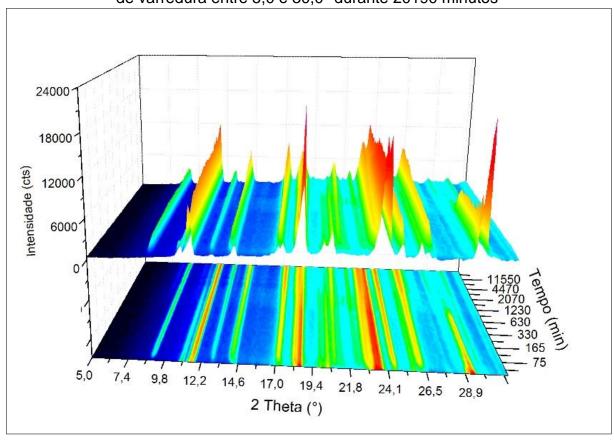
$$(A^{-})(B^{+}) \rightarrow C$$

onde C é o intermediário.

Como visto nas FIGURA 4.132 e FIGURA 4.133 o intermediário apresenta um empacotamento cristalino definido, no qual as principais interações responsáveis por sua formação podem ser ligações de hidrogênio e interações dos sistemas π.

Quarta etapa: Transferência de próton (etapa química – rápida)

Nesta etapa se supõe que ocorre um rearranjo das moléculas seguido pela transferência do próton para a formação da espécie N⁺–H,


 $\mathsf{C} \to \mathsf{D}$

onde D é o produto, ou seja, o composto 1.

4.2.1.2. MECANISMO 2 - DIFUSÃO MOLECULAR

No processo de formação do composto **4**, o mecanismo envolve a difusão molecular, na qual, o produto é formado de maneira direta.

FIGURA 4.140 – Acompanhamento da reação do composto **4** por DRXP com ângulo de varredura entre 5,0 e 30,0° durante 20190 minutos

A FIGURA 4.140 mostra o gráfico de superfície do acompanhamento reacional com DRXP para a formação do composto 4, onde foi observado que os

picos dos reagentes diminuem e os do produto aumentam de intensidade com o tempo. A partir do tempo de 750 minutos, os picos dos reagentes praticamente desaparecem e restam quase na totalidade, os picos do composto **4**.

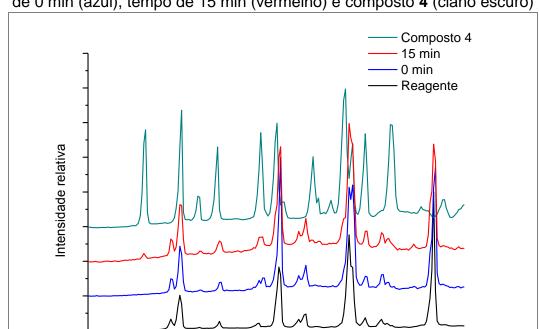
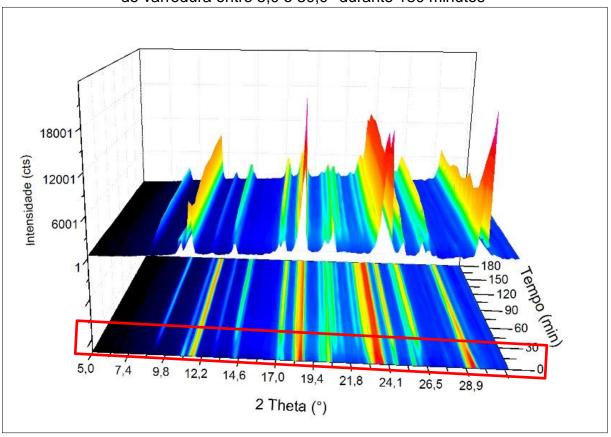


FIGURA 4.141 – Padrões de difração de raio X de pó para reagentes (preto), tempo de 0 min (azul), tempo de 15 min (vermelho) e composto **4** (ciano escuro)

Como característica deste processo, destacam-se as velocidades reacionais envolvidas. Comparando com o mecanismo proposto para a obtenção do composto 1, a velocidade com que o produto foi formado foi mais rápida, e a velocidade total do acompanhamento, foi maior. Na FIGURA 4.141 se vê que os picos relacionados com o composto 4 aparecem aos 15 minutos.


2 Theta (°)

15

10

Quando se observam os primeiros 180 minutos de reação (FIGURA 4.142), vê-se que, como mencionado acima, vários picos correspondentes ao composto **4** já estão formados aos 15 minutos, e que todos já estão aos 30 minutos.

FIGURA 4.142 – Acompanhamento da reação do composto **4** por DRXP com ângulo de varredura entre 5,0 e 30,0° durante 180 minutos

Os dados obtidos permitem propor, para esta reação, o mecanismo de difusão sólida. O mecanismo é apresentado na sequência:

Primeira etapa: Difusão sólida com moagem (etapa mecânica – lenta)

Os reagentes são moídos juntos causando a diminuição do tamanho da partícula, aumentando a área superficial e facilitando a interpenetração. Esta etapa é equivalente à difusão no estado sólido,

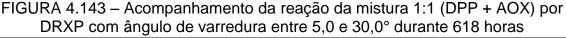
$$A_A + B_B \rightarrow AB_{AB} + A_A + B_B$$

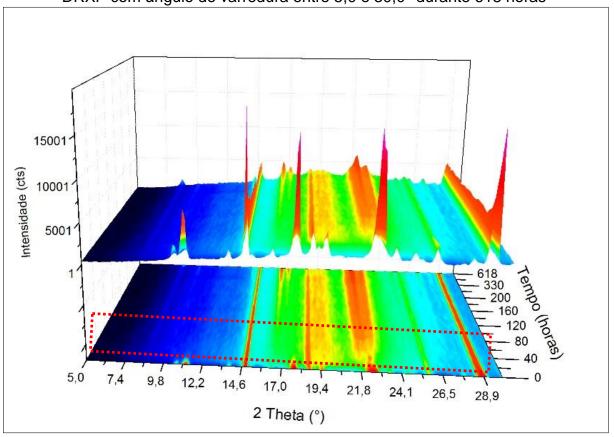
onde A é uma partícula de DPP; B é uma partícula de AME; e AB são partículas de DPP e AME juntas. Como são utilizados um pistilo e um almofariz, a eficiência está relacionada com o tempo de moagem.

Segunda etapa: Difusão sólida sem moagem (etapa física – lenta)

Esta segunda etapa de difusão sólida, se processa sem o auxílio de forças externas (moagem), o empacotamento cristalino dos reagentes são desfeitos, formando-se o composto 4, sem a formação de um intermediário. Esta etapa é regida pela difusão molecular,

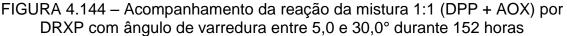
 $AB \rightarrow C$

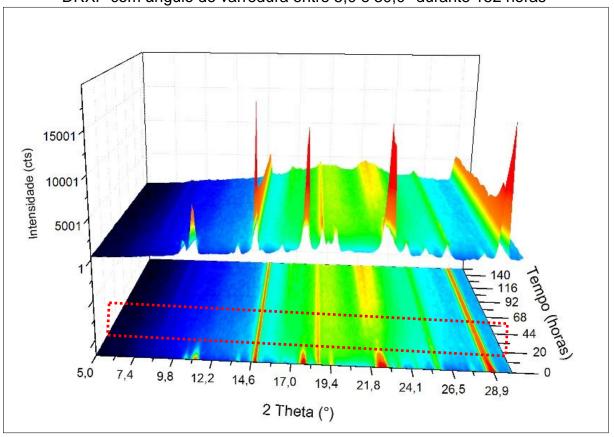

onde C é o composto 4.


O produto formado é sal-cocristal, entretanto não foi possível detectar a etapa de transferência de próton, que é a etapa rápida da reação.

4.2.1.3. MECANISMO 3 – via FASE AMORFA

Na reação da DPP com AOX, em proporção 1:1, por moagem no estado sólido, foi possível identificar um intermediário amorfo, bem como a formação dos dois compostos, **7** e **8**.


A FIGURA 4.143 mostra o gráfico de superfície do acompanhamento reacional com DRXP durante 618 horas. Observaram-se três regiões diferentes, uma primeira, com os picos dos reagentes, uma segunda onde há predominância de um sólido amorfo (destacado com linhas pontilhadas na cor vermelha), e uma terceira, onde aparecem os picos dos produtos.



Para facilitar a visualização das diferentes regiões, foram destacadas apenas as primeiras 152 horas de reação (Erro! Autoreferência de indicador não válida.). Durante as primeiras 20 horas ocorre a diminuição da intensidade dos picos dos reagentes. Entretanto alguns picos referentes ao AOX ainda estão presentes até o tempo de 618 horas (FIGURA 4.143), por este motivo foi feita uma nova moagem como explicado abaixo.

Entre 20 e 56 horas, destacado em linhas pontilhadas na cor vermelha (**Erro! Autoreferência de indicador não válida.**), observou-se a predominância da fase amorfa, com apenas quatro picos do AOX. A partir do tempo de 56 horas começam a aparecer picos correspondentes ao produto.

Após 618 horas, a amostra foi retirada do difratômetro na forma de um sólido, o qual foi moído novamente e feito o acompanhamento que é apresentado na FIGURA 4.145.

Somente após esta segunda moagem, os picos dos reagentes desaparecem e consequentemente as intensidades dos picos dos produtos aumentam. Portanto a formação do intermediário amorfo sólido impede a continuação da reação. Com 1098 horas ainda é possível identificar a presença da fase amorfa.

FIGURA 4.145 – Acompanhamento da reação da mistura 1:1 (DPP + AOX) por DRXP com ângulo de varredura entre 5,0 e 30,0° entre 618 e 1098 horas

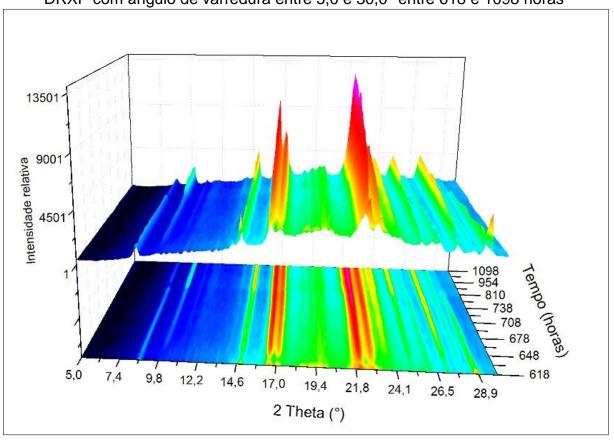
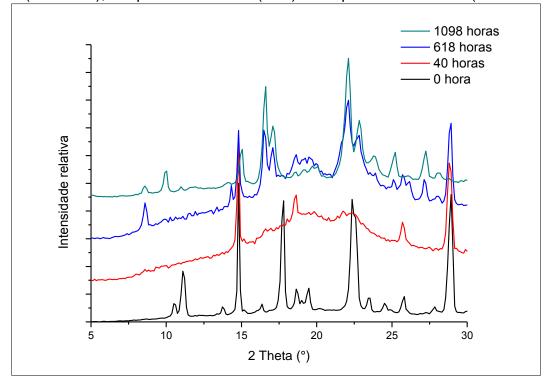



FIGURA 4.146 – Padrões de DRXP para tempo de 0 hora (preto), tempo de 40 horas (vermelho), tempo de 618 horas (azul) e tempo de 1098 horas (ciano escuro)

Na FIGURA 4.146 são mostrados os difratogramas em diferentes tempos e pode ser visto que a fase amorfa não desaparece completamente.

Como o produto desta reação é uma mistura de dois compostos (**7** e **8**), já discutidos na seção 4.1.1.5, não é interessante para a indústria farmacêutica. Uma desvantagem deste mecanismo é o tempo reacional, que é muito maior quando comparado com os outros mecanismos já descritos.

Os dados coletados permitem propor o mecanismo *via* fase amorfa para esta reação. As etapas deste mecanismo são:

Primeira etapa: Difusão sólida com moagem (etapa mecânica – rápida)

Os reagentes são moídos juntos causando a diminuição do tamanho da partícula, aumentando a área superficial e facilitando a interpenetração. Esta etapa é equivalente à difusão no estado sólido,

$$A_A + B_B \rightarrow AB_{AB} + A_A + B_B$$

onde A é uma partícula de DPP; B é uma partícula de AOX; e AB são partículas de DPP e AOX juntas. Como são utilizados um pistilo e um almofariz, a eficiência está relacionada com o tempo de moagem.

Segunda etapa: Difusão sólida sem moagem (etapa física – lenta)

Esta segunda etapa de difusão sólida, se processa sem o auxílio de forças externas (moagem), o empacotamento cristalino dos reagentes são desfeitos, formando-se o intermediário amorfo. Esta etapa é regida pela difusão molecular,

$$AB \rightarrow C$$

onde C é o intermediário amorfo.

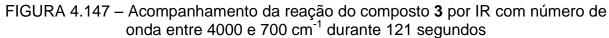
Terceira etapa: Difusão sólida sem moagem (etapa física – lenta)

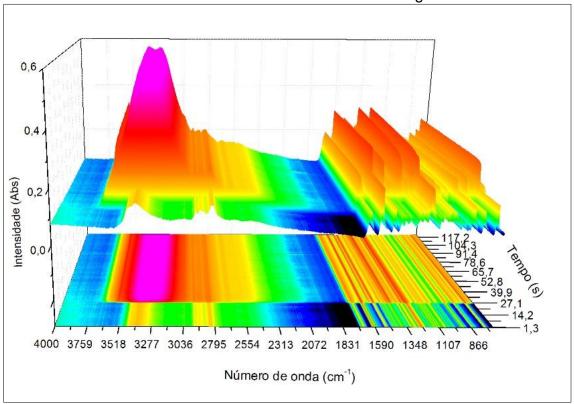
Em esta terceira etapa de difusão sólida, sem o auxílio de forças externas, ocorre uma reorganização das moléculas em que o sólido amorfo

(intermediário) se transforma nos compostos **7** e **8**. Esta etapa também é regida pela difusão molecular,

 $\mathsf{C}\to\mathsf{D}$

onde D é o produto.


4.2.2. MOAGEM COM GOTAS DE SOLVENTE


Durante os processos de síntese, foi possível identificar um mecanismo, que foi caracterizado por espectroscopia de infravermelho, difração de raio X de pó, microscopia eletrônica de varredura e é apresentado na sequência.

4.2.2.1. MECANISMO 4 – LÍQUIDO COMO MEIO PARA DIFUSÃO MOLECULAR

O processo de formação do composto **3**, envolve um mecanismo que utiliza um líquido como um meio que propicia a difusão molecular. Neste caso não foi possível identificar a formação de qualquer intermediário devido à velocidade com que ocorre a reação.

A FIGURA 4.147 apresenta o gráfico de superfície do acompanhamento da reação de formação do composto **3** por IR, onde observou-se claramente dois estágios diferentes. O primeiro, antes de 27 segundos atribuído à mistura dos reagentes, e após 27 segundos, quando as gotas de água foram adicionadas na mistura.

Para facilitar a análise o gráfico foi dividido em três partes. Sendo que na primeira, região de 4000 a 2000 cm⁻¹ (FIGURA 4.148), aparece uma banda da água, muito alta e intensa, em 3340 cm⁻¹. Isso torna difícil identificar o início da formação do produto, mas foi possível identificar duas bandas do produto presentes desde a primeira medida com água, destacados com linhas pontilhadas na cor azul.

Na FIGURA 4.149 encontram-se os espectros de IR, na região de 4000 a 2000 cm⁻¹, da reação antes de agregar água, no momento de agregar água e após, para efeitos de comparação também está apresentado o do composto **3**, destacando, com linhas pontilhadas na cor azul, as duas bandas acima mencionadas e apresentadas na FIGURA 4.148.

Após a adição de água, as únicas alterações observadas estão relacionadas com mudanças de intensidade.

FIGURA 4.148 – Acompanhamento da reação do composto **3** por IR com número de onda entre 4000 e 2000 cm⁻¹ durante 121 segundos

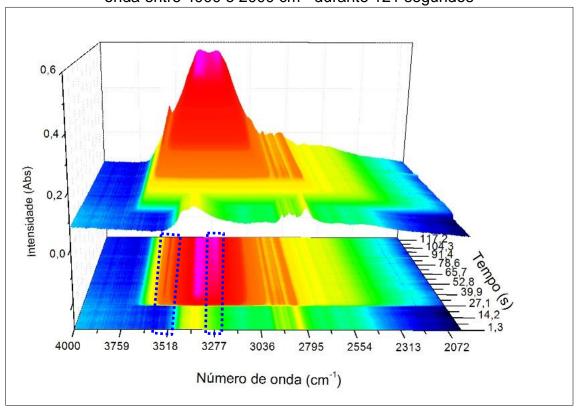


FIGURA 4.149 – Espectros de IR para tempo de reação de 1,3 segundos (preto), tempo de reação de 27,1 segundos (vermelho), tempo de reação de 121,1 segundos (azul) e composto **3** (ciano escuro) na regiao de 4000-2000 cm⁻¹

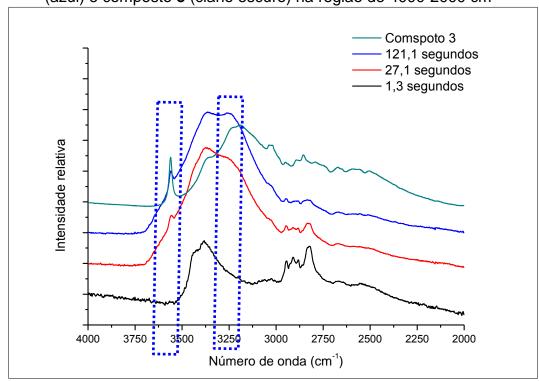
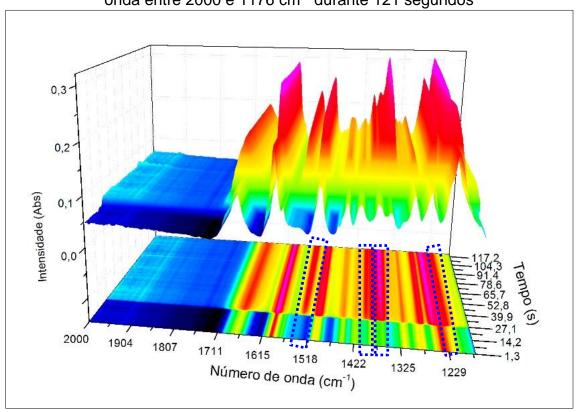
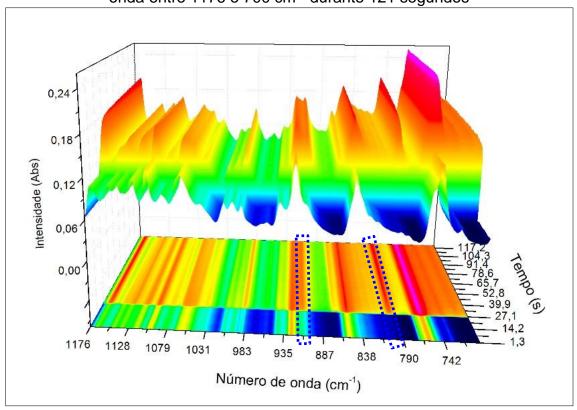
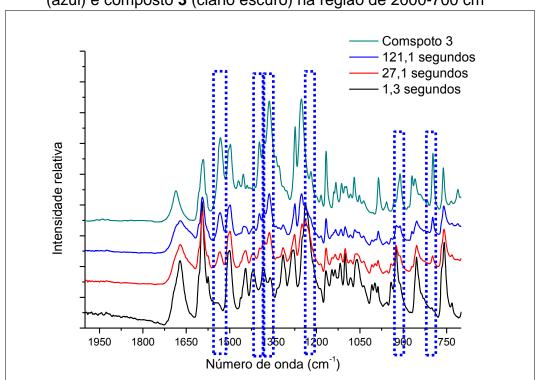


FIGURA 4.150 – Acompanhamento da reação do composto **3** por IR com número de onda entre 2000 e 1176 cm⁻¹ durante 121 segundos

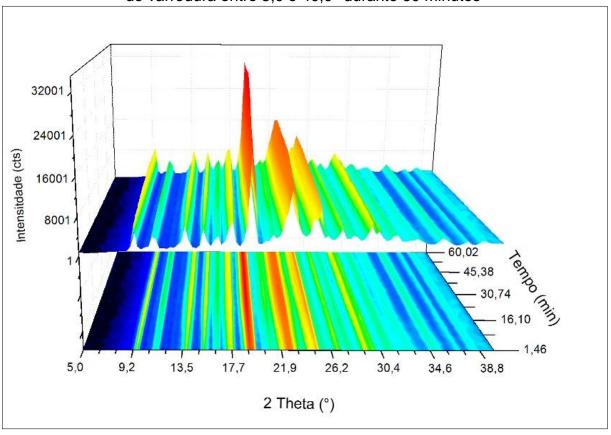




FIGURA 4.151 – Acompanhamento da reação do composto **3** por IR com número de onda entre 1176 e 700 cm⁻¹ durante 121 segundos

Na FIGURA 4.150 se vê que as bandas do composto 3 são formadas instantaneamente com a adição de água. São destacadas quatro bandas com linhas pontilhadas na cor azul, atribuídas exclusivamente ao composto 3, pois são bandas que estão envolvidas com a transferência de próton. Na FIGURA 4.151 observa-se o restante do espectro, onde são destacadas duas bandas com linhas pontilhadas na cor azul, que também são atribuídas exclusivamente ao composto 3.

Na FIGURA 4.152 encontram-se os espectros de IR, na região de 2000 a 700 cm⁻¹, da reação antes de agregar água, no momento de agregar água e após, para efeitos de comparação também está apresentado o do composto **3**, destacando as seis bandas, apresentadas nas figuras anteriores, com linhas pontilhadas na cor azul.

FIGURA 4.152 – Espectros de IR para tempo de reação de 1,3 segundos (preto), tempo de reação de 27,1 segundos (vermelho), tempo de reação de 121,1 segundos (azul) e composto **3** (ciano escuro) na região de 2000-700 cm⁻¹


A FIGURA 4.153 mostra a intensidade das principais bandas do composto **3** ao longo da reação, onde observou-se que grande parte do produto foi formado nos primeiros 10 segundos após a adição de água. A partir deste ponto mantêm-se quase constantes.

0,55 0,50 3560 3193 1532 0,45 1469 1453 0,40 1397 Intensidade (Abs) 1363 0,35 1274 1252 0,30 985 911 0,25 870 797 0,20 711 0,15 0,10 0,05 27,1 14,2 52,8 65,7 117,2 1,3 39,9 78,6 91,4 104,3 Tempo (s)

FIGURA 4.153 – Bandas do composto 3 em função do tempo

Para comprovar que o produto obtido durante as medidas de IR, que duraram aproximadamente dois minutos, corresponde ao composto 3, uma amostra foi preparada e levada ao difratômetro em menos de um minuto, e os primeiros dados coletados com um tempo de varredura de um minuto, em seguida foram feitas varreduras com intervalos de um minuto. Os resultados são mostrados na FIGURA 4.154. Assim, a presença dos picos do composto 3 na amostra recém preparada, permitem confirmar que as bandas formadas instantaneamente no acompanhamento reacional com IR correspondem ao composto 3.

FIGURA 4.154 – Acompanhamento da reação do composto **3** por DRXP com ângulo de varredura entre 5,0 e 40,0° durante 60 minutos

O mecanismo desta reação que utiliza um meio líquido para difusão molecular, moagem com gotas de solvente, compreende duas etapas:

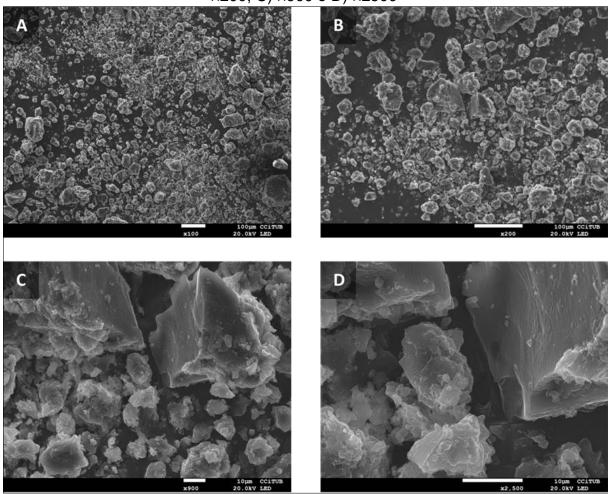
Primeira etapa: Difusão sólida (etapa mecânica – lenta)

Os reagentes são moídos juntos causando a diminuição do tamanho da partícula, aumentando a área superficial e facilitando a interpenetração. Esta etapa é equivalente à difusão no estado sólido,

$$A_A + B_B \rightarrow AB_{AB} + A_A + B_B$$

onde A é uma partícula de DPP_{hid}; B é uma partícula de AHBZ; e AB são partículas de DPP_{hid} e AHBZ juntas.

Segunda etapa: Percolação (etapa química – rápida)


Como mostrado no experimento de IR (FIGURA 4.150 e FIGURA 4.151) após o contato da água com os reagentes ocorre a formação do produto,

$$AB_{AB} + H_2O \rightarrow C$$

onde C representa o composto **3**. A água presente neste processo funciona como uma "ponte" que permite a transferência do próton entre o AHBZ e a DPP. Uma proposta para a transferência do próton é apresentada na sequência.

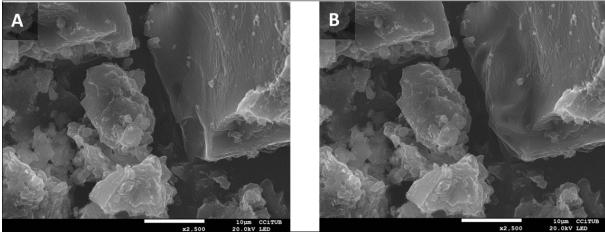

Foram feitas imagens de MEV após a primeira e a segunda etapa para confirmar o mecanismo proposto e caracterizar a superfície. Na FIGURA 4.155, após a etapa 1, observou-se uma distribuição heterogênea das partículas formadas, onde as partículas apresentam diferentes tamanhos e formas, e que estão em contato um com as outras.

FIGURA 4.155 – Partículas de DPP_{hid} com AHBZ após a primeira etapa, A) ×100; B) ×200; C) ×900 e D) ×2500

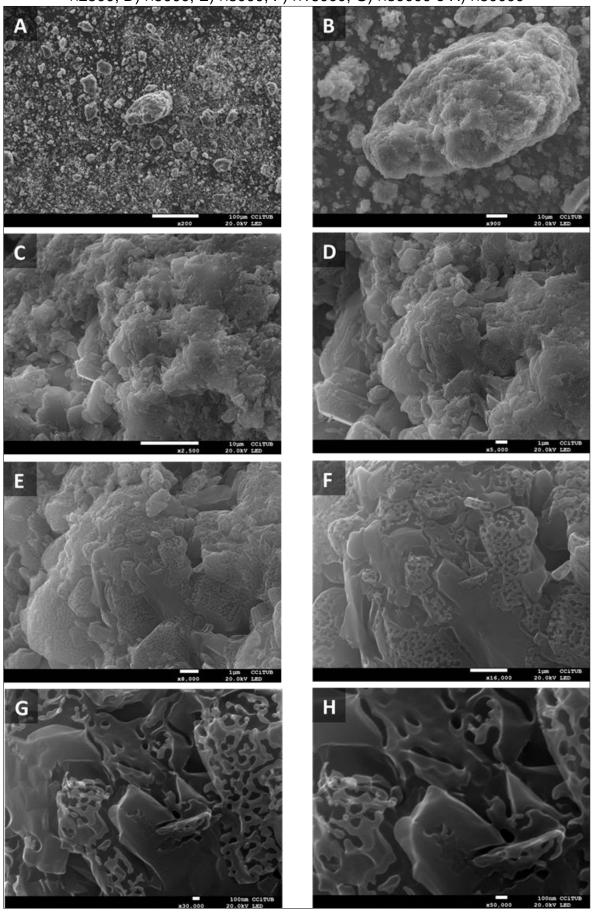

Foi possível identificar os reagentes, a DPP_{hid} apresenta as partículas com superfície lisa e o AHBZ as partículas com superfície rugosa. Isso porque as imagens da etapa 1 não puderam ser feitas com aproximações superiores a ×2500. Pois a DPP_{hid} apresenta eventos térmicos com temperaturas mais baixas do que o AHBZ, e deformava-se com o calor gerado pela aproximação do microscópio (FIGURA 4.156).

FIGURA 4.156 – Partículas de DPP_{hid} com AHBZ após a primeira etapa, A) antes de aproximar B) depois de aproximar

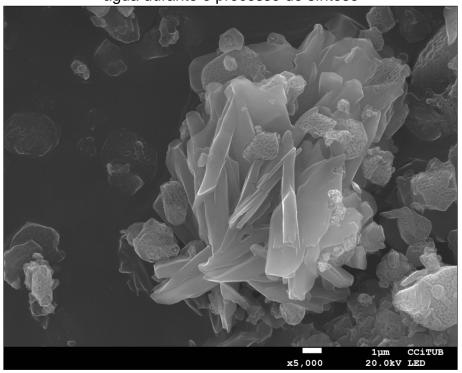
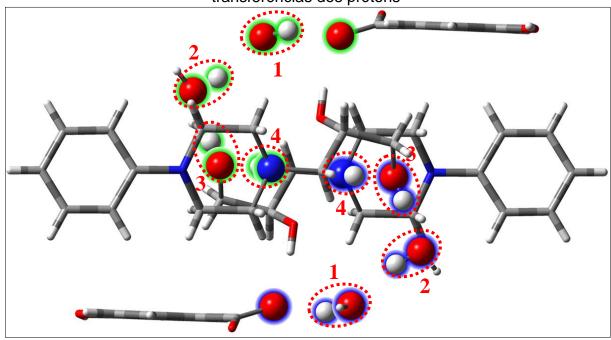

Diferentemente dos reagentes, o produto apresenta uma estabilidade térmica muito maior, permitindo aproximações de até ×60000. A superfície do produto apresenta partículas com tamanhos variados e formas irregulares, entretanto com uma superfície uniforme e porosa, com grãos de tamanho médio de poros de 100 nanômetros (FIGURA 4.157). Isso possibilita uma maior superfície de contato com outros meios (líquido), levando a uma melhora na solubilidade em água, por exemplo.

FIGURA 4.157 – Partículas do produto após a segunda etapa, A) ×200; B) ×900; C) ×2500; D) ×5000; E) ×8000; F) ×16000; G) ×30000 e H) ×50000

Existem indícios que um pequeno excesso de água causou a solubilidade, e posterior cristalização do material, com sua evaporação, formando-se micro cristais que apresentam uma superfície lisa (FIGURA 4.158).

FIGURA 4.158 – Micro cristais do composto **3** formados por um pequeno excesso de água durante o processo de síntese



4.2.2.1.1. MECANISMO DE TRANSFERÊNCIA DE PRÓTON

A transferência de próton que ocorre no processo de formação do composto **3** só acontece após a adição de água, etapa 2 do mecanismo.

Como descrito na seção 3.2.3, utilizamos a estrutura do cocristal do composto **3** para propor um mecanismo de transferência dos prótons, este mecanismo supõe que na etapa 2 ocorre uma pré-organização, onde um cocristal é formado (ponto de partida), e posteriormente ocorre a transferência do próton para a formação do sal-cristal (FIGURA 4.159), os átomos envolvidos estão marcados com linhas pontilhadas na cor vermelha.

FIGURA 4.159 – Estrutura cristalográfica destacando os átomos envolvidos nas transferências dos prótons

O primeiro cálculo supôs um mecanismo direto, de forma que todos os parâmetros, distâncias interatômicas, foram variados simultaneamente, nos intervalos mostrados na TABELA 4.6. O segundo cálculo supôs um mecanismo induzido, de forma que os parâmetros foram variados nos intervalos mostrados na TABELA 4.7 utilizando a metodologia de SEP descrita na seção 3.2.3.

TABELA 4.6 – Especificações de cada parâmetro para o mecanismo direto

Ligação	Intervalo (Å)	Parâmetro
$O_{1W} \cdot \cdot \cdot H_{1WB}$	1,90354 – 0,95754	1
$O_{2W} \cdot \cdot \cdot H_{2WA}$	1,87454 – 0,95054	2
$O_2 \cdot \cdot \cdot H_{22}$	1,7043 – 0,9673	3
$N_2 \cdot \cdot \cdot H_{2N}$	2,0294 - 1,0284	4

TABELA 4.7 – Especificações de cada parâmetro para o mecanismo induzido

Ligação	Intervalo (Å)	Parâmetro
$O_{1W} \cdot \cdot \cdot H_{1WB}$	1,00054 - 2,03254	1
$O_{2W} \cdot \cdot \cdot H_{2WA}$	0,99254 – 1,83254	2
$O_2 \cdots H_{22}$	1,0008 – 1,6708	3
$N_2 \cdots H_{2N}$	0,8919 – 1,9839	4

Os resultados dos cálculos para o mecanismo direto encontram-se na TABELA A5.1, e os dos cálculos para o mecanismo induzido na TABELA A5.2 (etapa 1), TABELA A5.3 (etapa 2) e TABELA A5.4 (etapa 3), no APÊNDICE 5.

A FIGURA 4.160 mostra a curva da variação da energia em cada passo do cálculo do mecanismo direto. A energia de ativação (E_a) é de 70,88 kcal/mol e a variação de entalpia (ΔH) é de -36,80 kcal/mol.

FIGURA 4.160 – Curva de energia para transferência dos prótons por mecanismo direto

A metodologia de SEP permite a visualização dos resultados na forma de curvas de superfície de energia potencial. As FIGURA 4.161, FIGURA 4.162 e FIGURA 4.163, correspondem respectivamente às etapas 1 (parâmetros 1 e 2), 2 (parâmetros 2 e 3) e 3 (parâmetros 3 e 4).

FIGURA 4.161 – Gráfico da SEP da etapa 1, com parâmetro 1 (SC2), parâmetro 2 (SC1) e a energia (E), que é dada em *hartrees*

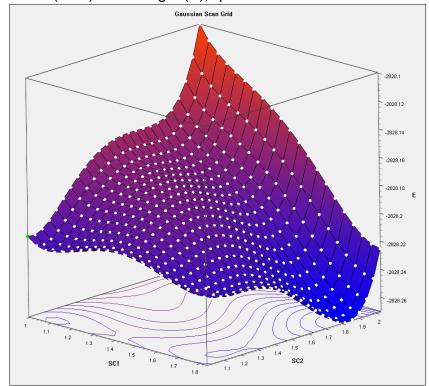


FIGURA 4.162 – Gráfico da SEP da etapa 2, com parâmetro 2 (SC2), parâmetro 3 (SC1) e a energia (E), que é dada em *hartrees*

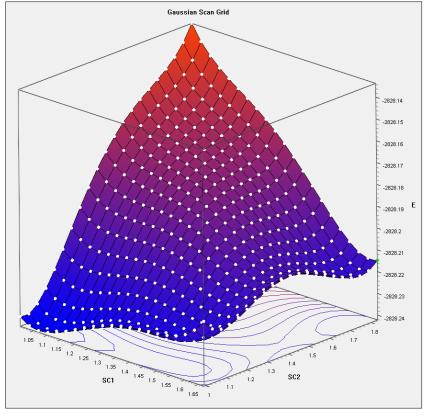
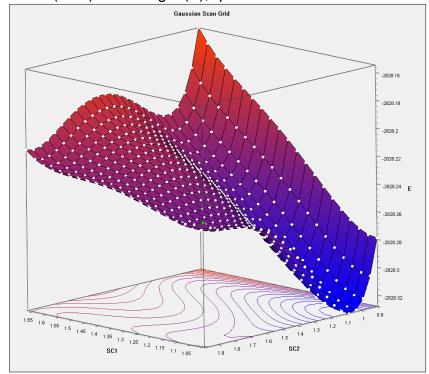
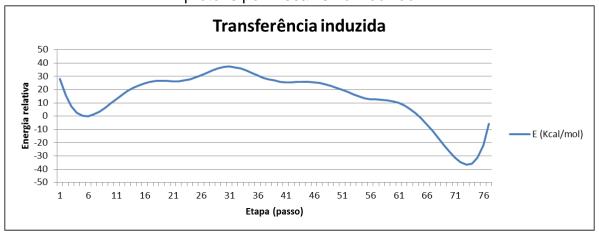




FIGURA 4.163 – Gráfico da SEP da etapa 3, com parâmetro 3 (SC1), parâmetro 4 (SC2) e a energia (E), que é dada em *hartrees*

A partir dos mínimos de energias das etapas da SEP, foi construída a curva de variação de energia para o mecanismo induzido, apresentada na FIGURA 4.164, onde a E_a é de 26,57 kcal/mol e o ΔH é de -36,52 kcal/mol.

FIGURA 4.164 – Curva de energia, relativa ao cocristal, para transferência dos prótons por mecanismo induzido

Dado que a diferença de E_a é de 44,31 kcal/mol entre os dois mecanismos, escolheu-se o mecanismo induzido que está representado na FIGURA

4.165, que tem a menor energia de ativação como sendo o mais provável para a transferência do próton.

FIGURA 4.165 – Esquema representando o mecanismo induzido para a transferência do próton

Os dois mínimos da curva de transferência de próton (FIGURA 4.164) foram otimizados e na TABELA 4.8 são apresentadas as energias absolutas (E) e as energias relativas (E_r), das estruturas do sal-cocristal com relação à energia do cocristal.

TABELA 4.8 – Energias absolutas (hartree) e relativas (kcal/mol)

Estrutura	E	E _r
Cocristal (SEP)	-2828,2699	0
Sal-cocristal (SEP)	-2828,3281	-36,52
Cocristal (OPT)	-2829,3056	0
Sal-cocristal (OPT)	-2829,4638	-99,26

As estruturas otimizadas do cocristal e do sal-cocristal são apresentadas nas FIGURA 4.166 e FIGURA 4.167, respectivamente, e as distâncias de ligação dos átomos envolvidos na transferência de próton na TABELA 4.9.

TABELA 4.9 – Distâncias em Å, entre os átomos envolvidos na transferência dos prótons

Interação	Cocristal	Sal-cocristal
$O_{1W} \cdot \cdot \cdot H_{1WB}$	1,53510	1,01536
$O_{2W} \cdot \cdot \cdot H_{2WA}$	1,68069	1,02569
$O_2 \cdots H_{22}$	1,68001	1,00969
$N_2 \cdot \cdot \cdot H_{2N}$	1,83751	1,06380

Quando se comparou a estrutura cristalográfica com a estrutura otimizada vê-se que são similares (FIGURA 4.168), de fato o RMSD da sobreposição de todos os átomos, exceto H, é de 1,661 Å, quando excluímos as moléculas de água o RMSD é 0,363 Å.

FIGURA 4.166 – Duas projeções da estrutura otimizada do cocristal

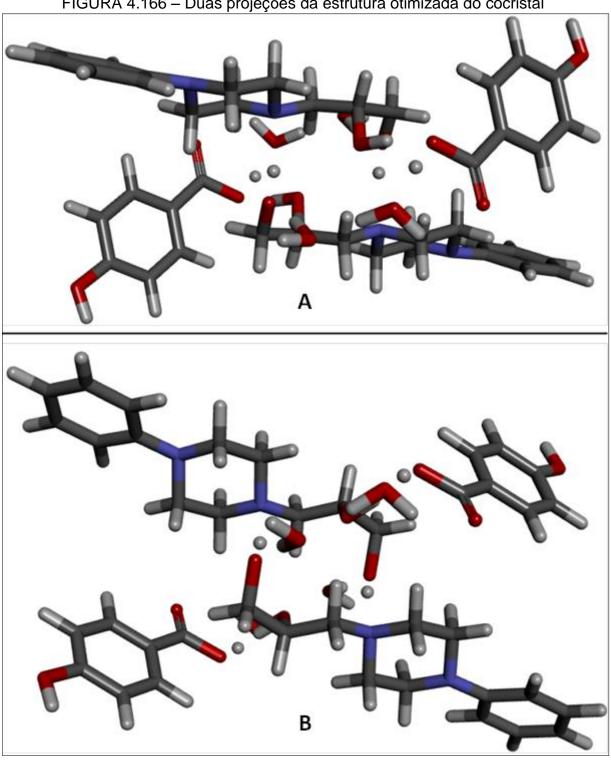


FIGURA 4.167 – Duas projeções da estrutura otimizada do sal-cocristal

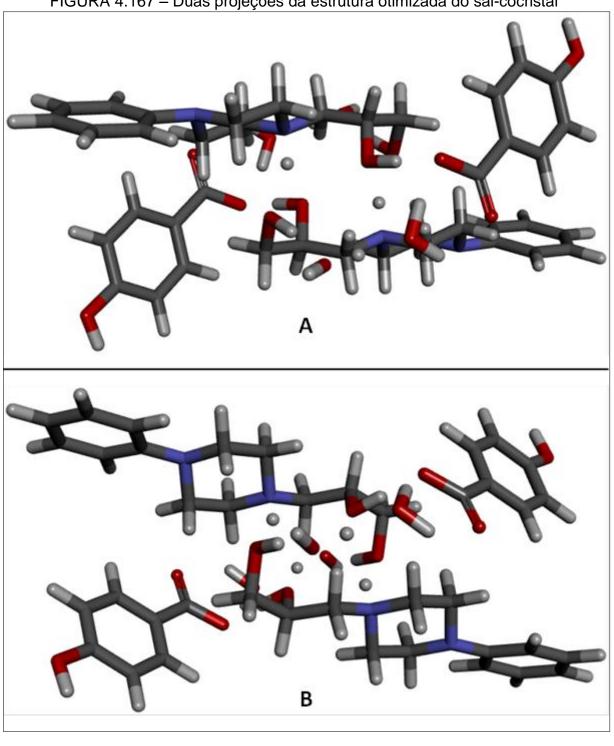
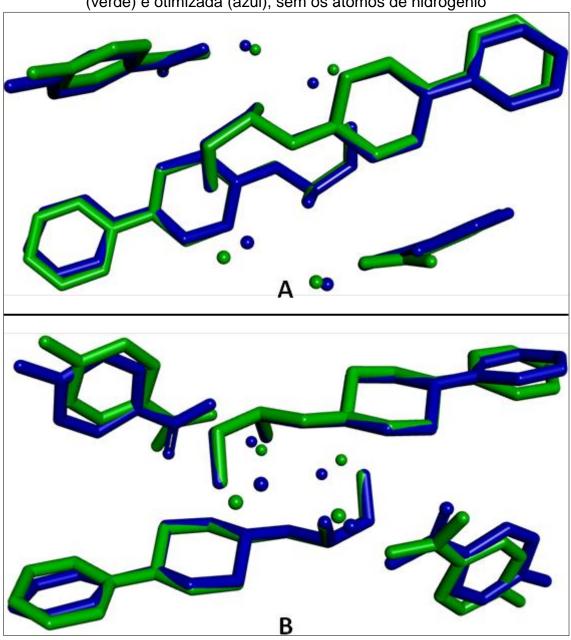



FIGURA 4.168 – Comparação entre duas projeções da estrutura cristalográfica (verde) e otimizada (azul), sem os átomos de hidrogênio

5. CONCLUSÕES E PERSPECTIVAS

Utilizando as metodologias de moagem no estado sólido, moagem com gotas de solvente, moagem com gotas de solvente e aquecimento foram realizadas 1164 ensaios procurando obter cocristais e/ou polimorfos dos Ingredientes Farmacêuticos Ativos, dropropizina, carbamazepina e sulfametoxazol, com diferentes substâncias potencialmente co-formadoras: ácidos carboxílicos, sais e aminoácidos. Foram obtidos vinte novos compostos, dos quais onze com dropropizina, a maioria sais-cocristais, e nove com carbamazepina, a maioria compostos de canal, e somente com ácidos carboxílicos.

Este resultado (20 compostos/1164 ensaios) mostra que ainda não é possível prever a obtenção de cocristais, sais-cocristais ou polimorfos, ainda que em todos os casos estudados existissem centros potencialmente formadores de ligações de hidrogênio. Ou seja, como disse MCCRONE¹⁶¹ "every compound has different polymorphic forms, and that, in general, the number of forms known for a given compound is proportional to the time and money spent in research on that compound."

Para a caracterização dos compostos foram utilizadas uma série de técnicas, como DSC, IR e ESI/MS-TOF e, em um caso, foi utilizada a técnica de MEV, sempre combinadas com a difração de raio X de pó. O uso da ESI/MS-TOF permitiu confirmar a formação dos mesmos apenas por meio de interações não covalentes.

Neste trabalho, um ponto de destaque foi o de mostrar que a difração de raio X de pó (DRXP) além de ser a metodologia de escolha para a identificação dos produtos das reações permite o acompanhamento das mesmas e, quando combinada com a espectroscopia IR, permitiu o acompanhamento das reações no estado sólido e possibilitou propor quatro mecanismos de reação. No caso da moagem no estado sólido foram três os mecanismos identificados: *via* fase eutética, difusão molecular e *via* fase amorfa. Um resultado importante é que o uso da DRXP permitiu determinar que a fase eutética é cristalina.

No caso do composto **3** (dropropizina-ácido 4-hidroxibenzoico-água), foram obtidos monocristais de tamanho adequado para a determinação da estrutura cristalina e molecular. Esta estrutura serviu para confirmar de forma inequívoca a formação de um sal-cocristal e para mostrar a importância das moléculas de água para a sua formação, pois duas delas atuam como a "cola" supramolecular entre as camadas que dão origem ao monocristal. Tendo esta estrutura como ponto de partida foi possível a realização dos cálculos teóricos empregando o método da Teoria do Funcional da Densidade (DFT) com funcional híbrido PBEPBE com as bases 6-31+G(d) e utilizando dispersão empírica GD2, que levaram à proposição do mecanismo de transferência de próton. Os resultados obtidos mostram que os prótons foram transferidos utilizando um mecanismo induzido que ocorre em quatro etapas durante as quais duas moléculas de água e um grupo álcool de uma molécula de dropropizina mediam a transferência do próton do grupo ácido (COOH) para o grupo básico (NR₃).

Com relação ao sulfametoxazol este mostrou não ter sido uma boa escolha para a síntese de novos compostos nas condições e metodologias utilizadas. Entretanto, foi possível obter monocristais de tamanho adequado de um hemihidrato para serem estudados por difração de raio X. Desta forma, foi possível determinar a sua estrutura cristalina e molecular que poderá ser utilizada para a realização de cálculos em estudos de *docking* molecular que são desenvolvidos no grupo de pesquisa em que estamos inseridos.

Como perspectivas futuras, pode-se estudar a determinação das estruturas cristalinas e moleculares de cristais recentemente obtidos, e desta forma contribuir para a análise sistemática das interações que são responsáveis pela sua formação; a partir da compreensão dessas interações poderá ser feita uma eventual previsão na obtenção de formas cristalinas predeterminadas. Ainda, novos agentes como possíveis formadores de cocristais podem ser testados com o sulfametoxazol.

6. REFERÊNCIAS BIBLIOGRÁFICAS

- 1. CARACELLI, I. "Nobel em química 2011: descoberta dos quasicristais, uma nova classe de sólidos". Quim. Nova Esc. 33 (4): 206, 2011.
- 2. GRANT, D. J. W. "Theory and origin of polymorphism". IN Polymorphism in Pharmaceutical Solids. BRITTAIN, H. G. (Ed). New York, Marcel Dekker, Inc., 1999. p. 1-33.
- 3. BERNSTEIN, J. "Crystal polymorphism". IN Engineering of Crystalline Materials Properties. NOVOA, J. J.; BRAGA, D. & ADDADI, L. (Eds). Dordrecht, Springer, 2008. p. 87-109.
- 4. CRUZ-CABEZA, A.; REUTZEL-EDENS, S. M. & BERNSTEIN, J. "Facts and fictions about polymorphism". Chem. Soc. Rev., 44 (23): 8619, 2015.
- 5. PENFOLD, B. R. & WHITE, J. C. B. "The crystal and molecular structure of benzamide". Acta Cryst., **12**: 130, 1959.
- 6. DAVID, W. I. F.; SHANKLAND, K.; PULHAM, C. R.; BLAGDEN, N.; DAVEY, R. J. & SONG, M. "Polymorphism in benzamide". Angew. Chem. Int. Ed. 44 (43): 7032, 2005.
- 7. THUN, J.; SEYFARTH, L.; SENKER, J.; DINNEBIER, R. E. & BREU, J. "Polymorphism in Benzamide: solving a 175-year-old riddle". Angew. Chem. Int. Ed. 46 (35): 6729, 2007.
- 8. BRAGA, D. & GREPIONI, F. "Making Crystal from crystals: a green route to crystal engineering and polymorphism". ChemComm., **29**: 3635, 2005.
- 9. DESIRAJU, G. R. "Crystal engineering: a brief overview". J. Chem. Sci., 122 (5): 667, 2010.
- 10. PEPINSKY, R. "Crystal Engineering: a new concept in crystallography". Phys. Rev., **100**: 952, 1955.
- 11. SCHMIDT, G. M. J. "Photodimerization in the solid state". Pure Appl. Chem., 27 (4): 647, 1971.
- 12. DUNITZ, J. D. "Thoughts on crystals as supermolecules". IN: Perspectives in Supramolecular Chemistry. DESIRAJU, G. R. (Ed). New York, John Wiley & Sons, 2007. p. 1-30.
- 13. NANGIA, A. "Supramolecular chemistry and crystal engineering". J. Chem. Sci. 122 (3): 295, 2010.
- 14. STEED, J. W.; ATWOOD, J. L. & GALE, P. A. "Definition and emergence of supramolecular chemistry". IN: Supramolecular Chemistry: From Molecules to Nanomaterials. GALE, P. A. & STEED, J. W. (Eds). New York, John Wiley & Sons, 2012. p. 1-5.
- 15. LEHN, J. N. "Supramolecular chemistry scope and perspectives: molecules supermolecules molecular device". Angew. Chem. Int. Ed. 27 (1): 89, 1988.
- 16. STEED, J. W. & ATWOOD, J. L. "Nature of supramolecular interactions". IN: Supramolecular Chemistry, 2nd edition. New York, John Wiley & Sons, 2009. p. 27-37.
- 17. ERMONDI, G. & CARON, G. "Recognition forces in ligand-protein complexes: blending information from different sources". Biochem. Pharmacol., 72 (12): 1633, 2006.
- 18. ANDREETTI, G. D.; UNGARO, U. & POCHINI, A. "Crystal and molecular structure of cyclo{quater[(5-t-butyl-2-hydroxy-1,3-phenylene)methylene]} toluene (1:1) clathrate". J. Chem. Soc. Chem. Comm. **22**: 1005,1979.

- 19. ZUKERMAN-SCHPECTOR, J. & HAIDUC, I. "Tellurium···π–aryl interactions: a new bonding motif for supramolecular self-assembly and crystal engineering". Cryst. Eng. Comm., **4**: 178, 2002.
- 20. TIEKINK, E. R. T. & ZUKERMAN-SCHPECTOR, J. "Gold $\cdots \pi$ aryl interactions as supramolecular synthons". Cryst. Eng. Comm., 11 (7): 1176, 2009.
- 21. TIEKINK, E. R. T. & ZUKERMAN-SCHPECTOR, J. "A structural survey of metal··· π heteroaromatic supramolecular synthons for metal = tellurium, tin, and gold". Cryst. Eng. Comm., 11 (12): 2701, 2009.
- 22. TIEKINK, E. R. T. & ZUKERMAN-SCHPECTOR, J. "Pb···π aryl interactions as supramolecular synthons". Aust. J. Chem., 63 (4): 535, 2010.
- 23. TIEKINK, E. R. T. & ZUKERMAN-SCHPECTOR, J. The Importance of Pi-Interactions in Crystal Engineering: Frontiers in Crystal Engineering. Chichester, John Wiley & Sons, 2012. p. 392.
- 24. ZUKERMAN-SCHPECTOR, J.; OTERO-DE-LA-ROZA, A.; LUAÑA, V & TIEKINK, E. R. T. "Supramaloecular architectures based on As(lone pair) π (aryl) interactions". ChemComm. 47 (27) : 7608, 2011.
- 25. TIEKINK, E. R. T. & ZUKERMAN-SCHPECTOR, J. "Emerging supramolecular synthons: $C-H\cdots\pi$ (chelate) interactions in metal bis(1,1-dithiolates). Chem. Comm. 47 (23): 6623, 2011.
- 26. CARACELLI, I.; ZUKERMAN-SCHPECTOR, J. & TIEKINK, E. R. T. "Supramolecular aggregation patterns based on the bio-inspired Se(lone pair)···π (aryl) synthon". Coordin. Chem. Rev. 256 (3): 412, 2012.
- 27. COX, E. G. "Crystal Structure of Benzene". Rev. Mod. Phys. 30 (1): 159, 1958.
- 28. HUNTER, C. A. & SANDERS, J. K. M. "The nature of π -π interactions". J. Am. Chem. Soc., 112 (2): 5525, 1990.
- 29. STEINER, T. "The hydrogen bond in the solid state". Angew. Chem. Int. Ed. 41 (1): 49, 2002.
- 30. STEINER, T. & DESIRAJU, G. R. "Distinction between the weak hydrogen bond and the van der waals interactions". ChemComm., **8**: 891, 1998.
- 31. BRAMMER, L. "Developments in inorganic crystal engineering". Chem. Soc. Rev. 33 (8): 476, 2004.
- 32. NOVOA, J. J. & D'ORIA, E. "From bonds to packing: an energy-based crystal packing analysis for molecular crystals". IN Engineering of Crystalline Materials Properties. NOVOA, J. J.; BRAGA, D. & ADDADI, L. (Eds). Dordrecht, Springer, 2008. p. 307-332.
- 33. GRABOWSKI, S. J. "What is the covalency of hydrogen bonding?" Chem. Rev. 111 (4): 2597, 2011.
- 34. JEFFREY, G. A. & SAENGER, W. "Hydrogen Bonding in Biological Structures". Berlin, Springer-Verlag, 1991. p. 569.
- 35. MEYER, E. A.; CASTELLANO, R. K. & DIEDERICH, F. "Interactions with aromatic ring in chemical and biological recognition". Angew. Chem. Int. Ed., 42 (11): 1210, 2003.
- 36. BLAGDEN, N.; MATAS, M. & GAVAN, P. T. "Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates". Adv. Drug Delivery Rev. 59 (7): 617, 2007.
- 37. ALLEN, F. H.; MOTHERWELL, W. D. S.; RAITHBY, P. R.; SHIELDS, G. P. & RAYLOR, R. "Systematic analysis of the probabilities of formation of bimolecular hydrogen-bonded ring motifs in organic crystal structures". New J. Chem., 23 (1): 25, 1999.

- 38. LEISEROWITZ, L. "Molecular packing modes. Carboxylic acids". Acta Cryst. B, 32 (3): 775, 1976.
- 39. SHAN, N. & ZAWOROTKO, M. J. "The role of cocrystals in pharmaceutical science". Drug Discov. Today, 13 (9/10): 440, 2008.
- 40. HE, G.; CHOW, P. S. & TAN, R. B. H. "Predicting multicomponent crystal formation: the interplay between homomeric and heteromeric interactions". Cryst. Growth Des. 9 (10): 4529, 2009.
- 41. AAKERÖY, C. B. & SALMON, D. J. "Building co-crystals with molecular sense and supramolecular sensibility". CrystEngComm., 7 (72): 439, 2005.
- 42. ZUKERMAN-SCHPECTOR, J. & TIEKINK, E. R. T. "What is a co-crystal?". Z. Kristallogr. 223 (3): 233, 2008.
- 43. BOND, A. D. "What is a co-cristal?". CrystEngComm. 9 (9): 833, 2007.
- 44. PARKIN, A.; GILMORE, C. J. & WILSON, C. C. "What is a co-cristal and does it matter?". Z. Kristallogr. 223 (6): 430, 2008.
- 45. ETTER, M. C. & PANUNTO, T. W. "1,3-bis(m-nitrophenyl)urea: an exceptionally good complexing agent for proton acceptors". J. Am. Chem. Soc. 110 (17): 5896, 1988.
- 46. HERBSTEIN, F. H. "5-Oxatricyclo[5.1.0.01,3]octan-4-one, containing na enantiomorph and a racemate and not two polymorphs, is another example of a composite crystal". Acta Crystallogr. B, 59 (2): 303, 2003.
- 47. DESIRAJU, G. R. "Cristal and co-cristal". CrystEngComm. 5 (82): 466, 2003.
- 48. DUNITZ, J. D. "Cristal and co-cristal: a second opinion". CrystEngComm. 5 (91): 506, 2003.
- 49. GAJIWALA, K. S.; FENG, J.; FERRE, R.; RYAN, K.; BRODSKY, O.; WEINRICH, S.; KATH, J. C. & STEWART, A. "Insights into the aberrant activity of mutant EGFR kinase domain and drug recognition". Structure. 21 (2): 209, 2013.
- 50. HUANG, J. -J.; WU, X. -W.; JIA, J. -M.; GUO, X. -K.; XUE, X.; JIANG, Z. -Y.; ZHANG, S. -L.; ZHANG, X. -J.; SUN, X. -J. & YOU, Q. -D. "Novel IKKβ inhibitors discovery based on the co-crystal structure by using binding-conformation-based and ligand-based method". Eur. J. Med. Chem. **63**: 269, 2013.
- 51. LI, K.; MCGEE, L. R.; FISHER, B.; SUDOM, A.; LIU, J.; RUBENSTEIN, S. M.; ANWER, M. K.; CUSHING, T. D.; SHIN, Y.; AYRES, M.; LEE, F.; EKSTEROWICZ, J.; FAULDER, P.; WASZKOWYCZ, B.; PLOTNIKOVA, O.; FARRELLY, E.; XIAO, S. H.; CHEN, G. & WANG, Z. "Inhibiting NF-κB-inducing kinase (NIK): discovery, structure-based design, synthesis, structure-activity relationship, and co-crystal structures". Bioorg. Med. Chem. Lett. 23 (5): 1238, 2013.
- 52. SOSIČ, I.; MIRKOVIĆ, B.; ARENZ, K.; ŠTEFANE, B.; KOS, J. & GOBEC, S. "Development of new cathepsin B inhibitors: combining bioisosteric replacements and structure-based design to explore the structure-activity relationships of nitroxoline derivatives". J. Med. Chem. 56 (2): 521, 2013
- 53. MACGILLIVRAY, L. R.; REID, J.L. & RIPMEESTER, J. A. "Supramolecular Control of Reactivity in the Solid State Using Linear Molecular Templates". J. Am. Chem. Soc. 122 (32): 7817, 2000.
- 54. TRASK, A. V.; MOTHERWELL, W. D. S. & JONES, W. "Pharmaceutical Cocrystallization: Engineering a remedy for caffeine hydration". Cryst. Growth & Des., 5 (3): 1013, 2005.
- 55. GOUD, N. R. & NANGIA, A. "Synthon polymorphs of sulfacetamide-acetamide cocrystal based on N-H...O=S and N-H...O=C hydrogen bonding". CrystEngComm 15 (37): 7456, 2013.
- 56. GHOSH, S.; MONDAL, A.; KIRAN, M. S. R. N.; RAMAMURTY, U. & REDDY, C. M. "The role of weak interactions in the phase transition and distinct mechanical

- behavior of two structurally similar caffeine co-crystal polymorphs studied by nanoindentation". Cryst. Growth & Des. 13 (10): 4435, 2013.
- 57. HEMENWAY, J. N.; JARHO, P.; HENRI, J. T.; NAIR, S. R.; VANDERVELDE, D.; GEORG, G. I. & STELLA, V. J. "Preparation na physicochemical characterization of a novel water-soluble prodrug of carbamazepine". J. Pharm. Sci., 99 (4): 1810, 2010.
- 58. SCHULTHEISS, N. & NEWMAN, A. "Pharmaceutical cocrystal and their physicochemical properties". Cryst. Growth & Des., 9 (6): 2950, 2009.
- 59. QIAO, N.; LI, M.; SCHLINDWEIN, W.; MALEK, N.; DAVIES, A. & TRAPPITT, G. "Pharmaceutical cocrystals: Na overview". Int. J. Pharm., 419 (1): 1, 2011.
- 60. VISHWESHWAR, P.; MCMAHON, J. A.; BIS, J. A. & ZAWOROTKO, M. J. "Pharmaceutical co-crystals". J. Pharm. Sci., 95 (3): 499, 2006.
- 61. BRITTAIN, H. G. "Cocrystal systems of pharmaceutical interest: 2011". Cryst. Growth & Des., 12 (11): 5823, 2012.
- 62. Web of Science http://apps.webofknowledge.com/
- 63. CHEN, J.; SARMA, B.; EVANS, J. M. B. & MYERSON, A. S. "Pharmaceutical crystallization". Cryst. Growth & Des., 11 (4): 887, 2011.
- 64. KOBAYASHI, Y.; ITO, S.; ITAI, S. & YAMAMOTO, K. "Physicochemical properties and bioavailability of carbamazepine polymorphs and dihydrate". Int. J. Pharm., 193 (2): 137, 2000.
- 65. CAIRA, M. R.; ROBBERTSE, Y.; BERGH, J. J.; SONG, M. & VILLIERS, M. M. "Structural characterization, physicochemical properties, and thermal stability of three crystal forms of nifedipine". J. Pharm. Sci., 92 (12): 2519, 2003.
- 66. HENCK, J. –O.; GRIESSER, U. J. & BURGER, A. "Polymorphie von arzneistoffen: Eine wirtschaftliche herausforderung?". Pharm. Ind., 59 (2): 165, 1997.
- 67. JONES, W.; MOTHERWELL, S. & TRASK, A. V. "Pharmaceutical cocrystals: na emerging approach to physical property enhancement". MRS Bull., **31**: 875, 2006.
- 68. BABU, N. J.; REDDY L. S. & NANGIA A. "Amide-N-oxide heterosynthon and amide dimer homosynthon in cocrystals of carboxamide drugs and pyridine N-oxides". Mol. Pharm. 4 (3): 417, 2007.
- 69. TRASK, A. V. "An overview of pharmaceutical cocrystals as intellectual property". Mol. Pharm. 4 (3): 301, 2007.
- 70. BERNSTEIN, J. "Polymorphism and patentes form a Chemist's point of view". IN Polymorphism in Pharmaceutical Technology. HILFIKER, R. (Ed). Amsterdam, Elsevier. 2006. p. 365-384.
- 71. CABRI, W.; GHETTI, P.; POZZI, G. & ALPEGIANI, M. "Polymorphisms and patent, Market, and legal battles: cefdinir case study". Org. Process Res. Dev., 11 (1): 64, 2007.
- 72. BRITTAIN, H. G. "Pharmaceutical cocrystals: the coming wave of new drug substances". J. Pharm. Sci., 102 (2): 311, 2013.
- 73. SERAJUDDIN, A. T. M. "Salt formation to improve drug solubility". Adv. Drug Delivery Rev. 59 (7): 603, 2007.
- 74. MOLČANOV, K. & KOJIĆ-PRODIĆ, B. "Salts and co-crystals of chloranilic acid with organic bases: is it possible to predict a salt formation?". Cryst. Eng. Comm., 12 (3): 925, 2010.
- 75. LEMMERER, A.; GOCINDRAJU, S.; JOHNSTON, M.; MOTLOUNG, X. & SAVIG, K. L. "Co-crystals and molecular salts of carboxylic acid/ pyridine complexes: can calculated pK_a's predict proton transfer? A case study of nine complexes". Cryst. Eng. Comm., 17 (19): 3591, 2015.

- 76. LENARDÃO, E. J.; FREITAG, R. A.; DABDOUB, M. J.; BATISTA, A. C. F. & SILVEIRA, C. C. "Green chemistry Os 12 princípios da química sustentável e sua inserção nas atividades de ensino e pesquisa". Quim. Nova. 26 (1): 123, 2003.
- 77. ANASTAS, P. T. & KIRCHHOFF, M. M. "Origins, current status, and future challenges of green chemistry". Acc. Chem. Res. 35 (9): 686, 2002.
- 78. CHENEY, M. L.; MCMANUS, G. J.; PERMAN J. A.; WANG, Z. & ZAWOROTKO, M. J. "The role of cocrystals in solid-state synthesis: cocrystal-controlled solid-state synthesis of imides". Cryst. Growth Des. 7 (4): 616, 2007.
- 79. ELLIS, C. A.; MILLER, M. A.; SPENCER, J.; ZUKERMAN-SCHPECTOR, J. & TIEKINK, E. R. T. "Co-crystallization experiments of thiocarbamides with bipyridine-type molecules". CrystEngComm. 11 (7): 1352, 2009.
- 80. SKOVSGAARD, S. & BOND, A. D. "Co-crystallisation of benzoic acid derivatives with N-containing bases in solution and by mechanical grinding: stoichiometric variants, polymorphism and twinning". CrystEngComm. 11 (3): 444, 2009.
- 81. MYZ, S. A.; SHAKHTSHNEIDER, T. P.; FUCHE, K.; PEDOTOV, A. P.; BOLDYREVA, E. V.; BOLDYREV, V. V. & KULESHOVA, N. I. "Synthesis of cocrystals of meloxicam with carboxylic acids by grinding. Mendellev Commun. 19 (5): 272, 2009.
- 82. ARENAS-GARCÍA, J. I.; HERRERA-RUIZ, D.; MONDRAGÓN-VÁSQUEZ, K.; MORALES-ROJAS, H. & HÖPFL, H. "Co-crystals of active pharmaceutical ingredients acetazolamide". Cryst. Growth Des. 10 (8): 3732, 2010.
- 83. CHADWICK, K.; DAVEY, R. & CROSS, W. "How does grinding produce cocrystals? Insights from the case of benzophenone and diphenylamine". CrystEngComm., 9 (9): 732, 2007.
- 84. NGUYEN, K. L.; FRIŠČIĆ, T.; DAY, G. M.; GLADDEN, L. F. & JONES, W. "Terahertz time-domain spectroscopy and the quantitativemonitoring of mechanochemical cocrystal formation". Nat. Materials, 6 (3): 206, 2007.
- 85. ZUKERMAN-SCHPECTOR, J.; MADUREIRA, L. S.; WULF, G. D.; STEGANI, H. A.; VASCONCELOS, S. N. S.; NG, S. W. & TIEKINK, E. R. T. "" Synthesis, molecular and crystal structure analysis of 1-(4-methylbenzenesulfonyl)indole-3-carbaldehyde and DFT investigation of its rotational conformers". Molecules, 19 (2): 1990, 2014.
- 86. VELA, S.; DEUMAL, M.; SHUGA, M.; NOVOA, J. J. & RIBAS-ARINO, J. "Dynamical effects on the magnetic properties of dithiazolyl bistable materials". Chem. Sci., 6 (4): 2371, 2015.
- 87. CARACELLI, I.; VEGA-TEIJIDO, M.; ZUKERMAN-SCHPECTOR, J.; CEZARI, M. H. S.; LOPES, J. G. S.; JULIANO, L.; SANTOS, P. S.; COMASSETO, J. V.; CUNHA, R. L. O. R. & TIEKINK, E. R. T. "A tellurium-based cathepsin B inhibitor: Molecular structure, modelling, molecular docking and biological evaluation". J. Mol. Struc., **1013**: 11, 2012.
- 88. FRISCH, M. J.; TRUCKS, G. W.; SCHLEGEL, H. B.; SCUSERIA, G. E.; ROBB, M. A.; CHEESEMAN, J. R.; SCALMANI, G.; BARONE, V.; MENNUCCI, B.; PETERSSON, G. A.; NAKATSUJI, H.; CARICATO, M.; LI, X.; HRATCHIAN, H. P.; IZMAYLOV, A. F.; BLOINO, J.; ZHENG, G.; SONNENBERG, J. L.; HADA, M.; EHARA, M.; TOYOTA, K.; FUKUDA, R.; HASEGAWA, J.; ISHIDA, M.; NAKAJIMA, T.; HONDA, Y.; KITAO, O.; NAKAI, H.; VREVEN, T.; MONTGOMERY, J. A., JR.; PERALTA, J. E.; OGLIARO, F.; BEARPARK, M.; HEYD, J. J.; BROTHERS, E.; KUDIN, K. N.; STAROVEROV, V. N.; KOBAYASHI, R.; NORMAND, J.; RAGHAVACHARI, K.; RENDELL, A.; BURANT, J. C.; IYENGAR, S. S.; TOMASI, J.; COSSI, M.; REGA, N.; MILLAM, J. M.; KLENE, M.; KNOX, J. E.; CROSS, J. B.;

- BAKKEN, V.; ADAMO, C.; JARAMILLO, J.; GOMPERTS, R.; STRATMANN, R. E.; YAZYEV, O.; AUSTIN, A. J.; CAMMI, R.; POMELLI, C.; OCHTERSKI, J. W.; MARTIN, R. L.; MOROKUMA, K.; ZAKRZEWSKI, V. G.; VOTH, G. A.; SALVADOR, P.; DANNENBERG, J. J.; DAPPRICH, S.; DANIELS, A. D.; FARKAS, Ö.; FORESMAN, J. B.; ORTIZ, J. V.; CIOSLOWSKI, J. & FOX, D. J. "Gaussian 09, Revision D.01". Wallingford, Connecticut, USA, 2009.
- 89. BANDERALI, G.; RIVA, E.; FIOCCHI, A.; CORDARO, C. I. & GIOVANNINI, M. "Efficacy and tolerability of levodropropizine and dropropizine in children with non-productive cough". J. Int. Med. Res., 23 (3): 175, 1995.
- 90. CATENA, E. & DAFFONCHIO, L. "Efficacy and tolerability of levodropropizine in adult patients with non-productive cough. Comparison with dextromethorphan". Pulm. Pharmacol. Ther., 10 (2): 89, 1997.
- 91. Dropropizina http://www.medley.com.br/portal/bula/dropropizina_xarope.pdf
- 92. HUR, G. –Y.; LEE, S. –Y.; SHIM, J. –J.; PARK, H. –S. & KANG, K. –H. "An anaphylactic reaction caused by levodropizine". Allergy, 65 (3): 409, 2010.
- 93. XIONG, J. –R; ZHAO, K. –Q. & HU, P. "Synthesis and Crystal structure of levodropropizine". Sichuan Shifan Dax. Xueb. Zir. Kex. 24 (4): 378, 2001.
- 94. NEVADO, J. J. B.; PEÑALVO, G. C. & BERNARDO, F. J. G. "Determination of sulfametoxazole, sulfadiazine and associated compounds in pharmaceutical preparations by papillary zone electrophoresis". J. Chromatogr. A, **918**: 205, 2001.
- 95. DANDAN, R. H. & BRUNTON, L. L. "Sulfonamides, trimethoprim-sulfamethoxazole, quinolones and agentes for urinary tract infections". IN: Goodman & Gilman, Manual of Pharmacology and Therapeutics. 2nd ed. New York, McGraw-Hill Education, 2008. p 883-893.
- 96. Sulfametoxazol + trimetoprima http://www.pratidonaduzzi.com.br/index.php/produtos/portifolio/fracionaveis?task=download&file=bula medicamento&id=469
- 97. TAKASUKA, M. & NAKAI, H. "IR and ramn spectral and x-ray structural studies of polymorphic forms of sulfamethoxazole". Vib. Spectrosc., 25 (2): 197, 2001.
- 98. RAGSDALE, D. S. & AVOLI, M. "Sodium channels as molecular targets for antiepileptic drugs". Brain Res. Rev., **26**: 16, 1998.
- 99. Carbamazepina –
- http://www.ache.com.br/Downloads/LeafletText/54/BU_CARBAMAZEPINA_JUL2013.pdf
- 100. GRZESIAK, A. L.; LANG, M.; KIM, K. &MATZGER, A. J. "Comparison of the four anhydrous polymorphs of carbamazepine and the Crystal structure of form I". J. Pharm. Sci., 92 (11): 2260, 2003.
- 101. LOWES, M. M. J.; CAIRA, M. R.; LÖTTER, A. P. & WATT, J. G. V. D. "Physicochemical properties and x-ray structural studies of the trigonal polymorph of carbamazepine". J. Pharm. Sci., 76 (9): 744, 1987.
- 102. REBOUL, P. J. P.; CRISTAU, B.; SOYFER, J. C. & ASTIER, J. P. "5H-Dibenz[b-z]azépinecarboxamide-5 (carbamazépine)". Acta Crystallogr. B, **37**: 1844, 1981.
- 103. LANG, M.; KAMPF, J.W. & MATZGER, A. J. "Form IV of carbamazepine". J. Pharm. Sci., 91 (4): 1186, 2002.
- 104. ARLIN, J. B.; PRICE, L. S. PRICE, S. L. & FLORENCE, A. J. "A strategy for producing predicted polymorphs: catemeric carbamazepine form V". Chem. Commun., 47 (25): 7074, 2011.

- 105. KAHELA, P.; AALTONEN, R.; LEWING, E.; ANTTILA, M. & KRISTOFFERSSON, E. "Pharmacokinetics and dissolution of two crystalline forms of carbamazepine". Int. J. Pharm., 14 (1): 103, 1983.
- 106. TERRENCE, C. F.; SAX, M.; FROMM, G. H.; CHANG, C. H. & YOO, C. S. "Effect of baclofen enantiomorphs on the spinal trigeminal nucleus and steric similarities of carbamazepine". Pharmacology, **27**: 85, 1983.
- 107. TIAN, F.; SANDLER, N.; AALTONEN, J.; LANG, C.; SAVILLE, D. J.; GORDON, K. C.; STRACHAN, C. J.; RANTANEN, J. & RADES, J. "Influence of polymorphic form, morphology, and excipiente interactions on the dissolution of carbamazepine compacts". J. Pharm. Sci., 96 (3): 584, 2007.
- 108. KWAN, P. & BRODIE, M. J. "Effectiveness of first antiepileptic drug". Epilepsia, 42 (10): 1255, 2001.
- 109. NORVIR
- http://www.anvisa.gov.br/datavisa/fila_bula/frmVisualizarBula.asp?pNuTransacao=75 13102014&pldAnexo=2201862
- 110. KALETRA
- https://www.abbvie.com.br/content/dam/abbviecorp/br/docs/BU_10_Kaletra_Tabs_S ET.13_VP.pdf
- 111. CHEMBURKAR, S. R.; BAUER, J.; DEMING, K.; SPIWEK, H.; PATEL, K.; MORRIS, J.; HENRY, R.; SPANTON, S.; DZIKI, W.; PORTER, W.; QUICK, J.; BAUER, P.; DONAUBAUER, J.; NARAYANAN, B. A.; SOLDANI, M.; RILEY, D. & MCFARLAND, K. "Dealing with the Impact of Ritonavir Polymorphs on the Late Stages of Bulk Drug Process Development". Org. Proc. Res. Dev., 4 (5): 413, 2000. 112. FRIŠČIĆ, T. & JONES, W. "Recent advances in understanding the
- mechanism of cocrystal formation via grinding". Cryst. Growth & Des., 9 (3): 1621, 2009.
- 113. OriginLab. "OriginPro 8, SR0 v8.0724". Northmpton, Massachusetts, USA, 2007.
- 114. Bruker AXS. "DIFFRAC^{plus}: EVA, v15". Karlsruhe, Germany, 2009.
- 115. Thermo Fisher Scientific. "OMNIC: TQ Analyst EZ, v9.2.42". Waltham, Massachusetts, USA, 2012.
- 116. Bruker AXS. "APEX2 v7.0". Madison, Wisconsin, USA, 2009.
- 117. Bruker AXS. "SAINT v7.68A". Madison, Wisconsin, USA, 2009.
- 118. BURLA, M. C.; CALIANDRO, R.; CARROZZINI, B.; CASCARANO, G. L.; CUOCCI, C.; GIACOVAZZO, C.; MALLAMO, M.; MAZZONE, A. & POLIDORI, G. "Crystal structure determination and refinement via SIR2014". J. Appl. Cryst., **48**: 306. 2015.
- 119. SHELDRICK, G. M. "Crystal structure refinament with SHELXL". Acta Crystallogr. C, **71**: 3, 2015.
- 120. SMITH, D. W. "A new method of estimating atomic charges by electronegativity equilibration". J. Chem. Ed., 67 (7): 559, 1990.
- 121. FARRUGIA, L. J. "WinGX and ORTEP for Windows: an update". J. Appl. Cryst., **45**: 849, 2012.
- 122. BRANDENBURG, K. "DIAMOND, v3.2i". Crystal Impact GbR, Bonn, Germany. 2012.
- 123. SPEK, A. L. "Structure validation in chemical crystallography". Acta Crystallogr. D, **65**: 148, 2009.
- 124. DENNINGTON, R.; KEITH, T. & MILLAM, J. "GaussView 5, v5.0.8". Semichem Inc, Shawnee Mission, Kansas, USA, 2009.
- 125. PERDEW, J. P.; BURKE, K. & ERNZERHOF, M. "Generalized gradient approximation made simple". Phys. Ver. Lett., 77 (18): 3865, 1996.

- 126. PETERSSON, G. A.; BENNETT, A.; TENSFELDT, T. G.; AL-LAHAM, M. A.; SHIRLEY, W. A. & MANTZARIS, J. "A complete basis set model chemistry. 1. The total energies of closed-shell atoms and hydrides of the first-row atoms". J. Chem. Phys., 89 (4): 2193, 1988.
- 127. CLARK, T.; CHANDRASEKHAR, J.; SPITZNAGEL, G. W. & SCHLEYER, P. V. R. "Efficient diffuse function-augmented basis-sets for anion calculations. 3.The 3-21+G basis set for 1st-row elements, Li-F". J. Comp. Chem., 4 (3): 294, 1983.
- 128. GRIMME, S. "Semiempirical GGA-type density functional constructed with a long-range dispersion correction". J. Comp. Chem., 27 (15): 1787, 2006.
- 129. HOWELL, H.; BUTLER, G. B. & SILVER, H. H. "Syntheses of 1-aryl-4-(2-benzhydryloxy-3-methoxypropyl)piperazines involving addition of alkyl halides to substituted epoxides". J. Org. Chem., 27 (5): 1709, 1962.
- 130. PITRÈ, D. & STRADI, R. "Racemic modification of (R,S)-3-(4-phenyl-l-piperazinyl)-1,2- propandiol and melting point diagram". Archiv. Pharm., 323 (1): 23, 1990.
- 131. ROTICH, M. K.; GLASS, B. D. & BROWN, M. E. "Thermal studies on some substituted aminobenzoic acids". J. Therm. Anal. Cal., 64: 681, 2001.
- 132. ROTICH, M. K.; BROWN, M. E. & GLASS, B. D. "Thermal studies on mixtures of benzoic and salicylic acids with cyclodextrins". J. Therm. Anal. Cal., 73: 671, 2003.
- 133. BRITTAIN, H. G. "Vibrational spectroscopic studies of cocrystals and salts. 2. The benzylamine benzoic acid system". Cryst. Growth & Des., 9 (8): 3497, 2009.
- 134. VANGALA, V. R.; CHOW, P. S. & TAN, R. B. H. "Characterization, physicochemical and photo-stability of a co-crystal involving an antibiotic drug, nitrofurantoin, and 4-hydroxybenzoic acid". CrystEngComm, 13 (3): 759, 2011.
- 135. 4-hydroxybenzoic acid (Pubchem) –
- http://pubchem.ncbi.nlm.nih.gov/compound/135#section=Top
- 136. BERGAMINI, G. Dexametasona: Interação com Ácidos Carboxílicos Aromáticos no Estado Sólido. Porto Alegre, Programa de Pós-Graduação em Ciências Farmacêuticas UFRGS, 2008. Dissertação de mestrado, 134p.
- 137. LOU, Y. H.; XU, B. & SUN, B. S. "Investigation of supramolecular synthons of p-hydroxybenzoic acid (PHBA): Comparison of its hydrate, co-crystal and salt". J. Cryst. Growth, **374**: 88, 2013.
- 138. TRIVEDI, D. R.; BALLABH, A. & DASTIDAR, P. "Supramolecular assemblies in salts and co-crystals of imidazoles with dicarboxylic acids". CrystEngComm, 5 (64): 358, 2003.
- 139. GUO, K.; SADIQ, G.; SEATON, C.; DAVEY, R. & YIN, Q. "Co-crystallization in the caffeine/maleic acid system: lessons from phase equilibria". Cryst. Growth & Des., 10 (1): 268, 2010.
- 140. LIAN, W.; LIN, Y.; WANG, M.; YANG, C. & WANG, J. "Crystal engineering approach to produce complex of azelnidipine with maleic acid". CrystEngComm, 15 (19): 3885, 2013.
- 141. Maleic acid (Pubchem) -
- http://pubchem.ncbi.nlm.nih.gov/compound/444266#section=Top
- 142. EUROPE, C. "Sorbic acid". IN: European Pharmacopoeia, 5th. Waldwich, Worldwide Book Services, Inc. 2005. p. 2467.
- 143. REDA, S. Y. "Evaluation of antioxidants stability by thermal analysis and its protective effect in heated edible vegetable oil". Ciênc. Tecnol. Aliment., 31 (2): 475, 2011.
- 144. BAK, A.; GORE, A.; YANEZ, E.; STANTON, M.; TUFEKCIC, S.; SYED, R.; AKRAMI, A.; ROSE, M.; SURAPANENI, S.; BOSTICK, T.; KING, A.; NEERVANNAN,

- S.; OSTOVIC, D. & KOPARKAR, A. "The co-crystal approach to improve the exposure of a water-insoluble compound: AMG 517 sorbic acid co-crystal characterization and pharmacokinetics". J. Pharm. Sci., 97 (9): 3942, 2008. 145. TANAKA, H. "The kinetic study of thermal dehydration of oxalic acid
- 145. TANAKA, H. "The kinetic study of thermal dehydration of oxalic acid dihydrate". J. Thermal Anal., 29 (5): 1115, 1984.
- 146. TANAKA, H. & KAWABATA, K. "Thermal dehydration mechanism of oxalic acid dihydrate ii. single crystal material". Thermochim. Acta, **92**: 219, 1985.
- 147. CHADHA, R.; SAINI, A.; ARORA, P.; CHANDA, S. & JAIN, D. S. "Cocrystal of efavirenz with selected coformers: preparation and characterization". Int. J. Pharm. Pharm. Sci., 4 (2): 244, 2012.
- 148. BRUNI, G.; MAIETTA, M.; MAGGI, L.; BINI, M.; CAPSONI, D.; FERRARI, S.; BOIOCCHI, M.; BERBENNI, V.; MILANESE, C. & MARINI, A. "Perphenazine–fumaric acid salts with improved solubility: preparation, physico-chemical characterization and in vitro dissolution". CrystEngComm, 14 (18): 6035, 2012.
- 149. IONASHIRO, E. Y.; CAIRES, F. J. & SIQUEIRA, A. B. "Thermal behaviour of fumaric acid, sodium fumarate and its compounds with light trivalent lanthanides in air atmosphere". J. Therm. Anal. Calorim., 108 (3): 1183, 2012.
- 150. BRUNI, G.; MAIETTA, M.; MAGGI, L.; MUSTARELLI, P.; FERRARA, C.; BERBENNI, V.; MILANESE, C.; GIRELLA, A. & MARINI, A. "Preparation and physicochemical characterization of acyclovir cocrystals with improved dissolution properties". J. Pharm. Sci., 102 (11): 4079, 2013.
- 151. PERLOVICH, G. L.; RYZHAKOV, A. M.; TKACHEV, V. V.; HANSEN, L. K. & RAEVSKY, O. A. "Sulfonamide molecular crystals: structure, sublimation, thermodynamic chacacteristics, molecular packing, hydrogen bonds networks". Cryst. Growth & Des., 13 (9): 4002, 2013.
- 152. MAURY, L.; RAMBAUD, J.; PAUVERT, B.; LASSERRE, Y.; BERGE, G. & AUDRAN, M. "Étude physico-chimique, spectres de vibration et structure du sulfaméthoxazole". Can. J. Chem. **63**: 3012, 1985.
- 153. PRICE, C. P.; GRZESIAK, A. L. & MATZGER, A. J. "Crystalline polymorph selection and Discovery with polymer heteronuclei". J. Am. Chem. Soc., 127 (15): 5512, 2005.
- 154. DEO, N.; TIWARI, R. K. & SINGH, T. P. "Crystallization and x-ray crystal data of sulfonamides". J. Sci. Res., 2 (2): 137, 1980.
- 155. CARAMELLA, C.; GIORDANO, F.; BETTINETTI, G. P.; COLOMBO, P.; CONTE, U. & MANNA, A. "Drug interaction and physical properties in trimethoprim-sulfamethoxazole suspensions". Farmaco-Ed Pratica, 35 (6): 277, 1980.
- 156. SUBASHINI, A.; MUTHIAH, P. T.; BOCELLI, G. & CANTONI, A. "Hydrogen-bonding patterns in 4-[(5-methylisoxazol-3-yl)aminosulfonyl]anilinium chloride". Acta Cryst. E, 63 (11): 4312, 2007.
- 157. SUBASHINI, A.; MUTHIAH, P. T.; BOCELLI, G. & CANTONI, A. "catena-Poly[bis(sulfamethoxazolium) [[trichloridocadmate(II)]-μ-chlorido] monohydrate]". Acta Cryst. E, 64 (1): 250, 2008.
- 158. TAKASUKA, M. & NAKAI, H. "IR and raman spectral and x-ray structural studies of polymorphic forms of sulfamethoxazole". Vib. Spectrosc., 25 (2): 197, 2001.
- 159. Accelrys Software Inc. "Discovery Studio v3.5.0.12158". 2007.
- 160. CHILDS, S. L.; WOOD, P. A.; RODRÍGUEZ-HORNEDO, N.; REDDY, L. S. & HARDCASTLE, K. I. "Analysis of 50 crystal structures containing carbamazepine using the materials module of Mercury CSD". Cryst. Growth & Des. 9 (4): 1869, 2009.

161. MCCRONE, W. C. "Polymorphism". IN Physics and Chemistry of the Organic Solid State. FOX, D.; LABES, M. M. & WEISSBERGER, A. (Eds). vol 2. London, Interscience Publishers, 1965. p 725-767.

APÊNDICE 1

1. Fármacos

FIGURA A1.1 – Difratograma de raio X de pó da dropropizina

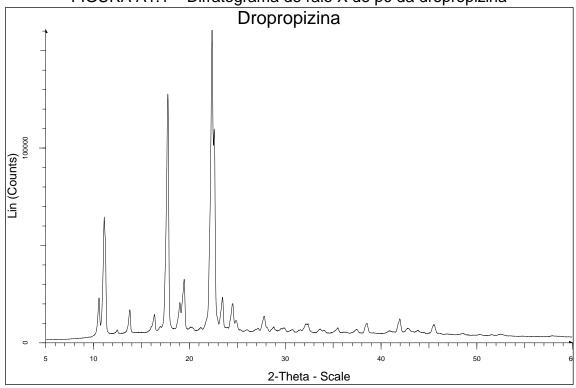


FIGURA A1.2 - Difratograma de raio X de pó da dropropizina hidratada

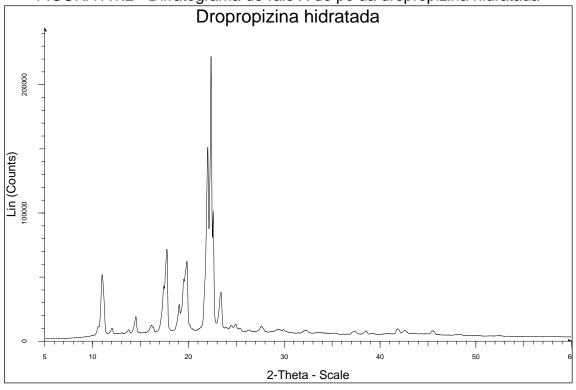


FIGURA A1.3 – Difratograma de raio X de pó do sulfametoxazol

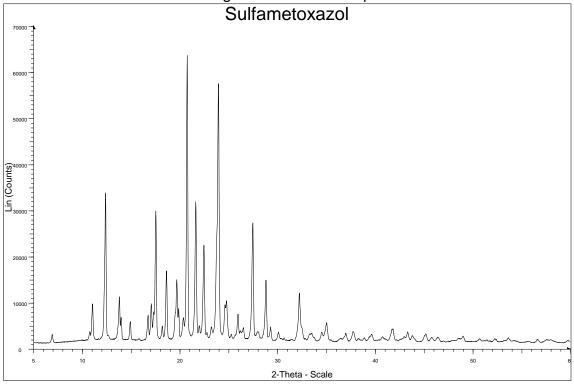
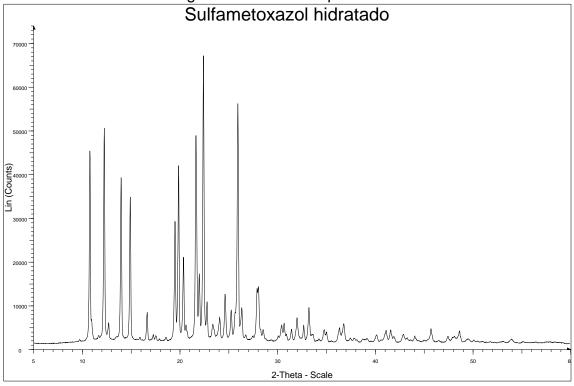



FIGURA A1.4 – Difratograma de raio X de pó do sulfametoxazol hidratado

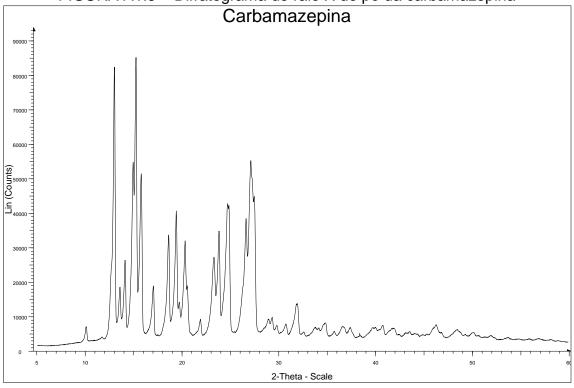
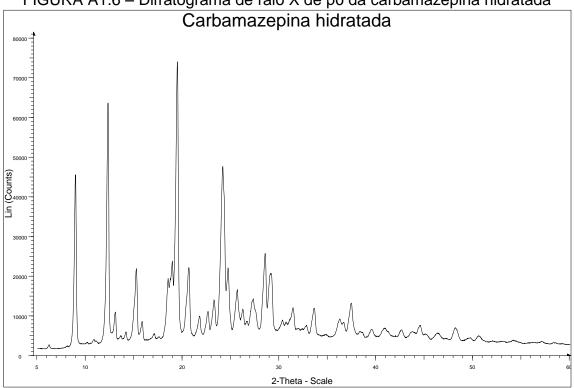
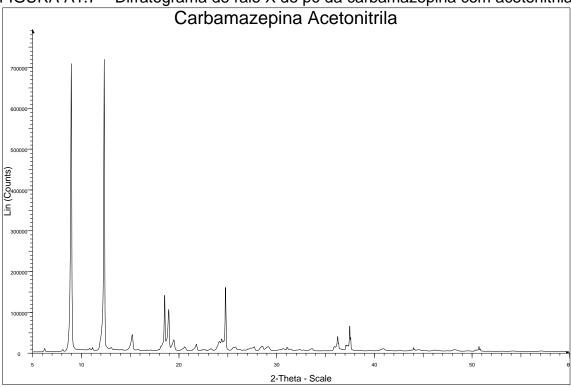
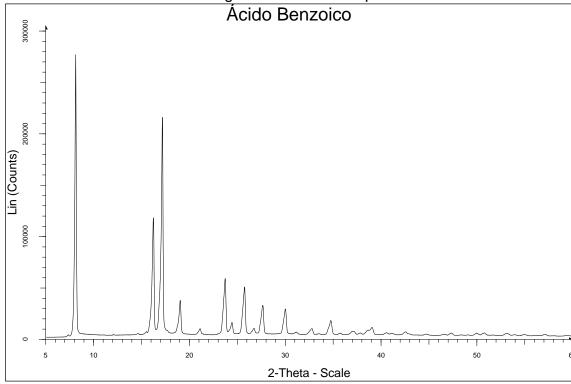
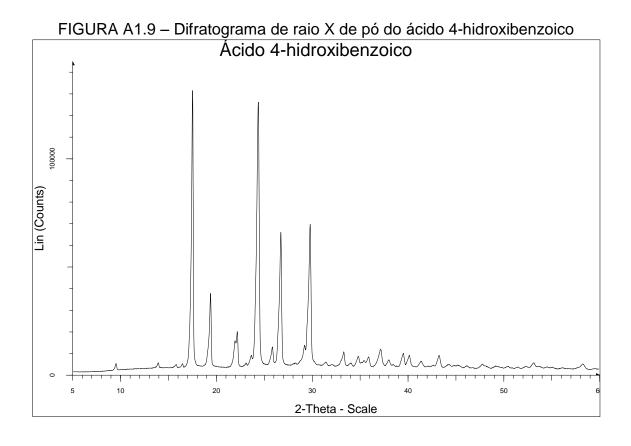
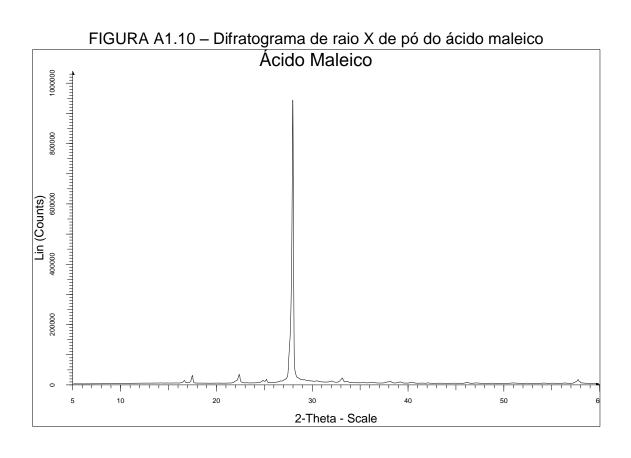
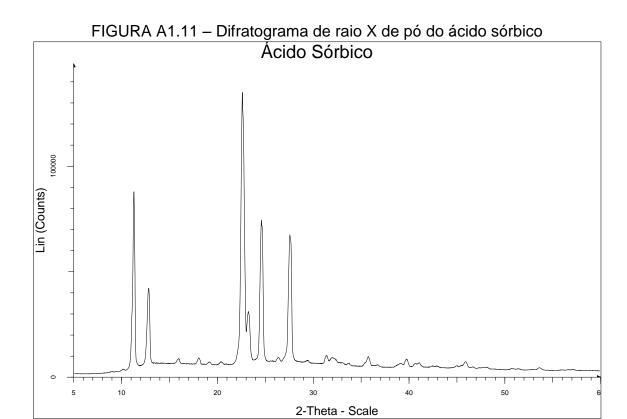


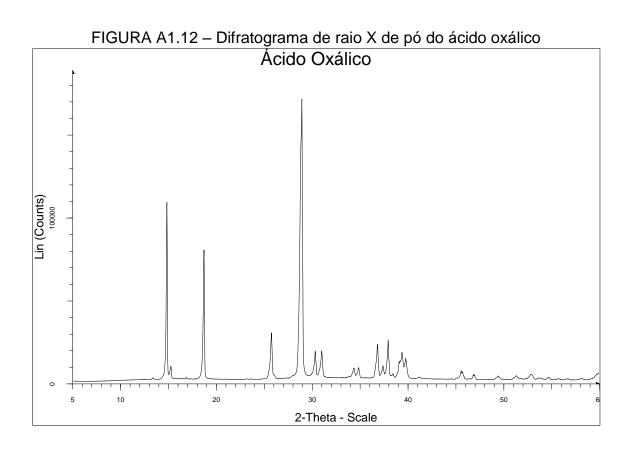
FIGURA A1.6 – Difratograma de raio X de pó da carbamazepina hidratada

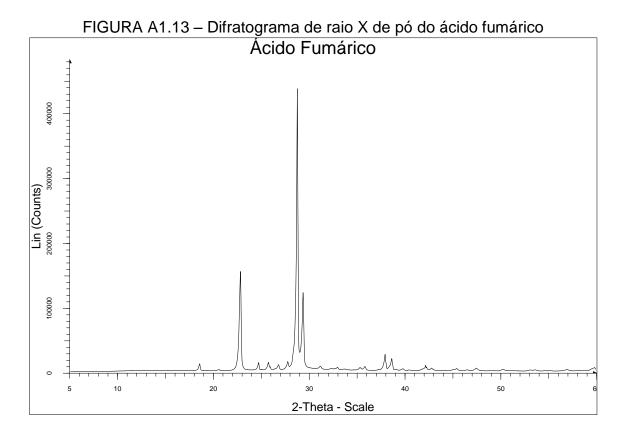




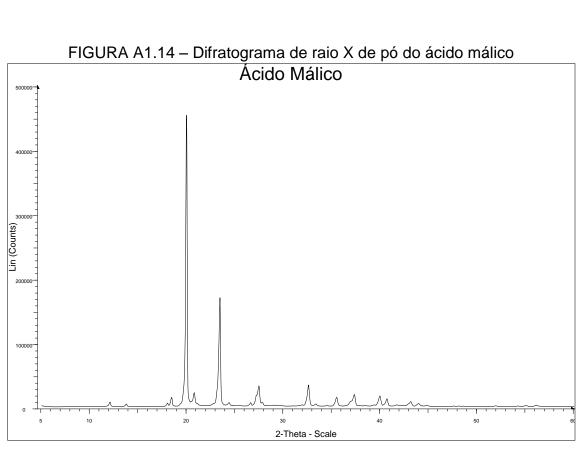

FIGURA A1.7 – Difratograma de raio X de pó da carbamazepina com acetonitrila

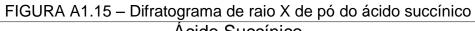



2. Agentes co-formadores


FIGURA A1.8 – Difratograma de raio X de pó do ácido benzoico







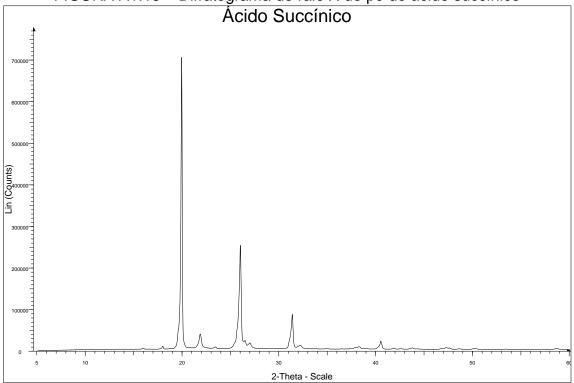
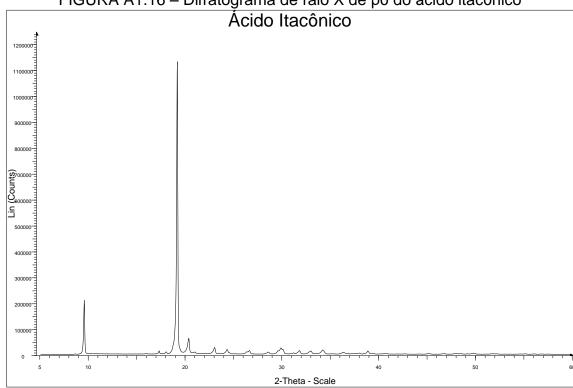



FIGURA A1.16 – Difratograma de raio X de pó do ácido itacônico

3. Produtos

FIGURA A1.17 – Difratograma de raio X de pó do composto 1

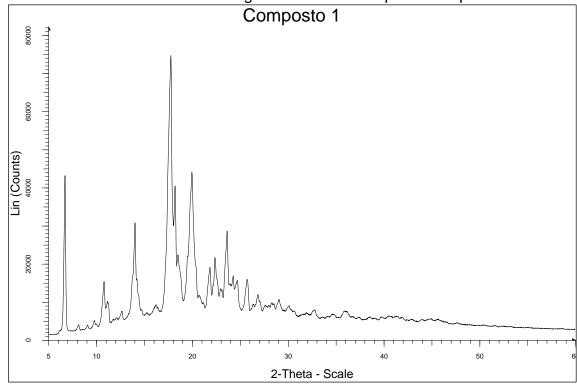
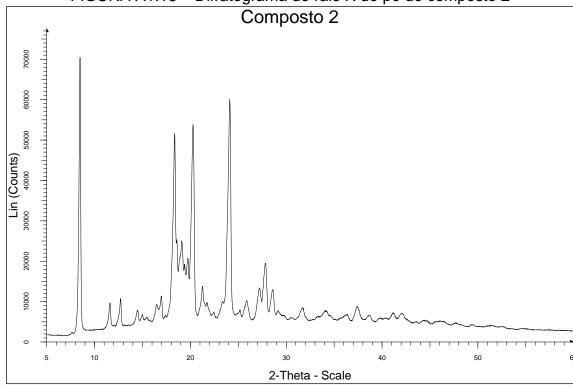
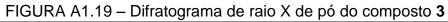




FIGURA A1.18 – Difratograma de raio X de pó do composto 2

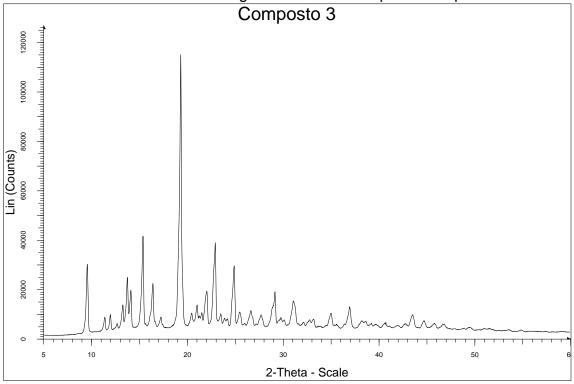
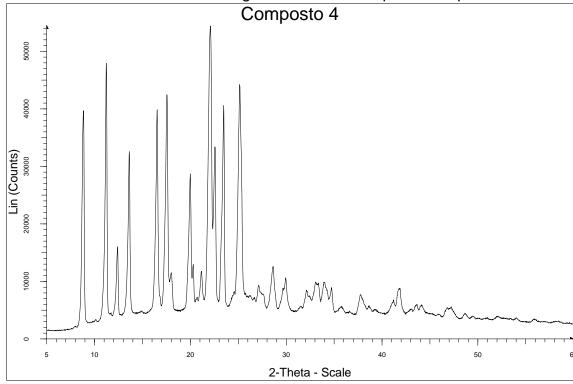
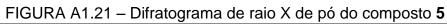




FIGURA A1.20 – Difratograma de raio X de pó do composto 4

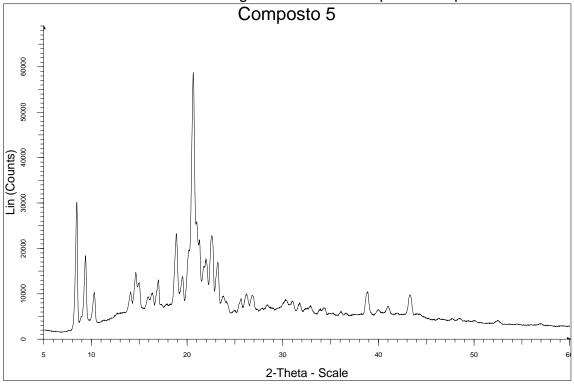
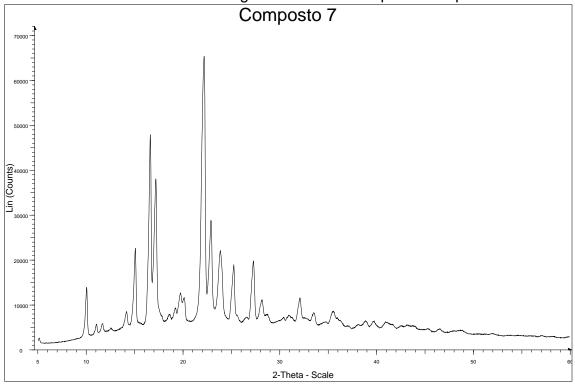
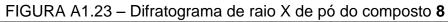




FIGURA A1.22 – Difratograma de raio X de pó do composto 7

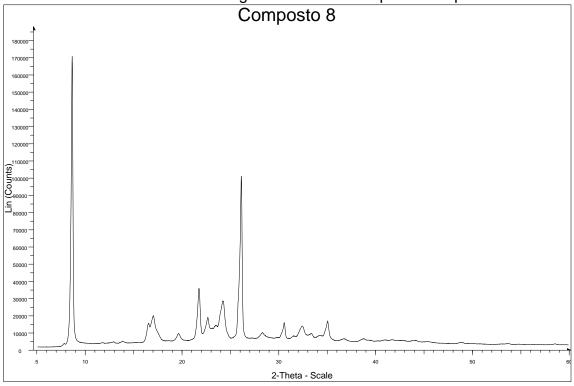
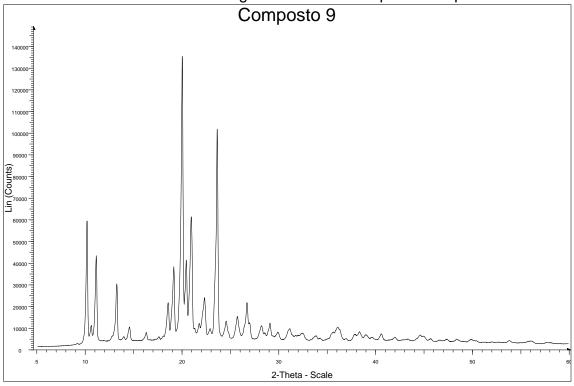
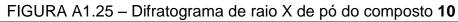
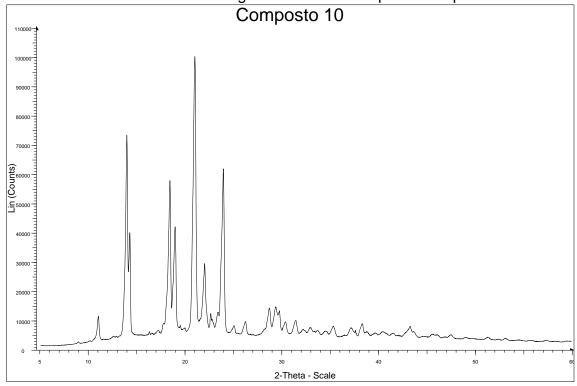
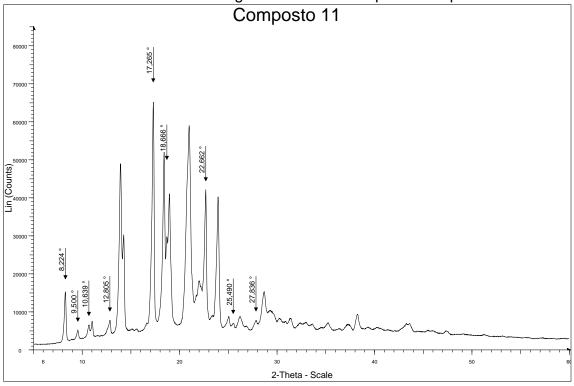
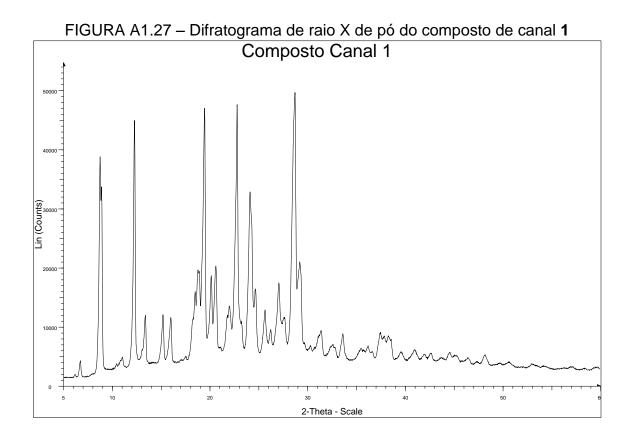
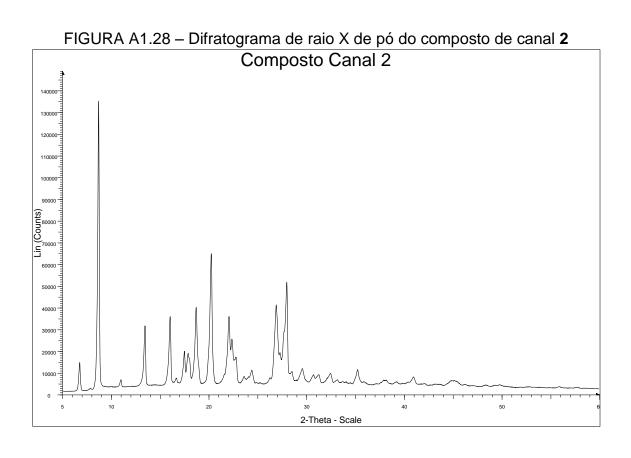
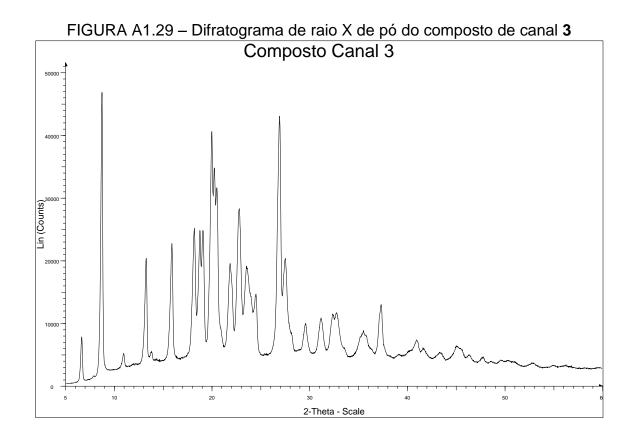
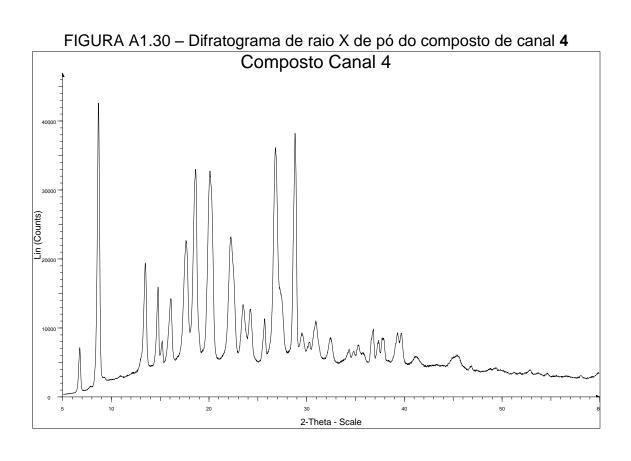
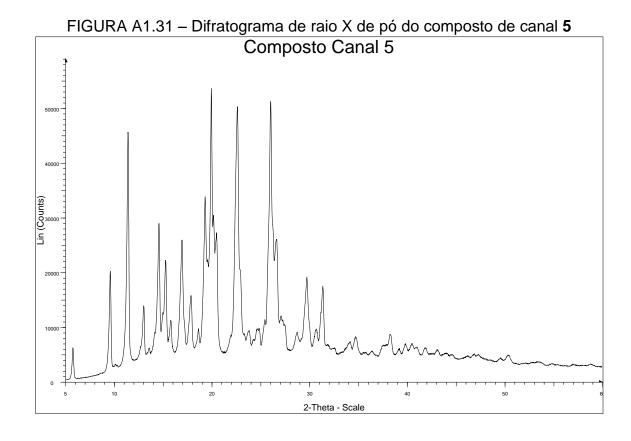
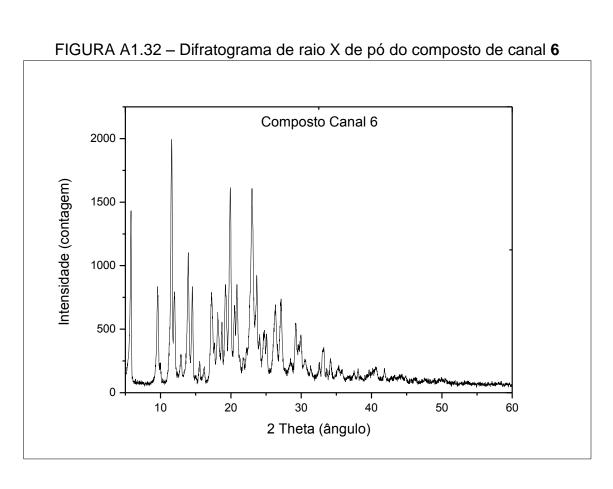




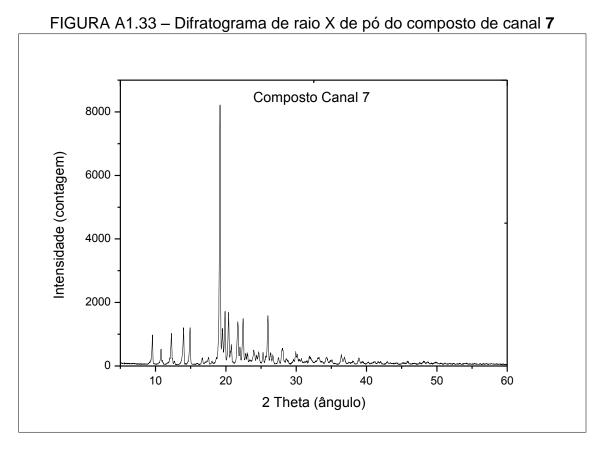
FIGURA A1.24 – Difratograma de raio X de pó do composto 9

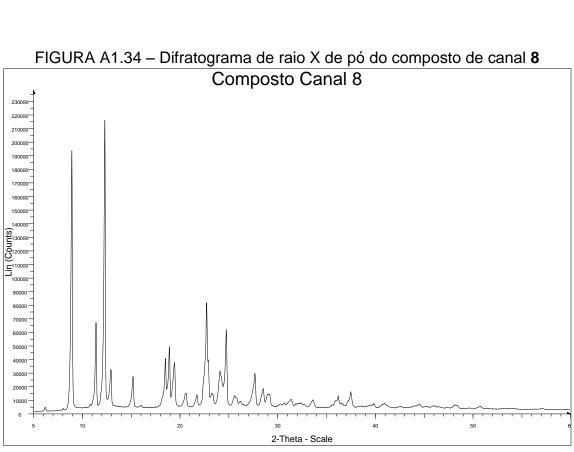






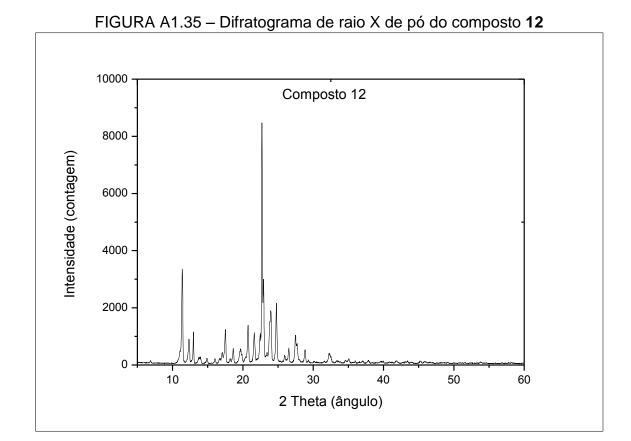

FIGURA A1.26 – Difratograma de raio X de pó do composto 11

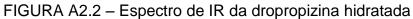


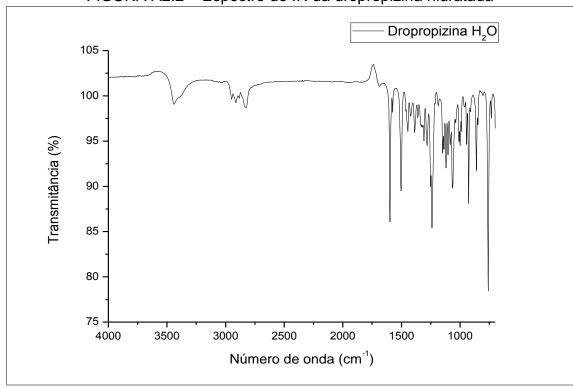











APÊNDICE 2

1. Fármacos

Dropropizina Transmitância (%) Número de onda (cm⁻¹)

FIGURA A2.1 - Espectro de IR da dropropizina

2. Agentes co-formadores

FIGURA A2.3 – Espectro de IR do ácido benzoico

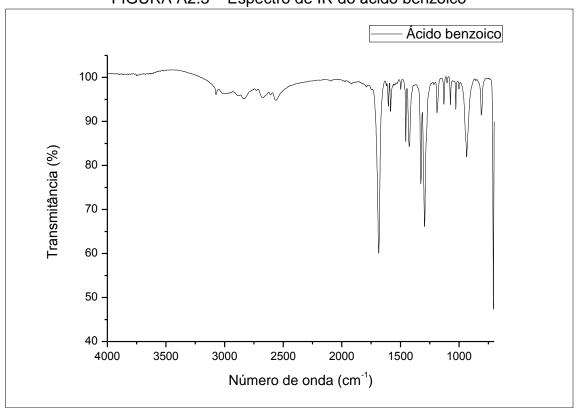


FIGURA A2.4 - Espectro de IR do ácido 4-hidroxibenzoico

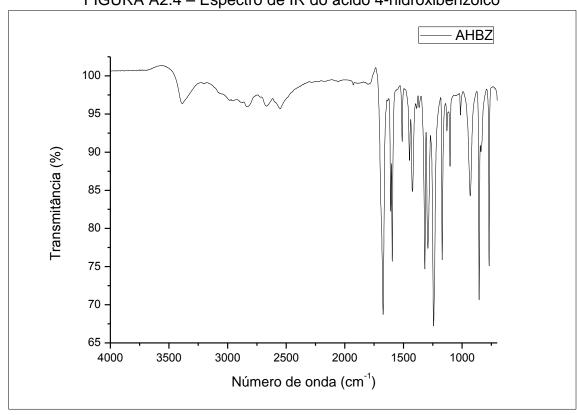


FIGURA A2.5 – Espectro de IR do ácido maleico

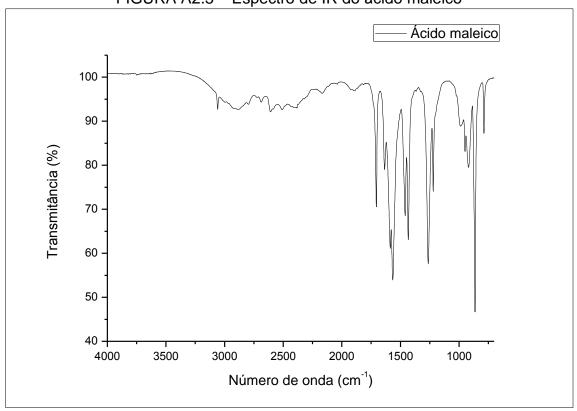


FIGURA A2.6 – Espectro de IR do ácido sorbico

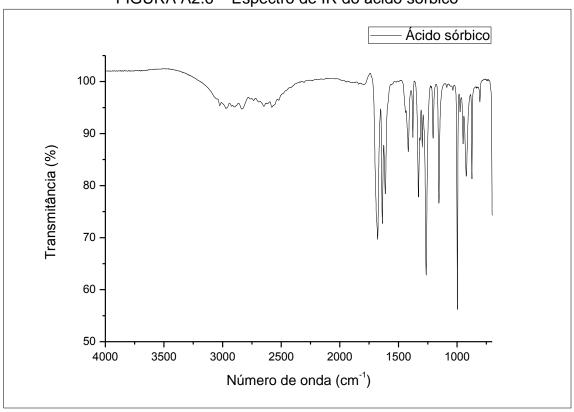


FIGURA A2.7 - Espectro de IR do ácido oxálico

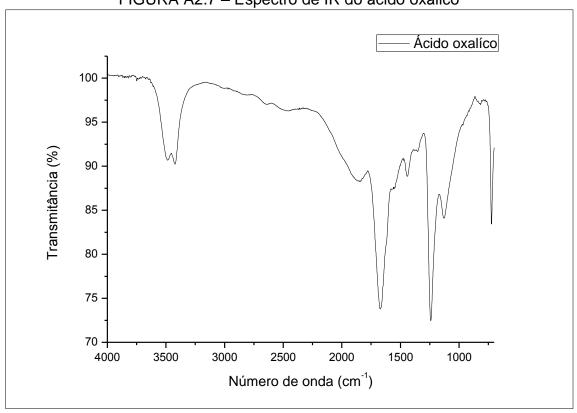
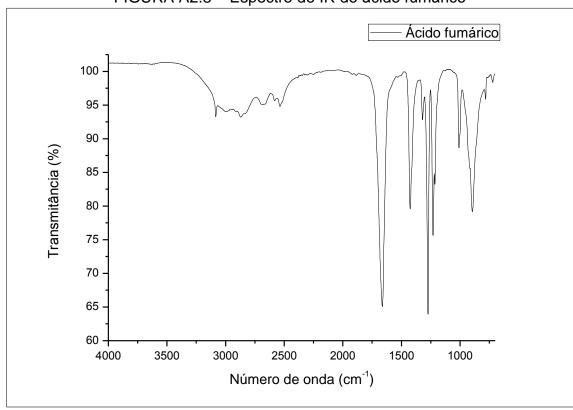



FIGURA A2.8 – Espectro de IR do ácido fumárico

3. Produtos

FIGURA A2.9 - Espectro de IR do composto 1

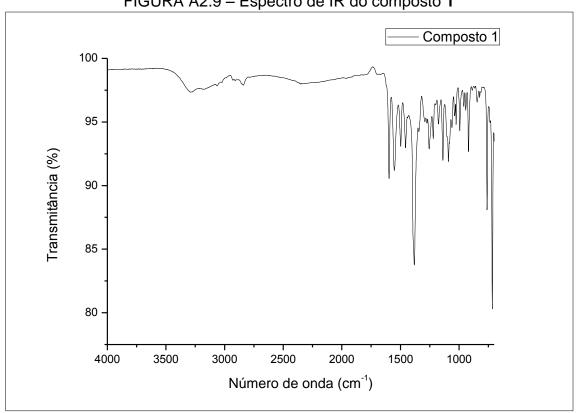


FIGURA A2.10 – Espectro de IR do composto 2

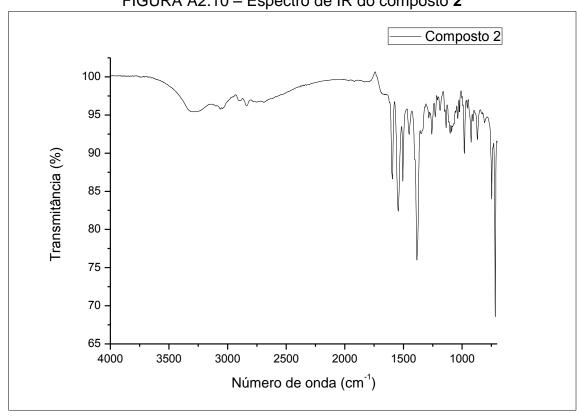


FIGURA A2.11 – Espectro de IR do composto 3

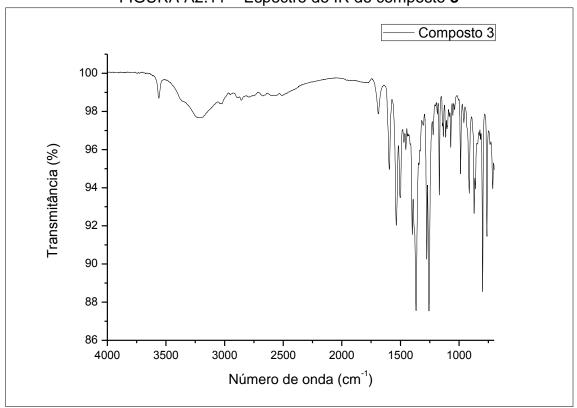


FIGURA A2.12 – Espectro de IR do composto 4

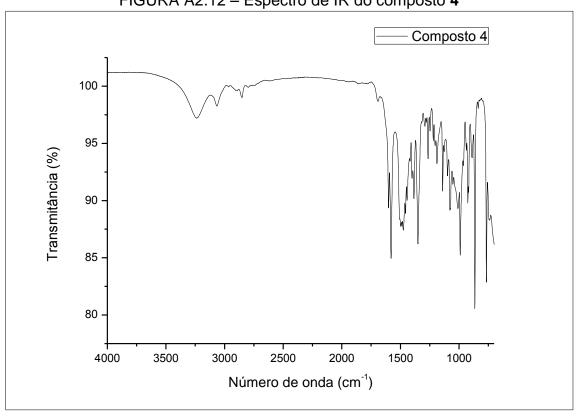


FIGURA A2.13 – Espectro de IR do composto 5

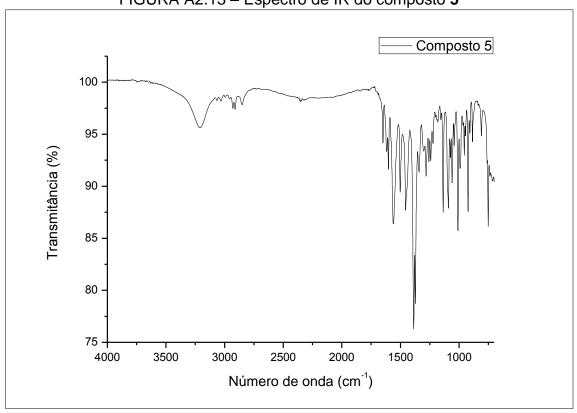


FIGURA A2.14 – Espectro de IR do composto 6

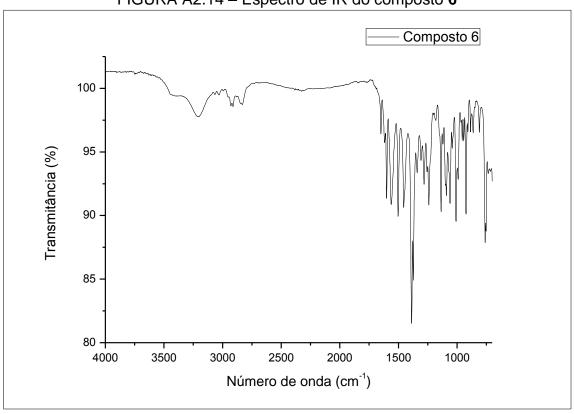


FIGURA A2.15 – Espectro de IR do composto 7

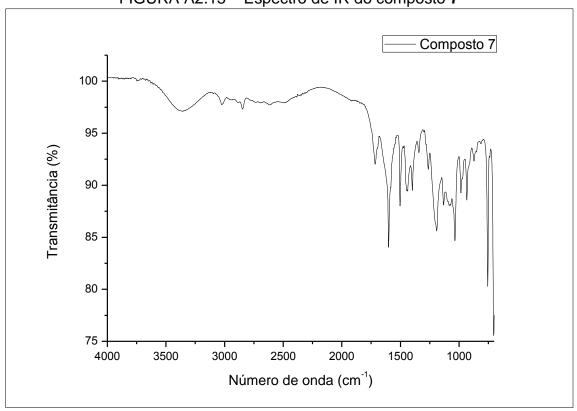


FIGURA A2.16 - Espectro de IR do composto 8

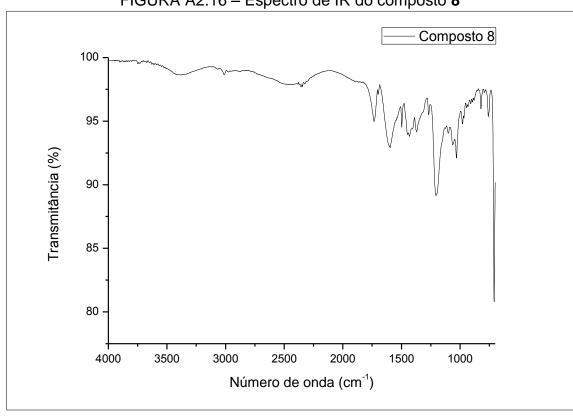


FIGURA A2.17 - Espectro de IR do composto 9

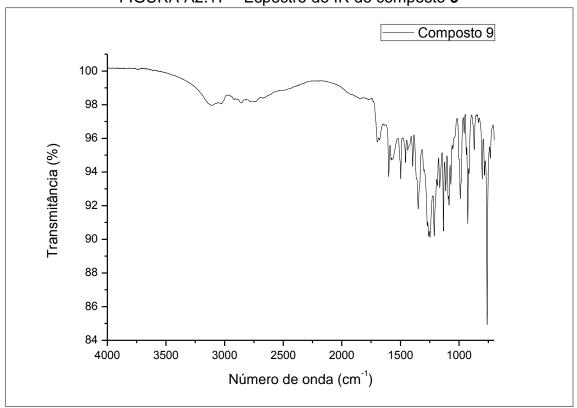
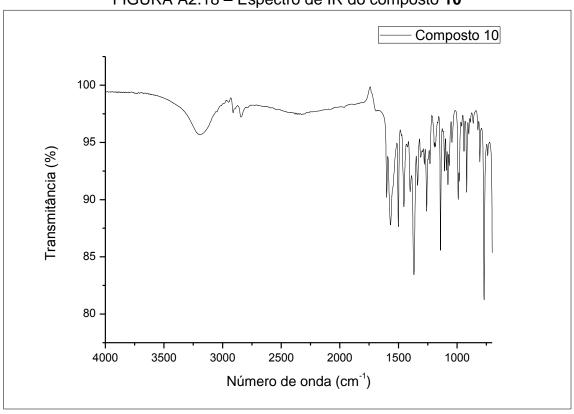
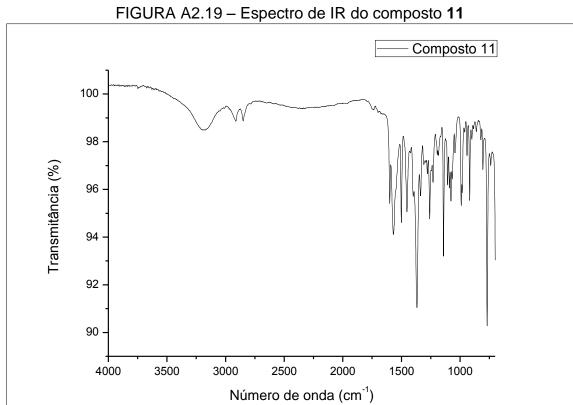




FIGURA A2.18 – Espectro de IR do composto 10

APÊNDICE 3

TABELA A3.1 – Reações da DPP com a metodologia de moagem no estado solido (Anidro), e moagem com gotas de solvente (Água, Acetona) em diferentes

concentrações estequiométricas

concentraç	062 620		ilicas		<u> </u>				
		Anidro			Agua			Acetona	
	2:1	1:1	1:2	2:1	1:1	1:2	2:1	1:1	1:2
AAD	nc	nc	nc	nc	nc	nc	nc	nc	nc
ABZ	S	S	S	S	S	S	S	S	S
AFU				S	S	S	S	S	S
AHBZ				S	S	S			
AIT	nc	nc	nc	nc	nc	nc	nc	nc	nc
Ala	Χ		Χ	Χ		Χ	Χ		Χ
AME	nc	S	nc	S	S	nc	nc	S	nc
AMI	nc	nc	nc	nc	nc	nc	nc	nc	nc
AMO	nc	nc	nc	nc	nc	nc	nc	nc	nc
AOX	nc	S	nc	nc	S	S	nc	S	S
Asn	Χ		Χ		Χ		Χ		Χ
ASO	nc	S	nc	S	S	S	S	S	S
ASU				nc	nc	nc	nc	nc	nc
Glu	Χ		Χ	Χ		Χ	Χ		Χ
Gly	Χ		Χ	Χ		Χ	Χ		Χ
lle	Χ		Χ	Χ		Χ	Χ		Χ
Leu	Х		Χ	X		Χ	X		Χ
Phe	Χ		Χ	Χ		Χ	Х		Χ
Ser	Х		Х	Х		Х	Х		Х
Trp	Χ		Χ	Χ		Χ	Χ		Χ
Tyr	Χ		Χ	X		Χ	X		Χ
Val	Χ		Χ	Χ		Χ	Χ		Χ
CuCl	Х		X	X		Х	X		Χ
CuCl ₂	Χ		Χ	Χ		Χ	Χ		Χ
CoCl ₂ ¹	Х		Х	Х		Х	X		Χ
MnCl ₂ ²	Χ		Χ	Χ		Χ	Χ		Χ
NiCl ₂ 1	Х		Х	Х		Х	X		Χ
Li ₂ SO ₄ °	Χ		Χ	Χ		Χ	Χ		Χ
Na ₂ SO ₄	Х		Х	Х		Х	X		Х
Fe ₂ SO ₄ ⁴	X		X	X		Х	Х		X

⁽¹) Hexahidratado; (²) Tetrahidratado; (³) Monohidratado; (⁴) Pentahidratado; (nc) Não cristaliza; (s) Positivo; (- -) Negativo; (x) Não realizado.

TABELA A3.2 – Reações da DPP com a metodologia de moagem no estado solido solvente (Acetonitrila, Etanol, Metanol) em diferentes concentrações estequiométricas

Coloquioni		cetonitri	la		Etanol			Metanol	
	2:1	1:1	1:2	2:1	1:1	1:2	2:1	1:1	1:2
AAD	nc	nc	nc	nc	nc	nc	nc	nc	nc
ABZ	S	S	S	S	S	S	S	S	S
AFU	S	S	S	S	S	S	S	S	S
AHBZ				S	S	S	S	S	S
AIT	nc	nc	nc	nc	nc	nc	nc	nc	nc
Ala	Х		Х	Х		Х	Х		Х
AME	nc	S	nc	S	S	nc	S	S	nc
AMI	nc	nc	nc	nc	nc	nc	nc	nc	nc
AMO	nc	nc	nc	nc	nc	nc	nc	nc	nc
AOX	nc	S	S	nc	S	S	nc	S	S
Asn	Χ		Χ	Χ		Χ	Χ		Χ
ASO	S	S	S	S	S	S	S	S	S
ASU	nc	nc	nc	nc	nc	nc	nc	nc	nc
Glu	Χ		Χ	Х		Χ	Χ		Χ
Gly	Χ		Χ	Χ		Χ	Χ		Χ
lle	Χ		Χ	Χ		Χ	Χ		Χ
Leu	Χ		Χ	Χ		Χ	Χ		Χ
Phe	Χ		Χ	Χ		Χ	Χ		Χ
Ser	Χ		Χ	Χ		Χ	Χ		Χ
Trp	Χ		Χ	Χ		Χ	Χ		Χ
Tyr	Χ		Χ	Χ		Χ	Χ		Χ
Val	Χ		Χ	Χ		Χ	Χ		Χ
CuCl	X		Χ	Χ		Χ	Χ		Χ
CuCl ₂	Χ		Χ	Χ		Χ	Χ		Χ
CoCl ₂ ⁻¹	X		Χ	Χ		Χ	Χ		Χ
MnCl₂ [∠]	Χ		Χ	Χ		Χ	Χ		Χ
NiCl ₂ 1	Χ		Х	Х		Х	X		Χ
Li ₂ SO ₄ ³	Χ		Χ	Χ		Χ	Χ		Χ
Na ₂ SO ₄	X		Х	Х		Х	X		X
Fe ₂ SO ₄ ⁴	X		X	Х		Х	Χ		Χ

(¹) Hexahidratado; (²) Tetrahidratado; (³) Monohidratado; (⁴) Pentahidratado; (nc) Não cristaliza; (s) Positivo; (- -) Negativo; (x) Não realizado.

TABELA A3.3 – Reações da DPP com a metodologia de moagem com gotas de solvente (n-Butanol) e moagem com gotas de solvente e aquecimento (Água, Acetona) em diferentes concentrações estequiométricas

		n-Butano			ua (aque		Acet	ona (aqı	uec.)
	2:1	1:1	1:2	2:1	1:1	1:2	2:1	1:1	1:2
AAD	nc	nc	nc	nc	nc	nc	nc	nc	nc
ABZ	S	S	S	S	S	S	S	S	S
AFU	S	S	S	S	S	S	S	S	S
AHBZ	S	S	S	S	S	S			
AIT	nc	nc	nc	nc	nc	nc	nc	nc	nc
Ala	Χ		Χ	Χ		Χ	Χ		Χ
AME	nc	S	nc	nc	S	nc	nc	S	nc
AMI	nc	nc	nc	nc	nc	nc	nc	nc	nc
AMO	nc	nc	nc	nc	nc	nc	nc	nc	nc
AOX	nc	S	S	nc	S	S	nc	S	S
Asn	Х		Х	X		Χ	X		Χ
ASO	S	S	S	S	S	S	S	S	S
ASU	nc	nc	nc	nc	nc	nc	nc	nc	nc
Glu	Х		Χ	Χ		Χ	Χ		Χ
Gly	Х		Х	Χ		Χ	Χ		Х
lle	Χ		Χ	Χ		Χ	Χ		Χ
Leu	Х		Х	Χ		Χ	Χ		X
Phe	Χ		Χ	Χ		Χ	Χ		Χ
Ser	Х		Х	Χ		Χ	Χ		X
Trp	Χ		Χ	Χ		Χ	Χ		Χ
Tyr	Х		X	X		Х	X		X
Val	Χ		Χ	Χ		Χ	Χ		Χ
CuCl	Х		Х	X		Х	X		Х
CuCl ₂	Χ		Χ	Χ		Χ	Χ		Χ
CoCl ₂ ¹	Х		Х	X		Х	X		Х
MnCl ₂ ²	Χ		Χ	Χ		X	Χ		Χ
NICI ₂	Х		Х	X		Х	X		X
Li ₂ SO ₄ ³	Х		Χ	X		X	Χ		Χ
Na ₂ SO ₄	Х		Х	X		X	X		Х
Fe ₂ SO ₄ ⁴	X _		X	X		X	X		X

⁽¹) Hexahidratado; (²) Tetrahidratado; (³) Monohidratado; (⁴) Pentahidratado; (nc) Não cristaliza; (s) Positivo; (- -) Negativo; (x) Não realizado.

TABELA A3.4 – Reações da DPP com a metodologia de moagem com gotas de solvente e aquecimento (Acetonitrila, Etanol, n-Butanol) em diferentes concentrações estequiométricas

oonooniraço		nitrila (a		Eta	nol (aqu	ec.)	n-But	anol (ac	luec.)
	2:1	1:1	1:2	2:1	1:1	1:2	2:1	1:1	1:2
AAD	nc	nc	nc	nc	nc	nc	nc	nc	nc
ABZ	S	S	S	S	S	S	S	S	S
AFU	S	S	S	S	S	S	S	S	S
AHBZ				S	S	S	S	S	S
AIT	nc	nc	nc	nc	nc	nc	nc	nc	nc
Ala	Χ		Χ	Χ		Χ	Χ		Χ
AME	nc	S	nc	nc	S	nc	nc	S	nc
AMI	nc	nc	nc	nc	nc	nc	nc	nc	nc
AMO	nc	nc	nc	nc	nc	nc	nc	nc	nc
AOX	nc	S	S	nc	S	S	nc	S	S
Asn	Χ		Χ	Χ		Χ	Χ		Χ
ASO	S	S	S	S	S	S	S	S	S
ASU	nc	nc	nc	nc	nc	nc	nc	nc	nc
Glu	Х		Χ	Х		Χ	Χ		Χ
Gly	Χ		Χ	Χ		X	Χ		Χ
lle	Χ		Χ	Χ		Χ	Χ		Χ
Leu	Х		Х	Х		Χ	Χ		Χ
Phe	Χ		Χ	Х		Χ	Χ		Χ
Ser	Х		Х	Х		Χ	Χ		Χ
Trp	Χ		Χ	Χ		Χ	Χ		Χ
Tyr	Х		X	Х		Χ	Х		Х
Val	Χ		Χ	Χ		Χ	Χ		Χ
CuCl	Х		X	Х		Χ	Х		Χ
CuCl ₂	Χ		Χ	Χ		Χ	Χ		Χ
CoCl ₂ ¹	Х		Χ	Х		Х	Х		X
MnCl ₂ ²	Х		Χ	Χ		Χ	Χ		Χ
NiCl ₂ 1	Х		X	Х		Χ	Х		Χ
Li ₂ SO ₄ ³	X		Χ	Х		Χ	Χ		Χ
Na ₂ SO ₄	X		Х	Х		X	Х		X
Fe ₂ SO ₄ ⁴	X		X	Χ		Χ	Χ		Χ

⁽¹) Hexahidratado; (²) Tetrahidratado; (³) Monohidratado; (⁴) Pentahidratado; (nc) Não cristaliza; (s) Positivo; (- -) Negativo; (x) Não realizado.

TABELA A3.5 – Atribuição dos modos vibracionais para o ácido benzoico,

dropropizina e composto 1

Ácido Benzoico	Dropropizina	Composto 1	Atribuição
	3440	~3286, ~3167	v (O–H)
3072-2945	3102-2827	3061-2840	v C–H (anel, CH ou CH ₂)
3882-2833			v (O–H)
2728- 2563			v O–H (dímero)
1685			v (C=O)
1602, 1584	1599, 1575	1597	v anel (C–C)
		1551	v (COO ⁻)
1497	1504	1497	σ anel (C–H)
	1463	~1456	σ (CH ₂)
1454	1447	~1456	v anel (C–C)
1424			σ O–H (COOH)
	1421		σ O–H (álcool)
		1390	σ (N ⁺ –H)
	1388	~	σ (C–H ₂)
		1381	v (COO ⁻)
	1359	~	σ (C–H)
1326	1336-1320	1342	v anel (C–C)
	1308, 1282	1291	σ O–H (álcool)
	1250	1273	v (C–N)
1294	1240	1254	v (C–O)
		1219	σ esqueleto + σ (N ⁺ –H)
	1212		σ esqueleto (C–H)
1188	1186	1175	σ C–H (anel)
	1148	~1137	v (C–N)
	1138	~1137	σ anel
1129			v C–C–O (COOH)
	1120	1090	v (C–OH)
1102, 1074, 1028	1102	1103, 1024	σ anel (C–H)
	1083	1080	σ (C–H ₂)
	1063	1059	v C– C–O (álcool)
	1037	1037	σ C–H (anel)
1001	1008, 999, 988	1025, 993	v C–C (anel) + v
			esqueleto
	942, 926	943, 919	σ O–H(álcool)
933			σ O–H (COOH)
811	861	845, 824	σ anel (C–H)
	848	~	v anel (C–C)
		812	σ (O–C–O)
707	760	760,715	σ anel (mon. sub.)
	733	736	σ (C–H ₂)

[~] pode haver sobreposição de bandas.

TABELA A3.6 - Atribuição dos modos vibracionais para o ácido benzoico,

dropropizina e composto 2

Ácido Benzoico	Dropropizina	Composto 2	Atribuição
	3440	3290	v (O–H)
3072-2945	3102-2827	~3101-2840	v C-H (anel, CH ou CH ₂)
3882-2833			v (O–H)
2728- 2563			v O–H (dímero)
1685			v (C=O)
1602, 1584	1599, 1575	1594	v anel (C-C)
		1544	v (COO ⁻)
1497	1504	1505	σ anel (C–H)
	1463	~1451	σ (CH ₂)
1454	1447	~1451	v anel (C-C)
1424			σ O–H (COOH)
	1421		σ O–H (álcool)
		1404	σ (N ⁺ –H)
	1388	~	σ (C–H ₂)
		1385	v (COO ⁻)
	1359	1347	σ (C–H)
1326	1336-1320	1334	v anel (C-C)
	1308, 1282	1283	σ O–H (álcool)
	1250	1271	v (C–N)
1294	1240	1258	v (C–O)
		1229	σ esqueleto + σ (N ⁺ –H)
	1212		σ esqueleto (C–H)
1188	1186	1188	σ C–H (anel)
	1148	1149	v (C–N)
	1138	1136	σ anel
1129			v C–C–O (COOH)
	1120	1089	v (C–OH)
1102, 1074, 1028	1102	1101,1068, 1021	σ anel (C–H)
	1083	1081	σ (C–H ₂)
	1063	1052	v C–C–O (álcool)
	1037	1036	σ C–H (anel)
1001	1008, 999,	1021, 980	v C-C (anel) + v
	988		esqueleto
	942, 926	936, 922	σ O–H(álcool)
933			σ O–H (COOH)
811	861	869, 807	σ anel (C–H)
	848	~	v anel (C-C)
707	760	747,738	σ anel (mono sub.)
	733	716	σ (C–H ₂)

[~] pode haver sobreposição de bandas.

TABELA A3.7 – Atribuição dos modos vibracionais para o ácido 4-hidroxibenzoico, dropropizina e composto **3**

Ácido 4- hidroxibenzoico	Dropropizina	Composto 3	Atribuição
		3561	v (O–H) água
3387	3440	3215	v (O–H)
3205-2834	3102-2827	3040-2854	v C–H (CH, CH ₂)
2667, 2550			v O–H (dímero)
		1688	σ O–H (água)
1673			v (C=O)
1609, 1595	1599, 1575	1594, 1580	v anel (C-C)
		1535	v (COO ⁻)
1510	1504	1502	σ anel (C–H)
	1463	1470	σ (CH ₂)
1448	1447	1454	v anel (C–C)
1423			σ O–H (COOH)
	1421		σ O–H (alcool)
		1399	σ (N ⁺ –H)
	1388	1383	σ (C–H ₂)
		1367	v (COO ⁻)
	1359		σ (C–H)
1387, 1366	1336-1320	1341-1329	v anel (C-C)
1317	1308, 1282		σ O–H (alcool)
1292			σ O–H (COOH)
	1250	1275	v (C–N)
1243	1240	1256	v (C–O)
		1219	σ esquel. (C–H) + σ (N ⁺ – H)
	1212		σ esqueleto (C–H)
1169		1167	σ O–H (PhOH)
	1148	1141	v (C–N)
	1138	1134	σ anel
1129			v C–C–O (COOH)
	1120	1114	v (C–OH)
1102	1102	1103, 1098	σ anel (C–H)
	1083	1083	σ (C–H ₂)
	1063	1071	v C–C–O (alcool)
		1052	σ O–H (água)
1014	1037	1037	σ C–H (anel)
	1008, 999, 988	1006, 986	v esqueleto
	942, 926	912	σ O–H(alcool)
930			σ O–H (COOH)
854	861	871	σ anel (C–H)
839	848	961	v anel (C–C)
769		799	σ (O–C–O)
	760	762	σ anel (mono sub.)
	733	735	σ (C–H ₂)
		712	σ anel (C–H)

TABELA A3.8 – Atribuição dos modos vibracionais para o ácido maleico, dropropizina e composto 4

dropropizina e con	nposto 4		
Ácido Maleico	Dropropizina	Composto 4	Atribuição
~3250-2750	3440	~3240	v (O–H)
3059,2796	3102-2827	~3065-2799	v C-H (anel, CH ou CH ₂)
~2750-2250			v (O–H)
1705, 1635		1691	v (C=O)
	1599, 1575	1601	v anel (C–C)
1586, 1566		-	v (C=C)
1460		1579	σ O–H no plano (intra.)
	1504	1507	σ anel (C–H)
		~1498-1474	$V (COO^{-}) + \sigma (O-H)$
	1463	1456	σ (CH ₂)
	1447	1442	v anel (C–C)
	1421	1417	σ O–H (álcool)
1433		1401	σ (C–H)
	1388	~	σ (C–H ₂)
		1385	σ (N ⁺ –H)
	1359	~	σ (C–H)
		1351	v (COO ⁻)
	1336-1320	~	v anel (C–C)
	1308, 1282	1203	σ O–H (álcool)
		~1290	σ esqueleto + σ (N ⁺ –H)
	1250	1279	v (C–N)
1263	1240	1263, 1246	v (C–O)
	1212		σ esqueleto (C–H)
1220		1220	σ (C–H)
		1188	σ O–H fora plano (intra.)
	1186	~	σ C–H (anel)
	1148	1140	v (C–N)
	1138	1126	σ anel
	1120	1078	v (C–OH)
	1102	1098	σ anel (C–H)
	1083	1073	σ (C–H ₂)
	1063	1052	v C-C-O (álcool)
	1037	~1037	σ C–H (anel)
000	1008, 999, 988	~1009	v C–C (anel) + v esqueleto
990		000	σ (O–H) no plano (inter.)
949	0.40, 000	963	v (C–C)
	942, 926	938,918	σ O–H(álcool)
0.4.0		925	σ Ο–Η
919		000	σ (O–H) fora plano (inter.)
004		889	σ Ο–Η
864	004	865	σ (C–H) + σ O–H (em fase)
	861	~865	σ anel (C–H) + σ (C–H)
700	848	836	v anel (C–C)
788	700	742	σ (C–C=C)
	760	766	σ anel (mon. sub.)
	733	736	σ (C–H ₂)

[~] pode haver sobreposição de bandas.

TABELA A3.9 – Atribuição dos modos vibracionais para o ácido sórbico, dropropizina e composto **5**

Ácido Sórbico	Dropropizina	Composto 5	Atribuição
~3300-2750	3440	~3240	v (O–H)
3025, 2971	3102-2827	~3065-2799	v C–H (anel, CH, CH ₂ ,
			CH₃)
2648, 2580			v O–H (dímero)
1677			v (C=O)
	1599, 1575	1602	v anel (C-C)
1637, 1612		1649, 1618	v (C=C)
		1559	v (COO ⁻)
	1504	1501	σ anel (C–H)
	1463	1471	σ (CH ₂)
	1447	1444	v anel (C-C)
1439		~1439	σ C–H (CH ₃)
	1421	1456	σ O–H (álcool)
1416			σ O–H (COOH)
		1387	σ (N ⁺ –H)
	1388	~	σ (C–H ₂)
1377		1373	σ C–H (CH ₃)
	1359	~	σ (C–H)
		1341	v (COO ⁻)
	1336-1320	~	v anel (C–C)
1329			v (C–O) + σ (C–O–H)
1315, 1296		~1302	σ (C–H)
	1308, 1282	~1302, 1222	σ O–H (álcool)
		1257	σ esqueleto + σ (N ⁺ –H)
	1250	1281	v (C–N)
1263	1240	1242	v (C–O)
	1212		σ esqueleto (C–H)
1204		1199	σ (C–H)
	1186	1189	σ C–H (anel)
1155		1155	v C–C (C=C–C=C)
	1148	1180	v (C–N)
	1138	1135	σ anel
	1120	1090	v (C–OH)
	1102	1097	σ anel (C–H)
	1083	1072	σ (C–H ₂)
	1063	1059	v C–C–O (álcool)
	1037	~1040	σ C–H (anel)
	1008, 999, 988	~	v C–C (anel) + v
			esqueleto
		1008, 989	σ Ο–Η
999			σ O–H (COOH)
974		966	v C–C (C–COOH) + σ
			(C–H)
948		955	σ C–H (CH ₃)
	942, 926	945, 922	σ O–H(álcool)

Continuação da TABELA A3.9

921		906	σ C–H (CH ₃)
873	861	885	σ C–H (CH3) + σ (C–H)
	848	~	v anel (C-C)
805		809	σ (C–H)
	760		σ anel (mon. sub.)
	733		σ (C–H2)
700		~	σ (C–C–O) + σ (CH3)

[~] pode haver sobreposição de bandas.

TABELA A3.10 – Atribuição dos modos vibracionais para o ácido oxálico,

dropropizina e composto 7

Ácido Oxálico	Dropropizina	Composto 7	Atribuição
3488, 3424	3440	~3356, 3025, 2616	v (O–H)
3025, 2971	3102-2827	~2969-2846	v C–H (anel, CH, CH ₂)
1671		1716	v (C=O)
	1599, 1575	1601, 1582	v anel (C–C)
1555		~	σ (H ₂ O)
	1504	1503	σ anel (C–H)
	1463	~1447	σ (CH ₂)
	1447	~1447	v anel (C–C)
1441		~1447	v (C–C)
	1421		σ O–H (álcool)
	1388	1398	σ (C–H ₂)
	1359	1343	σ (C–H)
	1336-1320	~1272	v anel (C-C)
	1308, 1282	~1272	σ O–H (álcool)
	1250	~1262	v (C–N)
1241	1240	~1190	v (C–O)
	1212	~	σ esqueleto (C–H)
	1186	~	σ C–H (anel)
	1148	1132	v (C–N)
	1138	1098	σanel
1127		~1083	σ (C–O–H)
	1120	1083	v (C–OH)
	1102	1072	σ anel (C–H)
	1083	1049	σ (C–H ₂)
	1063	1035	v C-C-O (álcool)
	1037	~	σ C–H (anel)
	1008, 999, 988	~983	v C-C (anel) + v esqueleto
	942, 926	933	σ O–H(álcool)
	861	872	σ (C–H)
	848	849	v anel (C-C)
	760	755	σ anel (mon. sub.)
	733	738	σ (C–H ₂)
722		704	σ (C–O–O)

[~] pode haver sobreposição de bandas.

TABELA A3.11 – Atribuição dos modos vibracionais para o ácido oxálico, dropropizina e composto **8**

Ácido Oxálico	Dropropizina	Composto 8	Atribuição
3488, 3424	3440	~3382, 3012	v (O–H)
3025, 2971	3102-2827	~3068-2875	v C-H (anel, CH, CH ₂)
1671		1734	v (C=O)
		1697	σ O–H (água)
	1599, 1575	~1597	v anel (C-C)
1555		~1597	σ (H ₂ O)
	1504	1497	σ anel (C–H)
	1463	~1434	σ (CH ₂)
	1447	~1434	v anel (C-C)
1441		~1434	v (C–C)
	1421		σ O–H (álcool)
	1388	~1402	$\sigma (C-H_2)$
	1359	1370	σ (C–H)
	1336-1320	~	v anel (C-C)
	1308, 1282	~	σ O–H (álcool)
	1250	1268	v (C–N)
1241	1240	1205	v (C–O)
	1212	~	σ esqueleto (C–H)
	1186	~	σ C–H (anel)
	1148	~1125	v (C–N)
	1138	~1125	σanel
1127		~1098	σ (C–O–H)
	1120	~1083	v (C–OH)
	1102	~1072	σ anel (C–H)
	1083	~1062	σ (C–H ₂)
	1063	1031	v C–C–O (álcool)
	1037	~	σ C–H (anel)
	1008, 999, 988	~979, 967	v C-C (anel) + v esqueleto
	942, 926		σ O–H(álcool)
	861	822	σ (C–H)
	848	~	v anel (C–C)
	760	758	σ anel (mon. sub.)
	733	~	σ (C–H ₂)
722		709	σ (C–O–O)

[~] pode haver sobreposição de bandas.

TABELA A3.12 – Atribuição dos modos vibracionais para o ácido fumárico, dropropizina e composto **9**

Ácido Fumárico	Dropropizina	Composto 9	Atribuição
~3300-2500	3440	~3107	v (O–H)
3084	3102-2827	~3022-2849	v C–H (anel, CH ou CH ₂)
2663, 2582			v O–H (dímero)
		1697	σ O–H (água)
1663		1678	v (C=O)
	1599, 1575	1601	v anel (C-C)
		1550	v (COO ⁻)
	1504	1497	σ anel (C–H)
	1463	~1457	σ (CH ₂)
	1447	~1457	v anel (C-C)
	1421	~1421	σ O–H (álcool)
1425			σ (O–H)
	1388	1396	σ (C–H ₂)
		1364	σ (N ⁺ –H)
	1359	~	σ (C–H)
		1348	v (COO ⁻)
	1336-1320	~1335	v anel (C-C)
1320		~1335	σ (C–H)
	1308, 1282		σ O–H (álcool)
		~1301	σ esqueleto + σ (N ⁺ –H)
	1250	1259	v (C–N)
1273	1240	1271, 1248	v (C–O)
1231, 1215		1211, 1199	σ(C–O–H)
,	1212	,	σ esqueleto (C–H)
	1186	1186	σ C–H (anel)
	1148	1165	v (C–N)
	1138	1158	σanel
	1120	1133	v (C–OH)
	1102	1114	σ anel (C-H)
	1083	1093	σ (C–H ₂)
		1085	σ O–H (água)
	1063	1070	v C-C-O (álcool)
	1037	1056	σ C–H (anel)
	1008, 999, 988	~1000, ~989	v C–C (anel) + v esqueleto
1009	, ,	989	σ (C–H)
	942, 926	938,925	σ O–H(álcool)
918	,	915	v (C–C)
895			σ O–H ´
	861	870	σ anel (C–H) + σ (C–H)
	848	850	v anel (C-C)
		802	σ (O–C–O)
782		783	σ (C–C=C)
	760	760	σ anel (mon. sub.)
	733	733	σ (C–H ₂)

[~] pode haver sobreposição de bandas.

TABELA A3.13 - Atribuição dos modos vibracionais para o ácido fumárico,

dropropizina e composto 10

Ácido Fumárico	Dropropizina	Composto 10	Atribuição
~3300-2500	3440	~3192	v (O–H)
3084	3102-2827	~3048-2785	v C–H (anel, CH ou CH ₂)
2663, 2582			v O–H (dímero)
1663			v (C=O)
	1599, 1575	1600	v anel (C-C)
		~1567	v (COO ⁻)
	1504	1500	σ anel (C–H)
	1463	~1453	σ (CH ₂)
	1447	~1453	v anel (C-C)
	1421	1422	σ O–H (álcool)
1425			σ (O–H)
	1388	1400	σ (C–H ₂)
		1367	σ (N ⁺ –H)
	1359	~	σ (C–H)
		1336	v (COO-)
	1336-1320	~1310	v anel (C-C)
1320		~1310	σ (C–H)
	1308, 1282		σ O–H (álcool)
	·	~1293	σ esqueleto + σ (N ⁺ –H)
	1250	1278	v (C–N)
1273	1240	1259	v (C–O)
1231, 1215		1231	σ(C–O–H)
·	1212		σ esqueleto (C–H)
	1186	1184	σ C–H (anel)
	1148	~1140	v (C–N)
	1138	~1140	σanel
	1120	1090	v (C–OH)
	1102	1107	σ anel (C–H)
	1083	1078	σ (C–H ₂)
	1063	1066	v C-C-O (álcool)
	1037	1056	σ C–H (anel)
	1008, 999, 988	~990, ~981	v C-C (anel) + v esqueleto
1009		990	σ (C–H)
	942, 926	940,918	σ O–H(álcool)
918		~	v (C–C)
895			σ O–H
	861	862	σ anel (C–H) + σ (C–H)
	848	822	v anel (C–C)
		806	σ (O–C–O)
782		~	σ (C–C=C)
	760	759	σ anel (mon. sub.)
	733	737	σ (C–H ₂)

[~] pode haver sobreposição de bandas.

TABELA A3.14 – Reações da SMZ com a metodologia de moagem no estado solido (Anidro), e moagem com gotas de solvente (Água, Acetona, ACN, Etanol, Metanol, n-butanol) nas mesmas concentrações estequiométricas

	Anidro	Água	Acetona	ACN	Etanol	Metanol	n- Butanol
	1:1	1:1	1:1	1:1	1:1	1:1	1:1
AAD							
ABZ							
AFU							
AHBZ							
AIT							
Ala							
AME							
AMI							
AMO							
AOX							
Asn							
ASO							
ASU							
Glu							
Gly							
lle							
Leu							
Phe							
Ser							
Trp							
Tyr							
Val							
CuCl							
CuCl ₂							
CoCl ₂ 1							
MnCl ₂ ²							
NiCl ₂ ¹							
Li ₂ SO ₄ ³							
Na_2SO_4							
Fe ₂ SO ₄ ⁴							

⁽¹⁾ Hexahidratado; (2) Tetrahidratado; (3) Monohidratado; (4) Pentahidratado; (- -) Negativo.

TABELA A3.15 – Reações da SMZ com a metodologia de moagem com gotas de solvente e aquecimento (Água, Acetona, ACN, Etanol, n-Butanol) nas mesmas concentrações estequiométricas

	Água (aquec.)	Acetona (aquec.)	ACN (aquec.)	Etanol (aquec.)	n-Butanol (aquec.)
	1:1	1:1	1:1	1:1	1:1
AAD					
ABZ					
AFU					
AHBZ					
AIT					
Ala					
AME					
AMI					
AMO					
AOX					
Asn					
ASO					
ASU					
Glu					
Gly					
lle					
Leu					
Phe					
Ser					
Trp					
Tyr					
Val					
CuCl					
CuCl ₂ CoCl ₂ 1					
MnCl ₂ ²					
NiCl ₂ 1					
Li ₂ SO ₄ ³					
Na ₂ SO ₄ Fe ₂ SO ₄					
Fe ₂ SO ₄ ⁴					

⁽¹⁾ Hexahidratado; (2) Tetrahidratado; (3) Monohidratado; (4) Pentahidratado; (- -) Negativo.

TABELA A3.16 – Reações da CBZ com a metodologia de moagem no estado solido (Anidro), e moagem com gotas de solvente (Água, Acetona, ACN, Etanol, Metanol, n-butanol) nas mesmas concentrações estequiométricas

	Anidro	Água	ACN	Acetona	Etanol	n-Butanol
	1:1	1:1	1:1	1:1	1:1	1:1
AAD						
ABZ						
AFU		S	S	S	S	S
AHBZ		S	S			
AIT		S	S			
Ala						
AME		S	S			
AMI		S	S	S	S	S
AMO		S	S	S	S	S
AOX			S			
Asn						
ASO		S	S			
ASU		S	S	S	S	S
Glu						
Gly						
lle						
Leu						
Phe						
Ser						
Trp						
Tyr						
Val						
CuCl						
CuCl ₂						
MnCl ₂ ²						
NiCl ₂ ¹						
Li ₂ SO ₄ ³						
Na ₂ SO ₄						
Fe ₂ SO ₄				, - -		

⁽¹⁾ Hexahidratado; (2) Tetrahidratado; (3) Monohidratado; (4) Pentahidratado; (5) Positivo; (- -) Negativo.

APÊNDICE 4

Composto 4

TABELA A4.1 – Crystal data and structure refinement for dropo_4hydro

Identification code	dropo_4hydro
Empirical formula	C20 H30 N2 O7

Formula weight 410.46
Temperature 296(2) K
Wavelength 0.71073 A

Crystal system, space group Orthorhombic, Pbca

Unit cell dimensions a = 14.7213(11) A alpha = 90 deg.

b = 15.4758(13) A beta = 90 deg. c = 18.319(2) A gamma = 90 deg.

Volume 4173.5(7) A^3
Z, Calculated density 8, 1.307 Mg/m^3
Absorption coefficient 0.099 mm^-1

F(000) 1760

Crystal size $0.44 \times 0.32 \times 0.13 \text{ mm}$ Theta range for data collection 2.21 to 26.51 deg.

Limiting indices -16<=h<=18, -15<=k<=19, -22<=l<=18

Reflections collected / unique 17488 / 4284 [R(int) = 0.0560]

Completeness to theta = 26.51 99.0 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.9873 and 0.9578

Refinement method Full-matrix least-squares on F^2

Data / restraints / parameters 4284 / 0 / 265

Goodness-of-fit on F² 1.038

Final R indices [I>2sigma(I)] R1 = 0.0548, wR2 = 0.1526 R indices (all data) R1 = 0.0784, wR2 = 0.1700

Extinction coefficient 0

Largest diff. peak and hole 0.612 and -0.239 e.A^-3

TABELA A4.2 – Hydrogen bonds for DPP with 4 hydroxybenzoic acid [Å and °]

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1)-H(21)O(5)#6	0.82	1.96	2.738(2)	158
O(2)-H(22)O(2W)#5	0.82	1.84	2.653(2)	174
O(3)-H(23)O(4)#6	0.82	1.77	2.584(2)	173
O(1W)-H(1WA)O(3)#3	0.90	2.01	2.826(2)	150
O(1W)-H(1WB)O(5)#8	0.94	1.86	2.775(2)	164
O(2W)-H(2WA)O(1W)#3	0.85	1.91	2.743(3)	165
O(2W)-H(2WB)O(4)#3	0.85	1.99	2.832(3)	172
N(2)-H(2N)O(2)#5	0.93	1.96	2.865(2)	163
C(7)-H(7A)O(2)#5	0.97	2.578	3.295(3)	130
C(11)-H(11B)Cg(2)#2	0.97	2.66	3.609(2)	166

^{#1 &#}x27;x, y, z'

TABELA A4.3 – Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (\mathring{A}^2x 10^3) for dropropizine with 4 hydroxybenzoic acid. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

			
	у	Z	U(eq)
5887(2)	3884(2)	-168(2)	65(1)
5442(2)	3905(2)	482(2)	66(1)
4514(2)	3790(2)	520(2)	55(1)
4000(2)	3653(1)	-107(1)	40(1)
2534(2)	3845(2)	-707(1)	42(1)
123(1)	3552(1)	-14(1)	39(1)
-407(2)	3815(2)	659(1)	41(1)
1421(2)	3789(2)	491(1)	45(1)
5395(2)	3745(2)	-790(2)	64(1)
	. ,	5887(2) 3884(2) 5442(2) 3905(2) 4514(2) 3790(2) 4000(2) 3653(1) 2534(2) 3845(2) 123(1) 3552(1) -407(2) 3815(2) 1421(2) 3789(2)	5887(2) 3884(2) -168(2) 5442(2) 3905(2) 482(2) 4514(2) 3790(2) 520(2) 4000(2) 3653(1) -107(1) 2534(2) 3845(2) -707(1) 123(1) 3552(1) -14(1) -407(2) 3815(2) 659(1) 1421(2) 3789(2) 491(1)

^{#2 &#}x27;x+1/2, -y+1/2, -z'

^{#3 &#}x27;-x, y+1/2, -z+1/2'

^{#4 &#}x27;-x+1/2, -y, z+1/2'

^{#5 &#}x27;-x, -y, -z'

^{#6 &#}x27;-x+1/2, y+1/2, z'

^{#7 &#}x27;x, -y+1/2, z+1/2'

^{#8 &#}x27;x+1/2, y, -z+1/2'

		C(7	7)-H(7B)	0.9700
N(2)	1103(1)	3812(1)	5(1)	34(1)
N(1)	3047(1)	3512(1)	-82(1)	39(1)
O(1W)	-549(1)	1584(1)	2825(2)	81(1)
O(5)	-4339(1)	209(1)	2217(1)	45(1)
O(3)	-1041(1)	-2431(1)	2413(1)	59(1)
O(4)	-3231(1)	1067(1)	2607(1)	45(1)
O(2W)	2010(1)	6481(1)	1251(1)	57(1)
O(1)	-131(1)	4640(1)	867(1)	50(1)
O(2)	-1655(1)	4413(1)	-48(1)	45(1)
C(8)	1557(2)	3558(2)	-692(1)	42(1)
C(9)	1624(2)	3427(2)	623(1)	45(1)
C(19)	-1348(2)	-937(1)	2417(1)	41(1)
C(20)	-1952(1)	-264(1)	2429(1)	37(1)
C(18)	-1664(2)	-1787(1)	2412(1)	38(1)
C(17)	-2596(2)	-1947(1)	2410(1)	37(1)
C(16)	-3194(1)	-1258(1)	2417(1)	34(1)
C(15)	-2890(1)	-406(1)	2429(1)	32(1)
C(14)	-3535(1)	337(1)	2422(1)	34(1)
C(10)	2606(2)	3711(2)	609(1)	43(1)
C(5)	4468(2)	3627(2)	-765(2)	53(1)

C(7)-H(7A)

C(11)-N(2)

0.9700

1.498(3)

TABELA A4.4 – Bond lengths [Å] and angles [°] for dropropizine with 4 hydroxybenzoic acid

		C(11)-C(12)	1.516(3)
C(1)-C(2)	1.358(4)	C(11)-H(11B)	0.9700
C(1)-C(6)	1.368(5)	C(11)-H(11A)	0.9700
C(1)-H(1)	0.9300	C(12)-O(1)	1.393(3)
C(2)-C(3)	1.380(4)	C(12)-C(13)	1.525(3)
C(2)-H(2)	0.9300	C(12)-H(12)	0.9800
C(3)-C(4)	1.391(4)	C(13)-O(2)	1.424(3)
C(3)-H(3)	0.9300	C(13)-H(13B)	0.9700
C(4)-C(5)	1.389(3)	C(13)-H(13A)	0.9700
C(4)-N(1)	1.420(3)	C(6)-C(5)	1.378(4)
C(7)-N(1)	1.465(3)	C(6)-H(6)	0.9300
C(7)-C(8)	1.505(3)	C(5)-H(5)	0.9300

C(10)-N(1)	1.456(3)	C(2)-C(3)-H(3)	119.4
C(10)-C(9)	1.510(3)	C(4)-C(3)-H(3)	119.4
C(10)-H(10A)	0.9700	C(5)-C(4)-C(3)	116.8(2)
C(10)-H(10B)	0.9700	C(5)-C(4)-N(1)	120.9(2)
C(14)-O(5)	1.258(3)	C(3)-C(4)-N(1)	122.3(2)
C(14)-O(4)	1.262(2)	N(1)-C(7)-C(8)	111.98(19)
C(14)-C(15)	1.490(3)	N(1)-C(7)-H(7B)	109.2
C(15)-C(16)	1.393(3)	C(8)-C(7)-H(7B)	109.2
C(15)-C(20)	1.398(3)	N(1)-C(7)-H(7A)	109.2
C(16)-C(17)	1.381(3)	C(8)-C(7)-H(7A)	109.2
C(16)-H(16)	0.9300	H(7B)-C(7)-H(7A)	107.9
C(17)-C(18)	1.394(3)	N(2)-C(11)-C(12)	113.84(18)
C(17)-H(17)	0.9300	N(2)-C(11)-H(11B)	108.8
C(18)-O(3)	1.355(3)	C(12)-C(11)-H(11B)	108.8
C(18)-C(19)	1.396(3)	N(2)-C(11)-H(11A)	108.8
C(20)-C(19)	1.369(3)	C(12)-C(11)-H(11A)	108.8
C(20)-H(20)	0.9300	H(11B)-C(11)-H(11A)	107.7
C(19)-H(19)	0.9300	O(1)-C(12)-C(11)	108.57(18)
C(9)-N(2)	1.492(3)	O(1)-C(12)-C(13)	111.34(19)
C(9)-H(9B)	0.9700	C(11)-C(12)-C(13)	109.4(2)
C(9)-H(9A)	0.9700	O(1)-C(12)-H(12)	109.2
C(8)-N(2)	1.495(3)	C(11)-C(12)-H(12)	109.2
C(8)-H(8A)	0.9700	C(13)-C(12)-H(12)	109.2
C(8)-H(8B)	0.9700	O(2)-C(13)-C(12)	111.02(18)
O(2)-H(22)	0.8200	O(2)-C(13)-H(13B)	109.4
O(1)-H(21)	0.8200	C(12)-C(13)-H(13B)	109.4
O(2W)-H(2WA)	0.8535	O(2)-C(13)-H(13A)	109.4
O(2W)-H(2WB)	0.8454	C(12)-C(13)-H(13A)	109.4
O(3)-H(23)	0.8200	H(13B)-C(13)-H(13A)	108.0
O(1W)-H(1WA)	0.9021	C(1)-C(6)-C(5)	121.1(3)
O(1W)-H(1WB)	0.9411	C(1)-C(6)-H(6)	119.4
N(2)-H(2N)	0.9333	C(5)-C(6)-H(6)	119.4
C(2)-C(1)-C(6)	118.6(3)	C(6)-C(5)-C(4)	121.1(3)
C(2)-C(1)-H(1)	120.7	C(6)-C(5)-H(5)	119.4
C(6)-C(1)-H(1)	120.7	C(4)-C(5)-H(5)	119.4
C(1)-C(2)-C(3)	121.2(3)	N(1)-C(10)-C(9)	112.34(19)
C(1)-C(2)-H(2)	119.4	N(1)-C(10)-H(10A)	109.1
C(3)-C(2)-H(2)	119.4	C(9)-C(10)-H(10A)	109.1
C(2)-C(3)-C(4)	121.1(3)	N(1)-C(10)-H(10B)	109.1

C(9)-C(10)-H(10B)	109.1	C(10)-C(9)-H(9A)	109.4
H(10A)-C(10)-H(10B)	107.9	H(9B)-C(9)-H(9A)	108.0
O(5)-C(14)-O(4)	123.68(19)	N(2)-C(8)-C(7)	111.41(18)
O(5)-C(14)-C(15)	118.76(18)	N(2)-C(8)-H(8A)	109.3
O(4)-C(14)-C(15)	117.54(18)	C(7)-C(8)-H(8A)	109.3
C(16)-C(15)-C(20)	117.73(19)	N(2)-C(8)-H(8B)	109.3
C(16)-C(15)-C(14)	121.72(19)	C(7)-C(8)-H(8B)	109.3
C(20)-C(15)-C(14)	120.54(17)	H(8A)-C(8)-H(8B)	108.0
C(17)-C(16)-C(15)	121.77(19)	C(13)-O(2)-H(22)	109.5
C(17)-C(16)-H(16)	119.1	C(12)-O(1)-H(21)	109.5
C(15)-C(16)-H(16)	119.1	H(2WA)-O(2W)-H(2WB)	105.1
C(16)-C(17)-C(18)	119.36(19)	C(18)-O(3)-H(23)	109.5
C(16)-C(17)-H(17)	120.3	H(1WA)-O(1W)-H(1WB)	104.2
C(18)-C(17)-H(17)	120.3	C(4)-N(1)-C(10)	115.89(18)
O(3)-C(18)-C(17)	122.48(19)	C(4)-N(1)-C(7)	115.47(18)
O(3)-C(18)-C(19)	117.91(19)	C(10)-N(1)-C(7)	112.04(17)
C(17)-C(18)-C(19)	119.6(2)	C(9)-N(2)-C(8)	108.23(17)
C(19)-C(20)-C(15)	121.46(19)	C(9)-N(2)-C(11)	113.94(17)
C(19)-C(20)-H(20)	119.3	C(8)-N(2)-C(11)	109.86(17)
C(15)-C(20)-H(20)	119.3	C(9)-N(2)-H(2N)	107.8
C(20)-C(19)-C(18)	120.1(2)	C(8)-N(2)-H(2N)	105.7
C(20)-C(19)-H(19)	120.0	C(11)-N(2)-H(2N)	110.9
C(18)-C(19)-H(19)	120.0		
N(2)-C(9)-C(10)	111.26(18)	Symmetry transformations used to	generate equivalent
N(2)-C(9)-H(9B)	109.4	atoms:	
C(10)-C(9)-H(9B)	109.4		
N(2)-C(9)-H(9A)	109.4		

TABELA A4.5 – Anisotropic displacement parameters (\mathring{A}^2x 10 3)for dropo_4hydro. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11}$ +... + 2 h k a^* b* U^{12}]

	U ¹¹	U ²²	U33	U ²³	U ¹³	U ¹²
C(1)	42(1)	56(2)	97(3)	1(2)	2(2)	-2(1)
C(2)	50(2)	72(2)	75(2)	-15(2)	-13(2)	2(1)
C(3)	50(1)	64(2)	52(2)	-12(1)	-3(1)	8(1)
C(4)	42(1)	35(1)	44(1)	1(1)	2(1)	7(1)
C(7)	44(1)	56(1)	26(1)	3(1)	4(1)	11(1)

C(11)	39(1)	37(1)	43(1)	-4(1)	4(1)	-1(1)
C(12)	43(1)	42(1)	38(1)	-2(1)	3(1)	-2(1)
C(13)	44(1)	47(1)	45(1)	0(1)	6(1)	-3(1)
C(6)	53(2)	72(2)	68(2)	12(2)	14(2)	3(1)
C(5)	46(1)	65(2)	48(2)	8(1)	6(1)	6(1)
C(10)	44(1)	58(1)	28(1)	2(1)	0(1)	7(1)
C(14)	41(1)	31(1)	29(1)	0(1)	-1(1)	-3(1)
C(15)	40(1)	30(1)	26(1)	-1(1)	-2(1)	-4(1)
C(16)	35(1)	35(1)	33(1)	1(1)	-1(1)	-6(1)
C(17)	47(1)	28(1)	38(1)	2(1)	1(1)	-5(1)
C(18)	42(1)	33(1)	38(1)	1(1)	4(1)	2(1)
C(20)	41(1)	29(1)	42(1)	0(1)	-2(1)	-7(1)
C(19)	35(1)	38(1)	49(1)	0(1)	3(1)	-4(1)
C(9)	46(1)	58(1)	30(1)	8(1)	3(1)	6(1)
C(8)	46(1)	52(1)	28(1)	-5(1)	2(1)	9(1)
O(2)	45(1)	44(1)	48(1)	-6(1)	-5(1)	1(1)
O(1)	54(1)	50(1)	47(1)	-8(1)	7(1)	-7(1)
O(2W)	57(1)	71(1)	44(1)	-3(1)	-8(1)	3(1)
O(4)	46(1)	30(1)	60(1)	-5(1)	-10(1)	0(1)
O(3)	44(1)	34(1)	99(2)	4(1)	12(1)	5(1)
O(5)	39(1)	42(1)	53(1)	-7(1)	-9(1)	0(1)
O(1W)	45(1)	56(1)	142(2)	9(1)	23(1)	-1(1)
N(1)	40(1)	44(1)	32(1)	1(1)	2(1)	8(1)
N(2)	39(1)	35(1)	29(1)	-2(1)	3(1)	3(1)

TABELA A4.6 – Hydrogen coordinates (x 10^4) and isotropic displacement parameters (\mathring{A}^2 x 10^3) for dropropizine with 4 hydroxybenzoic acid

	X	у	Z	U(eq)
	07.40	0000	400	
H(1)	6513	3963	-189	78
H(2)	5769	3999	909	79
H(3)	4227	3805	972	66
H(7B)	2816	3645	-1155	50
H(7A)	2557	4471	-704	50
H(11B)	87	2929	-69	47

H(11A)	-160	3810	-440	47
H(12)	-274	3409	1056	49
H(13B)	-1585	3217	319	54
H(13A)	-1762	3903	934	54
H(6)	5692	3729	-1238	77
H(5)	4150	3528	-1196	64
H(10A)	2635	4329	694	52
H(10B)	2931	3426	1001	52
H(16)	-3815	-1367	2414	41
H(17)	-2814	-2511	2404	45
H(20)	-1734	300	2438	45
H(19)	-727	-827	2411	49
H(9B)	1595	2802	592	54
H(9A)	1350	3601	1081	54
H(8A)	1235	3815	-1100	50
H(8B)	1530	2935	-747	50
H(22)	-1792	4166	-429	68
H(21)	-202	4699	1308	75
H(2WA)	1504	6460	1476	69
H(2WB)	2403	6327	1561	69
H(23)	-1300	-2899	2443	89
H(1WA)	-187	2051	2778	97
H(1WB)	-167	1114	2716	97
H(2N)	1161	4412	35	41

TABELA A4.7 – Torsion angles [°] for dropropizine with 4 hydroxybenzoic acid

C(6)-C(1)-C(2)-C(3)	-0.1(5)
C(1)-C(2)-C(3)-C(4)	-0.3(5)
C(2)-C(3)-C(4)-C(5)	0.8(4)
C(2)-C(3)-C(4)-N(1)	178.5(2)
N(2)-C(11)-C(12)-O(1)	40.2(3)
N(2)-C(11)-C(12)-C(13)	161.96(18)
O(1)-C(12)-C(13)-O(2)	55.4(3)
C(11)-C(12)-C(13)-O(2)	-64.6(2)
C(2)-C(1)-C(6)-C(5)	0.0(5)
C(1)-C(6)-C(5)-C(4)	0.5(4)

C(3)-C(4)-C(5)-C(6)	-0.9(4)
N(1)-C(4)-C(5)-C(6)	-178.6(2)
O(5)-C(14)-C(15)-C(16)	-18.3(3)
O(4)-C(14)-C(15)-C(16)	163.4(2)
O(5)-C(14)-C(15)-C(20)	160.1(2)
O(4)-C(14)-C(15)-C(20)	-18.2(3)
C(20)-C(15)-C(16)-C(17)	0.3(3)
C(14)-C(15)-C(16)-C(17)	178.8(2)
C(15)-C(16)-C(17)-C(18)	-0.3(3)
C(16)-C(17)-C(18)-O(3)	179.2(2)
C(16)-C(17)-C(18)-C(19)	-0.4(3)
C(16)-C(15)-C(20)-C(19)	0.2(3)
C(14)-C(15)-C(20)-C(19)	-178.3(2)
C(15)-C(20)-C(19)-C(18)	-0.8(4)
O(3)-C(18)-C(19)-C(20)	-178.8(2)
C(17)-C(18)-C(19)-C(20)	0.9(4)
N(1)-C(10)-C(9)-N(2)	-55.9(3)
N(1)-C(7)-C(8)-N(2)	56.1(3)
C(5)-C(4)-N(1)-C(10)	-169.0(2)
C(3)-C(4)-N(1)-C(10)	13.3(3)
C(5)-C(4)-N(1)-C(7)	-35.2(3)
C(3)-C(4)-N(1)-C(7)	147.2(2)
C(9)-C(10)-N(1)-C(4)	-171.91(18)
C(9)-C(10)-N(1)-C(7)	52.7(3)
C(8)-C(7)-N(1)-C(4)	171.62(18)
C(8)-C(7)-N(1)-C(10)	-52.8(3)
C(10)-C(9)-N(2)-C(8)	57.2(2)
C(10)-C(9)-N(2)-C(11)	179.76(18)
C(7)-C(8)-N(2)-C(9)	-57.6(2)
C(7)-C(8)-N(2)-C(11)	177.41(18)
C(12)-C(11)-N(2)-C(9)	60.7(2)
C(12)-C(11)-N(2)-C(8)	-177.71(18)

Symmetry transformations used to generate equivalent atoms:

Sulfametoxazol hemihidratada

TABELA A4.8 – Crystal data and structure refinement for mo_rjfscu_0m

Identification code mo_rjfscu_0m

Empirical formula C20 H24 N6 O7 S2

 Formula weight
 524.57

 Temperature
 293(2) K

 Wavelength
 0.71073 A

Crystal system, space group Monoclinic, P 21

Unit cell dimensions a = 8.3750(3) A alpha = 90 deg.

b = 15.1402(6) A beta = 101.6920(10) deg.

c = 9.7402(4) A gamma = 90 deg.

Volume 1209.42(8) A³

Z 2

Calculated density 1.440 Mg/m^3
Absorption coefficient 0.274 mm^-1

F(000) 548

Crystal size $0.15 \times 0.10 \times 0.08 \text{ mm}$ Theta range for data collection 2.14 to 26.40 deg.

Limiting indices -10<=h<=10, -18<=k<=18, -12<=l<=10

Reflections collected / unique 13999 / 4964 [R(int) = 0.0222]

Completeness to theta = 26.40 100.0 %

Absorption correction Semi-empirical from equivalents
Refinement method Full-matrix least-squares on F^2

Data / restraints / parameters 4964 / 1 / 319

Goodness-of-fit on F² 1.060

Final R indices [I>2sigma(I)] R1 = 0.0273, wR2 = 0.0756 R indices (all data) R1 = 0.0283, wR2 = 0.0767

Absolute structure parameter 0.05(4)
Extinction coefficient 0.0227(17)

Largest diff. peak and hole 0.224 and -0.263 e.A^-3

TABELA A4.9 – Hydrogen bonds for sulfamethoxazole hemihydrate [Å and °]

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(01)-H(1N1)N(06)#1	0.86	2.53	3.304(4)	150
N(01)-H(2N1)O(04)#2	0.86	2.49	3.072(3)	126
N(02)-H(1N2)O(05)#2	0.86	2.01	2.870(3)	173
N(04)-H(1N4)N(03)#1	0.86	2.25	3.083(3)	162
N(04)-H(2N4)O(01)#2	0.86	2.12	2.946(3)	161
N(05)-H(1N5)O(1W)#1	0.86	2.11	2.770(3)	133
O(1W)-H(1W)O(02)#1	0.90	2.33	3.009(3)	132
O(1W)-H(1W)N(01)#1	0.90	2.53	3.169(4)	132
O(1W)-H(2W)N(04)#1	0.90	2.09	2.945(3)	159
C(18)-H(18)O(01)#2	0.93	2.54	3.371(4)	148
C(20)-H(20C)O(02)#1	0.96	2.48	3.381(5)	157
C(20)-H(20B)Cg(3)#1	0.96	2.99	3.744(4)	136
C(06)-H(06)Cg(2)#2	0.93	2.91	3.786(3)	157

#1 'x, y, z' #2 '-x, y+1/2, -z'

TABELA A4.10 – Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å 2 x 10^3) for dropropizine with 4 hydroxybenzoic acid. U(eq) is defined as one third of the trace of the orthogonalized U ij tensor

Х		у	Z	U(eq)
S(01)	8477(1)	2968(1)	9592(1)	37(1)
S(02)	1457(1)	6705(1)	5136(1)	43(1)
O(05)	9533(2)	2703(1)	8671(2)	51(1)
O(04)	8340(2)	2404(1)	10737(2)	51(1)
O(01)	891(3)	7603(2)	4994(2)	70(1)
O(02)	545(2)	6072(2)	5748(2)	67(1)
O(06)	7618(3)	5531(2)	12086(2)	62(1)
N(05)	9214(2)	3922(1)	10201(2)	37(1)
N(03)	2392(3)	4969(2)	3933(2)	53(1)
O(03)	2989(3)	4311(1)	3128(2)	59(1)
N(04)	1874(2)	3726(2)	6312(2)	46(1)
C(07)	2056(3)	5639(2)	3085(2)	37(1)

C(17)	8510(3)	4403(2)	11152(2)	35(1)	
N(02)	1475(3)	6430(2)	3516(2)	46(1)	
C(14)	3419(3)	3500(2)	7018(2)	35(1)	
C(11)	6513(3)	3162(2)	8604(2)	34(1)	
C(01)	3478(3)	6669(2)	6036(2)	36(1)	
C(15)	4744(3)	4031(2)	6889(3)	39(1)	
C(12)	5224(3)	2617(2)	8728(3)	42(1)	
N(06)	8199(3)	5233(2)	10905(2)	52(1)	
C(16)	6266(3)	3869(2)	7669(3)	40(1)	
N(01)	8265(3)	6588(2)	8259(3)	72(1)	
C(02)	3861(3)	6236(2)	7311(3)	43(1)	
C(08)	2391(3)	5466(2)	1752(3)	45(1)	
C(13)	3690(3)	2778(2)	7932(3)	42(1)	
C(18)	8156(3)	4122(2)	12441(3)	49(1)	
C(04)	6674(3)	6639(2)	7539(3)	46(1)	
C(03)	5439(3)	6224(2)	8057(3)	47(1)	
C(19)	7599(4)	4847(2)	12968(3)	53(1)	
C(06)	4691(4)	7105(2)	5516(3)	52(1)	
C(05)	6268(4)	7091(2)	6258(4)	58(1)	
C(09)	2959(3)	4638(2)	1834(3)	48(1)	
C(10)	3540(4)	4028(3)	847(4)	68(1)	
C(20)	7031(5)	5040(3)	14287(4)	84(1)	
O(1W)	10362(3)	4856(2)	8155(2)	69(1)	

TABELA A4.11	I – Bond lengths [A] and	O(06)-N(06)	1.410(3)
angles [°]	for sulfamethoxazole	N(05)-C(17)	1.400(3)
hemihydrate		N(05)-H(1N5)	0.8600
		N(03)-C(07)	1.302(3)
S(01)-O(04)	1.428(2)	N(03)-O(03)	1.420(3)
S(01)-O(05)	1.4392(19)	O(03)-C(09)	1.350(4)
S(01)-N(05)	1.634(2)	N(04)-C(14)	1.380(3)
S(01)-C(11)	1.754(2)	N(04)-H(1N4)	0.8603
S(02)-O(02)	1.428(2)	N(04)-H(2N4)	0.8605
S(02)-O(01)	1.437(2)	C(07)-N(02)	1.389(3)
S(02)-N(02)	1.636(2)	C(07)-C(08)	1.408(4)
S(02)-C(01)	1.742(2)	C(17)-N(06)	1.295(4)
O(06)-C(19)	1.349(4)	C(17)-C(18)	1.413(3)

N(02)-H(1N2)	0.8600	O(04)-S(01)-N(05)	109.22(12)
C(14)-C(15)	1.396(3)	O(05)-S(01)-N(05)	103.75(11)
C(14)-C(13)	1.398(4)	O(04)-S(01)-C(11)	108.32(11)
C(11)-C(12)	1.383(3)	O(05)-S(01)-C(11)	109.35(11)
C(11)-C(16)	1.393(3)	N(05)-S(01)-C(11)	107.16(10)
C(01)-C(02)	1.383(3)	O(02)-S(02)-O(01)	118.71(17)
C(01)-C(06)	1.390(4)	O(02)-S(02)-N(02)	110.01(14)
C(15)-C(16)	1.367(3)	O(01)-S(02)-N(02)	102.42(13)
C(15)-H(15)	0.9300	O(02)-S(02)-C(01)	108.44(13)
C(12)-C(13)	1.381(4)	O(01)-S(02)-C(01)	110.26(13)
C(12)-H(12)	0.9300	N(02)-S(02)-C(01)	106.25(11)
C(16)-H(16)	0.9300	C(19)-O(06)-N(06)	108.9(2)
N(01)-C(04)	1.376(3)	C(17)-N(05)-S(01)	121.43(16)
N(01)-H(1N1)	0.8605	C(17)-N(05)-H(1N5)	119.3
N(01)-H(2N1)	0.8599	S(01)-N(05)-H(1N5)	119.3
C(02)-C(03)	1.373(4)	C(07)-N(03)-O(03)	104.5(2)
C(02)-H(02)	0.9300	C(09)-O(03)-N(03)	108.4(2)
C(08)-C(09)	1.337(4)	C(14)-N(04)-H(1N4)	117.6
C(08)-H(08)	0.9300	C(14)-N(04)-H(2N4)	119.7
C(13)-H(13)	0.9300	H(1N4)-N(04)-H(2N4)	110.9
C(18)-C(19)	1.335(4)	N(03)-C(07)-N(02)	121.6(2)
C(18)-H(18)	0.9300	N(03)-C(07)-C(08)	112.5(2)
C(04)-C(03)	1.389(4)	N(02)-C(07)-C(08)	125.9(2)
C(04)-C(05)	1.403(4)	N(06)-C(17)-N(05)	118.6(2)
C(03)-H(03)	0.9300	N(06)-C(17)-C(18)	112.8(2)
C(19)-C(20)	1.487(4)	N(05)-C(17)-C(18)	128.5(2)
C(06)-C(05)	1.371(4)	C(07)-N(02)-S(02)	125.68(18)
C(06)-H(06)	0.9300	C(07)-N(02)-H(1N2)	117.2
C(05)-H(05)	0.9300	S(02)-N(02)-H(1N2)	117.2
C(09)-C(10)	1.485(4)	N(04)-C(14)-C(15)	119.6(2)
C(10)-H(10A)	0.9600	N(04)-C(14)-C(13)	121.8(2)
C(10)-H(10B)	0.9600	C(15)-C(14)-C(13)	118.5(2)
C(10)-H(10C)	0.9600	C(12)-C(11)-C(16)	120.0(2)
C(20)-H(20A)	0.9600	C(12)-C(11)-S(01)	120.94(18)
C(20)-H(20B)	0.9600	C(16)-C(11)-S(01)	119.04(17)
C(20)-H(20C)	0.9600	C(02)-C(01)-C(06)	119.9(2)
O(1W)-H(1W)	0.9001	C(02)-C(01)-S(02)	119.43(19)
O(1W)-H(2W)	0.9000	C(06)-C(01)-S(02)	120.58(19)
O(04)-S(01)-O(05)	118.47(13)	C(16)-C(15)-C(14)	121.0(2)

C(16)-C(15)-H(15)			
	119.5	C(08)-C(09)-O(03)	109.8(2)
C(14)-C(15)-H(15)	119.5	C(08)-C(09)-C(10)	134.7(3)
C(13)-C(12)-C(11)	120.0(2)	O(03)-C(09)-C(10)	115.5(3)
C(13)-C(12)-H(12)	120.0	C(09)-C(10)-H(10A)	109.5
C(11)-C(12)-H(12)	120.0	C(09)-C(10)-H(10B)	109.5
C(17)-N(06)-O(06)	104.4(2)	H(10A)-C(10)-H(10B)	109.5
C(15)-C(16)-C(11)	119.9(2)	C(09)-C(10)-H(10C)	109.5
C(15)-C(16)-H(16)	120.0	H(10A)-C(10)-H(10C)	109.5
C(11)-C(16)-H(16)	120.0	H(10B)-C(10)-H(10C)	109.5
C(04)-N(01)-H(1N1)	123.2	C(19)-C(20)-H(20A)	109.5
C(04)-N(01)-H(2N1)	112.7	C(19)-C(20)-H(20B)	109.5
H(1N1)-N(01)-H(2N1)	119.2	H(20A)-C(20)-H(20B)	109.5
C(03)-C(02)-C(01)	120.3(2)	C(19)-C(20)-H(20C)	109.5
C(03)-C(02)-H(02)	119.9	H(20A)-C(20)-H(20C)	109.5
C(01)-C(02)-H(02)	119.9	H(20B)-C(20)-H(20C)	109.5
C(09)-C(08)-C(07)	104.7(2)	H(1W)-O(1W)-H(2W)	107.7
C(09)-C(08)-H(08)	127.7		
C(07)-C(08)-H(08)	127.7	Symmetry transformations used to	generate equivaler
C(12)-C(13)-C(14)	120.5(2)	atoms:	
C(12)-C(13)-H(13)	119.7		
C(14)-C(13)-H(13)	119.7		
C(19)-C(18)-C(17)	104.2(3)		
C(19)-C(18)-H(18)	127.9		
C(17) C(10) U(10)			
C(17)-C(18)-H(18)	127.9		
N(01)-C(04)-C(03)	127.9 120.3(3)		
N(01)-C(04)-C(03)	120.3(3)		
N(01)-C(04)-C(03) N(01)-C(04)-C(05)	120.3(3) 121.0(3)		
N(01)-C(04)-C(03) N(01)-C(04)-C(05) C(03)-C(04)-C(05)	120.3(3) 121.0(3) 118.6(2)		
N(01)-C(04)-C(03) N(01)-C(04)-C(05) C(03)-C(04)-C(05) C(02)-C(03)-C(04)	120.3(3) 121.0(3) 118.6(2) 120.6(3)		
N(01)-C(04)-C(03) N(01)-C(04)-C(05) C(03)-C(04)-C(05) C(02)-C(03)-C(04) C(02)-C(03)-H(03)	120.3(3) 121.0(3) 118.6(2) 120.6(3) 119.7		
N(01)-C(04)-C(03) N(01)-C(04)-C(05) C(03)-C(04)-C(05) C(02)-C(03)-C(04) C(02)-C(03)-H(03) C(04)-C(03)-H(03)	120.3(3) 121.0(3) 118.6(2) 120.6(3) 119.7 119.7		
N(01)-C(04)-C(03) N(01)-C(04)-C(05) C(03)-C(04)-C(05) C(02)-C(03)-C(04) C(02)-C(03)-H(03) C(04)-C(03)-H(03) C(18)-C(19)-O(06)	120.3(3) 121.0(3) 118.6(2) 120.6(3) 119.7 119.7 109.7(2)		
N(01)-C(04)-C(03) N(01)-C(04)-C(05) C(03)-C(04)-C(05) C(02)-C(03)-C(04) C(02)-C(03)-H(03) C(04)-C(03)-H(03) C(18)-C(19)-O(06) C(18)-C(19)-C(20)	120.3(3) 121.0(3) 118.6(2) 120.6(3) 119.7 119.7 109.7(2) 133.8(4)		
N(01)-C(04)-C(03) N(01)-C(04)-C(05) C(03)-C(04)-C(05) C(02)-C(03)-C(04) C(02)-C(03)-H(03) C(04)-C(03)-H(03) C(18)-C(19)-O(06) C(18)-C(19)-C(20) O(06)-C(19)-C(20)	120.3(3) 121.0(3) 118.6(2) 120.6(3) 119.7 119.7 109.7(2) 133.8(4) 116.5(3)		
N(01)-C(04)-C(03) N(01)-C(04)-C(05) C(03)-C(04)-C(05) C(02)-C(03)-C(04) C(02)-C(03)-H(03) C(04)-C(03)-H(03) C(18)-C(19)-O(06) C(18)-C(19)-C(20) O(06)-C(19)-C(20) C(05)-C(06)-C(01)	120.3(3) 121.0(3) 118.6(2) 120.6(3) 119.7 119.7 109.7(2) 133.8(4) 116.5(3) 119.9(2)		
N(01)-C(04)-C(03) N(01)-C(04)-C(05) C(03)-C(04)-C(05) C(02)-C(03)-C(04) C(02)-C(03)-H(03) C(04)-C(03)-H(03) C(18)-C(19)-O(06) C(18)-C(19)-C(20) O(06)-C(19)-C(20) C(05)-C(06)-C(01) C(05)-C(06)-H(06)	120.3(3) 121.0(3) 118.6(2) 120.6(3) 119.7 119.7 109.7(2) 133.8(4) 116.5(3) 119.9(2) 120.1		
N(01)-C(04)-C(03) N(01)-C(04)-C(05) C(03)-C(04)-C(05) C(02)-C(03)-C(04) C(02)-C(03)-H(03) C(04)-C(03)-H(03) C(18)-C(19)-O(06) C(18)-C(19)-C(20) O(06)-C(19)-C(20) C(05)-C(06)-C(01) C(05)-C(06)-H(06) C(01)-C(06)-H(06)	120.3(3) 121.0(3) 118.6(2) 120.6(3) 119.7 119.7 109.7(2) 133.8(4) 116.5(3) 119.9(2) 120.1		

TABELA A4.12 – Anisotropic displacement parameters (Å2x 10³)for dropo_4hydro. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11}$ +... + 2 h k a* b* U^{12}]

	U ¹¹	U ²²	U33	U ²³	U13	_ U12
S(01)	33(1)	36(1)	40(1)	-2(1)	3(1)	2(1)
S(02)	37(1)	55(1)	36(1)	-1(1)	2(1)	12(1)
O(05)	37(1)	58(1)	57(1)	-19(1)	7(1)	4(1)
O(04)	50(1)	44(1)	55(1)	12(1)	-1(1)	2(1)
O(01)	72(1)	72(2)	56(1)	-13(1)	-9(1)	40(1)
O(02)	39(1)	109(2)	51(1)	12(1)	9(1)	-8(1)
O(06)	69(1)	57(1)	62(1)	-15(1)	21(1)	10(1)
N(05)	33(1)	42(1)	38(1)	-4(1)	9(1)	-5(1)
N(03)	72(2)	43(1)	44(1)	4(1)	12(1)	12(1)
O(03)	77(1)	42(1)	56(1)	-2(1)	9(1)	15(1)
N(04)	31(1)	56(1)	48(1)	4(1)	2(1)	-6(1)
C(07)	36(1)	36(1)	35(1)	1(1)	-2(1)	0(1)
C(17)	31(1)	41(1)	31(1)	-2(1)	3(1)	-3(1)
N(02)	58(1)	42(1)	32(1)	2(1)	-3(1)	10(1)
C(14)	32(1)	39(1)	34(1)	-8(1)	8(1)	-3(1)
C(11)	29(1)	36(1)	36(1)	-2(1)	5(1)	0(1)
C(01)	37(1)	35(1)	34(1)	-2(1)	3(1)	4(1)
C(15)	39(1)	42(1)	37(1)	6(1)	7(1)	-5(1)
C(12)	42(1)	32(1)	51(1)	6(1)	13(1)	-2(1)
N(06)	64(2)	47(1)	46(1)	1(1)	14(1)	10(1)
C(16)	35(1)	43(1)	43(1)	5(1)	7(1)	-10(1)
N(01)	46(1)	88(2)	74(2)	0(2)	-10(1)	-12(1)
C(02)	38(1)	53(2)	37(1)	5(1)	7(1)	1(1)
C(08)	47(1)	48(1)	39(1)	0(1)	4(1)	-2(1)
C(13)	34(1)	37(1)	57(1)	1(1)	12(1)	-10(1)
C(18)	54(2)	56(2)	37(1)	1(1)	13(1)	-7(1)
C(04)	40(1)	43(1)	50(1)	-9(1)	-2(1)	-1(1)
C(03)	49(1)	54(2)	35(1)	2(1)	1(1)	4(1)
C(19)	44(1)	71(2)	43(1)	-14(1)	11(1)	-10(1)
C(06)	54(2)	50(2)	50(2)	16(1)	4(1)	-5(1)
C(05)	49(2)	55(2)	70(2)	10(2)	10(1)	-16(1)
C(09)	44(1)	53(2)	46(1)	-9(1)	3(1)	-1(1)
C(10)	65(2)	72(2)	67(2)	-20(2)	13(2)	9(2)

C(20)	75(2)	125(4)	61(2)	-38(2)	33(2)	-26(2)
O(1W)	88(2)	60(1)	69(1)	15(1)	43(1)	9(1)

TABELA A4.13 – Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å^2 x 10^3) for dropropizine with 4 hydroxybenzoic acid

	X	у	z	U(eq
H(1N5)	10054	4132	9932	44
H(1N4)	1794	4106	5645	55
H(2N4)	1136	3325	6110	55
H(1N2)	1091	6807	2874	55
H(15)	4589	4501	6263	47
H(12)	5390	2143	9347	50
H(16)	7136	4230	7575	48
H(1N1)	8538	6377	9094	87
H(2N1)	8886	6972	7980	87
H(02)	3046	5951	7665	51
H(08)	2249	5844	983	54
H(13)	2831	2404	8004	51
H(18)	8283	3560	12833	58
H(03)	5684	5935	8917	56
H(06)	4433	7406	4668	62
H(05)	7077	7383	5908	70
H(10A)	2793	3543	630	102
H(10B)	4600	3807	1272	102
H(10C)	3604	4339	1	102
H(20A)	6844	4495	14734	126
H(20B)	6035	5372	14075	126
H(20C)	7847	5377	14903	126
H(1W)	9845	5287	7601	103
H(2W)	11057	4591	7692	103

TABELA A4.14 – Torsion angles [°] for sulfamethoxazole hemihydrate

O(04)-S(01)-N(05)-C(17)	-52.7(2)
O(05)-S(01)-N(05)-C(17)	-179.95(19)
C(11)-S(01)-N(05)-C(17)	64.4(2)
C(07)-N(03)-O(03)-C(09)	-0.3(3)
O(03)-N(03)-C(07)-N(02)	-178.3(2)
O(03)-N(03)-C(07)-C(08)	0.2(3)
S(01)-N(05)-C(17)-N(06)	-131.2(2)
S(01)-N(05)-C(17)-C(18)	53.1(3)
N(03)-C(07)-N(02)-S(02)	12.2(4)
C(08)-C(07)-N(02)-S(02)	-166.0(2)
O(02)-S(02)-N(02)-C(07)	-58.2(3)
O(01)-S(02)-N(02)-C(07)	174.6(2)
C(01)-S(02)-N(02)-C(07)	58.9(3)
O(04)-S(01)-C(11)-C(12)	-18.1(2)
O(05)-S(01)-C(11)-C(12)	112.3(2)
N(05)-S(01)-C(11)-C(12)	-135.8(2)
O(04)-S(01)-C(11)-C(16)	162.8(2)
O(05)-S(01)-C(11)-C(16)	-66.7(2)
N(05)-S(01)-C(11)-C(16)	45.1(2)
O(02)-S(02)-C(01)-C(02)	-14.0(3)
O(01)-S(02)-C(01)-C(02)	117.5(2)
N(02)-S(02)-C(01)-C(02)	-132.3(2)
O(02)-S(02)-C(01)-C(06)	168.9(2)
O(01)-S(02)-C(01)-C(06)	-59.5(3)
N(02)-S(02)-C(01)-C(06)	50.7(3)
N(04)-C(14)-C(15)-C(16)	174.2(2)
C(13)-C(14)-C(15)-C(16)	-2.0(4)
C(16)-C(11)-C(12)-C(13)	-0.5(4)
S(01)-C(11)-C(12)-C(13)	-179.5(2)
N(05)-C(17)-N(06)-O(06)	-176.0(2)
C(18)-C(17)-N(06)-O(06)	0.4(3)
C(19)-O(06)-N(06)-C(17)	-0.8(3)
C(14)-C(15)-C(16)-C(11)	0.3(4)
C(12)-C(11)-C(16)-C(15)	0.9(4)
S(01)-C(11)-C(16)-C(15)	180.0(2)
C(06)-C(01)-C(02)-C(03)	-0.9(4)

N(03)-C(07)-C(08)-C(09)	0.0(3)
N(02)-C(07)-C(08)-C(09)	178.4(2)
C(11)-C(12)-C(13)-C(14)	-1.3(4)
N(04)-C(14)-C(13)-C(12)	-173.6(2)
C(15)-C(14)-C(13)-C(12)	2.5(4)
N(06)-C(17)-C(18)-C(19)	0.1(3)
N(05)-C(17)-C(18)-C(19)	176.1(2)
C(01)-C(02)-C(03)-C(04)	-0.5(4)
N(01)-C(04)-C(03)-C(02)	-176.8(3)
C(05)-C(04)-C(03)-C(02)	1.7(4)
C(17)-C(18)-C(19)-O(06)	-0.6(3)
C(17)-C(18)-C(19)-C(20)	-178.8(3)
N(06)-O(06)-C(19)-C(18)	0.9(3)
N(06)-O(06)-C(19)-C(20)	179.5(3)
C(02)-C(01)-C(06)-C(05)	1.2(4)
S(02)-C(01)-C(06)-C(05)	178.2(2)
C(01)-C(06)-C(05)-C(04)	0.0(5)
N(01)-C(04)-C(05)-C(06)	177.1(3)
C(03)-C(04)-C(05)-C(06)	-1.5(5)
C(07)-C(08)-C(09)-O(03)	-0.2(3)
C(07)-C(08)-C(09)-C(10)	179.8(3)
N(03)-O(03)-C(09)-C(08)	0.3(3)
N(03)-O(03)-C(09)-C(10)	-179.7(3)

Symmetry transformations used to generate equivalent atoms:

APÊNDICE 5

TABELA A5.1 – Energia para cada passo no mecanismo direto

Passo	Parâmetro 1 (Å)	Parâmetro 2 (Å)	Parâmetro 3 (Å)	Parâmetro 4 (Å)	Energia (hartree)
1	1,90354	1,87454	1,7043	2,0294	-2.828,31590
2	1,86054	1,83254	1,6708	1,9839	-2.828,32810
3	1,81754	1,79054	1,6373	1,9384	-2.828,32533
4	1,77454	1,74854	1,6038	1,8929	-2.828,30871
5	1,73154	1,70654	1,5703	1,8474	-2.828,28676
6	1,68854	1,66454	1,5368	1,8019	-2.828,26149
7	1,64554	1,62254	1,5033	1,7564	-2.828,23561
8	1,60254	1,58054	1,4698	1,7109	-2.828,21130
9	1,55954	1,53854	1,4363	1,6654	-2.828,19020
10	1,51654	1,49654	1,4028	1,6199	-2.828,17356
11	1,47354	1,45454	1,3693	1,5744	-2.828,16217
12	1,43054	1,41254	1,3358	1,5289	-2.828,15650
13	1,38754	1,37054	1,3023	1,4834	-2.828,15663
14	1,34454	1,32854	1,2688	1,4379	-2.828,16233
15	1,30154	1,28654	1,2353	1,3924	-2.828,17303
16	1,25854	1,24454	1,2018	1,3469	-2.828,18787
17	1,21554	1,20254	1,1683	1,3014	-2.828,20561
18	1,17254	1,16054	1,1348	1,2559	-2.828,22469
19	1,12954	1,11854	1,1013	1,2104	-2.828,24316
20	1,08654	1,07654	1,0678	1,1649	-2.828,25868
21	1,04354	1,03454	1,0343	1,1194	-2.828,26851
22	1,00054	0,99254	1,0008	1,0739	-2.828,26946
23	0,95754	0,95054	0,9673	1,0284	-2.828,25787

TABELA A5.2 – Resultado da SEP para a etapa 1

Passo	Parâmetro 1	Parâmetro 2	Energia
	(Å)	(Å)	(hartree)
1	1,0005	0,9925	-2828,21253
2	1,0005	1,0345	-2828,21751
3	1,0005	1,0765	-2828,21919
4	1,0005	1,1185	-2828,21872
5	1,0005	1,1605	-2828,21699
6	1,0005	1,2025	-2828,21466
7	1,0005	1,2445	-2828,21221
8	1,0005	1,2865	-2828,21002
9	1,0005	1,3285	-2828,20831
10	1,0005	1,3705	-2828,20724
11	1,0005	1,4125	-2828,20690
12	1,0005	1,4545	-2828,20730
13	1,0005	1,4965	-2828,20839
14	1,0005	1,5385	-2828,21008
15	1,0005	1,5805	-2828,21219
16	1,0005	1,6225	-2828,21451
17	1,0005	1,6645	-2828,21672
18	1,0005	1,7065	-2828,21842
19	1,0005	1,7485	-2828,21913
20	1,0005	1,7905	-2828,21823
21	1,0005	1,8325	-2828,21498
22	1,0435	0,9925	-2828,21325
23	1,0435	1,0345	-2828,21841
24	1,0435	1,0765	-2828,22029

25	1,0435	1,1185	-2828,22003
26	1,0435	1,1605	-2828,21853
27	1,0435	1,2025	-2828,21645
28	1,0435	1,2445	-2828,21426
29	1,0435	1,2865	-2828,21234
30	1,0435	1,3285	-2828,21091
31	1,0435	1,3705	-2828,21014
32	1,0435	1,4125	-2828,21009
33	1,0435	1,4545	-2828,21078
34	1,0435	1,4965	-2828,21218
35	1,0435	1,5385	-2828,21416
36	1,0435	1,5805	-2828,21657
37	1,0435	1,6225	-2828,21918
38	1,0435	1,6645	-2828,22168
39	1,0435	1,7065	-2828,22368
40	1,0435	1,7485	-2828,22466
41	1,0435	1,7905	-2828,22404
42	1,0435	1,8325	-2828,22106
43	1,0865	0,9925	-2828,21067
44	1,0865	1,0345	-2828,21602
45	1,0865	1,0765	-2828,21811
46	1,0865	1,1185	-2828,21809
47	1,0865	1,1605	-2828,21684
48	1,0865	1,2025	-2828,21502
49	1,0865	1,2445	-2828,21312
50	1,0865	1,2865	-2828,21149
51	1,0865	1,3285	-2828,21036
52	1,0865	1,3705	-2828,20989

53	1,0865	1,4125	-2828,21016	114	1,2155	1,3285	-2828,20
54	1,0865	1,4545	-2828,21117	115	1,2155	1,3705	-2828,20
55	1,0865	1,4965	-2828,21288	116	1,2155	1,4125	-2828,20
56	1,0865	1,5385	-2828,21518	117	1,2155	1,4545	-2828,20
57	1,0865	1,5805	-2828,21790	118	1,2155	1,4965	-2828,20
58	1,0865	1,6225	-2828,22083	119	1,2155	1,5385	-2828,21
59	1,0865	1,6645	-2828,22364	120	1,2155	1,5805	-2828,21
		•					
60	1,0865	1,7065	-2828,22593	121	1,2155	1,6225	-2828,21
61	1,0865	1,7485	-2828,22722	122	1,2155	1,6645	-2828,22
62	1,0865	1,7905	-2828,22688	123	1,2155	1,7065	-2828,22
63	1,0865	1,8325	-2828,22418	124	1,2155	1,7485	-2828,2
64	1,1295	0,9925	-2828,20598	125	1,2155	1,7905	-2828,22
65	1,1295	1,0345	-2828,21154	126	1,2155	1,8325	-2828,2
66	1,1295	1,0765	-2828,21386	127	1,2585	0,9925	-2828,1
67	1,1295	1,1185	-2828,21409	128	1,2585	1,0345	-2828,19
68	1,1295	1,1605	-2828,21311	129	1,2585	1,0765	-2828,1
69	1,1295	1,2025	-2828,21157	130	1,2585	1,1185	-2828,1
70	1,1295	1,2445	-2828,20997	131	1,2585	1,1605	-2828,1
71	1,1295	1,2865	-2828,20864	132	1,2585	1,2025	-2828,1
72	1,1295	1,3285	-2828,20783	133	1,2585	1,2445	-2828,1
73	1,1295	1,3705	-2828,20769	134	1,2585	1,2865	-2828,1
74	1,1295	1,4125	-2828,20829	135	1,2585	1,3285	-2828,1
75	1,1295	1,4545	-2828,20963	136	1,2585	1,3705	-2828,1
76	1,1295	1,4965	-2828,21167	137	1,2585	1,3705	-2828,1
77	1,1295	1,4905	-2828,21430	138	1,2585	1,4125	-2020, 1° -2828,2
			•				
78	1,1295	1,5805	-2828,21736	139	1,2585	1,4965	-2828,2
79	1,1295	1,6225	-2828,22061	140	1,2585	1,5385	-2828,2
80	1,1295	1,6645	-2828,22374	141	1,2585	1,5805	-2828,2
81	1,1295	1,7065	-2828,22635	142	1,2585	1,6225	-2828,2
82	1,1295	1,7485	-2828,22794	143	1,2585	1,6645	-2828,2
83	1,1295	1,7905	-2828,22790	144	1,2585	1,7065	-2828,2
84	1,1295	1,8325	-2828,22550	145	1,2585	1,7485	-2828,2
85	1,1725	0,9925	-2828,20010	146	1,2585	1,7905	-2828,2
86	1,1725	1,0345	-2828,20588	147	1,2585	1,8325	-2828,2
87	1,1725	1,0765	-2828,20844	148	1,3015	0,9925	-2828,1
88	1,1725	1,1185	-2828,20893	149	1,3015	1,0345	-2828,1
89	1,1725	1,1605	-2828,20823	150	1,3015	1,0765	-2828,1
90	1,1725	1,2025	-2828,20699	151	1,3015	1,1185	-2828,1
91	1,1725	1,2445	-2828,20570	152	1,3015	1,1605	-2828,1
92	1,1725	1,2445	-2828,20470	153	1,3015	1,2025	-2828,1
93	1,1725	1,3285	-2828,20423	154	1,3015	1,2445	-2828,1
94	1,1725	1,3705	-2828,20443	155	1,3015	1,2445	-2828,1
			·				-2020, I -2828,1
95	1,1725	1,4125	-2828,20537	156	1,3015	1,3285	
96	1,1725	1,4545	-2828,20705	157	1,3015	1,3705	-2828,1
97	1,1725	1,4965	-2828,20944	158	1,3015	1,4125	-2828,1
98	1,1725	1,5385	-2828,21242	159	1,3015	1,4545	-2828,1
99	1,1725	1,5805	-2828,21582	160	1,3015	1,4965	-2828,2
100	1,1725	1,6225	-2828,21941	161	1,3015	1,5385	-2828,2
101	1,1725	1,6645	-2828,22287	162	1,3015	1,5805	-2828,2
102	1,1725	1,7065	-2828,22580	163	1,3015	1,6225	-2828,2
103	1,1725	1,7485	-2828,22771	164	1,3015	1,6645	-2828,2
104	1,1725	1,7905	-2828,22797	165	1,3015	1,7065	-2828,2
105	1,1725	1,8325	-2828,22586	166	1,3015	1,7485	-2828,2
106	1,2155	0,9925	-2828,19370	167	1,3015	1,7905	-2828,2
107	1,2155	1,0345	-2828,19972	168	1,3015	1,8325	-2828,2
108	1,2155	1,0765	-2828,20253	169	1,3445	0,9925	-2828,1
109	1,2155	1,1185	-2828,20330	170	1,3445	1,0345	-2828,1
110	1,2155	1,1605	-2828,20290	171	1,3445	1,0765	-2828,1
111	1,2155	1,2025	-2828,20197	172	1,3445	1,1185	-2828,1
112	1,2155	1,2025	-2828,20100	172	1,3445	1,1605	-2828,1
113	1,2155	1,2865	-2828,20034	<u> 174</u>	1,3445	1,2025	-2828,1

475	1 2 1 1 5	4.0445	0000 40057	000	4 4705	4.4005	0000 40070
175	1,3445	1,2445	-2828,18857	236	1,4735	1,1605	-2828,18079
176	1,3445	1,2865	-2828,18896	237	1,4735	1,2025	-2828,18186
177	1,3445	1,3285	-2828,18991	238	1,4735	1,2445	-2828,18297
178	1,3445	1,3705	-2828,19155	239	1,4735	1,2865	-2828,18442
179	1,3445	1,4125	-2828,19393	240	1,4735	1,3285	-2828,18644
180	1,3445	1,4545	-2828,19707	241	1,4735	1,3705	-2828,18915
181	1,3445	1,4965	-2828,20090	242	1,4735	1,4125	-2828,19261
182	1,3445	1,5385	-2828,20530	243	1,4735	1,4545	-2828,19681
183	1,3445	1,5805	-2828,21010	244	1,4735	1,4965	-2828,20168
184	1,3445	1,6225	-2828,21506	245	1,4735	1,5385	-2828,20711
185	1,3445	1,6645	-2828,21986	246	1,4735	1,5805	-2828,21290
186	1,3445	1,7065	-2828,22409	247	1,4735	1,6225	-2828,21883
187	1,3445	1,7485	-2828,22724	248	1,4735	1,6645	-2828,22455
188	1,3445	1,7905	-2828,22870	249	1,4735	1,7065	-2828,22966
189	1,3445	1,8325	-2828,22773	250	1,4735	1,7485	-2828,23364
190	1,3875	0,9925	-2828,17123	251	1,4735	1,7905	-2828,23590
191	1,3875	1,0345	-2828,17826	252	1,4735	1,8325	-2828,23568
192	1,3875	1,0765	-2828,18218	253	1,5165	0,9925	-2828,16272
193	1,3875	1,1185	-2828,18414	254	1,5165	1,0345	-2828,17054
194	1,3875	1,1605	-2828,18500	255	1,5165	1,0765	-2828,17531
195	1,3875	1,2025	-2828,18540	256	1,5165	1,1185	-2828,17819
196	1,3875	1,2445	-2828,18581	257	1,5165	1,1605	-2828,18001
197	1,3875	1,2865	-2828,18656	258	1,5165	1,2025	-2828,18142
198	1,3875	1,3285	-2828,18787	259	1,5165	1,2445	-2828,18286
199	1,3875	1,3705	-2828,18987	260	1,5165	1,2865	-2828,18466
200	1,3875	1,4125	-2828,19262	261	1,5165	1,3285	-2828,18702
201	1,3875	1,4545	-2828,19612	262	1,5165	1,3705	-2828,19008
202	1,3875	1,4965	-2828,20030	263	1,5165	1,4125	-2828,19388
203	1,3875	1,5385	-2828,20505	264	1,5165	1,4545	-2828,19841
204	1,3875	1,5805	-2828,21020	265	1,5165	1,4965	-2828,20361
205	1,3875	1,6225	-2828,21549	266	1,5165	1,5385	-2828,20935
206	1,3875	1,6645	-2828,22060	267	1,5165	1,5805	-2828,21546
207	1,3875	1,7065	-2828,22514	268	1,5165	1,6225	-2828,22168
208	1,3875	1,7485	-2828,22858	269	1,5165	1,6645	-2828,22768
209	1,3875	1,7905	-2828,23032	270	1,5165	1,7065	-2828,23305
210	1,3875	1,8325	-2828,22961	271	1,5165	1,7485	-2828,23729
211	1,4305	0,9925	-2828,16749	272	1,5165	1,7905	-2828,23978
212	1,4305	1,0345	-2828,17478	273	1,5165	1,8325	-2828,23979
213	1,4305	1,0765	-2828,17899	2/4	1,5595	0,9925	-2828,16158
214	1,4305	1,1185	-2828,18125	275	1,5595	1,0345	-2828,16966
215	1,4305	1,1605	-2828,18244	276	1,5595	1,0765	-2828,17471
216	1,4305	1,2025	-2828,18318	277	1,5595	1,1185	-2828,17788
217	1,4305	1,2445	-2828,18394	278	1,5595	1,1605	-2828,18002
218	1,4305	1,2865	-2828,18504	279	1,5595	1,2025	-2828,18175
219	1,4305	1,3285	-2828,18671	280	1,5595	1,2445	-2828,18352
220	1,4305	1,3705	-2828,18907	281	1,5595	1,2865	-2828,18565
221	1,4305	1,4125	-2828,19218	282	1,5595	1,3285	-2828,18835
222	1,4305	1,4545	-2828,19603	283	1,5595	1,3705	-2828,19173
223	1,4305	1,4965	-2828,20056	284	1,5595	1,4125	-2828,19586
224	1,4305	1,5385	-2828,20565	285	1,5595	1,4545	-2828,20072
225	1,4305	1,5805	-2828,21113	286	1,5595	1,4965	-2828,20623
226	1,4305	1,6225	-2828,21674	287	1,5595	1,5385	-2828,21228
227	1,4305	1,6645	-2828,22217	288	1,5595	1,5805	-2828,21868
228	1,4305	1,7065	-2828,22700	289	1,5595	1,6225	-2828,22518
229	1,4305	1,7485	-2828,23072	290	1,5595	1,6645	-2828,23144
230	1,4305	1,7905	-2828,23272	291	1,5595	1,7065	-2828,23707
231	1,4305	1,8325	-2828,23227	292	1,5595	1,7485	-2828,24155
232	1,4735	0,9925	-2828,16466	293	1,5595	1,7905	-2828,24426
233	1,4735	1,0345	-2828,17222	294	1,5595	1,8325	-2828,24448
234	1,4735	1,0765	-2828,17671	295	1,6025	0,9925	-2828,16111
235	1,4735	1,1185	-2828,17928	296	1,6025	1,0345	-2828,16944

207	1 6005	1 0765	0000 47477	250	1 7215	0.0005	0000 46400
297	1,6025	1,0765	-2828,17477	358	1,7315	0,9925	-2828,16122
298	1,6025	1,1185	-2828,17823	359	1,7315	1,0345	-2828,17025
299	1,6025	1,1605	-2828,18066	360	1,7315	1,0765	-2828,17633
300	1,6025	1,2025	-2828,18270	361	1,7315	1,1185	-2828,18059
301	1,6025	1,2445	-2828,18479	362	1,7315	1,1605	-2828,18386
302	1,6025	1,2865	-2828,18724	363	1,7315	1,2025	-2828,18675
303	1,6025	1,3285	-2828,19026	364	1,7315	1,2445	-2828,18970
304	1,6025	1,3705	-2828,19397	365	1,7315	1,2865	-2828,19302
305	1,6025	1,4125	-2828,19841	366	1,7315	1,3285	-2828,19690
306	1,6025	1,4545	-2828,20357	367	1,7315	1,3705	-2828,20145
307	1,6025	1,4965	-2828,20938	368	1,7315	1,4125	-2828,20673
308	1,6025	1,5385	-2828,21572	369	1,7315	1,4545	-2828,21270
309	1,6025	1,5805	-2828,22239	370	1,7315	1,4965	-2828,21929
310	1,6025	1,6225	-2828,22915	371	1,7315	1,5385	-2828,22638
311	1,6025	1,6645	-2828,23567	372	1,7315	1,5805	-2828,23378
312	1,6025	1,7065	-2828,24154	373	1,7315	1,6225	-2828,24123
313	1,6025	1,7485	-2828,24623	374	1,7315	1,6645	-2828,24839
314	1,6025	1,7905	-2828,24915	375	1,7315	1,7065	-2828,25486
315	1,6025	1,8325	-2828,24956	376	1,7315	1,7485	-2828,26012
316	1,6455	0,9925	-2828,16110	377	1,7315	1,7905	-2828,26357
317	1,6455	1,0345	-2828,16967	378	1,7315	1,8325	-2828,26447
318	1,6455	1,0765	-2828,17526	379	1,7745	0,9925	-2828,16051
319	1,6455	1,1185	-2828,17900	380	1,7745	1,0345	-2828,16975
320	1,6455	1,1605	-2828,18173	381	1,7745	1,0765	-2828,17606
321	1,6455	1,2025	-2828,18407	382	1,7745	1,1185	-2828,18055
322	1,6455	1,2445	-2828,18646	383	1,7745	1,1605	-2828,18406
323	1,6455	1,2445	-2828,18922	384	1,7745	1,1005	-2828,18720
324	1,6455	1,3285	-2828,19254	385	1,7745	1,2445	-2828,19041
325	1,6455	1,3705		386	1,7745	1,2445	-2828,19398
		1,4125	-2828,19655			1,3285	
326	1,6455		-2828,20128	387	1,7745		-2828,19811
327	1,6455	1,4545	-2828,20673	388	1,7745	1,3705	-2828,20291
328	1,6455	1,4965	-2828,21283	389	1,7745	1,4125	-2828,20842
329	1,6455	1,5385	-2828,21943	390	1,7745	1,4545	-2828,21462
330	1,6455	1,5805	-2828,22637	391	1,7745	1,4965	-2828,22143
331	1,6455	1,6225	-2828,23338	392	1,7745	1,5385	-2828,22874
332	1,6455	1,6645	-2828,24013	393	1,7745	1,5805	-2828,23633
333	1,6455	1,7065	-2828,24621	394	1,7745	1,6225	-2828,24397
334	1,6455	1,7485	-2828,25111	395	1,7745	1,6645	-2828,25131
335	1,6455	1,7905	-2828,25422	396	1,7745	1,7065	-2828,25795
336	1,6455	1,8325	-2828,25482	397	1,7745	1,7485	-2828,26337
337	1,6885	0,9925	-2828,16126	398	1,7745	1,7905	-2828,26696
338	1,6885	1,0345	-2828,17007	399	1,7745	1,8325	-2828,26800
339	1,6885	1,0765	-2828,17591	400	1,8175	0,9925	-2828,15854
340	1,6885	1,1185	-2828,17991	401	1,8175	1,0345	-2828,16797
341	1,6885	1,1605	-2828,18292	402	1,8175	1,0765	-2828,17448
342	1,6885	1,2025	-2828,18554	403	1,8175	1,1185	-2828,17919
343	1,6885	1,2445	-2828,18822	404	1,8175	1,1605	-2828,18293
344	1,6885	1,2865	-2828,19127	405	1,8175	1,2025	-2828,18630
345	1,6885	1,3285	-2828,19488	406	1,8175	1,2445	-2828,18974
346	1,6885	1,3705	-2828,19917	407	1,8175	1,2865	-2828,19354
347	1,6885	1,4125	-2828,20419	408	1,8175	1,3285	-2828,19790
348	1,6885	1,4545	-2828,20991	409	1,8175	1,3705	-2828,20292
349	1,6885	1,4965	-2828,21626	410	1,8175	1,4125	-2828,20865
350	1,6885	1,5385	-2828,22312	411	1,8175	1,4545	-2828,21506
351	1,6885	1,5805	-2828,23030	412	1,8175	1,4965	-2828,22208
352	1,6885	1,6225	-2828,23753	413	1,8175	1,5385	-2828,22957
353	1,6885	1,6645	-2828,24450	414	1,8175	1,5805	-2828,23735
354	1,6885	1,7065	-2828,25078	415	1,8175	1,6225	-2828,24516
355	1,6885	1,7485	-2828,25587	416	1,8175	1,6645	-2828,25266
356	1,6885	1,7905	-2828,25916	417	1,8175	1,7065	-2828,25945
357	1,6885	1,8325	-2828,25992	418	1,8175	1,7485	-2828,26501
	.,5555	.,0020	_0_0,_0002		.,5	.,50	

419	1,8175	1,7905	-2828,26874
420	1,8175	1,8325	-2828,26990
421	1,8605	0,9925	-2828,15459
422	1,8605	1,0345	-2828,16420
423	1,8605	1,0765	-2828,17090
424	1,8605	1,1185	-2828,17581
425	1,8605	1,1605	-2828,17975
426	1,8605	1,2025	-2828,18333
427	1,8605	1,2445	-2828,18698
428	1,8605	1,2865	-2828,19099
429	1,8605	1,3285	-2828,19556
430	1,8605	1,3705	-2828,20078
431	1,8605	1,4125	-2828,20671
432	1,8605	1,4545	-2828,21331
433	1,8605	1,4965	-2828,22051
434	1,8605	1,5385	-2828,22818
435	1,8605	1,5805	-2828,23612
436	1,8605	1,6225	-2828,24408
437	1,8605	1,6645	-2828,25173
438	1,8605	1,7065	-2828,25865
439	1,8605	1,7485	-2828,26434
440	1,8605	1,7905	-2828,26818
441	1,8605	1,8325	-2828,26946
442	1,9035	0,9925	-2828,14780
443	1,9035	1,0345	-2828,15757
444	1,9035	1,0765	-2828,16444
445	1,9035	1,1185	-2828,16953
446	1,9035	1,1605	-2828,17366
447	1,9035	1,2025	-2828,17743
448	1,9035	1,2445	-2828,18127
449	1,9035	1,2865	-2828,18547
450	1,9035	1,3285	-2828,19022
451	1,9035	1,3705	-2828,19563
452	1,9035	1,4125	-2828,20173
453	1,9035	1,4545	-2828,20850
454	1,9035	1,4965	-2828,21587
455	1,9035	1,5385	-2828,22369
456	1,9035	1,5805	-2828,23178
457	1,9035	1,6225	-2828,23988
458	1,9035	1,6645	-2828,24765
459	1,9035	1,7065	-2828,25470
460	1,9035	1,7485	-2828,26050
461	1,9035	1,7905	-2828,26445
462	1,9035	1,8325	-2828,26583
463	1,9465	0,9925	-2828,13717
464	1,9465 1,9465	1,0345 1,0765	-2828,14708
465		•	-2828,15410
466	1,9465	1,1185	-2828,15935
467 468	1,9465 1,9465	1,1605	-2828,16365
469	1,9465	1,2025 1,2445	-2828,16759 -2828,17160
	•		
470 471	1,9465 1,9465	1,2865 1,3285	-2828,17597 -2828,18089
471	1,9465	1,3205	-2828,18646
473	1,9465	1,4125	-2828,19272
474	1,9465	1,4125	-2828,19964
474	1,9465	1,4965	-2828,20715
476	1,9465	1,4905	-2828,21511
477	1,9465	1,5805	-2828,22333
478	1,9465	1,6225	-2828,23155
479	1,9465	1,6645	-2828,23944
.10	1,3100	1,0010	2020,20011

480	1,9465	1,7065	-2828,24660
481	1,9465	1,7485	-2828,25250
482	1,9465	1,7905	-2828,25655
483	1,9465	1,8325	-2828,25801
484	1,9895	0,9925	-2828,12155
485	1,9895	1,0345	-2828,13158
486	1,9895	1,0765	-2828,13874
487	1,9895	1,1185	-2828,14414
488	1,9895	1,1605	-2828,14858
489	1,9895	1,2025	-2828,15267
490	1,9895	1,2445	-2828,15683
491	1,9895	1,2865	-2828,16136
492	1,9895	1,3285	-2828,16642
493	1,9895	1,3705	-2828,17214
494	1,9895	1,4125	-2828,17853
495	1,9895	1,4545	-2828,18559
496	1,9895	1,4965	-2828,19323
497	1,9895	1,5385	-2828,20131
498	1,9895	1,5805	-2828,20964
499	1,9895	1,6225	-2828,21797
500	1,9895	1,6645	-2828,22597
501	1,9895	1,7065	-2828,23322
502	1,9895	1,7485	-2828,23921
503	1,9895	1,7905	-2828,24335
504	1,9895	1,8325	-2828,24489
505	2,0325	0,9925	-2828,09963
506	2,0325	1,0345	-2828,10978
507	2,0325	1,0765	-2828,11706
508	2,0325	1,1185	-2828,12258
509	2,0325	1,1605	-2828,12715
510	2,0325	1,2025	-2828,13138
511	2,0325	1,2445	-2828,13567
512	2,0325	1,2865	-2828,14033
513	2,0325	1,3285	-2828,14553
514	2,0325	1,3705	-2828,15137
515	2,0325	1,4125	-2828,15789
516	2,0325	1,4545	-2828,16506
517	2,0325	1,4965	-2828,17281
518	2,0325	1,5385	-2828,18100
519	2,0325	1,5805	-2828,18944
520	2,0325	1,6225	-2828,19787
521	2,0325	1,6645	-2828,20596
522	2,0325	1,7065	-2828,21329
523	2,0325	1,7485	-2828,21937
524	2,0325	1,7905	-2828,22358
525	2,0325	1,8325	-2828,22519
UZU	2,0020	1,0020	2020,22013

TABELA A5.3 – Resultado da SEP para a etapa 2

Passo	Parâmetro 2	Parâmetro 3	Energia
	(Å)	(Å)	(hartree)
1	0,9925	1,0008	-2828,23784
2	0,9925	1,0343	-2828,24069
3	0,9925	1,0678	-2828,24157
4	0,9925	1,1013	-2828,24106
5	0,9925	1,1348	-2828,23965
6	0,9925	1,1683	-2828,23772
7	0,9925	1,2018	-2828,23555
8	0,9925	1,2353	-2828,23337

9	0,9925	1,2688	-2828,23135
10	0,9925	1,3023	-2828,22959
11	0,9925	1,3358	-2828,22816
12	0,9925	1,3693	-2828,22708
13	0,9925	1,4028	-2828,22632
14	0,9925	1,4363	-2828,22583
15	0,9925	1,4698	-2828,22548
16	0,9925	1,5033	-2828,22511
17	0,9925	1,5368	-2828,22450
18	0,9925	1,5703	-2828,22336
19		1,6038	
	0,9925	1,6373	-2828,22131
20	0,9925	,	-2828,21790
21	0,9925	1,6708	-2828,21253
22	1,0345	1,0008	-2828,23823
23	1,0345	1,0343	-2828,24124
24	1,0345	1,0678	-2828,24228
25	1,0345	1,1013	-2828,24195
26	1,0345	1,1348	-2828,24074
27	1,0345	1,1683	-2828,23900
28	1,0345	1,2018	-2828,23705
29	1,0345	1,2353	-2828,23509
30	1,0345	1,2688	-2828,23330
31	1,0345	1,3023	-2828,23179
32	1,0345	1,3358	-2828,23060
33	1,0345	1,3693	-2828,22978
34	1,0345	1,4028	-2828,22928
	1,0345		
35		1,4363	-2828,22904
36	1,0345	1,4698	-2828,22895
37	1,0345	1,5033	-2828,22885
38	1,0345	1,5368	-2828,22850
39	1,0345	1,5703	-2828,22762
40	1,0345	1,6038	-2828,22582
41	1,0345	1,6373	-2828,22265
42	1,0345	1,6708	-2828,21751
43	1,0765	1,0008	-2828,23505
44	1,0765	1,0343	-2828,23822
45	1,0765	1,0678	-2828,23944
46	1,0765	1,1013	-2828,23930
47	1,0765	1,1348	-2828,23829
48	1,0765	1,1683	-2828,23677
49	1,0765	1,2018	-2828,23505
50	1,0765	1,2353	-2828,23333
51	1,0765	1,2688	-2828,23178
52	1,0765	1,3023	-2828,23052
53	1,0765	1,3358	-2828,22960
54	1,0765	1,3693	-2828,22904
55	1,0765	1,4028	-2828,22882
56	1,0765	1,4363	-2828,22886
57	1,0765	1,4698	-2828,22905
	1,0765		,
58		1,5033	-2828,22922
59	1,0765	1,5368	-2828,22914
60	1,0765	1,5703	-2828,22853
61	1,0765	1,6038	-2828,22700
62	1,0765	1,6373	-2828,22408
63	1,0765	1,6708	-2828,21919
64	1,1185	1,0008	-2828,22946
65	1,1185	1,0343	-2828,23281
66	1,1185	1,0678	-2828,23422
67	1,1185	1,1013	-2828,23429
68	1,1185	1,1348	-2828,23349
69	1,1185	1,1683	-2828,23220

121	1 2///	1 12/0	2020 24200	102	1 2705	1.0670	2020 10102
131	1,2445	1,1348	-2828,21298	192	1,3705	1,0678	-2828,19102
132	1,2445	1,1683	-2828,21245	193	1,3705	1,1013	-2828,19251
133	1,2445	1,2018	-2828,21175	194	1,3705	1,1348	-2828,19321
134	1,2445	1,2353	-2828,21110	195	1,3705	1,1683	-2828,19350
135	1,2445	1,2688	-2828,21066	196	1,3705	1,2018	-2828,19366
136	1,2445	1,3023	-2828,21054	197	1,3705	1,2353	-2828,19390
137	1,2445	1,3358	-2828,21079	198	1,3705	1,2688	-2828,19438
138	1,2445	1,3693	-2828,21143	199	1,3705	1,3023	-2828,19520
139	1,2445	1,4028	-2828,21241	200	1,3705	1,3358	-2828,19641
140	1,2445	1,4363	-2828,21367	201	1,3705	1,3693	-2828,19802
141	1,2445	1,4698	-2828,21509	202	1,3705	1,4028	-2828,19998
142	1,2445	1,5033	-2828,21648	203	1,3705	1,4363	-2828,20223
143	1,2445	1,5368	-2828,21761	204	1,3705	1,4698	-2828,20462
144	1,2445	1,5703	-2828,21819	205	1,3705	1,5033	-2828,20699
145	1,2445	1,6038	-2828,21782	206	1,3705	1,5368	-2828,20908
146	1,2445	1,6373	-2828,21602	207	1,3705	1,5703	-2828,21059
147	1,2445	1,6708	-2828,21221	208	1,3705	1,6038	-2828,21112
148	1,2445	1,0008	-2828,19833	209	1,3705	1,6373	-2828,21021
149	1,2865	1,0343	-2828,20247	210	1,3705	1,6708	-2828,20724
			,				
150	1,2865	1,0678	-2828,20474	211	1,4125	1,0008	-2828,17740
151	1,2865	1,1013	-2828,20572	212	1,4125	1,0343	-2828,18221
152	1,2865	1,1348	-2828,20590	213	1,4125	1,0678	-2828,18520
153	1,2865	1,1683	-2828,20563	214	1,4125	1,1013	-2828,18694
154	1,2865	1,2018	-2828,20521	215	1,4125	1,1348	-2828,18791
155	1,2865	1,2353	-2828,20485	216	1,4125	1,1683	-2828,18849
156	1,2865	1,2688	-2828,20472	217	1,4125	1,2018	-2828,18894
157	1,2865	1,3023	-2828,20490	218	1,4125	1,2353	-2828,18949
158	1,2865	1,3358	-2828,20547	219	1,4125	1,2688	-2828,19028
159	1,2865	1,3693	-2828,20642	220	1,4125	1,3023	-2828,19142
160	1,2865	1,4028	-2828,20773	221	1,4125	1,3358	-2828,19296
161	1,2865	1,4363	-2828,20932	222	1,4125	1,3693	-2828,19489
162	1,2865	1,4698	-2828,21106	223	1,4125	1,4028	-2828,19718
163	1,2865	1,5033	-2828,21277	224	1,4125	1,4363	-2828,19975
164	1,2865	1,5368	-2828,21423	225	1,4125	1,4698	-2828,20247
165	1,2865	1,5703	-2828,21511	226	1,4125	1,5033	-2828,20516
166	1,2865	1,6038	-2828,21504	227	1,4125	1,5368	-2828,20756
167	1,2865	1,6373	-2828,21354	228	1,4125	1,5703	-2828,20938
168	1,2865	1,6708	-2828,21002	229	1,4125	1,6038	-2828,21022
169	1,3285	1,0008	-2828,19071	230	1,4125	1,6373	-2828,20959
170	1,3285	1,0343	-2828,19508	231	1,4125	1,6708	-2828,20690
171	1,3285	1,0678	-2828,19758	232	1,4125	1,0008	-2828,17187
172	1,3285	1,1013	-2828,19881	233	1,4545	1,0343	-2828,17691
173	1,3285	1,1348	-2828,19924	234	1,4545	1,0678	-2828,18014
174	1,3285	1,1683	-2828,19925	235	1,4545	1,1013	-2828,18215
175	1,3285	1,2018	-2828,19912	236	1,4545	1,1348	-2828,18339
176	1,3285	1,2353	-2828,19906	237	1,4545	1,1683	-2828,18425
177	1,3285	1,2688	-2828,19923	238	1,4545	1,2018	-2828,18500
178	1,3285	1,3023	-2828,19973	239	1,4545	1,2353	-2828,18586
179	1,3285	1,3358	-2828,20062	240	1,4545	1,2688	-2828,18697
180	1,3285	1,3693	-2828,20190	241	1,4545	1,3023	-2828,18842
181	1,3285	1,4028	-2828,20353	242	1,4545	1,3358	-2828,19028
182	1,3285	1,4363	-2828,20545	243	1,4545	1,3693	-2828,19254
183	1,3285	1,4698	-2828,20752	244	1,4545	1,4028	-2828,19516
184	1,3285	1,5033	-2828,20955	245	1,4545	1,4363	-2828,19805
185	1,3285	1,5368	-2828,21133	246	1,4545	1,4698	-2828,20110
186	1,3285	1,5703	-2828,21252	247	1,4545	1,5033	-2828,20410
187	1,3285	1,6038	-2828,21276	248	1,4545	1,5368	-2828,20681
188	1,3285	1,6373	-2828,21155	249	1,4545	1,5703	-2828,20894
189	1,3285	1,6708	-2828,20831	250	1,4545	1,6038	-2828,21007
190	1,3705	1,0008	-2828,18370	251	1,4545	1,6373	-2828,20972
191	1,3705	1,0343	-2828,18828	252	1,4545	1,6708	-2828,20730
	,	,	,		,	,	,

050	1 1005	4 0000	2222 42742	011	4.5005	4.0070	0000 04005
253	1,4965	1,0008	-2828,16710	314	1,5805	1,6373	-2828,21385
254	1,4965	1,0343	-2828,17237	315	1,5805	1,6708	-2828,21219
255	1,4965	1,0678	-2828,17585	316	1,6225	1,0008	-2828,15640
256	1,4965	1,1013	-2828,17812	317	1,6225	1,0343	-2828,16236
257	1,4965	1,1348	-2828,17964	318	1,6225	1,0678	-2828,16656
258	1,4965	1,1683	-2828,18078	319	1,6225	1,1013	-2828,16960
259	1,4965	1,2018	-2828,18183	320	1,6225	1,1348	-2828,17193
260	1,4965	1,2353	-2828,18299	321	1,6225	1,1683	-2828,17391
261	1,4965	1,2688	-2828,18441	322	1,6225	1,2018	-2828,17582
262	1,4965	1,3023	-2828,18618	323	1,6225	1,2353	-2828,17787
263	1,4965	1,3358	-2828,18836	324	1,6225	1,2688	-2828,18019
264	1,4965	1,3693	-2828,19093	325	1,6225	1,3023	-2828,18287
265	1,4965	1,4028	-2828,19388	326	1,6225	1,3358	-2828,18597
266	1,4965	1,4363	-2828,19709	327	1,6225	1,3693	-2828,18947
267	1,4965	1,4698	-2828,20045	328	1,6225	1,4028	-2828,19333
268	1,4965	1,5033	-2828,20377	329	1,6225	1,4363	-2828,19746
269	1,4965	1,5368	-2828,20679	330	1,6225	1,4698	-2828,20171
270	1,4965	1,5703	-2828,20920	331	1,6225	1,5033	-2828,20590
271	1,4965	1,6038	-2828,21062	332	1,6225	1,5368	-2828,20978
272	1,4965	1,6373	-2828,21055	333	1,6225	1,5703	-2828,21302
273	1,4965	1,6708	-2828,20839	334	1,6225	1,6038	-2828,21524
274	1,5385	1,0008	-2828,16302	335	1,6225	1,6373	-2828,21593
275	1,5385	1,0343	-2828,16853	336	1,6225	1,6708	-2828,21451
276	1,5385	1,0678	-2828,17225	337	1,6645	1,0008	-2828,15339
277	1,5385	1,1013	-2828,17478	338	1,6645	1,0343	-2828,15957
278	1,5385	1,1348	-2828,17657	339	1,6645	1,0678	-2828,16400
279	1,5385	1,1683	-2828,17800	340	1,6645	1,1013	-2828,16728
280	1,5385	1,2018	-2828,17934	341	1,6645	1,1348	-2828,16987
281	1,5385	1,2353	-2828,18080	342	1,6645	1,1683	-2828,17212
282	1,5385	1,2688	-2828,18253	343	1,6645	1,2018	-2828,17430
283	1,5385	1,3023	-2828,18461	344	1,6645	1,2353	-2828,17662
284	1,5385	1,3358	-2828,18710	345	1,6645	1,2688	-2828,17923
285	1,5385	1,3693	-2828,19000	346	1,6645	1,3023	-2828,18220
286	1,5385	1,4028	-2828,19326	347	1,6645	1,3358	-2828,18558
287	1,5385	1,4363	-2828,19679	348	1,6645	1,3693	-2828,18937
288	1,5385	1,4698	-2828,20045	349	1,6645	1,4028	-2828,19351
289	1,5385	1,5033	-2828,20407	350	1,6645	1,4363	-2828,19792
290	1,5385	1,5368	-2828,20739	351	1,6645	1,4698	-2828,20245
291	1,5385	1,5703	-2828,21009	352	1,6645	1,5033	-2828,20691
292	1,5385	1,6038	-2828,21178	353	1,6645	1,5368	-2828,21104
293	1,5385	1,6373	-2828,21198	354	1,6645	1,5703	-2828,21454
294	1,5385	1,6708	-2828,21008	355	1,6645	1,6038	-2828,21700
295	1,5805	1,0008	-2828,15952	356	1,6645	1,6373	-2828,21792
296	1,5805	1,0343	-2828,16526	357	1,6645	1,6708	-2828,21672
297	1,5805	1,0678	-2828,16922	358	1,7065	1,0008	-2828,15013
298	1,5805	1,1013	-2828,17201	359	1,7065	1,0343	-2828,15652
299	1,5805	1,1348	-2828,17407	360	1,7065	1,0678	-2828,16118
300	1,5805	1,1683	-2828,17578	361	1,7065	1,1013	-2828,16470
301	1,5805	1,2018	-2828,17741	362	1,7065	1,1348	-2828,16753
302	1,5805	1,2353	-2828,17916	363	1,7065	1,1683	-2828,17003
303	1,5805	1,2688	-2828,18119	364	1,7065	1,2018	-2828,17248
304	1,5805	1,3023	-2828,18358	365	1,7065	1,2016	-2828,17507
305	1,5805	1,3023	-2828,18638	366	1,7065	1,2333	-2828,17794
	1,5805	1,3693		367	1,7065	1,3023	-2828,18119
306			-2828,18958	368			
307	1,5805	1,4028	-2828,19315		1,7065	1,3358	-2828,18485
308	1,5805	1,4363	-2828,19698	369	1,7065	1,3693	-2828,18890
309	1,5805	1,4698	-2828,20095	370	1,7065	1,4028	-2828,19331
310	1,5805	1,5033	-2828,20486	371	1,7065	1,4363	-2828,19799
311	1,5805	1,5368	-2828,20846	372	1,7065	1,4698	-2828,20277
312	1,5805	1,5703	-2828,21144	373	1,7065	1,5033	-2828,20748
313	1,5805	1,6038	-2828,21340	374	1,7065	1,5368	-2828,21187

375	1,7065	1,5703	-2828,21560
376	1,7065	1,6038	-2828,21828
377	1,7065	1,6373	-2828,21942
378	1,7065	1,6708	-2828,21842
379	1,7485	1,0008	-2828,14616
380	1,7485	1,0343	-2828,15276
381	1,7485	1,0678	-2828,15763
382	1,7485	1,1013	-2828,16137
383	1,7485	1,1348	-2828,16444
384	1,7485	1,1683	-2828,16718
385	1,7485	1,2018	-2828,16988
386	1,7485	1,2353	-2828,17272
387	1,7485	1,2688	-2828,17585
388	1,7485	1,3023	-2828,17936
389	1,7485	1,3358	-2828,18327
390	1,7485	1,3693	-2828,18758
391			-2828,19224
	1,7485	1,4028	
392	1,7485	1,4363	-2828,19716
393	1,7485	1,4698	-2828,20219
394	1,7485	1,5033	-2828,20714
395	1,7485	1,5368	-2828,21175
396	1,7485	1,5703	-2828,21570
397	1,7485	1,6038	-2828,21860
398	1,7485	1,6373	-2828,21994
399	1,7485	1,6708	-2828,21913
400	1,7905	1,0008	-2828,14091
401	1,7905	1,0343	-2828,14769
402	1,7905	1,0678	-2828,15277
403	1,7905	1,1013	-2828,15672
404	1,7905	1,1348	-2828,16000
405	1,7905	1,1683	-2828,16298
406	1,7905	1,2018	-2828,16590
407	1,7905	1,2353	-2828,16898
408	1,7905	1,2688	-2828,17235
409	1,7905	1,3023	-2828,17610
410	1,7905	1,3358	-2828,18025
411	1,7905	1,3693	-2828,18480
412	1,7905	1,4028	-2828,18970
413	1,7905	1,4363	-2828,19485
414	1,7905	1,4698	-2828,20011
415	1,7905	1,5033	-2828,20527
416	1,7905	1,5368	-2828,21009
417	1,7905	1,5703	-2828,21424
418	1,7905	1,6038	-2828,21733
419	1,7905	1,6373	-2828,21886
420	1,7905	1,6708	-2828,21823
421	1,8325	1,0008	-2828,13364
422	1,8325	1,0343	-2828,14060
423	1,8325	1,0678	-2828,14587
424	1,8325	1,1013	-2828,15001
425	1,8325	1,1348	-2828,15350
426	1,8325	1,1683	-2828,15669
427	1,8325	1,2018	-2828,15983
428	1,8325	1,2353	-2828,16313
429	1,8325	1,2688	-2828,16673
430	1,8325	1,3023	-2828,17069
431	1,8325	1,3358	-2828,17506
432	1,8325	1,3693	-2828,17984
433	1,8325	1,4028	-2828,18495
434	1,8325	1,4363	-2828,19031
435	1,8325	1,4698	-2828,19577
.00	.,5020	.,1000	_0_0,10011

436	1,8325	1,5033	-2828,20114
437	1,8325	1,5368	-2828,20615
438	1,8325	1,5703	-2828,21049
439	1,8325	1,6038	-2828,21375
440	1,8325	1,6373	-2828,21545
441	1,8325	1,6708	-2828,21498

TABELA A5.4 – Resultado da SEP para a etapa 3

	a ciapa s				
Passo					
	(Å)	(Å)	(hartree)		
1	1,0008	0,8919	-2828,27891		
2	1,0343	0,8919	-2828,27785		
3	1,0678	0,8919	-2828,27459		
4	1,1013	0,8919	-2828,26973		
5	1,1348	0,8919	-2828,26375		
6	1,1683	0,8919	-2828,25706		
7	1,2018	0,8919	-2828,24995		
8	1,2353	0,8919	-2828,24268		
9	1,2688	0,8919	-2828,23543		
10	1,3023	0,8919	-2828,22833		
11	1,3358	0,8919	-2828,22149		
12	1,3693	0,8919			
13			-2828,21495		
	1,4028	0,8919	-2828,20871		
14	1,4363	0,8919	-2828,20274		
15	1,4698	0,8919	-2828,19697		
16	1,5033	0,8919	-2828,19126		
17	1,5368	0,8919	-2828,18544		
18	1,5703	0,8919	-2828,17924		
19	1,6038	0,8919	-2828,17234		
20	1,6373	0,8919	-2828,16430		
21	1,6708	0,8919	-2828,15457		
22	1,0008	0,9374	-2828,30473		
23	1,0343	0,9374	-2828,30372		
24	1,0678	0,9374	-2828,30052		
25	1,1013	0,9374	-2828,29572		
26	1,1348	0,9374	-2828,28981		
27	1,1683	0,9374	-2828,28318		
28	1,2018	0,9374	-2828,27614		
29	1,2353	0,9374	-2828,26895		
30	1,2688	0,9374	-2828,26177		
31	1,3023	0,9374	-2828,25476		
32	1,3358	0,9374	-2828,24800		
33	1,3693	0,9374	-2828,24155		
34	1,4028	0,9374	-2828,23540		
35	1,4363	0,9374	-2828,22952		
36	1,4698	0,9374	-2828,22384		
37	1,5033	0,9374	-2828,21822		
38	1,5368	0,9374	-2828,21249		
39	1,5703	0,9374	-2828,20638		
40	1,6038	0,9374	-2828,19956		
41	1,6373	0,9374	-2828,19161		
42	1,6708	0,9374	-2828,18196		
43	1,0708	0,9374	-2828,31975		
44	1,0343	0,9829	-2828,31881		
45	1,0678	0,9829	-2828,31567		
46	1,1013	0,9829	-2828,31094		
47	1,1348	0,9829	-2828,30510		
48	1,1683	0,9829	-2828,29855		
49	1,2018	0,9829	-2828,29160		

<u> </u>	1 0252	0.0020	2020 20440	111	1 1602	1 1101	2020 2055
50	1,2353	0,9829	-2828,28449	111	1,1683	1,1194	-2828,30555
51	1,2688	0,9829	-2828,27741	112	1,2018	1,1194	-2828,29893
52	1,3023	0,9829	-2828,27049	113	1,2353	1,1194	-2828,29216
53	1,3358	0,9829	-2828,26383	114	1,2688	1,1194	-2828,28544
54	1,3693	0,9829	-2828,25747	115	1,3023	1,1194	-2828,27890
55	1,4028	0,9829	-2828,25142	116	1,3358	1,1194	-2828,27263
56	1,4363	0,9829	-2828,24565	117	1,3693	1,1194	-2828,26667
57	1,4698	0,9829	-2828,24008	118	1,4028	1,1194	-2828,26104
58	1,5033	0,9829	-2828,23457	119	1,4363	1,1194	-2828,25568
59	1,5368	0,9829	-2828,22894	120	1,4698	1,1194	-2828,25053
60	1,5703	0,9829	-2828,22293	121	1,5033	1,1194	-2828,24544
61	1,6038	0,9829	-2828,21622	122	1,5368	1,1194	-2828,24023
62	1,6373	0,9829	-2828,20836	123	1,5703	1,1194	-2828,23463
63	1,6708	0,9829	-2828,19880	124	1,6038	1,1194	-2828,22832
64	1,0008	1,0284	-2828,32681	125	1,6373	1,1194	-2828,22085
65	1,0343	1,0284	-2828,32594	126	1,6708	1,1194	-2828,21167
66	1,0678	1,0284	-2828,32288	127	1,0008	1,1649	-2828,31979
67	1,1013	1,0284	-2828,31823	128	1,0343	1,1649	-2828,31921
68	1,1348	1,0284	-2828,31248	129	1,0678	1,1649	-2828,31646
69	1,1683	1,0284	-2828,30602	130	1,1013	1,1649	-2828,31213
70	1,2018	1,0284	-2828,29916	131	1,1348	1,1649	-2828,30673
71	1,2353	1,0284	-2828,29215	132	1,1683	1,1649	-2828,30063
72	1,2688	1,0284	-2828,28517	133	1,2018	1,1649	-2828,29415
73	1,3023	1,0284	-2828,27836	134	1,2353	1,1649	-2828,28754
74	1,3358	1,0284	-2828,27182	135	1,2688	1,1649	-2828,28098
75	1,3693	1,0284	-2828,26557	136	1,3023	1,1649	-2828,27460
76	1,4028	1,0284	-2828,25964	137	1,3358	1,1649	-2828,26849
77	1,4363	1,0284	-2828,25399	138	1,3693	1,1649	-2828,26271
78	1,4698	1,0284	-2828,24854	139	1,4028	1,1649	-2828,25725
79	1,5033	1,0284	-2828,24315	140	1,4363	1,1649	-2828,25207
80	1,5368	1,0284	-2828,23764	141	1,4698	1,1649	-2828,24709
81	1,5703	1,0284	-2828,23176	142	1,5033	1,1649	-2828,24218
82	1,6038	1,0284	-2828,22516	143	1,5368	1,1649	-2828,23715
83	1,6373	1,0284	-2828,21741	144	1,5703	1,1649	-2828,23174
84	1,6708	1,0284	-2828,20796	145	1,6038	1,1649	-2828,22559
85	1,0008	1,0739	-2828,32810	146	1,6373	1,1649	-2828,21829
86	1,0343	1,0739	-2828,32732	147	1,6708	1,1649	-2828,20926
87	1,0678	1,0739	-2828,32434	148	1,0008	1,2104	-2828,31251
88	1,1013	1,0739	-2828,31979	149	1,0343	1,2104	-2828,31205
89	1,1348	1,0739	-2828,31414	150	1,0678	1,2104	-2828,30943
90	1,1683	1,0739	-2828,30778	151	1,1013	1,2104	-2828,30525
91	1,2018	1,0739	-2828,30103	152	1,1348	1,2104	-2828,29999
92	1,2353	1,0739	-2828,29414	153	1,1683	1,2104	-2828,29405
93	1,2688	1,0739	-2828,28728	154	1,2018	1,2104	-2828,28773
94	1,3023	1,0739	-2828,28060	155	1,2353	1,2104	-2828,28129
95	1,3358	1,0739	-2828,27418	156	1,2688	1,2104	-2828,27490
96	1,3693	1,0739	-2828,26807	157	1,3023	1,2104	-2828,26871
97	1,4028	1,0739	-2828,26228	158	1,3358	1,2104	-2828,26279
98	1,4363	1,0739	-2828,25676	159	1,3693	1,2104	-2828,25720
99	1,4698	1,0739	-2828,25145	160	1,4028	1,2104	-2828,25193
100	1,5033	1,0739	-2828,24620	161	1,4363	1,2104	-2828,24695
101	1,5368	1,0739	-2828,24083	162	1,4698	1,2104	-2828,24218
102	1,5703	1,0739	-2828,23508	163	1,5033	1,2104	-2828,23747
103	1,6038	1,0739	-2828,22862	164	1,5368	1,2104	-2828,23263
104	1,6373	1,0739	-2828,22100	165	1,5703	1,2104	-2828,22741
105	1,6708	1,0739	-2828,21168	166	1,6038	1,2104	-2828,22146
106	1,0008	1,1194	-2828,32533	167	1,6373	1,2104	-2828,21434
107	1,0343	1,1194	-2828,32464	168	1,6708	1,2104	-2828,20548
108	1,0678	1,1194	-2828,32177	169	1,0008	1,2559	-2828,30427
109	1,1013	1,1194	-2828,31732	170	1,0343	1,2559	-2828,30395
110	1,1348	1,1194	-2828,31178	171	1,0678	1,2559	-2828,30148
	., 10 10	1,1107	2020,01110	- 171	1,0070	1,2000	2020,00170

				-	4 00 40	1 222 1	
172	1,1013	1,2559	-2828,29745	233	1,0343	1,3924	-2828,27941
173	1,1348	1,2559	-2828,29235	234	1,0678	1,3924	-2828,27747
174	1,1683	1,2559	-2828,28658	235	1,1013	1,3924	-2828,27400
175	1,2018	1,2559	-2828,28045	236	1,1348	1,3924	-2828,26950
176	1,2353	1,2559	-2828,27420	237	1,1683	1,3924	-2828,26435
177	1,2688	1,2559	-2828,26801	238	1,2018	1,3924	-2828,25886
178	1,3023	1,2559	-2828,26201	239	1,2353	1,3924	-2828,25328
179	1,3358	1,2559	-2828,25630	240	1,2688	1,3924	-2828,24778
180	1,3693	1,2559	-2828,25092	241	1,3023	1,3924	-2828,24250
181	1,4028	1,2559	-2828,24587	242	1,3358	1,3924	-2828,23752
182	1,4363	1,2559	-2828,24111	243	1,3693	1,3924	-2828,23288
183	1,4698	1,2559	-2828,23655	244	1,4028	1,3924	-2828,22858
184	1,5033	1,2559	-2828,23206	245	1,4363	1,3924	-2828,22458
185	1,5368	1,2559	-2828,22745	246	1,4698	1,3924	-2828,22078
186	1,5703	1,2559	-2828,22244	247	1,5033	1,3924	-2828,21704
187	1,6038	1,2559	-2828,21669	248	1,5368	1,3924	-2828,21316
188	1,6373	1,2559	-2828,20977	249	1,5703	1,3924	-2828,20888
189	1,6708	1,2559	-2828,20111	250	1,6038	1,3924	-2828,20384
190	1,0008	1,3014	-2828,29568	251	1,6373	1,3924	-2828,19759
191	1,0343	1,3014	-2828,29551	252	1,6708	1,3924	-2828,18957
192	1,0678	1,3014	-2828,29320	253	1,0008	1,4379	-2828,27199
193	1,1013	1,3014	-2828,28934	254	1,0343	1,4379	-2828,27236
194	1,1348	1,3014	-2828,28443	255	1,0678	1,4379	-2828,27062
195	1,1683	1,3014	-2828,27885	256	1,1013	1,4379	-2828,26737
196	1,2018	1,3014	-2828,27292	257	1,1348	1,4379	-2828,26309
197	1,2353	1,3014	-2828,26687	258	1,1683	1,4379	-2828,25818
198	1,2688	1,3014	-2828,26089	259	1,2018	1,4379	-2828,25294
199	1,3023	1,3014	-2828,25512	260	1,2353	1,4379	-2828,24761
200	1,3358	1,3014	-2828,24964	261	1,2688	1,4379	-2828,24237
201	1,3693	1,3014	-2828,24449	262	1,3023	1,4379	-2828,23736
202	1,4028	1,3014	-2828,23967	263	1,3358	1,4379	-2828,23265
203	1,4363	1,3014	-2828,23515	264	1,3693	1,4379	-2828,22829
204	1,4698	1,3014	-2828,23083	265	1,4028	1,4379	-2828,22427
205	1,5033	1,3014	-2828,22658	266	1,4363	1,4379	-2828,22054
206	1,5368	1,3014	-2828,22219	267	1,4698	1,4379	-2828,21702
207	1,5703	1,3014	-2828,21741	268	1,5033	1,4379	-2828,21355
208	1,6038	1,3014	-2828,21189	269	1,5368	1,4379	-2828,20995
209	1,6373	1,3014	-2828,20518	270	1,5703	1,4379	-2828,20593
210	1,6708	1,3014	-2828,19672	271	1,6038	1,4379	-2828,20114
211	1,0008	1,3469	-2828,28721	272	1,6373	1,4379	-2828,19513
212	1,0343	1,3469	-2828,28721	273	1,6708	1,4379	-2828,18734
213	1,0678	1,3469	-2828,28508	274	1,0008	1,4834	-2828,26567
214	1,1013	1,3469	-2828,28141	275	1,0343	1,4834	-2828,26625
215	1,1348	1,3469	-2828,27669	276	1,0678	1,4834	-2828,26472
216	1,1683	1,3469	-2828,27132	277	1,1013	1,4834	-2828,26169
217	1,2018	1,3469	-2828,26561	278	1,1348	1,4834	-2828,25765
218	1,2353	1,3469	-2828,25978	279	1,1683	1,4834	-2828,25298
219	1,2688	1,3469	-2828,25404	280	1,2018	1,4834	-2828,24800
220	1,3023	1,3469	-2828,24850	281	1,2353	1,4834	-2828,24293
221	1,3358	1,3469	-2828,24326	282	1,2688	1,4834	-2828,23797
222	1,3693	1,3469	-2828,23836	283	1,3023	1,4834	-2828,23324
223	1,4028	1,3469	-2828,23380	284	1,3358	1,4834	-2828,22881
224	1,4363	1,3469	-2828,22952	285	1,3693	1,4834	-2828,22473
225	1,4698	1,3469	-2828,22546	286	1,4028	1,4834	-2828,22100
226	1,5033	1,3469	-2828,22146	287	1,4363	1,4834	-2828,21756
227	1,5368	1,3469	-2828,21732	288	1,4303	1,4834	-2828,21432
228	1,5703	1,3469	-2828,21278	289	1,5033	1,4834	-2828,21114
229	1,6038	1,3469	-2828,20750	209	1,5033	1,4634	-2828,20781
230	1,6373	1,3469	-2828,20101	290	1,5300	1,4834	-2828,20406
230	1,6708	1,3469	-2828,19277	291	1,6038	1,4834	-2828,19953
231							
۷۵۷	1,0008	1,3924	-2828,27923	293	1,6373	1,4834	-2828,19377

204	1 6700	1 1021	2020 10621	_	255	1 6020	1 6100	2020 20447
294 295	1,6708 1,0008	1,4834 1,5289	-2828,18621 -2828,26036		355 356	1,6038 1,6373	1,6199 1,6199	-2828,20147 -2828,19645
296	1,0000	1,5289	-2828,26115		357	1,6708	1,6199	-2828,18959
297	1,0543	1,5289	-2828,25984		358	1,0708	1,6654	-2828,25055
298	1,1013	1,5289	-2828,25705		359	1,0008	1,6654	
299	1,1348	1,5289	-2828,25326		360	1,0545	1,6654	-2828,25200 -2828,25140
300	1,1683	1,5289	-2828,24885					
301	1,2018	1,5289	-2020,24000		361	1,1013	1,6654	-2828,24934
302	1,2353	1,5269			362	1,1348	1,6654	-2828,24632
303	1,2688	1,5289	-2828,23934 -2828,23466		363	1,1683	1,6654	-2828,24271
304	1,3023	1,5289	-2828,23021		364 365	1,2018 1,2353	1,6654 1,6654	-2828,23882 -2828,23488
305	1,3358	1,5289	-2828,22607		366	1,2333	1,6654	-2828,23107
306	1,3693	1,5289	-2828,22229			1,3023	1,6654	·
307	1,4028	1,5289	-2828,21885		367 368	1,3023	1,6654	-2828,22751
308	1,4363	1,5289	-2828,21571		369	1,3693	1,6654	-2828,22428 -2828,22139
309	1,4698	1,5289	-2828,21276		370	1,4028	1,6654	-2828,21885
310	1,5033	1,5289	-2828,20987		371	1,4363	1,6654	-2828,21660
311	1,5368	1,5289	-2828,20682		372	1,4505	1,6654	
312	1,5703	1,5289	-2828,20334		373	1,4090	1,6654	-2828,21454 -2828,21251
313	1,6038	1,5289	-2828,19907		374	1,5368	1,6654	-2828,21029
314	1,6373	1,5289	-2828,19356		375	1,5703	1,6654	-2828,20762
315	1,6708	1,5289	-2828,18623		376	1,6038	1,6654	-2828,20413
316	1,0008	1,5744	-2828,25610		377	1,6373	1,6654	-2828,19935
317	1,0343	1,5744	-2828,25710		378	1,6708	1,6654	-2828,19272
318	1,0678	1,5744	-2828,25603		379	1,0708	1,7109	-2828,24906
319	1,1013	1,5744	-2828,25348		380	1,0008	1,7109	-2828,25073
320	1,1348	1,5744	-2828,24993		381	1,0545	1,7109	-2828,25037
321	1,1683	1,5744	-2828,24579		382	1,1013	1,7109	-2828,24856
322	1,2018	1,5744	-2828,24134		383	1,1013	1,7109	-2828,24580
323	1,2353	1,5744	-2828,23683		384	1,1683	1,7109	-2828,24246
324	1,2688	1,5744	-2828,23244		385	1,2018	1,7109	-2828,23885
325	1,3023	1,5744	-2828,22828		386	1,2353	1,7109	-2828,23519
326	1,3358	1,5744	-2828,22445		387	1,2688	1,7109	-2828,23167
327	1,3693	1,5744	-2828,22096		388	1,3023	1,7109	-2828,22841
328	1,4028	1,5744	-2828,21782		389	1,3358	1,7109	-2828,22546
329	1,4363	1,5744	-2828,21498		390	1,3693	1,7109	-2828,22288
330	1,4698	1,5744	-2828,21233		391	1,4028	1,7109	-2828,22063
331	1,5033	1,5744	-2828,20972		392	1,4363	1,7109	-2828,21867
332	1,5368	1,5744	-2828,20695		393	1,4698	1,7109	-2828,21689
333	1,5703	1,5744	-2828,20375	_	394	1,5033	1,7109	-2828,21514
334	1,6038	1,5744	-2828,19974		395	1,5368	1,7109	-2828,21320
335	1,6373	1,5744	-2828,19447	_	396	1,5703	1,7109	-2828,21079
336	1,6708	1,5744	-2828,18738		397	1,6038	1,7109	-2828,20754
337	1,0008	1,6199	-2828,25285		398	1,6373	1,7109	-2828,20299
338	1,0343	1,6199	-2828,25407		399	1,6708	1,7109	-2828,19658
339	1,0678	1,6199	-2828,25324		400	1,0008	1,7564	-2828,24818
340	1,1013	1,6199	-2828,25093		401	1,0343	1,7564	-2828,25007
341	1,1348	1,6199	-2828,24765		402	1,0678	1,7564	-2828,24994
342	1,1683	1,6199	-2828,24377		403	1,1013	1,7564	-2828,24838
343	1,2018	1,6199	-2828,23960	_	404	1,1348	1,7564	-2828,24587
344	1,2353	1,6199	-2828,23538		405	1,1683	1,7564	-2828,24279
345	1,2688	1,6199	-2828,23128	_	406	1,2018	1,7564	-2828,23945
346	1,3023	1,6199	-2828,22742		407	1,2353	1,7564	-2828,23608
347	1,3358	1,6199	-2828,22388	_	408	1,2688	1,7564	-2828,23284
348	1,3693	1,6199	-2828,22070		409	1,3023	1,7564	-2828,22986
349	1,4028	1,6199	-2828,21786	_	410	1,3358	1,7564	-2828,22721
350	1,4363	1,6199	-2828,21531		411	1,3693	1,7564	-2828,22491
351	1,4698	1,6199	-2828,21296	_	412	1,4028	1,7564	-2828,22295
352	1,5033	1,6199	-2828,21064		413	1,4363	1,7564	-2828,22127
353	1,5368	1,6199	-2828,20815		414	1,4698	1,7564	-2828,21977
354	1,5703	1,6199	-2828,20522		415	1,5033	1,7564	-2828,21829
		· · · · · · · · · · · · · · · · · · ·	•					,

416	1,5368	1,7564	-2828,21660
417	1,5703	1,7564	-2828,21444
418	1,6038	1,7564	-2828,21143
419	1,6373	1,7564	-2828,20711
420	1,6708	1,7564	-2828,20090
421	1,0008	1,8019	-2828,24760
422	1,0343	1,8019	-2828,24971
423	1,0678	1,8019	-2828,24980
424	1,1013	1,8019	-2828,24847
425	1,1348	1,8019	-2828,24621
426	1,1683	1,8019	-2828,24339
427	1,2018	1,8019	-2828,24031
428	1,2353	1,8019	-2828,23721
429	1,2688	1,8019	-2828,23425
430	1,3023	1,8019	-2828,23154
431	1,3358	1,8019	-2828,22917
432	1,3693	1,8019	-2828,22715
433	1,4028	1,8019	-2828,22546
434	1,4363	1,8019	-2828,22405
435	1,4698	1,8019	-2828,22282
	•		·
436	1,5033	1,8019	-2828,22159
437	1,5368	1,8019	-2828,22015
438	1,5703	1,8019	-2828,21823
439	1,6038	1,8019	-2828,21544
440	1,6373	1,8019	-2828,21133
441	1,6708	1,8019	-2828,20532
442	1,0008	1,8474	-2828,24690
443		1,8474	
	1,0343	•	-2828,24922
444	1,0678	1,8474	-2828,24953
445	1,1013	1,8474	-2828,24843
446	1,1348	1,8474	-2828,24640
447	1,1683	1,8474	-2828,24382
448	1,2018	1,8474	-2828,24100
449	1,2353	1,8474	-2828,23815
450	1,2688	1,8474	-2828,23545
451	1,3023	1,8474	-2828,23301
452			
	1,3358	1,8474	-2828,23090
453	1,3693	1,8474	-2828,22914
454	1,4028	1,8474	-2828,22771
455	1,4363	1,8474	-2828,22656
456	1,4698	1,8474	-2828,22557
457	1,5033	1,8474	-2828,22458
458	1,5368	1,8474	-2828,22338
459	1,5703	1,8474	-2828,22168
460	1,6038	1,8474	-2828,21910
461	1,6373	1,8474	-2828,21519
462	1,6708	1,8474	-2828,20936
463	1,0008	1,8929	-2828,24554
464	1,0343	1,8929	-2828,24804
465	1,0678	1,8929	-2828,24856
466	1,1013	1,8929	-2828,24767
467	1,1348	1,8929	-2828,24587
468	1,1683	1,8929	-2828,24352
		· · · · · · · · · · · · · · · · · · ·	
469	1,2018	1,8929	-2828,24094
470	1,2353	1,8929	-2828,23833
471	1,2688	1,8929	-2828,23587
472	1,3023	1,8929	-2828,23368
473	1,3358	1,8929	-2828,23181
474	1,3693	1,8929	-2828,23030
475	1,4028	1,8929	-2828,22911
476	1,4363	1,8929	-2828,22820
770	1,7303	1,0323	-2020,22020

477	1,4698	1,8929	-2828,22744
478	1,5033	1,8929	-2828,22668
479	1,5368	1,8929	-2828,22569
480	1,5703	1,8929	-2828,22419
481	1,6038	1,8929	-2828,22181
482	1,6373	1,8929	-2828,21808
483	1,6708	1,8929	-2828,21242
484	1,0008	1,9384	-2828,24280
485	1,0343	1,9384	-2828,24549
486	1,0678	1,9384	-2828,24619
487	1,1013	1,9384	-2828,24550
488	1,1348	1,9384	-2828,24390
489	1,1683	1,9384	-2828,24177
490	1,2018	1,9384	-2828,23941
491	1,2353	1,9384	-2828,23702
492	1,2688	1,9384	-2828,23479
493	1,3023	1,9384	-2828,23282
494	1,3358	1,9384	-2828,23119
495	1,3693	1,9384	-2828,22990
496	1,4028	1,9384	-2828,22894
497	1,4363	1,9384	-2828,22824
498	1,4698	1,9384	-2828,22770
499	1,5033	1,9384	-2828,22714
500	1,5368	1,9384	-2828,22635
501	1,5703	1,9384	-2828,22504
502	1,6038	1,9384	-2828,22284
503	1,6373	1,9384	-2828,21927
504	1,6708	1,9384	-2828,21377
505	1,0008	1,9839	-2828,23784
506	1,0343	1,9839	-2828,24069
507	1,0678	1,9839	-2828,24157
508	1,1013	1,9839	-2828,24106
509	1,1348	1,9839	-2828,23965
510	1,1683	1,9839	-2828,23772
511	1,2018	1,9839	-2828,23555
512	1,2353	1,9839	-2828,23337
513	1,2688	1,9839	-2828,23135
514	1,3023	1,9839	-2828,22959
515	1,3358	1,9839	-2828,22816
516	1,3693	1,9839	-2828,22708
517	1,4028	1,9839	-2828,22632
518	1,4363	1,9839	-2828,22583
519	1,4698	1,9839	-2828,22548
520	1,5033	1,9839	-2828,22511
521	1,5368	1,9839	-2828,22450
522	1,5703	1,9839	-2828,22336
523	1,6038	1,9839	-2828,22131
524	1,6373	1,9839	-2828,21790
525	1,6708	1,9839	-2828,21253
020	1,0,00	1,0000	2020,21200

Cálculos de single point	H 39 B40 34 A39 14 D38 0 C 32 B41 16 A40 14 D39 0	C 100 B101 99 A100 98 D99 0 H 102 B102 100 A101 99 D100 0
Input:	H 42 B42 32 A41 16 D40 0 C 42 B43 32 A42 16 D41 0 H 44 B44 42 A43 32 D42 0 C 44 B45 42 A44 32 D43 0	C 102 B103 100 A102 99 D101 0 C 99 B104 98 A103 29 D102 0 H 105 B105 99 A104 98 D103 0 C 105 B106 99 A105 98 D104 0
#p upbepbe/6-31+g*	H 46 B46 44 A45 42 D44 0 C 46 B47 44 A46 42 D45 0	H 107 B107 105 A106 99 D105 0 O 98 B108 29 A107 8 D106 0
ou	C 48 B48 46 A47 44 D46 0 H 49 B49 48 A48 46 D47 0 H 49 B50 48 A49 46 D48 0 C 34 B51 14 A50 11 D49 0 H 52 B52 34 A51 14 D50 0	O 104 B109 102 A108 100 D107 0 H 110 B110 104 A109 102 D108 0 O 98 B111 29 A110 8 D109 0 O 112 B112 98 A111 29 D110 0 H 113 B113 112 A112 98 D111 0
#p upbepbe/6-31+g* scf=qc 	H 52 B53 34 A52 14 D51 0 C 52 B54 34 A53 14 D52 0 H 55 B55 52 A54 34 D53 0 C 55 B56 52 A55 34 D54 0	H 113 B113 112 A112 96 B111 0 H 113 B96 32 A113 78 D112 0 O 32 B115 16 A114 14 D113 0 H 116 B39 32 A115 78 D114 0 H 116 B117 32 A116 16 D115 0
Geometria inicial: 0 1 C	H 57 B57 55 A56 52 D55 0 H 57 B58 55 A57 52 D56 0 C 42 B59 32 A58 16 D57 0 H 60 B60 42 A59 32 D58 0 C 60 B61 42 A60 32 D59 0	B1 0.93053200 B2 1.35882641 B3 0.93024364 B4 1.38019217
C 3 B4 1 A3 2 D2 0	H 60 B60 42 A59 32 D58 0 C 60 B61 42 A60 32 D59 0 H 62 B62 60 A61 42 D60 0 C 49 B63 48 A62 46 D61 0 H 64 B64 49 A63 48 D62 0 H 64 B65 49 A64 48 D63 0	B5 0.93019272 B6 1.39085033 B7 2.44013689 B8 0.97029988
C 5 B6 3 A5 1 D4 0 C 7 B7 5 A6 3 D5 0 H 8 B8 7 A7 5 D6 0	C 64 B66 49 A65 48 D64 0 H 67 B67 64 A66 49 D65 0 H 67 B68 64 A67 49 D66 0 C 49 B69 48 A68 46 D67 0 H 70 B70 49 A69 48 D68 0	B9 0.96940446 B10 3.79601284 B11 0.97079470 B12 0.97051267 B13 1.51567581
	H 70 B71 49 A70 48 D69 0 O 57 B72 55 A71 52 D70 0 H 73 B32 57 A72 55 D71 0 O 55 B74 52 A73 34 D72 0	B14 0.98013562 B15 1.52536079 B16 0.97026135 B17 0.96991801
H 14 B14 11 A13 8 D12 0 C 14 B15 11 A14 8 D13 0 H 16 B16 14 A15 11 D14 0 H 16 B17 14 A16 11 D15 0	H 75 B75 55 A74 52 D73 0 N 48 B76 46 A75 44 D74 0 N 67 B77 64 A76 49 D75 0 H 78 B37 70 A77 49 D76 0 C 70 B79 49 A78 48 D77 0	B18 1.36717681 B19 0.92983348 B20 1.37790496 B21 0.93106293 B22 2.42178366
C 1 B18 3 A17 5 D16 0 H 19 B19 1 A18 3 D17 0 C 19 B20 1 A19 3 D18 0 H 21 B21 19 A20 1 D19 0 C 8 B22 7 A21 5 D20 0	C 80 B80 70 A79 49 D78 0 C 81 B81 80 A80 70 D79 0 H 82 B82 81 A81 80 D80 0 C 82 B83 81 A82 80 D81 0	B23 0.96999834 B24 0.96961726 B25 1.51043339 B26 0.96939308
H 23 B23 8 A22 7 D21 0 H 23 B24 8 A23 7 D22 0 C 23 B25 8 A24 7 D23 0 H 26 B26 23 A25 8 D24 0	H 84 B84 82 A83 81 D82 0 C 84 B85 82 A84 81 D83 0 C 81 B86 80 A85 70 D84 0 H 87 B87 81 A86 80 D85 0	B27 0.96961004 B28 1.50534396 B29 0.97056996 B30 0.96965615
H 26 B27 23 A26 8 D25 0 C 8 B28 7 A27 5 D26 0 H 29 B29 8 A28 7 D27 0 H 29 B30 8 A29 7 D28 0	C 87 B88 81 A87 80 D86 0 H 89 B89 87 A88 81 D87 0 O 80 B90 70 A89 49 D88 0 O 86 B91 84 A90 82 D89 0	B31 1.42434130 B32 1.7043 B33 1.39282330 B34 0.82029020
O 16 B31 14 A30 11 D29 0 H 32 B32 16 A31 14 D30 0 O 14 B33 11 A32 8 D31 0 H 34 B34 14 A33 11 D32 0 N 7 B35 5 A34 3 D33 0	H 92 B92 86 A91 84 D90 0 O 80 B93 70 A92 49 D91 0 O 39 B94 34 A93 14 D92 0 H 95 B95 39 A94 34 D93 0 H 95 B96 39 A95 73 D94 0	B35 1.42043578 B36 1.49137552 B37 2.0294 B38 4.30632009 B39 1.87454
N 26 B36 23 A35 8 D34 0 H 37 B37 26 A36 23 D35 0 O 34 B38 14 A37 11 D36 0 H 39 B39 37 A38 11 D37 0	C 29 B97 8 A96 7 D95 0 C 98 B98 29 A97 8 D96 0 C 99 B99 98 A98 29 D97 0 H 100 B100 99 A99 98 D98 0	B40 0.99253774 B41 6.77621725 B42 0.93053200 B43 1.35882641

B44 0.93024364	B107 0.93031970	A53 99.45262334
B45 1.38019217	B108 1.26219642	A54 109.19653340
D40 1.3001921 <i>1</i>	D100 1.20219042	
B46 0.93019272	B109 1.35490843	A55 109.42432047
B47 1.39085033	B110 0.82002250	A56 109.46357758
D47 1.00000000	D110 0.02002230	
B48 2.44013689	B111 1.25808264	A57 109.45067900
B49 0.97029988	B112 2.77515626	A58 67.88516007
DEC 0.00040440	D442 4 000F44C0	
B50 0.96940446	B113 1.00054462	A59 119.40304075
B51 3.20372632	B115 2.65301131	A60 121.14288729
B52 0.97079470	B117 0.99253774	A61 119.42760946
D32 0.31013410	D117 0.33233114	
B53 0.97051267	A1 120.68405415	A62 60.17664142
B54 1.51567581	A2 119.44254453	A63 94.44658053
DCF 0.00040500	AQ 404 04400000	
B55 0.98013562	A3 121.21482222	A64 142.92014391
B56 1.52536079	A4 119.40021423	A65 90.01096256
B57 0.97026135	A5 121.10902266	A66 109.38257144
D37 0.37020133	AJ 121.10302200	
B58 0.96991801	A6 146.50382394	A67 109.36733765
B59 1.36717681	A7 87.92433895	A68 143.18185360
DC0 0.00000040	AO OF 07000F40	
B60 0.92983348	A8 95.07926542	A69 109.37155329
B61 1.37790496	A9 131.41783711	A70 109.34116809
B62 0.93106293	A10 97.79643518	A71 111.01687852
D0Z 0.93100Z93	A10 91.19045510	
B63 2.42178366	A11 94.81910770	A72 109.44475563
B64 0.96999834	A12 136.17186000	A73 108.56227668
DOT 0.00000004	A40 400 400 500 40	
B65 0.96961726	A13 109.19653340	A74 109.45755792
B66 1.51043339	A14 109.42432047	A75 122.26479702
B67 0.96939308	A15 109.46357758	A76 111.26433685
D07 0.90939300	A10 109.40001700	
B68 0.96961004	A16 109.45067900	A77 105.72505607
B69 1.50534396	A17 118.60880033	A78 83.09038309
D70 0 070E0006	A10 110.00000000	
B70 0.97056996	A18 119.40304075	A79 110.47595681
B71 0.96965615	A19 121.14288729	A80 121.72935173
B72 1.42434130	A20 119.42760946	A81 119.12374660
D72 1.42404100	A20 119.42700940	
B74 1.39282330	A21 60.17664142	A82 121.77578780
B75 0.82029020	A22 94.44658053	A83 120.33901363
B76 1.42043578	A23 142.92014391	A84 119.35322998
B/0 1.420433/0	AZ3 14Z.9Z014391	
B77 1.49137552	A24 90.01096256	A85 120.53028903
B79 3.60324490	A25 109.38257144	A86 119.23930192
D00 4 40004FF0	AGC 400.00207111	
B80 1.49021559	A26 109.36733765	A87 121.46105813
B81 1.39319666	A27 143.18185360	A88 119.96823832
B82 0.93026643	A28 109.37155329	A89 78.34064509
	A20 109.07 100029	
B83 1.38111040	A29 109.34116809	A90 122.46728493
B84 0.93052480	A30 111.01687852	A91 109.49893414
B85 1.39452754	A31 109.44475563	A92 81.22672148
B86 1.39790839	A32 108.56227668	A93 64.21971970
B87 0.93014536	A33 109.45755792	A94 124.67582495
B88 1.36957072	A34 122.26479702	A95 123.70351939
B89 0.93031970	A35 111.26433685	A96 83.09038309
B90 1.26219642	A36 107.83093404	A97 110.47595681
B91 1.35490843	A37 149.76883039	A98 121.72935173
B92 0.82002250	A38 87.47033451	A99 119.12374660
B93 1.25808264	A39 115.13967089	A100 121.77578780
B94 2.74252549	A40 116.43253157	A101 120.33901363
B95 1.00054462	A41 149.55988838	A102 119.35322998
B96 1.90354	A42 59.75791312	A103 120.53028903
B97 3.60324490	A43 119.44254453	A104 119.23930192
B98 1.49021559	A44 121.21482222	A105 121.46105813
B99 1.39319666	A45 119.40021423	A106 119.96823832
B100 0.93026643	A46 121.10902266	A107 78.34064509
B101 1.38111040	A47 146.50382394	A108 122.46728493
B102 0.93052480	A48 87.92433895	A109 109.49893414
B103 1.39452754	A49 95.07926542	A110 81.22672148
B104 1.39790839	A50 131.99547493	A111 119.46624864
B105 0.93014536	A51 144.78000624	A112 103.47380658
B106 1.36957072	A52 41.46129782	A113 97.76861745
D100 1.00001012	NOL TITUILUIUL	71110 37.70001743

A114 105.67196052 A115 102.13297637	D59 32.77648262 D60 179.48532795	Cálculos de SEP
A116 123.15585403 D1 -0.07702134 D2 179.92151075	D61 29.39805278 D62 -93.09999422 D63 34.78981708	Input:
D3 179.67416092 D4 -0.30002734	D64 157.72787691 D65 -91.54724027	#b -/C 24 - *
D5 -149.36782677	D66 150.33488376	#p scan upbepbe/6-31+g*
D6 170.75008759 D7 62.88017055	D67 69.10519303 D68 175.56901659	
D8 -43.33884627 D9 -81.05853376	D69 57.58610789 D70 64.58165624	Geometrias:
D10 170.44900871	D71 -110.31800847	Geometrias.
D11 46.72051206 D12 -81.29354886	D72 39.51909494 D73 152.31095599	Etapa 1
D13 159.31486525	D74 -178.49716945	
D14 56.35983996 D15 174.56363332	D75 29.41635122 D76 -57.70605522	0.1
D16 -0.09424221 D17 179.96219154	D77 168.82658453 D78 31.36428023	C H 1 B1
D18 -0.01082137	D79 109.36312629	C 1 B2 2 A1
D19 -179.48532795 D20 -29.39805278	D80 1.25842776 D81 -178.76894232	H 3 B3 1 A2 2 D1 0 C 3 B4 1 A3 2 D2 0
D21 93.09999422	D82 -179.71566668	H 5 B5 3 A4 1 D3 0 C 5 B6 3 A5 1 D4 0
D22 -34.78981708 D23 -157.72787691	D83 0.23278228 D84 -69.02646671	C 7 B7 5 A6 3 D5 0
D24 91.54724027 D25 -150.33488376	D85 -1.69336064 D86 178.28599797	H 8 B8 7 A7 5 D6 0 H 8 B9 7 A8 5 D7 0
D26 -69.10519303	D87 -179.20932091	C 8 B10 7 A9 5 D8 0
D27 -175.56901659 D28 -57.58610789	D88 -83.91117373 D89 -179.24197058	H 11 B11 8 A10 7 D9 0 H 11 B12 8 A11 7 D10 0
D29 -64.58165624	D90 4.11096416	C 11 B138 A127 D110 H 14 B1411 A138 D120
D30 110.31800847 D31 37.60772917	D91 148.88450709 D92 -144.52976463	C 14 B15 11 A14 8 D13 0
D32 -152.31095599 D33 178.49716945	D93 -119.16370891 D94 43.08157920	H 16 B16 14 A15 11 D14 0 H 16 B17 14 A16 11 D15 0
D34 -29.41635122	D95 -168.82658453	C 1 B183 A175 D160
D35 -56.70379968 D36 -44.34040912	D96 -31.36428023 D97 -109.36312629	H 19 B19 1 A18 3 D17 0 C 19 B20 1 A19 3 D18 0
D37 19.01367321	D98 -1.25842776	H 21 B21 19 A20 1 D19 0 C 8 B22 7 A21 5 D20 0
D38 -57.83612345 D39 -149.26530221	D99 178.76894232 D100 179.71566668	H 23 B23 8 A22 7 D21 0
D40 -54.69378033	D101 -0.23278228	H 23 B24 8 A23 7 D22 0 C 23 B25 8 A24 7 D23 0
D41 -154.70303182 D42 144.61587982	D102 69.02646671 D103 1.69336064	H 26 B26 23 A25 8 D24 0
D43 -35.38265226 D44 -179.67416092	D104 -178.28599797 D105 179.20932091	H 26 B27 23 A26 8 D25 0 C 8 B28 7 A27 5 D26 0
D45 0.30002734	D106 83.91117373	H 29 B29 8 A28 7 D27 0
D46 149.36782677 D47 -170.75008759	D107 179.24197058 D108 -4.11096416	H 29 B30 8 A29 7 D28 0 O 16 B31 14 A30 11 D29 0
D48 -62.88017055	D109 -148.88450709	H 32 B32 16 A31 14 D30 0 O 14 B33 11 A32 8 D31 0
D49 57.62770272 D50 162.35606931	D110 -70.37006791 D111 13.08180156	H 34 B34 14 A33 11 D32 0
D51 -162.04258470 D52 -54.25952099	D112 11.94883574 D113 107.99387748	N 7 B35 5 A34 3 D33 0 N 26 B36 23 A35 8 D34 0
D53 158.42037297	D114 60.57131003	H 37 B37 26 A36 23 D35 0 O 34 B38 14 A37 11 D36 0
D54 -82.18804115 D55 -56.35983996	D115 146.89459418	H 39 B39 34 A38 14 D37 0
D56 -174.56363332		H 39 B40 34 A39 14 D38 0 C 32 B41 16 A40 14 D39 0
D57 58.66244138 D58 -147.19653029		H 42 B42 32 A41 16 D40 0

B110 0.82002235	A56 109.46359687	D1 -0.07702059
B111 1.25808202	A57 109.45068056	D2 179.92152931
B112 2.77515619	A58 67.88515254	D3 179.67417714
B113 1.00054444	A59 119.40303074	D4 -0.30002495
B115 2.65301201	A60 121.14287473	D5 -149.36781934
B117 0.99253779	A61 119.42759280	D6 170.75001382
A1 120.68404366	A62 60.17665225	D7 62.88019909
A2 119.44258176	A63 94.44658460	D8 -43.33885559
		D9 -81.05853294
A3 121.21483768	A64 142.92015364	
A4 119.40025782	A65 90.01096218	D10 170.44898137
A5 121.10899287	A66 109.38256749	D11 46.72053896
A6 146.50379742	A67 109.36736328	D12 -81.29356832
A7 87.92430606	A68 143.18189729	D13 159.31483415
A8 95.07925381	A69 109.37156462	D14 56.35983179
A9 131.41785453	A70 109.34111496	D15 174.56359185
A10 97.79644702	A71 111.01691398	D16 -0.09422696
A11 94.81908833	A72 109.44474791	D17 179.96220570
A12 136.17187204	A73 108.56226278	D18 -0.01085015
A13 109.19650995	A74 109.45755443	D19 -179.48534402
A14 109.42433723	A75 122.26479308	D20 -29.39805991
A15 109.46359687	A76 111.26436438	D21 93.09998819
A16 109.45068056	A77 107.83089497	D22 -34.78975741
A17 118.60879932	A78 83.09041039	D23 -157.72790542
A18 119.40303074	A79 110.47594222	D24 91.54726086
A19 121.14287473	A80 121.72933538	D25 -150.33492246
A20 119.42759280	A81 119.12371027	D26 -69.10518667
A21 60.17665225	A82 121.77576634	D27 -175.56896880
A22 94.44658460	A83 120.33896696	D28 -57.58613001
A23 142.92015364	A84 119.35328291	D29 -64.58167243
A24 90.01096218	A85 120.53031859	D30 110.31798417
A25 109.38256749	A86 119.23927237	D31 37.60769165
A26 109.36736328	A87 121.46105047	D32 -152.31091113
A27 143.18189729	A88 119.96823329	D33 178.49721968
A28 109.37156462	A89 78.34062620	D34 -29.41632133
A29 109.34111496	A90 122.46731400	D35 -56.70382640
A30 111.01691398	A91 109.49889182	D36 -44.34039047
A31 109.44474791	A92 81.22673520	D37 -148.84899466
A32 108.56226278	A93 64.21971422	D38 -57.83608476
A33 109.45755443	A94 124.67584166	D39 -149.26530608
A34 122.26479308	A95 123.70350848	D40 -54.69378455
A35 111.26436438	A96 83.09041039	D41 -154.70302349
A36 107.83089497	A97 110.47594222	D42 144.61588626
A37 149.76885260	A98 121.72933538	D43 -35.38266364
A38 54.16302093	A99 119.12371027	D44 -179.67417714
A39 115.13964222	A100 121.77576634	D45 0.30002495
A40 116.43255163	A101 120.33896696	D46 149.36781934
A41 149.55989194	A102 119.35328291	D47 -170.75001382
A42 59.75791893	A103 120.53031859	D48 -62.88019909
A43 119.44258176	A104 119.23927237	D49 57.62774515
		D50 162.35606573
A44 121.21483768	A105 121.46105047	
A45 119.40025782	A106 119.96823329	D51 -162.04261050
A46 121.10899287	A107 78.34062620	D52 -54.25956226
A47 146.50379742	A108 122.46731400	D53 158.42038023
A48 87.92430606	A109 109.49889182	D54 -82.18802224
A49 95.07925381	A110 81.22673520	D55 -56.35983179
A50 131.99546863	A111 119.46626121	D56 -174.56359185
A51 144.78000421	A112 103.47383594	D57 58.66244850
A52 41.46125891	A113 10.91910129	D58 -147.19654379
A53 99.45261213	A114 105.67194716	D59 32.77651206
A54 109.19650995	A115 102.13295213	D60 179.48534402
A55 109.42433723	A116 123.15580492	D61 29.39805991

D66 150.33492246 D67 69.10518667 D68 175.56896880 D69 57.58613001 D70 64.58167243 D71 -110.31798417 D72 39.51912027 D73 152.31091113 D74 -178.49721968 D75 29.41632133 D76 56.70382640 D77 168.82659688 D78 31.36427482 D79 109.36316367 D80 1.25837188 D81 -178.76896479 D82 -179.71573831 D83 0.23278521 D84 -69.02648612 D85 -1.69333288 D86 178.28598416 D87 -179.20933533 D88 -83.91114163 D89 -179.24199481 D90 4.11094969 D91 148.88455488 D92 -144.52977161 D93 -119.16377305 D94 26.10487622 D95 -168.82659688 D96 -31.36427482 D97 -109.36316367 D98 -1.25837188 D99 178.76896479 D100 179.71573831 D101 -0.23278521 D102 69.02648612 D103 1.69333288 D99 178.76896479 D100 179.71573831 D101 -0.23278521 D102 69.02648612 D103 1.69333288 D104 -178.28598416 D105 179.20933533 D106 83.91114163 D107 179.24199481 D108 -4.11094969 D109 -148.88455488 D110 -70.37004462	H 8 B9 7 A8 5 D7 0 C 8 B10 7 A9 5 D8 0 H 11 B11 8 A10 7 D9 0 H 11 B12 8 A11 7 D10 0 C 11 B13 8 A12 7 D11 0 H 14 B14 11 A13 8 D12 0 C 14 B15 11 A14 8 D13 0 H 16 B16 14 A15 11 D14 0 H 16 B17 14 A16 11 D15 0 C 1 B18 3 A17 5 D16 0 H 19 B19 1 A18 3 D17 0 C 19 B20 1 A19 3 D18 0 H 21 B21 19 A20 1 D19 0 C 8 B22 7 A21 5 D20 0 H 23 B23 8 A22 7 D21 0 H 23 B24 8 A23 7 D22 0 C 23 B25 8 A24 7 D23 0 H 26 B26 23 A25 8 D24 0 H 26 B27 23 A26 8 D25 0 C 8 B28 7 A27 5 D26 0 H 29 B29 8 A28 7 D27 0 H 29 B30 8 A29 7 D28 0 O 16 B31 14 A30 11 D29 0 H 32 B32 16 A31 14 D30 0 O 14 B33 11 A32 8 D31 0 H 34 B34 14 A33 11 D32 0 N 7 B35 5 A34 3 D33 0 N 26 B36 23 A35 8 D34 0 H 37 B37 26 A36 23 D35 0 O 34 B38 14 A37 11 D36 0 H 39 B39 34 A38 14 D37 0 H 39 B40 34 A39 14 D38 0 C 32 B41 16 A40 14 D39 0 H 42 B42 32 A41 16 D40 0 C 42 B43 32 A42 16 D41 0 H 44 B44 42 A43 32 D42 0 C 44 B45 42 A44 32 D43 0 H 46 B46 44 A45 42 D44 0 C 46 B47 44 A46 42 D45 0 C 48 B48 46 A47 44 D46 0 H 49 B49 48 A48 46 D47 0	C 49 B69 48 A68 46 D67 0 H 70 B70 49 A69 48 D68 0 H 70 B71 49 A70 48 D69 0 O 57 B72 55 A71 52 D70 0 H 73 B32 57 A72 55 D71 0 O 55 B74 52 A73 34 D72 0 H 75 B75 55 A74 52 D73 0 N 48 B76 46 A75 44 D74 0 N 67 B77 64 A76 49 D75 0 H 78 B37 67 A77 64 D76 0 C 70 B79 49 A78 48 D77 0 C 80 B80 70 A79 49 D78 0 C 81 B81 80 A80 70 D79 0 H 82 B82 81 A81 80 D80 0 C 82 B83 81 A82 80 D81 0 H 84 B84 82 A83 81 D82 0 C 84 B85 82 A84 81 D83 0 C 81 B86 80 A85 70 D84 0 H 87 B87 81 A86 80 D85 0 C 87 B88 81 A87 80 D86 0 H 89 B89 87 A88 81 D87 0 O 80 B90 70 A89 49 D88 0 O 86 B91 84 A90 82 D89 0 H 92 B92 86 A91 84 D90 0 O 80 B93 70 A92 49 D91 0 O 39 B94 34 A93 14 D92 0 H 95 B95 39 A94 34 D93 0 H 95 B96 39 A95 34 D94 0 C 29 B97 8 A96 7 D95 0 C 98 B98 29 A97 8 D96 0 C 99 B99 98 A98 29 D97 0 H 100 B100 99 A99 98 D98 0 C 100 B101 99 A100 98 D99 0 H 102 B102 100 A101 99 D100 0 C 102 B103 100 A102 99 D101 0 C 99 B104 98 A103 29 D102 0 H 105 B105 99 A104 98 D103 0 C 105 B106 99 A105 98 D104 0 H 107 B107 105 A106 99 D105 0 O 98 B108 29 A107 8 D106 0 O 104 B109 102 A108 100 D107 0 H 110 B110 104 A109 102 D108 0
Etapa 2 01 C	H 57 B57 55 A56 52 D55 0 H 57 B58 55 A57 52 D56 0 C 42 B59 32 A58 16 D57 0 H 60 B60 42 A59 32 D58 0 C 60 B61 42 A60 32 D59 0	B1 0.93053181 B2 1.35882610 B3 0.93024420 B4 1.38019196

B5 0.93019277	B66 1.51043316	A14	109.42433723
B6 1.39085058	B67 0.96939342	A15	109.46359687
B7 2.44013722	B68 0.96960956		109.45068056
	D00 U.9090U930		
B8 0.97030027	B69 1.50534374		118.60879932
B9 0.96940504	B70 0.97056998	A18	119.40303074
B10 3.79601263	B71 0.96965624	Δ10	121.14287473
B11 0.97079448	B72 1.42434149		119.42759280
	B/Z 1.42434149		
B12 0.97051344	B74 1.39282377		60.17665225
B13 1.51567579	B75 0.82029047	A22	94.44658460
B14 0.98013580	B76 1.42043622	Δ23	142.92015364
B15 1.52536015	B77 1.49137565		90.01096218
	D77 1.49137303		
B16 0.97026187	B79 3.60324472	_	109.38256749
B17 0.96991833	B80 1.49021516	A26	109.36736328
B18 1.36717676	B81 1.39319718	A27	143.18189729
B19 0.92983358	B82 0.93026609		109.37156462
	D02 4.304440E0		
B20 1.37790440	B83 1.38111052		109.34111496
B21 0.93106401	B84 0.93052523		111.01691398
B22 2.42178296	B85 1.39452741	A31	109.44474791
B23 0.96999898	B86 1.39790897	Δ32	108.56226278
B24 0.96961680	B87 0.93014458		109.45755443
	0.93014430		
B25 1.51043316	B88 1.36957081		122.26479308
B26 0.96939342	B89 0.93031993	A35	111.26436438
B27 0.96960956	B90 1.26219717	A36	107.83089497
B28 1.50534374	B91 1.35490796		149.76885260
	D00 0 00000005		
B29 0.97056998	B92 0.82002235		54.16302093
B30 0.96965624	B93 1.25808202	A39	115.13964222
B31 1.42434149	B94 2.74252557	A40	116.43255163
B32 1 0008 S 20 0 0335	B95 1.00054444		149.55989194
D22 1 20000077	B96 1.00054		59.75791893
D33 1.39202311	D90 1.00004		
B34 0.82029047	B97 3.60324472		119.44258176
B35 1.42043622	B98 1.49021516	A44	121.21483768
B36 1 49137565	B99 1.39319718	A45	119.40025782
R37 1 0830	B100 0.93026609		121.10899287
D37 1.3000	D100 0.33020003		146.50379742
B38 4.30632028	B101 1.38111052		
B39 0.99254 S 20 0.042	B102 0.93052523		87.92430606
B40 0.99253779	B103 1.39452741	A49	95.07925381
B31 1.42434149 B32 1.0008 S 20 0.0335 B33 1.39282377 B34 0.82029047 B35 1.42043622 B36 1.49137565 B37 1.9839 B38 4.30632028 B39 0.99254 S 20 0.042 B40 0.99253779 B41 6.77621641 B42 0.93053181 B43 1.35882610 B44 0.93024420	B66 1.51043316 B67 0.96939342 B68 0.96960956 B69 1.50534374 B70 0.97056998 B71 0.96965624 B72 1.42434149 B74 1.39282377 B75 0.82029047 B76 1.42043622 B77 1.49137565 B79 3.60324472 B80 1.49021516 B81 1.39319718 B82 0.93026609 B83 1.38111052 B84 0.93052523 B85 1.39452741 B86 1.39790897 B87 0.93014458 B88 1.36957081 B89 0.93031993 B90 1.26219717 B91 1.35490796 B92 0.82002235 B93 1.25808202 B94 2.74252557 B95 1.00054444 B96 1.00054 B97 3.60324472 B98 1.49021516 B99 1.39319718 B100 0.93026609 B101 1.38111052 B101 1.38111052 B102 0.93052523 B103 1.39452741 B104 1.39790897 B105 0.93014458 B106 1.36957081	A50	131.99546863
D/2 0.03053191	B105 0.93014458		144.78000421
D42 4.05000040	D400 4 00057004	-	
B43 1.35882610			41.46125891
B44 0.93024420	B107 0.93031993	A53	99.45261213
B45 1.38019196	B108 1.26219717	A54	109.19650995
B46 0.93019277	B109 1.35490796		109.42433723
B47 1.39085058	B110 0.82002235		109.46359687
B48 2.44013722	B111 1.25808202		109.45068056
B49 0.97030027	B112 2.77515619	A58	67.88515254
B50 0.96940504	B113 1.00054444	A59	119.40303074
B51 3.20372688	B115 2.65301201		121.14287473
B52 0.97079448	B117 0.99253779		119.42759280
B53 0.97051344	A1 120.68404366		60.17665225
B54 1.51567579	A2 119.44258176	A63	94.44658460
B55 0.98013580	A3 121.21483768	A64	142.92015364
B56 1.52536015	A4 119.40025782		90.01096218
B57 0.97026187	A5 121.10899287		109.38256749
B58 0.96991833	A6 146.50379742		109.36736328
B59 1.36717676	A7 87.92430606	A68	143.18189729
B60 0.92983358	A8 95.07925381		109.37156462
B61 1.37790440	A9 131.41785453		109.34111496
B62 0.93106401	A10 97.79644702		111.01691398
B63 2.42178296	A11 94.81908833		109.44474791
B64 0.96999898	A12 136.17187204	A73	108.56226278
B65 0.96961680	A13 109.19650995	A74	109.45755443
		-	

A75 122.26479308	D20 -29.39805991	D81 -178.76896479
A76 111.26436438	D21 93.09998819	D82 -179.71573831
A77 107.83089497	D22 -34.78975741	D83 0.23278521
A78 83.09041039	D23 -157.72790542	D84 -69.02648612
A79 110.47594222	D24 91.54726086	D85 -1.69333288
A80 121.72933538	D25 -150.33492246	D86 178.28598416
A81 119.12371027	D26 -69.10518667	D87 -179.20933533
A82 121.77576634	D27 -175.56896880	D88 -83.91114163
A83 120.33896696	D28 -57.58613001	D89 -179.24199481
A84 119.35328291	D29 -64.58167243	D90 4.11094969
A85 120.53031859	D30 110.31798417	D91 148.88455488
A86 119.23927237	D31 37.60769165	D92 -144.52977161
A87 121.46105047	D32 -152.31091113	D93 -119.16377305
A88 119.96823329	D33 178.49721968	D94 26.10487622
A89 78.34062620	D34 -29.41632133	D95 -168.82659688
A90 122.46731400	D35 -56.70382640	D96 -31.36427482
A91 109.49889182	D36 -44.34039047	D97 -109.36316367
A92 81.22673520	D37 -148.84899466	D98 -1.25837188
A93 64.21971422	D38 -57.83608476	D99 178.76896479
A94 124.67584166	D39 -149.26530608	D100 179.71573831
A95 123.70350848	D40 -54.69378455	D101 -0.23278521
A96 83.09041039	D41 -154.70302349	D102 69.02648612
A97 110.47594222	D42 144.61588626	D103 1.69333288
A98 121.72933538	D43 -35.38266364	D104 -178.28598416
A99 119.12371027	D44 -179.67417714	D105 179.20933533
A100 121.77576634	D45 0.30002495	D106 83.91114163
A101 120.33896696	D46 149.36781934	D107 179.24199481
A102 119.35328291	D47 -170.75001382	D108 -4.11094969
A103 120.53031859	D48 -62.88019909	D109 -148.88455488
A104 119.23927237	D49 57.62774515	D110 -70.37004462
A105 121.46105047	D50 162.35606573	D111 13.08173334
A106 119.96823329	D51 -162.04261050	D112 -82.45771938
A107 78.34062620	D52 -54.25956226	D113 107.99386115
A108 122.46731400	D53 158.42038023	D114 -95.70649728
A109 109.49889182	D54 -82.18802224	D115 146.89463222
A110 81.22673520	D55 -56.35983179	
A111 119.46626121	D56 -174.56359185	
A112 103.47383594	D57 58.66244850	F1 0
A113 10.91910129	D58 -147.19654379	Etapa 3
A114 105.67194716	D59 32.77651206	
A115 102.13295213	D60 179.48534402	
A116 123.15580492	D61 29.39805991	0 1
D1 -0.07702059	D62 -93.09998819	С
		H 1 B1
D2 179.92152931	D63 34.78975741	C 1 B2 2 A1
D3 179.67417714	D64 157.72790542	
D4 -0.30002495	D65 -91.54726086	H 3 B3 1 A2 2 D1 0
D5 -149.36781934	D66 150.33492246	C 3 B4 1 A3 2 D2 0
D6 170.75001382	D67 69.10518667	H 5 B5 3 A4 1 D3 0
		C 5 B6 3 A5 1 D4 0
D7 62.88019909	D68 175.56896880	C 7 B7 5 A6 3 D5 0
D8 -43.33885559	D69 57.58613001	
D9 -81.05853294	D70 64.58167243	H 8 B8 7 A7 5 D6 0
D10 170.44898137	D71 -110.31798417	H 8 B9 7 A8 5 D7 0
D11 46.72053896	D72 39.51912027	C 8 B10 7 A9 5 D8 0
		H 11 B11 8 A10 7 D9 0
D12 -81.29356832	D73 152.31091113	H 11 B12 8 A11 7 D10 0
D13 159.31483415	D74 -178.49721968	
D14 56.35983179	D75 29.41632133	C 11 B13 8 A12 7 D11 0
D15 174.56359185	D76 56.70382640	H 14 B14 11 A13 8 D12 0
D16 -0.09422696	D77 168.82659688	C 14 B15 11 A14 8 D13 0
D17 179.96220570	D78 31.36427482	H 16 B16 14 A15 11 D14 0
		H 16 B17 14 A16 11 D15 0
D18 -0.01085015	D79 109.36316367	C 1 B18 3 A17 5 D16 0
D19 -179.48534402	D80 1.25837188	
		H 19 B19 1 A18 3 D17 0

B87 0.93014458	A33 109.45755443	A94 124.67584166
B88 1.36957081	A34 122.26479308	A95 123.70350848
B89 0.93031993	A35 111.26436438	A96 83.09041039
B90 1.26219717	A36 107.83089497	A97 110.47594222
B91 1.35490796	A37 149.76885260	A98 121.72933538
B92 0.82002235	A38 54.16302093	A99 119.12371027
B93 1.25808202	A39 115.13964222	A100 121.77576634
B94 2.74252557	A40 116.43255163	A101 120.33896696
B95 1.00054444	A41 149.55989194	A102 119.35328291
B96 1.00054	A42 59.75791893	A103 120.53031859
B97 3.60324472	A43 119.44258176	A104 119.23927237
B98 1.49021516	A44 121.21483768	A105 121.46105047
B99 1.39319718	A45 119.40025782	A106 119.96823329
B100 0.93026609	A46 121.10899287	A107 78.34062620
B101 1.38111052	A47 146.50379742	A108 122.46731400
B102 0.93052523	A48 87.92430606	A109 109.49889182
B103 1.39452741	A49 95.07925381	A110 81.22673520
B104 1.39790897	A50 131.99546863	A111 119.46626121
B105 0.93014458	A51 144.78000421	A112 103.47383594
B106 1.36957081	A52 41.46125891	A113 10.91910129
B107 0.93031993	A53 99.45261213	A114 105.67194716
B108 1.26219717	A54 109.19650995	A115 102.13295213
B109 1.35490796	A55 109.42433723	A116 123.15580492
B110 0.82002235	A56 109.46359687	D1 -0.07702059
B111 1.25808202	A57 109.45068056	D2 179.92152931
B112 2.77515619	A58 67.88515254	D3 179.67417714
B113 1.00054444	A59 119.40303074	D4 -0.30002495
B115 2.65301201	A60 121.14287473	D5 -149.36781934
B117 0.99253779	A61 119.42759280	D6 170.75001382
		D7 62.88019909
A1 120.68404366	A62 60.17665225	
A2 119.44258176	A63 94.44658460	D8 -43.33885559
A3 121.21483768	A64 142.92015364	D9 -81.05853294
A4 119.40025782	A65 90.01096218	D10 170.44898137
A5 121.10899287	A66 109.38256749	D11 46.72053896
A6 146.50379742	A67 109.36736328	D12 -81.29356832
A7 87.92430606	A68 143.18189729	D13 159.31483415
A8 95.07925381	A69 109.37156462	D14 56.35983179
A9 131.41785453	A70 109.34111496	D15 174.56359185
A10 97.79644702	A71 111.01691398	D16 -0.09422696
A11 94.81908833	A72 109.44474791	D17 179.96220570
A12 136.17187204	A73 108.56226278	D18 -0.01085015
A13 109.19650995	A74 109.45755443	D19 -179.48534402
A14 109.42433723	A75 122.26479308	D20 -29.39805991
A15 109.46359687	A76 111.26436438	D21 93.09998819
A16 109.45068056	A77 107.83089497	D22 -34.78975741
A17 118.60879932	A78 83.09041039	D23 -157.72790542
A18 119.40303074	A79 110.47594222	D24 91.54726086
A19 121.14287473	A80 121.72933538	D25 -150.33492246
A20 119.42759280	A81 119.12371027	D26 -69.10518667
A21 60.17665225	A82 121.77576634	D27 -175.56896880
A22 94.44658460	A83 120.33896696	D28 -57.58613001
A23 142.92015364	A84 119.35328291	D29 -64.58167243
A24 90.01096218	A85 120.53031859	D30 110.31798417
A25 109.38256749	A86 119.23927237	D31 37.60769165
A26 109.36736328	A87 121.46105047	D32 -152.31091113
A27 143.18189729	A88 119.96823329	D33 178.49721968
A28 109.37156462	A89 78.34062620	D34 -29.41632133
A29 109.34111496	A90 122.46731400	D35 -56.70382640
A30 111.01691398	A91 109.49889182	D36 -44.34039047
A31 109.44474791	A92 81.22673520	D37 -148.84899466
A32 108.56226278	A93 64.21971422	D38 -57.83608476
	The view of the	_ 00 01.00000110

D39 -149.26530608 D40 -54.69378455 D41 -154.70302349 D42 144.61588626 D43 -35.38266364 D44 -179.67417714 D45 0.30002495 D46 149.36781934 D47 -170.75001382 D48 -62.88019909 D49 57.62774515 D50 162.35606573 D51 -162.04261050 D52 -54.25956226 D53 158.42038023 D54 -82.18802224 D55 -56.35983179 D56 -174.56359185	D100 179.71573831 D101 -0.23278521 D102 69.02648612 D103 1.69333288 D104 -178.28598416 D105 179.20933533 D106 83.91114163 D107 179.24199481 D108 -4.11094969 D109 -148.88455488 D110 -70.37004462 D111 13.08173334 D112 -82.45771938 D113 107.99386115 D114 -95.70649728 D115 146.89463222	H -0.46115500 3.16366000 -0.28810000 H -1.00243200 1.70201000 -0.44145200 C 0.99036900 1.84929400 -0.88320700 H 1.65140800 2.56841400 -0.80221500 C 0.63902500 1.65661300 -2.35499400 H 0.22506500 2.46472900 -2.69703600 H 1.45007000 1.49719200 -2.86247000 C -1.42654500 2.83855400 7.67220300 H -2.23269700 2.83802300 8.13557000
D57 58.66244850	A (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	C -1.43702400 2.83910400
D58 -147.19654379	Cálculos de otimização	6.29433800
D59 32.77651206 D60 179.48534402		H -2.25138100 2.84660400 5.84306800
D61 29.39805991	Input:	C 1.00285100 2.59575800
D62 -93.09998819		3.49163300
D63 34.78975741		H 1.26017700 1.67466000
D64 157.72790542	#p ant-partecian uphanha/6 21 a*	3.65367800
D65 -91.54726086	#p opt=cartesian upbepbe/6-31+g* empiricaldispersion=GD2	H 1.68332600 3.16777600
D66 150.33492246		3.87881100
D67 69.10518667		C 0.94205400 2.83746700
D68 175.56896880 D69 57.58613001		2.00190500
D70 64.58167243		H 0.78254800 3.77896500 1.83498500
D71 -110.31798417	Geometrias:	H 1.79389600 2.60220600
D72 39.51912027		1.60295500
D73 152.31091113	Cocristal	C -1.43358800 2.38078300
D74 -178.49721968	Goorlotal	2.03040500
D75 29.41632133		H -2.14718500 1.84867600
D76 56.70382640 D77 168.82659688	01	1.64356200
D78 31.36427482	C -0.25106200 2.83822400 8.37035200	H -1.63651400 3.31504200 1.86849700
D79 109.36316367	H -0.25106200 2.83822400	O -0.25078900 0.55798300 -
D80 1.25837188	9.30088400	2.52817400
D81 -178.76896479	C 0.91752100 2.83822400	H -1.75558600 1.12679000 -
D82 -179.71573831	7.67693800	2.97941400
D83 0.23278521	H 1.72416100 2.83931300	O 1.51382600 0.68312400 -
D84 -69.02648612	8.14027800	0.33003700
D85 -1.69333288	C 0.93030700 2.83660700	H 2.32432700 0.66152800 -
D86 178.28598416 D87 -179.20933533	6.29680600 H 1.74488100 2.84125600	0.45452700 N -0.26968700 2.85834900
D88 -83.91114163	5.84768900	4.14716900
D89 -179.24199481	C -0.25379000 2.82868400	N -0.14051100 2.03179400
D90 4.11094969	5.56720600	1.36696800
D91 148.88455488	C -1.37427000 2.13334300	H 0.18836600 0.12392100
D92 -144.52977161	3.51408800	1.80023500
D93 -119.16377305	H -2.21131600 2.41130000	O 2.60077100 -1.62816500
D94 26.10487622	3.91853300	3.13707800
D95 -168.82659688	H -1.26539700 1.18349800	H 3.43185100 -1.68673100
D96 -31.36427482 D97 -109.36316367	3.67435700 C -0.25790500 2.23071600 -	1.50488000 H 3.25368800 -1.19393200
D98 -1.25837188	0.11275100	3.74557800
D99 178.76896479	3.11210100	5.7 1007 000

C 0.25106200 -2.83822400 -
8.37035200
H 0.25106200 -2.83822400 -
9.30088400
C -0.91752100 -2.83822400 -
7.67693800
H -1.72416100 -2.83931300 -
8.14027800
C -0.93030700 -2.83660700 -
6.29680600
H -1.74488100 -2.84125600 -
5.84768900
C 0.25379000 -2.82868400 -
5.56720600
C 1.37427000 -2.13334300 -
3.51408800
H 2.21131600 -2.41130000 -
3.91853300
H 1.26539700 -1.18349800 -
3.67435700
C 0.25790500 -2.23071600
0.11275100
H 0.46115500 -3.16366000
0.28810000
H 1.00243200 -1.70201000
0.44145200
C -0.99036900 -1.84929400
0.88320700
H -1.65140800 -2.56841400
0.80221500
C -0.63902500 -1.65661300
2.35499400
H -0.22506500 -2.46472900
2.69703600
H -1.45007000 -1.49719200
2.86247000
C 1.42654500 -2.83855400 -
7.67220300
H 2.23269700 -2.83802300 -
8.13557000
C 1.43702400 -2.83910400 -
6.29433800
H 2.25138100 -2.84660400 -
5.84306800
C -1.00285100 -2.59575800 -
3.49163300
H -1.26017700 -1.67466000 -
3.65367800
H -1.68332600 -3.16777600 -
3.87881100
C -0.94205400 -2.83746700 -
2.00190500
H -0.78254800 -3.77896500 -
1.83498500
H -1.79389600 -2.60220600 -
1.60295500

C 1.43358800 -2.38078300 -

H 2.14718500 -1.84867600 -

2.03040500

1.64356200

H 1.63651400 -3.31504200 -1.86849700 O 0.25078900 -0.55798300 2.52817400 H 1.75558600 -1.12679000 2.97941400 O -1.51382600 -0.68312400 0.33003700 H -2.32432700 -0.66152800 0.45452700 N 0.26968700 -2.85834900 -4.14716900 N 0.14051100 -2.03179400 -1.36696800 H -0.18836600 -0.12392100 -1.80023500 C 4.40554200 -0.35542200 -2.25125800 C 4.27092100 0.65055600 -3.34241700 C 4.12211600 2.00916400 -3.07216100 H 4.12412400 2.29774900 -2.18779100 C 3.97222400 2.93941500 -4.08192900 H 3.87825800 3.84261800 -3.87877600 C 3.96413200 2.51211600 -5.40935400 C 4.25706900 0.24852100 -4.68119400 H 4.35677500 -0.65334700 -4.88579900 C 4.09957500 1.15293600 -5.69753700 H 4.08244700 0.86115800 -6.58075100 O 4.85032100 -1.49556100 -2.56011800 O 3.83632700 3.37123900 -6.44923400 H 3.82462600 4.14147000 -6.16808600 O 4.04387500 -0.03931200 -1.08848400 O 4.24177100 -1.90424000 0.95709000 H 4.40555800 -2.76453700 0.47319700 H 4.44733400 -0.62624400 -0.31881600 C -4.40554200 0.35542200 2.25125800 C -4.27092100 -0.65055600 3.34241700 C -4.12211600 -2.00916400 3.07216100 H -4.12412400 -2.29774900 2.18779100

C -3.97222400 -2.93941500 4.08192900 H -3.87825800 -3.84261800 3.87877600 C -3.96413200 -2.51211600 5.40935400 C -4.25706900 -0.24852100 4.68119400 H -4.35677500 0.65334700 4.88579900 C -4.09957500 -1.15293600 5.69753700 H -4.08244700 -0.86115800 6.58075100 O -4.85032100 1.49556100 2.56011800 O -3.83632700 -3.37123900 6.44923400 H -3.82462600 -4.14147000 6.16808600 O -4.04387500 0.03931200 1.08848400 O -4.24177100 1.90424000 -0.95709000 H -4.40555800 2.76453700 -0.47319700 H -4.44733400 0.62624400 0.31881600 O -2.60077100 1.62816500 -3.13707800 H -3.43185100 1.68673100 -1.50488000 H -3.25368800 1.19393200 -3.74557800

Sal-cocristal

01 C -0.25106200 2.83822400 8.37035200 H -0.25106200 2.83822400 9.30088400 C 0.91752100 2.83822400 7.67693800 H 1.72416100 2.83931300 8.14027800 C 0.93030700 2.83660700 6.29680600 H 1.74488100 2.84125600 5.84768900 C -0.25379000 2.82868400 5.56720600 C -1.37427000 2.13334300 3.51408800 H -2.21131600 2.41130000 3.91853300 H -1.26539700 1.18349800 3.67435700

C -0.25790500 2.23071600
0.11275100 H -0.46115500 3.16366000
0.28810000
H -1.00243200 1.70201000
0.44145200
C 0.99036900 1.84929400
0.88320700 H 1.65140800 2.56841400
0.80221500
C 0.63902500 1.65661300
2.35499400
H 0.22506500 2.46472900 - 2.69703600
H 1.45007000 1.49719200
2.86247000
C -1.42654500 2.83855400
7.67220300 H -2.23269700 2.83802300
8.13557000
C -1.43702400 2.83910400
6.29433800
H -2.25138100 2.84660400 5.84306800
C 1.00285100 2.59575800
3.49163300
H 1.26017700 1.67466000 3.65367800
H 1.68332600 3.16777600
3.87881100
C 0.94205400 2.83746700
2.00190500 H 0.78254800 3.77896500
1.83498500
H 1.79389600 2.60220600
1.60295500 C -1.43358800 2.38078300
2.03040500
H -2.14718500 1.84867600
1.64356200 H -1.63651400 3.31504200
1.86849700
O -0.25078900 0.55798300
2.52817400
H -1.15215400 0.89869500 2.79846400
O 1.51382600 0.68312400
0.33003700
H 2.32432700 0.66152800 0.45452700
N -0.26968700 2.85834900
4.14716900
N -0.14051100 2.03179400 1.36696800
H 0.03751200 0.99904800
1.60149900
O 2.60077100 -1.62816500
3.13707800

H 3.05090000 -1.65988600

2.25304800

H 2.14718500 -1.84867600 -1.64356200 H 1.63651400 -3.31504200 -1.86849700 O 0.25078900 -0.55798300 2.52817400 H 1.15215400 -0.89869500 2.79846400 O -1.51382600 -0.68312400 0.33003700 H -2.32432700 -0.66152800 0.45452700 N 0.26968700 -2.85834900 -4.14716900 N 0.14051100 -2.03179400 -1.36696800 H -0.03751200 -0.99904800 -1.60149900 C 4.40554200 -0.35542200 -2.25125800 C 4.27092100 0.65055600 -3.34241700 C 4.12211600 2.00916400 -3.07216100 H 4.12412400 2.29774900 -2.18779100 C 3.97222400 2.93941500 -4.08192900 H 3.87825800 3.84261800 -3.87877600 C 3.96413200 2.51211600 -5.40935400 C 4.25706900 0.24852100 -4.68119400 H 4.35677500 -0.65334700 -4.88579900 C 4.09957500 1.15293600 -5.69753700 H 4.08244700 0.86115800 -6.58075100 O 4.85032100 -1.49556100 -2.56011800 O 3.83632700 3.37123900 -6.44923400 H 3.82462600 4.14147000 -6.16808600 O 4.04387500 -0.03931200 -1.08848400 O 4.24177100 -1.90424000 0.95709000 H 4.40555800 -2.76453700 0.47319700 H 4.35493200 -1.20071300 0.25471300 C -4.40554200 0.35542200 2.25125800 C -4.27092100 -0.65055600 3.34241700 C -4.12211600 -2.00916400 3.07216100

H -4.12412400 -2.29774900	C -0.66265900 3.06352400	H -1.63
	8 48595200	1 863476
C -3.97222400 -2.93941500	H -0.74668700 3.14985700	O -0.31
4.08192900	9.57418200	2.435098
H -3.87825800 -3.84261800	C 0.55526700 2.71228500	H -1.78
3.87877600	7.88720600	2.293532
C -3.96413200 -2.51211600	H 1.43555600 2.51201400	O 1.75
5.40935400	8.50906400	0.160805
C -4.25706900 -0.24852100	C 0.66751200 2.59343700	H 2.66
4.68119400	6.49189900	0.541428
H -4.35677500 0.65334700	H 1.62623700 2.28846900	
4.88579900	6.06444100	4.242515
C -4.09957500 -1.15293600	C -0.44525600 2.84133100	N -0.09
5.69753700	5.65077700	1.495163
	C -1.43118400 2.01773900	
6.58075100	3.56901700	1.958282
O -4.85032100 1.49556100	H -2.41520500 2.33184400	
2.56011800	3.94217100	2.289643
O -3.83632700 -3.37123900	H -1.31764100 0.93034100	H 3.80
6.44923400	3.77324600	1.151948
H -3.82462600 -4.14147000	C -0.16711100 2.09908400	
6.16808600	0.03989400	3.183832
O -4.04387500 0.03931200	H -0.47009400 3.14311400 -	C 0.66
1.08848400	0.20947100	8.485952
O -4.24177100 1.90424000 -	H -0.96173300 1.41976600 -	H 0.74
0.95709000	0.29866400	9.574182
H -4.40555800 2.76453700 - 0.47319700	C 1.11356900 1.78461800 - 0.74101600	C -0.55 7.887206
H -4.35493200 1.20071300 -	H 1.80841700 2.65367600 -	7.007200 H -1.43
0.25471300	0.70466400	8.509064
O -2.60077100 1.62816500 -	C 0.76178600 1.54404400 -	C -0.66
3.13707800	2.22587700	6.491899
H -3.05090000 1.65988600 -	H 0.45706100 2.50140400 -	
2.25304800	2.69001500	6.064441
H -3 25368800 1 19393200 -	H 1.67043900 1.18701300 -	C 0.44
3.74557800	2.75080800	5.650777
0.7 1007 000	C -1 77516000 3 30660700	C 1.43
H -3.25368800 1.19393200 - 3.74557800	C -1.77516000 3.30660700 7.65912700	3.569017
	H -2.73524100 3.59717500	H 2.41
Cálculas de freguêra:	8.10109600	3.942171
Cálculos de frequência	C -1.67182100 3.20209900	H 1.31

Cálculos de frequência (FREQ)

Input utilizado:

-----#p upbepbe/6-31+g* freq=noraman
guess=read

Geometrias:

Cocristal

0 1

6.26818800 H -2.54412900 3.43596800 5.64957000 C 0.94970700 2.48147500 3.65742200 H 1.25546300 1.42891600 3.85698800 H 1.69612700 3.15429800 4.11301200 C 0.94428900 2.72676400 2.14451600 H 0.76957500 3.80981700 1.94265000 H 1.92283800 2.43316800 1.72834700 C -1.40525100 2.26643000 2.06834100 H -2.17227900 1.64724000

1.57777400

63853500 3.33780500 600 31843500 0.63292200 -900 78663100 1.38785300 -3200 5350500 0.64370200 -)500 6477800 0.59364800 -2800 86113700 2.77232000 500 9464200 1.91480600 300 5338000 0.26362100 3200 9898400 -1.99493000 1300 0566200 -1.82068200 800 8288100 -1.91660000 3200 6265900 -3.06352400 -5200 4668700 -3.14985700 -3200 55526700 -2.71228500 -0600 3555600 -2.51201400 -3400 6751200 -2.59343700 -900 2623700 -2.28846900 -1100 4525600 -2.84133100 -7700 3118400 -2.01773900 -1700 1520500 -2.33184400 -'100 1.31764100 -0.93034100 -3.77324600 C 0.16711100 -2.09908400 -0.03989400 H 0.47009400 -3.14311400 0.20947100 H 0.96173300 -1.41976600 0.29866400 C -1.11356900 -1.78461800 0.74101600 H -1.80841700 -2.65367600 0.70466400 C -0.76178600 -1.54404400 2.22587700 H -0.45706100 -2.50140400 2.69001500 H -1.67043900 -1.18701300 2.75080800 C 1.77516000 -3.30660700 -7.65912700

H 2.73524100 -3.59717500 -	O 4.58601600 -1.55565200 -	0 1
8.10109600	2.49690100	C -0.65568100 3.00051100
C 1.67182100 -3.20209900 -	O 3.43580100 3.17129800 -	8.44942400
6.26818800	6.67029300	H -0.73822600 3.09947400
H 2.54412900 -3.43596800 -	H 3.42620300 4.10811000 -	9.53660200
5.64957000	6.38277400	C 0.53870700 2.56318500
C -0.94970700 -2.48147500 -	O 4.39653400 0.23854600 -	7.86092300
3.65742200	1.10636800	H 1.40023900 2.30825400
H -1.25546300 -1.42891600 -	O 4.60308800 -1.73168400	8.48860100
3.85698800	0.53419600	C 0.64745800 2.42609900
H -1.69612700 -3.15429800 -	H 4.54096800 -2.45644300 -	6.46675600
4.11301200	0.12349600	H 1.58494100 2.05171000
C -0.94428900 -2.72676400 -	H 4.53419500 -0.51951000 -	6.04569000
2.14451600	0.39656900	C -0.44333400 2.74335900
H -0.76957500 -3.80981700 -	C -4.42977900 0.33926300	5.62479700
1.94265000	2.33670200	C -1.45296600 1.92379100
H -1.92283800 -2.43316800 -	C -4.21478000 -0.62197300	3.54915200
1.72834700	3.44800000	H -2.43151200 2.22793700
C 1.40525100 -2.26643000 -	C -4.17666500 -2.01693100	3.94320000
2.06834100	3.23596600	H -1.34763400 0.83213900
H 2.17227900 -1.64724000 -	H -4.34576200 -2.41400400	3.71900000
1.57777400	2.23038500	C -0.22775800 2.16977600 -
H 1.63853500 -3.33780500 -	C -3.92461700 -2.88922900	0.03803600
1.86347600	4.29895100	H -0.47607000 3.23831300 -
O 0.31843500 -0.63292200	H -3.90053800 -3.97365700	0.15422600
2.43509900	4.13171000	H -1.06968000 1.56259900 -
H 1.78663100 -1.38785300	C -3.69892500 -2.37108300	0.39263100
2.29353200	5.59165200	C 1.04246800 1.81546300 -
O -1.75350500 -0.64370200	C -4.00575600 -0.12119000	0.81321700
0.16080500	4.75254500	H 1.80101600 2.62219400 -
H -2.66477800 -0.59364800	H -4.04245700 0.96041200	0.70971700
0.54142800	4.91220000	C 0.69705200 1.68526500 -
N 0.36113700 -2.77232000 -	C -3.74134800 -0.98050100	2.31137500
4.24251500	5.81830500	H 0.33530700 2.65585800 -
N 0.09464200 -1.91480600 -	H -3.55951600 -0.59681100	2.70673000
1.49516300	6.82713000	H 1.61446400 1.40661100 -
H -0.15338000 -0.26362100 -	O -4.58601600 1.55565200	2.85768300
1.95828200	2.49690100	C -1.74720200 3.31134300
C 4.42977900 -0.33926300 -	O -3.43580100 -3.17129800	7.61794100
2.33670200	6.67029300	H -2.68781100 3.66572200
C 4.21478000 0.62197300 -	H -3.42620300 -4.10811000	8.05454000
3.44800000	6.38277400	C -1.64497900 3.19148900
C 4.17666500 2.01693100 -	O -4.39653400 -0.23854600	6.22823800
3.23596600	1.10636800	H -2.49677200 3.47260400
H 4.34576200 2.41400400 -	O -4.60308800 1.73168400 -	5.60057300
2.23038500	0.53419600	C 0.93474800 2.31467700
C 3.92461700 2.88922900 -	H -4.54096800 2.45644300	3.63507900
4.29895100	0.12349600	H 1.19410100 1.24914000
H 3.90053800 3.97365700 -	H -4.53419500 0.51951000	3.81728500
4.13171000	0.39656900	H 1.71293400 2.94615300
C 3.69892500 2.37108300 -	O -2.59898400 1.99493000 -	4.09649800
5.59165200	2.28964300	C 0.96131700 2.59878500
C 4.00575600 0.12119000 -	H -3.80566200 1.82068200 -	2.13143300
4.75254500	1.15194800	H 0.81672700 3.67513000
H 4.04245700 -0.96041200 -	H -2.98288100 1.91660000 -	1.93327400
4.91220000	3.18383200	H 1.90554300 2.24952700
C 3.74134800 0.98050100 -		1.68537000
5.81830500		C -1.46899300 2.22556600
H 3.55951600 0.59681100 -	Sal-cocristal	2.06186600
6.82713000		H -2.25090000 1.64923800
		1.54995200

- H -1.63169600 3.30304200 1.88423200
- O -0.27649400 0.66210800 -2.54494000
- H -1.18902200 1.08159500 2.44099400
- O 1.55494700 0.59603400 0.29139100
- H 2.51525900 0.52736000 0.61628200
- N -0.36379700 2.66347000 4.21050500
- N -0.14969600 1.87785000 1.42852100
- H 0.00722900 0.83503200 1.56844600
- O 2.53409600 -2.07020400 2.28892600
- H 3.23933600 -1.87515800 1.57014900
- H 3.03859700 -2.15272800 3.12080400
- C 0.65568100 -3.00051100 8.44942400
- H 0.73822600 -3.09947400 9.53660200
- C -0.53870700 -2.56318500 7.86092300
- H -1.40023900 -2.30825400 -
- 8.48860100 C -0.64745800 -2.42609900 -
- 6.46675600 H -1.58494100 -2.05171000 -
- 6.04569000 C 0.44333400 -2.74335900 -
- 5.62479700 C 1.45296600 -1.92379100 -
- 3.54915200
- H 2.43151200 -2.22793700 3.94320000
- H 1.34763400 -0.83213900 3.71900000
- C 0.22775800 -2.16977600 0.03803600
- H 0.47607000 -3.23831300 0.15422600
- H 1.06968000 -1.56259900 0.39263100
- C -1.04246800 -1.81546300 0.81321700
- H -1.80101600 -2.62219400 0.70971700
- C -0.69705200 -1.68526500 2.31137500
- H -0.33530700 -2.65585800 2.70673000
- H -1.61446400 -1.40661100 2.85768300
- C 1.74720200 -3.31134300 7.61794100

- H 2.68781100 -3.66572200 8.05454000
- C 1.64497900 -3.19148900 6.22823800
- H 2.49677200 -3.47260400 5.60057300
- C -0.93474800 -2.31467700 3.63507900
- H -1.19410100 -1.24914000 3.81728500
- H -1.71293400 -2.94615300 4.09649800
- C -0.96131700 -2.59878500 2.13143300
- H -0.81672700 -3.67513000 1.93327400
- H -1.90554300 -2.24952700 1.68537000
- C 1.46899300 -2.22556600 2.06186600
- H 2.25090000 -1.64923800 1.54995200
- H 1.63169600 -3.30304200 1.88423200
- O 0.27649400 -0.66210800 2.54494000
- H 1.18902200 -1.08159500 2.44099400
- O -1.55494700 -0.59603400 0.29139100
- H -2.51525900 -0.52736000 0.61628200
- N 0.36379700 -2.66347000 -4.21050500
- N 0.14969600 -1.87785000 1.42852100
- H -0.00722900 -0.83503200 1.56844600
- C 4.23049900 -0.15039300 2.29715000
- C 4.17898400 0.70719500 3.53682800
- C 4.09254500 2.11109700 3.44907100
- H 4.10285900 2.57316900 2.45648300
- C 3.99862500 2.89940500 4.60236300
- H 3.94092500 3.99368000 4.52593300
- C 3.98119300 2.28328800 5.86957300
- C 4.17935400 0.11120000 4.81600300
- H 4.26464200 -0.97819000 4.88034200
- C 4.07237300 0.88203600 5.97630800
- H 4.05683300 0.42127700 6.96924300

- O 4.42169600 -1.39129000 -2.41115900
- O 3.87987900 2.99845100 7.03840500
- H 3.83729600 3.95308700 6.82287200
- O 4.02887600 0.46620700 1.16173400
- O 4.40889600 -1.56472900 0.51948800
- H 4.53463100 -2.16974300 0.24542800
- H 4.30691600 -0.68943300 0.01508900
- C -4.23049900 0.15039300 2.29715000
- C -4.17898400 -0.70719500 3.53682800
- C -4.09254500 -2.11109700
- 3.44907100 H -4.10285900 -2.57316900
- 2.45648300 C -3.99862500 -2.89940500
- 4.60236300 H -3.94092500 -3.99368000
- 4.52593300 C -3.98119300 -2.28328800
- 5.86957300 C -4.17935400 -0.11120000
- 4.81600300 H -4.26464200 0.97819000
- 4.88034200
- C -4.07237300 -0.88203600 5.97630800
- H -4.05683300 -0.42127700 6.96924300
- O -4.42169600 1.39129000 2.41115900
- O -3.87987900 -2.99845100 7.03840500
- H -3.83729600 -3.95308700 6.82287200
- O -4.02887600 -0.46620700 1.16173400
- O -4.40889600 1.56472900 -0.51948800
- H -4.53463100 2.16974300 0.24542800
- H -4.30691600 0.68943300 0.01508900
- O -2.53409600 2.07020400 -2.28892600
- H -3.23933600 1.87515800 1.57014900
- H -3.03859700 2.15272800 3.12080400